
The Macintosh was once the model of consistency: every application
behaved and looked the same, making the user feel at home. But that
consistency faded as, due to lack of support from the Macintosh Toolbox,
developers created custom controls, menus, and windows, moving
forward (or sideways) with user interface innovations while the Mac
OS lagged behind. Now the Appearance extension takes the first step
toward regaining that consistent look and feel we all remember so
fondly, paving the way for switchable interface themes and making it
easier to develop applications for the Mac OS.

You’ve got this great idea for a user interface, but it means you have to write a slider
CDEF. So you plug away, working to replicate what you’ve seen in dozens of
applications, while dreaming of sliders that are available as part of the system. Well,
your dream has come true. Meet Appearance, the biggest advancement of the
Macintosh user experience since System 7. The Appearance extension provides
sliders plus a lot more:

• Appearance implements a new look — Apple Grayscale — which was
originally slated to be the default look of Copland, the former Mac OS 8
plan. Under Appearance the standard system windows, controls, and menus
all have the Apple Grayscale look.

• Appearance adds new controls such as progress bars, tabs, disclosure
triangles, and sliders to the standard set, eliminating the need for developers
to roll their own.

• Appearance extends the Window, Control, Dialog, and Menu Managers to
provide functionality that’s necessary for some of the new features to work
correctly. Some of the new functionality fills in the gaps that developers have
had to fill in on their own because the Macintosh Toolbox didn’t support
some necessary or desirable features. For example, the system MDEF now
supports extended keyboard modifiers for menu item keyboard equivalents.

With Appearance you benefit the most by using as many of the system-supplied user
interface elements as possible. Your user interface won’t have a patchwork look —
with the system elements, all pieces of the UI blend together nicely. Plus, as Apple

APPEARANCE: NOT JUST ANOTHER PRETTY INTERFACE 3

EDWARD VOAS (voas@apple.com) is a
staunch supporter of Truth, Justice, and
Switchable Themes. He is currently the Technical
Lead on Appearance and is the co-author of the
popular shareware program Aaron. When Ed is

not busy coding, he is hard at work memorizing
lines from the Star Trek movies and boring his
coworkers with inane facts from those movies
(“What’s the prefix code of the U.S.S.
Reliant?”).•

EDWARD VOAS

Appearance: Not Just Another Pretty
Interface

enhances the UI elements, your applications can immediately (and automatically)
benefit as new system versions are released. This becomes particularly important as
we move toward switchable themes (explained below). Another major benefit is that
your applications can be smaller, because you don’t need to implement UI elements
that are now supplied by the Toolbox. A sample application that demonstrates
Appearance accompanies this article on this issue’s CD and on develop’s Web site.

A beta version of the Appearance extension is provided on this issue’s CD as part of
the Appearance Software Developer’s Kit (SDK), which also includes a control panel,
several header files, and some shared libraries to link with. The Appearance extension
is intended to be bundled with applications for users to install on Mac OS 7.6 or
earlier (later systems will contain the functionality of the SDK as part of the base
system). Your application can determine whether Appearance is running by checking
a Gestalt selector (gestaltAppearanceAttr). This selector returns a bitfield indicating
which features of Appearance are in effect.

THE ON-RAMP TO THEMES
You may have heard about themes at Apple’s Worldwide Developers Conference
(WWDC) or read about them in discussions on Copland. Essentially, a theme is an
interface look that spans all elements of the user interface and ties them together with
a certain graphic design. Themes are data driven — all the data that describes the
theme interface is contained in a theme file. The data-driven aspect makes it easy to
switch themes on the fly. Figure 1 gives examples of three themes that were shown at
the 1996 WWDC and elsewhere: Apple Grayscale, Gizmo, and High Tech.

Now before you get too excited, please note that the theme-switching mechanism
isn’t implemented in the first version of Appearance; however, switchable themes are
very much a part of the future of the Mac OS. Appearance is the first step toward that
future, and using the system controls, windows, menus, and other features provided
by Appearance will allow your application to handle theme switches automatically
when the time comes. I’ll be referring to themes throughout this article, especially
when talking about the Appearance Manager, which lets you get colors and patterns
for the current theme.

WHAT’S NEW AND IMPROVED
Appearance redesigns some old controls and provides many new ones. Windows
sport a new look and added features, and there’s a new help icon. Here we’ll check
out these snazzy Apple Grayscale UI elements and learn a bit about the new features.
Then we’ll look at the Appearance Settings control panel, which lets the user control

develop Issue 30 June 19974

High Tech

Gizmo

Apple
Grayscale

Figure 1. Three themes under Appearance

theme variations and the system font, among other things. In later sections, we’ll
describe how the new features work and what you need to do to adapt your
applications for Appearance.

NEW CONTROLS
Many new controls are added to the system with Appearance.

Bevel button control

The bevel button control implements a rectangular button with a beveled edge.
Typically, a bevel button displays an icon, but it can display an icon, a picture, or text,
singly or in combination. You can also attach a menu to this control. Multiple bevel
thicknesses and several different button behaviors are supported, to suit just about
any use. This versatility makes bevel buttons well suited for use in toolbars or tool
palettes. (These buttons should never be used to replace push buttons, however.) The
sample application accompanying this article shows many different variations of bevel
buttons; you’ll be astounded by the possibilities.

List box control

The list box control implements a simple list box. It requires an auxiliary resource of
type 'ldes' to specify the features of the list, such as the number of columns and rows.
(The Appearance Settings control panel, shown later, provides an example of columns
in a list box.) This control allows filtering of keyboard events, and handles the default
keyboard navigation you’d expect from a list box.

Note that if you use the list box control in a dialog, it won’t respond to keyboard
events — you can’t tab into it, for example — unless the dialog has established an
embedding hierarchy (described later). There’s a similar restriction on the clock and
editable text controls.

Clock control

The clock control provides an editable date or time field, as you’d find in the Date
& Time control panel. The little arrows next to the clock are part of the clock
control. (Remember, you won’t be able to tab or type characters into the clock
control unless the dialog has established an embedding hierarchy.) You can also
specify a noneditable version that simply shows the date or time. The noneditable
clock permits live updating, so you can put a clock in your interface and let it tick

APPEARANCE: NOT JUST ANOTHER PRETTY INTERFACE 5

away. The clock control uses the date and time formats set in the Date & Time
control panel.

Slider control

Sliders are finally part of the Mac OS repertoire. You can choose which way the
indicator faces or use a nondirectional indicator. You can also specify whether to draw
tick marks. The slider supports live feedback (described later).

Image well control

This control holds an icon or picture. In Apple Grayscale, image wells look like an
editable text box with a picture inside instead of text. Image wells have a normal and
selected state, as shown above. A good use for an image well is as a drop target for
images or document icons. Drag and drop support isn’t built into this version of
Appearance.

Little arrows control

The little arrows control implements the little up and down arrows you often see tied
to a box displaying a value. The arrows are used to increase or decrease the value. In
the Memory control panel, for example, you click them to set the cache size or virtual
memory partition size.

Progress bar control

Progress bars are now part of the standard control set. You can tell a progress bar to
switch into indeterminate mode, in which it displays an animated barber pole–like bar;
you might use this mode to indicate that you haven’t made a connection yet or are
waiting for some piece of data before continuing. Because the indeterminate flag is
separate from the value, you can switch back and forth without affecting the value.

Chasing arrows control

These are the spinning arrows that usually indicate an asynchronous process. In other
words, there’s something going on in the background but you can continue to work.
You’ve no doubt seen them in Find File when searching for files.

develop Issue 30 June 19976

Tab control

Currently, the new tab control supports only one row of tabs running along the top
of the control. Future versions will support more variants. As with the list box, you
use an auxiliary resource to specify the tab names and any icons that appear beside the
names.

You should try to restrict your use of tabs to those times when they’re really
necessary. Too many tabs can result in a very complex and confusing UI. Also, tabs
can be difficult to localize for different script systems: the width of a text string can
increase up to 50%, causing problems if you’ve set up the tabs to fit perfectly in a
Roman script system.

Group box control

The group box control implements two group box looks — primary and secondary, as
shown above. It also provides three different types of titles for the grouped items —
text, checkbox, or pop-up menu. The pop-up title is useful for paged interfaces, such
as the Sound and Speech control panels. You can embed other controls within the
group box control, such as radio buttons.

Primary groups should be used as the first level for grouping items. Secondary groups
should always be inside primary group boxes. The only exception to this is if the
group box is being used for a border around some text, as shown above.

Disclosure triangle control

You can use the disclosure triangle control in places where you want to hide some
information to reduce clutter but still give the user a way to view it. The user clicks
the disclosure triangle to expose the hidden information. The Finder uses disclosure
triangles next to folder icons when in list view.

Window header control

The window header control is what the Finder uses to draw the header of a window
where text such as the disk information is shown. Text sold separately.

APPEARANCE: NOT JUST ANOTHER PRETTY INTERFACE 7

Placard control

The placard control implements a small panel like those often found at the bottom
of a window to the left of the horizontal scroll bar. You might have seen them in
CodeWarrior. You could use a placard control to show information such as the
current line number, as shown above. In Apple Grayscale, placards look the same as
the window header control, but this won’t be the case in all themes, so be sure to use
the appropriate control.

Visual separator control

The visual separator control implements a simple divider line.

CONTROLS TO REPLACE DIALOG PRIMITIVES
Dialogs can contain many items that are not controls — pictures, icons, editable
text, static text, and user items. I’ll be referring to such items as dialog primitives.
Some of these dialog primitives now have control counterparts. For example, the
counterpart of the editable text primitive is the editable text control, which is a
control with all the functionality of the editable text primitive. In referring to items in
dialogs, the word control refers only to items that are not primitives. Using the new
controls allows you to take advantage of features provided by Appearance’s
embedding hierarchy.

If a dialog has an embedding hierarchy, the controls discussed in this section
automatically stand in for their primitive counterparts. So the easiest way to use the
controls is to let the Dialog Manager convert your primitives for you. You don’t have
to change your items into resource-based controls and create 'CNTL' resources to
use these controls (though you could if you had your heart set on it).

Editable text control

The editable text control replaces the old editable text dialog item. Because it’s a
control, it can be enabled and disabled. If you’ve ever tried to disable an editable text
field in a dialog, you know how difficult this can be. With Appearance it’s one line of
code. The editable text control allows keyboard-event filtering and supports password
entry. (Like the list box and clock controls, if you use the editable text control in a
dialog, it won’t respond to keyboard events unless the dialog has established an
embedding hierarchy.)

The text in the control is always displayed on a white background in the Apple
Grayscale theme. The figure above shows three editable text controls, one using
the password entry variant. The control accepting passwords has the current
keyboard focus, as indicated by the ring around it. (Keyboard focus is described
later.)

develop Issue 30 June 19978

Static text control

Static text controls replace the old static text items for embedding static text in
dialogs. Since they’re controls, they can be deactivated and will then be drawn
disabled like other deactivated user interface elements. If you have a dialog with static
text items in it and establish an embedding hierarchy for that dialog, the static text
primitives will automatically become static text controls.

User pane control
The user pane control replaces the old user item construct in dialogs. This control is
essentially a stub control that calls user-installed procedures to do its drawing, hit
testing, and other things that controls do. It also lets you track the mouse and draw
with the correct highlighting — normal, highlighted, or whatever. Even in its most
basic form, the user pane is very useful because you can embed controls within it,
which allows you to group items. When you hide, show, enable, or disable the user
pane, the group of embedded controls will follow suit automatically.

Icon control and picture control
These controls were created to stand in for icon and picture primitives in dialogs that
have an embedding hierarchy. The icon control allows you to display icon suites, as
well as the usual 'ICON' and 'cicn' icon types. When used to simply replace the old
icon or picture primitive in dialogs, these controls don’t track the mouse (they behave
as icons and pictures always did in dialogs). You can create an icon or picture control
and add it to a dialog through a 'CNTL' resource if you’d like it to track the mouse.

CHANGES TO OLD CONTROLS
Some old controls have a new look, more features, or both.

Push button control

Button controls — now called push button controls to distinguish them from bevel
button and pop-up button controls — have been changed to allow you to set a
“default button” flag. When set, this flag tells the control to automatically draw the
default ring (border) around the push button. The default ring is drawn outside the
control’s bounding rectangle. The default push button has a new look, as shown in
the last two examples above.

Radio button control

Radio buttons have a new look. They also support a mixed state. A mixed state is
typically used when a radio button represents a selection that includes more than one
state. Let’s say you have a group of radio buttons that represent different planet classes:
Class M, Class P, and Class K. As a user clicks a planet in a list, the radio buttons
reflect the class of the selected planet. Now suppose the user selects four planets from
the list box at once — for example, one Class K and three Class M planets. You can
reflect this situation by putting the Class K and Class M radio buttons in a mixed
state, indicating that some of the selection are of this type, but not all.

APPEARANCE: NOT JUST ANOTHER PRETTY INTERFACE 9

The kControlRadioButtonMixedValue constant is for setting the mixed value of a
radio button. You can use it in a call to SetControlValue to set a radio button to the
mixed state. Your radio button must have a maximum control value of 2 for this to
work, since that’s the value of the constant.

Checkbox control

Our old friend the checkbox sports a new look and real checkmarks. The “X” variant
of this control is still available for use in countries outside the U.S. Like radio
buttons, checkboxes support a mixed state, as shown in the Ignore Physics checkbox
above. The constant for the checkbox mixed value should look vaguely familiar — it’s
kControlCheckBoxMixedValue.

Scroll bar control

Scroll bars have a new look, too. One scroll bar variant supports live scrolling.

Pop-up button control

The pop-up button control is the old pop-up menu control with a new look.

THE NEW HELP ICON

There’s now a system-supplied help icon. You can combine this with a bevel button to
get the new standard help-button look. The StandardAlert routine (described later)
uses this approach to display its help button.

CHANGES TO WINDOW APPEARANCE
Appearance gives windows a new look, as shown in Figure 2. (Note that floating
windows are now called utility windows.) The standard document window has a
thicker border than it used to. This border is functional: it allows you to grab the
window and drag it from any side. Alerts are distinguished from dialogs by a red
border; the new movable alerts also have a reddish title bar (giving new meaning to
the term red alert). Remember to use alerts only to warn the user of something or to
present important information; in all other cases, use a dialog. The many window
variants are described later.

Document windows (and utility windows) also have a new element: the collapse box.
Clicking it collapses the window into a title bar. You may wonder why the new

develop Issue 30 June 199710

collapse box is where the zoom box used to be and the zoom box has moved over. For
consistency, the most frequently used widget is always on the outside — in this case,
the collapse box. (More windows have collapse boxes than have zoom boxes, and no
window can have a zoom box without a collapse box.)

Also, the size box is now integrated into the frame of the window. If you’re adapting
these new windows directly (as described later), the size box is drawn for you
automatically. You don’t need to call DrawGrowIcon.

THE APPEARANCE SETTINGS CONTROL PANEL
The new Appearance Settings control panel (Figure 3) allows the user to control
these settings:

• The accent color of the current theme. This affects the coloring of menu
items as they’re chosen, scroll bar and slider indicators, progress bar
indicators, and focus rings.

• The highlight color. This affects the coloring of any highlighted item — for
example, selected text.

• Window collapsing. When Appearance is running, the WindowShade
control panel is removed. When “Double-click title bar to collapse” is
checked, the user can double-click the title bar in addition to using the
collapse box to collapse a window.

• The system font. The Apple Grayscale system font is Charcoal, but users can
choose the Chicago font if they want.

• System-wide Grayscale Appearance mode. When “System-wide Grayscale
Appearance” is checked, it means that every application gets the Apple
Grayscale look; otherwise, only applications that have explicitly adopted
Appearance’s features have the look.

APPEARANCE: NOT JUST ANOTHER PRETTY INTERFACE 11

Standard document window

Standard modal dialog window Standard movable modal dialog window

Standard utility window

Collapse box

Figure 2. Standard Appearance windows

NOT YOUR FATHER’S CONTROL MANAGER
To make the new controls work correctly, it was necessary to add some features to the
Control Manager. The Control Manager now does the following:

• supports embedding, to make drawing order and hit testing predictable and
enable some Appearance features

• supports keyboard focus for controls

• makes it easy to get and set control data and choose fonts for control titles

• supports live feedback for scroll bars and sliders

• provides a mechanism for controls to advertise the features that they support

DRAWING ORDER AND HIT TESTING
From the very beginning, the order in which controls draw in a window has been
backwards due to how the Control Manager manages the control list for a window. As
controls are created, they’re added to the head of a window’s control list. When the
controls are drawn, the list is traversed, yielding a drawing order opposite to the order
in which they were added to their owning window. To confuse things more, in normal
dialogs, dialog primitives, such as editable text and static text items, are always drawn
from first to last. When you have a mixture of controls and dialog primitives, the
primitives are drawn from first to last after all the controls are drawn from last to first.

This isn’t a problem if you can assume that controls don’t overlap or contain other
controls. With new controls such as tabs and group boxes, however, you can’t make this
assumption. Consider the case where you want a tab control containing three radio
buttons and an editable text field. Let’s say you add them to the 'DITL' resource in this
order: first the tab, then the three radio buttons radio 1, radio 2, and radio 3, and then
the editable text item. When they’re drawn, you get this order: radio 3, radio 2, radio 1,
tab, editable text. You’ve just covered up your radio buttons with the tab control (see
Figure 4)! This happens because controls are drawn first, and then dialog primitives.
Needless to say, trying to manage the drawing order can be difficult.

Hit testing has similar problems when items are inside tabs, group boxes, and other
such controls. The FindControl routine uses a linear search over the control list to
find the first control that returns a part code other than kControlNoPart. This isn’t
always accurate, as disabled controls are skipped even though they were hit.

develop Issue 30 June 199712

Figure 3. The Appearance Settings control panel

FindDialogItem also uses a linear search of the dialog items, and stops when it finds
the first enabled item that a given point is in. Consider what happens with that tab
control with the three radio buttons if your application calls FindDialogItem with a
point that’s in one of the radio buttons. FindDialogItem never finds the radio button
because the first item searched is the tab control. The point is certainly within the tab
control (the radio button is inside the tab), so FindDialogItem returns the dialog item
number of the tab control. The right approach is to do an “inside-out” hit test to find
the most deeply nested control hit by the mouse. Read on to see how Appearance
makes this possible and simplifies managing the drawing order.

THE EMBEDDING HIERARCHY
To make drawing order and hit testing predictable and easy to follow, we’ve added an
embedding hierarchy, where controls can be embedded within other controls, giving
you a rudimentary “view system.” Embedding is a really exciting aspect of
Appearance. The hierarchy ensures that parent items are always drawn before their
children. It also helps hit testing since the hierarchy can be traversed quickly to find
out which control the cursor is over. A hierarchy can exist in any window. It’s not
restricted to dialogs, though it’s easiest to use there, since the Dialog Manager deals
with focus management and event handling for you.

Root controls.
To enable control embedding in a window, you must create a root control for that
window. The root control is the container for all other window controls. You create
the root control in one of two ways: by calling the CreateRootControl routine or by
setting a dialog flag to tell the Dialog Manager to create one for you (more on this
later). You can’t embed controls without a root control, and any attempt to do so will
result in all the money in your bank accounts being transferred into mine. So watch
it.

When a window has a root control, calls to NewControl (and GetNewControl)
automatically add controls to the root of the window. Calling EmbedControl or
AutoEmbedControl is the only way to explicitly change this. You use EmbedControl
to specifically embed one control in another. The Dialog Manager uses
AutoEmbedControl when creating items from a 'DITL' resource.

AutoEmbedControl uses visual placement to automatically determine what control,
if any, a control should be embedded within, based on bounding rectangles. For
example, going back to the tab and radio buttons in Figure 4, the Dialog Manager
would have embedded the radio buttons and editable text field in the tab control for
two reasons: they came after the tab in the 'DITL' resource and they fit inside the
tab control. The ordering of 'DITL' items is still important — a control can be
embedded automatically only in a control that already exists — but the results are a
lot more predictable with embedding. Create your elements from back to front and

APPEARANCE: NOT JUST ANOTHER PRETTY INTERFACE 13

What you want What you get

Figure 4. The problem with control drawing order

everything will fall into place. The sample code accompanying this article provides
some good examples of how to do this.

Groups and latency.
The embedding model has many advantages, one of which is that it makes it possible
to treat a set of items as a group. By acting on a common parent, you can move,
disable, or hide groups of items. Disabling the root control of a window, for example,
will disable all items in the window.

Doing things like switching tabs becomes remarkably easy. You can simply use a
blank user pane control as the common parent for all items in a particular “page” of a
tab control. After creating as many user panes as you have tabs, you can just hide one
and show the next when a tab is clicked. All the controls embedded in the user pane
will be hidden and shown automatically when the user pane is hidden and shown.
The sample code provides an example.

In hiding, showing, disabling, and enabling groups of controls, it’s important to
preserve the state of an item when it’s hidden or disabled so that when its parent is
shown or enabled, the item appears in that same state. To accomplish this, we’ve
added the concept of latency. Controls are considered latent when they’re disabled or
hidden only because their parent control is disabled or hidden. It’s effectively saying,
“This item should be enabled (or shown) when its parent is enabled (or shown).” If
you disable a control that’s latent, it becomes truly disabled and won’t be enabled
when the parent is enabled. Likewise, if you enable a control whose parent is disabled
or latent, the control becomes latent until its parent is enabled.

When enabling and disabling controls, to ensure that this latency information is
always correct, you should use the new routines DeactivateControl and ActivateControl
instead of just setting the highlight with HiliteControl, as you undoubtedly have
always done in the past. It would be smart to use these routines even when no
embedding or latency is involved — they’ll set the highlight code correctly and
redraw the control. For controlling visibility, the old HideControl and ShowControl
routines have been modified to deal with latency when an embedding hierarchy is
present for a window.

FOCUS MANAGEMENT
With Appearance, you can get and set the keyboard focus of a window. The control
with the keyboard focus is the one that receives all keystrokes. For example, the
Dialog Manager tests to see which control has the focus when a keyboard event is
processed and sends the event to that control. It’s possible for nothing to have the
focus, in which case the keystroke is simply discarded. As mentioned earlier, to
indicate that a particular control has the keyboard focus, a focus ring is drawn around
the control. (It’s a lavender ring by default, but the user can choose a different color
in the Appearance Settings control panel.)

The keyboard focus routines introduced with the Appearance extension are available
only when a root control has been created for a window. In windows with an
embedding hierarchy, you can use several routines to get, set, advance, reverse, and
clear the keyboard focus. The default focusing order is a simple linear progression
through all the enabled, visible controls in a window. The order is based on the order
in which controls are added to the window. This is the same approach as using the
order in which editable text items appear in a DITL to control tabbing order.
(Eventually, other system-supplied focusing heuristics may be available, such as
spatial focusing that’s based on the visual placement and grouping of controls, not on
the order in which controls are added.)

develop Issue 30 June 199714

Currently, the controls that support keyboard focus are the editable text, list box, and
clock controls. In future versions of Appearance every control that can receive user
input will support keyboard focus (push buttons will, but visual separators won’t, for
example). You can plan for that day by ordering your controls so that the focus will
move from one to the next in the order you desire and by making sure they have
enough space around them to allow for focus rings. Focus rings are outset a
maximum of three pixels from the control’s bounding rectangle.

GETTING AND SETTING CONTROL DATA
Developers need to get and set different attributes of a control. In most cases, these
attributes are unique to a particular control. In the past, the only way to allow access
to control-specific information was to create a handle to hold such data, place it in
the contrlData field, and publish the interface. A good example of this is the menu
handle of a pop-up control. Unfortunately, this approach makes it hard to change the
control implementation in future versions of the control.

In Appearance, we’ve added a mechanism by which controls can allow the outside
world access to their specialized data without exposing how it’s stored. This data
access mechanism is the cornerstone of many of the new Appearance features,
allowing you to get and set control fonts, user-pane callback functions, bevel-button
image information, and other useful things. Two new CDEF messages implement the
data access mechanism: kControlMsgGetData and kControlMsgSetData. To advertise
that a CDEF supports these messages, it must return kControlSupportsDataAccess in
its feature flags.

Each piece of information that a CDEF wants to provide access to is referenced by a
tag. A tag is some constant that is meaningful to the CDEF and represents the data
in question. For example, to get at the clear text of a password field (the actual
password), you would use the tag kEditTextPasswordTag. To set the indeterminate
flag for a progress bar, you would use kProgressBarIndeterminateTag.

Each tagged piece of data can be any data type. It might be a menu handle, a
UniversalProcPtr, or a structure. It’s up to the creator of the CDEF to define the tag
and the data type for the data that’s passed back and forth.

To get and set data, you use the GetControlData and SetControlData routines, which
use a format similar to that used by the Collection Manager and Apple events. These
calls are pointer based, and storage is always owned by the caller, which means that if
you’re trying to get the menu handle from a bevel button control, for example, you
would pass in a pointer to a menu handle. To get a vital warp-engine matter/antimatter
intermix ratio from a control (a Fixed value, for those who don’t know), you might
call GetControlData like this:

Fixed theRatio;
OSErr err;
Size actualSize;

err = GetControlData(myControl, 0, kWarpIntermixTag, sizeof(theRatio),
(Ptr)&theRatio, &actualSize);

BETTER FONT CONTROL
Appearance allows you to set the font of any control title, independent of the system
font or window font. Previously, your only choices were the system font and, if the
control supported that variant (and most did), the window font. Now you can set the
control title font to any font your heart desires.

APPEARANCE: NOT JUST ANOTHER PRETTY INTERFACE 15

There are also new constants available to take advantage of some system-defined
fonts — big system font, small system font, and small emphasized system font. In the
U.S. version of Apple Grayscale, those fonts are Charcoal 12, Geneva 10, and Geneva
10 bold, respectively. By using system-defined fonts, you can be sure to get the
correct font when running with a different script system, such as Kanji. This helps
your programs adapt automatically to different locales. Never, ever hard-code a font
number or font size. I mean it!

To save you the hassle of setting control title fonts for each item after a dialog is
created, we’ve added the new 'dftb' resource type for a dialog font table. The 'dftb'
resource is used to specify the initial font settings for each item in a dialog. This
resource runs parallel to a 'DITL' resource and has an entry for each item in a dialog.
It should have the same resource ID as the 'DITL' resource for the dialog. Of course,
you don’t need to create a 'dftb' resource if you want to use the system or window
font.

There’s an old resource — the 'ictb' resource — that very few people seem to know
about or use. The 'ictb' resource allows you to set the font information for editable
text and static text items, but not controls. Since it’s now possible (and desirable) to
change the font of individual control titles, Appearance adds the new 'dftb' resource.
The 'dftb' resource has a straightforward resource format, making it easier to create
and maintain than the old 'ictb' resource. If a dialog with no embedding hierarchy has
both a 'dftb' resource and an 'ictb' resource, the 'ictb' resource is used for the static
text and editable text items only. If the dialog has an embedding hierarchy, any 'ictb'
resource information is ignored.

LIVE SCROLLING
As mentioned earlier, Appearance allows you to have real live feedback with scroll
bars and sliders. With some variants of the scroll bar and slider controls you can set
an action procedure to be called back as the indicator is moved. Each time the action
procedure is called back, the value of the control will indicate what position the user
has dragged the indicator to. Listing 1 shows a good example of how to install and
use a live feedback callback.

Be sure you set the action proc to be a ControlActionUPP, not the DragGrayRgnUPP
that normal indicator dragging uses. If an action proc isn’t passed into TrackControl
or set with SetControlAction, no live scrolling occurs — the control reverts to
dragging a ghost of the indicator.

THE CONTROL FEATURES SET
To get the set of features supported by a control, you can call GetControlFeatures.
This new routine returns a bitfield in which each bit represents a feature the control
supports, such as keyboard focus or data access. If you want to write a CDEF that
supports any of the new features, the CDEF must respond to the
kControlMsgGetFeatures message.

OLD DIALOG MANAGER, NEW TRICKS
The new Mac OS user experience provided by Appearance calls for some new
features to be added to the Dialog Manager. For example, you can now ask that a
dialog’s background fit the theme, that a root control be created for a dialog
automatically when the dialog is created, or both. These features are requested
through a bitfield where each bit represents some feature. This bitfield can be
specified in two ways: through the new NewFeaturesDialog routine or in the new
dialog and alert extension resources. In addition, the Dialog Manager provides an

develop Issue 30 June 199716

enhanced standard alert routine and lets you request standard movable modal
behavior for dialogs and alerts.

NEW RESOURCE TYPES FOR DIALOGS AND ALERTS
To make it simpler and more straightforward to add the new flags, we’ve created two
new resource types to hold extended information for dialogs and alerts: 'dlgx' and
'alrx'. These resources specify the feature bits and other information, such as a
window title for movable alerts. You relate these resources to 'DLOG' and 'ALRT'
resources by their ID. If you created a 'DLOG' resource with an ID of 128, you
would create a 'dlgx' resource with an ID of 128 to add extended information. The
Dialog Manager looks for a 'dlgx' or 'alrx' resource after reading in the 'DLOG' or
'ALRT' resource.

Those who want to create dialogs programmatically can use the NewFeaturesDialog
routine. NewFeaturesDialog is identical to NewDialog (and NewColorDialog),
except that it takes a flags parameter. These flags are the same ones that you would
set in a 'dlgx' or 'alrx' resource.

APPEARANCE: NOT JUST ANOTHER PRETTY INTERFACE 17

Listing 1. Providing live feedback for a scroll bar

ControlHandle CreateMyLiveScrollBar(WindowPtr window, Rect* bounds,
SInt16 value, SInt16 min, SInt16 max, SInt32 refCon)

{
ControlHandle control;

control = NewControl(window, bounds, "\p", true, value, min, max,
kStdScrollBarLiveProc, refCon);

if (control)
SetControlAction(control,

NewControlActionProc(MyScrollBarAction));
return control;

}

pascal void MyScrollBarAction(ControlHandle control, SInt16 part)
{

SInt32 oldA5 = SetCurrentA5();

if (part == kControlIndicatorPart)
/* At this point, the value will be updated to properly reflect */
/* where the user has scrolled to in our imaginary document. */
ScrollToLocation(GetControlValue(control));

SetA5(oldA5);
}

void TrackMyScrollBar(ControlHandle control, Point where)
{

/* Assuming the mouse was clicked in the indicator of a control, */
/* you'd call TrackControl like so: */
TrackControl(control, where, (ControlActionUPP)-1L);
/* You could equally as well have passed the action proc in here */
/* instead of calling SetControlAction in CreateMyLiveScrollBar. */

}

AUTOMATIC CONTROL CREATION
If you set the features flag for automatically creating a root control in a dialog, be aware
that all dialog primitives are replaced with their control counterparts. The Dialog
Manager routine GetDialogItem still works as it always did: if you call GetDialogItem
on a static text item, you’ll get back a handle to text, not a handle to the control. This
call has been modified to sense when an embedding hierarchy is present and to talk to
the controls to get the appropriate data. If you want to access the actual control for a
static text item, you would use the GetDialogItemAsControl routine. You can then
act on the item as you would with any control. The SetDialogItem routine works as it
always did except for a few restrictions when the dialog has established an embedding
hierarchy. In that case, you can’t change the type or handle of a dialog item (except
for user items, for which you can still set the drawing procedure).

Converting dialog items into controls makes it possible to do things you couldn’t do
before. For example, when all dialog items are controls, you can highlight, enable,
and disable everything in a dialog, including static and editable text items. Now it’s as
simple as a call to DeactivateControl or ActivateControl.

In fact, when an embedding hierarchy is established in a dialog, if you deactivate the
dialog, all dialog controls are automatically disabled. When the dialog is reactivated,
the items are reactivated. This is the desired behavior and part of the new Human
Interface Guidelines. Only the frontmost window should have active controls and
other UI elements. This helps distinguish the active window at a glance. Everything
else should fade into the background, so to speak, so that the user can concentrate on
the window that’s active.

THE MOTHER OF ALL ALERTS
The new StandardAlert routine is possibly one of the most useful routines in
Appearance. It allows you to specify the text of the alert and optionally some
explanatory text. You can display up to three buttons with your choice of text, as well as
a help button (see Figure 5). The alert auto-sizes itself based on the amount of text
passed into it and also auto-sizes and places the buttons. StandardAlert makes it
simple to generate alerts with the standard Mac OS alert look without using resources.

MOVABLE MODAL DIALOGS AND ALERTS
Appearance provides a standard movable modal behavior. Instead of having to write
your own code for handling movable modal dialogs, you can use the new movable-
modal flag in the 'dlgx' resource (or call NewFeaturesDialog). The movable-modal
flag tells ModalDialog to handle all the standard user interactions, such as dragging a
dialog by its title bar or switching out of the application by clicking in another one.
It’s up to you to use the right window type (kWindowMovableModalDialogProc).

To allow your application to handle events while the dialog is up, you simply pass in a
ModalFilterUPP as you do with ModalDialog. One major difference is that all events

develop Issue 30 June 199718

Figure 5. Alert generated by StandardAlert

are passed to your ModalFilterUPP for handling; this allows you to handle suspend
and resume events when your application is either put into the background or
brought to the front, as well as any other events you might want to handle. You could
use this ability to allow your application to handle Apple events from other
applications even though your application is in a modal state.

It’s just as easy to make your alerts take advantage of this movable modal behavior
(see Figure 6). All it takes is a quick flip of a bit (kAlertFlagsAlertIsMovable) in the
'alrx' resource. This gives you the same behavior as setting the movable-modal flag in
the 'dlgx' resource.

MOVING AND SIZING DIALOG ITEMS
The MoveDialogItem and SizeDialogItem routines were added to help you keep
controls and dialog item rectangles in sync. If you call the old MoveControl and
SizeControl routines on a dialog item, only the control is affected, making it easy to
forget to make corresponding changes to the dialog item rectangle. The new routines
affect both the control and its dialog item rectangle.

WINDOW MANAGER ADDITIONS
Not only does the standard WDEF add a collapse box to the title bar when
Appearance is running, but the collapse/expand mechanism is improved. Windows
that support the new API actually remember that they’ve been collapsed (except after
a restart), so when you hide and show an application the collapsed state of those
windows remains intact.

The tracking of the collapse box is handled by the system for you. There’s currently
no mechanism available to allow you to intercept tracking, but we know it’s useful and
are working on a way to make it available in the future. Calls to FindWindow will
return the new widget’s part code, so your application should be able to deal properly
with part codes it doesn’t understand.

Appearance offers three routines for collapsing and expanding windows:
CollapseWindow, CollapseAllWindows, and IsWindowCollapsed. These routines
work only on windows that actually support the new collapsing mechanism. How
does Appearance know they support collapsing? As with controls, there’s a new
message to which windows can respond by returning a bitfield of features.

When a WDEF lets the Window Manager know that the window can be collapsed
(through the feature bitfield), it can then be collapsed in the proper manner. The
feature bit tells you that the window has a collapse box, which serves as an obvious
widget that can be clicked. Appearance supports collapsing by double-clicking in the

APPEARANCE: NOT JUST ANOTHER PRETTY INTERFACE 19

Figure 6. Standard movable alert

title bar of a window as well, but that’s not as obvious to the user, so it’s important to
display the collapse box.

There are no new messages to make a window calculate its regions in its collapsed
state. When called with a wCalcRgns message, the WDEF should check to see
whether it has been collapsed with a call to IsWindowCollapsed and calculate its
regions based on whatever it considers its collapsed look to be. Normally this is the
title bar alone.

SOMETHING NEW ON THE MENU
Developers who use a custom MDEF may find that their menus look out of place when
running with Appearance. To avoid this problem, Appearance extends the system
MDEF to provide many of the features that developers have been using other MDEFs
for. Now you can set the font of any menu item, making WYSIWYG font menus
simple to create. You can also set extended modifiers, command IDs, text encodings,
icons, and hierarchical menus, as described below. In addition to these new features,
we reserved two long integers for your use, so that you can attach any other values
you want to menu items. These are called, remarkably, refCon and refCon2.

You can specify the features you want for your menus either by calling the new
routines mentioned below or by specifying the information in a new resource type
('xmnu'). When GetMenu is called, the Menu Manager looks for a resource of type
'xmnu' with the same resource ID as the 'MENU' resource. If the resource is found,
it sets the extended information for each menu item of the menu for you. After the
menu is created, you can adjust the values with the new routines.

EXTENDED MODIFIERS
You can finally attach extended keyboard modifiers to menu items. So go ahead and
add the Command-Shift-Option-K to your application that you’ve been dreaming
about. You can specify the extended modifiers in the 'xmnu' resource or by calling
SetMenuItemModifiers. Use the GetMenuItemModifiers routine to get the current
modifiers for an item.

You might wonder how those keyboard events will get processed correctly. After all,
MenuKey doesn’t have a modifiers parameter. The answer is MenuEvent, a new
routine that takes a pointer to an event record. It returns a long integer as MenuKey
and MenuSelect do, with the low word containing the item number of the chosen
command and the high word containing the menu ID of the menu containing it. If
nothing was chosen, 0 is returned.

COMMAND IDS
To help out frameworks and other technologies like OpenDoc, you can assign a
command ID to any menu item. This lets you forget about the position of menu
items. Instead of having to track down which menu item corresponds to a given menu
ID and item number, you can use the item’s command ID to identify it. Listing 2
gives an example of using command IDs. Assuming you’ve set a different command
ID for all your menu items, you can just call GetMenuItemCommandID to get the
command ID and then perform the corresponding operation. In Listing 2 this is done
via a switch statement.

TEXT ENCODINGS
You can set the text encoding for a menu item. Think of text encodings as script
codes. Previously you had to set the keyboard equivalent of a menu item to $1C and
the icon ID of the item to the script code. The $1C would tip off the MDEF that

develop Issue 30 June 199720

there was really a script code in the icon field, not an icon ID. Now you can set the
text encoding in the 'xmnu' resource or call the SetMenuItemTextEncoding routine.
This enables you to have a text encoding and an icon simultaneously.

ICONS
To set an icon for a menu item, you give it a handle to an 'ICON', 'SICN', or 'cicn'
resource or an icon suite. The SetMenuItemIconHandle routine takes a parameter to
determine the type of icon handle you’re passing in, and a parameter for the icon
handle itself. If you set an icon with this routine, it overrides any icon ID you may
have set with SetMenuItemIcon. Using the new routine also allows you to plot
'SICN' resources and compressed (16-by-16) 'ICON' resources and still have a
keyboard equivalent. Prior to Appearance, you needed to set the equivalent to $1E
and $1D, for 'SICN' and 'ICON', respectively. Of course, you can also specify this
information in the 'xmnu' resource.

HIERARCHICAL MENUS
Appearance offers an improved method for attaching submenus to menu items.
Previously, the only way to do this was to set the keyboard equivalent of the menu
item to $1B and then set the mark character for the menu to the ID of the submenu
you wanted to attach. Now you can use the 'xmnu' resource or the new
SetMenuItemHierarchicalID routine to set the menu ID of a submenu. Both allow
you to use a full 16-bit integer for your submenu ID. Freeing up the mark character
makes it possible to have a checkmark next to a hierarchical menu.

DRESSING UP WITH THE APPEARANCE MANAGER
The Appearance Manager is your one-stop shopping center for getting any colors and
patterns needed to draw consistently with the current theme. In the first version of
Appearance, the current theme is always Apple Grayscale, but it’s important to start
thinking about themes. With the APIs provided with the Appearance extension, you can
get colors for such things as the active window header text or the inactive menu text.
There are also several patterns you can get for dialog background patterns and the like.

Getting Appearance Manager colors and patterns makes it easier to create custom
defprocs for UI elements that blend with the theme. If you’re not using the Dialog
Manager for certain windows, these routines can help you set your text color properly
so that it matches the current theme.

Along with colors and patterns, there are also routines to draw Appearance
primitives. Appearance primitives (as opposed to dialog primitives) are such things as

APPEARANCE: NOT JUST ANOTHER PRETTY INTERFACE 21

Listing 2. Using command IDs

menuID = HiWord(menuResult);
itemNo = LoWord(menuResult);
GetMenuItemCommandID(GetMHandle(menuID), itemNo, &command);

switch (command) {
...
case kCmdQuit:

PrepareToQuit();
break;

}

visual separators, group box lines, placards, and focus rings. The controls provided
with Appearance call these routines to help their drawing. You might also call them to
draw elements that match the current theme when you don’t want to use a control.

In future versions of Appearance, there will be routines to do high-level things such
as draw button backgrounds. Using such a routine, you could create a button with a
specialized content type and be guaranteed that your button background would
always draw correctly for the current theme.

ADOPTING APPEARANCE
There are varying degrees to which you can prepare for Appearance. This section
covers the basic preparations and then gives some specifics on using Appearance in
your application. The sample code accompanying this article is a concrete example of
an application that uses Appearance, so you can peruse the code after reading this
section to get a feel for how Appearance features are used in an honest-to-goodness
application.

NEVER ASSUME
You should never assume things about the environment your application is running
in. Always use routines like Gestalt and those in the Script Manager to get
information about the environment. If there’s no direct way to get the information,
you probably shouldn’t be doing whatever it is you’re doing. Let’s look at a couple of
examples.

Window metrics.
Properly determining window metrics will help you position windows correctly, no
matter what the window looks like. For example, in the past you may have let your
application blindly assume that the window border is 1 pixel thick or the title bar is
19 pixels high. However, the structure region of a window is controlled by the
WDEF, and with Appearance it’s not guaranteed to be any particular number of
pixels thick. Apple Grayscale borders are thicker than the old System 7 look, and
when switchable themes are implemented, borders will vary by theme. Your
application should be able to deal with this intelligently by getting the structure and
content rectangles for the window and using them to calculate the width of the
window border. Listing 3 shows how to do this properly. The sample application has
a routine to size a window and set a window’s bounds; the code also shows what
makes the GetWindowRects routine tick, in case you’re interested.

Window variants.
“Be careful what you ask for, you just might get it.” Many applications ask for a
documentProc window type and then never call DrawGrowIcon because the window
isn’t supposed to have a size box. Better to ask for the variant you really want — in this
case, noGrowDocProc. As shown earlier, with Apple Grayscale the size box is part of
the structure region. Because of this, the size box would be drawn automatically for a
documentProc window type. We had to do some work to get around this for times
when the user is running in System-wide Grayscale Appearance mode. Using the
correct window variant is a step in the right direction. The Apple Grayscale WDEF
has a set of variants that make it clear whether a window has a size box or not.

APPEARANCE SAVVYNESS
Now that you’ve got these assumptions out of the way, becoming Appearance-savvy is
really not that difficult. Just do the following:

• Call RegisterAppearanceClient early in your application code, before you
draw the menu bar or create any UI elements.

develop Issue 30 June 199722

• Use the new system-supplied windows, controls, and menus.

• Use the new 'dlgx' and 'alrx' resources to supplement your 'DLOG' and
'ALRT' resources.

• In dialogs, change any user items that are now available as controls (for
example, a group box user item) into controls.

• Enable embedding and Appearance-savvy backgrounds in your dialogs.

• Make your alerts movable, and use the new StandardAlert routine whenever
possible.

• Use the Appearance Manager to get any colors and patterns you need to
draw consistently with the current theme.

The RegisterAppearanceClient routine tells Appearance that you want to map all calls
to the classic defprocs (WDEF 0, for example) to the new defprocs automatically. The
routines that translate from old to new form the compatibility layer, which is part of the
mechanism that produces the Apple Grayscale look when “System-wide Grayscale
Appearance” is checked in the Appearance Settings control panel. So calling
RegisterAppearanceClient is an easy first step in adopting Appearance. To adopt
Appearance completely and take advantage of some Appearance features, you have to
call the new defprocs directly, as described in the following sections.

You can phase the above steps into your application at your own pace, adopting
Appearance as your schedule permits. It’s not absolutely necessary to do everything at
once. For example, you might have some dialogs where you can add the new resource
'dlgx' type, flip the right feature bits, and be fully Appearance-savvy without doing
any more work. Those would obviously be the ones to convert first. Then you can go

APPEARANCE: NOT JUST ANOTHER PRETTY INTERFACE 23

Listing 3. Using the structure region to position windows

void MoveWindowStruct(WindowPtr window, SInt16 horiz, SInt16 vert,
Boolean update)

{
Rect structRect, contRect;
Point structTL, contTL;
SInt32 diff;

/* Get the structure and content rectangles in global coordinates. */
GetWindowRects(window, &structRect, &contRect);

/* Calculate the difference between the top left of the content */
/* region and the top left of the structure region. */
structTL = topLeft(structRect);
contTL = topLeft(contRect);
diff = DeltaPoint(contTL, structTL);

/* Add the difference, since MoveWindow moves based on the */
/* top-left corner of the content region. */
horiz += (*(Point*)&diff).h;
vert += (*(Point*)&diff).v;

MoveWindow(window, horiz, vert, update);
}

on to other dialogs where you need to replace old user items with the new controls.
When I converted the Date & Time control panel to use Appearance, I eliminated all
but one of the user items (the menu bar preview) because Appearance provided
controls to replace them (group boxes, icons, list boxes, and so on). So take your time,
but remember that the sooner you adopt Appearance, the sooner your application
will be ready for switchable themes when they’re released.

When converting an application, be sure to run Appearance with System-wide
Grayscale Appearance mode turned off. Turning off this mode puts your system back
into the old System 7 look for applications that haven’t adopted Appearance, which
makes it easy for you to tell where you’ve implemented the new look and where you
still have work to do. If you’re running in System-wide Grayscale Appearance mode,
you won’t be able to distinguish the changes you’ve made from those performed
automatically by the system.

COMPATIBILITY LAYER VS. DIRECT ADOPTION
As you begin to adopt Appearance directly and rely less on the compatibility layer, you’ll
want to change the defproc IDs for windows, controls, and menus to the new IDs
listed in Table 1. Even when calling the new defprocs directly, your application should
always call RegisterAppearanceClient so that system elements such as the Apple
menu will draw correctly. Read on about some differences you’ll encounter when
calling the new defprocs directly instead of going through the compatibility layer.

Window variant codes.
The variant codes for the new WDEFs are different from the codes for the old
WDEFs, so you need to change any place in your code where you rely on a window

develop Issue 30 June 199724

Table 1. Old to new defproc ID mapping for windows, controls, and menus

Old defproc ID New defproc ID
documentProc kWindowGrowDocumentProc
noGrowDocProc kWindowDocumentProc
zoomDocProc kWindowFullZoomGrowDocumentProc
zoomNoGrow kWindowFullZoomDocumentProc

dBoxProc kWindowModalDialogProc
movableDBoxProc kWindowMovableModalDialogProc
plainDBox kWindowPlainDialogProc
altDBoxProc kWindowShadowDialogProc

floatProc kWindowFloatProc
floatGrowProc kWindowFloatGrowProc
floatZoomProc kWindowFloatFullZoomProcID
floatZoomGrowProc kWindowFloatFullZoomGrowProcID

floatSideProc kWindowFloatSideProcID
floatSideGrowProc kWindowFloatSideGrowProcID
floatSideZoomProc kWindowFloatSideFullZoomProcID
floatSideZoomGrowProc kWindowFloatSideFullZoomGrowProcID

pushButProc kControlPushButtonProc
checkBoxProc kControlCheckBoxProc
radioButProc kControlRadioButtonProc
scrollBarProc kControlScrollBarProc
popupMenuProc kControlPopupButtonProc

textMenuProc kMenuStdMenuProc

variant. Variant codes are window-specific and don’t provide a generic way to
determine a window’s features. To remedy that, we’ve provided a better way to find
out about window features: GetWindowFeatures. This routine is the window version
of GetControlFeatures; it returns a bitfield to help determine which features a
window supports. Here are the bits that are currently defined:

enum {
kWindowCanGrow = (1 << 0),
kWindowCanZoom = (1 << 1),
kWindowCanCollapse = (1 << 2),
kWindowIsModal = (1 << 3),
kWindowCanGetWindowRgn = (1 << 4),
kWindowIsAlert = (1 << 5),
kWindowHasTitleBar = (1 << 6),

};

If a window doesn’t respond to GetWindowFeatures, it’s probably an old-style
window and you should just use its variant code. The AppearanceHelpers library that
comes with the SDK includes a set of routines to make it easier to determine a
window’s features using the variant code (for example, IsWindowModal).

Zooming variants.
What’s not apparent from Table 1 is that there are actually two window definitions
now, one for windows and one for dialogs. The utility window has also been split into
two, one for the normal variety, the second for the side title-bar version. We did this
to clean things up a bit and add new features. In this release, we’ve improved the
zooming variants.

Notice that the new defproc ID constants say “FullZoom” and not just “Zoom.” It’s
now possible to specify horizontal, vertical, and full zoom. As a result, the zoom box
is drawn differently for each variant, as shown in Figure 7. The part codes for the
zoom box and all that you’ve come to know and love about zooming are still the
same. The new boxes are merely a way to visually state that the zoom will act in a
particular way. For example, the Apple Guide floating window used for coaching a
user collapses down into a compressed version of itself (just the buttons and topic are
visible) when you click the zoom box. The horizontal zoom box would be perfect to
indicate how the window will zoom when clicked.

Size boxes.
Size boxes in standard utility windows are now 11-by-11 pixels. The standard scroll
bars can be made to fit into this space without looking scrunched, as they’ve been
changed to support this width as well as the standard 16-pixel width. When you use
old defproc IDs and go through the compatibility layer instead of calling the new
utility window defprocs directly, the size box is 16-by-16 pixels.

Although not recommended, it is possible for your size box to appear elsewhere than
in its new location as part of the window frame. To do this, you would use a window
variant that doesn’t draw a size box and then put your size box where you want it, but
you’d have to handle hit testing yourself. A future version of Appearance will have a

APPEARANCE: NOT JUST ANOTHER PRETTY INTERFACE 25

Full Horizontal Vertical

Figure 7. Zoom box variants

theme-savvy size box control that can be put anywhere inside a window; for now,
you’ll have to draw your own.

Weirdness banished.
The new dialog WDEF metrics you get when adapting windows directly are slightly
different from the old WDEF metrics. Modal and movable modal variants no longer
have that weird 3-pixel portion of the structure region that looked like part of the
content region. This means you can finally run your content up to the edge of the
window. It also means you won’t have any problems with a gray background and a
white border, which would happen if you erased the background gray yourself and
didn’t use SetWinColor to set the content color. I’m sure many of you have had to
deal with this situation before.

Enabling dialog and alert features.
There’s a big payoff to adapting dialogs and alerts directly — you get all those great
new features described previously — but it involves a little more work than adapting a
normal window. To enable the new features for a dialog, you either create the dialog
with NewFeaturesDialog or, for resource-based dialogs, create a 'dlgx' resource with
the same ID as the dialog’s 'DLOG' resource. Both NewFeaturesDialog and the
'dlgx' resource allow you to specify some flags that tell the Dialog Manager what
features a dialog supports. These are the bits:

enum {
kDialogFlagsUseThemeBackground = (1 << 0),
kDialogFlagsUseControlHierarchy = (1 << 1),
kDialogFlagsHandleMovableModal = (1 << 2),
kDialogFlagsUseThemeControls = (1 << 3)

};

The kDialogFlagsUseThemeBackground bit tells the Dialog Manager to make sure
that the background of the dialog is painted in the right color or pattern for the
current theme. The kDialogFlagsUseControlHierarchy bit tells the Dialog Manager
to create a root control for the window and establish a control embedding hierarchy.
The kDialogFlagsHandleMovableModal bit tells the system that if this dialog is
frontmost when ModalDialog is called, and its window type is movable modal, it
should handle the dialog as described earlier in “Movable Modal Dialogs and Alerts.”
Don’t forget to set the kDialogFlagsUseThemeControls bit, or the Dialog Manager
will create old-fashioned System 7 controls on your nice grayscale dialog. Ick.

You can make alerts Appearance-savvy just by adding the new 'alrx' resource and
setting the right bits. If you want to save some code, call the new StandardAlert
routine to present your alerts. If your dialogs are Rez-based, it’s really easy to create
new resources. The Appearance.r file included with the SDK has the Rez definitions
of the new resource templates.

Using embedding.
If you turn on embedding in a dialog or alert, you may need to alter your code to deal
with the fact that all items in the dialog or alert are considered controls in that mode.
The sample application gives examples of how to code a dialog with an embedding
hierarchy. A good example is the code that demonstrates StandardAlert. The sample
code puts up a dialog in which you can set the parameters to a call to StandardAlert.
Because everything is a control, you can easily enable and disable editable text fields
and groups of items, for example. This results in the code for that sample dialog
being very small, simple, and straightforward, especially compared to what it would
have been if you had to do all those things yourself!

develop Issue 30 June 199726

With Appearance’s new controls, you should be able to eliminate most of the user
items in your dialogs. This is a fairly straightforward process of changing the user
items into control items. Remember that if your dialog has an embedding hierarchy,
you should change your user items to (at the very least) user pane controls. The
callback to draw is practically the same.

Menus on the fly.
If you create menus on the fly and want to adapt them directly, you should use the
NewThemeMenu call instead of NewMenu, because NewMenu assumes MDEF 0,
which forces you through the compatibility layer. You’ll find NewThemeMenu in the
AppearanceHelpers library.

SO WHAT CAN YOU RELY ON?
One of reasons for adopting Appearance is to prepare your application for switchable
themes. In an environment where the entire look of the interface can change at any
moment, it might seem that you have to be ready for anything. In some respects,
that’s true, but there are some things that you can rely on. These aren’t assumptions,
they’re facts!

• Default rings and focus rings can be outset a maximum of 3 pixels.

• Editable text frames, group box frames, and list box frames can be a
maximum of 2 pixels thick.

• Progress indicator borders can be outset a maximum of 2 pixels.

• Metrics of controls are the same across all themes, though borders, which are
drawn outside a control’s rectangles, can change for default and focus rings.

• Window structure metrics actually do change.

• The menu bar height can vary, but will never be more than 24 pixels.

This information is provided to help you lay out your UI elements with enough room
to look good in all themes. When theme-switching is available, an Apple event will
inform your application if a theme switch occurs. Then your application can adjust
window positions to accommodate changes to window frames and menu bar heights.

NOW IT’S YOUR TURN
I’ve tried to show you some of the highlights of Appearance, but there’s only so much
you can convey in words. To get a better feel for what it’s all about, check out the
sample application. It has a lot of useful, real-world examples of using Appearance,
especially dealing with dialogs and embedding. For a deeper look at Appearance, try
the Appearance SDK documentation, which has technical details beyond the scope of
this article.

I think you’re going to love using the new routines and features that are now
available. You’ll find you can get much more out of the Toolbox, which translates into
less code that you have to write and less time required to implement your interface.
But wait, there’s more! Along with those benefits, you’ll be ready for switchable
themes as well. Now go check out that sample code and get cracking!

APPEARANCE: NOT JUST ANOTHER PRETTY INTERFACE 27

Thanks to our technical reviewers Sharon
Everson, Arno Gourdol, Steve Ko, Tim Maroney,
and Matt Mora.•

