
























































































































































































































APPENDIX H 

TERMINAL CONFIGURATION ISSUES 

The Run-Time System (RTS) will configure itself at run time for your 
terminal. The UC Berkeley termcap format and termlib accessing routines are 
used to accomplish this (See Appendix I). The terminal capability data that 
are required by the RTS reside in file /usr/lib/cobol/termcap. 

Here we list the capability entries used and/or required by the RTS, 
along with any assumptions made about terminal characteristics. 

Where terminal control characteristics are variable, either by switch 
settings or by the input of certain control sequences, care must be 
taken to ensure the correspondence between these settings and the termcap 
file entries. 

REQUIRED ENTRIES 

* 

* 
* 

* 

* 
* 

* 

* 
* 

* 

* 

Ii - the number of lines on the terminal. 

co - the number of columns on the terminal. 

bs or bc - bs if terminal backspaces with CTRL-H, bc if a 
different sequence is required. 

up - sequence to move cursor up one line, same column. 

cl - sequence to clear screen, cursor left at home. 

cm - sequence to move cursor to an addressed screen location. 

kl - sequence sent by left-arrow key. 

kr - sequence sent by right-arrow key. 

ku - sequence sent by up-arrow keye 

kd - sequence sent by down-arrow key. 

kh - sequence sent by home key. 

H - 1 



OPTIONAL ENTRIES 

* so - sequence to turn on "hiliting", (e.g. reverse video) . 

* se - sequence to turn off "hiliting". 

* sg number of screen positions taken by the "hiliting" 
sequences. 

ASSUMPTIONS 

* the sequence sent by the return key is CTRL-M. 

* the sequence sent by the tab key is CTRL-I. 

* the sequence to ring the bell or beeper is CTRL-G. 

H - 2 



APPENDIX I 

liC BERKELEY TERMCAP 

NAME 

termcap - terminal capability data base 

SYNOPSIS 

/etc/termcap 

DESCRIPTION 

Termcap is a data base describing terminals. Terminals are described in 
termcap by giving a set of capabilities which they have, and by 
describing how operations are performed. Padding requirements and 
initialization sequences are included in termcap. 

Entries in termcap consist of a number of '.' separated fields. The 
first entry for each terminal gives the names which are known for the 
terminal, separated by 'I' characters. The first name is always 2 characters 
long and is used by older version 6 systems which store the terminal type in 
a 16 bit word in a systemwide data base. The second name given is the most 
common abbreviation for the terminal, and the last name given should be a 
long name fully identifying the terminal. The second name should contain no 
blanks; the last name may contain blanks for readability. 

CAPABILITIES 

(P) indicates padding may be specified 
(P*) indicates that padding may be based on no. lines affected 

Name Type Pad? Description 

ae str (P) End alternate character set 
al str (P*) Add new blank line 
am bool Terminal has automatic margins 
as str (P) Start alternate character set 
bc str Backspace if not AH 
bs bool Terminal can backspace with AH 
bt str (P) Back tab 
bw bool Backspace wraps from column o to last column 
CC str Command character in prototype if terminal 

settable 
cd str (P*) Clear to end of display 
ce str (P) Clear to end of line 
ch str (P) Like em but horizontal motion only, line stays 

same 

1-1 



cl str 
cm str 
co num 
cr str 
cs str 
cv str 
da bool 
dB num 
db boo 1 
dC num 
dc str 
dF num 
dl str 
dm str 
dN num 
do str 
dT num 
ed str 
ei str 
eo str 
ff str 
hc bool 
hd str 
ho str 
hu str 
hz str 
ic str 
if str 
im bool 
in bool 
ip str 
is str 
kO-k9 str 
kb str 
kd str 
ke str 
kh str 
kl str 
kn num 
ko str 
kr str 
ks str 
ku str 
10-19 str 
Ii num 
11 str 
ma str 
mi bool 
ml str 
mu str 
nc bool 

(P*) 
(P) 

(P*) 
(P) 
(P) 

(P*) 

(P*) 

(P*) 

(P) 

(P*) 

Clear screen 
Cursor motion 
Number of columns in'a line 
Carriage return, (default AM) 
Change scrolling region (vt100), like cm 
Like ch but vertical only. 
Display may be retained above 
Number of millisec of bs delay needed 
Display may be retained below 
Number of millisec of cr delay needed 
Delete character 
Number of millisec of ff delay needed 
Delete line 
Delete mode (enter) 
Number of millisec of nl delay needed 
Down one line 
Number of millisec of tab delay needed 
End delete mode 
End insert mode; give "ei=:" if ic 
Can erase overstrikes with a blank 
Hardcopy terminal page eject (default AL) 
Hardcopy terminal 
Half-line down (forward 1/2 linefeed) 
Home cursor (if no cm) 
Half-line up (reverse 1/2 linefeed) 
Hazeltine; can't print -'s 
Insert character 
Name of file containing is 
Insert mode (enter); give "im=:" if ic' 
Insert mode distinguishes nulls on display 
Insert pad after character inserted 
Terminal initialization string 
Sent by "other" function keys 0-9 
Sent by backspace key 
Sent by terminal down arrow key 
Out of "keypad transmit" mode 
Sent by home key 
Sent by terminal left arrow key 
Number of "other" keys 
Termcap entries for other non-function keys 
Sent by terminal right arrow key 
Put terminal in "keypad transmit" mode 
Sent by terminal up arrow key 
Labels on "other" function keys· 
Numb0r of lines on screen or page 
Last line, first column (if no cm) 
Arrow key map, used by vi version 2 only 
Safe to move while in insert mode 
Memory lock on above cursor. 
Memory unlock (turn off memory lock), 
No correctly working carriage return 

(DM2500,H2000) 

1-2 



nd 
nl 
ns 
os 
pc 
pt 
se 
sf 
sg 
so 
sr 
ta 
tc 
te 
ti 
uc 
ue 
ug 
ul 

up 
us 
vb 
ve 
vs 
xb 
xn 
xr 
xs 

xt 

str 
str 
bool 
bool 
str 
bool 
str 
str 
num 
str 
str 
str 
str 
str 
str 
str 
str 
num 
bool 

str 
str 
str 
str 
str 
bool 
bool 
bool 
bool 

bool 

(P*) 

(P) 

(P) 
(P) 

Non-destructive space (cursor right) 
Newline character (default \n) 
Terminal is a CRT but doesn't scroll. 
Terminal overstrikes 
Pad character (rather than null) 
Has hardware tabs (may need to be set with is) 
End stand out mode 
Scroll forwards 
Number of blank chars left by so or se 
Begin stand out mode 
Scroll reverse (backwards) 
Tab (other than AI or with padding) 
Entry of similar terminal - must be last 
String to end programs that use cm 
String to begin programs that use cm 
Underscore one char and move past it 
End underscore mode 
Number of blank chars left by us or ue 
Terminal underlines even though it doesn't 

overstrike 
Upline (cursor up) 
Start underscore mode 
Visible bell (may not move cursor) 
Sequence to end open/visual mode 
Sequence to start open/visual mode 
Beehive (fl=escape, f2=ctrl C) 
A newline is ignored after a wrap (Concept) 
Return acts like ce \r \n (Delta Data) 
Standout not erased by writing over it 

(HP 264?) 
Tabs are destructive, magic so char 

(Teleray 1061) 

The following entry, which describes the Concept-lOO, is among. the more 
complex entries in the termcap file as of this writing. (Note that this 
particular concept entry is outdated, and is used as an example only.) 

cllclOOlconceptlOO:is=\EU\Ef\E7\E5\E8\El\ENH\EK\E\200\Eo&\200:\ 
. :al=3*\EAR:am:bs:cd=16*\EAC:ce=16\EAS:cl=2*AL:cm~\Ea%+ %~ :co£80:\ 

:dc=16\E~A:dl=3*\EAB:ei=\E\200:eo:im=\EAP:in:ip=16*:litF24:mi:nd=\E=:\ 
:se=\Ed\Ee:so=\ED\EE:ta=8\t:ul:up=\E;:vb=\Ek\EK:xn: 

Note that entries may continue onto multiple lines by giving a \ as the last 
character of a line, and that empty fields may be included for readability 
(here between the last field on a line and the first field on the next). 
Capabilities in termcap are of three types: Boolean capabilities which 
indicate that the terminal has some particular feature, numeric ~apabilities 
giving the size of the terminal or the size of particular delays, and string 
capabilities, which give a sequence which can be used to perform particular 
terminal operations. 

1-3 



All capabilities have two letter codes. For instance, the fact that the 
Concept has "automatic margins" (i.e. an automatic return and linefeed 
when the end of a line is reached) is indicated by the capability am. 
Hence the description of the Concept includes am. Numeric capabilities 
are followed by the character 'U' and then the value. Thus co which 
indicates the number of columns the terminal has gives the value '80' for 
the Concept. 

Finally, string valued capabilities, such as ce 
sequence) are given by the two character code, an 
ending at the next following ':'. 

(clear to end of line 
'=', and then a string 

A delay in milliseconds may appear after the '=' in such a capability, 
and padding characters are supplied by the editor after the remainder of 
the string is sent to provide this delay. The delay can be either a 
integer, e.g. '20', or an integer followed by an '*', i.e. '3*'. A '*' 
indicates that the padding required is proportional to the number of 
lines affected by the operation, and the amount given is the 
per-affected-unit padding required. When a '*' is specified, it is 
sometimes useful to give a delay of the form '3.5' specify a delay per 
unit to tenths of milliseconds. 

A number of escape sequences are provided in the string valued 
capabilities for easy encoding of characters there. A \E maps to an ESCAPE 
character, AX maps to a control-x for any appropriate x, and the sequences 
\n \r \t \b \f give a newline, return, tab, backspace and formfeed. 
Finally, characters may be given as three octal digits after a \, and the 
characters A and \ may be given as \A and ~. If it is necessary to place a 
: in a capability it must be escaped in octal as \072. If it is necessary 
to place a null character in a string capability it must be encoded as \200. 
The routines which deal with termcap use C strings, and strip the high bits 
of the output very late so that a \200 comes out as a \000 would. 

We now outline how to prepare descriptions of terminals. The most 
effective way to prepare a terminal description is by imitating the 
description of a similar terminal in termcap and to build up a 
description gradually, using partial descriptions with ex to check tha t 
they are correct. Be aware that a very unusual terminal may expose 
deficiencies in the ability of the termcap file to describe it or bugs 
in ex. To easily test a new terminal description you can set the 
environment variable TERMCAP to a pathname of a file containing the 
description you are working on and the editor will look there rather 
than in termcap. TERMCAP can also be set to the termcap entry itself to 
avoid reading the file when starting up the editor. (This only works on 
version 7 systems.) 

I - 4 



BASIC CAPABILITIES 

The number of columns on each line for the terminal is given by the co 
numeric capability. If the terminal is a CRT, then the number of lines on 
the screen is given by the Ii capability. If the terminal wraps around to 
the beginning of the next line when it reaches the right margin, then it 
should have the am capability. If the terminal can clear its screen, then 
this is given by the cl string capability. If the terminal can backspace, 
then it should have the bs capability, unless a backspace is accomplished by 
a character other than AH (ugh) in which case you should give this character 
as the bc string capability. If it overstrikes (rather than clearing a 
position when a character is struck over) then it should have the os 
capability. 

A very important point here is that the local cursor motions encoded in 
termcap are undefined at the left and top edges of a CRT terminal. The 
editor will never attempt to backspace around the left edge, nor will it 
attempt to go up locally off the top. The editor assumes that feeding 
off the bottom of the screen will cause the screen to scroll up, and the 
am capability tells whether the cursor sticks at the right edge of the 
screen. If the terminal has switch selectable automatic margins, the 
termcap file usually assumes that this is on, i.e. am. 

These capabilities suffice to describe hardcopy 
terminals. Thus the model 33 teletype is described as 

t3133Itty33:co#72:os 

while the Lear Siegler ADM-3 is described as 

clladm313llsi adm3:am:bs:cl=AZ:li#24:co#80 

CURSOR ADDRESSING 

and "glass-tty" 

Cursor addressing in the terminal is described by a cm string 
capability, with printf (3s) like escapes %x in it. These substitute to 
encodings of the current line or column position, while other characters 
are passed through unchanged." If the cm string is thought of as being a 
function, then its arguments are the line and then the column to which 
motion is desired, and the % encodings have the following meanings: 

%d as in printf, 0 origin 
%2 like %2d 
%3 like %3d 
%. like %c 
%+x adds x to value, then %. 
%>xy if value> x adds y, no output. 
%r reverses order of line and column, no output 
%i increments line/column (for 1 origin) 
%% gives a single % 
%n exclusive or row and column with 0140 (DM2500) 
%B BCD (16*(x/10)) + (x%10), no output. 
%D Reverse coding (x-2*(x%16)), no output. (Delta Data). 

I - 5 



Consider the HP2645, which, to get to'row 3 and column 12, needs to be sent 
\E&a12c03Y padded for 6 milliseconds. Note that the order of the rows and 
columns is inverted here, and that the row and column are printed as two 
digits. Thus its cm capability is "cm=6 \E&%r%2c%2Y" The Microterm ACT-IV 
needs the current row and column sent preceded by a AT, with the row and 
column simply encoded in binary, "cm=AT%. %. n Terminals which use " need to 
be able to backspace the cursor (bs or bc), and to move the cursor up one 
line on the screen (up introduced below). This is necessary because it is 
not always safe to transmit \t, \nAD and \r, as the system may change or 
discard them. 

A final example is the LSI ADM-3a, which uses row and column offset by a 
blank character, thus "cm=\E=%+ %+ " 

CURSOR MOTIONS 

If the terminal can move the cursor one position to the right, leaving 
the character at the current position unchanged, then this sequence 
should be given as nd (non- destructive space). If it can move the 
cursor up a line on the screen in the same column, this should be given 
as up. If the terminal has no cursor addressing capabili ty, but can home 
the cursor (to very upper left corner of screen) then this can be given 
as ho; similarly a fast way of getting to the lower left hand corner can 
be given ,as 11; this may involve going up with up from the home 
position, but the editor will never do this itself (unless 11 does) 
because it makes no assumption about the effect of moving up from the 
home position. 

AREA CLEARS 

If the terminal can clear from the current position to the end of the 
line, leaving the cursor where it is, this should be given as ce. If 
the terminal can clear from the current position to the end of the 
display, then this should be given as cd. The editor only uses cd from 
the first column of a line. 

INSERT/DELETE LINE 

If the terminal can open a new blank line before the line where the 
cursor is, this should be given as al; this is done only from the first 
position of a line. The cursor must then appear on the newly blank 
line. If the terminal can delete the line which the cursor is ..>n, then 
this should be given as dl; this is done only from the first position on 
the line to be deleted. If the terminal can scroll the screen 
backwards, then this can be given as sb, but just al suffices. If the 
terminal can retain display memory above then the da capability should 
be given; if display memory can be retained below then db should be 
given.. These let the edit~r understand that deleting a line on the 
screen may bring non-blank lines up from below or that scrolling back 
with sb may bring down non-blank lines. 

I - 6 



INSERT/DELETE CHARACTER 

There are two basic kinds of intelligent terminals with respect to 
insert/ delete character which can be described using termcap. The most 
common insert/ delete character operations affect only the characters on 
the current line and shift characters off the end of the line rigidly. 
Other terminals, such as the Concept 100 and the Perkin Elmer Owl, make 
a distinction between typed and untyped blanks on the screen, shifting 
upon an insert or delete only to an untyped blank on the screen which is 
either eliminated, or expanded to two untyped blanks. You can find out 
which kind of terminal you have by clearing the screen and then typing 
text separated by cursor motions. Type" ab c def" using local cursor 
motions (not spaces) between the "abc" and the "def" Then position the 
cursor before the "abc" and put the terminal in insert mode. If typing 
characters causes the rest of the line to shift rigidly and characters 
to falloff the end, then your terminal does not distinguish between 
blanks and untyped positions. If the "abc" shifts over to the "def" 
which then move together around the end of the current line and onto the 
next as you insert, you have the second type of terminal, and should 
give the capability in, which stands for "insert null" If your terminal 
does something different and unusual then you may have to modify the 
editor to get it to use the insert mode your terminal defines. We have 
seen no terminals which have an insert mode not not falling into one of 
these two classes. 

The editor can handle both terminals which have an insert mode, and 
terminals which send a simple sequence to open a blank position on the 
current line. Give as im the sequence to get into insert mode, or give 
it an empty value if your terminal uses a sequence to insert a blank 
position. Give as ei the sequence to leave insert mode (give this, with 
an empty value also if you gave im so). Now give as ic any sequence 
needed to be sent just before sending the character to be inserted. 
Most terminals with a true insert mode will not give ic, terminals which 
send a sequence to open a screen position should give it here. (Insert 
mode is preferable to the sequence to open a position on the screen if 
your terminal has both.) 
If post insert padding is needed, give this as a number of milliseconds 
in ip (a string option). Any other sequence which may need to be sent 
after an insert of a single character may also be given in ip. It is 
occasionally necessary to move around while in insert mode to delete 
characters on the same line (e.g. if there is a tab after the insertion 
position) • If your terminal allows motion while in insert mode you can 
give the capability mi to speed up inserting in this case. Omitting mi 
will affect only speed. Some terminals (notably Datamedia' s) must not 
have mi because of the way their insert mode works. 

Finally, you can specify delete mode by giving dm and ed to enter and 
exit delete mode, and dc to delete a single character while in delete 
mode. 

I - 7 



HIGHLIGHTING, UNDERLINING, AND BELLS 

If your terminal has sequences to enter and exit standout mode these can 
be given as so and se respectively. If there are several flavors of 
standout mode (such as inverse video, blinking, or underlining - half 
bright is not usually an acceptable "standout" mode unless the terminal 

,is in inverse video mode constantly) the prefered mode is inverse video 
by itself. If the code to change into or out of standout mode leaves 
one or even two blank spaces on the screen, as the TVI 912 and Teleray 
1061 do, this is acceptable, and although it may confuse some programs 
slightly, it can't be helped. 

Codes to begin underlining and end underlining can be given as us and ue 
respectively. If the terminal ha~ a code to underline the current 
character and move the cursor one space to the right, such as the 
Microterm Mime, this can be given as uc. (If the underline code does 
not move the cursor to the right, give the code followed by a 
nondestructive space.) 

If the terminal has a way of flashing the screen to indica te an error 
quietly (a bell replacement) then this can be given as vb; it must not 
move the cursor. If the terminal should be placed in a different mode 
during open and visual modes of ex, this can be given as vs and ve, sent 
at the start and end of these modes respectively. These can be used to 
change, e.g., from a underline to a block cursor and back. 

If the terminal needs to be in a special mode when running a program 
that addresses the cursor, the codes to enter and exit this mode can be 
given as ti and tee This arises, for example, from terminals like the 
Concept with more than one page of memory. If the terminal has only 
memory relative cursor addressing and not screen relative cursor 
addressing, a one screen-sized window must be fixed into the terminal 
for cursor addressing to work properly. If your terminal correctly 
generates underlined characters (with no special codes needed) even 
though it does not overstrike, then you should give the capab ili ty ul. 
If overstrikes are erasable with a blank, then this should be indicated 
by giving eo. 

1-8 



KEYPAD 

If the terminal has a keypad that transmits codes when the keys are 
pressed, this information can be given. Note that it is not possible to 
handle terminals where the keypad only works in local (this applies, for 
example, to the unshifted HP 2621 keys). If the keypad can be set to 
transmit or not transmit, give these codes as ks and ke. Otherwise the 
keypad is assumed to always transmit 0 The codes sent by the left arrow, 
right arrow, up arrow, down arrow, and home keys can be given as kl, kr, 
ku, kd, and kh respectively. If there are function keys such as fa, fl, 
eo., f9, the codes they send can be given as kO, kl, ••• , 1.<90 If these 
keys have labels other than the default fa through f9, the labels can be 
given as 10, 11, 0 .• , 19. If there are other keys that transmit the 
same code as the terminal expects for the corresponding function, such 
as clear screen, the termcap 2 letter codes can be given in the ko 
capability, for example, "ko=cl, 11, sf, sb:" which says that the terminal 
has clear, home down, scroll down, and scroll up keys that transmit the 
same thing as the cl, 11, sf, and sb entries. 

The ma entry is also used to indicate arrow keys on terminals which have 
single character arrow keys. It is obsolete but still in use in version 
2 of vi, which must be run on some minicomputers due to memory 
limitations. This field is redundant with kl, kr, ku, kd, and kh. It 
consists of groups of two characters. In each group, the first 
character is what an arrow key sends, the second character is the 
corresponding vi command. These commands are h for kl, j for kd, k for 
ku, I for kr, and H for kh. For example, the mime would be 
:ma=AKjAZkAXI: indicating arrow keys left (AH), down (~K), up (AZ), and 
right (AX). 

MISCELLANEOUS CONSIDERATIONS 

If the terminal requires other than a null (zero) character as a pad, 
then this can be given as pc. 

If tabs on the terminal require padding, or if the terminal uses a 
character other than AI to tab, then this can be given as tao 

Hazeltine terminals, which don't allow tilde characters to be printed 
should indicate hz. Datamedia terminals, which echo carriage-return 
linefeed for carriage return and then ignore a following linefeed should 
indicate nco Early Concept terminals, which ignore a linefeed 
immediately after an am wrap, should indicate xn. If an erase-eol is 
required to get rid of standout (instead of merely writing on top of 
it), xs should be given. Teleray terminals, where tabs turn all 
characters moved over to blanks, should indicate xt. Other specific 
terminal problems may be corrected by adding more capabilities of the 
form x. 

I - 9 



Other capabilities include is, an initialization string for the 
terminal, and if, the name of a file containing long initialization 
strings. These strings are expected to properly' clear and then set the 
tabs on the terminal, if the terminal has settable tabs. If both are 
given, is will be printed before if. This is useful where if is 
/usr/lib/tabset/std but is clears the tabs first. 

If there are two very similar terminals, one can be defined as being 
just like the other with certain exceptions. The string capability tc 
can be given with the name of the similar terminal. This capability 
must be last and the combined length of the two entries must not exceed 
1024. Since termlib routines search the entry from left to right, and 
since the tc capability is replaced by the corresponding entry, the 
capabilities. given at the left· override the ones in the similar 
terminal. A capability can be cancelled with xx@ where xx is the 
capability. For example, the entry 

hnI2621nl:ks@:ke@:tc=2621: 

defines a 2621nl that does not have the ks or ke capabilities, and hence 
does not turn on the function key labels when in visual mode. This 
is useful for different modes for a terminal, or for different user 
preferences. 

FILES /etc/termcap file containing terminal descriptions 

BUGS 

Ex allows only 256 characters for string capabilities, and the 
routines in termcap do not check for overflow of this buffer. The 
total length of a single entry (excluding only escaped newlines) 
may not exceed 1024. The ma, vs, and ve entries are specific to 
the vi program. Not all programs support all entries. There are 
entries that are not supported by any program. 

I - 10 



APPENDIX J 

LEVEL II COBOL IN THE UNIX ENVIRONMENT 

THE CONSOLE 

In LEVEL II COBOL, and throughout this manual, the term "console" refers to 
the user's terminal, not to the system console as might be expected by those 
more familiar with UNIX usage. 

DEVICES 

Built into the compiler and Run-Time System (RTS) is the concept of certain 
devices. You may write a program that will read from the Console In device 
(":CI: n), or write to the Console Out or Error devices (":CO:" and ":CE:"). 
A COBOL program running on UNIX that uses these devices as file names will 
access the standard input and output, and error output, respectively, since 
these are connected to your terminal, unless redirected. In addition, the 
file name n:LP: n is recognized as a printer-type file; if this is used as 
the name of a sequential file all writes will cause printer-type carriage 
control to be applied to the records. As discussed in Chapter 4, if the file 
name n: CI:" is declared ORGANIZATION LINE SEQUENTIAL, then the first : CI: 
read in the program will access the command line arguments. Note that ACCEPT 
FROM CONSOLE will do the same, but ACCEPT FROM CRT will not. 

DATA FILES 

ANSI COBOL defines the concepts of sequential, relative, and indexed 
sequential files, all containing fixed length records. To this, LEVEL II 
COBOL adds a line sequential (LS) file type, which is variable length 
records in standard·UNIX text file format. LS files (such as LEVEL II COBOL 
source and listing files) consist of lines of text each terminated with a 
newline character. 

Sequential files consist of fixed length records with no terminators; 
the lack of newline characters (unless they have been explicitly placed 
there by the COBOL program) means that UNIX utilities such as grep and 
sort may not work on sequential type files. Relative files consist of fixed 
length records with a i-byte terminator; if a particular numbered record is 
present in the file, this terminator will be a newline charac ter. If a 
record is logically not present in the file, the record and terminator will 
be all nulls (ASCII 0). COBOL relative files must not be changed by any 
utility that removes nulls, such as the editor. 

J - 1 



COMMAND LINES AND SPECIAL CHARACTERS 

As already discussed in Chapter 2, certain characters may be important to 
the shell or command line handler on your system. Consequently, these must 
be masked when used in command lines. See the shell or command line handler 
documentation for your system for further details. 

CHANGE OF TERMINAL MODE FOR LEVEL II ACCEPT/DISPLAY 

-Normal terminal interfacing is performed by the UNIX operating system in a 
mode ref-erred to as "cooked". It is in this mode that the operating system 
interprets such terminal functions as Interrupt, Quit, CTRL-D (EOF) , CTRL-S 
(XOFF), CTRL-Q (XON) , Tab, etc. 

When a COBOL application program . calls for ACCEPT or DISPLAY UPON CRT, 
the COBOL run-time sysfem takes more control over tty handling. The RTS sets 
the terminal from "cooked" mode to a special mode. Look in the LEVEL II 
COBOL Language Reference Manual for more information on ACCEPT/DISPLAY UPON 
CRT statements. Some "cooked" terminal functions such as those mentioned 
above may no longer operate, or may only operate in certain cases. For 
example, a CTRL-D (normally interpreted by the UNIX operating system as an 
end of file) is not defined in the Language Reference Manual, and is 
therefore not interpreted by the RTS. 

On V7 systems the following terminal characters are processed: 

Pause (XOFF) 
Continue (XON) 
Interrupt 
Quit 

CTRL-S 
CTRL-Q 
Rubout (or Delete) 
CTRL-\ or CTRL-SHIFT-L 

When a COBOL application program calls for ACCEPT or DISPLAY UPON 
CONSOLE (after there has already been a call to ACCEPT or DISPLAY UPON CRT) 
RTS routines attempt to simulate UNIX "cooked" processing. Thus, terminal 
functions work as they do with the UNIX operating system. This RTS 
simulation, however, has two major differences: 

1. Tabs are expanded to one spa~e instead of to one tab stop as by 
the UNIX operating system. 

2. No lower-to-upper case mapping, as occurs for "stty lease". 

TYPE-AHEAD 

Type-ahead refers to characters entered on the terminal that have not yet 
been read by a program. Note that while a COBOL program is runriing, any 
type-ahead will be flushed upon the first execution of an ACCEPT or DISPLAY 
UPON CRT statement, so in general type ahead should be avoided before the 
first ACCEPT FROH CRT. 

J - 2 



OVERFLOW OF MEMORY 

Several error messages (for example, the failure to load a CALL'ed 
module) may be the result of an overflow of the allocated memory area, 
although the message may not state this explicitly. You should suspect this 
problem whenever a large but otherwise correct intermediate code file fails 
to load. 

J - 3 



J - 4 



APPENDIX K 

LOCKDEMO SOURCE CODE 

The source code for the COBOL program "lockdemo" is reproduc.ed below; 
this includes lockdemo.DDS, which was generated by the FOR}lS-2 utility 
program. 

IDENTIFICATION DIVISION. 
PROGRAM-ID. LOCKING-TEST. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SPECIAL-NAMES. 

CONSOLE IS CRT 
CURSOR IS CURSOR-POSITION.' 

INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT CUSTOMER-FILE ASSIGN "customer" 
ORGANIZATION INDEXED 
ACCESS DYNAMIC 
RECORD KEY CUST-KEY 
STATUS FILE-STATUS. 

DATA DIVISION. 
FILE SECTION. 
FD CUSTOMER-FILE; 
01 CUSTOMER-RECORD. 

RECORD 132. 

03 CUST-KEY PIC X(0030). 
03 CUST-DAT. 

05 ADDR-1 PIC X(0030). 
05 ADDR-2 PIC X(0030). 
05 ADDR-3 PIC X(0030). 
05 TELENO PIC 9(0012). 

WORKING-STORAGE SECTION. 
COpy "lockdemo.DDS". 
01 FILE-STATUS. 

02 STATUS-1 
02 STATUS-2 

01 LOCKED 
01 CURSOR-POSITION 
01 MESSAGES. 

PIC 9. 
PIC X. 
PIC X 
PIC 9(4) 

VALUE "D". 
VALUE O. 

03 MESSAGE-1 PIC X(Sl) VALUE 
"OR ENTER EXISTING RECORD". 

"INVALID ACTION: UPDATE NEW 

03 MESSAGE-2 PIC X(41) VALUE "END OF FILE - FIND, ENTER 0 
"R EXIT OPTIONS". 
03 MESSAGE-3 PIC 
03 MESSAGE-4 
03 MESSAGE-S 
03 MESSAGE-6 

X(39) VALUE "DISK ERROR - EXITING". 
PIC X(6) VALUE" NEXT " 
PIC X(6) VALUE" FIND" 
PIC X(6) VALUE" NEW " 

K - 1 



03 MESSAGE-7 PIC X(6) 
03 MESSAGE-8 PIC X(6) 
03 MESSAGE-9 PIC X(9) 
03 MESSAGE-I 0 PIC X(9) 
03 MESSAGE-i1 PIC X(9) 
03 MESSAGE-12 PIC X(S3) 
"ION POSITION AND TRY AGAIN". 

VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 

"UPDATE". 
" EXIT H. 

"COMPLETED" . 
"LOCKED If. 

n FAILED " . 
"POSITION CURSOR AT ACT 

03 MESSAGE-i3 PIC X(43) VALUE "RECORD LOCKED - FIND, 
"ENTER OR EXIT OPTIONS". 

01 MESSAGE-POSITION. 
03 ACTION-POS-l 
03 ACTION-POS-2 
03 ACTION-POS-3 
03 ACTION-POS-4 
03 ACTION-POS-5 

PROCEDURE DIVISION. 
START-PROCEDURE. 

DISPLAY SPACE. 
DISPLAY LOKDMO-OO. 

PIC 
PIC 
PIC 
PIC 
PIC 

OPEN 1-0 CUSTOMER-FILE. 
PERFORM CHECK-STATUS. 

ENTRY. 

9(4) 
9(4) 
9(4) 
9(4) 
9(4) 

VALUE 0801. 
VALUE 0817. 
VALUE 0832. 
VALUE 0848. 
VALUE 0865. 

MOVE ACTION-POS-l TO CURSOR-POSITION. 
DISPLAY LOKDMO-Ol. 
ACCEPT LOKDMO-Oi. 
MOVE SPACES TO LOKDMO-02-0001, LOKDMO-02-0002. 
DISPLAY LOKDMO-02. 
IF CURSOR-POSITION EQUAL ACTION-POS-2 GO TO FIND-RECORD. 
IF CURSOR-POSITION EQUAL ACTION-POS-3 GO TO NEW-RECORD. 
IF CURSOR-POSITION· EQUAL ACTION-POS-4 GO TO UPDATE-RECORD. 
IF CURSOR-POSITION EQUAL ACTION-POS-5 GO TO END-IT. 
IF CURSOR-POSITION GREATER ACTION-POS-S GO TO NOT-ACTION. 

NEXT-RECORD. 
MOVE MESSAGE-4 TO LOKDMO-OI-OOli. 
DISPLAY LOKDMO-Ol. 
START CUSTOMER-FILE KEY GREATER THAN CUST-KEY 

INVALID GO TO FILE-END. 
READ CUSTOMER-FILE NEXT. 
IF STATUS-2 EQUA~ LOCKED GO TO RECORD-LOCKED. 
PERFORM CHECK-STATUS. 
PERFORM IN-TRANSFER. 
DISPLAY LOKDMO-Ol. 
MOVE MESSAGE-9 TO LOKDMO-02-0001. 
DISPLAY LOKDMO-02. 
GO TO ENTRY. 

FIND-RECORD. 
PERFORM CLEAR-FIELDS. 
MOVE MESSAGE-5 TO LOKDMO-OI-OOll. 
DISPLAY LOKDMO-Ol. 
MOVE LOKDMO-OI-0006 TO CUST-KEY. 
READ CUSTOMER-FILE INVALID GO TO ERROR-RETRY. 

K - 2 



IF STATUS-2 EQUAL LOCKED GO TO RECORD-LOCKED. 
PERFORM CHECK-STATUS. 
PERFORM IN-TRANSFER. 
DISPLAY LOKDMO-Ol. 
MOVE MESSAGE-9 TO LOKDMO-02-000l. 
DISPLAY LOKDMO-02. 
GO TO ENTRY. 

NEW-RECORD. 
MOVE MESSAGE-6 TO LOKDMO-Ol-OOll. 
DISPLAY LOKDMO-Ol. 
PERFORM OUT-TRANSFER. 
WRITE CUSTOMER-RECORD INVALID GO TO ERROR-RETRY. 
IF STATUS-2 EQUAL LOCKED GO TO RECORD-LOCKED. 
PERFORM CHECK-STATUS. 
MOVE MESSAGE-9 TO LOKDMO-02-000l. 
PERFORM CLEAR-NAME THROUGH CLEAR-FIELDS. 
DISPLAY LOKDMO-02. 
GO TO ENTRY. 

UPDATE-RECORD. 
MOVE MESSAGE-7 TO LOKDMO-Ol-OOll. 
DISPLAY LOKDMO-Ol. 
PERFORM OUT-TRANSFER. 
REWRITE CUSTOMER-RECORD INVALID GO TO ERROR-RETRY. 
IF STATUS-2 EQUAL LOCKED GO TO RECORD-LOCKED. 
PERFORM CHECK-STATUS. 
MOVE MESSAGE-9 TO LOKDMO-02-000l. 
DISPLAY LOKDMO-02. 
PERFORM CLEAR-NAME THROUGH CLEAR-FIELDS. 
GO TO ENTRY. 

IN-TRANSFER. 
MOVE CUST-KEY TO LOKDMO-Ol-0006. 
MOVE ADDR-I TO LOKDMO-Ol-0007. 
MOVE ADDR-2 TO LOKDMO-Ol-OOOS. 
MOVE ADDR-3 TO LOKDMO-Ol-0009. 
MOVE TELENO TO LOKDMO-OI-OOlO. 

OUT-TRANSFER. 
MOVE LOKDMO-OI-0006 TO CUST-KEY. 
MOVE LOKDMO-OI-0007 TO ADDR-l. 
MOVE LOKDMO-OI-0008 TO ADDR-2. 
MOVE LOKDMO-OI-0009 TO ADDR-3. 
MOVE LOKDMO-OI-OOIO TO TELENO. 

CLEAR-NAME. 
MOVE SPACE TO LOKDMO-OI-0006. 

CLEAR-FIELDS. 
MOVE SPACE TO LOKDMO-Ol-0007. 
MOVE SPACE TO LOKDMO-Ol-OOOS. 
MOVE SPACE TO LOKDMO-Ol-0009. 
MOVE .SPACE TO LOKDMO-Ol-OOlO. 

FILE-END. 
MOVE MESSAGE-ll TO LOKDMO-02-0001. 
MOVE MESSAGE-2 TO LOKDHO-02-0002. 

K - 3 



DISPLAY LOKDMO-02. 
PERFORM CLEAR-N&~E THROUGH CLEAR-FIELDS. 
MOVE ZERO TO CUST-KEY. 
GO TO ENTRY. 

ERROR-RETRY. 
MOVE MESSAGE-II TO LOKDMO-02-0001. 
MOVE MESSAGE-l TO LOKDMO-02-0002. 
DISPLAY LOKDMO-02. 
GO TO ENTRY. 

CHECK-STATUS. 
IF STATUS-l NOT EQUAL ZERO 

MOVE MESSAGE-II TO LOKDMO-02-0001 
MOVE MESSAGE-3 TO LOKDMO-02-0002 
DISPLAY LOKDMO-02 
GO TO STOP-IT. 

RECORD-LOCKED. 
MOVE MESSAGE-IO TO LOKDMO-02-0001. 
MOVE MESSAGE-13 TO LOKDMO-02-0002. 
DISPLAY LOKDMO-OZ. 
PERFORM CLEAR-FIELDS. 
GO TO ENTRY. 

NOT-ACTION. 
MOVE SPACES TO LOKDHO-02-0001. 
MOVE MESSAGE-12 TO LOKDMO-OZ-OOOZ. 
DISPLAY LOKDMO-OZ. 
GO TO ENTRY. 

END-IT. 
MOVE MESSAGE-8 TO LOKDMO-OI-OOll. 
DISPLAY LOKDMO-OI. 

STOP-IT. 

LOCKDEHO.DDS 

CLOSE CUSTOMER-FILE. 
MOVE MESSAGE-9 TO LOKDMO-02-0001. 
DISPLAY LOKDMO-OZ. 
PERFORM IN-TRANSFER THRU OUT-TRANSFER 100 TI:vlES. 
DISPLAY SPACE. 
STOP RUN. 

01 LOKDMO-OO 
03 FILLER PIC X(0184). 
03 LOKDMO-OO-OOOI PIC X (0031) VALUE "LOCKI:TG DEHONSTE ... ;.TIIJ:; 
"PROGRAM " . 
03 FILLER PIC X(OlOS). 
03 ;LOKDMO-Ou-0002 PIC X(0074) VALUE ;'This program demonstra 
"tes the use of record locking facilities using an " 
03 FILLER PIC X(0006). 
03 LOKDMO-OO-0003 PIC·X(0030) VALUE "IS&'l Eil<~ 2.r'.d I-J :1-:ce 
"ss mode.". 

K - 4 



03 FILLER PIC X(0002). 
03 LOKDMO-OO-0004 PIC X(003S) VALUE "You can specify action 
Its as follows:". 
03 FILLER PIC X(0093). 
03 LOKDMO-OO-OOOS PIC X(0013) VALUE "* NEXT record". 
03 FILLER PIC X(0003). 
03 LOKDMO-OO-0006 PIC X(0013) VALUE "* FIND record". 
03 FILLER PIC X(OOOZ). 
03 LOKDMO-OO-0007 PIC X(0014) VALUE "* ENTER record". 
03 FILLER PIC X(0002). 
03 LOKDMO-00-0008 PIC X(OOlS) VALUE "* UPDATE record". 
03 FILLER PIC X(OOOZ). 
03 LOKDMO-OO-0009 PIC X(0006) VALUE n* EXIT". 
03 FILLER PIC X(0018). 
03 LOKDMO-OO-OOIO PIC X(0060) VALUE "(Position cursor over 
"appropriate asterisk and press RETURN)". 
03 FILLER PIC X(009Z). 
03 LOKDMO-OO-OOll PIC X(0080) VALUE ,,----------------------
"----------------------------------------------------------" 
03 FILLER 
03 LOKDMO-OO-OOIZ 
03 FILLER 
03 LOKDMO-OO-0013 
03 FILLER 
03 LOKDMO-OO-0014 
03 FILLER 
03 LOKDMO-OO-001S 
03 FILLER 
03 LOKDMO-OO-0016 
03 FILLER 
03 LOKDMO-00-0017 
03 FILLER 
03 LOKDMO-OO-0018 
03 FILLER 
03 LOKDMO-OO-0019 
03 FILLER 
03 LOKDMO-00-0020 
03 FILLER 
03 LOKDMO-OO-0021 
03 FILLER 
03 LOKDMO-OO-0022 
03 FILLER 
03 LOKDMO-OO-OOZ3 
03 FILLER 
03 LOKDMO-OO-0024 

PIC X (0009) . 
PIC X(OOOS) VALUE "NAME:". 
PIC X(0006). 
PIC X(OOOl) VALUE "[". 
PIC X(0030). 
PIC X(OOOl) VALUE "J". 
PIC X(0037). 
PIC X(0008) VALUE "ADDRESS:". 
PIC X(0003). 
PIC X(OOOl) VALUE "[". 
PIC X(0030). 
PIC X(OOOl) VALUE "J". 
PIC X (0048) . 
PIC X(OOOl) VALUE "[". 
PIC X(0030). 
PIC X(OOOl) VALUE "J". 
PIC X(0048). 
PIC X(OOOl) VALUE "[". 
PIC X(0030). 
PIC X(OOOl) VALUE "J". 
PIC X(0037). 
PIC X(OOlZ) VALUE "TELEPHONE: [If. 
PIC X(OOlZ). 
PIC X(OOOl) VALUE "J". 
PIC X(0046). 
PIC X(0080) VALUE ,,----------------------

I' __________________________________________________________ II 

03 FILLER PIC X(0089). 
03 LOKDMO-OO-OOZS PIC X(0016) VALUE "(Last action was". 
03 FILLER PIC X(0007). 
03 LOKDMO-OO-OOZ6 PIC X(0008) VALUE " , and it". 
03 FILLER PIC X(OOlO). 

K - 5 



03 LOKDMO-OO-0027 PIC X(OOOl) VALUE ")". 
01 LOKDMO-01 REDEFINES LOKDMO-OO 

03 FILLER PIC X(0560). 
03 LOKDMO-01-OOOl PIC *. 
03 FILLER PIC X(0015). 
03 LOKDMO-01-0002 PIC *. 
03 FILLER PIC X(0014). 
03 LOKDMO-01-0003 PIC *. 
03 FILLER PIC X(0015). 
03 LOKDMO-01-0004 PIC *. 
03 FILLER PIC X(0016). 
03 LOKDMO-OI-OOOS PIC *. 
03 FILLER PIC X(0276). 
03 LOKDMO-01-0006 PIC X(0030). 
03 FILLER PIC X(0050). 
03 LOKDMO-OI-0007 PIC X(0030). 
03 FILLER PIC X(0050). 
03 LOKDMO-01-0008 PIC XC-0030). 
03 FILLER PIC X(OOSO). 
03 LOKDMO-OI-0009 PIC X(0030). 
03 FILLER PIC X(OOSO). 
03 LOKDMO-Ol-OOlO PIC 9(0012). 
03 FILLER PIC X(0233). 
03 LOKDMO-Ol-OOll PIC X(0006). 

01 LOKDMO-02 REDEFINES LOKDMO-OO 
03 FILLER PIC X(148l). 
03 LOKDMO-02-0001 PIC X(0009). 
03 FILLER PIC X(OllO). 
03 LOKDMO-02-0002 PIC X(0071). 

K - 6 


