

(

HandleCheck checks to see if the handle h is NIL or empty. If it is either, HandleCheck

returns FALSE and displays an error alert, using string msgID from ResEdit's 'STR#' resource
ID 129. If the handle id is OK, HandleCheck returns TRUE.

PROCEDURE MetaKeys (VAR cmd, shift, opt: BOOLEAN);

MetaKeys returns the values of the modifier keys from the last event. Some menu commands
that have shortcut key combinations simulate the shortcut modifier keys when the menu
command is selected. For example, when Open as Template is selected, MetaKeys indicates
that the Command and Shift modifier keys were pressed. Because of these transformations,
MetaKeys should always be used to get the modifier values.

PROCEDURE PickEvent (VAR evt: EventRecord; pick: PickHandle);

P ickEvent handles an event contained in evt for a standard picker referenced by pick.

PickEvent should be called from your picker's DoEvent procedure. It is usually sufficient
to call only this routine from DoEvent, with no other special processing at all.

PROCEDURE PickInfoUp (oldID, newID: INTEGER; pick: PickHandle);

PickInfoUp handles the update necessary when a resource's ID is changed in the Get Info
window. P ickInfoUp should be called from your picker's DoInfoUpdate procedure. It is
usually sufficient to call only this routine from DoInfoUpdate, with no other special
processing at all.

PROCEDURE PickMenu (menu, item: INTEGER; pick: pickHandle);

P ickMenu handles menu commands for a standard picker referenced by pick. P ickMenu

should be called from your picker's DoMenu procedure. This routine handles all of the
standard menu commands such as New, Open, Open as Template, Open General, Close, Get
Info, Save, Revert, Cut, Copy, Paste, Clear, and Duplicate. It is usually sufficient to call only this
routine from DoMenu, although you may want to release any of the resources that were
loaded.

FUNCTION pickStdRows: INTEGER;

This function returns the number of rows that should be displayed in a picker window. This
value is obtained from the Preferences dialog box. It is guaranteed that the number of rows
returned will all fit on the screen. A picker that doesn't use text rows for its display can
determine the height in pixels with the following calculation:

height := pickStdRows * DefaultListCellSize;

FUNCTION pickStdWidth: INTEGER;

This function returns the width in pixels that should be used when creating picker windows.
This value is obtained from the Preferences dialog box. A window of the specified width is
guaranteed to fit on the screen.

FUNCTION ResEdID: INTEGER;

CHAPTER 8 Extending ResEdit 99

ResEdID returns the resource ID of the calling picker or editor. For editors, this value should
be saved in the windowKind field of the editor's window. For pickers, this value should be
saved in the P ickld field of the picker's P ickRec as well as in the windowKind field of
the window.

PROCEDURE SetResChanged (h: Handle)i

SetResChanged sets the resChanged attribute for the specified resource and also sets the
mapChanged attribute for the resource me that contains the resource. SetResChanged
should be called whenever a resource is changed.

PROCEDURE SendRebuildToPickerAndFile (theType: ResTypei
parent: ParentHandle)i

This procedure sends a rebuild (sets the rebuild flag in the window's parentRecord) to all
open picker windows of the specified type. A rebuild is also sent to the me picker in case a
new resource type is being added. This routine is useful if an editor creates a resource of
another type. This routine should be called to make sure that the resource picker and the me
picker are updated to reflect the addition of the new resource. For example, this routine is
called from the 'ALRT', 'DLOG', and 'Dm' editors.

PROCEDURE SetTheCursor (whichCursor: INTEGER)i

SetTheCursor changes the cursor to the specified cursor resource. The constant
arrowCursor defmed in the ResEd me should be used to set the cursor to the arrow. This
routine makes sure that the resource file is set to ResEdit before loading the cursor, so that the
cursor will be loaded from either ResEdit or the System me. The most common use of this
routine is to set the cursor to a watch (watchCursor) while something is being done that
may take a while.

PROCEDURE Show Info (h:Handlei dad: ParentHandle)i

ShowInfo puts up a Get Info window for the resource referenced by h that belongs to the
father object referenced by dad ShowInfo should be called by your editor when Get Info is
selected from the File menu.

PROCEDURE TypeToString (t: ResTypei VAR s: Str255)i

TypeToString returns a string consisting of the four characters that make up the Res Type
t.

PROCEDURE UseAppResi

The UseAppRes procedure sets the current resource file to be ResEdit itself. This is necessary
if you need to get a resource from ResEdit, such as a menu, string, alert, or dialog box. Be sure
to restore the original resource me when you are done with ResEdit's resource me. For
example:

100 Macintosh ResEdit Reference

(SavedResFile := CurrentRes;
UseAppRes;

UseResFile(SavedResFile);

Internal routines

The following routines are used internally within ResEdit and may be useful in other
circumstances.

PROCEDURE CallPBirth (theType: ResType; parent: ParentHandle; id:
INTEGER) ;

CallPBirth starts a picker. This routine will rarely be used. It directly calls the P ickBirth
routine of the picker with the specified id.

PROCEDURE CallEBirth (resHandle: Handle; parent: ParentHandle; id:
INTEGER) ;

CallEBirth starts an editor. This routine will rarely be used. It directly calls the
Edi tBirth routine of the editor with the specified id. This routine is used by the
Gi veEBirth routine described earlier in this chapter.

PROCEDURE CallEvent(VAR evt: EventRecord; refcon: LONGINTi id:
INTEGER) ;

CallEvent passes an event to the specified window. This routine will rarely if ever be used.
If an event must be passed to a specific ResEdit window, the call would be made as follows:

CallEvent (evt, theWindow~.refCon, theWindow~.windowKind);

PROCEDURE CallMenu (menu, item: INTEGER; refcon: LONGINT; id:
INTEGER) ;

CallMenu passes a menu command to the specified window. This routine will rarely if ever
be used. For example, if a Close command must be passed to a specific ResEdit window, the
call would be made as follows:

CallMenu (fileMenu, close Item, theWind~.refCon, theWindA.windowKind);

FUNCTION CopyRes (VAR h: Handle; rnakeID: BOOLEAN; resNew: INTEGER):
Handle;

CHAPTER 8 Extending ResEdit 101

Given a handle h to a resource, CopyRes makes a copy of the resource to the resource fIle
specified by refNum. Note that the handle is changed, so you can't keep track of your
resource by saving its handle before using CopyRes. If makeID is TRUE, a unique 10 will be
assigned to the copyj otherwise, it retains the ID of the original. CopyRes returns a handle to
the new copy (in the new me). This procedure is called from the P ickMenu procedure
described earlier.

PROCEDURE DoKeyScan (var evt: EventRecord; offset: integer; lh:
ListHandle);

DoKeyScan handles key-down events for pickers. The offset parameter is the byte offset
into a cell where the string to match'starts. This procedure is called from the P ickEvent
procedure described earlier.

PROCEDURE DoListEvt (e: EventRecord; 1: ListHandle);

DOListEvt is called from P ickEvent and should normally not need to be called from
elsewhere.

FUNCTION DupPick (h: Handle; c: cell; pick: PickHandle): Handle;

DupP ick is called from P ickMenu and should normally not need to be called from
elsewhere.

FUNCTION GetType (templatesOnly: BOOLEAN; VAR s: STR255): BOOLEAN;

Get Type displays a dialog box containing a list of the types of resources that can be edited.
The list contains all types for which there are templates. If templa tesOnly is FALSE, the list
also contains all of the types for which there are editors. The selected type is returned in s.
TRUE is returned if a type was selectedj FALSE is returned otherwise.

PROCEDURE KillCache;

KillCache flushes all caches for all volumes (bitmap, control, and so on).

PROCEDURE MyCalcMask (srcPtr,dstPtr: Ptr; srcRow,dstRow,height,words:
INTEGER) ;

MyCalcMask calculates a mask for the given source bit image and puts it into the destination
bit image. The paraIreters srcPtr and dstPtr reference the source and destination bit
imagesj srcRow, dstRow, height, and words define the area on which MyCalcMask
operates.

FUNCTION ResEditRes: INTEGER;

The ResEditRes procedure returns the resource me 10 of ResEdit. This routine will rarely
be needed. You can use this routine if you don't want to release a resource that you have been
editing,if the resource caIre from ResEdit.

PROCEDURE ScrapCopy (VAR h: Handle);

102 Macintosh ResEdit Reference

(

ScrapCopy copies the handle h into the ResEdit scrap. A different handle will be returned.

PROCEDURE ScrapEmpty;

ScrapEmpty empties the ResEdit and desktop scrap.

PROCEDURE ScrapPaste (pasteAll: BOOLEAN; typeToPaste: ResType;
resFile: INTEGER);

ScrapPaste pastes the resources from the ResEdit scrap to the file identified by the ID
number resFile. If pasteAll is TRUE, all resources found in the scrap are pasted. If
pasteAll is FALSE, only resources of type typeToPaste are pasted.

Obsolete routines

The following routines are obsolete and should no longer be used. They are no longer
available in the current version of ResEdit.

PROCEDURE AppRes;

Use the UseAppRes procedure instead.

PROCEDURE ClearHand (h: Handle);

No longer supported.

FUNCTION CountlRes (t: ResType): INTEGER;

Use the CountlResource toolbox procedure instead.

FUNCTION Count 1 Type : INTEGER;·

Use the Countl Types toolbox procedure instead.

FUNCTION ErrorCheck (err, msgID: INTEGER): BOOLEAN;

Use the CheckError procedure instead.

FUNCTION FileNewType types: ListHandle; VAR 5: str255): BOOLEAN;

Use the Get Type procedure instead.

PROCEDURE GetlIndxType (VAR theType: ResTypei i: INTEGER);

Use the Get 1 IndType toolbox procedure instead.

FUNCTION GetResLoad: BOOLEAN;

No longer supported.

PROCEDURE MySeedFill (srcPtr,dstPtr: Ptr; srcRow,dstRow,height,words:
INTEGER; seedH,seedV: INTEGER);

CHAPTER 8 Extending ResEdit 103

No longer supported.

PROCEDURE ResEverest;

Use the UseResFile procedure instead.

FUNCTION RevertResource(h: Handle): Boolean;

Use the RevertThisResource procedure instead.

PROCEDURE WindFree (w: WindowPtr);

Use the WindReturn procedure instead.

104 Macintosh ResEdit Reference

Appendix A The 'KCHR' Resource

nus APPENDIX CONfAINS MORE INFORMATION about the 'KCHR' resource, its structure
and function.

The 'KeRR' resource controls mapping from the keyboard to the resulting characters.
This mapping process involves several areas of the Macintosh architecture. •

105

4: Basic theory of keyboard operation

In order to appreciate fully the workings of the 'KCHR' editor, you really should be aware of
the process that it controls. Here is a summary.

Whenever a key on any type of keyboard is pressed, the operating system polls the key
information from the device. It then translates each raw keycode generated by the keyboard
into a virtual keycode and a combination of modifier keys by means of the 'KMAP' resource.
The resulting virtual keycode is keyboard-type-independent information about the key being
depressed.

Exceptions to the rule

Some countries have different layouts for different keyboards, mostly for historic reasons. In
order to deal with those exceptions, the 'itlk' resource contains a table of translation rules from
a virtual keycode generated by the actually connected keyboard to a virtual keycode on the
ISO ADB keyboard or to whatever keyboard is supported by the 'KCRR' resource for that
country.

Generating the character code

When the operating system has generated a virtual keycode, the KeyTrans () procedure
then translates the virtual keycode and the concurrently pressed modifier keys to a Macintosh
character set number based on the tables in the 'KCRR' resource. That character number, and
also the virtual keycode information, are then stored in the event queue and can be accessed
by calling GetNextEvent () .

APPENDIX A The 'KCRR' Resource 107

Dead keys

When you press a dead key, the first thing you'll notice is that nothing happens immediately
(that is, no event is fed into the queue). When you then press another key, the Event Manager
uses the ch3r.lcter number generated by this new key and the previously pressed dead key to
detennine which character number should be put in the event queue. This process is used, for
example, to generate the German Umlaut ch3r.lcters !,O,U,a,o, and U. You have to press the
dead key for a diaeresis (which is Option-u in the U.S. 'KCHR') and then press one of the keys
that generate the ch3r.lcters A,O,U,a,o or u. (You can also generate i, and e, which do not exist
in German, but, depending on the font, possibly not their uppercase equivalentci.) If you press
a key that generates none of the defmed ch3r.lcter numbers for this dead key, the Event
Manager generates the nomatch character (which is, in the case discussed here, the Umlaut
alone).

The Dead Array contains a list of dead keys. For each dead key, it defines the virtual keycode
and the table that is used to trigger the dead-key mechanism Then it lists pairs of completion
characters and substitution characters and, fmally the nomatch ch3r.lcters. The whole dead-
key mechanism can be described as follows: ..

1. Press a dead key on the keyboatd.

2. Press any key that generates a ch3r.lcter number that corresponds to a valid completion
ch3r.lcter.

You get the corresponding substitution ch3r.lcter in the event queue. (If you didn't press a
valid completion character in step 2, you get the nomatch character.)

108 Macintosh ResEdit Reference

(

'\1 .. ' .. :. "f,~

(

The structure of a 'KCHR' resource

Here is the defmition of a 'KCRR' for the resource compiler Rez. (This information can also be
found in the file SysTypes.r in the folder RIncludes in MPW.)

type 'KCHR' {

} ;

integer;

wide array [$100]
byte;

/* Version
/* Indexes

} ;

integer = $$CountOf(TableArray);
array TableArray {

wide array [$80] { /* ASCII characters*/

char;
} ;

} ;

integer = $$CountOf(DeadArray);
array DeadArray {

} ;

byte; /* Table number */

byte; /* Virtual keycode */
integer = $$CountOf(CompletorArray);
wide array CompletorArray {

char; /* Completing char
char;

} ;

char;
char;

/* Substituting char

/* No match charI

/* No match char2

*/
*/

*/
*/

*/

Each table in the Table Array describes the virtual keycode-to-character number translation
for one complete layer of the keyboard (that is, for all 128 possible keys). The Index Array
defines the mapping of modifier key combinations to tables. The high byte of the modifier flag
(described in Inside Macintosh, Volume V, Chapter 10) is used as an index to determine the
number of the table to be used for translation. The information in Inside Macintosh is,
however, not complete, since the alternate modifier keys (the Shif~ Option, and Control keys
on the right side of the ADB extended keyboard) are not mentioned. Those keys are normally
coupled with the corresponding keys on the left side. It is possible to uncouple them by
sending a command to the keyboard. (See "Reassigning Right Key Code" in Inside Macintosh,
Volume V, Chapter 10.) The correct bit layout of the high byte is shown in Figure A-I.

*/

APPENDIX A The 'KCRR' Resource 109

• FigureA-1 Modifier flag high byte

7 6 5 4 3 2 1 0

1 if Conunand key down

1 if Shift key down

'---- 1 if Caps Lock key down

'------ 1 if Option key down
a...-. _____ 1 if Control key down

'-------- 1 if alternate Shift key down
a...-. _______ 1 if alternate Option key down

1...-________ 1 if alternate Conunand key down

Suppose you hold down the Option key. This keypress will result in a value of 8 (bit 3 is set)
in the high byte of the modifier flag. Thus the Toobox Event Manager takes the value stored in
IndexArray [8] , which is 3 in the current U.S. 'KCRR', and therefore uses table 3 to
translate the keycodes to character numbers.

110 Macintosh ResEdit Reference

(

Appendix B Resource Types Defined for Rez and
ResEdit

THIs APPENDIX CONfAINS A LIST OF SOME RESOURCE 1YPES in use at Apple Computer,
Inc., current as of early 1989. An attempt has been made to give pertinent information
about what each type is, how it is handled by the resource compiler, Rez, and how it
is handled by ResEdit. This list is neither formal nor exhaustive! •

111

/

''-c

(lksource types defined for Bf:Z and lksEdit

Type Definition Bf:Z lksEdit

actb Alert Color Lookup Table Types.r Template
acur m?? XXXXXXX Template
ALRT Alert Template Types.r Editor, Template
APPL Application list (Desktop) XXXXXXX Template
BNDL Bundle Types.r Template
cctb Control Color Lookup Table Types.r Template
cien Color Icon Types.r XXXXXXX
clut Generic Color Lookup Table Types.r Template
CMOO For MPW Commando interrace Cmdo.r XXXXXXX
cmnu MacApp® temporary menu resource XXXXXXX Template
CN1l Control template Types.r Template
ersr Color Cursor Types.r XXXXXXX
CIY# City list from MAP CDEY XXXXXXX Template
CURS Cursor Types.r Editor
dctb Dialog Color Lookup Table Types.r Template

',f Dm Dialog Item List Types.r Editor, Template 0,

DLOG Dialog template Types.r Editor, Template
DRVR Driver SysTypes.r Template
FBTN MiniFinder button XXXXXXX Template
fctb Font Color Lookup Table Types.r Template
FCMf Getlnfo comments from Desktop me XXXXXXX Template
FDm MiniFinder button directory ID XXXXXXX Template
fmf Fontinfonnation SysTypes.r Template
FOND Font Family description SysTypes.r Template
FONT Font description SysTypes.r Editor, Template
FREF File Reference Types.r Template
FRSV ROM Font resources XXXXXXX Template
FWID Font Width Table SysTypes.r Template
ICON Icon Types~r Editor
ICN# Icon and its mask Types.r Editor

(Continued)

(':
APPENDIX B A List of Resource Types 113

Type De6nition Bez BesEd1t /
~. '"

~, .. --/

ictb Color Dialog Item list (not handled yet) XXXXXXX xxx:xxxx
insc Installer Script SysTypes.r Template
IN1l (0) International Formatting information SysTypes.r. Editor ... (same as itIO but

no longer used)
itlO International Formatting information SysTypes.r Editor
1N1l(1) International Datelfime information SysTypes.r Editor ... (same as itIl but

no longer used)
itll International Date!fime information SysTypes.r Editor
itl2 Intl Str Comparison Package hooks SysTypes.r xxx:xxxx
itl4 International Tokenize SysTypes.r xxx:xxxx
itlb International Script Bundle SysTypes.r Template
itlc International Configuration SysTypes.r Template
itlk Inti exception dictionary for 'KCHR' XXXXXXX Template
KCAP PhYSical layout of keyboard SysTypes.r xxx:xxxx
KCRR ASCTI Mapping (software) SysTypes.r Editor
KMAP Keyboard Mapping (hardware) SysTypes.r xxx:xxxx
KSWP Keyboard Swapping SysTypes.r xxx:xxxx
LAYO Fmder's layout resource XXXXXXX Template
MACS Version # in System me xxxxxxx Template
MBAR Menu Bar Types.r Template
mcky Mouse Tracking SysTypes.r xxx:xxxx
mctb Menu Color Lookup Table Types.r Template
meod MacroMaker™ information XXXXXXX xxx:xxxx
mdct MacroMaker information XXXXXXX xxx:xxxx
mern! MacApp memory utilization XXXXXXX xxx:xxxx
MENU Menu Types.r Template
minf Macro info (MacroMaker) XXXXXXX Template
mntb MacApp Menu Table(relate cmd # to menu) XXXXXXX XXXXXXX
mppc MPP Configuration resource SysTypes.r xxx:xxxx
rnxbc Foregnd, backgnd colms for MacsBug XXXXXXX xxx:xxxx
rnxbi Initial settings for MacsBug XXXXXXX ~
rnxbm Macros for MacsBug XXXXXXX xxx:xxxx
rnxbt Templates for MacsBug (byte count) XXXXXXX xxx:xxxx
rnxwt Templates for MacsBug (word count) XXXXXXX xxx:xxxx

(Continued)

114 Macintosh ResEdit Reference

c Type Definition Rcz ResEdit

NFNT Font description SysTypes.r XXXXXXX
nret Rectangle position list SysTypes.r Template
PAPA 7m XXXXXXX Template
PAT QuickDraw Pattern Types.r Editor
PAT# QuickDraw Pattern list Types.r Editor
PIC!' QuickDraw Picture Types.r Template
pItt Color Palette Types.r Template
ppat Pixel Pattern Types.r Template
ppt# Array of ppats XXXXXXX XXXXXXX
PRC3 Print record (PREC) id = 3 XXXXXXX Template
PSAP rn? XXXXXXX Template
ROv# ROM Resource Override SysTypes.r Template
scm Screen configuration SysTypes.r Template
seg! MacApp item of some sort . XXXXXXX XXXXXXX
SICN Small Icon Types.r Editor
SIGN 7m XXXXXXX Template
SIZE MultiFinder Size information Types.r Template

I snd Sound SysTypes.r XXXXXXX
" STR PascalStyle String Types.r Template

STR# PascalStyle String list Types.r Template
TEXT Unlabeled string.(Same as minO XXXXXXX Template
TMPL ResEdit template XXXXXXX Template
vers Version SysTypes.r Template
wctb Window Color Lookup Table Types.r Template
WIND Window template Types.r Editor, Template

APPENDIX B A Ust of Resource Types 115

(

Appendix C The Macintosh Character Set

THIs APPENDIX CONTAINS A CHART TIIAT DISPLAYS the regular character set for Macintosh
fonts. Theflrst 128 characters correspond to the standard ASOl set. Please remember
that not all fonts for the Macintosh have these standard characters in them. Specific
examples are Symbol and ITC Zapf Dingbats; there are many pictorial fonts available
as bitmaps for dot-matrix printing as well .•

117

(' First digit
0 1 2 3 4 5 6 7 8 9 A B C D E F

Second
A digit 0 0 @ p p e t • l -

1 1 A Q a q A e ±

2 2 B R b r C ¢ £, -.

3 3 c 5 c s E £, + •

4 4 D T d N i § v f
5 5 E U e u 0 i m I

6 6 F V f v fJ ii Cf d D

7 G W g w a 6 S A
*

8 H X h x a 0 ® Y
9 y y ~ 0 © P

A J z j z a 0 TIl U -
B K k it 0 I A

c < L \ ~ U II

= M m ~ U W 5
E > N 1\ n - ~ 11 1£ a: CE

: :.:,.,.

.{ F ? 0 0 ... ;.: e ii 0 f/J re ,:<:":.:.:::

_ Stands for a nonbreaking space, the same width as a digit.

o The dark-shaded characteJ's cannot normally be generated from the Macintosh
keyboard or keypad

APPENDIX C The Madntosh Character Set 119

Index

INDEX 121

122 Macintosh ResEdit Reference

• 56 Option key 15, 22
@ABCD84 F OwnerName field 71

("" fctb35
A Finder 7, 32,61 P

Align to Grid 27 'FOND'35 Paste 14,17
ALRT 25, 26, 60 'FONT' 21 'PAT'39
ascent 37 Font menu 48 'PAT#'4O

'FREF 8 picker 81
B 'PIer 26, 28

BNDL8, 55 G Pictorial resource types 21
BOOL53 general editor 6 Pig mode 61
Bring to Front 27 general resource editor 22 Preferences 16

Get Info 10, 16 'PSTR' 54

C graphics tools panel 38
character editing panel 37 Q
character selection panel 37 I Quit 10, 13, 16
Clear 14,17 'ICN#' 32
Close 10, 13, 15 icon 7, 26, 28, 31 R
CNTI26, 28 'INTI' 40 'REer53
Colotrable record 35 'itlO' 40 refCon54
Command key 15 'itll' 40 Remove dead key 48
Convert to dead key 48 Remove duplicate tables 47
Copy 13,17 K Remove unused tables 47
creator type 71 'KCHR'42,48 ResEd8, 83

C
CURS 29 'KCRR' menu; 47 resource editors 19
Cut 13, 17 resource ID numbers 18

L resource picker 8, 14
D 'LAYO'61 resource template 6

Data -> Mask 30 list separator 56 resource type 14
data fork. 12 Restore Arrow 30
DeRez8,54 M

restrictions 18
descent 37 Macintosh Programmers ResXXXXEd me 82
Desktop 7 Workshop 8 Revert 13, 16
dialog box 7 mask 32 Rez8
Display as Text 22 'MENU' 55 RSSC84
Display using old method 32 MPW8
'DffL'21, 26, 55,60 MultiFinder 7, 61 S
'DffL' associated with 'ALR!' sample text panel 37

or'DL0G25 N Save 10, 13, 15
DLNG54 New 10, 13, 15, 33 Select Item Number 27
'DLOG' 25, 26, 60 Send to Back 27
'DRVR' resources 18 New Table 47 Set Item Number 27
Duplicate 14, 18 NewDialog 61

'SICN' 33
Duplicate Table 47 nonexistent 'CNTL' 61 signature resource 71
DWRD53

0
Size menu 48
'STR#' 55

E Open 10, 13, 15

('~ Edit dead key. 47 Open as Template 15, 18
T

editor 8, 81 Open general 13, 15 template 8

INDEX 123

templates 18
Transfer 16
Transfer ... 10, 13
Try Cursor 30
type checking 55

U
Uncouple roodifier keys 47
Undo 13, 17
Use Full Wmdow 28
Use Owner Wmdow 28
Use RSRC Rectangle 28
UseResFile 84
USES declaration 83

V
View as ... 47

W
'WIND'22

124 Macintosh ResEdit Reference

THE APPLE PUBUSHING SYSTEM

This Apple manual was written,
edited, and composed on a
desktop publishing system
using Apple Macintosh~
computers and
Microsoft~ Word software.
Proof and final pages were
created on the Apple
LaserWrite~ printers. Line art
was created using Adobe
illustrator™. MacDraw® and
MacPaint® were also used to
create art for this manual.
POSTSCRIPT~, the page­
description language for the
LaserWriter, was developed by
Adobe Systems Incorporated.

Text type and display type are
Apple's corporate fon~ a
condensed version of
Garamond. Bullets are ITC Zapf
Dingbats~. Some elements,
sudi as program listings, are set
in Apple Courier.

2123/89

