Microsoft.
| Premlum SoftCard Ile

Package

for Apple. IIe Computer

Programmer’s Manual

")

Microsoft Corporation

Information in this document is subject to change without notice and
does not represent a commitment on the part of Microsoft Corpora-
tion. The software described in this document is furnished under a
license agreement or nondisclosure agreement. The software may be
used or copied only in accordance with the terms of the agreement. It
is against the law to copy any part of the software on magnetic tape,
disk, or any other medium for any purpose other than the purchaser’s
personal use.

© Microsoft Corporation, 1983

If you have comments about the software or this manual, please
complete the Software Problem Report at the back of this manual and
return it to Microsoft Corporation.

Microsoft, the Microsoft logo, and A.L.D.S. are registered trademarks of Micro-
soft Corporation.

SoftCard and MS are trademarks of Microsoft Corporation.

Apple, the Apple logo, Silentype, and Applesoft are registered trademarks of
Apple Computer, Inc.

CP/M is a registered trademark of Digital Research, Inc.
MP/M is a trademark of Digital Research, Inc.

Intel is a registered trademark of Intel Corporation.

Z80 is a registered trademark of Zilog, Inc.

Videx and Videoterm are trademarks of Videx, Inc.
Hazeltine is a trademark of Hazeltine Corporation.

1Q is a trademark of Soroc Technology, Inc.

California Computer Systems is a registered trademark and 7710A is a trade-
mark of California Computer Systems, Inc.

Osborne is a registered trademark of Osborne Computer Corporation.

Part No. 23F47BP

Document No. 8816-226-00

Contents

Introduction v
How to Use This Manual vi
Notation Used in This Manual viii
European Apple Ile Differences ix

1 Elements of CP/M 1
CP/M Memory Organization 3
CP/M Operation 7

2 Programming Considerations 19
Assembly Language Programming 21
6502 BIOS Calls 23
Using CP/M System Calls 25

3 CP/M System Calls 41

System Call Parameters 44

4 6502BIOS 91
Installing User-Written Software in the 6502 BIOS
6502 BIOS Call Descriptions 99

5 Command Directory 117

Command and Utility Program Guidelines 119

94

iii

Contents

6

170 Configuration 159

CONFIGIO 161
Screen Function Interface 164
Keyboard Character Definition 178
Adding Nonstandard

1/0 Devices and User Software 182
1/0 Device Protocols for

Assembly Language Programs 192

Using the SoftCard with Apple Programs

SoftCard Features Under Apple DOS 197
Using the SoftCard Display Features 198
Using the SoftCard 64K-Byte Memory 207

Appendices

A
B

CP/M Error Messages 233
Downloading to the SoftCard 247
Program Requirements 249
DOWNLOADING Procedure 250
SoftCard Version Differences 259
SoftCard Enhancements 261

CP/M Implementation Differences 261
SoftCard Differences 262

Index 265

iv

195

Introduction
D

This is the Programmer’s Manual for the Microsofte Premium
SoftCard ITe System. It is designed to give you the informa-
tion you need to:

Use the CP/Mg operating system calls to perform I/0 and
disk operations

Use 6502 BIOS calls to perform low-level I/0 and disk
operations

Use the CONFIGIO program to modify your CP/M 1/0
module for nonstandard I/0 devices

Reference SoftCard utility programs, CP/M commands,
and utilities such as ASM, DDT, and ED

- This manual is for system and application programmers who

) plan to write or modify programs for the CP/M Apples ITe with
SoftCard programming environment. No tutorial information
is provided. We assume that you already know how to program
in either assembly language or another high-level language.

We also assume you have read the Microsoft Premium Soft-
Card Ile System Installation and Operation Manual and are
now familiar with the CP/M operating system, its commands,
and attendant utility programs. Tutorial information about
CP/M and its programming utilities is given in the Microsoft
Premium SoftCard Ile System Installation and Operation Man-
ual and the Osbornes CP/M User Guide.

Premium SoftCard Ile Programmer’s Manual

Specifically, this manual is for users who want to:

Implement their own software routines in the 6502 BIOS
module

Write assembly programs that will run in the TPA area of (
memory

Use CP/M system calls from within their program
Connect nonstandard devices to their system

Change the 1/0 configuration

Important

This manual does not show how to change the BIOS
module. If your application requires changing any of
CP/M system modules (other than the patch areas pro-
vided), we recommend purchasing the Digital Research
CP/M Technical Manual. Vendors needing more infor-
mation for interfacing their products to the Premium Soft-
Card IIe System should contact Microsoft Corporation
directly.

How to Use This Manual

vi

This manual serves as:

1. A reference manual for using CP/M commands and pro-
grams

2. A technical manual for programming in the SoftCard Ile
environment

Some of the material found in the Microsoft Premium SoftCard (
Ile Installation and Operation Manual has been repeated in
this manual for the convenience of the reader.

Introduction

Information in this Programmer’s Manual is organized into
the following chapters and appendices:

Chapter 1, “Elements of CP/M,” describes the different ele-
ments of CP/M and how it is organized.

Chapter 2, “Programming Considerations,” describes how to
use the CP/M system calls and provides other pertinent infor-
mation about programming in the Apple IIe and SoftCard
environment.

Chapter 3, “CP/M System Calls,” is a reference section for the
39 CP/M system calls. It includes a listing of the parameters
needed for each call.

Chapter 4, “6502 BIOS,” is a reference section for the seven-
teen 6502 BIOS system calls.

Chapter 5, “Command Directory,” is a quick reference guide to
the CP/M commands and utility programs contained in the
Premium SoftCard Ile System.

Chapter 6, “I/0 Configuration,” explains the different I/0
functions and tells how to add I/0 drivers to patch areas.

Chapter 7, “Using the SoftCard With Apple Programs,” de-
scribes the commands for using the SoftCard Ile as extended
memory and an 80-column text interfacer board when running
Apple programs.

Appendix A, “CP/M Error Messages,” lists and explains the
error messages that may be encountered in using CP/M and its
utility programs.

Appendix B, “Downloading to the SoftCard” explains how to
use the UPLOAD and DOWNLOAD utility programs to load
CP/M software from other computers to your Apple ITe.

Appendix C, “SoftCard Version Differences,” explains what
you should know about the SoftCard implementation of CP/M
and explains the differences between the standard or “generic”’
implementation of CP/M version 2.2 and the SoftCard imple-
mentation, version 2.25.

vii

Premium SoftCard Ile Programmer’s Manual

Notation Used in This Manual

viii

This manual uses the same notation as the Microsoft Premium
SoftCard Ile System Installation and Operation Manual to (
demonstrate the differences between what you enter on the
keyboard and what you see in the manual. The following ele-
ments are used in this manual to help you understand how
commands are entered into the computer.

ital

(]

CAPS

Italics indicate information that you enter. Ital-
icized lowercase text is for an entry that you
must supply, such as a filename.

Square brackets indicate that the enclosed entry
is optional.

Braces indicate a choice between two or more
entries. At least one of the entries enclosed in
braces must be chosen, unless the entries are
also enclosed in square brackets.

Vertical bars separate choices within braces. (

Ellipses indicate that an entry can be repeated
as many times as needed or desired.

Capital letters not enclosed within the other
elements of syntax indicate portions of com-
mands that must be entered exactly as shown,
such as command keywords. Small capital let-
ters indicate that you must press a key named
by the text. For example, “press the RETURN
key.”

All other punctuation, such as commas, colons, slash marks,

and equal signs, must be entered exactly as shown.

D,

Introduction

European Apple Ile Differences

On the European version of the Apple Ile computer, the follow-
ing keys display symbols on the key face, instead of key names.

United States Version European Version

TAB aad
RETURN -
SHIFT t

In addition to these keys, the CONTROL key is labeled “CTRL”,
and the DELETE key is labeled “DEL”. The Installation and
Operation Manual and Programmer’s Manual refer to the keys
by their American key names.

The European Apple Ile has two character sets: a standard
ASCII character set, and a character set indigenous to a partic-
ular country. You can switch between the character sets by
switching the toggle located under the righthand side of the key-
board.

Note

The Installation and Operation Manual and Programmer’s
Manual assume the toggle switch is set for the ASCII
character set. If it is not, some character substitutions
may appear on the screen.

ix

Chapter 1
Elements of CP/M

)

CP/M Memory Organization 3
BIOS (Basic Input and Output System) 4
BDOS (Basic Disk Operating System) 4
CCP (Console Command Processor) 5
TPA (Transient Program Area) 5
System Parameters 5

CP/M Operation 7
I/0 Communication and the IOBYTE 9

) Disk Communication 14
The CP/M File Structure 16

Elements of CP/M

This chapter describes the different elements of CP/M as im-
plemented by the Premium SoftCard IIe System.

) CP/M Memory Organization

The Premium SoftCard Ile version of CP/M (version 2.25)
consists of three software modules (the BIOS, BDOS, and
CCP) and various system parameters. CP/M software resides
on disk in system tracks zero through two.

CP/Misloaded into the 64K of random access memory located
on the SoftCard circuit board. In memory, CP/M occupies the
locations shown in the following figure.

FFFFH

FAOOH

ECOOH

E300H

0100H

0000H

Figure 1.1.

BIOS

Basic Input Output System

BDOS

Basic Disk Operating System

CccCP

Console Command Processor

TPA

Transient Program Area

System Parameters

CP/M Memory Organization

Premium SoftCard IIe Programmer’s Manual

BIOS (Basic Input and Output System)

The BIOS module in the SoftCard implementation of CP/M
has the following features added:

“Patch” areas for implementing additional software or for (
interfacing nonstandard I/0 devices

Entry points for using 6502 subroutines

Tables for modifying screen functions for different hard-
ware and software configurations

A table for redefining the ASCII values of the keys on the
keyboard

System calls to the 6502 BIOS

BDOS (Basic Disk Operating System)

The SoftCard implementation of CP/M uses the standard
CP/M BDOS module for system calls and other disk 1/0 rou-
tines. The standard 39 system calls of CP/M version 2.2 are
implemented through a jump table in the BIOS. (See Chapters
2 and 3 for more information on system calls.)

Elements of CP/M

CCP (Console Command Processor)

The SoftCard implementation of CP/M uses the standard
7 CP/M CCP module as an operator interface to the screen
) monitor and keyboard.

The CCP can be overwritten by a program to gain an addi-
tional 2K bytes of memory if the program requires it. If the
CCP is overwritten by a program, it can be reloaded into
memory by pressing CONTROL-C.

TPA (Transient Program Area)

The TPA in the SoftCard version of CP/M occupies approxi-
mately 59K bytes of memory between the addresses shown in
Figure 1.1.

Programs that overwrite the CCP must end with a System
Reset, system call 0, or a JMP instruction to the BIOS entry
point (address 0000H).

|) System Parameters

The system parameter area of memory is initially loaded with
the cold start loader program and then used as a system work
area. Table 1.1 shows the location and contents of routines
stored in this area of memory.

Table 1.1.

Premium SoftCard Ile Programmer’s Manual

System Parameter Area Contents

Memory

Address Contents

0000H to 0002H 780 jump vector to the BIOS jump table
(used during a warm start).

0003H IOBYTE address, which is a single byte
used for logical to physical device assign-
ment. See “I/0O Communication and the
IOBYTE?” in this chapter.

0004H A single byte which indicates the active
drive (drive a=0, b=1, ¢=2, and d=3). The
default value is 0 when loading the system
during a cold start.

0005H to 0007H The Z80 jump vector to the BDOS entry
point. It is used by transient programs when
making system calls to the BDOS.

0008H to 0037H Reserved for future use, but not used at this
time.

0038H to 003AH Vector address if a Restart instruction is
encountered.

003BH to 003FH Reserved for future use, but not used at this
time.

0040H to 004FH Reserved for CP/M (See Chapter 4, “6502
BIOS”).

0050H to 005BH Reserved for future use, but not used at this
time.

005CH to 007CH Default File Control Block (FCB) for disk
operations. (See ‘“The CP/M File Structure”
in this chapter.)

007DH to 007FH Default random record positions for the file
named in the FCB.

0080H to 00FFH Optional 128-byte disk buffer used during

disk file accesses. It is also used to store the
command line being entered when the CCP
is active.

C

C

)

Elements of CP/M

CP/M Operation

In most implementations of CP/M, operation is controlled by a
program running in the TPA section of memory or by com-
mands translated by the CCP from the keyboard. All program
instructions or commands from the CCP are executed by func-
tion requests to the BDOS module for one or more of 16 low-
level system functions called primitives.

A primitive function is an assembly language routine in the
BDOS module which performs a disk or I/0 related task such
as reading a character from the keyboard or writing data to a
disk file. The 16 primitive functions are divided into two groups
called character 1/0 functions and disk I/0 functions. The
following table outlines the functions.

Table 1.2.

CP/M Primitive Functions

Function Type Description

CONIN Character 1/0 Console input

CONOUT Character 1/0 Console output

CONST Character I/0 Console status

HOME Disk I/0 Seek track 0

LIST Character 1/0 List output

LISTST Character 1/0 List status

PUNCH Character 1/0 Punch output

READ Disk 1/0 Read disk sector

READER Character I/0 Reader input

SETDMA Disk 1/0 Select memory range

SELDSK Disk I/0 Select disk drive

SETSEC Disk I/0 Seek disk sector

SECTRAN Disk 1/0 Convert logical sector
to physical sector

SETTRK Disk I/0 Seek disk track

WBOOT Disk I/0 System warm start

WRITE Disk I/0 Write disk sector

Premium SoftCard IIe Programmer’s Manual

As described in Chapter 4 of the Microsoft Premium SoftCard
Ile System Installation and Operation Manual, all nondisk I/0
communication takes place through the four logical devices:
CON;:, LST:, PUN:, and RDR.:. Character I/O functions transfer
single-byte ASCII characters between a logical device and a
register in the central processing unit. The logical devices are
part of the software translation interface between CP/M and
the actual 1/0 devices.

Disk 1/0 functions are similar to character I1/0 functions but
are for transferring larger amounts of data (usually 128-byte
data blocks). These functions are described in “The CP/M File
Structure” later in this chapter.

Each of the primitive functions can be used either individually
or in combination with each other to perform the 39 function
requests known as system calls. All system calls are desig-
nated by a number and are executed by a Z80: CALL instruc-
tion. The Z80 CALL instruction is invoked from the CCP pro-
gram running in the TPA.

When system calls are executed, control of the computer is
passed to CP/M. CP/M executes the function called and then
returns control back to the program. For example, a program
calls for a character to be sent to the terminal. At the appro-
priate point in the program, the character to be sent and the
system call number are processed by the CPU, transferring
control to a specific function routine in the BDOS module of
CP/M. The function routine performs the tasks necessary to
cause the character to be displayed at the terminal. The last
instruction of the assembly language routine tells the CPU to
return control to the calling program immediately following
the system call.

The use of system calls gives CP/M programs the advantage of
portability. That is, a program can run on many different
computers without program modifications for each particular
computer.

Elements of CP/M

System operation of the SoftCard version of CP/M differs
slightly from the standard CP/M version 2.2 because the Z80
CPU uses the Apple 6502 as an I/0 processor. Thus, any
system calls that require I/O operations will first transfer
control to the CP/M. The Z80 then “calls” the 6502 to execute
the appropriate set of instructions. For CP/M programs that do
not call 6502 routines directly, this entire processis “invisible.”
To use 6502 subroutines in your program, see “Calling 6502
Subroutines” in Chapter 2.

I/0 Communication and the IOBYTE

CP/M communicates with nondisk I/0 devices through four
logical devices. CP/M also communicates with nondisk I/0
devices through vector routines (known as physical devices)
and a translation routine, if needed.

The logical device (as opposed to an actual physical device) is
implemented by an assembly language subroutine that pre-
sents a logical representation of the I/O function. The logical
devices are named by function in the following list:

Console (CON:) Input and output to and from a con-
sole or terminal

List (LST:) Output to a listing device, such as a
printer

Punch (PUN?) Output only
Reader (RDR:) Input only

Premium SoftCard Ile Programmer’s Manual

A physical device is assigned to a logical device. A physical
device is addressed by a vector that points to a driver routine.
There are 12 physical devices; each corresponds to a specific
type of 1/0 device. Table 1.3, “Physical Device Descriptions,”
describes each of the physical devices, except for BAT:. See (
“Logical to Physical Device Assignments” in Chapter 4 of the \
Microsoft Premium SoftCard Ile System Installation and Oper-
ation Manual for more information on the BAT: physical device.

Table 1.3.
Physical Device Descriptions

Device Description

TTY: The TTY: device communicates with the standard Apple
screen monitor and keyboard if slot 3 is empty. It com-
municates with an external terminal or 80-column video
display board if there is an interface board installed in
slot 3. The TTY: routes communication through Console
Input Vector #1 and Console Output Vector #1. The con-
sole status is always input through the Console Status

Vector.

CRT: The CRT: device is defined the same as the TTY: device. (
A substitution patch routine must be written to redefine
the device and its location before it can be used.

UC1: UC1: is user-defined console device. It routes commun-
ication through Console Input #2 and Console Output
#2. A substitution patch routine must be written to
define the device and its location before it can be used.

PTR: PTR: points to a standard Apple interface board capa-
ble of processing input from accessory slot 2. If slot 2 is
empty, the PTR: device always returns a 1AH (end-of-
file character) in register A, when called. Input from
PTR: is through Reader Input Vector #1. Characters are
returned in the A register.

10

Elements of CP/M

Table 1.3 (continued)

Device

Description

UR1:

UR2:

PTP:

UP1:

UP2:

LPT:

UL1:

URL: is user-defined reader device #1. A character read
from this device is returned in the A register. Input is
through Reader Input Vector #2. A substitution patch
routine must be written to define the device and its loca-
tion before it can be used.

UR2: is user-defined reader device #2. This device has
the same definition as UR1:.

PTP: is any standard Apple interface board capable of
processing output from accessory slot 2. If slot 2 is
empty, the PTP: device does nothing when called. Out-
put to the PTP: device is through Punch Output Vector
#1. A substitution patch routine must be written to
define the device and its location before it can be used.

UP1: is user-defined punch device #1. The character in
register C is output through Reader Input Vector #2. A
substitution patch routine must be written to define the
device and its location before it can be used.

UP2: is user-defined punch device #2. This device has
the same definition as UP1:,

LPT: is any standard Apple interface board installed
into slot 1 capable of receiving output. The character in
register C is output through List Output Vector #1.

UL1: is a user-defined list device. The character in reg-
ister C is output through List Output Vector #2. A sub-
stitution patch routine must be written to define the
device and its location before it can be used.

Because there are four logical devices, only one physical device
can be assigned to a logical device at a time. The IOBYTE is
used by CP/M to monitor and change the current logical to
physical device assignments.

11

Premium SoftCard Ile Programmer’s Manual

12

The IOBYTE is a single byte located at memory address 0003H
that is divided into four two-bit fields. The fields represent each
of the logical devices as shown in the following figure.

Field | LST:|PUN: |RDR:|CON:
Bits 7—6|5—4|3—-2|1—0

Figure 1.2. The IOBYTE at Address 0003H

The value of the bits determines which physical device is as-
signed to the logical device. Table 1.4 lists the possible
IOBYTE assignments.

Table 1.4.
IOBYTE Device Assignments

Fields
Bit
Value LST: PUN: RDR: CON:
00 TTY: TTY: TTY: TTY:
01 CRT: PTP: CRT: CRT:
11 UL1: UP2: UR2: UCH:
10 LPT: UP1: PTR: BAT:

C

Elements of CP/M

The SoftCard implementation of the IOBYTE is based on
memory mapping of the seven accessory slots. Slots one
through three are initially mapped to the LPT:, PTR:, and
TTY: devices, respectively. To implement other physical de-
vices, substitution I/0 routines must be written into the 17O
patch area of the BIOS. See “Adding Nonstandard I/0 De-
vices and User Software” in Chapter 6 for more information.

Usually, the IOBYTE is changed with the STAT transient
program. Programs, however, can also change the IOBYTE
through two character 1/0 calls: Get IOBYTE, system call 7,
and Set IOBYTE, system call 8. “I/O Device Assignment
Calls” in Chapter 2 describes how to use these system calls.

Physical devices are implemented as addresses in memory that
point to a vector which in turn, points to an address of an
accessory board. Of the 12 physical devices, only three are
mapped to an accessory board address. The other nine are
either undefined or route communication to one of the imple-
mented devices. See Table 1.3 for descriptions of the physical
devices.

To use one of the unimplemented devices, a special driver
routine must be written in one of the patch areas in the BIOS.
Instructions on how to use the patch areas are given in “Adding
Nonstandard I/0 Devices and User Software” in Chapter 6.

13

Premium SoftCard Ile Programmer’s Manual

Disk Communication

Disk communication is performed through a set of nine primi-
tive functions, that, like the I/O primitive functions, can be
called either individually or in combination with each other to
perform higher-level functions. CP/M provides some of the
higher-level functions through the numbered system calls that
are standard in CP/M. The disk I/0 functions are similar to
character I/0 functions but are for transferring larger amounts
of data.

The File Control Block

14

Because the data transferred is larger than the capacity of the
CPU registers, CP/M sets up two areas of memory to transfer
data and parameters between the calling program and the
disk. The first area is called the disk data buffer, and is used
for disk read and write operations. It can be located anywhere
in memory and occupies 128 bytes. The second area is called
the File Control Block (FCB). It is used to pass parameters
which control the disk I/0 transfer between the disk and CP/M.

The FCB consists of 36 bytes and can be located anywhere in
memory. It is usually located at memory address 005CH. The
FCB is used for the same purpose as the CP/M registers for
passing parameters.

The FCB format is shown in Figure 1.3. Each field in the FCB
must contain the appropriate parameter before a disk I1/0 sys-
tem call can be executed. The calling program provides the
information in the first four fields to identify the file to be
accessed. The d0—dn field is used by the BDOS module to keep
track of the file contents.

Field
Bits

Elements of CP/M

dr fn type ex |s1—s2{ rc (d0—dn] cr |rO—r1] 2

0 1—8 |9—11| 12 |13—14| 15 [16—31| 32 [33—34(35

Figure 1.3. File Control Block

dris the drive code. It identifies the drive in which the file
is located.

fnis the filename. If the filename is less than nine charac-
ters, the remaining bytes in the field are padded with
blanks.

type is the file type (filename extension). If the extension
is less than three characters, the remammg bytes are
padded with blanks.

ex is the current file extent number (the number of the
extent that is being accessed). It is normally set to 0, but
ranges between 0 and 31 during file I/0 operations.

s1—s2 is reserved for system use. s2 is set to zero during
OPEN, MAKE or SEARCH operations.

rc is the record count or current extent size (0 to 128
records).

d0—dn is the disk allocation map. This field is filled in
and used by CP/M.

cr is the current record number (the current record to be
read or written in sequential file operations).

r0—rl is the random record number. The random record
number (0—65535) is a 16-bit value with byte r0 as the
lower 8 bits and byte r1 as the upper 8 bits.

r2 is the overflow byte for the random record number.

15

Premium SoftCard Ile Programmer’s Manual

The CP/M File Structure

16

Chapter 4 in the Microsoft Premium SoftCard Ile System In-
stallation and Operation Manual explains how a disk is organ-
ized into tracks and sectors. In CP/M terminology, each 128-
byte disk sector is called a record. A disk file contains up to
65,536 records and is organized into blocks of records called
extents.

All CP/M files contain one or more extents. An extent consists
of 128 records (16K bytes). Extents allow CP/M to keep track of
the physical location of the records for each file in conjunction
with another unit of organization called allocation blocks.

To keep track of the sector’s physical location on the disk, the
disk is divided into allocation blocks. An allocation block con-
sists of 8 sectors or 1024 bytes of data.

Note

The SoftCard version of CP/M uses a 5-1/4 inch disk as
its primary storage medium. These disks have a total
capacity of 140K bytes (or 128 sectors) of storage space.
Since the CP/M system modules are stored in the first
three tracks (0, 1, and 2) of the disk, the first allocation
block starts with track 3, sector 1. (Tracks are numbered
0—35 and sectors are numbered 1—31.) The allocation
blocks are consecutively numbered until the last sector on
the disk (track 35, sector 31) has been included in an
allocation block. Thus, on a 5-1/4 inch disk, there can be a
total of 16 allocation blocks.

Elements of CP/M

When a disk file requires additional space, an allocation block
is assigned to the file through the extent field of the FCB. This
gives the file an additional 1024 bytes of storage space although
it may only require 64 bytes at the time. For example, if a file
contains 16 records, and a disk write operation adds a seven-
teenth record, CP/M assigns a new allocation block to the file.
The new allocation block will contain file records 17 through 24
even though only record 17 is currently written.

An extent can have up to 16 allocation blocks assigned to it.
The number of each allocation block assigned to an extent is
stored in the d0—dn field of the FCB (bytes 16—31), where one
byte equals one allocation block.

CP/M keeps a table of all allocation blocks in memory. When-
ever a file requires an additional allocation block, CP/M as-
signs the next available allocation block to the FCB of the file
and updates the table in memory. CP/M also reclaims alloca-
tion units as a file decreases in size or is deleted. By assigning
and reclaiming allocation blocks, CP/M dynamically manages
the storage space on the disk. This permits the records that
make up a file to be placed in random locations on the disk.

CP/M also keeps track of the files on disk through the disk
directory. The directory is stored at track 3, sector 1, and
contains an entry for each extent of each file on the disk. If a
file has more than one extent assigned, the disk directory will
have multiple entries for that file.

17

Premium SoftCard Ile Programmer’s Manual

Note

When the DIR built-in command is executed, the CCP
reads the disk directory but only displays the first oc- (
curence of each file.

Each directory entry is a copy of the first 32 bytes of the FCB
for that given extent. As shown in File Control Block format,
the first 32 bytes contain the filename, file type, the extent, and
allocation block map of the extent. In the SoftCard version of
CP/M, there is space allocated for 48 directory entries. Since
each directory entry takes up 32 bytes, the directory takes up
the first two allocation blocks of the data storage space.

18

Chapter 2
3 Programming Considerations

Assembly Language Programming 21
Programming Tools Provided 21
Instruction and Register Differences 22
Instruction Execution Time 22

6502 BIOS Calls 23
Guidelines for Use 23

Using CP/M System Calls 25

Calling From an
) Assembly Language Program 25

Assembly Language Program Example 26
Calling From a High-Level Language 31
Calling 6502 Subroutines 31

Returning Control to the CCP 31
Interrupt Handling 31

19

20

I/0 Device Calls 32

Other Console Device System Calls 34
Buffered Console System Calls 34

1/0 Device Assignment Calls 35
Creating Files 35

Deleting Files 35

Opening and Closing Files 36
Searching for a File 37

File Read and Write Operations 37
Miscellaneous System Calls 39

D,

)

Programming Considerations

This chapter describes the assembly language programming
tools included with the Premium SoftCard IIe System. It also
provides guidelines for using CP/M system calls within your
programs.

Assembly Language Programming

With the Premium SoftCard Ile System you may use either
8080A or Z80 assembly language programs. Although the Soft-
Card circuit board is designed around a Z80 microprocessbr,
most 8080A assembly language programs can be run by the
SoftCard system without modifications. There are, however,
several 8080A/Z80 compatibility characteristics that you
should be aware of. These are discussed in the following
sections.

Programming Tools Provided

Programming tools are software programs which permit the
programmer to write and run an assembly language program
or subroutine for a specific programming environment. The
Premium SoftCard Ile System includes the following CP/M
programming tools that are standard in most CP/M implemen-

tations:
ED CP/M text editor
ASM 8080 assembler
DDT 8080 Dynamic Debugging Tool
DUMP Hex dump program
LOAD 8080 load program

SUBMIT/XSUB Batch command files

21

Premium SoftCard IIe Programmer’s Manual

Some of these programs are for the 8080 A microprocessor only.
Because the Z80 microprocessor uses a different set of mne-
monics for instructions, the ASM, DDT, and LOAD program
cannot be used with Z80 programs. The ED, DUMP, and
SUBMIT/XSUB programs can be used with either instruction (
set.

To use the Z80 instruction set, a Z80 assembler and LOAD

program are needed. The Microsoft Assembly Language De-

velopment System (A.L.D.S.») contains the necessary pro-

gramming tools in addition to several programs designed for

the assembly language programmer. A.L.D.S. is available sepa-
* rately from Microsoft.

Instruction and Register Differences

A Z80 microprocessor can use the P flag of the F (Flags) regis-
ter to indicate two’s complement overflow after arithme-
tic operations. An 8080A microprocessor will always use this
flag for parity.

The DAA instruction is executed differently by the Z80 and g~
8080A. The Z80 DAA instruction corrects decimal subtraction (
as well as decimal addition. The 8080A DAA instruction only
corrects decimal addition.

780 “rotate’” instructions, when executed, clear the AC flag in
the F register. The 8080A “rotate” instructions do not.

Instruction Execution Time

The time it takes to execute an instruction differs for the 8080A
and the Z80 microprocessors. In addition, the Z80B microproc-
essor executes instructions three times faster than its prede-
cessors. 8080A and Z80A programs that depend on precise
timing loops should be rewritten for the faster execution speed
of the Z80B.

22

3

Programming Considerations

6502 BIOS Calls

The Z80 performs I/0 operations through the 6502 microproc-
essor by accessing a set of 17 function request routines called
the “6502 Basic Input Output System,” or 6502 BIOS. The
6502 BIOS calls were implemented as a means of accessing the
Apple 6502 memory when running CP/M programs.

6502 BIOS calls are accessed by storing information in a
seven-byte area located between memory addresses 0045H—
004BH, and then performing a Z80 CALL instruction to mem-
ory location 0040H. Information from the I/0 system is re-
turned in the same seven-byte area.

6502 BIOS calls should be used only when there is a need to
access the 6502 memory for Apple specific functions such as
game ports, 6502 subroutines, or routines for creating music.

Programmers should use CP/M system calls whenever pos-
sible.

) Guidelines for Use

To use 6502 BIOS calls in programs, the following protocol
must be observed. The protocol governs the passing of infor-
mation between the 6502 BIOS and the calling CP/M program.
1. Enter the 6502 call number in location 49H.

2. Store the needed parameters in the indicated memory
location.

3. Perform an assembly language CALL instruction to loca-
tion 40H.

4, Ifapplicable, read the returned information from the indi-
cated memory location.

23

Premium SoftCard Ile Programmer’s Manual

6502 BIOS Call Example

24

The following example shows how a 6502 BIOS call is made.

;SUBROUTINE TO READ THE VALUE OF PADDLE
;ZERO INTO REGISTER A.

EDEMONSTRATES 6502 SUBROUTINE CALLING
;CONVENTIONS AND PARAMETER PASSING.

XREG EQU 46H ;X register pass area
YREG EQU 47H ;Y register pass area
CMD EQU 49H ;6502 BIOS command
ADDR EQU 4AH ;Place to store 6502 sub address
X6502 EQU 40H ;6502 transfer address
GosuB EQU 0 ;CMD 0—GOSUB 6502
PADDLE EQU OFB1EH ;Location of paddie routine
PDL: XRA A .Set for paddie zero
STA XREG ;XREG=paddie number
LXI H,PADDLE ;Address of monitor routine
SHLD ADDR :Set the address
Mvi A,GOSuUB ;We want to execute a 6502 subroutine
STA CMD ;Set the command
CALL X6502 ;Call the routine
LDA YREG ;Get the paddle value
RET ;Home, James

C |

3

Programming Considerations

Using CP/M System Calls

The following section describes how to use the CP/M system
calls from your program.

Calling From an Assembly Language Program

To use CP/M system calls in programs, the following protocol
must be observed. The protocol governs the passing of informa-
tion between CP/M and the calling program in the TPA.

1.

The calling program must enter the number of the system
call in register C of the CPU.

For single-byte output data, the calling program must
place the data byte in register E.

16-bit data is either sent or read to a pair of registers
(usually registers DE) by the calling program. See Chap-
ter 3 for specific information about each system call.

Data longer than 16-bits is placed in an area of memory
called a parameter block. The address of the parameter
block is placed in the DE or HL register pair.

The calling program must issue a CALL 0005 instruction
or equivalent.

The calling program reads register A for single-byte input
values.

25

Premium SoftCard Ile Programmer’s Manual

Assembly Language Program Example

The following assembly language program demonstrates how
system calls are used in a typical program. The program reads
characters from the Apple Ile keyboard, and writes them to a
specified file until CONTROL-Z is typed. It then closes the file
and returns to CP/M command level. The program is written
in 8080 assembler code.

Example Notes

26

To demonstrate different program concepts, the example pro-
gram performs some unnecessary steps and also lacks several
features to make it useful. For example, it only displays the
characters that you type (including carriage returns and con-
trol characters). To make the program useful, modify the loop
section to check for a carriage return entered from the key-
board. If a carriage return is entered, the program would then
display and write a linefeed (ASCII 0AH) immediately follow-
ing the carriage return.

Another problem is the backspace character. Most often, a
backspace is used to move the cursor back to a typing error,
and the erroris corrected. This appears to work properly on the
screen, but the program is unnecessarily writing the error
character followed by the backspace character to your file.

C

Programming Considerations

Running the Example
To use the program once it is assembled and loaded, type:
) SAMPLE FILENM

and press RETURN. The FILENM may be any filename you
choose. The Console Command Processor (CCP) will put the
filename into the default File Control Block located at memory
address 005CH.

Example Listing

;Sample program FILENM

BDOS EQU 5 Equate BDOS to represent memory location
;0005H. This is the address that the program
;iumps to when it requests a function from
;CP/M. Any reference to BDOS in this
;program now refers to 5.

) ;CP/M system call numbers ‘used in this program.
GETCH EQU 1 ;System call 1 gets character from console
DISTRNG EQU 9 ,System call 8 prints an ASCH string
CLOSFL EQU 16 ;System call 16 closes a file
KILLFL EQU 19 ;System call 19 deletes a file
WRITE EQU 21 ;System call 21 writes sequential
BLDFIL EQU 22 ;System call 22 creates a file
FCB EQU 005CH ;Address of default File Control Block

DMA EQU 0080H ;Address of default disk buffer

;Begin actual code

ORG 0100H :Tell loader to locate the program at 100H.
i This is the location used for aimost all
;CP/M programs.

LXI SP,STACK ;Set up stack pointer for this program.

;STACK is actually an address defined in
;the data area that follows.

27

Premium SoftCard Ile Programmer’s Manual

28

BLDOK:

;Create file

LXI D,FCB ;Load the D and E registers with the FCB
,address. (Since this is a 16-bit operation,
;the higher-order byte of the FCB is in the D
register.)

MVI C,KILLFL ;Before creating the file we must make sure
;that it doesn’t already exist. Function 19
;deletes an existing file of the same name.

PUSH D ;Save address of the FCB in case the call
;destroys it.

CALL BDOS 'Kill file if the file is there.
;Normal procedure would be to check if
;function was successful, but we don't care
;with this function.

POP D ;Restore D from stack (previously PUSHed).

MVI C,BLDFIL ;Select build file routine.

CALL BDOS ;Call CP/M to create file.

CPI 255 ;Compare contents of register A with 255 to
;indicate if the build file failed from a lack of
.directory space or a similar problem.

JNZ BLDOK Jump if not zero—if previous compare

,operation yielded a zero, then a match was
;found and file not built. If not zero, then file
,was built.

;File build error—display message then quit

LXi B,BLDERR ;Load D register with error message

;address.
MV C.DISTRNG :Select display string CP/M function (9).
CALL BDOS ;Call CP/M to perform function.
JMP QUIT ;Jump to the quit label that returns to

,CP/M.

;Build OK—Set up for input'

LXI D,DMA ;Load D and E registers with address of
;default DMA area.

MVI B.O ;Set character counter to zero.

LXt H,DMA ;Set up memory pointer to DMA area
(HandL).

C

LOOP:

WRTERR:

;Loop to input characters

MVI

PUSH
PUSH
CALL
POP
POP
CPI
Jz

MOV

INX

INR

MOV

CALL

JINZ

:Write DMA buffer to disk

LXI
MVI
CALL
CPI
JNZ
MVI
LXI
JMP

LX
MVI

CALL
JMP

C.GETCH

26

CLOSE

M,A

AB
128

LOOP

D,FCB
C,WRITE
BDOS

0
WRTERR
B.0
H.DMA
LOOP

D,WRTERM
C,DISTRNG

BDOS
QuIT

Programming Considerations

;Load C register with 1 (get character from
;keyboard).

;Save BE register pair.

;Save H and L register pair.
;Request CP/M to get a character.
;Restore HL.

;Restore BE.

;Compare A register against 26
;(CONTROL-Z).

;i equal then zero flag set and jump is
;performed to close routine.

;Move character just typed from A register
:to memory address pointed to by M
;(H and L regs).

;Increment memory pointer (HL) for next
;character.

/Increment character count (INC and INX
;perform same function but INC deals with
;8 bits, INX deals with 16).

;Move contents of B to A register.

;Has there been 128-bytes written since last
;write?

Buffer not full—get another character.

'
'

;,Load DE registers with address of FCB.
;Select write function.

;Request CP/M to write 128 bytes to disk.
;Check if successful (A=O means yes).

;If not zero then error occurred.

:Reset character counter since last write.
;Reload memory address of buffer area.
;Get another character and continue.

;Load DE with address of write error
;message.

;Select display string function.

;Call CP/M to display string.
Jump to quit program.

29

Premium SoftCard Ile Programmer’s Manual

'

; Write last sector then close file

CLOSE MOV M.A A contains CONTROL-Z (end-of-file marker).

;Move to disk transfer area.
Mvi C,WRITE ;Select CP/M write function.
LXI D.FCB ;Load DE register with address of FCB.
CALL BDOS ;Write DMA buffer to disk.
CPI 0 ;Check if A register equals 0.
JNZ WRTERR ;Jump if not zero to write error routine.
LXI D,FCB ;:DE must point to FCB.
MVi C,CLOSFL :Select CP/M close file function.

CALL BDOS ;Request CP/M to perform close.
;All done—Return to CP/M (CCP)
QuIT JMP 0 ;F'erform warm start.

;Data used

;This section reserves some areas of memory for work space
.and initializes some areas with data (error messages, etc).

BLDERR: DB ‘CANNOT BUILD FILES"

;Put that value in memory with the address
;referenced by BLDERR. The § tells the
.print string function when to quit printing
.data.

WRTERM DB ‘DISK WRITE ERRORS"
;Same as previous except for write error.
DS 32 ;Reserve 32 bytes for stack data.
STACK: ;This doesn't actually do anything with the
;stack or stack pointer until the address of
;this data (STACK) is loaded into the stack
pointer (SP). Notice that the fabel appears
;after the reserved data. This is because the
;STACK decrements towards 100H.
END ;Tell assembler we are through.

:End of program'

30

3

Programming Considerations

Calling From a High-Level Language

System calls can be used from any high-level language whose
interface modules can be linked with assembly language rou-
tines. (The interface module translates the high-level lan-
guage’s assembly language routine protocol to the CP/M pro-
tocol.) For specific information on how to implement system
calls for a particular language, see the language’s user manual
or equivalent. For the Microsoft BASIC Interpreter, this infor-
mation is contained in Appendix E, “Microsoft BASIC Assem-
bly Language Subroutines” of the Microsoft BASIC Interpret-
er Reference Manual.

Calling 6502 Subroutines

6502 subroutines (assembly language subroutines executed by
the 6502 microprocessor) can be called from a CP/M program
through the 6502 BIOS call 0, CALLSUB. For instructions and
more information on this call, see Chapter 4.

) Returning Control to the CCP

Programs which run in the TPA, and do not use the memory
reserved for the CCP, can return control to the CCP using a
RET assembly language instruction. Otherwise, System Reset,
system call 0, is used by programs to execute a warm start and
return system control to the CCP. This call is identical in
operation to executing a JMP 0000 instruction, which is the
way most programs execute a warm start.

Interrupt Handling

Because there is no interrupt line to the AUXILIARY slot of
the Apple Ile motherboard, Z80 interrupts are not implemented.
6502 interrupts can be used in programs by ending the inter-
rupt processing routine with a 6502 RTI instruction.

31

Premium SoftCard Ile Programmer’s Manual

170 Device Calls

The five system calls listed in Table 2.1 provide basic commu-
nication with 1/0 devices other than the disk drive system.

32

Table 2.1.

Basic 170 Communication System Calls

Name Call

Purpose

Console Input 1
Console Output 2
Reader Input 3
Punch Output 4

List Output 5

Reads a character from the assigned
Console device.

Sends a character to the assigned
Console device.

Reads a character from the assigned
Reader device.

Sends a character to the assigned
Punch device.

Sends a character to the assigned
Listing device.

Because of the dual microprocessor programming environ-
ment, use of the five basic I/O communication system calls are
dependent on current logical device assignment. Initially, all
four logical devices are assigned to the TTY: physical device.
However, each of the logical devices can be assigned to one
other implemented physical device. If reassigned, this can
affect the operation of the system call.

C

C

Programming Considerations

Note

Although there are 16 possible physical devices available,
only the TTY: and one alternate physical device (per logi-
cal device) are implemented initially. “I/O Communica-
tion and the IOBYTE” in Chapter 1 explains the reasons
and the technical details for this. The rest of this discus-
sion addresses the effect the alternate physical device
assignment has on the system calls.

The Console system calls (Console Input, system call 1, and
Console Output, system call 2) transfer single characters be-
tween the Console device and the CPU. Usually, the Console
device is assigned to the TTY: physical device, which is nor-
mally the Apple monitor and keyboard. If, however, an inter-
face board is installed in slot 3, that board becomes the TTY:
physical device and console 1/0 is routed to slot 3. It is possible
to have an interface board installed in slot 3 and still have the
Apple keyboard and monitor as the TTY: device. “Adding Non-
standard I/0 Devices and User Software” in Chapter 6 gives
information on how to change the slot assignment.

The alternate device assignment for the Reader device (PTR:)
and for the Punch device (PTP:) both route information to
accessory slot 2. If the PTR: device is assigned, Reader Input
will return information from that slot. The same is true for
Punch Output if the PTP: device is assigned.

List Output always returns information from slot 1 if the LPT:
device is assigned.

33

Premium SoftCard Ile Programmer’s Manual

Other Console Device System Calls

CP/M provides two other system calls for direct access to the
console. (Direct access is defined as accessing the Console
device without buffering or CP/M line editing commands.) Get
Console Status, system call 11, determines if a character has
been entered at the physical device assigned to the console. Ifa
character has been entered, CP/M enters 0OFFH in register A. If
no character has been entered, register A contains 00.

The other call for direct access to the console is Direct Console
1/0, system call 6. This permits programs to communicate
directly with the Console device in special applications where
normal console I/0 would cause problems with the program.
System call 6 differs from the other system calls by supporting
both input and output. If register E contains the value OFFH,
then CP/M assumes input is being requested from the console
and returns the next character in register A. If register E
contains any other value, then CP/M assumes output is being
requested, and sends the value, contained in register E, to the
Console device.

Buffered Console System Calls

34

The SoftCard implementation of CP/M also supports buffered
I/0. Buffered I/0 is the input and output of character strings
through the assigned Console device. Print String, system call
9, and Read Console, system call 10, permit programs to input
or output a string of characters with one system call, instead of
using a separate system call for each character.

(:

)

)

Programming Considerations

1/0 Device Assignment Calls

The IOBYTE is used by CP/M to monitor and change the
current logical to physical device assignments. (For more infor-
mation on IOBYTE, see the section “I/O Communication and
the IOBYTE” in Chapter 1.) Two system calls are provided to
manipulate the IOBYTE: Get IOBYTE, system call 7, and Set
IOBYTE, system call 8. The Get IOBYTE call returns the cur-
rent value of the IOBYTE in register A, and the Set IOBYTE call
changes the IOBYTE value. The IOBYTE values and the cor-
responding device assignment are listed in “8 Set IOBYTE”
in Chapter 3.

Creating Files

Files are created with Make File, system call 22. Make File
creates a directory entry for the file. Once a file has been
created, it can then be accessed by a program or the CCP. As
the file requires additional storage space, CP/M will automati-
cally create new directory entries for each new extent as re-
quired. This eliminates the need for subsequent Make File
system calls every time the file size requires another extent.

Deleting Files

Files are deleted from the disk with the Delete File system call.
Delete File erases all directory entries for the specified file on
the disk, and thus reclaims the file’s allocation units.

35

Premium SoftCard IIe Programmer’s Manual

Opening and Closing Files

36

Before a file can be accessed for either read or write operations,
CP/M must know where the file’s physical location is on the
disk and the number of extents. The Open Call system call (
provides this information by copying the disk directory infor-
mation from the disk and into the FCB in memory.

Before an Open File call can be executed, the FCB must con-
tain the filename in the filename field, and zeros in all other
fields. After the Open File call is issued, the remaining fields
are filled with data corresponding to the allocation block map
for that particular file.

CP/M will update the FCB allocation block map in memory, as
it reads or writes new data to the file. After a read or write
operation, the new allocation block map is written back into
the disk directory with Close File, system call 16. This is
required to prevent data from being lost.

Note (

Read operations do not change the FCB allocation unit
map in the disk directory. It is good programming prac-
tice, however, to close all files after read operations.

)

Programming Considerations

Searching for a File

To find out if a file exists on disk, Search For First, system call
17,is used. System call 17 returns a zero in register A if the file
named in the FCB is found on the disk and an FF value if the
file is not present. To find ambiguous filenames, wild card
characters can be used in the filename field of the FCB. If one
or more “?” characters are encountered in the filename, the call
will return a 00 value for the first filename that matches. To
find other files that match, Search Next File, system call 18,
must be used. Search Next File returns a 00 value for each file
that matches the filename and FF if no matches are found.

File Read and Write Operations

When a file has been opened, data can be read from or written
to the file. CP/M supports two types of read/write operations:
sequential access and random access.

Sequential Access

Sequential read or write operations access successive records
of an open file. When a file is opened, each successive read or
write operation reads or writes the next record in the file. CP/M
automatically updates the record number (byte 32 of the FCB)
of the accessed file every time a Read or Write system call is
performed. A program can set the initial extent and record to
be read by setting bytes FCB 12 and 32 to the desired values.
This permits sequential reading anywhere in the file without
having to read all of the previous records.

The disadvantage of sequential access is that it is very time
consuming and requires that the records following the written
record be read and rewritten. Because of this limitation, se-
quential access is rarely used.

37

Premium SoftCard IIe Programmer’s Manual

Random Access

38

Random access read and write operations access records that
are in random locations on the disk. The SoftCard version of
CP/M supports full random access records, whereas earlier
versions of CP/M support only a limited version of random
access.

Note

Programs using random access methods (using the se-
quential read/write commands) written under CP/M ver-
sion 1.4 are permitted with the SoftCard version of CP/M.

The random access system calls (Read Random, Write Ran-
dom, and Set Random Record) have two enhancements which
make true random access possible. The first is that records do
not have to be contiguous, and the second is the ability to
convert record numbers from 1 to 65536 into the proper extent/
record designations. This frees the program from having to
convert records. To maintain compatibility with earlier ver-
sions, CP/M version 2.2 places the random access record num-
ber in the r0—r2 field of the FCB.

Note

The read/write sequential calls will only update the ex-
tent and record bytes in the FCB and not the random
access record number bytes.

)

Programming Considerations

Miscellaneous System Calls

Several other disk I/0 system calls are provided for using the
CP/M file structure in certain situations. They are used to
initialize or interrogate certain disk functions.

The most commonly used of these is Set DMA, system call 26.
Set DMA sets the disk 1/0 buffer to the 128-byte block of
memory beginning with the address contained in the DE regis-
ters. (The SoftCard version of CP/M uses memory locations
0080 to OFF, but any 128-byte block of memory can be used.)
Use Set DMA to change the buffer location in memory.

The remaining system calls are used mainly by CP/M to imple-

ment the various disk-related functions specified by the CP/M
utilities.

39

