

Downloaded from www.Apple2Online.com

Inside Pinpoint

The Technical Reference Manual
for the Pinpoint Toolkit

by
Brian Skiba « Carlton Sue ¢ Mark Wieder

L

Pinpoint Publishing
Emeryville, California

o

Limitation on Warranties and Liability

Even though Pinpoint has tested the software described in this manual and reviewed its contents, neither Pinpoint
Publishing, Virtual Combinatics, Inc., nor its software suppliers make any warranty or representation, either express
or implied, with respect to this manual or to the software described in it, its quality, performance, merchantability,
or fitness for any particular purpose. As a result, this software and manual are sold “as is.” The purchaser assumes
the entire risk as to their quality and performance. In no event will Pinpoint, Virtual Combinatics, Inc., or its
software suppliers be liable for direct, indirect, special, incidental, or consequential damages resulting from any defect
in the software or manual, even if they have been advised of the possibility of such damages. In particular, they
shall have no liability for any programs or data stored in or used with Pinpoint products, including the costs of
recovering these programs or data. If you think you bought a defective copy of Pinpoint software, send the disk back
to us and we’ll send you a new disk, free. Apple Computer, Inc. makes no warranties, either express or implied,
regarding the enclosed computer software package, its merchantability or its fitness for any particular purpose. The
exclusion of implied warranties is not permitted by some states. The above exclusion may not apply to you. This
warranty provides you with specific legal rights. There may be other rights that you may have which vary from
state to state.

Copyright Notice

This manual and the software (computer programs) described in it are copyrighted by Pinpoint Publishing and
Virtual Combinatics, Inc., with all rights reserved. Under the copyright laws, this manual or the programs may not
be copied, in whole or part, without the written consent of Pinpoint or Virtual Combinatics, Inc., except in the
normal use of the software to make backup copies. Source code for various components of this product are included
for use by the owner. Modifications to source code included with this product are both encouraged and appropriate.
The user is free to use this source code in personal and commercial products. These exceptions do not allow copies
to be made for others, whether or not sold. Under the law, copying includes translating into another language or
format. You may use the software on any computer owned by you but extra copies cannot be made for this purpose.
For some products, a multi-use license may be purchased to allow the software to be used on more than one
computer owned by the purchaser, including a shared disk system. Contact Pinpoint Publishing for more
information.

ProDOS and BASIC.SYSTEM are copyrighted programs of Apple Computer, Inc., licensed to Pinpoint Publishing
and Virtual Combinatics, Inc. to distribute for use only in combination with the Pinpoint Toolkit. ProDOS and
BASIC.SYSTEM shall not be copied onto another disk (except for archival purposes) or into memory unless as part
of the execution of the Toolkit. ProDOS and BASIC.SYSTEM shall not be used by any other program.

Copyright © 1986 Pinpoint Publishing and Virtual Combinatics, Inc. All rights reserved.
Published by Virtual Combinatics, Inc.

dba Pinpoint Publishing

5901 Christie Avenue » Emeryville, CA 94608

PO Box 13323 « Oakland, CA 94661 = (415) 654-3050

Telex 245-8579 » CompuServe 76244,123 « Delphi and MCI: PINPOINT

Pinpoint and Virtual Combinatics reserve the right to make improvements to this manual and software described in
it at any time without notice. Pinpoint and Virtual Combinatics cannot guarantee that you will receive notice of a
revision to the software described in this manual, even if you have received the product and returned a registration
card received with the product. You should periodically check with your authorized Pinpoint dealer.

First Edition
Program Authors: Brian Skiba, Carlton Sue, and Mark Wieder
Documentation Authors: Brian Skiba and Gerry Villareal
Technical Editor: Mate Gross
Copy Editor and Desktop Publisher: Mary Sanichas

Trademark Acknowledgements

Pinpoint, Point-to-Point, Pinpoint Apple Ile Upgrade Kit, Pinpoint RAM Enhancement Kit, Pinpoint RAM
Switcher, Pinpoint Printer Enhancement Kit, Micro Cookbook, InfoMerge, RunRun, and Pinpoint Toolkit are
trademarks of Pinpoint Publishing and Virtual Combinatics, Inc. Apple, Apple II, Apple Ilc, Apple Ile, Enhanced
Apple e, Apple Writer, ImageWriter, Apple Memory Expansion Card, UniDisk 3.5, Apple PASCAL, ProDOS,
Macintosh, BASIC.SYSTEM, and AppleWorks are trademarks of Apple Computer, Inc. MICOL BASIC is a
trademark of MICOL Systems. KYAN PASCAL is a trademark of KYAN Software. All other trademarks of
products mentioned in this manual are acknowledged.

Table of Contents

Preface
24 Hour Toll Free Order Deskccooiiiiiiiiiiiiinniiiiiiiiiiiiiniciicneenes vii
About Inside PINPOINLcccooiiiiiiiiiiiiiiiieiiiiiiiiiieniierieenenanenananss.. Vil
Programming Conventionsc.ccoooiiiiiiiniiniiinininniiiiinnans viii
ASSUIMPLIOMS Looiniiiiiitiiiiien it eiieeetiereteneressenrnaaeesansereaencssncnenesns viii
Product SUPPOTt ...ttt eeae e iir e e aieseaaenaeanaas viii

Chapter 1: The Pinpoint Toolkit

AN OVEIVIEW (. ooiiiiii i et ean e tie st e ieae st e e sas s eeneas, 1.1
Building DesKktop AcCCESSOTIESccvviiiiiiiiiiniiiiiiniiniiiiiaen. 1.2
How this Manual Can Help ..., 1.2
Getting the Toolkit Readycccooviiiiiiiiiiiiiiiiii i 1.2
THE DIESKS «.ouininininiieeii ettt r e e et e e et e et ees b anenaasanas 1.3

Chapter 2: The Pinpoint Internal Architecture

ADOUL ThiS CHAPLET .o soncmmanns suseas s ssummssess Smeian S50 Swsms v Sy 2.2

A Technical OVErVIOW ... cciivevouminssms sowsins sows aoumens sovs camvmss sews soumss savs 22
Open ArChITECTUNe « s s s im5.0m s £ 55,5508 54550608 5056 SRR S48 RRRE3 2:2
How PInpoint WOTKSv.uuiuieieiiiiiieiaireiteireeieneieneenaneenenenreneenens 2.3
The Dispatcher Function Libraryc.coooiiiiiiiiiiiiiiiiiinnn. 2.4
How the Dispatcher WOrKSc.coiiiiiiiiiiiiiiiiiiiiiiiiin e, 2.6

Dispatcher Callso 2.7
OPEN Gl s sus somsmwssmuimmasms ssussssss S50 o5 5550 Vs 55 a5 Sesmis S5y o9 2.8
CLOSE Callis s cnvmns swns sosmsms svsn s 5555 555 556 5555555555 080705033 5955 80RER80008 29
BLOAD CARIL :ics 00 560 5 500 50..60.5.555 560 5 5.0 50008 14008 550,565 6 645§ 590,545 6.5 6 50,8 6568 6.8 5 2.10
READ CAIL . o ettt ettt e 2.11
WRITE Call...c.niiie i ettt ea et ee e e e 2.12
GETPREFIX Call.......cviiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiiiniin e neananeens 2.13
GETVOL Cll. cxvvssmvsmsnssamans ssmvsmmssssssmrmsusi sorss s svs susssus s sss o 2.14
DESTROY Call.. o vosnwmmmunumnmumsns cvumansmms £5susss 555 vy i858 5603 ovevs SResns 2.15
FREEPAGE Galli: s e s sus s iuus 055 2005500 00555.065 68 538 5408 S50 5568 S8 4655 0695 & 2.16
MLICALL €all.....cciiiniiiii ettt eeeve e e ere et en et esetanencasiesasninen 2.17
BASCALC CALL c..vutiiniiiaiiieieetee e ree e e reeneneeeeaeetenenseasaaensns 2.18
PUTSCRN Call...cciiiiiiin i i e e 2.19
GETSCRN Call....eciniiininiiiniiin et ceeiieeeneeereresaensneseneinessueiesss 2.20
INVERT CAlL. ;cun suumvmnmnss svnsmns snensnasons w4 om0 auuess 55s oussasss 568 sosmas 2.21
PROTECT &Ll s 555 v s 650585 6605 508008 o e emibm % 54558 6475 5505 678505084 5475 6083 60184 222
CAPTURE Call.....oniniiniiiiiiiiiiiii i e 2.23
DRAWCALL ...ttt ittt ettt be et e e n e en e 2.24
XDRAW Call.. ettt it ieiaieteareeeeentenceaerecneneneennaencnsnsaaennnnn 2.25
PICK €Ak covs cvwmunsimns amwnvms smmemmssmms sasmsssivs Sen. a0 899s Souwu et S9Rasessmss o 2.26
STOR Callir s e 0 st 555,557 2508550 5505 5605 5,005 6585 55706658 5505 35055, 805 0.6 408 5508 Sk 5650 2.27
GETKEY Call. ..ottt ittt et et e ae et e e e e eneaes 2.28
TOBUFF Call..oueuenieiiiieiit ittt ie e et ee e eneneeeereaaneneneesreanenesaans 2.29
MMU Call...iuitiniiieiiiiiiiii it r s et r e et enaasasarnenresennens 2.30

PRLIBACALL s:ovs smowas swa smonmas s semnn sumnsisn 2565 5 Sus Samssss S Revisis 29 s 2.31

Allocating the Printer Library..........occeiiiiiiiiiiiniiiiiiiiiniiniineieeeeeeananns 2.31

PRTINIT Call ...uuivviiiiiiiiiiiiiiiiii e e eeeeesane s e seneannne 2.31
PRTCLOS Call c.uvivniiniiniiiiniiiiiiiieiniine et ssnsensansnnssnennannns 2.32
PRTWRITCAl .. cocvcnsss wunwsns veussnsssns swammamasss sassms 58 seamssssame g o 2.32
PRTCMD Gall ceswssnsssns suummne sussmassmss svansas 555243 5555 558 5508 Smmn s3h 850045 2.32
PRTSTAT Call ..c..iiiiiiiiiiniineiecreerneeerrnieernereeennersnsanesnnssnns 233
GRLIB Call.......uviuiiieniiiiiiiiiiii it eatienecreesnsanesneseannnsessnsnns 235
VERSIONUM Call....iuuiiiiiiiiiiniiieeineennerinetiesensernnsrnessnernessnssnnesnnns 2.36
ERRBELL 8l v e ssmosonsenies ssiumss sapmsnass sisi Sospmmsnsvass 557 5565 S5 s 2.36
CLOCKOK Call. oo svmminmmams smmvsenssssamssnss 5o oo 0556 3555 8555 58 5988 5558 7055.504 475 2.36
EXTT Call:. nms sawwn i 555 8 550 555,500 64555, 50.0 5908 v oo saenmuas vonsonnsass voamesnesones 2.36
Chapter 3: RunRun
Introducing RuUnNRUNccoooiiiiiiiiiiiiiiiiiiiiiininrrieereeree s e anees 3.1
Starting Up:RURRUIM. oo vsmssmsunsmsisessassns sosmasasies 5o awvm s oasass su s95a i 3.2
The RunRun Desktop..........cccevviuniniiiiiiiiininieciiccennennennn. eeeeenenians 32
Moving About the Application List Window..........ccccceeeuieiiniiiinenniannnnnns 33
The Command Bar..........cvuiiiiiiiiiiiiieeiiiiiieiiieeeieeereerreenesnsneenesnns 3.3
The Accessory Pull-Down MenU.......c.eeuieeiniiienerniierneieenenesnenens [Ee— 33
The File Pall-DoWn MEN. . usssmsssssns sossnssies s5ases susamnsns i sansammss 34
CAtAlOg Of FIlES:vuvunmvmsmsmmmamnss sessnes s Saavas 4555 5o 5405 5555 655 366 anmnndiodoorane 3.5
Sizing the Catalog Window..........oiucieiienreiianiretarinneteeieeternereernsannans 3.6
Dragging the Catalog WindoW.......ccceiiiiniuiiiiiiininiieiienreeseenenessensenes 3.6
DEVICE SEIECHOM. 11vuivviiiiiuiiiriiriretsenetersiirniersiesressessestensesaennsnnenes 3.6
The Application List — Adding an Applicationcccccuvvnnen 3.6
Running an, APpPLCHHON. ..«sssununssssssssssssssmms saneses dss Sawas saas a9 595 i 4 3.7
Modifying an ApPHCAtION.cuiiuiiuiintiariniiiiiiniiiienareeenaneenaannannens 3.8
Removing an APPHCAtION.ccuviuiinimimiruinienieiiienaenerecneerneaaenraeenraens 3.8
Quitting RUNRUN.uvviiiiiiiiiiiiiiiiiciiiieeiiisen et creeternsaneresnsansannes 3.8
Running Accessories Within ACCESSOTIES. .. .uvuuvrviririrrirriieinirrineserienensenns 3.8
Installing RUDNRUNcooiiiiiiiiiiiuiiieiiiieiiieiereeriaeternessesnsaneanens 3.9
Partitioning ApPPIEWOTrKScoiiiiiiiiiiiiiiiiiiiiiiiieiieieeeeieeeeneanns 3.9

Chapter 4: General ProDOS Tools

ADout this CRAPLErciiiiiiiiiiiiiiiiiiiiiiii e airteerteteteeneaernssennens 4.1
The ProDOS Filer Accessory .
Invoking the ProDOS Filer ACCESSOTY. ... ccuvvuiiiienennruiinneniencenesnsnsennens 4.2
The Main FIler MenU......cccoiiiiiiirurnieiirnnereniirneeeesarnsssnsssensecssassenes 43
The File Command Ment. ...ouuvuuns s sonnsns somwsmssis sonsass suns s5vaas sooe sasans 43
The Volume Command MenU.......oceeiiiiiiriiniiinenereiiinieriineeneaenenenenes 4.3
Configuration Defaults........ccoouviiiiiiiiiiiiiiiiiiiiiiieiniiee e eaeen 43
Quitting the FIler ACCESOTY.....c.iiuiiuminuiiinrieirrniernernieennrrensnesnneenneaes 3
SOME POSSIDIE USES. .. cciuiinirinrearairreetenesesesenreessiesssessseessescsnsnsnes 4.3
The PrintSCreen ACCESSOTYccoiuiieieereiiiietariaetierscenssnernsracanssosnnond 4.4
Running the PrintScreen ACCeSSOIY. ... c.viiviriiiniiiiiairieiiiiiriinaneeaesiesennns 44
Print QUality.....cieuieeeiineeiiiieniotieieieieriiieteetereeernereeaensrnenernsnererens 4.4
Prnt MOGE. ... cuiniiiiniiiiiiiiiinit ettt taseneeiaraetnennssnsnnsnasnnsanansans 4.4
SOUICE COUE. ..ouiuiiiiuienreeiiiritieeeareataeertnreasenasnaeassreosseseanssessseesnons 4.5
DiSK-Based DALY .o.vuuovsamsvvssmnsiesss s sesmuessasmes e mamsss s swamimss 4.6

Chapter 5: Tools of the Trade

About this Chapterc.oiuiiiiiiiiiiiii ettt e e e e e aens 5.1
The ACCESSOTY MOVET ...ouiiuiiiiiiitieniiieiniieriiniseaeeaesreetnraessenseaensseses 5.2
Opening the ACCESSOTY MOVET. . ..uciuiuiiniiiiinieirneeieerereareneeeencensenenns 52
Adding a New DesKtOP ACCESSOTY. ... vuurrnirreernnernertarenieseranersesesessneenns 5.2
Deleting a Desktop ACCESSOTY...uuuuteuerneeunrruerenernnsrnnsnnssnessnsennesssnnses 5.3
Editing an ACCESSOTY. . ..ueiuuttriuiiiriiaeneerieerierrerereeseesieesnernereneeneenns 5.3
COpPYINE AN ACCESSOTY v ci s v s ins s aina 546508 6654 a¥od 59565 554 6444 050 smnsanmes 5.4
Quitting the ACCESSOTY MOVET.......vvvuuienniiiiririieennerieeenneensneeruesssneres 5.4
The Layout of File “PINPOINTPROFILE™............cccvveiuiiiiernniineieneinnnnn. 5.4
The Hex Calculatorccooiiiiiiiiiiiiiiiiiiieiiiie et eeaeee e eeeans 5.7
Opening the CalotIatOn «u..esessevsssuvssss sssmsssvses sins sasmmeysns s s 555 homt 5558 455 5.7
ChangINg MOAES... cvussswusmms e siirisss 5 205 558 565% 5505 Sissbions 5858 5455 abednsenasnsns os 5.7
Entering NUMDEIS. ...ivviiin ittt cee e e e ee e enes 5.7
Quitting the Hex CalCulator.........c.viiiiiiiiiiirieeiieeeeiieeieeanerieeineanesnees 5.8
The Memory WIndOWoouiiiniiuiiiiiiiiiiiinieee e eenceneeneenns 59
The FIle MENU......iuiiiuiiiiiiiiiiiii ittt ee et e e e e een e aas 5.9
Switching Between Memory Pages...........ouiuiinieiiniiiiiiiieinineeeennennas S5.10
Switching Between Memory Banks.........ccoivviuveiiniineiiiiieiiinineiineinenes 5.10
The Memory Window is Clouded.........ccouviiiiiiirimniiininiininineiinneeenens 5.10
Exiting the Memory Window.........ccciiuiiiiiuneinnienniieee e ceeeneeneeanes 5.10

Chapter 6: Designer Tools

About this CRapter ...ttt ee e e aans 6.1

The Video Resource Editorccoooiiiiiiiiiiiiiiiiiiiiiieenereiaenn s d 6.2
Format of a Video RESOUICE.cuvvuuiiuiiiniiiiieiiiiieeeeiiceiicieiie e veeas 6.2
Opening the VRE.........ciiuiiiiiiiiiiiiiiiiiiiierineeiiie e et inseness! 6.2
SATNE FESH.ccox sonuonsmnms sus spwe sonnannsann 5035005 65 s6nssmn vmns Fbmaibnsmenons sane s o) 6.2
Picking a FOnt.......coviiiviiiiiiiiiiiiiicieie e et i e sraeeareseanenes 6.3
The WIndow MaKer.cciiiiiiiiiiiiiiiiiiiii it e eeeaneanes 6.3
Copying or Moving to the Clpboard...............ccceeeiiniiniiniiiieenrieinennens 6.3
A Look at the CHPbOAI.cuuiuiiirnrinirriiiiierreeeeieeiieiinernenneneaneed 6.4
Pasting from the CHPDOArd.oiuiiniiiiiiiiiie e eeeeens 6.4
Locking 8 REZION. v« «ssuavonsssinn rus s50s558405 553 665 §0nsnnsoman ooessonanssnnse sasons 6.4
Opening a Resource File........cuuiiiiiiiiiiiiiiiiice e 6.4
Saving a Resource File.........ccuiiiiiiniiiniiiiiiiieeieeie e et e ean e 6.4
Printing the SCIEEM.ccuiiiiiiiiiiiiiiiiiiiiiii e eaeane o d 6.5
The Script Processing Language...........oeuuiiueiineiuneiniieeiiieeneeenreneeeneens 6.5
REIAtONALS.iiuiiiniiiniieiiiiriiiriii e et e e eens 6.8
ODETAIOTS. .. eee ittt iaeettie et eeteeietteateateenerneeneenernernsttarneeneansenesnesned 6.8
OUICK-KCVS. oo sisssnomnmssmmsnsesss s sammiss s 8 505 S8 S5 808 554 5555 Ak ammnmmanied 6.9
EITOT COOCS .« co5s snvssss simsananss 55554504 $immnraisi 898540 s fanennsannsvonsaansnnsyesyasi 6.9
Leaving the VRE........iuiiiiiiiiiiiiiiiiiieiee ettt eeneeenseae e e ene 6.9

The ReSource COMVEIterccuuvuuniiniiiiiiiieiiiiineineeieieenneneaeeaeeneesd 6.10
Opening the ReSource COMVEITET. . ..uuuuuieririeirieiiiiineinertineeneanneeneeneesd 6.10
CONVErting @ RESOUICE. .1\ .cuuiuiitiiiriinireiertieierteeneene e ereenneneeensneensens 6.10
Selecting @ TeXt FOIMAL.oiuiiiiiieiiiiiiiiie e et e eeens 6.10

Quitting the Resource CONVETLET. ccueiurreirierrneeneeneieraenneeeneennenes 6.10

Chapter 7: Writing Desktop Accessories

About this Chapterccoiiiiiiiiiiiiiiiiiiiciiie e einens 7.1
What are Desktop AccCesSOries?coieviiieiiiiiiiiiiiiiiiereiiaenieneinennt 7.1
MemOry USAZeciuiiiniiiiiiiiiiiiiiieiintteeateieaeaeenrnreessonsecssnsnsnsnsnns 7.1
Language ChRoiCesc...occouiiiiiiiiiiiiiiiiiiinicitieriieeeerretereenaeeneses 7.2
UsSing KYAN PASCAL ...couucooumsmsssmsmsvnmnnesses sanmass e s sess s sovs i0ss o5 7.3
PASCAL Source Code Files.......ccuviuviiiiiiiinrnnrieinceeincnnennenceneenenenn 1.3
Starting Up 8 PASCAL ACCESSOTY...uuvuienerniiiiniiniinnieniennnirneenenneneennannad3
Using Video Resources with KYAN PASCAL.........c.cccouvivieenicnnennennnnn. 7.3
The Pinpoint Flag........ccioviiiiiiiiiiiiiiiiiiiiiiiiieriie e e et eesenesnnens 7.3
Video PrOVISIONS.oeuieniniieiiiierieiiiititeninieneeenanetessssnnenesosnsesasncens 1.4
Using MICOL BASICcouvasinssesmrmmmsssmesassms sesmsvms s s smmasss 7.5
RUNBIHE LIDTATY: susnnins sovssassmumvssnns sms s 4555 5555 795 5555 550 §5%6 547l sme enbbidons 7.5
Setting Up an ACCESSOTY.....uvuiirrinreieneeiiisiietnnennennerasnnsnesassassransenssnns 7.5
Using Assembly Codeccccoiviiiniiiiiiniiiiiiiniiniirieeiniensineneneennnn 7.6
Using Assembly RESOUICES.covuviuiuiiniiiiiirearieetieenisieseetasnrenasensaneens 1.6
Pinpoint Function LIbrary........cccceviuiiiiiiiieiiiicerreeniinneneriscensenccsnenna .6

Chapter 8: Advanced Installation

The Installation Facilitycooieiiiiiniiiiiiiiiiiiiiiiiiieeieceneieenes 8.1
File MOifiCations. .. .oi e iiiiiiiiiaiiiieiiieiiirsenieeaesieneresessncsesensasesscnsnens 8.1
Using the Advanced Installation Facility..........c.cccoiieiieiiniiiiieninniinannen, 8.2
JUSELIKE PIADOINE osries esims swrewsms sinuaisis s3s s5ummigs 65506 swsa5%7 SYARHE S90S 6 SHRHH504 8.2

Installing Pinpoint on a Personal Application...........cccccvvvuieninnnen. 8.2

Recognizing Pinpointcooioiiniiiiiiiiiiiiiiiiienee e eeinenes 83

Appendix: Other Pinpoint Products

Pinpoint Desktop ACCESSOTIESccccuiiriiiuiiriiriiiiiieiiiniernerierneenens Al
Pinpoint Spelling Checker..........ccccciiiuiiiiiiiiiiiiniicicrieeeeeeereen e Al
POint-£0-POINt.........ccciiiiiiiiiitiiiiiiiiiiiiiiiieerieeeneeeaeeersernesreeesasens A2
PrOFILER......cccoiiiiiiiiiiiiiiitiiiirteeeieereiiasinesesernrsesssnssensessnersnsonnns A2
Pinpoint Apple ITe Upgrade Kit............ccooiiiiniiiiiiniiniinieniininncnnes A3
Pinpoint RAM Enhancement Kit..............ccccocoiiiiiiiiiiiiiiniiniiiieenenne. A3
Pinpoint Modem Enhancement Kit...............ccocooeivniiiiiiiiiiiniinnnnnnne. A3
IIFOMCEBO. cicuinnivis ivaiavaisvasssssitssnmnesnessaresssnonaannsssssossovansonsosossosne A4
Micro COo0KDOOK..........cccoiuiiiiiiuiiinriiiiieitieiiieiierneererneesnsnessnennns A4
Optional Recipe DisKS........ccccviiiiiiiiiiiiieniiiiiiiiiineecenerieenernenereenes AS
Pinpoint ToolKit.........cocooiiiiiiiiiiiiiiiiiii e e AS
Pinpoint Instant Business Letters...........cccccooeiiiiiiiiiiiiiiinninninenneens A6

Pinpoint Document Checker.............c.oouiiuviuiiniinieiiiiiiiieeneneeneens A6

Preface

Isn’t it nice to receive software on non-copy protected disks? We distribute all our software,
including the Pinpoint Toolkit, on non-copy protected disks because we want our software to be
convenient to use, and because we trust you. Please remember that giving a copy of our software
to a friend is a violation of copyright laws. Illegal copying of our software also makes it harder for
us to make a living selling the software you’ll be using and depending on every time you use your
computer.

We value your assessment of our software, and we want to include your ideas in our new product
plans, so let’s hear from you. Write to us at:

Pinpoint Publishing «+ PO Box 13323 « Oakland, CA 94661
Attention: Product Development

Or call our general offices: (415) 654-3050

24 hr. Toll Free Order Desk

If you would like to order another Pinpoint product, we have toll free sales lines. Just check the
appendix in this manual for a list of Pinpoint products and call:

Sales: United States (800) 633-2252 Ext. 582

About Inside Pinpoint
Inside Pinpoint is designed for use mainly by Apple II programmers and analysts.

Chapter 1 provides an overview of the Pinpoint Toolkit, its components, and how it applies to
each user.

Chapter 2 explains the internal architecture of the Pinpoint Desktop Accessory Manager, its
various components and capabilities. The latter portion of this chapter details how you can access
the Pinpoint dispatcher via Assembly language calls. Each dispatcher function is discussed in
detail.

Chapter 3 introduces you to RunRun. This is an interactive shell to ProDOS that allows you to
write desktop accessories or ProDOS applications.

Chapter 4 discusses several general purpose desktop accessories useful to all Toolkit users.
These include the ProDOS Filer accessory, a screen printing accessory, a disk-resident version of
the popular phone dialer. The source code to the phone dialer and the screen printing accessories
are included with the Toolkit. The PrintScreen accessory is an excellent example of how you can
use the printer and font library to perform graphic or text printing.

Chapter 5 discusses several desktop accessories designed especially for the programmer. These
include the Accessory Mover, the Hex Calculator, and the Memory Window. The Accessory
Mover allows you to define new desktop accessories to Pinpoint. Tt also allows you to move
desktop accessories about. The Hex Calculator performs numeric and Boolean operations in
decimal, hexadecimal, and binary modes.

vii

viii

Chapter 6 discusses two design tools for constructing Pinpoint accessories: the Video Resource
Editor and the Resource Converter. The Video Resource Editor allows you to design your
interface visually for a desktop accessory or primary application. You can build desktop
accessories very quickly using the Resource Editor. The Resource Converter transposes the binary
resource file to something more compatible in source code. It generates source code for a variety
of compilers/assemblers.

Chapter 7 focuses on the process of building desktop accessories. This chapter instructs you on
how to piece together the visual resources, dispatcher calls, and accessory-specific code. Chapter
7 also discusses the use of KYAN PASCAL,™ MICOL BASIC,™ and Assembly language in
building desktop accessories.

Chapter 8 discusses the Advanced Installation Facility. This is a modified version of the
program found with the Pinpoint Desktop Manager. It allows you to install the Pinpoint dispatcher
on startup system files of your own.

Programming Conventions

Throughout this book programming examples are given to clarify the presentation of material. The
examples were written in 65C02 assembler code and were developed using the ProDOS Tools™
from Apple Computer, Inc.. The syntax of the Apple assembler, EDASM,™ will be different than
other assemblers used. A brief description of the syntax is included below.

The main mnemonic difference between EDASM and other assemblers is in the expression of the
high-byte and low-byte operators. EDASM always maintains a 16-bit value when it evaluates
expressions such as a label. The high-byte operator is expressed with the “<” symbol, and the
low-byte operator with the “>” symbol.

For instance: >$EE22 is equivalent to $22
<$EE22 is equivalent to $SEE

The location counter is expressed with an “*” (asterick symbol).

For further clarification, you may wish to refer to the book ProDOS Assembler Tools, Apple
Computer, Inc. 1983.

Assumptions

This manual assumes that you have used the Pinpoint desktop accessories and that you have read
the Pinpoint AppleWorks Desktop Accessories User Guide (ISBN:0-917413-00-8 Pinpoint
Publishing, copyright 1985).

Product Support
The Pinpoint Toolkit is primarily for those who wish to build their own desktop
accessories. Technical support for this product is not included with the

purchase price of the product, but rather at an additional charge. Pleascreferto
- the Software Support Agreement included in this package for support details.

Chapter 1: The Pinpoint Toolkit

An Overview....................cccccvveeeeeeecn.n, 1.1
Building Desktop Accessories................... 1.2
How this Manual Can Help 1.2
Getting the Toolkit Ready........................ 1.2
The DISKScunneniiiiinniinnninaniinennenen, 1.3

An Overview

Pinpoint was designed, from the beginning, to be a technical foundation to be built upon. Pinpoint
is a technology, not a single, static product. The original desktop accessories that are included
with the Pinpoint Desktop Manager serve as a few good, simple examples of what desktop
accessories can be and do. They are not, by any stretch of the imagination, the “end-all” desktop
accessories. Better ones will be built. The imporzant aspect is the foundation — Pinpoint.

The Pinpoint Toolkit contains the hammers, saws, and nails — the tools needed to make the
building. It contains sample blueprints, in the form of desktop accessories with source code. It
does not contain the final blueprint, however. That is up to you.

The Pinpoint Toolkit will serve a variety of purposes for a heterogeneous users’ base. On one

end, the computer hacker can design and implement desktop accessories to complement the original
Pinpoint desktop accessories. A third-party software vendor could make their products “Pinpoint
Compatible.” At the other extreme, users could use RunRun as a working shell to operate their
applications and accessories. End users would find the ProDOS Filer accessory or the PrintScreen
accessory very handy in their daily activities.

The Toolkit contains six basic components:

(a) Detailed technical documentation that provides tremendous insight into the inner
workings and capabilities of Pinpoint technology.

(b) RunRun — A ProDOS shell environment that allows you to run desktop
accessories within desktop accessories.

(¢) Several key tools for constructing desktop accessories including the Video
Resource Editor, Resource Converter, and Accessory Mover.

(d) Several sample accessories that highlight the use of the Pinpoint dispatcher, printer
library, graphic library, and font library.

(¢) Several general purpose desktop accessories that are handy for developers as well
as end users, including a version of the ProDOS Filer running as a desktop
accessory, screen printing facilities, etc.

(f) Anadvanced installation program that allows Pinpoint desktop accessories to be
installed on personal programs as well as third party programs.

Chapter 1: The Pinpoint Toolkit 1.1

Building Desktop Accessories

Building desktop accessories is not a trivial process. This is largely due to several inherent
problems with the architecture of the Apple II. First, the 65C02 microprocessor has a simple,
efficient instruction set. The limited availability of hardware registers, coupled with addressing
limitations, makes most compiled applications difficult to operate without large runtime libraries.
A runtime library can be anywhere from 4 to 20 K in size. This is not bad, simply time
consuming. Second, the ProDOS operating system was intended to handle a single task operating
at a time. It provides very little memory management capability, and does not operate beyond the
lower 64K of memory in the Apple II.

In many ways, the first problem is remedied by companies such as Applied Engineering in
Carrolton, Texas. They produce memory expansion boards for the Apple II to boost the memory
within the Apple. The concern over runtime libraries 20K in size is diffused. Large size desktop
accessories can reside on a RAM drive and be loaded almost instantly.

The Pinpoint Desktop Manager helps with the second problem. Pinpoint manages the Apple
II/ProDOS operations so as to provide a capability known as limited multi-tasking. This means
that a primary task can be interrupted for an indefinite period of time by a secondary application, a
desktop accessory. The state of the machine is preserved, so the primary task has little idea of
what has occurred. The Pinpoint Desktop Manager can also provide a “messaging” capability
between two co-resident applications such as AppleWorks™ and the Pinpoint Spelling Checker.™
In this case, both applications are active and communicating with one another via inter-application
messaging.

Given the direction of the Apple II audience, towards larger memory and the use of RAM drives,
writing desktop accessories has become more of a manageable task. The original Pinpoint desktop
accessories required more than 56,000 lines of hand-optimized assembler code. If this had been
written in a higher level language, such as PASCAL, this could have been reduced to about a third
of that size.

Desktop accessories can be written is Assembly, PASCAL (using KYAN PASCAL), or compiled
BASIC (using the MICOL BASIC compiler).

How this Manual Can Help

This manual, coupled with the programming examples included on the source disk, will help guide
you towards creating desktop accessories. It explains the architecture of Pinpoint and how it can
be used to create desktop accessories. It also explains how you can make ProDOS applications
you have developed compatible with Pinpoint.

Getting the Toolkit Ready

The Pinpoint Toolkit is distributed on two flippy disks. Each disk contains two sides of
information on it, the equivalent of 4 disks. The disks we provide you will not work because they
are write-protected. You must use non-write-protected copies of the Pinpoint Toolkit. We are
providing you write-protected disks to help you protect your investment.

So, before you do anything with the Pinpoint Toolkit, please use Central Point Software’s Copy II
Plus,™ the Apple Ilc System Utilities,™ the Apple Ile ProDOS Filer,™ or any ProDOS copy
routine to make copies of the disks we provided to you. Use the copies as your work disks and do
not put write-protect tabs on them (covering up the write-protect notches on the side of the disk
jacket).

1.2 Chapter 1: The Pinpoint Toolkit

If you are using a large capacity ProDOS volume, such as a hard disk or Unidisk 3.5,™ you may
wish to copy the contents of the Pinpoint Toolkit over to a subdirectory within the ProDOS
volume. You will have to modify the application list used with RunRun to reflect the new ProDOS
paths. You will want to copy the contents of disk 2, side 1 (the desktop accessories) over to the
standard location that holds your other Pinpoint desktop accessories.

The Disks

The Pinpoint Toolkit is distributed on 2 flippy disks, each containing two sides of information.

Disk 1 contains RunRun on side 1. It is labeled as “/PP.RUNRUN.” RunRun is discussed in
Chapter 3 of this manual. The flip side of disk 1 is side 2, and it is labeled “/PP.TOOLKIT.” It
contains the Advanced Installation Facility, a wide-calendar print program, and the Dialer
configuration program.

Disk 2 contains the desktop accessories that are distributed with the Pinpoint Toolkit — the
Accessory Mover, the Pop-Up Filer, the Hex Calculator, the Video Resource Editor, the Resource
Converter, Printer Control Program, and the Memory Window. The actual desktop accessories
can be found on side 1 of the disk. If you have stored your other Pinpoint desktop accessories
under a ProDOS subdirectory, you should copy the contents of this disk over to that subdirectory.
The flip side of this disk, side 2, contains the source code for many of the desktop accessories.
Various libraries are also included on this disk.

Chapter 1: The Pinpoint Toolkit 1.3

Chapter 2: The Pinpoint Internal

Architecture
About this Chapterc.ccceeeeeen... Z:2
A Technical Overview 22
Opeil ATChItECITS s v snn sonsmis swmmns swas sawns 2.2
How Pinpoint Works........c.coovviveiiiiinnnns 2.3
The Dispatcher Function Library................ 24
How the Dispatcher Works..............c.oo..e 2.6
Dispatcher Callscccceeeeiivvnnnnn.. 2.7
OPEN €all.., coosanmnus sums v somusn sosan vass s 2.8
CLOSE Callvw: susen s s s s s amaavisss & 2.9
BLOAD Calli i35 21008 80 veice 5556585 505 5508 108 30 2.10
READc call.....oooviiiiiiiiiiiiiiirieieeeenen, 2.11
WRITE callo..uiviiiiiiiiiiiiicceee 2.12
GETPREFIX call......ovieriiniiiieniciienenen. 2.13
GETVOLCAN. . o comvass svmeons smsessanes s 2.14
DESTROY Sl s sims s ssmsmss swes swamans o 2.15
FREEPAGE Call.u s 00 e swnans swis s e 2.16
MLICALL call....ccoiiiiiiiniiiiiiiiniiiiiene, 217
BASCALC call.....ueuiineiiiniiiiiieinieneanes 2.18
PUTSCRN call......covovviniiiniiniiiiinn, 2.19
GETSCRN call......oeiinreiiiniiiinneneiianines 2.20
INVERT call......oeeiiiiiiiiiiiiiiiieiieniaeans 2.21
PROJECT call.c.ouivieiininiiniiniiinieeneaeene 222
CAPTURE call.....cveiiiiiiininereiennnenenens 2.23
DRAW CAL.. cows svamus sommmus swamms vwmvmmmsss o 2.24
XDRAW CalLscanuss s sunann smmns s s s 2.25
PICK eallies s sommssms sons s s s sans mnaims s 2.26
STOR call.....civiiiiiiiieieiciiei e, 2.27
GETKEY call.....oooiiiiiiiiiiiiiiiiinieeennn, 2.28
IOBUFF call.......cooviiiiiiiiiiiiiniiiiiiiinns 2.29
MMU call.....ooiviiniiniiiiiiininniea, 2.30
PRLIBcall.....ooviiiiiiiiiiiieiieeniaiinenenans 2.31
Allocating the Printer Library............c....... 231
PRTINIT €alle s som swmams cusseo s s s 2.31
PRTCLOS calli..ciiiiiisiansons sasssansins sin 2.32
PRTWRIT call......cooeviviviiiiniiinn.. 2.32
PRTCMD call.....oovvieniniiiniiiiiennnnen 2.32
PRTSTAT call......oovevveviiininiiienininnns 2.33
GRLIB €all.: oomospmonss sswwsumssmyass saws svss 2.35
VERSIONUM €alliscs soquns s amsnss cvamsss vos 2.36
ERRBELL €all. . cvs vansaws vown aws cus s s anwo v 2.36
CLOCKOK call......cuveniineiiiiieineneeneen 2.36
EXIT call...oviiieiiiiiiiii i aeees 2.36
Figures
2.1: Pinpoint Sleep-State and Runtime Map...2.3
2.2: Accessory Runtime Memory Map......... 2.4
2.3: Dispatcher Global Variables................ 24
2.4: Dispatcher Function Summary Guide.....2.6

Chapter 2: The Pinpoint Internal Architecture 2.1

About this Chapter

This chapter focuses on the internal architecture of the Pinpoint Desktop Manager. It provides
insight for curious Pinpoint users as well as programmers.

A Technical Overview

Computer hackers are very individualistic. If we had to stereotype this group of people, it would
be safe to say that they are opinionated, clever, work strange hours, appear obsessed at all times,
and fail to pass the Fortune 100 dress code. Given all that, Pinpoint has a challenge ahead. The
Pinpoint Desktop architecture is fairly simple. It provides some basic extensions to ProDOS so
that desktop accessories can become a reality in the existing Apple Ile or Ilc. Itis not the end-all,
but is truly & work horse — written by hackers for hackers.

Pinpoint is a handy “add-on” to ProDOS applications such as AppleWorks,™ Point-to-Point,™
InfoMerge,™ BusinessWorks,™ RunRun,™ etc... It enables you to suspend the current program
and carry out an accessory function, such as a notepad, spell-checker, phone dialer, or lawn
sprinkler. In some instances, such as the Pinpoint Spelling Checker,™ it manages two ongoing
tasks by managing “virtual machines” for each process in memory.

Pinpoint essentially mimics the Macintosh™ desktop metapher without actually using a mouse.
The design was intentional, since (a) the actual use of mice on the Apple Ile/C is currently minimal,
and (b) the memory overhead for processing mouse events is large.

There are several other important distinctions, however, from the Macintosh. First, although there
is a functional library available to the desktop accessory, you do not have use it. A desktop
accessory is simply a ProDOS system file with a few constraints that are stated below. Asa
programmer, you are not mandated to use a specific toolbox in ROM to do everything. The Apple
II™ hackers are far too unique and individual to fall into the Macintosh doctrine. They prefer to
“program on the metal.” The success of the Apple II is clearly rooted in its software base. The
software base is broad, and numerous metaphors have been implemented successfully. Second, a
desk accessory is disk resident (or resides on a RAM drive), so it is not limited by the amount of
available memory. The dispatcher provides for segmented accessories up to 16 megabytes in size.
As ProDOS reaches beyond that limitation, so will Pinpoint.

Several important hardware trends have been underway in the Apple II market for some time now.
Apple I users are willing to upgrade their machines to accommodate more memory, a more
powerful CPU, larger mass storage capacity, and telecommunications. The future computing
power for the Apple II will only become more powerful as RAM and CPU price/performance
curves work in favor of the consumer.

Open Architecture

One of the key features of Pinpoint is that it is an expandable accessory environment. The Pinpoint
Desktop Manager initially comes with eight valuable accessories, but allows for installation for up
to 16. The hardware analogy to this is the slot in the Apple Ile. You can add new desktop
accessories such as the Pinpoint Spelling Checker, a pop-up thesaurus, pop-up graphics, and
much more. An accessory is a ProDOS interpreter (SYSTEM file) that has a maximum internal
memory requirement of 36K and adheres to some reasonable constraints. A segmented accessory
can be up to 16 megabytes in size.

2.2 Chapter 2: The Pinpoint Internal Architecture

How Pinpoint Works

The accessory manager (referred to as the dispatcher) works along with the poller. The poller is a
small piece of code located in the $300 page of main memory (subject to change between
applications). It views each key pressed looking for an #-P combination of keys. Once it finds
this combination, it transfers control to the dispatcher. The dispatcher is located in the higher 12K
of alternate RAM memory, as depicted in Figure 2.1. It is “swapped” into lower memory ($0C00-
$1FFF) after it has been invoked. The area of alternate high memory ($D000-$E3FF) is
exchanged with main memory. The pop-up kernal resides there. Figure 2.1 shows the sleep-state
and runtime memory map for Pinpoint.

Next a pop-up window appears, and you select a particular desktop accessory to run. At this point
the Pinpoint dispatcher must suspend the primary application. It essentially puts the primary
application into a sleep state. Hence, if the time from a clock is displayed on the video, it will no
longer be updated by the primary application. The requested accessory requires a memory region
torun in. The dispatcher knows the memory requirements and saves this portion of main memory
in a temporary file “W.TMP” on a ProDOS device. Other critical information, such as the current
zero page and stack contents are saved away also. The $200 page is not saved, however.

The desktop accessory you requested is then loaded into memory beginning at $2000. It can
occupy the area between $2000 and $BEFF. If an accessory plans on using the printer library, the
font library, or the double hi-res graphic library, it should not occupy the space above $AFFF.
The entire accessory does not have to be loaded in at once, it can be segmented and brought in by
way of the memory management calls available in the Pinpoint dispatcher. A defined “boot length”
for each accessory is set up. This determines how much of the accessory should initially be
brought into memory.

Once loaded, the desktop accessory is rendered control via a JSR instruction. An RTS instruction
or a dispatcher EXIT call (preferred) would relinquish control back to the dispatcher. The
dispatcher has constructed in the temporary file “wake-up” instructions. This is used to reinstate
the primary application and give back control.

Figure 2.1: Pinpoint Sleep-State and Runtime Map

Resides at: Maps to:

$D000-$E3FF Pop-up dispatcher and $0C00-$1FFF
functional library

$E400-$E7FF Error handler $0800-$0BFF
(for internal use)

$E800-$EBFF Font library $BB00-$BEFF

$EC00-$FOFF Double hi-res graphic $B500-$BOFF
library

$F500-$F9FF Printer fibrary $B000-$B4FF

$FA00-$FDFF System /O buffer $0800-$0BFF

$FE00-$FFFF Video save area, zero $2000-$21FF

page, stack, etc.

Chapter 2: The Pinpoint Internal Architecture 2.3

The Dispatcher Function Library

When you are writing desktop accessories, there are many functions that need to be carried out that
are common. For instance, when an accessory appears on the screen, it typically resides in a
window that occupies a section of the screen. It is the responsibility of the accessory to ensure that
any portion of the video display that is distorted will be recovered when you exit the accessory.
The CAPTURE function, described below, handles this for the accessory. In addition, the
PROJECT function recovers the capture contents upon exiting. ProDOS I/O functions, such as
OPEN, CLOSE, READ, WRITE, and BLOAD are examples of very common functions that must
be carried out by an accessory, and are all supported by the dispatcher function library.

Figure 2.2: Accessory Runtime Memory Map

Available for system /O
$0800-$0BFF buffer (via dispatcher call)
$0C00-$1FFF Dispatcher library
$2000-$AFFF Accessory space
$B000-$B4FF Printer library
$B500-$BOFF Double hi-res library
$BA0O-$BAFF Reserved
$BB00-$BEFF Font set

Figure 2.3: Dispatcher Global Variables

Name Size Address Meaning

DISK.RC byte $1143 ProDOS return code for disk
1/O action.

REFNUM byte $1144 ProDOS reference number
assigned to an open file.

RECNUM word $1145 Word, low byte first, denoting
a logical record number.
Currently unused.

LRECL word $1147 Logical record length. Used

whenissuing a READ or WRITE
call for transfer count.

ACCESS byte $1149 ProDOS Access code for CREATE.
FILETYPE byte $114A ProDOS filetype for file
being opened.
PATH word $114B Pointer to pathname. When the
accessory first gains control,

the path will point to itself.

OFFSET 3 bytes $114D File Offset (3 bytes, low byte
first). Positions for READ or
WRITE calls.

2.4 Chapter 2: The Pinpoint Internal Architecture

Figure 2.3: Dispatcher Global Variables (Continued)

Name

IOBUFFER
10B
FILELEN

DBUFFER

CREATE.SB

DEVICE.ID
ROW
coL

WIDTH
LENGTH

MINROW
MAXROW
MINCOL
MAXCOL
WND.ROW
WND.COL
WND.WIDTH
WND.LEN
KEY

DRAWCHAR
EXTERNCMD

Size Address Meaning

word $1150 Pointer to 1K ProDOS system
/O buffer.

16 bytes $1152 I/O Block area for ProDOS to
make /O requests.

3bytes $1164 Length of file most recently
loaded via BLOAD call.

word $1166 Pointer to data source or
destination for READ, WRITE
or BLOAD.

byte $1169 Status byte. If highbitis on

($80), OPEN should not CREATE
afile i file is not found.

byte $116A Device used for ONLINE request

byte $116B Video row (0-23) for display.

byte $116C Video column (0-79) for
display output.

byte $116D

byte $116E Length of field, used in
INVERT call.

byte $116F Video parameters...

byte $1170

byte $1171

byte $1172

byte $1173

byte $1174

byte $1175

byte $1176

byte $1177 Most recent keystroke hit.

High-bit setonif hit in
conjunction with &-key.

8 bytes $1178 Used in DRAW and XDRAW calls.

byte $1180 ProDOS external call vaiue.

Chapter 2: The Pinpoint Internal Architecture

2.5

How the Dispatcher Works

The dispatcher transfers control to the accessory and remains resident in main memory at address
$0C00 thru $1FFF. In addition, various dispatcher components (font library, printer library,
graphic library) occupy the area between $B000 and $BEFF.

A toolkit of handy functions are available for the accessory to use. The accessory does not have to
use any of these functions. They are simply there as a means to reduce the amount of code
required for an accessory. In order to use these functions, the accessory should set up the
dispatcher parameters (located at $1143 through $1180), set the X-Register with the requested
function number, and make a call to DISP.SVC ($1100). In addition, most Pinpoint functions
require arguments sent down. These arguments must use global variables, or zero page locations

($F9-$FF).

The global variables listed in Figure 2.3 are included in a source code library called
DISPATCHER.LIB.

Figure 2.4: Dispatcher Function Summary Guide

Function Name Description
o OPEN Opens a ProDOS file
1 CLOSE Closes a ProDOS file
2 BLOAD Loads afile into memory
3 READ Reads data from a ProDOS file
4 WRITE Wirites data to a ProDOS file
5 GETPREFIX Gets prefixivolume
6 GETVOL Returns volume pathname
7 DESTROY Deletes a ProDOS file
8 FREEPAGE Frees amemory pageforuse
9 MLICALL Standard MLl call entry
10 BASCALC Compute video refresh address
11 PUTSCRN Place text on video display
12 GETSCRN Return text string from video
13 INVERT Inverts area in video display
14 PROJECT Project a video resource
15 CAPTURE Copy a region of video display
16 DRAW Create a ghost region on video
17 XDRAW Undo ghost region on video
18 PICK Retrieve a character from video
19 STOR Place acharacter on vide
20 GETKEY Wait for keypress, return value
21 IOBUFF Allocate/deallocate VO buffer
22 MMU Memory manager services
23 PRLIB Allocate/deallocate printer library
24 GRLIB Allocate/deallocate graphic library
25 VERSIONUM Return version number of Pinpoint
26 ERRBELL Generate a gentle tone
27 CLOCKOK Enable/disable RunRun clock
28-30 RESERVED Reserved for future use
31 EXIT Accessory exit

The source code library PINPOINT.H contains the equates for the function calls found in
Figure 2.4.

2.6 Chapter 2: The Pinpoint Internal Architecture

Dispatcher Calls

A dispatcher call is made by setting the required dispatcher global variables and transient variables

v;ith the appropriate values, setting the X-register to the function number, and calling DISP.SVC
($1100).

For instance:

LDX #ERRBELL ;Ring the error tone
JSR DISP.SVC

Chapter 2.: The Pinpoint Internal Architecture 2.7

Function: OPEN 0)

Description: The OPEN function opens a ProDOS file.
Parameters:
PATH A word pointer that points to the pathname, beginning with the length byte,

followed by the actual pathname.

IOBUFFER Should point to an available 1K system I/O buffer that is available to use. It
must be available within the context of the ProDOS bitmap scheme for
memory management. It must not extend beyond the address range of the
accessory, since this will destroy the primary application. For more
information, refer to function 21, IOBUFF.

DISK.RC Return code from ProDOS, 00 if OK.
REFNUM Reference number returned by ProDOS.

Example:
MYPATH STR ‘'TESTFILE'

LDA #MYPATH ;Point to MYPATH
STA PATH
LDA #<MYPATH
STA PATH+1
LDX #IOBUFF ;Allocate I/O Buffer
JSR DISP.SVC ;at $0800-$0BFF via Pinpoint
LDX #OPEN ;Open “MYPATH"
JSR DISP.SVC
LDA DISK.RC ;Check return code
BEQ PROCEED
PROCEED LDA REFNUM ;Save away ProDOS refnum

STA HOLDREF
;And continue onward

2.8 Chapter 2: The Pinpoint Internal Architecture

Function: CLOSE 1)
Description: The CLOSE function closes a ProDOS file opened via an open call.

Parameters:
REFNUM Reference number assigned by ProDOS.

IOBUFFER Should point to the 1K system I/O buffer allocated via the OPEN call.
Example:

LDA HOLDREF :Restore reference number
STA REFNUM i(if using more than 1 file)
LDX #CLOSE ;And close file

JSR DISP.SVC

Chapter 2: The Pinpoint Internal Architecture 2.9

Function: BLOAD (2)

Description: BLOAD performs a simple binary load of any type of file at a particular
location in memory. The memory should be within the assigned area of the
accessory.

Parameters:

PATH Word pointer to the filename.

DBUFFER Word pointer to a location for the BLOAD.

IOBUFFER Should point to an available 1K I/O area that is available to use. It must not
extend beyond the range of the accessory, and cannot conflict with current
ProDOS memory usage. For more information, refer to function 21,
IOBUFF.

DISK.RC Return code from ProDOS, 00=0K.

FILELEN Returned actual length of BLOAD.

Example:

MYPATH STR 'TESTFILE'

LOADADDR EQU $4000
LDA #>LOADADDR :Set Bload address
STA DBUFFER
1.DA #<LOADADDR+1
STA DBUFFER+1
LDA #>MYPATH ;Set pathname
STA PATH ;to “TESTFILE”
LDA #<MYPATH
STA PATH+1 .
LDX #BLOAD ;Perform BLOAD
JSR DISP.SVC
L.DA DISK.RC ;Check VO return code
BEQ PROCEED

PROCEED EQU"* ;FILELEN contains length of

;BLOAD.

2.10 Chapter 2: The Pinpoint Internal Architecture

runction: READ 3)

Description: The READ function will read some data from a ProDOS file. This a
random access read. Data will be read from the file position specified in the
OFFSET parameter.

Parameters:

LRECL Logical record length to be read in, expressed in bytes. Up to $8000.

OFFSET The byte offset into the file to be read. This is a 3-byte value, low order
first.

REFNUM The ProDOS reference number, returned via the OPEN call.

DBUFFER Word pointer to the memory location to be read into. Value must be
between $2000 and the top of memory for the accessory.

IOBUFFER Pointer to 1K system I/O buffer.
DISK.RC Return code from ProDOS, 00=0k.

Example:
HOLDREF DFBO ;Stored value from OPEN call
READADDR EQU $4000 ;Location to read record
READLEN EQU $0400 ;Record length = 1024 bytes
LDA HOLDREF ;Set reference number
STA REFNUM Jfor READ.
LDA #READADDR ;Location to read into
STA DBUFFER
LDA #<READBUFF
STA DBUFFER+1
LDA #>READLEN ;Set read length to $400 bytes
STA LRECL
LDA #<READLEN
STA LRECL+1
LDX #READ ;Perform READ call
JSR DISP.SVC
LDA DISK.RC :Check return code...

Chapter 2: The Pinpoint Internal Architecture 2.11

Function: WRITE 4)

Description: The WRITE function will write some data to a ProDOS file. Thisisa
random write similar to the READ function described above.

Parameters:
LRECL Logical record length to be written. Word value, expressed in bytes.

OFFSET The byte offset into the file to write to. The is a 3-byte quantity with the
first byte being the low-order byte.

REFNUM The ProDOS reference number.

DBUFFER Word pointer to the memory location to be written from.
IOBUFFER Pointer to 1K System I/O area.

DISK.RC Return code from ProDOS, 00 if OK.

Example:
HOLDREF DFB O ;Stored value from OPEN call
WRITADDR EQU $4000 ;Location to write from
WRITLEN EQU $0400 ;Record length = 1024 bytes
LDA HOLDREF ;Set reference number
STA REFNUM ;for READ.
LDA #WRITADDR ;Location to write from
STA DBUFFER
LDA #<WRITBUFF
STA DBUFFER+1
LDA #WRITLEN ;Set write length to $400 bytes
STA LRECL
LDA #<WRITLEN
STA LRECL+1
LDX #WRITE ;Perform WRITE call
JSR DISP.SVC
LDA DISK.RC ;Check return code...

2.12 Chapter 2: The Pinpoint Internal Architecture

Function: GETPREFIX (5

Description: GETPREFIX can accomplish two different tasks:
1. Get the current default prefix.
2. Get the online volume name.

Paramerers:
To get the default prefix:
$F9 Function switch. Set to $00 to return the default prefix.

$FA/$FB Word pointer to buffer area to hold the prefix returned. A 64-byte buffer
should be allocated.

To get an online volume:

$F9 Function switch. Set to $FF to signal that the volume (found in
DEVICE.ID) should be returned.

$FA/$FB Pointer to buffer area to hold the prefix returned.

DEVICE.ID Contains the ProDOS device number of the device to have its volume
returned.

Note: Function 6, GETVOL, described on the next page is a more convenient way
to accomplish the Online Volume task above.

Warning: If an online volume request is made and the value of DEVICE.ID is set to 0,
then all online volume names will be returned. This requires a buffer of 256
bytes to accommodate up to 16 potential ProDOS paths.

Example:
HOLDPATH DS 64,0 ;Allocate 64-byte buffer

STz $F9 ;Set Function switch to 0.
LDA #>HOLDPATH ;Set pointer to path
STA $FA
LDA #<HOLDPATH
STA $FB
LDX #GETPREFIX ;Call dispatcher

JSR DISP.SVC ;to get default path

Chapter 2: The Pinpoint Internal Architecture 2.13

Function: GETVOL

Description.:

Parameters:
$F9

IOBUFFER
PATH

I0B
DISK.RC

Example:
VOLNAME

(6)

GETVOL retrieves information particular to a volume. It returns both the
volume name (formatted as a ProDOS pathname) and the volume
information. The volume name is returned as a ProDOS path beginning
with the length byte, followed by a *“/ ”” and a pathname, and terminated with

a“/”

A ProDOS GET_INFO call is made prior to returning control to the desktop
accessory. The results of that call are returned in the IOB variable. Refer to
the ProDOS technical reference material regarding the results of a

GET_INFO call.

Contains the device ID number used to locate the volume. Format of byte is

as follows:

D} SsS

0000

D:Drive 0=Drive 1
1=Drive 2
S:Slot 0..7 allowed

Pointer to 1K System I/O buffer for ProDOS.

Word pointer to 16 byte buffer area to contain the volume name of device

upon return.

Returned results of a GET_INFO call for the device requested.

ProDOS return code, 00=0K

DS 16,0

LDA #$60
STA $F9

LDX #GETVOL
JSR DISP.SVC
LDA DISK.RC
BEQ GOT.DEV

;Slot 6, Drive 1 Device

;Make GETVOL Call
;Assume I/O Buffer allocated
;Everything OK?

2.14 Chapter 2: The Pinpoint Internal Architecture

Function: DESTROY (7)
Description: The DESTROY function destroys (erases) a particular path. It should
obviously be used with caution.
Parameters:
PATH Pointer to name of path to be destroyed.

DISK.RC Return code from ProDOS, 00=0K.

Example:
WORKPATH STR 'WORKFILE'

LDA #>WORKPATH ;:Delete “Workfile”
STA PATH

LDA #<WORKPATH

STA PATH+1

LDX #DESTROY

JSR DISP.SVC

Chapter 2: The Pinpoint Internal Architecture 2.15

Function:

Description:

Arguments:
$F9

Example:

FREEPAGE (8)

FREEPAGE frees up a memory page for I/O use with ProDOS. ProDOS
maintains a bitmap in the global page ($BF00: main memory) that
determines which memory pages within the lower 48K of main memory can
be used for I/O. The FREEPAGE function clears pages for use.

When an accessory is given control, its entire memory space is allocated as
free for use by ProDOS. When you exit the accessory, the ProDOS bitmap
is set back to its original value.

Contains the page number. Note that the area still must be preserved by the
accessory if it is beyond the address region of the program.

LDA #$30 ;Free page $30
STA $F9
LDX #FREEPAGE ;Make dispatcher call

JSR DISP.SVC
;Now $3000..$30FF can be used.

2.16 Chapter 2: The Pinpoint Internal Architecture

Function: MLICALL 9

Description

Parameters:

EXTERNCMD

IOB

DISK.RC

Example:
WORKPATH

MLICALL is used to make a standard MLI call that has not been provided
for by the Pinpoint dispatcher. For instance, a GET_INFO callon a
particular path may be used by this call.

Contains a function number for a ProDOS
MLI call.

Contains the arguments for a ProDOS MLI
call.

ProDOS I/O return code. 00=0K.

STR 'TESTFILE'

LDA #$C4 ;ProDOS command
STA EXTERNCMD for “GET_INFO”
LDA #$0A ;10 arguments
STA IOB

LDA #>WORKPATH ;Set 10B path

STA 10B+1

LDA #<WORKPATH

STA IOB+2

LDX #MLICALL ;Make dispatcher call
JSR DISP.SVC

LDA DISK.RC :Check 1/0 results

BEQ GOT.INFO

Chapter 2: The Pinpoint Internal Architecture 2.17

Function: BASCALC (10)

Description:

Arguments:
ROW

$FE/$FF

Example:

BASCALC compute the base video address. In order to place characters or
a string onto the video display, a corresponding address must be computed
for the target location on the video. The target location is expressed in
Cartesian coordinates that correspond to the vertical row and horizontal
column on a 24 row by 80 column screen image. The upper left corner is
referred to as (0,0). The video refresh memory is not contiguous, therefore
the computation is not intuitive.

In addition, if the graphic library is invoked via the GRLIB call, the
computation will be altered from the text video address to the double hi-res
video image.

Only the vertical row is actually needed for the computation. This call
should be made prior to issuing a PICK or STOR dispatcher call.

Video row (0-23) for display output

Word returned, low byte first, containing the base address within the video
refresh to be used for the PICK or STOR call.

LDA #0 ;Grab character from upper left
STA ROW ;corner of the screen

STA COL

LDX #BASCALC ;Perform computation

JSR DISP.SVC

;Grab character now...

LDX #PICK

JSR DISP.SVC

2.18 Chapter 2: The Pinpoint Internal Architecture

Function:
Description:

Parameters:
$F9

$FA/$FB
ROW
CoL

Example:
TESTSTRG

PUTSCRN

an

PUTSCRN places a string of characters on the video display. The
advantage of using this call over a standard COUT call is speed. The string
is placed directly into the video refresh. No conversion of character to
normal or inverse (or from icon) is made.

The other advantage of using the PUTSCRN call over COUT is that
Pinpoint detects whether the graphic driver has been invoked via the GRLIB
call. If so, it outputs the string characters to the double hi-res image
automatically. It uses the font library to generate the characters on the
graphic display. This allows the programmer to write accessories in the
same way for text and graphics.

Length byte of the string. Valid value range is 1 to 80 decimal.
Word pointer to the actual string,

Vertical video row (0-23) for display output.

Horizontal column (0-79) for display output.

ASC THIS ISATEST

LDA #10

STA ROW

LDA #20

STA COL

LDA #>TESTSTRG
STA $FA

LDA #<TESTSTRG
STA $FB

LDA #14

STA $F9

LDX #PUTSCRN
JSR DISP.SVC

;Place string at row 10
;and column 20

;Point to string

;Length of test string

;Place on video now

Chapter 2: The Pinpoint Internal Architecture 2.19

Function: GETSCRN (12)

Description:

Parameters:
$F9

$FA/$FB
ROW
COL

Example:
TESTSTRG

GETSCRN returns a string that contains a portion of the video refresh in it.
This function is very handy for “cutting” information from the video area.
It is similar to the PUTSCRN function described above, but the “read”
equivalent.

This function is not supported when the graphic driver is active, however.
Successive calls of the PICK function must be made in order to accomplish
this while in a graphic mode.

Contains the length of the string to be retrieved. Valid value range is 1 to 80.
Word pointer to target string.
Vertical video row (0-23) for retrieval.

Video column (0-79) to begin retrieval.

DS 80,0

LDA #3500 ;Read first row of video
STA ROW

STACOL

LDA #80 ;for 80 bytes in length
STA $F9

LDA #>TESTSTRG ;Point to string

STA $FA

LDA #<TESTSTRG

STA $FB

LDX #GETSCRN

JSR DISP.SVC

2.20 Chapter 2: The Pinpoint Internal Architecture

Function: INVERT (13)

Description: The INVERT function inverts an area of the video refresh. This function is
very handy for pull-down windows in which commands are highlighted and
deactivated. The same is true for dialog boxes. Two successive calls to this
function will return the screen to its original contents.

This function is supported when the graphic driver is active as well.

Parameters:
ROW Video row (0-23) where highlighting occurs.
COL Video column (0-79) where highlighting begins.

LENGTH Length of field to be highlighted.

Example:

LDA #10 ;Highlight at (10,20)
STA ROW

LDA #20

STA COL

LDA #24 ;for a length of 24 bytes
STALENGTH

LDX #INVERT

JSR DISP.SVC

LDX #INVERT :Now de-highlight area
JSR DISP.SVC

Chapter 2: The Pinpoint Internal Architecture 2.21

Function: PROJECT (14)

Description:

Parameters:
$FA/$SFB

Example:
LEADWND

The PROJECT function projects a VRE resource onto the video refresh.
This technique is used to place windows, dialog boxes, and even strings
onto the video refresh.

This function is supported when the graphic driver is active as well. It can
be used to restore the video contents saved away by the CAPTURE function
call.

Word pointer to VRE resource.

DFB.... ;VRE Resource

LDA #>LEADWND ;Project the resource
STA $FA

LDA #<LEADWND

STA $FB

LDX #PROJECT

JSR DISP.SVC

A video resource is a binary image of the particular window. It begins with
a 6-byte header followed by a compressed image of the video refresh clip
region. The header begins with the upper left row (0-23), then the upper
left column (0-79). The third byte contains the width of the window; and
the fourth byte contains the length of the clip region. The fifth and sixth
bytes contain other information for the Pinpoint dispatcher.

If you wish to position a window to another location other than its default
location, simply change the contents of the first two bytes of the resource to
another value. The value must be valid, and not position the window off
the screen.

2.22 Chapter 2: The Pinpoint Internal Architecture

Function:
Description:

Parameters:
$FA/SFB

WND.ROW

WND.COL

CAPTURE

(15)

CAPTURE saves a rectangular portion of the video refresh (as defined by
the parameters below) in a buffer area. The purpose of this function is to
make it easy for a desk accessory to save and restore the video to its past

splendor after you exit the accessory.

This function is typically called before projecting a pull-down window or

dialog box, so as to save the area of the video beneath the upcoming

window.

To restore the image captured, use the PROJECT call.

Text screen: buffer size=(WND.LEN*WND.WIDTH)+6 bytes

Graphic screen: buffer size=((WND.LEN*WND.WIDTH) * 8)+6 bytes

Word pointer to buffer area used to capture contents being displayed.

The upper left corner row of the area to be captured.

Range is 0 through 23.

The upper left corner column of the area to be captured.

Range is 0 through 79.

WND.WIDTH The horizontal width of the capture area.

WND.LEN

Example:
STORAGE

Range is 1 through 80.

The vertical length of the capture area.

Range is 1 through 24.

DS 1926

LDA #>STORAGE
STA $FA

LDA #<STORAGE
STA $FB

LDA #0

STA WND.ROW
STA WND.COL
LDA #80
STAWND.WIDTH
LDA #24

STA WND.LEN
LDX #CAPTURE
JSR DISP.SVC

LDA #>STORAGE
STA $FA

LDA #<STORAGE
STA $FB

LDX #PROJECT
JSR DISP.SVC

;Save area for whole video

;Point to storage

;Start at upper left corner

;80 columns wide
;24 rows long

:Capture video

:Now recover video

Chapter 2: The Pinpoint Internal Architecture

2.23

Function: DRAW (16)

Description: The DRAW function creates a ghost-like outline on the video refresh. It can
be used to drag or size a window.

This function is not supported when the graphic driver is active.

Parameters:

DRAWCHAR 8-byte area containing values as follows:
Description Default
Upper left corner $5A
Top center character $5C
Upper right corner $SF
Leftmost middle character $5A
Rightmost middle character $5F
Bottom left corner $A0
Bottom center character $4C
Bottom right corner $A0

$FA/$FB Word pointer to a buffer area that is used to capture characters that lie

underneath the ghost image being generated. The ghost image can be
“undone” via the XDRAW call.

The size of the buffer area is:
(WND.WIDTH*2)+WND.LEN

WND.ROW The upper left comer of the ghost image.
WND.COL The upper left corner column of image.
WND.WIDTH The horizontal width (in columns) of the ghost image.
WND.LEN The vertical length (in rows) of the ghost image.
MINROW Should be set to the value of WND.ROW.
MAXROW Should be set to WND.ROW+WND.LENGTH-1.
MINCOL Should be set to WND.COL.
MAXCOL Should be set to WND.COL+WND.WIDTH-1.
Warning: The default values should be restored if changed by the accessory so that all

desktop accessories can make the assumption that the DRAWCHAR values
are the default values.

2.24 Chapter 2: The Pinpoint Internal Architecture

Function: XDRAW a7

Description:

Parameters:

$FA/SFB

WND.ROW
WND.COL
WND.WIDTH
WND.LEN
MINROW
MAXROW
MINCOL
MAXCOL

XDRAW restores the image behind a window outline created by the DRAW
call described above. It is used to “undo” a recent ghost image.

Word pointer to the buffer area used by the DRAW call. The ghost image
will be undone with the contents of this buffer.

The upper left corner row of the ghost image being undone.

The upper left corner column of the ghost image being undone.

The horizontal width (in columns) of the ghost image being undone.
The vertical length (in rows) of the ghost image being undone.
Should be set to the value of WND.ROW.

Should be set to WND.ROW+WND.LENGTH-1.

Should be set to WND.COL.

Should be set to WND.COL+WND.WIDTH-1.

Chapter 2: The Pinpoint Internal Architecture 2.25

Function: PICK
Description:

Parameters:
$FE/$FF

Y-reg
A-reg
$FA/$FB

Example:

(18)

PICK retrieves a single character from the video refresh. The BASCALC
function should be called prior to this function to set up the offset into the
video refresh. See function BASCALC for details.

This function is supported when the graphic driver is invoked, although a
slightly different result is returned.

Should be set by BASCALC call to contain the offset into the video refresh.
Sent to function containing the column number (0-79) to be PICKed.
Returned with the contents of the video.

Only used when graphic driver is active. This should be set as a word
pointer to an §-byte buffer area where the contents of the video are returned.

LDA #0 ;Grab character from (0,0)
STA ROW

LDX #BASCALC ;Compute video address
JSR DISP.SVC

LDY #0 ;:Column 0

LDX #PICK

JSR DISP.SVC ;Grab the character

STA ... ;A-Reg holds character.

2.26 Chapter 2: The Pinpoint Internal Architecture

Function: STOR (19)

Description: STOR places a character in the video refresh. This technique is quicker than
the COUT function, and is supported in both graphic and text modes.

Parameters:
$FE/$FF Word containing the video offset. This value is set by BASCALC.

Y-Reg Sent down containing the column number.
KEY Sent down containing the character to be placed on the video.
Example:
STZ ROW ;Upper left corner
LDX #BASCALC ;Compute video offset
JSR DISP.SVC
LDA #$C1 ;Place an “A” in upper left
STA KEY
LDY #0 ;Column 0
LDX #STOR
JSR DISP.SVC

Chapter 2: The Pinpoint Internal Architecture 2.27

Function: GETKEY (20)

Description: The GETKEY function retrieves a keystroke from the keyboard. A wait
loop is processed until a keystroke is hit. A flashing cursor is not
implemented.

If the & or ® keys are hit in conjunction with a keystroke, the value
returned has its high bit set on, otherwise it is turned off.

Parameters:
KEY Returned with value of key pressed. This value is also contained in the A-
register.
Example:
LDX #GETKEY ;Wait for a keypress
JSR DISP.SVC

CMP #$B1 3172

2.28 Chapter 2: The Pinpoint Internal Architecture

Function: IOBUFF 21)

Description:

Parameters:
IOBUFFER

Example:

This function allocates/deallocates a 1K system I/O buffer at $0800 in main
memory. The IOBUFFER global variable is initialized with a word pointer
to the buffer location. Refer to the global value, rather than the absolute
location of $800.

This call is useful for accessories that must open a file and require a system
T/O buffer to do so, or for those applications that need working space of
$400 bytes.

By making a second call to this function, you deallocate the buffer.

Returned word pointer that indicates the location of the system I/O buffer.

L.DX #IOBUFF ;allocate 1/0 buffer

JSR DISP.SVC

LDX #IOBUFF ;restore contents of $800-$BFF
JSR DISP.SVC

Chapter 2: The Pinpoint Internal Architecture 2.29

Function: MMU
Description:

Parameters:
$F9

$FA/$FB

$EC/$FD

DISK.RC
Note:

Example:

(22)

MMU is the memory management function that allows the desktop
accessory to page memory in or out. Paging means exchanging the contents
of a disk file with memory or vice versa. This function is key to
constructing desktop accessories that are greater than 36K in size.

A desktop accessory can be broken down into segments that can be loaded
into main memory upon demand. This is analogous to chaining in a BASIC
program. A program can implement a demand-paging algorithm to provide
a virtual machine size up to 16 megabytes in size, if necessary.

The memory management function is also used when portions of auxiliary

memory (such as Page HGR2X) must be saved to the disk because that
memory is needed by the graphic display.

Read/Write byte set as follows:

S| LLLLLLL Where S is Status 0=Read
1=Write
LLLLLLLE =length{pages)

Source of Read/Write. If reading (high bit set off on Read/Write byte at
$F9), then this should hold the file offset on the disk file. If writing, this
word should contain the memory address (on a page boundary) from which
to begin writing.

Destination of Read/Write. If writing memory to disk, this should refer to
the file offset on disk. If reading, this should refer to the target destination
in memory for the disk contents.

Return code from ProDOS, 00 if OK.

The file offset is expressed as a page number, not an absolute address. This
is expressed in 256-byte increments from the start of the accessory. This
allows an accessory to address up to 16 megabytes of memory from disk
with a two-byte identifier.

LDA #$94 ;Write $14 pages

STA $F9

STZ $FA

LDA #$0C ;Source address=$0C00
STA $FB

LDA #3$05 ;File offset=5*256=1280 bytes
STA $FC ;from start of file

STZ $FD

LDX #MMU

JSR DISP.SVC

LLDA DISK.RC

BNE ERROR

2.30 Chapter 2: The Pinpoint Internal Architecture

Function:

Description:

PRLIB (23)

PRLIB invokes the Pinpoint printer library. The printer library consists of a
specially constructed printer and interface card drivers that deal with text and
graphic printing. Each printer and interface card are different, and have
specific command sequences, hardware strobe locations, etc.

Printing simple ASCII text is rather trivial. Standard BASIC or PASCAL
1.1 hooks in the firmware can be used in a very standard way to output text.
Printing graphics, however, where 8-bit output is required, is much more
difficult. In this case, the Pinpoint device drivers communicate directly with
the hardware to transfer characters through the interface cards.

The printer library is divided into three distinct sections. The first
component is a universal driver that maintains standard entry points for all
printers and interface cards. The second component is an interface-specific
driver. This component is generated by the install facility. The third
component is a printer-specific driver. It contains the peculiar escape codes
and associated logic to generate text and graphic printing.

The printer library is “swapped” into main memory from auxiliary memory
at location $B000 thru $B4FF. A desktop accessory cannot have code in
this area. It must run concurrently when printing.

There are five primary entry points to the printer library. They are as follows:

$B000O PRTINIT Initialization of the printer

$B003 PRTCLOS Resets the printer

$B006 PRTWRIT Write a character/string to printer
$B009 PRTCMD Command printer to take an action
$B00OC PRTSTAT Poll state of the printer driver

Allocating the Printer Library
The printer library is allocated by making a PRLIB function call to the Pinpoint dispatcher. It is
de-allocated by making another dispatcher call. This is similar to the IOBUFF call.

Example:

PRTINIT

Note:

LDX #PRLIB ;Allocate printer driver
JSR DISP.SVC

JSR $B000 ;Now initialize printer

You would typically call this entry point after you have invoked the PRLIB
function. The printer is sent a carriage return <$0D> and a test is made to
determine if the printer is online. If it is, then the leading printer protocol
(interface codes) are sent to the printer.

If using Version 1.3 or greater of Pinpoint, the firmware is bypassed on the
interface card. Characters are directly output to the hardware strobe.

Parameters:

A-reg Return code from printer initialization. If the printer does not

appear to be online, and the user presses an escape code, then a
value other than $00 is returned, meaning there is a problem.

Chapter 2: The Pinpoint Internal Architecture 2.31

PRTCLOS This function closes the printer down. The printer is reset, and the default
printer characteristics are reset. The printer library is not de-installed with
this call, this requires a PRLIB function call.

There are no parameters involved in this call.

PRTWRIT This function writes out a character (or a string of characters) to the printer.
There are 3 flavors of the PRWRIT command as follows:

X-reg=$00 Print a single character contained in the A-reg. The Y-reg
contains a repetition factor.

X-reg=$01 Print a character string to the printer. Y-Reg holds the length of
the string to be printed, and $FA/$FB contain a word that points
to the string itself.

X-reg=$02 Print a character string similar to above, but terminate the string
with an end-of-line string (usually CR and LF).

PRTCMD Command the printer to carry out an action. The X-reg holds the command, the
Y-reg holds the settings.

X-1eg=$00 Set the printer mode to text. This is the default mode.

X-reg=$01 Set the printer mode to graphics. This allows all 8-bits/byte of
data to flow through the interface card to the printer. The
characters are directly output to the card, bypassing the
firmware.

X-1reg=$02 Set printer pitch. Y-reg holds values as follows:
Y-reg=$80 10 characters/inch
Y-reg=$81 12 characters/inch
Y-reg=$82 17 characters/inch
Y-reg<$80 sets printer to a specific setting.
The specific printer settings can be obtained by a PRTSTAT call.

X-reg=$03 Set printer style. Y-reg holds values as follows:

-|F|--|88SS | F:Flag 0=0n 1=0ff

S:Style 0=Normal
1=Bold
2=Underline
3=Headline
4=Superscript
5=Subscript

X-reg=$04 Set printer spacing. Y-reg holds the value as follows:

Y-reg=$80 8 lines/inch

Y-reg=$81 6 linesfinch
Y-reg=$82 8/72" spacing
Y-reg=$83 1/72" spacing
Y-reg<$80 Printer specific spacing

X-reg=$05 Advances printer to top-of-form (TOF).

2.32 Chapter 2: The Pinpoint Internal Architecture

PRTSTAT

X-reg=$06

Set current line to TOF.

Additionally, Version 1.3 or above of Pinpoint supports the following

commands:

X-reg=$07
X-reg=$08
X-reg=$09

X-reg=%$0a

Set the left margin of printer. Y-reg holds the value expressed in
characters.

Set the right margin of printer. Y-reg holds the value expressed
in characters.

Set graphic resolution. The Y-reg holds the resolution request.
The PRSTAT command returns various printer resolutions.

Alert printer the n characters following are a graphic pattern to be
displayed. A word value at SFA/$FB expresses the n value.

This function is used to query the status of the printer driver, and to ascertain
the characteristics and capabilities of the printer driver that has been installed.
The X-reg holds the request number as follows:

X-reg=$00

X-reg=$01

X-reg=$02
X-reg=$03
X-reg=$04

Return the status of various attributes The A-reg is returned
with values as follows:

A-reg=3$00 Text only printing
A-reg=$01 Text and graphic printing

Return a table of available printer pitches.

X-reg (low order) Y-reg (high) returned pointing to table.
A-reg contains number of entries in the table.

Return a table (same format as above) of available styles.
Returns a table of available spacing.

Return the current settings. Y-reg should holds query type as
follows:

Y-reg=$00 pitch
Y-reg=$01 style
Y-reg=$02 spacing

A-reg is returned with the current setting value.

Additionally, Version 1.3 or greater of Pinpoint has the following functions:

X-reg=$%$05
X-reg=$06
X-reg=$07
X-reg=$08

Return a table of characters/inch.
Return a table of lines/inch.
Unused.

Find closest available characters per inch. A-reg is returned with
value.

Chapter 2: The Pinpoint Internal Architecture 2.33

X-reg=$09 Return #dotsfinch at current resolution.

X-reg=$0A Return table of available resolutions.

2.34 Chapter 2: The Pinpoint Internal Architecture

Function:

Description:

Parameters:

Notes:

$F9

GRLIB (24)

GRLIB invokes the installation of the graphic library. A graphic driver is
installed to communicate to the video refresh. The library consists of a
series of double hi-res graphic routines that are located at $B500 through
$BEFF. The standard dispatcher I/O hooks (PICK, STOR, PROJECT,
PUTSCRN, CAPTURE, INVERT, BASCALC) apply to the double hi-res
screen. Several video functions - DRAW, XDRAW, GETSCRN do not
work while the graphic driver is in place.

The double hi-res routines allow the desktop accessory to open graphic
windows on top of the text screen. This is not actually what has happened,
but rather the illusion. The text screen is first converted to an equivalent in
double hi-res. Video resources are projected onto the video display as if
they were a text display. A character generator, as well as a font library,
provide the means to generate text characters on the graphic display.

This function call rolls the graphic library in or out, similar to the PRLIB or
IOBUFF call. The first call to the function rolls the graphic library in. The
next time it is called, it will roll the graphic library out.

When the graphic library is invoked the area of memory from $B500-
$BEFF is consumed by the graphic driver and font library.

$0000-$1FFF Unchanged to accessory
$2000-$3FFF Double hi-res main/aux image
$4000-$5FFF 8K image of aux $2000-$3FFF
$6000-$AFFF Accessory space
$B000-$B4FF Optional printer library
$B500-$BOFF Double hi-res graphic library
$BA00-$BAFF Reserved for future use
$BB00-$BEFF Font library (for print/graphic)

Note that double hi-res graphic images require a large amount of memory.
The GRLIB call should be made from $6000 thru $AFFF in main memory.
An 8K image of the auxiliary memory corresponding to HGR2X ($2000-
$3FFF) is stored at $4000 in main memory. Typically an accessory would
issue an MMU call to save this 8K region to disk, and avail the workspace
to the accessory. If the memory is not required, avoiding the MMU call
would increase the speed.

Set the value to $01. This causes the text screen to be converted to a double
hi-res equivalent.

The PROJECT call will generate a video image just as if this were a text call
with a textual resource created by VRE. PROJECT also supports a
graphical resource (such as the ruler or Wait-Clock in the GraphMerge).
PROJECT detects whether the resource is text or graphic, and acts
accordingly.

Chapter 2: The Pinpoint Internal Architecture 2.35

Function: VERSIONUM 25)

Description: VERSIONUM returns the Pinpoint version number in the A-register. The
high order nibble contains the version number, the low order nibble
contains the revision number. If an $FF is returned, then the RunRun is the
operating environment.

Example: VVVVRRRR | Version/Revision ($10=Version 1.0)

Function: ERRBELL (26)
Description: The ERRBELL function generates a gentle tone. There are no arguments.
Function: CLOCKOK 27)
Description: CLOCKOK is only available from RunRun. Access to this function while

the Pinpoint dispatcher is resident simply returns back to the caller. This
function allows you to update the clock display in the upper right portion of
RunRun while an accessory is active.

Parameters:

Y-reg $00=Clock is disabled (default)
$01=Clock enabled

Functions 28-30 are reserved for future use.

Function: EXIT (31)

Description: EXIT should be called by an accessory to exit. You can also use an RTS.
The advantage of using the EXIT call is that the actual stack pointer does not
have to be accurate.

When you exit, the dispatcher regains control, and recovers the state of the
world. The temporary file “W.TMP” is read back into memory. The zero
page and stack are recovered to their original state as well.

There are no parameters for this call.

2.36 Chapter 2: The Pinpoint Internal Architecture

Chapter 3: RunRun

T L 6 A —— 3.1
Starting Up RunRun........ccoeeiiiiiiiiiiiininin, 3.2
The RunRun Desktop......cocveviviniiiiiiniininnnn, 32
Moving About the Application List Window......... 3.3
The Command Bar.......c..ccceeeeiiiiiiiniiiiineninae. 33
The Accessory Pull-Down Menu........cccocoieninen. 33
The File Pull-Down Menu..........cooeevininininianne. 34
Catalog Of Files..cus sumn svs womuss s swesns swswass swose o9 3.5
Sizing the Catalog Window............ccvvuvininnnnnnn 3.6
Dragging the Catalog Window..........cccooveunennnns 3.6
Device Selection. s s svss sssasssgns saus swssemnsmns 3.6

The Application List— Adding an Application...3.6
Running an Application.......cocveeviininiiiiiininiinen 3.7
Modifying an AppliCation......ccecvvvueerenerenenenenns 3.8
Removing an Application.........c.ccccveuiuiinencininns 3.8
Quitting RunRun.oovviiiiiiiiniiinnnnn, 3.8
Running Accessories within Accessories.............. 3.8

Installing RunRUNccc...coeevvveiiiiineniiaeaannnns 3.9

Partitioning AppleWorks..........cccccocevveeeeneeiniin 3.9

Figures

3.1: The RunRun Desktop.......ccieeieiiniuiiininienanenn, 3.3

3.2: The Accessory Pull-Down Menu..........cccccenenen 3.4

3.3: The File Pull-Down Menu.......ccccocovvnvivnninnennn. 3.5

3.4: A Catalog Window.....ccovveeeeeeeiinineiennieninenene. 3.5

3.5: Catalog Window Sized and Relocated................ 3.6

3.6: Invoking a Desktop Accessory

within an ACCESSOTY....vcviiuierinrerinininiesincenenen 3.8

3.7: Calculator within the

Appointment Calendar...........ccoeeviiiiiniiiannnn, 3.9
Introducing RunRun

RunRun is a versatile ProDOS program selector. It also features the unique capability of being
able to run Pinpoint desktop accessories right from the selector. It has mouse-like features, such
as pull-down windows and dialog boxes, but does not need an actual mouse. In addition, RunRun
makes it possible for you to run a desktop accessory within another desktop accessory. An
example of this would be dialing a phone number from a calendar entry.

RunRun was originally designed and used as a “simulation tank” for writing and testing desktop
accessories. Program selection became a desired feature, so it was added. Viewing of ProDOS
catalogs was needed, so it was implemented. Naturally sorted catalogs were desired, so sorting by
filename, file type, modification date, and file size were all added. RunRun is program that is still
evolving. It was written using the Pinpoint Toolkit.

Chapter 3: RunRun 3.1

Starting Up RunRun

To start up RunRun, turn off the power to your Apple, insert the working copy of your RunRun
disk in your startup drive, and then turn the power back on. If your Apple is already turned on,
you can “warm boot” by pressing Control-3-Reset.

Alternatively, if Apple’s ProDOS disk operating system has already been loaded, and you’re in the

Applesoft command mode (that’s where you see the] prompt symbol), you can begin RunRun by

inserting the RunRun working disk in any drive and entering a command of the form:
-RUNRUN.SYSTEM,S6,D1 [RETURN]

The “,S6” indicates the disk drive slot number (usually 6) and the “,D1” indicates the drive number
(usually 1).

If you have previously transferred the RunRun files, RUNRUN.SYSTEM and

RUNRUN.APPLST, to a ProDOS subdirectory that is not the active directory, you must specify

the complete pathname to invoke RunRun. For example, if RUNRUN.SYSTEM is stored in a

subdirectory called PINPOINT that is contained in a disk directory called /HARD], enter:
-/HARD1/PINPOINT/RUNRUN.SYSTEM [RETURN]

from Applesoft command mode to start up this program.

If you are using the Pinpoint RAM Enhancement Kit,™ you should copy the two files,

RUNRUN.SYSTEM and RUNRUN.APPLST, to the RAM device. Your startup program should

be RUNRUN.SYSTEM.

The RunRun Desktop
Once RunRun has been invoked, the RunRun desktop will appear.

The RunRun desktop consists of three areas:

* The command bar appearing on the top of the screen. This allows you to select a command
from a pull-down window.

¢ The main desktop area. This area is used to house the Application List, the ProDOS device
table, and the ProDOS directories.

» The message line at the bottom of the screen. This area is used to display informational and
€ITOT messages.

3.2 Chapter 3: RunRun

Figure 3.1: The RunRun Desktop

fccessories File

pplelriter
Basic (W/Pinpoint)
Basic (generic)
Copy 11 Plus
Document Checker
Editor/Assembler
Exerciser

P;rﬁrSider Heads
Pinpoint Installation
Point to Point

ot 4, Urive | /FF. /

Initially, RunRun displays the Application list window in the lower left comer of the desktop area,
and the ProDOS device window in the lower right corner.

Moving About the Application List Window
By pressing the UP or DOWN cursor arrows, you can position to an application within the list.
By pressing the RETURN key, you can invoke the application.

By pressing the ESCAPE key, you will be positioned at the command bar within either the
“Accessories” or “File” pull-down menus. Pressing ESCAPE again will return you back to the
Application list window.

The Command Bar

The command bar enables you to move to either the “File” or “Accessories” pull-down window by
pressing the RIGHT or LEFT cursor arrows. By moving the UP or DOWN arrows within the a
pull-down window, you can position to a desired accessory or activity.

By pressing the ESCAPE key, you will return to the main desktop area window.

The Accessory Pull-Down Menu

Once at the command bar, you can position to the Accessory pull-down menu by pressing the
LEFT or RIGHT cursor arrows until it appears on the screen. A list of desktop accessories
appears in the window. The accessories were installed on RunRun using the Pinpoint Desktop
Manager (Version 1.3 or greater).

By pressing the UP or DOWN cursor arrows, you can position to a desired desktop accessory.

Alternatively, you can press a character that corresponds to the first character of the accessory
name (i.e. “P” for “PrintScreen”). You can select the desktop accessory by pressing RETURN.

Chapter 3: RunRun 3.3

Figure 3.2: The Accessory Pull-Down Menu

File

Calculator
Communications
Dialer

Filer
Graphierge

Kex Calculator
LaserPrint
Notegad
PrintScreen
fBuickLabe]
Resource [onvert
Spelllng Checker

Typeuriter F%W_
Uideo Editor slot &, Urive Z /RAN/
v §lot 4, Qrive | /PP RUNRUN/
Slot 4, Drive 2 (NO UQLUME)
Slot &, Drive | <NO UDLUME)
Slot 6, Drive 2 (NO VOLUME?

The File Pull-Down Menu

The File pull-down menu, also referred to as the Action window, allows you to obtain sorted
catalogs of ProDOS volumes and directories, run ProDOS applications, add, modify, or remove
ProDOS applications from the Application list window, and exit RunRun.

By pressing the UP or DOWN cursor arrows, you can position to a desired function. There are
several “Quick Keys” defined. They appear on the right side of the File pull-down menu. By
pressing G-C, you can invoke the catalog function. 3-D allows you to select a new ProDOS
device to focus on, etc.

3.4 Chapter 3: RunRun

Figure 3.3: File Pull-Down Menu

fccessories

ge

talog bq a

talog Size

vice Se ect: 8-0
n an App ;ca ;on

d an Application

dify an nppllcatlon

a
a
a
e
u
d
o
engve an Application
uit

|
|
|
s

ot 4, Hrwe ! /HEH/

vy Slot 4, Drive 1 /PP.RUNRUN/
ot 4, Orive 2 (NO VOLUME)
ot 6, Drive ! <NO UOLUME)
ot 6 Drive 2 ¢NO UOLUME>

Catalog of Files

From the File pull-down menu, you can invoke the catalog function. This causes a new window
to open up on the main desktop area containing a list of ProDOS files within a directory. The files
can be presented in a variety of ways — sorted by the filename, type, modification date, or size.

Figure 3.4: A Catalog Window

Rccessories File
M | PRI :]

NANE TYPE BLOCKS MODIFIED CRERTED ENOFILE

..... 3 £ Zi-lEV-hb 29 Si-iHTRE i 2
RPH UIR MAY=86 HY:WBH MAY=86 14:0

R3IC SYSTEM 38V 48 208-JUL-86 00:00 27-JUL-86 00:09 23808
EOOKBOOK EI; 2 23-Hﬂ§- 38% 23-Hﬁ§-36 14:97 10%4
O B R
LASER DIR 1 12-JUN-86 09:08 12-JUN-86 gMB 912
PRODOS Y8 38 18-JAN-34 90:08 23-MAY-86 14:01 14848
RUNRUN.APPLST TXT 3 22-JuL-86 na:00 20-JUL-8E 99:q8 810
RUNRUN. SYSTEM 6Y§ 53 20-JUL-86 @e:00 20-JUL-86 00:00 26624

By pressing the UP or DOWN arrows, you can move the cursor from one file to another. If all the
filenames cannot fit within the catalog window, you can scroll the window with the cursor arrows.
If you wish to scroll the window quickly, and an extensive list of files exists, you can use the G-
UP and G-DOWN keys to move a screen at a time.

By pressing the RETURN key while pointing to a system file (type SYS), you can run that
application immediately. This is an alternate method of running a ProDOS application.

Chapter 3: RunRun 3.5

If you select a directory file (type DIR) using the RETURN key, it will cause that directory catalog
to be displayed.

Sizing the Catalog Window
You can size the catalog window to fit your particular needs. Let’s say that you really don’t care
about the creation date or the end of file. Here’ how you can shrink the window.

Press the GROW (3-G) key to de-activate the window. The border will change slightly. Press
the LEFT arrow and UP arrow to size the window accordingly. Press the RETURN key to lock
the catalog window.

Dragging the Catalog Window

Once the catalog window has been reduced in size, you can drag it about. Simply press the DRAG
(G-D) key to enter the drag mode. Press the cursor arrow keys to position the window. Press the
RETURN key to lock it in place.

Figure 3.5: Catalog Window Sized and Relocated

Accessories File

: .
NAME TYPE BLOCKS MODIFIED CREATED

| g 20

BASIC. SYSTEM

8 58 JUL-86 JUL-86 90:0
COOKBOOK 2 23-MRY-86 23-HAY-85 14:0
| DATR | 23-MRY-88 23-HAY-g6 14:2
EDRSH 1 12-JUN-86 12-JUN-86 @@:@

Device Selection

From the File pull-down menu, you can change the active ProDOS device by selecting the “Device
Selection” menu choice. The installed ProDOS devices will be read, and a list of devices with their
current volume name will be displayed. Position to the desired device using the UP or DOWN
arrows and select it using the RETURN key.

Selecting a device with a “<NO VOLUME>" name will prevent you from obtaining a catalog of
this device, as it does not contain a valid ProDOS volume.

The Application List — Adding an Application

You can customize your RunRun desktop to include a list of frequently run ProDOS applications
such as AppleWorks, Pinpoint InfoMerge, Pinpoint Point-to-Point, AppleWriter, etc.

Adding ProDOS applications to the Application list is simple. Select “Add an Application” from
the File pull-down menu. You can position to this option quickly by pressing “A” for “Add.”

3.6 Chapter 3: RunRun

Press RETURN to select this option. The “Add an Application” entry box will appear containing 3
fields to be filled in, the title, system filename, and the program path (if any).

The flashing cursor will appear in the #itle field. The title is a descriptive name assigned by you.
For instance, if you wish to add AppleWorks to the Application list, enter “AppleWorks” as the
title. Press RETURN or UP or DOWN arrow to move to another field.

The system file is the name of the ProDOS “SYS” file that is used to start up the application. This
should also contain the volume name of the system file. For instance, if your AppleWorks is
stored on a hard disk volume “/HARD1” under a directory “APPLEWORKS”, you would enter the
field:

/HARD1/APPLEWORKS/APLWORKS.SYSTEM

The program path is an optional field, and is typically used with interpreters such as
“BASIC.SYSTEM?”. It can serve a variety of purposes.

First, you can specify a particular program that should be run. Let’s say for instance, you wish to
run a BASIC program called “COMPRESSEDPRINT”. It resides on your hard disk, volume
“/HARD1"” under directory “PROGRAMS”. You would enter for the program path:

/HARD1/PROGRAMS/COMPRESSEDPRINT

Rather than running the file “STARTUP” from BASIC at startup, it would run
“COMPRESSEDPRINT”. The default prefix is set to the path containing the program path.

Within a BASIC program, you can issue the “BYE” command to return to RunRun.

Second, you can specify a default path, rather than a startup program. This causes the default path
to be set to this path rather than that of the system path.

A Special Note to RAM Kit Owners:

If you add, modify, or remove applications from the Application list, and the file
“RUNRUN.APPLST” is modified, and you have copied this file to the RAM drive for faster
operation, it should be copied back to a permanent mass-storage device before you turn off your
machine. If you have “Sized” your catalog window, the file “RUNRUN.SYSTEM?” is modified,
and must be saved to disk as well.

Running an Application

When you choose the “Run an Application” option from the File pull-down menu, a list of
applications will appear in the lower left corner of the desktop. You choose an application using
the cursor arrows or pressing a character, i.e. “C” for “Copy II Plus”. Press RETURN to invoke
the application you have chosen.

If the application uses the traditional ProDOS exit procedure, then RunRun will regain control after
you have quit your application.

Chapter 3: RunRun 3.7

Modifying an Application

‘When you select “Modify an Application” from the File pull-down menu, you can select an
application definition that can be modified. You can change the title, system filename, or the
program pathname.

Removing an Application

The “Remove an Application” option on the File pull-down menu allows you to remove unwanted
ProDOS application entries from the Application list. Simply position your cursor to the undesired
application, and press RETURN. It will be removed from the list.

Quitting RunRun

In order to quit RunRun, select the “Quit” option from File menu. Press Control-G-Reset to
“Warm Boot” your Apple with another startup disk. To return to the RunRun desktop, press the
ESCAPE key after you have chosen “Quit.”

Running Accessories within Accessories
With the RunRun environment, you can run a desktop accessory directly from the RunRun
desktop. You can also invoke a desktop accessory while running another.

For instance, let’s say that you invoke the Pinpoint Appointment Calendar from the RunRun
desktop accessory window. You suddenly decide that you wish to compute a number with the
Calculator. Press ®-P, and the Pinpoint desktop accessory window will appear.

Figure 3.6: Invoking A Desktop Accessory within an Accessory
ol Bt rent s en s I -
DU | -o- . July 14, 1986

1:00 Flight back to Oakland [DETEETSEE
RCCessory fover

fppointments .
Egununica!lons
i

GraphMerge

G
L
i
b
: {
¢

3, 1986

otepad

I'IIIIII':]"IE!z M

Selecting the Calculator accessory, and it will appear on the right side of the Calendar. Figure 3.7
below illustrates this point.

I

CARTN b e G OO
—————g

(-~ 17N~)

Certain accessories cannot be interrupted. GraphMerge, for instance, cannot be interrupted
because it is a graphic desktop accessory. The Appointment Calendar cannot be run within the
Appointment Calendar because ProDOS will not tolerate two separate applications maintaining the
same open ProDOS file (the Appointment Calendar’s APPOINTMENTS.PP).

3.8 Chapter 3: RunRun

Figure 3.7: Calculator within the Appointment Calendar

HHEHE
BUHHN

T A LD T AT AT 1A

Installing RunRun

You can install RunRun by selecting “RunRun Installation” from the Application list that appears
on the RunRun desktop. This invokes the system file INSTALLRR. You will be asked to select a
target device. This location is where you wish to have the files RUNRUN.SYSTEM and
RUNRUN.APPLST copied to. The file RUNRUN.SYSTEM will be placed as the first system
file on the device, unless the file “CLOCK.SYSTEM?” is the first ProDOS system file on the
device. In that case, RUNRUN.SYSTEM will be placed as the second file on the disk.

If you are reinstalling RunRun on a disk, only the system file RUNRUN.SYSTEM will be
updated. Your personal application list, RUNRUN.APPLST will not be overwritten.

It is important that these two files remain together. If you plan to use the Pinpoint RAM
Enhancement Kit, you will want to copy both of these files to your RAM device.

Partitioning AppleWorks

If you are using the RAM Enhancement Kit, you can allocate a RAM drive, and copy the files
“RUNRUN.SYSTEM” and “RUNRUN.APPLST” up to the RAM drive for fast switching
between applications. You may wish, for instance, to move between BASIC, Point-to-Point, an
assembler, and AppleWorks. If Pinpoint is installed on the application, it is automatically signaled
by RunRun that a RAM drive has been allocated, and that various desktop accessories are residing
there.

Running AppleWorks expanded with the Applied Engineering Super AppleWorks Desktop
Expander™ (S.A.D.E.) can run into some problems, however. Once AppleWorks has been
expanded, it becomes a memory monger and desires all memory it can get its code on. This rather
greedy approach to resource sharing can present problems. AppleWorks must be taught to behave,
and be cognizant that there are others in the world, and that sharing a RAM drive can be rewarding.
The partition program modifies AppleWorks so that it shares memory with the RAM drive as
specified. You must provide the size of the RAM drive, as well as the path that contains the
AppleWorks startup file APLWORKS.SYSTEM.

Chapter 3: RunRun 3.9

Chapter 4: General ProDOS Tools

About this Chapterccoeeeeeeieinnn. 4.1
The ProDOS Filer Accessory.................... 4.2
Invoking the ProDOS Filer Accessory.......... 4.2
The Main Filer Menu.........cooooiviiiinis 4.3
The File Command Menu...........oooiiieens 4.3
The Volume Command Menu............oeeuenis 4.3
Configuration Defaults.........coovviiiininiinns 4.3
Quitting the Filer Accesory.......ccoveinnnnn. 4.3
Some Possible Uses........cccoviviiiiiiniin: 4.3
The PrintScreen AccesSOry....................... 4.4
Running the PrintScreen Accessory............. 4.4
Print QUalitys o cos coss sss svsnoms sowsens siws snssumsad 4.4
Print Mode.: couswn sonsss soms sws sosmamamin sioo 4 4.4
Source Code.....cciviiiiiiiiiiiniiiiiiniiand 4.5
Disk-Based Dialerccccoceeeveeiiio. 4.6
Figures
4.1: The Filer ACCESSOTY....vvivinininirinininnnsd 4.2
4.2: The PrintScreen AcCesSOTy....cooeeees. o 44
About this Chapter

This chapter covers the three desktop accessories that are general purpose in nature — the ProDOS
Filer accessory, the PrintScreen accessory, and MegaDialer, the disk-based phone dialer. The
source code to the PrintScreen and Dialer accessories have been included with the Toolkit so they
can be modified to meet your individual needs.

Chapter 4: General ProDOS Tools 4.1

The ProDOS Filer Accessory

The ProDOS Filer program is a handy, general utility for ProDOS. It is normally run as a stand-
alone application. Mark Wieder, a very crafty programmer at Pinpoint Publishing, modified the
ProDOS Filer so as to run as a desktop accessory. It has been changed slightly to provide a greater
degree of flexibility. The tutorial that is normally available with the ProDOS Filer has been
removed from the accessory version, however.

The ProDOS Filer accessory serves several purposes. First, it shows that almost anything can
become a desktop accessory. Pinpoint is a solid technology that facilitates limited multi-tasking for
the Apple II and ProDOS. Second, it serves as a great adjunct to various ProDOS applications,
such as AppleWorks, BASIC, Point-to-Point, RunRun, etc. The Filer accessory can be very
valuable for formatting disks, copying and renaming files, and creating subdirectories.

Invoking the ProDOS Filer Accessory

The ProDOS Filer is a utility program written by Apple Computer, Inc. For in-depth
documentation on how to use the ProDOS Filer, refer to Apple Computer’s ProDOS Technical
Reference Manual.

To open the Filer accessory:

Open the Pinpoint menu. Press ®%-P for Pinpoint. If you are using RunRun, select the
accessory window.

Choose the Filer. Highlight it and press RETURN from the Pinpoint menu or
RunRun.

The left side of the 80-column video display will contain the Filer accessory as shown in
Figure 4.1.

The Filer accessory is menu driven. This means that menu choices are presented, and you choose
a menu item by selecting the corresponding letter. The Filer accessory allows you to carry out file
and volume level commands. A volume is the equivalent of a disk.

Figure 4.1: The Filer Accessory

iﬁ*****i*****#i(PINPOINT)**********X*iEﬁBﬁ%E.{ (3 records)
§ Prob0S Sustem Desktop Ubilities '
§ Filer Yersion 1.1
ﬁ fopuright Apple Computer, 1983-8¢
FESTeevisseevissebbsessisbesavisitsbsas ‘
P - SET PREFIX merge/ (8 f1les)
Size Date Time
F - FILE COMMANDS zzzzsszzsssszzzzzzaz
887 24-JUN-86 16:22
U = UOLUME COMMANDS 1848 24-JUN-80 16:23
951 24-JUN-85 16:23
D - CONFIGURATION DEFAULTS 976 24-JUN-84 16:22
376 24-JUN-86 16:24
B - QT 1261 24-JUN-8¢ 16:23
1623 24-JUN-86 16:23
PLEASE SELECT AN OPTION: _ g
Tee Tp/loun Arrous (With) to move through list. Esc: File activities

lse ¢-R o reverse list ordering.

4.2 Chapter 4: General ProDOS Tools

The Main Filer Menu

The Main menu of the Filer accessory offers five choices. The choices are listed in the Filer menu.
A key corresponds to the choice as well. For instance, if you press the “F” key, you will select the
File commands. The choices from the Main menu are shown in Figure 4.1 above. Volume
commands allow you to format, copy, compare or rename volumes (disks). File commands allow
you to copy, delete, compare or rename individual files.

To return to the Main Filer menu, press the ESCAPE key at the File Command menu.

The File Command Menu

When you press “F” at the Main Filer menu, the File Command menu will appear on the screen.
The File Command menu allows you to set the default prefix, list a directory, copy, delete,
rename, compare, lock and unlock files, and even create subdirectories. You can select the desired
command by pressing the character that corresponds to the command. Press the ESCAPE key to
return to the Main Filer menu.

The Volume Command Menu

Press “V” at the Main Filer menu to bring up the Volume Command menu on your screen. The
Volume Command menu allows you to set the default prefix, format, copy, compare, list and
rename volumes. In addition, block allocation and bad-block detection capability is provided.

Note that setting the default prefix is a temporary action. When you exit the Filer accessory, the
default prefix will be reset to its previous setting.

Press the ESCAPE key at the Volume Command menu to return to the Main Filer menu.

Configuration Defaults

When you press “D” from the Main Filer menu, the Configuration Default menu will appear.

From this menu you can set or restore default values. Press the ESCAPE key to return to the Main
Filer menu.

Quitting the Filer Accessory
To exit the Filer accessory, and return to your primary application, desktop accessory, or RunRun,
press “Q” from the Main menu.

Some Possible Uses
The Filer accessory is handy to use for copying a group of files from one location to another. For
instance, you may have numerous files on your RAM drive that you wish to have copied back to

disk before you exit AppleWorks. Invoke the Filer accessory, and copy files using the “=
wildcard copy capability.

Another possible use for the Filer accessory is to format disks if you need more storage space to

save files. AppleWorks does not feature a disk formatting option. The Filer accessory does, and it
can be used from within AppleWorks.

Chapter 4: General ProDOS Tools 4.3

The PrintScreen Accessory

The PrintScreen accessory is very simple, yet handy desktop accessory. It prints the contents of
the 80-column video display on the printer. This can be very handy in the RunRun environment,

since desktop accessories do not offer a screen dump command (the equivalent of G-H from
AppleWorks).

Running the PrintScreen Accessory
To open the PrintScreen accessory:

Open the Pinpoint menu. Press ®-P for Pinpoint. If you are using RunRun select
the accessory window.

Choose PrintScreen from Highlight it and press RETURN.
from the Pinpoint menu
or RunRun.

A dialog box will appear in the center of the display as shown in Figure 4.2 below. You have two
choices to make — the print quality and the print mode. You can select your choices by moving
the LEFT and RIGHT arrow keys to position to the desired selection, and pressing RETURN.
Figure 4.2: The PrintScreen Accessory

Accessories File

Print Hode:

E gioi;_gnﬂrwe E /!E/ :1

RunRun (L) 1386 by Pinpoint Publishing Uersion: 1.4/USA

Print Quality

You can set the print quality to draft or final. The print quality is only pertinent if you have chosen
the graphic printing mode. A print quality of final forces a two-pass print of the graphic
representation of the screen.

Print Mode
The print mode can be set on most printers to either text or graphics. Certain printers, such as
Common and Okidata™ are not supported in graphic mode.

Text printing is fairly fast. The existing 80-column video display is printed out less any mousetext
icons that appear.

Graphic printing is somewhat slower, because each character is plotted to the printer. This
requires about 18 times the amount of effort than a straight text print requires. Mousetext video

4.4 Chapter 4: General ProDOS Tools

characters can be printed, however. A true WYSWYG print is made. WYSWYG is an
abbreviation for “What you see is what you get.”

Source Code

The source code to this accessory is distributed on the Toolkit source code disk. You can modify
the source code as needed to meet you particular needs.

Chapter 4: General ProDOS Tools 4.5

The Disk-Based Dialer

The Phone Dialer is a very simple, yet powerful memory resident desktop accessory. However,
the Dialer is limited in its capability due to the amount of free memory available in the Pinpoint
dispatcher.

The disk-based dialer referred to as “MegaDialer” is a disk-based version of the memory resident
dialer. The source code to this dialer is included with the Pinpoint Toolkit. This allows you to
customize your dialer to your specific needs.

MegaDialer will act just like the memory-resident dialer, except that it is capable of using a 32-byte
lead dial string rather than only 15 characters. You can configure it by choosing the “Configure
MegaDialer” option from the application list in the RunRun window.

For details regarding the use of the Dialer, refer to the Pinpoint AppleWorks Desktop Accessories
User Guide.

4.6 Chapter 4: General ProDOS Tools

Chapter 5: Tools of the Trade

About this Chapterc...cccoeeeveennnnnn. 5.1
The Accessory Movercccoveeeeen. 5.2
Opening the Accessory MOVer................... 5.2
Adding a New Desktop Accessory.............. 5.2
Deleting a Desktop AcCessOry........ovvvvenens. 53
Editing an ACCESSOIY...veeriiiiiiiiuininnrnennns 53
Copying an ACCeSSOIY....ovvveiiiriiiirineiennine 54
Quitting the Accessory MOVeET................... 5.4
The Layout of file “PINPOINTPROFILE”....5.4
The Hex Calculator................ccococoeuuneeen. 5.7
Opening the Calculator.cccocvvvuiinnnnnnn. 5.7
Changing Modes........cooveeeveiiiiiiniinnninnns 5.7
Entering Numbers........cccoceviviivininnininnenns 5.7
Quitting the Hex Calculator...........oooovinins 5.8
The Memory Window.................ccoevvue. 5.9
The File MenU.......cocovevevneniceniiiiininnnnns 5.9
Switching Between Memory Pages............. 5.10
Switching Between Memory Banks............. 5.10
The Memory Window is Clouded............... 5.10
Exiting the Memory Window.................... 5.10
Figures
5.1: Adding a Desktop ACCESSOTY........vevvues 53
5.2: The Hexadecimal Calculator................ 5.7
5.3: The Memory Window..........cocvueninnn. 5.9
5.4: The Memory Window File Menu.......... 5.10
About this Chapter

This chapter discusses the Accessory Mover, the Hexadecimal Calculator, and the Memory
Window. Each desktop accessory can be very valuable when working within the
Pinpoint/RunRun environment.

Chapter 5: Tools of the Trade 5.1

The Accessory Mover

The Accessory Mover is a tool for the programmer to define a new desktop accessory. This is

primarily a tool for the programmer rather than the end-user because the various parameters must

be entered in hexadecimal values. Consumer desktop accessories will be automatically added to

ge Pinpoint Installation disk via custom procedures, such as those found in the Pinpoint Spelling
hecker. :

The Pinpoint Desktop Manager is driven by a file found on the Installation disk (or a directory)
called “PINPOINTPROFILE.” This file contains a list of desktop accessories, their corresponding
pathnames, the printer and interface parameters, the dialer attributes, and flags to determine which
desktop accessories should be automatically loaded into RAM if it is available. This list is copied
into a ProDOS system file containing Pinpoint during the installation process. The file is 768 bytes
in length, and can be located $0D00 bytes into the start of the system file containing Pinpoint. The
actual layout of this file is discussed in detail at the end of this section.

The Accessory Mover manipulates the file “PINPOINTPROFILE.” It does not actually move any
accessories about. New desktop accessories can be made available to applications by changing the
contents of this file, and re-installing Pinpoint onto the system file.

It is important to note that the Installation program must be run after any modifications to
PINPOINTPROFILE have been made in order to take advantage of those changes.

Opening the Accessory Mover
Open the Pinpoint menu. Press ®-P for Pinpoint. If you are using RunRun select the
Accessory window.

Choose Accessory Mover Highlight it and press RETURN.
from the Pinpoint menu
or RunRun.

The Accessory Mover will be activated. The Accessory Mover must locate the file
“PINPOINTPROFILE” in order to operate. The first thing the Accessory Mover will do is to
prompt for this file to be available on a mounted ProDOS volume.

The file “PINPOINTPROFILE” was originally distributed on the installation side of the Pinpoint
Desktop Manager disk, “/PP.INSTALL.” If you have stored this file in a subdirectory somewhere
on a hard disk, then press G-P to specify the subdirectory pathname. .

A small menu window will appear in the upper left corner. Five choices are available — add,
delete, edit, copy or quit.

Adding a New Desktop Accessory

In order to add a desktop accessory, highlight the option “Add an Accessory” and press RETURN.
If 16 desktop accessories are already defined, the Accessory Mover will not allow any more
accessories to be added. A larger window will appear, and a flashing cursor will be visible in the
lower left corner. There are four fields you must enter information into. The four fields are the
accessory name, filename, load size, and memory requirements. Figure 5.1 illustrates this.

The accessory name is simply a descriptive name assigned to the accessory. When the Pinpoint
Desktop Manager is invoked via ®-P (or from RunRun), this name appears in the window. Itis
limited to 16 characters in size, and the first character should be an uppercase letter, but may be a
symbol such as an asterisk or dollar sign.

The accessory filename should contain the name of the system file that contains the desktop
accessory. This file must be a “SYS” file. The filename should be specified here, not the entire

5.2 Chapter 5: Tools of the Trade

path. It must reside (a) in the root directory of a volume online, or (b) in the standard location
defined for desktop accessories.

The load size should contain the number of bytes (in hexadecimal) that the dispatcher should load
to startup the accessory. If the entire accessory should be loaded, place a high value on the load
size, such as $9000. This value is flexible because dynamic “booting” of accessories may be
preferred. A $100 byte “boot” portion of the desktop accessory may be loaded. It would then
determine which hardware is running, what hardware specific code should be loaded, and what to
do next.

The memory top defines the highest portion of memory that a desktop accessory will use. It
should be slightly high in value if there are any doubts on the memory requirements. A portion of
memory from $2000 to top of memory is saved to a RAM disk or drive in file “W.TMP”. This file
contains the memory contents of the primary application in “sleep state.” This number cannot be
less than the load size, and cannot be greater than $BF00, since ProDOS resides there.

Once you have entered these four fields, the Accessory Mover menu will appear again. Quitting
causes the file “PINPOINTPROFILE” to be updated with the new accessory definition. The
Pinpoint Install program (or the Toolkit Advanced Install program) must be run to re-install
Pinpoint on a primary application.

Figure 5.1: Adding a Desktop Accessory

/TKACCESSORIES/PINPOINTPROFILE fidd accessory

fdd an access)
Ualste an acc) Load HMemory
Edit an acces | Name File name size top

Copg an acces

Accessory Mover A
Ap501ntments [
Calculator [
Communications ,
Dialer R
Filer
Graphfierge
Hex Calculator
Hemary Windou
Notegad
PrintScreen
QuickLabe] !
Resource Convert R
Typeuriter 6
R

Uideo Editor
Remote Control

PO OSSP OO G M i—a- CEN R OO0 CSP A OS5 Cad M
S e FT Y VY e OO CER Y 0—a O C 00 TP CSO
R N 0 CEN s 500 (0 K I e (0 15 TS R 5 5
O S S O TS O SO0 (e 00 IS0 1000 1050 1050 OS5 CRN TSy

OO MO0 N A CIMITD O S OO M~

-
O o D 50 G o 0 5 50 50 O O O 0 50

Deleting a Desktop Accessory

To remove a desktop accessory from the list, select the “Delete an Accessory” option. Then
highlight the accessory to be removed, and press RETURN. If you choose to delete memory
resident accessories, you will not be able to reinstall them. The Accessory Mover only allows the
installation of disk-resident accessories.

Editing an Accessory

To edit an accessory, select the “Edit an Accessory” option from the Accessory Mover menu. A
list of desktop accessories will appear. Highlight the desired accessory using the UP or DOWN
arrows. Press RETURN to edit the accessory definition. The accessory name must be unique.

Chapter 5: Tools of the Trade 5.3

Copying an Accessory

You can move accessory definitions about from one copy of the file “PINPOINTPROFILE” to
another using the copy option. You will have to supply two versions of the PINPOINTPROFILE
file to do this.

Select the “Copy an Accessory” option from the Accessory Mover window to begin a search for
the other version of PINPOINTPROFILE. A dialog box may prompt you for direction to this file.
Once located, two windows will appear on the screen labeled Source and Destination. The Source
is where you will be copying accessory definitions from. The Destination is the receiving party
where new accessory definitions will be stored. By pressing the LEFT or RIGHT cursor arrows,
you can change the direction of the source/destination relationship.

To move an accessory definition from the source to the destination press the RETURN key. The
destination file must contain less than 16 desktop accessories in order for the copy to occur
correctly.

Quitting the Accessory Mover

Select the “Quit” option from the Accessory Mover to cause the file “PINPOINTPROFILE” to be
updated with the desired changes. You will have to run the Pinpoint Installation program to re-
install the accessories onto the application.

The Layout of the File “PINPOINTPROFILE”

The file “PINPOINTPROFILE” is 768 bytes long. It contains the descriptive names of the
desktop accessories and their corresponding ProDOS pathnames. It also contains information
about the particular printer and interface type, the load size and memory top for each accessory, the
standard location for the desktop accessories, and whether they should be autocopied to a RAM
device at startup.

A copy of the file is stored in each system file containing the Pinpoint desktop accessories. This
copy is stored at $0D00 into the system file. For instance, if you “BLOADED” the AppleWorks
startup file “APLWORKS.SYSTEM?” at $2000 in memory, you would see the names of the
desktop accessories installed at $2D00 in memory.

‘When the Pinpoint dispatcher gains control of the machine, and renders it to a desktop accessory,
the PINPOINTPROFILE contents are memory resident at $OEQ0 thru $10FF in memory. They are
maintained there so that each accessory can access the common information.

The actual memory layout for the file is as follows:

$0000-$00FF Descriptive name of each desktop accessory high bit is turned
on. Each accessory name is 16 bytes in length. If the initial
byte is blank (value $AQ), it is not considered an accessory.

$0100-$0280 16 24-byte paths — Each path is preceded by a length byte,
followed by the actual path name. The high bit of each byte is
off. The maximum size for any accessory name is 15 bytes.
The remaining bytes are used if a RAM device is present to
redirect the accessory to the RAM drive.

$0280-$029F 16 2-byte pairs — Each pair consists of a load size byte

followed by a memory-top byte. These correspond to the entries
made in the Accessory Mover.

5.4 Chapter 5: Tools of the Trade

$02A0-$02BF

$02C1

$02C2

$02C3

$02C4-$02CC

$02CD-$02CE

$02CF

$02D0

$02D1-$02D3

$02D4-$02E2

$02E3

$02E4-$02E5

Standard location of the desktop accessories. The inital byte at
$2A0 is an indicator byte. If its value is non-zero, then it
contains the slot/drive of the desktop accessories. This byte is
stored in the normal ProDOS device format. If this byte does
have a value of zero, however, the remaining 31 bytes in the
field contain a ProDOS directory that contains the Pinpoint
accessories. If the length byte of this path (at $2A1) is null, then
no standard location has been set.

DESTROYOPT — Flag set to 0 or 1. This flag determines if the
temporary file “W.TMP” should be destroyed after exiting
Pinpoint. In general, it is set to 0 if a RAM drive is present, and
1 otherwise.

PTR.TOF — Multi-purpose flag. The low order bit is set to 0
or 1 depending on whether the printer recognizes a top-of-form
character or not. The higher-order portion of this byte stores the
number of the interface card selected in the installation.

PTR.SLOT — The printer slot selected during the installation.
The printer slot number is stored in the lower nibble of this byte.
The upper nibble contains a value of “C” If the printer slotis 1,
the value of this field would be “C1”.

PTR.TYPE — Selected printer type. Value corresponds to
installation choice.

PTR.LEAD — Lead string sent to printer upon initialization.
The string is terminated by a $FF.

PTR.TRAIL — Two byte line terminating string. It contains a
<$0D> and, optionally, a line feed <$0A>. If the second byte
has a value of 0, then no line feed is required.

LOCAL.1 —Setto 1 or 0. This is a flag to determine if a “1”
should be dialed in advance of a phone number within area code.

DIAL.SLOT — Slot number of modem for dialing and
communications. The slot number is stored in the lower order
nibble of the byte; and higher order nibble contains a “C”.

AREACODE — Local area code. 3-byte value with high order
bit turned on.

DIAL.LEAD — Lead string sent to modem prior to phone
dialing. This string has the high order bits turned on, and
usually contains an access code for MCI™ or SPRINT™
services.

DIAL.LEN ~— Minimum phone number length. This value is
for the Dialer. No groups of numbers with less than this value
will be considered a phone number for dialing.

DIAL.TRI — Optional accounting codes that are appended onto

the phone number just dialed. These are accounting codes,
stored with the high order bit on.

Chapter 5: Tools of the Trade 5.5

$02E6 DIALS 16 — Dialer slot multiplied by 16.

$02E7-02EF DIAL.CMD — Dial command used for Hayes AT compatible
modems. High order bit is on. The typical command is
“ATS7=30DT". A phone number would then follow that.

$02F0-$02FF 16 1-byte flags — These determine if the corresponding

accessory should be autocopied to the RAM device at startup. A
value of 0 means that they should not.

5.6 Chapter 5: Tools of the Trade

The Hex Calculator
The simple calculator found in the Pinpoint desktop accessories is very handy for floating point

mathmatics. It does not, however, allow computation in hexadecimal (base 16) or binary (base 2).
These two bases are very useful for programmers.

Figure 5.2: The Hexadecimal Calculator

Accessories File

DEC]

) Fof oY

DOO

O3

OO0

Oao®O6 —o—smngﬁ;m:

OO0 v Slot ;; rive ;ﬂg PO}NT/
of iEFiueimo 0oL uge>
0 6. rive 2 <NO UOLUME)

Runkun (L) 1386 By FInPOING Publishing Version: Beta 1.8705A

Opening the Calculator

To open the Hex Calculator:
Open the Pinpoint menu. Press ®-P for Pinpoint.
Choose the Hex Calculator. Highlight it and press RETURN.

The Calculator will appear with a zero in the display and the abbreviation “DEC” under the word
MODE. This means that the Calculator is accepting numbers and providing results in decimal
(base 10).

Changing Modes
Pressing the mode key (M) to change the display to hexadecimal (base 16), binary
(base 2), or decimal (base 10).

Entering Numbers
Type the number using the number keys.

To perform a numeric or Boolean operation, press the appropriate key. The following keys
operate the Hex Calculator:

0-9, A-F Numeric values for input — In binary mode, only O or 1 are
allowed. In decimal mode, the Calculator only allows decimal
numbers 0 through 9. The largest acceptable value is 65535 decimal
or $FFFF hex.

[*+ - Numeric operators — The Calculator is an integer calculator, so
results of a division may appear misleading.

Chapter 5: Tools of the Trade 5.7

&O0OXN

R
Delete
a-C

P

@

ESCAPE

Boolean operators are as follows:

& AND

0 OR

X EXCLUSIVE OR
N NOT

Mode switch — Press this key to switch between decimal,
hexadecimal, and binary input and results. The mode switch
provides a handy way to convert numbers between base 2, 10, and
i6.

Results key — Displays the results of a calculation.
Reset key — Clears the contents of the Calculator.
Delete key — Deletes the last digit in the number.

Clear entry key — This clears the most recent entry to the
Calculator.

Print key — Toggle switch that enables or disables printed output.
If the printer is turned on, then a paper tape of the computations will
be generated.

Indirection key — This displays the contents of the memory
address.

Exit key — This causes the Calculator to disappear. Control is
returned back to the primary application.

Quitting the Hex Calculator:

Press ESCAPE.

5.8 Chapter 5: Tools of the Trade

5.9

S AT N CRACRICEIED) |
O, COFE- XXM —s e IO
ST SO (I X ——e)| -

OO G O O T G B OO D QO@IOD

0L - eB e e CreO 40O
= R BB MBI

—IZZEDCE™ OGS 1) QRIS RS -t GRS
—E_ | D § OO A
| ICAE RIS LA el O

S @IGOre<Eor -l

Press ®-P for Pinpoint. If you are using RunRun, select the

accessory window.
Highlight it and press RETURN.

3 O O 50 0 50 O M < (D G CR O i e~
€I OO D D LI CDORMNCD O DT OO CDUN)!

NS oS00 0 (00 (0 o 1 100 oSN (50 0 o (O (S O

MMHMMMMMMHMM.MMHH
EE T EE s T E T EE EE

The Memory Window desktop accessory is a handy debugging tool for programming. It allows

you to view the current contents of memory.
The Memory Window will appear on the screen, as shown in Figure 5.3.

The Memory Window

To invoke the Memory Window accessory:
Choose Memory Window

from the Pinpoint menu

Figure 5.3: The Memory Window

Open the Pinpoint menu.
or RunRun.

Chapter 5: Tools of the Trade

RunRun (L) 1386 DY Finpoint PUBIishing Version: Beta I.67USA

The File Menu

Press the ESCAPE key to bring the File menu onto the upper left corner of the Memory Window.

There are five commands available from the File menu. Figure 5.4 illustrates this.

Figure 5.4: The Memory Window File Menu

|~

—

>CCT
2

Bt bank ¢
Previous Bank ¢=¢
Next Page g-¢
Previous Page -4
Quit ¢-8

(=

(o~ "D CARD D AT

N O IO
I C. . CICIE-ED

"~—r -
OO+t =4 D il 2% - IO

D —- DD DA OCINOD D>
D0 1 RTOMIDI-OC ~ Ol
DEIRED - (WD D D OO GO T TV D D

OO0 D~ 10

g

O T

MOCE IO MO QO C T CE» OO T T CSO CR) CE) ema-
PRI CE D Call ot C €53 CAS TSP T D CO MO
CDHCIe—a 3 10 OOHED CO €5 “ TS QO CD OH D™D
I CEPCED CER T3 O =i CEPCEN LS 90— SO COCEI M
S o= O CEN U0 QD T C I OO OO I CRCRD CO CO MY
OO € CRPMND CAS CS) CO O CRICED MO CD COD C5»
o 0= O DR “ VT OO Cadlo—= TR 00 0O T0 O O O

5 “FRCD N I O T R CE CRF C a—a C I D “TICD
D TICD D LD DD LA = OO0 C I 00 " TICD
D " TICD AT CD € CO D CD CO OO CD D
D THCOCHOD T CO CO QD MO CR L1 CO CO O
4 O3 CSOO0 CRO R CO CO CAJ A CDCDC I DN
PHCD S0 CD 00 CR COD CO OO “TINY I Gl B I
I OO T P 52 3050 CR C CSx C5 S CR) T “TICSY P
B T D I 10 CO D (D O " TICD 0D G D 1D O
e CEPUOC I TP CE S OO C CD CHHED CRH D CD M1

Slot 6, Drive 1 <NO VOLUME
6, Drive 2 (NO UOLUME

RunRun (L) 1986 by Pinpoint Fublishing Tersion: Beta 1.0/0%A

Switching Between Memory Pages

You can move between memory pages by using the G-UP arrow and G-DOWN arrow keys to
position about in memory. A memory page consists of 256 bytes. Viewing memory from $C000
through $CFFF is not allowed. Viewing memory above $D000 looks at the ROM memory, as
opposed to bank switched memory.

Switching Between Memory Banks

If your Apple is equipped with bank switched memory (as in the Apple Extended 80 Column
Card™ or the Applied Engineering RamWorks™ card), you can move about through memory
banks viewing the contents of memory throughout each bank. By pressing the G-> and G-< keys,
you can move about through memory.

The bank number appears along the left side of the window. The bank number will appear as
“MM” by default, for main memory bank. If you press the 3-> key, the bank number will read
“00” for the initial auxiliary memory bank.

The Memory Window is Clouded

The Memory Window is a desktop accessory. When it is running, it occupies memory (from
$2000 thru $2FFF). In addition, Pinpoint is resident in memory at the time from $0CO00 through
$1FFF. This means that you cannot view the primary application in that memory region. The
source code is included for this accessory, so you may opt to change this accessory to meet your
particular needs.

Exiting the Memory Window

Select the “Quit” option from the File menu to exit the Memory Window. Optionally, you can
press G-Q to quit.

5.10 Chapter 5: Tools of the Trade

Chapter 6. Designer Tools

About this CROPIEY v ssvssssnnvsmnssmwanss syvesd 6.1
The Video Resource Editor 6.2
Format of a Video Resource...........o.vivnnnsd 6.2
Opening the VRE.........ccovvveiiiiiiiiininnes 6.2
Starting Fresh.......oooiviiiiininiiiinn, 6.2
Picking a FONt.......cooovuiiviiiiiiiiiinininnaidd 6.3
The Window Maker........cocovveiiiiiiiinininn. 6.3
Copying or Moving to Clipboard................ 6.3
A Look at the Clipboard...........coooiiiiiiiaid 6.4
Pasting from the Clipboard...........ccoooeiieed 6.4
Locking a Region......ccoooveviviniiiiiiiiiiiiaad 6.4
Opening a Resource File............ooiiiee 6.4
Saving a Resource File........ocoviviinininiiindd 6.4
Printing the SCreen........ccovvvvvveinniinnsinnnnn 0.5
The Script Processing Language................. 6.5
Relationals.......oeveeiiiniiniiiiininiiainniiinnen 6.8
(0515 ¢:170) ¢ NPT PSPPI PP 6.8
QUICK-KEYS...e.tvieieniiiiiiniii el 6.9
Error COdeS. o sxuesssummmsns srrvees swvmenoss 6.9
Leavingthe VRE......coocoiviiiniiiiiniiiiidd 6.9
The Resource Converteruiuindd 6.10
Opening the Resource Converter................! 6.10
Converting a Resource File................. 6.10
Selecting a Text Format..........cooovviniininainns 6.10
Quitting the Resource Converter................. 6.10
Figures
6.1: The VRE Command Bar................... 6.2
6.2: Using Window Maker.....................6.3
6.3: Copying to the Clipboard.................. 6.4
6.4: The Resource Converter...........coevevins 6.10
About this Chapter

Ttems covered in this chapter include the Video Resource Editor and the Resc
instruments used by the designer to create, test, and implement visual displa;

Chapter 6: Designer Tools

The Video Resource Editor

The Video Resource Editor (VRE) transforms the text screen to a sketch pad. Text and icon
characters are the drawing medium. An internal script language allows simulating an actual visual
interface. The VRE outputs a binary video resource file which you can convert to various source
codes with the Resource Converter.

Format of a Video Resource

A video resource is a binary image of the particular window. It begins with a 6-byte header
followed by a compressed image of the video refresh clip region. The header begins with the
upper left row (0-23), then the upper left column (0-79). The third byte contains the width of the
window; and the fourth byte contains the length of the clip region. The fifth and sixth bytes
contain other information for the Pinpoint dispatcher.

If you wish to position a window to another location other than its default location, simply change
the contents of the first two bytes of the resource to another value. The value must be valid, and
not position the window off the screen.

Opening the VRE:
Open the Pinpoint Menu. Press ®-P for Pinpoint. If you are using RunRun, select the
accessory window.

Choose Video Editor Highlight it and press RETURN.
from the Pinpoint menu
or RunRun.

The VRE will be activated, clearing the screen and showing its command bar. Arrow keys will
scroll through the four command windows: file, edit, tools, and fonts. Use the ESCAPE key to
toggle displaying the command bar. The entire screen is your visual workspace.

Figure 6.1: The VRE Command Bar

DIT TOOLS FONTS
2
en -
P ipt
st
Save o
Save 25...
Quit ¢-0

Starting Fresh
When you enter the VRE, your workspace is initialized. The workspace area is expanded to the
text screen’s boundary and cleared. You can begin “drawing” on the screen.

6.2 Chapter 6: Designer Tools

To reinitialize the VRE, select “New” from the File window. This clears the screen, resets the
video workspace, and deselects the command bar.

Picking a Font

Type directly from the keyboard to “draw” on the workspace. The VRE does not limit itself to
pormal video typewriter characters. You can use different fonts, listed in the Fonts window, to
create images. “Normal” displays white characters on a black background while “Inverse” does
just the opposite.

“Jcons” allows you to type with the mousetext icon characters. Select “Icon Table” from Tools to
access a character reference. It will display mousetext icons and their keyboard equivalents over
the workspace. Press any key to close the character reference window. Note that keys not listed
in the icon table will produce inverse characters with the icons font selected.

The Window Maker

The “Window Maker” contains a library of window types. Upon selection, it presents you with a
choice of windows. Choose the desired window using the LEFT and RIGHT arrow keys. Press
RETURN and the selected window will be copied to the clipboard for pasting. All the windows
are pre-sized. Select “Show Clipboard” to see the actual window. Or press ESCAPE to abort.

Figure 6.2: Using Window Maker

Elr]=

2

Select the desired window type by pressing the € or 2 keys and Return.
The selected window will be placed in the clipboard. Use -F to paste.

Copying or Moving to the Clipboard

The clipboard helps make editing simple. “Copy” and “move” to clipboard are similar commands.
They transfer specified portions of the workspace to the clipboard for temporary storage. Copy
makes a duplicate image on the clipboard without altering the workspace, whereas move will
actually take a piece from your work area and place it on the clipboard.

‘When you choose to copy or move, crosshairs appear on the workspace. To anchor a corner of
the “capture” box, position the crosshairs with the arrow keys and press RETURN. Now the
resulting box can be sized with the arrow keys. Press RETURN to complete the copy or move, or
hit ESCAPE to return to the crosshairs.

Chapter 6: Designer Tools 6.3

A Look at the Clipboard

To display the clipboard, select “Show Clipboard.” The clipboard window will appear over the
work area. Type any key to close the window. Only one item may be on the clipboard at a time.
Any copy, move, or use of “Window Maker” will destroy its previous contents.

Pasting from the Clipboard

Choose “Paste Clipboard” to copy the image from the clipboard to the video workspace. The paste
will occur at the current cursor position as long as the pasted image fits within the screen
boundaries. The VRE produces an error bell for invalid pasting locations. Moving the cursor up
and/lg;' left should correct the situation. “Undo Paste” will remove the last pasted image from the
workspace.

Figure 6.3: Copying to the Clipboard

Locking a Region

You can resize the video work area with the “Lock Region” command. Sizing the region is similar
to the copy/move technique. When an area has just been locked, the screen will seem unaffected,
but you will discover that the cursor can be positioned only within the specified region. To resize
the workspace again, just use the same command.

Opening a Resource File
The File command “Open” reads a video resource file from a ProDOS device and displays it on the
workspace. The working area will be sized to the resource’s saved dimensions.

When you select“Open,” a dialog window opens onscreen. This lists all possible resource and
directory files in an online ProDOS volume. To choose a file, highlight the filename and press
RETURN. Or, hit ESCAPE to cancel or G-N to search through another volume.

Saving a Resource File

To save a resource, pick “Save” or “Save As...” The locked region from the workspace mode is
placedbin a binary file which can later be converted to compatible code for various compilers and
assemblers.

6.4 Chapter 6: Designer Tools

If the you want to save a resource for the first time or under a different name, use “Save As...”
Type a name and hit RETURN to save the locked work area to a binary file on the current prefix.
Change to a different volume by pressing 3-N. ESCAPE will cancel the save.

Selecting “Save” will save the current resource on the workspace to the last pathname used by the
“Open” or “Save As...” commands.

Printing the Screen

Select “Print...” to print the work screen to a printer. The ImageWriter™ printers will support the
icon characters. If working within the RunRun environment, you can print jcons and text on other
printers using the PrintScreen accessory.

The Script Processing Language

The VRE contains a valuable prototyping tool, a script processor. Scripts are actual programs,
using correct script syntax, stored as standard ProDOS textfiles. Scripts may be composed with
most ProDOS text editors. The script processing language was designed to be a subset of the ‘C’
language standard, with certain anomalies imposed by the restricted environment of the accessory.
The following is a list of the valid keywords and syntax examples.

Only 16 program variables are allowed, designated by %0 through %15. Parameters may not be
passed to subroutines. The multiplication and division operators have not been implemented.

Keywords may be in either case but are converted internally to upper case. Strings for the Say
command may be in upper and/or lower case and will not be converted. All keywords must be
surrounded by white space; for example:

if (%3 == 5) exit isvalid, whereas
if (%3==5)exit is not.

The default radix is decimal. ASCII characters may be specified by preceding them with a single
quote [’], hexadecimal digits by a preceding Ox.

'H isan ASCII H.

’h is an ASCII h.

’AH is hex $08 or an ASClI control-H.
0x1234 is a hex $1234.

Oxff is hex $FF.

Pointers have been implemented for peeks and pokes; they are specified by a preceding asterisk
[*]. To place the value of location SABCD into variable 3, as an example, use:

%3 = *Oxabcd
To poke the contents of variable 4 into location $1234, use:
*0x1234 = %4

Labels must begin with an alphabetic character and be at the start of a line (column 1). Only the
first 32 characters are recognized. A colon [:] may optionally end a label.

Comments are in standard ‘C’ form; they are set apart by a leading /* and a trailing */. Comments
cannot be nested.

/* This as an example comment. */

Chapter 6: Designer Tools 6.5

The following shows valid keywords and syntax use:

prefix prefix pathname
Sets new default prefix for project and exec commands. The default prefix on startup is the
pathname containing the script file.

project project pathname

project pathname @ x y
Loads the resource file and projects it on the screen via a WWOMP Pinpoint call. The x and y
coordinates are optional and must be within the ranges: x(0-79) and y(0-23). Finding no specific
coordinates, the script processor will project at the default coordinates coded in the resource file.

key key
Gets a keystroke from the keyboard. The key value may be stored in a variable or a memory
location with assignment such as:

%1 = key or *0x1234 = key

echo echo

echo argument
Controls whether keystrokes are echoed to the screen. Upon startup, keystrokes are not displayed
onscreen. The argument can be on or off. Echo with no argument defaults to on.

if if (condition) statement

Evaluates the following conditional and executes the next statement if the conditional evaluates to
true. The conditional itself must be surrounded by parentheses. Parentheses may be nested up to
255 levels. Valid ‘C’ assignment syntax is supported. An example of a valid command line:

if ((%1 = key) =='H) home

else else statement
Executes the next statement if the result of the preceding conditional is evaluated to false. Toggles
the conditional result so that in the following case:

if (condition) statementl
else statemeni2
else statement3
else statementd

If condition evaluates to true then statementl and statement3 will be performed. If condition is
false, statement2 and statementd will be done instead.

while while (condition')
statement

Repeatedly processes a statement or collection of statements until condition is false.

6.6 Chapter 6: Designer Tools

home home

home left top right bottom
Clears an area of the screen video. Optional parameters must be in valid ranges: left and right(0-
79), and top and bottom(0-23). Default arguments are 0 0 79 23.

home 10 10
will clear the window 10 10 79 23. Home with no arguments clears the entire screen.

gosub gosub label
Executes a named subroutine and returns to process the next line of code. Subroutines are of the

form:
label:

statement1
statement2

{1}
The brace characters serve two purposes: The first is to delimit the contents of a subroutine, in

which case the right brace [}] functions as a return-from-subroutine. Their second purpose is to
group statements together for conditional execution after an if or else command. For example:

if (condition)

statement1
statement2
}
else
{
statement3
statement4
}
goto goto label

Unconditionally jumps to /abel to continue processing code.

exec exec pathname
Begins executing another script file. Returns to caller if script file cannot be found.

bell bell
Generates a beep from the speaker.
say say “ string ”

Displays a string or the contents of a variable on the video screen. Strings are composed of any
valid ASCII characters.

%
The percent sign [%] is a special designator within strings used to show the value of a variable.
To display the percent sign, just double it:

say “The varlable %%4 = %4.”

Chapter 6: Designer Tools 6.7

Assuming %4 contains 1234, the above statement will produce:
The variable %4 = 1234.

The caret [*] is another special designator used to flag control characters. It too can be displayed
by doubling the character.

locate locate x y
Sets the cursor position in preparation for a Say command. Coordinates x and y must be in valid
screen ranges. Default x and y are both zero.

sleep sleep n _
Goes to sleep for n units of time, then continues processing. Each unit of time is approximately
forty milliseconds, so sleep 25 will delay for about one second.

exit exit
Ends script processing and returns to VRE edit mode.

Relationals
The following relational operators are supported:
== equal to
I= not equal to
> greater than
< less than
>= greater than or equal fo
<= less than or equal to
&& logical and
] logical or
Operators
The following operators are supported:
= assignment
! negation
+ addition
- subtraction
& bitwise and
] bitwise or
A bitwise exclusive-or
+= additive assignment
-= subtractive assignment
&= logical and assignment
f= logical or assignment
Az logical exclusive-or assignment

In addition, the post-increment and post-decrement operators are also supported.

%n ++ is the same as %n += 1
%n -- is the same as %n-=1

Remember to adhere to the correct syntax as the script processing language does minimal error-
checking. A sample script file is included on the Toolkit disk.

6.8 Chapter 6: Designer Tools

Quick-Keys

Most of the VRE commands have quick-key equivalents. The & keystrokes are listed in the
various command windows. For example: to refer quickly to the icon table, type G-I and the table
will appear instantly.

Error Codes
The VRE will output ProDOS code numbers in event of ProDOS errors. Refer to the ProDOS
Technical Reference Manual for the specific code translations.

Leaving the VRE

Select “Quit” from the File window or type G-Q. Pinpoint will return to the previous application.

Chapter 6: Designer Tools 6.9

The Resource Converter

The Resource Converter, as its name implies, converts binary resource files created with the Video
Resource Editor to specific source code formats.

Figure 6.4: The Resource Converter

i FINFUIHT RESOURLE LUNUERTER |

Resource Uolume:/PINPOINT/S0URCE/GN/ Text Uolume:

Resource File: » Text File:
gUOT.ASH. 4 Text Format
E“gﬁg APPLE COMPUTER EDASM
e fip-” CIAN RSSEABLER PR
W LB N
SlERRS Mo Nl ASQENBLER HYPER

Opening the Resource Converter:

Open the Pinpoint menu. Press ®-P for Pinpoint.
If using RunRun, select

the Accessory window.

Choose Resource Converter Highlight it and press RETURN.
from the Pinpoint menu
or RunRun.

The Pinpoint Resource Converter window will appear onscreen. The converter program searches
the online ProDOS devices for possible video resource files.

Converting a Resource File

File choices are presented for selection. Highlight one and press RETURN to choose a resource
file or open a directory file. To search a different volume, type -N. The current prefix for the
file is shown at the upper-left hand corner of the screen.

Selecting a Text Format

After a resource file has been selected, Resource Converter asks for a filename to write the newly
converted code to. “Text Volume:” shows the current prefix for the code file; pressing G-N will
find another volume. Type a name for the file and press RETURN, or hit ESCAPE to go back and
choose another resource file.

The Resource Converter needs to know what code format to write. Highlight the appropriate
compiler or assembler format and use RETURN to complete the conversion, or ESCAPE to
cancel.

Quitting the Resource Converter
Press ESCAPE to return to the last application.

6.10 Chapter 6: Designer Tools

Chapter 7: Writing Desktop Accessories

About this CRaptercoeeevveeeeeiineenennnes 7.
What are Desktop Accessories? :
Memory UsSAgecccveeeeeeeeiiiiininieennnns .
Language Choices............cccccuceiiiinneenenniis! p
Using KYAN PASCALc.ccccovivennnnnne .
PASCAL Source Code Files.........c..ccccovininid ’
Starting Up a PASCAL Accessory.................
Using Video Resources with KYAN PASCAL..
The Pinpoint Flag........cocvvvvvviiiiiiiiananias .
Video Provisions.c.coeveveviiiiininiiinnl! ;
Using MICOL BASICc.c.ccccooevvvvnnenn.
Runtime TiAbFary.aus vas s cvs sws snws ssaws wsinws assas
Setting Up an AcCessory......cocovveeenenniennennns
Using Assembly Language............c.ccc.uu.....
Using Assembly Resources......ocovvveeeeinnn.s!
Pinpoint Function Library.........c.c.cooivill

g%
AN NUNINA B LLWLWER R = —

\l\]\]\l\]\l

~N NN

N3

About this Chapter

This chapter discusses the process of building desktop accessories from a programming language
perspective. Building desktop accessories in PASCAL, BASIC, and Assembly are discussed.
This chapter is of interest to the programming audience.

What are Desktop Accessories?

Desktop accessories are ProDOS system files that adhere to a few constraints. Pinpoint was
designed from the start to accommodate a variety of accessories. The ProDOS Filer included in the
Toolkit is 2 good example of how capable the Pinpoint dispatcher is at managing the resources of
the Apple IL.

Memory Usage

A desktop accessory should occupy the main memory of the Apple IL, from address $2000 up. If
the desktop accessory requires memory below $2000, then it should take steps to save this portion
of memory prior to its use, and recover that memory before exiting. A desktop accessory should
not use memory above its defined top-of-memory.

I you are writing a desktop accessory in KYAN PASCAL or MICOL BASIC, you should define
the top-of-memory as $BF00. Both compilers require that a runtime library be loaded into high
memory to function properly. Pinpoint will save the area of memory from $2000 through $BEFF
away to disk and recover it upon exit.

Chapter 7: Writing Desktop Accessories 7.1

Language Choices

Currently desktop accessories can be written in three languages — Assembly, PASCAL, or
BASIC. Assembly language provides the greatest access to the Pinpoint dispatcher library calls,
and generates the most efficient code. Assembly language is, however, non-trivial and very
machine specific. It does not offer you the flexibility of manipulating floating point (or 16-bit
integer) mathematics very easily. PASCAL and BASIC are high level languages that allow for
rapid development of personal desktop accessories. The two compilers supported are the KYAN
PASCAL compiler (Kyan Software, 1850 Union Street #183, San Francisco, CA 94123 /1 415-
626-2086) and the MICOL BASIC compiler (Micol Systems, 9 Lynch Road, Toronto, Ontario,
Canada M2J 2V6 | 416-495-6864).

A viable option for developing commercial desktop accessories is to prototype the initial user
interface first using the script language of the VRE facility. You could then build a working
version in PASCAL or BASIC. A final step may be to rewrite the program in Assembly language
for the final distribution of the product.

7.2 Chapter 7: Writing Desktop Accessories

Using KYAN PASCAL

KYAN PASCAL is the core of a powerful software development system. It conforms to the ISO
PASCAL standard, level 0. It can be used in conjunction with the Pinpoint Toolkit to generate
desktop accessories. It is intended primarily to generate primary applications.

The primary disadvantage to using the KYAN PASCAL system for generating desktop accessories
is the size of the runtime library. It is approximately 12K in size. Given a RAM drive, 12K is not
a very big problem. Another constraint of using PASCAL (or BASIC) is that you cannot access
the printer, graphic, or font libraries because they reside in the same memory locations as the
Runtime Library.

PASCAL Source Code Files

On this source code disk there are three files related to KYAN PASCAL — STDLIB.S,
PINPOINT.LIB, and PCPEXAMPLE. The file “STDLIB.S” is a replacement for the standard
library found with the KYAN PASCAL disk. It contains convenient initialization and quit code for
PASCAL accessories. The file “PINPOINT.LIB” contains several PASCAL procedures for
connecting to various Pinpoint dispatcher call functions.

The file “PCPEXAMPLE” is a brief PASCAL desktop accessory that sets various printer attributes
for an Epson RX printer. It serves as a good example of a PASCAL desktop accessory. It can be
customized for your particular printer.

Starting Up a PASCAL Accessory

When a PASCAL desktop accessory starts up, it first attempts to locate the runtime library so that it
can load it into memory in location $9000-$BEFF. The ProDOS directory, where the accessory is
located, is initially searched for the runtime library. If it is not located there, the RAM drive is
searched for it. The file STDLIB.S contains the Assembly language source code for this search
logic. It can be modified to suit your particular needs. You can contact KYAN Software about
locating the runtime library on the end of your code as well.

Using Video Resources with KYAN PASCAL

The Resource Converter described in Chapter 6 allows you to take the video resources created by
VRE and convert them to KYAN Assembly code. The resource converter generates a PASCAL
function that returns a pointer to the actual resource. As an example, if you wished to include a
resource called “MainMenu”, you would have entered PASCAL code as follows:

#i pinpoint.lib
MainMenu

is'roject(MainMenu)

The project function takes the pointer sent back from the function Main menu and passes it down to
an Assembly language call that invokes the Pinpoint dispatcher.

The Pinpoint Flag
By including special code in your source file at the top, you can automatically create a Pinpoint
accessory file (system file). In order to do this:
Include the following three lines at the top of your program:
#a
_Pinpoint equ 1
#

This will create a system file which can only be used as a Pinpoint accessory (after being installed
as an accessory).

Chapter 7: Writing Desktop Accessories 7.3

Video Provisions

‘When you use the Pinpoint version of STDLIB.S to generate a desktop accessory, it occupies
about 2K of overhead in your system file. This area is used to initialize the machine as required for
KYAN PASCAL. In addition, a copy of the current 80 column video screen is automatically saved
away. Upon exiting the PASCAL desktop accessory, the screen is automatically recovered. There
is no real need to capture the video and recover it using KYAN PASCAL or MICOL BASIC.
Assembly language accessories must do this on their own, however.

7.4 Chapter 7: Writing Desktop Accessories

Using MICOL BASIC

You can write desktop accessories in BASIC provided that you use the MICOL BASIC compiler to
convert your BASIC program into a binary object file, and that it is linked together with some
imitial Assembly code to form a ProDOS system file. Desktop accessories built in BASIC do not
have access to the Pinpoint dispatcher, however.

MICOL BASIC differs syntactically from standard ProDOS BASIC in disk I/O activity as well as
printing activities. The compiler supports a structured form of programming, so programs tend to
be more readable.

Runtime Library

MICOL BASIC is similar to KYAN PASCAL in that it needs a runtime library to carry out many
acuivities. The library is called “LIB” and can be found on your MICOL compiler disk. The
library file should reside in the same directory as the desktop accessory. It is loaded by the initial
header code residing at $2000 in your accessory system file.

Setting up an Accessory
Construct an accessory by first writing your program in BASIC and getting it to work as desired.
Next you should convert it where necessary to MICOL BASIC standards.
The second line in your program should read as follows:
20 @LOMEM=8960, HIMEM=31999

This sets the memory limitations on the program. The bottom of memory is set at $2300. This
area is used to store the memory in the $300 and $800 pages of primary memory.

Once your program compiles correctly, it will result in a binary file. In order to create and save a
desktop accessory, carry out the following actions:

Bload header,a$2000 Loads in the Pinpoint Header
Bload accessory.bin,a$2300 Loads in object code of accessory, can be any name
Create accname .pp,tsys Creates an accessory file

Bsave accname.pp,tsys,a$2000,!$xxxx

The value of $xxxx above must be determined by you.

After this is complete, use the Accessory Mover to make an entry for your desktop accessory. The
load size specified should be large enough to load the entire system file into memory. The memory
top should be set to $BF00.

A version of the Printer Control accessory is included on the source code disk under the BASIC

directory. Itis titled “PCPEXAMPLE”. The header code for MICOL accessories is found under
the file “HEADER.ASM”.

Chapter 7: Writing Desktop Accessories 7.5

Using Assembly Language

Assembly language is the most optimal language in which to write desktop accessories. This is
due to the fact that Assembly language generates very small, precise code. Being small, the
desktop accessory does not require much memory; therefore it loads quickly.

The examples of desktop accessories included in the Toolkit are carried out in Assembly language.
The ProDOS Tools/EDASM assembler was used.

Unlike KYAN PASCAL or MICOL BASIC, however, no provisions are made for automatically
saving the video screen upon entry and recovering it upon exiting. This is the responsibility of the
Assembly language desktop accessory. This provides maximum flexibility and minimum space for
the accessory.

Using Assembly language, you have access to all of the functions found within the Pinpoint
dispatcher. These functions are totally optional, and do not have to be used at all. They serve
more as a convenience than anything else.

Using Assembly Resources

The Resource Converter provides maximum flexibility for Assembly output. You can convert
your binary resources directly to Assembly output for use with your code. If you do not see your
assembler listed, use an assembler with a syntax that is very similar and convert the output as
necessary.

Pinpoint Function Library

The function numbers that cotrespond to each dispatcher call are stored in a library called
“PINPOINT.H”. This file contains a series of equate statements that establish the values for each
function call. For instance, to project an resource to the video screen, you could issue the code:

LDX #PROJECT
JSR DISP.SVC

The “Pinpoint.H” library is used in the source code examples of desktop accessories.

7.6 Chapter 7: Writing Desktop Accessories

Chapter 8: Advanced Installation

The Installation Facility.............cococcciieannnnn.. 8.1
File Modifications.oeuveruieieienininenenenenenns 8.1
Using the Advanced Installation Facility............ 8.2
Just Like Pinpoint.........cccccceeiiiaiiiiiiiiiisnnnns 8.2
Installing Pinpoint on a Personal Application ...8.2
Recognizing Pinpointccccouvuueeunnnne. 8.3
Figures
8.1: Enhanced Startup File.........ccocoevuiiniianen. 8.1
The Installation Facility

The Advanced Installation Facility found on the Toolkit disk is slightly different than the one
distributed with the Pinpoint desktop accessories. It allows you to install the Pinpoint dispatcher
on your personal startup system file. When your primary application is started up again, Pinpoint
will be loaded in the upper 12K of auxiliary memory, and the dispatcher “polling” code will be
located in the $300 page.

The Advanced Installation Facility will not make programs simply “recognize” Pinpoint desktop
accessories and avail them for use. This is a remarkably difficult task, given the nature of the
Apple II, and the non-standard methods of monitoring keyboard events. The Pinpoint dispatcher
will be installed in advance of the primary application. It is, however, the responsibility of the
primary application to detect the presence of Pinpoint, and act accordingly.

File Modifications
Pinpoint is placed at the beginning of the system file that it is installed on. Figure 8.1 below
illustrates this point.

Figure 8.1: Enhanced Startup File

$0000

Pinpoint Dispatcher and Preboot
$34FF
$3500

Original System File Contents
EOF

The Pinpoint preboot logic first detects whether an Apple Memory Expansion Card™ is installed in
the machine (or if a software RAM drive is to emulate one), and copies desired desktop accessories
up to the RAM drive if it is there.

It then relocates the Pinpoint dispatcher to the upper portion of auxiliary memory ($D000-$FFED)
as well as the $300 page of main memory. Once it has completed relocating itself, it relocates the
original contents of the system file to $2000. In a standard application such as AppleWorks, the
code is then analyzed for keyboard polling, and modifications to the code occur on the fly. Control

Chapter 8: Advanced Installation 8.1

is then passed to the application. The primary application really had no idea of the previous events,
and goes about its startup logic.

Using the Advanced Installation Facility

The Advanced Installation Facility can be run from the RunRun application list by selecting
“Pinpoint Installation”. If you have not modified your program path, it will prompt for the
Pinpoint disk, as it contains the install program.

Optionally, the program can be run from BASIC by first setting the prefix to the disk (or ProDOS
subdirectory) that contains the installation software, and typing:

-AINSTALL.SYSTEM

Just Like Pinpoint

This manual assumes you are familiar with the Pinpoint desktop accessories, and have used the
installation facility found with Pinpoint in the past. This manual does not cover the various aspects
of the installation set-up such as the modem and printer characteristics, standard location of the
desktop accessories, etc.

The Advanced Installation Facility is upwardly compatible with Version 1.3 of the Pinpoint
Installation Facility. If you have been using an earlier version of Pinpoint you should update it to
Version 1.3 in the future. For now, this version contains specific drivers for numerous printer
interfaces and printer.

Installing Pinpoint on a Personal Application

You can install the Pinpoint dispatcher on your personal system startup file providing that your
system file and the Pinpoint dispatcher ($3500 bytes long) can fit in memory.

First, you should customize Pinpoint for your computer system. Now you’re ready to put it onto
your application.In order to install Pinpoint on your system file:

Select the Program Setup Press 3 at the Pinpoint Installation menu.
option from the menu.

Press RETURN.

Highlight the Personal Position to the corresponding option using the arrow keys or
Application option. the number.

Press RETURN.

Enter the full pathname
of your personal system file.

The Advanced Install Facility will search for your personal file. If it is located it will be updated to

contain the Pinpoint dispatcher and preboot code. If Pinpoint had been installed on your
application before, it will simply re-update the Pinpoint logic and leave your program intact.

8.2 Chapter 8: Advanced Installation

Recognizing Pinpoint

An application must detect that Pinpoint has been installed in order to avail the desktop accessories.
A fairly reliable test is to look at the auxiliary RAM memory locations $D000 and $D002 (bank 0).
They should contain a value of $80. In addition, the $300 page should contain the polling logic.
In particular, the contents of $32d should equal $AD, an LDA instruction.

A typical test would be as follows:

LDA $C083 :Set up Aux Bank to view
LDA $C083

STA $C009

LDA #$80 ;Test for BRA instructions
CMP $D000

BNE BOGUS

CMP $D002

BNE BOGUS

STA $C008 ;Back to Main Memory

LDA $CO8A ;ROM intact

LDA $32D ;Poller logic begins with LDA
CMP #$AD
BNE BOGUS
;Pinpoint is installed

Providing that such a test was passed, and you are confident that Pinpoint is resident in auxiliary
memory, then you should redirect all LDA $C000 logic to $32D. This will return the results of the
A-register with the keyboard strobe value. If you hit an @-P key, however, control will be passed
to the Pinpoint dispatcher.

Chapter 8: Advanced Installation 8.3

Other Pinpoint Products

Appendix:
Other Pinpoint Products

Pinpoint™ Desktop Accessories $89.00

A line of desktop accessories that “pop-up” within AppleWorks, Point-to-
Point, InfoMerge, and other ProDOS applications.

e Appointment Calendar — Print schedules to take with you.
MonthView, DayView and Summary displays.

« Calculator — Four math functions: +, -, ¥, /. 16 digit display with
scientific notation.

+ Communications — Instant modem communications from
AppleWorks desktop with simplified auto logon macros; no complicated
control codes required. Downloads (records) files in AppleWorks’
AWP file format.

+ Telephone Dialer — Finds phone numbers anywhere on any screen.
No phone directory or databases to re-enter.

+ GraphMerge — Paste up to 16 single or double hi-res graphic images,
mix & match, anywhere in AppleWorks documents.

» Notepad — Powerful baby word processor produces AppleWorks
files. Use Notepad files inside AppleWorks documents, or with
GraphMerge.

» QuickLabel — Envelope addresser/labeler, with cut-and-print utility.
Position address block on an electronic envelope, then print on a real
envelope, label or paper.

+ Typewriter — Ideal for short letters, forms, file folder labels, and
name badges. Compose, edit, then print, just like an IBM Memory
Writer™ typewriter.

Pinpoint Spelling Checker™ $69.00

This additional Pinpoint desktop accessory enables you to spell check

AppleWorks word processing documents, spreadsheets and database files

without ever leaving AppleWorks.

« Spell checks words, paragraphs or entire documents of any size in
memory,

¢ Suggests alternative words.
» Corrects and reformats automatically.

+ Requires Pinpoint Desktop Software.

Appendices A.l

A.2

Point-to-Point™ $129.00
The #1 communications software program for the Apple II!

AppleWorks style integrated communications with all the right tools for
most any job.

Exclusive Extended Xmodem Protocol (EXP) with CRC-16
transmits/receives multiple files in batches with original file names,
extensions, and file attributes intact. Ready to run, without misspelled
file names or tiresome file conversions.

14 powerful macros commands automate logon sequences; system
operating commands automatically upload and download electronic mail
or program files. Pattern recognition feature even makes decisions
based on what it “sees” coming across the screen. .

Built-in text editor, or send AWP or text files directly.

Simultaneous formatted printing while online. Instant “PrintScreen”
prints anything and everything displayed on your screen.

Impressive file handling utilities manage files, subdirectories and paths
without typing, even while online!

Install Pinpoint Desktop Accessories for ever greater versatility, or use
RunRun and Toolkit to add valuable desktop accessories anytime.

Smart utilities strip line feeds from downloaded files, and convert TXT
to AWP files; plus 8 indispensable file type conversions save double
work!

Support for dozens of modems, including the newest 2400-baud units,
gets your new system working right the first time. Interface cards
include old standbys, plus the emerging Apple I interface technologies
of tomorrow.

Written by Gary B. Little, an expert Apple II and Macintosh
programmer, and author of countless articles for A+, Call APPLE,
Nibble and five recent Apple books.

ProFILER™ CALL

A single disk database manager and report generator. With this one
program you can easily design, organize, file, search, sort, calculate,
merge, and print using floppy or hard disk.

Get up to 1,500 records per floppy or 65,000 on a hard disk; 250 fields
per record! ‘

Multiple files per disk, multiple index files, full screen editor.
Pinpoint and AppleWorks compatible.

Optional data conversion program for PFS users (DOS 3.3 and
ProDOS versions).

Appendices

Pinpoint Apple Ile Upgrade Kit $29.00

Permits Pinpoint and many ‘new’ Apple Ile software programs to nm
on plain Apple Ile with 128K

Solves many of the compatibility problems older software programs
have with the Enhanced Apple Ile

Includes Mouse Text Video ROM, exact copy of Apple’s Character
Generator ROM #342-0265 approved by Apple.

Includes GTE or Rockwell 65C02 microprocessor.

Does NOT include Apple’s proprietary ‘CD’ and "EF’ ROMs required
for most mouse-based software. This Kit does not “Enhance” the Apple
Ile. This Kit is only to be used on Apple Ile’s.

This upgrade is performed at user’s own risk.

Handy chip puller included

Pinpoint RAM Enhancement Kit $29.00

Configures partitioned RAM disks.

Automatically uploads non copy protected ProDOS applications and
files to partitioned RAM disks.

Menu driven setup. Catalog with toggles displays programs/files to be
uploaded.

Includes a ProDOS RAM switcher for AppleWorks with Pinpoint and
other ProDOS applications uploaded into RAM, such as Business
Works accounting software, Point-to-Point communications software,
or InfoMerge mail merge and print formatting program.

Requires Pinpoint Desktop Software.

Pinpoint Modem Enhancement Kit $ 29.00

Advanced modem software enhancement for Pinpoint’s
Communications window.

Logon macros with default communications setups.

Keyboard and video character remapping, simple file encryption
program.

Selective character filtering.

Required for Novation, Microcom and other non-standard
external/internal modems or interface cards.

Appendices A3

A4

InfoMerge™ $79.00

On-screen, direct-print, mail-merge and print formatting program that works
with AppleWorks. Automatically select names from AppleWorks database,
or manually scan files forward/backward, add mmitiple keyboard inputs
(great for invoices or forms), perform dynamic field calculations, preview
on screen before printing, or just print everything. One copy each or one
hundred or mix & match. Presto!

Optionally, print to disk files for use by other programs, such as
telecommunications software like Point-to-Point or Pinpoint
Communications Window. Pop-up any Pinpoint Desktop Accessory for

added functionality.

Micro Cookbook $49.95

* Big 8th Edition. Over 100,000 copies sold.

* Ask the computer what’s for dinner. Enter ingredient, nationality,
course or whatever, and Micro Cookbook offers up a menu with
delicious possibilities.

* Choose from Micro Cookbook’s 150 tested recipes (supplied on the
program disk) or add your own.

* Selects recipes from any individual recipe disk or path, or automatically
searches up to 8 others — over 4,000 recipes online for instant recall.

* Automatically adjusts recipes for different serving sizes.
* Automatic shopping list preparation.

* Valuable on-line reference: nutrition facts, food selection and storage,
and ingredient substitution suggestions.

* Lightning fast operation with unparalleled ease of use.
¢ Fourth-generation, bit-mapped database design finds plurals,

truncations, multi-variant relations (7 simultaneous index keys), over-
looks request errors, and generally works hard se you don’t have to.

* Versions available for Apple Il+ (64K DOS 3.3), Apple Ilc/Te (128K

DOS 3.3), Apple Iic/Enhanced Apple He with 128K (ProDOS),
Commodore 63/128,™ and IBM PC,™ XT™ and jr. ™

Appendices

New for Fall 1986

Optional Recipe Disks $19.95

How smart cooks eat better and waste less.

Optional recipe disks, over 3,000 exciting recipes, add variety to your
menu.

Crowd-pleasing favorites include:

Appetizers Holiday Meals

Desserts Food Processor Cooking

Meatless Meals Wok Cooking

Kids Cookery California Beef

Breads & Spreads Special Diets (includes food allergies)
Daily Bread & Beyond Daily Bread & Beyond, Food Processor
Microwave Cooking Soups & Salads

...and more on the way!

Pinpoint Toolkit™ $69.00

Programmers resource and toolbox for writing Desktop Accessories all your
own. Includes several handy desktop accessories for just about anyone, not
just for programmers:

Accessory mover for adding new accessories anytime.

Pop-up version of ProDOS Filer.

Screen printing facilities, text or graphics depending on printer type.
Enhanced printing for Desktop Appointment Calendars.

Decimal, Hexadecimal, or Binary Calculator with print tape.

Outstanding tools for any serious ProDOS programmer include:

Comprehensive Pinpoint Internal Architecture Documentation.
Video Resource Editor for accessory development and prototyping.

Pinpoint’s newest interactive desktop environment, RunRun, for
expanded limited multi-tasking capabilities.

Commented source code to several Pinpoint Desktop Accessories
provided as programming examples.

Programmer utilities require 256K or greater Enhanced Apple Ile or
Apple Ic, ProDOS Assembly language experience, or use of MICOL
BASIC, or KYAN PASCAL.

Appendices A.S

New for Fall 1986
(continued)

A.6

Pinpoint Instant Business Letters $49.00
Business letter templates as AppleWorks word processor documents.

¢ Ready to use and professionally designed to meet your everyday
business needs.

» Perfect for mail merging with Pinpoint’s InfoMerge.
Pinpoint Document Checker $69.00
(with Spelling Checker only $99.00)

The fast, efficient stand alone spelling checker for larger AppleWorks
documents. Up to 30 words per second!

¢ Uses the same dictionaries as the Pinpoint Spelling Checker Accessory.
¢ Selectable auxiliary dictionaries for customized professional needs.

» Lists word occurances. Remembers and automatically uses any
correction.

Call for information about Macro Keys and Graphic Templates.

Contact Pinpoint for complete product information and scheduled release dates.

Appendices

Index

[%] 6.7

[&] 5.8

['1 6.5

[*] vii, 5.7, 6.5

[*/] 6.5

[+]15.7

[-15.7

[N 2.14, 5.7

[/*] 6.5

[:]16.5

[<] vii

[=] 4.3, 5.8

[>] vii

(@] 5.8

[~ 6.8

({167

[}J 6.7

[®] 2.5, 2.28

[®-P] 2.3, 3.8, 4.2, 4.4, 5.2, 5.7, 5.9, 6.2, 6.10, 8.2
[&] 2.28, 6.9

[&-<] 5.10

[3->] 5.10

[G-C] 3.4, 5.7

[&-D] 3.4, 3.6
[G-DOWN] 3.5, 5.10
[G-G] 3.6

[-H] 4.4

[&-1] 6.9

[G-N] 6.4, 6.5, 6.10
[G-P] 5.2

[&-Q] 6.9

[&-UP] 3.5, 5.10
[Control-3-Reset] 3.2, 3.8
65C02 Assembler code viii
65C02 microprocessor 1.2

A-reg 2.26, 2.28, 2.31, 2.32, 2.36, 8.2
ACCESS 24
Accessory

add 5.2,5.3

copy 5.2,54

definition 5.4

delete 5.2, 5.3

edit 5.2, 5.3

filename 5.2

load size 5.2

memory top 5.3

name 5.2
Accessory Mover 1.1, 1.3, 5.1-5.4, 7.5
Add an application 3.4, 3.6
Advanced Installation Facility 1.3, 8.1
APLWORKS.SYSTEM 3.9, 5.4

Index

Index

Applesoft 3.2

AppleWorks 1.2, 2.2, 3.6, 3.7, 3.9, 4.2, 4.3, 8.1
AppleWriter 3.6

APPOINTMENTS.PP 3.8

ASCII characters 6.5, 6.6

ASCII text 2.31

Assembler 3.9, 6.10, 7.6

Assembly code 7.5

Assembly language 1.2,7.1,7.2,74,7.6

Backup copies 1.2

BASCALC 2.6, 2.18, 2.26, 2.27, 2.3

BASIC 2.30, 2.3, 3.7, 3.9, 4.2,7.1,7.2, 7.5, 8.2
BASIC.SYSTEM 3.7

Binary object file 7.5

Bitmap 2.8, 2.16

BLOAD 24, 2.6, 2.10

Boolean operator 5.7, 5.8

Boot length 2.3

BYE 3.7

C language 6.5
CAPTURE 24, 2.6, 2.22, 2.23, 2.35
Carriage return 2.31
Cartesian coordinates 2.18
Chaining 2.30
Characters per inch 2.33
Clipboard 6.3

paste 6.4

show 6.4
CLOCK.SYSTEM 3.9
CLOCKOK 2.36
CLOSE 24,2.6,2.9
Co-resident applications 1.2
COL 2.5, 2.19, 2.20, 2.21
Command bar 3.2, 3.3
Compiler 6.10, 7.1, 7.2, 7.5
Copy II Plus 1.2, 3.7
COUT 2.19, 2.20, 2.27
CREATE.SB 2.5

DBUFFER 2.5, 2.10-2.12

Default prefix 2.13

DESTROY 2.6, 2.16

DEVICE.ID 2.5, 2.13

Device menu 3.4, 3.6

Dialer 1.3, 4.1, 5.2

Dialer attributes 5.2

Dialog box 2.22, 2.23

DIR 3.6

Directory file 3.6

DISK.RC 24, 2.8, 2.10-2.12, 2.14, 2.16, 2.17
Disk address 2.30

DISP.SVC 2.6, 2.7

Dispatcher function summary guide 2.6
DISPATCHER.LIB 2.6

Double hi-res 2.18-2.20, 2.35

Drag 2.24
DRAW 2.6, 2.24, 2.25, 2.35
DRAWCHAR 2.5,2.24

EDASM viii, 7.6

Epson RX 7.3
ERRBELL 2.6, 2.36
Escape codes 2.31

EXIT 2.3, 2.6, 2.36
EXTERNCMD 2.5, 2.17

File
commands 4.2, 4.3
compare 4.3
copy 4.2, 4.3
create a subdirectory 4.2, 4.3
delete 4.3
list 4.3
lock 4.3
modification date 3.1, 3.5
name 3.1, 3.5
rename 4.3
set prefix 4.3
size 3.1, 3.5
type 3.1, 3.5
unlock 4.3
window 6.2
File offset 2.30
FILELEN 2.5, 2.10
FILETYPE 2.4
Firmware 2.31
Flag 7.3
Floating point 7.3
Font library 1.1, 2.3, 2.6, 2.19, 2.20, 2.35, 7.3
FREEPAGE 2.6, 2.16
Function library 2.6, 7.6
Function switch 2.13

GET_INFO 2.14, 2.17

GETKEY 2.6, 2.28

GETPREFIX 2.6, 2.13

GETSCRN 2.6, 2.20, 2.35

GETVOL 2.6, 2.13, 2.14

Global page 2.16

Global value 2.29

Graphic driver 2.19-2.22, 2.24, 2.26, 2.27, 2.35
Graphic library 1.1, 2.3, 2.6, 2.18, 2.35, 7.3
GRLIB 2.6, 2.18, 2.19, 2.35

Grow 3.6

Hard disk 1.3

Header code 7.5
HEADER.ASM 7.5

Hex Calculator 1.3, 5.1, 5.7

High-byte operator viii

I I/O hooks 2.35
Icons 6.2, 6.3, 6.5, 6.9
Ic System Utilities 1.2
ImageWriter 6.5
Install facility 2.31
INSTALL.RR 3.9
Interface specific driver 2.31
Inverse 6.3
INVERT 2.6, 2.21, 2.35
10B 2.5, 2.14, 2.17
I0OBUFF 2.6, 2.8, 2.10, 2.29, 2.31, 2.35
IOBUFFER 2.5, 2.8-2.12, 2.14, 2.29

K KEY 2.5, 2.27, 2.28
Keyboard strobe 8.2
KYAN PASCAL 1.2,7.1-7.6
Kyan Software 7.2, 7.3

L LENGTH 2.5, 2.21
LIB7.5
Limited multi-tasking 1.2, 4.2
Lines per inch 2.33
Load size 5.3
Location counter vii
Low-byte operator viii
LRECL 24, 2.11, 2.12

M MAXCOL 2.5, 2.24, 2.25
MAXROW 2.5, 2.24, 2.25
Memory

auxiliary 2.31, 2.35, 8.1, 8.2
bank switched 5.10
high 2.3, 7.1, 7.5
layout 5.4-5.6
low 2.3, 7.5
main 2.3, 2.5, 2.16, 2.31, 2.35, 7.5, 8.1
management 2.30
page 5.10
resident 4.5
ROM 5.10
top 5.3, 7.1
usage 7.1
viewing 5.10
Memory Window 1.3, 5.1, 5.9
Menu driven 4.2
Message line 3.2
MICOL BASIC 1.2,7.1,7.2,7.4
Micol Systems 7.2
MINCOL 2.5, 2.24, 2.25
MINROW 2.5, 2.24, 2.25
MLICALL 2.6, 2.17
MMU 2.6, 2.30, 2.35
Mode key 5.7
Modify 3.4, 3.8
Mousetext 4.4, 6.2

Index

Normal 6.3
Numeric operator 5.7

OFFSET 24, 2.11, 2.12

Okidata 4.4

OPEN 24, 2.6, 2.8

Open architecture 2.2

Operators 6.8
Boolean 5.7, 5.8
high-byte viii
numeric 5.7
post-decrement 6.8
post-increment 6.8
relational 6.8

Paging 2.30
Page boundary 2.30
Page number 2.30
Partitioning AppleWorks 3.9
PASCAL 1.2, 2.31, 7.1-7.4
PATH 24, 2.8, 2.9, 2.14, 2.16
PCPEXAMPLE 7.3, 7.5
PICK 2.6, 2.18, 2.20, 2.26
Pinpoint 1.1
Appointment Calendar 3.8
Calculator 3.8
desktop accessories 1.1, 1.3, 2.31, 3.1, 3.8, 4.1, 4.2, 7.2, 7.3
Desktop Manager 1.1, 2.2, 3.3, 5.2
Dialer 4.2, 4.6
Dispatcher 1.1, 2.2, 2.4-2.36, 6.2, 7.1, 7.2, 8.1, 8.2
GraphMerge 2.35, 3.6, 3.8
installation 5.2, 5.2
Point-to-Point 2.2, 3.6, 3.9, 4.2
preboot logic 8.1, 8.2
ProDOS Filer 4.1, 4.2
RAM Enhancement Kit 3.2, 3.7, 3.9
Spelling Checker 2.2, 5.2
ToolKit 1.2, 3.1, 4.1
ToolKit Advanced Install 5.3, 8.1, 8.2
Version 1.3 2.31, 3.3, 8.2
PINPOINT.H 2.6, 7.6
PINPOINT.LIB 7.3
PINPOINTPROFILE 5.2-5.4
Poller 2.3
Polling code 8.1
Pop-up kernal 2.3
Pop-Up Filer 1.3, 4.2
PP.INSTALL 5.2
Print
graphics 4.4
mode 4.4
quality 4.4
work screen 6.5
text 4.4
Printer
-specific driver 2.31
attributes 7.3

Index

Index

Control Program 1.3, 7.5

dots per inch 2.34

interface parameters 5.2

left margin 2.32

library 1.1, 2.3, 2.6, 2.30-2.32, 7.3

mode 2.32

parameters 5.2

pitch 2.32

right margin 2.32

spacing 2.32

style 2.32
PrintScreen 1.1, 3.3, 4.1, 44, 6.5
PRLIB 2.6, 2.30-2.32, 2.35
ProDOS 4.2

BASIC 7.5

device 2.3, 3.2, 3.3

directories 3.2, 8.2

exit 3.7

Filer 1.1, 1.2, 4.2, 7.1

interpreter 2.2

I/O functions 2.4

shell 1.1

Tools viii, 7.6
Program selector 3.1
PROJECT 24, 2.6, 2.22, 2,23, 2.35, 7.3
PRTCLOS 2.31, 2.32
PRTCMD 2.31, 2.32
PRTINIT 2.31, 2.32
PRTSTAT 2.31-2.33
PRTWRIT 2.31, 2.32
PUTSCRN 2.6, 2.19, 2.35

Quick-keys 3.4, 6.9
Quitting 3.8, 4.3, 5.2-5.4, 5.8, 5.10, 6.9, 6.10

RAM drive 1.2, 2.2, 3.7, 3.9, 4.3, 5.2, 5.4, 7.3, 8.1
RamWorks 5.10
READ 24, 2.6, 2.11, 2.12
RECNUM 2.4
REFNUM 24, 2.8, 2.11, 2.12
Remove 3.4, 3.8
RESERVED 2.6
Resource Converter 1.1, 1.3, 6.1, 6.10, 7.3, 7.6
ROM 5.10
ROW 235, 2.18-2.21
RunRun
Application menu 3.3, 3.7
catalog 3.4-3.6
installing 3.9
Exit 3.4
File Menu 3.3-3.7
RUNRUN.APPLST 3.2, 3.7, 3.
RUNRUN.SYSTEM 3.2, 3.7, 3.
Runtime library 7.1, 7.3
Runtime map 2.3, 2.4

o \©

S.ADE. 3.9
Say command 6.5, 6.7
Screen dump 4.4
Script processing language 6.2, 6.5-6.8, 7.2
comments 6.5
default radix 6.5
keywords 6.5-6.8
labels 6.5
pointers 6.5
syntax 6.5-6.8
Single character 2.26
Size 2.24, 3.7
Sleep state 2.3, 5.4
Source code 1.3, 2.6, 4.1, 4.5, 5.9, 6.2, 6.10, 7.3, 7.5, 7.6
Stack 2.3
Startup program 3.2
STDLIB.S 7.3,7.4
STOR 2.6, 2.18?: 227 53
Subdi 13,3.2, 5.
Smwm Desktop Expander 3.9
SYS 35, 3.7, 52
System file 2.2, 3.5, 3.7, 5.2, 7.1, 74, 7.5, 8.1

Text editors 6.5
TOF 2.32
Top-of-form 2.32

UniDisk 3.5" 1.3
Universal driver 2.31
Utility program 4.2

Variables

global 2.4, 2.5, 2.7

transient 2.7
VERSIONUM 2.6, 2.36
Video Editor

capture 6.3

copy 6.3, 6.4

edit 6.2, 6.3

file 6.2, 6.4

fonts 6.2, 6.3

lock 6.4

move 6.3, 6.4

open 6.4, 6.5

reinitialize 6.2

save 6.4, 6.5

tools 6.2

workspace 6.2, 6.3
Video provisions 7.3
Video refresh 2.18, 2.19, 2.20- 2.24, 2.26, 2.35
Video resource 6.2
Video Resource Editor (see VRE)
Virtual machine 2.2, 2.30
Visual displays 6.1

Index

Index

Volume
bad-block detection 4.3
block allocation 4.3
commands 4.2, 4.3
compare 4.3
copy 4.2, 4.3
create subdirectory 4.2
format 4.2, 4.3

" name 2.13

rename 4.3
set prefix 4.3

VRE 1.1, 1.3, 2.22, 2.35, 6.1-6.10, 7.2, 7.3

W.TMP 2.3, 2.36, 5.4
Wait-clock 2.35

Warm boot 3.2

Wide calendar print 1.3
WIDTH 2.5

Wildcard copy 4.3

Window 2.22-2.25, 2.35, 3.2, 6.2, 6.3
Window Maker 6.3, 6.3
WND.COL 2.5, 2.23-2.25
WND.LEN 2.5, 2.23-2.25
WND.ROW 2.5, 2.23-2.25
WND.WIDTH 2.5, 2.23-2.25
WRITE 2.4, 2.6, 2.12
Write-protect tabs 1.2
WWOMP 6.6

WYSWYG 4.5

X-reg 2.7, 2.32, 2.33
XDRAW 2.6, 2.24, 2.25, 2.35

Y-reg 2.26, 2.27, 2.32, 2.36

Zero page 2.3

Pinpoint Publishing PO. Box 13323
5901 Christie Ave. Oakland, CA
Emeryville, CA 94608 94661-0323
(415) 654-3050

Telex 245-8579 MCI

CompuServe 76244123

	Pinpoint Toolkit Manual
	Table of Contents
	Preface
	Chapter 1: The Pinpoint Toolkit
	Overview
	Building Desktop Accessories
	How This Manual Can Help
	Getting the Toolkit Ready
	The Disks

	Chapter 2: The Pinpoint Internal Architecture
	About This Chaper
	Technical Overview
	How Pinpoint Works
	The Dispatcher Function Library
	How the Dispatcher Works
	Dispatcher Calls
	OPEN
	CLOSE
	BLOAD
	READ
	WRITE
	GETPREFIX
	GETVOL
	DESTROY
	FREEPAGE
	MLICALL
	BASCALC
	PUTSCRN
	GETSCRN
	INVERT
	PROJECT
	CAPTURE
	DRAW
	XDRAW
	PICK
	STOR
	GETKEY
	IOOBUFF
	MMU
	PRLIB
	Allocating the Printer Library
	PRTINIT
	PRTCLOS
	PRTWRIT
	PRTCMD
	PRTSTAT

	GRLIB
	VERSIONUM
	ERRBELL
	CLOCKOK
	EXIT

	Chapter 3: RunRun
	Introducing RunRun
	Starting Up RunRun
	The RunRun Desktop
	Moving About the Application List Window
	The Command Bar
	The Accessory Pull-Down Menu
	The File Pull-Down Menu
	Catalog of Files
	Sizing the Catalog Window
	Dragging the Catalog Window
	Device Selection
	The Application List
	Adding an Application
	Running an Application
	Modifying an Application
	Removing an Application
	Quitting RunRun
	Running Accessories with Accessories

	Installing RunRun
	Partioning AppleWorks

	Chapter 4: General ProDOS Tools
	About This Chapter
	The ProDOS Filer Accessory
	Invoking the ProDOS File Accessory
	The Main Filer Menu
	The File Command Menu
	The Volume Command Menu
	Configuration Defaults
	Quitting the Filer Accessory
	Some Possible Uses

	The PrintScreen Accessory
	Running the PrintScreen Accessory
	Print Quality
	Print Mode
	Source Code

	The Disk-Based Dialer

	Chapter 5: Tools of the Trade
	About This Chapter
	The Accessory Mover
	Opening Accessory Mover
	Adding a New Desktop Accessory
	Deleting a Desktop Accessory
	Editing an Accessory
	Copying an Accessory
	Quitting the Accessory Mover
	Layout of the File PINPOINTPROFILE

	The Hex Calculator
	Opening the Calculator
	Changing Modes
	Entering Numbers
	Quitting

	The Memory Window
	The File Menu
	Switching Between Memory Pages
	Switching Between Memory Banks
	The Memory Window is Clouded
	Exiting

	Chapter 6: Designer Tools
	About This Chapter
	The Video Resource Editor
	Format of a Video Resource
	Opening VRE
	Starting Fresh
	Picking a Font
	The Window Maker
	Copying or Moving to the Clipboard
	A Look at the Clipboard
	Pasting from the Clipboard
	Locking a Region
	Opening a Resource File
	Saving a Respource File
	Printing the Screen
	The Script Processing Language
	Relationals
	Operators

	Quick-Keys
	Error Codes
	Leaving VRE

	The Resource Converter
	Opening
	Converting a Resource File
	Selecting a Text Format
	Quitting

	Chapter 7: Writing Desktop Accessories
	About This Chapter
	What are Desktop Accessories?
	Memory Usage
	Language Choices
	Using KYAN PASCAL
	Pascal Source Code Files
	Starting Up a Pascal Accessory
	Using Video Resources with Kyan Pascal
	The Pinpoint Flag
	Video Provisions

	Using MICOL BASIC
	Runtime Library
	Setting Up an Accessory

	Using ASSEMBLY LANGUAGE
	Using Assembly Resources
	Pinpoint Function Library

	Chapter 8: Advanced Installation
	The Installation Facility
	File Modifications
	Using the Advanced Installation Facility
	Just Like Pinpoint

	Installing Pinpoint on a Personal Application
	Recognizing Pinpoint

	Appendix: Other Pinpoint Products
	Index
	Back Cover

