
•• (

ODlmDeveloper's Guide

(

S APPLE COMPUI'l!R, INC.

This manual is copyrighted by Apple or
by Apple's suppliers, with ail rights
reserved. Under the copyright laws, this
manual may not be copied, in whole or
in part, without the written consent of
Apple Computer, Inc. except in the
normal use of software or to make a
backup copy of the software. This
exception does not allow copies to be
made for O<hers, whether or not sold,
but ail of the material purchased may be
sold, given, or lent to another person.
Under the law, copying includes
translating into anaher language.

© Apple Computer, Inc., 1988
20525 Mariani Avenue
Cupertino, CA 95014
(4~) 996-1010

Apple, the Apple logo, laserWrirer, and
Macintosh are registered trademarks of
Apple Computer, Inc.

Ethernet is a registered trademark of
Xerox Corporation.

ITC Avant Garde Gothic, ITC Garamond,
and ITC Zapf Dingbats are registered
trade- marks of International Typeface
Corporation.

MicroChannel is a trademark of
Internation Business Corporation.

MU/MPI, MU, MPI, and Link Support
I.ayer are jointly owned trademarks of
Apple Computer and Novell, Inc.

POSTSCRIPT is a regi1tered trademark: of
Adobe Systems Incorporared.

Varityper is a~ trade-mark, and
VT600 is a trademark, of AM
International, Inc.

Simultaneously published in the United
States and Canada.

2/21/88

(
Contents

Introduction

1 Introducing the MWMPI
Benefits for the user
Benefits for the developer
MLI/MPI module specifics
Protocol stack independence from MUDs
Developing MLIDs

2 The Unk Support Layer
Protocol Stack Support Entry Point
MUD Support Entry Point
General Services Entry Point
What You Need to Know

3 Link Support Layer General Services
AllocMemory
FreeMemory
ReAllocMemory
MemoryStatistics
AddMemoryToPool
AddGeneralService
RermveGeneralSe.rvice

p ART I. Writing Drivers for the Mll

4 MllD Operations
The SEND Entry Point Handler

iii

The Interrupt Service Routine

5 MLID Initialization

6 MLID Control Procedures
GetMLIDConfiguration
GetMLIDStatistics
AddMulticastAddress
DeleteMulticastAddress
ReceptionControl
MLIDShutdown
MLIDReset
CreateConnection
RernoveConnection
AddPromiscuousSourceFilter
AddPromiscuousDestinationFilter
dearProrni.scuousFilters
DriverPoll

7 IJnk Support Commands for MI.IDs
GetECB
RetumECB
DeFragmentECB
ScheduleAESEvent
CancelAESEvent
GetintervalMarker
DeregisterMUD
HoldRcvEvent
StartCriticalSection
EndCriticalSection
GetCriticalSectionStatus
ScrviceEvents
F.oqueueSend
GetNextSend
SendComplete
AddProtocolID

iv Contents

(
PART II Writing Protocol Stacks for the MPI

8 Protocol Stack Operations
1be Receive Entry Point
The Default Receiver Entry Point
The PreScanEntry Point
The Transmit Packet Handler

9 Protocol Stack Initialization
Stack Installation Stages
Registering a Protocol Stack

Register by binding with an MUD
Register as the default stack
Register as the PreScan stack

Finding an MUD by Name

10 Protocol Stack Control Commands
GetProtocolStackConfiguration
GetProtocolStackStatistics
BindToMUD
UnbindFromMUD
MLIDDeRegistered

11 Unk Support Commands for Protocol Stacks
GetECB
ReturnECB
DefragmentECB
ScheduleAESEvent
Cancel Event
GetlntervalMarker
RegisterStack
DeRegisterStack
RegisterDefaultStack
DeRegisterDefaultStack
RegisterPreScanStack
DeRegisterPreScanStack
SendPacket
HoldPacket
GctHeldPacket
ScanPacket
GetStackIDfromName
GetPIDfromStackID Board
GetMUDControlEntry
GetProtocolControlEntry
GetLinkSupportStatistics

Contents v

vi Contents

BindStack
UnbindStack
AddProtocolID
RclinquishControl

(A MllD Configuration Table

B Protocol Stack Configuration Table

c ECB Format

D MI.ID Statistics Table Format

E Protocol Stack Statistics Table Format

F Unk support Layer Statistics Table Format

G System Error codes

H NET.CFG Configuration File Format

f I Finding the Link Support Layer in DOS

J Defined Media IDs

K Defined card IDs

Glossary

Contents vii

(

(

Apple/Novell Confidential

Chapter 1 Introducing the Open Data-Link Interface

The Open Data-Link Interface is a new system jointly developed by Apple

Computer, Inc. and Novell that provides unmatched flexibility for both

network developers and end users. The Open Data-Link Interface includes the

Multiple Link Interface (MJ.Pll) and the Multiple Protocol Interface (MPf!M).

The MU and MPI are the interfaces for network card drivers and protocol

stacks to the Link Support Layer (l..SL'IM). The LSL provides packet transfer

between these interfaces in a way that allows different protocol stacks to

use link-level drivers interchangeably and simultaneously. The Open Data-Link

Interface puts an end to the need for one-driver to one-stack communication.

1-1

Apple/Novell Confidential

Benefits for the user

Imagine the inconvenience that could result if messaging had to be done without the assistance of
a postal service. It's the same inconvenience that takes place when you're forced to buy a separate
driver or interface card to support each stack on your network. The Open Data-Link Interface acts
like a postal service and more, allowing a single driver to support any number of stacks-just like a
single postal service supports many kinds messengers. Any driver written to the MLl/MPI
specification can receive packets from any stack written to the specification. That means you
don't have to buy, install, or maintain separate drivers or interface cards for each protocol in your
network. One driver will handle all the protocols.

Under the Open Data-Link Interface data packets need only be directed to a special module, the Link
Support Layer, instead of a specified driver or stack. The Link Support Layer is like the postal service
of this specification because it corre<.tly steers inbound and outbound packets to the specified
stacks and drivers. That means your system is responsible only for directing data packets to the
Link Support Layer instead of reaching the full distance to the protocol stack or some specified
driver. Just as the postal service knows how to deliver messages dire<.tly to you, the Link Support
Layer knows how to deliver packets dire<.tly to the driver specified by the protocol stack. Similarly,
the Link Support Layer knows how to deliver packets to the protocol stack specified by the driver.

You can benefit directly from using the Open Data-Link Interface in the following ways:

• You can expand your networking system by adding networking protocols without having to
add more interface cards.
You don't have to buy different cards for different systems. If you need to switch back and
forth between environments such as TCP/IP and Netware~, you need only one interface card.

• You protect your investment.
With the Open Data-Llnk Interface, the one essential driver can be used in any workstation
accessing any environment Once you invest in an Open Data-Llnk Interface driver, you're
protected because no matter how your network changes, the OU driver will always
communicate with any stack written to the OU.

• You spet:Ki less time and money on support.
With just one driver supporting many prctocol stacks, you have fewer components to support.
When you take away all the additional drivers or interface cards except the one Multiple Link
Interface Driver (MUD) you would need to support the variety of praocol stacks on your
system. All the hardware you removed represents how much less hardware you have to
support.

1-2 MLI/MPI

c:

Apple/Novell Confidential

Benefits for the developer

By writing driveIS and stacks that follow the MWMPI specification, you seize a range of benefits
for yourself that will ultimately pr6fit the user community. The MU/MPI specification gives you a
standard by which to design network card drivers and protocol stacks that use the MWMPI
interface. Writing to the specification guarantees that the drivers and stacks work with each other.
You only need to develop once, develop correctly, and you will ultimately save development
resources and time to market.

Hardware developers who write drivers to this specification can have their drivers transparently
communicate with any protocol stack written to this specification. Similarly, protocol stack
developers who modify their stacks to meet this specification can have their stacks communicate
with any driver written to this specification.

As a developer, you can benefit directly from writing to the Open Data-Link Interface in the
following ways:

• You reduce the labor in your development process.
When you write your drivers or protocol stacks according to the MWMPI specification, you
labor only once because all other MWMPI compliant systems will work with yours. You don't
have to develop with "one-driver one-stack" communication in mind You only have to
develop your drivers and stacks for communication with the Link Support Layer.

• You write a driver that has a full-feature set.
The driver you write to the MWMPI specification contains a full feature set that goes beyond
transporting packets to the Link Support Layer. Your driver can also call on the Link Support
Layer for any number of support commands including name lookup, registration, and statistics
on any other drivers in the system. Under the Open Data-Link Interface, your driver is capable
of supporting multiple protocol stacks instead of just one.

• Your protocol stacks have access to all network interface cards.
The stack you write to the MWMPI specification automatically gives you compatibility to any
card written to the same specification. This means there are more cards that can use your
stack.

• Your protocol stacks can co-exist transparently with other stacks written to the MU/MPI
specification.
Because all the stacks in an Open Data-Link Interface System are written according to the same
specification, they can co-exist without conflict. •

MLI/MPI module specifics

In order to implement the multiplexing environment of the Open Data-Link Interface, the MWMPI
design ~es the following three modules:

Chapter 1: Introducing the MWMPI 1-3

Apple/Novell Confidential

1. The Multiple Link Interface Driver (MUD), supplied by the interface card manufacturer.

This module implements the actual interface to the card The MLID must define the following
entry points:

o a Send Eiitry Point
This allows protocol stacks to transmit through the MUD's interface card

o a Driver (MUD) Control Entry Point
This manages all the miscellaneous infonnational and control requests made of the MLID
by stacks.

2 The Link Support Layer (ISL), supplied by Apple Computer and Novell.

The ISL is responsible for coordinating communication between the MUDs and the stacks. In
addition, it provides many common support routines needed by MUDs and stacks. It is also
the central point where MUDs and stacks conduct registration to identify each other.

The level of communication provided by the Link Support Layer between stacks and drivers
allows a fully multiplexed environment.

The L.5L has the following four entry points:

o Initialization Entry Point
This entry point is where MUDs and stacks register themselves with the ISL and exchange
entry point and configuration information.

1-4 MLI/MPI

(

(

(

Apple/Novell Confidential

o MUD Support Entry Point
This entry point allows the MUD to use the event-handling, timer, and queueing facilities
in the Link Support Layer.

o Protocol Stack Support Entry Point
This entry pohl allows stacks (and applications, under MS-DOS) to gain acceM to services
from the LSL Additionally, it allows the stacks to queue packets, to schedule timer events,
to get Receive buffers, to perform stack ID-to-physical and physical-to-stack ID
mappings, to obtain error information, and to communicate directly with other stacks and
MLIDs.

o General Services Entry Point
This entry point allows stacks (and applications, under DOS) to access some general
services from the LSL, such as memory management functions. This entry point
additionally provides a generic communications medium so modules can add new general
services to the entry point

3. The protocol stack.

This module is the implementation of a protocol. The MU/MPI specification does not define
how an application communicates with a protocol stack because higher-level services vary from
stack to stack. The MU/MPI specification details how a stack will communicate with the LSL
and, ultimately, the MI.IDs. (The protocol stack receives packets from the Link Support Layer
and then processes these received packets. The protocol stack also creates outgoing packets
and transmits them through the Link Support Layer. From the Link Support Layer, the packets
are delivered to the MUD that was requested by the protocol stack.)

The processing d these packets allows higher-level services (such as registratioo and lookup of
entity names, and transaction processing) to exist. Because each stack maintains its own set of
higher-level services, the availability of a particular service will vary from stack to stack.

The stack contains the following five entry points:

o Protocol Stack Control Entry Point
This is the entry poinl where stacks can call each other and exchange configuration
information and statistics about their operation.

o Receive Entry Point (Optional)
This is the entry point where stacks nonnally receive incoming packets from MLIDs.

o Default Receiver F.ntry Poinl (Optional)

This is an alternate entry point for receiving incoming packets from MllDs.

o PreScan Emy Point (Optional)

This is a special entry point for stacks that need to filter or preview incoming packets
before they are routed by the Link Support Layer.

o Application Entry Point

Chapter 1: Introducing the MU/MPI 1-5

Apple/Novell Confidentlal

nm is the entry. point where applications call the stack. The defmition of this entry poiil
is dependent on the specific protocol stack. As a result, the Application Entry Point is
undefmed in the MLI/MPI specification.

The following diagrain provides a visual overview of a sample network system. Arrows indicate
optional communication paths.

Applic:atiolll

lr.
JU[JL

Link support layer

... &tmm:\1::MQ:~fmi1rrnnl,lsmrnnmm:nwrntmta:!:nn~
I I .----J,l __ __

LocalTalk Ethernet F.themet
MUD MllD#l MLID#l

~
Network - Network

._
Network

inlerflce card interface card interace card --- - ..r'
_.....

Protocol stack independence from MLIDs

In order for protocol stacks to achieve independence from the link-level envelope of the underlying
media, the following mumptions are made in the current implementations:

l Link-level pti,sical addn5es can be uniquely exp~ in 48 bits or IC$.

1. Link-level envelopes, which have a field for demultiplexing of incoming packets (called the
protocol ID in tha specification), can uniquely express this field in 48 bits or I~.

3. A 48 bit physical address corresponding to OFFPFFFPFFFFFH is considered to be a broadcast
request by all MllDs.

1-6 MLI/MPI

(

Apple/Novell Confidential

The user can configure the system to recognize a particular protocol stack by specifying a number
(up to 48 bits) that describes the protocol ID for the stack. The user (or configuration program)
would enter this 4&-bit number and the name of its corresponding stack into the NET.CFG file. The
LSL would then be able to route incoming packets from an MUD to the specified protocol stack.

Every MUD registers with the Link Support Layer. As part of the registration process, the MUD
tells the LSL the name and protocol ID for each of the stacks that the MUD recognizes. The stack
name and protocol ID are usually obtained from the NET.CFG file. The LSL then assigns a stack ID
to each known protocol name. The LSL also provides each MUD with a "board number• (or
multiple board numbers if the MUD is written to handle multiple link interface cards).

Stacks identify themselves by making the RegisterStack call to the Link Support Layer. The
protocol stack can then find out the Protocol ID for a given board number by making the
GetPIDfromStackIDBoard call to the Link Support Layer. The protocol ID is used in a Send Packet
command to tell the MUD which protocol ID to put in the link-level envelope.

By using the board number, a stack specifies which MUD will transmit a packet. The board
number also allows a stack to identify the MUD from which an incoming packet originated.

Developing MIIDs

Writing to the MWMPI specification gives customers a flexible solution by allowing them to mix and match
network cards and services. But you need to have your MUDs certified before they can be marketed. If you are
interested in developing to this specification, contact your authorized Novell representative to get a standard
developer's kit

Chapter 1: Introducing the MWMPI 1-7

(

(

Apple U>mputer/ l'lOVCll U>m10enuai

Chapter 2 The Link Support Layer

This chapter describes the services provided by the Link Support Layer to

MUDs and protocol stacks.

The Link Support Layer contains special services called support routines to

help the function of both MUDs and protocol stacks. By using the calls

specified in the chapters on support and controi procedures, MUDs and

protocol stacks can access these services. These routines are designed to be

very efficient and to use a minimum amount of program stack space. Calls

are made to the Link Support Layer at the following four entry points:

• Protocol Stack Support Entry Point

• MUD Support Entry Point

• General Services Entry Point

• Initialization Entry Point •

2-1

Protocol Stack Support Entry Point

This entry point is a far-call address that can dispatch all Link Support Layer commands available to a
stack. Many of these commands are intemally equivalent to ~ provided by the MUD Support
Entry Point However, these I.SL commands are dispatched through the Protocol Stack Support
Entry Point so that all commands available to a protocol stack are available through this entry
point

The Protocol Stack Support Entry Point provides procedures for the following:

• to allow a stack to obtain and retum Event Control Blocks (ECBs are Buffers used to send or
receive packets, or to schedule timers.)

• to enqueue and recover ECBs for later use

• to register and deregister the stack

• to provide timing services

• to determine stack and protocol IDs

• to get statistics

• to bind with MUDs

• to transmit packets through an MUD

• to provide other services that allow stacks to obtain information about MLIDs and other
protocol stacks. The Link Support Layer maintains a list of all active stacks and MI.IDs

The Link Support Layer uses the caller's program stack space to accomplish its work. Packet
reception and Event Service Routines (ESRs), which are called when an ECB event completes for
Asynchronous Event Services (AES), which are timing routines, are dispatched on interrupt-time
program stacks. As a n;sult, program stack swapping under MS-DOS must be used for any routines
that use rriore than about 32 bytes of program stack space.

MLID Support Entry Point

This entry point is a far-call address that can dispatch all Link Support Layer commands available to
an MUD. Many d these commands are internally equivalent to those provided by the Protocol
Stack Support Entry Point but are dispatched through the MUD Support Entry Point. As a result, all
commands accessible to an MUD are available through this entry point.

This entry point provides procedures for the following events:

• to allow an MUD to obtain and return ECB.5 for packet reception

2-2 MLI/MPI

J\pp1e u:>mputer1 Nove11 u:>nnaent1a1

• to enqueue and recover Transmit ECBs for later use

• to hold Receive Ee& for processing by the Link Support Layer

• to register and deregister the MI.ID

• to provide timing services

• to add Praocol IDs
• to start and end critical sections

General Services Entry Point

This entry point is available to all praoool stacks. Under MS-DOS, it is available to applications.
(The General Services Entry Point is na available to MI.IDs.) It contains a small memory manager
and some hooks to allow other stacks (and applications, under ~DOS) to add new commands
that can be accessed through the General Services Entry Point. This ability to add new commands is
intended to allow stacks/applications to find each other easily and exchange entry points.

What You Need to Know

Before you get started writing for the MU/MPI, you should understand the following
characteristics:

• A limited number of MI.IDs are supported by the Link Support Layer. This number can be
found by making the GetMUDControlEntry call. Make this call incrementing the board number
parameter from 0 until the NO_MORE_ITEMS error code is returned.

• A limited number of stacks are supported by the Link Support Layer. This number can be found
by making the GetPraocolControlEntry call. Make this call incrementing the Stack ID
parameter from 0 until the NO_MOREJTEMS error code is returned.

• All MUDs must be able to transmit and receive packets of at least 586 bytes, na counting the
media header envelope. If the media does na support this requirement, the MI.ID must
implement a strategy to join packets to give the Link Support Layer and protocol stacks the
impression that the MI.ID can transmit and receive at least this packet size. (Refer to the
description of the RetumECB call in Chapter 7 for some hints on implementing this strategy.)

• All version numbers in the specification are decimal. A major version number of 1 and a minor
version number of decimal 31 is intended to imply version 1.31.

• On W3X implementations, all calls to the Link Support Layer will preserve the Direction Rag.

Chapter 2: The Link Support Layer 2-3

(,

Apple Computer/Novell Confidential

Chapter 3 link Support Layer General Services

This chapter derails the general services th.at the Llnk Support layer provides

through its General Services Entry Point The general services of the Llnk

Support layer are available to protocol stacks (and other Ring 0 processes

under OS/2), and to applications under MS-DOS. Register BX is used to specify

the desired general service command

The values of BX are allocated in the following way:

OOOOH to lFFFH

2000H to 3FFFH

4000H to SFFFH

6000H to 7FFFH

8000H to FFFFH

General services provided by Apple and Novell

General services administered by Apple

General services administered by Novell

General services administered by Apple and Novell

Available for general use

All general services added to the Link Support layer in the range 8000H to

FFFFH must support AX .. 0 as an incoming parameter, and must return AX ..

0. In addition these general services must return the address of a description

record (described next) in ES:SI. As an option, DXBX can return an entry

paint for the general service.

The following structure represents a Description record:

3·1

Apple Computer/Novell Contidential

3·2 MLI/MPI

Offset Length Description

0 11 ~enninated General

12 1 name (no leading length byte)

13 1 month

14 1 ' day

15 1 year

15 1 major version

16 1 minor version

If the general service is implemented as a TSR program under DOS, the PSP of

the TSR should be stored in the word immediately preceding this struaure.

In addition, the function AX • 1 is reserved for general service removal. When

this call is made, the seivice should determine if it can be removed. If it can,

the general service should restore and clean up areas such as memory

allocation, interrupt vectors, and making the Remove General Seivice call; the

general selVice should also return AX • 0. It should retum AX •

BAD_COMMAND if removal is ntt supported. FAIL is returned in AX if

removal is supported but the service canntt be removed at th• time. In this

case, ES:SI should point to a 0-terminated string desaibing why the general

service cannot be removed. A 0-tenninated string bas no leading lengh byte.

•

i

(

Apple Computer/Novell Confidential

AllocMemory

This command allocates memory to the protocol stack. The memory can be freed when it is no
longer needed by using the FreeMemory command.

Assumes:

• BX=O

• Registers Preserved: OS, SS, SP, and BP

• Interrupts: Enabled on entry

• ex contains the number of bytes required

Returns:

• Interrupts: Enabled on exit

• AX • O; memory was available and ES:SI will point to the allocated memory (in OS/2, the
allocated memory is located in the GOT)

• AX < O; an error occurred:

AX= OUT_OF _RESOURCES

AX,. BAD_PARAMETER

if the memory pool does not have enough memory to
satisfy a request

if a request needs more memory than allowed. The
maximum number is implementation dependent but will
always be greater than 32K and less than 64K. For MS
OOS, this number is 65516 byteS

• Note. This command is not avialable under OS/2. Use the memory support procedures defined
byOS/2.

FreeMemory

This command returns memory that was allocated by the AJlocMemory command to the memory
pool.

Assumes:

• BX= 1

• Registers preserved: DS, SS, SP, and BP

• Interrupts: Enabled on entry·

• FS:SI contains a pointer to the allocated memory.

Returns:

• Interrupts: Enabled on exit

Chapter 3: Link Support Layer General Services 3·3

Apple C.Omputer/Novell C.Onfidential

• AX • O; the memory was returned to the pool

• AX < O; an erra ocx:urred:

AX = BAD_PARAMETER if the pointer returned did not come from the memory
pool

+ Note This command is n<t available under OS/2. Use the memory support procedures defined
byOS/2

ReAllocMemory

This command allows reduction of the size of an allocated memory block, returning some of the
memory to the pool. If ex is passed in OFFFFH, the size of a block of memory can be discovered
In addition, ex always returns the actual size of the block. The size may be more than requested as
a result of quanti?.ation in the memory manager.

Assumes:

• BX=2

• Registers preserved: OS, SS, SP, and BP

• Interrupts: Enabled on entry

• ex contains the number of bytes to which the memory block is to be resized

• ES:SI contains the pointer to the block of memory to be resized

Returns:

• Interrupts: Enabled on exit

• ex = size of memory block

• AX = O; the resizing was done

• AX < O; an error ocx:urred:

AX .. BAD_PARAMErER if the pointer returned did not come from the memory
pool

AX"' our_ OP _RESOURCES if more memory than was in the original block of
memory is requested

+ Note This command is n<t available under OS/2. Use the memory support procedures defined
byOS/2

3-4 MLI/MPI

(

(

Apple C.Omputer/Novell C.Onfidential

MemoryStatistics

This command returns the current status of the memory pool.

Assumes:

• BX•3

• Registers preserved: All except AX, BX

• Interrupts: Unspecified

• ES:SI contains a pointer to six words

Returns:

• Interrupts: never changed from the way they entered

• AX"'O

ES:SI points to six words as follows:

wordO:

word 1:

word2:

word 3:

word4:

wordS:

number of paragraphs of memory available

number of paragraphs of memory in use

number of paragraphs in the largest block of memory

number of available blocks of memory

number of bytes overhead per allocation

number of bytes minimum allocation

+ Note. This command is not available under OS/2. Use the memory support procedures defined
by<:J!J/2.

AddMemoryToPool

This command allows a protocol stack or a tenninate-and-stay-resident (TSR) application to give
more memory to the buffer pool.

Assumes:

• BX=4

• Registers preserved: DS, SS, SP, and BP

• Interrupts: enabled on entry

• ex contains the number of paragraphs to add to the pool

• ES contains the segment address to add to the pool

• once memory is given to the pool, it can never be removed

Chapter 3: Link Support I.ayer General Services 3-5

Apple Computer/Novell Coof1dcntial

Bctums:

• Interrupts: enabled 00 exit

• AX• O; no enas arc pcmible

• Nole. lbm command m not available under OS/.2. Use the memory support procedures defined
byo.512.

AddGeneralService

This command allows praocol stacks, ahcr Ring 0 processes under OS/2, and TSR applications
under DOS to add new commands to the General Services Entry Point. The entry point (entry) of .
the new command will be called whenever the General Services Entry Point is entered with a
command code matching command in the passed structure. This command is especially useful for
enabling a process to locate other pieces of itself. For example, a stack could register itself to allow
another piece of the protocol stack, which is not always loaded, to find and communicate with the
master stack.

Before a new general service can be added to the General Services Entry Point, an available command code in the
range of SOOOH-FFFFH ~to be located. This is done by making a General Service Entry Point call with the
desired command code in BX and with AX set to 0. If the command code is already in use, AX is returned still
set to 0, and ES:SI will conrain a description record address. The description record may be eumined to

determine what general service is installed for this command code. If the command code is not in use, AX is
returned containing the BAD_ COMMAND (8>08H) error code. The program that is installing the new General
Service can then execute an AddGencralService command to actually add the new service.

Assumes

• BX=5

• Registers preserved: OS, SS, SP, and BP

• InterruptS: Enabled on entry

• ES:SI points to one of the following structures (which must be in the GDT under 05/2):

Offset Length
0 4
4 4
8 2

Returns:

Description
l'CSCIVed
service emy point
oommand number

• lntcrruptS: Return enabled .

• AX = O; the command was added to the general services supported

3·6 MLI/MPI

·,
I

i

(

Apple Cmnputer/Novell Confidemial

• AX< O; an enor occuned:

AX• DUPUCATE_ENTRY if there is already a general service with the requested
command code

• Note: The memory that ES:SI points to is being used by the Link Support Layer until the
general service is removed with the RemoveGeneralService call.

RemoveGeneralService

This command allows the removal of a general service that was added with the AddGeneralService
command call.

Assumes:

• BX=6

• Registers preserved: OS, SS, SP, and BP

• Interrupts: Enabled on entry

• ES:SI points to one of the following structures, which must be in the GDT under OS/2:

Offset Length Description
0 4 reserved
4 4 service entry point
8 2 command number

This structure must be the one passed to the AddGeneralService call and not a copy of it

Returns:

• Interrupts: Return enabled

• AX = O; the command was removed from the general services supported

• AX< O; an error occuned:

AX = ITEM_NOT_PRESENT if there is not a general service matching the passed
structure

Chapter 3: Llnk Support Layer General Services 3-7

c:

''.
,,

Part I Writing Drivers for the MLI

t

(

Appte U>mpucer1 r-..oveu U>nI10enaat

Chapter 4 MLID Operations

This chapter briefly desaibes the operation of an MUD. The MUD ~

responsible for receiving packets at the link layer and routing them to the Llnk

Support I.ayer as well as transmitting packets through the interface adapter.

The MUD normally consists of the following three parts:

• an MUD Control Entry Point handler

• a Send Entry Point handler

• an Interrupt Service Routine (ISR)

This chapter provides a description of the Send Entry Point handler and the

ISR The operation of the MUD Control F.ntry Point handler is discussed in

Chapter 6, •MIJD Control Procedures.• •

4-1

Appte U>mputeu i'«Jveu U>nnaencw

The Send Entry Point Handler

The Send Entry Point handler gets the Event Control Block (ECB) in ES:SI and may modify all registers except SS,
SP, OS, and BP. The following example, written in pseudocode, shows one way to implement the handler:
If (Shut down)

Set AX = NO_SUCH_DRIVER
Set Status in ECB = NO_SUCH_DRIVER
Return

if (send_busy_flag)

Enqueue Send

J

else

set send_busy _flag

if (ECB.StackID "'"' OffffH)

start raw mode send

else

create Link-Layer envelope

start send

4-2 MLI/MPI

(

(

app1e U>mputert Noveu U>m10em:w

(transmit completes)

increment TotalTXPackets statistic

set Status in ECB to o or appropriate error code (see note
followinq the example.)

call SendComplete with the ECB; (see note followinq the example)

clear send_busy_flaq;

• Note: If the transmitter ~ asynchronous (that is, if it does na wait for completion), the Status is set and
SendComplete ~ called from the ISR that services the •transmit complete• interrupt The ECB address
should be saved before leaving the transmit routine so that the correct ECB can be returned by
SendComplete when the transmit is complete.

For MUDs that must use DMA, GetECB followed by DeFragmentECB can be used to obtain an ECB that is fully
defragmented and does na cross a 64 Kilobyte (KB) OMA boundary. In this case, SenrJComplete should be
called immediately after the DeFragmentECB for the original ECB. In addition, SendComplete should be called
after the send completes for the defragmented ECB. The following programming example shows how GetECB
can be used for MUDs that use OMA:

call GetECB to obtain a OMA-capable ECB

call DeFragmentECB to copy and defraqment the oriqinal ECB to
the new one

call SendComplete on original ECB to return it to the buffer pool

start send or start raw mode send

(transmit cqmpletes)

set Status in ECB to O or appropriate error code

call SendComplete on defraqmented ECB

Chapter 4: MUD Operations 4-3

app1e l.Omputer/ NOVeu U>nnaenllat

ECB2• Get ECB()

'"-,:

,
DePragmentECB J1lll ECB1 C""""6S into ECB2

(ECB1,ECB2)

SendO>mplere
(ECBl)

Send packet

1

Set status in ECB

\

+)
'

SendO>mplete
(ECB2) wt no_.,.,,.. ECB2

The Interrupt Service Routine

The following example shows one way the ISR might be implemented:

push all reqisters

call StartCriticalSection if needed

shut off board source of interrupts

re-arm the interrupt system

4-4 MU/MPI

appte U>mputer1Novet1 U>nnaenaat

/* First check for and process incoming packets. *I

if (packet_received)

increment TotalRXPackets in statistics

if (fatal errors occurred in the packet)

else

increment appropriate statistic

throw away packet

if (packet came from myself) /* NOTE: ignore packets from self */

throw away packet

else

if (packet too large or too small>

else

increment appropriate statistic

throw away packet

call GetECB

if !ECB available)

Chapter 4: MUD Operations

app1e LOmpucer1 NOveu \..Onnaenuat

/*

*/

/*

else

read packet into ECB

set ImmAddr in ECB to the source address from the packet

set ProtolD in ECB to the protocol ID in the packet, or O if
the packet does not have a protocol ID

set BoardNo in ECB to the board number of the board which
received the packet

set FragCnt in ECB to l

set SendLen to lenqth of the data in the packet
envelope)

(not counting

set FragLenl to length of the data in the packet (not countinq
envelope)

set FragPtrl to start of the data in the packet (immediately
followinq envelope)

call HoldRcvEvent with the ECB

throw away packet

increment NoECBsAvail in statistics

If transmit_complete qenerates an interrupt, check here for
transmit completion. (See later note.)

4-6 MU/MPI

Appte LOmputer1 NOVe.tt LOnnaem:tat

Here, we can optionally loop back to the top and check for more
received packets or transmit completions.

*/

/* Now check for queued transmits. Send a queued packet if the
transmitter is available. */

if (not send_busy_flag)

call GetNextSend

if (a send event exists)

set send_busy_flag

start send

set Status in ECB to O or error code (see note under the
Send Entry Point Handler)

call SendComplete with the ECB

cli

turn board interrupts back on

call EndCriticalSection or call ServiceEvents

pop all registers

iret

Chapter 4: MUD Operations 4-7

Apple U>mputer/ NOVCU U>lUlQCDUal

• Note: If the transmitter is asynchronous, the ISR may also have to handle transmtt compleJe interrupts. If
so, the followin8 proc5ing should be done in the ISR. (The previous example shows the internal structure
of the ISR.)

if (transmit_complete)

increment TotalTxPackets statistic (if not already incremented
at transmit start time)

set Status in ECB to O or appropriate error code

call SendComplete on transmitted ECB

clea.r send_l:>usy_flaq

4-8 MLI/MPI

,,•

Apple Computer/Novell Confidential

Chapter 5 MLID Initialization

This chapter describes the initiali1.ation process for an MUD. MUDs initialize

themselves when the MUD loads itself in the computer's system. The MUD

must be initialized before it can send and receive packers on the network. •

5-1

Apple Computer/Novell Confidential

The installation process of an MI.ID occurs in the following stages:

1. The MI.ID registers wlh the Link Support Layer. With OS/2, registration occurs when the MI.ID
sends an 1ocn. command to the UNKSUP$ device using the general IOCit command
(DosDevIOOl) with a function category of OAlH and a function code of 1. However, with
DOS, the Link Support layer is a TSR program As a result, the Link Support Layer's Initiali1.ation
Entry Point on a DOS-based network is found using the INT 2FH multiplexing address. The
exact procedure for doing this is described in Appendix J.

2 The MUD reads the NET.CFG file and fills in the MUD Configuration Table with the necessary
information. (See Appendix A for the format of the table and Appendix H for the format of the
NET. CFG file.)

3. The MUD calls the Llnk Support Layer Initialization Entry Point with the following
information:

BX = 1 MU initialization function code

ES:SI Points to a table with the following information:

Offset Bytes Description

0 4 Ring 0 address of the MUD Send Entry Point. ·
All packets to be sect on the network will be
sent through this address

4 4

8 4

Ring O address of the MUD Control Entry Point

Address of the MUD Configuration Table valid
at the time this call is made

DS:DI Address of four words in memory for the Link Support Layer to return
configuration information into, in the following format:

Offset Bytes Description

0 4 Ring 0 Address of the MUD Support Entry
Point of the Llnk Support Layer

4

6

2

2

Board number assigned to the MUD

Maximum buffer size of receive ECBs in the
system

• Note: With OS/2, the parameters are sent in the IOCit parameter buffer and returned in the
I OCit data buffer.

4. At this point, the developer should initialize the hardware. If the hardware fails, make the
DeRegisterMUD call to the MUD Support Entry Point to remove the MUD from the Llnk

5-2 MLI/MPI

f

(

Apple Computer/Novell Confidential

Support Layer's list of MI.IDs. The process should then be terminated and an error message
sent to the user.

5. The MUD infams the Link Support Layer about the Protocols the MUD can process. The
protocols are processed using the AddProtocolID call defined in Chapter 7. Only protocol IDs
mentioned in NET.CJlG should be added, since there are a limited number of protocol stacks
supported by the Link Support Layer.

6. The MUD terminates to the operating system and remains resident. A1 this point, the driver is
installed in the computer's system and is able to begin sending and receiving packets.

Chapter 5: MUD Initialization · 5-3

•,'

(

(

Apple Coolputer/Novell Confidential

Chapter 6 MI.ID Control Procedures

This chapter describes procedures that must be. written for the .MI.ID so that

it can suppat protocol stacks.

To call the .MI.ID control procedures, place a function code into BX and call

the MUD Control Entry Point. The .MI.ID Control Entry Point becomes

available to the Link Support Layer at initialization time. The retum value in AX

will always be generated so that the Z and S flags are set correctly. AX will be

O (and the Z flag set, and S flag clear) if the call was completed with no error.

AX will be 15 than O (and the Z flag clear and S flag set) if the call was

completed with an error. The value of AX will indicate the error. If an MUD

does not support one of the following calls, it must retum BAD_COMMAND

inAX.

The following commands are provided by MI.IDs:

• Get.MLIDConfiguration

• GetMLIDStatistics

• AddMulticastAddress

• DeleteMulticastAddr5

• ReceptionConuol

• MLIDShutdown

• MLIDReset

• CreateConnection

this call must be suppated

this call must be supported

support for this call is optional

support for this call is optional

this call must be supported

this call must be suppated

this call must be supported

support for this call is optional.

The correct error code must be

returned

6-1

Apple C.Omputer/NoveJI Confidential

• RemoveC.Onnection

• AddPromiscuousSourceFilter

• AddPromiscuousDestinationFilter

• ClearPromiscuousFilters

• DriverPoll

GetMLIDConfiguration

support for this call is optional.

The correct error code must be

returned

support for this call is optional

support for this call is optional

support for this call is optional

support for thm call is optional (OS

dependem)•

This command allows a protocol stack to determine the configuration of an MUD.

Assumes

• ax .. o
• Regi&ers preserved: OS, SS, SP and BP

• Interrupts: Enabled on entry

Returns

• Imerrupts: Enabled on exit

• ES:SI returns a pointer to the MIJD Conftgurat1on Table (see appendix A for a description of
this table)

• AX=O; no errors are pos.5ible

GetMLIDStatistics

This command returns a pointer to the MUD Statistics Table describing statistics of the MUD,
such as the number ol transmitted and received packets.

Assumes

• BX• I

• Registers preserved: OS, SS, SP, and BP

6-2 MLI/MPI

(

(..

Apple Computer/Novell Confidettial

• Interrupts: Enabled on entry

lleturm

• llllerrupts: Enabled oo exit

• ES:SI points to the MUD Statistics Table, the format of which is desaibed in Appendix D

• AX • O; no errors are possible

AddMulticastAddress

This command adds a multicast address to the MUD address list Once in this list, packets with
this address can be accepted as valid.

The MUD must maintain :i coulll of the number of times that an ad~ is added. This allows
multiple protocol stacks to add the same multicast address. (See DeleteMulticastAddress later in
this section.)

Assumes

• BXa2

• Registers preserved: DS, SS, SP and BP

• Interrupts: Enabled on entry

ES:SI points to a 6-byte multicast address to add to the MI.ID multicast list

Returns

• Interrupts: Enabled on exit

• AX • O; the MI.ID added the multicast addresses; once in this list, packets with this address will
be accepted as valid Use of the AddMulticastAddress call does not automatically enable
multicast reception. To enable multicast reception, use the Reception Control command
described later in this chapter

• AX < O if an error occurred:

AX • BAD_COMMAND the MI.ID does not support multicast addressing

AX • our_OP _RESOURCES the MUD is out of room to add another multicast address

AX .. BAD_PARAMETER the address pointed to by ES:SI is not a valid multicast
address

• Note: Use of the AddMulticastAddress call does not automatically enable multicast
receptioo. The Reception Control command (described later in this chapter) must be used to
enable multicast reception.

Chapter 6: MUD Control Procedures 6-3

Apple Computer/Novell Confx:lential

DeleteMulticastAddress

This command removes an instance of a multicast address from the MUD's list of addresses.

When an MUD receives the DeleteMultk:astAddress command, the MUD must decrement its
count of the number ci tines an address was added and only remove the address from its internal
tables when the coonter deaements to O. If a multicast addresss is removed, a packet with this
address will no longer be accepted as valid.

As.mm.es

• BX•3

• Registers preserved: OS, SS, SP, and BP

• Interrupts: Enabled on entry

• ES:SI points to a 6-byte address to remove from the multicast address list

Returns

• Interrupts: enabled on exit

• AX • O; the MUD removed the multicast address from its list

• AX< O; an enor OCCUJTed:

AX• BAD_COMMAND the MUD does not support multicast addressing

AX• ITEM_NOT_FOUND the multicast address was not found in the MUO's valid
addresses list

ReceptionCuntrol

This command allows a protocol stack to determine ex set which packet types an MUD will receive
by means of the bit settin~ ~ in AX.

At a minimum, MUDs must support Bit 0 being set In order to be useful with most protocol
stacks, the MUD should also be able to support broadcast packets (Bit 2 being set).

As.mm.es

• BX=4

•, Registers preserved: OS, SS, SP and BP

• Interrupts: Enabled on entry

• ex = 0. This setting indicates a read function

• ex is greater or less than 0. This setting indicates a write function

MLI/MPI

(

(

Apple Computer/Novell Confidential

AX contains a bitmap indicating the types of incoming packets the MI.ID should accept:

Returns

Bit 0 .. accept packets to the MLID's address

Bit 1 .. accept packets to the MUD's multicast list

Bit 2 '"accept brwdcast packets

Bit 3 .. accept all packets (promiscuous)

• Interrupts: Enabled on exit

• AX • O; no error occurred

• AX < O; an error occurred:

AX • BAD _PARAMETER the MUD does nct. support one or more of the settings you
requested in AX

• BX is equal to the reception control setting after the function was executed even if an error
occurred.

+ Note. Promiscuous address filters (see AddPromiscuousSource, AddPromiscuousDestination,
and dearPromiscuousFilters later in this chapter) are not affected by changing reception
control in and out of the promiscuous tnode.

MUDShutdown

This command allows a protocol stack to shut down an MI.ID. If this call is supported by the
MUD and invoked, the MUD should unhook all interrupts that it has intercepted In this way, if
the MI.ID is removed from memory, there will be no adverse effects. The MUD must fail all
incoming transmit requests with the NO_SUCH_DRIVER error code. In addition, the driver should
flush its send queue by repeatedly calling GetNextSend and Send Complete (with a CANCELLED
error code in the ECB Status Field) until the queue is empty. The driver should also set Bit 0 in the
share flag of the MI.ID Configuration Table.

Assumes

• BX= 5

• Registers preserved: OS, SS, SP, and BP

• AX = 0 if the caller wants the MI.ID bah to shutdown iCs .hardware and de-register itself.

• AX :1: 0 if the MUD should only shuc down iCs .hardware and unhook ils interrupts.

• Interrupts: Enabled on entry

Returns

Chapter 6: MUD Control Procedures 6-5

Apple C.Omputer/Novell Confidential

• Interrupts: Enabled on exit

• AX • O. The MUD successfully shut down its hardware. Set Bit O in the the shale flag

• AX < 0 if an etra' occurred:

AX • PAIL the MUD cannot shut down its hardware

AX .. BAD_COMMAND the MUD does not support this command

.. caution:

MLIDReset

In order to remove the MUD safely from memory, the. OeRegisterMUD
call must be made to the Link Support Layer. •

This command instructs the MLID to reinitialize its hardware and prepare to become operational.
This command should also install its interrupt vectors needed for MUD operation if they are not
already installed

Assumes

• BX•6
• Registers preserved: OS, SS, SP, and BP

• Interrupts: Enabled on entry

Retums

• Interrupts: Enabled on exit

• AX • O; the MUD successfully reinitialized the interface card

• AX< O; an error occwred:

AX • FAIL the MUD canntt restart because of a hardware or software failure

• Note. If it already bas been initialized, the MUD should reset the hardware.

CreateConnection

6-6 MLI/MPI

Apple Computer/Novell Confidential

This command tells an MUD that the protocol stack will establish a lengthy connection with the
address tc>. which ES:SI is pointing. CreateConnedion allows the MUD to more efficiently handle
operations such as caching source routes. However, the MUD should still function properly even if
this call is never made.

Assumes

• BX•7

• Registers preserved: DS, SS, SP, and BP

• Interrupts: Enabled on entry

• ES:SI points to a 6-byte address to create a connedion with il

Returns

• Interrupts: Enabled on exit

• AX .. O; the MUD successfully conneded to this address

• AX < O; an error occurred:

AX • FAIL the connection was not established (the meaning <i this error code is
undefined for this version of the specification)

RemoveConnection

This command tells an MUD that the protcx:ol stack will no longer mainlain a lengthy connedion
with the address to which ES:SI is pointing. RemoveConnedion allows the MUD to handle
commands such as caching source routes more efficiently. However, the MUD should still
function properly even if this call is never made.

Assumes

• BX=8

• Registers preserved: DS, SS, SP, and BP

• Interrupts: Enabled on entry

• ES:SI points to a 6-byte address to break a connedion with the address

Returns

• Interrupts: Enabled on exit

• AX=O

Chapter 6: MUD Control Procedures 6-7

Apple Computer/Novell Confidential

AddProtniscuousSourceFilter

This command allows a protocol stack to request an MI.ID to filter source addresses when the
MUD is in promiscuous mode. If the MI.ID has no source addresses in its filter table, packets from
any source address will be accepted. Otherwise, only those packets from addresses in the source
address filter list will be accepted.

The number of slots which the MUD keeps to support promiscuous filtering depends on the
implementation of the MUD.

Assumes

• BX=9

• Registers preserved: DS, SS, SP, and BP

• Interrupts: Enabled on entry

• ES:SI points to a 6-byte address; the MI.ID should use this as a source address filter in
promiscuous mode

Returns

• Interrupts: Enabled on exit

• AX = O; the source address was added to the MUD's list of source address filters

• AX < O; an error occurred:

AX• BAD_COMMAND

AX .. our_OF _RESOURCES

the MUD does not support ftltering promiscuous
source addresses

the MUD has no more slots to store filter
information

+ Note. Promiscuous address filters (see, AddPromiscuousDestination, and
dearPromiscuousFilters later in this chapter) are not affected by changing reception control
in and out of promiscuous mode (see ReceptionControl earlier in this chapter).

AddProtniscuousDestinationFilter

This command allows a protocol stack to request an MUD to filter destination addresses when the
MUD is in promiscuous mode. If the MI.ID has no destination addresses in its filter table, packets
to any destination address will be accepted. Otherwise, only those packets sent to addresses in the
destination address filter list will be accepted.

6-8 MLI/MPI

(

f

(

Apple Computer/Novell Confidential

The number of slots the MI.ID kee~ to support promiscuous filtering is dependent on the
implementation of the MI.ID.

Assumes

• BX• 10

• Registers preserved: OS, SS, SP, and BP

• Interrupts: Enabled on entry

• F.S:SI points to a 6-byte address; the MI.ID should use this as a destination address filter in
promiscuous mode

Returns

• Interrupts: Enabled on exit

• AX .. O; the destination address was added to the MUD's list of destination address fdters

• AX < O; an error occurred:

AX = BAD_COMMAND the MUD does not support filtering promiscuous
destination addresses

AX= our_OF_RESOURCFS the MI.ID has no more slots to store fdter information

• Note. Promiscuous address filters (see AddPromiscuousSource, AddPromiscuousDestination,
and ClearPromiscuousFilters later in this chapter) are not affected by changing reception
control in and out of promiscuous mode (see ReceptionControl earlier in this chapter).

ClearPromiscuousFilters

This command removes all promiscuous address filters from the tables maintained by the MUD.

Assumes

• BX• 11

• Registers preserved: OS, SS, SP I and BP

• Interrupts: Enabled on entry

Returns

• Interrupts: Enabled on exit

• AX = O; the node supports promiscuous address filtering

• AX < O; an error occurred:

Chapter 6: MLID Control Procedures 6-9

Apple Computer/Novell Confidential

AX • BAD_ COMMAND the MLID does not support filtering promiscuous destination
addresses

This is the only way to remove promiscuous address filters.

• Note. Promiscuous address filters (see AddPromiscuousSource, AddPromiscuousDestination,
and dearPromiscuousFilters later in this chapter) are not affected by changing reception
control in and out of promiscuous mode (see ReceptionControl earlier in this chapter).

DriverPoll

This command is called by the Link Support layer periodically if Bit 5 is set in the Modef1ags field of
the MLID Configuration Table. (This bit indicates that the driver is a polled driver.)

Assumes

• BX~ 12

• Registers preserved: OS, SS, SP, and BP

• Interrupts: Enabled on entry

Returns

• Interrupts: Enabled on exit

+ Note. This call returns nothing to the caller. Its use is implementation-dependent but is
commonly used as an ISR routine for interface cards with no interrupt capability.

6-10 MLI/MPI

~

(

Apple c.omputer/Novell Confidential

Chapter 7 Link Support Commands for MLIDs

This chapter describes support commands in the Link Support Layer that can

be issued by the MUD. To call the support commands, place a function code

in BX and call the MI.ID Support Entry Point (The MUD Support Entry Point

is obtained at MI.ID initiali1.ation from the Link Support Layer.) The value of

AX will indicate the error. AX will be 0 (and the Z flag set and S flag clear) if

the call completed with no error. AX will be less than O (and the Z flag clear

and S flag set) if the call completed with an error.

The following list presents the calls an MUD can make to the Link Support

Layer for support commands. The remainder of this chapter details separately

the function of each call.

• GetECB

• ReturnECB

• DeFragmentECB

• ScheduleAESEvent

• CancelAESEvent

• GeUntervalMarker

• DeRegisterMLID

• HoldRcvEvent

• StartCriticalSection

• EndCriticalSection

• GetCriticalSectionStatus

• ServiceEvents

• EnqueueSend

• GetNextSend

7-1

Apple Computer/Novell Confidential

• SendComplete

• AddProtocolID •

7-2 MLI/MPI

(

Apple Computer/Novell Confidential

GetECB

An MUD calls GetECB whenever the MI.ID receives a valid packet. The MUD reads the packet into
the ECB and sets the ProtolD, BoardNo, and ImmAddr fields to correspond with the incoming
packet The FragCnt field must be set to 1, while the FragPtrl field must point to the position in
the packet data immediately following the link-level envelope. FragLenl and SendLen will indicate
the length of the packet data, not including the size of the envelope. The envelope of the packet
will always immediately follow the Fragl.enl field of the ECB.

If an ECB is not available, the MUD should discard the incoming packet
An ECB is always OMA-ready (in other words, on PC-compatibles the ECB will not er~ a 64K

boundary).

In OS/2, these ECBs are in the Global Descriptor Table (GDT) and addressable by all Ring O processes.
Assumes

• BX=O

• Register preserved: DS, SS, SP, and BP

• Interrupts: Disabled on entry

Returns

• Interrupts: Remain disabled

• AX= O; an ECB was available:

AX < O ; an error occurred:
AX .. Olll'_OF_RESOURCFS no ECBs available

• ES:SI points to the returned ECB, if one was available

ReturnECB

ReturnECB returns an ECB that was allocated through the GetECB cormnand The ECB is returned
to the Link Support Layer's ECB pool for use when needed at a later time.

Most MI.IDs do not need to use this command. It is only required if the MUD could not
properly receive the incoming packet (after having called GetECB) or if the MUD need.5 to fragment
packets to overcome media protocol constraints (such as limited packet size). Such MI.IDs must
piece together multiple packets before reporting packet reception. However, the MUD must
obtain an ECB (using GetECB) and then hold the ECB when the flJ'St fragment arrives. If all of the
fragments do not arrive within an amount of time determined by the MUD, the MUD ignores the
fragments in its possession and returns the ECB.

Chapter 7: Link Support Procedures for '.-UJDs . 7-3

Apple c.omputer/Novell Confidential

Assumes

• BX•l

• Regi&ers pnzvcd: OS, SS, SP and BP

• Interrupts: Disabled on entry

• F.S:SI points to an ECB to be returned to the Link Support Layer's ECB Pool.

:Returns

• Interrupts: Remain disabled

• AX•O

• AX < O; an error occurred:

AX = BAD _PARA.METER the ECB does not belong to the Link Support Layer

DeFragmentECB

This command allows an MLID to defragment an ECB quickly . The resulting ECB will be a copy of
the original, except it will have only one fragment. The data from the original fragments will be
placed at the specified offset from the FragLenl field in the destination ECB.

If AX contains OFFPFH on entry to this command, then F.S:SI points to a data buffer only and
not an ECB. In this case, the header information from the source ECB will not be copied, but
defragmented data will be moved to the data buffer at F.S:SI. Otherwise, AX contains an offset
past the Fraglenl field to begin storing the defragmented data.

Assumes

• BX•2

• Register preserved: OS, SS, SP and BP, F.S and SI

• Interrupts: Unspecified

• CX:DI points to an ECB to defragment

• F.S:SI points to an ECB to hold the defragmented copy

• AX contains the number of bytes past the FragLenl field in the destination ECB to begin
storing the defragmelled data. <Pa: example, use O if the data is to begin immediately after the
FragLenl field at the start of the envelope field) If this offset is OFFFFH, then F.S:SI bolds only
a data buffer, and ECB header information will not be copied

Returns

• Interrupts: Returned the same way they were entered and are not enabled inside the routine

• AX=O

• AX < O; an error occurred:

7-4 MLI/MPI

{

(

Apple C.Omputer/Novell C.Onfidential

AX• BAD_PARAMETER the ECB to be defragmented contains invalid fields describing
the data contents

• Note. Because this routine takes a long time to complete, interrupts should be left on if
·~ibJe.

ScheduleAESEvent

This command schedules a driver-defined event to occur at the end of a specified time interval. An
ECB must be supplied for the AES timing system. When the timeout expires, the Status field is set

to 0 and the ESR is called ES:SI will point to the ECB. An ECB which is already in use may not be
passed again to this command To reset the timer of an AES Event, use CancelAESEvent, then issue
a new ScheduleAESEvent call.

When using OS/2, the ECB used for this call must be in the GDT . This call requires only the first
four fields of an ECB (FI.ink, Blink, Status, and ESR).

Assumes

• BX•3

• Registers preserved: DS, SS, SP, BP, ES, and SI

• Interrupts: Unspecified

• ES:SI points to an ECB fdled in with the BLink field containing an unsigned 32-bit number for
the number of milliseconds that can elapse before the Status field is set to 0 and the ESR
Routine is called The ESR field of the ECB must be valid

Returns

• Interrupts: Are returned the same way they were entered and are not enabled inside the routine

• AX•O

CancelAESEvent

This command cancels the AES event to which ES:SI is pointing. The Status field of the ECB will be
set to the CANCEU.ED error code. The ESR Routine will not be called.

Assumes

• BX=4

• Registers preserved: OS, SS, SP, BP, ES, and SI

Chapter 7: Link Support Procedures for MllDs 7-5

Apple C.Omputer/Novell C.Onfideotial

• Interrupts: Unspecified

• ES:SI points to the AES ECB to cancel

Returns

• Interrupts: Are returned the same way as they were entered and are not enabled inside the
routine

• AX = O; the cancel command was completed.

• AX < O; an error occurred:

AX • ITEM_NOT _PRESENT the ECB was not found in the AES Event queue

GetlntervalMarker

This command returns a timing marker in milliseconds; the marker can be used, for example, for
timing retry events. The value of this marker has no relation to any real-world, absolute time.
When time marker values are compared with each other, the difference is elapsed time in
milliseconds.

Assumes

• BX .. 5

• Registers preserved: all except DX:AX

• Interrupts: unspecified

Returns

• Interrupts: are returned the same way they were entered and are not enabled inside the routine

• DX:AX returns the current interval time in milliseconds

DeRegisterMLID

This command allows the driver to tell the Link Support Layer that the board wh<R number is in AX will no
longer be available to the system.

The Link Support Layer will call all protocol stacks that are bound to this driver using the
MLIDDeRegistered Protocol C.Ontrol command to notify them of the deregistration.

Assumes

• BX=6

• Registers preserved: DS, SS, SP and BP

11 Interrupts: Enabled on entry

i·6 MLI/MPI

Apple Computer/Novell Confidential

• AX contaim the board number being deregistered

lletuma

• Interrupts: Remain enabled

• AX • O; the Unk Support Layer successfully deregistered the MLID

• AX< 0 ; an erra-ocaured:

AX• BAD_PARAMETER the Link Support Layer does not have an MLID registered as
the board number passed in AX

• Note The driver should flush its send queue before making this call as described in the
section on the MUDShutdown command in Chapter 6.

HoldRcvEvent

HoldRcvEvent must be called every time a valid packet is received into an ECB. A pointer to this
ECB is passed in registers ES:SI. All required fields in the ECB must have been set as indicated in the
Assumes section.

The ECB is placed in a temporary holding queue. The ServiceEvents routine (described later) calls
the appropriate protocol stack with the incoming packet. The stack must then retum the ECB to
the Link Support Layer's ECB pool. ServiceEvents is called near the end of the driver's ISR. (Refer to
Chapter 4, MUD Operatiom, for more information.)

Assumes

• BX .. 7

• Registers preserved: DS, SS, SP, BP, ES, and SI

• Interrupts: Disabled on entry

• F.S:SI contaim a pointer to an ECB associated with a completed receive event

• The Status, ImmAddr, ProtoID, and Board.No fields are set appropriately for the completed
packet reception. In addition, the FragCnt field is set to 1, the FragPtrl field points to the start
of packet data immediately following the link-level envelope, and the FragLenl and SendLen
fields contain the size of the packet, not including the size of the envelope. The envelope of the
packet will be localed immediately following the FragLenl field, and the packet data will
immediately follow the envelope

Returns

• Interrupts: Remain disabled

• AX=O

Chapter 7: Link Support Procedures for MUDs 7-7

Apple Computer/Novell Confidential

StartCriticalSection

StartCriticalSection and EndCriticalSection are two support commands that prevent the Link
Support Layer from processing events while the driver is executing critical sections of code. Event
processing is delayed until EndCriticalSed.ion is called.

These two support commands bracket any areas of the MUD code that execute with
interrupts enabled and that must run to completion for the MLID to continue running smoothly.
Also, by definition, the EndCriticalSection command must not be called until the driver is in a state
in which it would not be affected by having either AFS or ServiceEvents routines executed. Control
might not be returned to the driver for some time.

The StartCriticalSection and EndCriticalSection calls should be made so that in the course of
execution they are properly balanced Any imbalances may result in the workstation or server
locking up. A Start/End pair of calls may be nested within the domain of another Start/End pair. In
some cases, this will result when a critical ccxie section is called from the higher levels of software
or called from another critical code section.

In MS-DOS, standard pop-up applications will be disabled while inside the critical section.

Assumes

• BX•8

• Registers preserved: OS, SS, SP and BP

• Interrupts: Disabled on entry

• AX is the board number of the MLID making the call

Returns

• Interrupts: Remain disabled

• AX•O

• BX • total number of outstanding calls to StartCriticalSection

• ex = total number of outstanding calls to StartCriticalSection for the requested board number

EndCriticalSection

EndCriticalSection marks the point at which Link Support Layer events and MS-DOS pop-ups can
resume. For more infamation on EndCriticalSection, refer to the description of the previous call,
StartCriticalSection.

Assumes

• BX=9

• Registers preserved: OS, SS, SP and BP

• Interrupts: Disabled on entry

7-8 MLI/MPI

(

Apple Computer/Novell Confidential

• AX is the board number d the MI.ID making the call

Returns

• Interrupts: Remain disabled, but they may have been enabled while the EndOiticalSection
function executed.

• AX•O

• BX .. total number of outstanding calls to StartCriticalSection

• ex - total number of outstanding calls to StartCriticalSection for the requested board
number

GetCriticalSectionStatus

This command reports the current critical section status. For more information, refer to the
description of the StartCriticalSection command found earlier in this chapter.

Assumes

• BX= 10

• Registers preserved: DS, SS, SP and BP

• Interrupts: Unspecified

• AX = board number

Returns

• Interrupts: Return unchanged

• AX=O

• BX .. total number of outstanding calls to StartOiticalSection

• CX .. total number of outstanding calls to StartCriticalSection for the requested board
number

ServiceEvents

ServiceEvents is invoked to complete the processing ci network events that have been queued by
the HoldRcvEverl command and to process pending AES timer events. ServiceEvents processes
each ECB in the holding queue. The ECBs in the queue are processed in the same order that they
were added to the list, that is according to the •first in, flJ'st out• (FIFO) scheme. ServiceEvenrs
also processes AES-timer ECBs.

Chapter 7: Link Support Procedures for MUDs 7-9

Apple Computer/Novell Confidential

The driver ISR should call ServiceEvent.s immediately before the registers are restored. All
hardware pr~ing should have been completed by the driver, and the ISR must be ready to accept
a new interrupt

The ServiceEvent.s routine will route all received packw to the correct protocol stack and fdl in
the StackID field for them. The stack is responsible for making the RetumECB call to release the
ECB. (See the description <i the RetumECB call earlier in this chapter for more information.)

The Receive Entry Point.s, Default Receiver Entry Points, and PreScan Entry Point.s of the
protocol stacks will be called with interrupts disabled, and the program stack will be that of the
interrupted process (or the interrupt routine, if the ISR swaps stacks). The protocol stack should
tum interrupts on as soon as pa55ible. If the protocol stack is running under an operating system
that support.s program stack swapping at interrupt time, the protocol stack should swap to its
own internal program stack when it processes the received packets.

Assumes

• BXa 11

• Registers preserved: OS, SS, SP and BP

• Interrupts: unspecified

• The system may spend a large amount of time in this routine

Returns

• Interrupts: Return disabled but interrupts will have been enabled during the course of
processing

• AX=O

EnqueueSend

This command allows the driver to place the Send ECB in the Link Support Layer's send queue. The
Send ECB remains in the queue until the driver requests it by calling GetNextSend The ECB may be
copied by the Link Support Layer under some operating systerm. SendComplete should not be
called for the ECB that was sent to the Link Support Layer through EnqueueSend (see the note in
GetNextSend, next)

Assumes

• BX"' 12

• Registers preserved: DS, SS, SP and BP

• Interrupts: Disabled on entry

• ES:SI points to the Send ECB to queue

Returns

• Interrupts: Remain disabled

7-10 MLI/MPI

(

Apple Computer/Novell Confidential

• AX "' O; the ECB was successfully queued

• AX < O; an em:J' cx:curred:

AX· OUI'_OP JIB.50URCES

Transm!Uhlt an EC8 with
the ISL bold queue

MLID

Ge!Send ECBl from ISL

EnqueueSend
(put ECBl in ISL queue)

Do ""' caJJ
Sendeompb on ECB1

GetNextSend
(tra.mmit ECB2)

SendComplete
(freeE~

the ECB needs to be ropied and there was not a free ECB
available to create the copy

ISL
bold queue

Chapter 7: Link Support P;ocedures for MLlDs 7·11

Apple Computer/Novell Confidential

GetNextSend

This command determines if there are any Send EC& on the Link Support Layer's send queue. If
there are, the address of the first ECB is returned in ES:SI. If net, a NO_MORE_ITEMS error code is
returned. (For more information, refer to the previous description of EnqueueSend)

Assumes

• BX= 13

• Registers preserved: DS, SS, SP and BP

• Interrupts: Disabled on entry

• AX contains the board number making the request

Returns

• Interrupts: Remain disabled

• AX .. O. ES:SI will return an ECB queued up with the EnqueueSend command

• AX < O if an error occurred:

AX= NO_MORE_ITEMS no EC& are queued

+ Note: The ECB returned by this command may not be the same ECB that was queued using
the EnqueueSend command, but may be a copy that has been defragmented. The driver
must call SendComplete when it is through using this ECB.

SendComplete

SendComplete must be called every time a packet is transmitted from· an ECB. A pointer to this
ECB is passed in registers ES:SI.

This routine must be called any time the driver is finished using a Send ECB. The Llnk Support
Layer calls the ESR of the SendECB with interrupts disabled and ES:SI pointing to the ECB. The ESR
routine must not enable interrupts; it must execute quickly since it is called at interrupt time.
Always call Sendc.omplere when you are done with an ECB returned by GetNextSend (even if it is
the same ECB given to an EnqueueSend), but never call SendComplete when queuing a Send with
EnqueueSend. Normally, a driver is finished using a SendECB after it sends the data to the interface
card, or after calling GetNextSend in the driver's ISR routine and sending the data to the interface
card. However, if the driver used the EnqueueSend command (described earlier) to trammit the ECB
at a later time, SendComplete should not be called for the ECB given to the EnqueueSend command.

As.sum es

• BX= 14

7-12 MLI/MPI

(

Apple Computer/Novell Confidential

• Reg~ters preserved: DS, SS, SP and BP

• Interrupts: Disabled on entry

• ES:SI contains a poiJler to an ECB cwociated with a completed Send event.

Returns

• Interrupts: Remain disabled

• AX• O; no errors are pcmible.

AddProtocolID

This command allows the driver to tell the Link Support Layer the names and protocol IDs <:i the
protocol stacks the driver can support.

Assumes

• BX= 15

• Registers preserved: OS, SS, SP and BP

• Interrupts: Enabled on entry

• ES:SI points to the 6-byte protocol ID being added

• CX:DI points to a string (no more than 15 characters long) containing the name of the protocol
stack for this protocol ID. The string must have a leading length byte and a trailing zero byte.

• AX contains the media ID for which the new protocol ID is being added

Returns

• Interrupts: Enabled on exit

• AX .. O; the Link Support Layer successfully added the new protocol ID

• AX < O; an error occurred:

AX .. OUI'_OF _RESOURCES The Link Support Layer has no resources to register
another protocol ID

AX • DUPUCATE_ENTRY There is already a protocol ID registered for the given
media/stack combination·

AX• BAD_PARAMETER The name of the parameter is illegal (undefined) and the
length field of this parameter should be less than or equal
to 15

+ Nots: This call should only be made for PID info in the NET.CFG file because of a limited
number of protocol stack slots.

Chapter 7: Link Support Procedures for MT.IDs 7·13

Apple Computer/Novell Confidential

7-14 MLI/MPI

(
Part II Writing Protocol Stacks for
the MPI

'- i
' J

(

(

Apple G:>mputer/Novell Confidential

Chapter 8 Protocol Stack Operations

This chapter briefly describes the operation of a protocol stack. The stack

receives packets from the Link Support Layer and then processes these

received packets. The protocol stack also creates outgoing packets. The stack

delivers the outgoing packets to the Link Support Layer. From the Link

Support Layer, the packets are delivered to the MUD that was requested by

the protocol stack.

The processing of these packets by the protocol stack allows higher-level

services (such as registration and lookup of entity names and transaction

processing) to exist Each stack maintains its own set of higher-level services

so the availability of a particular service will vary from stack to stack. •

8-1

-- _,..:- >:.

Apple Computer/Novell Confidential

The stack normally consists of the following four handlers:

• The Protocol Stack Control Entry Point handler
This handler allows applications and stacks to obtain valuable information about the stack.
The entry point is detailed further in Chapter 10, Protocol Stack Control Procedures.

• The Application Entry Point handler
This handler services requests by applications.

• The Transmit Packet handler
This handler is responsible for creating an ECB, filling in its fields, and passing the ECB to the
Link Support Layer for transmwion.

• The SendComplete ISR handler
This handler is called whenever a Send ECB has been processed by the MUD. The handler allows
the stack to do any required processing after an ECB has been transmitted

One or more of the following three handlers must also be included in the stack:

• The Receive Entry Point handler
This handler processes received packets delivered by the Link Support Layer. Stacks receive
packets if the BindStack call was used to bind with an MUD.

• The Default Receiver Entry Point handler.
This is another handler for receiving packets delivered by the Link Support Layer. The Default
Receiver Entry Point receives all incoming packets from the MUD that can not be routed to

other stacks. For example, the PIO of the packet is not registered. A stack ~ives packets if it
was registered as the default receiver by using the RegisterDefaultStack call. This handler could
be the same as the Receiver Entry Point handler.

• The PreScan Entry Point handler
This entry point allows a special purpose stack to filter or preview incoming packets from an
MI.ID before they are routed by the Link Support Layer.

The process of registering and binding with MI.IDs is discussed in Chapter 9, Protocol Stack
Intttaitzatton. This chapter provides detailed descriptions of the following:

• The Receive Entry Point

• The Default Receiver Entry Point

• The PreScan Entry Point

• The Transmit Packet handler

The Receive Entry Point

The Link Support Layer passes the Receive Entry Point a pointer to an ECB in FS:SI with the
~allowing fields filled in:

8·2 MLI/MPI
\,

\
',;

(

(

Apple Computer/Novell Confidential

AllecmeECB

Oflllet

0

4

8 1.:_1i:::1::.1 .. -::.::1::'·:·~·1:1·::-:1::1:::·1:::1••
10 1-:.:-:::-:.\!l!i:\=!!\!i":ll!\!lli:i:_,:·:.!.:\~\:.:-:·.:::'

St3Ck ID

16 Proto ID

22 BoardNo

24 ImmAddr

42 Send Len

Ff38Cnt

50

52 i Envelope !
(V21iable length)

PacketDat&
! (V21iable length) !

I

StaclzID

Proto/D

Imm.Addr

FragCnt

Send Len

FragPtrl

Fraglenl

Envelope

contains the stack ID of the protocol stack for
which this packet is destined This value need only
concern stacks that are attempting to handle two
different protocol IDs.

contains the protocol ID of the incoming packet
Most stacks do not need this value.

contains the board number of the MLID that
received this packet.

contains the physical address of the source node of
this packet.

always conrains a 1.

contains the number of bytes in the packet (not
counting the envelope).

contains a pointer to the start of the packet's data
(immediately following the envelope).

contains the number of bytes in the packet's data
(not counting the envelope).

immediately follows FragLenl and has a variable
length, depending on the media.

The Receive Entry Poim may destroy all registers except SS, SP, BP, and OS.

The protocol stack is responsible for making the ReturnECB call; this returns the ECB to the Link Support Layer.
The ECB should be returned after the protocol stack has finished processing the received packet.

Cba?ter 8: Protocol Stack Operations 8-3

Apple Computer/Novell ConfidCntial

The Default Receiver Entry Point

The Link Support La}CI' passes the Default Receiver Entry Poili: Handler a pointer to an ECB in ES:SI
with the following fields fdled in:

8-4 MLI/MPI

.;.

' I

(

Apple Computer/Novell Confidential

AleedftECB

0

4

s .::lilli·i,,i, .. i:i·lil.i:·l··111=::11111·1!il··::1i:I

lO .:1:··:11·:=1==:l'::·:ii·l=::.111:::ll1!il:i!1!1!~!·'l
14

16

22

24

42

52

StxklD

Proto ID

BoardNo

IrnmAdclr

·:·.:11::::11.11::::·:1•1111111:1:=:·:

::.!i:l.:ii:l·1:1:1.:.i .• l1:=::111··::::.,

Send I.en

FragCnt

FragPtr 1

F12gl.en 1

i Envelope !
(vviable length)

Packet Oala
i (variable length) !

I I

Stack/D

Proto/D

lmmAddr

Sendl.en

FragCnt

FragPtrI

Fraglenl

EnvekJpe

contains OFFFFH.

contains the protocol ID of the
incoming packet

contains the baud number of the
MI.ID that received this packet

contains the physical address of the
source node of th~ packet.

contains the number of bytes in the
packet (not counting the envelope).

contains a 1.

contain a pointer to the start of the
packet's data (immediately following
the envelope).

contain the number of bytes in the
packet's data (not counting the
envelope)

immediately follows Fraglenl and has
a variable length, depending on the
media.

The Default Receiver Emry point handler may destroy all registers except SS, SP, BP, and DS. The
protocol stack is respoosible for making the RetumECB call; this returns the ECB to the Link
Support Layer after l has fumhed processing the received packet.

The PreScan Entry Point

Chapter 8: Protocol Stack Operations 8-5

Apple Computer/Novell Confidential

The Link Support Layer passes the PreScan Entry Point Handler a pointer to an ECB in ES:SI with the
following fields filled in:

A lleaift ECB

Ofliet

0

4

8

10

Proto ID contaim the protocol ID of the
14 Stack ID incoming packet

16 Proto ID BoardNo contains the board number of the
MUD that received this packet A

22 Board No protocol stack may want to reject a

24 ImmAddr
packet depending on the origin of its
board number

30 ImmAddr contaim the physical address of the

34
source node of thi5 packet

Sendlen contains the number of bytes in the
42 SendLen packet (not counting the envelope)

44 F12gCnt
FragCnt always contains a 1.

FragPtrl contaim a pointer to the start of the
46 F12g Ptr 1 packet's data (immediately following

Prag Len 1
the envelope).

so
Fraglenl contaim the number of bytes in the

packet's data (not counting the
S2 • Envelope i envelope). : (variable length)

Envelope immediately follows FRAG_LENl and
has a variable length depending on the

PldtetDala media. : (V2riable length) ! •

I
The PreScan Entry Point Handler may destroy all registers except SS, SP, BP, and OS. The stack should return AX
= O if the Link Support Layer should not route the packet. The stack should return AX= 1 and ES:SI pointing to
the receive ECB if the Link Support Layer should route the receive ECB. If the stack returns AX = 0, the stack is
responsible for making the RetumECB command on the received ECB.

8-6 MLI/MPI

(

Apple Computer/Novell Confidential

The Transmit Packet Handler

To send a packet on the network, the protocol stack must create an ECB and provide the following
infonnation in the ECB:

Tnosm!t

10 ESR

14 ProtoID

16

24 .:::::::.:.~·'.::.~:!·l.::1,:,=11111:i::=::!~::1:: .. :::.':i·i
30 .l·!::fl=::'.::1:1::111::=1=1•1:::=:111,:1:11111::=:=:!

34 Sendlm

42 FragCnt

FngPtrl

Fngl.enl

• PngPtr:l 50 • •
I
• Pmgl.en:l 52 • •

• • •
I
• • •

Stack/D

ProlOID

ImmAddr

ProtoWS

Sendlen

FragCnt

FragPtrX

FraglenX

contains the stack ID of the stack sending the
packet or OFFFFH if the stack intends to send a
•raw" packet

contains the address of an Event Service Routine
which will be called when the ECB is freed. This
field must contain a valid address.

contains the protocol ID for the stack ID/board

number fa which the packet is destined. This
field is ignored if a •raw" packet is sent.

contains the board number for which the packet is
destined.

contains the physical address <:i the destination
node fa this packet. This field is ignored if a "raw"
packet is sent

may be filled in with any needed infamation (will
not be modified by the MLID or the Link Support
Layer).

contains the complete length of the packet,
counting all fragments, but not counting the
envelope (unless the feature to send a •raw"
packet is used)

contains the number <:i fragments for the packet

contains the pointer to the X'th fragment of the
packet

contains the number of bytes in the X'th
fragment of the packet

Olapter 8: Protocol Stack Operations 8-7

Apple Computer/Novell Confidential

After filling in the ECB, the packet is transmitted using the SendPacket call. The transmit
command is asynchronous, and the stack may not reuse the ECB until the ESR is called The ESR is
called even if an error occurs. A stack must not depend on receiving an error if the trammit fails.
Some MUDs call SendComplete immediately after the data from the ECB has been tramferred to
the memory on the interface card

The ESR may destroy all regmters except SS, SP, BP, and OS, but may not enable interrupts.

If the transmit command waits for the ESR to be called before continuing (for the caller this means turning the
transmit into a synchronous command), the transmit handler should make the RelinquisbControl call while
waiting. However, if the stack is operating under a multitasking operating system such as 05/2, the stack
should yield to the operating system instead, normally by waiting on a semaphore.

If the StackID field is set to OFFmf, then a "raw" send is performed by the MUD. Normally, the MUD
encapsulates the data given by the ECB in a link-level envelope before transmitting the packet. For a raw
transmit, the stack is respomible for building the entire packet including media-specific headers. In this case the
media envelope must be contained entirely in the first fragment.

• Note; The ESR may be called before control is returned from the SendPacket call.

8-8 MLI/MPI

\
/

·~, _,,, j

(

·(_·

Apple Computer/Novell Confiderlial

Chapter 9 Protocol Stack Initialization

Protocol stack iniliali1.ation occurs when the stack loads itself in the

computer's system. 'Ibis initiali1.ation process, descnbed in th~ chapter, must

take place before the stack can send and receive packets. •

9-1

Apple Computer/Novell Confidential

Stack initiaHzation stages

The initialization process cf a stack occurs in the following stages:

l The protocol stack fust establishes a connec.tion with the Llnk Support Layer. When using OS/2,
installation is accomplished when the stack sends an IOC11. command to the UNKSUP$ device
using the general IOcn command (DosDevIOal) with a function category of OAlH and a
function code cf 2. However, under MS-DOS, the I.SL is a TSR program, and the Link Support
Layer's Initialization Interface Entry Point is found using the INT 2FH multiplexing address.
The exact procedure for finding this entry point is described in Appendix I.

2 The stack uses the following information to call the Link Support Layer's Initialization Entry
Point Using this call, the stack can obtain further information about the Link Support Layer.

BX .. 2; protocol stack initialization function code

ES:SI; address of 8 bytes in memory into which the Link Support Layer fdls the addresses cf the
following two entry points:

Offset Bytes

0 4

4 4

Description

Ring 0 address of the Protocol Stack
Support Entry Point of the Link Support
Layer.

Ring O addre$ of the General Services Entry
Point cf the Link Support Layer.

These two Link Support Layer entry points are described in more detail in later chapters.

3. The stack reads the NE.1'.CFG file. (See Appendix H for the format of the NITT.CFG file).

4. A stack must complete one or both of the following registration operations before it cm
receive packets from an MUD:

o Register with the Link Support Layer by name and bind with an MUD
o Register as the default handler for an MUD

o Register as a PreScan stack for an MUD

F.ach of these regi';tration operations is described in the next section.

+ Note: With OS/2, the eight bytes of entry point information is returned in the IOcn
data buffer.

9-2 MLI/MPI

(

Apple C.Omputer/Novell C.Onfidential

Registering a protocol stack

A protocol stack must be registered with the Link Support Layer in order to receive packets from an MUD.
Registration provides the Link Support Layer with the infonnation it requires to route packets from MUDs to
protocol stacks.

When an MUD receives a packet, the MUD places the board number of the MUD, the protocol ID from the
link-level envelope (or 0 if no prcxocol ID exists) and the packet into a receive ECB and passes the ECB to the
Link Support Layer. The Link Support Layer uses the board number and protocol ID to route the packet.

The Link Support Layer first calls the PreScan stack for the MLID if present. If a PreScan stack does not exist or
indicates that the Link Support Layer should route the packet, the Link Support Layer searches for any stack that
is registered and bound to the MUD. If no suitable stack is found, then the Link Support Layer will call the
stack that has registered as the default for the MLID. If no stack has registered as the default, the packet is
ignored. The ECB is then returned to the Link Support Layer's ECB pool by the Link Support Layer.

A stack can receive a packet in three ways. The stack can bind with an MLID to receive packets that have a
particular prttocol ID. The stack can also be registered to receive all packets from an MUD if no other stack
claims them, or the stack can be registered as a PreScan stack. .As a PreScan stack, it can receive all packets. A
stack can use all three methods of registering to receive packets from the same MLID. A stack can also be
bound with any number of MUDs.

To register by binding with an MLID

A stack can bind with an MLID to receive specific packets (those with a specific protocol) by making at least
two calls. The stack must first make the RegisterStack call to obtain its StackID. The RegisterStack call takes
the following as parameters:

• the name of the protocol stack

• a pointer to a table containing the following:

a pointer to the Receive Entry Point

a pointer to the Protocol Stack Control Entry Point

ES:SI points to a table containing the previously mentioned parameters, as shown in the RegisterStack call
described later in this chapter.

Using the StackID obtained from the RegisterStack call and the board number of the desired MUD, the protocol
stack makes the Bind5tack call to complete the binding process.

To register as the default stack

A prttocol stack can beoome the default receiver for an MUD by making a single RegisterDefaultStack call. See
Chapter 11, Ltnk Support Proc.edures for Protorol Stacks, for a full description of the call. Only one protocol stack
can be the default receiver of an MLID. The stack is implicitly bound to the MUD by making this call.

Olapter 9: Prttocol Stack Initialization 9-3

Apple OJmputer/Novell Confidential

Register as the PreScan stack

A stack can receive all packets from an MUD by making a single RegisterPreScanStack call. See Chapter 11, Link
Support Procedures for Proll><X>I Stacks, for a full description of the call. Only one stack can be the PreScanStack
for an MUD. The stack is implicitly bound to the MUD by making this call.

In order to make the registration calls, the stack must determine the board number of the desired MUD. Board
numbers are as.5igned dynamically by the Link Support Layer as each MUD registers. A stack should not depend
on an MUD having any particular board number; the board number should be determined every time the stack
initializes.

Finding an MI.ID by name

A protocol stack can fmd an MUD's board number from the name of the MLID. The name of the MLID can be
read from the NET.CFG file when the stack initializes, or the name of the MUD can be hard coded. The
following algorithm (in pseudo-C) can be used for finding an MLID's board number from its name.

/*

****************·***
** GetBoardHotromHame

**

** Input•:

** name Pointer to name of MLID being searched for.

** The first byte of the string must have its length,

** and the string must be null-terminated.

** Output•:

** BoardNo or -1 if none found.

*I

int GetBoardNofromName (char *name)

int board;

PtrToFunction MLIDEntry; /* MLID Control Entry Point *I

MLIDConf igurationTable *tbl; /* Ptr to MLID' s config tbl */

int status; /* Status of calls to LSL */

9-4 MLI/MPI

(

Apple Computer/Novell Confidettial

for (board • O; board++)

I*

** Call Link Support Layer to qet the Control Entry

** Point for MLID

......

*/

status= GetMLIDControlEntry(board,,MLIDEntry);

if (status •• NO_MORE_ITEMS)

return -1;

if (status =-• ITEM_NOT_FOUND)
continue;

I*

I* Didn't find MLID */

I* No MLID with this ID */

** Call MLID with function code O to qet its

** Confiquration table.

**

** The syntax below will not work exactly under most

** C's since they pass the parameters on the stack.

** Pseudo-C, remember?

** (An assembly lanquaqe qlue routine will be required.)

*I

status • MLIDEntry (0, 'ConfiqTbl);

it (status) /* Should never happen •.. */

continue;

/*

** Compare the name of the MLID in its configuration

Olapter 9: Protocol Stack Initialization 9-5

Apple Q>mputer/Novell Q>nfidential

** table with the desired name

*/

if (stricmp(name, ConfiqTbl->ShortNamel •• 0)

return board; I* Found our MLID */

} /* for */

9-6 MLI/MPI

(

Apple Computer/Novell Confidential

Chapter 10 Protocol Stack Control Commands

This chapter desaibes commands that must be provided by a prcxocol stack

in order for it to support the MPI interface. •

10-1

Apple Computer/Novell Confidential

To call a prorocol stack control command, place a function code into BX and call the Protocol Stack
Control Entry Point The address of this entry point is obtained by making a
GetProtocolControlEntry command call·to the Link Support Layer for the desired protocol stack.
The return value in AX will always be generated so that the Z and S flags are set correctly. AX will
be O (and the Z flag set and S flag clear) if the call is completed with no error. AX will be less than O
(and the Z flag clear and S flag set) if the call completed with an error. The value of AX will indicate
the error. The following support commands are available through this interface:

• GetProtocolStackConfiguration

• GetProtocolStackStatistics

• BindToMLID

• UnbindFromMLID

• . MLIDDeRegistered

GetProtocolStackConfiguration

This command allows a protocol stack to read the name and version infonnation of another
protocol stack.

Assumes

• BX .. O

• Registers preserved: DS, SS, SP and BP

• Interrupts: Enabled on entry

Returns

• Interrupts: Enabled on exit

• ES:SI returns a pointer to the Protocol Stack Configuration Table (see Appendix B for a
description of this table)

• AX= 0, no errors are pos.5ible

GetProtocolStackStatistics

This command returm a pointer to the Protocol Stack Statistics Table. The table describes statistics
of the protocol stack.

Assumes

II BX=l

10-2 MLI/MPI

Apple Computer/Novell Confidential

• Registers preserved: OS, SS, SP and BP

• Interrupts: Enabled on entry

Returns

• Interrupts: Enabled on exit

• ES:SI points to a statistics table whose format is described in Appendix E

• AX= 0, no errors are pc6Sible

BindToMLID

This command provides a consistent method to instruct a protocol stack to bind with an MUD.

The protocol stack is expected to issue the BindStack call to the Link Support Layer as well as
perform any other maintenance commands required to bind to an MLID.

Assumes

• BX .. 2

• Registers preserved: DS, SS, SP, and BP

• Interrupts: Enabled on entry

• ex contains the board number to which the protocol stack should bind

• ES:SI points to a parameter string that is dependent on the implementation

Returns

• Interrupts: Enabled on exit

• AX .. O; the bind completed successfully (other error codes are dependent on the
implementation)

UnbindFromMIID

This command provides a consistent method to instruct a protocol stack to unbind from an MLID.

Assumes

• BX=3

• Registers preserved: DS, SS, SP, and BP

• Interrupts: Enabled on entry

• ex contains the board number from which the protocol stack should unbind.

11 ES:SI points to a parameter string that is dependent on the implementation.

Chapter 10: Protocol Stack Control Procedures 10-3

Apple Computer/Novell Confidential

Returns

• Interrupts: Enabled on exit

• AX .. O; the unbind call is completed successfully (other error codes are dependent on the
implementation)

MLIDDeRegistered

This command allows the Link Support Layer to inform all protocol stacks bound to an MUD that
the MUD has deregistered As a result, the MUD will no longer be available. This call is used strictly
to inform stacks. The stack may use the information any way it chooses and may even ignore it

Assumes

• BX=4

• Registers preserved: DS, SS, SP and BP

• Interrupts: Enabled on entry

• ex contains the board number which has deregistered from the Link Support Layer.

Returns

• Interrupts: Enabled on exit

• AX has no return value for this call

10-4 MLI/MPI

(

(.•..

Apple Computer/Novell Confidential

Chapter 11 Link Support Commands for Protocol
Stacks

This chapter describes support comman~ found in the Link Support Layer

that can be called by the protocol stacks. •

11-1

Apple Computer/Novell Confidential

To call the Link Support Layer's protocol support conunands, place a function code in BX and call
the Protocol Stack Support Entry Point AX will be 0 (and the Z flag set and S flag clear) if the call
completed with no error. AX will be less than O (and the Z flag clear and S flag set) if the call
completed with an erra. The value of AX will indicate the error.
The following support commands are available to protocol stacks:

• GetECB

• RetumECB

• DeFragmentECB

• ScheduleAESEvent

• CancelAESEvent

• GetintervalMarker

• RegisterStack

• DeRegisterStack

• RegisterDefaultStack

• DeRegisterDefaultStack

• RegisterPreScanStack

• DeRegisterPreScanStack

• SendPacket

• HoldPacket

• GetHeldPacket

• ScanPacket

• GetStackIDfromName

• GetPIDfromStackIDBoard

• GetMLIDControlEntry

• GetProtocolContro!Entry

• GetLinkSu pportStatistics

• BindStack

• UnbindStack

• AddProtocollD

• RelinquishCotiroi •

GetECB

11-2 MLI/MPI

Apple Computer/Novell Confidelllial

This command allows a protocol stack to obtain and use an ECB. The ECB is normally used when a
protocol stack has to stmulate a received packet. Because MUDs filter incoming packets sent by
other MUDs, proroc:ol stacks that need to receive their own transmissions can simulate a received
packet by getting an ECB from this command, copying the packet to be received into it, and calling
HoldPacket The protocol stack retrieves the packet later by calling GetNextHeldPacket.

In OS/2, ECBs are in the GDT and addressable by all Ring O processes. In MS-DOS and 05/2, the
packet does not crass a 64K DMA boundary.

Assumes

• BX•O

• Registers preserved: OS, SS, SP, and BP

• Interrupts: Disabled on entry

Returns

• Interrupts: Remain disabled

• AX• O; an ECB was available

• AX < O; an error occurred:

AX• OlIT_OF _RESOURCES no ECBs were available

• ES:SI points to the returned ECB, if one was available

ReturnECB

RetumECB returns an ECB that was allocated through the GetECB command The ECB is returned
to the Link Support Layer's ECB pool for reuse.

Assumes

• BX= 1

• Registers preserved: OS, SS, SP, and BP

• Interrupts: Disabled on entry

• ES:SI points to an ECB to be returned to the Link Support Layer's ECB pool fa reuse

Returns

• Interrupts: Remain disabled

• AX•O

• AX < O; an error occurred:

AX .. BAD _PARAMETER the ECB does not belong to the Link Support Layer's ECB pool

Otapter 11: Link Support Procedures for Protocol Stacks 11-3

Apple Computer/Novell Confidential

DeFragmentECB

This command allows a prttocol stack to defragment an ECB quickly. The resulting ECB will be a
copy of the original. The only exception is that there will be only one fragment, and the data from
the original fragments will be placed in AX bytes after the FragLenl field in the destination ECB. (AX
refers to the ECB at an offset specified by AX past the Fraglenl field).

If AX contains OFFFFH on entry to this command, then ES:SI points to only a data buffer, and not
an ECB. In this case, the header information from the source ECB will not be copied, but
defragmented data will be moved to the data buffer at ES:SI.

Assumes

• BX=2

• Register preserved: OS, SS, SP and BP, ES and SI

• Interrupts: unspecified

• CX:DI points to an ECB to defragment

• ES:SI points to an ECB to hold the defragmented copy

• AX contains the number of bytes past the FragLenl field in the destination ECB where the de
fragmented data should be stored. If this offset is OFFFFH, then ES:SI only holds a data
buffer, and ECB header information will not be copied

Returns

• Interrupts: returned the same way they were entered, and are not enabled inside the routine

• AX=O

• AX < O; an error occurred:

AX .. BAD _P ARAMIITER the ECB to be defragmented contains invalid fields
describing the data contents

+ Note: Interrupts should be left on if at all po.55ible.

ScheduleAESEvent

This command schedules a driver-defined event to occur at the end of a specified time interval. An
ECB must be supplied for the AES timing system. When the timeout occurs, the Status field is set
to 0 and the ESR is called, with ES:SI pointing to the ECB. An ECB which is already in use should not
be passed again to this command To reset the timer of an AES Event, use CancelEvent, then issue a
new ScheduleAESEvent call.

11-4 MLI/MPI

('

Apple Computer/Novell Confidential

Assumes

• BX•3

• Repters preSem:d: DS, SS, SP, BP, ES, and SI

• Interrupts: unspecifled

• ES:SI points to an ECB whose Blink field is fdled in with an umigned 32-bit number. This
number indicates how many milliseconds should elapse before the Status field is set to O and
the ESR is called The ESR field of the ECB must contain a valid ESR pointer

• In OS/2, the ECB is in the GOT

Returns

• Interrupts: returned the same way they were entered, and are not enabled inside the routine

• AX• O; no errors are pc&ible

CancelEvent

This command cancels the ECB to which ES:SI was pointing. The Status field of the ECB will be
set to the CANCELLED error code. The F.SR will not be called. This command will cancel an
outstanding AES ECB or SendPacket ECB.

Assumes

• BX .. 4

• Register preserved: DS, SS, SP, BP, ES, and SI

• Interrupts: Disabled on entry

• F.S:SI contains a pointer to an ECB to be cancelled

Returns

• Interrupts: remain Disabled

• AX = O; the cancel was completed successfully

• AX < O; an error occurred:

AX = ITEM_NOT _PRESENT the ECB could not be cancelled

GetlntervalMarker

Chapter 11: Link Support Procedures for Protocol Stacks 11-5

Apple Q)mputer/Novell Confidential

This command returns a timing marker in millisecnods. The timing marker can be used, for example,
for timing retry events. The value of this marker has no relation to any real-world absolute time.
However, when time marker values are compared with each other, the difference between them is
elapsed time in mil*'cmds.

Assumes

• BX•5

• Registers preserved: all except DX, AX, BX

• Interrupts: unspecified

Returns

• Interrupts: are returned the same way they were entered and are not enabled inside the routine

• DX:AX returns the current interval time in millisecmKS

+ Nola AX does not return an error code

RegisterStack

A protocol stack can transmit packets and communicate with MIJDs even if it has not registered.
Either the RegisterStack, RegisterDefaultStack, or RegisterPreScanStack call must be made for the
protocol stack to receive incoming packets from the Link Support Layer.

In addition to a RegisterStack call, the protocol stack must issue BindStack calls for those MIJDs
from which the stack wants to receive packets.

Assumes

• BX=6

• Registers preserved: OS, SS, SP, and BP

• Interrupts: unspecified

• ES:SI points to a table with the following information:

Offset a,. Dac:ripdoa

O 4 Pointer to the name ci the protocol stack. This pointer needs to be
valid only at the time the call is made

4 4 Ring O Receive Entry Point for the protocol stack. All incoming
packets will be dispatched to this address for processing

8 4 Ring O Address of the Protocol Stack Control Entry Point

Returns

11~ MLl/MPI

(

(

Apple Computer/Novell Confidential

• Interrupts: Are returned the same way they were entered and are not enabled inside the routine

• BX ,. Stack ID

• AX = O; no error occurred

• AX < O; an error occurred:

AX .. OUT_OP_RFSOURCES there are too many protocol stacks already registered

AX .. DUPLICATE_ENTRY a protocol stack with that name is already registered

AX"' BAD_PARAMETER. length of the protocol stack name is 0 or greater than 15

DeRegisterStack

This command removes a protocol stack from the Link Support Layer's list of protocol stacks.
After making this call, a protocol stack will not receive any more incoming packets (unless the
protocol stack has an outstanding RegisterDefaultStack or RegisterPreScanStack), and must make
the RegisterStack call again to start receiving incoming packets.

This command implicitly unbinds the protocol stack from all MllDs to which it was bound.

Assumes

• BX=7

• Register preserved: DS, 5.5, SP and BP

• Interrupts: disabled on entry

• AX contains the stack ID that the protocol stack is de-registering.

Returns

• Interrupts: remain disabled

• AX = O; the protocol stack was deregistered

• AX < O; an error occurred:

AX .. ITEM_NOT _PRESENT no protocol stack is registered with that stack ID

RegisterDefaultStack

This call can be made for a protocol stack which needs to accept all incoming packets that are not
bound for other protocol stacks.

This call implicitly binds the protocol stack to the MLID whose board number is specified in AX.
No call to BindStack is possible (there is no stack ID associated with a default stack).

Chapter 11: Link Support Procedures for Protocol Stacks 11 :;

Apple Computer/Novell Confidential

The RegisterDefaultStack command allows a protocol stack that recognizes the link-levd envdope
to receive packets unwanted by other protocol stacks.

Assumes

• BX•8

• Regm preserved: OS, SS, SP and BP

• Interrupts: Unspecified

• AX contains the board number from which the protocol stack will receive all packets not
specifically sent to any other protocol stack

• ES:SI points to a table with the following information:

Offset Bytes Description

0 4

4 4

Returns

Ring O Default Receiver Entry Point for the protocol stack. All incoming packets
will be dispatched to this address for processing

Ring 0 Address of the Protocol Stack Control Entry Polit

• Interrupts: Are returned the same way they were entered and are not enabled inside the routine

• AX = O; no error occurred

• AX < O; an error occurred:

AX • OUPUCATE_ENTRY There is already a default stack registered for the desired
board number

AX • BAO_P ARAMETER The MI.ID corresponding to the requested board number
does not exist

• Note: RegisterStack, RegisterOefaultStack and, RegisterPreScanStack are separate calls and
handled independently by the Link Support Layer. Both calls can be used by a protocol stack,
depending on the particular need

DeRegisterDefaultStack

This command removes the protocol stack :woc:iated with a specific MUD from the Link Support
Layer's list of defauk stacks. After making this call, a protocol stack will not receive incoming
packets from the specified MUD unless the protocol stack still has an outstanding RegisterStack
call.

Assumes

11-8 MLI/MPI

(

Apple c.omputer/Novell Confidential

• BX•9

• R~ters preserved: OS, SS, SP, and BP

• InterruptS: Disabled on entry

• AX contaim the board number for the default protocol stack being deregistered

Returns

• Interrupts: Remain disabled

• AX • O; the protocol stack was deregistered

• AX < O; an error occurred:

AX .. BAD _PARAMETER. the MI.ID corresponding to the requested board number
does not exist

AX=ITEM_NOT_PRESENT there is no default stack registered for this Ml.ID

RegisterPreScanStack

This call can be made by a protocol stack which needs to filter or examine all incoming packets
before they are· routed to other protocol stacks.

This call implicitly binds the protocol stack to the MUD whose board number is specified in AX.
No call to BindStack is ~ible (there is no stack ID associated with a PreScanStack).

The RegisterPreScan.5tack command allows a protocol stack to determine whether a packet should
be routed by the Link Support Layer or discarded.

Assumes

• BX• 10

• Register preserved: OS, SS, SP and BP

• Interrupts: Unspecified

• AX contains the board number from which the protocol stack intends to receive all packets

• ES:SI points to a table with the following information:

Offset Bytes

0 4

4 4

Returns

Description

Ring 0 PreScanStack Entry Point for the protocol stack. All incoming packets
will be dispatched to this address for processing. This routine will retum AX • 1
to allow the Link Support Layer to route the incoming packet, or AX • 0 if the
Link Support Layer should not route the incoming packet ES:SI must remain
unchanged to permit the Link Support Layer to route the packet

Ring 0 Address of the Protocol Stack Control Entry Point

Chapter 11: Link Support Procedures for Protocol Stacks 11-9

Apple Computer/Novell c.oofldential

• Interrupts: Returned the same way they were entered, and are not enabled inside the routine

• AX .. O; no error ocaured

• AX< O; an error oa:uned:
AX • OUPUCATE_ENTRY there is already a PreScanStack registered for the desired

board number

AX • BAD_PARAMETER. the MLID corresponding to the requested board number
does not eDt

RegisterStack, RegisterDefaultStack, and RegisterPreScanStack are separate calls, and they are
handled independently by the Link Support Layer. Both calls can be used by a protocol stack,
depending on the particular need.

• Note: PreScan stacks are intended to be used to implement a 'security-monitoring stack•
that keeps sensitive packets from being routed. They can also be used to preview packets
before they are routed to other protocol stacks in the system.

DeRegisterPreScanStack

This command removes the protocol stack name 3MOCiated with a specific MUD from the Link
Support Layer's list of default stacks. After making this call, a protocol stack will not receive
incoming packets from the specified Ml.IO unless the protocol stack: still bas an outstanding
RegisterStack: or RegisterDefaultStack call.

Assumes

• BX= 11

• Registers preserved: OS, SS, SP, and BP

• Interrupts: Disabled on entty

• AX contains the lxmd number for the default stack being deregistered

Returns

• Interrupts: remain disabled

• AX • O; the prttocol stack was deregsered

• AX < O; an error oa:um:d:

AX • BAD_PARAMETER.

11-10 MLI/MPI

the MLID corresponding to the requested lxmd
number does not exist

(

Apple C.Omputer/Novell Confidential

AX,. ITEM_NOT_PRESOO there is no PreScanStack registered on the requested
board number

SendPacket

This command sends a packet to one of the registered MI.IDs. The ESR field of the ECB must be
filled in with the address of a routine to call when the send is complete. Until the F.SR is called, the
ECB and all its data areas belong to the Link Support layer and must not be modified.

If the ECB is sent in "raw" mode, the fragment list contains the complete packet, including the
link-level envelope. However, it is required that the link-level envelope be entirely contained within
the fll'St fragment In other words, the envelope cannot be split between the first and second
fragments.

The ESR of the SendPacket ECB will be called with F.S:SI pointing to the ECB that was sent. This
call will be made at interrupt time with interrupts disabled. The ESR should not re-enable interrupts,
and should complete quickly. The Status field of the ECB will indicate any errors that were
detected. The ESR can destroy all registers except OS, SS, SP, and BP.

Assumes

• BX• 12

• Register preserved: OS, SS, SP, and BP

• Interrupts: unspecified

• F.S:SI contains a pointer to the Send ECB. The SendECB contains the following information:

ESR. The addreM of a routine that is called when the ECB is free (after the packet has
been transmitted or copied). A pointer to the ECB is passed to this routine in
ES:SI; the ECB's Status field contains the result of the send

StackID. The stack ID of the protocol stack sending the packet If this field is OFFFFH,
then the packet is raw and the first fragment of the send list contains the full
header of the packet

ProtoID.

BoardNo.
ImmAddr.

SenclLen.

FragCnt.

FragPtrX.

FragLenX.

The protocol ID that the MI.ID is to use when encapsulating the data. This field
is ignored if •raw packet• is sent

The board number of the MI.ID sending this packet

The network address to which this packet is destined, unless the packet is raw,
in which case this field is undefined

The total length of all fragments sent must be stored here

The number of fragments in the packet to be sent

A pointer to the data of the X'th fragment

The number of bytes present in the Xth fragment

Chapter 11: Link Support Procedures for Protocol Stacks 11-11

Apple Computer/Novell Confidential

Returns

• Interrupts: wm return enabled

• AX • O; there WIS no error; however, until the ESR is called, the ECB belongs to the MI.ID

• AX < O; an Cl'la' occurred:

AX• NO_SUOf_DRIVER

AX • BAD_PARAMETER

AX. our_OF_RFSOURCES

AX• FAIL

the BoardNo in the ECB does not exist

the SendECB was not completed correctly

there were not enough resources to handle the send
request

the MI.ID could not send the packet

+ Note: If an error occurred, the error code will be placed in the status field of the ECB and the
ESR will be called. Be aware that the ESR can be called before the call to SendPacket retuim.

HoldPacket

This command allows a protocol stack to queue an incoming packet for later prcxessing. The
GetHeldPacket and ScanPacket commands can be used to find and remove packets from this queue.

Assumes

• BX• 13
• Registers preserved: OS, SS, SP, BP, ES, and SI

• Interrupts: Disabled on entry

• ES:SI contains a pointer to a Receive ECB to be held

Returns

• Interrupts: Remain disabled

• AX• O; no errors are p<mible

+ NollJ: ECBs in the hold queue may be reused by the Link Support Layer if it runs out of ECBs.

GetHeldPacket

11-12 MLI/MPI

Apple Computer/Novell Confidential

This command allows a protocol stack to remove an ECB from the hold queue; it was placed there
with a call to HoldPacket. ES:SI may point to an ECB to remove it from the queue (the ECB is
usually obtained from a Sc:anPacket call). Otherwise, ES:SI can be set to 0:0 to allow a limited search
of the queue. For mme powerful searches, use the ScanPacket call.

Assumes

• BX• 14

• Register preserved: OS, SS, SP, and BP

• Interrupts: Disabled on entry

• AX • stack ID

• ES:SI ,.0:0

ex = match word

The first ECB that satisfies the following two conditions is removed from the hold queue:

o The ECB's stack ID matches the value in AX

o The first word of the protocol workspace matches the value in ex

•Note: If ex • OFFFFH, the match on the protocol workspace will be ignored.

• ES:SI <> 0:0

The ECB indicated in ES:SI is removed from the hold queue

Returns

• Interrupts: Remain disabled

• AX = O; ES:SI will contain a pointer to the desired ECB. The ECB will have been removed from
the queue.

• AX< O; an ernx occurred:

AX '"' BAD _PARAMETER

AX .. ITEM_NOT_FOUND

the ECB passed in ES:SI did not belong to the
protocol stack (the StackID was in AX)

the requested ECB was not found in the hold queue
or the hold queue is empty

+ Note: Llnk Support Layer ECBs in the hold queue are "at ri,5k• of being reused if the Link
Support Layer runs short of ECBs for incoming packets. Refer to Appendix C for details on
the ECB format.

Chapter 11: Link Support Procedures for Protocol Stacks 11-13

Apple Computer/Novell Confidential

ScanPacket

This command scans the hold queue in search of ECBs that correspond to the stack ID in AX and
have ex matching the first word of the ProtoWS field. A new scan is started by pming ES:SI as 0:0.
The scan is continued by calling the command with ES:SI which still contains the return value of
the previous invocation.

Interrupts must remain disabled while scanning the hold queue. To remove an ECB from the hold
queue, call GetHeldPacket with ES:SI containing the value returned from ScanPacket but leave
interrupts off until GetHeldPacket returns.

Assumes

• BX .. 15

• Register preserved: OS, SS, SP and BP

• Interrupts: Disabled on entry

• ES:SI contains a pointer to the previous ECB returned or 0:0 for a first-time call.

• AX contains a stack ID to use as a filter to scan for ECBs

• ex contains a value to match with the first word of the ProtoWS field of the ECB. If ex •
OFFFFH, then the match with the ProtoWS value is ignored

lletutm

• Interrupts: Remain disabled

• AX • O; ES:SI returns the next ECB in the hold queue with the desired stack ID

• AX < O; an error occurred:

AX • NO_MORE_ITEMS there are no more matching items in the hold queue

GetStacklDfromNam.e

This command allows a protocol stack or application to obtain its own or any other stack ID. With
this infonnation and the board number of an MUD, a stack can obtain the protocol ID, which is
used for sending packets. Once the stack IO and board number are know'n, the stack uses the
GetPIDfromStacklDBoard call to obtain the protocol ID.

For the ASOI character set only (in olher worm, when the high bit is clear), the match of the stack
name will be case iosemitive . Any other characters that have the high bit set must match exactly.

Assumes

• BX,.16

• Registers preserved: OS, SS, SP, and BP

• Interrupts: Unspecified

11-14 MLI/MPI

(

Apple Computer/Novell Confidemial

• FS:SI cootains a pointer to a string containing the name of a protocol stack

Returns

• Interrupcs: Are returned the same way they were entered and are not enabled inside the routine

• AX • O; a protocol stack corresponding to the name was found BX returns the stack ID for
this stack

• AX < O; an error oc:x:urred:

AX• ITEM_NOT_PRESENT

AX • BAD_PARAMETER

GetPIDfromStackIDBoard

the protocol stack name passed is net registered
with the Link Support Layer

the length of the name is O or greater than 15

This command returns a protocol ID corresponding to a protocol stack ID and a board number. A
protocol stack uses this information to fill in the ProtoID field in a send ECB.

Assumes

• BX= 17

• Registers preserved: OS, SS, SP, and BP

• Interrupts: unspecified

• AX contains a stack ID.

• ex contains a baard number

• FS:SI points to a 6-byte area into which the protocol ID is returned

Returns

• Interrupts: returned the same way they were entered, and are not enabled inside the routine

• AX = O; a match was found The 6 bytes corresponding to the Protocol ID at ES:SI are filled in

• AX < O; an error oc:x:urred:

AX .. ITEM_NOT _PRESENT

AX • BAD_PARAMETER.

GetMLIDControlEntry

there is no prctocol ID associated with the
parameters passed (this probably means that no
MUD can use this protocol)

either the protocol stack ID or the board number
does not exist

Chapter 11: Link Support Procedures for Protocol Stacks 11-15

Apple Computer/Novell Confidential

This command returns the MUD Control Entry Point for the MUD corresponding to the board
number paued in AX. This command allows a protocol stack to communicate directly with an
MUD and obtain information such as the addresses of the MUD Configuration Table and the
MUD StatiWcs Table.

Assumes

• BX• 18

• Registers preserved: OS, SS, SP, and BP

• Interrupts: unspecified

• AX contains the baud number for the desired MUD Control Entry Point

Returns

• Interrupts: are returned the same way as they were entered, and are not enabled inside the
routine

• AX • O; the board number in AX exists. ES:SI contains the MI.IO Control F.ntry Point

• AX< O ; an error occurred:

AX .. ITEM_NOT_PRESENT

AX • NO_MORE_ITEMS

GetProtocolControlEntry

there is no MILD with a board number of AX, but
there may be others at a higher AX value

the board number in AX does not exist, and there
are no MUDs registered at higher AX values

This command allows a protocol stack or application to communicate directly with another stack
and to obtain infonnation from the Link Support Layer's list of known protocol stacks.

Assumes

• BX• 19

• Registers preserved: DS, SS, SP, and BP

• Interrupts: unspecified

• AX contains a stack ID, starting at O. If AX contains OFFFFH, then ex contains the board
number for which the Protocol Control Entry Point of the default protocol stack is desired. If
AX·contains OFFFEH, then ex contains the board number for which the Protocol Control Entry
Point of the PreScm stack is desired

Returns

• Interrupts: Are returned the same way they were entered and are not enabled inside the routine

• AX = O; a stack exists corresponding to the stack ID in AX. ES:SI will contain the address of the
Protocol Stack Control Entry Point.

11-16 MLI/MPI

Apple C.Omputer/Novell C.Onfidential

• AX < O; an error occurred:

AX • NO_MORE_ITEMS

AX .. ITEM_NOT _PRESENT

there is no MUD with a board number of ex, and
there are no others at a higher ex value; or there is no
stack with a stack ID of AX, and there are no others ·
at a higher AX value

there is no MUD with a board number of ex, but
there may be others at a higher ex value; or there is
no stack with a stack ID of AX, but there may be
others at a higher AX value

GetlinkSupportStatistics

This command obtaim a pointer to the Link Support Layer's stat~ics table. See Appendix F for a
description of the format of this table.

Assumes

• BX .. 20

• Registers preserved: DS, SS, SP, and BP

• Interrupts: Unspecified

Returns

• Interrupts: Are returned the same way they were entered and are not enabled imide the routine

• AX=O

• ES:SI retuim a pointer to the Link Support Layer's statistics table

BindStack

This command binds a protocol. stack to an MUD allowing a protocol. stack to receive packets from
the MUD.

Assumes

• BX= 21

• Registers preserved: DS, SS, SP, and BP

• Interrupts: Unspecified

• AX contains the stack ID to bind

• ex contains the board number to bind

Chapter 11: Link Support Procedures for Protocol Stacks 11-17

Apple Computer/Novell Confidential

lletmm

• InterruptS: Are returned the same way they were entered aild are not enabled inside the routine

• AX < O; an error occurred:

AX • BAD_PARAMETER.

AX • DUPUCATE_ENTRY

UnbindStack

the MUD corresponding to the requested board
number or the protocol stack corresponding to the
requested stack ID does not exist

the specified binding already exists

This command unbinds a pror.ocol stack from an MUD. After this call is completed, the protocol
stack will no longer receive packets from the MUD to which it was once bound unless the protocol
stack is also registered as a default receiver for the MUD.

Assumes

• BX=22

• Registers preserved: OS, SS, SP, and BP

• Interrupts: Unspecified

• AX contains the stack ID to unbind

• ex contains the board number to unbind

lletmm

• lnterruptS: Are returned the same way they were entered, and are not enabled inside the routine

• AX < O; an error ocx:urred:

AX • ITEM_NOT_PRESENT

AX .. BAO_PARAMETER.

AddProtocollD

the specified binding does not exist

the MLIQ corresponding to the requested board
number or the protocol stack corresponding to the
given stack ID does not exist

This command allows a protocol stack to add a new protocol ID for a given media.

Assum.es

• BX•23

• Registers preserved: DS, SS, SP and BP

11-18 MLI/MPI

i
. I

;
i

(

(

Apple Computer/Novell Confidential

• Interrupts: Enabled on entry

• ES:SI points to the 6-byte protocol ID being added

• CX:DI points to a string containing the name of the protocol stack for this protocol ID. The
maximum length of the string is 15 characters. The string must have a leading length byte and a
trailing zero byte.

• AX contains the media ID for which the new protocol ID is being added

Returns

• Interrupts: Enabled on exil.

• AX • O; the Link Support Layer successfully added the new protocol ID

• AX < O; an error occurred:

AX .. our_OF _RESOURCFS

AX • DUPUCATE_ENTRY

AX = BAD_PARAMETER.

the Link Support Layer has no resources to register
another protocol ID

there is already a protocol ID registered for the given
media type/protocol stack combination

the specified parameter is an illegal (unknown) name.
The field length will be equal or less than 15

• No~ This call should only be made for PIO information in the NET.CFG fde because <i the
limited number of protocol stack slots.

Relinquish Control

This command allows a protocol stack to yield control to the Llnk Support Layer, allowing the Link
Support Layer to perform any necessary background processing. The background processing
includes polling MI.IDs if the poll bit is set in the Mode Flags field of the MI.ID Configuration Table
(see Appendix A). If the bit is set, the DriverPoll command of the MUD will be called This call
should be made by any protocol stack that is waiting for an event to occur, For example, the
protocol stack could be waiting for a SendPacket to complete.

This call need not be made under a multitasking operating system. A protocol stack should yield to
the operating system or allow concurrent processing while waiting for an event Under a .
multitasking operating system, this call does nothing.

Assumes

• BX= 24

• Registers preserved: DS, SS, SP, and BP

Olapter 11: Link Support Procedures for Protocol Stacks 11-19

Apple C.Omputer/Novell C.Onfidential

• Interrupts: enabled on entry

Returns

• Interrupts: Enabled on exit

• AX • 0. No errors an: possible

11-20 MLI/MPI

·,, ,,./

(

(

Apple/Novell Confidential

Appendix A MUD Configuration Table

The MLID Configuration Table contaim information on the MUD and its

configuration. Variables in the fde can include iteim such as the interrupt

number and port 1/0 address.

• Note: All data strings in the configuration table consist d a one-byte length (not

counting the terminating 0 byte), the data string itself, and a terminating 0 (null) byte.

MUD Configuration Table A-1

·-----··----·--

Apple/Novell Confidential

Offset NllDC Bytes Descripdoa

0 Signature ~ Contains the ASOI Data •HardwareDriverMIJD•
padded with trailing spaces.

li 01G_MajorVersion 1 The major version number of the configuration table
(1 for this specification).

1J 01G_MinorVersion 1 The minor version number of the configuration table
(0 .. 99 decimal, for example, 31 indicates version X31).
This number should be O for this specification.

28 NodeAddress 6 Contaim the node addreM of the MUD in network
order, padded on the left (lower addresses) with Os. For
example, a one-byte addr5 xx would be fdled in as 00 00
00 00 00 xx from low to high memory.

ModeFla~ 2 Bit mask for MUD information:

Bit 0 Set if a real driver

Bit 1 Set if driver uses OMA

Bit 2 Set if driver is 100% reliable on transmit

Bit 3 Set if driver supports multicast

Bit 4 Set if driver supports promiscuous mode

Bit 5 Set if driver needs polling
Bit6 Set if driver supports raw send mode

~ BoardNumber 2 The board number identifier supplied by the Llnk
Support Layer (O ... ?)

~ Boardlnstance 2 Represents the bcrard instance number. This contaim an
instance identifier to identify which of several boar~ ,,'
(supported by an MUD) correspond to this particular
table

MaxDataSize 2 Contains the maximum number of bytes that the driver
can transmit, not counting the link-level envelope. This
must be a number greater than 585. If hardware cannot

support at least 586 bytes, the driver must be written
to send multiple packets and reconstruct them

42 MaxRecvSize 2 Best case room in ECB for received packets. This
correspon~ to the LSL's ECB size less the size of the
smallest link-level header for the media.

44 RecvSize 2 Worst case room in ECB received packets. This
correspon~ to the LSL's buffer size less the size of the
largest link-level header for the media.

46 CardName 4 Pointer to data string containing a name uniquely
identifying the interface card hardware

~ ShortName 4 Pointer to data string (7 characters max) containing a
short name uniquely identifying the MUD in the
NIT. CFG file

A-2 MUD Configuration Table

Apple/Novell Confidential

54 Media Type 4 Pointer to data string containing the media type for the

(-· MUD (for example, •\olOEtherNet\O")

58 CardID 2 Word containing a Novell/ Apple-administered ID for
the interface card

to MediaID 2 Word containing a NovelVApple-administered ID for
the media/link-level envelope combination

(MUD Configuration Table A-3

Apple/Novell Confidential

Offset Nalae Byte1 DactipdoA

62 TransportTime 2 Number of milliseconds required to transmit a 586-byte '"' packet. (Note: This number must be set to at least 1
millisecond)

64 Reserved 16 Must be set to O
8) MUD_MajorVersion 1 The major version number of the MUD

81 MUD _MinorVersion 1 The minor version number of the MUD (0 .. 99 decimal;
for example, 31 indicates version X31)

82 Flags 2 This field contains flags that are operating-system
dependent. For the MS-005-05/2 environment the bits
are defined as follows:

Bit O • 1 if MI.ID can operate in real Mode

Bit 1 • 1 if MUD can operate in proteaed Mode

Bits 2-3 • 00 for MicroChannel architecture if
the MUD is to scan for the card

Bits 2·3 = 01 when dual suppat for At Bus and
MicroChannel architecture support is provided

Bits 2-3 • 10 for MicroChannel architecture
if the card slot is fixed.

Bits 2-3 • 11 for non-MicroChannel
configuration.

SendRetries 2 Number d retries the MI.ID should perform before
failing a transmit (the number of actual retries may be
hardware-dependent). ,/

a> Llnk 4 Link pointer field for use by the Llnk Support Layer
<,X) Sharef1ag 2 Bits indicating sharing capability of the MUD

Bit o • set if MUD is shut down

Bit 1 • set if MI.ID can ~ VO port #l

Bit 2 .. set if MUD can share VO port #2

Bit 3 .. set if MUD can share memory range #l

Bit 4 .. set if MUD can share memory range #2

Bil 5 .. set if MUD can share interrupt #l

Bit 6 .. ~t if MUD can share interrupt #2

Bit 7 • set if MUD can share DMA channel #l

Bit 8 • set if MUD can share OMA channel #2

All other bits are undefined and must be set to O

Slot 2 Contains the slot number of the interface card in
configuratiom where a slot number is appropriate (for
example, Micro<llannel architecture)

IOAddrl 2 Contains the primary I/0 address for the interface card

A-4 MLID Configuration Table

Apple/Novell Confidential

% IORangel 2 Contains the number of VO ports used at IOAddrl

S8 IOAddr2 2 Contains the secondary VO address for the interface

(card
100 10Range2 2 Contains the number of VO ports used at IOAddr2

Offset N111111 Bytes Descripdoa.

102 MemAddrl 4 Contains the primary memory address used by the
interface card

1~ MemSizel 2 Contains the number of paragraphs used by the
interface card at MemAddrl

1~ MemAddr2 4 Contains the secondary memory address used by the
interface card

112 MemSize2 2 Contains the number of paragraphs used by the
interface card at MemAddr2

114 Intl Line 1 The IRQ number for the first interrupt that the MUD
uses. Set to OFFH if not used

115 Int2Line 1 The IRQ number for the second interrupt that the
MUD uses. Set to OFFH if not used

116 DMAlLine 1 The OMA channel number for the first OMA channel
that the MUD uses. Set to OFFH if not used

117 DMA2Line 1 The OMA channel number for the second DMA channel
that the MUD uses. Set to OFFH if not used

" {j
'l,

(MUD Configuration Table A-5

~

'.{

Apple/Novell Confidential

Appendix B Protocol Stack Configuration Table

Offset

..0

1

2

6

10

11

12

The following table provides infamatioo that helps you reference stacks by

name and versioo. This table is especially helpful if you want to search for a

particular stack by name.

Name Bytes Description

CFG_MajorVersion 1 Major version number of the configuratioo table (1
for this specification)

CFG_MinorVersion 1 Minor versioo number (0 .. 99 decimal) of the
configuration table (0 for this specification)

Name 4 Address of a string with the name of the protocol
stack. This name may be looger than the name
used to register the stack with the Link Support
Layer.The name is preceded by a length byte and
terminated with a O byte

Protocol Name 4 Address of the protocol name (15 characters maximum)
used to register the stack with the Link Support Layer;
also used in the AddProtocoUD and in the NET.CFG
file. The name is preceded by a length byte and
terminated with a O byte

Stack_MajorVersion 1 Major version number of the protocol stack
Stack_MinorVersion 1 Minor version number (0 .. 99 decimal) of the protocol

stack

Reserved 16 must be set to O

Protocol Stack Configuratioo Table B-1

Apple/Novell Confidential

(' Appendix C ECB Format

The following table lists the fields used in the ECB.

Offset Name Bytes Dacripdoa

0 FI.ink 4 Forward link for queueing
4 BLlnk 4 Backward link for queueing. For AES Event ECBs

this dword is the number d milliseconds that need to
elapse before the ESR routine is called

8 Status 2 Status word:
>O inpr~
0 completed successfully
< O completed with error)

10 ESR 4 Address d a FAR Procedure to call when the ECB
has completed.

14 StackID 2 Stack ID (or OFFFFH for a Send ECB to
indicate a •raw- transmit)

16 ProtoID 6 Protocol ID

(
22 BoardNo 2 A board number
24 ImmAddr 6 Network address of source node (on receives) or

destination node (on transmits)

~ DriverWS 4 A 4-byte work area for the MIJ
34 ProtoWS 8 An 8-byte work area for protocol stacks. This area will

net be modified by MIJDs or the Link Support Layer.
42 SerxlLen 2 Word containing the full data length of a send buffer,

counting all fragments
44 FragCnt 2 Number of fragments in following fragment list
46 FragPtrl 4 Pointer to the fltSt fragment
~ FragLenl 2 Length of the fltSt fragment
52 F.nvelope xx In receive ECBs, the incoming packet is stored here

C-1 ECB Format

·~ _,/

Apple/Novell Confidential

(Appendix D

(

MUD Statistics Table Format

All MUD modules must keep a statistics table for network management

purposes. The following is the format of an MUD statistics table.

MUD Statistics Table Format D-1

Apple/Novell Confidential

Offset Name Bytes

00 STAT_MajorVersion 1

01 STAT_MinorVersion 1

GenericCnts 2

04 ValidCntsMask 4

Major version number of the statistics table (1 for
this specification)

Minor version number of the statistics table (0 .. 99
decimal, O for this specification)
Number of 4 byte counters in fixed portion of table

Bit mask indicating which counters are valid. The value,
O indicates Yes. The value 1 indicates No. The
bit/counter correlations are determined by shifting left,
as you move down the counters in the table. So bit 7 of
the 4th byte corresponds to the first counter, as shown
in the following illustration. Similarly, Bit 0 of the first
byte corresponds to the 32nd counter (if present).

Valid Counters Mask

Bits 7 6 s 4 3 2 1 0

Bytel 25 26 'l:J 28 29 30 31 32

Byte2 17 18 19 20 21 22 23 24

Byte3 9 10 11 12 13 14 15 16

Byte4 1 2 3 4 5 6 7 8

Counters

MLID Statistics Table Format D-2

Apple/Novell Confidential

~ TotalTXPackets 4 Tctal number of packers that were requested to be

(
.. transmitted (whether they were actually transmitted

or not)

12 TotalRXPackets 4 Total number of incoming packers received

16 NoECBsAvail 4 Number of incoming packers that were lost because
of unavailable ECBs

TXTooBig 4 Number of requested packets for transmission that
were too big to send

24 TXTooSmall 4 Number of requested packets for transmission that
were normally too small to be transmitted. The
packets may still have been sent if the MUD does
padding

RX Overflow 4 Number of incoming packers that were lost because
they were bigger than the ECB buffer size

32 RXTooBig 4 Number of incoming packets that were bigger than the
maximum legal size for the media

RXTooSmall 4 Number of incoming packets that were smaller than
1·

'it the minimum legal size for the media
lt!:

TXMiscErr 4 Number of transmissions requests that were not sent
because of errors other than those explicitly listed in
this table

44 RXMiscErr 4 Number of incoming packets that were lost because of
errors other than those explicitly listed in this table

48 TXRetryCount 4 Total number of retries invoked to send packets

52 RXChksumErr 4 Total number of incoming packets lost due to
Checksum/CRC errors

RXMismatch 4 Total number of incoming packets lost due to
conflicting information given by the hardware and the
packet internals

NumCustom 2 Total number of custom variables following this word

(

MLID Statistics Table Format D-3

Apple/Novell Confidential

There are NumCustom dworm starting at offset 56 that correspond to the custom stati1tics for the MUD.
Following these <iwottb, tbeie are NumCustom pointers (4 bytes e'dch) that point to sttinp describing the
custom statistics. The sttiDp have a leading length byte am a terminating 0 byte.

MLID Statistics Table Format D-4

(

f

(

Apple/Novell Confidential

Appendix E

Offset

00

01

0'2

04

12

16

J)

Protocol Stack Statistics Table Format

All protocol stacks must keep a statistics table for the purpose of network

management Any statistics that are not appropriate for a given protocol stack

should be set to OFFFFFFFFH. The following is the fonnat of a Protocol Stack

Statistics Table.

Name Bytes Description

STAT_MajorVersion 1 Major version number of the statistics table (Olh for
this specification)

STAT_MinorVersion 1 Minor version number of the statistics table (0 .. 99
decimal, ooh for this specification)

GenericCnts 2 i Number of 4-byte counters in fixed portion of table

ValidCntsMask 4 Bit mask indicating which counters are valid. A value of
O indicates Yes. A value of 1 indicates No. The
bit/counter correlations are determined by shifting left,
as you move down the counters in the table.

TotalTXPackets 4 Total number of packets that were requested to be
transmitted (whether they were actually transmitted
or not)

TotalRXPackets 4 Total number of incoming packets received

IgnoredRXPackets 4 Total number of incoming packets that were ignored
by the stack

NumCustom 2 Total number of custom variables following this word

There are NumCustom dWOtds starting at offset 16 that correspond to the custom statistics for the protocol
stack. Following these dwords are NumCustom pointers (4 bytes each) that point to ~ describing the
custom statistics. 1be sttings have a leading length byte and a terminating 0 byte.

Protocol Stack Statistics Table Format E-1

~

({

'(

Apple/Novell Confidential

Appendix F Link Support Layer Statistics Table Format

Offset

00

01

Cf2

04

12

16

:!)

24

28

3Z

The Link Support Layer will keep a statistics table for the purpose of network

management. The following is the format of the Link Support Layer

Statistics Table.

Name Bytes Description

STAT_MajorVersion l Major version number d the statistics table (1 for
this specification)

ST AT _MinorVersion 1 Minor version number d the statistics table (0 .. 99
decimal, O for this specification)

GenericCnts 2 Number of 4-byte counters in fixed portion of table

ValidCntsMask 4 Bit mask indicating which counters are valid. A value of
0 indicates Yes. A valued 1 indicates No. The
bit/counter correlations are detennined by shifting left,
as you move down the counters in the table.

TotalTXPackets 4 Taal number d packets that were requested to be
transmitted (whether they were actually transmitted
or not)

GetECBBfrs 4 Taal number of GetECB requests

GetECBFails 4 Number d GetECB requests that failed because of
unavailable resources

AESEventCounts 4 Number of completed AES events

PostponedEvents 4 Number of events that were postponed because of
StartCriticalRegion functions

ECBCdFails 4 Number of ECB cancel events that failed

ValidBfrsReused 4 Number of ECBs on the hold queue that were reused
before they were removed from the hold queue

Link Support Layer Statistics Table Format F-1

Apple/Novell Confidential

EnqueuedSendCnt

TotalRXPackets

44 UnclaimedPackets

48 NumCustom

4

4

4

2

Number of EnqueueSend events that have occurred

Number of incoming packets dispatched

Number of incoming packets that were not claimed by
any prttocol stack

Tttal number of custom variables following this word

There are NumCustom dwords starting at offset 44 that correspond to the cust0m statisti:s f<x' the Link
Support layer. Following these dwords, there are NumCustom pointers (4 bytes each) that point to strinp
describing the custom sratistics. The strings have a leading length byte am a terminating o byte.

F-2 Link Support Layer Statistics Table Format

Apple/Novell Confidential

(
Appendix G System Error Codes

The following error codes are defined for the network system.

OUT_ OF _RESOURCES rollH There are no resources available to execute the desired function

BAD _PARAMETER 8X>2H One of the parameters passed to this function is unclear

NO _MORE_ITEMS 8X>3H There are no more items to return

ITEM_NOT _PRESENT 8X)4H The item that you requested was not found

FAIL ro:>SH An unspecified failure ocrurred

RX_ OVERFLOW ro:>6H The received packet was an overflow packet and may be in error

CANCELLED The ECB associated with this error code was cancelled by an

:1 MLIDShutdown or an explicit cancel call
<

BAD_COMMAND The value pas.;ed in BX does not correspond to a legitimate command

DUPLICATE_ENTRY OOJ9H The command or address you tried to add is already present

NO_SUCH_HANDLER 800AH The protocol stack you tried to send a command to has been
deregistered

NO_SUCH_DRIVER 800BH The MLID you tried to send a command to has been shut down

System Error Codes G-1

Apple/Novell Confidential

Appendix H NET.CFG Configuration File Format

The NIIT.CFG fde contains the configuration information for the network

system. It is a control file that contains section beadings and subsidiary

information. This appendix documents the seaion headings and the

currently defined subsidiary information. However, protocol stacks and

MllDs may define new keywords and information to be stored in the file

that are specific to the MllDs and protocol stacks. All keywords and main

headings are case insemitive.

NET. CFG Configuration File Format H-1

Apple/Novell Confidential

The following is the format of the NET. CFG file:

Main heading

Sub infol

sub info 2

The ~in headings always start in the first column of the file, and all subsidiary information starts

in any column other than the first. Not all MI.IDs or protocol stacks need to understand all cf the
· possible keywords. The MUD or protocol stack designer detennines which keywords need to be

understood.

The following main headings are allowed:

Unk support The subsidiary information up to the next main heading describes
parameters for the Link Support Layer.

Protocol <name>

link driver <name>

The subsidiary information up to the next main heading describes
infonnation for the named protocol stack. This name
corresponds to the protocol name given to the Llnk Support layer
at initialization time by the protocol stack.

The subsidiary information up to the next main heading describes
information for the named MI.ID. This name corresponds to the
ShortName field in the MI.ID Configuration Table.

A /1 in column one indicates a comment line and will be ignored.

In the following definitions, the following conventions are used:

{ J optional element inside brackets

n11 decimal number, digit# is for differentiation

h11 hexadecimal number, digit # is for differentiation

H-2 NET.CFG Configuration File Fonnat

(

(__ .

Apple/Novell Confidential

Link support keywords

Buffers nl n2

MemPool nlOd

Configures the number d receive buffers (nl) and their size (n2)

that the Llnk Support Layer will create. N2 must be at least 586

Configures the size of the memory pool that the Link Support
Layer will maintain. The "k• notation bas the usual meaning
(multiply by 1,024)

Protocol stack keywords

Sessions nl

Bind <Name>

Default <Name>

Configures the number d sessions that the protocol stack will
be required to maintain at one time

Requests the protocol stack to bind with the MLIO <Name>

Requests the protocol stack to bind with the MLIO <Name> and
sets this MLIO to the default MLIO if appropriate

link driver keywords

OMA [lnl) n2

INT [1nl) n2

MEM [lnl) hl h2

PORT [lnl) hl h2

PS/2Slotnl

PS/2Slot?

Node Address hl

Configures OMA channel nl (where nl is 1 or 2, and is assumed 1
if a'*=nt) to be channel n2

Configures the nlth interrupt number (where nl is 1or2, and is
assumed 1 if absent) to be interrupt number n2

Configures the nlth memory range (where nl is 1 or 2, and is
assumed 1 if absent) to be at address hl for h2 paragraphs. The h2
is assumed to be 1 if not.present

Configures the nlth 1/0 port range (where nl is 1 or 2, and is
assumed 1 if absent) to be at 1/0 port address hl, for h2 ports.
The h2 is assumed to be 1 if not present

The nl is a number that indicates the PS/2 slot containing the
card for this MLIO. (Slot number is 1-based. In other words, the
first slot number is 1, not O)

Indicates that the MUD must scan for the PS/2 slot that
contains its card. This is the default if not present

Overrides any hard-coded node address in the MLID's hardware, if
the hardware allows it

NET.CFG Configuration File Format H-3

Apple/Novell Confidential

Protocol <name> hl

SendRetries nl

. Envelope type name

Tells the MI.ID that the named protocol has a prctocol type of
hl. This allows new prctocols to be handled by existing MI.IDs

Configures the MI.ID to anempt n l retries on transmitted
packets. nl may be 0

Configures which link-level envelope type the driver will create if
there is a j'.)<>$ibility of more than one type (see appendix J for list
of names)

H-4 NET. CFG Configuration File Fonnat

(_.

Apple/Novell Confidential

Appendix I

cmpr: db

Finding the Link Support Layer in DOS

When running with MS-DOS, the Link Support Layer is found using the INT

2FH multiplexing interrupt with code similar to the following:

'LINKSUP$'

This first piece of code is needed for DOS 2 since DOS did not support the
multiplexing interrupt in that version of DOS. We make sure the vector is
not O or OFFFFH: OFFFFH. The Link Support Layer will properly intercept
int 2FH even under DOS 2.

sub ax, ax
mov es, ax
cli
mov cx,es:[2FH*4]
mov dx,es:[2FH*4+2]
sti
mov ax,cx
or ax,dx
jz bad vector was 0 - can't be loaded
mov ax,cx
and ax,dx
cmp ax,-1
jz bad vector was OFFFFH: OFFFFH - can't be loaded
sub bx, bx
mov es,bx
mov ah,OcOh Scan through the multiplex numbers COH thru OFFH
sub

lpl: push
int
cmp

pop
jz

nxt: inc
jnz

al, al
ax
2FH
al,offh

ax
fnd
ah
lpl

; If AL returns OFFH, something is using this mx
number

rinding the Link Support Layer in DOS I-1

Apple/Novell Confidential

; Here, the Link Support Layer was not found

bad:
Tell the user that the Link Support Layer must be loaded

Here, an int 2FH entity was found - see if it is the Link Support Layer

fnd: mov ax,dx Did this routine set DX:BX?
or ax, bx
jz nxt No - try next mx number
push ds
mov di, si ES:DI points to description record
mov si,cs
mov ds,si
lea si,cmpr ;Set DS:SI to point to comparison String
cld
mov cx,8
repe cmpsb
pop ds
jz fndit ; Was the signature there?
jmp nxt ;Not the right one - try again

Here, we found the Link Support Layer, and DX:BX contains its Initialization Entry
Point.

fndit:

I -2 Finding the Link Support Layer in DOS

(

Apple/Novell Confidential

Appendix] Defined Media IDs

MedJaID

01

1be following media IDs/names are currently defined:

Name

LocalTalk
m-1

Deslinalion node

Dacrlptloa

The Apple LocalTalk media

lDcalTalk SouR:e node

02

Ethernet II

03

Ethernet II

m-2

Destinalion node
(6 bytes)

Soun:enode
(6 bytes)

Prttocol ID
(2 bytes)

Ethernet using a DEC Ethernet n envelope

Elbcmet ~2.2 Ethernet using an ~2.2 envelope

Defined Media IDs J-1

Apple/Novell Confidential

lD-3

11 b)fe(8bill) ___,

802.3 Source
(6bytes)

U.Clength
(2bytes)

SourceSAP·
(always • Dest SAP)

Control
(always. 3)

SNAP header
(5 byres.

if Dest SAP •QA.AH)

TokenRing

J-2 Defined Media IDs

Protoc:ol ID •
1 byte Dest SAP
(if not QA.AH) <X'

OAAH + 5 byres SNAP header

Token Ring using an ~2.2 envelope

\ ,'

" r

(-

:i ..
\;i_

Apple/Novell Confidential

OM

rl byle(8bils) ---t

• • •

I-
I-
I-
I-

lm.3 Destination
(6bytes)

lm.3Soorce
(6 bytes)

Routing information
(0 to 18 bytes)

Destination SAP

Source SAP

Control field
(1 byte-always • 3)

SNAP header
G bytes-

if Dest SAP • AA)

• • •

Protocol ID •
1 byte Dest SAP
(if not OAAH) or
OAAH + 5 bytes SNAP header

Defined Media IDs J-3

Apple/Novell Confidential

(' · Appendix K Defined Card IDs

Cardm

01
02

03
04

05

The following card IDs and card names are currently understood by the

MIJ/MPI. In thw table each particular card ID has to be mapped to its

particular card

Name Dacripdoa

Apple LocalTalkPC The Apple Locarralk PC card

EtherLink I The 3Com EtherLink I adapter

EtherLink II The 3Com Etherl.ink II adapter

EtherLink/MC The 3Com EtherLink/MC adapter

IBM 802.2 MUD fa the IBM 802.2 interface using IBM Token
Ring cards

Defined Card IDs K-1

(

Apple Computer/Novell Confidential

6. Important

Using the DOS MI.ID Startup Modules

This document provides direction on using the DOS MLID Startup
Modules and should be used with the ODI Developer' Guide, available
from APDA (Apple Programmer's and Developer's Association) and
Novell, Inc. The modules consist of executable code and help you get
started writing your own MIJDs. The modules provide much of the
pedestrian work involved in writing MIJDs (such as registering the
drivers and protocol stacks, reading the NET.CFG fde, and calling
Service Events). You only need to link your own code to the modules.

Your DOS MUD Startup modules consist of two files:
DSTARTUP.OBJ and DRIVER.OBJ. By linking these two files with
some of your well defined routines, you can write an MUD faster and
easier than writing all of the interface code required to implement an
MLID.

The file DSTARTUP.OBJ must be linked as the first object module,
since it contains the segment declarations; these segments must also
be in the following order.

The following are the segment declarations in DSTARTUP.OBJ:

DGROUP group _TEXT, _DATA, CONST, _BSS, I.DATA,
IDATA, ICNST, IBSS, ITEXT

_TEXT segment word public 'CODE'

_DATA segment word public 'DATA'

CONST segment word public 'DATA'

_BSS segment word public 'DATA'

LDATA segment para public 'DATA'

IDA TA segment word public 'INIT'

ICNST segment word public 'INIT'

IBSS segment word public 'INIT'

I TEXT segment word public 'INIT'

+ Note. All segments are part of the GROUP. This allows you to
create a . COM fde, if this is desirable.

l Using the DOS MUD Startup Modules

Apple Computer/Novell Confidential

Variables Declared by
DSTARTUP.OBJ/
DRIVER.OBJ

Permanent Variables
Declared by the MlID
code

The following variables are declared public by the startup code. The
only exception is that _emnsg are ftlled in with the proper values by
the startup code before _driver_init_config_ is called

• _MyDgroup in segment _TEXT

This variable is a WORD that contains the value of DGROUP. This
WORD is in the _TEXT segment so that a CS-relative reference can
fetch the value. Although the code and data are in DGROUP
together, the code becomes very difficult to port to OS/2 if you rely
on this fact For example, you can't assume that CS always equals
DS because this may not be true when you port this driver to OS/2.
There are only a few variables in the _TEXT segment, and these
variables are filled in by the startup code.

• _Link_Support in segment _TEXT

This is a DWORD that contains the far address of the MLID
Support Entry Point of the Link Support Layer. This variable is called
by loading BX with the desired support function code, and
executing a FAR CALL through this variable.

• _max_ecb_siz.e in segment _DATA

This is a WORD that contains the maximum size of the data portion
of anECB.

• _errmsg in segment IDATA

This is a WORD that you can ftll in with a near pointer to an error
message if your hardware initialization fails (See the Intttalization
section next).

The following variables must be declared public by your MLID code:

• _swap_stack in segment _DATA

This variable is a WORD that contains a 0 if you do not want to
swap stacks when an interrupt occurrs. Otherwise, it should
contain the DGROUP-relative offset of the initial SP value which
should be loaded whenever an interrupt occurrs.

• _card_name in segment CONST

2 Csing the DOS MUD Startup Modules

(

Apple Qxnputer/Novell Confidential

This is the address of a data string (preceded by a length byte, and
terminated with a 0-byte) that describes the interface card name. A
pointer to this string will be stored in the CardName field of the
configuration table for each instance of the MUD.

• _driver_name in segment CONST

This is the address of a data string (preceded by a length byte, and
tenninated with a 0-byte) that corresponds to the short name of
your driver. A pointer to this string will be stored in the ShortName
field of the configuration table for each instance of the MUD. This
is the name that the user must specify in the NET. CFG file.

• _card_id in segment CONST

This is your Card ID. This value will be stored in the CardID field of
the configuration table for each instance of the MUD.

• _ ws_offsets in segment _DATA

This is a table of four WORDs containing the offsets of the four
workspace areas for up to four instances of the MUD. These
offsets must be relative to DGROUP, and must have a value other
than 0 to be valid. Use O's for instances that the driver does not
support. (For example, if the MUD only has two instances, set the
third and fourth words of this array to 0.) These workspaces must
be in the segment LDATA so the data memory for the unused
instances can be freed when the MUD tenninates and stays
resident.

• _driver_ctl_tab in segment _DATA

This is a table that contains a list of offsets (relative to DGROUP)
to the various routines which implement the MUD Control
Routines. There should be 'NUM_DRIVER_CTL.5' entries in this
table. Any calls that have a BX value greater than or equal to
'NUM_DRIVER_CTL.5' will be dispatched through '_driver_ctl_dflt_'.
Any routines dispatched by this table will have DS:BX pointing to
the appropriate instance data.

3 Using the DOS MUD Startup Modules

Apple Computer/Novell Confidential

Public Constants by
the MLID code

Temporary Variables
Declared by the MLID
code

The following constanr.s must be declared public by the MUD code:

VER_MONTH The month of this MUD revision (1 ... 12).

VER_DAY The date of this MUD revision (1 ... 31)

VER_ YEAR The year of this MUD revision (0 ... 99)

VER_MAJOR The major version number of this MUD.

VER_MINOR The minor version number of this MUD revision (O ...
99 decimal).

NUM_DRIVER_cns The total number of procedure address
contained in '_driver_ctl_tab'.

OFFSET_O As a first option, this constant should contain 0 if you
want your instance data described as DS = DGROUP, BX .. offset
value. As a second option, this comtant should be set to 1 (or a value
other than 0) if you want your imtance data described as DS "'
«desired value», BX .. 0. For this second option to work correctly, all
offser.s in the '_ws_offsets' table must be on paragraph boundaries.
For this reason, your imtance data should be in the LDATA segment
(it's paragraph aligned).

The following variables should be declared public by the MI.ID code:

• _signon_msg in segment ICNST

This is a string (not preceded by a length byte), terminating with a
'$'character which is your sign-on message. This string will be
output using DOS Function ()l)H as the first action of the startup
code.

• _loaded_msg in segment ICNST

This is a string (not preceded by a length byte), terminating with a
'$' character which is the message you want to output to the
console if the MUD is already loaded. This string will be output
using DOS Function 09H if the startup code determines that the
MUD is already loaded.

4 Using the DOS MUD Startup Modules

Apple Computer/Novell Confidential

Public Procedures in
the MLID code

This section desaibes the required routines you must implement to
have a functional MUD. The following public procedures should be
present in the MLID code in the _TEXT segment:

• _driver_send_

This near procedure is called whenever a packet is to be sent DS: BX
will point to the appropriate instance data, and ES:SI will contain
the send ECB. Your routine must preserve only BP.

• _driver_ctl_dflt_

This near procedure is called whenever a Driver Control call is
dispatched that is not in '_driver_ctl_tab'. DS:BX will point to the
appropriate instance data, and BP will contain the value of BX that
caused the call. Your routine does not need to preserve any register.

• _driver_i5rl_

This near routine is called whenever a card interrupt occurs on
IntlLlne. All registers except BP have already been saved, the stack
has been swapped (if that feature was enabled using the
_stack_swap variable), and DS:BX is pointing to the instance data
for the board that caused the interrupt Your routine should return:

AX ,. 0 if the interrupt was not intended for this driver. The next
chained interrupt handler would then be called

AX ,. 1 for all commands other than th~ to get next handler,
call ServiceEvents, or call EndCtiticalSection.

AX • 2 to call ServiceEvents.

AX .. 3 to call EndCriticalSection.

The startup code kee~ track of nested invocations of the ISRs, and
will not actually dispatch ServiceEvents until the last nested
interrupt is processed.

5 Using the DOS MUD Startup Modules

Apple Computer/Novell Confidential

Public Procedures in
the Startup code

• _driver_init_config_

This routine is called to check the validity of the configuration
table. The configuration table already has the fl.Cl~ defmed in
NET.CFG filled in. This routine may also fill in the configuration
table with other driver-specific values. When this routine is entered,
the DWORD address of the configuration table for this instance is
pushed on the stack if there is an error in the configuration. This
routine should return the following condition:

If an error message occured, AX • O and _ernmg • DGROUP offset
of the error message. If there is no error, this routine should return
AX• a value other than 0.

• _driver_isr2_

This near routine is called whenever a card interrupt occurs on
Int2Line. All registers except BP have already been saved, the stack
has been swapped (if that feature was enabled using the
_stack_swap variable), and DS:BX is pointing to the instance data
for the board that caused the interrupt The startup ccxie keeps
track of nested invocations of the ISRs, and will not actually
dispatch ServiceEvents until the last nested interrupt is processed.
Refer to _driver_isrl_ for return values.

• Note; This procedure must be present even if the MI.ID does not
use the Int2Line interrupt In this case, just create a public label
somewhere in your ccxie to satisfy the external reference
requirement.

• _driver_init_

This near routine is called to initialize a driver instance. DS:BX points
to the configuration table corresponding to the driver instance. If
initialization occurred, this routine must return (in AX) a near
pointer to the byte after the instance data without any errors.
Otherwise, this routine should return a 0, and store a near pointer
into '_emnsg' with the error string (terminated with a'$'). The
startup code will print this error message, shutdown any other
instances that are already initialized, and terminate to DOS without
staying resident The configuration table should be examined for
correctness if this has not already been done, and any '_install_ints'
calls should be made to install the interrupt handlers for the driver.

This routine returns CL .. IntlLine interrupt disable mask for 8259 PIC
Interrupt Mask Register (IMR). CH .. Int2Line disable mask, DL = port
address of IMR for IntlLine, DH • port address of IMR for Int2Line.
The following public procedures are present in the Startup ccxie in the
_TEXT segment:

• _install_ints_

6 Using the DOS MUD Startup Modules

(

(

Apple C.Omputcr/Novell Confidential

This near procedure should be called inside of 1_driver_init' to install
the interrupts configured in the configuration table. DS:BX must
contain the address of the configuration table. The existing
interrupt vectors will be saved for restoration in _remove_ints.

• _remove_ints_

This near procedure should be called to remove the interrupts
configured in the configuration table and restore them to their
previous values. DS:BX must contain the address of the
configuration table.

• _set_IRQ_

This near procedure is made available for those who prefer not to
use _install_ints_ listed earlier, or need additional interrupts installed.
For example install_inits may not satisfy the requirements of your
particular driver. DX:AX contains the address of the new interrupt
handler, ES:BX is the address of a dword where tlie old interrupt
handler should be stored, and ex is the IRQ Number.

• _restore_IRQ_

This near procedure reverses the results of _setJRQ_. ES:BX is the
address where the old interrupt handler was saved and ex contains
the IRQ Number.

• _dear_SerxlQ_

This near procedure rerooves all queued ECBs (queued by the 1.51 or
by using the EnqueueSend command) from the send queue and
frees them so that the ECBs can be reused. AX must contain the
board number of the MI.ID making the call.

7 Using the DOS MUD Startup Modules

-.
'; \:

-

\ "- /

