The Assembly Advantage

by Randall Hyde

Trying Out the Tools—

Some Basics

Once the beginner masters his
Apple computer and develops
a strong command of the Basic lan-
guage, thoughts immediately turn to
optimization. There’s probably not a
single program written that couldn’t
benefit from extra speed or addition-
al features. So the beginner learns
Basic tricks, like removing Rems,
moving subroutines to the beginning
of the program, and declaring often-
used variables early in the program.

Ultimately, however, jerry-rigging
fails to achieve the needed improve-
ment and the programmer is forced
to contemplate use of a faster lan-
guage. While faster high-level lan-
guages, like Pascal and Forth, are
available for the Apple II, these lan-
guages can’t come close to 6502 as-
sembly language. For the program-
mer writing time-critical code (like a
hi-res arcade game) using 6502 ma-
chine code is an absolute necessity.

However, 6502 assembly lan-
guage, the gateway to 6502 machine
code, is difficult to learn. To ease the
burden I have created a set of subrou-
tines, collectively called Speed/Asm,
to help minimize the effort. This se-
ries of articles will describe how you
can easily create your own machine
language programs using the Speed/
Asm package.

-Speed/Asm, like- its companion,
the LISA interactive assembler, is es-
pecially designed for the beginner at
6502 assembly language program-
ming. I developed these packages as
tools for use in the assembly language
classes I teach in southern California.
T've discovered that students who
learn 6502 assembly language using
the Speed/Asm package achieve com-
petence much faster than those who
learn using traditional methods of in-
struction.

Speed/Asm is a collection of sub-

routines you call from your program
to perform certain tasks. In particu-
lar, the Speed/Asm subroutines emu-
late many of the statements found in
Basic and Pascal. For example, the
Basic program

10 FORI=1TO 100

20 PRINT L

30 NEXT1

is translated into Speed/Asm as

JSR FOR
ADR I,1,100
JSR PRTINT
ADRI
JSR NEXT

Persons using a macro assembler,
like LISA version 3.0, could even
code this as

.FOR 1,1,100
PRTINT 1
NEXT

As you can see, Speed/Asm looks
quite a bit like Basic. But keep in
mind that Speed/Asm is assembly
language so you get a considerable
performance boost compared to
Basic.

Getting Started

Probably the best place to start is
with the disk that comes in the
Speed/Asm package. A quick cata-
log of the disk reveals that about 11
programs are included.

The file Speed/Asm is the boot
program that does the cataloging.
RELSA and RELFP are two pro-
grams used to generate a Speed/Asm
program. Speed/Asm is relocatable
to any page boundary; RELSA and
RELFP are the programs that create
an absolute version of the Speed/
Asm program for actual use. RELFP
generates a full Speed/Asm package,
including the floating point opera-
tions. RELSA generates a copy of
Speed/Asm without the floating

point subroutines, hence it is much
shorter.

SAFP.78, the next program on the
disk, is a copy of Speed/Asm that has
been located to address $7800. This
file is provided for the convenience of
those who want to write programs as
quickly as possible without having to
learn how to use the RELSA or
RELFP program first. I will use
SAFP.78 in all the examples I pre-
sent, although only one line in your
program will need to be changed if
you wish to use Speed/Asm loeated at
some other address.

The SA.EQUATES file contains
equates for all the Speed/Asm sub-
routines. The file on this disk is pro-
vided in a LISA 2.5 compatible for-
mat (which can also be read in
by LISA version 3.0). For those
who are using an assembler other
than the LISA interactive assembler,
the SA.EQUATES file is reproduced
in the program listing.

Incidentally, if you're a beginner
and in the process of choosing an as-
sembler, I would highly recommend
a look at LISA. It is an interactive as-
sembler that makes learning assem-
bly language much easier. Unlike
other assemblers, LISA catches errors
on input, much like Basic.

I’'m going to make the assumption,
in this column, that you’re using the
LISA assembler. Attempting to de-
scribe every LISA feature to users of
other assemblers would be too great
a distraction. Attempting to write
the code in a general fashion would
make the programs overly large and
confusing.

The remaining six programs pro-
vided on the Speed/Asm disk are test

Address correspondence to Randall Hyde, La-
zer Microsystems, 1791 Capital, Corona, CA
91720.

36 Cider April 1983

jim

programs that were used to help vali-
date the Speed/Asm package. You
may want to look at these files to get
an idea of how Speed/Asm programs
are written.

Preparing for Your First Program

Before we can jump in and run our
first program there are several deci-
sions that must be made. To begin
with, we must decide where the pro-
gram will run. Unlike Basic, which
uses the same data in memory for the
source code and run-time code, as-
sembly language programs must be
converted from a source (human-
readable) format to an object code
(computer-readable) format. This
conversion is accomplished by an as-
sembler like LISA. Once the source
file is converted to object code you
can run the program by executing the
object code.

Most assemblers on the market (in-
cluding LISA) operate in a co-resi-
dent mode. This means that the
source text file and object code both
reside in memory during the assem-
bly of the program. Since both files
are maintained in RAM at the same
time, care must be taken to ensure
that the source and run-time object
code do not disturb one another. In
Basic, memory was allocated auto-
matically for you. While using 6502
assembly language, the memory
management chore is left up to the
programmer. So extra care must be
taken when creating programs.

By referring to Figure 1 you can
get an idea of what the Apple’s mem-
ory space looks like while using LISA.
In particular, locations $800 through
$17FF are reserved for holding your
object code, and locations $1800 and
up are reserved for the source file.
Four kilobytes of RAM should prove
to be sufficient for most programs.
Advanced programmers who require
more RAM should consult the LISA
documentation to find out how to ad-
just the default textfile/object code
size settings.

Whenever you assemble a pro-
gram, LISA automatically begins
assembling and storing the code at lo-
cation $800. Unless you want to as-
semble the code at some other loca-

The Assembly Advantage

$0000 —& | appLg SYSTEM

VARIABLES

$0400 —> | appLE TEXT

SCREEN MEMORY

$0800 — "4y SPAGE RESERVED

FOR USER CBJECT
CODE

51800 —>| | isp TEXT FILE

BEGINS HERE

$7800 —+["Sorp 78 LoaDS

HERE

$9600 —+ | o0s gTaRTS HERE

$2000 —+{ 1,5 gpace

$0000 —= [“{ysa cooe

RESIDES HERE

$F800 — | cale moniToR

Figure 1, Apple memory map.

tion, no special action is necessary to
assemble your code into the proper
space in RAM.

do nothing at all! Actually it does do
something: it immediately returns
control to the Apple monitor. This
program, as simple as it is, is impor-
tant because it demonstrates how to
terminate a 6502 assembly language
program.

Consult the documentation that
came with your assembler and learn
how to use the editor to enter text into
the source file buffer. Once you've
mastered the editor, enter the follow-
ing program into the text buffer:

EXIT EQU $FF59
JMP EXIT
END

Once you've entered this pro-
gram, assemble it using the assem-
bler (the documentation should
describe how to assemble a file).
With LISA this is accomplished by
typing ASM followed by a carriage

« return. Once the assembler has com-

Writing Your First
Assembly Language Program

The first program we'll write will

pleted the task of assembling the
code, you should access the Apple
monitor program (LISA users type
BREAK) and issue the Apple moni-

Listing. Speed/Asm Equates.

ggg 1 TTL "Listing One: SPEED/ASM Equates™
2 ;

0800 3 ; GENERAL PURPOSE EQUATES

0800 4 ;

0000 5 FORASAV EPZ 0

0001 6 FORXSAV EPZ FORASAV+]1

0002 7 FORYSAV EPZ FORXSAV+1

0003 8 FORZNG EPZ FORYSAV+1

0005 9 DESTADR EPZ FORZIFGH2

Q007 10 PTRADR EPZ DESTADR+2

0009 11 ISIMMED EPZ PTRADR+2

000A 12 oOP EPZ ISIMMED+1

000C 13 MAXLEN EPZ OP+2

000D 14 VALUE EPZ MAXLEN+1

000F 15 DIGIT EPZ VALUE+2

0010 16 LEADQ EPZ DIGITH1

0011 17 OMBADR EPZ LEAD(O+1

0013 18 QOUNT EPZ JMPADR+2

0014 19 GOTLN EPZ COUNT+1

0015 20 LINEINDX EPZ GOTIN+L

0016 21 SIGN EPZ LINEINDX+l

0017 22 AL EPZ SIGN+1

0018 23 ACH EPZ ACILA+1

0019 24 XTNDIL EPZ ACH+1

001A 25 XTNDH EFZ XINDIAL

001B 26 AUXL EPZ XTNDH+1

001C 27 AUXH EPZ AUXIA1

0800 28 ;

0033 29 PROMPT EPZ %33

004E 30 RNDL EPZ $4E

004F 31 RNDH EPZ $4F

0100 32 STACK EQU $100

0200 33 INPOT BXJ $200

0800 34 ;

Listing continued.

April 1983 Cider 37

Listing continued.

0000 35 FALSE EQU 0
0001 3 TRUE B 1
008D 37 R BU $8D

| 0800 38 ;
0800 39 ;
0800 40 ; "IF" STATEMENT EQUATES
0800 a
) £ m KU "=
00a3 8N EQU "$"
00BE 44 Gr 0o ">
00BC 45 LT en
BDBE 46 GE BQU "R | #s"255
EDBC 47 LE BQU "<" | "="*256
0800 48
0800 29
0800 50 ;
0800 5
0800 52 ; SPEED/ASM ENTRY POINTS
0800 5 ;
0800 54 ;
0800 55 3
0800 56 ; NOTE: THE EQUATE OF PUTC MUST
0800 57 ; BE CHANGED IF YOU RELOCATE
0800 58 ; SPEED/ASM TO SOME LOCATION
0800 59 ; OTHER THAN $7800
0800 60 ;
7800 61 DUTC EQU $7800
7803 62 GEIC BOU PUTCH3
7806 63 SAGL MU GEIC+3 ;FOR USE BY S/A ONLY- SEE DOC,
7809 64 SAPC BOU SAGI#3 g n M ow on now
780C 65 HOME BQU SAPC+3 ;HOME AND CLEAR
780F 66 READLN HQU HOME+3
7812 67 INIT BQU READLM43
7815 68 FOR MU INTT43
7818 69 FORO PQU FOR+3
7818 70 NEXT BQU FORO+3
781E 71 IFI EQU NEXT+3
7821 72 IFIO BQU IFI+3
7824 73 IFS U IFI0+3
7827 74 IFSO BQU IFS+3
7823 75 MOVE BQU IFS0+3
782D 76 ILOAD BQU MOVEt3
7830 77 MVS BOU LOAD+3
7833 78 IDSIR BQU MOVSH
7836 79 PRINT BOU IDSTR+3
7839 80 PRTSTR BQU PRINTY3
783C 81 PRTINT BQU PRTSTR+3
78F 82 RDSTR BQU PRTINT+3
7842 83 RDINT BQU RDSTR+3
7845 8 ONXGOTO FQU RDINT43
7848 & CASE BOU ONXGOTOH3
7848 8 CASEI EQU CASE+3
784E 87 INSET BOU CASEI+3
7851 88 NOTINSET EQU INSET+3
7854 89 2BS BQU NOTINSET+3
7857 %0 NEG B)U ABSH3
785 91 MIL BQU NEGH3
785D 2 DIV BOU MUL43
7860 93 MD BQU DIV+3
7863 94 RD BOU MOD#3
7866 9% SUBSTR EQU RD+3
7869 9 INDEX EQU SUBSTR+3
786C 97 LENGTH BQU INDEX+3
786F 98 CONCAT EQU LENGTE+3
7872 99 GHIWZEG BQU CONCAT+3 ;USED BY SPEED/ASM
7875 100 ROFP FQU GEIWZEGH3
7878 101 PRTE EQU RDFP+3
7878 102 PRTF BQU PRTE+3
787E 103 FADD BQU PRTF43
7881 104 FSUB BQU FADD+3
7884 105 FMUL BQU FSUB+3
7867 106 FOIV BQU FMDL43
788 107 FLT BQU FDIV43
788D 108 FIX BQU FLT+3
7890 109 FNEG BOU FIX+3
7893 110 FADDIN BQU FNEGH3
789% 111 FSUBTN EQU FADDTM3
7899 112 FTIMES QU FSUBTN+3
789C 113 FINIO BQU FTIMES+3
780F 114 IFF BQU FINTO+3
7882 115 MOVFP EQU IFF3
0800 16 ;
0800 117 BD

38 Cider April 1983

The Assembly Advantage

tor command 800G. The computer
will beep and return you to the mon-
itor mode. Congratulations! You've
just run your first 6502 assembly
language program.

A discussion of exactly what hap-
pened may help clear up any prob-
lems you have understanding the op-
eration of this program. First of all,
the statement

EXIT EQU $FF59

isn’t a true 6502 assembly language
statement at all. The EQU instruction
is an example of a pseudo opcode,
or assembler directive, provided by
most assemblers. This instruction
tells the assembler to replace ev-
ery occurrence of EXIT with the val-
ue $FF59 during the assembly of the
program. So, the next instruction
(JMP EXIT) is converted to JMP
$FF59.

The JMP (jump) instruction on the
second line performs the same opera-
tion as a Goto in Basic. The JMP EX-
IT instruction directs the 6502 to
jump to address $FF59 and begin ex-
ecuting code there. The entry point
for the Apple monitor program just
happens to be at address $FF39, so
jumping to this location reactivates
the Apple monitor. Since the pro-
gram is executed from the Apple
monitor and immediately returns
control to the monitor, it will appear
that nothing has happened.

The END pseudo opcode is re-
quired at the end of all LISA source
files. It marks the physical end of the
program. The END statement does
not terminate the execution of your
program. It is simply a marker for the
assembler so it knows when to stop
assembling the file. To terminate the
program jump to location $FF59.

Other Methods of
Terminating Your Programs

In addition to jumping to location
$FF59, there are three other ways to
terminate an assembly language pro-
gram. Providing you are not within
some nested subroutine and you
haven’t pushed any data onto the
stack (advanced stuff), you can re-
turn control to the Apple’s monitor

Congratulations!
You've just run
your first 6502
assembly language
program.

with the simple command
RTS

This is a return-from-subroutine
instruction. It’s quite similar to Re-
turn in Basic. This program can be
rewritten as:

RTS
END

If you assemble and run this pro-
gram, control will once again be re-
turned to the Apple monitor. This
time, however, the speaker won’t
beep at you.

Another method for program ter-
mination is the BRK instruction.
This instruction (used in a manner
identical to RTS) beeps the speaker,
prints the contents of the 6502’s reg-
isters, and then transfers control to
the Apple monitor. BRK is used
mainly for debugging purposes, but
you can use it anytime it’s conve-
nient to get a printout of the 6502
registers.

The last method for program ter-
mination I'll mention is very similar
to the first example. A jump to loca-
tion $FF69 also transfers control to
the Apple monitor. Basic users are
already familiar with this entry
point to the Apple monitor. It’s the
CALL-151 instruction you use to get
into the monitor in the first place.

Writing Your First
Speed/Asm Program
Now that you can stop your pro-

gram, the next step in learning how
to use Speed/Asm is to begin writing

i

programs that use it. Load the
SA.EQUATES textfile into LISA
and insert the following code just be-
fore the END statement in line 121:

EXIT EQU $FF69
JSR INIT
JMP EXIT

Assemble the program as before.
But before you run it (and while
you're still in LISA) type control-D
BLOAD SAFP.78. Now break to the
monitor and run the program by
typing 800G. Note that the program
will ask if your Apple can display
upper- and lowercase. Once you
type Y or N, control returns to the
Apple monitor. If you answer Y,
then all text sent to the screen is sent
completely unmodified. If you an-
swer N, then all lowercase charac-
ters are converted to uppercase
before being output to the screen.
This allows you to take advantage of
lowercase add-on equipment, like
the Lazer Microsystems’ Lower Case
+Plus and Keyboard + Plus units,
without having to worry about com-
patibility problems with Apples not
so equipped.

The JSR INIT instruction is new,
JSR (which stands for jump to sub-
routine) is quite similar to GOSUB
in Basic. Control is transferred to the
specified address, where some
routine is executed. The program
then resumes execution at the next
instruction after the JSR, whenever
an RTS instruction is executed. The
INIT subroutine entry address is de-
fined in the Speed/Asm equates. Init
must be called before running any
Speed/Asm program. Failure to do
so will cause the package to
malfunction.

Once INIT is through doing its
thing (asking you about lowercase
and initializing the system), control
is returned to the Apple monitor by
the execution of the JMP EXIT in-
struction, ,

At this point we've mastered all
the mechanics of running a Speed/
Asm program: begin by JSRing to
INIT, and end with a jump to loca-
tion $FF69. Your Speed/Asm pro-

April 1983 ider 39

The Assembly Advantage

gram fits in between these two in-
structions. Consider the following
program:

EXIT EQU $FF69

’

?

JSR INIT
JSR PRINT
BYT “This is a test”,CR,0
JMP EXIT
It prints
This is a test

followed by a carriage return onto
the video screen. This is but a short
example of how to write your own
Speed/Asm program. I will describe
what this program does when I talk
about the Print subroutine.

Declaring Variables in Speed/Asm:
A Short Course in Data Structures

Speed/Asm programs can use any
of four different data types: individ-
ual character, character string, in-
teger number, and real (floating
point) number. Unlike Basic, but
similar to Pascal, storage space for
all variables used in a Speed/Asm
program must be allocated some-
where in the program. In order to
define a variable for use by Speed/
Asm you must understand the un-
derlying representations for the
character, string, integer, and real
data types.

The Apple’s memory space con-
sists of 65,535 memory cells called
bytes. Each byte holds one charac-
ter, or other sub-unit of data. String,
integer, and floating point variables
are created by combining several
bytes. For example, integer vari-
ables reside in two contiguous bytes
of RAM; real variables (in Speed/
Asm) require eight contiguous bytes.
String variables need n+2 bytes
where n is the maximum number of
characters you want the string to
hold. You must explicitly reserve
sufficient space for each variable
you plan to use.

Most assemblers provide several
pseudo opcodes to be used to reserve
blocks of memory for multi-byte data
types. Applicable pseudo opcodes
provided in the LISA assembler in-
clude BYT, HBY, HEX, ADR, DBY,
STR, ASC, INV, BLK, .DA, DCI

BIT NUMBER 5 14 13 2 11 10

sien

ARBINLY

Figure 2. Two’s co

INTEGER PORTION

P

t repy

and DFS. Most of them differ in how
they allow you to initiglize the
variables you are defining. For our
purposes the BYT, ADR, STR and
DFS pseudo opcodes will be used to
declare variables.

BYT reserves one byte of storage
for each operand present on the line
after the BYT instruction. For exam-
ple, the instruction

BYT 0,1,2,3,4

reserves five bytes of memory and
initializes them to the values zero,
one, two, three and four, Since a
single byte can only represent
numeric values in the range 0 to 255,
any attempt to define an initial
value outside this range will be
futile.

If you attempt to define a value
greater than 255 using the BYT
pseudo opcode, LISA uses the low
order (L.O.) byte of the value as the
initial value for that location. For
example, the statement

BYT EXIT
where EXIT is equated to $FF69
produces the same code as
BYT $69
The high order (H.O.) of EXIT’s
value is ignored by the BYT pseudo
opcode.

To define a single-byte variable
(possibly to hold a character value),
place the variable’s name in column

1 of the line containing the BYT

pseudo opcode. If you want to
define a single-byte variable called
CHAR, do so using the statement
CHAR BYT 0
This statement defines CHAR, re-
serves space for it and initializes the
variable to zero.

Another way to reserve space for a
variable is with the DFS (define stor-
age) pseudo opcode. Whereas BYT’s

operand specifies the initial value the
space reserved occupies, DFS’s oper-
and specifies how many bytes are to
be reserved. If you don’t need to ini-
tialize CHAR to zero, an alternate
method of defining it could be

CHAR DFS 1

This instruction tells LISA to reserve
one byte of storage for the CHAR
variable.

Integer variables in Speed/Asm
are represented using the standard
two-byte two's complement format
(see Figure 2). Fifteen bits are used
to hold the numeric value, and bit
number 16 holds the sign. A two-
byte integer variable can represent
values in the range -32768 to
+ 32767. Basic programmers should
quickly recognize this range as the
same supported by Basic integer
variables. Basic uses this same for-

-mat to store integer variables.

To reserve space for an integer
variable in Speed/Asm you must re-
serve at least two bytes. One way to
accomplish this is to follow the BYT
pseudo opcode with two operands—
that is,

INTGR BYT 0,0

But this method is inelegant be-
cause BYT should be used for declar-
ing byte variables. The ADR pseudo
opcode provides a much better alter-
native to the BYT pseudo opcode for
declaring integer variables. The previ-
ous declaration could be rewritten as
INTGR ADR 0

Since two bytes are reserved for each
operand, only one operand need fol-
low the ADR pseudo opcode. Fur-
thermore, if you follow the ADR
pseudo opcode with a value that re-
quires two bytes to hold (like EXIT,
or some value greater than 255 or
less than zero), ADR will properly
store the two’s complement repre-

40 Cider April 1983

42 @ider April 1983

F EXPONENT

BYTE NUMBER 7 8 5

S16N SIGN

Figure 3. Floating point representation.

MANTISSA

BYTE NUMBER o 2 3

MAXIMUM | piagy | secomd | THIRD

STRING
LENGTH CHAR CHAR CHAR

NEXT 1

T cast| .
LAST | CHAR °
cHAR

Notes:

1) Strings always begin with a byte containing the maximum allowable length of the string.

2} The maximum length is followed by m characters where m is the current dynamic length of the string.
3} All strings are terminated with a zero byte that marks the end of the string.

4} At least n+ 2 bytes must be reserved for a string with maximum length n.

Figure 4. String representation.

sentation in memory for you.
Another way to reserve space for

an integer variable is with the DFS

statement. The instruction

INTGR DFS 2

reserves two bytes of storage for the
integer variable INTGR.

'Floating point variables in Speed/
Asm require eight bytes. The only
practical way to reserve space for a
floating point variable is to use the
DFS statement. Since eight bytes are
required, the definition of a floating
point variable takes the form

FLTPT DFS 8

Since LISA doesn’t support a
floating point pseudo opcode, you
cannot initialize a floating point
variable unless you know the hexa-
decimal representation for the value
you're interested in. Figure 3 shows
the floating point format used by the
Speed/Asm package.

The last data type supported by
the Speed/Asm package is the string
data type. Strings differ from data of
other types in that they vary in
length. The amount of space you re-
serve for a string depends entirely on
how big you wish to allow it to
grow. A string in Speed/Asm sup-
ports two length attributes: a maxi-
mum string size and 4 dynamic (cur-
rent length) size. Figure 4 shows the
format of a string in Speed/Asm.

To declare a string you must re-
serve n + 2 bytes, where n is the max-
imum number of characters you
wish to allow the string to hold. The
first byte of the string must be ini-

tialized with the maximum length of
the string. For an uninitialized
string, the second byte should con-
tain zero. The easiest way to define a
string is to use the ADR and DFS
pseudo opcodes in conjunction with
one another as follows:

STRING ADR 40
DFS 40
The ADR pseudo opcode initial-
izes the first byte of the string to 40
(the maximum length of the string)
and tlie second byte of the string is
initialized to zero. The DFS 40 in-
struction reserves the 40 bytes neces-
sary to hold the string. Additional
methods of reserving space for
strings will be considered as the need
arises.

Placement of Variables
In Your Program

One last detail concerning the
declaration of variables is the place-
ment of variables within your
Speed/Asm program.]

The safest place is between the fi-
nal JMP EXIT instruction and the
END pseudo opcode. For technical
reasons it is imperative that you do
not place your variable declarations
at the beginning or in the middle of
the program.

In this article, the first installmenit
in a series, I've discussed some fea-
tures of the Speed/Asm package and
how to reserve space for variables.
Next time I'll describe how to use
these variables and write some real
Speed/Asm programs. ll

The Assembly Advantage

by Randy Hyde

Speedy Integers

Last time I discussed how vari-
ables are defined in a SPEED/
ASM program. One byte must be re-
served for a character variable, two
bytes for an integer variable, eight
for a floating point variable, and
(n+ 2) bytes must be reserved for a
string variable. Now I'll describe how
to perform integer arithmetic using
the SPEED/ASM package.

Before describing how to deal with
integer values in SPEED/ASM, 1
think a brief review concerning the
declaration of integer variables is in
order. As 1 mentioned last time,
SPEED/ASM integers require two
bytes of storage in RAM memory.
While there are many ways to reserve
two bytes of storage for an integer, 1
prefer to define an integer variable
using the ADR pseudo-opcode thus:

<name> ADR 0

where <name> is the variable name
with which I wish to reference the in-
teger value. For example, to declare
the integer variables I, J and K, I
would use the statements:

I ADRO
JADRO
KADRO

Integers on the 6502 consist of two
bytes; the first eight bits (byte) com-
prise the low order byte (L..O. byte)
and the second eight bits of the in-
teger comprise the high order byte
(H.O. byte). A single byte can hold
any numeric value in the range 0. . .
255. Two bytes (taken as an unsigned
integer) can be used to represent
values in the range 0. ..65535. The
SPEED/ASM package uses a mod-
ified form of the binary numbering
system called the two’s complement

Address correspondence to Randy Hyde,
Lazer MicroSystems, 1791 Capital, Corona,
CA 91720.

numbering system. A pure binary
numbering system cannot be used to
represent negative values so the use of
the binary number system is quite
restrictive. The two’s complement
number system divides the unsigned
range in half and uses half of the
possible values to represent the
numbers 0...32767 and the other
half of the available values to repre-
sent numbers in the range -32768. . .
-1. Since SPEED/ASM uses the
same two’s complement format em-
ployed by Basic, SPEED/ASM’s nu-
meric range (-232768...32767) is
the same as Basic’s.

Always remember that SPEED/
ASM variables must be defined out-
side the range of your code. That is,
during the execution of your program
the 6502 must never jump to or fall

through to a variable location. The
6502 would extract the data at that
location and attempt to executeit asa
valid 6502 instruction—usually with
undesirable results. A well written
SPEED/ASM program will have its
variable declarations at the end of the
program, after the JMP EXIT in-
struction (or whatever other method
you use to terminate program execu-
tion—see Part One of this series). A
good format for your SPEED/ASM
programs is shown in Example 1.
Once you've defined an integer
variable, the next step is to manip-
ulate the data it holds. There are
essentially ten integer operations avail-
able to the SPEED/ASM program-
mer: loading a variable with a value,
copying the contents of one integer
variable to another, the absolute val-

; (Put the SPEED/ASM equates here)

EXIT EQU $FF69

?

JSR INIT
; (Your SPEED/ASM program goes here)
JMP EXIT

; Variable declarations go here, eg:

1 ADR 0

] ADR 0
5 ete.
END

Example 1.

;Always call INIT first.

;Used to terminate the program

;Required by LISA for end of program.

42 €ider May 1983

The Assembly Advantage

CLC ;Always before an addition SEC ;Carry must be set before a subtraction

LDAI ;Add L.O. byte of I to the LDAI ;Subtract the L.O. byte of] from

ADC] ;L.O. byte of J and SBC } ;I and store the difference

STAK ;store sum in L.O. byte of K. STAK sinto the L.O. byte of K.

LDAI+1 ;Add H.O. byte of I to the LDATI+1 ;Subtract the H.O. byte of] from

ADCJ+1 ;H.O. byte of J and store the SBCJ+1 ;the H.O. byte of I and store the

STAK+1 ;sum in the H.O. byte of K. STAK+1 difference into the H.O. byte of K.

Example 2. Example 3.
ue function (:/\BS) R ne.gaﬁion‘, add%— CLC CLC
tl.op, subtraction, mulFlphcatlon, di- DA I LDA #5639
vision, modulo (remamf:ler) and the ADC #4369 ADC]
random number function. Beyond “STA K STA K
these computational capabilities, the LDA I+l LDA /15639
ability to input and output integers is ADC /4369 ADC J+1
also desirable. STA K+ STA K+1
Addition and subtraction are han- N

dled so easily in 6502 machine code Example 4. Example 5.

that SPEED/ASM doesn’t include ad-
dition and subtraction routines. If
you wanted to add I and] and store
the sum in X you would use the code
in Example 2.

The CLC (clear carry) instruction
absolutely must precede the addition
sequence. Failure to clear the carry
flag before performing the addition
operation may result in an intermit-
tent bug in your program. This addi-
tion sequence is almost identical to
the Basic statement:

K=1+]

To perform a subtraction in 6502
assembly language (or SPEED/ASM),
use the sequence in Example 3. Note
that the carry flag must be set (using
the SEC instruction) before perform-
ing the subtract sequence. Failure to
set the carry before performing a sub-
traction may-yield unpredictable re-
sults. The subtraction sequence
above is roughly equivalent to the
Basic statement:

K=I-]

If you need to add a constant to an
integer variable (instead of adding
two integer variables together) the #
and / operators can be used to specify
constants in the, 6502 operand field.
The # is used to specify the L.O. byte
of an integer constant and the / is
used to specify the H.O. byte of an
integer constant. If you wanted to
add the constant 4369 to the integer
variable I and leave the result in K

you would use the code in Example 4.

This would produce the desired
results. If you wanted to use a
negative constant, LISA v2.5 re-
quires that you preface the negative
value with an exclamation mark.
LISA v3.0 imposes no such restriction
(see Example 5).

Testing for Overflow and Underflow

As I mentioned, the 6502 addition
and subtraction operations are only
rough approximations of the listed
Basic statements, The difference be-
tween the assembly-language and
Basic statements is in the way Basic
checks for overflow or underflow. In
Basic, if you attempt to add 32000 to
32000 you will get a “>32767" error.
In assembly language you will end up
with the value —~ 1536 in variable K,
and no error will be reported. When
I was learning addition in grade
school I was taught that 32000 +
32000 equals 64000, not — 1536.

If you can live with a possible
overflow or underflow, the above se-
quences should work just fine. If you
need to report an error if overflow oc-
curs, you must check the 6502 over-
flow flag after performing an addi-
tion or subtraction. After an addition
or subtraction the 6502 overflow flag
will be clear if the result is within
range and set if it is out of range. The
6502 BVC (branch if overflow clear)

and BVS branch if overflow set) in-
structions can be used to check for an
overflow or underflow condition (see
Example 6).

Initializing and Copying
Integer Variables
The MOVE and LOAD routines
are used to copy and initialize integer
variables in a SPEED/ASM program.
LOAD lets you initialize an integer
variable with an integer constant and
MOVE lets you copy the contents of
one integer variable into another.
The LOAD command uses the
calling sequence:
JSR LOAD
ADR <value>,<name>
This routine copies the two-byte in-
teger <value> into the variable speci-
fied by <name>. For example, to
load the value 3765 into the variable I
you would use the statement:
JSR LOAD
ADR 3765,1
Toload a negative number into the
variable LISA 2.5 users must preface
the negative number with the ex-
clamation point (!). To load -438
into the variable I you should use the
statement(s):
JSR LOAD
ADR 1-438,1
LISA 3.0 users should omit the ex-
clamation mark. These two state-

44 Cider May 1983

EXIT

GOODADD

GOODSUB

EQU

CLC
LDA

STA
LDA

STA
BVC
JSK

BYT
JMP

SEC
LDA
SBC
STA
LDA
SBC
STA
BVC
JSR
BYT
IMP

‘FF69

I

J

K

I+1

J+1

K+1

GOODADD

PRINT

“Error >32767”,CR,0
EXIT

1

J

K

I+1

J+1

K+1

GOODSUB

PRINT

“Error< — 32768”,CR,0
EXIT ﬁ

Example 6.

:If error then
;print in error
;message and
;quit the program.

:Continue here if
;no overflow

-The Assembly Advantage-

Listing 1. SPEED/ASM equate file.

TTL. "SPEED/ASM Equates"

file.

P S Y

EPZ 0

EPZ FORASAV+L
15 FORYSAV EPZ FORXSAV+L
16 FORZPG EPZ FORYSAV+H]
17 DESTADR EPZ FORZFG+2
18 PIRADR EPZ DESTADR+2
19 ISIMMED EPZ PTRRDR+Z
20 oP EPZ ISIMMED+L
21 MAXLEN EPZ OP+2

22 VALUE EPZ MAXLEN+1
23 DIGIT EPZ VALUE+2
24 LERDO EPZ DIGIT41
25 JMPADR EPZ LEADO+L
26 COUNT EPZ JMPADR+2
27 GOTIN EPZ COUNTH1
28 LINEINDX EPZ GOTLN+1

33
i

29 SIGN EPZ LINEINDX+L

30 ACL EPZ SIGN+1
31 xH EPZ ACIA1
32 XTNDL EPZ ACH+1
33 EPZ XTNDIA1

XTNDH

AIXL EPZ XTNDH+L
35 AUXH FP7% AUXIAL

i

PROMET

EPZ $33
38 RNODL EPZ $4E
39 RNpH EPZ $4F
40 STACK BEQU $100
41 INFUT EQU $200

LISTING ONE: SPEED/ASM equate *
*

*

*REAAXTEXRTEL TRk kdddkhkkkkkkdktkd

GENERAL, PURFOSE BQUATES

Listing continued.

ments are comparable to the Basic
statements:
1=3765
and
1=-438
respectively. Please note that the #
and / operators are not required be-
fore the constant values. This is an
unfortunate inconsistency, so you
should take extra care to avoid either
placing the # or / symbols here, or
leaving the # and / symbols out of the
operand field of the 6502 LDA or
other arithmetic instruction. Re-
member, the LOAD routine is used
to load a constant value into an in-
teger variable. If you use a variable
name as the first operand to the
LOAD routine, the address of that
variable, not its current contents,
will be loaded into the destination
variable. \
The MOVE routine copies the con-
tents of one integer variable into
another. The MOVE command uses
the syntax:
ISR MOVE
ADR <namel> <name2>
MOVE copies the contents of
<namel> info <name2>. So if you
wanted to copy the contents of vari-
able] into variable I you would use
the statement:
JSR MOVE
ADR LI
This is comparable to the Basic state-
ment:

I=]

Always remember that MOVE copies
the contents of an integer variable in-
to another variable. If you use a con-
stant as the first operand {(or second
operand for that matter), MOVE
will simply go to the address in
memory specified by that constant,
get the two bytes, and store them into
the destination variable.

I should point out that SPEED/
ASM does very little type and range
checking. MOVE and LOAD simply
move values around. They don’t care
if you're actually dealing with integer
variables. They store two bytes into
the address you specify regardless of
whether the variable is a character,

integer, floating point, string var-

46 Eider May 1983

48 Cider May 1983

The Assembly Advantage

Listing continued.
0000
0001
008D
0800
0800
0800
0800
G0BD
oon3
CO0BE
00BC
BDBE
BDBC
0BuO
0800
4800
08u0
0800
0800
4800
0800
0800
0800
0800
0800
0800
08u0
0800
08u0
7800
7803
7806
7809
780C
780F
7812
7815
7818
781B
781E
7821

128

FALSE BEQU 0

TRUE BQU 1

&R EQU $8D

;

: "IF" STATEMENT EQUATES

im .5"

RE BQU "$*

Gr BQU ">"

LT QU "<

GE EQU "5" | "="+256

LE mU "<"Ill="*256

H

i

i

H

H

; SPEED/ASM ENIRY POINTS

H

i

: NOTE: THE PQUATE OF PUTC MUST
i BE CHANGED IF YOU RELOCATE
; SPEED/ASM TO SOME LOCATION
; OTHER THAN $7B00

WIC BU §7800

GETC EQU PUTCH3
SAGL BQU GETC+3
sAPC BQU SAGIA3
HOME BQU SAPCH3
READIN BQU HOME+3
INIT EQU READLN+3
FOR EQU INTT+3
FORD EQU FORH3
NEXT EQU FOR0+3

IFL EQU NEXT43
IFIC BQU IFI+3
IFS BQU IFI0+3

IFSO BQU IFS+3
MOVE BQU IFS0+43
LORD BQU MOVE+3

PQU CASEI+3
NOTINSET BQU INSET+3
MBS EQU NOTINSET43
NEG BEQU ABS+3
MUL BQU NEGH3
DIV BQU MULA3
Mo BQD DIV+3
RND BOU MOD+3

;FOR USE BY S/A ONLY= SEE DOC.
n L] ” n n ” n

H
sHOME AND CLEAR

JUSED BY SPEED/ASM

Listing continued.

-The Assembly Advantage-

iable, or even a 6502 instruction.
Therefore you should take care that
the destination operand of the LOAD
routine and both operands of the
MOVE routine are the names of
properly defined integer variables in
your program.

The Absolute Value
and Negation Routines

SPEED/ASM provides two rou-
tines for negating and calculating the
absolute value of an integer variable.
The ABS routine (see Listing 1 for the
equate for ABS) is invoked using the
calling sequence:

JSR ABS

ADR <name>

This routine will take the variable
whose name appears after the ADR
pseudo-opcode, compute its absolute
value, and store the absolute value
back into the variable. This routine
performs the same function as the
Basic statement:

I=ABS(I)

Upon return from the ABS routine
the overflow flag will be clear if the
absolute value function was per-
formed properly. If the user attempt-
ed to take the absolute value of
— 32768 (an error condition) then the
overflow flag will be returned set.
You can use the BVC and BVS in-
structions to test for this error con-
dition.

The SPEED/ASM negate routine is
used like the ABS routine; the only
difference is that the sign is inverted
with the negate routine instead of
always returning a positive value (as
with the ABS function). If the integer
variable was negative, the NEG rou-
tine will make it positive. If the
variable was positive, NEG will
make it negative. NEG uses the call-
ing sequence: :

JSR NEG
ADR <name>
and is equivalent to the Basic state-
ment:
= -1

Since ABS and NEG operate on the
variable in place, you may want to
use the MOVE routine to copy the
variable into another location before

May 1983 Cider 49

The Assembly Advantage

TEMP = TEMP1 * TEMP
I = TEMP - 55

Example 7.

calling the ABS or NEG routines. For
instance, if you wanted to perform
the Basic instruction,

I=ABS(])

using the SPEED/ASM statements,
JSR ABS

ADR |

JSR MOVE

ADR .1

does not perform the same operation.
It leaves the absolute value of | in
both I and J. While in this simple ex-
ample I easily could have moved the

Listing continued.

SYMBOL TABLE SORTED ALPHABETICALLY

aps 7654 ACH 0018 ACL 0017 AUXH 001C AUXL 001B

CASE 7848 CASEI 784B CONCAT 786F COUNT 0013 CR 008D
DESTADR 0005 DIGIT OOOF DIV 785D EQ 00BD FADD 787E
FADDTN 7893 FALSE 0000 FDIV 7887 FINIO 789C FIX 786D

FLT 788A FMUL 7884 FNBG 7890 FOR 7815 FORD 7818
FORASAV 0000 FORXSAV 0001 FORYSAV 0002 FORZEG 0003 FSUB 7881
PSUBTN 7896 FTIMES 7899 GE BDBE GETC 7803 GETDWIEG 7872
GOTLN 0014 GT OOBE HOME 760C IFF 789F IFI 781E

IFI0 7821 IFS 7824 IFSO 7827 INDEX 7869 INTT 7812
INPUT 0200 INSET 784E ISIMMED 0009 JMEADR 0011 IDSTR 7833

LE BDBC LEAD0 0010 LENGTH 786C LINEINDX 0015 LOAD 782D

LT 00BC MAXLEN 000C MOD 7860 MOVE 7824 MOVFP 78A2

MOVS 7830 ML 7855 NE 00A3 NEG 7657 NEXT 781B
NOTINSET 7851 ONXGOTO 7845 OP 000A PRINT 7836 PROMPT 0033

PRTE 7878 PRTF 787B PRTINT 783C PRISTR 7839 PTRADR 0007

PUTC 7800 RDFP 7875 RDINI 7842 RDSTR 783F READIN 780F

RND 7863 R\DH 004F RNDL OO4E SAGL 7806 SAPC 7809

SIGN 0016 SIACK 0100 SUBSIR 7866 TRUE 0001 VALUE 000D
¥TNDH ~ 001A XTNDL 0019
SYMBOL TABLE SORTED BY ADDRESS

FORASAV 0000 FALSE 0000 TRUE 0001 FORXSAV 0001 FORYSAV 0002
FORZEG 0003 DESTADR 0005 PTRADR 0007 ISIMMED 0009 OP 000A
MAXLEN 000C VALUE 000D DIGIT 0OOF LEADO 0010 JMPADR 001l
COUNT 0013 GOTLN 0014 LINEINDX 0015 SIGN 0016 ACL 0017

AcH 0018 XTNDL 0019 XTNDE OO1A AUXL 0015 A 001¢
PROMPT 0033 RDL 004E RNDH 004F CR 008D NE 0043

LT 00BC EQ 00ED GT 00BE STACK 0100 INRUT 0200

PUTC 7800 GETC 7803 SAGL 7806 SAPC 7809 HOME 780C
READLN 780F INIT 7812 FOR 7815 FORO 7818 NEXT 781B

IFT 781E IFI0 7821 IFS 7824 IFSO 7827 MOVE 782A

108D 782D MOVS 7830 IDSTR 7833 PRINT 7836 PRISTR 7839
PRTINT 763C RDSTR 783F RDINT 7842 ONXGOTO 7845 CASE 7848
CASEI ~ 784B INSET 784E NOTINSET 7651 ABS 7854 NEG 7857

ML 7858 DIV 785D MOD 7860 RND 7863 SUBSTR 7866
INDEX 7869 LENGTH 786C CONCAT 786F GEIWZEG 7672 ROFP 7875

PRTE 7878 PRIF 76876 FADD . 7687E FSUB 7881 FMUL 7884

FDIV 7887 FLT 7882 FIX 788D FNEG 7890 FADDIN 7893
FSUBTN 7896 FTIMES 7899 FINIO 789C IFF 789F MOVFP 78A2

LE BDBC GE BDBE

TEMP = (Y MOD 2) data into I and then taken the ab-
TEMP = TEMP = X solut'ilvallue of 1, this ;NOUI‘? b::. Olm
TEMP = TEMP + 2 possible in more complex situations.
TEMP = X/TEMP To handle situations like this, simply
TEMPl = | +3 move] into some temporary location,

take the absolute value of that loca-
tion, then operate on the data in this
temporary location as you wish.

The Multiplication, Division
and Modulo Functions

The 6502 doesn’t support the mul-
tiplication, division and modulo (re-
mainder) operations within its in-
struction set. To make up for the lack
of these instructions in the 6502 in-
struction set, the SPEED/ASM pack-
age provides three routines to per-
form these operations for you: The
MUL, DIV and MOD routines. All
three routines use the same format
and calling sequence. The calling se-
quernce is:

JSR MUL ;Or DIV Or MOD
ADR <IVARI><IVAR2> <IVAR3>

JSR MOD
ADR Y,Z,TEMP
JSR MUL
ADR TEMP X, TEMP
CLC
LDA TEMP
ADC #2
STA TEMP
LDA TEMP +1
ADC /2
STA TEMP + 1
JSR DIV
ADR X, TEMP,TEMP
CLC
LDA]
ADC #3
STA TEMP1
LDA J+1
ADC /3
STA TEMP1 + 1
JSR MUL
ADR TEMP, TEMPI, TEMP
SEC
LDA TEMP
SBC #55
STA I
LDA TEMP +1
SBC 55
STA I+1
Example 8.

This performs the operation:
“<IVAR3> =<IVARI>*<IVAR2>"

If the division or modulo operation
is called, then the operation per-
formed is

“<IVAR3> =<IVARI>/<IVARZ>"
or
"<IVAR3> =<IVARI>MOD<IVAR2>"

The 6502 overflow flag is returned
set if overflow occurred while per-
forming a multiplication or if a divi-
sion by zero occurred during the ex-
ecution of the DIV or MOD routines.
Unless you are quite sure that over-
flow or underflow will not occur, you
should always follow a call to MUL,
DIV or MOD with a BVC or BVS in-
struction to test the validity of the
result.

50 Eider May 1983

The Assembly Advantage

Converting Complex Equations to
The SPEED/ASM Format

. The arithmetic routines (with the
exception of the ABS and NEG rou-
tines) all require exactly three param-
eters. Basic, on the other hand, al-
lows a rich variety of operations
within a single statement. In Basic
you could type:

I = (+3(X/(@+X=~(Y MOD 2))) - 55
Such a statement cannot be translat-
ed to a single statement in SPEED/
ASM., Rather, the statement is broken
down into the sequence of binary op-
erations that make up this equation
and the individual operations are
handled by calls to SPEED/ASM rou-
tines. The previous equation would
be broken down to the operations
given in Example 7. This code would
be converted to the SPEED/ASM
statements in Example 8. For pur-
poses of clarity, the tests for overflow

were omitted from this code. But it
should help demonstrate how you
translate a Basic expression into a se-
quence of SPEED/ASM routine calls.

The Random
Number Function RND

The SPEED/ASM package pro-
vides a function that returns a ran-
dom number every time it’s called.
The calling sequence is:

JSR RND
ADR <IVAR>

When ever RND is called it stuffs a

JSR LOAD

ADR 26, TEMP

JSR BND

ADR ENDVAL

SR MOD

ADR BNDVAL,TEMP RNDVAL

Example 9.

pseudo-random number in the range
0...32767 and stores it in the vari-
able that follows the JSR. If vou wish
to generate a random number in the
range 0...n then call the random
number generator and use the MOD
routine. For example, to get a num-
ber in the range 0...25 you should
use the code given in Example 9.

Note that the mod of RNDVAL
and 26 was taken. This produces a
value in the range of 0. . .25.

Performing 1/O in SPEED/ASM

Before discussing integer I/O in
SPEED/ASM, I should first introduce
character I/O, since numeric 1/0 is
dependent upon character 1/0. Five
routines are associated with character
1/0 in SPEED/ASM: GETC, PUTC,
READLN, HOME and INIT.

The INIT routine, as I've already
mentioned, must be called before
calling any SPEED/ASM routines. In

May 1983 &ider 51

ENTRNUM

BADNUM

RANGERR

>

GOODNUM

JSR
JSR
ADR
BVC

CMP
BEQ
BMI

;Must be one at this point

JSR
BYT
JMP

JSR
BYT
MP

READLN
RDINT

I
GOODNUM

0
BADNUM
RANGERR

PRINT
“Bad character in number, re-enter”,CR,0
ENTRNUM

PRINT

“Value out of range, re-enter”,CR,0
ENTRENUM

;Continue processing here

Example 10.

The Assembly Advantage—

eSSt EaR R B NS RBE LS NNRRR BB EEEEGEEEE B wanawn

Listing 2. SPEED/ASM demo program.

"SPEED/ASM Demo”

[

* *
* Listing Two: SPEED/ASM demo *
* program. *
* *
¥

H

FALSE B 0

TUE BY1

) B $8D

NE e e e e e HE M e N MBS Ne we W e e

SPEED/ASM ENTRY POINTS
{Only the equates necessary for
this demo are included.)

SPEED/ASM TO SOME LOCATION
OTHER THAN $7800

;POR USE BY S/A ONLY- SEE DOC,
e N L] L] L] n L] L]

’
JHOME AND CLEAR

Listing continued.

particular it must be called before
performing any I/O routines since
several pointers and counters used by
the 1/0 package are initialized by
INIT: Failing to call INIT before per-
forming an I/O operation may result
in garbled data.

HOME is used to clear the screen
and position the cursor in the upper
left corner. This routine is included in
the SPEED/ASM package to obtain a
certain amount of machine indepen-
dence. By placing this jump in the
SPEED/ASM code (instead of the
user program), it will have to be
changed in only one location if you
want to move the program to a com-
puter other than the Apple II. Ver-
sions of SPEED/ASM will eventually
be available for the Atari, PET, VIC
and other 6502 computers, allowing
you to easily move a program from
one computer to another. HOME’s
purpose is to help minimize the ma-
chine dependent code.

All input from the system console is
handled line by line. Any time you
read a character, number or string
from the keyboard, the SPEED/ASM
routines will read the data from the
current line input buffer, If the buff-
er is empty, the user is prompted to
enter a new line from the keyboard.
This works fine until you prompt the
user for some input (expecting him to
enter a new line from the keyboard)
and the SPEED/ASM package uses
the last few characters on the pre-
vious line as the input. To insure that
the next input performed takes its
data from the beginning of a new in-
put line, you should call the
READLN (read a line) routine to
force the user to enter a new line of
data. READLN will wait until the
user types in a complete line of text
and then it will continue execution
with the next statement following the
call to the READLN routine.

The GETC routine reads a single
character from the current line buff-
er and returns it in the 6502 accumu-
lator. If the line buffer is empty, a
new line is read from the keyboard
and GETC returns the first character
on that line. I must point out that if
there are characters in the input line
buffer the keyboard will not be read.

52 Eider May 1983

08u3 20 78
0806 OA 00 12
0809 0B

08VA 20 2D 78
OND 36 00 14

0838

083B 20 5A 78
083E 12 0B 14
0841 OB 18 0B
0844 70 49
0846

0846

0846

0846 20 5D 78
0849 14 0B 12
084C 0B 1A 0B
084F 70 3E

085F 20 0B
0861 20 54 78
0864 20 0B

- 0866 70 2/
0868
0868 20 63 78

55

28 ZRIRRRBERIIIISNIUNNIZZIRGTCRLBBLIS

EL8IRRELY

ABS U NOTIRSET+3
NEG EQU ABS+3
MUL EQU NEGH3
DIV BYJ MUL+3
MOD BQU DIV+3
foo EQU MODH3

s NOTE: INIT must be called before
; any other SPEED/ASM -routine,

i
START J8R INIT

The following code loads 10 imto
r and 54 into " then computes
their sum, difference, product,
quotient, and remainder.

'

W v e W N e

H
3 Calculate the difference:
'

BVS OVERFLOW
'
; Calculate the quotient
' JSR DIV

ADR J,1,QUOLIENT

BVUS OVERFLOW

33/1, mot 1/J

~ v

JER MOD
ADR J,1,REMANDR

BVS OVERFLOW

Generate a couple of random numbers

JSR RD
ADR RANDOML
JSR ABS
ADR RANDOM)
BVS OVERFLOW

LI S

JSR RND

1Address to quit S/A.

Always CIC before an addition,

sCheck for >32767.

jAlways SPC before a subtraction

Listing continued.

The Assembly Advantage—

Instead, the next available character
in the input buffer will be returned in
the 6502 accumulator. If you need to
read the character from the key-
board, always call READLN before
calling GETC. ,

The final character I/O routine is
the PUTC routine. PUTC takes the
character in the 6502 accumulator
and outputs it to the console screen.
One nice feature of the PUTC routine
is' that it will automatically convert
lowercase to uppercase if the end user
of your program cannot display low-
ercase on his Apple. If your system
has a lowercase adapter, like the La-
zer MicroSystems’ Lower Case + Plus
and Keyboard + Plus modules, then
you can write your SPEED/ASM pro-
grams using easy-to-read lowercase
without having to worry about in-
compatibility problems,

The READLN, GETC and PUTC
routines are primitive routines. All
other /O routines can be synthesized
from these three subprograms. When
I talk about character operations
we'll return to the discussion of the
GETC and PUTC routines.

Using PRINT to Print String Literals
I've already used the SPEED/ASM
PRINT routine in several examples.
A formal definition of the PRINT
routine will help explain its use in
your SPEED/ASM programs.
The PRINT routine is used to print

- a sequence of ASCII characters to the

Apple’s video screen. This routine
prints every character following the
JSR PRINT instruction up to, but not
including, a zero terminating byte:
Upon encountering a zero byte, the
PRINT routine terminates output,
and control is returned to the 6502 in-
struction that follows the zero byte.
PRINT is useful for printing mes-
sages, prompts and other string liter-
al output. PRINT does not automati-
cally eject a carriage return after
the string is printed. If you wish to -
output a carriage return you must ex-
plicitly include the ASCII code for
the carriage return in your output
string; i.e.,
JSR PRINT
BYT “STRING followed by Return”,CR,0

54 Eider May 1983

jim

jim

jim

jim
70 27

086B 22 0B
086D 20 54 78
0870 22 0B
0872 70 1B
0874 20 5/ 78
0877 22 0B
0879 70 14

0g7B

0878 20 63 78
087E 24 0B
0880 20 57 78
0863 24 0B
0885 70 0¥

0

887
0887 20 63 78

08A9 20 36 78
08AC C9 ED AQ
Q8AF 00

08B0 20 3C 78
08m3 12 0B
08B5 20 36 78
0888 8D CA BD
08BB AD 00
08BD 20 3C 78
08C0 14 0B

Listing continued.

143
144

163
164
165
166
167
168

170

mn
172
173
174

175
176

20 57 78 JSR NEG

~

CVERFLOW JSR PRINT
BYT CR,CR,“Overflow occured",CR,0

JMP EXIT

Print the sum:

. NN

PRINUMS JSR PRINT
BT "I= ",0

08D7
08D7
08DA
080D
08E0
08E3
0885
0BE9
OBEC
O8EF

BEEERBREY
ERRRRRES

@

3

2
S42BSRBIARERE

~}
o

177
178
179

~

~ e

~ v .

~

JSR PRINT
BYT (R,"The sum is ",0

JSR PRTINT
ADR SUM

Print the difference:

JSR FRINT
BYT CR,"™The difference (I-J) is ",0

JSR PRTINT
BDR DIFFRNCE
Print the product:

JSR PRINT
BYT CR,™he product is ",0

JSR FRYINT
ADR PRODUCT

Print the quotient

JSR PRINT
BYT CR,*The quotient (J/1)} is *,0

Listing continued.

56 Cider May 1083

jim

jim

jim
20 57 78

Listing continued.

0918 ES AD
091B F5

[T 3
-3

8
BEHEHBABYES
BRERREBER

- BERBEEE3IRS

©
&
)
B

0952 20
0955 1E 0
0957
0957
0957
0957
095A
095D
0960
0963
0966
0969
096C
096F
0972
0975

wo
BmOS

-~

(-]

BESIREEERESY
EERRBAGHEBESR
EHBEERRBEERRS

<
3
@
2]

0978 A0 0
097D 20 3
0980 20 ¢

2328

R

B8
BREREAS
ZREE 3

098B B>
098E 20 0
0930 20 3
0993 22 0]
0995 20

Nno
~J
@

g2
o ®©
Be
P
LT

Q99E

g
B

09r3 20

]
&
%3
-

03A8 20
09AB 8D

Ss8888ER
~3
o

E
B
R
RRa

ED
0984 A0 00
09B6 20 3C 78
09B9 26 0B
09BB '
098B

09BB

09EB

-
B
B
B

8
g
n

a8
BEEEREGISY

FEEERE

(=3
8
3 BRRIWGIIN

SSBBRHABHAS

8 SOOOO

3 BHEEE
SIEHIZERNENLERE
KEBRIAHIICRSY IGHIIBEISK

201
202

204
205,

207

215

240

092A-F3
92A:F3

~

~ e~

B)

JSR PRTINT
ADR QUOTIENT

‘Print the remainder:

JSR PRINT
BYT CR,"The ressainder (J mod I) is ",0

JSR PRTINT
ADR REMANDR

Print the random mubers:

JSR PRINT .
BYT CR,"The random numberse are:"

BYT CR,"Randoml: *,0

JSR PRTINT

ADR RANDOML

JSR DPRINT

BYT (R, "Randan2: ",0

JSR PRTINT

2DR RANDOM2

JSR PRINT

BYT (R, "Randond: ",0

JSR PRTINT

ADR RANDOM3

JSR PRINT

BYT CR, "Randomd: ",0

JSR PRTINT
ADR RANDOM4

Demonstrate the MOVE subroutine

JSR PRINT : ,
BYT CR,CR,"Current contents of I is “,0

ﬁsamtmrr

AR I
JSR PRINT -
BYT CR,"Current contents of J is *,0

JSR PRIINT
Listing continued.

The Assembly Advantage —

Note that CR was used instead of
the actual code for carriage return
($8D). CR is a symbol, defined in
the SPEED/ASM equates, which is re-
placed by the value $8D.

Since PRINT will print all charac-
ters up to the terminating zero byte,
multiple lines can be output using a
single call to the PRINT subroutine,
Simply separate each line with a car-
riage return and PRINT will output
the text on several lines:

JSR PRINT
BYT “This is the first line,

and it is follwed by”,CR
BYT “this second line.”,CR,0
Other than improving the readability
of the program, the separate lines
nieed not appear on separate source
lines as in this example. The second
string could have immediately fol-
lowed the CR on the first line. This
type of coding, however, is not recom-
mended because it makes the source
file much harder to read.

Performing Integer 1/O
In SPEED/ASM

Operating on integer values is one
of the primary funetions you will do in
SPEED/ASM. However, these opera-
tions are almost useless unless you can
communicate the results of these
operations to the world outside the
computer. Two routines are provided
in the SPEED/ASM package to facili-
tate integer I/O: RDINT (read an in-
teger) and PRTINT (print an integer).

Printing an integer using the
PRTINT routine is easy—just follow
the JSR PRTINT with the address of
the integer you want to print. For ex-
ample, if you wanted to print the con-
tents of the integer variable I onto the
Apple’s video screen you would use
the statement(s):

JSR PRTINT

ADR 1

and the -contents of I would be
displayed for you. In the next in-
stallation of this series I will discuss
how to format this output to create a
pretty listing,

The RDINT routine is a little more
complicated to use than the PRTINT
routine because there is the possibili-
ty that an error condition might oc-

58 Cider May 1983

jim

jim

jim
092A:F3 A0 00

Listing continued.

0200 14 OB 241
OA02 242
0AO2 20 2A 78 243
0205 12 0B 14 244
0208 0B

0209 245
0R09 20 36 78 246
OAOC 8D CE EF 247
OAOF F7 A0 C9

0Al2 A0 E3 EF

OAl5 EE F4 E1

OAl8 E9 EE F3

OAlB AD 00

OAID 20 3C 78 248
0A20 12 0B 249
0A22 20 36 78 250
0A25 8D El EE 251
0228 E4 AD CA

OA2B A0 E3 EF

OA2E EE F4 E1

OA31 E9 EE F3

0A34 A0 00

OA36 20 3C 78 252
0A39 14 0B 253
0A3B 254
0A3B 255
OA3B 256
0A3B 257
0A3B 258
0A3B 259
OA3B 20 36 78 260
OA3E 8D 8D C4 261
O0Adl EF AQ F9

0ad44 EF F5 AD

0A47 F7 K9 F3

02A E8 RO F4

024D EF AO F2

0A5) ES AD F2

0A53 F5 EE A0

0AS6 F4 E8 E9

0A59 F3 8D

OASB FQ F2 EF 262
OASE E7 F2 E1

0A61 ED AO A8

0A64 DS AF CE

0A67 A9 BF A0

026A 00

0A6B 20 03 78 263
OAGE 29 DF 264
0A70 20 00 78 265
0a73 C9 CE 266
OA75 DO 03 267
OA77 4C 69 FF 268
0A7A 269
OA7A C9 D9 270
0A7C DO BD 271
0A7E 272
0A7E 273
0A7E 274
OA7E 275
OA7E 276
OA7E 20 36 78 277
0AB1 8D 278
OAB2 C5 EE F4 279
OAB5 ES F2 AD

0A88 El AD EE

0ASB ES5 F7 AC

OASE F6 E1 EC

OA91 F5 ES AD

094 F6 EF F2

0A97 A0 C9 BA

OASA 00

OA9B 20 OF 78 280
OASE 20 42 78 281
OAAl 12 OB 282
0AA3 50 21 283
OAAS5 20 36 78 284
OAM8 8D C5 F2 285
OAAB F2 FF F2
OAAE A0 E9 EE
0AB1 A0 E5 EE
OAB4 F4 F2 F9
0AB7 AC AD F2
OABA ES AD E5
OABD EE F4 ES5
OACO F2 8D 00
OAC3 4C 7E OA. 286
0AC6 287
0AC6 20 36 78 288
0ACY 8D C5 EE 289
OACC F4 ES5 F2
OACF RO El AD

e v v v e

RERUN

8

:

g,.

ADR J

JSR MOVE
ADR I,J

JSR PRINT
BYT CR,"Now I contains *,0

JSR PRTINT

ADR T

JSR PRINT

BYT CR,"and J contains *,0

JSR PRTINT
ADR J

Ask the user if he wants to re-run
the program with user input.

JSR PRINT
BYT CR,CR,"Do you wish to re-run this",(R

BYT "program (¥/N)? *,0

JSR GETC

AND #$DF ;Convert Lower case to Upper case
JSR RUTC

MP #"N"

BNE >1

JMP EXIT

QP $mY"
BNE RERUN

get new values for I and J

JSR FPRINT
BYT CR
BYT "Enter a new value for I:",0

JSR READIN

JSR RDINT

ADR I

BVC GOODNUML

JSR PRINT

BYT CR,"Error in entry, re-enter",CR,0

JMP BADNUML

JSR PRINT
BYT CR,"Enter a new value for J:",0

Listing continued.

May 1983 €ider 59

Listing continued.

OAD2 EE ES
0ADS A0
0AD8
0aDB
] ORDE
GAE1
ORE3
QAE6
0AE9

NOHBRRERNETNREIRE
BRBRNEREQENER3EERAS
33 SHBR3

BREE55585
BIBBBRIABES

gzEg
330
8 3
8

&
[
]
(=]
o

D000 OOO0C
pRpppEppmm e
NI SR XS X X R SR NI RN]

OB12

0B12 00 00
OBl4 00 00
0B16

OBl6 00 00
0B18 00 00
GRB1A 60 00
OB1C 00 00
OE1E 00 00
0B20 00 00
0B22 00 00
0B24 00 00
0B26 00 00
OB28

0B28

tbrun sort

BRUN SORT
ABS 7854
DIFFRNCE OBIC
FORO 7818
IF1 781E
INSET T84E
MOD 7860
NEXT 781B
PRODUCT ORLS
QUOTIENT OBLA
FDINT 7842
RD 7863
TRUE 0001

FALSE 0000
OVERFLOW 086F
I 0BL2
DIFFRNCE OBIC
RANDOM4 OB26
HOME 780C
NEXT 781B
MNVE 782
RTSIR 7839
CASE 7848
NEG 7857
EXIT FP69

290
291

293
294

N
o
®
= o

BT (R,"Bad valve for J, re-enter®,(R,0

JNP GOCDNOML
JMP LOOP

w
=
=

o B dne we e e s we ne ve e M he 4r he we we Se e N

*4wst BND OF ASSEMBLY

BADNUML
nIvV

IFI0

TRUE

integers.
with the ADR pseudo opcode
reserve two bytes for each integer,

Variable declarationss

(=I~-J-F-J-Y-F-No}=) [=X=1

SYMBCL TABLE SORTED AIPHABETTCALLY

OAJE CASE 7848
78D EXIT FF69
7803 GOODNUML OACG
781 IFS 76824

SYMBCL, TABLE SORTED BY ADDRESS

The following variables are all
So they are declared

to

CASEI 784B
FALSE 0000
HOME 780C
IFSO 7827
LOAD 782D
MUL 788
OVERFLOW 086F
PRISTR 7839
RANDOM3 0B24
REMANDR OB1E
START 0800
START 0800
BADNUML OATE
PRODUCT OE18
RANDOM2 OER22
ShGL 7806
FOR 7815
IFS 7824
IDSTR 7833
RDINT 7842
NOTINSET 7851
MOD 7860

Cr 008D
FOR 7815
I OBE12
INIT 7812
LOOP 0811
NEG 7857
FRINT 7836
HTC 7800
RANDOM4 QR26
RERUN 0A3B
SUM OB16
LOOP 081l
GOCERNUML OACE
QUOTIENT QBlA
RANDOM3 OB24
SAPC 7809
FORD 7618
IFSO 7827
FRINT 7836
QGWGOTC 7645
BBS 76854
RND 7863
Listing continued.

The Assembly Advantage—

cur. The RDINT routine expects the
user to type a valid numeric integer
which takes the form:

1) Any number of leading blanks,
commas or carriage returns,
followed by

2) An optional minus sign,
followed by

3) One to five digits forming a
value in the range 0. . . 32767,
followed by

4) A space, comma or carriage
return.

If the numeric string is of the prop-
er format then SPEED/ASM will
store the value into the integer
variable whose address follows the
JSR; e.g.,

JSR RDINT

ADR]

will read an integer variable from the
line input buffer (reading a new line
if necessary) and store the numeric
value into J.

If an input error occurs, then the V
flag will be returned set so you can
use the BVS or BVC instruction to
test for the error condition. Three er-
ror conditions can be returned in the
6502 accumulator. If the overflow
flag is set, then the accumulator con-
tains zero if the last character of the
number wasn’t a space, comma Or
carriage return. This error condition
can be considered optional. If you
want to allow characters other than
space, comma and carriage return at
the end of a number, you can ignore
this error.

If the overflow flag is set and the
accumulator contains one, the first
character of the number was not a
valid digit or minus sign. All preced-
ing spaces, commas and carriage re-
turns were stripped before the failure
to obtain a digit or minus sign was
detected. This is a definite error and
your program should prompt the user
to re-enter the data. ‘

1f the overflow flag was set and the
accumulator contained $8D, the val-
ue entered by the user was greater
than 32767 or less than -—32768,
Obviously this number must be re-
entered by the user. A program that
would prompt the user to re-enter
on an entry error is shown in Exam-
ple 10.

60 Eider May 1983

The Assembly Advantage

Listing continued.

DOES YOUR APPLE SUPFORT IOWER CASE
DISFLAY? (Y/N):

I= 10

J= 54

The sum is 64

The difference (Y-J) is -44
The proouct is 540

The quotient (J/I) is 5
The remainder (J mod I) is 4
The random numbers ares
Randoml: 11979

~28681

3539

31519

Rancaom3 s
Randomd :
Current contents of I is 10
Current contents of J is 54

New I contains 10
ana J contains 10

Do you wish to re-rum this
program (Y/N})? Y

Enter a new value for I:25

Enter a new vatue for J:36

I= 25

J= 36

The sum is 61

The difference (I3} is -1l
The product is 900

The quotient (J/I) is 1

The remainder (J mod I) is 11
The randem numbers are:

Current contents of I is 25
Current contents of J is 36
Now T contains 25
ana J contains 25

Do you wish to re-run this
program (Y/N)? ¥

Enter a new vaiue for I:5§

Enter a new value for J:22
I= 59
J= 22
The sum is 81
The difference (I-J) is 37
The proauxct is 1298
The quotient (J/I) is 0
The remainder (J mod I) is 22
The random numbers’are:
26303

~20411
=-5287
-1347

Do you wish to re-run this
program (Y/N)? N

I have included additional ex-
amples in Listing 2.
Looking Forward

So far the examples have been
rather trivial since the SPEED/ASM

routines presented thus far haven't
included the necessary looping,
conditional, and transfer of control
routines. Next time I'll start discuss-
ing program control structures so
that you will be able to start writing

fairly complex programs. See ya next
time! @

Note: SPEED/ASM and LISA v2.5
are available from Sierra On-Line,
209-683-6858. These programs are
also available at your local dealer.

62 Cider May 1983

The Assembly Advantage

by Randy Hyde

I n order to write programs in 6502
assembly language a considerable
amount of seemingly unrelated back-
ground knowledge is required. The
major purpose behind the SPEED/
ASM package is to reduce the amount
of that knowledge necessary to write
useful programs. Mind you I said re-
duce, not eliminate. With this third
installment of my column I will finish
up most of the necessary background
material so you can begin writing
reasonable machine language pro-
grams. This article should also help
tie up loose ends from the first two
articles.

An Introduction to
6502 Assembly Language

You cannot properly program us-
ing SPEED/ASM without at least a
little understanding of 6502 machine
code. SPEED/ASM’s purpose, as stat-
ed above, is not to eliminate the need
for machine code, but to make the
more difficult tasks easier. With this
thought in mind it’s time to introduce
you to the simpler 6502 instructions.

The LDA Instruction

The LDA (load accumulator) in-
struction is easily the most used in-
struction on the 6502. It copies the
contents of one of the 65,535 memory
locations the 6502 can address into a
special memory location called the
accumulator. This memory location
is found inside the 6502 chip. Storage
cells located inside the processor chip
are usually called registers.

The accumulator in the 6302 is
where most of the action takes place.
Numbers are added together in the
accumulator, strings are compared
using the accumulator, logical opera-

Instruction Primer

tions are performed by the accumula-
tor, and more. Typically, a value is
loaded into the accumulator using
the LDA instruction and then that
data is operated on using one of the
6502’s arithmetic or logical opera-
tions. Consequently, the LDA instruc-
tion is usually the first instruction of
any computational sequence that is
executed.

There are several ways the accu-
mulator can be loaded: with a con-
stant, from a variable, from a string,
or indirectly through a pointer. For
the time being we will concern our-
selves with the first two addressing
modes, loading the accumulator with
a constant and loading it from a
variable.

Constants are specified by prefac-
ing them with the pound sign, #. For
example, to load the accumulator with
55 you would use the instruction:

LDA #55

There is one limitation on a constant
you load into the 6302 accumula-
tor—it cannot be greater than 255 or
less than 0. The range limitation is
due to the 8-bit size of the 6502 accu-
mulator. Attempting to load a value
larger than 255 will yield the result
<value> MOD 256. For example:

START LDA #C”
STA CHR
JSR LOAD
ADR 0OJINT

; Print the character onto the screen
; as an ASCII character

LDA CHR

JSR PUTC

; Transfer the character to INT and
; print its ASCII code as a decimal

: value.
LDA CHR
STA INT
JSR PRTINT
ADR INT

; Load CHR with the value 204
; and then print CHR on the screen
; as an ASCII character.

LDA #204
STA CHR
LDA CHR
JSR PUTC

Listing 1. SPEED/ASM ‘program segment
demonstrating the relationship between
characters and their standard ASCII codes.

Address correspondence to Randy Hyde, 925
Lorna St., Corona, CA 91720.

EXIT EQU $FF59
READLP SR GETIC
CMP 4CR
BEQ ALLDONE
JSR PUTC

JMP READLP

ALLDONE JMP EXIT

;Constant declared in SPEED/ASM.EQUATES.

:Return to Apple monitor.

Listing 2. Sample application of BEQ branch instruction.

44 Eider June 1983

The Assembly Advantage

Listing 3. Code sequences to implement
Applesoft CHR$ and ASC instructions.
Applesoft utilizes a non-standard 0-127
range for its ASCII codes.

; To emulate the statement

i C$=CHRS$()
LDA I
ORA #3880 ;Set the H.O. bit to one.
STA C

; To emulate the statement

;. I=ASC(C$)
IDA C
AND #$7F ;Set H.O. bit to zero.
STA . 1
LDA #0 ;Clear the H.O. byte of the
STA 1+1 sinteger variable.

LDA #305 ments, the first handling the low or-

loads the accumulator with 49 (305
MOD 256 is 49). If you need to handle
numbers too large for 8 bits you have
to split the operation into two seg-

der byte of the computation and the
second handling computation of the
high order bytes.

The integer values used by the
SPEED/ASM package require 2 bytes

to represent values in the range 0 to
65535 or (more commonly) signed
values in the range — 32768 to 32767.
The pound sign operator lets you load
the low order byte of a constant into
the accumulator. To get the high or-
der byte of a constant into the accu-
mulator the slash, /, operator is used.
The instruction:

LDA /305

loads the high order byte of 305
(which is 1) into the accumulator.

To load a negative decimal value
into the 6502 accumulator preface
the negative number with an excla-
mation point (LISA 2.5 users only).
For example, to load the accumula-
tor with the low order byte of 465
you would use the instruction:

LDA # — 465

To load the accumulator with the high
order byte of — 465 the instruction:

June 1983 Eider 45

-The Assembly Advantage-

LDA /1 - 485

is used.

To load a character constant into
the 6502 accumulator follow the
pound sign with the character you
wish to load, enclosed by quotes. To
load the character c into the accumu-
lator you could use the instruction:
LDA #¢”

Do not use a slash—that will al-
ways put 0 into the accumulator.
Normally a character is enclosed by
quote marks. If you enclose it in apos-
trophes the high order bit of the char-
acter will be set to 0. Since the Apple
normally likes its characters to have
the high order bit set to 1 you should
always enclose a character in quotes.

Next to loading a constant into the
accumulator, loading the contents
of a memory location is the most im-
portant function. To load the accu-
mulator with the contents of a mem-
ory location specify the address of
that location after the LDA instruc-
tion. To load the low order byte of
the variable I into the accumulator
you would use the instruction:

LDAI

If you inadvertently type a pound
sign in front of I, the low order byte
of the address of I will be loaded into
the accumulator. Likewise, prefac-
ing the I with a slash loads the high
order byte of the address of I into the
accumulator. If you want to load the
high order byte of the variable I into
the accumulator the instruction:

LDAI+1
is used.

The STA Instruction

The second most popular instruc-
tion is STA. It stores a copy of the ac-
cumulator into a memory location.
To use the STA instruction follow STA
with the address of the variable you
wish to store the accumulator into.
For example the instruction:

STAT

stores the contents of the accumula-
tor into the low order byte of variable
I. If T is an integer variable, you can
store the accumulator into the high
order byte using the instruction:

46 Eider June 1983

The Assembly Advantage

STAI+1

The LDA and STA instructions can
be combined to move data around in
mermory. The SPEED/ASM MOVE sub-
routine copies a 2-byte integer value
from one variable to another. The
calling sequence for MOVE is:

JSR MOVE

ADR VARI,VAR2

MOVE transfers the 2 bytes at address
VARI to the 2 bytes at address VAR2.

This$ action is easily simulated us-

. ing the 6502 assembly sequence:

LDA VARIL

STA VAR2

LDA VARl +1

STA VARZ+1

This short piece of 6502 code loads
the 2 bytes at addresses VAR1 and
VAR +1 and stores them at addresses
VARZ and VAR2+ 1. Note that the ac-
cumulator contains the value in
VARL +1 (and VAR2 +1) at the end of
this code sequence.

Incidentally, the LDA/STA se-
quence above doesn’t exactly dupli-
cate the operation of the MOVE sub-
routine. A call to MOVE requires only
7 bytes of program memory space,
while the L.DA/STA sequence uses up
12 bytes. Furthermore, MOVE doesn’t
affect the contents of the 6502 accu-
mulator, whereas the LDA/STA se-
quence does. Whatever value the ac-

cumulator contained before the exe-
cution of the sequence is lost, re-
placed by the same value as VARL +1.
Finally, MOVE executes quite a bit
more slowly than the straight LDA/
STA sequence.

If speed is the overriding consider-
ation and the call to MOVE is deeply
buried within a loop, you should re-
code the JSR MOVE instruction using
the LDA/STA sequence. For most pur-
poses, however, the call to MOVE is
better since it is shorter and it doesn’t
affect the accumulator. The speed
difference is usually insignificant,
unless, as mentioned, MOVE is buried
deep inside nested loops. After all,
few humans can tell the difference
between 16 and 100 microseconds.

Although the MOVE routine should
be used to copy the contents of one in-
teger variable to another, copying a
character variable is best handled
with the LDA/STA sequence. If you re-
call the discussion in the first part of
this series, I mentioned that charac-
ter variables only require 1 byte of
storage. Since the 6502 accumulator
is 8 bits wide it can easily accommo-
date a character value. If you want to
copy the contents of character vari-
able CH1 to character variable CH2
you should use the code:

LDA CHI
STA CH2

While on the subject of character
and integer variables, I should men-
tion two functions in Basic that ev-
eryone seems to love: CHR$ and ASC.
SPEED/ASM has no equivalent for
these functions because they aren’t
needed. The 6502 treats everything
as an integer. Only the programmer
distinguishes between character and
numeric data. The SPEED/ASM pro-
gram segment in Listing 1 demon-
strates this relationship. It prints the
string C195L on the screen. Since the
high order bit of all character values
is set, characters are represented by
the decimal values 128-255. As you
can see, the interpretation of data
stored in the 6502’s memory space is
left to the user. At any one time the
value in a memory cell could contain
character, numeric, Boolean or some
other data representation.

The cMp Instruction

The CMP instruction is used to com-
pare the accumulator to a memory
location or to a constant. It affects
bits within another register inside the
6502 chip called the processor status
register (or PSR). The exact definition
of these bits is unimportant for now.
What is important is that these bits
can be tested with a set of 6502
branch instructions. The CMP in-
struction, combined with the branch

June 1983 Eider 47

The Assembly Advantage

instructions, simulates the IF. THEN
. .ELSE statements found in high level
languages.

To compare the accumulator to a

one section of code if the condition
was met, and execute a second sec-
tion (or just skip over the first) if the
condition was not met. Transfer of

in the operand field. The following
program segment continually writes
the character A to the screen:

{ : Tans LOOP LDA #A”
constant value, use the pound sign control after a CMP instruction is han- ISR PUTC
or slash operator after the CMP in- dled by the branch instructions on JMP LOOP

struction. A code segment to com-
pare the value in CHR to the charac-
ter value X is:

LDA CHR

CMP #X”

This fetches the value in CHR, loads
it into the accumulator and then
compares the accumulator to the
character X.

To compare two character vari-
ables load the accumulator with the
first and compare it to the second
by specifying the address of the sec-
ond after the CMP instruction—for

the 6502.

“JMP unconditionally
transfers control to the
address specified in the

operand field—almost
exactly like the GOTO

statement in Basic.”

The branch instructions transfer
control to a target label if and only if
a certain condition exists. Although,
under certain circumstances, a
branch instruction may appear al-
most anywhere in a program, for
now you should only place branch in-
structions immediately after a CMP
instruction.

The BEQ/BNE Instructions

The BEQ (branch if equal) and BNE
(branch if not equal) instructions are
used to test for equality and inequali-

example: The first instruction to consider, ty. If a BEQ instruction follows a com-
LDA CHRI however, is not a branch at all, but pare instruction, then control is
CMP CHR2

What you do after a comparison is
next on the list. . .
The Branch and JMP Instructions

Once a comparison is performed, a
program typically wants to execute

the JMP (jump) instruction. JMP un-
conditionally transfers control to the
address specified in the operand
field—almost exactly like the coTO
statement in Basic. The only differ-
ence is that you must specify a state-
ment label rather than a line number

transferred to the target label if the
accumulator equals the value it was
compared to. If the value in the accu-
mulator is not equal to the value
specified after the CMP instruction,
then the BEQ instruction is ignored
and control is transferred to the next

Listing 4. Sample program demonstrating several character variable manipulations using SPEED/ASM.
0800 1 TIL "SPEED/ASM Sample Program 06oc 36 MAXLEN EPZ OP+2
08u0 2 ; 000D 37 VALUE EPZ MAXLEN+1
08u0 3 ; 000F 38 DIGIT EPZ VALUE+2Z
0800 1 0010 39 LEAD0 EPZ DIGIT+l
0800 5 P + 0011 40 JMPADR EPZ LEADO+1
0800 6 * * 0013 41 COUNT . EPZ JMPADR+2-
0800 7 * SPEED/ASM Bquates * 0014 42 GOTIN EPZ COUNT¥1
0860 8 * * 0015 43 LINEINDX EPZ GOTLN+L -
0800 9 *x *kk & *% 0016 44 SIGN EPZ LINEINDX+1
0800 10 0017 45 ACL EPZ SIGN+1
0800 1 0018 46 ACH EPZ ACL+1
0BOC 12 ; G019 47 XTNDL EPZ ACH+1
0800 13 00l1a 48 XTNDH EPZ XTNDLA1
0800 14 ; 001B 49 AUXL EPZ XTNDH+1
0800 15 001C 50 AUXH EPZ AUXIAL
08u0 16 ; 0800 51
0800 17 ; 0033 52 PROMPT EPZ $33
0800 18 ; GENERAL PURPOSE BQUATES 004E 53 RNDL EPZ $4E
0800 19 ; 004r 54 RNDH EPZ $4F
0800 20 ; The following variables are used 0106 55 STACK BQU $100
0800 21 ; by the SPEED/ASM package and 0200 56 INPUT BOU $200
0800 22 ; shouldn't be used by the SPEED/ASM 0800 57 ;
0800 23 ; programmer. 0800 58
0800 24 0800 59 ;
0800 25 0800 60
0800 26 ; 0800 6L
0800 27 ; 0800 62 ;
0000 28 FORASAV EPZ 0 0800 63 ;
0001 29 FORXSAV EPZ FORASAV+1 0800 64 rRrEEIXARERER
0002 30 FORYSAV EPZ FORXSAV+] 0800 65 * QONSTANTS *
0003 31 FORZPG EPZ FORYSAV+l 0806 66 FRxEEEAIHALRL
0005 32 DESTADR EPZ FORZPGH2 0800 67
0007 33 PIRADR EPZ DESTADR+2 0800 68 ;
0009 34 ISIMMED EPZ PIRADR+2 0800 69 ;
000A 35 op EPZ ISIMMED+L - .

Listing continued.

48 €ider June 1983

The Assembly Advantage-

IF THIS BRANCH USE THIS
IS OUT OF RANGE... CODE INSTEAD.
— BEQ DEST ;(BFL) BNE L1 (BTR)
JMP DEST
L1: instruction sequentially following the
BNE DEST ;(BTR) BEQL2 (BFL) BEQ instruction in the source file. The
JMP DEST program in Listing 2 reads a charac-
L2: ter from the keyboard and prints it
BMI DEST BPL L3 until a carria'ge return is read.
JMP DEST The BNE instruction branches to
L3: the target location if the contents of
the accumulator is not equal to the
BPL DEST BMI L4 value being compared to.
JMP DEST
L4: The BCS (BGE)/BCC (BLT) Instructions
BCS DEST ;(BGE) BCC L5 The BCS (branch if carry set) and
JMP DEST BCC (branch if carry clear) instruc-
L5: tions are used after a comparison to
BCC DEST ;(BLT) BCS 1.6 see if the value in the aCCUI'ﬂuIatOr is
JMP DEST greater than or equal to the value in
L6: the CMP operand field, or if the accu-
BVS DEST BVC L7 mulator is less'tha‘n the CMP\()perand.
~ MP DJEST As a mnemonic alq, the LISA assem-
L7: bler lets you substitute BGE and BLT
(branch if greater than or equal and
BVC DEST BVS L8 branch if less than) for BCS and BCC.
JMP DEST
L8: The BVS and BVC Instructions
Table 1. Long branch code sequences. The BVS instruction branches to
the target label if the 6502 overflow

Listing continued.

0800 70 ; The following symbols are constants

0800 71 ; for the values "FALSE", "TRUE", and | 0800 113

0800 72 ; Carriage Return (respectively). 0800 114 *

0800 73 0800 115 * SPEED/ASM ENTRY POINIS *

0800 74 ; These symbols should only appear 0800 116 * FRAEARRAKE fubabdd

0800 75 ; as immediate operands to a 6502 0800 117

0800 76 ; instruction or in the operand field | 0800 118

0800 77 ; of a pseudo-opcode like BYT. 0800 119 ;

0800 78 0800 120 ;

0800 7% 0800 121 ; NOTE: THE EQUATE OF PUTC MUST

G800 80 ; 0800 122 ; BE CHANGED IF YOU RELOCATE

0800 81 0800 123 ; SPEED/ASM TO SOME LOCATION

0800 82 0800 124 ; OTHER THAN $7800

0000 8 FALSE B 0 0800 , 125

0001 84 TRUE EQU 1 0800 126

008D 85 CR EQU $8D 0800 127

0800 8% 7800 128 PUTC QU $7800

o800 87 7803 129 GEIC FQU PUTC+3

0800 88 ; 7806 130 SAGL U GETC+3 ;FOR USE BY S/A (NLY- SEE DOC.

0800 88 ; 7809 131 sAPC BEQU SAGL+3 pt" "o " " "

0800 0 780C 132 HOME EQU SAPC+3 ;HOME AND CLEAR

0800 g1 780F 133 READLN EQU HOME+3

0800 92 ; "IF" STATEMENT BQUATES 7812 134 INIT EQU READLN+3

G800 83 7815 135 FOR BQU INIT+3

0800 94 ; The following symbols should only 7818 136 FORD EQU FOR+3

0800 95 ; be used in the ADR pseudo-opcode 781B 137 NEXT BQU FOR0+3

0800 9% ; following a call to the SPEED/ASM 781E 138 IFI BQU NEXT+3

0800 97 ; IFx routines, 7821 138 IFIC BQU IFI43

(800 98 ; 7824 140 1IFS BQU IF10+3

0800 99 7827 141 IFSO BOU IFS+3

0800 100 ; 782A 142 MOVE PQU IFS043

OORD 101 B0 BQU "=" 782D 143 LOAD EQU MOVE+3

00A3 102 NE QU "#" 7830 144 MOVS EQU LOAD+3

COBE 103 G QU ">t 7833 145 LDSTR QD MOVS+3

00BC 104 LT QU "< ! 7836 146 PRINT BQU LDSTR+3

BDBE 105 GE EQU ">t r="%256 7839 147 PRTSTR EQU PRINT43

BDBC 106 LE BQU "<" | "="%256 783C 148 PRTINT EQU PRISTR+3

0800 107 783F 143 RDSTR EQU PRTINT43

[e:hly) 108 ; 7842 150 RDINT QU RDSTR+3

0800 109 ; 7845 151 ONXGOTO EQU RDINT+3

0800 110 7848 152 CASE EQU CNXGOTO+3

0800 111 ; 7848 153 CASEI EQU CASE+3

0800 112 ; 7T84E 154 INSET BQU CASEI+3 - .
Listing continued.

50 Cider June 1983

The Assembly Advantage

7851
7854
7857
785A
785D
7860
7863
7866
7869
786C
786F
7872
7875
7878
7878
787E
7881
7884
7887
788A
788D
7890
7893
7896
7899
789C
789F
7882
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
080¢
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
FF69
0800
0800
0800
0800
0803
0803
0803
0806
0809
080C
080F
0812
0815
0818
081B
081E
0821
0824
0827
0829
082C
082F
0832
0835
0838
083B
0&E
0B41
0843
0846
0849
084C
084r
0852
0855
0858

20
20
2]
BS
AD
DO

D3
P4
F4

BEBEEEEEBNE

Listing continued.

P
]

BEEEEEEEIRBONERQEBEEBHEROBEERE

BEEBEBZEEE BIBIBEBR BY

218
219

220

NOTINSET EQU INSET+3

ABS EQU NOTINSET43

NEG BU

MUL BoU

DIV EQu

MOD QU

RND 208}

SUBSIR BOU

INDEX EQU SUBSIR+3

LENGTH BQU INDEX+3

CONCAT BEQU LENGTH+3

GETWZPEG EQU OONCATH3 ;USED BY SPEED/ASM
RDFP EQU GETWZPGH3

PRTE EQU RDFP43

PRIF EQU PRTE+3

FADD EQU PRTP+3

FSUB BQU FADD+3

FMUL BQU FSUB+3

DIV EQU FMULA3

FLT EQU FDIV43

FIX U FLS

FNEG BQU

FADDIN EQU FNEG+3

FSUBTN EQU FADDTN+3

FTIMES BQU FSUBTN43

FINTO EQU FTIMES+3

IFF EQU FINTOH3

MOVEP EQU IFF+3

;

i

* *
* SPEED/ASM Sample program #3: %
* *
* This program demonstrates *
* some 6502 code that is neces— *
* sary for writing SPEED/ASM *
* prograres, In particular it *
* demonstrates how one handles *
* character variables in a *
* SPEED/ASM program. *
* *
* Assembler: LISA 2.5 *
* Requires SPEED/ASM package. *
* Randall Hyde *
* *

EQU $KF69

JSRINIT .

JSR HOME
JSR PRINT
BYT CR,CR, "6502-SPEED/ASM test program”

BYT (R,(R
BYT "ASCII Character Set table",(R

By "

*
*
*

;Entry point to Apple monitor

;initialize SPEED/ASM

;Clear the screen

Listing continued.

flag is set. The BVC instruction
branches to the specified location if
the 6302 overflow flag is clear.

The overflow flag is set and cleared
by arithmetic operations in the 6502.
Certain SPEED/ASM routines also
pass an error status back in the over-
flow flag. The BVS or BVC instruction
can be used after a call to such a rou-
tine to test for an error.

The addition and subtraction in-
structions set or clear the overflow
flag depending on the status of the re-
sult produced. If an overflow oc-
curred, then the overflow flag is set;
otherwise it is cleared.

The BMI and BPL Instructions

Unlike the branches discussed up
to this point, the BMI1 (branch if mi-
nus) and BPL (branch if plus) instruc-
tions aren’t usually executed after a
CMP instruction. They should be used
after an LDA instruction. BMI specifies
a branch if bit 7 of the value in the ac-
cumulator is 1; BPL branches if bit 7
of the accumulator is 0.

To test an integer quantity to see if
it is positive or negative use the fol-
lowing code:

LDA INT+1
BMI ISNEG
or

LDA INT+1
BPL ISPOS

Note that you must test the high or-
der byte of the integer quantity. Bit
number 7 of the high order byte is the
sign bit for an integer quantity in
SPEED/ASM.

Suppose you wanted to set an inte-
ger variable negative. As discussed
last time, SPEED/ASM supports two
routines for changing the sign of an
integer variable: ABS and NEG. ABS
takes the absolute value of an integer
variable. After execution the speci-
fied variable will contain a positive
value.

The NEG routine negates (that is,
changes the sign of) the specified
variable. If the variable originally
contained a positive value, the result
will be negative; if the variable con-
tained a negative value, the result
will be positive,

52 Cider June 1983

The Assembly Advantage

Listing continued.

085B AD
085C 8D
085E (3
0861 F2
0864 Fé
0867 AD
086A C1
086D C9
0870 C3
0873 ES
0875 AD
0878 ap
0878 AD
087E AD
0881 AD
0884 2D
0887 AD
088A 2D
088D 00
088E

088E

088E

088E A9
0890 8D
0893
0893
0893
0893
0896
0899
0898
089E
089E
08AL
08ad

SEEEBEEEEZHAQTBHEES
BEyEEEEE REi338A

3

09

Ze8E
8

g
PEBEZESRBEEEY

B

B

08C4 EE DA 09

08ED F4
08E3
0866
08E9
08EC
08ED
08F0
08F3
08F6
08F$
08FC
O8FF
0902
0904 o0

0906 03 78
0909 20 00 78

B
RESBREBISY

ERESE3E ERPIIEREGS

SEEUBEREEESEZBR
EXBHEIB 3

221
222

223

270

271
272
273

H
; Init CH to space

H

3 Loop to print the ASCII values

i
ERTASC

; Add one to the (i value

;
; See if we're done

READLOOP JSR GETC

Print a carriage return to
move to the next line.

Read characters from the keyboard
until a "#" character is pressed.

BYT CR,CR

BYT "Character ASCII Code®,(R

BYT " " CR,CR,0

IDA " °
STA CH

Da i
STA 1

IDA #0
STA I+l

;Emulate the BASIC
;statement "I=ASC(CHS)"

JSR PRINT
BYT * "0
1DA CH

JSR RUTC

JSR PRINT
BYT "

;Print the character

"0

JSR PRTINT
ADR I

;Print the ASCII code

IDA #CR
JSR RUTC

ING CH ;6502 Instruction to increment a byte

ba o
MP #$FF
BLT PRIASC

;Last ASCIT value plus one.

JER PRINT
BYT CR,CR,"Enter any text terminated",CR

BYT "by a pound sign (""§"")",CR,CR

BYT ":",0
;Read the character
JSR RUTC ;and print it.

Listing continued.

What happens if you want to en-
sure that a variable contains a nega-
tive value regardless of its original
sign? This problem could easily be
handled using two SPEED/ASM
calls:

JSR ABS

ADR VARIABLE
JSR NEG

ADR VARIABLE

The first SPEED/ASM call, to
ABS, makes sure that VARIABLE con-
tains a positive number. The second
ISR, to NEG, negates this positive
number to yield a negative number.
Although this sequence is clever, a
better way to accomplish the task is
the following:

LDA VARIABLE +1
BMI ISNEGTV
JSR NEG
ADR VARIABLE
ISNEGTV:

This code checks VARIABLE to see if
it is negative (by loading the high or-
der byte of VARIABLE and branching
if it is negative), and branches
around the call to NEG if VARIABLE is
already negative. If VARIABLE is posi-
tive NEG negates it.

The BTR and BFL Instructions

BTR (branch if true) and BFL
(branch if false) are actually syn-
onyms for the BNE and BEQ instruc-
tions (respectively). LISA 2.5 emits
the same object code for BTR and
BNE; likewise the same apcode is
emitted for BFL as for BEQ. -

The SPEED/ASM package uses the
value 0 to represent false and 1 to rep-
resent true. After a value is loaded in-
to the accumulator, the BTR and BFL
instructions can test whether or not
the value is zero (false). If so, BFL
branches to the specified location. If
not, BTR transfers control to another
specified location. BFL and BTR are
used extensively by SPEED/ASM IF
routines (to be discussed in a future
installment).

There is one problem with the
branch instructions that I haven't
mentioned yet: the branch range is
somewhat limited. A 6502 branch in-
struction uses a special addressing

54 Eider June 1983

The Assembly Advantage

Listing continued.
090C C2 A3 274 MP #"§" ;Check for "$" character.
090E D0 F6 275 BNE READEOOP sIf not "#", repeat.
0910 276 ;
0910 277 ;
0910 278 ; The following code prompts the
0910 279 ; person at the keyboard to enter
0910 280 ; ™" or "N". If something else
0910 281 ; is entered then the code is
0910 282 ; repeated.
0910 283
0910 20 36 78 284 GETYORN JSR PRINT
0913 6D 8D BD 285 BYT (R,(R,(R
0916 C5 EE F4 286 BYT "Enter Yes or No (Y/N): ",0
0919 ES F2 AD
091C DS ES F3
091F Al EF F2
0922 #0 CE EF
0925 A0 A8 DS
0928 AF CE AS
0928 8D 092B:BA AO 00
092E 20 03 78 287 JSR GETC
0931 C9 D9 288 QMP #"Y°
0933 FO 04 289 BEQ GOCDANS
0935 C9 CE 290 CMP #"N"
0937 DO D7 291 BNE GETYORN
0939 292
0939 293 GOODANS:
0939 294 ;
0939 295 ;
0939 296 ;
0939 297 ; This code prompts the user to enter
0939 298 ; a decimal value. Once the value
0939 299 ; is entered the ASCII character
0939 300 ; corresponding to that code is
0938 301 ; printed on the screen.
093% 302 ;
0939 303 ; Entering zero temminates the
0939 304 ; loop.
0939 305 ;
0939 20 36 78 306 PRTCHR JSR PRINT
093C 8D 307 BYT (R
093D 8D C5 EE 308 BYT CR,"Enter a decimal value in the"
0940 F4 E5 F2
0943 A0 E1 A0
0946 E4 ES E3
0949 E9 ED E1
094C EC AD F6
094F E1 EC F5
0952 E5 AD E9
0955 EE A0 F4
0958 E8 ES
095A 8D F2 K1 309 BYT CR,"range 0,.255: ",0
095D EE E7 ES
0960 A0 BO AE
0963 AE B2 BS
0966 BS BA AD
0969 00
096A 20 42 78 310 JSR RDINT
096D DB 09 311 ADR I
096F 70 C8 312 BVS PRICHR ;1f an error occured.
0971 313
0971 314 ; Force integer value into the
0971 315 ; range 0..255 by zeroing the high
0971 316 : order byte.
0971 317 ;
0971 A9 00 318 IDA #0
0973 8D DC 09 319 STA I+1
0976 320
0976 321 ; Print the decimal value (in case
0976 322 ; they entered too large a number.
0976 323
0976 20 36 78 324 JSR FRINT
0979 8D C4 E5 325 BYT CR,"Decimal value: ",0
097C E3 ES ED
097F El EC A0
0982 F6 E1 EC
0985 F5 ES BA
0988 ES 0988:A0 00
098A 20 3C 78 326 JSR PRTINT
098D DB 09 327 ADR I
098F 20 36 78 328 JSR PRINT
0992 A0 AQ C1 329 BYT ® ASCII Character: """,0
0995 D3 C3 C9
0998 C9 AD C3
099B E8 El F2
099E El E3 F4
09A1 F5 F2 BA
0SA4 AD A2 00
09A7 AD DB 09 330 DA I Listing continued.

mode called the relative addressing
mode, in which the branch opcode is
followed by a single address byte.
Such a 2-byte instruction saves some
memory (normally 3 bytes would be
required) but branches can jump on-
ly to a location within a 256-byte
range centered at the instruction fol-
lowing the branch instruction.
Therefore, a branch instruction can
branch 129 bytes forward (from the
beginning of the branch instruction)
or 126 bytes backwards.

Normally branches occur within
this range and there’s no problem.
Occasionally, however, a program
needs to branch to a location outside
this + 129/ — 126 byte range. To ac-
complish this use the opposite-type
branch to jump around a 6502 jMP
instruction to the intended address.
For example, if you want to branch if
true to location ISTRUE but the assem-
bler gives you a branch-out-of-range
error, substitute the following code:

BFL ISNTTRUE

JMP TRUE
ISNTTRUE:
Table 1 lists the instruction sequences
to use if a branch-out-of-range error
oceurs.

Working with Character
Variables Through SPEED/ASM

This subtitle may seem somewhat
of a misnomer, since the SPEED/
ASM package provides absolutely no
character handling routines. All
character handling must be per-
formed by pure 6502 code. However,
character variables are still, in es-
sence, manipulated.

Declaring character variables was
described in part 1 of this series. As a
review, to reserve space for a charac-
ter variable you specify the name of
the variable followed by a pseudo op-
code that reserves at least 1 byte of
storage. I usually use the DFS instruc-
tion to reserve a single byte. For ex-
ample, to reserve 1 byte for a variable
named CHAR use the definition:

CHAR DFS 1

This statement instructs LISA to re-
serve 1 byte at the current location
for the variable CHAR.

56 Cider June 1983

jim

jim

jim
092B:BA A0 00

jim

jim

jim
0988:A0 00

The Assembly Advantage—

Listing continued.

092a 20 00 78 331 JSR RUTC

09AD 29 A2 332 DA #"r*

09AF 20 00 78 333 JSR RUTC

0982 338

0952 335 ; Check the L.0. byte of I to

0982 336 ; see if it i . . L1 .

0982 3 g o e As is the case with integer vari-

Sore 338 5 (On the 6302 Bif,’gtg’l? B can ables, character variables must be de-

0982 340 ; DA instruction to see if zero fined at a point in your code where

0982 341 ; was loaded into the accumulator they will not get executed as code

09B2 342 ; or rnot) .

S mos ol on 1 The best place to put variable defini-

09ES DO 82 345 ENE PRIGHR tions is after the JMP EXIT that termi-

prad e nates the program.

0987 348 ; Quit and return to the Apple monitor Initializing a character variable

0987 349 ; . . .

09B7 20 36 78 350 J5R PRINT w1t}} a constant was briefly discussed

09EA 8D 8D 8D 351 BT O RR routan $37.GR0 earlier in this article. To do so load

[s} e I . .

09CO AD EF E6 Be pres - the accumulator with the desired

oA constant (using the immediate ad-

09C9 ES B0 FO dressing mode—that is, preface the

o my character constant with a popnd

092 20 23 B3 sign) and store the accumulator into

0907 333 ; the character variable. For example,

097 34 ; i .

09D7 4C 69 FF 355 JMP EXIT sReturn to Apple Monitor to load CHAR with the character con

09DA 356 ; stant ? execute the code:

09pa 357 CH DFS 1 jChar

09DB 358 1 DFS 2 ;Integer LDA #7

09DD 359 END STA CHAR

*x%k% END OF ASSEMBLY

: Incidentally, any value can be

SPEED/ASH () 1981, LAZER SYSTEMS loaded into CHAR. It doesn't have to

DOES YOUR APPLE SUPFORT LOWER CASE Listing continued. be a o.:haracter constant. You cquld
initialize CHAR to contain the carriage

June 1983 Cider 57

The Assembly Advantage

return character by using the code:

LDA #CR ;CR is defined in
;SPEED/ASM.EQUATES

STA CHAR

Any other numeric or symbol value
could be loaded into CHAR in a simi-
lar fashion.

Copying one character variable to
another (also previously mentioned)
is a trivial exercise. Load the accu-
mulator with the source variable and
then store the accumulator into the
destination variable. To copy CHARI
into CHAR?2 you could use the code:

LDA CHARI
STA CHAR2

I mentioned before that the CHR$
and ASC functions are handled by

simple loads and stores. In certain
cases this is true. But if you're trans-
lating Applesoft code into SPEED/
ASM you will run into a few prob-
lems. Most noticeably, Applesoft
uses a version of the ASCII character
set wherein the ASCII codes occupy
the range 0-127. To truly imple-
ment the CHR$ and ASC functions
you should use the code sequences in
Listing 3. The AND and ORA are spe-
cial 6502 logical instructions that I'll
describe in a future article. For now
just copy this code sequence verba-
tim any time you want to simulate a
CHRS$ or ASC function.

Comparing character variables is
simply a matter of loading one char-
acter value into the accumulator using
the LDA instruction and comparing
it to another using the CMP instruc-
tion. This month’s sample program

(Listing 4) demonstrates several
character variable manipulations
that should help answer any ques-
tions you have about character

handling.

Notes of a Commercial Interest

The LISA assembler and the
SPEED/ASM programming package
are available from your local com-
puter store and many mail order
software houses. If you cannot lo-
cate a copy of either of these pack-
ages, you can order directly from
Sierra On-Line Inc., 36575 Mudge
Ranch Road, Coarsegold, CA
93614. The LISA assembler,
SPEED/ASM, and Datamost’s Using
6502 Assembly Language book are
all available in a special LISA Edu-
cational Package available where
LISA issold. W

Listing continued.

DISPLAY? (Y/N):
SPEED/ASM (C) 1981, LAZER SYSTEMS

DOES YOUR APPLE SUPPORT LOWER CASE
DISPLAY? (Y/N):

6502--SPEED/ASM test program

ASCII Character Set table

Character ASCII Code

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
byrl
178
179

VO NAN B W ONS |y & o m a0 tr 3m

CEEEEEEEERE TR

OW B @IV I A

Pt LN R B QCH OOV OZICNRLmTOMEUT

R R R AR A AR TR R AR Y

€SN OTOT FRUPpIGHMD QAT /|

248
249
250
251
252
253
254

[YR

LT

Enter any text terminated
by a pound sign ("#7)

:This is a test of SPEED/ASM
#

Enter Yes or No (Y/N):

Enter a decimal value in the
range 0..255: 250

Decimal value: 250 ASCIT Character:

Enter a decimal value in the
range 0,.255: 145

Decimal value: 145 ASCII Character: ™"

Enter a decimal value in the
range 0..255: 174

Decimal value: 174 ASCII Character: "."

Enter a decimal value in the
range 0..255: 199
Decimal value: 199 ASCII Character: "G"

Enter a decimal value in the
range 0..255: 232
Decimal value: 232 ASCII Character: “h"

Enter a decimal value in the
range 0..255: 23456

Decimal value: 160 ASCII Character: " 7

Enter a decimal value in the
range 0..255: ¢

Decimal value: 0 ASCII Character: " "

58 €ider June 1983

The Assembly Adiiantage |

by Randy Hyde

Control Structures

In the previous three instaliments
of this columnn I've described how
to define and use SPEED/ASM vari-
ables and how to perform the stan-
dard integer arithmetic operations,
and I've discussed some 6502 code
necessary to write complete SPEED/
ASM' programs. With .most of the
basics behind us, its” time to begin a
consideration of SPEED/ASM’s con-
trol structures.
The FOR. . .NEXT Loop
SPEED/ASM supports two varia-
tions on Basic’s FOR...NEXT :loop:
FOR and FOR0. The FOR subroutine is
a generalized FOR loop that allows
variable initial/ending values and a
stepsize. The FOR0. routine is a spe-
cialized version of FOR that assumes
the initial and ending values are con-
stants and that the stepsize is one.
Since the FORO loop is used better

than 90 percent of the time, 1 will de-
scribe it first. -
The FORO loop uses the structure:

JSR FORO
ADR IVAR,STARTVAL.ENDVAL

; Body of loop

JSR NEXT
. IVAR must be the name of a
SPEED/ASM integer variable;
STARTVAL and ENDVAL must be in-
teger constants. If you specify a

10 FORI=1TO 20
20 PRINT “I=";I
30 NEXT I

40 END

Listing la. Sample Basic FOR.. NEXT
routine.

SPEED/ASM variable name for
STARTVAL or ENDVAL, SPEED/ASM
will use the address of the variable,
not the contents of the variable, as
the initial or final value.

Since most FOR loops take the
form:

FORI=1TO 10

the FORO routine turns out to be quite
adequate for most applications, See
Listing 1 for a sample Basic FOR. ..
NEXT routine and its SPEED/ASM
equivalent.

As in Basic, it is illegal to jump into
the middle of a FOR...NEXT loop in
SPEED/ASM. Unlike Basic, SPEED/
ASM ist’t nice enough to tell you that
you've executed a NEXT without a

Address correspondence to Randy Hyde, 925
Lorna St., Corona, CA 91720.

EXIT EQU $FF69
INIT

FORO
1,1,20

ISR
ISR
ADR

;Body of loop
JSR PRINT
BYT “1=",0
JSR PRINT
ADR T
LDA #CR

JSR PUTC

JSR -
TMP

NEXT
EXIT

;Variable declaration(s)

I ADR 0
END

;Always before running a SPEED/ASM PGM.

;Print the return at the end
;of the line.

Listing 1b. SPEED/ASM equivalent.

JSR
ADR

FORO
1,1,10

;Body of loop
JMP EXITLP

ISR

JMP

NEXT .
DIDNTXIT

;Exit condition at this point.

EXITLP PLA
PLA
PLA
PLA
PLA
PLA
PLA
PLA

DIDNTXIT:

Listing 2. Popping date off a stack.

36 €ider July 1983

The Assembly Advantage

matching FOR. Instead, the system
simply hangs up (or begins doing
bizarre things to the screen or access-
ing your peripheral devices). There-
fore, you should always make sure
that there are no jumps into the range
of a FOR loop. For example, the fol-
lowing is definitely forbidden:

JMP ENTERFOR ;Can’t do!
JSR FORO
ADR LL10

ENTERFOR:

JSR NEXT
It is in equally bad taste to jump
outside the range of a FOR...NEXT
loop from within a FOR loop. Basic
also disallows this, but is much more
forgiving. The latter won’t catch the
error until you oveirflow the FOR. ..
NEXT stack (by doing it too many
times). SPEED/ASM, on the other
hand, explodes spectacularly the next
time you execute an RTS or otherwise
attempt to access the top of the stack.
The reason a jump into or out of a
FOR...NEXT loop causes problems is
that the FOR subroutine pushes data
onto the top of the stack and leaves it
there. This data is popped off and
processed by the NEXT subroutine
later on. Obviously, if you call the
FOR routine from within a subroutine
and then execute an RTS without first
completing the loop by calling the
NEXT routine, the 6502 will attempt
to use the data pushed onto the stack
by the FOR routine as the return ad-
dress. Typically this will not return
you to the spot you're interested in.
For those of you who regularly use
the POP command in Applesoft, yes,
you can pop this data off the stack
and prematurely exit a FOR. ..NEXT
loop. The SPEED/ASM FOR. ..NEXT
loop pushes 8 bytes of data onto the
stack so you can repair the stack by
popping 8 bytes off. This is accom-
plished by executing eight PLA in-
structions in a row. See Listing 2.
The FOR subroutine is similar to
the FORO subroutine. The major dif-
ference is that the FOR subroutine al-
lows variable starting and ending val-
ues and a variable stepsize. The exact
syntax for the FOR subroutine is:

JSR FOR
ADR <index var>,<start var>, <end var>,
<step var>

where index var is the name of the
variable used as the loop index, start
var is the name of the variable con-
taining the starting value, end var is
the name of the variable containing
the ending value, and step var is the
name of the variable containing the
stepsize. To simulate the Basic state-
ments:

“10 FOR [=] TO K STEP STP

20 NEXTI
you would use the SPEED/ASM code:

JSR FOR
ADR L] K.STP

JSR

Note that the FOR loop accepts
only variable names; constants are
not allowed. If either the starting or
ending value must be a variable, or
your loop requires a stepsize, then
you must use a FOR loop and all the
values must be specified as variables.

NEXT

For example, consider the Basic loop:

10 FOR1=] TO 100
20 NEXT1

Because the starting value (J) is .

specified as a variable, the FORO rou-
tine cannot be used. The FOR routine,
however, requires that the starting,
ending and stepsize values all be spec-
ified as variables. Therefore, to con-
vert the statement above into SPEED/
ASM code you will need to create two
“dummy” variables: one to hold the
ending value constant (100) and one
to hold the stepsize constant (1). Use
the code in Listing 3.

Note that the constants/variables
€100 and C1 are sandwiched between
a JMP instruction and the beginning
of the loop. Since these values are
static (they do not change) they
should be incorporated into the code
instead of standing at the end of the
program with the variables. Although
they are constant values they still
must not be executed as 6502 instruc-
tions. Hence, a JMP instruction was
executed to skip past the constants.

The FOR subroutine is very power-
ful, even though it may be somewhat
cumbersome to use if the starting,
ending and/or stepsize values are

JMP STRTLP
C100 ADR 100
Ci ADR 1
STRTLP JSR FOR

ADR 1],Cl00,C1
;Body of loop

JSR NEXT

Listing 3. A FOR routine using “dummy”
variables.

1]=2
5[=1

10 IF I> = 10 THEN GOTO 20
WI=I

12 GOTO 10

90 END

Listing 4a. Sample Basic IF routine incor-
porating a GOTO statement.

EXIT EQU $FF69
JSR INIT
JSR LOAD
ADR 2]
JSR LOAD
ADR 1]l

L10 JSR IFIO
ADR LGE,I0
BTR L2
JSR MUL
ADR LI
IMP LI0

L2 JMP EXIT
END

Listing 4b. SPEED/ASM equivalent using
BTR. -

constants instead of variables. The
inconvenience is actually minimal
since most of the time the FORo
subroutine is used instead of the FOR
subroutine.

The SPEED/ASM IFI
And IFI0 Routines

SPEED/ASM uses two routines to
compare integer values: IFI and IFI0.
IF1 compares two integer variables;
IFI0 compares an integer variable to
an integer constant. Six types of com-
parison are possible. The IFI and IFI0
routines return “true” if a com-

38 Cider July 1983

BB LN EREERE S vovanmawnm

CEEZUREIBRESEEASERERAAEERUENRLBRERRNRERY

LB EREIIRGEBRES

Listing 6. 1F and FOR Demo.

TIL "Listing € : IF and FOR Demo"
7

12

h

AARRRRRRARAAAKANANRARARA AR ARE N R AR

* *

* SPEED/ASM BEquates *

* *
ERARRAREETATEA AR AR TR AN RA R Rk d

¥

wbkbhhhhhhdd
*
Abthhddhddkk

The following synbols are constants
or the values *FALSE", “IRUE", and
Carriage Return {(respectively).

These symbols should only
immediate operands to a 6502
instruction or in the operand field
of a pseudo~opcode like BYT,

h

¥
¥
¥
b
)
H
*:
*
&
H
1
H
H
H
H
H
H
H
3
¥
H
!
H
!
i

FALSE
TRUE
CR

d
cEEH
4"

*IF" STATEMENT BQUATES

The following symbols should only
be used in the ADR peeudo-opcode
following a call to the SPEERVASM

e Ne N A N e e e % R e e e e Ne

IFx routines.
B [
NE U "
ar B ">
LT 0o <"
GE BQU *>"|"="*256
LE BU "<"|"="*256

[P Y TR R

SPEED/ASM ENIRY POINIS *

;
b

; NOIE: THE EQUATE OF PUTC MUST

; BE CHANGED IF YOU RELOCATE

3 SPEED/ASM TO SOME LOCATION

; OTHER THAN $7800

i -

H

1

PUTC QU 57800

GETC BOU PUTCH3

SAGL B GETCH3 sFOR USE BY S/A ONLY- SEE DOC,
SAEC EQU SAGLA3 I " w
HOME BEQU SAPC+3 SHOME AND CLEAR

READLN BQU HOME+3

INIT BQU READLN+3

FOR BQU INIT+3

PORD EQU FOR$3

NEXT EQU FORD+3

IFI EQU NEXTH3

Listing continued.

The Assembly Advantage-

parison holds, “false” if it does not.
You can call the 1¥10 routine with
the format:

JSR IFI0

ADR <varl>,<op>,<value>

where varl is a SPEED/ASM integer
variable, value is any integer constant,
and op is the operator specifying
which comparison to perform. The
latter may be: EQ—test for equality;
NE-——test for inequality; LT—test for
less than; LE—test for less than or
equal to; GT—test for greater than;
or GE—test for greater than or equal
to. For example, to see if IVAR is less
than 4376 use the statement:

JSR IFI0
ADR IVAR,LT,4376

The EQ, NE, GT, GE, LT and LE
symbols are defined for you in
SPEED/ASM Equates, Listing 7. Re-
fer there for the values corresponding
to these symbols.

The IF10 and IFI routines return
“true” or “false” in the 6502 accumu-
lator (where true=1 and false=0),
and set the 6502 Z bit in the P register
so that the BTR and BFL (branch-if-
true and branch-if-false) instructions
can be used immediately after the
call to IF10 or IFI. To emulate the
Basic IF statement you need only add
a branch statement to the IFI0 or 1F1
statement to make it fully functional.
Refer to Listing 4 for an example. -

This relatively complete SPEED/
ASM program (it still needs the

IFI<>10 THEN J= -1

Listing 5a. Sample Basic IF routine.

JSR IFIO
ADR LNE,10
BFL INEI0
JSR MOVE
ADR L]

JSR NEG
ADR]

INE10:

Listing 5b. SPEED/ASM equivalent using
BFL.

40 Cider July 1983

The Assembly Advantage-

Listing continued.
J IFI0+3
= gm o mmm
BQU IFS043 _
Ehe % b B Movess
] 7850 3;’ m[m 200 Movee3 SPEED/ASM equates at the top) ex-
7633 igg PRINT % LDSTR3 actly duplicates the Basw progral:n.
;gg It mnrrA i g mil* Note that the BTR (branch-if-trléel) in-
7o 104 . : ion branches if the condition
T63F O e D Temn Struction
Lo 106 Gooom 20 P : D> =10is true.
;38 108 % g CASE+3 : Sometimes you may want to exe-
To4e s Demr 2y Gt cute an instruction other than a
751 B B momseens GOTO if an expression is true. For ex-
ms .
7657 wom % o3 ample, both Integer Basic and A;flplhe-
7D i oy g soft Basic allow IF statements oTth e
Taed ne o e form IF <cond> THEN <staterr167;>S.M his
oo00 w s casly simulated in SPEED) Mby
i 1o 7 Apple D0S equates using the BFL (branch-ld- a}a] Setate-
ggg 2 o $3EA sDOS init routine. struction to branch around t e s s
o84 1 o E 1Control-D char ment you wish to execute. Llstm%1 :
daio i illustrates SPEED/ASMI cotde of this
0800 s ; tes nd a Basic equivalent.
0800 125 ; Apple Monitor equal type a a] v
e 17 bar s eeess In addition to setting the'6502 z
o0 128 1 flag so that the BTR and BFL 3nstru0-
0800 ! tions can be used after an IFI0 instruc-
130 ’ . 23 k44
o0 E% ; tion, the 1FI0 rout)me re;urréssogalgi
2800 ; “true” (0 or 1) in the -
133 or “true oL .
oano B e - cumulator register. This feature can
ggg Eg * IF and FOR demonstration pgm. * be applied to several s1tuat10nsj.<ColIS-
9800 S tes & text * ider the Basic statement I=]<=10.
This program crea € side: ! - ’
ggg Eg . fmue s ?ﬁﬁi&s&m : This assignment stores 0 mtg 1if Jis
0600 14l + series of S o the disk.? not less than or equal to ten; it stores 1
ggg 6 v o reads :fdzfﬂu;:kpi:- : into I if J is less than or equal to ten.
C ‘ ‘ .
dad oo e the Toput 1rEs o the + This action can easily be accorrtlphshet(i
T+ o me i statemen
020 146 * soreen. : using the SPEED/ASM
9800 e that follow:
0800 148 .
0800 149
pc igg ; JSR IF10
ggg 152 ADR J,LE,10
°°°8 1123 ;m'itialintim section: STA 1
ggo 155 & LDA /0
0%0 5) do this firsts STA 1+l
080 : ‘Alvays
158 SA,P@M.4 JSR INTT .
s 7 g : Don’t forget that the high orde/e;
160 DA
e ol o s e o e st oo
13 5 bo 1 state
gg 163 7 hooks at locaug'ﬁﬁ..sgzs) ESOO an‘d STAbi +
0803 164 ; “Beneath Apple page this problem. ‘ .
o3 20 A cs g6 | JSR INTITOS You use the IFI routine t’o compar
onos 7 two integer variables. IFT's synta% hls
oaoe 169 ; Blate the WSIC statasents almost identical to }::hat of Iﬂg(.:ify z
. . o
0806 170 "NOMON 0,1,C" only difference is that you "
020t i o - secgnd SPEED/ASM variable instead
0806 .
] :2 t7:g gi b %,m 0,1,C",CR,D of a numeric constant. The format
8383 g @ for the IFI routine is:
meass
0812
wsca @ ; SR IFT
oats e ADR <varl><op><var2>
S
o3 SE-4 S SVOTTTI ORI TTOURITTO ST
0818 179
180) i
ggg ig% 3 Pile creation section: Interfacing to Apple DOS
0818 ; : ' '
< 15 ; ‘ While I could go on discussing ho}:’v
oate 165 7 Open the file e hat o YT oAt the FOR and IF subroutines work, the
oa18 186 ; Apple DOS fashion. Note Listing continued. best way to explain their use is

42 Cider July 1983

through some concrete examples.
Listing 6 uses FOR and IF to demon-
strate how to create and access text
files under Apple DOS.

As in Basic, in order to interface to
Apple DOS you must print a control-
D followed by a DOS command.
Normally, Apple DOS only allows
text files to be accessed from a run-
ning Basic program. Since SPEED/
ASM is definitely not Basic, we must
trick DOS into thinking that a Basic
program is running. This is easily ac-
complished by storing the value $80
into locations $75 and $D9 in the Ap-
ple’s 0 page memory space. This feat
is accomplished using the 6502 code:

LDA #5580
STA $75
STA $D9

Storing $80 into location $D9 tells
DOS that an Integer Basic program is
running; storing $80 into location $75
informs DOS that an Applesoft pro-
gram is running. Whenever DOS re-
ceives a command to manipulate a
text file it looks to see which Basic is
currently active and then checks the
appropriate 0 page location to deter-
mine whether or not the Basic is run-
ning. If location $75 contains $FF and
Applesoft is active or if location $D9 is
positive (less than $80) and Integer
Basic is active, then a NOT DIRECT
COMMAND error is issued and every-
thing stops. Since many SPEED/ASM
programs will be running under the
control of Apple DOS, the SPEED/
ASM INIT routine automatically
stores $80 into locations $D9 and $75
for you. While this is ideal for Apple
DOS. users, if attempting to run your
SPEED/ASM program under a dif-
ferent operating system (like ANIX,
OS/A, or APEX) you should be aware
of the fact that SPEEDD/ASM manipu-
lates these two locations on power-up.

This month’s demonstration pro-
gram is quite simple. It writes out a se-
quence of numbers to a random access
file and then reads them back, dis-
playing them on the screen. Next
month I will begin discussing string
variables and expand this sample
program into a mini database/mail-
ing list program. Ml

Listing continued.

o818
0818
0818
0818
o818
o818
G818
Q81E
o821
0824
0827 D
0823
082p
0830

qoBl0EEEN
BERERAGESR
SRBRBARAAS

<
g
(-4
S

0834 20 18 78
0837 63 0D 01
083A 00 0A 00
0D .
083D
083D
083D
083D
083D
083D 2
0840
0843 -
0846
0849
084C

0 Q

REE

[N]
28RRBEBGeY
SQ¥BHEBRREER
3 BRRGR3

L=
&
L]
8
83

085E

085E

08SE 20 3C 78
0861 63 D

0868

0868 20 1B 78
0868 .
0868

086B

086B

0868

0868

0868

086B

H
H
¥
H
i

v e e

~a n e LS TR TN T W VI

© Mk % wE W s %e NE Me me N %e N6 N6

- na e s e

carriage return is printed first
in order to insure that the DOS
comuand is recognized. :

JSR PRINT
BYT CR,CTLD,"OPEN NUMBERS,S6,DL,L8",CR,0

JER FORD
AR I,.1,10

Bmulate the BASIC statement:
PRINT QHR$(4) ; "WRITE NUMBERS, R";I;",B0"

JSR PRINT
BYT CILD,"WRITE NUMBERS,R",0

JSR PRTINT
ARI

JSR PRINT

BYT *,B0",CR,0

Now output the value I to the textfile.
This code emilates the BASIC statement:

PRINT I
JSR PRTINT
ADR I
IDA #CR sOutput a CR to finish
JSR PUTC yoff the line

Repeat for 10 numbers
JSR NEXT

At this point a random access file

has been created with 100 records,

Each record contains the record
mmber of that particular record.

To insure the integrity of the

file, it must be closed. The following
SPEED/ASM code emulates the BASIC

code’s

PRINT GRG(I)]W NUMBERS"

JSR PRINT
BYT CIED,"CLOSE NUMBERS®,CR,0

*&+ End of file creation section,

% h % N % % N Ne

The following section re-cpens
the text file just created and
prints the records onto the screen
This verifies proper operation

of the file creation process.

JSR PRINT
BYT CR,"Verifying Records®,CR,CR,0

Listing continued.

July 1983 Eider 43

£86T Am[19p1y ¥

Listing continued.
0867°'F9 E9 EE 0912 306 ;
088A E7 A0 D2 0912 307 ;
. 088D ES E3 FF 0912 20 36 78 308 JSR PRINT
0890 F2 E4 F3 0915 8D D2 ES © 309 - BYT (R,"Reading records in reverse order®,CR,CR,0
- 0893 8D &b 00 0918 E1 E4 E9
0896 262 3 091B EE E7 AD
0896 263 091E F2 ES K3
- 0896 20 36 78 264 JSR PRINT 0921 EF F2 E4
0899 8D 84 CF 265 BYT CR,CIID,;"OPEN NUMBERS,L18%,CR,0 0924 F3 A E9
089C DO C5 CE 0927 EE 80 F2
089F AD CE D5 092A ES F6 ES
08A2 (D 2 5 092D F2 F3 £S5
08AS D2 D3 AC 093¢ a0 EF F2
08A8 CC BS 8D 0933 £E4 F5 F2
08A8 00 . ‘0936 8D 8D 00
0 266 0939 310
.0BAC 20 18 78 267 JSR FORO 0939 4C 42 09 311 JMP DOFOR ;Hide the following constants
OBAF 63 0D 01 268 ADR I,1,10 093¢ 312 ; X
0882 00 0A 00 093C FF FF . L33 ADR -1 = ADR !-1
0885 269 * G93E 01 00 314 a ADR 1
.08BS 20 36 78 270 JSR PRINT 0940 0a 00 315 c1o AR 10
08B8 84 D2 C5 271 BYT CTLD,"READ NUMBERS,R",0 0942 316 g
08BB Cl C4 AO 0942 317 ;
08BE CE D5 (D 0942 20 15 78 318 DOFOR JSR FOR
-08C1 C2 C5 D2 0945 63 0D 40 319 ADR I,C10,C1,Q0M1 $Stepeize of -1
08C4 D3 AC D2 0948 09 3E 09
08C7 00 094B 3C 09
08CB 20 3C 78 272 JSR PRTINT 094D 320 ;
08CB 63 273 AR X 094D 20 36 78 321 JSR PRINT
08D 20 36 78 274 JSR PRINT 0850 84 D2 5 322 BYT CTLD,"READ MIMBERS,R",0
08D0 ACC2 B0 275 BYT *,B0*,CR,0 053 QA4 A
08D3 8D 00 0956 CE D5
08L5 276 ¢ 0959 C2 C5 D2
06805 20 OF 78 . 277 JSR READIN ;Force a new. line to be read. 095C 13 AC D2
0Bp& 20 42 78 . 278 JSR RDINT 095F 00
08DB 65 0D 279 ADR J 0960 20 3C 78 323 JSR PRTINT
osp 280 0963 63 (D 324 ADR 1
08D 281 ; Print the record's value, 0965 20 36 78 325 JSR PRINT
080 282 ; 0968 AC C2 B0 326 BYT ",B0",CR,0
08D 20 36 78 283 JSR PRINT 0968 8D 00
O8E} D2 ES E3 - 284 BYT "Record number ",0 096D 327
OBE3 EF F2 B4 096D 20 OF 78 328 JSR READLN jFetch a new line
0886 AD FS 0970 20 42 718 329 JSR RDINT R
08E9 ED E2 BS 0973 65 0D 330 ADR J
08BC F2 a0 00 0975 331 ;
O8EF 20 3¢ 78 285 JSR PRITNY 0975 20 36 78 332 JSR PRINT
08F2 63 (D 286 ADR 1 0978 D2 ES E3 333 BYT "Record mumber *,0
08F4 20 36 78 287 . JSR PRINT 0878 EF F2 B4
OBF7 A0 E3 EF 288 BYT * contained **,0 097E A0 EE F5
O8FA EE P4 E1 0981 E2 ES
O0BEL: E9 B 0984 F2 A0 00
0900 E4 A0 A7 0887 20 3C 78 334 JSR PRTINT
0903 00 098A 63 D 335 ADR I
.0904 20 3¢ 78 289 JSR PRTINT 098C 20 36 78 336 JSR PRINT
0907 65 0D 290 ADR J 098P A0 E3 EF 337 "BYT " contained '*,0
0909 20 36 78 " 291 . JSR PRINT 0992 EE F4 E1
090C A7 8D 00 ~ 292 BYT 1%,CR,0 0995 E9 EE S
. 090F 293 0998 E4 A0 A7
090F 294 ; Move on to the next record. 0998 00
090F 295 099C 20 3C 78 338 JSR PRTINT
090F 20 1B 78 = 296 JSR NEXT 099F 65 0D 339 AR J
0912 297 08Al 20 .36 78 340 JSR PRINT
0912 298 3 09A4 A7 8D 00 341 BYT *'*,CR,0
0912 299 ; ** Bnd of record verification. 0987 3482 ;
0912 300 09A7 20 1B 78 343 JSR NEXT
0912 301 Q9AA 344
0912 302 09AA 345 ;
0912 303 H 09BA 346 KAARRARARKERARERERRXAARRARARRRNRRS
0912 304 ; Now print the file out backwards Q09AA 347 . - .
0912 305 ; 03AA 348 ; Listing continued.

jim
= ADR !-1

P 1opr) €961 4mf

Listing continued.
0SAA
09AA
D9AA
09A2 20 36
092D 8D 84
0980 00
0SEl
0SBl 20 3
09B4

83

-3
~

goEEREREREE
3aEIZTE
ERBBRES

388 SRAIFBARG
33

OO0
-44-E
2
B88%

ggEaed
8E3

SEHIIBEIHABS BEHI8 ASGRIGGBIIREES H89Y

EgBB3BERIBAZY
CSENBHRHIBANS

888
BBE

2

3338560

343551
S RYBBINBIBING

SSBE ES3ZBINONIBAIR BsgR
8¥3

gEfEEgResasnEsisnenasessuizntas

nunsagy
BHBIRGY
AHRBIHI

371
37

373
374

375
376
n
378

Now get the bounds for output
from the keyboard.

JSR PRINT sThis turns off the DOS
BYr (R,CTLD,CR,0 $READ mode.

-~ e we

REREADO0 JSR FRINT
BYT "Input a lower bounds:",0 jGet first record #

3 FIRST must be greater than zero
3 and less than or equal to 10.
H

JSR IF10
AR FIRST,GT,0

BIR FIRSTORD

JSR PRINT
BYT CR,BELL,"Value must be greater than zero®,(R,0

JMP REREADO

}
FIRSTORO JSR IFIO0
ADR FIRST,LE,10

BIR FIRSTOK]

JSR PRINT
BYP CR,BELL,”Value nust be less than 11%,CR,0

JMP REREADO
H
]
FIRSTONY :
REREAD1 JSR PRINT
BYT CR,"Enter the fipal value:",0

BYT CR,"Enter the final value 0

888Rr
BE3

BESZIR53ERREREERARE

BEZE AAZREIINIBIAHEEE 8338

z
-
SR SSIEBIAMARIZREBAS

YERIZEBIHBARgE MEEE YBNEIRNEEARMIRIR

EERBROIBOIBABY
SSEBUHRIBERERAI

BERAZBHAR

Fdd R L T R e
EReEAEIR

88 8sthdz3ungiey

(31
a3

418

1In case of error

Check to make sure that ENIVAL is
in the range 1..10.

~ e e

JSR IFI0
ADR ENDVAL,GT,0

BIR ENDOKO

JSR PRINT
BYT CR,BELL,"Ending value must be greater than zero",(R,0

JMP RERFAD]

JSR IFI0
ADR ENDVAL,LE,10

BIR ENDOKL

JSR PRINT
BYT CR,BELL,"Ending value must be less than 11%,0

JMP REREADL

Now get a stepsize value from the user.

- e we

ENDOK1s
REREAD2 JSR PRINT
BYT (R, "Enter a stepsize value:",0

JSR READLN
JSR RDINT

Listing continued.

jim
BYT CR,"Enter the final value:",0

£861 4m{ 1op1D 8%

883

BERBABI28N 38y
SSRBRERZBERIE RS8N
HEBERYIBE383

g

wo

R8ABERIBRARE BISH
$ BRIBRIBBEEI

8BS

E5B9EBEGRE8E 283

RERgaEREEE

ADR. STEPSIZE
BVS REREAD2

The stepeize must be checked to
make sure that it matches the
following conditions:

It must be in the range 1..10
or ~1..~10.

If ENDVAL ie greater than FIRST,
STEPSIZE must be positive.

1f BINVAL is less than FIRST,
STEPSIZE must be negative.

M e % % e Ne N M e N e e e e Ne

JSR IFIO
ADR STEPSIZE,HD,0

BFL. SSOKO

JSR PRINT
BYT (R,BELL,"Stepsize must not equal zero*,CR,0

JMP REREADZ
SSOK0 JSR IFIO
AR STEPSIZE,GT,0
BFL, SSISNEG
¥
$ STEPSIZE > 0, make sure that ENDVAL >= FIRST,
¥
JSR IFI
ADR ENDVAL,GE,FIRST
BIR CHKPOSSS

JSR PRINT
BYT CR,BELL,"STEPSIZE must be negative®,CR,0

JMP REREAD2
¥
+ Make sure that STEPSIZE is in the range 1..10.

i
CHKPOSSS JSR IFI0
ADR STEPSIZE,GE,1
STA BOCLEAN 1Save for compownd test,

JSR IFI0
ADR STEPSIZE,LE,10

- pry
5308
888
8 88

ERE333335358

~X-X-3
g28
™

AEEBPNBEEREAREREY
QBREHABIBRIBAGEY
SSEESIPHRIGEERI

DOQO
$A8E
8E3

fBB2888q 5 5TRRRsAEREEERAGERAAGAEgERAAREREREERREETEAE
SEB3EETREREN BEDN
$2RINBIBRRES

a8383RIBRA%Y

8IRIGAES

ERBREBERAEREE BHBEREERY
EEHEIERIEBRIR BIISEIABE

FEAIBHAIGESES

468

470
471
472

AND BOOLEAN
BFL BADGS
JP GOODSS

BRDSS JSR PRINT
BYT CR,BELL,"STEPSIZE must be in the range 1..10",(R,0

JMP REREAD2

e

+ STEPSIZE < 0, make sure that RNDVAL <= FIR9T,

1
SSISNEG JSR IFI
ADR ENDVAL, LE,FIRST

PIR CHKNEGSS

JSR PRINT ’
BYT CR,BELL,"STEPSIZE must be positive.®,CR,0

JMP REREAD?

Make sure that STEPSIZE is in the range ~10..~l.

~

CHRNEGSS JSR IFI0
ADR STEPSIZE,GE,I=10 ADR STEPSIZE,GE,!-10
STA BOCLEAN sSave for compound test
JSR IFI0
ADR STEPSIZE,LE,1-1

2D BOCLEAN
BIR GOCDES

JSR PRINT .
BYT CR,BELL,"STEPSIZE must be in the range -1,,-10",CR,0

Listing continued.

jim
ADR STEPSIZE,GE,!-10

~
o0

2828 B8
8285 88
833

3 88eEaI

83

BN gEBINSEQRLEN
~~

BB3 20%8% BARQRER

B3

LR

NEBREASAREEY MASYH

883 sSmpIpIRIBES

SEBRBERSTEES 3838 ZTEANEEIBEN 383

YSREBRNIREY NO8h

8388805030035080RR01 30000 600000750 000000000 RRE000003B000000NME
8 IPREBEARG

6% 19p1g) 861 Amf

OCAD 543 3 0D41 D4 E8 E1
JMP REREAD2 OCAD 20 21 78 S44 "1 JSR IFI0 OD44 F4 A7 F3
OCBO 63 0D By 545 AR 1.EQ,2 D47 RO El EC
0CE3 00 02 00 O0D4A EC A0 B6
1f STEPSIZE contains an appropriate value 0CBS FO 1P 546 BFL 2 0D4D EF EC EB
print the records as requested. 0CB8 547 D50 F3 AL 8D
0CB8 20 36 78 548 ' JSR PRINT QD53 00
. OCBBD4 EB E5S 549 < - BYT "Ihe 2nd record.contains *,0 0D54 587 3
GODSS 1hA iCR OCBE A0 K2 EE mo4 588
- . JSR FUTC 1Init for DOS, 0CC1 E4 AD F2 54 589 ;
$ 0CCA 5 E3 EF 1,17 580 ; Cloee all open files.
JSR FOR 00C7 F2 EA M0 0054 591
ADR 1,FIRST,ENOVAL,STEPSIZE 0CCA E3 EF 0D54 20 36 78 592 JSR PRINT
00D F4 El ES 0D57 8D- 84 C3 593 BYT CR,CILID,*CLOSE®,CR,0
0CD0 EE F3 A0 MWSAOC CFD3 .
3 03 00 0D5D C5 8D 00
- ¢ Read the specified record OCD4 4C 25 0D 550 JMP PRIREC O0D60 594
' ocp7 55 D60 595
JSR PRINT . 0D7 2021 78 : 552 "2 . JSR IFI0 -0D60 4C 59 FF 596 -JMP EXTT
BYT CYLD,“READ NUMBERS,R",0 OCDA 63 0D BD 553 ADR I,B0,3 D63 597
- OCDD 00 03 00 ’ .) : : . 598
OCEQ. F0 1F 554 BFL >3 (D63 599 ; Variable declarations
- OCE2 555 1 -0D63 600 ;
OCE2 20.36 78 ' 556 ' JSR PRINT . 0D63 601
OCES D4 EB BS 557 * BYT “The 3rd record comtains *,0 0D63 00 00 602 I AR 0
JSR PRTINT OCES A0 ES F2 D65 00 00 603 J ADR O
AR I OCEB E4 A0 F2 - 0D67 .00 00 . 604 FIRST AIRO
JSR PRINT OCEE ES E3 #F 0D69- 00 00 605 ‘ENDVAL, -AIR O
BYT *,B0",CR,0 OCFl F2 EA M0 0D6B 00 00 606 STEPSIZE AIR 0
QCr4 E3 EF ER D6 00 607 BOOLEAN BYT €
7 ‘OCF7 F4 E1 B9 ODGE 608
* JSR READIN OCFA EE F3 A0 (D6E 609 ¢
JSR RDINT OCED 00 0D6E 610 END
"ADR J . OCFE 4C 25 0p 558 JMP PRIREC
] . 0D01 559
: 0p01 560 *ta4t END OF ASSEMBLY
. J5R IF1 -0D01 20 36 78 561 !‘3 JSR. PRINT
- AR 1,8Q,FIRST . 0D04 D4 E8 ES - 562 BYT “The *,0
- 0DO7 A 00 - 1
BFL X0 oD09 20 3C 78 563 JSR PRTINT
3 oDiC 63 O 564 -BOR X Verifying Records
JSR PRINTY . ODOE 20-36 78 . 565 JSR PRINT
BYT "The first reocord comtains *,0 O0D11 P4 ES A0 . 566 " BYT "th record contains "0
- 0D14 F2'ES E3 Record mmber 1:contained '1'
0D17 EF F2 E4 . Record mmber 2 -contained '2'
OD1A AG E3 EF - Record number 3 contained '3!
0DID EE P4 E1 Record munber 4 contained ‘4
0D20 &9 EE ¥3 Record number. 5. contained !'5'
‘0D23 A0 00 Record number § contained '6'
0D25 567 Record number 7 contained 7!
D25 568 1 . fecord mmber 8 contained '8’
JMD PRIREC - 0D25 20 36 78 569 JSR PRINT Record number 9 g
0D28 BA AD A0 570 BT " "0 Record mumber 10 contained '10'
JSR IFT 0D2B A7 00 .
. ADR I,B0,ENDVAL -0D2D 20°3C 78 571 -JSR PRTINT Reading records in reverse order
0030 65 0D 572 AR J]
BFL 1 ~0D32 20 36 78 573 JSR PRINT Record mmber 10 contained '10°
0035 A7 8D 00 574 BYT "'",C(R,0 Record number 9. contained 9!
JSR PRINT 38 . - 575 Record ramber 8 contained '8°
BYT “The last record contains ",0 . -0p38 576 Record number 7 contained '7¢
0p38 20 1B 78 577 JSR NEXT Record number & contained '6'
B 578 . Record number. 5 contained '5'
(D3B 579 ‘Record number 4 contained '4'
0D3B 580 Record mumber 3 contained '3'
3B 581 5 Record number 2 contained '2°
OD3B -582 3 Record mumber 1 contained '1f
0038 .583 ; ALl Done.es
D38 584 Input a lower bounds:l
JMP PRIREC O0D3B 20 36 78 565 JSR PRINT e inued.
3 OD3E.8D 8D 8D 586 BYT (R,CR,CR, "That's all folka!®™,CR,0 Enter the final value:7 Listing continued.

86T AM{ P13 08

Listing continued.

Enter a stepeize value:2

‘the first record contains : '1°'
The 3rd record containg @ '3°

- ‘fThe 5th record contains : 'S5'
The last record contains ¢ '7°

That's all folkst

Verifying Records

Record number 1 contained '1'
- Record mmber 2 contained '2°
Record number 3 contained '3’
Record mmber 4 contained '4°
.Record mmber 5 contained *5'
Record number 6 contained '6'
Record nimber 7 contained '7'
Record ramber 8 contained '8°
Record number 9 contained '9°
Reqozdm: 10 contained '10°

Reading records in reverse order
Record mmber 10 contained *10°

Enter a stepsize value:-2

The firet record contains : '9'
The 7th record contaipe : '7°

Reading -records in reverse order

Record mumber 10 contained '10°

' Record mamber 9 contained '9*
‘Record number: 8 contained '8’

Record number 7 contained '7*
Record number 6 contained '6'
Record number 5 ‘contained '5*
Record muber 4 contained '4'
Record mumber 3 cantained '3*
Record number 2 contained '2°
Record number 1 contained '1'

Ingut & lower boundss0

. Value must be greater than zere

Input a lower bondssll

Value must be less than 11
Input a lower bounds:l

_ Enter the final value:0

Ending value mst be greater than zero

‘Enter the: final value:12

Ending value must be less than 11

. Enter the final value:4
- Bnter a stepeize value:-3

STEPSIZE must be pogitive.

Enter a stepsize value:0
-Stepsize must -not equal zero
&mer.: a stepsize value:é

The first record contains 1 °'1°

‘That's all folks!

Listing 7. SPEED/ASM Equates.

-~

TTL "Listing 7' s SPEED/ASM Bguates”

»

* SPEED/ASM fjuates

LIS

GENERAY, FORPOSE EQUATES

3] i] o 3 =S

Na b ok te e e we we v we

BRNRREBR/RRIAIAR
n»nnggg
288

BRNRRRBNNE

w
=2

instruction or in the operand field
of a pseudo-opcode like BYT.

. e ha e e

0
1
80

Listing continued.”

1¢ 0PIy 6867 Amf

Listing continued.

0800 90
0800 9
0800 2
0800 923
0800 9
0800 %
0800 9%
0800 97
0800 98
0800 9
0800 100
00ED 101
0083 102
00BE 18
00BC 104
BOBE 105

. e

~

“IF" STATEMENT EQUATES

The following symbols should only
be used in the ADR pseudo—opcode
following a call to the SPEED/ASM

; IFx routines,

¥

[

i

B B "=

NE Bo "$°

ar BO ">

LT B <"

GE EQU "> | "="4256

QU "<*inm"ez56

u«um-~.-.g

* SPEED/ASM. ENIRY FOINIS *

NOLE:; THE EQUATE OF PUTC MUST
BE CHANGED IF YOU RELOCATE

LR P

0800 123 ; SPEED/ASM 'I0 SOME LOCATION
0800 124 ; OTHER THAN $7800
0800 125 ;

0800 126 ;

0800 127 &

76800 128 FUTC EQU $7800°
7803 129 GEIC BQU PUTCH3
7806 130 SAGL BQU GETCH3
7809 131 SARC BQU SAGEA3
780C 132 HOME BOU SAPC+3
780F 133 READIN EQU HOME+3
7812 134 INIT EQU- READEN+43
7815 135 FOR BOU INTT43
7818 136 PORD HWU FOR+3
761B 137 NEXT BQU FORD43
781E 138 IFI EQU NEXT+3
7821 139 IFI0 B IFT43
7824 140 IFS BQU IFI043
7827 141 IFSO U IFSH3
7628 142 MOVE EQU IFS043
782D 143 LOAD BOU MOVE#3
7630 144 MOVS BQU LOAD43.
7833 145 LDOSTR BX) MOVS43
7836 146 PRINT = EQU IDSTR+3
7839 147 PRTSIR BQU PRINT43
783C 148 FRTINT BQU PRISIR+3
783F 149 ROSTR BQU PRTINT+3
7842 150 RDINT BQU ROSTR¢3
7645 151 ONXGOIC BQU RDINT+3
7848 152 CASE EQU ONXGOTO+3
784B 153 CASEI BQU CASE#3
784E 154 INSET BOU CASEI43
7851 155 NOFINSET BQU INSET43
7854 156 BQU NOTINSET+3
7857 157 NEG BOU ABS#3
785 158 ML BQU NBG#3
785D 159 DIV BQU MUL+3
7860 160 MOD EQU DIV3
7863 161 RD EQU MODH3
7866 162 SUBSIR . BQU RD+3
7869 163 INDEX BQU SUBSTR43
786C 164 LENGIH - BQU INDEX+3
786F 165 ' CONCAT BQU LENGTH+3
7872 166 GETWZFG BQU QONCAT43
7675 167 ROFP EQU GEIWZPCH3
7878 168 PRTE EQU RDFP+3
7878 169 PRTF EQU PRTE+3
787E 170 FADD EQU PRTF43
7881 171 FSUB EQU FADD+3
7884 172 PMUL FQU FSUB+3
7897 173 DIV EQU PMUL43
7 174 FLr EQU EDIV43
788D 175 FIX EQU FLTY3
7890 176 FNEG QU FIX+3
7693 177 PAUIN BOU PNEGH3
7696 178 FSUBIN FQU FADDTR43
7899 179 FTIMES BOU FSUBTIH3
789C 180 FINIO EQU FTIMES+3
789F 181 1IPP EQU FINTO+3
78K2 182 MNFP EQU IFRS3
0800 183

0800 184

0800 185

0800 186 BD

*e%4% END OF ASSEMBLY

3FOR USE BY S/A (HLY- SEE DOC.
" % R oxk W " ow
JHOME AND CLEAR .

JUSED BY SPEED/ASM

The Assembly Advantage

by Randy Hyde

Character Strings

I he previous installments of this

column have described how to
manipulate integer variables with
the SPEED/ASM package. Now it’s
time to explore some additional data
types supported by SPEED/ASM.
For the next few months I'll discuss
how you manipulate character
strings, the most important non-nu-
meric type of data.

String Variable Allocation

In part one of this series I described
how to allocate storage for a string
variable. For the benefit of those who
don’t have the April edition of in-
Cider, I'll first review this procedure.

~ Unlike other data types in SPEED/

ASM (integer, real and character),
string variables require a variable
amount of storage space. The amount
of space required depends entirely on
how big you wish to allow the string
to grow. Strings in SPEED/ASM
need n + 2 bytes, where n represents
the maximum number of characters,
up to 255, you will allow the string to
contain. The first byte of a SPEED/
ASM variable must contain this
value. The next m bytes after that
(where m <= n) must contain the
characters that make up the string.
Finally, the first byte following the
characters making up the string must
contain 0, which SPEED/ASM uses
to mark the end of the character
string. Figure 1 shows the SPEED/
ASM format for a string variable.

Before defining a string variable
you must determine its maximum
possible size. If you try to store more
characters into a string than you al-
low for, SPEED/ASM will truncate
the string and return an error code.
On the other hand, if you define a
string using the maximum length
(255 characters) when at most only
20 characters are ever required,

you're wasting a lot of memory space.
Obviously, some careful thought must
go into deciding how much space to
reserve.

The easiest way to do the reserving
is to use LISA’s ADR and DFS pseudo
opcodes. The format for string dec-
laration should be:

<label> ADR <maxlength>
DFS <maxlength>

where <label> is the name of the
string variable you are declaring and
<maxlength> is the maximum string
length. <maxlength> must be in the
range 1-255. This form of string dec-
laration fulfills three functions: it
stores the maximum string length

into the first byte (as required), it
stores 0 into the second byte (assum-
ing <maxlength> is a value less
than 255), and it reserves <max-
length> + 2 bytes as required for a
SPEED/ASM string. (Two bytes are
reserved by the ADR pseudo opcode,
<maxlength> bytes are reserved by
the DFS statement.) By storing 0 into
the second byte of the string variable,
this form of the string declaration
initializes the variable to the emp-
ty string. The operation of this form

Randy Hyde is proprietor of Lazerwerks,
creators of SPEED/ASM. Address correspon-
dence to him at 925 Lorna St., Corona, CA
91720.

Characters within the

Madrmum Length of String
is Stored in the First Byte

T T T T RY e
string are stored here. P mg%lon
[s8ing

Figure 1. SPEED/ASM siring format.

Zero Terminating Byte

_ \
sveve [[O '
I |

e |
IDES _ <strien> §

The ADR pseudo-opcode stores <strlen> in the first byte (this is the maximum
length value required by SPEED/ASM strings) and then stores a zero into the
second byte. This zero initializes the string to the empty string.

The DFS pseudo opcode reserves enough storage for the actual character
string. SPEED/ASM strings require exactly <strlen>+2 bytés. By using both
the ADR and DFS pseudo-ops in the fashion the required number of bytes

are automatically allocated.

Figure 2. Operation of ADR/DFS pseudo opcodes for string declarations.

150 €ider September 1983

The Assembly Advantage-

STRNAME [STR “STRING” | : RIIINIG

The STR pseudo-opcode stores a length byte followed by the characters in the

string. In this case the STR pseudo-op emits a six followed by the six of ways to accomphSh thls’ depend-

characters "STRING". The BYT pseudo-opcode emits the zero required at the mg on your requirements. If .the

end of all SPEED/ASH strings. : string value will never change (i.e.,

you will never store another string

Figure 3. Using the STR and BYT pseudo opcodes to initialize a string variable. value into the Va.rlable) then the

following definition can be used:
<label> STR “<character string>"

' BYT O
<strvar>:

3R LDSTR m T - S / where <label> is the name of the

EE— 3 4 - . »
sor [Suvan __, f I . l l; } : ‘ :‘]? }) 1/ string variable and <character
YT ['string"0 string> is the data you wish to initial-
Tne LDSTR routine copies the zero terminated string into the ize the String to. The STR pseUdo op-
string variable uhose aderess immeciately fallows the call to code emits the length of the specified
LDSTR. Note that in this example eight cnaracters are copied: string followed by the string itself.
a length byte (uhich LDSTR computes), the six craracters “string” Since, in this case, the maximum
and the zero terminating byte. possible length of the string is
Figure 4. Operation of the LDSTR routine. the length of the string, the STR

pseudo opcode automatically emits
the proper data for the maximum
value. The BYT directive emits the
required terminating O byte, since
STR doesn’t do so. This approach is
pictured in Figure 3.

Using the STR method to declare an
initial value for a string is great if the
string value doesn’t change during
execution of the program, (or if you
can guarantee that the initial string
value is the largest string value). It is
perfect for setting up such fixed
strings as error messages and menus.
If you need to initialize a string
whose initial length is not the max-
imum length the string will grow to,
you have to declare the string using
the statements:

of the declaration is depicted in Fig- serve space for a SPEED/ASM string
ure 2. variable and initialize the string to
Occasionally you may want to re- some fixed value. There are a couple

<label> BYT <maxlength>,“<string>” ~
DFS <maxlength> +] —<length
of string>,0

Rather than explaining how this
‘| complicated affair. works, space is
|| better spent describing how to use
SPEED/ASM routines to avoid such
statements.

Initializing and Assigning Strings
The most basic string operation is
the string assignment. SPEED/ASM
supports two routines, LDSTR and
MOVS, for this purpose. LDSTR copies
a string constant into a string vari-
able, and MOVS copies one string

variable into another.
The LDSTR routine (load a string)

152 Cider September 1983

~The Assembly Advantage

replaces Basic string assignments of
the form:

55 A$ =“STRING”

The syntax for the LDSTR is:

JSR LDSTR

ADR <deststr>

BYT “<string constant>”,0

where <deststr> is the name of the
string variable into which you want
to store the string <string constant>.
LDSTR should be used to initialize a
string variable with a string that
is shorter than the maximum length.
(See the problem in the last section.)
The operation of LDSTR is shown in
Figure 4.

The MOVS routine copies the con-
tents of one string variable into
another. This enables you to translate
statements of the form:

100 A$ =B$
into SPEED/ASM. The calling se-

quence for the MOVS routine is:

<strvar>:

ISR MOVS
ADR <(strvar> <destvar>

<gestvar>: §

Figure 5. Operation of the MOVS routine.

]

"t i s 1/

y) ; y A y
sit|r]i|n]g §0§/7//A

JSR MOVS
ADR <source string>,
<destination string>

where <source string> is the name of
the source string and <destination
string> is the name of the string you
want the source string copied into.
The operation of MOVS is shown in
Figure 5.

The only problem with using
LDSTR and MOVS occurs when you try
to store a source string whose length
is greater than the maximum length
of the destination string. In this case
LDSTR and MOVS truncate the string

and store the largest string that will
fit. Then LDSTR and MOVS return the

6502 overflow flag (V) set if such an
error occurs. Likewise, if the error
does not occur, the V flag is returned
clear. So you can see if a string over-
flow occurred by checking the v flag
(using the BVS and BVC instructions)
after a JSR to LDSTR and MOVS.

String 1/O

SPEED/ASM provides three rou-
tines for performing string input/out-
put. These routines enable you to
read a string from the keyboard and
store it into a string variable, print

Listing 1. SPEED/ASM equates.

1 TIL "Listing One: SPEED/ASM Bauates"
2

3 ;

4

5 kERAREEXARIXRRRNLL

[* *
7 * Listing One: *
8 * SPEED/ASM Bquates *
9 * *
10 EERRER * *kh *h *
11 ;
12 ;

i3 ;

14 ;

15

6

17

18 ;

19 ; GENERAL PURFOSE EQUATES

20 ;

21 ; The following variables are used
22 ; by the SPEED/ASM package and

23 ; shouldn't be used by the SPEED/ASM
24 ; programer.

25 ;
2%
27 ;

28 ;

29 FORASAV EPZ 0

34 EPZ DESTADR+2
35 ISIMMED EPZ PTRADR+2
36 OP EPZ ISIMMED+1

46 AL EPZ SIGM+1
47 ACH EPZ ACL+1
48 XTNDL EPZ ACH+1

ke kkkhhhkhkhihs
*
Kfkhdhhhhhdd

The following symbols are constants

72 for the values “FALSE", "IRUE", and
73 Carriage Return (respectively).

74

75 These symbols should only appear
76 as immediate operands to a 6502

77 instruction or in the operand field
78 of a pseudo-opcode like BYT.

79

~
S
e % e Ne Sa we e we ws e ne e e Se e me b W ok ve Ne e Se Se

2gg
888
PEE

"IF" STATEMENT EQUATES

The following symbols should only
; be used in the ADR pseudo—opcode
; following a call to the SPEED/ASM

SRRLBBERIEINGRERES

Listing continued.

The Assembly Advantage-

the contents of a string variable, and
print a string constant.

To print a string constant use the
PRINT routine, which should be quite
familiar to you. We've been employ-
ing it all along to print prompts onto
the Apple’s video display. PRINT
needs the calling sequence:

JSR PRINT

BYT “<string>”,0

Note that the string constant must be
terminated with a 0 byte.

To print the contents of a string
variable you can use the PRTSTR
routine. Type the statement:

JSR PRTSTR

ADR <string variable>

where <string variable> is the name
of the string variable you wish to
print.

Reading a string from the key-
board and storing it into a string
variable is done by the RDSTR
routine. RDSTR reads whatever data
is present in the line input buffer up
until a carriage return is detected. If
the line buffer pointer is already
pointing at a carriage return, a new
line is read from the keyboard. The
syntax for RDSTR is:

JSR RDSTR

ADR <string variable>

where <string variable> is the name
of the string variable. If the string
entered by the user is too large for the
specified string the V flag is returned
set; otherwise it is returned clear.

Additional Notes on Keyboard Input

The RDINT, RDSTR and-READLN
routines all work together in the
SPEED/ASM environment. Some in-
formation on how they read data
from the keyboard may be of help.

RDINT reads an integer from the
current position in the line input
buffer and leaves the line buffer
pointer pointing at the first character
beyond the integer read in. If the first
character RDINT attempts to read is a
carriage return, then RDINT first calls
READLN to read a line of text from the
keyboard.

RDSTR reads a string from the in-
put buffer starting at the current
index into the line buffer. The re-
mainder of the line (up to the car-

154 €ider September 1983

Listing continued.

;FOR USE BY S/A ONLY~ SEE DOC,
A) " om

;HOME AND CLEAR

;USED BY SPEED/ASM

0800 98 ; IFx routines,

0800 99 ;

0800 100 ;

0800 01 ;

GOED 102 B MU *=*

00A3 103 NE BU "¢

00BE 104 ¢r QU ">

00BC 105 LT BQU "<"

EDBE 106 GE MU ">" | "="*256
BDBC 107 LE BQU "<"["="*256
0800 108 ;

0800 109 ;

0800 110

0800 111

0800 112

0800 13 ;

0800 14 ;

0800 115

0800 116 * SPEED/ASM ENTRY POINTS *
0800 117 *RRRRE
0800 118 ;

0800 119 ;

0800 120 ;

0800 121 ;

0800 122 ; NOTE: THE EQUATE OF PUTC MUST
0800 123 ; BE CBANGED IF YOU REIOCATE
0800 124 ; SPEED/ASM TO SQME LOCATION
0800 125 ; OTHER THAN $7800
0800 126

0800 127

0800 128 ;

7800 129 HUIC EQU $7800
7803 130 GETC EQU PUTC+3
7806 131 SAGL BQU GETC+3
76809 132 SAPC BQU SAGIA3
780C 133 BQME EQU SAPCH+3
780F 134 READIN BQU HOME+3
7812 135 INIT BQU READLMH3
76815 136 FOR EQU INIT+3
7818 137 FORD FQU FOR+3
781B 138 NEXT EQU FORO+3
781E 139 1IFI EQU NEXT+3
7821 140 IFI0 BQU IFI43
7824 141 1IFS BQU IFIO+3
787 ’ 142 IFS0 BQU IFSH3
782A 143 MOVE EQU IFS043
782D 144 LOAD EQU MOVEA+3
7830 145 MOVS BEQU LOAD+3
7833 146 IDSIR EQU MOVS+3
7836 147 PRINT BQU IDSTR+3
7839 148 PRTSTR BQU PRINTH3
78C 149 PRTINT EQU PRISTR+3
783F 150 RDSTR FQU PRTINT43
7842 151 RDINT EQU RDSTR+3
7845 152 ONXGOTO EQU RDINT43
7848 153 CASE EQU QNXGOTO+3
784B 154 CASEI BQU CASE+3
784E 155 INSET BQU CASEI+3
7851 156 MNOTINSET EQU INSET+3
7854 157 RBS EQU NOTINSET+3
7857 158 NBG EQU ABSH3
785A 159 ML BQU NEGH3
785D 160 DIV EQU MULA3
7860 161 MOD EQU DIV+3
7863 162 RND BQU MOD+3
7866 163 SUBSIR BQU RND+3
7869 164 INDEX EQU SUBSTR+3
786C 165 LENGIH BQU INDEX+3
T86F 166 CONCAT EQU LENGTH+3
7872 167 GEIWZPG FEQU CONCAT+3
7875 168 RDFP EQU GETWZPG+3
7878 169 PRTE BOU ROFP+3
787B 170 FPRTF EQU PRTEA3
787E 171 FADD EQU PRTF+3
7881 172 FSUB EQU FADD+3
7884 173 FMUL EQU FSUB+3
7887 174 DIV BQU FMULA3
788A 175 FLT EQU FDIV43
788D 176 FIX EQU FLT43
7890 177 FNEG - BQU FIX+3
7893 178 FADDTN BQU FNEG+3
7896 179 FSUBM EQU FADDTRA3
7899 180 FTIMES EQU FSUBTN43
789C 181 FINTO EQU FTIMES+3
789F 182 IFF EQU FINTO+3
78R2 183 MOVFP BQU IFF+3
0800 184 ;

0800 18

0800 186 ;

0800 187 END

**%%% END OF ASSEMBLY

Ibrun sort
BRUN SORT
SYMBOL TABLE SORTED ALPHABETICALLY

ABS 7854 NH 0018 ACL

0017 AUxH

001C AUXL 001B

Listing continued.

The Assembly Advantage—

“JSR

riage return) is read in and stored into
the specified string. If the line buffer
pointer was pointing at a carriage
return when RDSTR was called, then
a line of text is first read from the
keyboard.

If you want to ensure that a fresh
line of text is read from the keyboard
before reading an integer or a string,
you should call READLN immediately
before calling RDSTR or RDINT. For
example:

JSR READLN
JSR RDINT
ADR INTGR
JSR READLN
JSR RDSTR
ADR STRVAR

If it is inconvenient to call READLN
immediately before calling RDINT or
RDSTR (an example appears in the
sample program, Listing 2), then
store the value 0 into the SPEED/
ASM GOTLN variable. (This variable
is predefined in the SPEED/ASM
equates.) By storing 0 (false) into
GOTLN you can force the RDSTR and
RDINT routines to read a new line of
text the next time they are executed,
such as:

LDA #FALSE

STA GOTLN

JSR RDSTR ;A new line of text
;will automatically

ADR STRING ;be read from the
;keyboard.

String Comparisons .

Using IFSO and IFS

The IFS and IFSO routines compare
two strings in SPEED/ASM. These
routines are very similar to the IFI
and IFI0 integer routines discussed
earlier in this series. IFS compares two
string variables, and IFS0 compares a
string variable to a string constant.

Since IFS0 is used most often, T'll de-
scribe it first. The calling sequence is:
IFSO
ADR <string variable>,<op>
BYT “string constant”,0
where <string variable> is the name
of a properly declared string vari-
able, “string constant” is the string
you wish to comparé the string vari-

156 Eider September 1983

CASE
DESTADR
FADDTN
- FLT
FORASAV
FSUBTN
GOTLN
IFIC
INPUT
LE

LT
MoVS
NOTINSET
PRIE
PUTC
RD
SIGN
XTINDH

FORASAV
FORZEG
MAXLEN
COUNT
ACH
PROMPT
LT
BUTC
READLN
IFT
LOAD
PRTINT
CASET
MUL
INDEX
PRTE
FDIV
FSUBTN
LE

Listing continued.

7848
0005
7893
7887
0000
789
0014
781
0200
BDBC
00BC
7830
7851
7878
7800
7863
0016
001Aa

0000
0003
000C
0013
0018
0033
00BC
7800
780F
781E
782D
783C
7848
785A
7869
7878
7887
789%
BDBC

STACK
XTNDL

FALSE
DESTADR
VALUE
GOTLN
XTNDL
RNDL
EQ
GEIC
INIT
IFI0
MovVSs
RDSTR
INSET
nIv
LENGTH
PRTF
FLT
FTIMES
GE

7848
000F
0000
7884
9001
7899
00BE
7824
784E
col0
000C
785A
7845
787B
7875
004F
0100
0019

SYMBOL, TABLE SORTED BY ADDRESS

0000
0005
000D
0014
0019
004E
00ED
7803
7812
7821
7830
7@F
784E
785D
786C
7878
788A
7899
EDBE

OONGAT ~ 786F
DIV 785D
IV 7887
FNEG 78%0
FORYSAV 0002
GE BOBE
HOME 780C
1FSQ 7827
ISIMED 0009
LENGTH 786C
MoD 7860
NE 0023
op 000A
PRIINT 783C -
FDINT 7842
RNDL 004E
SUBSTR 7666
WUE 0001
PIRADR 0007
DIGIT OGOF
LINEINDX 0015
XTNDH 001
RNDH 004F
GT 00BE
SAGL 7806
FOR 78615
1FS 7824
IDSIR 7633
RDINT 7842
NOTINSET 7851
MOD 7860
CONCAT ~ 786F
FADD 767E
FIX 768D
FINIO 78%C

FINTO

FORZPG

FORXSAV
ISIMMED

SIGN

STAK

FORD

ABS

GEWZEG

IFF

0013
00BD
789C
7815
0003
7803
789F
7869
0011
0015
782
7857
7836
7839
78F

0001

0001
0009
0010
0016
001B
008D
0100
7809
7818
787
7836

7854
7863
7872
7881
78%0
T89F

FADD
FIX

008D
787E
788D
7618
7881
7872
T81E
7812
7833
78D

76818
0033
0007
780F
7809
000D

0002
000A
0011
0017
001C
0083
0200
780C
7818
7828
7839
7848
7857
7866
7875
7884
7893
782

The Assembly Advantage—

able to, and <op> is any of the
following SPEED/ASM comparisons:

EQ ;:Equal
NE ;Notequal
LT ;Less than

GT ;Greater than

LE ;Less than or equal

GE ;Greater than or equal

These symbolic values are provid-
ed in the SPEED/ASM equates, List-
ing 1.

Upon return from the IFSO routine
the 6502 zero flag is set and the ac-
cumulator contains 0 if the com-
parison was not true. If the com-
parison was true, the zero flag is
returned clear and the accumulator
contains 1. This feature allows you to
use LISA’s BTR and BFL branches to
test the comparison.

The IFS routine is used to compare
two SPEED/ASM string variables.
The calling sequence is:

158 €ider September 1983

~The Assembly Advantage

JSR IFS
ADR <strl><op> <str2>
where <str]> and <str2> are two
SPEED/ASM variables that are to be
compared to one another and <op> is
any of the operators listed in the pre-
vious paragraph. Examples of IFS and
IFS0 appear in Listing 2.
SPEED/ASM supports four string
functions: SUBSTR, INDEX, LENGTH
and CONCAT. These four functions
provide the basic string manipula-
tions required by most programs.
LENGTH determines the current
dimamic length of a string—that is,
the number of characters currently
stored in the string variable. To call
LENGTH use:

JSR LENGTH
ADR <string>

where <string> is the name of the
string variable whose length you wish

W~ U N

Listing 2. String examples.

TIL "Listing two: String Examples”

*
* LISTING 2: An example of

* the various SPEED/ASM string
+ handling routines,

*

* % % NW

GENERAL PURFOSE EQUATES

The following variables are used
by the SPEED/ASM package and

programmer .

shouldn't be used by the SPEED/ASM

Listing continued.

September 1983 €ider 159

Listing continued.
gcon 39
000F 40
0010 41
0011 42
- 0013 . 43
0014 44
0800 45
0800 46
0800 47
0800 48
0800 ’ 49
0800 56
0800 51
0800 52
0800 53
0800 54
0800 55
0800 56
0800 57
0800 58
0800 59
0800 60
0800 61
0800 62
0800 63
0800 64
0800 65
0800 66
0800 67
0800 68
0800 69
0000 70
0001 71
008D 72
0800 73
0800 74
0800 75
0800 76
0800 77
0800 78
0800 79
0800 80
0800 21
0800 '
0800 :<)
0800 84
0800 85
0800 8
0800 87
00BD 88
00AR3 89
OOBE 90
00BC 91
BDBE 92
BDBC a3
0800 94
080¢ 95
0800 96
0800 97
0800 98
0800 99
0800 100
0800 101
0800 102
0800 103
0800 104
0800 105
0800 106
0800 107
0800 108
0800 109
0800 110
0800 111
0800 112
0800 113
0800 114
7800 115
78063 116
7806 117
7809 118
780C 119
780F 120
7812 121
7815 122
7818 123
781B 124
761E 125
7801 126
7824 127
7827 128
7828 129
782D 130
7830 131
7833 132
7836 133
7839 134
783C 135
T83F 136

VALUE EPZ MAXLEN+L
DIGIT EPZ VALUE+2
LEADO EPZ DIGTT41
JMPADR EPZ LEADO+1

GOTIN EPZ QOUNT+1

ARRRREXAIAARR
* CONSTANTS *
Rddddkkhkhhhhh

The following symbols are constants
for the values "FALSE", ™IRUE", and
Carriage Return {respectively).

These symbols should only appear
as -immediate operands to a 6502
instruction or in the operand field
of a pseudo-opcode like BYT.

FALSE EQU 0
TRUE BU 1
R BQU $8D

"IF" STATEMENT BQUATES

The following symbols should only
be used in the ADR pseudo-opcode
following a call to the SPEED/ASM
IFx routines.

m 0y "="

NE EQU "4*

GT Bu ">t

iy BQU

GE EQU "> ["="*256
1E BQU "<Tin="*256
i

i

* SPEED/ASM ENIRY POINTS *
REERRARKRARAKERRAREREERARS

H

;

H

+ NOTE: THE BQUATE OF PUTC MUST
: BE CHAKGED IF YOU RELOCATE

; SPEED/ASH TO SOME LOCATION

: OTHER THAN $7800

;
B

PUTC BQU $7800
GETC BQU PUTC+3
SAGL BQU GETC+3
SAPC EQU SAGLA3
HOME BQU SAPC+3

;FOR USE BY S/A (NLY- SEE DOC.
" a v om n ® n

{HOME AND CLEAR

IFL EQU NEXT43
IFI0 BQU IFI+43
IFS BOU IFI0+3

Listing continued.

The Assembly Advantage—

to find. Since the maximum length of
a string is 255 characters (which fits
into 1 byte) the length is returned in
the 6502 accumulator. This enables
you to easily compare the length to
an immediate value like:

JSR LENGTH
ADR STRING
CMP #55

BGE STRGESS

If you want to store this value into
a SPEED/ASM variable, you should

"“The SUBSTR routine
extracts a portion of a
string and stores this
substring into another
string variable.”

store the accumulator into the low-
order byte of the SPEED/ASM vari-
able and store 0 into the high-order
byte of the SPEED/ASM variable, as
in this sequence:
JSR LENGTH
ADR STRING
STA STRLEN
LDA #0
STA STRLEN+1

Note that the LENGTH routine
returns the current dynamic length of
the specified string. If you're in-
terested in obtaining the maximum
length of the string, simply load the
accumnulator with the first location of
the string. For example:

LDA STRING ;Fetches maximum length of
;string.

The SUBSTR routine extracts a por-
tion of a string and stores this sub-
string into another string variable.
The calling sequence for SUBSTR is:

JSR SUBSTR
ADR <source> <index>,
<length> <destination>

where <source> is the name of the
source string, <index> is the name
of a SPEED/ASM integer variable
containing an index into the string
where the first character of the sub-
string begins, <length> is the name

160 ider September 1983

The Assembly Advantage-

Listing continued,
7645 136 GUROm B IV
@ B ETRE
- T4 14 DET EU oEs
7854 143 S BQU NOTINSET+3 of a SPEED/ASM variable that con-
78A 165 ML m NBos tains the length of the. sub.stn'ng'to be
&0 l46 oy EIO MOLA3 extracted, and <destination> is the
b4
7860 147 WD BOUDIV3 :
7863 48 RO BQU MODHD name of the string where the sub-
7866 149 ORISR RD+3 L e
7869 150 INDEX 3’: SUBSTR43 string Is to be stored. It‘ is important
e 5 ar oy o to reiterate that <index> and
0800 153 <length> are the names of SPEED/
0800 18) ASM variables that contain the re-
94 1 spective values, not simply the values
oa00 15 4 themselves. If you try to pl'ace the
0800 160§ Begin of program 1.2. value in the position for the mde?(or
0800 161 ; length parameters, strange things
. FF6Y 162 EXIT EU $FF69
.
0800201278 165 SmART JSR INIT sAlways do this firstl
I
i
0803 200C 78 168 JER HOME ‘If you try to place
0806 20 36 78 169 JER PRINT . O
ogg gg g nﬁa 170 BYT CR,CR,"SPEED/ASM String Routine Examples®,CR,CR,0 the value in the pOSlthIl
0
ORl2 D3 & %0 for the index or length
Gighd ters, st
oare 1 &= E7 parameters, strange
o £2 B 20 things will happen.”
0824 CS P8 EL
0827 B FO B
OmR2A 5 F3 8D
0®2D 8 00
omr m
o2k 172 will happen.
omF 173 e _
oRP B e folloving call to If the substring you extract from
omr 176 * outputs a string that vas pre- ' the source string is too large to fit in
prced 177 initialized by LISA. the destination string, SUBSTR returns
o us - the v flag set other%vise the V flag is
oazF e V flag set;
ORRF 18 he
o0R2F 8 returned clear. An example of the
oOR2P 162 » s g
onF 23878 18 | ISR PRISTR SUBSTR routine appears in Listing 2:
0m2 F208 184 MR STRVARL The INDEX routine lets you check if
omé 20 00 78 108 35R 2o one string can be found within a
- 16 ! larger one. That is, if one string is a
0839 1 3 substring of another, INDEX returns a
0839 1 S :
I Bty o e et The soromg
T
0839 193 * the keyboard and stuffs it into source string within the second
0838 194 * the STRVARZ varisble, If the string. The syntax for using INDEX is:
0839 195 * string was too long, the V flag .
0838 196 : is returned set and the user is JSR INDEX
8%3 573 , provted to re-entec the data. ADR <key>,<source>
<A g here <key> is the string you want to
0839 200 3 where <key. gy
o9 201 search for in the <source> string. If
ENTERSTR JSR READIN 1Fo Yine from the kbd Jor . >
§§<9: %«3 %E 78 §§ IR ROETR S - the string is found, the index into
£ STRVAR2 ; ; ;
G1 028 205 BVC GOCDSTR +1£ 1o error. <Soulll'lcet> mIrfeél;(rm;i in tI:e 6502 talcr—l
0843 : cumulator, ey> is not presen
0863 20 36 78 207 JSR PRINT ; .
0846 8D C5 F2 208 BYT CR,"Error: String too long”,CR <source>, then 0 is re’furned in the
ok g accumulator. Listing 2 includes some
Ssdr r4F2 B9 examples of how to use INDEX.
083 74 F B The final SPEED/ASM string ma-
pra g nipulation routine is CONCAT. As you
085B EE E] @ P .
085E D2 5 g 209 BYT "Reenter: ",0 will surmise, it concatenates two
gg; gg' & % strings. The calling sequence is:
086
0968 4C 39 08 210 JMP ENTERSIR JSR CONCAT
e 2 ADR <SRCL><SRCZ><DEST>
ol A3 ¢ Print the string the user just entered. . ting continued. where <SRC1> and <SRCZ> are the
two source strings to be concatenated

162 Cider September 1983

—The Assembly Advantage

Listing continued.
086B 214 ;
086B 20 39 78 215 GOODSTR JSR PRTSTR
086E 13 0C 21§ ADR STRVAR2
0870 a7 ;
: . . . 0870 218 .
and <DEST> is the destination string 0870 29 ——
: 0870 20 *
where the result is to be stored. ol 790 * The folloving section of code
<DEST> should not be the same 070 222 » loads STRVARS with a string
. s isa ing
string as <SRC1> or <SRC2>. If the 0870 224 * and then copies the STRVARS
: : 0870 225 * variable into STRVAR4, After
concatenated result is too large to fit 0870 o8 4 e leadiny) cepying 18
into the destination string, it is trun- ggg %% N P:rﬁomed: tg{e cgm:\dts of the
. strings are di .
cated and CONCAT returns with the v 0870 29 * 9 il
ﬂag Set. If the COncatenation Was 8gg gg t**t*****’*kl****'*t****tk*f****tt
performed correctly the v flag is re- 0870 22
turned clear. Examples of CONCAT 0870 234 ; First demonstrate that the strings
appear in Listing 2. P fo ; contain nothing.
0870 20 36 78 237 JSR PRINT
Putting It All Together s bt 38 BYT (R, "STRVAR3 contains ™"",0
This month’s example program SremEma
(Listing 3) is the beginning of a sim- ggg P4 Fma AE-‘g
ple database/mailing list program 0885 A2 00
using all the SPEED/ASM constructs JherHwe B s
I've presented up to this point. T'll ex- 086C 20 36 78 241 JSR PRINT . -
r F D 242 BYT """", (R, "STRVAR tai aun
pand on this program next month, so 0892 Dt D2 D6 o contazns T
if it seems rather incomplete that’s el g i
only because it is. 0895 EE F4 EL
. E E9 EE
1 have now surveyed all the string EmERS
handling routines provided by the oens 20 A1 IR R
SPEED/ASM package. While these 0eas 245 o :
. . a: 246 ; Now initialize them with LDSTR and MOVS
routines provide most of the capabili- hosivd w1 i initialize them wi an
ties you'll require, some “pure” 6502 83:3 20 36 78 gzg ; S5 PRINT
code is often necessary to make a pro- 08AC 8D D5 F3 250 BYT CR,"Using LOSTR to initialize STRVAR3",CR,0
gram run smoothly. Next month, I'll qane e
describe the 6502 indexed and indi- 06ss 03 D4 D2
rect addressing modes so you’ll have 08BB 20 E9 EE
; Nies C8BE E9 F4 B9
all the string capabilities you could 08T B bt 59
possibly want. Il 08C4 FA £5 A0
08C7 D3 D4 D2
08CA D6 C1 D2
08 D3 D4 D2 08CD: B3 8D 00
0800 D6 C1 D2
08D3 E3 8D 00
08D0 20 33 78 251 JSR IDSTR
08D3 95 0C 252 AR STRVAR3
gggg % E B 253 BYT "This is a string",0
A
08B F3 R0 El
08DE 20 F3 F4
08EL F2 9 EE
08E4 E7 00)
0855 254 ; .
0855 255 ; :
08E5 256 ; Print STRVAR3 and STRVAR4 to show
08E5 257 ; that they are indeed different.
0885 258
08E5 20 36 78 259 JSR PRINT
08E9 8D D3 D4 260 BYT CR,"STRVAR3 contains *"",0
08EC D2 D6 C1 -
O08EF D2 B3 AD
08F2 E3 EF EE
08F5 F4 El B
08F8 EE F3 A0
08FB 22 00
08ED 20 39 78 261 JSR PRISTR
0900 9 0C 262 DR STRVAR3
0902 20 36 78 263 JSR PRINT
095 A2 D D3 264 BYT """",CR,"SIRVAR4 contains "",0
0908 D4 D2 D6 -
090B C1 D2 B4
090E 20 E3 EF
0911 EE F4 EL
0914 E9 EE F3
0917 20 A2 00
091A 20 39 78 265 JSR PRISTR
01D B5 0C 266 ADR STRVAR4
091F %7 ;
Listing continued,

164 Eider September 1983

jim

jim
08CD: B3 8D 00

jim

jim

jim

jim

091F
091F
091F
091F
091F
091F
091F
0922

0925
0928
0928
092E
0931
0934

g838BRS3 88
FEORBREIRIREBE 88

oo
88
>3
BRRHB8CEBERBRNEEH

m—0955 D2

(058 D2

(958 00
094p 20
0950 95
0953 0C
0954
0954
0954 20
095/ 8D
0955 D2
095D D2
0960 E3
0963 F4
0966 EE
0969 A2
096B 20
096E 95
0970 20
0973 A2
0976 D4
0979 €1
097C 20
097F EE
0982 E9
0985 20
0988 20
098B BS
098D
098D
098D
098D
098D
098D
098D
098D
098D
098D
098D
098D
098D
098D
0990
0993
099
0999
099C
099F
0922
0925
0926
0929
09RC
0922
0980

B8 2E2SRBIBEERE

B

~
]

D6
B4

30 78
0C BS

S BBEBLES

SoREIBREBRB8E8IBHERESR
>8URBEERES

Listing continued.

276
217

278
278

281

286
287
288
289

291
292
293
294
295
296
297
298
299
300
301
302

303
304

305

306
307
308
309
310
311
312
313
314
315

328

Now copy STRVAR3 into STRVAR4 and
print the two strings to show
that they are now the same.

o e wa e e m

JSR PRINT
BYT CR,CR,"Using MOVS to copy STRVAR3
into STRVAR4",CR,0

094C:00

JSR MOVS
ADR STRVAR3 , STRVAR4

JSR FRINT
BYT CR,"SIRVAR3 contains """,0

JSR PRISTR
ADR STRVAR3

JSR PRINT

BYT """, (R, "STRVAR4 contains "",0

JSR PRISTR
ADR SIRVAR4

H
H
H

*

* The following section of code
* demonstrates the IFS0 routine.
* It compares the contents of

* STRVAR3 to the literal "XXXXX"
*

JSR PRINT
BYT "*"",CR,(R,"SIRVAR3 is ",0

JSR IFSO
ADR STRVAR3, B

BYT "XXXXX",0

BFL >0
DA §"=r
JSR PUTC
JMP TESTDONE

I

0 JSR PRINT
BYT "O%,0

:

TESTDONE JSR PRINT
BYT " "TKO0X""", CR,0

H
H

*

* This section of code demon—

* strates the IFS routine. It

* loads STRVAR4 with the string
* literal "This is also a string”
* and compares it to STRVAR3.

*

H
H

BEIBIBER

ZBIS8R8_E
HEEREI

w QW

(=4

g

©
B8 BEBHBOERERNSEBEBELREN
80 w0

OMA 95 0C
0A4D 00 BS

0A58 D2 D6
OASB D2 E3
0ASE BC BE
0861 D3 D4
0A64 D6 C1
0A67 B4 00
0469

0”69

C0A69

0269

0869

0269 20 24
0A6C 95 OC
QAGF 00 BS
OA72 FO 16
OA74 20 36
0A77 8D D3
0A7A D2 D6
0A7D D2 E3
0AS0 BC AD
OAS3 D4 D2
0A86 C1 D2
OABS 00
GABA

0ABA

OABA

OABA

OABA 20 24
OABD 95 0C
0A90 BD BS
0A93 FO 17
0A95 20 36

The Assembly Advantage

> BUBHBEES

~
w0

o~
S

78
oC

78
D4
C1
A0
D3
D6
B4

78
BC
oc

78

329
330
331

333
334

335
336
337
338
338

341

342

344
345

0A14
346
347
348
349

351
352

354
355

357
358

359
360
361

362
363
364
365
366
367
368

369
370
371

372
373
374
375
376
377
378

379
381

; Load STRVAR4 with "I'his is also a string”
! JSR LDSTR .

ADR STRVAR4 .
BYT *rhis is also a string”,0

Print the contents of the two
strings.

. e me e e

JSR PRINT
BYT CR,CR,"SIRVAR3 contains: """,0

BYT "*"",CR,"SIRVAR4 contains: "**,0

E9 EE F3 BA A0 A2 00
JSR PRISTR
ADR STRVAR4

JSR PRINT
BYT *""*,(R,0

Compare the two strings and see
if they are egual,

e ve e e v

JSR IFS
ADR STRVAR3 ,EQ,STRVARS

BFL >0
JSR PRINT
BYT CR,"STRVAR3 = STRVAR4",C

; Compare the two strings and see
if they are not equal.

R

0 JSR IFS
ADR STRVAR3,NE, STRVAR4

BFL >1
JSR PRINT
BYT CR,"SIRVAR3 <> STRVAR4"™,0

Compare the two strings to see
if STRVAR3 < STRVAR4,

J)

1 JSR IFS
ADR STRVAR3 LT, STRVAR4

BFL >2
JSR PRINT
BYT CR,"STRVAR3 < STRVAR4",0

h
; Check for STRVAR3 <= STRVAR4

i
"2 JSR IFS
ADR STRVAR3 ,LE, STRVAR4

BFL >3
JSR PRINT

Listing continued.

166 Cider September 1983

jim

jim

jim
094C:00

jim
0A14:E9 EE F3 BA A0 A2 00

jim

jim

jim

jim

jim

jim

168 €ider - September 1983

Listing continued.

8D
0AF1 20 00 78
0AF4
0AF4
0AP4
OAF4
OAF4
OAF4
0AF4
0AF4
OAF4
OAF4
OAF4
OAF4 20 6C 78
OAF7
OAFS
OAFC
OAFE
0B01
0BO4
0807
OBOA
OBOD
OE10
OR13
OEl6
[1:18
ORIC

B85
5848
g 8

SRREHIBERS

g
™
SEBBORRBEBRNE

8188BISB3ERARE

~
w

OR25 20 60 78

OB28 20 18 78
0BR2B 13 OD 01
0B2E (00 05 00
[0:<H

0B31 38

0E32 A9 06
0B34 ED 13 0D

3%0

The Assembly Advantage ——

BYT CR,“SIRVAR3 <= SIRVAR4",0

H
i
7
3 Check to see if STRVAR3 > STRVARA,
i
3 JSR IFS
ADR STRVAR3 ,GT,STRVAR4
BFL >4
JSR PRINT

BYT CR,"SIRVAR3 > STRVAR4",0

Is STRVAR3 >= STRVAR4?

-~

JSR IFS
ADR STRVAR3,GE, STRVAR4

BFL >5
JSR PRINT
BYT CR,"STRVAR3 >= SIRVAR4",0

5 IDA #CR
JSR PUTC

*
* Demonstrate the LENGTH routine
*

;
H

JSR LENGTH

ADR STRVAR2

STA LENSTR2

DA #0

STA LENSTRZ+

JSR PRINT

BYT ™The length of SIRVARZ is *,0

JSR PRTINT
ADR LINSTR2

IDA #CR
JSR FUTC

The following code demonstrates
the use of the SPEED/ASM SUBSTR
routine.

This code emulates the BASIC
statements:

I=11T10
J = 6=
30 PRINT MIDS(AS,I,J)
40 PRINT MIDS(AS,1,I)
50 NEXT I

A T A

JSR FORD
AR I,1,5

SEC
DA 86
SBC I
Listing continued.

The Assembly Advantage

Listing continued.

OB37 8D 15 0D 465 STA J
OB3A A9 00 466 oA /6
OB3C ED 14 OD 467 SBC I+l
OE3F 8D 16 OD 468 STA J+1
0B42 469 ;
0B42 20 66 78 470 JSR SUBSTR
OB45 95 OC 13 471 ADR STRVAR3,I,J,STRVAR4
0B48 0D 15 OD
OB4B BS 0C
0B4D 20 39 78 472 JSR PRTSTR
OB50 BS OC 473 ADR STRVAR4
0B52 A9 8D 474 IDA ¥R
0854 20 00 78 475 JSR FUTC
0B57 476 ;
0BS7 20 66 78 477 JSR SUBSIR
OBSA 95 OC FO 478 ADR STRVAR3 ,(NE, I,STRVARS
OB5D 0B 13 0D
0860 BS OC
0B62 20 39 78 479 JSR PRISTR
0B65 BS 0C 480 ADR STRVAR4
0B67 481 ; :
OB67 A9 8D 482 IDA #CR
OB69 20 00 78 483 JSR PUTC
OB6C 20 1B 78 484 JSR NEXT
0B6F 48 ;
0B6F 486
0BSF 487 ;
OB6F 488 ** * *
OB6F , 489 *
OB6F 490 * Test the INDEX routine: This
OB6F 491 * code loads STRVAR4 with the
- OB6F 492 " * string "string” and searches for
OB6F 493 * “string® within STRVAR3.
*
ggﬁ‘ zgg REARERKARRARRARERR AR RARRR kR ARR bk
OBGF 4% ;
OB6F 497 ;
OB6F 20 33 78 488 JSR LDSTR
0B72 B5 OC 499 ADR STRVAR4
OB74 F3 F4 F2 500 BYT "string",0
0OR]7 E9 EE E7
OB7A 00
0B7B 501 ;
OB7B 20 69 78 502 JSR INDEX
OB7E B5 0C 95 503 ADR STRVAR4 ,STRVAR3
OB8L OC
0882 504
0BB2 8D 19 0D 505 STA STRINDX ;Store L.O, index
into STRINDX
CB85 A9 00 506 1pa #0 ;Set H.O. byte of
index to zero
0B87 8D 1A OD 507 STA STRINDX+1
OBBA 508 ;
0B8A 509 ; Print the results:
OBBA 510 ;
OBBA 20 36 78 511 JSR PRINT
OBSD 8D 8D A2 512 BYT CR,CR,"""string™ was found at
position: ",0
0B% F3 F4 F2
0B93 E9 EE E7
OB96 A2 AD F7
0B99 F1 F3 A
0BSC B6 EF PS5
OBSF EE B4 AO
OBA2 E9 F4 ES OBA2:E1 F4 AOQ FO EF F3 E9 F4 E9 EF EE BA AQ 00
OBAS EF EE BA
OBA8 AD 00
0BB) 20 3C 78 513 JSR PRTINT
0BE3 19 0D 514 ADR SIRINDX
OBES A9 8D 515 1DA #CR
OBB7 20 60 78 516 JSR PUIC
OBEA 517
OBBA 518
O0BBA 519 EmRwsk **
ORBA 520 *
0OBBA 521 * Demonstrate the OONCAT routine,
0BBA 522 *
GBBA 523 * This code concatenates STRVAR4
OBBA 524 * (which contains "string®) to
0BBA 525 * STRVAR3 and prints the result.
OBRA 526 *
0BBA 527
ORBA 528 ;
OBBA 529
OBBA 20 6F 78 530 JSR QONCAT
OBED 95 OC BS 531 ADR STRVAR3 ,STRVARS ,STRVARS
0BCO 0C D5 0C
0BC3 532
OBC3 20 36 78 533 JSR PRINT
0BC6 8D C3 CF 534 BYT CR, "(UNCAT (STRVAR3 ,STRVAR4) = "**,0
0BCY CE 3 C1
OBCC D4 A8 D3
OBCF D4 D2 D6
0BD2 C1 D2 B3
0BD5 AC D3 D4
OBD8 D2 D6 C1
OEDB D2 B4 AS
OEDE BD AD A2
OBE1 00 ‘
OBE2 20 39 78 535 JSR PRISTR
0BES D5 OC 536 ADR STRVARS
OBE7 537 ;
OBE7 20 36 78 538 JSR PRINT
OBEA A2 8D 00 539 BYT "***,(R,0

Listing continued.

September 1983 €ider 169

jim
0BA2:E1 F4 A0 F0 EF F3 E9 F4 E9 EF EE BA A0 00

The Assembly Advantage
Listing continued.
OBED 540 ; 0800 15 ;
0BED 541 ; 0800 16 * EERRERKERRRR SR RRR
OBED 542 ; 0800 17 * *
OBED 4C 69 FF 543 JMP EXIT 0800 18 * SPEED/ASM Bquates *
OBFO 544 ; 0800 19 * *
CBFO 01 00 545 (NE ADR 1 0800 20
OBF2 546 ; 0800 21 ;
OBF2 1F D4 E8 547 SIRVARlI SIR ™This string was pre-initialized” 0800 ' 22
OBF5 ES F3 &0 0800 23 ;
OBFB F3 F4 F2 0800 24 ;
OBFB E9 EE E7 0800 25
OBFE A0 F7 E1 0800 2% ;
Dcol E‘3 m Fo 08()0 27 khkhkkkkktrkk
0C04 F2 ES AD 0800 28 * CONSTANTS *
0C07 E9 EE ES 0800 29 AkkxkAkkkkAEk
0COA F4 E9 F1 0800 30 ;
0COD EC E9 FA 0000 31 FALSE EU O
0C10 F5 E4 0001 32 TRUE BQU 1
0c12 00 548 BYT 0 008D 33 R QU $8D
oc13 549 0087 34 BELL BOU $87
0C13 80 00 550 STRVAR2 ADR 128 0084 35 CID EQU $84
0C15 551 DFS 128 0800 36
0C95 552 ; 0800 37
0co5 58 ; 00ED 38 B EQU "="
0C95 1E 00 554 STRVAR3 ADR 30 0083 39 NE BQU "§"
0ce7 555 DFS 30 00EE 40 GT QU ™"
0CBS 556 ; 00BC 4 17T EQU "<"
OCBS 1E 00 557 SIRVAR4 ADR 30 EDBE 42 GE BQU ">"|"="*256
OCB7 558 DFS 30 EDBC 43 IE QU "¢ |"="%256
o5 559 0800 44 ;
0CD5 3¢ 00 560 STRVARS ADR 60 0800 45
07 561 DFS 60 0800 4% ;
0p13 562 ; 0800 47 ;
0D13 00 00 563 I ADR 0 0800 48
0D15 00 00 564 J ADR 0 0800 49 ;
0D17 00 00 565 LENSTR2 ADR 0 0800 50 ;
D19 00 00 566 STRINDK ADR 0 0800 §1 FERRXAEABEAANREAERKAARKLAR
0D1B - 567 ; 0800 52 * SPEED/ASM ENTRY POINTS *
OD1R 568 0800 B3 kA ARRARAAARRRRAARKARIRRAR
oDiB 569 ; 0800 54 ;
0piB 570 BD 7800 55 PUIC EQU $7800
7803 56 GEIC BQU PUTC+3
7806 57 SAGL BQU GETC+3 ;FOR USE BY 5/A ONLY-
k%% END OF ASSEMBLY SEE DOC,
7809 58 SAPC EQU SAGLA3 LR L
-
éﬁ“‘mﬁt 7£c 59 HOME EQU SAPC+3 ;HOME AND CLEAR
SYMBOL, 'TABLE SORTED ALPHABETICALL 780F 60 READIN QU HOME+3
” ETICALLY 7812 61 INIT EQU READLMN+3
BS 7854 CASE 7848 (ASEI 784B (ONCAT 786F COUNT 0013 7815 62 FOR EQU INIT43
R 008D DESTADR 0005 DIGIT 000F DIV 765D ENTERSIR 0839 | /818 63 FORD BQU EOR+3
"0 OOED EXIT FF69 FALSE 0000 FOR 7815 FORD 7818 781B 64 NEXT BQU FORO+3
FORASAV 0000 FORXSAV 0001 FORYSAV 0002 FORZPG 0003 GE EDBE 78LE 65 IFL EQU NEXT+3
GETC 7803 GOCDSTR 086B GOTIN (014 GT 00BE BOME 780c | 7821 66 IFI0 EQU IFI+3
1 0D13 IFT 78lE IFI0 781 IFS 784 IFSO 7827 7824 67 IFs BQU IFI043
INDEX 7869 INIT 7812 INSET 784E ISIMMED 0009 J 0D15 787 68 IFsO HX IFS43
JMPADR 0011 IDSTR 7833 LE BOBC LEADO 0010 LENGTH 786C | /82A 69 MOVE EQU IFS0+3
LENSTR2 OD17 LOAD 78D LT 00BC MAXLEN Q0OC MOD 7960 | 782D 70 LORD BQU MOVE+3
MOVE 7825 MWVS 7630 ML 7854 NE 00A3 NEG 7857 7830 71 MOvS EQU LOAD+3
NEXT ~ 781B NOTINSET 7851 ONE OBF0 (NXGOTO 7845 OP oooa | 7833 72 IDSIR EHQU MOVS+3
PRINT 7836 DRTINT 78C PRISTR 7839 PIRADR 0007 PUTC 7800 | /836 73 FRINT BQU LOSTR+3
RDINT 7842 RDSIR 763F READIN 780F RND 7863 SAGL 7806 7839 74 PRISTR BOU PRINT+3
SARC 7809 SIART 0800 SIRINDX 0D19 SIRVARL OBF2 STRVAR2 0CL3 78C 75 FPRTINT EQU PRISTR+3
SIRVAR3 0C95 STRVAR4 OCBS5 STRVARS OCD5 SUBSIR 7866 TESTDONE 09BC 783F 76 FRDSTR EQU PRTINT+3
TRUE 0001 VALUE 000D 7842 77 FROINT EQU RDSTR+3
: 7845 78 QNXGOTO BQU RDINT+3
SYMBOL, TABLE SORTED BY ADDRESS 7848 79 CASE- BQU QNXGOTO+3
7848 80 CASEI BQU CASE+3
FORASAV 0000 FALSE 0000 TRUE 0001 FORXSAV 0001 FORYSAV 0002 [784E 81 INSET BQU CASEI+3
FORZEG 0003 DESTADR 0005 FTRADR 0007 ISIMMED 0009 OP oooa | 7851 & NOTINSET EQU INSET+3
MAXLEN 000C VALUE 000D DIGIT 000F LEADO 0010 JMPADR 0011 7854 & aBs BQU NOTINSET+3
COUNT 0013 GOTIN 0014 R 008D NE 0023 LT o0BRC | 7857 84 NEG EQU ABS+3
9] 00ED GT O0BE SIART 0800 ENTERSIR 0839 GOCOSIR 0868 | /854 85 ML BQU NEGH3
TESTDONE 09BC ONE OBF0 SIRVARL OBF2 STRVAR2 0C13 SIRVARS 0C95 785D 8 DIV EQU MUL+3
STRVARE 0CBS STRVARS OCD5 I D13 J 0D15 LENSTR2 (D17 | /860 87 MOD BQU DIV+3
SIRINDX (D19 FPUTC 7800 GEXC 7603 SAGL 7806 SARC 7809 7863 88 RND EQU MOD+3
HOME 780C READIN 780F INIT 7812 FOR 7815 FORD 7818 | 1866 89 SUBSTR HQU RD+3
NEXT 781B IFT 781E IFI0 781 IFS 7824 IFSO 7827 | 7869 %0 DNDEX - BQU SUBSTR+3
MOVE 782A LOAD 782D MOVS 7830 LDSTR 7833 PRINT 7836 786C 91 LENGTH BQU INDEX+3
PRTSTR 7839 PRTINT 763C RDSIR 763F RDINT 7842 QUGOTO 7845 | 786F 92 ONGRT BQU LENGTH+3
CASE 7648 CASEI 784B INSET 784E NOTINSET 7851 ABS 7854 | 0800 93 .
NEG 7657 MUL 785A DIV 785D MOD 7860 RND 7863 0800 94 ; Apple Monitor equates.
SUBSIR 7866 INDEX 7869 LENGTH 786C OONGAT 786F LE BDBC | 0800 %5
GE EDBE EXTT FF69 FF69 9 EXIT BQU $FF69
i . 0800 97 ;
0800 98 ;
0800 99 ;
- 0800 100 ;
- i Mo 0800 101
Listing 3. SPEED/ASM Mini-Mailer. 0800 02 ;
0800 103 ;
0800 1 TIL "Listing Three: S/A Mini-Mailer® 0800 104 ; SPEED/ASM mini-mailing list pom.
0800 2 ; 0800 105 ;
0800 - 3 ; Listing 3 0800 106 ;
0800 4 0800 107 ;
0800 5 0800 108 ; This program demonstrates a practical
0800 6 ; 0800 109 ; application of the SPEED/ASM routines
0800 7 ; WARNING!!! This program is intended for demonstration 0800 110 ; running under Apple DOS.
080Q 8 ; purposes only. It has not been tested well enough 0800 111 ;
0800 9 ; to qualify it as a comrercial product. 0800 112
0800 10 ; Neither Lazerware nor Randy Hyde can assume any 0800 113 ; This section of code provides the X
0800 1l ; responsibility for the use of this program. 0800 114 ; input module. The following information
0800 12 ; 0800 115 ; is read in and written to the disk.
0800 13 0800 16 ;
0800 14 ; 0800 117 Listing continued.

170 €ider September 1983

0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800 20 12 78

0803
0803
0803
0803
0803
0803
0803
0803
0803
0803
0803
0803
0803
0806
0809
080C
080F
0812
0815
o818
081B
081E
0821
0824
0827

BERREIZBBIAER

082a
082D
0830
0833
0836
0839
083C
O83F
0842
0845
0848
084B
0B4E
084F
0852

HHBE RBGROBEIIBHISI

FRIABHBBRHIBZ
HIBIIB

ES

FE 4
FO F2

n
BERERBEBEYBHBBRE BEBCHBBERIBIR

085!

0862 20 OF 78
0865

0865 20 36 78
0868 8D 84 CF
086B DO
086E
0871
0874
0877
087A
0870
087E
0881
0884
08g7
088A
088C
088C
088C
088C

ZRBORBERREE
SRIAR BREBRE6A
8RHA BaB&LH

[~ %=1
o @
8%
N

83388383 EBABEEERE 888

0832

0885
0898
0898
089E

gogcoooooo
REREEEEEES
RRIEEHEBIRORERR B

HIEBIIIqHEEEERE 888

08BF

Listing continued.

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

153

159

160
161
162
163
164
165
166

167

First name: 13 characters.

i
; Last name: 13 characters.
;3 C/0s 25 characters.
; Street: 31 characters.
3 City: 15 characters.
; State: 4 characters.,
; Zipcode: 11 characters,
: Phone: 16 characters.,
i
7
i

*

*

* SPEED/ASM initialization and
* title page.

*

JSR INIT ;Always before using

SPEED/ASM

FRAAAERRARARARKEARAR SRR RARKRKARRL
*

* Mini~Mailer Main Loop
*

JSR PRINT
BYT CR,CR,"Insert disk with the MAIL,LIST",CR

BYT "(if you have cne) into the active drive"
@R
’ .

BYT "and press return: ",0

E5 F3 F3 A® F2 E5 F4 F5 F2 EE BA A0 00
JSR READIN

JSR PRINT
BYT (R,CTLD, "OPEN MAIL.LIST,1128%,CR

BYT . CTLD, "NOMN O, I,C*,CR,0

e e me v

MAINLOOP JSR HOME

JSR PRINT
BYT CR,CR,"SPEED/ASM Mini-Mailing List
Program®,CR,CR

BYT *Input Module:",(R,CR

§RE22EE3
B D0
SEGHERBELENSY

0970

YT EERREEERE

BBERQEGEY
BREBRELRE

0989

RRER

IEE2E RHEE8E Q9XBHIZWLLE REBLLE

EROBEREEBEEREBERBIEBENBHAREEESIARES

BEE

20 27
F6 11
0g

€l 00
DO OE
20 27
F6 11
00

El 00

D¢ 03
4C 8B

SRBAAIREES

SBE

The Assembly Advantage

SHASREE

SEBIRBE

BE B83%8 ZBIIXE

(=3
S

78
B

78
BD

oc

~
@ o

EREBIRER

808BELRR3

098C 20 OF 78

o
]
|
8
8
~
o

0892

3
=
=

168

169

170

3:A0 CD

172
173

222

224
225
226
227
228

BYT " A) AAd records”,CR

B " D) Delete a record",(R

BYT " 0) Open a new file",CR

FO ES5 9 EC E5 8D

EE AO E1 A® EE E5 F7 A
BT " P) Print file",

BYT (R

BYT " Q uit”,CR,CR

BYT “Choice: ",0

READLN(INPUTSTR) ;
JSR READIN

JSR RDSTR
ADR INPUTSTR

IF (INPUTSTR = "A") OR (INFUTSTIR = "a") THEN
GUIO ADDRECS;

e wu e w e

JSR IFSO
ADR INFUTSTR, EQ

BYT "A",0

PIR ADDRECS
JSR IFSO

ADR INPUTSTR,EQ

BYT "a",0
BIR ADDRECS
JMP TSTFORD

T, *Mini-Mailing List: Add Module”

Handle the "A" option here,

%

JSR HOME

JSR PRINT “«
BYT CR,CR

BYT "Add records module:",CR,CR,0

BYT CR,CTLD, "READ MAIL.LIST,R0,B0",CR,0

? Read in the number of records in this
3 file into NUMRECS.
i

JSR READLN
JSR RDINT

AR Listing continued.

172 €ider September 1983

jim

jim
0855: E5 F3 F3 A0 F2 E5 F4 F5 F2 EE BA A0 00

jim
08F8:A0 CD F0 E5 EE A0 E1 A0 EE E5 F7 A0 E6 E9 EC E5 8D

Listing continued. OATC 20 OF
0994 20 36 78 229 JSR PRINT ;Turn off read omd. 0A7F 20 3F
0997 6D 84 80 230 BYT CR,CTLD,CR,0 0A82 AB 12
099%A 00 0A84 50 21
03898 231 ; 0AB6
0998 232 OAB6 20 36
0998 233 ; 0A89 8D 87
0998 234 ; OA8C ES AD
099B 235 OASF EE F4
0998 236 ; Get the information to write to 0A92 F2 20
0998 237 ; the file. 0A95 F4 F2
0998 238 ; 0A98 ES F4
0998 20 36 78 239 GETFNAME JSR PRINT OA9B C1 F4
09%E 8D C5 EE 240 BYT CR,"Enter First name: ",0 OA9E F2 FS
0921 F4 E5 F2 0AAL F3 8D
0924 A0 C6 E9 0AM 4C 61
097 F2 F3 F4 0AR7
092A A0 EE E1 0AR7
092D ED ES BA 0AR7
0980 A0 00 0AR7 20 36
09E2 20 OF 78 241 JSR READLN CAAA 8D C5
09E5 20 3F 78 242 JSR RDSTR 0AAD F4 ES
0988 78 12 243 ADR FIRSINAM OABO A0 E3
09BA 50 1D 244 BVC GETINAME ;If oke CAR3 F4 F9
09BC 245 OAB6 A0 00
09BC 20 36 78 246 JSR PRINT CABB 20 OF
O9BF 8D 87 D2 247 BYT (R,BELL,"Re~enter first name",CR,0 0ABB 20 3F
09C2 ES AD ES5 OABE CA 12
09CS EE F4 E5 0ACO 50 17
09C8 F2 A0 B$ 0AC2
09CB E9 F2 F3 OAC2 20 36
09CE F4 AD EE 0ACS 8D 87
091 E1 ED E5 OAC8B ES AD
09p4 8D 00 OACB EE F4
09D6 4C 9B 03 248 JMP GETFNAME OACE E1
099 249 ; OAD6 4C A7
0909 250 ; 0AD9
0sDs 251 ; 0AD9
09D9 20 36 78 252 GETLNAME JSR PRINT GADO
09DC 8D C5 EE 253 BYT (R, "Enter Last name: ",0 0AD9 20 36
0SDF F4 E5 F2 OADC 8D C5
09E2 A0 OC E1 CADF F4 ES
095 F3 F4 AD CAE2 A0 F3
09E8 EE El ED OAE5 E1 F4
09EB ES BA AD OAES BA AD
09EE 00 OAEB 20 OF
09EF 20 OF 78 254 JSR READLN OAEE 20 3F
09F2 20 3F 78 255 JSR RDSTR O0AFL D9 12
09F5 85 12 256 ADR LASTNAME 0AF3 50 18
09F7 50 1C 257 BVC GETRAUX : 0AFS
09F9 258 ; OAFS 20 36
09F9 20 36 78 259 JSR PRINT OAF8 8D 87
09FC 8D 87 D2 260 BYT CR,BELL,"Re-enter last name",CR,0 0AFB ES AD
09FF E5 AD E5 0AFE EE F4
0A02 EE F4 E5 0B01 F2 AO
0A05 F2 AD EC 0B04 F4 E1
OAC8 El1 F3 F4 0B07 E5 8D
OA0B A0 EE E1 O0BOA 4C D9
0ACE FD E5 8D 0BOD
OAll 00 0BOD
0Al2 4C D9 09 261" JMP GETLNAME OBCD
0a15 262 ; 0BOD 20 36
OR15 263 ; 0BI0 8D C5
0Al15 264 ; 0B13 F4 E5
OAl5 20 36 78 265 GETAUX JSR PRINT OBl6 AD DA
0A18 C5 EE F4 266 BYT "Enter auxillary info: ",0 0R19 FO E3
OAIB E5 F2 B0 (p18:C5 EE F4 E5 F2 AD E1 F5 F8 EC E9 E1 OBLC E4 ES
OALE E1 F5 F8 F2 F9 A9 E9 EE E6 EF BA 0 ORLF AD 00
0A21 ES EC EC 0B21 20 OF
0A24 E1 F2 F9 0B24 20 3F
0A27 A0 ES EE 0R27 DD 12
OA2A E6 EF BA 0B29 50 1A
OR2D AQ 00 0B2B
OA2F 20 OF 78 267 JSR READLN OBZ2B 20 36
0A32 20 3F 78 268 JSR RDSTR OR2E 8D 87
0A35 92 12 269 ADR AUXINFO OB3l ES aD
0A37 50 28 270 BVC GETSTIRT 0B34 FE F4
0A39 271 0B37 F2 A0
0A39 20 36 78 272 JSR PRINT A - OB3A E9 FO
OA3C 8D 87 D2 273 BYT (R,BELL,"Re-enter Auxillary information 0E3D EF E4
0A3F ES AD ES +(R,0 0B40 8D 00

©A3C:8D 87 D2 E5 AD E5 EE F4 E5 F2 A® Cl F5 F8 E9 EC 0B42 4C OD
OM2 EEF4E5 o 1 r) ro a0 9 6) ED 4 E9 EF EE 8D 00 0B45
OM5 F2 a0 ¢y E9 E1 F2 F9 A® E9 EE E6 EF F2 ED E1 F4 E9 ol
OMdB F5 F8 E9 0B4S
0AdB EC EC E1 0B45 20 36
GAE F2 F9 A 0B48 8D C5
OASl E9 EE B 0B4B F4 ES
0AS4 EF F2 ED OB4E A0 DO
0AS7 El F4 E9 0BS1 EF EE
OA5A EF EE 8D OR54 AD A3
OASD 00 0B57. A0 0C
OASE 4C 15 0A 274 JMP GETAUX O0B59 20 OF
0261 275 0B5C 20 3F
0261 %g ; OBSF E8 12
0261 i 1 50 1F
0A61 20 36 78 278 GETSIRT JSR PRINT 8&3
0A64 8D C5 EE 279 BYT CR,"Enter street address: ",0 0B63 20 36
0A67 F4 ES F2 0B66 8D 87
0A6A 20 F3 F4 0B69 ES5 2D
OASD F2 E5 ES OB6C EE F4
OA70 F4 A0 E1 OB6F F2 20
OA73 E4 E4 F2 0B72 E8 EF
0A76 E5 F3 F3 0875 5 A
0A79 BA AD 00

78
78

78
D2

B
FA

0B

The Assembly Advantage

287
288
289

291
292

293
294
295
296
297
298
299

OACE

300

302
303
304
305

306
307
308
309
310
311
312

313

315
316
317
318

326
327
328
329
330
331

332
333
334
335
336
337
338

JSR READLN
JSR RDSTR
BADR STRTADRS
BVWC GETCITY

JSR PRINT
EYT CR,BELL, "Re~-enter Street Address®,CR,0

JMP GETSTRT

JSR PRINT
BYT (R, "Enter city: *,0

JSR READLN
JSR RDSTR
ADR CITY

BVC GETSTATE

JSR PRINT
BYT CR,BELL,"Re-enter city",(R,0

E9 F4 F9
JMP GETCITY

F2 A® E3 8D 00

GETSTATE JSR PRINT

BYT (R,"Enter state: *,0

JSR READIN
JSR RDSTR
ADR STATE
BWC GETZIP

JSR PRINT
BYT (R,BELL,"Re-enter State",(R,0

JMP GETSTATE

-

JSR PRINT
BYT (R, "Enter Zipcode: ",0

JSR READLN
JSR RDSTR
RDR ZIPQODE
BVC GETPH(NE

JSR PRINT
BYT CR,BELL, "Re~enter zipcode”,(R,0

JMP GETZIP

Gyme ~e =

ETPHONE JSR PRINT 4
BYT CR,"Enter Phone #: ",0

JSR READLN
JSR RDSTR
ADR PHONENUM
BVC WRTINFC

JSR PRINT
BYT CR,BELL,"Re-enter Phone number®,CR,0

Listing continued.

174 €ider September 1983

jim
0A18:C5 EE F4 E5 F2 A0 E1 F5 F8 E9 EC E9 E1 F2 F9 A9 E9 EE E6 EF BA A0 00

jim
0A3C:8D 87 D2 E5 AD E5 EE F4 E5 F2 A0 C1 F5 F8 E9 EC E9 E1 F2 F9 A0 E9 EE E6 EF F2 ED E1 F4 E9 EF EE 8D 00

jim
0ACE:F2 A0 E3 E9 F4 F9 8D 00

Listing continued.

0878 F5 ED E2

OB/B E5 F2 8D

OB7E 00

OBTF 4C 45 OB 339
osez 340
0B&2 341
opa2 342
0882 18 343
0B83 AD F2 11 344
0B86 69 01 345
0B88 8D F4 11 346
OB8B AD F3 11 347
OBBE 69 00 348
0BS0 8D F5 11 349
0B93 350
0B93 351
0B93 352
0B93 353
CR93 20 36 78 354
0B 8D 84 D7 355
0B99 D2 C9 D4

089C ¢S5 A0 (D

OBSF C1 C9 CC

OBA2 2E CC 9

OBAS D3 D4 AC

OBAB D2 00

ORAA 20 3C 78 356
OBAD F4 11 357
OBAF 20 36 78 358
OBE2 2C C2 B0 359
OBBS €D 00

0BB7 360
OBB7 361
OBB7 20 39 78 362
OBRA 78 12 363
OBEC 20 E3 11 364
OEBF 365
OBEF 20 39 78 366
0BC2 8 12 367
OBC4 20 E9 11 368
0BC7 369
0BC7 20 3978 370
0BCA 92 12 371
OBCC 20 B9 11 372
OBCF 373
0BCF 20 3978 374
OED2 AB 12 375
OED4 20 E9 11 376
0BD7 377
OBD7 20 39 78 378
ORDA CA 12 379
OBOC 20 E9 11 380
OEDF 381
OBDF 20 39 78 3&
OBE2 D9 12 3@
OBE4 20 B9 11 384
OBE7 385
OBE7 20 39 78 386
OBEA DD 12 387
OBEC 20 E9 11 388
QBEF 389
OBEF 20 38 78 39
OBF2 E8 12 391
OBF4 20 E9 11 32
OBF7 393
OBF7 394
OBF7 395
OBF7 3%
OBF7 20 36 78 397
OBFA 84 8D 00 398
OBFD 399
OBFD 400
OBFD 401
OBFD 20 2A 78 402
0CO0 F4 11 F2 403
0Co3 11

0Co4 404
0C04 405
0CC4 20 36 78 406
0C07 8D 8D C1 407
0COA E4 E4 A0

0COD El EE EF

0C10 F4 E8 E5

0C13 F2 AD F2

0Cl6 ES E3 EF

0C19 F2 E4 BF

O0CIC AQ A8 DS

OCIF AF CE A9

0C22 BA A0 00

0C25 20 OF 78 408
0C28 20 3F 78 409
OC2B F6 11 410
0Cc2D 411
0C2p 20 27 78 412
0C30 F6 11 BD 413
0C33 00

0C34 CE 00 414
0C36 DO 24 415
0C38 416
0C38 20 27 78 417
0C3B F6 11 BED 418
0C3E 00

OC3F F9 00 419
0C4l1 DO 19 420

-

~ e N v

The Assembly Advantage—,

JMP GETPHONE

PRINT CHRS (4) 7 "WRITE MAIL.LIST,R";RECNUM;", B0

JSR PRINT
BYT CR,CTLD,"WRITE MAIL.LIST,R",0

JSR PRYINT
ADR REQNUM

JER FRINT
BYr *,B0",(R,0

JSR PRTSTR
ADR FIRSTNAM
JER WRITELN

JSR PRTSTR
ADR LASTNAME
JSR WRITELN

JSR PRISTR
ADR AUXINFO
JSR WRITELN

JSR PRISIR
ADR STRTADRS
JSR WRITELN

JSR PRTSTR
ADR CITY
JSR WRITELN

JSR PRISTR
ADR STATE
JSR WRITELN

JSR PRISTR
ADR ZIPOODE
JSR WRITELN
JSR PRISTR
BADR PHONENUM
JSR WRITELN
Turn off output to the file,

JSR PRINT
BYT CTLD,CR,0

NUMRECS = RECNUM (Which contains NUMRECS+1)

JSR MOVE .
ADR RECNUM, NUMRECS ‘

:
GETYORND JSR PRINT

BYT CR,(R,"Add another record? (Y/N):

JSR READLN
JSR RDSTR
ADR

JSR
ADR

IFSO
INPUTSTR, BQ
*N",0
EXITADD

JSR
BADR

IFS0
INFUTSTR, BQ
"y",0
EXITADD

"0

Listing continued.

Listing continued.

0C43
oca3
0C46
0Cc49
0C4A
0CAC
OC4E
0C4E
0Cs51
0C54
0C55
0cs7
0Ccs59
0Cs9
0C5C

0CA7

20
F6
00
D9
Do

20
F6
00
F9
FO

4C

20

20

5EIEBRGREBBAR §
TeREIIBEBEIA

Y¥BBRIIBERHY

27 78
11

00
0B

27 78
1 ®

00
AB

9B 0%

BERB8BRES

H
=
Bs

[
o
=]
=1

36

BERSEINREBHRS
>3SRBEBBRRZ

oW
~Na
@3

8
SHRRRESHRH

o
a

472
473
474
475
476
477
478

486

.

Before
count

EXTTADD

JSR IFS0
ADR INFUTSTR, E)

BYT "Y",0

BIR

JSR 1PS0

ADR INPUTSTR,BQ

BYT *y",0

BFL, GETYORNOD

JMP GETFNAME

exiting, update the record

JSR PRINT
BYT CR,CILD, "WRITE MAIL,LIST,R0,B0",CR

BYT ¢

JSR PRTINT
ADR NUMRECS

JSR PRINT

BYT * ",CR,CILD,CR,0

JMP MAINLOCP

TTL "Mini-Mailer: Delete Module"

o

See if

JSR IFSD

ADR INPUISTR,EQ
BYT "D",0

BTR ISD

JSR IFSO
ADR INPUTSIR,EQ

BYT "d",0
PR ISD
JMP TSTFORO

JSR PRINT
BYT CR,CR, "Delete which record? ",0

JSR READLN
JSR RDINT
ADR RECNUM
BVC GOCDNUM

JSR FRINT

BYT CR,BELL,"Illegal record number,
re~enter™,CR,0

JMP TSTFORD
this is a valid record number.

JSR PRINT
BYT CR,CTLD, "READ MAIL,LIST,R0,BO",CR,0

JSR READLN Listing continued.

September 1983 ider 177

Listing continued.,

0D10 20 42 78
0D13 F2 11
0D15

0D15 20 1E 78
0D18 F4 11 BC
OD1B ED F2
OD1E DO 3F

ER

0020

0020 20 36
0023 80 Dé
0D26 Fl F4
0D29 F2 5
0D2C EF F2
OD2F A0 E4
D32 ES F3
0D35 A7 F4
0D38 FS F8
0D3B F3 F4
OD3E 8D DO
DAL ES F3
0D44 20 F2
0D47 F4 F5
OD4A EE A0
0DD EF AD
0D50 FF EE
0DS3 E9 EE £5
0DS6 ES BA 00
0D59 20 OF
O0DSC 4C 8C 08

ZRIZRCIBBERNEBERS

ODSF
ODSF 20 36 78
0D62 8D 84 D7
0D65 D2 9 D4
0D68 C5 A0
0D6B €1 €9 CC
OD6E AE CC C9
0D71 D3 D4 AC
D74 D2 00

0D76 20 3C 7
OD79 F4 11
0D7B 20 36

®

78

g
[}
&
Q
B

g
>
SEEREBEREEISC28I08Y
RS8RIBIIRII HESBH
REHEEZBEH RERI 8

o~
@ o

20 27
F6 11
ODBA 00
ODBB D3 00
ODBD DO OE
ODBF

ODBF 20 27 78
0DC2 F6 11 ED
0pcCs 00

0DC6 F3 00
0DC8 DO 03
ODCA 4C 3D OE

BERBEGES
8REBRBRRE
2380BBERRRS

=1
B
B

ODE8 20 0

m

487
488
489

491
492
493

494
495

496

497
498
499

501

511

JSR RDINT

ADR NUMRECS

JSR IFT

ADR RECNUM, LE, NUMRECS
BIR RECOK

JSR PRINT
BYT CR,"™that record doesn't exist”,(R

BYT CR,"Press return to continue:",0

JSR READIN
JMP MAINLOOP

JSR PRINT'
BYT CR,CTLD,"WRITE MAIL.LIST,R",0

JSR PRINT
BYT CR,CR, "Deleted”,CR

BYT "Press return to continue:",0

JSR READLN
JMP MAINLOOP

T "Mini-Mailer: Status Module"

IFSO
INFUTSTR, 20

JSR
ADR
BYT "S%,0
BIR ISS

JSR
ADR

IFs0
INPUTSTR, B

BYT "s",0
PTR
JMP TSTFORO

JSR PRINT
BYT' CR,CTLD, "READ MAIL,LIST,R0,BO",CR,0

JSR READIN
JSR RDINT
ADR NUMRECS

JSR PRINT
BYT CR,"There are ",0

ODFF 20
0E02 F2
0E04

0804 20
007
OEOA
OE0D
OEL0
OEL3
OEL6
0El9
OEIC
OEID
[1) 11}
0E23
QE26
0E29
OE2C
OE2F
0E32
OE35
0E37
OE3A
OE3D
OE3D
OE3D
OE3D
OE3D
OE3D
0E3D 20
OE4C F6
0E43 00
OE44
OE46

ASEHEBEBIINEEREIBRDE

OEAF F5

QEBE AD
OECA EB

OECE F4

OED1 AD
0ED4 F4
OED7 ES
QEDA F2
OEDD ES

OEE3 F2

B
B
BRRRZBEEE 8

OEE9 F4

3C 78
11

BEHEEIBR BSEBRBBIH

36
F2
EF
F3
EE
E8
B
BB
F2
F3
S
F2
F4
B
F4
F5
00
OoF
8C

o3
0w

27 78
11 B

00
[

=3
=]

(2]
o

EEBIRBH HIIBHEBIG
BEBRIRE HIPEAA3BII

N~
23

wo
bR

11

2BEG

HEBEAAREE B BEBBIBIRE

The Assembly Advantage

548

574

575
576
577
578
579
580

581

583
584

585
587

588
589

590

JSR PRTINT
ADR NUMRECS

JSR FRINT
BYT " records in the file”,CR,(R

BYT "Press return to continue:*,0

JSR READLN
JMP MAINLOCP

TTL "™Mini-Mailer: New File Module”
There

should be ; for lines 551 ~ 553

ISTFORD JSR IFSO

1s0

8D 87

OECI1:F3

DO F5 F4
F2 E5 F6 E9 EF
EB A® E2 E1 E3

ADR INPUTSTR,EQ

BYT "0",0
BIR IS0

JSR IFSQ
ADR INPUISTR,EQ

BYT *o",0
BIR ISO
JMP TSTFORP

JSR PRINT
BYT CR,"Is the previous disk still*,(R

BYT "in the drive? (¥/N): *,0

JSR PRINT
BYT CR,BELL,"Put the previous disk back
into®,CR

A® F4 E8 E5 AO FO
F5 F3 A@ E4 E9 F3
EB A® E9 EE F4 EF
8D

EB A® E2 E1 E3 EB A0 E9

EE F4 EF 8D

BYT “the active drive before continuing®,
CR,0

Listing continued.

178 €ider September 1983

jim
8D 87 D0 F5 F4 A0 F4 E8 E5 A0 F0 F2 E5 F6 E9 EF F5 F3 A0 E4 E9 F3 EB A0 E2 E1 E3 EB A0 E9 EE F4 EF 8D

jim
There should be ; for lines 551 ~ 553

jim
0EC1:F3 EB A0 E2 E1 E3 EB A0 E9 EE F4 EF 8D

OEEC F5 E9
QEEF E7 8D
OEF2 4C 56
QEFS

OEF5

OEF5 20 36
OEF8 6D 84
OEFB CC CF
OEFE C5 8D
OFQ1
OFQ1
OF04

20 36
8D DO

E
F4
A
F3
F4
y: Y
F5
B
A
A0
ES
B
A0

0FQ7
OFQA
OFCD
0F10
0F13
OFl6
OF19
OF1C
OF1F
0F22
0F25
OF28
OF2B

OF2E
OF31
0F34

FESHERIBIIBERRGR6 BIZgEEIgOHBEER

S3EBREEIREBBREREREEC

F2

IBBBYIRBRORY BRBARQRRES

0w
=

m
m

i
B

g
B

g8dd
FLH
39 RERBRIERE

OFCE 00
OFCF 20
OFD2 4C
OFD5

OFD5

OFD5

OFD5

OFD5

OFDS

OFD5

0FDS

0FDS

OFD5 20 27
OFD8 £6 11
0FDB 00
OFDC DO 00
OFDE DO OE
OFE0

OFE0 20 27

EE
00
OE

78
3
D3
00

78
)29

B

BERRS BRABELGAII

B8

=3
=3

EEHEEBOSA3RE A

o~
®

78
BD

78

Listing continued.

591

593
594
595

5%
597
598

599

600

601

El EE E4 A®
F2 E5 F4 F5 F2

0F68
602
603
604
605

606

607

608
609
610
611
612

625

626
627
628
629

F4 F5 F2

LRI

JMP IS0

JSR PRINT
BYT CR,CTLD, "CLOSE®,CR,0

JSR PRINT
BYT CR,"Place the diskette you wish to
create®,CR

BYT "a ""MAIL.LIST"" file on into the active”
{63
v

BYT "disk drive”,CR

BYT "and press return: ",0

FO F2 E5 F
EE B

EE BA A 00
JSR READLN

JSR PRINT .
BYT CR,CTLD, "OPEN MAIL,LIST,L128,CR

BYT' CTLD, "WRITE MAIL,LIST*,(CR
BYT "0 "R
BYT CTID,(R,0

JSR PRINT

BYT CR,"All done, press return to continue:s"
0

’

JSR READIN
JMP MAINLOOP

TTL "™Mini-Mailer: Print Module”

TSTFORP

JSR IFSO
ADR INPUTSTR,E)

BYT "p",0
BIR ISP

JSR IFSO

OFE3
OFBS
OFE7 FO 00
OFE9 DO 03
OFEB 4C 53
OFEE

OFEE

OFEE 20
OFF1
OFF4
OFF7
OFFA
OFFD
1000
1003 E1
1006
1009
100C
100
1012 B
1015
1018
101B
101E

F6 11
a0

20 15

BREGR0R
aggeEee

FO 11

BD

FHBIBA8EBEE

~N
o

S8BERBEGRS

I
~

~3~
wx

78
78

78
78

The Assembly Advantage

630

631
632
633
634
635
636
637

638

646
647
648
649

651

652
653
654
655

56
657
658
659
660
661

662
663
664

ADR INPUTSTR,EQ

BYT "p”,0
BIR ISP
JMP TSTFORQ

P ve

JSR PRINT
BYT CR,"Send cutput to what slot?",CR

BYT "(zero for screen): ",0

JSR READIN
JSR RDINT
ADR I

JSR PRINT
BYT CR,CTLD, "READ MAIL.LIST,R0,B6™,CR,0

JSR READLN
JSR RDINT
ADR NUMRECS

JSR PRINT
BYT CR,CTLD, "FR#",0

JSR PRTINT

ADR T
JSR WRITELN

FOR I =

1 TO NUMRECS STEP 1

JSR FOR
ADR I,0NE,NUMRECS,(NE

JSR PRINT
BYT CTLD,"READ MAIL.LIST,BO,R",0

JSR PRTINT
ADR I
JSR WRITELN

JSR READLN
JSR RDSTR
ADR FTRSTNAM

H

; Check to see if this is a deleted ,
1 record or not,
H

JSR IFSO

ADR FIRSTNAM, EQ

BYT $80,0
BFL NOTDLTD
JMP NEXTP

JSR READIN
JSR RDSTR
ADR LASTNAME

JSR READLN
JSR ROSTR
ADR AUXINFO

JSR RERDIN
JSR ROSTR
ADR SIRTADRS

JSR READLN
JSR RDSTR
ADR CITY

JSR READIN
JSR FDSTR
ADR STATE

Listing continued.

180 €ider September 1983

jim
E1 EE E4 A0 F0 F2 E5 F3 F3 A0 F2 E5 F4 F5 F2 EE BA A0 00

jim
0F68:F4 F5 F2 EE BA A0 00

Listing continued.

10¢5)
10C5 20 OF 78
10C8 20 3F 78
10CB D> 12
10

100D 20 OF 78
1000 20 3F 78
1003 B8 12
1005

1005

105 20 39 78
1008 85 12
100A 20 36 78
100D AC A0 00
1080 20 39 78
1083 78 12
10E5 20 B9 11

10E8

10E8 20 39 78
10E8 92 12
10D 20 B9 11
10F0

10F0 20 39 78
10F3 AB 12
10F5 20 B9 11

10F8

10F8 20 39 78
10FB A 12
10FD 20 36 78
1100 AC A0 00
1103 20 39 78
1106 D9 12
1108 20 36 78
110B 20 20 00
110E 20 39 78
1111 oD 12
1113 20 B89 11

1116

1116 20 39 78
1119 E8 12
1118 20 £9 11
111E 20 B9 11
1121 20 89 11

1124
1124 20 1B 78
127
12/
1127 20 36 78

1128 8D 84 DO
112D D2 A3 B0

JSR WRITELN
JSR NEXT

JSR PRINT
BYT CR,CTLD, "PR#0%,CR

The Assembly Advantage

114D 20 OF 78
1150 4C 8C 08
1153

153
1153
1us3
1153
153
1s3
1153 20 27 78
1156 F6 11 BD
1158 00

115a p1 00
115C DO 16
115E

115E 20 27 78
1161 F6 11 ED
1164 00

1165 F1 00
1167 DO 0B
1169

1169 20 36 78
116C 8D 87 87
116F 87 00
1171 4C 8C 08
1174
174
1174 2!
1177

<

e
o

EEEEEEELE
HESRSRRBREE

g
BEIBRBAREGBBEBERIOR REEOHEBEEBHAE &
SERIC3RRIPRADnBEREE BERBBIZBEABAR 8§

28803 JSIRAIDEBEBHIBIBRCY RBRRGEBIBBIIER B3

8
22883
g8REs

751
752

753
754
755

757
758
759
761
762
763

764

779

780

BYT CR,(R
BYT "Press return to continue:*,0

JSR READIN
JMP MAINLOCP

e e .

TIL "Auxillary routines, etc.”

JSR PRINT
BYT CR,BELL,BELL,BELL,0

JMP MAINLOOP
QT JSR PRINT

BYT CR,"Make sure the disk with the
MAIL.LIST",CR

BYT *file is still in the active disk

drive*,CR

BYT "and press return:",0

JSR READLN

JSR PRINT
BYT (R,CTLD, "CLOSE*,CR,0

JMP EXIT

Auxillary routines,

R

WRITELN LDA #CR
JMP PUTC

PSR

Variable declarations.

[

Listing continued.

Listing continued.

11EE 01 00
11F0
11F0
uro
11FG 60 00
11F2 00 00
11r4 00 00
11r6

809 NE ADR 1
810

al ;

a2 ;

813 I AR 0
814 NUMRECS ADR 0
815 REQNUM ADR O
86 ;

817

818 INFUTSTR ADR 128
819 DFS 128
820 FIRSTNAM ADR 11
821 DFS 11
r2 ;

823 LASTNAME ADR 11
824 DFS 11
05 ;

826 AUXINFO ADR 23
87 DFS 23
828

829 STIRTADRS ADR 29
830 DFS 29
831 ;

832 CaTy ADR 13
833 DFS 13
&8ss ;

835 SIATE ADR 2
836 DFS 2
87 ;.

838 ZIPCODE ADR 9
839 . DFS 9
84 ;

841 PHONENUM ADR 14
842 DFS 14
843 ;

844 ;

845 END

*xkk%t END OF ASSEMBLY

ibrun sort
BRUN SORT

SYMBOL TABLE SORTED ALPHABETICALLY

BBS 7854
CASE 7848
CTLD 0084
EXITADD OC5C
GE BDBE
GETLNAME 09D3
GETZIP QBOD
IFT T81E
INIT 7812
Isp OFEE
IE BDBC
MoD 7860
NEG 7857
NOTINSET 7851
PRINT 7836
RDINT 7842
RND 7863
SUBSTR 7866
TSTFORQ 1153

ADDRECS 0953
CASEI 784B
DIV 785D
FALSE 0000
GETAUX 0AlS
GETPHONE 0B45
GOCDNUM 0CF2
IFIO 781
INFUTSTR 11F6
1SS [»

LENGTH 786C
MOVE 7823
NEXT 781B
NUMRECS 11F2
PRIINT 783C
ROSTR T&F
SAGL 7806
TRUE 0001
TSTFORS 0DB4

SYMBOL TABLE SORTED BY ADDRESS

FALSE 0000
NE 00A3
MAINLOCP 088C
GETAIJX OAl5
GETPHONE 0B45
TSTFORD 0C8B
188 0pCD
Isp OFEE
WRITELN 11E9
INFUTSTR 11F6
ary 12CA
GETC 7803
INIT 782
IFI0 781
MOVS 7630
RDSTR T8F
INSET 784E
DIV 785D
LENGTH 786C

TRUE 0001
T 00BC
ADDRECS 0953
GETSTRT 0A61
WRTINFO (B82
IsD 0CA4
TSTFORC QE3D
NOTDLID 109D
NE 11EE -
FIRSTNAM 1278
STATE 1209
SAGL 7806
FOR 7815
IFS 7824
LDSTR 7833
RDINT 7842
NOTINSET 7851
MoD 7860
QONCAT 786F

AUXINFO 1292
CITY . l2CA
DORGAIN 0C59
FIRSTNAM 1278
GETC 7803
GETSTATE GADS
GT 00BE
IFS T84
INSET T84E
ISYES OEFS
LorD 782D
Mvs 7830
NEXTP 1124
NE 11EE
PRISTR 7839
READIN 780F
SAPC 7809
TSTFORD (C8B
WRITELN 11E9
CTLD 0084
0 Q0D
NDERROR 0971
GETCITY 0AA7
GETYORNO 0C04
GOCDNUM OCF2
IS0 0ES6
NEXTP 1124
I 11F0
LASTNAME 1285
ZIPCODE 120D
SAPC 7809
FORO 7818
IFSO 787
PRINT 7836
CNXGOTO 7845
ABS 7854
RD 7863
LE BDBC

BEGIN 0800
QONCAT 786F
)2 0] 00BD
FOR 7815
GETCITY OAA7
GEISTRT (261
HOME 780C
IFSQ 7
IsD 0CA4
LASTNAME 1285
LT 00BC
MUL 7854
NOERROR 0971
ONXGOTO 7845
PIC 7800
RECNUM 11F4
STATE 129
TSTFORO 0E3D
WRTINFO 0B82
BELL 0087
GT 00BE
GETFNAME 099B
GETSTATE 0AD9
DOAGAIN 0C59
RECOK ODSF
ISYES QEF5
TSTFORD 1153
NOMRECS 11F2
AUXINFO 1292
PHONENUM 12E8
HOME 780C
NEXT 781B
MOVE ME:2:8
PRISTR 7639
CASE 7848
NEG 7857
SUBSIR 7866
GE BDBE

BELL 0087
CR 008D
EXIT FF69
FOR) 7618
GETFNAME 099B
GETYORNO 0C04
I 11F0
INDEX 7869
180 0ES6
IDSTR 7633
MAINLOOP Q88C
NE 0043
NOIDLTD 109D
PHONENUM 12E8
QUIT 1174
RECOK ODSF
STRTADRS 12AB
TSTFORP OFDS
ZIPCODE 120D
CR 008D
BEGIN 0800
GETLNAME 09109
GETZIP (BOD
EXITADD 0OC5C
TSTFORS 0DB4
TSTFORP (FDS5
QUIT 1174
RECNUM 11F4
STRTADRS 12AB
PUIC 7800
READIN 780F
IF1 781E
LOAD 780D
PRTINT 783C
CASEY 764B
MUL 785A
INDEX 7869
EXIT FF69

September 1983 €ider 183

The Assembly Advantége-

by Randy Hyde

6502 Addressing Modes

ast month I presented the

SPEED/ASM string handling
routines, While these routines provide
all necessary string manipulation
functions, it is sometimes more con-
venient to perform string operations
directly in 6502 code. So once again I
must resort to “pure” 6502 code.

So far I've discussed only simple
variable types in SPEED/ASM. When
dealing with simple variables two
6502 addressing modes are required—
immediate and absolute. The im-
mediate mode is for loading constants
into one of the 6502 registers. To do
so, precede the immediate data with
a pound sign (#) or a slash (/). The
pound sign specifies that the low
order byte of the 16-bit value is to be
loaded into the register; the slash op-
erator specifies the high order byte.
This addressing mode gets its name
from the fact that the data to be load-
ed into the accumulator immediately
follows the instruction opcode. See
Figure 1.

The absolute addressing mode is
used when you want to load (or store)

a register from one of the 6502’
65,535 memory locations. In this
case, follow the instruction with the

.address of the memory location you

wish to access. The absolute address-
ing mode is so named because the ad-
dress that follows the opcode is the

““absolute” address—it is not modi-

fied by anything. See Figure 2.
Unfortunately, the absolute ad-
dressing mode won't let you access
varying memory locations. The ad-
dress you want to access must be
specified at assembly time and can-

- not change while the program is run-

ning. Therefore, this mode cannot be
used to access elements of an array
using a specified (variable) index.

In order to set up and access arrays
(and string variables are classified
as arrays) additional knowledge of
the 6502 is necessary. To support
such multi-byte data structures the
6502 microprocessor supports several
indexed and indirect addressing
modes. An indexed addressing mode
uses either the X or Y register as an in-
dex register to modify the address

LDA

HSFF

|

Instruction opcose — $§AQ $FF <+——0ata to be loaded

6502 accumulator

|

F|Fe

- Figure 1. Immediate addressing mode format.

that follows the instruction. For ex-
ample, the instruction:
LDA ADDRESS, X

loads the 6502 accumulator from lo-
cation ADDRESS+X where X is the
current content of the X register. So
the instruction sequence:

LDX #2

LDA ADDRESS X

performs the same action as:
LDA ADDRESS +2

Don’t confuse a statement of the
form:

LDA ADDRESS+1
with a statement of the form:
LDA ADDRESS,X

In the former case the address calcu-
lation is performed at assembly time.
That is, the assembly-time value of I
(its address) is added to the assembly-
time value of ADDRESS and the result-
ing sum is used as the address for the
LDA absolute instruction.

In the latter case, the address cal-
culation is performed at run time
(when the instruction is executed).
Here the address that follows the LDA
instruction is simply the address of
ADDRESS. At run time the X register’s
value is added to this address to ob-
tain the true effective address.

The major advantage of the in-
dexed addressing mode is the 6502’
ability to modify the X register while
the program is running. For exam-
ple, consider the short program:

Randy Hyde is proprietor of Lazerware, creat-
ors of SPEED/ASM. Address correspondence
to him at 925 Lorna St., Corona, CA 91720,

. 34 Cider October 1983

The Assembly Advantagé -

This sequence initializes the 6502
X register to zero and then enters a
short loop. Within the loop the value
contained in the X register is copied
into the accumulator with the TXA
(transfer X to A) instruction. Next the
value in the accumulator is stored at
address ADDRESS +X. Since the X reg-
ister contains zero, the current con-
tents of the accumulator are stored at
location ADDRESS+0. The next in-
struction, INX, increments the X reg-
ister. Since the X register contains
eight bits, it can only hold numbers in
the range 0-255 ($00-$FF). Whenev-
er you increment the value 255 ($FF)
in the X register, it wraps back
around to zero and the 6502 zero flag
is set. In all other instances the zero
flag is cleared. Therefore, the BNE
(branch if not equal to zero) instruc-
tion can be used to continually
branch back -to location LOOP until
the X register is incremented from
$FF to $00. And that occurs only af-
ter the loop has executed 256 times.
The loop above, incidentally, stores
zero at location ADDRESS+0, one at
location ADDRESS + 1, two at location
ADDRESS+2, $FF at location
ADDRESS +$FF. This is roughly equiv-
alent to the Basic program:

10 DIM ADDRESS (255)
2 FORX = 0 TO 255
HA=X

50 ADDRESS (X) = A
60 NEXTX

70 STOP

6502 Hemory

Space

LDA | Lo syte | Ha Byte
1 ' ' *,$00
Instruction Opcode —» SAQ
6502 accumulator
0
Figure 2. Absolute addressing mode format.

LDX #0 Although I've used the 6502 X reg-
LOOP TXA -ister in all the examples so far, the Y
STA ADDRESSX register can usually be used in a simi-
INX lar way. So, if you're already using
gﬁ LOOP the X register and you need to access

some tabular data you could use the
Y register instead.

Using the Indexed Modes

Now that I've described how the
indexed addressing modes function,
it would be a good idea to describe
how to use these modes within
SPEED/ASM programs. The most ob-
vious application is to implement
byte arrays. For example, an array of
16 characters could be defined as:
CHARARY DFS 16

Then you could access elements of the
array using the indexed addressing
modes.

It is important to note the differ-
ence between a character string and a
character array. A character array is
a collection of characters stored in
contiguous memory locations. It is
treated as a convenient collection of
similar objects. A character string is a
character array with two additional
attributes: a maximum possible
length (stored in the first byte of the
string) and an actual length (denoted
by storing a zero byte at the end of
the current string data). A character

string is typically treated as a single

object.

Byte arrays are quite useful for
storing tabular data such as a list of
reserved words or a group of special
characters. For example, consider
the array:

VOWELS BYT “AEIOUYWaeiouyw”

You could use this to see if the current
character in the accumulator contains

a vowel. Consider the short program:

LDX #13
TSTVWL CMP VOWELSX
BEQ ISAVWL
DEX
BPL TSTVWL
; If you drop through to this point
; then the character
; in the accumulator
; isn’t a vowel,

The new instruction here, DEX,
decrements the 6502 X register by one.
Aslong as the new value in the X regis-
ter is positive (in the range 0-127 or
$00-$7F) then this program branches
back to the TSTVWL label. The in-
stant you decrement $00 you get $FF,
which is negative, and you fall
through the loop. Notice that this
loop starts at the last entry of the
VOWEL array and works backwards.
This short assembly language code is
roughly equivalent to the Basic code:

10 FORI = 13TOOSTEP -1

20 IF ACC=VOWELS(H) THEN GOTO
nnnn

30 NEXT 1 .

It should be noted that SPEED/
ASM provides a special routine, IN
SET, for easily performing this type of
test. I'll discuss INSET in a future article.

Emulating LENGTH and PRTSTR

Although the examples presented
thus far have all dealt with character
arrays, the indexed addressing modes
can also be used with character
strings. Keeping in mind the format
for a string variable (see Figure 3),
you can see that the following loop
performs roughly the same operation
as the SPEED/ASM LENGTH function:

LDX 40
LENGTHL LDA STRING+1,X
BEQ FNDLEN
INX
JMP LENGTHL ;Always
staken.

FNDLEN

- The only differences between this
loop and the SPEED/ASM LENGTH
routine are that here the length is re-
turned in the 6502 X register (instead
of the accumulator) and this leop
only returns the length of STRING,
not any arbitrary string. (One other,

36 €ider October 1983

Ve
LT TR e
string are stored here. p°ofm°"
| L L 1 NN sting

The Assembly Advantage-

-

Maximum Length of String
is Stored in the First Byte

Zero Terminating Byte

Figure 3. SPEED/ASM string format.

less obvious, difference is that this PRTLOOP LDA STRING +1X
routine destroys both the X regis- BEQ PRTDONE
ter and the accumulator, while the JSR PUTC
LENGTH routine modifies only the INX PRTLOOP
accurnulator.) IMP L
The SPEED/ASM PRTSTR routine
. . . PRTDONE:
can be simulated using the loop:
LDX 0 Note that in both cases I loaded from
Program listing, D. tration of indexed addressing modes.
0800 1 TIL "Listing One: Indexed Modes Ex."
0800 2 ;
0800 3
0800 4 ;
0800 5 FRARRRARRRERRARL A AN AR ARRE SR NN
0800 6 * *
0800 7 * Listing One: *
0800 8 * Indexed Addressing Modes *
0800 9 * Example Program. *
0800 0+ *
0800 11 ek etk de ke ok vk dr ek R AR Ak R Rk et sk ke ke ko
0800 12
0800 13 ;
0800 u ;
owo 15 dkkkhhkkdtikh
0800 16 * CONSTANTS *
0800 17 RERERERARRERE
0800 18 ;
0800 19 ;
0000 20 FALSE BU 0
0001 21 TRUE Bl
008D 2 & EQU $6D
0800 B
0800 24 ;
0800 25 ;
0800 26 ; "IF" STATEMENT EQUATES
0800 27 ;
0800 28 ;
00ED 25 M 0y ="
oox3 30 NE BOU "#"
0CBE 31 Gr BQU ">"
00BC 32 LT BQU "<*
BDBE 33 GE QU *>"["="*256
BDBC 34 LE BQU <" | ="*256
0800 35 ;
0800 36
0800 37
0800 38 ;
0800 39 ;
0800 0 ;
0800 a ;
0800 42 * haubetcdabdo b bbb bbbt bl
0800 43 * SPEED/ASM ENTRY POINTS *
0800 44 FEERRRRRRAARRRRRARERRR AR,
0800 45 ;
0800 % ;
0800 47 ;
0800 8 ;
0800 49 ; NOTE: THE BQUATE OF PUTC MUST
0800 50 ; BE CHANGED IF YOU RELOCATE
0800 51 ; SPEED/ASM TO SOME LOCATION
0800 52 ; OTHER THAN $7800
0800 53 ;
0800 54 ;
0800 55 ;
7800 56 FUIC EQU $7800
7803 57 GEIC BQU PUTCH3
7806 58 SAGL BQU GETC+3 ;FOR USE BY S/A ONLY- SEE DOC.
7809 59 SAPC BQU SAGIA3 ;" F ® - " -
780C 60 HOME BQU SARCH3 sHOME AND CLEAR
780F 61 READIN BQU HOME+3 . ,
Listing continued.

address STRING +1. This skips over
the initial maximum length byte
present in all SPEED/ASM strings.
See Figure 3 again.

Setting Up Integer Arrays

Since integers require two bytes of
storage each, an integer array must
contain 2xn bytes, where n is the
number of array elements. Conse-
quently, you must define an array
with twice the number of bytes as ele-
ments. The easiest way to reserve
space for an integer array is to use the
declaration:
<label>> DFS 2*<numelmnts>

where <label> is the name of the array
and <numelmnts> is the number of ele-
ments you desire in the array. When
using the indexed addressing modes
to access elements in an integer array,
there is a limit of 128 elements. This is
due to the fact that index registers can
only access up to 256 different memo-
ry locations, which is just enough

_ space for a 128-byte integer array.

One additional problem surfaces
when using the index registers to ac-
cess elements of an integer array: You
must load the array index times two
into the index register in order to ac-
cess the proper element. There are
several ways to do this. If you’re load-
ing an immediate value into the index
register as an array index, you need
only multiply the immediate value
by two. For example:

LDX #25*2

for element 25 of an integer array.
The multiplication is performed at
assembly time so there is no run-time

If you need to access array ele-
ments using a variable index, you
must multiply the index by two be-
forehand. There are two ways to eas-
ily accomplish this: actually multiply
the index by two, or, if you're se-
quentially stepping through an ar-
ray, increment the index by two for
each element you access. For exam-
ple, if you want to set each element of
a 100-byte integer array equal to the
index of that element you could use
the code:

38 €ider October 1983

0800 20 12 78
0803
0803 20 0C 78
0806
0806 20 36 78

g8
8
g
8

=3=3=1

g8

wvip M
J3BRBI2BRAE EBIHSBEENBOAARBRRNRECUERNRRIBR ARBANER

oas
081B

§888BEEAR 5333399888525 00RRREFERRRAERRRE
BBl ABEOE IR eSO BHEEROIIDBHEARERIOREABHBLEBERBEIIZ
d3PU3RnE3Es JHB3 DREBEIDEBICHSHDRASIBBR3 K3 Qya3e

089D

INIT READLN+3

IFI BQU NEXT+3
IFI0 0U IFI+3
IFS BQU IFI0+3

ABS BQU RDINT+18
NEG BQU ABS+3
MIL BQU NEGH3
DIv BQU MUL+3
MOD BQU DIV+3
RO BQU MOD+3
SUBSTR BOU RND+3
INDEX EQU SUBSTR+3
LENGIH BQU INDEX+3
CONCAT BQU LENGTH+3

Apple monitor equate

. e v e v

EXIT EQU $FP69
1
. *hkkr
*
101 * Sample program for Assembly
1062 * Advantage Part six.
103 * .
104 * Demonstration of the 6502
105 * indexed addressing modes.
106 *
107 * bkl
108 ;
109 ;
110 BEGIN JSR INIT ;Always call this first
11
112 JSR HOME
113
114 JSR PRINT
115 BYT CR,CR,CR
116 BYT "This program counts the rumber of®",(R
080850 08 e F MO A0 FB2FBFEF7ET 2 ElE EDED NG X FEFFFsEEEF£4
F3 A9 Aot F8 eig> A9 ABE EESFEDEB 26 £ 58 § 2F A FEFE E63RD
117 BYT "Alphabetic, Vowels, Numeric, and",CR
118 BYT "Non-numeric characters fomnd on an®™,CR
119 BYT "input line.”,CR
120 BYT CR
121 BYT * To teminate the program press”

October 1983 €ider 39

jim
080C:D4 E8 E9 F3 A0 F0 F2 EF E7 F2 E1 ED A0 E3 EF F5 EE F4 F3 A0 F4 E8 E5 A0 EE F5 ED E2 E5 F2 A0 EF E6 8D

jim

jim
080C:D4 E8 E9 F3 A0 F0 F2 EF E7 F2 E1 ED A0 E3 EF F5 EE F4 F3 A0 F4 E8 E5 A0 EE F5 ED E2 E5 F2 A0 EF E6 8D

The Assembly Advantage

LDX #0
TXA
STA
INX
LDA

SETLOOP
ARRAY X

#0 ;Set H.O. byte
sto zero

STA ARRAY X
INX '
CPX #200 ;100*2 elements
; in the array

BLT SETLOOP

If incrementing the index twice for
each element isn’t practical, multi-
plying the array index by two to ob-
tain the byte offset is your only re-
course. You should not, however, use
the SPEED/ASM MUL routine. It is
much too slow to use in this fashion.
Luckily, there’s a litte trick you can
pull to quickly and easily multiply a

- number by two—shift it to the left
one location. You can do this with the
6502 accumulator by using the ASL
(arithmetic shift left) instruction.

Consider the following loop:

JSR FORO
ADR 1,1,100

IDA 1

ASL

TAX

LDA 1

STA ARRAYX
LDA I+1

STA ARRAY+1.X

JSR NEXT

This loop performs the same fune-
tion as the previous code. It loads the
low order byte of I into the accumu-
lator (the high order byte is always
zero) and multiplies it by two by
shifting it to the left. This data is
transferred to the X register with the
TAX instruction, and then the array
elements are loaded from variable 1
(low order byte first, high order byte
second).

The next program demonstrates
one of SPEED/ASM’s shortcom-
ings—it has no ability to manipulate
integer array elements directly. You
must load an array element into an
integer variable, manipulate that
variable, and then store the integer
variable back into the array element.
For example, to multiply each ele-
ment of the above array by 235 you
should use the code:

JSR LOAD
ADR 235 MULVAL

JST
ADR

FORO
1,1,100

LDA 1
ASL

TAX

LDA ARRAY,X
STA J

LDA ARRAY+1X
STA J+1

40 Eider October 1983

The Assembly Advantage

08r9

BEEEEGEERER
BER ORBBRIBRBB

BOBEBEEIIBIRBIR

(=4
SEREIEIBHEBIBER

&8

BAgE

PERBEBES

b=¢
SESBIEBBBEGR

588

E2228

ggagA

Bys
23822HRABIBR

08EF

122

123

H

BYT “space as the first character on",(R

BYT "the line.",CR,CR

BYT 0

}
READLOOP JSR PRINT

BYT CR,"Enter a line of text: *,0

JSR READIN
JSR RDSTR
ADR INFUTSTR

H
t See if the first character is a space

’

4

1D INFUTSTR+1
[il
BNE NOEXIT
JMP EXTT

1
3 Now coumt. the vowels, alphabetics
+ numerics, and other chars,

}
NOEXET

JSR LOAD
ADR 0 ,VOWEL

JER LOAD
ADR 0 ,ALFHAS

0907 20 2D 78
090A 00 00 1F
090D 0A

0S0E 20 2D 78
0911 00 00 21
0914 oA

0815

0915 A2 00
0917 HD 24 OA
091A DO 7F
091C
091C
091C
091C
091C
091C
091F
0922
0925
0928
0928
092E
0931
0934

3

o
b
~3
¥ ENERIXREIES
N
5833IBEBRASI

BBRBARRAR

-~
o

T
by

EB832BERIBE

28 EBR3BERAS SHBRAEERIBS

o

R

-3
8333R3E8Y
EBEBERAS
EZBRERBRS

148
149

150
151

152
153
154
155
156
157
158
159
160
161
162

168
169
170
m
172

~ v e e e

JSR LOAD
ADR 0,NUMERICS
JSR LOAD

* ADR 0,CHARS

mx #0
IDA INPUTSTR+1 X
BNE TSTALFHA

1Get. char .

If at the end of the line, print
the data out. .

JSR PRINT
BYT CR,CR, "Nunber of vowels: *,0

JSR PRTINT
ADR VOWEL

JSR PRINT
BYT CR,"™Number of alphabetics: ",0

JSR PRTINT
ADR ALPHAS

JSR PRINT
BYT (R,"Number of mumerics: ",0

Listing continued.

The Assembly Advantage

Listing continued.

0973 20 3C 78
0976 1F OA

0998 4C CC 08
0998

0998

0998

0998

099B (9 C1
099D 90 1D
099F C9 DB
09A1 90 08
09A3 C9 E1
09A5 90 15
0927 C9 FB
0949 B0 11
092B

09AB 18

09AC A9 01
Q92E 6D 1D CA
09El 8D ID OA
09B4 A9 00
0986 6D 1E OA
0989 8D 1E 0A
098C

09BC

09BC

09BC

09BC BD 24 0A
Q9EBF A} OD
09C1 D9 OD OA
09C4 FO 05
09C6 88

09C7 10 F8
09C9 30 11
03CB

09CB 18

173
174
175
176
177

ISALPHA

JSR PRTINT
ADR NUMERICS

JSR PRINT

BYT CR,"Mumber of characters: ",0

JSR PRTINT
ADR CHARS
JMP READLOCP

STA ALPHAS
1DA /1

ADC ALPHAS+1
STA ALPHAS+1

Now count the vowels

First, count the alphabetic chars

NOTALFHA LDA INPUTSTR+1,X

WILLMP

i
ISAWL

IDY #13

03CC A9 01
09CE 6D 1B 0A
09D1 8D 1B 0A
09D4 A9 00
.09D6 6D 1C 0A
09D9 8D 1C 0A

- 09nC

09pC

09DC

09DC

09pC

09DC

09DC BD 24 0A
09DF C9 BO
09E1 90 15
09E3 C9 BA
09ES 20 11
09E7

09E7 18

09ES AD 1F OA
09EB 69 01
09ED 8D 1F 0A
“09F0 2D 20 0A
09F3 69 00
09F5 8D 20 OA
09F8

09F8

09F8

09F8

09F8

09F8 18

09F9 2D 21 OA
09FC 69 01
OSFE 8D 21 0A
CAQL AD 22 0A
0A04 69 00
0A06 8D 22 OA
009

0A09

0A09

0AD9 E8

OADA 4C 17 09
0AOD

~. e v we v we

oA 41
ADC VOWEL
STA VOWEL
DA /1
ADC VOWEL+1
STA VOWELA+L

If numeric, increment that counter.

NOTAWL LDA INPUTSTR+1, X

e v e e we

P $70"
BLT NOTANUM
P #"9"+1
BGE NOTANUM

ac -

IDA NUMERICS
ADC #

STA NUMERICS
LDA NUMERICS+1
ADC /1

STA NUMERICS+1

Increment the character count

g

Move on to next character and repeat

INX
JMP CNTLOCP

BYT "AEIOUYWaeiouyw"

Listing continued.

The Assembly Advantage-

Listing continued.

OAl6 F9 EF F5

OAl9 FS F7

0AlB 261

0A1B 262 ;

] 0A1B 00 00 263 VOWEL ADR O

OAID 00 00 264 ALPHAS ADR 0 .

OALF 00 00 265 NUMERICS ADR 0 ;

0A21 00 00 266 CHARS ADR 0 JSR MUL

0n23 %7 ;

0n23 %8 ADR MULVAL,L]J

0A23 80 00 269 INPUTSTR ADR 128 ;
0225 270 DFS 128 LDA]
0RRS M

OARS 272 D STA ARRAYX

*k¥%% END OF ASSEMBLY LDA J+1

tbrun sort
BRUN SORT STA ARRAY+1X

SYMBQL, 'TABLE SORTED ALPHABETICALLY ;

ABS 7854 ALPHAS OAID BEGIN 0800 CHARS 0A2]1 CNTLOOP 0917]SR NEXT

CONGAT 786F R 008D DIV 765D EQ 00ED EXIT FF69

FALSE 0000 FOR 7815 FORD 7818 GE EDBE GEIC 7803

T 00BE HOME 780C IFI 780E IFI0 781 IFS 7804 . .

IS0 7E7 DDEX 7869 INT TE2 DNUISR 0023 ISALEA 09A3 This month’s demonstration pro-
ISAWL 09CB IDSTR 7833 LE BDBC LENGTH 766C LOAD D . e :
LT 00BC MOD 7850 MOVE 782A MOVS 7€30 ML 765 gram (iee the listing) shtzlwshvanous
NE 00A3 NEG 7657 NEXT 761B MNORXIT 08F9 NOTALPHA 09BC o i ¥
NOTANUM O09F8 NOTAWWL 09DC NUMERICS OALF PRINT 7836 PRTINT 783C ways Q using integer and characte

789 T 7E0 ROINT 7842 RSIR 78 READN T0F arrays in SPEED/ASM.

READLOOP 08CC RND 7663 SAGL 7806 SAPC 7809 SUBSTR 7 . .

TRUE 0001 TSTALPHA 0998 VOWEL OALB VOWELS O0AOD WWLOMP 09Cl The indexed addressing mod&s on
SYMBCL, TABLE SORTED BY ADDRESS the 6502 suffer from one major disad-
FALSE 0000 TRUE 0001 CR 008D NE 00A3 LT 00BC

0 00ED GT O0BE BEGIN 0800 READLOOP 08CC NOEXIT O8F9 vantage—.they only allow a0Cess to
CNTIOOP 0917 TSTALPHA 0998 ISALPHA O9AB NOTALPHA 09BC WLOMP 09C1 956 contiguous memory locations.
ISAWIL 09CB NOTAWL O09DC MNOTANUM O9F8 WVOWELS OAOD VOWEL OAIB iy the 6502’s i
ALPHAS OAID NUMERICS OAIF CHARS OA21 INPUTSTR OA23 FUIC 7800 Next month I'll discuss the s in-
GEIC 7803 SAGL 7806 SAPC 7809 HOME 780C READIN 780F . . .

INIT 7812 FOR 7815 FORD 7818 NEXT 781B IFT 761E direct indexed addressing qu&s,
IFI0 781 IFS 7624 IFSC 7827 MVE TSRA LGAD 78D which make broader access possible.
MOVS 7830 IDSTR 7833 PRINT 7836 PRISTR 7839 PRTINT 78&C h des allevi th 5
ROSIR 7&8F RDINT 7842 ABS 7854 NEG 7857 ML 7esa These modes eviate the major
DIV 765D MOD 7860 RND 7863 SUBSTR 7866 INDEX . :
LENGIH 786C CONCAT 786F LE BDBC GE BDBE EXIT FF69 pr.oblem encountered when dealing

with arrays on the 6502. 1

44 éider October 1983

The Assembly Advantage

by Randy Hyde

6502 Indirect Addressing Modes

I he 6502 indexed addressing

modes, discussed in last
month’s column, are useful for im-
plementing small arrays and for ac-
cessing elements of strings in known
locations. For large arrays, and for
arrays and strings whose address is
not known at assembly time, the
6502 indirect indexed addressing
modes are required.

So far you've met three basic types
of addressing modes on the 6502 mi-
croprocessor: the immediate, the ab-
solute, and the indexed. (For our
purposes, the relative addressing

mode, used by the branches, is iden-
tical to the absolute mode.) An ad-
dressing mode specifies where in
memory data to be accessed is lo-
cated. For example, the immediate
mode tells the 6502 that the data is to
be found immediately after the in-
struction’s opcode byte. The absolute
mode, rather than providing the data
itself, follows the instruction opcode
with the address of the data in
memory.

The 6502 indirect addressing mode
is a logical extension of this sequence.
Rather than following the instruction

opcode with the data to be accessed
or the address of the data, it is fol-
lowed with the address of the address
of the data. Figure 1 pictures how the

- various addressing modes function;

Figure 2 is a closer view of the in-
direct mode.

The indexed addressing modes on
the 6502 add the contents of the X or
Y register to the absolute address that

Randy Hyde is the proprietor of Lazerware,
creators of SPEED/ASM and the LISA assem-
bler. You can write to him at 925 Lorna St.,
Corona, CA 91720.

Immediate Addressing Mode:

First byte Second Byte

|OPCODE| DATA |

Absolute Addressing Mode:

First byte Second Byte Thirg Byte
lOPCODE| Address
' L DATA
Indexed Addressing Mode: Index Reg
First byte Second Byte Third Byte
lOPCODE| Address | ¢
' ' > +—> DATA
Indirect Addressing Hode
First byte Second Byte Third Byte
[OPCODE| Address |
First byte Second Byte
| Address ——| DATA

Figure 1. Operation of 6502 addressing modes.

tocation:
n OPCODE
e Address

n+2

NN

r
/
" Address

mel

1

DATA

Figure 2. The indirect addressing mode.

November 1983 €ider 195

OPCODE

Address

Y-Index Register

Address

e 4

Figure 3. The (IND),Y addressing mode.

l

DATA

[oPCODE|Address|

X-Index Register

>+

Figure 4. The (IND,X) addressing mode.

»[Addross

follows the instruction opcode to ob-
tain the effective address. By apply-
ing this same technique to the in-
direct addressing modes you come up
with the indirect, indexed mode.
When using this mode, the value in
the Y register is added to the value
pointed at by the byte following the
instruction opcode. This sum pro-
vides the true effective address for the
instruction. See Figure 3.

A second form of indirect ad-
dressing—indexed, indirect—is also
available. Here the contents of the X
index register are added to the
address immediately following the
instruction opcode to obtain the ad-
dress of the address of the data you're
interested in. The operation of the
indexed, indirect mode is shown in
Figure 4.

Nasty Reality #1:
The Indirect Jump Instruction

There’s only one problem with the
6502's indirect addressing modes:
They can only be used with the jMpP

instruction. You can’t load, add, sub-
tract, or do anything else with them
in their pure form.

The syntax for the indirect JMP in-
struction is:
JMP (ADRS)
where ADRS is the address of a two-
byte pointer containing the address
where you want to jump. ADRS must
point at the low-order byte of the
new address, and location ADRS+1
must contain the high-order byte.

There is a nasty little bug in the
6502 chip that can get you into a lot
of trouble if youre unaware. The
two-byte address pointed at by ADRS
must be totally contained within a
single page of memory. If ADRS holds
the value xxFF (where xx is any single-
byte value), then the 6502 fetches the
low-order byte from location xxFF
(as you'd expect) and the high-order
byte from location xx00. Note that
you really wanted the high-order
byte fetched from location yy0O0,
where yy =xx + 1.

Since the purpose of this month’s
column is to discuss implementing ar-
rays, 1 will leave the discussion of the
JMP indirect instruction for later.
Right now let'’s worry about imple-
menting large arrays with the in-
direct, indexed addressing modes.

Nasty Reality #2:
The Zero Page Addressing Mode

Unfortunately, I must introduce
yet another 6502 addressing mode
before continuing the discussion of
the indirect mode. In reality, the in-
direct mode isn’t just a combination
of two modes (indirect and indexed),
but rather three modes: indirect, in-
dexed, and zero page.

The 64K address space of the 6502
is divided into 256 groups of 256 bytes
each. Each block of 256 bytes is called
a page, and the pages are numbered
sequentially. Page zero is the first
page of memory (addresses $0000-
$00FF), page one is the second page
(addresses $0100-$01FF), etc. The
zero page addressing mode gets its
name from the fact that it only allows
you to access the first 256 bytes in the
64K address range, i.e., page zero.

There are two advantages to the
zero page mode (compared to the ab-
solute mode): An instruction using
the zero page mode is one byte
shorter and one microsecond faster
than the equivalent instruction using
the absolute mode. There are also
two big disadvantages: You can only
access the first 256 bytes of memory
in the 6502’s address space, and page
zero is prime real estate—everyone
else wants to use it too. In particular,
DOS, ANIX, Basic, the Apple moni-
tor, Pascal, CP/M (actually the BIOS
drivers), SPEED/ASM, and many
other programs that your SPEED/
ASM program must co-exist with, all
use some zero page memory. If you
use the same location as SPEED/ASM
or DOS, you can make the system
crash. So use page zero only when
you have to, and make sure you're
not using any zero page locations oc-
cupied by a coresident system. Typi-
cally locations $50-$6F are available
when operating SPEED/ASM under
Apple DOS.

Declaring a zero page variable is

196 eider November 1983

The Assembly Advantage

Jump ingirect instruction
T
I $6C ‘Two—bytelaudress

All (ZPG,X) Instructions

1 One-Byte
oce

All (ZPG),Y Instructions
One-Byte

Figure 5. Indirect instruction formats.

done quite a bit differently than
declaring normal SPEED/ASM vari-
ables. Rather than using the DFS or
ADR pseudo-opcode to reserve space
for the zero page variable, you must
use the EPZ, “equate to page zero,”
pseudo-upcode. The syntax for EPZ is:

<varname> EPZ <address>

To explain, <address> is the actual
address in memory where the vari-
able is to be stored. Since this is a zero
page variable, you must make sure
that <address> is in the range
$00-$FF, or LISA will signal an error
when you attempt to assemble the
program. Since SPEED/ASM vari-
ables (and 6502 pointers for that mat-
ter) require two bytes, make sure that
both locations <address> and <ad-
dress> + 1 in page zero are open, be-
cause both will be used by the SPEED/
ASM routines and the indirect ad-
dressing modes. :

Once you've “equated” a symbol to
a zero page address using the EPZ
pseudo-opcode, you can treat that
label exactly like any other SPEED/
ASM integer variable. To initialize
a variable declared in page zero, you
could use the LOAD or MOVE SPEED/
ASM routine. To access it you could
use any valid 6502 instruction (that
works with the absolute addressing
mode), or any of the SPEED/ASM in-
teger functions like MUL, DIV,
PRTINT, etc. When using a pure 6502
instruction, you will usually notice

STRPTR EPZ $50
JSR LOAD ;Copy address of STRING
ADR STRING,STRPTR ; into STRPTR
LDY 40
PRTLOOP LDA (STRPTR),Y
BEQ PRTDONE
JSR PUTC
INY
JMP PRTLOOP
PRTDONE:
Listing la.
that only two bytes of object code (in-
LDY #0 stead of the normal three) are emit-
PRTLOOP LDA STRINGY ted. This is because the high-order
BEQ PRTDONE byte of zero is implied by the use of
{IS\II; PUTC the zero page addressing mode.
JMP PRTLOOP Back to the Indirect
i) RTDONE Addressing Modes
’ Before I digressed to a discussion of
Listing 1b. the zero page addressing mode, 1
mentioned that the indirect, indexed,
and the indexed, indirect modes are
actually combinations of three
JSR LOAD modes: indirect, indexed and zero
ADR STRING1,STRPTR page. All indirect instructions (except
JMP PRTIT jump indirect) are two bytes long.
. . The first byte is the 6502 opcode and
the second byte is the zero page ad-
- . dress of the pointer to the memory
JSR LOAD location you're interested in. See
ADR STRINGZ2,STRPTR .
JMP PRTIT Figure 5.
Note that the program sequences
) ’ in Listings 1a and 1b perform equiva-
)) lent functions. Also note that in the
JSR LOAD case of the indirect, indexed-by-Y
ADR STRING3,STRPTR mode you are still limited to 256 bytes
JMP PRTIT due to the Y index register’s 8-bit lim-
. itation. So why use the indirect ad-
dressing mode? It doesn’t appear to
: y provide any additional features; in
PRTIT LDY #0 :
PRTLOOP LDA (STRPTR),Y far‘;té&g “(’liléfxé so;f’ﬁ;’;;; c)omf‘)}ex
BEQ PRTDONE p g even
JSR PUTC more complex.. '
INY Its beauty lies in the fact that the
JMP PRTLOOP pointer can be changed under pro-
: gram conirol. For example, the
PRTDONE: Listing la program segment (using
the indexed mode) is forever limited
Listing 2. to printing the string STRING. Listing

1b can be changed to print any string

November 1983 Cider 197

Assume SPEED/ASM variable “I” contains the
;. index into the byte array “B”.
CLC
LDA 1
ADC 4B
STA ARRAYPTR
LDA I+1
ADC /B
STA ARRAYPTR+1
LDY #0
LDA (ARRAYPTR),Y ;Loads B[I] into accumulator.
Listing 3.

The Assembly Advantage —

by simply changing the LOAD instruc-
tion before the print loop. For exam-

ple, consider the code in Listing 2.

One of three different strings will be
printed, depending upon the value
loaded into STRPTR.

While this example certainly justi-
fies the existence of the indirect, in-
dexed-by-Y mode, it stll doesnt
show how to access more than 256
bytes using the indirect mode. And
that's the whole purpose of this
‘month’s column—to describe how to

access elements of an array con-
taining more than 256 bytes.

The secret to accessing large blocks
of data using the indirect addressing
mode is to modify the two-byte
pointer instead of the Y register. By
setting the Y register to zero (which
makes the indirect, indexed-by-Y
mode behave exacily like a true in-
direct addressing mode) and then in-
crementing the two-byte zero page
pointer, you can access up to 64K of
data (the amount of memory accessi-

198 éider November 1983

ble with a two-byte pointer). If that’s
not enough memory, you're using the
wrong microprocessor!

To access an element of a byte ar-
ray that contains more that 256
elements, the address of the desired
element can be computed by the
formula:

<adrs> = <base address> + <index>

where <base address> is the address
of element zero of the array and
<index> is the number of the desired
array element. This calculation can
be performed using the 6502 code in
Listing 3.

When accessing elements of an in-
teger array, don’t forget that each
element requires two bytes, so the in-
dex value must be multiplied by two
before adding it to the base address.
The quickest way to double the index
is to shift it one position to the left.
This is accomplished with the code in
Listing 4.

The ASL instruction shifts the data
in memory location I to the left one
position. A zero is shifted into the
low-order bit position, and the data
in bit number seven is shifted into the

. carry flag. The ROL (rotate left) in-
struction shifts the high-order byte of
1. The difference between the two in-
structions is that the contents of the
carry flag (i.e., the bit shifted out of
bit seven of the low-order byte) is
shifted into the low-order bit of loca-
tionI+1.

In many cases it won't matter if
you double the value of I. Sometimes
you will reload it anyway. But in
some instances, particularly if I is the
index variable of a FOR loop or some
other control variable, you cant
leave the value doubled. To undou-
ble a value (divide it by two) the LSR
(logical shift right) and ROR (rotate
right) instructions are used after the
calculation to restore the value of I.
Note that the high-order byte of I is
shifted to the right before the low-
order byte. This is exactly opposite to
when the shift left function is used to
double the value. I'll talk more about
the shift instructions in a future col-
umn; for now, just duplicate these in-
structions verbatim.

Multi-Dimensional Arrays

Handling one-dimensional arrays
is easy. The formula:

<adrs> = <base address> + (<index>
+<Lelement size>)

(where <element size> is the number
of bytes required by each array ele-
ment) is completely adequate. Multi-
ple-dimension arrays are a little
more difficult and a lot more time
consuming,.

For a two-dimensional array, the
formula becomes:

<adrs> = BA + (NDX1 +
NDX2+SIZE1)*WS

where BA is the base address of the
array dimensioned as ARRAY[SIZEl,
s1ze2] and accessed as ARRAY[NDXI,
NDX2), and each element occupies
WS bytes. The multiplication by WS
is easy, assuming a character or in-
teger array. Shift to the left if integer,
and ignore the multiplication by WS
if character. The other multiplica-
tion (NDX2+SIZEl), however, cannot
be handled with a simple shift in
most cases. This one requires a real
multiply, and multiplies are very
slow.

Three-dimensional arrays are even
worse—two multiplies are required.
The formula for calculating the ad-
dress of an element of a three-dimen-
sional array is:

<adrs> = BA + (NDX1 + (NDX2
+ (NDX3*SIZE2))*SIZE1)*WS

If you need to use higher-dimen-
sioned arrays, consider using a high
level language capable of supporting
your data structure needs.

Speeding Things Up

Normally when you access array
elements you go for adjacent ele-
ments rather than random locations
within the array. Once you've calcu-
lated the address of an element,
obtaining the addresses of adjacent
elements is easy. If you want to access
the next location, simply add WS to
the current address. If you want to
access the previous location, subtract
WS from the current address.

When dealing with byte (charac-

ASL 1

ROL 1I+1

CLC

LDA 1

ADC BASE

STA ARRAYPTR
LDA I+1

ADC BASE+1

STA ARRAYPTR +1
LDY 40

LDA (ARRAYPTR),Y
STA |

INY

LDA (ARRAYPTR),Y
STA J+1

LSR I+1

ROR I

Listing 4.

;Multiply the index by two
; before adding it to the base address.

;Get L.O. byte of array element.
;Save L.O. byte.

;Get H.O. byte of array element.
;Save H.O. byte.

;Divide the index by two to
;set it to its original value.

ter) arrays, all you need do is incre-
ment or decrement the address by
one. While you could use the ADC in-
struction sequence to add one to the
pointer, there is a tricky way to add
one quickly to a two-byte integer
value. The code to accomplish this is:

INC VAR
BNE >0
INC VAR +1

*0:
where VAR is the name of the pointer

{or any SPEED/ASM or two-byte in-
teger value) you wish to increment.

November 1983 eider 199

The Assembly Advantage

How does it work? Well, the first
increment instruction adds one to the
low-order byte of the variable, Now,
the only time overflow occurs when
incrementing by one is with the value
$FF because then you wind up with
$00. This is the only time you wind
up with zero, and likewise it’s the
only time the 6502 zero flag is set
after the increment. Whenever over-
flow occurs, you must add one to the
high-order byte of the variable, so the
BNE instruction skips the INC VAR +1
instruction. If the Z flag is set, then
the 6502 drops through and incre-
ments the high-order byte.

The sequence above only works for
character or single-byte arrays. When
dealing with an integer array you

need the code:

CLC
LDA VAR
ADC #2

STA VAR
BCC >0

INC VAR+1
AQ;

I could have incremented VAR
twice, but this code is faster and
shorter. Incidentally, the trick here is
to recognize that only the carry gets
added to VAR+1, so rather than
perform the explicit addition, I only
incremented VAR+1 whenever
there was a carry out of the low-order
byte. This trick can be used when
adding any 8-bit value to a 16-bit in-
teger variable.

The Indexed-by-X,
Indirect Addressing Mode

The indexed-by-X, indirect ad-
dressing mode on the 6502 is severely
handicapped by the requirement of
zero page. The way this mode works
is, the X register is added to the zero

page address that follows the instruc-
tion opcode. Then this sum points at
the low-order byte of a pointer that
points to the data to be accessed. This
addressing mode lets you set up a
table (or array, if you will) of point-
ers, and index into this array of point-
ers to find the data. Unfortunately,
this mode presupposes lots of zero
page at your disposal. Since this is
probably not the case, the indexed-
by-X, indirect addressing mode isn’t
very useful. ’

There is one exception, however.
If you load the X register with zero,
then” the indexed-by-X, indirect
mode degenerates to a pure indirect
addressing mode. Since this is usually
what youre interested in when
accessing an element of a multi-di-
mensional array, the indexed-by-X,
indirect addressing mode may prove
useful on occasion. W

200 éider November 1983

The Assembly Advantage

by Randy Hyde

Control Structures: Review and New

o far I’'ve discussed five control

structures in SPEED/ASM: the
JMP instruction (unconditional goto),
the JSR instruction (jump to subrou-
tine), the SPEED/ASM 1Fx and IFx0
routines, the FOR/FOR0 loop and the
6502 branch instructions. SPEED/
ASM supports several additional con-
trol structures, many of them ex-

tremely powerful and easy to use. In-
cluded in this set of routines are ONX-

GOTO, CASE, CASElI, INSET, and
NOTINSET.

A Quick Review of

SPEED/ASM Control Structures

Before describing the new control
structures, a quick review of the con-

Listing. Demonstration SPEED/ASM program using routines ONXGOTO, CASE,
CASEL, INSET and NOTINSET. These control structures will construct flexible menu
programs.

0800 1 ttl "Speed/asm Sample pgm #8"

0800 2 ;

0800 3 ;

0800 L

0800 5 kkkkkkkhkkhkkktkkkhhkdhkkhkbhkhdhhhhhkhs

0800 6 *

gggo 7 * Speed/asm sample program #8 *

0 g * *
0800 9 * Written by Randall Hyde *
0800 10 * Written on LISA v2.6 *
0800 11 * 1/22/83 *
0800 12 * *
0800 13 hhRRAREIRRkAAARARAR AR R ARk R T Ak hhhk
0800 14
0800 15 :

0800 16 ;
0800 17 ;
owo 18 EkkhdkhRARAEARARRAA R AL TR A AR AR AL
0800 19 * *
0800 20 * SPEED/ASM Equates *
0800 21 * *
0800 22 KERKKRARKER AR RAARA AR A I IR kEAhhhkhhhkk
0800 23 ;
0800 24 ;
0800 25 ;
0800 26 ;
0800 27 ;
0800 28 ;
0800 29 ;
0800 30 ;
g%g 31 ; GENERAL PURFOSE HEQUATES
32 ;
0800 33 ; The following variables are used
0800 34 ; by the SPEED/ASM package and
0800 35 ; shouldn't be used by the SPEED/ASM
0800 3 | prosramer
i
0800 38 ;
0800 39 ;
0800 40 ;
- 0000 41 FORASAV epz O
0001 42 FORXSAV epz FORASAV+L
0002 43 FORYSAV epz FORXSAV+1
0003 44 FORZFG epz FORYSAV+L
Listing continued.

trol routines I've presented thus far
may help tie up any loose ends.

® The JMP instruction is actually a
6502 instruction. It is almost iden-
tical to the GOTO statement in
Basic—it transfers control to a new
statement which doesn’t necessarily
follow the JMP. The syntax for the J]MP
instruction is:

IMP <label>

where <label> is a valid statement
label in your SPEED/ASM program.
® The JSR instruction is used to call a
6502 or SPEED/ASM subroutine.
The RTS instruction is used to return

~ from a user subroutine. The JSR/RTS

combination is used identically to the
GOSUB/RETURN statements in Basic
(except, of course, you specify a state-
ment label instead of a line number).
The syntax for the JSR statement is:

JSR <label>

where <label> is the name of the user
subroutine you wish to call. All user
subroutines should be terminated
with the RTS instruction. The RTS in-
struction does not allow any oper-
ands; its syntax is:

RTS

The JSR instruction also is used to call
routines in the SPEED/ASM pack-
age, since all SPEED/ASM routines
are nothing more than 6502 sub-
routines.

® The SPEED/ASM IFx/IFx0 rou-
tines come in two flavors (actually
three, but I've only discussed two
versions so far): the IFUIFI0 routines
and the IFS/IFS0 routines. The IFIIFI0
routines are used to compare two in-
teger values. IFI compares two in-

Randy Hyde is proprietor of Lazerware, creat-
ors of SPEED/ASM and LISA. Address corre-
spondence to him at 925 Lorna St., Corona,
CA 91720.

22 eider December 1983

The Assembly Advantage

Listing continued.

0005
0007
0009
000A
000C
000D
000F
0010
0011
0013
0014
0015
0016
0017
0018
0019
001A
001B
001C
0800
0033
004E
004F
0100
0200
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0000
0001
008D
0087
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0CBD
00A3
00BE
00BC
BDBE
BDBC

118
119
120

DESTADR epz FORZEG+2
PTRADR epz DESTADR+2
ISIMED epz PTRADR+2

oP epz ISIMMED+1
MAXLEN epz OP+2
VALUE epz MAXLEN+1
DIGIT epz VALUE+2

LEADO epz DIGIT+l
JMPADR epz LEADO+1
COUNT epz JMPADR+2

LINEINDX epz GOTLN+1

SIGN epz LINEINDX+1
AL epz SIGN+1
ACH epz ACL+1

XTNDL epz ACH+1

XTNDH epz XTNDL+1
AUXL epz XTNDH+1
AUXH epz AUXIA+l

PROMPT epz $33
RNDL epz $4E
RNDH epz $4F
STACK equ $100
INPUT equ $200

.
i
.
i
.
i
.
H
.
i
i

ddkkdekkkkkkirh

* CONSTANTS *
RERARERIREKRR

Nh NE Ne Ne e %a e ne we we e we wa we wa

The following symbols are constants
for the values "FALSE", ™RUE", and
Carriage Return (respectively).

These symbols should only appear
ag immediate operands to a 6502
instruction or in the operand field
of a pseudo~opcode like BYT.

FALSE equ 0
TRUE equ 1
CR equ $8D
BELL equ $87

'

Ne e Ne Ne e WE we e e N Se S S e

EBRAEB

"IF" STATEMENT EQUATES

The following symbols should only
be used in the ADR pseudo—opcode
following a call to the SPEED/ASM
IFx routines.

a}u ll=ll
equ "#"
equ ">"
equ LP&
e;u Il>lll"=7l*256
equ "<"|"="*%256

teger variables and IFI0 compares an
integer variable to an integer con-
stant. The IFS/IFS0 routines compare
two SPEED/ASM strings. IFS com-
pares two string variables and IFSO
compares a string variable to a string
constant. The syntax for the IFx rou-
tines is:

JSR IF1

ADR <lIvarl>,<op>,<lvar2>
and

JSR IFS

ADR <Svarl><op>,<Svar2>

where <Ivarl> and <Ivar2> are the
names of properly defined SPEED/
ASM integer variables and <Svarl>
and <Svarz> are the names of
SPEED/ASM string variables. <op> is

"IFS compares two string
variables and IFSO
compares a string variable
to a string constant.”

Listing continued,

any of the SPEED/ASM logical

operators:

EQ

NE

LE

GE

LT

GT

as defined

equates file,
The 1Fx0 routines compare a vari-

able to a constant; the syntax for

these two instructions is:

in the SPEED/ASM

JSR IFI0

ADR <lIvar>,<op>,<Iconst>
and

JSR 1FSO

ADR <Svar><op>

BYT “string constant”,0

where <Iconst> is an integer constant
and “string constant” is a zero termi-
nated character string.

Immediately after the call to one of

- the 1FWIFx0 routines you should use

the 6502/LISA BTR (branch if true) or
BFL (branch if false) instruction to
test the comparison for true or false.

24 €ider December 1983

The Assembly Advantage —

Listing continued.
0800 121 ;
0800 122 ;
0800 123 ;
I
; .
0800 126 ; The SPEED/ASM FOR/FOR0 in-
0800 127 ; . .
ﬂmo 128 ERARAEAEARAARI A AREAARAR AR A RL mcuor‘s emUIate ﬂ]e Bas"c loom Of
0800 129 * SPEED/ASM ENTRY POINTS * the same name. The syntax for the
owo 130 REEAKEKERIERNAIAAENARERRAAARR Zese
0890 3 FORO loop is:
0800 132 ;
0800 134 ; ADR <Ivar>,<start>,<end>
0800 135 ; NOTE: THE FQUATE OF PUTC MUST
0800 136 ; BE CHANGED IF YOU RELOCATE
0800 137 ; SPEED/ASM TO SOME LOCATION
0800 138 ; OTHER THAN $7800 .
0800 139 ; JSR NEXT
0800 140 ;
0800 141 ; where <Ivar> is the name of a
T2 = e o hiderl SPEED/ASM integer variable and
7806 144 SAGL equ GETC43 ;FOR USE BY S/A (NLY- SEE DOC. <start> and <end> are integer con-
;gg ﬁg SARC equ SPGH; p o onmon o stants. This emulates Basic state-
HOME equ SAPCH ;HOME AND CLEAR .

780F 147 READIN equ HOMEH3 ments of the form:
7812 148 INIT equ READLN+3 _
;gﬁ igg ggo equ INIT;3 FORI=1TO 10

equ FOR#: _
7818 151 NEXT equ FOROS3 The SPEED/ASM. FOR loop.han
781E 152 IFI equ NEXT+3 dles the case where integer variables
;g}i igi ﬁ:" equ {?i& are required for the starting, ending
7807 155 IFSO g IFS43 or stepsize variables. The syntax for
7824 156 MOVE equ IFS043 the FOR loop is:
782D 157 LOAD equ MOVE+3 s .

Listing continued. | yop poR

ADR <lIvar>,<vstrt>,<vend>,<vstep>

JSR NEXT

where <lIvar>, <vstrt>, <vend>, and
<vstep> all are SPEED/ASM integer
variable names.

To compare two single byte values
pure 6502 code is used. The 6502 cMp
instruction, along with the various
branch instructions, lets you compare
a value in memory to the value in
the accumulator. After the instruc-
tion CMP<operand> where <operand> is
any of:
<Ivar>
#<lIvar>
<Ivar>
<Ivar>X
<lIvar>,Y
(ZPG.X)

(ZPG),Y
the 6502 branch instructions can be

Lt imacd

7830
7833
7836
7839
78C
78F
7842
7845
7848
784B
784E
7851
7854
7857
785A
785D
7860
7863
7866
7869
786C
786F
7872
7875
7878
787B
787E
7881
7884
7887
788a
788D
7890
7893
789
7899
789C

158
159
160
161

MOVS equ LOADA3
LDSTR equ MOVS+3
PRINT equ LDSTR+3
PRISTR equ PRINT43
PRTINT equ PRISTR+3
RDSTR equ PRTINT43
FOINT equ RDSTR43
NXGOTC equ RDINT43
CASE equ ONXGOTO+3
CASEI equ CASE+3
INSET equ CASEI+3
NOTINSET equ INSET43
ABS equ NOTINSET+3
NBG equ ABS+3
MUL equ NBGH3
DIV equ MILA3
Mo equ DIV+3
RND equ MOD+3
SQUBSIR equ RND+3
INDEX equ SUBSTR+3
LENGTH equ INDEX+3
QONCAT equ LENGTH+3
GEIWZPG equ OONCAT43
ROFP equ GEIWZIG+3
PRTE equ RDFP+3
PRTF equ PRTE+3
FADD equ PRTF+3
FSUB equ FADD+3
FMUL equ FSUB+3
FDIV equ PMULA43
FLT equ FDIV43
FIX equ FLT43
FNEG equ FIX+3
FADDIN equ FNEGH3
FSUBTN equ FADDIN43
FTIMES equ FSUBTN+3
FINIO equ FTIMES+3

;USED BY SPEED/ASM

Lists sinued.
789F 195
7882 196
0800 197
0800 198
0800 199
0800 200

0800 201 ;
0800 202 FEEREERRRKEAARRRARARERAACRR RSN R AR

omo 203 RERERRARKRERRREAARRRREARRERAAARRR RS
0800 204
0800 205
0800 206
0800 207
0800 20 12 78 208
0803 209 ;

0803 20 0C 78 210 MENULOOP jsr HOME

0806 20 36 78 211 jsr PRINT

83(9: D3 FO B 212 byt "Speed/asm Sample Program #8",CR
080F
0812
0815
0818
081B
081E
0821
0824
0825
0828
082B
082E
0831
0834
0837
0839
083C
083F

K
22
e

o N e N W

Sample program #8 begins here.

e N we wn

:

jsr INIT iAlways do first

Bo3EEBEEA

213 byt CR,"Examples of various"

214 byt " menu programming”,CR

A0 ED E5EE F5 A@ FO F2 EF E7 F2 E1 ED ED E9 EE E7 8D

0848:EE E7 8D

215 byt "styles.",CR

33 BEHEER HRR333

Qo000 o
ERRRR
mmowvN

0851
0853
0854
0857
085A

0860
0861

216 byt CR
217 byt "Select one:",(R,CR

o
R
g

218 byt " A) Straight menu selection®,(R

55358848
BOBIBE B RO BE 3B BB Bl AR RIB IR BB R B RN OO S3RBOIBERAEEBISHBBER

BE BIEBEGHEIBENEE GEBREIEBESBOIREY3EE ERBR 8RR ENIGEBIBIRRER BBEE3BAE

087C
087E
0881

219 byt " B) Select values in a set",CR

2BEUNBREC HBRIEBBEC ZEIR

220 byt * C) Checking for values"

geagEEEses

T

1=

221 byt * not in a set",CR

FEBHIRBRABAA

222 byt R
25 byt “Choice? :",0

gREEEE

:
i

98 €ider December 1983

jim
A0 ED E5EE F5 A0 F0 F2 EF E7 F2 E1 ED ED E9 EE E7 8D

jim
0848:EE E7 8D

-The Assembly Advantage-

used to determine how the variables
compare. The applicable instructions
are:

®BEQ—Branch if the accumulator
equals the operand of CMP.

® BNE—Branch if the acc does not
equal the operand of CMP.

® BL.T—Branch if the acc is less than
the operand of CMP.

® BGE—DBranch if the acc is greater
than or equal to the operand of the
CMP instruction.

The CSP Instruction

The CSP instruction (Call SPEED/
ASM Procedure) is a new pseudo-
opeode/6502 instruction added to
LISA’s repertoire specifically for use
by SPEED/ASM programmers. CSP
combines LISA’s JSR and .DA state-
ments. This instrucion may help
make writing SPEED/ASM pro-
grams much easier.

The syntax for the CSP instruc-
tion is:

CSP <adrs> {<.da expressions>}
which is identical to the statements:

JRS <adrs>

.DA <.da expressions>

There are four different types of <.da
expressions>: a full address, a string ex-
pression, a high order byte value, and
a low order byte value.

Any time an address expression ap-
pears in the operand field of a .DA
statement (or in the <.da expression>
portion of the CSP statement) two
bytes of object code are generated. If
a string appears in the operand field
of a .DA or CSP instruction, then a
single byte of object code is emitted
for each character in the string. For
our purposes you should enclose the
string with quotation marks. If an
address expression is immediately
preceded by a pound sign (#), then
only one byte of object code is output;
its value will be the low order byte of
the specified address expression. If an
address expression is prefaced with a
slash (/), then the high order byte
of the address expressions value is
output,

With the CSP instruction you can
type many SPEED/ASM statements
on a single line. Some examples of the
CSP statement in operation include:

December 1983 €ider 29

30 eider December 1983

Listing continued.
08C7 BF A0 BA
08CA 00
08CB
08CB

08CB 20 03 78
08CE C9 K1
08D0 90 02
08D2 29 DF
08D4

08D4 20 48 78
0807 03

0808 C1 0B 09
08DB C2 54 0A
O8DE C3 SE OB
08E1
0009
08E1l
08E1
08EL
08E1
08E1
08El
08EL
08E4
08E7
0BE8
08EB
O8EE
08F1
08F4
08F7
08FA
08FD
0900
0903
0905
0905
0908 4C G 08
090B
0908
090B
090B
090B
090B
090B
0908
090B
090B
090B
090B 2
090E 2
0911
0913
0916
0919
091C
092C
092F
0932
0935

@~
~l o™

BORA3ZRNBEYES
SRR3IRIBBE 8&&
B2BBBEIRBA

B
(=] (=
o
5]
~
(=]

~ -3
o

(el =]
83
0 o

EBOBRINERBINEREEI3EEBAIEEEIHES

093C
093F
0942
0945
0946
0949
094C
094F

COOO0OO0
BERBRR
HMOOWNMLON

0962
0965

BEEEBEEE 2BBE BEBE BEEE REIBRS

ERHBRE3R BEH3R EE3E BR3B BHAR

o0
R
w
(=]
o

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

091C

268

269

270

271

272

273

Read a character, if it is lower
case convert it to upper case,
then jump to the appropriate routine.

No e we we ws we

jsr GETC

cmp #"a" ;See if lower case
blt >0

and #$DF ;Converts it to upper

e

g 2
g

csp CASE, #NUMCAS0/3

.da "A",STDMENU
.da "B",SETSEICT
.da "C",NOTSTEXP

:

= *-CASESO

invalid value was entered at
is point,

gz

~e e we we na we E"

csp PRINT
byt CR,CR,BELL,BELL

byt "Invalid entry, press return",CR,0

~

jsr READIN
jmp MENULOOP

AAkRAKAARERRRAATARRERA AR I AR AL RAR

A standard menu selection is
demonstrated here, Actually,
the main menu is identical to
this type of code.

o ne e ne we w wv hwa we e

28
R

8

L

byt "Standard Menu Selection",CR,CR
E1 EE E4 E1 F2 E4 AO CD E5 EE F5 A® D3 E5 EC E5 E3 F4 E9 EF EE 8D 8D

CD E5 EE F5 A@ D3 E5 EC E5 E3 F4 E9 EF EE 8D 8D

byt ™ O: print 0",(R

byt " 1: print 1°,CR

byt * 2: print 2",(R

byt " 55: print 55",CR,CR

byt "Choice? :",0

~

Listing continued.

jim
D3 F4 E1 EE E4 E1 F2 E4 A0 CD E5 EE F5 A0 D3 E5 EC E5 E3 F4 E9 EF EE 8D 8D

jim

jim
091C:CD E5 EE F5 A0 D3 E5 EC E5 E3 F4 E9 EF EE 8D 8D

-The Assembly Advantage-

CSP PRINT, “Printing strings with CSP”,#0
CSPIFLLLE,]
CSP IFS0,STRNG,EQ,“STRING COM-
PARE” 40

CSP FORO,1,1,100
CSP FOR,I,STRT,END,STEP
CSP PRTINT,I

Due to its convenience I will use
CSP in many of the examples that
follow.

The ONXGOTO Subroutine

The first new SPEED/ASM control
routine I will discuss is the ONXGOTO
routine. The ONXGOTO routine trans-
fers control to a new statement de-
pending upon the value in the X reg-
isters. The syntax for the ONXGOTO
instruction is:

JSR ONXGOTO
ADR <numentries>
ADR <label0>,<labell>,...,<labeln>

where <numentries> is the number of
labels that follow the <numentries>
value and <labell>. <labeln> are labels
within your SPEED/ASM program.
If the X register contains zero, con-
trol is transferred to <labelo>. If the
X register contains one, ONXGOTO
will jump to location <labeli>, etc. If
the X register contains a value great-
er than <numentries>, then program ex-
ecution continues with the 6502
statement immediately following the
<labeln> entry. Warning! It is critical
that the <numentrie> value exactly
represents the number of addresses
that follow. If <numentries> is too small
and the ONXGOTO routine falls
through, the 6502 will attempt to ex-
ecute one of the trailing addresses as
valid 6502 code. This usually will
cause the program to bomb. One
way to guarantee that the <numentries>
value is always correct is to use a call
to ONXGOTO of the form:
JSR ONXGOTO
ADR ENTRY0/2
TABLE0 ADR ADRS],ADRS?,...,ADRSn

ENTRY0 EQU «-TABLE(O

The “»” operator in the operand field
says “give me the current program
address.” By subtracting the address
of the jump table’s first entry from
the address of the first byte after the
address table, this equate calculates
the number of bytes in the table.

December 1983 &ider 31

32 €ider December 1983

Listing continued.
096C 20 42
096F DC 0B
0971
0971 20 4B
0974 04 00
0977 0B
0978 00 00
097B 09
097C 01 00
097F 08
0980 02 00
0983 09
0984 37 00
0987 09
0988
0010
0988
0988
0988
0988

0988

0988

0988 20 36
0988 87 87
098E C9 EE
0991 E1 EC
0994 E4 A0
0997 EE F4
099A F9 AC
099D FO F2
09A0 F3 F3
09A3 F2 ES
0926 F5 F2
0929 8D 00
09AB 4C 0B
09AE

09AE

09AE

09AE

092E

09AE

09AE 20 36
0SBl 8D D9
0984 F5 A
0987 F2 E5
09BA F3 ES
09ED A0 FA
09C0 F2 EF
09C3 00
09C4 4C OF
09C7

09Cy

09C7

09C7

09C7

09C7

09C7

09C7 20 36
09CA 8D D9
09CD F5 A0
09D0 EE F4
09D3 F2 ES
09D6 AD Bl
09D9 00
09DA 4C OF
090D

090D

090D

090D

090D

09DD

090D

09DD 20 36
0980 8D D9
09E3 8D
09F0 4C OF
09F3

09F3

09F3

09F3

09F3

09F3

09F3

09F3 20 36
09F6 8D

78
78
c
AE
Cc7
DD

F3

78
8D
Fé
F2

ES
21}

EE
09

BERRRES

0

>

78

0A

78

274

275
276

277
278
279
280

281
282
283
284

286

287
288
289
290
291

292
294
295
296
297
298
299
300

301
302
303
304
305
306
307
308
309

310
31
312
313
314
315
316
317
318

09E3:F

319
320
321
322
323
324
325
326
327

csp RDINT,SELCTVAR

~

csp CASET,NUMCS1/4,SELCTVAR

CASES1 adr 0,ZERO
adr 1,(NE
adr 2,TWO

adr 55,FIFTYFIV

= *-CASES]

If the program gets to this point
then they've entered an invalid
value,

we W8 WS wa Ws wme Es-
=

csp PRINT
byt BELL,BELL,CR
byt "Invalid entry, press return",CR,0

Jmp STOMENU

I
hkkkkkdkk

Control is transferred here if
the user pressed 0.

N ERED

8

csp PRINT, #CR, "You pressed zero",#CR, #0

jmp QUITSTD
hkkhkhkkd

Control is transferred here if
the user pressed 1,

~ e e % Hne e

2
5]

csp PRINT, #CR, "You entered 1",#CR, #0

mp QUITSTD
kkkkkkdk

Control is transferred here if
the user pressed 2,

A L)

g

csp PRINT, #CR, "You entered 2",#CR, #0

8D D9 EF F5 A@ E5 EE F4 E5 F
5 A® E5 EE F4 E5 F2 E5 E4

5 A0 E5 AO B

E4 AO B2 8D 00

jmp QUITSTD
Kkkkkkk

Control is transferred here if
the user pressed 55.

FT e we ne e e e

IFTYFIV csp PRINT, #CR
Listing continued.

jim

jim

jim
8D D9 EF F5 A0 E5 EE F4 E5 F2 E5 E4 A0 B2 8D 00

jim
09E3:F5 A0 E5 EE F4 E5 F2 E5 E4 A0 B2 8D 00

-The Assembly Advantage-

Since we're interested in the number
of entries, not the number of bytes in
the table, you must divide the ENTRY0
label by two (since there are two
bytes per table entry) to compute the
proper value.

Using this method for specifying
the number of entries in the ONX-
GOTO routine lets you modify the
number of entries in the address ta-
ble and automatically update the
<numentries> value. If you don’t use
this method, adding or deleting an
entry from the address table forces
you to increment or decrement the
<numentries> to make up for the
change. If you dont, disaster may
strike the next time you run the pro-
gram. Since it is so easy to forget to
update the <numentries> value when
modifying the address table, using
the equate to automatically calculate
the number of entries in the table is a
smart thing to do.

The CASE Statement

SPEED/ASM supports a control
structure very similar to the CASE
statement found in high level lan-
guages like Pascal and “C”. Two ver-
sions of the SPEED/ASM CASE state-
ment are provided: CASE and CASEI.
CASE is a single byte CASE statement;
it compares the value in the 6502 ac-
cumulator against several values and
branches if the accumulator equals
one of those values. CASEI compares
the contents of a SPEED/ASM inte-
ger variable to one of several integer
values and branches if a match is
made.

The format for the CASE state-
ment is:

CSP CASE, #<numentries>
DA f<valuel> <adrsl>
DA Kvalue2> <adrs2>
DA f<value3>,<adrs3>

.DA #<valuen>,<a.drsn>

where <numentries> is the number of
cases present, <value> (i=0..n) are
the single byte values you want to
compare the 6502 accumulator
against, and <adrsi> (i=0..n) are la-
bels where SPEED/ASM will jump to

December 1983 €ider 33

Listing continued.

g
g

09FA

CoOOOD

EE5E3

RIBBIE
BBIBREHA
SRERBEIET

g
B

OAOF

OO0 OO0
FEEEEEs
288
&

BEBBERIA

OAlF
0A22

g8
W
RTBRIARIR
BBYREIEG

g &
o
88

0A2D 20 OF 78

[]
B8
WO
&
2
8

0A33
O0A33
0A33
0A33
0A33
0A33
0A33
0A33
0A33
0A33
0A33 20 36 78
0OA36 8D DO F2

328

329
331
332

333
334
335
336
337
338
339
340
341
342
38
344
345
346
347
348

byt "You entered fifty-five",CR,0

8““
;

csp PRINT, #CR

byt "Press return to continue:”

byt 0
jSr READIN

AARARARREARRRAKARARAAAA AR TR AL AAL

Demonstrate set selection with
the INSET routine.

R

SETIOOP jsr PRINT
byt (R,"Press return to continue:",0
Listing continued.

The Assembly Advantage-

if a match is found.

During execution the CASE state-
ment compares the value in the 6502
accumulator to <value0>. If the ac-
cumulator is equal to <valuel>, con-
trol is transferred to location <adrs>.
If the accumulator does not equal
<value0>, the accumulator is com-
pared against <valuel> and control is
transferred to location <adssi> if a
match is made. If the accumulator
doesn’t equal <valuel> it’s compared to
<value2>, ete. If the accumulator isn't
equal to any of the values present in
the CASE statement, control is re-
sumed at the first statement after the
<valuer> entry.

SPEED/ASM will bomb horribly if
<numentries> doesn’t properly reflect
the number of cases in the CASE state-
ment. The safest way to specify this
value is to have LISA v2.6 calculate it
for you. This can be accomplished
using code of the form:

34 Cider December 1983

:
i

-
BEANY
s BI3ga

g
3
%

(-~ [—~] [-X-~]
EEEEEEE238%8
SEEAIAIEE BRARBR3BBRZRY

8888 BICHIZUNE UUBBRBREIPLK
®

(=4
>
~
£8038 PIBNRBIRBEIAIBABRALG

gEEEE3E8

354

355

357
358
359
360
361
362

8D DO F2 ES

F3

F4 EF AO E3

F3 A F2 E5 F4 F5 F2 EE A0
EF EE F4 E9 EE F5 E5 BA 00

F4 ES EE F5 E5 BA 00

jsr READIN

!
SETSELCT jsr HOME

-~ e w

jer PRINT
byt "Enter an alphabetic or mmeric",CR

byt "character (return guits):",0

jsr GETC
cnp #CR
bne >1
Jmp MENULOOP

Convert lower case to upper case
Listing continued.

CSP CASE,§NUMCASES/3

CASETBL .DA <valuel>,<adrs0>
DA <valuel><adrsl>

.D.A <vah.1en>,<anirsn>

NUMCASES = + — CASETBL

This code automatically computes
the number of cases present in the
case list. Furthermore, you dont
have to change anything if you add or
delete cases later on.

The CASEI statement is similar to
the CASE statement; the only dif-
ference is the CASEI routine lets you
compare a SPEED/ASM integer vari-
able to a series of integer values (CASE
only performs byte comparisons).
The syntax for the CASEI statement is:
CSP CASE,<numentries>,<SAvariable>

ADR <value0>,<adrs0>
ADR <valuel><adrsl>

36 €ider December 1983

jim
8D D0 F2 E5 F3 F3 A0 F2 E5 F4 F5 F2 EE A0 F4 EF A0 E3 EF EE F4 E9 EE F5 E5 BA 00

jim
0A48:EF EE F4 E9 EE F5 E5 BA 00

The Assembly Advantage

ADR <valueZ>,<adrs2>

ADR <valuen>,<adrsn>

The variable <numentries> is the
number of cases (a two-byte value
for CASEI and a single byte value
for CASE); <SAvariable> is the name
of a SPEED/ASM integer variable;
<value> (i=0..n) are 16-bit integer
values, and <adrsi> (i=0..n) are the
names of statement labels in your
SPEED/ASM program where a
branch will be made to if <SAvariable>
equals <valuei>.

Like the CASE and ONXGOTO state-
ments, <numentries> must accurately
describe the number of entries in the
case table or SPEED/ASM may hang.
To make sure you enter the proper
value you should let LISA v2.6 com-
pute the number of entries for you
using code of the form:

Csp
CASES ADR

ADR

ADR

CASEI,NUMCASES/4,VAR
<value0>,<adrs0>
<valuel>,<adrs1>
<value2>,<adrs2>

ADR <valuen>,<adrsn>
i‘IUMCASES = «—-CASES

NUMCASES must be divided by four,
since there are four bytes in each case

entry.

The INSET and NOTINSET Routines

The INSET and NOTINSET routines
compare the accumulator against a set
of values and branch to a single loca-
tion if the accumulator is in the speci-
fied set (INSET), or is not in the speci-
fied set (NOTINSET). The syntax for

these two routines is identical:

CSP INSET,<numentries>

BYT <valued>,<valuel>,...,<valuen>
ADR <adrs>

or

CSpP NOTINSET,<numentries>

BYT <value0>,<valuel>,...,<valuen>
ADR <adrs>

&
RRKOEY
$ 3288

8603

[~ 3=k =]

RAE
EBRSY
SERBES
LPER

f=%=] o
RE3338
BEE3GSARAGE
ZIBEERREERDS
£ GEEBBEIZHBAR

OOOO0O

gREEY
883
8

~
(-]

0B06 20

g
8

OVOOOOCoOCOe
REBECAZEEE
ABDEEBGEERBIES

& UBIBBEIBRENAEHESS
23BBR3BBIRS

0B29
oRC

0E31
0B34
0E34 2

(=]
R
m
o
> 58

@

[~ X-X-E-X~-)
£8888
BEERE
B G5
B3N

363 71 cnp #"a”

- 364 bit >0
365 and #5DF
366 ;
367 “0:
368 ;
369 ;
370 ;
371 ;
372 ; Note the sneaky way of specifying
373 ; the number of elements in the sets,
374 ; LISA's SIR pseudo~opcode emits the
375 ; length of the string that follows,
376 ; This just happens to be the number
377 ; of characters in the set. This only
378 ; works if the set consists entirely
379 ; of printable characters.
380 ;
381 jsr INSET
382 " str "ABCDEFGHLIKLMNOPQRSTUWKXYZ"

387
388
389

391
392

393

394

395
39
397
398

- e ws

~ ~e

C9 D5 CA CB CC CD D4 CF DO D1 D2

1A C1 C2 C7 C4 C5 C6 C7 C8 C9 D5 CA CB CC
CD D4 CF DO D1 D2 D3 D4 D5 D7 D8 D9 DA
D3 D4 D5 D7 D8 D9 DA

adr ISALPHA

jsr INSET
str "0123456789"

adr ISNUMRIC

Nan—alphamumeric character at this point.
csp PRINT, #BELL, #CR
byt "You pressed a non-alphanumeric®

byt * character"

byt CR,CR,0
mp SETLOOP

399 ISALPHA csp PRINT, &R, KR

400

401
402
403

»
f

byt *You entered an alphabetic character"

byt CR,CR,0
$mp SETLOCOP

404 ISNOMRIC csp PRINT,#CR,#CR

0B37am@iy 8D

405

8L

)

byt "You entered a numeric character®

Listi tinued.

December 1983 €ider 37

jim

jim

jim
1A C1 C2 C7 C4 C5 C6 C7 C8 C9 D5 CA CB CC CD D4 CF D0 D1 D2 D3 D4 D5 D7 D8 D9 DA

jim
0B37:8D 8D

jim
0AAF:C9 D5 CA CB CC CD D4 CF D0 D1 D2 D3 D4 D5 D7 D8 D9 DA

jim
0B37:8D 8D

The Assembly Advantage

oo
1)
3 b

88

CO0O0O0O00O0O0LOOODDODO0DO
BEERRERIZJIIIZLIRE

g
SEIREQGEIARBEABIY BSGNBRGBRIREIBIILBHEIZHEBIR

28 SBRREAKGRANCEREEYZ HIHSSHIZEBIHBIHPESIGBERAEIINS
BR3IBEBAIBE BEBRREBY38I

~
[

BEEREEEARZEE
BREE888Q2A%ERT

CEEEE

LEEEEEEEL
8 &

424

Mo Mp we WE WE e Ve e W NE N N

8*

~ e e e

byt CR,Q‘,U
Jmp SETLOOP

Rk hkkkhhhhkhidhhdhhihihhdiihdhin

Demonstrate the NOTINSET routine

byt "By typing a non-alphanumeric®,CR

byt "character you can exit this routine®

byt R,0
jsr GEIC
cup #"a*
bit >0

and #$DF

csp NOTINSET
str "0123456789ABCDEFGHIIKLMNOPQRSTUWXY Z"

adr MENULOOR
jmp NOTSTLP

Rk dkdkdhdk kA d kA drh ki thhhhhkiir

3 Variable declaration

i
SELCTVAR adr 0

*++k+ END OF ASSEMBLY

end

In the case of INSET the 6502 ac-
cumulator is compared to the values
<valueD>..<valuen>. If the accumulator
is equal to any value in this list, con-
trol is transferred to location <adrs>.
If the accumulator doesn’t equal any
of the values in the set, program exe-
cution continues with the first state-
ment after the INSET statement.

The NOTINSET routine is used to
ensure that the accurnulator doesn’t
contain a value in a given set. Con-
trol is transferred to the branch ad-
dress if and only if the value in the ac-
cumulator does not match any of the
values in the set. If the accumnulator
matches one of the values in the set
that follows the call to NOTINSET,
control is transferred to the first state-
ment after the NOTINSET jump ad-
dress.

Conclusions
The program control transfer rou-
tines provided in the SPEED/ASM

package are very powerful. This
month’s demonstration program

""The program control
transfer routines provided in
the SPEED/ASM package are

very powerful. Along with
the power, however, comes
responsibility.”

shows how these control structures
can be used to set up some very flexi-
ble menu programs.

Along with the power, however,
comes responsibility. It is very impor-
tant that you make sure all <numen-
trie> values properly reflect the num-
ber of entries in the table following
the SPEED/ASM routine call.
SPEED/ASM uses this information to
determine how many cases to check,
where the first instruction following
the case table can be found, etc. Fail-
ure to provide proper data in this pa-
rameter slot probably will cause your
program to hang.ll

38 Cider December 1983

