
Native Driver White Paper

version 1.0
May 19, 1994

Holly Knight
John Fitzgerald

Mike Quinn
Wayne Meretsky

Overview

This document proposes required interfaces and packaging for Communications drivers
on PCI cards. At the time of this writing there are three different native device driver
proposals for the Marconi project. Each proposal covers a separate but overlapping piece
of the device driver puzzle for Marconi and future OS releases. The design presented
here will cover two broad issues. The first goal is to regularize device driver writing so
that PCI and non-PCI device drivers can be written to a single specification. The second
equally important goal is to have device drivers written to this specification work for both
the Marconi and Maxwell releases, as well as any future releases.

Documentation for PCI devices may be found in the following documents:
“Device Driver Development Kit” - ApplePC
“The Macintosh Expansion Manager” - ApplePC

Native Device Driver documents:
“Device Manager Changes to Support Native Drivers.” - AppleSoft
“Native Drivers for PCI and other Peripherals in Marconi” - AppleSoft

“AppleSoft PCI Implementation Plan” - AppleSoft

Open Transport/Streams documents:
“PCI/DLPI - Open Transport Integration” - Open Transport
“Open Transport Ethernet Developer Note” - Open Transport
“Streams Modules and Drivers” - Unix Press

In addition to providing general native device driver guidelines we use the native DLPI
driver for Open Transport to provide implementation specifics. We hope to see this
document become part of both a Device Driver Kit for PCI devices and an Open
Transport Software Developers Kit.

Terminology

In this document we use a set of possibly unfamiliar terms. This list is provided to clarify
discussions in subsequent sections.
Family - This term refers to a collection of devices that provide the same kind of
functionality. One example of a family is the set of Open Transport devices with their
corresponding Open Transport DLPI drivers. A second example is the family of Display
Devices.

Scanning - I use the word scanning or scanner to describe code that matches a device with
its corresponding driver. The scanning portion of device location is one of the problem
areas discussed in this paper. Scanning is probably a sub-function of the family Expert.

Expert - Expert is a term coined by Brenden Creane to describe family code that extracts
appropriate information from the system (ROM, Slot Manager, Expansion Manager, etc.)
and presents the device specific information to each family device in a format agreed
upon (documented). A family Expert is the administration function for a family. Experts
are important when devices are brought into the system (classically at boot time) but are
not part of the primary data paths to a device.

Driver Components

All native device drivers are CFM-loadable modules that export their API by using CFM’s
export-by-name feature. Native drivers are located in either System-ROM, PCI-card
ROM, or a file. PCI-card ROM drivers are CFM modules in PCI ROM. PCI drivers may
be replaced by newer versions of the driver located in System-ROM or in a file.

Device drivers require scanning and driver code. PCI drivers may optionally provide
Open Boot code. The Open Boot PCI ROM code is responsible for installing PCI ROM-
based device properties in the device tree in support of plug and play.
All PCI devices support configuration ROM that conform to the PCI Local Bus
Specification. Apple does not require vendors to register their cards with DTS; the
vendor ID of the PCI card is allocated by the PCI SIG.

Device scanning/Expert code is responsible for scanning the system resources to match
device drivers to devices and supply system information to the device driver initialization
code. The device driver itself provides the system entry points to control a device. A
description of the standard device entry point(s) is detailed in later sections.

Scanning details

Scanning for devices needs to be a system service. Such a service requires a central
repository for device information for all system devices. Lacking a scanning service and
central repository for device information, device driver writers must either hard code
information (motherboard devices) or use the specific low level services associated with
their device to glean required device configuration information.
Examples of the differences between drivers are:

• PCI devices use the Expansion Manager to scan the Device Tree for configuration
information. PCI devices must also use the Expansion Manager for interrupt
handler registration and possibly for some direct I/O memory accesses.

• Drivers for NuBus devices use the Slot Manager to acquire base addresses and
device slot information. NuBus device drivers us the Slot Manager for interrupt
handler registration.

• Motherboard devices traditionally have hard coded device base addresses,

names, etc. within the driver initialization code. Motherboard devices use OS
specific interrupt registration mechanisms.

Device scanning code must recognize the device based on property types and values such
as:
Vendor-ID
Device-ID
Physical address
Device name
Device type
Interrupts
Device registers
Version

For PCI devices there must be an additional property:

drvr,Apple,MacOS (for PCI devices see the Expansion Manager doc)

This propery is used to locate a PCI driver for a given device.

With device scanning code and a device information repository all native device drivers
can be written to use a single set of services. The system scanning system will provide
configuration information to native device driver when device initialization driver code is
called from the scanner. This will allow PCI, motherboard and NuBus device drivers to
be written identically; that is to expect basic hardware information to be made available
and not be required to locate or hard code this information within the driver itself. This
also allows for a comprehensive driver replacement/overloading capability.

Native Driver APIs

Within the MacOS today there is only one flavor of programming interface, an
application interface or API. What this means is that all services defined within the
MacOS are available to all Macintosh Applications. Within the new native Device
Manager documentation there is a description of the new API. Application calls to raw
devices go through this API.

With the advent of a new set of device driver services and families, I would like to
introduce the idea of a new class of programming interfaces. This new class of interfaces
is the Device Driver Programming Interface or DPI, that is the set of services and
mechanisms defined by and used by a family or class of service. Open Transport, for
example, represents a family of services, networking, that uses a well defined set of family
specific APIs that are not available to Macintosh Applications.

Native Device Manager Driver API

The ‘Native Drivers for PCI and other Peripherals’ document specifies a single code entry
point will be exported by all native drivers. The high-level semantics of this entry point
are described in 'Native Drivers for PCI and other Peripherals in Marconi'. The entry
point is:

OSErr (*NuDriverEntryPoint)
(IOCommandID theID,
IOCommandContentsPtr theContents,
IOCommandCode theCode,
IOCommandKind theKind);

In addition to the entry point, a data symbol that characterizes the driver's functionality
and origin must be exported through CFM's symbol mechanism. The data symbol's name
(TheDriverDescription) and structure is as follows:

typedef long DriverDescVersion;
typedef long DriverVersion;
typedef OSType DriverDescSignature;

enum
{
theDescriptionSignature = 'mtej' // must appear in first long
}; // of DriverDescription

typedef struct DriverDescription {
DriverDescSignature Signature; // Signature of this structure
DriverDescVersion Version; // Version
OSType DeviceFamilyType; // Family of devices
OSType driverType; // Driver type within family
OSType driverSubType; // SubType of driver in family
OSType driverManufacturer; // Maker of this driver
DriverVersion driverVersion; // Driver's version
char driverNameLength; // Length of driver's name
char driverName[32]; // Driver's name
char driverDescReserved[128];// Reserved for the future
} DriverDescription, *DriverDescriptionPtr;

DriverDescription TheDriverDescription =
{
// Initialize Description Info Here
};

See the “Device Manager Changes to Support Native Drivers” document for more
information about the fields of the DriverDescription structure.

Documented device families include:
'DISP' Display Devices
'BLCK' Block Storage Devices

A possible device family name for Open Transport:
'OPTP' Open Transport

Family names, such as DISP, BLCK, OPTP are administered by Apple. Each device family
defines driver types and subtypes that are only unique within that family.

*** Do we want to have all networking devices belong to the Open Transport family and Apple
maintains types and subtyes? Do we want each manufacturer to identify their own family types
and subtypes? See the issues section!

Device driver are created as CFM modules. CFM modules are always allowed to have

persistent specific global data storage. Each instance of a single driver has private static
data, and shared code with every other instance of that driver. This is one of the changes
from classic MacOS device drivers. CFM is responsible for maintaining the driver context
(the driver “a5” world). Device drivers no longer need to hang their private data from a
field in their Device Unit Table Entry.

Native Device Driver API

All conforming drivers to “Device Manager Changes to Support Native Drivers” provide
a single driver entry point NuDriverEntryPoint that switches on the following set of
commands:

OpenCmd
CloseCmd
ReadCmd
WriteCmd
ControlCmd
StatusCmd
KillIOCmd
InitializeCmd
FinalizeCmd

These commands, available through the NDRV Device Manager are an Applications API,
in the sense that all Toolbox services are available to all Macintosh applications. In
addition to providing the NDRV Device Manager interfaces to a driver, certain families of
devices require a private interface to their device drivers that does not go through the
Device Manager at all. This class of interface is a Driver Programming Interface (DPI).
The DPIs are defined per family, and are not available to Macintosh Applications. Should
an application discover these DPIs and attempt to make a DPI call, the application will
fail. In the V1 world, the application will probably crash with an access violation because
the device driver services are in a different address space than the Macintosh Application.

I will list three possible approaches to allow DPI clients to access the private family APIs.
New Property
All drivers with family private APIs must provide a property within the System
Registry that contains a list of names of exported API structures and functions.
The family client searches for the family-API property with the System Registry for
a given device. If the property is located, the client does a CFM look-up by name
on all the names within the list, and plugs in the returned addresses within a client
private structure. Calls and data accesses to the family API would be made via the
client private structure.

Additional CFM exports
All drivers with family private APIs must export well defined family API names
for both API data and API functions. Clients loads the CFM driver resource, and
calls the well defined names found within the CFM driver. CFM does the magic to
connect the client to the CFM device driver exports.

DriverGestalt selector
All new drivers are required to support the driverGestaltCode as a
subCommand (csCode) to the StatusCmd request. The
driverGestaltSelector controls the type of information the DriverGestalt call
returns. Currently the control selectors may be ‘node’ or ‘vers’. To support
family APIs, new selector‘fapi’ is defined to request a family API structure.
The family API structure contains the private API data and function pointers.
The device family API structure is returned in the status call
driverGestaltResponse field.

***The driver gestalt call with driverGestaltSelector set to ‘node’ expects a PCI compliant driver to
return a pointer the device node within the device tree to which this driver corresponds. What
happens when a single device driver controls multiple devices? This also means that one of the bits
of information the expert provides to the driver init code is the device node associated with this
particular init call. I am assuming one init call per device.

Open Transport requires a family data structure called install_info, and three OS
specific driver routines, one device initialization routine, one primary interrupt handler,
and finally, a secondary interrupt handler. The install_info structure is used by
Open Transport to link streams modules to streams device drivers.

Open Transport is not alone in its requirement of three OS specific driver routines. All
device drivers will need at least, device initialization, a primary interrupt handler, and a
secondary interrupt handler. The device initialization routine is called with the device is
located. The primary interrupt handler must be registered for the driver in an OS specific
way. The secondary interrupt handler is scheduled in response to a device request. The
device request for secondary interrupt scheduling will usually be called from the device
driver primary interrupt routine to defer expensive data processing to non-primary
interrupt time.

***Where does this get discussed? I think these OS specific driver routines need to be generalized.
Should these routines be separate properties? 2nd, 3rd, and 4th CFM exports or what?

Device drivers do not necessarily need to provide both types of interfaces. New device
drivers would use their family API interfaces to the clients but would appear as standard
devices to the system. The Device Manager IOCommands would be primarily stubs.
New device drivers with no need for a family API would be directly callable through the
standard IOCommands interface and would fail to deliver the non-existent family API in
some “friendly” way.

Native Driver Initialization

In an ideal world, device drivers would be written in a location independent manner. In
other words the device driver would not know whether its device was PCI, motherboard,
or NuBus based. This is not how the current set of documents describes the device driver
world. Within the current documentation there is no clear distinction between device
initialization and device open. A device open is (or should be) a connection oriented
response to client requests. Initialization can and will occur out-of-band to client
requests, for example at boot time, or in the PCMCIA case, when a device is hot swapped

into and out of the system.

I present three separate scenarios for device driver initialization. Plan A describes
something like the perfect world scenario. Plan B details how an initialization sequence
will occur if there is no coordination between the PCI/NuBus and motherboard devices.
Plan C describes an attempt to use the Expansion Manager as the device repository for all
device information. All three plans cover device initialization, this must be distinct from
device open requests.

Plan A

In the PCI documentation the statement is made “When MacOS is launched on a Power
Macintosh computer with a PCI bus, it acquires most run-time drivers during the
initialization of the Expansion Manager. “ The steps to initialize the driver by the
Expansion Manager are then detailed. The final steps in the process are to call the device
driver Open routine. These steps are very MacOS specific.

**This seems wrong. I need to look further but why OPEN the driver at boot time?

***For PCI drivers (NuBus too?) the driver needs to remain available so the Open call must
succeed. If the open fails, the driver is removed from the unit table and its space is released.
Again, is this right? I just want the device driver to appear in the device tree from whatever its
source and then all the device init steps become the same (following this point).

For NuBus devices, the Slot Manager performs a parallel set of functions. Again the steps
are very MacOS specific. For Motherboard devices, the usual path is an explicit PBOpen
trap to locate and install a device driver for the device.

Plan A requires us to create a set of services that can walk the Expansion Manager device
tree, explore all Slot Resources, find drivers in the System Folder and build up a System
Registry from all this data. Then from whatever source, this System registry is
populated with device nodes and their properties. One property is a CFM based device
driver. The initialization steps for the new Device Manager are as follows:

• The device initialization manager is called.
• The family expert code is called (if there is only one device in a family a single
driver may be the “expert”)
• The expert code locates all of its devices and reads the required family properties
for each device from the System Registry The expert builds up a family specific
initialization parameter block for each device from its property lists and calls the
device initialization routines with init parameter block.

***TomS. sez we can change init to do this. This init routine follows the NDRV documentation
in that is is an NuDriverEntryPoint call with IOCOmmandID,ContentsPtr,Code and Kind
parameters. The change is to allow passing in the init parameter block.

***Here there be dragons. The NDRV documentation about loading/starting a driver specifies that
an Open trap starts the process off. The PCI documentation sezs we are doing this at boot time
(no user open trap that I can see). If they are both right then BOTH mechanisms need to follow the
above steps, providing the init parameters to the driver. OR PCI and non-PCI drivers do need to

be written differently (see Plan B).

***The NDRV documentation has two INITs one is for CFM and one is the driver init. This is
discussed in the document, but an incautious reader may miss this bit of information. How do we
clarify these issues. The Init I am talking about is the driver init where we CAN do allocations,
and NOT the CFM init.

With Plan A, device family experts are initialized first, and device initialization occurs
only after the family is ready to control devices.

Plan B
With Plan B there is no common initialization path for differing types of devices. The
plan here is to work with devices once they appear as an entry in the Device Unit Table.
The initialization steps in this case are detailed separately within the PCI and NDRV
documentation. The only common feature between the initialization sequence for the two
kinds of native device drivers is that the device driver ends up within the MacOS Device
Unit Table.

For example PCI devices appear in the Expansion Manager device tree and are used and
maintained by the Expansion Manager. PCI initialization is documented and the device
driver writer must adhere to the PCI documentation to have the device driver appear
within the Device Unit Table.

Motherboard devices do not appear in the device tree and are not available through the
Expansion Manager, but must by some “standard” MacOS means end up in the Device
Unit Table.

The implications of the above architecture is that motherboard devices have hard coded
address/register/name/version information within each device driver. Each
motherboard device driver uses this information at initialization (or Open) to initialize
their device. PCI device drivers now need to match this logic with calls to the Expansion
Manager. No expert capability is possible because device drivers are required to contain
or obtain what a family expert would provide.

With this architecture, device location remains identical to existing MacOS services.
Device clients make PBOpen/Close/Control/Status traps through the Device Manager to
request device services.

As an example of device family initialization, the Open Transport device scanning code
with this plan would search Device Unit Table Entries for devices with the family name
‘OPTP’. For each located device the Open Transport scanner calls a second? initialize
or open routine and registers device driver information within the family data structures.

Plan C
Plan C requires that all devices within a system appear in the Expansion Manager device
tree. With this model Motherboard and NuBus device drivers must mirror the
OpenFirmware PCI driver logic and install device dependent information in the
Expansion Manager device tree.

With Plan C, new native non-PCI device drivers must make Expansion Manager calls to
install information into the device tree. The set of properties installed for each device
family must match the properties required of PCI devices within the family. Clearly
existing NuBus and motherboard device drivers will not do this work, so a new class of
manager needs to be developed to extract Slot Manager available or hard coded system
information within individual device drivers and populate the Expansion Manager
device tree with these device properties and a driver property. At this point Plan C can
match Plan A above.

Plan C means a new backwards compatibility manager to install device information for
old devices. In addition to this backwards compatibility manager, Plan C requires all the
work of Plan A. In short, Plan C means the Expansion Manager becomes the System
Registry for Marconi.

In addition to the additional work required by Plan C, I have to ask: Does the Expansion
Manager provide OS neutral non-device specific registry capabilities? This is a
requirement for a maintainable/expandable/portable System Registry service.

System Programming Interfaces (SPIs)

Every device driver writer on the planet needs a set of system services. Most MacOS
driver writers have a standard way of handling scheduling, memory management,
interrupts and configuration. This section covers changes to the existing mechanisms,
and gives the replacement calls. Please note that these are guidelines, for exact calling
sequences you will need to refer to the documents listed in the first section of this paper.

Scheduling routines

The Deferred Task Manager calls:
DeferredTaskRef CreateDeferredTask(DeferredTaskPtr, long contextPtr)
DestroyDeferredTask(DeferredTaskRef)
ScheduleDeferredTask(DeferredTaskRef)

are replaced by:
QueueSecondaryInterruptHandler(theHandler,theExceptionHandler, p1, p2)
CallSecondaryInterruptHandler(theHandler)
CallSecondaryInterruptHandler2(theHandler, p1, p2)
CallSecondaryInterruptHandler3(theHandler, p1,p2,p3)
CallSecondaryInterruptHandler(theHandler, p1, p2, p3, p4)

The Deferred Task Manager maintains a queue of deferred tasks that run when they are
enabled by a call to ScheduleDeferredTask. The new mechanisms allow a “deferred task”
now known as a “Secondary Interrupt Handler” to be queued or run on the fly. The OS
mechanisms used to manage Secondary Interrupts are no longer visible to clients of the
scheduling routines.

*** Should the InterruptHandler routines be wrapped up in Open Transport wrappers? For
example timeout and untimeout are exported APIs that use some system mechanism. Should we
have Schedule and UnSchedule routines?

Interrupt mechanisms

To install interrupt handlers there are a pair of replacement routines. The new routines:
InstallInterruptHandler(theVector, theHandler)
RemoveInterruptHandler(theVector, theHandler)

replace:
SIntInstall(SQElemPtr, theSlot)
SIntRemove(SQElemPtr, theSlot)

***Documentation Gotcha... What are the real calls? xxxInterruptFunctions ala the “NuKernel
ERS” and “Device Manager Changes” or xxxInterruptHandler ala “Integration of Conventional
and NuKernel Arch”

These new routines register or remove interrupt handlers. See “Integration of
Conventional and NuKernel Interrupt Architectures” and “Device Manager Changes to
Support Native Drivers” for more details.

*** See the Issues section under Interrupt Management for Expansion Manager vs. NDRV
discussion.

*** What about direct manipulation of GrandCentral Interrupt vector tables? Do we say do not do
this? Do we allow “special” device interrupt management. This type of access is likely to conflict
with the NDRV device manager/interrupt manager. Each device using GC will be affecting this
table directly. What does the PDM class machine have that corresponds to this? The right
answer is to treat these interrupt vectors the same as IO Register Sets passed from the System
Registry into the device init routine and manipulated through SPIs.

Resource Location

Resource location is part of what we are describing in the native device driver scanning
and initialization descriptions above. To remove OS dependencies from within driver
code, all resources must be provided to device drivers in a family or globally defined
manner. What this means for device driver writer is:
• Do not use the Resource Manager
• Do not use the file system

Support for both of these mechanisms is not available to drivers after Marconi.
In short and in general:
• Do not use the toolbox

If we do not define and document a mechanism (API) to provide the resources required
by drivers, driver writers for new devices will be forced to use mechanisms that are in
place today; the Resource Manager and the file system.

***This is related to the Expert code in the initialization discussion above . The Expert is
responsible for acquiring the information a driver needs from either the Slot Manager, the
Expansion Manager, from Gestalt calls,. The Expert presents it in some family specific way to the
devices. This needs an API

Memory Management Services

Do not call:
NewPtr
NewPtrSys

Memory allocation requests should use either a device family specific allocation
mechanism or the new Memory Management Services:

PoolAllocateResident

PoolDeallocate

An example of a family specific allocation mechanism is ‘allocb’ for Streams drivers.
Allocb is an exported allocation mechanism provided to all Streams drivers and protocol
modules. Allocb uses the appropriate memory management services to its underlying
OS.

The new NDRV Memory Management Services are listed in the “Device Manager
Changes to Support Native Drivers” and described in detail in the “NuKernel ERS”.

*** Do the Pool allocation routines provide the kind of granularity as that of the NewPtr calls? I
think the answer here is yes.

Issues

Device Location

A major issue with respect to the PCI/NDRV is the location of devices. Open Transport
currently has a requirement that drivers provide their own scanners. One proposal called
for an Open Transport standard scanner that would locate all network devices, and load
the correct CFM driver modules for each networking device located in the device tree.
This scheme is very much in line with the “Expert” notion proposed by Brendan Creane
(see Terminology section). This convention needs to be defined for each Device Family.
Forcing a “family” property for each driver, and maintaining a list of families would
allow a Family Expert to locate all drivers and load them if needed.

To make this work, the device name, vendor, etc, stored in a System Registry as items
within a set of properties must exactly match some set of fields within the
DriverDescription structure required by NDRV.

Device Initialization

A major issue with respect to the PCI/NDRV is the initialization of devices. In what order
are devices initialized. Who is responsible for device Open calls. How do we clearly
separate device initialization and device open calls. Where and when are each
appropriate. What services may be invoked at each, and what are the device obligations
for close and finalize calls. What is the difference between CFM init calls, and the
DoDriverIO command Initialize call?

When is Open called? What services are available at Open? When are resources allocated
and deallocated. I would like to have these questions answered so that the example that I
am creating at the end of this document will be an example not only for Open Transport,
but for every Native Device Driver.

Expansion Manager is not a System Registry

“PCI/DLPI Open Transport Integration” lists a set of requirements for the Expansion
Manager. For the most part the Expansion manager fulfills those needs for PCI devices.
The larger question is what role does the Expansion Manager play within the system. The
Expansion Manager is not a System Registry because:

1) Not all devices and services are located within the Expansion Manager device tree.
Where is information for non-PCI devices to be located?

2) Human interface issues are not addressed within the Expansion manager. Localizable
information must be obtainable given a pointer to a PCI device within the device
tree to find an optional family of icons for the module, as well as a user-friendly
description of the location of the PCI card, so that users can distinguish between
multiple cards of the same type. This issue needs to be resolved before an Open
Transport DDK is delivered to developers.

3) The Expansion Manager does device Opens. The Expansion Manager seems to be the
SlotManager for PCI devices, not a device Registry. That leaves me with two
questions, should the Expansion Manager do device Opens? and why?

4) The Expansion Manager does not provide a notification mechanism to flag changes to
the device tree.

5) The Expansion Manager does not handle virtual devices such as an AppleShare
volume.

6) The Expansion Manager does not provide a mechanism for catagory wide searches of
the device tree.

7) The Expansion Manager uses PCI defined property names. These property
names/types are not administered by Apple. How does Apple resolve name
conflicts between PCI properties and potential expanded property types.

I claim that a Registry mechanism should have nothing to do with device driver
functions. A Registry holds device information and provides device tree APIs. One
simple example Registry is MinIO, developed as an interim solution to the full System
Registry being developed for Maxwell. We need to keep device location mechanisms
separate from the mechanism for adding and removing devices to the System.

Interrupt Registration SPIs

In “Designing PCI Cards and Drivers for Power Macintosh” new interrupt mechanisms
based on the Expansion Manager are detailed with the following four exposed interface
routines:

ExpMgrInstallISR
ExpMgrRemoveISR
ExpMgrInstallVBL

ExpMgrRemoveVBL

How are these routines integrated with the NDRV:

InstallInterruptFunctions
RemoveInterruptFunctions

It appears that the Expansion manager routines above replace the Slot Manager/VBL
Manager routines:

SIntInstall
SIntRemove
SlotVInstall
SlotVRemove

What replaces the VBL functionality within NDRV, or is it even needed? Shouldn’t VBL
interfaces be confined to the ‘DISP’ family of devices? We need to talk about the way
things were, and the way things are, and then the way things are going to be with respect
to interrupts. Having devices fielding interrupts directly could circumvent the NDRV I/
O support infrastructure.

Interrupt Manager

With the development of NDRV, a new manager is being defined, the Interrupt Manager.
The list of Interrupt Manager related calls is:

InstallDriver
RemoveDriver
LookupDrivers
Create InterruptSourceTree
(De)ActivateInterruptSourceTree
GetInterruptSourceTreeVector
CreateInterruptSet
DeleteInterruptSet
LookupRootSet
LookupInterruptMemebers
InstallInterruptFunctions
RemoveInterruptFunctions
GetInterruptFunctions

How are these routines used? Who is responsible for installing or removing Interrupt
Sets? How are old 68K drivers to appear in the Interrupt Tree? What role does the
Interrupt Manager play within the system? Where is the Interrupt Manager in the boot
sequence, and within the device initalization sequence? What is the expected relationship
between the Interrupt Manager, the Device Manager, the Expansion Manager and a
System Registry?

These questions must be answered before a clear story can be presented to device driver
writers.

Interrupt Mechanisms

The document “Integration of Conventional and NuKernel Interrupt Architectures”
provides an overview of the roles of Task/Primary/Secondary levels of interrupts and
covers some of the performance issues. This overview is one part of the interrupt
mechanism story for device driver writers, but there is no consistent set of interrupt
services or mechanisms that apply to all devices. There is no clear picture of how the
NDRV interrupt mechanisms relate to the other subsystems/managers available within
Marconi.

Given a clear story of what service each manager provides, a native device driver
developer needs to know:

• what services are available at which interrupt levels (Primary/Secondary/Task)
• what are the programming guidelines for the interrupt levels
• what is set of standard programming interfaces
• what special programming interfaces are available and why
• interrupt mechanism costs and trade-offs
• what interfaces are prohibitively expensive but may provide backwards
compatibility

Device driver writers also need guidelines for interrupt protection mechanisms. We need
specific examples for what to do if your code sez:

s = splimp(); // Raise interrupt protection mask
do queue stuff
splx(s); // Restore interrupt protection mask

In the example device driver I am writing, I directly disable my device interrupts to
protect my per device queues. I am not running any timers, and all my clients run at task
or secondary interrupt time so I think this will work.

An example of how interrupts are used within the new system component Open
Transport:

One of the goals of using the STREAMS architecture is that developers of
STREAMS modules can just "drop" their module into the STREAMS environment.

Since STREAMS drivers can call many of the STREAMS functions at interrupt
level, it is vital that the STREAMS environment be able to protect itself from data
corruption due to reentrancy (the ability to allocate memory at interrupt time is
one very critical example). The OpenTransport STREAMS environment also
protects itself from data corruption due to multiple processor access to STREAMS
data. In order to accomplish this in a portable way, our STREAMS vendor (Mentat
supplies us with our STREAMS implementation), shuts off interrupts for short
periods of time (typically 6 to 7 68K-equivalent instructions).

It is vital that the device architecture for Marconi and Maxwell provide this ability
for the Open Transport implementation. Since on a typical packet delivery path,
interrupts are turned off and on once for each module entered, it is very important
for performance that this operation be quick (a mixed-mode switch will probably

cause performance to drop below Mac II levels).

There is no intent to export this capability outside the Open Transport/DLPI
environment.

I give this example to illustrate how Classic MacOS mechanisms, shutting off interrupts
around critical sections, create a problem with the Native Driver model we are creating.
We need to be able to address these issues for internal and external developers. We need
to create a set of services or architecture that allows development of device drivers
without tying the device drivers to specific implementation details. I think driver writers
need to have a very clear picture of how the whole interrupt structure plays together in
order to create drivers for Marconi, Maxwell and future releases.

ASLM Interrupt Routines

The following APIs are required by ASLM:

void EnterNetworkInterrupt(NetworkState*)

This function must be called by your interrupt routine BEFORE calling any
STREAMS or Open Transport function. The NetworkState* parameter is normally
a stack variable. This function call must be paired with a LeaveNetworkInterrupt
call that is in the same function at the same block level.

void LeaveNetworkInterrupt(NetworkState*)

This function must be called by your interrupt routine before you exit it. It must be
called at the same block level as the EnterNetworkInterrupt function. These two
functions tell the Open Transport infrastructure that we are at interrupt time, and
allows it to do any setup required to support calls at interrupt time.

It seems to me that the operating system or Open Transport should provide these services.
Drivers are CFM based and should not be exposed to kernel internal ASLM issues.

Creating Marconi Device Drivers

The native I/O architecture that is defined for Marconi will set a long-lived standard for
writing device drivers that MUST be supported into V1. Marconi device drivers are
destined to become the standard for new native Macintosh device drivers, because no
other viable solution will exist within the Marconi timeframe. Because the definition of
the Marconi native I/O architecture has such an impact on V1 and beyond, it is
imperative that it's architecture allow Marconi native device drivers to work unmodified,
and efficiently under V1.

Successful execution of strategy that allows native device drivers to work portably and
effectively across Marconi and V1 depends upon the successful resolution of these
following issues:

Structure your driver into two parts

Your device driver is a low level piece of operating system software. Part of the task of
allowing your driver to be portable to a modern operating system like NuKernel, is to
determine which portions of the driver belong in the OS itself and which do not.
Remember that code which resides in the OS gains the advantage of fine level control
over system facilities like paging or interrupts. But it does so by giving up access to the
rich set of high level APIs available to Applications. Your driver should be divided into at
least two parts:

• The main driver is the body of code which reside in the OS and does all the
work of repsonding to the I/O command set– Open(), Close(), Control(), Prime(),
etc. This code should be passive in the sense that it makes no assumptions about
any particular harware settings or configuration. Any device configuration
information– like baud rate settings, your ethernet address, the bit depth of your
screen, etc.– should be obtained from the I/O command set as parameters passed
to Init(), Open(), or Control(). The main driver should not attempt to actively
obtain device configuration information on its own. Typical Toolbox APIs
(ResourceMgr, FileMgr, SlotMgr, PRAM utils, etc.) required to obtain such
information, will not be available to drivers under V1. Use of these APIs will
prevent the driver from being portable to V1.

• The configuration section is a supporting piece of software for your driver that
doesn't necessarily reside in the OS. The configuration section can take many
forms, it can be an INIT or a piece of UI like a CDEV or RDEV, etc. Its primary
function is to communicate device configuration information to the device driver
using Init(), Open(), or Control(). It has access to APIs and system information that
the main driver can't/shouldn't try to access itself. If your need to do something
high level – like put up a dialog box, or read resources from a file – you should do
it in the configuration section.

Use the System Programming Interfaces

The use of the System Programming Interfaces are essential to the portability of your
device driver to V1. These are the set of Programming Interfaces for device drivers that
are guaranteed to be common across operating system releases. When writing the main
driver section of your device driver, NEVER make Toolbox API calls. Instead, use
corresponding System Programming Interfaces. You will find that these sets of calls
allows you to more naturally deal with device driver issues than the Toolbox API, which
was intended for Applications. If you find that functionality you depended on in the
Toolbox has been removed from the set of SPIs provided, either perfrom that function in
the configuration section of your driver, or provide Bill Bruffy feedback... maybe this
function was mistakenly omitted

Use the System Registry
The system registry provides a unified way of identifying or obtaining information on
many system resources – not just devices. The system registry will be key to
implementing several important features necessary for the native I/O architecture:

• Effective driver replacement / overloading capability (that allows you, or 3rd

parties, to release updates to drivers that shipped with bugs).

• Dynamic driver loading / unloading. A System Registry provides a dynamic
and flexible environment for identifing devices. This type of capability will be
necessary for supporting hot swappable PCMCIA cards.

• Simplify your driver writing. You won't have different rules for writing device
drivers just because the device is located on the MotherBoard vs. NuBus vs.
PCIBus vs. PCMCIA bus, etc.

• Makes System Software more EOM'able. The System Registry will provide the
layer of abstration necessary for us to remove incestuous device identification /
device information callouts (like the SlotMgr) that prevent our software from being
portable to hardware other than our own.

Open Transport Example

This section is not written. A few outstanding questions:

• Open Transport defines a Port Scanner. This Port Scanner is an “expert” for only
one type of device, for example, there is a scanner for the GC/Mace. To be
compatible with either Plan A or Plan B above there should be a single scanner that
locates all networking devices.

• Right now the device Port Scanner uses kernelCommSys->Register() to place
device information into the Open Transport registry. The information installed in
the registry is device specific information needed to initialize/open this particular
device. This information needs to be passed to the init routine. What mechanism
do we have for this within OT or within the general system?
(See the Open Transport API documents for more information about Port Scanners
and the “Register” function.)

• Should Open Transport maintain their separate database of device information or
use the “standard” registry when/if it is defined.

• Open Transport is ASLM based for streams modules and streams drivers.
Devices will be CFM based. What changes are required to the Open Transport
device location scheme to move from ASLM to CFM?

• Where do we start to provide PCI Open Transport Open Boot example code?

• Does Open Transport provide Init/Primary/Secondary routines as part of its
private API. Do we provide a standard way for all devices to export these
routines?

Open Transport API

In the “PCI/DLPI/NDRV - Open Transport Integration” paper an API is described that

calls out two initialization routines, GetInstallInfo and Init. The routines must be
exported by name. The GetInstallInfo returns an install_info structure pointer that
is used to link the device driver to the streams module immediately above the driver.

struct install_info* GetInstallInfo()

typedef struct install_info
{
struct streamtab* install_str; // Streamtab pointer.
UInt32 install_flags; // StayLoaded & ???
UInt32 install_sqlvl; // Synchronization level.
char* install_buddy; // Shared writer list buddy
UInt32 ref_count; // set to 0
} install_info;

This is an example of the family API described in previous sections. We can export a
routine called GetInstallInfo or we could export install_info directly.

To initialize an Open Transport device driver we need to pass information to the device
initialization routine. Using the proposed ParamBlock/ParamSize idea to the device init
call (see TomS. note) here is a possible PCIInfo structure for the Open Transport family of
devices:

typedef struct PCIInfo
{
char *deviceName; // PCI ROM device name
char *deviceAddress; // N bytes of physical address
unsigned char *base_address // device base address
dev_t deviceID; // dev_t passed to device open
unsigned short slotID; // Backward compatible pseudo slot #
} driver_info;

Open Transport maintains module information for all device/streams modules loaded
into the system. I do not know what is in the Module information structure. I need to fill
this out and explain how it is used. This module information is definitely Open Transport
internal. Example Modulecookie structure for the Open Transport family of devices:

typedef struct Modulecookie
{
unsigned char *something; // Who knows... Get this info.
unsigned char somethingElse;
} module_info;

The next bit of information is out of “PCI/DLPI/NDRV - Open Transport Integration.”
This section demonstrates how Open Transport thinks about initializing devices. This
will change to match the Native Device Driver design, when complete.

OTError Init(OTPortRef ref, PCICookie sysCookie, long* moduleCookie,
 Boolean* stayLoaded)

This function is called by the Open Transport driver scanners when the
driver is first found. It is NOT required that a driver export this call. If it
is not exported, then the driver’s “Open” entry point will be called when
it is installed into a STREAM and opened.

The “ref” parameter is a unique identifier for the port. It is used by
Open Transport as a convenient value to distinguish ports in internal
tables. You may or may not need this value.

The “sysCookie” parameter is whatever information the Expansion
Manager returns pertaining to your device.

The “stayLoaded” parameter tells Open Transport whether your driver
needs to stay loaded at all times, or whether it can be unloaded until
needed. It is initialized to false. Set it to true if your driver needs to
saty loaded at all times.

The “moduleCookie” parameter is saved by Open Transport, and is
retrievable via the FindPort APIs when your module is opened (by
using the major device number).

The return value tells Open Transport whether an error occurred. If an
error is returned, Open Transport will not install your device into the
STREAMS device table. However, it will still honor the return value of
the “stayLoaded” parameter

Open Transport Driver Initialization

We need this section. I can not write this until the larger questions have been answered.

Open Transport Support Programming Interfaces
The following is a list of standard streams facilities provided as imports to device drivers
by Open Transport. These facilities are in addition to the new standard SPIs.

allocb()
bcopy()
bzero()
bufcall()
canput()
dupmsg()
enableok()
esballoc()
esbbcall()
flushq()
freemsg()
noenable()
putbq()
putnext()
putq()
qenable()
qreply()
timeout()
unbufcall()
untimeout()

For more details about these routines, their parameters and their return values see

“Streams Modules and Drivers” or the Open Transport documentation.

***Functions missing from the above list are more OS specific. I cover them in the replaced APIs
section. Should we standardize these accesses into the Open Transport family of device routines?

