
MACINTOSH USER EDUCATION

Programming Macintosh Applications in Assembly Language /lNTl.0/ASSEM

See Also: Macintosh Memory Management: An Overview
The Memory Manager: A Programmer's Guide
The Segment Loader: A Programmer'• Guide
The Operating System Utilities: A Prograamer'a Guide
Putting Together a Macintosh Application

Modification History: First Draft s. Chernicoff 2/27/84

ABSTRACT

This manual tells you what you need to know to write all or part of
your Macintosh application program in assembly language. The emphasis
here is on general principles and methods; details on specific OS and
Toolbox routines are given elsewhere.

2 Progra1111ing Macintosh Applications in Assembly Language

TABLE OF CONTENTS

3 About This Manual
3 Definition Files
4 Memory Organization
8 The Dispatch Table

10 The Trap Mechanism
10 Format of Trap Words
12 Trap Macros
12 Calling Conventions
12 Register-Based Calls
14 Stack-Based Calla
17 Register-Saving Conventions
18 Pascal Interface to the OS and Toolbox
19 Mixing Pascal and Assembly Language
23 Glossary

Copyright (c) 1984 Apple Computer, Inc. All rights reserved.
Distribution of this draft in limited quantities does not constitute
publication.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual tells you what you need to know to write all or part of
your Macintosh application program in assembly language. The emphasis
here is on general principles and methods; details on specific OS and
Toolbox routines are given elsewhere.

The manual assumes you already know how to write assembly language for
the Motorola MC6B001.l (or just "68001.l" for short). the microprocessor
used in the Macintosh. It also assumes you're familiar With Lisa
Pascal and its associated software development tools. particularly the
Assembler, the Pascal Compiler. and the Linker. ***(Currently.all
software for the Macintosh must be developed on a Lisa computer and
written on a Macintosh-formatted disk for execution on the Macintosh.
Eventually development tools Will be available on the Macintosh
itself.) ***

The manual begins by discussing the various files of definitions
pertaining to the OS and Toolbox, and what they contain. Then it
describes the Macintosh's memory layout and organization. This is
followed by a description·of the dispatch table and the trap mechanism,
which allow your program to use the OS and Toolbox while remaining
independent of specific addresses in the Macintosh ROM. Next is a
discussion of the calling conventions for using the OS and Toolbox from
assembly language and for mixing Pascal and assembly language in your
own programs. Finally, there's a glossary of terms used in this
manual.

DEFINITION FILES

The primary aids to assembly-language programmers are a set of
definition files that define various symbolic names for use in assembly
language programs. By naming the definition files in an .INCLUDE
directive, you make the definitions available to your program.

The most important of the definition files are the equates files, which
use .EQU directives to define values for symbolic names. There are
separate system. OuickDraw. and Toolbox equates files for definitions
related to the Operating System, OuickDraw, and the User Interface
Toolbox. There are also a number of specialized equates files. such as
the memory equates file. which contains definitions pertaining to
memory allocation. These specialized files are discussed in the
individual manuals that apply to them (for instance, the memory equates
file is covered in the Memory Manager manual).

The equates files define a variety of symbolic names for various
purposes, such as:

- Useful numeric quantities. For example, the constant maxMenu
stands for the maximum number of menus in a menu bar.

2/27/84 Chernlcoff CONFIDENTIAL /INTRO/ASSEM.2

4 Programming Macintosh Applications in Assembly Language

- Fixed memory addresses. For example, syaCom ts the starting
address of the system communication area.

- Addresses of system variables. Por example, ticks is the address
of a long-word integer variable containing the elapsed time in
ticks (sixtieths of a second) since the system was last started
up. Often the global variable in tum contains an address: for
example, sysEvtBuf is the address of a pointer to the system event
buffer (not the address of the buffer itself!).

- Masks. For example, tagMask is a mask for extracting the tag
field from the header of a memory block.

- Bit numbers. For example, lock is the bit number of the lock bit
in the first byte of a master pointer, defined for use with the
bit manipulation instructions BTST (Bit Test), BSET (Bit Set),
BCLR (Bit Clear), and BCHG (Bit Change).

- Codes. For example, inMenuBar is the code returned by the Window
Manager function FindWindow when the user presses the mouse button
inside the menu bar.

- Offsets into data structures. For example, wVisible is the offset
of a window's "visible" flag relative to the beginning of the
window record.

It's a good idea always to use the symbolic names defined in an equates
file in place of the corresponding numerical values (even if you know
them), Rince some of these values may be subject to change. One thing
to watch out for is that the names of the offsets for a data structure
don't always match the field names in the corresponding Pascal
definition. In the OS and Toolbox documentation, the definitions are
normally shown in their Pascal form; the corresponding offset constants
for assembly-language use are listed in the summary at the end of each
manual.

In addition to the equates files, there's also a system errors.!!!!,,
which defines symbolic names for all error codes returned by Operating
System routines. Finally, there are the system, QuickDraw, and Toolbox
macro files, which define the macros used to call OS and Toolbox
routines from assembly language.

MEMORY ORGANIZATION

In its current configuration, the Macintosh has 128K bytes of volatile
read/write memory (RAM) and 64K bytes of permanent read-only aemory
(ROH). The ROH contains the built-in code of the Operating System and
User Interface Toolbox, which is available for use by any application
program. In the 68000's 16-megabyte address space, RAM occupies
addresses $8-$1FFFF and ROM is at addresses $488888-$48FFFF.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.2

MEMORY ORGANIZATION 5

In addition, the various built-in input/output devices are "memory
mapped", meaning that they appear to the processor as addressable
memory locations with special properties. The 6522 VIA (Versatile
Interface Adapter) occupies addresses in the range $E00000-$EFFFFF, the
8530 sec (Serial Communications Controller) $990000-$9FFFFF and $Bf0000-
$BFFFFF, and the IWM ("Integrated Woz Machine") disk interface $DIJl000-
$DFFFFF. You won't ordinarily need to know any details about these
memory-mapped devices, since you'll deal with them exclusively through
the Operating System.

(warning)
All specific ~emory addresses given in this section refer
to the first-release, 128K Macintosh. The Lisa 2
Macintosh emulator uses a different memory layout, as
will future versions of Macintosh with different memory
capacities. For compatibility, always refer to these RAM
addresses by their symbolic names (given in a table
below) rather than their numeric values. For calls to OS
and Toolbox routines located in ROM, use the 68000's
unimplemented instruction trap, as described below under
"The Trap Mechanism". This ensures compatibility by
making all ROM references indirectly, through a dispatch
table kept in RAM.

The organization of RAM is shown in Figure 1. The first $100 bytes
(addresses $0-SFF) are reserved by the 68000 hardware for use as
exception vectors. The next $300 bytes ($100-SJFF), referred to as the
"system communication area", contain global variables used by various
parts of the Macintosh system software. The next $400 bytes ($400-
$7FF) contain the dispatch table for OS and Toolbox routines, discussed
below under "The Dispatch Table". This is followed by $300 bytes ($800-
$AFF) of additional system globals.

At (almost) the very end of memory are the main sound buffer ($1F'IX30-
$1FFE3), used by the Sound Driver to control the sounds emitted by the
built-in speaker, and the main screen buffer ($1A700-$1FC7F), which
holds the bit image to be displayed on the Macintosh screen. If an
interactive debugger such as MacsBug is installed, it immediately
precedes the screen buffer. Then comes an area reserved for the
application's parameters and global variables, which nortllally also
includes a block of global variables belonging to QuickDraw. When the
Segment Loader starts up an application, it adjusts the size of this
area according to the application's needs and sets register AS to point
to the boundary between the application's parameters and globals.
(This subject is covered in more detail in the Segment Loader manual.)

(note)
For special applications, there are an alternate screen
buffer ($12700-Sl7C7F) and an alternate sound buffer
($1Alll-$1A3E3). If you use either or both of these, the
application parameters (or the debugger, if there is one)
end at $126FF or $1A0FF instead of the normal $1A6FF, and
the apace available for dynamic allocation (see below) is
reduced accordingly.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEH.2

6 Prograaning Macintosh Applications in Assembly Language

soo
$100

$400

$800

$BOO

$4DOO

Hardware except ion vectors
---sysCom

System comrntJ'licetion area
---di,petchTob

System dispatch table

--- grefBegin

System globals

-- (sysZone)

System heap

-- (epplZone)

Application heap

--(heopEnd)

--(SP)

Stack

e---------------1 --- (curSteckBese)
Application globals

e---------------1 --- (AS)
Appl icetion parameters

1-------------1 --- (bufPtr)

Debugger (if any)
$1A700 .,_ _________ ~ ---$creenl.ow

Mein screen buffer

$1FC7F 1-,,,,-,--------------1 $1 FDOO :·:·:.:-:-:-:-:-:-:-:-:···:-:-:-:-:-:-:-:·:·:-:-:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·: --- soundlow

I~~~~~ -: ·:-: ·_: ·:-:--:~--:.--}~--:-:-~----:--:-:--:-: ~ :-:"""':.~ -:~: :_: ·:-:"""'·:-:""""'-··· ---(mernTop)

Figure 1. RAM Organization

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEH.2

MEMORY ORGANIZATION 7

All remaining apace, between the end of the system globals ($BG,) and
the beginning of the application globals, ts available for dynamic
allocation by the running program. This apace is shared between the
stack and the heap, with the heap growing forward from the beginning of
the space and the stack growing backward from the end. (The stack and
the heap are discussed in general terms in the document "Macintosh
Memory Management: An Overview"*** which vill·be the chapter
preceding this one in the eventual "Inside Macintosh" manual*** arid in
greater detail in the Memory Manager manual.)

Immediately following the system globals is the system heap, which is
initialized to a fixed size (currently 16.SK, or $4200 bytes) when the
system is started up. The system heap is intended for the system's own
private use; your application program should use the application heap
for all of its heap allocation. (In particular, the code of the
application itself resides in the application heap.) The application
heap is initialized at the start of each new application program
(currently to 6K, or $18~0 bytes), and can then expand as required to
accoanodate the application's needs. The stack grows and shrinks from
the other end of the space.

(warning)
Although the 68~~0 hardware provides for separate user
and supervisor stacks, each with its own stack pointer,
the Macintosh maintains only one stack. All application
programs run in supervisor mode and share the same stack
with the system; the user stack pointer isn't used.

The boundaries between the various areas of RAM are marked by global
constants and variables defined in the equates files. In the following
table (as well as in Figure 1), names not shown in parentheses are
constants that are equated directly to the designated address; those in
parentheses are variables containing long-word pointers that in turn
point to the address. Names identified as marking the end of an area
actually refer to the address foll.aviDg the last byte in that area.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.2

8 Programming Macintosh Applications in Assembly Language

.!!!!
aysCom
dispatchTab
grafBegin
(sysZone)
(applZone)
(heapEnd)
(curStackBase)

(bufPtr)
screen Low
(scrnBase)
soundLow
(sound Base)
(memTop)
romStart

THE DISPATCH TABLE

Meaning
Start of system communication area
Start of system dispatch table
Start of additional system globals
Start of system heap
Start of application heap
End of application heap
Base (end) of stack;
start of appllcation globals
End of application parameters
Start of main screen buffer
Start of current screen buffer
Start of main sound buffer
Start of current sound buffer
End of RAM
Start of llOM

The bulk of the Operating System and Toolbox resides in read-only
memory (ROM). However, to allow flexibility for future development,
application code must be kept free of any specific ROM addresses. So
all references to OS and Toolbox routines are made indirectly, through
a dispatch table in RAM containing the addresses of the routines. As
long as the location of the dispatch table is known, the routines
themselves can be moved to different locations in ROM Without
disturbing the operation of programs that depend on them.

Information about the locations of the various OS and Toolbox routines
is encoded in compressed form in the ROM itself. When the system is
started up, this encoded information is expanded to form the dispatch
table. Because the dispatch table resides in RAM (locations $4,,
$7FF), individual entries can be "patched" to point to addresses other
than the original ROM address. This allows changes to be made in the
ROM code by loading corrected versions of individual routines into RAM
at system startup and patching the dispatch table to point to them. It
also allows an application program to replace specific OS and Toolbox
routines With its own "custom" versions. A pair of utility routines
for manipulating the dispatch table, GetTrapAddress and SetTrapAddress,
are described in the Operating System Utilities manual.

2/27/84 Chernicoff CONFIDENTIAL /INTR.0/ASSEM.3

THE DISPATCH TABLE 9

15 14 0

I L.......,j li.....--___ l"'
.... L ____ ..,.,,,. _____ , D - ..,,

I
l

r
..,

15

J, {~ =>--+@

ispatch table entry

,
, 0

I O I
,.

Figure 2. Dispatch Table Entry

mory

.

.. ,
Routine

For compactness, entries in the dispatch table are encoded into one
word each, instead of a full long-word address (see Figure 2). Since
the dispatch table is 1024 ($400) bytes long, it has room for 512 word
length entries. The high-order bit of each entry tells whether the
routine resides in ROM (0) or RAM (1). The remaining 15 bits give the
offset of the routine relative to a base address. For routines in ROM,
this base address is the beginning of the ROM, address $400000; for
routines in RAM, it's the beiinning of the system heap, currently at
address $B00.

(note)
The two base addresses are kept in a pair of global
variables named romBase and ramBase.

The offset in a dispatch table entry is expressed in words instead of
bytes, taking advantage of the fact that instructions must always fall
on word boundaries (even byte addresses). To find the absolute address
of the routine, the system checks the high-order bit of the dispatch
table entry to find out which base address to use, doubles the offset
to convert it from words to bytes, and adds the result to the
designated base address.

Using 15-bit word offsets, the dispatch table can address locations
within a range of 32K words, or 64K bytes, from the base address.
Starting from romBase, this range is big enough to cover the entire
ROM; but only half of the 128K RAM lies within range of ramBase. Since
all RAM-based code resides in the heap, ramBase is set to the beginning
of the system heap to maximize the amount of useful space within range.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.3

10 Programming Macintosh Applications in Assembly Language

Locations below the start of the heap ($B,0) are used to hold global
system data (including the dispatch table itself). and can never
contain executable codei but if the heap is big enough. it's possible
for some of the application's code to lie beyond the upper end of the
dispatch table's range ($10AFF). Any such code is inaccessible through
the dispatch table.

(note)
This problem will become particularly acute on the Lisa 2
and on future versions of Macintosh with more than 128K
of RAM. To make sure they lie within range of ramBase 1

patches to OS and Toolbox routines are typically placed
in the system heap rather than the application heap.

THE TRAP MECHANISM

Calls to the OS and Toolbox via the dispatch table are implemented by
means of the 68000 processor's "UHG emulator" trap. To issue such a
call in assembly language, you use one of the trap macros defined in
the system, QuickDraw. and Toolbox macro files. When you assemble your
program, the macro generates a trap~ in the machine-language code.
A trap word always begins with the hexadecimal digit $A (binary 1010);
the rest of the word identifies the routine you're calling, along with
some additional information pertaining to the call.

Instruction words beginning with $A don't correspond to any valid
machine-language instruction. and are known as unimplemented
instructions. They're used to augment the processor's native
instruction set with additional operations that are "emulated" in
software instead of being executed directly by the hardware. On the
Macintosh. the additional operations are the OS and Toolbox routines.
Attempting to execute an unimplemented instruction causes a trap to the
Trap Dispatcher, which examines the bit pattern of the trap word to
determine what operation it stands for 1 looks up the address of the
corresponding routine in the dispatch table, and jumps to the routine.

Format of Trap Words

As noted above, a trap word always begins with the digit $A in bits 12-
15, the mark of an unimplemented instruction. Bit 11 tells whether the
call is to the Operating System (0) or the Toolbox (1). The format of
the rest of the word depends on whether it's an OS or a Toolbox call•

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.3

'11iE TRAP MECHANISM 11

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I , j O i 1 J O i 1 I i I I I i • i

I Trap nurrber

Aut~pop

Figure 3. Trap Word Format for Toolbox Calls

Figure 3 shows the trap word format for Toolbox calla. Bits l-8 form a
9-bit trap number identifying the particular Toolbox routine being
called. Bit 9 is unused; bit 11 is called the "auto-pop" bit and is
discussed below under "Pascal Interface to the OS and Toolbox".

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 !011 !010!.
.. ; t • : ! I

I

Figure 4. Trap Word Format for OS Calls

Trap number

Pass AO

Flags

For Operating System calla, only the low-order 8 bits (bits f-7) are
used for the trap number (see Figure 4). Thus of the 512 entries in
the dispatch table, only the first 256 can be used for OS traps. Bit 8
of an OS trap has to do with register usage and is discussed below
under "Register-Saving Conventions". Bits 9 and U1 have specialized
meanings depending on which OS routine you're calling, and are covered
where relevant in other manuals.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.3

12 Programming Macintosh Applications in Assembly Language

Trap Macros

The names of all trap macros begin with the underscore character (),
followed by the name of the corresponding routine. As a rule, the
macro name is the same as the name used to call the routine from
Pascal, as given in the OS and Toolbox documentation. For example, to
call the Window Manager routine NewWindow, you would use an instruction
with the macro name _NewWindow in the op code field. There are a few
exceptional cases, however, in which the spelling of the macro name
differs from the name of the routine itself; these exceptions are noted
in the documentation for the individual routines.

Trap macros for Toolbox calls take no arguments; those for OS calls may
have as many as three optional arguments. The first argument, if
present, is used to load a register with a parameter value for the
routine you're calling, and is discussed below under "Register-Based
Calls". The remaining arguments control the settings of the various
flag bits in the trap word. The form of these arguments varies with
the meanings of the flag bits, and is described in the manuals on the
relevant parts of the Operating System.

CALLING CONVENTIONS

The calling conventions for Operating System and Toolbox routines fall
into two categories: register-based and stack-based. As the terms
imply, register-based routines receive their parameters and return
their results in the processor's registers; stack-based routines
communicate via the stack, following the same conventions used by the
Pascal Compiler for routines written in Pascal. Before calling any OS
or Toolbox routine, you have to set up the parameters in the way the
routine expects.

(note)
As a general rule, Operating System routines are register
based and Toolbox routines stack-based, but there are
exceptions on both sides. Throughout this documentation,
register-based calling conventions are given for all
routines that have them; if none is shown, then the
routine is stack-based.

Register-Based Calls

By convention, register-based routines normally use register All for
passing addresses (such as pointers to data objects) and Dlil for other
data values (such as integers). Depending on the routine, these
registers may be used to pass parameters to the routine, result values
back to the calling program, or both. For routines that take more than
two parameters (one address and one data value), the parameters are
normally collected in a parameter block in memory and a pointer to the
parameter block is passed in Ai. However, not all routines obey these

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.4

CALLING CONVENTIONS 13

conventions; for example, some expect parameters in other registers,
such as Al. See the documentation on each individual routine for
details.

Whatever the conventions may be for a particular routine, it's up to
you to set up the parameters in the appropriate registers before
calling the routine. For instance, the Memory Manager utility
procedure BlockMove, which copies a block of consecutive bytes from- one
place to another in memory, expects to find the address of the first
source byte in register A0, the address of the first destination
location in Al, and the number of bytes to be copied in J>0. So to move
2f bytes beginning at address srcAddr to locations beginning at
destAddr, you might write something like

LEA srcAddr,AG
LEA destAddr,Al
MOVEQ #2f,D(I
_BlockMove

;source address in AG
;destination address in Al
;byte count in D0
;trap to routine

Because many register-based routines expect to find an address of some
sort in register AG, the trap macros allow you to specify the contents
of that register as an argument to the macro instead of explicitly
setting up the register yourself. The first argument you supply to the
macro, if any, represents an address to be passed in /4. The macro
will load the register with an LEA (Load Effective Address) instruction
before trapping to the routine. So, for instance, to perform a Read
operation on a file, you could set up the parameter block for the
operation and then use the instruction

Read paramBlock ;trap to routine with
pointer to parameter

; block in A0

This feature is purely a convenience, and is optional: if you don't
supply any arguments to a trap macro, or if the first argument is null,
the LEA to A'1 will be omitted from the macro expansion. Notice that A0
is loaded with the actual address denoted by the argument, not the
contents of that address.

(note)
You can use any of the 68000's addressing modes to
specify this address, with one exception: you can't use
the two-register indexing mode ("address register
indirect with index and displacement"). An instruction
such as

_Read offset(A3 ,DS)

won't work properly, because the comma separating the two
registers will be taken as a delimiter marking the end of
the macro argument.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.4

14 Programming Macintosh Applications in Assembly Language

Many register-based routines return a 16-bit result~ in the low
order half of register D0 to report successful completion or failure
due to some error condition. A negative result code always signals an
error of some kind; a code of 0 denotes successful completion. (Some
routines also use Df to return an actual data result. In these cases,
any nonnegative value in the low-order half of the register represents
a true result and implies successful completion of the routine.) The
system errors file defines symbolic names for all result codes reparted
by the various OS routines.

Just before returning from a register-based call, the Trap Dispatcher
tests the low-order half of D0 with a TST.W instruction to set the
processor's condition codes. You can then check for an error by
branching directly on the condition codes, without any explicit test of
your own: for example,

_PurgeMem
BMI Error

;trap to routine
;branch on error

. . .

(warning)

;no error-actual result
; in low half of D0

Not all register-based routines return a result code.
Some leave the contents of D0 unchanged; others use the
full 32 bits of the register to return a long-word
result. See the documentation of individual routines for
details.

Stack-Based Calls

To call a stack-based routine from assembly language, you have to set
up the parameters on the stack in the same way the compiled object code
would if your program were written in Pascal. The number and types of
parameters expected on the stack depend on the routine being called.
The number of bytes each parameter occupies depends on its type:

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.4

I

Parameter tI2e
BOOLEAN

CHAR
INTEGER
Longlnt
REAL

String

Record, array

Pointer
Handle
VAR parameter

Number of bites
1 byte

1 byte
2 bytes
4 bytes
4 bytes

4 bytes

1-4 bytes

4 bytes
4 bytes
4 bytes

CALLING CONVENTIONS 15

Contents
Low-order bit•
f (FALSE) or l (TRUE)
ASCII character code
Twos-complement integer
Twos-complement integer
Sign bit, 8-bit biased
exponent, 23-bit mantis-sa
Pointer to string; first
byte pointed to gives length
of string in characters
Contents of structure if
<• 4 bytes; otherwise
pointer to structure
Address of value
Address of master pointer
Address of variable,
regardless of type

If the routine you're calling is a function, the first step is to
reserve space on the stack for the function result. Then, for both
functions and procedures, push the parameters onto the stack in the
order they occur in the routine's Pascal definition. Finally, call the
routine by executing the corresponding trap macro. The trap pushes the
return address onto the stack, along with an extra word of processor
status information. The Trap Dispatcher removes this extra status
word, leaving the stack in the state shown in Figure 5 on entry to the
routine. The routine itself is responsible for removing its own
parameters from the stack before returning. If it's a function, it
leaves its result on top of the stack; if it's a procedure, it restores
the stack to the same state it was in before the call.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.4

16 Programming Macintosh Applications in Assembly Language

Low memory

Low memory (SP)

(SP) ~ .lttl!ttlltll'@tlt
Return address

4(SP) -..+i------------1
Last parameter

Previous stack contents

High memory

Progrfimt~nfr··c;h p. - • .::..- •• u c-r.•· • :_,' Ort return-(functlons)

Function result (if any)
• -\' ,"f'c··• -. e •

Previous stack contents . iow memory
I I
I , I

' L .:.,~· ~ . .-,ff · ,
J -·-:rr..i=ih- _. ~ . . z:: , I r.--::.:. ·n•~·! memory ·• • · .. : ,· ... _ -: .-:-.·.
I ...• ·· •·. •

------) :---- ~,:_ ---· - --- -
I c-'Oii"relfl-ry"' ,

"-7 L · L•. ;. errs ·::·:: __ -:
High memory -·---·-... ----____ ... _ ~~ ___ ,,, ___ ..

On return (procedures)
()n r?.lt:~, ,;,,~, ·· -~-;)

1-·· __ _F1i'fgUf~:.i,s1
:·

1~~ta~ormat for Stack-Based Calls • .
• I l f .__:r:t::111-·'"I !'~ •_ill (I ~ < •

For e,taiiji}.,_~.~_tfl~ .W).q_de'ii--.~er function GrowWi~_dow . .±~ ·~~¥.~ifI~
Pascal as· follows:-· · '

. ¥ttNCT'~N -~9..?W~Jitroir'(TheWindow: liinHom·~-;··~·tar~-p~·=·.)~.q~nt_;~~.;;.~ ~ -:
· ''·'· '"sizeRect: Rect): Longlnt; '. ' ·' · · - ··· ·

To call this F·~µ,c;i:0'1_-~rom assembly language, y~.Lci wrt~~ · s~1'~~~- -
like the following: ·

SUBQ.L
MOVE.L
MOVE.L

114,SP
theWindow,-(SP)
startPt,-(SP)

aizelleb(:":''· f, ..

;make roopi .for Lo.nglnt,~sul~ ·.
;pusn·'wlndd~- pOfn'ter ·· ~-:.-~, ·. ~ i

;a Point is a 4-byte record,
~; .§9~~p~~ a~t!fl contents

;a iect is an 8-byte record,
; so push a pointer to it

cHE!~ ·,FtLrC?~t~ti!ineu ! ~
;pop result from stack

f "\.::_-~! ;~ ,-.~o·.:'--, ~ ... •.t.~ (_!. li£:,.!:r·:"!"-_·: ~~"i:1d·.:iwP~.-~ :.,~-.. ~- :_r·~ •~:--~~~:

c:: ::t-1'E :· . ,·r·1:.; . Lon,: l ~ •_.

t •. " ..,- . -..-0 • ,,. J ' . \.; : ~ l ~-. ,r .-: !: r.;.. r1 ~~
.,: t ~ .. : tl-.~· ~:-~~._ .. _-)r. r!: .. _" -~~-= '~-~ ·: • .J ·-~-.~~c-
l l • ;. ,~ f O : 1 :: "' . .:. l'1?

2/27/84 Chernicoff

. ··-· ,
• 1,- r: . .

CONFIDENTIAL
r - •• - ·,-

: . t; .

CALLING CONVENTIONS 17

(warning)

(note)

Don't forget that the stack pointer must always be
aligned on a word boundary (that is, at an even byte
address). When pushing a value with an odd number of
bytes (such as a Boolean or a character), you have to add
a byte of "padding" to keep the stack pointer even.
Because all Macintosh application code runs in the
68000's supervisor mode, an odd stack pointer will cause
a "double bus fault": a catastrophic system failure from
which the only escape is to turn the power off and
restart the machine. ·

To keep the stack pointer properly aligned, the 68,GG
automatically adjusts the pointer by 2 instead of 1 when
you move a byte-length value to or from the stack. This
special case applies only when three conditions are met:
a one-byte value is being transferred; either the source
or the destination is specified by predecrement or
postincrement addressing; and the register being
decremented or incremented is the stack pointer (A7).
For example, you can push the Boolean value TRUE onto the
stack with the instruction

ST.B -(SP) ;byte-length
; predecrement to
; stack pointer

and an extra, unused byte will automatically be added to
keep the stack pointer even.

However, when you use any other method to manipulate the
stack pointer, it's your responsibility to make sure the
pointer stays properly aligned. For instance, to reserve
space on the stack for a Boolean function result, you
have to remember to decrement explicitly by two bytes
instead of one:

SUBQ.L 112,SP ;make room for
; Boolean result

The function will return its result in the high-order
(even-addressed) byte of the two; the other byte is just
padding and should be ignored.

Register-Saving Conventions

All OS and Toolbox routines follow Lisa Pascal's register-saving
conventions, which require the routine to preserve the contents of all
registers except A~, Al, and De-D2 (and of course A7, which is
special). In addition, for register-based routines, the Trap
Dispatcher saves some of the remaining registers before dispatching to
the routine and restores them before returning to the calling program.

2/27/84 Chernicoff CONFIDENTIAL /INTP.0/ASSEM.4

18 Programming Macintosh Applications in Assembly Language

Registers Al, Dl, and D2 are always saved and restored in this way, so
their contents are unaffected by a register-based trap even though the
routine itself is allowed to "trash" them. A7 and OIi are never
restored: whatever the routine leaves in these registers is passed
back unchanged to the calling program, allowing the routine to
manipulate the stack pointer as appropriate and to return a result
code.

Whether the Trap Dispatcher preserves register A0 depends on the
setting of bit 8 of the trap word. If this bit is G, A~ is saved and
restored; if it's 1, AG is passed back from the routine unchanged.
Thus bit 8 of the trap word should be set to 1 only for those routines
that return a result in A.0, and to G for all other routines. The trap
macros automatically set this bit correctly for each routine, so you
never have to worry about it yourself.

Notice, however, that the Trap Dispatcher preserves these other
registers only on register-based traps. Stack-based traps preserve
only those registers required by the Pascal conventions (A2-A6, D3-D7).
If you want to preserve any of the other registers, you have to save
them yourself before trapping to the routine--typically on the stack
with a MOVEM (Move Multiple) instruction-and restore them afterward.

Pascal Interface to the OS and Toolbox

Lisa Pascal doesn't know anything about the Macintosh trap mechanism.
When you call an OS or Toolbox routine from Pascal, you're actually
calling an interface routine that performs the trap for you. For
register-based calls, the interface routine fetches the parameters from
the stack where the Pascal calling program left them, puts them in the
registers where the routine expects them, then traps to the routine.
On return, it moves the routine's result, if any, from a register to
the stack and then returns to the calling program. (For routines that
return a result code, the interface routine also moves the result code
to a global variable, where it can later be accessed with a special
Pascal utility routine.) For stack-based calls, there's nothing for
the interface routine to do except trap to the routine and then return
to the calling program.

Ordinarily this would mean that each stack-based interface routine
would be two instructions long: a trap word and an RTS (Return from
Subroutine) instruction. However, to save code, the interface routines
to the Toolbox dispense with the RTS and instead use the "auto-pop"
bit, bit 10 of the trap word for Toolbox traps. When this bit is set
to 1, the Trap Dispatcher doesn't return control to the interface
routine after the trap. Instead, it just removes the trap's return
address from the stack and returns directly to the calling program.
This halves the amount of memory space taken up by the Toolbox
interface routines-from two words per routine to only one, the trap
word itself. When you trap to a Toolbox routine from assembly
language, the trap macro sets the auto-pop bit to I, so that control
will return normally.

2/27/84 Chernicoff CONFIDENTIAL /INTP..0/ASSEH.5

I

MIXING PASCAL AND ASSEMBLY LANGUAGE 19

MIXING PASCAL AND ASSEMBLY LANGUAGE

You can mix Pascal and assembly language freely in your own programs,
calling routines written in either language from the other. The Pascal
and assembly-language portions of the program have to be compiled and
assembled separately, then combined with the Lisa Pascal Linker. For
convenience in this discussion, we'll refer to such separately compiled
or assembled portions of a program as "modules", although this term
isn't actually used in Lisa Pascal. You can divide a program into any
number of modules, each of which may be written in either Pascal or
assembly language.

References in one module to routines defined in another are called
external references. The Linker resolves external references by
matching them up with their definitions in other modules. You have to
identify all the external references in each module so they can be
resolved properly. To call an assembly-language routine from Pascal,
you name the routine in a .DEF, .PROC, or .FUNC directive in the module
where it's defined and declare it with an EXTERNAL declaration in the
Pascal module that refers to it. To call a Pascal routine from
assembly language, you declare it in the INTERFACE section of a Pascal
unit to make it available to other modules and name it in a .REF
directive in the assembly-language module that uses it. The actual
process of linking the modules together is covered in the document
"Putting Together a Macintosh Application".

All calls from one language to the other, in either direction, must
obey Pascal's stack-based calling conventions (see "Calling Toolbox
Routines", above). To call a Pascal routine from assembly language,
you push the parameters onto the stack before the call and (if the
routine is a function) look for the result on the stack on return. In
an assembly-language routine to be called from Pascal, you look for the
parameters on the stack on entry and leave the result (if any) on the
stack before returning.

Under stack-based calling conventions, a convenient way to access a
routine's parameters on the stack is with a frame pointer, using the
68000's LINK and UNLK (Unlink) instructions. You can use any address
register for the frame pointer (except A7, which is reserved for the
stack pointer), but on the Macintosh register A6 is conventionally used
for this purpose. The instruction

LINK A6 ,ll-12

at the beginning of a routine saves the previous contents of A6 on the
stack and sets A6 to point to them. The second operand specifies the
number of bytes of stack space to be reserved for the routine's local
variables: in this case, 12 bytes. The LINK instruction offsets the
stack pointer by this amount after copying it into A6.

(warning)
The offset is added to the stack pointer, not subtracted
from it. So to allocate stack space for local variables,

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.5

20 Programming Macintosh Applications in Assembly Language

you have to give a negative offset; the instruction won't
work properly if the offset is positive. Also, to keep
the stack pointer correctly aligned, be sure the offset
is even. For a routine with no local variables on the
stack, use an offset of If.

Register A6 now points to the routine's stack frame; the routine can
locate its parameters and local variables by indexing with respect to
this register (see Figure 6). The register itself points to its own
saved contents, which are often (but needn't necessarily be) the frame
pointer of the calling routine. The parameters and return address are
found at positive offsets from the frame pointer.

I Local variables
I
I
I

(AS) ~i-------------1
Previous (A6)

4(A6) ~1------------1
Return address

8(A6) ~-------
Lest parameter

First parameter

Function result {if any)

Previous stack contents

High memory

Figure 6. Frame Pointer

Since the saved contents of the frame pointer register occupy a long
word (4 bytes) on the stack, the return address is located at 4(A6) and
the last parameter at 8(A6). This is followed by the rest of the
parameters in reverse order, and finally by the space reserved for the
function result, if any. The proper offsets for these remaining
parameters and for the function result depend on the number and types
of the parameters, according to the table above under "Stack-Based
Calls". If the LINK instruction allocated stack space for any local
variables, they can be accessed at negative offsets from the frame
pointer, again depending on their number and types.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.S

MIXING PASCAL AND ASSEMBLY LANGUAGE 21

At the end of the routine, the instruction

UNLK A6

reverses the process: first it releases the local variables by setting
the stack pointer equal to the frame pointer (A6), then pops the saved
contents back into register A6. This restores the register to its
original state and leaves the stack pointer pointing to the routin&'s
return address.

A routine with no parameters can now just return to the caller with an
RTS (Return from Subroutine) instruction. But if there are any
parameters, it's the routine's responsibility to "strip" them from the
stack before returning. The usual way of doing this is to pop the
return address into an address register, increment the stack pointer to
remove the parameters, then exit with an indirect jump through the
register.

Another point to remember is that any routine that's called from Pascal
must observe Pascal register conventions and preserve registers A2-A6
and D3-D7. This is usually done by saving those registers the routine
will be using on the stack with a MOVEM (Move Multiple) instruction,
then restoring them before returning. Any routine you write that will
be accessed via th, trap mechanism--for instance, your own version of
an OS or Toolbox routine that you've patched into the dispatch table-
should observe the same conventions.

Putting all this together, the routine should begin with a sequence
like

MyRoutine LINK A6,ll-dd ;set up frame pointer
; dd • number of bytes
; of local variables

MOVEM.L A2-A5/D3-D7,-(SP) ; ••• or whatever subset of
; these registers you use

and end with something like

MOVEM.L (SP)+,A2-A5/D3-D7
UNLK A6

MOVE.L (SP)+,Al

ADD.W #pp,SP

JMP (Al)

;restore registers
;restore frame pointer

;save return address in a
; "trashable" register
;strip parameters--
; pp• number of bytes
; of parameters
;return to caller

Notice that A6 doesn't have to be included in the MOVEM instructions,
since it's saved and restored by the LINK and UNLK.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.5

22 Programming Macintosh Applications in Assembly Language

(warning)
Recall that the Segment Loader, when it starts up an
application, sets register A5 to point to the boundary
between the application's globals and parameters.
Certain parts of the system {notably OuickDraw and the
File Manager) rely on finding AS set up properly-so you
have to be a bit more careful about preserving this
register. the safest policy is never to touch A5 at all.
If you must use it for your own purposes, just saving its
contents at the beginning of a routine and restoring them
before returning isn't enough: you have to be sure to
restore it before any call that might depend on it. the
correct setting of A5 is always available in the long
word global variable currentA5.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.6

)

' GLOSSARY

GLOSSARY

application heap: The portion of the heap available to the running
application program for its own memory allocation.

dispatch table: A table in RAM containing the addresses of all
Operating System and Toolbox routines in encoded form.

23

external reference: A reference to a routine or variable defined in a
separate compilation or assembly.

frame pointer: A pointer to a routine's stack frame, held in an
address register and manipulated with the LINK and UNLK instructions.

heap: The area of memory in which space is dynamically allocated and
released on demand, using the Memory Manager.

interface routine: A routine called from Pascal whose purpose is to
trap to a certain Operating System or Toolbox routine.

IWM ("Integrated Woz Machine"): The Macintosh's built-in custom disk
interface.

parameter block: A table of parameter values to an Operating System
routine, stored in memory and located by means of a pointer passed in
an address register.

QuickDraw equates file: The file defining global constants and
variables pertaining to QuickDraw.

QuickDraw macro file: The file defining trap macros for calling
QuickDraw routines.

register-based: Said of an Operating System or Toolbox routine that
receives its parameters and returns its results in the processor's
registers.

result code: A code returned by an Operating System routine to report
successful completion or failure due to some error condition.

sec (Serial Communications Controller): The Macintosh's built-in 853~
serial communication interface.

stack: The area of memory in which space is allocated and released in
LIFO (last-in-first-out) order, used primarily for routine parameters,
return addresses, local variables, and temporary storage.

stack-based: Said of an Operating System or Toolbox routine that
receives its parameters and returns its results on the stack.

stack frame: The area of the stack used by a routine for its
parameters, return address, local variables, and temporary storage.

2/27/84 Chernicoff CONFIDENTIAL /lNTRO/ASSEM.6

24 Prograaaing Macintosh Applications in Assembly Language

system communication area: An area of memory containing global
variables used by the Macintosh system software.

system equates file: The file defining global constants and variables
pertaining to the Operating System.

system errors file: The file defining all result codes returned by
Operating System routines.

system heap: The portion of the heap reserved for use by the Macintosh
system software.

system macro file: The file defining trap macros for calling Operating
System routines.

Toolbox equates file: The file defining global constants and variables
pertaining to the User Interface Toolbox.

Toolbox macro file: The file defining trap macros for calling Toolbox
routines.

trap macro: A macro that assembles into a trap word, used for calling
an Operating System or Toolbox routine from assembly language.

trap number: The identifying number of an Operating System or Toolbox
routine.

trap word: An unimplemented instruction representing a call to an
Operating System or Toolbox routine.

unimplemented instruction: An instruction word that doesn't correspond
to any valid machine-language instruction but instead causes a trap;
used for calling Operating System and Toolbox routines via the 68t99's
trap mechanism.

VIA (Versatile Interface Adapter): The Macintosh's built-in 6522
parallel communication interface.

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.6

4 J1111 1982 :ZO: 10: 11

{SX-}
PROGMH Boxes;

USES {SU-}

l
su cbj/OuickDrav
SU cbj/OSintf
SU cbj/Toollntf
SU obj/Sane
SU cbj/Elens
SU cbj/GrafJD

CONST
boxCount • 15;

TYPE
BaxJD • RECORD

l
OuiclcDrav,
OSlntf,
Toollntf,
Sane,
Eleris,
Graf JD;

ptl: Point3D;
pt2: PointlD;
dist: extended;

END;

VAR
11YP0rt: Graf Ptr;
11YPortJD: PortJDPtr;
boxRrray: flRRRY (D •• boxCount) OF BaxlD;
nBoxes: INTEGER;
i: JH'I'EGER;
etop. ebott011. eleft. eright. te"I): extended;

PROCEDURE Distance(ptl.pt2: Point3D; VAR result: extended);

VRR
dx. dy. dz: extended;

BEGIN
dx :• pt2.X; { dx:•pt2.X - ptl.X;}
SubX(ptl. x. dx);

dy :• pt2.Y; { dy:-pt2.Y - ptl.Y; }
SubX(ptl. Y, dy);

dz:• pt2.2; { dz:-pt2.Z - ptl.Z;}
SubX(ptl. z. dz);

lillX(dx. dx); { result: •SCRr(dx·dx • dy·dy • dz•dz); }
"'1X(dy, dy);
ttJlX(dz. dz);
RddX(dx. dy);
RddX(dy. dz);
SqrtX(dz);
result:• dz

END;

PROCEDURE DrawBriclc(ptl,pt2: PointJD);
{ draws a 3D brick Vi th shaded faces. }
{ anly shades correctly inane direction}

VAR
tl!ftPRgn: RgnHandle;

BEGIN
te,q,Rgn : • NewRgn;
OpenRgn;
NoveToJD(ptl.X,ptl.Y.ptl.2); { front face, ,-yl}
LineToJD(ptl. X. ptl. Y. pt2. Zl;
UneTo3D(pt2.X.ptl.Y.pt2.2;
UneTo3D(pt2.X,ptl.Y.ptl.Z;
LineToJD(ptl.X,ptl.Y,ptl.2; ---

16-1

,_. 1

16-2

4 Jim 1182 20: 10: U

CoseRgn(terrpRgn);
FillRgn(terrpRgn. white);

DpenRgn;
HoveToJD(ptl.X,ptl.Y,ptZ.Z); { top face, z•zZ}
LineToJD(ptl.X,pt2 Y,pt2.Z);
LineToJD(pt2.X,pt2.Y,ptZ.Z);
LineToJD(pt2.X.ptl.Y,pt2.Z);
LineToJD(ptl.X,ptl.Y,ptZ.Z);
CloseRgn(teripRgn);
FillRgn(tel'lpRgn. gray);

DpenRgn;
ltoveToJD(ptZ.X.ptl.Y,ptl.Z); { right face, x•x2}
LineToJD(pt2.X,ptl.Y,pt2.Z);
LineToJD(pt2. X, pt2. Y, pt2. Z);
LineToJD(pt2.X,ptZ.Y.ptl.Z);
LineToJD(ptZ.X,ptl.Y,ptl.Z);
CloseRgn(teripRgn);
FillRgn(tupRgn. black);

PenPat(whi te);
NoveToJD(pt2.X.pt2.Y,ptZ.Z); { outline right}
LineToJD(ptZ.X,pt2.Y,ptl.Z);
LineToJD(ptZ. X, ptl. Y, ptl. Z);
PenNonal;

DisposeRgn(t errpRgn);
END;

PROCEDtJRE HalceBox;

VRR
111Box: BoxJD;
i, j, h. v: lHIEGER;
pl, p2: PointJD;
111Rect: Rect;
testRect: Rect;
te11p: extended:

BEGIN
IZX(Rcmdo11.p1.X); {pl.x:•Randoll llOd 70 -15;}
IZX(140, terip);
RenX(tePIP, pl. X, i);
IZX(15, tup);
SubX(terip, pl. X);

IZX(Randms.. pl. Y); {pl. y: •Rando11 PIOd 70 ·10;}
IZX(140, tenp);
RIIIIX(terip, pl. Y, i);
IZX(l0, terip);
SUbX(tel'lp,pl. Y);

l2X(0,p1.Z); {pl.z:•0.0;}

l2X(Randml. pZ. X); {p2. x: -pl. x • 10 • JllS(Randml) IIJD 3U; }
12X(60, tap);
ReftX(te,ip, p2. X, i);
JlbsX(p2. X);
IZX(l0, tmip);
RddX(terq,, p2. X);
RddX(pl. X, p2. X);

IZX(Randoft, p2. Y); {p2. y: -pl. y • 10 • IIBS(Rand01'1) IIJD 45; }
12X(90, tmip);
RenX(terip,pZ.Y,i);
llbsX(p2. Y);
l2X(10, tmip);

--

4 J111111182 20:10:11

RddX(tenp.p2.Y);
RddX(pl.Y,p2.Y);

SIN'I.E/llllXES. TEXT

IZX(Randon.pZ.Z); {pZ.z:•pl.z • 10 • RBS(Randcn) tllD 35;}
IZX(70, terip);
RenX(tenp.p2.Z,i);
RbsX(p2. Z);
I2X(l0. tenp);
RddX(tenp.pZ.Z);
RddX(pl.Z,p2.Z);

{ reject box if it intersects one already in list}
WITH nyRect DO

BEGIN {
SetRect(nyRect,RDUND(pl.x),ROUND(pl.y),ROUND(p2.x),ROUND(p2.y));

}
X2l(pl. X, left);
X2l(pl. Y. top);
XZI (p2 X, nght);
X2l(p2.Y,botton)
END;

FOR i :• 0 'IO nBoxes-1 DO
BEGIN
WITH boxRrray[iJ,testRect DO

BEGIN { SetRect(nyRect,ROUND(ptl.x),ROUND(ptl.y)}
X2I(ptl.X,left); { ,RDUND(pt2.x),ROUND(pt2.y)); }
X2l(ptl. Y, top);
XZI(ptZ.X.r1ght);
XZI(ptZ.Y,botton)
END;

IF SectRect(nyRect,testRect,testRect) THEN EXIT(HalceBox)
END;

11YBox.ptl :• pl;
RyBox.pt2 :• p2;

{ calc llidpoint of box and its distance fron the eye }

RddX(p2.X.pl.X); { pl.x:•(pl.x • p2.x)/2.0;)
I2X(2, tenp);
DivX(tenp,pl.X);

RddX(p2.Y,pl.Y); { pl.y:•(pl.y • pZ.y)/2.0;}
I2X(2, tenp);
DivX(tenp,pl.Y);

RddX(p2.Z,p1.Z); { pl.z:•(pl.z • p2.z)/2.0;}
I2X(2. tenp);
DivX(tenp,pl.Z);

Transfon(pl.p2);
Dutance(p2, 11yPortJD". eye, ,iyBox. dist); { distance to eye)

i : • D;

boxRrray(nBoxes]. dist : • RyBox. dist; { sentinel }

WHILE CnpX(,iyBox.dist,GT,boxRrray[i].dist) { Ry8ox.dist >
boxRrray(i].dist}

DO .
i :• i•l; { insert in order of dist}

FDR j : • nBoxes DO\INTD i•l DO boxlirray[JJ : • boxlirray[j-1};
boxRrray [i] : • ..yBox;
nBoxes :• nBoxes•l;

END;

BEGIN { IIClin progran}

--

16-3

Pap 3

16-4

4 Jim 11182 :ZO: 1D: ll

Ini tGraf(athePort);

HideCw-sor;
NEV(nyPort); DpenPort(nyPort);
NEV(nyPortJD); DpenJDPort(nyPort3D);

saf'LE/IICXES. n:xt

Viewrort(nyPort".portRect); { put the inage in this rect}
I2X(-1DD. ele1t);
I2X(75, etop);
I2X(lDD. eright);
I2X(-75,ebotton);
LoolcRt(eleft,et0p,eright,ebott011); (ain the CCll'ICra into 3D space)
I2X(JD, terip);
ViewRngle(terip); { choose lens focal length)
Identity;
I2X(2D, tersp);
Roll(tersp);
I2X(7D, te,q,);
Pitch(terip); { roll and pitch the plmle)

REPERI'

nBoxes : • O;
REPEAT

HalceBox
IJNI'IL nBoxes•boxCount;

PenPat{vhi te);
BackPat(black);
EraseRect(nyPort".portRect);

FOR i : • -10 TO 1D DO
BEGIN
l2X(i•10,eleft);
l2X(-10D, etop);
l2X(O. tersp);
lfoveTolD(eleft,etop,terip);
l2X(1DD,ebotton);
LineTo3D(eleft, ebotton, terip);
END;

FOR i : • -10 to 10 DO
BEGIN
l2X(i•10,eleft);
lfoveToJD(etap,eleft,terip);
LineToJO{ebott011. eleft. terip);
END;

FOR i : • nBoxes·l DCIVNTD ODO DrawBrick(boxRrray[iJ.ptl,boxArray{iJ.pt2);

UNTIL button
END.

--

4 JIID 1882 20 Ill: 23

{SX·}
PROGIUIH Edit;

{ Edit -- R mall sanple application vri tten in Pascal }
{ by Macintosh User Education }

USES {SU-}

l OuickDraw,
OSlntf.
Toollntf; {

SU Obj /Oui ckDr aw
SU Dbj/OSintf
SU Obj/Toollntf

CDHSI'
lastHenu • l; { --...ber of IW1U5 }
appleHenu • 1; (MnU ID for desk accessory MnU }
fileHenu • 256; { enu ID for File 11enu}
editHenu " 257; { 11enu ID for Edit 11enu }

VRR
111YHenus: RRRRY (1 .. lastHenuJ OF HenuHandle;
screenRect,dragRect,pRect: Rect;
doneFlag. terip: BOOL£RH;
11YEvent: Event Record;
code,refNul'l: !KIEGER;
..Record: VindowRecord;
ftYVindow, wichVindow: VindowPtr;
theHenu. thelten: !KIEGER,;
hTE: 'IEHandle;

PRDCEDURf SetlJpHenus;
{ Once-only initialization for nenus}

VRR
i: !KIEGER;
appleTitle: SIRING[l);

BEGIN
InitHenus; { initialize Henu Manager}
appleTitle :• • '; appleTitle[l) :• CJIR(appleSynbol);
11YKenus[l] :• NewNenu(appleHenu,appleTitle);
RddResHenu(JIYHenus(l). 'DRVR"); { desk accessories)
111YHenus[2) :• GetHenu(fileHenu);
111YKenus[3] :• GetHenu(editHenu);
FOR i : • 1 to lastHenu DO InsertHenu(nyHenus (i]. D);
DrawHenuBar;

END; { of SettJpHenus }

PROCEDURE Doemaumd(IIResult: Longlnt);

VRR
nane: S'IR255;

BEGIN
theHenu : • HiVord(IIResult); theiten : • LoVord{IIResult);
CRSE theHenu OF

appleHenu:
BEGIN
GetJ t en(11YHenus (1 J. the Iten. nane);
refNul'l :• OpenDeskRcc(nm1e);
END;

fileHenu: clonef'lag : • 1RUE; { Quit)

editHenu:
BEGIN
IF NOT SystenEdit(theiten-1) DIEN

BEGIN
SetPort(nyVindov);

--

16-5

Page 1

16-6

4 .11m 1m ZJ:ta:23

CASE thelten OF

1: TECut(hTE);

2: TECopy(hlE);

3: TEPaste(hlE);

END; { of i tu case)
END;

END; { of edi tHenu)

END; { of 111enU case)
Hili teKenu(O);

END; { of Doe:maland)

BEGIN { IIIXin progrClft)
lnitGraf(mthePort);
lnitFonts;
FlushEvents(everyEvent,O);
Ini tVindovs;
SetUpHenus;
lt:Init;
InitDialogs(NIL);
Ini tCursor;

screenRect :"' screenBits.bounds;
SetRect(drogRect,4,24,screenRect.right·4,screenRect.botton·4);
doneFlag : "' FRI.SE;

ftY\lindov : • GetNev\lindov{256, IIWRecord, POINI'ER{ ·l));
SetPort(111YVindov);

pRect :• thePort·.portRect;
lnsetRect(pRect,4,D);
hlE : • l'ENev(pRect, pRect);
REPERI'

SystuTask;
lEldle(hlE);
tei.p :• GetNextEvent(everyEvent,111YEvent);
CASE RY£vent.whot OF

aw:,useDovn:
BEGIN
code : • Find111ndov(nyEvent. where, vhichVindov);
CASE code OF

inHenuBar: DoConnm'\d(HenuSelect(111YEvent.vhere));

inSysVindov: SystenClidc(111YEvent,vhichVindov);

inDrag: DragVindov(vhichVindov,RY£vent.vhere,dragRect);

inGrov. inContent:
BEGIN
IF vhichVindov<>FrontVindov IHEN

SelectVindov(vhichVindov)
ELSE

BEGIN
GlobalToLocal(RyEvent.vhere);
1EClick{nyEvent.llhere.FRLSE,hIE);
END;

END;

END; { of code case)
END; { of NJuseDovn)

--

4 J1111 llill82 20: CII: 23 !illFI.E/EDIT. n:xr

keyDovn. caitoKey:
IF Jl)'Vindov•FrontVindov 1HEN

'IEXey(CHR(nyEvent.11essage)l)l) 256),h'I'E);

activateEvt:
IF DDD(nyEvent.110difiers) (vindov is beCCJfting active}

THEN
n:Rctivcrte(h'I'E)

ELSE
'IEDeactivcrte(h'I'E);

updateEvt:
BEGIN
SetPort(l'l)'Vindov);
BeginUpdate(Jl)'Vindov);
TEUpdate(thePort".portRect,hTE);
EndUpdate(l'l)'Vindov);
END; { of updateEvt)

END; (of event case }

UNTIL daneFlag;
END.

16-7

Pap 3

16-8

4 Jim 1N2 19:58:"1 SIN'LE/Fll.t.n:rr

{ File -- Exmiple code for printing, reading and writing files, and Text Edit)
{ -- by Cm-y Clark, Macintosh Technical S1JPport)

PRDG!Ullf HyFile;

I Please read '110re about File,· included on the Hae Kaster disk.)
SDECL BUG)
SSETC BUG : • D}

{One good vay of debugging code is to vri te status infornation to one of the
serial ports. Even while debugging code which uses one of the ports, the other
can be used for transnitting infornation to an external terninal.

In this progrm,. the co,rpile tine variable BUG is set to either -1. D or 1
according to the extent of the debugging infornation required. Since conpile
tine variables or constants are used. setting a single flag should cause the
resulting progrms to have no 110re code than is required by the debugging level
requested.

If BUG is set equal to ·1. then no debugging infonation appears; this is as you
vould vant the end user to see your product.

BUG set to D provides an additional 11enu bar called ·debug· that can display the
armunt of 11e110ry available. conpact 11enory. and discard segnents and resources
resident in 11e110ry. You can do sonething sinilar to display sone debugging
infornation on the Hae: itself if you do not have a terninal, but the penalty here
is that you 11ay spend 1ruch of your ti11e debugging the code which is intended to
debug sone other part of the progran. Obviously. creating and naintaining a
vindov on a screen full of other Vindovs in untested code is a difficult thing to
do.

BUG set to 1 adds an additional iten to the 'debug· 11enu that writes various runtine
infornation to an external terninal. lhis is the preferred 11ethod of debugging.
since it does not interfere With the Kac:intosh display. Even if you do not have
a separate tenlinal. you can use the LISA tenunal progrm, to act as one. Since
writing a lot of debugging infornation to a serial port can slov the progrm, down.
I vauld reco1V1end a vay of turning the intonation on and off. In this progran.
the variable DEBUG is set to true ar false in the beginning of one of the first
procedures executed. SETUP. to provide debugging infonation. The DEBUG variable
Illa)' also be set by the bott011 i te11 on the nghti,ost nenu.)

{SU-} {Turn off the Lisa Libraries. lhis is required by Workshop.}
{SX-) {Turn off stack expansion. This is a Lisa concept. not needed on Hae.}

{

SIFC BUG> •1}
SD+} {Put the procedures nane just after it in the code. to help in debugging}
SR•) {Turn on range checking. Violating the range at runtine vill produce a

l~t:t ::~:~on:. procedure na11e in the 'prowction • code}
SR·) {Tum off range checking.)
SEHDCJ

SU Obj/Toolintf Toolintf,

USES {SU Obj/OuickDrav I OuickDrav,

!
SU Obj/0Sintf DSintf,

SU Dbj/Packintf Packintf,
SU Obj/StdFile StdFile, {later,
SU Obj/KacPrint KacPrint;

this will be part of Packintf}

CONST
appleHenu • 1;
FileKenu • 2;
Edi tKenu • 3;
Debugtfenu • 4;

{See the file Hisc:Fileas11 about the canstants below.
ln this exmiple progrCll'I, I anly use the first two.}

TEScrpLength • D; {the length of the private TextEdit scrap)
TEScrpHandle • 1; {the handle to the private TextEdi t)

--

I ,.

Pa;v 1 ,

4 Jim 11182 111: 58; 47 Sllf'l.E/FD.E. TEXr

dlgfont • 2; lthe font used inside alerts and clialo~s)
ScrVRes • 3; screen vertical resolution (dots/inch))
ScrHRes • 4; screen horizontal resolution (dots/inch))
doubleTine • 5; {double click tille in 4/6O's of a second]
caretTine • 6; {caret blink tine in 4/6O's of a second}
J!Nunber • 7; {the active alert]
RCount • 8; {the alert stage level]

{SIFC Blli" -1)
lastKenu • 3; { nunber of nenus v/o debug)
{$El.SEC]
lastKenu • 4; { nunber of 11enus w/ debug]
{SENDCJ

{SIFC BUG c l)
debug • Fffl.SE; { cmtpiler will discard code after 'If debug .•• ')
{SENDC}

TYPE
ProcOrFunc & (proc,func,neither);
edset • SET OF 1 .. 9;
appParns • RECORD { parans set up by Finder at launch}

11essage: INIEGER;
count: INI'EGER; { how 11any icons did the user select)
vRefNun: INI'EGER; { for each, the volune reference•.)
fTYPE: resType; { the file type. }
vByte: INIEGER; { the version nunber (should be r,) J
fNane: Str255; { and the narie. See SetUp for use. }

END;
plippPCln'IS • -appPCln'IS;

HyData • RECORD {each doCUP1ent windov keeps a handle to this in WefCon)
TERecord: TEHandle; {the-text associated with this dccunent)
changed: Boolean; {the docunent is 'dirty')
titled: Boolean; {the doCURent has never been saved to disk}

END;
HyDataPointer • -HyData;
HyDataHandle • "HyDataPointer;

--

16-9

Paa• 2

16-10

4 Jim 1E2 111:SB:47 SIH't.£/FllJ:. TEXT

{<<< ttus little beauty does a foni feed when you print this out.
Copy and Paste it to t10ve it to your source code}

{Here are a ton of global variables. lhis is not a good progrmming exanple.
You professionals. of course, will keep the nunber of globals in your ovn
prograns to a ,ruch Sl'laller nUl'lber than shovn here.}

VAR

{these first six values are changed as windows are activated}

HyW1ndov: VindovPtr;
HyPeek: 'll1ndovPeek; {HyPeek is the sm,e as HyVindov}
'llindovData: HyDataHandle; {this record is pointed to by the WRefCon.}
hTE: TEHandle; {The active text ech t handle}
vScroll: ControlHandle; {The active vertical scroll bar.}
topline: INIEGER; {the value of VScroll, al.so the visible top line.}

printhdl: THPrint; {initialized in SetUp, used by HyPrint}
RyHenus: ARRAY (1.. lastHenu] OF HenuHandle; {Handles to all of the 11enus}
grovRect, {contains hov big and Sl'lall the window can grov}
dragRect: Rect; {contains where the window can be dragged}
tenpvindov: V1ndovPtr; {window referenced by GetNextEvent (bad pgnning.)}
theChar: CHRR; {keyboard input goes here}
nyPoint: Point; {the point where an event took place}
laststate: INTEGER: {last scrap state, to see if it has changed}
doneFlag: Boolean: {set when the user qui ts the progrm,}
RyEvent: EventRecard; !returned by GetNextEvent}
scrapvind: VindovPtr; the ClipBoard.window, which contains the scrap}
iBecll'llfdl: CursHandle; the text edi tin9 cursor}
vatchHdl: CursHandle; the vai t cursor}
windovnun: LongJnt; {the• of untitled vindovs opened}
winclowpos: Longint; {the • of vindovs opened}
txtfile: F'Info; {'TEXT", the type of Hy Editor's docunents}
HyFileTypes: SFTypeList; {sm,e as txtfile, in a fornat for Standard File}
typelistptr: Sfll.1stPtr; {pointer to 'TEXT', as seen by Standard File}
firstcha:r: IHI'EGER.: (position of first character on top visible line}
printflag: Boolean: {the user selected 'Print · fron the File 11enu}
finderprint: Boolean: {the user selected 'Print' fron the finder}

{SIFC BUG> -1}
FreeVind: VindovPtr; {the free 11enory vindow}
oldnen: Longlnt; {the last anount of free l!leJIOry)
{SENDC}

{SIFC BUu • 1}
debug: Boolean:
{SENDC}
debugger: text; {the external ten'linal file}
extdebughdl: Stringffandle; {the MnU entry}
lf: CHAR,; {chr(lO), linefeed}

{--}
FUNCTION GlobalJlddr(routineRddr: INIEGER): Ptr;

EX'J'ERNRL;

FUNCTION GlobalValue(valueRddr: INIEGER): Longlnt;
EX'J'ERNRL;

{these routines. for nov, allovs us to retrieve where the TextEdit private scrap
is, and allov us to set its size. They are defined in Hise: FileRsn.}

{SS Utilities}
{--}

PROCEDURE DebuglnProc(prockind: ProcOrFunc; where: Str255; location: Ptr);
{This procedure writes the executing routine's natle and location in ftenory on the
external terninal. The location is especially illportant in a progrm, like this
that has segnents.}

--

Pia;• 3

4 J11111982 19:58:47 SINUIFILE. ma

BEGIN
{SIFC BUG • 1}
Vrite(debugger. ·in ');
IF prockirnt•proc THEN Vrite(debugger. 'Procedure');
IF prockind•func 1llEN Vr1te(debug9er, 'Function ·);
Vriteln(debugger,vhere. • m ·,ord4(location).lf)
{SDmC}

END;

{--}
PROCEDURE CursorRdjust;

VRR
110usePt: Point;
tei.pport: Graf Ptr;

BEGIN
{ Take care of application tasks which should be executed vhen the Mchine has }

{ nothing else to do, like changing the cursor fr011 an arrow to an I-Bean vhen it
is over text that can be edited. }

{SIFC BUG >·1}
{ U the anount of free 11en0ry is being displayed in its ovn vindov, muS if it has

changed. then CTeate an update event so that the correct value rill be displayed.}
IF (FreeVind<>NIL) JUm (FreeHen<>oldnen) 1llEN

BEGIN
oldfte11 : • FreeHen;
GetPort(te,q,port);
SetPort(FreeVind);
InvalRect(FreeV1nd".portrect);
SetPort(tenpport)
END;

{SENDC}
Get.House (110usePt); {vhere the cursor is. currently (local to the tDpRDst

vindov)}
IF hlE<>NIL {if text edit is currently active, (docunent vindov is

tOpROst)}

END;

1IEI
BEGIN
1Eldle(h'l'E);
IF (PtinRect(110usePt,h1E··.viewrect)) {In the text edit viewrect

areQ.)
'DEi
SetCursor(iBeanHdl ••) { llake the cursor an I-bea11.)

ELSE
SetCursor(arrov)

END

{--}
PROCEDURE JnSystuVindov;

VRR
DScrap: PScrapstuff;
tapport: GrafPtr;

BEGIN
{for desk accessories, service thell vith a SystellClick. Also, check to see if they
have changed the scrap. If so, create an update event to redraw the clipboard.)

IF debug 11£N DebuginProc(proc. 'lnSystuVindow',aJnSystuVindov);
SystellClick(RyEvent,tenpvindov);
DScrap : a In1oScrap;
IF (DScrap". scrapState<>laststate) mm (scrapvind<>NIL) DIEN

BEGIN
GetPort(tenpport);
SetPort (scrapvind);
JnvalRect(scrapvind".portrect);

16-11 ·

16-12

4Jl8I118211:58:47

END;

SetPort(tefll)port)
END

{--)
PROCEDURE SetScrollHax;

TYPE
txt • PRCCED ARMY {D .. 32000) OF 0 .. 255;

VRR
er: INT£GDt
txtptr: "txt:
JlaX: INTEGEJt

BEliIN
{lhis adjusts the scroll value so that the scroll bar range is not allowed to exceed
the end of the text. Also, the scroll bar is disabled if the J1aX is set equal 10
the nin.. which is zero. the forJIUla for deternining the range is s0J1ewhat conplex.
Sorry.)

IF debug THEN DehuglnProc(proc, 'SetScrollMax',IIISetScrollHax);
Villi hTE" ·, hJE" •• vievrect DO

END;

BEGIN
txtptr :• pointer(htext");
er : • D;
IF teLength>D THEN IF txtptr"{teLength-l]al3 THEN er:• l;
11ax :a nLines•cr-(bottoR·top•l) DIV lineHeight;
IF 11ax<D THEN 11ax : • D;
SetCt1Max(vScroll,11ax);
IF debug THEN \lritel.n(dehugger, 'vscrollnax • ', IUDC, lf);
topline :• -destrect.top DIV lineHeight;
SetCtlValue(vScroll.topline);
IF debug THEN Vritel.n(dehugger, "topline •',topline,lf)
END;

{--}
PROCEDURE ScrollText(showcaret: Boolean);

{called to either show the caret after an action like 'Copy';
also called to adjust the text within the window after the winp is resized. lbe
sane fonNl.a used in SetScrollHax is used here as vell. Don't worry about how this
works, too IIUch. lbis possibly could be 110de IIUch sinpler.)

TYPE
txt • P.ACC£D RRRRY (D . . 32000) OF D .. Z55;

VRR
bottOllline.viewlines,SelLine,scrlJlftount,ntJIIJ.ines,blanklines,
nevtop: INTEGER;
txtptr: ·txt;

BEliIN
IF debug THEN DehuglnProc(proc, 'ScrollText',aScrollText);
VITII hTE". 00

BEGIN
scrlJlftount : • D;
txtptr :• pointer(htext"); ·
nunlines : • nLines; {if the last character is a carriage return. add 1

to nuiuines)
IF teLength>D THEN

IF txtetr"(teLength-1)•13 THEN llUl'llines :• nunlines•l;
VITII hTE" . vievrect DO vievlines : • (bottaa-top•l) DIV lineffeight; {don't

count partial lines)
topline :• ·destrect.top DIV lineHeight;
bott0ftline :• topl1ne+vievlines-l;
IF debug THEN

--

4 JIIII 1982 19:58:47

BEGIN
Vrite(debugger, 'nlines•',nl.ines: 4, '; topline•',topline: 4);
Vriteln{debu9ger, '; nunlines•',nunlines: 4, '; botto"•',bottDllline:

4, lf};
Vriteln(debugger, 'vievlines~',vievlines: 4, '; shovcaret•',

shovcaret, lf)
END;

IF shovcaret 1HEN
BEGIN
Selline : • D;
VHILE (Selline•l<nl.ines) AND (selstart>•linestarts(Sell1ne•l}) DO

Selline :• SelLine•l;
{if selstart • selend is• a er, then add 1 to selstline}
IF (selstart•selend) AND (selstart>O) 1HEN

If (txtptr"(selstart-1)•13) tHEN SelLine :• SelLine•l;
IF debug tHEN

BEGIN
Vrite(debugger, 'selstart• ', selstart: 5, '; sell.ine• •• SelLine: S);
IF selstart>O THEN

Vriteln(debugger, '; txtptr"(selstart-1) • 13 is',
txtptr"(selstart-1)•13,lf)

END;
IF SelLine>bottcmline THEN

BEGIN
scrl.Rllount : • bottol'lline-SelLine;
IF nunlines-Selline>vievl1nes DIV 2 DIEN

scrl.Rllount :• scrl.Rllount-vievlines DIV 2
ELSE

scrl.Rllount : • scrl.Rllount-nunlines•SelLine• 1
END;

IF SelLine<topline THEN
BEGIN
scrl.Rl'lount :• topline-SelLine;
IF SelLine>vievlines DIV 2 THEN

scrlRllount :• scrl.Rl'lount•vievlines DIV 2
ELSE

scrlRllount :• scrlRllount•Selline
END

END;
IF scrlRllount•D tHEN

BEGIN
blanklines : • vievlines·nunlines•topline;
IF blanklines<D 1HEN blanklines :• D;
If (blanklines>O) AND (topline>D) THEN

BEGIN
sc:rl.Rnount :• blanklines;
IF scrlRllount>topline tHEN scrlRllount : • topline
END;

IF NOT shovcaret THEN
BEGIN
nevtop : • D;
VHILE (nevtorl<nl.ines) RND (firstchar>•linestarts(nevtop•l)) DO

nevtop :• nevtarl;
IF (nevtop<>topline) RND (RBS(nevtop•topline)>

118S(scrl.Rnount)) THEN
scrl.Rl'lount :• topline-nevtop

END
END;

IF debug THEN
BEGIN
Vrite(dehugger, 'nevtop•',nevtop: 4, '; blanklines•',blanklines: 4);
Vriteln(debugger. ·; nevtop - topline•',nevtop-topline,lf)
END;

IF scrlRllcunt<>D THEN
BEGIN
IF selstart•selend THEN TEDeactivate(hlE);
lEScroll(D,scrl.Rllount•lineHeight,hlE);
IF selstart•selend DIEN lERctivate(hlE)

--

16-13

16-14

4 J\11111112 11:58:47 SIHUIFILE.ma

EHD;
IF debug 11iEN Vriteln(debugger, 'scrlJIRount•',scrlRnount: 4,lf);
SetScroll.Nax
EHD

END;

{--}
PROCEDURE ToggleScrap;

VRR
tenppeek: VindovPeek;
getwhich: INI'EGER;
showhidehdl: StringHandle;

BEGIN
{lhe clipboard COl'leS and goes, here. The last iten in the editnenu is alternately
11ade to read, 'Shov Clipboard' and 'Hide Clipboard'.}

IF debug THEN DebuginProc(proc, 'ToggleScrap·,-roggleScrap);
IF scrapvind•NIL 1HEN {l'IClke it appear}

BEGIN
scrapvind :• GetNevVindav(257,NIL,pointer(-1));
taippeek : • pointer(scrapvind);
tenppeek". vindovkind : • 9;
Set Port (scrapvind);
lnvalRect(scrapvind".portrect);
getwhich : • 263 {hide clipboard}
END

E.SE {nake it disappear}
BEGIN
DisposeVindav(scrapvind);
scrapvind :• NIL;
getwhich : • 262 {shov clipboard}
END;

shawhidehdl : • GetString(9etwhich);
Hlock(pointer(showhidehdl));
Setlten(nyHenus[EditHenu),9,showhidehdl. 00

);

Hunlock(pointer(showhidehdl));
ReleaseResource(pointer(showhidehdl))

EHD;

{SIFC BUG> -1}
{--}

PROCEDURE ToggleFree;

VRR
tenppeek: VindovPeek;
getwhich: INTEGER;
showhidehdl: StringHandle;

BEGIN
{just about the smte as TogfleClipboarcl above. This is just for debugging fun.}

IF debug THEN Debug nProc(proc, 'ToggleFree·,-roggleFree);
IF FreeVind•NIL n£N {11ake it appear}

BEGIN
FreeVind : • GetNevVindov(258, NJL, pointer(-1));
tenppeek :• pointer(FreeVind);
tenppeek". rindovkind : • 1D;
SetPort(FreeVind);
InvalRect(FreeVind".portrect);
getwhich : • 265;
EHD

ELSE {11ake it disappear}
BEGIN
DisposeVindov(FreeVind);
FreeVind :• NIL;
getvhich : • 264

--

Pap 7

4 JIID 1182 19:58;47 SINUIFIU:. tm

END;
ahovhidehdl : • GetString(ietvhich);
ID.ock(pointer(shovhidehdl);
Setlten(JtYHenus[DebugHenu , 1, shovhidehdl ··);
Hunlock(pointer(shovhidehdl));
ReleaseResource(pointer(shovhidehdl))

END;
{SENDC}

{--)
PROCEDURE SetVievRect;

BEGIN
{text edit's view rect is inset in the content of the window, to prevent it fron
nJZming into the lefthand side or the scroll bar.)

IF debug THEN DebuglnProc(proc, 'SetV1ewRect',•SetViewRect);
VIlH hTE" ·. vievrect DO

. END;

BEGIN
hTE"·.vievrect :R HyVindow".portrect;
left : • left•4;
right:• right-15
END

{---·-----------·)
PRDCEDURE NoveScrollBar;

BEGIN
{llhen the window is resized. the scroll bar needs to be stretched to fit.)
IF debug THEN DebugJnProc(proc. 'HoveScrollBar',atfoveScrollBar);
VIlH HyW1ndow0 .portrect DO

END;

BEGIN
HideControl(vScroll);
MoveControl(vScroll,right-15,top-1):
SizeControl(vScroll,16,botton-top·lJ);
ShovControl(vScroll)
END

{--}
PROCEDURE GrowVnd;
{ Handles growing and sizing the window and IIClnipulating the update region. }

VRR
langResult: Longint;
height, width. newert. old.start: JNIEGER;
tRect,oldportrect: Rect;

BEGIN
IF debug 11£N DebuginProc(proc, 'Grovllnd',aGrowVnd);
langResult :• Growllindow(HyVindov,ftYEvent.where,grovRect);
IF 1angResult•D THEN EXIT(Grovllnd);
SetCursor(vcrtchHdl ·"); {because the word wrap could take a second or two)
height : • HiVord(longResult); width : • LoVord(longResult);
SizeVindow(HyVindow, width,. height, TRUE); { Now draw the newly sized

window. }
lnvalRect(HyVindov".portrect); .
IF HyPeek".windowlcind•8 THEN (a doCURent (not the clipboard) is being

resized}
BEGIN
NoveScrollBar;
VIlH HyVindov". portrect DO

BEGIN
width:• right-left-19;
height : • bottOft•top

--

16-15

16-16

4 JIID 1182 11:58:47

END;
VITII hTE .. DO

BEGIN

SIHU/FlLE.nxt

destrect.right :• destrect.left•vidth:
vievrect.r1ght :• vievrect.left•vidth;
vievrect.botton :• vievrect.top•he1ght;
firstchar :• hTE"".linestarts(topl1ne];
TECalText(hTE); {re-wrap the text to fit the nev screen.}

{if the rectangle is grovn such that there is nov blank space on the botton
of the screen. baclcpedal the screen to fill it back up. if there is enough

Pap I

scrolled off the screen to do so. Otherwise. the first character in the top line on
the screen should continue to be SClftevhere on the top line after resizing}

ScrollText(fALS£);
END

END;
SetCursor(arrov)

END; { of GrovVnd }

{--}
PROC£DURE HyRctivcrte;

VHR
tRect: Rect;

BEGIN
{activate events occur vhen one vindov appears in front of another. nus takes care
of hilitini the scroll bar and deactivating the insertion caret or the text
selection. }

If debug nlEH DebuglnProc(proc. 'HyRctivate',llltfyRctivate);
HyV1nclov :• pointer(nyEvent.aessage);
HyPeek :• pointer(HyV1ndov);
If HyPeek".vinclovk1nd IN (8,9) nlEH

BEGIN {redrav the scrollbar arell. if a doCURent or the clipboard}
SetPort(HyVindov);
tRect :• HyVindow0 .portrect; tRect.left :• tRect.right-16;
InvalRect(tRect)
END;

IF HyPeek •. vindovkind•8 nlEH ·
BEGIN {aalce global variables point to the infomation associated vi th

this vindov}
VindovDcrta : • pointer(GetVRefCon(HyVindov));
¥Scroll : • pointer~HyPeek·. ControlList);
hTE : • VindovData· . tERecord;
IF DDD(11YEvent.110difiers) nlEH

BEGIN {this window is now top 110st}
lERctivcrte(hTE);
ShowControl(vScroll);
topline : • GetCtlValue(vScroll)
END

El.SE
BEGIN {this window is no longer top 110st}
HideControl(vScroll);
1EDeactivcrte(hTE);
hTE : • NIL {a doCWICllt is no longer an top}
END

END
END; { of m:tivcrteEvt)

{--}
PRDCEDURE DialogueDeactivcrte;

VHR
tm,prect: Rect;

BEGIN
{This routine taes care of cases where. for instance. a aodal dialog is about to

--

4 Jvn 1182 18:58:47 SINU/FILE. mer

pop up in front of all the other windows. Since the Dialog Manager handles all
activate events for you. you do not get a chance to 'turn off· the controls associated
vi th the window. 1his routine is called just before the dialog box IIUkes its
appearance, and takes care of the hiliting as if an activate event had occured.}

IF debug DEN DebuginProc(proc, 'DialogueDeactivate ', IOialogueDeactivate);
IF hTE<>NIL ?HEN {for docunents, only)

{

BEGIN
'nlleactivate(hTE);
HideControl(vScroll);
SetCursor(arrov)
EMO;

IF (frontwindov<>NIL) RND (HyPeek". windovkind IN (8. 9)) DEN
BEGIN {this is a little kludgy, but it works.}
HyPeek . hili ted : • FALSE; {DrawGrovicon will now unhili te.}
tenprect :• HyVindov".portrect;

END;

tenprect.left :• tenprect.right-15;
Cliprect(tenprect); {cl1pavay the horizontal scrollbar part)
DrawGrovlcon(HyV1ndov);
Cliprect(HyVindov".portrect);
HyPeek •. hi li ted : • TRUE {hx things bock)
EMO

16-17

Pap 10

16-18

4 J11111982 11:58:47 SIH'l.tlFJLE. n:xr

) {SS RERDFILE)
{--)

FUNCTION ReadFile(VrefNo: IHIEGER: fNcme: Str255): Boolean;

VRR
refNo.io: IHit:CiER;
logEOF: Longlnt;
errin: Str255;

{--)
PROaIJURE DiskRErr(io: INIEGER);

VRR
str: Str255;
readfrol'lhdl. loadedhdl: Stringffandle;
cbmy: IHit:GER.:

BEGIN
{R generic error is reported to the user if sonething goes wrong. ftftazingly little can
go wrong, since the user does not get the chance to do things like type file nanes,
renove the disk hi11Self, and so on. About the only errors that could happen are:

the disk is full (for the conpanion writing error handler.)
an error occured llhile reachng/writing the chsk (dcmaged nedia or hardware)

Can you think of anything else? Rn alftost identical routine further down handles
writing to disk. Note that in both reading and writing. the entire file is handled
by o single read/write call. and no 'disk buffer· needs to be specified by the
progranl'ler.)

If debug tHEN
BEGIN
DebuginProc(func, 'DislcRErr',IIIDiskRf:rr);
Vriteln(debugger, errin,' err • ', io. lf)
END;

readfrol'lhdl :• GetString(267); {this says 'reading fron')
loadedhdl :• GetString(269); {this says 'loaded'}
l:D.ock(pointer(readfronhdl));
l:D.ock(pointer(loadedhdl));
HakeHunString(io,,tr);
Parm1text(readfrol'lhdl 00 ,fNcme,loadedhdl"",str);
SetCursor(arrov);
cbmy :• Stopftlert(256.NIL); {discribe error to user in generic vay.}
Jtunlock(pointer(readfronhdl));
Hunlock(pointer(loadedhdl));
EXIT(ReadFile)

END;

BEGIN
IF debug ?HEN DebuiinProc(func. 'ReadFile',aReadFile);
SetCursor(vatchHdl •);
ReadFile : • FALSE;
io : • FSOpen(fNm,e, VrefNo, refNo);
{SIFC Illa • 1) {these debugging stataents are for the external tenu.nal,

anly}
errin : • 'FSOpen ·;
{mmt)
IF io<>D 11iEN DiskRErr(io);
io : • GetEOF(refNo, logEOF);
{SIFC BUG• 1}
errin : • 'GetEDF ·;
{mmt}
IF io<>D 1HEN DiskRErr(io);
{add code here: if file is too large. then notify user and truncate)
SetllandleSize(hIE"".htext,logEl)F);

--

4 J11111982 19:58:47 SIH'LEIFILE. TEXT

IF debug lHEN
IF ftenerror<>D lHEN Vriteln(debugger, 'Jlefterr • ',ftenerror: 4);

io :• FSRead(refNo,logEOF,hTE"".htext·);
{SIFC BUG• 1}
errin : • 'FSRead ';
{SENDC}
IF io<>D lHEN DislcRE:rr(io);
io :• FSClose(refNo);
{SIFC BUG• 1)
errin :• 'FSClose";
{SENDC}
IF io<>D DIEN DiskRErr(io):
hlE" •. tel.ength : • logEDf;
IF NOT finderprint 11iEN {if printing fron the finder, no vindov or

editing in1on1ation is needed)
BEGIN
TESetSelect(D,D,hTE);
TECalText(hTE);
JnvalRect(hTE"".vievrect);
SetScrollMax;
VindovData"".titled :• TRUE;
VindovData··. changed : • FALSE
EHD; •

ReadFile :• TRUE {everything vorked out DIC}
END;

{--}
PROCEDURE MakeRVindov{str: Str255; disk: Boolean);

VRR
bounds: Rect;

BEGIN
{R windov is created here. and all associated data structures m-e linked to it}

JF debug DIEN DebuginProc(proc, 'MakeRWindow',aHakeRWindov);
vindovpos :• vindowpos•l; {this position it is created to on the screen}
bounds.left:• vindowpos KDD 16•2D•S;
bounds. top : • vindowpos HOD 11 •20.1&5;
bounds. right : • bounds. left•2D0;
bounds.bottOft : • bounds. top•lDD;
HyVindov : • NevVindow(NIL, bounds, str, TRUE, D, pointer (-1), TRUE, D);
SetPort(HyVindow);
HyPeek : • pointer(HyVindov);
TextFont(2): {the good ole application font}
HyPeek".vindovkind :• 8; {an arbitrary nunber identify the type of

vindov}
hlE : • TENev(HyVindov·. portrect, HyVindov •. portrect);
VindovData : • pointer(Newffandle(B)); {l handle plus 2 booleans}
SetVRefCon~HyVindov,ord4{VindovData));
VindovData • .1ERecord : • hTE;
SetviewRect;
hTE"".destrect :• hlE"·.vievrect;
VindovData··. changed : • FALSE;
vScroll :• GetNevControl(256,HyVindow);
ltoveScrollBar;
tapline :• D

END;

{--}
PRDailtJRE MyGetFile;

VRR
reply: SF'Reply;
vher: Point;
lfmleHdl: StringHandle;
te1111rect: Rect;

--

16-19

Page 12

16-20

,
4 J1111 11182 11: 58: 47

te11pport: GrafPtr;

BEGIN

SIHUIFILE. TEXT

{lhis calls Standard File to allow the user to choose the docunent on disk that she
wishes to edit.)

IF debug IHEN DebuglnProc(proc. 'HyGetfile'.SMyGetf1le);
vher. h : • 90;
vher. v : • 100;
DialogueDeactivate;
SFGetfile(vher, ··.NIL. 1. typelistptr, NIL. IDreply);
ReleaseResource(pointer(NaneHdl));
VITII reply DO

IF good TIIEN
BEGIN
HalceRWindow(fNm,e,lRUE);
IF NOT ReadFile(vRefNun.fNane) THEN

BEGIN
{ if rw:,thing was read. then dispose of the window. Ttdata. etc. but then again.

yau can't have everything in an exanple progr an that you would like.)
END

END
END;

{--}
PROCEDURE OpenRVindov;

VRR
s: Str255;
untitled: StringHandle;

BEGIN
{this creates a new vindov that is untitled and enpty.}
IF debug TIIEN DebuglnProc(proc. 'OpenRVindov',IIIOpenRWindov);
{see if enough lllePI exists ta open a vindov)
HalceNunStr ing(vindovnun. s);
windovnun : • vindovnun•l;
untitled:• GetString(256);
Hlaclc(painter(untitled));
HalceRW1ndow(Concat(untitled··.s).F.RLSE);
&mloclc(pointer(untitled))

END;

{SS VRITFILE)

{--)
FUHCTIDM Vritefile(VrefNo: IN'l'EGER,; fNmle: Str255): Boolean;

VRR
refNo. ia: JN'I?GER;
txtlength: Longlnt;
specialhdl: Oulrshandle;

errin: Str25S;

{--)
PROCEDURE DiskVErr(ia: INTEGER);

VRR
str: Str255;
vri tetaHdl. savedHdl: Stringffandle:
lbviy: INTEGER,;

BEGIN
{this is just about the SClfte as DiskRErr (read). R goad thing ta add here would
be a separate error 11essage far disk full accurances.)

IF debug THEN

--

Page 13
j

4 Ja 11112 11:58:47 IUNU/PD.E.n:xr

BEGIN
DebuglnProc(proc. 'DiskVErr',IDiskVErr);
Vriteln(debugger.errin. ·err• ',io.lf)
END;

(read resource for vriteto}
vritetoHdl :• GetString(2h8);
{read resource for saved}
savedHdl :• GetString(270);
ID.ock(pointer(vritetoHdl));
Hloclc(pointer(savedHdl));
HakeNunString(io,str);
Pm-C111text(vritetoHdl··,fNalu!.savedHdl··.str);
SetCursor(arrov);
dLlllftY :• StopRlert(256,NIL);
Hunlock(pointer(vritetoHdl));
Hunlock(pointer(savedHdl));
EXIT(Vritef'ile)

END;

BEGIN
{this isn't very different frmt read file. The anly CORplication is finding out
if the file exists. If it doesn·t, create it. Rlso. assign the 1nfonurtion that
the finder needs to properly associate it with this application. One pm-ticularly
bad thing here: the volutte reference nunber is not associated vi.th the clocunent.
this 11eans I do not knov enough to vri te a file on the scme disk frD11 which it was
read. Oh well. ,ou'll know better.}

IF debug 1HEJf DebuilnProc(proc. "VriteFile',allriteFile);
SetCursor(watchHdl ·);
Uri teFile : • FRI.SE;
io : • FSOpen(fNCIIIC. VrefNo. refNo);
{SIFC BIii • 1)
errin : • 'FSDpen ·; {once again. these only benefit the external

debugger.)
{SENDC}
IF deb1191HEJf Vriteln(debu9ger, 'file RefNull •',refNo,lf);
IF io• {file not fcnmd ErrJ -431HEJf

BEGIN
io : • Create(fNCIIIC, VrefNo);
(SIFC BIii • 1}
errin : • 'Create·;
(SENDC}
IF io<>O 1HEJf DisJcVErr(io);
io : • SetFinfo(fNCIIIC, VrefNo, txtfile);
{SIFC BIii • 1)
errin : • 'SetFinfo ·;
{SENDC}
IF io<>D THEN DiskVErr(io);
io :• FSOpen(fNC111C,VrefNo,refNo);
{SIFC BIii • 1}
errin :• 'FSOpen';
(SENDC}
fF debug THEN Vriteln(debugger. 'file Reflbl • ',refNo, lf);
JF io<>D ?HEN DiskVErr(io)
END {Create}

ELSE IF io<>D 111:N DiskVErr(io);
VIIH hJE •• IE

BEGIN
txtlength : • ord4(teLength);
ID.ock(htext);
io : • FSVri te(refNo, txtlength. htext •);
lflml.ock(htext)
END;

IF debug 1HEJf Vrite(debugger, •. ');
{SIFC BIii • 1}
errin : • 'FSVri te ';
(SENDC}
iF io<>D THEN DislcVErr(io);
io : • SetEOF(refNo, txtlength);

--

16-21

16-22

4 J1,111 19112 11: 58: 47 SIH'Lt/FILE.1'EXt

IF debug THEN Vrite(debugger, ·. ');
{SIFC BUG• 1}
errin :• 'SetEOF';
{SENDC}
IF io<>0 THEN DiskVErr(io);
io :• FSClose(refNo);
IF debug THEN Vrite(debugger, ·. ·);
{SIFC BUG• 1}
errin : • 'FSClose ·;
{SENDC}
IF io<>0 THEN DiskVErr(io);
io :• FlushVol(NIL,VrefNo); {this is il'lpOrtant; without it, if the

progran died (not possible as a result of a
progrtll'll'l:ing llistalce, of course), the
directory infornation on the disJc vould not
be accw-ate.}

IF debug THEN Vrite(dehugger, ·. ');
{SIFC BUG• 1}
errin : • 'FlushVol ';
{SENDC}
IF io<>0 THEN DislcVErr(io);
IF NOT VindavData··.titled THEN SetVIitle(lfyVindov,fNane);
VindavData··.titled :• TRUE;
VindovData··.changed :• FIil.SE;
llri tefile : • lRUE {everything is OK.}

END;

{--}
FUJaIDN HyPutFile(Filenane: Str255): Boolean;

VRR
reply: SFReply;
wher: Point;
NDfteHdl: Stringffandle;
tenprect: Rect;
tenpport: Graf Ptr;

BEGIN
{lhe user can select the nDfte of the file that they vish to save the daCUl'lent vith.}

IF debug 1HEN DehuginProc(func, 'lfyPutFile',llHyPutFile);
NyPutFile : • FRLSE;
NCllleHdl :• GetString(2S7);
wher.h : • 10D;
wher. v : • 100;
ID.ock(pointer(NaneHdl));
DialogueDeactivate;
SFPutFile(vher.NaneHdl"".Filenane,NIL.ereply);
ffunlock(pointer(NaneHdl));
vrm reply no

BEGIN
IF debug THEN Vriteln(dehugger, 'reply.good• ',good.lf);
IF good 1HEN lfyPutFile : • Vri teFile(vRefNui.. fNane)
END;

ReleaseResource(pointer(NaneHdl));
IF debug 1HEN Vriteln(debugger, 'release reserror • ',reserror.lf)

END;

{--}
PJUICEDURE CloseRV1ndov;

VRR
ittfthit: INIEGER;
DBoxPtr: DialogPtr;
str,strl: Str255;
Goodvri te: Boolean;
tmiprect: Rect;

--

4 J1111 1111D 111:SB:47 SIKUIFILE. TEXT

NafteHdl: Handle;
NanePtr: ·str255;
typ: INIEGER;
itellhdl: Handle;
box: Rect;

BEGIN
{Rll sorts of windows can be closed thr0\lgh this single routine. which is czccessed
by the user through the go-avay box on the window. or the aose itmt in the File
11enu.}

IF debug THEM DebuglnProc(proc. "CloseRVindov",IICloseRVindov);
HyPeek :• pointer(frontv1ndov);
CRSE HyPeek·.windowind OF

8:
BEGIN
GetVTitle(HyVindov.str);
itenhit : • D;
IF V1ndovData··.changed THEM {give the user the chance to save his

data before you throw it avay.}
BEGIN
DialogueDeactivate;
IF dcneFlag THEN

BEGIN
NmleHdl :• GetresoUTce('SIR ·,266);
JD.ock(NGl'leffdl);
NmlePtr :• pointer(NGl'leffdl.);
strl :• NanePtr·;
Hunloclc(NmleHdl);
IF debug THEN Vriteln(debugger. ·err•
END

ELSE
strl : • • ';

Parm,text(str. strl. '·. • ');

'. reserror. lf);

DBoxPtr :• GetNevDialog(256,NIL.pointer(-l));
REPERT

tfadalDi alog(NIL, it el'lhi t) {this could have been an alert. }
UNTIL itenhit IN (DK {Yes} .Cancel.J {No});
DisposDialog(DBoxPtr)
END;

IF debug THEM Vriteln(debugger, "itel'lhit • ',itenhit.lf);
Goodvri te : • FRI.SE;
IF MDT VindovData· ·.titled THEM str : • '';
IF itllfthit•DX {save} THEM Goodvrite :• HyPutFile(str);
IF Goodvrite DR (itellhit IN (D,J) {discard)) DIEN

BEGIN
TEDispose(hlE);
hlE : • NIL;
DisposHandle(pointer(VindovData));
IF debug THEM

Vriteln(dehugger. 'dispose VindovData; 1P1e11err • ',Ullerror,
lf);

lillControls(HyVindov); {do I need this? Vhy mt I asking you?)
DisposeVindov(HyVindov)
END;

IF itenhit•Cancel 11IEH doneFlag :• FBI.SE
END;

9: ToggleScrap;
{SIFC BUG> ·l}
1D: To9gleFree;
{SENDC}
OIHERVISE

CloseDeskAec(HyPeelc".windowkind) {can't be anything else)
END {Case)

END;

{SS RboutHyP911}
{--)

--

16-23

Pap 16

16-24

4 Jun 18112 19: 58: 47

PROCEDURE llboutHyEdi tor;

VIIR
strlhdl.str2hdl: StringHandle;
HyVindov: VindovPtr;
width. height. counter: INTEGER,;
nevcount: Longint;
quit: Boolean;
txtinfo: fontinfo;
tenprect,trectl: Rect;
tel'lpbits: bitnap;
sz: size;

BEGIN
{this bit of fluff shovs a totally vrong ,aethod of telling the user sonething about
ftY progran. but it vas fun to do.)

IF debug l1fEN DebuginProc(proc, 'RboutHyEditor',llflboutHyEditor);
DialogueDeoctiva1e;
strlhdl :D GetString(259);
IF debug THEN Vriteln(debugger, 'err• ·.reserror.lf);
str2hdl :• GetString(2bO);
IF debug l1fEN Vriteln(debugger, ·err• ',reserror.lf);
ID.oclc(pointer(strlhdl));
Hloclc(pointer(str2hdl));
HyV1ndov :• GetNewW1ndow(256,NIL.pointer(-1));
SetPort(HyVindow);
counter : • l;
width:• HyV1ndow-.portrect.right-HyVindow-.eortrect.left;
height :• HyV1ndow".portrect.bott0n-HyW1ndov .portrect.top;
Textfcnt (2);
TextHode(srcCopy);
quit : D FRI.SE;
REPER!

SysteriTask;
nevcount : • ticlccount•6;
TextS1ze(counter);
GetFontJnfo(txtinfo);
VIlli txtinfo DO

BEGIN
HoveTo((vidth-StringVidth(strlhdl--)) DIV 2,height DIV

2-descent-leodlng);
DravString(strlhdl-·);
HoveTo((vidth-Strin~idth(str2hdl"-)) DIV 2,height DIV 2•ascent);
DrawString(str2hdl")
END;

IF EventAvai 1(10, RYE vent) l1fEN quit : • TRUE;
counter:• counter•l;
WILE nevcount>ticlccount DO;

UNTIL quit OR (counter•12);
nevcount :• ticlccount•JDO; {5 seconds)
IIHILE NOT quit AND (ticlccount<nevcount) DO

BEGIN
SystenTask;
IF EventAva:il(lD. fl)'Event) DIEN quit : • 1RUE;
END;

tenprect :• HyVindov".portrect;
VIDf txtinfo DO

BEGIN
tenprect.top :• height DIV 2-ascent-descent-leading;
te,rprect.botton :• height DIV 2•ascent•descent
END;

trectl :• te,rprect;
DffsetRect(trectl,D.-trectl.top);
te,rpbits.rovbytes :• (vidth+7) DIV 8;
tenpbits.bounds :• trectl;
VIDf txtinfo DO

sz :• ord4(tellpbits.r01lbytes•(ascent•2•descent•2•leading));
tenpbits.baseaddr :• pointer(NevPtr(sz));

--

PR;• 17

4 J\m 1E2 19:58:47

IF debug THEN Vriteln(debugger. 'err• ',IIUIIU!rror,lf);
CopyBits(HyVindov".portbits.tenpbits,tenprect.trectl.src:Copy.NlL);
insetrect(trectl.B.D);
tenprect.top :• tenprect.top-2;
tenprect.bott011 :• tenprect.bottor2;
VHlLE NOT quit AND (trectl. right>width DIV 2) DO

BEGIN
SysteftTask; {the clock still ticks!)
CopyB1ts(tenpbits,HyWindow".portbits.trectl,tenprect.srcCopy.NIL);
IF tenprect.top>HyVindDw".portrect.top lHEN

BEGIN
insetrect(trectl,8,0);
insetrect(tenprect,0,-2)
END

El.SE
insetrect(trectl,8,2);

IF EventRvail(lD, 11YEvent) THEN quit : • lRUE
END;

Hunlock(pointer(strlhdl));
Hunlock(pointer(str2hdl));
ReleaseResource(pointer{strlhdl));
ReleaseResource(po1nter(str2hdl));
DisposPtr(pointer(tel'lpbits.baseaddr));
IF debug THEN Vriteln(debugger, ·err• ',11enerror.lf);
DisposeVindov(HyWindov)

END;

{SS HyPrint)
{--)

PROCEDURE HyPrint(finderfirst: Boolean; Filenane: Str2S5);

CONST
botta1V1argin • 20; {mmunt of space on the nargins of the page in pixels)
leftftargin • 3D;
rightnargin • 10;

VRR
te,ipport: GrafPtr;
HyPPort: 1PPrPort;
txt: Ptr;
pglen. HyLngth. start, finish. counter. loop: INIEGER;
tenprect,t11prect2,pagerect: Rect;
status: 1PrStatus;
userDX: Boolean;
a: string(l);
atr: Str255;
dlogptr: DialogPtr;

BEGIN
{For heavyweight progrm111ers only. Rll 110des of printing are handled by lfacprint.
only things you have to do are:

iaage each page. using QuiclcDrcrv (or aoaething that uses OuiclcDrcrv);
Do it once for the l'Ulber of copies the user specified in draft 110dc only.

You do not have to wrry vi th:
copies in nonml or high res.
which pages the user chase to print.
tall, wide, etc.

1he

Renenber, these Page Setup dialog is printer specific. It will not always be the
sane, so don't write any code around it.

1he reasan this progran is heavily segnented is that printing nonml or high-res
on line tdtes gobs of 11&1110ry (in this excmple. up to 251C.) You My llininize the
by m'li tting 1 line below and creating a spooled file instead.

One 110re thing. the dialog shown here (press CIIIIIIUmd·pedod to atop) is not the

--

16-25

Prl;w 18

16-26

4 Ja liB2 19: SB: 47

thing to dD. You Ray choose to either:
run your progrm, in the background. This is not necessarily a hard thing to do.
put up a dialog vi th a button so the user Ray press the button to stop. lhen
the printing idle proc only needs to IIDni tor that button.

Printing is not re-entrant. If your 11ain progrm, loop is to be the
print idle proc. disable the Page Setup and Print itens in the File 11enu.)

IF debug 11EN DebuginProc(proc. 'HyPrint',littyPrint);
printflag :• FALSE;
IF debug 11EN

Vriteln(debugger. 'finderprint •',finderprint. '; finderfirst •
finderfirst,lf):

IF lllT finderprint THEN DialogueDeactivate;
userOK : • TRUE;
IF f1nderfirst THEN

BEGIN
SetCursor(arrov);
userOK :• PrJobDialog(printhdl)
END:

IF userOK THEN
BEGIN
SetCursor(vatchHcll--};
s : • ·x·;
s[l) :• chr(Clldsy,ibol); {this is terrible. terrible. terrible. Don't

do it.)
Parmtext(Filenmte, s. • ·• '');
dlogptr :• GetNevDialog(257.NIL.pointer(-l));
DravD1alog(dlogptr);
(for now. approxi11ate a full page)
GetPort(tei,pport);
HyPPort :• PrOpenDoc(printhdl.NIL.NIL);
SetPort(pointer(HyPPort});
TextFont(2);
VITII printhdl··.prinfo DO

BEGIN
Hlock(pointer(printhdl));
pagerect : • rpage;
pagerect.left :• pagerect.left•left11argin:
pagerect.right :• pagerect.right-rightnargin:
pagerect.bott011 :• pagerect.botto11-bottonnargin-(pagerect.bottcn

bott0Margin) HOD hlE ... lineHeight {get rid of
partial line} ;

hIE··.destrect :• pagerect;
lECalText (hlE);
Vlnl hlE .. IJO

EIN
Hlock(pointer(hIE));
Hlock(htext);
txt : • ht ext·;
tenprect :• destrect;
tllprect2 :• vievrect;
pglen : • (rpage.bott0J1-rpage. top-bottmmargin) DIV lineHeight;
finish : • nLines;
IF debug THEN

Vriteln(debugger, 'BJDocLoop • ',printhdl •• .prjob.BJDacl.oop.
lf);

IF printhdl··.prjob.BJDocLoop•BSpoolLoop 11EN
loop:• 1

ELSE
loop : • printhdl ··.pr job. iCopies;

FOR counter : • l TO loop DO
BEGIN
start : • D;
WHILE start<finish IJO

BEGIN
IF finish·start>pglen THEN

Hyl.ngth :• linestarts[start•pglen)·linestarts[start)

--

4 Jim 1882 19:58:47 SIHU/FILt tm

END;

ELSE
Hyl.ngth :• teLength-linestarts[start];

IF debug l1iEN
BEGIN
Vriteln(debugger, 'Hyl.ngth • '.HyLngth: s. ';start• ',

start: 5, '; pglen"' ·.pglen: 5,lf);
Vriteln(debugger, 'finish• ·,finish: 5, '; teLength • ••

teLength: 5, '; ord4(txt) • ·,ord4(txt),lf)
END;

PrDpenPage(HyPPort,NIL);
TextBox(txt, Hyl.ngth, pagerect, D);
PrClosePage(HyPPort);
txt :• pointer(ord4(txt)•HyLngth);
start:• start•pglen
END {While start< finish}

END {For counter : • 1 to l00p}
END {with hlE}

END; {with PrintHdl"".prjob}
PrCloseDoc(HyPPort);
Hunlock(pointer(hlE));
Hunlock(hlE" •• ht ext);
Hunlock(pointer(printhdl));
IF printhdl 00 .prjob.BJD0cl.00p•BSpoolLoop l1iEN

PRPicf'ile(printhdl,NIL,NIL,NIL,stcrtus); {DP1it this for spooled
files.)

SetPort(te,ipport);
hn:··.destrect :"' te,iprect;
hlE"".vievrect :• tftprect2;
'IECalText (hTE);
DisposDialog(dlogptr);
IF NOT finderprint l1iEN SetCursor(m-rov)
END

{SS Edi tttenu)
{--}

PROCEDURE Editttain(theltll!ft: INTEGER; COllftmldkey: Boolean);

COHST
undo • 1;
cut • 3;
kopy • 4; {copy is a Pascal string function}
paste • 5;
clear • 6;
selectRll • 7;
clipboard • 9;

VRR
DeslcRccUp, dunPly: Boolean.;
DScrap: PScrapstuff;
off: Long Int;
ticlcs: Longlnt;
te,q,port: GrafPtr;
box: Rect;
itenhdl, hdl: Handle;
typ,io.tenpstart,tenpend: INI'EGER:
tenpptr: Ptr;
TextScrap: Handle;
TextLength: INIEGER;
Ptr2ScrapLength: -INTEGER;

BEGIN
{Since the Edit RenU does so IIUCh, it has been broken up into a separate procedure.
It does not yet support undo. but does support tutting.. Copying and Pasting between
the Desk Scrap and the TextEdit Scrap.)

DeskRccUp : • FRI.SE;
IF theita<selectRl.l 'DIEN DeslcRccUp : • SystaEdit(thelten-1);

--

16-27

16-28

4 Jim 1982 18:58:47

IF ((thelten IN [undo. cut. kopy]) DR DeskJkcUp) AND (scrapvind<>NIL) lHEN
BEGIN {invalidate clipbom-d}
GetPort(tenpport);
SetPort (scrapvind);
InvalRect(scrapv1nd-. portrect);
SetPort(ta.pport)
END;

IF thelten IN (cut,kopy) THEN
BEGIN
tei,pend :• hTE--.selend;
tenpstm-t :• hl'E-·.selstm-t
END;

IF (thelten>clear) QR NOT DeskRccUp lHEN
BEGIN
IF debug THEN Vri teln(debugger. ·not syste11 edit·, lf);
{ Delay so Renu title vill stay lit a little only if Col'lftand key}
{ equivalent was typed. }
IF coMandlcey THEN

BEGIN
ticks : • tidccount•lD;
REPERI'
UNrIL ticks<•tickcount
END;

(•• see if enough RenOry exists for 110Ve}
CRSE the I ten OF

mdo: ; { no Undo/Z in this exanple }
cut: TECut(hTI:); { Cut/X}
kopy: TECopy(hTE); { Copy/C}
paste:

BEGIN { Paste/V}
DScrap : " InfoScrap;
IF DScrap·.scrapState<>laststate lHEN

BEGIN
laststate : • DScrap-. scrapState;
hdl : • NewHandle(O);
io :• GetScrap(hdl, 'TEXT',off);
IF debug THEN Vriteln(debugger, 'io s ',io);
IF io>O THEN

BEGIN
TextScrap : • pointer(GlobalValue(TEScrpHandle));
SetHandleSize(TextScrap.io);
PtrZScrapLength : • pointer(GlobalRddr(TEScrpLength));
PtrZScrapLength- :• io;
Hlock(hdl);
Hlock(TextScrap);
BlockMove(hdl",TextScrap·,io);
lbllock(hdl);
Hunloclc(TextScrap)
END;

DisposHandle(hdl)
END;

'l'EPaste(hTE);
END;

elem-: lEDelete(hTE); {Clear}
selectRll: 'IESetSelect(0,65535,hTE); { Select Rll/R}
clipbom-d:

ToggleScrap { Shov, Hide Clipbom-d}
END; { of iten case}
IF theiten IN [cut,kopy) lHEN

BEGIN
io :• ZeroScrap;
IF debug THEN Vriteln(debugger, ·zero scrap err •',io,lf);
TextScrap : • pointer(GlobalValue(IEScrpHandle));
TextLength : • GlobalValue(TEScrpl.ength);
Hlock(TextScrap);
io : • PutScrap(TextLength. ·n:xr·. TextScrap·);
IF debug lHEN Vriteln(debugger, 'put scrap err •',io,lf);
llml.ock(TextScrap)

--

4 Jllll 11182 111: S8: 47 SIHU/Fll.E. 1EXr

END;
IF theitn IN (cut, clear, paste] lHEN Vindowllata··. changed : • TRUE;
IF (thelta IN (cut .. clear)) lHEN ScrollText(llWE)
END {not systeedit}

END; { of edi tHain)

{SS Cmlftand)
{--)

PROmtJR£ HyDisable;

VRR
c:cnmter: INIEGER;
DScrap: PScrapstuff;
tappeek: VindollPeek;
stycount: styleitUI.'

{--}
PROCEDURE KillFE(fileite11S,edititeJ1S: edset);

VRR
c:cnmter: INIEGER;

BEGIN
{This guy disables the iteRS in the File and Edi 1 "enus. This approach has a real
disadvantage: If an entire llenU should be disabled at sone given tine, there is
no convenient way to do a DravttenuBar here to disable the i ten in the bar itself.)

IF debug lHEN
BEGIN
DebuginProc(proc, 'KillFE',aKillFE);
Vrite(debugger, 'file:');
FOR counter:• 1 TO 9 DO

IF counter IN fileiteftS lHEN Vrite(debugger,counter: z, ·, ');
Vrite(debugger, '; edit:');
FOR counter : • 1 TO 9 DO

IF counter IN edititeftS lHEN Vrite(debugger,CO\lnter: 2, ·, ');
Vriteln(debugger,lf)
END;

FDR counter:• 1 TD 9 DO
BEGIN
IF counter IN fileitens lHEN

Disableitei.(J!YHenus{FileHenu),counter);
IF counter IN edititeftS lHEN

Disableitn(nyHenus{EditHenu],counter);
END

END;

BEGIN
{lhis part goes through all of the applicable elm.ents of the frontl!Dst vindov, if any
and frcn that decides vhat operations are al.lovable at this tine.}

IF debug THEN DebuglnProc(proc, 'MyDisable',llltyDisable);
FDR counter:• 1 TD 9 DO

BEGIN
Enablelte11(ftY}lenus{FileKenul,counter);
IF COW1ter IN (1,3 .. 7,9) n£N Enableltea(nyKenus(Editlfenu),ccnmter)
END;

IF frontvindov•NIL 11Ei
lillFE((3 .. 8), (1 .. 7))

ELSE
BEGIN
HyPeek : • pointer(frontvindov);
CRSE HyPeelc0

• vindovkind OF
8:

IEGIN
lillFE((J. [1));
IF NOT VindovData··.titled 1IIEN ltil1FE((4,6], I});
IF IIJT VindavData··. changed tHEN lillFE((4, 6),)); --

16-29

16-30

4 J11111882 11:58:47 &IN'LE/Fll.E.1EXT

END;

IF hTE··.teLength•D lHEH Kill.FE([4,S,7,8), [6,7l);
IF hre··.se1start•hTE··.se1end DIEN Kill.FE((]. 3.4.6));
DScrap : • InfoScrap;
IF DScrap·.scrapSize•D DIEN Kill.FE([]. (SJ);
END;

9.10: Kill.FE{(4 .. B]. (1,3 .. 7));
DTHERlllSE

KillFE((4 .. 8). (7)) {sys ten window)
END {Case)
END

{--)
PROCEDURI lloCmvland(COlll'landkey: Boolean);

VRR
nm,e,s,str: Str255;
bstr: string(S];
dulvly: size;
err: Boolean;
IIUl'I, refnun. theHenu. thelten: INTEGER;
tenppeek: VindowPeek;
nresult.ticJcs: Longint;
dipeek: D1alogPeek;
box: Rect;
itenhdl: Handle;
typ: INTE~

BEGIN
{This handles the octions that are initiated through the Henu Manager)
IF debug 1JIEH DebuginProc(proc, 'DcConnand',lllDoConnand);
HyDisable;
IF COlll'landkey 1JIEH

11result :• HenuKey(theCuu-)
ELSE

11result :• HenuSelect(eyEvent.vhere);
theHenu :• HiWord(nresult); theiten :• LoVord(nresult);
CRSE theHenu OF

1: {enough 11e110ry to allow desk accessory to open'?}
BEGIN

2:

{unload all segnents)
IF theiten•l 1JIEH

BEGIN
RboutHyEdi tor;
UnloadSeg(lllAboutHyEditor)
END

ELSE
Getlten(eyHenus(appleHenu].theiten.nane);

refnun :• OpenDesJcllcc(nane)
END;

BEGIN
IF frontvindov<>NIL lHEH

IF HyPeek •. vindovkind•B 11£N
IF VindovData··.titled lHEH

GetVTitle(frcntwindov,str)
ELSE

str : • · ·;
CASE thelten OF

1: DpenAW1ndov; { Nev)
2: ttyGetFile; { Open)
3: CloseRWindov; {Close)
4: err:• VriteFile(D,str); {Save)
5: err:• HyPutFile(str); { Save Rs)
6: IF CautionRlert(257,NIL)•DX 1JIEH err:• ReadFile(D.str): {

Revert to Saved)
7:

--

4 Jim 11182 111: 58: 47 SIN'LE/FILE. TEIT

IF PrStlDialog(printhdl) { Page Setup)
?HEN;

{eventually, store info in docunent resource fork}
8: printflag :• TRUE; {Print}
9: dcneflag :• TRUE; { Ouit}

END;
UnloodSeg(IIReadf'ile);
UnloadSeg(mWriteFile);
UnloadSeg(SHyPrint)
END;

3: Edi tHain(theiten. connandkey);

{SIFC BUG> -1)
100:

CASE theite11 OF
1: ToggleFree;
2: dunriy : • HaxMen(dunl'ly);
{SIFC BUG• 1)
3:

BEGIN
debug : • t«:IT debu~;
Checklten(nyHenus(DebugKenu],J,debug)
END
{SEHDC}

END { of debug}
{SENDC}

END; { of ,senu case }
HiliteHenu(O)

END; { of Doeonnand }

{--}
PROCEDURE DravVindcv;

VIIR
te11pp0rt: Graf Ptr;
te:,spscrap: Handle;
scraplength. off: Long Int;
te,iprect,rectToErase: Rect;
str: Str255;
tm,ppeek: VindavPeek;
llhichvindov: VindcvPtr;
tm,phTE: TEHandle;
tuipdata: ttyDataHandle;

BEGIN
{ Draws the content region of the given windov, after erasing whatever

vas there before.)
IF debug 11tEN DebuglnProc(proc, 'DravVindov',IDravVindov);
llhic:hvindcv : • pointer(nyEvent. lU!ssage);
IF llhichrindcv<>NIL ?HEN (9• vhy is this ._re .. }

BEGIN
BeginUpdate(llhi chrindcv);
GetPort(tenpport);
SetPort(llhic:hvindcv);
te,sppeek : • pointer(vhichvindcv);
CRSE tenppeek •• vindowkind Of

8:
BEGIN
tmsprect :• llhic:hvindcv·.portrect;
tmspdata : • pointer{GetVRefCon(vhichvindov));
tuphTE : • tm,pdata •. l'ERecord;
IF tmsppeek-.hilited n£N tenprect.tcp :• tenprect.bott011-15;
te,iprect.left :• tmsprect.right-15;
Cliprect(te,iprect);
DrawGrovI con(vhi chvindcv);
Cliprect(vhichvindov·.portrect);

--

16-31

~ 24

4 JIID 11182 111: S8: 41 SIHUIFilZ. TEXT

9:

DrawControls(whichrindow);
{this only erases the window past the md of text. if any)
VITH tenphTE". DO

IF nl.ines·topline<(viewrect.bottoft-v1ewrect.top•
lineHeight) DIV lineHeight THEM
BEGIN
rectToErase :• viewrect;
rectToErase.top :c (nL1nes-topline)•lineHeight;
EraseRect(rectToErase)
END;

mJpdate(whichwindow".visRgn··.rgnBBox.tenphTE)
END;

BEGIN
tenpscrap : • Newffandle(O);
scraplength : • GetScrap(tenpscrap. 'TEXT'. off);
EraseRect(whichrindow" -eortrect);
te11prect : • vhichwindow .portrect;
te,iprect.left :• te,rprect.left•4;
te,q,rect.right :• tenprect.right-15;
IF scraplength>O 11IEN

BEGIN
Hlock(tenpscrap);
TextBox(tenpscrap·.scraplen!Jth.tenprect.O);
Hunlock(tenpscrap)
END;

Disposltandle(te,rpscrap);
tenprect :• vtti.chrindow".portrect;
tenprect.left :• te,rprect.right-15;
Cliprect(tenprect);
DrawGrowicon(vhichrindow);
Cliprect(vhichwindow·.portrect)
END;

{SIFC BlXi > -1)
1D:

BEGIN
EraseRect (whi chwindow". portrect);
HoveTo(S, 12);
HakeNunString(FreeHen. str);
DrawString(str)
END;

{SENDC}
END; {E:ase}
SetPort(tenpport);
EndUpda1e(vhichrindow)
END

END; { of DrawVindov)

{SS CDNIROL)
{--)

PROCEDURE ScrollBi ts;

VRR
oldvert: IHIEGER;

BEGIN
{if the visible infona1ion has changed as a because of the scrollbar,
scroll the vindov here.)

IF debug 1HEN DebuginProc(proc. 'ScrollBits'.•ScrollBits);
oldvert : • topline;
topline : • GetCtlValue(vScroll);
TEScroll(D,(oldvert-topline)•h'IE"".lineHeight.hlE)

END;

.{--)
PROCEDURE ScrollUp(theControl: Control.Hmldle; partCode: INIEGER);

--

j

4 Jim 11111:z 111.58:47

BEGIN
£This function is called by TraclcControl in the Up button}
iF debug THEN DebuglnProc(proc. 'ScrollUp'.•ScrollUp);
IF partCode•inUpButton THEN

BEGIN .
SetCtlValue(theCcntrol,GetCtlValue(theControl)-1); {VScroll}
ScrollBits
END

END;

{--}
PRDCEDUR£ Scrollllovn(theControl: ControlHandle; partCode: INIEGER);

BEGIN
{This function is called by TrackCantrol in the Dovn button}
IF debug THEN DebuginProc(proc, 'Scroll.Down',•Scroll.Dovn);
IF partCode•inDovnButton THEN

BEGIN
SetCtlValue(theControl.GetCtlValue(theControl)•l); {VScroll}
ScrollB1ts
END

END;

{--}
PROCEDURE PageScroll(vhich: INIEGER);

VRR
11YPt: Point;
anount: INIEGER;

BEGIN
{This function is called by TraclcControl in the Grey part of the scrollbar}

IF debug THEN DebuglnProc(proc, ·pageScroll",IIPageScroll);
IF vhich•InPageUp THEN

anount : • -1
ELSE

GROUnt : • 1;
REPERr

GetHouse(11YPt);
IF TestControl(vScroll.11YPt)•which THEN

BEGIN
Vint hTE"".viewrect DO

SetCtlValue(vScroll.GetCtlValue(vScroll)•anount•(botton
top) DIV hTE"". lineHeight);

ScrollBits
END

IIMTIL Im StillDovn;
END;

{--}
PRDCEIJURE lfyControls;

VRR
t. code, llhichpart: INTEGER:
RControl: ControlHandle;

BEGIN {cantrols}
{This routine handles the scrollbar}
IF debug THEN DebuglnProc(proc, 'ltyCantrola •• llfyCantrols);
llhichpart : • FindControl(11YPoint. HyVindaw, R:ontrol);
IF debug THEN Vriteln(debugger. 'llhichpart • ',llhic:hpart.lf);
IF debug THEN Vriteln(debugger. ·ord(11:ontrol • ·.ord4(11Control).lf);
{adjust Rrollbar range}
IF JEontrol<>NlL THEN

--..-

16-33

16-34

4 J1111 1982 11: 98: 47 !llll'll:IFJ~t.ttrr

BEGIN
vScroll :• JIControl;
CRSE vhichpm-t OF

inUpButton: t :• TrockControl(vScroll.RyPoint.llScrollUp);
inDownButton: t :• TrackControl(vScroll.RyPoint.llScrollDovn);
InPageUp: PageScroll(vhichpm-t);
inPageDovn: PageScroll(vhichport);
inThUl'lb:

BEGIN
t :• TrackControl(vScroll.RyPoint.NlL);
ScrollB1ts
END

END {Cose HyControl}
END (RControl <> NIL)

END; {controls)

{SS Initial)
{--)

PROCEDURE SetUp;

VAR
counter.vRefNUJ'l,nunfiles: INIEGER;
DScrop: PScrapstuff;
hdl. hRppparns: Handle:
off: Longlnt;
opNm,e: Str2SS;
Nm,eHdl: Handle;
strhdl: StringHondle;
dunnyrect: Rect;
tenpptr: pRppParns;
dum,y; Boolean:

BEGIN
{Initialization for o vcn-iety of things is done here. This code is 'discorded'
ofter it is executed by an UnLoadSeg.)

{SIFC BUG• 1)
debug : " TRUE; {if you wont debugging on as soon os the progrcm stcn-ts.

set it here)
lf : • chr(lO);
Revri te(debugger, ·. BOlTJ"); {the serial port not used for downloading frOl'I

Lisa}
{SEHDC)
IF debug lHEN

BEGIN
Vriteln(debugger.lf.lf);
DebuginProc(proc. 'SetUp· • .setUp)
END;

Jni tGrof (athePort);
Jni tVindovs;
lnitFonts;
FlushEvents(everyEvent,D);
fflnit;
lnitDialogs(HIL);
NmieHdl : • NevHandle(lOOOOOD); {force KeltMgr to allocate all 'grov' to

GFJ>.)
DisposHandle(NCll'leffdl);
er!nthdl :• pointer(Nevffandle(120));
PrOpen;
PrintDefaw. t(printhdl);
getRppPan,s(apNm,e. vReflbl. hRppporftS);

(•• scmeti11e, get file info for apNm,e. to use folder info as appropriate)
tenpptr :• pointer(hRppporu·);
iBeCll'IHdl : • pointer(GetCursor(l));
watchHdl : • pointer~GetCursor(II));
nullfiles :• tenpptr .count;
IF debug ?HEN Vriteln(debugger. 'nullfiles•'.l'IUllfiles.lf);
finderprint :• (turpptr·.11essage•l);

--

.... 27

4 , .. la12 11:58:4?

IF finderprint l1IEN
BEGIN

{put SOMthing weaningful an 111enu bar; use TextBox to say the ap nane perhaps?}
Hlock(hRpppan1S);
FDR counter:• 1 TO nul'lfiles DD

VITif te11pptr· DO
BEGIN
IF fTYPE= 'lEXT. l1IEN

BEGIN
SetRect(dulv,yrect,D,0,100.100);
hIE :• tENev(dunnyrect,dunnyrect);
dulmy : • Recadf'ile(vRefNun. fNcme); {assune that page setup is

read in as vell}
UnloadSeg(IIReadFile);
IF counter•l ntEN

HyPrint(TRUE,fNane)
ELSE

HyPrint(FRLSE,fNane);
1EDispose(hlE); {dispose of text edit stuff)
te,ipptr :• pointer(ord4(tenpptr)•length(fNane)•

1D·length(fNane) HOD 2)
EHD
{ELSE clear the proper bytes in the appParns handle?)

EHD;
Hunlock(hRpppanlS);
hlE : • NIL;
doneFlag : • TRUE;
EHD

ELSE
BEGIN
lni ttfenus; { initialize Henu tfanager }
ayHenus[appleHenul :• GetHenu(~pleHenu);
ayHenus[appleHenu ··.ftenudata[l :• chr(Rpplesyribol);
RddResHenu(l'l)'Henus(l), ·oRVR.); desk accessories)
FDR counter : • FileHenu TO Edi tHenu DD

111Henus[counter] : • GetHcnu(counter);
{SIFC BlAi > -1}
111Henus[DebugHenu] : • GetHenu(lOD); { teriporary debug 11enu }
{SENDC)
{SIFC Itri• 1}
extdebughdl :• GetString(261);
Hlock(pointer(extdebughdl));
ftppendHenu(IIJHenus[DebugNenu). extdebughdl • ·);
Hunlock(pointer(extdebughdl));
ReleaseResource(pointer(extdebughdl));
Checkitea(aytfenm (Debugtfanu). 3, debug);
{SENDC}
FOR counter : • 1 TO lastHenu DO lnsertKenu(11Ylfenus[COISlter), D);
DrCNtfenuBar;
dragRect :• acreenbits.bounds;
dragRect. top : • dragRect. top+20; {leave r0011 for MnU bar}
grovRect : • dragRect;
insetrect(dragRect,4,4); {leave SDIU! of dragged rectangle on screen}
grovRect. left : • {replace this vi th the 11CE1C font vidth • constant} 80;
growRect.top :• 80 {18 • 16·3 •slop?);
cloneFlag :• FALSE;
printflag :• FALSE;
windcnmuft :• 1;
windovpos : • O;
tJpelistptr :• llfyFileTypes;
typelistptr·[o) :• 'lEXT·;
txtfile. fdtype : • '1EXI ·;
txtfile.fcCreator :• 'CARY';
SetPt(txtfile. fdl.ocatian. D, D);
txtfile.fdFlags :• D;
txtfile.fdFldr :• D;
lmtstate :• O; {eventually, init laststate to scrapstate - 17)
Hlock(hAppparllS);

--

16-35

16-36

4 Jim 19112 19:58:47 SIH'LEIFIL.C. 1EXT

END;

FOR counter : • 1 TO nunfiles DO
Villi tenpptr· DO

BEGIN
IF fTYPE= '?EXT' 11iEN

BEGIN
HakeRVindov(fNane,TRUE); r·could async open while this is

going on}
IF counter<nunfiles 11iEN DialogueDeactivote;
IF NOT ReadFile(vRe!Nun,fNm,e) 11iEN

BEGIN
{if nothing vas read, then
dispose of the vindov, TEdota, etc, depending on hov far we got}

END;
te,ipptr :• pointer(ord4(tenpptr)•length(fNm,e)+

lO·length(fNane) HOD 2)
END

END;
Hunlock (hRppparns);
IF frontv1nclov•NIL THEN

BEGIN
DpenRWinclow;
END;

{if sonething "IEXI'' is in deskscrap then allow paste)
DScrap : • InfoScrap;
laststate : • DScrap". scrapState;
IF DScrap".scrapSize>D THEN laststate :• laststate·l;
{what about when scrapsize is too big?}
scrapvind :• NIL;
{SIFC BUG> -1)
Free\hnd : " NIL
{SENDC}
END

{ of SetUp)

{SS }
{--}

PROCEDURE HainEventLoap;

VRR
code: INTEGER; {the type of RDUSedovn event}
dumy: Boolean;
str: Str255;

BEGIN
{This event loop handles 11e>st of the COIIIIUnicatians betveen this progrm, and events
taking place in the outside world. 1his procedure could also be called as the printer
idle procedure so that the progrm, appears to be doing background printing.}

IF debug THEN DebuglnProc(proc, 'HainEventLoop',IIIHainEventLoap);
REPEAT

CursorRdjust;
SystMTaslc;
IF printflag 11IEN

BEGIN {unload the wrld)
UnloadSeg(IICursorRdjust);
UnloadSeg(IIReadf'ile);
UnloadSeg(&VriteFile);
UnloadSeg(IIIRboutHyEditor);
UnloadSeg(SHyDisable);
UnloadSeg(mScrollBits); (••• segnenting badly out of date)
GetVTitle(HyVindov,str);
HyPrint(TRUE,str)
END;

dumy :• GetNextEvent(everyEvent,RyEvent);
CRSE RyEvent. what OF I

11e>useDovn:
BEGIN
code:• FindVindov(l'l)'Event.'llhere,tenpvindov);

--

4 J\1111982 19:58:47 Sllf'IZ/FIU. nx?

CRSE code OF
inHenuBar: Daemmand(FID.SE);
inSysVindov: InSystenVindov;
inDrag: DragVindov(tenpvindov,,iyEvent.'llhere,dragRect);
inGoRvay:

IF TrackGoRvay(teripvindov,ftyEvent.vhere) ntEN
CloseRVindov;

inGrov:
IF HyPeek".vindovkind IN [8.9) THEN

BEGIN
GrovVnd;
UnloadSeg(IIGrowVnd)
END;

inContent:
BEGIN
IF teripvindov<>frontvindov THEN

SelectVindov(tenpvindov)
ELSE IF hlE<>NlL THEN

BEGIN
JIYPoint :• JIYEvent.'llhere;
GlobalToLocal(nyPoint);
IF PtlnRect(,iyP01nt.hlE 00 .viewrect) ntEN

BEGIN
IF debug THEN

Vriteln(debugger, 'point in m vievrect',lf);
IF (BitRnd(,iyEvent.110difiers.Sl2)<>0) (Shift key

pressed)
THEN
lEClick(nyPoint,'llUJE,hIE)

ELSE ·
TEClick(nyPoint,FAl.SE,hlE)

END
ELSE

HyControls
END (hlE <> NIL)

END (in Content)
END (of code case)
END; { of 110useDovn)

keyDovn.autoKey:
BEGIN
theChar : • chr(,iyEvent.11essage HOD 256);
IF BitRnd(,iyEvent.110difiers,256)<>0 { Cminand key pressed)

THEN
Doeo,inand(11WE)

ELSE IF hlE<>NIL IHEN
BEGIN
1EXey(theChar.hlE);
VindovData· •. changed : • 1RUE;
ScrollText(TRllE)
END

END; { of keyDovn)

acti vateEvt:
BEGIN
ttyRctivate;
UnloodSeg(attyRctivate)
END;

updateEvt: DrawVindov;
nullEvent: IF doneflag AND (frantvindow<>NIL) 1HEN CloseRV1ndov

END; (of event case}
1JNTIL doneflag AND (frontvindDv•NIL);

END;

--

16-37

16-38

4 Jia 11182 11:58:47

BEGIN { Rain progrm}
{Please don't look at this progrm as the the last vord in exanple progrmaung, and
be very cautious about porting sone portion of this progrm, over to your Olin code.}

SetUp;
UnloadSeg(mSetUp);
JF NOT f 1nderprint THEN HainEventLocp;
SetCursor(vatchHdl • •);
PrClose

END.

--

Page 31

4 Jim 11182 20: 07: 48 SINU/GIDI. n:rr

{SX-}
PRDGRRH Grov;

{ Grov -- Scroll bars and a resizcd>le vindov added to Edit }
{ by Cary Clark, Macintosh Technical Support)

USES {SU-}

{

SU Obj/OuickDraw
SU Obj/DSintf
SU Dbj/Toollntf

CONST

} Oui cJcDraw,
) OSlntf,

} Toollntf;

lastHenu • J; { nul'lber of Renus}
appleHenu • 1; { 11enu ID for desk accessory 11em1)
fileHenu • 256; { 11eru1 ID for File Renu}
editHenu • 257; { au:nu ID for Edit Renu)

VAR
111Henus: RRRRY [1 .. lastHenu) OF' HenuHandle;
grovRect,dragRect,pRect,tRect: Rect;
daneFlag. tap: BOOu:RN;
111Event: EventRecord;
code, refNun, HyControl. t: INIEGER,;
vRecord: VindovRecord;
theVindov,vhichVindov: Vindo'IIPtr;
theHenu. theitu: INTEGER;
theOtar: CIAR;
ticks: Longlnt;
hlE: lEHandle;
l!Curs: CursHandle;
iBet111: Cursor;
hScroll,vScroll,vhichControl: ControlHandle;
1heDrigin: point;

PR0CEDURE SetUpHenus;
{ Dnce-cnly in:i tializatian for MnUS)

\IRR
i: INIEGER;
appleiitle: SIRill.[1);

BEGIN
lnitHenus; { initialize Menu Manager }
appleTitle :• ' '; appleTitle[l) :• 01R(2D);
IIYffenus{l) : • Nntfenu(applettenu. appleTitle);
RddResHenu(111Henus(l), 'DRVR'); { desk accessories) ll)'Henus(2j :• GetHenu(fileHenu);
RYtfenus 3 : • GetHenu(editHenu);
FOR i : • 1 TO lastHenu DD InsertMenu(,sytferaJs[i), D);
DravtfenuBar;

END; { of SetUpHenus)

PROCEDURE CursorRdjust;
{ Hakes cursor be I-bet111 inside the (active) application window's)
{ cantent region (except for size box and scroll bar areas).)

VRR
IIOUSePt: point;

BEGIN
GetHouse(ROUSePt);
IF theVindov•FrontVindov DIEN

BEGIN
IF (PtinRect (musePt, pRect)) DIEN

SetCursor(iBems)
ELSE

SetCursor(arrov);
END; -~

16-39

16-40

4 J1111 11112 :zo: m: 4B Sllf'Lt/GIDI, TEXr

END;

PRDCEDURE DoCmvlmld(IIResul t: Lang Int);

VRR
na11e: S'IR2SS;

BEGIN
theHenu : • HiVord(l'IResul t); thelten : • LoVord(l'IResul t);
CRSE theKenu OF

appleKenu:
BEGIN
Getiten(nyHenus[l], theit1111. nmse);
refNun :• DpenDeskftcc(nmie);
END;

fileHenu: danef'lag : • lRUE; { Quit }

editHenu:
BEGIN
If NOT SysteriE:dit(theita-1) 1l£N

BEGIN
SetPort(theVindov);
ClipRect (pRect);

{ Delay so ftenu title will stay lit a little while if Cannand key}
{ equivalent vas typed. }
ticks : • tickCo\mt•30;
REPERT .
UNTIL ticlcs<•TickCount;

CRSE theltu OF

1: 1ECut(hTE);

2: TECopy(hTE);

3: tEPaste(hTE);

END; { of i tu case }
END;

END; { of edi tHenu }

END; { of ftenu case }
Hili teHenu(D);

END; { of DaCmllland }

. PRDCEDIJRE MDveScrollBars;

BEGIN
VJ1H theVindDv •. portRect DD

BEGIN
HideControlivScroll);
NoveControl vScroll,right-15,top-1);
SizeCcntrol vScroll.16,bottma-top-13);
Sho'IIIControl{vScroll);

END;

Hi deControl (hScroll);
NoveControl(hScroll.left·l.bott011-lS);
SizeControl(hScroll,right·left-13,16);
ShovControl(hScroll)
END

PROCEDURE ResizePRect;

BEGIN --

4 Jia lJ82 20: D'7: 48

pRect :• thePort·.portRect;
pRect.left :• pRect.left•4; pRect.right :• pRect.right-15;
pRect.bott011 : • pRect. bottms-15

END;

PROCEDURE GrcnNnd(wh:ichVindov: VindovPtr);
{ Handles growing and sizing the vindov and Ranipulating}
{ the update region. }

VJiR
longResul t: Long! nt:
height,vidth: INTEGER;
tRect: Rect;

BEGIN
longResul t : • GrovVindov(..tuchVindov, 11yEvent. where, grovRect);
IF longResul t•D 11£N EXIT(GrovVnd);
height : • Hi\lord(longResult); width : • LoVord(longResult);

{ Rdd the old "scroll bar areo" to the update rer· en so it vill }
{ be redrawn (for when the vindov is enlarged).
tRect :• ..tuchVindov".portRect; tRect.left :• tRect.right-16;
InvalRect(tRect);
tRect : • vhichVindov". portRect; tRect. top : • tRect. bott011-l6;
InvalRect(tRect);

{ Nov drav the newly sized vindov. }
SizeVindov(..tuch\lindov. width. height, TRUE);
NoveScrollBars;
ResizePRect;

{ Adjust the viev rectangle for TextEdlt. }
hTE" .vievRect :• pRect;

{ Rdd the new "scroll bar areo" to the update region so it vill}
{ be redravn (for when the vindov is Rade snaller). }
tRect :• ..tuchVindov".portRect; tRect.left :• tRect.right-16;
InvalRect(tRect);
tRect : • whichV1ndov·. portRect; tRect. top : • tRect. bott011-l6;
lnvalRect(tRect);

END; { of GrovVnd }

PRDCEIJURE DrcnNindov(wchVindov: VindowPtr);
{ Draws the content region Df the given vindov, after erasing llhatever }
{ was there before.)

VRR
i: INIECER;

BEGIN
CipRect(wh:ichVindov·. portRect);
EraseRect(whichVindov·. portRect);
DravGrovicon(whichVindov);
DravControls(whichVindov);
1EUpdate(pRect,h1E)

END; { of DrcnNindov}

PROCEDURE ScrollBi ts;

VRR
ol«Jrigin: point;
cl\. dv: INTEGER;

BEGIN
Vint theVindov" DO

BEGIN
olcl>rigin : • 1he0rigin;
1he0rigin.h : • t•GetCtlValue(hScroll);

--

16-41

16-42

4 JIIII 1982 :ZO: 07: 48

theDrigin.v :• 4•GetCtlValue(vScroll);
dh : • oldOrigin. h-lbeDrigin. h,;

END;

dv : • oldOrigin. v-lbeDrigin. v;
'IEScroll(dh. dv, hTE)
END

PROCEDURE ScrollUp(vhichControl: ControlHandle; theCode: INTEGER);

BEGIN
IF theCodecinUpButton 1HEN

BEGIN
SetCtlValue(vhichControl.GetCtlValue(vhic:hControl)-1);
ScrollBits
END

END;

PROCEDURE Scrollllown(whi chControl: ControlHandle; theCode: INTEGER);

BEGIN
IF theCode•inDownButton 11IEN

BEGIN
SetCtlVal.ue(vhic:hControl,GetCtlVal.ue(vhichCon1rol)•l);
ScrollBits
END

END;

PROCEDURE PageScr0ll(code,m10unt: INTEGER);

VAR
11YPt: point;

BEGIN
REPERI'

GetHouse(11YPt);
IF TestCantrol(whichCantrol,11YPt)•code 1HEN

BEGIN
SetCtlVal.ue(whichControl,GetCtlVal.ue('llhichCantrol)•DNNnt);
ScrollBits
END

UKI'IL tll'r Stillllovn;
END;

BEGIN { ,min progrm. }
InitGraf(DthePort);
InitFonts;
FlushEvents(everyEvent.D);
Ini tVindows;
SetUpHenus;
TEinit;
lnitDial.ogs(NIL);
SetCursor(arrow);
SetRect(dragRect.4,24,508.338);
SetRect(grovRect.lD0,60,512,3D2);
danef'lag : • FRLSE;

theVindov : • GetNewVindow(256, llvRecord. POINIER(-1));
SetPort(theVindov);
theVindow". txFont : • 2;

ResizePRect;
hTE :• lENev(pRect.pRect);
hCurs : • POIHIER(DRD(GetCursor(256))); iBean : • hCurs .. ;

vScroll :• GetNe11Control(256,theVindow);
hScroll : • GetNellControl(257, theVindov);
lbeDrigin. h : • D; theDri;in. v : • D;

--

Pap 4

4 JYD 118:z 20: 07: 48

REPERI'
Cu:rsorRdjust;
Systenl'ask;
1Eldle(h1E);
tel'IP :c GetNextEvent(everyEvent,11YEvent);
CRSE ftYEvent.vhat OF

ROUSeDovn:
BEGIN
code : • Find\lindow(ftYEvent. where. vhichVindow);
CASE code Of

inltenuBar: DoCoaand(HenuSelec:t(11YEvent.vhere));

inSysVindow: SystellClick(ftYEvent,vhichVindov);

inDrag: DragVindov(vhichVindov, 11YEvent. where, dragRect);

inioRvay:
IF Trac:lcGoRvay(vhichVindov,,iyEvent.vhere) THEN

doneFlag : • TRUE;

inGrov:
IF vhichVindov•FrontVindov 1HEN

GrovVnd(vhichVindov)
ELSE

SelectVindov(vhichVindov);

inContent:
BEGIN
IF vhichVindov<>FrontVindov THEN

SelectVindov(vhichVindov)
ELSE

BEGIN {front)
GlohalTaLocal(11YEvent.vhere);
IF PtlnRect(RYEvent.vhere,pRect) THEN

IF BitRnd(ftYEvent.110difiers,512)<>D { Shift key pressed
)

THEN
1EClick(ftYEvent.vhere,TRUE,h1E)

ELSE
TEClick(,iyEvent.vhere,FR1.SE,h1E)

ELSE
BEGIN {controls)
lfyControl : • Fincl:ontrol(ftYEvent. where, vhichVindov,

vhichCcntrol);
CRSE HyControl OF

inlJpButton:
t :• Trm:kControl(vhichControl,ftYEvent.vhere,

a5crollUp);
inDovnButton:

t : • TrackControl(vhichControl, ftYEvent. where,
a5crol1Dow);

inPageUP: PageScroll(HyControl, -1D);
inPageDow: PageScroll(HyCantrol,lD);
inlbunb:

BEGIN
t :• TrackControl(vhichControl,ftYEvent.where,

NIL);
ScrollBits
END

END {Case ttyControl}
END {controls)

END {front)
END {in Content)

END { of code case)
END; { of NNSeDolft'l)

--

16-43

16-44

4 J1111 1182 ZJ: 117: 48

keyDovn. autaKey:
BEGIN
IF theVindov•FrontVindov DEi

BEGIN
theChar : • CHR("YEvent.Mssage HDD 256);
IF BitRnd(1"1YEvent.111:1difiers,256)<>D { Connand key pressed)

DEi
DoCannand(HenuKey(theOiar))

ELSE
TEKey(theChar,hl'E)

END
END; { of keyDovn)

activateEvt:
BEGIN
DrCIIIGrovlcan(theVindov);.
IF DDD(1"1YEvent.111:1difiers) DEi { window is beconing active)

BEGIN
TERctivate(htE);
ShowControl(vScroll);
ShovControl(hScroll)
END .

ELSE
BEGIN
1EDeactivate(hl'E);
HideControl(vScroll);
Hidetontrol(hScroll)
END

END; { of activateEvt)

updateEvt:
BEGIN
Begintlpdat e (the\lindow);
DrcnNindow(theVindow);
EndUpdate(theVindov)
END { of updateEvt)

END { of event case)

UNI'IL doneFlag
END.

--

4 Jim 11182 2D: D'7: 30

SEXEC
Psanple/soundlab

GSM•
sanple/solmdlab

Lsanple/soundlab
obj/quiclcDrav
abjnoolTraps
abj/OSTraps
abj/llGCpGSlib

sanple/soundlabl.

RRHaker
sanple/soundlabR

RSendone
Hac/soundlab.RSRCaSound Lab.rsrc

Fdsanple/soundlab. OBJ
Ydsm,ple/soundlab. i
Ydsm,ple/soundlabl.. obj
YO
SENDEXEC

16-45

--

MACINTOSH PUBLICATIONS

MACINTOSH CONTROL MANAGER
PROGRAMMER'S GUIDE

See also: Macintosh User Interface Guidelines
Macintosh Operating System Reference Manual
QuickDraw: A Programmer's Guide
The Window Manager: A Programmer's Guide
The Resource Manager: A Programmer's Guide

TOOLBOX/CONTROLS

The Event Manager: A Programmer's Guide (***Tobe written***)

Modification History: First Draft c. Espinosa 8/13/82
Interim release (inaccurate) C. Espinosa 9/ 7/82
Second Draft s. Chernicoff 3/16/83

ABSTRACT

Controls are special objects on the Macintosh screen with which the
user, using the mouse, can manipulate information or control the way it
is displayed. The Macintosh Control Manager is a subroutine package,
part of the User Interface Toolbox, that enables application programs
to create and manipulate controls in a way that is consistent with the
User Interface Guidelines. This document describes the program
interface to version 2.1 of the Control Manager.

Summary of significant changes and additions since last version:

- Control definition functions are now treated as resources and
accessed through the Resource Manager.

- Control types are now identified with a control definition ID,
which includes both the resource ID of the definition function and
a 4-bit variation code. The variation code allows the same
definition functioii"to implement several related control types as
"variations on a theme". Built-in constants are provided for the
definition IDs of the standard control types.

- Templates for individual controls can be accessed as resources
with the new function GetNewControl.

- The contrlHilite field of a control record is now a one-byte .E!!:l
code specifying the part of the control that is highlighted. A
code of 255 marks the control as inactive; it is displayed on the
screen in some distinctive way and will not respond to the mouse.

2 Macintosh Control Manager Programmer's Guide

TABLE OF CONTENTS

xx About This Manual
xx About the Control Manager
xx Controls and Windows
xx Controls ·and Resources
xx Part Codes
xx Control Records
xx Control Handles
xx The ControlRecord Data Type
xx Using the Control Manager
xx Control Manager Routines
xx Initialization and Allocation
xx Control Display
xx Mouse Location
xx Control Movement and Sizing
xx Setting and Range of a Control
xx Miscellaneous Utilities
xx Format of a Control Template
xx Defining Your Own Controls
xx Format of a Control Definition Function
xx The Draw Routine
xx The Test Routine
xx The Routine to Calculate Regions
xx The Initialize Routine
xx The Dispose Routine
xx The Position Routine
xx The Thumb Routine
xx The Drag Routine
xx Notes for Assembly-Language Programmers
xx Summary of the Control Manager
xx Glossary

- Control records have an, additional field, contrlAction, containing
a default action procedure for use by TrackControl. There are two
new Control Manager routines, SetCtlAction and GetCtlAction, for
accessing this field.

- The contrlTitle field has been moved to the end of the control
record and is now a variable-length string instead of a pointer.
Title strings of three characters or fewer are no longer handled
specially.

- The FindWindow function is now in the Yindow ~.anager; FindWindow
in the Control Manager has been replaced by FindControl.

- Controls are kept in a separate linked list for each window, not a
single list for the entire system.

- Dragging of a control's indicator with the mouse is now handled by
TrackControl instead of DragControl.

- DragControl now takes an additional parameter, alopRect, to allow
some "slop" in the user's mouse movements.

- SetCtlMin and SetCtlMax now do range checking against the
control's current setting and "pin" the setting, if necessary, to
the new endpoint of the range.

- There are two new control messages: thumbCntl, to calculate the
constraint parameters for dragging the indicator, and dragCntl, to
perfom custom dragging.

- The control message calcCRgns requests the indicator region
instead of the whole control's region if the high bit of the
parameter is set.

- The part codes used by the standard control definition functions
have been modified and somewhat expanded; part codes> 127 (high
bit on) now denote moving indicators.

ABOUT THIS MANUAL l

ABOUT THIS MANUAL

This manual describes version 2.1 of the Macintosh Control Manager.
*** It will eventually become a chapter in the Macintosh User Interface
Toolbox Programmer's Guide. *** The Control Manager is the part of the
Toolbox that deals with controls, as defined in the Macintosh User
Interface Guidelines. Using it, your programs can create, manipulate,
and dispose of controls in a way that is consistent with the
Guidelines.

(eye)
This document applies specifically to the version of the
Control Manager in version 2.1 of the Macintosh ROM.
Earlier versions will not work exactly as described here.

Like all Toolbox documentation, this document assumes you are familiar
with the Macintosh User Interface Guidelines (particularly the section
on controls), the Lisa Pascal programming language and system, and the
memory management mechanism of the Macintosh Operating System. To
understand and use the information presented here, you should also be
familiar with:

- The basic principles of the QuickDraw graphics package,
particularly rectangles, regions, and grafPorts. (You don't need
a detailed knowledge of QuickDraw, since programs that implement
controls through the Control Manager need not interface directly
with QuicltDraw.)

- The Window Manager. Every control you create with the Control
Manager "belongs" to some window. The Window Manager and Control
Manager are designed to be used together, and their structure and
operation are parallel in many ways.

- The Event Manager. The essence of a control is to respond to the
user-a actions with the mouse. Your program finds out about those
actions (such as when and where the user pressed the mouse button)
by calling the Event Manager; it can then call various Control
Manager routines to find out whether the button was pressed inside
a control and, if so, to respond in whatever way is appropriate.

- The basics of the Resource Mananer. You'll need this only if
you're defining your own "custom" controls or using predefined
templates for individual controls. If you use only controls of
the standard types and don-t create them from templates, you won't
need to know any details about resources; the Control Manager
itself will handle all dealings with the Resource Manager for you.

lt would also be helpful to have some familiarity with a Macintosh
application program that uses controls, as an illustration of the
concepts presented here.

The manual begins with an introduction to the Control Manager and what
you can do with it. lt then discusses some basic concepts about

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS.2

4 Macintosh Control Manager Programmer's Guide

controls: the relationship between controls and windows; that between
controls and resources; and how the various parts of a control are
identified. Following this is a discussion of control records. where
the Contro~ Manager keeps all the information it needs about a control.

Next. a section on using the Control Manager introduces its routines
and tells how they fit into the flow of your application program. This
is followed by detailed descriptions of all Control Manager procedures
and functions, their parameters. calling protocol. effects, side
effects, and so on.

Following these descriptions are sections that will not be of interest
to all readers. Special information is given for programmers who want
to define their own controls and for those who will use the Control
Manager routines from assembly language.

Finally, there are a summary of the Control Manager data structures and
routines, for quick reference, and a glossary of terms used in this
manual.

ABOUT THE CONTROL MANAGER

The Control Manager is the part of the Macintosh User Interface Toolbox
that deals with controls. A control is a special object on the
Macintosh screen with which the user, using the mouse, can manipulate
information or control the way it is presented. Using the Control
Manager, your application program can:

- Create and dispose of controls;

- Display or hide controls on the screen;

- Change the size, position, or appearance of a control;

- Read or change the setting or other properties of a control; and

- Honitor the user's operation of a control with the mouse and
respond accordingly.

Your program performs these actions by calling the appropriate Control
Manager routines. The Control Manager carries out the actual
operations, but it's up to your program to decide when, where, and how.

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS.2

ABOUT THE CONTROL MANAGER 5

(B11tton 1)
(liutton 1.)

lBJ Check 1:c,:c J
OCheck I:o:c J

D Radio 1:utton 1

111 R41!io liUttC•fl l f¢LILQ·~:-j~'fil::'~'hJ¢)
D Radio llu t ton ~

Figure l. Controls

Controls may be of various types (see Figure 1), each with its own
characteristic appearance on the screen and responses to the mouse.
Each individual control has its own specific properties-such as a
title, setting, location, and size--but controls of the same type
behave in the same general way.

Certain standard types of control are predefined for you by the
toolbox. Your program can easily create and use controls of these
standard types; you can also define your own "custom" control types for
your program's special needs. Among the standard control types are the
following:

- Buttons cause an immediate or continuous action when clicked or
pressed with the mouse. They appear on the screen as
rounded-corner rectangles with a title centered inside.

- Check boxes retain and display a setting, either checked (on) or
unchecked (off); clicking with the mouse reverses the setting. On
the screen, a check box appears as a small square with a title
alongside it; the box is either filled in with an "X" (checked) or
empty (unchecked). Check boxes are frequently used to control or
modify some future action, instead of causing an immediate action
of their own.

- Radio buttons also retain an on-or-off setting. They're organized
into groups, with the property that only one button in the group
can be on at a time: clicking any button on turns off all the
others in the group, like the buttons on a car radio. lladio
buttons are used to offer the user a "multiple choice" among

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS.2

6 Macintosh Control Manager Programmer's Guide

several alternatives. On the screen. they look just like check
boxes. except that the button that's on is marked with a round.
black dot instead of an "X".

(hand)

(hand)

The Control Manager doesn't know which radio buttons are
"connected", and doesn't automatically turn one off when
the user clicks another one on: it's up to your program
to handle this.

It's a good idea to group radio buttons visually on the
screen to make it clear to the user which ones are
related. Each such group should be clearly labeled
"Choose one of the following". or something similar.

Another important category of controls are dials. These display a
quantitative setting or value, typically in some pseudoanalog form such
as the position of a sliding switch, the reading on a thermometer
scale, or the angle of a needle on a gauge; the setting may be
displayed digitally as well. The moving part of the control that
displays the current setting is called the indicator. A dial may allow
the user to change its setting by dragging the indicator with the
mouse, or it may simply display a value not under the user's direct
control, such as the amount of free space remaining on a disk.

The Toolbox predefines one type of dial for you: the scroll bars of
the standard document window, which represent the visible portion of
the document by the vertical or horizontal position of the scroll bar's
thumb within its shaft. A scroll bar has five parts. as shown in
Figure 2: the up and down arrows scroll the window's contents a line
at a time. the two paging regions scroll a "page" (windowful) at a
time, and the thumb can be dragged to any desired position within the
document. You can define other types of dial for yourself if your
program needs them.

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS.2

(hand)

(hand)

ABOUT THE CONTROL MANAGER 7

Up arrow---------

Figure 2. Parts of a Scroll Bar

The teruis "up'' and "down" are used even when referring to
horizontal scroll bars. In this case, "up" really means
"left" and "down" means "right".

Although they behave like controls, a document window's
close box and size box are not actually implemented as
controls, because the Window Manager can handle them with
greater efficiency and flexibility than the Control
Manager.

A control may be visible or invisible. As with windows, these teruis
refer only to whether the control is drawn within its own plane. A
control may be "visible" and still not appear on the screen, because it
is partially or completely obscured by overlapping windows or other
objects. Conversely, an invisible control never appears on the screen,
even if it's completely exposed to view on the desk top.

A visible control may or may not be highlighted. A highlighted control
is displayed in some distinctive visual way, depending on its type (see
Figure 3). A common way of highlighting a control is to invert it
(change white to black and vice versa), but some control types may use
other foruis of highlighting, such as shading the control in gray or
making its outline heavier. It's also possible for just a part of a
control to be highlighted: for example, when the user presses the
mouse button inside the up or down arrow of a scroll bar, the arrow
(not the whole scroll bar) becomes highlighted until the button is
released.

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS.2

8 Macintosh Control Manager Programmer's Guide

•i•idi•
B CJiecJ: B•JX 1

C P.edil"J Button 1

Figure 3. Highlighted Controls

A control can also be active or inactive. Active controls respond to
the user's actions with the mouse; inactive controls don't. An
inactive control remains visible. but is highlighted in some special
way. depending on its control type (see Figure 4). For example. an
inactive button. check box. or radio button is "dimmed" with light gray
shading; an inactive scroll bar has no thumb.

"

D Chtd: £u;: 1

El P.edio Butt.on 1

Figure 4. Inactive Controls

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS.2

ABOUT THE CONTROL MANAGER 9

CONTROLS AND WINDOWS

Every control "belongs" to a particular window. When displayed, the
control appears within that window's content region; when manipulated
with the mouse, it acts on the contents of that window. All
coordinates pertaining to the control (such as those describing its
location) are expressed in its window's local coordinate system.

(eye)
In order for the Control Manager to draw a control
properly, the control's window must have the top left
corner of its boundary rectangle aligned at coordinates
(0,0). If your program changes a window's local
coordinate system for any reason, be sure to realign its
top left corner at (0,0) before drawing any of its
controls. Since almost all of the Control Manager
routines can (at least potentially) redraw a control, the
safest policy is simply to realign the window's top left
corner at (0,0) before calling any Control Manager
routine.

CONTROLS AND RESOURCES

Each control type has a control definition function that determines how
controls of that type look and behave. The control definition function
performs all those actions that differ from one control type to
another, such as initializing or disposing of a control, drawing it on
the screen, testing whether the mouse button has been pressed inside
it, and responding to the user's dragging of the mouse. The Control
Manager calls the control definition function whenever it needs to
perform one of these type-dependent actions.

Like menus, fonts, or icons, control definition functions are
considered resources of your application program: they're kept in
resource files and accessed through the Resource Manager. The system
resource file includes definition functions for the standard control
types (buttons, check boxes, radio buttons, and scroll bars). In most
cases, these standard control types will be all your program will need,
and you can just use the built-in definition functions. If you want to
define your own, nonstandard control types, you'll have to write your
own definition functions for them, as described later in the section
"Defining Your Own Controls".

When you create a control, you specify its type with a control
definition ID, which tells the Control Manager the resource ID of the
definition function for that control type. The Control Manager
provides built-in constants for the definition IDs of the standard
control types:

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS.2

10 Macintosh Control Manager Programmer's Guide

(hand)

CONST PushButProc • f;
CheckBoxProc • l;
RadioButProc • 2;
ScrollBarProc • 16;

{simple button}
{check box}
{radio button}
{scroll bar}

The control definition ID includes some other information
in addition to the resource ID of the control definition
function. Details on this other information and how it's
combined with the resource ID are given later under
"Defining Your Own Controls". If you're using only the
standard control types, you don't need to know the
details; you can just use the predefined constants listed
above.

To create a new control, you have to supply not only a control
definition ID, but also a lot of other information, such as the
control's title (if any), the window it belongs to, its location within
the window, and so forth. If you're creating lots of controls with the
same general characteristics, you may want to simplify the process by
defining a control template. This is a single resource, stored in a
resource file, that contains all the information needed to create a
control of a particular type. Instead of giving all the specifics
every time you create a control, you can just supply the resource ID of
the template. Control templates also allow you to isolate individual
control descriptions from the code of your program itself. Then if you
need to change the characteristics of a control--for example, to
translate its title into a foreign language--you can just change the
template in the resource file, instead of modifying and recompiling
your whole program.

(hand)
You can create control templates and store them in
resource files with the aid*** {eventually)*** of the
Resource Editor. *** In the meantime, you can use the
interim Resource Compiler; see your Macintosh software
coordinator for more information.*** The Resource
Editor relieves you of having to know the exact format of
a control template, but if you're curious*** (or until
the Resource Editor is available)***• you'll find
details in the section "Format of a Control Template'"•

PART CODES

Some controls, such as buttons, are simple and straightforward. Others
can be complex objects with many parts: for example, a scroll bar has
two scroll arrows, two paging regions, and a thumb (see Figure 2). To
allow different parts of a control to respond to the mouse in different
ways, many of the Control Manager routines accept a part code as a
parameter or return one as a result.

·3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS.2

PART CODES 11

A part code is an integer between f and 255 that stands for a
particular part of a control. Each type of control has its own set of
part codes, assigned by the control definition function for that type.
A simple c~ntrol such as a button or check box might have just one
"part" that encompasses the entire control; a more complex control such
as a scroll bar can have as many parts as are needed to define how the
control operates. Some of the Control Manager routines need to give
special treatment to the moving indicator of a dial (such as the thumb
of a scroll bar). To allow the Control Manager to recognize such
indicators, they always have part codes of 128 or greater.

The part codes for the standard control types are built into the
Control Manager as predefined constants:

(hand)

CONST inButton
inCheckBox

- lf;
• 11;

inUpButton • 2f;
inDownButton • 21;
inPageUp • 22;
inPageDown • 23;
inThumb • 129;

{simple button}
{check box or radio button}

{up arrow of a scroll bar}
{down arrow of a scroll bar}
{"page up" region of a scroll bar}
{"page down" region of a scroll bar}
{thumb of a scroll bar}

Notice that the Control Manager considers a radio button
to be a kind of check box. The part code inCheckBox
applies to both check boxes and radio buttons.

CONTROL RECORDS

Every control is represented internally by a control record containing
all pertinent information about that control. The control record
contains:

- A pointer to the window the control belongs to.

- A handle to the next control in the window's control list.

- A handle to the control definition function.

- The control's title, if any.

- The control's position within its window.

- An indication of whether the control is currently visible.

- An indication of whether the control is currently active.

- An indication of which part of the control, if any, is currently
highlighted.

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS.3

12 Macintosh Control Manager Programmer's Guide

For controls that retain a setting, either a simple on-or-off (such as
a check box or radio button) or a quantitative value (such as a dial),
the current setting is kept in a field of the control record. The
control re~ord also contains the minimum and maximum values the setting
can assume.

The control record also includes a 32-bit reference value field, which
is reserved for use by your application program. You specify an
initial reference value when you create a new control, and can then
access or change the reference value whenever you wish. The Control
Manager completely ignores the contents of this field; your program can
use it in any way you like.

A control record is a dynamic data structure and is referred to by a
handle, as discussed further under "Control Handles" below. You can
access and store into most of its fields with Control Manager routines,
so normally you don't have to know the exact field names. However, if
you want more information about the exact structure of a control record
--for instance, if you're defining your own control types--you'll find
it below under "The ControlRecord Data Type".

Control Handles

Storage space for control records is allocated from your program's
relocatable heap zone. To allow the Operating System's memory
management routines to move them as needed without creating dangling
pointers, they're normally referred to by double indirection, through a
control handle (a pointer to a master pointer):

(eye)

TYPE ControlPtr • AControlRecord;
ControlHandle • AControlPtr;

To maintain the integrity of the storage allocation
system, aiways create and dispose of control records with
the Control Manager routines provided for this purpose,
rather than the Pascal standard procedures NEW and
DISPOSE. The Control Manager functions for creating a
new control return a handle to a newly allocated control
record; thereafter, your program should normally refer to
the control by this handle. Most of the Control Manager
routines expect a control handle as their first
parameter.

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS.3

CONTROL RECORDS 13

For purposes of efficiency (for example, inside a loop that your
program executes many times), you may sometimes want to refer to a
control by single indirection, using a pointer instead of a handle.
For exampl!!,

VAR aPointer: ControlPtr;
aUandle: ControlHandle; ,

BEGIN

END.

. • • • •
aHandle :• NewControl(•••);
aPointer :• aHandle-; . . .

But BE CAREFUL! Any operation that allocates storage from the heap may
trigger a heap compaction, which would move (relocate) the underlying
control record and leave the pointer dangling. Not only is this type
of error usually disastrous, it's also very difficult to diagnose and
correct. So you can safely use single indirection to refer to a
control record only if you're sure you're not doing anything that may
cause fresh storage to be allocated from the heap.

Handles don't suffer from this problem: the handle points to a master
pointer, which in turn points to ·the control record. When the record
is moved during a heap compaction, the master pointer is updated to
point to the record at its new location; the master pointer itself is
never moved. Thus you can rely on the handle not to dangle, even after
a compaction.

The ControlRecord Data Type

This section contains detailed information on the structure of control
records, for those who need it (for example, to define their own
control types). The type ControlRecord is defined as follows:

TYPE ControlRecord • RECORD
nextControl:
contrlOWner:
contrlRect:
contrlVis:
contrlHilite:
contrlValue:
contrlMin:
contrlMax:
contrlProc:
contrlData:
contrlAction:
contrlRfCon:
contrlTitle:

END;

3/16/83 Chernicoff CONFIDENTIAL

ControlHandle;
WindowPtr;
Rect;
BOOLEAN;
Byte;
INTEGER;
INTEGER;
INTEGER;
Handle;
Bandle;
ProcPtr;
Longint;
Str255

/CMGR/CONTROLS.3

14 Macintosh Control Manager Programmer's Guide

NextControl is a handle to the next control associated with this
control's window. All the controls belonging to a given window are
kept in a linked list, beginning in the controlList field of the window
record and_ chained together through the nextControl fields of the
individual control records. The end of the list is marked by a NIL
value; as new controls are created, they are added to the beginning of
the list.

ContrlOwner is a pointer to the window to which this control belongs.
Notice that the contrlOwner field contains a pointer to the window, not
a handle. This is because a window record is actually a grafPort with
some extra fields added. Since the QuickDraw graphics package refers
to grafPorts by pointers rather than handles, the Toolbox follows the
same convention.

ContrlRect is the rectangle that completely encloses the control,
expressed in the local coordinates of the control's window. You define
this rectangle when you create the control, and can change its size or
position at any time. When drawn, the control may be either scaled or
clipped to this rectangle, depending on its control type; the choice is
up to the control definition function.

When contrlVis is TRUE, the control is currently visible.

ContrlHilite is an integer between~ and 255 that specifies whether and
how the control is to be highlighted on the screen. A value of 0 means
no highlighting; 255 means that the control is inactive and should be
highlighted accordingly. Any other value is interpreted as a part code
designating the part of the control that is highlighted.

ContrlValue is the control's current setting. For two-state controls
such as check boxes and radio buttons, a value of 0 means the control
is off and l means it's on. For dials, the fields contrlMin and
contrlMax define the range of possible settings; contrlValue may take
on any value wit~in that range. Other (custom) control types can use
these three fields as they see fit.

ContrlProc is a handle to the control definition function for this type
of control. When you create a new control, you identify its type with
a control definition ID; this is converted into a handle to the control
definition function and stored into the contrlProc field. Thereafter,
the Control Manager uses this handle to access the definition function;
your program should never need to refer to this field directly.

(hand)

(hand)

The high-order byte of the contrlProc field contains some
additional information that the Control Manager gets from
the control definition ID; for details, see the section
"Defining Your Own Controls".

If you write your own control definition function and
will not be sharing it with other programs, you can
include it as part of your application program (instead

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS.3

CONTROL RECORDS 15

of putting it in a resource file) and just store a handle
to it in the coutrlProc field. See ·Defining Your Own
Controls· for further information.

ContrlAction is a pointer to the control's default action procedure,
used by the Control Manager function TrackControl to respond to the
user's dragging the mouse insi~e the control. For more information on
action procedures, see the description of the TrackControl function,
below.

ContrlRfCon is the control's reference value. Thie field is provided
strictly for the convenience of the application program, and you can
use it for any purpose you wish.

ContrlData is a utility field reserved for use by the control
definitlnn function, typically to hold additional information specific
to a particular control type. For example, the standard definition
function for scroll bars uses this field for a handle to the region
containing the scroll bar's thumb. If no more than four bytes of
additional information are needed, the definition function can store
the information directly in the contrlData field instead of using a
handle.

ContrlTitle is the control's title, a variable-length string with a
maximum length of 255 characters.· The title is optional; some control
types (such as scroll bars) don't display one. Notice that the title
is given as a plain ASCII string, without CoreEdit-style formatting;
the control definition function determines the type font, type size,
and character style to use in displaying the title.

USING THE CONTROL MANAGER

This section discusses how the Control Manager routines fit into the
general flow of your program and gives you an idea of which routines
you'll need to use. The routines themselves are described in detail in
the next section.

To use the Control Manager, you must have previously called the
QuickDraw routine lnitGraf to initialize QuickDraw. You should also
have called the Resource Manager routine OpenResFile to open any
resource files that you'll be using (other than the system resource
file, which is opened automatically).

Where appropriate in your program, use NewControl or GetNewControl to
create any controls you need. NewControl takes descriptive information
about the new control from its parameters; GetNewControl gets the
information from a control template in a resource file. When you no
longer need a control, call DisposeControl to remove it from its
window's control list and free the memory it occupies. To dispose of
all of a given window's controls at once, use KillControls.

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS.3

16 Macintosh Control Manager Programmer's Guide

(hand)
The Window Manager routines DisposeWindow and CloseWindow
automatically dispose of all the controls associated with
the given window.

When the Event Manager reports that an update event has occurred for a
window. your program should call DrawControls to redraw the window's
controls as part of the process of updating the window.

After receiving a mouse-down event from GetNextEvent.

1. First call FindWindow to determine in which part of which window
the mouse button was pressed.

2. If it was in the content region of the active window. next call
FindControl for that window to find out whether it was in an
active control. and if so, in which part of which control.

3. Finally. take whatever action is appropriate when the user presses
the mouse button in that part of the control. using routines such
as TrackControl (to perform some action repeatedly for as long as
the mouse button is down, or to allow the user to drag the
control's moving indicator with the mouse). DragControl (to allow
the user to drag the entire control with the mouse), and
HiliteControl (to change the way the control is highlighted on the
screen).

Wherever needed in your program, you can call HideControl to make a
control invisible or ShowControl to make it visible. Similarly,
MoveControl, which simply changes a control's location without pulling
around an outline of it, can be called at any time, as can SizeControl,
which changes its size--though you shouldn't surprise the user by
taking these actions unexpectedly.

Whenever necessary, you can read the current setting of a control with
GetCtlValue, or other attributes with GetCTitle, GetCtlMin, GetCtlMax.
GetCRefCon, or GetCtlAction; you can change them with SetCtlValue,
SetCTitle, SetCtlMin, SetCtlHax, SetCRefCon, or SetCtlAction.

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS.4

CONTROL MANAGER ROUTINES 17

CONTROL MANAGER ROUTINES

This section describes the routines (procedures and functions) that
make up the Control Manager.

Initialization and Allocation

FUNCTION NewControl (theWindow: YindowPtr; boundsRect: Rect; title:
Str255; visible: BOOLEAN; value: INTEGER; min: INTEGER;
max: INTEGER; procID: INTEGER; refCon: Longint) :
ControlHandle;

NewControl creates a new control record, links it to the beginning of
theWindow's control list, and returns a handle to the new record. It
initializes the new record's fields to the values passed as parameters,
setting the contrlHilite field to~ (no highlighting) and contrlAction
to NIL (no default action procedure; see TrackControl under '"Mouse
Location .. , below). It also calls the control definition function to
perform any type-specific initialization that may be needed, such as
setting the contrlData field.

TheWindow is the window the new control will belong to. All
coordinates pertaining to the control will be interpreted in this
window's local coordinate system.

BoundsRect, a rectangle expressed in theWindow's local coordinates,
determines the control's size and location.

Title is the control's title. The string you supply as the value of
this parameter will be stored in the control's contrlTitle field, but
some types of control will never use it. In this case, you can just
pass an empty string as the title.

If the visible parameter is TRUE, NewControl calls the control
definition function to draw the control.

The min and max parameters define the control's range of possible
settings; the value parameter gives the initial setting, and must fall
within the specified range. For controls that don't retain a setting,
such as simple buttons, the values you supply for these parameters will
be stored into the corresponding fields of the control record, but will
never be used. So it doesn't matter what values you give-f for all
three parameters will do. For controls that just retain an on-or-off
setting, such as check boxes or radio buttons, min should be G (meaning
the control is off) and max should be 1 (meaning it's on). For dials,
you can specify whatever numerical values are appropriate for min, max,
and value.

ProclD is the control definition ID, which leads to the control
definition function for this type of control. The control definition

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS.4

18 Macintosh Control Manager Programmer's Guide

IDs for the standard control types are listed above under "Controls and
Resources". Control definition IDs for custom control types are
discussed under "Defining Your Own Controls", below.

RefCon is the control's reference value, set and used only by your
application program.

FUNCTION GetNewControl (controlID: INTEGER; theWindow: WindowPtr) :
ControlHandle;

GetNewControl creates a new control record from a control template
stored in a resource file, links it to the beginning of theWindow's
control list, and returns a handle to the new record. ControlID is the
resource ID of the template in the resource file. GetNewControl works
exactly the same as NewControl (see above), except that it gets the
initial values for the new control's fields from the specified control
template instead of accepting them as parameters.

PROCEDURE DisposeControl (theControl: ControlHandle);

DisposeControl erases theControl from the screen, deletes it from its
window's control list, and disposes of its storage. It returns to the
heap all data structures associated with the control. It also calls
the control definition function to do any type-specific housekeeping
that may be needed, such as disposing of a data structure whose handle
is kept in the contrlData field.

PROCEDURE KillControls (theWindow: WindowPtr);

KillControls disposes of all controls associated with theWindow by
calling DisposeControl (see above) for each.

Control Display

The routines in this section affect the appearance of a control but not
its size or location.

PROCEDURE SetCTitle (theControl: ControlHandle; theTitle: Str2SS);

SetCTitle sets theControl's title to theTitle. The control definition
function determines the type font, type size, and character style to
use in displaying the title; it may use the system font, that of the
control's window, or any other font it chooses, or it may choose not to
display the title at all.

(hand)
Buttons, check boxes. and radio buttons all display their
titles in the standard system font; scroll bars don't
display a title.

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS.4

CONTROL MANAGER ROUTINES 19

PROCEDURE GetCTitle (theControl: ControlHandle; VAR theTitle: Str255);

GetCTitle returns theControl's current title string as the value of the
parameter theTitle. regardless of whether the definition function for
this control type actually uses the title.

PROCEDURE HideControl (theControl: ControlHandle);

HideControl makes theControl invisible. It sets the contrlVis field to
FALSE and fills the region the control occupies within its window with
the window's background pattern. It also adds the control's enclosing
rectangle to the window's update region. so that anything else that was
previously obscured by the control will reappear on the screen. If the
control is already invisible, HideControl has no effect.

PROCEDURE ShowControl (theControl: ControlHandle);

ShowControl makes theControl visible. It sets the contrlVis field to
TRUE and calls the control definition function to do the actual
drawing. The control is drawn in its proper plane on the screen, and
may be completely or partially obscured by overlapping windows or other
objects. If the control is already visible, ShowControl has no effect.

PROCEDURE DrawControls (theWindow: WindowPtr);

DrawControls draws all controls currently visible in theWindow. The
controls are drawn in reverse order of creation; thus in case of
overlap the earliest-created controls appear frontmost in the window.

(hand)
Window Manager routines such as SelectWindow, ShowWindow,
and BringToFront do not automatically call DrawControls
to display the window's controls. They just add the
appropriate regions to the window's update region,
generating an update event. Your program should always
call DrawControls explicitly on receiving an update event
for a window.

PROCEDURE HiliteControl (theControl: ControlHandle; hiliteState:
INTEGER);

HiliteControl changes the way theControl is highlighted on the screen.
HiliteState is an integer between~ and 255. A value of 0 means no
highlighting; 255 means that the control is to be made inactive and
highlighted accordingly. Any other value is interpreted as a part code
designating the part of the control to be highlighted. HiliteControl
sets the contrlHilite field to the designated value, then calls the
control definition function to redraw the control with its new
highlighting.

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS.4

20 Macintosh Control Manager Programmer's Guide

Mouse Location

FUNCTION TestControl (theControl: ControlHandle; thePoint: Point) :
INTEGER;

TestControl tests which part of theControl contains thePoint and
returns the corresponding part code, or G if the point is outside the
control. If the control is invisible or inactive, no test is performed
and TestControl returns a result of 0.

FUNCTION FindControl (thePoint: Point; theWindow: WindowPtr; VAR
theControl: ControlHandle) : INTEGER;

FindControl finds which of theWindow's active controls, if any,
contains thePoint. It returns a handle to the control as the value o~
the parameter theControl; the function result is a part code
Ldentifying the part of the control that contains the given point. The
point must be expressed in the window's local coordinate system.

When a mouse down event occurs, you should normally call the Window
Manager function FindWindow to find out in which window, if any, the
mouse button was pressed. Next, tf it was pressed in the window's
content region, call FindControl to see whether it was in any of the
window's controls. If so, you can then do whatever is appropriate for
a mouse down event in that control (for example, call TrackControl or
DragControl).

(eye)
Notice that FindControl expects the mouse point in local
(window) coordinates, whereas FindWindow expects it in
global coordinates. Always be sure to convert the point
to local coordinates with the QuickDraw procedure
GlobalToLocal before calling FindControl.

FindControl calls TestControl (see above) for each of the window's
active controls to see whether it contains the given point. In the
event of overlap, FindControl returns the frontmost control containing
the point. If the point doesn't lie within any active control, it
returns NIL for the control and t for the part code. (It also returns
these values if the window is invisible or doesn't contain the given
point. In these cases, however, FindWindow wouldn't have returned this
window in the first place, so the situation should never arise.)

FUNCTION TrackControl (theControl: ControlHandle; startPt: Point;
actionProc: ProcPtr) : INTEGER;

TrackControl is the routine that does the actual work of a control.
When called with the mouse button down, it keeps control until the
button is released, following the movements of the mouse and responding

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS.4

CONTROL MANAGER ROUTINES 21

in whatever way is appropriate, depending on the type of control and
the part of the control in which the button was pressed.

The actionProc parameter is a pointer to an action procedure; it
defines some action to be performed repeatedly for as long as the user
holds down the mouse button. For example, when the mouse button is
pressed in the up or down arrow of a scroll bar, the action procedure
should scroll the contents of the window one line in the indicated
direction. This will cause the window's contents to scroll
continuously, one line at a time, for as long as the button is held
down.

If the actionProc parameter is NIL, TrackControl simply retains control
until the mouse button is released, performing no action while the
button is down beyond highlighting the control or dragging its
indicator. If actionProc is POINTER(-1), TrackControl uses the
control's default action procedure (if any), stored in the contrlAction
field of the control record.

(hand)
Actually, the default action procedure is used whenever
the value of the actionProc parameter is odd. This
causes no conflict, since genuine procedure pointers are
always even (aligned on a word boundary).

The parameter startPt is assumed to be the screen location where the
mouse button was pressed, expressed in local window coordinates.
TrackControl finds which part of the control contains the given point,
then focuses its attention only on that part. Its behavior depends on
whether the part is the indicator of a dial (that is, whether it has a
part code> 127).

If the part is an indicator, TrackControl drags a flickering outline of
the indicator to follow the mouse until the button is released. (The
process is similar to that described below under DragControl, except
that only the indicator is dragged and not the whole control. The
control definition function calculates the limiting rectangle, slop
rectangle, and axis parameter for this operation.) In this case, the
action procedure passed to TrackControl, if any, should take no
parameters. For example, if the name of the action procedure is
Action, it should be declared simply as

PROCEDURE Action;

When the user releases the mouse button, TrackControl calls the control
definition function to reposition the control's indicator, passing the
vertical and horizontal offset through which the mouse was dragged.
It's up to the definition function to adjust the control's setting,
redraw the control, or take whatever other action is appropriate. For
example, the standard definition function for scroll bars redraws the
scroll bar's thumb, calculates its new relative position within the
shaft, and scrolls the window to the corresponding relative position in
the document.

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS.4

22 Macintosh Control Manager Programmer's Guide

If the control is not a dial, or if the mouse button was initially
pressed in a part of a dial other than the indicator, the action
procedure (if any) should be of the form

PROCEDURE Action (theControl: ControlHandle; partCode: INTEGER);

In this case, TrackControl repeatedly reads the position of the mouse
for as long as the button remains down, testing whether it-a still in
the original part of the control. If so, TrackControl highlights the
part and passes its part code to the action procedure, along with a
handle to the control itself. If the mouse is outside the original
control part--that is, if the user has moved out of the part while
still holding down the button--TrackControl unhighlights the part and
passes a part code oft to the action procedure. In either case,
TrackControl reads the mouse's position again and repeats the process
until the mouse button is released.

When the user finally releases the button, TrackControl unhighlights
the control. If the button is released inside the same part of the
control in which it was originally pressed, TrackControl returns the
part code for that part; if not, it returns 0. You can use this
information, for example, to allow the user to "back out" of an
operation by moving the mouse out of the control before releasing the
button.

Control Movement and Sizing

PROCEDURE HoveControl (theControl: ControlHandle; h, v: IlITEGER);

MoveControl moves theControl to a new location within its window. The
top left corner of the control's enclosing rectangle is moved to the
new horizontal and vertical coordinates hand v; the bottom right
corner is adjusted accordingly, to keep the size of the rectangle the
same as before. If the control is currently visible, it is hidden and
then redrawn at its new location.

PROCEDURE DragControl (theControl: ControlHandle; startPt: Point;
limitRect, slopRect: Rect; axis: INTEGER);

When called with the mouse button down, DragControl allows the user to
drag a flickering outline of theControl around the screen with the
mouse. It follows the movements of the mouse for as long as the button
is held down, then calls MoveControl (see above) to 1D0Ve the control to
the position where the button was released.

(hand)
Before beginning to follow the mouse, DragControl calls
the control definition function to allow it to do its own
"custom dragging" if it chooses. If the definition
function doesn-t choose to do any custom dragging,

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS.4

CONTROL MANAGER ROUTINES 23

DragControl uses the default method of dragging described
here.

The startPt parameter is assumed to be the point where the mouse button
was originally pressed, expressed in the local coordinates of the
control's window. The limitRect rectangle limits the travel of the
control, and should normally coincide with or be contained within the
window's content region. DragControl will never move the top left
corner of the control outside this rectangle, regardless of where the
user drags the mouse. The second rectangle, slopRect, allows the user
some "slop" in moving the mouse; it should completely enclose the
limiting rectangle. DragControl's behavior while tracking depends on
the position of the mouse With respect to these two rectangles:

- When the mouse is inside limitRect, the control's flickering
outline follows it normally; if the button is released, the
control will be moved to the mouse position.

- When the mouse is outside limitRect but inside slopRect, the
control's outline "pins" at the edge of limitRect; if the button
is released, the control will be moved to this "pinned" location.

- When the mouse is outside slopRect, the control's outline
disappears from the screen, but DragControl continues to follow
the mouse; if it moves back into slopRect, the outline reappears.
If the button is released outside slopRect, the control will not
be moved from its original position.

The axis parameter allows you to constrain the control's motion to only
one axis:

Axis Parameter
0
l
2

Meaning
No constraint
Horizontal motion only
Vertical motion only

If an axis constraint is in effect, the control will follow the mouse's
movements along the specified axis only, ignoring motion along the
other axis. With or without an axis constraint, the mouse must still
be inside the slop rectangle for the control to move at all.

PROCEDURE SizeControl (theControl: ControlHandle; w, h: INTEGER);

SizeControl changes the size of theControl's enclosing rectangle. The
bottom right corner of the rectangle is adjusted to set the rectangle's
width and height tow and h; the position of the top left corner is not
changed. If the control is currently visible, it is hidden and then
redrawn in its new size. The actual drawing is done by the control
definition function, which may either scale or clip the control to its
new enclosing rectangle.

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS.4

24 Macintosh Control Manager Programmer's Guide

Setting and Range of a Control

PROCEDURE SetCtlValue (theControl: ControlHandle; theValue: INTEGER);

SetCtlValue sets theControl's current setting (contrlValue) to theValue
and redraws the control to reflect the new setting. If the specified
value is out of range, it is forced to the nearest endpoint of the
current range. That is, if theValue < contrlMin, contrlValue is set to
contrlMin; if theValue > contrlMax, contrlValue is set to contrlMax.

FUNCTION GetCtlValue (theControl: ControlHandle) : INTEGER;

GetCtlValue returns theControl's current setting (contrlValue).

PROCEDURE SetCtlMin (theControl: ControlHandle; minValue: INTEGER);

SetCtlMin sets theControl's minimum setting (contrlMin) to minValue and
redraws the control to reflect the new range. If minValue is greater
than the control's current setting (contrlValue), the setting is
changed to the new minimum value.

FUNCTION GetCtlMin (theControl: ControlHandle) : INTEGER;

GetCtlMin returns theControl-s current minimum value (contrlMin).

P~OCEDURE SetCtlMax (theControl: ControlRandle; maxValue: INTEGER);

SetCtlMax sets theControl-s maximum setting (contrlMax) to maxValue and
redraws the control to reflect the new range. If maxValue is less than
the control's current setting (contrlValue), the setting is changed to
the new maximum value.

FUNCTION GetCtlMax (theControl: ControlBandle) : INTEGER;

GetCtlMax returns theControl's current maximum value (contrlMax).

Miscellaneous Utilities

PROCEDURE SetCRefCon (theControl: ControlHandle; refVal: Longlnt);

SetCRefCon sets theControl's reference value to refVal. The reference
value is reserved for use by your program, which can use it in any way
you wish; it is ignored by the Control Manager itself.

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS.4

CONTROL MANAGER ROUTINES 25

FUNCTION GetCRefCon (theControl: ControlHandle) : Longlnt;

GetCRefCon returns theControl's current reference value.

PROCEDURE SetCtlAction (theControl: ControlHandle; actionProc:
ProcPtr);

SetCtlAction sets theControl's default action procedure to actionProc.
TrackControl uses this procedure to respond to the user's dragging the
mouse inside the control; for more information, see TrackControl under
"House Location", above.

FUNCTION GetCtlAction (theControl: ControlHandle) : ProcPtr;

GetCtlAction returns a pointer to theControl's default action
procedure. TrackControl uses this procedure to respond to the user's
dragging the mouse inside the control; for more information, see
TrackControl under "Mouse Location", above.

FORMAT OF A CONTROL TEMPLATE

As described above, you can use the GetNewControl function to create a
new control from a template stored in a resource file. Such a template
contains the same information that the NewControl function gets from
eight of its parameters. The resource type for a control template is
'CTRL', and the resource data has the following format:

Number of bites Contents
8 bytes Same as boundsRect parameter to NewControl
2 bytes Same as value parameter to ~e~Control
2 bytes Same as visible parameter to NewControl
2 bytes Same as max parameter to NewControl
2 bytes Same as min parameter to NewControl
4 bytes Same as procID parameter to NewControl
4 bytes Same as refCon parameter to NewControl
n bytes Same as title parameter to NewControl

(1-byte length in bytes, followed by the
characters of the title)

DEFINING YOUR OWN CONTROLS

In addition to the standard, built-in control types (buttons, check
boxes, radio buttons, and scroll bars), the Control Manager allows you
to define "custom" control types of your own. Maybe you need a
three-way selector switch, a disk-space indicator that looks like a
thermometer, or a thruster control for a spacecraft simulator--whatever

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS.S

26 Macintosh Control Manager Programmer's Guide

your particular application calls for. Thie section contains the
information you need to define your own control types to meet your
program's special needs.

(hand)
For the convenience of your program's user, remember to
conform to the Macintosh User Interface Guidelines for
controls as much as possible.

Every control type is defined by a control definition function, which
is normally stored in a resource file; its resource type is 'CDEF'. To
define a control type of your own, you write a control definition
function and (usually) store it in a resource file, with a resource
type of 'CDEF' and a resource ID of your own choosins. The resource
data is simply the compiled or assembled code of the control definition
function, which may be written in Pascal or assembly language; the only
requirement is that its entry point must be at the beginning.

(eye)
Resource IDs 0 through 8 are reserved for predefined
control definition functions in the system resource file.
Unless you want to override one of the built-in
functions, the resource ID you choose for your own
control definition function should be greater than 8.

Whenever you create a new control, you specify its type by giving a
control definition ID. This is a 16-bit integer that contains the
resource ID of the control definition function in its upper 12 bits,
along with a variation code in the lower four bits. Thus, for a given
resource ID and variationcode, the control definition 1D is:

16 * resource ID+ variation code

The variation code allows a single control definition function to
implement several related control types as ·variations on a theme".
For example, buttons, check boxes, and radio buttons all use the
standard definition function whose resource ID is 0, but they have
variation codes of~. 1, and 2, respectively.

The Control Manager calls the Resource Manager to find the resource of
type 'CDEF' with the given resource ID. The Resource Manager searches
first in any application resource files, in the reverse order they were
opened, and last in the system resource file. When it finds the
requested resource, it reads the resource's data (the code of the
control definition function) into memory and returns a handle to it.
The Control Manager stores this handle in the contrlProc field of the
,,ew control record, along with the variation code in the high-order
byte of the field. Later, when it needs to perform a type-dependent
action on the control, it uses the handle to find the control
definition function and passes it the variation code as a parameter.
Figure 5 illustrates this process.

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS.5

(hand)

DEFINING YOUR OWN CONTROLS 27

Control 4efinition ID ~llpl)lied 'llhen control it, create~:

l te~o urceID f \'61" {

---~----''~·
12 bits 4 !tits

(resDurce II.1 of conirol
defini tior, function
~ti VMi~tfof\ todt)

i:esource Mart~r c3ll ma4e by Control Man~r:
dt.!HMdlf! = Ot.t.Rt$OW'r.t. (·cr,!Jl', re~wurr.tJI>);

PltJd in r.nnt.rC\J rt.r.cird:

{ V'3f ' ~f'HUl41P..
\
.lo'

piu3ei1 t•l con.trot definition funr.ti.on.

Figure 5. Control Definition Handling

If you won't be sharing your control definition function
with other application programs, you may find it more
convenient to include it with the code of your program
instead of placing it in a resource file. If you do
this, you have to supply a dummy control definition ID
when you create a new control of this type, pointin~ to a
definition function that ts stored in a resource file-
for example, the definition ID of one of the standard
control types--and specify that the control initially be
made invisible. Once the control is created, you can
replace the contents of the contrlProc field with a
handle to the actual control definition function (along
with a variation code, if needed, in the high-order byte
of the field). You can then call ShowControl, if
necessary, to make the control visible within its window.

Format of a Control Definition Function

You can aive your control definition function any name you like.
Here's how you woul:i <lect,,r,~ •l'l:! named MyControl:

FuNCTION HyControl (varCode: INTEGER; theControt: r.ontrolHandle;
theMessage: ControlMessage; param: Longtnt) : t.o,glnt;

V~rCode is the variation code, as described above.

3/16/83 Chernicoff CONFIDENTIAL /CMCR/CONTROLS.5

28 Macintosh Control Manager Prosrammer's Guide

TheControl is a handle to the control that the operation wtll affect.

TheMessage is a control message identifying the desired operation:

TYPE ControlMessage • (drawCntl, testCntl, calcCRsns, initCntl,
dispCntl, posCntl, thumbCntl, dragCntl);

Message
drawCntl
testCntl

calcCRgns

initCntl
dispCntl

posCntl

thumbCntl

dragCntl

Operation
Draw the control in its window
Test in what part of the control (if any) the
mouse button was pressed
Calculate the control-s region (or that of
its indicator) within its window
Do any special control initialization
Take any special actions when the control is
disposed of
Reposition the control's indicator and update
its value accordingly
Calculate the parameters for dragging the
control's indicator with the mouse
Drag the control (or its indicator) with the mouse

As described below in the discussions of the routines that perform
these operations, the value passed for param, the last parameter of the
control definition function, depends on the operation. Where it is not
mentioned below, this parame~er is lgnored. Similarly, the control
definition function is expected to return a function result only where
indicated; in other cases, the function should return~.

(hand)
··aoutine" here does not necessarily mean a procedure or
function. While it's a good idea to set these up as
subprograms inside the window definition function, you
are not required to do so.

The Draw Routine

The message drawCntl asks the control definition function to draw all
or part of a control within its window. The value of param is a part
code specifying which part of the control to draw, or~ for the entire
control. If the control is invisible (that is, if its contrlVis field
is FALSE), there's nothing to do; if it's visible, the definition
function should draw it (or the requested part), takin3 into account
the current values of its contrlHilite and contrlValue fields.

(eye)
The Control Manager procedures SetCtlValue, SetCtlMin,
and SetCtlMax all send the message drawCntl with a part
code parameter of 128, asking the control definition
function to redraw a control's moving indicator. For
control types using other part codes to represent
indicators, the definition function must detect a param

3/16/83 Chernicoff CONFIDENTIAL /CHGR/CONTROLS.5

DEFINING YOUR OWN CONTROLS 29

value of 128 as a special case and redraw all indicators,
regardless of part code.

The Test Routine

The message testCntl asks in which part of a control, if any, a given
point lies. The point is passed as the value of param, expressed aa a
four-byte record of type Point (not a pointer or a handle) in the local
coordinates of the control-a window. The control definition function
should return the part code for the part of the control that contains
the point; it should return I if the point is outside the control's
region or if the control is inactive (contrlHilite • 255).

The Routine to Calculate Regions

The control definition function should respond to the message calcCRgns
by calculating the region a control occupies within its ~tndow. Param
is a QuickDraw region handle; the definition function should update
this region to the shape, size, and position of the control, expressed
in the local coordinate system of its window.

If the high-order bit of param is set, the region requested is that of
the control's indicator, rather than that of the control as a whole.
The definition function should clear the high BYTE (not just the high
bit) of the region handle before attempting to update the region.

(hand)
Notice that the control and its indicator aren't limited
to rectangular boxes, but may occupy regions of any
shape, in the full generality permitted by QuickDraw.

The Initialize Routine

When it creates a new control, the Control Manager sends the message
initCntl to the control definition function. This gives the definition
function a chance to perform any type-specific initialization it may
require. For example, the standard definition function for scroll bars
allocates space for a region to hold the scroll bar"'s thumb location
and stores the region handle in the contrlData field of the new control
record. The initialization routine for buttons, check boxes, and radio
buttons does nothing.

The Dispose Routine

The Control Manager"'s DisposeControl procedure sends the message
dispCntl to the control definition function, telling it to carry out
any special "housekeeping• associated with disposing of a control. For
example, the standard definition function for scroll bars deallocates
the space occupied by the thumb region, vboae handle is lcept in the

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS.5

30 Macintosh Control Manager Programmer's Guide

control's contrlData field. The dispose routine for buttons, check
boxes, and radio buttons does nothing.

The Position Routine

The message posCntl tells the control definition function to reposition
a control's moving indicator and update the control's setting
accordingly. The value of param is a point giving the vertical and
horizontal off8et, in screen pixels, by which the indicator is to be
moved relative to its current position. (Typically, this is the offset
between the points where the user pressed and released the mouse button
while dragging the indicator.) The vertical offset is given in the
high-order word of the Longlnt and the horizontal offset in the
low-order word. The definition function should calculate the control's
new setting based on the given offset, update the contrlValue field,
and redraw the control within its window to reflect the new setting.

(hand)
If you use the Control Manager procedure SetCtlValue to
update the contrlValue field, the control will be redrawn
automatically.

The Thumb Routine

The control definition function should respond to the message thumbCntl
by calculating the limiting rectangle, slop rectangle, and axis
constraint for dragging a control's indicator with the mouse (see the
descriptions of DragControl and TrackControl, above). Param is a
pointer to a data structure of type

RECORD
limitRect, slopRect: Rect;
axis: INTEGER

END;

On entry, param·.limitRect.topLeft contains the point where the mouse
button was first pressed. The definition function should store the
appropriate values into the fields of the record pointed to by param.

The Drag Routine

The message dragCntl asks the control definition function to drag a
control or its indicator around on the screen to follow the mouse until
the user releases the mouse button. Param is a Boolean value
specifying whether to drag the indicator or the whole control: TRUE
means just drag the indicator.

The control definition function need not implement any form of •custom
dragging"; if it returns a result of 0, the Control Manager will use
its own default method of dragging (see the description of DragControl
above). Conversely, if the control definition function chooses to do

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS.5

DEFINING YOUR OWN CONTROLS 31

its own custom dragging, it should signal the Control Manager not to
use the default method by returning a nonzero result.

If the whole control is being dragged, the definition function should
call MoveControl to reposition the control to its new location after
the user releases the mouse button. lf just the indicator is being
dragged, the definition function should execute its own position
routine .(see above) to update the control's setting and redraw it in
its window.

NOTES FOR ASSEMBLY-LANGUAGE PROGRAMMERS

Information about bow to use the User Interface Toolbox from assembly
language is given elsewhere. *** For now, see the QuickDraw manual.
*** This section contains special notes of interest to progrmmers who
will be using the Control Manager from assembly language.

The primary aid to assembly-language programmers is a file named
TOOLEQU.TEXT. If you name this file in an .INCLUDE statement when you
assemble your program, all the Control Manager constBnta, offsets to
locations of global variables, and offsets into the fields of
structured types will be available in symbolic form.

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS.6

32 Macintosh Control Manager Programmer's Guide

SUMMARY OF THE CONTROL MANAGER

CONST PushButProc • ~;
CheckBoxProc • l;
RadioButProc • 2;
ScrollBarProc • 16;

inButton
inCheckBox

• 10;
- 11;

{simple button}
{check box}
{radio button}
{scroll bar}

{simple button}
{check box or radio button}

{up arrow of a scroll bar}
{down arrow of a scroll bar}

inUpButton • 20;
inDownButton • 21;
inPageUp • 22;
inPageDown • 23;
inThumb • 129;

{"page up" region of a scroll bar}
{"page down" region of a scroll bar}
{thumb of a scroll bar}

TYPE ControlHandle • ·controlPtr;
ControlPtr • ·controlRecord;

ControlRecord • RECORD
nextControl:
contrlOWner:
contrlRect:
contrlVis:
contrlHilite:
contrlValue:
contrlMin:
contrlMax:
contrlProc:
contrlData:
contrlAction:
contrlRfCon:
contrlTitle:

END;

ControlRandle;
WindowPtr;
Rect;
BOOLEAN;
Byte;
INTEGER;
INTEGER;
INTEGER;
Handle;
Handle;
ProcPtr;
Longlnt;
Str255

ControlMessage • (drawCntl, testCntl, calcCRgns, initCntl,
dispCntl, posCntl, thumbCntl, dragCntl);

Initialization and Allocation

FUNCTION NewControl

FUNCTION GetNewControl

PROCEDURE DisposeControl
PROCEDURE KillControls

3/16/83 Chernicoff

(theWindow: WindowPtr; boundsRect: Rect;
title: Str255; visible: BOOLEAN; value:
INTEGER; min: INTEGER; max: INTEGl:.:R;
proclD: INTEGER; refCon: Longlnt) :
ControlRandle;

(controlID: INTEGER; theWindow: WindowPtr) :
ControlHandle;

(theControl: ControlHandle);
(theWindow: WindowPtr);

CONFIDENTIAL /CMGR/CONTROLS.6

Control Display

PROCEDURE SetCTitle
PROCEDURE GetCTitle

SUMMARY OF THE CONTROL MANAGER 33

(theControl: ControlHandle; theTitle: Str255);
(theControl: ControlHandle; VAR theTitle:
Str255);

PROCEDURE HideControl
PROCEDURE ShowControl
PROCEDURE DrawControls
PROCEDURE HiliteControl

(theControl: ControlHandle);
(theControl: ControlHandle);
(theWindow: WindowPtr);
(theControl: ControlHandle; hiliteState:
INTEGER);

House Location

FUNCTION TestControl (theControl: ControlRandle; thePoint: Point)
INTEGER;

FUNCTION FindControl (thePoint: Point; theWindow: WindowPtr; V~R
theControl: ControlRandle) : INTEGER;

FUNCTION TrackControl (theControl: ControlHandle; startPt: Point;
actionProc: ProcPtr) : INTEGER;

Control Movement and Sizing

PROCEDURE MoveControl (theControl: ControlHandle; h, v: INTEGER);
PROCEDURE DragControl (theControl: ControlHandle; startPt: P.oint;

limitRect, slopRect: Rect; axis: INTEGER);
PROCEDURE SizeControl {theControl: ControlHandle; w, h: INTEGER);

Setting and Range of a Control

PROCEDURE SetCtlValue
FUNCTION GetCtlValue
PROCEDURE SetCtlMin
FUNCTION GetCtlMin
PROCEDURE SetCtlMax
FUNCTION GetCtlMax

(theControl:
(theControl:
(theControl:
(theControl:
(theControl:
(theControl:

Miscellaneous Utilities

PROCEDURE SetCRefCon
FUNCTION GetCRefCon
PROCEDURE SetCtlAction
FUNCTION GetCtlAction

{theControl:
(theControl:
(theControl:
(theContro'l:

ControlHandle;
ControlHandle)
ControlBandle;
ControlHandle)
ControlBandle;
ControlRandle)

ControlBandle;
CoT'ltrolHandle)
Contt'olltandle;
Controlllandle)

3/16/83 Chernicoff CONFIDENTIAL

theValue: INTEGER);
: INTEGER;
minValue: INTEGER);
: INTEGER;
maxValue: INTEGER);
: DITEGER;

refVal: Longint);
: Longlnt;
actionProc: ProcPtr);
: ProcPtr;

/CMGR/CONTROLS.6

34 Macintosh Control Manager Programmer's Guide

GLOSSARY --------------------------------------
action procedure: A procedure passed as a parameter to the Control
Manager routine TrackControl, defining an action to be performed
repeatedly for as long as the mouse button ls held down.

active control: A control that will respond to the user's actions 11ith
the mouse.

button: A standard Macintosh control that causes some immediate nr
continuous action when clicked or pressed with the mouse.

check box: A standard Macintosh control that retains and displays a
setting, either checked (on) or unchecked (off). Clicking inside the
check box with the mouse reverses the setting.

control: An object in a window on the Macintosh screen 11ith which the
user• using the mouse, can manipulate the information in the 11indow or
control the way it is presented.

control definition function: A function called by the Control Manager
when it needs to perform certain basic operations on a particular type
of control, such as drawing the control ln tts "'indow.

control definition ID: A number passed to control-creation routine, to
indicate the type of control; it consists of the control definitto,1
f11t\r.tlo11's resource ID and a variation code.

control handle: A refer~n,;~ ti> ,. control record by double indirection;
a pointer to the master pointer to the record.

control list: A linked list of the controls associated with a 8iven
"'indow.

control message: A parameter passed to a control definition functlon
to identify the operation desired.

control record: The internal representation of a control, where the
:ontrol Manager stores all the information it needs for its operations
on that control.

control template: A resource that contains information fr01u which the
Control Manager can create a control.

dial: A control with a moving indicator that displays a qua~titatJ~~
~~ttl~e ~r value. Depending on the type of dial, the user uy or may
not be able to ch~nge the setting by draggine the indicator with the
mouse.

highll~ht: to dt•play a control or part of a control in aome
distinctive visual way. such as inverting it or making its outline
heavier.

3/16/83 Chernlcoff CONFIDENTIAL /CMGR/CONTROLS.6

GLOSSARY 35

inactive control: A control that will not respond to the user's
actions with the mouse. An inactive control ls hlghlighted in some
special way. such as ·dimming• it with light gray shading.

indicator: The moving part of a dial that displays its current
setting.

invisible control: A control that la not drawn in its window.

part code: An integer code. defined by the control definition
function. that stands for a particular part of a control.

radlo button: A standard Macintosh control that retains and displays a
setting, either on or off, and is part of a group wlth the property
that only one button tn the group can be on at a time. Clicking a
radio button on turns off all the others in the group. like the buttons
on a car radio.

reference value: In a control record, a 32-bit field which the
appllcation program may stor into and access for any purpose.

variation code: A number that distinguishes closely related types of
controls and is passed as part of a control definition ID when a
control is created.

visible control: A control that is drawn in its window (but may be
completely overlapped by another window or other object on the screen).

3/16/83 Chernicoff CONFIDENTIAL /CMGR/CONTROLS.6

MACINTOSH USER EDUCATION

The Desk Manager: A Programmer's Guide

See Also: Macintosh User Interface Guidelines
Macintosh Operating System Reference Manual
OuickDraw: A Programmer's Guide
The Window Manager: A Programmer's Guide
The Resource Manager: A Programmer's Guide
The Event Manager: A Programmer's Guide
The Dialog Manager: A Programmer's Guide
The Menu Manager: A Programmer' a Guide

Modification History: First Draft (ROH 2.G)
Erratum Added
Second Draft (ROM 4)
Third Draft (ROH 7)

/DSICMGR/ DESK

c. llose
c. llose
c. Rose
c. Rose

2/3/83
2/28/83
6/14/83
9/26/83

This manual introduces you to the Desk Manager, the part of the
Macintosh User Interface Toolbox that handles desk accessories such as
the Calculator. lt describes the simple programmatic interface to the
Desk Manager and tells you how to define your own desk accessories.

Summary of significant changes and additions since last version:

- OpenDeakAcc is now a Desk Manager routine, as is the new procedure
CloseDeskAcc (page 7).

- A new function, SyatemEdit, processes standard editing commands in
deak accessories (page 8). Four new messages are passed to a desk
accessory's control routine to handle this (page 13).

- Storing the window pointer in the Device Control Entry is now
optional for a desk accessory's open routine, and setting the
windowlCind field to the driver's reference number is required
(page 13).

- A desk accessory may be displayed in a window created by the
Dialog Manager; if so, its control routine 1111st respond to the
"cursor" message in a special way (page 14). Applications
allowing access to desk accessories 1111st initialize TextEclit and
the Dialog Manager.

2 Desk Manager Programmer's Guide

TABLE OF CONTENTS

3 About This Manual
3 About the Desk Manager
5· Using the Desk Manager
6 Desk Manager Routines
7 Opening and Closing Desk Accessories
7 Handling Events in Desk Accessories
8 Performing Periodic Actions
9 Advanced lloutinea
lQ Defining Your Own Desk Accessories
12 The Device Control Entry
12 The Driver Routines
15 A Sample Desk Accessory
16 Summary of the Deak Manager
17 Glossary

Copyright Cc) 1983 Apple Computer, Inc. All rights reserved. Distribution
of this draft in limited quantities does not constitute publication•

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes the Desk Manager, the part of the Macintosh User
Interface Toolbox that supports the use of desk accessories from an
application; the Calculator, for example, is a standard desk accessory
available to any application. *** Eventually this will become part of
a large manual describing the entire Toolbox. *** You'll learn how to
use the Desk Manager routines and how to define your own accessories.

(hand)
This manual describes version 7 of the ROM. If you're
using a different version, the Desk Manager may not work
as discussed here.

Like all documentation about Toolbox units, this manual assumes you're
familiar with the Macintosh User Interface Guidelines, Lisa Pascal, and
the Macintosh Operating System's Memory Manager. You should also be
familiar with the following:

- The Toolbox Event Manager, the Window Manager, the Menu Manager,
and the Dialog Manager.

- The basic concepts behind the Resource Manager.

- I/0 drivers. as discussed in the Macintosh Operating System
Reference Manual.

This manual begins with an introduction to the 'Deak Manager and desk
accessories. Next, a section on using the Desk Manager introduces you
to its routines and tells how they fit into the flow of your
application. Thia is followed by the detailed descriptions of all Deak
Manager procedures and functions, their parameters, calling protocol,
effects, side effects, and so on.

FolloWing these descriptions is a section for programmers who want to
define their own desk accessories.

Finally. there's a summary of the Desk Manager routine calls, for quick
reference, and a glossary of terms used in this manual. *** The
glossary will eventually be merged with the glossaries from the other
Toolbox documentation. The many Operating System terms have not been
included in the glossary in this manual. ***

ABOUT THE DESK MANAGER

The Desk Manager enables your application to support desk accessories,
which are "mini-applications" that can be run at the same time 88 a
Macintosh application. The standard Calculator desk accessory is shown
in Figure 1. *** the method of highlighting an active desk accessory
is currently different from what's shown here and will probably change.

9/26/83 llose CONFIDENTIAL /DSKMGR./DESK.2

4 Desk Manager Programmer's Guide

Catculeior f 1°•
0

•

0

fl I I fl I 1·1oli

=• ~ 7 ... 8 ··;···:··=
. .
:14 S II ' +
=·. u .
: 1 2 3 .
: 0 . [. . . -.-............ :

Active Inactive

Figure 1. The Calculator Desk Accessory

The Macintosh user opens desk accessories by choosing them from the
standard Apple menu (the menu whose title is an Apple symbol), which by
convention is the first menu in the menu bar. When a desk accessory is
chosen from this menu, it's usually displayed in a window on the
desktop, and that window becomes the active window. (See Figure 2.)

AA accenory ia ChJSet,
from the Apple meru

Figure 2. Opening a Desk Accessory

After being selected, the accessory may be used as long as it's active.
The user can activate other windows and then reactivate the desk
accessory by clicking inside it. Whenever a standard desk accessory is
active, it has a close box in its title bar. Clicking the close box
male.es the accessory disappear, and the window that's then the frontmost
becomes active.

The window associated with a desk accessory usually resembles a
rounded-corner document window, as shown above. It also may look and
behave like a dialog window; the accessory can call on the Dialog
Manager to create the window and then use Dialog Manager routines to

9/26/83 Rose CONFIDENTIAL /DSKMGR/DESK.2

ABOUT THE DESK MANAGER 5

operate on it. In either case, the window will be a system window, as
indicated by its window class.

Many applications will have an Edit menu that includes the standard
commands Cut, Copy, Paste, and Undo, which may be useful in desk
accessories as well as in the application's windows. The Deak Manager
provides a mechanism that lets those commands be applied to a desk
accessory when it's active. Even if the commands aren't particularly
useful for editing within the accessory, they may be useful for cutting
and pasting between the accessory and the application or even another
accessory. For example, the result of a calculation made with the
Calculator desk accessory can be copied into a docWDent prepared in
MacWrite ***eventually***·

A desk accessory may also have its own menu. When the accessory
becomes active, the title of its menu is added to the menu bar and menu
items may be chosen from it. Any of the application's menus or menu
items that no longer apply are disabled. A desk accessory can even
have an entire menu bar full of its own menus, which will completely
replace the menus already in the menu bar. When an accessory that has
its own menu or menus becomes inactive, the menu bar is restored to
normal.

Although desk accessories are usually displayed in windows (one per
accessory), this is not necessarily so. It's possible for an accessory
to have only a menu (or menus) and not a window. The menu includes a
command to close the accessory. Also, a desk accessory that's
displayed in a window may create any number of additional windows while
it's open.

You can define your own desk accessories. A desk accessory is actually
a special type of 1/0 driver--apecial in that it may have its own
windows and menus for interacting with the user. Desk accessories and
other 1/0 drivers used by Macintosh applications are stored in resource
files.

USING THE DESK MANAGER

This section introduces you to the Desk Manager routines and how they
fit into the general flow of an application program. The routines
themselves are described in detail in the next section.

To allow access to desk accessories, your application must do the
following:

- Initialize TextEdit and the Dialog Manager, in case any desk
accessories are displayed in windows created by the Dialog Manager
(which uses TextEdit).

- Set up the Apple menu as the first aenu in the menu bar. You can
put the names of all currently available desk accessories in a

9/26/83 Rose CONFIDENTIAL /DSKMGR/DESK.2

6 Desk Manager Programmer's Guide

menu by using the Menu Manager routine AddResHenu (see the Menu
Manager manual for details).

When the user chooses a menu item from the Apple menu, you should call
the Menu Manager procedure Getltem to get the name of the corresponding
desk accessory, and then the Desk Manager function OpenDeskAcc to open
and display the accessory. You can close the desk accessory with the
CloseDeskAcc procedure.

When the Toolbox Event Manager function GetNextEvent reports that a
mouse down event has occurred, the application calls the Window Manager
function FindWindow to find out where the mouse button was pressed. If
FindWindow returns the predefined constant inSysWindow, which means
that the mouse button was pressed in a system window, you should call
the Desk Manager procedure SystemClick. SystemClick handles mouse down
events in system windows, routing them to desk accessories where
appropriate.

(hand)
The application need not be concerned with exactly which
desk accessories are currently open, except when it wants
to use the accessory directly itself (such as the
Mini-Finder accessory).

When the active window changes from an application window to a system
window, the application should disable any of its menua or menu items
that don't apply while an accessory is active. It should enable them
again when one of its own windows becomes active.

When a mouse down event occurs in the menu bar, or a key down event
occurs when the Command key is held down, and the application
determines that one of the four standard editing commands Cut, Copy,
Paste, and Undo has been invoked, it should call SystemEdit• Only if
SystemEdit returns FALSE should the application process the editing
command itselfi if the active window belongs to a desk accessory,
SystemEdit passes the editing command on to that accessory and returns
TRUE.

Certain periodic actions may be defined for desk accessories. To see
that they're performed, you need to call the SystemTask procedure at
least once every time through your main event loop.

The two remaining Desk Manager routines--SystemEvent and
SystemMenu--are never called by the application, but are described in
this manual because they reveal inner mechanisms of the Toolbox that
may be of interest to advanced Macintosh programmers.

DESK MANAGER ROUTINES

This section describes all the Desk Manager procedures and functions.
They're presented in their Pascal form; for information on using them
from assembly language, see "Using the Toolbox from Assembly Language"

9/26/83 Rose CONFIDENTIAL / DSKKGll/ DE SK• R.

DESK MANAGER ROUTINES 7

*** doesn't exist, but see "Using QuickDraw from Assembly Language" in
the QuickDraw manual***·

Opening and Closing Desk Accessories

FUNCTION OpenDeskAcc (theAcc: Str255) : INTEGER;

OpenDeskAcc opens the desk accessory having the given name, displays
its window (if any) as the active window, and returns its reference
number (or a if the accessory can't be opened). The name is the
accessory's resource name, which you get from the Apple menu by calling
the Menu Manager procedure Getltem. OpenDeskAcc calla the Resource
Manager to read the desk accessory from the resource file.

PROCEDURE CloseDeskAcc (refNum: INTEGER);

CloaeDeskAcc closes the desk accessory having the given reference
number. Usually, though, the application won't close the desk
accessory; instead, it will be closed when the user clicks its close
box (or, if there's a menu instead of a window, when the user chooses
the command to close the accessory). Also, since the application heap
is deallocated when the application terminates, every desk accessory
goes away at that time.

Handling Events in Desk Accessories

PROCEDURE SystemClick (theEvent: EventRecord; theWindow: WindowPtr);

When a mouse down event occurs and the Window Manager routine
FindWindow reports that the mouse button was pressed in a system
window, the application should call SystemClick with the event record
and the window pointer. If the given window belongs to a desk
accessory, SystemClick sees that the event gets handled properly.

SystemClick determines which part of the desk accessory's window the
mouse button was pressed in, and responds accordingly (similar to the
way your application responds to mouse activities in its own windows).

- If the mouse button was pressed in the content region of the
window and the window was active, SystemClick sends the mouse down
event to the desk accessory, which processes it as appropriate.

- If the mouse button was pressed in the content region and the
window was inactive, SystemClick makes it the active window.

- If the mouse button was pressed in the drag region, SysteaClick
calls the Window Manager routine DragWindow to pull an outline of

9/26/83 llose CONFIDENTIAL /DSKMGR/DESK• R

8 Desk Manager Programmer's Guide

the window across the screen and move the window to a new
location. If the window was inactive, DragWindow also makes it
the active window (unless the Command key was pressed along with
the mouse button).

- If the mouse button was pressed in the go-away region, SystemClick
calls the Window Manager routine TrackGoAway to determine whether
the mouse is still inside the go-away region when the click is
completed: if so, it tells the desk accessory to close itself;
otherwise, it does nothing.

FUNCTION SystemEdit (editCmd: INTEGER) : BOOLEAN;

Call SystemEdit when the user invokes the editing command specified by
editCmd, which may be one of the following predefined constants:

CONST cutCmd • G;
copyCmd • l;
pasteCmd • 2;
undoCmd • 3;

{Cut command}
{Copy command}
{Paste command}
{Undo command}

If the active window doesn't belong to a desk accessory, SystemEdit
returns.FALSE; the application should then process the editing command
as usual. If the active window does belong to a desk accessory,
SystemEdit asks that accessory to process the command and returns TRUE;
in this case, the application should ignore the command.

(hand)
It's up to the application to make sure desk accessories
get their editing commands. In particular, make sure
your application doesn't disable the Edit menu or any of
the four commands when a desk accessory is activated.

Performing Periodic Actions

PROCEDURE SystemTask;

For each open desk accessory, SystemTask causes the accessory to
perform the periodic action defined for it, if any such action has been
defined and if the proper time period has passed since the action was
last performed. For example, a clock accessory can be defined such
that the second hand is to move once every second; the periodic action
for the accessory will be to move the second hand to the next position,
and SystemTask will alert the accessory every second to perform that
action.

You should call SystemTask as often
time through your main event loop.
application does an unusually large
through the loop.

as possible, usually once every
Call it more than once if your
amount of processing each time

9/26/83 llose CONFIDENTIAL /DSKMGR/DESX.R

(hand)

DESK MANAGER ROUTINES 9

Preferably SyetemTask would be called at least every 6fth
of a aecond.

Advanced Routines

FUNCTION SystemEvent (theEvent: EventRecord) : BOOLEAN;

SystemEvent is called only by the Toolbox Event Manager routine
GetNextEvent when it receives an event, to detend.ne whether the event
should be handled by the application or by the system. If the given
event should be handled by the application, SystemEvent returns FALSE;
otherwise, it calls the appropriate system code to handle the event and
returns TRUE.

In the case of a null, abort, or mouse down event, SystemEvent does
nothing but return FALSE. Notice that it responds this way to a mouse
down event even though the event may in fact have occurred in a system
window (and therefore may have to be handled by the system). The
reason for this is that the check for exactly where the event occurred
(via the Window Manager routine FindWindow) is made later by the
application and so would be made twice if SystemEvent were also to do
it. To avoid this duplication, SystemEvent passes the event on to the
application and lets it make the sole call to FindWindow. Should
FindWindow reveal that the mouse down event did occur in a system
window, the application can then call SystemClick, as described above,
to get the system to handle it.

If the given event is a mouse up, key down, key up, or auto-key event,
SystemEvent checks whether the active window belongs to a desk
accessory and whether that accessory can handle this type of event. If
so, it sends the event to the desk accessory and returns TRUE;
otherwise, it returns FALSE.

If SystemEvent is passed an activate or update event, it checks whether
the window it occurred in is a system window belonging to a desk
accessory and whether that accessory can handle this type of event. If
so, it sends the event to the desk accessory and returns TR.UE;
otherwise, it returns FALSE.

(hand)
It's unlikely that a desk accessory would not be set up
to handle activate and update events.

Finally, if the given event is a disk inserted event, SystemEvent does
some low-level processing (by calling the Operating System routine
MountVolume) but passes the event on to the application by returning
FALSE, in case the application wants to do further processing.

9/26/83 lloae CONFIDENTIAL /DSKMGR/DESK. ll

10 Desk Manager Programmer's Guide

PROCEDURE SystemMenu (menuResult: Longlnt);

SystemMenu is called only by the Menu Manager routines MenuSelect and
MenuKey, when an item in a menu belonging to a desk accessory baa been
chosen. The menuResult parameter has the same format as the value
returned by MenuSelect and HenulCey: the menu ID in the high-order word
and the menu item number in the low-order word. (The menu ID will be
negative.) SystemHenu directs the desk accessory to perform the
appropriate action for the given menu item.

DEFINING YOUR OWN DESK ACCESSORIES

To define your own desk accessories, you 111st
1/0 driver and include it in a resource file.
accessories are stored in the system resource
specific to an application are rare; if there
in the application's resource file.

create the corresponding
Standard or shared desk

file. Accessories
are any, they're stored

The resource type for 1/0 drivers is 'DRVR'. The resource ID for a
desk accessory is the driver's unit number and should be between 12 and
31 inclusive. The resource name should be whatever you want to appear
in the Apple menu, but should also include a nonprinting character; by
convention, the name should begin with a NUL character (ASCII code f).
The nonprinting character is needed to avoid conflict with file names
that are the same as the names of desk accessories.

The structure of an 1/0 driver is described in the Macintosh Operating
System Reference Manual. The rest of this section reviews some of that
information and presents additional details pertaining specifically to
1/0 drivers that are desk accessories.

(hand)
Usually drivers are created entirely from assembly
language, but you can use an assembly language-to-Pascal
interface that will enable you to write the body of the
driver routines in Pascal. An interface named ProtoOrn
has been created for this purpose at Apple; for more
information, see your Macintosh software coordinator.

As illustrated in Figure 3, the 1/0 driver begins with a few words of
flags and other data for the driver, followed by offsets to the
routines that do the work of the driver, an optional title, and finally
the routines them.selves.

9/26/83 llose CONFIDENTIAL /DSKMGR/DESK.R

DEFINING YOUR OWN DESK ACCESSORIES 11

0 Fl descriptor
2 Tiet ccurt
4 Event mast
6 Men.I ID
8 Offset to routine

10 Offset to lme routine
12 Offset to ca,trol routine
14 Offaet to status routine
16 Offaet to clo,e routine
18 Title length 1 e)
19 Title

Actuel code of the driver

1 word each

Figure 3. Desk Accessory I/0 Driver

The first four words of the driver for a desk accessory contain the
following:

1. A flags/descriptor word. Bits f through 7 and bit 12 are relevant
only to ROM-based drivers; they're ignored for desk accessories.
Bits 8 through 11 are the enable flags for the driver routines.
The following flags are especially for desk accessories:

Flag
bit 13

bit 14

!!!!
dNeedTime

dNeedLock

Meaning if set
Driver needs time for performing a
periodic action for the desk accessory
Driver will be locked in memory as soon
as it's opened

If you want to test one of these flags with the assembly-language
instruction BTST, remember that when the destinatioD of BTST is a
memory location, the operation is performed on a byte read from
that location.

2. If the dNeedTime flag is set, a tick count indicating how often
the periodic action should occur. A tick count of g means it
should happen as often as possible,·l means it should happen every
6fth of a second, 2 means every 3Gth of a second, and so on. The
action itself is performed by the control routine in the driver
when it's called by the SystemTask procedure.

3. An event mask specifying which events the desk accessory can
handle. 'lbis should especially include update and activate events
and usually will include mouse down events.

4. If the desk accessory has its own menu (or menus), the ID of the
menu (or of any of the menus); otherwise, f. The menu ID will be
negative. For menus defined in resource files, it's the resource

9/26/83 Rose CONFIDENTIAL / DSKMGR/ DESK. 1l

12 Desk Manager Programmer's Guide

ID; for menus created by the desk accessory, it's any negative
number (between -1 and -32767) that you choose to identify this
accessory's menu. It 1111st be different from the menu ID atored
here for other desk accessories.

Following these four words are the offsets to the driver routines and,
optionally, a title for the desk accessory (preceded by its length in
bytes). You can use the title in the driver as the title of the
accessory's window, or just as a way of identifying the driver in
memory.

The Device Control Entry

When any of the routines in the 1/0 driver is called, a pointer to the
driver's Device Control Entry is passed in Al. Most of the data in the
Device Control Entry is stored and accessed only by the Operating
System, but in some cases the driver routines themselves 1111st store
into it. The structure of the Device Control Entry, which is discussed
in detail in the Operating System manual, is illustrated in Figure 4.
Notice that some of the data is taken from the first four words of the
1/0 driver.

0 long Pointer to atert of driver
4 word Fleas (from driver, plua some cl'inamic fleas)
6 word Driver input queue header: fleas
8 long Driver input queue header: QHeed

12 long Driver input aueue header: QTail
16 long Position pointer (position in fl le)
~ long Handle to driver's a:,rivete storage (optional)
24 word P.efere1a rurm for this driver
~ long Col.Iller for SyatemTast timing
~ long Pointer to driver's window (optional)
34 word T let ccurt (from driver)
36 word Event meat (from driver}
38 word Min.I ID (from ci'iver)

Figure 4. Device Control Entry

The Driver Routines

Of the five possible driver routines, only three need to exist for desk
accessories: the open, close, and control routines. The other
routines (prime and status) may be used if desired for a particular
accessory.

The open routine opens the desk accessory.

9/26/83 llose CONFIDENTIAL /DSKMGR/DESK.ll

DEFINING YOUl OWN DESK ACCESSORIES 13

- It creates the window to be displayed when the accessory is
opened, if any, specifying that it be invisible (since OpenDesk.Acc
will display it). The window can be created with the Dialog
Manager routine NewDialog (or GetNewDialog) if desired; the
accessory will look and respond like a dialog box, and subsequent
operations may be performed on it with Dialog Manager routines.
In any case, the open routine sets the windowKind field in the
window record to the reference number for the driver, which it
gets from the Device Control Entry. (The reference number will be
negative.) lt also may store the window pointer in the Device
Control Entry if desired.

- If the driver has any private storage, it allocates the storage,
stores a handle to it in the Device Control Entry, and initializes
any local variables. It might, for example, create a menu or
menus for the accessory.

The close routine closes the desk accessory, disposing of its window
(if any) and replacing the window pointer in the Device Control Entry
with NIL (if one was stored there by the open routine). If the driver
has any private storage, the close routine also disposes of that
storage.

The action taken by the control routine depends on information passed
in the parameter block pointed to by NI. A message is passed in the
"op code" field (a word located at 26(Afl)); this message is simply a
number that tells the routine what action to take. There are eight
such messages:

Message
64
65

66

67
68
69

'" 71

Name
accEvent
accllun

accCursor

accMenu
accCut
accCopy
accPaste
accUndo

Action to be taken by control routine
Handle a given event
Take the periodic action, if any, for
this desk accessory
Change the cursor shape if appropriate;
generate a null event if the window was
created by the Dialog Manager
Handle a given menu item
Handle the Cut command
Handle the Copy command
Handle the Paste command
Handle the Undo command

Along with the accEvent message, the control routine receives as a
parameter a pointer to an event record (a long integer located at
28("1)). It responds by handling the given event in whatever way is
appropriate for this desk accessory. SystemClick and SyatemEvent call
the control routine with this message to send the driver an event that
it should handle--for example, an activate event that makes the desk
accessory active or inactive. When a desk accessory becomes active,
its control routine llight install a menu in the menu bar. If the
accessory becoming active has more than one menu, the control routine
should respond as follows:

9/26/83 lose CONFIDENTIAL /DSKKGll/DESK.R

14 Desk Manager Programmer's Guide

- Store the accessory's unique menu ID in the system global
mBarEnable. (This is the negative menu ID in the I/0 driver and
the Device Control Entry.)

- Call the Menu Manager routines GetMenuBar to save the current aenu
list and ClearMenuBar to clear the menu bar.

- Install the accessory's own menus in the menu bar.

Then, when the desk accessory becomes inactive, the control routine
should call SetMenuBar to restore the former menu list, call
DrawHenuBar to draw the menu bar, and set mBarEnable tog.

The accRun message tells the control routine to perform the periodic
action for this desk accessory. For every open driver that has the
dNeedTime flag set, the SystemTask procedure calla the control routine
with this message if the proper time period has passed since the action
was last performed.

The accCursor message makes it possible for the cursor to have a
special shape when it's inside an active desk accessory. The control
routine is called repeatedly with this message as long as the desk
accessory is active. If desired, the control routine may respond by
checking whether the mouse position is in the desk accessory's window
and then changing the shape of the cursor if so. Furthermore, if the
desk accessory is displayed in window created by the Dialog Manager,
the control routine should respond to the accCursor message by
generating a null event (storing the event code for a null event in an
event record) and passing it to DialogSelect. This enables the Dialog
Manager to blink the vertical bar in editText items.

(hand)
In assembly language, the code might look like this:

CLR.L
PEA
CLR.L
CLR.L

-SP
2(SP)
-SP
-SP

Dialog Select
ADDQ.L 14,SP

event code for null event is f
pass null event
pass NIL dialog pointer
pass NIL pointer
invoke DialogSelect
pop off result and null event

When the accMenu message is sent to the control routine, the following
information is passed in the parameter block: the menu ID of the desk
accessory's menu in a word at 28(d), and a menu item number in a word
at 3G(A8). The control routine takes the appropriate action for when
the given menu item is chosen from the menu, and then makes the Menu
Manager call HiliteMenu(f) to remove the highlighting from the menu
bar.

Finally, the control routine should respond to one of the last four
messages--accCut through accUndo--by processing the corresponding
editing command in the desk accessory window if appropriate.
SystemEdit calls the control routine with these messages. For
information on cutting and pasting between a desk accessory and the

9/26/83 Rose CONFIDENTIAL /DSKMGR/ DE Sit• R

DEFINING YOUR OWN DESK ACCESSOllES 15

application, or between two desk accessories, see the*** forthcoming
*** Scrap Manager manual.

(hand)
If you use .INCLUDE to include a file named SysEqu.Text
when you assemble your program, the messages sent to the
driver's control routine will be available in symbolic
form, as will offsets into the fields of the 1/0 driver
and Device Control Entry.

A Sample Desk Accessory

*** to be suppliedi meanwhile, see your Macintosh software coordinator

9/26/83 Rose CONFIDENTIAL /DSKMGR/DESK.R

16 Desk Manager Programmer's Guide

SUMMARY OF THE DESK MANAGER

CONST cutCmd • G;
copyCmd • l;
pasteCmd • 2;
undoCmd • 3;

(Cut command}
{Copy command}
(Paste command}
(Undo command}

Opening and Closing Desk Accessories

FUNCTION OpenDeskAcc (theAcc: Str2SS) : INTEGER;
PROCEDURE CloseDeskAcc (refNum: INTEGER);

Handling Events in Desk Accessories

PROCEDURE SystemClick (theEvent: EventRecord; theWindow: WindowPtr);
FUNCTION SystemEdit (editCmd: INTEGER.) : BOOLEAN;

Performing Periodic Actions

PROCEDURE SystemTask;

Advanced R.outines

FUNCTION SystemEvent (theEvent: EventRecord) BOOLEAN;
PROCEDURE SystemMenu (menuResult: Long Int);

9/26/83 Rose CONFIDENTIAL /DSKMGR/DESK.S

GLOSSARY 17

GLOSSARY

desk accessory: A "mini-application", i111plemented as an 1/0 driver,
that can be run at the same time as a Macintosh application.

tick: A 61th of a second.

9/26/83 llose CONFIDENTIAL /DSKMGll/DESK.G

MACINTOSH USER EDUCATION

The Device Manager: A Programer'• Guide

See Also: The Macintosh User Interface Guidelines
The Memory Manager: A Programmer's Guide
The File Manager: A Programmer's Guide
The Desk Manager: A Programmer's Guide
Inside Macintosh: A Road Map

Hod~fication History: First Draft (ROH 7)

*** Review Draft. Not for distribution***

/DMGR/DEVICE

B. Hacker 2/dd/84

ABSTRACT

This manual describes the Device Manager. the part of the Macintosh
Operating System that controls the exchange of information between a
Macintosh application and devices.

7-1

7-2

2 Device Manager Programmer's Guide

TABLE OF CONTENTS

3 About Thia Manual
4 About the Device Manager
7 Using the Device Manager
8 Device Manager Routines
8 Routines For Opening and Closing Drivers
9 High-Level Device Manager Routines
11 Low-Level Device Manager Routines
12 Routine Parameters
14 Routine Descriptions
19 The Structure of a Device Driver
21 A Device Control Entry
22 The Unit Table
23 Writing Your Own Device Drivers
24 Routines for Writing Drivers
66 Interrupts
66 Level-1 (VIA) Interrupts
66 Level-2 (SCC) Interrupts
66 Writing Your Own lntettupt Handlers
66 A Sample Driver
68 Su1DD1ary of the Device Manager
75 Glossary

Copyright (c) 1984 Apple Computer, Inc. All rights reaerved.

Distribution of this draft in limited quantities does not con1titute
publication.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes the Device Manager, the part of the Macintosh
Operating System that controls the exchange of information between a
Macintosh application and devices. *** Eventually it will become part
of a larger manual describing the entire Toolbox and Operating System.
*** General information about using device drivers can be found in this
manual; specific information about the standard Macintosh drivers is
contained in separate manuals.

(eye)
This manual describes version 7 of the ROH. If you're
using a different version, the Device Manager may not
work as discussed here.

Like all Operating System documentation, this manual assumes you're
familiar with Lisa Pascal. You should also be familiar with the
following:

- the bas!c concepts behind the Macintosh Operating System's Memory
Manager

- application data buffers, as described in the Macintosh Operating
System's File Manager manual

The manual is intended to serve the needs of both Pascal and
assembly-language programmers. Information of interest to assembly
language programmers only is i~olated and labeled so that Pascal
programmers can conveniently skip it.

This manual begins with an introduction to the Device Manager and what
you can do with it. It then discusses some basic concepts behind the
Device Manager: what devices and drivers are, and how they are used.

A section on using the Device Manager introduces its routines and tells
how they fit into the flow of your application. This is followed by
detailed descriptions of all the procedures and functions used to call
device drivers, their parameters, calling protocol, effects, aide
effects, and so on.

Following these descriptions are sections that provide information for
programmers who want to write their own drivers, including a discussion
of interrupts and a sample drtver.

Finally. there's a summary of the Device Manager, for quick reference.
followed by a glossary of terms used in this manual.

2/nn/84 Hacker CONFIDENTIAL /DHGll/DEVlCE.1

7-3

7-4

4 Device Manager Programmer's Guide

ABOUT THE DEVICE MANAGER

The Device Manager is the part of the Operating System that handles
communication between applications and devices. A device ia a part of
the Macintosh, or a piece of external equipment, that can transfer
information into or out of the Macintosh. Macintosh devices include
the keyboard, screen, disk drives, two asynchronous serial ports, the
sound generator, the mouse, and printers.

There are two kinds of devices: character devices and block devices.
A character device reads or writes a stream of characters, one at a
time: it can neither skip characters nor go back to a previous
character. A character device is used to get information from or send
information to the world outside of the Macintosh Operating System and
memory: it can be an input device, an output device, or an
input/output device. The mouse, keyboard, screen, sound generator, and
printers, are all character devices.

A block device reads and writes blocks of 512 characters at a time; it
can read or write any accessible block on demand. A block device is
used to store and retrieve information: it's always an ~nput/output
device. Disk drives are block devices.

Applications communicate with devices by calling De~ice Manager
routines. The Device Manager routines don't manipulate devices, but
they call device drivers that do. Device drivers are programs that
take streams or blocks of characters coming from the Device Manager and
convert them into actions of devices, and convert device actions into
streams or blocks of characters for the Device Manager to process.

All information exchange between the Device Manager and devices occurs
via drivers; the Device Manager never communicates directly with a
device (see Figure 1).

Device Ma'laOer

dl"'iwr dl"'iwr

device device

Figure 1. Communication with Devices

The Operating System includes three standard device drivers in ROM:
the Disk Driver, the Sound Driver, and the Serial Driver. There are
also a number of standard RAM drivers that are read from the system
resource file when the system starts up: the Printer Driver and desk
accessories. The keyboard and mouse don't have drivers, and are

2./nn/84 Hacker CONFIDENTIAL /DMGR/DEVICE.I

ABOUT THE DEVICE MANAGER 5

handled via the Keyboard/Mouse Handler. Other drivers can be added
independently or built on the existing drivers (for example, the
Printer Driver ia built on top of the Serial Driver); the aection
0 Writing Your Own Device l>r1.vers0 describes how to do thia. Desk
accessories are a special type of device driver, in that they have
windows, their name should appear in the Apple menu, and they are
manipulated via the specialized routines of the Deak Manager.
Information about desk accessories covered in the Desk Manager unual
will not be repeated here.

A driver can be either open or closed. After a driver has been opened,
an application can read inforeation from and write information to the
driver. Drivers that are no longer in use can be closed, and the
memory used by them recovered. The standard Macintosh drivers are
opened when the system starts up. Up to 32 drivers may be open at any
one time.

A driver is identified by its driver name and, after it's opened, by
its reference number. A driver!!!!!. consists of a period(.) followed
by any sequence of l to 255 printing characters. You can use uppercase
and lowercase letters when naming drivers, but the Device Manager
ignores case when comparing names (it doesn't ignore diacritical
marks). -

(hand)
Although driver names can be quite long, there's little
reason for them to be more than a few characters in
length. Normally the user will never aee a driver name
unless it's displayed in a menu, and names in menus
should be short enough that the menu doesn't become
excessively wide.

The Device Manager assigns each open driver a driver reference number,
from -1 to -32, that is used instead of its driver name to refer to it.

In addition to data that's read from or written to drivers, drivers may
require or provide other information. Required information transmitted
to a driver by an application is called control information;
information provided by a driver is called status information. Control
information may select modes of operation, 1tart or stop processes,
enable buffers, choose protocols, and so on. Status information may
indicate the current mode of operation, the readiness of the device,
the occurrence of errors, and so on.

2/nn/84 Hacker CONFIDENTIAL /DMGR/DEVICE.l

7-5

7-6

6 Device Manager Programmer's Guide

Each driver uy reapond to a number of different typea of control
1nforaat1on and may provide a number of different types of atatus
information. The standard Macintosh drivers receive control
information and provide atatus information via a predefined data
structure, of type OpParuType:

TYPE OpParuPtr • ·opParaaType;

OpParaaType • RECORD
CASE OpVariant OF

(control information}
aound: { Sound Driver}

{.A.sync Driver}
(andVal: INTEGER);

asyncRst:
(asncConfig: INTEGER);

aaynclnBuff:
(aancBPtr: Ptr;
aancBLen: INTEGER);

aayncShk:
(asncHndShk: Longlnt;
aancKiac: Longint);

printer:
(paraml:
parall2:
param3:

fontMgr:

Longlnt;
Longlnt;
Longlnt);

(fontRecPtr: Ptr;
fontCurDev: INTEGER);

diakDrv:

(Printer Driver}

{Font Manager}

{Disk Driver}
(diakBuff: Ptr);

{status information}

END;

a1yncBuff Bytes:
(asyncNBytes: Longlnt);

a1yncStatus:
(asncSl: INTEGER;
asnc52: INTEGER;
aancS3: INTEGER);

diakStat:

{ Async Driver}

{Disk Driver}
(dalr.Track.Lock:
dak.InfoBits:
dakQElem:
dsk.Priae:
dskErrCnt:

INTEGER;
Longlnt;
drvrQElllec;
INTEGER;
INTEGER);

The CASE statement selects vhich field(&) of the record vill be used,
based on the OpVariant data type:

TYPE OpVariant • (sound, asyncRst, asyncinBuff, asyncShk, printer,
fontHgr, diskDrv, asyncBuffBytes, aayncStatus,
disk.Stat);

The maxi~um size of the OpParamType variant record is 22 bytes.
Explanations of the fields can be found in the manuals describing the

2/nn/84 Hacker CONFIDENTIAL /DMGll/DEVICE.I

USING THE DEVICE KA.NAGER 7

different drivers.

USING THE DEVICE KA.NAGER

This section discusses how the Device Manager routines fit into the
general flow of an application program and gives an idea of what
routines you'll need to use. The routines themselves are described in
detail in the next section.

The Device Manager routines can be called via three different aethods:
high-level Pascal calls, low-level Pascal calla, and assembly language.
The high-level Pascal calls are designed for Pascal programmers
interested in using the Device Manager in a simple manner; they provide
adequate device 1/0 and don't require much special knowledge to use.
The low-level Pascal and assembly-language calls are designed for
advanced Pascal programmers and assembly-language programmers
interested in using the Device Manager to its fullest capacity; they
require some special knowledge to be used most effectively.

(hand)
The names used to refer to routines here are actually
assembly-language macro names, but the Pascal routine
names are very similar.

The Device Manager is automatically initialized each time the system is
started up.

'Before an application exchanges information with a driver, the driver
must be opened. ROM drivers are opened when the system starts up; for
RAM drivers, call Open. (Desk accessories use OpenDeskAcc.) The
Device Manager will return the driver reference number that you'll use
every time you want to refer to that driver.

You can transfer data from an open driver to an application's data
buffer with Read, and send data from an application's data buffer to a
driver with Write. An application passes control information to a
driver by calling Control, and receives status information from a
driver by calling Status.

Whenever you want to stop a driver from co•pleting 1/0 initiated by a
Read, Write, Control, or Status call, call KilllO. 'K.11110 halts the
currently executing 1/0, and ignores any pending 1/0 (if any).

When you're through using a driver, call Close. (Desk accessories use
CloaeDeskAcc.) Close forces the driver to complete any pending 1/0,
and then deallocates all the memory used by the driver. *** Currently,
you shouldn't close the Serial Driver. ***
Advanced programmers who write their own device drivers may find the
Desk Manager routines SystemClick, SystemEdit, and SystemTask to be of
use.

2/nn/84 Hacker CONFIDENTIAL /DMGR/DEVICE.R

7-7

7-8

8 Device Manager Programmer's Guide

DEVICE MANAGER ROUTINES

This section is divided into three parts that describe routine, used to
call drivers. The first presents the two routines used to open and
close drivers; this part must be read by all programmers. The
second describes all the high-level Pascal routines of the Device
Manager, and the third presents information about calling the low-level
Pascal and assembly-language routines.

All Device Manager routines return a result code of type OSErr. Each
routine description lists all of the applicable result codes, along
with a short description of what the result code means. Lengthier
explanations of all the result codes can be found in the summary at the
end of this manual.

Routines For Opening and Closing Drivers

FUNCTION OpenDriver (name: OSStr255; VAR refNum: INTEGER) : OSErr;

OpenDriver opens the driver specified by name and returns its reference
number in refNum.

Result codes noErr
resErr
badUnitErr
dSlOCoreErr
openErr

unitEmptyErr

No error
Resource Manager error
Bad reference number
Device control entry was purged
Driver cannot perform reading
or writing
Bad reference number

FUNCTION CloseDriver (refNum: INTEGER) : OSErr;

CloseDriver closes the driver having the reference number refNum. Any
pending 1/0 is completed, and the memory used by the driver is
deallocated.

Result codes

2/nn/84 Hacker

noErr
bad Unit Err
dSIOCoreErr
resErr
unitEmptyErr

No error
Bad reference number
Device control entry was purged
Resource Manager error
Bad reference number

CONFIDENTIAL /DKGR/DEVICE.R

,

DEVICE MANAGER ROUTINES 9

High-Level Device Manager Routines

FUNCTION FSRead (refNum: INTEGERi VAR count: Longlnt; buffPtr: Ptr) :
OSErr;

FSRead attempts to read the number of bytes specified by the count
parameter from the driver having the reference number refNum, and
transfer them to the data buffer pointed to by buffPtr. After the read
is completed, the number of bytes actually read is returned in the
count parameter.

Result codes noErr
badUnitErr
dSIOCoreErr
notOpenErr
unitEmptyErr
readErr

No error
Bad reference number
Device control entry was purged
Driver isn't open
Bad reference number
Driver isn't enabled for read
calls

FUNCTION FSWrite (refNum: INTEGER; VAR count: Longlnt; buffPtr: Ptr) :
OSErr;

FSWrite attempts to take the number of bytes specified by the count
parameter from the buffer pointed to by buffPtr and write them to the
open driver having the reference number refNum. After the write is
completed, the number of bytes actually written is returned in the
count parameter.

Result codes

2/nn/84 Hacker

noErr
badUnitErr
dSlOCoreErr
notOpenErr
unitEmptyErr
writErr

No error
Bad reference number
Device control entry was purged
Driver isn't open
Bad reference number
Driver isn't enabled for write
calls

CONFIDENTIAL /DMGll/DEVICE.R

7-9

7-10

10 Device Manager Programmer's Guide

FUNCTION FSControl (refNum: INTEGER; opCode: INTEGER; opParams:
OpParamPtr) : OSErr;

FSControl sends control information to the driver having the reference
number refNum. The type of information sent is specified by opCode.
and the information itself is pointed to by opParams. The values
passed in opCode and pointed to by opParams depend on the driver being
called.

Result codes noErr
badUnitErr
dSIOCoreErr
notOpenErr
unitEmptyErr
controlErr

No error
Bad reference number
Device control entry was purged
Driver isn't open
Bad reference number
Driver isn't enabled for control
calls

FUNCTION FSStatus (refNum: INTEGER; opCode: INTEGER; -opParams:
OpParamPtr) : OSErr;

FSStatus returns status information about the driver having the
reference number refNum. The type of information returned is specified
by opCode, and the information itself is pointed to by opParams. The
values passed in opCode and pointed to by opParams depend on the driver
being called.

llesult codes noErr
bad Unit Err
dSIOCoreErr
notOpenErr
unitEmptyErr
statusErr

No error
Bad reference number
Device control entry was purged
Driver isn't open
Bad reference number
Driver isn't enabled for status
calls

FUNCTION FSKilllO (refNum: INTEGER) : OSErr;

FSKilllO tenainates all 1/0 with the driver having the reference number
refNum.

Result codes

2/nn/84 Hacker

noErr
badUnitErr
dSIOCoreErr
unitEmptyErr
controlErr

No error
Bad reference number
Device control entry was purged
Bad reference number
Driver isn't enabled for control
calls

CONFIDENTIAL /I>HGll/DEVICE.lt

DEVICE MANAGER ROUTINES 11

Low-Level Device Manager Routines

This section contains special infonution for programmers using the
low-level Pascal or assembly-language routines of the Device Manager.
and then describes the routines in detail.

All Device Manager routines described in this section can be executed
either synchronously (meaning that the application must wait until the
routine is completed) or asynchronously (meaning that the application
is free to perform other tasks while the routine is executing).

Wben a Device Manager routine is called asynchronously. an 1/0 request
is placed in the driver's 1/0 queue, and control returns to the calling
application--even before the actual 1/0 is completed. Requests are
taken from the queue one at a time (in the same order that they were
entered). and processed. Only one request may be processed at any
given time.

The calling application may specify a completion routine to be executed
as soon as the 1/0 operation has been completed.

Routine parameters passed by an application to the Device Manager and
returned by the Device Hanage.r to an application are contained in a
parameter block. which is memory space in the heap or stack. All
low-level Pascal calls to the Device Manager are of the form

PBCallName (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

PBCallName is the name of the routine. ParamBlock points to the
parameter block containing the parameters for the routine. If async is
TRUE, the call will be executed asynchronously; if FALSE, it will be
executed synchronously.

Assembly-language~: All Device Manager routines are called
with Af pointing to a parameter block containing the parameters
for the routine, and Al pointing to the driver's device control
entry. All routines return with De containing a result code.

You specify whether a routine will be executed synchronously or
asynchronously by clearing or setting bit 19 of the routine trap
instruction, as described in the Using Assembly Language manual
*** doesn't exist yet***•

2/nn/84 Hacker CONFIDENTIAL /DHGR/DEVICE.R

7-11

7-12

12 Device Manager Programmer's Guide

Routine Parameters ~cl
The lengthy, variable-length data structure of a parameter block is
given below. The~ File HanagerAuse\thia aame data
structure, but only the parts relevant to the Device Manager are
discussed here. Each kind of parameter block contains eight fields of
standard information and two to nine fields of additional information:

TYPE ParamBlkType • (ioParam, fileParam, volumeParam, controlParam);

ParamBlockltec • RECORD
ioLink: Ptr;
ioType: INTEGER;
ioTrap: INTEGER;
ioCmdAddr: Ptr;
ioCompletion: ProcPtr;
iolteault: OSErr;
ioNamePtr: OSStrPtr;
ioVRefNum: INTEGER;
CASE ParamBlkType OF

ioParam:

{next queue entry}
{always 5}
{routine trap}
{routine address}
{completion routine}
{result code}
{driver name}
{not used}

••• {I/0 routine parameters}
fileParam:

END;

••• {file information routine parameters}
volumeParam:
••• {volume information routine parameters}
controlParam:
••• {Control and Status routine parameters}

ParmBlkPtr • ·ParamBlockRec;

The first four fields in each parameter block are handled entirely by
the Device Manager, and moat programmers needn't be concerned with
them; programmers who are interested in them should see the section
"The Structure of a Driver".

IOCompletion contains the address of a completion routine to be
executed at the end of an asynchronous call; it should be NIL for
asynchronous calls With no completion routine, and is automatically set
to NIL for all synchronous calla. For-asynchronous calls, ioResult is
positive while the routine is executing, and returns the result code.

IONamePtr is a pointer to the name of a driver.

An 8-field parameter block is adequate for opening a driver, but aost
of the Device Manager routines require longer parameter blocks, as
described below. The parameters used with file and volume information
routines are described in the File Manager manual.

Control and Status routines use two additional fields:

2/nn/84 Hacker CONFIDENTIAL /DMGR/DEVICE.R

DEVICE MANAGER ROUTINES 13

controlParam:
csCode: INTEGER; {type of Control or Status call}
caParam: OpParamType; {control or status information}

CSCode contains a number identifying the type of call. Thia number may
be interpreted differently by each driver. CSParam contains the
control or status information for the call.

1/0 routines use seven additional fields:

ioParam:
ioRefNum:
ioVersNum:
ioPermssn:
ioMisc:
ioBuffer:
ioReqCount:
ioActCount:
ioPosMode:
ioPosOff set:

INTEGER;
SignedByte;
Signed Byte;
Ptr;
Ptr;
Longlnt;
Longint;
INTEGER;
Longint;

{driver reference number}
{not used}
{read/write permission}
{not used}
{data buff er}
{requested number of bytes}
{actual number of bytes}
{type of positioning operation}
{size of positioning offset}

IOPermssn requests permission to read from or write to a driver:

lOPermssn

" 1
2
3

1/0 operation
Whatever the driver is capable of doing
Reading only
Writing only
Reading and writing

This request is compared with the capabilities of the driver (some
drivers are read-only, some are write-only). If the driver is
incapable of performing as requested, an error will be returned.

IOBuffer points to an application's data buffer into which data is
written by Read calls and from which data is read by Write calls.
IOReqCount specifies the requested number of bytes to be read or
written. IOActCount contains the number of bytes actually read or
written.

Advanced programmers: IOPosMode and ioPosOffset contain positioning
information used for 'Read and Write calls by drivers of block devices.
Bits I and 1 of ioPosMode indicate a byte position beyond the physical
beginning of the block-formatted medium (such as a disk):

IOPosHode Offset

" None
1 Relative to beginning of device
2 None
3 Relative to current position

IOPosOffset specifies the byte offset beyond ioPosMode where the
operation is to be performed.

2/nn/84 Hacker CONFIDENTIAL /DMGR/DEVICE.R

7-13

7-14

14 Device Manager Programmer's Guide

Routine Deacriptions

This section describes the procedures and functions. Each routine
description includes the low-level Pascal form of the call and the
routine's assembly-language macro. A list of the fields in the
parameter block affected by the call is also given.

Assembly-language.!!!!!,!= The field names given in these
descriptions are those of the ParamBlockllec data type; see
"Summary of the Device Manager" for the equivalent
assembly-language equates.

The number next to each parameter name indicates the byte offset of the
parameter from the start of the parameter block pointed to by Ae; only
assembly-language programmers need be concerned with it. An arrow
drawn next to each parameter name indicates whether it's an input,
output, or input/output parameter:

Arrow
~-~
~~

2/nn/84 Hacker

Meaning
Parameter is passed to the routine
Parameter is returned by the routine
Parameter is passed to and returned by the routine

CONFIDENTIAL /DMGll/DEVICE.R

;

DEVICE MANAGER ROUTINES 15

FUNCTION PBRead (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro

Parameter block
-E--
-~
t--
-E--
-E---~
-E--
-E-~

Result codes

Read -
12 ioCompletion pointer
16 ioResult vord
24 ioRefNum word
32 ioBuffer pointer
36 ioReqCount long word
4G ioActCount long word
44 ioPosMode word
46 ioPosOffaet long word

noErr
badUnitErr
dSIOCoreErr
notOpenErr
unitEmptyErr
readErr

No error
Bad reference number
Device control entry was purged
Driver isn't open
Bad reference number
Driver isn't enabled for read
calls

PBRead attempts to read ioReqCount bytes from the driver having the
reference number ioRefNum, and transfer them to the data buffer pointed
to by ioBuffer. After the read operation is completed, the number of
bytes actually read is returned in ioActCount.

Advanced programmers: lf the driver is reading from a block device,
the byte offset from the position indicated by ioPosMode, where the
read should actually begin, is given by ioPosOffset.

2/nn/84 Hacker CONFIDENTIAL /DMGll/DEVICE.ll

7-15

7-16

16 Device Manager Programmer's Guide

FUNCTION PBWrite (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro

Parameter block
~-
~

+--
~

~---~
~
~-

Result codes

_Write

12 ioCompletion pointer
16 ioResult word
24 ioRefNum word
32 ioBuffer pointer
36 ioReqCount long word
41 ioActCount long word
44 ioPosMode word
46 ioPosOffset long word

noErr
badUnitErr
dSIOCoreErr
notOpenErr
unitEmptyErr
writErr

No error
Bad reference number
Device control entry was purged
Driver isn't open
Bad reference number
Driver isn't enabled for write
calls

PBWrite attempts to take ioReqCount bytes from the buffer pointed to by
ioBuffer and write them to the driver having the reference number
ioRefNum. After the write operation is completed, the number of bytes
actually written is returned in ioActCount•

Advanced programmers: If the driver is writing to a block device,
ioPosMode indicates whether the write should begin relative to the
beginning of the device or the current position. The byte offset from
the position indicated by ioPosMode, where the read should actually
begin, is given by ioPosOffset.

2/nn/84 Hacker CONFIDENTIAL /DKGR./DEVICE.R

DEVICE MANAGER ROUTINES 17

FUNCTION PBControl (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro

Parameter block
~-
~

~-
+--~-

Result codes

Control

12 ioCompletion pointer
16 ioResult
24 iollefNum
26 caCode
28 caParam

noErr
badUnitErr
dSIOCoreErr
notOpentrr
unitEmptyErr
controlErr

word
word
word
record

No error
Bad reference number
Device control entry was purged
Driver isn't open
Bad reference number
Driver isn't enabled for control
calls

PBControl sends control information to the driver having the reference
number refNum. The type of information sent is specified by csCode,
and the information itself is pointed to by csParam. The values passed
in csCode and pointed to by csParam depend on the driver being called.

FUNCTION PBStatus (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro

Parameter block
+--
~
+--
+--
t-

Reault codes

_Status

12 ioCompletion pointer
16 ioResult
24 ioRefNum
26 csCode
28 csParam

noErr
badUnitErr
dSIOCoreErr
notOpenErr
unitEmptyErr
status Err

word
word
word
variable

No error
Bad reference number
Device control entry was purged
Driver isn't open
Bad reference number
Driver isn't enabled for status
calls

PBStatus returns status information about the driver having the
reference number refNum. The type of information returned is 1pecifted
by csCode, and the information itself is pointed to by csParam. The
values passed in csCode and pointed to by csParam depend on the driver
being called.

2/nn/84 Hacker CONFIDENTIAL /DKG'R/DEVICE.R

7-17

7-18

18 Device Manager Programmer's Guide

FUNCTION PBKilllO (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro

Parameter block
~--~ ~-
~-
~--

Result codes

_Kill IO

12 ioCompletion pointer
16 iollesult
24 ioRefNum
26 csCode
28 csParam

noErr
badUnitErr
dSIOCoreErr
unitEmptyErr
controlErr

word
word
word
variable

No error
Bad reference number
Device control entry was purged
Bad reference number
Driver isn't enabled for control
calls

FSKillIO stops any current I/0 request being processed, and removes all
pending 1/0 requests from the 1/0 queue of the driver having the
reference number refNum. The completion routine of each pending 1/0
request is executed. -

TH.E STRUCTURE OF A DRIVER

This section and the next describe the structure of drivers and how to
write device drivers. If this information doesn't interest you, skip
ahead to the summary.

1AM drivers are stored in resource files. Drivers that will be used by
more than one application should be stored in the system resource file,
while those specific to an application should be stored in the
application's resource file.

The resource type for drivers is 'DRVR'. The resource ID for a driver
is its unit number (explained below) and should be between 9 and 31
inclusive. (The resource ID for a desk accessory must be greater than
11.) Don't use numbers of existing drivers unless you want the
existing driver to be replaced. The resource name should match the
driver name. (The resource name for a desk accessory must contain a
nonprinting character.)

As illustrated in Figure 2, a driver begins with a few words of flags
and other data, followed by offsets to the routines that do the work of
the driver, an optional title, and finally the routines themselves.

2/dd/84 Hacker CONFIDENTIAL /DEVICE.D

THE STRUCTURE OF A DRIVER 19

crwf lags ..,,crd by1e O flaQs

crvr{)elay ..,,crd 2 rurrt,er of ticks between SystemTaek calls

crvrEMask ..,,crd 4 desk accessory event mask

crv, Men, ..,,crd 6 meru ID of meru associated ..,,ith criver

crvr()pen'<tlcrd 8 offset to open routine

crYrPri me ..,,crd 1 O offset to prime routine

c:trvret I ..,, crd 12 offset to control routine

crYrStatus ..,, crd 1 4 offset to status routine

ct-vrelose "'crd 16 offset to close routine

crvr-Name '<tlord 1 8 length byte cn:I chcracteNt of criver name

"'~ criver code ~r

Figure 2. Driver Structure

The drvrFlags word contains the following:

Flag
bit 8
bit 9
bit 1e
bit 11
bit 12

bit 13

bit 14

Name
ciieadEnable
dWritEnable
dCtlEnable
dStatEnable
dNeedGoodBye

dNeedTime

dNeedLock

Meaning if set
Driver enabled for Read calls
Driver enabled for Write calls
Driver enabled for Control calls
Driver enabled for Status calls
Driver needs to be called prior to
application heap compaction&
Driver needs time for performing a
periodic action
Driver will be locked in memory as soon
as it's open~d (always set for ROH drivers)

Bits 8 through 11 are the enable flags for the driver routines. Each
flag that corresponds to a Device Manager call that the driver can
respond to must be set.

RAM drivers that exist on the application heap will be destroyed every
time the heap is compacted (when an application starts up, for
example). If dNeedGoodBye is set, the control routine of the driver
will be called before the heap is compacted, and the driver can perform
any "clean-up" actions it needs to. The driver's control routine can
identify this "good-bye" call by checking the csCode parameter--it will
be -1.

2/dd/84 Hacker CONFIDENTIAL /DEVlCE.D

7-19

7-20

20 Device Manager Programmer's Guide

If the dNeedTime flag is set, the drvrDelay word contains a tick count
indicating how often the periodic action should occur. A tick count of
9 means it should happen as often as possible, 1 means it ahould happen
every 69th of a second, 2 means every 39th of a second, and ao on. The
action itself is performed by the control routine of the driver when
it's called by the Device Manager procedure SystemTask. The driver's
control routine can identify this periodic-action call by checking the
csCode parameter-it will be accRun. Normally only desk accessories
will use dNeedTime and drvrDelay.

DrvrEMask is used only for desk accessories and is discussed in the
Desk Manager manual. If the driver has its own menu (or menus),
drvrMenu contains the ID of the menu (or one of the menus); otherwise
it contains e. Normally only desk accessories have menus.

Following these four words are the offsets to the driver routines, a
title for the driver (preceded by its length in bytes), and the
routines that do the work of the driver.

A Device Control Entry

The first time a driver is opened, information about it ls read into a
structure in memory called a device control entry. A device control
entry tells the Device Manager the location of the driver's routines,
the location of the driver's 1/0 queue, and other information. A
device control entry is a 49-byte relocatable block located in the
system communication area of the heap. It's locked while the driver is
open, and unlocked and purgeable while the driver is closed.

The structure of a device control entry is illustrated in Figure 3.
Notice that some of the data is taken from the first four words of the
driver. Most of the data in the device control entry is stored and
accessed only by the Device Manager, but in some cases the driver
itself must store into it.

2/dd/84 Hacker CONFIDENTIAL /DEVICE.D

byte 0

4

6

8

12

16

20

24

26

30

3'4

36

38

dCtlOriver long von:I

dCtl Flags v orcl

dCtlQueue Vorel

dCtlCtfead pointer

dCtlQTall pointer

dCtlPositicn long von:I

dCtlStoraoe hm'ldle

dCtl RefttJm Verd

dCtlO.rTicks long von:I

dCltWindov pointer

dCtl Delay von:I

dCtlEMask von:I

dCtl Meru vord

THE STRUCTURE OF A DRIVER 21

pointer to ROM criver er
t-a.ctle to RAM er iver

flaos

not used

pointer to first entry in criver's 1/0 queue

pointer to last entry in criver's I /0 queue

byte position used by Read and Write calls

t-a.ctle to criver's private storage

criver's refet -euc:e ,.,,mber

COl.l'lter for ti mini_ .;ystemTask calls

pointer to .criver's vlndov record (if rnt)

oomber of ticks between SystemTask calls

de8k accessrry event ffl08 k

menu ID of men., associated vith ct-iver

Figure J. Device Control Entry

The dCtlFlags word contains the following (bits 8 through 14 are copied
from the drvrFlags word of the driver):

Flag
bit 5
bit 6
bit 7
bit 8
bit 9
bit lG
bit 11
bit 12

bit 13

bit 14

Name
dOpened
dllAKBaaed
drvrActive
dlleadEnable
dWritEnable
dCtlEnable
dStatEnable
dNeedGoodBye

dNeedTime

dNeedLock

Meaning if set
Driver is open
Driver is RAM-baaed
Driver is currently executing
Driver enabled for llead calls
Driver enabled for Write calls
Driver enabled for Control calls
Driver enabled for Status calls
Driver needs to be called prior to
application heap compaction&
Driver needs time for performing a
periodic action
Driver will be locked in •mory as
soon as it's opened (always set for
ROM drivers)

DCtlPosition is used only by drivers of block devices, and indicates
the current source or destination position of a Read or Write call.

2/dd/84 Hacker CONFIDENTIAL /I>EVICE.D

7-21

7-22

22 Device Manager Programmer's Guide

The position is given in number of bytes beyond the physical beginning
of the medium uaed by the device. For example, if one logical block of
data has just been read from a 3 1/2-inch disk via the Diak Driver,
dCtlPosition would be 512.

ROH drivers generally use low-memory reserved locations for their local
storage. RAM drivers may reserve space within their code space, or
allocate a relocatable block and keep a handle to it in dCtlStorage
(this memory is locked when the driver is opened, and unlocked when the
driver is closed).

DCtlCurTicka is used by the Device Manager to time SystemTaak calls (if
any were indicated by the dNeedTime flag in the driver).

The Unit Table

The location of each device control entry is maintained in a list
called the unit table. The unit table 11 a 128-byte relocatable block
containing 'j'f"'i"-byte entries. Each entry has a number, from I to 31,
called the unit number, and contatns a handle to the device control
entry for adriver. The unit number can be used as an index into the
unit table to locate the handle to a specific.driver's device control
entry; it's equal to minus (the driver's reference number - 1). For
example, the Sound Driver's reference number is -4, its resource ID is
3.

Figure 4 shows the layout of the unit table created at startup time
with the standard Macintosh drivers.

2/dd/84 Hacker CONFIDENTIAL /DEVICE.D

'

byte 0

4

8

12

16

20

241

28

32

48

52

56

60

641

68

72

124

THE STRUCTURE OF A DRIVER 23

not~

not used

Printer Driver

Scu,d Driver

Disk Driver

Serial Driver port A ll'l)Ut

Serial Driver pert A output

Serial Driver pert B ifl)Ut

Serial Driver port B output

4~ not used

Cclculatcr

Alcrm Clock

KeyCaps

Puzzle

Note Pad

SU'Q)book

Control Panel

~' not~

not used

Figure 4. The Unit Table

~r

"'it 1'1.1 ni>er 0

1

2

3

4

s
6

7

8

12

13

14

15

16

17

18

r
•

31

Assembly-language .!!,2!!.= The system global uTableBaae points to
the unit table.

Each driver contains an Jl.S1. queue with a list of routines to be
executed by the driver. There'• one I/0 queue for each device driver

2/dd/84 Hacker CONFIDENTIAL /DEVICE.D

7-23

7-24

24 Device Manager Programmer's Guide

(Figure 5). The queue's header is located in the device control entry
for the driver.

dCt IQueue "'crd

dCtlHead pointer .. ,

dCtlTail pointer -
queue header in

dev ice control entry

i ol.i'* pointer

ioType word
ioTrep word
ioCmdAddr
lang word

rest of
par-ameter

block

first queue
entry

_ _...
~ ... , ioli'* pointer

ioType word
ioTrep word

ioCmdAddr
long word

rest of
pcrameter

block

last queue
entry

Figure 5. 1/0 Queue Structure

DCtlHead points to the first entry in the queue, and dCtlTail points to
the last entry in the queue. Each queue entry consists of a parameter
block for the routine called--an abbreviation of which is given below:

TYPE ParamBlockRec • RECORD
ioLink:
ioType:
ioTrap:
ioCmdAddr:

• • •
END;

Ptr;
INTEGER;
INTEGER;
Ptr;

(next entry}
(always ioQType}
(routine trap}
{rest of block}

IOLink points to the next entry in the queue, and ioType indicates the
queue type, which must be the value of the system global ioQType or 2.
IOCmdAddr contains the address of the Device Manager routine called.
IOTrap contains the trap (of the form $AXnn) of the routine called.
The following system globals identify Device Manager traps:

!!!!.
aRdCmd
aWrCmd
aCtlCmd
aStsCmd

2/dd/84 Hacker

Value
2
3
4
5

Trap
$A002
$AG03
$.\004
$.\005

Routine
Read
Write
Control
Status

CONFIDENTIAL /DEVICE.D

J

WRITING YOUR OWN DEVICE DRIVERS 25

WRITING YOUR OWN DEVICE DRIVERS

Thia section describes what you'll need to do to write your own device
driver. The structure of the driver must match that shown in the
previous section. The routines that do the work of the driver should
be written to operate the device in whatever way you require.

Your driver must contain routines to handle Open and Close calls, and
may choose to handle lead, Write, Control, Status, and KilllO calls as
well. The driver routines that the Device Manager will execute when
one of these calls is made are as follows:

Device Manager call
Open
Read
Write
Control
KillIO
Status
Close

Driver routine
Open
Prime
Prime
Control
Control
Status
Close

When the Device Manager executes a driver routine to hanale an
application call, it passes a pointer to the cell's parameter block in
A0, a pointer to the driver's device control entry in Al, and e in 1)0.
From this information, the driver can determine exactly what operations
are required to fulfill the call's requests, and do them.

Open and close routines must be executed synchronously. They needn't
preserve any registers that they use. Open and Close routines should
place a result code in Di! and return via an RTS.

The open routine must allocate any private storage required by the
driver, store a handle to it in the device control entry (in the
dCtlStorage field), initialize any local variables, and then be ready
to receive a lead, Write, Status, Control, or KillIO call. It might
also install interrupt handlers, change interrupt vectors, and store a
pointer to the device control entry somewhere in its local storage for
its interrupt handlers to use. The close routine 111USt reverse the
effects of the open routine, by deallocating all used memory, removing
interrupt handlers, and replacing changed interrupt vectors. If
anything about the operational state of the driver should be saved
until the next time the driver is opened, it should be kept in the
relocatable block of memory pointed to by dCtlStorage.

Prime, control, and status routines are queueable (in other vords, they
can be executed asynchronously), and should be interrupt-driven. They
can use registers A0 to A3 and DG to D3, but must preserve any other
registers used. Prime, control, and status routines should place a
result code in De and return via an RTS, unless the device completes
the 1/0 request immediately, in which case they should JMP to the
lODone routine (explained below).

2/dd/84 Hacker CONFIDENTIAL /DEVICE.D

7-25

7-26

26 Device Manager Programmer's Guide

(eye)
Because they can be called as the result of an interrupt
during a previous 1/0 request, these routines should
never call Memory Manager routine& that cause heap
compactions.

The prime routine must implement all Read and Write calls made to Che
driver. You may want to use the Fetch and Stash routines described
below to read and write characters. If the driver is for a block
device, it should update the dCtlPosition position after each read or
write. The control routine must accept the control information passed
to it, and manipulate the device as requested. The status routine must
return requested status information. NJ both the control and status
routines may be subjected to Control and Status calls sending and
requesting a variety of information, they must be prepared to respond
correctly to all types.

Routines For Writing Drivers

The Device Manager includes three routines that provide low-level
functions for drivers: Fetch, Stash, and IODone. Include them in the
code of your device driver if they're useful to you. Fetch, Stash, and
IODone are invoked via jump vectors rather than macros (in the interest
of speed). These routines don't return a result code, as the only
result possible is dSIOCoreErr, which invokes the System Error Handler.

2/dd/84 Racker CONFIDENTIAL /DEVICE.D

WllitING YOUR OWN DEVICE DRIVERS 27

FUNCTION Fetch (paramBlock: ParmBlkPtr; aaync: BOOLEAN) : OSErr;

Jump vector

~ entry

Parameter block
~
~
t--
t-
-E--
~

jFetch

Al: pointer to device control entry

1)1.1: character fetched; bit 15•1 if it's the
last character in the data buffer

12 ioCompleUon pointer
16 ioResult word
24 iollefNum word
32 ioBuffer pointer
36 ioReqCount long vord
41 ioActCount long word

Fetch gets the next character from the data buffer pointed to by
ioBuffer and places it in 1)1.1. IOActCount ta incremented by 1. If
ioActCount equals ioReqCount, bit 15 of De is set. After receiving the
last byte requested, the driver should call IODone.

FUNCTION Stash (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Jump vector jStash

~ entry AQI: pointer to device control entry
1)1.1 : character to stash

~!!!!. 1)1.1 : bit 15•1 if it'• the last character
requested

Parameter block
~ 12 ioCompleUon pointer
~ 16 ioResult word
t-- 24 iollefNum word
t- 32 ioBuffer pointer
t- 36 iolleqCount long vord
t- ., ioActCount long word

Stash places the character in DI into the data buffer pointed to by
ioBuffer, and increments ioActCount by 1. If ioActCount equals
ioReqCount, bit 15 of DI is set. After stashing the last byte
requested, the driver ahould call IOI>one.

2/dd/84 Hacker CONFIDENTIAL /DEVICE.D

7-27

7-28

28 Device Manager Programmer's Guide

FUNCTION IODone (paramBlock: ParmBlkPtr; aaync: BOOLEAN) : OSErr;

Jump vector

.Q!!. entry

On exit --
Parameter block

~
~

~-
~

~-
~

Result codes

jlODone

Al: pointer to device control entry

Del: bit 15•1 if it's the last character
in the buffer

12 ioCompletion pointer
16 ioResult
24 ioRefNum
32 ioBuffer
36 ioReqCount

4" ioActCount

noErr
resErr

word
word
pointer
long word
long word

No error
Can't load driver from resource
file

unitEmptyErr Reference number specifies NIL
handle in unit table

IODone removes the current 1/0 request from the driver's 1/0 queue, and
executes the completion routine (if there's one). It marks the driver
inactive, and unlocks it and its device control entry (if it's allowed
to by the dNeedLock bit of the dCtlFlags word). Then it begins
executing the next 1/0 request in the 1/0 queue.

Interrupts

This section discusses interrupts: how the Macintosh uses them, and
how you can use them if you're writing your own device driver. Only
programmers who want to write their own interrupt-drivh device drivers
need read this section. Programmers who want to build their own driver
on top of a built-in Macintosh driver may be interested in some of the
information presented here.

An interrupt is a form of exception: an error or abnormal condition
detected by the processor in the course of program execution.
Specifically, an interrupt is an exception that is signaled to the
processor by a device, as distinct from a trap, which arises directly
from the execution of an instruction. Interrupts are used by devices
to nottfy the processor of a change in condition of the device, auch as
the completion of an 1/0 request. An interrupt causes the processor to
suspend normal execution. save the address of the next inatructlon and
the processor's internal status on the stack. and execute an interrupt
handler.

The 68989 recognizes seven different levels of interrupts, each with
its own interrupt handler. The addresses of the various handlers,
called interrupt vectors, are kept in a vector table in the system

l/dd/84 Hack.er CONFIDENTIAL /DEVICE.D

J

WRITING YOUR OWN DEVICE DRIVERS 29

communication area. Each level of interrupt has its own vector found
at a definite fixed location in the vector table. When an interrupt
occurs, the processor fetches the proper vector from the table, uses it
to locate the interrupt handler for that level of interrupt, and jumps
to the handler~ On completion, the handler exits with an RTE
instruction, which restores the internal state of the processor from
the stack and resumes normal execution from the point of suspension.

There are three devices that can create interrupts: the Synertek 6522
Versatile Interface Adapter (VIA), the Zilog 8531 Serial Communications
Controller, and the debugging switch. They send a 3-bit number, from 0
to 7, called the interrupt priority level, to the processor. The
interrupt level indicates which device is interrupting, and indicates
which interrupt handler should be executed:

Level
~
1
2
3

4-7

Interrupting device
None
VIA
sec
Spurious
Debugging button

A level-3 interrupt occurs when both the VIA and sec interrupt at the
same time; the interrupt handler for a level-3 interrupt is simply an
RTE instruction. Debugging interrupts shouldn't occur during the
normal execution of an application.

The interrupt priority level is compared with the processor priority in
bits 8, 9, and 10 of the status register. If the interrupt priority
level is greater than the processor priority, the 68999 acknowledges
the interrupt and initiates interrupt processing. The processor
priority determines which interrupting devices are ignored, and which
are serviced:

Level
G
1

3-6
7

Services
All interrupts
sec and debugging interrupts only
Debugging interrupts only
No interrupts

When an interrupt is acknowledged, the processor priority is set to the
interrupt priority level, to prevent additional interrupts of equal or
lower priority, until the interrupt handler has finished servicing the
interrupt.

The interrupt priority level is used as an index into the priaary
interrupt vector table. This table contains 7 long words beginning at
address $64. Each long word contains the starting address of an
interrupt handler (Figure 6).

2/dd/84 Hacker CONFIDENTIAL /DEVlCE.D

7-29

7-30

30 Device Manager Programmer's Guide

autolnt1 164 pointer to level-1 interrt4)t handler

autolnt2 868 pointer to level-2 internc>t handler

·autolnt3 l6C pointer to level-3 inter-M4>t handler

autolnt4 170 pointer to level-4 int~t handler

autolntS 174 pointer to leYel-5 interr-'4)t hcnfler

autolnt6 $78 pointer to leYel-6 internc>t handler

autolnt7 S?C pointer to level-7 interrt4)t handler

Figure 6. Primary Interrupt Vector Table

6. Execution jumps to the interrupt handler at the address specified
in the table.

The interrupt handler then must identify and service the interrupt, and
restore the processor priority, status register, and program counter to
the values they contained before the interrupt occurred.

Level-1 (,!!!) Interrupts

Level-1 interrupts are generated by the VIA. You'll need to read the
Synertek manual describing the VIA to use most of the information
provided in this section. The level-1 interrupt handler determines the
source of the interrupt (via the VIA's IFR and IER registers) and then
uses a table of secondary vectors in the system communication area to
determine which interrupt handler to call (Figure 7).

2/dd/84 Hacker CONFIDENTIAL /DEVICE.D

byteO

4

8

12

16

20

24

28

WRITING YOUR OWN DEVICE DRIVERS 31

one-second lnter'l'i4)t

vertical-retrace lnterr\4>t

shift-NQiSter internc,t

not used

not used

T2 ti mer: Disk Driver

T1 timer: SCUld Driver

sprious (shouldn't ocar)

VIA CAZ comrol line

VIA CA 1 control line

VIA ahift r-eQiSter

VIA timer 1

VIA timer 2

Figure 7. Level-1 Secondary Interrupt Vt~tor Table

The level-1 aecondary interrupt vector table is pointed to by the
system global lvllDT. Each vector in the table points to the interrupt
handler for a different aource of interrupt. The interrupts are
handled in order of their entry in the table, and only one interrupt
handler is called per level-1 interrupt (even if two or aore sources
are interrupting). This allows the level-1 interrupt handler to be
reentrant, and interrupt handlers should lover the processor priority
as soon as possible in order to enable other pending interrupts to be
processed.

One-second interrupts occur every aecond, and aimply update the system
global time. Vertical retrace interrupts are generated once every
vertical retrace interval; control is passed to the Vertical Retrace
Manager, which updates the aystem global ticks, handles changes in the
state of the cursor, keyboard, and 110use button, and executes tasks
installed in the vertical retrace queue.

Whenever the Disk Driver or Sound Driver aren't being used, you can use
the Tl and T2 tiaera for your own needs.

lf the cumulative elapsed time for all tasks on a level-1 interrupt
exceed 16msec (one video frame), a level-1 interrupt may itself be
interrupted by a vertical retrace interrupt. In this case, the
vertical retrace interrupt is cleared, and the vertical retrace tasks
are ignored.

The base address of the VIA (the aystem global vlaae) is paaaed to each
interrupt handler in Al.

2/dd/84 Hacker CONFIDENTIAL /DEVICE.D

7-31

7-32

32 Device Manager Programmer's Guide

Level-2 (~) Interrupts

Level-2 inter~pts are generated by the sec. You'll need to use the
Zilog aanual describing the VIA to effectively use the information
provided in this section. The level-2 interrupt handler determines the
source of the interrupt, and then uses a table of secondary vectors in
the system communication area to determine which interrupt handler to
call (Figure 8).

byte 0

-4

8

12

16

zo
241

28

ctO'I iel B transmit buffer en,:,ty

chcl1iel B external/status change

chclinel B receive chcracter available

~I B special receive concllti on

chclinel A tnmmit buffer en,>ty

chminel A external/status change

chamel A receive chcracter available

chclnel A special receive condition

mouse vertical

mouse horizontal

Figure 8. Level-2 Secondary Interrupt Vector Table

The level-2 secondary interrupt vector table is pointed to by the
system global lvl2DT. Each vector in the table points to the interrupt
handler for a different aource of interrupt. The interrupts are
handled accordiq to the following fixed priority:

channel A receive character available and special receive
channel A transmit buffer empty
channel A external/status change
channel B receive character available and special receive
channel B transmit buffer empty
channel B external/status change

Only one interrupt handler is called per level-2 interrupt (even if two
or more sources are interrupting). Thia allows the level-2 interrupt
handler to be reentrant, and interrupt handlers should lower the
processor priority as soon as possible in order to enable other pending
interrupts to be processed.

External/status interrupts pass through a tertiary vector table (Figure
9) in the system communication area to determine which interrupt
handler to call (Figure 9).

2/dd/84 Hacker CONFIDENTIAL /t>EVICE.D

WRITING YOUR OWN DEVICE DRIVERS 33

byte O chm'nl B nonmouse intern.c,t

4 m0U8e vertical int.-,,.,t

8 chaniel A nonmouse in~t

1 z mouse horizontal internc>t

Figure 9. Level-2 External/Status Interrupt Vector Table

The external/status interrupt vector table is pointed to by the system
global extStsDT. Each vector in the table points to the interrupt
handler for a different source of interrupt. Nonmouse interrupts
(break/abort, for example) always handled before mouse interrupts.

When a level-2 interrupt handler is called, De points to the sec read
register G (external/status interrupts only), and Dl ~oints to the SCC
read register G containing the changed bits since the last
external/status interrupt. AG points to the sec channel A or channel B
control read address and Al points to sec channel A or channel B
control write address, depending on which channel ts interrupting. The
SCC's data read address and data write address are located 4 bytes
beyond At and Al, respectively. The following system globals can be
used to refer to these locations:

S1stem global Value Refers to
sccRBase $9FFFF8 Base read address
sccWBase $BFFFF9 Base write address
bCtl " Offset for channel B control
aCtl 2 Offset for channel A control
bData 4 Offset for channel B data
aData 6 Offset for channel A data

Writing Your Own Interrupt Handlers

You can write your own interrupt handlers to replace any of the
standard interrupt handlers just described. Be sure to place an
interrupt vector that points to your interrupt handler in one of the
interrupt vector tables.

Both the level-1 and level-2 interrupt handlers preserve All through A3
and De through D3. Every interrupt handler (except for external/status
interrupt handlers) is responsible for clearing the source of the
interrupt, and for saving and restoring any additional registers used.
Interrupt handlers should return directly via an RTS, or, if the 1/0
requested by the handler is completed immediately, via a JMP to IODone.

2/dd/84 Hacker CONFIDENTIAL /DEVICE.D

7-33

7-34

34 Device Manager Programmer'• Guide

(hand)
Any software action indicating that interrupts are being
enabled should be taken before the corresponding hardware
action, lest an interrupt occur before the software has
been told such an event is possible.

Any software action indicating that interrupts are being
disabled should be taken after the corresponding hardware
action, lest one interrupt slip in with the software
thinking that interrupts are off.

A Sample Driver

Here's the skeleton of the Disk Driver, as an example of how a driver
should be constructed •

SonyDrvr

•

.WORD

.WORD

.WORD

$4F0G
e,G
e

;Entry-point offset table

.WORD

.WORD

.WORD

.WORD

.WORD

•
•

;Disk Driver routines

DiskOpen MOVEQ
•••

DiskR.TS llTS
•••

DiskDone JMP
•••

DiskControl HOVE.L
•••

DiskStatus MOVEQL
•••

DiskPrime KOVE.L
•••

2/dd/84 Rack.er

DiskOpen-DiskDrvr
DiskPrime-DiskDrvr
DiskControl-DiskDrvr
DiskStatus-DiskDrvr
DiakR.TS-DiskDrvr

l<DiskVarLth/2>,De

lODone

JControl,-(SP)

IStatusErr,1)(1

JDiskPrime, (-SP)

CONFIDENTIAL

;read, write, control •••
;no delay or event mask
;no menu

;open
;prime
;control
;status
;close (just R.TS)

/DEVICE.D

SUMMARY OF THE DEVICE MANAGER 37

SUMMAllY OF THE DEVICE MANAGER

Constants

CONST goodByeCode • -1;

Data Structures

TYPE ParmBlkPtr • AParamBlockRec;

ParamBlkType • (ioParam, fileParam, volumeParam, controlParam);

ParamBlockRec • RECORD
ioLink: Ptr;
ioType: INTEGER;
ioTrap: INTEGER;
ioCmdAddr: Ptr;
ioCompletion: ProcPtr;
ioResult: INTEGER;.
ioNamePtr: OSStrPtr;
ioVRefNum: INTEGER;

CASE ParamBlkType OF
ioParam:
fileParam:
volumeParam:
controlParam:

END;

TYPE OpVariant • (sound, asyncllst, asyncinBuff, asyncShk, printer,
fontHgr, diskDrv, asyncBuffBytes, asyncStatus,
diskStat);

2/nn/84 Hacker CONFIDENTIAL /DHGR/DEVICE.S

7-37

7-38

TYPE OpParamPtr • ·opParamType;

OpParamType • RECORD
CASE OpVariant OF

{control information}
sound:

(sndVal: INTEGER);
asyncRst:

(asncConfig: INTEGER);
asyncinBuff:

(asncBPtr: Ptr;
asncBLen: INTEGER);

asyncShk:
(asncRndShk: Longint;
asncMisc: Longint);

printer:
(paraml:
param2:
param3:

fontMgr:

Longint;
Longlnt;
Longint);

(fontRecPtr: Ptr;
fontCurDev: INTEGER);

diskDrv:
(diskBuff : Pt r) ;

{status information}
asyncBuffBytes:

(asyncNBytes: Longlnt);
asyncStatus:

(asncSl: INTEGER;
asncS2: INTEGER;
asncS3: INTEGER);

disk.Stat:

{Sound Driver}

{Async Driver}

{Printer Driver}

{Font Manager}

{Disk Driver}

{Async Driver}

{Disk Driver}
(dskTrackLock:
dskinfoBits:
dskQElem:
dskPrime:
dskErrCnt:

INTEGER;
Longint;
drvrQElllec;
INTEGER;
INTEGER);

END;

Routines For Opening and Closing Drivers

FUNCTION OpenDriver (fileName: OSStr2SS; VAR refNum: INTEGER)
FUNCTION CloseDriver (refNum: INTEGER) : OSErr;

OSErr;

2/nn/84 Hacker CONFIDENTIAL /DMGR/DEVICE.S

,

SUHMAllY OF THE DEVICE MANAGER 39

High-Level Routines

FUNCTION FSRead (refNum: INTEGER; VAll count: Longlnt; buffPtr: Ptr)
: OSErr;

FUNCTION FSWrite (refNum: INTEGER; VAll count: Longlnt; buffPtr: Ptr)
: OSErr;

FUNCTION FSControl (refNum: INTEGER; opCode: INTEGER; opParams:
OpParamPtr) : OSErr;

FUNCTION FSStatus (refNum: INTEGER; opeode: INTEGER; VAll opPara11&:
OpParamPtr) : OSErr;

FUNCTION FSKilllO (refNum: INTEGER) : OSErr;

Low-Level Routines

FUNCTION PBRead (paramBlock: ParmBlkPtr; async: BOOLEAN) . OSErr; .
FUNCTION PBWrite (paramBlock: ParmBlkPtr; aaync: BOOLEAN) . OSErr; .
FUNCTION PBControl (paramBlock: ParmBlkPtr; aaync: BOOLEAN) . OSErr; .
FUNCTION PBStatus (paramBlock: ParmBlkPtr; async: fJOLEAN) . OSErr; .
FUNCTION PBKillIO (paramBlock.: ParmBlkPtr; aaync: IJOLEAN) . OSErr; .

Routines For Writing Drivers

FUNCTION Fetch (paramBlock: ParmBlkPtr; async: BOOLEAN)
FUNCTION Stash (paramBlock: ParmBlkPtr; async: BOOLEAN) :

OSErr;
OSErr;
OSErr; FUNCTION lODone (paramBlock: ParmBlkPtr; async: BOOLEAN)

Assembly-Language Information

Constants

ioQType .EQU 2 ;l/0 request queue entry type
aRdCmd .EQU 2 ;ioTrap type for Read call
aWrCmd .EQU 3 ;ioTrap type for Write call
aCtlCmd .EQU 4 ;ioTrap type for Control call
aStsCmd .EQU 5 ;ioTrap type for Status call
accR.Base .EQU $9FFFF8 ;sec base read address
sccWBase .EQU $BFFFF9 ;sec base write address
bCtl .EQU " ;Offset for sec channel B control
aCtl .EQU 2 ;Off set for sec chaMel A control
bData .EQU 4 ;Offset for sec channel B data
aData .EQU 6 ;Offset for sec channel A data

2/nn/84 Hacker CONFIDENTIAL /DMGR/DEVIeE.S

7-39

7-40

Standard Parameter Block Data Structure

ioLink
ioType
ioTrap
ioCmdAddr
ioCompletion
ioR.esult
ioFileName
ioVNPtr
ioVRefNum
ioDrvNum

Next queue entry
Always fsQType
Routine trap
Routine address
Completion routine
Result code
File name (and possibly volume name too)
Volume name
Volume reference number
Drive number

Control and Status Parameter Block Data Structure

csCode
csParam

Type of Control or Status call
Parameters for Control or Status call

1/0 Parameter Block Data Structure

ioRefNum
ioFileType
ioPermssn
ioBuffer
ioReqCount
ioActCount
ioPosMode
ioPosOffset

Macro Names

Routine ~
PBRead
PBWrite
PBControl
PBStatus
PBKilllO

System Globals

Name
utableBase
unitNtryCnt

2/nn/84 Hacker

Driver reference number
Not used
Open permission
Data buffer
Requested number of bytes
Actual number of bytes
Type of positioning operation
Size of positioning offset

Macro~
_Read

Write
-Control
-Status
:KilllO

.!!!!.
4 bytes

Contents
Pointer to the unit table

2 bytes Maximum number of entries in the unit
table

CONFIDENTIAL /DHGll/DEVICE. S

,

Result Codes

Name Value
abortErr -27
badUnitErr -21

controlErr -17

dlnstErr -26

dRemoveErr -25
dSIOCoreErr 14
memFullErr -198
noErr e
notOpenErr -28
openErr -23

readErr -19
resErr
atatusErr -18
unitEmptyErr -22

writErr -2e

2/nn/84 Hacker

SUMMARY OF THE DEVICE MANAGER 41

Meaning
10 call aborted by lCilllO
Reference number doesn't match
unit table
Driver isn't enabled for control
calla

Couldn't find driver in resource file
Tried to remove an open driver ,
Device control entry was purged
Memory full
No error
Driver isn't open
Requested read/write permission
doesn't match driver's open permission
Driver isn't enabled for read calls
Resource Manager error
Driver isn't enabled for statu& calls
Reference number specifies NIL
handle in unit table
Driver isn't enabled for write calls

CONFIDENTIAL /DMGR/DEVICE.S

7-41

7-42

GLOSSARY

asynchronous execution: During asynchronous execution of a routine,
the Device Manager is free to perform other tasks.

block device: A device that reads and writes blocks of 512 characters
at a time; it can read or write any accessible block on demand.

character device: A device that reads or writes a stream of
characters. one tt a time: it can neither skip characters nor go back
to a previous character.

closed driver: A driver that cannot be read from or written to.

close routine: The part of a driver's code that implements Device
Manager Close calls.

completion routine: Any application-defined code to be executed when
an asynchronous call to a Device Manager routine is completed.

control information: Information transmitted_ by an application to a
driver; it can typically select modes of operation, start or stop
processes, enable buffers, choose protocols, and so on.

control routine: The part of a driver's code that implements Device
Manager Control and KillIO calls.

data buffer: Heap space containing information to be written to a
driver from an application, or read from a driver to an application.

device: A part of the Macintosh or a piece of external equipment, that
can transfer information into or out of the Macintosh.

device control entry: a 4,-byt~ relocatable block of heap space that
tells the Device Manager the location of a driver's routines, the
location of a driver's 1/0 queue, and other information.

device driver: a program that exchanges information between an
application and a device.

driver name: A sequence of up to 255 printing characters; driver names
are always prefixed by a period(.).

driver reference number: A number that uniquely identifies an
individual driver.

exception: An error or abnormal condition detected by the processor in
the course of program execution.

interrupt: An exception that is signaled to the processor by a device,
to notify the processor of a change in condition of the device, such as
the completion of an 1/0

l/nn/84 Hacker CONFIDENTIAL /DMGR/DEVICE.G

,

GLOSSARY 43

interrupt handler: A routine that aervices interrupts.

interrupt priority level: A number identifying the importance of the
interrupt. It indicates which device is interrupting, and which
interrupt handler should be executed.

interrupt vector: A pointer to an interrupt handler.

1/0 queue: A queue containing the parameter blocks of all 1/0 requests
for one driver.

1/0 request: A request for input from or output to a driver; cauaed by
calling a Device Manager routine asynchronously.

open driver: A driver that can be read from and written to.

open routine: The part of a driver's code that implements Device
Manager Open calls.

parameter block: An area of heap space used to tran~fer infor11ation
between applications and the Device Manager.

prime routine: The part of a driver's code that implements Device
Manager Read and Write calls.

processor priority: Bits 8, 9, and lf of the status register, that
indicate which interrupts will be processed and which will be ignored.

status information: Information transmitted to an application by a
driver; it may indicate the current mode of operation, the readiness of
the device, the occurrence of errors, and so on.

status routine: The part of a driver's code that implements Device
Manager Status calls.

synchronous execution: During synchronous execution of a routine, the
Device Manager must devote all of its attention to the routine, and
isn't free to perform any other task.

unit number: The number of each driver's entry in the unit table.

unit table: A 128-byte relocatable block containing a handle to the
device control entry for each device driver.

vector table: A table of vectors in the system com:aunication area.

1/nn/84 Hacker CONFIDENTIAL /DKGR/DEVICE.G

7-43

MACINTOSH USER EDUCATION

The Dialog Manager: A Programmer's Guide

See Also: Macintosh User Interface Guidelines
Macintosh Operating System Reference Manual
OuickDraw: A Programmer's Guide
The Font Manager: A Programmer's Guide
The Resource Manager: A Programmer's Guide
The Event Manager: A Programmer's Guide
The Window Manager: A Programmer's Guide
Macintosh Control Manager Programmer's Guide
The Desk Manager: A Programmer's Guide
CoreEdit: A Programmer's Guide
TextEdit: A Programmer's Guide
Putting Together a Macintosh Application

Modification History: Preliminary Draft
Preliminary Draft
First Draft {ROM 2.1)
Second Draft {ROM 4)
Third Draft (ROM 7)

/DMGR/DIALOG

c. Rose
c. Rose
c. Rose
c. Rose
c. Rose

12/8/82
1/7/83

3/22/83
6/13/83

11/16/83

ABSTRACT

The Dialog Manager is the part of the Macintosh User Interface Toolbox
that supports dialog boxes and the alert mechanism. This manual tells
you how to manipulate dialogs and alerts with Dialog Manager routines.

Summary of significant changes and additions since last version:

- The Return key (like Enter) now has the same effect as clicking
the default button in an alert box. Return and Enter also have
this effect in a modal dialog; the default button is the first
button in the item list, normally the OX button (pages 5, 11, 22).

- Changes have been made to the structure of a dialog record (page
14) and a dialog template (page 28).

- The standard sound procedure now exists. Sounds l through 3 are
the corresponding number of short beeps {page 15).

- The discussion of filterProcs for ModalDialog has changed (page
22).

- Assembly-language programmers can change the font used in dialogs
and alerts (page 19).

2 Dialog Manager Programmer's Guide

TABLE OF CONTENTS

3 About This Manual
4 About the Dialog Manager
6 Dialog and Alert Windows
8 Dialogs, Alerts, and Resources
9 Item Lists in Memory
9 Item Types
11 Item Handle or Procedure Pointer
12 Display Rectangle
12 Item Numbers
13 Dialog Records
13 Dialog Pointers
14 The DialogRecord Data Type
15 Alerts
16 Using the Dialog Manager
17 Dialog Manager Routines
17 Initialization
18 Creating and Disposing of Dialogs
20 Handling Dialog Events
23 Invoking Alerts
25 Manipulating Items in Dialogs and Alerts
27 Modifying Templates in Memory
28 Dialog Templates in Memory
29 Alert Templates in Memory
3~ Formats of Resources for Dialogs and Alerts
3~ Dialog Templates in a Resource File
31 Alert Templates in a Resource File
32 Items Lists in a Resource File
34 Summary of the Dialog Manager
38 Glossary

Copyright (c) 1983 Apple Computer, Inc. All rights reserved. Distribution
in limited quantities does not constitute publication.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes the Dialog Manager of the Macintosh User
Interface Toolbox. *** Eventually it will become part of a
comprehensive manual describing the entire Toolbox and Operating
System. *** The Dialog Manager provides Macintosh programmers with
routines for implementing dialog boxes and the alert mechanism, two
means of communication between the application and the end user.

(hand)
This manual describes version 7 of the ROM. If you're
using a different version, the Dialog Manager may not
work as discussed here.

Like all documentation about Toolbox units, this manual assumes you're
familiar with the Macintosh User Interface Guidelines, Lisa Pascal, and
the Macintosh Operating System's Memory Manager. Jou should also be
familiar with the following:

- The basic concepts and structures behind QuickDraw, particularly
rectangles, grafPorts, and pictures.

- The basic concepts behind TextEdit or CoreEdit, to understand
editing text in dialog boxes.

- Resources, as discussed in the Resource Manager manual.

- The Toolbox Event Manager, the Window Manager, and the Control
Manager.

This manual is intended to serve the needs of both Pascal and
assembly-language programmers. Information of interest to
assembly-language programmers only is isolated and labeled so that
Pascal programmers can conveniently skip it. *** Some of that
information refers to the "Toolbox equates" file (ToolEqu.Text), which
the reader will have learned about in an earlier chapter of the final
comprehensive manual. ***

The manual begins with an introduction to the Dialog Manager and what
you can do with it. It then discusses the basics of dialogs and
alerts: their relationship to windows, their relationship to
resources, and the information stored in memory for the items in a
dialog or alert. Following this is a discussion of the dialog record,
where the Dialog Manager keeps all the information it needs about a
dialog, and an overview of how alerts are handled.

Next, a section on using the Dialog Manager introduces its routines and
tells how they fit into the flow of your application. Thia la followed
by detailed descriptions of all Dialog Manager procedures and
functions, their parameters, calling protocol, effects, aide effects,
and ao on.

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.2

4 Dialog Manager Programmer's Guide

Following these descriptions are sections that will not interest all
readers. There's a discussion of how to modify definitions of dialogs
and alerts after they've been read from a resource file, and a section
that gives the exact formats of resources related to dialogs and
alerts.

Finally, there's a summary of the Dialog Manager, for quick reference,
followed by a glossary of terms used in this manual.

ABOUT THE DIALOG MANAGER

The Dialog Manager is a tool for handling dialogs and alerts in a way
that's consistent with the Macintosh User Interface Guidelines.

A dialog~ appears on the screen when a Macintosh application needs
more information to carry out a command. As shown in Figure l, it
typically resembles a form on which the user checks boxes and fills in
blanks.

Print the document

8 B 1/Z-" 1r paper
OB 1/Z- H 14" paper

(Cancel)

(OK)

~ Stop printing after each page

Titles I AMual Report

Figure 1. A Typical Dialog Box

By convention, a dialog box comes up slightly below the menu bar, is a
bit narrower than the screen, and is centered between the left and
right edges of the screen. It may contain any or all of the following:

- Informative or instructional text

- Rectangles in which text may be entered (initially blank or
containing default text that can be edited)

- Controls of any kind

- Graphics (icons or QuickDraw pictures)

- Anything else, as defined by the application

The user provides the necessary information in the dialog box, such as
by entering text or clicking a check box. There's usually a button
marked "OK" to tell the application to accept the information provided
and perform the command, and a button marked "Cancel" to cancel the

11/16/83 Rose CONFIDENTIAL /DHGR/DIAl..OG.2

ABOUT THE DIALOG MANAGER 5

command. Some dialog boxes contain more than one button that will
perform the command, each in a different way.

Most dialog boxes require the user to respond before doing anything
else. Clicking a button to perform or cancel the command makes the box
go away; clicking outside the dialog box only causes a beep from the
Macintosh's speaker. This type is called a modal dialog box because it
puts the user in the state or "mode" of being able to work only inside
the dialog box. It usually has the same general appearance as shown in
Figure 1. One of the buttons in the dialog box may be outlined boldly.
Pressing the Return key or the Enter key has the same effect as
clicking the outlined button or, if none, the OK button; the particular
button whose effect occurs is called the dialog's default button and is
the preferred ("safest") button to use in the current situation. If
there's no boldly outlined or OK button, pressing Return or Enter will
by convention have no effect.

Other dialog boxes do not require the user to respond before doing
anything else; these are called modeless dialog boxes. The user can,
for example, do work in document windows on the desktop before clicking
the appropriate button in the dialog box. Clicking the Cancel button
in this type of dialog box always makes the box go away, but clicking
the OK button may not: it may keep the box around so that the command
can be performed again. A modeless dialog box looks exactly like a
document window, as illustrated in Figure 2.

Chon e ------- - --

Find teHlo IGuide Lines

Change t0= tuiOelines
I (__ c_o_nc_e_l_)

_ (Change All)

(Change NeHt)

Figure 2. A Modeless Dialog Box

Dialog boxes may in fact require no response at all. For example,
while an application is performing a time-consuming process, it can
display a dialog box that contains only a message telling what it's
doing; then, when the process is complete, it can simply remove the
dialog box.

The alert mechanism provides applications with a means of reporting
errors or giving warnings. An alert~ is similar to a modal dialog
box, but it appears only when something has gone wrong or must be
brought to the user's attention. Its conventional placement is
slightly farther below the menu bar than a dialog box. To assist the
user who isn't sure how to proceed when an alert box appears, the

11/16/83 Rose CONFIDENTIAL /DHGR/DIALOG.2

6 Dialog Manager Programmer's Guide

preferred button to use in the current situation is outlined boldly so
it stands out from the other buttons in the alert box (see Figure 3).
The outlined button is also the alert's default button; if the user
presses the Return key or the Enter key, the effect is the same as
clicking this button.

CAUTION C Cancel J
Are you sure (OK)

you want to erase all
changes to \IOUr document?

Figure 3. A Typical Alert Box

There are three standard kinds of alert--Stop, Note, and Caution--each
indicated by a particular icon in the top left corner of the alert box.
Figure 3 illustrates a Caution alert. The icons identifying Stop and
Note alerts are similar; instead of a question mark, they show an
exclamation point and an asterisk, respectively. Other alerts can have
anything in the the top left corner, including blank space if desired.

The alert mechanism also provides another type of signal: sound from
the Macintosh's speaker. The application can base its response on the
number of consecutive times an alert occurs; the first time, it might
simply beep, and thereafter it may present an alert box. The sound is
not limited to a single beep but may be any sequence of tones, and may
occur either alone or along with an alert box. As an error is
repeated, there can also be a change in which button is the default
button (perhaps from OK to Cancel). You can specify different
responses for up to four occurrences of the same alert.

With Dialog Manager routines, you can create dialog boxes or invoke
alerts. The Dialog Manager gets most of the descriptive information
about the dialogs and alerts from resources in a resource file. You
use a program such as the Resource Editor*** eventually*** to store
the necessary information in the resource file. The Dialog Manager
calls the Resource Manager to read what it needs from the resource file
into memory as necessary. In some cases you can modify the information
after it's been read into memory.

DIALOG AND ALERT WINDOWS

A dialog box appears in a dialog window. When you call a Dialog
Manager routine to create a dialog, you supply the same information as
when you create a window with a Window Manager routine. For example,
you supply the window definition ID, which determines how the window

11/16/83 Rose CONFIDENTIAL /DHGR/DIALOG.2

DIALOG AND ALERT WINDOWS 7

looks and behaves, and a rectangle that becomes the portRect of the
window's grafPort. You specify the window's plane (which, by
convention, should initially be the frontmost) and whether the window
is visible or invisible. The dialog window is created as specified.

You can manipulate a dialog window just like any other with Window
Manager or QuickDraw routines, showing it, hiding it, moving it,
changing its size or plane, or whatever-all, of course, in conformance
with the Macintosh User Interface Guidelines. The Dialog Manager
observes the clipping region of the dialog window's grafPort, so if you
want clipping to occur, you can set this region with a QuickDraw
routine.

Similarly, an alert box appears in an alert window. You don't have the
same flexibility in defining and manipulating an alert window, however.
The Dialog Manager chooses the window definition ID, so that all alert
windows will have the standard appearance and behavior. The size and
location of the box are supplied as part of the definition of the alert
and are not easily changed. You don't specify the alert window's
plane; it always comes up in front of all other windows. Since an
alert box requires the user to respond before doing anything else, and
the response makes the box go away, the application doesn't do any
manipulation of the alert window.

Figure 4 illustrates a document window, dialog window, and alert
window, all overlapping on the desktop. Note that if a dialog or alert
window comes up while a document window is active, the document window
becomes inactive; as shown in Figure 4, any scroll bars or size box in
the document window disappear until the window becomes active again.

Docunent window on desktop

Dialog window
in front of docunent window

Alert YI I ndoYI
in front of dialog window

Figure 4. Pialog and Alert Windows

11/16/83 Rose CONFIDENTIAL /DKGR/DIALOG.2

8 Dialog Manager Programmer's Guide

DIALOGS, ALERTS, AND RESOURCES

To create a dialog, the Dialog Manager needs the same information about
the dialog window as the Window Manager needs when it creates a new
window: the window definition ID along with other information specific
to this window. The Dialog Manager also needs to know what items the
dialog box contains. You can store the needed information as a
resource in a resource file and pass the resource ID to a function that
will create the dialog. This type of resource, which is called a
dialog template, is analogous to a window template, and the function,
GetNewDialog, is similar to the Window Manager function GetNewWindow.
The Dialog Manager calls the Resource Manager to read the dialog
template from the resource file. It then incorporates the information
in the template into a dialog data structure in memory, called a dialog
record.

Similarly, the data that the Dialog Manager needs to create an alert is
stored in an alert template in a resource file. The various routines
for invoking alerts require the resource ID of the alert template as a
parameter.

The information about all the items (text, controls, or graphics) in a
dialog or alert box is stored in an il!!!! list in a resource file. The
resource ID of the item list is included in the dialog or alert
template. The item list in turn contains the resource IDs of any icons
or QuickDraw pictures in the dialog or alert box, and possibly the
resource IDs of control templates for controls in the box. After
calling the Resource Manager to read a dialog or alert template into
memory, the Dialog Manager calls it again to read in the item list, and
again to read in any individual items as necessary.

(hand)
To create dialog or alert templates and item lists and
store them in resource files, you can use the Resource
Editor*** eventually (for now, the Resource Compiler, as
described in the manual "Putting Together a Macintosh
Application") ***• The Resource Editor relieves you of
having to know the exact format of these resources, but
for interested programmers this information is given in
the section "Formats of Resources for Dialogs and
Alerts".

If desired, the application can gain some additional flexibility by
calling the Resource Manager directly to read templates, item lists, or
items from a resource file. For example, you can read in a dialog or
alert template directly and modify some of the information in it before
calling the routine to create the dialog or alert. Or, as an
alternative to using a dialog template, you can read in a dialog's item
list directly and then pass a handle to it along with other information
to a function that will create the dialog (NewDialog, analogous to the
Window Manager function NewWindow).

11/16/83 Rose CONFIDENTIAL /DMGR/DlALOG.2

(hand)

DIALOGS, ALERTS, AND RESOURCES 9

The use of dialog templates is recommended wherever
possible; like window templates, they isolate descriptive
information from your application code for ease of
modification or translation to foreign languages.

ITEM LISTS IN MEMORY

This section discusses the contents of an item list once it's been read
into memory from a resource file and the Dialog Manager has set it up
as necessary to be able to work with it.

An item list in memory contains the following information for each
item:

- The type of item. This includes not only whether the item is a
control, text, or whatever, but also whether the Dialog Manager
should return to the application when the item is clicked.

- A handle to the item or, for special application-defined items, a
pointer to a procedure that draws the item.

- A display rectangle, which determines the location of the item
within the dialog or alert box.

These are discussed below along with!!!!, numbers, which identify
particular items in the item list.

There's a Dialog Manager procedure that, given a pointer to a dialog
record and an item number, sets or returns that item's type, handle (or
procedure pointer), and display rectangle.

Item Types

The item type is specified by a predefined constant or combination of
constants, as listed below. Figure 5 illustrates some of these item
types.

11/16/83 R.ose CONFIDENTIAL /DMGR/DIALOG.2

10 Dialog Manager Programmer's Guide

iconltem statText
+ itemDisable + itemOisable

ctrlltem
+btnCtrl

.. Print the document (Cancel)

(DIC)

userltem
+ ltemDisable

Progress of printing

editText
Figure 5. Item Types

Item type Meaning
ctrlltem+btnCtrl A standard button control.

ctrlltem+chkCtrl A standard check box control.

ctrlltem+radCtrl A standard "radio button" control.

ctrlltem+resCtrl A control defined in a control template in a
resource file.

statText Static text; text that cannot be edited.

editText (Dialogs only) Text that can be edited; the
Dialog Manager accepts text typed by the user
and allows editing.

iconltem An icon (a 32-by-32 bit image).

picltem A QuickDraw picture.

userltem (Dialogs only) An application-defined item,
such as a picture whose appearance changes.

itemDisable+<any The item is disabled (the Dialog Manager
of the above> doesn't report events involving this item).

The text of an editText item may initially be either default text or
empty. Text entry and editing is handled in the conventional way, as
in TextEdit and CoreEdit (in fact, the Dialog Manager calls TextEdit to
handle it):

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.2

ITEM LISTS IN MEMORY 11

- Clicking in the item displays a blinking vertical bar, indicating
an insertion point where text may be entered.

- Dragging over text in the item selects that text, and
double-clicking selects a word; the selection is inversely
highlighted and is replaced by what the user then types.

- Clicking or dragging while holding down the Shift key extends or
shortens the current selection.

- The Backspace key deletes the current selection or the character
preceding the insertion point.

The Tab key advances to the next editText item in the item list
(wrapping around to the first if there aren't any more). In an alert
box or a modal dialog box (regardless of whether it contains an
editText item), the Return key or Enter key has the same effect as
clicking the default button; for alerts, the default button is
identified in the alert template, whereas for modal dialogs it's always
the first item in the item list.

If itemDisable is specified for an item, the Dialog Manager doesn't let
the application know about events involving that item. For example,
you may not have to be informed every time the user enters or edits
text in an editText item, but may only need to look at the text when
the OK button is clicked. In this case, the editText item would be
disabled. Standard buttons and check boxes should always be enabled,
so your application will know when they've been clicked.

(eye)
Don't confuse disabling a control with making one
"inactlve" with the Control Manager procedure
HiliteControl: When you want a control not to respond at
all to being clicked, you make it inactive.

Item Handle or Procedure Pointer

The item list contains the following information for the various types
of items:

Item type
any ctrlltem
statText
editText
iconltem
picltem
userltem

Contents
A control handle
A handle to the text
A handle to the current text
A handle to the icon
A picture handle
A procedure pointer

The procedure for a userltem draws the iteM; for example, if the item
is a clock, it will draw the clock with the current time displayed.
When this procedure is called, the current port is the dialog window's
grafPort. The procedure has two parameters:

11/16/83 Rose CONFIDENTIAL /DMGR/DlALOG.2

12 Dialog Manager Programmer's Guide

- A windowPtr to the dialog window. In case the procedure draws in
more than one dialog window, this parameter tells it which one to
draw in.

- The item number. In case the procedure draws more than one item,
this parameter tells it which one to draw.

Display Rectangle

Each item in the item list is displayed within its display rectangle.
Icons and OuickDraw pictures are scaled to fit the display rectangle.
If the procedure for a useritem draws outside the item's display
rectangle, the drawing is clipped to the display rectangle.

(eye)
Clicking anywhere within the display rectangle is
considered a click of that item.

A rectangle is drawn just outside the display rectangle around each
editText item. 'When a statText or editText item is displayed, the text
is clipped to the display rectangle and word wrap occurs as in
TextEdi t.

Item Numbers

Each item in an item list is identified by an item number. which is
simply the index of the item in the list (starting from 1). By
convention, the first item in an alert's item list should be the OK
button (or, if none, then one of the buttons that will perform the
command) and the second item should be the Cancel button. The Dialog
Manager provides predefined constants equal to the item numbers for OK
and Cancel:

CONST OK • l;
Cancel• 2;

In a modal dialog's item list, the first item is assumed to be the
dialog's default button; if the user presses the Return k~y or Enter
key, the Dialog Manager normally returns item number 1, just as when
that item is actually clicked. To conform to the Macintosh User
Interface Guidelines. the application should boldly outline the
dialog's default button if it isn't the OK button. The beat way to do
this is with a userltem. To allow for changes in the default button's
size or location, the useritem should identify which button to outline
by its item number and then use that number to get the button's display
rectangle.

(eye)
If the first item in a modal dialog's item list isn't an
OK button and you don't boldly outline it. you should set
up the dialog to ignore Return and Enter. To learn how
to do this, see ModalDialog under "Handling Dialog

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.2

DIALOG RECORDS 13

Events" in the "Dialog Manager Routines" section.

DIALOG RECORDS

To create a dialog, you pass information to the Dialog Manager in a
dialog template and in individual parameters, or only in parameters; in
either case, the Dialog Manager incorporates the information into a
dialog record. The dialog record contains the window record for the
dialog window, a handle to the dialog's item list, and some additional
fields. The Dialog Manager creates the dialog window by calling the
Window Manager function NewWindow and then setting the window class in
the window record to indicate that it's a dialog window. The routine
that creates the dialog returns a pointer to the dialog record, which
you use thereafter to refer to the dialog in Dialog Manager routines or
even in Window Manager or QuickDraw routines (see "Dialog Pointers"
below). The Dialog Manager provides routines for handling events in
the dialog window and disposing of the dialog when you're done.

The data type for a dialog record is called DialogRecord. You can do
all the necessary operations on a dialog without accessing the fields
of the dialog record directly; for advanced programmers, however, the
exact structure of a dialog record is given under "The DialogRecord
Data Type" below.

Dialog Pointers

There are two types of dialog pointer, DialogPtr and DialogPeek,
analogous to the window pointer types WindowPtr and WindowPeek. Most
users will only need to use DialogPtr.

The Dialog Manager defines the following type of dialog pointer:

TYPE DialogPtr • WindowPtr;

It can do this because the first thing stored in a dialog record is the
window record for the dialog window. This type of pointer can be used
to access fields of the window record or can be passed to Window
Manager routines that expect window pointers as parameters. Since the
WindowPtr data type is itself defined as GrafPtr, this type of dialog
pointer can also be used to access fields of the dialog window's
grafPort or passed to QuickDraw routines that expect pointers to
grafPorts as parameters.

In some cases, a more direct way of accessing the dialog record may be
desired. For this reason, the Dialog Manager also defines the
following type of dialog pointer:

TYPE DialogPeek • ADialogRecord,

Programmers who want to access the dialog record fields directly must
use this type of pointer.

11 /16/83 Rose CONFIDENTIAL /DMGR/DIALOG.2

14 Dialog Manager Programmer's Guide

Assembly-language~: From assembly language. of course.
there's no type checking on pointers, and the two types of
pointer are equal.

The DialogRecord Data Type

For those who want to know more about the data structure of a dialog
record, the exact structure is given here.

TYPE DialogRecord • RECORD
window:
items:
textH:
editField:
editOpen:
aDefltem:

END;

WindowRecord;
Handle;
TEHandle;
INTEGER;
INTEGER;
INTEGER

The window field contains the window record for the dialog window. The
items field contains a handle to the item list for the dialog.

(hand)
Remember that to get or change information about an item
in a dialog, you pass the dialog pointer and the item
number to a Dialog Manager procedure. You will never
access information directly through the handle to the
item list.

The Dialog Manager uses the next three fields when text is being
entered or edited in an editText item. The textH field contains the
handle TextEdit uses; the data type TEHandle is defined in TextEdit.
EditField isl less than the item number of the editText item. The
editOpen field is used internally by the Dialog Manager.

The aDefltem field is used for modal dialogs and alerts, .which are
treated internally as special modal dialogs. It contains the item
number of the default button. The default button for a modal dialog is
the first item in the item list. so this field contains 1 for modal
dialogs. The default button for an alert is specified in the alert
template; see the following section for more information.

Assembly-language~: The Toolbox equates file includes
dWindLen, the length of a dialog record in bytes.

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.2

ALERTS 15

ALERTS

When you.call a Dialog Manager routine to invoke an alert, you pass it
the resource ID of the alert template, which contains the following:

- A rectangle, given in global coordinates, which determines the
alert window's size and location. It becomes the portRect of the
window's grafPort. To allow for the menu bar and the border
around the portRect, the top of the rectangle should be at least
25 pixels below the top of the screen.

- The resource ID of the item list for the alert.

- Information about exactly what should happen at each stage of the
alert.

There are four stages to every alert: the first three stages
correspond to the first three (consecutive) occurrences of the alert,
and the fourth stage corresponds to the fourth occurrence and any
beyond the fourth. The actions for each stage are specified by the
following three pieces of information:

- Which is the default button--the OK button (or, if none, a button
that will perform the command) or the Cancel button

- Whether the alert box is to be drawn

- Which of four sounds should be emitted at this stage of the alert

The alert sounds are determined by a sound procedure that emits one of
up to four tones or sequences of tones. The sound procedure has one
parameter, an integer from I to 3. It can emit any sound for each of
these numbers, which identify the sounds in the alert template. If you
don't write your own sound procedure, sound number I represents no
sound and sound numbers 1 through 3 represent the corresponding number
of short beeps, each of the same pitch and duration. For example, if
the second stage of an alert is to cause a beep and no alert box, you·
can just specify boxDrawn•FALSE and sound•l for that stage in the alert
template. If instead you want two successive beeps of different pitch,
for example, you need to write a procedure that will emit that sound
for a particular sound number, and specify that number in the alert
template. See the Sound Manager manual*** (doesn't yet exist)*** for
information about how to write a procedure that emits sound.

(hand)
When the Dialog Manager detects a click outside an alert
box or a modal dialog box, it emits sound number l; thus,
for consistency with the Macintosh User Interface
Guidelines, sound number 1 should always be a single
beep.

Internally, alerts are treated as special dialogs. The alert routine
creates the alert window by calling NewDialog. The Dialog Manager

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.2

16 Dialog Manager Programmer's Guide

works from the dialog record created by NewDialog, just as when it
operates on a dialog window, but it disposes of the window before
returning to the application. Normally your application will not
access the dialog record for an alert; however, there is a way that
this can happen: for any alert, you can specify a procedure that will
be executed repeatedly during the alert, and this procedure may access
the dialog record. For details, see the alert routines under "Invoking
Alerts" in the "Dialog Manager Routines" section.

USING THE DIALOG MANAGER

This section discusses how the Dialog Manager routines fit into the
general flow of an application program and gives you an idea of which
routines you'll need to use. The routines themselves are described in
detail in the next section.

Before using the Dialog Manager, you should initialize QuickDraw, the
Font Manager, the Window Manager, the Menu Manager, and TextEdit, in
that order. The first Dialog Manager routine to call is lnitDialogs,
which initializes the Dialog Manager.

Where appropriate in your program, call NewDialog or GetNewDialog to
create any dialogs you need. Usually you'll call GetNewDialog, which
takes descriptive information about the dialog from a dialog template
in a resource file. You can instead pass the information in individual
parameters to NewDialog. In either case, you can supply a pointer to
the storage for the dialog record or let it be allocated by the Dialog
Manager. When you no longer need a dialog, you'll usually call
CloseDialog if you supplied the storage, or DisposDialog if not.

In most cases, you probably won't have to make any changes to the
dialogs from the way they're defined in the resource file. However, if
you should want to modify an item in a dialog, you can call GetDitem to
get the information about the item and SetDltem to change it. In
particular, SetDitem la the routine to use for installing an
application-defined item. There are also two procedures specifically
for accessing or setting the content of a text item in a dialog box:
GetlText and SetlText.

If your application includes any modeless dialog boxes, call
lsDialogEvent to learn whether an event has occurred that needs
handled as part of a dialog, and then call DialogSelect if so.
putting up a modal dialog box, just call ModalDialog.

to be
After

Mouse activity in an editText item causes an insertion point to be
displayed or text to be selected accordingly. Your application may
want to bring up a dialog box with an editText item already selected,
or to cause an insertion point or text selection to appear after the
user has made an error in entering text. The Selltext procedure lets
the application do this.

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.2

USING THE DIALOG MANAGER 17

For alerts, if you want other sounds besides the standard ones (up to
three short beeps), write your own sound procedure and call ErrorSound
to make it the current sound procedure. To invoke a particular alert,
call one of the alert routines: StopAlert, NoteAlert, or CautionAlert
for one of the standard kinds of alert, or Alert for an alert defined
to have something other than a standard icon (or nothing at all) in its
top left corner. If you're going to invoke an alert when the resource
file might not be accessible, first call CouldAlert, which will make
the alert template and related resources unable to be purged from
memory; you can later make them purgeable again by calling FreeAlert.

Finally, in either dialogs or alerts, you can substitute text in
statText items with text that you specify in the ParamText procedure.
This means, for example, that a document name supplied at execution
time can appear in an error message.

DIALOG MANAGER ROUTINES

This section describes all the Dialog Manager procedures and functions.
They're presented in their Pascal form; for information on using them
from assembly language, see "Using the Toolbox from Assembly Language"
*** doesn't exist, but see "Using QuickDraw from Assembly Language" in
the QuickDraw manual***·

Initialization

PROCEDURE lnitDialogs (restartProc: ProcPtr);

Call InitDialogs once before all other Dialog Manager routines, to
initialize the Dialog Manager.

- It sets a pointer to a fail-safe procedure as specified by
restartProc; this pointer will be accessed when a system error
(such as running out of memory) occurs. RestartProc should point
to a procedure that will restart the application after a system
error. If no such procedure is desired, pass NIL as the
parameter.

Assembly-language~: The Dialog Manager stores the address
of the fail-safe procedure in a system global named restProc.

- It installs the standard sound procedure, which associates sound
number G with no sound and sound numbers 1 through 3 with the
corresponding number of short beeps.

11 /16/83 Rose CONFIDENTIAL /DMGR/DIALOG.R

18 Dialog Manager Programmer's Guide

It passes empty strings to ParamText (described below under
"Manipulating Items in Dialogs and Alerts").

PROCEDURE ErrorSound (soundProc: ProcPtr);

ErrorSound sets the sound procedure for dialogs and alerts to the
procedure pointed to by soundProc. The sound procedure should have one
parameter, an integer from G to 3; these numbers identify the sounds
(such as in the stages field of an alert template).

(hand)
So that the dialog and alert routines will respond to
mouse activity in a way that conforms to the Macintosh
User Interface Guidelines (as described below), sound
number 1 should always be a single beep.

If you don't call ErrorSound, the Dialog Manager uses a standard sound
procedure that causes sound number G to represent no sound and sound
numbers 1 through 3 to be the corresponding number of short beeps. If
you pass NIL for soundProc, there will be no sound at all for sound
numbers G through 3.

Assembly-language~: The address of the sound procedure
being used is stored in the system global daBeeper.

Creating and Disposing of Dialogs

FUNCTION NewDialog (dStorage: Ptr; boundsRect: Rect; title: Str255;
visible: BOOLEAN; proclD: INTEGER; behind: WindowPtr;
goAwayFlag: BOOLEAN; refCon: Longlnt; items: Handle) :
DialogPtr;

NewDialog creates a dialog as specified by its parameters and returns a
pointer to the new dialog. The first eight parameters (dStorage
through refCon) are passed to the Window Manager function NewWindow,
which creates the dialog window; the meanings of these parameters are
summarized below. The items parameter is a handle to the dialog's item
list. You can get the items handle by calling the Resource Manager to
read the item list from the resource file into memory.

(hand)
Advanced programmers can create their own item lists in
memory rather than have them read from a resource file.

DStorage is analogous to the wStorage parameter of NewWindow; it's•
pointer to the storage to use for the dialog record. If you pass NIL

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.R

DIALOG MANAGER ROUTINES 19

for dStorage, the dialog record will be allocated on the heap.

BoundsRect, a rectangle given in global coordinates, which determines
the dialog window's size and location. It becomes the portRect of the
window's grafPort. Remember that the top of this rectangle should be
at least 25 pixels below the top of the screen for a modal dialog, to
allow for the menu bar and the border around the portRect, and at least
4~ pixels below the top of the screen for a modeless dialog, to allow
for the menu bar and the window's title bar.

Title is the dialog window's title• If the window has a title bar,
this title appears in it, centered and in the system font and system
font size.

If the visible parameter is TRUE, the dialog window is drawn on the
screen. If it's FALSE, the window is initially invisible and may later
be shown with a call to the Window Manager procedure ShowWindow.

ProcID is the window definition ID, which leads to the window
definition function for this type of window. The window definition IDs
for the standard types of dialog window are dBoxProc for the modal type
and documentProc for the modeless type.

The behind parameter specifies the window behind which the dialog
window is to be placed on the desktop. You should pass POINTER(-1) for
this parameter to bring up the dialog window in front of all other
windows.

If goAwayFlag is TRUE, the dialog window has a close box in its title
bar (if any) when the window is active.

RefCon is the dialog window's reference value, which the application
may store into and access for any purpose.

NewDialog also sets the font of the dialog window's grafPort to the
system font and sets the window class in the window record to indicate
a dialog window.

Assembly-language~: NewDialog actually sets the font to the
font number stored in the system global dlgFont. If you want a
different font to be used in a dialog box, you can set dlgFont
to the desired font number before creating the dialog.

FUNCTION GetNewDialog (dialogID: INTEGER; dStorage: Ptr; behind:
WindowPtr) : DialogPtr;

Like NewDialog (above), GetNewDialog creates a dialog as specified by
its parameters and returns a pointer to the new dialog. Instead of
having the parameters boundsRect, title, visible, proclD, goAwayFlag,

11/16/83 Rose CONFIDENTIAL /DMGR/DlALOG.R

20 Dialog Manager Programmer's Guide

and refCon, GetNewDialog has a single dialoglD parameter, where
dialoglD is the resource ID of a dialog template that supplies the same
informat~on as those parameters. The dialog template also contains the
resource ID of the dialog's item list. After calling the Resource
Manager to read the item list into memory (if it's not already in
memory), GetNewDialog makes a copy of the item list and uses that copy;
thus you may have multiple independent dialogs whose items have the
same types, locations, and initial contents. The dStorage and behind
parameters of GetNewDialog have the same meaning as in NewDialog.

PROCEDURE CloseDialog (theDialog: DialogPtr);

CloseDialog removes theDialog's window from the screen and deletes it
from the window list, just as when the Window Manager procedure
CloseWindow is called. It returns to the heap the storage used by all
data structures associated with the dialog window (such as the window
regions) and all the items in the dialog's item list (except for
pictures and icons, which might be shared resources). It does not
dispose of the dialog record or the item list itself. Call this
procedure when you're done with a dialog if you supplied NewDialog or
GetNewDialog with a pointer to the dialog storage (in the dStorage
parameter) when you created the dialog.

(hand)
Even if you didn't supply a pointer to the dialog
storage, you may want to call CloseDialog if you created
the dialog with NewDialog. You would call CloseDialog if
you wanted to keep the item list around (since, unlike
GetNewDialog, NewDialog does not use a copy of the item
list).

PROCEDURE DisposDialog (theDialog: DialogPtr);

DisposDialog calls CloseDialog (above) and then disposes of the
dialog's item list and dialog record. Call this procedure when you're
done with a dialog if you let the dialog record be allocated on the
heap when you called NewDialog or GetNewDialog (by passing NIL as the
dStorage parameter).

Handling Dialog Events

FUNCTION lsDialogEvent (theEvent: EventRecord) : BOOLEAN;

If your application includes any modeless dialogs, call IsDialogEvent
after calling the Toolbox Event Manager function GetNextEvent. Pass
the current event in theEvent. IsDialogEvent determines whether
theEvent needs to be handled as part of a dialog. If theEvent is an
update or activate event in a dialog window, a mouse down event in the
content region of an active dialog window, or any other type of event

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.R

DIALOG MANAGER ROUTINES 21

when a dialog window is active, IsDialogEvent returns IRUE; otherwise,
it returns FALSE. When TRUE is returned, the application should check
whether the event is one that should not in fact be handled as part of
a dialog~ such as a key down event with the Command key held down: if
so, it should ignore the event; otherwise, it should pass the event to
DialogSelect (below).

FUNCTION DialogSelect (theEvent: EventRecord; VAR theDialog: DialogPtr;
VAR itemHit: INTEGER) : BOOLEAN;

After learning from IsDialogEvent that the current event needs to be
handled as part of a modeless dialog, pass the event to DialogSelect.
DialogSelect handles the event as described below. If the event
involves an enabled dialog item, DialogSelect returns a function result
of TRUE with the dialog pointer in theDialog and the item number in
itemHit; otherwise, it returns FALSE with theDialog and itemHit .
undefined. Normally when DialogSelect returns TRUE, you'll do whatever
is appropriate as a response to the event, and when it returns FALSE
you'll do nothing.

If the event is an activate or update event in a dialog window,
DialogSelect activates or updates the window and returns FALSE.

If the mouse button is pressed in an editText item, DialogSelect
responds to the mouse activity as appropriate (displaying an insertion
point or selecting text). If a key down event occurs and there's an
editText item, text entry and editing are handled in the standard way
for such items. In either case, DialogSelect returns TRUE if the item
is enabled or FALSE if it's disabled. If a key down event occurs when
there's no editText item, DialogSelect returns FALSE.

(hand)
To treat a typed character in a special way (such as
ignore it, or make it have the same effect as another
character or as clicking a button), the application
should test for a key down event with that character
before calling DialogSelect.

If the mouse button is pressed in a control, DialogSelect calls the
Control Manager function TrackControl. If the mouse button is released
inside the control and the control is enabled, DialogSelect returns
TRUE; otherwise, it returns FALSE.

If the mouse button is pressed in any other enabled item, DialogSelect
returns TRUE. If it's pressed in any other disabled item or in no
item, or if any other event occurs, DialogSelect returns FALSE.

PROCEDURE HodalDialog (filterProc: ProcPtr; VAR itemHit: INTEGER);

Call ModalDialog after creating a modal dialog and bringing up its
window in the frontmost plane. ModalDialog repeatedly gets and handles
events in the dialog's window; after handling an event involving an

11/16/83 Rose CONFIDENTIAL /DHGR/DIALOG.R

22 Dialog Manager Programmer's Guide

enabled dialog item, it returns with the item number in itemHit.
Normally you'll then do whatever is appropriate as a response to an
event in that item.

ModalDialog gets each event by calling the Toolbox Event Manager
function GetNextEvent. If the event is a mouse down event outside the
content region of the dialog window, ModalDialog emits sound number 1
(which should be a single beep) and gets the next event; otherwise, it
filters and handles the event as described below.

(hand)
Once before getting each event, ModalDialog calls
SystemTask, a Desk Manager procedure that needs to be
called regularly if the application is to support the use
of desk accessories.

The filterProc parameter determines how events are filtered. If it's
NIL, the standard filterProc is executed; this causes ModalDialog to
return 1 in itemHit if the Return key or Enter key ·is pressed. If
filterProc isn't NIL, HodalDialog filters events by executing the
function it points to. The filterProc should have three parameters and
should return a boolean value. For example, this is how it would be
declared if it were named MyFilter:

FUNCTION MyFilter (theDialog: DialogPtr; VAR theEvent:
EventRecord; VAR item: itemHit) : BOOLEAN;

A function result of FALSE tells ModalDialog to go ahead and handle the
event, which either can be sent through unchanged or can be changed to
simulate a different event. A function result of TRUE tells
ModalDialog to return immediately rather than handle the event; in this
case, the filterProc sets itemHit to the item number that ModalDialog
should return.

You can use the filterProc, for example, to treat a typed character in
a special way (such as ignore it, or make it have the same effect as
another character or as clicking a button); in this case, the
filterProc would test for a key down event.with that character. If you
want it to be consistent with the standard filterProc, your filterProc
should at least check whether the Return key or Enter key was pressed
and, if so, return 1 in itemHit and a function result of TRUE.

As another example, suppose the dialog box contains a userltem whose
procedure draws a clock with the current time displayed. The
filterProc can call that procedure and return FALSE without altering
the current event.

ModalDialog handles the events returned by the filterProc as follows:

- If the mouse button is pressed in an editText item, ModalDialog
responds to the mouse activity as appropriate (displaying an
insertion point or selecting text). If a key down event occurs
and there's an editText item, text entry and editing are handled
in the standard way for such items. In either case, HodalDialog

11/16/83 Rose CONFIDENTIAL /DHGR/DIALOG.R

DIALOG MANAGER ROUTINES 23

returns TRUE if the item is enabled or FALSE if it's disabled. If
a key down event occurs when there's no editText item, ModalDialog
does nothing.

- If the mouse button is pressed in a control, HodalDialog calls the
Control Manager function TrackControl. If the mouse button is
released inside the control and the control is enabled,
ModalDialog returns; otherwise, it does nothing.

- If the mouse button is pressed in any other enabled item in the
dialog box, HodalDialog returns. If the mouse button is pressed
in any other disabled item or in no item, or if any other event
occurs, ModalDialog does nothing.

PROCEDURE DrawDialog (theDialog: DialogPtr);

DrawDialog draws the contents of the given dialog box. Since
DialogSelect and ModalDialog handle dialog window updating, this
procedure is useful only in unusual situations.

Invoking Alerts

FUNCTION Alert (alertlD: INTEGER; filterProc: ProcPtr) : INTEGER;

This function invokes the alert defined by the alert template that has
the given resource ID. It calls the current sound procedure, if any,
passing it the sound number specified in the alert template for this
stage of the alert. If no alert box is to be drawn at this stage,
Alert returns a function result of -1; otherwise, it creates and
displays the alert window for this alert and draws the alert box.

(hand)
It creates the alert window by calling NewDialog, and
does the rest of its processing by calling ModalDialog.

Alert repeatedly gets and handles events in the alert window until an
enabled item is clicked, at which time it returns the item number.
Normally you'll then do whatever is appropriate in response to a click
of that item.

Alert gets each event by calling the Toolbox Event Manager function
GetNextEvent. If the event is a mouse down event outside the content
region of the alert window, Alert emits sound number 1 (which should be
a single beep) and gets the next event; otherwise, it filters and
handles the event as described below.

The filterProc parameter has the same meaning as tn HodalDialog (see
above). lf it's NIL. the standard filterProc is executed, which makes
the Return key or the Enter key have the same effect as clicking the
default button. If you specify your own filterProc and want to retain

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.R

24 Dialog Manager Programmer's Guide

this feature, you must include it in your filterProc. You can find out
what the current default button is by looking at the a'Oefltem field of
the dialog record for the alert (via the dialog pointer passed to the
filterProc).

Alert handles the events returned by the filterProc as follows:

- If the mouse button is pressed in a control, Alert calls the
Control Manager procedure TrackControl. If the mouse button is
released inside the control and the control is enabled, Alert
returns; otherwise, it does nothing.

- If the mouse button is pressed in any other enabled item, Alert
simply returns. If it's pressed in any other disabled item or in
no item, or if any other event occurs, Alert does nothing.

Before returning to the application with the item number, Alert removes
the alert box from the screen. (It disposes of the alert window and
its associated data structures, the item list, and the items.)

(hand)
The Alert function's rerooval of the alert box would not
be the desired result if the user clicked a check box or
radio button; however, normally alerts contain only
static text, icons, pictures, and buttons that are
supposed to make the alert box go away. If your alert
contains other items besides these, consider whether it
might be more appropriate as a dialog.

FUNCTION StopAlert (alertID: INTEGER; filterProc: ProcPtr) : INTEGER;

StopAlert is the same as the Alert function (above) except that before
drawing the items of the alert in the alert box, it draws the Stop icon
in the top left corner of the box (within the rectangle (1G,2G,42,52)).
The Stop icon ts the icon having the resource ID G. If the
application's resource file doesn't include an icon with that ID
number, the standard Stop icon in the system resource file is used.

FUNCTION NoteAlert (alertlD: INTEGER; filterProc: ProcPtr) : INTEGER;

NoteAlert is the same as the Alert function (above) except that before
drawing the items of the alert in the alert box, it draws the Note icon
in the top left corner of the box (within the rectangle (1G,2G,42,52)).
The Note icon is the icon having the resource ID 1. If the
application's resource file doesn't include an icon with that ID
number, the standard Note icon in the system resource file is used.

FUNCTION CautionAlert (alertID: INTEGER; filterProc: ProcPtr) :
INTEGER;

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.R

DIALOG MANAGER ROUTINES 25

CautionAlert is the same as the Alert function (above) except that
before drawing the items of the alert in the alert box, it draws the
Caution icon in the top left corner of the box (within the rectangle
(lG,21,42,52)). The Caution icon is the icon having the resource ID 2.
If the application's resource file doesn't include an icon with that ID
number, the standard Caution icon in the system resource file is used.

PROCEDURE CouldAlert (alertID: INTEGER);

CouldAlert ensures that the alert template having the given resource ID
is in memory and makes it unable to be purged. It does the same for
the alert window's definition function, the alert's item list, and any
items defined as resources. This is useful if the alert may occur when
the resource file isn't accessible, such as during a disk copy.

PROCEDURE FreeAlert (alertID: INTEGER);

Given the resource ID of an alert template previously specified in a
call to CouldAlert (above), FreeAlert undoes the effect of CouldAlert.
It should be called when there's no longer a need to keep the resources
in memory.

Manipulating Items in Dialogs and Alerts

PROCEDURE ParamText (paramG,paraml,param2,param3: Str255);

ParamText provides a means of substituting text in statText items:
param, through param3 will replace the special strings "·G11 through
" ... 3" in all statText items in all subsequent dialog or alert boxes.
Pass empty strings for parameters not used.

Assembly-language .!!.2!!,: Assembly-language programmers may pass
NIL for parameters not used or for strings that are not to be
changed.

For example, if the text is defined as "Cannot open document ·1 11 and
docName is a string variable containing a document name that the user
typed, you can call ParamText(docName,'','','').

(eye)
All strings that will need to be translated to foreign
languages should be st·ored in resource files.

11/16/83 llose CONFIDENTIAL /DMGR/DIALOG.R

26 Dialog Manager Programmer's Guide

Assembly-language~: The Dialog Manager stores handles to
the four ParamText parameters in a system global array named
daStrings.

PROCEDURE GetDltem (theDialog: DialogPtr; itemNo: INTEGER; VAR type:
INTEGER; VAR item: Handle; VAR box: Rect);

GetDitem returns in its VAR parameters the following information about
the item numbered itemNo in the given dialog's item list: in the type
parameter, the item type; in the item parameter, a handle to the item
(or, for item type userltem, the procedure pointer); and in the box
parameter, the display rectangle for the item.

Suppose, for example, that you want to change the title of a control in
a dialog box. You can get the item handle with GetDltem, convert it to
a control handle, and call the Control Manager procedure SetCTitle to
change the title.

(hand)
To access the text of a statText or editText item, pass
the handle returned by GetDltem to GetlText or SetlText
(see below).

PROCEDURE SetDltem (theDialog: DialogPtr; itemNo: INTEGER; type:
INTEGER; item: Handle; box: Rect);

SetDltem sets the item numbered itemNo in the given dialog's item list,
as specified by the parameters (without drawing the item). The type
parameter is the item type; the item parameter is a handle to the item
(or, for item type userltem, the procedure pointer); and the box
parameter is the display rectangle for the item.

Consider, for example, how to install an item of type userltem in a
dialog: In the item list in the resource file, define an.item in which
the type is set to userltem and everything else is set to f. Specify
that the dialog window be invisible (in either the dialog template or
the NewDialog call). After creating the dialog, convert the item's
procedure pointer to a handle; then call SetDitem, passing that handle
and the display rectangle for the item. Finally, call the Window
Manager procedure ShowWindow to display the dialog window.

(hand)
Do not use SetDitem to change the text of a statText or
editText item; call GetDltem to get a handle to the item
and then call SetlText (see below).

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.R

DIALOG MANAGER ROUTINES 27

PROCEDURE GetIText (item: Handle; VAR text: Str255);

Given a handle to a statText or editText item in a dialog box, as
returned.by GetDitem, GetIText returns the text of the item in the text
parameter.

PROCEDURE SetIText (item: Handle; text: Str255);

Given a handle to a statText or editText item in a dialog box, as
returned by GetDltem, SetlText sets the text of the item to the
specified text and draws the item. For example, suppose the exact
content of a dialog's text item cannot be determined until the
application is running, but the display rectangle is defined in the
resource file: Call GetDltem to get a handle to the item, and call
SetlText with the desired text.

PROCEDURE SellText (theDialog: DialogPtr; itemNo: INTEGER;
strtSel,endSel: INTEGER);

Given a pointer to a dialog and the item number of an editText item in
the dialog box, SellText does the following:

- If the item contains text, SelIText sets the selection range to
extend from character position strtSel up to but not including
character position endSel. The selection range is inversely
highlighted unless strtSel equals endSel, in which case a blinking
vertical bar is displayed to indicate an insertion point at that
position.

- If the item doesn't contain text, SelIText simply displays the
insertion point.

For example, if the user makes an unacceptable entry in the editText
item, the application can put up an alert box reporting the problem and -
then select the entire text of the item so it can be replaced by a new
entry. (Without this procedure, the user would have to select the item
by dragging with the mouse before making the new entry.)

(hand)
You can select the entire text by specifying~ for
strtSel and a very large number for endSel. For details
about selection range and character position, see the
TextEdit manual or the CoreEdit manual.

MODIFYING TEMPLATES IN MEMORY

When you call GetNewDialog or one of the routines that invokes an
alert, the Dialog Manager calls the Resource Manager to read the dialog
or alert template from the resource file and return a handle to it. If
the template is already in memory, the Resource Manager just returns a

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.F

28 Dialog Manager Programmer's Guide

handle to it. If you want, you can call the Resource Manager yourself
to read the template into memory (and make it unpurgeable), and then
make cha~ges to it before calling the dialog or alert routine. When
called by the Dialog Manager, the Resource Manager will return a handle
to the template as you modified it.

To modify a template in memory, you need to know its exact structure
and the data type of the handle through which it may be accessed.
These are discussed below for dialogs and alerts.

Dialog Templates in Memory

The data structure of a dialog template is as follows:

TYPE DialogTemplate • RECORD
boundsRect:
procID:
visible:
fillerl:
goAwayFlag:
filler2:
refCon:
itemslD:
title:

END;

Rect;
INTEGER;
BOOLEAN;
BOOLEAN;
BOOLEAN;
BOOLEAN;
Longlnt;
INTEGER;
Str255

The fillerl and filler2 fields are not used; they're there only to
ensure that the goAwayFlag and refCon fields begin on a word boundary.
The itemslD field contains the resource ID of the dialog's item list.
The other fields are the same as the parameters of the same name in the
NewDialog function.

You access the dialog template by converting the handle returned by the
Resource Manager to a template handle.

TYPE DialogTPtr • ADialogTemplate;
DialogTHndl • ADialogTPtr;

For example, if dHandle is a variable of type DialogTHndl, you can do
the following:

dHandle :• POINTER(OR.D(GetResource('DLOG',3)));
dHandleAA.visible :• FALSE

The Resource Manager function GetResource takes the resource type and
resource ID as parameters and returns a handle to the resource. You
use ORD and POINTER to make it have the data type DialogTHndl.

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.F

MODIFYING TEMPLATES IN MEMORY 29

Alert Templates in Memory

The data structure of an alert template is as follows:

TYPE AlertTemplate • RECORD
boundsRect: Rect;
itemsID: INTEGER;
stages: StageList

END;

BoundsRect is the rectangle that becomes the portRect of the window's
grafPort. The itemslD field contains the resource ID of the item list
for the alert.

The information in the stages field determines exactly what should
happen at each stage of the alert. It's packed into a word that has
the following structure:

TYPE StageList • PACKED ARRAY [1 •• 4) OF RECORD
bold Item:
boxDrawn:
sound:

END;

e •• 1;
BOOLEAN;
, •• 3

The elements of the StageList array are stored in reverse order of the
stages: element 1 is for the fourth stage, and element 4 is for the
first stage.

Boldltem indicates which button should be the default button (and
therefore boldly outlined in the alert box). If the first two items in
the alert's item list are the OK button and the Cancel button,
respectively, 9 will refer to the OK button and 1 to the Cancel button.
The reason for this is that the value of boldltem plus 1 is interpreted
as an item number, and normally items 1 and 2 are the OX and Cancel
buttons, respectively. Whatever the item having the corresponding item
number happens to be, a bold rounded-corner rectangle will be drawn
around its display rectangle.

(eye)
When deciding where to place items in an alert box, be
sure to allow room for any bold outlines that may be
drawn.

BoxDrawn is TRUE if the alert box is to be drawn.

The sound field specifies which sound should be emitted at this stage
of the alert, with a number from G to 3 that's passed to the current
sound procedure. You can call ErrorSound to specify your own sound
procedure; if you don't, sound number 9 will represent no sound, and
sound numbers 1 through 3 will be the corresponding number of short
beeps.

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.F

30 Dialog Manager Programmer's Guide

You access the alert template by converting the handle returned by the
Resource Manager to a template handle.

TYPE AlertTPtr • AAlertTemplate;
AlertTHndl • AAlertTPtr;

For example, if aHandle is a variable of type AlertTHndl, you can do
the following:

aHandle :a POINTER(ORD(GetResource('ALRT',l)));
aHandle·A.boxHeight :• SG

Assembly-language~= Rather than offsets into the fields of
the StageList data structure, the Toolbox equates file contains
masks for accessing the information stored for an alert stage in
a stages word. It also contains the system globals aNumber and
aCount, which provide information about the last occurrence of
an alert: its resource ID and its stage (as a number from G to
3).

FORMATS OF RESOURCES FOR DIALOGS AND ALERTS

Every dialog template, alert template, and item list must be stored in
a resource file, as must any icons or QuickDraw pictures in item lists
and any control templates for items of type ctrlltem+resCtrl. The
exact formats of a dialog template, alert template, and item list in a
resource file are given below. For icons and pictures, the resource
type is 'ICON' or 'PICT' and the resource data is simply the icon or
the picture. The format of a control template is discussed in the
Control Manager manual.

Dialog Templates in a Resource File

The resource type for a dialog template is 'DLOG', and the resource
data has the same format as a dialog template in memory.

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.F

Number of bytes
8 bytes
2 bytes
1 byte
1 byte
1 byte
1 byte
4 bytes
2 bytes
n bytes

FORMATS OF RESOURCES FOR DIALOGS AND ALERTS 31

Contents
Same as boundsRect parameter to NewDialog
Same as procID parameter to NewDialog
Same as visible parameter to NewDialog
Ignored
Same as goAwayFlag parameter to NewDialog
Ignored
Same as refCon parameter to NewDialog
Resource ID of item list
Same as title parameter to NewDialog
(1-byte length in bytes, followed by

the characters of the title)

Alert Templates in a Resource File

The resource type for an alert template is 'ALRT', and the resource
data has the same format as an alert template in memory.

Number of bytes
8 bytes
2 bytes
2 bytes

Contents
Rectangle enclosing alert window
Resource ID of item list
Stages

The resource data ends with a word of information about stages. As
illustrated in Figure 6, there are four bits of stage information for
each of the four stages, from the four low-order bits for the first
stage to the four high-order bits for the fourth stage. Each set of
four bits is as follows:

Number of bits
l bit

1 bit
2 bits

11/16/83 'Rose

Contents
Item number minus 1 of default button;
normally G is OK and 1 is Cancel
1 if alert box is to be drawn; G if not
Sound number (G through 3)

CONFIDENTIAL /DMGR/DIALOG.F

32 Dialog Manager Programmer's Guide

(hand)

4th stage 3rd stage 2nd stage 1st stage

llllllllJOllllllJOIO(lJOJOIOlOllJ

l~3 l~3 LSOU'ld2 L~,
(I-aw <raw no no
~x oox ~x oox

outline .__. outline
--. Cancel OK

(value: hexadecimal F721)

Figure 6. Sample Stages Word

So that the disk won't be accessed just for an alert that
beeps, you may want to set the resPreLoad attribute of
the alert's template in the resource file. For more
information, see the Resource Manager manual.

Item Lists in a Resource File

The resource type for an item list is 'DITL'. The resource data begins
with a word containing the number of items in the list minus 1. This
is what follows for each item:

Number of bytes
4 bytes
8 bytes
1 byte
1 byte
n bytes

(n is even)

Contents
G (placeholder for handle or procedure
Display rectangle {local coordinates)

pointer)

Item type
Length of following
If item type is:

ctrlltem+resCtrl
any other
statText,
icon Item,
user Item

ctrlltem
editText
picltem

data in bytes
Content is:

Resource ID (length 2)
Title of the control
The text
Resource ID (length 2)
Empty (length~)

As shown here, the first four bytes serve as a placeholder for the
item's handle or, for item type userltem, its procedure pointer; the
handle or pointer is stored after the item list is read into memory.
The next eight bytes define the display rectangle for the item, and the
next byte gives the length of the data that follows: for a text item,
it's the text itself; for an icon, picture, or control of type
ctrlltem+resCtrl, it's the two-byte resource ID for the item; and for

11 /16/83 Rose CONFIDENTIAL /DMGR/DIALOG.F

FORMATS OF RESOURCES FOR DIALOGS AND ALERTS 33

any other type of control, it's the title of the control. For
useritems, no data follows the item type. When the data is text or a
control title, the number of bytes it occupies must be even to ensure
word alignment of the next item.

Assembly-language .!!2!!,= The Toolbox equates file contains
offsets into the fields of an item list.

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.F

34 Dialog Manager Programmer's Guide

SUMMARY OF THE DIALOG MANAGER

Constants

CONST ctrlltem • 4;
btnCtrl • 11;

{add to following four constants}
{standard button control}

chkCtrl • l;
radCtrl • 2;
resCtrl • 3;
statText • 8;

{standard check box control}
{standard "radio button" control}
{control defined in control template}
{static text}

editText • 16;
iconitem • 32;
picitem • 64;

{editable text (dialog only)}
{icon}
{QuickDraw picture}

useritem • G;
itemDisable • 128;

{application-defined item (dialog only)}
{add to any of above to disable}

OK .. l;
Cancel• 2;

Data Structures

TYPE DialogPtr • WindowPtr;
DialogPeek • '"'DialogRecord;
DialogRecord • RECORD

window:
items:
textH:
editField:
editOpen:
aDefltem:

END;

Wi ndowRecord;
Handle;
TEHandle;
INTEGER;
INTEGER;
INTEGER

DialogTHndl • ·oialogTPtr;
DialogTPtr • '"'DialogTemplate;
DialogTemplate • RECORD

AlertTHndl
AlertTPtr

11/16/83 Rose

boundsRect:
procID:
visible:
filler!:
goAwayFlag:
ft ller2:
refCon:
itemsID:
title:

END;

• '"'AlertTPtr;
• ·AlertTemplate;

llect;
INTEGER;
BOOLEAN;
BOOLEAN;
BOOLEAN;
BOOLEAN;
Longlnt;
INTEGER;
Str255

CONFIDENTIAL /DMGR/DIALOG.S

SUMMARY OF THE DIALOG MANAGER 35

AlertTemplate • RECORD
boundsRect: Rect;
items ID: INTEGER;
stages: StageList

END;
Stage List • PACKED ARRAY (1 •• 4] OF RECORD

bold Item:
boxDrawn:
sound:

, •• 1;
BOOLEAN;
, •• 3

END;

Routines

Ini tiali za tion

PROCEDURE InitDialogs (restartProc: ProcPtr);
PROCEDURE ErrorSound (soundProc: ProcPtr);

Creating and Disposing of Dialogs

FUNCTION NewDialog

FUNCTION GetNewDialog

PROCEDURE CloseDialog
PROCEDURE DisposDialog

Handling Dialog Events

FUNCTION IsDialogEvent
FUNCTION DialogSelect

PROCEDURE ModalDialog
PROCEDURE DrawDialog

Invoking Alerts

FUNCTION Alert
FUNCTION StopAlert
FUNCTION NoteAlert
FUNCTION CautionAlert
PROCEDURE CouldAlert
PROCEDURE FreeAlert

11 /16/83 Rose

(dStorage: Ptr; boundsRect: Rect; title: Str2SS;
visible: BOOLEAN; procID: INTEGER; behind:
WindowPtr; goAwayFlag: BOOLEAN; refCon: Longlnt;
items: Handle) : DialogPtr;

(dialogID: INTEGER; dStorage: Ptr; behind:
WindowPtr) : DialogPtr;

(theDialog: DialogPtr);
(theDialog: DialogPtr);

(theEvent: EventRecord) : BOOLEAN;
(theEvent: EventRecord; VAR theDialog: DialogPtr;

VAR itemHit: INTEGER) : BOOLEAN;
(filterProc: ProcPtr; VAR itemHit: INTEGER);
(theDialog: DialogPtr);

(alert ID: INTEGER; fi 1 terProc: ProcPtr) . INTEGER; .
(alert ID: INTEGER; filterProc: ProcPtr) : INTEGER;
(alert ID: INTEGER; filterProc: ProcPtr) . INTEGER; .
(alert ID: INTEGER; filterProc: ProcPtr) . INTEGER; .
(alertlD: INTEGER);
(alert ID: INTEGER);

CONFIDENTIAL /DMGR/DIALOG.S

36 Dialog Manager Programmer's Guide

Manipulating Items in Dialogs and Alerts

PROCEDURE ParamText
PROCEDURE GetDitem

(param0,paraml,param2,param3: Str255);
(theDialog: DialogPtr; itemNo: INTEGER; VAR type:

PROCEDURE SetDitem

PROCEDURE GetIText
PROCEDURE SetlText
PROCEDURE SellText

INTEGER; VAR item: Handle; VAR box: Rect);
(theDialog: DialogPtr; itemNo: INTEGER; type:

INTEGER; item: Handle; box: Rect);
(item: Handle; VAR text: Str2SS);
(item: Handle; text: Str255);
(theDialog: DialogPtr; itemNo: INTEGER; strtSel,
endSel: INTEGER);

FilterProc for Modal Dialogs and Alerts

FUNCTION MyFilter (theDialog: DialogPtr; VAR theEvent: EventRecord;
VAR item: itemHit) : BOOLEAN;

Assembly-Language Information

Dialog Record Data Structure

dWindow
items
teHandle
edi tField
editOpen
aDefltem

dWindLen

Dialog window
Resource ID of dialog's item list
Handle to editable text for TextEdit
Item number minus 1 of editText item
Used internally
Item number of default button

Length of dialog record

Dialog Template Data Structure

dBounds
dWindProc
dVisible
dGoAway
dRefCon
dltems
dTitle

Rectangle that becomes portRect of alert window's grafPort
Window definition ID
Whether dialog window is visible
Whether dialog window has a close box
Dialog window's reference value
Resource ID of dialog's item list
Dialog window's title

Alert Template Data Structure

aBounds
altems
aStages

11/16/83 Rose

Rectangle that becomes portRect of dialog window's grafPort
Resource ID of alert's item list
Stages word; information for alert stages

CONFIDENTIAL /DMGR/DIALOG.S

SUMMARY OF THE DIALOG MANAGER 37

Item List Data Structure

dlgMaxlndex
itmHndl
itmRect
itmType
itmData

Number of items minus 1
Handle or procedure pointer for this item
Display rectangle for this item
Item type for this item
Length byte followed by that many bytes of
data for this item (must be even length)

Masks for Alert Stages Word

volBits
alBit
okDismissal

.EQU

.EQU

.EQU

System Globals

~
restProc
daStrings
daBeeper
dlgFont
aNumber
aCount

11 /16/83 Rose

Size
4 bytes
16 bytes
4 bytes
2 bytes
2 bytes
2 bytes

3
4
8

;sound number
;whether to draw box
;item number minus 1 of default button

Contents
Address of restart fail-safe procedure
Handles to ParamText strings
Address of current sound procedure
Font number for NewDialog
Resource ID of last alert
Stage number of last alert(~ through 3)

CONFIDENTIAL /DMGR/DIALOG.S

38 Dialog Manager Programmer's Guide

GLOSSARY

alert: A warning or report of an error, in the form of an alert box,
sound from the Macintosh's speaker, or both•

alert box: A box that appears on the screen to give a warning or
report an error during a Macintosh application.

alert template: A resource that contains information from which the
Dialog Manager can create an alert.

alert window: The window in which an alert box is displayed.

default button: In an alert box or modal dialog, the button whose
effect will occur if the user presses the Return key or the Enter key.
In an alert box, it's boldly outlined; in a modal dialog, it's boldly
outlined or the OK button.

dialog: Same as dialog box.

dialog box: A box that a Macintosh application displays to request
information it needs to complete a command, or to report that it's
waiting for a process to complete.

dialog record: The internal representation of a dialog, where the
Dialog Manager stores all the information it needs for its operations
on that dialog.

dialog template: A resource that contains information from which the
Dialog Manager can create a dialog.

dialog window: The window in which a dialog box is displayed.

disabled: A disabled item in a dialog or alert box has no effect when
clicked.

display rectangle: A rectangle that determines where an item is
displayed within a dialog or alert box.

icon: A 32-by-32 bit image that graphically represents an object,
concept, or message.

item: In dialog and alert boxes, a control, icon, picture, or piece of
text, each displayed inside its own display rectangle.

item list: A list of information about all the items in a dialog or
alert box.

item number: The index, starting from 1, of an item in an item list.

modal dialog: A dialog that requires the user to respond before doing
any other work on the desktop.

11/16/83 Rose CONFIDENTIAL /DMGR/DIALOG.G

GLOSSARY 39

modeless dialog: A dialog that allows the user to work elsewhere on
the desktop before responding.

sound procedure: A procedure
from the Macintosh's speaker.
and specifies which sound.

that will emit one of up to four sounds
Its integer parameter ranges from S to 3

stage: Every alert has four stages, corresponding to consecutive
occurrences of the alert, and a different response may be specified for
each stage.

11/16/83 Rose CONFIDENTIAL /DHGR/DlALOG.G

MACINTOSH USER EDUCATION

The Event Manager: A Programmer's Guide

See also: Macintosh User Interface Guidelines
Macintosh Operating System Reference Manual
QuickDraw: A Programmer's Guide
The Window Manager: A Programmer's Guide
The Desk Manager: A Programmer's Guide
The Menu Manager: A Programmer's Guide
The Control Manager: A Programmer's Guide

/EMGR/EVENTS

Modification History: First Draft (ROM 4) s. Chernicoff 6/20/83

ABSTRACT

The Macintosh Event Manager is your program's link to its human user,
allowing it to monitor the user's actions with the mouse, keyboard, and
keypad. A typical Macintosh application program is event-driven: it
decides what to do from moment to moment by asking the Event Manager
for events and responding to them one by one, in whatever way is
appropriate. The Event Manager is also used for various purposes
within the Toolbox itself, such as to coordinate the ordering and
display of windows on the screen. Finally, you can use the Event
Manager as a means of communication between parts of your own program.

2 Event Manager Programmer's Guide

TABLE OF CONTENTS

3 About This Manual
4 About the Event Manager
5 Event Types
6 Priority of Events
7 Keyboard Events
9 Event Records

12 Event Masks
14 Using the Event Manager
17 Event Manager Routines
17 Accessing Events
18 Posting and Removing Events
19 Reading the Mouse
20 Reading the Keyboard and Keypad
22 Miscellaneous Utilities
22 Journaling
23 Resource Format for Keyboard Configurations
24 Notes for Assembly-Language Programmers
25 Appendix: Standard Key and Character Codes
35 Summary of the Event Manager
37 Glossary

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes the Event Manager, the part of the Macintosh User
Interface Toolbox that allows your program to monitor the user's
actions with the mouse, keyboard, and keypad. *** Eventually it will
become part of a larger manual describing the entire Toolbox.*** The
Event Manager is also used for various purposes within the Toolbox
itself, such as to coordinate the ordering and display of windows on
the screen. Finally, you can use the Event Manager as a means of
communication between parts of your own program.

(eye)
This manual describes version 4 of the Macintosh ROM. If
you're using a different version, the Event Manager may
not work exactly as described here.

Actually, there are two Event Managers: one in the Operating System
and one in the Toolbox. The Toolbox Event Manager calls the one in the
Operating System and serves as an interface between it and your
application program; it also adds some features that aren't present at
the Operating System level, such as the window management facilities
mentioned above. This manual describes the Toolbox Event Manager,
which is ordinarily the one your program will be dealing with. All
references to .. the Event Manager" should be understood to refer to the
Toolbox Event Manager. For information on the Operating System's Event
Manager, see the Macintosh Operating System Reference Manual.

Like all Toolbox documentation, this manual assumes you are familiar
with the Macintosh User Interface Guidelines and with Lisa Pascal. You
should also have at least a general notion of what the Window Manager,
Desk ~wnager, Menu Manager, Control Manager, and Resource Manager do.
It would also be helpful to have some familiarity with a Macintosh
application program as an illustration of the concepts presented here.

The manual begins with an introduction to the Event Manager and what
you can do with it. It then discusses the various types of event,
their relative priority, and how the user's keyboard actions, in
particular, are reported in the fom of events. Next come sections on
the structure of event records, which contain all the pertinent
information about each event, and event masks, which some of the Event
Manager routines expect as parameters.

A section on using the Event Manager introduces its routines and tells
how they fit into the flow of your application program. This is
followed by detailed descriptions of all Event Manager procedures and
functions, their parameters, calling protocol, effects, side effects,
and so on.

Following these descriptions are sections that will not be of interest
to all readers. Special information is given on the Event Manager's
journaling mechanism, which allows your program's interactions with the
user to be recorded and played back later; on the format used in
resource files for storing a keyboard configuration, which determines

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.2

4 Event Manager Programmer's Guide

what character each key on the keyboard stands for; and on how to use
the Event Manager routines from assembly language.

Finally, there are an appendix containing detailed information on the
standard Macintosh character set and keyboard configuration, a quick
reference summary of the Event Manager data structures and routines,
and a glossary of terms used in this manual.

ABOUT THE EVENT MANAGER

The Macintosh Event Manager is your program's link to its human user.
Whenever the user presses the mouse button, types on the keyboard or
keypad, or inserts a disk in a disk drive, your program is notified by
means of an event. A typical Macintosh application progam is event
driven: it decides what to do from moment to moment by asking the
Event Manager for events and responding to them one by one, in whatever
way is appropriate.

Although the Event Manager's primary purpose is to monitor the user's
actions and pass them to your program in an orderly way, it also serves
as a convenient mechanism for sending signals from one part of a
program to another. For instance, the Window Manager uses events to
coordinate the ordering and display of windows as the user activates
and deactivates them and moves them around on the Macintosh screen.
You can also define your own types of event and use them in any way
your application calls for.

Events waiting to be processed are kept in the event queue. In
principle, the event queue is a FIFO (first-in-first-out) list: events
are added to the queue (posted) at one end and retrieved from the
other. You can think of the queue as a funnel that collects events
from a variety of sources and feeds them to your program on demand, in
the order they occurred. (There are a few exceptions to the strict
FIFO ordering, which will be discussed later.)

(eye)
The event queue has a limited capacity*** (currently 30
events, but may change)***· When the queue becomes
full, the Event Manager begins throwing out old events to
make room for new ones as they're posted. The event
thrown out is always the oldest one in the queue.

Using the Event Manager, your program can:

- Retrieve events one at a time from the event queue

- Control which types of event get posted and which are ignored

Post events of its own

- Read the current state of the keyboard, keypad, and mouse button

6/20/83 Chernicoff CONFIDENTIAL /EHGR/EVENTS.2

ABOUT THE EVENT MANAGER 5

- Monitor the location of the mouse

- Read the system clock to find out how much time has elapsed since
the system was last started up

Another important service provided by the Event Manager is journaling.
This feature enables your program to record all its interactions with
the Event Manager and play them back later.

EVENT TYPES

Events are of various types, depending on their origin and meaning.
Some report actions by the user, some are generated by the Window
Manager, some*** (not yet implemented)*** arise in the Macintosh-s
low-level input/output drivers, and some may be generated by your
program itself for its own purposes. Some events are handled by the
Desk Manager before your program ever sees them; others are left for
your program to handle in its own way.

The most important event types, the ones the Event Manager was created
to handle, are those that record actions by the user:

- Mouse down and mouse~ events occur when the user presses or
releases the mouse button.

- Key~ and key~ events occur when the user presses or releases
a key on the keyboard or keypad. The Event Manager also
automatically generates auto-key events when the user presses and
holds down a repeating key. Together, these three event types are
called keyboard events.

- Disk inserted events occur when the user inserts a disk into a
disk drive.

- Abort events occur when the user presses a special combination of
keys. *** Tentatively the combination is Command-period
(Command-.), but this may change; there-s also some possibility
that more than one key combination will be provided to interrupt a
running program in different ways or for different purposes.***
An abort event signals the program to stop whatever it-s doing and
return control directly to the user, allowing the user to
interrupt a time-consuming process or regain control of a runaway
program. An abort event can also be generated by the Event
Manager-sown journaling mechanism, signaling the program to reset
itself to some standard initial state before replaying a journal.

(hand)
Mere movements of the mouse are not reported as events.
If necessary, your program can keep track of them by
periodically asking the Event Manager for the current
location of the mouse.

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.2

6 Event Manager Programmer-s Guide

The following event types are used by the Window Manager to coordinate
the display of windows on the screen:

- Activate events are generated whenever an inactive window becomes
active or vice versa. They generally occur in pairs (that is, one
window is deactivated and another activated at the same time).

- Update events occur when a window's contents need to be redrawn,
usually as a result of the user-s opening, closing, activating, or
moving a window.

Two more event types (I/0 driver events and network events) are
reserved for use by the low-level input/output system. *** At present,
these types are not used at all.*** In addition, your program can
define as many as four event types of its own and use them for whatever
purposes you like.

One final type of event is the null event, which is what the Event
Manager returns if it has no other events to report.

PRIORITY OF EVENTS

It was stated earlier that in principle the event queue is a FIFO list-
that is, events are retrieved from the queue in the order they were
originally posted. Actually, the way in which various types of event
are generated and detected causes some to have higher priority than
others. Furthermore, when you ask the Event Manager for an event, you
can specify a particular type or types that are of interest. This can
also alter the strict FIFO order, by causing some events to be passed
over in favor of others that were actually posted later. Everything
said in the following discussion is understood to be limited to the
event types you've specifically requested in your Event Manager call.

The Event Manager always returns the highest-priority event available
of the requested type(s). The priority ranking is as follows:

1. Activate (window becoming inactive before window becoming active)

2. Mouse down, mouse up, key down, key up, disk inserted, abort,
network, 1/0 driver, application-defined (all in FIFO order)

3. Auto-key

4. Update (in front-to-back order)

5. Null

Activate events take priority over all others; they are detected in a
special way, and are never actu,lly placed in the event queue. The
Event Manager checks for pending activate events before looking in the
event queue, so it will always return such an event if one is
available. Because of the special way activate events are detected,

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.2

PRIORITY OF EVENTS 7

there can never be more than two such events pending at the same time:
one for a window becoming inactive and another for a window becoming
active. If there's one of each, the event for the window becoming
inactive i~ reported first.

Category 2 includes most of the possible event types. \lithin this
category, events are normally retrieved from the queue in the order
they were posted.

If no event is available in categories 1 and 2, the Event Manager next
checks to see whether the appropriate conditions hold for an auto-key
event. (These conditions are described in detail in the next section.)
If so, it generates one and returns it to your program.

Next in priority are update events. Like activate events, these are
not placed in the event queue, but are detected in another way. If no
higher-priority event is available, the Event Manager checks for
windows whose contents need to be redrawn. If it finds one, it
generates and returns an update event for that window. Windows are
checked in the order in which they're displayed on the screen, from
front to back, so if two or more windows need to be updated, an update
event will be generated for the frontmost such window.

Finally, if no other event is available, the Event Manager returns a
null event.

KEYBOARD EVENTS

Every key on the Macintosh keyboard and the optional keypad generates
key down and key up events when pressed and released. (Exceptions are
the modifier khys--Shift, Caps Lock, Command*** name may change***•
and Option. T ese keys are treated specially, as described below, and
generate no keyboard events of their own.) In addition, the Event
Manager itself generates auto-key events whenever you request an event
and all of the following conditions apply:

- No higher-priority event of the requested type(s) is available

- The user is currently holding down a key other than a modifier key

- The appropriate time interval (see below) has elapsed since the
last keyboard event

- Auto-key events are one of the types you've requested

- Auto-key events are one of the types currently being posted into
the event queue

Two different time intervals are taken into account. Auto-key events
begin to be generated after a certain initial delay has elapsed since
the original key down event (that is, since the key was originally
pressed). Thereafter, they are generated each time a certain repeat

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.2

8 Eve~t Manager Programmer's Guide

interval has elapsed since the last auto-key event. The initial
settings for these two intervals are 16 ticks (sixtieths of a second)
for the initial delay and 4 ticks for the repeat interval. The user
can adjust. these settings to individual preference with the control
panel desk accessory.

When the user presses, holds down, or releases a key, the resulting
keyboard event identifies the key in two different ways: with a key
code designating the key itself and a character code designating the
~acter the key stands for. Character codes are given in the
extended version of ASCII (the American Standard Code for Information
Interchange) used by Macintosh and Lisa; see the Appendix for further
information.

The association between keys and characters is defined by a keyboard
configuration. The particular character a key generates depends on
three things:

- The key itself

- The keyboard configuration currently in effect

- Which, if any, of the modifier keys were held down when the key
was pressed

As mentioned earlier, the modifier keys don't generate keyboard events
of their own. Instead, they modify the meaning of the other keys by
changing the character codes that those keys generate. For example,
under the standard Macintosh keyboard configuration, the "C" key
generates a lowercase letter c when pressed by itself; when pressed
with the Shift or Caps Lock key down, it generates a capital C; with
the Option key down, a lowercase c with a cedilla(~), used in French,
Portuguese, and a few other foreign languages; and with Option and
Shift or Option and Caps Lock down, a capital C with a cedilla(~).
The state of each of the option keys is also reported in a field of the
event record (see next section), where your program can examine it
directly.

Keyboard configurations are handled as resources and stored in resource
files. The standard keyboard configuration gives each key its normal
ASCII character code according to the standard Macintosh keyboard
layout, as shown in the Appendix. When the Option key is held down,
most keys generate special characters with codes between 128 and 255
($80 and $FF), included in the extended character set for business,
scientific, and international use.

(hand)
Notice that under the standard keyboard configuration
only the Shift, Caps Lock, and Option keys actually
modify the character a key stands for: the Command key
has no effect on the chaTacter code generated. (Keyboard
configurations other than the standard may take the
Command key into account.) Similarly, character codes
for the keypad are affected only by the Shift key. To

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.2

KEYBOARD EVENTS 9

find out whether the Command key was down at the time of
an event (or Caps Lock or Option in the case of one
generated from the keypad), you have to examine the
appropriate field of the event record.

Normally you'll just want to use the standard keyboard configuration,
which is read from the system resource file every time the Macintosh is
started up. Other keyboard configurations can be used to reconfigure
the keyboard for foreign use or for nonstandard layouts such as the
Dvorak arrangement. In rare cases, you may want to define your own
keyboard configuration to suit your program's special needs. For
information on how to install an alternate keyboard configuration or
define one of your own, see "Resource Format for Keyboard
Configurations" and "Notes for Assembly-Language Programmers", below.

EVENT RECORDS

Every event is represented internally by an event record containing all
pertinent information about that event. The event record includes the
following information:

- The type of event

- The time the event was posted

- The location of the mouse at the time the event was posted

- The state of the mouse button and modifier keys at the time the
event was posted

- Any additional information required for a particular type of
event, such as which key the user pressed or which window is being
activated

This information is filled into the event record for every event--even
for null events, which just mean that nothing special has happened.

Event records are defined as follows:

TYPE EventRecord • RECORD
what:
message:
when:
where:
modifiers:

END;

INTEGER;
Longlnt;
Longlnt;
Point;
INTEGER

The what field contains an event code identifying the type of the
event. The Event Manager can handle a maximum of 16 different event
types, denoted by event codes from G to 15. The following standard
event codes are built into the Event Manager as predefined constants:

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.3

10 Event Manager Programmer's Guide

CONST nullEvent • G;
mouseDown • l;
mouseUp • 2;
keyDown • 3;
keyUp • 4;
autoKey • 5;
updateEvt • 6;
diskEvt • 7;
activateEvt • 8;
abortEvt • 9;
networkEvt • 10;
driverEvt • 11;
applEvt • 12;
app2Evt • 13;
app3Evt • 14;
app4Evt • 15;

{null}
{mouse down}
{mouse up}
{key down}
{key up}
{auto-key}
{update}
{disk inserted}
{activate}
{abort}
{network}
{I/O driver}
{application-defined}
{application-defined}
{application-defined}
{application-defined}

The when field contains the time the event was posted, in ticks
(sixtieths of a second) since the system was last started up.

The where field gives the location of the mouse at the time the event
was posted, expressed in global coordinates.

1s 14 1:, 12 11 10 s e 7 e s 4 :., 2 1 o

I
' : 1· ' ' : ' I : ' ' ' . ' . I : : : : i : i = : : i i i i

~ : i : : : i : • ; : t i i : I .

\ • ' ' i ' I I Actlvete/deactlvate
System/epplicetion window

lknned
.._ ________ Mouse button

---------Conmendkev .._ __________ Shift key

------------ Ceo~ Loct tey .._ ____________ Option key

.._ ______________ lhJsed

Figure l. Modifier Bits

The modifiers field gives the state of the mouse button and the
modifier keys at the time the event was posted, as shown below and in
Figure 1. Al in any bit position means that that key or button was
down; 0 means it was up. (Following the customary convention, the bit
positions are numbered from right to left, starting from G at the low-
order end; see Figure 1.) ·

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.3

Bit
15-=ri'

11
10

9
8
7

6-2
1-0

Meaning
Unused
Option key
Caps Lock key
Shift key

EVENT RECORDS 11

Command key *** (name may change)***
Mouse button
Unused
Used only by activate events (see below)

For activate events. the low-order bit of the modifiers field (bit G)
is set to 1 if a window is being activated. or to O if it is being
deactivated. When one window is deactivated and another is activated
at the same time (as is usually the case). bit 1 of the modifiers field
is set to 1 if one of the windows involved belongs to your application
program and the other is a system window (a window not created by your
program, such as one containing a desk accessory); if they're both
system or both application windows, this bit is set to~- You can use
this information to take some special action when the active window
changes from an application window to a system window or vice versa:
for example, you might want to hide a menu or dim some of its items
when a system window becomes active and restore them when control
returns to one of your program's own windows.

31 24 23 16 15 8 7 0

• I " '--- ~ L ... _____ .,,., ~...,,.
._I __ Cherecter code

..,_ _______ Key code

Figure 2. Event Message Format for Keyboard Events

The message field contains the event message, which conveys extra
information specific to a particular event type:

- For keyboard events. the event message identifies the key that was
pressed or released. as shown in Figure 2. The low-order byte
(message MOD 256) contains the character code for the key.
depending on the keyboard configuration currently in effect and on
which, if any, of the modifier keys were held down. Under the

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.3

12 Event Manager Programmer's Guide

standard keyboard configuration this is just the normal ASCII code
associated with the key, which is usually the information your
program needs. The third byte (message DIV 256) gives the key
code, useful in special cases (a music generator, for example)
where.you want to treat the keyboard as a set of buttons unrelated
to specific characters. Detailed information on key and character
codes for the standard Macintosh keyboard configuration is given
in the Appendix. The first two bytes of the message are set to Q.

- For disk inserted events, the event message gives the drive number
of the disk drive: 1 for the Macintosh's built-in drive, 2 for
the external drive, if any. Numbers greater than 2 denote
additional disk drives connected through the serial port. By the
time your program receives a disk inserted event, the system will
already have attempted to mount the volume that was inserted. If
for any reason the attempt was unsuccessful (for example, if the
user has inserted an unformatted disk), the high-order word of the
event message will contain the error code returned by the
Operating System; see the Operating System manual for further
details.

- For activate and update events, the event message is a pointer to
the window affected.

- For abort events, the event message identifies the key that the
user pressed in order to interrupt the program. The format is the
same as described above for keyboard events. For abort events
generated by the Event Manager's own journaling mechanism, the
message field is set to Q.

- For application-defined event types, you can use the event message
for whatever information your application calls for.

- For mouse down, mouse up, and null events, the event message is
meaningless and should be ignored.

EVENT MASKS

Several of the Event Manager routines can be restricted to a specific
event type or group of types. For instance, instead of just requesting
the next available event, you can ask specifically for the next
keyboard event.

You specify which event types a particular Event Manager call applies
to by supplying an event mask as a parameter. This is an integer in
which each of the 16 bit positions stands for an event type, as shown
in Figure 3. Notice that the bit position representing a given type
corresponds to the event code for that type. For example, update
events (type code 6) are specified by bit 6 of the mask, counting from
0 at the right (low-order) end. A 1 bit at that position means that
this Event Manager call applies to update events; a f means it doesn't.

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVE~'TS. 3

EVENT MASKS 13

i5 14 13 ,2 ,, ,o s e 1 e 5 4 3 2 , o

I I I
\ V

.,
I I L::..,_
I....::= Mouse~

Key down
Key up
Auto-key

-------- Upclete
--------- Dist inserted

Activate
Abort

------------ Network
110 criver

Appl icatlon-def ined

Figure 3. Event Mask

Masks for each single event type are built into the Event Manager as
predefined constants:

CONST nullMask • l;
mDownMask • 2;
mUpMask • 4;
keyDownMask • 8;
keyUpMask • 16;
autoKeyMask • 32;
updateMask • 64;
disk.~ask • 128;
activMask • 256;
abortMask • 512;
networkMask • 1024;
driverMask • 2048;
applMask • 4096;
app2Mask • 8192;
app3Mask • 16384;
app4Mask • -32768;

{null}
{mouse down}
{mouse up}
{key down}
{key up}
{auto-key}
{update}
{disk inserted}
{activate}
{abort}
{network}
{I/O driver}
{application-defined}
{application-defined}
{application-defined}
{application-defined}

There's also a predefined mask consisting of all l bits, to designate
every event type:

CONST everyEvent • -1;

You can form any mask you need by combining these mask constants with
integer addition and subtraction. For example, to specify any keyboard
event, you can use a mask of

keyDownMask + keyUpMask + autoKeyMask

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVE?-."TS .3

14 Event Manager Programmer's Guide

For any event except an update, you can use

everyEvent - updateMask

(hand)
Recommended programming practice is always to use an
event mask of everyEvent unless there is a specific
reason not to. This ensures that all events will be
processed in their natural order.

In addition to the mask parameters to individual Event Manager
routines, there's also a global system event~. which controls which
event types get posted into the event queue. Only those events
corresponding to l bits in the system event mask are posted; those with
0 bits are ignored. When the system is started up, the system event
mask is initially set to post all except key up events--that is, it is
initialized to

everyEvent - keyUpMask

(Key up events are meaningless for most applications, and your program
will usually want to ignore them anyway.) If necessary for your
particular application, you can change the setting of the system event
mask with the Event Manager procedure SetEventMask.

USING THE EVENT MANAGER

This section discusses how the Event Manager routines fit into the
general flow of your program and gives you an idea of which routines
you'll need to use. The routines themselves are described in detail in
the next section.

Before using the Event Manager, you should call the Window Manager
procedure InitWindows: parts of the Event Manager rely on the Window
Manager's data structures and will not work properly unless those
structures have been properly initialized. It's also usually a good
idea to call FlushEvents(everyEvent,0), to empty the event queue of any
stray events left over from before your program was started.up (such as
keystrokes typed to the Finder).

As noted earlier, moat application programs are event-driven. Such
programs typically have a main loop that repeatedly calls GetNextEvent
to retrieve the next available event, then uses a CASE statement to
decide what type of event it is and take whatever action is
appropriate.

Your program is only expected to respond to those events that are
directly related to its own operations. Events that are of interest
only to the system, or that pertain only to system windows, are
intercepted and handled by the Desk Manager, but are still reported
back to your program by GetNextEvent. After calling GetNextEvent, you

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.3

USING THE EVENT MANAGER 15

should test its Boolean result to find out whether your program needs
to respond to the event: TRUE means the event is of interest to your
program, FALSE means you can ignore it.

(hand)
Events handled by the system include activate and update
events for system windows; all keyboard and mouse up
events when a system window is active, if the window
contains a desk accessory that is prepared to handle the
event; and network events if there's a desk accessory
present that will handle them. Further details are given
in the Desk Manager manual.

On receiving a mouse down event, you should first call the Window
Manager function FindWindow to find out where on the screen the mouse
button was pressed; you can then respond in whatever way is
appropriate. Depending on the part of the screen the button was
pressed in, this may involve calls to Toolbox routines such as the Menu
Manager function MenuSelect, the Desk Manager procedure SystemClick,
the Window Manager routines SelectWindow, DragWindow, GrowWindow, and
TrackGoAway, and the Control Manager routines FindControl,
TrackControl, and DragControl. See the relevant Toolbox manuals for
details.

(hand)
If your program attaches some special significance to
double mouse clicks, you can detect them by comparing the
time and location of each mouse down event with those of
the previous such event. If the two events are
sufficiently close to each other in time and space-
separated by not more than, say, half a second (30 ticks)
and three pixels--you can consider them a double click
and respond accordingly.

When one of your own windows is active, you should respond to keyboard
and mouse up events in whatever way your application calls for. For
example, when the user types a character on the keyboard, you might
want to insert that character into the document displayed in an active
document window. For keyboard events, you should first check the
modifiers field to see whether the character was typed with the Command
key held down: if so, the user may have been choosing a menu item by
typing its keyboard equivalent. To find out, pass the character that
was typed to the Menu Manager function HenuKey. If that character,
combined with the Command key, stands for a menu item, MenuKey will
return a nonzero result identifying the item. You can then do whatever
is appropriate to respond to that menu item, just as if the user had
chosen it with the mouse. If HenuK.ey's result is~. the user has typed
a key combination that has no menu equivalent; your program may then
want to respond in some other way.

(hand)
Under the Macintosh User Interface Guidelines, the
keyboard's usual auto-repeat property doesn't apply to
Command-key combinations that stand for menu items. When

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.3

16 Event Manager Programmer's Guide

you receive a nonzero result from MenuKey, you should
execute the corresponding menu command only if the event
you're responding to was a mouse down event; if it was an
auto-key event, just ignore it and go on to the next
event.

When you receive an activate event for one of your own windows, the
Window Manager will already have done all of the normal .. housekeeping"
associated with the event, such as highlighting or unhighlighting the
window. You can then take any further action of your own that your
application may require, such as showing or hiding a scroll bar or
highlighting or unhighlighting a selection.

On receiving an update event for one of your own windows, you should
usually call the Window Manager procedure BeginUpdate, redraw the
window's contents, then call EndUpdate.

When you receive a disk inserted event, the Desk Manager will already
have responded to the event by attempting to mount the new volume just
inserted in the disk drive. Usually there's nothing more for your
program to do, but CetNextEvent returns TRUE anyway, giving you an
opportunity to take some further action if your application demands it.
If the attempt to mount the volume was unsuccessful, there will be a
nonzero error code in the high-order word of the event message; in this
case you might want to take some special action, such as displaying an
alert box containing an error message.

If the event you receive is an abort event, first check to see whether
it was generated by the user or by the Event Manager's own journaling
mechanism. For user-generated abort events, your program should stop
whatever it's doing and return to its main loop to process the next
available event; for those that originate in the journaling mechanism,
it should reset its internal state as appropriate to prepare for
replaying a journal.

(hand)
During any particularly time-consuming operation, your
program should check for abort events periodically to
allow the user to interrupt the operation from the
keyboard.

Network events are handled by the Desk Manager as long as there's a
desk accessory present that can respond to them. If CetNextEvent
returns a TRUE result for a network event, then no such desk accessory
is present; your program should normally just ignore the event.
*** The exact meaning and use of 1/0 driver events is not yet
specified, so (for the time being) you needn't worry about how to
respond to them.***

If you're using your own event types for internal communication between
parts of your program, you can use PostEvent to post them into the
event queue. When you receive them back from GetNextEvent, you can
respond to them in whatever way is appropriate for your application.

6/20/83 Chernicoff CONFIDENTIAL /EMCR/EVENTS.3

USING THE EVENT MANAGER 17

To "peek" at pending events without removing them from the event queue,
use EventAvail instead of GetNextEvent. To remove all events of a
given type or types from the queue, use FlushEvents. To control which
event types get posted into the queue, or to cause certain types to be
ignored, use SetEventMask.

In addition to receiving the user-s mouse and keyboard actions in the
form of events, you can directly read the keyboard (and keypad), mouse
location, and state of the mouse button by calling GetKeys, GetMouse 1

and Button, respectively. To follow the mouse when the user drags it
with the button down, use StillDown or WaitMouseUp.

Finally, you can read the current setting of the system clock at any
time by calling TickCount.

EVENT MANAGER ROUTINES

This section describes all the Event Manager procedures and functions.
They are presented in their Pascal form; for information on using them
from assembly language, see "Using the Toolbox from Assembly Language"
*** (doesn-t exist, but see Quick.Draw manual)*** and also "Notes for
Assembly-Language Programmers" in this manual.

Accessing Events

FUNCTION GetNextEvent (eventMask: INTEGER; VAR theEvent: EventRecord)
BOOLEAN;

GetNextEvent returns the next available event of a specified type or
types and removes it from the event queue. The event is returned as
the value of the parameter theEvent; eventMask specifies which event
types are of interest. GetNextEvent will return the next available
event of any type designated by al bit in the mask, subject to the
priority rules discussed above under "Priority of Events". Event types
corresponding to Q bits in the mask are ignored. If no event of any of
the designated types is available, GetNextEvent returns a null event,
regardless of the setting of the eventMask bit for null events.

(eye)
Since update events are never actually placed in the
event queue, GetNextEvent can-t remove them from the
queue before returning them, as it does with other
events. If your program doesn't take some explicit
action to "clear" the update event, it will keep getting
the same event back again. The normal way of clearing an
update event is with BeginUpdate and EndUpdate; further
explanation can be found in the Window Manager manual.

6/20/83 Chernicoff C1}~FIDENTIAL /CMGR/EVENTS.4

18 Event Manager Programmer's Guide

Before reporting an event to your program, GetNextEvent first calls the
Desk Manager function SystemEvent to see whether the system wants to
intercept and respond to the event. If so (or if the event being
reported ie a null event), GetNextEvent returns a function result of
FALSE to notify your program that it can ignore this event; a function
result of TRUE means that your program should handle the event itself.
The Desk Manager normally intercepts the following events:

- All activate and update events directed to a system window

- All keyboard and mouse up events if the currently active window is
a system window and contains a desk accessory that is prepared to
handle the event

- All network events if there is a desk accessory present that can
handle them

The Desk Manager also responds to disk inserted events by attempting to
mount the volume that has just been inserted; but in this case
GetNextEvent returns TRUE to allow your program to take some further
action if appropriate. All other events (including all mouse down
events, regardless of which window is active) are left for your program
to handle. See the Desk Manager manual for further details.

FUNCTION EventAvail (eventMask: INTEGER; VAR theEvent: EventRecord)
BOOLEAN;

EventAvail returns in theEvent the next available event of the type or
types specified by eventMask, but does not remove the event from the
event queue. This allows you to "peek" at pending events while still
leaving them in the queue for later processing. In all other respects,
EventAvail works exactly the same ~s GetNextEvent (see above).

Posting and Removing Events

PROCEDURE PostEvent (eventCode: INTEGER; eventMsg: Longlnt);

PostEvent places in the event queue an event of the type designated by
eventCode, with the event message specified by eventMsg. The main use
of this procedure is for posting events of your own application-defined
types. It's also sometimes useful for placing an event back in the
queue after you've removed it with GetNextEvent. Notice, however, that
in this case the system clock time, mouse location, and state of the
mouse button and modifier keys will be changed from their original
values to those in effect at the time the event is reposted.

(eye)
Be very careful about posting any but your own
application-defined events into the queue. For example,
attempting to post an activate or update event will

6/20/83 Chernicoff CONFIDENTIAL /CMGR/EVENTS.4

EVEtlT MANAGER ROUTINES 19

interfere with the internal operation of the Event
Manager, since such events are detected in other ways and
are not normally placed in the queue at all. If you
repost a mouse event, the mouse location associated with
it will be changed, possibly altering its meaning;
reposting a keyboard event may cause modifier information
to be lost or characters to be transposed from the order
in which the user originally typed them. In general, you
should avoid using PostEvent for any but your own events
unless you're sure you know what you're doing.

PROCEDURE FlushEvents (eventMask,stopMask: INTEGER);

FlushEvents removes from the event queue all events of the type(s)
specified by eventMask, up to, but not including, the first event of
any type specified by stopMask. To remove all events of a particular
type or types, use a stopMask value of 0. You might use FlushEvents,
for example, on receiving an abort event, to remove any mouse or
keyboard events that may have occurred before the program was
interrupted.

(hand)
When your program is first started up, it's usually a
good idea to call FlushEvents(everyEvent,0) to empty the
event queue of any stray events that may have been left
lying around, such as unprocessed keystrokes typed to the
Finder.

Reading the Mouse

PROCEDURE GetMouse (VAR mouseLoc: Point);

GetMouse returns the current mouse location as the value of the
parameter mouseLoc. The location is expressed in the local coordinate
system of the current grafPort (which might be, for example, the
currently active window). Notice that this differs from the mouse
location stored in the where field of an event record, which is given
in global coordinates.

FUNCTION Button: BOOLEAN;

The Button function returns the current state of the mouse button:
TRUE if the button is down, FALSE if it isn't.

FUNCTION StillDown: BOOLEAN;

Called after a mouse down event, StillDown tests whether the mouse
button is still down. lt returns TRUE if the button is currently down

6/20/83 Chernicoff CONFIDENTIAL /CMGR/EVENTS.4

20 Event Manager Programmer's Guide

and there are no more mouse events (mouse ups or later mouse downs)
pending in the event queue. This is a true test of whether the button
is still down from the original press--unlike Button (see above), which
returns TRUE whenever the button is currently down, even if it has been
released and pressed again since the original mouse down event.

FUNCTION WaitHouseUp: BOOLEAN;

WaitHouseUp works exactly the same as StillDown (see above), except
that if the button is not still down from the original press,
WaitMouseUp removes the corresponding mouse up event before returning
FALSE.

Reading the Keyboard and Keypad

PROCEDURE GetKeys (VAR theKeys: KeyMap);

GetKeys reads the current state of the keyboard {and keypad, if any)
and returns it in the form of a keyMap:

TYPE KeyMap • PACKED AP.AAY [l •• 128] OF BOOLEAN;

Each element of the keyMap is TRUE if the corresponding key is down,
FALSE if it isn't. The correspondence between elements of the keyMap
and keys on the keyboard and keypad is shown in Table 1. KeyMap
elements corresponding to blank entries in the table are unused.
Notice that GetKeys doesn't distinguish between the two Shift keys or
the two Option keys.

6/20/83 Chernicoff CONFIDENTIAL /CMGR/EVENTS.4

Element

" l
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Key

A
s
D
F
H
G
z
X
C
V

B
Q
w
E
R
Y.
T
l
2
3
4
6
5 -
9
7

8
fl
]
0
u
[
I
p
Return
L
J ,

K .
t

\
t

I
N
M

Element

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

96-127

EVENT MANAGER ROUTINES 21

Tab
Space bar ...

Backspace
Enter

Command *** (name may change)***
Shift
Caps Lock
Option

• (keypad)
* (keypad)

+ (keypad)
Clear (keypad)
, (keypad)

Enter (keypad)
/ (keypad)
- (keypad)

(I (keypad)
l (keypad)
2 {keypad)
3 (keypad)
4 (keypad)
5 (keypad)
6 (keypad)
7 (keypad)

8 (keypad)
9 (keypad)

(Unused)

Table l. KeyMap Elements

6/20/83 Chernicoff CONFIDENTIAL /CMGR/EVEt-.'TS.4

22 Event Manager Programmer's Guide

Miscellaneous Utilities

PROCEDURE SetEventMask (theMask: INTEGER);

SetEventMask sets the system event mask to the specified value. This
mask controls the posting of events into the event queue. Only event
types corresponding to 1 bits in the mask are posted; all others are
isnored. The initial setting for the system event mask is to post all
except key up events.

SetEventMask is useful if for some reason you want to know when keys
are released as well as when they're pressed, or if you know that some
other event type is of no interest to your program and needn't be
posted. For example, if your program attaches no special meaning to
mouse up events, you may want to dispense with them; or you might want
to eliminate keyboard repeat by preventing auto-key events from being
posted.

{hand)
Since space in the event queue is limited, it's generally
a good idea to disable any event type that you know your
program has no use for.

The system event mask has no effect on activate or update events, since
these events are detected in other ways and are never actually posted
into the event queue.

FUNCTION TickCount: Longint;

TickCount returns the current value of the system clock, which gives
the elapsed time in ticks (sixtieths of a second) since the system was
last started up.

JOURNALING

Using the Event Manager's journaling mechanism, all of a program's
interactions with the Event Manager can be recorded and later played
back, just as if they were happening for the first time. A journal is
a record of all calls to the Event Manager routines GetNextEvent,
EventAvail, GetMouse 1 Button, GetKeys, and TickCount. When a journal
is being recorded, every call to any of these routines is sent to a
special input/output driver and recorded in the journal, along with the
result returned.

When the journal is played back, the same Event Manager calls read
their results back from the journal instead of directly from the mouse,
keyboard, keypad, and system clock. To the application program, the
results it receives from the Event Manager in response to these calls

6/20/83 Chernicoff CONFIDENTIAL /CMGR/EVENTS.4

JOURNALING 23

look exactly as if they were coming directly from the user. Since the
program is event-driven, its behavior is completely determined by this
stream of results. In particular, the sequence of calls the program
issues to the Event Manager while replaying the journal will exactly
match those that occurred when the journal was originally recorded.
Since the results the Event Manager sends back are taken from the
journal, the same sequence of events that occurred when the journal was
recorded will be reproduced when the journal is played back.

(eye)
Null events are not fully recorded in the journal: the
fact that a null event was generated is recorded, but not
the contents of the event record's fields. When the
journal is played back, this information--the time the
event was posted, the mouse location, and the state of
the mouse button and modifier keys--is lost; the contents
of the when, where, and modifiers fields are meaningless.
If there's any chance your program may be executed from a
journal instead of by direct interaction with the user,
it should not rely in any way on the contents of a null
event's fields.

The user can control journal recording and playback with the journaling
desk accessory. It can also be controlled by the application program
itself, but only from the assembly-language level: see "Notes for
Assembly-Language Programmers", below, for details. *** The exact
method of controlling the journaling mechanism has not been finally
determined and will probably change.***

RESOURCE FORMAT FOR KEYBOARD CONFIGURATIONS

The keyboard configuration, which translates the keys the user presses
on the keyboard and keypad into the characters they represent, is
treated as a resource and read from. a resource file. The standard
Macintosh keyboard configuration is stored in the system resource file
and is read automatically when the Macintosh is started up. One way to
substitute an alternate keyboard configuration--for example, for
foreign use--is to use the Resource Editor*** (which doesn't yet
exist)*** to replace the standard configuration with the new one in
the system resource file. Then the next time the Macintosh is
restarted, it will read the new keyboard configuration instead of the
standard one.

(hand)
It's also possible for a running program to install a new
keyboard configuration "on the fly". This can only be
done in assembly language; details are given in the next
section.

Actually, the keyboard configuration is a pair of machine-language
configuration routines, one for the keyboard and one for the keypad.
These routines accept a key code, along with the state of the modifier

6/20/83 Chernicoff CONFIDENTIAL /CMGR/EVENTS.4

24 Event Manager Programmer's Guide

keys, as input and return the corresponding character code as output.
The arguments and result are passed directly in machine registers, so
the routines must be written in assembly language, not in Pascal.

The keyMap index (see Table l) for the key to be translated is passed
to the configuration routine in register D2. Register Dl contains the
fourth word (indices 48 to 63) of the current keyMap, which includes
the status bits for the four modifier keys at the positions shown in
Figure 4. All other bits in this word should be ignored. The
configuration routine is expected to return a character code in
register D0; it should preserve the contents of all other registers.
If the specified key combination doesn't correspond to any character,
the configuration routine should return a: in this case, no keyboard
event will be generated.

1~ 14 13 12 11 10 s e 1 e 5 4 3 2 1 o

I

II'- - Cornmel Id key
Shift key
Caps Lock key
Option key

Figure 4. Modifier Bits for Configuration Routines

When the Macintosh is started up, two configuration routines are read
from the system resource file. Both have a resource type of 'KEYC';
the resource ID is 1 for the keyboard routine and 2 for the keypad
routine. The resource data for a resource of this type is just the
machine code for the routine. The first byte of code is assumed to be
the entry point for executing the routine.

NOTES FOR ASSEMBLY-LANGUAGE PROGRAMMERS

Information
language is
manual.***
programmers

about how to use the User Interface Toolbox from assembly
given elsewhere. *** For now, see the QuickDraw
This section contains special notes of interest to

who will be using the Event Manager from assembly language.

6/20/83 Chernicoff CONFIDENTIAL /CMGR/EVENTS.4

NOTES FOR ASSEMBLY-LANGUAGE PROGRAMMERS 25

The primary aid to assembly-language programmers is a file named
TOOLEQU.TEXT0 If you use .INCLUDE to include this file when you
assemble your program, all the Event Manager constants, offsets to
locations of global variables, and offsets into fields of structured
types will be available in symbolic form.

In assembly language, you can control the operation of
mechanism by setting the global variable JournalFlag.
variable to a positive, nonzero value turns on journal
setting it negative turns on playback; setting it to a
off.

the journaling
Setting this
recording;
turns journaling

The global variables KeylTrans and Key2Trans are used to hold pointers
to the keyboard and keypad configuration routines, respectively. You
can replace either or both of these routines "on the fly" by the
following steps:

1. Call the Resource Manager function GetResource (or
GetNamedResource) to find the new configuration routine in its
resource file, read it into memory, and get a handle to it.

2. Use the Operating System call RecoverHandle to convert the
existing routine pointer from KeylTrans or Key2Trans into a
handle.

3. Use the Operating System call DisposHandle to free the storage
occupied by the old routine.

4. Convert the handle you received from the Resource Manager into a
pointer and store it in KeylTrans (for a keyboard routine) or
Key2Trans (for a keypad routine).

APPENDIX: STANDARD KEY AND CHARACTER CODES

The following tables show the key and character codes used by Macintosh
and the characters assigned to keys on the keyboard and keypad under
the standard Macintosh keyboard configuration. All key and character
codes are given in hexadecimal; for the benefit of readers with only
ten fingers, there's a hexadecimal/decimal conversion ~able at the end
of this Appendix.

Table 2 shows the extended ASCII character set used by Macintosh and
Lisa. The first digit of the hexadecimal character code is shown at
the top of the table, the second down the left side. For example,
character code $47 stands for the capital letter G, which appears in
the table at the intersection of column 4 and row 7.

Character codes between $20 and_$7E have their normal ASCII meanings.
Codes between $80 and $CA denote special characters included in the
extended character set for business, scientific, and international use;

6/20/83 Chernicoff CONFIDENTIAL /EHGR/EVENTS.S

26 Event Manager Programmer's Guide

codes from $CB to $FF are unassigned. ASCII control characters ($00 to
$1F, as well as $20 and $7F) are identified in the table by their
traditional ASCII abbreviations:

Code
~
$01
$02
$03
$04
$05
$06
$07
$08
$09
$0A
$0B
$0C
$0D
$0E
$0F

Abbr.
WL
SOR
STX
ETX
EDT
ENQ
ACK
BEL
BS

Meaning
Null

Code
$1T
$11
$12
$13
$14
$15
$16
$17
$18
$19
$1A
$lB
$lC
$1D
$lE
$lF

Abbr.
Di:E
DCl
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
us

Meaning

$20

HT
LF
VT
FF
CR
so
SI

SP

Start of Header
Start of Text
End of Text
End of Tape
Enquiry
Acknowledge
Bell
Backspace
Horizontal Tab
Line Feed
Vertical Tab
Form Feed
Carriage Return
Shift Out
Shift In

Space $7F DEL

Data Link Escape
Device Control 1
Device Control 2
Device Control 3
Device Control 4
Negative Acknowledge
Synchronous Idle
End Transmission Block
Cancel
End of Medium
Substitute
Escape
Field Separator
Group Separator
Record Separator
Unit Separator

Delete

However, most of these characters have no special meaning on Macintosh
and cannot be generated from the Macintosh keyboard under the standard
keyboard configuration. The exceptions are the following:

Code
$l3
$08
$09
$0D
$1B
$1C
$1D
$1E
$1F
$20

Character
ETX
BS
HT
CR
ESC
FS
GS
RS
us
SP

Key
Enter (keyboard and keypad)
Backspace
Tab
Return
Clear (keypad)
Left arrow (keypad)
Right arrow (keypad)
Up arrow (keypad)
Down arrow (keypad)
Space bar

In addition, as shown in the table, codes from $11 to $15 denote
special characters used on the Macintosh screen, such as the open and
solid Apple characters. These characters are intended exclusively for
use on the screen, and have no keyboard or keypad equivalents under the
standard keyboard configuration.

The characters shaded in the table are accented letters used in various
foreign languages. Under the standard keyboard configuration, these
characters cannot be typed directly from the keyboard. Instead, they
are generated by first typing the accent or diacritical mark alone,
followed by the letter to be accented. For example, a lowercase letter
e with a grave accent (e, character code $BF) is produced by typing a
grave accent(', code $60) followed by a lowercase e (code $65). The
Macintosh keyboard driver will*** (eventually)*** translate such two-

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.5

APPENDIX: STANDARD KEY AND atARACTER CODES 27

character sequences involving diacriticals into the corresponding
single accented letters.

Tables 3 and 4 show the hexadecimal key codes corresponding to keys on
the Macintosh keyboard and keypad, respectively. Modifier keys are not
shown, since they never generate keyboard events of their own.

Table S shows the hexadecimal character codes generated by each key on
the keyboard under the standard keyboard configuration. Table Sa gives
the character generated when the key is pressed by itself, Table Sb
when it is pressed with the Shift key held down, Table Sc the caps Lock
key, Table Sd the Option key, and Table Se the Option and Shift or
Option and Caps Lock keys. Again, the modifier keys themselves are not
shown.

Table 6 shows the hexadecimal character codes for the keypad under the
standard keyboard configuration. Table 6a gives the character
generated when the key is pressed by itself, Table 6b when it is
pressed with the Shift key held down.

Finally, Table 7 is a conversion table between hexadecimal and decimal.
To convert a two-digit hexadecimal number to decimal, find its first
digit at the top of the table and its second down the left side. The
decimal equivalent is found at the intersection of that column and row.
For example, hexadecimal $6C is equivalent to decimal 108, found at the
intersection of column 6 and row c. To convert a decimal number to
hexadecimal, find the number in the body of the table and read its
first and second hexadecimal digits from the head of that column and
row, respectively. For example, decimal 227 is in column E and row 3,
so its hexadecimal equivalent is $El.

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.5

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

28 Event Manager Programmer's Guide

D 1 2 3 4 S 6 7 8 9 A B C D E F
NUL

IL£ isp lo @IP I I : · r-· ..
00 I l 1 I I

.. p ::.x: ::e. t

SCH ~Cl
I 1 A A I/:~; 0 • I 0 Q a q + I • -rj 12 STX

C l\i:=1 I I .. B R b r cl: < ... -ETX DC3
3 le -LS'" s • C I ::E i:l:: I .J I £ s > -

EOT IDC~ $ 14 D T d I t r · -.. :N: · 1 1:1:i § 1¥1 t I
ENO r• lu

.
µ I

% 5 E ··o :·i·: e u . . - --' . .
Pie~ isYN I& lvl t:o: 14 I I 6 F f

.·~·- ,r a V -n:-
BE!. ETB I Glwlalw :-:-·-1 ··· :- IIl~I I 1 · 7 · a·:-o: B ·. ,: . ·.

BS CAN Is HIX I I 1· · ·r .. · ~, I I ... (h X i:a: :·oi~ • Tr
HT EM I I vi t ·.···r· · · I 1r I) 9 I • -. "

-+f 1 y ·a::-o· © •••
LF SUB I lz I' . t" . I l~I I I J j ::~r:·o: - I * • z •
VT t~I IK ... f I I [{ :·a :a:: • a + • k -I
FF FS r ·. . · 1 12 I < L \ l I • :u=: .. D a : .· I

c~ ~, I ml <; l!'.c{ lol I I M] } - - = -
so RS I f . 'f

N - - ·.; •·= : -:..; . If. 00 • > n :e -u:. ce
SI iu~, DEL 1 · · r ..

0 I" I I I I I ? 0 0 ::~·!·a;: • -
t .,.~_,,.,-.•-it,,#,-,e' 1 ,,,·.,a •• ,~,-.,,.,_ • ·-.,- •-•h•• '•• ·•••••··-••·• .. •· .. •·•• .. •••••••-•••-h•• .. ••ow.,.,_..,,,_..,_,., ___ ·-·•.,-•• ·••'"••••• ', ,

Non-printing Printing cneractars

Table 2. Macintosh and Lisa Extended ASCII Character Set

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.5

,: -.
"': ..
,
~

: . ..
; ..
:
I

': ~-
•; . .

'T

:
-;,

..

~
..;

..::
:,

I

..
,;_

t
::

i .;

"' -; ..
r
:

~

'"'

APPENDIX: STANDARD ICEY AND QWlAtTEll CX>DES 29

Key: ["'] [l] (2) [3] (4) [SJ (6) (7) (8] (9) (9) (-] [•] [Backspace]
Code: $32 $12 $13 $14 $15 $17 $16 $1A $1C $19 $1D $1B $18 $33

Key: (Tab) [Q) [W) [E) [R) [T) [Y) [U) [I] [OJ [P] [[l []] (\)
Code: $39 $tC $tD $eE $eF $11 $11 $29 $22 $1F $23 $21 $1E $2A

Key: [AJ [S] [DJ [F] [GJ [HJ (JJ [K] (L] [;J ('] [lteturn]
Code: $00 $01 $02 $03 $15 $94 $26 $28 $25 $29 $27 $24

Key: [Z) [X] [CJ [VJ [BJ [N] [M] [,] [.] [/]
Code: $06 $07 $08 $09 $0B $2D $2E $2B $2F $2C

Key:
Code:

Space
$31

] [Enter]
$34

Table 3. Key Codes for Macintosh Keyboard

Key: [Clear) (-] [+] [*]
Code: $47 $4E $46 $42

Key: [7J (8) [9] [/]
Code: $59 $5B $SC $4D

Key: [4) (5] [6] [,]
Code: $56 $57 $58 $48

Key: (1) [2) (3) (E]
Code: $53 $54 $55 [n]

[t]
[e]

Key: [t J [.] [r]
Code: $52 $41 $4C

Table 4. Key Codes for Macintosh Keypad

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.5

30 Event Manager Programmer-a Guide

Key: ["') [l] [2] [3) [4] [5] [6] [7] [8] (9) [0] [-) [•) [Backspace]
Code: $60 $31 $32 $33 $34 $35 $36 $37 $38 $39 $30 $2D $3D $08
Char: ... l 2 3 4 5 6 7 8 9 ~ • BS

Key: [Tab) [Q) [W) [E) [R] [T] [YJ [U] [IJ [OJ [P] [(] [)) (\]
Code: $09 $71 $77 $65 $72 $74 $79 $75 $69 $6F $70 $5B $SD $SC
Char: HT q w e r t y u i o p [) \

Key: (A] [S] [D] [F] (G] [H] (J] [KJ (L] [;J ['J [Return]
Code: $61 $73 $64 $66 $67 $68 $6A $6B $6C $3B $27 $0D
Char: a s d f g h j k 1 ; ' CR

Key: [Z] [XJ [CJ [VJ [BJ [NJ [MJ [,] [•] [/]
Code: $7A $78 $63 $76 162 $6E $6D $2C $2E $2F
Char: z x c v b n m , • /

Key:
Code:
Char:

Space
$20

SP

{a) Unshifted

] [Enter
$03
ETX

Tables. Standard Character Codes for Macintosh Keyboard

6/20/83 Chernicoff CONFIDENTIAL /EHGR/EVENTS.5

APPENDIX: STANDARD KEY AND CHAllACTER CODES 31

Key: [..] [l] (2) (3) (4) [SJ (6) (7) [8] [9] [IJ (-](•][Backspace)
Code: $7E $21 $41 $23 $24 $25 $SE $26 $2A $28 $29 $SF $21 $08
Char: - I @ I $ % .. & * () + BS

Key:. [Tab] [Q] [W] [E] [R] [T] [Y] (U] [I] [OJ [P] [I] []) [\]
Code: $09 $51 $57 $45 $52 $54 $59 $55 $49 $4F $50 $71 $70 $7C
Char: HT Q W E R T Y U I O P { } I

Key: [A] [SJ [D] [F] [G) [HJ [J} (K} [L] [;] ["'] [Return]
Code: $41 $53 $44 $46 $47 $48 $4A $4B $4C $3A $22 $0D
Char: A S D F G H J K L : " CR

Key: [Z] [X] [CJ [VJ [B] (N] [M] [,] [.] (/)
Code: $SA $58 $43 $56 $42 $4E $4D $3C $3E $3F
Char: Z X C V B N M <) ?

Key: [
Code:
Char:

Space
$20

SP

(b) Shift Key Down

] [Enter J
$03
ETX

Key: [..] (1) [2) (3) [4) (5) (6) (7) [BJ (91 1•1 [-)[•](Backspace]
Code: $61 $31 $32 $33 $34 $35 $36 $37 $38 $39 $30 $2D $3D $08
Char: .. l 2 3 4 S 6 7 8 9 f • BS

Key: [Tab] [Q] [W) [E] (RJ [T] [Y] [U] [I] [OJ [P] [[) []] (\)
Code: $09 $51 $57 $45 $52 $54 $59 $55 $49 $4F $50 $SB $5D $SC
Char: HT Q W E R T Y U I O P [] \

Key: [A] [SJ [DJ [F] [GJ (HJ [J] [K] [L] [:] ("'] [Return]
Code: $41 $53 $44 $46 $47 $48 $4A $4B $4C $3B $27 $0D
Char: A S D F G H J K L : ' CR

Key: [ZJ [X] (CJ [VJ (B] (NJ [M] [,] [•] [/]
Code: $SA $58 $43 $56 $42 $4E $4D $2C $2E $2F
~u: Z X C V B N M , • /

Key: I
Code:
Char:

Space
$20

SP

(c) Caps Lock Key Down

} I Enter J
$03
ETX

Tables. Standard Character Codes for Macintosh Keyboard (continued)

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.S

32

Key:
Code:
Char:

Key:
Code:
Char:

Key:
Code:
Char:

Key:
Code:
Char:

Key:
Code:
Char:

Event Manager Programmer's Guide

[') (1) (2) [3) [4) [5) [6) [7] [8] (9) [0] [-] [•) [Backspace]
$60 $Cl $AA $A3 $A2 $B0 $A4 $A6 $A5 $BB $BC $Bl $AD $08
.. i 'ffl/.. ts>~,r • .! ~ j: ~ BS

[Tab] (Q] [W) [E] [R] [T] (Y] (U] [I] (0) [P] [() []] [\)
$09 $Al $B7 $AB $AB $A0 fB; $AC $00 $BF $B9 $BS $CS $00

HT o I: ' f:, t ~ •• o 1' JI. C

[A) [SJ (D] [F) [G) [HJ [J] (K] [L] [;] (')
$8C $A7 $B6 $C4 $A9 $SE $C6 $00 $C2 $BO $BE
1 f a f ® .. ~ ~ n 'Z,

[Z) [X) [C] [VJ [BJ [NJ (M] [,] [.] [/]
$00 $CS $8D $C3 $BA $7E $00 $B2 $B3 $C0
~ ~ ~ J - i 1 i

(Return]
$0D
CR

Space
$20

SP

] [Enter)
$03
ETX

(d) Option Key Down

Key: ['] [l] [2] [3] [4] [5] (6) (7) (8) [9] [0] [-)(•)[Backspace]
Code: $60 $Cl $AA $A3 $A2 $B0 $A4 $A6 $A5 $BB $BC $Bl $AD $08
Char: ' i 1M £.. t 0,:, ~ ~r • a o + i- BS

Key: [Tab)
Code: $09
Char: HT

Key:
Code:
Char:

Key:
Code:
Char:

Key:
Code:
Char:

(e)

[Q] [W) [E) [R] [T) [Y) [U) [I) [OJ [P) [(] [)) [\)
$Al $B7 $AB $AB $A0 $B4 $AC $00 $AF $BB $B5 $C7 $00
• t: , ® t ¥ .. 0 ,r JJ. >

[A) [SJ [D] [F) [G) [HJ [J] [K) (L] [;] [') [Return]
$~1 $A7 $B6 $C4 $A9 $SE $C6 $00 $C2 $BD $AE $0D
X ~ d f g) .. 6, -.Jl/f_ CR

[Z] [X] [CJ [VJ [BJ [N) [M] [,) [.] [/J
$00 $CS $82 $C3 $BA $7E $00 $B2 $B3 $C0 ~c~r- ilz.

[Space) [Enter]
$20 $03

SP ETX

Option and Shift or Option and Caps Lock Keys Down

Table 5. Standard Character Codes for Macintosh Keyboard (continued)

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.5

APPENDIX: STANDARD ICEY AND QIARACTEI CX>DES 33

Key: [Clear) [-] [+] [*]
Code: $1B $2D $1C $1D
Char: ESC - +--+
Key: (7) (8) (9) (/]
Code: $37 $38 $39 $1E
Char: 7 8 9 ,.
Key: (4) (5) (6) [.]
Code: $34 $35 $36 $1F
Char: 4 5 6 +
Key: (1) (2) (3) [E]
Code: $31 $32 $33 [n)
Char: 1 2 3 [t]

(e]
Key: l •] [.] [r]
Code: $30 $2E $13
Char: C, • ETX

(a) Unshifted

Key:
Code:
Char:

Key:
Code:
Char:

Key:
Code:
Char:

lCey:
Code:
Char:

lCey:
Code:
Char:

(b)

[Clear) (-] [+] [*]
$1B $2D $2B $2A
ESC + *

[7) (8) [9] (/]
$37 $38 $39 $2F
7 s 9 /

(4) [SJ (6) [,]
$34 $35 $36 $2C
4 5 6 ,

(1) (2) (3) [E]
$31 $32 $33 [n)

1 2 3 [t)
[e]

[• J [.J [r)
$3,a $2E $03
f . ETX

Shift Key Down

Table 6. Standard Character Codes for Macintosh Keypad

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.S

34 Event Manager Programmer's Guide

Second
digit First digit

" 1 2 3 4 5 6 7 8 9 A B C D E F

" " 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

l 1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241

2 2 18 34 50 66 82 98 114 130 146 162 178 194 210 226 242

3 3 19 35 51 67 83 99 115 131 147 163 179 195 211 227 243

4 4 20 36 52 68 84 100 116 132 148 164 180 196 212 228 244

5 5 21 37 53 69 85 101 117 133 149 165 181 197 213 229 24S

6 6 22 38 54 70 86 102 118 134 150 166 182 198 214 230 246

7 7 23 39 55 71 87 Ul3 119 135 151 167 183 199 215 231 247

8 8 24 40 56 72 88 104 120 136 152 168 184 200 216 232 248

9 9 2S 41 57 73 89 105 121 137 153 169 185 201 217 233 249

A 10 26 42 S8 74 90 106 122 138 1S4 170 186 202 218 234 250

8 11 27 43 59 7S 91 107 123 139 155 171 187 203 219 23S 251

C 12 28 44 60 76 92 108 124 140 156 172 188 204 220 236 252

D 13 29 45 61 77 93 109 125 141 157 173 189 205 221 237 253

E 14 30 46 62 78 94 110 126 142 158 174 190 206 222 238 254

F 15 31 47 63 79 95 111 127 143 159 175 191 207 223 239 255

Table 7. Hexadecimal/Decimal Conversion Table

6/20/83 Chernicoff COHFIDENTIAL /EMGR/EVENTS.6

SUMMARY OF THE EVENT MANAGER 35

SUMMARY OF THE EVENT MANAGER

CONST nullEvent • ~;
mouseDown • l;
mouseUp • 2;
keyDown • 3;
keyUp • 4;
autoKey • 5;
updateEvt • 6;
disk.Evt • 7;
activateEvt • 8;
abortEvt • 9;
network.Evt • 10;
driverEvt • 11;
applEvt • 12;
app2Evt • 13;
app3Evt • 14;
app4Evt • 15;

nullMask • l;
mDownMask • 2;
mUpMask • 4;
keyDownMask • 8;
keyUpMask • 16;
autoKeyHask • 32;
updateMask • 64;
disk.Mask • 128;
activHask • 256;
abortMask • 512;
networkMask • 1024;
driverMask • 2048;
applMask • 4096;
app2Hask • 8192;
app3Hask • 16384;
app4Mask • -32768;

everyEvent • -1;

TYPE EventRecord • RECORD

{null}
{mouse down}
{mouse up}
{key down}
{key up}
{auto-key}
{update}
{disk inserted}
{activate}
{abort}
{network}
{1/0 driver}
{application-defined}
{application-defined}
{application-defined}
{application-defined}

{null}
{mouse down}
{mouse up}
{key down}
{key up}
{auto-key}
{update}
{disk inserted}
{activate}
{abort}
{network}
{l/0 driver}
{application-defined}
(application-defined}
{application-defined}
{application-defined}

what:
message:
when:
where:
modifiers:

INTEGER;
Longlnt;
Longlnt;
Point;
INTEGER

END;

KeyMap • PACKED ARRAY [l •• 128} OF BOOLEAN;

6/20/83 Chernicoff CONFIDENTIAL /EMGll/EVENTS.6

36 Event Manager Programmer's Guide

Accessing Events

FUNCTION G~tNextEvent (eventMask: INTEGER; VAR theEvent: EventRecord)
BOOLEAN;

FUNCTION EventAvail (eventMask: INTEGER; VAR theEvent: EventRecord) :
BOOLEAN;

Posting and Removing Events

PROCEDURE PostEvent (eventCode: INTEGER; eventMsg: Longint);
PROCEDURE FlushEvents (eventHask,stopMask: INTEGER);

Reading the Mouse

PROCEDURE
FUNCTION
FUNCTION
FUNCTION

GetMouse
Button:
StillDown
WaitMouseUp

(VAR mouseLoc:
BOOLEAN;
BOOLEAN;
BOOLEAN;

Point);

Reading the Keyboard and Keypad

PROCEDURE GetKeys (VAR theKeys: KeyMap);

Miscellaneous Utilities

PROCEDURE SetEventMask (theHask: INTEGER);
FUNCTION TickCount : Longint;

6/20/83 Chernicoff CONFIDENTIAL /EMGR./EVENTS.6

GLOSSARY 37

GLOSSARY

abort event: An event generated when the user presses a special
combination of keys*** (tentatively Command-.)***, or when the Event
Manager's journaling mechanism wants a program to prepare for replaying
a journal.

activate event: An event generated by the Window Manager when a window
changes from active to inactive or vice versa.

auto-key event: An event generated periodically when the user presses
and holds down a key on the keyboard or keypad.

character code: An integer representing the character that a key or
combination of keys on the keyboard or keypad stands for.

configuration routine: A machine-language routine that defines a
particular keyboard configuration by translating a key code, together
with the state of the modifier keys, into a corresponding character
code.

disk inserted event: An event generated when the user inserts a disk
in a disk drive.

event: A notification to an application program of some occurrence
that the program must respond to.

event code: An integer representing a particular type of event.

event mask: A parameter passed to an Event Manager routine specifying
which types of event the routine is to be applied to.

event message: A field of an event record containing information
specific to the particular type of event.

event queue: The Event Manager's list of pending events waiting to be
processed.

event record: The internal representation of an event, where the Event
Manager stores all pertinent information about that event.

I/0 driver event: An event generated by one of the Macintosh's input/
output drivers. *** (Not yet implemented.)***

journal: A record of all of a program's interactions with the Event
Manager over a period of time, which can be played back in order to
reproduce the original session.

keyboard configuration: A resource that defines a particular keyboard
layout by associating a character code with each key or combination of
keys on the keyboard or keypad.

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.6

38 Event Manager Programmer's Guide

keyboard event: An event generated when the user presses, releases, or
holds down a key on the keyboard or keypad; any key down, key up, or
auto-key event.

key code: An integer representing a key on the keyboard or keypad,
without reference to the character that key stands for.

key down event: An event generated when the user presses a key on the
keyboard or keypad.

key up event: An event generated when the user releases a key on the
keyboard or keypad.

modifier key: A key (Shift, Caps Lock, Option, or Command) that
generates no keyboard events of its own, but changes the meaning of
those generated by other keys.

mouse down event: An event generated when the user presses the mouse
button.

mouse up event: An event generated when the user releases the mouse
button.

network event: An event generated by the Macintosh's network driver.
*** (Not yet implemented.)***

null event: An event returned by the Event Manager when it has no
other events to report.

post: To place an event in the event queue for later processing.

system event mask: A global event mask that controls which types of
event get posted into the event queue.

update event: An event generated by the Window Manager when a window's
contents need to be redrawn.

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.6

MACINTOSH USER EDUCATION

The File Manager: A Programmer's Guide

See Also: The Macintosh User Interface Guidelines
The Memory Manager: A Programmer's Guide
Inside Macintosh: A Road Map
Macintosh Packages: A Programmer's Guide

/OS/FS

Programming Macintosh Applications in Assembly Language

Modification History: First Draft (ROH 7) B. Hacker 3/12/84

*** Review Draft. Not for distribution*** ABSTRACT

This manual describes the File Manager. the part of the Macintosh
Operating System that controls the exchange of information between a
Macintosh application and files.

6-1

6-2

2 File Manager Programmer's Guide

TABLE OF CONTENTS

3 About This Manual
3 About the File Manager
4 Volumes
5 Accessing Volumes
5 Files
9 Accessing Files
10 File Information Used by the Finder
11 Using the File Manager
15 High-Level File Manager loutines
16 Accessing Volumes
18 Changing File Contents
22 Changing Information About Files
24 Low-Level File Manager Routines
25 loutine Parameters
27 1/0 Parameters
29 File Information Parameters
29 Volume Information Parameters
31 loutine Descriptions
31 Initializing the File 1/0 Queue
31 Accessing Volumes
37 Changing File Contents
47 Changing Information About Files
53 Data Organization on Volumes
55 Volume Information
56 Volume Allocation Block Map
56 File Directory
57 File Tags on Volumes
58 Data Structures in Memory
59 The File 1/0 Queue
6G Volume Control Blocks
62 File Control Blocks
64 File Tags in Memory
64 The Drive Queue
65 Using an External File System
67 Su11111ary of the File Manager
74 Glossary

Copyright Cc) 1984 Apple Co"lputer, Inc. All rights reserved.

Distribution of this draft in limited quantities does not constitute
publication.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes the File Manager, the part of the Macintosh
Operating System that controls the exchange of information between a
Macintosh application and files. *** Eventually it will become part of
a larger manual describing the entire Toolbox and Operating System.
*** The File Manager allows you to create and access any number of
files containing whatever information you choose.

Like all Operating System documentation, this manual assumes you're
familiar with Lisa Pascal. You should also be familiar with the
following:

- the basic concepts behind the Macintosh Operating System's Memory
Manager

- devices and device drivers, as described in the Inside Macintosh
lload Map

This manual is intended to serve the needs of both Pascal and
assembly-language programmers. Information of interest to assembly
language prograDDers only is isolated and lab~led so that Pascal
programmers can conveniently skip it.

The manual begins with an introduction to the File Manager and what you
can do with it. It then discusses some basic concepts behind the File
Manager: what files and volumes are and how they're accessed.

A section on using the File Manager introduces its routines and tells
how they fit into the flow of your application. This is followed by
sections explaining the File Manager's simplest, "high-level" Pascal
routines and then its more complex, "low-level" Pascal and assembly
language routines. Both sections give detailed descriptions of all the
procedures and functions, their parameters, calling protocol, effects,
side effects, and so on.

Following these descriptions are sections that won't interest all
readers. The data atructures that the File Manager uses to store
information in memory and on disks are described, and special
informatien is provided for programmers who want to write their own
file system.

Finally, there's a summary of the File Manager's data structures and
routines, for quick reference, followed by a glossary of terms used in
this manual.

ABOUT THE FILE MANAGER

The File Manager is the part of the Operating System that handles
communication between applications and files on block devices such as
disk drives. Files are a principal means by which data is stored and

3/02/84 Hacker CONFIDENTIAL /0S/FS.I

6-3

6-4

4 File Manager Programmer's Guide

transmitted on the Macintosh. A file is a named, ordered sequence of
bytes. The File Manager containsroutines used to read and write to
files.

Volumes

A volume is a piece of storage medium, such as a disk, formatted to
contain files. A volume can be an entire disk or only part of a disk.
Currently, the 3 1/2-inch Macintosh disks are one volume.

(note)
Specialized memory devices other than disks can also
contain volumes, but the information in this manual
applies only to volumes on disks.

You identify a volume by its volume name, which consists of any
sequence of 1 to 27 printing characterii":"' Volume names must always be
followed by a colon(:) to distinguish them from other names.

(note)
The colon(:) after a volume name should only be used
when calling File Manager routines; it should never be
seen by the user.

A volume contains descriptive information about itself, including its
name and a.!!!!, directory listing information about files contained on
the volume; it also contains files. The files are contained in
allocation blocks, which are areas of volume space occupying multiples
of 512 bytes.

A volume can be mounted or unmounted. A volume becomes mounted when
it's in a disk drive and the File Manager reads descriptive information
about the volume into memory. Once mounted, a volume may remain in a
drive, or be ejected. Only mounted volumes are known to the File
Manager, and an application can only access information on mounted
volumes. A volume becomes unmounted when the File Manager releases the
memory used to store the descriptive information. Your application
would unmount a volume when it's finished with the volume, or when it
needs the memory occupied by the volume.

The File Manager assigns each mounted volume a volume reference number
you can use instead of its volume name to refer to it. Every mounted
volume is also assigned a volume buffer on the heap, which 1s temporary
storage apace used when reading and writing information on the volume.
The number of volumes that may be mounted at any time is limited only
by the number of drives attached and available memory.

A mounted volume can be on-line or off-line. A mounted volume is
on-line as long as the volume buffer and all the descriptive
information read from the voluae when it was mounted remain in memory
(about lK to 1.SK bytes); it becomes off-line when all but 94 bytes of
descriptive information are released. You can access information on
on-line volumes immediately, but off-line volumes 111.1st be placed

3/02/84 Hacker CONFIDENTIAL /0S/FS.l

ABOUT THE FILE MANAGER 5

on-line before their information can be accessed. An application would
place a volWDe off-line whenever it needed most of the memory the
volume occupies. When you eject a volume from a drive, the File
Manager automatically places the volume off-line.

To prevent unauthorized writing to a volume, volumes can be locked.
Locking a volume involves either setting a software flag on the volume,
or changing some part of the volume physically (for example, sliding a
tab from one position to another on a disk). Locking a volume ensures
that none of the data on the volume can be changed.

Accessing Volumes

You can access a mounted volume via its volume name or volume reference
number. On-line volumes in disk drives can also be accessed via the
drive number of the drive on which the volume is mounted (the internal
drive is number 1, and the external drive is number 2). You should
always use the volume name or volume reference number, rather than a
drive number, when accessing a mounted volume, because the volume may
have been ejected or placed off-line. Whenever possible, use the
volume reference number--to avoid confusion between volumes with the
same name.

One volume is always the default volume. Whenever you call a routine
to access a volume but don't specify which volume, the default volume
is accessed. Initially, the volume used to start up the system is the
default volume, but an application can designate any mounted volume as
the default volume.

Whenever the File Manager needs to access a mounted volume that's been
ejected from its drive, the dialog box shown in Figure 1 is displayed,
and the File Manager waits until the user inserts the volume named
volName into a drive.

:'
~ Please Insert the dist:

uolNeme

Figure 1. Disk-Switch Dialog

3/02/84 Hacker CONFIDENTIAL /0S/FS.I

6-5

6-6

6 File Manager Programmer's Guide

Files

A file is a finite sequence of numbered bytes. Any byte or group of
bytes in the sequence can be accessed individually. A file is
identified by its!!!!..!!.!!!. and version number. A file name consists
of any sequence of 1 to 255 printing characters, excluding colons(:).
The version number is any number from I to 255, and is used by the File
Manager to distinguish between different files with the same name. A
byte within a file is identified by its position within the ordered
sequence.

(warning)
Your application should constrain file names to fewer
than 64 characters, because the Finder will generate an
error if given a longer name. You should always assign
files a version number of I, because the Resource Manager
and Segment Loader won't operate on files with nonzero
version numbers, and the Finder ignores version numbers.

There are two parts or forks to a file: the data fork and the resource
fork. Normally the resource fork of an applicat1oii"1rle contains the
ruources used by the application such as menus, fonts, and icons, and
also the application code itself. The data fork can contain anything
an application wants to store there. Information stored in resource
forks should always be accessed via the Resource Manager. Information
in data forks can only be accessed via the File Manager. For
simplicity, we'll use "file" instead of "data fork" in this manual.

A file can contain anywhere from G to 16,772,216 bytes (16 megabytes).
Each byte is numbered: the first byte is byte g. You can read bytes
from and write bytes to a file either singly or in sequences of
unlimited length. Each read or write operation can start anywhere in
the file, regardless of where the last operation began or ended.
Figure 2 shows the structure of a file.

curent byte

tint last
byte L....J~~___..-r-&._._r"-----r-- byte

previous byte next byte

Figure 2. A File

A file's maximum size is defined by its physical end-of-file, which is
one greater than the number of the last byte in its last allocation
block (Figure 3). The physical end-of-file is equivalent to the
maximum number of bytes the file can contain. A file's actual size is
defined by its logical end-of-file, which is one greater than the
number of the last byte in the file. The logical end-of-file is

3/02/84 Hacker CONFIDENTIAL /0S/FS.I

ABOUT THE FILE MANAGER 7

equivalent to the actual number of bytes in the file, since the first
byte is byte number e. The physical end-of-file is always greater than
the logical end-of-file. For example, an empty file (one withe bytes)
in a lK-byte allocation block has a logical end-of-file of I and a
physical end-of-file of 1924. A file With 59 bytes has a logical
end-of-file of 50 and a physical end-of-file of 1924.

Figure 3. End-of-File and Mark

The current position marker, or!!!!!.• is the number of the next byte
that will be read or written. The value of the mark can't exceed the
value of the logical end-of-file. The mark automatically moves forward
one byte for every byte read from or written to the file. lf, during a
write operation, the mark meets the logical end-of-file, both are moved
forward one position for every additional byte written tp the file.
Figure 4 shows the movement of the mark and logical end-of-file.

3/02/84 Hacker CONFIDENTIAL /0S/FS.1

6-7

6-8

8 File Manager Programmer's Guide

end-of-fl le

Beaimina po1ition

end-of-file

1 1 .. , ..
f

.l
I I I
f

nat

Alter reeding two byta

end-of-file

-1L
l __ , __ l 1

1
"J

i
i
I mart

. ,.

Alter writ ina two bytes

Figure 4. Movement of Logical End-of-File and Mark

If, during a write operation, the mark must move past the physical
end-of-file, another allocation block is added to the file--the
physical end-of-file is placed one byte beyond the end of the new
allocation block, and the mark and logical end-of-file are placed at
the first byte of the new allocation block.

An application can move the logical end-of-file to place it anywhere
from the beginning of the file to the physical end-of-file (the mark is
adjusted accordingly). If the logical end-of-file 1& moved to a
position more than one allocation block abort of the current physical
end-of-file, the unneeded allocation block will be deleted from the
file. The mark can be placed anywhere from the first byte in the file
to the logical end-of-file.

3/02/84 Racker CONFIDENTIAL /0S/FS.1

,

ABOUT THE FILE MANAGER 9

Accessing Files

A file can be open or closed. An application can only perform certain
operations, such as reading and writing, on open files; other
operations, such as deleting, can only be performed on closed files.

To open a file, you must identify it by name and version number and
specify the volume containing the file. When a file is opened, the
File Manager creates an access path, a description of the route to be
followed when accessing the file. The access path specifies the volume
on which the file is located {by volume reference number, drive number,
or volume name) and the location of the file on the volume. Every
access path is assigned a unique path reference number used to refer to
it. You should always refer to a file via its path reference number,
so that files with the same name aren't confused With one another.

A file can have one access path open for writing or for both reading
and writing, and one or more access paths for reading only; there
cannot be more than one access path that writes to a file. Each access
path is separate from all other access paths to the file. A maximum of
12 access paths can be open at one time. Each access path can move its
own urk, and read at the position it indicates. All access paths to
the same file share common logical and physical end-of-file markers.

The File Manager reads descriptive information about a newly opened
file from its volume and stores it in memory. For example, each file
has open permission information, which indicates whether data can only
be read from it, or both read from and written to it. Each access path
contains read/write perm.esion information that specifies whether data
is allowed to be read from the file, written to the file, both read and
written, or whatever the file's open permission allows. If an
application wants to write data to a file, both types of permission
information must allow writing; if either type allows reading only,
then no data can be written.

When an application requests that data be read from a file, the File
Manager reads the data from the file and transfers it to the
application'•!!!!, buffer. Any part of the data that can be
transferred in entire 512-byte blocks is transferred directly. Any
part of the data composed of fewer than 512 bytes is also read from the
file in one 512-byte block, but placed in temporary storage space in
memory. Then, only the bytes containing the requested data are
transferred to the application.

When an application writes data to a file, the File Manager transfers
the data from the application's data buffer and writes it to the file.
Any part of the data that can be transferred in entire 512-byte blocks
is written directly. Any part of the data composed of fewer than 512
bytes is placed in temporary storage apace in memory until 512 bytes
have accumulated; then the entire block is written all at once.

3/02/84 Hacker CONFIDENTIAL /0S/FS.l

6-9

6-10

10 File Manager Programmer's Guide

Normally the temporary space in memory used for all reading and writing
1& the volume buffer, but an application can specify that an access
path buffer be used instead for a particular access path (Figure 5).

eccess path buffer
tlle .,._.

ec:,pl icetion's

YOllnlB buffer
dete buffer

file ·e·
access peth buffer

Figure 5. Buffers For Transferring Data

("' ,ing)
You must lock every access path buffer you use, so its
location doesn't change while the file is open.

Your application can lock a file to prevent unauthorized writing to it.
Locking a file ensures that none of the data in it can be changed***
The Finder doesn't treat locked and unlocked files differently***·

(note)
Advanced programmers: The File Manager can also read a
continuous stream of characters or a line of characters.
In the first case, you ask the File Manager to read a
specific number of bytes: when that many have been read
or when the mark has rtached the logical end-of-file, the
read operation terminates. In the second case, called
newline mode, the read will terminate when either of the
above conditions is fulfilled or when a specified
character, the newline character, is read. The newline
character is usually Return (ASCII code $9D), but can be
any character whose ASCII code is between $91 and $FF,
inclusive. Information about newline mode is associated
With each access path to a file, and can differ from one
access path to another.

FILE INFORMATION USED BY TIIE FINDER

A file directory lists information about all the files on a volume.
The information used by the Finder is contained in a data structure of
type Finfo:

3/02/84 Hacker CONFIDENTIAL /OS/FS.I

FILE INFORMATION USED BY THE FINDER 11

TYPE Flnfo • RECORD
fdType:
fdCreator:
fdFlags:
fdLocauon:
fdFldr:

END;

OSType;
OSType;
INTEGER;
Point;
INTEGER

{type of file}
{file's creator}
{flags)
{file's location}
{file's window}

Normally an application need only set the file type and creator when a
file i& created (see !h£. Structure&.!. Macintosh Application), and the
Finder will manipulate the other fields. Advanced programmers may be
interested in changing the contents of the other fields as well.

FdFlags indicates whether the file's icon is invisible, whether the
file has a bundle, and other characteristics used internally by the
Finder:

Bit
5
6

Meaning if set
File has a bundle
File's icon is invisible

Masks for these two bits are built into the File Manager as predefined
constants:

CONST fHasBundle • 32; {file has a bundle}
finvisible • 64; {file's icon is invisible)

You need only set the fHasBundle bit for documents with bundles. (The
bundle bit for an application must have been set when the application
was first installed.) FdFldr indicates the window in which the file's
icon will appear:

FdFldr
-3
-2
IJ

>IJ

Window
Trash
Desktop
Disk
A folder

If fdFldr contains a positive number, the file's icon will appear in a
folder; the numbers that identify folders are assigned by the Finder.
Advanced programmers can get the folder number of an existing file, and
place additional files in that same folder. FdLocation .=ontains the
location of the file's icon in its Window, given in the local
coordinate system of the window.

USING THE FILE MANAGER

This section discusses bow the File Manager routines fit into the
general flow of an application program and gives an idea of what
routines you'll need to use. The routines themselves are described in
detail in the next two sections.

3/02/84 Hacker CONFIDENTIAL /0S/FS.U

6-11

6-12

12 File Manager Programmer's Guide

You can call File Manager routines via three different methods:
high-level Pascal calls, low-level Pascal calls, and assembly language.
The high-level Pascal calls are designed for Pascal programmers
interested in using the File Manager in a simple maMer; they provide
adequate file l/0 and don't require much special knowledge to use. The
low-level Pascal and assembly-language calls are designed for advanced
Pascal programmers and assembly-language programmers interested in
using the File Manager to its fullest capacity; they require some
special knowledge to be used most effectively.

Information for all programmers follows here. The next two sections
contain special information for high-level Pascal programmers and for
low-level Pascal and assembly-language programmers.

(note)
The names used to refer to routines here are actually the
assembly-language macro names for the low-level routines,
but the Pascal routine names are very similar.

The File Manager is automatically initialized each time the system is
started up. Pascal programs must must include QuickDraw in their USES
declaration, because the File Manager uses the QuickDraw data type
Point.

To open an access path to a file, call Open. The File Manager creates
an access path and returns a path reference number that you'll use
every time you want to refer to it. Before you open a file, you may
want to call the Standard File Package, which presents a standard
interface through which the user can specify the file to be opened. If
the user inserts an unmounted volume into a drive, the Standard File
Package will automatically attempt to mount it. The Standard File
Package will return the name of the file, the volume reference number
of the volume containing the file, and additional information.

After a file has been opened, you can transfer data from it to an
application's data buffer with llead, and send data from an
application's data buffer to the file with Write. Read and Write allow
you to specify a byte position within the data buffer, a number of
bytes to transfer, and the location Within the file. You can't use
Write on a file whose open permission only allows reading, or on a file
on a locked volume.

Once you've comp!eted whatever reading. and writing you want to do, call
Close to close the file. Close writes the contents of the file's
access path buffer to the volume and deletes the access path. You can
remove a closed file (both forks) from a volume by calling Delete.

To protect against power loss or unexpected disk ejection, you should
periodically call FlushVol (probably after each time you close a file),
which writes the contents of the volume buffer and all access path
buffers (if any) to the volume, and updates the descriptive infonaation
contained on the volume.

3/02/84 Hacker CONFIDENTIAL /0S/FS.U

USING THE FILE MANAGER 13

Whenever your application is finished with a disk, or the user chooses
Eject from a aenu, call Eject. Eject calls FlushVol, places the volume
offline, and then physically ejects the volume from its drive.

To create a new, empty file, call Create. Create allows you to set
some of the information about the file stored on the volume.

The preceding paragraphs covered the simplest File Manager routines:
Open. Read. Write. Close. FlushVol, Eject. and Create. The remainder
of this section describes the less commonly used routines, some of
which are available only to advanced programmers. Skip the remainder
of this section if the preceding paragraphs have provided you with all
the information you want to know about using the File Manager.

Some applications may want to mount volumes themselves, bypassing the
implicit mounting performed by the Standard File Package. In this
case, the application must eject an unwanted disk from its drive (if
necessary). and request that the user insert a different disk. The
File Manager will automatically attempt to mount the volume on the disk
that's inserted. If you call the Toolbox Event Manager function
GetNextEvent, it will return the disk inserted event: the low-order
word of the event message will contain the number of the drive, and the
high-order word will contain the result code of the attempted mounting.
If the result code indicates that an error occurred, you'll need to
call the Disk Initialization Package to allow the user to initialize or
eject the volume. Your application can then call GetVollnfo, which
will return the name of the volume, the amount of unused space on the
volume, and a volume reference number that you can use every time you
refer to that volume.

To minimize the amount of memory used mounted volumes, an application
can unmount or place off-line any volumes that aren't currently being
used. To unmount a volume, call UnmountVol, which flushes a volume (by
calling FlushVol) and deallocates all of the memory used for it
(releasing about 1 to l.SK bytes). To place a volume off-line, call
OffLine, which flushes a volume (by calling FlushVol) and deallocates
all of the memory used for it except for 94 bytes of descriptive
information about the volume. Off-line volumes are placed on-line by
the File Manager as needed, but your application must remount any
unmounted volumes it wants to access. The File Manager itself may
place volumes off-line during its normal operation.

If you would like all File Manager calls to apply to one volume, you
can specify that volume as the default. You can use SetVol to set the
default volume to any mounted volume, and GetVol to learn the name and
volume reference number of the default volume.

Normally, volume initialization and naming is handled by the Standard
File Package, which calls the Disk Initialization Package. If you want
to explicitly initialize a volume or erase all files from a volume, you
can call the Disk Initialization Package directly. When you want to
change the name of a volume, call the File Manager function Rename.

3/02/84 Hacker CONFIDENTIAL /0S/FS.U

6-13

6-14

14 File Manager PrograDDer's Guide

Applications normally will use the Resource Manager to open resource
forks and change the information contained within. but prograDDers
writing unusual applications (such as a disk-copying utility) might
want to use the File Manager to open resource forks. Thia is done by
calling OpenRF. As with Open. the File Manager creates an access path
and returns a path reference number that you'll use every time you want
to refer to this resource fork.

As an alternative to specifying byte positions within a file with Read
and Write. you can specify the byte position of the mark by calling
SetFPos. GetFPos returns the byte position of the mark.

Whenever a disk has been reconstructed in an attempt to salvage lost
files (because its directory or other file-access information has been
destroyed). the logical end-of-file of each file will probably be equal
to each physical end-of-file. regardless of where the actual logical
end-of-file is. The first time an application attempts to read from a
file on a reconstructed volume. it will blindly pass the correct
logical end-of-file and read misinfor111ation until it reaches the new.
incorrect logical end-of-file. To prevent this from occurring. an
application should always maintain an independent record of the logical
end-of-file of each file it uses. To determine the File Manager's
conception of the length of a file. or find out how many.bytes have yet
to be read from it. call GetEOF. which returns the logical end-of-file.
You can change the length of a file by calling SetEOF.

Allocation blocks are automatically added to and deleted from a file as
necessary. If this happens to a number of files alternately. each of
the files will be contained in allocation blocks scattered throughout
the volume. which increases the time required to access those files.
To prevent such fragmentation of files. you can allocate a number of
contiguous allocation blocks to an open file by calling Allocate.

Instead of calling FlushVol. an unusual application might call
FlushFile. FlushFile forces the contents of a file's volume buffer and
access path buffer (if any) to be written to its volume. FlushFile
doesn't update the descriptive information contained on the volume. so
the volume information won't be correct until you call FlushVol.

To get information about a file (such as its name and creation date)
stored on a volume. call GetFilelnfo. You can change this information
by calling SetFilelnfo. Changing the name or version number of a file
is accomplished by calling Rename or SetFilType. respectively; they
Will have a similar effect, since both the file name and version number
are needed to identify a file. You can lock or unlock a file by
calling SetFilLock or RstFilLock. respectively.

You can't use Write. Allocate, or SetEOF on a locked file. a file whose
open permission only allows reading. or a file on a locked volume. You
can't use Rename or SetFilType on a file on a locked volume.

3/02/84 Racker CONFIDENTIAL /0S/FS.P

HIGH-LEVEL FILE MANAGER ROUTINES 15

HIGH-LEVEL FILE MANAGER ROUTINES

This section describes all the high-level Pascal routines of the File
Manager. Assembly-language programmers cannot call these routines.
For information on calling the low-level Pascal and assembly-language
routines, see the next section.

When accessing a volume, you must identify it by its volume name, its
volume reference number, or the drive number of its drive-or allow the
default volume to be accessed. The parameter names used in identifying
a volume are volName, vRefNum, and drvNum. VRefNum and drvNum are both
integers. VolName is a pointer, of type OSStrPtr, to a volume name.

The File Manager determines wh~ch volume to access by using one of the
following:

1. VolName. {lf volName points to a zero-length name, an error is
returned.)

2. If volName is NIL or points to an improper volume name, then
vRefNum or drvNum {only one is given per routine).

.
3. If vRefNum or drvNum is zero, the default volume. (If there isn't

a default volume, an error is returned.)

(warning)
Before you pass a parameter of type OSStrPtr to a File
Manager routine, be sure that•emory has been allocated
for the variable. For example, t~e following statements
will ensure that memory is allocated:

VAR myStr: OSStr255;
BEGIN

result :• GetVol{@myStr,myRefNum);
• • •

END;

When accessing a closed file on a volume, you must identify the volume
by the method given above, and identify the file by its name in the
fileName parameter. The high-level File Manager routines assume that
the file's version number is e. FileName can contain either the file
name alone or the file name prefixed by a volume name.

(note)
Although fileName can include both the volume name and
the file name, applications shouldn't encourage users to
prefix a file name with a volume name.

You cannot specify an access path buffer when calling high-level Pascal
routines. All access paths open on a volume will share the volume
buffer, causing a alight increase in the amount of time required to
access files.

3/02/84 Hacker CONFIDENTIAL /0S/FS.P

6-15

6-16

16 File Manager Programmer's Guide

All File Manager routines return a result code of type OSErr as their
function result. Each routine description lists all of the applicable
result codes, along with a short description of what the result code
means. Lengthier explanations of all the result codes can be found 1n
the summary at the end of this manual.

Accessing Volumes

FUNCTION GetVlnfo (drvNum: INTEGERi VAR. volName: OSStrPtr; VAR. vRf'fNum:
INTEGERi VAR. freeBytes: Longlnt) : OSErr;

GetVlnfo returns the name, reference number, and available space (in
bytes), in volName, vRefNum, and freeBytes, for the volume in the
specified drive.

Result codes noErr
nsvErr
paramErr

No error
No default volume
Bad drive number

FUNCTION GetVol (volName: OSStrPtr; VAR vRefNum: INTEGER) : OSErr;

GetVol returns the name of the default volume in volName and its volume
reference number in vRefNum.

Result codes noErr
nsvErr

No error
No default volume

FUNCTION SetVol (volName: OSStrPtri vRefNum: INTEGER) : OSErr;

SetVol sets the default volume to the mounted volume specified by
volName or vRefNum.

Result codes

3/02/84 Hacker

noErr
bdNamErr
nsvErr
paramErr

No error
Bad volume name
No such volume
No default volume

CONFIDENTIAL /0S/FS.P

HIGH-LEVEL FILE KA.NAGER ROUTINES 17

FUNCTION FlushVol (volName: OSStrPtri vRefNum: INTEGER) : OSErri

On the volume specified by volName or vRefNum, FlushVol writes the
contents of the associated volume buffer and descriptive information
about the volume (if they've changed since the last time FlushVol was
called).

Result codes noErr
bdNamErr
extFSErr
ioErr
nsDrvErr
nsvErr
paramErr

No error
Bad volume name
External file system
Disk 1/0 error
No such drive
No such volume
No default volume

FUNCTION UnmountVol (volName: OSStrPtr; vRefNum: INTEGER) : OSErr;

UnmountVol unmounts the volume specified by volName or vRefNum, by
calling FlushVol to flush the volume buffer, closing all open files on
the volume, and releasing the memory used for the volume.

(warning)
Don't unmount the startup volume.

Result codes noErr
bdNamErr
extFSErr
fnfErr
ioErr
nsDrvErr
nsvErr
paramErr

No error
Bad volume name
External file system
File not found
Disk 1/0 error
No such drive
No such volume
No default volume

FUNCTION Eject (volName: OSStrPtr; vRefNum: INTEGER) : OSErr;

Eject calls FlushVol to flush the volume specified by volName or
vRefNum, places the volume offline, and then ejects the volume.

Result codes

3/02/84 Racker

noErr
bdNamErr
extFSErr
ioErr
nsDrvErr
nsvErr
paramErr

No error
Bad volume name
External file system
Disk 1/0 error
No such drive
No such volume
No default volume

CONFIDENTIAL /0S/FS.P

6-17

6-18

18 File Manager Programmer's Guide

Changing File Contents

FUNCTION Create (fileName: OSStr255; vRefNum: INTEGER; creator: OSType;
fileType: OSType) : OSErr;

Create creates a new file With the specified name, file type, and
creator, on the specified volume. The new file is unlocked and empty.
Its modification and creation date& are set to the time of the system
clock.

Result codes noErr
bdNamErr
dupFNErr
dirFulErr
extFSErr
ioErr
nsvErr
vLckdErr
wPrErr

No error
Bad f1 le name
Duplicate file name
Directory full
External file system
Disk I/0 error
No such volume
Software volume lock
Hardware volume lock

FUNCTION FSOpen (fileName: OSStr255; vRefNum: INTEGER; VAR refNum:
INTEGER) : OSErr;

FSOpen creates an access path to the file having the name fileName on
the specified volume. A path reference number is returned in refNum.
The access path's read/write permission is set to whatever the file's
open permission allows.

Result codes

3/02/84 Hacker

noErr
bdNamErr
extFSErr
fnfErr
ioErr
aFulErr
nsvErr
opWrErr
tmfoErr

No error
Bad file name
External file system
File not found
Disk 1/0 error
Memory full
No such volume
File already open for writing
Too many files open

CONFIDENTIAL /0S/FS.P

I ,

HIGH-LEVEL FILE MANAGER ROUTINES 19

FUNCTION FSRead (refNum: INTEGER; VAR count: Longint; buffPtr: Ptr)
OSErr;

FSRead attempts to read the number of bytes specified by the count
parameter from the open file whose access path is specified by refNum,
and transfer them to the data buffer pointed to by buffPtr. The read
operation begins at the mark, so you might want to precede this with a
call to SetFPos. If you try to read past the logical end-of-file,
FSRead moves the mark to the end-of-file and returns eofErr as its
function result. After the read is completed, the number of bytes
actually read is returned in the count parameter.

Result codes noErr
eofErr
extFSErr
fnOpnErr
ioErr
paramErr
rfNumErr

No error
End-of-file
External file system
File not open
Disk 1/0 error
Negative count
Bad reference number

FUNCTION FSWrite (refNum: INTEGER; VAR count: Longlnt; buffPtr: Ptr) :
OSErr;

FSWrite takes the number of bytes specified by the count parameter from
the buffer pointed to by buffPtr and attempts to write them to the open
file whose access path is specified by refNum. The write operation
begins at the mark, so you might want to precede this with a call to
SetFPos. After the write is completed, the number of bytes actually
written is returned in the count parameter.

Result codes

3/02/84 Hacker

noErr
dskFulErr
fLckdErr
fnOpnErr
ioErr
paramErr
rfNumErr
vLckdErr
wPrErr
wrPermErr

No error
Disk full
File locked
File not open
Disk 1/0 error
Negative count
Bad reference number
Software volume lock
Hardware volume lock
Read/write or open permission
~oesn't allow writing

CONFIDENTIAL /0S/FS.P

6-19

6-20

20 File Manager Programmer's Guide

FUNCTION GetFPoa (refNum: INTEGER; VAR filePos: Longint) : OSErr;

GetFPos returns, in filePos, the mark of the open file whose access
path is specified by refNum.

Result codes noErr
extFSErr
fnOpnErr
ioErr
rfNumErr

No error
External file system
File not open
Disk 1/0 error
Bad reference number

FUNCTION SetFPos (refNum: INTEGER; posMode: INTEGER; posOff: Longint) :
OSErr;

SetFPos sets the mark of the open file whose access path is specified
by refNum, to the position specified by posMode and posOff. PosMode
indicates whether the mark should be set relative to the beginning of
the file, the logical end-of-file, or the mark:

PosMode

" l
2
3

Position
Current position of mark (posOff is ignored)
Relative to beginning of file
Relative to logical end-of-file
Relative to mark

PosOff specifies the byte offset (either positive or negative) relative
to posHode where the mark should actually be set~ If you try to set
the mark past the logical end-of-file, SetFPos moves the mark to the
end-of-file and returns eofErr as its function result.

Result codes noErr
eofErr
extFSErr
fnOpnErr
ioErr
posErr

rfNumErr

No error
End-of-file
External file system
File not open
Disk 1/0 error
Tried to position before start ·
of file
Bad reference number

FUNCTION GetEOF (refNum: INTEGER; VAR logEOF: Longlnt) : OSErr;

GetEOF returns, in logEOF, the logical end-of-file of the open file
whose access path is specified by refNum.

Result codes

3/02/84 Hacker

noErr
extFSErr
fnOpnErr
ioErr
rfNumErr

No error
External file system
File not open
Disk 1/0 error
Bad reference number

CONFIDENTIAL /0S/FS.P

HIGH-LEVEL FILE MANAGER ROUTINES 21

FUNCTION SetEOF (refNum: INTEGER; logEOF: Longlnt) : OSErr;

SetEOF sets the logical end-of-file of the open file whose access path
is specified by refNum, to the position specified by logEOF. If you
attempt to set the logical end-of-file beyond the physical end-of-file,
the physical end-of-file is set to one byte beyond the end of the next
free allocation block; if there isn't enough space on the volume, no
change is made, and SetEOF returns dskFulErr as its function result.
lf logEOF is 9, all space on the volume occupied by the file 1&
released.

1lesult codes noErr
dskFulErr
extFSErr
fLckdErr
fnOpnErr
ioErr
rfNumErr
vLckdErr
wPrErr
wrPermErr

No error
Disk full
External file system
File locked
File not open
Disk 1/0 error
Bad reference number
Software volume lock
Hardware volume lock
Read/write or open permission
doesn't allow writing

FUNCTION Allocate (refNum: INTEGER; VAR count: Longlnt) OSErr;

Allocate adds the number of bytes specified by the count parameter to
the open file whose access path is specified by refNum, and sets the
physical end-of-file to one byte beyond the last block allocated. The
number of bytes allocated is always rounded up to the nearest multiple
of the allocation block size, and returned in the count parameter. If
there isn't enough empty space on the volume to satisfy the allocation
request, the rest of the space on the volume is allocated, and Allocate
returns dskFulErr as its function result.

1lesult codes

3/02/84 Hacker

noErr
dskFulErr
fLckdErr
fnOpnErr
ioErr
rfNumErr
vLckdErr
wPrErr
wrPermErr

No error
Disk full
File locked
File not open
Disk 1/0 error
Bad reference number
Software volume lock
Hardware volume lock
Read/write or open permission
doesn't allow writing

CONFIDENTIAL /0S/FS.P

6-21

6-22

22 File Manager Progra11111er's Guide

FUNCTION FSClose (refNum: INTEGER) : OSErr;

FSClose removes the access path specified by refNum, writes the
contents of the volume buffer to the volume, and updates the file's
entry in the file directory.

(note)
Some information stored on the volume won't be correct
until FlushVol is called.

Result codes noErr
extFSErr
fnfErr
fnOpnErr
ioErr
nsvErr
rfNumErr

No error
External file system
File not found
File not open
Disk 1/0 error
No such volume
Bad reference number

Changing Information About Files

All of the routines described in this section affect both forks of the
file.

FUNCTION GetFlnfo (fileName: OSStr2SS; vllefNum: INTEGER; VAR fndrinfo:
Flnf o) : OSErr;

GetFlnfo returns information about the file having the name fileName on
the specified volume. Information used by the Finder is returned in
fndrlnfo (see the "File Information Used by the Finder" section).

Result codes noErr
bdNamErr
extFSErr
fnfErr
ioErr
nsvErr
param.Err

No error
Bad file name
External file system
File not found
Disk 1/0 error
No such volume
Bad parameters and no default
volume

FUNCTION SetFlnfo (fileName: OSStr255; vllefNum: INTEGER; fndrlnfo:
Flnf o) : OSErr;

For the file having the name fileName on the specified volume, SetFinfo
sets information needed by the Finder to fndrlnfo (see the "File
Information Used by the Finder" section).

Result codes

3/02/84 Hacker

noErr
extFSErr
fLck.dErr
fnfErr
ioErr

No error
External file system
File locked
Fi le not found
Disk 1/0 error

CONFIDENTIAL /0S/FS.P

'

nsvErr
vLckdErr
wPrErr

HIGH-LEVEL FILE MANAGER ROUTINES 23

No such volume
Software volume lock
Hardware volume lock

FUNCTION SetFLock (fileName: OSStr2SS; vRefNum: INTEGER) : OSErr;

SetFLock locks the file having the name fileName on the specified
volume. Access paths currently in use aren't affected.

Result codes noErr No error
extFSErr External file system
fnfErr File not found
ioErr Disk 1/0 error
nsvErr No such volume
vLckdErr Software volume lock
wPrErr Hardware volume lock

FUNCTION R.stFilLock (fileName: OSStr2SS; vRefNum: INTEGER) : OSErr;

R.stFilLock unlocks the file having the name fileName on the specified
volume. Access paths currently in use aren't affected.

Result codes noErr No error
extFSErr External file system
fnfErr File not found
ioErr Disk 1/0 error
nsvErr No such volume
vLckdErr Software volume lock
wPrErr Hardware volume lock

FUNCTION Rename (oldName: OSStr2SS; vRefNum: INTEGER; newName:
OSStr255) : OSErr;

Given a file name in oldName, Rename changes the name of the file to
newName. Access paths currently in use aren't affected. Given a
volume name in oldName and a volume reference number in vRefNum, Rename
changes the name of the specified volume to newName.

Result codes

3/02/84 Hacker

noErr
bdNamErr
dirFulErr
dupFNErr
extFSErr
fLckdErr
fnfErr
fsRnErr
ioErr
nsvErr
paramErr

vLckdErr

No error
Bad f1 le name
Directory full
Duplicate file name
External file system
File locked
File not found
Renaming difficulty
Disk 1/0 error
No auch volume
Bad parameters and no default
volume
Software volume lock

CONFIDENTIAL /0S/FS.P

6-23

6-24

24 File Manager Programmer's Guide

wPrErr Hardware volume lock

FUNCTION FSDelete (fileName: OSStr255; vRefNum: INTEGER) : OSErr;

FSDelete removes the closed file having the name fileName from the
specified volume.

(note)
This function will delete both forks of the file.

Result codes noErr No error
bdNamErr Bad file name
extFSErr External file system
fBsyErr File busy
fLckdErr File locked
fnfErr File not found
ioErr Disk 1/0 error
nsvErr No such volume
vLckdErr Software volume lock
wPrErr Hardware volume lock

LOW-LEVEL FILE MANAGER ROUTINES

This section contains special information for programmers using the
low-level Pascal or assembly-language routines of the File Manager, and
describes them in detail.

You can execute most File Manager routines either synchronously
(meaning that the application must wait until the routine is completed)
or asynchronously (meaning that the application is free to perform
other tasks while the routine is executing). MountVol, UnmountVol,
Eject, and OffLine cannot be executed asynchronously, because they use
the Memory Manager to allocate and deallocate memory.

When an application calls a File Manager routine asynchronously, an 1/0
request is placed in the file 1/0 queue, and control returns to the
calling application-even before the actual 1/0 is completed. Requests
are taken from the queue one at a time (in the same order that they
were entered), and processed. Only on~ request may be processed at any
given time.

The calling application may specify a completion routine to be executed
as soon as the 1/0 operation has been completed.

At any time, you can use the lnitOueue procedure to clear all queued
File Manager calls except the current one. lnitQueue is eapecially
useful when an error occurs and you no longer wish queued calls to be
executed.

3/02/84 Hacker CONFIDENTIAL /0S/FS.A.1

;

LOW-LEVEL FILE MANAGER ROUTINES 25

Routine parameters passed by an application to the File Manager and
returned by the File Manager to an application are contained in a
parameter block. which is memory space in the heap or stack. Most
low-level Pascal calls to the File Manager are of the form

PBCallName (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

PBCallName is the name of the routine. ParamBlock points to the
parameter block containing the parameters for the routine. If async is
TRUE. the call will be executed asynchronouslyi if FALSE. it will be
executed synchronously. Each call returns an integer result code of
type OSErr if an error occurred during the call. Each routine
description lists all of the applicable result codes, along with a
short description of what the result code means. Lengthier
explanations of all the result codes can be found in the summary at the
end of this manual.

Assembly-language~: When you call a File Manager routine
(except lnitQueue). Afl must point to a parameter block
containing the parameters for the routine. If you want the
routine to be executed asynchronously, set bit Ii.of the routine
trap word. You can do this by supplying the word ASYNC as the
second argument to the routine macro: for example

Read paramBlock,ASYNC

If you want the routine to be executed synchronously, set bit 9
of the routine trap word. This can be accomplished by supplying
the word IMMED as the second argument to the routine macro: for
example

_Write paramBlock,lMMED

All routines except lnitQueue return a result code in J>G.

Routine Parameters

There are three different kinds of parameter blocks you'll pass to File
Manager routines. Each kind is used with a particular set of routine
calls: 1/0 routines, file information routines. and volume information
routines.

The lengthy, variable-length data structure of a parameter block is
given below. The Device Manager and File Manager use this aame data
structure, but only the parts relevant to the File Manager are shown
here. Each kind of parameter block contains eight fields of standard
information and nine to 16 fields of additional information:

3/02/84 Hacker CONFIDENTIAL /0S/FS.A.l

6-25

6-26

26 File Manager Programmer's Guide

TYPE ParamBlkType • (ioParam, fileParam, volumeParam, cntrlParam);

ParamBlockRec • RECORD
ioLink:
ioType:
ioTrap:
ioCmdAddr:
ioCompletion:
ioResult:
ioNamePtr:
ioVRefNum:

Ptr;
INTEGER;
INTEGER;
Ptr;
ProcPtr;
OSErr;
OSStrPtr;
INTEGER;

CASE ParamBlkType OF
ioParam:

(next queue entry}
{always 5}
(routine trap}
(routine address}
(completion routine}
{result code}
(volume or file name}
{volume reference or
drive number}

• • • {I/0 routine parameters}
fileParam:
••• {file information routine parameters}
volumeParam:
••• {volume information routine parameters}
cntrlParam:
••• {Control and Status call parameters}

END;

ParmBlkPtr • ·ParamBlockRec;

The first four fields in each parameter block are handled entirely by
the File Manager, and most programmers needn't be concerned with them;
programmers who are interested in them should see the section "Data
Structures in Hemory".

IOCompletion contains the address of a completion routine to be
executed at the end of an asynchronous call; it should be NIL for
asynchronous calls with no completion routine, and is automatically set
to NIL for all synchronous calls. For asynchronous calls, ioResult is
positive while the routine is executing, and returns the result code.
Your application can poll ioResult during the asynchronous execution of
a routine to determine when the routine has completed. Completion
routines are executed after ioResult is returned.

IONamePtr points to either a volume name or a file name (which can be
prefixed by a volume name).

(note)
Although ioNamePtr can include both the volume name and
the file name, applications shouldn't encourage users to
prefix a file name With a volume name.

IOVRefNum contains either the reference number of a volume or the drive
number of a drive containing a volume.

For routines that access volumes, the File Manager determines which
volume to access by using one of the folloWing:

3/02/84 Hacker CONFIDENTIAL /0S/FS.A.l

LOW-LEVEL FILE MANAGER ROUTINES 27

1. IONamePtr, a pointer to the volume name.

2. If ioNamePtr is NIL, or points to an improper volume nuae, then
ioVRefNum. (If ioVR.efNum is negative, it's a volume reference
number; if positive, it's a drive number.)

3. lf ioVllefNum is t, the default volume. (If there isn't a default
volume, an error is returned.)

For routines that access closed files, the File Manager determines
which file to access by using ioNamePtr, a pointer to the name of the
file (and possibly also of the volume).

- If the string pointed to by ioNamePtr doesn't include the volume
name, the File Manager uses steps 2 and 3 above to determine the
volume.

- If ioNamePtr is NIL or points to an improper file name, an error
is returned.

The first eight fields are adequate for a few calls, but most of the
File Manager routines require more fields, as described below. The
parameters used with Control and Status calls are described in the
Device Manager 1DSnual *** doesn't yet exist***·

1/0 Parameters

When you call one of the 1/0 routines, use these nine additional fields
after the standard 8-field parameter block:

ioParam:
ioRefNum:
ioVersNum:
ioPermssn:
ioMisc:
ioBuffer:
iolleqCount:
ioActCount:
ioPosMode:

INTEGER;
SignedByte;
SignedByte;
Ptr;
Ptr;
Longint;
Long Int;
INTEGER;

ioPosOffset: Longlnt;

{path reference number}
{version number}
{read/write permission}
{miscellanous}
{data buffer}
{requested number of bytes}
{actual number of bytes}
{newline character and type of
positioning operation}

{size of positioning offset}

For routines that access open files, the File Manager determines which
file to access by using the path reference number in iollefNum.
IOPermssn requests permission to read or write via an access path:

lOPermssn
e
1
2
3

3/02/84 Hacker

1/0 operation
Whatever 11 currently allowed
Reading only
Writing only
Reading and writing

CONFIDENTIAL /0S/FS.A. l

6-27

6-28

28 File Manager Progra1111er's Guide

This request is compared With the open permission of the file. If the
open permission doesn't allow 1/0 as requested, an error vill be
returned.

The content of ioMisc depends on the routine called; it contains either
a pointer to an access path buffer, a new logical end-of-file, a new
version number, or a pointer to a new volume or file name. Since
ioMisc is of type Ptr, while end-of-file is Longlnt and version number
is SignedByte, you'll need to use conversions like these:

VAi pBlock: ParmBlkPtr;
myVers: SignedByte;
myEOF: Longlnt;

pBlock·.ioHisc :• POINTER(ORD4(myVers));
myVers :• ORD(pBlock·.ioMisc);

pBlock·.ioMisc :• POINTER(ORD4(myEOF));
myEOF :• ORD4(pBlock·.10Misc);

lOBuffer points to a data buffer into which data is written by Read
calls and from which data is read by Write calls. IOR.eqCount specifies
the requested number of bytes to be read, wri~ten, or allocated.
lOActCount contains the number of bytes actually read, written, or
allocated.

IOPosHode and ioPosOffset contain positioning information used for
Read, Write, and SetFPos calls. Bits e and l of ioPosHode indicate how
to position the mark:

IOPosMode
e
l
2
3

Offset
Current position of mark (ioPosOffset ignored)
Relative to beginning of file
Relative to logical end-of-file
Relative to current mark

lOPosOffset specifies the byte offset (either positive or negative)
relative to ioPosMode where the operation Will be performed.

(note)

Assembly-language !!2tt= If bit 6 of ioPosMode is set, the File
Manager will verify that all data read into memory by a R.ead
call exactly matches the data on the volume (an error Will be
returned if any data don't match).

Advanced programmers: Bit 7 of ioPosKode is the newline
flag-set if read operations should terminate at newline
characters, and clear if reading should terminate at the
end of the access path buffer or volume buffer. The

3/02/84 Hacker CONFIDENTIAL /0S/FS.A.l

LOW-LEVEL FILE MANAGER ROUTINES 29

high-order byte of ioPosMode contains the ASCII code of
the newline character.

File Information Parameters

When you call the GetFilelnfo and SetFilelnfo functions, use the
following 16 additional fields after the standard 8-field parameter
block:

fileParam:
(ioFRefNum:
ioFVersNum:
fillerl:
ioFDirindex:
ioFlAttrib:
ioFlVersNum:
ioFlFndrinfo:
ioFlNum:
10FlStBlk:
ioFlLgLen:
ioFlPyLen:
ioFlRStBlk
ioFlRLgLen
ioFlRPyLen
ioFlCrDat
ioFlHdDat

INTEGER;
SignedByte;
Signed Byte;
INTEGER;
Signed Byte;
SignedByte;
Flnfo;
Longlnt;
INTEGER;
Longlnt;
Longlnt;
INTEGER;
Longlnt;
Longint;
Longlnt;
Longlnt);

{path reference number}
{version number)
{not used}
{file directory index}
{file attributes}
{version number}
{information used by the Finder}
{file number}
{first allocation block of data fork}
{logical end-of-file of data fork}
{physical end-of-file of data fork}
{first allocation block of resource fork}
{logical end-of-file of resource fork}
{physical end-of-file of resource fork}
{date and time of creation}
{date and time of last modification}

IOFDirindex contains the file directory index, another method of
referring to a file; most programmers needn't be concerned with
information about file directories, but those interested can read the
section "Data Organization on Volumes".

Assembly-language .!!2!!,= lOFlAttrib contains eight bits of file
attributes: if bit 7 is set, the file is open; if bit I is set,
the file is locked.

IOFlStBlk and ioFlRStBlk are zeroed if the file's data or resource fork
is empty, respectively. The date and time in the ioFlCrDat and
ioFlHdDat fields are specified in seconds since 12:G0 AM, January l,
1904.

Volume Information Parameters

When you call GetVollnfo, use the following 14 additional fields:

3/02/84 Hacker CONFIDENTIAL /0S/FS.A.l

6-29

6-30

30 File Manager Programmer's Guide

volume Par am:
(filler2:
ioVollndex:
ioVCrDate:
ioVLsBk.Up:
ioVAtrb:
ioVNmFls:
ioVDirSt:
ioVBlLn:
ioVNmAlBlks:
ioVAlBlkSiz:
ioVClpSiz:
ioAlBlSt:
ioVNxtFNum:
ioVFrBlk:

Longlnt;
INTEGER;
Longlnt;
Longlnt;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
Longlnt;
Longlnt;
INTEGER;
Longlnt;
INTEGER);

{not used}
{volume index}
{date and time of initialization}
{date and time of last volume backup}
{bit 15•1 if volume locked}
{number of files in file directory}
{first block of file directory}
{number of blocks in file directory}
{number of allocation blocks on volume}
{number of bytes per allocation block}
{number of bytes to allocate}
{first block in volume block map}
{next free file number}
{number of free allocation blocks}

lOVollndex contains the volume index, another method of referring to a
volume; the first volume mounted has an index of l, and so on. Most
programmers needn't be concerned With the parameters providing
information about file directories and block maps (such as ioVNmFls),
but interes·ted programmers can read the section "Data Organization on
Volumes".

Routine Descriptions

This section describes the procedures and functions. Each routine
description includes the low-level Pascal form of the call and the
routine's assembly-language macro. A list of the fields in the
parameter block affected by the call is also given.

Assembly-language.!!!!!!.= The field names given in these
descriptions are those of the ParamBlockRec data type; see the
"Summary of the File Manager" for the equivalent assembly
language equates.

The number next to each parameter name indicates the byte offset of the
parameter from the start of the parameter block pointed to by~; only
assembly-language programmers need be concerned With it• An arrow
drawn next to each parameter name indicates whether it's an input,
output, or input/output parameter:

Arrow ~
~
~

3/02/84 Hacker

Meaning
Parameter must be passed to the routine
Parameter Will be returned by the routine
Parameter must be passed to and Will be returned
by the routine

CONFIDENTIAL /0S/FS.A.2

LOW-LEVEL FILE MANAGER ROUTINES 31

Initializing the File 1/0 Queue

PROCEDURE lnitQueue;

Trap macro _lnitQueue

lnitOueue clears all queued File Manager calls except the current one.
There are no parameters or result codes associated with lnitQueue.

Accessing Volumes

FUNCTION PBMountVol (paramBlock: ParmBlkPtr) : OSErr;

Trap macro _MountVol

Parameter block
~- 16 ioResult

ioVRefNum ~-~ 22

Result codes noErr
badMDBErr
extFSErr
ioErr
mFulErr
noKacDskErr
nsDrvErr
param'Err
volOnLinErr

word
word

No error
Kaster directory block is bad
External file system
Disk 1/0 error
Memory full
Not a Macintosh volume
No such drive
Bad drive number
Volume already on-line

PBMountVol mounts the volume in the drive whose number is ioVRefNum,
and returns a volume reference number in ioVRefNum. If there are no
volumes already mounted, this volume becomes the default volume.
PBMountVol is always executed synchronously.

3/02/84 Hacker CONFIDENTIAL /0S/FS.A.2

6-31

6-32

____ ,.,-

32 File Manager Prograaner's Guide

FUNCTION PBGetVollnfo (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr;

Trap macro _GetVolinfo

Parameter block
~ 12 ioCompletion pointer ~- 16 ioResult word
~ 18 ioNamePtr pointer
~ 22 ioVRefNum word
~ 28 ioVollndex word
~ 311 ioVCrDate long word
E-- 34 ioVLaBkUp long word
E-- 38 ioVAtrb word
E-- 4'1 ioVNmFls word
E-- 42 ioVDirSt word ~- 44 ioVBlLn word
~ 46 ioVNmAlBlks word
E-- 48 ioVAlBlkSiz long word
E-- 52 ioVClpSiz long word
E-- 56 ioAlBlSt word
E-- 58 ioVNxtFNum long word ~- 62 ioVFrBlk word

Result codes noErr No error
nsvErr No such volume
paramErr No default volume

PBGetVolinfo returns information about the specified volume. If
ioVollndex is positive, the File Manager attempts to use it to find the
volume. If ioVollndex is negative, the File Manager uses ioNamePtr and
ioVRefNum in the standard way to determine which volume. If ioVollndex
is G, the File Manager attempts to access the volume by using ioVRefNum
only. The volume reference number is returned in ioVR.efNum, and the
volume name is returned in ioNamePtr, unless ioNamePtr is NIL.

3/02/84 Hacker CONFIDENTIAL /OS/FS.A.2

I ,

LOW-LEVEL FILE MANAGER ROUTINES 33

FUNCTION PBGetVol (paramBlock: ParmBlkPtr; aaync: BOOLEAN) : OSErr;

Trap macro GetVol -
Parameter block

~ 12
~- 16
~ 18
~ 22

ioCompletion
ioResult
ioNamePtr
ioVRefNum

pointer
word
pointer
word

llesult codes noErr
navErr

No error
No default volume

PBGetVol returns the name of the default volume in ioNamePtr and its
volume reference number in ioVllefNum, unless ioNamePtr is NIL.

FUNCTION PBSetVol (paramBlock: PannBlkPtr; aaync: BOOLEAN)

Trap macro _SetVol

Parameter block
~ 12
~ 16
--~ 18
~ 22

ioCompletion
ioResult
ioNamePtr
ioVRefNum

pointer
word
pointer
word

Result codes noErr
bdNamErr
navErr
paramErr

No error
Bad volume name
No such volume
No default volume

OSErr;

PBSetVol sets the default volume to the mounted volume specified by
ioNamePtr or ioVllefNum.

3/02/84 Hacker CONFIDENTIAL /0S/FS.A.2

6-33

6-34

34 File Manager Programmer's Guide

FUNCTION PBFlshVol (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro _Flush Vol

Parameter block
--+ 12
E-- 16
-~ 18
--+ 22

ioCompletion
ioResult
ioNamePtr
ioVRefNum

pointer
word
pointer
word

Result codes noErr
bdNamErr
extFSErr
ioErr
naDrvErr
nsvErr
paramErr

No error
Bad volume name
External file system
Disk 1/0 error
No such drive
No such volume
No default volume

PBFlshVol writes descriptive information, the contents of the
associated volume buffer, and all access path buffers to the volume
specified by ioNamePtr or ioVRefNum, to the volume (if they've changed
since the last time PBFlshVol was called). The volume modification
date is set to the current time.

3/02/84 Hacker CONFIDENTIAL /0S/FS.A.2

LOW-LEVEL FILE MANAGER ROUTINES 35

FUNCTION PBUnmountVol (paramBlock: ParmBlkPtr) OSErr;

Trap macro Unmount Vol

Parameter block
~ 16
~ 18

ioR.esult
ioNamePtr
ioVRefNum -~ 22

Result codes noErr
bdNamErr
extFSErr
fnfErr
ioErr
nsDrvErr
nsvErr
paramErr

word
pointer
word

No error
Bad volume name
External file system
File not found
Disk 1/0 error
No such drive
No such volume
No default volume

PBUnmountVol unmount& the volume specified by ioNamePtr or ioVRefNum,
by calling PBFlushVol to flush the volume, closing all open files on
the volume, and releasing all the memory used for the volume.
PBUnmountVol is always executed synchronously.

(eye)
Don't unmount the startup volume.

FUNCTION PBOffLine (paramBlock: ParmBlkPtr; async: BOOLEAN)

Trap macro _OffLine

Parameter block
~ 12
~ 16
-~ 18
~ 22

ioCompletion
ioR.esult
ioNamePtr
ioVRefNum

pointer
word
pointer
word

Result codes noErr
bdNamErr
extFSErr
ioErr
nsDrvErr
nsvErr
paramErr

No error
Bad volume name
External file system
Disk 1/0 error
No such drive
No such volume
No default volume

OSErr;

PBOffLine places off-line the volume specified by ioNamePtr or
10VRefNum, by calling PBFlshVol to flush the volume, and releasing all
the memory used for the volume except for 94 bytes of descriptive
information.

3/02/84 Hacker CONFIDENTIAL /0S/FS.A.2

6-35

6-36

36 File Manager Programmer's Guide

FUNCTION PBEject (paramBlock: ParmBlkPtr; async: BOOLEAN)

Trap macro _Eject

Parameter block
~ 12
~ 16
--~ 18
~ 22

ioCompletion
ioResult
ioNamePtr
ioVRefNum

pointer
word
pointer
word

Result codes noErr
bdNamErr
extFSErr
ioErr
nsDrvErr
nsvErr
paramErr

No error
Bad volume name
External file system
Disk 1/0 error
No such drive
No such volume
No default volume

OSErr;

PBEject calls PBOffLine to place the volume specified by ioNamePtr or
ioVRefNum offline. and then ejects the volume.

You may call PBEject asynchronously; the first part of tbe call is
executed synchronously, and the actual ejection is executed
asynchronously.

3/02/84 Hacker CONFIDENTIAL /0S/FS.A.2

'

LOW-LEVEL FILE MANAGER ROUTINES 37

Changing Pile Contents

FUNCTION PBCreate (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro _Create

Parameter block
~ 12
t- 16

ioCompletion
iolleeult
ioNamePtr
ioVRefNum
ioVersNum

pointer
word
pointer
word
byte

~ 18
~ 22
~ 26

llesult codes noErr
bdNamErr
dupFNErr
dirFulErr
extFSErr
ioErr
nsvErr
vLckdErr
wPrErr

No error
Bad file name
Duplicate file name
Directory full
External file system
Disk 1/0 error
No such.volume
Software volume lock
Hardware volume lock

PBCreate creates a new file having the name ioNamePtr and the version
number ioVersNum, on the specified volume. The new file is unlocked
and empty. Its modification and creation dates are aet to the time of
the system clock. The application should call PBSetFlnfo to fill in
the infonaation needed by the Finder.

3/02/84 Hacker CONFIDENTIAL /0S/FS.A.2

6-37

6-38

38 File Manager Programmer's Guide

FUNCTION PBOpen (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr;

Trap macro Open

Parameter block -~ 12 ioCompletion pointer
t- 16 ioResult word
--~ 18 ioNamePtr pointer -, 22 ioVRefNum word
~ 24 ioRefNum word -, 26 ioVersNum byte -~ 27 ioPermssn byte -, 28 ioMisc pointer

Result codes noErr No error
bdNamErr Bad file name
extFSErr External file system
fnfErr File not found
ioErr Disk 1/0 error
mFulErr Memory full
nsvErr No such volume
opWrErr File already open for writing
tmfoErr Too many files open

PBOpen creates an access path to the file having the name ioNamePtr and
the version number ioVersNum, on the specified volume. A path
reference number is returned in ioRefNum.

IOMisc either points to a 522-byte portion of memory to be used as the
access path's buffer, or is NIL if you want the volume buffer to be
used instead.

(eye)
You should ensure that all access paths to a single file
share the same buffer so that they will read and write
the same data.

IOPermssn specifies the path's read/write permission. A path can be
opened for writing even if it accesses a file on a locked volume, and
an error won't be returned until a PBWrite, PBSetEOF, or PBAllocate
call is made.

If you attempt to open a locked file for writing, PBOpen will return
opWrErr as its function result. If you attempt to open a file for
writing and it already has an access path that allows writing, PBOpen
will return the reference number of the existing access path in
iolefNum and opWrErr as its function result.

3/02/84 Hacker CONFIDENTIAL /OS/FS.A.2

,

LOW-LEVEL FILE MANAGER ROUTINES 39

FUNCTION PBOpenRF (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap aacro

Parameter block
~

~
~

~
~
~ -,
~

Result codes

_OpenRF

12 1oCompletion pointer
16 1oResult
18 ioNamePtr
22 ioVRefNum
24 ioRefNum
26 ioVersNum
27 ioPermssn
28 ioMisc

noErr
bdNamErr
extFSErr
fnfErr
ioErr
mFulErr
nsvErr
opWrErr
permErr

tmfoErr

word
pointer
word
word
byte
byte
pointer

No error
Bad file name
External file system
File not found
Disk 1/0 error
Memory full
No such volume
File already open for writing
Open permission doesn't
allow reading
Too many files open

PBOpenRF is identical to PBOpen, except that it opens the file's
resource fork instead of its data fork.

3/02/84 Hacker CONFIDENTIAL /0S/FS.A.2

6-39

6-40

40 File Manager Programmer's Guide

FUNCTION PBRead (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr;

Trap macro

Parameter block
-:11-
~
-~
~
-:II-
~ -~
~

Result codes

_Read

12 ioCompletion pointer
16 ioResult word
24 ioRefNum word
32 ioBuffer pointer
36 ioReqCount long word
41 ioActCount long word
44 ioPoaHode word
46 ioPosOffset long word

noErr
eofErr
extFSErr
fnOpnErr
ioErr
paramErr
rfNumErr

No error
End-of-file
External file system
File not open
Disk 1/0 error
Negative ioReqCount
Bad reference number

PBRead attempts to read ioReqCount bytes from the open file whose
access path is specified by ioRefNum, and transfer them to the data
buffer pointed to by ioBuffer. If you try to read past the logical
end-of-file, PBRead moves the mark to the end-of-file and returns
eofErr as its function result. After the read operation is completed,
the mark is returned in ioPosOffset and the number of bytes actually
read is returned in ioActCount.

(note)
Advanced programmers: lOPosMode contains the newline
character (if any), and indicates whether the read should
begin relative to the beginning of the file, the mark, or
the end-of-file. The byte offset from the position
indicated by ioPosMode, where the read should actually
begin, is given by ioPosOffset. If a newline character
is not specified, the data will be read one byte at a
time until ioReqCount bytes have been read or the
end-of-file is reached. If a newline character is
specified, the data will be read one byte at a time until
the newline character is encountered, the end-of-file is
reached, or ioReqCount bytes have been read.

3/02/84 Hacker CONFIDENTIAL /0S/FS.A.2

,

LOW-LEVEL FILE MANAGER ROUTINES 41

FUNCTION PBWrite (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro

Parameter block -~ ~---~
~ -,
~
~
~

Result codes

_Write

12 10Complet1on pointer
16 ioResult word
24 ioRefNum word
32 ioBuffer pointer
36 ioReqCount long word
4(1 ioAc:tCount long word
44 ioPosHode word
46 ioPosOffset long word

noErr
dskFulErr
fLckdErr
fnOpnErr
ioErr
paramErr
posErr
rfNumErr
vLckdErr
wPrErr
wrPermErr

No error
Disk full
File locked
File not open
Disk 1/0 error
Negative ioReqCount
Position is beyond end-of-file
Bad reference numb,r
Software volume lock
Hardware volume lock
Read/write or open permission
doesn't allow writing

PBWrite takes ioReqCount bytes from the buffer pointed to by ioBuffer
and attempts to write them to the open file whose access path is
specified by ioRefNum. After the write operation is completed, the
mark is returned in ioPosOffset, and the number of bytes actually
written is returned in ioAc:tCount.

lOPosMode indicates whether the write should begin relative to the
beginning of the file, the mark, or the end-of-file. The byte offset
from the position indicated by ioPoaMode, where the read should
actually begin, is given by ioPosOffset.

3/02/84 Hacker CONFIDENTIAL /0S/FS.A..2

6-41

6-42

42 File Manager Programmer's Guide

FUNCTION PBGetFPoa (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr;

Trap macro

Parameter block
~ ~--,
t-
~
~

~--
Result codes

_GetFPos

12 1oCompletion pointer
16 ioResult word
22 1oRefNum word
36 1oReqCount long word
4(1 ioActCount long word
44 ioPosMode word
46 ioPosOffset long word

noErr
extFSErr
fnOpnErr
ioErr
rfNumErr

No error
External file system
File not open
Disk 1/0 error
Bad reference number

PBGetFPos returns, in ioPosOffset, the mark of the open file whose
access path is specified by ioRefNum. GetFPos sets ioReqCount,
ioActCount, and ioPosMode to (I.

FUNCTION PBSetFPos (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro _SetFPos

Parameter block
~ 12
t- 16
-, 22
~ 44
-~ 46

Result codes

ioCompletion
ioResult
ioRefNum
ioPosMode
ioPosOffset

pointer
word
word
word
long word

No error
End-of-file
External file system
File not open
Disk 1/0 error

noErr
eofErr
extFSErr
fnOpnErr
ioErr
posErr Tried to position before start

of file
rfNumErr Bad reference number

PBSetFPos sets the mark of the open file whose access path ia specified
by ioRefNum, to the position specified by ioPosMode and ioPoaOffset.
loPosMode indicates whether the mark should be set relative to the
beginning of the file, the mark, or the logical end-of-file. The byte
offset from the position given by ioPosMode, where the mark should
actually be aet, ts given by ioPosOffaet. If you try to set the mark
past the logical end-of-file, PBSetFPos moves the mark to the
end-of-file and returns eofErr as its function result.

3/02/84 Hacker CONFIDENTIAL /0S/FS.A.2

LOW-LEVEL FILE MANAGER ROUTINES 43

FUNCTION PBGetEOF (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro GetEOF

Parameter block
-~ 12 1oComplet1on

ioResult
ioRefNum
ioMisc

pointer
word
word

~- 16
-~ 22
~- 28

Result codes noErr
extFSErr
fnOpnErr
ioErr
rfNumErr

long word

No error
External file system
File not open
Disk I/0 error
Bad reference number

PBGetEOF returns, in ioMisc, the logical end-of-file of the open file
whose access path 1& specified by ioRefNum.

FUNCTION PBSetEOF (paramBlock: ParmBlkPtr; async: BOOLEAN)

Trap macro _SetEOF

Parameter block
~ 12
~ 16
-~ 22
~ 28

Result codes

ioCompletion
ioResult
ioRefNum
1oM1sc

pointer
word
word
long word

No error
Disk full
External file system
File locked
File not open
Disk 1/0 error
Bad reference number
Software volume lock

OSErr;

noErr
dskFulErr
extFSErr
fLckdErr
fnOpnErr
ioErr
rfNumErr
vLckdErr
wPrErr
wrPermErr

Hardware volume lock
Read/write or open pennission
doesn't allow writing

PBSetEOF sets the logical end-of-file of the open file whose access
path is specified by ioRefNum, to ioMisc. lf the logical end-of-file
is set beyond the physical end-of-file, the physical end-of-file is set
to one byte beyond the end of the next free allocation block; if there
isn't enough space on the volume, no change is made, and PBSetEOF
returns dskFulErr as its function result. lf ioMisc is e, all space on
the volume occupied by the file is released.

3/02/84 Hacker CONFIDENTIAL /0S/FS.A.2

6-43

6-44

44 File Manager Progra11111er's Guide

FUNCTION PBAllocate (paramBlock: ParmBlkPtr; async: BOOLEAN)

Trap macro _Allocate

Parameter block
~ 12
t- 16
-~ 22
-~ 36
t-- 40

Result codes

ioCompletion
ioResult
ioRefNum
ioReqCount
ioActCount

pointer
word
word
long word
long word

No error
Disk full
File locked
File not open
Disk 1/0 error
Bad reference number
Software volume lock

OSErr;

noErr
dskFulErr
fLckdErr
fnOpnErr
ioErr
rfNumErr
vLckdErr
wPrErr
wrPermErr

Hardware volume lock
Read/write or open permission
doesn't allow writing

PBAllocate adds ioReqCount bytes to the open file whose access path is
specified by ioRefNum, and sets the physical end-of-file to one byte
beyond the last block allocated. The number of bytes allocated is
always rounded up to the nearest multiple of the allocation block size,
and returned in ioActCount. If there isn't enough empty space on the
volume to satisfy the allocation request, PBAllocate allocates the rest
of the space on the volume and returns dskFulErr as its function
result.

3/02/84 Hacker CONFIDENTIAL /0S/FS.A.2

LOW-LEVEL FILE MANAGER ROUTINES 45

FUNCTION PBFlshFile (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro FlushFile -
Parameter block

-~ 12 ioCompletion pointer
~ 16 ioResult word
-~ 22 ioRefNum word

Result codes noErr No error
extFSErr External file system
fnfErr File not found
fnOpnErr File not open
ioErr Disk 1/0 error
nsvErr No such volume
rfNumErr Bad reference number

PBFlshFile writes the contents of the access path buffer indicated by
ioRefNum to the volume, and updates the file's entry in the file
directory.

(eye)
Some information stored on the volume won't be correct
until PBFlshVol is called.

3/02/84 Hack.er CONFIDENTIAL /0S/FS.A.2

6-45

6-46

46 File Manager Programer's Guide

FUNCTION PBClose (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro _Close

Parameter block
-~ 12 ioCompletion pointer
~ 16
-, 24

ioR.esult word

Result codes

ioR.efNum word

noErr
extFSErr
fnfErr
fnOpnErr
ioErr
nsvErr
rfNumErr

No error
External file system
File not found
File not open
Disk 1/0 error
No such volume
Bad reference number

PBClose removes the access path specified by iolefNum and writes the
contents of the access path buffer to the volume.

(eye)
Some information stored on the volume won't be correct
until PBFlshVol is called.

3/02/84 Racker CONFIDENTIAL /0S/FS.A.2

,

LOW-LEVEL FILE MANAGER ROUTINES 47

Changing Information About Files

All of the routines described in this section affect both forks of a
file.

FUNCTION PBGetFlnfo (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr;

Trap macro _GetFUelnfo

Parameter block
~ 12 i0Co11plet1on pointer
~ 16 ioResult word
~ 18 ioNamePtr pointer
~ 22 ioVRefNum word
~ 24 iolefNum vord
~ 26 ioVersNum byte _ _.

28 ioFDirlndex word
~ lt ioFlAttrib byte
~ 31 ioFl VersNum byte
~ 32 ioFndrlnfo 16 bytes
~ 48 ioFlNum long word
~ 52 ioFlStBlk word
~ 54 ioFlLgLen long word
~ 58 ioFlPyLen long word
~ 62 ioFlR.StBlk word
~ 64 ioFlR.LgLen long word
,t- 68 ioFlR.PyLen long word
~ 72 ioFlCrDat long word
~ 76 ioFlHdDat long word

Result codes noErr No error
bdNamErr Bad file name
extFSErr External file aystem
fnfErr File not found
ioErr Disk 1/0 error
nsvErr No such volume
paramErr No default volume

PBGetFinfo returns information about the specified file. If
ioFDirlndex is positive, the File Manager returns information about the
file whose file number ia ioFDirlndex on the specified volume (see the
aection "Data Organization on Volumes" if you're interested in using
this method). If ioFDirlndex is negative or zero, the File Manager
returns information about the file having the name ioNaaePtr and the
version number ioVersNum, on the specified volume. Unless ioNamePtr is
NIL, ioNamePtr returns a pointer to the name of the file. If the file
is open, the reference number of the first access path found 1a
returned in iolefNum.

3/02/84 Backer CONFIDENTIAL /0S/FS.A.2

6-47

6-48

48 File Manager Progra111er'a Guide

FUNCTION PBSetFinfo (paramBlock: ParmBlkPtr; aaync: BOOLEAN)

Trap macro _SetFilelnfo

Parameter block
~ 12
~ 16
-~ 18
~ 22
~ 26
~ 32
~ 72
~ 76

Result codes noErr

ioCompletion
ioResult
ioNamePtr
ioVRefNum
ioVersNum
ioFndrlnfo
1oF1CrDat
1oF1HdDat

pointer
word
pointer
word
byte
16 bytes
long word
long word

No error
bdNamErr Bad file name
extFSErr External file system
fLckdErr File locked
fnfErr File not found
10Err Disk 1/0 error
nsvErr No such volume
vLckdErr Software volume lo~k
wPrErr Hardware volume lock

OSErr;

PBSetFlnfo sets information about the file (including its creation and
modification dates, and information needed by the Finder) having the
name ioNamePtr and the version number ioVersNum on the specified
volume. You should call PBGetFlnfo just before PBSetFlnfo, so the
current information is present in the parameter block.

3/02/84 Hacker CONFIDENTIAL /0S/FS.A.2

LOW-LEVEL FILE MANAGER ROUTINES 49

FUNCTION PBSetFLock (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro _Set Fil Lock

Parameter block

Result

~ 12
~ 16
~ 18
~ 22
-~ 26

codes noErr

ioCompletion
ioResult
ioNamePtr
ioVRefNum
ioVersNum

No

pointer
word
pointer
word
byte

error
extFSErr External file system
fnfErr File not found
ioErr Disk 1/0 error
nsvErr No such volume
vLckdErr Software volume lock
wPrErr Hardware volume lock

PBSetFLock locks the file having the name ioNamePtr and the version
number ioVersNum on the specified volume. Access paths currently in
use aren't affected.

FUNCTION PBRstFLock (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro _RstFilLock

Parameter block
~ 12
~ 16
~ 18
-~ 22
-~ 26

Result codes noErr

ioCompletion
ioResult
ioNamePtr
ioVRefNum
ioVersNum

No

pointer
word
pointer
word
byte

error
extFSErr External file system
fnfErr File not found
ioErr Disk 1/0 error
nsvErr No such volume
vLckdErr Software volume lock
wPrErr Hardware volume lock

PBRstFLock unlocks the file having the name ioNamePtr and the version
number ioVersNum on the specified volume. Access paths currently in
use aren't affected.

3/02/84 Hacker CONFIDENTIAL /0S/FS.A.2

6-49

6-50

50 File Manager Programmer's Guide

FUNCTION PBSetFVers (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro

Parameter block
~ ~-
~ -~ --~
~

Result codes

_SetFilType

12 ioCompletion pointer
16 ioResult
18 ioNamePtr
22 ioVRefNum
26 ioVersNum
28 ioMisc

noErr
bdNamErr
dupFNErr
extFSErr
fLckdErr
fnfErr
nsvErr
ioErr
paramErr
vLckdErr
wPrErr

word
pointer
word
byte
byte

No error
Bad file name
Duplicate file name and version
External file system
File locked
File not found
No such volume
Disk 1/0 error
No default volume
Software volume lock
Hardware volume lock

PBSetFVers changes the version number of the file having the name
ioNamePtr and version number ioVersNum on the specified volume, to
ioMisc. Access paths currently in use aren't affected.

(warning)
The Resource Manager and Segment Loader operate only on
files with version number 9; changing the version number
of a file to a nonzero number Will prevent them from
operating on it•

3/02/84 Hacker CONFIDENTIAL /0S/FS.A.2

LOW-LEVEL FILE MANAGER ROUTINES 51

FUNCTION PBRename (paramBlock: ParmBlk.Ptr; async: BOOLEAN) : OSErr;

Trap macro

Parameter block
~
t--~ --~ -~
~

Result codes

Rename

12 ioCompletion pointer
16 ioResult
18 ioNamePtr
22 ioVRefNum
26 ioVersNum
28 ioMisc

noErr
bdNamErr
dirFulErr
dupFNErr
extFSErr
fLckdErr
fnfErr
fsRnErr
ioErr
nsvErr
paramErr
vLckdErr.
wPrErr

word
pointer
word
byte
pointer

No error
Bad file name
Directory full
Duplicate file name and version
External file system
File locked
File not found
Renaming difficulty
Disk 1/0 error
No such volume
No default volume
Software volume lock
Hardware volume lock

Given a file name in ioNamePtr and a version number in ioVersNum,
Rename changes the name of the specified file to ioMisc; given a volume
name in ioNamePtr or a volume reference number in ioVRefNum, it changes
the name of the specified volume to ioMisc. Access paths currently in
use aren't affected.

3/02/84 Hacker CONFIDENTIAL /0S/FS.A.2

6-51

6-52
52 File Manager Programmer's Guide

FUNCTION PBDelete (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

Trap macro _Delete

Parameter block
-~ 12
~- 16
--~ 18
~ 22
--~ 26

Result codes noErr

ioCompletion
ioResult
ioNamePtr
ioVRefNum
ioVersNum

pointer
word
pointer
word
byte

No error
bdNamErr Bad file name
extFSErr External file system
fBsyErr File busy
fLckdErr File locked
fnfErr File not found
nsvErr No such volume
ioErr Disk 1/0 error
vLck.dErr Software volume lock
wPrErr Hardware volume lock

PBDelete removes the closed file having the name ioNamePtr and the
version number ioVersNum, from the specified volume. You can't issue
PBDelete to remove an open file.

(note)
This function will delete both forks of the file.

3/02/84 Racker CONFIDENTIAL /0S/FS.A.2

' •

DATA ORGANIZATION ON VOLUMES 53

DATA ORGANIZATION ON VOLUMES

This section explains how information is organized on volumes. Most of
the information is accessible only through assembly language. but some
advanced Pascal programmers may be interested.

The File Manager coDlllunicates with device drivers that read and write
data via block-level requests to devices containing Macintosh
initialized volumes. (Macintosh-initialized volumes are volumes
initialized by the Disk Initialization Package.) The actual type of
volume and device is unimportant to the File Manager; the only
requirements are that the volume was icitialized by the Disk
Initialization Package and that the device driver be able to
communicate via block-level requests.

The 3 1/2-inch built-in and optional external drives are accessed via
the Disk Driver. If you want to use the File Manager to access files
on Macintosh-initialized volumes on other types of devices, you must
write a device driver that can read and write data via block-level
requests to the device on which the volume will be mounted. If you
want to access files on nonMacintosh-initialized volumes, you must
write your own external file system (see the section "Using an External
File System").

The information on all block-initialized volumes is organized in
logical blocks and allocation blocks. Logical blocks contain a number
of bytes of standard information (512 bytes on Macintosh-initialized
volumes), and an additional number of bytes of information specific to
the disk driver (12 bytes on Macintosh-initialized volumes).
Allocation blocks are composed of any integral number of logical
blocks. and are simply a means of grouping logical blocks together in
more convenient parcels.

The remainder of this aection applies only to Macintosh-initialized
volumes. NonHacintosh-initialized volumes must be accessed via an
external file system, and the 1nfor1118tion on them must be organized by .
an external initializing program.

A Macintosh-initialized volume contains information needed to start up
the system in logical blocks t and 1 (Figure 6). Logical block 2 of
the volume begins the master directory block. The master directory
block contains volume information and the volume allocation block map,
which records whether each block on the volume is unused or what part
of a file it contains data from.

3/02/84 Hacker CONFIDENTIAL /05/FS.D

6-53

6-54

54 File Hanager Programmer's Guide

logical bloclc O

logical block 1

. ···········
system st~

informetion
.

logical bloclc 2

logical bloclc 3

voh.rne informetion

logicol block 4

logical block n

logical block n+ 1

logical block 799

·--
........... Dloct map

-··-- l.ft~

. ·········· file directory
~

...........

IIUed

...........
~ file contents
...........

.

···········
? 4

···········

...........
?

.

zero if not e st~ disk

meater directory bloci:

el location block 2

el locetion block m

Figure 6. A 4ilK-Byte Volume With lK-Byte Allocation Blocks

The master directory "block" always occupies two blocks-the Disk
Initialization Package varies the allocation block size as necessary to
achieve this constraint.

In the next logical block following the block map begins the file
directory, which contains descriptions and locations of all the files
on the volume. The rest of the logical blocks on the volume contain
files or garbage (such as parts of deleted files). The precise format
of the volume information, volume allocation block map, file directory,
and files is explained in the folloving sections.

Volume Information

The volume information is contained in the first 64 bytes of the master
directory block (Figure 7). This information is written on the volume
when it's initialized, and modified thereafter by the File Manager.

3/02/84 Hacker CONFIDENTIAL /OS/FS.D

DATA ORGANIZATION ON VOLUMES 55

O"SigWord (word) by1e O always $0207

2 date and time of intial izetion drCrOete (long word)

crlsBku, (long word) 6 date and time of last ~

1 O whsne attributes dr Atrb (word}

ct+trrls(~ 12 runber of files in file directory

drOirSt (word) 14 f ir,t logical bloct of ti le directory

drBILen (word) 16 ruN>el' of logical blocts in file directory

drtcnAIBlts (word) 18 rurme,-of allocation blocts on wlune

drAIBllcSiz (long ~ 20 size of allocation blocts

drClpSiz (long word) 2.. runber of bytes to allocate

drAIBISt (word} 28 logical block runber of first al location bloclc

30 nex1 l.nJSed file runber -drNxtftun (long word)

34 n.nmer of I.RJSed el location blocks drFree&s (word)

drVN (byte) 36 length of volllne name

37 cherecters of volllne neme drVN + 1 (bytes)

Figure 7. Volume Information

DrAtrb contains the volume attributes. Its bits, if set, indicate the
following:

Bit Meaning
7 Volume is locked by hardware
15 Volume is locked by software

DrClpSiz contains the minimum number of bytes to allocate each time the
Allocate function is called, to minimize fragmentation of files; it's
always a multiple of the allocation block size. DrNxtFNum contains the
next unused file number (see the "File Directory" section below for an
explanation of file numbers).

3/02/84 Hacker CONFIDENTIAL /0S/FS.D

6-55

6-56
56 File Manager Programmer's Guide

Volume Allocation Block Hap

The volume allocation block map represents every allocation block on
the volume with a 12-bit entry indicating whether the block is unused
or allocated to a file. It begins in the master directory block at the
byte following the volume information, and continues for as many
logical blocks as needed. For example, a 4G9K-byte volume with a
19-block file directory and lK-byte allocation blocks would have a
591-byte block map.

The first entry in the block map is for block number 2; the block map
doesn't contain entries for the startup blocks. Each entry specifies
whether the block is unused, whether it's the last block in the file,
or which allocation block is next in the file:

Entry
0
l
2 •• 4095

Meaning
Block is unused
Block is the last block of the file
Number of next block in the file

For instance, assume that there's one file on the volume, stored in
allocation blocks 8, ll, 12, and 17; the first 16 entrie~ of the block
map would read

Gee e e e 11 e e 12 11 e e e e 1

The first allocation block on a volume typically follows the file
directory. The first allocation block is number 2 because of the
special meaning of numbers G and l.

(note)
As explained below, it's possible to begin the allocation
blocks immediately following the master directory block
and place the file directory somewhere within the
allocation blocks. In this case, the allocation blocks
occupied by the file directory must be marked with $FFF's
in the allocation block map.

File Directory

The file directory contains an entry for each file. Each entry lists
information about one file on the volume, including its name and
location. Each file is listed by its own unique fil!. number, which the
File Manager uses to distinguish it from other files on the volume.

A file directory entry contains 51 bytes plus one byte for each
character in the file name (Figure 8); if the file names average 20
characters, a directory can hold seven file entries per logical block.
Entries are always an integral number of words and don't cro1s logical
block boundaries. The length of a file directory depends on the
maximum number of files the volume can contain; for example, on a
4GIK-byte volume the file directory occupies 12 logical blocks.

3/02/84 Hack.er CONFIDENTIAL /OS/FS.D

DATA ORGANlZATlON ON VOLUMES 57

The file directory conventionally follows the block aap and precedes
the allocation blocks. but a volume-initializing program could actually
place the file directory anywhere Within the allocation block• as long
as the blocks occupied by the file directory are urked VS.th $FFF'• in
the block map.

byte 0 , f IF lags (byte)

f IT)'P (byte)

bit 7•1 it entry UN4 bit 0.1 if file locted

venionrutt.er

2

18

flUsrWcb (16 bytes)

f IF I tun {lorG word)

information used by the Finder

file runber

22 first allocation bloct of date fork flStBU: (word)

24 data fort's logical end-ol-file f lL~erl (long word)

28 date fort's physical end-ol-file f IPylen {I~ word)

32 first al location block of resou-ce fork flAStBlk (word)

34 rescuce fort's logical end-ol-file flfl.~en (I~ word)

38 N*'.U'Ce fort's physical end-ol-file flRPylerl (long word)

42 date and time file was creetecl flCrDet (long word)

46 date end time file was lest modified f ltd>et (long wo,:d)

50 length of file neme 11Neme (byte)

51 dw'ecters of file name flNem + 1 (bytes)

Figure 8. A File Directory Entry

FlStBlk and flRStBlk are I if the data or resource fork doesn't exist.
FlCrDat and flHdDat are given in seconds since 12:90 AM, January l,
1994.

Each time a new file is created, an entry for the new file is placed in
the file directory. Each time a file 1& deleted. its entry in the file
directory is zeroed. and all blocks used by that file on the volume are
released as free space.

File Tags on Volumes

As aentioned previously, logical blocks contain 512 bytes of atandard
information preceded by 12 bytes of!!.!! tags {Figu~e 9). 'l'he file
tags are designed to allow easy reconstruction of files from a volume
vhose directory or other file-access information has been destroyed.

3/02/84 Backer CONFIDENTIAL /OS/FS.D

6-57

6-58

58 File Manager Programmer's Guide

by1e O file runber (long word) file runber

4 fort type (byte) bit 1 • 1 if re,cuce fort

5 file attributes (byte)

6 file sequerce (word)

8 mod date (long word)

bit 7.1 if oper-i bit o., if locked

logical btoc:t sequence runber

date end time last modified

Figure 9. File Tags on Volu••

The file sequence indicates which relative portion of a file the block
contains--the first logical block of a file has a eequence number of G,
the second a sequence number of 1, and so on.

DATA STRUCTURES IN MEMORY

This section describes the memory data structures used by the File
Manager and any external file system that accesses files on
Macintosh-initialized volumes. Most of this infonaation is accessible
only through assembly language, but eome advanced Pascal programmers
may be interested.

The data structures in memory used by the File Manager and all external
file systems include:

- the file 1/0 queue, listing the currently executing routine (if
any), and any asynchronous routines awaiting execution

- the volume-control-block queue, listing information about each
mounted volume

- copies of volume allocation block maps; one for each on-line
volume

- the file-control-block buffer, listing information about each
accees path

- volume buffers; one for each on-line volume

- optional access path buffers; one for each access path

- the drive queue, listing information about each drive connected to
the Macintosh

3/02/84 Hacker CONFIDENTIAL /0S/FS.D

DATA STRUCTURES IN MEMORY 59

The File 1/0 Queue

The file 1/0 queue contains a list of all asynchronous routine•
awaiting execution. Each time a routine is called, an entry 1• placed
in the queue; each time a routine is completed, it• entry 1• re110ved
from the queue. Entries in the queue are processed in a fir1t-in,
first-out ·order.

The file 1/0 queue 1s shown in Figure lG. Bit 7 of fsBusy is set if
there are any entries in the queue. FSOHead points to first entry in
the queue, and fsOTail points to the last entry in the queue.

flBu,y (word)

lsQHeed (pointer) ...
icl.i'* (pointer) ~ - ~ icl.i'* (pointer) -,

flQTeil (pointer) -
queue header

ioType (ward)

ioTrm (ward)

ioCtndActt
(Ieng ward)

rest of
parameter

block

first queue
entry

..

Figure 11. The File 1/0 Queue

,

ioType (word)

i0Tn10 (word)

ioCrndAdm'
(Ieng word)

rat ot
peremeter

block

lest queue
entry

Each queue entry consists of a parameter block for the routine that was
called. The structure of this block is shown in part below:

TYPE ParamBlockRec • RECORD
ioLink:
ioType:
ioTrap:
ioCmdAddr:

• • •
END;

Ptr;
INTEGER;
INTEGER;
Ptr;

{next entry}
{always f&QType}
{routine trap}
{routine address}
{rest of block}

lOLink points to the next entry in the queue, and ioType indicates the
queue type, which should always be the value of the predefined constant
fsQType. lOTrap and ioCmdAddr contain the trap word and addreas of the
File Manager routine that was called.

You can refer to the file 1/0 queue by using the system global f•OHdr,
which points to the fsBusy word.

3/02/84 Hacker CONFIDENTIAL /0S/FS.D

6-59

6-60

60 File Manager Programmer's Guide

Volume Control Blocks

Each time a volume is 110unted, its volume information is read from the
volume and used to build a new volume control block in the
volume-control-block queue (unless an ejected or off-line volume is
being remounted). A copy of the volume block map is also read from the
volume and placed in the system heap, and a volume buffer is created on
the system heap.

The volume-control-block queue is a list of the volume control blocks
for all mounted volumes, maintained on the system heap. Its data
structure is shown in Figure 11. Bit 7 of qFlags is set if there are
any entries in the queue. OHead points to first entry in the queue,
and qTail points to the last entry in the queue.

qf legs (word)

qt-teed (pointer) '-. ,

qTeil (pointer) -
queue header

qli'* (pointer)

Q Type (word)

rest of
VOllffle control

bloclc

first queue
entry

.. ~ .. ,

Figure 11. Volume-Control-Block Queue

qlinc (pointer)

Q Type (word)

rest of
-

voh.me control
bloclc

last queue
entry

Each queue entry consists of six bytes followed by a volume control
block (Figure 12). A volume control block is a 94-byte nonrelocatable
block that contains volume-specific information, including the first 64
bytes of the master directory block (bytes 8 to 72 of the volume
control block match bytes e to 64 of the volume information).

3/02/84 Hacker CONFIDENTIAL /0S/FS.D

byteO

4

6

8

,o
14

18

20

22

24

26

28

32

36

38

42

44

45

n
74

76

78

80

84

88

90

92

Qlirw (pointer)

qType (word}

Yct1Flegs (word}

vcbSigWord (word)

YCbCrOete (long ward)

YCbl~ (long word)

vcbAtrb (word)

vcbl-rnF ls (ward)

vcbOirSt (word)

vcbBILn(word)

vctHTBlts (word)

vcbAIBlkSiz (long word)

vcbClpSiz (long word)

vcbAIBISt (word)

vcbNxtA-un (long word)

vc:tifreeBc, (word)

vcbVN (byte)

YCbVN + 1 (bytes)

YCtlOrvt-un(word)

vcbOAeftun (word)

¥CbFSID (word)

YCbVAefNun (\VOl'd)

vcbMAdr (pointer)

Yd:IBufM (pointer}

vcbMLen (word)

vct>Oir Index (word)

vebOirBlt (word}

DATA STRUCTURES IN MEMORY 61

pointer to nex1 queue enby

not used

bit 1 s. 1 If vol....-.e ccntrol bfoct is dirty

always S02D7

dete end time vohine .as initialized

date end time lest~ copy was mede

vol....-.e ettributes

runber of files in file directory

first logical bloclc of file directory

lenQ1tl of fl le direct cry

ra.,rrt>er-of allocation blocks oo vourne

size of allocation blocks

rurn:,er of bytes to aHocate

first IOQical block in block map

next~ file rumber

r.Jmber of Lnl9ed allocatioo blocks

length of vol...-ne neme

characters of vo11.1ne name

ctive runber of drive in which
VOii.me is lnCUlted

driver reference runber of ~iver for
drive in which vol1.me is mounted

ID for file system hand I ing vol1.1ne

vol'-l'ne reference runber

memory locetiori of voll.lne block map

memory location of vol'61'19 buffer

runber of bytes in vol1.1ne block map

for internet File Meneger use

for Internal File Manager use

Figure 12. A Volume Control Block

3/02/84 Hacker CONFIDENTIAL /0S/FS.D

6-61

6-62

62 File Manager Programer's Guide

OLink points to the next entry in the queue.

Bit 15 of vcbFlags is set if the volume information has been changed by
a routine call since the volume was last affected by a FluahVol call.
VCBAtr contains the volume attributes. Each bit• if aet. indicates the
following:

Bit
T-2

6
7

15

Meaning
Inconsistencies were found between the volume information
and the file directory when the volume was mounted
Volume is busy (one or 110re files are open)
Volume is locked by hardware
Volume is locked by aoftware

VCBDrvNum contains the drive number of the drive on which the volume is
mounted; vcbDRefNum contains the driver reference number of the driver
used to access on volume is mounted. When a mounted volume is placed
off-line, vcbDrvNum is zeroed. When ejected, vcbDrvNum is zeroed and
vcbDRefNum is set to the negative of vcbDrvNum· (becoming a positive
number). VCBFSID identifies the file system handling the volume; it's
0 for volumes handled by the File Manager, and nonzero for volumes
handled by other file systems.

When a volume is placed off-line, its buffer and block map are
deallocated. When a volume is unmounted, its volume control block is
removed from the volume-control-block queue.

You can refer to the volume-control-block queue by using the system
global vcbOHdr, which points to the qFlags word. The default volume's
volume control block is pointed to by the system global defVCBPtr.

File Control Blocks

Each time a file is opened. the file's directory entry is used to build
a 30-byte file control block in the file-control-block buffer, which
contains information about all access paths. The file-control-block
buffer can contain up to 12 file control blocks (since up to 12 paths
can be open at once), and is a 362-byte (2 + JG bytes*l2 paths)
nonrelocatable block on the system heap (see Figure 13).

3/02/84 Hacker CONFIDENTIAL /0S/FS.D

byte O

2

32

62

332

.7

DATA STRUCTURES IN MEMORY 63

l~th (word)

first file
control blod:

secor.:t file
control block

.7

twelfth file
control block

Figure 13. The File-Control-Block Buffer

You can refer to the file-control-block buffer by using the system
global fcbSPtr, which points to the length word. Each file control
block contains 30 bytes of information about an access path (Figure
14).

I ,

by1e O

4

s
6

8

,2

16

20

24

28

fcbFltun (tong word)

fcbMdRByt (byte)

fcbTypByt (byte)

f cbSBllc (word)

fcbEOF (long word)

fcbPLen (long word)

fcbCrPs (long word}

fcbVPtr (po inter)

fcbBfAdr (pointer)

fcbf IPos (word)

file runber

flags

version runber

first allocation block of file

logical end-of-1 i le

physical end-of-file

mart

location of vol1.ne control bloclc:

location of access path buffer

for internal use of Fi le Manager

Figure 14. A File Control Block

Bit 7 of fcbHdRByt is set if the file has been changed since it was
last flushed; bit l is set if the entry describes a resource fork; bit
9 is set if data can be written to the file.

3/02/84 Hack.er CONFIDENTIAL /0S/FS.D

6-63

6-64

64 File Manager Programmer's Guide

Files Tags in Memory

As mentioned previously, logical blocks on Macintosh-initialized
volumes contain 12 bytes of file tags. Normally, you'll never need to
know about file tags, and the File Manager Will let you read and write
only the 512 bytes of standard information in each logical block. The
File Manager automatically removes the file tags from each logical
block it reads into memory (Figure 15) and places them at the location
referred to by the system global tagData + 2. It replaces the last
four bytes of the file tags With the number of the logical block from
which the file was read (leaving a total of l~ bytes).

byte o file runber (I ong word) file runber

(note)

4 fort type (byte) bit 1 = 1 if rescuce fork

5 file attributes (byte) bit O = 1 if locted

6 file sequence (word) logicel bloct SeQuence runber

8 logical block runber (word) logical bloci:

Figure 15. File Tags in Memory

Access path buffers and volume buffers are 522 bytes long
in order to contain the ten bytes of file tags and 512
bytes of standard information.

The Drive Queue

Disk drives connected to the Macintosh are opened when the system
starts up, and information describing each is placed in the drive
queue. The data structure of the drive queue is shown in Figure 16.
QHead points to the first entry in the queue, and qtail points to the
last entry in the queue.

3/02/84 Hacker CONFIDENTIAL /0S/FS.D

DATA STRUCTURES IN MEMORY 65

qFlegs (word)

qHead (pointer:

qTei I (pointer) -
queue header

' ~ qli'* (pointer)

q Type (word)

dQOrive (word)

dQfleflun (word)

dQfSID {wwu1
dQDrvSize (wwuJ

fir-st queue
entry

Figure 16. Drive Queue

.. ~ ... , qli'* (pointer)

qType(WOl'd)
dQOrive (word)

dQAettt.rn (word)

dQfS ID (ygn;;11
dQDrvSize (word)

last~
entry

Each queue entry contains 12 bytes of information about each drive.
QLink points to the next entry in the queue; qType is ignored. QDrvNum
contains the drive number of the drive on which the volume is mounted;
qDRefNum contains the driver reference number of the driver controlling
the device on which the volume is mounted. QFSID identifies the file
system handling the volume in the drive; it's I for volumes handled by
the File Manager, and nonzero for volumes handled by other file
systems. DODrvSize contains the number of 512-byte blocks the volumes
mounted in this drive contain.

You can refer to the drive queue by using the system global drvQHdr,
which points to the qFlags word. The drive queue can support any
number of drives, limited only by memory space.

USING AN EXT£RNAL FILE SYSTEM

The File Manager is used to access files on Macintosh-initialized
volumes. If you want to access files on nonMacintosh-initialized
volumes, you must write your own external file system and
volume-initializing program. After the external file system has been
written, it must be used in conjunction with the File Manager as
described in this section.

Before any File Manager routines are called, you must place the memory
location of the external file system in the system global toExtFS, and
link the drive(s) accessed by your file system into the drive queue.
As each nonHacintosh-initialized volume is mounted, you 11ll1St create
your own volume control block for each mounted volume and link each one
into the volume-control-block queue. As each access path is opened,
you must create your own file control block and add it to the
file-control-block buffer.

All SetVol, GetVol, and GetVollnfo calls then can be handled by the
File Manager via the volume-control-block queue and drive queue;
external file systems needn't support these calls.

3/02/84 Racker CONFIDENTIAL /0S/FS.D

6-65

6-66

66 File Manager Programmer's Guide

When an application calls any other File Manager routine accessing a
nonHacintosh-initialized volume, the File Manager passes control to the
address contained in toExtFS (if toExtFS is e, the File Manager returns
directly to the application with an extFSErr). The external file
system must then use the information in the file I/0 queue to handle
the call as it wishes, clear the extFSErr condition, and return control
to the File Manager. Control is passed to an external file system for
the following specific routine calls:

- For HountVol if the drive queue entry for the requested drive has
a nonzero file-system identifier.

- For Create, Open, OpenRF, GetFilelnfo, SetFilelnfo, SetFilLock,
RstFilLock, SetFilType, Rename, Delete, FlushVol, Eject, OffLine,
and UnmountVol, if the volume control block for the requested file
or volume has a nonzero file-system identifier.

- For Close, Read, Write, Allocate, GetEOF, SetEOF, GetFPos,
SetFPos, and FlushFile, if the file control block for the
requested file points to a volume control block with a nonzero
file-system identifier.

3/02/84 Hacker CONFIDENTIAL /05/FS.D

SUMMAllY OF THE FILE MANAGER 67

SUMMARY OF THE FILE MANAGER

Constants

CONST fHasBundle • 32;
finvisible • 64;

Data Structures

TYPE Flnfo • RECORD
fdType:
fdCreator:
fdFlags:
fdLocation:
fdFldr:

END;

OSType;
OSType;
INTEGER;
Point;
INTEGER

ParmBlkPtr • ·ParamBlockRec;

ParamBlkType • (ioParam, fileParam, volumeParam, cntrlParam);

ParamBlockRec • RECORD

3/02/84 Hacker

ioLink: QElemPtr i
ioType: INTEGER;
ioTrap: INTEGER;
ioCmdAddr: Ptr;
ioCompletion: ProcPtr;
ioReault: INTEGER;
ioNamePtr: OSStrPtr;
ioVRefNum: INTEGER;

CASE ParamBlkType OF
ioParam:

(ioRefNum:
ioVeraNum:
ioPermssn:
ioHisc:
ioBuffer:
ioReqCount:
ioActCount: .
ioPosMode:
ioPosOffset

fileParam:
(ioFRefNum:
ioCVersNum:
fillerl:
ioFDirlndex:
ioFlAttrib:
ioFlVersNum:
ioFlFndrinfo:
ioFlNum:

INTEGER;
SignedByte;
SignedByte;
Ptr;
Ptr;
Longlnt;
Longint;
INTEGER;
Longint);

INTEGER;
Signed Byte ;
SignedByte;
INTEGER;
SignedByte;
SignedByte;
Flnfo;
Longlnt;

CONFIDENTIAL /OS/FS.S

6-67

6-68

68 File Manager Progra1111er's Guide

High-Level Routines

Accessing Volumes

FUNCTION GetVlnfo

FUNCTION GetVol

FUNCTION SetVol
FUNCTION FlushVol
FUNCTION UnmountVol
FUNCTION Eject

ioFlStBlk:
ioFlLgLen:
ioFlPyLen:
ioFlRStBlk
ioFlRLgLen
ioFlRPyLen
ioFlCrDat
ioFlHdDat

volumeParam:
(filler2:
ioVollndex:
ioVCrDate:
ioVLsBkUp:
ioVAtrb:
ioVNmFls:
ioVDirSt:
ioVBlLn:
ioVNmAlBlks:
ioVAlBlkSiz:
ioVClpSiz:
ioAlBlSt:
ioVNxtFNum:
ioVFrBlk:

cntrlParam:

INTEGER;
Longlnt;
Longlnt;
INTEGER;
Longlnt;
Longlnt;
Longint;
Longint);

Longint;
INTEGER;
Longlnt;
Longlnt;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
Longlnt;
Long Int;
INTEGER;
Longint;
INTEGER);

{used by Device Manager}
END;

(drvNum: INTEGER; VAR volName: OSStrPtr; VAR
vRefNum: INTEGER; VAR freeBytes: Longint) :
OSErr;

(volName: OSStrPtr; VAR vRefNum: INTEGER) :
OSErr;

(volName:
(volName:
(volName:
(volName:

OSStrPtr;
OSStrPtr;
OSStrPtr;
OSStrPtr;

vRefNum:
vRefNum:
vRefNum:
vRefNum:

INTEGER) :
INTEGER) :
INTEGER)
INTEGER) :

OSErr;
OSErr;
OSErr;
OSErr;

Changing File Contents

FUNCTION Create

FUNCTION FSOpen

FUNCTION FSRead

(fileName: OSStr2SS; versNum: SignedByte; vlefNum:
INTEGER; creator: OSType; fileType: OSType) :
OSErr;

(fileName: OSStr255; versNum: SignedByte; vRefNum:
'fflTEGER; VAR refNum: INTEGER) : OSErr;

(refNum: INTEGER; VAR count: Longlnt; buffPtr: Ptr)
: OSErr;

3/02/84 Hacker CONFIDENTIAL /0S/FS.S

FUNCTION FSWri te

FUNCTION GetFPos
FUNCTION SetFPos

FUNCTION GetEOF
FUNCTION SetEOF
FUNCTION Allocate
FUNCTION FSClose

SUMMARY OF THE FILE MANAGER 69

(refNum: INTEGER; VAR count: Longint; buffPtr: Ptr)
: OSErr;

(refNum: INTEGER; VAR filePos: Longlnt) : OSErr;
(refNum: INTEGER; posMode: INTEGER; posOff: Longint)

: OSErr;
(refNum: INTEGER; VAR logEOF: Longlnt) : OSErr;
(refNum: INTEGER; logEOF: Longlnt) : OSErr;
(refNum: INTEGER; VAR count: Longint) : OSErr;
(refNum: INTEGER) : OSErr;

Changing Information About Files

(fileName: OSStr255; vRefNum: INTEGER; VAR
fndrinfo: Finfo) : OSErr;

FUNCTION GetFinfo

FUNCTION SetFinfo

FUNCTION SetFLock
FUNCTION RstFLock
FUNCTION Rename

(fileName: OSStr255; vRefNum: INTEGER; fndrlnfo:
Finfo) : OSErr;

(fileName: OSStr255; vRefNum: INTEGER) : OSErr;
(fileName: OSStr255; vRefNum: INTEGER) : OSErr;
(oldName: OSStr255; vRefNum:" INTEGER; newName:
OSStr255) : OSErr;

FUNCTION FSDelete (fileName: OSStr2SS; vRefNum: INTEGER) : OSErr;

Low-Level Routines

Initialization

PROCEDURE lnitOueue;

Accessing Volumes

FUNCTION PBHountVol
FUNCTION PBGetVolinfo
FUNCTION PBGetVol
FUNCTION PBSetVol
FUNCTION PBFlushVol
FUNCTION PBUnmountVol
FUNCTION PBOffLine
FUNCTION PBEject

(paramBlock: ParmBlkPtr)
(paramBlock: ParmBlkPtr;
(paramBlock: ParmBlkPtr;
(paramBlock: ParmBlkPtr;
(paramBlock: ParmBlkPtr;
(paramBlock: ParmBlkPtr)
(paramBlock: ParmBlkPtr;
(paramBlock: ParmBlkPtr;

Changing File Contents

FUNCTION PBCreate (paramBlock: ParmBlkPtr;
FUNCTION PBOpen (paramBlock: ParmBlkPtr;
FUNCTION PBOpenRF (paramBlock: ParmBlkPtr;
FUNCTION PBRead (paramBlock: ParmBlkPtr;
FUNCTION PBWrite (paramBlock: ParmBlkPtr;
FUNCTION PBGetFPos (paramBlock: ParmBlkPtr;
FUNCTION PBSetFPos (paramBlock: ParmBlkPtr;

3/02/84 Hacker CONFIDENTIAL

: OSErr;
async: BOOLEAN) OSErr;
async: BOOLEAN) . OSErr; .
async: BOOLEAN) OSErr;
async: BOOLEAN) OSErr;
: OSErr;
async: BOOLEAN) . OSErr; .
async: BOOLEAN) . OSErr; .

async: BOOLEAN) . OSErr; .
aaync: BOOLEAN) : OSErr;
aaync: BOOLEAN) . OSErr; .
async: BOOLEAN) : OSErr;
aaync: BOOLEAN) : OSErr;
aaync: BOOLEAN) OSErr;
async: BOOLEAN) . OSErr; .

/0S/FS.S

6-69

6-70

70 File Manager Programer's Guide

FUNCTION PBGetEOF (paramBlock: ParmBlkPtr; async: BOOLEAN) . OSErr; .
FUNCTION PBSetEOF (paramBlock: ParmBlkPtr; async: BOOLEAN) . OSErr; .
FUNCTION PBAllocate (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
FUNCTION PBFlushFile (paramBlock: ParmBlkPtr; async: BOOLEAN) . OSErr; .
FUNCTION PBClose (paramBlock: ParmBlkPtr; async: BOOLEAN) . OSErr; .

Changing Information About Files

FUNCTION PBGetFlnf o (paramBlock: ParmBlkPtr; async: BOOLEAN) . OSErr; .
FUNCTION PBSetFlnfo (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr;
FUNCTION PBSetFLock (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;
FUNCTION PBRstFLock (paramBlock: ParmBlkPtr; async: BOOLEAN) . OSErr; .
FUNCTION PBSetFVers (paramBlock: ParmBlkPtr; async: BOOLEAN) . OSErr; .
FUNCTION PBRename (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr;
FUNCTION PBDelete (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr;

Assembly-Language Information

Constants

;l/0 parameter block size ioOElSize
ioFQElSize
ioVOElSize
fsQType
fHasBundle
£Invisible

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

50
80
64
s
s
6

;file information parameter block size
;volume information parameter block size
;l/0 request queue entry type
;file has a bundle
;file is invisible

Structure of Information Used by the Finder

fdType
fdCreator
fdFlags
fdLocation
fdFldr

Type of file
Creating program
Flags
File's location in folder
Window containing the file

Standard Parameter Block Data Structure

ioLink
ioType
J.oTrap
ioCmdAddr
ioCompletion
ioResult
ioFileName
ioVNPtr
ioVRefNum
ioDrvNum

Next queue entry
Always fsQType
Routine trap
Routine addreS&
Completion routine
llesult code
File name (and possibly volume name too)
Volume name
Volume reference number
Drive number

3/02/84 Hacker CONFIDENTIAL /0S/FS.S

SUMMARY OF THE FILE MANAGER 71

110 Parameter Block Data Structure

ioRefNum
ioFileType
ioPermssn
ioNewName
ioLEOF
ioOwnBuf
ioNewType
ioBuffer
ioReqCount
ioActCount
ioPosMode
ioPosOff set

Path reference number
Version number
Read/write permission
New file or volume name for Rename
Logical end-of-file for SetEOF
Access path buffer
New version number for SetFilType
Data buffer
Requested number of bytes
Actual number of bytes
Newline character and type of positioning operation
Size of positioning offset

File Information Parameter Block Data Structure

ioRefNum
ioFileType
ioFDirlndex
ioFlAttrib
ioFFlType
ioFlUsrWds
ioFFlNum
ioFlStBlk
ioFlLgLen
ioFlPyLen
ioFlRStBlk
ioFlRLgLen
ioFlRPyLen
ioFlCrDat
ioFlHdDat

Path reference number
Version number
File directory index
File attributes
Version number
Information used by the Finder
File number
First allocation block of data fork
Logical end-of-fork of data fork
Physical end-of-fork of data fork
First allocation block of resource fork
Logical end-of-fork of resource fork
Physical end-of-fork of resource fork
Date and time file was created
Date and time file was last modified

Volume Information Parameter Block Data Structure

ioVollndex
ioVCrDate
ioVLsBkUp
ioVAtrb
ioVNmFls
ioVDirSt
ioVBlLn
ioVNmAlBlks
ioVAlBlkSiz
ioVClpSiz
ioAlBlSt
ioVNxtFNum
ioVFrBlk

3/02/84 Hacker

Volume index number
Date and time volume was initialized
Date and time of last volume backup
Bit 15•1 if volume is locked
Number of files in file directory
First block of file directory
Number of blocks in file directory
Number of allocation blocks on volume
Number of bytes per allocation block
Number of bytes to allocate
First block in volume block map
Next free file number
Number of free allocation blocks

CONFIDENTIAL /0S/FS.S

6-71

6-72

72 File Manager Programmer's Guide

Macro Names

Routine name
lnitQueue
PBMountVol
PBGetVol lnfo
PBGetVol
PBSetVol
PBFlshVol
PBUnmountVol
PBOffLine
PBEject
PBCreate
PBOpen
PBOpenRF
PBRead
PBWrite
PBGetFPos
PBSetFPos
PBGetEOF
PBSetEOF
PBAllocate
PBFlshFile
PBClose
PBGetFlnfo
PBSetFlnfo
PBSetFLock
PBRstFLock
PBSetFVers
PBRename
PBDelete

System Globals

~
fsQHdr
vcbQHdr
defVCBPtr
fcbSPtr
tagData + 2
drvQHdr
toExtFS

Result Codes

Name
badMDBErr

bdNamErr

dirFulErr

Macro name
_InitQueue
_Mount Vol

GetVollnfo
_GetVol

SetVol
_FlushVol
_Unmount Vol
_OffLine
_Eject

Create
Open

_OpenRF
Read

_Write
GetFPos

_SetFPos
_GetEOF

SetEOF
Allocate
FlushFile

_Close
GetFilelnfo

-Set File Info
SetFilLock
RstFilLock

-SetFilType
_Rename

Delete

!!!!. Contents
4 bytes
4 bytes
4 bytes
4 bytes
4 bytes
4 bytes
4 bytes

Value
-60

-37

-33

Pointer to 1/0 request queue
Pointer to volume-control-block queue
Pointer to default volume control block
Pointer to file-control-block buffer
Location of file tags
Pointer to drive queue
Pointer to external file system

Meaning
Master directory block is bad; must
reinitialize volume
Bad file name or volume name (perhaps zero
length)
File directory full

3/02/84 Hacker CONFIDENTIAL /0S/FS.S

dskFulErr -34
dupFNErr -48

eofErr -39

extFSErr -SB

fBsyErr -47
fLckdErr -45
fnfErr -43
fnOpnErr -38
fsRnErr -59
ioErr -36
mFulErr -41
noErr 9
nsDrvErr -56

noMacDskErr -57
nsvErr -35
opWrErr -49

paramErr -50

permErr -54
posErr -4f
rfNumErr -51

tmfoErr -42
volOffLinErr -53
volOnLinErr -55

vLckdErr -46
wrPermErr -61

wPrErr -44

3/02/84 Hacker

SUMMARY OF THE FILE MANAGER 73

All allocation blocks on the volume are full
A file with the specified name already
exists
Logical end-of-file reached during read
operation
External file system, file-system identifier
is nonzero, or path reference number is
greater than 1124
One or more files are open
File locked
File not found
File not open
Problem during Rename
Diak l/0 error
System heap is full
No error
Specified drive number doesn't match any
number in the drive queue
Volume lacks Macintosh.-format directory
Specified volume doesn't exist
The read/write permission of only one
access path to a file can allow writing
Parameters don't specify an existing
volume, and there's no default volume
Read/write permission doesn't allow writing
Attempted to position before start of file
Reference number specifies nonexistent
access path
Only 12 files can be open simultaneously
Volume not on-line
Volume specified is already mounted and
on-line
Volume is locked by a software flag
Read/write permission or open permission
doesn't allow writing
Volume is locked by a hardware setting

CONFIDENTIAL /OS/FS.S

6-73

6-74

74 File Manager Programmer's Guide

GLOSSARY

access path: A description of the route that the File Manager follows
to access a file; created when a file is opened.

access path buffer: Memory used by the File Manager to transfer data
between an application and a file.

allocation block: Volume space composed of an integral number of
logical blocks.

asynchronous execution: During asynchronous execution of a File
Manager routine, the calling application is free to perfor111 other
tasks.

block map: See volume allocation block map.

closed file: A file Without an access path. Closed files cannot be
read from or written to.

completion routine: Any application-defined code to be executed when
an asynchronous call to a File Manager routine is completed.

data buffer: Heap space containing information to be written to a file
from an application, or read from a file to an application.

data fork: The part of a file that contains data accessed via the File
Manager.

default volume: A volume that Will receive 1/0 during a File Manager
routine call, whenever no other volume is specified.

drive number: A number used to identify a drive. The internal drive
is number 1, and the external drive is number 2.

drive queue: A list of disk drives connected to the Macintosh.

end-of-file: See logical end-of-file or physical end-of-file.

file: A named, ordered sequence of bytes; a principal means by which
data is stored and transmitted on the Macintosh.

file directory: The part of a volume that contains descriptions and
locations of all the files on the volume.

file 1/0 queue: A queue containing parameter blocks for all 1/0
requests.

file name: A sequence of up to 255 characters that identifies a file.

file number: A unique number assigned to a file, which the File
Manager uses to distinguish it from other files on the volume. A file
number specifies the entry of the file in a file directory.

3/02/84 Hacker CONFIDENTIAL /OS/FS.G

;

GLOSSARY 75

file tags: Information associated with each logical block, designed to
allow reconstruction of files on a volume whose directory or other
file-access information has been destroyed.

fork: One of the two parts of a file; see data fork and resource fork.

file control block: 3~ bytes of system heap space in a file-control
block buffer containing information about an access path.

file-control-block buffer: A 362-byte nonrelocatable block containing
one file control block for each access path.

format a volume: To write information on the volume that will be read
by the Disk Driver.

1/0 request: A request for input from or output to a file; caused by
calling a File Manager routine asynchronously.

locked file: A file that cannot be written to or deleted.

locked volume: A volume that cannot be written to or renamed. Volumes
can be locked by either a software flag or• hardware setting.

logical block: 512 consecutive bytes on a volume or in memory.

logical end-of-file: The position of the last byte in a file; equal to
the actual number of bytes in the file.

mark: The position of the next byte in a file that will be read or
written.

master directory block: Part of the data structure of a volume;
contains the volume information and the first 448 bytes of the block
map.

mounted volume: A volume that previously was inserted into a disk
drive and had descriptive information read from it by the File Manager.

newline character: Any ASCII character, but usually Return (ASCII code
$~D), that indicates the end of a sequence of bytes.

newline mode: A mode of reading data where the end of the data is
indicated by a newline character (and not by a specific byte count).

off-line volume: A mounted volume with all but 94 bytes of its
descriptive information deallocated.

on-line volume: A mounted volume with its volume buffer and
descriptive information contained in memory.

open file: A file with an access path. Open files can be read from
and written to.

3/02/84 Hacker CONFIDENTIAL /0S/FS.C

6-75

6-76

76 File Manager Programmer's Guide

open permission: Information about a file that indicates whether the
file can be read from, written to, or both.

parameter block: Memory space used to transfer information between
applications and the File Manager.

path reference number: A number that uniquely identifies an individual
access path; assigned when the access path is created.

physical end-of-file: The position of one byte past the last
allocation block of a file; equal to one more than the maximum number
of bytes the file can contain.

read/write permission: Information associated with an access path that
indicates whether the file can be read from, written to, both read from
and written to, or whatever the file's open permission allows.

resource fork: The part of a file that contains the resources used by
an application (such as menus, fonts, and icons) and also the
application code itself; usually accessed via the Resource Manager.

synchronous execution: During synchronous execution of a File Manager
routine, the calling application must wait until the routine is
completed, and isn't free to perform any other task.

unmounted volume: A volume that hasn't been inserted into a disk drive
and had descriptive information read from it, or a volume that
previously was mounted and has since had its memory space released ••

version number: One byte used to distinguish between files with the
same name.

volume: A piece of storage medium formatted to contain files; usually
a disk or part of a disk. The 3 1/2-inch Macintosh disks are one
volume.

volume allocation block map: A list of 12-bit entries, one for each
allocation block, that indicate whether the block is currently
allocated to a file, whether it's free for use, or which block is next
in the file. Block maps exist both on volumes and in memory.

volume attributes: Information contained on volumes and in memory
indicating whether the volume is locked, has one or more files open (in
memory only), and whether the volume control block matches the volume
information (in memory only).

volume buffer: Memory used initially to load the master directory
block; used thereafter for reading from files that are opened without
their own access path buffer.

volume control block: A 91-byte nonrelocatable block that contains
volume-specific information, including the first 64 bytes of the master
directory block.

3/02/84 Hacker CONFIDENTIAL /0S/FS.G

GLOSSARY 77

volume-control-block queue: A list of the volume control blocks for
all mounted volumes.

volume index: A number identifying a mounted volume listed in the
volume-control-block queue. The first volume in the queue baa an index
number of 1, and so on.

volume information: Volume-specific information contained on a volume;
includes the volume name, number of files on the volume, and so on.

volume name: A sequence of up to 27 printing characters that
identifies a volume; always followed by a colon(:) to distinguish it
from a file name.

volume reference number: A unique number assigned to a volume as it's
mounted, used to refer to the volume.

3/02/84 Hacker CONFIDENTIAL /0S/FS.G

6-77

HSGtl:841194
lNth lll
TO: MAC

FRCtt: SUPT MAC
SENT: 30 NOV 83 16117125
READ: 05 DEC 83 09:59:19

FlLE HENU ~D FILING C~DS

The File menus should read:

App 1 i cat i on

New

Finder

Open
Duplicate
Get Info
Put Back

Open •••
Close

Save As •••
Revert to Sautd
Page Sttup •••
Print •••

Close
Close All
Print

< yaur items here>
Ouit Eject

New... in a one-document application, is disabled whilt a documtnt is open.
When chosen, opens a new document windCM with the title •untitled~.
Get the word •untitled• fram the Systtm Resource file.

Open... brings up the GetFile dialog sh0111ing the contents of the disk (default
to first on-1 ine volume in the volume queue, usually the boot volume),
Ustr can use the Drivt and Eject buttons to 5'11itch disks or drives.
Tht disk dirtctory shCMs only documents that the current application
can open (the application passes a type mask, or can Install itself in
a filttrProc to seltct which nmes to display), The user can select
on, and only one document fram the list. Pressing •open• att1mpts to
load that document (tht Gttfilt dialog will check to ste that it's
thert, readable, the right kind, etc.> If your application has
trouble loading tht selected file, it should alert tht user and cancel
tht ccnmand. It should not autcnatically rtturn to the GetFile
dialog.

SaVtl

Place the namt of the opened file in the title bar of the document
wind0111. Record the volume number and version byte to bt ustd in
saving the document.

Open: is disabled if no more documents can be opened at the mament.
The user must manually close an <or the> open document before opening
a new one.

atttmpts to save the current document with the same na11e, volume
number, and vtrslon number as given when it was optned. If the
document name is •untitled•, Save drops into Save As.

Save As ••• calls the PutFile dialog, prrnpting •savt document as:• with the
curr•nt namt as th• dtfault <unl•ss the current name is •untitltd•, In
which cast the default is a null string). Tht default uolumt is th•
first on-lint volume In th• uolumt qutue <usually tht boot volume>,
not tht volume the file came from (btcause it may b• off-lint), When
the us,r clicks Save, PutFilt utrifits that tht filt Is ~rltablt, and
dots outrwritt warnings. Jf you get an trror whilt writing, or the
disk is full, etc., loop back to the PutFile dialog until a save is
successful, or cancelled.

Close:

Once the filt is written, change the document's namt In the title bar
to that of the file writttn. Remember the volume number and version
byte for the next Save command.

Jf the frontmost windCM is a desk accessory, a modeless dialog, or an
accessory windCM, Clos, closes that window. If the frontmost window
is a document window, Close dots an implicit Save before closing the
window. Host applications should b• ablt to function without an optn
document window (so the ustr can optn another document, use desk
acctssorits, •tc. without ltauing the application>; those that can't
should tither force an Optn or Quit after closing the document window.

Page Setup: brings up the first printing dialog, with documtnt-specific
information that should be saved on disk with the documents. This
includes page size and oritntation, and any other information desired
by the application.

Print ••• brings up the printing dialog for the configured printer. Stttings
stick to the printer. See CMen for details of implementation.

Revert to Sautd: confirms that the ustr rtally wants to rtYtrt to the saved
copy. If OK, it then confirms that the old copy exists and is OK
before dumping tht current documtnt and loading th, old copy. The
name rtmains the same.

Quit... confirms that tht user really wants to Quit. If OK, thtn dots an
implicit Clos, <and Sau,, if dirty) of all optn documents, followed by
closing 111 othtr windows. It thtn rtturns to th• Findtr.

An implicit Save btgins with ch•cking to ste If the document is dirty;
tht Saut is skipptd if it isn't. If tht docum1nt is dirty, the ustr
is asked to confirm whether to save it or not. Pressing Don't Saue
skips tht saut; prtssing OK drops into tht Save codt.

OTHER FILING ISSUES

Changing Volumesa A Driut button on the GetFilt and PutFilt dialogs allows the
user to cycle through the mounttd volumes, showing tht disk names
<and, in G•t, the contents>. Any resulting fil1nm1 is prtfixtd with
the volume narae <unltss tht user typed one in). This dots not stt the
working uolumt. Driut dots not apptar on one-driut syst111s, and is
disabled on two-driut systems with only ant volume on-line.

)

Ejtcting Disks: An Ejtct button on tht GttFilt and PutFilt dialogs all0111s the
user to 1j1ct tht currtnt volume. In tht 8ttFile dialog, Ej1ct cycles
to tht ntxt volumt, if any; If thtrt's no ntxt volumt, tht volume name
and directory go blank and rtmain blank until anothtr disk is
ins1rt1d.

Rtmounting Disks1 Whtn your appl !cation gtts a Disk Rtmount tvtnt <tvtnt bit 7)
with an 1/0 trror cod,, trap to packagt 3, which will allow tht user
to initializt tht disk, or tjtct it if it's a mistakt. NOTE that you
should do this on ,v,ry rtmount tvtnt with an 1/0 trror, tvtn during
modty dialogs; bt surt to chtck for rtmount trrors in your modtY
dialog fllttrProcs.

is an optimization of Savt As to rtduct button clicks, and also to
work around tht volumt na11t ambiguity in saving to an off-1 int disk.
Although wt strongly rtcanmtnd you support It, it is optional.

Rtvtrt to Savtd: is an optifflization for a •global Undo•s tht ustr can Just do a
clost and op1n. Wt rtconntnd it for Its clarity and spttd, but it is
optional.

To: All Dtvtloptrs
From: Cary Clark Rt: Abovt Not,

Hard Copy of tht abovt information will bt lncludtd in tht ntxt fflailing.

Ltt mt know if tht info is suffici,ntly cltar.

END/CRC

MACINTOSH USER EDUCATION

INSIDE MACINTOSH: A ROAD MAP /ROAD.MAP/ROAD

See Also: Pascal Reference Manual for the Lisa
Macintosh User Interface Guidelines
Macintosh Operating System Reference Manual
The Resource Manager: A Programmer's Guide
QuickDraw: A Programmer's Guide
The Font Manager: A Programmer's Guide
The Event Manager: A Programmer's Guide
The Window Manager: A Programmer's Guide
Macintosh Control Manager Programmer's Guide
The Menu Manager: A Programmer's Guide
The Dialog Manager: A Programmer's Guide
TextEdit: A Programmer's Guide
CoreEdit: A Programmer's Guide
The Desk Manager: A Programmer's Guide
The Scrap Manager: A Programer's Guide
The Toolbox Utilities: A Programmer's Guide
The Memory Manager: A Programmer's Guide
The Segment Loader: A Programmer's Guide
Putting Together a Macintosh Application
Index to Technical Documentation

Modification History: First Draft (ROH 4.4)
Second Draft (ROH 7)

c. Rose
c. Rose

8/8/83
12/22/83

ABSTRACT

This manual introduces you to the "inside" of Macintosh: the Operating
System and other routines that your Macintosh application program will
call. It will help you figure out which software you need to learn more
about and how to proceed with the rest of the technical documentation.

Summary of significant changes and additions since last version:

- The Toolbox overview has been rewritten, and the Operating System
overview has been added.

- "About Using Assembly Language" has been removed; it will be
replaced by other documentation.

- "Where to Go From Here" has been updated.

2 Inside Macintosh Road Map

TABLE OF CONTENTS

3 About This Manual
3 General Overview
5 About the User Interface Toolbox
7 About the Operating System
9 Where to Go From Here
11 Glossary

Copyright (c) 1983 Apple Computer, Inc. All rights reserved.
Distribution of this draft in limited quantities does not constitute
publication.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual introduces you to the "inside" of Macintosh: the Operating
System, the User Interface Toolbox, and other routines that your
application program may call• It will help you figure out which
software you need to learn more about and how to proceed with the rest
of the technical documentation. *** Eventually it will be an
introductory chapter in a comprehensive manual that describes
everything in detail. ***
You should already be familiar with the Macintosh User Interface
Guidelines. All Macintosh programmers should follow these guidelines
to ensure that the end user is presented with a consistent interface.
It would also be helpful for you to be familiar with an existing
Macintosh application.

This manual begins with a general overview of the software your
application program will use, followed by individual overviews of the
User Interface Toolbox and the Operating System. Following these
overviews is a section that tells you how to proceed with reading the
rest of the Toolbox and Operating System documentation. Finally,
there's a glossary of terms used in this manual.

GENERAL OVERVIEW

The routines available for use in Macintosh application programs are
divided into functional units, many of which are called "managers" of
the application feature that they support. As shown in Figure 1 on the
following page, most units are part of either the Operating System or
the User Interface Toolbox and are in the Macintosh ROM.

The Operating System is at the lowest level; it does basic tasks such
as interrupt handling, memory management, and 1/0. The .!!!ll Interface
Toolbox is a level above the Operating System; it exists to help you
implement the standard Macintosh user interface in your application.
The Toolbox calls the Operating System when necessary to do low-level
operations, and you'll also call the Operating System directly
yourself.

Other software is available for performing specialized operations that
aren't integral to the user interface but may be useful to some
applications. Thia includes routines for doing printing and
floating-point arithmetic. Such software isn't located in the
Macintosh ROH, nor are certain special-purpose Toolbox units (such as
CoreEdit, for doing sophisticated text editing). The entire Operating
System and all the comonly used Toolbox units are in ROM.

12/22/83 Rose CONFIDENTIAL /ROAD.HAP/ROAD.2

4 Inside Macintosh Road Map

I A MACINTOSH APPLJCA TION PROGRAM I

THE USER INTEFFACE TOOLBOX

The P.eSOll'Ce Manager
QuickDraw
The Font Manager

OTt-ER HIGH-LEVEL SOFTWARE The Toolbox Event Manager
{not in ROM) • The Window Manager

The Control Manager Printing The Mero Manager Floeting-Point Arittwnetic Package Textedit Transcendel ,tal Ftn:tions Pactage CoreEdit (not in ROM) Stenderd Fl le Package The Dialog Manager International uti I ities Package The Desk Manager
The SCrep Maneger
The Toolbox uti Ii ties
The System Error Handler

I
The Pactege Manager

I
Tt-E OPERA TING SYSTEM

The t.4emory Manager
The Se(Jnent Loader
The OS Event Manager
The Keyboard/Mouse Handler

OTt-ER LOW-LEVEL SOFTWARE The FIie Manager (not in ROM) The Device Manager
The Disk Driver Dist Formatting Pectage
The Sound Driver
The Serial Driver
The Vertical Retrace Manager
The OS Core (Trap Dispatcher,

interrupt hand I ers, etc.)
The OS utl I ities I

I THE MACINTOSH HARDWARE I

Figure 1. Overview

12/22/83 Rose CONFIDENTIAL /ROAD.HAP/ROAD.2

GENERAL OVERVIEW 5

Macintosh applications can be written most easily in Pascal, since all
units have a Pascal interface*** or will eventually***· For greater
efficiency, however, you may want to use assembly language or a
combination of Pascal and assembly language. *** Currently you 1111st
develop your application on a Lisa computer and convert it to a
Macintosh disk before trying it out. Eventually development will be
possible on the Macintosh itself. ***

ABOUT THE USER INTER.FACE TOOLBOX

The Macintosh User Interface Toolbox provides a simple means of
constructing application programs that conform to the Macintosh User
Interface Guidelines. By offering a common set of routines that every
application calls to implement the user interface, the Toolbox not only
ensures consistency but also helps reduce the application's code size
and development time. At the same time, it allows a great deal of
flexibility: an application can use its own code instead of a Toolbox
call wherever appropriate, and can define its own types of windows,
menus, controls, and desk accessories.

Figure 2 shows the Toolbox units in rough order of their level, from
the lowest level at the bottom to the highest level at the top. There
are many interconnections between these units; the lower-level ones are
in many cases called by those at the higher levels •

..___Desk __ M81_ra ___ ger __ l l....__Scr_ap_t.481_,ager __ _

I Control Manager) I Meru Manager 11 TextEdlt 11 CoreEdit (not in ROM) I

I Window Ma.ager I
I Toolbox Utilities I

...._ __ Qu_i_ckDre __ w __ l IToolbox Event Manager)
Font Manager I

Figure 2. Toolbox Units

(To be added:
System Error Handler
and Package Maneger)

To keep the data of an application separate from its code, making the
data easier to modify and easier to share among applications, the
Toolbox includes the Resource Manager. The Resource Manager lets you,
for example, store menus separately from your code so that they can be
edited or translated without requiring recompilation of the code. lt
also allows you to get standard data, such as the wristwatch graphic
that means ''wait", from a shared system file. When you call other
Toolbox units that need access to the data, they call the Resource
Manager. Although most applications never need to call the Resource

12/22/83 llose CONFIDENTIAL /ROAD.HAP/ROAD.2

6 Inside Macintosh Road Map

Manager directly, an understanding of the concepts behind it is
essential.

Graphics are an important part of every Macintosh application. All
graphic operations on the Macintosh are performed by the OuickDraw
unit• To draw something on the screen, you'll often call one of the
other Toolbox units, but that unit will in turn call OuickDraw. You'll
also call OuickDraw directly, usually to draw inside a window.
QuickDraw's underlying concepts, like those of the Resource Manager,
are important for you to understand.

Graphics include text as well as pictures. To draw text, QuickDraw
calls the~ Manager, which does the background work necessary to
make a variety of character fonts available in various sizes and
styles. Unless an application includes a font menu, it usually need
not be concerned with the Font Manager.

An application decides what to do from moment to moment by examining
input from the user, in the form of mouse and keyboard actions. It
learns of such actions by repeatedly calling the Toolbox Event Manager
(which in turn calls another, lower-level Event Manager in the
Operating System). The Toolbox Event Manager also reports occurrences
within the application that may require a response, such as when a
window that was overlapped becomes exposed and needs to be redrawn.

All information presented by a standard Macintosh application appears
in windows. To create windows, activate them, move them, resize them,
or close them, you'll call the Window Manager. It keeps track of
overlapping windows, so you can manipulate windows without concern for
how they overlap. The Window Manager, for example, tells the Toolbox
Event Manager when to inform your application that a window has to be
redrawn. Also, when the user presses the mouse button, you call the
Window Manager to learn which part of which window it was pressed in,
if any, or whether it was pressed in the menu bar or a desk accessory.

Any window may contain controls, such as buttons, check boxes, and
scroll bars. You create and manipulate controls with the Control
Manager. When you learn from the Window Manager that the user pressed
the mouse button inside a window containing controls, you call the
Control Manager to find out which control it was pressed in, if any.

A common place for the user to press the mouse button is, of course, in
the menu bar. You set up menus in the menu bar by calling the Menu
Manager. When the user gives a command, either from a menu with the
mouse or from the keyboard with the Command key, you call the Menu
Manager to find out which command was given.

To accept text typed by the user and allow the standard editing
capabilities, such as cutting and pasting within a document via the
Clipboard, your application can call either TextEdit or CoreEdit.
TextEdit is especially easy to use but doesn't support advanced editing
and formatting features such as fully justified text, tabbing, or
recognition of word boundaries during cutting and pasting; for these,
you'll have to use CoreEdit. Bear in mind, however, that CoreEdit is

12/22/83 Rose CONFIDENTIAL /ROAD.MAP/ROAD.2

I

ABOUT THE USER INTERFACE TOOLBOX 7

not in the Macintosh ROH; instead, it occupies over 6K of your
application's available memory.

When an application needs more information from the user about a
command, it presents a dialog box. In case of errors or potentially
dangerous situations, it gives the user an alert, in the fona of an
alert box or sound from the Macintosh's speaker (or both). To create
and present dialogs and alerts, and find out the user's responses to
them, you call the Dialog Manager.

Every Macintosh application should support the use of desk accessories.
The user opens desk accessories through the Apple menu, which you set
up by calling the Menu Manager. When you learn that the user has
pressed the mouse button in a desk accessory, you pass that information
on to the accessory by calling the Desk Manager. The Desk Manager also
includes routines that you must call to ensure that desk accessories
behave properly.

As mentioned above, you can use TextEdit or CoreEdit to implement the
standard text editing capability of cutting and pasting via the
Clipboard in your application. However, to extend the use of the
Clipboard to allow cutting and pasting between your application and
another application or a desk accessory, you need to call the Scrap
Manager.

Finally, some generally useful operations such as fixed-point
arithmetic, string manipulation, and logical operations on bits may be
performed with the Toolbox Utilities.

***Tobe added: System Error Handler, Package Manager, and other
high-level software***

ABOUT THE OPERATING SYSTEM

The Macintosh Operating System provides the low-level support that
applications need in order to use the Macintosh hardware. As the
Toolbox is your program's interface to the user, the Operating System
is its interface to the Macintosh.

The Memory Manager dynamically allocates and releases memory for use by
applications and by the other parts of the Operating System. Most of
the memory that your program uses is in an area called the heap; the
code of the program itself occupies apace in the heap. Memory space in
the heap must be obtained from the Memory Manager.

The Segment Loader is the part of the Operating System that loads the
program code into memory to be executed. Your program can be loaded
all at once as a single unit, or you can divide it up into dynamically
loaded segments to economize on memory usage.

Low-level, hardware-related events such as mouse-button presses and
keystrokes are reported by the Operating System Event Manager. (The

12/22/83 Rose CONFIDENTIAL /ROAD.KAP/ROAD.2

8 Inside Macintosh Road Map

Toolbox Event Manager then passes them along to the application, along
with higher-level, software-generated events added at the Toolbox
level.) The Operating System Event Manager learns of mouse and
keyboard actions in particular from the Keyboard/Mouse Handler. Your
program will ordinarily deal only with the Toolbox Event Manager and
rarely call the Operating System Event Manager or the Keyboard/House
Handler directly.

File 1/0 is supported by the File Manager, and device 1/0 by the Device
Manager. The task of making the various types of devices present the
same interface to the application is performed by specialized device
drivers. The Operating System includes three built-in drivers:

- The Disk Driver controls data storage and retrieval on 4ffK-byte
3 1/2-inch disks.

- The Sound Driver controls sound generation, including music
composed of four simultaneous tones.

- The Serial Driver reads and writes asynchronous data through the
two serial ports, providing communication between applications and
serial peripheral devices such as a modem or printer.

Other drivers can be added independently or built on the existing
drivers. For example, a printer driver can be built on the Serial
Driver or a music driver built on the Sound Driver.

The Macintosh video circuitry generates a vertical retrace interrupt
(also known as the vertical blanking or VBL interrupt) sixty times a
second while the beam of the display tube returns from the bottom of
the screen to the top to display the next frame. The system uses this
interrupt as a convenient time to perform recurrent tasks such as
checking the state of the mouse button. An application can also
schedule routines to be executed at regular intervals based on this
"heartbeat" of the system. The Vertical Retrace Manager handles the
scheduling and execution of tasks during the vertical retrace
interrupt.

At the very lowest level is the Operating System ffil,, which does the
actual interrupt handling, initialization, and other important
background work necessary to keep the Macintosh functioning. Via the
Trap Dispatcher, it provides the connection between your request for a
Toolbox or Operating System service and the physical code that performs
that service.

Finally, there are miscellaneous Operating System Utilities for doing
such things as setting the date and time or finding out the user's
preferred speaker volume.

***Tobe added: other low-level software (Disk Formatting Package)

12/22/83 Rose CONFIDENTIAL /ROAD.KAP/ROAD.2

J

WHERE TO GO FROM HERE 9

WHERE TO GO FR.OM HERE

*** This section will be considerably rewritten for the final
comprehensive manual. ***
The technical documentation will eventually be ordered in such a way
that you can follow it if you read it sequentially. The proposed order
for the documentation that's already written is given below. Before
you begin, you should be familiar with Lisa Pascal, as described in the
Pascal Reference Manual for the Lisa. You should also know a little
bit about the Macintosh 1"s'""i'emoryunagement--heaps, handlel, and the
like. For now you can read about these in the Memory Manager manual,
from "About the Memory Manager" through "Utility Data Types";
eventually there will be a separate overview of memory management.

(hand)

(hand)

The Resource Manager: A Progra1111er's Guide
QuickDraw: A Programmer's Guide
The Font Manager: A Programmer's Guide
The Event Manager: A Programmer's Guide
The Window Manager: A Programmer's Guide
Macintosh Control Manager Programmer's Guide
The Menu Manager: A Programmer's Guide
TextEdit: A Programmer's Guide
CoreEdit: A Programmer's Guide
The Dialog Manager: A Programmer's Guide
The Deak Manager: A Programmer's Guide
The Scrap Manager: A Programmer's Guide
The Toolbox Utilities: A Programmer's Guide
The Memory Manager: A Programmer's Guide
Macintosh Operating System Reference Manual
The Segment Loader: A Programmer's Guide
Putting Together a Macintosh Application

The Macintosh Operating System Reference Manual is very
out-of-date, incomplete, and in a different format from
the other manuals. It will eventually be completely
replaced by up-to-date documentation in the usual format.

Anything not listed above hasn't been documented yet by
Macintosh User Education, although programmer's notes or
other preliminary documentation may be available. Check
with Macintosh Technical Support.

The individual manuals identify any special-purpose information that
can possibly be skipped. Most likely you won't need to read everything
in each manual and can even skip entire manuals. You should at least
read the manuals on the Toolbox units that deal with the fundamental
aspects of the user interface: the Resource Manager, QuickDrav, the
Toolbox Event Manager, the Window Manager, and the Menu Manager. Read
the other manuals if you're interested in what they discuss, which you
should be able to tell from the above overviews and from the

12/22/83 Rose CONFIDENTIAL /ltOAD.MAP/1.0AD.2

10 Inside Macintosh 'Road Hap

introductions to the manuals themselves. Each manual's introduction
will also tell you what you should already know before reading that
manual.

The documentation is oriented toward Pascal programmers. If you want
to program in assembly language, read the "Using OuickDraw from
Assembly Language" section of the OuickDraw manual. (Eventually that
section will be removed and there will be a separate, more detailed
discussion of using assembly language.) There are also notes for
assembly-language programmers throughout every manual.

llead the manual "Putting Together a Macintosh Application" when you're
ready to try something out. Currently the documentation doesn't
include any sample programs, but you can get some through Macintosh
Technical Support in the meantime.

12/22/83 Rose CONFIDENTIAL /R.OAD.MAP/P.OAD.2

GLOSSARY 11

GLOSSARY

Control Manager: A Toolbox unit that provides routines for creating
and manipulating controls (such as buttons, check boxes, and scroll
bars).

CoreEdit: A Toolbox unit that handles sophisticated text editing and
formatting, including fully justified text, tabbing, and recognition of
word boundaries during cutting and pasting.

Desk Manager: A Toolbox unit that supports the use of desk accessories
from an application.

device driver: A piece of Operating System software that controls a
peripheral device and makes it present the standard interface to the
application.

Device Manager: The part of the Operating System that supports device
1/0.

Dialog Manager: A Toolbox unit that provides routines for implementing
dialogs and alerts.

Disk Driver: The device driver that controls data storage and
retrieval on 4f~K-byte 3 1/2-inch disks.

Event Manager: See Toolbox Event Manager or Operating System Event
Manager.

File Manager: The part of the Operating System that supports file 1/0.

Font Manager: A Toolbox unit that supports the use of various
character fonts for QuickDraw when it draws text.

heap: An area of memory in which apace can be allocated and released
on demand, using the Memory Manager.

Keyboard/Mouse Handler: The part of the Operating System that controls
communication with the keyboard and the mouse.

Memory Manager: The part of the Operating System that dynamically
allocates and releases memory space in the heap.

Menu Manager: A Toolbox unit that deals with setting up menus and
letting the user choose from them.

Operating System: 'the lowest-level software in the Kacintoah. It does
basic tasks such as interrupt handling, memory management, and 1/0.

Operating System Core: The part of the Operating System that does the
actual interrupt handling, initialization, and other important
background work necessary to keep the Macintosh functioning.

12/22/83 Rose CONFIDENTIAL /ROAD.MAP/ROAD.G

12 Inside Macintosh Road Hap

Operating System Event Manager: The part of the Operating System that
reports hardware-related events such as mouse-button presses and
keystrokes.

Operating System Utilities: Operating System routines that perform
miscellaneous tasks such as setting the date and time or finding out
the user's preferred speaker volume.

QuickDraw: The Toolbox unit that performs all graphic operations on
the Macintosh screen.

resource: Data used by an application (such as menus, fonts, and
icons), and also the application code itself.

Resource Manager: The Toolbox unit that reads and writes resources.

Scrap Manager: The Toolbox unit that enables cutting and pasting
between applications, desk accessories, or an application and a desk
accessory.

Segment Loader: The part of the Operating System that loads the code
of an application into memory, either as a single unit or divided into
dynamically loaded segments.

Serial Driver: The device driver that controls communication, via
serial ports, between applications and serial peripheral devices.

Sound Driver: The device driver that controls sound generation in an
application.

TextEdit: A Toolbox unit that supports the basic text entry and
editing capabilities of a standard Macintosh application.

Toolbox: Same as User Interface Toolbox.

Toolbox Event Manager: A Toolbox unit that allows your application
program to monitor the user's actions with the mouse, keyboard, and
keypad.

Toolbox Utilities: A Toolbox unit that performs generally useful
operations such as fixed-point arithmetic, string manipulation, and
logical operations on bits.

Trap Dispatcher: The part of the Operating System Core that provides
the connection between your request for a Toolbox or Operating System
service and the physical code that performs that service.

User Interface Toolbox: A set of routines and data types that help you
implement the standard Macintosh user interface in your application.

vertical retrace interrupt: An interrupt generated sixty times a
second by the Macintosh video circuitry while the beam of the display
tube returns from the bottom of the acreen to the top; also known as
the vertical blanking or VBL interrupt.

12/22/83 Rose CONFIDENTIAL /ROAD.HAP/ROAD.G

J

(

GLOSSARY 13

Vertical Retrace Manager: The part of the Operating System that
schedules and executes tasks during the vertical retrace interrupt.

Window Manager: A Toolbox unit that provides routines for creating and
manipulating windows.

12/22/83 Rose CONFIDENTIAL /ROAD.KAP/ROAD.G

MACINTOSH USER EDUCATION

The Font Manager: A Programmer's Guide /FMGR/FONT

See Also: Macintosh User Interface Guidelines
The Memory Manager: A Programmer's Guide
Macintosh Operating System Reference Manual
QuickDraw: A Programmer's Guide
The Resource Manager: A Programmer's Guide
The Menu Manager: A Programmer's Guide

Modification History: Preliminary Draft
First Draft (ROH 3.f)
Second Draft (ROM 7)

c. Rose
c. Rose
B. Hacker

4/2f/83
4/22/83

2/7/84

ABSTRACT

The Font Manager is the part of the Macintosh User Interface Toolbox
that supports the use of various character fonts when you draw text with
QuickDraw. This manual introduces you to the Font Manager and describes
the routines your application can call to get font information. It also
describes the data structures of fonts and discusses how the Font
Manager communicates with QuickDraw.

Summary of significant changes and additions since last version:

- A new routine, SwapFont, has been documented (page 11).

- A description of the method of communication between the Font
Manager, OuickDraw, and device drivers has been added (page 11).

- A section describing the format of a font, including font records,
has been added (page 15).

2 Font Manager Programmer's Guide

TABLE OF CONTENTS

3 About This Manual
4 About the Font Manager
6 Font Numbers
7 Characters in a Font
7 Font Scaling
9 Using the Font Manager
9 Font Manager Routines
9 Initializing the Font Manager
10 Getting Font Information
10 Xeeping_Fonts in Memory
11 Advanced Routine
11 Communication Between QuickDraw and the Font Manager
15 Format of a Font
19 Font Records
22 Font Widths
22 How QuickDraw Draws Text
23 Fonts in a Resource File
25 Su1111ary of the Font Manager
29 Glossary

Copyright (c) 1984 Apple Computer, Inc. All rights reserved.

Distribution of this draft in limited quantities does not constitute
publication.

'

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

The Font Manager is the part of the Macintosh User Interface Toolbox
that supports the use of various character fonts when you draw text
with OuickDraw. This manGal introduces you to the Font Manager and
describes the routines your application can call to get font
information. It also describes the data structures of fonts and
discusses how the Font Manager communicates with QuickDraw. ***
Eventually this will become part of a comprehensive manual describing
the entire Toolbox and Operating System. ***
(hand)

This manual describes version 7 of the IOK. If you're
using a different version, the Font Manager may not work
as discussed here.

Like all documentation about Toolbox units, this manual assumes you're
familiar with the Macintosh User Interface Guidelines, Lisa Pascal, and
the Macintosh Operating System's Memory Manager. You should also be
familiar with:

- Resources, as described in the Resource Manager manual

- The basic concepts and structures behind OuickDraw, particularly
bit images and how to draw text

This manual is intended to serve the needs of both Pascal and assembly
language programmers. Information of interest to assembly-language
programmers only is isolated and labeled so that Pascal programmers can
conveniently skip it.

The manual begins with an overview of the Font Manager and what you can
do with it. It then discusses the font numbers by which fonts are
identified, the characters in a font, and the scaling of fonts to
different sizes. Next, a section on using the Font Manager introduces
its routines and tells how they fit into the flow of your application.
This ts followed by detailed descriptions of Font Manager procedures
and functions, their parameters, calling protocol, effects, side
effects, and so ~n.

Following these descriptions are sections that will not interest all
readers. There's a discussion of how QuickDraw and the Font Manager
communicate, followed by a section that describes the format of the
data structures used to define fonts, and how QuickDraw uses the data
to draw characters. Next is a section that gives the exact format of
fonts in a resource file.

Finally, there's a summary of the Font Manager, for quick reference,
followed by a glossary of terms used in this manual.

2/7/84 Rose-Hacker CONFIDENTIAL /FMGR/FONT.2

4 Font Manager Programmer's Guide

ABOUT THE FONT MANAGER

The main function of the Font Manager is to provide font support for
QuickDraw. To the Macintosh user• ~ means the complete set of
characters of one typeface; it doesn't include the size of the
characters, and usually doesn't include any stylistic variations (such
as bold and italic).

(hand)
Usually fonts are defined in the normal style and
stylistic variations are applied to them; for example,
the italic.style simply slants the normal characters.
However, fonts may be designed to include stylistic
variation~ in the first place.

The way you identify a font to OuickDraw or the Font Manager is with a
font number. Every font also has a name (such as "New York") that's
appropriate to include in a menu of available fonts.

The size of the characters, called the .!.!:mi~, is given in points.
Here this term doesn't have the same meaning as the "point" that's an
intersection of lines on the OuickDraw coordinate plane, but'instead is
a typographical term that stands for approximately 1/72 inch. The font
size measures the distance between the ascent line of one line of text
and the ascent line of the next line of single-spaced text (see Figure
1). It assumes St pixels per inch, the approximate resolution of the
Macintosh screen. For example, since an Imagewriter printer has twice
the resolution of the screen, high-resolution 9-point output to the
printer is actually accomplished with an 18-point font.

font
size

2/7/84 ltose-Hacker

ascent line

base line

-------->tscent line

t leading

0

Figure 1. Font Size

CONFIDENTIAL /FMGR/FONT.2

(hand)

ABOUT THE FONT MANAGER 5

Because measurements cannot be exact on a bit-.pped
output device, the actual font size may be slightly
different from what it would be in normal typography.

Whenever you call a Quick~raw routine that does anything with text,
QuickDraw passes the following information to the Font Manager:

- The font number.

- The character style, a set of stylistic variations. The empty set
indicates normal text. (See the QuickDraw manual for details.)

- The font size. The size may range from 1 point to 127 points, but
for readability should be at least 6 points.

- The horizontal and vertical scaling factors, each of which is
represented by a numerator and a denominator (for example, a
numerator of 2 and a denominator of 1 indicates 2-to-l scaling in
that di.rection).

- A Boolean value indicating whether the characters will actually be
drawn or not. They will not be drawn, for example, when the
QuickDraw function CharWidth is called (since it only measures
characters) or when text is drawn after the pen has been hidden
(such as by the HidePen procedure or the OpenPicture function,
which calls HidePen).

- A number specifying the device on which the characters will be
drawn or printed. The number I represents the Macintosh screen.
The Font Manager can adapt fonts to other devices.

Given this information, the Font Manager provides QuickDraw with
information describing the font and-if the characters will actually be
drawn-the bits comprising the characters.

Fonts are stored as resources in resource files; the Font Manager calls
the Resource Manager to read them into memory. System-defined fonts
are stored in the system resource file. You may define your own fonts
with the aid of the Resource Editor and include them in the system
resource file so they can be shared among applications. *** (The
Resource Editor doesn't yet exist, but an interim Font Editor is
available from Macintosh Technical Support.)*** In special cases, you
may want to store a font in an application's resource file or even in
the resource file for a document. It's also possible to store only the
character widths and general font information, and not the bits
comprising the characters, for those cases where the characters won't
actually be drawn.

A font may be stored in any number of sizes in a resource file. If a
size is needed that's not available as a resource, the Font Manager
scales an available size.

2/7/84 Rose-Hacker CONFIDENTIAL /FMGR/FONT.2

6 Font Manager Programmer's Guide

Fonts occupy a large amount of storage: a 12-point font.typically
occupies about 3K bytes, and a 24-point font, about llK bytes; fonts
for use on a high-resolution output device can take up four times as
much space as that (up to a maximum of 32K bytes). Fonts normally are
purgeable, which means they may be removed from the heap when apace is
required by the Memory Manager. If you wish, you can call a Font
Manager routine to make a font temporarily unpurgeable.

There are also routines that provide information about a font. You can
find out the name of a font having a particular font number, or the
font number for a font having a particular name. You can also learn
whether a font is available in a certain size or will have to be scaled
to that size.

FONT NUMBERS

The Font Manager includes the following font numbers for identifying
system-defined fonts:

CONST systemFont • f
applFont • 1
newYork • 2
geneva • 3
monaco • 4
venice • 5
london • 6
athens • 7,
sanFran • 8;
toronto • 9;

{system font}
{application font}

Font number, refers to the system font, so called because it's the
font used by the system (for drawing menu titles and commands in menus,
for example). The name of the system font is Chicago. The size of
text drawn by the system in this font is fixed at 12 points (called the
system~~).

Font number 1 represents the application !!?!!l, which is a suitable font
for general use by the application. Unlike the system font, the
application font isn't a separate font with its own typeface, but is
essentially a reference to another font-New York, by default. *** In
the future, there will be a way for the user to change the default,
perhaps through the Control Panel desk accessory. ***

Assembly-language~: The font number of the default
application font is stored in parameter RAM, in the system
global spFont. You can change the application font via the
system global apFontlD, which contains the font number of the
current application font.

2/7/84 Rose-Hacker CONFIDENTIAL /FHGlt/FONT.2

CHARACTERS IN A FONT 7

CHARACTERS IN A FONT

A font can consist of up to 255 distinct characters; not all characters
need be defined in a single font. Figure 2 on the following page shows
the standard printing characters on the Macintosh and their ASCII codes
(for example, the ASCII code for "A" is 41 hexadecimal. or 65 decimal).

In addition to its maximum of 255 characters, every font contains a
missing symbol that's drawn in case of a request to draw a character
that's missing from the font.

FONT SCALING

The information QuickDraw passes to the Font Manager includes the font
size and the scaling factors QuickDraw wants to use. The Font Manager
determines the font information to return to OuickDraw by looking for
the exact size needed among the sizes stored for the font. If the
exact size requested isn't available, it then looks for a nearby size
that it can scale.

l. It looks first for a font that's twice the size, and scales down
that size if there is one.

2. If there's no font that's twice the size, it looks for a font
that's half the size, and scales up that size if there is one.

3. If there's no font that's half the size, it looks for a larger
size of the font, and scales down the next larger size if there is
one.

4. If there's no larger size, it looks for a smaller size of the
font, and scales up the closest smaller size if there is one.

5. If the font isn't available in any size at all, it uses the
application font instead, scaling the font to the proper size.

6. If the application font isn't available in any size at all, it
uses the system font instead, scaling the font to the proper size.

Scaling looks best when the scaled size is an even multiple of an
available size.

Assembly-language~: You can use the system global
fScaleDisable to defeat scaling, if desired. Normally,
fScaleDisable is e. If you set it to a nonzero value, the Font
Manager will look for the size as described above but will
return the font unscaled.

2/7/84 Rose-Hacker CONFIDENTIAL /FMGR/FONT.2

0

1

2

3

5

6

7

8

A

B

C

D

E

F

8 Font Manager Programmer's Guide

0 1 2 3 4 S 6 7 8 9 A B C D E F

SP O @ P ' p A e t :oo= I . . . (., . - ...

1 A Q a q A e 0 •"+: I
-. I

V II 2 B R b r c;
+#3CSc s E
• $ 4 D T d t N

ro5EUe u 0
& 6 F V f V U

I 7 G W g
,

w a
(8 H X h X ' a
) g I y Y a
* : J z j z a
+ , K [k { a
, < L \

0 a
- M 1 m }
> N ,. n - ,

e
I ? 0 _ o ' e

,
1

' 1

1 § ¥ ~f~ C

1
. -

• ~:u· ·: -~
,

6 B ·~t~ << <>
... ' ' o ® =n= >> y

6 © :)t ...
0 TM .::J:: :- . :

-:· =: ...

o , a A
,
u -g A
' :-:-; •····· ,...,

U =~=-O=O .. •. . ······
G IE a:? CE
U 0 0 CB

SP st ends for 8 spece .
.... stends fore nonbreaking spece, seme width es numbers.

The first four cheracters ere only in the system font (Chicago).
The sheded cherecters ere only in the Geneva, Moneco, end system fonts.

Figure 2. Font Characters

2/7/84 Rose-Hacker CONFIDENTIAL /FMGR/FONT.2

USING THE FONT MANAGER 9

USING THE FONT MANAGER

This section introduces you to the Font Manager routines and how they
fit into the general flow of an application program. The routines
themselves are described in detail in the next section.

The InitFonts procedure initializes the Font Manager; you should call
it after initializing OuickDraw but before initializing the Window
Manager.

You can set up a menu of fonts in your application by using the Menu
Manager procedure AddResMenu (see the Menu Manager manual for details).
When the user chooses a menu item from the font menu, you call the Menu
Manager procedure·Getitem to get the name of the corresponding font,
and then the Font Manager function GetFNum to get the font number. The
GetFontName function does the reverse of GetFNum: given a font ID, it
returns the font name.

In a menu of font sizes in your application, you may want to let the
user know which sizes the current font is available in and therefore
will not require scaling. You can call the RealFont function to find
out whether a font is available in a given size.

If you know you'll be using a font a lot and don't want it to be
purged, you can use the SetFontLock procedure to make the font
unpurgeable during that time.

Advanced programmers who want to write their own font editors or
otherwise manipulate fonts can access fonts directly with the SwapFont
function.

FONT MANAGER ROUTINES

This section describes all the Font Manager procedures and functions.
The routines are presented in their Pascal form; for information on
using them from assembly language, see the*** forthcoming*** manual
Programming Macintosh Applications in Assembly Language.

Initializing the Font Manager

PROCEDURE InitFonts;

InitFonts initializes the Font Manager. If the system font isn't
already in memory, InitFonts reads it into memory. Call this procedure
once before all other Font Manager routines or any Toolbox routine that
will call the Font Manager.

2/7/84 Rose-Hacker CONFIDENTIAL /FMGR/FONT.R

10 Font Manager Programmer's Guide

Assembly-language~: InitFonts also sets the current
application font to the default application font (by setting the
system global apFontID to the font number stored in parameter
RAM in the system global spFont).

Getting Font Information

PROCEDURE GetFontName (fontNum: INTEGERi VAR theName: Str255);

GetFontName returns in theName the name of the font having the font
number fontNum. If there's no such font, GetFontName returns the empty
string.

Assembly-language~: The macro you invoke to call
GetFontName from assembly language is named _GetFName.

PROCEDURE GetFNum (fontName: Str255; VAR theNum: INTEGER)i

GetFNum returns in theNum the font number for the font having the given
fontName. If there's no such font, GetFNum returns f.

FUNCTION RealFont (fontNum: INTEGER; size: INTEGER) : BOOLEANi

RealFont returns TRUE if the font having the font number fontNum is
available in the given size in a resource file, or FALSE if the font
has to be scaled to that size.

Keeping Fonts in Memory

PROCEDURE SetFontLock (lockFlag: BOOLEAN);

SetFontLock applies to the font in which text was most recently drawn;
it makes the font unpurgeable if lockFlag is TRUE or purgeable if
lockFlag is FALSE. Since fonts are normally purgeable, this procedure
is useful for making a font temporarily unpurgeable.

2/7/84 llose-Hacker CONFIDENTIAL /FMGR/FONT.R

FONT MANAGER ROUTINES 11

Advanced Routine

The following low-level routine will not normally be used by an
application directly, but may be of interest to advanced programmers
who want to bypass the QuickDraw routines that deal with text.

FUNCTION SwapFont (inRec: FMlnput) : PKOutPtr;

SwapFont returns a pointer to an FMOutput record containing the size,
style, and other information about an adapted version of the font
requested in the given FMlnput record. ·(FMlnput and FMOutput records
are explained in the following section.) SwapFont is called by
OuickDraw every time a QuickDraw routine that does anything with text
is used. If you want to call SwapFont yourself, you must build an
FMinput record and then use the returned pointer to access the
resulting FMOutput record.

COMMUNICATION BETWEEN OUICKDRAW AND THE FONT MANAGER

This section describes the data structures that allow QuickDraw and the
Font Manager to exchange information. It also discusses the
communication that may occur between the Font Manager and the driver of
the device on which the characters are being drawn or printed. You can
skip this section if you want to change fonts, character style, and
font sizes by calling QuickDraw and aren't interested in the lower
level data structures and routines of the Font Manager.

Whenever you call a OuickDraw routine that does anything With text,
OuickDraw requests information from the Font Manager about the
characters. The Font Manager performs any necessary calculations and
returns the requested information to QuickDraw. As illustrated in
Figure 3, this information exchange occurs via two data structures, a
font input record (type FHlnput) and a font output record (type
FMOutput).

2/7/84 Rose-Hacker CONFIDENTIAL /FMGR/FONT.D

12 Font Manager Programmer's Guide

for al I devices if device is hOt the screen

Status call

Control call

...._ __ --c final modifications ..,_ __ _,.

Figure 3. Communication About Fonts

First, QuickDraw passes the Font Manager a font input record:

TYPE FMlnput • PACKED RECORD
family: INTEGER;
size: INTEGER;
face: Style;
needBits: BOOLEAN;
device: INTEGER;

{font number}
{font size}
{character style}
{TRUE if drawing}
{output device}

.......

numer: Point;
denom: Point

{numerators of scaling factors}
{denominators of scaling factors}

END;

The first three fields contain the font number, size, and character
style that QuickDraw wants to use. The needBits field indicates
whether the characters actually will be drawn or not. If the
characters are being drawn, all of the information describing the font,
including the bit image comprising the characters, will be read into
memory. If the characters aren't being drawn and there's a resource
consisting of only the character widths and general font information,
that resource will be read instead.

As shown in Figure 4, the high-order byte of the device field contains
the low-order byte of the reference number for the device driver (the
high-order byte of the reference number is $FF). The low-order byte of
the device field contains a device subclass, which is passed on to the
device driver and may be used as a means of distinguishing different
kinds of output on the same device (for example, high resolution
vs. low resolution). The value e in the device field represents the
Macintosh screen.

2/7/84 Rose-Hacker CONFIDENTIAL /FMGR/FONT.D

COMMUNICATION BETWEEN QUICKDRAW AND THE FONT MANAGER 13

15 8? 0

I reference runber I device subclass I
8°bits 8 bits

Figure 4. Device Field

The numer and denom fields contain the scaling factors to be used;
numer.v divided by denom.v gives the vertical scaling, and numer.h
divided by denom.h gives the horizontal scaling.

The Font Manager takes the FMinput record and asks the Resource Manager
for the font. I£ the requested size isn't available, the Font Manager
scales another size to match (as described previously).

Then, if the device field is nonzero, the Font Manager calls the device
driver's status routine to get the device's font characterization table
*** which will be documented in a future version of this manual***•
The Font Manager takes the information in the font characterization
table and determines the optimum ascent, descent, leading, and ways of
doing stylistic variations on that device, so that the highest quality
printing or drawing available will be produced. It then stores this
information in a font output record:

TYPE FMOutput • PACKED RECORD
errNum:
fontHandle:
bold:
italic:
ulOffset:
ulShadow:
ulThick:
shadow:
extra:
ascent:
descent:
widHax:
leading:
unused:
numer:
denom:

END;

INTEGER;
Handle;
Byte;
Byte;
Byte;
Byte;
Byte;
Byte;
SignedByte;
Byte;
Byte;
Byte;
SignedByte;
Byte;
Point;
Point

{not used}
{handle to font record}
{bold factor}
{italic factor}
{underline offset}
{underline shadow}
{underline thickness}
{shadow factor}
{not used}
{ascent}
{descent}
{maximum character width}
{leading}
{not used}
{numerators of scaling factors}
{denominators of scaling factors}

ErrNum is reserved for future implementation, and is currently zero.
FontHandle is a handle to the font record of the font, as deacribed in
the next section. Bold, italic, ulOffset, ulShadow, ulThick, and
shadow are all fields that modify the way stylistic variations are
done. Ascent, descent, widHax, and leading are the same as the fields
of the Fontinfo record returned by the QuickDraw procedure GetFontlnfo.
Numer and denom contain the scaling factors.

2/7/84 Rose-Hacker CONFIDENTIAL /FMGR/FONT.D

14 Font Manager Progra1111er's Guide

Just before returning this record to OuickDraw, the Font Manager calls
the device driver's control routine to allow the driver to make any
final modifications to the record. Finally, the font information is
returned to OuickDraw via a pointer to the record, defined as follows:

TYPE FMOutPtr • AFMOutput;

Assembly-language~: If you want to make your own assembly
language calls to the device driver's status routine, the
parameter block pointed to by Al must contain 8 in the csCode
field (a word located at 26(Afl)), and the parameters (starting
at 28(Afl)) must be a pointer to where the device driver should
put the font characterization table, and a word containing the
value of the font input record's device field. If you call the
device dr!ver's control routine, 8 is again passed in the csCode
field, and the parameters must be a pointer to the font output
record and a word containing the value of the device field.

2/7/84 Rose-Hacker CONFIDENTIAL /FMGR/FONt.D

FORMAT OF A FONT 15

FORMAT OF A FONT

This section describes the data structure that defines a font; read it
if you're going to define your own fonts with the Resource Editor or
write your own font editor.

Each character in a font is defined by pixels arranged
columns. This pixel arrangement is called a character
image inside each of the character rectangles shown in

r- cheracter width-.
ascent line

chmecter

i
rectangle

: base line
character/

origin !
descent I ine

'-Image width-'

r-- charecter width----,
oacent llne

I
!

chmecter
rectangle

base line

character
origin
~ image width~ de3cel d I ine

Figures. Character Images

The~ line is a horizontal line coincident with the
character, excluding descenders. The character origin
the base line used as a reference location for drawing
Conceptually the base line is the line that the pen is
starts drawing a character. and the characer origin is
the pen starts drawing.

in rows and
image; it's the
Figure S.

ctaecter
heis,tt

cherecter
heiS,.t

bottom of each
is a point on
the character.
on when it
the point where

The horizontal extent of a character image is called the luge width.
The image width may or may not include apace on either side of the
character; to minimize the amount of memory required to store the font.
the image width should not include space. The vertical extent of the

2/7/84 Roae-Hacker CONFIDENTIAL /F!Gll/ FONT. D

16 Font Manager Programmer's Guide

character rectangle. the character height, is the number of pixels from
the ascent line to the descent line. The character rectangle is the
rectangle enclosing the character image; its sides are defined by the
image width and character height.

The image width is different from the character width. which is the
distance to move the pen from this character's origin to the next while
drawing-in other words, the image width plus the amount of blank space
to leave before the next character.

(hand)

(hand)

If the character width is I, the character that follows
will be superimposed on this character (useful for
accents, underscores, and so on).

Character~ whose image width is e (such as a space) can
have a nonzero character width.

Characters in a proportional font all have character widths
proportional to their image width, whereas characters in a fixed-width
~ all have the same character width.

Characters can ,2!!!_; that is, they can overlap adjacent characters.
The first character in Figure 5 above doesn't kern, but the second one
kerns left.

Every font has a bit image that contains a complete sequence of all its
character images (see Figure 6 on the following page). The number of
rows in the bit image is equivalent to the character height. The
character images in the font are stored in the bit image as though the
characters were laid out horizontally (in ASCII order, by convention)
along a co1111on base line.

The bit image doesn't have to contain a character image for every
character in the font. Instead, any characters missing from the font
are omitted from the bit image, and a missing symbol is drawn instead.
The missing symbol is stored in the bit image after all the other
character images.

(eye)
Every font auat have a missing symbol.

2/7/84 Rose-Hacker CONFIDENTIAL /FMGR/FONT.D

(')

::,-i
!!.R ------§ ii----_ ...

r--lf.:--·------1
i ··-n.. i
! : I II .. IL1- i
: ! a •-11.. i
! i'II 1111 I
! i 11 • .:.. i : . •:. =-- i i • 1..: :
• - I i 1•• i
! •• i
i i i a··--··n••••u i
1 I I I I ,.. ..a1u:11• !
L !.. •-nu•• L .. .·· .

.:i "1 n 1
i ' •• nn i 1 a, ..ar• 11 ! :., n........

1
!

11·-.: ..
l II -U..11 i
j i ··- l

i r==·· ell l ! •::. II !
i I •n. Hi

c-, i 11 •::. llli
::,-3 ---!.-J. I •11. 11 i ! c.· i 1. •u111 i (') ~- : •••• i
- :::J j j u---·11 I

~ ·cc i Li• •i. i
~ i = ff i

i !'I. ... !
! ~ n.. l
J u:----··· I i I ---•-II ! I M1••-•u••••••• i
i i.r ... :
i 11 II !
l IIL .1• i
i i -n •••• u• ,
=:• '-- i. •

.:; -=i. •• .::·
! ; l .. 011111:1 i
i ur 11 1
; • i
! U I l
i a.1a.. •• ! : :

i ·-········· : : it•• JI I
i •11 l
i II •11. II !
l II •11. II ;
; II •11 •• !
! IH •iii ! 1 •••••••••••••••• , l . I :
! ,. I l
! 7• I :
i I I l
l I I I t. _ ___a_,. ______ J I

FORMAT OF A FONT 17

Figure 6. Partial Bit Image for a Font

2/7/84 Rose-Hacker CONFIDENTIAL /FMGR/FONT.D

18 Font Manager Programmer's Guide

In addition to the terms used to describe individual characters, there
are terms describing features of the font as a whole (see Figure 7).

font
rectangle

. . .
: I i i I ! --r-rl t 1 ,

·-t--1 .. w-·1 I ·-+--i!--·!---4
l I : : • ·--r--i -.. r--r-i-
: : : : :

·--r-f--!---r----!!--~-:---!---4
! !

-+-,=!----t--~-+--+--+-+- bme line

ascent

character -.....--...--+--+--4--.---!.....-. ~cent
origin -----___ ~t line

Figure 7. Features of Fonts

The~ rectangle is somewhat analogous to a character rectangle.
Imagine that all the character images in the font are superimposed with
their origins coinciding. The smallest rectangle enclosing all the
superimposed images is the font rectangle.

The ascent is the distance from the base line to the top of the font
rectangle, and the descent is the distance from the base line to the
bottom of the font rectangle.

The character height is the vertical extent of the font rectangle. The
maximum character height is 127 pixels. The maximum width of the font
rectangle is 2S4 pixels.

The leading is the amount of blank space to draw between lines of
single-spaced text--the number of pixels between the descent line of
one line of text and the ascent line of the next line of text.

Finally, for each character in a font there's a character offset. As
illustrated in Figure 8, the character offset is simply the difference
in position of the character rectangle for a given character and the
font rectangle.

2/7/84 Rose-Hacker CONFIDENTIAL /FMGR/FONT.D

FORMAT OF A FONT 19

Font Records

tent
rectengle

cherecter
origin

'-r'
cherecter

offset

Figure 8. Character Offset

The information describing a font is contained in a data structure
called a !2nS_ record, which contains the following:

- the font type {fixed-width or proportional)

- the ASCII code of the first character and the last character in
the font

- the maximum character width and maximum amount any character kerns

- the character height, ascent, descent, and leading

- the bit image of the font

- a location table, which is an array of words specifying the
location of each character image within the bit image

- an offset/width table, which is an array of words specifying the
character offset and character width for each character in the
font.

For every character, the location table contains a word that specifies
the bit offset to the location of that character's image in the bit
iuge. The entry for a character missing from the font contains the
same value as the entry for the next character. The last word of the
table contains the offset to one bit beyond the end of the bit image
(that is, beyond the character image for the missing symbol). The
image width of each character is determined from the location table by
subtracting the bit offset to that character from the bit offset to the
next character in the table.

2/7/84 Rose-Hacker CONFIDENTIAL /FMGll/FONT.D

20 Font Manager Programmer's Guide

There's also one word in the offset/width table for every character:
the high-order byte specifies the character offset and the low-order
byte specifies the character width. Missing characters are flagged in
this table by a word value of -1. The last word is also -1, indicating
the end of the table.

Figure 9 illustrates a sample location table and offset/width table
corresponding to the bit image in Figure 6.

word O

p
4

,. .,

0
21

320
336

- 3S1
351
3S1
351

351
351
351

650
664

675
689

location
table

!r
• .'

,. !r !r •

0 22
0 1S

0 16
0 1S

-1
-1
-1 _,
-1

0 13
0 16

0 14
0 11
0 16

-1

offset/width
table

!r
•

.

missing characters

.

,."

cunmylmege

Figure 9. Sample Location Table and Offset/Width Table

A font record is a dynamic structure and is referred to by a handle
that you can get by calling the SwapFont function or the Resource
Manager function GetResource. The data type for a font record is as
follows:

2/7/84 Rose-Hacker CONFIDENTIAL /FMGR/FONT.D

J

FORMAT OF A FONT 21

TYPE Fontllec • RECORD
fontType: INTEGER; {font type}
firstChar: INTEGER; {ASCII code of first character}

(hand)

lastChar: INTEGER; {ASCII code of last character}
widMax: INTEGER; {maximum character width}
kernMax: INTEGER; {maximum character kern}
nDescenti INTEGER; {negative of descent}
fRectWid: INTEGER; {width of font rectangle}
chHeight: INTEGER; {character height}
owTLoc: INTEGER; {offset to offset/width table}
ascent: INTEGER; {ascent}
descent: INTEGER; {descent}
leading: INTEGER; {leading}
rowWords: INTEGER; {row width of bit image/ 2}

{ bitlmage: ARRAY [l •• rowWorda, 1 •• chHeight] OF INTEGER;
{bit image}

{ "locTable: ARRAY [firstChar •• lastChar+2) OF INTEGER;
{location table}

{ owTable: ARRAY [firstChar •• lastChar+2] OF INTEGER;
{offset/width table}

END;

The variable-length arrays appear as comments because
they're not valid Pascal syntax; they're used only as
conceptual aids.

The fontType field must contain one of the following predefined
constants:

CONST propFont • $9GGe;
fixedFont • $BIGG;

{proportional font}
{fixed-width font}

The values in the widMax, kernMax, nDescent, fRectWid, chHeight,
ascent, descent, and leading fields all specify a number of pixels.
KernMax indicates the largest number of pixels any character kerns, and
should always be negative or zero, because kerning is specified by
negative numbers (the kerned pixels are to the left of the character
origin). NDeacent must be set to the negative of the descent.

The owTLoc field contains a word offset from itself to the offset/width
table; it's equivalent to

(eye)

4 + (rowWords * chHeight) + (lastChar - firstChar + 3)

Remember, the offset and row width in a font record are
given in words, not bytes.

Normally, the Resource Editor will change the fields in a font record
for you. You shouldn't have to change any fields unless you edit the
font without the aid of the Resource Editor.

2/7/84 Rose-Hacker CONFIDENTIAL /FHGll/FONT.D

}

}

}

22 Font Manager Programmer's Guide

Assembly-language™: The system global romFont~ contains a
handle to the font record for the system font.

Font Widths

A resource can be defined that consists of only the character widths
and general font information--everything but the font's bit image and
location table. If there is such a resource, it will be read in
whenever QuickDraw doesn't need to draw the text, such as when you call
one of the routines CharWidth, HidePen, or OpenPlcture (which calls
HidePen). The FontRec data type described above, minus the rowWords,
bitlmage, and lofTable fields, reflects the structure of this type of
resource. The owTLoc field will contain 4, and the fontType field will
contain the following predefined constant:

CONST fontWid 0 ·$ACB0 {font width data}

How QuickDraw Draws Text

This section provides a conceptual discussion of the steps QuickDraw
takes to draw characters (without scaling or stylistic variations such
as bold and outline). Basically, QuickDraw simply copies the character
image onto the drawing area at a specific location.

1. Take the initial pen location as the character origin for the
first character.

2. Check the word in the offset/width table for the character to see
if it's -1. The word to check is entry (charCode - firstChar),
where charCode is the ASCII code of the character to be drawn.

2a. The character exists if the entry in the offset/width table
isn't -1. Determine the character offset and character width
from the bytes of this same word. Find the character image
at the location in the bit image specified by the location
table. Calculate the image width by subtracting this word
from the succeeding word in the location table. Determine
the number of pixels the character kerns by subtracting
kernMax from the character offset.

2b. The character is missing if the entry in the offset/width
table is -1; information about the missing symbol is needed.
Determine the missing symbol's character offset and character
width from the next-to-last word in the offset/width table.
Find the missing symbol at the location in the bit image
specified by the next-to-last word in the location table
(lastChar - firstChar + 1). Calculate the image width by

2/7/84 Rose-Hacker CONFIDENTIAL /FMGR/FONT.D

FORMAT OF A PONT 23

subtracting the next-to-laat word in the location table from
the laat word (lastChar - firatChar + 2). Determine the
number of pixels the llisaing ayabol kerns by •ubtracting
kernMalt from the character off•et.

3. Move the pen to the left the number of pixels that the character
kerns. Move the pen.up the number of pixels specified by the
ascent.

4. If the fontType field is fontWid, skip to step S: otherwise, copy
each row of the character image onto the screen or paper, one row
at a time. The number of bits to copy from each word is given by
the image width, and the number of words ia given by the chHeight
field.

s. If the fontType field is fontWid, aove the pen to the right the
number of p{xels specified by the character width. If fontType is
fixedFont, move the pen to the right the number of pixels
specified by the widMax field.

6. If it's time to move down to the next line, return the pen to the
left margin and move it down the number of bits specified by the
leading.

7. Return to step 2.

FONTS IN A RESOURCE FILE

This section contains details about fonts in resource files that most
programmers need not be concerned about, since they can use the
Resource Editor*** eventually*** to define fonts. It's included here
to give background information to those who are interested. Every size
of a font is stored aa a separate resource.

The resource type for a font is 'PONT'. The resource data for a font
is simply a font record:

2/7/84 aoae-Hacker CONFIDENTIAL /PMGR/FONT.D

24 Font Manager Programmer's Guide

Number of bytes
2 bytes
2 bytes
2 bytes
2 bytes
2 bytes
2 bytes
2 bytes
2 bytes
2 bytes
2 bytes
2 bytes
2 bytes
2 bytes
n bytes

m bytes

m bytes

Contents
FontType field of font record
FirstChar field of font record
LastChar field of font record
WidMax field of font record
KernMax field of font record
NDescent field of font record
FRectWid field of font record
ChHeight field of font record
OWTLoc field of font record
Ascent field of font record
Descent field of font record
Leading field of font record
RowWords field of font record
Bit image of font

n • 2 * rowWords * chHeight
Location table of font

m • 2 * (lastChar - firstChar + 3)
Offset/width table of font

m ~ 2 * (lastChar - firstChar + 3)

The resource type 'FWID' is used to store only the character widths and
general information for a font; its resource data is a font record
without the rowWords field, bit image, and location table.

As shown in Figure 11.1, the resource ID of a font is composed of two
parts: bits 15 ~o 7 are the font number, and bits 1.1 to 6 are the font
size. Thus the resource ID corresponding to a given font number and
size is

(128 * font number) + font size

15 7 6 0

I font nunber I font size I
9 bits 7 bits

Figure 11.1. Resource ID for a Font

Since G is not a valid font size, the resource ID having 1.1 in the size
field is used to p~ovide only the name of the font: the name of the
resource is the font name. For example, for a font named Griffin and
numbered 4~1.1. the resource naming the font would have a resource ID of
51200 and the resource name 'Griffin'. Size 11.1 of that font would be
stored in a resource numbered 51211.1.

Font numbers 0 through 127 are reserved for fonts provided by Apple,
and font numbers 128 through 383 are reserved for assignment, by Apple,
to software vendors. Each font will be assigned a unique number, and
that font number should be used to identify only that font (for
example, font number 9 will always be Toronto). Font numbers 384
through 511 are available for your use in whatever way you wish.

2/7/84 Rose-Hacker CONFIDENTIAL /FKGR/FONT.D

SUMMARY OF THE FONT MANAGER 25

SUMMARY OF THE FONT MANAGER

Constants

CONST systemFont
applFont
newYork
geneva
monaco
venice
london
athens
sanFran
toronto

-~
• 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8

-- 9

{system font}
{application font}

propFont • $90,0;
fixedFont • $8'00;
fontWid • $ACB0i

{proportional font}
{fixed-width font}
{font width data}

TYPE FMinput • PACKED RECORD
family: INTEGERi
size: INTEGER;
face: Style;
needBits: BOOLEAN;
device: INTEGER;

{font number}
{font size} .
{character style}
{TRUE if drawing}
{output device}

numer: Point;
denom: Point

{numerators of scaling factors}
{denominators of scaling factors}

END;

FMOutPtr • •FMOutput;
FMOutput • PACKED RECORD

errNum:
fontHandle:
bold:
italic:
ulOffset:
ulShadow:
ulthick:
shadow:
extra:
ascent:
descent:
widMax:
leading:
unused:
numer:
denom:

END;

2/7/84 Rose-Hacker

INTEGER;
Handle;
Byte;
Byte;
Byte;
Byte;
Byte;
Byte;
Signed Byte;
Byte;
Byte;
Byte;
Signed Byte;
Byte;
Point;
Point

CONFIDENTIAL

{not used}
{handle to font record}
{bold factor}
{italic factor}
{underline offset}
{underline shadow}
{underline thickness}
{shadow factor}
{not used}
{ascent}
{descent}
{maximum character width}
(leading}
{not used}
{numerators of scaling factors}
{denominators of scaling factors}

/FMGR/FONT.S

26 Font Manager Programmer's Guide

FontRec

Routines

• RECORD
fontType:
firstChar:
lastChar:
widMax:
kernMax:
nDescent:
fRectMax:
chHeight:
owTLoc:
ascent:
descent:
leading:
rowWords:

{ bitimage:

{ locTable:

{ owTable:

END;

INTEGER; {font type}
INTEGER; {ASCII code of first character}
INTEGER; {ASCII code of last character}
INTEGER; (maximum character width}
INTEGER; {maximum character kern}
INTEGER; {negative of descent}
INTEGER; {width of font rectangle}
INTEGER; {character height}
INTEGER; {offset to offset/width table}
INTEGER; {ascent}
INTEGER; {descent}
INTEGER; {leading}
INTEGER; {row width of bit image/ 2}
ARRAY (l •• rowWords, 1 •• chHeight] OF INTEGER; }

{bit image}
ARRAY (firstChar •• lastChar+2] OF INTEGER; }

{location table}
ARRAY (firatChar •• lastChar+2] OF INTEGER }

{offset/width table}

Initializing the Font Manager

PROCEDURE InitFonts;

Getting Font Information

PROCEDURE GetFontName (fontNum: INTEGER; VAR theName: Str255);
PROCEDURE GetFNum (fontName: Str255; VAR theNum: INTEGER);
FUNCTION RealFont (fontNum: INTEGER; size: INTEGER) : BOOLEAN;

Keeping Fonts in Memory

PROCEDURE SetFontLock (lockFlag: BOOLEAN);

Advanced Routine

FUNCTION SwapFont (inRec: FMlnput): FMOutPtr;

2/7/84 Rose-Hacker CONFIDENTIAL /FHGll/FONT.S

SUMMARY OF THE FONT MANAGER 27

Assembly-Language Information

Font Input Record Data Structure

fmlnFamily
fmlnSize
fmlnFace
fminNeedBits
fmlnDevice
fminNumer
fminDenom

Font number
Font size
Character style
TRUE if drawing
Output device
Numerators of scaling factors
Denominators of scaling factors

Font OutPut Record Data Structure

fOutError
fOutFontHandle
fOutBold
fOutltalic
fOutUlOffset
fOutUlShadow
fOutUlThick
fOutShadow
fOutExtra
fOutAscent
£Out Descent
fOutWidMax
fOutLeading
fOutUnused
fOutNumer
fOutDenom

Not used
Handle to font record
Bold factor
Italic factor
Underline offset
Underline shadow
Underline thickness
Shadow factor
Not used
Ascent
Descent
Maximum character width
Leading
Not used
Numerators of scaling factors
Denominators of scaling factors

Font Record Data Structure

£Format
fMinChar
fHaxChar
fMaxWd
fBBOX
fBBOY
fBBDX
fBBDY
£Length
fAscent
£Descent
fLeading
£Raster

2/7/84 Rose-Hacker

Font type
ASCII code of first character
ASCII code of last character
Maximum character width
Maximum character kern
Negative of descent
Width of font rectangle
Character height
Offset to offset/width table
Ascent
Descent
Leading
Row width of bit image/ 2

CONFIDENTIAL /FMGR/FONT.S

28 Font Manager Programmer's Guide

Special Macro Name

Routine name
GetFontName

System Globals

!!!!.
spFont
apFontlD
f Scale Disable
romFont0

2/7/84 Rose-Hacker

Macro name
_GetPName

Size
2 bytes
2 bytes
1 byte
4 bytes

Contents
Font number of default application font
Font number of current application font
Nonzero to disable scaling
Handle to font record for system font

CONFIDENTIAL /FHGR/FONT.S

GLOSSARY 29

GLOSSARY

application font: A font, referred to by font number 1, that's
suitable for general use by an application-New York, by default.

ascent: The vertical dis;ance from a font's base line to its ascent
line.

ascent line: A horizontal line coincident with the top of the tallest
characters in a font.

base line: A horizontal line coincident with the bottom of each
character in a font, excluding descenders.

character height: The vertical extent of a character rectangle.

character image: The bit image that defines a character.

character offset: The horizontal separation between a character
rectangle and a font rectangle.

character origin: The point on a base line used as a reference
location for drawing a character.

character rectangle: The smallest rectangle enclosing an entire
character image.

character style: A set of stylistic variations, such as bold, italic,
and underline. The empty set indicates normal text (no stylistic
variations).

character width: The distance to move the pen from one character's
origin to the next; equivalent to the image width plus the amount of
blank space to leave before the next character.

descent: The vertical distance from a font's base line to its descent
line.

descent line: A horizontal line coincident with the bottom of the
lowest-reaching characters in a font, including descenders.

fixed-width font: A font whose characters all have the same width.

font: The complete set of characters of one typeface.

font characterizacion table: A table of parameters in a device driver
that specifies how best to adapt fonts to that device.

font number: The number by which you identify a font to QuickDraw or
the Font Manager.

font record: A data structure that contains all the information
describing a font.

2/7/84 Rose-Hacker CONFIDENTIAL /FMGR/FONT.G

30 Font Manager Programmer's Guide

font rectangle: The smallest rectangle enclosing all the character
images in a font, if the images were all superimposed over the same
character ori_gin.

font size: The size of a font in points; equivalent to the distance
between the ascent line of one line of text and the ascent line of the
next of line of single-spfced text.

image width: The horizontal extent of a character image.

kern: To draw part of a character so that it overlaps an adjacent
character.

leading: The amount of blank vertical space between the descent line
of one line of text and the ascent line of the next line of
single-spaced text.

location table: An array of words (one for each character in a font)
that specifies the location of each character's image in the font's bit
image.

missing symbol: A character to be drawn in case of a request to draw a
character that's missing from a particular font.

offset/width table: An array of words that specifies the character
offsets and character widths of all characters in a font.

point: The intersection of a horizontal grid line and a vertical grid
line on the coordinate plane, defined by a horizontal and a vertical
coordinate; also, a typographical term meaning approximately 1/72 inch.

proportional font: A font whose characters all have character widths
that are proportional to their image width.

row width: The number of bytes in each row of a bit image.

scaling factor: A value, given as a fraction, that specifies the
amount a character should be stretched or shrunk before it's drawn.

style: See character style.

system font: The font, identified by font number G, that the system
uses (in menus, for example).

system font size: The size of text drawn by the system in the system
font; 12 points.

2/7/84 Rose-Hacker CONFIDENTIAL /FMGR/FONT.G

)

SUMMARY OF FP68K DOCUMENTS

User's Guide -- an overview of FP68K ELEHS68K and their design philosophy.

Programmer's Guide -- hints on how to build the packages, and
how to modify them, if necessary; details about system
dependencies involving the state area. Includes register
map templates.

1

System Interface - how FP68K and ELEMS68K affect their execution environment.

High-Level Interface - the SANE Pascal unit and assembly macros.

Integer Conversion Tests

Binary-Decimal Conversion Tests

IEEE Tests - a set of test vectors designed for this style of
arithmetic and distributed through the standards
subcommittee

Binary-Decimal Conversions -- what is available through the SANE
interface, and what FP68K provides at the low level.
A sample parser and formatter from the SANE interface
is shown.

P754 stuff - papers related to the arithmetic standard.

1 November 83 Jerome T. Coonen

18-l

18-2

SUMMARY OF FP68K FILES

FPxxx.TEXT - source files for FP68K, except for binary-decimal
conversions

FBxxx.TEXT

SAxxx.TEXT

source files for binary-decimal part of FP68K

SANE68.TEXT SANE interface section
SAIMP68.TEXT - SANE implementation section
SAASH68.TEXT - SANE assembly procedures
SAMAC68.TEXT - EQU's and MACRO's for assembly interface

DOxxx.TEXT - documentation using SCRIPT formatter, with
macros in DODRIVER.TEXT

TVxxx.TEXT - IEEE test vector files, required operations

-TWxxx.TEXT - IEEE test vector files, appendix funtions

TDxxx.TEXT -- Test vector driver program files

ITxxx.TEXT - integer<-> extended conversion tests

IOxxx.TEXT -- binary<--> decimal conversions tests

Zyyyy.OBJ - executable test programs

ELxxx.TEXT - elementary transcendental and financial functions

l November 83

2

,

Draft 1.5 FP68K and ELEKS68K System Interface

Introduction

The 68000 software floating-point packages, FP68K and ELEKS68K, appear
much like simple subroutines but their interaction with the host system is
somewhat more subtle. This document indicates possible trouble spots. It is
intended for system implementors, rather than users of FP68K and ELEMS68K.

The following sections describe the various issues in turn.

Registers and stack~

FP68K and ELEHS68K receive all of their parameters on the stack. They
save and restore all of the CPU registers across calls, except that DO is
modified by the REMAINDER operation. FP68K modifies the CPU Condition Code
Register as described later.

As detailed in the "Program Notes" document, FP68J< typically uses up to
41 words of stack beyond the input parameters. The on'; exceptions are the
binary-decimal conversion and nextafter routines, which may use up to 120
words beyond the input parameters. ELEMS68K uses at most 30 words of stack
for temporary storage.

Single entry point

FP68K has just one entry point - with the label 'FP68K'. When invoked,
FP68K expects the return address on the stack, followed by a one-word opcode
described in the user's guide. Beyond the opcode are up to three operand
addresses (depending on the operation). Note that because the operands are
passed by address, they must be in memory, NOT IN THE REGISTER FILE.

3

If FP68K is to be invoked by a mechanism like the A-line trap, care must
be taken that stack is set up properly. Depending on the system, it should be
possible to execute FP68K either as a subprogram linked to an application
program, or as system-provided utility.

Because of the varying number of input parameters, it is impossible to
call FP68K directly from Pascal, since the number of parameters is fixed when
the EXTERNAL procedure is defined. In any case programners should use the
provided Pascal interface, called SANE (Standard Apple Numeric Environment).

ELEMS68K has a similar design, but is configured as a separate package
for modularity.

Exit points

Typically, FP68K exits by clearing all input operands from the stack and
jumping to the return address.

l November 83

18-3

18-4
Draft 1.5 FP68K and ELEHS68K System Interface 4

However, a 'halting' mechanism is provided whereby control is transferred
from FP68K to an address saved in the floating-point state area (see below).
This address should refer to a subprogram in the user's code space. When the
halt routine is invoked, the top of the stack is a word containing the number
of bytes of parameters (including the return address) on the stack when FP68K
was originally called. Beyond that word is the exact stack frame from when
FP68K was originally called.

ELEMS68K has no built-in halt mechanism, though a subsidiary FP68K
operation may halt.

State .!.lli.

ELEMS68K maintains no static state. FP68K maintains 3 words of static
state across invocations. The first word contains mode and flag bits, much
like the CPU Status Register. The next long word is the user trap address.
There are two important issues: where is the state area and how is it
initialized?

The state area may be a fixed area in memory, as in MAC, or at a fixed
offset from a register like A6, as in LISA, or in some user area if FP68K is
linked as a subroutine. The state area may even be kept within FP68K itself,
though this makes the code self-modifying and thus NON-REENTRANT.

In multi-process environments, care must be taken to see that different
state areas are kept for the different processes (again, think of the CPU
Status Register). For example, if the state area is kept in a fixed location
in memory, it must be swapped each time a new process is swapped in.

The location of the state area must be known at ASSEMBLY TIME. As
indicated in the programmer's guide document, the code must be set up for the
particular hosr environment.

When a new process is started up, the state area must be initialized.
Fortunately, this is easy. Just clear to O the first word of the state area
(i.e. the mode and flag word).

~ Condition ~ Register

The Comparison operation leaves the CCR in a well-defined state. After
Comparison, the CCR is set for a conditional branch, although the flags are
used in a way different from the integer CPU comparisons; see the "User's
Guide" for details.

CPU Register BQ.

The Remainder operation leaves the low-order integer quotient (between
-127 and +127) in DO.W. The high half of DO.Lis undefined. This intrusion
into the register file is extremely valuable in argument reduction - the
principal use of Remainder. The state of DO after an invalid remainder is

1 November 83

18-5

Draft 1.5 FP68K and .ELEMS68K System Interface 5

undefined.

(

l November 83

,_
"':::i,...;_ _,..

·- ----------·· ~~

18-6
Draft 1.1 FP68K and ELEHS68K High-Level Interface 6

SANE

There is a SANE (Standard Apple Numeric Environment) library of utility
functions based on FP68K, as well as a corresponding Elems library based on
ELEMS68K. These libraries are supported on Apple III Pascal systems as well.
The library provides access to the package from (Lisa) Pascal. Aside from
support of basic arithmetic and elementary functions, the utilities manipulate
the modes and flags and provide ASCII<--> floating-point conversions. All
applications software should use this package because of its high degree of
portability.

Assembly language programmers will invoke FP68K and ELEMS68K directly but
will depend on some library for routines to convert between ASCII strings and
the canonical decimal format which FP68K recognizes. A set of mnemonic MACROS
has been provide to expedite assembly coding.

Compiling Pascal programs

A Pascal program which exploits the SANE and Elems interfaces must
include lines such as

uses {$U <some volume>:SANE.OBJ} SANE;
uses {$U <some volume):ELEMS.OBJ} Elems;

in order to gain access to the types and procedures defined there. Then the
program must be linked with SANE.OBJ and ELEMS.OBJ (the Pascal parts of the
interface), as well as SANEASM.OBJ and ELEMSASM.OBJ (the assembly language
parts of the interface).

Pascal procedures

P~ogrammers should consult the INTERFACE section of the SANE and Elems
interfaces (files SANE.TEXT and ELEMS.TEXT) in the following pages. This
interface reflects the architecture discussed in the "User's Guide". It is
two-address, with the destination operand in the extended format except for
format conversions conversions.

Macros

A set of macros provides direct contact with the arithmetic package,
using the interface described in the "User's Guide". The macros take care of
the opcode and the JSR, but the programmer must explicity push the required
argument addresses. The macros do not take effective address arguments and
push them itself because of the problems that arise if the destination operand
is given as an offset from SP (which changes when the first operand address is
pushed). The macros are listed after the Pascal interface.

l November 83

,

Draft 1.1 FP68K and ELEMS68K High-Level Interface

Sample program

The test programs ITxxx.TEXT, lOxxx.TEXT, and TDFP.TEXT provide a
nontrivial view of how to use the Pascal interface to FP68K and ELEMS68K.

l November 83

18-7
7

18-8

SANE Interface 8

{-he ''SANE Interface'' }
{-fo '28 December 1982'Page %'Apple Confidential' }
{$C Copyright Apple Computer, 1982}
{MacIntosh version.}

UNIT Sane;

INTERFACE

CONST

TYPE

SIGDIGLEN "" 20;

DECSTRLEN • 80;

{ Maximum length of SigDig. }

{ Maximum length of DecStr. }

{---** Numeric types.
--}

Single • array [O •• l) of integer;
Double • array (0 •• 3] of integer;
Comp • array [0 •• 3} of integer;
Extended• array [0 •• 4) of integer;

{---** Decimal string type and intermediate decimal type,
** representing the value:
** c-1)-sgn * 10-exp * dig
---}

SigDig
DecStr
Decimal

• string
• string
• record

sgn
exp
Big

end;

[SIGDIGLEN);
[DECSTRLEN};

0 •• 1; { Sign (0 for pos, l for neg). }
integer; { Exponent. }
SigDig { String of significant digits. }

{---** Modes, flags, and selections.
** NOTE: the values of the style element of the DecForm record
** have different names from the PCS version to avoid name
** conflicts.
---}

Environ
RoundDir
RelOp

• integer;
• (TONEAREST, UPWARD, DOWNWARD, TOWAIU>ZERO);
• (GT, LT, GL, EO, GE, LE, GEL, UNOllD);

{ > < <> - >• <· <•>}
Exception• (INVALID, UNDERFLOW, OVERFLOW, DIVBYZERO,

INEXACT);

1 November 1982 Apple Confidential

1

SANE Interface

NumClass
DecForm

• (SNAN, ONAN, INFINITE, ZERO, NORMAL, DENORMAL);

(FloatDecimal, FixedDecimal);
integer

• record

{ .. ne 35}

style
digits :

end;

{--** Two address, extended-based arithmetic operations.
---}
procedure AddS (x
procedure AddD (x
procedure AddC (x
procedure AddX (x:

{ y :• y + X}

procedure SubS (x
procedure SubD (x
procedure SubC (x
procedure SubX (x

{ y :• y - X}

procedure MulS (x:
procedure MulD (x
procedure MulC (x:
procedure MulX (x

{ y :• y * X}

procedure DivS (x
procedure DivD (x:
procedure DivC (x:
procedure DivX (x

{ y :• y / X}

Single;
Double;
Comp;
Extended;

Single;
Double;
Comp;
Extended;

Single;
Double;
Comp;
Extended;

Single;
Double;
Comp;
Extended;

vary
vary
vary
vary

Extended);
Extended);
Extended);
Extended);

vary Extended);
vary Extended);
vary : Extended);
vary : Extended,;

vary : Extended);
vary Extended);
vary : Extended);
vary Extended);

vary Extended);
vary: Extended);
vary : Extended);
vary: Extended);

function CmpX (x: Extended; r: RelOp;
y : Extended) : boolean;

{ X r y }

function RelX (x, y : Extended) : RelOp;
{ x RelX y, where RelX in [GT, LT, EO, UNORD) }

{---** Conversions between Extended and the other numeric types,
** including the types integer and Longint.
---}
procedure 12X (x integer; vary:
procedure 52X (x: Single; vary:
procedure D2X (x: Double; vary:
procedure C2X (x: Comp; vary
procedure X2X (x: Extended; vary

{ y :• x (arithmetic assignment)

Extended);
Extended);
Extended);
Extended);
Extended);
}

9

1 November 1982 Apple Confidential

18-9

18-10

{"'ne 9 }

SANE Interface

procedure X21 (x Extended; vary
procedure X2S (x: Extended; vary
procedure X2D {x Extended; vary:
procedure X2C {x Extended; vary

{ y := x (arithmetic assignment)

integer);
Single);
Double);
Comp);
}

{--** These conversions apply to 68K systems only. Longint is
** a 32-bit two's complement integer.

---}
procedure L2X {x: Longint; vary : Extended);
procedure X2L {x: Extended; vary : Longint);

{ y :• x (arithmetic assignment) }

{ "'ne 17 }

{"'ne 18

{---** Conversions between the numeric types and the intermediate
** decimal type.
--}
procedure S2Dec (f DecForm; x . Single; var y . Decimal); . .
procedure D2Dec (f . DecForm; x . Double; var y Decimal); . .
procedure C2Dec (f . DecForm; x Comp; var y . Decimal); . .
procedure X2Dec (f . DecForm; x . Extended; var y : Decimal); . .

{ y :ax {according to the format f) }

procedure Dec2S (x . Decimal; var y Single); .
procedure Dec2D (x . Decimal; var y Double); .
procedure Dec2C {x . Decimal; var y Comp); .
procedure Dec2X (x : Decimal; var y Extended);

{ y :• X}

}

{--** Conversions between the numeric types and strings.
** {These conversions have a built-in scanner/parser to convert
** between the intermediate decimal type and a string.)

--}
procedure S2Str (f . DecForm; x . Single; vary : DecStr); . .
procedure D2Str {f . DecForm; x . Double; vary . DecStr); . . .
procedure C2Str (f . DecForm; X Comp; var y . DecStr); . .
procedure X2Str (f . DecForm; x . Extended; vary . DecStr); . . .

{ y :• x (according to the format f) }

procedure Str2S (x : DecStr; vary . Single); .
procedure Str2D (x : DecStr; vary . Double); .
procedure Str2C (x . DecStr; vary . Comp); . .
procedure Str2X (x . DecStr; vary . Extended); . .

{ y :• X}

10

1 November 1982 Apple Confidential

SANE Interface

{"'ne 31 }

{--** Numerical 'library' procedures and functions.

---------------------------------------·-}
procedure RemX (x : Extended; vary : Extended;

var quo
{ new y := remainder of ((old y) / x), such that

lnew YI<• lxl / 2;

integer);

quo := low order seven bits of integer quotient y / x,
so that -127 (a quo<• 127. }

procedure SqrtX (var x Extended);
{ X :ca sqrt (x) }

procedure RintX (var x
{ x :a rounded value

: Extended);
of X}

Extended); procedure NegX (var x
{ X :• -X }

procedure AbsX
{ x :• Ix I }

(var x : Extended);

procedure CpySgnX (var x Extended; y: Extenled);
{ x :ax with the sign of y}

procedure NextS
procedure NextD
procedure NextX

(var x: Single; y : Single);
(var x Double; y: Double);
(var x Extended; y Extended);

{ X :m next representable value from x toward y}

function ClassS (x Single; var
function ClassD (x Double; var
function ClassC (x Comp; var
function ClassX (x . Extended; var .

{ sgn :-= sign of X (0 for pos, 1

pro~edure ScalbX (n . integer; var y .
{ y :• y * 2"'n}

procedure LogbX (var x: Extended);
{ returns unbiased exponent of x

{"'ne 16}

sgn . integer) .
sgn integer)
sgn . integer) .
sgn . integer) .
for neg) }

: Extended);

}

: NumClass;
NumClass;

: NumClass;
: NumClass;

{--** Manipulations of the static numeric state.
---}

procedure SetRnd (r
procedure SetEnv (e
procedure ProcExit(e

: Round Dir) ;
: Environ);

Environ);

function GetRnd : RoundDir;
procedure GetEnv (var e : Environ);
procedure ProcEntry (var e : Environ);

function TestXcp (x . Exception) : boolean; .
procedure SetXcp (x : Exception; OnOff : boolean);
function TestHlt (x . Exception) : boolean; .
procedure SetHlt (x . Exception; OnOff : ·boolean); .

11

1 November 1982 Apple Confidential

18-11

18-12

SANE Interface 12

{----------------------·----------------------}
{ ... sp 32767 }

{----·---·-----------------·------·-----}
IMPLEMENTATION

{$1 SANEIMP.TEXT}

END

1 'November 1982 Apple Confidential

Elems Interface

{$C Copyright Apple Computer Inc., 1983}

UNIT Elems;

{ Macintosh version. }

13

{--}
INTERFACE

USES

{$U OBJ:SANE.OBJ }

SANE { Standard Apple Numeric Environment} ;

procedure Log2X (var x: Extended);
{ x :• log2 (x) }

procedure LnX (var x: Extended);
{ x :• ln (x) }

procedure LnlX (var x Extended);
{ x :• ln (1 + x) }

procedure Exp2X (var x : Extended);
{ X :• 2 .. X}

procedure ExpX (var x Extended);
{ x :• e .. x}

procedure ExplX (var x: Extended);
{ x :• e .. x - 1 }

procedure XpwrI (i : integer; var x: Extended);
{ X :• X .. i }

procedure XpwrY (y : Extended; var x: Extended);
{ X :• x•y}

procedure Compound (r, n: Extended; var x: Extended);
{ x :• (1 + r)·n}

procedure Annuity (r, n : Extended; var x : Extended);
{ x :• (1 - (1 + r) .. -n) / r}

procedure SinX (var x: Extended);
{ x :• sin(x) }

procedure CosX (var x : Extended);
{ x :• cos(x)}

procedure TanX (var x: Extended);
{ x :• tan(x) }

1 November 1982 Apple Confidential

18-13

18-14

Elems Interface

procedure AtanX (var x: Extended);
{ x :• atan(x)}

procedure NextRandom (var x: Extended);
{ x := next random (x)}

14

{Sp--1
IMPLEMENTATION

·END

procedure Log2X { (var x : Extended) } ;
procedure LnX { (var x : Extended)} ;
procedure LnlX { (var x: Extended)} ;
procedure Exp2X { (var x : Extended) } ;
procedure ExpX { (var x: Extended)} ;
procedure ExplX { (var x: Extended)} ;

{

EXTERNAL;
EXTERNAL;
EXTERNAL;
EXTERNAL;
EXTERNAL;
EXTERNAL;

Since Elems implementation expects pointer to integer argument,
use this extra level of interface.

}
procedure Xpwrlxxx(var i : integer; var x: Extended); EXTERNAL;
procedure XpwrI { (i : integer; var x: Extended)} ;
begin

Xpwrlxxx(i, x);
end;

procedure XpwrY { (y : Extended; var x: Extended)} ; EXTERNAL;
procedure Compound { (r, n: Extended; var x: Extended)} ; EXTERNAL;
procedure Annuity { {r, n : Extended; var x: Extended) } ; EXTERNAL;
procedure SinX { {var x Extended)} ; EXTERNAL;
procedure CosX { {var x Extended)} ; EXTERNAL;
procedure TanX { (var x Extended)} ; EXTERNAL;
procedure AtanX { (var x: Extended)} ; EXTERNAL;
procedure NextRandom { {var x: Extended) } ; EXTERNAL;

{•ama=asaaaaa•m••m=a••••••••mm~aa•aa~=a•••=••••=••mm•maaGa=a•••a•••=a===c}
{•••=•=•=aam=••••••••••••maaaa--••••=••••maa=••••••••••--•••ma•mc•amaaeaa)
{•••a=•••amm••••=•m••••=aaaacaaa•••--==••••••••a--•--••c=ammammaamm•••m•}.

l November 1982 Apple Confidential

' ,

FP68K and ELEMS68K Macros

;---
These macros give assembly language access to the Mac
floating-point arithmetic routines. The arithmetic has
just one entry point. It is typically accessed through
the tooltrap _FP68K, although a custom version of the
package may be linked as an object file, in which case
the entry point is the label %FP68K.

All calls to
PEA
PEA
MOVE.W

FP68K

the arithmetic take the
<source address>
(destination address>
(opcode>,-(SP)

form:

All operands are passed by address. The (opcode> word
specifies the instruction analogously to a 68000 machine
instruction. Depending on the instruction, there may be
from one to three operand addresses passed.

This definition file specifies details of the <opcode)
word and the floating point state word, and defines
some handy macros.

Modification history:
29AUG82: WRITTEN BY JEROME COONEN
130CT82: FB CONSTRANTS ADDED (JTC)
28DEC82: LOGB, SCALB ADDED, INF MODES OUT (JTC).
29APR83: ABS, NEG, CPYSGN, CLASS ADDED (JTC).
03MAY83: NEXT, SETXCP ADDED (JTC).
28MAY83: ELEMENTARY FUNCTIONS ADDED (JTC).
04JUL83: SHORT BRANCHES, TRIG AND RAND ADDED {JTC).
01NOV83: PRECISION CONTROL MADE A MODE (JTC) •

. ---
;--
; This constant determines whether the floating point unit
; is accessed via the system dispatcher after an A-line
; trap, or through a direct subroutine call to a custom
; version of the package linked directly to the application.

·--·· -' ATRAP
BTRAP

.MACRO

.IF
_FP68K
.ELSE
.REF
JSR
.ENDC
.ENDM

1 November 83

.EQU

.EQU

JSRFP
ATRAP

FP68K
FP68K

0
0

;O for JSR and l for A-line
;O for JSR and l for A-line

18-15

15

18-16

.MACRO JSRELEMS

.IF BTRAP
ELEMS68K

7ELSE
.REF ELEMS68K
JSR ELEHS68K
.ENDC
.ENDM

FP68K and ELEHS68K Macros

;---
OPERATION MASKS: bits $001F of the operation word
determine the operation. There are two rough classes of

; operations: even numbered opcodes are the usual
arithmetic operations and odd numbered opcodes are non

; arithmetic or utility operations.
;--
FOADD
FOSUB
FOMUL
FODIV
FOCMP
FOCPX
FOREM
FOZ2X
FOX2Z
FOSQRT
FORTI
FOTTI
FOSCALB
FOLOGB
FOCLASS
; UNDEFINED

FOSETENV
FOGETENV
FOSETTV
FOGETTV
FOD2B
FOB2D
FONEG
FOABS
FOCPYSGNX
FONEXT
FOSETXCP
FOPROCENTRY
POPROCEXlT
FOTESTXCP
; UNDEFINED
; UNDEFINED

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

$0000
$0002
$0004
$0006
$0008
$000A
$000C
$000E
$0010
$0012
$0014
$0016
$0018
$001A
$001C
$001E

$0001
$0003
$0005
$0007
$0009
$000B
$000D
$000F
$0011
$0013
$0015
$0017
$0019
$001B
$001D
$001F

;--
1 November 83

16

;

FP68K and ELEMS68K Macros

; OPERAND FORMAT MASKS: bits $3800 determine the format of
; any non-extended operand.
·--' FFEXT .EQU $0000 . extended -- 80-bit float ,
FFDBL .EQU $0800 . double - 64-bit float ' FFSGL .EQU $1000 . single -- 32-bit float ' FFINT .EQU $2000 integer - 16-bit integer
FFLNG .EQU $2800 . long int -- 32-bit integer ' FFCOMP .EQU $3000 ; accounting - 64-bit int

;--

.
'

Bit indexes for error and halt bits and rounding modes in
the state word. The word is broken down as:

; $8000 -- unused

.
'

$6000 rounding
$0000
$2000
$4000
$6000

modes
to nearest
toward +infinity
toward -infinity
toward zero

$1FOO -- error flags
$1000 -- inexact
$0800 - division by zero
$0400 - overflow
$0200 - underflow
$0100 - invalid operation

$0080 - result of last rounding
$0000 - rounded down in ugnitude
$0080 - rounded up in magnitude

$0060 - precision control
$0000 -- extended
$0020 - double
$0040 single
$0060 - ILLEGAL

$001F - halt enables, corresponding to error flags

; The bit indexes are based on the byte halves of the state
; word.

;---
FBINVALID .EQU O ; invalid operation
FBUFLOW .EQU 1 ; underflow
FBOFLOW .EQU 2 ; overflow
FBDIVZER .EQU 3 division by zero
FBlNEXACT .EQU 4 ; inexact
FBRNDLO .EQU 5 ; low bit of rounding mode
FBRNDHI .EQU 6 ; high bit of rounding mode
FBLSTRND .EQU 7 ; last round result bit
FBDBL .EQU 5 ; double precision control

1 November 83

18-17

17

18-18

FP68K and ELEMS68K Macros

FBSGL .EQU 6 ; single precision control

;--
FLOATING CONDITIONAL BRANCHES: floating point comparisons
set the CPU condition code register (the CCR) as follows:

; relation X NZ V C

equal O O 1 0 0
less than l l O O 1
greater than O O O O 0

unordered O O O 1 0
; The macros below define a set of so-called floating

branches to spare the programmer repeated refernces
the table above.

to the

;--
.MACRO FBEQ
BEQ %1
.ENDM

.MACRO FBLT
BCS %1
.ENDM

.MACRO FBLE
BLS %1
.ENDM

.MACRO FBGT
BGT %1
.ENDM

.MACRO FBGE
BGE %1
.ENDM

.MACRO FBULT
BLT %1
.ENDM

.MACRO FBULE
BLE %1
.ENDM

.MACRO FBUGT
BHI %1
.ENDM

.MACRO FBUGE
BCC %1
.ENDM

.MACRO FBU
BVS %1

1 November 83

18

18-19
FP68K and ELEMS68K Macros 19

.ENDM

.MACRO FBO
BVC .%1
.ENDM

.MACRO FBNE
BNE %1
.ENDM

.MACRO FBUE
BEO %1
BVS %1
.ENDM

.MACRO FBLG
BNE %1
BVC %1
.ENDM

. Short branch versions • f

.MACRO FBEQS
BEQ.S %1
.ENDM

.MACRO FBLTS
BCS.S %1
.ENDH

.MACRO FBLES
BLS.S %1
.ENDM

.MACRO FBGTS
BGT.S %1
.ENDM

.MACRO FBGES
BGE.S %1
.ENDH

.MACRO FBULTS
BLT.S %1
.ENDM

.MACRO FBULES
BLE.S %1
.ENDH

.MACRO FBUGTS
BHI.S %1
.ENDM

1 November 83

18-20

FP68K and ELEHS68K Macros

.MACRO FBUGES
BCC.S %1
.ENDM

.MACRO FBUS
BVS.S %1
.ENDM

.MACRO FBOS
BVC.S %1
.ENDM

.MACRO FBNES
BNE.S %1
.ENDM

.MACRO FBUES
BEQ.S %1
BVS.S %1
.ENDM

.MACRO FBLGS
BNE.S %1
BVC.S %1
.ENDM

;--
; OPERATION MACROS:

. •

THESE MACROS REQUIRE THAT THE OPERANDS' ADDRESSES
FIRST BE PUSHED ON THE STACK. THE MACROS CANNOT
THEMSELVES PUSH THE ADDRESSES SINCE THE ADDRESSES
MAY BE SP-RELATIVE, IN WHICH CASE THEY REQUIRE
PROGRAMMER CARE.

; OPERATION MACROS: operand addresses should already be on
the stack, with the destination address on top. The

; suffix X, D, s, or C determines the format of the source
; operand - extended, double, single, or computational
; respectively; the destination operand is always extended.

·--•

;---
; Addition. i----------------------------------.MACRO FADDX

HOVE.W IFFEXT+FOADD,-{SP)
JSRFP
.ENDM

.MACRO FADDD
HOVE.W IFFDBL+FOADD,-{SP)
JSRFP
.ENDM

1 'November 83

20

FP68K and ELEMS68K Macros

.MACRO FADDS
HOVE.W #FFSGL+FOADD,-(SP)
JSRFP
.ENDM

.MACRO FADDC
MOVE.W #FFCOMP+FOADD,-(SP)
JSRFP
.ENDM

;--
; Subtraction.
;---

.MACRO FSUBX
MOVE.W UFFEXT+FOSUB,-(SP)
JSRFP
.ENDM

.MACRO FSUBD
MOVE.W #FFDBL+FOSUB,-(SP)
JSRFP
.ENDM

.MACRO FSUBS
MOVE.W #FFSGL+FOSUB,-(SP)
JSRFP
.ENDM

.MACRO FSUBC
MOVE.W #FFCOMP+FOSUB,-(SP)
JSRFP
.ENDM

·------~-----------------------------------•
; Multiplication. ·----------------------------------• .MACRO FHULX

MOVE.W #FFEXT+FOMUL,-(SP)
JSR.FP
.ENDM

.MACRO FMULD
MOVE.W #FFDBL+FOMUL,-(SP)
JSRFP
.ENDM

.MACRO FMULS
MOVE.W #FFSGL+FOMUL,-(SP)
JSRFP
.ENDM

l November 83

18-21
21

18-22
FP68K and ELEMS68K Macros

.MACRO FMULC
MOVE.W IFFCOMP+FOMUL,-(SP)
JSRFP
.ENDM

;---
; Division.

;---
.MACRO FDIVX
MOVE.W IFFEXT+FODIV,-(SP)
JSRFP
.ENDM

.MACRO FDIVD
MOVE.W #FFDBL+FODIV,-(SP)
JSRFP
.ENDM

.MACRO FDIVS
MOVE.W IFFSGL+FODIV,-(SP)
JSRFP
.ENDM

.MACRO FDIVC
MOVE.W #FFCOMP+FODIV,-(SP)
JSRFP
.ENDM

;--
; Compare, signaling no exceptions.
;---

.MACRO FCMPX
HOVE.W IFFEXT+FOCMP,-(SP)
JSRFP
.ENDM

.MACRO FCMPD
HOVE.W IFFDBL+FOCMP,-(SP)
JSRFP
.ENDM

.MACRO FCMPS
MOVE.W #FFSGL+FOCMP,-(SP)
JSRFP
.ENDM

.MACRO FCMPC
HOVE.W #FFCOMP+FOCMP,-(SP)
JSRFP
.ENDM

l November 83

22

FP68K and ELEMS68K Macros

;--
; Compare, signaling invalid operation if the two operands
; are unordered.
;--

.MACRO FCPXX
MOVE.W #FFEXT+FOCPX,-(SP)
JSRFP
.ENDM

.MACRO FCPXD
MOVE.W llFFDBL+FOCPX,-(SP)
JSRFP
.ENDM

.MACRO FCPXS
MOVE.W #FFSGL+FOCPX,-(SP)
JSRFP
.ENDM

.MACRO FCPXC
HOVE.W UFFCOMP+FOCPX,-(SP)
JSRFP
.ENDM

;--
; Remainder. The remainder is placed in the destination,
; and the low bits of the integer quotient are placed in
; the low word of register DO.
;---

.MACRO FREMX
MOVE.W #FFEXT+FOREM,-(SP)
JSRFP
.ENDM

.MACRO FREMD
MOVE.W 0FFDBL+FOREM,-(SP)
JSRFP
.ENDH

.MACRO FREMS
MOVE.W #FFSGL+FOREM,-(SP)
JSRFP
.ENDM ·

.MACRO FREMC
MOVE.W #FFCOMP+FOREM,-(SP)
JSRFP
.ENDM

·---,
; Compare the source operand to the extended format and
; place in the destination.

1 November 83

18-23
23

18-24
FP68K and ELEMS68K Macros 24

;--
.MACRO FX2X
MOVE.W #FFEXT+FOZ2X,-(SP)
JSRFP
.ENDM

.MACRO FD2X
MOVE.W #FFDBL+FOZ2X,-(SP)
JSRFP
.ENDM

.MACRO FS2X
MOVE.W llFFSGL+FOZ2X,-(SP)
JSRFP
.ENDM

.MACRO Fl2X 16-bit integer
MOVE.W #FFINT+FOZ2X,-(SP)
JSRFP
.ENDM

.MACRO FL2X ; 32-bit integer
MOVE.W UFFLNG+FOZ2X,-(SP)
JSRFP
.ENDM

.MACRO FC2X
MOVE.W HFFCOMP+FOZ2X,-(SP)
JSRFP
.ENDM

;---
; Convert the extended source operand to the specified
; format and place in the destination.

;--
.MACRO FX2D
MOVE.W UFFDBL+FOX2Z,-(SP)
JSRFP
.ENDM

.MACRO FX2S
MOVE.W #FFSGL+FOX2Z,-(SP)
JSRFP
.ENDM

.MACRO FX21 ; 16-bit integer
HOVE.W IFFINT+FOX2Z,-(SP)
JSRFP
.ENDM

.MACRO FX2L ; 32-bit integer
MOVE.W IFFLNG+FOX2Z,-(SP)
JSRFP

1 November 83

FP68K and ELEMS68K Macros

.ENDM

.MACRO FX2C
HOVE.W #FFCOMP+FOX2Z,-(SP)
JSRFP
.ENDM

;---
; Miscellaneous operations applying only to extended
; operands. The input operand is overwritten with the
; computed result.
;---

Square root •
• MACRO FSQRTX
MOVE.W P.FOSQRT,-(SP)
JSRFP
.ENDM

Round to integer, according to the current rounding ~ode •
• MACRO FRINTX
MOVE.W #FORTI,-(SP)
JSRFP
.ENDM

Round to integer, forcing rounding toward zero •
• MACRO FTINTX
MOVE.W UFOTTI,-(SP)
JSRFP
.ENDM

; Set the destination to the product:
(destination)* 2·csource)

; where the source operand is a 16-bit
• MACRO FSCALBX
MOVE.W HFFINT+FOSCALB,-(SP)
JSRFP
.ENDM

integer •

; Replace the destination with its exponent, converted to
; the extended format •

• MACRO FLOGBX
MOVE.W OFOLOGB,-(SP)
JSRFP
.ENDM

·--' ; Non-arithmetic sign operations on extended operands.

;---
; Negate •

• MACRO FNEGX

l November 83

18-25
25

18-26
FP68K and ELEMS68K Macros

MOVE.W #FONEG,-(SP)
JSRFP
.ENDM

Absolute value •
• MACRO FABSX
MOVE.W HFOABS,-(SP)
JSRFP
.ENDM

; Copy the sign of the destination operand onto the sign of
; the source operand. Note that the source operand is

modified •
• MACRO FCPYSGNX
MOVE.W #FOCPYSGN,-(SP)
JSRFP
.ENDM

The nextafter operation replaces the source operand with
its nearest representable neighbor in the direction of the
destination operand. Note that both operands are of the
the same format, as specified by the usual suffix •

• MACRO FNEXTS
MOVE.W #FFSGL+FONEXT,-(SP)
JSRFP
.ENDM

.MACRO FNEXTD
MOVE.W #FFDBL+FONEXT,-(SP)
JSRFP
.ENDM

.MACRO FNEXTX
MOVE.W IFFEXT+FONEXT,-(SP)
JSRFP
.ENDM

;------------------------------------
; The classify operation places an integer in the
; destination. The sign of the integer is the sign of the
; source. The magnitude is determined by the value of the
; source, as indicated by the equates.

;--FCSNAN .EQU 1 ; signaling NAN
FCONAN .EQU 2 ; quiet NAN
FCINF .EQU 3 . infinity ' FCZERO .EQU 4 . zero ' FCNORM .EQU 5 . normal number ' FCDENORM .EQU 6 ; denormal number

1 November 83

26

,

'

FP68K and ELEHS68K Macros

.MACRO FCLASSS
MOVE.W IFFSGL+FOCLASS,-{SP)
JSRFP
.ENDM

.MACRO FCLASSD
MOVE.W 0FFDBL+FOCLASS,-(SP)
JSRFP
.ENDH

.MACRO FCLASSX
MOVE.W #FFEXT+FOCLASS,-(SP)
JSRFP
.ENDH

.MACRO FCLASSC
HOVE.W #FFCOHP+FOCLASS,-(SP)
JSRFP
.ENDM

;--
; These four operations give access to the floating point
; state (or environment) word and the halt vector address.
; The sole input operand is a pointer to the word or address
; to be placed into the arithmetic state area or read from
; it.

;--
.MACRO FGETENV
MOVE.W IFOGETENV,-(SP)
JSRFP
.ENDM

.MACRO FSETENV
HOVE.W tlFOSETENV,-(SP)
JSRFP
.ENDM

.MACRO FGETTV
MOVE.W IFOGETTV,-(SP)
JSRFP
.ENDM

.MACRO FSETTV
MOVE.W #FOSETTV,-(SP)
JSRFP
.ENDM

;--
; Both FPROCENTRY and FPROCEXIT have one operand - a
; pointer to a word. The entry procedure saves the current
; floating point state in that word and resets the state
; to 0, that is all modes to default, flags and halts to
; OFF. The exit procedure performs the sequence:

1 November 83

18-27
27

18-28

FP68K and ELEMS68K Macros

1. Save current error flags in a temporary.
2. Restore the state saved at the address given by

the parameter.
J. Signal the exceptions flagged in the temporary,

halting if so specified by the newly
restored state word.

These routines serve to handle the state word dynamically
; across subroutine calls.

;---
.MACRO FPROCENTRY
MOVE.W #FOPROCENTRY,-(SP)
JSRFP
.ENDM

.MACRO FPROCEXIT
MOVE.W IFOPROCEXIT,-(SP)
JSRFP
.ENDM

;---
• FSETXCP is a null arithmetic operation which stimulates

the indicated exception. lt may be used by library
routines intended to behave like elementary operations.
The operand is a pointer to an integer taking any value
between FBINVALID and FBINEXACT.

•

FTESTXCP tests the flag indicated by the integer pointed
to by the input address. The integer is replaced by a
Pascal boolean (word $0000•false, $0100•true)

.MACRO FSETXCP
HOVE.W #FOSETXCP,-(SP)
JSRFP
.ENDM

.MACRO FTESTXCP
MOVE.W #FOTESTXCP,-(SP)
JSRFP
.ENDM

·---------------------------------------WARNING: PASCAL ENUMERATED TYPES, LIKE THOSE OF THE
DECIMAL RECORD, ARE STORED IN THE HIGH-ORDER BYTE OF THE
ALLOCATED WORD, IF POSSIBLE. THUS THE SIGN HAS THE
INTEGER VALUE O FOR PLUS AND 256 (RATHER THAN 1)
FOR MINUS.
BINARY-DECIMAL CONVERSION: The next routines convert
between a canonical decimal format and the binary format
specified. The decimal format is defined in Pascal as

CONST
SIGDIGLEN • 20;

1 November 83

28

,

TYPE

FP68K and ELEMS68K Macros

SigDig c string [SlGDIGLEN];
Decimal -= record

sgn: 0 •• 1;
exp
sig

end;

: integer;
SigDig

Note that Lisa Pascal stores the sgn in the high-order
byte of the allotted word, so the two legal word values
of sgn are O and 256.

;--

;--
Decimal to binary conversion is governed by a format
record defined in Pascal as:

TYPE
DecForm .. record

style
digits

end;

(FloatDecimal, FixedDecimal);
integer

; Note again that the style field is stored in the high
; order byte of the allotted word.

; These are the only operations with three operands. The
pointer to the format record is deepest in the stack,
then the source pointer, and finally the destination

; pointer.

;---
.MACRO
HOVE.W
JSRFP
.ENDM

.MACRO
MOVE.W
JSRFP
.ENDM

.MACRO
MOVE.W
JSRFP
.ENDH

.MACRO
MOVE.W
JSRFP
.ENDM

FDEC2X
#FFEXT+FOD2B,-(SP)

FDEC2D
#FFDBL+FOD2B,-(SP)

FDEC2S
#FFSGL+FOD2B,-(SP)

FDEC2C
IFFCOMP+FOD2B,-(SP)

;--
1 November 83

18-29
29

18-30
FP68K and ELEMS68K Macros

; Binary to decimal conversion.
;---

• MACRO FX2 DEC
MOVE.W #FFEXT+FOB2D,-(SP)
JSRFP
.ENDM

.MACRO FD2DEC
MOVE.W #FFDBL+FOB2D,-(SP)
JSRFP
.ENDM

.MACRO FS2DEC
MOVE.W UFFSGL+FOB2D,-(SP)
JSRFP
.ENDM

.MACRO FC2DEC
MOVE.W #FFCOMP+FOB2D,-(SP)
JSRFP
.ENDM

;--
; Equates and macros for elementary functions.
;--
FOLNX .EQU $0000
FOLOG2X .EQU $0002
FOLNlX .EQU $0004
FOLOG21X .EQU $0006

FOEXPX .EQU $0008
FOEXP2X .EQU $000A
FOEXPlX .EQU $000C
FOEXP21X .EQU $000E

FOXPWRI .EQU $8010
FOXPWRY .EQU $8012
FOCOMPOUNDX .EQU $C014
FOANNUITYX .EQU $C016

FOSINX .EQU $0018
FOCOSX .EQU $001A
FOTANX .EQU $001C
FOATANX .EQU $001£
FORANDOMX .EQU $0020

.MACRO FLNX
MOVE.W #FOLNX,-(SP)
JSRELEMS
.ENDM

.MACRO FLOG2X
MOVE.W fFOLOG2X,-(SP)

l November 83

30

JSRELEHS
.ENDM

.MACRO FLNlX

FP68K and ELEMS68K Macros

MOVE.W #FOLNlX,-(SP)
JSRELEMS
.ENDM

.MACRO FLOG21X
MOVE.W 0FOLOG21X,-(SP)
JSRELEMS
.ENDM

.MACRO FEXPX
MOVE.W OFOEXPX,-(SP)
JSRELEMS
.ENDM

.MACRO FEXP2X
MOVE.W #FOEXP2X,-(SP)
JSRELEMS
.ENDM

.MACRO FEXPlX
MOVE.W #FOEXPlX,-(SP)
JSRELEMS
.ENDM

.MACRO FEXP21X
HOVE.W #FOEXP21X,-(SP)
JSRELEMS
.ENDM

.MACRO FXPWR.I
MOVE.W IFOXPWRI,-(SP)
JSRELEMS
.ENDM

.MACRO FXPWRY
MOVE.W #FOXPWRY,-(SP)
JSRELEMS
.ENDM

.MACRO FCOMPOUNDX
MOVE.W UFOCOMPOUNDX,-(SP)
JSRELEHS
.ENDM

.MACRO FANNUITYX
MOVE.W IFOAHNUITYX,-(SP)
JSRELEHS
.ENDH

.MACRO FSINX

1 November 83

18-31
31

18-32
FP68K and ELEHS68K Macros

MOVE.W IFOSINX,-(SP)
JSRELEMS
.ENDH

.MACRO FCOSX
MOVE.W #FOCOSX,-(SP)
JSRELEMS
.ENDM

.MACRO FTANX
MOVE.W #FOTANX,-(SP)
JSRELEHS
.ENDM

.MACRO FATANX
MOVE.W #FOATANX,-(SP)
JSRELEMS
.ENDM

.MACRO FRANDOHX
MOVE.W #FOR.ANDOHX,-(SP)
JSRELEHS
.ENDM

;--;--;--· ;---

l November 83

32

Draft 1.1 FP68K Integer Conversion Tests 33

Introduction

FP68K provides conversions between the extended floating-point format and
three integer formats:

int16
int32
comp64

16-bit two's complement
32-bit two's complement
64-bit two's complement with the reserved value
hexadecimal 8000000000000000.

One Pascal program, ITBATTERY.TEXT, tests all three conversions. This
document describes how to use and, if necessary, modify the tests.

Compiling.!!!!!_ running

ITBATTERY.TEXT uses the SANE interface (see the "High Level Interface"
document, so it must be linked with the SANE object fil~s, as well as with the
usual nonarithmetic Pascal run-time libraries (e.g. *MPASLIB on Lisa). The
program will simply run to completion, with a Pascal HALT if an error is
found; execution time may run to 15 minutes on a Lisa system.

What is tested ---
Each of the integer formats is tested in two phases. First, a collection

of specific extended numbers is converted to the integer format, with tests
for correct rounding and signaling of the invalid exception when appropriate.
Then a set of

integer-> extended-> integer

conversions is run, with the input and output integers compared for equality.
In the case of intl6, all 2-16 cases are run. However exhaustive testing of
int32 and comp64 is infeasible so a loop is set up to do 2·16 tests from
several starting points.

5 January 83

18-33

18-34
Draft 1.1 IEEE Tests 34

Introduction

The most important and rigorous set of tests of FP68K is the aet of
so-called IEEE test vectors. These tests, developed by the author while at
Zilog, are used to test implementations of proposed standard P754. They were
donated to the IEEE subcommittee 754 by Zilog Inc., and are now distributed by
that subcommittee. The tests have undergone major revision within Apple,
thanks especially to Jim Thomas of PCS.

!2!!, of~ tests

Each vector is an ascii string describing an operation, operands, and the
result. For example, "lincl" is the floating-point number (of the format
under consideration) next larger than 1. When "l" is subtracted from "lincl",
the result is "lulpl 11

, just one unit in the last place of 1. Written this
way, the vectors may be applied to any floating-point format. The tests
carefully inspect the nuances of rounding and exception handling. A document
is under development to explain in detail the next release of the test
vectors, scheduled for early 1983, after some last details of the standard are
cleared up.

Files

The test vectors are contained in a family of files by the name of
TVxxxx.2.TEXT and TWxxx.2.TEXT. The "2" refers to version 2 of the tests.
(Version 1 was baaed on Draft 8.0 of the standard.) The file TLIST.TEXT is a
list of the test file names to be used in any given run of the test. Pascal
file TD68.TEXT with unit TD68FP.TEXT actually run the tests. These interface
with FP68K exclusively through the SANE interface.

S January 83

;

Draft 1.1 Binary-Decimal Tests

Introduction

Since the binary<-> conversions within FP68K approximate the
mathematical identity operation, they lend themselves to certain types of
self-testing. For example, if enough decimal digits are kept, then the
conversion

binary-> decimal-> binary

is the identity mapping when results are rounded to nearest. The number of
digits required turns out to be 9 for single and 17 for double. A similar
test performs the first conversion rounding toward plus infinity and the
second rounding toward minus infinity. In this case the final result may
differ from the starting value by one unit in the direction of the latter
rounding, so the program allows this discrepancy.

35

This document describes the test files and how they can be run. For
details of the underlying error analysis (which is qui~e subtle) see the paper
"Accurate Yet Economical Binary-Decimal Conversions" b1 J. Coonen.

Test programs

The test programs are:

IOS.TEXT
IOSF.TEXT
!OD.TEXT
IODF.TEXT
!ONAN.TEXT
IOPSCAN.TEXT

The letter "S" and "D" distinguishes single and double tests. The !OS.TEXT
and !OD.TEXT tests run with both rounding to nearest and the directed
rounding&. The "F" tests use fixed-format output rather than floating-format
output for the intermediate decimal string. The IOPSCAN test is used to check
the preformance of the printer and scanner used by SANE68, and included from
file SAPSCAN.TEXT. The IONAN test checks the input and output conversion of
some 20 stock NANs, and then allows the user to enter any decimal string to be
converted to the three formats in three rounding modes. Neither IOPSCAN nor
IONAN are self-checking; rather, the user must monitor their output.

The tests cover extreme intervals where the decimal numbers are sparsest
and densest with respect to the binary numbers. Sparse intervals have the
form [1o·N, 2·n] where the endpoints are nearly equal. Dense intervals have
the corresponding form [2•m, 10.M).

Running the tests

Each of the programs is compiled and run separately. The programs use
the SANE interface. A test will HALT with a suitable diagnostic if the test

5 January 83

18-35

18-36

Draft 1.1 Binary-Decimal Tests

fails.

The single format cases are few enough that their tests can be run
overnight. However, the double format cases will run essentially forever
since the number of interesting cases is so great. A few overnight tests
should be sufficient.

5 January 83

36

Draft 1.2 SANE Binary-Decimal Conversion 37

Background

The so-called I/0 routines for scanning and printing floating-point
numbers in decimal form are complicated by subtle numerical issues and
nettlesome design decisions. For example, even the simplest, stripped-down
conversion routines require over one-third the code space (about 1.3K) of the
rest of the FP68K binary floating-point package. With a full parser and
formatter, the conversion routines are much larger. And it is unclear whether
full routines would be flexible enough for use in different language systems
and l/0-intensive applications like Visi-Calc.

Where does the responsibility lie? This note argues that the core
conversion routines, which are part of the arithmetic package, should be kept
very simple. Above them -- somewhere in the system - should be a full
scanner and formatter available to languages and applications, but not forced
upon them. This would lead to the most efficient use of code space and
execution time.

The Sad Truth

Numerical l/0 can be monstrous. Since each computer language has its own
grammar for floating-point numbers and its own conventions for output format,
it almost necessary for each language system on a computer to provide
significant 1/0 support. Unfortunately, this may be layered upon the host
system's 1/0 system. And it is not unusual (Apple Ill, for example) for a
language compiler to use different conversion routines than the I/0 system the
compiled code utilizes.

In another case, designers of the UNIX operating system attempted to
route all conversion through the routines atof(), ascii to floating, and the
pair ecvt(), fcvt() for floating and fixed conversion to ascii. But even this
fairly clean design has led to VERY complicated software shells around atof,
ecvt, and fcvt. Numerical accuracy aside, the complexity of just the
character hacking is forbidding.

One problem with the UNIX design lies in its failure to properly divide
responsibility for the distinct processes involved in conversion, namely:

1. Recognize floating-point strings (in compilers, •••)
2. Translate strings to numerical values.
3. Determine which output format (fixed or floating) is

appropriate for a given value.
4. Translate a numerical value to a string.

The utilities atof() and ecvt() provide items 2 and 4. Item 3, printing a
number in its "nicest" form is provided in rough form through ecvt(). But
recognizing strings is left to each language compiler's lexical scanner.
Unfortunately, after a scanner has parsed a floating decimal string, it passes
it along to atof() where it is parsed once more.

18 January 1983

18-37

18-38
Draft 1.2 SANE Binary-Decimal Conversion 38

! Proposal for Change

(1) Support, at the arithmetic level, conversions between each of the
available binary floating-point types and one decimal structure describable in
Pascal as:

{*
** Low-level format of the floating decimal value:
** (-l)Asgn * lOAexp * dig
** The constant DECSTRLEN is 20 for MAC and 28 for Ill, since
** the latter uses very high precision for intermediates.
*}
type

DecStr • string[DECSTRLEN]
Decimal• record

sgn: 0 •• 1; {O for+, 1 for-}
exp: integer;
sig: DecStr

end;

(2) Rigidly specify the format of Decimal.sig for decimal to binary
conversions, relying upon a lexical scanner to perform the first parse. The
decimal value would depend upon the first character of decree.dig:

'I'
'Nxxx ••• x'
'0'
'ddd ••• d'

-> infinity
-> NAN, with optional ascii hex digits 0-9, A-F, a-f
-> zero
--> string of digits stripped of leading and trailing zeros

The digit string would never be more than 20 digits long. If present, the
20-th digit would indicate the absence of nonzero trailing digits beyond the
20-th (to aid in correct rounding).

(3) Specify decimal output format through a structure like the Pascal:

{*
** Output format specifier.
*}
type

DecForm • record

end;

style: (float, fixed);
digits: integer

For "float" conversions, digits is the number of significant digits to be
delivered in Decimal.Big. For "fixed" conversions, count is the number of
fraction digits to be converted (a negative count suppresses conversion of
low-order integer digits).

Sometimes it is desired to print a number in the nicest form possible for
a given field width. For example, the string "1.23456789" conveys much more
information in 10 characters than does "1.2345e+04". Such conversions are

18 January 1983

Draft 1.2 SANE Binary-Decimal Conversion 39

discussed in the next section.

(4) Provide a scanner and formatter which, if not of most general use,
provide models that can be tailored to a particular application. Samples are
built into the implementation section of the SANE Pascal interface; they are
contained in the file SAPSCAN.TEXT.

Binary-> Decimal

The family of routines:

S2Dec
D2Dec
X2Dec
C2Dec

provide conversions to the Decimal record format described above. Special
cases are keyed by the first character of Decimal.sig:

'O' : zero
'I' infinity
'N' : not-a-number, followed by optional ascii hex digits; if there are

fewer than four, they are padded on the left with O's.
'?' : overflow of fixed-style format

These must be used with a formatter to produce output strings.

The family:

S2Str
D2Str
X2Str
C2Str

uses the built-in formatter, Dec2Str, to generate ascii string output.

Decimal-> Binary

These conversions are povided by the complementary set of procedures:
Dec2S, Dec2D, Dec2X, Dec2C, and Str2S, Str2D, Str2X, Str2C. In the case of
the Dec2* conversions, the first character of Decimal.sig indicates special
cases as noted above for *2Dec conversions.

Infinity ~ ~ conversions

lnfini ty is printed and read as a string of sign characters, "+++++" or
"-".

On input, NANs have the general form NAN'xxxx:yyy ••• y'. The x's and y's
should be ascii hex digits: 0-9, A-F, a-f. The string portion following NAN
may be omitted. The x's are padded on the LEFT with O's to width 4. The y's
are padded on the RIGHT with O's to the width of the NAN's significant bit

18 January 1983

18-39

18-40
Draft 1.2 SANE Binary-Decimal Conversion

field.

On output, NANs will be printed in the same format.
trailing y•O are omitted, but at least one xis printed.
colon and they field is dropped.

Any unrecognizable string is converted to a NAN.

18 January 1983

40

Leading x•O and
If all y•O, then the

Draft 1.0 Free Format Decimal Output 41

Background

Applications like accounting spreadsheets typically need to display
floating-point values in decimal form within a field of fixed width. For
maximum readability, the output should be in integer or fixed-point format if
possible, with floating-point format as a last resort. The idea is to avoid
listing small integers in the abominable form O.lOOOOOOOOOOOEl reminiscent of
computing in the McCarthy era •

.!!!!, problem

Given a binary floating-point number X and an ascii field F, display X in
the "nicest", most informative way within F.

! proposal

1. If X may be displayed in a subfield of F, pad X on the left with blanks.

2. Display the sign of X only if it is ,_,
•

3. If Xis an integer and Fis wide enough to accommodate X, then display X as
an integer, without a trailing '•'•

4. Else if X has nonzero integer and fraction parts and Fis wide enough to
accommodate at least the integer part of F and its trailing '•', then display
X in the fixed-point form zzzz.yyyy with as many fraction digits as F will
accommodate, up to a maximum of 17 significant digits.

S. Else if IXI < 1 and Fis wide enough that X may be displayed in the form
O.OOOOOZZZZZ with no more Os just to the right of the decimal point than
digits following those Os, then display X in that fixed-point form with up to
17 significant digits.

6. Finally, if all the above fail, then display X in the floating-point form
z.ZZZZZEYYY with as many significant digits up to 17 as F will accommodate,
taking into account the width of the exponent field, including its possible
sign. Display the sign of the exponent field only if it is •-•.

~ implementation

The above choices depend on detailed knowledge of the magnitude of x.
For example, in producing floating-point output, it is necessary to know the
number of spaces that will be occupied by the decimal exponent (with sign, it
could be l to 5) in order to know how many significant digits to which to
round x. In the worst case, this could mean several calls upon the low-level
conversion routine until the proper output is finally obtained.

One easy way to bypass these problems, and keep the fundamental
conversion routine simple, is perform the binary-> decimal conversion in two
stages. First convert the binary value X to the SANE decimal form:

23 August 82

18-41

18-42

Draft 1.0

type

Free Format Decimal Output

DecStr a string[DECSTRLEN]; { length is 20 for MAC}
Decimal ... record

sgn: integer;
exp: integer;
sig: DecStr

end;

{O for+, nonzero for-}
{as though decimal is at the right of ••• }

If the conversion is performed with rounding toward O, conversion style=
float, and digit count= 19, and if the inexact exception flag is cleared
before the conversion, then the 19-digit result may be correctly rounded to
the desired width after the ultimate output format is determined. Since no
more than 17 digits will ever be displayed (recall that 17 digits suffice to
distinguish double format binary numbers), the 19 digits together with the
inexact exception flag permit correct rounding.

42

The second step of the conversion decides, on the basis of the
intermediate decimal form, which format is appropriate. Then the decimal
value is rounded (in decimal!) and displayed as desired. Note that this
scheme has as a happy byproduct the ability to round in the (time-honored?)
"add half and chop" manner that is unavailable within Apple arithmetic itself.

23 August 82

Draft 2 F-P IMPLEMENTATION DETAILS 43

In the interest of compatibility of the floating-point arithmetic on
Apples 11/111 and Mac/(Lisa?), the following GRITTY DETAILS were discussed on
June 29. This is an update on the decisions made then.

1. Distinguishing signaling and quiet NANs: use the leading fraction bit,
0-quiet and 1-signaling.

2. Explicit leading bit of extended NANs and INFs: ignore it, that is decide
whether NAN or INF on the basis of the fraction bits only.

3. Quiet NANs have an 8-bit "indicator field" marked by stars in the following
extended format hex mask: XXXX XX** XXXX XXXX XXXX. This byte is the low half
of the leading word of significant bits. The interpretation of the field is
as given page 70 of Apple Ill Pascal, volume 2, subject to enhancements.

4. 'When two quiet NANs are operands to the operations+,-,*, /, and REM, one
or the other of the NANs is output. 'When the indicator fields differ, the NAN
with the larger indicator field prevails; ties are broken arbitrarily.

5. True to the standard, the sign of an output NAN is unspecified.

6. Signaling NANs precipitate the invalid operation exception when they appear
as operands.

7. Underflow is tested before rounding. CHANGE: this may change depending on
P754 deliberations in the late summer of '82

8. Projective INF follows the same rules of signs as affine INF. The
ABSOLUTELY ONLY differences between affine and projective modes are: the
UNORDERED-ness of projective INF in comparisons with finite numbers, and the
invalid operation exception that arises from the sum of two projective lNFs
with the same sign. CHANGE: projective mode may be removed from P754 in late
summer '82.

9. Treatment of unnormalized extended numbers may differ between systems. 68K
implementations will normalize all such, as is expected of the Motorola and
Zilog chips. 6502 implementations may support the ANTIQUE warning mode in
preliminary releases, though it may never be documented for general
consumption.

10. The bottom of the extended exponent range is as in the Motorola and Zilog
implementations (as opposed to Intel). That is, there is no redundancy
between the bottom two exponent values.

11. The exponent bias in extended is hex 3FFF, which is used by Intel, Zilog,
and Motorola. Motorola may insert a word of garbage between the sign/exp
fields and the significant bits in order to have a 96-bit data type.

12. Comparisons return results according to local system convenience. 68K:
return from the floating-point software with the CPU condition codes set
appropriately for a conditional branch. 6502: for lack of a rich set of
conditional branches, let the comparison operation be a family of boolean
tests like "Is X <• Y?" The difference between the two systems should be

31 August 82

18-43

18-44

Draft 2 F-P IMPLEMENTATION DETAILS

hidden well below the high-level language interfaces.

13. Auxiliary functions: relegate functions like nextafter() to the system
numerical library rather than putting them in the arithmetic engine.

44

14. The data types specified by SANE are intl6, comp32, comp64, £32, f64, x80.
68K systems will require int32 as well.

15. ls the Pascal assignment: X :a Y; an arithmetic operation when both X
and Y are variables of the same floating-point format? Or is a straight byte
copy sufficient? This is really a language issue - one left dangling by the
standard. The arithmetic units, if asked to perform a floating move between
two floating entities of the same format, will perform a full-blown arithmetic
operation. This will cause side effects if the floating value is a signaling
NAN (invalid operation) or a denormalized number (underflow).

16. Precision control is supported by 6502 and 68K packages, but it is
available only through assembly language - it is intended only for SPECIAL
applications anyway. Precision control implies range control, too.

17. There is no "integer overflow" exception.

18. Traps? These are so system-dependent there is no hope for perfect
consistency. So the issue is left as a local matter for each system. The
question relevant to each floating-point engine is: "What information will I
be required to spew out in case of a trap?"

31 August 82

'

'

Draft 1.7 FP68K - An Overview 47

2. ~ Types

The arithmetic supports the following data types. All are specified in
SANE except for int32 and deciTUal. lnt32 is included for convenience in 68K
environments, where 32-bit integers are common. Through the decimal type the
package provides the basis for the binary<->decimal conversions required by
languages and the 1/0 system.

int16 16-bit two's-complement integer
int32 32-bi t two's-complement integer
comp64 64-bit integer, with one reserved operand value
£32 32-bit single floating-point
f64 64-bit double floating-point
x80 80-bit extended floating-point
decimal ascii digit string with integer sign and exponent

3. Arithmetic Operations

These operations apply to floating-point operands:

+, -, *• /, SQRT, REMAINDER, COMPARE,
ROUND TO INTEGER, TRUNCATE TO INTEGER, LOGB, SCALB,
ABSOLUTE VALUE, NEGATE, COPYSIGN, NEXAFTER, CLASS

Except for COMPARE, each produces a floating-point result. COMPARE sets the
CPU flag bits.according to the two operands. Besides its floating-point
result, REMAINDER returns the sign and four least significant bits of its
integer quotient in the CPU flags (a very useful trick for argument reduction
in the transcendental functions). LOGB replaces a number by is unbiased
exponent, in floating form; SCALB scales a number by an integer power of 2.

4. Format Conversions

intXX
comp64
floating
decimal

<-->
<->
<->
<->

extended
extended
floating
extended

5. Internal Architecture

(one operand must be extended)

The package provides 2-address memory to memory arithmetic operations of
the form

(op) DST-> DST and
sac <op) DST--> DST

where DST and SRC are the destination and source operands, respectively. The
DST operand is always in the extended format. The conversions have the form:

1 November 82

18-47

18-48

Draft 1.7 FP68K - An Overview

SRC --> DST

where at least one of SRC and DST is a floating-point format. The package
also provides a few support functions in connection with the floating-point
error flags and modes.

48

Extended format results may be coerced to the PRECISION and RANGE of the
single or double formats, on an instruction by instruction basis. Then
subsequent operations are able to take advantage of the trailing zeros to
improve performance. This feature is provided to expedite special-purpose
applications such as graphics and is not intended for general use. Only under
certain circumstances will it actually obtain a speed advantage, rather than a
DISADVANTAGE, since the package is built to do extended arithmetic.

6. External Access

The package is re-entrant, position-independent code, which may be shared
in multi-process environments. It is accessed through one entry point,
labeled FP68K. Each user process has a static state area consisting of one
word of mode bits and error flags, and a two-word halt vector. The package
allows for different access to the state word in one-process (Mac) and
multi-process (Lisa) environments.

The package preserves all CPU registers across invokations, except that
REMAINDER modifies DO. It modifies the CPU condition flags. Except for
binary-decimal conversions, it uses little more stack area than is required to
save the sixteen 32-bit CPU registers. Since the binary-decimal conversions
themselves call the package (to perform multiplies and divides), they use
about twice the space of the regular operations.

7. Calling Sequence

A typical invokation of the package will consist of a sequence of four
68K assembly instructions:

PEA
PEA
MOVE.W
JSR

(source address>
(destination address>
(opword>, -(SP)
FP68K

;"Push Effective Address"
;"Push Effective Address"
;"Push" operation word
;"Call" the package

(If FP68K resides in system memory, the JSR may be replaced by an A-line trap
opcode.) Other calls will have more or fewer operand addresses to push onto
the stack. The opword is the logical OR of two fields, given here in
hexadecimal:

"non-extended" operand format, bits 3800:
0000 - x80
0800 f64
1000 £32
1800 ILLEGAL
2000 intl6

1 November 82

Draft 1.7

2800 - int32
3000 - comp64
3800 - ILLEGAL

FP68K - An Overview

arithmetic operation code, bits OOlF:
0000 -- add
0002 - subtract
0004 - multiply
0006 - divide
0008 -- compare
OOOA - compare and signal invalid if UNORDERED
OOOC - remainder
OOOE - floating, intxx, comp64 -> extended convert
0010 -- extended--> intXX, comp64, floating convert
0012 - square root
0014 -- round to integer in floating format
0016 -- truncate to integer in floating format
0018 - scale by integer power of 2
001A - replace by unbiased exponent
OOlC - classify the floating input
OOlE - ILLEGAL

0001 - put state word
0003 -- get state word
0005 - put halt vector
0007 -- get halt vector
0009 - decimal-> floating convert
OOOB -- floating-> decimal convert
OOOD - negate
OOOF - absolute value
0011 - copy sign
0013 - nextafter
0015 - set exception
0017 -- procedure entry protocol
0019 -- procedure exit protocol
001B - test exception
001D and OOlF are ILLEGAL

8. Comparisons

In this arithmetic, comparisons require some extra thought. The
trichotomy rule of the real number system - that two numbers are related as
LESS, EQUAL, or GREATER - is violated by the NANs, which compare UNORDERED
with everything, even themselves. So it is necessary for floating-point
comparisons to use the CPU condition codes in a way that seems surprising at
first blush:

RELATION

LESS
EQUAL
GREATER
UNORDERED

l November 82

FLAGS: X NZ V C

1 1 0 0 1
0 0 1 0 0
0 0 0 0 0
0 0 0 1 0

18-49
49

18-50
Draft 1.7 FP68K - An Overview 50

This encoding leads to a very convenient mapping between the "floating-point
conditional branches" and the CPU conditional branches. In the following
table, the '?' refers to UNORDERED. The second column gives the name of the
branch macro that provides the "floating branch" (see the "Assembler Support"
document).

BRANCH CONDITION MACRO NOTATION CPU BRANCH

--
= FBEQ BEQ
< FBLT BCS
<, - FBLE BLS
> FBGT BGT
>, = FBGE BGE

? < FBULT BLT • t
? <, = FBULE BLE . ,
? > FBUGT BHI . '
? >' = FBUGE BCC • t

? (unordered) FBU BVS
<, .. , > (ordered) FBO BVC
? <, > (not equal) FBNE BNE . ,
? .. FBUE BEQ I BVS . ,
<, > FBLG BNE I BVC

Only in the last two instances, are two branches required.

The variant comparison instruction, that signals the invalid operation
exception if its operands are UNORDERED, is useful in high-level languages
since P754 (and SANE) require that certain UNORDERED comparisons be marked
invalid.

Further discussion of the language issues of comparisons may be found in
"Comparisons and Branching" by Jerome Coonen.

9. Binary-Decimal Conversions

The package provides conversion functions intended to be used in
conjunction with scanners and formatters peculiar to the user environment.
For decimal to binary conversions, the input parameters are:

address of Pascal decimal structure:
record

agn
exp
sig

end;

o •• 1;
integer;

: string[20)

address of target floating variable

1 November 82

Draft 1.7 FP68K - An Overview

The format (f32, f64, x80) of the target is given in the opword. For binary
to decimal conversions, the input paramaters are:

address of format structure:
record

end;

style : (FloatDecimal, FixedDecimal);
digits: integer

address of source floating variable

address of decimal structure:
sign
exponent
ascii string of significant digits

The interpretation of the latter format element depends on the style of the
conversion. For fixed conversions, the digit count gives the number of
fraction digits desired (which may be negative). For float conversions, the
digit count gives the number of significant digits desired.

51

Free format binary--> decimal conversions, which display numbers in the
"nicest" format possible within given field width constraints, are supported
in software, using the float style of conversion. Nice conversions are handy
in applications like accounting spreadsheets where tables of numbers are
displayed. See the "Binary-Decimal Conversion" document for details. The
SANE interface gives details about the decimal format •

.!Q• The State .!!:!,!,

Each user of the package has three words of static floating-point state
information. All accesses to the state should be made through the four state
operations. The state consists of:

modes and flags word:

1 November 82

8000 - unused

6000 - rounding direction:
0000 to nearest
2000 toward +INF
4000 toward -INF.
6000 - toward zero (chop)

lFOO - error flags, from high to low order:
1000 - inexact result
0800 - division by zero
0400 -- floating overflow
0200 - floating underflow
0100 - invalid operation

0080 - rounding of last result

18-51

18-52
Draft 1.7 FP68K - An Overview 52

0000 - not rounded up in magnitude
0080 - rounded up in magnitude

0060 -- precision control:
0000 - extended
0020 -- double
0040 single
0060 - ILLEGAL

OOlF halt enables, correspond to error flags

halt vector:
32-bit address of alternate exit from package

11. Halts

When an error arises for which the corresponding halt is enabled, a trap
is taken through the vector in the floating-point state area. The halt
routine is called as a Pascal procedure of the form

PROCEDURE HyHalt(VAR
where

r: fpRegs; op3, op2, opl: fpPtr; opcode: integer);

TYPE
fpRegs • RECORD BEGIN

FPRCCR,
FPROOHI,
FPRDOLO

END;
fpPtr • AExtended;

{ 68000 CCR register}
(high word of register 00}
{ low word of register DO}

{ but may be pointer to any type}

The only way to return to the package from a halt is to initiate a new
floating-point operation. There is no way to resume execution of the halted
operation.

The state-related operations never halt. The binary-decimal conversions
do not halt, though the individual operations they employ (such as
multiplication to form lOAN for some integer N) might halt.

12. Other Pseudo-Machines

The package is simple and general enough to be the basis for
pseudo-machines with register architectures like the 68881 or the Z8070 or
with an evaluation stack like the Intel 8087. What is needed is simply the
mechanism to compute addresses in the register file or stack (and check for
internal consistency), and the set of functions required to manipulate that
isolated data file (e.g. duplicate the top stack element, negate a register).

13. Arithmetic Abuse

The package is designed to be as robust as possible but it is not
bullet-proof, since it is specified to modify the stack. If the user passes

l November 82

Draft 1.7 FP68K - An Overview 53

illegal addresses, a memory fault may arise when the package attempts to
access the operands. And if the user passes the wrong number of address
operands, then in general the stack will be irreparably damaged. Operation is
undefined if ILLEGAL values are used in the opword parameter.

14. Size and Performance ----
FP68K is about 4000 bytes long. On a 4mhz system it executes the

simplest arithmetic operations in about 0.4ms and requires just over l.Oms for
a full extended multiply. Divide and square root are longer yet.

Comparative timings show that, for double format operations, FP68K is
just faster than the AMD 9512 on Lisa and is about twice twice as fast as the
Motorola 68341 code. For single format operations, FP68K is about half as
fast as the Lisa single-only package, which is just slower than the 9512.

15. Floating-Point~.!. Glance

Figure 1 at the end of this document illustrates tne basic control of
flow in the execution of the floating-point package. The figure is followed
by a list of observations on the behavior of the package, and of IEEE
arithmetic in general.

1 November 82

18-53

,18-54
Draft 1.7 FP68K ~ An Overview 54

I .

:,-.

1 November 82

REMARKS ON "FLOATING-POINT AT A GLANCE" 55

1. The package has a single entry point.

2. The package has two exit points, one for normal subroutine returns and one
for halts through a vector.

3. Three classes of operations are distinguished: arithmetic operations,
binary-decimal conversions, and accesses to the state word and halt vector.

4. The not-a-number symbols, NANs, are detected at the start of each
operation. Of them, signaling NANs are the most virulent; they always trigger
the invalid operation exception. Quiet NANs propagate through operations; a
precedence rule determines which is output if two are input.

5. Invalid operations always result in a quiet NAN output. In the case of the
discrete types INT16, 1NT32, COMP64, the output value is all zero bits except
for a leading one bit (that is, 100000 •••). Floating-point NANs contain an
error code to indicate their origin (such as 01 for square root of a negative
number).

6. When the input operands are unpacked, the special cases 0, FNZ (finite
nonzero number), and INF (infinity) are detected. This expedites special
cases such as

+INF + FNZ -> +INF

7. When O or INF results -from a trivial operation like the example above, no
further processing is required before the value is packed. All nontrivial
floating-point results are subject to precision and range coercion to assure
that they fit in the intended destination.

8. Integer results are subject to coercion to detect overflow.

9. Floating-point NAN results are coerced by chopping them to the precision of
the destination, and checking that a legitimate value results.

10. Comparisons require special care, since they produce no results but rather
modify the CPU condition-code register. Comparisons, even when NANs are
involved, must bypass the coercion steps.

29 August

18-55

18-56
Draft 1.6 Mac FP Software Program Notes 56

Introduction

This is a brief guide to the program FP68K, a software implementation of
proposed IEEE standard P754 (Draft 10.0) for binary floating-point arithmetic.
This guide is intended to aid a programmer wishing to understand the workings
of FP68K.

The~

The software is in the assembly language of the Motorola MC68000,
following the Apple "TLA" syntax of the Lisa assembler. FP68K is
non-self-modifying, position-independent code. It has no local data area,
that is it uses dynamically allocated stack area for all of its temporaries.
FP68K is one large subroutine whose single entry point has the name FP68K.

The code is separated into the functionally distinct files:

FPDRIVER.TEXT - "includes" the other files •••
FPEQUS.TEXT -- defines set of named constants
FPCONTROL.TEXT - organizes the flow of control
FPUNPACK.TEXT
FPADD.TEXT
FPMUL.TEXT
FPDIV.TEXT
FPREM.TEXT
FPCMP.TEXT
FPSQRT.TEXT
FPCVT.TEXT
FPSLOG.TEXT
FPNANS.TEXT
FPCOERCE. TEXT
FPPACK.TEXT
FPODDS.TEXT
FBD2B.TEXT
FBB2D.TEXT
FBPTEN.TEXT

- unpack input operands to intermediate format
- add and subtract
- multiply
- divide

remainder
- compare

square root
- floating<-> floating,integer conversions
-- logb, scalb, and class appendix functions
- handle "Not A Number" symbols
-- post-normalize, round, check over/underflow •••
- pack result to storage format
- non-arithmetic operations
- decimal-> binary conversion
- binary-> decimal conversion
- computes 1o·N for nonnegative integer N

As noted, FPDRIVER.TEXT is a short file which simply includes the other files
between the ".PROC" header and ".END" trailer.

Assembling FP68K

Assemble the file FPDRIVER.OBJ to produce the FP68K object file.

The one system dependency of FP68K is its access of the floating-point
state area, as discussed in the "System Implementor's Guide". Near the top of
FPCONTROL.TEXT is the code which pulls the address of the the 3-word state
area into register AO. This code will typically require modification when
FP68K is moved to a new system. The well-marked comment Within FPCONTROL.TEXT
indicates the different access schemes systems might use. If the state area

1 November 83

Draft 1.6 Hae FP Software Program Notes 57

is to be located using a constant defined in a public "include" file, then
that file should be included within FPDRIVER.TEXT. See the comment there for
details.

Other than its access to the state area, FP68K is intended to
system-independent and should not be tailored recklessly.

Control flow

There are three fundamentally distinct classes of operations performed by
FP68K: basic arithmetic, binary-decimal conversions, and manipulations of the
floating-point state area. The last of these, namely reading and writing the
state word and the halt vector, is trivial and needs no explanation beyond the
simple code contained in FPODDS.TEXT.

The basic arithmetic operations are illustrated in the flow chart at the
end of this note. The chart is marked to distinguish the function of the
various files listed above.

The binary-decimal conversions are quite different from the basic
operations, and are not described by the basic flow chart. The conversions
might better be thought of as subroutines which have been implemented within
FP68K as a matter of architectural convenience. The conversions invoke FP68K
itself to perform various basic operations like multiply and divide. The
binary-decimal algorithms are described in considerable detail in the attached
paper "Accurate, Yet Economical Binary-Decimal Conversions" by J. Coonen.

Exponent calculations

FP68K manipulates exponents in a way that might seem surprising at first
glance. The P754 extended format, on which all FP68K arithmetic is based, has
a 1-bit sign, 15-bit exponent, and a 64-bit significand. However, the actual
exponent range is not Oto 32767 (biased by 16383) as the 15-bit exponent
field would suggest. Rather, it is -63 to 32767 because of the presence of
tiny denormalized numbers; this is "just a little bit" beyond the stated
15-bit range. (See the attached paper "Underflow and the Denormalized
Numbers" by J. Coonen for a discussion of tiny values in P754 arithmetic.)

Because the operations multiply and divide require the addition and
subtraction, respectively, of operand exponents in forming their intermediate
results, the implementor typically expects to have one extra exponent bit for
intermediate calculations. Thus for P754 extended format calculations, there
is need for "just a little bit" beyond 16 exponent bits. This elusive 17-th
bit is discussed in yet another attached paper, "Are 17 Exponent Bits Too
Many?" It is shown there that 16 bits suffice, if care is taken to perform
some extra tests in the right places.

On the 68000 it turns out to be convenient to perform exponent
calculations in the ADDRESS REGISTERS - vi.th a full 32 bits. The address
registers provide just the right functionality: add, subtract, and compare.
And since floating-point arithmetic is computation-intensive on a small data
set, only a few of the address registers are actually needed for addresses.

1 November 83

18-57

18-58
Draft 1.6 Mac FP Software Program Notes 58

Finally, 16-bit constants like the exponent bias may be added into the 32-bit
exponents with a 2-word instruction, since for "address" calculations the
constant is first sign-extended out to a full 32 bits.

Bit field encodings

This section describes the various bit fields used by FP68K. Some of
them, like the opcode and the state word, are visible to programs invoking
FP68K. Others, like the rounding and sign bits, are local to FP68K.

The OPCODE is the last word pushed on the stack before calling FP68K. It
is composed of the fields:

3800 -- "non-extended" operand format:
0000 -- xBO
0800 f64
1000 - £32
1800 - ILLEGAL
2000 -- intl6
2800 -- int32
3000 - comp64
3800 - ILLEGAL

07EO -- must be zero

OOlF - operation code:
0000 - add
0002 - subtract
0004 - multiply
0006 -- divide
0008 -- compare
OOOA - compare (invalid if UNORDERED)
OOOC - remainder
OOOE - x80, f64, £32, intl6, int32, comp64 -> x80
0010 - x80 -> x80, f64, f32, intl6, int32, comp64
0012 - square root (in x80)
0014 - round to integer (in x80)
0016 - truncate to integer (in x80)
0018 -- scale by unbiased power of 2
001A - replace by unbiased exponent
OOlC - classify the floating input
OOlE - ILLEGAL

0001 - put state word
0003 - get state word
0005 - put halt vector
0007 - get halt vector
0009 - decimal-> floating convert
OOOB - floating-> decimal convert
000D - negate
OOOF - absolute value
0011 - copy sign
0013 - nextafter

1 November 83

Draft 1.6 Hae FP Software Program Notes

0015 - set exception
0017 - procedure entry protocol
0019 - procedure exit protocol
001B - test exception
001D and OOlF are ILLEGAL

59

The STATE word is static data that perseveres across calls to FP68K. As
such, it must live in an area outside FP68K, defined by the host system.
Typically the state word (and the halt vector, which is a 32-bit address) will
live in the system's "per-process data area", perhaps a fixed location in
memory or a fixed offset from some reserved address register. Although the
STATE word is directly available to the programmer, typical access will be
through an intermediate layer of software (available, say, in a Pascal unit)
that insulates the programmer from the details of the actual bit encodings.
The STATE word is composed of the fields:

8000 - unused

6000 - rounding mode:
0000 - to nearest
2000 - toward +INF
4000 toward -INF
6000 - toward O (chop)

lFOO - error flags:
1000 - inexact result
0800 - division by zero
0400 - floating overflow
0200 - floating underflow
0100 - invalid operation

0080 - rounding of last result
0000 - not rounded up in magnitude
0080 - rounded up in magnitude

0060 - precision control:
0000 - extended
0020 - double
0040 - single
0060 - ILLEGAL

OOlF - exception halt enables:
(correspond to error flags above)

After preliminary decoding in FPCONTROL.TEXT, the OPCODE is expanded out
into the following 16-bit form:

8000 - nonzero iff result has single precision and range

4000 - nonzero iff result has double precision and range

3800 - source operand format:

1 November 83

18-59

18-60

Draft 1.6 Mac FP Software Program Notes 60

(same encoding as in OPCODE)

0700 - destination operand format:
(same encoding as in OPCODE)

0080 - nonzero iff destination operand is input

0040 - nonzero iff source operand is input

0020 - nonzero iff destination operand is output

OOlE - operation code:
(same encoding as in OPCODE but with low bit 0)

0001 - nonzero iff two-address operation

The ROUND BITS, known as "guard", "round", and "sticky" in documentation
about P754, are kept in a 16-bit word. Roughly speaking, the guard and round
bits are the two bits beyond the least significant bit of the intermediate
result, and the sticky bit is the logical Or of all bits thereafter. The
sticky bit is necessary to implement the rounding modes of P754. The ROUND
BITS are kept as:

8000
4000
3FOO
OOFF

- guard bit
round bit
6 extra round
sticky bits

bits

The reason for keeping an entire byte of sticky bits lies in the 68000
instruction set. The archetype operation involving the sticky bit is the
right-shift. Any time a bit is shifted off the low end of the sticky "byte",
it must be logically Or-ed back into sticky. This is done with the 68000
"SCS" instruction, which sets a given byte to all ls if the carry bit is set,
and clears the byte to O otherwise. Typically, a bit is shifted off to the
right, it is SCS-ed into an auxiliary byte, and that byte is Or-ed into the
sticky byte. Although this is the typical use of the sticky byte, the
programmer should not assume that the sticky byte is always either all Os or
all ls. Sometimes, such as in the right shift after a carry-out in ADD/SUB,
the logical Or will be omitted since it is knovn that if a 1 was shifted out
of the sticky byte there will necessarily be another 1 left in sticky.

The operands' SIGNS are kept together in a byte as follows:

80 - source operand sign
40 - destination operand sign
20 - Exclusive Or of the two operands' signs
lF - unused, but not necessarily zero

If there is just one input operand, its sign is in the high order bit. The
Exclusive Or is coaputed just once, at the start of every arithmetic
operation. Not only is it required for many common operations(+,-,*,/,
REM, CMP), but it is costly in time and space because of the inefficacy of the

1 November 83

Draft 1.6 Mac FP Software Program Notes

68000 bit instructions, so it is worthwhile to implement the code sequence
just once.

61

The CCR (condition code register) bits of the 68000 are modified by every
arithmetic operation, though only the compare instructions leave them in a
well defined state. A CCR word is maintained by FP68K:

FFEO unused, forced to 0
0010 X ::: Extend
0008 N.,. Negative
0004 z ::: Zero
0002 V = Overflow
0001 -- C.,. Carry

The compare operations encode their results as follows:

RELATION

LESS
EQUAL
GREATER
UNORDERED

FLAGS: X NZ V C

1 l O O 1
0 0 1 0 0
O O O O 0
0 0 0 1 O

See the FP68K programmer's manual for the software applications of the CCR
field.

Register usage

The key to the speed (such as it is) and compactness of FP68K is that its
entire working data set may be held in the 68000 register file. Immediately
upon entry, FP68K saves registers DO-D7, AO-A4 on the stack. Then the
registers are loaded up as the operation proceeds. Several of the registers
have a meaning that perseveres across nearly the entire instruction. The
following list gives a rough idea of register usage:

D7 hi - CCR word
D7 lo - round bits
D6 hi -- opcode word
D6 lo -- error byte (hi) and sign byte (lo)
D5 - low 32 source (later result) significant bits
D4 - high 32 source (later result) significant bits
D3-DO - scratch area

A

18-61

18-62

7
A6
~
A4
~

~
Al
~

SP= stack pointer
stack link pointer
Mac globals poionter
source (13:er result) exponent

- destination exponent
-- low 32 destination significant bits
- high 32 destination significant bits
- pointer to 3-.ord state area

1 November 83

Draft 1.6 Hae FP Software Program Notes 62

Of course, the arithmetic operations may be viewed as transformations of the
register file. Following this view, a set of register maps are included at
the end of this note. They are keyed to MILESTONES marked in the source code.
The maps indicate register dependencies, and as such should aid in any
modification of FP68K. Some maps simply indicate the state of the register
file at a given point, and some indicate register use in a routine, such as
the widely used right-shift procedure RTSHIFT.

For convenience the maps are printed on onion skin paper; a reference
sheet slips under the map to fill in the register mask.

Register 00 is modified by the REMAINDER operation, in which case a
partial integer quotient is returned in DO.w.

Stack usage

When called, FP68K assumes that the stack has the form:

ADDRESS 3 - used for decimal format code only
ADDRESS 2 - source pointer, if any
ADDRESS 1 - destination pointer
OPCODE - one word
RETURN ADDRESS

The number of address operands depends on the operation. FP68K then allocates
3 more stack words:

COUNT - number of bytes in original call frame
HALT ADDRESS

This frame is used if a halt is taken. The COUNT field allows the halt
handler to simply pop the original operands and return, if desired.

Above this frame, FP68K pushes registers 00-7, A0-6. In the progress of
an operation, up to 6 more words of stack may be used. The total stack usage,
after the call, is then up to 3 + 32 + 6 • 41 words. The binary-decimal
conversions may use twice this much since they invoke FP68K to perform basic
arithmetic operations.

Conditional assembly

There are two instances of conditional assembly in FP6oK. The pointer to
the floating-point state area is loaded into register AO at the start of
FPCONTROL.TEXT. Since the location of this area is system-dependent,
conditional assembly is used to locate the field. Of course, this means that
the effective address of the state area must be known at assembly time.

Conditional assembly is also used to resolve
between various 68000 assembly language formats.
relative addressing modes are heavily used in the
offset tables within FP68K. A typical use is the

l November 83

syntactic inconsistencies
The program counter (PC)
implementation of jump
instruction sequence:

Draft 1.6 Hae FP Software Program Notes

MOVE.W
JMP

JMPTAB(D0),00
JMPTOP(DO)

63

Here JMPTAB is a table of address offsets from the label JMPTOP, and register
DO contains a word index into JMPTAB. Some assemblers force the programmer to
write:

MOVE.W
JMP

JMPTAB(PC,00),DO
JMPTOP(PC,00)

in order to assure PC-relative addressing. However, the Lisa assembler
PROHIBITS this syntax, although it produces the desired code. An assembly
flag is used to generate whichever of the two formats is suitable for a given
compiler.

Pascal enWDerated types

Lisa Pascal attempts to encode enumerated types in byte fields, which are
then stored as the high byte of the target word. This affects structures like
DecForm and Decimal, defined in the Pascal interface (see that document for
details). Although the most seriously affected programs are the test drivers,
the affected files in the basic package are FBB2D.TEXT and FBD26.TEXT. Those
files contain explicit colllllents when a byte test is used where an Apple Ill
programmer (for example) might expect a word test.

18-63

MACINTOSH USER EDUCATION

Index to Technical Documentation
/TOOLBOX/INDEX

See Alao: Inside Macintosh: A l.oad Hap
The Resource Manager: A Programmer'• Guide
OuickDraw: A Progra11111er'• Guide
The Font Manager: A Programmer's Guide
The Event Manager: A Programmer's Guide
The Window Manager: A Programmer'• Guide
The Menu Manager: A Programmer'• Guide
Macintosh Control Manager Programmer'• Guide
TextEdit: A Programmer'• Guide
CoreEdit: A Programmer's Guide
The Dialog Manager: A Progra11111er'• Gu1Je
The Desk Manager: A Programmer's Guide
The Scrap Manager: A Programmer'• Guide
Toolbox Utilities: A Programmer's Guide
The Memory Manager: A Programer's Guide
The Segment Loader: A Programmer's Guide
Putting Together a Macintosh Application

Modification History: First Draft
Second Draft
Third Draft

c. l.ose
c. l.ose
c. l.ose

8/5/83
1,1s/83

1/9/84

ABSTRACT

This is an index to all the documentation listed under "See Also:"
above,•• of 1/9/84. It will be expanded and updated periodically.

·Note the following change since the last draft:

"MM" now stands for the Memory Manager manual, not the Menu Manager
manual; the latter is designated by "MN".

17-1

INDEX 1

INDEX

The page nuaber• are preceded by a two-letter de•ignation of which
manual the information i• in:

CE
CM
DL
DS
EM
PK
MK
MN
PT
OD
RD
ltM
SL
SM
TE
TU
WM

CoreEdit: A Programmer'• Guide
Macintosh Control Manager Progrumer'• Guide
The Dialog Manager: A Progra11Der'a Guide
The Deak Manager: A Programmer'• Guide
The Event Manager: A Programmer'• Guide
The Font Manager: A Programmer'• Guide
The Memory Manager: A Programmer'• Guide
The Menu Manager: A Programmer'• Guide
Putting Together a Macintosh Application
QuickDrav: A Programmer'• Guide
Inside Macinto•h: A Road Map
'nle Resource Manager: A Programaer'a Guide
The Segment Loader: A Prograsmer'a Guide
The Scrap Manager: A Programaer'a Gulde
TextEdit: A Programmer'• Guide
The Toolbox Utilitiea: A Progra1111er'a Guide
The Window Manager: A Progra1111er'a Guide

8/15/83
3/16/83

11/16/83
9/26/83
6/2./83
4/22/83

1•11f/83
11/1/83
7/14/83
3/2/83

12/22/83
lf/3/83
6/24/83

1•121/83
9/28/83

1/4/84
8/25/83

abort event EK-5
action procedure CM-21, CM-22
activate event WM-15, EM-6
active

control CM-8

BackColor procedure QD-46
BackPat procedure QD-39
backspace buffer CE-19
BeginUpdate procedure VK-29
bit image QD-12

window WM-5 • WM-23
AddPt procedure QD-65
AddReference procedure IM-26
AddReaKenu procedure MH-17
AddReaource procedure IM-25
alert box DL-5
Alert function DL-23
alert atages DL-15
alert template DL-8, DL-29, DL-31
alert window DL-7
AlertTemplate data type DL-29
AlertTHndl data type DL-29
AlertTPtr data type DL-29
allocated block MH-5
AppendMenu procedure MH-17
application font FM-6
application heap MK-4

limit IOl-12, IOl-28
•ubdividing MK-50

application paraaetera SL-4
application window WN-4
ApplicZone function MK-30
auto-key event EK-5

BitAnd function TU-8
BitClr procedure TU-7
bitMap QD-13
BitMap data type QD-13
BitNot function TU-8
BitOr function TU-8
BitSet procedure TU-7
BitShift function TU-8
BitTat function TU-7
BitXor function TU-8
block MK-5
block content• MM-5
block header MK-S

structure MK-19
BlockMove procedure MM-47
BringToFront procedure VK-22
button CM-5, DL-10
Button function IM-19
Byte data type MK-13

1/9/84 loae CONFIDENTIAL /TOOLBOX/INDEX

17-3

17-4

2 INDEX

CalcMenuSize procedure HN-26
CalcVia procedure WM-32
CalcViaBehind procedure WM-32
caret CE-10, TE-7
CautionAlert function DL-24
CEBackSpace procedure CE-22
CEBlinkCaret procedure CE-27
CEBtnDown procedure CE-26
CEBtnUp procedure CE-27
CEChngEdit procedure CE-20
CEChngFont procedure CE-25
CEChngSize procedure CE-25
CEChngStyle procedure CE-25
CECopy procedure CE-23
CECut procedure CE-22
CEDi1pPar procedure CE-28
CEDoneEdit procedure CE-20
CEForwardSpace procedure CE-22
CEGetRangelnfo procedure CE-26
CEGetSelRng procedure CE-25
CEinitEdit procedure CE-19
CElnsertChar procedure CE-21
CEKillEdit procedure CE-21
CEMouaeMoved procedure CE-27
CENewPar function CE-19
CEParCutOrCopy procedure CE-23
CEParPaate procedure CE-24
CEPaate procedure CE-24
CEPrepEdit procedure CE-20
CERedraw procedure CE-28
CESetCaret procedure CE-27
CESetFldRect procedure CE-28
CESetSelRng procedure CE-25
CEStrtEdit procedure CE-19
Chain routine SL-6
ChangedResource procedure IM-24
character code EM-8

table EM-25
character position CE-6, TE-6
character style QD-23

of menu items HN-12
Chara data type TE-14
CharaHandle data type TE-14
CharaPtr data type TE-14
CharWidth function QD-44
check box CH-5, DL-10
check mark in a •nu HN-6, MN-11
Checkltem procedure HN-23
CheckUpdate function WK-31
ClearHenuBar procedure HN-19
ClipAbove procedure WM-31
ClipRect procedure QD-38

clipRgn of a grafPort QD-19
CloaeDesltAcc procedure DS-7
CloaeDialog procedure DL-20
CloaePicture procedure QD-62
ClosePoly procedure QD-63
CloaePort procedure QD-36
CloseResFile procedure ltK-16
CloaeRgn procedure QD-56
CloseWindow procedure WM-19
color drawing QD-30
ColorBit procedure QD-46
compaction, heap MK-9, HM-39
CompactHem function MH-39
configuration routine EM-23
content region of a window WM-6
control CH-4

defining your own CH-25
in a dialog/alert DL-10

control definition function CH-9, CH-26
control definition ID CH-9, CM-26
Control Manager ID-6, CH-4
control record CH-11
control template CM-10, CM-25
ControlHandle data type CM-12
ControlHessage data type CH-26
ControlPtr data type CM-12
ControlRecord data type CM-13
coordinate plane QD-6
CopyBita procedure QD-60
CopyRgn procedure QD-55
CoreEdit RD-6, CE-4
CouldAlert procedure DL-25
CountHitema function MN-26
CountResourcea function RM-19
CountTypes function RM-18
CreateResFile procedure RM-16
current heap zone MH-5
current resource file RM-7, RM-18
CurReaFile function IM-18
CuraHandle data type TU-10
cursor QD-15
Cursor data type QD-16

_CursPtr data type TU-10

data fork ltK-6
default button DL-5
DeleteHenu procedure MH-18
dereferencing a handle HM-23, HM-48
desk accessory DS-3

defining your ovn DS-10
Desk Manager RD-7, DS-3
desk •crap SH-3, SM-13

data types SM-7

1/9/84 llose CONFIDENTIAL /TOOLIOX/IHDEX

desktop WM-4
destination rectangle TE-5
Detachleaource procedure RK-22
device driver II>-8
Device Manager 11>-8
dial CK-6
dialog box DL-4

INDEX

edit record CE-7, TE-4
edit rectangle CE-7
eapty handle MM-10, MM-41
EaptyHandle procedure MK-41
Eaptylect function QD-48
Emptyltgn function QD-58
Enableltea procedure MN-23
EndUpdate procedure 'WK-29
EqualPt function QD-65

Dialog Manager RD-7, DL-4
dialog record DL-13
dialog template DL-8, DL-28,
dialog window DL-6

DL-30 Equallect function QD-48
Equallgn function QD-58
EraseArc procedure QD-53
EraaeOval procedure QD-50
EraaaPoly procedure QD-65

DialogPeek data type DL-13
DialogPtr data type DL-13
Dialoglecord data type DL-14
DialogSelect function DL-21
DialogTemplate data type DL-28
DialogTHndl data type DL-28
DialogTPtr data type DL-28
Diffltgn procedure QD-57
dimmed

menu item MN-5, MN-6
menu title MN-5

disabled
dialog/alert item DL-10
llleDU KN-5
menu item MN-6, MN-13

Disableltea procedure MN-22
Diak Driver lll>-8
disk inserted event EM-5
display rectangle DL-12
DisposDialog procedure DL-20
DiapoaeControl procedure CM-18
DisposeMenu procedure MN-16
Diapoaelgn procedure QD-54
DispoaeWindow procedure WK-20
DisposHandle procedure MK-31
DisposPtr procedure MK-35
document window WM-4
drag region of a window WH-7
DragControl procedure CK-22
DragGraylgn function 'WK-30
DragWindov procedure 'WK-25
DravChar procedure QD-44
DravControla procedure CM-19
DravDialog procedure DL-23
DrawGrovlcon procedure VH-23
drawing QD-27

color QD-30
DravMenular procedure MN-18
DrawNev procedure VH-32
DrawPicture procedure QD-62
Drawstring procedure QD-44
DravText procedure QD-44

Eraaelect procedure QD-49
Eraseltgn procedure QD-59
Eraaeaoundltect procedure QD-51
ErrorSound procedure DL-18
event EK-4
event code EM-9
Event Manager

Operating Syate• II>-7
Toolbox ID-6, EK-4

event uak EM-12
event message EM-11
event queue EH-6
event record EH-9
EventAvail function EK-18
EventRecord data type EK-9
ExitToShell procedure SL-7

Pile Manager lll>-8
FillArc procedure QD-54
PillOval procedure QD-50
FillPoly procedure QD-65
FillRect procedure QD-49
PillRgn procedure QD-59
Fillac>undlect procedure QD-52
filterProc DL-22
FindControl function CM-20
FindWindov function VH-23
Fixed data type TU-3
fixed-point

arithmetic TU-4
nuabera TU-3

FixMul function TU-4
Fixlatio function TU-4
Pislound function TU-4
PlashMenular procedure MN-26
FluahEventa procedure EH-19
Patlun data type CE-5
font PK-3

acaling PM-6

3

1/9/84 loae CONFIDENTIAL /TOOLBOX/INDEX

17-5

17-6

4 INDEX

Font Manager ID-6, FM-3
font number PK-3
Fontinfo data type QD-45
ForeColor procedure QD-45
format, paragraph CE-5
Formats data type CE-6
FrameArc procedure OD-52
FrameOval procedure QD-50
FramePoly procedure QD-64
FrameRect procedure QD-49
FrameRgn procedure QD-58
FrameRoundRect procedure QD-51
free block MK-5
FreeAlert procedure DL-25
FreeHem function KH-38
FrootWindow function WM-23

GetAppParma procedure SL-6
GetClip procedure QD-38
GetCRefCon function CM-25
GetCTitle procedure CM-19
GetCtlAction function CM-25
GetCtlHax function CK-24
GetCtlMin function CM-24
GetCtlValue function CM-24
GetCursor function ?U-9
GetDltem procedure DL-26
GetFNum procedure FM-9
GetFontlnfo procedure QD-45
GetFontName procedure PK-8
GetHandleSize function KH-31
Getlcon function tu-9
GetlndReaource function RM-19
GetlndType function RM-18
Getltem procedure MN-22
Getltemlcon procedure MN-24
GetltellMark procedure Mll-25
GetltemStyle procedure KH-24
GetlText procedure DL-27
Getlteya procedure EN-20
GetKenu function KH-16
GetMenuBar function MN-19
GetMHandle function MN-26
GetMouae procedure EH-19
GetNamedReaource function BM-20
GetNewControl function CK-18
GetNewDialog function DL-19
GetNewKBar function MN-19
GetNewWindov function WK-19
GetNextEvent function IK-17
GetPattem function TU-9
GetPen procedure QD-40

GetPenState procedure OD-41
GetPicture function TU-10
GetPixel function QD-68
GetPort procedure QD-36
GetPtrSize function MK-36
GetReaAttra function IM-22
GetReaFileAttra function RM-29
GetRealnfo procedure RM-22
GetReaource function RM-20
GetScrap function SK-12
GetString function TU-5
GetWindowPic function WK-29
GetWMgrPort procedure WK-18
GetWRefCon function WK-29
GetWTitle procedure WK-20
GetZone function HK-29
global coordinates QD-27
GlobalToLocal procedure QD-66
go-away region of a window WK-7
GrafDevice procedure QD-36
graf Port QD-17
Graf Port data type QD-18
GrafPtr data type QD-18
GrafVerb data type QD-71
grow image of a window WK-25
grow region of a window WM-7
grow zone function MK-12, MK-44
GrowWindow function WM-25_
GZCritical function MK-45
GZSaveHnd function HK-46

handle HK-7, QD-10
dereferencing MK-23, HK-48
empty MK-10

Handle data type MK-13
HandleZone function MM-33
heap BD-7, MH-4

compaction MK-9, MH-39
creating on the atack MK-53

BideControl proceaure CM-19
RideCursor procedure QD-39
HidePen procedure QD-40
BideWindow procedure WM-21
RiliteControl procedure CM-19
BiliteHenu procedure NN-21
RiliteWindov procedure WK-22
HiWord function TU-8
HLock procedure MH-42
HNoPurge procedure MM-43
BomeReaFile function IN-18
BPurge procedure MK-43
KUnlock procedure MM-42

1/9/84 ltoae CONFIDENTIAL /TOOLJOX/IHDEX

I/0 driver DS-10
event EK-6

icon number MN-11
inactive

control CK-8
window WK-5

InfoScrap function SM-10
InitApplZone procedure MM-25
InitCuraor procedure QD-39
InitDialogs procedure DL-17
InitFonta procedure FK-8
InitGraf procedure QD-34
InitKenua procedure HN-15
InitPort procedure QD-35
Initlesourcea function IM-15
lnitWindows procedure WM-18
lnitZone procedure MM-27
insertion point CE-10, TE-7
InaertKenu procedure HN-18
lnaertlesMenu procedure HN-18
lnsetlect procedure QD-47
ln1etRgn procedure QD-57
lnt64Bit data type TU-9
Invallect procedure WM-27
Inval'Rgn procedure WK-28
lnvertArc procedure QD-54
InvertOval procedure QD-50
lnvertPoly procedure QD-65
lnvertlect procedure QD-49
lnvert'Rgn procedure QD-59
InvertRoundlect procedure QD-52
laDialogEvent function DL-20
item

dialog/alert DL-8
menu KN-4

item list DL-8, DL-9, DL-32
item number

dialog/alert DL-12
menu MN-14

joumal EM-22
jump table SL-8
justification CE-11, TE-8
Justification data type CE-11

keming QD-23
key code EM-8

table EK-25
key down event EM-5
key up event EM-5
keyboard configuration EM-8

INDEX

keyboard equivalent KN-6, KN-12
keyboard event EK-5
leyboard/Mouae Handler ID-8
lteyHap data type EH-20
KillControla procedure CN-18
XillPicture procedure QD-62
ltillPoly procedure QD-63

Launch routine SL-7
limit pointer HK-16
line height T!-9
Line procedure QD-42
LineTo procedure QD-42
Loadleaource procedure RM-20
LoadScrap function SM-11
LoadSeg procedure SL-8
local coordinates QD-25
local reference IM-10
LocalToGlobal procedure QD-66
lock bit MM-20
locked block MM-6
locked reaource IK-12
locking a block MM-6, MM-42
logical operations TU-8
logical size of a block NH-18
LongMul procedure TU-9
LoWord function TU-8

MapPoly procedure QD-69
MapPt procedure QD-69
Maplect procedure QD-69
Kap'Rgn procedure Ql>-69
-rgins CE-11
-ater pointer HK-7

structure MH-20
KaxMem function HK-38
MemErr data type MK-21
Kem!rror function HK-48
Memory Manager ID-7, MM-4
•nu MN-4, MN-29

defining your own MN-26
menu bar MN-4, MN-JO

5

menu definition procedure MN-7, MN-27
aenu ID HN-8
menu item MN-4
•nu itea nuaber MN-14
aenu list MN-9
Menu Manager ID-6, MN-4
menu record MN-8
•nu title MN-4
MenuHandle data type HN-8
Menulnfo data type MN-8
KenuXey function MN-21

1/9/84 lose CONFIDENTIAL /TOOLBOX/INDEX

17-7

Welcome to Macintosh Technical Support!

Your ID: SUPT.

Your KEY:

We provide developer support Welcome to Macintosh Technical Support.
through Apple's electronic mail system on
increases our efficiency, which translates
development.

TYMNET. Using this system
into better support for

The attached document is the second draft of the user's guide for the
electronic mail system. The last page is a list of TYMNET phone numbers,
sorted by state. To use the system, you'll need a computer (we suggest an
Apple), a modem, and a phone. You pay for the telephone call, and Apple
pays for the electronic mail system charges, with the understanding that the
system is to be used for technical support matters.

The first time you log into the system, you should change your key
(password). Change it to something that you'll remember, and something not
obvious. Please keep it secret. If you have problems, or suspect
unauthorized use of the service, send me a message or give me a call. For
instructions on changing your key, type

:READ** CHANGE.KEY

When you have a question or problem, send a message to me at the MAC mail
station. The mailbox is usually checked 3 or 4 times a day (I check it from
home on weekends), and we will try for 24-hour turnaround at worst.

I'd appreciate comments on the document (this is a draft), and on the
system. Let me know what kind of equipment you 're using to access the
system, and how it works for you.

OLD USERS OF THE SYSTEM:

If you've been using the system for a while, you'll notice a couple of
changes. The account name is now SUPT (it used to be APPLE). You send
mail to MAC rather than HACTECH. Phone numbers are the same.

1200 BAUD USERS:

If you 're experiencing trouble at 1200 baud, and your software uses
XON/XOFF protocols, be sure and send CONTROL-X CONTROL-R before "EMSAPP"
in talking to the system. This lets their software know you 're using
XON/XOFF for flow control.

Bob Hartin

Macintosh Technical Support

20-1

Macintosh Technical Support
Electronic Mail System

User's Guide

Second Draft - 12/5/83

Apple Computer, Inc.
2G525 Mariani Avenue
Cupertino, CA 95114

20-3

20-4

12/5/83

Table of Contents

Section Page

Introduction...................................... 1
Preparing and Sending Messages•••••••••••••••••••• 2

Mail Management••••••••••••••••••••••••••••••••••• 3
The IN Li&t•••••••••••••••••••••••••••••••••••• 3
The OUT List••••••••••••••••••••••••••••••••••• 4
Receiving Messages••••••••••••••••••••••••••••• 5
Retrieving a Message••••••••••••••••••••••••••• 6
Cancelling a Message••••••••••••••••••••••••••• 6
Control Characters••••••••••••••••••••••••••••• 6

Accessing EMS••••••••••••••••••••••••••••••••••••• 7

Leaving EMS••••••••••••••••••••••••••••••••••••••• 8

Error Messages and Trouble Reporting.............. 9

Command Reference••••••••••••••••••••••••••••••••• 11

Using Access/// on EMS••••••••••••••••••••••••••• 12

Using Micro-Courier on EMS •••••••••••••••••••••••• 13

I

'

Introduction

This document is a user's guide for Apple Computer third-party developers
using Apple's electronic mail system (EMS). Apple uses TYHNET's "ONTYME 11"
message-switching network with Apple][and Apple/// computers to create an
effective and efficient computer- based message network.

The ONTYME 11 message-switching system operates on a store-and-forward
basis. It accepts messages for transmission, and then either stores them
while waiting for users to make contact with the service, or delivers the
messages to on-line designated hardcopy printers. The network is supported
by Macintosh Technical Support.

Messages (mail) are created off-line using either an Apple] [or an Apple
///, and then entered into the electronic mail system.

This service is provided to third-party developers to improve communication
and productivity between Apple and outside developers.

Each station or user in the Apple account is identified with a unique call
directing code (CDC) and password (key).

All commands entered into the system are preceded by a colon (:), to
indicate that they are commands and not text. Commands must begin at the
left margin (column 0).

The following conventions are used in the examples given in this guide.
Refer to page 11 for a summary of command definitions.

Convention Used

EMS

CDC

Underlined text

Regular text

(er)

(sp)

Definition

Apple's electronic mail system

A call directing code (a user)

Commands typed by the user

Text or messages printed by EMS

A carriage return typed by the user

A space that is required

Questions or suggestions regarding EMS should be forwarded to EMS station
"MAC".

page 1

20-5

20-6
Preparing and Sending Messages

The :SEND command takes the text in your workspace and sends it to the CDC
(or CDCs) that you specify.

Managing!.!!!. Workspace - :TYPE .!!ll!_ :ERASE Commands

Anything that is not recognized as a command goes into your workspace as
part of the message you want to send. So if you type "; IN" rather than
":IN"• the erroneous command goes into your workspace. If you are unsure of
what text is in your workspace, use the :TYPE command to display it. The
:ERASE command clears the workspace.

Standard Message Format

All messages should be created and edited off-line. using the text editor of
your choice. This saves valuable connect time on EMS.

When preparing a message, do not exceed a 68-character line length. By
keeping your lines under 68 characters, you ensure that international
locations will be able to read each line in its entirety. Although there
have been recent improvements• most international locations still use the
older TELEX-type equipment. which has a 68-character line limitation.

Text editors such as Applewri ter and the Pascal editor let you set up a
"boilerplate" file that includes a right margin (or line length) selection
of 68 characters. Using a boilerplate file is a good way of ensuring a
consistent format.

All messages should be prepared in the following format:

Format

Date

Addressee

Sender

Text

End of message
and operator's
initials

Send command

Example

12/5/83

To: MAC Tech Support

Fr: Bob Martin "HAC1~23"

This is the standard message
format for a message sent through
the ONTYHE or TELEX network.

END/RTM

: SEND(sp)MAC(c r)

The :SEND comnand packages up the text in your workspace and sends it to the
destination CDC. If you want to send the message to more than one CDC,
separate the CDCs by at least one space.

page 2

j ,

Mail Management

The Apple electronic mail system provides tools that allow you to manage
your mailbox effectively and efficiently.

These tools are described below as follows:

I. The IN List

II. The OUT List

lll. Receiving Messages

IV. Retrieving a Message

v. Cancelling a Message

VI. Control Characters

Each time someone sends you a message, an entry is made in a list of all
messages waiting to be received by your CDC. This list is called your "IN
list". When you actually ask to read a message (with the :READ command),
the entry in the IN list is removed and entered into the "IN OLD list".

To see if any messages are waiting for you in your mailbox, you examine the
IN list by issuing this command:

: IN(cr)

If no messages are waiting, EMS will respond with "NONE". Otherwise, the
following information is transmitted to you:

aaa
ddmmyy
hh:mm
bbbb
CCC

SENDER SENT HSGII

bbbb

LENGTH

aaa ddmmyy hh:mm CCC

• Sending CDC
• Day, month, and year the message was sent
• Time the message was sent (your local time)
• Message number assigned by EMS
• Number of characters in the message

page 3

20-7

20-8
Mail Management (continued)

To examine the list of messages you have received and read in the last five
days, give the command:

:IN(sp)OLD(cr)

The following information is transmitted to you:

SENDER SENT

aaa ddmmyy hh:mm

MSGfl

bbbb

READ

dddd

This is similar to the IN list, except that "dddd" indicates the date and
time the message was read, and the message length is omitted.

Now, if you want to read the message again, type:

:REAO(sp)bbbb(cr)

Each time you send a message, it is entered in a list of all messages you
have sent, called your "OUT list". When the recipient of a single-addressed
message has read it, the entry is removed from your OUT list and placed in
your "OUT OLD list", where you have confirmation of its receipt, plus the
date and time it was read. For messages sent to multiple CDCs, an asterisk
(*) is added before each location that has received it. When all locations
have received the message, the entry is moved to the OUT OLD list.

To see if there are messages waiting to be delivered, examine the OUT list
by issuing the command:

:OUT(cr)

If all your messages have been received, EMS responds w! th "NONE".
Otherwise, the following information is transmitted:

NAME

aaaa

aaaa
ddmmyy
hh:mm
bbbb

SENT MSG#

ddmmyy hh:mm bbbb

• lteceiving CDC
• Day, month, and year the message was sent
• Time the message was sent (your local time)
• Message number assigned by EMS

Although EMS keeps lists of your unread outgoing messages for up to 14 days
after transmission, it is a good habit to check your OUT list at least once
a day.

page 4

Hail Management (continued)

III. Receiving Messages

If you are a dial-up user, you must check your mailbox for incolling mail (as
you do at home). It is recommended that this be done daily.

To receive your mail from EMS, you must use one of the :READ commands listed
below. But before entering :READ commands, make sure you are ready to
record the mail you will be reading, either in memory or on a disk.

Command

:READ(cr)

:READ(sp)ALL(cr)

:READ(sp)message number(cr)

Purpose

Transmits the oldest message in your
IN list, then removes it from your
IN list, and removes your CDC from the
sender's OUT list.

Transmits all the messages in your IN
list, removes them from your IN list,
and removes your CDC from the sender's
OUT list.

Transmits a specific message recently
received to your CDC. This works
only if the message is still in either
your IN list or your OUT list.

page S

20-9

20-10

Mail Management (continued)

.!!• Retrieving.!. Message

Any message still in your IN or OUT list can be retrieved with the following
command:

:GET(sp)message number(cr)

This command does not automatically display the retrieved text; the
following command should be used to display it:

:TYPE(cr)

v. Cancelling~ Message

You can cancel any message sent via your CDC that has not been read by all
recipients (if some recipients have already read the message I EMS wi 11
notify you). "Message number" below is the message number that EMS assigned
to the message at transmission.

:CANCEL(sp)message number(cr)

VI. Control Characters -
EMS uses these control characters:

CTRL-H

CTRL-S

CTRL-0

Deletes the last character typed.

Stops the data being received.

Starts the data being received.

CTRL-H is the left arrow on most keyboards. Typing CTRL-S suspends output,
but it may take 2(1 characters or so before EMS recognizes it. To start
things going again after CTRL-S1 type CTRL-Q.

page 6

Accessing EMS

Accessing EMS is done by placing a telephone call to the local TYMNET office
(see attachment to determine local number) and then "logging into" the EMS
computer using the instructions listed below.

TYMNET/ONTYHE .!! Log-In Instructions

Proper connection with TYMNET has been made when the following appears on
your screen:

xxxxxxxxxxxxx00000000000xxxxxx000000xxxxx0000(garbage)

Type:

A

This lets TYMNET know what terminal speed you are using. The system will
respond with:

please log in:

Type:

EMSAPP(cr)

The system will respond with:

)ONTYME 11 date time GMT
ID?

Type:

SUPT.xxx(cr) (xxx • user's CDC)

The system will respond with:

KEY?

Type your key (password), which should not echo, followed by a carriage
return. The system will respond with:

ACCEPTED (Refer to page 9 if this does not appear.)

A sample log-in sequence is shown below.

xxxxxxx000000xxxxxx00000(garbage)
A
~1326-G23-
please log in: EMSAPP(cr)
ID? SUPT.MAC(cr)
KEY? non-printing password(cr)
ACCEPTED

page 7

20-11

20-12
Leaving EMS

You normally end your EMS session with the command ":QUIT". If there are
any messages still waiting in your IN list, the following message will be
displayed:

MESSAGES WAITING: (if your IN list is not empty)

Typing a carriage return in response to this message ends the session. Any
other response will ignore the :QUIT command, leaving you connected to EMS.

For example:

:QUIT(cr)
MESSAGES WAITING: (£!.)
DROPPED BY ONTYME II
91 MAR 83 11:47:35

please log in: (message will appear when you have successfully
terminated from ONTYME II)

Note: When using Access///, you must type open-apple Oto exit
after you have left ONTYME II.

To leave the system immediately, use the command:

:LOGOUT(cr)

page 8

Error Messages and Trouble Reporting

NOTE: Error messages in quotes will appear on the screen when you are
logged into EMS.

Symptom or Message

Ring, no answer

Busy signal when call placed

"ERROR TYPE USER NAME"

Terminal prints DDOOUUBBLLEE

"HOST DOWN"

"please log in" printed
during session

"all ports busy"

"all circuits busy"

"no such recipient"

"invalid command"

"message not on in list"

"all messages read"

"group code file not found"

"invalid message number"

"invalid user"

Action Required

Call message network supervisor.

Wait 5 minutes and try again.

Retype user name.

Ensure that the Apple/software is
set for full duplex.

Wait 15 minutes and try again.

Communications failure: log in again
and restart from point of last
accepted message.

Wait 5 minutes and try again.

Wait 5 minutes and try again.

Printed station name (CDC) is not
a valid station.

Command was misspelled.

Message requested is not on IN list
or IN OLD list.

IN list is empty.

Group code was either mistyped or
nonexistent.

Erroneous message number was
entered.

Specified user name is not valid
in the system.

page 9

20-13

20-14

Error Messages and Trouble Reporting (continued)

Symptom or Message

"message ti??"

"message not on out list"

Action Required

Invalid message number was entered
in a :GET or :READ command.

User attempted to cancel a message
that has already been read.

In general, if you are having trouble logging into ONTYME II, or having
trouble with the command formats, you should contact Macintosh Technical
Support at (4GB) 973-2282.

page 10

Command Reference

Telephone number of ONTYHE:

All commands are preceded by a colon(:).

:IN Checks the mailbox for any messages. Messages are listed
in order of the oldest message first.

:IN OLD Lists the messages for the last 14 days that have already
been read.

:OUT Lists any messages sent that have not been read by the
recipient.

:OUT OLD Lists the messages sent for the last 14 days that have
already been read by the recipient.

:READ Transmits the message in the mailbox. If there is more than
one message, the oldest is transmitted first.

:READ ALL Transmits all messages in the mailbox.

:CANCEL Followed by a message number, cancels the message.

:SEND Followed by a CDC or CDCs, sends a message.

:SEND CC Followed by a CDC or CDCs, sends a message with a "carbon
copy" list attached.

:SEND RUSH Followed by a CDC or CDCs, sends a message immediately to
recipient(s) who have available dial-out stations.

:GET Retrieves a message recently received or sent via your ID,
if the message is still on your IN or OUT list.

:TYPE Displays the text in your workspace.

:ERASE Deletes the text in your workspace.

:KEY Lets you change your key (password).

The above information is available from EMS via the command:

:READ(sp)**(sp)COMHANDS(cr)

For more information on EMS, try:

:READ(sp)**(sp)HELP(cr)

page 11

20-15

20-16
Using Access/// on EMS

To use Access/// (Revision 2) on EHS:

l) Before you log into the electronic mail system, you should have your
message(s) created and stored on a disk, ready for sending. At this time,
boot Access///. When you see the first menu, select terminal mode,
then press RETURN, and you will see only a cursor on the screen. Now
place a call to the local TYHNET office and follow the instructions
on page 7.

2) You must set up a recording file for your message to be stored. To
do this, type open-apple S. Select "Change the recording file" with
the up/down arrows and press RETURN. Access/// will ask for the
file name, or the new file name if you are changing the recording file.
If you are operating at Jg~ or 12gg baud and want to use a Silentype as
the file, it would be ".SILENTYPE". If you want to record to a disk,
name the file with the path first then the name (e.g •• D2/EHSLOG) and
the message will be recorded to the disk. When saving messages to a disk,
you may want to change the recording file name to avoid writing over a
previous message.

3) To record to a disk or Silentype, you must turn on the recording file
by typing open-apple R. The cursor starts flashing. The message will
be sent to the recording file. After the message is recorded, you must
turn off the recording file so that the message buffer in the Apple is
cleared. To close the recording file, press open-apple Ragain, just as
you did to turn it on. You now see that the cursor is not flashing.
Follow the "Mail Management" instructions on checking your mailbox for
messages and reading messages.

4) To send a message or messages, return to the Access/// set up mode
by pressing open-apple s. Use the up/down arrow to select "Exit
terminal mode" and press RETURN. Select "Transmit a file" and press
RETURN. Enter the pathname (e.g. ".D2/APPLE") for the file to be
sent. Access/// now asks for delay parameters. The following
normally work satisfactorily:

line delay

character delay

5) After transmitting the message, Access /// responds "File transmission
complete". To return to terminal mode, press up arrow twice and then
RETURN. If you put the :SEND command at the end of the message, you
should see a message number. It is a good prectice to write these down,
in case you need to refer to a specific message again. Enter the :SEND
command now, followed by RETURN if you did not embed it into your text.

6) After sending and receiving all mail, leave ONTYME II (refer to
page 8).

page 12

,

Using Micro-Courier on EMS

1) Load Micro-Courier.

2) When the main menu appears, type 11111 and press RETURN.

3) When the editing menu appears, type "1" or "2" and press RETURN.

4) Prepare or edit your messages using the correct format (see page 2).

NOTE: Hore than one message can be prepared per file using Micro-Courier.
The important thing is not to forget the :SEND command after
preparing each message.

5) After message(s) have been prepared and edited, press the ESC key.

6) Micro-Courier will ask for a file name.

a) Type month day/msg# (use the first message number).

Example: MAR~l/G~l

b) After typing the file name, press RETURN.

7) Micro-Courier will ask which drive to store the file on.

a) Type either "l" or "2" (in most cases it is "2").

b) Press RETURN.

8) Press the ESC key to leave the storage area.

9) Press the ESC key again to go back to the main menu.

lG) Type "6" and press RETURN.

11) . Type "l" and press RETURN • Micro-Courier will ask for phone number.
Type the local TYMNET number.

12) Type "J II and press RETURN. Type "6 11 and press RETURN.

13) Type "7" and press RETURN.

14) Type "5" and press RETURN. Micro-Courier will ask for an out file
name. Type the name created in step 6. After typing the file name,
press RETURN. Micro-Courier will ask which drive; type the same number
as in step 7, then press RETURN.

15) Type "6" and press RETURN. Micro-Courier will ask which file name
will store incoming traffic. Type month day/IN msg#.

Example: MARGl/IN~Gl

Press RETURN. Micro-Courier will ask which drive will
store messages. Indicate either 1 or 2 and press RETURN.

page 13

20-17

20-18

Using Micro-Courier on EMS (continued)

16) Connecting to EMS

a) Type "l" and press RETURN.

b) Log into TYHNET/ONTYME (see page 7).

c) When you have logged into ONTYME and have received the "ACCEPTED"
acknowledgment, type ":LOAD ON" and press RETURN.

17) How to send

a) When you have received the accepted acknowledgment, press the
ESC key and "T" key. Micro-Courier is now sending the out file
to ONTYME.

b) As messages are accepted, ONTYME will send message numbers back to
you which will show on screen.

18) How to receive

a) Once sending has been completed, you can receive incoming mail.
Press the ESC key and "R" key. This tells Micro-Courier to
store all messages received in the file that was named in step 15.

b) Type ":READ ALL" and press RETURN. ONTYME is now sending
your incoming mail.

19) After sending and receiving mail, leave ONTYME (refer to page 8).

2G) Press ESC and "E". Type 114" and press RETURN.

21)

22)

Type "8" and preS& RETURN. Micro-Courier will go back to the main menu.

How to print incoming messages

a) Type "l" and press RETURN.

b) Type "2" and press RETURN.

c) Type the file indicated in step 1s. Type the drive number.

d) Press the ESC key.

e) Type "3" and press RETURN.

f) When printing has been completed, press ESC. Micro-Courier
will go back to the main menu.

23) Type "8" and press llETUR.N.

page 14

Ustiq of TM1' ICCIII , wt1d II, ,tatt, ~l/13 20-19

1, N, L, I• NI .. , Nidia, L•, l1t1r11tl•al ca,acit1
3 • 311 laa11d •11, 311/1211 Ned ltltrWill

Statt ,... 1,,.

• 32-3312 " QI 115-a2-t'4J " -n,-»i.12 L tll ·3-423--L IJ •1-m-0210 H
AL 215-134·3418 L QI flrMHISI N .. ,i,-314-1544 H tll .. HIH43S " IC • .. 252-fl40 "3
AL 21H12-3H3 N co 31M1'-212J " IY SH-49'-7111 H tll 413•1'3-'211 L IC •3-271-2411 "3
AL 21,-.942-4141 H co 313-131-'211 H IY arm-~ 113 NJ 211-432-tm lJ IC .3-271-9967 "3
US1 917-271-3511 I CT 213-227•71tt N lA 31t-237•f511 " NJ 211-.wt-tlll 113 IC 113-577•2179 L
MASK N7•SM-UJ1 I CT »242-7141 113 lA 21t-•"" L NJ 211-413-"37 113 K 113-51$-2'37 L -••-m-5711 "3 CT »w-a21 " lA 514-2'1-2'51 N "' 211•115 •• 113 1" 61,-.3'7•'382 H
Ml 91·"2-3211 L CT 213-,,,..1153 L3 lA 514-524-4371 H IU •• ..., .. 1251 " '1N 615-'37-3111 ft
lil 412-254•9JJ N CT 213-11H57f N3 "' 413-711•'831 N IU 2tl•fll·INI H 1N ,15-751-5156 "3
lil .. 2-ffl-17'4 N CT 21H6HIII N "' '16-412-5'15 113 NJ •m-116.1 ,a 1N fll-S2H111 H3
rA 21f-261-1211 L IC m--+42-3"1 1G "' 617-412-4477 113 NJ at-452-1118 H TX 214-2'3·4581 N
QI 21f-S77-Ma2 L DC "H42-3'a H "' ,17"""'2-7135 II NJ a,..w-1119 H 1X 214-4311111 H
QI 2!,-213-"'5 " IC 1a-"l-1211 N "' 6l7-"5-tf1' L "' 515-M,-'31I " TX 214-1'1·1~ L
rA 213-211•1113 ft DC 1"-734-.. 1 1G .. 311-547-1111 II Nr 212-2'M'42 N TX S12-22HH2 N

°' 213-331•354 L3 DEL 312-42Hll2 L .. 311•711-1611 N3 Nr 212-m-t437 1G 1X 512-444-3211 N
rA 2!,.3'5-2113 L3 • 31H71-t449 L IE 217-774-2'54 H NJ 21~-~14 13 1X 512-113-•• N
rA 21,.._,.. L FLA m-w-•1" IQ 517--417-2"1 " lff 2J2-,.54H N TX 71M27-~ L3
QI 2lH1t-lm N FlA 31~7911 H ft) 616-315-3151 " lff :115-411-7111 " TX 713-132-299 lJ
rA 2!,-572-lffl N3 RA 315-'27-5411 N NJ 616-429-~L lff Slr54t-2711 " TX 71H?W90 N
QI 213--574-7'36 L3 FlA 315-725-tlll LJ NJ 6lH5f-51,, " Nr SJH72-4511 " 1X 7JH77-4111 H3
rA 213-574•8134 L FLA 315-ISl·U 113 NJ 61r723-t373 L Nr Slt-443·3111 N3 1X 116-7'2-01:U L3
QI 21,-577·1"6 L RA 113-53H441 N3 Ill ,11-715-12'1 L lff M7·257-ull " 1X fl,-.533•1453 H
rA 2l3·MS-055S L FLA "4•252-441J L3 NJ 61'·f4'·11t2 L Nr a7-fa-.MIJ " TX '1H'3·3745 L
QI 21HN-149 N FlA "4-434-1134 L Nlat JIHHHO N3 NY 714-241-IIH H 1X ,1,...,.5445 "
tA 213-flf-'93 LJ FLA 914-721-IJN N3 Nlat 313•549-1351 1G Nr 71r215-44tl LJ UTM 111•3'4-t788 N
rA 21J-ffl-t4'1 " I\ fl2·2M·lft4 L "101 313-US--2'26 113 N'r 71H45-i411 1G \M "3-34$-4?38 L
QI 2JH9t-3331 L I\ 912-352-7259 3 "101 313-t'3-3318 IO Nr fl4-32f-"80 N \M 713•691-11291 H
QI •H2H410 N JD 21t-34H414 N "101 S17·717.f4'1 N3 Nr f14-471-61H L \M 114-5..'1·1903 L
rA 411-44M333 L JU 217-753-7'15 N Nllff ,12-339-5211 113 NY , ,, N \M •+-s'6-1a, "
t.A 41t-91t·81H N IU at-'13-215' u NISS a1-1,,-'512 N3 IN 2lr535-1MJ " \M 114-7~ K
QI 415-4a-ffll N JU 212-344-4961 1G NISS a1 M4 u" IN 21r1•m, L \M .,._144~ H
QI 415-4N-~ N JU 212-Mt-4417 IO IIJ 314-421-Sll I 1G II 513-m-3147 H \M •Hn-992"
QI 415-771-3420 L JU 312-~711 HJ IIJ 314-731-2314 L3 IN S13-41f-2JH H "' 112-'9·2123 L
rA 415-715-3431 L ILL 21M3Hlt3 LJ ND :114-ffl-12'1 " 1110 419-243--3144 "3 .. 216-215-flff H

°' 415-7'9-20'3 L JU 312-7'1-44tl N IIJ 417•712-3137 L GNJO ,14-421-1211 1G .. 2tH73•78JI L
rA 41H3H711 H JU. ,1,-.m-m u IIJ 417.Ul•Sl44 L • 415-947-4317 H .. 2"-7'4-3900 L
rA 41S-'32-tl1' L JU ns-•a" N3 ND llf-232-1"7 L • ttt-512-4433 N .. 21,-m-'576 L
t.A 41,..f6HB N DI 219-233-41'3 1G ND 913-314-1!544 H II SU-226-1627 H .. '8f-3"-33'7 "
QI 415-"4•1211 1G .. 2JM24-S1'2 L3 tllfT .,-494-4437 L • 513-3'9-1453 K .. Stt-747-4115 "
rA 619-2'6-3371 H DI 21,-7,,-7254 L3 NC 114-37,•2545 113 M 21,-.UMMJ L Ill 414-235-1082 N
QI 619-321-lm L -2lf-lM-5452 L3 NC flf-323-4212 N M 21,-.331-mo " WI 414-4'11•'897 L
rA 6.1,.._.1'91 L -Jl7~tfl LJ NC flf-3'H471 N M 215-432-1510 N WI 414-'32-3106 L
rA 61f-727•4'1J L N IJ2-425-S2JJ L NC flf-549-"'2 H M 215-IU-'1'9 H Ill 414-722•5580 H
rA 717-sn-tJa L JCM\ 219-m-9227 L NC flf-725-m2 " M 412-7'5·1321 N WI 414-735-9390 L
rA 714-ffl•l210 N ICIM 31f-324-7t'7 L NC '1f-a2•1!U L M 717•233-1531 ti IIJ 414-715-1614 L
rA 714-4fl-3131 L JIIM 319-354-73'1 N NC flHIH171 L M 717-146-fflO N Ill ae-221-4211 113
tA 714-UHffl N IIIM 319-3'3•2412 L .. •2-397-t414 N M 114-"4·- L ... 314-522-'261 L3
t.A 714-4'2-14fl N UM\ s1,-.m-m2 " .. 412-475-NSf L PErT 11,-m-mo 1
tA 115-324-2'53 L JIIM SIS-"3-1647 L ... 112·2'3-1311 N PIDT N9·133·453S I
rA 115-41.i-4811 N .. 31'92'5-1241 N ... 712-112-7110 N PIDT llf-141-fUI I

December 8, 1983

TO MACINTOSH SOFTWARE DEVELOPERS:

We hq>e that this letter finds all of ycu busy st work Cl'l ycur spplicstiCll for Macintosh.
We at Apple are very excited to have ycu as a software develq>er and look forward to
seeing ycur product Cl'l Macintosh.

The p.1rpose of this letter is to inform ycu that with no incremental effort, ycur
spplicetiCl'l will also run Cl'l. the Lise system. We will provide a Macintosh enVU'a'lment for
the Lise which allows Macintosh software to run standalone Cl'l the Lise withcut any
modificstiC11. Specifically, we will be marketing a single diskette which will boot the Lise
into a Macintosh envira1ment and allow the Lise to use the extentsi ve software base we
expect to be offered for Macintosh.

From a user's perspective, using Macintosh software Cl'l the Lisa wculd work as follows:

• The user wculd boot the Lisa from a 3-1/2" microfloppy diskette using a
microfloppy drive supplied for the Lisa.

• By then inserting their Macintosh epplicatiCl'l diskette, they are ready to
work.

In additiCl'l to just being able to run Macintosh software, the user will also be able to take
advantage of the additiCl'lal memory in the Lise as well as the larger screen. At some point
in the future we also plan to have this enVU'a'lment support Lise's hard disk.

So by following some simple rules in writing ycur Macintosh software (see attached), ycu
will be able to leverage ycur efforts over both machines. We already have a substantial
installed base of Lise's which is growing daily. These Lisa users are anxious for the
types of epplicatims which ycu are develcping for Macintosh and thus represent a sizable
market to yru.

I would strmgly urge ycu to following the attached directiCl'ls in writing ywr Macintosh
applicatiC11s. Not C11ly will they insure your rurrent ability to sell your software C11 the
Lise, but will also make it much more likely that your software will run C11 future ·
Macintosh products. AdditiCl'lally, I can provide you with informatiCl'l C11 ocpy protectim
implementatims which will insure that your software is viable m both the Lise as well as
Macintosh.

If ycu have any questims, please either ¢ve me a call or dcn't hesitate to cell Burt
O.lmmings in the Lisa gm.1p. We are both here to help ycu succeed and are very excited
about the prospects for the software ycu have underway.

Sincerely,

///{ 121
Mike Boich
Apple Cbmp.1ter, Inc.

20-21

Notes for applications concerned with UsaMac
compatibility

Date: oecemoer 5..1983

Tlle following ls a COf11)8nd1um of suggesUons 1ntenaed to l'lelp guide a'lyone wno wants
to write software tnat wm run on DOtn Maclntosn, and Lisa 2.

(1) The stze of tne screen, or rOwDytes, ShOUld never be assuned. AA appllcaUon can
always aetermlne tne size of tile screen Dy 1001dng at tile ixxn,s• flela of tne
Qu1CkDraw g100a1 varta01e -SCreenetts·.

In Pascal tills m1gnt lOOK llt<e:
tn1sscreens1ze :- screenelts.bOl.nas

wnere tn1sscreens1ze ls or TYPE Rect.

In Assen1:>1y tnls mlgnt 100k like:
t-'OVE.L DOunas(AO).(AO)
t-10\JE.L(AD)• .(Al)•
MOVE.L(AD)• .(Al)•

; get start of screenDltsbOUndS
; copy topL.eft
; copy DOttomRlgtlt

wnere AD ts tne address of the QutckDraw gloDal -screenBlts·, and Al potnts to
our screen size.

(2) use of sound stloUld be limited to only tne routine -SysBeep•. Later on It may be
possible to loosen tn1s constraint to include access to tne square wave generating
capaoUlUes Of the sWld driver.

(3) ll'le size of memory st10u1a not t>e assl.6Tled. Memory slze ca, De aetermlned Dy
using system routines sucn as "'FreeMem·.

(4) Most, lf not all, atterrt)ts to access naraware atrectly (e.g. BTST #3,nexxxxx to
see lf the mouse bUtton ts up or dO'wn) will result ln fatal system errors.

(S) In general, access to system glObals snou10 be through system routines. Pertiaps
later on tnere wm be ume to compUe a 11st of tnose few Ql00al vartaDles wntcn.. tn
fact, are not valla.

(6) Do not use trle T f4S (test and set) lnstructton of the 680D0. A BSET lnstructlon ls
not tnat rn.icl'l slower.

0) Tne screen memory snou1a not De accessea atrecuy. All screen access snou1a 0e
tnrcxql Qulet<Draw.

(8) 'The ROM coae snou1a not be aocessea (l.e.).lnped lnto) directly.

(9) The address of tl'le atspateh table (used ln replacing traps) snou1a not be asSI.IT'lea.
The aadress of lndlvldual traps can De aetennlnea Dy using tne system routine

Page 1

20-23

20-24

"Get TrapAadreSs•.

(1D) A progrcm snou1a not CCUlt en parcmeter memory Delng saved across system boots;
-rime· wm De savea nowever. In tne case of a power loss, an parcmeter memory
1nc1ua1ng Tlme wm De 1n1ua11zea.

(11) Serial pon -e· (Le. me of tne two serial pons) wlll not q>p0n 19.2k bau1

(12) Tlmlng senslUve pans of programs ShOula not be lmplementea wltn Umlng loops, or
otner appllcaUon Internal Umlng metnodS. lnsteaa, use ~ea(l)ateTtme· for l
secona values or 100k at tne "TlCks· g100a1 for • 1/6D seccna values.

(13) Software protection????????

Page 2

The MncPnint Document Formnt
by BIii Atkinson

MacPaint documents are easy to read and write, and have become a
standard Interchange format r or full-page bitmap Images on MacIntosh.
Their Internal ronnat Is described here to aid program developers In
generating and reading MacPaint documents.

MacPaint documents use only the data fork or the file system; the resource
fork ts not used and may be Ignored. The data fork contains a 512 byte
header and then the compressed data representing a single bitmap of 576
ptxels wide by 720 pixels tall. At 72 pixels per Inch, this bitmap occupies
the full 8 by 10 Inch printable area of the lmagewriter printer page.

HEADER:

The first 512 bytes of the document form a header with a 4 byte version
number (default • 2), then Je•e • 304 bytes or patterns, then 204 unused
bytes reserved for future expansion. If the ver.sfon number ts zero, the
rest or the header block ts Ignored and default patterns are used, so
programs generat1ng MacPaint documents can stmply write out 512 bytes
of zero as the document header. Most programs which read MacPaint
documents can simply skip over the header when reading.

BITtlAP:

Followlng the header are 720 compressed scanllnes or data which form the
576 wide by 720 tall bitmap. Without compression, this bitmap would
occupy S 1840 bytes and chew up disk space pretty fast; typical MacPaint
documents compress to about 10 Kbytes using the PackBlts procedure In
the MacIntosh ROM to compress nms or equal bytes within each scanllne.
The bitmap part or a MacPaint document ts simply 720 times the output of
PackBI ts with 72 bytes Input

20-25

20-26
READING SAMPLE:

CONST srcBlocks • 2; (at least 2, bigger makes It faster J
srcSize • I 024; (512 • srcBlocks)

TYPE dlskBlock • PACKED ARRAY[1 .. 512) OF QDByte;
VAR srceur: ARRAYI 1..srcBlocksJ OF dlslcBlock;

srcPtr,dstPtr: QDPtr;

(skip the header)
ReadOata(srcFile,•srcBuf,S 12);

(prime srceur J
ReadOata(srcftle,osrcBuf,srcSlze);

(llll)ack each scanllne Into dstBlts, reading more source as needed)
srcPtr :• •srcBuf;
dstPtr :• dstBlts.baseAddr;
FOR scanL lne :• I to 720 DO

BEGIN
UnPackBlts<srcPtr,dstPtr, 72); (bumps both ptrs J
(time to read next chunk or packed source? J
IF ORD(srcPtr) > ORD(l'srcBuf) • srcSlze - 5.12 THEN

BEGIN
srcBur(I l :• srcBur(srcBlocks]; (move up last block)
ReadData(srcF I le, l'srcBuf[2],srcS lze-512);
srcPtr :• Polnter(ORD(srcPtr) - srcSize • 512);

END;
ENO· •

(

WRITING SAHPLE:

To write out a 576 by 720 bitmap which Is contained in memory, the
fo11owlng fragment or code could be used:

TYPE dlskBlock.
VAA srcPtr,dstPtr:

dstBur:
dstBytes:

PACKED ARRAY[1 .. 512) OF ODByte;
ODPtr;
dlskBlock;
INTEGER;

(wrl te the header, a II zeros)
FOR I :• I to 512 DO dstBuf[t] :• O;
WrlteOata(dstf I le,odstBuf ,512);

(Compress each scanltne and write It)
srcPtr :• srcBlts.baseAddr;
FOR scanLlne :• 1 to 720 DO

BEGIN
dstPtr :• •dsteur;
PackBf ts(srcPtr,dstPtr, 72);
dstBytes :• ORD(dstPtr) - ORO(OdstBur);
WrlteData(dstFI le,•dstBur ,dstBytes);

END;

(bumps both ptrs)
(calc packed sf ze)
(wrl te packed data J

20-27

10: NacPrint Users

Sl.B.ET: The HacPrint Interface

DAlE: December 6, 19B3

FlU1: (Men DenS111ore

------------- ---------------------
IntroclJction

Because MacPrint is is not part or the ROM code it must be included with the Application's
code. Typically this would be dqne by including the MacPrint code in your Linker job.
There 8ll" two reasc.iris we don't do this. One is that we want to be able to configure
ne•.,,, pnnters without re-linking the new pnnt code into the Applic&t1ons. The other 1s
that we cennot &-sume ttre.t all OEM's are using the Lise\ ~...,orkshop's Linker! MicroSoft,
for exernple, runs 81"1 interpreted "C" environment with a 'JAX developmer,t system!

Our solution to this pack&gmg problem is to provide four "PDEF" definition procs in e.
special printing resc,urce file. These four def procs break the printing code into four
dis.joint code segments: Dialogs, Spooling, Draft printing, Ell"ld Picture printing. In addition,
there is a driver, ".Print", installed in System.rsrc whict, is &.ecessed like any other driver
with Open, Close, Status &nd Control calls.

A new printer is configured by supplying a new printer resource file, and instelling its
file name [Jmage~,1riter, for example], its ".Prir,t" driver [id=2J, and the driver's configuration
record [PREC, 1d=2) in S~.:tem.rsrc.

Access to these "PDEF" procs is via a very smell (374 byte) piece of Prir,t Glue celled
"PrLink" which must be Linked (or some how ir,cluded!) into your application. In addition,
the .Pnnt driver can be accessed directly. The driver 81"1d its use is discussed in detail
in 8 ~epere.te docurnent.

The Pei.seal interface is "MacPrint.obj" and the Assembly interface is "PrEqu. text". Tt,ere
are four rn&,jn groups of procedures: Init/rermination, Dialogs, Spooling/Oraft, arid Picture
Printir,g. This releese is our "Bete." rele~e. This mee.ns tt,at the interface is es stable
~ we can me.ke it. No furthM procedural interface changes will be made. Only changes
internal to the code will be allowed.

This is a list of recent changes to printing:

Added rPe.per recte.ngle to Print record.
Print record size ir,creesed from EX> to 120 bytes.
Added the PrValid&te procedure.
Made the dialogs configurable by the Application for addino their own buttons.
Square Pixel correctiq;. optiors have been provided for both screer, end document

printing vie. dialog buttons.
The default print file name is now included in the Print resource file as & string.
The .Print Driver (screen printing) now uses a parameter record for configurability.
vJe r1ow look for Cmd ". 11 aborts if a Nil idle proc is used.
The spooler now provides breaking text into words for screen-HiRes alignment. This

correc:ts for minor scaling differences between low end high res.
Spooling now uses page alhgr,ed file buffering. This gives up to 3x speed improvement

when word breaking!
Added two new segments to the PrLink interface, both private to printing:

PrCfgDiaJog: used to configure the printer from the PrApp program.
PrHack: a general addition to the interface for stuff we've forgotten!

Added the procedure PrJobMerge to install the results of a PrJobOialog into several
documents. This is used as part of Finder printing.

Added iPrFileVol 8c bPrFileType to the Print record and the Printer 10 unit.
And of course lots of bug fixes.

Page 1

2-1

(

2-2
This release also contains Oon•s many improvements to the PrApp:

Installation of new printers via StdFile.
Print file selection using Stdf ile.
Icons via bundles.
Changing or the default print record ar,d screer, parameters .
.. and me.king PrApp a 11Rear• application.

Jnitialization

The lnit/Ttrmination code consists of:

PRCX:EDlJ£ PrOpen;
PRCCEOlR PrClose;

These Operi/Clme the printing code by opening/closing two files: the current print
resource file [ImageWriter .rsrc, for example} and the Print driver [.Print) which is
part of the System.rsrc filf!.

PRCX:EDlJ£ PrintDefault (t.Tint: TtFrint);
This fills a handle to tt,e defaulted Print record from the current print resource file.
This doe.s not actually dialog. It is used to initialize new "stationary" end to let
11listing" style applic&tior.s to get & valid Print record for prir,ting without dialogs.
The handle must be pre-Bllocated ~ 120 bytes.

FtK:TIO\I PrValidate (hPrint: TI-Print): Boolean;
Performs a validity ct,ec:k on the Print record, correcting it if invalid.
Returns True if the record weis cher,ged due to being invalid, False otherwise [ie: fChanged}.
The current validity check is for software version number and for printer type. If either
fl!'e not current, the hPrint record is simply set to the current printer•s default values.
Note: This also updates the information sub-records: Prlnfo, PrXInfo etc according
t.o the currer,t values in the PrStl and Pr Job sub-records of the Prir,t record.
This insures that these 11dependent variables 11 are in synch with their 11independent
variables", the PrStl &nd PrJob. The returned boolear1 is not affected if there w~
a change in these values.

Dialogs

The Dialogs maintain the primary printing data structure, the 11Print" record. Note that
one of these should be stored in each or your documents so that client use of printing
e:an be 11remembered11

• We1ll discuss this protocol more later. The dialog procs are:

ft.l'CTICN PrStlDialog (!"Print: TI-Print): Boolean;
The Mac Applications provide "visual fidelity", i.e. 11What you see is what you get 11

•

This means that you must know something about the printing request b6fore it is actually
made! The PrStlDialog eps for the part or the print request that causes one print job
to vesry from another. For most printers, this is simply the page size and orientatior,
for the document. No guarantee is made that this will always be so, however! The
guarantee is only that enough information is obtained to fill out the pert of the Print
record called the Prlnfo data structure, which will be described further below.

A.N:TICN PrJobOialog (tf'rint: nPrint) : Boolean;
The rest of the Print record is filled out by this dialog. It mainly consists of the
page renge and number of copies. For the Image Writer it also has the HiResl\..oRes/Oraft
choice and the type of paper feed.

The boolean result for both dialogs is the Dolt button: if true, the Client hes clicked "O~.".
The Pr int record should be saved and, for the Pr Job, the document spooled and/or printed.
Note that the initial button settings are derived from the existing Print record values, and
should be either an old, vBlid ont:, or a new, defaulted one. Each dialog calls PrValide.te
for you.

Page 2

(

~ PrJott1erge (hPrintSrc, t"PrintDst: TrPrint);
"Merges" hPrintSrc's PrJob into t,PrintDst [SourcetDestin&tion]. Validates. both
records before using them. Updates. the essociated "Info" records.

This procedure allows one print job dialog to be applied to several docurnents. The main
use is for printing from the Finder. See "Usage11 discusson below for details.

Appliclitions may add their own buttons to the printing dialogs to customize them for their
own purpose. For example, you ~ould add margins to the PrStlOielog and row/column selection
to the PrJobDialog. See me for details- and samples of how Microsoft is doing it.

Spooling and Draft Printing

The Spooling;Oreift procs do one of two things: Spool a print file to disk, or provide for an

2-3

Ascii like style of printing. Both eare provided by setting up a gref port and intercepting
QuickOraw calls by usir,g our own versioris of the QuickDraw bottleneck procs. Thus thes.e embody
the minimum use c,f printing by an App: you can either do "Chee.p" sscii printing or spool the file
to be printed l&ter, "offllne", by the Printer Application that will read rsnd pnnt the file.
The interface is via four procs that "bracket" cells to Quic:kOraw:

FlN:TICN Pr0peri)oc (t"f'rint: TtPrint;
~Port : TPPrPort;
pICSuf: Ptr) : TPPrPort;

Initialize the printing code for this document. The hPrint parameter is a handle to e
valid Print record. The pPrPort is similar to the Window Manager's Storage parameter: if
Non-NJL, l use it, ratt,er than calling NewPtr. The IO Buffer pointer is passed allong to
the OS: if NJL, it uses tt-,e volume buffer, otherwise it uses yours. The returned poir,ter
is to the initialized Print "Port" which is sirnply a Graf Ptr, its "5Sociated bottler,ec.-k
procs, and e. few extra longs for me. The code will initialize for Draft printing or for
Pie file spooUng by looking at the fDraft flag in the t,Print de.ta. If the hPrint has a
non-NIL ldleProc, it will be called by the draft printing prc,c.

PROCEDLR: PrCloseOoc (pPrPort: TPPrPort);
Puts the above stuff to bed: fl~hes the Pie file directories. or closes tt,e print driver
for draft printing.

PROCEDLR: Pr0perPage (pPrPort: TPPrPort; pPagefre,ne: TPRect) ;
Initializes the next page. The p&ge frame rectangle is for wizards: set it to NIL.

FROCEOUE PrClosePage(pPrPort: lPPrPort);
Cleans up tt,e Pie file data structures or ejects the current page.

Picbae & Bitmap Printing ·
~

The Pie printing procs are the steindard We+/ to print. A third proc is provided to
do simple bitmap printing.

PROCEDLR: PrPicfile(hPrint: lt-Print;
pPrPort: TPPrPort;
pICBuf: Ptr;
pOevBur: Ptr;
VM PrStatus: TPrStatus) ;

This reads and prir,ts the spooled print file. If an ldleProc is included in the Print
record, it is run both during imaging and writing to the serial port. The first three
parameters are 1dent1cal to the PrOpe:nDoc parameters. The device buffer is the "bend"
buffer esr,d ~ociated data. Jf NIL, l allocate it. Its size is Print.PrXIr,fo.iDevBytes.
The status: record simply records the progress of printing and may be used by the JdleProc.
See PrApp for its use.

Page 3

(

2-4

~ PrPic (l"Pic: PicHandle;
hPrint: Ttflrint;
pPrPort: TPPrPort;
pOevBuf: Ptr;
VM PrStatus: lPrStatus) ;

Simply prints from your picture rather th&n the spooled file.

PROCEDLR:PrCtlCall (iWhichCtl: Integer; 1Panm1, 1Perern2, 1Parem3: Longlnt);
.. is a general control call to the Print driver. In perticuler:

PROCEDLR: PrCtlCall (_ iPrBitsCtl{= 4t -The bitmap printing control
pBi tl1ap: Ptr; -Qui ck.Drew bi tir,ap
pPortRect: TPRect; -a portrect. use bounds for whole bitma
}Control: Longlnt) ; -0= >Screer, resolution/Portrait

.. dumps a bitmap to the printer. lControl is a device dep param; use O for screen
printing. Thus PrCtlCell (iPrBitsCtl, 1""1yPort ScreenBits, @""1yPort "".PortRect. Bounds,0)
performs e. screen dump of Just my port's data. See the Print Driver memo for more details.

Usage

The Prir,ter is initielized by celling the PrOpen procedure. You may either keep the
printer open all tt,e time, or bracket every print cell with a PrOpervPrClose pair.

Ee.ch documer,t h~ its own Print record and must store it in the document file. This ellows
the client to configure their documents once rather than each time they open the document.
To get a vanilla Print record, simply c&ll the PrintDefault procedure. [Note: Non-document
printing, listings, for example, may always use defaulting.]

When an existing document is reopened, the PrVelid&te procedure must be called. This allows
the client to ct,uige printers with the Printer epplic&t.ion end eutomaticelJy update their
Print records.

The two printer die.logs are accessed by menu items. Each returns the Dolt button. The Print
record should be update-d in the document file whenever tDolt is True. After a Pr JobDialog
is celled returning True, the followano print loop is oenerally used:

r;t1yPort := Pr0perOoc (hPrint, ~ort, pIC8uf);

~ iPage :• 1 TO iPages DO BEGIN { .. or ltlilLE ~T EOF(myOoc) DO BEGIN }
PrOperPage (pt1yPort, NIL);

{ Here you image the current page by calling OuickDraw! The drawing proc
will need the page size and printer resolution stored in the Print.Prlnfo.

PrMyPqe (iPqe, ~int Prinfo);

PrClosePe.oe (pNyPortt
00;

PrCloseDoc (,tty-Port);

This will either spool or draft print the document. lf you are printing from your Application
rather than the Printer Applic&tion, you will do the tollowino:

IF tPrintAA.PrJob.b.DocLoopabSpoolLoop Tt£N E£GIN
SwaptteOut ;
PrPicFile (....)
SWapttein;

00;

The "SwapMeOut" procedure swaps ~ much of you out ~ reasonable. You may also set flags

Pqe4

(

2-5

for your GrowZone procedure to let it try t.o do a last ditch swapout, or at lea~t ~lert
the client that the Printer Application can be used to print the docunent. PrPicFile
then takes over the mac.hine to print t.t,e spooled file. l'ow- "Swait1eln" brings your world
back in.

Printing from the Finder may be done however the HPP sees fit. The two most obvious
apprciaches are:

-Simply use the doc's current Print rec.ord. You should first set the page range and
rnJnber of copies to [1, 999] and 1. This will print the doc exactly as it la~t printed.
This ell~·,s the job mix to include draft, 1~ res and high res.. ·1ou should call
PrVal1d&.te before calling the PrPicrile procedure.

-Put up just one Print Job dialog and apply it to e~ch doc in the queue. This is
sliohtly more involved tt,an the above because you want each doc's formatting
1r1forniat1 on to be preserved. Here Is how to do it:

Get the first doc's Print rec.ord and perform a PrJobOialog with it.
{Note that you don't have to c&l.l PrValidate here because tt,e dialog does.]
Pnnt it.
For each add1t1onal doc do:

Get the Print record for this doc.
Ce1 l Pr JobMer ge.
Print it.

The adventei.ge of the tint style is that no di8logs occur, thus making is easy for saneone to
sullnit several doci.,nents from different Application for printing. The advantage of the second
is that lt &llCNls one PrJob dialog to be spread over several doct1T1er,ts. A third possibility
is to have the Finder call PrJob01alog with a defaulted FTint record and pass it as a parsneter
in the A~•pParc1111 record. The Apps would tt,en use the second method, possibly with a Print Shop
proc to move in the job and validate (updatej the Print record.

It is important to stress the use of the Prlnfo sub-record when imaging your document.
Ttie Prlnfc, record cc,ntains the device dependent paremeters for the cunent printer.
If carefully used, it prwides the ~pplicahon with "parsnetnc device independer,ce".

TPrlnfei = ~CCR>
iDev: Integer;
i~es: Integer;

{Font mgr/Cuick0r"'4 device code}
(Resolution of device, in device coordinates}

i~es: Integer;
rPage: Rect;

{ .. note: V before H => canpatable with Point.J
{The page (printable) rectangle in device coordinates.}

00;
The most irnportent field is the page rectengle. This gives the current pap~ size
in bits. The next is the h/v resolution, in spots per inch. Finally, there is the
Ouicl<Draw - fontNgr device m.nber. This lets you get the metrics for the printing
for,ts, so that you can acfjust for screen-printer differences. Conect use of these
will result in a very sur,rising degree or printer independence.

In addition Prlnfo, there is another field in the Print record: rPe.per: Rect which
gives the paper rectangle in which the Prinfo.rPaoe is embedded, in device coordinates.
This is "Outset" frCCh the rPage rectangle, whch el.wet-JS has 0,0 top left coordinates.
Its use is for msrgin calculations.

The Print record contains an ldleProc pointer that is set to Nil by the Pr JobOielog. By che.r,gin
this to your own procedure, you meay simulate multi-processing! for exsnple, you can look at
either PrTest or PrApp to see how you may run the ornements while printing. If you don't provid
an ldleProc, we provide a simple Ccwr,and Period abort procedure; you should post an alert/d1&log
informing the client that this is available.

Spooling may be to files ott,er than the default spool file (whose nsne is configurable by the
client). The file neme is provided as a string pointer in the Print record. It is set to
Nil by the PrJoti)ielog. This causes spooling to the default file neme. Simply provide

Page 5

C

2-6

your CMn file name if you'd like to. This is especially useful for Applications that cannot
print fran within themselves. The volume/version parsieters are similarly changBble.

Notes

Errors:

Size:

Bands:

Spooling:

Draft:

The Alert (ha) reader will have noticed a lack of error returns fran printing. Wher
we can issue our own Alerts, we do so. Other errors are handled by posting the
error in the printer globals. The first integer is the current error n1J11ber.
Incas~ the user's disk does not have a printing resource file, or it is incorrectly
nsied 1n System.rsrc, or there 1s r,o .Print driver; we simply post an error ar,d
No-op in the Prlink code. We do not alert frcrn Prlink.

Printing is really a Mini-Application rather than a library. The code 1s currently
roughly SK. But this is reeilly a small part of the cost of pnntlng; even 1f the
code were "fl'ee", the datea used by printing can be huge. Current sizes [10/6]:

Code: .Print Driver a 780
Prlink a 374
Dieilogs = 2,226
Spooling • 1,294
Draft = 2,134
Pie Printing = 4,630

Data: Bands a 6K for HiRes
Picture • 5K to 15K, typically. t1e.x • 32K
Fonts .. 3K to 10K, typically. Max = 32K
Ouicl([)rew Buf a 2K to 6K, typically; up to 12K for 24 Pt shadow HiRe

Tt,is is why a sepere.te Printer Application is provided: you may simply spool and let
the client use it. For spread sheets, tor exemple, Draft printing may be adequate
for most uses.

The size of e. HiRes page bitm&p is in the order of 1/4 Megabyte! Printing handles
this by breakir,g the page into smaller "bands" and <err,ates imaging and printing t
to print a page. For exernple. a HiRes US Letter size page has 47 bands of 5120 byte
for a total of 240.640 bytes. L~es is 24 b&nds of 2560 bytes for a total of 61,440
[Note: as res-olution doubles, data vol11ne Quadruples!) Please note that even though
may appear gargantuan, the printer uses far less th&n the screen's 20K !

Even if you plan to try to print from within the App, spooling is useful! It allows
you to have ea very clean swai,ping stratagy: First you spool, with only 3K of pr1nti
code and no more their, 1K deata. This may require much of your code end data to be re
But when the data is spooled, you can swap all of your code and data out and call
PrPicFile frcrn its own micro sec,nent ! The banding stratagy requires very fast imagi
of the date if it is to be drawn 50 times per paoe. This is another reason for spoo
Pie drewing is optimal use of QuickDrew! Generally spooling is done to the default
Print File whose mne is stored the Print .rsrc file for the translators to change.
You 111ey CVP.r-:Jt'de this by setting three fields in the Print ree.ord:

pFileNsne: 1PStr80; {Spool File Nsne: NIL for default.}
iFileVol: Integer; {Spool File vol, set to O initially}
bfileVers: Signed3yte; {Spool File version, set to O in1t1al.ly}

These are set to NIL, 0, O by the Print Job dialog. Change them if you'd like.

Draft printing is a ce111prornise between Ascii/Wri teln/Fast printing and 0uicktiraw.
One of the strongest Nae attitudes is the full use of the 0uick0raw style of imaging
Note that there are Ml Writeln' s available tor Mac progr11m1ers, and Ml progrs11s use
conmand line interface! I decided that the best cc:npromise was Draft pr1nt1ng. It
called "Draft" mainly because it "simulates" the output you will get when you print
with standard printing. It is done by simply installing QuickDrew capture procs e.nd
translating them to the printer's cwnand codes. It thus can provide full use of th
printer's native capabilities, such as bold, underline, fonts, line plotting, etc.
It also requires no special interface such as Writeln; thus the standard Apps get it
without even being ..,are its happening! .. Its completely under client control!

Page 6

Idle:

Release:

2-7

"But what do I do if all I want to do is make a Listing?!" Well, its really not so
bad: simply get a default Print record, and make your own Writeln! The only real
t,eesdache is having to be aware of the Page boundaries. But the &dvantage is that
the results will nicelv fit European paper sizes, and you'll probably find that
"Pretty Printing" will° be so easy that you'll provide it. Note that it also
lets you provide Spooled standard printing by simply changing one flag!

The Print record has a IdleProc: Print .PrJob.pldleProc. It is always returned NIL b
the deffll.llt and dialog procs. To use it, simply stuff it with your CMn proc after t
PrJoli>ialog tsnd before calling the Draft or Pie Printing procs. A word of caution,
hc:,,,ie-,er! The "concurrency" probl~s caused by tt,e Idle proc are subtle and n,&ny1

Look at the PrTest and PrApp ssnples for how they do it. The major problem is m&k1n
sure tt,e Graf Port is reset to mine when returning frati your idle. Also, DON'T allow
calling Printing procs while idling. They are accessed through the Prlink code whic
is r,ot re-entrant. The suggested idle proc is one polling for Clnd "." e.borts. To a
printing, simply put iPrAbort into iPIErr in the PiintVars in low memory.

Billions of files are released on the HacPrint disk, only four of which you need:
Prlink to Uni~ with, either MacPrint.obJ or PrEqu.text to canpile/assemble with,
the current print resource to run with, and PrApp to let your client print spooled
files with. New releases of printing simply use a new print resource, even if eddin
a new printer! Note however, that you must have the newest System.rsrc file which
contains two vital printing resources: the .Print driver and a string conteJ.mng the
file nsne of the current printing resource [=ImegeWnter]. If you have an older
System.rsrc, it cen be updated with these, using RNover, by pasting the small file
PISys.rsrc included in the printing release ir,to System.rsrc.

Pesge 7

(

10: HacPr1nt Users

Sl.6.ECT: The .Print Driver

DAlE: December 7. 1983

FAit: O.,,en Densmore

Introduction

The MacPrint system is packaged ~ three sep&rate iterns:
-Three entries in System.rsrc, the .Print driver beino the major one,
-The Printer resource file, currently "lmegeWriter",
-The Punter Application program, "Printer".

The three entries in the System.rsrc file are:
-The .Print dnver [ResType•ORVR, ResJD•2, ResNerne•".Print", RefHum•SFFFD],
-A parameter record used to configure the .Print driver[ResType=PREC, ReslD=2].
-A string naming the current printer [ResType=STRG, ReslO=$E000(-8192)],

The System.rsrc string is used to locate the "current" printer, and allows the translators
to n&rne the printer appropriately for the target country. This allows several printers
to be aveileble at once, but with only one being active. The installation ot a new
prir,ter (or renaming of the existing one) is done by installation dialogs in the Printer
~plicatior, program. Thus 1 fflllY chenge my JmageWriter's name to "StarChild" by simply
editing its name in the Finder and using the Printer application to iristf:lll it.

The .Print driver and its essociated parameter record reside both in Systern.rsrc and in the
printer resource f'ile. This redundency is necessary for the installation scheme discussed
above. We requtre a place in Syst~m.rsrc so that the system itself can use the current printer
tor screen printing. It also allows ~plicotions not using the complete printing system to
do bitmap-only prmtang easily. The copies in the printer resource are never executed;
they are simply used as o storege area for installing into System.rsrc.

This document discusses the ~e of the Printer driver. The printer resource is documented
in the "MacPrint Interface" specification memo.

Driver Calls

The driver contains the following general calls:

Status: Returr,s the font Manager's device information record.
Controls:

Control 4 = Bitmap Printing,
Control~• Block 10 to printer,
Control 6 • Keyboard event controls,
Control 8 • Font.Menager's font selection over-ride option.

The Bitmap Printing control (4) uses three long parameters for printing a portion
of a bitmap:

CSPanm • pointer to 0uickDrl!M bitmap,
CSParem+4 • pointer to rectangle within bitmap, in local coordinates,
CSParerlH'8 • a device dependent parer11eter; use 0 f'or screen printing.

ThlX> to print the entire screen: --or-- the contents ot a window:
CSPe.rsn • screerBits, CSPareni • window.portBits,
CSParem+4 • st~eenBits.bounds, CSParem+4 • window.portRect,
CSParer11+8 • O. CSParem+8 • O.

The Block 10 control (5) uses three long parameters for writing a block of raw data
to the printer. It's primarily useful tor ascii prir,ting, form feeds, cr"s etc
and for use by tt,e higher level printing code for sending escape commends to the printer.
The parameters are:

Page 1

2-9

(

2-10
CSParem
CSParllll'f'4
CSParer11+B

= pointer to block,
=along count of bytes,
= a pointer to an Idle procedure; use NIL for none.

The Print Evl"nt cor,trol (6) uses one long parameter for handling two special cases
of Bitmap printing. The parameter's format is:

CSPar!l'II = Event "Message"; which is formatted as follows:
Byte 3=0,
Byte 2=$Ff tor printing screen, $FE for printing just the top folder,
Bytes 1 & 2=$fffD,. the driver's RefN1111.

Thll$: $Cl()fFFFFC, is. t~,e sueen dump message, while SOOFEFFFD is the top folder message.

The Font Manager control (8) is the "tail hook" that is called by the Font Manager
after it responds to a Qu1ckDraw request for a new font. It allows & device to
over-ride the Font Mari1:1ger's selectiori heuristic:.

The following constarits are in our "Printing Equates" file, "PrEqu.text":

,
; These are the PrOivr consteints.
,
iPrDrvrlD
iPrDrvrRef
iPrBitsCtl
iPrIOCtl
iPrEvtCtl
lPIEvtAll
lPrEvtTop
iFl1grCtl

.EClJ

.EClJ

.EClJ

.ECU

.EW

.EOJ

.Etll

.EOJ

2
SFFFO
4
5
6
f,OOFFffFO
$00FEFFFO
a

;Driver's ResID
;Ori ver' s RefN1JT1 .. f()T ResID
;The Bitmap Print Proc's ctl n"1\ber
; The Raw Byte 10 Proc' s ctl n1111ber
;The PrEvent Proc's ctl n'1ftber
;The PrEvent Proc's CParam for the screen
;The PrEvent Proc's CParam for the top folder
; The Fl1gr 's Tai 1-hook

.. there are similar defir,itions in the MecPrint Pascal interface.

Unit PTScreen, a simple Driver interface

The ur,it PrScreen I< 1((1 byt~ !) cont&i~ a very simple Pascel interfece to .Print.
The interface definition is included m MacPrint. You may &.lso simply declare these
ee Extern~ referenc~ if you'd rather not {$l~e MacPrint}.

PROCEC1lJRE PrDrvrOpen;
PROCEDURE PrOrvrClooe;
PROCEC1URE PrCtlC&.11 (iWhichCtl: Integer; 1Parem1, 1Parem2, 1Parem3: Longlnt);

The firs:t two simply open 8c close the driver in System.rsrc. Be careful not to
close the driver if someone-else hm opened it before you got there! ..
The third is simply a generalized control call to the driver. It takes a control
call number, and up to three parameters. Thus the above controls are eccessed by:

PrCtlCell (iPrBitsCtl, pBitMap, pPortRect, lCor,trol);
PrCtlCall (iPrEvtCtl, lPrEvtAll, 0, O);

· PrCtlCell (iPrEvtCtl, lPrEvtTop, 0, O);
PrCtlCall (iPrIOCtl, pBuf, lBufCount, pldleProc:);

These constants are also declared in MacPrint:

iPrBitsCtl .. 4; {The Bitmap Print Proc's ctl numberl
iPrlOCtl • ,; (The Raw Byte JO Proc"s ctl number}
iPrEvtCtl a 6; (The PrEvent Proc's ctl numberl
lPrEvtAll = $0002FFFD; {The PrEvent Proc's CParem far the entirt screen}
lPrEvtTop .. !0001FFFO; {The PrEvent Proc"s CParem for the top folder}

Page 2

iFMgrCtl := 8; {The FMgr's Tail-hook Proc's ctl number) 2-11

r

Page 3

MACINTOSH USER EDUCATION

The Memory Manager: A Programmer'• Guide /NEK.KGR/KEKORY

See Also: The Resource Manager: A Programmer'• Guide

Modification History: First Draft (ROM 7) s. Chemicoff 18/18/83

ABSTRACT

This manual describes the Memory Manager, the part of the Macintosh
Operating System that controls the dynamic allocation of memory space
on the heap.

3-1

3-2

2 Memory Manager Progra11111er'a Guide

TABLE OF CONTENTS

3 About Thia Manual
4 About the Memory Manager
7 Pointers and Handles
8 How Heap Space ls Allocated

12 The Stack and the Heap
13 Utility Data Types
15 Memory Manager Data Structures
15 Structure of Heap Zones
18 Structure of Blocks
21 Structure of Master Pointers
21 lesult Codes
22 Using the Memory Manager
24 Memory Manager Routines
25 Initialization and Allocation
29 Reap Zone Access
3~ Allocating and Releasing Relocatable Blocks
35 Allocating and Releasing Nonrelocatable Blocks
38 Freeing Space on the Heap
42 Properties of Relocatable Blocks
44 Grow Zone Functions
47 Utility Routines
48 Special Techniques
48 Dereferencing a Handle
Sf Subdividing the Application Heap Zone
53 Creating a Heap Zone on the Stack
54 Notes for Assembly-Language Programmers
54 Constanta
55 Global Variables
55 Trap Macros
56 Result Codes
56 Offsets and Masks
58 Randy Trick•
59 Summary of the Memory Manager
62 Gloasary

Copyright (c) 1983 Apple Computer, Inc. All rights reserved.
Diatribution of this draft in limited quantities does not conatitute
publication.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes the Memory Manager, the part of the Macintosh
Operating System that controls the dynamic allocation of memory •pace
on the heap. *** Eventually it will become part of a larger unual
describing the entire Operating System.***

(eye)
This manual describes version 7, the final, "frozen"
version of the Macintosh ROM. Earlier versions may not
work exactly as described here. *** There may someday be
one or more special, llAM-based versions of the Memory
Manager for software development purposes, doing more
extensive error checking or gathering statistics on a
program's memory usage. This manual describes the aoM
based version only.***

Like all Operating System documentation, this manual 1• intended for
both Pascal and assembly-language programmers. All readers are assumed
to be familiar with Lisa Pascal; information of interest only to
assembly-language programmers is isolated and labeled so that Pascal
programmers can conveniently skip it. Whichever is your preferred
language, please bear with occasional reurks addressed solely to the
other gr-oup.

The manual begins with an introduction to the Memory Manager and what
it's used for. It then discusses some basic concepts behind the Memory
Manager-'s operation: how blocks of memory are allocated within the
heap and how the allocated blocks are referred to by programs that use
them. Following this is a discussion of the internal data structures
that the Memory Manager uses to find its way around in the heap.

A section on using the Memory Manager introduces its routines and tells
how they fit into the flow of your application program. This is
followed by detailed descriptions of all Memory Manager procedures and
functions, their parameters, calling protocol, effects, aide effects,
and so on.

Following these descriptions are •ections that will not be of interest
to all readers. Special information is given on unusual techniques
that you may find useful in working with the Memory Manager and on how
to use it from assembly-language programs.

Finally, there is a quick-reference summary of the Memory Manager's
data structures and routines, along with a glossary of terms uaed in
this manual.

10/10/83 Chernicoff CONFIDENTIAL /KEM.MGR/MEMORY.2

3-3

3-4
4 Memory Manager Programmer's Guide

ABOUT nlE MEMOllY MANAGER

Using the Memory Manager, your program can maintain one or more
independent areas of heap memory (called heap zones) and use them to
allocate blocks of memory of any desired size. Unlike stack apace,
which is always allocated and released in strict LIFO (last-in-first
out) order, blocks on the heap can be allocated and released in any
order, according to your program's needs. So instead of growing and
shrinking in an orderly way like the stack, the heap tends to become
fragmented into a patchwork of allocated and free blocks, as shown in
Figure 1. The Memory Manager does all the necessary ''housekeeping" to
keep track of the blocks as it allocates and releases them.

Heep zone

m flelocetabf19 blocb

- Narnlocateble blocts

D mebtocta

Figure 1. A Fragmented Heap

All memory allocation is perfonaed within a particular heap zone. The
Memory Manager always maintains at least two heap zones: a system heap
rn, reserved for the system's own use, and an application heap~
for use by your program. The system heap zone is initialized to 16K
bytes when the system is started up. Objects in this zone remain
allocated even when one application terminates and another la launched.
The application heap zone is automatically reinitialized at the start
of each new application program, and the contents of any previous
application zone are lost. The initial size of the application zone is
6K bytes, but it can grow as needed to create more heap space while the
program is running. Your program can create additional heap zones if
it chooses, either by subdividing this original application zone or by
allocating space on the stack for aore heap zones.

(hand)
In this unual, unless otherwise stated, the term
"application heap zone" (or just "application zone")

10/10/83 Cbernicoff CONFIDENTIAL /MEM.MGR/MEMOlY.2

J

ABOUT THE MEMORY MANAGER. 5

always refers to the original application heap zone
provided by the system, before any subdivision.

Various parts of the Macintosh Operating System and Toolbox also use
space in the application heap_ zone. For instance, the actual aachine
language code of your program resides in the application zone, in space
reserved for it at the request of the Segment Loader. Similarly, the
Resource Manager requests space in the application zone to hold
resources it has read into memory from a resource file. Toolbox
routines that create new entities of various kinds, such as NewWindow,
NewControl, and NewMenu, implicitly call the Memory Manager to allocate
the space they need.

At any given time, there is exactly one current heap~. to which
most Memory Manager operations implicitly apply. You can control which
heap zone is current by calling a Memory Manager procedure. Whenever
the system needs to access its own (system) heap zone, it saves the
setting of the current heap zone and restores it later, so that the
operation is transparent to your program.

Space within a heap zone is divided up into contiguous pieces called
blocks. The blocks in a zone fill it completely: every byte in the
zone is part of exactly one block, which may be either allocated
(reserved for use by your program or by the system) or free (available
for allocation). Each block has a block header containing information
for the Memory Manager's own use, followed by the block's contents, the
area available for use (see Figure 2). There may also be some unused
bytes at the end of the block, beyond the end of the contents.

Assembly-language™: Blocks are always aligned on even word
boundaries, so you can access them with word (.W) and long-word
(.L) instructions.

10/10/83 Chernicoff CONFIDENTIAL /KEM.MGR/MEHORY.2

3-5

3-6

6 Memory Manager Programmer's Guide

Contllnts-------

Figure 2. A Block

A block can be of any size. limited only by the size of the heap zone
itself. What's inside the block is of no concern to the Memory
Manager: it uy contain data being used by your program, executable
code forming part of the program itself. resource information read from
a resource file, or anything else that may be appropriate. To the
Memory Manager. it's just a block of a certain size.

(hand)
Don't confuse the blocks manipulated by the Memory
Manager with disk blocks. which are always 512 bytes
long.

An allocated block may be relocatable or nonrelocatable; if
relocatable. it uy be locked or unlocked; if unlocked, it may be
purgeable or unpurgeable. Relocatable blocks can be moved around
within the heap zone to create space for other blocks; nonrelocatable
blocks can never be moved. These are permanent properties of a block
that can never be changed once the block is allocated. The remaining
attributes (locked and unlocked. purgeable and unpurgeable) can be set
and changed as neceasary. Locking a relocatable block prevents it from
being moved. but only temporarily: you can unlock the block at any
time, again allowing the Memory Manager to move it. Making a block
purgeable allows the Memory Manager to remove it from the heap &one. if
necessary. to make room for another block. (Purging of blocks is
discussed further below under "How Reap Space Is Allocated".) A newly
allocated block is initially unlocked and unpurgeable.

10/10/83 Chernicoff CONFIDENTIAL

POINTERS AND HANDLES 7

POINTERS AND HANDLES

Relocatable and nonrelocatable blocks are referred to in different
ways: nonrelocatable blocks by pointers, relocatable blocks by handles
(discussed below). When the Memory Manager allocates a new
nonrelocatable block, it returns a pointer to the block. Thereafter,
whenever you need to refer to the block, you use this pointer. Like
any other pointer, it's simply a memory address: that of the first
byte in the block's contents (see Figure 3). You can make as many
copies of this pointer as you like. Since the block they point to can
never be moved within its heap zone, you can rely on all copies of the
pointer to remain correct. They will continue to point to the block
for as long as the block remains allocated.

Heep zone

/

_1 -1
Pointer ., ______ • ._ _______ _.

Ncnelocatable bloct ______ > mttttt~~tt~~t}t~t~:

Figure 3. A Pointer to a Nonrelocatable Block

Relocatable blocks don't share this property, however. If necessary to
111.ake room for some other block, the Memory Manager can move a
relocatable block at any time to a new location in its heap zone. This
would leave any pointers you might have to the block pointing to the
wrong place in memory, or "dangling". Dangling pointers can be very
difficult to diagnose and correct, since their effects typically aren't
discovered until long after the pointer is left dangling.

To help avoid dangling pointers, the Memory Manager maintains a aingle
master pointer to each relocatable block, allocated from within the
same heap zone as the block itself. The master pointer ia created at
the aame time as the block and set to point to it. What you get back
from the Memory Manager when you allocate a relocatable block 1• a
pointer to the uster pointer, called a handle to the block (aee Figure
4). From then on. you alwaya use this handle to refer to the block.
If the Memory Manager later baa to aove the block, it bas only to

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.2

3-7

3-8

8 Memory Manager Programmer's Guide

update the master pointer to point to the block's new location; the
master pointer itself is never moved. Since all copies of the handle
point to the block by double indirection through this same uater
pointer, they can be relied on not to dangle, even after the block has
been moved.

(eye)

I Hendle/ I I
)

Figure 4. A Bandle to a Relocatable Block

To maintain the integrity of the memory allocation
system, always use the Memory Manager routines provided
(or other Operating System or Toolbox routines that call
them) to allocate and release apace on the heap. Don't
use the Pascal standard procedures NEW and DISPOSE.
*** Eventually the versions of these routines in the
Pascal Library will be changed to work through the Memory
Manager.***

HOW HEAP SPACE IS ALLOCATED

The Memory Manager allocates apace in a heap zone according to a "first
fit" strategy. Vhen you ask to allocate a block of a certain size, the
Memory Manager scans the current heap zone looking for a place to put
the new block. For relocatable blocks, it looks for a free block of at
least the requested aize, acanning forward froa the end of the last
block allocated and ''wrapping around" if neceaaary from the end of the
zone to the beginning. (llonrelocatable block• are handled a bit
differently, aa deacribed below.) As aoon a• it finds a free block big
enough, it allocate• the requeated nuaber of bytes from that block.
That la, it uaea the firat free block it finds that'• big enough to
satisfy the requeat, lnatead of continuing to search for a better flt.

10/10/83 Chernicoff CONFIDENTIAL /MEM.KGR/MEMORY.2

llOW HEAP SPACE IS ALLOCATED 9

If a single free block can't be found that's big enough, the Memory
Manager tries to create one by compacting the heap zone: moving
allocated blocks together in order to collect the free apace into a
single larger free block (aee Figure 5). Only relocatable, unlocked
blocks can be moved. The compaction continues until either a free
block of at least the requested size has been created or the entire
heap zone has been compacted.

m Aeloceteble blocks

II Hcnelocetable blocb

D Freeblocts

Befare After

Figures. Heap Compaction

Notice that nonrelocatable blocks (and relocatable ones that are
temporarily locked) tend to interfere with the compaction process by
forming immovable "islands" in the heap. 'ftlis can prevent free blocks
from being collected together and lead to fragmentation of the
available free space, as ahown in Figure 6. To minimize this problem,
the Memory Manager tries to keep all the nonrelocatable blocks together
at the beginning of the heap zone. When you allocate a nonrelocatable
block, the Memory Manager will do everything in its power to make room
for the new block at the lowest available position in the zone,
including moving other blocks upward, expanding the zone, or purging
blocks from it (see below).

10/10/83 Chernicoff CONFIDENTIAL /MEH.MGR/MEMORY.2

3-9

3-10

10 Memory Manager Programmer's Guide

tu Aelocateble blocks

II Nornloceteble blocb

D me blocts

Before Afler

Figure 6. Fragmentation of Free Space

If the Memory Manager still can't satisfy the allocation request after
compacting the entire heap zone, it next tries expanding the zone by
the requested number of bytes, rounded upward to the nearest lK. Only
the original application zone can be expanded, and only up to a certain
limit (discussed more fully under "The Stack and the Reap", below). If
any other zone is current, or if the application zone has already
reached or exceeded its limit, this step is skipped.

Next the Memory Manager tries to free apace by purging blocks from the
zone. Only relocatable blocks can be purged, and then only if they're
explicitly marked as unlocked and purgeable. Purging a block removes
it from its heap zone and frees the apace it occupies. The block's
master pointer is aet to NIL, but the apace occupied by the master
pointer itself remains allocated. Any handles to the block now point
to a NIL master pointer, and are said to be empty. If your program
later needs to refer to the purged block, it can detect that the handle
has become empty and ask the Memory Manager to reallocate the block.
This operation updates the original master pointer, so that all handles
to the block are left referring correctly to its new location (see
Figure 7).

(eye)
lleallocating a block only recovers the apace it occupies,
not its contents. Any information the block contains i•
lost when the block la purged. It's up to your program
to reconstitute the block's contents after reallocating
it.

10/10/83 Chernicoff CONFIDENTIAL /HEM.KGR/HEMORY.2

3-11

HOW HEAP SPACE IS ALLOCATED 11

/'-1 Handle' ----)•t----_-_-_-_:_-_---1 -.
Matter pointer --------

Aeloceteble bloct ------- .. -... -... -.·-.... -............ -.·.·.-.1,E-
- ~ttt~fJt~~(t\i@)f

Before purging

Heap zone

Handle/.._l -- ... I __ 1__.~...,_ ___,.
NIL

Mester pointer

Alt• purging

Heep zone

/ 1 ----1 ---------r-----, Handle'

Master pointer

AH• reellacatlna

Figure 7. Purging and Reallocating a Block

10/10/83 Chernlcoff CONFIDENTIAL /HEM.MGR/MEMORY.2

3-12

12 Memory Manager Programmer's Guide

Finally, if all else fails, the Memory Manager calls the grow~
function, if any, for the current heap zone. Thia is an optional
routine that you can provide to take any last-ditch measures your
program may have at its disposal to try to free some apace in the zone.
The term "grow zone function" is misleading, since the function doesn't
actually attempt to "grow" (expand) the zone. Rather, its purpose is
to try to create additional free space within the existing zone (such
as by purging blocks that were previously marked unpurgeable) or reduce
the fragmentation of existing free space (such as by unlocking
previously locked blocks). The Memory Manager will call the grow zone
function repeatedly, compacting the heap again after each call, until
either it finds the apace it's looking for or the grow zone function
reports that it can offer no further help. In the latter case, the
Memory Manager will give up and report that it's unable to satisfy your
allocation request.

THE STACK AND THE HEAP

The application heap zone and the application stack share the same area
in memory, growing toward each other from opposite ends (see Figure 8).
Naturally it would be disastrous for either to grow so far that it
collides with and overwrites the other. To help prevent such
collisions, the Memory Manager enforces a limit on how far the
application heap zone can grow toward the stack. Your program can set
this application heap limit to control the allotment of available space
betwen the stack and the heap.

Low memory

Free apace---------

Figure 8. Tbe Stack and the Reap

10/10/83 Cbernicoff CONFIDENTIAL /MEM.MGR/MEKOllY. 2

THE STACK AND THE HEAP 13

The application heap limit aarks the boundary between the space
available for the application heap zone and that reserved exclusively
for the stack. At the start of each application program, the lillit is
initialized to allow BK bytes for the stack. Depending on your
program's needs, you can then adjust the limit to allow more heap space
at the expense of the stack or vice versa.

Notice, however, that the limit applies only to expansion of the beap;
it has no effect on how far the stack can expand. That is, although
the heap can never expand beyond the limit into space reserved for the
stack, there's nothing to prevent the stack from crossing the boundary
and encroaching on space allotted for heap expansion--or even from
overwriting part of the heap itself. It's up to you to set the limit
low enough to allow for the maximum stack depth your program will ever
need.

(hand)
Regardless of the limit setting, the application zone is
never allowed to grow to within lK of the current end of
the stack. This gives a little extra protection in case
the stack is approaching the boundary or has crossed over
onto the heap's aide, and allows some safety margin for
the stack to expand even further.

To help detect collisions between the stack and the heap, a "stack
sniffer" routine ia run sixty times a second, during the Macintosh's
vertical retrace interrupt. This routine compares the current ends of
the stack and the heap and opens an alert box on the screen in case of
a collision. The stack sniffer can't prevent collisions, only detect
them after the fact: a lot of computation can take place in a sixtieth
of a second. In fact, the stack can easily expand into the heap.
overwrite it, and then shrink back again before the next activation of
the stack sniffer, escaping detection completely. The stack sniffer is
useful uinly during software development; the alert box it displays
can be confusing to your program's end user. Its purpose is to warn
you, the programmer, that your program's stack and heap are colliding,
so that you can adjust the heap limit to correct the problem before the
user ever encounters it.

UTILITY DATA TYPES

The Memory Manager includes a number of type definitions for general
purpose use. For working with pointers and handles to allocated
blocks, there are the following definitions:

TYPE SignedByte
Byte
Ptr
Randle

• -128 •• 127;
• , •• 255;
• '"'Signedlyte;
• '"'Ptr;

SignedByte •tands for an arbitrary byte in memory, just to give Ptr and
Randle so11ething to point to. You can define a buffer of bufSize

10/10/83 Chernicoff CONFIDENTIAL /MEH.MGR/MEMORY.2

3-13

3-14

14 Memory Manager Programmer's Guide

untyped memory bytes as a PACKED AllliY [l •• bufSize) OF SignedByte.
Byte is an alternative definition that treats byte-length data as
unsigned rather that signed quantities.

Because of Pascal's strong typing rules. you can't directly assign a
value of type Ptr to a variable of some other pointer type. Instead,
you have to use the Lisa Pascal functions ORD and POINTER to convert
the pointer to an integer address and then back to a pointer. For
example, after the declarations

VAil aPtr: Ptr;
somethingElse: •Thing;

you can make somethingElse point to the same object as aPtr with the
assignment

somethingElse :• POINTER(ORD(aPtr))

This works because POINTER. returns a genel'alized "pointer to anything"
(like the Pascal pointer constant NIL) that can be assigned to any
variable of pointer type or supplied as an argument value for any
routine parameter of pointer type.

Type ProcPtr, defined as

TYPE ProcPtr • Ptr;

is useful for treating procedures and functions as data objects. If
aProcPtr is a variable of type ProcPtr and myProc is a procedure (or
function) defined in your program, you can make aProcPtr point to
myProc by using Lisa Pascal's@ operator:

aProcPtr :• @myProc

Like the POINTER function, the@ operator produces a "pointer to
anything". Using it, you can assign procedures and functions to
variables of type ProcPtr, embed them in data structures, and pass them
as arguments to other routines. Notice, however, that a ProcPtr
technically points to a SignedByte, not an actual routine. As a
result, there'• no way in Pascal to access the underlying routine in
order to call it. Only routines written in assembly language (such as
those in the Operating System and the Toolbox) can actually call the
routine designated by a ProcPtr.

For specifying the sizes of blocks on the heap, the Memory Manager
defines a special type called Size:

TYPE Size• Longint;

All Me1D0ry Manager routines that deal with block aizes expect
parameters of type Size or return them as results. To apecify a •ize
bigger than any existing block, you can use the constant uxSize:

10/10/83 Chemicoff CONFIDENTIAL /KEM.KGR/KEMOllY.2

J

UTILITY DATA TYPES 15

CONST maxSize • $800000;

This is an enormous value, equivalent to 8 megabytes or 8,388,698 bytes
--more than forty times the Macintosh's total memory capacity!

MEMORY MANAGER DATA STRUCTURES

This section contains detailed information on the Memory Manager's
internal data structures. You won't need this information if you're
just using the Memory Manager routinely to allocate and release blocks
of memory from the application heap zone. flle details are included
here for programmers with unusual needs (or who are just curious about
how the Memory Manager works).

Structure of Reap Zones

Each heap zone begins with a 52-byte zone header and ends with a 12-
byte ~ trailer (see Figure 9). The header contains all the
inforution the Memory Manager needs about that heap zone; the trailer
is just a minimum-size free block (described in the next section)
placed at the end of the zone as a marker. All the remaining apace
between the header'and trailer is available for allocation.

Avelleble apace------

Figure 9. Structure of a Reap Zone

In Pascal, a heap zone is defined•• a~ record of type Zone,
reflecting the structure of the zone header. It'• always referred to
with a !2!!!. pointer of type THz ("the heap zone 11

):

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.3

3-15

3-16
16

{eye)

Memory Manager Programmer's Guide

TYPE THz • .. Zone;
Zone • RECORD

bkLi11: Ptr;
purgePtr: Ptr;
hFstFree: Ptr;
zcbFree: Longlnt;
gzProc: ProcPtr;
moreMast: INTEGER;
flags: INTEGER;
cntRel: INTEGER;
maxlel: INTEGER;
cntNRel: INTEGER;
maxNR.el: INTEGER;
cntEmpty: INTEGER;
cntHandles: INTEGER;
minCBFree: Long Int;
purgeProc: ProcPtr;
sparePtr: Ptr;
allocPtr: Ptr;
heapData: INTEGER

END;

The fields of the zone header are for the Memory ,
Manager's own internal use. You can examine the contents
of the zone's fields, but in general it doesn't make
sense for your program to try to change them. The few
exceptions are noted below in the discussions of the
apecific fields.

BkLim is a pointer to the zone's trailer block. Since the trailer is
the last block in the zone, thia constitutes a limit pointer to the
memory byte following the last byte of usable space in the zone.

PurgePtr and allocPtr are "roving pointers" into the heap zone that the
Memory Manager maintains for its own internal use. When scanning the
zone for a free block to satisfy an allocation request, the Memory
Manager begins at the block pointed to by allocPtr instead of always
starting from the beginning of the zone. When purging blocks from the
zone, it starts from the block pointed to by purgePtr.

HFstFree is a pointer to the first free master pointer in the zone.
Instead of just allocating space for one master pointer each time a
relocatable block la created. the He110ry Manager "preallocates" several
master pointers at a time, themselves forming a nonrelocatable block
within the zone. The moreHast field of the zone record tel11 the
Memory Manager how many master pointers at a time to preallocate for
this zone. Master pointers for the system heap zone are allocated 32
at a time; for the application zone, 64 at a time. For other heap
zones, you specify the value of aoreMast when you create the zone.

All 111aster pointers that are allocated but not currently in use are
linked together into a list beginning in the hFatFree field. When you

10/10/83 Chernicoff CONFIDENTIAL /MEM.KGR/MEMORY.3

I
I

MEMORY MANAGER DATA STRUCTURES 17

allocate a new relocatable block, the Memory Manager removes the first
available master pointer from this list, sets it to point to the new
block, and ~etuma its address to you as a handle to the block. (lf
the list ia empty, it allocates a fresh block of aoreMast master
pointers, uses one of them for the new relocatable block, and adds the
rest to the list.) When you release a relocatable block, its master
pointer isn't released, but linked onto the beginning of the liat to be
reused. Thus the amount of apace devoted to master pointers can
increase, but can never decrease unless the zone is reinitialized (for
example, at the start of a new application program).

The zcbFree field always contains the number of free bytes remaining in
the zone ("zcb" stands for "zone count of bytes"). As blocks are
allocated and released, the Memory Manager adjusts zcbFree accordingly.
This number represents an upper limit on the size of block you can
allocate from this heap zone.

(eye)
It uy not actually be possible to allocate a block as
big as zcbFree bytes. As apace in a heap zone becomes
fragmented, the free bytes typically don't remain
contiguous but become scattered throughout the zone.
Because nonrelocatable and locked blocks can't be moved,
it isn't always possible to collect all the free space
into a single block by compaction. (Even if the zone
contains only relocatable blocks, the master pointers to
these blocks are themselves nonrelocatable "islands" that
can interfere with the compaction process.) So the
maximum-size block you can actually allocate from the
zone may be appreciably smaller than zcbFree bytes.

The gzProc field is a pointer to the zone's grow zone function, or NIL
if there is none. You supply this pointer when you create a new heap
zone and can change it at any time with the SetGrowZone procedure. The
system and application heap zones initially have no grow zone function.

Flags contains a set of flag bits strictly for the Memory Manager's
internal use; your program should never need to access this field.

CntRel, aaxRel, cntNRel, uxNllel, cnt!mpty, cntHandles, and llinCBFree
are not used by the ROM-baaed version of the Memory Manager. *** These
fields are reaerved for eventual use by a apecial R.AK-based version
that will gather statistics on a program's memory usage within each
heap zone. CntRel and cntNRel will be used to count, respectively. the
number of relocatable and nonrelocatable blocks currently allocated
within the zone. Kaxlel and uxNllel will record the ''historical
aaxillWll" values attained by cntllel and cntNRel since the program was
started. CntEmpty vill count the current number of empty uater
pointer•, cntHandles the total number of master pointers currently
allocated. KinCBFree vill record the historical ainimum nuaber of free
bytes in the zone.***

PurgeProc is a pointer to the zone's purge warning procedure (aoaeti11e1
called a "purge hook"), or NIL if there is none. The Memory Manager

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGll/MEMOR.Y. 3

3-17

3-18

18 Memory Manager Programmer's Guide

will call this procedure whenever it purges a block from the zone. You
can "install" a purge warning procedure in this field to do optional
housekeeping •uch as writing out a block's contents to a di•k file
before it's purged. In fact, this is exactly the vay the lesource
Manager keeps the contents of resources up to date if they're changed
by your program. If you want to install your own purge hook, you have
to be very careful not to interfere with the one the Resource Manager
may have installed; see "Special Techniques", later in this manual, for
further details.

SparePtr is an extra field included in the zone header for possible
future expansion.

The last field of a zone record, heapData, is a dummy field 111arking the
beginning of the zone's usable memory space. HeapData nominally
contains an integer, but this integer has no significance in itself
it's just the first two bytes in the block header of the first block in
the zone. The purpose of the heapData field is to give you a way of
locating the effective beginning of the zone. For example, if myZone
is a zone pointer, then

@(myZone·.heapData)

is a pointer to the first usable byte in the zone, just as

my Zone•. bk Lim

is a limit pointer to the byte following the last usable byte in the
zone.

Structure of Blocks

Every memory block in a heap zone, whether allocated or free, has a
block header that the Memory Manager uses to find its way around in the
zone. Block headers are completely transparent to your program. All
pointers and handles to allocated blocks point to the beginning of the
block's contents, following the end of the header. Similarly, all
block aizes seen by your program refer to the block's logical!!!!. (the
number of bytes in its contents) rather than ita physical~ (the
number of bytes it actually occupies in memory, including the header
and any unused bytes at the end of the block).

Since your program •houldn't normally have to deal with block headers
directly, there'• no Pascal record type defining their atructure.
(It's possible to acceas block headers in assembly language, but be
eure you bow what you're doing!) A block header consist• of 8 bytes,
as shown in Figure 1,.

10/10/83 Cbernicoff CONFIDENTIAL /MEH.MGR/MEMORY.3

31 24 23
teu byte I

MEMORY MANAGER DATA STRUCTURES 19

0
Physlcel block size

{

Aelocetlble bloclc: Relative hendle
- Nanreloceteble block: Pointer to heap zone

free bloct: l.hMd

Figure 10. Block Header

The first byte of the block header is the tag byte, discussed in detail
below. The next 3 bytes contain the block's physical size in bytes.
Adding this number to the block's address gives the address of the next
block in the zone.

The contents of the second long word (4 bytes) in the block header
depend on the type of block. For relocatable blocks, it contains the
block's relative handle: a pointer to the block's 111aster pointer,
expressed as an offset relative to the start of the heap zone rather
than as an absolute me1110ry address. Adding the relative handle to the
zone pointer produces a true handle for this block. For nonrelocatable
blocks, the second long word of the header is just a pointer to the
block's zone. For free blocks, these 4 bytes are unused.

7 6 S 4 3 2 1 0

I I I I 1 1 1 1 1
.... ,., -.., - ,

I 1~-- Size correction

-----Uued

-----------Teg
Figure 11. Tag Byte

The tag byte consists of a 2-bit W., 2 unused bits, and a 4-bit !!!!,
correction, as shown in Figure 11. The tag identifies the type of
block:

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGr./MEMOllY .3

3-19

3-20

20 Memory Manager Programmer's Guide

Block type
Free
Nonrelocatable
Relocatable

(A tag value of 11 is invalid.)

The size correction is the number of unused bytes at the end of the
block, beyond the end of the block's contents. It's equal to the
difference between the block's logical and physical sizes, excluding
the 8 bytes of overhead for the block header:

sizeCorrection • physicalSize - logicalSize - 8

There are several reasons why a block may contain such unused bytes:

- The Memory Manager allocates apace only in whole 16-bit words
that is, in even numbers of bytes. If the block's logical size is
odd, an extra, unused byte is added at the end to keep the
physical size even.

- Earlier versions of the Memory Manager used a block header of 12
bytes instead of 8. Although the header is now only 8 bytes long,
the Memory Manager still enforces a minimum size of 12 bytes per
block for compatibility with these earlier versions. If the
logical size of a block is less than 4, enough extra bytes are
allocated at the end of the block to bring its physical size up to
12.

- The 12-byte minimum applies to all blocks, free as well as
allocated. If allocating the required number of bytes from a free
block would leave a fragment of fewer than 12 free bytes, the
leftover bytes are included unused at the end of the newly
allocated block instead of being returned to free storage.

Putting all this together, the minimum overhead required for each
allocated block is 8 bytes for the block header, plus an additional 4
bytes for the master pointer if the block is relocatable. The maximum
possible overhead is 26 bytes, for a relocatable block with a logical
aize of 9 being allocated from a free block of 22 bytes: 8 bytes for
the header, 4 for the master pointer, 4 to satisfy the 12-byte minimum,
and a leftover fragment of lt free bytes that's too small to return to
free storage. ·

Structure of Master Pointers

The master pointer to a relocatable block has the structure abown in
Figure 12. The low~rder 3 bytes of the long word contain the address
of the block's contents. 'lbe high-order byte contains aome flag bits
that apecify the block'• current etatue. Bit 7 of this byte is the
lock bit (1 if the block is locked, e if it's unlocked); bit 6 is the
iurie bit (1 if the block is purgeable, e if it's unpurgeable). Bit 5

CONFIDENTIAL /MEM.HGR/MEMORY.3

MEMORY MANAGER DATA STRUCTURES 21

is used by the llesource Manager to identify blocks containing resource
information for special treatment; such resource blocks are urked by a
l in this bit.

(eye)
Before attempting to compare one master pointer with
another or perform any arithmetic operation on it, don't
forget to strip off the flag bits in the high-order byte •

., ., ,

I ------ To bloct

7 6 S 4 3 2 1 0

1 i I 1 i I I I t

.. , _ .. __ '-::::'=~bit
.._ ______ ~ bit

..._ ________ Loct bit

Figure 12. Structure of a Master Pointer

RESULT CODES

Uke moat other Operating System routines, Memory Manager routines
generally return a result~ in addition to their normal results.
This is an integer code indicating whether the routine completed its
task successfully or vas prevented by aome error condition. The type
definition for reault codes ia

TYPE MemErr • INTEGER;

In the normal case that no error is detected, the result code ia 9; a
nonzero result code signals an error:

CONST noErr
••Full Err
nil Band le Err
MmWZErr
meaPurErr

10/10/83 Chernicoff

- 9;
• -198;
• -199;
• -111;
• -112;

{no error)
(not enough room in zone}
{NIL aaater pointer)
{attempt to operate on a free block}
{attempt to purge a locked block)

CONFIDENTIAL /MEM.MGll/MEMORY .3

3-21

3-22

22 Memory Manager Programmer's Guide

To inspect a result code from Pascal. call the Memory Manager function
MemError. This function always returns the result code from the last
Memory Manager call.

Assembly-language !!2!!_: When called from assembly language via
the trap mechanism, not all Memory Manager routines return a
result code. Those that do always leave it as a word-length
quantity in the low-order half of register Di on return from the
trap. However, some routines leave something else there
instead: see the descriptions of individual routines for
details. Just before returning, the trap dispatcher tests the
lower half of D0 with a TST.W instruction, so that on return
from the trap the condition codes reflect the status of the
result code, if any.

The stack-based interface routines called from Pascal always
produce a result code. If the underlying trap doesn't return
one, the interface routine "manufactures" a result code of noErr
and stores it where it can later be accessed with KemError.

The ROM-based version of the Memory Manager does only limited error
checking. This manual describes only the result codes reported by the
ROM version. *** There may eventually be a special RAM-based version
that will do more extensive error checking. If so, any additional
result codes reported by the RAM version will be documented at that
time.***

USING THE MEMORY MANAGER

This section discusses how the Memory Manager routines fit into the
general flow of your program and gives you an idea of which routines
you'll need to use. The routines theuelves are described in detail in
the next section.

Assembly-language~: If you're writing code that will be
executed via a hardware interrupt, you can't use the Memory
Manager. This is because an interrupt can occur unpredictably
at any time. In particular, it can occur while the Memory
Manager is in the aiddle of a heap compaction or in aoae other
inconsistent internal state. To prevent catastrophes, interrupt
routines are not allowed to allocate apace from the heap.

There's ordinarily no need to initialize the Memory Manager before
using it. The system heap &one is automatically initialized each time

10/10/83 Chernicoff CONFIDENTIAL /HEM. MGll/MEMOR.Y. 3

USING THE MEMORY MANAGER 23

the system is 1tarted up, and the application heap zone each time an
application program is launched. In the unlikely event that you need
to reinitialize the application zone while your program is running, you
can use InitApplZone.

You can create additional heap zones for your program's own u1e, either
from within the original application zone or from the stack, vith
lnitZone. If you do maintain more than one heap zone, you can find out
which zone is current at any given time with GetZone and switch from
one to another with SetZone. Almost all Memory Manager operations
implicitly apply to the current heap zone. To refer to the system heap
zone or the (original) application heap zone, use the Memory Manager
function SystemZone or ApplicZone. To find out which zone a particular
block resides in, use HandleZone (if the block is relocatable) or
PtrZone (if it's nonrelocatable).

(hand)
Kost applications will just u1e the original application
heap zone and never have to worry about which zone is
current.

The main work of the Memory Manager is allocating and releasing blocks
of memory. To allocate a new relocatable block, use NewHandle; for a
nonrelocatable block, use NewPtr. These functions return a handle or a
pointer, as the case may be, to the newly allocated block. You then
use that handle or pointer whenever you need to refer to the block.

To release a block when you're finished with it, use Di1posRandle or
DisposPtr. You can also change the size of an already allocated block
with SetHandleSize or SetPtrSize, and find out lte current size with
GetHandleSize or GetPtrSlze. Use HLock and HUnlock to lock and unlock
relocatable blocks.

(hand)

(hand)

In general, you ahould use relocatable blocks whenever
possible, to avoid unnecessary fragmentation of free
1pace. U1e nonrelocatable blocks only for things like
1/0 buffer,, queues, and other objects that must have a
fixed location in •mory. For moat applications, the
only Memory Manager routines you'll ever need will be
NevBandle, DiapoaBandle, and SetHandleSize.

If you auat lock a relocatable block, try to unlock it
again at the earliest poa1ible opportunity. Before
allocating a block that you know will be locked for long
periods of tiae, call leaervHea to aake room for the
block aa near as posaible to the beginning of the &one.

To apeed up your program, you aay 1oaetiaaes want to convert the handle
to a relocatable block into a copy of the mater pointer it points to.
This is called dereferencing the handle, and allowa you to refer to the
block by single in1tead of double indirection. Dereferencing a handle
can 'be dangerous if you aren't careful: aee "Special Technique•" for

10/10/83 Chernicoff CONFIDENTIAL /MEH.MGa/MEKOllY. 3

3-23

3-24

24 Memory Manager Programmer's Guide

further information. If you ever need to convert a dereferenced master
pointer back into the original handle, use ltecoverHandle.

Ordinarily, you shouldn't have to worry about compacting the heap or
purging blocks from it; the Memory Manager automatically takes care of
these chores for you. You can control which blocks are purgeable with
HPurge and HNoPurge. If for aome reason you want to compact or purge
the heap explicitly, you can do so with CompactMem or PurgeMem. To
explicitly purge a specific block, use EmptyHandle.

(eye)
If you're working with purgeable blocks, be carefull
Such blocks may be removed from the heap zone at any time
in order to satisfy a memory allocation request. So
before attempting to access any purgeable block, always
check its handle to make sure the block is still
allocated. If the handle ls empty (that is, if h• • NIL,
where his the handle), then the block has been purged:
before accessing it, you have to reallocate it and update
its master pointer by calling lteallocHandle. (If it's a
resource block, use the llesource Manager procedure
Loadltesource instead.)

You can find out how much free apace is left in a heap zone by calling
FreeMem (to get the total number of free bytes) or MaxHem (to get the
size of the largest single free block and the maximum amount by which
the zone can grow). Beware, however: MaxMem also compacts and purges
the entire zone before returning this information. To lindt the growth
of the application zone, use SetApplLimit; to install a grow zone
function to help the Memory Manager allocate space in a zone, use
SetGrowZone.

After calling any Memory Manager routine, you can examine its result
code with HemError.

MEMORY MANAGER ROUTINES

This section describes all the Me110ry Manager procedures and functions.
Each routine is presented first in its Pascal form (if there la one).
For most routines, this ia followed by a box containing information
needed to use the routine from assembly language. Moat Pascal
programmers can juat akip this box, although the list of result codes
may be of interest to aome. For general information on using the
Memory Manager from a1aembly language, aee "Uaing the Operating System
from Assembly 'Language"*** (to be written)*** and alao "Rote• for
Assembly-Language Programmer•" in thia .. nual.

10/10/83 Chernicoff CONFIDENTIAL /MEK.KGR/MEMORY.4

;

MEMORY MANAGER ROUTINES 25

Initialization and Allocation

PROCEDURE InitApplZone;

Trap 111acro _lnitApplZone

De: result code (integer)

Result codes f $1900 noErr Ho error

lnitApplZone initializes the application heap zone and aakea it the
current zone. The contents of any previous application zone are
completely wiped out; all previously existing blocks in that zone are
discarded. InitApplZone is called by the Segment Loader when launching
an application program; you shouldn't normally need to call it from
within your own program.

(eye)
Reinitializing the application zone from within a running
program is tricky, since the program'• code itself
resides in the application zone. To do it safely, you
have to 110ve the code of the running program into the
•J•tea heap zone, jump to it there, reinitialize the
application zone, move the code back into the application
zone, and jump to it again. Don't attempt this operation
unless you're aure you Ir.now what you're doing.

The application zone has a standard initial size of 6K bytes,
immediately following the end of the aystem heap zone, and can be
expanded as needed in lK increments. Space ia initially allocated for
64 master pointers; should aore be needed later, they will be added 64
at a time. The zone'• grow zone function is aet to NIL. After a call
to lnitApplZone, MemError will alway• return noErr.

10/10/83 Chernicoff CONFIDENTIAL /MEM.HGR/MEMORY.4

3-25

3-26

26 Memory Manager Progra111111er's Guide

PROCEDURE SetApplBase (startPtr: Ptr);

Trap macro

~ entry

lesult codes

_SetApplBase

JJJ: startPtr (pointer)

D0: result code (integer)

9 $1(HIQJ noErr Ho error

SetApplBase changes the starting address of the application heap zone
to the address designated by startPtr, reinitializes the zone, and
raakes it the current zone. 'Die contents of any previous application
zone are completely wiped out; all previously existing blocks in that
zone are discarded. SetApplBase is normally called only by the system
itself; you should never need to call this procedure from within your
own program.

Since the application heap zone begins i11111ediately following the end of
the system zone, changing its starting address has the effect of
changing the size of the system zone. 'Die system zone can be made
larger, but never smaller; if atartPtr points to an address lower than
the current end of the system zone, it's ignored and the application
zone's starting address is left unchanged.

In any case, SetApplBaae reinitializes the application zone to its
standard initial size of 6K bytes, which can later be expanded as
needed in lK increments. Space is initially allocated for 64 master
pointers; should more be needed later, they will be added 64 at a time.
'Die zone's grow zone function is set to NIL. After a call to
SetApplBase, HemError will always return noErr.

(eye)
Like lnitApplZone. SetApplBase is a tricky operation,
because the code of the program itself resides in the
application heap zone. 'lbe recommended procedure for
doing it safely is the same as for lnitApplZone (see
above); again. don't attempt it unless you know what
you're doing.

10/10/83 Cherntcoff CONFIDENTIAL /KEM.KGR/NEMOIY.4

MEMORY MANAGER ROUTINES 27

PROCEDURE InitZone (growProc: ProcPtr; aasterCount: INTEGER; limitPtr,
startPtr: Ptr);

Trap macro

~ entry

On exit --
Result codes

_InitZone

Ae: pointer to parameter block

startPtr (4-byte pointer)

limitPtr (4-byte pointer)

usterCount (2-byte integer)

growProc (4-byte pointer)

D0: result code (integer)

0 $9900 no!rr No error

lnitZone creates a new heap zone, initializes its header and trailer,
and makes it the current zone. The startPtr parameter is a pointer to
the first byte of the new zone; limitPtr points to the byte
folloviag the end of the zone. That is, the new zone will occupy
aemory addresses from ORD(startPtr) to ORD(limitPtr) - 1.

MasterCount tells how many master pointers 1hould be allocated at a
time for the new zone. The specified number of master pointers are
created initially; 1hould more be needed later, they will be added in
increments of this same number. For the ay1tem heap zone, masterCount
is 32; for the application heap zone, it's 64.

The grovProc parameter is a pointer to the grow zone function for the
new zone, if any. If you're not defining a grow zone function for this
one, supply a NIL value for growProc.

The new zone includes a 52-byte header and a 12-byte trailer, so its
actual usable apace runs from ORD(startPtr) + 52 through ORD(limitPtr)
- 13. In addition, each master pointer occupies 4 bytes within thia
usable area. Thus the total available space in the zone, in bytes, is
initially

ORD(liaitPtr) - ORD(atartPtr) - 64 - 4*raasterCount

This number auat not be leas thane. Note that the amount of available
space in the zone uy decrease as more master pointers are allocated.

10/10/83 Chernicoff CONFIDENTIAL /HEM. MGR/MEMORY. 4

3-27

3-28

28 Memory Manager Programmer's Guide

After a call to lnitZone, MemError will always return noErr.

PROCEDUllE SetApplLimit (zoneLimit: Ptr);

Trap macro

~ entry

On exit --
Result codes

_SetApplLi11it

Ae: zoneLimit (pointer)

De: result code (integer)

9 $909" noErr No error

SetApplLimit sets the application heap limit, beyond which the
Application heap zone can't be expanded. The actual expansion isn't
under your program's control, but is done automatically by the Memory
Manager when necessary in order to satisfy an allocation request. Only
the original application zone can be expanded.

ZoneLimit is a limit pointer to a byte in memory beyond which the zone
will not be allowed to grow. That is, the zone can grow to include the
byte prececliag zoneLimit in 111emory, but no farther. If the zone
already extends beyond the specified limit it won't be cut back, but it
will be prevented from growing any more.

(eye)
Notice that zoneLimit is not a byte count. To limit the
application zone to a particular size (say BK bytes), you
have to write eomething like

SetApplLimit(POINTER(OIU>(ApplicZone) + 8192))

After a call to SetApplLimit, MemError vill always return noErr.

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGll/MEMOR.Y.4

;

MEMORY MANAGER R.OUTlNES 29

Heap Zone AcceH

FUNCTION GetZone THz;

Trap macro _GetZone

At: function result (pointer)
9: result code (integer)

llesult codes e $1999 noErr Ro error

GetZone returns a pointer to the current heap zone. After the call,
HemError will always return noErr.

PllOCEDURE SetZone (hz: TKz);

Trap macro

.2!!, entry

On exit --
lleault codes

_SetZone

At: hz (pointer)

De: result code (integer)

9 $(111f noErr Ro error

SetZone sets the current heap zone to the zone pointed to by hz. After
the call. KemError will always return noErr.

FUNCTION SyatemZone : Tllz; [Pascal only)

Trap ucro

llesult codes

Rone

t $f919 noErr No error

SyatemZone return• a pointer to the •Y•tea heap zone. After the call,
HemError will always return nolrr.

Aaaembly-langua1e !!!!.S!,= Sy•temZone 1• part of the Pascal
interface to the Memory Manager, not part of the Memory Manager

10/10/83 Chernicoff CORFID!NTIAL

3-29

3-30

30 Memory Manager Programmer's Guide

itself. It doesn't reside in ROM and can't be called via a
trap. To get a pointer to the system heap zone from assembly
language, use the global variable syaZone.

FUNCTION ApplicZone : THz; [Pascal only]

Trap macro

Result codes

None

0 $000111 noErr No error

ApplicZone returns a pointer to the original application heap zone.
After the call, MemError will always return noErr.

Assembly-language~: ApplicZone is part of the Pascal
interface to the Memory Manager, not part of the Memory Manager
itself. It doesn't reside in lOH and can't be called via a
trap. To get a pointer to the application heap zone from
assembly language, use the global variable applZone.

Allocating and Releasing Relocatable Blocks

FUNCTION NewHandle (logicalSize: Size) : Bandle:

_RewHandle Trap macro

.2!!. entry D0: logicalSize (long integer)

/ti: function result (handle)
9: result code (integer)

Result codes 9
-198

$9900 noErr
$FF94 aemFullErr

Ito error
Not enough rooa in zone

NewHandle allocates a new relocatable block from the current heap zone
and returns a handle to it (or NIL if a block of that size can't be
created). The nev block will have a logical size of loglcalSize bytes
and will initially be marked unlocked and unpurgeable.

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGl/KEMORY.4

;

MEHOllY MANAGEll ROUTINES 31

NewHandle will pursue all avenues open to it in order to create a free
block of the requested size, including compacting the heap zone,
increasing it• aize, purging blocks from it, and calling ita grow zone
function, if any. If all auch attempts fail, or if the zone has run
out of free master pointers and there's no room to allocate aore,
NewHandle returns NIL and MemError will return aemFullErr after the
call. If a new block waa aucceasfully allocated, NewBandle returns a
handle to the new block and MemError will return no!rr.

PllOCEDUllE DiaposBandle (h: Bandle);

Trap macro

~ entr,:

Result codes

_Dis po a Handle

U: h (handle)

A0: 9
De: result code (integer)

• -111
$lf9~ no!rr
$FF9 l memWZErr

'No error
Attempt to operate
on a free block

DisposHandle releases the apace occupied by the relocatable block whose
handle is h. If the block is already free, MemError will return
aemWZErr after the call; otherwise it will return noErr.

(eye)
After a call to DispoaBandle, all handles to the released
block become invalid and should not be used again.

FUNCTION GetBandleSize (h: Bandle) : Size;

Trap ucro

~ entry

leault codes

_GetBandleSize

Ml: h (handle)

De: if >• e, funct.ion result (long integer)
if< e, result code (integer)

• -1e9
-111

$8899 noErr
$FF93 nilHandleErr
$FF91 aemWZErr

Ro error [Paacal only)
NIL master pointer
Attempt to operate
on a free block

GetHandleSize returns the logical aize, in bytes, of the relocatable
block vhoae handle ia b. After the call, HemError will return

10/10/83" Chernicoff CONFIDENTIAL /MEM.MGll/MEHOllY.4

3-31

3-32

32 Memory Manager Programmer's Guide

nilHandleErr if h points to a NIL master pointer. memWZErr if his the
handle of a free block, and noErr otherwise. In case of an error.
GetHandleSize returns a result of e.

Assembly-language,!!!!!.= Recall that the trap dispatcher sets
the condition codes before returning from a trap by testing the
low-order half of register D0 with a TST.W instruction. Since
the block size returned in D0 by GetHandleSize is a full 32-bit
long word, the word-length test sets the condition codes
incorrectly in this case. To branch on the contents of De, use
your own TST.L instruction on return from the trap to test the
full 32 bits of the register.

PROCEDURE SetHandleSize (h: Handle; newSize: Size),

Trap macro _SetHandleSize

~ entry ,., : h (handle)
»e: newSize (long integer)

On exit De: result code (integer) --
Result codes e $9000 noErr No error

-108 $FF94 memFullErr Not enough room to grow
-199 $FF93 nilHandleErr NIL master pointer
-111 .FF91 aemWZErr Attempt to operate

on a free block

SetHandleSize changes the logical size of the relocatable block whose
handle is h to newSize bytes. After the call. HemError will return
memFullErr if newSize is greater than the block's current size and
enough room can't be found for the block to grow. nilHandleErr if h
points to a NIL master pointer. memWZErr if his the handle of a free
block. and noErr otherwise.

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGl/HEKORY.4

J

FUNCTION HandleZone (h: Handle) : THz;

Trap macro

On entry

_Bandle Zone

,.,: h (handle)

MEMORY MANAGER ROUTINES 33

Af: function result (pointer)
»e: result code (integer)

Result codes f
-111

$0000 noErr
$FF9 l aemWZErr

No error
Attempt to operate
on a free block

HandleZone returns a pointer to the heap zone containing the
relocatable block whose handle is h.

lf handle his empty (points to a NIL master pointer), RandleZone
returns a pointer to the current heap zone and doesn't report an error:
after the call, MemError will return noErr. If his the handle of a
free block, MemError will return memWZErr; in this case, the result
returned by HandleZone is meaningless and should be ignored.

FUNCTION RecoverRandle (p: Ptr) : Randle;

Trap macro _RecoverHandle

.Q!!. entry Al: p (pointer)

!!!!..!!!!. A0: function result (handle)
l)f: unchanged (I)

Result codes ' $0100 noErr No error [Pascal only]

RecoverHandle returns a handle to the relocatable block pointed to by
P• If you've "dereferenced" a handle (converted it to a simple
pointer) for efficiency, you can use this function to get back the
original handle. After the call, MemError will always return noErr.

Assembly-language !!!!!,!t: Through a lllinor overaight, the trap
RecoverHandle neglects to return a result code in register De;

the previoua contents of De are preaerved unchanged. The atack
based interface routine called from Pascal always produce, a
result code of noErr.

10/10/83 Chemicoff CONFIDENTIAL /KEM.MGR/MEMORY.4

3-33

3-34

34 Memory Manager Programmer's Guide

PROCEDURE ReallocHandle (h: Randle; logicalSize: Size);

Trap macro

.Q!l. entry

_ReallocHandle

A0: h (handle)
D0: logicalSize (long integer)

Al: original h or NIL
De: result code (integer)

Result codes f
-108
-111

-112

$"""' noErr
$FF94 memFullErr
$FF91 memWZErr

$FF99 memPurErr

No error
Not enough room in zone
Attempt to operate
on a free block
Block is locked

ReallocHandle allocates a new relocatable block with a logical size of
logicalSize bytes. It then updates handle h by setting its master
pointer to point to the new block. The main use of this procedure is
to reallocate space for a block that has been purged. Normally his an
empty handle, but it need not be: if it points to an existing block,
that block is released before the new block is created.

After the call, MemError will return noErr if ReallocRandle succeeds in
allocating a block of the requested size; if room can't be made for the
requested block, it will return memFullErr. If his the handle of an
existing block, KemError will return memPurErr if the block is locked
and memWZErr if it's already free. In case of an error, no new block
is allocated and handle his left unchanged.

Assembly-language~: On return from leallocRandle, register
Al contains the original handle h, or I (NIL) if no room could
be found for ~he requested block.

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.5

MEMORY MANAGER ROUTINES 35

Allocating and Releasing Nonrelocatable Blocks

FUNCTION NewPtr (logicalSize: Size) : Ptr;

Trap macro

,2!!. entry

Result codes

_NewPtr

De: logicalSize (long integer)

A9: function result (pointer)
De: result code (integer)

$9900 noErr
$FF94 11emFullErr

No error
Not enough room in zone

NewPtr allocates a new nonrelocatable block from the current heap
zone and returns a pointer to it (or NIL if a block of that aize can't
be created). The new block will have a logical size of logicalSize

.bytes.

HewPtr will pursue all avenues open to it in order to create a free
block of the requested aize, including compacting the heap zone,
increasing its size, purging blocks from it, and calling its grow zone
function, if any. lf all auch attempts fail, NevPtr returns NIL and
HemError will return aemFullErr after the call. If a new block was
auccessfully allocated, RewPtr returns a pointer to the new block and
MemError will return noErr.

PlOCEDUllE DiapoaPtr (p: Ptr);

Trap ucro DiapoaPtr -
~ entry Ae: p (pointer)

~!!ll. Af: " De: reault code (integer)

Result codes " seeee noErr
-111 $FF91 11e11WZ!rr

No error
Attempt to operate
on a free block

DiapoaPtr releases the apace occupied by the nonrelocatable block
pointed to by P• lf the block is already free, MemError will return
aemWZErr after the call; otherwise it will return noErr.

10/10/83 Cbernicoff CONFIDENTIAL /KEM.MGl/MEMOltY.5

3-35

3-36

36 Memory Manager Programmer'• Guide

(eye)
After a call to DiaposPtr, all pointers to the released
block become invalid and ehould not be used again.

FUNCTION GetPtrSize (p: Ptr) : Size;

Trap macro

On entry

_GetPtrSize

At: p (pointer)

Oil: if)• e, function result (long integer)
if (9, reeult code (integer)

Result codes e $900G noErr
-111 $FF91 aemWZErr

Ro error [Pascal only]
Attempt to operate
on a free block

GetPtrSize returns the logical eize, in bytes, of the nonrelocatable
block pointed to by P• After the call, HemError will return memWZErr
if p points to a free block and noErr otherwise. In case of an error,
GetPtrSize returns a result of e.

Assembly-language !!fil: Recall that the trap dispatcher eets
the condition codes before returning from a trap by testing the
low-order half of register D0 with a TST.W instruction. Since
the block aize returned in DI by GetPtrSize is a full 32-bit
long word, the word-length test sets the condition codes
incorrectly in thia case. To branch on the contents of De, use
your own TST.L instruction on return from the trap to teat the
full 32 bits of the register.

10/10/83 Cbernicoff CONFIDENTIAL /HEM. MGll/HEKORY. 5

MEMORY MANAGER ROUTINES 37

PROCEDURE SetPtrSize (p: Ptr; newSize: Size),

TTap macro

_2!!, entry

_SetPtrSize

At: p (pointer)
De: newSize (long integer)

De: result code (integer)

Jlesult codes e
-1es
-111

$tfet noErr
$FF94 memFullErr
$FF91 aemWZErr

No error
Not enough room to grow
Attempt to operate
on a free block

SetPtrSize changes the logical a~ze of the nonrelocatable block pointed
to by p to newSize bytes. After the call, Mea!rror vill returu
aemFullErr if newSize is greater than the block'• current size and
enough room can't be found for the block to grow, ••WZ!rr lf p points
to a free block, and noErr otherwise.

FUNCTION PtrZone (p: Ptr) : THz;

PtrZone -TTap macro

.2!!, entry At: p (pointer)

' d: function result (pointer)
De: result code (integer)

leault codes e $f91t aoErr
-111 $FF91 MaWZErr

No error
Atteapt to operate
on a free block.

PtrZone retuna a pointer to the heap aone containing tbe
nonrelocatable block. pointed to by P• If p point• to a free block,
Mem!rror vill return memWZErr after the call: in this caae, the result
returned by PtrZone 1• aeaningleas and ahould be ignored.

10/10/83 Chernicoff CONFIDENTIAL /KEK.MG1l/MEM01lY.5

3-37

3-38

38 Memory Manager Programmer's Guide

Freeing Space on the Heap

FUNCTION FreeMem Longlnt;

Trap macro _FreeMem

De: function result (long integer)

Result codes 9 $9808 noErr Ho error [Pascal only]

FreeHem returns the total amount of free apace in the current heap
zone, in bytes. Notice that it aay not •ctually be possible to
allocate a block of this size, because of frapentation due to
nonrelocatable or locked blocks. After a call to FreeMem, MemError
will always return noErr.

FUNCTION MaxMem (VAR grow: Size) : Size;

Trap macro

Result codes

_MaxMem

De: function result (long integer)
A0: grow (long integer)

9 $9899 noErr Ho error [Pascal only]

MaxMem co•pacts the current heap zone and purges all purgeable blocks
from the zone. lt returns as its result the size in bytes of t~e
largest contiguous free block in the zone after the compaction. If the
current zone is the original application heap zone, the variable
parameter grow is set to the maximu• number of bytes by which the zone
can grow. For any other heap zone, grow la set to•· MaxMem doesn't
actually expand the zone or call its grow zone function. After the
call, MemError vill always return noErr.

10/10/83 Chernicoff CONFIDENTIAL /HEM.MGll/MEMORY.5

,

MEMORY MANAGER llOUTINES 39

FUNCTION CoapactMem (cbNeeded: Size) : Size;

Trap macro

.Q!!. entry

lesult codes

_Compact Hem

DQI: cbNeeded (long integer)

l)f: function reault (long integer)
NI: pointer to desired block or NIL

f $fl91 noErr No error [Pascal only)

CompactMem compacts the current heap zone by aoving relocatable block•
forward and collecting free space together until a contiguous block of
at least cbNeeded free bytes la found or the entire zone 1• compacted.
For each block that'• moved, the master pointer i• updated ao that all
handles to the block remain valid. CompactMem return• the aize in
bytes of the largest contiguous free block it finda, but doesn't
actually allocate the block. After the call, MemError will always
return noErr.

(hand)
To force a compaction of the entire heap zone, aet
cbNeeded equal to maxSize.

Assembly-language !!.2!!.,: On return from _CompactMem, register Al
contains a pointer to a free block of at least cbNeeded bytes,
or 9 (NIL) if no •uch block could be found.

FUNCTION lesrvKem (cbNeeded: Size);

Trap ucro

9!!, entry

On exit --

learvMem -
DI: cbNeeded (long integer)

NI: pointer to deaired block or .RIL
De:· re•ult code (integer)

lleault code• 9 $teee noErr Ro error
-118 $FF94 aeaFullErr Rot enough rooa in zone

lesrvMem create• free apace for a block of cbNeeded contiguous bytea at
the loveat poa•ible position in the current heap zone. lt vill try
every available aeana to place the block aa close aa poaalble to the

10/10/83 Chemicoff CONFIDENTIAL /MEK.MGR/MEMOllY.5

3-39

3-40

40 Memory Manager Programmer's Guide

beginning of the zone, including moving other blocks upward, expanding
the zone, or purging blocks from it. If a free block of at least the
requested size can't be created, MemError will return memFullErr after
the call; otherwise it will return noErr. Notice that ResrvMem doesn't
actually allocate the block.

(hand)
When you allocate a relocatable block that you know will
be locked for long periods of time, call ResrvMem first.
This reserves space for the block near the beginning of
the heap zone, where it will interfere with compaction as
little as possible. It isn't necessary to call ResrvMem
for a nonrelocatable block; NewPtr calla it
automatically.

Assembly-language !!fil: On return from _ResrvMem, register A0
contains a pointer to the desired free block of at least
cbNeeded bytes, ore (NIL) if no such block could be created.

FUNCTION PurgeMem (cbNeeded: Size);

Trap macro

,2!l entry

Result codes

_PurgeMem

De: cbNeeded (long integer)

Ae: pointer to desired block or NIL
De: result code (integer)

e
-11&8

$8000 noErr
$FF94 memFullErr

Ho error
Not enough room in zone

PurgeMem purges blocks from the current heap zone until a contiguous
block of at least cbNeeded free bytes is created or the entire zone is
purged. Only relocatable, unlocked, purgeable blocks can be purged.
U a free block of at least the requested size is found, HemError will
return no!rr after the call; if not, it will return memFullErr. Notice
that PurgeMem doesn't actually allocate the block.

(hand)
To force a purge of the entire heap zone, aet cbNeeded
equal to maxSize.

10/10/83 Chernicoff CONFIDENTIAL /MEM.KGl/MEMOR.Y. 5

MEMORY MANAGER ROUTINES 41

Assembly-language!!!£!_: On return from _PurgeMem, register All
contains a pointer to a free block of at least cbNeeded byte•,
or f (NIL) if no such block could be found.

PllOCEDUllE EmptyHandle (h: Handle);

Trap macro _EmptyHandle

.Q!!. entry Ml: h {handle)

~!!!!. A0: h {handle)
De: result code {integer)

Result codes • $ff00 noErr No error
-111 $FP91 aemWZErr Attempt to operate

on a ft'ee block
-112 $FF9f aemPurErr Block ii locked

EmptyHandle empties handle h: that is, it purges the relocatable block
whose handle is h from its heap zone and sets its master pointer to
NIL. If his already empty, EmptyHandle does nothing.

{hand)
The main use of this procedure is to release the apace a
block occupies without having to update every esiating
handle to the block. Since the space occupied by the
master pointer itaelf remains allocated, all handles
pointing to it remain valid but become empty. Vhen you
later reallocate apace for the block with ReallocHandle,
the master pointer will be updated, causing all existing
handles to point correctly to the new block.

The block vboae handle is h mast be unlocked, but need not be
purgeable: if you ask to purge an unpurgeable block, EmptyHandle
aaaumea you know vbat you're doing and purges the block as requested.
If the block is locked. EaptyHandle doesn't purge iti after the call,
HemError will return aemPurErr. If the block la already free, MemError
will return memWZErr.

10/10/83 Chemicoff CONFIDENTIAL /MEM.MGa/MEMORY.5

3-41

3-42

42 Memory Manager Programmer'• Guide

Properties of Relocatable Blocks

PROCEDURE HLock (h: Handle);

Trap macro

.B!!,_ entry

On exit --
Result codes

_HLock

Al: h (handle)

D0: result code (integer)

f $fff'1 noErr
-109 $FF93 nilHandleErr
-111 $FF91 memWZErr

No error
NIL master pointer
Attempt to operate
on a free block

HLock locks a relocatable block, preventing it from being moved within
its heap zone. After the call, HemError will return nilHandleErr if
handle his empty or memWZErr if it points to a free block, otherwise
noErr. If the block is already locked, HLock does nothing.

PROCEDURE HUnlock (h: Handle);

Trap macro

~ entry

_HUnlock

Al: h (handle)

D0: result code (integer)

Result codes 9 $9999 noErr No error
-199 $FF93 nilHandleErr NIL master pointer
-111 $FF91 •mWZErr Attempt to operate

on a free block

HUnlock unlocks a relocatable block, allowing it to be moved within its
heap zone. After the call, MemError will return nilHandleErr if handle
his empty or memWZErr if it points to a free block, otherwiae noErr.
If the block is already unlocked, &Unlock does nothing.

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.5

,

MEMORY MANAGER ROUTINES 43

PROCEDURE HPurge (h: Handle);

Trap macro

.Q!!. entry

_HPurge

At: h (handle)

D0: result code (integer)

Result codes 9 $1000 no!rr
-109
-111

$FF93 nilHandleErr
$FF91 umWZErr

No error
NIL master pointer
Attempt to operate
on a free block

HPurge marks a relocatable block as purgeable. After the call,
HemError will return nilHandleErr if handle his empty or memWZErr if
it points to a free block, otherwise noErr. If the block is already
purgeable, HPurge does nothing.

PROCEDURE HNoPurge (h: Handle);

Trap macro

~ entry

lesult codes

_BNoPurge

At: h (handle)

De: result code (integer)

t $1119'' no'Err
-119 $FF93 nilBandleErr
-111 $FF91 aemWZErr

No error
NIL master pointer
Attempt to operate
on a free block

HNoPurge marks a relocatable block as unpurgeable. After the call,
HemError will return nilHandleErr if handle h la empty or aemWZErr if
it points to a free block, otherwise noErr. If the block ia already
unpurgeable, HNoPurge does nothing.

10/10/83 Chernicoff CONFIDENTIAL /MEK.KGll/MEMORY.5

3-43

3-44

44 Memory Manager Programmer'• Guide

Grow Zone Functions

PROCEDURE SetGrowZone (growZone: ProcPtr);

Trap macro

.Q!t entry

Result codes

_SetGrowZone

A0: growZone (pointer)

De: result code (integer)

t $900G noErr No error

SetGrowZone sets the current heap zone's grow zone function as
designated by the growZone parameter. A NIL parameter value removes
any grow zone function the zone may previously have had. After the
call, MemError will always return noErr.

(hand)
If your program presses the limits of the available heap
space, it's a good idea to have a grow zone function of
some sort. At the very least, the grow zone function
should detect when the Memory Manager is about to run out
of space at a critical time (see GZCritical, below) and
take some graceful action--such as displaying an alert
box with the message "Out of memory"-instead of just
failing unpredictably. *** There may eventually be a
default grow zone function that does this.***

The Memory Manager calls the grow zone function as a last resort when
trying to allocate space, after failing to create a block of the needed
size by compacting the zone, increasing its size (in the case of the
original application zone), or purging blocks from it. Memory Manager
routines that uy cause the grow zone function to be called are
MewBandle, NewPtr, SetBandleSize, SetPtrSize, leallocBandle, and
ResrvMem.

The grow zone function should be of the form

FUNCTION GrowTheZone (cbNeeded: Size) : Size;

(Of course, the name GrowTheZone is only an example; you can give the
function any name you like.) The cbNeeded parameter gives the physical
size of the needed block in bytes, iacludlag tbe block header. The
grow zone function should attempt to create a free block of at leaat
this size. It should return as its result the number of additional
bytes it has freed within the zone, but this number need not be
accurate.

10/10/83 Chernicoff CONFIDENTIAL /MEK.KGR/HEMORY.5

MEMORY MANAGER. ROUTINES 45

If the grow zone function return• f, the Memory Manager will give up
trying to allocate the needed block and will aignal failure with the
result code.aeaFulllrr. Otherwise it will coapact the heap zone and
try again to allocate the block. U still unsuccessful, it will
continue to call the grow zone function repeatedly, compacting the zone
again after each call, until it either succeeds in allocating the
needed block or receives a zero result and gives up.

The usual way for the grow zone function to free 110re apace is to call
EaptyRandle to purge blocks that were previously aarked unpurgeable.
Another possibility is to unlock blocks that were previously locked, in
order to eliminate immovable "islands" that may have been interfering
with the compaction process and fragmenting the existing free apace.

(hand)

(eye)

Although just unlocking blocks doesn't actually free any
additional space in the zone, the grow zone function
should still return a nonzero result in this case. Thia
signals the Memory Manager to compact the heap and try
again to allocate the needed block.

Depending on the circumstances in which the grow zone
function is called, there may be particular blocks within
the heap zone that must not be purged or released. For
instance, if your program ia attempting to increase the
size of a relocatable block with SetRandleSize, it would
be disastrous to release the block being expanded. To
deal with auch cases safely, it's essential to understand
the use of the functions GZCritical and GZSaveBnd (see
below).

FUNCTION GZCritical : BOOLEAN; [Paacal only]

Trap macro Hone

leault codes Rone

GZCritlcal returns TRUE if the Memory Manager critically needs the
requested space: for ample, to create a new relocatable or
nonrelocatable block or to reallocate a handle. It returns FALSE in
less critical cases, such as ResrvMem trying to move a block in order
to reserve space as low a• posaible in the heap zone or SetHandleSize
trying to lncreaae the size of a relocatable block by moving the block
above it.

(eye)
If you're writing a grov zone function in Pascal, you
should alway• call GZCritical and proceed only if the
reault ia TRUE. All the information you need to handle

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/KEMORY.5

3-45

3-46

46 Memory Manager Programmer'• Guide

the critical cases safely is the value of GZSaveHnd (see
below). The noncritical cases require additional
inforution that isn't available from Pascal, so your
grow zone function should just return e and not atteapt
to free any apace.

Assembly-language~: GZCritical is part of the Pascal
interface to the Memory Manager, not part of the Memory Manager
itself. It doesn't reside in ROM and can't be called via a
trap. To find out whether a given grow zone call is critical,
use the following magical incantation:

Critical

MOVE.L
BEQ.S
CMP.L
BEQ.S

gzMoveHnd,De
Critical
gzRootHnd,1>0
Critical

CLll.L 4(SP)
RTS

• • •

;If noncritical, just return I

;Handle critical case

To handle the critical cases safely (and the noncritical ones if
you choose to do more than just return 9), see the note below
under GZSaveHnd.

FUNCTION GZSaveHnd Bandle; [Pascal only]

Trap macro None

Result codes None

GZSaveBnd returns a handle to a relocatable block that mustn't be
purged or released by the grow zone function, or NIL if there is no
such block. The grow zone function will be safe if it avoids purging
or releasing this block, provided tbat tbe grow aoae call was
critical. To handle noncritical cases safely, further information is
needed that isn't available from Pascal.

Assembly-language !2£!_: GZSaveHnd is part of the Pascal
interface to the Memory Manager, not part of the Memory Manager
itself. It doesn't reside in llOH and can't be called via a
trap. You can find the handle it returns in the global variable
gzllootHnd. The "further inforution" that isn't available from

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.5

MEMOR.Y MANAGER llOUTINES 47

Pascal ls the contents of two other global variables, gzRootPtr
and gzMoveHnd, which may be nonzero in noncritical caaea. If
gzltootPtr ls nonzero, it'• a pointer to a nonrelocatable block
that must not be released; gzMoveHnd ls a handle to a
relocatable block that must not be released but may be purged.

Utility Routines

PROCEDURE BlockMove (sourcePtr,destPtr: Ptr; byteCount: Size);

Trap macro _BlockMove

~ entry Ml: aourcePtr (pointer)
Al: destPtr (pointer)
DI: byteCount (long integer)

.2!!.~ De: result code (integer)

Result codes • $9990 noErr No error

BlockMove moves a block of byteCount consecutive bytes from the address
designated by aourcePtr to that designated by deatPtr. No checking of
any kind is done on the addresses; no pointers are updated. After the
call, Me11Error will always return noErr.

FUNCTION TopMem: Ptr; [Pascal only]

Trap -cro

Result codes

None

f $fttf noErr No error

TopMea returns a pointer to the address following the last byte of
physical memory. After the call, MemError will always return noErr.

Assembly-language~: TopMem 1• part of the Pascal interface
to the Me110ry Manager, not part of the Me110ry Manager itself.
It doean't reside in ROM and can't be called via a trap. To get
a pointer to the end of physical ae11C>ry from aaaeably language,
use the global variable aemTop.

10/10/83 Chernlcoff CONFIDENTIAL

3-47

3-48

48 Memory Manager Programmer's Guide

FUNCTION HemError: MemErr; [Pascal only]

Trap macro None

Result codes None

HemError returns the result code produced by the last Memory Manager
routine to be called.

Assembly-language™: MemError is part of the Pascal
interface to the Memory Manager, not part of the Memory Manager
itself. It doesn't reside in ROM and can't be called via a
trap. To get the a routine's result code from assembly
language, look in register De on return from the routine.

SPECIAL TECHNIQUES

This section describes some special or unusual techniques that you may
find useful.

Dereferencing a Handle

Accessing a block by double indirection, through a handle instead of a
simple pointer, requires an extra memory reference. For efficiency,
you may sometimes want to dereference the handle-that is, convert it
to a copy of the master pointer, then use that pointer to access the
block by single indirection. But 'be carefull Any operation that
allocates apace from the heap may cause the underlying block to be
110ved or purged. In that event, the master pointer itself will be
correctly updated, but your copy of it will be left dangling.

One way to avoid this common type of program bug is to lock the block
before dereferencing its handle: for example,

10/10/83 Chernicoff CONFIDENTIAL /MEH.MGR/MEMORY.6

VAil aPointer: Ptr;
aHandle: Handle; . • • • •

BEGIN
• . . . '

TABLE OF CONTENTS 49

aHandle :• NewHandle(•••); (create a relocatable block}

END

. • • • •
HLock(aHandle);
aPointer :• aHandle·;

WHILE ••• 00
BEGIN

••• aPointer
END;

HUnlock(aHandle);
• • •

(lock block before dereferencing}
(convert handle to simple pointer}

{use simple pointer inside loop}

(unlock block when finished}

Assembly-language fil?l!_= To dereference a handle in assembly
language, just copy the master pointer into an address register
and use it to access the block by single indirection. Remember
that the aaster pointer points to the block's coutent•. not its
header!

LOOP

MOVE.L lblockSize,DGI ;set up block size for New'Randle
NewHandle ;create relocatable block

MOVE.L Al,aHandle ;save handle for later use
• • •
HOVE.L aHandle,Al
MOVE.L Al,Af
_BLock

MOVE. L (Al) ,A2

• • •
MOVE • •• (A2) •••
• • •
Bcc.s LOOP

MOVE.L Al ,At
HUnlock -• • •

;get back handle
;lock block before dereferencing

;convert handle to si•ple pointer

;use simple pointer inside loop

;loop back on some condition

;unlock block when finished

Remember, however, that when you lock a block it becomes an "laland" in
the heap that may interfere with compaction and cause free apace to
become fragmented. It'• recommended that you use this technique only
in parts of your program where efficiency la critical, such as inside
tight inner loops that are executed many times.

3-49

3-50

50 Memory Manager Programmer's Guide

(eye)
Don't forget to unlock the block again when you're
through with the dereferenced handle!

Instead of locking the block, you can update your copy of the master
pointer after any "dangerous" operation (one that can invalidate the
pointer by moving or purging the block it points to). Memory Manager
routines that can move or purge blocks in the heap are NewHandle,
NewPtr, SetHandleSize, SetPtrSize, lleallocHandle, iesrvMem, CompactKem,
PurgeMem, and MaxMem. Since these routines can be called indirectly
from other Operating System or Toolbox routines, you should assume that
any call to the OS or Toolbox can potentially leave your dereferenced
pointer dangling. *** Eventually there will be a technical note
listing which OS and Toolbox routines are dangerous and which
aren't.***

(hand)
If you aren't performing any dangerous operations, you
needn't worry about updating the pointer (or locking the
block either, for that matter).

Subdividing the Application Heap Zone

In some applications, you may want to subdivide the original
application heap zone into two or more independent zones to be used for
different purposes. In doing this, it's important not to destroy any
existing blocks in the original zone (such as those containing the code
of your program). The recommended procedure is to allocate space for
the subzones as nonrelocatable blocks within the original zone, then
use lnitZone to initialize them as independent zones. For example, to
divide the available space in the application zone in half, you might
write something like the following:

TABLE OF CONTENTS 51

CONST ainSize • 52 + 12 + 32*(12 + 4); (zone header, zone trailer,}
{ and 32 minimum-size blocks}
(with aaater pointers}

VAil myZonel, ayZone2: THz;
start, limit: Ptr;
availSpace, zoneSize: Size; . . . ;

BEGIN

END

. . . ;
SetZone(ApplicZone);
availSpace :• CompactMem(maxSize);
soneSize :• 2 * (availSpace DIV 4);

(size of largest free block}
{force new zone size to an}
(even number of bytes}
(need 8 bytes for} IF zoneSize < (minSize + 8)

THEN •••
ELSE

BEGIN

(block header}
(error--not enough room}

• • •

zoneSize :• zoneSize - 8; (adjust for block header}

start :• NevPtr(zoneSize); (allocate a nonrel. block}
limit :• POINTER(OIU>(start) + zoneSize);
lnitZone(NIL, 32, limit, •tart);
myZonel :• POINTER(OIU>(start)); (convert Ptr to THz}

atart :• NewPtr(zoneSize); (allocate a nonrel. block}
limit :• POIMTER(OIU>(atart) + zoneSize);
lnitZone(NIL, 32, limit, •tart);
myZone2 :• POINTER(ORD(start)) {convert Ptr to THz}

END;

3-51

3-52

52 Memory Manager Programmer's Guide

Assembly-language~: The equivalent assembly code aight be

minSize .EQU 52+12+<32*<12+4>> ;zone header and trailer, plus
; 32 minimum-size blocks

• • •
KOVE.L app1Zone,A0
_SetZone

MOVE.L fmaxSize,D0
_Compact Hem

ASR.L
ASL.L
CMP.L
BLO

12,D0
ll,D0
lminSize+8 ,De
NoRoom

SUBQ.L 18,D0
MOVE.L D0,Dl

NewPtr
MOVE.L A0,myZonel

CLR.L
MOVE.W
MOVE.L
ADD.L
MOVE.L

-(SP)
132,-(SP)
Af,-(SP)
Dl I (SP)
A0,-(SP)

HOVE.L SP,A0
lnitZone -

MOVE.L Dl,D0
NewPtr

MOVE.L A0,myZone2

MOVE.L A0,4(SP)
ADD.L Dl 1 (SP)
MOVE.L A0,(SP)

KOVE.L SP,A0
lnitZone

ADD.W 114,SP
• • •

; with master pointers

;get original application zone
;make it current

;compact entire zone
;D0 has size of largest free block

;force new zone size to an
; even number of bytes
;need 8 bytes for block header
;error if< minimum size

;adjust for block header
;save zone size
;allocate nonrelocatable block
;store zone pointer

;NIL grow zone function
;allocate 32 master pointers
;Ail has zone pointer
;convert to limit pointer
;push as start pointer

;point to argument block
;create zone 1

;get back zone size
;allocate nonrelocatable block
;store zone pointer

;move zone pointer to stack
;convert to limit pointer
;move to stack as start pointer

;point to argument block
;create zone 2
;pop arguments off stack

;

TABLE OF CONTENTS 53

Creating a Heap Zone on the Stack

Another place you can get the apace for a new heap zone is from the
stack. For example,

CONST zoneSize • 2948;
VAR zoneArea: PACKED ARRAY [l •• zoneSize) OF SignedByte;

stackZone: THz;
limit: Ptr;
• • • i

BEGIN . • • • •
1tackZone :• @zoneArea;
limit :• POINTER(ORD(stackZone) + zoneSize);
InitZone(NIL, 16, limit, @zoneArea);
• • •

END

Assembly-language ,!!2!!.= Here's how you might do the same thing
in assembly language:

zoneSize .EQU 2148
• • •
MOVE.L
su1.w
MOVE.L
MOVE.L

CLR.L
MOVE.W
MOVE.L
MOVE.L

SP,A2
lzoneSize, SP
SP,Al
Al,stackZone

-(SP)
116,-(SP)
A2,-(SP)
Al 1 -(SP)

MOVE.L SP,Ae
InitZone

ADD.W 114,SP
• • •

;eave atack pointer for limit
;uke room on stack
;aave •tack pointer for start
;atore as zone pointer

;NIL grow zone function
;allocate 16 uater pointers
;push limit pointer
;push start pointer

;point to argument block
;create new zone
;pop arguMnta off stack

3-53

3-54
54 Memory Manager Programmer's Guide

NOTES FOR ASSEMBLY-LANGUAGE PROGRAMMERS

General information about how to use the Macintosh Operating System
from assembly language is*** (will be)*** given elsewhere. Thia
section contains special notes of interest to programmers who will be
using the Memory Manager from assembly language.

The primary aids to assembly-language programmers are files named
SYSEOU.TEXT, SYSMACS.TEXT, SYSERR.TEXT, and HEAPDEFS.TEXT. If you use
.INCLUDE to include these files when you assemble your program, all the
Memory Manager constants, addresses of global variables, trap macros,
error codes, and masks and offsets into fields of structured types will
be available in symbolic form.

Constants

The file HEAPDEFS.TEXT defines a number of useful constants that you
can use in your program as immediate data values. For example, to push
the default master-point count onto the stack as an argument for
_InitZone, you might write

(hand)

MOVE.W #dfltMasters,-(SP)

It's a good idea to refer to these constants in your
program by name instead of using the numeric value
directly, since some of the values shown may be subject
to change. Some of the constants are based on an
eventual 512K memory configuration; the present Macintosh
has 128K of RAM.

The following constants are defined in HEAPDEFS.TEXT:

minFree .EQU 12 :minimum block size
maxSize .EQU $7FFFF ;maximum block size (512K - 1)
minAddr .EQU • ;minimum legal address
maxAddr .EQU $8"""' :maximum legal address (512X)
dfltMastera .EQU 32 ;default master-pointer count
maxMaaters .EQU $1"'" :maximum master-pointer count (4K)
sys Zone Size .!QU $4ff0 ;size of system heap zone (16K)
applZoneSize .EQU $180(1 :initial size of application zone (6K)
minZone

d flt StackSize

tybkFree
tybkNRel
tybkRel

.EQU

.EQU

.EQU

.EQU

.EQU

heapData+<4*minFree>+<8*dfltMasters)

$""""2""'

" 1
2

;minimum size of application zone
;initial apace allotment for stack

;tag value for free block
;tag value for nonrelocatable block
;tag value for relocatable block

(8K)

i

NOTES FOR ASSE~LY-LANGUAGE PROGRAMMERS 55

One global constant pertinent to the Memory Manager is defined in
SYSEQU.TEXT:

heap Start .EQU $9BIH) ;start address of
; system heap zone (2816)

Global Variables

The Memory Manager's global variables are located in the
communication area and defined in the file SYSEQU.TEXT.
global variable, just refer to it by name as an absolute
example, to load a pointer to the current heap zone into
write

system
To access a
address. For
register A2 ,

MOVE.L theZone,A2

The following global variables are used by the Memory Manager:

Variable
memTop
bufPtr
minStack
defltStack
heapEnd
applLimit
sysZone
applZone
theZone

Trap Macros

Contents
Limit address (end plus one) of physical memory
lase address of stack {grows downward from here)
Minimum space allotment for stack (lK)
Default apace allotment for stack (BK)
Current limit address of application heap zone
Application heap limit
Address of system heap zone
Address of application heap zone
Address of current heap zone

All assembly-language trap macros for the Memory Manager (as well as
the rest of the Operating System) are defined in the file SYSMACS.TEXT.
To call a Memory Manager routine from assembly language via the trap
aaechanism, just use the name of the trap macro aa the operation code of
an instruction. For example, to find out the number of free bytes in
the current heap zone, use the instruction

FreeMem -
As stated in the description of FreeMem above. the number of free bytes
will be in register Df on return from the trap.

3-55

3-56

56 Memory Manager Programmer's Guide

R.esult Codes

The file SYSERR.TEXT contains constant
returned by Operating System routines.
program as immediate data values. For
code memFullErr on return from a trap,

definitions for all result codes
You can use them in your

example, to test for the error
you might write

CMP.'W
BEQ

lmemFullErr ,D0
NoRoom

The Memory Manager uses the following error codes:

noErr .EQU 0 ;no error
memFullErr .EQU -108 ;not enough room in zone
nil Hand le Err .EQU -109 ;NIL master pointer
memWZErr .EQU -111 ;attempt to operate on a free block
memPurErr .EQU -112 ;attempt to purge a locked block

Offsets and Masks

Offsets to the fields of zone and block headers are defined as
constants in the file HEAPDEFS.TEXT. To access a field, use the name
of the offset constant as a displacement relative to an address
register pointing to the first byte of the header. For example, if
register A2 contains a pointer to a zone header, you can load the
number of free bytes in the zone into D3 with the instruction

(eye)

MOVE.L gzProc(A2),D3

Generally speaking, the offset and mask constants
discussed here are intended for the Memory Manager's
internal use. You shouldn't ordinarily be prowling
around in a zone or block header unless you know what
you're doing.

The following offset constants represent the fields of a zone header:

bkLim .EQU " ;address of zone trailer (long)
purgePtr .EQU 4 ;roving purge pointer (long)
hFstFree .EQU 8 ;address of first free . master pointer (long) •
zcbFree .EQU 12 ;number of free bytes (long)
gzProc .EQU 16 ;address of grow zone

; function (long)
110reMasters .EQU 2G ;incremental master-pointer

; count (word)
flags .EQU 22 ;internal flags (word)
cntllel .EQU 24 ;relocatable blocks (word)

NOTES FOR ASSEMBLY-LANGUAGE PROGUMMERS 57

maxRel .EQU 26 ;max. cntltel ao far (word)
cntNllel .EQU 28 ;nonrelocatable blocks (word)
maxNltel .EQU 38 ;ux. cntNRel ao far {vord)
cnt'Empty .EQU 32 ;empty master pointer• (vord)
cntKandles .EQU 34 ;total master pointers (word)
minCBFree .EQU 36 ;min. zcbFree eo far (long)
purgeProc .EQU 4f ;addreaa of purge waming . procedure (long) ' aparePtr .EQU 44 :spare pointer (long)
allocPtr .EQU 48 ;roving allocation pointer (long)
heapData .EQU 52 ;first usable byte in &one

The following offset constants represent the fields of a block header:

tagBC .EQU e ;tag, aize correction, and . physical byte count (long) ' handle .EQU 4 ;reloc.: relative handle (long)
;nonreloc.: zone pointer (long)

blk.Data .EQU 8 ;first byte of block content&

HEAPDEFS.TEXT also defines the following mask constant& for
manipulating the fields of block headers and maater pointers:

(eye)

tagMask
bcOffMask

bcMask
ptrMask

handleMaak
freeTag
nR.elTag
rel Tag

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

SftFFFFFF
$fltFFFFFF

StflFFFFFF
e
$4fflllflttt
saeeeeeee

;tag field
;size correction
; ("byte count offset")
;physical byte count
;address part of aaster pointer
; or &one pointer
;relative handle
;tag for free block
;tag for nonrelocatable block
;tag for relocatable block

Remember, the pointer or handle you get from the Memory
Manager when you allocate a block points to the block'•
coateata, aot ita header. To get the address of the
header, subtract the offaet conatant blkData, defined
above. For example, if you have a handle to a block in
register A2, the following code will set A3 to point to
the block's header:

KOVE.L (A2),A3
SUBQ.L lblkData,Al

;get pointer to block contents
;offset back to header

3-57

3-58

58 Memory Manager Programmer's Guide

Finally, SYSEQU.TEXT defines the following constants for the bit
numbers of the various flag bits within the high-order byte of a master
pointer:

lock
purge
resource

.EQU

.EQU

.EQU

7
6
5

;lock bit
;purge bit
;resource bit

You can use these constants to access the flag bits directly, using the
68000 instructions BSET, BCLR, and BTST. For instance, if you have a
handle to a relocatable block in register A2, you can mark the block as
purgeable with the instruction

BSET.B lpurge,(A2) ;set purge bit in master pointer

To branch on the current setting of the lock bit,

BTST.B llock,(A2)
BNE Its Locked

Handy Tricks

;test lock bit in master pointer
: and branch on result

To save time in critical situations, here's a quick way to convert a
dereferenced pointer to a relocatable block back into a handle without
paying the overhead of a ltecoverHandle trap. ltecall that the relative
handle stored in the block's header is the offset of the block's master
pointer relative to the start of its heap zone. So to convert a copy
of the master pointer back into the original handle, find the relative
handle and add it to the address of the zone. For example, if register
A2 contains the master pointer of a block in the current heap zone, the
following code will reconstruct the block's handle in A3:

MOVE. 1. -4(A2) ,Al

ADD.L theZone,A3

;relative handle is 4 bytes back
; from start of contents
;use as offset from start of zone

Conversely, given a true (absolute) handle to a relocatable block, you
can find the zone the block belongs to by eubtracting the relative
handle from the absolute handle. If the absolute handle is in register
A21 the following instructions will convert it into a pointer to the
block's heap zone:

KOVE.L (A2),A3
SUI.L -4(A3) ,A2

;get pointer to block
;eubtract relative handle
: to get zone pointer

For nonrelocatable blocks, the header contains a pointer directly back
to the zone:

MOVE.L -4(A2),A2 ;get zone pointer directly

,

SlJMKAllY OF THE MEMORY MANAGER 59

SUMMARY OF THE MEMORY MANAGER

- QI;
• -118;
• -109;

{no error}
{not enough room in zone}
{NIL 11aster pointer}

CONST noErr
memFullErr
nil Handle Err
memWZErr
memPurErr

• -111;
• -112;

{attempt to operate on a free block}
{attempt to purge a locked block}

maxSize • $800000;

TYPE SignedByte • -128 •• 127;
Byte • f •• 255;
Ptr • ·s1gnedByte;
Handle • ·Ptr;
ProcPtr • Ptr;

Size • Longint;
MemErr • INTEGER;

THz • ""Zone;
Zone• RECORD

bkLim:
purgePtr:
hFstFree:
zcbFree:
gzProc:
moreMast:
flags:
cntRel:
maxRel:
cntNRel:
maxNRel:
cntEmpty:
cntHandles:
minCBFree:
purgeProc:
sparePtr:
allocPtr:
heapData:

END;

Ptr;
Ptr;
Ptr;
Longint;
ProcPtr;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
Longlnt;
ProcPtr;
Ptr;
Ptr;
INTEGER

Initialization and Allocation

PROCEDURE InitApplZone;
PROCEDURE SetApplBaae
PROCEDURE InitZone

PROCEDURE SetApplLimit

(startPtr: Ptr);
(growProc: ProcPtr; maaterCount:
limitPtr, •tartPtr: Ptr);

(zoneLimit: Ptr);

INTEGEll;

10/10/83 Cheruicoff CONFIDENTIAL /MEM.MGR/MEMORY.7

3-59

3-60

60 Memory Manager Programmer's Guide

Heap Zone Access

FUNCTION GetZone
PROCEDURE SetZone
FUNCTION SystemZone
FUNCTION ApplicZone

THz;
(hz: THz);
THz; [Pascal only]

: THz; [Pascal only)

Allocating and Releasing Relocatable Blocks

(logicalSize: Size) Handle;
(h: Handle);
(h: Handle) : Size;
(h: Handle; newSize: Size);
(h: Handle) : THz;
(p: Ptr) : Handle;

FUNCTION NewHandle
PROCEDURE DisposHandle
FUNCTION GetHandleSize
PROCEDURE SetHandleSize
FUNCTION HandleZone
FUNCTION lt.ecoverHandle
PROCEDURE ReallocHandle (h: Handle; logicalSize: Size);

Allocating and Releasing Nonrelocatable Blocks

FUNCTION NewPtr
PROCEDURE DisposPtr
FUNCTION GetPtrSize
PROCEDURE SetPtrSize
FUNCTION PtrZone

(logicalSize: Size) : Ptr;
(p: Ptr);
(p: Ptr) : Size;
(p: Ptr; newSize: Size);
(p : Pt r) : THz ;

Freeing Space on the Heap

FUNCTION FreeMem:
FUNCTION MaxMem
FUNCTION CompactMem
PROCEDURE ResrvMem
FUNCTION PurgeMem
PROCEDURE EmptyHandle

Longlnt;
(VAR grow: Size) : Size;
(cbNeeded: Size) : Size;
(cbNeeded: Size);
(cbNeeded: Size);
(h : Hand le) ;

Properties of lelocatable Blocks

PROCEDURE HLock
PROCEDURE HUnlock
PROCEDURE HPurge
PROCEDURE HNoPurge

(h: Handle);
(h: Randle);
(h: Bandle);
(h: Bandle);

10/10/83 Chernicoff CONFIDENTIAL /MEH.KGR/MEMORY.7

J

SUMMAllY OF THE MEMORY MANAGER 61

Grow Zone Functions

PROCEDURE SetGrowZone (grovZone: ProcPtr);
FUNCTION GZCr1t1cal : BOOLEAN; [Pascal only]
FUNCTION GZSaveBnd : Handle; (Pascal only)

Utility Routines

PROCEDURE BlockMove (10urcePtr, destPtr: Ptr; byteCount: Size);
FUNCTION TopMem: Ptr; [Pascal only)
FUNCTION MemError : MemErr; [Pascal only]

10/10/83 Cbernlcoff CONFIDENTIAL /HEK.MGR/MEMORY.7

3-61

3-62

62 Memory Manager 'Programmer's Guide

GLOSSARY

allocate: To reserve a block for use.

application heap zone: The heap zone provided by the Me110ry Manager
for use by the application program.

block: An area of contiguous memory within a heap zone.

block contents: The area of a block available for use.

block header: The internal ''housekeeping" information maintained by
the Memory Manager at the beginning of each block in a heap zone.

compaction: The process of moving allocated blocks within a heap zone
in order to collect the free space into a single block.

current heap zone: The heap zone currently under attention, to which
most Memory Manager operations implicitly apply.

dereference: To convert a pointer into whatever it points to;
specifically, to convert a handle into a copy of its corresponding
master pointer.

empty handle: A handle that points to a NIL master pointer, signifying
that the underlying relocatable block has been purged.

free block: A block containing space available for allocation.

grow zone function: A function supplied by the application program to
help the Memory Manager create free apace within a heap zone.

handle: A pointer to a master pointer, which designates a relocatable
block by double indirection.

heap zone: An area of aemory in which apace can be allocated and
released on demand, uaing the Memory Manager.

limit pointer: A pointer to the byte following the last byte of an
area in memory, auch as a block or a heap zone.

lock: To temporarily prevent a relocatable block from being moved
during heap compaction.

lock bit: A bit in the master pointer to a relocatable block that
indicates whether the block is currently locked.

logical size: The number of bytes in a block's contents; coapare
physical.!!!!.•

10/10/83 Chernicoff CONFIDENTIAL /HEH.KGll/HEHORY.7

GLOSSARY 63

master pointer: A single pointer to a relocatable block, maintained by
the Memory Manager and updated whenever the block is 110ved, purged, or
reallocated. All handles to a relocatable block refer to it by double
indirection through the master pointer.

nonrelocatable block: A block whose location in its heap zone is fixed
and can't be moved during heap compaction.

physical size: The actual number of bytes a block occupies within its
heap zone.

purge: To remove a relocatable block from its heap zone, leaving its
master pointer allocated but set to NIL.

purgeable block: A relocatable block that can be purged from its heap
zone.

purge bit: A bit in the master pointer to a relocatable block that
indicates whether the block is currently purgeable.

purge warning procedure: A procedure associated with a particular heap
zone that is called whenever a block is purged from that zone.

reallocate: To allocate new apace in a heap zone for a purged block,
updating its master pointer to point to its new location.

rPlatlve handle: A handle to a relocatable block expressed as the
, £set of its master pointer within the heap zone, rather than as the
absolute memory address of the master pointer.

release: To destroy an allocated block, freeing the apace lt occupies.

relocatable block: A block that can be moved within its heap zone
during compaction.

result code: An integer code produced by a Memory Manager routine to
signal the success of an operation or the reason for its failure.

size correction: The nuaber of unused bytes included at the end of an
allocated block; the difference between the block's logical and
physical aizes, excluding the block header.

system heap zone: the heap zone provided by the Memory Manager for use
by the Macintosh syatem software.

tag: A 2-bit code in the header of a block identifying it as
relocatable, nonrelocatable, or free.

unlock: To allow a relocatable block to be moved during heap
co•paction.

unpurgeable block: A relocatable block that can't be purged from its
heap zone.

10/10/83 Cbemicoff CONFIDENTIAL /MEM.MGit/MEK0RY.7

3-63

3-64

64 Memory Manager Programmer's Guide

zone header: The internal ''housekeeping" information maintained by the
Memory Manager at the beginning of each heap zone.

zone pointer: A pointer to a zone record.

zone record: A Pascal data structure representing the structure of a
zone header.

zone trailer: A minimum-size free block marking the end of a heap
zone.

10/10/83 Chernicoff CONFIDENTIAL /MEM.MGR/MEMORY.7

;

MACINTOSH USER EDUCATION

The Menu Manager: A Programmer'• Guide /KHGR/MENUS

See Also: Macintosh User Interface Guidelines
Macintosh Operating System Reference Manual
Ouic:JtDraw: A Programmer'• Guide

.The Window Manager: A Progr&1111er'• Guide
The Resource Manager: A Progra-er'• Guide
The Event Manager: A Progra1111er'• Guide
The Deak Manager: A Programmer'• Guide
The Toolbox Utilities: A Programmer'• Guide

Modification History: First Draft P. Stanton-Wyman
Second Draft
Updated (ROH 2.8)

Third Draft (ROM 3.1) C.
Fourth Draft (ROM 7)

c. Espinosa 12/23/82
c. Espinosa 1/24/83

Espinosa & c. ltose 5/17/83
c. ltose 11/1/83

ABSTRACT

The Macintosh User Interface frees the user from having to remember long
strings of comm.and words by placing all co1111anda in aenus. With the
aenu bar and pull-down aenua, the user can at any tiae aee all available
aenu choices. Thia manual describes the nature of pull-down •nus and
how to implement them with the Macintosh Menu Manager.

Su111111Sry of aignificant changes and additions since last version:

- The symbol for showing keyboard equivalents for aenu iteas has
changed from a aolid apple to the Command key's aymbol on the
keyboard (page 6).

- The use of the "I" meta-character to indicate a urked aenu item
has changed (page 11).

- A nev procedure, lnsertResHenu, has been added (page 18).

- The predefined constant mCalcSize, for the aenu definition
procedure'• message parameter, has been renamed aSizeNag (page
27).

- For assembly-language programmers, the unconventional ucro names
for calling aeveral of the Menu Manager routines are nov liated
under the descriptions of those routines, and aoae additional
ayatem alobala are diacuaaed.

2 Menu Manager Programmer's Guide

TABLE OF CONTENTS

3 About This Manual
4 About the Menu Manager
4 The Menu Bar
5 Appearance of Menus
7 Menus and Resources
8 Menu Records
9 The Menu List
lG Creating a Menu
11 Separating Items
11 Items with Icons
11 Marked Items
12 Character Style of Items
12 Items with Keyboard Equivalents
13 Disabled Items
13 Using the Menu Manager
15 Menu Manager Routines
15 Initialization and Allocation
18 Forming the Menu Bar
2G Choosing From a Menu
22 Controlling lte~s' Appearance
25 Miscellaneous Utilities
26 Defining Your Own Menus
27 The Menu Definition Procedure
28 Formats of Resources for Menus
29 Menus in a Resource File
3G Menu Bars in a Resource File
31 Sumnary of the Menu Manager
35 Glossary

Copyright (c) Apple Computer, Inc. All rights reaerved. Distribution
of this draft in limited quantities does not constitute publication.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes the Menu Manager, a major component of the
Macintosh User Interface Toolbox. *** Eventually it will become part
of a comprehensive manual describing the entire Toolbox and Operating
System.*** The Menu Manager allows you to create sets of menus, and
allows the user to choose from the commands in those menus in a manner
consistent with the Macintosh User Interface guidelines.

(hand)
This manual describes version 7 of the ROM. If you're
using a different version, the Menu Manager may not work
as discussed here.

Like all documentation about the Toolbox, this manual assumes you're
familiar with the Macintosh User Interface Guidelines, Lisa Pascal, and
the Macintosh Operating System's Memory Manager. You should also be
familiar with the following:

- The basic concepts and structures behind OuickDraw, particularly
points, rectangles, and character style.

- Resources, as described in the Resource Manager manual.

- The Toolbox Event Manager. Some Menu Manager routines should be
called only in response to certain events.

This manual is intended to serve the needs of both Pascal and
assembly-language programmers. Information of interest to
assembly-language programmers only is isolated and labeled so that
Pascal programmers can conveniently skip it. *** Some of that
information refers to the "Toolbox equates" file (ToolEqu.Text), which
the reader will have learned about in an earlier chapter of the final
comprehensive manual. ***

The manual begins with an introduction to the Menu Manager and the
appearance of menus on the Macintosh. It then discusses the basics of
menus: the relationship between menus and resources, some internal
structures related to menus, and information about how to create menus.

Next, a section on using the Menu Manager introduces its routines and
tells how they fit into the flow of your application. This is followed
by detailed descriptions of all Menu Manager procedures and functions,
their parameters, calling protocol, effects, aide effects, and so on.

Following these descriptions are sections that will not interest all
readers: special information is provided for programmers who want to
define their own menus, and the exact formats of resources related to
menus are described.

Finally. there's a summary of the Menu Manager, for quick reference,
followed by a glossary of terms used in this manual.

11/1/83 Espinosa-Rose /MMGR/KENUS.2

4 Menu Manager Programmer's Guide

ABOUT THE MENU MANAGER

The Menu Manager supports the use of menus, an integral part of the
Macintosh User Interface. Menus allow users to examine all choices
available to them at any time without being forced to choose one of
them, and without having to remember command words or special keys.
The Macintosh user simply positions the cursor in the.!!!!!!!. bar and
presses the mouse button over a.!!!!!!!. title. The application then calls
the Menu Manager, which highlights that title (by inverting it) and
"pulls down" the menu below it. As long as the mouse button is held
down, the menu is displayed. Dragging the mouse through the.!!!!!!!. items
causes each of the items to be highlighted in turn. If the mouse
button is released over an item, that item is "chosen". The item
blinks briefly to confirm the choice, and the menu disappears.

After a successful choice, the Menu Manager tells the application which
item was chosen, and the application performs the corresponding action.
When the application completes the action, it removes the highlighting
from the menu title, indicating to the user that the operation is
complete.

If the user moves the cursor out of the menu and releases the mouse
button, no choice is made: the menu simply disappears and the
application takes no action. The user is never forced to choose a
command once a menu has been pulled down.

The Menu Bar

The menu bar always appears at the top of the Macintosh screen, 2t
pixels high and as wide as the screen. It appears in front of all
windows; nothing but the cursor ever appears in front of the menu bar.
The menu bar is white and has a thin black lower border, and the menu
titles in it are always in the system font and the system font size
(see Figure l).

11/1/83 Espinosa-Rose /MKGR/HENUS.2

titles of
enabled merus

•

ABOUT THE MENU MANAGER 5

title of e
disabled menJ

Figure 1. 'l'he Menu Bar

In applications that support desk accessories, the first menu should be
the standard Apple menu (the menu whose title is an Apple symbol).
This menu contains the names of all available desk accessories. When
the user chooses a desk accessory, the title of a menu belonging·to it
uy also appear in the menu bar, for as long as the accessory is
active, or the entire menu bar may be occupied by menus belonging to
the desk accessory. (Desk accessories are discussed in detail in the
Desk Manager manual.)

A menu may temporarily be disabled, so that none of the items in the
menu can be chosen. 'l'he title of a disabled menu and every item in it
appear dimmed in the menu bar (that is, drawn in gray rather than
black).

The maximum number of menu titles in the menu bar is 16; however, ten
to twelve titles is usually all that will fit. If you're having
trouble fitting your menus in the menu bar, you should review your menu
organization and menu titles.

Appearance of Menus

A standard menu consists of a number of lines of text, ll•ted
vertically inside a shadowed rectangle (•ee Figure 2). Menu• alway•
appear in front of everything else (except the cursor); in Piaure 2,
the •nu appears in front of a document window already on the acreen.

11/1/83 Espinosa-Rose /MMCll/MEHUS. 2

6 Menu Manager Programmer's Guide

mer-..
with

6meoo
items

(1 blri)

Figure 2. A Standard Menu

Each line of text is one menu item that the user can choose from that
menu. The text always appears in the system font and the system font
size. Each item can have.a few visual variations from the standard
appearance:

- An icon to the left of the item's text, to give a symbolic
representation of the item's meaning or effect.

- A check mark or other character to the left of the item's text (or
icon, if any), to denote the status of the item or of the mode it
controls.

- The Command key symbol and another character to the right of the
item's text, to show that the item may be invoked from the
keyboard (that is, it haa a keyboard equivalent).

- A character style other than the standard, such as bold, italic,
underline, or a combination of these. (The QuickDraw manual gives
a full discussion of character style.)

- A dimmed appearance, to indicate that the item is disabled.

(hand)
Special symbols or icons may have an unusual appearance
when dimmed; notice the dimmed Command symbol in the Cut
and Copy menu items in Figure 2.

The maximum nullber of menu items that will fit in a standard menu is 2f
(minus 1 for every item that contains an icon). The fewer menu items
you have, the simpler and clearer the menu appears to the user. To
separate groups of items, you may use blank menu items or items
consisting entirely of dashes.

11/1/83 Espinosa-Rose /MMGR./MENUS.2

ABOUT THE MENU MANAGER 7

If the standard menu doesn't suit your needs (for example, if you want
more graphics or perhaps a nonlinear text arrangement), you can define
a custom menu that, although visibly different to the user, responds to
your application's Menu Manager calls just like a standard •nu.

MENUS AND RESOURCES

The general definition of how a certain type of menu looks and behaves
is determined by a.!!!!!!!. definition procedure, which is usually stored
as a resource in a resource file. Host applications will use the
predefined menu definition procedure in the system resource file;
others may write their own menu definition procedures (as described
later in the section "Defining Your Own Menus").

One way to define the contents of your application's menus is to have
your program create them manually, item by item. When you create a
menu this way, the Menu Manager automatically sets it up to use the
standard menu definition procedure and gets that procedure from the
system resource file. The standard menu definition procedure has the
capabilities described above: it lists the menu items vertically, and
each one may have an icon, check mark, keyboard equivalent, different
character style, or dimmed appearance.

You can also set up your application's menus by reading them in from a
resource file. This is strongly recommended, for two reasons: it
makes your application smaller, and it allows the menu items to be
edited for documentation or translated to foreign languages without
affecting the application's source code. The Menu Manager allows you
to read not only individual menus but also complete menu bars from a
resource file.

(hand)
You can create menus and menu bars and store them in
resource files with the aid of the Resource Editor***
eventually***• The Resource Editor relieves you of
having to know the exact formats of these resources in
the file, but for interested progra111111era this information
is given in the section "Formats of Resources for Menus".
*** In the absence of the Resource Editor, you can write
a small program to create your menus using the Menu
Manager procedure AppendMenu, and store them in a
resource file using the standard Resource Manager calls.
You can also use the interim Resource Compiler; see the
manual "Putting Together a Macintosh Application" for
more information. ***

Even if you don't store entire menus in resource files, it'• a good
idea to store the text strings they contain aa resources; you can call
the Resource Manager directly to read them in. Icons in menus are read
from resource files; in this case, the Menu Manager calls the Resource
Manager.

11/1/83 Espinosa-Rose /NMGR/MENUS.2

8 Menu Manager Programmer's Guide

There's one other interaction between menus and resources: a Menu
Manager procedure that scans all open resource files for resources of a
given type and install the names of all available resources of that
type into a given menu. Thia is how you fill a menu with the names of
all available desk accessories, for example.

MENU RECORDS

The Menu Manager keeps all the information it needs for its operations
on a particular menu in a~ record. The menu record contains:

- The~~· For menus stored in resource files, this is the
resource ID; for menus created by your application, it's any
positive number (less than 32768) that you choose to identify the
menu.

- The menu title.

- The contents of the menu; the text and other parts of each item.

- The horizontal and vertical dimensions of the menu, in pixels.
The menu items appear inside the rectangle formed by these
dimensions; the black border and shadow of the menu appear outside
that rectangle.

- 4 handle to the menu definition procedure.

- Flags telling whether each menu item is enabled or disabled, and
whether the menu itself is enabled or disabled.

The data type for a menu record is called Menulnfo. A menu is a
dynamic, relocatable data structure and is referred to by a handle.

TYPE MenuPtr • -Menulnfo;
MenuHandle • "1fenuPtr;

You can store into and access all the necessary fields of a menu record
with Menu Manager routines, so normally you don't have to know its
exact structure. Advanced users, however--particularly those who
define their own types of menus--may need to know some of the field
names.

TYPE Kenulnfo • I.ECORD
menuID:
menuWidth:
menuHeight:
menuProc:
enableFlags:
menuData:

END;

11/1/83 Espinosa-Rose

INTEGER;
INTEGER;
INTEGER.;
Handle;
PACKED AR.llAY
Str2SS

[f •• Jl] OF BOOLEAN;

/HHGR./MENUS.2

MENU RECORDS 9

The menulD field contains the menu ID.

The menuWidth and menuHeight fields contain the menu's horizontal and
vertical dimensions, respectively.

The menuProc field contains a handle to the menu definition procedure
for this type of menu.

The ~th element of the enableFlags array is TRUE if the menu is
enabled, or FALSE if it's disabled. The remaining elements similiarly
determine whether each item in the menu is enabled or disabled.

The menuData field contains the menu title followed by variable-length
data that defines the text and other parts of the menu items. The
Str255 data type enables you to access the title from Pascal; there's
actually additional data beyond the title that's inaccessible from
Pascal and is not reflected in the Henulnfo data structure.

(eye)
You can read the menu title directly from the menuData
field, but do not change the title directly, or the data
defining the menu items may be deatroy~d.

Assembly-language!!!!!!,= The Toolbox equates file includes
menuBlkSize, the length in bytes of all the fields of a menu
record except menuData.

THE MENU LIST

The Menu Manager keeps a list of menu handles for all menus in the menu
bar. The user can pull down and choose from any menu whose handle is
in this menu list. The menu bar shows the titles, in order, of all
menus inthe menu" list.

You can have menus that aren't in the menu list. These menus' titles
don't appear in the menu bar, the menus can't be pulled down, and their
items can't be chosen. Such menus are useful as "reserve" menus to
hold items not normally available to the user; these items can be
exchanged with items in other menus, or entire reserve menus can be
added to the menu bar.

The Menu Manager provides all the necessary routines for manipulating
the menu list, so there's no need to access it yourself directly. As a
general rule, routines that deal specifically with menus in the menu
list use the menu ID to refer to menus; those that deal with any menus,
whether in the menu list or not, use the menu handle to refer to menus.
Some routines refer to the menu list as a whole, with a handle.

11/1/83 Espinosa-Rose /MKGR/MENUS. 2

10 Menu Manager Programmer's Guide

Assembly-language™: The system global menuList contains a
handle to the current menu list.

CREATING A MENU

For an application to create menus itself, rather than read them from a
resource file, it must call the NewMenu and AppendMenu routines of the
Menu Manager. NewMenu creates a new menu data structure, returning a
handle to it. AppendMenu takes a string and a handle to a menu and
adds the items in the string to the end of the menu.

The string passed to AppendMenu consists mainly of the text of the menu
items (for a blank item, one or more spaces). Other characters
interspersed in the string can have special meaning to the Menu
Manager. These characters, called meta-characters, are used in
conjunction with text to"separate menu items or alter their appearance.
The meta-characters do not appear in the menu.

Meta-character
; or Return ..

<
I
(

Meaning
Separates items
Item has an icon
Item has a check mark or other mark
Item has a special character style
Item has a keyboard equivalent
Item is disabled

None, any, or all of these meta-characters can appear in the AppendMenu
string; they are described in detail below. To add one text-only item
to a menu would require a simple string without any meta-characters:

AppendMenu(thisMenu,'Just Enough');

An extreme example could use many meta-characters:

AppendMenu(thisMenu,'(Too Much·l<B/T');

This example adds to the menu an item whose text is "Too Much", which
is disabled, bas icon number 1, is boldfaced, and can be invoked by
Command-T. Your menu items should be much simpler than this.

(hand)
If you want any of the meta-characters to appear in the
text of a menu item, you can include them by changing the
text with the Menu Manager procedure Setltem.

11/1/83 Espinosa-Rose /HMGR/MENUS. 2

CREATING A MENU 11

Separating Items

Each call to AppendHenu can add one or many items to the •nu. To add
multiple items in the same call, use a semicolon(";") or a Return
character to separate the iteu. The call

AppendMenu(thiaHenu,'Cut;Copy');

has exactly the same effect as the calla

AppendMenu(thiaMenu,'Cut');
AppendMenu(thiaHenu,'Copy');

Items with Icons

A circumflex("""") followed by a digit from 1 to 9 indicates that an
icon should appear to the left of the menu item's text. The digit,
which is called the icon number, yields the resource ID of the icon in
the resource file. i;source IDs 257 through 511 are reserved for aenu
icons; thus the Menu Manager adds 256 to the icon number to get the
proper resource ID.

If you need to install more than nine icons, you can use the
Setltemlcon procedure.

(hand)
The Menu Manager gets the icon number by aubtracting 48
from the ASCII code of the character following the""""
(since, for example, the ASCII code of "l" ia 49). You
can actually follow the"""" with any character that has
an ASCII code greater than 48.

Marked Items

You can use an exclamation point("!") to cause a check mark or any
other character to be placed to the left of the menu item's text (or
icon, if any). Follow the exclamation point with the character of your
choice; note, however, that you may not be able to type a check aark or
certain other special characters (auch aa the Apple aymbol) from the
keyboard. To apecify one of these character•, you need to take apecial
measures: Declare a atring variable to have the length of the deaired
AppendMenu string, and assign it that string with a apace following the
exclamation point. Then aeparately store the apecial character in the
position of the apace. The following predefined constant• aay be
useful:

CONST check.Hark • 18;
appleSyabol • 2f;

11/1/83 Espinosa-Rose

{check aark}
(Apple ayabol)

/MHGR/MENUS.2

12 Menu Manager Programmer's Guide

For example, suppose you want to use AppendHenu to specify a menu item
that has the text "Word Wrap" (nine characters) and a check mark to its
left. You can declare the string variable

VAR s: STRING[ll);

and do the following:

s :• 'Word Wrap I '
s[ll] :• CHR(checkHark);
AppendHenu(thisMenu,s);

Character Style of Items

The system font is the only font available for menus; however, you can
vary the character style for clarity and distinction. The
meta-character used to specify the character style ia the left angle
bracket,"<"• With AppendHenu, you can assign one and only one of the
stylistic variations listed below.

(B Bold
<I Italic
<U Underline
<o Outline
<s Shadow

The SetitemStyle procedure allows you to assign any character style to
an item. For a further discussion of character style, see the
QuickDraw manual.

Items with Keyboard Equivalents

Any menu item that can be chosen from a menu may also be associated
with a key on the keyboard. Pressing this key while holding down the
Command key invokes the item just as if it had been chosen from the
menu.

A slash("/") followed by a character associates that character with
the item. The specified character (preceded by the Command key symbol)
appears at the right of the item's text in the menu. For consistency
between applications, the character should be uppercase if it's a
letter. When invoking the item, the user can type the letter in either
uppercase or lowercase. For example, if you specify 'Copy/C', the Copy
command can be invoked by holding down the Command key and typing
either C or c.

An application that receives a key down event with the Command key held
down can call the Menu Manager with the typed character and receive the
menu ID and item number of the item associated with that character.

11/1/83 Espinosa-Rose /MKGR/MENUS.2

CREATING A MENU 13

Disabled Items

All items in a menu are usually choosable. There will be times when
you don't want an item to be choosable, either initially or for the
duration of your program (perhaps due to the program's incomplete
state). The meta-character that disables an item is the left
parenthesis"(". A disabled item cannot be chosen; it appears dimmed
in the menu and is not highlighted when the cursor moves over it.

Blank items in a menu should always be disabled, as should any items
used to separate groups of items. For example, the call

AppendMenu(thisMenu,'Undo;(;Word Wrap');

adds two enabled menu items, Undo and Word Wrap, with a disabled blank
item between them. Note that one or more spaces are required to
specify a blank item.

You can change the enabled or disabled state of a menu item with the
Disableitem and Enableitem procedures.

USING THE MENU MANAGER

This section discusses how the Menu Manager routines fit into the
general flow of an application program and gives you an idea of which
routines you'll need to use. The routines themselves are described in
detail in the next section.

To use the Menu Manager, you must have previously called lnitGraf to
initialize QuickDraw, lnitFonts to initialize the Font Manager, and
lnitWindows to initialize the Window Manager. The first Menu Manager
routine to call is the initialization procedure lnitHenus.

Your application can set up the menus it needs in any number of ways:

- Allocate the menus with NewMenu, fill them with items using
AppendHenu, and place them in the menu bar using lnsertMenu.

- Read the menus individually from a resource file using GetHenu,
and place them in the menu bar using lnsertMenu.

- Read an entire prepared menu list from a resource file with
GetNewMBar, and place it in the menu bar with SetMenuBar.

- Allocate a menu with HewMenu, fill it with items using AddlesMenu
to get the names of all available resources of a given type, and
place the menu in the menu bar using lnsertMenu.

You can use AddResMenu or lnsertResMenu to add items from resource
files to any menu, regardless of how you created the menu or whether it
already contains any items.

11/1/83 Espinosa-Rose /HMGR/MENUS.2

14 Menu Manager Programmer's Guide

If you call NewMenu to allocate a menu, it will store a handle to the
standard menu definition procedure in the window record; so if you want
the menu to be one of your own design, you must replace that handle
with a handle to your own menu definition procedure. For more
information, see "Defining Your Own Menus".

At any time you can change or examine the appearance of an individual
menu item with the Setitem and Getitem procedures (and similar
procedures to set or get the item's icon, style, check mark, and so
on). You can also change the number and order of menus in the menu
list with InsertMenu and DeleteMenu, or change the entire menu list
with ClearMenuBar, GetNewMBar, GetHenuBar, and SetMenuBar.

When your application receives a mouse down event, and the Window
Manager's FindWindow function returns the predefined constant
inMenuBar, your application should call the Menu Manager's MenuSelect
function, supplying it with the point where the mouse button was
pressed. MenuSelect will pull down the appropriate menu, and retain
control-tracking the mouse, highlighting menu items, and pulling down
other menus--until the user releases the mouse button. MenuSelect
returns a long integer to the application: the high-order word
contains the menu ID of the menu that was chosen, and the low-order
word contains the.!!!!!!!!. item number of the item that was chosen. The
menu item number is the index, starting from 1, of the item in the
menu. The entire long integer is G if no item was chosen.

- If the long integer is~. your application should just continue to
poll for further events.

- If the long integer is nonzero, the application should take the
appropriate action for when the menu item specified by the
low-order word is chosen from the menu whose ID is in the
high-order word. Only after the action is completely finished
(after all dialogs, alerts, or screen actions have been taken care
of) should your application call HiliteKenu(f) to remove the
highlighting from the menu bar, signaling the completion of the
action.

lCeyboard equivalents are handled in much the same manner. When your
application receives a key down event with the Command key held down,
it should call the MenulCey function, supplying it with the character
that was typed. MenulCey will return a long integer with the same
format as that of MenuSelect, and the application can handle the long
integer in the manner described above.

(hand)
You can use the Toolbox Utility routines LoWord and
HiWord to extract the high-order and low-order words of a
given long integer, as described in the Toolbox Utilities
manual.

When you no longer need a menu, call DisposeMenu if you allocated it
with NewMenu, or call the Resource Manager procedure ReleaaeResource if
you used GetMenu.

11/1/83 Espinosa-Rose /MMGR/MENUS.R

MENU MANAGER ROUTINES 15

MENU MANAGER ROUTINES

This section describes all the Menu Manager procedures and functions.
They're presented in their Pascal form; for information on using them
from assembly language, see "Using the Toolbox from Assembly Language"
*** doesn't exist, but see "Using QuickDraw from Assembly Language" in
the QuickDraw manual***·

Initialization and Allocation

PROCEDURE InitMenus;

InitMenus initializes system globals used by the Menu Manager, sets up
its internal data structures, clears the menu list, and draws the
(empty) menu bar. Call it once before all other Menu Manager routines.
An application should never have to call this procedure more than once;
to start afresh with all new menus, use ClearMenuBar.

(hand)
InitWindows, which you previously called to initialize
the Window Manager, will already have drawn the menu bar;
InitHenus also draws the menu bar just in case it does
happen to be called in mid-application.

FUNCTION NewMenu (menuID: INTEGER; menuTitle: Str255) : MenuHandle;

NewMenu allocates space for a new menu with the given menu ID and
title, and returns a handle to it. The new menu (which is created
empty) is not installed in the menu list. To use this menu, you must
first call AppendMenu or MdResMenu to fill it with items, InsertMenu
to place it in the menu list, and DrawMenuBar to update the menu bar to
include the new title.

Application menus should always have positive menu IDs. Negative menu
IDs are reserved for menus belonging to desk accessories. No menu
should ever have a menu ID of G.

To set up the title of the Apple menu·of desk accessory names, you can
use the predefined constant appleSymbol (equal to 2G, the ASCII code of
the Apple symbol). For example, you can declare the string variable

VAR myTitle: STRING[l];

and do the following:

myTitle :• ' ';
myTitle[l) :• CHll(appleSymbol);

11/1/83 Espinosa-Rose /KHGR/MENUS.R

16 Menu Manager Programmer's Guide

(hand}
Once a menu is created with NewHenu, the only way to
deallocate the memory it occupies is by calling
DisposeHenu.

FUNCTION GetHenu (menuID: INTEGER} : MenuHandle;

GetHenu returns a menu handle for the menu having the given resource
ID. If the menu isn't already in memory, GetHenu calls the Resource
Manager to read it from the resource file into a menu record in memory.
It stores the handle to the menu definition procedure in the menu
record, reading the procedure from the resource file into memory if
necessary. To use this menu, you must call InsertMenu to place it in
the menu list and DrawHenuBar to update the menu bar to include the new
title.

(hand}
To deallocate the memory occupied by a menu that you read
from a resource file with GetHenu, use the Resource
Manager procedure ReleaseResource.

Assembly-language~: The macro you invoke to call GetHenu
from assembly language is named GetRMenu.

PROCEDURE DisposeMenu (menu: MenuHandle};

Call DisposeMenu to deallocate the memory occupied by a menu that you
allocated with NewMenu. (For menus read from a resource file with
GetMenu, use the Resource Manager procedure ReleaseResource instead.)
This is useful if you've created temporary menus that you no longer
need.

(eye}
Make sure you remove the menu from the menu list (with
DeleteMenu} before disposing of it. Also be careful not
to use the menu handle after disposing of the menu.

Assembly-language~: The macro you invoke to call
DisposeMenu from assembly language is named _DisposMenu.

11/1/83 Espinosa-Rose /MMGR/MENUS.R

MENU MANAGER ROUTINES 17

PROCEDURE AppendHenu (menu: MenuHandle; data: Str255);

AppendMenu adds an item or items to the end of the given menu, which
must previously have been allocated by NewHenu or read from a resource
file by GetMenu. The data string consists of the text of the menu
item; it may be blank but should not be the null string. As described
in the section "Creating a Menu", the following meta-characters may be
embedded in the data string:

Meta-character
; or Return ...

<

I

(

Usage
Separates multiple items
Followed by an icon number, adds that icon to
the item
Followed by a character, marks the item with
that character
Followed by B, I, U, O, or S, sets the character
style of the item
Followed by a character, associates a keyboard
equivalent with the item
Disables the item

Once items have been appended to a menu, they cannot be removed or
rearranged. AppendMenu works properly whether or not the menu is in
the menu list.

PROCEDURE AddResHenu (menu: MenuHandle; theType: llesType);

AddResMenu searches all open resource files for resources of type
theType and appends the names of all resources it finds to the given
menu. Each resource name appears in the menu as an enabled item,
without an icon or mark, and in the normal character style. The
standard Menu Manager calls can be used to get the name or change its
appearance, as described below under "Controlling Items' Appearance".

(hand)
So that you can have resources of the given type that
won't appear in the menu, AddResMenu does not append any
resource names that begin with a period(".").

Use this procedure to fill a menu with the names of all available fonts
or desk accessories. For example, if you declare a variable as

VAR fontHenu: MenuHandle;

you can set up a menu containing all font names as follows:

fontMenu :• NewMenu(5,'Fonts');
AddResMenu(fontHenu,'FONT');

11/1/83 Espinosa-Rose /HMGR/MENUS.R

18 Menu Manager Programmer's Guide

PROCEDURE InsertResHenu (menu: MenuHandle; theType: ResType; afterltem:
INTEGER);

lnsertResMenu is the same as AddResMenu (above) except that it inserts
the resource names in the menu where specified by the afterltem
parameter: if afterltem is f, the names are inserted before the first
menu item; if it's the item number of an item in the menu, they're
inserted after that item; if it's equal to or greater than the last
item number, they're appended to the menu as by AddResMenu.

(hand)
InsertResMenu inserts the names in the reverse of the
order that AddResHenu appends them. For consistency in
the appearance of menus between applications, use
AddResMenu instead of InsertResMenu if possible.

Forming the Menu Bar

PROCEDURE InsertMenu (menu: MenuHandle; beforelD: INTEGER);

lnsertMenu inserts a menu into the menu list before the menu whose menu
ID equals beforeID. If beforeID is f (or isn't the ID of any menu in
the menu list), the new menu is added after all others. If the menu is
already in the menu list, InsertMenu does nothing. Be sure to call
DrawMenuBar to update the menu bar.

PROCEDURE DrawMenuBar;

DrawMenuBar redraws the menu bar according to the menu list,
incorporating any changes since the last call to DrawMenuBar. Any
highlighted menu title remains highlighted when drawn by DrawHenuBar.
This procedure should always be called after a sequence of InsertMenu
or DeleteMenu calls, and after ClearMenuBar, SetMenuBar, or any other
routine that changes the menu list.

PROCEDURE DeleteMenu (menulD: INTEGER);

DeleteMenu deletes a menu from the menu list. If there's no menu with
the given menu ID in the menu list, DeleteMenu has no effect. Be sure
to call DrawMenuBar to update the menu bar; the menu titles following
the deleted menu will move over to fill the vacancy.

(hand)
DeleteMenu simply removes the menu from the list of
currently available menus; it doesn't deallocate the menu
data structure.

11/1/83 Espinosa-Rose /MMGR/MENUS.R

MENU MANAGER ROUTINES 19

PROCEDURE ClearHenuBar;

Call ClearMenuBar to remove all menus from the menu list when you want
to start afresh with all new menus. Be sure to call DrawMenuBar to
update the menu bar.

(hand)
ClearMenuBar, like DeleteMenu, doesn't deallocate the
menu data structures; it merely removes them from the
menu list.

You don't have to call ClearMenuBar at the beginning of your program,
because lnitMenus clears the menu list for you.

FUNCTION GetNewMBar (menuBarlD: INTEGER) : Handle;

GetNewHBar creates a menu list as defined by the menu bar resource
having the given resource ID, and returns a handle to it. If the
resource isn't already in memory, GetNewMBar reads it into memory from
the resource file. It calls GetHenu to get each of the individual
menus.

To make the menu list the current menu list, call SetMenuBar. To
dispose of the memory occupied by the menu list, use the Memory Manager
procedure DisposHandle.

(eye)
You don't have to know the individual menu IDs to use
GetNewMBar, but that doesn't mean you don't have to know
them at all: to do anything further with a particular
menu, you have to know its ID or its handle (which you
can get by passing the ID to GetMHandle. as described
below under "Miscellaneous Utilities").

FUNCTION GetMenuBar : Handle;

GetHenuBar creates a copy of the current menu list and returns a handle
to the copy. You can then add or remove menus from the menu list (with
InsertMenu, DeleteMenu, or ClearHenukr), and later restore the saved
menu list with SetHenuBar. To dispose of the memory occupied by the
saved menu list, use the Memory Manager procedure DisposHandle.

(eye)
GetMenuBar doesn't copy the menus themselves, only a list
of their handles. Do not dispose of any menus that might
be in a saved menu listl

PROCEDURE SetHenuBar (menuBar: Bandle);

Given a handle to a menu list, SetMenuBar makes it the current menu
list. You can use this procedure to restore a menu list previously

11/1/83 Espinosa-Rose /HMGR/KENUS.R

20 Menu Manager Programmer's Guide

saved by GetHenuBar, or pass it a handle returned by GetNewMBar. Be
sure to call DrawMenuBar to update the menu bar.

Choosing From a Menu

FUNCTION MenuSelect (startPt: Point) : Longint;

When a mouse down event occurs in the menu bar, you should call
MenuSelect with startPt (in global coordinates) equal to the point
where the mouse button was pressed. HenuSelect tracks the mouse,
pulling down menus as needed and highlighting menu items under the
cursor. When the mouse button is released over an enabled item in an
application menu, MenuSelect returns a long integer whose high-order
word is the menu ID of the menu, and whose low-order word is the menu
item number for the item chosen (see Figure 3). It leaves the selected
menu title highlighted. After performing the chosen task, your
application should call HiliteMenu(,) to remove the highlighting from
the menu title.

1 25

• File
1

menu 2

item 3
runbers 4

s

menu IDs

7 10
0p1tons

Cu1
COP':f
Paste

.... u .. ,n

U fl rt O :11: Ur,
mousePt is where

6 ~ord Wrap 1he ClnOI' is pointing

MenUSelect(mousePt) or Meru<ey('Z') retll'l'lS:

7 4

hi"1 word low word

Figure 3. MenuSelect and MenuKey

HenuSelect returns, if no choice is made; this includes the case where
the mouse button is released over a disabled menu item (such as the
blank item in Figure 3) or over any menu title.

If the mouse button is released over an enabled item in a •nu
belonging to a desk accessory, HenuSelect passes the menu ID and item
number to the Desk Manager procedure SystemMenu for processing and
returns f to your application.

11/1/83 Espinosa-Rose /MHGR/MENUS.R

MENU MANAGER ROUTINES 21

Assembly-language~: If the system global mBarEnable is
nonzero, HenuSelect knows that every menu currently in the menu
bar belongs to a desk accessory. (See the Desk Manager manual
for more information.) The system global menuHook normally
contains f; you can store in it the address of a routine having
no parameters, and HenuSelect will call that routine repeatedly
while the mouse button is down.

FUNCTION Menu'Key (ch: CHAR) : Longlnt;

MenuKey maps the given character to the associated menu and item for
that character. When you get a key down event with the Command key
held down, call MenuKey with the character that was typed (which can be
found in the low-order byte of the event message). HenulCey highlights
the appropriate menu title and returns a long integer just as
HenuSelect does. This long integer contains the menu ID in its
high-order word and the menu item number in its low-order word (see
Figure 3 above). After performing the chosen task, your application
should call HiliteMenu(f) to remove the highlighting from the menu
title.

MenuKey returns f if the given character isn't associated with any
enabled menu item currently in the menu list.

If the given character invokes a menu item in a menu belonging to a
desk accessory, MenuKey (like MenuSelect) passes the menu ID and item
number to the Desk Manager procedure SystemMenu for processing and
returns f to your application.

(hand)
There should never be more than one item in the menu list
with the same keyboard equivalent, but if there is,
MenuKey returns the first such item encountered (scanning
the menus from left to right and their items from top to
bottom).

PROCEDURE HiliteMenu (menuID: INTEGER.);

HiliteHenu highlights the title of the given menu, or does nothing if
the title is already highlighted. Since only one menu title can be
highlighted at a time, it unhighlights any previously highlighted menu
title. If menulD is I (or isn't the ID of any menu in the menu list),
HiliteHenu simply unhighlights whichever menu title is highlighted.

After MenuSelect or MenuXey, your application should perform the chosen
task and then call HiliteMenu(f) to unhighlight the chosen menu title.

11/1/83 Espinosa-Rose /HMGR/MENUS.R

22 Menu Manager Programmer's Guide

Assembly-language,!!!!!!.= The system global theHenu contains the
menu ID of the currently highlighted menu.

Controlling Items' Appearance

PROCEDURE Setltem (menu: MenuHandle; item: INTEGER; itemString:
Str255);

Setltem changes the text of the given menu item to itemString. It
doesn't recognize the meta-characters used in AppendMenu; if you
include them in itemString, they will appear in the text of the menu
item. The attributes already in effect for this item--ita character
style, icon, and so on-remain in effect. ItemString may be blank but
should not be the null string.

Use Setltem to flip between two alternative menu items-for example, to
change "Show Clipboard" to "Hide Clipboard" when the Clipboard is
already showing.

(hand)
We heartily recommend against capricious changing of menu
items.

PROCEDURE Getltem (menu: KenuHandle; item: INTEGER; VAil itemString:
Str255);

Getltem returns the text of the given menu item in itemString. It
doesn't place any meta-characters in the string. This procedure is
useful for getting the name of a menu item that was installed with
AddResMenu or lnsertlesMenu.

PROCEDURE Disableltem (menu: MenuHandle; item: INTEGER);

Given a menu item number in the item parameter, Diaableltem disables
that menu item; given, in the item parameter, it disables the entire
menu.

Disabled menu items appear dimmed and are not highlighted when the
cursor moves over them. HenuSelect and Henultey return f if the user
attempts to invoke a disabled item. Use Disableltem to disable all
menu choices that aren't appropriate at a given time (such as a Cut
command when there's no text selection).

All menu items are initially enabled unless you specify otherwise (such
as by using the"(" meta-character in a call to AppendHenu).

11/1/83 Espinosa-Rose /HMGR/MENUS.R

MENU MANAGER ROUTINES 23

Every menu item in a disabled menu is dimed. 'lbe menu title is also
dimmed, but you must call DrawMenuBar to update the menu bar to ahow
the dimmed title.

PROCEDURE Enableltem (menu: MenuHandle; item: INTEGER);

Given a menu item number in the item parameter, Enableltem enables the
item; given~ in the item parameter, it enables the entire menu. (The
item or menu may have been disabled with the Disableltem procedure, or
the item may have been disabled with the"(" meta-character in the
AppendHenu string.) The item or menu title will no longer appear
dimmed and can be chosen like any other enabled item or menu.

PROCEDURE Checkltem (menu: MenuHandle; item: INTEGER; checked:
BOOLEAN);

Checkltem places or removes a check mark at the left of the given menu
item. After you call Checkltem with checked•nUE, a check urk will
appear each subsequent time the menu is pulled down. Calling Checkitem
with checked•FALSE removes the check mark from the menu item (or, if
it's marked with a different character, removes that mark).

Menu items are initially unmarked unless you specify otherwise (such as
with the "I" meta-character in a call to AppendMenu).

PROCEDURE Setltemlcon (menu: MenuHandle; item: INTEGER; icon: INTEGER);

Setltemlcon associates the given menu item with an icon. It sets the
item's icon number to the given value (an integer from 1 to 255). The
Menu Manager adds 256 to the icon number to get the icon's resource ID,
which it passes to the Resource Manager to get the corresponding icon.

(eye)
If you deal directly with the Resource Manager to read or
store menu icons, be sure to adjust your icon numbers
accordingly.

Menu ite11& initially have no icons unless you specify otherwise (auch
as with the"'"'" meta-character in a call to AppendKenu).

Assembly-language~: The macro you invoke to call
Setltemicon from assembly language is named _Setltalcon.

11/1/83 Espinosa-Rose /HKGll/MINUS. lt

24 Menu Manager Programer's Guide

PROCEDURE Getitemicon (menu: MenuHandle; item: INTEGER; VAR icon:
lNTEGElt),

Getitemlcon returns the icon number associated with the given menu
item, as an integer from 1 to 255, ore if the item has not been
associated with an icon. The icon number is 256 less than the icon's
resource ID.

Assembly-language~: The macro you invoke to call
Getltemlcon from assembly language is named Getitmlcon.

PROCEDUllE SetitemStyle (menu: MenuHandle; item: INTEGER; chStyle:
Style);

SetltemStyle changes the character style of the given menu item to
chStyle. For example:

SetltemStyle(thisMenu,l,[bold,italic]); (bold and italic}

Menu items are initially in the normal character style unless you
specify otherwise (such as with the"<" meta-character in a call to
AppendMenu).

Assembly-language~: The macro you invoke to call
SetltemStyle from assembly language is named _SetltmStyle.

PROCEDURE GetltemStyle (menu: KenuHandle; item: INTEGER; VAR chStyle:
Style);

GetltemStyle returns the character style of the given menu item in
chStyle.

Assembly-language l!ill,.= The macro you invoke to call
GetltemStyle from assembly language is named _GetitmStyle.

11/1/83 Espinosa-Rose /MMGR/MENUS. R

MENU MANAGER ROUTINES 25

PROCEDURE SetltemMarlt (menu: MenuHandle; item: INTEGER; markChar:
CHAR);

SetitemMark marks the given menu item in a more general unner than
Checkitem. It allows you to place any character in the system font,
not just the check mark, to the left of the item. You can specify some
useful values for the markChar parameter with the following predefined
constants:

CONST checkHark • 18;
appleSymbol • 2G;
noHark • ,,

{check mark}
{Apple symbol}
{nothing, to remove a mark}

Assembly-language~: The macro you invoke to call
SetltemHark from assembly language is named _SetltmHark.

PROCEDURE GetltemHark (menu: HenuHandle; item: INTEGER; VAR markChar:
CHAR);

GetltemHark returns in markChar whatever character the given menu item
is marked with, or the NUL character (ASCII code G) if no mark is
present.

Assembly-language~: The macro you invoke to call
GetitemHark from assembly language is named _GetitmHark.

Miscellaneous Utilities

PROCEDURE SetMenuFlash (menu: HenuHandle; count: INTEGER);

When the mouse button is released over an enabled menu item, the item
blinks briefly to confirm the choice. Normally your application need
not be concerned about the duration of the blinking, but for special
situations SetMenuFlaah allows you to control the duration for all
items in the given menu. Calling SetMenuFlaah with a count off
disables blinking; calling it with a count of 2 (the default value)
will cause items to blink for about f.l second. A count of 3 ia
appropriate for naive user applications. Values greater than 3 can be
annoyingly slow.

11/1/83 Espinosa-Rose /HHG1l/HENUS. R

26 Menu Manager Programmer's Guide

Assembly-language .m?!!.: The macro you invoke to call
SetMenuFlash from assembly language is named _SetKFlash. The
current count is stored in the system global menuFlash.

(hand)
Items in both standard and nonstandard menus blink when
chosen. The appearance of the blinking for a nonstandard
menu depends on the menu definition procedure. as
described under "Defining Your Own Menus".

PROCEDURE CalcMenuSize (menu: MenuHandle);

You can use CalcMenuSize to recalculate the horizontal and vertical
dimensions of a menu whose contents have been changed (and store them
in the appropriate fields of the menu record). CalcMenuSize is called
automatically after every AppendMenu. Setitem. Setitemicon. and
SetitemStyle call.

FUNCTION CountMltems (menu: MenuHandle) : INTEGER;

CountMltems returns the number of menu items in the given menu.

FUNCTION GetMHandle (menulD: INTEGER) : MenuHandle;

Given the menu ID of a menu currently installed in the menu list.
GetMHandle returns a handle to that menu; given any other menu ID. it
returns NIL.

PROCEDURE FlashKenular (menuID: INTEGER);

If menulD is I (or isn't the ID of any menu in the menu list).
FlashMenuBar inverts the entire menu bar; otherwise. it inverts the
title of the given menu.

DEFINING YOUll OWN MENUS

Normally when you create a •nu you get the standard type of Macintosh
menu. as described in this unual. You my, however. want to define
your own type of menu, such as one with more graphics or perhaps.a
nonlinear text arrangement. QuickDraw and the Menu Manaaer •ke it
possible for you to do this.

To define your own type of menu, you must write a menu definition
procedure. The menu definition procedure defines the menu by

11/1/83 Rose /HHGll/MENUS. D

DEFINING YOUR OWN MENUS 27

performing basic operations such as drawing the menu. When the Menu
Manager needs to perform one of these operations, it calla the •nu
definition procedure with a parameter that identifies the operation,
and the menu definition procedure in tum takes the appropriate action.

Usually you'll store the menu definition procedure aa a resource in a
resource file. If you won't be sharing it with other applications, you
may want to include it with your application code instead.

When you create a menu with NewMenu, it stores a handle to the standard
menu definition procedure in the menu record's menuProc field; you must
replace this with a handle to your own menu definition procedure. If
your definition procedure is in a resource file, you get the handle by
calling the Resource Manager to read it from the resource file into
memory.

Instead of creating menus with NewKenu, your application may read the
menus from a resource file with GetMenu (or GetNewKBar, which calls
GetMenu). A menu in a resource file contains the resource ID of its
menu definition procedure. If you store the resource ID of your own
menu definition procedure in a menu in a resource file, GetMenu will
take care of reading the procedure into memory and storing a handle to
it in the menuProc field of the menu record.

The Menu Definition Procedure

The menu definition procedure may be written in Pascal or assembly
languagei the only requirement is that its entry point be at the
beginning. You may choose any name you wish for the procedure. Here's
how you would declare one named MyMenu:

PROCEDURE MyHenu (message: INTEGER; menu: MenuHandle; menuRect:
lect; hitPt: Point; VAil vhichltem: INTEGER.);

The message parameter identifies the operation to be perfor.d. Its
value will be one of the following predefined constants:

CONST mDrawMsg • f;
lllCbooaeMag • l;

aSizeMag • 2;

(draw the aenu)
{tell which menu item was chosen and)
{ highlight it)
{calculate the menu's dimensions)

The menu parameter indicates the menu that the operation will affect,
and menuRect la the rectangle (in global coordinate•) in which the aenu
is located.

The message IIDrawMsg tells the menu definition procedure to draw the
menu inside menuRect; the grafPort will be set up properly for thia.
(For details on drawing, aee the QuickDraw unual.) The atandard menu
definition procedure figures out how to draw the menu items by looking
in the •nu record at the data that defines them; this data ia
described in detail under "Formats of laaourcea for Menus" below. For
•nus of your own definition, you may aet up the data defining the •nu

11/1/83 Rose /KHGR/MENUS. D

28 Menu Manager Programmer's Guide

items any way you like, or even omit it altogether (in which case all
the information necessary to draw the menu would be in the menu
definition procedure itself).

(eye)
Be sure that any text in the menu is drawn in the system
font.

When the menu definition procedure receives the message mChooseMsg, the
hitPt parameter is the point (in global coordinates) where the mouse
button was pressed, and the whichitem parameter is the item number of
the last item that was chosen from this menu. The procedure should
test whether hitPt is inside menulect and respond accordingly:

- If hitPt is inside menuRect, unhighlight whichitem, highlight the
newly chosen item, and return the item number of that item in
which Item.

- If hitPt isn't inside menuRect, unhighlight whichitem and return ,.
(hand)

When the Menu Manager needs to make a chosen menu item
blink, it repeatedly calls the menu definition procedure
with the message mChooseMsg, causing the item to be
alternately highlighted and unhighlighted.

Finally, the message mSizeMsg tells the menu definition procedure to
calculate the horizontal and vertical dimensions of the menu and store
them in the menuWidth and menuHeight fields of the menu record.

FORMATS OF RESOURCES FOR MENUS

The resource type for a menu definition procedure is 'KDEF'. The
standard menu definition procedure has a resource ID of I, so your own
such procedures must have resource IDs other than f. The resource data
is simply the assembled code of the procedure.

Icons in menus must be stored in a resource file under the resource
type 'ICON' with resource IDs from 257 to 511. Strings in resource
files have the resource type 'STR '-but note that if you follow the
recommendation of etoring entire menus in resource files, you'll never
have to store the strings they contain separately.

The formats of menus and menu bars in resource files are given below.

11/1/83 llose /MKGR/MENUS.D

FORMATS OF aESOUllCES POR MENUS 29

Menus in a lesource File

The resource type for a menu is 'MENU'. The resource ID aust be
negative for menus belonging to desk accessories and positive for other
menus; it should never be G. 'lbe resource data for a menu has the
format shown below. Once read into memory, this data is stored in a
menu record (described earlier in the "Menu Records" section).

Number of bytes
2 bytes
2 bytes
2 bytes
2 bytes
2 bytes
4 bytes
l byte
n bytes
For each menu

1 byte
m bytes
1 byte
1 byte
1 byte
1 byte

l byte

Contents
Menu ID (resource ID of this menu)
f; placeholder for menu width
G; placeholder for menu height
Resource ID of aenu definition procedure
G (see comment below)
Same as enableFlags field of aenu record
Length of following title in bytes
Characters of menu title

item:
Length of following text in bytes
Text of menu item
Icon number, or G if no icon
Keyboard equivalent, or G if none
Character marking menu item, or G if none
Character style of item's text
f, indicating end of menu items

The four bytes beginning with the resource ID of the menu definition
procedure serve as a placeholder for the handle to the procedure: When
GetMenu is called to read the menu from the resource file, it also
reads in the menu definition procedure if necessary, and replaces these
four bytes with a handle to the procedure. 'lbe resource ID of the
standard menu definition procedure is:

CONST textMenuProc • G;

The resource data for a nonstandard menu can define menu items in any
vay whatsoever, or not at all, depending on the requirements of its
menu definition procedure. If the appearance of the items is basically
the same as the standard, the resource data might be as shown above,
but in fact everything following "For· each menu item" can have any
desired format or can be omitted altogether. Similarly, all bita.
beyond the first of the enableFlags array may be set and used in any
way desired by the menu definition procedure; the first bit applies to
the entire menu and must reflect whether it's enabled or disabled.

If your menu definition procedure does use the enableFlaga array,
menus of that type may contain no more than 31 items (1 per available
bit); otherwise, the number of items they uy contain Ja lillited only
by the aaount of rooa on the •creen.

(hand)
See "Using the Toolbox from Aaaembly Language" for the
exact format of the character style byte. *** (Currently

11/1/83 Rose /MHGR/HINUS.D

30 Menu Manager Programmer's Guide

(eye)

it's in "Using QuickDraw from Assembly Language" in the
QuickDraw manual.)***

Menus in resource files must not be purgeable.

Menu Bars in a 'Resource File

The resource type for the contents of a menu bar is 'HBAR' and the
resource data has the following format:

Number of bytes Contents
2 bytes Number of menus
For each menu:

2 bytes Resource ID of menu

11/1/83 llose /HHGR/HENUS.D

'

SUHMAllY OP THE MENU MANAGER 31

SUMMAllY OF THE MENU MANAGER

Constants

CONST noHark • f;
checkMark • 18;
applesymbol • 2G;

{check mark}
{Apple symbol}

{draw the menu} mDrawMsg • f;
mChooseMsg • l;
mSizeMsg • 2;

{tell which item was chosen and highlight it}
{calculate the menu'• dimensions}

textMenuProc • f;

Data Structures

TYPE MenuPtr • ·Menulnfo;
HenuHandle • -itenuPtr;
Menulnfo

Routines

• RECORD
menulD:
menuWidth:
menuHeight:
menuProc:
enableFlags:
menuData:

END;

Initialization and Allocation

INTEGER;
INTEGER;
INTEGER;
Randle;
PACKED ARRAY
Str255

[f •• 31) OF BOOLEAN;

PROCEDURE InitMenua;
FUNCTION NewMenu (•nulD: INTEGER; aenuTitle: Str255) :

FUNCTION GetMenu
PROCEDURE DisposeMenu
PROCEDURE AppendHenu
PROCEDURE AddResKenu
PllOCEDUllE lnsertResMenu

Forming the Menu Bar

MenuHandle;
(menulD: INTEGER) : HenuHandle;
(menu: MenuHandle);
(menu: MenuHandle; data: Str255);
(menu: HenuHandle; theType: lesType);
(menu: MenuHandle; theType: lesType; afterltem:
INTEGER);

PROCEDURE InsertMenu (menu: MenuHandle; beforelD: lNTEGEll);
PROCEDURE DrawMenuBar;
PROCEDURE DeleteMenu (•nuID: INTEGER);

11/1/83 Espinosa-Rose /NKGll/MENUS.S

32 Menu Manager Programmer's Guide

PROCEDURE ClearMenuBar;
FUNCTION GetNewMBar
FUNCTION GetMenuBar
PROCEDURE SetMenuBar

(menuBarID: INTEGER) : Handle;
Handle;

(menuBar: Handle);

Choosing from a Menu

FUNCTION MenuSelect (startPt: Point) : Longint;
FUNCTION MenuKey (ch: CHAR) : Longint;
PROCEDURE RiliteMenu (menuID: INTEGER);

Controlling Items' Appearance

PROCEDURE Setitem (menu: MenuHandle; item: INTEGER;
Str255);

PROCEDURE Getitem (menu: MenuHandle; item: INTEGER;
Str255);

PROCEDURE Disableitem (menu: MenuHandle; item: INTEGER);
PROCEDURE Enableltem (menu: MenuHandle; item: lNTEGEll);

itemString:

VAR itemString:

PROCEDURE Checkltem (menu: MenuHandle; item: INTEGER; checked:

PROCEDURE Setltemlcon
PROCEDURE Getltemicon

PROCEDURE SetltemStyle
PROCEDURE GetltemStyle

PROCEDURE SetltemMark
PROCEDURE GetltemMark

Miscellaneous Utilities

PROCEDURE SetMenuFlash
PROCEDURE CalcMenuSize
FUNCTION CountMitema
FUNCTION GetHHandle
PROCEDURE FlashMenuBar

11/1/83 Espinosa-Rose

BOOLEAN);
(menu: MenuHandle; item: INTEGER; icon: INTEGER);
{menu: MenuRandle; item& INTEGER.; VAR. icon:

INTEGER);
(menu: MenuHandle; item: INTEGER; chStyle: Style) ;
{menu: MenuRandle; item: INTEGER; VAR chStyle:

Style);
(menu: MenuHandle; item: INTEGER; markChar: CHAR);
(menu: MenuRandle; item: INTEGEll; VAR markChar:
CHAR);

(menu: MenuHandle; count: INTEGER);
(menu: MenuHandle);
(menu: MenuHandle): INTEGER;
(menuID: INTEGER) : HenuRandle;
(menuID: INTEGER);

/MMGR/MENUS.S

SUMMARY OF THE MENU MANAGER 33

Meta-Characters for AppendMenu

Meta-character
; or Return

(

..

<
I

Usage
Separates multiple items
Followed by an icon number, adds that icon to
the item
Followed by a character, marks the item with
that character
Followed by B, I, U, O, or S, sets the character
style of the item
Followed by a character, associates a keyboard
equivalent with the item
Disables the item ·

Menu Definition Procedure

PROCEDURE MyMenu (message: INTEGER.; menu: MenuHandle; aenRect: Rect;
.. ,·; hitPt:. Point; Vil whichltem: INTEGER);

~

. -· Assembly-Language Information

Constanta

noHark .EQU ' checkHark .EQU 18 ;check mark
apple Symbol .EQU 2" ;Apple symbol

mDrawMsg .EQU ' ;draw the menu
mChooaeMsg .EQU 1 ;tell which item was chosen and

; highlight it
mSizeMsg .EQU 2 ;calculate the menu's dimensions

Menu Record Data Structure

menuID
menuWidth
aenuHeight
aenuDefHandle
aenuEnable
aenuData
menu Bl It Size

Menu ID
Menu width
Menu height
Handle to menu definition procedure
Enable flags
Menu title followed by data defining the ite•
Length of all the above fields except aenuData

11/1/83.Jsplnc,aa-Roae /MMGll/KENUS.S

34 Menu Manager Programmer's Guide

Special Macro Names

Routine name
Dispose Menu
Getltemlcon
Get ltemMark
GetltemStyle
GetMenu
Setltemlcon
Set ltemMark
Set ItemStyle
Set Menu Flash

System Globals

Name
menuList
mBarEnable

menuHook

theMenu
menu Flash

Macro name
_DisposHenu
_Getltmlcon
_GetltaMark
_GetltmStyle
_GetlMenu
_Setltmlcon

SetitmMark
:SetltmStyle
_SetMFlash

Size
4 bytes
2 bytes

4 bytes

2 bytes
2 bytes

Contents
Handle to current menu list
Nonzero if •nu bar belongs to a desk
accessory
Hook for routine to be called during
MenuSelect
Menu ID of currently highlighted menu
Count for duration of aenu item blinking

11/1/83 Espinosa-Rose /MHGR/MENUS.S

GLOSSAllY 35

GLOSSARY

character style: A set of stylistic variations, such as bold, italic,
and underline. The empty set indicates normal text (no •tyliatic
variations).

dimmed: Drawn in gray rather than black.

disabled: A disabled menu item or menu is one that cannot be chosen;
the menu item or menu title appears dimmed.

icon: A 32-by-32 bit image that graphically represents an object,
concept, or message.

icon number: A digit from 1 to 9 to which the Menu Manager adds 256 to
get the resource ID of an icon associated with a menu item.

keyboard equivalent: A way of invoking a menu item from the keyboard,
by holding down the Command key and typing a character.

menu: A list of menu items that appears when the user points to and
presses a menu title in the menu bar. Dragging through the menu and
releasing over an enabled menu item chooses that item.

menu bar: The horizontal strip at the top of the Macintosh screen that
contains the menu titles of all menus in the menu list.

menu definition procedure: A procedure called by the Menu Manager when
it needs to perform basic operations on a particular type of menu, such
as drawing the menu.

menu ID: For menus defined in resource files, the resource ID of the
menu; for application menus, a positive number that you choose to
identify the menu.

aenu item: A choice in a menu, usually a command to the current
application; in a standard Macintosh menu, a line containing text and
possibly an icon.

menu item number: The index, starting from l, of a menu item in a
aenu.

aenu list: A list of menu handles for all menus in the menu bar, kept
internally by the Menu Manager.

•nu record: The internal representation of a aenu, where the Menu
Manager stores all the information it needs for its operationa on that
menu.

menu title: A word or phrase in the menu bar that designate• one aenu.

meta-character: One of the characters ; • I</ (or Return appearing
in the atring passed to the Menu Manager routine AppendKenu, to

11/1/83 Espinosa-Rose /NHGR/KENUS.G

36 Menu Manager Programmer's Guide

separate menu items or alter their appearance.

11/1/83 Espinosa-Rose /MMGR/MENUS.G

9-Marcb•83
Lil

The OS Event Manager

The Event Manager core routine• aanipulate event• on the •Y•tem
event queue. These con1i1t of function• auch a1 adding and retrieving events
fr= the 1y1tem event queue, polling for available nentl, and r•oving
events from the queue. The syst• queue 1• initialized to contain 30 22-byte
elements.

(ToolEventa contain the higher-level ToolBox event handling calla EventAvail
and GetNextEvent: the•• will be docuaented ••Mrately with other ToolBos
documentation, although aoae ToolEventa•defined event• are briefly covered
here. ToolEventl aak.ea calla to OSEventAvail and GetOSEvent, adding Activate
and Update eventa, and aupporta jouroaliq. Moat application prograa will
ju1t make call• to ToolEventa.)

Four routines are associated With the event manager: PoatEvent, OSEventAvail,
GetOSEvent, and FluahEventl. Poat Event uy be called from an interrupt
or c011pletion routine; all other routines in the event aanager au1t be called
from the uin thread of execution. Additionally, the eyatea event aaak aay
be read and set via the OS routines GetSysParaa and SetSyaPara.

The Event Manager unages ita own private buffer to get etorage for the event
queueing elements. It does this because PostEvent run• at interrupt level and
thus caunot call the standard storage allocater.

Events

The Macintosh operating aystea uaea the metaphor of an ·event· to report
to uaer programs the occurance of keyboard keypre1aes, mou1e button atate
changes, and other relatively alov and irregular thing• which the system
detects and the uaer program is intereated in. Faster input/output, auch
a1 receipt of a character on one of the aerial port, 11 handled via the
·110 driver· model in the 1/0 and File aubsyateaa.

Event Ma1k.1 Evant Number

Events are poated and aelected aubject to event aaau; au event uak ia a vord•
long bitmap of all posaibl• wenta: a 1 in the bit position of an went enables
that event. Poaaible event• by event number, bit poaition in event uak,
and nae are:

0
l
2
3
4
s
6
7

$0001
$0002
$0004
$0008
$0010
$0020
$0040
$0080

Null Event
Mouae button down
Moue button up xa, down
ia, up
Auto-a,
Update event
Diak lnaerted

5-1

5-2

8
9

10
11
12
13
14
15

$0100
$0200
$0400
$0800
$1000
$2000
$4000
$8000

Activate/Deactivate event
Abort event
Network. event
10 Driver event
application defined
application defined
application defined
application defined

Event Queue Element, Event Record

The basic data 1tructure for event• 11 a 22-~e buffer called an EVENT QUEUE
ELEMENT, ia which event• are buffered by the Event Manager. Events are
COIIJlunicated to uaer1 via EVENT llECORDS, which are 1tructured like event queue
elementa, ainu• the 11.s•byte queue link and type f1eld1. The SYSTEM EVENT
BUFFER has room enough for 30 event queue elements.

Event Queue
(0)
(4)
(6)

Elment:
Queue
Queue
Event

link to next elment, zero for la1t element (32-bit)
type field, 1et to $0004 (16•bit)
Record (16-byte)

Event Record:
(0)
(2)
(6)

Event Number (16-bit)
Event•defined me1aage (32•bit)
TlCICS value when event occurred (32-bit) (TICKS 11 a 32-bit

variable which is incremented every l/60 second)
(10)
(14)

OS)

Houae position when event occurred (32-bit)
Meta•key flags (8•bit) as follow& (bit•l when key is down):

bit 7-4: undefined
3: option key

·· 2: alpha-lock key
~ l: 1hift key

•J.,-, 0: CCllll&and
Hou•• button 1tate (S•bit):

bit 7: dovn•O,up-1
6-0: undefined (toolevents uses bit• O•l to distinguish

activate from deactivate, and 1y1•appl change).

Event-defined ae11age1 are aa follows (including ToolEventa•defined events):

Null Event
Mouse button dowa
Mouse button up
Key down
Key up
Auto•key
Diak tnaerted
Update event·
Activate/Deactivate

none (0)
none (0)
none (0)
byteO•bytel-O,byte2•rav keycode,byte3•ASC11 code
byte0•bytel-O,byte2•raw keycode,bytel•ASCII code
byteO•bytel-O,byte2•rav keycode,byte3•ASCII code
drive number: 1 internal, 2 external
32-bit vindovPtr of window to be updated
32•bit vindowPtr

Events are generally poated a1 they occur and are aelf•explanatory;

)

some notable exception, are the null event and auto-key event,.
For thil di1cu11ion, events v:1.11 be cla11ified 1Dto 1taudard nent1 (l-4 and 7•8),
auto•key event•, and the null event. AD event 11 available
only when it 11 enabled by the uaer-1pec1fied evnt aaak.

The null event ii returned by OS!ventAvail and GetOSEvent when no 1tandard or
auto•key events are available. Null event• are alvay1 enabled
(i.e., generation of null event, 11 not 1ubject to a aaak), and they are never
posted into the 1y1tem event queue.

Auto•key events are po1ted into the event queue by OSEventAvail when there are
no standard event• available, there ii a repeatable key dovo, the repeat time
thre1hold1 have been aatiafied, and auto-key ev_.enta are enabled by both the
user-specified mask and the sy1tn event aa11t. 'l'he poated auto•key 11 returned
like a standard event (and dequeued if po1ted by a GetOSEvent call to
OSEventAvail).

The null event returns the current state of the aou1e
button, mouse position, keyboard meta-keys, and the current value of TICKS.

lloutine:

Arguments:

Function:

Poat Event

AO (input)
DO (input)
DO (output)

-- event number (l6•bit)
•• event message (32•bit)
•• result: 0-event poated, l-not poated

Thia routine adds an eleaent to the 1y1tn event queue. 'l'he
specified event number and event ae11age are logged for the
event. The current time, mouae position, state of coma.and
key, option key, 1h1ft key, alpha lock key, and 111ouae button
are also logged. AD event 11 only po1ted if enabled by the system
event aa1k; if not enabled, a reault code of l ii returned.
Thi• routine v:1.11 delete the first el•ent of the event queue
(the oldeat el•ent), if the queue 11 full, to make room for
the new event: this 1uarantee1 that an enabled event Will be
posted.

CalliDa aequence: MOVE.V IEvntNuaber,AO
KOVE.L fMe11age,DO

Poat!vent

Routine:

Arguaent1:

Function:

-
0S EventAvail

AO (input)
DO (iDput)
DO (output)

-- pointer to uaer event record (32-bit)
- aet of event• deaired (event uak)
•• 0-non-null event returned, •l-null event

returned

'Dli1 routine poll• for availability of certain type• of events.

5-3

5-4

If no event• are available, the null event is returned along With
a •l re•ult code in DO. Note that an event vhich is reported as
available uy di•appear (i.e., not be accessible by a later
call to GetOSEvent or OSEventAvail) in a busy environment due
to the event buffer wraparound performed by PostEvent.

Calling sequence: MOVE.W l!ventMaak,DO

lloutine:

Arguments:

Function:

LEA EventBuffer,AO
OSEventAvail -

GetOSEvent

AO (input)
DO (input)
DO (output)

-- pointer to waer event buffer (32-bit)
-- type of event de•ired (event mask)
-- 0-non•null event returned, •l-null event

returned

Thia routine returns the next event in the syatem event queue.
The returned event is dequeued, thereby freeing up the space
which holds that queue element (ucept for update events, vhich
are never queued up). If no events of the types enabled by the
mask are enabled, the null event 11 returned.

Calling sequence: MOVE.W f!ventMask,DO

!loutine:

Arguments:

Function:

LEA !ventBuffer,AO
_GetOSEvent

FluahEventa

DO (input) •• low word: events to remove (event mask)
high word: events on which to atop (event mask)

DO (output) - event type of event vhich teminated search

Thi• routine r•ove1 event• of type specified by the caller. On
entry, DO contain• a long word of tvo 16•bit event masks. The
low-order 16 bite contain• a uak of events to remove, and the
hish•order 16 bit1 contains a uak of events that, once
encountered, teminatea the event r•oval process. DO returo1
0 if all eventa vere deleted from the queue and, if not, the event
DUllber of the event which teminated the flush.

Calling aequence: MOVE.L l!ventMaaka,DO
Fluab!venta -

MACINTOSH USER EDUCATION

Macintosh Packages: A Progra111Der's Guide

See Also: The Macintosh User Interface Guidelines
Macintosh Operating System Reference Manual
The Memory Manager: A Programmer's Guide
QuickDraw: A Progra111111er's Guide
The Resource Manager: A Progra1111er'a Guide
The Window Manager: A Programmer's Guide
Macintosh Control Manager Prograaaer's Guide
The Event Manager: A Programmer's Guide
The Dialog Manager: A Programmer's Guide
TextEdit: A Programmer's Guide
Putting Together a Macintosh Application
The Structure of a Macintosh Application

/PACIAGES/PACK

Modification History: First Draft (ROM 7) B. Hacker & c. Roae 2/29/84

ABSTlACT

Packages are sets of data structures and routines that are stored as
resources and brought into memory only when needed. There's a package
for presenting the standard user interface when a file is to be saved or
opened, and others for doing less common operations such as floating
point arithmetic. This aanual describes packages and the Package
Manager, the part of the Macintosh User Interface Toolbox that provides
access to packages.

Erratum:

The SFListPtr data type has been removed from the Standard File Package.
The typeList parameter has the data type SFTypeList.

1-1

1-2

2 Macintosh Packages Programmer's Guide

TABLE OF CONTENTS

3 About This Manual
4 The Package Manager
6 The Standard File Package
6 About the Standard File Package
7 Using the Standard File Package
8 Standard File Package Routines
17 The Disk Initialization Package
17 Using the Diak Initialization Package
18 Disk Initialization Package Routines
23 Summary of the Package Manager
24 Summary of the Standard File Package
26 Summary of the Disk Initialization Package
27 Glossary

Copyright (c) 1984 Apple Computer, Inc. All rights re•erved.

Distribution of this draft in limited quantities does not constitute
publication.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This aanual describes packages and the Package Manager. The Macintosh
packages include one for presenting the standard user interface when a
file is to be saved or opened, and others for doing less co11110n
operations such as floating-point arithmetic. The Package Manager is
the part of the Macintosh User Interface Toolbox that provides access
to packages. *** Eventually, this will become part of a coaprehenaive
manual describing the entire Toolbox and Operating System. ***

You should already be familiar with the Macintosh User Interface
Guidelines, Lisa Pascal, the Macintosh Operating System's Memory
Manager, and the Resource Manager. Using the various packages may
require that you be familiar with other parts of the Toolbox and
Operating System as well.

This manual is intended to serve the needs of both Pascal and assembly
language programmers. Information of interest to assembly-language
programmers only 1B isolated and labeled so that Pascal programmers can
conveniently skip it.

The manual begins With a discussion of the Pack.age Manager and packages
in general. This is followed by a series of sections on the individual
packages*** (only two for now; more will be added)***• You'll only
need to read the sections about the packages that interest you. Each
section describes the package briefly, tells how its routines fit into
the flow of your application program, and then gives detailed
descriptions of the package's routines.

Finally, there are summaries of the Package Manager and the individual
packages, for quick reference, followed by a glossary of terms used in
this manual.

2/29/84 Hacker-Rose CONFIDENTIAL /PACKAGES/PACK.2

1-3

1-4

4 Macintosh Packages Programmer's Guide

THE PACKAGE MANAGER

The Package Manager 1• the part of the Macintosh User Interface Toolbox
that enables you to access packages. Packages are aets of data
structures and routines that are stored as resources and brought into
memory only when needed. They serve as extensions to the Macintoah
Operating System and User Interface Toolbox, for the most part
performing less comon operations.

The Macintosh packages, which are stored in the system resource file,
include the following:

- The Standard File Package, for presenting the standard user
interface when a file is to be saved or opened.

- The Disk Initialization Package, for initializing and naming new
disks. This package is called by the Standard File Package;
you'll only need to call it in nonstandard situations.

- *** more to be added***

Packages have the resource type 'PACK' and the following resource IDs:

CONST dsklnit • 2;
atdFile • 3;
flPoint • 4;
trFunc • 5;
intUtil • 6;
bdConv • 7;

{Disk Initialization}
{Standard File}
{Floating-Point Arithmetic}
{Transcendental Functions}
{International Utilities}
{Binary/Decimal Conversion)

Assembly-language™: All macros for calling package routines
expand to invoke one macro, _PackN, where N is the resource ID
of the package. The package determines which routine to execute
from the routine •elector, an integer that's passed to it on the
stack. For example, the routine selector for the Standard File
Package procedure SFPutFile isl, ao invoking the macro
_SFPutFile pushes l onto the atack and invokes _Pack3.

There are two Package Manager routines-that you can call directly from
Pascal: one that lets you access a specified package and one that lets
you access all packages. The latter will already have been called when
your application starts up, ao nonaally you won't ever have to call the
Package Manager yourself. Its procedures are described below for
advanced progra1111Ders who may want to use them in unusual attuationa.

2/29/84 Hacker-Rose CONFlDENTiAL /PAC'I.AGES/PACK.2

;

THE PACICAGE MANAGER 5

PROCEDURE lnitPack (packID: INTEGER);

lnitPack enables you to use the package specified by packID. which is
the package's resource ID. (It gets a handle that will be uaed later
to read the package into memory.)

PROCEDURE lnitAllPacks;

InitAllPacks enables you to use all Macintosh packages (as though
lnitPack were called for each one). It will already have been called
when your application starts up.

Assembly-language~: The macro you invoke to call
lnitAllPacks from assembly language is named _lnitHath.

2/29/84 Hacker-Rose CONFIDENTIAL /PACKJ,GES/PACK.2

1-5

1-6

6 Macintosh Packages Programmer's Guide

THE STANDAlll> FILE PACKAGE

The Standard File Package provides the standard user interface for
specifying a file to be saved or opened. It allows the file to be on a
disk in either drive (if an external drive is attached to the
Macintosh), and lets a currently inserted disk be ejected so that
another one can be inserted.

*** In the final, comprehensive unual, the documentation of this
package will be at the end of the volume that describes the Toolbox.

You should already be familiar With the folloWing:

- the basic concepts and structures behind QuickDraw, particularly
points and rectangles

- the Toolbox Event Manager, the Control Manager, and the Dialog
Manager

- the Package Manager and packages in general

About the Standard File Package

Standard Macintosh applications should have a File menu from which the
user can save and open documents, via the Save, Save As, and Open
coanands. In response to these commands, the application can call the
Standard File Package to find out the document name and let the user
sWitch disks if desired. As described below, a dialog box is presented
for this purpose. (More details and illustrations are given later in
the descriptions of the individual routines.)

When the user chooses Save As, or Save when the document is untitled,
the application needs a name for the document. The corresponding
dialog box lets the user enter the document name and click a button
labeled "Save" {or just click "Cancel" to abort the command). By
convention, the dialog box comes up displaying the current document
name, if any, so the user can edit it.

In response to an Open command, the application needs to know which
document to open. The corresponding dialog box displays the names of
all documents that might be opened, and the user chooses one by
clicking it and then clicking a button labeled "Open". A vertical
scroll bar allows scrolling through the names if there are aore than
can be shown at once.

Both of these dialog boxes let the user:

- insert a disk in an external drive connected to the Macintosh

- eject a diak from either drive and insert another

2/29/84 Backer-Rose CONFIDENTIAL /PACXAGES/PACKSF.2

I
•

' I

THE STANDARD FILE PACKAGE 7

- initialize and name an inserted disk if it's uninitialized

- switch between the internal and external drives

On the right in the dialog box, separated from the rest of the box by a
gray line, there's a disk name with one or two buttons below it; Figure
l shows what this looks like when an external drive is connected to the
Macintosh but currently has no disk in it. Notice that the Drive
button is inactive (dimmed). After the user inserts a disk in the
external drive (and, if necessary, initializes and names it), the Drive
button becomes active. If there's no external drive, the Drive button
isn't displayed at all.

dist name

(Eject)

(Oriue)

Figure 1. Partial Dialog lox

The disk name displayed in the dialog box is the name of the current
disk, initially the disk in the internal drive. The user can click
Eject to eject the current disk and insert another, which then becomes
the current disk. lf there's an external drive, clicking the Drive
button changes the current disk from the one in the external drive to
the one in the internal drive or vice versa. The Drive button is
inactive whenever there's only one disk inserted.

If an uninitialized or otherwise unreadable disk ts inserted, the
Standard File Package calls the Disk Initialization Package to provide
the standard user interface for initializing and naming a disk.

Using the Standard file Package

This section discusses how the routines in the Standard File Package
fit into the general flow of an application program, and gives you an
idea of which routines you'll need to use. The routines themselves are
described in detail in the next section.

The Standard File Package and the resources it uses are autoutically
read into memory when one of its routines is called. It in tum reads
the Diak Initialization Package into aemory when needed; together they
occupy about SK bytes.

Call SFPutFile when your application is to save to a file and needs to
get the name of the file from the user. Standard applications should
do this when the user chooses Save As from the File aenu. or Save when
the document ia untitled. SFPutFile displays a dialog box allowing the

2/29/84 Hacker-Rose CONFIDENTIAL /PACXAGES/PACKSF.2

1-7

1-8

8 Macintosh Packages Prograaaer's Guide

user to enter a file name.

Similarly, SFGetFile is useful whenever your application ts to open a
file and needs to know which one, such as when the user chooses the
Open command from a standard application's File menu. SFGetFile
displays a dialog box with a list of file names to choose froa.

You pass these routines a reply record, as shown below, and they fill
it With information about the user's reply.

TYPE SFReply • RECORD
good:
copy:
fType:
vRefNum:
version:
fName:

END;

BOOLEAN;
BOOLEAN;
OSType;
INTEGER;
INTEGER;
STRINC[63]

{ignore command if FALSE}
{not used}
(file type or not used)
(volume reference number}
{file's version number}
{file name}

The first field of this record determines whether the file operation
should take place or the command should be ignored (because the user
clicked the Cancel button in the dialog box). The fType field is used
by SFGetFile to store the file's type. The vRefNum, version, and fName
fields identify the file chosen by the user; the application passes
their values on to the File Manager routine that does the actual file
operation. VR.efNum contains the volume reference number of the volume
containing the file. Currently the version field always contains f.

Both SFPutFile and SFGetFile allow you to use a nonstandard dialog box;
two additional routines, SFPPutFile and SFPGetFile, provide an even
more convenient and powerful way of doing this.

Standard File Package Routines

Aasembly-language !!2S!,= The macros for calling the Standard
File Package routines push one of the folloWing routine
selectors onto the stack and then invoke _Pack3:

Routine
SFPutFile
SFPPutFile
SFGetFile
SFPGetFile

2/29/84 Hacker-Rose

Selector
l
3
2
4

CONFIDENTIAL /PACKAGES/PACXSF.2

THE STANDARD FILE PACKAGE 9

PROCEDURE SFPutFile (where: Point; prompt: Str255; origNaae: Str255;
dlgHook: ProcPtr; VAR. reply: SFReply);

SFPutFile displays a dialog box allowing the user to apecify a file to
which data will be written (as during a Save or Save As coamand). It
then repeatedly gets and handles events until the user either confirms
the command after entering an appropriate file name or aborts the
command by clicking Cancel in the dialog. It reports the user's reply
by filling the fields of the reply record specified by the reply
parameter, as described above; the ftype field of this record isn't
used.

The general appearance of the standard SFPutFile dialog box is shown in
Figure 2. The where parameter specifies the location of the top left
corner of the dialog box in global coordinates. The prompt parameter
is a line of text to be displayed as a statText item in the dialog box,
where shown in Figure 2. The origName parameter contains text that
appears as an enabled, selected editText item; for the standard
document-saving commands, it should be the current name of the
document, or the empty string (to display an insertion point) if the
document hasn't been named yet.

where

~r.=-====-===-=-=-===-=-=-===-===iiiiiiiiiil
prompt __ ...,.. Saue current document as: ! disk name i

origNeme ---
!
! (Eject) I

[Saue] [Cancel] ! (Driue] !

Figure 2. Standard SFPutFile Dialog

If you want to use the standard SFPutFile dialog box, pass NIL for
dlgHook; otherwise, see the information for advanced programmers below.

SFPutFile repeatedly calls the Dialog Manager procedure ModalDialog.
After an event involving an enabled dialog item occurs, ModalDialog
returns the item number, and SFPutFile responds as follows:

- If the Eject or Drive button is clicked, or a disk is inserted,
SFPutFile responds as described above under "About the Standard
File Package".

- Text entered into the
of the reply record.
currently any text in
if not.)

2/29/84 Backer-Rose

editText item is stored in the fNaae field
(SFPutFile keeps track of whether there's
the item, and makes the Save button inactive

CONFIDENTIAL /PACKAGES/PACKSF.2

1-9

1-10

10 Macintosh Packages Programmer's Guide

- lf the Save button ia clicked, SFPutFile determines whether the
file nue in the £Name field of the reply record is appropriate.
lf ao, it returns control to the application with the first field
of the reply record set to TRUE; otherwise, it responds
accordingly, as described below.

- If the Cancel button in the dialog ia clicked, SFPutFile returns
control to the application with the first field of the reply
record set to FALSE.

(note)
Notice that disk insertion is one of the user actions
listed above, even though Modall>ialog normally ignores
disk inserted events. The reason this works ia that
SFPutFile calla ModalDialog With a filterProc function
that checks for a disk inserted event and returns a
"fake", very large item number if one occurs; SFPutFile
recognizes this item number as an indication that a disk
was inserted.

The situations that may cause an entered name to be inappropriate, and
SFPutFile's response to each, are as follows:

- lf a file with the specified name already exists on the disk and
is different from what was passed in the origName parameter, the
alert in Figure 3 is displayed. If the user clicks Yea, the file
name is appropriate.

Replace eHisting
•tne name•?

(__ Y_e_s __] ,.liiiiiii_N_oiiiiiiii__,,I

Figure 3. Alert for Existing File

- Uthe disk to which the file should be written is locked, the
alert in Figure 4 is displayed. lf a system error occurs, a
similar alert is displayed, With a corresponding message
explaining the problem.

2/29/84 Hacker-lose CONFIDENTIAL /PACKAGES/PACKSF.2

,

(note)

THE STANDARD FILE PACKAGE 11

Dist is lotted.

I Cancel I
Figure 4. Alert for Locked Diak

The user may specify a disk name (preceding the file name
and separated from it by a colon). If the disk isn't
currently in a drive, an alert similar to the one in
Figure 4 is displayed. The ability to specify a disk
name is supported for historical reasons only; users
should not be encouraged to do it.

After the user clicks No or Cancel in response to one of these alerts,
SFPutFile dismisses the alert box and continues handling events Cao a
different name may be entered).

Advanced programmers: You can create your own dialog box rather than
·use the standard SFPutFile dialog. To do this, you must provide your
own dialog template and store it in your application's resource file
With the same resource ID that the standard template has in the system
resource f1 le:

CONST putDlglD • -3999; {SFPutFile dialog template ID}

(note)
The SFPPutFile procedure, described below, lets you use
any resource ID for your nonstandard dialog box.

Your dialog template mist specify that the dialog window be invisible,
and your dialog must contain all the standard items, as listed below.
The appearance and location of these items in your dialog uy be
different. You can make an item "invisible" by giving it a display
rectangle that's off the screen. The display rectangle for each item
in the standard dialog box is given below. The rectangle for the
standard dialog box itself is ce, •• 384, lf4).

2/29/84 Hacker-lose CONFIDENTIAL /PACICAGES/PACltSF.2

1-11

1-12

12 Macintosh Packages Programmer's Guide

Item number
1
2
3
4
5
6
7
8

Item
1ave' button
Cancel button
Prompt string (statText)
Uaerltem for disk name
Eject button
Drive button
EditText item for file name
Useritem for gray line

Standard display rectangle
(12, 74, 82, 92)
(114, 74, 184, 92)
(12, 12. 184, 28)
(2f9, 16, 295, 34)
(217, 43. 287. 61)
(217, 74, 287, 92)
(14, 34, 182, 51)
(2ft. 16, 211. 88)

lf your dialog has additional items beyond the the standard ones, or if
you want to handle any of the standard items in a nonstandard manner,
you must write your own dlgHook function and point to it with dlgHook.
Your dlgHook function should have two parameters and return an integer
value. For example, this is how it would be declared if it were named
MyDlg:

FUNCTION HyDlg (item: INTEGER; dialog: DialogPtr) : INTEGER;

SFPutFile passes information about every event in an enabled dialog
item to your dlgHook function (which is called after ModalDialog but
before SFPutFile responds to events). In the dialog parameter it
passes a pointer to the dialog record describing your dialog box, and
in the item parameter it passes the item number of the item. Using
these two parameters, your dlgHook function should determine how to
handle the event. There are predefined constants for the item numbers
of standard enabled items, as follows:

CONST putSave • l;
putCancel • 2;
putEject • 5;
putDrive • 6;
putName • 7;

{Save button}
{Cancel button}
{Eject button}
{Drive button}
{editText item for file name}

After handling the event (or, perhaps, after ignoring it) the dlgHook
function must return an item number to SFPutFile. lf the item number
corresponds to one of the standard items, SFPutFile responds as
described above; otherwise, it does nothing.

PROCEDURE SFPPutFile (where: Point; prompt: Str255; origName: Str255;
dlgHook: ProcPtr; VAil reply: SFReply; dlgID: INTEGER;
filterProc: ProcPtr);

SFPPutFile is an alternative to SFPutFile for advanced programmers who
want to use a nonstandard dialog box. It's the same as SFPutFile
except for the two additional parameters dlgID and filterProc.

DlglD is the resource ID of the dialog template to be used instead of
the standard one Ceo you can use whatever ID you wish rather than the
same one as the atandard).

The filterProc parameter determines how KodalDialog Will filter events
when called by SFPPutFile. If filterProc is NIL, ModalDialog does the

2/29/84 Hacker-Rose CONFIDENTIAL /PACKAGES/PACKSF.2

THE STANDARD FILE PACKAGE 13

standard filtering that it does when called by SFPutFile; otherwise,
filterProc ahould point to a function for ModalDialog to execute after
doing the standard filtering. The function must be the aaae aa one
you'd pass directly to HodalDialog in its filterProc paraaeter.

PROCEDURE SFGetFile (where: Point; prompt: Str255; fileFilter: ProcPtr;
numTypea: INTEGER; typeLiat: SFListPtr; dlgHook: ProcPtr;
VAR reply: SFReply);

SFGetFile displays a dialog box listing the naaea of a apecific group
of files from which the user can aelect one to be opened (as during an
Open comand). It then repeatedly gets and handles events until the
user either confinu the command after choosing a file name or aborts
the co1111and by clicking Cancel in the dialog. It reports the user's
reply by filling the fields of the reply record specified by the reply
parameter, as described above under "Using the Standard File Package".

The general appearance of the standard SFGetFile dialog box is shown in
Figures. ln this case there are more file names than can be displayed
at one time, so the scroll bar is active; if all the names can be
displayed at once, the scroll bar is inactive (there's no scroll box
and the gray area is white).

file1 name i
file2name [Open) i disk name
file3name I [Eject] :

i
file5name I
file6name [Cancel] ~ [Driue) l

file7name !

Figure 5. Standard SFGetFile Dialog

The where parameter specifies the location of the top left corner of
the dialog box in global coordinates. The prompt parameter is ignored;
it's there for historical purposes only.

The fileFilter, numTypes, and typeList parameters determine which files
appear in the dialog box. SFGetFile first looks at numTypea and
typeList to determine what types of files to display, then it executes
the function pointed to by fileFilter (if any) to do additional
filtering on which files to display. File types are diacuaaed in the
manual.!!!!, Structure.!!!,~ Macintosh Application. For example, if the
application is concerned only with pictures, you won't want to display
the names of any text files.

2/29/84 Hacker-lloae CONFIDENTIAL /PACXAGES/PACKSF.2

1-13

1-14

14 Macintosh Packages Programmer's Guide

Pass -1 for numTypes to display all types of files; otherwise, pass the
number of file types you want to display, and pass the types themselves
in typeLiat. The SFListPtr data type is defined as follows:

(note)

TYPE SFListPtr - ·sFTypeList;
SFTypeList • AllRAY [f •• 3) OF OSType;

This array is declared for a reasonable maximum number of
types (four). If you need to specify more than four
types, declare your own array type With the desired
number of entries (and use the@ operator to pass a
pointer to it).

If fileFilter isn't NIL, SFGetFile executes the function it points to
for each file, to determine whether the file should be displayed. The
fileFilter function has one parameter and returns a Boolean value. For
example:

FUNCTION HyFileFilter (paramllock: ParmBlkPtr) : BOOLEAN;

SFGetFile passes this function the file information it gets by calling
the File Manager procedure PBGetFlnfo (see the*** forthcoming*** File
Manager manual for details). The function selects which files should
appear in the dialog by returning FALSE for every file that should be
shown and TRUE for every file that shouldn't be shown.

lf you want to use the standard SFGetFile dialog box, pass NIL for
dlgHook; otherwise, see the information for advanced prograaners below.

Like SFPutFile, SFGetFile repeatedly calls the Dialog Manager procedure
KodalDialog. After an event involving an enabled dialog item occurs,
KodalDialog returns the item number, and SFGetFile responds as follows:

- lf the Eject or Drive button is clicked, or a disk is inserted,
SFGetFile responds as described above under "About the Standard
File Package".

- lf clickiq or dragging occurs in the scroll bar, the contents of
the dialog box are redrawn accordingly.

- If a file name 1& clicked, it's stored in the fName field of the
reply record. (SFGetFile keeps track of whether a file name is
currently selected, and makes the Open button inactive if not.)

- If the Open button is clicked, SFGetFile returns control to the
application with the first field of the reply record •et to nUE.

- If a file name is double-clicked, SFGetFile responds a• if the
user clicked the file na• and then the Open button.

- If the Cancel button in the dialog is clicked, SFGetFile returns
control to the application with the first field of the reply
~ecord set to FALSE.

2/29/84 Hacker-llose CONFIDENTIAL /PACKAGES/PACKSF.2

,

THE STANDARD FILE PACKAGE 15

Advanced programmers: You can create your own dialog box rather than
use the standard SFGetFile dialog. To do this, you must provide your
own dialog template and store it in your application'• resource file
With the same resource ID that the standard template has in the system
resource file:

CONST getDlgID • -4t,e; {SFGetFile dialog template ID)

(note)
The SFPGetFile procedure, described below, lets you use
any resource ID for your nonstandard dialog box.

Your dialog template must specify that the dialog Window be invisible,
and your dialog must contain all the standard items, as listed below.
The appearance and location of these items in your dialog may be
different. You can make an item "invisible" by giving it a diaplay
rectangle that's off the screen. The display rectangle for each in the
standard dialog box is given below. The rectangle for the standard
dialog box itself is c,, f, 348, 136).

Item number
1
2
3
4
s
6
7
8
9

U1

Item
Open button
Invisible button
Cancel button
Userltem for disk name
Eject button
Drive button
Useritem for file name list
Userltem for scroll bar
Useritem for gray line
Invisible text (statText)

Standard display rectangle
(152, 28, 232, 46)
(1152, 59, 1232, 77)
(152, , •• 232, 198)
(248, 28, 344, 46)
(256, 59, 336, 77)
(256, , •• 336, lf8)
(12, 11, 125, 125)
(124, 11, 148, 125)
(244, 2f, 245, 116)
(lf44, 29, 1145, 116)

If your dialog has additional items beyond the the standard ones, or if
you want to handle any of the standard items in a nonstandard manner,
you must write your own dlgHook function and point to it With dlgHook.
Your dlgHook function should have two parameters and return an integer
value. For example, this is how it would be declared if it were named
MyDlg:

FUNCTION MyDlg (item: INTEGER; dialog: DialogPtr) : INTEGER;

SFGetFile passes information about every event in an enabled dialog
item to your dlgHook function (which is called after ModalDialog but
before SFGetFile responds to events)& In the dialog parameter it
passes a pointer to the dialog record describing your dialog box, and
in the item parameter it passes the item number of the item. Using
these two parameters, your dlgHook function should determine how to
handle the event. There are predefined constants for the item numbers
of standard enabled items, as follows:

2/29/84 Hacker-Rose CONFIDENTIAL /PACKAGES/PACKSF.2

1-15

1-16

16 Macintosh Packages Programer's Guide

CONST getOpen • l;
getCancel • 3;
getEject • 5;
getDrive • 6;
getNmList • 7;
getScroll • 8;

{Open button}
{Cancel button}
(Eject button}
(Drive button}
{useritem for file name list}
{userltem for scroll bar}

After handling the event (or, perhaps, after ignoring it) your dlgHook
function must return an item number to SFGetFile. If the item number
corresponds to one of the standard items, SFGetFile responds as
described above; otherwise, it does nothing.

PROCEDURE SFPGetFile (where: Point; prompt: Str255; fileFilter:
ProcPtr; numTypes: INTEGER; typeLiat: SFListPtr; dlgHook:
ProcPtr; VAil reply: SFReply; dlgID: INTEGER; filterProc:
ProcPtr);

SFPGetFile is an alternative to SFGetFile for advanced programmers who
want to use a nonstandard dialog box. It's the same as SFGetFile
except for the two additional parameters dlglD and filterProc.

DlglD is the resource I~ of the dialog template to be used instead of
the standard one (so you can use whatever ID you wish rather than the
same one as the standard).

The filterProc parameter determines how ModalDialog will filter events
when called by SFPGetFile. If filterProc is NIL, ModalDialog does the
standard filtering that it does when called by SFGetFile; otherwise,
filterProc should point to a function for ModalDialog to execute after
doing the standard filtering. The function IIUBt be the same as one
you'd pass directly to ModalDialog in its filterProc parameter.

2/29/84 Hacker-llose CONFIDENTIAL /PACKAGES/PACKSF.2

THE DISK INITIALIZATION PACKAGE 17

THE DISK INITIALIZATION PACKAGE

The Disk Initialization Package provides routines for initializing
disks to be accessed with the Macintosh Operating System'• File Manager
and Diak Driver. A single routine lets you easily present the standard
user interface for initializing and naming a disk; the Standard File
Package calla this routine when the user inserts an uninitialized disk.
You can also use the Disk Initialization Package to perform each of the
three steps of initializing a disk separately if desired.

*** In the final, comprehensive manual, the documentation of this
package will be at the end of the volume that describes the Operating
System.***

You should already be familiar With the following:

- the basic concepts and structures behind QuickDraw, particularly
points

- the Toolbox Event Manager

- the File Manager*** up-to-date documentation about the File
Manager isn't yet available, but see the File System Core 'Routines
and File and 1/0 Core Routines sections of the Macintosh OS
Reference Manual***

- the Package Manager and packages in general

Using the Disk Initialization Package

This section discusses how the routines in the Disk Initialization
package fit into the general flow of an application program, and gives
you an idea of which routines you'll need to use. The routines
themselves are described in detail in the next section.

The Disk Initialization Package and the resources it uses are
automatically read into memory from the aystem resource file when one
of the routines in the package ia called. If the disk containing the
system resource file ian't currently in a Macintosh disk drive, the
user Will be asked to switch disks and ao may have to remove the one to
be initialized. To avoid this, you can uae the DILoad procedure, which
explicitly reads the necessary resources into •mory and makes them
unpurgeable. You would need to call DlLoad before explicitly ejecting
the system disk or before any situations where it may be •Witched With
another disk (except for situations handled by the Standard File
Package, which calls DILoad itself).

(note)
The resources used by the Disk Initialization Package
consist of a single dialog and its associated items, even
though the package may present what seem to be a number
of different dialogs. A epecial technique was uaed to

2/29/84 Hacker-Rose CONFIDENTIAL /PACKAGES/PACKDI.2

1-17

1-18

18 Macintosh Packages Programmer's Guide

allow the single dialog to contain all possible dialog
iteu With only some of them visible at one tiae. ***
This technique will be documented in the next revision of
the Dialog Manager manual. ***

When you no longer need to have the Disk Initialization Package in
memory, call DIUnload. The Standard Pile Package calls DIUnload before
returning.

When a disk inserted event occurs, the system attempts to mount the
volume (by calling the File Manager function MountVol) and returns
MountVol's result code in the high-order word of the event •ssage. In
response to such an event, your application can examine the result code
in the event message and call DIBadKount if an error occurred (that is,
if the volume could not be aounted). If the error is one that can be
corrected by initializing the disk, DIBadHount presents the standard
user interface for initializing and naming the disk, and then mounts
the volume itself. For other errors, it justs ejects the disk; these
errors are rare, and may reflect a problem in your program.

(note)
Disk inserted events during standard file saving and
opening are handled by the Standard File Package. You'll
call DIBadHount only in other, less comon aituations
(for example, if your program explicitly ejects disks, or
if you want to respond to the user's inserting an
uninitialized disk when not expected).

Disk initialization consists of three steps, each of which can be
performed separately by the functions DIFormat, DIVerify, and DIZero.
Normally you won't call these in a standard application, but they may
be useful in special utility programs that have a nonstandard
interface.

Disk Initialization Package Routines

Asaembly-language ~: The ucros for calling the Disk
Initialization Package routines push one of the following
routine selectors onto the stack and then invoke _Pack2:

lloutine
DILoad
DlUnload
DlBadMount
DIFormat
DlVerify
DlZero

2/29/84 Hacker-Rose

Selector
2
4 • 6
8

1e

CONFIDENTIAL /PACltAGES/PACKDI.2

I ,

THE DISK lNITlALIZATlON PACKAGE 19

PROCEDURE DILoad;

DILoad read• the Diak Initialization Package, and ita associated dialog
and dialog items, from the aystem resource file into •mory and aakes
them unpurgeable.

(note)
DIFormat, DtVerify, and DIZero don't need the dialog, ao
if you use only these routines you can call the lesource
Manager function Getlesource to read just the package
resource into •mory (and the Memory Manager procedure
HNoPurge to uke it unpurgeable).

PROCEDURE DIUnload;

DIUnload makes the Disk Initialization Package (and its associated
dialog and dialog items) purgeable.

FUNCTION DIBadMount (where: Point; evtMeasage: Longlnt) : INTEGER;

Call DlBadMount when a disk inserted event occurs if the result code in
the high-order word of the associated event message indicates an error
(that is, the result code is other than noErr). Given the event
message in evtMesaage, DIBadMount evaluates the result code and either
ejects the disk or lets the user initialize and name it. The low-order
word of the event aeasage contains the drive number. The vhere
parameter specifies the location (in global coordinates) of the top
left corner of the dialog box displayed by DIBadMount.

If the result code passed 1• extFSErr, aFulErr, nsDrvErr, paramErr, or
volOnLinErr, DIBadMount atmply ejects the disk from the drive and
returns the result code. If the result code ioErr, badMDBErr, or
noMacDskErr is passed, the error can be corrected by initializing the
disk; DlBadMount diaplays a dialog box that describes the problem and
asks whether the user wants to initialize the disk. For the result
code ioErr, the dialog box ahown in Figure 6 is displayed. (This
happens if the disk ia brand nev.) Por badMDBErr and noMacDskErr,
DIBadMount displays a aillilar dialog box in which the description of
the problem 1• "Thia dialt 1• damaged" and "This is not a Macintosh
disk", respectively.

This disk Is unreadable:

Do you went to lnltlellze It?

[Eject I [Initialize)

Figure 6. Diak Initialization Dialog for lOErr

2/29/84 Hacker-loae CONFIDENTIAL /PACKAGES/PACKDl.2

1-19

1-20

20

(note)

Macintosh Packages Progra111111er's Guide

Before presenting the disk initialization dialog,
DIBadMount checks whether the drive contains an already
mounted volume; if ao, it ejects the disk and returns 2
as its result. This Will happen rarely and may reflect
an error in your program (for example, you forgot to call
DILoad and the user had to switch to the disk containing
the system resource file).

If the user responds to the disk initialization dialog by clicking the
Eject button, DIBadMount ejects the disk and returns 1 as ita result.
If the Initialize button is clicked, a box displaying the message
"Initializing disk ••• " appears, and DIBadMount attempts to initialize
the disk. If initialization fails, the disk is ejected and the user is
informed as shown in Figure 7; after the user clicks OX, DIBadMount
returns a negative result code ranging from firstDskErr to lastDskErr,
indicating that a low-level disk error occurred.

[a .
. .

I nltlalization failed!

(OK]

Figure 7. Initialization Failure Dialog

If the disk is successfully initialized, the dialog box in Figure 8
appears. After the user names the disk and clicks OX, DIBadMount
mounts the volume by calling the File Manager function MountVol and
returns MountVol's result code (noErr if no error occurs).

Please name this disk:

[OK)

Figure a. Dialog for Naming a Diak

2/29/84 Hacker-ltose CONFIDENTIAL /PACKAGES/PACXJ>l.2

J

THE DISK lNlTlALlZATION PACKAGE 21

Result codes

Other results

noErr
extFSErr
•FulErr
nsDrvErr
paraeErr
volOnLinErr
firstDskErr
through lastDskErr

1
2

FUNCTION DIFormat (drvNum: INTEGER) : OSErr;

No error
External file aystea
Memory full
No such drive
lad drive nuaber
Volume already on-line
Low-level disk error

User clicked Eject
Mounted volume in drive

DIFormat formats the disk in the drive specified by the given drive
number and returns a result code indicating whether the formatting was
completed successfully or failed. Formatting a disk consists of
writing special information onto it so that the Disk Driver can read
from and write to the disk.

Result codes noErr
firstDskErr
through lastDskErr

FUNCTION DlVerify (drvNum: INTEGER) : OSErr;

No error
Low-level disk error

DIVerify verifies the format of the disk in the drive specified by the
given drive number; it reads each bit from the disk and returns a
result code indicating whether all bits were read successfully or not.

Result codes noErr
firstD1kErr
through lastDakErr

No error
Low-level disk error

FUNCTION DIZero (drvNum: INTEGER; volName: Str255) : OSErr;

On the unmounted volume in the drive specified by the given drive
number, DlZero writes the volume information, a block map, and a file
directory as for a volume With no files; the volName parameter
specifies the volume name to be included in the volume information.
This is the last step in initialization (after formatting and
verifying) and 111Akes any files that are already on the voluae
permanently inaccessible. lf the operation fails, DIZero returns a
result code indicating that a low-level disk error occurred; otherwise,
it mounts the volume by calling the File Manager function MountVol and
returns KountVol's result code (noErr if no error occurs).

2/29/84 Hacker-Rose CONFIDENTIAL /PACKAGES/PACKDI.2

1-21

1-22

22 Macintosh Packages Programmer's Guide

Result codes

2/29/84 Hacker-lose

noErr
badMDBErr
extFSErr
ioErr
11FulErr
noHacDskErr
nsDrvErr
paramErr
volOnLinErr
firstDskErr
through lastDskErr

CONFIDENTIAL

No error
Bad master directory block
External file system
Disk 1/0 error
Memory full
Not a Macintosh volume
No such drive
Bad drive number
Volume already on-line
Low-level disk error

/PACICAGES/PACKDI.2

SUMMAllY OF THE PACKAGE MANAGER 23

SUMMAllY OF THE PACKAGE MANAGER

Constants

CONST dsklnit • 2;
stdFile • 3;
flPoint • 4;
trFunc • 5;
intUtil • 6;
bdConv • 7;

Routines

{Disk Initialization}
{Standard File}
{Floating-Point Arithmetic}
{Transcendental Functions}
{International Utilities)
{Binary/Decimal Conversion}

PROCEDURE lnitPack (packNumber: INTEGER);
PROCEDURE lnitAllPacks;

Assembly-Language Information

Constants

dskinit
atdFile
flPoint
trFunc
intUtil
bdConv

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

2 ;Diak Initialization
3 ;Standard File
4 ;Floating-Point Arithmetic
S ;Transcendental Functions
6 ;International Utilities
7 ;Binary/Decimal Conversion

Special Macro Names

Routine name
lnitAllPacks

Macro name
_lnitHath

2/29/84 Hacker-llose CONFIDENTIAL /PACKAGES/PACK.S

1-23

1-24

24 Macintosh Packages Programmer's Guide

SUMMARY OF THE STANDARD FILE PACICAGE

Constants

CONST• putDlglD • -3999; (SFPutFile dialog template ID}

putSave • l;
putCancel • 2;
putEject • S;
putDrive • 6;
putName • 7;

{Save button}
(Cancel button}
(Eject button}
(Drive button}
(editText item for file name}

getDlglD • -4ff0; (SFGetFile dialog template ID}

getOpen • 1
getCancel • 3
getEject • S
getDrive • 6
getNmList • 7
getScroll • 8

(Open button}
{Cancel button}
{Eject button}
{Drive button}
{userltem for file name list}
{userltem for scroll bar}

Data Structures

TYPE SFReply • RECORD
good:
copy:
fType:
vRefNum:
version:
fName:

END;

BOOLEAN;
BOOLEAN;
OSType;
INTEGEll;
INTEGEll;
STlllNG[63]

{ignore coaaand if FALSE}
{not used}
(file type or not used}
{volume reference number}
{file's version number}
(file name}

SFListPtr • ·sFTypeList;
SFTypeList • ARRAY (f •• 3] OF OSType;

Routines

PROCEDURE SFPutFile (where: Point; prompt: Str255; origName: Str255;
dlgHook: ProcPtr; VAR reply: SFReply);

PROCEDURE SFPPutFile (where: Point; prompt: Str255; origName: Str255;
dlgHook: ProcPtr; VAR reply: SFReply; dlgID:
INTEGER; filterProc: ProcPtr);

PROCEDURE SFGetFile (where: Point; prompt: Str255; fileFilter:
ProcPtr; numTypes: INTEGER; typeLiat: SFLiatPtr;
dlgHook: ProcPtr; VAR reply: SFlleply);

PROCEDURE SFPGetFile (where: Point; prompt: Str255; fileFilter:

2/29/84 Hacker-lose

ProcPtr; numTypes: INTEGER; typeList: SFLiatPtr;
dlgHook: ProcPtr; VAR reply: SFlleply; dlglD:
INTECEll; filterProc: ProcPtr);

CONFIDENTIAL /PACKAGES/PACK.S

,

SUMMAllY OF THE STANDARD FILE PACJCAGE 25

DlgHook Function

FUNCTION MyDlg (item: INTEGER; dialog: DialogPtr) : INTEGER;

FileFilter Function

FUNCTION MyFileF1lter (paramllock: ParmBlkPtr) : BOOLEAN;

Assembly-Language Information

Constants

putDlgID .EQU -3999 ;SFPutFile dialog template ID
putSave .EQU 1 ;Save button
put Cancel .EQU 2 ;Cancel button
putEject .EQU 5 ;Eject button
putDrive .EQU 6 ;Drive button
putName .EQU 7 ;editText item for file name

getDlgID .EQU -419'1 ;SFGetFile dialog template ID
getOpen .EQU l ;Open button
get Cancel .EQU 3 ;Cancel button
getEject .EQU 5 ;Eject button
getDrive .EQU 6 ;Drive button
getNmList .EQU 7 ;uaeritem for file name list
getScroll .EQU 8 ;uaerltem for acroll bar

Reply Record Data Structure

rGood
rType
rVolume
rVeraion
rName

Ignore comaand U FALSE
File type
Volume reference number
File'• version number
File naae

Routine Selectors

Routine
SFPutFile
SFPPutFile
SFGetFile
SFPGetFile

Selector
1
3
2
4

2/29/84 Hacker-aoae CONFIDENTIAL /PACKJ,J;ES/PACK.S

1-25

1-26

26 Macintosh Packages Progra1111er'• Guide

SUMMARY OF THE DISX INITIALIZATION PAClCAGE

Routines

PROCEDURE DILoad;
PROCEDURE DlUnload;
FUNCTION DIBadMount
FUNCTION DIFormat
FUNCTION DIVerify
FUNCTION DlZero

(where: Point; evtHessage: Longlnt) : INTEGER;
(drvNum: INTEGER) : INTEGER;
(drvNum: INTEGER) : INTEGER;
(drvNum: INTEGER; volName: Str255) : INTEGER;

Assembly-Language Information

Routine Selectors

Routine
DILoad
DlUnload
DI Bad Mount
DlFormat
DIVerify
DIZero

Result Codes

!!!!.
badMDBErr
extFSErr
firstDskErr
ioErr
lastDsltErr
mFulErr
noErr
noMacDskErr
nsDrvErr
paramErr
volOnLinErr

Selector
2
4

• 6
8

19

Value
-69
-58
-84
-36
-64
-41 • -57
-56
-5t
-ss

2/29/84 Racker-Rose

Meaning
lad master directory block
External file system
First of the range of low-level disk errors
Diak 1/0 error
Last of the range of low-level disk errors
Memory full
No error
Not a Macintosh disk
No such drive
lad drive number
Volume already on-line

CONFIDENTIAL /PACJ.AGES/PM':1...S

GLOSSARY 27

GLOSSARY

package: A set of data structures and routines that's stored as a
resource and brought into memory only when needed.

routine selector: An integer that's pushed onto the stack before the
PackN macro is invoked, to identify which routine to execute. (N is

the resource ID of a package; all macros for calling routines in the
package expand to invoke PackN.)

2/29/84 Hacker-Rose CONFIDENTIAL /PACKAGES/PACK.G

1-27

Macintosh User Education encourages your comments on this manual.

- What do you like or dislike about it?

- Were you able to find the information you needed?

- was it complete and accurate?

- Do you have any suggestions tor lmprov1tn1nt?

Please send your comments to Ult author (Indicated on tt11 cover
page) at 10460 Bandley Drive MIS 3·0, Cupertino CA 95014.
Mark up a copy of th1 manual or note your remartcs separately.
(We'll re tum your marlcld-up copy if you llb.)

Thanks for your hllpl

1-29

ALAIN ROSSMANN
Ext 4088

Nov•mber 10, 1983
Revised December 12, 1983
Revised January 30, 1984

Changes a Added tips on word order and length.
Updated definition of INTLO and 1"1TL1

This note details all the things to keep in mind when
writing an application to make it easily local izable. It
assumes a certain familiarity with the technical
documentation of Macintosh. Some of the features mentioned
here may not be fully documented at this time in the
technical documentation.

DRAFT

SOFTWARE LOCALIZATION GUIDELINES

The time of gl oba 1 markets has come. Why not increase the
sales of your program by selling it into international
markets ? These markets are deve 1 oping very fast and are
expected to grow at a higher rate than the US market.

To reach these markets your product needs to be fully
localized, It can achieve a good penetration in
international markets only if its users can understand it 1
having localized products is the key to success in
international markets.

Macintosh unique localization technology allows you to
sharply reduce the cost of local I zing your product to
foreign markets. Macintosh provides you with the ideal set
of tools to create international products.

In order to get the maximum benefit from these tools, your
program must be conceived from the ground up IA.Ii th
international markets in mind. '" particular, your program
must make syst•mat i c use of Resources for Menus, Di al ogs..
Alerts, and formats.

The tools that Macintosh provides you are I predefined
Resources for Menu Bars and M•nu Items, Dialog Boxes, Al•rt
Box•s, formats <number, currency, tim•, date>, r•source
editor, keyboard editor, •oftwar• packag•s for compar•s.

1-31

1-32 time and date display, number and currency display, number
input.

---GENERAL DESIGN TIPS

Macintosh is a graphically oriented machin•. The use o-f
-icons grea._tly •nhances and simrl ifie£ the interaction with
the user. From an international standpoint, it also
simplifies the localization process. Icons are
international, they don't have to be translated.

U~-e icons as much as possible. A good example is MacPaint
where most of the commands are accessible by clicking on an
Icon. Macintosh provides you with an Icon editor to create
your own Icons, which can then b• stored in your application
resource file.

---MENU ITEMS, MENU BARS, DIALOG BOXES, ALERT BOXES

Translating software can be
process: the translator has
trans 1 ate a program and do
Macintosh totally solves this

TOOLS

a difficult and expensive
to ·dive• into the code to

the I a.you t changes required.
problem by using resources.

Resources enable you to save most of the country dependent
features of your program into a separate •ntity. This
resource can then be eas i I y modified through the r•source
editor. The resource editor is not only a very powerful
development tool, but also the most fl•xible localization
tool.

With the Resourc• Editor any non technical person can access
the Dialogs, Al•rts, and Menus of your program and modify
them on th• scre•n, in real time. Th• Resourc• Editor is
completely graphically orl•nted, for example dialog zones
can be grown by s•lectlng them, clicking in th•ir grow box,
and draging th• box. There are no coordinates to compute, no
counting of dots.•• Will be available early 84, alpha
versions for dialogs exist••

SOFTWARE DESIGN

Menu Items, M•nu Bars, Dialogs, and Alert Box•s should
always be put into your application r•source fll•. This will
allow a non t•chnical person to translat•, r•siz•, and

change the layout of dialog boxes, without knowing anything
about th• actual code of your application. Text in Dia.logs,
Alerts, and Menus can be edit•d the same way any text is
edited on Macintosh. Translation simply consists in
selecting the text, replacing it by the translated text,
changing the layout to -fit the size o-f the new· text. Upon
exiting o-f the resource ed i tor, the 1 oc a 1 i zed program is
immediately -functional, no recompilation is necessary.

Your application should never rely on the 'length or position
o.f strings in Menus or O i a 1 ogs. 0 i fferen t 1 anguages w i 11
have different word length and different word order. If your
program is dependent on 5ome string 1 ength or string order
it won't work properly when translated.

Using only standard resource types wi 11 make your program
easier to translate. Only standard resource types are
supported by the Resource Editor.

LOCALIZATION

If the localization is performed by a third party, you don't
have to give them your source code. This he 1 ps · you keep
complete control over your product. The resource editor runs
on a Macintosh: no other equipment is needed for the
localization phase of the program. Once a dictionary of
common terms has been bu i 1 t, most programs can be ful 1 y
translated in less th~n an hour by a non technical person.

--
CHARACTER SET AND KEYBOARDS

Foreign countries use characters that do not appear in the
standard ASCII character s•t. This can lead to lots of
problems when selling products. in International markets.

TOOLS

On Macintosh, there is only one character set for all the
countries which use Latin characters. This character set is
common to Macintosh and Lisa. It contains a 11 . the cha.ra.c ters
needed for the major countries. plus special characters and
mathematical symbols <See Appendix 1 for the cha~acter set>.

The character s•t defines the one byte codes that internally
repre1.en t • ach character. Thus a 11 the Mac in tos.hes in a 11
the countries use th• same in terna.1 code for a 11 the
characters. Note that all the bit~ are used in the one byte
code that define£ a character.

1-33

1-34
Fon ts con ta.in the bi t pat tern that defines the shape of a
specific character on the screen. Fonts are contained in a
spec i a 1 type of resource. Some fonts may not inc 1 ude bit
patterns for all the characters •*the foreign characters may
not be always there**• The system font will always have all
the characters.

Jf you feel strongly that your application must have
complete f~nts, it can have its private fonts.

The only thing that differs from country to country is the
way characters a.re generated. Each country has Its own
keyboard< See Appendix 2 for keyboard layouts). The whole
character set can be generated from any keyboard. The only
difference is that the keys to type in order to generate a
certain character may not be the same in different
countries.

The option key is used to access the characters which are
not shown on the keyca.ps. Accents are not characters by
themselves. They are generated by pressing dead keys. When a
dead key is pressed it does not generated any character. Jf
the accu te accent is typed, for ex amp 1 e, nothing happens
until the next character is typed. This character will be
accented with an accute accent.

Please note that keyboards have no way of identifying
themselves. Only the keyboard mapping is changed to go from
one keyboard to another.

The keyboard desk accessory allows you to look at the option
keyboard. Jt also enables you to remap your keyboard, that
is to redefine what character is generated when a certain
combination of keys is pressed ** remapping is not yet
implemented**•

SOFTWARE DESIGN

Oo not use the 8th bit in the ASCII code to sto~e
information, it is used in our extended character set. Your
program should not acc•ss the keyboard directly. As long as
it us•s th• tool box rout i n•s to do so, foreign keyboards
will b• transpa~•nt to your application.

Some menu commands may hav• k•yboard •qui va 1 •n ts in your
application. Be sur• to put thes• commands in the Menu Item
definition Resource so that it can b• easily •dit•d through
the Resource Editor.

LOCALIZATION

)

It is easy to overlook keyboard equivalents during the
translation process. B• sure to explain how they have been
chosen to the person who will translate your program.

---ROM COHPARE

Having accented characters in the character set poses
specific problems when comparing strings. Th•re is a compare
routine in ROM to handle compares.

TOOLS

The routine comes in four flavors determined by two boolean
flags. The first flag is •ignore casea, the second is 11

ignore diacritical marks•.

If the •ignore case• flag is set, the comparison will be
true regardless of the cases of the two characters compared.
Likewise, if the •ignore diacritical• flag is set, the
compare wi l 1 be true regardless of the acc•ntuat ion of the
two characters being compared. If both flags ar• res•t, the
compare is an ASCJ I compare, if both f 1 ags are set it
matches characters regardless of their cases and
accentuation.

SOFTWARE DESIGN

Be sure to use the right kind of compare although it may not
make a difference in your I anguage. For ex amp 1 e a s imp 1 e
Word process.or may provide an •ignore everything" compare
although there are no diacritical marks in your language.

FORMATS
--
Different countries use different formats for numbers,
currencies, time, date, measure units. They also have
different ways of sorting 1 i sts. This can 1 ead to I ots of
problems wh•n an application is ported to another country.
Macintosh gives a v•rY elegant,y•t pCMerful solution to thi£
problem through the use of the resources INTLO and INTL1.

TOOLS

1-35

1-36 These resources con ta In i nforma. ti on concerning number
f orma. t, currency format, date format, ti me format, use of
metric or English format, sorting. This information is
stored in two predefined resource types: INTLO and INTL!.
<See Appendix 4 for the map of INTLO and INTL!>.

INTL1 contains the information needed to di sp I ay •xpa.nded
dates and to sort. You can save space by omitting INTL! when
expanded d•tes and sorting are not needed.

A set of routine which allow you to add INTLO and JNTLl to
your program are provided to make it ea.s i er to imp 1 ement
INTLO or INTL!. They may be completed by a s-et of access
routines to a 11 ow Pasca 1 programs to eas i 1 y access the
information in INTLO and INTL1 ••May not be written••.

SOFTWARE DESIGN

Each ti me your a.pp 1 i cation uses anything re 1 a ted to these
items, it must either call the appropriate routine provided
in our software packages or directly look into the resources
to get the necessary information. ·

If you use our packages, You don't n•ed to know the detailed
structure of INTLO and JNTLl. We provide packages which
cover I number and currency display, time and date display,
magn i tude compare for sorting, number input. Number and
currency input and output a.re inc I uded in the arithmetic
package ••May not be written••.

Be careful to look into INTLO to get the number separator if
you don't use our number input package. The number separator
should also be used for list of numbers as they may appear
in a function having multiple arguments.

As for any other resource, INTLO and INTL! can live at any
of these three 1 evel s : in the System Resource Fi 1 e, in the
Application Resource File, and in the Document Resource
Fi I e. Resources Fi 1 es wi 11 autornat i cal I Y be searched for
INTLO or INTL1 in the f 011 owing order : Oocumen t Resource
File, Application Resource File, System Resource Files.

At the developer's choice there can be •n INTLO or INTL1
resourc• in th• appl ica.tion resource or in the document
resourc•. There ~ill always be a copy of INTLO and JNTLl in
the system resource file so that it can be u5ed as a default
if your application does not have Its private version of
INTLO and INTL! •

Having your own version of INTLO or INTL! in your
application's Resource File, allows your a.ppl ication to
remember its formats independently from the disk it is moved
to. J f documents have their own version of JNTLO or INTLl,

J

they will keep the same format •ven if they are used under a
foreign version of the application.

A calendar -for example may not need to have its private
version o-f INTL0 or JNTL1, It is sufficient for this type of
app 1 i cation to 1001< in to the System Resource · to -get the
necessary format Information.

A program ~sing dates may want to display dates according to
the language used in Its Dialogs. To ac ·eve that it must
have an INTL0 in its Resource File, so that the date -formats
are 1 inked to the application and not to the disk.

A Spreadsheet where numbers can bt displayed as currencies
would put INTL0 with each document. Data integrity has to be
preserved : it is not acceptable to have amounts 1 &be 1 ed in
Dol 1 ars sudden 1 y di sp 1 ayed as Francs because a di fftren t
version of the application is used. There must be an INTL0
in each document resource file. Upon creation of the
document, the default -formats can be read -from the
application JNTL0.

I-f the structure o-f your documents depends on the
sequence, INTL! must bt inc 1 uded in the document
file. An example o-f that is a binary tree
where part of the structure information is in
itself and the rest in the magnitude compare.

LOCALIZATION

sorting
resource

the file

JNTL0 and INTL1 (except -for sorting> art tas i 1 y modi ,f i ed
through the resource editor. This allows user to customize
their formats, provided that your program makes systema.tic
use of these resources.

It allows you to produce masters -for each country that have
the proper -formats on them C Set Appendix 3 for the most
common -formats in each country>.

Of course if you -fee 1 that users of your program must be
able to modi-fy these -formats •on the -fty• , you can include
a routine that directly modifies INTL0 or INTL1 from within
your program. An exampl • of that would be for a.
wordprocessor to offer the capability to switch from English
to Metric rulers -from within the appl ic&tion.

1-37

,

0

1

I

s

'
I

8

' '
I

9

A

I

C

D

I

r

0 1 ... u

... ICl

SIi 11:2

m .,
-.........-
an IIC4

---..
IEL E1I

• -
"' Ill

Lf ..
" DC

)I(

ff J!"J
Cl. ~
• Ii
II "' t... ... I

- -~'
ID-NDffllC --

z
. •

I
•

$

" &
I

(
)
•
+
,
-
•

I

The Character Set

I 4 I • ~ I • A • C .
0 @ p • A 6 t • p 00 (,

A 1 A Q •• • ± • a q e I

2 B R b r C f t i --.

3 C s C s I: 1 £ .2. J
4 D T d t ~ I § ¥ f
5 £ u (j -e u I • Ll as

6 F V f 0 - ' V n a A

7 G w g w 6 6 s I cc

8 H X h X i 0 ® 1T »

9 J y • a 0 © I y ,r •••

J z J - •• .. I • z a 0 •
K [k { - - " I A. • a 0

. , ...

L \ I I A u •• g .A < . .

-c= M] m } 9 u =t= g :O:
N • - e IE.

...
> n Q 1B (E
? 0 • u IZJ

. ..
0 - 8 :c» • -

MCU
. -. ~ IIIIHICU

D
. - -..... ••••,
:-;-:-.......
. . . .•..

"T.' ~-. ~-. ·y·· . .

• r

. -

I IIW IZ
1 SEP IS

1-39

-

\
C'OITC'IQ nn

~llJIIOCIM)l•a,,79

NUT~IAnfT

1-44

1-47

Number

Decimal
numbtr

Stpar·ator

us

1,234,567.89

0.9876

<assumts that
numbtrs are tntered
without separators
othtr than the
dee i ma 1 point >

APPENDIX 3

Number formats

UK

1,234,567.89

0.9876

Examplt: Number1=4132.2

Number2=3.141S9

Stparator= •,• CUS>
•;• <Gtrmany>

Germany/Italy

1.234.567,89

0,9876

1-49

France

1 234 567,89

0,9876

; --------- ;

4123.2, 3.14159 •ntertd from the keyboard for US

4123,2; 3,14159 tnttrtd from the keyboard for Germany

1-50

APPENDIX 3

us UK G•rmany Italy

Curr•ncy symbol S0.23 ~ 0.23 0,23 DH 0,23 F L. 0,23

N•gatiu• (S0.23) <i-0.23) - 0,23 DH - 0,23 F LIT. -0,23

W i th OU t d• c i ma 1 S345.00 .5- 345 325,00 DH 325 F L. 345

Note 1
Thousand separators and d•cimal point are th• same in currency
representation as in numbers

J

.

us

Time 11:30 AM

9:05 Am

11 :20 PH

UK

11:30

09:05

23:20

APPENDIX 3

Time Formats

Germany

11.30 Uhr

9.05 Uhr

23.20 Uhr

1-51

France I ta 1 y

11 H 30 11, 30
..

9 H 05 9, 05

23 H 20 23,20

1-52

APPENDIX 3

Dates Formats

Dah Expandtd date

us mm/dd/yy 3/31/83 6/3/83 Thursday March 31, 198~

UK dd/mm/yy 31/03/83 03/06/83 Thursday March 31, 1983

Germany dd.mm.yy 31.03.83 3.06.83 Donntrstag den 31. M~rz 1983

France dd.mm.yy 31.03.83 3.06.83 Jtudi 31 mars 1983

Italy dd/mm/aa 31/03/83 03/06/83 giovtd~ 31 Maggio 1983

US/UK Germany France Italy

Days Monday Montag Lundi 1 untd't
Tuesday Ditnstag Mardi marttd't
Wedne-sday Mi ttwoch Mercrtdi mercol ed't-
Thursday Donntrsdag Jtudi gi ovtd~
Friday Fr• I ta; Vtndrtdi v•ntrdt
Saturday Sonnabtnd Samtdi sabato
Sunday Sonntag Dimancht domtnica

Month January Januar janvitr Gtnnaio
February Ftbruar f,vritr Ftbbraio
March Mlrz mars Marzo
Apr i 1 Apr i 1 avr i 1 Apr i 1 t
May Mai mai Maggio
June Juni juin Gi ugno
July Juli juilltt Luglio
August August aout Agosto
Sephmbtr Stpttmbtr stpttmbrt Sttttmbrt
October Oktobtr octobr1t Ottobre
Novtmbtr Nov•mbtr novtmbrt Novtmbr•
Dt c 1tmbt r Dtztmbtr d,c,mbre Dictmbrt

1-53

INTLO FORMAT

0 Byt• containing th• ASCII charact•r for d•cimal point
1 BYt• containing th• ASCII charact•r for thousand s•parator
2 Byt• containing th• ASCII charact•r us•d as a 1 ist s•parator

<must b• diff•r•nt from d•cimal point)

3 3 byt•s containing th• ASCII for th• curr•ncy symbol
<•qual to O if not us•d>

6 Byt• containing curr•ncy format flags
Bit ?r s•t = l•ading z•ro, r•s•t • no l•ading z•ro
Bit 6: ••t • trailing z•ro, r•s•t • no trailing z•ro
Bit Sr s•t = minus sign, r•s•t • brack•ts (for n•gativ• amounts>

Bit 4: s•t •trailing symbol, r•s•t • l•ading symbol
7 Byt• containing short dat• format

OMY • 2
YMO • 1
MOY• 0

8 Byt• containing dat• •l•m•nts format flags
Bit?: s•t • l•ading z•ro, r•s•t •no l•ading z•ro for th• Month
Bit 6 • ••t • l•ading z•ro, r•s•t •no l•ading z•ro for th• Day
Bit SI s•t • C•ntury, r•••t •no C•ntury

9 BYt• containing th• ASCII charact•r for th• dat• ••parator

10

11

12

16

20

21

BYt• containing th• flag for 12 h or 24 h cycl•
Byt• • FF 1 12 hour cycl•, Byt• • 0 24 hour cycl•

8yt• containing tim• •l•m•nts format flags
Bit 7 1 s•t • 1•ading z•ro, r•••t • no l•ading z•ro
Bit 6 1 s•t • l•ading z•ro, r•s•t • no l•ading z•ro
Bit SI s•t • l•ading z•ro, r•s•t • no leading z•ro

4 byt•s containing ASCII for trailing string from 0:00 to
<•qual O if unus•d>

for Hours
for Minuhs
for S•conds
11:59

4 byt•• containing ASCII for trail Ing string from 12:00 to 23:59
<•qual O If unus•d>

Byt• containing ASCII for th• tlm• s•parator

8 byt•s containing suffix string us•d in 24 hr mod•

29 BYt• containing th• flag for m•tric syst•m
BYt• • FF I M•tric syst•m, Byt• • 0 1 English syst•m

1-54

lNTL1 FORMAT

o 1 byte containing the number of characters to be displayed
15 bytes containing the word for Sunday

96 16 bytes containing the length and word for Monday
<zero if unused>

112 16 bytes containing the length and word for January

288 16 bytes containing the length and word for D•cember
<zero if unused>

304 Byte contaning the flag to suppress the day
Byte= 00 : Full expanded date
Byte= FF : No day of the week in date

305 Byte containing the flag for expanded date format
Byte= FF: stO O st1 H st2 # st3 Y st4
Byte= 0 : stO O st1 # st2 H st3 Y st4

306 Byte contaning the flag for day# leading zero
Byte= FF : Leading zero
Byte= 0 : No leadin; zero

30? Byte containing the month length for short-expanded date
308 4 bytes contaning the string stO
312 4 bytes containing the string stl
316 4 bytes containing the string st2
320 4 bytes containing the string st3
324 4 bytes containing the string st4

328 Version word

330 Routine to handle exceptions for magnitude compare <RTS for US>

C
)(
u,
:t
nN

M _,_
... 0 00 00
Z0 0 00 00

•ID011.1 00 00
1')0N 00 00

e 1110011.00 00 0
Cl NC,G),..00 00 0
,. uco000om0011.o

... N•m000•00.._0

1-55

1-56

J

APPENDIX 3

Oates Formats

Oah Expanded date

us mm/dd/yy 3/31/83 6/3/83 Thursday March 31 , 1983

UK dd/mm/yy 31/03/83 03/06/83 Thursday March 31 , 1983

G•rmany dd.mm.yy 31.03.83 3.06.83 Donner-stag d•n 31. Ma.rz 1983

Franc• dd.m,n.yy 31.03.83 3.06.83 J•udi 31 ma.rs 1983

I hl y dd/mm/aa 31/03/83 03/06/83 giov•d~ 31 Maggio 1983

US/UK G•rmany Franc:• Italy

Days Monday Montag Lundi 1 un•d)
Tu•sday Di•nstag Mardi marhd)
W•dn•sday Mi ttwoch M•rcr•di m•rcol •d"
Thursday Oonn•rsdag J•udi g i oved'r
Friday Fr• i tag V•ndredi v1n1rdt
Saturday Sonnab•nd S&IHdi s&bato
Sunday Sonntag Dimanch• dom•nica

Month January Januar janvi1r G1nnaio
F1bruary F1bruar f,vri•r F•bbraio
March Mlrz mars Marzo
April Apr i 1 aur i 1 Apri 11
May Mai mai Maggio
Jun, Juni Juin Glugno
July Jut i ju I 1 ht Luglio
August August aout Agosto
S1pt•mb1r S1phmb1r ••phmbr• S1tt1mbr1
Octob•r Oktob•r octobr1 Ottobr•
Nov1mb•r Nou•mb•r nou1mbr• Nou1mbr1
D•c•mb•r D•z•mb•r d'c•mbr• Dlc1mbr1

1-57

INTL0 FORMAT

Offset

0 Byt• containing th• ASCII charact•r for d•cimal point
1 BYt• containing th• ASCII charact•r for thousand s•parator
2 Byt• containing th• ASCII charact•r us•d as a I ist s•parator

<must b• diff•r•nt from decimal point>

3 3 bytts containing the ASCII for tht curr•ncy symbol
<equal to O if not used>

6 Byte containing curr•ncy format flags
Bit 7: set• leading zero, reset• no leading zero
Bit 6: set a trailing zero, resit• no trailing zero
Bit 5: set• minus sign, resit• brack1ts <for negative amounts>

Bit 4: sit• trailing symbol, reset• l1ading symbol
7 Byt• containing short datt format

OMY = 2
YMO = 1
MOY c 0

8 Byte containing date elements format flags
Bit 7 1 set a ltading zero, r1set •no leading zero for the Month
Bit 6: s•t • 11adin9 zero, r1s•t •no l1ading zero for th• Day
Bit 5 1 set• Century, r1s1t •no Ctntury

9 Byte containing tht ASCII character for the date separator

10

11

12

16

20

21

Byt• containing th• flag for 12 h or 24 h cycl•
Byte• FF 1 12 hour cyclt, Byte• 0 24 hour cycl•

Byte containing time eltmtnts format flags
Bit 7: set• ltading ztro, r1s1t • no ltading zero
Bit 6: s•t = ltading ztro, resit• no leading zero
Bit SI set• leading zero, resit• no leading zero

4 bytes containing ASCII for trailing string from 0100 to
(equal 0 if unused)

for Hours
for Mi nutts
for Seconds
l l :59

4 bytes containing ASCII for trailing string from 12:00 to 23:59
(equal 0 if unus•d>

Byte containing ASCII for the time stparator

8 byt1s containing suffix string ustd in 24 hr mode

29 Byte containing the flag for metric system
BYtt •FF: Metric systtm, Byte• 0 1 English system

1-58

INTLl FORMAT

O l byte containing the number of characters to be display•d
lS bytes containing th• word for Sunday

96 16 bytes containing th• l•ngth and word for Monday
<zero if unused)

112 16 bytes containing th• length and word for January

288

304

305

306

307
308
312
316
320

- 324

328

330

16 bytes containing th• l•ngth and word for December
<zero if unused)

Byte contaning the flag to suppress th• day
Byte• 00 1 Full expanded date
Byte• FF : No day of the w•ek in date

Byte containing th• flag for •xpanded date format
Byte• FF I stO D stl M st2 * st3 Y st4
Byt• • 0 1 stO D stl • st2 M st3 Y st4

Byte contaning th• flag for day# leading zero
Byte= FF : L•ading zero
Byt• m O I No leading zero

Byte containing the month length for short-expanded date
4 bytes contaning the string sto
4 byt•s containing th• string stt
4 bytes containing th• string st2
4 byt•s containing th• string st3
4 bytes containing th• string st4

V•rsion word

MACINTOSH PUBLICATIONS

QuickDraw: A Programmer's Guide /QUICK/QUIICDRAW

See Also: Macintosh User Interface Guidelines
Macintosh Operating System Reference Manual
The Window Manager: A Progra111111er's Guide

Modification History: First Draft
Revised and Edited
Revised and Edited
Errata Added
Revised
Revised for ROM 2.1

c.
c.
c.
c.
c.
c.

Espinosa
Espinosa
Rose
Rose
Rose
Rose

11/27 /81
2/15/82
8/16/82
8/19/82

11/15/82
3/2/83

ABSTRACT

This document describes the QuickDraw graphics package, heart of the
Macintosh User Interface Toolbox routines. It describes the conceptual
and physical data types used by QuickDraw and gives details of the
procedures and functions available in QuickDraw.

Summary of significant changes and additions since last version:

- "Font" no longer includes type size. There is a new grafPort
field (txSize) and a procedure (TextSize) for specifying the size
(pages 25, 43). Some other grafPort fields were reordered and
some global variables were 111>ved to the grafPort (page 18).

- The character style data type was renamed Style and now includes
two new variations, condense and extend (page 23).

- You can set up your application now to produce color output when
devices supporting it are available in the future (pages 31, 45).

- The Polygon data type was changed (page 33), and the PolyNext
procedure was removed.

- There are two new grafPort routines, lnitPort and ClosePort (pages
35, 36), and three new calculation routines, EqualRect and
EmptyRect (page 48) and EqualPt (page 65).

- XferRgn and XferRect were removed: use CopyBita, PaintRgn,
FillRgn, PaintRect, or FillRect. CursorVia was also removed; use
RideCursor or ShowCursor.

- A section on customizing QuickDraw operations was added (page,,,.

2 QuickDraw Programmer's Guide

TABLE OF CONTENTS

3 About This Manual
4 About QuickDraw
5 How To Use QuickDraw
6 Tbe Mathematical Foundation of QuickDraw
6 The Coordinate Plane
7 Points
8 Rectangles
9 Regions
11 Graphic Entities
12 Tbe Bit Image
13 The BitMap
15 Patterns
15 Cursors
17 Tbe Drawing Environment: GrafPort
21 Pen Characteristics
22 Text Characteristics
25 Coordinates in GrafPorts
27 General Discussion of Drawing
29 Transfer Modes
30 Drawing in Color
31 Pictures and Polygons
31 Pictures
32 Polygons
34 QuickDraw Routines
34 GrafPort Routines
39 Cursor-Handling Routines
40 Pen and Line-Drawing Routines
43 Text-Drawing Routines
45 Drawing in Color
46 Calculations with Rectangles
49 Graphic Operations on Rectangles
50 Graphic Operations on Ovals
51 Graphic Operations on Rounded-Comer Rectangles
52 Graphic Operations on Arca and Wedges
54 Calculations with Regions
58 Graphic Operations on Regions
59 Bit Transfer Operations
61 Pictures
62 Calculations with Polygons
64 Graphic Operations on Polygons
65 Calculations with Points
67 Miscellaneous Utilities
7t Customizing QuickDraw Operations
73 Using QuickDraw from Assembly Language
78 Summary of QuickDraw ~
87 Glossary

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes QuickDraw, a set of graphics procedures,
functions, and data types that allow a Pascal or assembly-language
programmer of Macintosh to perform highly complex graphic operations
very easily and very quickly. It covers the graphic concepts behind
QuickDraw, as well as the technical details of the data types,
procedures, and functions you will use in your programs.

(1iand)
This manual describes version 2.1 of the ROM. In earlier
versions, QuickDraw may not work as discussed here.

We assume that you are familiar with the Macintosh User Interface
Guidelines, Lisa Pascal, and the Macintosh Operating System's memory
management. This graphics package is for programmers, not end users.
Although QuickDraw may be used from either Pascal or assembly language,
this manual gives all examples in their Pascal form, to be clear,
concise, and more intuitive; a section near the end describes the
details of the assembly-language interface to QuickDraw.

The manual begins with an introduction to QuickDraw and what you can do
with it. It then steps back a little and looks at the mathematical
concepts that form the foundation for QuickDraw: coordinate planes,
points, and rectangles. Once you understand these concepts, read on
about the graphic entities based on those concepts -- how the
mathematical world of planes and rectangles is translated into the
physical phenomena of light and shadow.

Then comes some discussion of how to use several graphics ports, a
su11D11ary of the basic drawing process, and a discussion of two more
parts of QuickDraw, pictures and polygons.

Next, there's the detailed description of all QuickDraw procedures and
functions, their parameters, calling protocol, effects, side effects,
and so on -- all the technical information you'll need each time you
write a program for Macintosh.

Following these descriptions are sections that will not be of interest
to all readers. Special information is given for programmers who want
to customize QuickDraw operations by overriding the standard drawing
procedures, and for those who will be using QuickDraw from assembly
language.

Finally, there's a summary of the QuickDraw data structures and routine
calls, for quick reference, and a glossary that explains terms that may
be unfamiliar to you.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2

4 QuickDraw Programmer's Guide

ABOUT QUICKDRAW

QuickDraw allows you to divide the Macintosh screen into a number of
individual areas. Within each area you can draw many things, as
illustrated in Figure 1.

Text Lines Rectangles Ovals
Bold DD -" 0 ttal,i.~

~
i i

Underline ~-
@l!J8Uffm • •cv / ,, , ., I

fflaw
· ·. ' '· "'

, , ; ; ., J / #

. ' ' ·, ' ' • , , / .I , •
.. · .. ' ' , / .

RoundP.ects ~di Regions Polygons

(~0 c?tP CZC1 •. ~ -(&) • <<1 ,.,;,·J
" .•. · ... /'· .. ,· .. '\ ... ·~ ... t~·,.(ol I . . , ... · ...

~
~~

Figure 1. Samples of QuickDraw's Abilities

You can draw:

- Text characters in a number of proportionally-spaced fonts, with
variations that include boldfacing, italicizing, underlining, and
outlining.

- Straight lines of any length and width.

- A variety of shapes, either solid or hollow, including:
rectangles, with or without rounded corners; full circles and
ovals or wedge-shaped sections; and polygons.

- Any other arbitrary shape or collection of shapes, again either
solid or hollow.

- A picture consisting of any combination of the above items, with
just a single procedure call.

In addition, QuickDraw has some other abilities that you won't find in
many other graphics packages. These abilities take care of most of the
"housekeeping" -- the trivial but time-consuming and bothersome
overhead that's necessary to keep things in order.

- The ability to define many distinct "ports" on the screen, each
with its own complete drawing environment -- its own coordinate
system, drawing location, character set, location on the screen,
and so on. You can easily switch from one such port to another.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2

ABOUT QUICKDRAW 5

- Full and complete "clipping" to arbitrary areas, so that drawing
will occur only where you want. It-s like a super-duper coloring
book that won-t let you color outside the lines. You don't have
to worry about accidentally drawing over something else on the
screen, or drawing off the screen and destroying memory.

- Off-screen drawing. Anything you can draw on the screen, you can
draw into an off-screen buffer, so you can prepare an image for an
output device without disturbing the screen, or you can prepare a
picture and move it onto the screen very quickly.

And QuickDraw lives up to its name! It -s very fast. The speed and
responsiveness of the Macintosh user interface is due primarily to the
speed of the QuickDraw package. You can do good-quality animation,
fast interactive graphics, and complex yet speedy text displays using
the full features of QuickDraw. This means you don-t have to bypass
the general-purpose QuickDraw routines by writing a lot of special
routines to improve speed.

How To Use Quick.Draw

QuickDraw can be used from either Pascal or MC68~,~ machine language.
It has no user interface of its own; you must write and compile (or
assemble) a Pascal (or assembly-language) program that includes the
proper QuickDraw calls, link the resulting object code with the
QuickDraw code, and execute the linked object file.

Some programming mdels are available through your Macintosh software
coordinator; they show the structure of a properly organized QuickDraw
program. What-s best for beginners is to obtain a machine-readable
version of the text of one of these programs, read through the text,
and, using the superstructure of the program as a "shell", modify it to
suit your own purposes. Once you get the hang of writing programs
inside the presupplied shell, you can work on changing the shell
itself.

QuickDraw is stored permanently in the ROM memory. All access is made
through an indirection table in low RAM. When you write a program that
uses QuickDraw, you link it with this indirection table. Each time you
call a Quick.Draw procedure or function, or load a predefined constant,
the request goes through the table into QuickDraw. You'll never access
any QuickDraw address directly, nor will you have to code constant
addresses into your program. The linker will make sure all address
references get straightened out.

QuickDraw is an independent unit; it doesn't use any other units, not
even HeapZone (the Pascal interface to the Operating System's memory
management routines). This means it cannot use the data types Ptr and
Handle, because they are defined in HeapZone. Instead, QuickDraw
defines two data types that are equivalent to Ptr and Handle, QDPtr and
QDHandle.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUDCDRAW.2

6 QuickDraw Programmer's Guide

TYPE Ql)Byte
QDPtr
QDHandle

• -128 •• 127;
• ""QDByte;
• ""QDPtr;

QuickDraw includes only the graphics and utility procedures and
functions you'll need to create graphics on the screen. Keyboard
input, mouse input, and larger user-interface constructs such as
windows and menus are implemented in separate pack.ages that use
QuickDraw but are linked in as separate units. You don't need these
units in order to use QuickDraw; however, you'll probably want to read
the documentation for windows and menus and learn how to use them with
your Macintosh programs.

THE MATHEMATICAL FOUNDATION OF QUICKDRAW

To create graphics that are both precise and pretty requires not
supercharged features but a firm mathematical foundation for the
features you have. If the mathematics that underlie a graphics pack.age
are imprecise or fuzzy, the graphics will be, too. QuickDraw defines
some clear mathematical constructs that are widely used in its
procedures, functions, and data types: the coordinate plane, the
point, the rectangle, and the region.

The Coordinate Plane

All information about location, placement, or movement that you give to
QuickDraw is in terms of coordinates on a plane. The coordinate plane
is a two-dimensional grid, as illustrated in Figure 2.

-3Z:768
t

,!,

32767

Figure 2. The Coordinate Plane

There are two distinctive features of the QuickDraw coordinate plane:

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2

THE MATHEMATICAL FOUNDATION OF QUICKDRAW 7

- All grid coordinates are integers.

- All grid lines are infinitely thin.

These concepts are important! First, they mean that the QuickDraw
plane is finite, not infinite (although it's very large). Horizontal
coordinates range from -32768 to +32767, and vertical coordinates have
the same range. (An auxiliary package is available that maps real
Cartesian space, with X, Y, and Z coordinates, onto QuickDraw's
two-dimensional integer coordinate system.)

Second, they mean that all elements represented on the coordinate plane
are mathematically pure. Mathematical calculations using integer
arithmetic will produce intuitively correct results. If you keep in
mind that grid lines are infinitely thin, you'll never have "endpoint
paranoia" -- the confusion that results from not knowing whether that
last dot is included in the line.

Points

On the coordinate plane are 4,294,967,296 unique points. Each point is
at the intersection of a horizontal grid line and a vertical grid line.
As the grid lines are infinitely thin, a point is infinitely small. Of
course there are ~re points on this grid than there are dots on the
Macintosh screen: when using QuickDraw you associate small parts of
the grid with areas on the screen, so that you aren't bound into an
arbitrary, limited coordinate system.

The coordinate origin (~,0) is in the middle of the grid. Horizontal
coordinates increase as you move from left to right, and vertical
coordinates increase as you move from top to bottom. This is the way
both a TV screen and a page of English text are scanned: from the top
left to the bottom right.

You can store the coordinates of a point into a Pascal variable whose
type is defined by QuickDraw. The type Point is a record of two
integers, and has this structure:

TYPE VHSelect • (V,H);
Point • RECORD CASE INTEGER OF

0: (v: INTEGER;
h: INTEGER);

1: (vh: ARRAY [VHSelect] OF INTEGER)

END;

The variant part allows you to access the vertical and horizontal
components of a point either individually or as an array. For example,
if the variable goodPt were declared to be of type Point, the following
would all refer to the coordinate parts of the point:

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUDCDRAW.2

8 QuickDraw Programmer's Guide

goodPt.v
goodPt.vh[V]

goodPt.h
goodPt.vh[H]

Rectangles

Any two points can define the top left and bottom right comers of a
rectangle. As these points are infinitely small, the borders of the
rectangle are infinitely thin (see Figure 3).

left

Ruju:

Figure 3. A Rectangle

Rectangles are used to define active areas on the screen, to assign
coordinate systems to graphic entities, and to specify the locations
and sizes for various drawing commands. QuickDraw also allows you to
perform many mathematical calculations on rectangles -- changing their
sizes, shifting them around, and so on.

(hand)
Remember that rectangles, like points, are mathematical
concepts that have no direct representation on the
screen. The association between these conceptual
elements and their physical representations is made by a
bitMap, described below.

The data type for rectangles is called Rect, and consists of four
integers or two points:

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2

THE MATHEMATICAL FUUNDATION OF QUICKDR.AW 9

TYPE Rect • RECORD CASE INTEGER OF

t: (top: INTEGER;
left: INTEGER;
bottom: INTEGER.;
right: INTEGER.);

1: (topLeft: Point;
botRight: Point)

END;

Again, the record variant allows you to access a variable of type Rect
either as four boundary coordinates or as two diagonally opposing
corner points. Combined with the record variant for points, all of the
following references to the rectangle named bRect are legal:

(eye)

bRect

bRect.topLeft

bRect.top
bRect.topLeft.v
bRect.topLeft.vh[V]

bRect.bottom
bRect.botRight.v
bRect.botRight.vh[V]

bRect.botRight

bRect.left
bRect.topLeft.h
bRect.topLeft.vh[H]

bRect.right
bRect.botRight.h
bRect.botRight.vh[H)

{type Rect}

{type Point}

{ type INTEGER}
{type INTEGER}
{ type INTEGER}

{type INTEGER}
{type INTEGER}
{ type INTEGER}

If the bottom coordinate of a rectangle is equal to or
less than the top, or the right coordinate is equal to or
less than the left, the rectangle is an empty rectangle
(i.e., one that contains no bits).

Regions

Unlike most graphics packages that can manipulate only simple geometric
structures (usually rectilinear, at that), QuickDraw has the unique and
amazing ability to gather an arbitrary set of spatially coherent points
into a structure called a region, and perform complex yet rapid
manipulations and calculations on such structures. This remarkable
feature not only will make your standard programs simpler and faster,
but will let you perform operations that would otherwise be nearly
impossible; it is fundamental to the Macintosh user interface.

You define a region by drawing lines, shapes such as rectangles and
ovals, or even other regions. The outline of a region should be one or
more closed loops. A region can be concave or convex, can consist of
one area or many disjoint areas, and can even have "holes" in the
middle. In Figure 4, the region on the left has a hole in the middle,
and the region on the right consists of two disjoint areas.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIJCDR.AW.2

Figure 4. Regions

Because a region can be any arbitrary area or set of areas on the
coordinate plane, it takes a variable amount of information to store
the outline of a region. The data structure for a region, therefore,
is a variable-length entity with two fixed fields at the beginning,
followed by a variable-length data field:

TYPE Region• RECORD
rgnSlze:
rgnBBox:
{optional

END;

INTEGER;
Rect;
region definition data}

The rgnSize field contains the size, in bytes, of the region variable.
The rgnBBox field is a rectangle which completely encloses the region.

The simplest region is a rectangle. In this case, the rgnBBox field
defines the entire region, and there is no optional region data. For
rectangular regions (or empty regions), the rgnSize field contains 10.

The region definition data for nonrectangular regions is stored in a
compact way which allows for highly efficient access by QuickDraw
procedures.

As regions are of variable size, they are stored dynamically on the
heap, and the Operating System's memory management 111>ves them around as
their sizes change. Being dynamic, a region can be accessed only
through a pointer; but when a region is m:,ved, all pointers referring
to it must be updated. For this reason, all regions are accessed
through handles, which point to one master pointer which in turn points
to the region.

TYPE RgnPtr • ,egion;
RgnHandle • "'B.gnPtr;

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIICDRAW.2

THE MATHEMATICAL FOUNDATION OF QUICKDRAW 11

When the memory management relocates a region's data in nemory, it
updates only the RgnPtr master pointer to that region. The references
through the master pointer can find the region's new home, but any
references pointing directly to the region's previous position in
memory would now point at dead bite. To access individual fields of a
region, use the region handle and double indirection:

myRgn··.rgnSize
myRgn··.rgnBBox
myRgn··.rgnBBox.top

myRgn·.rgnBBox

{size of region whose handle is myRgn}
{rectangle enclosing the same region}
{minimum vertical coordinate of all
points in the region}

{syntactically incorrect; will not compile
if myRgn is a rgnHandle}

Regions are created by a QuickDraw function which allocates space for
the region, creates a master pointer, and returns a rgnHandle. When
you're done with a region, you dispose of it with another QuickDraw
routine which frees up the space used by the region. Only these calls
allocate or deallocate regions; do NOT use the Pascal procedure NEW to
create a new region!

You specify the outline of a region with procedures that draw lines and
shapes, as described in the section ·QuickDraw Routines·. An example
is given in the discussion of CloaeRgn under •calculations with
Regions" in that section.

Many calculations can be performed on regions. A region can be
"expanded" or "shrunk" and, given any two regions, QuickDraw can find
their union, intersection, difference, and exclusive-OR; it can also
determine whether a given point or rectangle intersects a given region,
and so on. There is of course a set of graphic operations on regions
to draw them on the screen.

GRAPHIC ENTITIES

Coordinate planes, points, rectangles, and regions are all good
mathematical models, but they aren't really graphic elements - they
don't have a direct physical appearance. Some graphic entities that do
have a direct graphic interpretation are the lli image, bitMap,
pattern, and cursor. This section describes the data structure of
these graphic entities and how they relate to the mathematical
constructs described above.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2

12 QuickDraw Programmer's Guide

The Bit Image

A bit image ls a collection of bits in memory which have a rectilinear
representation. Take a collection of words in memory and lay them end
to end so that bit 15 of the lowest-numbered word is on the left and
bit G of the highest-numbered word la on the far right. Then take this
array of bits and divide it, on word boundaries, into a number of
equal-size rows. Stack these rows vertically so that the first row is
on the top and the last row is on the bottom. The result is a matrix
like the one shown in Figure 5 - rows and columns of bits, with each
row containing the same number of bytes. The number of bytes in each
row of the bit image is called the row width of that image.

fiJ'St
Byte

Figure 5. A Bit Image

Row
W"1th.
iS
a bytes

A bit image can be stored in any static or dynamic variable, and can be
of any length that is a multiple of the row width.

The Macintosh screen itself is one large visible bit image. The upper
21,888 bytes of memory are displayed as a matrix of 175,104 pixels on
the screen, each bit corresponding to one pixel. If a bit's value is
0, its pixel is white; if the bit's value is 1, the pixel is black.

The screen is 342 pixels tall and 512 pixels wide, and the row width of
its bit image is 64 bytes. Each pixel on the screen is square; there
are 72 pixels per inch in each direction.

(band)
Since each pixel on the screen represents one bit in a
bit image, wherever this document says "bit", you can
substitute "pixel" if the bit image is the Macintosh
screen. Likewise, this document often refers to pixels
on the screen where the discussion applies equally to
bits in an off-screen bit image.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2

GRAPHIC ENTITIES 13

The BitMap

When you combine the physical entity of a bit image with the conceptual
entities of the coordinate plane and rectangle. you get a bitMap. A
bitMap has three parts: a pointer to a bit image. the row width (in
bytes) of that image. and a boundary rectangle which gives the bitMap
both its dimensions and a coordinate system. Notice that a bitMap does
not actually include the bits themselves: it points to them.

There can be several bitMaps pointing to the same bit image. each
imposing a different coordinate system on it. This important feature
is explained more fully in "Coordinates in GrafPorts·. below.

As shown in Figure 6. the data structure of a bitMap is as follows:

TYPE BitMap • RECORD
baseAddr:
rowBytes:
bounds:

END;

Ba.st -t
Aiti.tr.J·;s

t,,lSe ,A,,tir ,'
rtn·VBtlU ~

bou nf.\~.

QDPtr;
INTEGER;
Rect

Figure 6. A BitMap

The baseAddr field is a pointer to the beginning of the hit image in
memory, and the rowBytes field is the number of bytes in each row of
the image. Both of these should always be even: a bitMap should
always begin on a word boundary and contain an integral number of words
in each row.

The bounds field is a boundary rectangle that both encloses the active
area of the bit image and imposes a coordinate system on it. The
relationship between the boundary rectangle an~ the bit image in a
bitMap is simple yet very important. First, a few general rules:

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2

14 QuickDraw Programmer's Guide

- Bits in a bit image fall between points on the coordinate plane.

- A rectangle divides a bit image into two sets of bits: those bits
inside the rectangle and those outside the rectangle.

- A rectangle that is R points wide and V points tall encloses
exactly (H-l)*(V-1) bits.

The top left corner of the boundary rectangle is aligned around the
first bit in the bit image. The width of the rectangle determines how
many bits of one row are logically owned by the bitMap; the
relationship

8*map.rowBytes >• map.bounds.right-map.bounds.left

must always be true. The height of the rectangle determines how many
rows of the image are logically owned by the bitMap; the relationship

SIZEOF(map.baseAddr·) >• (map.bounds.bottom-map.bounds.top)
* map.rowBytea

must always be true to ensure that the number of bits in the logical
bitMap area is not larger than the number of bits in the bit image.

Normally, the boundary rectangle completely encloses the bit image:
the width of the boundary rectangle is equal to the number of bits in
one row of the image, and the height of the rectangle is equal to the
number of rows in the image. If the rectangle is s111&ller than the
dimensions of the image, the least significant bits in each row, as
well as the last rows in the image, are not affected by any operations
on the bitMap.

The bitMap also imposes a coordinate system on the image. Because bits
fall between coordinate points, the coordinate system assigns integer
values to the lines that border and separate bits, not to the bit
positions themselves. For aample, if a bitMap is assigned the
boundary rectangle with corners (lf,-8) and (34,8), the bottom right
bit in the image will be between horizontal coordinates 33 and 34, and
between vertical coordinates 7 and 8 (see Figure 7).

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2

GRAPHIC ENTITIES 15

(10,-8) (34.-3)
'. I

-
(10,8} (34.,8)

Figure 7. Coordinates and BitMaps

Patterns

A pattern is a 64-bit image, organized as an 8-by-8-bit square, which
is used to define a repeating design (such as stripes) or tone (such as
gray). Patterns can be used to draw lines and shapes or to fill areas
on the screen.

When a pattern is drawn, it is aligned such that adjacent areas of the
same pattern in the same graphics port will blend with it into a
continuous, coordinated pattern. QuickDraw provides the predefined
patterns white, black, gray, ltGray, and dkGray. Any other 64-bit
variable or constant can be used as a pattern, too. The data type
definition for a pattern is as follows:

TYPE Pattern• PACICED ARRAY [f •• 7] OF f •• 255;

The row width of a pattern is 1 byte.

Cursors

A cursor is a small image that appears on the screen and is controlled
by the mouse. (It appears only on the screen, and never in an
off-screen bit image.)

(hand)
Other Macintosh documentation calls this image a
"pointer"• since it points to a location on the screen.
To avoid confusion with other meanings of "pointer" in
this manual and other Toolbox documentation, we use the
alternate term "cursor".

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QODCDRAW.2

16 QuickDraw Programmer's Guide

A cursor is defined as a 256-bit image, a 16-by-16-bit square. The row
width of a cursor is 2 bytes. Figure 8 illustrates four cursors.

..

...............•..........•.•..

\S
I

-9

a -e

J J e a
Figure 8. Cursors

A cursor has three fields: a 16-word data field that contains the
image itself, a 16-word mask field that contains information about the
screen appearance of each bit of the cursor, and a hotspot point that
aligns the cursor with the position of the 111>use.

TYPE Cursor• RECORD
data:
mask:
hotspot:

END;

ARRAY [0 •• 15] OF INTEGER;
ARRAY [f •• 15] OF INTEGER;
Point

The data for the cursor must begin on a word boundary.

The cursor appears on the screen as a 16-by-16-bit square. The
appearance of each bit of the square is determined by the corresponding
bits in the data and mask and, if the mask bit is G, by the pixel
"under" the cursor (the one already on the screen in the same position
as this bit of the cursor):

Data Mask Result1n1 pixel on screen ,-- --r- White
l l Black
0 " Same as pixel under cursor
l " Inverse of pixel under cursor

Notice that if all mask bits are~. the cursor is completely
transparent, in that the image m1der the cursor can still be viewed:
pixels under the white part of the cursor appear unchanged, while m1der
the black part of the cursor, black pixels show through as white.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2

GRAPHIC ENTITIES 17

The hotSpot aligns a point in the image (not a bit, a point!) with the
mouse position. Imagine the rectangle with corners (0,0) and (16,16)
framing the image, as in each of the examples in Figure 8; the hotSpot
is defined- in this coordinate system. A hotSpot of (0,0) is at the top
left of the image. For the arrow in Figure 8 to point to the muse
position, (0,0) would be its hotspot. A hotSpot of (8,8) is in the
exact center of the image; the center of the plus sign or circle in
Figure 8 would coincide with the mouse position if (8,8) were the
hotspot for that cursor. Similarly, the hotspot for the pointing hand
would be (16, 9).

Whenever you move the muse, the low-level interrupt-driven muse
routines move the cursor-s hotSpot to be aligned with the new mouse
position.

(hand)
The mouse position is always linked to the cursor
position. You can-t reposition the cursor through
software; the only control you have is whether it-s
visible or not, and what shape it will assume. Think of
it as being hard-wired: if the cursor is visible, it
always follows the mouse over the full size of the
screen.

QuickDraw supplies a predefined arrow cursor, an arrow pointing
north-northwest.

THE DRAWING ENVIRONMENT: GRAFPORT -----------------------
A grafPort is a complete drawing environment that defines how and where
graphic operations will have their effect. It contains all the
information about one instance of graphic output that is 'kept separate
from all other instances. You can have many grafPorts open at once,
and each one will have its own coordinate system, drawing pattern,
background pattern, pen size and location, character font and style,
and bitMap in which drawing takes place. You can instantly switch from
one port to another. GrafPorts are the structures on which a program
builds windows, which are fundamental to the Macintosh "overlapping
windows" user interface.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIICDRAW.3

18 QuickDraw Programmer's Guide

A grafPort is a dynamic data structure, defined as follows:

TYPE GrafPtr • ·GrafPort;
GrafPort • RECORD

device:
portBits:
portRect:
visRgn:
clipRgn:
bkPat:
fillPat:
pnLoc:
pnSize:
pnMode:
pnPat:
pnVis:
txFont:
txFace:
txMode:
txSize:
spExtra:
fgColor:
bkColor:
colrBit:
pat Stretch:
picSave:
rgnSave:
polySave:
grafProcs:

END;

INTEGER;
BitMap;
Rect;
RgnHandle;
RgnHandle;
Pattern;
Pattern;
Point;
Point;
INTEGER;
Pattern;
INTEGER;
INTEGER;
Style;
INTEGER;
INTEGER;
INTEGER;
Longlnt;
Longint;
INTEGER;
INTEGER;
QDHandle;
QDRandle;
QDHandle;
QDProcsPtr

All QuickDraw operations refer to grafPorts via grafPtrs. You create a
grafPort with the Pascal procedure NEW and use the resulting pointer in
calls to QuickDraw. You could, of course, declare a static VAR of type
grafPort, and obtain a pointer to that static structure (with the@
operator), but as mat grafPorts will be used dynamically, their data
structures should be dynamic also.

(hand)
You can access all fields and subfields of a grafPort
normally, but you should not store new values directly
into them. QuickDraw has procedures for altering all
fields of a grafPort, and using these procedures ensures
that changing a grafPort produces no unusual side
effects.

The device field of a grafPort is the rmmber of the logical output
device that the grafPort will be using. The Font Manager uses this
information, since there are physical differences in the same logical
font for different output devices. The default device number is~. for
the Macintosh screen. For more information about device tmmbers, see
the*** not yet existing*** Font Manager documentation.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIXDRAW.3

)

THE DRAWING ENVIRONMENT: GRAFPORT 19

The portBits field is the bitMap that points to the bit image to be
used by the grafPort. All drawing that is done in this grafPort will
take place in this bit image. The default bitMap uses the entire
Macintosh screen as its bit image, with rowBytes of 64 and a boundary
rectangle of (.,l,512,342). The bitMap may be changed to indicate a
different structure in memory: all graphics procedures work in exactly
the same way regardless of whether their effects are visible on the
screen. A program can, for example, prepare an image to be printed on
a printer without ever displaying the image on the screen, or develop a
picture in an off-screen bitMap before transferring it to the screen.
By altering the coordinates of the portBits.bounds rectangle, you can
change the coordinate system of the grafPort; with a QuickDraw
procedure call, you can set an arbitrary coordinate system for each
grafPort, even if the different grafPorts all use the same bit image
(e.g., the full screen).

The portRect field la a rectangle that defines a subset of the bitMap
for use by the grafPort. Its coordinates are in the system defined by
the portBits.bounds rectangle. All drawing done by the application
occurs inside this rectangle. The portRect usually defines the
"writable" interior area of a window, document, or other object on the
screen.

The visRgn field is manipulated by the Window Manager; users and
programmers will normally never change a grafPort's visRgn. It
indicates that region (remember, an arbitrary area or set of areas)
which is actually visible on the screen. For example, if you move one
window in front of another, the Window Manager logically removes the
area of overlap from the visRgn of the window in the back. When you
draw into the back window, whatever's being drawn is clipped to the
visRgn so that it doesn't run over onto the front window. The default
visRgn is set to the portRect. The visRgn has no effect on images that
are not displayed on the screen.

The clipRgn is an arbitrary region that the application can use to
limit drawing to any region within the portRect. If, for example, you
want to draw a half circle on the screen, you can set the clipRgn to
half the square that would enclose the whole circle, and go ahead and
draw the whole circle. Only the half within the clipRgn will actually
be drawn in the grafPort. The default clipRgn is set arbitrarily
large, and you have full control over its setting. Notice that unlike
the visRgn, the clipRgn affects the image even if it is not displayed
on the screen.

Figure 9 illustrates a typical bitMap (as defined by portBits),
portRect, visRgn, and clipRgn.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3

20 QuickDraw Programmer's Guide

~
lb:•X*fs'.13>

Figure 9. GrafPort Regions

The bkPat and fillPat fields of a grafPort contain patterns used by
certain QuickDraw routines. BkPat is the "background" pattern that is
used when an area is erased or when bits are scrolled out of it. When
asked to fill an area with a specified pattern, QuickDraw stores the
given pattern in the fillPat field and then calls a low-level drawing
routine which gets the pattern from that field. The various graphic
operations are discussed in detail later in the descriptions of
individual QuickDraw routines.

Of the next ten fields, the first five determine characteristics of the
graphics pen and the last five determine characteristics of any text
that may be drawn; these are described in subsections below.

The fgColor, bkColor, and colrBit fields contain values related to
drawing in color, a capability that will be available in the future
when Apple supports color output devices for the Macintosh. FgColor is
the grafPort's foreground color and bkColor is its background color.
ColrBit tells the color imaging software which plane of the color
picture to draw into. For mre information, see "Drawing in Color" in
the general discussion of drawing.

The patStretch field is used during output to a printer to expand
patterns if necessary. The application should not change its value.

The picSave, rgnSave, and polySave fields refl~ct the state of picture,
region, and polygon defintion, respectively. To define a region, for
example, you "open" it, call routines that draw it, and then "close"
it. If no region is open, rgnSave contains NIL; otherwise, it contains
a handle to information related to the region definition. The
application should not be concerned about exactly what information the
handle leads to; you may, however, save the current value of rgnSave,
set the field to NIL to disable the region definition, and later
restore it to the saved value to resume the region definition. The

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3

THE DRAWING ENVIRONMENT: GRAFPORT 21

picSave and polySave fields work similarly for pictures and polygons.

point to a special data structure that
t wants to customize QuickDraw drawing
ther advanced, highly specialized ways.
omizing QuickDraw Operations".) If

Finally, the grafProcs f
the application stores i
procedures or use QuickD
(For rore information,
grafProcs is NIL, QuickDraw
this manual.

responds in the standard ways described in

Pen Characteristics

The pnLoc, pnSize, pnMode, pnPat, and pnVis fields of a grafPort deal
with the graphics pen. Each grafPort has one and only one graphics
pen, which is used for drawing lines, shapes, and text. As illustrated
in Figure 10, the pen has four characteristics: a location, a size, a
drawing t00de, and a drawing pattern.

,,.-.. , --./ ' · ' Heig)'1t.
I"':

~ ...__ Patttt1\ ,..._
Witith
lo~~t.i1m

Figure 10. A Graphics Pen

The pen location is a point in the coordinate system of the grafPort,
and is where QuickDraw will begin drawing the next line, shape, or
characte r. It can be anywhere on the coordinate plane: there are no
restrictions on the mvement or placement of the pen. Remember that
the pen location is a point on the coordinate plane, not a pixel in a
bit image!

The pen is rectangular in shape, and has a user-definable width and
height . The default size is a l-by-1-bit square; the width and height
can range from (0,0) to (32767,32767). If either the pen width or the
pen height is less than 1, the pen will not draw on the screen.

- The pen appears as a rectangle with its top left corner at the pen
location; it hangs below and to the right of the pen location.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3

22 QuickDraw Programmer's Guide

The pnMode and pnPat fields of a grafPort determine how the bits under
the pen are affected when lines or shapes are drawn. The po.Pat is a
pattern that is used like the "ink" in the pen. This pattern, like all
other patterns drawn in the grafPort, is always aligned with the port's
coordinate system: the top left corner of the pattern is aligned with
the top left corner of the portRect, so that adjacent areas of the same
pattern will blend into a continuous, coordinated pattern. Five
patterns are predefined (white, black, and three shades of gray); you
can also create your own pattern and use it as the pnPat. (A utility
procedure, called StuffHex, allows you to fill patterns easily.)

The pnMode field determines how the pen pattern is to affect what's
already on the bitMap when lines or shapes are drawn. When the pen
draws, QuickDraw first determines what bits of the bitMap will be
affected and finds their corresponding bits in the pattern. It then
does a bit-by-bit evaluation based on the pen mde, which specifies one
of eight boolean operations to perform. The resulting bit is placed
into its proper place in the bitMap. The pen mdes are described under
··Transfer Modes" in the general discussion of drawing below.

The pnVis field determines the pen's visibility, that is, whether it
draws on the screen. For mre information, see the descriptions of
RidePen and ShowPen under "Pen and Line-Drawing Routines" in the
"QuickDraw Routines" section.

Text Characteristics

The txFont, txFace, txMode, txSize, and spExtra fields of a grafPort
determine how text will be drawn - the font, style, and size of
characters and how they will be placed on the bitMap.

(hand)
In the Macintosh User Interface Toolbox, character style
means stylistic variations such as bold, italic, and
underline; font means the complete set of characters of
one typeface, such as Helvetica, and does not include the
character style or size.

QuickDraw can draw characters as quickly and easily as it draws lines
and shapes, and in many prepared fonts. Figure 11 shows two QuickDraw
characters and some terms you should become familiar with.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3

)

THE DRAWING ENVIRONMENT: GRAFPORT 23

........ --. ------ ~cent line

ascent

desctnl

~------- descent line

Figure 11. QuickDraw Characters

QuckDraw can display characters in any size, as well as boldfaced,
italicized, outlined, or shadowed, all without changing fonts. It can
also underline the characters, or draw them closer together or farther
apart.

The txFont field is a font number that identifies the character font to
be used in the grafPort. The font number~ represents the system font.
For more information about the system font, the other font numbers
recognized by the Font Manager, and the construction, layout, and
loading of fonts, see the*** not yet existing*** Font Manager
documentation.

A character font is defined as a collection of bit images: these
images make up the individual characters of the font. The characters
can be of unequal widths, and they're not restricted to their ·cells":
the lower curl of a lowercase j, for example, can stretch back under
the previous character (typographers call this kerning). A font can
consist of up to 256 distinct characters, yet not all characters need
be defined in a single font. Each font contains a missing symbol to be
drawn in case of a request to draw a character that is missing from the
font.

The txFace field controls the appearance of the font with values from
the set defined by the Style data type:

TYPE Styleltem • (bold, italic, underline, outline, shadow,
condense, extend);

Style • SET OF Styleitem;

You can apply these either alone or in combination (see Figure 12).
Most combinations usually look good only for large fonts.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3

24 QuickDraw Programmer's Guide

Normal Characters
Bold Characters
!JfJ/ic (:/.7f11~1Clt?fS

Underlined Characters :1Y.Z
OuRIMatl fflil~m
lllollll11111II lllolllillfllN
Condensed Characters
Extended Characters
Bold laic ChanJcJen

- (Q)v®mrfl t\Jb;rOmfflmri)
... and in other fonts. too!

Figure 12. Character Styles

If you specify bold, each character is repeatedly drawn one bit to the
right an appropriate number of times for extra thickness.

Italic adds an italic slant to the characters. Character bits above
the base line are skewed right; bits below the base line are skewed
left.

Underline draws a line below the base line of the characters. If part
of a character descends below the base line (as "y" in Figure 12), the
underline is not drawn through the pixel on either side of the
descending part.

You may specify either outline or shadow. Outline makes a hollow,
outlined character rather than a solid one. With shadow, not only is
the character hollow and outlined, but the outline is thickened below
and to the right of the character to achieve the effect of a shadow.
If you specify bold along with outline or shadow, the hollow part of
the character is widened.

Condense and extend affect the horizontal distance between all
characters, including spaces. Condense decreases the distance between
characters and extend increases it, by an amount which the Font Manager
determines is appropriate.

The txMode field controls the way characters are placed on a bit image.
It functions much like a pnMode: when a character is drawn, QuickDraw
determines which bits of the bit image will be affected, does a
bit-by-bit comparison based on the mde, and stores the resulting bits
into the bit image. These modes are described under "Transfer Modes"
in the general discussion of drawing below. Only three of thea -
srcOr, srcXor, and srcBic - should be used for drawing text.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDR.AW.3

THE DRAWING ENVIRONMENT: GRAFPORT 25

The txSize field specifies the type size for the font, in points (where
"point" here is a printing term meaning 1/72 inch). Any size may be
specified. If the Font Manager does not have the font in a specified
size, it will scale a size it does have as necessary to produce the
size desired. A value of I in this field directs the Font Manager to
choose the size from among those it has for the font; it will choose
whichever size is closest to the system font size.

Finally, the spExtra field is useful when a line of characters is to be
drawn justified such that it is aligned with both a left and a right
margin (sometimes called "full justification"). SpExtra is the number
of pixels by which each space character should be widened to fill out
the line.

COORDINATES IN GRAFPORTS

Each grafPort has its own local coordinate system. All fields in the
grafPort are expressed in these coordinates, and all calculations and
actions performed in QuickDraw use the local coordinate system of the
currently selected port.

Two things are important to remember:

- Each grafPort maps a portion of the coordinate plane into a
similarly-sized portion of a bit image.

- The portBits.bounds rectangle defines the local coordinates for a
grafPort.

The top left corner of portBits.bounds is always aligned around the
first bit in the bit image; the coordinates of that corner "anchor" a
point on the grid to that bit in the bit image. This forms a common
reference point for multiple grafPorts using the same bit image (such
as the screen). Given a portBits.bounds rectangle for each port, you
know that their top left corners coincide.

The interrelationship between the portBits.bounds and portRect
rectanglee is very important. As the portBits.bounds rectangle
establishes a coordinate system for the port, the portRect rectangle
indicates the section of the coordinate plane (and thus the bit image)
that will be uaed for drawing. The portRect usually falls inside the
portBits.bounds rectangle, but it's not required to do so.

When a new grafPort ls created, its bitMap is set to point to the
entire Macintosh screen, and both the portBits.bounds and the portRect
rectangles are set to 512-by-342-bit rectangles, with the point ce,e)
at the top left corner of the screen.

You can redefine the local coordinates of the top left corner of the
grafPort's portRect, using the SetOrigin procedure. This changes the
local coordinate system of the grafPort, recalculating the coordinates
of all points in the grafPort to be relative to the new corner

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3

26 QuickDraw Programmer-a Guide

coordinates. For example, consider these procedure calls:

SetPort(gamePort);
Set0rigin(4e,ee);

The call to SetPort sets the current grafPort to gamePort; the call to
SetOrigin changes the local coordinates of the top left corner of that
port-a portRect to (40,81) (see Figure 13).

342-,....,;;;;.;.;;.;;,;;;,;;:;~ 302 -
visRgn (95, 120)(300,275) -.,isAgn (4(~80)(24~235)

cHpP,gr1 ($, 120)(300,27~,) c:I ipF\gr, (95, 1 "20)('300,27S)

Be-fore S~t Oriqin. ~.f t~r SetOtiqin.(40,80)

Figure 13. Changing Local Coordinates

This recalculates the coordinate components of the following elements:

gamePort·.portBits.bounds

gamePort·.visRgn

gamePort·.portRect

These elements are always lcept ·in sync·, so that all calculations,
comparisons, or operations that seem right, work right.

Notice that when the local coordinates of a grafPort are offset, the
visRgn of that port is offset also, but the clipRgn is not. A good way
to think of it ia that if a document is being shown inside a grafPort,
the document "sticka• to the coordinate system, and the port-s
structure "sticks· to the screen. Suppose, for example, that the
visRgn and clipRgn in Figure 13 before SetOrigin are the same as the
portRect, and a document is being shown. After the SetOrigin call, the
top left corner of the clipRgn is still (95,120), but this location has
moved down and to the right, and the location of the pen within the
document has similarly moved. The locations of portBita.bounda,
portRect, and viaRgn did not change; their coordinates were offset. As
always, the top left corner of portBits.bounds reuins aligned around
the first bit in the bit image (the first pixel on the screen).

If you are mving, comparing, or otherwise dealing vith •theutical
items in different grafPorts (for example, finding the intersection of

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUDCDR.AW.3

COORDINATES IN GRAFPORTS 27

two regions in two different grafPorts), you must adjust to a cmmon
coordinate system before you perform the operation. A QuickDrav
procedure, LocalToGlobal, lets you convert a point's local coordinates
to a global ll)'Stem where the top left corner of the bit image is (,,f);
by converting the various local coordinates to global coordinates, you
can compare and mix them vith confidence. For mre information, see
the description of this procedure under ·calculations with Points• in
the section •QuickDraw Routines·.

GENERAL DISCUSSION OF DRAWING

Drawing occurs:

- Always inside a grafPort, in the bit image and coordinate system
defined by the grafPort's bitMap.

- Always within the intersection of the grafPort's portBits. bounds
and portRect, and clipped to its visRgn and clipRgn.

- Always at the grafPort's pen location.

- Usually with the grafPort's pen size, pattern, and 111>de.

With QuickDraw procedures, you can draw lines, shapes, and text.
Shapes include rectangles, ovals, rounded-corner rectangles,
wedge-shaped sections of ovals, regions, and polygons.

Lines are defined by two points: the current pen location and a
destination location. Yhen drawing a line, QuickDraw moves the top
left corner of the pen along the mathematical trajectory from the
current location to the destination. The pen hangs below and to the
right of the trajectory (see Figure 14).

I ---
J --
.
' . . ' ' . . ' • , • • f • • • • • • • • • • • • • • , • • f ••• , •••••••••••••• , •• 1 • ; • • ' • • • • • • • • • • • • • • ' • • f

Figure 14. Drawing Lines

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDltAW.3

28 QuickDraw Programmer's Guide

(hand)
No mathematical element (such as the pen location) is
ever affected by clipping; clipping only determines what
appears where in the bit image. If you draw a line to a
location outside your grafPort, the pen location will
move there, but only the portion of the line that is
inside the port will actually be drawn. This ls true for
all drawing procedures.

Rectangles, ovals, and rounded-corner rectangles are defined by two
corner points. The shapes always appear inside the mathematical
rectangle defined by the two points. A region is defined in a more
complex manner, but also appears only within the rectangle enclosing
it. Remember, these enclosing rectangles have infinitely thin borders
and are not visible on the screen.

As illustrated in Figure 15, shapes may be drawn either solid (filled
in with a pattern) or framed (outlined and hollow).

pen
widU1

Figure 15. Solid Shapes and Framed Shapes

In the case of framed shapes, the outline appears completely within the
enclosing rectangle -- with one exception -- and the -vertical and
horizontal thickness of the outline is determined by the pen size. The
exception is polygons, as discussed in "Pictures and Polygons" below.

The pen pattern is used to fill in the bits that are affected by the
drawing operation. The pen mde defines how those bits are to be
affected by directing QuickDraw to apply one of eight boolean
operations to the bits in the shape and the corresponding pixels on the
screen.

Text drawing does not use the pnSize, pnPat, or pnMode, but it does use
the pnLoc. Each character la placed to the right of the current pen
location, with the left end of its base line at the pen's location.
The pen is 1110ved to the right to the location where it will draw the

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDR.AW.3

GENERAL DISCUSSION OF DllAWING 29

next character. No wrap or carriage return la performed automatically.

The method Quick.Draw uses in placing text is controlled by a mde
similar to the pen mde. 'nlis is explained in '"Transfer Modes·, below.
Clipping of text la performed in exactly the same manner as all other
clipping in QuickDraw.

Transfer Modes

When lines or shapes are drawn, the pnMode field of the grafPort
determines how the drawing ls to appear in the port·s bit image;
similarly, the txHode field determines how text is to appear. There is
also a QuickDraw procedure that tranafera a blt image from one bitMap
to another, and this procedure has a mode parameter that determines the
appearance of the result. In all these cases, the mde, called a
transfer mode, specifies one of eight boolean operations: for each bit
in the itemto be drawn, Quick.Draw finds the corresponding bit in the
destination bit image, performs the boolean operation on the pair of
bits, and stores the resulting bit into the bit image.

There are two types of transfer mode:

- Pattern transfer modes, for drawing lines or shapes with a
pattern.

- Source transfer modes, for drawing text or transferring any bit
image between two bitMaps.

For each type of mode, there are four basic operations -- Copy, Or,
Xor, and Blc. The Copy operation simply replaces the pixels in the
destination with the pixels in the pattern or source, "painting" aver
the destination without regard for wat is already there. 'nle Or, Xor,
and Bic operations leave the destination pixels under the white part of
the pattern or source unchanged, and differ in how they affect the
pixels under the black part: Or replaces those pixels with black
pixels, thus "overlaying• the destination with the black part of the
pattern or source; Xor inverts the pixels under the black part; and Bic
erases them to white.

Each of the basic operations has a variant in which every pixel in the
pattern or source la inverted before the operation la performed, giving
eight operations in all. Each mde is defined by name as a constant in
QuickDraw (see Figure 16).

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3

30 QuickDraw Programmer-a Guide

Pattern
transfer
mode
patCopy
patOr
patXor
patBic

notPatCopy
notPatOr
notPatXor
notPatBic

Drawing in Color

II II
pe.ttetn ot SO'ltce destination

11 II Ii II
p&tCOPl'
3tcCopy

patOr
.srr.Or

p1.1tXl)t
tJ"r.Jfor

patBic
!IJ'C'.BiC

II II II II
nCttP&.t<:(11y nothtOf nothtXor notl'~tBic
not$rcCopy MtSrr.Or notSrr.Xor notSrcBic

Figure 16. Transfer Modes

Source Action on each pixel
transfer If black pixel in
mode 2attern or source
srcCopy Force black
arcOr Force black
srcXor Invert
srcBic Force 'White

notSrcCopy Force white
notSrcOr Leave alone
notSrcXor Leave alone
notSrcBic Leave alone

in destination:
If white pixel in
2attern or source
Force 'White
Leave alone
Leave alone
Leave alone

Force black
Force black
Invert
Force 'White

Currently you can only look at QuickDraw output on a black-and-white
screen or printer. Eventually, however, Apple will support color
output devices. If you want to set up your application now to produce
color output in the future, you can do so by using QuickDraw procedures
to set the foreground color and the background color. Eight standard
colors may be specified with the following predefined constants:
blackColor, whiteColor, redColor, greenColor, blueColor, cyanColor,
magentaColor, and yellowColor. Initially, the foreground color is
blackColor and the background color is whiteColor. If you specify a
color other than whiteColor, it will appear as black on a
black-and-white output device.

To apply the table in the '"Transfer Modes" section above to drawing in
color, make the following translation: where the table shows "Force
black", read "Force foreground color", and where it shows "Force
white", read "Force background color". When you eventually receive the

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDllAW.3

}

GENERAL DISCUSSION OF lltAWING 31

color output device, you'll find out the effect of inverting a color on
it.

(hand)
QuickDraw can support output devices that have up to 32
bits of color information per pixel. A color picture may
be thought of, then, as having up to 32 planes. At any
one time, QuickDraw draws into only one of these.planes.
A QuickDraw routine called by the color-imaging software
specifies which plane.

PICTURES AND POLYGONS

QuickDraw lets you save a sequence of drawing commands and ·play them
back· later with a single procedure call. There are two such
mechanisms: one for drawing any picture to scale in a destination
rectangle that you specify, and another for drawing polygons in all the
ways you can draw other shapes in QuickDraw.

Pictures

A picture in QuickDraw is a transcript of calls to routines which draw
something -- anything -- on a bitMap. Pictures make it easy for one
program to draw something defined in another program, with great
flexibility and without knowing the details about what's being drawn.

For each picture you define, you specify a rectangle that surrounds the
picture; this rectangle is called the picture frame. When you later
call the procedure that draws the saved picture, you supply a
destination rectangle, and QuickDraw scales the picture so that its
frame is completely aligned with the destination rectangle. Thus, the
picture may be expanded or shrunk to fit its destination rectangle.
For example, if the picture is a circle inside a square picture frame,
and the destination rectangle is not square, the picture is drawn as an
oval.

Since a picture may include any sequence of drawing commands, its data
structure is a variable-length entity. It consists of two fixed fields
followed by a variable-length data field:

TYPE Picture• RECORD
picSize: INTEGER;
picFrame: Rect;
{picture definition data}

END;

The picSize field contains the size, in bytes, of the picture variable.
The picFrame field is the picture frame which surrounds the picture and
gives a frame of reference for scaling when the picture is drawn. The
rest of the structure contains a compact representation of the drawing

3/2/83 Rose CONFIDENTIAL /QUICK/QUIKDR.AW.P

32 QuickD~aw Programmer's Guide

commands that define the picture.

All pictures are accessed through handles, which point to one master
pointer which in turn points to the picture.

TYPE PicPtr • "'Picture;
PicRandle • "'PicPtr;

To define a picture, you call a QuickDraw function that returns a
picRandle and then call the routines that draw the picture. There is a
procedure to call when you've finished defining the picture, and
another for when you're done with the picture altogether.

QuickDraw also allows you to intersperse picture comments in with the
definition of a picture. These comments, which do not affect the
picture's appearance, may be used to provide additional information
about the picture when it's played back. This is especially valuable
when pictures are transmitted from one application to another. There
are two standard types of comment which, like parentheses, serve to
group drawing commands together (such as all the commands that draw a
particular part of a picture):

CONST picLParen • 0;
picRParen • 1;

The application defining the picture can use these standard comments as
well as comments of its own design.

To include a comment in the definition of a picture, the application
calls a QuickDraw procedure that specifies the comment with three
parameters: the comment kind, which identifies the type of comment; a
handle to additional data if desired; and the size of the additional
data, if any. 'When playing back a picture, QuickDraw passes any
comments in the picture-s definition to a low-level procedure accessed
indirectly through the grafProcs field of the grafPort (see
"Customizing QuickDraw Operations· for lll)re information). To process
comments, the application must include a procedure to do the processing
and store a pointer to it in the data structure pointed to by the
grafProcs field.

(hand)
The standard low-level procedure for processing picture
comments simply ignores all comments.

Polygons

Polygons are similar to pictures in that you define them by a sequence
of calla to QuickDraw routines. They are also similar to other shapes
that QuickDraw knows about, since there is a set of procedures for
performing graphic operations and calculations on them.

A polygon is simply any sequence of connected lines (see Figure 17).
You define a polygon by moving to the starting point of the polygon and

3/2/83 Rose CONFIDENTIAL /QUICK/QUIKDRAW.P

PICTURES AND POLYOONS 33

drawing lines from there to the nat point, from that point to the
next, and so on.

/ I , I , I ~ .

[I
' ' -'

Figure 17. Polygons

The data structure for a polygon is a variable-length entity. It
consists of two fixed fields followed by a variable-length array:

TYPE Polygon• RECORD
polySize:
polyBBox:
polyPoints:

END;

INTEGER;
Rect;
ARRAY [0 •• 0) OF Point

The polySize field contains the size, in bytes, of the polygon
variable. The polyBBox field is a rectangle which just encloses the
entire polygon. The polyPoints array expands as necessary to contain
the points of the polygon - the starting point followed by each
succesive point to which a line is drawn.

Like pictures and regions, polygons are accessed through handles.

TYPE PolyPtr • -Polygon;
PolyRandle • -PolyPtr;

To define a polygon, you call a QuickDraw function that returns a
polyRandle and then form the polygon by calling procedures that draw
lines. You call a procedure when you-ve finished defining the polygon,
and another when you-re done with the polygon altogether.

Just as for other shapes that QuickDraw knows about, there 1• a set of
graphic operations on polygons to draw them on the screen. Qu!ckDraw
draws a polygon by moving to the starting point and then drawing lines
to the remaining points in succession, just as Yhen the routines were
called to define the polygon. In this sense it "plays back" those
routine calla. As a result, polygons are not treated exactly the same

3/2/83 Rose CONFIDENTIAL /QUICK/QUDCDRAW.P

34 Quicknraw Programmer's Guide

as other QuickDraw shapes. For example, the procedure that frames a
polygon draws outside the actual boundary of the polygon, because
QuickDraw line-drawing routines draw below and to the right of the pen
location. The procedures that fill a polygon with a pattern, however,
stay within the boundary of the polygon; they also add an additional line
between the ending point and the starting point if those points are not
the same, to complete the shape.

There is also a difference in the vay QuickDraw scales a polygon and a
similarly-shaped region if it's being drawn as part of a picture: when
stretched, a slanted line is drawn mre smoothly if it's part of a
polygon rather than a region. You may find it helpful to lceep in mind
the conceptual difference between polygons and regions: a polygon is
treated more as a continuous shape, a region more as a set of bits.

QUICKDRAW ROUTINES

This section describes all the procedures and functions in QuickDraw,
their parameters, and their operation. They are presented in their
Pascal form; for information on using them from assembly language, see
"Using QuickDraw from Assembly Language".

GrafPort Routines

PROCEDURE InitGraf (globalPtr: QDPtr);

Call InitGraf once and only once at the beginning of your program to
initialize QuickDraw. It initializes the QuickDraw global variables
listed below.

Variable !lE!. Initial setting
thePort GrafPtr NIL
white Pattern all-white pattern
black Pattern all-black pattern
gray Pattern St% gray pattern
ltGray Pattern 25% gray pattern
dkGray Pattern 75% gray pattern
arrow Cursor pointing arrow cursor
screenBita BitMap Macintosh screen, ce,0,512,342)
randSeed Longlnt 1

The globalPtr parameter tells QuickDrav where to store its global
variables, beginning with thePort. From Pascal programs, this
parameter should always be set to @thePort; assembly-language
programmers may choose any location, as long as it can accom110date the
number of bytes specified by GRAFSIZE in GRAFTYPES.TEX'l' (see -Using
QuickDrav from Assembly Language").

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUDCDRAW.4

{ hand)

QUICl(])llAW IOUTINES 35

To initialize the cursor, call lnitCursor (described
under •cursor-Handling Routines· below).

PROCEDURE OpenPort (gp: GrafPtr);

OpenPort allocates space for the given grafPort'a visRgn and clipRgn,
initializes the fields of the grafPort as indicated below, and makes
the grafPort the current port (see SetPort). You must call OpenPort
before using any grafPort; first perform a NEW to create a grafPtr and
then use that grafPtr in the OpenPort call.

Field !IE!.
device INTEGER
portBits BitMap
portRect Rect
visRgn RgnRandle

clipRgn RgnHandle

bkPat Pattern
fillPat Pattern
pnLoc Point
pnSize Point
pnMode INTEGER
pnPat Pattern
pnVia INTEGER
txFont INTEGER
txFace Style
txMode INTEGER
txSize INTEGER
spExtra INTEGER
fgColor Longtnt
bkColor Longtnt
colrBit INTEGER
patStretch INTEGER
picSave QDRandle
rgnSave QDHandle
polySave QDHandle
grafProcs QDProcsPtr

PROCEDURE InitPort (gp: GrafPtr);

Initial setting
I {Macintosh screen)
screenBita (see lnitGraf)
acreenBita.bounda (f,f,512,342)
handle to the rectangular region
(IJ,tl,512,342)
handle to the rectangular region
c-3eeee,-lttee,l•tet,ltt••>
white
black
ce,e,
(1, 1)
patCopy
black
I (visible)
IJ (system font)
normal
srcOr
IJ (Font Manager decides)

• blackColor
vhiteColor

' f
NIL
NlL
NIL
NIL

Given a pointer to a grafPort that has been opened with OpenPort,
InitPort reinitializes the fields of the grafPort and makes it the
current port (if it's not already).

(hand)
InitPort does everything OpenPort does except allocate
space for the viaRgn and cliptlgn.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUna>RAW.4

36 QuickDraw Programmer-s Guide

PROCEDURE ClosePort (gp: GrafPtr);

ClosePort deallocates the space occupied by the given grafPort-e visRgn
and clipRgn. When you are completely through with a grafPort, call
this procedure and then dispose of the grafPort (with a DISPOSE of the
grafPtr).

(eye)
If you do not call ClosePort before disposing of the
grafPort, the memory used by the visRgn and cllpRgn will
be unrecoverable.

(eye)
After calling ClosePort, be sure not to use any copies of
the visRgn or clipRgn handles that you may have made.

PROCEDURE SetPort (gp: GrafPtr);

SetPort sets the grafPort indicated by gp to be the current port. The
global pointer thePort always points to the current port. All
QuickDraw drawing routines affect the bitMap thePort·.portBits and use
the local coordinate system of thePort·. Note that OpenPort and
InitPort do a SetPort to the given port.

(eye)
Never do a SetPort to a port that has not been opened
with OpenPort.

Each port possesses its own pen and text characteristics which remain
unchanged when the port is not selected as the current port.

PROCEDURE GetPort (VAR gp: GrafPtr);

GetPort returns a pointer to the current grafPort. If you have a
program that draws into mre than one grafPort, it-• atremely useful
to have each procedure save the current grafPort (with CetPort), eet
its own grafPort, do drawing or calculations, and then restore the
previous grafPort (with SetPort). The pointer to the current grafPort
is also available through the global pointer thePort, but you may
prefer to use GetPort for better readability of your program text. For
example, a procedure could do a GetPort(savePort) before setting its
own grafPort and a SetPort(savePort) afterwards to restore the previous
port.

PROCEDURE GrafDevice (device: INTEGER);

GrafDevice sets thePort·.device to the given
the logical output device for this grafPort.
this information. The initial device number
Macintosh screen.

3/2/83 Espinosa-Rose CONFIDENTIAL

number, which identifies
The Font Manager uses

is G, which represents the

/QUICK/QUIKDRAW.4

QUICKDRAW IOUTINES 37

PROCEDURE SetPortBits (blll: BitMap);

SetPortBits aets thePort•.portBits to any previously defined bitKap.
This allow1 you to perform all normal drawing and calculationa on a
buffer other than the Macintosh screen -- for example, a 64f-by-7
output buffer for a c. Itoh printer, or a 811&11 off-screen image for
later ·stamping• onto the screen.

Remember to prepare all fields of the bitMap before you call
SetPortBits.

PROCEDURE PortSize (width,height: INTEGER);

PortSize changes the size of the current grafPort's portRect. TRIS
DOES NOT AFFECT THE SCR.EEN; it merely changes the size of the •active
area· of the grafPort.

(hand)
This procedure is normally called only by the Window
Manager.

The top left corner of the portRect re111aina at its same location; the
width and height of the portRect are set to the given width and height.
In other words, PortSize moves the bottom right corner of the portRect
to a position relative to the top left corner.

PortSize does not change the clipRgn or the visRgn, nor does it affect
the local coordinate system of the grafPort: it changes only the
portRect'a width and height. Remember that all drawing occur, only in
the intersection of the portBits.bounds and the portRect, clipped to
the visRgn and the clipRgn.

PROCEDURE MovePortTo (leftGlobal,topGlobal: INTEGER);

MovePortTo changes the position of the current grafPort's portRect.
THIS DOES NOT AFFECT THE SCR.EEN; it •rely changes the location at
which subsequent drawing inside the port will appear.

(hand)
This procedure ia normally called only by the Window
Manager.

The leftGlobal and topGlobal parameters set the distance between the
top left corner of portBita.bounds and the top left corner of the new
portRect. Vor example,

MovePortTo(256,171);

will move the top left corner of the portRect to the center of the
screen (if portlita ls the Macintosh screen) regardle1s of the local
coordinate system.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDJtAW.4

38 Quick'Draw Programmer-a Guide

Like PortSize, MovePortTo does not change the clipRgn or the viaRgn,
nor does it affect the local coordinate syste111 of the grafPort.

PROCEDURE SetOrigin (h,v: INTEGER);

SetOrigin changes the local coordinate ·system of the current grafPort.
THIS DOES NOT AFFECT THE SCREEN; it does, however, affect where
subsequent drawing and calculation will appear in the grafPort.
SetOrigin updates the coordinates of the portBits.bounds, the portRect,
and the visRgn. All subsequent drawing and calculation routines will
use the new coordinate system.

The hand v parameters set the coordinates of the top left corner of
the portRect. All other coordinates are calculated from this point.
All relative distances among any elements in the port will remain the
same; only their absolute local coordinates will change.

(hand)
SetOrigin does not update the coordinates of the clipRgn
or the pen; these items stick to the coordinate system
(unlike the port-, structure, which sticks to the
screen).

SetOrigin is useful for adjusting the coordinate system after a
scrolling operation. (See ScrollRect under "Bit Transfer Operations·
below.)

PROCEDURE SetClip (rgn: lgnRandle);

SetClip changes the clipping region of the current grafPort to a region
equivalent to the given region. Note that this does not change the
region handle, but affects the clipping region itself. Since SetClip
makes a copy of the given region, any subsequent changes you make to
that region will not affect the clipping region of the port.

You can set the clipping region to any arbitrary region, to aid you in
drawing inside the grafPort. The initial clipRgn is an arbitrarily
large rectangle.

PROCEDURE GetClip (rgn: lgnHandle);

GetClip changes the given region to a region equivalent to the clipping
region of the current grafPort. Thia is the reverse of what SetClip
does. Like SetClip, it does not change the region handle.

PROCEDURE ClipRect (r: Rect);

ClipRect changes the clipping region of the current grafPort to a
rectangle equivalent to given rectangle. Note that this does not
change the region handle, but affects the region itself.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIJCDRAW.4

'

QUIClCDRAW ROUTINES 39

PROCEDURE BackPat (pat: Pattern);

BackPat sets the background pattern of the current grafPort to the
given pattern. The background pattern is used in ScrollRect and in all
QuickDraw routines that perform an ·erase· operation.

Cursor-Handling Routines

PROCEDURE InitCursor;

InitCursor sets the current cursor to the predefined arrow cursor, an
arrow pointing north-northwest, and sets the cursor level to G, making
the cursor visible. The cursor level, which is initialized to G when
the system is booted, keeps track of the rmmber of times the cursor baa
been hidden to compensate for nested calls to KideCursor and ShovCursor
(below).

Before you call InitCursor, the cursor is undefined (or, if set by a
previous process, it's whatever that process set it to).

PROCEDURE SetCursor (crsr: Cursor);

SetCursor sets the current cursor to the 16-by-16-bit image in crsr.
If the cursor is hidden, it remains hidden and will attain the new
appearance when it's uncovered; if the cursor is already visible, it
changes to the new appearance immediately.

The cursor image is initialized by lnitCursor to a north-northwest
arrow, visible on the screen. There is no way to retrieve the current
cursor image.

PROCEDURE RideCursor;

RideCuraor removes the cursor from the screen, restoring the bits under
it, and decrements the cursor level (which lnitCursor initialized to
I). Every call to RideCursor should be balanced by a subsequent call
to ShowCursor.

PROCEDURE ShowCursor;

ShowCursor increments the cursor level, 'Which may have been decremented
by HideCursor, and displays the cursor on the screen if the level
becomes f. A call to ShowCursor should balance each previous call to
HideCursor. The level is not incremented beyond G, so extra calls to
ShovCursor don't hurt.

QuickDraw low-level interrupt-driven routines link the cursor vlth the
mouse position, so that if the cursor level is G (visible), the cursor

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIXDltAW.4

40 QuickDraw Programmer's Guide

automatically follows the mouse. You don't need to do anything but a
ShowCursor to have a cursor track the mouse. There is no way to
"disconnect" the cursor from the mouse; you can't force the cursor to a
certain position, nor can you easily prevent the cursor from entering a
certain area of the screen.

lf the cursor has been changed (with SetCursor) while hidden,
ShowCursor presents the new cursor.

The cursor is initialized by lnitCursor to a north-northwest arrow, not
hidden.

PROCEDURE ObscureCursor;

ObscureCursor hides the cursor until the next time the mouse la moved.
Unlike RideCursor, it has no effect on the cursor level and must not be
balanced by a call to ShowCursor.

Pen and Line-Drawing Routines

The pen and line-drawing routines all depend on the coordinate system
of the current grafPort. Remember that each grafPort has its own pen;
if you draw in one grafPort, change to another, and return to the
first, the pen will have remained in the same location.

PROCEDURE HidePen;

RidePen decrements the current grafPort'a pnVis field, which is
initialized to~ by OpenPort; whenever pnVis is negative, the pen does
not draw on the screen. PnVis keeps track of the number of times the
pen has been hidden to compensate for nested calla to HidePen and
ShowPen (below). HidePen is called by OpenRgn, OpenPicture, and
OpenPoly so that you can define regions, pictures, and polygons without
drawing on the screen.

PROCEDURE ShowPen;

ShowPen increments the current grafPort's pnVis field, which may have
been decremented by HidePen; if pnVis becomes G, QuickDraw resumes
drawing on the screen. Extra calls to ShowPen will increment pnVis
beyond G, so every call to ShowPen should be balanced by a subsequent
call to HidePen. ShowPen is called by CloseRgn, ClosePicture, and
ClosePoly.

PROCEDURE GetPen (VAR pt: Point);

GetPen returns the current pen location, in the local coordinates of
the current grafPort.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIICDRAW.4

QUICIIDRAW ROUTINES 41

PROCEDURE GetPenState (VAR pnState: PenState);

GetPenState saves the pen location, size, pattern, and 1110de into a
storage variable, to be restored later with SetPenState (below). Thia
is useful when calling abort subroutines that operate in the current
port but must change the graphics pen: each such procedure can uve
the pen's state when it's called, do whatever it needs to do, and
restore the previous pen state itmnediately before returning.

The PenState data type is not useful for anything except saving the
pen's state.

PROCEDURE SetPenState (pnState: PenState);

SetPenState sets the pen location, size, pattern, and 1110de in the
current grafPort to the values stored in pnState. This is usually
called at the end of a procedure that has altered the pen parameters
and wants to restore them to their state at the beginning of the
procedure. (See GetPenState, above.)

PROCEDURE PenSize (width,height: INTEGER);

PenSize sets the dimensions of the graphics pen in the current
grafPort. All subsequent calla to Line, LineTo, and the procedures
that draw framed shapes in the current grafPort will use the new pen
dimensions.

The pen dimensions can be accessed in the variable thePort·.pnsize,
which is of type Point. If either of the pen dimensions is set to a
negative value, the pen assumes the dimensions (f,f) and no drawing is
performed. For a discussion of how the pen draws, see the ·ceneral
Discussion of Drawing" earlier in this manual.

PROCEDURE PenMode (mode: INTEGER);

PenMode sets the transfer 110de through which the pnPat la transferred
onto the bitMap when lines or shapes are drawn. The mode may be any
one of the pattern transfer mdea:

patCopy
patOr

patXor
patBlc

notPatCopy
notPatOr

notPatXor
notPatBic

If the mode is one of the source transfer 1110des (or negative), no
drawing is performed. The current pen mde can be obtained in the
variable thePort·.pnMode. The initial pen mde la patCopy, in which
the pen pattern is copied directly to the bitMap.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.4

42 QuickDraw Programner's Guide

PROCEDURE PenPat (pat: Pattern);

PenPat sets the pattern that is used by the pen in the current
grafPort. The standard patterns white, black, gray, ltGray, and dkGray
are predefined; the initial pnPat is black. The current pen pattern
can be obtained in the variable thePort·.pnPat, and this wlue can be
assigned (but not compared!) to any other variable of type Pattern.

PROCEDURE PenNormal;

PenNormal resets the initial state of the pen in the current grafPort,
as follows:

Field
pnSize
pnMode
pnPat

Setting
(1, 1)
patCopy
black

The pen location is not changed.

PROCEDURE MoveTo (h,v: INTEGER);

MoveTo moves the pen to location (h,v) in the local coordinates of the
current grafPort. No drawing is performed.

PROCEDURE Move (dh,dv: INTEGER);

This procedure moves the pen a distance of dh horizontally and dv
vertically from its current location; it calls MoveTo(lrf-dh,v+dv), where
(h,v) is the current location. The positive directions are to the
right and down. No drawing is performed.

PROCEDURE LineTo (h,v: INTEGER);

LineTo draws a line from the current pen location to the location
specified (in local coordinates) by hand v. The new pen location is
(h,v) after the line is drawn. See the general discussion of drawing.

If a region or polygon is open and being formed, its outline is
infinitely thin and is not affected by the pnSize, pnMode, or pnPat.
(See OpenRgn and OpenPoly.)

PROCEDURE Line (dh,dv: INTEGER);

This procedure draws a line to the location that is a distance of dh
horizontally and dv vertically from the current pen location; it calls
LineTo(h+dh,~v), where (h,v) is the current location. The positive
directions are to the right and down. The pen location becomes the
coordinates of the end of the line after the line is drawn. See the

3/2/83 Espinosa-Rose O)NFIDENTIAL /QUICK/QUIKDRAJJ.4

QUICICD'RAW ROUTINES 43

general discussion of drawing.

If a region or polygon is open and being formed, its outline 1•
infinitely thin and is not affected by the pnSize, pnMode, or pnPat.
(See OpenRgn and OpenPoly.)

Text-Drawing Routines

Each grafPort has its own text characteristics, and all these
procedures deal with those of the current port.

PROCEDURE TextFont (font: INTEGER);

TextFont sets the current grafPort's font (thePort·.txFont) to the
given font number. The initial font mimber ta f, which represents the
system font.

PROCEDURE TextFace (face: Style);

TextFace sets the current grafPort's character style (thePort·.txFace).
The Style data type allows you to specify a set of one or more of the
following predefined constants: bold, italic, underline, outline,
shadow, condense, and extend. For example:

TextFace([bold));
TextFace([bold,italic));
TextFace(tbePort·.txFace+[bold));
TextFace(thePort·.txFace-[bold]);
TextFace([J);

PROCEDURE TextMode (mode: INTEGER);

{bold}
{bold and italic}
{whatever it was plus bold}
{whatever it was but not bold}
{normal}

TextKode sets the current grafPort's transfer mde for drawing text
(thePort·.txMode). The mde should be arcOr, arcXor, or srcBic. The
initial transfer mde for drawing text la srcOr.

PROCEDURE TextSize (size: INTEGER);

TextSize sets the current grafPort's type size (tbePort·.txSize) to the
given number of points. Any size may be specified, but the result will
look best if the Font Manager has the font in that size (otherwise lt
will scale a alze it does have). The next beat result will occur if
the given size is an even multiple of a •ize available for the font.
If e is specified, the Font Manager will choose one of the available
sizes - whichever la closest to the system font size. The initial
txSize setting ls f.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.4

44 QuickDraw Programmer's Guide

PROCEDURE SpaceExtra (extra: INTEGER);

SpaceExtra sets the current grafPort'a spExtra field, which specifies
the number of pixels by vhich to widen each apace in a line of text.
Thia is useful vhen text is being fully justified (that is, aligned
with both a left and a right margin). Consider, for example, a line
that contains three spaces; if there would normally be six pixels
between the end of the line and the right margin, you would call
SpaceExtra(2) to print the line with full justification. The initial
spExtra setting is~.

(hand)
SpaceExtra will also take a negative argument, but be
careful not to narrow spaces so much that the text is
unreadable.

PROCEDURE DrawChar (ch: CHAR);

DrawChar places the given character to the right of the pen location,
with the left end of its base line at the pen's location, and advances
the pen accordingly. If the character is not in the font, the font's
missing symbol is drawn.

PROCEDURE Drawstring (s: Str255);

Drawstring performs consecutive calls to DrawChar for each character in
the supplied string; the string is placed beginning at the current pen
location and extending right. No formatting (carriage returns, line
feeds, etc.) is performed by QuickDraw. The pen location ends up to
the right of the last character in the string.

PROCEDURE DrawText (textBuf: QDPtr; firstByte,byteCount: INTEGER);

DrawText draws text from an arbitrary structure in me110ry specified by
textBuf, starting firstByte bytes into the structure and continuing for
byteCount bytes. The string of text is placed beginning at the current
pen location and extending right. No formatting (carriage returns,
line feeds, etc.) is performed by QuickDraw. The pen location ends up
to the right of the last character in the string.

FUNCTION CharWidth (ch: CHAR) : INTEGER;

CharWidth returns the value that will be added to the pen horizontal
coordinate if the specified character is drawn. CharWidth includes the
effects of the stylistic variations set with TextFace; if you change
these after determining the character width but before actually drawing
the character, the predetermined width may not be correct. If the
character is a space, CharWidth also includes the effect of SpaceExtra.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.4

QUICKDR.AW ROUTINES 45

FUNCTION StringWidth (s: Str255) : INTEGER;

StringWidth returns the vidth of the given text string, which it
calculate• by adding the CharWidths of all the characters in the string
(see above). Thia value vill be added to the pen horizontal coordinate
if the specified string is drawn.

FUNCTION TextWidth (textBuf: QDPtr; firstByte,byteCount: INTEGER) :
INTEGER;

TextWidth returns the vidth of the text stored in the arbitrary
structure in memory specified by textBuf, starting firstByte bytes into
the structure and continuing for byteCount bytes. It calculates the
width by adding the CharWidths of all the characters in the text. (See
CharWidth, above.)

PROCEDURE GetFontlnfo (VAR info: Fontinfo);

GetFontlnfo returns the following information about the current
grafPort-s character font, taking into consideration the style and size
in which the characters vill be drawn: the ascent, descent, maximum
character width (the greatest distance the pen will mve when a
character is drawn), and leading (the vertical distance between the
descent line and the ascent line below it), all in pixels. The
Fontinfo data structure ls defined as:

TYPE Fontinfo• RECORD
ascent:
descent:
vidMax:
leading:

END;

Drawing in Color

INTEGER;
INTEGER;
INTEGER;
INTEGER

These routines vill enable applications to do color drawing in the
future when Apple supports color output devices for the Macintosh. All
nonwhite colors vill appear as black on black-and-white output devices.

PROCEDURE ForeColor (color: Longlnt);

ForeColor sets the foreground color for all drawing in the current
grafPort c·thePort.fgColor) to the given color. The following standard
colors are predefined: blackColor, vhiteColor, redColor, greenColor,
blueColor, cyanColor, magentaColor, and yellowColor. The initial
foreground color is blackColor.

3/2/83 Espinosa-Rose O>NFIDENTIAL /QUICK/QUIKDRAW.4

46 QuickDraw Programmer's Guide

PROCEDURE BackColor (color: Longint);

BackColor sets the background color for all drawing in the current
grafPort c·thePort.bkColor) to the given color. Eight standard colors
are predefined (see ForeColor above). The initial background color is
whiteColor.

PROCEDURE ColorBit (whichBit: INTEGER);

ColorBit is called by printing software for a color printer, or other
color-imaging software, to set the current grafPort's colrBit field to
whichBit; this tells QuickDraw which plane of the color picture to draw
into. QuickDraw will draw into the plane corresponding to bit rmmber
whichBit. Since QuickDraw can support output. devices that have up to
32 bits of color information per pixel, the possible range of values
for whichBit is f through 31. The initial value of the colrBit field is,.

Calculations with Rectangles

Calculation routines are independent of the current coordinate system;
a calculation will operate the same regardless of which grafPort is
active.

(hand)
Remember that if the parameters to one of the calculation
routines were defined in different grafPorts, you must
first adjust them to be in the same coordinate system.
If you do not adjust them, the result returned by the
routine may be different from what you see on the screen.
To adjust to a common coordinate system, see
LocalToGlobal and GlobalToLocal under ·calculations with
Points· below.

PROCEDURE SetRect (VAR r: Rect; left,top,right,bottom: INTEGER);

SetRect assigns the four boundary coordinates to the rectangle. The
result is a rectangle with coordinates (left,top,right,bottom).

This procedure is supplied as a utility to help you shorten your
program text. If you want a mre readable text at the expense of
length, you can assign integers (or points) directly into the
rectangle's fields. There is no significant cocle size or execution
speed advantage to either method; one's just easier to write, and the
other's easier to read.

PROCEDURE OffsetRect (~AR r: Rect; dh,dv: INTEGER);

OffsetRect moves the rectangle by adding dh to each horizontal
coordinate and dv to each vertical coordinate. If dh and dv are

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUDCDRAW.5

QUICICDRAW ROUTINES 47

positive, the movement is to the right and down; if either is negative,
the corresponding movement is in the opposite direction. The rectangle
retains its shape and size; it's merely mved on the coordinate plane.
This does not affect the ecreen unless you subsequently call a routine
to draw w1.thin the rectangle.

PROCEDURE InsetRect (VAR r: Rect; dh,dv: INTEGER);

InsetRect shrinks or expands the rectangle. The left and right sides
are moved in by the amount specified by db; the top and bottom are
moved towards the center by the amount specified by dv. If dh or dv is
negative, the appropriate pair of sides is m:,ved outwards instead of
inwards. The effect is to alter the size by 2*dh horizontally and 2*dv
vertically, w1.th the rectangle remaining centered in the same place on
the coordinate plane.

If the resulting w1.dth or height becomes less than 1, the rectangle is
set to the empty rectangle c,.e.e,e).

FUNCTION SectRect (srcRectA,srcRectB: Rect; VAR dstRect: Rect)
BOOLEAN;

SectRect calculates the rectangle that is the intersection of the two
input rectangles, and returns TRUE if they indeed intersect or FALSE if
they do not. Rectangles that "touch" at a line or a point are not
considered intersecting, because their intersection rectangle (really,
in this case, an intersection line or point) does not enclose any bits
on the bitMap.

If the rectangles do not intersect, the destination rectangle is set to
(f,0,0,f). SectRect works correctly even if one of the source
rectangles is also the destination.

PROCEDURE UnionRect (arcRectA,srcRectB: Rect; VAR datRect: Rect);

UnionRect calculates the amallest rectangle which encloses both input
rectangles. It works correctly even if one of the eource rectangles is
also the destination.

FUNCTION PtinRect (pt: Point; r: Rect): BOOLEAN;

PtinRect determines whether the pixel below and to the right of the
given coordinate point is enclosed in the specified rectangle, and
returns TRUE if 110 or FALSE if not.

PROCEDURE Pt2Rect (ptA,ptB: Point; VAR: dstRect: Rect);

Pt2Rect returns the 9118llest rectangle which encloses the two input
points.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIJCDRAW.5

48 QuickDraw Programmer's Guide

PROCEDURE PtToAngle (r: Rect; pt: Point; VAR angle: INTEGER);

PtToAngle calculates an integer angle between a line from the center of
the rectangle to the given point and a line from the center of the
rectangle pointing straight up (12 o'clock high). The angle is in
degrees from G to 359, measured clockwise from 12 o'clock, with 9~
degrees at 3 o'clock, 1a, at 6 o'clock, and 27f at 9 o'clock. Other
angles are measured relative to the rectangle: If the line to the
given point goes through the top right corner of the rectangle, the
angle returned is 45 degrees, even if the rectangle is not square; if
it goes through the bottom right corner, the angle is 135 degrees, and
so on (see Figure 18).

angle= 45
pi

~/'
,------4 ___ ,,.

--- pt 'v -----+-----.r-''
v/

r r

Figure 18. PtToAngle

The angle returned might be used as input to one of the procedures that
manipulate arcs and wedges, as described below under "Graphic
Operations on Arcs and Wedges".

FUNCTION EqualRect (rectA,rectB: Rect) : BOOLEAN;

EqualRect compares the two rectangles and returns TRUE if they are
equal or FALSE if not. The two rectangles must have identical boundary
coordinates to be considered equal.

FUNCTION EmptyRect (r: llect) : BOOLEAN;

EmptyRect returns TRUE if the given rectangle is an empty rectangle or
FALSE if not. A rectangle is considered empty if the bottom coordinate
is equal to or less than the top or the right coordinate is equal to or
less than the left.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIXDRAW.5

QUICKDR.AW ROUTINES 49

Graphic Operations on Rectangles

These procedures perform graphic operations on rectanglee. See aleo
ScrollRect under ·ait Transfer Operations·.

PROCEDURE FrameRect (r: Rect);

FrameRect draws a hollow outline just inside the specified rectangle,
using the current grafPort's pen pattern, mode, and aize. The outline
is as wide as the pen width and aa tall as the pen height. It -: ., drawn
with the pnPat, according to the pattern transfer a>de specifie·~ by
pnMode. The pen location is not changed by this procedure.

If a region is open and being formed, the outside outline of the new
rectangle is mathematically added to the region's boundary.

PROCEDURE PaintRect (r: Rect);

PaintRect paints the specified rectangle with the current grafPort's
pen pattern and 110de. The rectangle on the bitHap is filled with the
pnPat, according to the pattern transfer a>de specified by pnHode. The
pen location is not changed by this procedure.

PROCEDURE EraaeRect (r: Rect);

EraseRect paints the specified rectangle with the current grafPort's
background pattern bkPat (in patCopy mode). The grafPort's pnPat and
pnMode are ignored; the pen location is not changed.

PROCEDURE InvertRect (r: Rect);

lnvertRect inverts the pixels enclosed by the specified rectangle:
every white pixel becomes black and every black pixel becomes white.
The grafPort's pnPat, pnHode, and bkPat are all ignored; the pen
location is not changed.

PROCEDURE FillRect (r: Rect; pat: Pattern);

FillRect fills the specified rectangle with the given pattern (in
patCopy mode). The grafPort's pnPat, pnKode, and bkPat are all
ignored; the pen location is not changed.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.5

50 QuickDraw Programmer's Guide

Graphic Operations on Ovals

Ovals are dravn iutde rectangles that you specify. If the rectangle
you specify ts square, QuickDraw draws a circle.

PROCEDURE FrameOval (r: Rect);

FrameOval draws a hollow outline just inside the oval that fits inside
the specified rectangle, using the current grafPort's pen pattern,
mode, and size. The outline is as wide as the pen width and as tall as
the pen height. It ts drawn with the pnPat, according to the pattern
transfer mode specified by pnMode. The pen location is not changed by
this procedure.

If a region is open and being formed, the outside outline of the new
oval is mathematically added to the region's boundary.

PROCEDURE PaintOval (r: Rect);

PaintOval paints an oval just inside the specified rectangle with the
current grafPort"'s pen pattern and mode. The oval on the bitMap is
filled with the pnPat, according to the pattern transfer mode specified
by pnMode. The pen location is not changed by this procedure.

PROCEDURE EraseOval (r: Rect);

EraseOval paints an oval just inside the specified rectangle with the
current grafPort"'s background pattern bkPat (in patCopy mode). 'nle
grafPort"'s pnPat and pnMode are ignored; the pen location is not
changed.

PROCEDURE lnvertOval (r: Rect);

InvertOval inverts the pixels enclosed by an oval just inside the
specified rectangle: every white pixel becomes black and every black
pixel becomes white. 'nle grafPort"'a pnPat, pnMode, and bkPat are all
ignored; the pen location is not changed.

PROCEDURE FillOval (r: 'Rect; pat: Pattern);

FillOval fills an oval just inside the specified rectangle with the
given pattern (in patCopy mode). The grafPort's pnPat, pnMode, and
bkPat are all ignored; the pen location is not changed.

3/2/83 Espinosa-lose CONFIDENTIAL /QUICK.2/QUDCDR.AW.S

QUICKDR.AW ROUTINES 51

Graphic Operations on Rounded-Corner Rectangles

PROCEDURE FrameRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER);

FrameRoundRect draws a hollow outline just inside the specified
rounded-corner rectangle, using the current grafPort'a pen pattern,
mode, and size. OValWldth and ovalReight specify the diameters of
curvature for the comers (see Figure 19). The outline is as wide aa
the pen width and as tall as the pen height. It is drawn with the
pnPat, according to the pattern transfer mode specified by pnMode. The
pen location is not changed by this procedure.

ovalWidth ovaIHeit}\t

Figure 19. Rounded-Corner Rectangle

If a region la open and being foned, the outside outline of the new
rounded-corner rectangle is mathematically added to the region-a
boundary.

PROCEDURE PaintRoundRect (r: Rect; ovalWidth,ovalReight: INTEGER);

PalntRoundRect paints the specified rounded-corner rectangle with the
current grafPort's pen pattern and 1110de. OvalWidth and ovalReight
specify the diameters of curvature for the comers. The rounded-corner
rectangle on the bitMap is filled with the pnPat, according to the
pattern transfer mde specified by pnMode. The pen location la not
changed by this procedure.

PROCEDURE EraaeRoundRect (r: Rect; ovalWidth,ovalBeight: INTEGER);

EraseRoundRect paints the specified rounded-corner rectangle with the
current grafPort-s background pattern bkPat (in petCopy mode).

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIICDRAW.S

52 QuickDraw Programmer's Guide

OvalWidth and ovalReight specify the diameters of curvature for the
corners. The grafPort'a pnPat and pnMode are ignored; the pen location
is not changed.

PROCEDURE InvertRoundRect (r: Rect; ovalWidth,ovalReight: INTEGER);

InvertRoundRect inverts the pixels enclosed by the specified
rounded-corner rectangle: every white pixel becomes black and every
black pixel becomes white. OvalWldth and ovalHeight specify the
diameters of curvature for the corners. The grafPort's pnPat, pnMode.
and bkPat are all ignored; the pen location is not changed.

PROCEDURE FillRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER; pat:
Pattern);

FillRoundRect fills the specified rounded-comer rectangle with the
given pattern (in patCopy mode). OvalWidth and ovalHeight specify the
diameters of curvature for the corners. The grafPort's pnPat, pnMode,
and bkPat are all ignored; the pen location is not changed.

Graphic Operations on Arcs and Wedges

These procedures perform graphic operations on arcs and wedge-shaped
sections of ovals. See also PtToAngle under "Calculations with
Rectangles".

PROCEDURE FrameArc (r: Rect; startAngle,arcAngle: INTEGER);

FrameArc draws an arc of the oval that fits inside the specified
rectangle, using the current grafPort's pen pattern, mode, and size.
StartAngle indicates where the arc begins and is treated md 36~.
ArcAngle defines the extent of the arc. The angles are given in
positive or negative degrees; a positive angle goes clockwise, while a
negative angle goes counterclockwise. Zero degrees is at 12 o'clock
high, 9• {or -27f) is at 3 o'clock, 181 (or -18f) is at 6 o'clock, and
271 (or -9G) is at 9 o'clock. Other angles are measured relative to
the enclosing rectangle: a line from the center of the rectangle
through its top right corner is at 45 degrees, even if the rectangle is
not square; a line through the bottom right corner is at 135 degrees,
and so on (see Figure 2f).

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUDCDllAW.5

:itartAn'1e = O

arr. Angle = -45 !

r

st srtArigle = 0

{ arr.An~e= 4S

r
PrameArc

QUICJa>ltAW ROUTINES 53

stsrtAnile = 0

1~cAn'1eu4S

FrameArc

3t~tAr,i;}e-= 0

) arcAni:]e = _45

--:1 !. =--_J
PaintAtc

Figure 2t. Operations on Arcs and Wedges

The arc is as wide as the pen width and as tall as the pen height. It
is drawn with the pnPat, according to the pattern transfer mde
specified by pnMode. The pen location is not changed by this
procedure.

(eye)
FrameArc differs from other QuickDraw procedures that
frame shapes In that the arc is not mathematically added
to the boundary of a region that is open and being
formed.

PROCEDURE PaintArc (r: Rect; startAngle,arcAngle: INTEGER);

PaintArc paints a wedge of the a,ral just inside the specified rectangle
with the current grafPort'"s pen pattern and mde. StartAngle and
arcAngle define the arc of the wedge as in FrameArc. The wedge on the
bitMap ls filled with the pnPat, according to the pattern transfer mde
specified by pnMode. The pen location is not changed by this
procedure.

PROCEDURE EraseArc (r: Rect; startAngle,arcAngle: INTEGER);

EraseArc paints a wedge of the oval just inside the specified rectangle
with the current grafPort'"e background pattern bkPat (in patCopy mode).
StartAngle and arcAngle define the arc of the wedge as in FrameArc.
The grafPort'"s pnPat and pnMode are ignored; the pen location ls not
changed.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUDCDRAW.5

S4 QuickDraw Programmer-a Guide

PROCEDURE InvertArc (r: Rect; startAngle,arcAngle: INTEGER);

InvertArc inverts the pixels enclosed by a wedge of the oval just
inside the· specified rectangle: every white pixel becomes black and
every black pixel becomes white. StartAngle and arcAngle define the
arc of the wedge as in FrameArc. The grafPort-a pnPat, pnMode, and
bkPat are all ignored; the pen location is not changed.

PROCEDURE FillArc (r: Rect; startAngle,arcAngle: INTEGER; pat:
Pattern);

FillArc fills a wedge of the oval just inside the specified rectangle
with the given pattern (in patCopy mode). StartAngle and arcAngle
define the arc of the wedge as in FrameArc. The grafPort's pnPat,
pnMode, and bkPat are all ignored; the pen location is not changed.

Calculations with Regions

(hand)
Remember that if the parameters to one of the calculation
routines were defined in different grafPorts, you must
first adjust them to be in the same coordinate system.
If you do not adjust them, the result returned by the
routine may be different from what you see on the screen.
To adjust to a common coordinate system, see
LocaltoGlobal and GlobalToLocal under "Calculations with
Points" below.

FUNCTION NewRgn: RgnBandle;

NewRgn allocates apace for a new, dynamic, variable-size region,
initializes it to the empty region ce,e,e,e,. and returas a handle to
the new region. Only this function creates new regions; all other
procedures just alter the size and shape of regions you create.
OpenPort calla NewRgn to al.locate space for the port's YisRgn and
clipRgn.

(eye)

(eye)

Except when using visRgn or clipRgn, you MUST call NewRgn
before specifying a region-a handle in any drawing or
calculation procedure.

Never refer to a region without using its handle.

PROCEDURE Dispoae1lgn (rgn: lgnHandle);

Dlepose1lgn deallocates apace for the region whose handle is supplied,
and returns the memory used by the region to the free memory pool. Use

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.5

QUICKDRAW ROUTINES 55

this only after you are completely through with a temporary region.

(eye)
Never use a region once you have deallocated it, or you
will risk being hung by dangling pointers!

PROCEDURE CopyRgn (srcRgn,dstRgn: RgnHandle);

CopyRgn copies the mathematical structure of arcRgn into dstRgn; that
is, it makes a duplicate copy of arcRgn. Once this is done, arcRgn may
be altered (or even disposed of) without affecting datRgn. <X>PYllGN
DOES NOT CREATE THE DESTINATION REGION: you must use NewRgn to create
the dstRgn before you call CopyRgn.

PROCEDURE SetEmptyRgn (rgn: RgnRandle);

SetEmptyRgn destroys the previous structure of the given region, then
sets the new structure to the empty region ce.e.e,e,.

PROCEDURE SetRectRgn (rgn: RgnRandle; left,top,right,bottom: INTEGER);

SetRectRgn destroys the previous structure of the given region, then
sets the new structure to the rectangle specified by left, top, right,
and bottom.

If the specified rectangle is empty (i.e., left)•right or top>•bottom),
the region is set to the empty region (tl,0,0,0).

PROCEDURE RectRgn (rgn: RgnHandle; r: Rect);

RectRgn destroys the previous structure of the given region, then sets
the new structure to the rectangle specified by r. Thia ia
operationally synonymous with SetRectRgn, except the input rectangle is
defined by a rectangle rather than by four boundary coordinates.

PROCEDURE OpenRgn;

OpenRgn tells QuickDraw to allocate temporary space and start saving
lines and framed shapes for later processing as a region definition.
While a region ls open, all calls to Line, LineTo, and the procedures
that draw framed shapes (except arcs) affect the outline of the region.
Only the line endpoints and shape boundaries affect the region
definition; the pen mde, pattern, and size do not affect it. In fact,
OpenRgn calla BidePen, ao no drawing occurs on the screen wile the
region is open (unless you called ShovPen just after OpenRgn, or you
called ShovPen previously without balancing it by a call to RidePen).
Since the pen hangs below and to the right of the pen location, drawing
lines with even the 81118llest pen will change bits that lie outside the
region you define.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.5

56 QuickDraw Programmer's Guide

The outline of a region is mathematically defined and infinitely thin,
and separates the bitMap into two groups of bits: those within the
region and those outside it. A region should consist of one or mre
closed loops. Each framed shape itself constitutes a loop. Any lines
drawn with Line or LineTo should connect with each other or with a
framed shape. Even though the on-screen presentation of a region is
clipped, the definition of a region is not; you can define a region
anywhere on the coordinate plane with complete disregard for the
location of various grafPort entities on that plane.

When a region is open, the current grafPort .. a rgnSave field contains a
handle to information related to the region definition. If you want to
temporarily disable the collection of lines and shapes, you can save
the current value of this field, set the field to NIL, and later
restore the saved value to resume the region definition.

(eye)
Do not call OpenRgn while another region is already open.
All open regions but the mst recent will behave
strangely.

PROCEDURE CloseRgn (dstRgn: RgnHandle);

CloseRgn stops the collection of lines and framed shapes, organizes
them into a region definition, and saves the resulting region into the
region indicated by dstRgn. You should perform one and only one
CloseRgn for every OpenRgn. CloseRgn calls ShowPen, balancing the
RidePen call made by OpenRgn.

Rere-s an example of how to create and open a region, define a barbell
shape, close the region, and draw it:

barbell:• NewRgn;
OpenRgn;

SetRect(tempRect,2f,29,3f,Sf);
FrameOval(tempRect);
SetRect(tempRect,3f,3f,8f,4f);
FrameRect(tempRect);
SetRect(tempRect,8f,2f,9.,Sf);
FrameOval(tempRect);

CloseRgn(barbell);
FillRgn(barbell,black);
DisposeRgn(barbell);

{make a new region}
{begin collecting stuff}
{form the left weight}

{form the bar}

{form the right weight}

{we-re done; save in barbell}
{draw it on the screen}
{we don .. t need you anymore ••• }

PROCEDURE OffsetRgn (rgn: RgnHandle; dh,dv: INTEGER);

OffsetRgn moves the region on the coordinate plane, a distance of dh
horizontally and dv vertically. This does not affect the acreen unless
you subsequently call a routine to draw the region. If dh and dv are
positive, the 111>vement la to the right and down; .tf either is negative,
the corresponding mvement is in the opposite direction. The region
retains its size and shape.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIICDR.AW.S

(hand)

QUICKDR.AW ROUTINES 57

OffsetRgn is an especially efficient operation, because
most of the data defining a region is stored relative to
rgnBBox and so isn't actually changed by OffsetRgn.

PROCEDURE InsetRgn (rgn: RgnHandle; dh,dv: INTEGER);

InsetRgn shrinks or expands the region. All points on the region
boundary are moved inwards a distance of dv vertically and dh
horizontally; if dh or dv is negative, the points are mved outwards in
that direction. InsetRgn leaves the region "centered" at the same
position, but moves the outline in (for positive values of dh and dv)
or out (for negative values of dh and dv). lnsetRgn of a rectangular
region works just like lnsetRect.

PROCEDURE SectRgn (arcRgnA,srcRgnB,dstRgn: RgnHandle);

SectRgn calculates the intersection of two regions and places the
intersection in a third re~ion. TRIS DOES NOT CREATE THE IESTINATION
REGION: you must use NewRgn to create the dstRgn before you call
SectRgn. The dstRgn can be one of the source regions, if desired.

If the regions do not intersect, or one of the regions is empty, the
destination is set to the empty region (0,0,0,0).

PROCEDURE UnionRgn (srcRgnA,srcRgnB,dstRgn: RgnRandle);

UnionRgn calculates the union of two regions and places the union in a
third region. THIS DOES NOT CREATE THE IESTINATION REGION: you must
use NewRgn to create the dstRgn before you call UnionRgn. The dstRgn
can be one of the source regions, if desired.

If both regions are empty, the destination is set to the empty region
(0,0,0,0).

PROCEDURE DiffRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);

DiffRgn subtracts srcRgnB from srcRgnA and places the difference in a
third region. THIS DOES NOT CREATE THE IESTINATION REGION: you must
use NewRgn to create the dstRgn before you call DiffRgn. The dstRgn
can be one of the source regions, if desired.

If the first source region is empty, the destination is set to the
empty region ce,e,0,0).

PROCEDURE XorRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);

XorRgn calculates the difference between the union and the intersection
of two regions and places the result in a third region. THIS DOES NOT

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.5

58 QuickDraw Programmer's Guide

CREATE THE DESTINATION REGION:
dstRgn before you call XorRgn.
regions, if desired.

you must use NewRgn to create the
The dstRgn can be one of the source

If the regions are coincident, the destination is set to the empty
region (0,0,0,f).

FUNCTION PtlnRgn (pt: Point: rgn: RgnHandle) : BOOLEAN;

PtinRgn checks whether the pixel below and to the right of the given
coordinate point is within the specified region, and returns TRUE if so
or FALSE if not.

FUNCTION RectinRgn (r: Rect; rgn: RgnHandle) : BOOLEAN;

RectlnRgn checks whether the given rectangle intersects the specified
region, and returns TRUE if the intersection encloses at least one bit
or FALSE if not.

FUNCTION EqualRgn (rgnA,rgnB: RgnHandle) : BOOLEAN;

EqualRgn compares the two regions and returns TRUE if they are equal or
FALSE if not. The two regions must have identical sizes, shapes, and
locations to be considered equal. Any two empty regions are always
equal.

FUNCTION EmptyRgn (rgn: RgnHandle) : BOOLEAN;

EmptyRgn returns TRUE if the region is an empty region or FALSE if not.
Some of the circumstances in which an empty region can be created are:
a NewRgn call; a CopyRgn of an empty region: a SetRectRgn or RectRgn
with an empty rectangle as an argument; CloseRgn without a previous
OpenRgn or with no drawing after an OpenRgn; OffsetRgn of an empty
region; InsetRgn with an empty region or too large an inset; SectRgn of
nonintersecting regions: UnionRgn of two empty regions; and DiffRgn or
XorRgn of two identical or nonintersecting regions.

Graphic Operations on Regions

These routines all depend on the coordinate system of the current
grafPort. If a region is drawn in a different grafPort than the one in
which it was defined, it may not appear in the proper position inside
the port.

PROCEDURE FrameRgn (rgn: RgnHandle);

FrameRgn draws a hollow outline just inside the specified region, using
the current grafPort's pen pattern, mode, and size. The outline is as

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIJCDRAW.6

QUICKDIWl ROUTINES 59

wide as the pen width and as tall as the pen height; under no
circumstances will the frame go outside the region boundary. The pen
location is not changed by this procedure.

If a region is open and being formed, the outside outline of the region
being framed is mathematically added to that region-a boundary.

PROCEDURE PaintRgn (rgn: RgnHandle);

PaintRgn paints the specified region w:lth the current grafPort-s pen
pattern and pen mde. The region on the bitMap is filled with the
pnPat, according to the pattern transfer 111>de specified by pnMode. The
pen location is not changed by this procedure.

PROCEDURE EraseRgn (rgn: RgnRandle);

EraseRgn paints the specified region w:lth the current grafPort-s
background pattern bkPat (in patCopy mde). The grafPort's pnPat and
pnMode are ignored; the pen location is not changed.

PROCEDURE InvertRgn (rgn: RgnHandle);

InvertRgn inverts the pixels enclosed by the specified region: every
white pixel becomes black and every black pixel becomes white. The
grafPort's pnPat, pnMode, and bkPat are all ignored; the pen location
1s not changed.

PROCEDURE FillRgn (rgn: RgnHandle; pat: Pattern);

FillRgn fills the specified region w:lth the given pattern (in patCopy
mode). The grafPort'a pnPat, pnMode, and bkPat are all ignored; the
pen location is not changed.

Bit Transfer Operations

PROCEDURE ScrollRect (r: Rect; dh,dv: INTEGER; updateRgn: RgnRandle);

ScrollRect shifts c·acrolla·) those bits inside the intersection of the
specified rectangle, viaRgn, clipRgn, portRect, and portBita.'bounds.
The bits are shifted a distance of dh horizontally and dv 'Yl!rtically.
The positive directions are to the right and down. No other bits are
affected. Bits that are shifted out of the scroll area are loat; they
are neither placed outside the area nor aaved. The grafPort'a
background pattern bkPat fills the apace created by the scroll. In
addition, updateRgn la changed to the area filled w:lth bkPat (see
Figure 21).

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUDCDJtAW.6

60 QuickDraw Programmer-a Guide

After S,;roUR~1..-:r<,tstRe,:r,-10,5' .••)
sJ

--------'~---- -
dsr.R~cr. ,o

Ui1«ta.~ Rgn.

Figure 21. Scrolling

Figure 21 shows that the pen location after a ScrollRect is in a
different position relative to what was scrolled in the rectangle. The
entire scrolled item has been moved to different coordinates. To
restore it to its coordinates before the ScrollRect, you can use the
SetOrigin procedure. For example, suppose the dstRect here is the
portRect of the grafPort and its top left comer is at (95,12f).
SetOrigin(ltS,115) will offset the coordinate system to compensate for
the scroll. Since the clipRgn and pen location are not offset, they
move down and to the left •

PROCEDURE CopyBits (srcBits,dstBita: BitMap; srcRect,dstRect: Rect;
mode: INTEGER.; maakRgn: RgnRandle);

CopyBits transfers a bit image between any two bitMapa and clips the
result to the area specified by the maskRgn parameter. The transfer
may be performed in any of the eight source transfer 1110des. The result
is always clipped to the maskRgn and the boundary rectangle of the
destination bitMap; if the destination bitMap is the current grafPort-s
portBits, it is also clipped to the intersection of the grafPort-s
clipRgn and visRgn. If you do not want to clip to a maskRgn, just pass
NIL for the maskRgn parameter.

The datRect and 11111.akllgn coordinates are in terms of the dstBits.bounds
coordinate system, and the srcRect coordinates are in terms of the
srcBits.bounds coordinates.

The bits enclosed by the source rectangle are transferred into the
destination rectangle according to the rules of the chosen 11>de. The
source transfer mdes are as follows:

srcCopy
srcOr

3/2/83 Espinosa-Rose

srcXor
srcBic

notSrcCopy
notSrcOr

CONFIDENTIAL

notSrcXor
notSrcBic

/QUICK.2/QUIKDRAW.6

QUICKDRAW ROUTINES 61

The source rectangle is completely aligned with the destination
rectangle; if the rectangles are of different sizes, the bit image is
expanded or shrunk as necessary to fit the destination rectangle. For
example, if the bit image is a circle in a square aource rectangle, and
the destination rectangle is not square, the bit image appears as an
oval in the destination (see Figure 22).

Pictures

Source llitMaJ)

S<iurce
lran~fer

Mo4e

Source
Tr~,!er

£1;1,uct BitM~~ Mol!e

De,tinatitJ1\ !iitHap

DP.3tirutfon lHtM.i9

Figure 22. Operation of CopyBits

FUNCTION OpenPicture (picFrame: Rect) : PicRandle;

maskign
=NIL

OpenPicture returns a handle to a new picture which has the given
rectangle as its picture frame, and tells Quick'Draw to start saving as
the picture definition all calla to drawing routines and all picture
comments (if any).

OpenPicture calla RidePen, so no drawing occurs on the screen while the
picture la open (unless you call ShowPen just after OpenPicture, or you
called ShowPen previously without balancing it by a call to RidePen).

When a picture ia open, the current grafPort's picSave field contains a
handle to information related to the picture definition. If you want
to temporarily disable the collection of routine calla and picture
comments, you can save the current value of this field, set the field
to NIL, and later restore the saved value to resume the picture
definition.

(eye)
Do not call OpenPicture while another picture is already
open.

3/2/83 Eapinoaa-Roae CONFIDENTIAL /QUICK.2/QUIKDRAW.6

62 QuickDraw Programmer-a Guide

PROCEDURE ClosePicture;

ClosePicture tells QuicltDraw to atop saving routine calla and picture
comments as the definition of the currently open picture. You should
perform one and only one ClosePicture for every OpenPicture.
ClosePicture calla ShowPen, balancing the RidePen call made by
OpenPicture.

PROCEDURE PicComment (kind,dataSize: INTEGER; dataHandle: (J)Randle);

PicComment inserts the specified comment into the definition of the
currently open picture. Kind identifies the type of comment.
DataRandle is a handle to additional data if desired, and dataSize is
the size of that data in bytes. If there is no additional data for the
comment, dataRandle should be NIL and dataSize should be~- The
application that processes the comment must include a procedure to do
the processing and store a pointer to the procedure in the data
structure pointed to by the grafProca field of the grafPort (see
"Customizing QuickDraw Operations").

PROCEDURE DrawPicture (myPicture: PicRandle; dstRect: Rect);

DrawPicture draws the given picture to scale in dstRect, expanding or
shrinking it as necessary to align the borders of the picture frame
with dstRect. DrawPicture passes any picture comments to the procedure
accessed indirectly through the grafProcs field of the grafPort (see
PicComment above).

PROCEDURE KillPicture (myPicture: PicHandle);

KillPicture deallocates space for the picture whose handle is supplied,
and returns the memory used by the picture to the free memory pool.
Use this only when you are completely through with a picture.

Calculations with Polygons

FUNCTION OpenPoly: PolyRandle;

OpenPoly returns a handle to a new polygon and tells QuickDraw to start
saving the poly10n definition as specified by calla to line-drawing
routines. While a poly10n 1s open, all calls to Line and LineTo affect
the outline of the polygon. Only the line endpoints affect the polygon
definition; the pen mde, pattern, and size do not affect it. ln fact,
OpenPoly calla RidePen, so no drawing occurs on the screen while the
polygon is open (unless you call ShowPen just after OpenPoly, or you
called ShowPen previously without balancing it by a call to BidePen).

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAJJ.6

QUICKDRAW ROUTINES 63

A polygon should consist of a sequence of connected lines. Even though
the on-screen presentation of a polygon ia clipped, the definition of a
polygon ia not; you can define a polygon anywhere on the coordinate
plane with c011plete disregard for the location of various grafPort
entitles on that plane.

When a polygon is open, the current grafPort's polySave field contains
a handle to information related to the polygon definition. If you want
to temporarily disable the polygon definition, you can save the current
value of this field, set the field to NIL, and later restore the saved
value to resume the polygon definition.

(eye)
Do not call OpenPoly while another polygon is already
open.

PROCEDURE ClosePoly;

ClosePoly tells QuickDraw to stop saving the definition of the
currently open polygon and c011\putes the polyBBox rectangle. You should
perform one and only one ClosePoly for every OpenPoly. ClosePoly calla
ShowPen, balancing the HidePen call made by OpenPoly.

Here's an example of how to open a polygon, define it as a triangle,
close it, and draw it:

triPoly :• OpenPoly;
MoveTo(300,190);
LineTo(4f0,2fe);
LineTo(200,200);
LineTo(3ff,lff);

Close Poly;
FillPoly(triPoly,gray);
KillPoly(triPoly);

{save handle and begin collecting stuff}
{ 111>ve to first point and }
{ form }
{ the }
{ triangle }
{atop collecting stuff}
{draw it on the screen}
{we're all done}

PROCEDURE KillPoly (poly: PolyRandle);

RillPoly deallocates space for the polygon whose handle is supplied,
and returns the memory used by the polygon to the free memory pool.
Use this only after you are completely through with a polygon.

PROCEDURE OffsetPoly (poly: PolyHandle; dh,dv: INTEGER);

OffsetPoly moves the polygon on the coordinate plane, a distance of dh
horizontally and dv vertically. Thia does not affect the screen unless
you subsequently call a routine to draw the polygon. If dh and dv are
positive, the movement is to the right and down; if either ia negative,
the corresponding a,vement is in the opposite direction. The polygon
retains its shape and size.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUDCDRAW.6

64 QuickDraw Programmer's Guide

(hand)
OffsetPoly is an especially efficient operation, because
the data defining a polygon is stored relative to
polyStart and so isn't actually changed by OffsetPoly.

Graphic Operations on Polygons

PROCEDURE FramePoly (poly: PolyHandle);

FramePoly plays back the line-drawing routine calls that define the
given polygon, using the current grafPort's pen pattern, mode, and
size. The pen will hang below and to the right of each point on the
boundary of the polygon; thus, the polygon drawn will extend beyond the
right and bottom edges of polyAA.polyBBox by the pen width and pen
height, respectively. All other graphic operations occur strictly
within the boundary of the polygon, as for other shapes. You can see
this difference in Figure 23, where each of the polygons is shown with
its polyBBox.

F ramePol1· PaintPoly

Figure 23. Drawing Polygons

If a polygon is open and being formed, FramePoly affects the outline of
the polygon just as if the line-drawing routines themselves had been
called. If a region is open and being formed, the outside outline of
the polygon being framed is mathematically added to the region's
boundary.

PROCEDURE PaintPoly {poly: PolyRandle);

PaintPoly paints the specified polygon with the current grafl'ort'a pen
pattern and pen mode. The polygon on the bitMap is filled with the
pnPat, according to the pattern transfer mde specified by pnMode. The

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDJtAW.6

QUICICDRAW ROUTINES 65

pen location ta not changed by this procedure.

PROCEDUltE EraaePoly (poly: PolyRandle);

ErasePoly paints the specified polygon with the current grafPort-a
background pattern bkPat (in patCopy 110de). The pnPat and pnMode are
ignored; the pen location ia not changed.

PROCEDURE InvertPoly (poly: PolyHandle);

InvertPoly inverts the pixels enclosed by the specified polygon: every
white pixel becomes black and every black pixel becomes white. The
grafPort's pnPat, pnMode, and bkPat are all ignored; the pen location
is not changed.

PROCEDUltE PillPoly (poly: PolyHandle; pat: Pattern);

FillPoly fills the specified polygon with the given pattern (in patCopy
mode). The grafPort's pnPat, pnMode, and bkPat are all ignored; the
pen location is not changed.

Calculations with Points

PROCEDURE AddPt (arcPt: Point; VAR dstPt: Point);

AddPt adds the coordinates of srcPt to the coordinates of dstPt, and
returns the result in dstPt.

PROCEDURE SubPt (arcPt: Point; VAR dstPt: Point);

SubPt subtracts the coordinates of srcPt from the coordinates of dstPt,
and returns the result in datPt.

PROCEDURE SetPt (VAR pt: Point; h,v: INTEGER);

SetPt assigns two integer coordinates to a variable of type Point.

FUNCTION EqualPt (ptA,ptB: Point) : BOOLEAN;

EqualPt compares the two points and returns true if they are equal or
FALSE if not.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUDCJ)RAW.6

66 QuickDraw Programmer-a Guide

PROCEDURE LocalToGlobal (VAR pt: Point);

LocalToGlobal converts the given point from the current grafPort-a
local coordinate system into a global coordinate ayatem with the origin
(f,0) at the top left corner of the port-a bit image (such aa the
screen). Thia global point can then be compared to other global
points, or be changed into the local coordinates of another grafPort.

Since a rectangle is defined by two points, you can convert a rectangle
into global coordinates by performing two LocalToGlobal calls. You can
also convert a rectangle, region, or polygon into global coordinates by
calling OffsetRect, OffsetRgn, or OffaetPoly. For examples, see
GlobalToLocal below.

PROCEDURE GlobalToLocal (VAR pt: Point);

GlobalToLocal takes a point expressed in global coordinates (with the
top left corner of the bitMap aa coordinate (f,f)) and converts it into
the local coordinates of the current grafPort. The global point can be
obtained with the LocalToGlobal call (see above). For aample, suppose
a game draws a "ball" within a rectangle named ballRect, defined in the
grafPort named gamePort (aa illustrated below in Figure 24). If you
want to draw that ball in the grafPort named selectPort, you can
calculate the ball's aelectPort coordinates like this:

SetPort(gamePort);
selectBall :• ballRect;
LocalToGlobal(selectBall.topLeft);
LocalToGlobal(selectBall.botRight);

SetPort(selectPort);
GlobalToLocal(selectBall.topLeft);
GlobalToLocal(selectBall.botRight);
FillOval(selectBall,ballColor);

3/2/83 Espinosa-Rose CONFIDENTIAL

{start in origin port}
{ make a copy to be mved}
{put both corners into }
{ global coordinates }

{switch to destination
{put both corners into

port}
}
} { these local coordinates

{now you have the ball!}

/QUICK.2/QUIKDRAW.6

QUIClCDltAW ROUTINES 67

so ~o
40. _, : : '. : : : '. : : :

10 - · } .. ~. ~ ; ; ; ; .} ..) ...) ,.. ..: .. -r-r·
:

110-) ... ; ..
... ! ! : : . : : : : :

./, .. ; ; H~ -~ oO • : ··l .: __ :, .. 0 30 ?O
' ' ' 0- ... ' --'·-'···' ·'·-'-' ... =.: .. : ...

30 - :::i:::i::; ; ; ; ; ::l:::l:::t::
"---1---' .. , ~·~'~';;.,ta-- ~,

LiJcalfoGlllbl!l "T'!.. Globa!Tol.ocal
80 - ·-+"i": , , , , +++· ····: ··r·;.: ··: ··: ·: : -: ··:.

f : : : : :' : : ; :

Figure 24. Converting between Coordinate Systems

You can see from Figure 24 that LocalToGlobal and GlobalToLocal simply
offset the coordinates of the rectangle by the coordinates of the top
left corner of the local grafPort-s boundary rectangle. You could also
do this with OffsetRect. In fact, the way to convert regions and
polygons from one coordinate system to another is with OffsetRgn or
OffsetPoly rather than LocalToGlobal and GlobalTotocal. For example,
if myRgn were a region enclosed by a rectangle having the same
coordinates as ballRect in gamePort, you could convert the region to
global coordinates vith

OffsetRgn(myRgn, -21, -41);

and then convert it to the coordinates of the selectPort grafPort with

OffsetRgn(myRgn, 15, -3f);

Miscellaneous Utilities

FUNCTION Random: INTEGER;

Thia function returns an integer, uniformly distributed pseudo-random,
in the range from -32768 through 32767. The value returned depends on
the global variable randSeed, which InitGraf initializes to l; you can
start the aequence over again from where it began by resetting randSeed
to 1.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUilCDR.AW.6

68 QuickDraw Programmer-, Guide

FUNCTION GetP1xel (h,v: INTEGER) : BOOLEAN;

GetPixel looks at the pixel associated with the given coordinate point
and returns TRUE if it ta black or FALSE if it is white. The aelected
pixel la immediately below and to the right of the point whose
coordinates are given in hand v, in the local coordinates of the
current grafPort. There ta no guarantee that the specified pixel
actually belongs to the port, however; it may have been drawn by a port
overlapping the current one. To see if the point indeed belongs to the
current port, perform a Ptinllgn(pt,thePort·.visRgn).

PROCEDURE StuffHex (thingPtr: QDPtr; a: Str255);

StuffHex pokes bits (expressed as a string of hexadecimal digits) into
any data structure. This is a good way to create cursors, patterns, or
bit images to be "stamped" onto the screen with CopyBits. For example,

places a striped pattern into the pattern variable stripes.

(eye)
There is no range checking on the size of the destination
variable. It-a easy to overrun the variable and destroy
something if you don-t know what you-re doing.

PROCEDURE ScalePt (VAR pt: Point; arcRect,dstRect: Rect);

A width and height are passed in pt; the horizontal cmponent of pt is
the width, and the vertical component of pt is the height. ScalePt
scales these measurements as follows and returns the result in pt: it
multiplies the given width by the ratio of dstRect-s width to srcRect-s
width, and lllUltiplies the given height by the ratio of dstRect-a height
to srcRect-s height. In Figure 25, where datRect-s width is twice
srcRect-s width and its height is three times srcRect-s height, the pen
width is scaled from 3 to 6 and the pen height ia scaled from 2 to 6.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.6

QUICKDRAW ROUTINES 69

0 l 16 tt
t I I I

Scale.PS ,cales i-n .si:ze (3,l) io (6,6) .
.MapPt. ma~ point. (3,2.) 1.0 (l8,7).

Figure 2S. ScalePt and KapPt

PROCEDURE MapPt (VAR pt: Point; arcRect,datRect: Rect);

Given a point within arcRect, MapPt maps it to a similarly located
point within datRect (that is, to where it would fall if it were part
of a drawing being expanded or shrunk to fit dstRect). The result is
returned in pt. A corner point of srcRect would be mapped to the
corresponding corner point of dstRect, and the center of arcRect to the
center of datRect. In Figure 25 above, the point (3,2) in srcRect 1•
mapped to (18,7) in datRect. FromRect and dstRect may overlap, and pt
need not actually be within srcRect.

(eye)
Remember, if you are going to draw inside the rectangle
in datRect, you will probably also want to scale the pen
size accordingly with ScalePt.

PROCEDURE HapRect (VAR r: Rect; arcRect,dstRect: Rect);

Given a rectangle within srcRect, KapRect maps it to a similarly
located rectangle within datRect by calling MapPt to map the top left
and bottom right corners of the rectangle. The result is returned in
r.

PROCEDURE MapRgn (rgn: RgnHandle; srcRect,detRect: Rect);

Given a region within srcRect, MapRgn maps it to a similarly located
region within datRect by calling KapPt to map all the points in the
region.

3/2/83 Eapinoaa-Roae OONFIDENTIAL /QUICK.2/QUIICDllAW.6

70 QuickDraw Programmer's Guide

PROCEDURE MapPoly (poly: PolyRandle; srcRect,dstRect: llect);

Given a polygon within arcllect, MapPoly maps it to a similarly located
polygon within dstRect by calling MapPt to map all the points that
define the polygon.

CUSTOMIZING QUICICDRAW OPERATIONS

For each shape that QuickDraw knovs how to draw, there are procedures
that perform these basic graphic operations on the shape: frame,
paint, erase, invert, and fill. Those procedures in turn call a
low-level drawing routine for the shape. For example, the FrameOval,
PaintOval, EraseOval, lnvertOval, and FillOval procedures all call a
low-level routine that draws the oval. For each type of object
QuickDraw can draw, including text and lines, there is a pointer to
such a routine. By changing these pointers, you can install your own
routines, and either completely override the standard ones or call them
after your routines have 111>dified parameters as necessary.

Other low-level routines that you can install in this way are:

- The procedure that does bit transfer and is called by CopyBits.

- The function that measures the width of text and is called by
CharWidth, StringWidth, and TextWidth.

- The procedure that processes picture comments and is called by
DrawPicture. The standard such procedure ignores picture
comments.

- The procedure that saves drawing commands as the definition of a
picture, and the one that retrieves them. Thia enables the
application to draw on remote devices, print to the disk, get
picture input from the disk, and support large pictures.

The grafProca field of a grafPort determines which low-level routines
are called; if it contain• NIL, the standard routines are called, ao
that all operations in that grafPort are done in the standard ways
described in this manual. You can set the graf Procs field to point to
a record of pointers to routines. The data type of grafl'rocs is
QDProcsPtr:

3/2/83 Rose CONFIDENTIAL /QUICK.2/QUIICDRMl.7

CUSTOMIZING QOICICDllAW OPERATIONS 71

TYPE QDProcsPtr • •qnProcs;
QDProcs • 1tECOtlD

textProc:
lineProc:
rectProc:
rllectProc:
ovalProc:
arcProc:
polyProc:
rgnProc:
bitsProc:
commentProc:
txMeaaProc:
getPicProc:
putPlcProc:

END;

QDPtr
QDPtr
QDPtr
QDPtr
QDPtr
QDPtr
QDPtr
QDPtr
QDPtr
(J)Ptr
(J)Ptr
QDPtr
(J)Ptr

{text drawing}
{line drawing}
{rectangle drawing}
{roundRect draviag}
{oval drawing}
{arc/wedge drawing}
{polygon drawing}
{region drawing}
{bit transfer}
{picture comment processing}
{text width measurement}
{picture retrieval}
{picture saving}

To assist you in setting up a QDProca record, QuickDraw provides the
following procedure:

PROCEDURE SetStdProcs (VAR. procs: QDProca);

Thia procedure sets all the fields of the given QDProcs record to point
to the standard low-level routines. You can then change the ones you
wish to point to your own routines. For example, if your procedure
that processes picture comments la named MyCommenta, you will store
@MyCommenta in the commentProc field of the QDProca record.

The routines you install must of course have the same calling sequences
as the standard routines, which are described below. The standard
drawing routines tell which graphic operation to perform fr0111 a
parameter of type GrafVerb.

TYPE GrafVerb • (frame, paint, erase, invert, fill);

When the grafVerb is fill, the pattern to use when filling la passed in
the fillPat field of the grafPort.

PROCEDURE StdText (byteCount: INTEGER.; textBuf: QDPtr; numer,denom:
INTEGER);

StdText le the standard low-level routine for drawing text. It draws
text from the arbitrary structure in memory specified by tatBuf,
starting from the first byte and continuing for byteCount bytes. Numer
and denom •peclfy the scaling, if any: mamer.v aver denom.v gives the
vertical scaling, and mamer.h aver denom.h gives the horizontal
scaling.

PROCEDUU StdLine (nevPt: Point);

StdLine ta the standard low-level routine for drawing a line. It drava
a line from the current pen location to the location specified (in

3/2/83 Ro•e CX>NFIDENTL\L /QUICK.2/QUllCDllAW.7

72 QuickDraw Programmer-a Guide

local coordinates) by newPt.

PROCEDURE StdRect (verb: GrafVerb; r: Rect);

StdRect is the standard low-level routine for drawing a rectangle. It
draws the given rectangle according to the specified grafVerb.

PROCEDURE StdRRect (verb: GrafVerb; r: Rect; ovalwidth,ovalHeight:
INTEGER);

StdRRect is the standard low-level routine for drawing a rounded-corner
rectangle. It draws the given rounded-corner rectangle according to
the specified grafVerb. OvalWidth and ovalHeight specify the diameters
of curvature for the corners.

PROCEDURE StdOval (verb: GrafVerb; r: Rect);

StdOval is the standard low-level routine for drawing an O'lal. It
draws an oval inside the given rectangle according to the specified
grafVerb.

PROCEDURE StdArc (verb: GrafVerb; r: Rect; startAngle,arcAngle:
INTEGER);

StdArc is the standard low-level routine for drawing an arc or a wedge.
It draws an arc or wedge of the oval that fits inside the given
rectangle. The grafVerb specifies the graphic operation; if it's the
frame operation, an arc la drawn; otherwise, a wedge is drawn.

PROCEDURE StdPoly (verb: GrafVerb; poly: PolyHandle);

StdPoly is the standard low-level routine for drawing a polygon. It
draws the given polygon according to the specified grafVerb.

PROCEDURE StdRgn (verb: GrafVerb; rgn: RgnRandle);

StdRgn is the standard low-level routine for drawing a region. It
draws the given region according to the specified grafVerb.

PROCEDURE StdBits (VAR srcBita: BitMap; VAR arcllect,dstllect: ltect;
mode: INTEGER; maskRgn: RgnHandle);

StdBits is the standard low-level routine for doing bit tranafer. It
transfers a bit image between the given bitMap and thePort·.portBita,
just as if CopyBita were called with the same parameters and with a
destination bitMap equal to thePort·.portBita.

3/2/83 Rose CONFIDENTIAL /QUICK.2/QUilCI)ItAW.7

CUSTOMIZING QUICKDRAW OPERATIONS 73

PROCEDURE StdComment (kind,dataSize: INTEGER; dataHandle: Ql)Handle);

StdC01111ent is the standard low-level routine for processing a picture
comment. Und identifiea the type of comment. 'DlltaHandle la a handle
to additional data, and dataSize is the aize of that data in bytes. If
there is no additional data for the command, dataHandle will be NIL and
dataSize will be~- StdComment simply ignores the comment.

FUNCTION StdTxMeae (byteCount: INTEGER; textBuf: QDPtr; VAR
numer,denom: Point; VAR info: Fontinfo) : INTEGER;

StdTxHeas is the standard low-level routine for measuring text width.
It returns the width of the text stored in the arbitrary structure in
memory specified by textBuf, starting with the first byte and
continuing for byteCount bytes. Numer and denom specify the acaling as
in the StdText procedure; note that StdTxMeas may change them.

PROCEDURE StdGetPic (dataPtr: Ql)Ptr; byteCount: INTEGER);

StdGetPic is the standard low-level routine for retrieving information
from the definition of a picture. It retrieves the next byteCount
bytes from the definition of the currently open picture and stores them
in the data structure pointed to by dataPtr.

PROCEDURE StdPutPic (dataPtr: Ql)Ptr; byteCount: INTEGER);

StdPutPic is the standard low-level routine for saving information as
the definition of a picture. It saves as the definition of the
currently open picture the drawing commands stored in the data
structure pointed to by dataPtr, atarting with the first byte and
continuing for the next byteCount bytes.

USING QUICKDRAW FROM ASSEMBLY LANGUAGE

All Macintosh User Interface Toolbox routines can be called from
assembly-language programs as well as from Paacal. When you write an
assembly-language program to use these routine•, though, you muat
emulate Pascal 1 a parameter passing and variable transfer protocola.

Thia section discusses how to use the QuickDrav constants, global
variables, data types, procedures, and functions from assembly
language.

The primary aid to assembly-language programmers 1• a file named
GRAFTYPES.TEXT. If you use .INCLUDE to include thia file when you
assemble your program, all the QuickDraw coutanta, offaeta to
locations of global variables, and offsets into the fields of
structured types will be available in symbolic form.

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUDCDRAW.A

74 QuickDraw Programmer's Guide

Constanta

QuickDraw constants are stored in the GRAFl'YPES.TEXT file, and you can
use the constant values symbolically. For example, if you've loaded
the effective address of the thePort·.txMode field into address
register A2, you can set that field to the srcXor mde with this
statement:

MOVE.W ISRCXOR.(A2)

To refer to the number of bytes occupied by the QuickOraw global
variables, you can use the constant GRAFSIZE. When you call the
lnitGraf procedure, you must pass a pointer to an area at least that
large.

Data Types

Pascal's strong typing ability lets you write Pascal programs without
really considering the size of a variable. But in assembly language,
you must keep track of the size of every variable. The sizes of the
standard Pascal data types are as follows:

.!U! Size
INTEGER Word (2 bytes)
Longlnt Long (4 bytes)
BOOLEAN Word (2 bytes)
CHAR Word (2 bytes)
REAL Long (4 bytes)

INTEGERs and Longlnts are in two's complement form; BOOLEANa have their
boolean value in bit 8 of the word (the low-order bit of the byte at
the same location); CRARs are stored in the high-order byte of the
word; and REALs are in the KCS standard format.

The QuickOraw simple data types listed below are constructed out of
these fundamental types.

.!lE!
QDPtr
QDRandle
Word
Str255
Pattern
B1tsi6

Size
Long (4 bytes)
Long (4 bytes)
Long (4 bytes)
Page (256 bytes)
8 bytes
32 bytes

Other data types are constructed as records of variables of the above
types. The size of such a type is the sum of the sizes of all the
fields in the record; the fields appear in the variable with the first
field in the lowest address. For example, consider the data type
BitMap, which is defined like this:

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.A

USING QUICKDRAW FROM ASSEMBLY LANGUAGE 75

TYPE BitMap • RECORD
baseAddr: (J)Ptr;
rovBytea: INTEGER;
bounds: Rect

END;

This data type would be arranged in memory as aeven words: a long for
the baseAddr, a word for the rowBytes, and four vorda for the top,
left, right, and bottom parts of the bounds rectangle. To assist you
in referring to the fields inside a variable that has a structure like
this, the GRAFTYPES.TEXT file defines constants that you can use as
offsets into the fields of a structured variable. For example, to mve
a bitMap's rowBytes value into D3, you would execute the following
instruction:

MOVE.W MYBITMAP+ROWBYIES,D3

Displacements are given in the GRAFl'YPES.TErr file for all fields of
all data types defined by QuickDraw.

To do double indirection, you perfom an LEA indirectly to obtain the
effective address from the handle. For example, to get at the top
coordinate of a region's enclosing rectangle:

(eye)

MOVE.L MYHANDLE,Al
MOVE.L (Al),Al
MOVE.W RGNBBOX+TOP(Al),D3

; Load handle into Al
; Use handle to get pointer
; Load value using pointer

For regions (and all other variable-length structures
with handles), you must not 111>ve the pointer into a
register once and just continue to use that pointer; you
must do the double indirection each time. Every
QuickDraw, Toolbox, or nemory management call you make
can possibly trigger a heap compaction that renders all
pointers to movable heap items (like regions) invalid.
The handles will remain valid, but pointers you-ve
obtained through handles can be rendered invalid at any
subroutine call or trap in your program.

Global Variables

Global variables are atored in a special aection of Macintosh low
memory; register AS always points to this aection of memory. The
GllAFTYPES.TEn' file defines a constant CRAFGLOB that points to the
beginning of the QuickDraw variables in this apace, and other constants
that point to the individual variables. To access one of the
variables, put GR.Al"GLOB in an addreaa register, sum the conatants, and
index off of that register. For m:ample, if you want to mov the
horizontal coordinate of the pen location for the current grafPort,
which the global variable thePort points to, you can give the following
instructions:

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUiltDllAW.A

76 QuickDraw Programmer's Guide

MOVE.L GRAFGLOB(A5),A0
MOVE.L THEPORT(Af),Al
MOVE.W PNLOC+H(Al),Df

Procedures and Functions

; Point to QuickDraw globals
; Get current grafPort
; Get thePort·.pnLoc.h

To call a QuickDraw procedure or function, you must push all parameters
to it on the stack, then JSR to the function or procedure. When you
link your program with QuickDraw, these JSRa are adjusted to refer to
the jump table in low RAM, ao that a JSR into the table redirects you
to the actual location of the procedure or function.

The only difficult part about calling QulckDraw procedures and
functions is stacking the parameters. You must follow some strict
rules:

- Save all registers you wish to preserve BEFORE you begin pushing
parameters. Any QuickDraw procedure or function can destroy the
contents of the registers At,, Al, De, Dl, and D2, but the others
are never altered.

- Push the parameters in the order that they appear in the Pascal
procedural interface.

- For booleans, push a byte; for integers and characters, push a
word; for pointers, handles, long integers, and reals, push a
long.

- For any structured variable longer than four (4) bytes, push a
pointer to the variable.

- For all VAR parameters, regardless of size, push a pointer to the
variable.

- When calling a function, nRST push a null entry equal to the size
of the function result, THEN push all other parameters. The
result will be left on the stack after the function returns to
you.

This makes for a lengthy interface, but it also guarantees that you can
mock up a Pascal version of your program, and later translate it into
assembly code that works the same. For sample, the Pascal statement

blackness:• GetPixel(Sf,mousePos.v);

would be written in assembly language like this:

CLR.W -(SP) ; Save apace for boolean result
MOVE.W #Sf,-(SP) . Push constant Sf (decimal) • MOVE.W MOUSEPOS+V,-(SP) ; Push the value of muaePos.v
JS'R CZTPIXEL . Call routine • MOVE.W (SP)+,BLACKNESS ; Fetch result from stack

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRASI.A

USING QUICKDRAW FROM ASSEMBLY LANGUAGE 77

Thia ia a simple example, pushing and pulling word-long constants.
Normally, you'll be pushing mre pointers, uaing the PEA (Puah
Effective Address) instruction:

FillRoundRect(myRect,l,thePort·.pnsize.v,white);

PEA
HOVE.W
MOVE.L
MOVE.L
MOVE.W
PEA
JSR

MYRECT
11,-(SP)
GRAFGtOB(A5),A0
tm:PORT(A0),Al
PNSIZE+V(Al),-(SP)
WHITE(At)
FILLROUNDR.ECT

; Push pointer to myRect
Push constant 1
Point to QuickDraw globals
Get current grafPort
Push wlue of thePort·.pnSize.v
Push pointer to global variable white
Call the subroutine

To call the TextFace procedure, push a word in uhich each of seven bits
represents a stylistic variation: set bit G for bold, bit 1 for
italic, bit 2 for \D\derline, bit 3 for outline, bit 4 for shadow, bit 5
for condense, and bit 6 for extend.

3/2/83 Eapinosa-Rose CONFIDENTIAL /QUICK.2/QUIKI>RAJJ.S

78 QuickDrav Programmer's Guide

SUMMARY OF QUICICDRAW

CONST srcCopy - f;
srcOr - 1;
srcXor -2;
srcBic -3;
notSrcCopy • 4• •
notSrcOr -5;
notSrcXor -6;
notSrcBic -7· • patCopy -8;
patOr -9;
patXor -lf;
patBic -11;
notPatCopy • 12;
notPatOr -13;
notPatXor -14;
notPatBic -15;

blackColor • 33;
whiteColor • 30;
redColor • 205;
greenColor • 341;
blueColor • 409;
cyanColor • 273;
magentaColor • 137;
yellovColor • 69;

picLParen • 11;
picRParen • 1;

TYPE QDByte • -128 •• 127;
QDPtr • •QDByte;
QDHandle • •QDPtr;
Str255 • STRING[255);
Pattern • PACKED ARRAY [f •• 7] OF f •• 255;
Bitsl6 • ARRAY [f •• 15) OF INTEGER;
GrafVerb • (frame, paint, erase, invert, fill);

Styleltem • (bold, italic, underline, outline, shadow, condense,
extend);

Style • SET OF Styleitem;

Fontinfo• RECORD
ascent:
descent:
widMax:
leading:

END;

3/2/83 Espinosa-Rose

INTEGER;
INTEGER;
INTEGER;
INTEGER

CONFIDENTIAL /QUICX.2/QUIKDRAW.S

SUMMARY OF QOICICDllAW 79

VHSelect • (v,h);
Point • RECORD CASE INTEGER OF

f: (v: INTEGER;
h: INTEGER);

1: (vh: ARRAY[VRSelect] OF INTEGER)

END;

Rect • RECORD CASE INTEGER OF

\I: (top:
left:
bottom:
right:

INTEGER;
INTEGER;
INTEGER;
INTEGER);

1: (topLeft: Point;
botRight: Point)

END;

BitMap • RECORD
baseAddr:
rowBytes:
bounds:

END;

Cursor• RECORD
data:
mask:
hotspot:

END;

PenState • RECORD
pnLoc:
pnSize:
pnMode:
pnPat:

END;

RgnRandle • ""ltgnPtr;
RgnPtr • ""ltegion;
Region • RECORD

(J)Ptr;
INTEGER;
Rect

Bitsl6;
Bitsl6;
Point

Point;
Point;
INTEGER;
Pattern

rgnSize: INTEGER;
rgnBBox: Rect;
{mre data if not rectangular}

END;

3/2/8) Eapinoaa-Roae · CONFIDENTIAL /QUICK.2/QUIICl>llAW.S

80 QuicltDraw Programmer's Guide

PicRandle • "'PicPtr;
PicPtr • "'Picture;
Picture • RECORD

PolyHandle
PolyPtr
Polygon

picSize: INTEGER;
picPrame: Rect;
{picture definition data}

END;

• •PolyPtr;
• "'Polygon;

INTEGER;
ttect;

• RECORD
polySize:
polyBBox:
polyPoints: ARRAY [f •. t] OP Point

END;

QDProcsPtr • •QDProcs;
QDProca • RECORD

textProc:
lineProc:
rectProc:
rRectProc:
ovalProc:
arcProc:
polyProc:
rgnProc:
bitsProc:
commentProc:
txMeasProc:
getPicProc:
putPicProc:

END;

3/2/83 Eapino1a-Roae

QDPtr
QDPtr
QDPtr
QDPtr
QDPtr
QDPtr
QDPtr
QDPtr,
QDPtr;
(J)Ptr;
QDPtr;
QDPtr;
QDPtr

CONFIDENTIAL /QUICIC.2/QUDCDRMI.S

SUMMARY OF QUICICDllAW 81

GrafPtr • ·Graf Port;
GrafPort • RECORD

device: INTEGER;
portBita: BitMap;
portRect: Rect;
viaRgn: RgnRandle;
clipRgn: RgnRandle;
bkPat: Pattern:
f illPat: Pattern;
pnLoc: Point;
pnSize: Point;
pnMode: INTEGER;
pnPat: Pattern;
pnVis: INTEGER;
txFont: INTEGER;
txFace: Style;
txMode: INTEGER;
txSize: INTEGER;
spExtra: INTEGER;
fgColor: Longint;
bk.Color: Longint;
colrBit: INTEGER;
patStretch: INTEGER;
pie Save: QDHandle;
rgnSave: QDRandle;
polySave: QDHandle;
grafProcs: QDProcsPtr

END;

VAR thePort: GrafPtr;
white: Pattern;
black: Pattern;
gray: Pattern;
ltGray: Pattern;
dkGray: Pattern;
arrow: Cursor;
screenBits: BitMap;
randSeed: Longint;

GrafPort Routines

(globalPtr: C,,Ptr)-;
(gp: GrafPtr);
(gp: GrafPtr);
(gp: GrafPtr);
(gp: GrafPtr);
(VAR gp: GrafPtr);
(device: INTEGER);
(bm: BitMap);

PROCEDURE InltGraf
PROCEDURE OpenPort
PROCEDURE InitPort
PROCEDURE ClosePort
PROCEDURE SetPort
PROCEDURE GetPort
PROCEDUltE GrafDevice
PROCEDUltE SetPortBita
PROCEDURE PortSize
PROCEDURE MovePortTo
PROCEDURE SetOrigin

(width,height: INTEGER);
(leftGlobal,topGlobal: INTEGER);
(h,v: INTEGER);

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUitCDllAW.S

82 QuickDraw Programmer's Guide

PROCEDURE SetClip
PROCEDURE GetClip
PROCEDURE ClipRect
PROCEDUllE BackPat

Cursor Handling

PROCEDUllE lnitCursor;

(rgn: RgnHandle);
(rgn: RgnRandle);
Cr: Rect);
(pat: Pattern);

PROCEDUllE SetCursor (crsr: Cursor);
PROCEDURE RideCursor;
PROCEDURE ShovCursor;
PROCEDURE ObscureCursor;

Pen and Line Drawing

PROCEDURE HidePen;
PROCEDURE ShowPen;
PROCEDURE GetPen
PROCEDURE GetPenState
PROCEDURE SetPenState
PROCEDURE PenSize
PROCEDURE PenMode
PROCEDURE PenPat
PROCEDURE PenNormal;
PROCEDURE MoveTo
PROCEDURE Move
PROCEDURE LineTo
PROCEDURE Line

Text Drawing

PROCEDURE TextFont
PROCEDURE TextFace
PROCEDURE TextMode
PROCEDURE TextSize
PROCEDURE SpaceExtra
PROCEDURE DravChar
PROCEDURE Drawstring
PROCEDURE DrawText
FUNCTION CharWidth
FUNCTION StringWidth
FUNCTION TextWidth

PROCEDUllE GetFontlnfo

(VAR pt: Point);
(VAR pnState: PenState);
(pnState: PenState);
(width,height: INTEGER);
(mode: INTEGER);
(pat: Pattern);

(h,v: INTEGER);
(dh,dv: INTEGER);
(h,v: INTEGER);
(dh,dv: INTEGER);

(font: INTEGER);
(face: Style);
(mode: INTEGER);
(size: INTEGER);
(extra: INTEGER);
(ch : aL\R) ;
(a: Str2SS);
(textBuf: ~Ptr; firstByte,byteCount:
(ch: CHAR) : INTEGER;
(a: Str2S5): INTEGER;
(textBuf: (J)Ptr; firstByte,byteCount:
INTEGER;

(VAR info: Fontinfo);

INTEGER);

INTEGER) :

3/2/83 E1pino1a-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.S

SUMMARY OF QUICKDRAW 83

Drawing in Color

PROCEDO'ltE PoreColor (color: Longint);
PROCEDURE BackColor (color: Lonaint);
PROCEDURE ColorBit (vh1chB1t: INTEGER);

Calculations with Rectangles

PROCEDURE SetRect
PROCEDURE OffaetRect
PROCEDURE InsetRect
FUNCTION SectRect

(VAR r: llect; left,top,right,bottom: INTEGER);
(VAR r: Rect; dh,dv: INTEGER);
(VAR r: llect; dh,dv: INTEGER);
(srcRectA,srcRectB: Rect; VAlt datRect: Rect) :
BOOLEAN;

PROCEDO'ltE UnionRect
FUNCTION PtlnRect
PROCEDURE Pt2Rect
PROCEDURE PtToAngle
FUNCTION EqualRect
FUNCTION EmptyRect

(arcRectA,arcRectB: ll.ect; VAil datRect: Rect)
(pt: Point; r: Rect) : BOOIZAN;
(ptA,ptB: Point; VAlt dstRect: Rect);
(r: Rect; pt: Point; VAR. angle: INTEGER);
(rectA,rectB: Rect) : BOOLEAN;
(r: llect) : BOOIZAN;

Graphic Operations on Rectangles

PROCEDURE FrameRect (r: Rect);
PROCEDURE PaintRect (r: Rect);
PROCEDURE EraseRect (r: Rect);
PROCEDURE InvertRect (r: Rect);
PROCEDURE FillRect (r: Rect; pat:

Graphic Operations on Ovals

PROCEDURE FrameOval
PROCEDURE PaintOval
PROCEDURE EraseOval
PROCEDURE InvertOval
PROCEDURE FillOval

(r: Rect);
(r: Rect);
(r: Rect);
(r: Rect);
(r: Rect; pat:

Pattern);

Pattern);

Graphic Operations on Rounded-Comer Rectangles

PROCEDURE FrameRoundRect (r: Jlect; ovalWldth,ovalHeight:
PROCEDUllE PaintRoundRect (r: Jlect; ovalWidth,ovalBeight:
PROCEDURE EraseRoundRect (r: lact; ova1W1dth,ova1Height:
PROCEDURE InvertRoundRect (r: Rect; ovalWidth,ovalHeight:
PROCEDURE PillRoundRect (r: llect; ovalWidth,ovalHeight:

pat: Pattern);

INTEGER);
INTEGER);
INTEGER);
ltffEGER);
Dl'l'EGER;

3/2/83 Eapinoaa-Roae a>NFIDENTIAL /QUICK.2/QUIJCDRAW.S

84 QuickDrav Programmer-a Guide

Graphic Operations on Arcs and Wedges

PROCEDURE FrameArc (r: Rect; startAngle,arcAngle: INTEGER);
PROCEDURE PaintArc (r: llect; startAngle,arcAngle: INTEGER);
PROCEDURE EraseArc (r: llect; startAngle,arcAngle: INTEGER);
PROCEDURE InvertArc (r: Rect; startAngle,arcAngle: INTEGER);
PROCEDURE FillArc (r: Rect; startAngle,arcAngle: INTEGER; pat:

Pattern);

Calculations with Regions

FUNCTION NevRgn:
PROCEDURE DisposeRgn
PROCEDURE CopyRgn
PROCEDURE SetEmptyRgn
PROCEDURE SetRectRgn
PROCEDURE RectRgn
PROCEDURE OpenRgn;
PROCEDURE CloseRgn
PROCEDURE OffsetRgn
PROCEDURE InsetRgn
PROCEDURE SectRgn
PROCEDURE UnionRgn
PROCEDURE DiffRgn
PROCEDURE XorRgn
FUNCTION PtinRgn
FUNCTION RectlnRgn
FUNCTION EqualRgn
FUNCTION EmptyRgn

RgnRandle;
(rgn: R.gnRand le) ;
(arcRgn,datRgn: RgnRandle);
(rgn: RgnRandle);
(rgn: RgnRandle; left,top,right,bottom:
(rgn: RgnRandle; r: Rect);

(dstRgn: RgnRandle);
(rgn: RgnRandle; dh,dv: INTEGER);
(rgn: RgnHandle; dh,dv: INTEGER);
(srcRgnA,srcRgnB,dstRgn: RgnBandle);
(arcRgnA,srcRgnB,dstRgn: RgnRandle);
(arcRgnA,arcRgnB,datRgn: RgnBandle);
(arcRgnA,arcRgnB,dstRgn: RgnRandle);
(pt: Point; rgn: RgnBandle) : BOOLEAN;
(r: Rec t ; rgn: RgnRand le) : BOOLEAN;
(rgnA,rgnB: RgnBandle): BOOLEAN;
(rgn: RgnRand le) : BOOLEAN;

Graphic Operations on Regions

PROCEDURE FrameRgn
PROCEDURE PaintRgn
PROCEDURE EraseRgn
PROCEDURE InvertRgn
PROCEDURE FillRgn

(rgn:
(rgn:
(rgn:
(rgn:
(rgn:

Bit Transfer Operations

RgnRandle);
RgnRandle);
RgnRandle);
RgnRandle);
RgnRandle; pat: Pattern);

INTEGER);

PROCEDURE ScrollRect (r: Rect; dh,dv: INTEGER; updateRgn: RgnHandle);
PROCEDURE CopyBita (arcBita,dstBita: BitMap; srcRect,datllect: Rect;

mode : INTEGER; maakRgn: RgnHand le) ;

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.S

)

SUMMA.RY OF QOICICDllAW 85

Pictures

FUNCTION OpenPicture
PROCEDURE PicCoament
PROCEDURE CloseP1cture;
PROCEDURE DravPicture
PROCEDURE KillPicture

(picFrame: Rect) : PicBandle;
(kind , da taSize: INTEGER; da taBand le: (J)Band le) ;

(ayPicture: PicBandle; dstRect: Rect);
(ayPicture: PicBandle);

Calculations with Polygons

FUNCTION OpenPoly : PolyBandle;
PROCEDURE ClosePoly;
PROCEDURE KillPoly (poly: PolyRandle);
PROCEDURE OffsetPoly (poly: PolyBandle; dh,dv: INTEGER);

Graphic Operation• on Polygon•

PROCEDURE FramePoly (poly: PolyRandle);
PROCEDUllE PaintPoly (poly: PolyRandle);
PROCEDURE ErasePoly (poly: PolyBandle);
PROCEDURE InvertPoly (poly: PolyBandle);
PROCEDURE FillPoly (poly: PolyBandle; pat: Pattern);

Calculations with Points

PROCEDURE AddPt
PROCEDURE SubPt
PROCEDURE SetPt
FUNCTION EqualPt
PROCEDURE LocalToGlobal
PROCEDURE GlobalToLocal

Miscellaneous Utilities

(srcPt: Point; VAR dstPt: Point);
(srcPt: Point; VAR dstPt: Point);
(VAR pt: Point; b,v: INTEGER);
(ptA,ptB: Point) : BOOIZAN;
(VAR pt: Point);
(VAil pt: Point);

FUNCTION Random: INTEGER;
FUNCTION GetPixel
PROCEDURE StuffBex
PltOCEDUll! ScalePt
PROCEDURE MapPt
PROCEDUll! MapRect
PROCEDUll! Maptlgn
PROCEDURE MapPoly

(h,v: INTEGER) : BOOLEAN;
(thingPtr: (J)Ptr; a: Str255);
(VAil pt: Point; arcRect,dstlect: Rect);
(VAil pt: Point; srcltect,datRect: tlect);
(VAil r: Rect; srcRect,dstRect: Rect);
(rgn: tlgnRandle; srcltect,datlect: Rect);
(poly: PolyRandle; srcRect,dstRect: Rect);

3/2/83 Espinosa-Rose OONFIDENTIAL /QUICK.2/QUIJCDRAW.S

86 QuickDraw Programmer-a Guide

Customizing QuiclcDraw Operations

PROCEDURE SetStdProce
PROCEDURE StdText

PROCEDURE StdLine
PROCEDURE StdRect
PROCEDURE StdRRect

PROCEDURE StdOval
PROCEDURE StdArc

PROCEDURE StdPoly
PROCEDURE StdRgn
PROCEDURE StdBits

PROCEDURE StdComment
FUNCTION StdTxMeae

PROCEDURE StdGetPic
PROCEDURE StdPutPic

3/2/83 Espinosa-Rose

(VAR proca: (J)Proca);
(byteCount: INTEGER; textAddr: (J)Ptr; numer,denom:
Point);

(newPt: Point);
(verb: GrafVerb; r: Rect);
(verb: GrafVerb; r: Rect; ovalwidth,ovalReight:
INTEGER);

(verb: GrafVerb; r: Rect);
(verb: GrafVerb; r: Rect; atartAngle,arcAngle:
INTEGER);

(verb: GrafVerb; poly: PolyRandle);
(verb: GrafVerb; rgn: RgnRandle);
(VAR srcBits: BitMap; VAR srcRect,dstRect: Rect;
mode: INTEGER; maskRgn: RgnRandle);

(kind,dataSize: INTEGER; dataRandle: (J)Randle);
(byteCount: INTEGER; textBuf: QDPtr; VAR numer,
denom: Point; VAR info: Fontinfo): INTEGER;

(dataPtr: (J)Ptr; byteCount: INTEGER);
(dataPtr: (J)Ptr; byteCount: INTEGER);

CONFIDENTIAL /QUICK.2/QUIICDRAW.S

J

GLOSSARY 87

GLOSSARY

bit image: A collection of bits in memory which have a rectilinear
representation. The Macintosh screen is a visible bit image.

bitMap: A pointer to a bit image, the row width of that lllage, and its
boundary rectangle.

boundary rectangle: A rectangle defined aa part of a bitMap, which
encloses the active area of the bit image and imposes a coordinate
system on it. Its top left corner ia always aligned around the first
bit in the bit luge.

character style: A set of stylistic variations, such as bold, italic,
and underline. The empty Nt indicates normal tat (no atylistic
variations).

clipping: Limiting drawing to within the bounds of a particular area.

clipping region: Same as clipRgn.

clipRgn: The region to which an application limits drawing in a
grafPort.

coordinate plane: A two-dimensional grid. In Quick.Draw, the grid
coordinates are integers ranging from -32768 to +32767, and all grid
lines are infinitely thin.

cursor: A 16-by-16-bit image that appears on the screen and ia
controlled by the muse; called the ·pointer· in other Macintosh
documentation.

cursor level: A value, initialized to~ when the system ia booted,
that keeps track of the number of times the cursor baa been hidden.

empty: Containing no bits, as a shape defined by only one point.

font: The complete Nt of characters of one typeface, such as
Helvetica.

frame: To draw a ahape by drawing an outline of it.

global coordinate system: The coordinate system baaed on the top left
corner of the bit image being at Cf,•>·

grafPort: A c011plete drawing environment, includina such elements u a
bltMap, a subset of it in vhich to drav, a character font, patteraa for
drawing and erasing, and other pen characteriatica.

graf Ptr: A pointer to a graf Port.

handle: A pointer to one •ster pointer to a dynamic, relocatable data
structure (such as a region).

3/2/83 lloae CX>NFID!NTIAL /QUICK.2/QUIKDRAW.G

88 QuickDrav Programmer-, Guide

hot Spot: The point in a cursor that is aligned with the muse
position.

kern: To •tretch part of a character back under the previou•
character.

local coordinate system: The coordinate system local to a grafPort.
imposed by the boundary rectangle defined in its bitMap.

missing symbol: A character to be drawn in case of a request to drav a
character that ia missing from a particular font.

pattern: An 8-by-8-bit image, used to define a repeating design (such
as stripes) or tone (such as gray).

pattern transfer m::,de: One of eight transfer m::,dea for drawing lines
or shapes with a pattern.

picture: A saved sequence of QuickDrav drawing commands (and,
optionally, picture comments) that you can play back later with a
single procedure call; also, the image resulting from these commands.

picture comments: Data stored in the definition of a picture which
does not affect the picture-a appearance but may be used to provide
additional information about the picture when it's played back.

picture frame: A rectangle, defined as part of a picture, which
surrounds the picture and gives a frame of reference for scaling when
the picture is drawn.

pixel: The visual representation of a bit on the screen (white if the
bit is f, black if it's 1).

point: The intersection of a horizontal grid line and a vertical grid
line on the coordinate plane. defined by a horizontal and a vertical
coordinate.

polygon: A sequence of connected lines, defined by QuickDrav
line-drawing c0111118nds.

port: Same as grafPort.

portBits: The bitMap of a grafPort.

portBits.bounds: The boundary rectangle of a grafPort-• bitMap.

portRect: A rectangle, defined as part of a grafPort, which encloses a
subset of the bitMap for UH by the grafPort.

region: An arbitrary area or set of areas on the coordinate plane.
The outline of a region should be one or 111>re closed loops.

row width: The mmber of bytes in each rov of a bit image.

3/2/83 Rose CONFIDENTIAL /QUICK.2/QUDCDttAW.G

GLOSSARY 89

aolid: Pilled in with any pattern.

source transfer mde: One of eight transfer 110des for drawing tut or
trauferring any bit image between tvo bitMapa.

style: See character •tJle.

thePort: A global variable that pointa to the current grafPort.

transfer 1110de: A specification of which boolean operation QuickDraw
should perform when drawing or when transferring a bit image from one
bitMap to another.

vis'Rgn: The region of a grafPort, manipulated by the Window Manager,
which is actually visible on the screen.

3/2/83 Jlo•e CX>NPIDENTIAL /QUICK.2/QUDmaAW.G

MACINTOSH USER EDUCATION

The Resource Manager: A Programmer 1s Guide /IMGR/RESOURCE

See Also: Macintosh User Interface Guidelines
Macintosh Operating System Reference Manual
QuickDraw: A Programmer's Guide
The Event Manager: A Programmer's Guide
The Window Manager: A Programmer's Guide
The Font Manager: A Programmer's Guide
The Menu Manager: A Programmer's Guide
Macintosh Control Manager Programmer's Guide
The Dialog Manager: A Programmer's Guide
The Desk Manager: A Programmer's Guide
Putting Together a Macintosh Application

Modification History: First Draft (ROM 2.~)
Second Draft (ROH 4)
Third Draft (ROM 7)
Errata added

Caroline Rose
Caroline Rose
Caroline Rose
Caroline Rose

2/2/83
6/21/83
lt/3/83
3/8/84

ABSTRACT

Macintosh applications make use of many resources, such as menus, fonts,
and icons. These resources are stored in resource files separately from
the application code, for flexibility and ease of maintenance. This
manual describes resource files and the Resource Manager routines.

Errata:

The low-order bit of the resource attribute byte is no longer available
for use by your application; it's now reserved for internal use by the
Resource Manager.

There 1s a new function:

FUNCTION SizeResource (theResource: Handle) : INTEGER;

Given a handle to a resource, SizeResource returns the size of the
resource in bytes. If the resource isn't in memory, the size is read
from the resource file. If the given handle isn't a handle to a
resource, SizeResource will return -1 and the ResError function will
return the error code resNotFound.

2 Resource Manager Programer's Guide

TABLE OF CONTENTS

3 About This Manual
4 About the Resource Manager
6 Overview of Resource Piles
8 Resource Specification
1~ Resource References
13 Using the Resource Manager
15 Resource Manager Routines
15 Initializing the Resource Manager
16 Opening and Closing Resource Files
17 Checking for Errors
18 Setting the Current Resource Pile
18 Getting Resource Types
19 Getting and Disposing of Resources
22 Getting Resource Information
23 Modifying Resources
28 Advanced loutines
29 Resources within Resources
31 Format of a Resource File
33 Notes for Assembly-Language Programmers
35 Sullllllary of the Resource Manager
37 Summary of the Resource File Format
38 Glossary

Copyright (c) 1984 Apple Computer, Inc. All rtghts reserved. Distribution
of this draft in limited quantities does not constitute publication.

·'

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes the Resource Manager, the part of the Macintosh
User Interface Toolbox through which an application accesses various
resources that it uses, such as menus, fonts, and icons. ***
Eventually it will become part of a large manual describing the entire
Toolbox. *** It discusses resource files, where resources are stored.
Resources form the foundation of every Macintosh application; even the
application's code is a resource. In a resource file, the resources
used by the application are stored separately from the code for
flexibility and ease of maintenance.

- You can use an existing program for creating and editing resource
files, or write one of your own. These programs will call
Resource Manager routines.

- Usually you'll access resources indirectly through other Toolbox
units, such as the Menu Manager and the Font Manager, which in
turn call the Resource Manager to do the low-level resource
operations. In some cases, you may need to call a Resource
Manager file-opening routine and possibly other routines to access
resources directly.

(hand)
This manual describes version 7 of the ROM. If you're
using a different version, the Resource Manager and the
file system may not work as discussed here.

Like all documentation about Toolbox units, this manual assumes you're
familiar with the Macintosh User Interface Guidelines, Lisa Pascal, and
the Macintosh Operating System's Memory Manager. You should also be
familiar with the following:

- The basic functions of the Finder, which are performed with the
help of the Resource Manager. (To the user, the Finder is known
as the Desktop Manager.)

- The Operating System error codes.

- The Macintosh file system, as documented*** though probably not
up-to-date*** in the Macintosh Operating System Reference Manual.
You need to know about this only if you want to understand exactly
how resources are implemented internally; you don't have to know
it to be able to use the Resource Manager.

If you're going to write your own program to create and edit resource
files, you also need to know the exact format of each type of resource.
The documentation for the Toolbox unit that deals with a particular
type of resource will tell you what you need to know for that resource.

This manual begins with an introduction to the Resource Manager and
resources, an overview of resource files, and a discussion of resource
specification, all of which offer useful general information. The next

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.2

4 Resource Manager Programmer's Guide

section deals with resource references; you can skip it if you're only
going to access resources through other Toolbox units.

Next, a section on using the Resource Manager introduces you to its
routines and tells how they fit into the flow of your application.
This is followed by detailed descriptions of all Resource Manager
procedures and functions, their parameters, calling protocol, effects,
side effects, and so on.

Following these descriptions are sections that will not interest all
readers. A discussion of how resources point to each other is followed
by a section giving the exact format of a resource file. *** Also, to
be removed eventually: notes for programmers who will use the Resource
Manager routines from assembly language. ***
Finally, there's a summary of the Resource Manager data structures and
routine calls and a summary of the resource file format, for quick
reference, followed by a glossary of terms used in this manual.

ABOUT TIIE RESOURCE MANAGER

Macintosh applications make use of many resources, such as menus,
fonts, and icons, which are stored in resource files. For example, an
icon resides in a resource file as a 32-by-32 bit image, and a font as
a large bit image containing the characters of the font. In some cases
the resource consists of descriptive information (such as, for a menu,
the menu title, the text of each command in the menu, whether the
command is checked with a check mark, and so on). The Resource Manager
keeps track of resources in resource files and provides routines that
allow applications and other Toolbox units to access them.

There's a resource file associated with each application, containing
the resources specific to that application; these resources include the
application code itself. There's also a system resource file, which
contains standard resources shared by all applications (also called
system resources).

The resources used by an application are created and changed separately
from the application's code. This separation is the main advantage to
having resource files. A change in the title of a menu, for example,
won't require any recompilation of code, nor will translation to a
foreign language.

The Resource Manager is initialized by the system when it starts up,
and the system resource file is opened as part of the initialization.
Your application's resource file is opened when the application starts
up. When instructed to get a certain resource, the Resource Manager
normally looks first in the application's resource file and then, if
the search isn't successful, in the system resource file. This makes
it easy to share resources among applications and also to override a
system resource with one of your own (if you want to use something
other than a standard icon in an alert box, for example).

10/3/83 Rose CONFIDENTIAL /RMGR/RESOUR.CE.2

ABOUT THE RESOURCE MANAGER 5

You refer to a resource by passing the Resource Manager a resource
specification, which consists of a type and either an ID number or a
name. Any resource type is valid, whether one of those reserved by the
Toolbox (such as for menus and fonts) or a type created for use by your
application. Given a resource specification, the Resource Manager will
read the resource into memory and return a handle to it.

(eye)
The Resource Manager knows nothing about the formats of
the individual types of resources. Only the routines in
other Toolbox units that call the Resource Manager have
this knowledge.

While most access to resources is read-only, certain applications may
want to modify resources. You can change the content of a resource or
its ID number, name, or other attributes--everything except its type.
For example, you can designate whether the resource should be kept in
memory or whether, as is normal for large resources, it can be removed
from memory and read in again when needed. You can change existing
resources, remove resources from the resource file altogether, or add
new resources to the file.

Not only can an application's resource file contain resources
themselves, but it may also contain references to resources in the
system resource file. These references need not be in the
application's resource file in order for the system resources to be
found, because the system resource file will be searched anyway as part
of the normal search process; however, the references do serve other
purposes. One is that a reference can have a different name than the
system resource itself, thus providing an "alias" for the resource.
But more important, these references let the Finder know what resources
the application uses, thus ensuring that those resources will accompany
the application if you should copy it to a disk that has a different
system resource file on it. References to system resources can be
added or removed with Resource Manager routines.

Resource files are not limited to applications; anything stored in a
file can have its own resources. For example, documents usually have
resource files containing references to the system resources they use,
such as fonts and icons. As in an application's resource file, these
references tell the Finder what resources the document uses. An
unusual font used in only one document can be included in the resource
file for that document rather than in the system resource file.

(hand)
Although shared resources are usually stored in the
system resource file, you can have other resource files
that contain resources shared by two or more applications
(or documents, or whatever). In this case, however, the
Finder will know nothing about the connection between the
shared resources and the files that use them.

A number of resource files may be open at one time; the Resource
Manager always searches the files in the reverse of the order that they

10/3/83 Rose CONFIDENTIAL /RMGR/R.ESOURCE.2

6 Resource Manager Programmer's Guide

were opened. Since the system resource file is opened when the
Resource Manager is initialized, it's always searched last. Usually
the search starts with the moat recently opened resource file, but you
can change it to start with a file that was opened earlier. (See
Figure 1.)

Order of
opening:

Opened
last

Opened
first

Appl lcatlon's
reacuce fl le

System reaurce
file

Vou cen chm-oe
it to thia: or thia:

Figure 1. Resource File Searching

OVERVIEW OF RESOURCE FILES

Resources may be put in a resource file with the aid of the Resource
Editor, which is documented*** nowhere right now, because it isn't yet
available. Meanwhile, you can use the Resource Compiler. You describe
the resources in a text file that the Resource Compiler uses to
generate the resource file. The exact format of the input file to the
Resource Compiler is given in the manual "Putting Together a Macintosh
Application". ***

A resource file is not a file in the strictest sense. Although it's
functionally like a file in many ways, it's actually just one of two
parts, or "forks", of a file. (See Figure 2.) Every file has a
resource fork and a data fork (either of which may be empty). The
resource fork of an application file contains not only the resources
used by the application but also the application code. The code is
divided into different segments, each of which is a resource; this
allows various parts of the program to be loaded and purged
dynamically. The data fork of an application file initially contains
nothing, but the application may store data there if desired, by using
the Operating System file 1/0 routines. All data related to resources
is stored in the resource fork via the Resource Manager.

10/3/83 Rose CONFIDENTIAL /RMGR/llESOUllCE. 2

,

OVERVIEW OF RESOURCE FILES 7

file name
------------------""'""::I~--------------------,

The eppllcatlor1s
rescuces(whlch
Include Its COde
~,ts)

Resource fork
("resource f lie")

lnltlelly eft1)ty;

the eppllcation
may store data
tae.

Data fork

• • • • •

~--·
Figure 2. An Application File

As shown in Figure 3, the system resource file has this same structure.
The resource fork contains the system resources and the data fork
contains the RAM-based Operating System routines. Figure 3 also shows
the structure of a file containing a document; the resource fork
contains the document's resources and the data fork contains the data
that comprises the document.

•

File name

Resource fork

Syslemaa:
AAMblled
OS routines

Data forte

: ("resource file")
I

l-----------------------------------· system Resource FIie

file name

Resource fork Data fork
("resource Ille")

Document FIie
Figure 3. Other Files

To open a resource file, the Resource Manager calls the appropriate
Operating System routine and returns the reference number it gets from
the Operating System. 'Ibis is a number greater than d by which you can
refer to the file when calling other Resource Manager routines. Most
of the routines, however, don't have such a parameter; instead, they
assume that the current resource file is where they should perform
their operation (or begin it, in the case of a search for a resource).
'lbe current resource file is the last one that was opened unless you

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.2

8 Resource Manager Programmer's Guide

specify otherwise.

A resource file consists primarily of resource data and a resource map.
The resource data consists of the resources themselves (for example,
the bit image for an icon or the descriptive information for a menu).
The resource map provides the connection between a resource
specification and the corresponding resource data. It's like the index
of a book; the Resource Manager looks up the resource you specify in
the resource map and learns where its resource data is located. The
resource map leads to a resource in the same file as the map or
provides a reference to a system resource.

The resource map is read into memory when the file is opened and
remains there until the file is closed. Notice that although we say
the Resource Manager searches resource files, it actually searches the
resource maps that were read into memory, and not the resource files on
the disk.

Resource data is normally read into memory when needed, though you can
specify that it be read in as soon as the resource file is opened.
Once read in, the data for a particular resource may or may not be kept
in memory, depending on an attribute of that resource that's specified
in the resource map. Resources consisting of a relatively large amount
of data are usually designated as purgeable, meaning they may be
removed from the heap (purged) when space is required by the Memory
Manager. Before accessing such a resource through its handle, you can
ask the Resource Manager to read the resource into memory again if it
was purged.

(hand)
Programmers concerned about the amount of available
memory should be aware that there's a 12-byte overhead in
the resource map for every resource and an additional
12-byte overhead for memory management if the resource is
read into memory.

To modify a resource, you change the resource data or resource map in
memory. The change becomes permanent only at your explicit request,
and then only when the application terminates or when you call a
routine specifically for updating or closing the resource file.

Each resource file also contains a partial copy of the file's directory
entry, written and used by the Finder, and up to 128 bytes of any data
the application wishes to store there.

RESOURCE SPECIFICATION

In a resource file, every resource is assigned a type, an ID number,
and optionally a name. When calling a Resource Manager routine to
access a resource, you specify the resource by passing its type and
either its ID number or its name. This section gives some general
information about resource specification.

10/3/83 Rose CONFIDENTIAL /RHGR/RESOURCE.2

RESOURCE SPECIFICATION 9

The resource~ ia a sequence of four characters. Its Pascal data
type is:

TYPE ResType • PACKED ARRAY [1 •• 4] OF CHAR;

The standard resource types recognized by the Macintosh User Interface
Toolbox are as follows:

Resource type
'CODE'
'WIND'
'WDEF'
'MENU'
'MDEF'
'HBAR'
'CNTL'
'CDEF'
'DLOG'
'ALRT'
'DITL'
'ICON'
'FONT'
'FWID'
'CURS'
'PICT'
'PAT'
'PATIi'
'STR '
'DRVR'
'KEYC'
'PACK'
'ANYB'

Meaning
Application code segment
Window template
Window definition function
Menu
Menu definition procedure
Menu bar
Control template
Control definition function
Dialog template
Alert template
Item list in a dialog or alert
Icon
Font
Font widths
Cursor
Picture
Pattern (The space is required.)
Pattern list
String (The space is required.)
Desk accessory or other 1/0 driver
Keyboard configuration
Package
Any bytes

In addition, the type 'DSAT' is reserved for system use.

(eye)
Uppercase and lowercase letters are distinguished in
resource types. For example, 'Menu' will not be
recognized as the resource type for menus.

Notice that some of the resources listed above are "templates". A
template is a list of parameters used to build a Toolbox object; it is
not the object itself. For example, a window template contains
information specifying the size and location of the window, its title,
whether it's visible, and so on. The Window Manager uses this
information to build the window in memory and then never accesses the
template again.

You can use any four-character sequence (except those listed above) for
resource types specific to your application.

Every resource has an ID number, or resource ID. The resource ID must
be unique within each resource type, but resources of different types
may have the same ID. The standard resources in the system resource

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.2

10 Resource Manager Programmer's Guide

file are usually numbered starting from f. The exact range of ID
numbers reserved for system resources varies according to resource
type. To be safe, if you want the ID numbers of your own resources not
to conflict with those of the system resources, you should start
numbering from at least 256 (or call a Resource Manager routine that
will return an unused resource ID).

(hand)
For assembly-language programmers, the file ResEqu.Text
contains predefined constants for the various resource
types and for the ID numbers of standard resources.

A resource may optionally have a resource name. Like the resource ID,
the resource name must be unique within each type. When comparing
resource names, The Resource Manager uses the standard Operating System
string comparison routine, which doesn't distinguish between uppercase
and lowercase and interprets diacritical marks in foreign names
properly.

RESOURCE REFERENCES

The connection between a resource specification and the corresponding
resource data is provided by the resource map, via resource references.
As illustrated in Figure 4, there are two kinds of resource reference:

- Local references, which are references to resources in this
resource file. These point to the resource data in the file and
contain a handle to the data if it's in memory.

- System references, which are references to system resources.
These provide a resource specification for the resource in the
system resource file, which in turn leads to a local reference to
the resource in that file.

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.2

re:90U'Ce
specification

retOU'Ce
date

l'89DU'Ce
apeclflcetlon
tor syatem

l'8IOll'C9 mep reacuce

Applicetion'a resou-ce file

RESOURCE REFERENCES 11

·--System rescuce flle

re,oc.rce
specification
fer system
rmcuce

Figure 4. Resource References in Resource Maps

Every resource reference has its own type, ID number, and optional
name. In the case of local references, the ID number and name are
those of the resource itself. A system reference, on the other hand,
may have its own ID number and name, different from those of the
resource it refers to in the system resource file.

Suppose you're accessing a resource for the first time. You pass a
resource specification to the Resource Manager. which looks for a match
among all the references in the resource map; if none is found. it
looks at the references in the resource map of the next resource file
to be searched. (Remember, it looks in the resource map in memory. not
in the file.) Eventually it gets to a local reference to the resource,
which tells it where the resource data is in the file. After reading
the resource data into memory. the Resource Manager stores a handle to
that data in the local reference (again, in the resource map in memory)
and returns the handle so you can use it to refer to the resource in
subsequent routine calls.

Every resource reference also has certain resource attributes that
determine how the resource should be dealt with. In the routine calls
for setting or reading them, each attribute is specified by a bit in
the low-order byte of a word, as illustrated in Figures.

10/3/83 lose CONFIDENTIAL /RMGR/ltESOURCE.2

12 Resource Manager Programmer's Guide

-----.1 if IYllern refnnce, O if locel re••a
--- ... 1 If read 1nm ayatem heap, o If eppllcetian help

---.1 if pggeable, 0 if not
1 If locked, 0 if not

___ .,., if protected, 0 If not

1 if to be preloaded, 0 If not r 1 If to be written to reacuce Ille, 0 if not
I r evaum1e 1or uae trt ycu eppnce11an

-1 ----T-'"11----T"""1 ""'I"', ,

(hld\,of'der byte Is ilJ-aed)

Figures. Resource Attributes

The Resource Manager provides a predefined constant for each attribute,
in which the bit corresponding to that attribute is set.

(eye)

CONST resSysRef • 128; {set if system reference}
res Sys Heap • 64; {set if read into system heap}
resPurgeable • 32; {set if purgeable}
res Locked • 16; {set if locked}
resProtected • 8; {set if protected}
res Pre load - 4; {set if to be preloaded}
resChanged - 2; {set if to be written to resource file}
resUser - l; {available for use by your application}

Your application should not change the setting of the
resSysRef attribute, nor should it set the resChanged
attribute directly. (ResChanged is set as a side effect
of the procedure you call to tell the Resource Manager
that you've changed a resource.)

Normally the resSysHeap attribute is set for all system resources;
however, if the resource is too large for the system heap, this
attribute will be G, and the resource will be read into the application
heap.

Since a locked resource is neither relocatable nor purgeable, the
resLocked attribute overrides the resPurgeable attribute; when
resLocked is set, the resource will not be purgeable regardless of
whether resPurgeable is set.

If the resProtected attribute is set, the application can't use
Resource Manager routines to do any of the following to the resource:
set the ID number or name in the resource reference; remove the
resource from the resource file; or remove the system reference to it,

10/3/83 Rose CONFIDENnAL /RMGR/RESOURCE.2

}

RESOURCE REFERENCES 13

if it's a system resource. The routine that sets the resource
attributes may be called, however, to remove the protection or just
change some of the other attributes.

The resPreload attribute tells the Resource Manager to read this
resource into memory immediately after opening the resource file. This
is useful, for example, if you immediately want to draw ten icons
stored in the file; rather than read and draw each one individually in
turn, you can have all of them read in when the file is opened and just
draw all ten.

The resChanged attribute is used only while the resource map is in
memory, and must be Gin the resource file. It tells the Resource
Manager whether this resource has been changed.

USING THE RESOURCE MANAGER

This section discusses how the Resource Manager routines fit into the
general flow of an application program and gives you an idea of which
routines you'll need to use. The routines themselves are described in
detail in the next section.

Resource Manager initialization happens automatically when the system
starts up: the system resource file is opened and its resource map is
read into memory. Your application's resource file is opened when the
application starts up; you can call CurResFile to get its reference
number. You can also call OpenResFile to open any resource file that
you specify by name, and CloseResFile to close any resource file. A
function named ResError lets you check for errors that may occur during
execution of Resource Manager routines.

(hand)
These are the only routines you need to know about to use
the Resource Manager indirectly through other Toolbox
units; you can skip to their descriptions in the next
section.

Normally when you want to access a resource for the first time, you'll
specify it by type and ID number (or type and name) in a call to
GetResource (or GetNamedResource). In special situations, you may want
to get every resource of each type. There are two routines which, used
together, will tell you all the resource types that are in all open
resource files: CountTypea and GetlndType. Similarly, Countlesources
and GetlndR.esource may be used to get all resources of a particular
type.

If you don't specify otherwise, GetResource, GetNamedResource, and
GetlndResource read the resource data into memory and return a handle
to it. Sometimes, however, you may not need the data to be in memory.
You can use a procedure named SetResLoad to tell the Resource Manager
not to read the resource data into memory when you get a resource; in
this case, the handle returned for the resource will be an empty handle

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.2

14 Resource Manager Programmer's Guide

(a pointer to a NIL master pointer). You can pass the empty handle to
routines that operate only on the resource map (such as the routine
that sets resource attributes), since the handle is enough for the
Resource Manager to tell what resource you're referring to. Should you
later want to access the resource data, you can read it into memory
with the LoadResource procedure.

Normally the Resource Manager starts looking for a resource in the most
recently opened resource file, and searches other open resource files
in the reverse of the order that they were opened. In some situations,
you may want to change which file is searched first. You can do this
with the UseResFile procedure. One such situation might be when you
want a resource to be read from the same file as another resource; in
this case, you can find out which resource ·file the other resource was
read from by calling the HomeResFile function.

Once you have a handle to a resource, you can call GetResinfo or
GetResAttrs to get the information that's stored for that resource in
the resource map, or you can access the resource data through the
handle (if the resource data is in memory).

Usually you'll just read resources from previously created resource
files with the routines described above. You may, however, want to
modify existing resources or even create your own resource file. To
create your own resource file, call CreateResFile (followed by
OpenResFile to open it). The AddResource procedure lets you add
resources to a resource file; to be sure a new resource won't override
an existing one, you can call the UniqueID function to get an ID number
for it. There are a number of procedures for modifying existing
resources:

- To remove a resource, call RmveResource.

- To add or remove a reference to a system resource, call
AddReference or RmveReference.

- If you've changed the resource data for a resource and want the
changed data to be written to the resource file, call
ChangedResource; it signals the Resource Manager to write the data
out when the resource file is later updated.

- To change the information stored for a resource in the resource
map, call SetReslnfo or SetResAttrs. If you want the change to be
written to the resource file, call ChangedResource. (Remember
that CbangedResource will also cause the resource data itself to
be written out.)

All these procedures change only the resource map in memory; the
changes are written to the resource file when the application
terminates (at which time all resource files other than the system
resource file are updated and closed) or when one of the following
routines is called:

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.2

USING THE RESOURCE MANAGER 15

- CloseResFile, which updates the resource file before closing it.

- UpdateResFile, which simply updates the resource file.

- WriteResource, which writes the resource data for a specified
resource to the resource file.

RESOURCE MANAGER ROUTINES

This section describes all the Resource Manager procedures and
functions. They are presented in their Pascal form; for information on
using them from assembly language, see "Using the Toolbox from Assembly
Language"*** for now, see "Using OuickDraw from Assembly Language" in
the QuickDraw manual and also "Notes For Assembly-Language Programmers"
in this manual***·

(hand)
Assembly-language programmers: Except for LoadResource,
all Resource Manager routines preserve all registers
except AG and D'J. LoadResource preserves Ml and DO as
well.

Initializing the Resource Manager

Although you don't call these initialization routines (because they're
executed automatically for you), it's a good idea to familiarize
yourself with what they do.

FUNCTION InitResources : INTEGER;

InitResources is called by the system when it starts up, and should not
be called by the application. It initializes the Resource Manager,
opens the system resource file, reads the resource map from the file
into memory, and returns a reference number for the file.

(band)
The application doesn't need the reference number for the
system resource file, because every Resource Manager
routine that has a reference number as a parameter
interprets G to mean the system resource file.

PROCEDURE RsrcZonelnit;

RsrcZoneinit is called automatically when your application starts up,
to initialize the resource map read from the system resource file;
normally you'll have no need to call it directly. It "cleans up" after
any resource access that may have been done by a previous application.
First it closes all open resource files except the system resource
file. Then, for every system resource that was read into the

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R

16 Resource Manager Programmer's Guide

application heap (that is, whose resSysHeap attribute is G), it
replaces the handle to that resource in the resource map with NIL.
This lets the Resource Manager know that the resource will have to be
read in again (since the previous application heap is no longer
around).

Opening and Closing Resource Files

PROCEDURE CreateResFile (fileName: Str255);

CreateResFile creates a resource file containing no resource data or
copy of the file's directory entry. If there's no file at all with the
given name, it also creates an empty data fork for the file. If
there's already a resource file with the given name (that is, a
resource fork that isn't empty), CreateResFile will do nothing and the
ResError function will return an appropriate Operating System error
code.

(hand)
Before you can work with the resource file, you need to
open it with OpenResFile.

FUNCTION OpenResFile (fileName: Str255) : INTEGER;

OpenResFile opens the resource file having the given name. It reads
the resource map from the file into memory and returns a reference
number for the file. It also reads in every resource whose resPreload
attribute is set. If the resource file is already open, it simply
returns the reference number.

(hand)
You don't have to call OpenResFile to open the system
resource file or the application's resource file, because
they're opened when the system and the application start
up, respectively. To get the reference number of the
application's resource file, you can call CurResFile
after the application starts up (before you open any
other resource file).

If the file can't be opened, OpenResFile will return -1 and the
ResError function will return an appropriate Operating System error
code. For example, an error occurs if there's no resource file with
the given name.

PROCEDURE CloseResFile (refNum: INTEGER);

Given the reference number of a resource file, CloseResFile does the
following:

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R

RESOURCE MANAGER ROUTINES 17

- Updates the resource file by calling the UpdateResFile procedure

For each resource in the resource file, deallocates the memory it
occupies by calling the ReleaseResource procedure

- Deallocates the memory occupied by the resource map

- Closes the resource file

If there's no resource file open with the given reference number,
CloseResFile will do nothing and the ResError function will return the
error code resFNotFound. A refNum of~ represents the system resource
file, but if you ask to close this file, CloseResFile first closes all
other open resource files.

A CloseResFile of every open resource file except the system resource
file is done automatically when the application terminates. So you
only need to call CloseResFile if you want to close the system resource
file, or if you want to close any resource file before the application
terminates.

Checking for Errors

FUNCTION ResError : INTEGER;

Called after one of the various Resource Manager routines that may
result in an error condition, ResError identifies the error or returns
~ if no error occurred. If an error occurred at the Operating System
level, it returns one of the Operating SysteM error codes, such as
those for file 1/0 errors and the Memory Manager "out of memory" error.
(See the Macintosh Operating System Reference Manual for the exact
codes.) If an error happened at the Resource Manager level, ResError
returns one of the following predefined error codes:

CONST resNotFound • -192;
resFNotFound • -193;
addResFailed • -194;
addRefFailed • -195;
rmvResFailed • -196;
rmvRefFailed • -197;

{resource not found}
{resource file not found}
{AddResource failed}
{AddReference failed}
{RmveResource failed}
{RmveReference failed}

Each routine description tells which errors may occur for that routine.
You can also check for an error after system startup, which calls
lnitResources, and application startup, which opens the application's
resource file.

(hand)
Assembly-language programmers can access the current
value of ResError through the global variable resErr.

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R

18 Resource Manager Programmer's Guide

Setting the Current Resource File

FUNCTION CurResFile : INTEGER

CurResFile returns the reference number of the current resource file.
You can call it when the application starts up to get the reference
number of its resource file.

(hand)
Assembly-language programmers can access the reference
number of the current resource file through the global
variable curMap.

FUNCTION HomeResFile (theResource: Handle) : INTEGER:

Given a handle to a resource. HomeResFile returns the reference number
of the resource file containing that resource. If the given handle
isn't a handle to a resource. HomeResFile will return -1 and the
ResError function will return the error code resNotFound.

PROCEDURE UseResFile (refNum: INTEGER);

Given the reference number of a resource file. UseResFile sets the
current resource file to that file. If there's no resource file open
with the given reference number, UseResFile will do nothing and the
ResError function will return the error code resFNotFound. A refNum of
0 represents the system resource file.

This procedure is useful for changing which resource file is searched
first. For example, if you no longer want to override a system
resource with one by the same name in your application's resource file.
you can call UseResFile(G) to make the search begin (and end) in the
system resource file.

Getting Resource Types

FUNCTION CountTypes : INTEGER;

CountTypes returns the number of resource types in all open resource
files.

PROCEDURE GetlndType (VAR theType: ReaType: index: INTEGER):

Given an index ranging from 1 to CountTypes (above), GetindType returns
a resource type in theType. Called repeatedly over the entire range

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R

RESouicE MANAGER ROUTINES 19

for the index, it returns all the resource types in all open resource
files. If the given index isn't in the range from 1 to CountTypes,
GetindType returns four NUL characters (ASCII code~).

Getting and Disposing of Resources

PROCEDURE SetResLoad (load: BOOLEAN);

Normally, the routines that return handles to resources read the
resource data into memory if it's not already in memory.
SetResLoad(FALSE) affects all those routines so that they will not read
the resource data into memory and will return an empty handle.
Resources whose resPreload attribute is set will still be read in,
however, when a resource file is opened. SetResLoad(TRUE) restores the
normal state.

(eye)

(hand)

If you call SetResLoad(FALSE), be sure to restore the
normal state as soon as possible, because other Toolbox
units that call the Resource Manager rely on it.

Assembly-language programmers can access the current
SetResLoad state (TRUE or FALSE) through the global
variable resLoad.

FUNCTION CountResources (theType: ResType) : INTEGER;

CountResources returns the total number of resources of the given type
in all open resource files.

FUNCTION GetlndResource (theType: llesType; index: INTEGER) Handle;

Given an index ranging from 1 to CountResources(theType),
GetlndResource returns a handle to a resource of the given type (see
CountResources, above). Called repeatedly over the entire range for
the index, it returns handles to all resources of the given type in all
open resource files. GetlndResource reads the resource data into
memory if it's not already in memory, unless you've called
SetResLoad(FALSE).

(eye)
The handle returned will be an empty handle if you've
called SetResLoad(FALSE), or will become empty if the
resource data for a purgeable resource is read in but
later purged. (You can test for an empty handle with,
for example, myHndl- • NIL.) To read in the data and
make the handle no longer be empty, you can call
Load Resource.

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R

20 Resource Manager Programmer's Guide

GetlndResource returns handles for all resources in the most recently
opened resource file first, and then for those in the resource files
opened before it, in the reverse of the order that they were opened.
lf you warit to find out how many resources of a given type are in a
particular resource file, you can do so as follows: Call
GetlndResource repeatedly with the index ranging from 1 to the number
of resources of that type. Pass each handle returned by GetindResource
to HomeResFile and count all occurrences where the reference number
returned is that of the desired file. Be sure to start the index from
1, and to call SetResLoad(FALSE) so the resources won't be read in.

(hand)
The UseResFile procedure affects which file the Resource
Manager searches first when looking for a particular
resource but not when getting indexed resources with
GetlndResource.

If the given index isn't in the range from l to
CountResources(theType), GetindResource returns NIL. It also returns
NIL if the resource is to be read into memory but won't fit; in this
case, the ResError function will return an appropriate Operating System
error code.

FUNCTION GetResource (theType: ResType; thelD: INTEGER) : Handle;

GetResource returns a handle to the resource having the given type and
ID number, reading the resource data into memory if it's not already in
memory and if you haven't called SetResLoad(FALSE) (see the first note
above for GetlndResource). GetResource looks in the current resource
file and all resource files opened before it, in the reverse of the
order that they were opened; the system resource file is searched last.
lf it doesn't find the resource, GetResource returns NIL. It also
returns NIL if the resource is to be read into memory but won't fit; in
this case, the ResError function will return an appropriate Operating
System error code.

FUNCTION GetNamedResource (theType: ResType; name: Str2SS) : Handle;

GetNamedResource is the same as GetResource (above) except that you
pass a resource name instead of an ID number.

PROCEDURE LoadResource (theResource: Handle);

Given a handle to a resource (returned by GetlndResource, GetResource,
or GetNamed'Resource), LoadResource reads that resource into me1DOry. lt
does nothing if the resource is already in memory or if the given
handle isn't a handle to a resource; in the latter case, the lesError
function will return the error code resNotFound. Call this procedure
if you want to access the data for a resource through its handle and
either you've called SetReaLoad(FALSE) or the resource ia purgeable.

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R

RESOURCE MANAGER ROUTINES 21

If you've changed the resource data for a purgeable resource and the
resource is purged before being written to the resource file, the
changes will be lost; LoadResource will reread the original resource
from the resource file. See the descriptions of ChangedResource and
SetResPurge for information about how to ensure that changes made to
purgeable resources will be written to the resource file.

(hand)
Assembly-language programmers: LoadResource preserves
all registers.

PROCEDURE ReleaseR.esource (theResource: Handle);

Given a handle to a resource, ReleaseResource deallocates the memory
occupied by the resource data, if any, and replaces the handle to that
resource in the resource map with NIL. (See Figure 6.) The given
handle will no longer be recognized as a handle to a resource; if the
Resource Manager is subsequently called to get the released resource, a
new handle will be allocated. Use this procedure only after you're
completely through with a resource.

TVPE myt RJI: Handle;
myt-t,dl :.

&:~(type, ID); lwdle

myllndl

master pointer reso.,ce data

-Aft;··-------------------Aft;;·--------------------------------------
P.eleeaeAeacuce(myl Inell); Detectfleacuce(myl lndl);

retOl.rCe map

muter pointer rescuce date
- NIL - NIL

E rnyttldl 3 myl lndl

Figure 6. ReleaseResource and DetachResource

If the given handle isn't a handle to a resource, ReleaseResource will
do nothing and the ResError function will return the error code
res Not Found.

10/3/83 'Rose CONFIDENTIAL /RMGR/RESOURCE.R

22 Resource Manager Programmer's Guide

PROCEDURE DetachResource (the Resource: Handle);

Given a handle to a resource, DetachResource replaces the handle to
that resource in the resource map with NIL. (See Figure 6.) The given
handle will no longer be recognized as a handle to a resource; if the
Resource Manager is subsequently called to get the detached resource, a
new handle will be allocated. DetachResource is useful if you want the
resource data to be accessed only by yourself through the given handle
and not by the Resource Manager. It's also useful in the unusual case
that you don't want a resource to be deallocated when a resource file
is closed.

If the given handle isn't a handle to a resource, DetachResource will
do nothing and the ResError function will return the error code
res Not Found.

Getting Resource Information

FUNCTION UniqueID (theType: ResType) : INTEGER;

UniqueID returns an ID number greater than~ that isn't currently
assigned to any resource of the given type in any open resource file.
Using this number when you add a new resource to a resource file
ensures that it won't override an existing resource.

PROCEDURE GetResinfo (theResource: Handle; VAR theID: INTEGER; VAR
theType: ResType; VAR name: Str255);

Given a handle to a resource, GetResinfo returns the ID number, type,
and name of the resource. If the current resource file contains a
system reference to the resource, it returns the ID number, type, and
name of the system reference, which may be different from those of the
resource itself in the system resource file. If the given handle isn't
a handle to a resource, GetResinfo will do nothing and the ResError
function will return the error code resNotFound.

FUNCTION GetResAttrs (theResource: Handle) : INTEGER;

Given a handle to a resource, GetResAttrs returns the resource
attributes for the resource. (Resource attributes are described
earlier under "Resource References".) If the current resource file
contains a system reference to the resource, GetResAttrs returns the
attributes of the system reference, which may be different from those
of the resource itself in the system resource file. lf the given
handle isn't a handle to a resource, GetResAttrs will do nothing and
the ResError function will return the error code resNotFound.

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R

RESOURCE MANAGER ROUTINES 23

Modifying Resources

Except for UpdateResFile and WriteResource, all the routines described
below change the.resource map in memory and not the resource file
itself.

PROCEDURE SetResinfo (theResource: Handle; theID: INTEGER; name:
Str255);

Given a handle to a resource, SetReslnfo sets the ID number and name of
the resource to the given ID number and name. If the current resource
file contains a system reference to the resource, SetResinfo sets only
the ID number and name of the system reference.

(hand)

(eye)

Assembly-language programmers: If you pass NIL for the
name parameter, the name will not be changed.

If the resource is a system resource but the current
resource file doesn't contain a reference to it,
SetReslnfo will set the ID number and name in the system
resource file itself. This is a dangerous practice,
because other applications may already access the
resource and may not work properly if the ID number or
name is changed.

The change will be written to the resource file when the file is
updated if you follow SetResinfo with a call to ChangedResource.

(eye)
Even if you don't call ChangedResource for this resource,
the change may be written to the resource file when the
file is updated. If you've ever called ChangedResource
for any resource in the file, or if you've added or
removed a resource or a resource reference, the Resource
Manager will write out the entire resource map when it
updates the file, so all changes made to resource
information in the map will become permanent. If you
want any of the changes to be temporary, you'll have to
restore the original information before the file is
updated.

SetResinfo does nothing in the following cases:

- The resProtected attribute for the resource is set.

- The given handle isn't a handle to a resource. The ResError
function will return the error code resNotFound.

- The resource map becomes too large to fit in memory (which can
happen if a name is passed) or sufficient space for the modified

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R

24 Resource Manager Programmer's Guide

resource file can't be reserved on the disk. ResError will return
an appropriate Operating System error code.

PROCEDURE SetResAttrs (theResource: Handle; attrs: INTEGER);

Given a handle to a resource, SetResAttrs sets the resource attributes
for the resource to attrs. (Resource attributes are described earlier
under "Resource References".) If the current resource file contains a
system reference to the resource, SetResAttrs sets only the attributes
of the system reference. The resProtected attribute takes effect
immediately; the others take effect the next time the resource is read
in.

(eye)
Do not use SetResAttrs to set the resChanged attribute;
you must call ChangedResource instead. Be sure that the
attrs parameter passed to SetResAttrs doesn't change the
current setting of this attribute.

The attributes set with SetResAttrs will be written to the resource
file when the file is updated if you follow SetResAttrs with a call to
ChangedResource. However, even if you don't call ChangedResource for
this resource, the change may be written to the resource file when the
file is updated. See the last warning for SetReslnfo (above).

If the given handle isn't a handle to a resource, SetResAttrs will do
nothing and the ResError function will return the error code
res Not Found.

PROCEDURE ChangedResource (theResource: Handle);

Call ChangedResource after changing either the information about a
resource in the resource map (as described above under SetResinfo and
SetResAttrs) or the resource data for a resource, if you want the
change to be permanent. Given a handle to a resource, ChangedResource
sets the resChanged attribute for the resource. This attribute tells
the Resource Manager to do both of the following:

- Write the resource data for the resource to the resource file when
the file is updated or when WriteResource is called

- Write the entire resource map to the resource file when the file
is updated

(eye)
If you change information in the resource map with
SetReslnfo or SetResAttrs and then call ChangedResource,
remember that not only the resource map but also the
resource data will be written out when the resource file
is updated.

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R

RESOURCE MANAGER ROUTINES 25

To change the resource data for a purgeable resource and make the
change permanent, you have to take special precautions to ensure that
the resource won't be purged while you're changing it. You can make
the resource temporarily unpurgeable and then write it out with
WriteResource before making it purgeable again. You have to use the
Memory Manager routines HNoPurge and HPurge to make the resource
unpurgeable and purgeable; SetResAttrs can't be used because it won't
take effect immediately. For example:

myHndl :• GetResource(type,ID);

HNoPurge(myHndl);
• • •
ChangedResource(myHndl);
WriteResource(myHndl);

HPurge(myHndl);

{or LoadResource(myHndl) if }
{ you've gotten it previously}
{make it unpurgeable}
{make the changes here}
{mark it changed}
{write it out}
{make it purgeable again}

Or, instead of calling WriteResource to write the data out immediately,
you can call SetResPurge(TRUE) before making any changes to purgeable
resource data.

ChangedResource does nothing in the following cases:

- The given handle isn't a handle to a resource. The ResError
function will return the error code resNotFound.

- Sufficient space for the modified resource file can't be reserved
on the disk. ResError will return an appropriate Operating System
error code.

PROCEDURE AddResource (theData: Handle; theType: ResType; theID:
INTEGER; name: Str255);

Given a handle to data in memory (not a handle to an existing
resource), AddResource adds to the current resource file a local
reference that points to the data. It sets the resChanged attribute
for the resource, so the data will be written to the resource file when
the file is updated or when WriteResource is called. If the given
handle is empty, zero-length resource data will be written.
AddResource does nothing in the following cases:

- The given handle is NIL or is already a handle to an existing
resource. The ResError function will return the error code
addResFailed.

- The resource map becomes too large to fit in memory or sufficient
space for the modified resource file can't be reserved on the
disk. BesError will return an appropriate Operating System error
code.

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R

26 Resource Manager Programmer's Guide

PROCEDURE RmveResource (the Resource: Handle);

Given a handle to a resource in the current resource file, RmveResource
removes the local reference to the resource. The resource data will be
removed from the resource file when the file is updated.

(hand)
It doesn't deallocate the memory occupied by the resource
data; to do that, call the Memory Manager routine
DisposeHandle after calling RmveResource.

If the resProtected attribute for the resource is set or if the given
handle isn't a handle to a resource in the current resource file,
RmveResource will do nothing and the ResError function will return the
error code rmvResFailed.

(eye)
It's dangerous to remove a resource from the system
resource file, because all system references to it will
become invalid.

PROCEDURE AddReference (theResource: Handle; theID: INTEGER; name:
Str255);

Given a handle to a system resource, AddReference adds to the current
resource file a system reference to the resource, giving it the ID
number and name specified by the parameters. It sets the resCbanged
attribute for the resource, so the reference will be written to the
resource file when the file is updated. AddReference does nothing in
the following cases:

- The current resource file is the system resource file or already
contains a system reference to the specified resource, or the
given handle isn't a handle to a system resource. The ResError
function will return the error code addRefFailed.

The resource map becomes too large to fit in memory or sufficient
space for the modified resource file can't be reserved on the
disk. ResError will return an appropriate Operating System error
code.

PROCEDURE RmveReference (theResource: Handle);

Given a handle to a system resource, RmveReference removes the system
reference to the resource from the current resource file. (The
reference will be removed from the resource file when the file is
updated.) In the following cases, RmveReference will do nothing and
the ResError function will return the error code rmvRefFailed: the
resProtected attribute for the resource is set; there's no system
reference to the resource in the current resource file; or the given
handle isn't a handle to a system resource.

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R

RESOURCE MANAGER ROUTINES 27

PROCEDURE UpdateResFile (refNum: INTEGER);

Given the reference number of a resource file, UpdateResFile does the
following:

- Changes, adds, or removes resource data in the file as appropriate
to match the map. Remember that changed resource data is written
out only if you called ChangedResource. If a resource whose data
is to be written out has been purged, zero-length resource data
will be written.

- Compacts the resource file if necessary, closing up any empty
space created when a resource or a resource reference was removed
or when a resource was made larger. (If the size of a changed
resource is greater than its original size in the resource file,
it's written at the end of the file rather than at its original
location, leaving empty apace at that location. UpdateResFile
doesn't close up any empty apace created when a resource is made
smaller.)

- Writes out the resource map of the resource file, if you ever
called ChangedResource for any resource in the file or if you
added or removed a resource or a resource reference. All changes
to resource information in the map will become permanent as a
result of this, so if you want any such changes to be temporary,
you must restore the original information before calling
UpdateResFile.

If there's no open resource file with the given reference number,
UpdateResFile will do nothing and the ResError function will return the
error code resFNotFound. A refNum of G represents the system resource
file.

The CloseReaFile procedure calls UpdateResFile before it closes the
resource file, so you only need to call UpdateResFile yourself if you
want to update the file without closing it.

PROCEDURE WriteResource (theResource: Handle);

Given a handle to a resource, WriteResource checks the resChanged
attribute for that resource and, if it's set (which it will be if you
called ChangedReaource or AddResource), writes its resource data to the
resource file and clears its resChanged attribute. If the resource is
purgeable and has been purged, zero-length resource data will be
written. WriteResource does nothing if the reaProtected attribute for
the resource is set or if the given handle isn't a handle to a
resource; in the latter case. the ResError function will return the
error code reaNotFound.

Since the resource flle is updated when the application terminates or
when you call UpdateResFile (or CloseResFile, which calla
UpdatellesFile), you only need to call WriteResource if you want to
write out just one or a few resources immediately.

10/3/83 !lose CONFIDENTIAL /RMGR/RESOURCE.R

28 Resource Manager Programmer's Guide

PROCEDURE SetResPurge (install: BOOLEAN);

SetResPurge(TRUE) sets a "hook" in the Memory Manager such that before
purging data specified by a handle, the Memory Manager will first pass
the handle to the Resource Manager. The Resource Manager will
determine whether the handle is that of a resource in the application
heap and, if so, will call WriteResource to write the resource data for
that resource to the resource file if its resChanged attribute is set
(see ChangedResource and WriteResource above). SetResPurge(FALSE)
restores the normal state, clearing the hook so that the Memory Manager
will once again purge without checking with the Resource Manager.

SetResPurge(TRUE) is useful in applications that modify purgeable
resources. You still have to make the resources temporarily
unpurgeable while making the changes, as shown in the description of
ChangedResource, but you can set the purge hook instead of writing the
data out immediately with WriteResource. Notice that you won't know
exactly when the resources are being written out; most applications
will want more control than this. If you wish, you can set your own
such hook.

Advanced Routines

The routines described below allow advanced programmers to have even
greater control over resource file operations. Just as individual
resources have attributes, an entire resource file also has attributes,
which these routines manipulate. Like the attributes of individual
resources, resource file attributes are specified by bits in the
low-order byte of a word. The Resource Manager provides a predefined
constant for each attribute, in which the bit corresponding to that
attribute is set.

CONST mapReadOnly • 128;
mapCompact • 64;
mapChanged • 32;

When the mapReadOnly attribute is set, the Resource Manager will
neither write anything to the resource file nor check whether there's
sufficient space for the file on the disk when the resource map is
modified.

(eye)
If you set mapReadOnly but then later clear it, the
resource file will be written even if there's no room for
it on the disk. This would destroy the file.

The mapCompact attribute causes resource file compaction to occur when
the file is updated. It's set by the Resource Manager when a resource
or a resource reference is removed, or when a resource is made larger
and thus has to be written at the end of the resource file. You may
want to set mapCompact to force compaction when you've only made
resources smaller.

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R

RESOURCE MANAGER ROUTINES 29

The mapChanged attribute causes the resource map to be written to the
resource file when the file is updated. It's set by the Resource
Manager when you call Changedlleaource or when you add or remove a
resource or a resource reference. You can set mapChanged if, for
example, you've changed resource attributes only and don't want to call
ChangedResource because you don't want the resource data to be written
out.

FUNCTION GetResFileAttrs (refNum: INTEGER) : INTEGER;

Given the reference number of a resource file, GetResFileAttrs returns
the resource file attributes for the file. If there's no resource file
with the given reference number, GetReaFileAttrs will do nothing and
the ResError function will return the error code resFNotFound. A
refNum of G represents the system reference file.

PROCEDURE SetResFileAttrs (refNum: INTEGER; attrs: INTEGER);

Given the reference number of a resource file, SetResFileAttrs sets the
resource file attributes of the file to attrs. If there's no resource
file with the given reference number, SetResFileAttrs will do nothing
and the ResError function will return the error code resFNotFound. A
refNum of G represents the system reference file, but you shouldn't
change its resource file attributes.

RESOURCES WITHIN RESOURCES

Resources may point to other resources; this section discusses how this
is normally done, for programmers who are interested in background
information about resources or who are defining their own resource
types.

In a resource file, one resource points to another with the ID number
of the other resource. For example, the resource data for a menu
includes the ID number of the menu's definition procedure (a separate
resource that determines how the menu looks and behaves). To work with
the resource data in memory, however, it's faster and more convenient
to have a handle to the other resource rather than its ID number.
Since a handle occupies two words, the ID number in the resource file
is followed by a word containing G; these two words together serve as a
placeholder for the handle. Once the other resource has been read into
memory, these two words can be replaced by a handle to it. (See Figure
7.)

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.F

30 Resource Manager Programmer's Guide

(hand)

placeholder {
for handle

Application's reaotree file

ID
0

menu

.
r .

• , • . , •

·--·

~handle J • ' • ro • r

master • . , • ,
pointer •

rnenu

Figure 7. How Resources Point to Resources

The practice of using the ID number followed by~ as a
placeholder is simply a convention. If you like, you can
set up your own resources to have the ID number followed
by a dummy word, or even a word of useful information, or
you can put the ID in the second rather than the first
word of the placeholder.

In the case of menus, the Menu Manager routine GetMenu calls the
Resource Manager to read the menu and the menu definition procedure
into memory, and then replaces the placeholder in the menu with the
handle to the procedure. There may be other cases where you call the
Resource Manager directly and store the handle in the placeholder
yourself. It might be useful in these cases to call HomeResFile to
learn which resource file the original resource is located in, and
then, before getting the resource it points to, call UseResFile to set
the current resource file to that file. This will ensure that the
resource pointed to is read from that same file (rather than one that
was opened after it).

(eye)
If you modify a resource that points to another resource
and you make the change permanent by calling
ChangedResource, be sure you reverse the process
described here, restoring the other resource's ID number
in the placeholder.

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.F

FORMAT OF A RESOURCE FILE 31

FORMAT OF A RESOURCE FILE

This section gives the exact format of a resource file, which you need
to know if you're writing a program that will create or modify resource
files directly. You don't have to know the exact format to be able to
use the Resource Manager routines.

Allcucehelder
(18 bytes)

Copy of dira.luy entry
(112 bytes)

lllerdlta
(128 bytes)

' Allcuce data ' ' '

t Rlarcenp '~ •

Figure 8. Format of a Resource File

As illustrated in Figure 8, every resource file begins with a resource
header. The resource header gives the offsets to and lengths of the
resource data and resource map parts of the file, as follows:

(hand)

Number of bytes
4 bytes

4 bytes

4 bytes
4 bytes

Contents
Offset from beginning of resource file
to resource data
Offset from beginning of resource file
to resource map
Length of resource data
Length of resource map

All offsets and lengths in the resource file are given in
bytes.

This is what immediately follows the resource header:

Number of bytes
112 bytes
128 bytes

Contents
Partial copy of directory entry for this file
Available for user data

The directory copy is used by the Finder. The user data may be
whatever the you want.

10/3/83 lose CONFIDENTIAL /RMGR/RESOURCE.F

32 Resource Manager Programmer's Guide

The resource data follows the user data. It consists of the following
for each resource in the file:

Number of bytes
For each resource:

4 bytes
n bytes

Contents

Length of following resource data
Resource data for this resource

To learn exactly what the resource data is for a standard type of
resource, see the documentation on the Toolbox unit that deals with
that resource type.

After the resource data, the resource map begins as follows:

Number of bytes
16 bytes
4 bytes

2 bytes
2 bytes
2 bytes

2 bytes

Contents
d (reserved for copy of resource header)
G (reserved for handle to next resource map
to be searched)
G (reserved for file reference number)
Resource file attributes
Offset from beginning of resource map
to type list (see below)
Offset from beginning of resource map
to resource name list (see below)

After reading the resource map into memory, the Resource Manager stores
the indicated information in the reserved areas at the beginning of the
map.

The resource map continues with a type list, reference lists, and a
resource name list. The type list contains the following:

Number of bytes
2 bytes
For each type:

4 bytes
2 bytes

2 bytes

Contents
Number of resource types in the map minus 1

Resource type
Number of resources of this type in the map
minus 1
Offset from beginning of type list
to reference list for resources of this type

which
The

This is followed by the reference list for each type of resource,
contains the resource references for all resources of that type.
reference lists are contiguous and in the same order as the types in
the type list. The format of a reference list is as follows:

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.F

,

Number of bytes
For each reference
of thi• type:

2 bytes
2 bytes

l byte
3 bytes

4 bytes

FORMAT OF A RESOURCE FILE 33

Contents

Resource ID
Offset from beginning of resource name list
to length of resource name, nr -1 if none
Resource attributes
If local reference, offset from beginning
of resource data to length of data for this
resource
If system reference,~ (ignored)
If local reference,~ (reserved for handle
to resource)
If system reference, resource specification
for system resource: in high-order word,
resource ID; in low-order word, offset from
beginning of resource name list to length
of resource name, or -1 if none

The resource name list follows the reference lrst and has this format:

Number of bytes
For each name:

l byte
n bytes

Contents

Length of following resource name
Characters of resource name

Figure 9 on the following page shows where the various offsets lead to
in a resource file, in general and also specifically for a local
reference.

NOTES FOR ASSEMBLY-LANGUAGE PROGRAMMERS

*** This will be moved to a separate chapter of the final comprehensive
manual. For now, see the QuickDraw manual for complete information
about how to use the User Interface Toolbox from assembly language.

The primary aid to assembly-language programmers is a file named
ToolEqu.Text. If you use .INCLUDE to include this file when you
assemble your program, all the Resource Manager constants and locations
of system globals will be available in symbolic form.

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.F

34 Resource Manager Programmer's Guide

PeKuce
lleadet

end ott.
data

Rescuce
Date

offset to renwce date
offset to resoll'Ce map

ofrescucedeta
l'890.l'C8 data

offset to t I iat
offset to name list

offset to reference I 1st

thofre30U'Cenmne
resoc.rcename

Type
11st

Aeference
list,
(local referer ice
shown)

Aescuce
neme list

Figure 9. Local Reference in a Resource File

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.F

SUKHAR.Y OF THE RESOURCE MANAGER 35

SUMMARY OF THE RESOURCE MANAGER

CONST resSysRef • 128; {set if system reference}
resSysHeap • 64;
resPurgeable • 32;
restocked • 16;
resProtected • 8;
resPreload • 4;
resChanged • 2;
resUser • l;

{set if read into system heap}
{set if purgeable}
{set if locked}
{set if protected}
{set if to be preloaded}
{set if to be written to resource file}
{available for use by your application}

resNotFound • -192;
resFNotFound • -193;
addResFailed • -194;
addRefFailed • -195;
rmvResFailed • -196;
rmvRefFailed • -197;

{resource not found}
{resource file not found}
{AddResource failed}
{AddReference failed}
{RmveResource failed}
{RmveReference failed}

mapReadOnly • 128;
mapCompact • 64;
mapChanged • 32;

TYPE ResType • PACKED ARRAY [1 •• 4] OF CHAR;

Initializing the Resource Manager

FUNCTION InitResources
PROCEDURE RsrcZoneinit;

INTEGER;

Opening and Closing Resource Files

PROCEDURE CreateResFile (filename: Str255);
FUNCTION OpenResFile (fileName: Str255) : INTEGER;
PROCEDURE CloaeResFile (refNum: INTEGER);

Checking for Errors

FUNCTION ResError : INTEGER;

Setting the Current Resource File

FUNCTION CurResFile : INTEGER;
FUNCTION HomeResFile (theResource: Handle)
PROCEDURE UseResFile (refNum: INTEGER);

10/3/83 Rose CONFIDENTIAL

INTEGER;

/RMGR/RESOUllCE.S

36 Resource Manager Programmer's Guide

Getting Resource Types

FUNCTION ·countTypea
PROCEDURE GetindType

INTEGER;
(Vil theType: ResType; index: INTEGER);

Getting and Disposing of Resources

PROCEDURE SetReaLoad
FUNCTION CountReaources
FUNCTION GetindResource
FUNCTION GetResource
FUNCTION GetNamedResource
PROCEDURE LoadReaource
PROCEDURE ReleaseResource
PROCEDURE DetachResource

(load : BOOLEAN) ;
(theType: ResType) : INTEGER;
(theType: ResType; index: INTEGER) : Handle;
(theType: ResType; thelD: INTEGER) : Handle;
(theType: leaType; name: Str25S) : Handle;
(the Resource: Handle);
(theReaource: Bandle);
(theResource: Handle);

Getting Resource Information

FUNCTION UniqueID (theType: ResType) : INTEGER;
PROCEDURE GetReslnfo (theResource: Handle; VAR theID: INTEGER; VAR

theType: ReaType; VAR name: Str255);
FUNCTION GetResAttrs (theResource: Handle) : INTEGER;

Modifying Resources

PROCEDURE SetResinfo

PROCEDURE SetResAttrs
PROCEDURE ChangedResource
PROCEDURE AddResource

PROCEDURE RmveResource
PROCEDURE AddReference

PROCEDURE RmveReference
PROCEDURE UpdateReaFile
PROCEDURE WriteResource
PROCEDURE SetReaPurge

Advanced Routines

(theResource: Handle; theID: INTEGER; name:
Str255);

(theResource: Handle; attra: INTEGER);
(theReaource: Handle);
(theData: Handle; theType: ResType; theID:
INTEGER; name: Str255);

(theResource: Handle);
(theResource: Handle; theID: INTEGER; name:
Str255);

(theResource: Handle);
(refNum: INTEGER);
(theReaource: Handle);
(install: BOOLEAN);

FUNCTION GetResFileAttrs (refNum: INTEGER) : INTEGER;
PROCEDURE SetResFileAttrs (refNum: INTEGER; attrs: INTEGER);

10/3/83 Rose CONFIDENTIAL /RMGR/RESOUB.CE.S

SUMMARY OF THE RESOURCE FILE FORMAT 37

SUMMAllY OF THE RESOURCE FILE FORMAT

(hand)
All offsets and lengths are given in bytes.

Resource
Header
and other
data

Resource
Data

Resource
Map

Type list

Reference
lists (one
per type,
contiguous,
same order
as in type
list)

Resource
name list

10/3/83 Rose

4 bytes
4 bytes
4 bytes
4 bytes

112 bytes
128 bytes

For each resource:
4 bytes
n bytes

16 bytes
4 bytes

2 bytes
2 bytes
2 bytes
2 bytes

2 bytes
For each type:

4 bytes
2 bytes
2 bytes

For each reference
of this type :

2 bytes
2 bytes

1 byte
3 bytes

4 bytes

For each name :
l byte
n bytes

Offset to resource data
Offset to resource map
Length of resource data
Length of resource map
Partial copy of file's directory entry
User data

Length of following resource data
Resource data for this resource

Reserved for copy of resource header
Reserved for handle to next resource map
to be searched
Reserved for file reference number
Resource file attributes
Offset to type list
Offset to resource name list

Number of resource types minus 1

Resource type
Number of resources of this type minus l
Offset to reference list for this type

Resource ID
Offset to length of resource name or -1
if none
Resource attributes
If local reference, offset to length of
resource data
If system reference,~
If local, reserved for handle to resource
If system, resource specification for
system resource: in high-order word,
resource ID; in low-order word, offset to
length of resource name or -1 if none

Length of following resource name
Characters of resource name

CONFIDENTIAL /RMGR/RESOURCE.S

38 Resource Manager Programmer's Guide

GLOSSARY

current resource file: The last resource file opened, unless you
specify otherwise with a Resource Manager routine.

empty handle: A pointer to a NIL master pointer.

local reference: A resource reference to a resource in the same file
as the reference. It points to the resource data in the file and
contains a handle to the data if it's in memory.

purgeable: Able to be removed from the heap (purged) when space is
required by the Memory Manager.

reference number: A number greater than~. returned when a file is
opened, by which you can refer to that file. In Resource Manager
routines that expect a reference number, G represents the system
resource file.

resource: Data or code stored in a resource file and managed by the
Resource Manager.

resource attribute: One of several characteristics, specified by bits
in a resource reference, that determine how the resource should be
dealt with.

resource data: In a resource file, the data that comprises a resource.

resource file: The resource fork of a file, which contains data used
by the application (such as menus, fonts, and icons) and also the
application code itself.

resource header: At the beginning of a resource file, data that gives
the offsets to and lengths of the resource data and resource map.

resource ID: A number that, together with the resource type,
identifies a resource in a resource file. Every resource has an ID
number.

resource map: In a resource file, data that is read into memory when
the file is opened and that, given a resource specification, leads to
the corresponding resource data.

resource name: A string that, together with the resource type,
identifies a resource in a resource file. A resource may or may not
have a name.

resource reference: In a resource up, a local reference leading to
resource data in the same file aa the reference, or a system reference
leading to data in the system resource file.

resource specification: A resource type and either a resource ID or a
resource name.

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.G

GLOSSARY 39

resource type: 'lbe type of a resource in a resource file, designated
by a sequence of four characters (such as 'MENU' for a menu).

system reference: In an application's resource file, a resource
reference to a system resource. It provides a resource specification
for the resource in the system resource file.

system resource: A resource in the system resource file.

system resource file: A resource file containing standard resources,
accessed if a requested resource wasn't found in any of the other
resource files that were searched.

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.G

Here is a example:

SAD MACINTOSH ICON
OCT 26, 1983

?'4.\h ie.~c.,'\

Power on the Macintosh, holding down the NKl button on the left aide of the
computer. The sad Macintosh will appear, with a set of 11W1bera under it.
This set of code can be divided into tvo types of code.

OF OOOD - Sub Codes
I

Cla88 Codes

Class Codes deals with the initial
1 • ROM teat failed

diagnostic code.
meaningleas

12-1

2 • Memteat - Bua subtest
3 • Memtest - ByteWrite

bits set correaponda to auepected bad RAM chips - -
4 • Memtest - Modltest
S • Hemteat - Addr uniqueness -

Class Code F • exception, only after diagnostics have paaeed.
This la where the Sub Codes come in.

F • exception 0001 Bus error
0002 address error
0003 illegal instruction
0004 zero divide
0005 check instruction .
0006 trapv instruction
0007 privilege violation
0008 trace
0009 line 1010
OOOA line 1111
0001 other exceptions
OOOC nothing
OOOD HM1

--

Another test to see hov this works ia, remove a RAM chip. Pover up the Macintosh.

A nev code should appear under the sad Macintosh icon. When I did it, I picked
the one closes to the Keyboard connector. The code under the Macintosh vas
028000. So number 2-s class code tell• ae that it suapecta bad llAM chip. The
eight tell• me that ite the 15th RAM chip.
1AM Chip I Code under Macintoah ·

0
1
2
3
4
s

0001
0002
0004
0008
0010
0020

I
\

12-2

6 - 0040
7 - 0080
8 - 0100
9 - 0200

10 - 0400
11 - 0800
l2 - 1000
13 - 2000
14 - 4000
15 - 8000

This is a good example of just one 1AM chip being bad, but vhat is there are
aultiple RAM chips that are bad? Try taking the 15th and 14th RAM chips out.
the Code appears like this. 02COOO, ve can aay aince ve know the code is in Bex
that there are 16 possibilities.

0 0000
l 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
A 1010
B 1011
C 1100 aeaning the 15th and 14th chip 11 bad.
D 1101
! 1110
F 1111

This is just a atart to underatanding what all the codea aean. If ve try to keep
a list, ve s~ould come acroae all the poasibilities.

;

'

4 Ji,z 1982 19:53:35 nJISHISYSERR. TEXT

; File SysErr.Text - Macintosh systen error equates file. ; __________________________ _
;

All syste11 routines reporting errors include this equate file.

Modification lb.story:
16 Feb BJ LRK Broke out fr011 SysEqu.Text

; 22 Feb BJ LRK Added equates fron SysUtil and Events.
; 10 Hay BJ HPH Added nev 11eft0ry nanager error codes.

07 Jun 83 LRK Adjusted error codes for file systM
; 15 Jun 83 R.JH Added Deep Shit Error Definitions
; 23 Jun 83 LRK Added imtlVHErr for sony driver.
; 18 Jul 83 LRK Added 110re 11e110ry 11C1nager deep shit errors.
; 11 Rug 83 LRK Added 110re disk driver error codes.
; 17 Rug 83 LRK Added file syste11 deep shit error code.
; 18 Rug 83 SC Added scrap 11anager error codes.
; 19 Rug 83 LRK Added staclcinheap deep shit code.
; 21 Rug 83 LRK Added SpdRdjErr, SeelcErr. and SectNFErr for disk driver.
; Renoved BadNybErr; 110ved cloclc/pra11 error codes up by 4.
; 23 Rug 83 LRK Rdded NotOpenErr for drivers.

27 Rug 83 R.JH added 11el'lf'ull deep shit alert
; 06 Sep 83 R.JH added DSBadl.aunch
; 22 Sep 83 BUI Rdded Resource Hgr errors
; 10 Oct 83 LRK Added No£rr equate
; 13 Oct 83 LRK added NoErr. DSRelnsert equates, DSMotThel ; __________________________ _
; General Systen Errors

NoErr .EOU D
OErr .EOU -1
VI'ypErr .EOU -2
CorErr .EOU -3
UninpErr .EOU -4

; 1/0 Systen Errors

CcntrolErr . E0U -17
StatusErr . EOU -18
ReadErr . EOU -19
WritErr .EOU ·20
BadUn1tErr .EOU ·21
UnitEnptyErr .EOU ·22
OpenErr .EQU -23
ClosErr .EOU ·24
DRenovErr .EOU -25
D1nstErr .EOU ·26
RbortErr .EOU -27
NotOpenErr .EOU ·28

(VBL Hgr, Oueueing, Etc.)

; success is absence of errors
; queue elMent not found during deletion
; invalid queue elenent
; core routine nunber out of range
; uninple11ented core routine

; tried to re110ve an open driver
; Drvrlnstall couldn't find driver in resources
; JO call aborted by Kill1D
; Cculdn·t rd/vr/ctl/sts cause driver not opened

; File Syste11 error codes:

DirFulErr .EOU -33 ; Directory full
DskFulErr .EOU -34 ; disk full
NSVErr .EOU -35 ; no such vol\a'le
10Err .EOU -36 ; 1/0 error (buRfters)
BdNanE:rr .EOU -37 ; there 11ay be no bad nanes in the final systen !
FNOpnErr .EOU -38 ; File not open
EOFErr .EOU -39 ; End of file
PosErr .EOU ·4D ; tried to position to before start of file (riv)
Hf'ulErr .EOU -41 ; 11eMry full(open) or file won't fit (load)
THFOErr .EDU -42 : too 11any files open
FNFErr .EOU -113 ; File not found

VPrErr .EOU -44 diskette is vri te protected
FLclcdErr .EOU -45 file is locked
VLckdErr .EOU -46 volune is locked

~-
12- 3

12-4

4 J1111 1182 18:53.35

FBsyErr . EOU -117
DupFNErr .EOU -48
DpVrErr .EOU -49
ParanErr .EOU -SD
RfllunErr .EOU -51
GFPErr • EOU -52
VolDffLinErr .EOU -SJ
PemErr • EOU -Sil
VolOnLinErr .EOU -55
NSDrvErr .EOU -56
NoKacDskErr .EOU -57
ExtFSErr .EOU -58
FSDSErr . EOU -59

BadMDBErr . EOU -60
VrPerriErr .EOU -61

n.RSHISYSERR. TEXT

; File is busy (delete)
; duplicate filenm,e (renm,e)
; file already open with vith write pern:ission
; error in user paraneter list
; refm.11'1 error
; get file position error
; volUl'le not on line error (vas EJ~cted)
; pentissions error (on file open)
; drive volune already on-line at nuuntVol
; no such drive (tried to 110unt a bad drive nun)
; net a nac diskette (sig bytes are vrong)
; volune in question belongs to an external fs
; file systo deep s--t error:
; during renane the old entry vas deleted but could
; not be restored •
; bad RaSter directory block
; write pern:issions error

; Disk, Serial Ports, Cloclc Specific Errors

NoDri veErr • EOU
OffLinErr .EOU

NoNybErr
NoadrHkErr
DataVerErr
8ad0t51'1£rr
BadBtSlpErr
NoDtalikErr
BadDOcSun
BadDBtSlp
VrUnderRun

CantStepErr
TkOBadErr
InitIWHErr
TwSideErr
SpdRdjErr
SeekErr
SectNFErr

ClkRdErr
Clk\lrErr
PRVrErr
PRinitErr

RcvrErr
BrealcRecd

.EOU

.EOU

.EOU

.EOU

.EOU

.EOU

.EOU

.EOU

.EOU

.EOU

.EOU

.EOU

.EOU

.EOU

.EOU

.EOU

.EOU

.EOU

.EQU

.EOU

.EOU

.EQU

-64
-65

-66
-67
-68
-69
-70
-71
-12
-73
-74

-75
•76
-11
-18
-79
-80
-Bl

-as
-86
-81
-88

-89
-90

; drive not installed
; riv requested for an off-line drive

; couldn't find 5 nybbles in 200 tries
; couldn't find valid addr 11ark
; read verify co11pare failed
; addr nark check sun di dn • t check
; bad addr nark bit slip nibbles
; couldn · t find a data nark header
; bad data nark checksun
; bad data nark bit slip nibbles
; write underrun occurred

; step handshake failed
; track O detect doesn·t change
; unable to init1al12e IWH
; tried to read 2nd side on a 1-sided drive
; unable to correctly adJust disk speed
; track nunber wrong on address nark
; sector nunber never found on a track

; unable ta read sane clack value tvice
; tine written did not verify
; parm1eter rCJl'I written didn · t read-verify
; Ini tUtil found the parOl'ICter ran uninitialized

; sec receiver error (franing, parity. OR)
; Break received (SCC)

; Storage allocator error codes

HenFullErr . EOU
NilHandleErr .EOU
11uiVZErr . EOU
IICIIPurErr .EOU

lleftfldrErr
IUIJ'IRZErr
llellPCErr
IICIIBCErr
MIISCErr

.EOU

.EOU

.EOU

.EOU

.EOU

-108
-109
-111
-112

-110
-113
-11"
-115
-116

; Not enough roon in heap zone
; Handle vas NIL in HandleZone or other;

VhichZone failed (applied to free bloclc);
; trying to purge a locked or non-purgable black:

; address vas odd. or out of range;
; Address in zone check failed;
; Pointer Check failed;
; Block Oleck failed;
; Size Oleclc failed;

; Resource Manager error codes (other than I/0 errors)

ResHatFound
Resf'NotFound
RddResFailed
RddRefFailed

.EOU

.EOU

.EOU

.EOU

-192
-193
-1911
-195

Resource not found
Resource file not found
RddResource failed
RddReference failed

--

Pa;e 2

4 J1,111 1982 19:53.35

RPlvResf' ailed
RPlvReffa1led

.EOU

.EOU
-196
-197

; bveResource failed
RllveReference failed

; Scrap Hanager error codes

noScrapErr .EOU
noType£rr .EOU

-100
-102

No scrap exists error
; No obJect of that type in scrap

; Application Error Codes
;
; errors -1024 to -4095 are reserved for use by the current application

; Deep Shit Alert ID definitions

DSSysErr
DSBusError
DS.RddressErr
DSlllJnstErr
DS2eroDivErr
DSOllcErr
DSOvFlowErr
DSPrivErr
DSTraceErr
DSline.RErr
DSlineFErr
DSHiscErr
DSCoreErr
DSirqfrr

.EOU

.EOU

.EOU

.EOU

.EOU

.EDU

.EOU

.EOU

.EOU

.EOU

.EOU

.EOU

.EOU

.EOU

32767
l
2
3
4
s
6
7
8
9

1D
11
12
13

; general systeR error
; bus error
; address error
; illegal instruction error
; zero divide error
; check trap error
; overflow trap error
; privelege violation error
; trace 110de error
; line 1010 trap error
; line 1111 trap error
; Jliscellaneous hardware exception error
; urunplenented core routine error
; uninstalled interrupt error

DSIOCoreErr .EOU 14 ; IO Core Eu or
DSloadErr . EOU 15 ; Segnent Louw,r Error

; Floating po.1.11 t error DSf'P£rr . EOU 16

DSNoPac:k£rr
DSNoPkl
DSNoPk2
DSNoPkJ
DSNoPk4
DSNoPkS
DSNoPk6
DSNoPk7

.EOU 17

.EOU 18

.EOU 19

.EDU 20

.EOU 21

.EOU 22

.EOU 23

.EOU 24

; package D not present
; package 1 not present
; package 2 not present
; package 3 not present
; package 4 not present
; package Snot present
; package 6 not present
; package 7 not present

DSNenFullErr .EOU 25
DSBodl.aunch . EOU 26

; out of llf:ft>ry !
; can't launch file

DSStknHeap
DSFSErr
DSRelnsert
DSNotThel

.EOU 28

.EOU 27

.EOU JD

.EOU 31

; stack has 110ved into application heap
; file systeR 11.ap has been trashed
; request user to rein~ert off-line volURe
; not the disk I wanted

; Storage allocator trouble codes (deep shit IDs)

HenTrbBase .EQU 32 ; Hell0ry Hanog"r Trouble Code base.
11tSetLog .EOU HenTrbBase ; Set Logical S1ze Error.
11tAdjFre .EOU HenTrbBase• 1 ; Adjust Free Error.
11tAdjCnt .EOU HenTrbBase•2 ; Adjust Counters Error.
11tHJceBkf .EDU HenTrbBase•J ; Make Block Free Error.
ntSetSiz .EQU HenTrbBase•4 ; Set Size Error.
11tJnitHen .EDU HenTrbBase•S ; Initialize Henory Manager Error.
11tBCerr .EOU HenTrbBase•6 ;
11tCZerr .EQU HenTrbBase•7 ;
11tCZlerr .EOU MenTrbBase•8 ;
11tCZ2err .EOU HenTrbBase•9 ;
11tCZJerr .EOU HeftTrbBase• 10 ;
11tEqCerr .EOU HeftTrbBas,:.11 ;
11tEvCerr .EOU HeftTrbBas,:.12 ;

--

12-5

12-6

4 J1111 1982 19: S3: 35 n.asM/SYSERR. TEXT

ntHCerr .EOU HenTrbBase•lJ ;
,itPCerr .EOU HenTrbBase+l4 ;
11tSCerr .EOU HenTrbBase•lS ;
11tRClerr .EOU HenTrbBase•l6 ;
11tRC2err .EOU HenTrbBase•l7 ;
11tSRBerr .EOU HenTrbBase•lB ;
11tRCerr .EOU HenTrbBase+l9 ;
11tJZCerr .EOU HenTrbBase+2D ;
11tPrCerr .EOU HenTrbBase•21 ;

; SOJ1e ,uscellaneous result codes

EvtNotEnb .EOU
NoEvtRvail .EOU

1
-1

; event not euabled at PostEvent
; no event available (GetDSEvent. OSEventRvail)

-···-

Pqe 4

MACINTOSH USER EDUCATION

The Scrap Manager: A Programmer's Guide

See Also: Macintosh User Interface Guidelines
Macintosh Operating System Reference Manual
QuickDraw: A Programmer's Guide
The Resource Manager: A Programmer's Guide
The Event Manager: A Programmer's Guide
The Segment Loader: A Programmer's Guide
The Desk Manager: A Programmer's Guide
Putting Together a Macintosh Application

Modification History: First Draft (ROM 7)
Erratum Added

c. Rose
c. Rose

/SMGR/SCRAP

l~/21/83
11/16/83

ABSTRACT

The Scrap Manager is a set of simple routines and data types that help
Macintosh applications manipulate the Clipboard for cutting and pasting
between applications, desk accessories, or an application and a desk
accessory. This manual describes the Scrap Manager in detail.

Erratum:

The 'TEXT' type of data in the desk scrap is simply a series of ASCII
characters, without a character count or an optional comment. If you
want to know the count, you can get it by passing a NIL handle to the
GetScrap function.

2 Scrap Manager Programmer's Guide

TABLE OF CONTENTS

3 About This Manual
3 About the Scrap Manager
4 Overview of the Desk Scrap
7 Desk Scrap Data Types
9 Using the Scrap Manager
1~ Scrap Manager Routines
lG Getting Scrap Information
11 'Keeping the Scrap on the Disk
12 Reading from the Scrap
12 Writing to the Scrap
13 Format of the Desk Scrap
15 Summary of the Scrap Manager
17 Glossary

Copyright (c) 1983 Apple Computer. Inc. All rights reserved. Distribution
of this draft in limited quantities does not constitute publication.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes the Scrap Manager, a new part of the Macintosh
User Interface Toolbox in ROM version 7. *** Eventually it will become
part of a comprehensive manual describing the entire Toolbox.*** The
Scrap Manager supports cutting and pasting between applications, desk
accessories, or an application and a desk accessory.

Like all documentation about Toolbox units, this manual assumes you're
familiar with the Macintosh User Interface Guidelines, Lisa Pascal, and
the Macintosh Operating System's Memory Manager. You should also be
familiar with the following:

- OuickDraw pictures

- Resources, as discussed in the Resource Manager manual

- The Toolbox Event Manager

This manual is intended to serve the needs of both Pascal and
assembly-language programmers. lnfomation of interest only to
assembly-language programmers is isolated and labeled so that Pascal
programmers can conveniently skip it.

The manual begins with an introduction to the Scrap Manager, an
overview of the scrap that you manipulate with it, and a discussion of
the types of data that the scrap may contain.

Next, a section on using the Scrap Manager introduces its routines and
tells how they fit into the flow of your application. This is followed
by detailed descriptions of all Scrap Manager routines, their
parameters, calling protocol, effects, side effects, and so on.

Following these descriptions is a section that gives the exact format
of the scrap, for those programmers who are interested; you don't have
to read this section to be able to use the Scrap Manager routines.

Finally, there's a summary of the Scrap Manager, for quick reference,
followed by a glossary of terms used in this manual.

ABOUT THE SCRAP MANAGER

The Scrap Manager is a set of simple routines and data types that help
Macintosh applications manipulate the~ scrap, which is where data
that's cut (or copied) and pasted between applications is stored. An
application can also use the desk scrap for storing data that's cut and
pasted within the application, but usually it will have its own private
scrap for this purpose. The format of the private scrap may be
whatever the application likes, since no other application will use it.

10/21/83 Rose CONFIDENTIAL I SMGR./ SCRAP. 2

4 Scrap Manager Programmer's Guide

From the user's point of view. there's a single place where all cut or
copied data resides. and it's called the Clipboard. The Cut command
deletes data from a document and places it in the Clipboard; the Copy
command copies data into the Clipboard without deleting it from the
document. The next Paste command--whether applied to the same document
or another, in the same application or another-inserts the contents of
the Clipboard at a specified place. An application that offers these
editing commands will usually also have a special window for displaying
the current Clipboard contents; it may show the Clipboard window at all
times or only when requested (via the Show Clipboard and Hide Clipboard
commands).

The desk scrap is the vehicle for transferring data not only between
two applications but also between an application and a desk accessory,
or even between two desk accessories. Desk accessories that display
text will commonly allow the text to be cut or copied. The user might,
for example, use the Calculator accessory to do a calculation and then
copy the result into a document. It's also possible for a desk
accessory to allow something to be pasted into it.

(hand)
The Scrap Manager is optimized for transferring aaall
amounts of data; attempts to transfer very large amounts
of data may fail due to lack of memory.

The nature of the data to be transferred varies according to the
application. For example, for the Calculator or a word processor the
data is text, and for a graphics application it's a picture. The
amount of information retained about the data that's transferred also
varies. Between two text applications, text can be cut and pasted
without any loss of information; however, if the user of a graphics
application cuts a picture consisting of text and then pastes it into a
document created with a word processor, the text in the picture may not
be editable in the word processor, or it may be editable but not look
exactly the same as in the graphics application. The Scrap Manager
allows for a variety of data types and provides a mechanism whereby
applications have control over how much information is retained when
data is transferred.

Like any scrap, the desk scrap can be kept on the disk (in the scrap
file) if there's not enough room for it in memory. It may remain on
the disk throughout the use of the application but must be read back
into memory when the application terminates, since the user may then
re'lllOve that disk and insert another. The Scrap Manager provides
routines for writing the desk scrap to the disk and for reading it back
into memory.

OVERVIEW OF THE DESK SCRAP

The desk scrap is initially located in the application heap, with a
handle to it in low memory. When starting up an application, the
Segment Loader temporarily moves the scrap out of the heap into the

10/21/83 'Rose CONFIDENTIAL /SMGR/SCRAP.2

OVERVIEW OF THE DESK SCRAP S

stack, reinitializes the heap, and puts the scrap back in the heap.
(See Figure 1.) For a short time while it does this, two copies of the
scrap exist in the memory allocated for the stack and the heap; for
this reason, the desk scrap cannot be bigger than half that amount of
memory.

Initially: TheR Finally:

old {
heap

}::

Figure 1. The Desk Scrap at Application Start-up

The application can get the size of the desk scrap by calling a Scrap
Manager function named InfoScrap. An application concerned about
whether there's room for the desk scrap in memory might be set up so
that a small initial segment of the application is loaded in just to
check out the scrap size. After a decision is made about whether to
keep the scrap in memory or on the disk, the remaining segments can be
loaded in as needed.

There are certain disadvantages to keeping the desk scrap on the disk.
The disk may be write-protected, may not have enough room for the
scrap, or may be removed during use of the application. If the
application can't write the scrap to the disk, it should put up an
alert box informing the user, who may want to abort the application at
that point.

The application must use the desk scrap for any Paste command given
before the first Cut or Copy command (that is, the first since the
application started up or since a desk accessory was deactivated); this
requires copying the desk scrap to the private scrap, if any. Clearly
the application must keep the contents of the desk scrap intact until
the first Cut or Copy command is given. Thereafter it can ignore the
desk scrap until a desk accessory is activated or the application is
terminated; in either of these cases, it must copy its private scrap to
the desk scrap. Thus whatever was last cut or copied within the
application will be pasted if a Paste command is then given in a desk
accessory or in the next application.

10/21/83 Rose CONFIDENTIAL I SMGR/ SCRAP. 2

6 Scrap Manager Programmer's Guide

1. User enten word processor after artting e pictlft in the previous appl icetion.

I plchre I I enw I
desk ,crap private scrap

2. User give, Paste conwnend in word processor (without e previous CUt or Copy),

I plclln I , ~I) pasted where specified
desk acrep private saep

3e. lber cuts text in word proc~.

I plcue I B
desk scrap private screp

3b. lber leaves word processor.

1~rted·~--:_te_x1 __

desk scrap private scrap

OA:

3. User leovea word processor
(without e previous Cut or Copy),

1~ed1
private screp

Figure 2. Interaction between Scraps

Figure 2 illustrates how the interaction between the desk scrap and the
application's private scrap might occur when the user gives a Paste
command in a word processor after cutting a picture in a graphics
application. As the picture that was cut gets copied to the private
scrap, it's converted to the format of that scrap. If the user leaves
the word processor after cutting or copying text, the text first goes
into the private scrap and then gets.copied to the desk scrap. On the
other hand, if the user never gives a Cut or Copy command, the
application won't copy the private scrap to the desk scrap, so the
original contents of the desk scrap will be retained.

Suppose the word processor in Figure 2 displays the contents of the
Clipboard. Normally it will display its private scrap; however, to
show the Clipboard contents at any time before step 2, it will have to
display the desk scTap instead, or first copy the desk scrap to its
private scrap. It can instead simply copy the desk scrap to its
private scrap at start-up (step 1), so that showing the Clipboard
contents will always mean displaying the private scrap.

A similar scheme to that shown in Figure 2 must be followed when the
user reenters an application after using a desk accesory, since the
user may have done cutting or copying in the accessory. The
application can in fact check whether any such cutting or copying was
done, by looking at a count that's returned by InfoScrap. If this
count changes during use of the desk accessory, it means the contents

10/21/83 Rose CONFIDENTIAL / SMGR/ SCRAP. 2

OVERVIEW OF THE DESK SCRAP 7

of the desk scrap have changed; the application will have to copy the
desk scrap to the private scrap, if any, and update the contents of the
Clipboard window, if there is one and if it's visible. If the count
returned by InfoScrap hasn't changed, however, the application won't
have to take either of these actions.

If the application encounters problems in trying to copy one scrap to
another, it should alert the user. The desk scrap may be too large to
copy to the private scrap, in which case the user may want to leave the
application or just proceed with an empty Clipboard. If the private
scrap is too large to copy to the desk scrap, either because it's
disk-based and too large to copy into memory or because it exceeds the
maximum size allowed for the desk scrap, the user may want to stay in
the application and cut or copy something smaller.

DESK SCRAP DATA TYPES

From the user's point of view there can be only one thing in the
Clipboard at a time, but internally there may be more than one data
item in the desk scrap, each representing the same Clipboard contents
in a different form. For example, text cut with a word processor may
be stored in the desk scrap both as text and as a QuickDraw picture.

Desk scrap data types are like resource types. As defined in the
Resource Manager, their Pascal type is as follows:

TYPE ResType • PACKED ARRAY (1 •• 4] OF CHAR;

The Scrap Manager recognizes two standard types of data in the desk
scrap.

- 'TEXT': a series of ASCII characters, preceded by a long word
containing the number of characters and optionally followed by a
comment, as described below.

- 'PICT': a QuickDraw picture, which is a saved sequence of drawing
commands that can be played back with the DrawPicture command and
may include picture comments. (See the QuickDraw manual for
details.)

Applications must write at least one of these standard types of data to
the desk scrap and must be able to read both types. Most applications
will prefer one of these types over the other; for example, a word
processor prefers text while a graphics application prefers pictures.
An application should at least write its preferred standard type of
data to the desk scrap, and ideally will write both types (to pass the
most information possible on to the receiving application, which may
prefer the other type).

An application reading the desk scrap will look for its preferred data
type. If its preferred type isn't there, or if it's there but was
written by an application having a different preferred type, some

10/21/83 Rose CONFIDENTIAL /SKGR/SCUP.2

8 Scrap Manager Programmer's Guide

information may be lost in the transfer process. For example, consider
the user of a graphics application who cuts a picture consisting of
text and then goes into a word processor and pastes it (as illustrated
in Figure 3).

- If the graphics application writes only its preferred data type,
picture, to the desk scrap (like application A in Figure 3), the
text in the picture will not be editable in the word processor,
because it will be seen as just a series of drawing commands and
not a sequence of characters.

- On the other hand, if the graphics application takes the trouble
of recognizing which characters have been drawn in the picture,
and also writes them out to the desk scrap as text (like
application Bin Figure 3), the word processor will be able to
treat them like any text, with editing or whatever. In this case,
however, any part of the picture that isn't text will be lost.

Graphics Application A Word Processor

..
: : Cut Peste

. .
pictu'e . plchn

~ consisting
.

'°"1 pictu'e I '-: consisting : . 'I I ,: : .
of text : of text

. de* scrap•.•....•• ~ -......

&aphict Application B Word Procet9Clf'

.. CUt
' pleb.re

. . . plctlJ'e . ~ Peate : editable
.

~ consisting
. .

'-: text
. . text : . of text

. ,.,. desk acrep
. ~

Figure 3. Inter-Application Cutting and Pasting

In addition to the two standard data types, the desk scrap may also
contain application-specific types of data. If several applications
are to support the transfer of a private type of data, each one will
write and read that type-clearly its preferred type-but still must
write at least one of the standard types and be able to read both
standard types.

(eye)
There should never be more than one of each type of data
in the desk scrap at a time.

The order in which data is written to the desk scrap is important: the
application should write out the different types in order of
preference. For example, if it's a word processor that writes out a

10/21/83 Rose CONFIDENTIAL /SMGR/SCRAP.2

DESK SCRAP DATA TYPES 9

private type of data as well as text and pictures, it should do so in
that order.

Since the size of the desk scrap is limited, it may be too costly to
write out both an application-specific type of data and one (or both)
of the standard types. If so, the comments that can accompany text or
pictures might be useful. Instead of creating an application-specific
data type, you may be able to encode additional information in these
comments. For example, instead of having a data type that consists of
text and formatting information combined in an application-specific
way, you can encode the formatting information in the text comment.
Applications that are to process that information can do so, while
others can ignore it.

A text comment follows the last character in the text and must begin
with the application,!!, a four-character sequence that you choose to
uniquely identify your application when you build it. *** (This ID
will be discussed further in a future revision of the manual "Putting
Together a Macintosh Application".) *** Any data that you like can
follow the application ID.

As described in the OuickDraw manual, picture comments may be stored in
the definition of a picture with the QuickDraw procedure PicComment.
The DrawPicture procedure passes any such comments to a special routine
set up by the application for that purpose.

USING THE SCRAP MANAGER

This section discusses how the Scrap Manager routines fit into the
general flow of an application program and gives you an idea of which
ones you'll need to use. The routines themselves are described in
detail in the next section.

The application should inquire as early as possible about the size of
the desk scrap to determine whether there will be enough room for
itself and the scrap to coexist in the heap; it can do so by calling
the InfoScrap function. If there won't be enough room for the desk
scrap in the heap, the application should call the UnloadScrap
procedure to write the scrap from memory onto the disk. lnfoScrap also
provides a handle to the desk scrap if it's in memory, its file name on
the disk, and a count that's useful for testing whether the contents of
the desk scrap have changed during the use of a desk accessory.

If a Paste command is given before the first Cut or Copy command after
the application starts up, the application must copy the contents of
the desk scrap to its private scrap, if any. lt can do this either
upon starting up or when the Paste command that needs to use the desk
scrap is given. The latter method usually suffices, but applications
that support display of the Clipboard will benefit from copying the
desk scrap at start-up. The Scrap Manager routine that gets data from
the desk scrap is called GetScrap.

10/21/83 Rose CONFIDENTIAL /SMGR/SCRAP.2

10 Scrap Manager Programmer's Guide

When the user gives a command that terminates the application, the
application's private scrap will usually have to be copied to the desk
scrap. If the desk scrap is on the disk, it must first be read into
memory with the LoadScrap function. The application must call
ZeroScrap to reinitialize the desk scrap and clear its previous
contents, and then PutScrap to put data in the scrap.

(eye)
Do not copy the private scrap to the desk scrap unless a
Cut or Copy command was given that changed the contents
of the Clipboard.

The same kind of scrap interaction that occurs at application start-up
also applies to returning to the application from a desk accessory
(that is, an activate event that activates an application window after
deactivating a system window). Similarly, the interaction when an
application terminates also applies to accessing a desk accessory from
the application (as reported by an activate event that deactivates an
application window and activates a system window). Note, however, that
a desk accessory shouldn't concern itself with writing or reading the
desk scrap from the disk.

Cutting and pasting between two desk accessories follows an analogous
scenario. As described in the Desk Manager manual, the way a desk
accessory learns it must respond to an editing command is that its
control routine receives a message telling it to perform the command;
the application needs to call the Desk Manager function SystemEdit to
make this happen.

SCRAP MANAGER ROUTINES

This section describes all the Scrap Manager routines. They are
presented in their Pascal form; for information on using them from
assembly language, see "Using the Toolbox from Assembly Language"***
for now, see "Using QuickDraw from Assembly Language" in the OuickDraw
manual***•

Getting Scrap Information

FUNCTION lnfoScrap : PScrapStuff;

lnfoScrap returns a pointer to information about the desk scrap. The
PScrapStuff data type is defined as follows:

10/21/83 Rose CONFIDENTIAL /SMGR/SCRAP.R

TYPE PScrapStuff • ~scrapStuff;
ScrapStuff • RECORD

scrapSize:
scrapHandle:
scrapCount:
scrapState:
scrapName:

END;

SCRAP MANAGER ROUTINES 11

Longint;
Handle;
INTEGER;
INTEGER;
StringPtr

ScrapSize is the size of the entire desk scrap in bytes. ScrapHandle
is a handle to the scrap if it's in memory, or NIL if not. ScrapCount
is a count that changes every time ZeroScrap is called and is useful
for testing whether the contents of the desk scrap have changed during
the use of a desk accessory (see ZeroScrap under "Writing to the
Scrap", below). ScrapState is positive if the desk scrap is in memory
or 0 if it's on the disk. ScrapName is a pointer to the name of the
scrap file, usually DeskScrap.

Keeping the Scrap on the Disk

FUNCTION UnloadScrap : Longlnt;

UnloadScrap writes the desk scrap from memory to the scrap file. If
the desk scrap is already on the disk, it does nothing. If no error
occurs, UnloadScrap returns 0; otherwise, it returns an appropriate
Operating System error code.

Assembly-language .ru?!!.= The macro you invoke to call
UnloadScrap from assembly language is named _UnlodeScrap.

FUNCTION LoadScrap : Longint;

LoadScrap reads the desk scrap from the scrap file into memory. If the
desk scrap is already in memory, it does nothing. If no error occurs,
LoadScrap returns 0; otherwise, it returns an appropriate Operating
System error code.

Assembly-language~= The macro you invoke to call LoadScrap
from assembly language is named _LodeScrap.

10/21/83 lose CONFIDENTIAL / SIGR/ SCRAP. 1l

12 Scrap Manager Programmer's Guide

Reading from the Scrap

FUNCTION GetScrap (hDest: Handle; theType: ResType; VAR offset:
Longint) : Longint;

GetScrap reads the data of type theType from the desk scrap (whether in
memory or on the disk). makes a copy of it in memory. and sets up the
hDest handle to point to the copy. Usually you'll pass an empty handle
in hDest. In the offset parameter, GetScrap returns the location of
the data as an offset (in bytes) from the beginning of the desk scrap.
If no error occurs. the function result is the length of the data in
bytes; otherwise, it's either an appropriate Operating System error
code (which will be negative) or the following predefined constant:

CONST noTypeErr • -102; {there's no data of the requested type}

For example. given an empty handle declared as

VAR pHndl: PicHandle

you can make the following calls:

GetScrap(POINTER(ORD(pHndl)),'PICT');
DrawPicture(pHndl);

Your application should pass its preferred data
it doesn't prefer one data type over any other.
different types until the offset returned is 0.
that data was the first to be written out and so
preferred type of the application that wrote it.

type to GetScrap. If
it should try getting
An offset of 0 means
should be the

If you pass NIL in hDest. GetScrap will not read in the data. This is
useful if you want to be sure the data is there before allocating space
for its handle, or if you just want to know the size of the data. If
there isn't enough room in memory for a copy of the data. as may be the
case for a complicated picture, you can customize OuickDraw's picture
retrieval so that DrawPicture will read from the picture directly from
the scrap file. (OuickDraw also lets you customize how pictures are
saved so you can save them in a file; see the OuickDraw manual for
details about customizing.)

Writing to the Scrap

FUNCTION ZeroScrap : Longint;

ZeroScrap initializes the desk scrap. clearing its contents; you must
call it before the first time you call PutScrap (described below). If
no error occurs, ZeroScrap returns 0; otherwise, it returns an

10/21/83 Rose CONFIDENTIAL /SMGR/SCRAP.R

SCRAP MANAGER ROUTINES 13

appropriate Operating System error code.

ZeroScrap also changes the scrapCount field of the record of
information provided by InfoScrap. Thia is useful for testing whether
the contents of the desk scrap have changed during the use of a desk
accessory. The application can save the value of the acrapCount field
when one of its windows is deactivated and a system window is
activated. Then, each time through its event loop, it can check to see
whether the value of the field has changed. If so, it means the desk
accessory called ZeroScrap (and, presumably, PutScrap) and thus changed
the contents of the desk scrap.

FUNCTION PutScrap (length: Longlnt; theType: ResType; source: Ptr)
Longlnt;

PutScrap writes the data pointed to by the source parameter to the desk
scrap (whether in memory or on the disk). The length parameter
indicates the number of bytes to write, and theType is the data type
(which should be different from the type of any data already in the
desk scrap). If no error occurs, the function result is 0; otherwise,
it's an appropriate Operating System error code.

(eye)
Don't forget to call ZeroScrap (above) to clear the scrap
before your first call to PutScrap.

FORMAT OF THE DESK SCRAP

In general, the desk scrap consists of a series of data items that have
the following format:

Number of bytes
4 bytes
4 bytes
n bytes

Contents
Type (a sequence of four characters)
Length of following data in bytes
Data; n must be even (if the above length
is odd, include an extra byte)

The standard types are 'TEXT' and 'PICT'. You may use any other
four-character sequence for types specific to your application.

The format of the data for the 'TEXT' type is as follows:

Number of bytes
4 bytes
n bytes
m bytes

Contents
Number of characters in the text
The characters in the text
Optional comment: the 4-byte application
ID followed by any information desired

The data for the 'PICT' type is a OuickDraw picture, which consists of
the size of the picture in bytes, the picture frame, and the picture

10/21/83 Rose CONFIDENTIAL I SMGll/ SCRAP. R

14 Scrap Manager Programmer's Guide

definition data (which may include picture comments). See the
QuickDraw manual for details.

10/21/83 Rose CONFIDENTIAL /SMGR/SCRAP.R

SUMMARY OF THE SCRAP MANAGER 15

SUMMARY OF THE SCRAP MANAGER

Constants

CONST noTypeErr • -102; {there's no data of the requested type}

Data Structures

TYPE PScrapStuff • AScrapStuff;
ScrapStuff • RECORD

scrapSize:
acrapHandle:
acrapCount:
scrapState:
scrapName:

END;

Routines

Getting Scrap Information

FUNCTION InfoScrap : PScrapStuff;

Keeping the Scrap on the Disk

FUNCTION UnloadScrap :
FUNCTION LoadScrap:

Reading from the Scrap

Longlnt;
Longlnt;

Longlnt;
Handle;
INTEGER;
INTEGER.;
StringPtr

FUNCTION GetScrap (hDest: Handle; theType: ReaType; VAR offset: Longlnt)
: Longlnt;

Writing to the Scrap

FUNCTION ZeroScrap
FUNCTION PutScrap

10/21/83 Rose

Long Int;
(length: Longint; theType: ResType; source: Ptr)
Longint;

CONFIDENTIAL / SMGR/ SCRAP. S

16 Scrap Manager Programmer's Guide

Assembly-Language Information

Constants

no Type Err .EQU -102 ;there's no data of the requested type

Scrap Information Data Structure

scrapSize

scrapHandle
scrapCount
scrapState
scrapName

Size of desk scrap in bytes*** (currently named
scraplnfo) ***
Handle to desk scrap in memory
Count changed by ZeroScrap
Positive if desk scrap in memory, 0 if on disk
Pointer to name of scrap file

Special Macro Names

Routine name
Load Scrap
Unload Scrap

10/21/83 Rose

Macro name
_Lode Scrap
_UnlodeScrap

CONFIDENTIAL I SMGR/ SCRAP. S

GLOSSARY 17

GLOSSARY

application ID: A four-character sequence that you choose to identify
your application when you you build it.

desk scrap: The place in memory or on the disk where data that's cut
(or copied) and pasted between applications is stored.

scrap file: The file containing the desk scrap.

10/21/83 Rose CONFIDENTIAL / SMGR./ SCRAP. G

MACINTOSH USER EDUCATION

The Segment Loader: A Programmer's Guide

See Also: Macintosh Operating System Reference Manual
The Resource Manager: A Programmer's Guide
The Macintosh Finder

Modification History: First Draft (ROM 4)

/SEGLOAD/SEGMENT

c. Rose 6/24/83

ABSTRACT

This manual describes the Segment Loader of the Macintosh Operating
System, which lets you divide your application into several parts and
have only some of them in memory at a time.

4-1

4-2

2 Segment Loader Programmer's Guide

;
TABLE OF CONTENTS

3 About This Manual
3 About the Segment Loader
4 Application Parameters
5 Using the Segment Loader
5 Segment Loader Routines
7 Advanced Routines
8 The Jump Table
10 Specifying Segments in Your Source File
13 Summary of the Segment Loader
14 Glossary

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes the Segment Loader, a new part of the Macintosh
Operating System in ROM version 4. *** Eventually it will become part
of a large manual describing the entire Operating System and Toolbox.
*** The Segment Loader lets you divide your application into several
parts and have only some of them in memory at a time.

You should already be familiar with Lisa Pascal, the Macintosh
Operating System~s Memory Manager, the Finder, and the basic concepts
behind the Resource Manager of the Macintosh User Interface Toolbox.

The manual begins with an introduction to the Segment Loader and a
description of the parameters that are stored in memory when an
application is started up. Next, a section on using the Segment Loader
introduces you to its routines and tells how they fit into the flow of
your application. This is followed by the detailed descriptions of all
Segment Loader routines, their parameters, calling protocol, effects,
side effects, and so on.

For advanced programmers, there's a section that discusses the jump
table, explaining how the Segment Loader works internally.

Finally, there's a summary of the Segment Loader routine calls, for
quick reference, and a glossary of terms defined in this manual.

ABOUT THE SEGMENT LOADER

The Segment Loader allows you to divide the code of an application into
several parts or segments. The Finder starts up an application by
calling a Segment Loader routine that loads in the~ segment (the
one containing the main program). Other segments are loaded in
automatically when they're needed. Your application can call the
Segment Loader to have these other segments removed from memory when
they're no longer needed.

The Sepent Loader enables you to have programs larger than 32K bytes,
the maximum size of a single segment. Also, any code that isn't
executed often (such as code for printing hardcopy) need not occupy
memory when it isn't being used, but can instead be in a separate
segment that's brought in when needed.

This mechanism may remind you of the resources of an application, which
the Resource Manager of the User Interface Toolbox reads into memory
when necessary. An application's segments are in fact themselves
stored as resources; their resource type is 'CODE'. You can use the
Resource Compiler to create these resources from your application code.
A "loaded" segment has been read into memory by the Resource Manager
and locked (so that it's neither relocatable nor purgeable). When a
segment is unloaded, it's made relocatable and purgeable.

6/24/83 Rose CONFIDENTIAL /SEGLOAD/ SEGMEtrI. 2

4-3

4-4

4 Segment Loader Programmer's Guide

Every segment has a name. If you do nothing about dividing your
program into segments, it will consist of a single segment whose name
is blank. Dividing your program into segments means specifying in your
source file the beginning of each segment by name. The names are for
your use only; they're not kept around after linking.

(eye)
If you do specify segment names, note that normally the
main segment should have a blank name. The reason for
this is that the intrinsic Pascal routines must be in the
same segment as your main program, and the Linker puts
those routines in the blank-named segment (so that the
right thing will happen if you don't specify any segment
names at all).

APPLICATION PARAMETERS

When an application is started up, certain parameters are stored in 32
bytes of memory just above the application's globals, as shown in
Figure l; these are called the application parameters. AS points to
the first of these parameters and may be used with positive offsets to
access the others.

(hand)

32

20

16

12

8

4
AS_.O

hi"' memory

reserved for Mll'e use

Finder information handle
starmrd ClJ1put

standsd i""61
reses t'ed for Mwe use

reserved for QuickDraw

eppl ication globe ls

low nienay

application
parameter ...

Figure 1. Application Parameters

For brevity, we'll say "AS" where we mean "the location
pointed to by AS".

The "standard input" and .. standard output" parameters indicate the main
source of input and destination of output for the Macintosh. They are

6/24/83 Rose CONFIDENTIAL /SEGLOAD/SEGMENT.2

;

APPLICATION PARAMETERS 5

usually~. meaning the keyboard and the screen, respectively.

The "Finder information handle" is a handle to information that the
Finder provides to the application upon starting it up. For example,
for a word processor it might be the name of the document to be worked
on. *** The exact information will be described here when available.
*** Pascal programmers can call the Segment Loader routine GetAppParms
to get the Finder information handle.

The other locations in the application parameter area are reserved for
future use or for use by QuickDraw.

USING THE SEGMENT LOADER

This section introduces you to the Segment Loader routines and how they
fit into the flow of an application program. The routines themselves
are described in detail in the next section.

The routine that applications will most commonly use is UnloadSeg, for
unloading a particular segment when it's no longer needed. Another
useful routine, GetAppParms, lets you get information about your
application such as its name and the reference number for its
resources. For applications started up in the usual way by the Finder,
GetAppParms also gives the Finder information handle that's stored 16
bytes above AS.

The main segment can unload other segments, but it can't get rid of
itself; using the Chain routine, however, it can do something close to
this. Chain starts up another application without disturbing the
application heap. Thus the current application can let another
application take over while still keeping its data around in the heap.

The Segment Loader also provides a quick exit to the Finder that
doesn't touch the stack, for applications needing it in emergency
situations: ExitToShell.

' Finally, there are two advanced routines that most applications will
never use: Launch and LoadSeg. Launch is called by the Finder to
start up an application; it's like Chain but doesn't retain the
application heap. LoadSeg is called indirectly (via the jump table, as
described later) to load segments when necessary--that is, whenever a
routine in an unloaded segment is invoked.

SEGMEHT LOADER ROUTINES

This section describes all the Segment Loader routines. Some of the
routines are stack-based and so are shown in Pascal; for information on
using them from assembly language, see "Using the Toolbox from Assembly
Language"*** doesn't exist, but see QuickDraw manual***· Other
Segment Loader routines are register-based and are described similar to

6/24/83 Rose CONFIDENTIAL /SEGLOAD/SEGMENT.R

4-5

4-6

6 Segment Loader Programmer's Guide

the way the Operating System routines are described in the current
Operating System manual.

PROCEDURE UnloadSeg (routineAddr: Ptr);

UnloadSeg unloads a segment, making it relocatable and purgeable;
routineAddr is the address of any routine in the segment. The Segment
Loader will reload the segment the next time one of the routines in it
is called. It doesn't hurt to call UnloadSeg, because the segment
won't actually be purged until the memory it occupies is needed. If
you need the unloaded segment again before it's purged, the Segment
Loader won't have to access the disk.

PROCEDURE GetAppParms (VAR apName: Str255; VAR apRefNum: INTEGER; VAR
apParam: Handle);

GetAppParms returns information about the current application. It
returns the application name in apName and the reference number for the
application's resources in apRefNum. For applications started up in
the usual way by the Finder, it returns the Finder information handle
in apParam (as described earlier under "Application Parameters").

(hand)
For applications started up with the Chain routine
(below), the apParam parameter isn't useful.

Chain {register-based}

This routine starts an application up without doing anything to the
application heap, so the current application can let another
application take over while still keeping its data around in the heap.
It configures memory for the sound and video buffers. ~ points to the
following:

A0 -> 01 where FILENAME is a pointer to the
I FILENAME application's file name
I (POINTER)
I and MODE tells which sound buffer

41 and video buffer to use (0 for
I MODE standard).
I

6

The sound and video buffers are constantly scanned by the Macintosh
hardware to determine what sounds to emit from its speakers and what to
display on its screen. (The video buffer is the bit imase
corresponding to the display screen.) Two of each type of buffer are
available; Figure 2 shows where they're located. If you specify a MODE

6/24/83 Rose CONFIDENTIAL /SEGLOAD/SEGMENT.R

SEGMEUT LOADER ROUTINES 7

value of 0, you get the standard or "primary" buffers; in this case,
the application space begins where shown in Figure 2. Any positive
MODE value causes the secondary sound buffer and primary video buffer
to be used (which costs 1.5K of memory). Any negative MODE value
causes the secondary sound buffer and secondary video buffer to be used
(which costs 32K of memory).

t1A700

$1A100

$12700

primary SOlJld

primary video

seca m 'f SCU1d

sec«del y video

1he epplicetion
~ space normally

ends here.

Figure 2. Sound and Video Buffers

Chain closes the resource file for any previous application and opens
the resource file for the application being started. It also stores in
memory the application parameters designating standard input and
standard output. The application is started at its entry point, which
causes the main segment to be loaded.

PROCEDURE ExitToShell;

ExitToShell provides an emergency exit for the application, without
touching the stack. It simply launches the Finder (starts it up after
freeing the storage occupied by the application heap; see Launch
below).

Advanced Routines

Launch {register-based}

This routine is called by the Finder to start up an application and
will rarely need to be called by an application itself. It-a the same
as the Chain routine (described above) except that it frees the storage
occupied by the application heap and restores the heap to its original
size. Also, the Finder provides startup information needed by the
application; a handle to the information is located in the system heap

6/24/83 Rose CONFIDENTIAL /SEGLOAD/SEGMENT.R

4-7

4-8

8 Segment Loader Programmer's Guide

and is copied (as the "Finder information handle") into the application
parameter area in memory.

(hand)
Launch preserves a special handle in the application heap
which is used for accessing the scrap between
a ppli cat ions.

PROCEDURE LoadSeg (seglD: INTEGER);

LoadSeg is called indirectly via the jump table (as described in the
following section) when the application calls a routine in an unloaded
segment. It loads the segment having the given ID number, which was
assigned by the Linker. If the segment isn't in memory, LoadSeg calls
the Resource Manager to read it in. It changes the jump table entries
for all the routines in the segment from the "unloaded" to the "loaded"
state and then invokes the routine that was called.

THE JUMP TABLE

This section describes how the Segment Loader works internally, and is
included here for advanced programmers; you don't have to know about
this to be able to use the common Segment Loader routines.

The loading and unloading of segments is implemented through the
application's~ table. Figure 3 shows the location of the jump
table in memory for a typical application.

(normally) $1 A700

ateclc grows downward
towerd heap

heap~~
toward stact

high memory

junp table

eppllcatlon parameters

application globals

l stock

~------------------··
T application heap

system heap

'°"' meffl0I. 1

the
application
space

Figure 3. The Application's Space in Memory

6/24/83 Rose CONFIDENTIAL /SEGLOAD/SEGMENT.J

THE JUMP TABLE 9

When the Linker encounters a call to a routine in another segment, it
creates a jump table entry for the routine and addresses the entry with
a positive offset from AS. As described below, the jump table entry
makes the connections necessary to invoke the routine.

The jump table contains one 8-byte entry for every externally
referenced routine in every segment; all the entries for a particular
segment are stored contiguously. It refers to segments by ID numbers
assigned by the Linker. When an application is started up, its jump
table is read in from segment I, a special segment created by the
Linker for every executable file. Segment f contains the following:

Number of bytes
4 bytes

4 bytes

4 bytes
4 bytes
n bytes

Contents
"Above AS .. size; size in bytes from AS
to upper end of application space
"Below A5" size; size in bytes of
application globals
Offset of jump table from A5
Length of jump table in bytes
Jump table

For most applications, the offset of the jump table from A5 is 32, and
the "above AS" size is 32 plus the length of the jump table.

All the jump table entries for a particular segment indicate whether
that segment is currently loaded or not, as illustrated in Figure 4.

"unloaded" state

routine off set
(2 bytes)

move of segment
ID onto stack

(4 bytes)

LoadSeg call
(2 bytes)

"loaded" state

segment ID
(2 bytes)

Jump to address
of routine
(6 bytes)

Figure 4. Format of a Jump Table Entry

Initially, of course, the jump table entries are all in the •unloaded"
state, which means they contain the following:

6/24/83 Rose CONFIDENTIAL /SEGLOAD/SEGMENT.J

4-9

4-10

10 Segment Loader Programmer's Guide

Number of bytes
2 bytes

4 bytes

2 bytes

Contents
Offset of this routine from beginning of
segment
Instruction that moves the segment ID onto
the stack for LoadSeg
Trap that executes LoadSeg

When a call to a routine in an unloaded segment is made, the code in
the last six bytes of its jump table entry is executed. This code
calls LoadSeg, which loads the segment into memory, transforms all of
its jump table entries to the "loaded" state (shown below), and invokes
the routine.

Number of bytes
2 bytes
6 bytes

Contents
Segment ID
Instruction that jumps to the address of the
routine for which this is an entry

LoadSeg invokes the routine by executing the instruction in the last
six bytes of the jump table entry. Subsequent calls to the routine
also execute this instruction. If UnloadSeg is called to unload the
segment, it restores the jump table entries to their "unloaded" state.
Notice that whether the segment is loaded or unloaded, the last six
bytes of the jump table entry are executed; the effect depends on the
state of the entry at the time.

To be able to set all the
particular state, LoadSeg
the entries are located.
header, four bytes at the
following:

Number of bytes
2 bytes

2 bytes

jump table entries for a segment to a
and UnloadSeg need to know exactly where all
They get this information from the segment
beginning of the segment which contain the

Contents
Offset of the first routine's entry from
the beginning of the jump table
Number of entries for this segment

As described above, segment~ tells where the beginning of the jump
table is located.

SPECIFYING SEGMENTS IN YOUR SOURCE FILE

*** This section will be moved into the next version of the manual
entitled "Putting Together a Macintosh Application". ***

You specify the beginning of a segment in your application's source
file as follows:

{$S segname}

where segname is the segment name, a sequence of up to eight
characters. Normally you should give the main segment a blank name.

6/24/83 Rose CONFIDENTIAL /SEGLOAD/SEGMENT.P

j

SPECIFYING SEGMENTS IN YOUR SOURCE FILE 11

For example, you might structure your program as follows:

PROGRAM Shell;

{ The USES statement and your LABEL, CONST, and VAR declarations
will be here. }

{$S Segl}

{ The procedures and functions in Segl will be here. }

{ $S Seg2}

{ The procedures and functions in Seg2 will be here. }

{ $S }

BEGIN

{ The main program will be here. }

END.

You can specify the same segment name more than once; the routines will
just be accumulated into that segment. To avoid problems when moving
routines around in the source file, some programmers follow the
practice of putting a segment name specification before every routine.

(eye)
Uppercase and lowercase letters ARE distinguished in
segment names. For example, "Segl" and "SEGl" are not
equivalent names.

If you don't specify a segment name before the first routine in your
file, the blank segment name will be assumed there.

In assembly language, you specify the beginning of a segment with the
following directive:

.SEG 'segname'

(eye)
This requires version 12.2 of the-Lisa Monitor.

You can also specify what segment the routines in a particular file
should be in by using the ChangeSeg program. For example, suppose you
want to give your main segment a nonblank name (say, "SegMain"); you
can't do this without using ChangeSeg, because the Linker puts the
intrinsic Pascal routines in the blank-named segment, and they must be
in the same segment as your main program. You can use ChangeSeg as
shown below to tell the Linker to put the intrinsic Pascal routines,
which are in Obj:MacPasLib, in the segment named SegHain.

6/24/83 Rose CONFIDENTIAL /SEGLOAD/SEGMENT.P

4-11

4-12
12 Segment Loader Programmer's Guide

Prompt
Monitor command line
What file?
File to change:
Map all Names? (Y/N)
New Seg name?

6/24/83 Rose

Resyonse
Xfor X(ecute}
ChangeSeg <ret>
Obj:MacPasLib <ret>
Y {for Yes}
SegMain <ret>

CONFIDENTIAL /SEGLOAD/SEGMENT.P

J

SUMMARY OF THE SEGMENT LOADER 13

SUMMARY OF THE SEGMENT LOADER

PROCEDURE UnloadSeg
PROCEDURE GetAppParms

Chain {register-based}

(routineAddr: Ptr);
(VAR apName: Str255; VAR apRefNum: INTEGER;
VAR apParam: Handle);

Input: A0 points to application's file name pointer followed by
a word telling which sound and video buffers to use.

Output: The application parameters for standard input and output.

PROCEDURE ExitToShell;

Advanced Routines

Launch {register-based}

Input: All points to application's file name pointer followed by
a word telling which sound and video buffers to use.

Output: The application parameters-standard input and output
and the Finder information handle.

PROCEDURE LoadSeg (segID: INTEGER);

6/24/83 Rose CONFIDENTIAL /SEGLOAD/SEGMENT.S

4-13

4-14
14 Segment Loader Programmer's Guide

GLOSSARY

application parameters: Information stored in 32 bytes of memory just
above the application globals when an application is started up.

jump table: A table that contains one entry for every routine in an
application and is the means by which the loading and unloading of
segments is implemented.

main segment: The segment containing the main program.

segment: One of several parts into which the code of an application
may be divided. Not all segments need to be in memory at the same
time.

6/24/83 llose CONFIDENTIAL /SEGMENT/SEGMENT.G

I

'

Date:

To:

Re:

3 October 1983

Mac Developers

Mac serial connector pinout

1 - GND
2 - +5
3 - GND
4 - TXD+
5 - TXD-
6 - +12
7 - HSK
8 - RXD+
9 - RXD-

(may turn into an output handshake line-don't use!)

(for detecting power on ONLY!)
(CTS or TRxC, depending on 8530 mode)

For more-or-less RS232, use GND, TXD-, RXD-. The TXD+ and RXD+
signals provide RS422/423 compatibility.

The HSK (handshake) line (an input) connects to both CTS and to
TRxC on the 8530. It can be used either for CTS, or for external
clock depending on the mode the 8530 is in. As RS232 handshake,
it usually connects to pin 20 on a DB-25.

For the Exceedingly Curious •••

Signal lines go through a "degli tch" network, which is a "T"
consisting of 25-50 ohm resistors and 200 pf to ground.

We use 26LS30 and 26LS32 interface chips between the 8530 sec and
the outside world.

The 8530 Data Carrier Detect lines (•DCDA pin 19 and *DCDB pin 21)
are used as mouse inputs and generate interrupts used to detect
mouse motion(!!!). '

The Mouse Pinout

1 - GND
2 - +5 (Mouse ONLY!)
3 - GND
4 - X2 (to 6522 PB4)
S - Xl (to 8530 *DCDA)
6 - No connect
7 - *SW (to 6522 PB3)
8 - Y2 (to 6522 PBS)
9 - Yl (to 8530 *DCDB)

Bob Martin

10-1

Asynchronous Serial Driver
04-Fe'b-83
28-Apr-83 (revised)
16-Jun-83 (revised)
23-Aug-83 (revised)
LAX

changes: a1yuc drivers are no longer opened at 1y1tem initialization timej
CTS and break change 1tatu1 are nov optionally posted a• events;
added XON/XOFF input flow control.

10-3

Thia ROM-baeed driver supports full duplex asyuchronou• mode llS-232/RS-422
co1111unication on the tvo independent Macintosh serial ports (al10 called channels).
A1yuchronou1 aerial aode c011111unication 11 a term u1ed to describe serial
co11Dunication (data i1 sent over one hardware data line) in which tiae intervals
between transmitted character, aay be of unequal length: tranaai11ion ii
controlled by a 'atart bit' at the beginning and betveen one and tvo
'etop bits' at the end of each character. The individual
data bits of the character (u1ually 7 or 8) and the 1t1~ and 1tart bits are 1ent
at a constant frequency termed the 'baud rate'. The baud rate, DW1ber of data
bits per character, inclusion of an optional parity bit, etc., are all options
which make asynchronous communication configuration tricky to vork Vith; this
serial driver 1upport1 110at a1ynchronou1-110de options using control calls.

We call the Macintosh hardware chip which control• this aerial communication
the sec chip (for Serial Collllllunications Controller); this chip 1upport1 the
two independent eerial ports which ve call port A and port B. The connectors for
port A and port Bare located at the bottom rear of the Macinto1h: port A 11
the port closest to the side of the Macintosh.

Both the input and output refnwas a1sociated with a port must be opened;
all four serial driver refnuas are ln1talled at 1y1tem initialization
time but left unopened. When opened, the aerial port a1sociated Vith the
driver is initialized according to the corre1ponding parameter ra bytea:
the parameter ram is initialized to 9600 baud, 8 data, 2 atop, and no parity
bits for both ports.

A KJ.1110 call to either input or output refnwa will cause all current
reque1t1 to be aborted and any available buffer bytes to be diacarded.

Hardware (CTS) and XON/XOFF output flow control are 1upported; XON/XOFF input
flow control is also supported. A break condition on the line always terminates
input requests, but not output requests. Parity error•, overruns, and framing
errors optionally terminate input reque1t1. The driver vill optionally post
events on CTS and break status changes.

The input drivers buffer up to 64 bytes of data with no request pending to
avoid overflow.

Refnwas for the serial port• are a11igned as follows:

.Aln

.AOut
• unit -6
• unit -7

aerial port A input
aerial port A output

10-4

.Bln

.BOut
• unit -8 aerial port B input
• unit -9 aerial port B output

Programming Using the Serial Drivers

The following calls are generally used:

Open c·.Atn"): refnuml;
Open c·.Aout"): refnum2;
Control (refnuml,8,ConfigWord);
lead (refnuml) or Write (refnum2);
Close (refnuml);
C lo1e (ref num2);

Control Calls Supported

(Opcode 1 11 now used for KilllO).

For operation code 8, the appropriate sec channel 11 reeet and reinitialized
according to the new defaults. The configuration is specified by a word (16
bits) of information in the same format as the clock parameter ram data.
Either input or output port driver refnum uy be ueed:

AO-> (0) header
(24) refnum
(26) $0008
(28) (V] (VJ (W] (W] [X] (X] [Y] (Y] [Z] [Z) (Z] (Z) [Z) (Z) [Z) (Z)

vv • 1,2,3, for 1,1.s,2 1top bite
WW• 0,1,2,3 for no,odd,no,even parity
XX• 0,1,2,3, for 5,7,6,8 data bits
YY • high byte of baud rate conatant, lov 2 bits
ZZZZZZZZ • low byte of baud rate conatant
$CC0A • default (9600 baud, 8 data, 2 atop, no parity bit)

YYZZZZZZZ

$17C
$01D
$05E
$03E
$02E
$01!
$016
$00!
$00A
$004
$000

baud rate

300
600

1200
1800
2400
3600
4800
7200
9600

19200
57600

Opcode 9 is used to install a nev buffer for input bufferiq: a pointer
to the buffer and the buffer length are paaaed. The aaync input driver uees

,

this buffer to atore input character• when no input uaer requeat 1•
pendiq; the buffer auat be locked dovn in aeaory:

AO-> (0) header
(24) refnum
(26) $0009
(28) pointer to buffer
(32) buffer length
(34) unused

Opcode 10 1• uaed to apecify bandabake option• and other aiacellaneoua controls:

AO-> (0) header
(24) refnwa
(26) $000A
(28) enable XON/XOFF output bandabake if non-zero
(29) enable CTS output bandahake if non-zero
(30) XON char for aoftware bandabake
(31) IOFF char for aoftware handahake
(32) error• which cauae abort of input -equeata (1 for abort):

bit 4 • abort OD parity error
bit 5 • abort on overrun error
bit 6 • abort on fraaing error

(33) atatus change• which cauae event• to be poated
bit 7 • poat event on break atatua change
bit 5 • poat event on CTS change

(34) enable XON/XOFP input flow control if non-zero (the aue
handahake character• are u•ed for both input and output
aoftvare flow control)

Opcode 11 is uaed to reinitialize the sec to clesr break aode:

AO-> (0) header
(24) refnwa
(26) $000B

Opcode 12 i• uaed to ••t break aode in the sec channel:

AO-> (0) header
(24) refnwa
(26) $000C

Statua Calla Supported

For operation code 2, a longword count of the available buffered byte• is
returned; either input or output port driver refnua aay be uaed:

AO-> (0) header
(24) refnum
(26) $0002
(28) buffered bytes available

For operation code 8, three vorda of atatus inforaation are returned;

10-5

10-6

either input or output port driver refnum aay be uaed:

AO-,

Open Routines

(O) beuer
(24) refnua
(26) $0008
(28) cumulative errors:

bit 8 • aoft overrun (local buffer overflow)
bit 12 • parity error
bit 13 • bard overrun error
bit 14 • framing error

(29) XOFF ha• been aent to atop input data
(30) read command pending flag
(31) write c01111and pending flag
(32) CTS flag
(33) IOFF flag

The Open routine• for the sec aaync-aode driver• initialise local variables.
allocate buffer storage. install interrupt vector•, and initialize the
correct sec channel according to clock paraaeter ra valuea.
For input drivers, only the Device Control Entry pointer ia noted:
sec initialization 11 done for output driver• only.

An 'Open' of the aefNum as1ociated with an output port will inatall
interrupt receivers and enable interrupts for both input and
output; two 'Open'• need to be done for a port to configure input
and output DCEa; the Open for the input driver can be done
before or after the Open for the output driver.

I•

Miscellaneous Notes

Thia driver uses four device control blocks: two per port, one input and
one output. The input and output ·drivers" are cloaely asaociated:
control and status routine• are the aae for input and output
drivera; the open. cloae and priae routines differ. The reason for uaing two device
control block• for one port 1• aiaply to aupport' the general full-duplex
c01111unication capability of the SCC: both a read and a write requeat uy be
executing at the aaae tiae for a aingle port.

Port A now baa an uded feature: it aay be uaed aiaultaneously with disk
acceaaea at the highest aaync baud rate with no worry of overrun. The disk
driver now poll• sec port A whenever it auat turn interrupt• off for
longer than 100 aicroaeconda, and then paaaes any acquired data to the async
driver. sec channel B ahould be uaed for output-only connections auch aa
to printers, at low baud rates (a 300 baud modem, for instance), or with
protocols which can recover fr011 miaaed data.

,

•
MACINTOSH USER EDUCATION

The Sound Driver: A Programmer's Guide

See Also: The Macintosh User Interface Guidelines
Macintosh Operating System Manual
The Device Manager: A Programmer's Guide

Modification History: First Draft (ROM 7)

*** Preliminary Draft. Not for distribution***

/DEVICE/SOUND

B. Hacker 3/nn/84

ABSTRACT

The Sound Driver is a set of data types and routines in the Macintosh
Operating System for handling sound and music gener~'.ion in a Macintosh
application. This manual describes the Sound Driver in detail.

9-1

9-2

2 Sound Driver PrograD1Der's Guide

TABLE OF CONTENTS I

3 About This Manual
3 About·The Sound Driver
6 Sound Driver Synthesizers
7 Free-Form Synthesizer
8 Square-Wave Synthesizer
9 Four-Tone Synthesizer

11 Using The Sound Driver
12 Advanced Control Routine
14 Su11111ary of the Sound Driver
18 Glossary

Copyright (c) 1984 Apple Computer, Inc. All rights reserved.

Distribution of this draft in limited quantities does not constitute
publication.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL ,

The Sound Driver is a set of data structures and routines in the
Macintosh Operating System for handling sound and music generation in a
Macintosh application. This manual describes the Sound Driver in
detail. *** Eventually it will become part of a larger manual
describing the entire Toolbox and Operating System. ***

(note)
This manual describes the Sound Driver in version 7 of
the ROM. If you're using a different version, the
information presented here may not apply.

Like all Operating System documentation, this manual assumes you're
familiar with Lisa Pascal. You should also be familiar with the
following:

- the basic concepts behind the Macintosh Operating System's Memory
Manager

- devices and device drivers, as described in the Device Manager
Manual*** doesn't yet exist***

This manual is intended to serve the needs of both Pascal and
assembly-language programmers. Information of interest to assembly
language programmers only is isolated and labeled so that Pascal
programmers can conveniently skip it. *** Currently a Pascal interface
to the Sound Driver doesn't exist***

The manual begins with an introduction to the Sound Driver and what you
can do with it. It then steps back a little and looks at the
mathematical and physical concepts that form the foundation for the
Sound Driver: waveforms, wave frequency, wave amplitude, and wave
periods. Once you understand these concepts, read on about how they're
translated into sound, music, and speech.

Next, a section on using the Sound Driver describes how you can use
Device Manager calls in your application to produce desired sounds.
This includes a detailed description of the Sound Driver's control
routine-its parameters, calling protocol, effects, and so on.

Finally, there's a summary of the Sound Driver data structures and
routine calls, for quick reference, followed by a glossary of terms
used in this manual.

ABOUT TH£ SOUND DRIVER

The Sound Driver is a standard Macintosh device driver used to
synthesi&e sound waves. You can uae the Sound Driver to generate sound
characterized by any kind of waveform by using the three different
sound synthesizers in the Sound Driver:

3/dd/84 Hacker CONFIDENTIAL /OS/SOUND.2

9-3

9-4

4 Sound Driver Programmer's Guid~

- The four-tone synthesizer is used to make simple harmonic tones,
With up to four "voices" producing sound simultlneously; it
requires about 5G% of the microprocessor's attention during any
given time interval.

- The square-wave synthesizer is used to produce less harmonic
sounds such as beeps, and requires about 2% of the processor's
time.

- The free-form synthesizer is used to make complex music and
speechi it requires about 2G% of the processor's time.

Figure l depicts the waveform of a typical sound wave, and the terms
used to describe it• The amplitude is the vertical distance between
any given point on the wave and the horizontal line about which the
amplitude oscillatesi you can think of the amplitude of a wave as its
volume level. The wavelength is the horizontal extent of one complete
cycle of the wave. Both the amplitude and wavelength can be measured
in any unit of distance. The period is the time elapsed during one
complete cycle of a wave. The frequency is the reciprocal of the
period, or the number of cycles per second (also called Hertz). The
phase is some fraction of a wave cycle (measured from a fixed point on
the wave).

period T {J,JSeC)
--wavelength .2 (bytes)~

----one cycle----

Figure 1. A Waveform

1 freQuency I (hz) :•,-

amp I itude (bytes)

There are many different types of waveforms, three of which are
depicted in Figure 2. Sine waves are generated by objects that
oscillate periodically at a single frequency (such as a guitar string).
Square waves are generated by objects that toggle instantly between two
states at a single frequency (such as a doorbell buzzer). Free-form
waves are the most co111Don waves of all, and are generated by all

3/dd/84 Hacker CONFIDENTIAL /OS/SOUND.2

,)

ABOUT THE SOUND DRIVER 5

objects that vibrate at rapidly changing frequencies with rapidly
changing amplitudes (such as your vocal cords or the fJ..nstrumente of an
orchestra all playing at once).

slneYave

square wave

tree-farm Weft

Figure 2. Types of Waveforms

Figure 3 shows the analog representation of a waveform. The Sound
Driver represents waveforms digitally, so all waveforms must be
converted from their analog representation to a digital representation.
The rows of numbers at the bottom of the figure are digital
representations of the waveform. The numbers in the upper row are the
amplitudes relative to the horizontal zero-amplitude line. The numbers
in the lower row all represent the same relative amplitudes, but have
been normalized to positive numbers.

3/dd/84 Hack.er CONFIDENTIAL /0S/SOUND.2

9-5

9-6

6 Sound Driver Programmer's Guide

.,
'0
~ -
0.

E
0

+

0

ti me/di stance

I . .

I

I

-

03S676S30~~~~~~~0
,~~~~~~~742101247

•
.

analog representation

I

~ digital representations
.

Figure 3. Analog and Digital Representations of a Waveform

A digital representation of a waveform is simply a sequence of wave
amplitudes measured at fixed intervals. This sequence of amplitudes is
stored in the Sound Driver as a sequence of bytes, each one of which
specifies an instantaneous voltage to be sent to the speaker. The
bytes are stored in a data structure called a waveform description.
Since a sequence of bytes can only represent a group of numbers whose
maximum and minimum values differ by less than 256, the amplitudes of
your waveforms must be constrained to these same limits.

SOUND DRIVER SYNTHESIZERS

A description of the sound to be generated by a synthesizer 1s
contained in a data structure called a synthesizer buffer. A
synthesizer buffer contains the duration. pitch, phase, and waveform of
the sound the synthesizer will generate. The exact structure of a
synthesizer buffer differs for each type of synthesizer being used.

Free-Form Synthesizer

The free-form synthesizer is used to synthesize complex IIN&ic and
speech. The sound to be produced is represented as a waveform whose
complexity and length are limited only by available memory.

A free-form synthesizer buffer consi~ts of one integer and one long
integer followed by a waveform description (Figure 4). The wavefom
description can contain up to 256 bytes. Each uaplitude in the
waveform description Will be generated once; when the end of the

3/dd/84 Racker CONFIDENTIAL /OS/SOUND.2

SOUND DRIVER SYNTHESIZERS 7

waveform is reached, the synthesizer will stop. The integer must be G,
to identify the buffer as a free-form buffer. The d'1ration long
integer determines the length of time (in 44.93 usec increments) each
amplitude in the waveform Will be produced. The high-order word of the
duration long integer contains the integral part and the low-order word
contains the fractional part of the duration. (Binary fractions are
described in the Toolbox Utilities manual under Fixed-Point Numbers.)

The time interval specified by the duration long integer can vary
between 44.93 usec and 2.95 sec, corresponding to the binary fractions
1.0000 (represented by the four bytes see 01 ,e ,e. or the long integer
1) and 65535.9999 (represented by th~ four bytes $FF FF FF FF, or the
long integer 4294967295), respectively.

(note)

(note)

As a further example, the time interval 89.86 usec
corresponds to the binary fraction 2.1000, the four bytes
$00 02 00 00, and the long integer 131972. The time
interval .0115 sec corresponds to the binary fraction
25.5000, the four bytes $00 19 80 ee, and th, long
integer 1671168.

7 ...

0
di.ration

Ieng inteoer

waveform
bytes

Figure 4.

cl.ration I

inteorolpcrt tract i onal part

Free-Form Synthesizer Buffer

Note that the duration long integer specifies a time
interval, but it doesn't specify the period of a wave
cycle. To determine the time period of a wave cycle in
the waveform, use the following relationship:

period• time interval* wavelength

where the wavelength is given in bytes. For example, the
period of a wave of 10-byte wavelength with a time
interval of 2 usec/byte would be 910 usec (corresponding
to 1111 Hz).

Assembly-language~: .The address of the free-form buffer
currently in use is contained in the system global aoundBase.

3/dd/84 Hacker CONFIDENTIAL /0S/SOUND.2

9-7

9-8

8 Sound Driver Programmer's Guide

Square-Wave Synthesizer •

The square-wave synthesizer is used to make sounds such as beeps. A
square-wave synthesizer buffer consists of a negative integer followed
by a sequence of integer triplets (Figure 5). The negative integer
identifies the buffer as a square-wave buffer. Each triplet contains
the count, amplitude, and duration of a different sound. The square
wave synthesizer doesn't require a waveform description because of the
simple form of square waves. You can store as many triplets in a
synthesizer buffer as there's room for.

negative inteoe,-
CCU'\t integer

amplitude integer
cl.ration inteQer .,

J. '7 J.

CCU'\t integer
amplitude integer
dlrati on integer

} bstsDINI.

Figure 5. Square-Wave Synthesizer Buffer

Each count integer can range in value from G to 65535; the actual
frequency the count corresponds to is given by the relationship:

frequency (Hz)• 78336'4 / count

A partial list of count values and corresponding frequencies for notes
comprising Ptolemy's diatonic scale (the scale to which pianos are
tuned) is given in the summary at the end of this manual.

Assembly-language l!.2!!,: The value of count currently in use is
contained in the system global curPitch.

Each amplitude integer can range from 8 to 255. Each duration integer
specifies the number of ticks the sound will be generated, ranging from
0 to 255 (corresponding to G to 4.25 seconds).

The last sound triplet must be signified by a count integer of e. When
the square-wave synthesizer is used, the sound specified by each
triplet is generated once, and then the synthesizer stops.

3/dd/84 Hacker CONFIDENTIAL /0S/SOUND.2

SOUND DRIVER SYNTHESIZERS 9

Four-Tone Synthesizer
,

The four-tone synthesizer is used to produce harmonic sounds such as
music. It can simultaneously generate four different sounds, each With
its own frequency, phase. and waveform.

A four-tone synthesizer buffer consists of an integer and a pointer
(Figure 6). The integer can be any positive number, and serves only to
identify the buffer as a four-tone buffer. The pointer points to a
data structure describing the four tones 1 called a four-tone record.

Assembly-language .!!.!?!.!t= The address of the four-tone record
currently in use is stored in the system global soundPtr.

fcu-tone recad I positive inteoer I
pointer to 4-tone rec~ ... ---~ __________ ,_.

Figure 6. Four-Tone Synthesizer Buffer

A four-tone record consists of a duration integer followed by 12 long
integers that contain the rate, phase, and pointers to the waveform
descriptions of the four sounds (see Figure 7).

cu-ati on inteaer
,cu1d 1 rete
tono inteoer rate lone inteaer

~, phase not integral I

lono integer used pert fractional
I

pert

,. 7
" 41

~ 4 rete
•ono integer

SOt.Ni 4 phase
long integer waveform descriptiom

s0U'1d 1 .. SCUld ,

'-'OVeform pointer
, 256 bytes

, ., ,,• ,j.,
41 41 J.

sCU'ld 41 .. l(Uld4

"Waveform pointer
, 2S6 bytes

Figure 7. Four-Tone Record

3/dd/84 Hacker CONFIDENTIAL /0S/SOUND.2

9-9

9-10

10 Sound Driver Programmer's Guide

The duration integer indicates the number of ticks that each sound will
be generated, from 9 to 255 (i to 4.25 seconds). Eac'h phase integer
indicates the byte within the waveform description at which the
synthesizer should begin producing sound (the first byte is byte number
G). Each rate long integer determines the speed at which the
synthesizer cycles through the waveform. The low-order word of the
rate long integer contains the fractional part of the rate, and the
low-order byte of the high-order word contains the integral part.
(Binary fractions are described in the Toolbox Utilities manual under
Fixed-Point Numbers.) The rate long integer can vary between e and
16777215.

The waveform description for each tone must contain 256 bytes. The
four-tone synthesizer creates sound by starting at the byte in the
waveform description specified by the phase, and skipping rate bytes
ahead every 44.93 usec; when the time specified by the duration integer
has elapsed, the synthesizer stops. 'lbe amount of time required to
cycle completely through the waveform is 16777216 * 44.93 usec / rate
(11502 usec if the rate long integer is 65536--corresponding to about
87 Hz if the waveform contains one wavelength). If the waveform
contains one wavelength, the frequency the rate corresponds to is given
by

frequency (Hz)• rate/ 753.795

The maximum rate of 16777215 corresponds to 44.93 usec, or about 22.3
kHz if the waveform contains one wavelength, and a rate off produces
no sound. A partial list of rate values and corresponding frequencies
for notes comprising Ptolemy's diatonic scale (the scale to which
pianos are tuned) isis given in the summary at the end of this manual.

USING THE SOUND DRIVER

The Sound Driver is a standard Macintosh device driver, and is
manipulated via the Device Manager DriverOpen, DriverClose, Write, and
Control calls. The Sound Driver doesn't support lead or Status calls.

The Sound Driver is automatically opened when the system starts up.
Its driver name is .Sound, and its driver reference number is -4. To
close the Sound Driver, call DriverClose(-4); you can reopen it by
calling DriverOpen(". Sound").

To use one of the three types of synthesizers to generate sound, use
the Memory Manager routines NewHandle and SetHandleSize to allocate
heap space for a synthesizer buffer. 'lben, fill the buffer with values
describing the sound, and make an Write call to the Sound Driver. The
Write parameters passed must be as follows:

- RefNum must be -4.

- BuffPtr must point to the synthesizer buffer.

3/dd/84 Racker CONFIDENTIAL /OS/SOUND.2

USING THE SOUND DRIVER 11

- Count aust contain the length of the synthesizer buffer, in bytes •
•

When you use the free-form synthesizer, the amplitudes described by
each byte in the waveform description are generated sequentially until
the number of bytes specified by the count parameter have been written.
When you use the square-wave synthesizer, the sounds described by each
sound triplet are generated sequentially until either the end of the
buffer has been reached (indicated by a count integer of I in the
square-wave buffer), or the number of bytes specified by the Write
call'& count parameter have been written. When you use the four-cone
synthesizer, all four sounds are generated for the length of time
specified by the duration integer in the four-tone record.

There are three different calls you can make to the Sound Driver's
control routine:

- KilllO 11 a standard control call supported by all drivers. It
stops any sound currently being generated, and deletes all
asynchronous 1/0 requests to the Sound Driver that haven't yet
been processed.

- SetVolume allows you to change the volume of the sound that passes
through the Macintosh speaker. There are eight levels of volume,
specified by the three low-order bits in the opParam parameter of
the Control call, e being low, and 7 high. Applications shouldn't
change the speaker volume, as it's really up to the user to choose
the normal sound level via the Control Panel desk accessory.

- Advanced Prograaners: SetLevel enables you to control the
amplitude of the sound generated by the square-wave synthesizer.
The amplitude is contained in the opParam parameter of the Control
call, and must be in the range I to 2SS. Thia call is explained
in more detail below.

When you call the Sound Driver's control routine, the parameters must
contain the following:

- RefNum must be -4.

- OpCode must specify the type of call:

.£!!!.
kill IO
SetVolume
SetLevel

OpCode
1
2
3

- OpParam must provide the volume level for a SetVolume call. and
the amplitude for a SetLevel call.

(note)
Advanced programmers using low-level Pascal or
assembly-language Device Manager routines must pass the
above values in a parameter block. In addition. if
you're calling the Sound Driver asynchronously, the

3/dd/84 Hacker CONFIDENTIAL /0S/SOUND.2

9-11

9-12

12 Sound Driver Programmer's Guide

.
ioCompletion parameter must contain either the address of
a completion routine or NIL. •

Assemblv-language !!,2l!_= The current speaker volume level is
contained in the system global sdVolume.

Advanced Control Routine

The following paragraph~ describe how the Sound Driver uses the
Macintosh hardware to produce sound, and how you can intervene in the
process to control the square~ave synthesizer. You can skip this
section if it doesn't interest you, and you'll still be able to use the
Sound Driver as described, except for the SetLevel call.

To generate sound at the amplitude level specified by a square~ave
synthesizer buffer, the Sound Driver places the value of the amplitude
integer into a 740-byte buffer shared by both the Sound Driver and the
disk-motor speed-control circuitry. Then, every 44.93 usec when the
video beam wraps from the righ~ edge of the screen to the left, the
microprocessor automatically fetches an additional two bytes from this
buffer. The high-order byte is sent to the speaker, and the low-order
byte to the disk-motor speed-control circuitry.

(note)

Assembly-language .!!.2!!,: The amplitude level in the 749-byte
buffer is contained in the system global soundLevel.

All the frequencies generated by the Sound Driver are
multiples of this 44.93 usec period. The highest
frequency the Sound Driver can physically generate
corresponds to twice this period, 89.96 usec, or a
frequency of 11116 Hz.

You can cause the square-wave synthesizer to start generating sound,
and then change the amplitude of the sound being generated any time you
wish:

1. Make an asynchronous Write call to the Sound Driver specifying the
count, amplitude, and duration of the sound you want generated.
The amplitude you specify will be placed in the 749-byte buffer,
and the Sound Driver will begin producing sound.

3/dd/84 Hacker CONFIDENTIAL /OS/SOUND.2

USING THE SOUND DRIVER 13

2. Whenever you want to change the sound being generated, make a
SetLevel call With the opParam parameter apeciflJ,ng the amplitude
of the new sound. The amplitude you specify will be placed in the
749-byte buffer, and the sound will change. You can continue to
change the sound until the time specified by the duration integer
has elapsed.

3/dd/84 Hacker CONFl'D£NTlAL /0S/SOUND.2

9-13

9-14

14 Sound Driver Programer's Guide

SUMMARY OF THE SOUND DRIVER

Data Structures

Free-Form Synthesizer Buffer

0
dlration

ICJnO inteoer

waveform
byte,

Square-Wave Synthesizer Buffer

negative integer
C Oll'lt inteoe,-

amplitude integer

Ciration integer
,/' 7
' '

} first soonl

CCU"lt integer
amplitude integer
cu-at i on integer

Four-Tone Synthesizer Buffer

r

tirati on long integer

I positive integer I
pointer to 4-tone record ,.. __ ~ ___ fcu_._tcne __ recor __ d_~

3/dd/84 Hacker CONFIDENTIAL /OS/SOUND.S

Four-Tone Record

cirati on int
Drd 1 rate
long inteoer

satrd1 phe,e
1ono inteoer

so.nd 4 rete
long integer

S0Uld 4 phase
long integer

s<X.nd 1
VOYefcrm pointer

sCU'1d 4
-.,avef orm pointer

Sound Driver Control

.fill Ql?Code
Kill IO 1
Set Volume 2
Set Level 3

Calls

SUMMARY OF THE SOUND DRIVER 15

,

not
used

frocti anal part

waveform desetiptiom
90tlld1

256 by1es

SCM.nd4
2S6 bytes

Assembly-Language Information

Variables

SdVolume
SoundPtr
SoundBase
Sound Level
CurPitch

3/dd/84 Hacker

;speaker volume level
;pointer to four-tone record
;pointer to free-form buffer
;amplitude in 741-byte buffer
;value of count in square-wave synthesizer buffer

CONFIDENTIAL /05/SOUND.S

9-15

9-16

16 Sound Driver Programmer's Guide

;
Sound Driver Values For Notes Comprising Ptolemy's D~atonic Scale

kate Values for the Count Values For the
Four-Tone Synthesizer Sguare-Wave sxnthesizer

l!2!!, (Fregency) Long Word Long Integer ~ Integer

3 octaves below middle C
C (33) 9"00 612B 24875 5CBA 23738
Db (35.2) 9000 67A5 26533 56EF 22255
D (37.125) ee00 6os0 27984 526D 21101
Eb (39.6) "000 749A 29850 4D46 19782
E (41.25) 0000 7976 31094 4A2F 18991
F (44) 0000 818E 33166 458C 17804
Gb (46.9375) 1000 8A35 35381 4131 16689
G (49.5) 1000 91C0 37312 3D01 15825
Ab (52.8) 1000 9B78 39800 39F4 14836
A (55) 0000 AlF2 41458 37A3 14243
Bb (57.75) el000 AA0B 43531 34FD 13565
B (61.875) 0000 B631 46641 3174 12660 ..
2 octaves below middle C
C (66) 0000 C256 49750 2E5D 11869
Db (70.4) 0000 CF4B 53067 2B77 11127
D (74.25) G000 DAAl 559&9 2936 1G550
Eb (79.2) 11000 E934 59700 26A3 9891
E (82.5) 9000 F2£C 62188 2517 9495
F (88) 0001 031D 66333 22C6 8902
Gb (93.875) 0001 146A 70762 2099 8345
G (99) 0001 2381 74625 1E£9 7913
Ab (105-6) 0001 36F0 79600 lCFA 7418
A Cl 10) 0001 43E5 82917 lBDl 7121
Bb (115.5) 0001 5417 87063 1A7£ 6782
B (123. 75) ,Jrlll 1 6C62 93282 l8BA 6330

l octave below middle C
C (132) 9001 84AC 99500 172F 5935
Db (140-8) 0001 9E96 116134 l5BC 5564
D (148.5) 0ee1 a542 111938 149B 5275
Eb 058.4) 0091 D269 119401 1351 4945
E (165) 00'11 E5D8 124376 l28C 4748
F (176) 0002 063B 132667 1163 4451
Gb (187.75) 0102 2805 141525 194C 4172
G (198) eee2 4703 149251 0F74 3956
Ab (211.2) 9002 6DE1 159291 GE7D 37(119
A (220) ee02 87CA 165834 0DE9 3561
Bb (231) 0002 A82E 174126 9D3F 3391
B (247.5) 91102 D8C4 186564 IC5D 3165

3/dd/84 Hacker CONFIDENTIAL /0S/SOUND.S

9-17

SUMMARY OF THE SOUND DRIVER 17

Middle C
C (264) fl(l3 f959 199111 IB97 • 2967
Db (281.6) 1113 3D2C 212268 IADE 2782
D (297) lef3 6A85 223877 fA4E 2638
Eb (316.8) ffl.l3 A4D2 238802 f9A9 2473
E (330) 9993 CBB0 248752 (1946 2374
F (352) f(l(l4 8C77 265335 f8B1 2225
Gb (375.5) ""'4 51AA 2831.l50 8826 2886
G (396) If l.l4 8El.l6 2985(12 f7BA 1978
Ab (422.4) 98(14 DBC3 3184G3 973F 1855
A (44(1) eees tF95 331669 86F4 17811
Bb (462) eee5 5(150 348253 16.U 1696
B (495) 91G5 8188 373128 l62F 1583

1 octave above middle C
C (528) 9006 12B3 398003 (15CC 1484
Db (563.2) IG06 7A59 424537 l56F 1391
D (594) ,ee& o5tA 447754 1527 1319
Eb (633.6) 8(1(17 49A4 477604 (14D4 1236
E (660) 1007 976(1 4975(14 l4A~ 1187 .
F (704) ee08 18EF 53(1671 945·; 1113
Gb (751) 8008 A354 566100 f413 1143
G (792) 91'99 1C0D 597005 130D 989
Ab (844.8) 9109 B786 636806 (139F 927
A (880) f00A 1F2B 663339 937A 890
Bb (924) 110A AIBA 696506 1350 848
B (990) 990B 6311 746257 (1317 791

2 octaves above middle C
C (1056) ee0c 2567 796G~7 92E6 742
Db (1126.4) f(l0C F4B2 849074 12B7 695
D (1188) 9(10D AA14 895508 9293 659
Eb (1267.2) 900E 9349 95S209 926A 618
E (1320) 8(10F 2EC1 995009 1251 593
F (1408) 101, 31or 1961340 e22c 556
Gb (1512) e1u1 46A8 1132200 920A 522
G (1584) 8112 381B 1194111 91EF 495
Ab (1689.6) 8(113 6F(IC 1273610 9100 464
A (1761) (1(114 3£57 132668(1 (llBD 445
Bb (1848) 9'115 4175 1393011,11 flA8 424
B (1989) 9fl6 C622 1492510 fl8C 396

3/dd/84 Hacker CONFIDENTIAL /0S/SOUND.S

9-18

18 Sound Driver Programmer's Guide

3 octaves above middle C ,
C (2112) 9918 4ACF 1592920 e113 • 371
Db (2252.8) ee19 E96s 1698159 e15c 348
D (2376) IIUB 5429 17911129 ll4A 33t
Eb (2534.4) GGlD 2692 1919429 9135 399
E (2649) ee1E 5DS3 1991020 9129 297
F (2816) ee2e 63BF 212269(1 9116 278
Gb (3994) (1022 8050 2264499 9195 261
G (3168) G924 7036 2388fa2G eer1 247
Ab (3379.2) 9026 DE18 2547229 9!1E8 232
A (3520) '9928 7CAE 2653361a 99DF 223
Bb (36%) ee2A 82EA 2786930 9GD4 212
B (3960) 902D 8C44 2985939 eec6 198

3/dd/84 Hacker CONFIDENTIAL /0S/SOUND.S

GLOSSARY 19

GLOSSARY •

amplitude: The vertical distance between any given point on a wave and
the horizontal line about which the amplitude oscillates.

four-tone record: A data structure describing the four tones produced
by a four-tone synthesizer.

four-tone synthesizer: The part of the Sound Driver used to make
simple harmonic tones, with up to four "voices" producing sound
simultaneously.

free-form synthesizer: The part of the Sound Driver used to make
complex music and speech.

frequency: The number of cycles per second (also called Hertz) at
which a wave oscillates.

period: The time elapsed during one complete cycle of a wave.

phase: Some fraction of a wave cycle (measured from a fixed point on
the wave).

square-wave synthesizer: The part of the Sound Driver used to produce
less harmonic sounds such as beeps.

synthesizer buffer: A description of the sound to be generated by a
synthesizer.

waveform: The physical shape of a wave.

waveform description: A sequence of bytes describing a waveform.

wavelength: The horizontal extent of one complete cycle of a wave.

3/dd/84 Hacker CONFIDENTIAL /0S/SOUND.G

9-19

MACINTOSH USER EDUCATION

The Structure of a Macint6sh Application

See Also: Macintosh User Interface Guidelines
Inside Macintosh: A Road Map
The Segment Loader: A Programmer's Guide
Putting Together a Macintosh Application

/STRUCTURE/STRUCT

Modification History: First Draft (ROM 7) Caroline Rose 2/8/84

ABSTRACT

This manual describes the overall structure of a He.cintosh application
program, including its interface with the Finder.

15-1

15-2

2 Structure of a Macintosh Application

TABLE OF CONTENTS

3 About This Manual
3 Signatures and File Types
4 Finder-Related ReAources
5 Version Data
5 Icons and File References
6 Bundles
7 An Example
8 Formats of Finder-Related Resources
8 Opening and Printing Documents from the Finder
11 Glossary

Copyright (c) 1984 Apple Computer, Inc. All rtghts reserved. Distribution
in limtted quantities does not constttute publication.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes the overall structure of a Macintosh application
program, including its interface with the Finder. *** Right now it
describes only the Finder·interface; the rest will be filled in later.
Eventually it will become part of a comprehensive manual describing the
entire Toolbox and Operating System. ***

(hand)
This information in this manual applies to version 7 of
the Macintosh ROH and version 1.~ of the Finder.

You should already be familiar with the following:

- The details of the User Interface Toolbox, the Macintosh Operating
System, and the other routines that your application program may
call. For a list of all the technical documentation that provides
these details, see Inside Macintosh: A Road Map.

- The Finder, which is described in the Macint~Fh owner's guide.

This manual doesn't cover the steps necessary to create an
application's resources or to compile, link, and execute the
application program. These are discussed in the manual Putting
Together.!. Macintosh Application.

The manual begins with sections that describe the Finder interface:
signatures and file types, used for identification purposes;
application resources that provide icon and file information to the
Finder; and the mechanism that allows documents to be opened or printed
from the Finder.

*** more to come***

Finally, there's a glossary of terms used in this manual.

SIGNATURES AND FILE TYPES

Every application must have a unique signature by which the Finder can
identify it. The signature can be any four-character sequence not
being used for another application on-any currently mounted volume
(except that it can't be one of the standard resource types). To
ensure uniqueness on all volumes, your application's signature must be
assigned by Macintosh Technical Support.

Signatures work together with!!!!. types to enable the user to open or
print a document (any file created by an application) from the Finder.
When the application creates a file, it sets the file's creator and
file type. Normally it sets the creator to its signature and the file
type to a four-character sequence that identifies files of that type.
When the user asks the Finder to open or print the file, the Finder

2/8//84 Rose CONFIDENTIAL /STRUCTUllE/STllUCT.2

15-3

15-4

4 Structure of a Macintosh Application

starts up the application whose signature is the file's creator and
passes the file type to the application along with other identifying
information, such as the file name. (More information about this
process is given below under "Opening and Printing Documents from the
Finder".)

An application may create its own special type or types of files. Like
signatures, file types must be assigned by Macintosh Technical Support
to ensure uniqueness. When the user chooses Open from an application's
File menu, the application will display (via the Standard File Package)
the names of all files of a given type or types, regardless of which
application created the files. Having a unique file type for your
application's spe~ial files ensures that only the names of those files
will be displayed for opening.

(hand)
Signatures and file types may be strange, unreadable
combinations of characters; they're never seen by end
users of Macintosh.

Applications may also create existing types of files. There might, for
example, be one that merges two HacWrite documents into a single
document. In such cases, the application should use the same file type
as the original application uses for those files. It should also
specify the original application's signature as the file's creator;
that way, when the user asks the Finder to open or print the file, the
Finder will call on the original application to perform the operation.
To learn the signatures and file types used by existing applications,
check with Macintosh Technical Support.

Files that consist only of text-a stream of characters, with Return
characters at the ends of paragraphs or short lines--should be given
the file type 'TEXT'. This is the type that MacWrite gives to
text-only files it creates, for example. If your application uses this
file type, its files will be accepted by HacWrite and it in turn will
accept MacWrite text-only files (likewise for any other application
that deals with 'TEXT' files). Your application can give its own
signature as the file's creator if it wants to be called to open or
print the file when the user requests this from the Finder.

For files that aren't to be opened or printed from the Finder, as may
be the case for certain data files created by the application, the
signature should be set to'????' (and the file type to whatever is
appropriate).

FINDER-RELATED RESOURCES

To establish the proper interface with the Finder, every application's
resource file must specify the signature of the application along with
data that provides version information. In addition, there may be
resources that provide information about icons and files related to the
application. All of these Finder-related resources are described

2/8//84 Rose CONFIDENTIAL /STRUCTURE/STRUCT.2

;

FINDER-RELATED llESOURCES 5

below, followed by a comprehensive example and (for interested
programmers) the exact formats of the resources.

Version Data

Your application's resource file must contain a special resource that
has the signature of the application as its resource type. This
resource is called the version.!!!!!_ of the application. The version
data is typically a string that gives the name, version number, and
date of the application, but it can in fact be any data at all. The
resource ID of the version data is e by convention.

As described in d~tail in Putting Together.!. Macintosh Application,
part of the procKs of installing an application on the Macintosh is to
set the creator of the file that contains the application. You set the
creator to the application's signature, and the Finder copies the
corresponding version data into a resource file named Desktop. (The
Finder doesn't display this file on the Macintosh desktop, to ensure
that the user won't tamper with it.)

(hand)
Additional, related resources may be copied into the
Desktop file; see "Bundles" below for more information.
The Desktop file also contains folder resources, one for
each folder on the volume.

Icons and File References

For each application, the Finder needs to know:

- The icon to be displayed for the application on the desktop, if
different from the Finder's default icon for applications (see
Figure l).

- If the application creates any files, the icon to be displayed for
each type of file it creates, if different from the Finder's
default icon for documents •

.
- What files, if any, must accompany the application when it's

transferred to another volume.

D
Application Docu'nent

Figure 1. The Finder's Default Icons

The Finder learns this information from resources called file
references in the application's resource file. Each filereference
contains a file type and an ID number, called a local!!!,, that

2/8//84 Rose CONFIDENTIAL /STRUCTURE/STltUCT.2

15-5

15-6
6 Structure of a Macintosh Application

identifies the icon to be displayed for that type of file. (The local
ID is mapped to an actual resource ID as described under "Bundles"
below.) Any file reference may also include the name of a file that
must accompany the application when it's transferred to another volume.

The file type for the application itself is 'APPL'. This is the file
type in the file reference that designates the application's icon. You
also specify it as the application's file type at the same time that
you specify its creator-the first time you install the application on
the Macintosh.

The ID number in a file reference corresponds not to a single icon but
to an icon list in the application's resource file. The icon list
consistsoftwo icons: the actual icon to be displayed on the desktop,
and a mask consis.ting of that icon's outline filled with black (see
Figure 2). *** For existing types of files, there's currently no way
to direct the Finder to use the original application's icon for that
file type. ***

Icon Mask

Figure 2. Icon and Mask

Bundles

A bundle in the application's resource file groups together all the
Finder-related resources. It specifies the following:

- The application's signature and the resource ID of its version
data

- A mapping between the local IDs for icon lists (as specified in
file references) and the actual resource IDs of the icon lists in
the resource file

- Local IDs for the file references themselves and a mapping to
their actual resource IDs

The first time you install the application on the Macintosh, you set
its "bundle bit", and the Finder copies the version data, bundle, icon
lists, and file references from the application's resource file into
the Desktop file. *** (The setting of the bundle bit will be covered
in the next version of Putting Together A Macintosh Application.)
*** If there are any resource ID conflicts between the icon lists and
file references in the application's resource file and those in
Desktop, the Finder will change those resource IDs in Desktop. The
Finder does this same resource_copying and ID conflict resolution when
you transfer an application to another volume.

2/8//84 llose CONFIDENTIAL /STRUCTURE/STR.UCT.2

FINDER-llELATED llESOUllCES 7

(hand)
The local IDs are needed only for use by the Finder.

An Example

Suppose you've written an application named SampWriter. The user can
create a unique type of document from it, and you want a distinctive
icon for both the application and its documents. The application's
signature, as assigned by Macintosh Technical Support, is 'SAMP'; the
file type assigned for its documents is 'SAKF'. Furthermore, a file
named 'TgFil' should accompany the application when it's transferred to
another volume. ~ou would include the following resources in the
application's resource file:

Resource Resource
Version data with 0

resource type 'SAMP'
Icon list 128

Icon list 129

File reference 128

File reference 129

Bundle 128

(hand)

ID Contents
The string 'SampWriter Version 1

- 2/1/84'
The icon for the application
The icon's maFk
The icon for documents
The icon's mask
File type 'APPL'
Local ID I for the icon list
File type 'SAMF'
Local ID 1 for the icon list
File name 'TgFil'
Signature 'SAMP'
Resource ID 0 for the version
For icon lists, the mapping:

local ID 0 -> resource ID 128
local ID 1 -> resource ID 129

data

For file references, the mapping:

local ID G -> resource ID 128
local ID 1 -> resource ID 129

See the manual Putting Together.!. Macintosh Application
for information about how to include these resources in a
resource file.

The file references in this example happen to have the same local IDs
and resource IDs as the icon lists, but any of these numbers can be
different. Different resource IDs can be given to the file references,
and the local IDs specified in the mapping for file references can be
whatever desired.

2/8//84 lloae CONFIDENTIAL /STRUCTUllE/STllUCT.2

15-7

15-8

8 Structure of a Macintosh Application

Formats of Finder-Related Resources

The resource type for an application's version data is the signature of
the application, and the resource ID is~ by convention. The resource
data can be anything at all; typically it's a string giving the name,
version number, and date of the application.

The resource type for an icon list is 'ICN#'. The resource data simply
consists of the icons, 128 bytes each.

The resource type for a file reference is 'FREF'. The resource data
has the fonaat shown below.

Number of-1>ytes
4 bytes
2 bytes

Contents
File type
Local ID for icon list

1 byte Length of following file name in bytes;
f if none

n bytes Optional file name

The resource type for a bundle is 'BNDL'. The resource data has the
format shown below. The format is more general than needed for
Finder-related purposes because bundles will be used ln other ways in
the future.

Number of bytes Contents
4 bytes Signature of the application
2 bytes Resource ID of version data
2 bytes Number of resource types in bundle minus 1
For each resource type:

4 bytes Resource type
2 bytes Number of resources of this type minus l
For each resource:

2 bytes Local ID
2 bytes Actual resource ID

A bµndle used for establishing the Finder interface contains the two
resource types 'ICNI' and 'FREF'.

OPENING AND PRINTING DOCUMENTS FROM THE FINDER

When the user selects a document and tries to open or print it from the
Finder, the Finder starts up the application whose signature la the
document file's creator. An application may be selected along with one
or more documents for opening (but not printing); in this case, the
Finder starts up that application. If the user selects more than one
document for opening without selecting an application, the files aust
have the same creator. If more than one document is selected for
printing, the Finder starts up the application whose signature is the
first file's creator (that is, the first one selected if they were
selected by Shift-clicking, or the top left one if they were selected

2/8//84 Rose CONFIDENTIAL /STRUCTUllE/SllUCT.2

I ,

OPENING AND PRINTING DOCUMENTS FROM THE FINDER 9

by dragging a rectangle around them).

Any time the Finder starts up an application, it passes along
information via the "Finder information handle" in the application
parameter area (as described in the Segment Loader manual). Pascal
programmers can call the Segment Loader procedure GetAppParms to get
the Finder information handle. For example, if applParam is declared
as type Handle, the call

GetAppParms(applName, applRefNum, applParam)

returns the Finder information handle in applParam. The Finder
information has the following format:

Number of ...bytes
2 bytes
2 bytes
For each file:

2 bytes

4 bytes
1 byte
1 byte
1 byte
n bytes

Contents
9 if open, 1 if print
Number of files to open or print c, if none)

Volume reference number of volume containing
the file
File type
File's version number (typically 9)
Ignored
Length of following file name in bytes
Characters of file name (if n is even, add
an extra byte)

The files are listed in order of the appearance of their icons on the
desktop, from left to right and top to bottom. The file names don't
include a volume prefix. An extra byte is added to any name of even
length so that the entry for the next name will begin on a word
boundary.

Every application that opens or prints documents should look at this
information to determine what to do when the Finder starts it up. If
the number of files is e, the application should start up with an
untitled document on the desktop. If a file or files are specified for
opening, it should start up with those documents on the desktop. If
only one document can be open at a time but more than one file is
specified, the application should open the first one and ignore the
rest. If the application doesn't recognize a file's type (which can
happen if the user selected the application along with another
application's document), it may want to open the file anyway and check
its internal structure to see if lt's a compatible type. The response
to an unacceptable type of file should be an alert box that shows the
file name and says that the document can't be opened.

If a file or files are specified for printing, the application should
print them in tum, preferably without doing its entire start-up
sequence. For example, it may not be necessary to show the menu bar or
a document window, and reading the desk scrap into aemory is definitely
not required. After successfully printing ·a document, the application
should set the file type in the Finder information toe. Upon return
from the application, the Finder will start up other applications as

2/8//84 Rose CONFIDENTIAL /STRUCTURE/snuct.2

15-9

15-10

10 Structure of a Macintosh Application

necessary to print any remaining files whose type was not set.to f.
*** The Finder doesn't currently do this, but it may in the future.

2/8//84 llose CONFIDENTIAL /STRUCTURE/snucT.2

GLOSSARY

GLOSSARY

bundle: A resource that maps local IDs of resources to their actual
resource IDs; used to provide mappings for file references and icon
lists needed by the Findet.

11

Desktop file: A resource file in which the Finder stores folder
resources and the version data. bundle. icons. and file references for
each application on the volume.

file reference: A resource that provides the Finder with file and icon
information about an application.

file type: A fo~r-character sequence. specified when a file is
created. the identifies the type of file.

icon list: A resource consisting of a list of icons.

local ID: A number that refers to an icon list or file reference in an
application's resource file and is mapped to an acLual resource ID by a
bundle.

signature: A four-character sequence that uniquely identifies an
application to the Finder.

version data: In an application's resource file. a resource that has
the application's signature as its resource type; typically a string
that gives the name. version number. and date of the application.

2/8/84 lose CONFIDENTIAL /STRUCTUllE/STRUCT.G

15-11

MACINTOSH USER EDUCATION

TextEdit: A Programmer's Guide

See Also: The Macintosh User Interface Guidelines
Macintosh Operating System Manual
OuickDraw: A Programmer's Guide
The Font Manager: A Programmer's Guide
The Window Manager: A Programmer's Guide
The Event Manager: A Programmer's Guide
CoreEdit: A Programmer's Guide

Modification History: First Draft (ROH 7)

/TEXT.EDIT/EDIT

B. Hacker 9/28/83

ABSTRACT

The TextEdit package of the Macintosh User Interface Toolbox is a set of
data types and routines for handling basic text formatting and editing
capabilities in a Macintosh application. Thia manual describes TextEdit
in detail.

2 TextEdit Programmer's Guide

TABLE OF CONTENTS

3 About This Manual
4 About TextEdit
4 The Editing Environment: Edit Record
5 The Destination and View Rectangles
6 The Selection Range
8 Justification
9 The TERec Data Type
11 Using TextEdit
13 TextEdit Routines
13 Initialization
14 Manipulating Edit Records
14 Editing
17 Selection Range and Justification
17 Mice and Carets
18 Text Display
19 Advanced Routines
21 Notes for Assembly-Language Programmers
21 Summary of TextEdit
23 Glossary

Copyright (c) 1983 Apple Computer, Inc. All rights reserved.

Distribution of this draft in limited quantities does not constitute
publication.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

The TextEdit package of the Macintosh User Interface Toolbox ia a aet
of data types and routines for handling basic text formatting and
editing capabilities in a Macintosh application. This manual deacribes
TextEdit in detail.

The Toolbox also includes a more sophisticated text editing package,
called CoreEdit. You'll need to use CoreEdit instead of TextF.dit if
you want fully justified text, recognition of word boundaries during
editing ("intelligent cut and paste"), or tabbing. Bear in mind,
however, that CoreEdit is not in the Macintosh ROM, and occupies over
6K of your application's available memory instead.

(hand)
Thia manual describes the TextEdit that works with
version 7 of the ROM. If you're using a different
version, the information presented here may not apply.

Like all documentation about Toolbox units, this manual assumes you're
familiar with the Macintosh User Interface Guidelines, Lisa Pascal, and
the Macintosh Operating System's Memory Manager. You should also be
familiar with the following:

- The basic concepts and structures behind QuickDraw, particularly
points, rectangles, grafPorts, fonts, and character style.

- The ToolBox Event Manager. Some TextEdit routines are called only
in response to particular events.

- The Window Manager, particularly update and activate events.

The manual begins with an introduction to TextEdit and what you can do
with it. It then discusses the edit record, the primary data structure
used by the text editing routines. Learning about this data structure
will give you the background you need to understand the routines
themselves.

Next, a section on using TextF.dit introduces you to its routines and
tells how they fit into the flow of your application. Thia is followed
by detailed descriptions of all text editing procedures and functions
their parameters, calling protocol, •ffecta, aide effects, and ao on.

Following these descriptions is a section containing notes for
programmers who will use TextEdit from assembly language.

Finally, there's a summary of the Text!dlt data atructurea and routine
calla, for quick reference, and a glossary of terms used in thia
manual.

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.2

4 TextEdit Programmer's Guide

ABOUT TEXTEDIT

TextEdit la a group of compact and efficient routines that provide the
basic text editing and forutting capabilities needed in an
application. These routines perform operations such as:

- Inserting new text

- Deleting characters that are backspaced over

- Translating mouse activity into text selection

- Moving text within a window

- Deleting selected text and possibly inserting it elsewhere, or
copying text without deleting it

Because these routines follow the Macintosh User Interface Guidelines,
using them ensures that your application presents a consistent,
easy-to-learn interface for end users. In particular, TextEdit
supports these standard features:

- Selecting text by clicking and dragging with the mouse,
double-clicking to select words instead of characters.

- Inverse highlighting of the current text selection, or display of
a blinking vertical bar at the insertion point.

- ,!!!!!:! wrap, which prevents words from being split between linea
when text is drawn. To TextEdit, a vord is any aeries of printinc
characters, excluding spaces (ASCII code $21) but including
nonbreaking spaces (ASCII code $CA).

- Cutting (or copying) and pasting within an application via the
Clipboard*** not currently described as "Clipboard" in the User
Interface Guidelines, but will be***· Textldit puts text you cut
or copy into a string of characters called the scrap.

(hand)
Cutting and pastiq between applications, or between
applications and desk accessories, is done with the aid
of the Scrap Manager (see the Scrap Manager manual for
details).

THE EDITING ENVIRONMENT: EDIT RECORD

To edit text on the screen, the text editing routines need to know
where and how to display the text, where to store the text, and other
information related to editing. Thia display, storage, and editiq
information la •ntained in an edit record that defines the complete
editing enviroament. The data type of an edit record is called TERec.

9/28/83 BackK CONFIDENTIAL /TEXT.EDIT/EDIT.2

THE EDITING ENVIRONMENT: EDIT RECORD 5

You prepare to edit text by passing, to a procedure, a destination
rectangle in which to draw the text and a view rectangle in which the
text will be visible. The procedure incorporates the rectangles and
the drawing environment of the current grafPort into an edit record,
and returns a handle to the record:

TYPE TEPtr • ·TERec;
TEHandle • ·TEPtr;

Host of the text editing routines require you to pass this handle as a
parameter.

In addition to the two rectangles and a description of the drawing
environment, the edit record also contains:

- A handle to the text to be edited

- A pointer to the grafPort

- The current selection range, which determines exactly which
characters Will be affected by the next editing operation

- The justification of the text, as left, right, or center

The special terms introduced here are described in detail below.

Most programmers won't access any of the fields of an edit record
directly, and so don't have to know its exact structure; the necessary
access is done with TextEdit routines. Advanced programmers, however,
may need to know some of the field names. The structure of an edit
record is given below.

The Destination and View Rectangles

The destination rectangle is the rectangle in which the text is drawn.
The view rectangle is the rectangle within which the text is actually
visible. In other words, the view of the text drawn in the destination
rectangle is clipped to the view rectangle (see Figure 1).

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.2

6 TextEdit Programmer's Guide

-------------------------------I This doanent is I illhis docunent is full I
I ful I or choice I choice bits of reedl~

•
I·: bit1 of reeding I 1materiel. Note that tej

materiel. Note i = <tawn within the destf
I
i thet text is chwn r View ~ rectangle, but vis Ible!

within the · Rectangle ' I the view rectqle. i
I deatlnetlon ,I I I
, rectengte, but I ;
[. _visible only In ! I I

__ / __ Destination __ ,.,.
' Rectengle ~

Figure 1. Destination and View Rectangles

You specify both rectangles in the coordinate system of the grafPort.
In a document window, the destination rectangle should be inset about
four pixels from the left and right edges of the grafPort's portRect
(2G pixels from the right edge if there's a scroll bar or size box) to
ensure that the first and last character in each line is legible.

F.dit operations may of course lengthen or shorten the text. If the
text becomes too long to be enclosed by the destination rectangle, it's
simply drawn beyond the bottom. In other words, you can think of the
destination rectangle as bottomless--its sides determine the beginning
and end of each line of text, and its top determines the position of
the first line.

Normally, at the right edge of the destination rectangle, the text
automatically wraps around to the left edge to begin a new line. A new
line also begins where explicitly specified by a Return character in
the text. Word wrap ensures that words are never split between lines
unless they're too long to fit entirely on one line.

The Selection Range

In the text editing environment, a character position is an index into
the text, with position G corresponding to the first character. The
edit record includes fields for character positions that specify the
beginning and end of the current selection range, which is the series
of characters at which the next editing operation will occur. For
example, the procedures that cut or copy from the text of an edit
record do so to the current selection range.

The selection range, which is always inversely highlighted, extends
from the beginning character position up to but NOT including the end
position. Figure 2 shows a selection range defined by the beginning

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.2

THE EDITING ENVlllONMENT: EDIT RECORD 7

position 2 and the end position 7; it consists of five charactera,
thoee at positions 2 through 6. The end position may be l greater than
the poeitioo of the last character of the text, so that the aelection
range cao·incl~de the last character.

llhllllectlon renge la 1-1y
hi~ted.

Selection range
beQlmlng et position 2
end ending et position 7

~ Insertion point Is marted with a
bllriklng caret.

lnaertlon point
at position 3

I

Figure 2. Selection Range and Insertion Point

If the beginning and end of the selection range are the aame, that
character position is the text'• insertion point, the position where
characters will be inserted. By convention, it's usually marked with a
caret that blinks (is repeatedly inverted). If, for example, the
insertion point is as illustrated in Figure 2 and the inserted
characters are" edit", the text will read "The edit insertion
point•••"•

{hand)
Ve use the word caret here generically, to •an a symbol
indicating where somethiq la to be inaerted; the
specific symbol is a vertical bar. TextEdit does not
automatically change the caret to a vertical bar for you.
(You mat use the OuickDraw procedure SetCuraor.)

If you call a procedure to insert characters when there's no insertion
point (that is, when there's a selection range of one or aore
characters), the editing procedure automatically deletes the •election
range and replaces it with an insertion point, before inserting the
characters.

9/28/83 Backer CONFIDENTIAL /TEXT.EDIT/EDIT.2

8 TextEdit Programmer's Guide

Juattftcation

Teatldit allows you to specify the justification of the line• of tat,
that ta, their horizontal placement with respect to the left and ri1ht •di•• of the destination rectangle. 1be different types of
Ju1tlfication are illustrated in Figure 3.

- teft justification aligns the text with the left edge of the
destination rectangle. 1bis is the default type of juatiflcatlon.

- Center Justification centers the text between the left and nsht
edges of the destination rectangle.

• light justification aligns the text with the right eds• of the
destination rectangle.

(hand)

This Is en example
of left
Justification. See
how the text Is
eli"'9(t with the
left edge of the
rectangle.

Thia le an ~le
of rl""

Justification. See

This 11 en ex~le
of center

Justlflcetlon. See
how the text is

cerdel ed between
the edges of the

rectangle.

how the text Is
allc,.d with the
ric,rt edge of the

rectangle.

Figure 3. Justification

Trailing and leading spaces on a line are ignored for
Juatification. For example,_ "Fred" and " Fred " will be
aligned identically. ·

testlclit has three predefined constants for setting the
juatiflcation:

CONST teJustLeft • I;
teJustCenter • l;
teJustltight • -1;

9/28/83 Hacker CONFIDENTIAL /TEXT.EDlT/IDlT.2

THE EDITING ENVIRONMENT: EDIT llECOllD 9

The TElec Data Type

For those who want to know more about the structure of an edit record,
some {but not all) of the structure is given here. You can akip this
section if you want and still use TextEdit as described above, but some
TextEdit features are available only if you change fields in the edit
record directly.

{eye)
The fields that are not described exist solely for
internal use among the text editing routines; their
contents cannot be predicted and must not be changed.

TYPE TERec • RECORD
destlect:
viewlect:
1i neHeight:
firstBL:
selStart:
selEnd:
just:
length:
hText:
txFont:
txFace:
txMode:
txSize:
in Port:
crOnly:
nLines:
lineStarta:

lect; {destination rectangle}
lect; {view rectangle}
INTEGER; {line height}
INTEGER; {location of first base line}
INTEGER; {start of selection range}
INTEGER; {end of selection range}
INTEGER; {justification}
INTEGER; (length of text}
Handle; {text to be edited}
INTEGER; (text font}
INTEGER; {character style}
INTEGER; {pen mode}
INTEGER; {type size}
GrafPtr; {grafPort}
INTEGER; {new line at Return only, if <f}
INTEGER; {number of lines}
AllRAY [f •• 32fff) OF INTEGER

{positions of line starts}
(some fields within the record are for internal use
only, and aren't shown here; see the Pascal interface
to Text!:dit}

END;

Any of the fields in the edit record can be changed, at your
discretion. Clearly, some fields {such as length, hText,
inPort, and crOnly) might be changed frequently. The lineStarta
array should be left unchanged.

The lineHeight field specifies the!!!!!. height of the text, the number
of pixels from the base line of one line to the base line of the next
line, as shown in Figure 4. For single-spaced lines, line height is
the same as the type size, for double-spaced lines, line height ta
twice the type size, and so on.

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.2

10 TextEdit Programmer's Guide

qrs

tlntel

llne hel~t,
type size

flrstEI.

efg
line hel~

qrs } type alze

single-spaced double-spaced

Figure 4. Line Height and FirstBL

The firstBL field specifies the number of pixels from the top of the
destination rectangle to the base line of the first line of text.
Initially the firstBL field is set for single-spaced lines, but you can
change it for any other spacing you want. For example, to change from
single to double spacing, use

firstBL :• firstBL + typeSize
lineHeight :• 2 * typeSize

where typeSize is the type size of the text.

The hText field is a handle to the text to be edited, and the length
field contains the number of characters in the text. You can directly
change the text of an edit record by changing these two fields.

The crOnly field specifies whether or not text wraps around at the
right edge of the destination rectangle, as shown in Figures. If
crOnly is zero or positive, text does wrap around. If crOnly is
negative, text does not wrap around at the edge of the destination
rectangle, and new lines are specified explicitly by leturn characters
only. This is somewhat faster than wrap around, and is useful in
applications such as a programming-language editor, where you don't
want a single line of code to be split onto two or more lines.

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.2

THE EDITING ENVIRONMENT: EDIT RECORD 11

There's e Paetwn
chsecter et the encl
of this I lne.
But not et the end of
this I ine. Or this I ine.

New llne et Fletl..m
characters and edge of
destination rectangle.

Figure s.

There's e Piettrn ~'"""
But not at the end of

New I ine et fleh.m
ct.ectera only.

New Lines

The nLines field contains the number of lines in the text. The
lineStarts array contains the character position of the first character
in each line. It's declared to have 32~Gl elements to comply with
Pascal range checking; it's actually a dynamic data structure having
only as many elements as needed.

(hand)
The values of the lineStarts array, selEnd, and selStart
are stored internally as unsigned integers. Be aware
that negative values passed from Pascal will be
interpreted as greater than 32767.

USING TEXTEDIT

This section discusses how the text editing routines fit into the
general flow of an application program and gives you an idea of what
routines you'll need to use. The routines themselves are described in
detail in the next section.

Before using TextEdit, you should initialize QuickDraw, the Font
Manager, and the Window Manager, in that order.

The first TextEdit routine to call ia the initialization procedure
TEinit. Call TENew to allocate an edit record; it returns a handle to
the record. Most of the text editing routines require you to pass this
handle as a parameter.

To make a blinking caret appear at the insertion point, call the TEldle
procedure as often as possible; if it's not called often enough, the
caret will bl~nk irregularly.

Your application's "main loop" should call the Toolbox Event Manager
function GetNextEvent to learn whether any events have occurred.
Events that pertain to TextEdit need to be handled by TextEdit
routines. Whenever a mouse down event occurs within the view
rectangle, call the TEClick procedure. TEClick automatically controls

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.2

12 TextEdit Programmer's Guide

the placement of the selection range and insertion point (including
supporting use of the Shift key to make extended selections).

There are ·several procedures available for editing text. Usually they
are called in response to mouse down events and menu selections. The
editing procedures are:

- TEICey inserts characters at the insertion point, and deletes
characters backspaced over.

- TECut transfers the selection range to the scrap, removing it from
the text, and TEPaste inserts the scrap at the insertion point.
By calling TECut, changing the insertion point, and then calling
TEPaste, you can perform a "cut and paste" operation, moving text
from one place to another.

- TECopy copies the selection range to the scrap. By calling
TECopy, changing the insertion point, and then calling TEPaste,
you can make 1111ltiple copies of text.

- TEDelete removes the selection range (without transferring it to
the scrap).

- TEinsert inserts text at the insertion point. You can use this to
combine two or more documents. TEDelete and TEinsert do not
modify the scrap, and consequently are useful for implementing the
Undo command (as described in the Macintosh User Interface
Guidelines).

After each editing procedure, the text is redrawn from the insertion
poin~ to the end of the destination rectangle. You never have to pass
the selection range or insertion point to the editing procedures; the
procedures simply access that information from the edit record. The
editing procedures and TEClick leave the selection range or insertion
point where it should be, according to the Macintosh User Interface
Guidelines, so you don't have to set it yourself. But, in case you
want to, you can modify the selection range directly by using the
TESetSelect procedure.

Every time GetNextEvent reports an update event for the text editing
window, call TEUpdate (along with the Window Manager procedures
BeginUpdate and EndUpdate), to redraw the text.

(hand)
Advanced programmers: you must call TEUpdate after you
change any fields of the edit record if the fields affect
the appearance of the text. Thia 9"sures that the acreen
accurately reflects the changed editing environment.

-~-

The procedures TEActivate and TIDeactivate 111st be called each time the
Event Manager reports an activate event for the text editing window.
TEActivate simply highlights the selection range or displays a caret at
the insertion point, and TEDeactivate unhighlighta the selection range
or removes the caret.

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.2

USING TEXTEDIT 13

To specify the justification of the text, you can use TESetJust (which
requires calling TEUpdate).

If at any ·time you want to change the text being edited, you can do so
by calling TESetText. A common technique (used in dialog boxes, for
instance) is to allocate a single edit record for several separate
pieces of text where only one may be edited at a time; this saves
having to allocate an edit record for each of them.

\lhen you've finished working with the text of an edit record, you can
get a handle to the text by calling TEGetText. When you're completely
done with an edit record and want to dispose of it, call TEDispose,
which removes the text and edit record from the heap.

If you ever want to draw text in any given rectangle (without being
able to edit it), use the TextBox procedure.

Advanced programmers may wish to use the TEScroll procedure, to move
text within the view rectangle, or TECalText, to recalculate the
beginning of each line after changing the text or the destination
rectangle.

TEXTEDIT ROUTINES

This section describes all the procedures and functions in TextEdit.
They are presented in their Pascal form; for information on using them
from assembly language, see "Using the Toolbox from Assembly Language"
*** doesn't exist, but see the Quick.Draw manual*** and also "Notes
for Assembly-Language Programmers" in this manual.

lni tialization

PROCEDURE TEinit;

TElnit initializes Textldit by allocating a handle for the scrap. The
scrap is initially empty. Call this procedure once and only once at
the beginning of your program.

FUNCTION TENew (deatR.ect,viewlect: 'Rect) : TEHandle;

TENew allocates a handle for the text, builds and initializes an edit
record, and returns a handle to the new edit record. Destlect and
viewR.ect are the destination and view rectangles, respectively. Both
rectangles are specified in the current grafPort's coordinates. Call
this procedure once for every edit record you want allocated. The edit
record incorporates the drawing environment of the grafPort, and la
initialized for left-justified, aingle-apaced text with an insertion
point at character position f.

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.a

14 TextEdit Progra111111er's Guide

Manipulating Edit Records

PROCEDURE TESetText (text: Ptr; length: Longlnti hTE: TEHandle);

TESetText takes the specified text and incorporates it into the edit
record specified by hTE. The text parameter points to the text, and
the length parameter indicates the number of characters in the text.
The selection range is set to an insertion point at the end of the
text. TESetText does not affect the text drawn in the destination
rectangle, so call TEUpdate (described below) afterwards.

FUNCTION TEGetText (hTE: TEHandle) : CharsHandle;

TEGetText returns a handle to the text of the edit record specified by
hTE. The CharsHandle data type ls defined as:

TYPE CharsHandle • •CharsPtr;
CharsPtr • ·Chars;
Chars • PACKED ARRAY UJ •• 32,aGJ OF CHAR;

PROCEDURE TEDispose (hTE: TEHandle);

TEDispoae deallocates the space allocated for the edit record and text
specified by hTE, and returns the memory to the free memory pool. Call
this procedure when you're completely t,hrough with an edit record.

Editing

PROCEDURE TEKey (key: CHAR; hTE: TEHandle);

TEXey replaces the selection range in the text specified by hTE with
the character given by the key parameter, and leaves an insertion point
just past the inserted character. If the selection range is an
insertion point, TEKey just inserts the character there. If the key
parameter contains a Backspace character, the character immediately to
the left of the insertion point is deleted. Call TEKey every time the
Toolbox Event Manager function GetNextEvent reports a keyboard event
that your application decides should be handled by TextEdit.

(eye)
TEKey blindly inserts every character passed in the key
parameter, so it's up to your application to filter out
all characters that aren't actual text (euch as keya
typed in conjunction with modifier or special keys).

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.a

TEXTEDIT ROUTINES 15

PR.OCEDUU TECut (hTE: TEHanclle);

TECut remove• the selection range from the text apecified by bTE and
places it ·in the acrap. Anything previously in the scrap ia deleted.
(See Figure 6.) If the selection range is an inaertion point. the
scrap la emptied.

lthia i--a good llluatretion.l
Text

Before TECut

IThis la e good lllustretlcn

Text

After TECut

Figure 6. Cutting

PROCEDURE TECopy (hTE: TEHandle);

I
SC,ap

TECopy copies the selection range from the text specified by hTE into
the scrap. Anything previously in the acrap is deleted. The selection
range is not deleted. If the selection range ia an inaertion point,
the scrap is emptied.

PROCEDURE TEPaste (hTE: TEHandle);

TEPaate replaces the aelection range in the text specified by hTE with
the scrap, and leaves an inaertion point just past the inserted text.
(See Figure 7.) If the acrap ia empty, the •election range ia deleted.
If the aelection range ia an insertion point, TEPaate just inserts the
acrap there. ;

9/28/83 Backer CONFIDENTI.AL /TEXT.EDIT/EDIT.R.

16 TextEdit Programmer's Guide

I ma,etore you leap I I I
Text Sc,ep

Before TECut

1~,ore you leap l•ook,
Text Scrap

After TECut

I before you ~eap ·11ook, I
Text Scrap

Before TEPaste

I before you loot, leap

Text Scrap
After TEPaste

Figure 7. Cutting and Pasting

PROCEDURE TEDelete (hTE: TEHandle);

TEDelete removes the selection range from the text specified by hTE.
It's the same as TECut (above) except that it doesn't transfer the
selection range to the scrap. lf the selection range is an insertion
point, nothing happens.

PROCEDURE TEinsert (text: Ptr; length: Longint; hTE: TEHandle);

TElnsert takes the apecJfied text and inserts it, just before the
selection range, into the text indicated by hTE. The text parameter
points to the inserted text, and the length parameter indicates the
number of characters to be inserted.

(eye)
Any current selection range is not deleted. This is
different from TEKey and TEPaste, and allows your
application to support the Undo command (described in the
Macintosh User Interface Guidelines) if you want.

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.a

TEXTEDIT ROUTINES 17

Selection Range and Justification

PROCEDURE TESetSelect (selStart,selEnd: Longlnti hTE: TEHaodle);

TESetSelect unhighlights the current selection range, and changes it to
aelStart and selEnd in the text specified by hTE. The new selection
range is highlighted. If selStart and aelEnd are equal, the selection
range is an insertion point, and a caret la displayed.

SelEnd and selStart can range from f to 6S53S. If selEnd is anywhere
beyond the last character of the text, the position just past the last
character is used.

PROCEDURE TESetJust (j: INTEGER, hTE: TEHandle);

TESetJust changes the justification of the text specified by hTE to j.
(See "Justification" under "The Editing Environment: Edit Record".)
Call TEUpdate (described below under "Text Display") after TESetJust to
cause the text to be redrawn with the new justification.

Mice and Carets

PROCEDURE TEClick (pt: Point; extend: BOOLEAN; hTE: TEllaodle);

TEClick controls the placement and highlighting of the selection range
as determined by mouse down events. Call TEClick whenever a 110use down
event occurs in the view rectangle of the edit record specified by hTE.
Pt is the mouse location (in local coordinates) at the time the button
vas pressed, obtainable from the event record. Pass TRUE for the
extend parameter if the Event Manager indicates that the Shift key was
held down at the time of the click (for an extended selection range).

(eye)
Use the QuickDraw procedure GlobalToLocal to convert the
global coordinates of the mouse location given in the
event record to the local coordinate system for pt.

If the mouse moves, meaning that a drag is occurring, the selection
range expands or shrinks accordingly. The current selection range is
unhighlighted. In the case of a double click, meaning that word
selection has been chosen, the word under the cursor becomes the
selection range.

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.R

18 TextEdit Programmer's Guide

PROCEDURE TEidle (hTE: TEHandle) i

Call TEidle repeatedly to make a blinking caret appear at the insertion
point, if ·any, in the text specified by hTE. TextEdit observes a
minimum blink interval: no matter how often you call TEidle, the time
between blinks will never be less than the minimum interval. You
should call this procedure as often as possible to provide a constant
frequency of blinking.

(hand)
The initial minimum blink interval setting is 4 ticks
(sixtieths of a second). The user can adjust this
setting to individual preference with the control panel
desk accessory.

PROCEDURE TEActivate (hTE: TEHandle);

TEActivate highlights the selection range in the view rectangle of the
edit record specified by hTE. If the selection range is an insertion
point, it displays a caret there. This procedure should be called
every time the Toolbox Event Manager function GetNextEvent reports that
the text editing window has become active.

PROCEDURE TEDeactivate (hTE: TEHandle);

TEDeactivate unhighlights the selection range in the view rectangle of
the edit record specified by hTE. If the selection range is an
insertion point, it removes the caret. This procedure should be called
every time the Toolbox Event Manager function GetNextEvent reports that
the text editing window has become inactive.

Text Display

PROCEDURE TEUpdate (rUpdate: Rect; hTE: TEHandle);

TEUpdate draws the text specified by hTE within the rectangle specified
by rUpdate. The location of the rUpdate rectangle must be given in the
coordinates of the grafPort. Call TEUpdate every time the Toolbox
Event Manager function GetNextEvent reports an update event--after you
call the Window Manager procedure BeginUpdate, and before you call
EndUpdate. · ·

Normally you'll use the following when an update event occurs:

BeginUpdate(myWindow);
TEUpdate(myWindow·.visRgn··.rgnBBox, hTE);
EndUpdate(myWindow);

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.R

TEXTEDIT ROUTINES 19

Instead of passing rUpdate as shown, you can pass the. vtevlect, but
doing so aay result in unnecessary drawing.

PROCEDURE TextBox (text: Ptr; length: Longlnt; box: Rect; j: INTEGER);

TextBox draws the specified text in the rectangle indicated by the box
parameter, with justification j. (See "Justification" under "The
Editing Environment: Edit Record".) The text parameter points to the
text, and the length parameter indicates the number of characters to
draw. TextBox does not create an edit record, nor can the text that it
draws be edited iamediately1 it's used aolely for drawing text. For
example:

atr :• 'Planning Procedures';
SetRect(r, 1,1, lff, 2ff, 2•t>:
TextBox(@atr(l), LENGTB(str), r, tePillCenter);
PrameRect(r);

Advanced Routines

These routines are useful only if you're directly accessing the fields
of an edit record.

PROCEDUU TEScroll (dh,dv: INTEGER; hTE: TEHandle);

TEScroll aoves ("scrolls") the text within the vtev rectangle of the
specified edit record by the number of pixels specified in the dh and
dv parameters. The edit record is specified by the bTE parameter.
Positive db and dv values aove the text right and down, respectively,
and negative values aove the text left and up. For example,

TEScrollCf, -lnHeigbt, bTE)

scrolls the text up one line (where lnHeight ia the value of the
lineBeigbt field in the edit record).

PROCEDURE TECalText (hTE: TEHandle);

TECalText recalculates the beginnings of all lines of text in the edit
record specified by hTE, updating eleaenta of the lineStarts array.
Call TECalText if you've changed the destination rectangle, the bText
field, or anything else that effects the number of characters per line.

(hand)
There really are tvo vays to specify text to be edited.
The easiest, direct mthod la to use TESetText, which
takes an existing edit record, creates a aecond copy of
its text, and aakes the edit record point to the copy.
An advanced, indirect method is to change the hText field

9/28/83 Racker CONFIDENTIAL /TEXT.EDIT/EDI~lt

20 TextF.clit Programmer's Gulde

of the edit record directly, and then call TE~lText to
recalculate the lineStarta array to match the new text.
If you have a lengthy text to edit, use the latter •thod
to ·save apace because it doesn't create a copy.

NOTES FOR ASSEMBLY-LANGUAGE PROGRAMMERS

Information about how to use the User Interface Toolbox from assembly
language is given elsewhere*** (currently, in the QuickDraw manual)
***· This section contains.special notes of interest to programmers
who will be using TextEdit from assembly language.

If you use .INCLUDE to include a file named ToolEqu.Text when you
assemble your program, the TextEdit constants and offsets into the
fields of structured types in TextF.clit will be available in ayabolic
form.

There are hooks within TextEdit that allow you insert additional
procedures for more sophisticated editing. They require some care
because they pass arguments in registers and it's the application's
responsibility to save and restore the registers.

Two of the hooks are TEHiHook and TECarHook. If you install a nonzero
address in either of these hooks, that address (instead of InverRect)
will be jumped to when a selection range la to be highlighted. Tbe
routine called can destroy the contents of the registers Al, Al, DG,
Dl, and D2. A3 will be pointing to a locked edit record, and
teSelRect(A3) contains the rectangle enclosing the text being
highlighted. For example, the following assembly-language fragment
draws underlined selection ranges:

UnderHigh
MOVE.L (SP)+,MI

MOVE top(d),-(SP)
HOVE bottom(Af),top(Ae)
SUBQ 11,top(SP)
MOVE.L Ml,-(SP)

lnverRect
MOVE (SP)+,teSelRect+top(A3)
RTS

;point to rectangle to be
; highlighted
;save existing top coordinate
;make the top coordinate equal
; the bottom coordinate - 1
;invert the resulting
; rectangle
;restore original top coordinate

Note that the rectaqle must be preserved.

TECarHook acts analogously upon insertion points instead of selection
· ranges. It must be called with teSelRect containing the insertion

point rectangle.

*** The explanation of the other hooks is forthcoming.***

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.a

SUMHAllY OF TEXTEDIT

CONST teJuatteft • 0;
teJustCenter • 1;
teJuatliiht • -1;

TYPE CharsHandle • ·charaPtr;
CharaPtr • ·Chars;

SUMMARY OF TEXTEDIT 21

Chara • PACKED AllRAY [f •• J2~f~l OF CHAR;

TEPtr • ·TE'Rec;
TEHandle • ·TEPtr;
TERec • UCORD

dest'Rect:
viewRect:
line Height:
firstBL:
selStart:
aelEnd:
just:
length:
hText:
txFont:
txFace:
txMode:
txSize:
inPort:
crOnly:
nLines:
lineStarta:

lect; {destination rectangle}
'Rect; {view rectangle}
INTEGER; {line height}
INTEGER; {position of first base line}
INTEGER; {start of selection range}
INTEGER; {end of selection range}
INTEGER; {justification}
INTEGER; {length of text}
Randle; {text to be edited}
INTEGER; {text font}
INTEGER; {character style}
INTEGER; {pen mode}
INTEGER; {type size}
GrafPtr; {grafPort}
INTEGER {new line at Return only, if <0}
INTEGER; {number of lines}
AllRAY co •• 32,,f) OF INTEGER;

(more
END;

{positions of lines starts}
fields for internal use only}

Initialization

PROCEDURE TEinit;
FUNCTION TENew (destRect,viewRect: Rect) : TEHandle;

Manipulatty Edit Records

PllOCEDURE TESetTe~t (text: Ptr; length: Longlnt; hTE: TEHandle);
FUNCTION TEGetText (hTE: TEHandle) : CharsHandle;
PROCEDURE TEDiapoae (hTE: TEHandle);

9/28/83 Backer CONFIDENTIAL /TEXT.EDIT/EDIT.S

22 TextEdit Programmer's Guide

Editing

(key: CHAR; hTE: TEHandle);
(hTE: TEHandle);
(hTE: TEHandle);
(hTE: TEHandle);
(hTE: TEHandle);

PR.OCEDUllE ·nttey
PIOCEDUllE TECut
PROCEDURE TECopy
PROCEDURE TEPaste
PROCEDURE TEDelete
PIOCEDUllE TEinsert (text: Ptr; length: Longlnt; hTE: TEHandle);

Selection Range and Justification

PROCEDURE TESetSelect (selStart,eelEnd: Longlnt; hTE: TEHandle);
PROCEDURE TESetJuet (j: INTEGER; hTE: TEHandle);

Mice and Carets

PROCEDURE TEClick
PROCEDURE TEidle
PROCEDURE TEActivate
PROCEDURE TEDeactivate

(pt: Point; extend:
(hTE: TEHandle);
(hTE: TEHandle);
(hTE: TEHandle);

BOOLEAN; hTE: TEHandle);

Text Display

PROCEDURE TEUpdate (rUpdate: lect; hTE: TEHandle);
PROCEDURE TextBox (text: Ptr; length: Longlnt; box: lect; j: INTEGER);

Advanced Routines

PROCEDURE TEScroll (dh,dv: INTEGER; hTE: TEHandle);
PROCEDURE TECalText (hTE: TEHandle);

9/28/83 Backer CONFIDENTIAL /TEXT.EDIT/IDIT.S

GLOSSARY 23

GLOSSARY

caret: A generic term meaning a symbol that indicates where something
should be inserted in text. The specific symbol used is a vertical
bar.

character position: An index into an array containing text, starting
at f for the first character.

destination rectangle: In TextEdit, the rectangle in which the text is
drawn.

edit record: A complete editing environment, including the text to be
edited, the grafPort and rectangle in which to display the text, the
arrangement of the text within the rectangle, and other editing and
display information.

insertion point: An empty selection range; the character position
where text will be inserted (marked with a blinking caret by
convention).

justification: The horizontal placement of lines of text relative to
the edges of the rectangle in which the text is drawn.

line height: The number of pixels from the base line of one line of
text to the base line of the next line of text.

nonbreaking apace: The character with ASCII code $CA; drawn as a
blank, but interpreted as a nonblank character for the purposes of word
wrap.

scrap: A string consisting of the characters most recently cut or
copied from text by certain TextEdit routines.

selection range: The series of characters (inversely highlighted), or
the character position (marked with a blinking caret), at which the
next editing operation will occur.

view rectangle: In TextF.dit, the rectangle within which the text is
visible.

word: In TextF.dit, any aeries of printing characters, excluding spaces
(ASCII code $2f) but including nonbreaking spaces (ASCII code $CA).

word wrap: Keeping any series of printing characters intact between
lines when text is drawn.

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.G

MACINTOSH USER EDUCATION

The Toolbox Utilities: A·Programmer's Guide

See Also: Macintosh Operating System Reference Manual
OuickDraw: A Programmer's Guide
The Resource Manager: A Programmer's Guide
The Memory Manager: A Programer's Guide

Modification History: First Draft
Second Draft (ROM 7)
Erratum Added

/TOOLUTIL/UTIL

c. Rose
c. Rose
c. Rose

5/16/83
1/4/84
2/8/84

ABSTRACT

This manual describes the Toolbox Utilities, a set of routines and data
types in the User Interface Toolbox that perform generally useful
operations such as fixed-point arithmetic, string manipulation, and
logical operations on bits.

Erratum:

When the Hunger function does a replacement operation, it returns the
offset of tbe first byte past where the replacement occurred.

2 Toolbox Utilities Programmer's Guide

TABLE OF CONTENTS

3 About This Manual
3 Fixed-Point Numbers
4 Toolbox Utility Routines
4 Fixed-Point Arithmetic
4 String Manipulation
5 Byte Manipulation
7 Bit Manipulation
8 Logical Operations
8 Other Operations on Long Integers
9 Graphics Utilities
11 Su11111ary of the Toolbox Utilities
13 Glossary

Copyright (c) 1984 Apple Computer, Inc. All rights reserved. Distribution
of this draft in limited quantities does not constitute publication.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes the Toolbox Utilities, a set of routines and data
types in the User Interface Toolbox that perform generally useful
operations such as fixed-point arithmetic, string manipulation, and
logical operations on bits. *** Eventually it will become part of a
comprehensive manual describing the entire Toolbox and Operating
System. ***
You should already be familiar with Lisa Pascal. Depending on which
Toolbox Utilities you're interested in using, you may also need to know
about the Macintosh Operating System's Memory Manager, the Resource
Manager, and the basic concepts and structures behind OuickDraw.

This manual begins with a discussion of fixed-point numbers. This is
followed by the detailed descriptions of all Toolbox Utility procedures
and functions, their parameters, calling protocol, effects, side
effects, and so on. Finally, there's a summary of the Toolbox
Utilities, for quick reference, followed by a glossary of terms used in
this manual. *** The glossary has only two entries, but eventually it
will be merged with the glossaries from the other Toolbox and Operating
System documentation. ***

..
FIXED-POINT NUMBERS

The Toolbox Utilities include routines for operating on fixed-point
numbers. A fixed-point number is a 32-bit quantity containing an
integer part in the high-order word and a fractional part in the
low-order word (see Figure 1). Since these numbers occupy the same
number of bits as long integers, they could be given the data type
Longint; however, to reflect the different interpretation the bits have
as fixed-point numbers, the following data type is defined in the
Toolbox Utilities:

TYPE Fixed• Longlnt;

,
2

,
4

1/4/84 lloae

,
8

...

integer (hi"' order)

traction (low order)

Figure 1. Fixed-Point Numbers

CONFIDENTIAL

0

2 1

/TOOLUTIL/UTIL.2

4 Toolbox Utilities Programmer's Guide

A& described in the following section, there are Toolbox Utility
routines for converting an integer numerator and denominator into a
fixed-point number, multiplying two fixed-point numbers, and rounding a
fixed-point number to the nearest integer. You can also use the
general-purpose function HiWord (or LoWord) to extract the integer (or
fractional) part of a fixed-point number.

TOOLBOX UTILITY ROUTINES

This section describes all the Toolbox Utility procedures and
functions. They're presented in their Pascal form; for information on
using them from assembly language, see "Using the Toolbox from Assembly
Language"*** doesn't exist, but see "Using OuickDraw from Assembly
Language" in the OuickDraw manual***•

Fixed-Point Arithmetic

See also HiWord and LoWord under "Other Operations on Long Integers"
below.

FUNCTION FixRatio (numerator,denominator: INTEGER) : Fixed; ,

FixRatio returns the fixed-point number having the given numerator and
denominator (either of which may be any signed integer).

FUNCTION FixMul (a,b: Fixed) : Fixed;

FixMul multiplies the given fixed-point numbers and returns the result.

FUNCTION FixRound (x: Fixed) : INTEGER;

FixRound rounds the given fixed-point number to the nearest integer and
returns the result.

String Manipulation

These routines use the StringHandle data type, which is defined in the
Toolbox Utilities as follows:

TYPE StringPtr • ·str255;
StringHandle • ·stringPtr;

1/4/84 Rose CONFIDENTIAL /TOOLUTIL/UTlL.R

I

TOOLBOX UTILITY ROUTlNES 5

FU~CTIO~ NewString (s: Str255) StringHandle;

~ewString allocate& the string specified bys as a relocatable object
on the heap and returns a handle to it•

PROCEDURE SetString (h: StringHandle; s: Str255);

SetString sets the string whose handle is passed in h to the string
&pecified by So

FUNCTION GetString (stringlD: INTEGER) : StringHandle;

GetString returns a stringHandle to the string having the given
resource ID, reading it from the resource file if necessary. It calls
the Resource Manager function GetResource('STR ',stringlD).

Bvte Manipulation

FUNCTION Hunger (h: Handle; offset: Longlnt; ptrl: Ptr; lenl: Longlnt;
ptr2: Ptr; len2: Longlnt) : Longlnt;

*** There's currently no Pascal interface to this routine; declare it
as EXTERNAL in your program. ***
Hunger manipulate& bytes in the string of bytes (the "destination
string") to which his a handle. The offset parameter specifies a byte
offset into the destination string. The exact nature of the operation
done by Hunger depends on the values of the remaining parameters, two
pointer/length pairs. In general, (ptrl,lenl) defines a substring to
be replaced by the second substring (ptr2,len2). If these four
parameters are all positive and nonzero, Munger looks for (ptrl,lenl)
in the destination string, starting from the given off&et and ending at
the end of the string; the first occurrence it finds is replaced by
(ptr2,len2), and the offset at which the replacement occurred is
returned. Figure 2 illustrates this; the bytes represent ASCII
characters as shown.

1/4/84 Rose CONFIDENTIAL /TOOLUTIL/UTIL.R

6 Toolbox Utilities Programmer's Guide

Given: offse1=4

___ h ___ H master pointer Htlh!elriel 'Is! !tlhlel lelPIPllle!

ptr2

6-.. ~ •
len1 •3

the destination string

the SLt>string 1o be replaced (ptr1,len1)

the replacement u,tring (ptr2, len2)

M..nger{h,offset,ptr1,len1,ptr2,len2) yields!
1

ned
1 8 re U" ve ue=

___ h ___ H mester pointer Htlhlelrlel 'Isl telnl lelPIPI !lel
Figure 2. Munger Function

Different operations occur if any of the pointers or lengths is 9:

- lf ptrl is e, the substring of length lenl starting at the given
offset is replaced by (ptr2,len2). lf lenl is negative, the
substring from the given offset to the end of the destination
string is replaced by (ptr2,len2).

- lf lenl is e, the substring (ptr2,len2) is simply inserted at the
given offset.

- lf ptr2 is f, the destination string isn't changed; Munger just
returns the offset at which it found (ptrl,lenl).

- If len2 is I, the replacement substring is empty, so (ptrl,lenl)
is deleted rather than replaced.

Munger returns the offset at which the operation occurred--whether
replacement, insertion, deletion, or just location of a substring. It
returns a negative value if it can't find (ptrl,lenl) in the
destination string.

(eye)
Be careful not to specify an offset that's greater than
the length of the destination string. or unpredictable
things may happen.

1/4/84 Rose CONFIDENTIAL /TOOLUTIL/UTIL.R

,

TOOLBOX UTILITY ROUTINES 7

Bit Manipulation

These routines manipulate a bit in data pointed to by a given pointer.
A bit number indicates which bit; it starts at 0 for the high-order bit
of the first byte pointed to and may be any positive long integer
specifying an offset from that bit (see Figure 3).

BitTst (thisPtr,7) tests this bit

thisPtr
points
here --1111

BitSet (thisPtr, 25) sets this bit

Figure 3. Bit Numbering for Utility lloutines

(hand)
Note that this bit numbering is the opposite of the
MC68000 bit numbering.

FUNCTION BitTst (bytePtr: Ptr; bitNum: Longlnt) : BOOLEAN;

BitTst tests whether a given bit is set and returns TRUE if so or FALSE
if not. The bit is specified by bitNum, an offset from the high-order
bit of the byte pointed to by bytePtr.

PROCEDURE BitSet (bytePtr: Ptr; bitNum: Longlnt);

BitSet sets the bit specified by bitNum, an offset from the high-order
bit of the byte pointed to by bytePtr.

PROCEDURE BitClr (bytePtr: Ptr; bitNum: Longlnt);

BitSet clears the bit specified by bitNum, an offset from the high
order bit of the byte pointed to by bytePtr.

1 /4/84 Rose CONFIDENTIAL /TOOLUTIL/UTIL.R

8 Toolbox Utilities Programmer's Guide

Logical Operations

FUNCTION BitAnd (longl.long2: Longlnt) : Longlnt;

BitAnd returns the result of the AND logical operation on the bits
comprising the given long integers (longl AND long2).

FUNCTION BitOr (longl,long2: Longlnt) : Longint;

BitOr returns the result of the OR logical operation on the bits
comprising given long integers (longl OR long2).

FUNCTION BitXor (longl,long2: Longint) : Longint;

BitXor returns the result of the XOR logical operation on the bits
comprising the given long integers (longl XOR long2).

FUNCTION BitNot (long: Longint) : Longlnt;

BitXor returns the result of the NOT logical operation on the bits
comprising the given long integer.

FUNCTION BitShift (long: Longlnt; count: INTEGER) : Longint;

BitShift logically shifts the bits of the given long
specifies the direction and extent of the shift, and
31. If count is positive, BitShift shifts that many
left; if count is negative, it shifts to the right.
into empty positions at either end.

Other Operations on Long Integers

FUNCTION HiWord (x: Longlnt) : INTEGER;

integer. Count
is taken modulo
positions to the
Zeros are shifted

HiWord returns the high-order word of the given long integer. One use
of this function is to extract the integer part of a fixed-point
number.

FUNCTION LoWord (x: Longlnt) : INTEGER;

LoWord returns the low-order word of the given long integer. One use
of this function is to extract the fractional part of a fixed-point
number.

1/4/84 Rose CONFIDENTIAL /TOOLUTIL/UTIL.R

'

TOOLBOX UTILITY ROUTINES 9

PROCEDURE LongMul (a,b: Longlnt; VAR dest: Int64Bit);

LongMul multiplies the given long integers and returns the result in
dest, which has the following data type:

TYPE lnt64Bit • RECORD
hiLong:
loLong:

END;

Graphics Utilities

Longlnt;
Longlnt

FUNCTION Getlcon (iconlD: INTEGER) : Handle;

Getlcon returns a handle to the icon having the given resource ID,
reading it from the resource file if necessary. It calls the Resource
Manager function GetResource('lCON',iconlD).

PROCEDURE Plotlcon (theRect: Rect; thelcon: Handle);

*** There's currently no Pascal interface to this routine; declare it
as EXTERNAL in your program. ***

Plotlcon draws the icon whose handle is thelcon in the rectangle
theRect, which is in the local coordinates of the current grafPort. It
calls the OuickDraw procedure CopyBits and uses the srcCopy transfer
mode. (You must have initialized OuickDraw before calling Plotlcon.)

FU~CTlON GetPattern (patlD: INTEGER) : PatHandle;

Getlcon returns a handle to the pattern having the given resource ID,
reading it from the resource file if necessary. lt calls the Resource
Manager function GetResource('PAT ',patlD). The PatHandle data type is
*** not yet, but soon will be*** defined in the Toolbox Utilities as
follows:

TYPE PatPtr • •Pattern;
PatHandle • ·PatPtr;

FUNCTION GetCursor (cursorlD: INTEGER) : CursHandle;

Getlcon returns a handle to the cursor having the given resource ID,
reading it from the resource file if necessary. It calls the Resource
Manager function GetResource('CURS',cursorlD). The CursHandle data
type is*** not yet, but soon will be*** defined in the Toolbox
Utilities as follows:

1/4/84 Rose CONFIDENTIAL /TOOLUTIL/UTIL.R

'

10 Toolbox Utilities Programmer's Guide

TYPE CursPtr • ·cursor;
CursHandle • ·cursPtr;

PROCEDURE ShieldCursor (left,top,right,bottom: INTEGER);

Given the global coordinates of a rectangle, ShieldCursor removes the
cursor from the screen if the cursor and the rectangle intersect.

FUNCTION GetPicture (pictureID: INTEGER) : PicHandle;

GetPicture returns a handle to the picture having the given resource
ID, reading it from the resource file if necessary. It calls the
Resource Manager function GetResource('PlCT',picturelD). The PicHandle
data type is defined in OuickDraw.

1/4/84 Rose CONFIDENTIAL /TOOLUTIL/UTIL.R

,

SUMMARY OF THE TOOLBOX UTILITIES 11

SUMMARY Of THE TOOLBOX UTlLITlES

TYPt Fixed• Longlnt;

lnt64Bit m RECORD
hiLong:
loLong:

END;

Longint;
Longlnt

StringPtr • ·str255;
StringHandle • ·stringPtr;

CursPtr • ·cursor;
CursHandle • ·cursPtr;

PatPtr • ·Pattern;
PatHandle • ·PatPtr;

Fixed-Point Arithmetic

FUNCTION Fixllatio (numerator,denominator: INTEGER) : Fixed;
FUNCTION FixMul (a,b: Fixed) : Fixed;
FUNCTION FixRound (x: Fixed) : INTEGER;

String Manipulation

FUNCTION NewString (s: Str255) : StringHandle;
PROCEDURE SetString (h: StringHandle; s: Str255);
FUNCTION GetString (stringID: INTEGER) : StringHandle;

Byte Manipulation

FUNCTION Munger (h: Handle; offset: Longlnt; ptrl: Ptr; lenl: Longlnt;
ptr2: Ptr; len2: Longlnt) : Longlnt;

Bit Manipulation

FUNCTION BitTst (bytePtr: Ptr; bitNum: Longint) : BOOLEAN;
PROCEDURE BitSet (bytePtr: Ptr; bitNum: Longint);
PROCEDURE BitClr (bytePtr: Ptr; bitNum: Longint);

1/4/84 Rose CONFIDENTIAL /TOOLUTIL/UTIL.S

12 Toolbox Utilities Programmer's Guide

Logical Operations

FUNCTION BitAnd
FUNCTION BitOr
FUNCTION BitXor
FUNCTION BitNot
FUNCTION BitShift

(longl,long2: Longint) : Longint;
(longl,long2: Longint) : Longint;
(longl,long2: Longint) : Longlnt;
(long: Longint) : Longlnt;
(long: Longint; count: INTEGER) :

Other Operations on Long Integers

FUNCTION HiWord (x: Longint) : INTEGER;
FUNCTION LoWord (x: Longint) : INTEGER;

Longint;

PROCEDURE LongMul (a,b: Longlnt; VAR dest: lnt64Bit);

Graphics Utilities

FUNCTION Geticon
PROCEDURE Plotlcon
FUNCTION GetPattern
FUNCTION GetCursor
PROCEDURE ShieldCursor
FUNCTION GetPicture

1/4/84 Rose

(iconlD: INTEGER) : Handle;
(theRect: Rect; theicon: Handle);
(patlD: INTEGER) : PatHandle;
(cursorID: INTEGER) : CursHandle;
(left,top,right,bottom: INTEGER);
(pictureID: INTEGER) : PicHandle;

CONFIDENTIAL /TOOLUTlL/UTIL.S

,

GLOSSARY 13

GLOSSARY

fixed-point number: A 32-bit quantity containing an integer part in
the high-order word and a fractional part in the low-order word.

icon: A 32-by-32 bit image that represents an object, concept, or
message.

1/4/84 Rose CONFIDENTIAL /TOOLUTlL/UTlL.G

19-1

File: ToolBox Names Page 1
Report: TrapList Feb 8, 1984
Selection: Value/Trap: equals AOOO

through Value/Trap: equals AFFF
Value/ Name: Fields:
--AOOO Open A030 OSEventAvaU AC61 Random
AOOl Close A031 GetOSEvent AC62 Fore Color
A002 Read A032 FlushEvents AC63 BackColor
A003 Write A033 Vlnstall AC64 ColorlUt
A004 Control A034 VRemove AC65 GetPixel
ADOS Status A035 OffLine AC66 Stuff Hex
A006 Kill IO A036 MoreMasters AC67 LongHul
A007 GetVollnfo A037 lleadParam AC68 FixMul
AOOB FileCreate A038 WriteParam AC69 FixRatio
A009 FUeDelete A039 lleadDateTime AC6A HiWord
AOOA OpenRf AOJA SetDateTime AC6B LoWord
AOOB Rename A03B Delay AC6C FixRound
AOOC GetFilelnfo AOJC CmpString AC6D lnitPort
AOOD Set File Info A03D Drvrlnstall AC6E lnitGraf
AOOE Unmount Vol AOJE DrvrRemove AC6F OpenPort
AOOF HountVol A03F InitUtil AC70 LocalToGlobal
AOlO FileAllocate A040 llesrvMem AC71 GlobalToLocal
AOll GetEOF A041 SetFULock AC72 Graf Device
A012 SetEOF A042 RatFULock AC73 SetPort
A013 FlushVol A043 SetFilType AC74 GetPort
A014 GetVol A044 SetFPos AC75 SetPortBits
A015 SetVol A045 FluahFil AC76 Port Size
A016 FlnitQueue A046 Ge tTrapAdd ress AC77 MovePortTo
AOl 7 Eject A047 SetTrapAddress AC78 SetOrigin
A018 GetFPos A048 PtrZone AC79 Set Clip
A019 tnitZone A049 HPurge AC7A GetClip
AOlA GetZone A04A HNoPurge AC7B ClipRect
AOlB SetZone A04B SetGrowZone AC7C BackPat
AOlC FreeHem A04C CompactHem AC7D Close Port
AOlD HaxMem A04D PurgeMem AC7E AddPt
AOlE NewPtr A04E AddDrive AC7F SubPt
AOlF DisposePtr A04F lnstallRDrivers AC80 SetPt
A020 SetPtrSize ACSO lnitCursor AC81 Equal Pt
A021 GetPtrSize AC51 SetCursor AC82 StdText
A022 NWHandle AC52 HideCursor AC83 l>rawChar
A023 DsposeHandle AC53 ShowCursor AC84 Drawstring
A024 SetHandleSize AC54 UprString AC85 DrawText
A025 GetHandleSize AC55 ShieldCursor AC86 Text Width
A026 Handle Zone AC56 ObscureCuraor AC87 TextFont
A027 ReAllocHandle AC57 SetApplBase AC88 TextFace
A028 ltecoverHandle AC58 litAnd AC89 TextMode
A029 HLock AC59 BitXor AC8A TextSize
A02A HUnlock ACSA BitNot AC8B Get Font lnfo
A02B EmptyHandle ACSB BitOr AC8C StringWidth
A02C lnitApplZone ACSC Bi. tShift AC8D CharWidth
A02D SetApplLimit ACSD litTst ACSE SpaceExtra
A02E BlockHove ACSE BitSet AC90 StdLine
A02F PostEvent ACSF BitClr AC91 Linero

19-2

File: ToolBox Names Page 2
Report: TrapList Feb 8 • 1984
Selection: Value/Trap: equals AOOO

through Value/Trap: equals AFFF
Value/ Name: Fields:
--- --------- ------------------------------------
AC92 Line ACC5 StdPoly ACF6 DrawPf c tu re
AC93 KoveTo ACC6 Frame Poly ACF8 ScalePt
AC94 Moov ACC7 PaintPoly ACF9 MapPt
AC96 HidePen ACCB ErasePoly ACFA MapRect
AC97 ShowPen ACC9 Invert Poly ACFB MapRgn
AC98 GetPenState ACCA FillPoly ACFC MapPoly
AC99 SetPenState ACCB OpenPoly ACFE InitFonts
AC9A GetPen ACCC CloaePoly ACFF GetFontName
AC9B PenSize ACCD ltillPoly ADOO GetFNum
AC9C PenMode ACCE Offset Poly ADOl FMSwapFont
AC9D PenPat ACCF Paclc.Bits A002 Real Font
AC9E Pen Normal ACOO UnPackBita A003 SetFontLock
ACAO Stdllect ACDl StdRgn A004 DrawGrowlcon
ACAl FrameRect ACD2 FrameRgn ADOS DragGrayRgn
AC.A2 PaintRect ACD3 PaintRgn A006 NewString
ACAJ Erasellect ACD4 EraseRgn AD07 SetString
ACA4 InvertRect ACDS InvertRgn ADOS ShowHide
ACAS Fi.llRect ACD6 FillRgn AD09 CalcVis
ACA6 EqualRect ACDB NewRgn AOOA Cale Vis Behind
ACA7 SetRect ACD9 DisposeRgn ADOB ClipAbove
ACAS OffsetRect ACDA OpenRgn ADOC PaintOne
ACA9 lnsetRect ACDB CloseRgn ADOD PaintBehind
ACAA SectR.ect ACDC CopyR.gn ADOE SaveOld
ACAB UnionRect ACDD SetEmptyRgn ADOF DrawNew
ACAC Pt2Rect ACDE SetRectRgn ADlO GetWMgrPort
ACAD PtlnRect ACDF RectR.gn ADll CheckUpDate
ACAE EmptyRect ACEO OffsetRgn AD12 InitWindows
ACAF StdRRect ACEl lnsetRgn AD13 NewWindow
ACBO FrameRoundRect ACE2 EmptyRgn AD14 DisposeWindow
ACBl PaintR.oundRect ACE3 EqualRgn AD15 ShowWindow
ACB2 EraseRoundRect ACE4 SectRgn AD16 Hide Window
ACB3 InvertRoundRect ACES UnionRgn AD17 GetWRefCon
ACB4 Fi 11 Round Rec t ACE6 DiffRgn AD18 SetWRefCon
ACB6 StdOval AC£7 XOrRgn AD19 GetWTitle
ACB7 FrameOval ACES PtinR.gn ADlA SetWTitle
ACBB PaintOval ACE9 lectlnRg ADlB Move Window
ACB9 EraaeOval ACEA SetStdProca ADlC HUiteWindow
ACBA Invert Oval ACEB StdBita ADlD SizeWindow
ACBB FillOval ACEC Copylits ADlE TrackGoAway
ACBC SlopeFrollAngle ACED StdTxHeaaure ADlF SelectWindow
ACBD StdArc ACEE StdGetPic AD20 BringToFront
ACBE FrameArc ACEF Scrolllect AD21 Send Behind
ACBF PaintArc ACFO StdPutPic AD22 BeginUpdate
ACCO EraseArc ACFl StdComment AD23 End Update
ACCl lnvertArc ACF2 Pie Comment AD24 FrontWindow
ACC2 Ft.llArc ACF3 OpenPicture AD25 DragWindow
ACC3 PtToAngle ACF4 CloaePicture AD26 DragTheRgn
ACC4 AngleFromSlope ACFS ltillPicture AD27 lnvalRgn

19-3

File: ToolBox Names Page 3
Report: TrapList Feb 8, 1984
Selection: Value/Trap: equals ADOO

through Value/Trap: equals AFFF
Value/ Name: Fields: --- -------- ------------------------- ---------AD28 InvalRect ADSA GetCRefCon AD8D GetDltem
AD29 ValidRgn ADSB SetCRefCon ADSE SetDltem
AD2A ValidRect ADSC SizeControl AD8F SetlText
AD2B Grow'Window ADSD HiliteControl AD90 GetIText
AD2C FindWindow ADSE GetCTitle AD91 Modal Dialog
AD2D Close Window ADSF SetCTitle AD92 DetachResouce
AD2E SetWindowPic AD60 GetCtlValue AD93 SetResPurge
AD2F GetWindowPic AD61 GetCtlMin AD94 CurResFile
AD30 InitMenus AD62 GetCtlHax AD95 lnitResources
AD31 NewMenu AD63 SetCtlValue AD96 llsrcZonelnit
AD32 Dispose Menu AD64 SetCtlMin AD97 OpenResFUe
AD33 Append Menu AD65 SetCtlHax AD98 UseResFtle
AD34 ClearMenuBar AD66 TestControl AD99 UpdateResFile
AD35 lnsertMenu AD67 DragControl AD9A CloseResFUe
AD36 Delete Menu AD68 TrackControl AD9B SetResLoad
AD37 DrawMenuBar AD69 DrawControls AD9C CountReaources
AD38 HUiteMenu AD6A GetCtlAction AD9D Get Ind Resource
AD39 Enable Item AD6B SetCtlAction AD9E Count Types
AD3A Disable Item AD6C Find Control AD9F Get Ind Type
AD3B GetMenuBar AD6E DeQueue ADAO Get Resource
AD3C SetHenuBar AD6F EnQueue ADAl GetNamedResourc
AD3D MenuSelect AD70 GetNextEvent ADA2 Load Resource
AD3E Henultey AD71 EventAvail ADA3 Release Resource
AD3F Getltemlcon AD72 GetMouse ADA4 RomeResFUe
AD40 Set Item le on AD73 StillDown ADAS SizeRsrc
AD41 GetltemStyle AD74 Button ADA6 GetResAttrs
AD42 SetltemStyle AD75 TickCount ADA7 SetResAttrs
AD43 GetltemHark AD76 GetKeys ADAS GetReslnfo
AD44 SetltemMark AD77 Wai tMouseUp ADA9 SetReslnfo
AD45 Check Item AD79 Could Dialog ADAA ChangedResData
AD46 Getltem AD7A Free Dialog ADAB AddResource
AD47 Setltem AD7B lnitDialogs ADAC AddReference
AD48 CalcMenuSize AD7C GetNewDialog ADAD bveR.esource
AD49 GetMHandle AD7D NewDialog ADAE lmveReference
AD4A SetHenuFlash AD7E SetlText ADAF ResError
AD4B Plotlcon AD7F lsDialogEvent ADBO WriteResource
AD4C FlashHenuBar AD80 DialogSelect AI>Bl CreateResFt le
AD4D AddResHenu AI>81 DrawDialog ADB2 SystemEvent
AD4E PinRect AD82 Close Dialog ADB3 SyatemC11.ck
AD4F DeltaPoint AD83 Dispose Dialog ADB4 SystemTask
ADSO CountMitems AD85 Alert ADBS SystemMenu
AI>Sl lnsertResMenu AD86 StopAlert ADB6 OpenDeskAcc
AD54 NewControl AD87 NoteAlert ADB7 Close'OeskAcc
AD55 DiapoaeControl AD88 CautionAlert ADB8 CetPattern
AD56 JtillControls AD89 CouldAlert AI>B9 GetCursor
AD57 ShowControl ADSA FreeAlert ADBA GetString
AD58 HideControl AD8B ParamText ADIB Get Icon
ADS9 HoveControl AD8C Error Sound ADBC GetPicture

19-4
File: ToolBox Names
Report: TrapList
Selection: Value/Trap:

through Value/Trap:
Value/ Name:

equals AOOO
equals AFFF
Fields:

Page 4
Feb 8, 1984

--- ------ ------------------------·--------------
ADBD
ADBE
ADBF
ADCO
ADCl
ADC2
ADCB
ADC9
ADCA
ADCB
ADCC
ADCD
ADCE
ADCF
ADDO
ADDl
ADD2
ADD3
ADD4
ADDS
ADD6
ADD7
ADDS
ADD9
ADDA
ADDB
ADDC
ADDO
ADDE
ADDF
ADEO
ADEl
ADE2
ADE3
ADE4
ADES
ADE6
ADE7
ADES
ADE9
ADEA
ADEB
ADEC
ADED
ADEE
ADEF
ADFO
ADFl

GetNewWindow
GetNewControl
GetMenu
GetNewMBar
UniquelD
SystemEdi t
SystemBeep
SystemError
Put Icon
TeGetText
TElnit
TEDispose
TextBox
TESetText
TECalText
TESetSelect
TENew
TEUpdate
TECUck
TECopy
TECut
TEDelete
TEActivate
TEDeactivate
TEidle
TEPaste
TEKey
TEScroll
TElnsert
TESetJust
Munger
HandToHand
PtrToXHand
PtrToHand
Hand And Hand
lnitPack
InitMath
PackO
Packl
Pack2
Pack3
Pack4
PackS
Pack6
Pack7
PtrAndHand
LoadSeg
UnLoadSeg

ADF2
ADF3
ADF4
ADFS
ADF6
ADF7
ADF9
ADFA
ADFB
ADFC
ADFD
ADFE

Launch
Chain
Exi tToShe 11
GetAppParms
GetReaFileAttrs
SetResFileAttrs
InfoScrap
Unload Scrap
LoadScrap
ZeroScrap
CetScrap
PutScrap

File: Toollox Names
Report: TrapLiat
Selection: Value/Trap: equals AOOO

through Value/Trap: equals FFFF
Name: Value/ ~ields:

Page 1
Feb 8, 1984

____________ , __ ---- ------------------------------
AddDrive
AddPt
Add Reference
AddResKenu
Add Resource
Alert
AngleFromSlope
AppendKenu
BackColor
BackPat
BeginUpdate
BitAnd
BitClr
BitNot
BitOr
BitSet
BitShift
BitTat
BitXor
BlockMove
BringToFront
Button
CalcMenuSize
CalcVia
CalcViaBehind
CautionAlert
Chain
ChangedReaData
CharWidth
Checkltem
ChecltUp'Date
ClearHenuBar
ClipAbove
ClipRect
Close
Close Deak.Ace
Close Dialog
Close Picture
ClosePoly
ClosePort
Close Res File
CloaeRgn
CloseWindov
Cap String
ColorBit
CompactMem
Control
CopyBits

A04E
AC7E
ADAC
AD4D
ADAB
AD85
ACC4
ADJJ
AC63
AC7C
AD22
AC58
ACSF
ACSA
ACSB
ACSE
ACSC
ACSD
AC59
A02E
AD20
AD74
AD48
AD09
ADOA
AD88
ADF3
ADM
ACBD
AD45
ADll
AD34
ADOB
AC7B
AOOl
ADB7
AD82
ACF4
ACCC
AC7D
AD9A
ACDB
AD2D
ADJC
AC64
A04C
A004
ACEC

CopyRgn
CouldAl.ert
Could Dialog
CountMltema
CountResourcea
Count Types
CreateReaFile
CurReaFile
Delay
DeleteHenu
DeltaPoint
DeQueue
DetachReaouce
DialogSelect
DiffRgn
Diaableltem
DisposeControl
DiapoaeDialog
DiaposeHenu
DiapoaePtr
DispoaeRgn
Dispose Window
DragControl
DragGrayRgn
DragTheRgn
DragWindow
DrawChar
DrawControla
DravDialog
DrawGrovlcon
DrawMenuBar
DravNew
DrawPicture
Drawstring
DrawText
Drvrlnatall
DrvrRemove
DspoaeHandle
Eject
EmptyHandle
EmptyRect
EmptyRgn
Enable Item
End Update
EnQueue
EqualPt
Equalllect
EqualRgn

ACDC
AD89
AD79
ADSO
AD9C
AD9E
ADBl
AD94
A03B
AD36
AD4F
AD6E
AD92
ADBO
ACE6
ADJA
AD55
ADBJ
AD32
AOlF
ACD9
AD14
AD67
ADOS
AD26
AD25
AC83
AD69
ADBl
AD04
AD37
ADOF
ACF6
AC84
AC85
A03D
A03E
A023
A017
A02B
ACAE
ACE2
AD39
AD23
AD6F
AC81
ACA6
ACE3

EraaeArc
EraaeOval
EraaePoly
'Erase'Rect
EraaeRgn
EraseltoundRect
ErrorSound
EventAvail
ExitToShell
FileAllocate
FileCreate
FileDelete
FillArc
FillOval
FillPoly
FillRect
FillRgn
Fill'RoundRect
Find Control
FindWindow
FlnitQueue
Fix!bl
FixRatlo
Fixltound
PlaahHenuBar
FlushEvents
FlushFil
FlushVol
FKSwapFont
ForeColor
FrameArc
FrameOval
FramePoly
FraaeRect
FrameRgn
FrameRoundRect
FreeAlert
FreeDialog
FreeMem
Front Window
GetAppParms
GetClip
GetCRefCon
GetCTitle
GetCtlAction
GetCtlKa
GetCtltu.n
GetCtlValue

ACCO
ACB9
ACC8
ACA3
ACD4
ACB2
AD8C
AD71
ADF4
AOlO
A008
A009
ACC2
ACBB
ACCA
ACAS
ACD6
AC'B4
AD6C
AD2C
A016
AC68
AC69
AC6C
AD4C
A032
A045
A013
ADOl
AC62
ACBE
ACB7
ACC6
ACAl
ACD2
AC'BO
ADBA
AD7A
AOlC
AD24
ADF5
AC7A
AD5A
AD5E
AD6A
AD62
AD61
AD60

19-5

19-6

File: ToolBox Names Page 2
Report: TrapList Feb 8, 1984
Selection: Value/Trap: equals AOOO

through Value/Trap: equals FFFF
Name: Value/ Fields:
----------- --
GetCursor ADB9 GetWTitle AD19 IsDialogEvent AD7F
GetDitem AD8D GetZone AOlA KillControls AD56
GetEOF AOll GlobalToLocal AC71 KillIO A006
GetFUelnfo AOOC Graf Device AC72 Kill Picture ACFS
GetFNum ADOO GrowWindow AD2B KillPoly ACCD
Get Font Info AC8B Hand And Hand ADE4 Launch ADF2
GetFontName ACFF Handle Zone A026 Line AC92
GetFPos A018 HandToHand ADEl LineTo AC91
GetHandleSize A025 HideControl AD58 Load Resource ADA2
Geticon ADBB Hide Cursor AC52 Load Scrap ADFB
GetindResource AD9D HidePen AC96 LoadSeg ADFO
GetlndType AD9F Hide Window AD16 LocalToGlobal AC70
Getitem AD46 HiliteControl AD5D Longlt.11 AC67
Getltemlcon AD3F HiliteMenu AD38 LoWord AC6B
GetltemMark AD43 Hili.teWindow ADlC HapPoly ACFC
GetltemStyle AD41 HiWord AC6A MapPt ACF9
GetIText AD90 HLock A029 MapRect ACFA
.GetKeys . AD76 HNoPurge A04A MapRgn ACFti
GetMenu ADBF HomeResFile ADA4 MaxHem AOlD
GetMenuBar AD3B HPurge A049 MenuKey ADJE
GetMHandle AD49 HUnlock A02A Menu Select AD3D
GetHouse AD72 lnfoScrap ADF9 Modal Dialog AD91
GetNamedResourc ADA! lnitApplZone A02C Moov AC94
Get NewCon t rol ADBE InitCursor ACSO MoreMastera A036
GetNewDialog AD7C lnitDialoga AD7B HountVol AOOF
GetNewKBar ADCO lnitFonta ACFE Move Control AD59
GetNewWindow ADBD lnitCraf AC6E Hove Port To AC77
GetNextEvent AD70 lnitMath ADE6 MoveTo AC93
GetOSEvent A031 lnitHenua AD30 Move Window ADlB
GetPattern ADB8 lnitPack ADES Hunger ADEO
GetPen AC9A lnitPort AC6D NewControl AD54
GetPenState AC98 Ini tResources AD95 NewDialog AD7D
GetPicture ADBC lnitUtU A03F NewMenu AD31
GetPixel AC65 lnitWindows AD12 NewPtr AOlE
GetPort AC74 lnitZone A019 NewRgn ACD8
GetPtrSize A021 Insert Menu AD35 NewString A006
GetReaAttrs ADA6 lnaertReaMenu AD51 NewWindow AD13
GetResFUeAttra ADF6 lnsetRect ACA9 NoteAlert AD87
GetReslnfo ADAB lnaetRgn ACEl NWHandle A022
Get Resource ADAO lnstallRDrivers A04F ObacureCursor AC56
GetScrap ADFD lnvalRect AD28 OffLine A035
GetString ADBA lnvalRgn AD27 OffaetPoly ACCE
GetTrapAddress A046 lnvertArc ACCl OffsetRect ACAS
GetVol A014 InvertOval ACBA Offaetlgn ACEO
GetVollnfo A007 Invert Poly ACC9 Open AOOO
GetWindowPic AD2F lnvertRect ACA4 OpenDeslc.Acc ADB6
Get'WMgrPort ADlO lnvertRgn ACDS OpenPicture ACFJ
GetWRefCon AD17 InvertRoundRect ACBJ OpenPoly ACCB

File: ToolBox Names
Report: TrapList
Selection: Value/Trap: equals AOOO

through Value/Trap: equals FFFF
Name: Value/ Fields:

Page 3
Feb 8, 1984

---------- --- ____ _..__,_,_ ________ ,____ ______ ,

OpenPort
OpenResFile
OpenRf
OpenRgn
OSEventAvail
PackO
Packl
Pack2
Pack)
Pack4
Pac:k5
Pack6
Pack7
PackBits
PaintArc
PaintBehind
PaintOne
PaintOval
PaintPoly
PaintRect
PaintRgn
PaintRoundRect
ParamText
PenMode
PenNormal
PenPat
PenSize
Pie Comment
PinRec:t
Plotlc:on
PortSize
Post Event
Pt2Rect
PtlnRect
PtlnRgn
PtrAndHand
PtrToHand
PtrToXHand
PtrZone
PtToAngle
PurgeKem
Putlcon
PutScrap
Random
llead
ReadDateTime
R.eadParam
RealFont

AC6F
AD97
AOOA
ACDA
A030
ADE7
ADES
ADE9
ADEA
ADEB
ADEC
ADED
ADEE
ACCF
ACBF
ADOD
ADOC
ACB8
ACC7
ACA2
ACD3
ACBl
AD8B
AC9C
AC9E
AC9D
AC9B
ACF2
AD4E
AD4B
AC76
A02F
ACAC
ACAD
ACES
ADEF
ADE)
ADE2
A048
ACC3
A04D
ADCA
ADFE
AC61
A002
A039
A037
AD02

ReA.llocHandle
llecoverHandle
RectlnRg
RectRgn
Release Resource
Rename
ResError
llearvMem
RmveReference
RmveResource
llsrc:Zonelni t
JtstFilLock
SaveOld
ScalePt
ScrollRect
SectRect
SectRgn
SelectWindow
Send Behind
Se tApp 1 Base
SetApplLimi t
SetClip
SetCRefCon
SetCTitle
SetCtlAction
SetCtlMax
SetCtlMin
SetCtlValue
SetCursor
SetDateTime
SetDitem
SetEmptyRgn
SetEOF
SetFUelnfo
SetFilLock
SetFilType
SetFontLock
SetFPos
SetGrowZone
SetHandleSize
Setltem
Setltemlcon
SetltemMark
SetltemStyle
SetIText
SetlText
SetMenuBar
SetMenuFlash

A027
A028
ACE9
ACDF
ADA3
AOOB
ADU
A040
A.DAE
ADAD
AD96
A042
ADOE
ACF8
ACEF
ACAA
AC£4
ADlF
AD21
AC57
A02D

·AC79
ADSB
ADSF
AD6B
AD65
AD64
AD63
AC51
AO)A
AD8E
ACDD
A012
AOOD
A041
A043
AD03
A044
A04B
·A024
AD47
AD40
AD44
AD42
AD7E
AD8F
ADlC
AD4A

SetOrigin
SetPenState
SetPort
SetPortBita
SetPt
SetPtrSize
SetR.ect
SetR.ectRgn
SetResAttrs
SetResFileAttrs
Se tiles Info
SetResLoad
SetR.esPurge
SetStdProcs
SetString
SetTrapAddress
SetVol
SetWindowPic
SetWRefCon
SetWTi tle
SetZone
Shield Cursor
ShowControl
ShowCursor
ShowHide
ShowPen
ShowWindow
SizeControl
SizeRsrc
SizeWindow
SlopeFromAngle
Space Extra
Status
StdArc
Std Bi ta
StdComment
StdGetPic
StdLine
StdOval
StdPoly
StdPutPic
StdRect
StdRgn
StdR.Rect
StdText
StdTxMeasure
StillDown
StopAlert

AC78
AC99
AC73
AC75
AC80
A020
ACA7
ACDE
ADA7
ADF7
ADA9
AD9B
AD93
ACEA
AD07
A047
AOlS
AD2E
AD18
ADlA
AOlB
AC55
AD57
AC53
ADOS
AC97
AD15
ADSC
ADAS
ADlD
ACBC
ACSE
AOOS
ACBD
ACEB
ACF!
ACEE
AC90
ACB6
ACC5
ACFO
ACAO
ACDl
ACAF
AC82
ACED
AD73
AD86

19-7

19-8

File: ToolBox Names
Report: TrapList
Selection: Value/Trap: equals AOOO

through Value/Trap: equals FFFF
Name: Value/ Fields:

StringWidth
StuffHex
SubPt
SystemBeep
SystemCUck
SystemEdit
SystemError
SystemEvent
SyatemMenu
Syate11Task
TEActivate
TECalText
TEClick
TECopy
TECut
TEDeactivate
TEDelete
TEDispose
TeGetText
TEldle
TEinit
TEinsert
TEKey
TENew
TEPaste
TEScroll
TESetJuat
TESetSelect
TESetText
TestControl
TEUpdate
TextBox
TextFace
TextFont
TextMode
TextStze
TextWidth
TickCount
TrackControl
TrackGoAway
UnionRect
UnionRgn
UniqueID
Unload Scrap
UnLoadSeg
Unmount Vol
UnPackBita
UpdateResFile

ACSC
AC66
AC7F
ADCB
ADBJ
ADC2
ADC9
ADB2
ADBS
ADB4
ADDS
ADDO
ADD4
ADDS
ADD6
ADD9
ADD7
ADCD
ADCB
ADDA
ADCC
ADDE
ADDC
ADD2
ADDB
ADDO
ADDF
ADDI
ADCF
AD66
ADD3
ADCE
AC88
AC87
AC89
ACSA
AC86
AD7S
AD68
ADIE
ACAB
ACES
ADC!
ADFA
ADFl
AOOE
ACDO
AD99

UprString
UseResFile
Validllect
ValidRgn
VInstall
Vllemove
Wai tMouseUp
Write
WriteParam
Wri tellesource
XOrRgn
ZeroScrap

ACS4
AD98
AD2A
AD29
A033
A034
AD77
A003
A038
ADBO
ACE7
ADFC

Page 4
Feb 8, 1984

ROM 7.0 MacsBug Summary

To use MacsBug, include it on your Mac diskette. The system will say 'MacsBug
installed' when the diskette is booted. You may also include the Disassembler
in the same manner.

The Mac's modem port should be connected to another computer or terminal
running at 9600 baud, no parity. Press the interrupt switch after booting the
disk. The mouse should freeze and no error message should appear. On the
terminal, a register dump should appear, and an asterisk '*' prompt.

Commands available:

DH
SM

Display Memory
Set Memory

DH 100 100
SH O 1 2 3 4 5 6

Dfl
Alt
SR
PC
us
ss

BR

Di.splay/Set data register 0
Display/Set address register h
Display/Set status register
Display/Set program counter
Display/Set user stack
Display/Set supervisor stack

Display/Set break points
(up to eight)

A Display all address registers
D Display all data registers
TD Display all registers

CV Convert between base 10 and 16
(all arithmetic is 32 bit)

(normally A7)
(normally A7)

To do hexidecimal addition, use CV $numl,num2

DH RA7,-10 20
SM O 'ABCDE'

00 OOOOFFFF
AO

BR
BR 4D00 552A
BR CLEAR

CV $FDEF
CV &65536

To do hexidecimal subtraction, use CV $numl,-num2
To do hexidecimal negation, use CV $-numl

G Go (continue) G
(start at 4400) G 4400
{continue until PC• 55EA) G TILL 55EA

T Trace T 17

AT Trace Traps (traces all traps) AT
(trace GetNextEvent) AT 170
(trace all Bit Traps) AT 158 15F
(trace GetNextEvent in code
block at 5000 - 53FF) AT 170 5000 53FF

(trace all Bit Traps in code
block at 5000 - 53FF) AT 158 15F 5000 53FF

19-9

19-10

AB

HD

AD

AX

IL

ID

I
•

t

R.AII
RDfl

AH

Break Traps

Handle Display

Data Break

same as AT, but breaks before executing trap

lists all allocated handles HD

AD 158 15F 5000 53FF

A simple checksum is calculated for the specified memory range.
As each Trap is encountered, the checksum is recalculated.
If the checksum differs, the debugger breaks. This call 'IIUSt
be made with all four arguments.

Cancel Break

Clears the current AT, AB, AH, AC, or HS command

Disassembler Calls

List
lists the next 20 instructions

List One
lists one instruction

Command Separator
Last Address
(for DH, SM, IL, ID)
Offset
Address Register
Data Register

Heap Break

Debugger Notation

Advanced Debugger Calls

AX

IL 4DDO
IL

ID 4DDO
1D

SM PC 4E71 / G

DH • 100
DH .,100 100
DH RA7,-10 20
SM RAO, RD2

AH 158 15F

A heap check is made as each specified Trap is encountered.
If $1A3E8 • 0 then the applzone is checked. (default)
lf $1A3E8 <> 0 then SysZone is checked. The trap range must
be greater than $2E.

An error returns: Bad Heap at Al A2 where:
Al• the previous block pointer
A2 • the bad block pointer

J

HC Heap Check HC

This call checks the heap as described in AH. An error is
returned if any of the following conditions are true:

HS

MR

The block size is past the top of memory
The block size is odd
For tree blocks, the next link is negative or past the top of memory
For tree blocks, the previous link is negative or past the top of memory
For rel. blocks, the back pointer is odd
The heap base+ back pointer is past the top of memory
The heap base + back pointer do not point to the right master pointer.

Heap Scramble HS

If the traps NewPtr, SetPtrSize, NewHandle, SetHandleSize, HandleZone or
ReAllocHandle are encountered, the heap is scrambled before executing
the trap. It also preforms a heap check before scrambling on all traps
> JO.

Magic Return MR

This assumes the first word on the stack is a return address generated
by a BSR or JSR. It substitutes a break point for the return address.
The execution continues until a break occurs. Then, SR is restored.

This is not nestable. All other break point commands are still active.

Known Problems

It is a good idea to initialize DH and IL. DH 0, and ID PC, for
example.

DM RAS, as example, intermittently generates an address error.
To fix, explicitly type the address in register.

SM PC 4E71, for example, makes the system respond unreliably if
a trap or breakpoint was set at that location.

AT, as example, returns a Line 1111 exception. To fix, reboot.

19-11

Pascal Program Debug Strategy

Use DH to determine where the program is in memory. Seven letters of each
procedure and function will appear in the ASCII columns. (The first letter
has its high bit set.) The user program usually starts about 4DDO. The
mainline procedures and functions are first, followed by the units and
external procedures and functions in the order that you link them. Each
procedure or function name suceeds the procedure or function code. To 11ake
life easier, link your own units before linking ToolTraps, HemTraps and
MacPasLib.

If the program doesn't appear to work at all, find the address of the start
of the program. It will be immediately after the name of the last procedure
or function.

If you disassemble at that address, you will see a LINK instruction for A6 and
a LINJC instruction for AS. These address registers are used by Pascal to
locate all variables and procedural parameters. Global variables are
referenced negatively off AS. Local variables are referenced negatively off
A6. Procedural parameters are referenced with a positive offset from A6.

ToolBox calls and other calls to unit-resident procedurP.s and functions are
made through JSR *+addr instructions. The table ToolT1·.ps is linked to your
program, and contains all of the actual calls themselves.

If you are writing a Pascal program that uses the ToolBox, the first thing
you probably do is:

lnitGraf (@thePort);

This assembles into:

LEA
HOVE.L
JSR

$FF1E(AS),A0
AO,A7
*+addr

You should see this shortly after the LINK instructions. This establishes
the beginning of your program.

To find out where this program fails, interrupt the Finder. Set G TILL addr
where addr is the beginning of your program. Restart your program. If the
program breaks sucessfully at that point, continue to use G TILL to selectly
execute your progra~ until it fails more spectacularly, or locks up.

You will find that the 68000 code that the Pascal compiler produces is
reasonably readable, and that the compiler produces smart code.

19-13

19-14

To complement the debugger information, you may want to add debugging code
in your program itself. One easy way to do so is to do WRITE s or WRITELN s
to the .BOUT port. This information will appear on your debugging terminal. ~
The code fragments required look like:

VAR debug : TEXT;

REWRITE (debug, '.BOUT');

WRITELN (debug, chr(lO) {linefeed}, 'This is a test', 12345);

WRITE and WRITELN support strings, chars, packed array of chars, integers,
and booleans.

.......

Macintosh User Interface Guidelines

See Also:

Modification History: First Draft
Rearranged and Revised
Total Redesign
Second Edition Prerelease
Second Edition

MACINTOSH PUBLICATIONS

USER.INTERFACE/NEWUIDOC

Hoffman 3/17/82
Espinosa 5/11/82
Espinosa 5/21/82
Espinosa 7/11/82

Espinosa 10/11/82

ABSTRACT

One of the major factors in making a system pleasant and easy to use is
the system's consistency. This specification's purpose is to set down
our agreements about the way programs will interact with users, so that
we have a common method for dealing with interface problems, and so that
all software written for the Macintosh computer (in-house or by outside
vendors) will be consistent with respect to the issues discussed here.

2 User Interface Guidelines

CONTENTS

5 Introducticn
5 Software Developers' Responsibility
6 Macintosh's Commitment
6 About Modes

8 The Graphic Screen
9 Icons

11 Accepting User Input
11 The Mouse
12 Mouse Actions
13 Double-Clicking
13 Changing Pointer Shapes
14 The Keyboard
14 Character Keys
15 Modifier Keys
15 The COMMAND Key
15 Special Keys
16 Typeahead, Auto-repeat, and Audio Feedback
16 Versions of the Keyboard
17 The Numeric Keypad

18 Conceptual Models: Tools and Documents
19 Files
19 Tools
20 Documents
21 Resources

22 The DeskTop Model of Organization
22 The Desk

24 Windows
24 Opening and Closing Windows
25 The Active Window
25 Document Windows
25 Scroll Bars
27 Multiple Windows
27 Moving a Window
28 Changing the Size of a Window
29 Splitting a Window
30 Desk Accessories
31 Who's on Top?

UIDOC
COVER
OUTI.INE
INTRO

SCREEN

MOUSE

KEYBOARD

MODELS

DESKTOP

WINDOWS

ACCESSORY
ONTOP

..

,

32 Inside Documents
32 Structure of Documents
33 The Visual Structure
33 Graphics in Documents
34 Appearance of Text
35 Typefaces, Typesize and Fonts
36 Typestyles
36 Proportional vs. Monospaced Fonts
37 Standard Fonts

38 Working with Macintosh
38 Direct Manipulation: Controls
38 Buttons
39 Check-Boxes
39 Dials
40
40
43
43
44
45

Selecting Information
The Selection
Selection by Command

48 Commands

Auto111Stic Scrolling during Selection
Extending a Selection
Making a Discontiguous Selection

48 The Menu Bar
48 Of Mice and Menus
49 Notes on General Properties of Menus
51 The Standard Menus
51 The Apple Menu
52 The Edit Menu
53 The File Menu
53 Keyboard-Invoked Commands
55 What Commands Are and Aren't

CONTENTS 3

INSIDE

CHARACTERS

WORKING

SELECTING

COMMANDS

56 Basic Editing Paradigms EDITING
56 The Selection
56 The Scrap
57 The Cut and Copy Commands
58 Paste
58 Undo
58 Inserting and Replacing Text
58 Backspacing
59 Cutting and Pasting Between Documents
59 Between Two Documents with the Same Principal Tool
59 Between Two Documents with Different Principal Tools

61 Special Conditions BOXES
61 Dialog Boxes
62 The Alert Mechanism
63 Alert Boxes
63 How to Phrase an Alert Message
64 Appearance of Alert Boxes

4 User Interface Guidelines

66 Appendix A. Thou-Shalt-Nots of a
Friendly User Interface FRIENDLY ,

67 Appendix B. Pointer Shapes POINTERS

68 Appendix c. Hardware Specifications HARDWARE

70 Appendix D. Keyboard Layouts and LAYOUTS
Character Assignments

73 Appendix E. Guide to Icons

75 Appendix F. Unresolved Issues

76 Technical Lexicon GLOSSARY

85 Index INDEX

INTRODUCTION 5

INTRODUCTION

Macintosh is intended to be the first mass-market personal computer.
It is designed to appeal to an audience of non-programmers, including
people who have traditionally feared and distrusted computers. To
achieve this goal, Macintosh must be friendly. The system must, once
and for all, dispel any notion that computers are difficult to use.
Two key ingredients combine in making a system easy to use:
familiarity and consistency.

Familiarity means that the conceptual underpinnings of a system are
based on premises or procedures our users already know and employ.
Most Macintosh applications are oriented towards common tasks:
writing, graphics and paste-up work, ledger sheet arithmetic, chart and
graph preparation, and sorting and filing. The actual environment for
performing these tasks already exists in people's offices and homes; we
mimic that environment to an extent which makes users comfortable with
the system. Extensive use of graphics plays an important part in the
creation of a familiar and intuitive environment.

Consistency means a uniform way of approaching tasks across
applications. For example, when users learn how to insert text into a
document, or how to select a column of figures in one application, they
should be able to take that knowledge with them into other applications
and build upon it. Uniformity and consistency in the user interface
reduces frustration and makes a user more amenable to trying new
techniques and new software to solve problems.

Consistency and familiarity are by no means orthogonal concepts.
Familiar models should be used in a consistent manner to avoid
confusion, and consistency should not lead to unfamiliar behavior.

Software Developers'..,....R_e_s~p_o_n~s_i_b_i_l_i_t.Y __ ,_,.. ___ ~-----~-----
Preservation of a truly consistent working environment requires some
deliberate and conscious effort on the part of applications
programmers.

If Macintosh is to be successful as a truly mass-market personal
computer, software developers must maintain consistency throughout
applications by conforming to a common user interface.

(hand)
It is the responsibility of everyone who writes software
for Macintosh to preserve the integrity of the system.

Years of software development, testing, and research have gone into the
definition of the Macintosh user interface. The mechanisms outlined in
this document have been shown to be well-suited for a variety of
applications and tasks. If your application requires approaches not
specified in this document, we urge you to build your schemes on top of
existing ones and avoid incompatibility at all costs.

INTRO Espinosa 8/26/82

6 User Interface Guidelines

Macintosh's Commitment
On many other computers, since little or no user interface aids are
built in, each applications programmer invents a new and original
interface for each program--which leads to hundreds of different,
conflicting, and confusing interfaces.

We hope to avoid this situation on Macintosh by building tools for a
versatile, well-tested user interface and placing them in ROM to be
used by all applications programs. There's no strict requirement that
an applications program must use all or any of the supplied interface
tools; but programmers who create their own interface do so at the
expense of their own development time, the user's data space, and the
entire system's coherency.

Consistency in the user interface is most important in three areas:

- Data selection and editing;

- Command invocation;

- Performance of common system-wide functions.

These are common to all applications. But each application also has
its unique requirements, all of which we cannot forsee. To accommodate
each application's specific needs, most of the features of the user
interface are extensible: a programmer can "customize" the appearance
or function of a common interface feature to suit the application.

Macintosh system software is designed to make the implementation of the
user interface as simple as possible for the programmer. Most of the
recommended user interface features outlined below are implemented with
simple calls to the User Interface ToolBox or the Operating System.
The substantial documentation available for those packages should serve
as an introduction to implementing the user interface described in this
document.

About Modes

"A good man will prefer that mode, by which he can produce
the greatest effect."

- Paley, 1794

We adhere to the principles of modeless behavior. Larry Tesler defines
a mode as follows:

INTRO

A mode of an interactive computer system is a state
of the user interface that lasts for a period of time,
is not associated with any particular object, and
has no role other than to place an interpretation on
operator input.

Espinosa 8/26/82

,

INTRODUCTION 7

Modes are most confusing when you're in the wrong one. Unfortunately,
this is the most common case. Being in the wrong mode is confusing
because it makes future actions contingent upon past ones; it changes
the behavior of familiar objects and commands; and it makes habitual
actions cause unexpected results.

We advocate avoidance of modes whenever possible. Of course,
exceptions must be made, however; there are certain tradeoffs among
modality, usefulness, and implementability that must be considered.
There are three cases in which modal behavior is generally tolerated:

- Long-term modes with a procedural basis: doing word processing
vs. graphics editing, etc. Each application program in Macintosh
is a mode.

- Short-term "spring-loaded" modes, in which the user is constantly
doing something to perpetuate the mode. Holding down a button or
key is the most common example of this kind of mode.

- Alert modes, where the user must rectify an unusual situation
before proceeding. Such situations, however, should have been
avoided in the first place.

Other modes are acceptable if they meet the following requirements:

- They emulate a familiar real-life model which is itself modal,
like picking up different-sized paintbrushes in a graphics editor;
or

- They change only the attributes of something, and not its
behavior, like the boldface and underline modes of text entry; or

- They block most other normal operations of the system to emphasize
the modality, as in error conditions incurable through software
("There's no diskette in the disk drive", for example).

Whatever the modality entails, it must be visible. There must be a
clear visual indication of the current mode, and the indication should
be near the object being most affected by the mode.

SCREEN Espinosa 10/8/82

8 User Interface Guidelines

THE GRAPHIC SCREEN

Macintosh distinguishes itself from all other
high-resolution graphic screen. While other
or greater graphics resolution or ability, no
powers as widely and generally as Macintosh.

personal computers by its
computers posess similar
other applies its graphic

Macintosh has a purely graphic display: there is no "text mode" in the
machine at all. Text, to Macintosh, is merely a special kind of
graphics. Problems of mixing text with graphics go away because
they're really the same thing.

Other computers don't do this because of inherent limitations in their
processor speed and data path width, and because of a lack of software
support of graphics. Not only does Macintosh have a Motorola MC68000
microprocessor (running at a nominal 7 MHz with a 16-bit data path,
giving it several times the bandwidth of the Apple II's 6502), but it
also has Bill Atkinson's QUICK.DRAW graphics package, revolutionary in
its speed and ability.

But far more important than raw graphic power is what the software does
with it. What Macintosh does can be explained quite simply:

(hand)
All commands, features, and parameters of the
application, and all the user's data, appear as graphic
objects on the screen.

We4n.e34ay

July 30, 1911.

1:41 PJ&.

Figure 1. Objects on the Screen

Objects, whenever applicable, resemble the familiar material objects
they emulate. Objects that act like pushbuttons "light up" when
pressed; objects that act like tab stops look like their counterparts

SCREEN Espinosa 10/8/82

I

THE GRAPHIC SCREEN 9

on a typewriter. Dozens of objects, some emulating everyday objects
and some unique to Macintosh, are defined in the User Interface Tool
Box.

Objects are designed to look beautiful on the screen. Using the
graphic patterns in QuickDraw can give objects a shape and texture
beyond simple line graphics. Placing a drop-shadow slightly below and
to the right of an object can give it a three-dimensional appearance.
The highest aesthetic sensibilities should be used in the design,
placement, and animation of objects.

Graphics can distinguish different states of the same object. Many
objects on the screen have two states: a "normal" state and a
"special" state. Most objects in their normal state are predominantly
white, with detail (lettering, symbols, etc.) in black. Inverting the
polarity of the object, to make it black with white detail, will
highlight the object to represent its special state.

Icons
A fundamental object in Macintosh software is the~. a small,
32-by-32 square graphic that can be drawn, edited, and moved easily.
The Icon Manager has facilities for drawing icons on the screen and
setting or resetting bits within them.

si2e box [:] wa.mt

Lt
close box L] StO

D @
L] c.LL:R

.it
~

Figure 2. Icons

Icons should be sprinkled liberally over the screen. Wherever an
explanation or label is needed, first consider using an icon before
using text as the label or explanation. Icons not only contribute to
the understandability and attractiveness of the system, they don't need
to be translated into foreign languages.

SCREEN Espinosa 10/8/82

10 User Interface Guidelines

Icons are by no means unique to the software; thy appear on the
Macintosh main unit itself, on the shipping materials, unpacking
instructions, and in the user manuals. The standard icons used to
denote various parts of the Macintosh hardware are shown in the
Appendix on icons.

MOUSE Espinosa-Hoffman 10/11/82

I

ACCEPTING USER INPUT 11

ACCEPTING USER INPUT

All meaningful interaction between a Macintosh and its user takes place
via a piece of hardware built in or connected to the main unit. The
principal devices for original input to the Macintosh are the mouse and
the keyboard; the Macintosh responds to these devices by displaying
images on the screen or making sounds with its speaker. No other
action of the Macintosh (such as spinning its disk drive, etc.)
constitutes a meaningful message to the user.

The Mouse
The mouse is a small device the size of a deck of playing cards,
connected to the computer by a long, flexible cable. There is a square
button on the top of the mouse. The user holds the mouse and rolls it
on a flat, smooth surface.

a

Figure 3. The Mouse and Pointer

A pointer on the screen follows the motion of the mouse. Simply moving
the mouse results only in a corresponding movement of the pointer and
no other action. Most actions take place when the user positions the
focus of the pointer (which should be intuitive, like the point of an
arrow or the center of a crosshairs) over an object on the screen and
presses the mouse button.

The purpose of the mouse is to allow high-resolution specification of
elements on a graphic screen. Many researchers, at Apple and
elsewhere, have conducted extensive experimentation with various
pointing devices: cursor keys, light pens, graphic tablets, trac
balls, etc. We chose the mouse for its ease of use, accuracy, size,
and cost. It is compact and lightweight; it resolves to 200 points per
inch; it retains its position when not being used; and it requires
little muscular strain to position it.

MOUSE Espinosa-Hoffman 10/11/82

12 User Interface Guidelines

Mouse Actions
The three basic mouse actions are:

- Clicking: Positioning the pointer with the mouse, and briefly
pressing and releasing the mouse button without moving the mouse;

- Pressing: Positioning the pointer with the mouse, and pressing
and holding the mouse button without moving the mouse; and

- Dragging: Positioning the pointer with the mouse, pressing and
holding the mouse button down, moving the mouse to a new position,
and releasing the button.

Clicking something with the mouse performs an instantaneous action:
selecting a location within the user's document or activating an
object.

Pressing an object usually has the same effect as clicking it
repeatedly. For example, clicking a scroll arrow causes a document to
scroll one line; pressing a scroll arrow causes the document to scroll
repeatedly until the mouse button is released.

Dragging can have different effects, depending upon what is under the
pointer when the button is pressed. Beginning a drag inside the
document frequently results in selection of data. Beginning a drag
over an object usually moves that object on the screen. Only certain
objects are draggable; large draggable objects have a special area with
which the user drags the entire object. Our tests show that users
understand dragging an object by a well-marked area rather than by a
large, general area.

Figure 4. Clicking, Pressing, and Dragging

Dragging is also used to choose an item from a menu, as described
below.

MOUSE Espinosa-Hoffman 10/11/82

,

(hand)

ACCEPTING USER INPUT 13

In general, pushing the mouse button indicates intention,
while releasing the button confirms the action.

Dragging an object attaches a flickering outline of the object to the
pointer. The outline follows the pointer around the screen while the
mouse button is being held down. When the user releases the mouse
button, the object moves to the position of the flickering outline, and
the outline vanishes.

Every object is restricted to certain boundaries. If the user tries to
drag an object out of its natural boundaries, the flickering outline
disappears when the pointer travels out of those boundaries. If the
user moves the pointer back inside the boundaries with the button still
held down, the outline reappears under the pointer and dragging
resumes. If, however, the user releases the button while the outline
is invisible, the object being dragged does not move; in this way the
user can cancel a drag in progress.

Double-Clicking
A variant of clicking involves performing a second click shortly after
the end of an initial click. If the downstroke of the second click
follows the upstroke of the first by 700 milliseconds or less, the
second click should be considered not an independent event, but rather
an extension of the first: this action is called "double-clicking".
Its most common use is as an optimized means of performing an action
that can be performed in another, slower, manner.

(hand)
To allow the software to distinguish efficiently between
single clicks and double-clicks on objects that respond
to both, a function invoked by double-clicking an object
must be an enhancement, superset, or extension of the
feature invoked by single-clicking that object.

Changing Pointer Shapes
The pointer may change shape to give feedback on the range of
activities that make sense in a particular area of the screen, in a
current mode, or both.

1. The results of any mouse action depend on the item under the
pointer when the mouse button is pressed. To emphasize the
differences among mouse actions, the pointer may assume different
appearances in different areas to indicate the mouse's behavior in
each area.

2. Although modal behavior is generally discouraged in the Macintosh
user interface, sometimes introducing modes makes it simpler to
differentiate among the multiplicity of functions of the mouse.
For example, in the Graphics Editor, the mouse functions both to
draw graphics and to manipulate graphics already drawn. Thus, in
this particular application, the mouse is employed in two

MOUSE Espinosa-Hoffman 10/11/82

14 User Interface Guidelines

different modes. To accent the difference in behavior in these
two modes, the pointer may change shape.

The facility to change the pointer appearance to convey modal
information is not a unilateral endorsement of modal behavior; see the
discussion "About Modes" on page 6 of this document.

The Keyboard
Connected to the Macintosh main
compact alphanumeric keyboard.
and numeric entry.

unit by a six-foot coil cord is a
The keyboard is used mainly for text

The keys on the keyboard are arranged in familiar typewriter fashion;
there is a utility program with which the user can change the positions
of the keys or the characters they generate.

TAB
ALPHA

LOCK
SHIFT

FEllflN

SHIFT

OPTlON COMMAND

Figure 5. The Macintosh Keyboard

In terms of functionality, the keys are divided into three sets:
character keys, modifier keys, and special keys. Character keys enter
characters into the computer; modifier keys, in conjunction with
character keys, choose among different characters on a key; and special
keys give special instructions to the computer.

Character Keys
The alphabetic, numeric, and symbolic keys, and the space bar, enter
characters into the computer. Any character key may be associated
(and/or labeled) with more than one character; the modifier keys choose
among the different characters on each key.

The Basic Editing Paradigms (see that section) define the ways in which
characters are typed into a document. All text, whether it be a
file name, part of a document, or a search pattern, is typed in and can
be edited in exactly the same way.

KEYBOARD Espinosa-Hoffman 10/8/82

,

ACCEPTING USER INPUT 15

The keyboard hardware scans the character keys such that it can
recognize any two character keys being pressed simultaneously. This
feature is called "two-key rollover".

Modifier Keys: SHIFT, CAPS LOCK, OPTION, and COMMAND
Six keys on the keyboard--two labeled SHIFT, two labeled OPTION, one
labeled CAPS LOCK, and one labeled COMMAND--change the interpretation
of keystrokes or other inputs to the computer. When one of these keys
is held down, the behavior of the other keys (and occasionally that of
the mouse button) may change. A program can enquire the status of the
modifier keys at any time.

The SHIFT and OPTION keys choose among the characters on each character
key. SHIFT gives the upper character on two-character keys, or the
uppercase letter on alphabetic keys. OPTION gives an alternate
character set interpretation, for foreign characters, special symbols,
etc. SHIFT and OPTION can be used in combination.

CAPS LOCK latches in the down position when pressed, and releases when
pressed again. When down it gives the uppercase letter on alphabetic
keys. The operation of CAPS LOCK on alphabetic keys is parallel to
that of the SHIFT key, and the CAPS LOCK key has no effect whatsoever
on any of the other keys. CAPS LOCK and OPTION can be used in
combination on alphabetic keys.

The keyboard hardware can sense any or all of the modifier keys being
pressed simultaneously.

The COMMAND key
Pressing a key while holding down the COMMAND key signals that the
keypress is not data input, but rather a command invocation (see the
section on Commands).

(hand)
As the OPTION and COMMAND keys are unfamiliar features to
users familiar with typewriters, their use should be
restricted to expert functions not normally encountered
by novice users.

Special keys: ENTER, TAB, RETURN, and BACKSPACE
When the user enters or edits information, the ENTER key confirms that
entry. When ENTER is pressed, the computer checks and validates the
current entry and allows the user to proceed to a different one.
Commonly used to confirm the entry of text, ENTER tells the computer to
accept changes made to a field or form (such as a spreadsheet formula
or a new file name).

The TAB key is a signal to proceed: it signals movement to the next
item in a sequence. TAB often carries the implicit meaning of ENTER
before the motion is performed.

KEYBOARD Espinosa-Hoffman 10/8/82

16 User Interface Guidelines

The RETURN key is another signal to proceed, but it defines a different
type of motion than TAB. A press of the RETURN key signals movement to
the leftmost field one step down (just like a carriage return on a
typewriter). RETURN also can carry the implicit meaning of ENTER
before it performs the movement.

(hand)
In applications such as the word processor, the TAB and
RETURN keys not only perform immediate actions, but store
those actions in the text; in such applications the
RETURN and TAB keys may be considered character keys.

BACKSPACE is used to delete characters from text, usually in the course
of typing that text. The exact use of BACKSPACE is described in the
section on the Basic Editing Paradigms.

Typeahead, Auto-Repeat, and Audio Feedback
If the user types at a time when Macintosh is unable to process the
keypresses immediately, or the user types more quickly than Macintosh
can process, the precocious keystrokes are queued for timely
processing. As keystrokes are handled as events through the Operating
System's event mechanism, the only limit on the number of characters
that can be typed ahead of time is the length of the system's event
queue.

Normally, Macintosh "clicks" slightly at every keystroke. This audio
feedback in typing is a global preference that the user can change at
any time (see the Preferences description, in the section on Desk
Accessories).

When the user holds down a key for a certain amount of time, it starts
repeating automatically. The delays and the rates of repetition are
global preferences that can be changed by the user at any time.

All printable characters, the space bar, the BACKSPACE key, and the
RETURN key, inherently have the auto-repeat ability. The auto-repeat
ability of each key is a characteristic of the keyboard that the user
can change with the same utility program that alters the keyboard
layout.

Auto-repeat does not function during typeahead; it only operates when
the application is ready to accept keyboard input.

Versions of the Keyboard
There are two physical versions of the keyboard: American and
European. The European version has one more key than the American.
The key layout on the European version is designed to conform to the
ISO standard; the American key layout mimics that of common American
office typewriters.

The American keyboard contains 49 character keys (including the space
bar and RETURN) that produce all the printable ASCII characters. In

KEYBOARD Espinosa-Hoffman 10/8/82

,

ACCEPTING USER INPUT 17

addition, there are the following modifier and special keys: SHIFT,
CAPS LOCK, COMMAND, OPTION, ENTER, TAB, and BACKSPACE.

The European keyboard contains 50 character keys; the special and
modifier keys are equivalent to those on the American keyboard, but
their labels denote their functions symbolically.

(hand)
As the keyboard interface is a general-purpose clocked
bidirectional serial port, other devices (such as a music
keyboard, etc.) may eventually be attached to this port.

The Numeric Keypad
An optional numeric keypad is offered that connects between the main
unit and the standard keyboard. The keypad contains 18 keys that,
while labeled similarly to keys on the main keyboard, return different
keycodes to the main unit. An application can thus determine the
origin of a keystroke. If desired, the keypad keys can be assigned
ASCII codes equivalent to their counterparts on the main keyboard.

The character keys on the keypad are labeled with the digits O through
9, a decimal point, the four standard arithmetic operators for plus,
minus, times, and divide, and a comma. The keypad also contains the
special keys ENTER and CLEAR; it has no modifier keys.

The keys on the numeric keypad follow the same rules for typeahead,
auto-repeat, and audio feedback as the main keyboard.

Four keys on the numeric keypad are labeled with "field-motion"
symbols: small rectangles with arrows exiting them in various
directions. Some applications may use these keys to move an object or
indicator orthogonally around the screen, and require the user to use
the SHIFT key to obtain the four characters(+*/,) normally
available on those keys.

(hand)

MODELS

As the numeric keypad is optional equipment, no
application shall require it or any keys available on it
in order to perform standard functions. Specifically, as
the CLEAR key is not available on the main keybaord, a
CLEAR function may be implemented with this key only as
an optimization of another CLEAR command (such as in a
menu).

Espinosa 10/11/82

I

18 User Interface Guidelines

CONCEPTUAL MODELS

Macintosh, as an appliance computer, has one purpose only: to
manipulate information. With it, a user can access, display,
interpret, modify, transfer, replicate, and destroy information.
Consequently, the central concepts on which the Macintosh system is
built deal with things relating to information:

- The container of information, which we call a file;

- The manipulator of information, which we call a tool;

- The presenter and interpreter of information, which we call a
window;

- The working environment, which we call the desk top; and

- The information itself, which we call a document.

On the continuum between pure concept and pure object, each of these
has its own place. We hope to present our users with only the physical
objects that represent these concepts, so that they can grasp the
concepts by inference; we will not require them to know the concepts
before they encounter any of the objects.

Of the above, files are the most conceptual; we will use the term
internally here to mean a generic container of information. As
described below, files have many distinct incarnations that the user
will encounter.

Figure 6. Conceptual Models

MODELS Espinosa 10/11/82

'

CONCEPTUAL MODELS 19

The desk top, documents, and windows are the most concrete of the above
group: users will see these as objects and not as concepts at all.

Tools are somewhere in the middle: although they have certain
distinguishable physical attributes, most of their importance is in the
conceptual realm.

Files
A file is a container of information. All the texts, pictures, charts,
and address lists that the user puts into Macintosh are stored in
files. Files also store information that the user didn't create:
information usually more intelligible to the computer than the user.

There are three general classifications for files: those containing
documents, those containing tools, and those containing resources.
Documents are created by users and can be viewed and modified by users.
Tools are created by application programmers; the user can use them but
can't modify them. Resources are also created by application
programmers, but can be edited by a resource editor to change the way
in which a tool communicates with the user (see RESOURCE FILES, below).

Regardless of its contents, a file has many important attributes.
Every file has a !IE!, that describes its contents and determines which
tools can manipulate it; a size that describes how large its contents
are; a name by which the userrefers to the file; and a label on which
the use"'rcan put additional information about the file. It also has
the dates on which it was created and last modified.

Tools
What we call a "tool" is generally known as an application program: an
interactive set of procedures and data structures for manipulating
information. Writing, drawing, charting, filing, analysis, and BASIC
programming are the fundamental tools Macintosh provides; there are
also several other "housekeeping" tools, like using a pocket
calculator, note pad, and several other "mini-applications" described
later in this document. A tool manifests itself in two ways: it
displays a menu bar replete with menus of commands appropriate to that
tool; and it places a document window on the desk through which the
user can see the information contained in a file.

MODELS Espinosa 10/11/82

20 User Interface Guidelines

Figure 7. A Typical Tool

Tools, being themselves information (but intelligible to the computer
rather than to the user), are stored in files.

(hand)
Only one tool can be in use at any given time.

Documents
Documents are the information that the user has created or wishes to
manipulate. Documents can exist inside a file on a diskette or inside
the memory of Macintosh. A document comprises a coherent set of
different kinds of information.

- Most documents comprise only one kind of information: all text,
or one picture, or a series of charts, for example. The user
manipulates the information and prints it out as a whole. Every
document thus has a principal "type" of information; this type is
determined by the tool that formed it.

- A document can comprise more than one kind of information, but it
must still form a coherent whole. The user can take information
of one kind and add it to a document of another kind. But the
document still retains its principal type, and the user can
manipulate only the information of that type.

Associated with each kind of document is a principal tool: the tool
most appropriate to manipulate that document. The principal tool of
any document is usually the tool that created it. Other tools may be
able to read and interpret the document; for example, the BASIC
language can read word processor documents anticipating the text of a
program. Such tools are the document's secondary tools. The
distinction is important only when selecting files from the desk.

MODELS Espinosa 10/11/82

)

CONCEPTUAL MODELS 21

Resources
Some files contain information that is neither a tool nor the user's
information. This information is usually fonts, system programs,
configuration information, etc. Although such information may have
principal tools (such as a font editor for fonts), it's most commonly
used by a tool.

Files containing such information are called resource files. Tools
have internal links to the resource files they need; copying a tool
file, for example, automatically copies all resource files linked to
it. Resource files are usually created by application programmers to
accompany tools. The user can edit some resource files by using
special resource editors, such as font editors or menu editors.

DESKTOP Espinosa-Hoffman 10/11/82

22 User Interface Guidelines

THE DESK TOP MODEL OF ORGANIZATION

The entire Macintosh working environment is based on familiar and
intuitive concepts. The Macintosh screen represents a working surface
or a desk top. Papers, writing or drawing utensils, and other common
desk accessories have their place on this desk top just as on any
other. Whenever possible, the objects on the desk top resemble their
real-life counterparts: for example, all papers are white with black
lettering.

Figure 8. The Desk Top

The Desk
The desk top metaphor is reinforced by the central tool of the
Macintosh system, a tool called the Desk. While most tools manipulate
the documents contained in files, the Desk manipulates the files
themselves, often regardless of their contents. The basic functions of
the Desk are as follows:

- Get, Print, Examine, Delete, or Copy any file or group of files;

- Initialize a diskette;

Rename or rearrange the files on a diskette;

- Select which diskettes, network diskettes, and peripheral devices
to work with.

On the Desk, files are represented by icons, with each file's name as a
caption to its icon. The icons can be dragged around the desk asnd
positioned in any order or arrangement. Other parts of the system are
also represented by icons on the desk: disks and disk drives,
printers, etc.

DESKTOP Espinosa-Hoffman 10/11/82

,

THE DESK TOP MODEL OF ORGANIZATION 23

The central purpose of the Desk is to allow the user to manipulate
files, and to call up the appropriate tools to work on the documents
the files contain. The user invokes a tool from the Desk, and returns
to the Desk when finished.

Once using a tool, the user can call up a subset of the standard Desk
functions, to choose a new file to work with or to specify a
destination for the new work. This subset as presently defined
includes selecting disks and files, creating a new file, and renaming
and repositioning files.

WINDOWS Hoffman-Espinosa 10/11/82

24 User Interface Guidelines

WINDOWS

Windows are objects on the desk that display information. The
information can be a user's document, an error message, or a request
for more information. Any number of windows can be present on the desk
at any time. As on a real desk, if more windows are placed on the desk
than reasonably can fit, the windows "overlap" each other: the windows
in front partially or completely obscure those behind them.

The guilty undertaker sighs ·:i::

The rqnesome organ grinder cries !1\m
The silver saxopliones say I should ref use HHH
The cracked bells and washed out horns m~i
Blow into my face with scorn Ht
But its not that way, I wasnt born to lose ti!

m~~~
I want you, I want you, I want you SO bad m11i

The drunl(en pcilitician leaps 11111!

Upon the street where mothers weep mm
And the saviors who are fast asleep, they mih
And I ~8;it for them to interrupt :-=·:·

Figure 9. Windows

Each window "floats" in its own plane. Think of a number of plates of
glass stacked on top of the desk: each plate contains one and only one
window, and the plates can be moved to make the windows appear in
different places on the desk. Each window can overlap those behind it,
and can be overlapped by those in front of it. The frontmost window
cannot be overlapped. Even when windows do not overlap, they retain
their front-to-back ordering.

Opening and Closing Windows
Windows come up onto the screen in different ways appropriate to the
purpose of the window. Some windows are created automatically: for
example, when the user wants to work with a document, the tool being
used creates a document window in which to present that document.

Many windows have an icon that, when double-clicked, makes the window
go away: this icon is called the close box. (This icon is double
clicked, rather than singly-clicked, because of the disturbing
consequences of accidentally clicking the icon). The application in
control of the window determines what is done with the window when the
close box is double-clicked: it can

WINDOWS Hoffman-Espinosa 10/11/82

,

WINDOWS 25

1. make the window invisible, to be retrieved later; or

2. remove and destroy the window and any information it contained.

If an application wishes not to support closing its window with a close
boxe, it should not place the box on the window.

The Active Window
At any given time, one window is of greater importance to the user than
any other. Usually, the most important window is presenting the
current document; at other times, an error message or information
request may be more important. Thus this general rule:

- The most important window at any given time is always frontmost.

Naturally, there must be rules to determine which window is most
important at any given time.

- Newly-created windows are usually brought to the front.

- If the user positions the pointer with the mouse inside any window
that is not in front, and then clicks the mouse button, that
window is brought to the front.

Being in front has more consequences for an window than merely being
more visible. The frontmost window is said to be active, and all
others,inactive.

- A window's active state is visibly distinct from its inactive
state; usually, the title or header of the window is highlighted.

- Clicking or dragging inside the active window may perform a useful
function; clicking or dragging inside an inactive window merely
brings that window to the front.

- All command and data input is handled by the program that is in
control of the active window.

Document Windows
Although windows display many kinds of information and requests, the
most common appearance of a window is to display the document currently
being worked on. Windows displaying documents have parts not usually
seen in other windows: scroll bars to move the document under the
window; a size box to change the size of the window; and split bars to
divide the window into several panels.

Scroll Bars
Scroll bars are used to change the user's view of a document. Only the
active window has scroll bars; inactive windows leave black-bordered
empty rectangles where their scroll bars will appear when the window is
activated.

WINDOWS Hoffman-Espinosa 10/11/82

26 User Interface Guidelines

A scroll bar is a light gray shaft, capped on each end with square
boxes labeled with arrows; inside the shaft is a white rectangle. The
shaft represents one dimension of the entire document; the white
rectangle (called the thumb) represents the portion of the document
currently visible inside the window. As the user moves the document
under the window, the position of the rectangle in the shaft moves
correspondingly.

There are three ways to move the document under the window: by
sequential scrolling, by "paging" screenful by screenful through the
document, and by directly positioning the thumb.

Clicking a scroll arrow moves the document in the direction of the
scroll arrow. For example, when the user clicks the top scroll arrow,
the document moves down, bringing the view closer to the top of the
document. The thumb moves towards the arrow being clicked.

Each click in a scroll arrow causes movement a distance of one unit in
the chosen direction, with the unit of distance being appropriate to
the tool: one line for the word processor, one row or column for the
spreadsheet, etc. Pressing the scroll arrow causes continuous movement
in its direction.

Clicking the mouse anywhere in the gray area of the shaft advances the
document by screenfuls. The thumb moves toward the place where the
user clicked, and the document moves in the opposite direction;
clicking below the thumb, for example, brings the user the next
screenful towards the bottom of the document. Pressing in the gray
area keeps screenfuls flipping by until the user releases the button or
the thumb reaches the pointer.

In both the above schemes the user moves the document incrementally
until it is in the proper position under the window; as the document
moves, the thumb moves accordingly. The user can also move the
document directly to any position simply by moving the thumb to the
corresponding position in the shaft. To move the thumb, the user
presses on the thumb and drags it along the shaft; a flickering outline
of the thumb follows the pointer. 'When the mouse button is released,
the thumb jumps to the position last held by the flickering outline,
and the document jumps to the position corresponding to the new
position of the thumb.

If the user starts dragging the thumb, and then moves the pointer a
certain distance outside the scroll bar, the thumb detaches itself from
the pointer and stops following it; if the user releases the mouse
button, the thumb returns to its original position and the document
remains unmoved. But if the user still holds the mouse button and
drags the pointer back into the shaft, the thumb reattaches itself to
the pointer and can be dragged as usual.

WINDOWS Hoffman-Espinosa 10/11/82

I

WINDOWS 27

Multiple Windows
Some tools may be able to keep several windows on the desk at the same
time, as part of the same logical document. Different windows can
represent:

- Different parts of the same document, such as the beginning and
end of a long term paper;

- Different interpretations of the same document, such as the
tabular and chart forms of a set of numerical data;

- Different parts of a logical whole, like the listing, execution,
and debugging of a BASIC program;

- Separate documents being viewed and/or edited simultaneously.

t .. ! ~' •• ' •••••••••••• ' ·i;

,, .. [ZJ[:1!3\l
ilfJJr:JtntJii
llm~rtwmll
l~~~~l=tl~

Figure 10. Multiple Windows

Each tool may deal with the meaning and creation of multiple windows in
its own way.

There are occasionally better ways to perform the above functions than
with multiple windows. Showing different parts of the same document
can be done better by splitting the window (see below). Different
interpretations of the same document occasionally merit two panes in
the same window, rather than two separate windows. The implementation
decision can best be made by experimentation and testing on actual
users.

Moving a Window
Each tool places windows on the screen wherever it wants them. The
user can move a window--to make more room on the desk or to uncover a
window it's overlapping-by dragging its title bar. A flickering
outline of the window follows the pointer until the user releases the

WINDOWS Hoffman-Espinosa 10/11/82

28 User Interface Guidelines

mouse button. At the release of the button the full window is drawn in
its new location.

A window always moves in its own plane; while it's being dragged
around, the flickering outline is visible over the windows below it but
is hidden under the windows above. Notice that clicking in the title
area does not make a window active or bring it to the top.

(hand)
Moving a window does not affect what portion of the
document it is displaying.

A window can never be moved off the screen; specifically, it can't be
moved such that the visible area of the title bar is less than four
pixels square.

Moving a window is fully supported by the Window Manager, and is easily
performed with one procedure call; an application program need not care
where on the screen its window is placed.

Changing the Size of a Window
If a window has a certain icon in its lower right corner, where the
scroll bars come together, the user can change the size of the
window--enlarging or reducing it to the desired size. The box that
contains the icon is called the size box.

Dragging the size box drags a flickering outline of the window. The
outline's top left corner stays fixed, while the bottom right corner
follows the pointer. When the mouse button is released, the entire
window is redrawn in the size and form of the flickering outline.

-~
~
;
: . ---·-···-.. ·--······-"

1
i ;

j
~
!

' \ ' t. -................ 1~--------
Figure 11. Moving and Sizing a Window

Sometimes it's not appropriate to size a window; some tools may not
support this ability. In this case, the size,box is empty and clicking

WINDOWS Hoffman-Espinosa 10/11/82

,

WINDOWS 29

in it produces no effect. If a tool does support sizing a window,
however, changing the window's size leaves the document's size
unchanged; the window simply displays a larger or smaller portion of
the document.

(hand)
Sizing a window does not affect its contents, or change
the position of the top left corner of the window over
the document; only the portion of the view that is
visible inside the window.

At its maximum size, a window is still small enough that a seven pixel
square area of the size box is visible on the screen.

The minimum size window consists of only a title bar the width of the
title itself, a horizontal scroll bar (or a blank rectangle of
equivalent size), and the size box. If a window is made so small that
its title will no longer fit in the title bar, the title is truncated
to show as many of its initial characters as possible.

Sizing a window is fully supported by the Window Manager, and is easily
performed with one procedure call; an application program need not care
about the size of a window.

Splitting a Window
Sometimes it is desirable to be able to see disjoint parts of a
document simultaneously. Tools that accommodate such a capability
allow the window to be split into independently scrollable panels.

Tools that support split panes place split bars at the top of the
vertical scroll bar and at the left of the horizontal one, if present.
Pressing a split bar attaches it to the pointer. Dragging the
split bar positions it anywhere along the nearby scroll bar; releasing
the mouse button drops the split bar at its current position, splits
the window at that location, and creates new scroll bars for each
panel.

WINDOWS Hoffman-Espinosa 10/11/82

30 User Interface Guidelines

Figure 12. Split Views

The document appears the same, save for the split bar lying across it.
But there are now separate scroll bars for each pane; whith these, the
user can scroll each pane independently of the other.

Dragging a split bar back to its original position reunites the window
in that direction; the left or top view (and its scroll bar)
disappears, leaving the right or bottom view.

The number of views in a document does not alter the number of
selections per document: i.e., one. The active selection appears
highlighted in all views that present it.

Desk Accessories
Macintosh does not allow two tools to be running at once. However,
there are several mini-applications that are available while using any
tool.

At any time the user can issue a command to call up one of several
desk accessories. The basic ones provided include:

Calculator
Alarm Clock
Note Pad
Telegram Form and In-Box (AppleGram)

Accessories are disk-based: only those accessories available on-line
can be used. The list of accessories is expanded or reduced according
to what's available at any given time. The application can support all
accessories in the system with calls to the Desk Manager. On disk,
accessories are stored in resource files. More than one accessory can
be on the desk at any given ~ime.

ACCESSORY Espinosa-Hoffman 10/11/82

,

WINDOWS 31

Who's on Top?_,,__--,...,.....-.....-------------..--,,---------
With a virtual three-dimensional screen it is essential to manage the
third dimension so that important items or objects requiring immediate
attention are not obscured accidentally. Hence. in order from front to
back:

- The pointer

- An ale rt box

- A dialog box

- The menu bar and all pull-down menus

- The active window

- All other windows

- The desk top

INSIDE Espinosa 10/11/82

32 User Interface Guidelines

INSIDE DOCUMENTS

(hand)
We strongly subscribe to the doctrine of preservation of
visual fidelity, i.e., what you see is what you get.

It's important that a document as seen through a window on the desk
closely resemble the same document when corumitted to paper. The
differences (and there will be differences) must be natural and
unsurprising. Naturally, the ruler and graph paper used to create a
report on Tuesday morning won't be distributed with that report when
it's presented that afternoon; printing a document shall not carry the
vestiges of the tool that created that document.

Any given tool should be able to manipulate, in some way, everything in
the document it presents. Macintosh eventually will have many
different tools, and we do not pretend to foresee the needs of all.
However, we do provide standard means of manipulating the constituent
elements of most documents.

Structure of Documents
In order to discuss the appearance of information inside documents, it
is necessary first to digress a bit into the structure of documents.

A document is a collection of information. Each piece of information
has its own position in the document, and its own positional
relationship to the information around it.

In terms of structure, there are three principal types of documents:
texts, free-form documents, and structured documents.

1. Texts consist of a string of information (in this case,
characters) that appears two-dimensional but is really linearly
ordered. More characters can be inserted anywhere within the text
or added onto the end of the text. There is an inherent order to
the characters in a text, and definite positions between
characters.

2. Free-form documents start completely empty and unstructured, like
a blank piece of paper. Information can be placed anywhere within
the document; each piece of information has its own position.
There may be large, empty spaces in the document that contain no
information. There is no inherent ordering among the information
in a free-form document. Pictures drawn in the graphics editor
are free-form documents.

3. Structured documents have predefined cells to contain information.
There is a fixed maximum number of cells per document; no cells
can be added, nor can they be removed. Cells are usually arranged
in rows and columns; a given cell is a member of one row and one
column. There ~s a definite position between two adjacent cells,

INSIDE Espinosa 10/11/82

,

INSIDE DOCUMENTS 33

and a position at the corner of a group of four cells. A
spreadsheet is a structured document.

t---+-t-+--t--+--+-+--4 Suuctured

+

Free- 0
form

Text

Figure 13. Types of Documents

The type of a document affects many things--mostly how a user selects
information inside the document. For example, information in a text
can be selected character-by-character, but information in a structured
document is selected cell by cell. The exact details of the selection
process are described in the section "Selecting Information".

The Visual Structure
The structure can manifest itself visibly inside the document. For
example, the rows-and-columns arrangement of a spreadsheet can be
clarified by adding graphic grid lines between the cells. These lines
are not part of the user's data, but they are part of the document.
Such supporting graphics are usually static elements within the
document, and cannot be moved or altered. Those that can be altered
usually affect only the presentation of the user's data, not the data
itself.

At the tool's discretion, the supporting graphics in a document may or
may not appear when the document is printed. The grid lines on a
spreadsheet might very well appear, while the rulers in a word
processor document will probably not be printed.

Graphics in Documents
Not only does Macintosh use graphics to show the structure of a
document and to otherwise communicate with its user, it also supports
tools to create and manipulate graphic documents. Two such tools are
planned: a graphics editor (to design and draw pictures, diagrams,
illustrations, signs, etc.), and a charts and graphs package (to do bar

INSIDE Espinosa 10/11/82

34 User Interface Guidelines

charts, pie charts, hi-lo graphs, etc. from a numerical data base).

Graphic documents are usually free-form: each graphic item in the
document has its own position within the document, and there is no
inherent relationship among the items (although the tool can define
such a relationship). But there's no reason that graphic documents
can't be structured. For example, a graphic programming language mught
have a text-like or other structure.

~ ~
~

Figure 14. Graphic Documents

Graphics inside documents are produced using the QuickDraw graphics
package. The package can draw seven fundamental graphic forms-lines,
rectangles, ovals, rounded-corner rectangles, wedges, polygons, and
arbitrary regions--either in outline or filled with a solid pattern.
It can also place and manipulate images defined bit-by-bit. A tool can
give the user the ability to draw anything from simple line drawings to
finely textured halftone pictures.

The tool must itself determine how to respond to the mouse and keyboard
in creating and manipulating graphics.

Appearance of Text
Most people, even bibliophobes, are confronted with a wide variety of
printed matter on daily basis. Our eyes are so accustomed to seeing a
myriad of typestyles, typesizes and typefaces used in publications to
embellish or emphasize the content, that we no longer take special
note. Developing eye-catching and pleasing typefaces has been an art
unto itself since Gutenberg. Appropriate and aesthetically embued
typesetting has been traditionally the domain of tooled craftsmen. By
contrast, the repertoire of currently available computer 'typefaces' is
thoroughly devoid of aesthetic nuances and provides but a bleak parody
of the printed world.

CHARACTERS Hoffman-Espinosa 10/11/82

,

INSIDE OOCUMENTS 35

Macintosh documents can contain characters in a number of different
typefaces, typestyles, and typesizes. Type can abut closely or appear
loosely packed; parts of some characters (such as the curl of a y) can
reach back under or up over adjacent characters; and text can freely
intermix with graphics. After all, text is just a specialized form of
graphics.

Note that in this context, numbers are considered text: to users, the
external appearance of digits is the same as that of other text
characters. The following discussion thus pertains to numerical
information as well as natural-language text.

- For more information on the aesthetics of type design, see a good
typography book; David Gates' .!IE!, is recommended. For
implementation details on how to place characters on the screen,
see the Macintosh User Interface ToolBox manual
QuickDraw: A Programmer's Guide.

Typefaces, Typesize, and Fonts
A typeface is a set of typographical characters composed with a
coherent "feel" and consistent design. Things that relate characters
in a typeface include the thickness of vertical and horizontal lines,
the degree and position of curves and swirls, the use of serifs, etc.
Typefaces have names, usually historical: Bodon!, Goudy, Tile, etc.
The identity of a typeface is independent of its size or any particular
typestyle it may conform to (see below).

Typesize in the printing world is measured in points, a point being
reasonably close to 1/72 inch. The resolution (in points per inch) of
the Macintosh screen is quite close to this, but not close enough to
keep accurately to printers' measurements. But we do describe typesize
loosely in "points", which have no correlation to the mathematical
entity of a point in the QuickDraw graphics package, or to anything
else for that matter. In talking about type, we use points as a rough
indication of vertical size.

A font is the entire set of characters of a specific typeface and
typesize. For example, Helvetica8 refers to a font that contains
characters of the typeface named Helvetica at a size of 8 points. In
addition to all the uppercase and lowercase letters, numerals and
punctuation marks, a font may include mathematical symbols, accented
letters or other special characters.

CRARActERS Hoffman-Espinosa 10/11/82

36 User Interface Guidelines

Tjm,.:i llnman J 0, • JJ..'flil,; tlnde..rHned.._Oin9Mnl, lllldllW.
Times Roman 14, BJ/d JJJlli:
Helvetica 1q [m8D cm::mtbm
Helvetica 14;11f&,4\IJ'I
Type lOv, ~

Gacha 12, m»1Jf/J Qf¥/(Jtf mqn,a,JH' Blfr(l{p

~lb' tnglif' 18

Hocklin 36v

Figure 15. Type

Typestyles
Macintosh does not require the use of separate fonts to accommodate
different styles of the same typeface. A character of any font may be
subjected to a group of transformations that modify its general
appearance: such a modification is called a typestyle. There are five
fundamental typestyles: bold characters, italic (slanted) characters,
outlined characters, underlined characters, and shadowed characters.
Any combination of these typestyles can be used, but Macintosh cannot
be held accountable for any aesthetic atrocities that may be
perpetrated by an insensitive user.

Proportionally Spaced vs. Monospace Fonts
Most printing fonts are proportionally spaced (also known as variable
pitch). This means that, for example, the "i" is narrower than an ''m";
the "W" wider than the "J".

In a monospace (fixed pitch) font, all characters are of the same
width. Monospace fonts are generally less attractive than
proportionally spaced fonts. Monospace fonts are sometimes called
"typewriter" fonts.

Monospace fonts are appropriate for some applications, such as COBOL
coding forms, but generally discouraged in Macintosh. As monospaced
fonts are merely a degenerate case of proportional fonts, they can be
used just as easily as proportional fonts, when they are needed. It's
necessary, for example, for proportional fonts to have monoapaced
numerals, so that columns of numbers line up neatly when aligned at
decimal tab stops.

CHARACTERS Roffman-Espinosa 10/11/82

INSIDE DOCUMENTS 37

Standard Fonts
Macintosh uses a distinct system font when presenting its labels,
messages, and lists to the user. System-provided text in this font
cannot be edited. The Macintosh system font is CreamlO; users and
tools may not use this font.

There is always a standard font in which all information the user has
entered will appear: the user font is HelveticalO, a nice, sans serif,
reasonably compact face.

The use of any other fonts depends on the particular tool being used.
The word processor, in all probability, will allow the user more
multiple font ability than most other tools.

COMMANDS Espinosa-Hoffman 10/11/82

38 User Interface Guidelines

WORKING WITH MACINTOSH

So far, this document has described many things about the Macintosh
user interface: how it accepts inpout from the user, how it displays
information on its screen, and how the conceptual underpinnings of the
system control the structure of interactions. But nothing has been
said about how these things work together.

This section describes how input affects output: how Macintosh works.
It discusses the methods the user will use to perform actions, select
information, and choose commands to operate on that information.

Direct Manipulation: __ C_o_n_t_r_o_l_s ___________________ _

"Piaget has hypothesized that infants first learn about
causation by realizing that they can directly manipulate objects
around them--pull off their blankets, throw their bottles, drop
toys ••• Such direct manipulations, even on the part of infants,
involve certain shared features that characterize the notion of
direct causation that is so integral a part of our constant
everyday functioning in our environment-as when we flip light
switches, button our shirts, open doors, etc."

- Lakoff & Johnson, 1980

Friendly systems act on direct causation-they do what they're told.
Performing actions on a system in an indirect fashion (by typing words
and pressing RETURN, or by obediently choosing one item from the
currently displayed list) reduces the sense of direct manipulation that
is basic to the feeling of causation. To give Macintosh users the
feeling that they are in control of their machines, many of a tool's
features are implemented with controls: graphic objects that, when
directly manipulated by the mouse, cause instant action with graphic
results.

Three kinds of controls are supported by the Control Manager in the
User Interface ToolBox: buttons, check-boxes, and dials.

Buttons
Buttons are small objects, usually inside a window (but occasionally on
the desk top), labeled with words or an icon. Clicking or pressing a
button performs the instantaneous or continuous action described by the
button's label.

Buttons usually perform instantaneous actions, like opening or closing
windows, or acknowledging error messages. Occasionally, they can also
perform continuous action: the scroll arrows on a scroll bar are
continuous-action buttons.

WORKING Espinosa 10/11/82

,

WORKING WITH MACINTOSH 39

The Control Manager defines one kind of button, an instantaneous or
continuous pushbutton, labeled with a verbal title. A tool may include
a procedure to define a custom button, which can be linked in to the
Control Manager and used just like the standard button.

Check-Boxes
Check-boxes are a variant of buttons. Where buttons perform
instantaneous or continuous actions, check-boxes display a state that
the user can change. Most commonly seen when filling out a form or
setting parameters, check-boxes are small squares that appear either
empty or filled in with a check-mark. The boxes are usually adjacent
to a word or icon that describes the meaning of the box.

Clicking in a check-box flips its state, from checked to unchecked or
vice-versa. Dragging through a field of check-boxes flips the state of
the first and assigns the new state to all other boxes dragged through.

A check-box may belong to a group of boxes. If there are no
interrelationships among the boxes, they are checked and unchecked as
above. But if the boxes are related such that one and only one must be
checked at any given time, they work like "radio buttons": clicking in
an unmarked box marks that box and unmarks the previously marked box.
Such groups should be labeled clearly, "Choose one of the following:".
The checked appearance of this kind of box is visually distinct from
normal, ungrouped check-boxes.

@utton 1)

@utton ~

D Check ·Bax J
D Che.r.k·.Bor 1.

3• ~

Figure 16. Buttons, Check-Boxes, and Dials

WORKING Espinosa 10/11/82

40 User Interface Guidelines

Dials
Dials display the value, magnitude, or position of something in the
tool or system, and optionally allow the user to alter that value.
Dials are predominantly analog devices, displaying their values
graphically and allowing the user to change the value by dragging an
indicator; dials may also have a digital display.

The best example of a dial is the shaft of a scroll bar. The indicator
of the scroll bar is the thumb; it represents the position of the
window over the length of the document. The user can drag the thumb to
change that position.

Just as with buttons, there are a few standard dials defined in the
ROM, but a programmer can implement a custom dial and link it in with
the control mechanism.

Selecting Information
A previous section mentioned that Macintosh has one purpose only: to
manipulate information. If this is true, then there is a simple
operational paradigm to cover all situations:

(hand)
First select some information, then manipulate it.

This paradigm minimizes modality in basic operations. By selecting the
information first, the user is free to select different information
without being committed to a certain manipulation.

The following sections describe the two parts of this basic paradigm:
how to select information in a document, and how to choose commands to
manipulate that information.

The Selection
The selection is the collection of information that will be acted upon
by the next command. There is always one and only one active selection
in the active window. The selection can be so large as to enclose all
the information in the document, or it can be so small as to merely
indicate the position between two pieces of information, enclosing
nothing at all; the latter selection is called an insertion ~oint. The
insertion point indicates the position at which newly entere
information will be placed.

Positioning the pointer over the user's information in the active
document and pressing the mouse button usually begins a selection.
Once the button is pressed, the selection can be completed in two ways:

1. Clicking selects one piece of information or a position between
pieces of information.

2. Dragging selects a group of information.

SELECTING Espinosa-Hoffman 10/11/82

WORKING WITH MACINTOSH 41

i,.-:l _lfl -~ li:-:-:t ,J,:,:~ljf11r:-fd.

I-i,_,1i,-~ 1'r,~1 i.'i11 r,,.·1,L: .,r.-1n·:,rt,..,j lf1

'! ;.!, '''\. { l 11;. f \""\f\·;- I, I ~ _ r .. • L 1 _ • 1 . , _
1

!Q-l
! ! !/~ l l
I :
I I

\ t
=···-····· -1

Figure 17. Selecting Information

The exact behavior of clicking and dragging to make the selection
depends on the structure of the document.

- Clicking in text selects the position between the two characters
nearest the pointer; this position becomes the insertion point.
The insertion point in text is represented by a blinking vertical
bar.

Clicking in a structured document selects either the cell under
the pointer, the position between two adjacent cells, or the
corner of four cells. The latter two selections are insertion
points, and are represented by blinking vertical or horizontal
bars, or by a blinking cross.

Clicking in a free-form document selects the item under the
pointer. If the pointer is not over a piece of the user's
information, clicking either does nothing, or selects a position
in the document. This position, the insertion point, is marked by
an "anchor" icon.

SELECTING Espinosa-Hoffman 10/11/82

42 User Interface Guidelines

This is ten in a ten 40C"Dment.
Notice tbat dmacters are interte4 in
step Yith theJmovint J)Ointer. I

G)

/
Figure 18. Selection by Clicking

Clicking in editable user information always creates a new selection;
the information selected is highlighted and the previous selection is
unhighlighted. Highlighted text appears white-on-black; highlighted
graphics appear with "knobs".

Dragging through editable user information selects a group of
information. It would seem that dragging should select all items
dragged over--to select items, press the mouse button. drag across the
items, then release-but experience proves that selecting only those
items that were dragged over is inefficient. Instead, consider
dragging as defining two points: the point where the button was
pressed and the point where it was released. Dragging then selects
everything between those two points, according to the structure of the
document, regardless of the path of the mouse. The objects under the
two points are included in the selection, as are all items between
those two points.

- Dragging through text selects all characters, in textual order,
from the character under the first point to the character under
the last point.

Dragging through a structured document selects all cells in the
rectangle whose corners are the cell under the first point and the
cell under the last point.

Dragging through a free-form document selects all items completely
enclosed by the rectangle whose corners are the first and last
points.

During the dragging, the selection is visible-the items that will be
selected are highlighted, in real time, according to the current

SELECTING Espinosa-Hoffman 10/11/82

,

WORKING WITH MACINTOSH 43

position of the pointer. But the selection is not actually confirmed
until the mouse button is released. If the user moves the pointer back
to the first point and releases the mouse button, the result is the
same as a click at that position (see above)

The items between the two points are selected regardless of the
relative orientation of the two points. Starting at the end of a
sentence and dragging backwards to the beginning operates just as well
as starting at the beginning and dragging to the end.

Once the selection is made, the selected items are highlighted and the
items in the previous selection are unhighlighted. There is no
mechanism for restoring the previous selection.

(hand)
After a selection is made, the pointer becomes invisible
so as not to obscure the selection. The pointer
reappears the next time the user moves the mouse.

Selection by Command
Some logical groupings of information are more commonly selected than
others-columns or rows in a spreadsheet, paragraphs in a word
processor, etc. And occasionally it's convenient for the tool to
select a piece of information automatically--such as a word or phrase
that the user is searching for.

In these cases, the invocation of a command may explicitly or
implicitly make a new selection. For example, a tool may have a
"Select All" command to select all information in the document; a
spelling checker could have a "Select Next Misspelled Word" command,
etc.

When any such command is invoked, the tool must scroll the document
automatically in order to present as much as possible of the new
selection.

Automatic Scrolling During Selection
The only limit on the size of the selection is the size of the document
itself; the largest possible selection is the entire document.

But the normal method of selecting as outlined above can't handle
selections that extend outside the window. We therefore define a way
to scroll the contents of the window during selection:

If during selection the user drags beyond the borders of the
window, the contents of the window will scroll (automatically and
continuously) away from that border. New information scrolled
into the window becomes selected and is highlighted accordingly.
Scrolling stops when the user either releases the mouse button or
moves the pointer back into the window: the latter case resumes
normal selection.

SELECTING Espinosa-Hoffman 10/11/82

44 User Interface Guidelines

"Window" in the above paragraph applies to a single panel of a split
window; beginning a selection in a panel and moving out of that panel
scrolls only that panel.

Extending the Selection
Selection by dragging and automatic scrolling is fine for relatively
small selections, but its usefulness deteriorates as the desired
selection grows larger. An alternate method can be used to raake a
large selection: this process is called extending~ selection. A
selection made in this way is treated the same as any other selection.

Extending the selection merely adds to the current selection. Whereas
making a normal selection removes the previous selection, making an
extended selection enlarges the previous selection to extend to the
newly selected position.

1.

,t

Figure 19. Extending a Selection

l.
Scroll

4.
Finished

An extended selection is made by positioning the pointer, holding down
either of the SHIFT keys on the keyboard, then pressing the mouse
button. When the mouse button is pressed, all information between the
original selection and the current pointer position (inclusive) becomes
selected and highlighted. The user can then drag the mouse around and
complete the selection as usual. The SHIFT key may be released at any
time without affecting the selection.

Extended selections can be made across two panels of a split window.

SELECTING Espinosa-Hoffman 10/11/82

i

WORKING WITH MACINTOSH 45

Making a Discontiguous Selection
Some tools may choose to allow selections that are discontiguous: that
comprise one or more unconnected pieces, that have "holes", or both.
How a tool deals with operations on such selections is up to its
designers; the following is merely an outline of how such selections
are made.

(hand)
Discontiguous selection of text is not supported. It
causes ambiguity upon insertion.

Making a discontiguous selection is like making an extended selection
in that it merely augments the current selection, and also that it is
invoked by holding down a keyboard key while pressing the mouse button.

-

1,

lj-1\

-
~

1.
Move

4.
Finished

Figure 20. Making a Discontiguous Selection

A discontiguous selection is made by positioning the pointer, holding
down the COMMAND key, and pressing the mouse button. It continues like
a normal selection: the user drags the mouse to indicate the last
point, then releases the mouse button. The COMMAND key may be released
at any time without affecting the selection. But the kind of selection
that's being made depends upon the posiition of the pointer when the
mouse button is pressed:

- If the pointer is not inside the previous selection, the operation
is a normal selection that does not remove the previous selection.
Both selected areas are highlighted on the screen; they are both
considered parts of the selection.

- If the pointer is inside the previous selection, the operation
becomes a deselection: the information "selected" becomes
deselected and unhighlighted. The remaining information, even if

SELECTING Espinosa-Hoffman 10/11/82

46 User Interface Guidelines

it contains a hole, is the selection.

With this paradigm, any arbitrary collection of items in the document
may be selected. Once again, the selection comprises all highlighted
items; there is one and only one selection.

Discontiguous selections can be made in any pane of a split window.

COMMANDS Espinosa-Hoffman 10/11/82

COMMANDS 47

COMMANDS

Once the information to be operated on has been selected, a command to
operate on that information can be chosen from lists of commands called
menus.

A principal problem with menu-driven systems is that it's difficult for
the menu to share the screen with the information being worked on, and
especially difficult to show all menus at the same time. Most systems
"solve" these problems with modal tree-structured hierarchies of menus,
where menus are chosen from a menu of menus, while the user's
information has disappeared from the screen. Unfriendly because it
segregates information from commands, and confusing because it forces
users to "walk" up and down trees of menus, this approach will not work
for Macintosh. Instead, taking advantage of Macintosh's ability to
overlap things on the screen, we make all menus available at all times
(with the user's information still visible) by means of pull-down
menus.

The Menu Bar
The menu bar is displayed at the top of the screen. It contains a
number of words and phrases: these are the titles of the menus (see
below) associated with the current tool. The contents of the menu bar
and the corresponding menus are different for each tool. In this sense
the tool is said to "own" the menu bar.

There is one and only one menu bar on the screen at any time.
Exceptions may be made in special cases: full-screen games may need no
menu bar, for example.

(hand)
The titles in the menu bar, and their corresponding
menus, should remain constant throughout the tool. A
tool should not change the available menus or put up
different menu bars at different times.

Of Mice and Menus
The user positions the pointer over a menu title on the menu bar and
presses and holds the mouse button. The title becomes highlighted and
a rectangular menu descends from. the menu bar under the title; it
remains down as long as the mouse button is held down, or until the
user moves the pointer away from. the menu.

The menu contains a number of items, usually stacked vertically inside
the menu; each item names an operation that can be performed. The
items may contain words, icons, or both. To invoke a command in the
menu, the user drags the pointer down to the menu item (which becomes
highlighted), then releases the mouse button. As soon as the
mouse button is released, the menu item blinks briefly, the menu
disappears, and the command is executed. The menu title in the
menu bar remains highlighted until the command has completed execution.

COMMANDS Espinosa-Hoffman 10/11/82

48 User Interface Guidelines

Menu Bat

Menu Item
Menu Item
14enu Item

Menu

Figure 21. Pull-Down Menus

Because the user chooses a menu item only by pointing the pointer at
it, and its command takes effect only when the mouse button is
released, if the user drags the mouse outside the menu area (when the
menus are showing) and releases the mouse button, no command is
selected and no action takes place. Thus there is always recourse
should the user have a change of heart after pulling down a menu, and
the user is never forced to activate a command.

(hand)
The menu items, and NOT the menu titles in the menu bar,
act upon selections. Users should always be able to
peruse the inventory of commands by dragging the pointer
across the menu bar without fear of causing something to
happen.

The only way to pull down a menu is to press the mouse button while the
pointer is in the menu bar. While the user is holding down the
mouse button, the pointer does nothing but pull menus down and
highlight their items.

If the user tries to perform an operation on a selection that is not
currently visible, automatic scrolling occurs to make the selection
visible before the operation is performed. The document scrolls until
the selection is completely in view or, if the selection is very large,
the entire window is filled with the part of the selection nearest to
the current position; then the chosen operation is performed.

Notes on General Properties of Menus
Not all menu items are relevant at all times. A menu item that is
inapplicable to the current selection is visually distinct from the
others (perhaps grayed out) and will not highlight when a user tries to
choose it. Repeated attempts by the user to choose an ineffective menu

COMMANDS Espinosa-Hoffman 10/11/82

'

COMMANDS 49

item warrant explanations from the alert mechanism (see SPECIAL
CONDITIONS).

(hand)
A menu in the menu bar can always be pulled down, even if
all its menu items are ineffective; in such cases, the
menu title is also grayed out. The user should always be
able to survey all the available commands, even if they
are inoperative.

Commands that may be invoked from the keyboard with the COMMAND key
(see below) have a special notation on the right side of the menu. The
notation consists at present of an apple symbol and the key that is
used with COMMAND to invoke that command.

Menu items are grouped in a menu to emphasize the logical relationships
among the groups. Groups are separated by a one-item-high blank space
that serves to visually distinguish the groups. This space is not an
item and is not highlighted when the pointer 1110ves over it.

Experience shows us that it's easiest for users to choose the second,
third, and fourth items in the menu: thy're far enough away from the
menu bar to reach them without overshooting, but still not too much of
a reach down. We recommend that the most common and safest commands go
in these positions.

Also in regards to safety, the co1111!lands that cause the greatest effect
(such as Quit) should be separated from other, less "dangerous"
commands. Similarly, pairs of commands that perform similar functions
with slight differences should not be adjacent; a user may choose one
accidentally, intending the other, and not notice the subtle
difference.

Tit1t Tit1t Tit1t Titlt ~,tt;:r:d !t\lu Tit1t

Item
Checked Item

Apple-Jeer 4iA
Item
(Jn"j~ !Ctm
Item

Figure 22. General Properties of Menus

COMMANDS Espinosa-Hoffman 10/11/82

50 User Interface Guidelines

Some commands come in pairs, with only one command of the pair being
appropriate at any given time. Most often these pairs control the
appearance of something on the desk: one command makes the object
visible, and the other command makes it invisible. For example, in the
Word Processor, the rulers that set margins and paragraph formatting
are normally visible in the window. If the user wishes to remove the
rulers, there is a command called "Hide Rulers". When the user invokes
this command, the rulers disappear and remain hidden; meanwhile, that
command has been replaced with its counterpart, "Show Rulers".

{hand)
These are not two different commands; they are opposite
sides of the same command. The intent of this pairing
method is to shorten and simplify menus. The pairing
does not make a good indicator of state.

Some status information can be conveniently shown in menus, with the
commands that affect that status. If all the information in the
selection shares a certain characteristic, and that characteristic can
be set with a menu command, that command is marked with a check-mark to
show the state of the selection.

Also, in situations where commands in a menu not only perform their
function on the selection, but also set a state that controls the
interpretation of subsequent input {such as the Bold command), the
commands whose states are currently in effect are similarly marked. In
this way the menu allows the user not only to change how subsequent
input will be interpreted, but also to see the interpretation before
changing it.

The Standard Menus
Although the titles on the menu bar are different in each tool, the
three menus at the left of the menu bar {the Apple, Edit, and File)
remain the same at all times.

The commands and information in these menus pertain to functions common
to all Macintosh users: inquiring the state of the current tool and
data, invoking global system functions, and loading, saving, and
printing documents.

The Apple Menu

Apple
Calculator
Alarm Clock
Note Pad
AppleGram

Tool Information
Document Information

COMMANDS Espinosa-Hoffman 10/11/82

,

COMMANDS 51

Beginning the Apple menu are the names of the desk accessories
currently available to the system. Choosing a name activates the
corresponding accessory and places it on the desk; double-clicking the
close box on the accessory makes it disappear and reactivates the
previously active window. The list of available accessories changes
with the availability of the accessories themselves.

The "Tool Information" and "Document Information" commands in the Apple
menu let the user see information pertaining to the current state of
the tool being used (its author, publisher, copyright message, version
number, perhaps a hotline number) and the current document (its size,
file name, label, creation and modification dates, "home" location or
diskette, and any other status information).

These commands, when invoked, present a window that contains the
appropriate information; the window remains on the desk top until the
user explicitly removes it by double-clicking its close box.

The document information window gives the user the ability to see
important but little-used information about the current document,
without taking up valuable screen space when the information isn't
needed. The tool information is an important tool in the continued
support of the customer: should anything go wrong with a tool, the
users have a way to refer to the exact version number of the
problematic program when seeking help from a dealer or hotline.

In tools that have a global "help" facility, the Help command appears
at the bottom of the Apple menu.

The Edit Menu
The Edit menu includes all the editing commands necessary to manipulate
pieces of documents.

Edit
Undo {what}

Copy
Cut
Paste

Select Everything

The effects of the four editing commands are more thoroughly discussed
in the BASIC EDITING PARADIGMS, below. Briefly, Cut removes the
selection from the document, storing it in an intermediate window
called the scrap; Paste replaces the current selection with the
contents of the scrap; Copy duplicates the selection into the scrap
without removing it from the document; and Undo negates the action of
the immediately previous command.

Selection commands and other editing functions appropriate to the
current tool may also appear in the Edit menu, but the location and
order of the first four items must not change.

COMMANDS Espinosa-Hoffman 10/11/82

52 User Interface Guidelines

The File Menu
Although the exact functionality and layout of the File menu has yet to
be worked out, our current thinking has it resembling this:

File
Quit this tool

Save this document
Print this document

Get another document

"Save this document" saves the current document into a file; "Get
another document" gets a new document from another file; and "Print
this document" invokes the printing subsystem of the tool.

"Save" and "Get" allow the user to use a limited subset of the Desk
functions in selecting, creating, or naming the file associated with
the document.

The "Quit" command is in the Files menu to make sure that users see
their opportunity to save their work before quitting. Conversely, in
the process of saving their work, they see their opportunity to leave
the tool. If the user chooses to Quit before saving the document, the
tool should give a gentle yet firm reminder that quitting now will
cause the loss of all that information, and request confirmation before
actually quitting.

Keyboard-Invoked Commands
The editing paradigms described below allow a user to perform all basic
object manipulation-adding, removingt replacingt and moving-using the
keyboard to enter textt the mouse to select text, and the commands in
the Edit menu to manipulate it.

But this paradigm is likely to generate a lot of hand-waving-the
user's hand must move from the keyboard to the mouset and move the
mouse from. the document to the menu bar. As .!!!. optimization to reduce
hand motion, common commands available on the three standard menus may
also be invoked from the keyboard, by using the COMMAND key in
combination with another key.

(hand)
When the user holds down the COMMAND key on the keyboard
and presses another key, that key is interpreted not as
text entry, but as an invocation of a menu command. If
the key does not correspond to any implemented command,
the alert mechanism is invoked to beep at the first
occurrence and give an alert message at any subsequent
occurrences.

When one of these command keys is pressed, the menu title of the menu
containing the corresponding command highlights while the operation is

COMMANDS Espinosa-Hoffman 10/11/82

COMMANDS 53

being performed, then reverts to normal. The menu itself does not pull
down.

The currently defined command keys are as follows:

COMMAND Z Paste

COMMAND X Cut

COMMAND C Copy

COMMAND V Undo

COMMAND space Save this document and quit

COMMAND/ or? Help

In all tools that have a Format or Typestyle menu to change the
typestyle while entering text, the following command key aliases are
supported:

COMMAND Q Plain text

COMMAND W Boldface

COMMAND E Italic style

COMMAND R Outline style

COMMAND T Underlined

COMMAND Y Shadowed

The commands, just like their counterparts in the menus, are
cumulative: pressing COMMAND E while Boldface is already in effect
results in bold italic text. The Plain Text coTDJDand undoes all other
styles.

The "OK" and "Cancel" buttons in dialog boxes (see below) also have
command aliases:

COMMAND Enter OK

COMMAND' or Cancel

Several emergency commands can be invoked from the keyboard. Note that
rebooting the system is not among them.

COMMAND.

COMMAND 1

COMMAND 2

COMMANDS

Stop current operation

Eject internal diskette

Eject external diskette

. Espinosa-Hoffman 10/11/82

54 User Interface Guidelines

(hand) J
The command keys are aranged positionally, not
mnemonically. The command keys retain their position
(not their alphabetical characters) on foreign keyboards.

What Commands Are and Aren't

- Commands, when invoked, operate immediately and return control to
the user when completed.

- Commands operate on something visible in the active window, or add
or remove a window on the desk.

- Commands that manipulate user information always operate upon the
active selection, never upon any nonselected data.

- Commands are either verbs or verb phrases, never nouns with an
implied verb.

- Most importantly, commands don't put the tool into an invisible
modal state.

EDITING Espinosa-Hoffman 10/11/82

BASIC EDITING PARADIGMS 55

BASIC EDITING PARADIGMS

The Macintosh User Interface ToolBox contains a set of core editing
routines that standardize the ways the user edits and manipulates text.
As long as application programmers use this package properly, every
piece of editable text the user sees on the Macintosh screen can be
edited using the same quick, consistent methods. The paradigm below
supports:

- Inserting, deleting, and replacing text;

- Hoving text from one place to another in the same document;

- Carrying information between two similar or dissimilar documents.

The core editing routines also handle font changes, typestyles, and
paragraph formatting; these abilities are further discussed in the
documentation of those routines.

(hand)
The following discusses only the operation of Cut, Paste,
Copy, Undo, insertion, and replacement on text. The same
procedures should operate in a conceptually parallel
manner on non-text items, i.e., graphics, spreadsheet
cells, etc. It is the responsibility of the designers
and programmers to maintain consistency in the editing
operations on non-text items.

The Selection
As described in the section on "Inside Documents 11, there is always one
and only one active selection in an active window that contains
editable text. A select~on takes one of two forms:

1. A selection between two characters that encloses no text: this
appears as a blinking vertical bar and is called an insertion
point.

2. A selection enclosing one or more characters of text.

The editing commands Cut, Paste, Copy, and Undo, whether invoked from
the Edit menu or by the COMMAND key on the keyboard, act upon the
selection. Typed characters also affect the selection.

The Scrap
The scrap goes hand in hand with the Edit menu. It is a very special
kind of window with a well-defined function: it holds whatever is cut
or copied from a document. It sticks around, its contents intact, when
the user changes tools.

Every time the user performs a Cut or Copy on the current selection, a
copy of the text in the selection replaces the previous contents of the

EDITING Espinosa-Hoffman 10/11/82

56 User Interface Guidelines

scrap.

The user can't select the scrap or any information inside it. But the
scrap window can be dragged around by its title bar, and can be
enlarged or reduced by dragging its size box. In most ways the scrap
behaves just like any other window.

B t'm-peve
!. ment, think in'
p

l

'bout \he govern

ment. Mel°I-
on the

Ca\ t-----+---1 hSIC

A J'm pavement
p thinkir/

T

E
mthe

R

mthe

'bout the govem-

menl Man8W

trenchcoet, bedge

out, @Mfd gays

on the

trenchcoat, badge

out Hlfl say, - -u ~ ·~r ~i·

leid of1,

Figure 23. Use of the Scrap

There is only one scrap, which is on the desk for all tools that
support Cut and Paste (it's hidden during games and such). If the user
doesn't want the scrap to interfere with other things on the screen,
the scrap can be shrunk to its smallest size, dragged nearly off the
screen, or buried under other documents. Nothing changes the contents
of the scrap except Cut, Copy, and Undo.

As the contents of the scrap remain unchanged when applications begin
and terminate, the scrap can be used for transferring data among
mutually compatible applications (see "Cutting and Pasting between
Tools", below).

The Cut and Copy commands
The Cut command removes the current selection from the active document
and puts it in the scrap. The selection completely replaces the
previous contents of the scrap. The selection in the document is
reduced to an insertion point.

If a Cut is attempted when the selection is an insertion point, Cut
doesn't light up in the menu when chosen. This prevents people from
accidentally cutting twice and losing the scrap.

Perfoming a Copy command puts a copy of the current selection into the
scrap, without changing the original selection in the active document.
Just as with a Cut, every Copy completely replaces the previous
contents of the scrap. Also like Cut, the Copy item won't light up if

EDITING Espinosa-Hoffman 10/11/82

BASIC EDITING PARADIGMS 57

the selection is an insertion point.

Paste
The Paste command is the effective antonym of Cut: it replaces the
current selection with the contents of the scrap. A Paste leaves the
contents of the scrap unaltered; the selection is set to an insertion
point at the end of the pasted text. With this, successive invocations
of Paste replicate the contents of the scrap at the selected position
in the document.

(eye)

Undo

Notice that in a Paste over an existing selection, the
contents of the selection do not go into the scrap; they
can be recovered only by an immediate invocation of Undo.

Finally, the Undo command is a one-level negation of the last command.
It always applies to all Edit commands; additionally, any larger scope
of Undo can be added by the application. If the previous operation was
an Undo, it undoes that Undo.

Inserting and Replacing Text
New text can be entered from the keyboard or numeric keypad. Typing
new text operates much like a Paste command.

Typed~ replaces the current selection. If the current selection is
an insertion point, the typed characters appear at the insertion point
and the insertion point moves past the characters. If the current
selection includes text, the entire selection is automatically reduced
to an insertion point, deleting the text; insertion then proceeds as
described above.

(hand)
Notice that if a selection is replaced with an entry from
the keyboard, the selection does not go into scrap. Its
contents can be recovered only through an immediate
invocation of Undo.

Backspacing .
Regardless of circumstances and context, if the selection is an
insertion point, pressing the BACKSPACE key deletes one character
before the insertion point and moves the insertion point to the left of
the position previously held by that character. This happens during
editing as well as text entry.

Pressing BACKSPACE while the selection contains characters operates
much like a Cut, except that the deleted characters go into the
backspace buffer (see below) rather than the scrap. The first
BACKSPACE deletes the selected text, reducing the selection to an
insertion point; subsequent presses of BACKSPACE operate as described

EDITING Espinosa-Hoffman 10/11/82

58 User Interface Guidelines

above.

Every press of BACKSPACE stores up the deleted characters in the
backspace buffer. Invoking the Undo command reinserts all characters
in this buffer back into the document at the insertion point.
Performing any other operation, such as typing characters or invoking
another command, clears this buffer; the deleted characters are then
unrecoverable.

Cutting and Pasting Between Documents
Sometimes the user wants to transfer a portion of one document into
another. The documents may have been created with the same tool, or
with disparate tools. Macintosh allows this kind of manipulation
through the mechanism of Cut/Copy and Paste.

Between Two Documents with the Same Principal Tool
Transferring information from one document to another created by the
same application does not pose any difficulty. For example, the user
may Copy the return address from 'Letter to Jef', Get 'Letter to Linda'
and Paste in the contents of the scrap.

When the user discards a tool and returns to the Desk, the scrap
retains not only its contents, but the contextual information pertinent
to the tool being used. If the user retrieves that same tool, it can
interpret that information, so there is little or no loss of context
when carrying something in the scrap from document to document.

Between Documents with Different Principal Tools
Macintosh provides a limited but adequate scheme for transferring
information from a document of one type to a document of another type.

Suppose the user wants to transfer a picture of a wolf (previously
created using the Graphics Editor) into a Word Processor document named
'Letter to Grandma'. Beginning at the Desk, the user gets the wolf
picture, automatically entering the Graphics Editor. There the picture
is selected and Cut or Copied into the scrap; then the user returns to
the Desk. The picture remains in the scrap.

Now the user calls up the letter to Grandma and enters the Word
Processor. Upon selecting a position and attempting to Paste, the Word
Processor examines the scrap and determines whether it is palatable.
As Graphics Editor pictures are implemented with the QuickDraw picture
structure, the Word Processor has no problem interpreting and
displaying the picture, and graciously pastes it into the letter.
However, in the letter the wolf and the rectangular area around it are
selectable only as a single unit; the individual parts of the wolf are
not editable. To the Word Processor the wolf is static data.

Each tool may have its own appropriate level of interpretation of the
scrap. If the user tries to Paste the scrap in a tool that does not
understand it, the tool presents an alert message to inform the user of

EDITING Espinosa-Hoffman 10/11/82

BASIC EDITING PARADIGMS 59

the undigestability of the scrap.

BOXES Espinosa-Roffman 10/11/82

60 User Interface Guidelines

SPECIAL CONDITIONS

The <noun>+<verb) syntax is wonderful and clean when the operations are
simple and act on only one object. But occasionally a command will
require more than one object, or will need additional parameters in
order to be most useful to the user. And sometimes a command won't be
able to carry out its normal function, or will be be befuddled as to
the user's real intent. For these special circumstances we have
included two mechanisms: the Dialog~ to garner additional
information, and the Alert mechanism to signal error or warning
conditions.

Dialog Boxes
Commands in menus normally act upon only one or two objects: the
current selection, the scrap, or a default object. If a command needs
more information before it can be performed, it presents a Dialog Box
to gather the additional information from the user.

A Dialog Box is a rectangle that may contain text, buttons, dials, and
icons. It is slightly below the menu bar, a bit narrower than the
screen, and as tall as its contents require. It is clearly labelled
with the name of the command whose invocation prompted the appearance
of the box.

Print u. Da:umes\t

~ copies
0 8 1 /J II by J J If paper

• S 112" by 14" pt.pet

0 14• by 11" paper

~ Stop lfter printing each p~e

De ox)

D(C.ANCEL)

De stoP J

D(P~USI)

Figure 24. A Dialog Box

Some dialog boxes may affect several properties at the same time or
show several choices of the same property. In such cases, the choices
have check-boxes next to them. The boxes next to properties that are
currently in force are checked. Clicking on a check box or the text
accompanying it puts a check-mark in the box; this may also cause other
boxes to become unchecked.

BOXES Espinosa-Hoffman 10/11/82

SPECIAL OONDITIONS 61

If the information requested by the dialog box is textual, the user can
enter and edit that text just like any other editable text. If the
information has a default value (which it should have, if possible),
the default text appears selected in the dialog box. If the user
starts typing, the selected value will be replaced with what the user
types. For boxes with many text items, the first one is selected when
the box appears. After editing an item,

- Pressing ENTER, TAB, or RETURN accepts the changes made to the
item, and selects the next item in sequence.

- Clicking in another item accepts the changes made to the previous
item and selects the newly clicked item.

There are, at the absolute minimum, two buttons in the Dialog Box-"OK"
and "Cancel". "OK" enforces the modifications in the properties
included in the Dialog Box, removes the Dialog Box from the screen, and
performs the command originally issued. "Cancel" dismisses the
Dialog Box without effecting any changes.

The "OK" and "Cancel" buttons should always appear in the same relative
orientation in the Dialog Box to preserve a consistent feel to the
interaction. They should be near the title of the dialog box to remind
the user of what command they will perform or cancel. They may be
marked with reinforcing icons, e.g., thumbs-up and thumbs-down.

A Dialog Box may include a "Stop" button, marked with an octagonal stop
sign, for stopping operations that are in progress, such as printing.

When a command requires some time to execute, its Dialog Box may
contain a dial that indicates the level of completion of the task in
progress.

The Alert Mechanism
Every user of every application is liable to do something that the
application won't understand. From simple typographical errors to
slips of the mouse to trying to write on a protected diskette, users
will constantly do things an application can't cope with in a normal
manner. The Alert mechanism gives applications a way to respond to
errors not only in a consistent manner, but in steps according to the
severity of the error, the user's level of expertise, and the
particular history of the error.

There are three levels of alerts:

1. Note: Probably a minor slip that's signaled by an audible
warning.

2. Caution: A condition in which the application can't understand
the user's input, and must request that the user change something.

3. Stop: A situation that requires definitive action on the part of
the user, such as inserting another diskette.

BOXES Espinosa-Hoffman 10/11/82

62 User Interface Guidelines

These are ranked in ascending order of importance. Not only are
program errors ranked in this manner, but repeating an error increases
its importance: receiving the same Note alert several times, for
example, turns it into a Caution, which warrants further explanation
and assistance.

Note alerts are signaled by a beep from the speaker; if the speaker
volume is turned off, the beep is inaudible. Caution and Stop alerts
warrant an alert box (see below).

Alert Boxes
Alert Boxes are similar in appearance to Dialog Boxes. Alert Boxes are
intended to give the user warnings and error messages. Before
describing Alert Boxes it is worth while mentioning a few words about
alert messages in general.

Alert Boxes are displayed to:

- Clarify the system's response to users' actions, (e.g., "This text
is not editable"),

- Lead the user through a series of actions required for the
completion of certain tasks, (e.g. "Please insert a diskette to
be copied to") ,

- Inform of a state that might affect users' future activities ("The
document is getting too long to hold in memory. You may want to
break it up into pieces"),

- Warn the user against doing something irrevocable or dangerous
("You will lose the contents of this diskette if you proceed with
initialization. Do you still want to initialize?"), giving an
opportunity to cancel the command, and

- Delay while a lengthy operation is being concluded.

How to Phrase an Alert Message
It is important to phrase messages in Alert Boxes so that users are not
left guessing the real meaning. Do not use computer jargon. Sometimes
it is difficult for the jaded to recognize jargon even as they use it.
If you have any doubts of the lucidity of a message, try it on an
unsuspecting naive friend.

Use icons whenever possible. Graphics can better describe some error
situations than words, and familiar icons help users distinguish their
alternatives better. The thumbs-up icon should always lead to the
safest route out of a situation.

Generally, it is better to be polite than abrupt, even if it means
lengthening the message. The role of the Alert Box is to be helpful
and make constructive suggestions, not to give out orders. But its
focus is to help the user solve the problem, not to give an interesting

BOXES Espinosa-Hoffman 10/11/82

SPECIAL CONDITIONS 63

but academic description of the problem itself.

Under no circumstances should an Alert message refer the user to
external documentation for further clarification. It should provide a
complete encapsulation of the information needed by the user to take
appropriate action.

(hand)
The best way to make an Alert message understandable is
to think carefully through the error condition itself.
Can the application handle this without an error? Is the
error specific enough so that the user can fix the
situation? What are the recommended solutions? Can the
exact item causing the error be displayed in the alert
message?

Be as specific as you can when signaling an error condition.

Appearance of Alert Boxes
An Alert Box is a rectangle just a little narrower than the screen and
of variable height. It may contain text, icons, dials and buttons. It
appears in a slightly lower position from where Dialog Boxes appear, to
emphasize that the alert message is more important.

De ox J
CA1JTIOR!

OttANCEL)

Your document is ~tting Im !Ille to fit on the

d.i!'okeu.,. San j1 .now t,eto,,-proceedfo& or ffod
anothtr diskette.

Figure 25. An Alert Box

All Alert Boxes have a 11Cancel 11 button that dismisses the box.
Alert Boxes that require confirmation to perform an action have an
additional "OK" button. Some Alert Boxes may include a "Stop" button
to allow the user to interrupt an ongoing operation. As in
Dialog Boxes, the relative orientation of these buttons should remain
the same from box to box.

If there are a small but finite number of ways to solve the problem,
the box may contain descriptions of those ways, each marked by

BOXES Espinosa-Hoffman 10/11/82

64 User Interface Guidelines

check-boxes. The user checks the desired solution and presses the "OK"
button.

Alert Boxes that require immediate attention contain a stop sign in the
upper-left corner of the box to emphasize the severity of the warning.

Alert Boxes that inform the user about a process' status may display
dials to indicate the level of completion of a task, much as in
Dialog Boxes.

FRIENDLY Hoffman 10/11/82

APPENDIX A: THOU-SHALT-NOTS OF A FRIENDLY USER INTERFACE 65

APPENDIX A: THOU-SHALT-NOTS OF A FRIENDLY USER INTERFACE

Here are six things to avoid when designing a friendly user interface.

1. Assigning more than one consequence to the same action.

2. Giving the user several ways to perform the same function.
Generally, it is much easier for users to learn a task when there
is only one obvious way of accomplishing it. Too many
alternatives in an unfamiliar environment may paralyze the user.

3. Overloading an application with too many esoteric features.
Before introducing another nifty feature, ask yourself how the
feature will affect the overall complexity of the application, and
how many users will benefit from the feature.

(hand)
Featurism is the single major contributor to system
complexity and user intimidation.

4. Changing the state of the world while the user is not looking.
One way to make a user comfortable with a system is to create an
environment that is predictable and consistent. For example, if
the contents of a menu change from one invocation to another, the
user comes to think that the machine has a mind of its own, and
feels that control of it will always be elusive.

S. Cluttering the screen. A cluttered and busy screen is frequently
a symptom of an application design that is not carefully thought
out. Reevaluating the reasons for different features (always
keeping the end user in mind) will generally result in a simpler,
more elegant program and visually more streamlined interface.

6. overenthusiastic use of modes. It is highly desirable, if not
always possible, to allow the user to go from one activity to
another without feeling trapped in a mode. For an eloquent
discussion of modes, the reader is referred to "The Smalltalk
Environment", an article by Larry Tesler in the August, 1981 issue
of BYTE magazine.

POINTERS Hoffman 10/11/82

66 User Interface Guidelines

APPENDIX B: POINTER SHAPES

Certain pointer shapes have been standardized to imply that specific
actions will occur when the mouse button is pushed.

(I-beam)
Text selection I

(Hollow Cross)
Selection in a structured document

(Plus sign)
Drawing graphics +

(Hourglass)
Long operation in progress (sometimes associated with a -,..
dial in a dialog box) m

(Arrow)
All remaining cases, including menus, desk top, graphics

~ selection, button-pushing and dial-dragging, dead data,
etc.

HARDWARE Espinosa-Hoffman 10/11/82

,

APPENDIX C: THE PHYSICAL BOX 67

APPENDIX C: THE PHYSICAL BOX

The following summarizes Macintosh's salient hardware features.

Physical box:

- A main unit with a built-in 9" CRT and a built-in minifloppy
drive;

- A detached keyboard;

- A mouse.

, ..

'\.

Figure 26. Macintosh

Memory capacity:

- 131,072 bytes (128K) of user and program memory, 21,888 bytes (21
3/8 K) of which are dedicated to the video display;

- 65,536 bytes (64K) permament (ROM) storage;

- 860,160 bytes (840K) storage on the built-in disk drive.

Microprocessor:

- Sixteen-bit Motorola MC68000 with eight 32-bit data registers,
seven 32-bit address registers, and two stack pointers.

- 56 instructions in 14 addressing modes; microprocessor runs at 8
million cycles per second (8MHz).

Display:

HARDWARE Espinosa-Hoffman 10/11/82

68 User Interface Guidelines

- 512 dots wide, 342 dots tall, black and white dots on a square
grid. Dots displayed at 80 dots per inch on a 9" screen.

This is the only configuration of Macintosh. There are no other memory
sizes, no different ROMs, no other video displays. The consistency of
the Macintosh user interface is based on the consistency of the
hardware: as every Macintosh ever sold is guaranteed to contain the
above, every application program written for this configuration will
run on 100% of the installed base.

The only options available are:

- A second 840K floppy disk drive;

- An 18-key numeric keypad;

- A dot-matrix or letter-quality printer;

- Connection to a RS-232, RS-422, or network communication device.

LAYOUTS Espinosa 10/11/82

APPENDIX D: KEYBOARD LAYOUTS AND CHARACTER ASSIGGNMENTS 69

APPENDIX D: KEYBOARD LAYOUTS AND CHARACTER ASSIGGNMENTS

Here are the keyboard layouts and ASCII character assignments for the
standard character sets in Macintosh:

LAYOUTS Espinosa 10/11/82

70 User Interface Guide1ines · ·

J

LAYOJJTS Espinosa 10/11/8~

APPENDIX D: KEYBOARD LAYOUTS AND CHARACTER ASSIGGNMENTS 71

LAYOUTS Espinosa 10/11/82

72 User Interface Guidelines

APPENDIX E: GUIDE TO ICONS

Here are the standard icons as used on our packing materials, on the
back of the Macintosh itselft and appearing in Macintosh software:

c... -..... ': .. ·. ~. : .. ;,...:. - . .

·-,

ICONS Espinosa 10/ 11/82

;

APPENDIX E: GUIDE TO ICONS 73

Espinosa 10/11/82

74 User Interface Guidelines

APPENDIX F: UNRESOLVED ISSUES

- What does th~ Close box do in the main document window for a tool?
Does it put away the document, unload the tool, and return the
user to the Desk? As Larry's tests show that users occasionally
hit the Close box when intending to drag the title bar (or pull
down a menu), is it proper for such a commonly-misused icon to
perform such a time-consuming task?

- When inactive windows in Lisa are dragged, they are brought to the
top afterward. We don't do this.

- Do Show Scrap/Hide Scrap exist? Where? And is the scrap called
the Clipping?

- How do Macintosh command-key assignments differ from those on
Lisa, and will we have a real Apple key rather than the word
COMMAND?

- Do Randy's Core Editing or Word Processor routines support
backspace-by-word, or unbackspace?

- There's a clash between the use of the stop sign as a warning icon
in Dialog and Alert Boxes and its use as an icon on the interrupt
button in the same place.

- COMMAND-Click and SHIFT-click, and their conflict in the Craphics
Editor, is unresolved.

- The 1/4"-grey-around-the-edges was dropped in this draft. It is
superfluous, hard to code, and adds little to the illusion.

GLOSSARY Espinosa 10/2/82

;

TECHNICAL LEXICON 75

TECHNICAL LEXICON

These terms are defined here in their technical meaning and
relationship to one another. Users will never encounter some of the
terms mentioned here; neither will they read the descriptions as
phrased here. For a users'-eye-view of Macintosh terminology, please
see the glossaries in the Macintosh User Style Guide and in the
Macintosh Introduction manual.

Active Selection

Active Window

Alarm Clock

Alert Box

Alert Message

Automatic Scrolling

Back

Behind

Button

GLOSSARY

(Noun) See Selection, Active

(Noun) See Window, Active

(Noun) A desk accessory that displays the
current date and time, as well as allowing the
user to set an alarm date and time and an
alarm message.
Usage: Same as Desk Accessory

(Noun) A window containing warnings and
cautions, which appears when a tool encounters
an unsolvable error or a dangerous situation.
An alert box always contains two buttons,
labeled OK and Cancel.
See Also: Alert Message
Usag~Present an A.B.

(Noun) An audible or visible message or
warning generated by the computer to signal
input errors, problems interpreting data, or
situations threatening the safety of the
user's data.
See Also: Alert box --
(Noun) See Scrolling, Automatic

(Noun) The position or orientation of objects
on the desk furthest from and least visible to
the user; objects in front overlap and obscure
objects in the back.
See Also: Front Window Behind
Usag~Send to the b. In b. of another

(Adverb) In the position or orientation
towards the back. An object on the desk is
behind all the objects that are in front of
it.

(Noun) A control that causes an action when
clicked or pressed. Buttons highlight when
pressed.
Usage: Press Click

Espinosa 10/2/82

76 User Interface Guidelines

Button, Mouse

Calculat-or

Cancel button

Check Box

Choose

Click

Close

Close Box

Closed

Command

GLOSSARY

(Noun) See Mouse Button.

(Noun) A desk accessory that emulates a
four-function desk calculator. Calculation
results can be cut and pasted between the
calculator and the user's document.
Usage: Same as Desk Accessory

(Noun) A button that, when pressed, cancels a
proposed action or action in progress. The
cancel button is labeled "Cancel" and is
marked with a thumbs-down icon.
See Also: OK button --Usage: Same as button

(Noun) A control in the shape of a square box,
which may or may not have a check mark in it.
Clicking in a check box toggles its state, and
may affect the state of related check boxes.
Usage: Check Click

(Verb) To pick a menu item from a menu.
Usage: Choose a command Choose a menu item

(Verb) To position the pointer and briefly
press and release the mouse button without
moving the mouse.
See Also: Drag Double-Click
Usage: Click an object Click the mouse

button

(Verb) To remove the window from a document;
you close a window to reduce it to an icon
that represents the document.
Usage: Close a window (never close a file)

(Noun) The box on the left side of the title
bar of a document window that, when clicked,
closes the window. The close box contains an
icon of a document that "winks" when ckicked.
Usage: Click the close box

(Adjective) The state of a window when the
document it contains is not visible.
Documents whose windows have been closed are
represented by icons.

(Noun) A word (usually appearing as a menu
item) that describes an action that a
Macintosh tool can perform; or the action
itself.
Usage: Choose a command from a menu The

command takes effect

Espinosa 10/2/82

Control

Control Panel

Desk

Desk Accessories

Desktop

Dial

TECHNICAL LEXICON 77

(Noun) An object on the screen that causes an
action when clicked or dragged; buttons,
dials, and scroll bars are the most common
controls.
Usage: Use only when necessary.

(Noun) A desk accessory full of controls.
With it, the user can change the speaker
volume, the keyboard repeat speed and delay,
system paranoia level, etc.
Usage: Same as Desk Accessory

(Noun) The tool that deals with coying,
moving, creating, deleting, and changing the
names of files •. Also refers to the smaller
version used within applications.
Usage: On the desk(?)

(Noun) Mini-tools generally available at all
times. A pocket calculator, note pad,
telegram form, alarm clock, and the control
panel are the currently imagined desk
accessories.
Usage: Get a D.A. Use the D.A.

(Noun) The metaphor for the Macintosh working
environment.
See Also: Desk --
(Noun) A control that acts as a pseudo-analog
output and/or input device.
See Also: Scroll Bar
Usage:Adjuat a dial

Dialog Box (Noun) A window opened by a tool that requests
the user for entry or confirmation of
information. A dialog box is presented when a
chosen command needs more information in order
to take effect.
See Also: Alert Box
Usage: Present a d.b. Close the d.b.

Discontiguous Selection (Noun) See Selection, Discontiguous

Disk (Noun) Any kind of rotating magnetic storage
device.
See Also: Diskette Disk Drive
Usage:Save on ad. Get from a d.

Disk Dt'ive (Noun) The mechanism that stores and retrieves
the information on a disk.
See Also: Diskette --

GLOSSARY Espinosa 10/2/82

78 User Interface Guidelines

Diskette (Noun) A thin, plastic disk.
See Also: Disk Drive
uiiag~Insert the d. Eject the d. On the d.

Document {Noun) A collection of information
intelligible to a user.
See Also: File Window Tool
Usag~Get ad. Save ad. Scroll ad.

Document Panel {Noun) The pane of a document window that
presents the document itself, as opposed to
status panes, formula panes, etc.
See Also: Panel
Usag;-;---Avoid if poaaible.

Document Window (Noun) A window that displays a document.
Document windowa usually come equipped with a
title bar, one or two scroll bars, a size box,
and a close box.
Usage: Use only when "window" is ambiguous.

Double-Click {Verb) To click the mouse button again shortly
after a previous click. Double-clicking an
object enhances or expands the action normally
caused by singly clicking that object.
Usage: D.C. an object D.C. the mouse button

Drag (Verb) To press and hold the mouse button
while moving the mouse. Dragging either
selects items (when done inside the window) or
drags a flickering outline of an object
{outside the window).
See Also: Click Select Choose Size Window
- - Split a Window
Usage: D. an object D. the mouse D. out a

rectangle D. across the text

Enter {Verb) To insert or add information into the
computer, usually by typing on the keyboard.
Entries are usually terminated by a press of
the ENTER key.
Usage: E. the name

Extend (the Selection) (Verb) To make the active selection larger by
holding down the COMMAND key while making
another selection. The two selections and all
items in between become the new selection.

File

GLOSSARY

See Also: Select Selection
Usag~Extend the Selection Make an extended

selection

(Noun) A storage container for information.
See Also: Document Tool Window Resource

File

Espinosa 10/2/82

,

File

File Name

Font

Front

Highlight

Icon

Inactive Selection

Inactive Window

Insertion Point

Invert

GLOSSARY

TECHNICAL LEXICON 79

Usage: Delete a f. Copy a f. Move a f.
Rename a£.

(Verb) To put a document into a file, or get a
document from a file.

(Noun) The name attached to a file by its
creator.

(Noun) A set of characters of the same
typeface and size.
See Also: Typestyle
Usage: Appears in the f.

(Noun) The position or orientation of objects
on the desk that are closest and most visible
to the user; the active window is always in
front of any other windows.
See Also: Back Behind
Usage:Bring to the f. Inf. of others

Frontmost

(Verb) To emphasize something by making it
visually distinct from its normal appearance;
by inverting it, underlining it, making it
blink, or appear in boldface, etc.
See Also: Invert Select Front Window
Usage:H. the text Title bar is highlighted

(Noun) 111. An image; representation. 2. A
similie or symbol." (AHD) A graphic
representation of a material object, a
concept, or a message. Icons may be objects
on the desk.
Usage: Click an 1. Drag an 1. Labeled with

an i.

(Noun) See Selection, Inactive

(Noun) See Window, Inactive

(Noun) A selection enclosing nothing;
indicates the position between two items in a
document, or an absolute position in that
document. Indicates the point at which newly
inserted items will be placed.
See Also: Select
Usage: Make an I.P. At the I.P.

(Verb) To invert the black-and-white polarity
of an image; inverting is the most common form
of highlighting.
Usage: Inversely highlighted

Espinosa 10/2/82

80 User Interface Guidelines

Item

Key

Keyboard

Menu

Menu Bar

Menu Item

Menu Title

Mouse

Mouse Button

GLOSSARY

(Noun) A single piece of information in a
document. Each character in a text, each
shape or line in a picture, and each cell in a
spreadsheet is an item.
~ Also: Select Drag Extend (the

Selection)
Usage: Between two items Click an 1. Drag

over items

(Noun) A button on the keyboard. Character
keys are typed; modifier keys are held;
special keys are pressed.
Usage: Press a k. Hold down a k.

(Noun) The device uaed for entering text and
numeric data. The keyboard has 48 character
keys, 6 modifier keys, and 4 special keys.
See Also: Press Type Hold
Usage:Type on the k.

(Noun) A rectangular list of menu items, which
is pulled down from the menu bar; the user
chooses a menu item by pressing on a menu
title, dragging through the menu, and
releasing on a menu item.
See Also: Command
Usage:Choose from am. Pull down am.

(Noun) The horizontal strip at the top of the
screen that contains the menu titles.

(Noun) One item in a menu. A menu item may
contain words, an icon, or both. Menu items
usually describe commands. A menu item is
highlighted when the pointer is over it.
See Also: Choose
Usag~Choose a m.i.

(Noun) A word or phrase in the menu bar that
designates one menu. Pressing on the menu
title pulls down ite menu; dragging through
the menu highlights menu items.
Usage: Press on the m.t.

(Noun) A small device the size of a deck of
cards that rolls around on your desk. Moving
the l'DDuse causes corresponding motion of the
pointer on the screen.
See Also: Mouse button Drag
Usage: Move them. Drag them.

(Noun) A rectangular button on the top of the
mouse. Preasing the button initiates some
action at the position of the pointer;

Espinosa 10/2/82

)

MACINTOSH USER EDUCATION

The Vertical Retrace Manager: A Prograaner's Guide

See Also: The Macintosh User Interface Guidelines
The Memory Manager: A Programmer's Guide
The Device Manager: A Programmer's Guide
The Desk Manager: A Programmer's Guide
Inside Macintosh: A Road Map

Modification History: First Draft (ROM 7)

*** Review Draft. Not for distribution***

/VRMGR/TASK

B. Hacker 3/dd/84

ABSTRACT

This manual describes the Vertical Retrace Manager, the part of the
Macintosh Operating System that schedules and performs recurrent tasks
during vertical retrace interrupts.

11-1

11-2

2 Vertical Retrace Manager Programmer's Guide

TABLE OF CONTENTS

3 About This Manual
3 About the Vertical Retrace Manager
5 Using the Vertical Retrace Manager
6 Vertical Retrace Manager Routines
7 Summary of the Vertical Retrace Manager
9 Glossary

Copyright (c) 1984 Apple Computer, Inc. All rights reserved.

Distribution of this draft in limited quantities does not constitute
publication.

j

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes the Vertical Retrace Manager, the part of the
Macintosh Operating System that schedules and performs recurrent tasks
during vertical retrace interrupts. *** Eventually it will become part
of a larger manual describing the entire Toolbox and Operating System.

(eye)

This manual describes version 7 of the ROM. If you're
using a different version, the Vertical Retrace Manager
may not work as discussed here.

Like all Operating System documentation, this manual assumes you're
familiar with Lisa Pascal. You should also be familiar with the basic
concepts of

- the Macintosh Operating System's Memory Manager

- interrupts, as described in the Macintosh Operating System's
Device Manager manual

The manual is intended to serve the needs of both Pascal and
assembly-language programmers. Information of interest to assembly
language programmers only is isolated and labeled so that Pascal
programmers can conveniently skip it.

This manual begins with an introduction to the Vertical Retrace Manager
and what you can do with it. It then introduces the routines of the
Vertical Retrace Manager and tells how they fit into the flow of your
application. This is followed by detailed descriptions of the routines
used to install and remove recurrent tasks, their parameters, calling
protocol, effects, side effects, and so on.

Finally,.there's a suuunary of the Vertical Retrace Manager, for quick
reference, followed by a glossary of terms used in this manual.

ABOUT THE VERTICAL RETRACE MANAGER

The Macintosh video circuitry generates a vertical retrace interrupt
(also known as the vertical blanking or VBL interrupt) sixty times a
second while the beam of the display tube returns from the bottom of
the screen to the top to display the next frame. The Operating System
uses this interrupt as a convenient time to perform the following
recurrent tasks:

1. increment the system global ticks (every interrupt)

2. check whether the stack and heap have collided (every interrupt)

3/nn/84 Hacker CONFIDENTIAL /VRMGR/TASK.I

11-3

11-4

4 Vertical Retrace Manager Programmer's Guide

J. handle cursor movement (every interrupt)

4. check the state of the mouse button (every other interrupt).

s. handle repeating keystrokes (every 32 interrupts)

These tasks must execute at regular intervals based on the "heartbeat"
of the Macintosh, and shouldn't be changed.

An application can add any number of its own tasks to be executed by
the Vertical Retrace Manager. Application tasks can perform whatever
actions you desire (as long as memory is neither allocated or
released), and can be set to execute at any frequency (up to once per
vertical retrace interrupt). For example, a task within an electronic
mail application might check every 1/1~ second to see if it has
received any messages.

Information describing each application task is contained in the
vertical retrace queue, the structure of which is shown in Figure l.

qFlem word

qHeed pointer ... fi~t queue ... "-
last queue ,

entry- ~ entry

qTeil pointer

Figure 1. Vertical Retrace Queue

QHead points to the first entry in the queue, and qTail points to the
last entry in the queue. Bit 6 of qFlags is set whenever the Vertical
Retrace Manager is executing.

Assembly-language-™: You can refer to the vertical retrace
queue by using the system global vblQueue, which points to the
qFlags word.

3/nn/84 Hacker CONFIDENTIAL /VRMGR/TASK.I

ABOUT THE VERTICAL RETRACE MANAGER 5

Each entry in the vertical retrace queue contains information about
each task:

TYPE VBLCntrlBlk • RECORD
vblLink:
vblType:
vblAddr:
vblCount:
vblPhase:

END;

VBLCBPtr = •vBLCntrlBlk;

Ptr;
INTEGER;
ProcPtr;
INTEGER;
INTEGER;

VBLLink points to the next entry in the queue, and vblType indicates
the queue type, which should always be the value of the predefined
constant vType. VBLAddr contains the address of the task. VBLCount
specifies the number of vertical retrace interrupts between successive
calls to the task. This value is -decremented each interrupt until it
reaches zero, at which point the task is called. The task must reset
vblCount, or its entry will be removed from the qu~·;e after it has been
executed. VBLPhase contains an integer (smaller than vblCount) used to
bias vblCount when the task is first added to the queue. This ensures
that two or more routines added to the queue at the same time with the
same vblCount value will be out of phase with each other, and won't be
called during the same interrupt.

USING THE VERTICAL RETRACE MANAGER

This section discusses how the Vertical Retrace Manager routines fit
into the general flow of an application program. The routines
themselves are described in detail in the next section.

The Vertical Retrace Manager is automatically initialized each time the
system is started up. To add an application task to the vertical
retrace queue, call Vlnstall. When your application no longer wants a
task to be executed, it can remove the task from the vertical retrace
queue by calling VRemove. Application tasks shouldn't call VRemove-
either the application should call VRemove, or the task should simply
not reset vblCount.

An application task cannot call routines that cause memory to be
allocated or released. This severely limits the actions of tasks, and
you might prefer using the Desk Manager routine SystemTask to perform
periodic actions. Or, since the very first thing the Vertical Retrace
Manager does during a vertical retrace interrupt is increment the
system global ticks, your application could poll ticks and perform
periodic actions whenever it changes.

3/nn/84 Hacker CONFIDENTIAL /VRMGR/TASK.I

11-5

11-6

6 Vertical Retrace Manager Programmer's Guide

Assembly-language~: Application tasks may use registers 00
through D3 and A0 through A3, and must save and restore any
additional registers used. They must exit with an RTS.

VERTICAL RETRACE MANAGER ROUTINES

FUNCTION VInstall (vblBlockPtr: VBLCBPtr) : OSErr;

Vlnstall adds the task described by vblBlockPtr to the vertical retrace
queue.

Result codes noErr
vTypErr

No error
VBLType field isn't vType

FUNCTION VRemove (vblBlockPtr:. VBLCBPtr) : OSErr;

VInstall removes the task described by vblBlockPtr from the vertical
retrace queue.

Result codes

3/nn/84 Hacker

No error noErr
vTypErr· VBLType field isn't vType

CONFIDENTIAL /VRMGR/TASK.I

SUMMARY OF THE VERTICAL RETRACE MANAGER 7

SUMMARY OF THE VERTICAL RETRACE MANAGER

Constants

CONST vType = l; vertical retrace queue entry type

Data Structures

TYPE VBLCntrlBlk • RECORD
vblLink:
vblType:
vblAddr:
vblCount:
vblPhase:

END;

VBLCBPtr ~ AVBLCntrlBlk;

Routines

Ptr;
INTEGER;
ProcPtr;
INTEGER;
INTEGER;

FUNCTION VInstall (vblBlockPtr: VBLCBPtr)
FUNCTION VRemove (vblBlockPtr: VBLCBPtr)

Assembly-Language Information

Constants

OSErr;
OSErr;

vType .EQU l ;vertical retrace queue entry type

Vertical Retrace Queue Entry

vblLink
vblType
vblAddr
vblCount
vblPhase

System Globals

~
vblQueue

3/nn/84 Hacker

Next queue entry
Always vType
Location of application task
Number of interrupts between task calls
Bias for vblCount

Size Contents
4 bytes Pointer to the vertical retrace queue

CONFIDENTIAL /VRMGR/TASK.I

11-7

11-8

8 Vertical Retrace Manager Programmer's Guide

Result Codes

Name
vTypErr

Value
-2

3/nn/84 Hacker

Meaning
VBLType isn't vType

CONFIDENTIAL /VRMGR/TASK.I

GLOSSARY 9

GLOSSARY

vertical retrace interrupt: The interrupt that occurs sixty times a
second while the beam of the display tube returns from the bottom of
the screen to the top to display the next frame.

vertical retrace queue: A list of the application tasks to be executed
during the vertical retrace interrupt.

3/nn/84 Hacker CONFIDENTIAL /VRMGR/TASK.I

11-9

MACINTOSH USEa EDUCATION

The Window Manager: A Programmer's Guide /WHGll/WINDOW

See Also: Macintosh User Interface Guidelines
Macintosh Operating System Reference Manual
QuickDraw: A Programmer's Guide
The Resource Manager: A Programmer's Guide
The'Event Manager: A Programmer's Guide
Macintosh Control Manager Programmer's Guide
The Desk Manager: A Programmer's Guide
The Dialog Manager: A Programmer's Guide
Toolbox Utilities: A Programmer'• Guide

Modification History: First Draft
Interim Release
Second Draft
Revised
Third Draft (ROM 2.1)
Fourth Draft (ROM 7)

P. Stanton-Wyman
c. Rose
c. Rose
c. Rose
c. Rose
c. Rose

8/16/82
9/lf/82
19/8/82
11/2/82
3/1/83

8/25/83

ABSTRACT

Windows play an important part in the Macintosh world, since all informa
tion presented by an application appears in windows. The Window Manager
provides routines for creating and manipulating windows. Th:.!, manual
describes those routines along with related concepts and data types.

Summary of significant changes and additions since last version:

- Changes have been made to the predefined window definition IDs
(page 8) and the window classes (page 12). An rDocProc type of
window no longer requires the corner-rounding in the refCon field.

- DrawDocGrow has been replaced by DrawGrowlcon (page 23).

- A close box or size box appears in active windows only. (See
FindWindow, page 23, and window definition function, page 35.)

- The discussions of DragWindow, GrowWindow, and SizeWiudow have
been clarified, and examples have been added for lnvallect and
ValidRect (page 25).

- Pinllect and DragGraylgn (formerly DragTheRgn) are now described as
Window Manager routines rather than Toolbox Utilities (page 3G).

- lnsertWindow and DeleteWindow have been removed.

2 Window Manager Programmer's Guide

TABLE OF CONTENTS

3
4
6
6
8
9
1(1
11
13
15
16
17
18
2G
23
24
27
29
31
32
33
35
35
37
37
38
38
38
38
39
4G
43

About This Manual
About the Window Manager
Windows and GrafPorts
Window Regions
Windows and Resources
Window Records

Window Pointers
The WindowRecord Data Type

Bow a Window is Drawn
Making a Window Active: Activate Events
Using the Window Manager
Window Manager Routines

Initi~lization and Allocation
Window Display
Mouse Location
Window Movement and Sizing
Update Region Maintenance
Miscellaneous Utilities
Low-Level Routines

Format of a Window Template
Defining Your Own Windows

Format of a Window Definition Function
The Draw Window Frame Routine
The Bit Routine
The Routine to Calculate Regions
The "New Window" Routine
The Dispose Routine
n-,e Grow Routine
The Draw Size Box Routine

Notes for Assembly-Language Programmers
Summary of the Window Manager
Glossary

,

'

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes the Window Manager, a major component of the
Macintosh User Interface Toolbox. *** Eventually it will become part
of a large aanual describing the entire Toolbox. *** 1be Window
Manager allows you to create, manipulate, and dispose of vindovs in a
way that's consistent with the Macintosh User Interface Guidelines.

(hand)
This manual describes version 7 of the ROM. If you're
using a different version, the Window Manager may not
work as discussed here.

Like all documentation about Toolbox units, this manual assumes you're
familiar with the Macintosh User Interface Guidelines, Lisa Pascal, and
the Macintosh Operating System's Memory Manager. You ahould also be
familiar with the following:

- The basic concepts and structures behind QuickDraw, particularly
points, rectangles, regions, grafPorta, and pictures. You don't
have to know the QuickDraw routines in order to use the Window
Manager, though you'll be using OuickDraw to actually draw inside
a window.

- Resources, as discussed in the Resource Manager manual.

- The Toolbox Event Manager. Some Window Manager routines are
called only in response to certain events.

- A Macintosh application that uses windows, as an illustration of
the window concepts presented here.

The manual begins with an introduction to the Window Manager and what
you can do with it. It then discusses the basics about windows: the
relationship between windows and grafPorts; the various regions of a
window; and the relationship between windows and resources. Following
this is a discussion of the window record, where the Window Manager
keeps all the information it needs about a window. There are also
sections on what happens when a window is drawn and when a window
'becomes active or inactive.

Next, a section on using the Window Kan.ager introduces its routines and
tells how they fit into the flow of your application. This is followed
by detailed descriptions of all Window Manager procedures and
functions, their parameters, calling protocol, effects, aide effects,
and so on.

Following these descriptions are sections that will not interest all
readers. The exact format of the reaource·data that defines a window
is given, followed by •pecial information for programmers who vant to
define their own viudovs and for those who vill u•e the Window Manager
routines from assembly language.

8/25/83 Rose CONFIDENTIAL /WMGR./WINDOW.2

4 Window Manager Programmer's Guide

Finally, there's a summary of the Window Manager data structures and
routine calla, for quick reference, and a glossary of terms used in
this manual.

ABOUT THE WINDOW MANAGER

The Window Manager is a tool for dealing with windows on the Macintosh
screen. The screen represents a working surface or desktop; graphic
objects appear on the desktop and can be manipulated with the mouse. A
window is an object on the desktop that presents information, such as a
document or a message. Windows can be any size or shape, and there can
be one or many of them, depending on aesthetics and available memory.

Some types of window are predefined for you. One of these is the
standard document window, as illustrated in Figure 1. Every document
window has a title bar containing a title that's centered and in the
system font and system font size. In addition, a particular document
window may or may not have a close box or a size box; both of these are
supported by the Window Manager. There may also be scroll bars along
the bottom and/or right edge of a document window. Scroll bars are
controls, and are discussed in the Control Manager manual.

Close box } Tltle ._ ------

Scroll ._ areas

Figure 1. An Active Document Window

Your application can easily create predefined types of window such as
document windows, or it can define its own types of window. Some
windows may be created indirectly for you when you use other parts of
the Toolbox; an example is the window the Dialog Manager creates to
display an alert box. Windows created either directly or indirectly by
an application are collectively called application windows. There'a
also a class of windows called system windows, which are not created as
the result of aomething done by the application. Deak accessories are
displayed in aystem windows.

8/25/83 Rose CONFIDENTIAL /WMGR/WINDOW. 2

ABOUT niE WINDOW MANAGER 5

The document window •hown in Figure 1 above ts the frontmost (active)
window, the one that will be acted on when the user types, gives
commands, or whatever is appropriate to the application being used.
Its title is highlighted •o it can be distinguished from other,
inactive windows that may be on the screen. *** Method of
highlightling will change.*** Since a close box or size box will
perform its special function only in an active window, neither box
appears at all in an inactive window (see Figure 2).

(hand)

Memo

Job Till&s

Inactive
windows

The
actiw
window

Figure 2. Overlapping Document Windows

If a document window has neither a size box nor scroll
bars, the lines deli1Diting those areas aren't drawn, as
in the Memo window in Figure 2.

An important function of the Window Manager is to keep track of
overlapping windows. You can move windows to different places on the
screen, change their plane (their front-to-back ordering), or change
their size, all without concern for how the various windows overlap.
The Window Manager makes sure that any newly exposed areas are redrawn,
and that the application can draw into any window without running over
onto windows in front of it.

Finally, the Window Manager makes it easy for you to set up your
application so that mouae actions cause theae 1tandard reapon•es inside
a document window, or similar responses inside other windows:

- Clicking anywhere in an inactive window makes it the active window
by bringing it to the front and highlighting its title.

- Clicking inside the close box of the active window makes the

8/25/83 Rose CONFIDENTIAL /WMGll/WI NDOW. 2

6 Window Manager Programmer's Guide

window close (so it no longer presents information) or disappear
altogether.

- Dragging anywhere inside the title bar of a window (except in the
close box, if any) pulls an outline of the window acroaa the
screen, and releasing the mouse button moves the window to the new
location. Uthe window isn't the active window, it becomes the
active window unless the COMMAND key was also held down*** (key
name may change)***· A window can never be moved completely off
the screen; by convention, it can't be moved such that the visible
area of the title bar is leas than four pixels square.

- Dragging inside the size box of the active window changes the size
of the window.

WINDOWS AND GRAFPORTS

It's easy for applications to use windows: to the application, a
window is a grafPort that it can draw into like any other with
OuickDraw routines. When you create a window, you specify a rectangle
that becomes the portRect of the grafPort in which the window contents
will be drawn. The bitMap for this grafPort, its pen pattern, and
other characteristics are the same as the default values set by the
OpenPort routine in QuickDraw, except for the character font, which is
set to the application font. These characteristics will apply whenever
the application draws in the window, and they can easily be changed
with QuickDraw routines (SetPort to make the grafPort the current port,
and other routines as appropriate).

There is, however, more to a window than just the grafPort that the
application draws in. For example, in a document window, the title bar
and outline of the window are drawn by the Window Manager, not by the
application. The part of a window that the Window Manager draws is
called the window frame, since it usually surrounds the rest of the
window. The Window Manager draws window frames in a grafPort that has
the entire screen as its portRect and is called the Window Manager
port.

WINDOW BEGIONS

Every window has the following two regions:

- The content region: the area that the application draws in.

- The structure region: the entire window; its complete "atructure"
(the content region plus the window frame).

The content region lies within the rectangle you specify when you
create the window (that is, the portRect of the window'• grafPort); for
a document window, it's the entire portRect. This is where 1nfot'11Btion

8/25/83 Rose CONFIDENTIAL /WMGR/WINDOW. 2

WINDOW REGIONS 7

is presented by the application and where the aize box and scroll bars
of a document window are located. Clicking in this region of an
inactive ~ndow makes it the active window.

A window uy also have any of the regions listed below. By convention,
clicking or dragging in one of these regions causes the indicated
action.

- A go-away region within the window frame. Clicking in this region
of the active window makes the window close or disappear.

- A drag region within the window frame. Dragging in this region
pulls an outline of the window across the screen, moves the window
to a new location, and makes it the active window unless the
COMMAND key was held down.

- A grow region, usually within the content region. Dragging in
this region of the active window changes the size of the window.
In a document window, the grow region is in the content region,
but in windows of your own design it may be in either the content
region or the window frame.

Figure 3 illustrates the various regions of a document window and its
window frame.

S1ruct\nregion

• cantent region
+ Window frerne

Qintent region

• &wreglon

Window frame

Dreg region

I
Go-away region

Figure 3. Document Window Regions and Frame

An example of a window that has no drag region is the window that
displays an alert box. On the other hand, you can design a window
whose drag region is the entire structure region and whose content
region is empty; such a window might present a fixed picture rather
than information that's to be aanipulated.

Another important window region is the update region. The Window
Manager keeps track of all areas of the content region that have to be
redrawn, and accumulates them into the update region. For example, if

8/25/83 Rose CONFIDENTIAL /WMGR/WINDOW. 2

8 Window Manager Programmer's Guide

you bring to the front a window that was overlapped by another window,
the Window Manager adds the fonierly overlapped (now exposed) area of
the front window's content region to its update region. The update
region is maintained for the most part by the Window Manager. If a
window's content region includes a size box or acroll bars, however,
the application has to manipulate the update region itself to ensure
that they get redrawn properly; the Window Manager provides update
region maintenance routines for this purpose.

WINDOWS AND RESOURCES

The general appearance and behavior of a window is determined by a
routine called its window definition function, which is stored as a
resource in a resource file. Most applications will use the predefined
window definition functions provided in the system resource file; some
will write their own window definition functions (as described later in
the section "Defining Your Own Windows").

When you create a window, you specify the type of window with a window
definition ID. The window definition ID tells the Window Manager the
resource IDof the definition function for this type of window, and
also provides some other information. (The details are discussed in
the section on defining your own windows; you don't have to know them
to use the predefined window types.) "nle Window Manager calls the
Resource Manager to read the window definition function from the
resource file into memory. Later, when it needs to perform certain
basic operations such as drawing the window frame, the Window Manager
calls the window definition function.

You can use one of the following constants as a window definition ID to
refer to a predefined type of window:

CONST documentProc
dBoxProc
dBoxZero
mdBoxProc
rDocProc

- {I;
- l;
- 2;
- 3;
• 16;

{standard document window}
{alert box or modal dialog box}
{like dBoxProc but with no shadow}
{modeless dialog box} *** forthcoming
(desk accessory window}

- The dBoxProc type of window resembles an alert box or a "modal"
dialog box (the kind that requires the user to respond before
doing any other work on the desktop). It's a rectangular window
with no go-away region, drag region, or grow region and with a
two-pixel-thick "shadow''.

- The dBoxZero type of window is just like the dBoxProc type except
that it has no shadow.

- The 1DdBoxProc type of window looks like a ''modeless" dialog box,
the le.ind that lets the user work elsewhere on the desktop before
responding. *** Its exact appearance has yet to be determined.

8/25/83 Rose CONFIDENTIAL /WMGll/WINDOW. 2

WINDOWS AND RESOUICES 9

- The rDocProc type of window is the window used for desk
accessories. It'• like a document window with no grow region,
with rounded corners, and with a method of highlighting that
inverts the entire title bar.

Rounded-comer windows are drawn by the QuickDraw routine
FrameRoundRect, which requires that the diameters of curvature be
passed in its ovalWidth and ovalHeight parameters. For an rDocProc
type of window, the diameters of curvature are both 16. ***Away to
specify different diameters via the window definition ID is
forthcoming.***

To create a particular window, the Window Manager needs to know not
only the window definition ID but also other information specific to
this window, such as its title (if any), its location, and its plane.
You can supply all the needed information in parameters to a Window
Manager routine or, better yet, you can store it as a single resource
in a resource file and pass the resource ID instead. This type of
resource, which is called a window template, simplifies the process of
creating a number of windows of the same type. More important, it
allows you to isolate specific window descriptions from your
application code. Translation of window titles into a foreign
language, for example, would require only a change to the resource
file.

(hand)
You can create window templates and store them in
resource files with the aid of the Resource Editor***
eventually (for now, the Resource Compiler)***· The
Resource Editor relieves you of having to know the exact
format of a window template, but for interested
programmers this information is given in the section
"Format of a Window Template".

WINDOW RECORDS

The Window Manager keeps all the information it requires for its
operations on a particular window in a window record. The window
record contains the following:

The grafPort for the window

- A handle to the window definition function

- A handle to the window's title, if any

- A handle to a list of controls, if any, in the window

- A pointer to the next window in the window list, which la a liat
of all windows ordered according to their froii't-to-back positions
on the desktop

8/25/83 Rose CONFIDENTIAL /WMGR./WINDOW.3

10 Window Manager Programmer's Guide

- The window class, which tells whether the window is a system
window, a dialog or alert window, or a window created directly by
the application

The handle to the window's title has a data type that you aay want to
use yourself elsewhere; it's defined in the Window Manager as follows:

TYPE StringPtr • ·str255;
StrHandle • ·stringPtr;

The window record also contains an indication of whether the window is
currently visible. This means only that the window is drawn in its
plane, not necessarily that you can see it on the screen. If, for
example, it's completely overlapped by another window, it's still
"visible" even though it can't be seen in its current location.

The reference value field of the window record is a 32-bit field that
the application may store into and access for any purpose. For
example, it might contain a handle to data associated with the window,
such as a TextEdit edit record.

Finally, a window record may contain a handle to a QuickDraw picture of
the window contents. The application can swap out the code and data
that draw the window contents if desired, and instead use this picture.
For more information, see "How a Window is Drawn".

The data type for a window record is called WindowRecord. A window
record is a dynamic data structure and is referred to by a pointer, as
discussed further under "Window Pointers" below. You can store into
and access most of the fields of a window record with Window Manager
routines, so normally you don't have to know the exact field names.
Occasionally-particularly if you define your own type of window--you
may need to know the exact structure; it's given below under "The
WindovRecord Data Type".

Window Pointers

There are two types of pointer through which windows can be accessed:
WindowPtr and WindowPeek. Most users will only need to use WindowPtr.

The Window Manager defines the following type of window pointer:

TYPE WindowPtr • GrafPtr;

It can do this because the first thing stored in a window record is the
window's grafPort. This type of pointer can be used to access fields
of the grafPort or can be passed to QuickDraw routines that expect
pointers to grafPorts as parameters. The application lligbt call auch
routines to draw into the window, and the Window Manager itaelf calls
them to perform many of its operations. The Window Manager gets the
additional information it needs from the rest of the window record
beyond the grafPort.

8/25/83 Rose CONFIDENTIAL /WMGR/WINDOW.3

)

WINDOW IECOIDS 11

ln aome cases, however, a aore direct vay of acceaaing the viadow
record aay be necessary or desirable. For this reason, the Window
Manager a~ao defines the following type of Window pointer:

TYPE WindowPeek • ·windowRecord;

Programmers who want to access Windowllecord fields directly aust use
this type of pointer (which derives its name from the fact that it lets
you "peek" at the additional information about the window). A
WindowPeek pointer is also used wherever the Window Manager will not be
calling OuickDraw routines and will benefit from a more direct means of
getting to the data stored in the window record.

A simple Pascal operation lets you switch from one type of window
pointer to the other. For example, if wPtr ia of type WindowPtr and
wPeek is of type WindowPeek, you can convert from one type to the other
as follows:

(hand)

wPeek :• POlNTEll(OID(wPtr)); (convert from WindowPtr to WindowPeek}

wPtr :• POINTEll(OID(wPeek)); {convert from WindowPeek to WindowPtr}

From assembly language, of course, there's no type
checking on pointers, and the two types of pointer are
equal.

The WindowRecord Data Type

For those who vant to know more about the data atructure of a window
record or who will be defining their own types of window, the exact
data structure is given here.

TYPE WindowRecord • RECORD

8/25/83 loae

port:
windowKind:
viaible:
hilited:
goAwayFlag:
apareFlq:
atruclgn:
contlgn:
updatelgn:
vindowDefProc:
dataHandle:
titleBandle:
titleWidth:
controlLiat:
next Window:
vindovPic:
refCon:

END;

CONFIDENTIAL

Graf Port;
INTEGER;
BOOLEAN;
BOOLEAN;
BOOLEAN;
BOOLEAN;
BgnBandle;
ltgnBandle;
lgnBandle;
Bandle;
Bandle;
StringBandle;
INTEGER;
Bandle;
WindovPeek;
PicRandle;
Longlnt

/WMGR./WINDOW.3

12 Window Manager Programmer's Guide

The port ia the window's grafPort.

Windowtc.ind identifies the window class. If negative, it •ans the
window is a system window. It may also be one of the following
predefined constants:

d ialogKi nd • 2;
usertc.ind • 8;

{dialog or alert window}
{window created directly by the application}

WindowKind values 1 through 7 are reserved for system use. Userlind is
stored in this field when a window is created directly by the
application (rather than indirectly through the Dialog Manager, as for
dialogKind); for such windows the application can in fact set the
window class to any value greater than 8 if desired.

When visible is 'l'llUE, the window is currently visible.

Bilited and goAwayFlag are checked by the window definition function
when it draws the window frame, to determine whether the window should
be highlighted and whether it should have a go-away region. For a
document window, this means that if hilited is TRUE, the title of the
window is highlighted, and if goAwayFlag is also TRUE, a close box
appears in the highlighted title bar.

SpareFlag is reserved for future use.

StrucRgn, contRgn, and updateRgn are region handles, as defined in
QuickDraw, to the structure region, content region, and update region
of the window. These regions are all in global coordinates.

The windowDefProc field contains a handle to the window definition
function for this type of window. This handle is returned by the
Resource Manager after it reads the definition function from the
resource file into memory. From the window definition ID that you
provide when you create the window, the Window Manager can tell what
resource ID to pass on to the Resource Manager.

(hand)
The high-order byte of the windowDefProc field contains
some additional information that the Window Manager gets
from the window definition ID; for details, see the
section "Defining Your Own Windows". Also note that if
you write your own window definition function and won't
be sharing it vitb other applications, you can put it in
with the application code and just store a handle to it
in the windowDefProc field.

DataHandle is reserved for use by the window definition function. lf
the window is one of your own definition, your window definition
function uy use this field to store and access any information it
wishes. U only four or fewer bytes of information are needed, your
definition function can etore it directly in the dataHandle field
rather than use a handle.

8/25/83 Rose CONFIDENTIAL /WMGll/WINDOW. 3

WINDOW RECORDS 13

TitleBandle ia a atringBandle to the window'• title, if any.

TitleWidth ia the width, in pixels, of the window's title in the aystem
font and ayatem font aize. Thia width is determined by the Window
Manager and is normally of no concern to the application.

ControlList is a handle to a list of controls, if any, in the window.
The Control Manager is responsible for maintaining this list.

NextWindow is a pointer to the next window in the window list, that is,
the window behind this window. lf this window is the furthest back
(with no windows between it and the desktop), nextWindow is NIL.

WindowPic is a handle to a QuickDraw picture of the window contents, or
NIL if the application will draw the window contents in response to an
update event, as described under "Bow a Window is Drawn", below.

RefCon is the window's reference value field, which the application may
store into and access for any purpose.

(hand)
Notice that the go-away, drag, and grow regions are not
included in the window record. Although these are
conceptually regions, they don't necessarily have the
formal data structure for regions as defined in
QuickDraw. The window definition function determines
where these regions are, and it can do so with great
flexibility.

BOW A WINDOW IS DRAWN

When a window is drawn or redrawn, the following two-step process
usually takes place: the Window Manager draws the window frame and the
application draws the window contents.

To perform the first atep of this process, the Window Manager calls the
window definition function with a request that the window frame be
drawn. ·1t manipulates regions of the Window Manager port as necessary
before calling the window definition function, to ensure that only what
should and must be drawn is actually drawn on the screen. Depending on
a parameter passed to the routine that created the window, the window
definition function 11ay or may not draw a go-away region in the window
frame (a close box in the title bar, for a document window).

Usually the second atep 1• that the Window Manager generates an update
event to get the application to draw the window contents. It does this
by accumulating in the update region the areas of the window'• content
region that need updating. The Toolbox Event Manager periodically
checks to aee if there'• any window vhoae update region 1a not empty;
if it finds one. it report• (via the GetNextEvent routine) that an
update event has occurred. and passes along the window pointer in the
event aesaage. (If it finds aore than one auch window, it ieauea an

8/25/83 lose CONFIDENTIAL /WKGPJWINDOW. 3

14 Window Manager Progra111Der's Guide

update event for the frontmost one, so that update events are reported
in front-to-back order.) The application should respond as follows:

1. Call BeginUpdate, a routine that temporarily replaces the nsRgn
of the window's grafPort with the intersection of the visRgn and
the update region.

2. Draw the window contents, entirely or in part. Normally it's more
convenient to draw the entire content region, but it suffices to
draw only the update region. In either case, since the visRgn is
limited to where it intersects the update region, only the parts
of the window that require updating will actually be drawn on the
screen.

3. Call EndUpdate, which restores the not'11Bl visRgn and sets the
update region to the empty region.

Figure 4 illustrates the effect of BeginUpdate and EndUpdate on the
visRgn and update region of a window that's redrawn after being brought
to the front.

(hand)

Before Begi~te

lC)dete
region

After Begi~te

visflgt

lC)dete
region

AfterE~te

~e
region
(empty)

Figure 4. Updating Window Contents

Although unlikely, it's possible that a desk accessory
may not be set up to handle update events, ao the
application may receive an update event for a system
window. For this reason, it'• a good idea to check
whether the window to be updated is one that vas created
by your application; if it's not, just ignore it.

The Window Manager allows an alternative to the update event mechanism
that may be useful for simple windows: a handle to a QuickDraw picture
may be stored in the window record. If this is done, the Window
Manager doesn't generate an update event to get the application to draw

8/25/83 lose CONFIDENTIAL /WMGll/WINDOW. 3

HOW A WINDOW IS DRAWN 15

the window contents; instead, it calls the QuickDraw routine
DrawPicture to draw the picture whose handle is stored in the window
record (and it does all the necessary region manipulation). If the
amount of storage occupied by the picture is leas than the •ize of the
code and data necessary to draw the window contents, and the
application can swap out that code and data, this drawing •thod is
more economical (and probably faster) than the usual updating process.

MAKING A WINDOW ACTIVE: ACTIVATE EVENTS ------------------------
A number of Window Manager routines change the state of a window from
inactive to active or from active to inactive. For each such change,
the Window Manager g_enerates an activate event, passing along the
window pointer in the event message and, in the IIOdifiers field of the
event record, bits that indicate the following:

- Whether this window has become active (bit l•l) or inactive
Cbit e-e>.

- Whether the class of the active window is changing from an
application window to a system window or vice versa. (If so,
bit l•l; if no such change is happening, bit 1•9.)

When the Toolbox Event Manager finds out from the Window Manager that
an activate event has been generated, it passes the event on to the
application (via the GetNextEvent routine). Activate events have a
higher priority than any other type of event.

Usually when one window becomes active another becomes inactive, and
vice versa, so activate events are most commonly generated in pairs.
When this happens, the Window Manager generates first the event for the
window becoming inactive, and then the event for the window becoming
active. Sometimes only a single activate event is generated, such as
when there's only one window in the window list. When the active
window is permanently disposed of, no activate event is generated to
report that it's inactive, because the window no longer exists at all.

Activate events for dialog and alert windows are handled by the Dialog
Manager. In response to activate events for windows created directly
by your application, you might take actions such as the following:

In a document window containing a aize box or scroll bars, erase
the aize box icon or scroll bara when the window becomes inactive
and redraw them when it beco•a active.

- In a window that contains text being edited, remove the
highlighting or blinking vertical bar from the text when the
window becomes inactive and reatore it when the window becomes
active.

- Enable or diaable a menu or certain menu items as appropriate to
match what the user can do when the window becomes active or

8/25/83 Rose CONFIDENTIAL /WMGll/WINDO\l. 3

16 Window Manager Programmer's Guide

inactive.

(hand)
Like update events, activate events for system windows
may be passed to your application because a desk
accessory wasn't aet up to handle them. Although this
will rarely happen, it's a good idea to check whether the
window to which the activate event applies ia one that
was created by your application, and ignore it if not.

USING THE WINDOW MANAGER

This section discusses how the Window Manager routines fit into the
general flow of an application program and gives you an idea of which
routines you'll need to use. The routines themselves are described in
detail in the next section.

To use the Window Manager, you must have previously called lnitGraf to
initialize QuickDraw and InitFonts to initialize the Font Manager. The
first Window Manager routine to call is the initialization routine
InitWindows, which draws the desktop and the (empty) menu bar.

Where appropriate in your program, use NewWindow or GetNewWindow to
create any windows you need; these functions return a window pointer,
which you can then use to refer to the window. HewWindow takes
descriptive information about the window from its parameters, whereas
GetNewWindow gets the information from window templates in a resource
file. You can supply a pointer to the storage for the window record or
let it be allocated by the routine creating the window; when you no
longer need a window, call CloseWindow if you supplied the storage, or
DisposeWindow if not.

When the Event Manager reports that an update event has occurred, call
BeginUpdate, draw the update region or the entire content region, and
call EndUpdate (see "Bow a Window is Drawn", above). You can also use
lnvalRect or lnvallgn to prepare a window for updating, and ValidRect
or Validltgn to temporarily protect portions of the window from
updating.

When drawing the contents of a window that contains a size box in its
content region, you'll draw the size box if the window la active or
just the lines delimiting the aize box and scroll bar areas if it's
inactive. The FrontWindow function tells you which is the active
window; the DrawGrowlcon procedure helps you draw the size box or
delimiting lines. You'll also call the latter procedure when an
activate event occurs that makes the window active or inactive.

(hand)
To be safe, it'• a good idea to check that an update or
activate event received by your application applies to
one of its own windows and not a system window.

8/25/83 lose CONFIDENTIAL /WMGR/WINDOW.3

USING THE WINDOW MANAGER 17

When a mouse down event occurs, call the FindWindow function to find
out which part of which window the aouae button was pressed in.

- If it was pressed in the content region of an inactive window,
make that window the active window by calling SelectWindow.

- If it was pressed in the grow region of the active window, call
GrowWindow to pull around an image that shows the window's size
will change, and then SizeWindow to actually change the size.

- If it pressed in the drag region of any window, call DragWindow,
which will pull an outline of the window across the screen, move
the window to a new location, and, if the window is inactive, make
it the active window (unless the COMMAND key was held down).

- If it was pressed in the go-away region of the active window, call
TrackGoAway to handle highlighting of the go-away region and to
determine whether the mouse is inside the region when the button
is released. Then do whatever is appropriate as a response to
this mouse action in the particular application. For example,
call CloseWindow or DiaposeWindow if you want the window to go
away permanently, or BideWindow if you want it to disappear
temporarily.

(hand)
If th~mGUse button was pressed in the content region of
an a&ft1ve window (but not in the grow region), call the
Control Manager routine FindControl if the window
contains controls. If it was pressed in a system window,
call the Deak Manager routine SystemClick. See the
Control Manager and Desk Manager manuals for details.

The procedure that simply aovea a window without pulling around an
outline of it, MoveWindow, can be called at any time, as can
SizeWindow-though the application ahould not surprise the uaer by
taking these actions unexpectedly. There are also routines for
changing the title of a window, placing a window behind another window,
and making a window visible or invisible. Call these Window Manager
routines wherever needed in your program.

WINDOW MANAGER ROUTINES

This section describes first the Window Manager procedures and
functions that are used in moat applications, and then the low-level
routines for use by software developers who have their own ideas about
what to do with windows. 'nle routines are preeented iu their Paecal
form; for information on using them from assembly language, aee "Uaing
the Toolbox from Assembly Language"*** doesn't exist, but aee "Uaing
QuickDraw from Assembly Language" iu the OuickDraw manual and also
"Notes for Assembly-Language Progr&11111era" in this manual. ***

8/25/83 Rose CONFIDENTIAL /WMGR./WINDOW.R

18 Window Manager Programmer's Guide

Initialization and Allocation

PROCEDURE lnitWindows;

InitWindows initializes the Window Manager. It creates the Window
Manager port; you can get a pointer to this port with the GetWMgrPort
procedure (below). lnitWindows draws the gray desktop with rounded
corners, and a white menu bar with a black line underneath. Call this
procedure once before all other Window Manager routines.

PROCEDURE GetWMgrPort (VAR wPort: GrafPtr);

GetWMgrPort returns in wPort a pointer to the Window Manager port.

(hand)
Assembly-language programmers can access this pointer
through the global variable wMgrPort.

FUNCTION NewWindow (wStorage: Ptr; boundsRect: Rect; title: Str255;
visible: BOOLEAN; procID: INTEGER; behind: WindowPtr;
goAwayFlag: BOOLEAN; refCon: Longlnt) : WindowPtr;

NewWindow creates a window as specified by its parameters, adds it to
the window list, and returns a windowPtr to the new window. It
allocates space for the structure and content regions of the window and
asks the window definition function to calculate those regions.

WStorage is a pointer to the storage to use for the window record. For
example, if you've declared the variable wRecord of type WindowRecord,
you can pass @wRecord as the first parameter to NewWindow. If you pass
NIL for wStorage, the window record will be allocated on the heap; this
is not recommended except for programs that have an unusually large
amount of memory available or have been set up to dispose of windows
dynamically.

BoundsRect, a rectangle given in global coordinates, determines the
window's size and location. It becomes the portRect of the window's
grafPort; note, however, that the portRect is in local coordinates.

(hand)
The bitMap, pen pattern, and other characteristic, of the
window's grafPort are the same as the default values aet
by the OpenPort routine in Ouickl>raw, except for the
character font, which is aet to the application font
rather than the ayatem font.

Title ls the window's title, which appears centered and in the system
font and system font size in the title bar of a document window. If
the title of a document window is longer than will fit in the title

8/25/83 Rose CONFIDENTIAL /WMGR/WINDOW.R

)

VINDOW HAN.AGER ROUTINES 19

bar, only as much of the beginning of the title as will fit is
displayed.

If the visible parameter is TRUE, NewWindow draws the window. First it
calls the window definition function to draw the window frame; if
goAwayFlag is also TRUE and the window is frontmost (as specified by
the behind parameter, below), it draws a go-away region in the frame.
Then it generates an update event for the entire window contents.

ProclD is the window definition ID, which leads to the window
definition function for this type of window. The window definition IDs
for the predefined types of windows are listed in the "Windows and
Resources" section. Vindow definition IDs for windows of your own
design are discussed in the section "Defining Your Own Windows".

The behind parameter detel'lllines the window's plane. The new window is
inserted in back of the window pointed to by this parameter. To put
the new window behind all other windows, use behind•NIL. To place it
in front of all other windows, use behind•POINTER(-1); in this case,
NewWindow will unhighlight the previously active window, highlight the
window being created, and generate appropriate activate events.

RefCon is the window's reference value, set and used only by the
applies tion.

NewWindow also sets the window class in the window record to indicate
that the window was created directly by the application.

FUNCTION GetNewWindow (windowID: INTEGER; wStorage: Ptr; behind:
WindowPtr) : WindowPtr;

Like NewWindow (above), GetNewWindow creates a window as specified by
its parameters, adds it to the window list, and returns a wiadowPtr to
the new window. The only difference between the two functions is that
instead of having the parameters boundsRect, title, visible, proclD,
goAwayFlag, and refCon, GetNewWindow has a single windovlD parameter,
where windowlD is the resource ID of a window template that supplies
the same information as thoae parameters. Tbe wStorage and behind
parameters of GetNewWindov have the same meaning as in NewWindow.

PlOCEDURE CloseWindow (theWindow: WindowPtr);

CloseWindow removes the given window from the screen and deletes it
from the window list. It returns to the heap the storage u•ed by all
data structures associated with the window, but does not di•pose of the
window record itself. Call this procedure when you're done with a
window if you supplied NewWindow or GetNewWindow a pointer to the
window atorage (in the wStorage parameter) when you created the window.

Any update events for the window are discarded. If the window was the
frontmost window and there was another window behind it, the latter
window is highlighted and an appropriate activate event is generated.

8/25/83 Rose CONFIDENTIAL /WMGR/WINDOW.R

20 Window Manager Programmer's Guide

PROCEDURE DisposeWindow (theWindow: WindowPtr)i

DisposeWindow removes the given window from the screen, deletes it from
the window list, and disposes of the window record. It returns to the
heap all data structures associated with the window. Call this
procedure when you're done with a window if you let the window record
be allocated on the heap when you created the window (by passing NIL as
the wStorage parameter to NewWindow or GetNewWindow).

Any update events for the window are discarded. If the window was the
frontmost window and there was another window behind it, the latter
window is highlighted and an appropriate activate event is generated.

(hand)
The macro you invoke to call this routine from assembly
language is named _DisposWindow.

Window Display

These procedures affect the appearance or plane of a window but not its
size or location.

PROCEDURE SetWTitle (theWindow: WindowPtr; title: Str255);

SetWTitle changes the title of theWindow to the given title, performing
any necessary redrawing of the window frame. If the new title of a
document window is longer than will fit in the title bar, only as much
of the beginning of the title as will fit is displayed.

(hand)
In a document window, the title is centered in the title
bar if it fits. U it doesn't fit, it's left-justified
(against the close box, if any, leaving a small amount of
space between the close box and the beginning of the
title).

PROCEDURE GetWTitle (theWindow: WindowPtr; VAR title: Str255)i

GetWTitle returns the title of theWindow.

PROCEDURE SelectWindow (theWindow: WindowPtr);

SelectWindow makes theWindow the active window as follows: it
unhighlights the previously active window, brings theWindow in front of
all other windows, highlights theWindow, and generates the appropriate
activate events. Call this procedure if there's a mouse down event in
the content region of an inactive window.

8/25/83 Rose CONFIDENTIAL /WMGR/WINDOW.R

WINDOW MANAGER llOUTlNES 21

PI.OCEDUIE BideWindow (tbeWindow: WindowPtr);

HideWindaw aakes theWindow invisible if it isn't already invisible and
has no effect if it la already invisible. If theWindov 1• the
frontmost window and there's a window behind it, HideWindow also
unhighlights theWindow, brings the window behind it to the front,
highlights that window, and generates appropriate activate events (see
Figure 5).

wPtr points to the
frontrnost window

After
HideWindow(wPtr~

After
ShowWindow(wPtrt

Figure 5. Biding and Showing Document Windows

PROCEDURE ShovWindow (theWindow: WindowPtr);

ShowWindow ukes theWindow visible if it's not already visible and has
no effect if it ie already visible. It does not change the
front-to-back ordering of the windows. Remember that if you previously
hid the frontmost window with RideWindow, BideWindow will have brought
the window behind it to the front; so if you then do a ShovWindow of
the window you hid, it will no longer be frontmost (see Figure 5
above).

(hand)
Although it's inadvisable, you can create a situation
where the frontmost window is invisible. If you do a
ShowWindow of such a window, it will highlight the window
if it's not already highlighted and will generate an
activate event to force this window from inactive to
active.

PROCEDURE ShowBide (theWindow: WindowPtr; showFlag: BOOLEAN);

lf showFlag ia FALSE, ShowBide makes theWindow invisible if it's not
already invisible and baa no effect if it is already invisible. If

8/25/83 Bose CONFIDENTIAL /WMGR/WINDOW.R

22 Window Manager Programmer's Guide

showFlag is TRUE, ShowHide makes theWindow visible if it's not already
visible and has no effect if it is already visible. Unlike RideWindow
and ShowWindow, ·showBide never changes the highlighting or
front-to-back ordering of windows or generates activate events.

(eye)
Use this procedure carefully, and only in special
circumstances where you need more control than allowed by
HideWindow and ShowWindow.

PROCEDURE HiliteWindow (theWindow: WindowPtr; fHilite: BOOLEAN);

If fHilite is TRUE, this procedure highlights theWindow if it's not
already highlighted and has no effect if it is highlighted. If fHilite
is FALSE, RiliteWindow unhighlights theWindow if it is highlighted and
has no effect if it's not highlighted. The exact way a window is
highlighted depends on its window definition function; a document
window's definition function highlights only the window's title.

Normally your application won't have to call this procedure, since it
should call SelectWindow to make a window active, and SelectWindow
takes care of the necessary highlighting changes. Highlighting a
window that isn't the active window is contrary to the Macintosh User
Interface Guidelines.

PROCEDURE BringToFront (tbeWindow: WindowPtr);

BringToFront brings theWindow to the front of all other windows and
redraws the window as necessary. Normally your application won't have
to call this procedure, since it should call SelectWindow to aake a
window active, and SelectWindow takes care of bringing the window to
the front. If you do call lringToFront, however, remember to call
HiliteWindow to make the necessary highlighting changes.

PROCEDURE SendBehind (tbeWindow: WindowPtr; behindWindow: WindowPtr);

SendBehind sends theWindow behind behindWindow, redrawing any exposed
windows. If behindWindow is NIL, it sends theWindow behind all other
windows. If theWindow is the active window, it unhighlights theWindow,
highlights the new active window, and generates the appropriate
activate events.

(eye)
Do not use SendBehind to deactivate a previously active
window. Calling SelectWindow to make a window active
takes care of deactivating the previously active window.

8/25/83 llose CONFIDENTIAL /WMGR/WINDOW.R

WINDOW MANAGER ROUTINES 23

FUNCTION FrontWindow: WindowPtr;

FrontWindow retuma a pointer to the first visible window in the window
list (that is, the active window).

PROCEDURE DrawGrowlcon (theWindow: WindowPtr);

Call this procedure in response to an update or activate event
involving a window that contains a size box in its content region. If
theWindow is active (highlighted), DrawGrowicon draws the size box;
otherwise, it draws whatever is appropriate to show that the window
temporarily cannot be sized. The exact appearance and location of
what's drawn depend on the window definition function. For an active
document window, DrawGrowlcon draws the size box icon in the bottom
right corner of the portRect of the window's grafPort, along with the
lines delimiting the size box and scroll bar areas (16 pixels in from
the right edge and bottom of the portRect). It doesn't erase the
scroll bar areas, so if the window doesn't contain scroll bars you
should erase those areas yourself after the window's size changes. For
an inactive document window, DrawDocGrow draws only the delimiting
lines (again, without erasing anything).

Mouse Location

FUNCTION FindWindow (thePt: Point; VAR whichWindow: WindowPtr) :
INTEGER;

When a mouse down event occurs, the application should call FindWindow
with thePt equal to the point where the mouse button was pressed (in
global coordinates, aa stored in the where field of the event record).
FindWindow tells which part of which window, if any, the mouse button
was pressed in. If it was pressed in a window, whichWindow is set to
the window pointer; otherwise, it's set to NIL. The integer returned
by FindWindow is one of the following predefined constants:

inDesk • t;
inMenuBar • l;
inSysWindow • 2;
inContent • 3;
inDrag • 4;
inGrow • 5;
inGoAway • 6;

{none of the following}
{in the menu bar}
{in a system window}
{in the content region (except grow, if active)}
{in the drag region}
{in the grow region (active window only))
{in the go-away region (active window only)}

Usually inDesk means that the mouse button was pressed on the desktop,
outside the menu bar or any windows; however, it may also aean that the
mouse button was pressed inside a window frame but not in the drag
region or go-away region of the window. Usually one of the last four
values is returned for windows created by the application.

8/25/83 Rose CONFIDENTIAL /WMGR/WINDOW.R

24 Window Manager Programmer's Guide

(eye)
If the window is a document window that doesn't contain a
size box, the application should treat inGrow the ••me as
inContent; if it's a document window that has no close
box, FindWindow will never return inGoAway for that
window.

FUNCTION TrackGoAway (theWindow: WindowPtr; thePt: Point) : BOOLEAN;

When there's a mouse down event in the go-away region of theWindow, the
application should call TrackGoAway with thePt equal to the point where
the mouse button was pressed (in global coordinates, as stored in the
where field of the event record). TrackGoAvay keeps control until the
mouse button is released, highlighting the go-away region as long as
the mouse position remains inside it, and restoring the region to
normal when the mouse moves outside it. The exact way a window's
go-away region is highlighted depends on its window definition
function; the highlighting of a document window's close box is.
illustrated in Figure 6. *** This method of highlighting may
change.*** When the mouse button is released, TrackGoAway leaves the
go-away region in its normal state and returns TRUE if the mouse is
inside the go-away region or FALSE if it's outside the region.

Hormel close boX

Hl"'I ifrted clote box

Figure 6. A Document Window's Close Box

Window Movement and Sizing

PROCEDURE MoveWindow (theWindow: WindowPtr; hGlobal,vGlobal: INTEGER;
front: BOOLEAN);

MoveWindow moves theWindow to another part of the screen, without
affecting its aize or plane. The top left corner of the portRect of
the window's grafPort is moved to the screen point indicated by the
global coordinates hGlobal and vGlobal. If the front parameter is TRUE
and theWindow isn't the active window, MoveWindow makes it the active
window by calling SelectWindow(theWindow).

8/25/83 Rose CONFIDENTIAL /WMGR/WINDOW. R

WINDOW MANAGER IOUTIR!S 25

P&OCEDUU DragWindow (theWindow: WindowPtr; atartPt: Point; boundalect:
llect);

When there's a mouse down event in the drag region of theVindov, the
application should call DragWindow vith startPt equal to the point
where the mouse button was pressed (in global coordinates,•• atored in
the where field of the event record). DragWindow pulls a gray outline
of theWindow around, following the path of the mouse until the button
is released. When the 110use button is released, DragWindow moves
theWindow to the location to which it was dragged (by calling
MoveWindow). If theWindow is not the active window and the COMMAND key
was not being held down, DragWindow ukes it the active window (by
passing TRUE for the front parameter when calling MoveWindow).

If the mouse button is released when the mouse position is outside the
limits of boundsllect, a rectangle given in global coordinates,
DragWindow returns without moving theWindow or making it the active
window. Typically boundsllect will be (4,24,518,338), which is four
pixels in from the menu bar and from the other edges of the screen;
this ensures that there won't be leas than a four-pixel-square area of
the title bar visible on the screen.

FUNCTION GrowWindow (theWindow: WindowPtr; startPt: Point; aizeRect:
Beet) : Longint;

When there's a •ouse down event in the grow region of theWindow, the
application should call GrowWindow with startPt equal to the point
where the mouse button was pressed (in global coordinates, as stored in
the where field of the event record). GrowWindow pulls a grow image of
the window around, following the path of the mouse until the button is
released. The grow image for a document window is a gray outline of
the entire window and alao the lines delimiting the title bar, aize
box, and acroll bar areas: Figure 7 illustrates this for a document
window containing a size box and scroll bars, but the grow image would
be the aaaae even if the window contained no size box, one scroll bar,
or no scroll bars. In general, the grow image is defined in the window
definition function and is whatever is appropriate to show that the
window'• aize will change.

8/25/83 lose CONFIDENTIAL /WKGl/WINDOW.R

26 Window Manager Programmer's Guide

I
I
i
i
i I

I I
tlze ret\med in lw-order word

size reuned in
hi~word

Figure 7. GrowWindow Operation on a Document Window

The application should subsequently call SizeWindow (see below) to
change the portRect of the window's grafPort to the new one outlined by
the grow image. The sizeRect parameter specifies limits, in pixels, on
the vertical and horizontal measurements of what will be the new
portRect. SizeRect.top is the minimum vertical measurement,
sizeRect.left is the minimum horizontal measurement, sizeRect.bottom is
the maximum vertical measurement, and sizeRect.right is the maximum
horizontal measurement.

GrowWindow returns the actual size for the new portllect as outlined by
the grow image when the mouse button is released. The high-order word
of the Longint is the vertical measurement in pixels and the low-order
word is the horizontal measurement. A return value off indicates that
the size is the same as that of the current portJlect.

(hand)
The Toolbox Utility function BiWord takes a long integer
as a parameter and returns an integer equal to its
high-order word; the function LoWord returns the
low-order word.

PROCEDURE SizeWindow (theWindow: WindowPtr; w,h: INTEGER; £Update:
BOOLEAN);

SizeWindow enlarges or shrinks the portllect of theWindow'• grafPort to
the width and height specified by wand h, or does nothing if v and h
are G. The window's position on the screen does not change. The new
window frame is drawn; if the width of a document window changes, the
title is again centered in the title bar, or is truncated at its end if
it no longer fits. If £Update is TRUE, SizeWindow accumulates any
newly created area of the content region into the update region (see
Figure 8); nonaally this is what you'll want. If you pass FALSE for

8/25/83 Rose CONFIDENTIAL /WMGR./WINDOW. R

WINDOW KA.NAGER llOtrrINES 27

fUpdate, you're responsible for the update region maintenance yourself.
For more information, see lnvalRect and ValidRect below.

(eye)

h1

After SizeWlndow{wPtr, w'I, h1, TFU:)

w1

Area naked~
is ICCU'fl.lletecl
Into ~e region

Figure 8. SizeWindow Operation on a Document Window

You should change the window's size only when the user
has done something specific to uke it change.

Update Region Maintenance

PROCEDURE lnvalRect (badRect: R.ect);

lnvalRect tells the Window Manager that a rectangle within a window has
changed and must be updated (that is, accumulated into the window's
update region). The apecified rectangle, which is given in local
coordinates, lies within the content region of the window whose
grafPort is the current port.

Normally the Window Manager keeps track of what has to be updated and
ao there's no need to use this procedure. One case where it's useful
is when you're calling SizeWiodow (described above) for a docwaent
window that contains a size box or scroll bars. Suppose you're going
to call SizeWindow with fUpdate•TR.UE. If the window is enlarged as
shown in Figure 8 above, you'll vaot not only the newly created part of
the content region to be updated, but also the two rectangular areas
containing the (former) size box and acroll bars; before calling
SizeWindov, you can call lnvalR.ect twice to accumulate those areas into
the update region. lo case the window ia aade smaller, you'll vant the
new size box and acroll bar area• to be updated, and so can similarly
call InvalR.ect for those area• after calling SizeWindow. See Figure 9
for an illustration of this type of update region maintenance.

8/25/83 Rose CONFIDENTIAL /WMGlt/WlNDOW. ll

28 Window Manager Programmer's Guide

Before SizeWindow with tU,dete. TR£:

D
The criginel window

After SizeWindow:

In cete the window is enlerge4

call lrwalflecl tor ~
end ... , ___ ,_,

In case the window was made snel ler,

cal I lnvelPiect fer a
The new window n ... , _ , .. ,

Figure 9. Update Region Maintenance with lnvalB.ect

As another example, suppose the application uses a OuickDraw routine to
scroll up text in a document window and wants to show new text added at
the bottom of the window. It can use a drawing routine to draw the
window, or it can instead cause only the added text to be redrawn, by
accumulating that area into the update region with InvalRect.

PROCEDURE InvalRgn (badRgn: RgnHandle);

lnvalRgn is the same as lnvalRect (see above) but for a region that has
changed rather than a rectangle.

PROCEDURE ValidRect (goodRect: lect);

ValidRect tells the Window Manager that the application has already
drawn a rectangle within a window and to cancel any updates accumulated
for that area (that is, remove goodRect from the window's update
region). The specified rectangle, which is given in local coordinates,
lies within the content region of the window whose grafPort is the
current port. Using ValidRect results in better performance and less
redundant redrawing in the window.

For example, suppose you've called SizeWindow (described above) with
fUpdate•ftUE for a document window that contains a size box or scroll
bars. Depending on the dimensions of the newly sized window, the new
size box and scroll bar areas may or may not have been accumulated into
the window's update region. After calling SizeWindov, you can redraw
the size box or scroll bars immediately and then call Validlect for the
areas they occupy in case they vere in fact accumulated into the update
region; this will avoid redundant drawing.

8/25/83 lose CONFIDENTIAL /WMGR/WINDOW. B.

WINDOW MANAGER ROUTINES 29

PR.OCEDURE Validlgn (goodlgn: RgnHandle);

Validlgn is the same as ValidRect (see above) but for a region that has
been drawn rather than a rectangle.

PROCEDURE BeginUpdate (theWindow: WindowPtr);

'When an update event occurs for theWindow, call BeginUpdate to replace
the vislgn of the window's grafPort with the intersection of the vislgn
and the update region. You vould then usually draw the entire content
region, though it suffices to draw only the update region; in either
case, only the parts of the vindov that require updating vill actually
be drawn on the screen. Every call to BeginUpdate must be balanced by
a call to EndUpdate (see below, and see "How a Window is Drawn").

PR.OCEDURE EndUpdate (theWindow: WindowPtr);

Call EndUpdate to restore the normal visRgn of theWindow'a grafPort,
which was changed by BeginUpdate as described above. EndUpdate also
sets theWindow's update region to the empty region.

Miscellaneous Utilities

PROCEDURE SetWR.efCon (theWindow: WindowPtr; data: Longlnt);

SetWR.efCon changes the reference value associated vith theWindow to the
given data.

FUNCTION GetWllefCon (theWindow: WindowPtr) : Longlnt;

GetWllefCon returns the reference value associated with theWindow.

PI.OCEDURE SetWindovPic (theWindow: WindowPtr; pie: PicHandle);

SetWindowPic ,tores the given picture handle in the window record for
tbeWindow, ao that when tbeWindow's contents are to be drawn the Window
Manager will draw this picture rather than generate an update event.

FUNCTION GetWindowPic (theWindow: WindowPtr) : PicHandle;

GetWindowPic returns the handle to the picture that draws theWindov'a
contents, previously stored vith SetWindowPic (above).

8/25/83 lose CONFIDENTIAL /WMGR./WINDOW.R

30 Window Manager Programmer's Guide

FUNCTION Pinlect (thelect: Rect; thePt: Point) : Longlnt;

PinRect "pins" thePt inside theRect: The high-order word of the value
returned is the vertical coordinate of thePt or, if thePt lies to the
left or the right of theRect, the vertical coordinate of the left or
right edge of theRect, respectively. The low-order word of the value
returned is the horizontal coordinate of thePt or, if thePt lies above
or below theRect, the horizontal coordinate of the top or bottom of
theRect.

FUNCTION DragGrayRgn (theRgn: RgnHandle; atartPt: Point;
limitRect,alopRect: lect; axis: INTEGER; actionProc:
ProcPtr) : Longlnt;

Called when the mouse button is down inside theRgn, DragGrayRgn pulls a
gray outline of the region around, following the path of the mouse
until the button is released. DragWindow calls this function before
actually moving the window, and the Control Manager routine DragControl
similarly calls it for controls. You can call it yourself to pull
around the outline of any region, and then uae the information it
returns to determine where to move the region.

The startPt parameter is assumed to be the point where the mouse button
was originally pressed, in the local coordinates of the current
grafPort. The high-order word of the value returned by DragGrayRgn
contains the vertical coordinate of the ending mouse point minus that
of the original point; the low-order word contains the difference
between the horizontal coordinates.

LimitRect and alopRect should also be in the local coordinates of the
current grafPort. LimitR.ect limits the travel of the region's outline;
DragGrayRgn will never move the 1ROuse position outside this rectangle.
If the mouse button is released outside limitRect, DragGrayRgn returns
-32768 (hexadecimal 8GGG). Sloplect allows the user some "slop" in
moving the mouse; it should completely enclose limitRect.
DragGrayRgn'a behavior while tracking the mouse depends on the position
of the mouse with respect to these two rectangles.

- When the mouse is inside limitR.ect, the region's outline follows
it nor11111lly. If the mouse button is released there, the region
should be moved to the mouse position.

- When the mouse is outside limitltect but inside slopR.ect, the
outline "pins" at the edge of limitRect. If the aouae button is
released there, the region should be moved to this "pinned"
location.

- When the mouse la outside alopRect, the outline dlaappeara from
the screen, but DragGraylgn continues to follow the aouae; lf it
110ves back into alopR.ect, the outline reappears. If the mouse
button is released outside slopRect, the region should not be
moved from its original position.

8/25/83 Rose CONFIDENTIAL /WMG'R/WINDOW.ll

WINDOW MANAGER ROUTINES 31

The axis paraaeter allows you to constrain the outline'• aotion to only
one uis:

Axis parameter
d
1
2

Meaning .
No constraint
Horizontal motion only
Vertical 110tion only

If an axis constraint is in effect, the outline will follow the mouse's
movements along the specified uis only, ignoring motion along the
other axis. With or without an axis constraint, the mouse must still
be inside the alop rectangle for the outline to appear at all.

The actionProc parameter is a pointer to a procedure that defines some
action to be performed repeatedly for as long as the user holds down
the mouse button; the procedure should have no paraaeters. U
actionProc is NIL, DragGrayltgn simply retains control until the mouse
button is released, performing no action while the mouse button is
down.

(hand)
Assembly-language progra11111ers who want the region's
outline to be drawn in a pattern other than gray can
store the pattern in the low-memory global dragPattern
and call the above function at the entry point
DragTheRgn.

Low-Level Routines

These low-level routines are not normally used by an application but
may be of interest to advanced progra111Ders.

FUNCTION CbeckUpdate (VAil theEvent: EventRecord) : BOOLEAN;

CheckUpdate 11 called by the Toolbox Event Manager. From the front to
the back in the window list, it looks for a visible window that needs
updating (that is, whose update region is not empty). If it finds one
whose window record contains a picture handle, it draws the picture
(doing all the necessary region aanipulation) and looks for the next
visible window that needs updating. If it ever finds one whose window
record doesn't contain a picture handle, it atores an update event for
that window in theEvent and returns TRUE. If it never finds such a
window, it returns FALSE.

PB.OCEDURE ClipAbove (window: WindowPeek);

ClipAbove sets the cliplgn of the Window Manager port to be the grayltgn
(that is, the desktop) intersected with the current clipltgn, ainus the
structure regions of all the windows above the given window.

8/25/83 lose CONFIDENTIAL /WMGk/WINDOW. R

32 Window Manager Progr11111111er's Gaide

PROCEDURE PaintOne (vindov: WindowPeek; clobbered: JanHandle);

PaintOne ~aints the given window, clipped to the clobbered region and
all windows above it. If some content is e~posed, PaintOne era••• it
and adds it to the update region. If the window is NIL, it'• painted
gray (it's the desktop). Thia procedure generates update events as
appropriate.

PROCEDURE Paintlehind (startWindow: WindowPeek; clobbered: lgnHandle);

Paintlehind calla PaintOne (above) to paint startWindow and all the
windows belaind start1'1ndow, clipped to the clobbered region.

PROCEDURE SaveOld (window: WindowPeek);

SaveOld saves the given window's current structure region end content
region for the DrawNew operation (see below). It must be followed by a
call to DrawNew. Note that SaveOld and DrawNew are NOT nestable.

PROCED\."RE DrawNew (window: WindowPeek; update: BOOLEAN);

DrawWinuow is called after SaveOld (above). It updates the area
clobbered:• (oldStruct XOR newStruct) UNION (oldContent XOR
newContent). If update is TR.UE, updates are accumulated.

PROCEDURE CalcVis (window: WindowPeek);

CalcVis calcul•tes the visRgn of the given window by starting with its
content region and subtracting the structure region of each window in
front of it.

PROCEDURE CalcVisBehind (startWindow: WindowPeek; clobbered:
lgnBandle);

CalcVialehind calculate5 the visltgns of startWindow and all windows
behind atartWindow that intersect with the clobbered region. It's
called after PaintBehind (see above).

(hand)
The macro you invoke to call this routine from assembly
language is named _CalcVBehind.

FORMAT OF A WINDOW TEMPLATE

As described above, the GetRewWindow function takes the reaource ID of
a window template as a parameter, and gets from that template the same
information that the NewWindow function gets from six of its

8/25/83 lloae CONFIDENTIAL /WMGR/WINDOW.D

FORMAT OF A WINDOW TEMPLATE 33

para•tera. The re•ource type for a window template i• 'WIND', and the
resource data bas the following format:

Nuaber of bytes
8 bytes
2 bytes
2 bytes
2 bytes
4 bytes
n bytes

Contents
Same as boundsRect parameter to liewWindow
Same as procID parameter to NevWiDdow
Same as visible parameter to HewWindow
Same as goAwaynag parameter to NewWindow
Same as refCon parameter to NewWindow
Same as title parameter to NewWindow
(I-byte length in bytes, followed by

the characters of the title)

DEFINING YOUR OWN WINDOWS

Certain types of window, such as the standard document window, are
predefined for you. However, you may want to define your own type of
window--.aybe a round or hexagon-shaped window, or even a window shaped
like an apple. QuickDraw and the Window Manager make it possible for
you to do this.

(hand)
For the convenience of the application's end user,
remember to conform to the Macintosh User Interface
Guidelines for windows as much as possible.

To define your own type of window, you must write a window definition
function. Usually you'll store the definition function in a resource
file. When you create a window, you provide a window definition ID,
which leads to the window definition function. The window definition
function contains routines that define the window by performing basic
operations such as drawing the window frame. When the Window Manager
needs to perform one of these operations, it calls the window
definition function with a parameter that identifies the operation, and
the window definition function in turn takes the appropriate action.

The window definition ID contains the re•ource ID of the window
definition function tn it• upper 12 bit• and a variation code in its
lower four bite. The variation code allowa a aingle wind~efinition
function to implement aeveral related types of window as "variations on
a theme". For eumple, the dBoxProc type of window is a variation of
the standard document window; both use the window definition function
whose resource ID ia 9, but the document window bas a variation code of
9 while the dBoxProc vindov has a variation code of 1.

For a given resource ID and variation code, then, the window definition
ID is:

16 * reaource ID+ variation code

8/25/83 Rose CONFIDENTIAL /WKGJl/WINDOW.D

34 Window Manager Programmer's Guide

The resource ID numbers 8 through 8 are reserved for predefined window
definition functions in the system resource file. Unless you vant to
override ~ne of the predefined functions, the resource ID you choose
for your own window definition function should be greater than 8.

The resource type for window definition functions is 'WDEF'. The
Dialog Manager calls the Resource Manager to access the resource of
type 'WDEF' that bas the given resource ID. The Resource Manager reads
the window definition function into memory and returns a handle to it.
The Window Manager stores the handle in the windowDefProc field of the
window record and stores the variation code in the high-order byte of
that field. Later, when it needs to call the window definition
function, it passes the variation code as a parameter. Figure lG
illustrates this process.

(hand)

Window definition ID q,pl led when window Is creeted:

I mcucelO) wr I
~

1 Z bits 4 bits

(ra:uce ID of window
definition tuictlon
end vwiation code)

Pacuce Meneger cell mede by Windo.., Menegef:

defHendle • Gefflesou'ce CWDEF', resou-celD);

Field in window record:

I var I defHendle
\,

pa,aed to wlimw def inltlon flllCtion

Figure 19. Window Definition Handling

If you won't be sharing your window definition function
with other applications, you may want to store it in with
the application code rather than as a separate resource.
When creating the window, you would give the window
definition ID of any standard type of window and specify
that the window not be made visible. Then you would
replace the contents of the windowDefProc field with the
handle (and variation code, if any) for your window
definition function.

The resource data for a window definition function is simply the
assembled code of the function, which may be written in Pascal or
assembly language; the only requirement is that its entry point aust be
at the beginning.

8/25/83 llose CONFIDENTIAL /WMGR/WINDOW.D

DEFINING YOUll OWN WINDOWS 35

Format of a Window Definition Function

You uy choose any name you wish for the window definition function.
Here's bow you would declare one named MyOwnWindow:

FUNCTION MyOwnWindow (varCode: INTEGER; window: WindowPtr;
message: WindowMessage; param: Longlnt) : Longlnt;

VarCode is the variation code. as described above.

The window parameter indicates the window that the operation will
affect. If the window definition function needs to use a WindovPeek
type of pointer more than a WindowPtr. you can simply specify
WindowPeek instead of WindowPtr in the function declaration.

The message parameter identifies the operation.

TYPE WindowMessage • (wDraw, vBit. VCalcRgns. wNew, wDispose,
vGrow, vDrawGicon);

MeHage
vDraw
wHit
vCalcRgns
wNew
wl>ispose
wGrow
wDrawGlcon

Operation
Draw the window frame
Tell what region the mouse button was pressed in
Calculate the strucRgn and contRgn
Do any special window initialization
Taite any special actions when the window is disposed of
Draw the window's grow image
Draw the window's size box in its content region

As described below in the explanations of the routines that perform
these operations, the value passed for param, the last parameter of the
window definition function, depends on the operation. Where it's not
mentioned below, this parameter is i1nored. Similarly, the window
definition function is expected to return a value only where indicated;
in other cases, the function should return f.

(hand)
"Routine" here does not necessarily mean a procedure or
function. While it's a good idea to aet these up as
subprograms inside the window definition function, you're
not required to do ao.

The Draw Window Frame Routine

When the window definition function receives a wDraw message, it ahould
draw the window frame in the current grafPort, which will be the Window
Manager port. (For details on drawing, see the OuickDraw unual.)

(eye)
Do not cbaqe the viaRgn or clipRgn of the Window Manager
port, or overlapping win.dove uy not be handled properly.

8/25/83 Rose CONFIDENTIAL /WMGlt/WINDOW.D

36 Window Manager Programmer's Guide

This routine •hould aake certain checks to determine exactly what it
should do. If the visible field in the window record is PAI.SE, tbe
routine abould do nothing; othervf.ae, it should examine the value of
param received by the window definition function, as described below.

If param is f, the routine should draw the entire window fraae. If the
hilited field in the vf.ndow record is TRUE, the window frame should be
highlighted in whatever way is appropriate to show that this is the
active window. If goAwayFlag in the window record ia also TRUE, the
highlighted window frame should include a go-away region; this is
useful when you want to define a vf.ndow such that a particular vf.ndow
of that type uy or aay not have a go-away region, depending on the
situation.

Special action •hould be taken if the value of para is wlnGoAway (a
predefined constant, equal to 4, which is one of those returned by the
hit routine as described below). If param is winGoAway, the routine
should do nothing but "toggle" the state of the window's go-away region
from noraal to highlighted or, if it's already highlighted, from
highlighted to normal. The highlighting should be whatever is
appropriate to show that the mouse button has been pressed inside the
region. Simple inverse highlighting may be used or, as in document
vf.ndows, the appearance of the region may change considerably. In the
latter case, the routine should use a ''mask" consisting of the normal
state of the region Xor'ed with its highlighted state (where Xor stands
for the logical operation "exclusive or"). When such a mask is itself
Xor'ed with either state of the region, the result la the other state;
Figure 11 illustrates this.

[:] Xor
,I/ ~;§ - - -/I'

Nannel Hlf\l iltlted Mast
state state

[:])(Qr ~ ,I/
C --/I'

,I/ ~ e@ CJ -- -l'I'

Figure 11. Toggling the Go-Away legion

Typically the window frame vf.11 include the vf.ndow's title, which
should be in the •Y•tem font and system font size for consistency with
the Macintosh User Interface Guidelines. '!'he Window Manager port will
already be set to use the system font and system font size.

8/25/83 lose CONFIDENTIAL /WMGll/VINDOW.D

(baud)

DEFINING YOUI. OWN WINDOWS 37

Nothing drawn outside the window'• structure region vill
be- visible.

The Hit R.outine

When the window definition function receives a wBit message, it also
receives as its param value the point where the mouse button was
pressed. This point ie given in global coordinates, with the vertical
coordinate in the high-order word of the Longlnt and the horizontal
coordinate in the low-order word. The window definition function
should determine where the mouse button "hit" and should return one of
these predefined constants:

vNoBit • I;
vlnContent • 1;
vinDrag • 2;
vinGrow • 3;
winGoAway • 4;

{none of the following)
{in the content region (except grow, if active)}
{in the drag region}
{in the grow region (active window only))
{in the go-away region (active window only)}

Usually, vNoHit means the given point isn't anywhere within the window,
but this is not necessarily ao. For example, the document window's hit
routine returns vNoHit if the point is in the window frame but not in
the title bar.

The constants vlnGrow and winGoAway ahould be returned only if the
window is active, since the size box and go-away region won't be drawn
if the window 1• inactive. In an inactive document window, if the
mouse button is pressed where the close box would be if the window were
active, the hit routine returns vinDrag.

Of the regions that .. y have been hit, only the content region
necessarily baa the structure of a region and i• included in the window
record. The hit routine can determine in any vay it likes whether the
drag, grow, or go-away region bas been hit. It can, for example,
simply compare the coordinates of the given point to the coordinates of
the points that delimit a particular region. Or the application can
use the formal region data atructure if desired, and point at it
through the dataBandle field of the window record.

The R.outine to Calculate Regions

The routine executed in response to a vCalclgns message ahould
calculate the window's atructure region and content region baaed on the
current grafPort'• portRect. These regions, whose handles are in the
struclgn and contlgn fields, are in global coordinates. Tbe Window
Manager vlll requeat this operation only if the window i• vlalble.

(hand)
When you calculate region• for your ovn type of window,
do not alter the cliplgn or the vislgn of the vindov'•
grafPort. The Window Manager and OuickDraw take care of

8/25/83 lloae CONFIDENTIAL /WMGll/WIHDOW.D

38 Window Manager Programmer's Guide

this for you. Altering the clipR.gn or visR.gn may result
in damage to other windows.

The New Window Routine

A wNew message tells the window definition function to execute a "new
window" routine that does any special initialization which may be
required when the window is created. For example, if the content
region is unusually shaped, it might allocate space for the region and
store the region handle in the dataBandle field of the window record.
The "new window" routine for a document window does nothing.

The Dispose Routine

The routine executed in response to a wDispose message should take any
special actions that may be required when the window is disposed of
(with the Window Manager routine CloseWindow or DisposeWindow). It
might, for example, deallocate space that was allocated by the "new
window" routine. The dispose routine for a document window does
nothing.

The Grow Routine

When the window definition function receives a wGrow message, it also
receives a pointer to a rectangle as its param value. The rectangle is
in global coordinates and is usually aligned at its top left corner
with the portRect of the window's grafPort. The grow routine should
draw a grow image of the window to fit the given rectangle (that is,
whatever is appropriate to show that the window's size will change,
such as an outline of the content region). The Window Manager requests
this operation repeatedly as the usec drags inside the grow region.
The grow routine should draw in the current grafPort, which will be the
Window Manager port, and should use the grafPort's current pen pattern
and pen mode, which are set up (as gray and notPatXor) to conform to
the Macintosh User Interface Guidelines.

The grow routine for a document window draws a gray outline of the
window and also the lines delimiting the title bar, size box, and
scroll bar areas.

The Draw Size Box Routine

Thw wDrawGicon message tells the window definition function to draw the
size box ("grow icon") in the content region of the window if the
window is active (highlighted) or, if the window is inactive, whatever
is appropriate to ahow that it temporarily can't be aized. For active
document windows, this routine draws the aize box icon in the bottom
right corner of the portlect of the window's grafPort, along with the
lines delimiting the aize box and acroll bar areas; for inactive
windows. it draws just the delimiting lines.

8/25/83 lose CONFIDENTIAL /WMGR/WINDOW.D

(hand)

DEFINING YOUll OWN WINDOWS 39

If the size box is located in the window frame rather
than the content region, this routine should do nothing.

NOTES FOil ASSEMBLY-LANGUAGE PllOGRAMKEllS

*** This will be moved into a separate chapter of the final
comprehensive manual. For now, aee the QuickDraw manual for complete
information about how to uae the User Interface Toolbox from assembly
language. ***
The primary aid to assembly-language programmers is a file na•d
ToolEqu.Text. If you use .INCLUDE to include this file when you
assemble your program, all the Window Manager constants, locations of
system globals. and offsets into the fields of structured types will be
available in symbolic fora.

8/25/83 Rose CONFIDENTIAL /WMGR./WINDOW.S

40 Window Manager Progrumaer's Guide

SUMMARY OF THE WINDOW MANAGER.

CONST documentProc • 9; (standard document window}
dBoxProc • l; {alert box or modal dialog box}
dBoxZero • 2;
mdBoxProc • 3;
rDocProc • 16;

(like dBoxProc but with no ahadov}
(modeleas dialog box) ***forthcoming***
(desk accessory window}

dialogKind
userXind

- 2;
- 8;

inDesk • (I;
inMenuBar • 1 ;
inSysWindow • 2;
inContent • 3;
inDrag • 4;
inGrow • S;
inGoAway • 6;

wNoHit
wlnContent
wlnDrag
winGrow
wlnGoAway

- 9;
- l;
- 2;
- 3;
- 4;

(dialog or alert window}
(window created directly by the application)

{none of the following}
(in the aenu bar}
{in a system window}
(in the content region (except grow, if active))
{in the drag region)
{in the grow region (active window only)}
{in the go-away region (active window only)}

{none of the following}
{in the content region (except grow, if active)}
{in the drag region)
{in the grow region (active window only)}
{in the go-away region (active window only)}

TYPE StringPtr • ·str255;
StringHandle • ·stringPtr;

WindowPtr
WindowPeek

• GrafPtr;
• ·w1ndowRecord;

WindowRecord • R!COllD
port:
vindowlCJ.nd:
visible:
hilited:
goAwayFlag:
apareFlag:
strucRgn:
contRgn:
updateRgn:
vindowDef Proc:
dataHandle:
titleHandle:
titleWidth:
controlLiat:
nextWindow:
windowPic:
refCon:

END;

Graf Port;
INTEGER.;
BOOLEAN;
BOOLEAN;
BOOLEAN;
BOOLEAN;
RgnHandle;
lgnHandle;
lgnHandle;
Handle;
Bandle;
StringHandle;
INTEGER;
Handle;
WindowPeek;
PicHandle;
Longlnt

WindowMessage • (wDraw, wBit, vCalcRgns, wNew, vDispose, wGrow,
vDrawGicon);

8/25/83 Rose CONFIDENTIAL /WMGR/WINDOW.S

SUKKAllY or TBE WINDOW MANAGER 41

Initialization and Al.location

PROCEDUIE InitWindowa;
PROCEDURE GetWMgrPort
FUNCTION NewWiudow

(Vil vPort: GrafPtr);
(wStorage: Ptr; boundalect: lect; title: Str255;
visible: BOOLEAN; procID: INTEGER; behind:
WindowPtr; go&ayFlag: BOOLEAN; refCon: Longlnt)
: WindovPtr;

FUNCTION GetNewWiudow (vindovlD: INTEGER.; vStorage: Ptr; behind:
WindowPtr) : WindovPtr;

PROCEDURE CloaeWindow (theWindow: WiudowPtr);
PB.OCEDUIE DiapoaeWiudow (theWindow: WindovPtr);

Window Display

PROCEDURE SetWTitle
PROCEDUI.E GetWTitle
PROCEDUU SelectWindow
PROCEDUltE BideWindow
PROCEDUIE ShowWindow
PROCEDURE ShowBide
PROCEDURE BiliteWiudow
PROCEDURE BringToFront
PROCEDURE Sendlehind
FUNCTION FrontWindow:
PROCEDUIE DrawGrowicon

Mouse Location

(theWindow: WindowPtr; title: Str255);
(theWindow: WindovPtr; Vil title: Str255);
(theWindow: WindowPtr);
(theWindow: WindowPtr);
(theWindow: WindowPtr);
(theWindow: WindowPtr; ahowFlag: BOOLEAN);
(theWindow: WiudowPtr; fBilite: BOOLEAN);
(theWindow: WindowPtr);
(theWindow: WindowPtr; behindWindow: WindowPtr);
WindovPtr;

{theWindow: WindowPtr);

FUNCTION FindWindow (thePt: Point; Vil whichWindow: WindovPtr)
: INTEGER;

FUNCTION TrackGoAway (theWindow: WindowPtr; thePt: Point) : BOOLEAN;

Window Movement and Sizing

PROCEDUllE MoveWindow {theWindow: WindowPtr; hGlobal.vGlobal: INTEGER;
front: BOOLEAN);

PROCEDURE DragWindow (theWindow: WindowPtr; startPt: Point; boundalect:
lect);

FUNCTION GrowWindow {theWindow: WindowPtr; atartPt: Point; aizellect:
lect) : Longint;

PROCEDURE SizeWindow (theWindow: WindowPtr; w.h: INTEGER; fUpdate:
BOOLEAN);

8/25/83 lose CONFIDENTIAL /WMGB./WINDOW.S

42 Window Manager Programmer's Guide

Update Region Maintenance

PlOCEDTJllE InvalR.ect
PROCEDUU Invallgn
PlOCEDTJllE ValidRect
PROCEDURE Validlgn
PROCEDURE BeginUpdate
PROCEDURE EndUpdate

(badlect: Beet);
(badlgn: RgnBand le) ;
(goodRect: lect);
(goodlgn: lgnBandle);
(tbeWindow: WindowPtr);
(theWindow: WindowPtr);

Miscellaneous Utilities

PROCEDURE SetWRefCon
FUNCTION GetWRefCon
PROCEDURE SetWindowPic
FUNCTION GetWindowPic
FUNCTION PinRect
FUNCTION DragGraylgn

Low-Level Routines

FUNCTION CheckUpdate
PROCEDURE ClipAbove
PROCEDURE PaintOne
PROCEDURE PaintBehind
PROCEDURE SaveOld
PROCEDURE DrawNew
PROCEDURE CalcVia
PROCEDURE CalcVisBehind

8/17/83 lose

(theWindow: WindowPtr; data: Longint);
(theWindow: WindowPtr) : Longint;
(theWindow: WindowPtr; pie: PicBandle);
(theWindow: WindowPtr) : PicBandle;
(tbeRect: lect; thePt: Point) : Longint;
(thelgn: lgnBandle; atartPt: Point; li11itRect,
sloplect: Beet; azis: INTEGER; actionProc:
ProcPtr) : Longint;

(Vil theEvent: EventRecord) : BOOLEAN;
(window: WindowPeek);
(window: WindowPeek; clobbered: lgnBandle);
(atartWindow: WindowPeek; clobbered: lgnHandle);
(window: WindowPeek);
(window: WindowPeek; update: BOOLEAN);
(window: WindowPeek);
(startWindow: WindowPeek;· clobbered: lgnBandle);

CONFIDENTIAL /WHGl/WINDOW.G

GLOSSilY 43

GLOSSAllY

activate event: An event generated by the Window Manager vhen a window
changes from active to inactive or vice versa.

active window: The frontmost window on the desktop.

application window: A window created as the result of something done
by the application. either directly or indirectly (as through the
Dialog Manager).

content region: The area of a window that the application draws in.

desktop: The screen as a surface for doing work in Macintosh.

document window: A standard Macintosh window for presenting a
document.

drag region: A region in the window frame. Dragging inside this
region moves the window to a new location and aakea it the active
window unless the COMMAND key vas down.

go-away region: A region in the window frame. Clicking inside this
region of the active window makes the window close or disappear.

grow image: The image pulled around when dragging inside the grow
region occurs; whatever is appropriate to show that the window's size
will change.

grow region: A window region. usually within the content region, where
dragging changes the size of an active window.

inactive window~ I.Dy window that ian't the frontaoat window on the
desktop.

modal dialog: A dialog that require• the user to reapond before doing
any other work on the deaktop.

aodeless dialog: A dialog that allows the user to work elsewhere on
the desktop before reaponding.

plane: The front-to-back position of a window on the desktop.

reference value: In a window record. a 32-bit field that the
application aay store into and access for any purpose.

atructure region: An entire window; its complete "structure".

system window: Any window that isn't created as the result of
something done by the application. Desk accessories are displayed in
system windows.

8/17/83 lose CONFIDENTIAL /WMGll/WINDOW.G

44 Window Manager Programmer's Guide

update event: An event generated by the Window Manager when the update
region of a window is to be drawn.

update region: A window region consisting of all areas of the content
region that have to be redrawn.

variation code: A number that distinguishes closely related types of
windows and is passed as part of a window definition ID when a window
is created.

visible window: A window that's drawn in its plane on the desktop (but
may be completely overlapped by another window).

window: An object on the desktop that presents information, such as a
document or a message.

window class: An indication of whether a window is a system window, a
dialog or alert window, or a window created directly by the
application.

window definition function: A function called by the Window Manager
when it needs to perform basic operations on a particular type of
window, such as drawing the window frame.

window definition ID: A number passed to window-creation routines to
indicate the type of window. It consists of the window definition
function's resource ID and a variation code.

window frame: The structure region minus the content region.

window list: A list of all windows ordered according to their
front-to-back positions on the desktop.

Window Manager port: A grafPort that has the entire screen as its
portRect and is used by the Window Manager to draw window frames.

window record: The internal representation of a window, where the
Window Manager stores all the information it needs for its operations
on that window.

window template: A resource that contains inforaation from which the
Window Manager can create a window.

8/17/83 Rose CONFIDENTIAL /WMGR/WINDOW.G

	Assembly Language
	Boxes Sample Code
	Control Manager
	Desk Manager
	Device Manager
	Dialog Manager
	Event Manager
	File Manager
	File Menu and Filing Commands
	Font Manager
	FP68K
	Index (Incomplete)
	Macintosh Technical Support
	MacPrint
	Memory Manager
	Menu Manager
	OS Event Manager
	Packages
	QuickDraw
	Resource Manager
	Sad Macintosh
	Scrap Manager
	Segment Loader
	Serial Ports
	Sound Manager
	Structure of a Macintosh Application
	TextEdit
	Toolbox Utilities
	Trap List and Debugging
	User Interface
	Vertical Retrace Manager
	Window Manager

