GraFORTH

Anir;watién Guidel

Overview and Turtlegraphics

Overview and Turtlegraphics

If you, like many of us, purchased your Apple to do graphics, you
were undoubtedly pleased with its many graphics modes, color
capability and documentation that begged you to lay down your
money and carry it home. Your new Apple even came with a fairly
powerful BASIC with commands that let you define your own shapes
and draw them anywhere on the screen. Hi-Res graphics, you
thought, here I come!

But after the first week or so with shape tables, you wanted
more. How could you generate the types of graphics you saw in
the arcades? So after another trip to your local computer store,
you came home armed with a Hi-Res character generator that Jet
you redefine the Apple's character set. Later, maybe you
purchased a 3-D graphics utility and now, now you were finally on
your way.

After several hours of trying to write your own game, you
probably came to the painful conclusion that you just couldn't
make those dwarves, orcs and elves scamper around the screen like
you knew they should. BASIC, it seemed, just wasn't fast enough
for really smooth animation graphics. You may have wandered back
into the computer store and noticed that all the fast-action
games were written in assembly language. Unless you were
completely fearless, you probably walked back home thinking
you'll just have to wait until somebody makes animation graphics
easy and fast enough for the non-machine language programmer.

Enter GraFORTH. The purpose of this new language is to provide a
fast, structured programming language and all the graphics tools
needed to produce real-time animation in both two and three
dimensions - as one complete package. GraFORTH contains all the
favorite graphics tools: line, plot and fill commands; character
graphics; turtlegraphics; 3-D graphics; and even a music
synthesizer for producing notes in several voices, and sound
effects. The language of GraFORTH is similar to FORTH, which is
known for its speed and flexibility and for its somewhat novel
approach to programming, But in many ways, GraFORTH is different
as it is a language created specifically for graphics on the
Apple. You won't have to start over; many commands are taken
from Applesoft to make GraFORTH easy to learn. HOME still clears
the screen, HTAB and VTAB still position the cursor, and PLOT and
LINE are used in the elementary graphics modes. GraFORTH
operates under DOS 3.3 and your completed programs are compiled

OVERVIEW AND TURTLEGRAPHICS 11 -2

to machine language and stored as standard binary files. It is
faster than Integer BASIC, Applesoft (even compiled), and Pascal.
For comparison, counting to 32,000 in Applesoft requires 35
seconds, Integer Basic takes an amazing 40 seconds, and Apple
Pascal requires 20 seconds. GraFORTH, however, takes only 3
seconds. The graphics are also easy to use. Character shapes
consisting of several redefined images may be drawn to the screen
with one command. Three dimensional graphics include color,
perspective and shapes of almost unlimited complexity. And
turtlegraphics works at speeds that allow its use in game
programming.

In this series, we'll explore graphics on the Apple with emphasis
on fast, smooth two and three dimensional color animation. We'll
leave you with examples, hints and create several sample programs
to allow you to effectively use GraFORTH and your Apple to create
impressive animations.

For background, the ability to program in some high level
language such as one of the Apple supplied BASICs (Integer or
Applesoft) is helpful. You should be comfortable with the
Apple Hi-Res screen and graphics in general. Of course any
knowledge of assembly language or a structured language such as
Pascal won't hurt, but won't be required. The only hardware
required is an Apple J[or][Plus with one disk drive (DOS 3.3)
and either 48 or 64K of Memory. A color monitor is also a plus,
as much of what we will be doing is in color. And, of course,
you will need GraFORTH.

As you have probably noticed, GraFORTH is quite different from
BASIC or PASCAL. Like PASCAL it is a structured language, and
also like PASCAL it is compiled, not to a pseudo 'P-code' but
directly to machine language. Like BASIC, GraFORTH is immediate
- there is no separate compiler or linker to be invoked, making
GraFORTH fast and easy to use.

Where GraFORTH is different from BASIC or PASCAL is in its use of
stacks. PASCAL and BASIC also use stacks internally, but they
hide them from the user. This is done so you can type something
like:

LETA=8B+¢C

The BASIC interpreter is smart enough to translate this line into
the proper sequence of machine language routines and calls to get
the job done. In the interest of making BASIC easy to learn,
this type of algebraic notation is used. The price you pay for
it is speed. Generally, the more work a compiler must do to

OVERVIEW AND TURTLEGRAPHICS 11 - 3

translate your program into the language of the machine, the more
it will depend upon very general purpose routines. These
routines are not particularly optimized for the task at hand,
therefore the program - your program - slows down. Of course,
very smart (and large) compilers can be written that do optimize
code, but they run slowly and take up far more memory than is
available on small computers such as the Apple][.

The trade-off, then, has been simple. Use machine language when
you want speed, and a high-level language when you want
understandable, easy-to-develop programs.

Is this the only alternative? Fortunately, it is not. A high
level language can be built that operates in much more harmony
with the machine for which it is generating instructions. This
is the idea behind GraFORTH and FORTH-1ike languages in general.
By learning to use something that computers can use efficiently
(a stack), you can keep all the features of high level languages
you like and still write programs that easily run 10 times faster
than they would written in BASIC.

Understanding stacks is not difficult. In fact, if you have
used an H.P., calculator, you already know what is called R.P.N.
(Reverse Polish Notation). This system is often used in
mathematics as it eliminates the need for parentheses. R.P.N. is
implemented using a stack in machines such as computers and
calculators. With this system, all operands precede their
associated operators. What this means is that if you want to add
the numbers 3 and 4 together, you would write this as 3 4 +
rather than 3 + 4. This is most easily demonstrated using
GraFORTH's turtlegraphics.

Turtlegraphics is a vector graphics system, similar in many ways
to Applesoft's shape tables. What we mean by vector graphics is
that the shape is drawn by a series of relative moves and draws.
This allows us to design an image and draw it at any position or
angle on the screen. Let's tie up some loose ends with examples
of both R.P.N. and turtlegraphics.

If you haven't done so already, boot your GraFORTH disk. When
you see the 'Demonstration (Y/N)}', type an 'N'. You now see
GraFORTH's Ready prompt. To get the turtlie commands from disk,

type:
READ " TURTLE "

Make sure to leave spaces on either side of the quotation marks.
The quote is a GraFORTH command that says "this is some literal

OVERVIEW AND TURTLEGRAPHICS 1 - 4

text". Commands in GraFORTH are always separated by spaces.
For this reason, they are often called 'words'. The text
"TURTLE" is the name of the disk file containing the
turtlegraphics words.

When the Ready prompt reappears, we're ready to start. Type:
TURTLE

Imagine that you now have a turtle with ink on its tail in the
center of your screen. "TURTLE" is a GraFORTH word that erases
the screen and sets a text window along the bottom four lines.
It also selects the color white and positions our imaginary
turtle in the center of the screen, facing the top. We can
tell it to TURN and MOVE (relative motion) or we can tell it to
TURNTO or MOVETO an absolute position. We can also tell it to
1ift its tail so that no line will be drawn (PENUP) or put it
down again (PENDOWN). Let's try this out. Type:

50 MOVE

Notice the distance {50) is specified before the command (MOVE).
Now let's command our turtle to turn to the right and walk
another 50 units.

90 TURN 50 MOVE

Multiple commands can be placed on one line, as GraFORTH uses
spaces to separate them. Let's complete a square with the
following:

90 TURN 50 MOVE
90 TURN 50 MOVE

You can see the advantage of turtlegraphics over standard Tine
drawing already. With standard line commands, we would have had
to calculate the actual X,Y coordinates of each corner of the
square. Using turtlegraphics, we only have to know how to make a
square to plot one.

In GraFORTH, every time you type a number, it is p]aced on the
‘data stack'. You can see this graphically by typing "“STACK"
from the Ready prompt. Now type the following:

456

Don't forget the spaces between each number. When you press
"RETURN", you will see a list of these numbers inside square

OVERVIEW AND TURTLEGRAPHICS 11 - 5

brackets. This is a picture of the data stack. The stack
display can be turned off again simply by typing "STACK". How do
GraFORTH words use the stack? When we typed the number "50", it
was placed on the data stack. The turtlegraphics word 'MOVE'
then removed this number and used it as a distance to move the
turtle. Most words in GraFORTH will either use the stack for
parameters, or affect the stack in some way.

No language would be complete without looping structures, and
GraFORTH has a large variety. One of the easiest and most useful
is the 'D0...LOOP' construct. Very similar to the Applesoft
FOR...NEXT loop, D0...LOOPs can be used to repeat a group of
words a pre-defined number of times. Here is a GraFORTH
program that will draw our square using a DO...LOOP.

TURTLE 4 0 DO 50 MOVE 90 TURN LOOP

Again, notice the 4 and O precede the DO. This loop will simply
count to 4, each time executing the body of the loop which draws
one side of the square. (Actually, it will count from 0 to 3 as
the loop limit is not included in the loop - a FORTH convention.)

If you typed the above line into your Apple][, you immediately
saw a square drawn on the screen. GraFORTH compiled and ran your
short program, and then promptly forgot all about it. Just as
you can type immediate commands in Applesoft by leaving the line
numbers off, GraFORTH has both an immediate and a deferred
execution mode.

In Applesoft, you write a program, and while it is necessary to
be within the language to run it, the language and your program
are entirely separate entities. GraFORTH is quite different in
this manner. The distinction between your program and the
language itself is much less clear. Your GraFORTH program
actually extends the language. In other words, what you write is
an addition to the language that specializes it for a given task.
That task could be a 3-D space simulation, a maze game or
anything else you might like to write.

GraFORTH comes complete with a long list of words. These are the
general purpose commands that are useful in nearly any program.
Some are also specific graphics commands for two and three
dimensional graphics, others for music and sound effects. You
can see this list at any time by typing "LIST". Pressing
ConTRoL-C will stop the list, any other key will continue. If
you have been staying with us so far, the list should look like
this:

OVERVIEW AND TURTLEGRAPHICS 1 - 6

Ready LIST

TURTLE
TURN
TURNTO
MOVE
MOVETO
PENDOWN
PENUP

These are the commands that you can use to write your programs.
Your programs actually extend this list, each word you create is
appended to the top. In fact, we have already extended it for
turtlegraphics when we typed:

READ " TURTLE "

The turtlegraphics commands were read from the disk file called
TURTLE and added to our list of commands. This list is often
called a 'DICTIONARY' or 'WORD LIBRARY' where each word performs
a certain task (like a subroutine in BASIC or PASCAL), and the
entire list is your program.

Armed with this knowledge, let's create our own word. Earlier,
we wrote a simple GraFORTH program to draw a square.
Unfortunately, it was immediately run and then forgotten. We can
create programs that are added to the word library by defining a
new word. Here is the new GraFORTH word 'SQUARE'.

: SQUARE
TURTLE
4 0 D0
50 MOVE
90 TURN
LOOP ;

Notice that except for the first and last lines, it is identical
to our earlier program. We indented this one for clarity since a
GraFORTH word definition may extend over several lines., The
first line is made up of two parts, a colon and the text
"SQUARE"., The colon is a GraFORTH word that means "define a new
word". The text "SQUARE" is the name of the new word being
defined, and is the name that will appear in the word libary.
Everything following the name “SQUARE" 1is the string of words
that define what the new word will do. Notice it simply uses
words that have already been defined to create the new word. The
semicolon (;) at the end says "end of definition". At this

OVERVIEW AND TURTLEGRAPHICS 11 -7

point, the commands are compiled and the new word is added to the
word library. We can see it now by typing "LIST":

Ready LIST

SQUARE
TURTLE
TURN

TURNTO

and we can run it by typing "RUN", which runs the top {last
defined) word in the word library, or by typing the name of the
word itself,

Ready RUN
Ready SQUARE

Both words cause our square word to be executed, and we are
returned to the "Ready" prompt.

We've covered quite a bit this month, Before we leave, here is a
new “TURTLE" file you can type into the GraFORTH editor and save
over the existing file (make sure you do this to a copy of your
GraFORTH disk, not the original!). With this version, animation
is much easier as you can use "PENUP" to move without drawing a
line, "PENDOWN" to draw, and "UNPEN" to remove an existing line.
This gives you the ability to erase entire shapes similar to the
“XDRAW" capability of Applesoft shape tables.

VARIABLE TURTLE.X
VARIABLE TURTLE.Y
VARIABLE TURTLE.ANG
VARIABLE TURTLE.PEN

¢ TURTLE.WALK
OVER OVER -> TURTLE.Y -> TURTLE.X
128 / SWAP 128 / SWAP
TURTLE.PEN DUP 1 =
IF DROP LINE
ELSE -1 =
IF UNLINE
ELSE POSN
THEN
THEN ;

: PENUP 0 -> TURTLE.PEN ;

OVERVIEW AND TURTLEGRAPHICS 1 -8

: PENDOWN 1 -> TURTLE.PEN ;

: UNPEN -1 -> TURTLE.PEN ;

: MOVETO

128 * 64 + SWAP
128 * 64 + SWAP
TURTLE.WALK ;

: MOVE
TURTLE.ANG 16 * 45 / PUSH

: TURNTO -> TURTLE.ANG ;

DUP I SIN * TURTLE.X + SWAP
I 32 + SIN * TURTLE.Y SWAP -

POP TURTLE.WALK ;

: TURN

TURTLE.ANG +

360 + 360 MOD TURNTO ;

¢ TURTLE

GR ERASE

0 40 20 24 WINDOW
3 COLOR PENUP

128 96 MOVETO

0 TURNTO

PENDOWN ;

L]

Here is a GraFORTH program to show off your new turtlegraphics
You can either type it in directly or use the GraFORTH

words.

editor to enter, edit, and save it as a disk file.
entered, just type "RUN" to watch the show.

¢ RESET

PENUP
128 96 MOVETO
0 TURNTQ ;

: SQUARE

4 0 DO
DUP MOVE
90 TURN
LOOP DROP ;

OVERVIEW AND TURTLEGRAPHICS

After it is

1 -9

: SQUARE.CIRCLE
36 1 D0
DUP SQUARE
10 TURN
LOOP DROP

: SQUARE.SPIRAL
65 1 DO
I SQUARE
10 TURN
LOOP ;

:COLORS 3,6 ,2,1,5, ;

: MANY.SPIRALS
5000
TURTLE
I ' COLORS + PEEK COLOR
SQUARE .SPIRAL
RESET UNPEN
SQUARE .SPIRAL
LOOP ;

: MANY.CIRCLES
5 0 D0
TURTLE
I ' COLORS + PEEK COLOR
12+ 10 *DUP
SQUARE.CIRCLE
RESET UNPEN
SQUARE.CIRCLE
LOOP;

: TURTLE.SHOW
MANY.SPIRALS
MANY.CIRCLES
ABORT ;

Next month, we'll talk some more about the language of GraFORTH
and discuss different types of loops (IF...ELSE,..THEN,
BEGIN...UNTIL, BEGIN...WHILE...REPEAT). For the main event,
we'll introduce animation with GraFORTH's character graphics and
also show you how to save your programs to disk. In future
columns, we'll expose the more advanced capabilities of GraFORTH.
A space shuttle simulation program will demonstrate the use of
three dimensional graphics and the music section will include a
Tibrary of general purpose sound effects. We'll also discuss

OVERVIEW AND TURTLEGRAPHICS 11 - 10

programming techniques for computer graphics and above all, leave
you with the knowledge you need to do it on your own.

See you next month!

Note: These are the sample programs used for the above timing
comparisons. This is not meant to be a complete benchmark for
the languages, as it only tests the simple FOR..NEXT (DO...LOOP)
construct.

Applesoft: FOR I = 1 TO 32000: NEXT
Integer: FOR I = 1 TO 32000: NEXT I
PASCAL: FOR I:= 1 TO 32000 DO;
GraFORTH: 32000 0 DO LOOP
OVERVIEW AND TURTLEGRAPHICS 1 - 11

Introduction to Character Graphics

Introduction to Character Graphics

Last month, we introduced GraFORTH and discussed a number of its
special language and graphics features. We also promised to show
how to create animations using character graphics. Before we
start, let's take a look at some of the more advanced conditional
and looping commands available in GraFORTH.

The branching and looping capabilities of GraFORTH are much more
varied than those of Basic. There is only one branching command
found in Basic that GraFORTH does not have a parallel to: GOTO.
However, GraFORTH has a number of constructs not found in Basic
that not only make the GOTO unnecessary, but increase a program's
readability as well.

The simplest is the IF - THEN construct, which is similar to
Basic's. In either language, a test is made, and if the test
evaluates as true, the code following the test is executed. The
format for GraFORTH's IF - THEN is somewhat different, though: A
test is done before the word IF, leaving a number on the stack.
If the number is nonzero (meaning "true"), the words between the
IF and THEN are executed. If the number is zero (“false"), then
the words are skipped and execution continues after the THEN.
Here is an example of IF - THEN, along with a similar statement
in Basic:

GraFORTH: X 5 = IF
L1+->L
THEN

Applesoft: 40 IF X=5 THEN L=L+1

The first extension to Basic-like capabilities comes with IF -
ELSE - THEN. This works Tike IF - THEN, except that if the test
is true, the words between the IF and ELSE are executed;
otherwise the words between ELSE and THEN are executed. This
allows for a simple choice between two options and clearly
defines the program statements for each.

INTRODUCTION TO CHARACTER GRAPHICS 11 - 12

GraFORTH: X 5 = IF
L1+ <>1L
ELSE
L1l1-->1L
THEN

Applesoft: 40 IF X=5 THEN L=L+1 : GOTO 60
50 L=L-1
60

Last month we discussed DO - LOOPs (similar to Basic's FOR - NEXT
loops) last month. GraFORTH provides two looping constructs to
simplify programming when the number of repetitions is not known
ahead of time. The first of these is BEGIN - UNTIL. In a
program, the words between the BEGIN and UNTIL are executed, then
UNTIL removes a value from the stack (placed there by the
previous words). If the number is zero ("false"), execution
loops back to the words following the BEGIN. This loop continues
until the top stack value when the UNTIL is executed is nonzero

("true").
GraFORTH: BEGIN
L1+->L
XL*->X
X 1000 >
UNTIL

Applesoft: 40 L=L+1
50 X=X*L
60 IF X<=1000 THEN 40

Another looping construct, BEGIN - WHILE - REPEAT, allows the
test to occur before a group of words are executed. Control is
first given to the words between BEGIN and WHILE. WHILE removes
a number from the stack. If the number is nonzero, the words
between the WHILE and REPEAT are executed, then the loop repeats
back to the BEGIN., If the number is zero, then the program hops
past the REPEAT and continues from there. (It's easiest to
remember that the second group of words are executed while the
test is true.)

INTRODUCTION TO CHARACTER GRAPHICS 11 - 13

GraFORTH: BEGIN

XL* DX

X 1000 <=
WHILE

L1+ ->L

ML+ ->M
REPEAT

Applesoft: 40 X=X*L
50 IF X>1000 THEN 90
60 L=L+1
70 M=M+L
80 GOTO 50
90

The last test construct, similar to Basic's ON GOSUB, is CASE: -
THEN. Here, a number of separate words appear between the CASE:
and THEN, The word CASE: removes a number from the stack to
select and execute one of the words. A O selects the first word,
a 1 selects the next, etc. The program continues following the
word THEN., Each word in the list can, of course, be a
complicated routine itself, calling many other words.

GraFORTH: CASE:
COLOR.IT
DRAW.IT
UNDRAW. IT
THEN

Applesoft: 40 ON X GOSUB 100, 150, 200

As we discuss various aspects of animation in future columns,
we'll be using these branching and looping words quite a bit. In
introducing character graphics animation, however, we're going to
rely on the good ol' DO - LOOP.

In the GraFORTH demonstration program ("Graphics of the Second
Kind"), you can see an animation of a small man walking across
the screen. The man (actually the collection of images making up
the man) is called “Maxwell" and originated from Apple Computer,
Inc., and is an example of character graphics. We'll discuss
the basics of animation with character graphics and present a
program showing Maxwell walk across the screen.

When GraFORTH first boots up, it loads its standard character
set, which is simply a table containing the shapes of all of the
printable characters. Whenever a character is to be printed on
the graphics screen, GraFORTH "looks up" the shape of the

INTRODUCTION TO CHARACTER GRAPHICS 11 - 14

character in the character set and "draws" the character at the
appropriate position on the screen. The GraFORTH disk contains a
number of character sets, with different shapes for each
character. These shapes can be either various lettering styles,
other symbols or images, or parts of larger images which are
printed as a rectangular block of characters.

Maxwell is an example of this last type of character shape. The
character set CHR.MAXWELL contains three separate pictures of
Maxwell, showing three phases of a single walking step. Each
picture, or block, is 2 characters wide by 3 tall, using 6
characters in the character set. Each individual character makes
up one sixth of the block.

The GraFORTH manual discusses how to create character shapes, and
plot individual character blocks on the screen. The plotting
process can be broken into a few simple steps: 1} Load and
select the desired character set, 2) set the size of the block to
be printed with BLKSIZE, 3) position the cursor with HTAB and
VTAB, and 4) print the desired block by calling PUTBLK.

Animation with character graphics, as in cartoons, is created
simply by rapidly displaying a number of still images one after
another, creating the illusion of smooth motion. This is
precisely what happens when Maxwell walks across the screen. The
three images are repeatedly displayed in order and moved to the
left across the screen.

Before we do any programming, let's have a look at what we're
about to animate. Start by loading the GraFORTH character editor
into memory:

READ " CHAREDITOR "

The disk will whir as the character editor is both read and
compiled into memory. Since the program does not automatically
clear the screen (a feature we'll find very useful in future
columns), do so now and run the character editor program:

HOME RUN

Get ("G") the character set named "CHR.MAXWELL" and type "D" for
Display. At the bottom of the screen (in inverse) you will see
many standard characters, and a number of different shapes that
are the images that make up our Maxwell character. The shapes
have been redefined to look like a walking man, rather than
alphanumeric characters.

INTRODUCTION TO CHARACTER GRAPHICS 11 - 15

Type "B" and select a Blocksize of 2 characters wide by 3 tall.
Now type R, then the number 64, to Read the 2 by 3 character
block that begins with character number 64. The first of the
three Maxwell images will appear in the upper left corner of the
screen.

Now read from character number 70, then from number 76. This
will display the other two positions of Maxwell. Note that each
of them shows him in different stages of walking, moving from
right to left within the character block. Read each of the three
images in turn back to the screen again, one right after another.
You have just performed a simple animation: Maxwell has taken a
step. (That's one small step for Maxwell, one giant leap....)

A GraFORTH program that shows Maxwell taking one step (not very
exciting yet), would simply display each of the three images in
turn,

The next step is to convince Maxwell to walk all the way across
the screen. That's not at all difficult, but it does require a
bit of planning. As Maxwell took his one step in the character
editor, note that his upper body moved smoothly from right to
left, nearly an entire character width. If we start the
three-part animation over again, one character position to the
left, his upper body will continue its smooth leftward motion as
his legs maintain their stride.

There is one more thing to consider: When we showed Maxwell
taking only one step in the character editor, each character
block was cleanly drawn over the top of the last one, completely
erasing it. But if we start shifting the blocks one position to
the left, then the right side of the previous two-character wide
block will still be visible after the new block is drawn. It's
up to us to erase it. Fortunately, GraFORTH has a command to do
that., It's called UNBLK.

Let's write an actual program to animate Maxwell. We'll build it
in four steps, using separate word definitions for each step.

You can type the entire program into the editor, compile it, and
watch it run; or you can enter each word definition one at a time
and see how each word builds on the last. If you choose the
latter, we do have one suggestion, which is best demonstrated:
Type "Q" to Quit the characters editor, then type:

2816 CHRADR
2816 is the default address used by the character editor, and

thus is the current address of the Maxwell character set, still
in memory. CHRADR selects this as the character set to use when

INTRODUCTION TO CHARACTER GRAPHICS 11 - 16

doing character graphics or displaying text. The "Ready" prompt
will appear as a combination of letters and pieces of Maxwell.
You can see that the Maxwell character set was never intended for
normal text display! You can recover by typing either "CHRSET
CHRADR" or “ABORT" (the cheaters can press RESET).

The moral of the story is this: After using character graphics,
remember to return to the system character set if you want to
make sense of things. The following short word definitions can
help: “IN" clears the screen, sets the character set (in this
case, the one at memory location 2816), and tabs to the top of
the screen. "OUT" puts us back into the system character set,
and tabs down so that the graphics won't be overwritten by text.
IN and OUT can be helpful when used before and after any
"immediate-mode" character graphics work.

IN ERASE 2816 CHRADR 0 VTAB ;
: QUT CHRSET CHRADR 15 VTAB ;

If you didn't follow us through the character editor example,
you'll need to load the character set into memory and select the
blocksize before continuing:

CR 132 PUTC PRINT " BLOAD CHR.MAXWELL,A2816 " CR
2 3 BLKSIZE

Now onto the example itself. GraFORTH is fast enough to draw
many large character blocks on the screen quickly, so with a
single small block like this, a delay loop is needed each time
the block is drawn. Without it, Maxwell would skitter across the
screen like a paper doll in a hurricane. The animation starts
with the following word definition:

: ONE.FRAME
PUTBLK
1000 0 DO LOOP ;

The word ONE.FRAME removes a number from the stack, which is used
by PUTBLK to select and draw the appropriate character block,
then it waits for a moment. (A loop to 1000 in GraFORTH takes

about a tenth of a second.) To see ONE.FRAME work by itself, you
can type:

IN 64 ONE.FRAME QUT

This selects our Maxwell character set and draws the first of the

INTRODUCTION TO CHARACTER GRAPHICS 11 - 17

Maxwell images. It then returns us to the normal set and stops.
ONE.FRAME can be called three times for each of the three blocks
that make up one walking step:

: STEP
64 ONE.FRAME
70 ONE.FRAME
76 ONE.FRAME ;

If you want to see this much in action, type:
IN STEP OUT

Here's another way to do STEP. This version simply uses a loop
to do the same sequence:

: STEP
77 64 DO
I ONE.FRAME
6 +LOOP ;

Last is the word definition that runs the show:

¢ WALK

-1 37 DO (Start a loop to move left across the screen)
2 3 BLKSIZE { Set the 2 by 3 block for Maxwell)
1 HTAB (Tab to the position set by the loop)
STEP (Have Maxwell take one step)
1 3 BLKSIZE (Set the blocksize to erase half of the block)
I 1+ HTAB (Tab to the right half of the block)
UNBLK (Erase it)

-1 +LOOP ; (Loop back and repeat)

The walking sequence is in a loop, counting backwards from 37 to
0. (Remember that GraFORTH DO-LOOPs stop one short of the final
value.) This loop provides the horizontal positioning as Maxwell
walks from right to left. Inside the loop, we first set the
blocksize. The loop value is recalled and used by HTAB to
position the block, then STEP is called and Maxwell takes one
step.

Now we have to erase the current block before the next block

appears one space to the left. Actually, the next block will
overwrite the left half of the current one, so we only need to

INTRODUCTION TO CHARACTER GRAPHICS 11 - 18

erase the right half of the block. That makes a block 1
character wide by 3 tall, and we set the blocksize accordingly
with BLKSIZE. We then position one more space over by HTABbing
to the loop value plus 1, and call UNBLK to erase it,

The loop repeats and Maxwell takes one step after another.
Animation! The sequence is started by typing:

IN WALK OUT

One last complication appears at the end of the walk: The last
image drawn is partially erased with the UNBLK at the end of the
loop, and half of a Maxwell remains on the left side of the
screen. In most animation applications, you will want to erase
this leftover image. Let's clean it up with one more UNBLK and
combine the entire animation in one word definition:

: MAX.WALK
IN
WALK
0 HTAB UNBLK
QuT

The animation shown here is fairly simple, but the same basic
concepts can be used for designing much more complicated
character graphics, with more movement and more shapes, Insoft
recently released two new Apple games, Spider Raid and Zargs.
Both of them are written in GraFORTH and use animated character
graphics extensively. Here is a quick overview for producing any
sort of animated character graphics:

Animation is simply a series of still pictures rapidly displayed
one after another. Each still picture, or block, should be
planned with regards to its relationship to previous or
subsequent pictures. Choose the blocksize(s), and design the
shapes with the character editor, storing them into one or more
character sets. To display the animation, simply draw each block
in turn, with a short delay created by either a time-wasting
loop, or graphics being drawn elsewhere on the screen. If the
picture doesn't move about on the screen, each block can simply
be drawn over the top of the previous one. If movement is
required, then all or part of the block will have to be erased
before moving. For maximum speed, erase only what will not be
drawn over.

INTRODUCTION TO CHARACTER GRAPHICS 11 - 19

Next month, we'll describe more advanced character graphics and
introduce the use of color and different character sizes. We'll
conclude with greater detail on how GraFORTH manipulates
characters on the screen, giving you the tools to create complex
animations with character graphics.

INTRODUCTION TO CHARACTER GRAPHICS 11 - 20

More Advanced Character Graphics

More Advanced Character Graphics

In last month's column, we discussed the concepts behind creating
character graphics animations with GraFORTH and included a sampie
program in which the Maxwell figure walked across the screen.
We'll expand on those concepts this month and look at some
additional graphics features to see how they can help us refine
the process. We'll discuss smoothness of animation and the use
of color.

The Maxwell animation shown last month can be broken down into a
few simple steps: Three separate images are displayed, each
followed by a short pause, showing Maxwell take one step. The
area which will not be overwritten by the next step is erased,
and the block is positioned one character space to the left.
This process is repeated and Maxwell takes one step after
another, moving to the left.

Two aspects of this animation are worth exploring: the length of
the pause, and the number of images displayed before repeating
the cycle. Both of these contribute to the overall smoothness of
the animation.

The question of how long to pause between images is of course
very subjective. In most cases, some kind of pause will be
needed to view the image being displayed before it is erased or
overwritten. A 'ghost' effect can be created by printing and
immediately erasing a character block. Too long a pause can also
cause problems. It allows people to notice the individual steps
in the animation, changing it from a movie-Tike motion to a rapid
slide show. The pause in the Maxwell animation is about a tenth
of a second. Depending on the application, a “good" pause
between images will usually range from a twenty-fifth to a
quarter of a second. The pause can be created by drawing other
graphics elsewhere on the screen, using a sound effect, or simply
wasting time with an empty loop.

The second, and more important, contributor to smooth animation
is how far to move the object before redisplaying it. (We'll
call this the 'step size'.) Obviously an image that moves a
third of the way across the screen with each frame will not be
very smooth. The most convenient step size to use is one
character width {assuming we're moving horizontally). Here the
process is simple: (1) Draw the block, (2) wait, (3) erase any
portions of the image that will not be replaced by the next

MORE ADVANCED CHARACTER GRAPHICS 11 - 21

block, (4) reposition one character space over, and (5) repeat.
Only one block image is needed, the program is short, and the
animation is reasonably smooth.

The quality of the animation can be improved by using a step size
smaller than one character width, however. Since character
blocks can only be printed on character boundaries, two or more
separate images are used, each subsequent image shifted a portion
of a character width.

This is what is done with the Maxwell demonstration. Three
separate blocks are displayed on each character position, and
each image shows Maxwell about a third of a character position
farther to the left. Therefore, the step size is a third of a
character width., You may want to have another look at the
Maxwell images from the character editor. Type:

READ " CHAREDITOR *
HOME RUN

Get the file CHR.MAXWELL, select a Blocksize of 2 by 3, then Read
character numbers 64, 70, and 76, one after another. You can see
that Maxwell moves to the left with each image while the block
itself is printed in the same place.

Since there are 7 pixels in the width of one character, the limit
to step size is seven images per character position. With this
step size, a new image could be drawn starting on every pixel.
(When using smaller step sizes, the wait pauses can usually be of
a shorter duration, since each image will not be very different
or far away from the previous one.)

Step sizes need to be considered before creating the character
sets, Suppose you want to create an image that fills a 3 by 2
character block and moves 3 steps per character width. Three
separate blocks are needed to show the image in each of the three
positions. If you draw your 3x2 image in the character editor
using a 3 by 2 block, there will be no room within the block to
shift the image from side to side. The solution is to define a
block that is 4 characters wide, rather than 3. The first image
will leave some free space on the left, the next will be
centered, and the last will leave space on the right.

If you wish to create duplicate images in the character set that
are offset by a few pixels, redrawing each image can be time
consuming., Fortunately, the combination of a new routine and a
feature built into the character editor can make the task much

MORE ADVANCED CHARACTER GRAPHICS 11 - 22

easier,

When an image created in the character editor is saved into a
character set, the editor reads the image directly off of the
high-resolution screen. This means that anything that can be
drawn in the upper left corner of the screen can be written into
a character set by the character editor. This is exactly why the
editor does not automatically erase the screen as it starts up.
It allows you to place an image on the screen, run the editor,
and save the image as a character block. The screen area used
starts at "1 VTAB 1 HTAB", which is the point (X=7,Y=8), and
extends to the right and downward according to the blocksize
selected in the editor.

If we had a way of plotting character blocks starting on any
pixel (instead of just on character boundaries), then we could
save the shifted image back into the character set. Below is a
routine to do just that. It reads a given character block from
memory and plots it point-by-point at any position on the screen.
Enter the GraFORTH text editor, type in the word definitions,
save them to disk, then compile them into the word library,
(Typing the comments is of course optional.)

Horizontal block size)

Vertical block size)

Horizontal pixel start for character)
Vertical pixel start for character)
Horizontal pixel start for block)
Vertical pixel start for block)
Character number)

Address of character set)

VARIABLE BX
VARIABLE BY
VARIABLE CPX
VARIABLE CPY
VARIABLE BPX
VARIABLE BPY
VARIABLE CN
VARIABLE ADR

P~ e e s

: PIXELCHAR
8 0 DO (8 lines / char)
DUP I + PEEK (Read char byte)
DUP 128 AND (Check &)
IF 7 ELSE 3 THEN COLOR { set color bit)
7 0 DO (7 pixels / line)
DUP 2 MOD IF (If bit is on, plot it)
CPX I + CPY J + PLOT
THEN
2/ { Next bit, please)
LOOP
DROP
Loop
DROP ;
MORE ADVANCED CHARACTER GRAPHICS 11 - 23

: PIXELBLK
BY 0 DO Vertical loop)
BX 0 DO Horizontal loop)

Set char X position)
Set char Y position)
Find char #)

I 7 *BPX + -> CPX
J 8 * BPY + -> CPY
JBX*CN+ 1+

P s e e

8 * ADR + Find char address)
PIXELCHAR Draw the char)
LOOP

LOOP ;

Two routines are included here. PIXELCHAR plots a single
character starting at any pixel, and PIXELBLK calls PIXELCHAR to
plot a block of characters. Single characters can also be
plotted with PIXELBLK by selecting a blocksize of 1 by 1.

To run PIXELBLK:
1. Load the character set.
2. Set:
BX to the horizontal block size,
BY to the vertical block size,
BPX to the desired starting X coordinate for the block,
BPY to the desired starting Y coordinate,
ADR to the character set address,
CN to the starting character number.
3. Call PIXELBLK. The block will be drawn on the screen.

The variables you need to set are not changed when PIXELBLK is
run, so they do not need to be reset every time.

Let's run the whole pixel-shift-and-save procedure through,
assuming GraFORTH has just been booted. Since Maxwell is already
a "shifted" set, we'll instead shift one of the helicopter images
from the CHR.STUFF character set (discussed on page 7-9 of the
GraFORTH manual), so that it starts midway between two character
positions:

1. READ the pixel-shifter routines onto the word library:

READ " <filename> " (Use the filename you saved the
pixel-shifter with.)

2. READ the character editor in above the pixel-shifter:

READ " CHAREDITOR *

MORE ADVANCED CHARACTER GRAPHICS 11 - 24

3. Load the character set:
CR 132 PUTC PRINT " BLOAD CHR.STUFF,A2816 " CR

4, Set the appropriate variables:

5 -> BX 3 ->BY (5x3 character block)

8 -> BPY (Start at correct vertical coordinate for
character editor)

11 -> BPX (Start at horizontal coordinate + 4 more to
shift it 4 pixels (7+4=11))

2816 -> ADR (Set character set address)

33 -> CN { Set character number for first helicopter)

5. In one line, erase the screen, draw the block, and enter the
character editor:

ERASE PIXELBLK MAIN (MAIN is the word that runs the character
editor.)

6. Set a blocksize wide enough to fit the new image. Press "B":

Enter Block Horizontal Size :6
Enter Block Vertical Size :3

7. Write the image into the character set. (We're going to
overwrite the three 'happy-face' images here.) Press "W":

Enter character number
to be written : 78

From here you can either edit the image further, or save the
character set to disk. Pixel-shifting can also come in handy for
changing the colors in character shapes, as we'll see in a few
moments.

GraFORTH can also display characters in 8 different sizes, using
the word CHRSIZE. CHRSIZE removes a number from the stack to
determine what size subsequent characters will be displayed in.

A character size of zero selects the normal text display.
Character sizes 1 through 8 use a different method for displaying
characters: Each dot, or pixel, of the character is plotted as a
small rectangle, similar to the rectangles created with the FILL
command. "1 CHRSIZE" is the same size as the normal display; "8
CHRSIZE" draws characters 8 times larger.

The rectangle-type character plotting allows some additional

MORE ADVANCED CHARACTER GRAPHICS 11 - 25

capabilities. The color of the characters can be selected with
the word COLOR, while the normal text display will only display
color if the characters were created with color. The larger
character sizes can also be used in GraFORTH's exclusive-or mode
(EXMODE), so that characters can be plotted over graphics, and
then erased without disturbing the underlying graphics! The
price paid for these features is speed: The normal display can
print character much faster. The larger sizes don't have the
speed necessary for smooth animated character graphics. They are
best used for displaying assorted messages or still character
images.,

Let's have a Took at how GraFORTH keeps track of the characters
on the screen, and how this affect character display. When your
Apple is in 'text mode' (no graphics), all of the characters on
the screen are stored as ASCII values in a reserved area of
memory. The hardware continuously reads these values and creates
a character video display from them.

The high-resolution graphics mode uses one of two other areas in
memory for its display. Here, each dot on the screen is stored
as a bit in memory. Changing the bits changes the display.

When GraFORTH displays a character on the hi-res screen, it
stores the ASCII value of the character in the unseen text memory
space. This allows GraFORTH to keep track of what characters are
where without having to read through a lot of hi-res memory. It
then 'looks up' the shape of the character in the current
character set and writes that shape into the hi-res space, which
causes that character to appear on the screen.

As mentioned on pages 7-14 and 7-15 of the GraFORTH manual,
before GraFORTH decides to print a character, it first checks the
text area to see if that character is already on the screen. If
it is, then the character is not reprinted. This speeds hi-res
scrolling considerably. However, character set changes and UNBLK
commands do not affect the contents of the text page, and can
produce discrepancies between what you see and what you get.

This is best clarified with an example. Enter the following
lines:

CR 132 PUTC PRINT " BLOAD CHR,.SLANT,A2816 " CR
2816 CHRADR

HOME PRINT " ONE LINE " CR

CHRSET CHRADR

0 VTAB PRINT " TWO LINES " CR

We first printed the line "ONE LINE" using the "slant" character

MORE ADVANCED CHARACTER GRAPHICS 11 - 26

set, then printed the Tine "TWO LINES" over the top of it using
the standard character set. Note that the "LINE" in "LINES" is
still in the slant set. GraFORTH checked the text screen, and

since it found the characters already there, it did not reprint
them in the new character set.

One solution is to clear the text memory. If this is done,
GraFORTH will not find any identical characters and will always
reprint. The command -936 CALL will clear the text window to
spaces without affecting the graphics screen:

2816 CHRADR

HOME PRINT " ONE LINE " CR

CHRSET CHRADR

-936 CALL 0 VTAB PRINT * TWO LINES " CR

The call cleared the text window and allowed the entire line to
be reprinted in the new character set.

If you ever find characters not printing when you think they
should, then their ASCII values are probably already in the text
memory, preventing them from being reprinted. This is especially
true if you want to print a space character (ASCII 160, or
character number 0) that has been redefined to be a visible
graphics image, since there are many space characters already
lurking in the text page of a screen that is mostly blank.

The large size characters also use the text screen. This means
that (for example) if you print a normal size character at 2 VTAB
1 HTAB, then print a character in 8 CHRSIZE also at 2 VIAB 1
HTAB, GraFORTH will lose track of the first character even though
the characters occupy different portions of the hi-res screen.
This won't cause any problems unless you try to scroll or reprint
the character.

An amusing and enlightening effect can be created by going into
TEXT mode before running a program that uses character graphics.
A1l character blocks will be printed simply as groups of letters
on the text screen. The following example runs the character
graphics portion of the GraFORTH demonstration program from text
mode. (If you've been following the above examples, you'll first
need to clear the character editor from memory with "FORGET X" to
prevent some word names from being duplicated.)

TEXT
READ " GRAPHICS2 "

(Press reset to exit, as the demo will otherwise continue.)

MORE ADVANCED CHARACTER GRAPHICS 11 - 27

Another aspect of animated character graphics worth exploring is
color. The larger character sizes allow you to select color as
characters are printed, but, as mentioned above, the slower speed
can get in the way. The best method is to use the normal
character display and design the color right into the character
sets. This also means that intricate color patterns can be used,
rather than a single color. Using the GraFORTH character editor,
you can select colors as you're creating the image, subject to
the usual color limitations of the Apple.

Pages 19 and 20 of the Apple Reference Manual discuss the basics
behind the Apple color limitations, and the Softalk column
“Assembly Lines" explored the subject in depth recently. Llet's
take some time out here to look more closely at how the Apple
stores pixels and keeps track of color in memory. Then we'll
see how it affect character display in GraFORTH,

The pixels in each horizontal row of the Apple screen are stored
in memory in groups of 7, one group per byte of memory. With
each group is a single bit which determines what colors the
pixels in the group can have. A byte can contain either green
and violet pixels, or orange and blue pixels. If for some reason
the color bit is changed, then all of the pixels in that byte
will change color. If any two adjacent pixels are plotted, their
colors will combine to form white. A true white is always two
pixels wide.

Here's how to determine the color of an individual pixel: If the
color bit is set to 1 {orange and blue pixels), then a pixel will
be orange if it is in an odd numbered column, and blue if in an
even numbered column. If the color bit is cleared to 0 (green
and violet pixels), then a pixel in an odd column will be green,
and a pixel in an even column will be violet. Thus the actual
color of an individual pixel is determined by (1) the setting of
the color bit for the byte in memory the pixel occupies, and (2)
the column the pixel is plotted in.

For most kinds of plotting, GraFORTH takes care of all of this
for you. If you plot, for example, a green dot, GraFORTH will
clear the color bit to zero, then check what column the dot is
being plotted in. If the column is odd, GraFORTH will simply
plot the pixel. If the column is even, GraFORTH will
automatically move the pixel one column to the right, since green
dots cannot lie in even columns. In general, when a color is
specified, GraFORTH shifts the dots if necessary; if the color is
set to white, the dots are always left in place.

MORE ADVANCED CHARACTER GRAPHICS 11 - 28

Let's try a few examples. If you haven't specified a color,
GraFORTH will use white (3 COLOR, which has its high bit cleared
to zero). Enter:

0 40 18 24 WINDOW ERASE

0 10 PLOT

A violet dot appears, since it was plotted in an even column.
1 10 PLOT

Another dot plotted adjacent to it changes it to white.

1 15 PLOT

A single dot in this column is green.

1 COLOR

0 20 PLOT

We're forcing this dot to be green. Since a green dot could not
be plotted in an even column, GraFORTH moved it to the right into
column 1,

5 COLOR
5 20 PLOT

Surprise! Plotting an orange dot near the green dot changed the
green dot to orange, too. Here's why: Since orange was
specified, GraFORTH set the color bit for that byte to 1. But
the green dot occupies the same byte (the same group of 7 pixels)
and required the color bit to be zero to keep it green. When the
color bit changed, the pixel then satisfied all the requirements
of being orange, namely being in an odd column with the color bit
set to 1.

Let's pull back from this digression on bytes and color, and
apply it to character graphics.

The first revelation can be found by remembering that character
shapes in GraFORTH are 7 pixels wide by 8 pixels tall. The
character width of 7 pixels happens to coincide with the 7 pixels
per byte (with one color bit) discussed above. Therefore, each
hi-res character is one byte 'wide' and 8 bytes 'tall’ and each
row of the character has its own color bit.

MORE ADVANCED CHARACTER GRAPHICS 11 - 29

Suppose that you've created and printed at the left a single
character shape that is a solid green block. This means that the
color bits for the character are zero and all of the odd columns
(1, 3, 5) contain pixels. Suppose that the same shape is then
printed one character space to the right. That means it will be
offset by 7 pixels from the original. The odd pixels (1, 3, 5)
will now fall into even (1+7=8, 3+7=10, 5+7=12) columns, changing
the green block to violet! Second revelation: Colored character
blocks change color when moved between even and odd columns.
(Actually, character blocks do not have a 'true' color while in
the character set. Color and color changes only become apparent
when the blocks are plotted on the Apple screen.)

This brings us to the realization that if we want to keep the
colors constant while moving horizontally across the screen, two
sets of character shapes will be needed. They will be identical,
except that one will be offset by 1 pixel. One set will be used
in even columns, the other in odd. As the blocks are moved one
character space, or 7 pixels, at a time, the 1 pixel offset in
every other block will actually make the distance either 6 pixels
or 8 pixels. Even columns will stay even, and odd will stay odd.

The pixel-shifter routine shown above can be used to easily
create the 'other' color images. Two things should be kept in
mind: First, since the character editor edits the images
starting on an odd character column (1 HTAB), then the colors
will coincide with the editor when the block is printed on any
odd column. Printing a colored character block on an even column
will show colors reversed from those in the character editor.
Second, when we created a shifted character image above, we
needed a wider block to save it. The same is true for shifts of
one pixel. The actual image must be at least one pixel narrower
than the block it is saved in, to leave room for the one-pixel
shift.

Designing character sets and animating character blocks is of
course a very new art. Questions of 'what looks best' and 'how
best to do this' are always subjective, and depend on the
particular application being written. We've hopefully given you
the tools you need for working confidently with GraFORTH's
character graphics, and some ideas on smooth animation.

Next month, we'll turn to the three-dimensional capabilities of
GraFORTH, showing how to create, save, and manipulate 3-D shapes.
See you then,

MORE ADVANCED CHARACTER GRAPHICS 11 - 30

Introduction to 3-D Graphics

Introduction to 3-D Graphics

This month we'll turn our attention to the three-dimensional
graphics capabilities of GraFORTH, and how they can be used for
animation.

In any type of computerized 3-D graphics system, you start by
creating a set of points, lines, and shapes in 3-D. Every point
has a relationship to every other point: It can be higher or
lower, closer or farther away, and more to the Tleft or rignt,
And of course, this relationship depends on your point of view.
The three different direction aspects of a point are represented
using three numbers, or coordinates, labeled X, Y, and Z. It's
the computer's job to convert your set of points according to
some formula into points on a two-dimensional screen, using only
X and Y coordinates. Then the points are connected with the
appropriate lines, just as the 3-D points were connected with
lines.

There are two different philosophies used in creating 3-D
graphics. For the first, imagine a universe in which all of the
3-D objects exist. You describe the objects and and tell the
computer where they are in the universe. You then decide where
your eye is, and which direction you're looking. The computer
figures out which objects lie in that direction, converts them
into a single two-dimensional image, and draws that image on the
screen. This concept makes it fairly easy to represent complex
scenes, but manipulating individual objects within that scene can
be more time-consuming.

Another philosophy is to treat each 3-D object separately on the
screen. You describe each 3-D object, then tell the computer
where the objects should appear on the two-dimensional screen (or
if they should appear at all), what size to draw them, and how
they should be oriented. Each object is converted from three
dimensions to two, independent of every other object. This means
complex scenes can require more programming to produce, but
manipulating each individual object is faster and easier. This
is the technique used by GraFORTH.

GraFORTH allows you to manipulate 3-D objects through direct
high-level commands. For example, the GraFORTH word SCALE sets
the displayed size of a 3-D object, XROT rotates the object about
the X-axis, and YPOS sets the vertical position of the object on
the screen. These straightforward commands provide an

INTRODUCTION TO 3-D GRAPHICS 11 - 31

easy-to-follow method of generating 3-D graphics.

The 3-D process can be divided into two parts: First, the image
is created using the Image Editor supplied on the GraFORTH system
disk. Then, the GraFORTH commands are used to read the image and
draw the object on the screen with the appropriate rotation,
scale, etc. The image may reside in any free area of memory and
is not changed by the drawing commands.

Let's define a couple of words for this discussion: An "image"
is a set of 3-D points and lines as stored in memory. An
"object" is a picture of the 3-D image as it is manipulated and
actually displayed on the screen. Images can reside in memory
without being assigned as objects and drawn; and two objects,
though positioned and oriented differently on the screen, can
both use the same 3-D image in memory. (For example, two
rotating cubes on the screen can use the same set of 3-D lines.)

For each image, the X, Y, and Z coordinates can range from -128
to 127, giving a possible 256 positions along each of the three
axes, which is plenty for most applications. The actual number
of lines in an image is Timited only by the amount of available
memory. (Each endpoint or line entry in the image uses four
bytes of memory.)

Up to 16 different objects can be manipulated at one time in
GraFORTH. They are numbered O through 15, and referenced with
the GraFORTH word "OBJECT". After giving an OBJECT command, the
3-D commands will manipulate that object until another OBJECT
command is given. For example, if you type:

3 OBJECT
30 XROT
10 SCALE

then object 3 will be rotated 30 units around the X-axis and
scaled to a size of 10. To manipulate a number of objects, you
select each object in turn with OBJECT, then give the appropriate
commands for that object.

Here is a quick summary of the individual 3-D commands, their
effects, and the appropriate ranges of numbers to use:

XPOS, YPOS - These set the X and Y position on the screen of the
3-D point (0,0,0) for the object, and and are used for
positioning the object in the appropriate place on the screen.
XPOS can range from O to 255 and YPOS can range from 0 to 191.
At the extremes, however, the object may overlap the edge of the

INTRODUCTION TO 3-D GRAPHICS 11 - 32

screen, causing wrap-around.

SCALX, SCALY, SCALE - These commands determine the size of the
object on the screen. SCALX sets the width and SCALY sets the
heighth. The word SCALE simply sets both width and heighth to
the same number simultaneously. The range is -31 to 31. A scale
of 0 produces a displayed object with no thickness, and negative
numbers create a mirror-image effect. Since two objects can use
the same image in memory, symmetrical objects, such as bird
wings, can be created using two objects side-by-side, with
positive and negative scale numbers. This is the technique used
for the two wings of the flying bat in the "Die Fledermaus"
portion of the demonstration program.

SCALZ - This determines the amount of perspective used.
Perspective is what causes the front of an object to appear
larger than the back. A Targe perspective number makes the front
a good deal larger, and negative numbers provide "reverse
perspective", with the back of the object larger than the front.
Zero perspective means the front and the back will be the same
size. The range, as above, is -31 to 3l.

XROT, YROT, ZROT - These commands rotate the current object
around each of the three 3-D axes. A complete rotation is
divided up into units from 0 to 256. Zero is no rotation, 64 is
a right angle, 128 is the same as 180 degrees, and 192 is
three-quarters around the circle. Values greater than 256 or
less than 0 can also be used for rotating more than once around.
For example, a rotation to 258 units is the same as to 2 units,
Note: The actual rotation of the object changes for every other
rotation value. This means that if you rotate an object in steps
of 1 unit per DRAW, the view of the object will change every
other DRAW, making the animation appear slower. It's best to
increment rotation values in steps of 2.

XTRAN, YTRAN, ZTRAN - These commands translate, or "slide", the
object in each of the three directions in space. The object can
be shifted as long as none of its points falls out of the -128 to
127 position range. If this happens, a wrap-around effect will
occur. Therefore, translation works best with small images,
having room to move.

OBJCOLOR - This determines what the object's color will be when
it is drawn if color was not specified when the image was
created. If color was specified, then OBJCOLOR is ignored. The
standard GraFORTH color numbers (1, 2, 3, 5, 6, 7) are used.

Note that OBJCOLOR also sets the normal COLOR command, so be sure
to reset COLOR to the desired value after using OBJCOLOR.

INTRODUCTION TO 3-D GRAPHICS 11 - 33

Here is a table of the 3-D parameters and the range of values
they use:

Parameter Range In steps of
XPOS 0 to 255 1
YPOS 0 to 191 1
SCALX -31 to 31 1
SCALY -31 to 31 1
SCALE -31 to 31 1
SCALZ -31 to 31 1
XROT 0 to 255 2
YROT 0 to 255 2
ZROT 0 to 255 2
XTRAN -128 to 127 1
YTRAN -128 to 127 1
ZTRAN -128 to 127 1

0BJCOLOR 1,2,3,5,6,7

Let's try some examples. First, we need a 3-D object to work
with:

0 40 18 24 WINDOW ERASE

CR 132 PUTC PRINT " BLOAD TETRA,A2816 " CR

OBJERASE (Clear 3-D variables)

0 OBJECT 2816 OBJADR (Set parameters for object 0)
80 YPOS 10 SCALE

20 XROT 40 YROT

DRAW

As we present word definitions, you'll probably want to use the
editor to enter the definitions, then compile them into the word
library using MEMRD., Then you can experiment with the
definitions by changing some of the parameters from the editor
and recompiling., Of course, you can also type the word
definitions directly into GraFORTH from the keyboard.

Creating animations with GraFORTH's 3-D graphics is easy and
straightforward. As we mentioned in an earlier column, animation
is simply a series of still pictures displayed rapidly one after
another, providing the effect of movement., One fast way to
generate this movement is with a DO-LOOP:

INTRODUCTION TO 3-D GRAPHICS 11 - 34

257 0 DO I YROT DRAW 4 +L0OP

This example rotates the object a full circle around the Y-axis.
Since the loop is in steps of two, it repeats 128 times,
producing 128 separate DRAWs, one after another. For each DRAW,
the rotation around the Y-axis is set to the loop value,
incrementing from 0 to 256.

This type of animation is straightforward, but for most
applications a number of parameters need to be manipulated at
once. Let's look at how to do more complicated manipulations
with a few examples.

When using a DO-LOOP, usually one DRAW will be performed each
time through the loop. The size of the loop then determines how
many times the object will be drawn. To change the parameters,
two approaches are possible: The loop value can be used to
generate the desired parameter values, or separate variables can
be used to keep track of each parameter.

In the first method, the conversion from loop value to parameter
value is done with short formulas. For example, if you want the
tetrahedron to rotate around the Y-axis three times for each
rotation around the X-axis, you can use this routine:

: THREE.ROT
257 0 DO
I XROT
I 3 * YROT
DRAW
2 +L00P ;

After entering THREE.ROT into the editor and compiling (or
entering it directly from the keyboard), it can be run by simply
typing:

THREE.ROT

The trick is to find the right formula for the desired motion.
Suppose, with the above example, you also wanted to make the
tetrahedron grow in size from 12 SCALE to 20 SCALE. The change
from 0 to 256 in the loop must be translated to a change from 12
to 20. Note that the difference between the start and end loop
values is 256, and the difference in the scales is 8. If we
divide the loop value by 32, we get a range of 0 to 8. If we
then add 12, we get the desired range of 12 to 20:

INTRODUCTION TO 3-D GRAPHICS 11 - 35

With the loop value moving from O to 36, we wanted the scaling
function to slide from 0 to 18 and back to 0. This can be shown
in Figure 1. Figure 2 shows the steps we used to achive the
effect,

0... 0+12
8... 8+ 12

12 Scale value
20 Scale value

Loop value 0 / 32
Loop value 256 / 32

The new routine looks like this:
Sometimes a more complicated animation cannot be performed inside

: ggg&gCSBE a simple DO-LOOP. This is especially true if the user is
I YROT interacting with the program through a joystick or keyboard, and

1 3 * XROT the program must make decisions. In this case, it's often best
I 32 /12 + SCALE use separate variables to keep track of each parameter. The
DRAW parameters can then be updated at any time from the running

LOOP : program. The following program duplicates the ROLL.TETRA routine
? using this technique.
Below is a program adapted from the “rolling tetrahedron" display -
in the GraFORTH demonstration program. The tetrahedron moves xﬁs%ﬁgtg ég E é ro:az!o: g
down and to the right, rotates end over end, and grows and VARIABLE XP { X rgs?t}gn)
shrinks, giving the appearance of "rolling" closer then farther VARTABLE YP & position)
away. You can use this routine with any image in memory. VARIABLE SC (ch1e)
: ROLL.OBJECT VARIABLE DIR (Scale direction larger or smaller?)
3 ? 20* XROT : UPDATE.TETRA)
I 5 * YROT XR 3 + DUP -> XR XROT (Increase X rotation by 3)
16 * 25 + XPOS YR 5 + DUP -> YR YROT (Increase Y rotation by 5)
I 3* 35+ YPOS XP 6 + DUP -> XP XPOS (Increase X position by 6)
I 18 - ABS CHS 18 + SCALE YP 3 +DUP -> YP YPOS (Increase Y position by 3)
DRAW DIR IF (If scale is increasing:)
LOOP ; SC 1 +DUP -> SC SCALE (Increase scale by 1)
’ SC 18 = IF 0 -> DR THEN (change direction?)
. . . ELSE
None of these formulas are "magic". As the routine was written,
we "tweaked" each formula until we got the desired display. Here THEEC-I - DUP -> SC SCALE (Decrease scale by 1)
are the numbers that come out: >
. : ROLL,TETRA1
Loop value: 0 to 36 0->XR 0 ->YR (Initia‘ize variables)
XROT: 0 to 108 95 -5 XP 35 -> YP
YROT: 0 to 180 0 -5 SC
égggf gg Eg fjé 1 ->DIR (Set scale direction)
SCALE: 0 to 18, then back to 0 DR 2 g 'gtrg';tf}gf); ‘)’bJe“)
The scaling formula deserves more comment. The desired effect BERSTE'TETRA E SigwnigjgzgaTeters)
was to have the object grow and then shrink. We could have used LOOP - (Loop back)

two scaling loops one after another: the first increasing and the
next decreasing. But then we would have had to keep all the

i g We used a DO-LOOP to run the animation since no branching
other parameters moving smoothly through the transition from one decisions were needed for this program. If they were required,

loop to the next, without a skip in values. For simplicity, we b ;
decided to use a single loop. the current value of any 3-D parameter would always be available.

For smooth animation, the GraFORTH 3-D graphics routines
automatically take advantage of both high-resolution screen pages
in the Apple memory. During 3-D animations, one screen area is
displayed while the other is being invisibly updated. This way,
the lines are not shown being erased and redrawn., This is only
true for 3-D graphics. GraFORTH text printing, line drawing, and
character graphics always draw to both screens simultaneously.

In this way, the screen-flipping 3-D graphics can be mixed with
other kinds of graphics without causing lines and characters to
repeatedly appear and disappear.

The sequence GraFORTH uses in putting a 3-D object on the screen
is a four-step process: Whenever the word DRAW is executed, the
drawing routines are first directed to the graphics screen that
is not currently being displayed. Then the previous 3-D objects
are individually erased line-by-line by following the parameters
that were originally used to draw them. Next, the new objects
are drawn on the screen using the current parameters. Lastly,
the display is switched to this screen, so that the new objects
can be seen.,

To increase speed, the word DRAW only works with the objects that
have been referenced since the last DRAW command. This reference
can be made by giving the object one or more new parameters, or
by simply calling it again with OBJECT, This means that objects
that don't need to be changed can be left on the screen as they
are, and will not slow the drawing of objects still in motion.

Suppose you're manipulating two 3-D objects {call them objects 1
and 2) simultaneously. First, both of them are in motion, and
the animation toggles between the two graphics screens with each
DRAW command. Then you decide to stop the motion of object 1,
while continuing object 2. To do this, you simply stop giving
object 1 any new commands. Since object 1 was just in motion,
the picture of the object on the two graphics screens is
different, As the animation contimues with object 2, the display
will switch back and forth between the two screens. The two
pictures of object 1 will alternate back and forth, rather than
remaining still.

The solution to this problem is simple: When you don't need to
move an object any more, give it one extra OBJECT command,
without any new parameters:

1 OBJECT

This will cause the same picture of the object to be drawn on the
second graphics screen. The two pictures of the object will then

INTRODUCTION TO 3-D GRAPHICS 11 - 38

be identical, and the object will remain still while other
objects are manipulated.

Here then is a quick overview for doing 3-D graphics with
examples to follow:

1. Load the image(s) into memory:

CR 132 PUTC PRINT " BLOAD CUBE,A2816 " CR
CR 132 PUTC PRINT " BLOAD HOUSE,A3000 " CR

2. Initialize GraFORTH's 3-D variables:
OBJERASE

3. Select object numbers and the image addresses for those
objects:

0 OBJECT 2816 OBJADR
1 OBJECT 2816 OBJADR
2 OBJECT 3000 OBJADR

4, Initialize the position and orientation for each object.
(This could be combined with providing the image address,):

0 OBJECT 5 SCALE
20 XROT 20 YROT
50 XPOS 40 YPOS

1 OBJECT 180 XPOS

‘10 SCALE 6 SCALZ

2 QBJECT
15 SCALZ 10 SCALE
50 XPOS 110 YPOS

5. For each picture to be drawn, execute a DRAW command:
DRAW

6. To continue animation of all objects, again select each
object in turn, provide any new parameters, and call DRAW:

0 OBJECT 25 YROT

1 OBJECT 8 SCALE
2 0BJECT 65 XPOS

DRAW

INTRODUCTION TO 3-D GRAPHICS 11 - 39

7. If you want to stop the motion of one object while continuing
to change others, call the object one more time (without any new
parameters) to draw it again, to prevent residual motion:

1 OBJECT

Moving faster: With a little extra planning, the speed of 3-D
graphics can often be increased considerably. The line-by-line
undrawing of each 3-D object uses as much time as drawing the new
object. A faster method to remove old images is to simply erase
the area of the screen the object lies in, and then not bother
doing a line-by-line erase.

The GraFORTH word UNDRAW is designed for doing just this. UNDRAW
erases a portion of the screen just as UNBLK does, on a
character-size basis. However, UNDRAW also sets a flag telling
GraFORTH not to do a line-by-line erase of the 3-D object. After
setting the blocksize and the position appropriately, you can
erase the object yourself, so that the 3-D routines don't have to
erase it. This method requires that you know what rectangular
area of the screen is used by the object, and that no other
graphics tie in this area, since they would also be erased.

Here is an example of using UNDRAW. Starting from scratch, let's
first get an object onto the screen:

0 40 18 24 WINDOW ERASE (Optional)

CR 132 PUTC PRINT “ BLOAD CUBE,A2816 " CR
OBJERASE

0 OBJECT 5 SCALE

20 XROT 20 YROT

DRAW

An easy way to determine the blocksize and placement to use with
UNDRAW is to fill the screen with characters, then draw the
object over them:

0 VTAB 1000 0 DO I 10 MOD . LOOP 0O OBJECT DRAW

By simply counting down and across, you can see that the cube
fills a block 9 characters wide by 8 characters tall, starting at
8 VTAB 14 HTAB. The UNDRAW command can be used to erase this
block during a 3-D animation:

ERASE
9 8 BLKSIZE

INTRODUCTION TO 3-D GRAPHICS 11 - 40

Now type this entire line, then press the return key:
8 VTAB 14 HTAB 257 0 DO I YROT UNDRAW DRAW 4 +LOOP 18 VTAB

This sets the character position for the block and rotates the
object while erasing the block with UNDRAW. Compare it with the
same loop without UNDRAW:

257 0 DO I YROT DRAW 4 +LOOP

The difference in speed is quite noticeable.

Next month, we'll continue with 3-D graphics, describing
GraFORTH's internal 3-D object table and the format for 3-D
images in memory. We'll also include a space shuttle simulation

program, with a complete discussion of how it works. See you
then.

INTRODUCTION TO 3-D GRAPHICS 11 - 41

36T

mr>» 00

36

18 36

-18¢

-3l ~38 L

Start with loop value
|

361
18-\
\\ 7/
A //
\\ /
o-
18
—184
sl

Turn it upside-down
CHS

Figure 1.

Subtract 18
18 —
36T
Vi 184
04
-187
361

Figure 2

36T

184

0+

,r48 36
’
/

-18Y
-36+

Take the absolute value
ABS

Add 18
18 +

More Advanced 3-D Graphics

More Advanced 3-D Graphics

Last month's introduction to GraFORTH's three dimensional
graphics features showed some straightforward methods for
manipulating 3-D graphics. With a better understanding of how
GraFORTH handles things internally, we can create some
interesting new effects.

Remember that using 3-D graphics is a two-step process: First
the Image Editor is used to create a 3-D 'image' in memory. Then
GraFORTH's 3-D commands are used to display the image as an
‘object' on the screen, with a given position, size, and
orientation. The object commands do not affect the image in
memory; they only change the way it is displayed.

For some 3-D animations, you may want to have several images in
memory at one time. In order to keep track of what free areas of
memory are available, it's handy to know how the images are
stored.

A 3-D image is made up of a number of line entries, one for each
Move or Draw in the image. Each line entry uses four bytes of
memory. The format for the entry is described fully on page B-6
of the GraFORTH manual. Briefly, the first byte determines color
and whether the entry is a Move or a Draw, and the next three
bytes specify the X, Y, and Z positions for the point in space.
The end of a 3-D image is marked with a 255 (hex $FF) in memory
immediately after the last entry. The length in bytes of a 3-D
image is then 4 bytes times the number of entries, plus 1 more
byte for the end-of-image marker.

From the Image Editor, the List and Enter options show the
address in memory for the beginning of each line entry. An image
starting at address 2816 will have line entries at 2816, 2820,
2824, etc. The last address shown in the listing is for the
beginning of the last line entry. The end-of-image marker will
be 4 bytes after this. The byte immediately after the
end-of-image marker (5 bytes after the last listed address) is
the next byte free for use.

MORE ADVANCED 3-D GRAPHICS 11 - 43

Loading the Image Editor every time you want to find the length
of a 3-D image can be cumbersome. The following short word
definitions will also do the job. With a 3-D image already in
memory, END.3D can be used to find the next free location after
the image, and LENGTH.3D will return the length in bytes of the
image:

: END.3D
BEGIN
Dup
PEEK 255 <>
WHILE
4 +
REPEAT
1+
: LENGTH. 3D
DUP END,3D
SWAP - ;

To use END.3D, simply place the starting address of the image on
the stack, then call END.3D. The routine scans through the list
of 4-byte line entries until it finds the 255 end-of-image
marker. It then adds 1 to this address, leaving the next free
address on the stack.

LENGTH.3D is called the same way. It uses END.3D to find the
next free address, then subtracts the original starting address
from this value to find the length.

Here is an example which uses END.3D and LENGTH.3D to find the
length of the XYZ image stored on the GraFORTH system disk.
First, load the XYZ image into memory starting at location 2816:
CR 132 PUTC PRINT " BLOAD XYZ,A2816 " CR

To find the next free address after the XYZ image, enter:

2816 END,3D .
2877

2877 is the address of the next free area of memory. This means
that the XYZ end-of-image (255) marker must be one location
before that:

2876 PEEK .
255

MORE ADVANCED 3-D GRAPHICS 11 - 44

The length of the XYZ image can be found by typing:

2816 LENGTH.3D .
61

The Keep command in the Image Editor allows you to save 3-D
images to disk, one image per binary file. If you're working
with a graphics program that uses several images, it's often
easier to combine all of the images into one disk file. By
keeping track of image length information, you can BLOAD several
images into memory one immediately after another, then BSAVE the
images back to disk as a single binary file. This can save a Tot
of space on a crowded disk, and make it easier to load several
images at one time. The 3-D bat used in "Die Fledermaus" in the
demonstration program is an example of this. Three separate
images making up the bat are stored together in the binary file
BAT,

Another technique is to combine two 3-D images together into one
larger image. We can create a "double" image by concatenating
the XYZ image with the CUBE image, also on the GraFORTH disk.
First, let's get the XYZ shape displayed on the screen:

OBJERASE

0 OBJECT 2816 OBJADR

0 40 20 24 WINDOW ERASE
12 SCALE 4 SCALZ 80 YPOS
10 XROT 20 YROT DRAW

We can BLOAD the CUBE image right over the end of XYZ, so that
the first line entry in the cube overwrites the end-of-image
marker for XYZ. This leaves a single image with a set of line
entries for XYZ and a set for the cube, with one end-of-image
marker left at the end.

We know that the XYZ end-of-image marker is at location 2876, so
this is where we load the cube:

CR 132 PUTC PRINT " BLOAD CUBE,A2876 " CR
0 OBJECT DRAW

Other unusual effects are possible by changing line entries from
a running program, moving end-of-image markers, etc. Keep in
mind, however, that the image in memory is also used by GraFORTH
when erasing old objects from the screen before redrawing. If
you modify images while displaying them, you might affect what
lines from old objects are erased and what lines aren't.

MORE ADVANCED 3-D GRAPHICS 11 - 45

Another internal aspect of 3-D graphics worth looking at is the
Image Data Map (described on page B-4 of the GraFORTH manual),
which stores the parameters used to orient and draw objects on
the screen. (A more accurate name would be "Object Data Map",
but we'll stick to the name used in the manual.) The map keeps
track of all of the 3-D parameters for 16 objects, for three
different functions: erasing the old picture, keeping track of
the picture on the other graphics screen, and drawing the new
picture. The manual calls these data sets Undraw, Interim, and
Draw.

Last month's column included a program which used variables to
keep track of 3-D parameters. However, the Image Data Map
already stores this same information, and can be used the same
way. The technique is to determine the address for the desired
parameter of a given object, then take a PEEK at that address to
find the current value of the parameter.

The Image Data Map is first broken into the three data sets, with
16 object tables for each data set, and 16 bytes for each object
table. Here is the format for object tables:

Function Relative Byte

Flag (draw, nodraw) 0
XROT 1
YROT 2
ZROT 3
XTRAN 4
YTRAN 5
ZTRAN 6
XPOS 7
YPOS 8
SCALX 9
SCALY 10
SCALZ 11
0BJCOLOR 12
Image Address 13 and 14
(unused) 15

The starting addresses for the data sets are:
5888 $1700 Undraw

6144 $1800 Interim

6400 $1900 Draw

Here is an example to show how it all works: Suppose you want to

MORE ADVANCED 3-D GRAPHICS 11 - 46

find the current X position (XP0OS) for object 5. Start with the
base address for the Draw data set at 6400, Multiply the object
number by 16 and add this to the base address:

6400 + (5 * 16) = 6400 + 80 = 6480
Now add the Relative Byte for the XPOS command, which is 7:
6480 + 7 = 6487

6487 is the address which stores the X position for object 5.
You can find the current value by PEEKing at this address.

One application of this is to define words which update a 3-D
parameter by PEEKing its value, adding some offset, then
resetting the parameter. Here is a word which will increase the
X position for object 5 by 2 pixels:

¢ INCX
5 OBJECT
6487 PEEK 2 + XPOS ;

The following is another version of the ROLL.TETRA program shown
last month. It uses the Image Data Map to update parameters, so
that separate variables are not needed:

0 VARIABLE 0BJ (Object number)
VARIABLE DIR (Scale direction larger or smaller?)

: FIND (Finds address of parameter given relative byte:)
0BJ 16 * + (Object number * 16 + relative byte)
6400 + PEEK ; (Add base address and PEEK current value)

: UPDATE.TETRA .

1 FIND 3 + XROT (Increase X rotation
2 FIND 5 + YROT (Increase Y rotation
(
(

===
< <<
N W
— e

7 FIND 6 + XPOS Increase X posit?on
8 FIND 3 + YPOS Increase Y position by 3)

DIR IF (If scale is increasing:)

9 FIND 1 + SCALE (Increase scale by 1)

9 FIND 18 = IF 0 -> DIR THEN (change direction?)
ELSE

9 FIND 1 - SCALE (Decrease scale by 1)
THEN ;

MORE ADVANCED 3-D GRAPHICS 11 - 47

: ROLL.TETRA2

0BJ OBJECT (Set object number) This means that the 3-9 points in an object are firsF translated,
0 XROT 0 YROT (Initialize parameters) then the translated points are sca]eq. These new points are
25 XPOS 35 YPOS rotated around the X, Y, and Z axes 1n order. (Actually,
0 SCALE GraFORTH does steps 2 through § s1mu1taqeously, though the
1 -> DIR (Set scale direction) mathematics used treqts the objects as if the transformations
36 0 DO (Start loop) were done one at a time.)
UPDATE.TETRA (Set new parameters)

i The most noticeable effect of this order is with rotations.

DR&N (Draw object) Consider an object that has been set to 30 XROT 20 YROT. The X

LOOP (Loop back) - : . :
rotation is performed first. Remember that the X-axis passes

through the object from left to right. A rotation around this
axis tips the top of the object forward, and the bottom back.
The Y rotation is done next. But since the X rotation occurred
first, the Y-axis has been tipped forward, along with the points
in the object. The Y rotation will actually be done on this new
tipped axis. Similarly, any Z rotation that follows will rotate
around an axis that has already been tipped by both X and Y

Special provision is made to work with any object, regardless of
what object number is used. The object number is kept in the
variable OBJ. Note the new word FIND. This takes the relative
byte for a 3-D parameter from the stack, finds the address for
that parameter, and PEEKs the current value.

To run the program, first BLOAD the tetrahedron image into

memory : rotations.

CR 132 PUTC PRINT " BLOAD TETRA,A2816 " Suppose you want to create an animation of a 3-D spaceship that
OBJERASE ’ continually banks or rolls as it flies across the screen. This
0 OBJECT 2816 OBJADR rolling should be the same regardless of which way the ship is

facing. Before designing the ship gith the Image Editor,‘you
N 1 1 JTETRA: need to know which axis (X, Y, or Z tq use for thg rot§t1on.

ow store the object number into 0BJ and call ROLL.TETRA The Z-axis is the proper choice for this kind of situation. The
0 -> 0BJ rotations around the X and Y axes will first set the ship (and
ROLL.TETRA the Z-axis) facing the desired direction, then tpe Z-axis
rotation will perform the rolling in that direction,

If you want to use other images with ROLL.TETRA, you may need to

adjust the scale so that the object fits on the screen. This is best demonstrated using the program PLAY. Compile PLAY

into memory:

Another aspect of 3-D graphics to consider is the way in which
images are transformed into objects on the screen., The
Three-Dimensional Mathematical Method on page B-5 of the manual
describes some of the technical wizardry performed on the points
using matrices. Understanding the details of the math isn't
really important. What is important is the order in which the
operations are performed.

READ " PLAY "

Select the 3-D shape XYZ from the disk. When the object appears,
rotate it a little so that you can see all three arrows: Press
2, right-arrow, F, 1, right-arrow, F. The white arrow pointing
from back to front corresponds to the Z-axis. Start the object
rotating around this axis at a good rate by pressing 3 and the
right-arrow key about 6 times. Notice that the rotation does

The 3-D transformations are performed in this order: "
occur around the white arrow.

. X, Y, and Z translation
. X, Y, and Z scaling

é Now press either 1 or 2 and an arrow-key, wait a bit, then press
3. X rotation

4

5

F. This changes the rotation around the X or Y axis. Note that
even though the white arrow is now facing a new direction, the Z
rotation is still around the white arrow. This is because the X
and Y rotations tip the Z-axis before the Z rotation is done.

. Y rotation
. L rotation

MORE ADVANCED 3-D GRAPHICS 11 - 48 MORE ADVANCED 3-D GRAPHICS 11 - 49

Because of these "rotation gymnastics", it is occasionally handy
to have the ability to "transpose" a 3-D image in memory,
changing X coordinates into Y coordinates, Y to Z, Z to X, etc.
This has the effect of turning an image around so that it lies in
a new direction along the three axes.

The following word definition does just that. It reads each line
entry of an image in memory, plucks out the values for the
(X,Y,Z) point, and places them back into the image in a new
order:

VARIABLE ADDR
VARIABLE FIRST
VARIABLE SECOND
VARIABLE THIRD
VARIABLE X
VARIABLE Y
VARIABLE Z

: TRANSPOSE
-> THIRD -> SECOND -> FIRST (Save new order)
-> ADDR { Save starting address)
BEGIN
ADDR PEEK 255 < (While not end-of-image:)
WHILE
ADDR 1 + PEEK -> X (PEEK X, Y, and Z values from
image)
ADDR 2 + PEEK -> Y
ADDR 3 + PEEK -> Z
X ADDR FIRST + POKE (POKE values back into image in
new order)
Y ADDR SECOND + POKE
Z ADDR THIRD + POKE
ADDR 4 + -> ADDR { Increment address to next line
entry)
REPEAT ;

Before calling TRANSPOSE, four values should be on the stack:

<{image address> <new X place> <new Y place> <new Z place>
TRANSPOSE

The numbers for the places should be 1, 2, and 3, in the desired
order: 1 for X, 2 for Y, and 3 for Z. For example, to trade the
X and Y coordinates in an image at location 2816, you would
enter:

2816 2 1 3 TRANSPOSE

MORE ADVANCED 3-D GRAPHICS 11 - 50

To run TRANSPOSE without exchanging coordinates (a do-nothing
operation), you would type:

2816 1 2 3 TRANSPOSE

The numbers 1, 2, and 3 must be on the stack in some order, or
the image will be destroyed. For example, typing:

2816 2 2 2 TRANSPOSE

will copy all three coordinates in turn into the.Y coordinate
position, with the Z coordinate copied last, losing the old Y
value.

The concepts we've shown are more than isolated ideas. They can
be combined to produce interesting new animations. Below is a
space shuttle simulation program which makes extensive use of 3-D
graphics. The program shows the shuttle flying into view over
the Earth, performing some rotations, releasing a satellite, and
flying away. The simulation makes use of a number of concepts,
including multiple 3-D objects, UNDRAW, GraFORTH's Image Data
Table, and Z-axis rotations.

The first step is to create the shuttle using the Image Editor,
Below are the line entries that make up the shuttle. READ the
Image Editor onto the word library, RUN the program, and type "Z"
to zero any image (or garbage) that may be in memory. You can
set a viewing angle before entering points. Enter a scale of 14,
X-rotation of 20, and Y-rotation of 32, Now press "E" to enter
the points. The general shape of the shuttle should become
apparent after the first 15 or 20 line entries. When asked for
color at each line entry, just press return.

Note that the shape is somewhat complicated. This gives the
shuttle greater detail, but requires more time to draw. For
speed, you may later want to design a simpler shuttle.

Body
X Y z
1. Move -12 -20 64
2. Draw -12 =20 80
3. Draw -12 -10 90
4, Draw -4 0 127
5. Draw 4 8 127
6. Draw 20 16 100
7. Draw 20 16 -120
8. Draw -20 16 -120

MORE ADVANCED 3-D GRAPHICS 11 - 51

9.
10.
11.
12,
13,
14.
15.
16.
17.
18.
19,
20.
21.
22.
23,
24,
25.
26,
27.
28.

Draw
Draw
Draw
Draw
Draw
Draw
Move
Draw
Draw
Draw
Draw
Draw
Draw
Draw
Move
Draw
Move
Draw
Move
Draw

Wings

29,
30.
31.
32.
33.
34.
35,
36.
37.
38.

Cargo opening

39.
40.
41,
a2.
43,
a4,
45,
46.
47.
48.
49,
50.

MORE ADVANCED 3-D GRAPHICS

Move
Draw
Draw
Draw
Draw
Move
Draw
Draw
Draw
Draw

Move
Draw
Draw
Draw
Draw
Draw
Draw
Draw
Draw
Draw
Draw
Draw

-20
-4
4
12
12
12
20
20
17
8
-8
-17
-20
-20
8

8
-8
-8
20
-20

-20
-88
-88
-36
-20
20
88
88
36
20

20
17
8
-8
-17
-20
-20
-20
-17
-8
8
17

16
8

0
-10
-20
-20
16
0
-12
-20
-20
-12
0
16
-20
-20
-20
-20
16
16

16

16
16
16
16

16
16
16

0
-12
-20
-20
-12
-12

0

0
-12
-20
-20
-12

100
127
127
90
80
64
-120
-120
-120
-120
-120
-120
-120
-120
-120
-64
-120
~-64
100
100

-112
-112
-84
-10
80
-112
-112
-84
-10
80

-64
-64
-64
-64
-64
-64
-64
64
64
64
64
64

51. Draw 20 0 64
52. Draw 20 0 -64

Fin

53. Move 0 -20 -120
54, Draw 0 -60 -128
55, Draw 0 -60 -112
56. Draw 0 -20 -84
Open doors

57. Move 20 (0 -64
58. Draw 33 -3 -64
59, Draw 40 -12 -64
60. Draw 40 -20 -64
61. Draw 40 -20 64
62. Draw 40 -12 64
63. Draw 33 -3 64
64. Draw 20 0 64
65. Move -20 0 -64
66. Draw -33 -3 -64
67. Draw -40 -12 -64
68. Draw -40 -20 -64
69. Draw -40 -20 64
70. Draw -40 -12 64
71. Draw -33 -3 64
72. Draw -20 0 64

After creating the shuttle, press "K' to save the image to disk.
Use the filename "SHUTTLE". At this point, you might want to use
the PLAY program to check the shuttle image more closely,
Remember to forget the Image Editor program ("FORGET X") before
typing READ " PLAY ". From PLAY, you can easily see the shuttle
from all angles.

The next step is to create the satellite. This is a simple shape
created with the PROFILE program. (PROFILE is described in
greater detail on pages 8-18 to 8-21 in the GraFORTH manual.)

Use FORGET to remove any other programs from the word library,
then type:

READ " PROFILE "
RUN

Answer the questions as follows:

Enter number of polygon sides : 6

MORE ADVANCED 3-D GRAPHICS 11 - 53

Enter Object File Address : 3500
Data from [KJeyboard or [D]isk ? K

Enter X,Y pair (end = "E") : 0,20
Enter X,Y pair (end = "E") : 20,0
Enter X,Y pair (end = "E") : 0,-20
Enter X,Y pair (end = "E") : E

The program will generate a small 6-sided diamond-1ike shape.
This is the satellite. As prompted, save the image to disk with
the name SATELLITE.

We now have the 3-D images needed for the simulation. The
program must be entered next., Clear the word library, then type:

TEXT EDIT

to enter the text editor. (Calling TEXT switches GraFORTH out of
graphics mode, so that scrolling in the editor will be much
faster.) Type "E" to erase the editor memory, then enter the
following word definitions. As usual, the comments are optional:

¢ SETuP
CR 132 PUTC PRINT " BLOAD SHUTTLE,A2816 "
CR 132 PUTC PRINT " BLOAD SATELLITE,A3500 “ CR
OBJERASE
0 OBJECT 2816 OBAJDR
1 OBJECT 3500 OBJADR 0 SCALE
39 19 BLKSIZE ;

: PARAM
SWAP 16 * 6400 + + (Retrieve address of parameter)
PEEK ; (& PEEK current value there)

MORE ADVANCED 3-D GRAPHICS 11 - 54

¢ FLY.IN
ERASE 0 VTAB 0 HTAB

PENUP

0 191 MOVETO 60 TURNTO

PENDOWN
63 0 DO 4 MOVE
0 OBJECT

-20 XROT 32 YROT
18 XPOS 132 YPOS O SCALE

21 0 DO

0 7 PARAM 5 + XPOS
0 8 PARAM 3 - YPOS
0 9 PARAM 1 + SCALE

UNDRAW DRAW
LOOP ;

: ROTATE1

-1 124 DO
1 ZROT
UNDRAW DRAW
-4 +L0QP
21 -18 DO
I XROT
UNDRAW DRAW
2 +LO0OP ;

¢ RELEASE
1 OBJECT 128 XPOS 66 YPOS
16 SCALE 20 XROT 32 YROT

10 0 DO
0 OBJECT

0 8 PARAM 2 + YPOS

1 OBJECT

1 8 PARAM 2 - YPOS

DRAW
LOOP ;

MORE ADVANCED 3-D GRAPHICS

1 TURN LOOP

Set position for UNDRAW)
Initialize Turtle &)
Draw outline of Earth)

(Set initial position of
shuttle)

(Fly shuttle into view:)
(Move to the right)
(
(

Move upward)}
Increase in size)

(Roll to upright position

(Tip down for better view

)

)

(Select and position satellite)

(Move shuttle down)

(Simultaneously move satel
up)

Tite

11 - 55

: DRIFT.AWAY

0 OBJECT (Select to redraw shuttle)
1 OBJECT (Select satellite)
-1 15 DO (Quickly drift away:)
1 SCALE (Decrease in size)
1 7 PARAM 3 + XPOS (Move to the right)
1 8 PARAM 3 - YPOS (Move up)
DRAW
-1 +L00P ;
: ROTATEZ
0 OBJECT (Reselect shuttle)
105 32 DO
I YROT (Pivot around)
UNDRAW DRAW
4 +L00P
-21 18 DO
I XROT (Tip down)
UNDRAW DRAW
-4 +L00P ;
¢ FLY.OUT
21 0 DO (Fly away:)
0 7 PARAM 5 + XP0S (Move to the right)
0 8 PARAM 3 + YPOS (Move down)
(

0 9 PARAM 1 - SCALE
UNDRAW DRAW

Decrease in size)

LOOP ;
: FLY.SHUTTLE
FLY.IN ROTATEL (Call each part one at a time)

RELEASE DRIFT.AWAY
ROTATE2 FLY.OUT ;

Save the program to disk using the filename "FLY,SHUTTLE"., Note
that this is also the name of the last word in the program.

A1l of the "tools" needed for the simulation are now on disk.
Since the Turtlegraphics capabilities are used to draw the
outline of the Earth, the TURTLE file must be read into memory.

Type:

READ " TURTLE “

READ " FLY.SHUTTLE *
SETUP

FLY.SHUTTLE

The shuttie flies! To run the program again, you only need to

MORE ADVANCED 3-D GRAPHICS 11 - 56

type “FLY,SHUTTLE".
Let's take a closer look at how each of the words work:

SETUP simply loads the images into memory and selects them as 3-D
objects. Notice that the satellite object is also set to O
SCALE. Since the satellite has been selected, this will prevent
it from being drawn at the first frame of the animation.

PARAM is called by later words. It reads a parameter value from
the GraFORTH Image Data Map much Tike the word FIND (discussed
above) did. However, PARAM removes two numbers from the stack,
one to select the object number, and the other to select the
relative byte for the desired parameter.

FLY.IN begins the simulation. It first clears the screen, then
uses Turtlegraphics to draw an arc along the bottom of the
screen. This is an outline of the Earth. It sets the initial
orientation for the shuttle, then uses a DO - LOOP to repeatedly
draw the shuttle while changing its scale and position. Each
parameter is updated by using PARAM to read its current value
from GraFORTH's Image Data Map, adding an offset, then resetting
the parameter.

Note that UNDRAW is being used to speed up drawing. An
interesting trade-off occurs here: The shuttle is a complicated
shape and is being drawn with a fairly large size. Both of these
contribute to slower drawing times. UNDRAW can be used to speed
up the animation, but a large blocksize is needed to cover the
object. Erasing a large area also takes time. Even though the
blocksize covers nearly the entire screen (39 19 BLKSIZE), UNDRAW

is still faster.

ROTATE1 performs two rotations on the shuttle, one after another.
The first rotation rolls the ship around the Z-axis to an upright
position. The shuttle was designed with its body along the
Z-axis so that this rotation could be done regardless of which
way the shuttle was facing. The second rotation simply tips the
shuttle down for a better view.

RELEASE causes the satellite, which is 1 OBJECT, to (magically!)
appear in the shuttle's cargo hold. The satellite then moves up
20 pixels while the shuttle moves down, 1ifting the satellite
away from the shuttle. The drawing time is a little slower here
because UNDRAW is not used. If it were used, it would have to be
called for both O OBJECT and 1 OBJECT, since calling UNDRAW
prevents the automatic erasing of only the currently select
object.

MORE ADVANCED 3-D GRAPHICS 11 - 57

DRIFT.AWAY causes the satellite to quickly drift into the
distance and disappear. Note that the shuttle (0 OBJECT) is
referenced once before the satellite is moved. This puts the
same view of the shuttle on both graphics screens, preventing
residual motion. UNDRAW is not used here, because the satellite
shape is simple, small, and therefore fast.

ROTATE2 rotates the shuttle into position for FLY.OUT.

FLY.OUT again adjusts SCALE, XPOS, and YPOS to fly the shuttle
away and out of sight.

FLY.SHUTTLE performs the entire animation by simply calling each
of the segments in turn.

This shuttle simulation program was designed to give you a better
idea of how more complicated three-dimensional animations are
implemented. We hope this removes some of the "magic" behind
creating 3-D graphics displays.

MORE ADVANCED 3-D GRAPHICS 11 - 58

I
< s 37,
'\F‘F "’2‘"’/‘ _/
2
!/
L
_FF—'-'-‘_J———‘_—‘-_\—"\-
-~ T
4‘",-‘ ~:..,-—--3
S
Lo R
1L S /”
< T {I
“\L 1._A;'- e ’r
.___L_,\ j
——

Figure 1.

Music and Sound Effects

Music and Sound Effects

As a graphics language, GraFORTH's usual emphasis lies in
creating fast high-resolution animations. One feature that is
frequently overlooked is GraFORTH's ability to produce music and
sound effects using a built-in synthesizer. In this column we'll
explore GraFORTH's sound capabilities more closely, with examples
of sound effects and a song generating program.

The music synthesizer is controlled by two GraFORTH words, NOTE
and VOICE. NOTE actually plays the notes and VOICE determines
the tone quality of the notes played.

NOTE removes two numbers from the stack, for pitch and duration.
Greater pitch numbers produce lower notes, and greater duration
values increase the time the note plays. Both pitch and duration
numbers can range from 2 to 255. For example,

255 255 NOTE
plays a low note with a long duration.
50 2 NOTE

plays a very short, medium-pitched note. In fact, the note is
almost too short to be recognized as more than a "click".
However, curious effects can be obtained by repeating short
notes:

25 0 DO 50 2 NOTE LOOP

By experimenting and choosing appropriate values, music can be
played. The following word definition plays the first phrase
from "Twinkle Twinkle Little Star":

: TWINKLE

104 100 NOTE
104 100 NOTE
69 100 NOTE
69 100 NOTE
62 100 NOTE
62 100 NOTE
69 150 NOTE ;

Notes played using the NOTE command can be given any one of a

MUSIC AND SOUND EFFECTS 11 - 60

number of tone qualities, or voices, with the GraFORTH command
VOICE. VOICE removes a number from the stack to select the tone
quality which will be used for subsequent NOTE commands. Valid
voice numbers range from -6 to 2:

-6 VOICE to -1 VOICE produce notes with constant volume. Each
voice has a different volume and tone quality. -1 VOICE produces
the loudest note, with the "flattest" sound. (VOICE values less
than -2 sometimes produce inconsistent volumes for notes of
different pitches, and are more suitable for sound effects than
music.)

0 VOICE through 2 VOICE produce notes with varying volumes. A
note played with 0 VOICE begins loudly, then dies away. 1 VOICE
causes a note to increase in volume, then decrease again. 2
VOICE plays a note with an increasing volume.

When GraFORTH first starts up, 0 VOICE is automatically set. You
might want to try the TWINKLE routine after setting various
voices:

-1 VOICE TWINKLE
-3 VOICE TWINKLE
2 VOICE TWINKLE

On page 9-4 of the GraFORTH manual is a table of musical notes
and their corresponding pitch numbers. This table was used to
determine the pitch numbers for the above TWINKLE example. Note
that the numbers 104, 69, and 62 refer to the notes C, G, and A
respectively.

For short musical phrases, manually looking each pitch up in a
table is satisfactory. For longer tunes, however, this can
quickly become tedious. The COMPUTE.NOTES example in the manual
solves this problem by creating a pitch table in the Apple's
memory. The table has 48 entries spanning 4 octaves. By
indexing into the table, the notes can now be represented with
the numbers O through 47,

The examples on page 9-5 in the manual are inconsistent. Note
that the definition of GETPITCH and the first example have
GETPITCH print the pitch value on the screen. Subsequent
examples do not print the value, but leave it on the stack to be
used by the NOTE command. The definition and the first example
should be changed to agree with the other examples. Here is the
correct definition for GETPITCH:

: GETPITCH PITCH PEEK ;

MUSIC AND SOUND EFFECTS 11 - 61

(PITCH and COMPUTE.NOTES must have already been compiled and
COMPUTE.NOTES executed for these examples to work.) GETPITCH can
be used to convert a note number into a pitch value to be used by
the NOTE routine. This example (correcting the example in the
manual) prints the pitch value for note number 3, which is a C in
the first octave:

Ready 3 GETPITCH .
209

Here the pitch value is used to actually play the note:

Ready 3 GETPITCH 128 NOTE

(The note sounds.)

The following word definition is equivalent to the above TWINKLE
routine, except that GETPITCH is used to retrieve the pitch value

for each note. The actual note names are included in the
comments:

: TWINKLEZ

15 GETPITCH 100 NOTE (C, octave 2)
15 GETPITCH 100 NOTE

22 GETPITCH 100 NOTE (G, octave 2)
22 GETPITCH 100 NOTE

24 GETPITCH 100 NOTE (A, octave 3)

24 GETPITCH 100 NOTE
22 GETPITCH 150 NOTE ; (G, octave 2)

The NOTE command is designed for playing notes, but has no
built-in capacity for playing rests of a similar duration. The
following word, REST, removes a duration number from the stack,
and simply waits for this amount of time. The durations used are
nearly identical to those used by NOTE:

: REST
45 * 0 DO LOOP ;

This example will play two quarter notes of “C" in the first
octave, separated by a quarter note rest:

3 GETPITCH 64 NOTE 64 REST 3 GETPITCH 64 NOTE
Music Playing Programs. As you can guess by the TWINKLEZ

example, playing entire songs by entering a long string of NOTE
commands can take a lot of time and use a lot of memory. What is

MUSIC AND SOUND EFFECTS 11 - 62

needed is a program that allows you to enter songs in a more
convenient form, optionally save them to disk, and play them at
any time. The easiest way to enter notes would be to actually
type in the note names as text, but this text must at some time
be converted into numeric pitch and duration values for the NOTE
command. The numeric values also use less memory.

The programs in Listings 1 and 2 use a two-step approach for
generating and playing music. Using the first program,
COMPILE.SONG, you can enter note names and durations from the
keyboard, or have the program read the commands from a textfile
on disk. COMPILE.SONG converts these lines into a list of note
numbers in memory. This song list can be saved back to disk as a
binary file. The second program, PLAY.SONG, reads the values
from the list and calls NOTE repeatedly to play each note in
turn. In addition to playing notes, COMPILE.SONG and PLAY.SONG
also allow you to play rests and change voices during the song.

The two-step technique used by these programs is similar to the
method used by the 3-D PROFILE program. PROFILE converts a set
of X,Y points in a text format into a list of 3-D image values in
memory. This image is then used by GraFORTH's 3-D routines to
actually draw a 3-D object. This similarity should help clarify
the way these music programs work.

Using the GraFORTH text editor (or another DOS compatible text
editor, if you have one), enter the program in Listing 1 into
memory, and save it to disk with the name "COMPILE.SONG". (The
COMPILE.SONG file is somewhat long. If you are using the
GraFORTH text editor without a language card or RAMcard, you will
need to adjust the editor "program position" to allot enough
memory for the file. Enter the editor, type "P" to select
Program Position, type "Y", then enter a new position of 34000.
This will provide enough room for the COMPILE.SONG file.)

After COMPILE.SONG is saved to disk, enter the program in Listing
2, saving it as "PLAY,SONG".

Here are instructions for using these programs:

To create a new song file, first load COMPILE.SONG into memory
and run it:

READ " COMPILE.SONG "
RUN

MUSIC AND SOUND EFFECTS 11 - 63

On the screen will appear:
GraFORTH Song Compiler
Enter Song File Address : 2816

This question determines where the numeric song list will appear
in memory. Press Return to accept the address of 2816, or enter
a new address if desired. Next you will see:

[KJeyboard or [D]isk?

You can enter the formatted music lines from the keyboard, or
have the program read the lines from a textfile on disk. For
this example, press "K" for keyboard entry.

Now you are asked to enter a music command:
Music Command (E=end)

You can enter commands to play a note or rest, change voices, or
end the song., Here is the format for a note command:

. (optional spaces)

. <octave number>
(optional spaces)
<note name>

<at least one space>
duration value>

OB WM

The octave number corresponds to the octave numbers in the table
on page 9-4, ranging from 1 to 4. The note name is a letter from
A to G. You can also add "#" to the letter for a sharp, or "“/"
for a flat. The duration value is simply the number used by NOTE
for duration. Here are some sample note commands you can enter.
Notice how each command follows the above format. (Entering
these)example entries will produce the "Shave and a haircut"
tune,):

Music Command (E=end) : 2C 120
Music Command (E=end) : 1G 40
Music Command (E=end) : 1F# 40
Music Command (E=end) : 1G 40
Music Command (E=end) : 1A/ 120
Music Command (E=end) : 1G 120

Rests are entered by typing an "R", followed by the desired rest
value. Here is the format, with the next entry for the example:

MUSIC AND SOUND EFFECTS 11 - 64

R <duration value>
Music Command (E=end) : R 120

The voice used can be changed by typing a "V" and the new voice
number. Here is the format and example entry:

V <voice number>
Music Command (E=end) : V-1
The tune is finished with the following entries:

Music Command (E=end) : 2B 60
Music Command (E=end) : R 60
Music Command (E=end) : 2C 60

The command to end the song {as you might have guessed from the
prompt) is the letter "E". This is required as the last entry of
the song.

Music Command (E=end) : E

The program will inform you that you entered 12 lines, which have
been converted into a number 1ist 24 bytes long. You will then
be asked if you want to save the list to disk. For this example,
press "Y*. You will be prompted for a filename. Type “SHAVE"
and press Return. This disk will whir as the list is saved as a
binary file named SHAVE, and the program will end.

COMPILE.SONG can also read music commands from a textfile on
disk. To compile songs using this method, first use the GraFORTH
text editor to create a list of music commands, then save them as
a textfile. When running COMPILE.SONG, select the [D]isk option,
then enter the filename of the textfile. The program will read
the commands from the file and compile them as if they were
entered at the keyboard. The advantage to this technique is that
a music textfile can be modified or corrected using the text
editor, then recompiled into a numeric song list. Keyboard
entries must be reentered every time.

The program also includes error checking, If it can't interpret
a line as a valid music command, or if a number is out of range,
an error message will be printed. This message includes the line
number where the error occurred and a display of the illegal
line. The program stops compiling lines when it finds an error.
The program will also exit if you press CTRL-C, or CTRL-C and

MUSIC AND SOUND EFFECTS 11 - 65

Return, for an input.

Assuming no errors occurred, a sample song list is now in memory
beginning at location 2816, and also on disk. To play the song,
first load PLAY.SONG into memory:

READ " PLAY.SONG "

Place the starting location of the song list (2816) on the stack,
then execute PLAY.SONG:

2816 PLAY.SONG

The "Shave and a haircut" tune should play. (Whenever a song is
playing, pressing any key will immediately stop the song.)

With the song list saved to disk, the song can be loaded into
memory and played at any time. Simply BLOAD the song list into a
free area of memory, read PLAY,SONG onto the word library, and
call it with the starting address of the song on the stack.

A list of COMPILE.SONG music commands for the final part of
“Stars and Stripes Forever" can be found in Listing 3. This
provides an example of a longer song generated with these music
programs,

Song List Format. In last month's column we described the format
for three-dimensional images in memory. In the interests of
equal time, we'll discuss the song list format here.

Each note entry in the list is stored as a pair of bytes in
memory. The PLAY.SONG program reads each byte pair in turn and
determines whether each byte is zero or nonzero. The function
performed (Note, Rest, Voice, or End) is determined by this test
as follows:

1st byte 2nd byte Function

nonzero nonzero Note
zero nonzero Rest
nonzero zero Voice
zero zero End song

For the Note function, the first byte contains the pitch value,
and the second byte is the duration. The nonzero byte for Rest
determines the duration of the rest. For the Voice function, the
nonzero value is 7 greater than the voice to be selected. Adding
7 guarantees that the voice number in memory will be nonzero.

MUSIC AND SOUND EFFECTS 11 - 66

The PLAY.SONG program subtracts 7 to convert it back to a valid
voice number. A pair of zeros flags the end of the song.

Watching the Keyboard. There is one aspect of the GraFORTH NOTE

command that should be mentioned here. While playing a note, the
word NOTE also looks at the keyboard. If a key is pressed while

a note is playing, the note will be cut short. Try executing:

100 255 NOTE

and press a key before the note would normally finish. The note
will end abruptly. This feature was included to give users the
ability to stop the sound without having to wait for the note to
end. There is one minor drawback, however: If a key is pressed
before the note begins, the NOTE routine will still sometimes
click the speaker for a short moment. For a demonstration of
this effect, enter the following line and press a key while the
first note is still playing:

10 0 DO 100 255 NOTE LOOP

The "flutter" noise is caused by the subsequent 9 notes all
clicking the speaker in turn. While this type of effect can
sometimes be desirable (it is used purposely in one of the sound
effects described below), it is usually unwanted. Two solutions
are possible: Either stop playing notes if a key has been
pressed, or clear the keyboard after every note. This second
approach continues the string of notes, cutting only one note
short at each keypress. Here are examples of both techniques.
Try pressing a key while running each:

10 0 DO GETKEY 128 < IF 100 255 NOTE THEN LOOP
10 0 DO CLRKEY 100 255 NOTE LOOP

The NOTE routine itself can be directly modified so that it
either ignores keypresses altogether, or always acts as if a key
has been pressed. In game applications with a lot of sound
effects, ignoring keypresses can make the sound “"cleaner". (Once
this modification is made, you can make the change permanent if
you want by saving the GraFORTH system back to disk with
SAVEPRG.) To force NOTE to ignore keypresses, type:

24686 24687 POKEW

MUSIC AND SOUND EFFECTS 11 - 67

To cause NOTE to always behave as if a key has been pressed,
type:

24688 24687 POKEW
NOTE can be returned to normal by entering:
-16384 24687 POKEW

Sound Effects. The GraFORTH synthesizer provides an interesting
and versatile tool for creating sound effects. On one hand, it
cannot be expected to duplicate the all of the sounds generated
by custom-written machine language routines. (In other words, it
may be difficult to create a sound reminiscent of an opera singer
in bed with a cold on a foggy London evening....) To be more
specific, each NOTE command plays a note with a constant pitch
for a given amount of time, with a preset voice quality. On the
other hand, this format still allows a great deal of flexibility,
and the GraFORTH Tanguage helps make the synthesizer very easy to
use. MWith a little experimentation, a wide variety of sounds can
be readily produced.

Below are some sample sound effects that can created with
GraFORTH. This list is not at all comprehensive, but should be
considered as a starting point for further experimenting. Notice
that DO - LOOPs are used extensively. By substituting a few
values, the sounds can change tremendously. A couple of the
routines use "illegal" pitch and duration values. By changing
the voice numbers, these routines can be made to behave very
strangely. The word names we used are arbitrary; you may prefer
other names for these sounds. (Our thanks to Max McKee of
Ashland, Oregon for sound effects ideas.)

This is a short laser shot:

: SHOT
0 -2 DO
I VOICE
24 10 DO
I 3 NOTE
LOOP
LOOP ;

This effect (and others) can be shortened simply by stripping off
the outside DO - LOOP:

MUSIC AND SOUND EFFECTS 11 - 68

: ORBIT
4 000
-6 0 DO
I VOICE
30 80 DO
I 2 NOTE
-1 +L00P
-1 +L0OP
LOOP ;

: RADIATION
4 00D0
0 -6 DO
I VOICE
38 24 DO
I 2 NOTE
LOOP
Loop
LOOP ;

: ROBOTISH
4 0 DO
-3 00D0
I VOICE
60 50 DO
I 3 NOTE
LooP
-1 +L0OP
LOOP ;

: FLIGHT (THRU SPACE)
4 0 D0
3 -6 DO
I VOICE
55 44 B0
I 5 NOTE
LOOP
LOoOP
LOOP ;

¢ SPEAK { ROBOT SPEAKING)
3 -6 DO
I VOICE
55 44 DO
J 5 NOTE
LOOP
LOOP ;

MUSIC AND SOUND EFFECTS

11 - 69

: PHONE.BELL
2 VOICE
30 0 DO

2 7 NOTE
LOOP ;

¢ GLISS
75 100 DO

I 4 NOTE

I 19 - 4 NOTE
-2 +L00P ;

¢ CHIRPING.BIRD
9 0 b0
0 -2 D0
I VOICE
14 8 DO
I 3 NOTE
LOOP
Loop
LOOP ;

: WARNING.SIREN
9 000
0 -2 D0
I VOICE
34 20 DO
I 4 NOTE
LooP
LooP
LOOP

Try pressing a key while running this next routine.

The sound is

rather obnoxious! You can duplicate the sound without pressing a
key by first modifying the NOTE routine as described above to act

as is a key has already been pressed.

: LOUD,RACKET
10 4 DO
255 230 DO
J 2 NOTE
255 2 NOTE
30 10 DO
I 2 NOTE
Loop
LOOP
LOOP ;

MUSIC AND SOUND EFFECTS

11 - 70

This routine is similar to the inside loop of the above routine.

You can press a key or modify the NOTE routine.

: GUN
255 230 DO
4 2 NOTE
255 4 NOTE
30 10 DO
I 4 NOTE

: SPACE.SHOT
0 VOICE
50 D0
75 5 DO
I 1 NOTE

: STATION (MOVING SPACE STATION)

30 10 DO
30 10 DO
I 1 NOTE
J 1 NOTE
LOOP
LOOP ;

: FLUTTER
20 0 DO
240 2 NOTE
220 3 NOTE
LOOP ;

. ZIPLUP
4 40 DO

I 6 NOTE
-2 +L00P ;

MUSIC AND SOUND EFFECTS

11 - 71

Listing 1 - COMPILE.SONG

2816 VARIABLE FILE
VARIABLE POINT
VARIABLE COUNT
VARIABLE DISK
VARIABLE OCTAVE
VARIABLE PITCH
VARIABLE DURATION
VARIABLE AT.END
VARIABLE GOT.ERROR

50 STRING PITCHES
50 STRING NAMES

: SET.UP

24870

48 0 DO
DUP 100 / I PITCHES POKE
Dup 18 / -
DUP 1655 / -

LOOP DROP

0 NAMES ASSIGN " A A#B C C#D D#E F F#G G#A B/B C D/D E/E F G/G A/

¢ GETPITCH
PITCHES PEEK ;

: CTRL-C?
131 = IF ABORT THEN ;

: PUT.END
CLOSE

0 POINT POKEW
1 -> AT.END ;

: ERROR
AT.END O = IF
1 -> GOT.ERROR
PUT.END
CR PRINT " ERROR - LINE "
COUNT . CR
PAD WRITELN CR
THEN ;

MUSIC AND SOUND EFFECTS

11 - 72

¢ BEFORE

0 -> AT.END 0 -> COUNT
0 -> GOT.ERROR

HOME NORMAL DECIMAL CR

PRINT " GRAFORTH SONG COMPILER "

CR CR

PRINT " ENTER SONG FILE ADDRESS :

26 HTAB PAD READLN PAD PEEK CTRL-C?

PAD GETNUM

VALID IF -> FILE ELSE DROP THEN

3 VTAB 26 HTAB FILE . CLEOL CR

CR PRINT * [KJEYBOARD OR [DI]ISK?

GETC DUP CTRL-C? DUP PUTC CR CR

196 = IF
1 -> DISK
CR PRINT " FILENAME : "
PAD READLN PAD PEEK CTRL-C?
CR 132 PUTC PRINT " OPEN "
PAD WRITELN
CR 132 PUTC PRINT " READ "
PAD WRITELN CR

ELSE 0 -> DISK

THEN

FILE -> POINT ;

: SKIP.SPACES
BEGIN

DUP PEEK 160 =
WHILE

1+
REPEAT ;

: PUT.REST
1 + SKIP.SPACES GETNUM
VALID IF

DUP DUP 1 > SWAP 256 < AND IF

0 POINT POKE
POINT 1 + POKE
ELSE DROP ERROR
THEN
ELSE DROP ERROR
THEN ;

MUSIC AND SOUND EFFECTS

" FILE

11 - 73

: PUT.VOICE
1 + SKIP,SPACES GETNUM
VALID IF
DUP DUP -7 > SWAP 3 < AND IF
7 + POINT POKE
0 POINT 1 + POKE
ELSE DROP ERROR
THEN
ELSE DROP ERROR
THEN

¢ PUT.NOTE
DUP GETNUM -> OCTAVE
VALID 0 = IF ERROR THEN
OCTAVE DUP 1 < SWAP 4 > OR IF ERROR THEN
1 + SKIP.SPACES DUP PEEKW
PUSH 0
BEGIN
DUP DUP NAMES PEEKW I <
SWAP 48 < AND
WHILE
2 +
REPEAT
POP
DUP 48 = IF ERROR THEN
DUP 24 >= IF 24 - THEN
2 / DUP 0 < IF ERROR THEN
OCTAVE 1 - 12 * +
GETPITCH -> PITCH
2 + SKIP,SPACES GETNUM -> DURATION
VALID O = IF ERROR THEN
DURATION DUP 2 < SWAP 255 > OR IF ERROR THEN
PITCH POINT POKE
DURATION POINT 1 + POKE ;

MUSIC AND SOUND EFFECTS

: DURING
BEGIN
COUNT 1 + -> COUNT
DISK 0 = IF
PRINT " MUSIC COMMAND (E=END) :
THEN
PAD READLN
PAD PEEK CTRL-C?
PAD SKIP.SPACES
DUP PEEK 210 = IF PUT.REST
ELSE DUP PEEK 214 = IF PUT.VOICE
ELSE DUP PEEK 197 = IF PUT.END
ELSE PUT.NOTE
THEN THEN THEN
POINT 2 + ~-> POINT
AT.END
UNTIL

: AFTER
CR COUNT ., PRINT ™ LINES, "
POINT FILE - , PRINT " BYTES *
CR CR PRINT " SAVE TO DISK (Y/N) ? "
GETC DUP PUTC 217 = IF
CR CR PRINT " FILENAME : "
PAD READLN PAD PEEK CTRL-C?
CR 132 PUTC PRINT " BSAVE "
PAD WRITELN
PRINT " ,A " FILE .
PRINT " ,L " POINT FILE - . CR
THEN
CR CR ;

: COMPILE.SONG

SET.UP

BEFORE DURING

GOT.ERROR 0 = IF
AFTER

THEN ;

MUSIC AND SOUND EFFECTS

11 - 75

Listing 2 - PLAY.SONG

VARIABLE END

: SET.END
1 -> END
DROP DROP ;

: REST
45 * 0 DO LOOP
DROP ;

: SET.VOICE
DROP
7 - VOICE ;

: PLAY.SONG
0 -> END
BEGIN
GETKEY 128 <
IF
DUP PEEK
OVER 1 + PEEK

OVER SGN 2 * OVER SGN +

CASE:
SET.END
REST
SET.VOICE
NOTE *
THEN
2 +
ELSE SET.END
THEN
END
UNTIL
DROP ;

MUSIC AND SOUND EFFECTS

Listing 3 - Stars and Stripes Forever

Vo

2F 80
2E 60
2F 20
2D 20
R 20
2F 80
2G 40
26G# 40
3A 40
38/ 40
38 40
3C 40
R 40

vV -2
3C 80
3C 80
38/ 40
3A 40
3A 80
2G# 40
3A 40
3A 200
R 40
2G# 40
3A 40
3A 80
2G# 40
3A 40
3C 80
3A 40
3C 40
38/ 160
2G 80
R 40
V-1

2G 40
2G 80
2F# 40
2G 40
2G 80
2F# 40
2G 40
3B/ 240
3A 40

MUSIC AND SOUND EFFECTS

11 - 77

2G 40 R 20
3A 40 vV -4
3C 80 2F 40
3C 40 vV -3
3D 80 26 40
3D 80 vV -2
2G 160 3A 40

V1 3C 20
3C 80 R 20

38/ 40 2C 40
3A 40 2D 40
3A 80 3A 40
2G# 40 2G 160
3A 40 2F 40
3A 200 R 40

R 40 2F 40

3C 20

MUSIC AND SOUND EFFECTS 11 - 78 MUSIC AND SOUND EFFECTS 11 - 79

