
NOTICE

Apple Computer Inc. reserves the right to make improvements in the

product described in this manual at any time and without notice.

DISCLAIMER OF ALL WARRANTIES AND LIABILITY

APPLE COMPUTER INC. AND SILICON VALLEY SOFTWARE INC. MAKE NO
WARRANTIES, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS MANUAL OR

WITH RESPECT TO THE SOFTWARE DESCRIBED IN THIS MANUAL, ITS QUALITY,
PERFORMANCE, MERCHANTABILITY , OR FITNESS FOR ANY PARTICULAR PURPOSE.

APPLE COMPUTER INC. AND SILICON VALLEY SOFTWARE INC. SOFTWARE IS SOLD

OR LICENSED "AS IS". THE ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE

IS WITH THE BUYER. SHOULD THE PROGRAMS PROVE DEFECTIVE FOLLOWING THEIR
PURCHASE, THE BUYER (AND NOT APPLE COMPUTER INC., SILICON VALLEY

SOFTWARE INC., ITS DISTRIBUTOR, OR ITS RETAILER) ASSUMES THE ENTIRE
COST OF ALL NECESSARY SERVICING, REPAIR, OR CORRECTION AND ANY
INCIDENTAL OR CONSEQUENTIAL DAMAGES. IN NO EVENT WILL APPLE COMPUTER
INC. OR SILICON VALLEY SOFTWARE INC. BE LIABLE FOR DIRECT, INDIRECT,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN THE

SOFTWARE, EVEN IF APPLE COMPUTER INC OR SILICON VALLEY SOFTWARE, INC.

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES DO
NOT ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES OR
LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE

LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU.

This manual is copyrighted. All rights are reserved. This document

may not, in whole or part, be copied, photocopied, reproduced,
translated or reduced to any electronic medium or machine readable form
without prior consent, in writing, from Apple Computer Inc.

©1980 by APPLE COMPUTER INC.

10260 Bandley Drive
Cupertino, California 95014

(408) 996-1010

©1980 by SILICON VALLEY SOFTWARE INC.

1531 Sandpiper Drive
Sunnyvale, California 94087

The word APPLE and the Apple logo are registered trademarks of

APPLE COMPUTER INC.

APPLE Product #A2D0032
(030-0118-00)

Apple II

Apple FORTRAN
Language Reference Manual

ACKNOWLEDGEMENTS

The Apple Pascal System incorporates UCSD Pascal and Apple extensions
for graphics and other functions. UCSD Pascal was developed largely by

the Institute for Information Science at the University of California
at San Diego under the direction of Kenneth L. Bowles.

"UCSD Pascal" is a trademark of the Regents of the University of

California. Use thereof in conjunction with any goods or services is

authorized by specific license only and Is an indication that the

associated product or service has met quality assurance standards
prescribed by the University. Any unauthorized use thereof is

contrary to the laws of the State of California.

ii APPLE FORTRAN

TABLE OF CONTENTS

PREFACE x

OVERVIEW
2 Introduction
3 Using This Manual
4 What Is Apple FORTRAN

?

4 Apple vs. ANSI 77 Subset FORTRAN

6 ANSI 77 vs. Full Language

6 ANSI 77 vs. ANSI 66

FORTRAN READER'S GUIDE
8 Getting Oriented
9 Guide to Pascal Documentation
9 The COMMAND Level
9 The Filer
9 The Editor
9 6502 Assembler

10 The Linker
10 Utility Programs

PROGRAMS IN PIECES

12 Introduction
12 Partial Compilation
13 Source Code in Pieces
13 Object Code in Pieces
14 Units, Segments, and Libraries

TABLE OF CONTENTS iii

THE COMPILER
18 Introduction

18 Files Needed
19 Using the Compiler
21 Form of Input Programs

2 1 Lower and Upper Case

2 2 Line Length and Positioning

23 Compiler Directives

24 Compiler Listing

THE LINKER

28 Introduction
28 Diskfiles Needed

29 Using the Linker

PROGRAM STRUCTURE
3A Introduction

34 Character Set

35 Lines

35 Columns

36 Blanks
36 Comment Lines

36 Statements, Labels, and Lines

37 Statement Ordering
38 The END Statement

iv APPLE FORTRAN

DATA TYPES
40 Introduction

40 The Integer Type
41 The Real Type
41 The Logical Type
41 The Character Type

FORTRAN STATEMENTS
44 Introduction

44 FORTRAN Names
44 Scope of FORTRAN Names

45 Undeclared Names

45 Specification Statements
46 IMPLICIT Statement
4 7 DIMENSION Statement
48 Type Statement
49 COMMON Statement
50 EXTERNAL Statement
51 INTRINSIC Statement
51 SAVE Statement
51 EQUIVALENCE Statement

5 2 DATA Statements
5 3 Assignment Statements
54 Computational Assignment Statement
54 Label Assignment Statement

TABLE OF CONTENTS

EXPRESSIONS
58 Introduction

58 Arithmetic Expressions
59 Integer Division
59 Type Conversions and Result Types

60 Character Expressions
60 Relational Expressions
61 Logical Expressions

62 Operator Precedence

CONTROL STATEMENTS
64 Introduction

64 Unconditional GOTO
64 Computed GOTO
65 Assigned GOTO

65 Arithmetic IF

66 Logical IF

66 Block IF. . .THEN. . .ELSE

68 Block IF

69 ELSEIF
69 ELSE

69 END IF
70 DO

71 CONTINUE

72 STOP

72 PAUSE
72 END

vi APPLE FORTRAN

INPUT/OUTPUT OPERATIONS 73

74 I/O Overview

74 Records
75 Files
75 Formatted vs. Unformatted Files

75 Sequential vs. Direct Access

76 Internal Files

76 Units
77 Choosing a File Structure

79 I/O Limitations
79 I/O Statements

81 OPEN
83 CLOSE
83 READ

84 WRITE
85 BACKSPACE
85 ENDFILE
85 REWIND
85 Notes on I/O Operations

FORMATTED I/O

90 Introduction
90 Formatting I/O
91 Formatting and the I/O List

92 Nonrepeatable Edit Descriptors

92 Apostrophe Editing
93 H Hollerith Editing

93 X Positional Editing
93 / Slash Editing

93 $ Dollar Sign Editing
94 P Scale Factor Editing

94 BN/BZ Blank Interpretation
94 Repeatable Edit Descriptors

95 I Integer Editing
95 F Real Editing
95 E Real Editing

96 L Logical Editing
96 A Character Editing

TABLE OF CONTENTS vii

PROGRAM UNITS

98 Introduction
98 Main Programs
98 Subroutines
99 SUBROUTINE Statement

99 CALL Statement

100 Functions
100 External Functions

101 Intrinsic Functions
102 Table of Intrinsic Functions
105 Statement Functions

106 The RETURN Statement

106 Parameters

COMPILATION UNITS

110 Introduction
110 Units, Segments, Partial Compilation

111 Linking
112 $USES Compiler Directive
113 Separate Compilation
113 FORTRAN Overlays

BI-LINGUAL PROGRAMS
116 Introduction

116 Pascal in FORTRAN Main Programs

118 FORTRAN in Pascal Main Programs

119 I/O from Bilingual Programs
120 Calling Machine Code Routines

viii APPLE FORTRAN

SPECIAL UNITS 123

124 The Turtle Graphics Unit
124 The Apple Screen
124 The INITTU Subroutine
125 The GRAFMO Subroutine
125 The TEXTMO Subroutine
125 The VIEWPO Subroutine

126 Subroutines for Using Color
127 Cartesian Graphics
127 Turtle Graphic Subroutines

128 Turtle Graphic Functions
129 Sending an Array to the Screen
130 Text on the Graphic Screen

131 The Applestuff Unit
132 RANDOM Funct ion/RANDOI Subroutine
132 Using the Game Controls

134 Making Music: the NOTE Subroutine
134 The KEYPRE Function

APPENDICES
135 Appendix A - Part One: Single-Drive Operation

153 Appendix A - Part Two: Multi-Drive Operation
171 Appendix B: FORTRAN Error Messages

179 Appendix C: Tables
187 Appendix D: FORTRAN Syntax Diagrams
211 Appendix E: FORTRAN Statement Summary

215 Appendix F: ANSI Standard 66 vs. 77 FORTRAN

219 Appendix G: Apple FORTRAN vs. ANSI 77

BIBLIOGRAPHY

INDEX

TABLE OF CONTENTS ix

PREFACE
This manual describes the Apple FORTRAN programming language for the
Apple II and Apple II-plus computers. Apple FORTRAN conforms to the
American National Standard FORTRAN subset, also known as ANSI subset
FORTRAN 77.

Apple FORTRAN contains features which are extensions to the ANSI
standard subset. For instance, it incorporates a number of features
the full language not included in the standard subset. Apple FORTRAN
also has features that are the result of the unique operating
environment of the Apple. The ANSI standard subset itself includes
most of the important revisions made to the full language over the
previous standard, ANSI FORTRAN 66.

The purposes of this manual are:

* Acquaint you with Apple FORTRAN ' s differences and extensions to
standard FORTRAN 77.

* Acquaint you with the Apple FORTRAN operating environment on the
Apple II and Apple II-plus. FORTRAN uses the Apple Pascal Operating
System.

* Introduce you to the principal differences between ANSI FORTRAN 77
and ANSI FORTRAN 66, if you are not familiar with this more recent
version of FORTRAN.

* Provide you with the complete language specification of Apple
FORTRAN.

The complete Apple FORTRAN documentation includes one other manual:

* Apple Language System Installation and Operation Manual

To familiarize you with the Pascal Operating System, this FORTRAN
manual refers you to "Pascal documentation." These manuals are
the Pascal manuals included with your Apple Language System.

SPECIAL NOTE: You must configure your FORTRAN System in order to run
it. Your FORTRAN System was presented to you on two diskettes, F0RT1
and FORT 2 : . FORT 2 : contains the SYSTEM. COMPILER and the
SYSTEM. LIBRARY. FORT 1 : contains FORTLIB.CODE. The instructions for
configuring your system are included in Appendix A, Part One for
single-drive users, and Part Two for multi-drive users. The
configuration suggested in Appendix A assumes that F0RT2: will be
your boot diskette, and this manual is written from that perspective.
You may choose to configure your FORTRAN System differently. In that
case, you must be aware of the references in the manual to the boot
diskette as being F0RT2:.

x APPLE FORTRAN

configuration suggested in Appendix A assumes that FORT 2: will be

your boot diskette, and this manual is written from that perspective.

You may choose to configure your FORTRAN System differently. In that

case, you must be aware of the references in the manual to the boot

diskette as being FORT 2 :

.

Also note that if you have not used the Apple Pascal Operating System

before, Appendix A contains a tutorial on the operating system, as

well as start up procedures for Apple FORTRAN. Part One is for single-

drive users, and Part Two is for multi-drive users.

The published Standard on which Apple FORTRAN is based is:

ANSI X3. 9-1978, American National Standard Programming Language FORTRAN

which is available from: American National Standards Institute, Inc.,

1430 Broadway, New York, New York 10018.

PREFACE xi

CHAPTER 1

OVERVIEW
2 Introduction

3 Using This Manual

4 What Is Apple FORTRAN?
4 Apple vs. ANSI 77 Subset FORTRAN

6 ANSI 77 vs. Full Language

6 ANSI 77 vs. ANSI 66

xii APPLE FORTRAN OVERVIEW 1

INTRODUCTION
Apple FORTRAN is a programming language that runs on the Apple Pascal
Operating System. This powerful operating system is general enough to
be able to support languages other than just Pascal. By putting the
FORTRAN language on the Apple Pascal Operating System, you get several
distinct programming advantages. For example:

* The complete FORTRAN program development facility (including a text
editor, file handler, code library and library handler, assembly
language compiler, plus various and sundry utility programs) is
identical to that supplied for Pascal.

* It is easy to make a turnkey FORTRAN system that immediately begins
running a given program when the computer is turned on.

* Both the FORTRAN and Pascal languages operate on the same Apple.

* Only one operating system needs to be learned to run either FORTRAN
or Pascal.

* Pascal subroutines can be linked to FORTRAN programs, and vice
versa.

* Assembly language subroutines can be linked to either Pascal or
FORTRAN programs or both.

There are other advantages. The Pascal Operating System supports a

number of desirable features that have been added to Apple FORTRAN.
These extensions make it easier to program, and easier to use FORTRAN
programs interactively. Putting FORTRAN on the Pascal Operating System
has caused two minor language restrictions in FORTRAN which are
discussed below under Apple vs. ANSI 77 Subset FORTRAN.

The essential difference between the Apple Pascal and Apple FORTRAN
packages is in the Compiler program. There are some other minor
differences that will be discussed later in this manual. The output
code generated by both FORTRAN and Pascal compilers is the same, and
both Pascal and FORTRAN created code files can be handled
interchangeably by the single operating system.

The program development system consists of the Editor, Linker, and
Filer and some other utility and library programs. The sequence of
program development is:

* Use the Editor to write FORTRAN programs.

* Use the Filer to fetch and store files on diskettes.

* Use the FORTRAN compiler to translate text files into code files.

2 APPLE FORTRAN

* Use the Linker to combine code files into one executable code file.

* Execute the program.

Additional steps are required to link Pascal and FORTRAN programs

together, or to link FORTRAN and Assembly language programs.

USING THIS MANUAL
The next chapter discusses using FORTRAN in the Pascal Operating

System environment. It tells you where to look to find the most

important features in the documentation for the Pascal Operating

System.

The remainder of the first section of this manual, Chapters 3 through

5, discusses how to organize FORTRAN programs efficiently, the input

requirements of the FORTRAN compiler, and the use of the Linker. The
next major section of this manual, Chapters 6 through 14, contains the

language specifications and description of Apple FORTRAN. It covers

details of data types, expressions, statements, I/O considerations,

and the format of programs acceptable to the FORTRAN compiler.

The remaining chapters, Chapters 15 and 16, discuss linking FORTRAN to

Pascal programs, CALLing assembly language routines from FORTRAN,

color graphics techniques, and other special Apple features.

The appendices summarize information given elsewhere in the manual and

provide other useful tidbits. New Apple Pascal/FORTRAN users should be

sure to read Appendix A before attempting to use the system.

All those parts of the operating system which are common to both

Pascal and FORTRAN have been put into the documentation for the Pascal

Operating System. In order to learn how to create, edit and run

FORTRAN programs, you must have a copy of either the Apple Pascal

Reference Manual or the Apple Pascal Operating System Reference

Manual. Note that the latter manual is a replacement for the Pascal

Operating System portion of the former manual.

Appendix A contains a tutorial on how to get started using the program

development system, the Editor, Linker and so on. It provides you with
all the information you need to run either a single- or a multi- drive

system.

The Pascal Operating System documentation describes two things: the

program development system and the operating system proper. The

examples in the Pascal documentation are Pascal programs. This will

not pose any problem in learning about the Editor, Filer and Linker
because these tools are independent of the programming language used.

Other parts of the Pascal documentation are specifically directed to

the Pascal language user. Some of those sections have been rewritten

in this manual. In certain other cases, you will be instructed to read

OVERVIEW 3

a particular section of the Pascal documentation with "FORTRAN colored
glasses," substituting the name of one diskette for another and the
word FORTRAN for Pascal, and the like.

WHAT IS APPLE FORTRAN?
FORTRAN has been around longer than almost any other high level
programming language. As such, it has been through various stages of
development. In 1966 the American National Standards Institute (ANSI)
issued a Standard for FORTRAN that helped a great deal to clarify the
language. This is sometimes referred to as ANSI FORTRAN 66. After
that, development of the language continued, and enough of the
additions were of sufficient interest and generality that in 1977 ANSI
produced another Standard called ANSI FORTRAN 77 to incorporate these
developments. This newer Standard is just coming into wide acceptance
now. It is upon the official ANSI subset of the ANSI FORTRAN 77 full
language that Apple FORTRAN is based. FORTRAN continues to grow and to
find new environments, so that almost every implementation of FORTRAN
has some features which are unique to the particular processor being
used. Apple FORTRAN is no exception.

For this reason, it is important for users familiar with other
versions of FORTRAN to get a clear view of how Apple FORTRAN compares
with other varieties. There are three questions that need to be
answered

:

* How is Apple FORTRAN different from ANSI Standard subset FORTRAN 77?

* How is the ANSI subset different from the full language?

* How is ANSI 77 different from ANSI 66?

We will now treat each of these in turn.

Apple vs. ANSI 77 Subset FORTRAN
While Apple FORTRAN conforms largely to the ANSI Standard subset,
there are some small differences. It does not support some features,
takes some others from the full language specification, and in some
cases goes beyond the Standard.

In two instances Apple FORTRAN does not conform to ANSI subset
FORTRAN:

* INTEGER and REAL data types do not use the same amount of memory.
ANSI says they must be the same. REAL data types are given 4 bytes of

storage whereas INTEGER and LOGICAL data types are given 2 bytes. This
means for INTEGER data, the range of numbers representable is from
-32768 to +32767. The magnitude of nonzero REAL constants must fall
within the range of approximately 5.8E-39 and approximately 1.7E+38.

4 APPLE FORTRAN

* Subprogram names cannot be passed to other subprograms as formal

parameters

.

There are some capabilities which Apple FORTRAN allows that are in the

full ANSI FORTRAN language specification, but not in the subset. These
are

:

* Subscript Expressions - Apple FORTRAN and the full ANSI 77 language

allow function calls and array references in subscript expressions.

* DO Variable Expressions - The subset restricts expressions that

define the limits of a DO statement, but the full language does not.

Apple FORTRAN also allows full integer expressions in DO statement

limit computations. Similarly, arbitrary integer expressions in

implied DO loops associated with READ and WRITE statements are

allowed

.

* Unit I/O Number - Apple FORTRAN allows an I/O unit to be specified

by an expression.

* Expressions in I/O list - Apple FORTRAN allows expressions in the

I/O list of a WRITE statement, provided that they do not begin with a

left parenthesis. Note that expressions such as: (A+B)*(C+D) can be

specified in an output list as +(A+B)*(C+D) to circumvent this

problem. Incidently, this does not generate any code at run time to

evaluate the leading plus sign.

* Expressions in computed GOTO - Apple FORTRAN allows an expression

for the value of a computed GOTO.

* Generalized I/O - Apple FORTRAN allows both sequential and direct

access files to be either formatted or unformatted. The subset
language requires direct access files to be unformatted, and requires

sequential files to be formatted. The OPEN statement has been

augmented to accept additional parameters from the full language that

are not included in the subset. The CLOSE statement, which is not

included in the subset, is provided. I/O is described in more detail

in Chapter 11.

* CHAR intrinsic function - Apple FORTRAN includes the CHAR intrinsic

function.

In some cases Apple FORTRAN has features that are not anywhere in the

ANSI Standard, subset or full langugage. These extensions are the

Compiler Directives which have been added to allow you to transmit

certain information to the FORTRAN compiler. An additional kind of

line, called a Compiler Directive Line, is recognized by the compiler

to enable it to receive this information. See Chapter 4 for a

description of these statements. Also, Apple FORTRAN includes the EOF

intrinsic function.

OVERVIEW 5

ANSI 77 vs. Full Language
To help make clear what features are available in the ANSI Standard
subset, two appendices that summarize the subset have been included in
this manual. Appendix D shows the syntax diagrams for the complete
subset, along with those things which are specific to Apple FORTRAN.
Appendix E gives a list of all statements in the subset and their
syntax.

ANSI 77 vs. ANSI 66
The differences between ANSI FORTRAN 77 and ANSI FORTRAN 66, such as
the fact that ANSI 77 deleted the Hollerith data type, are discussed
in Appendix F. Additional capabilities were added to ANSI 77, and
undefined areas in ANSI 66 were clarified.

6 APPLE FORTRAN

CHAPTER 2

FORTRAN READER'S GUIDE

8 Getting Oriented
9 Guide to Pascal Documention
9 The COMMAND Level

9 The Filer

9 The Editor
9 6502 Assembler

10 The Linker

10 Utility Programs

READER'S GUIDE 7

GETTING ORIENTED
As we mentioned previously, this manual should be used with whichever
Pascal manual you have to get the complete picture of how to use Apple
FORTRAN. The two purposes of this chapter are to give you a list of
things to read in those manuals, and to help you interpret those
manuals in terms of FORTRAN

.

The Pascal documentation gives a complete description of the Editor,
Filer, Linker, and numerous other aspects of the operating system. The
documentation necessarily gives program examples and diskette names
for operating with Pascal. For FORTRAN, the only interpretation
required in most cases will be the substitution of diskette names, and
the word FORTRAN for Pascal. There are some instances when this will
not suffice. All those cases are discussed in this chapter.

Here are some observations about the relationship between the Pascal
and FORTRAN languages on the Pascal Operating System:

* Where the Pascal documentation refers to a particular file that is
part of the Pascal operating system, such as SYSTEM. APPLE, its
function will be the same in Apple FORTRAN as in Apple Pascal. The two
principal exceptions to this are SYSTEM. COMPILER, which is the FORTRAN
compiler, and SYSTEM.LIBRARY which contains the special unit,
RTUNIT .CODE for use only with FORTRAN. Also, there is one file in the
Pascal language system called SYSTEM. SYNTAX which has no FORTRAN
equivalent

.

* The Pascal documentation makes references to Pascal Pseudo-code
P-code. Both the FORTRAN and Pascal compilers generate P-code, they
don't generate the native 6502 machine code of the Apple. The P-code
produced by the compilers is executed by a P-code interpreter, which
translates P-code instructions into the native machine code of the
Apple. This allows both FORTRAN and Pascal to run on the Pascal
Operating System.

* There are two fundamental kinds of diskette files that the operating
system uses: TEXT and CODE. TEXT files are in human-readable format,
CODE files are machine-readable. TEXT files are just streams of
characters, whether they are English, FORTRAN or whatever. CODE files
are what the FORTRAN and Pascal compilers generate from reading
FORTRAN or Pascal language TEXT files. Files that have names ending
with the suffixes .TEXT and .CODE are treated specially by the
operating system. For instance, the Editor will only allow you to edit
a file that has a .TEXT suffix. The Linker will only link a file that
has a .CODE suffix or a .LIBRARY suffix. Files with a .CODE suffix are
assumed to have a particular inner organization that allows system
programs to manipulate them in appropriate ways. While the system
generally takes care of the suffixes itself, it is possible for you to

change any file to have any suffix. Some care should be taken

8 APPLE FORTRAN

to make sure that files with text have a .TEXT suffix, and files with

code have a .CODE suffix.

GUIDE TO PASCAL DOCUMENTATION
What follows is a reading guide to the Pascal Operating System

documentation, suggesting what you should read for various FORTRAN

applications, and making specific substitutions and rewordings. Read

the introductory sections of whichever manual you have to get an

overview of the Pascal Operating System.

The COMMAND Level
Read the entire chapter of whichever Pascal manual you have for all

applications. The section in the Command Level Chapter entitled Making

a Turnkey System is not in both of the Pascal manuals. Because that

information is important to the FORTRAN user, it is included here.

The Apple Pascal system allows you to set up a turnkey system that

will automatically begin running a particular program when the Apple
is turned on. To set up your Apple as a turnkey system, first make a

copy of all the files on diskette FORT 2: ,
except the SYSTEM. COMPILER

which is not needed for a turnkey system. Use the C(hange command
in the Filer to change the name of the diskette. For example, you

might want to name the copy TURNKEY: . Then T(ransf er a copy of your

program codefile onto the turnkey diskette. You must give the new copy

of your program the filename SYSTEM . STARTUP

.

The Filer
Read the chapter on the Filer for all applications. Remember that the

Filer is on diskette FORT 1
:

, so this diskette must be in one of your

drives before the Filer can be called.

The Editor
Read the chapter on the Editor for all applications. Remember that the

Editor lives on diskette F0RT1:

.

In the section Text Changing Commands, under I(nsert - Inserting with

A(uto-indent TRUE, F(illing FALSE, note that this is the normal
setting for writing FORTRAN programs as well as Pascal programs.

6502 Assembler
It is possible to have a FORTRAN program call assembly language

subroutines. The chapter on the 6502 Assembler, of whichever Pascal
manual you have, discusses how to write and link such subroutines.
However, the example host program given at the end of the chapter is

in Pascal. The assembly language program ASMDEMO requires changes to a

READER'S GUIDE 9

few lines of code to work with FORTRAN. Program ASMDEMO with the
changes required by FORTRAN is shown in Chapter 15 of this manual.

The Linker
The section in the Pascal documentation on the Linker is superseded by
this manual's Chapter 5.

The Linker combines separately compiled CODE files together into one
executable CODE file. The same Linker is supplied with the Pascal and
FORTRAN systems. The CODE files that are generated by the Pascal and
FORTRAN compilers have the same structure, so they can be correctly
linked. However, there are differences between Pascal and FORTRAN in
the way that they use the Linker. See Chapter 5 in this manual for
more details.

Utility Programs
The section called Formatting New Diskettes should be read for all
applications. Both Pascal and FORTRAN systems use the same diskette
format and the same Formatter program. Note that the FORMATTER code
file is located on diskette APPLE3

: , which must be in one of the
drives before formatting can be accomplished. This diskette is
furnished with the Pascal package. (See also Appendix A).

The section on the System Librarian should be read by those who will
be creating, augmenting or altering library files. There is a main
library, called SYSTEM. LIBRARY, which is provided on diskette F0RT2:

.

Both Pascal and FORTRAN use the same Librarian program to manipulate
libraries; however, that Librarian program must be FORTLIB.CODE found
on FORT 1 : . LIBRARY. CODE on APPLE3: can only be used with Pascal. The
structure of libraries is the same, but the content of the
SYSTEM. LIBRARY is slightly different in FORTRAN. For one thing, the
utility RTUNIT is included with FORTRAN but not Pascal.

Those using the Librarian should also read the section Library Mapping
which describes a program that allows you to view the contents of any
library.

If you will be using a non-standard console, you will need to
reconfigure a part of the operating system so that it uses that
console instead of the Apple's. You can reconfigure the Pascal
operating system as discussed in the sections System Reconfiguration
and Changing GOTOXY Communication.

10 APPLE FORTRAN

CHAPTER 3

PROGRAMS IN PIECES

12 Introduction
12 Partial Compilation
13 Source Code in Pieces

13 Object Code in Pieces
14 Units, Segments, and Libraries

PROGRAMS IN PIECES

INTRODUCTION
The FORTRAN system has a variety of ways that allow you to optimize
the stages of writing and organizing programs. One of the most
important is that for large programming tasks you can remove groups of
subprograms from the main program and put them into individual
modules. These modules can then be developed by themselves, and
perhaps even be used in more than one program. The ability to treat
blocks of code as modules has several advantages over writing one
large program:

* Large tasks may be broken down conceptually into sections which can
be developed independently and later combined, thereby speeding their
development by focusing attention on one problem at a time.

* Subprograms that can be used in many programs need only be written
once, then stored in a library for later use.

* Many useful subprograms have been written for you and included in
the system library. They may be used directly in your programs.
Remember that this library is on diskette FORT 2:

.

* Procedures written in Pascal and Assembly language can be linked to
FORTRAN language main programs.

* Several very efficient methods of handling subprograms are available
in the operating system. These methods help make the size of compiled
programs smaller, so that the storage capacity of either the disk or
the computer's memory is not exceeded by a large program. These
methods are discussed more fully later on in this chapter.

Sectioning programs is what makes it possible to treat blocks of code
as modules. While this is an extremely useful capability, it
introduces some complexities. The purpose of this chapter is to
explain the use of the features of the Apple Operating System.

PARTIAL COMPILATION
A FORTRAN program consists of one main program and its appropriate
subprograms. In the simplest case, the main program and any
subprograms appear in the same TEXT file, called the source code, and
are compiled at one time. The result is a CODE file, called the object
code, which contains the entire program and is stored on the diskette.
When the program is to be executed, it is all loaded in memory at once
and started. A program loaded in memory is called a code image.

There are three levels where programs can be broken into modules: the
source code level, the object code level, and the code image level
while the program is running. Each level has distinct purposes. These

12 APPLE FORTRAN

purposes and the advantages of using each level will be discussed
next

.

Source Code in Pieces
It is possible for any part of a program to be split up and placed in

different TEXT files. In place of the part of the program removed,
special statements are entered in the program which cause the FORTRAN
compiler to include the separate files in the compilation at the

correct point.

The only restrictions are that you must break the program at line

boundaries (you can't split up statements) and that the whole
collection of files, when reassemled by the compiler, must still make

up a complete FORTRAN program.

Dividing a program into modules can serve two purposes. First, you

need not edit an entire program at once. Secondly, it means that

different tasks of a program can appear in separate TEXT files. This
helps keep program structure and organization clear. For more

information on dividing programs into modules, see the discussion of

the $INCLUDE statement in Chapter 4.

Object Code in Pieces
If the source code in a TEXT file is a complete subprogram, it can be
compiled separately instead of being included in the compilation of the

whole program to which it belongs. The technique of compiling
subprograms independently from the main program is called separate

compilation.

A complete subprogram can still be broken down into different TEXT

files, if desired. The point is that no matter how the subprogram is

spread across different TEXT files, all the pieces must be supplied to

the compiler so as to make at least one complete subprogram.

In the simplest case, separate compilation is done in two steps as

follows. First, each of the subprograms is compiled. A single TEXT fi

may actually contain more than one complete subprogram, if desired.
When the compiler begins, it sees that there is no main program

included, because the first statement is a SUBROUTINE or FUNCTION
statement. The compiler then proceeds to compile the subprograms. Whe-

it has successfully compiled the subprograms, the compiler will write
out a CODE file containing both the code of the compiled program, as

well as a packet of information that will describe just what is in the

CODE file. This linker packet will also include details about the
subprograms in the compilaton unit such as their type, number of

arguments and so on.

The second step in the separate compilation process is the compilation
of the main program that uses the subprograms. A PROGRAM statement

informs the compiler that it is compiling a main program. A $USES

statement must precede the PROGRAM statement before any executable
statement. The $USES statement tells the compiler that subprograms in

PROGRAMS IN PIECES 13

the CODE file named in the $USES statement are required in the main
program. The compiler then looks up the named file and reads in the
names of all subprograms and their descriptions. The compiler is then
able to compile any references to these subprograms that the main
program may make. The $USES statement is described in more detail in
Chapters 4 and 14.

If no $USES or $EXT statement is encountered by the FORTRAN compiler
then the compiler will expect to find the entire program in the current
TEXT files being compiled.

Note that the FORTRAN compiler does not incorporate the actual code of

the separately compiled subprogram into the main program CODE file it
is currently generating. Instead, it generates a packet of information
that will tell the Linker how to couple the subprograms into the main
program during the linking process.

O.K., that's the simple case. It is possible to do a variety of things
with this mechanism, including having separately compiled subprograms
called from other separately compiled subprograms.

When the main program and separately compiled subprograms are to be
linked into one executable CODE file, you must tell the Linker all the
files that make up the one executable program.

There is a companion facility to the FORTRAN $USES statement in the
Pascal language compiler called the USES statement that enables FORTRAN
programs and Pascal programs to be linked. The actual use of the
Linker is discussed in Chapter 5. More complex uses of the $USES
statement are discussed in Chapter 14.

UNITS, SEGMENTS, AND LIBRARIES

A group of one or more subprograms, when compiled together, form what
is called a compilation unit. When a subprogram is separately compiled,
the CODE file which results contains a compilation unit. The term
compilation unit is not to be confused with the FORTRAN concept of an

I/O unit. An I/O unit refers to a particular input/output device; a
compilation unit is a part of a CODE file.

There are two principal ways of using compilation units, as regular

units or as OVERLAY units. When regular units are linked into a main
program, the subprograms in the unit are actually copied into the

resulting CODE file which then contains the code for the main program
as well as the code for the subprograms.

The purpose of OVERLAY units is to be able to split up programs that

would otherwise be too big for memory. An OVERLAY unit is normally not
resident in memory. When the program is loaded into memory prior to

execution, the OVERLAY units are not loaded, but remain behind in the

CODE file or in SYSTEM. LIBRARY. They remain out of memory until the
main program executes a CALL statement for a subroutine or executes a

14 APPLE FORTRAN

function call in an expression that refers to a subprogram in an

OVERLAY unit. Then the whole unit is brought into memory and the

appropriate subprogram is executed. When execution of the subprogram

is terminated, the space used for the unit is returned to the pool of

available memory.

An OVERLAY unit must have been separately compiled in advance of use.

It is compiled in the manner described above for separately compiled
subprograms. It becomes an OVERLAY unit when it is named in a $USES

statement that includes the word OVERLAY. See Chapter 14 for the

details of this usage.

The ability to separately compile subprograms makes it possible for

more than one main program to use the same subprogram. Usually, these

subprograms are placed in a common CODE file, using the library utility

program, FORTLIB.CODE on F0RT1 : . Such a CODE file is then termed a CODE

library. This is described in Chapter 14. There is a CODE library that

comes with your system named SYSTEM. LIBRARY. It contains a variety of

compilation units such as a unit of run-time routines required by most

running FORTRAN programs, called RTUNIT. In addition, it contains

routines to do color graphics, and a variety of other things. You may

put your own "homebrewed" compilation units into this library, too!

PROGRAMS IN PIECES 15

CHAPTER 4

THE COMPILER

18 Introduction
18 Files Needed
19 Using the Compiler

21 Form of Input Programs
21 Lower and Upper Case
22 Line Length and Positioning
22 Compiler Directives
24 Compiler Listing

APPLE FORTRAN THE COMPILER

INTRODUCTION
This chapter details the input requirements of the FORTRAN compiler
and describes its operation.

All input source files read by FORTRAN must be .TEXT files. This
allows the compiler to read large blocks of text from a disk file in a
single operation, increasing the compile speed significantly. The

simplest way to prepare .TEXT files is to use the screen oriented
editor. This means, however, that one cannot type programs directly
into the compiler from the keyboard. For a more precise description
of the fields in a FORTRAN source statement, see Chapter 6 which
explains the basic structure of a FORTRAN program.

The basic purpose of the compiler is to read TEXT files which contain
FORTRAN source programs and convert them into P-code. The output file
containing the P-code must always have the filename suffix .CODE.

Such files are called CODE files.

When you instruct the computer to eXecute your compiled program, the

Pascal operating system passes the P-code in the file to a P-code
interpreter. After a successful booting operation, the interpreter is

resident in the Apple's memory. It is the role of this interpreter to

take the P-code instructions and use them to drive the Apple's central
processing unit which uses low-level (6502) machine language
instructions. The point of a P-code interpreter is that it allows
your program to run on virtually any computer that operates Pascal
without recompiling. For more information on the pseudo-machine code,
see the Pascal documentation.

FILES NEEDED
These diskette files are needed to run the FORTRAN compiler:

Textfile to be compiled Any diskette, any drive; default is

boot diskette's text workfile,

SYSTEM. WRK. TEXT, in any drive.
For automatic compilation,
SYSTEM. WRK. TEXT must be in the

boot drive.

SYSTEM. COMPILER F0RT2:, any drive; required. The

boot diskette is recommended.

Single-Drive Note: The files SYSTEM. COMPILER and SYSTEM. EDITOR are on

diskettes F0RT2: and F0RT1:, respectively. If you have been using the
U(pdate command in the Editor, then your file has been saved in the

SYSTEM.WRK. TEXT file on diskette FORT 1 : . If you wish to C(ompile a

file not on F0RT2:
, you should use the Filer's T(ransfer command to

18 APPLE FORTRAN

transfer that TEXT file to diskette FORT 2 : . Note that due to space

considerations on F0RT2: , large compilations cannot be handled. After

being compiled, your program will need to be linked using the Linker.

See this manual's Chapter 5 on that subject for help.

Multi-drive note: The file SYSTEM. COMPILER is on diskette FORT 2 :

,

which is normally kept in disk drive volume #4: in a multi-drive

system. The Editor is in file SYSTEM. EDITOR and is found on diskette

FORT 1 : , which is the normal drive volume #5 diskette. With these two

diskettes, it is possible to edit, link, and run FORTRAN programs.

USING THE COMPILER
There are three steps to taking a FORTRAN program from a TEXT file to

a running program. First you compile the source (the TEXT file) , then

you link the object code (the CODE file), then you execute the object

code, which loads the code into memory and begins running it. There

are two ways to do all these steps, either manually, or automatically.

The Command level has a R(un command which automatically compiles,

links, loads and executes a program. If you worked through the
tutorial in Appendix A, you are familiar with the effects of the R(un

command. Below are the details of the individual steps that operate
the Compiler as a separate entity.

The Compiler is invoked by typing C from the Command level of the

Pascal operating system. The screen immediately shows the message

COMPILING. .

.

The Compiler automatically compiles the boot diskette's workfile

SYSTEM. WRK. TEXT, if that file exists, or another workfile designated
by the Filer's G(et command. If compilation is successful, the

compiler saves the resulting code as SYSTEM.WRK. CODE. If there is a

workfile, but you do not wish to compile that file, use the Filer's
N(ew command to clear away the workfile before compiling. If no

workfile is available, you are prompted by the Compiler for a source

f ilename

:

COMPILE WHAT TEXT?

You should respond by typing the name of the text file that you wish

to have compiled.

If no .TEXT suffix is specified, the system will add one

automatically. If you wish to defeat this suffix-adding feature and

compile a textfile whose filename does not end in .TEXT, type a period

after the last character of your filename.

Next you will be asked for the name of the file where you wish to save

the compiled version of your program:

TO WHAT CODEFILE?

THE COMPILER 19

If you simply press the RETURN key the compiled version of your
program will be saved on the boot diskette's workfile
SYSTEM. WRK. CODE.

If you want the compiled version of your program to have the same name
as the text version of your program, just type a dollar sign ($) and
press the RETURN key. Of course, the suffix will be .CODE instead of

.TEXT. This is a handy feature, since you will usually want to
remember only one name for both versions of your program. The dollar
sign repeats your entire source file specification, including the
volume identifier, so do not specify the diskette before typing the
dollar sign. Note that this use is different from the use of the
dollar sign in the Filer.

If you want your program stored under another filename, type the
desired filename. If no .CODE suffix is specified, the system will add
one automatically. If you wish to defeat this feature, in order to
specify an output filename that does not have a .CODE suffix, type a
period after the last character of your output filename.

The Compiler then begins compiling the specified file. While the
compiler is running, messages on the screen show the progress of the

compilation. Below is an example of the messages which appear on the
screen:

FORTRAN COMPILER II. 1 [1.0]

< 0>...

ARR [3849 WORDS]
< 3>
SUBARR [3855 WORDS]

< 13>.
14 LINES. ERRORS.

SMALLEST AVAILABLE SPACE = 3849 WORDS.

The identifiers appearing on the screen, in this case SUBARR and

ARR, are the program name and the names of the subprograms that
are included. The identifier for a subprogram is displayed at the
moment when compilation of the body of the subprogram is started. The
numbers within [] indicate the number of 16 bit words available for
symbol table storage at that point in the compilation. The numbers
enclosed within < > are the current line numbers. Each dot on the
screen represents one source line compiled.

If the compilation is successful (that is, no programming errors are
detected) , the Compiler saves the compiled code under the filename
SYSTEM. WRK. CODE on the boot diskette, or under another filename that
you specified earlier.

If the compiler reports an error, it will tell you which line number
was being compiled when the error was detected and will give a code
for the kind of error. The following example shows an error message
during compilation:

20 APPLE FORTRAN

FORTRAN COMPILER II. 1 [1.0]

< 0>...

RTEST [3577 WORDS]
< 3>
***** ERROR NUMBER: 159 IN LINE: 12

<SP> (CONTINUE) , <ESC> (TERMINATE) , E(DIT

Compilation stops when an error is detected. You are prompted on the
screen to type E to go back to the Editor to fix the problem, press
the spacebar to continue the compilation, or press the escape key to
return to the Command level. If you choose to return to the Editor,
the Editor will be started up automatically. The cursor will be

positioned at the beginning of the line mentioned in the error message
or at a line or two past the error line. You may then correct the
problem and recompile. The list of compiler error messages with their
corresponding error numbers appears in Appendix B of this manual.

The code workfile, SYSTEM. WRK. CODE, is automatically erased when any

text workfile is U(pdated from the Editor. So, if you have compiled
anything into that name, you may want to rename it using the Filer if
you don't want to lose it.

FORM OF INPUT PROGRAMS
FORTRAN source programs will usually be prepared using the Editor. The

FORTRAN system will process them regardless of their means of
preparation, however, providing they are in valid TEXT format. For
instance, a FORTRAN program from another processor can be transferred
to the Apple over the REMIN: remote input port. The Filer's T(ransfer
command can be used to copy text arriving via REMIN: into a diskette
file. See the information on the Filer in the Pascal documentation.
Source programs must be TEXT files and must be passed to the Compiler
from a blocked file device (i.e., a diskette).

Lower and Upper Case
Apple FORTRAN accepts both upper and lower case input, or any mixture
of upper and lower case with the following convention:

* No distinction is made between upper and lower case to represent

FORTRAN keywords or defined symbols in a program. Example: oPeN, OPEN,
and open all stand for the same FORTRAN keyword.

* In character constants, the exact letters provided by the user are
passed directly through the system.

* Options to I/O statements which have the syntax of character
constants may be specified in either upper or lower case. Example:
OPEN(l,FILE='*Bats')

.

THE COMPILER 21

Line Length and Positioning
Apple FORTRAN allows lines of text to be up to 72 columns wide.
Shorter lines are not padded out to 72 columns with blanks. Text
beyond column 7 2 is ignored. FORTRAN reserves the first 6 columns to

represent whether the line is an initial or continuation line.

Columns 1 through 5 are for a label, and a nonblank character in
column 6 denotes a continuation line.

The fact that shorter lines are not padded out with blanks means that

character constants that are split across lines will not end up with a

lot of blanks in them. See Chapter 7 for a discussion of the treatment
of character constants.

Lines longer than 72 columns are truncated to 72 columns. No error

message is generated by characters appearing beyond column 7 2 unless
this truncation introduces some syntax error. It may later generate a

run-time error, however, or simply cause some strange behavior in your
program.

The FORTRAN compiler can produce a listing of the program source that
it compiled. The listing reflects the columns read by the FORTRAN
compiler and can be checked for unintentional line truncations. But

it's far better to avoid the truncations in the first place.

Source lines that are empty or completely filled with blanks are

treated as comment lines by FORTRAN 77. Neither ANSI FORTRAN 77 nor
Apple FORTRAN allow comments following the final END statement of a

program. This means that extra blank lines at the end of a source

program file will cause a compile-time error to be generated stating:
Missing END Statement.

To further complicate matters, it is a Pascal operating system
convention that TEXT files must contain a blank line at the end of the

file. To overcome this convention, the Apple FORTRAN compiler has been

adapted to accept exactly one blank line following the final END
statement. Files prepared with the Pascal operating system text editor
automatically acquire this final blank line which the editor makes
invisible to the user. Normally prepared source files which terminate
with an END statement followed by a single RETURN character and

nothing else will be acceptable to Apple FORTRAN. Two RETURN
characters following an END statement will cause a confusing error
message stating: Missing END Statement.

COMPILER DIRECTIVES

Compiler directives provide you with a way of communicating certain
information to the compiler via the text of the file being compiled.
To this end, Apple FORTRAN recognizes another kind of line, besides
comment lines, initial and continuation lines, called a compiler
directive line. A dollar sign ($) appears in column 1 of such compiler

directive lines.

22 APPLE FORTRAN

Some of these directives are restricted to certain locations in the

text. Specifically, the $INCLUDE statement may occur anywhere a
comment line may appear. The other directives must appear before any
specification or executable statement, but otherwise have no

restrictions on placement or order. These directives are:

$INCLUDE filename

To facilitate the manipulation of large programs, the Apple compiler
has extended the FORTRAN 77 standard with an $INCLUDE compiler
directive. The directive must have the $ appearing in column 1. The
meaning is to compile the contents of the file 'filename' before
continuing with the current file. The included file may contain
additional $INCLUDE directives, up to a maximum of five levels of
files (four levels of $INCLUDE directives). It is often useful to have
the description of a COMMON block kept in a single file and to include
it in each subroutine that references that COMMON area, rather than
making and maintaining many copies of the same source, one in each

subroutine. There is no limit to the number of $INCLUDE directives
that can appear in a source file. An $INCLUDE can appear anywhere a
comment line is legal.

$USES ident [IN filename] [OVERLAY]

The $USES statement has the effect of making separately compiled
subprograms known to the FORTRAN compiler. This allows the program
being compiled to refer to that separately compiled code. The named
file must be a CODE file. The separately compiled FORTRAN subroutines
or Pascal procedures contained in the named file, or in the file
SYSTEM. LIBRARY if no file name is present, become defined and
available to the currently compiling program. This directive must
appear before the first non-comment input line. The optional OVERLAY
statement is used if the named unit is to be brought into memory
during execution only while being referenced from the main program,
instead of having the code added to the CODE file of the host program.
See Chapter 14 for more information on $USES.

$XREF

Produces a cross-reference listing of the compilation.

$EXT SUBROUTINE name #params
$EXT [type] FUNCTION name #params

The subroutine or function specified by 'name' is an assembly language

routine. The routine has exactly '//params' reference parameters.
$EXT for a given name should occur only once in a compilation. If a

program and a unit called by that program both use a given assembly

THE COMPILER 23

language routine, the $EXT should only occur in the program or the

unit, but not both.

COMPILER LISTING

The compiler listing, if requested, contains various bits of

information that may be useful to the FORTRAN programmer. The listing
consists of the user's source code as read, along with line numbers,
symbol tables, and error messages. Also, cross reference information
is listed if the $XREF compiler directive is specified. A sample
compiler listing follows. Note that the compiler listing does not stop
printing when an error message is being listed. Note also that if you
send a listing file, that file must be on a different volume from that
of the output code file.

24 APPLE FORTRAN

SAMPLE COMPILER LISTING:

FORTRAN Compiler II. 1 [1.0]

0. C

1. c Example Program #1234
2. C

3.

4. $XREF
5.

6. PROGRAM EX1234
7.

8. INTEGER A(10, 10)
9. CHARACTER*4 C

10.

11. CALL INIT(A,C)
12. 6 1=1
13. 9 200 A(I) = I

***** Error number: 57 in line: 13

14. 20 1=1+1
15. 26 IF (IABS(10-I) .NE. 0) GOTO 200
16. 37

17. 37 END

A INTEGER 3 8 11 13

C CHAR* 4 103 9 11

EX1234 PROGRAM 6

I INTEGER 105 12 13 13 14 14 15
IABS INTRINSIC 15

INIT SUBROUTINE 2,FWD 11

18. SUBROUTINE INIT(B,D)
19. INTEGER B(10, 10)
20. CHARACTER*4 D

21.

22. RETURN
23. 2 END

B INTEGER 2* 18 19
D CHAR* 4 1* 18 20
INIT SUBROUTINE 2 18

EX1234 PROGRAM
INIT SUBROUTINE 2,7

24 lines. 1 errors.
Smallest available space = 3966 words.

The first line indicates which version of the compiler was used for
this compilation. In the example it is version 1.0 for the operating
system version II. 1. The leftmost column of numbers is the source line
number. The next column indicates the procedure relative instruction
counter that the corresponding line of source code occupies as object

THE COMPILER 25

code. It is only meaningful for executable statements and data
statements. To the right of the instruction counter is the source
s tatement

.

Errors are indicated by a row of asterisks followed by the error

number and line number, as appears in the example between lines 13 and
14. In this case it is error number 57, "Too few subscripts",
indicating that there are not enough subscripts in the array reference
A(I).

At the end of each program unit (function, subroutine, or main

program), a local symbol table is printed. This table lists all
identifiers that were referenced in that program unit, along with
their definition. If the $XREF compiler directive has been issued, a

table of all lines containing an instance of that identifier in the
current program unit is also printed.

If the identifier is a variable, it is accompanied by -its type and
location. If the variable is a parameter, its location is followed by
an asterisk, such as the variables B and D in the SUBROUTINE INIT. If

the variable is in a common block, then the name of the block follows
between two slashes.

If the identifier is not a variable, it is described appropriately.
For subroutines and functions, the unit relative procedure number is

given. If it resides in a different segment, then the segment number
follows. If the compiler assumes that it will reside in the same
segment, but has not appeared yet, it is listed as a forward program
unit by the notation FWD.

At the end of the compilation the global symbol table is printed. It

contains all global FORTRAN symbols referenced in the compilation. No

cross reference is given. The number of source lines compiled and the

number of errors encountered follows. If there were any errors, then

no object file is produced.

The last line shows the maximum amount of RAM used, recorded at the

first executable statement of each program unit. This can be used as

an indication of the amount of memory that remains available for

additional symbols. When the available memory space becomes less than

700 to 1000 words, the symbol table is nearly full, since some of the

memory pool is used for other purposes during the compilation of

executable statements.

26 APPLE FORTRAN

CHAPTER 5

THE LINKER

28 Introduction
28 Diskfiles Needed
29 Using the Linker

THE LINKER

INTRODUCTION
The Pascal operating system Linker is used to merge separately
compiled CODE files. For a discussion of this strategy in organizing
program development see Chapter 3. While the same Linker is provided
for both Pascal and FORTRAN, its uses are slightly different. So
ignore the information on the Linker in the Pascal Operating System
documentation: read this chapter instead.

DISKFILES NEEDED

The following files allow you to use the Linker:

SYSTEM. LINKER FORT 1 : , any drive; required

Host codefile Any diskette, any drive. Default is to boot
diskette's code workfile SYSTEM. WRK. CODE

SYSTEM. LIBRARY FORT 2: , boot drive; required by every FORTRAN
program.

Library codefiles Any diskettes, any drives; default is to the
library file SYSTEM. LIBRARY, supplied on
diskette FORT 2

: , any drive.

SYSTEM. CHARSET Either FORTRAN diskette, any drive; required
if the program uses WCHAR from

TURTLEGRAPHICS.

Multi-drive note: On multiple-drive systems, diskette FORT 2 : is

normally your boot diskette. If FORT 2 : is in the boot drive (volume
#4, remember?), and FORT 1 : is in any other drive, your system will
have available all the diskfiles it needs to E(dit, C(ompile, L(lnk,
X(ecute and R(un. But to FORMAT, you'll need APPLE 3:

.

Two-drive note: To L(ink when the host and library files are not
already on FORT 2

: , you can use the Filer to T(ransfer the needed files
onto one of the FORTRAN diskettes before linking.

Single-drive note: You can link without the linker file in the drive.
First put F0RT1: in the drive, and from Command level, type L. This
loads the Linker routine into memory. Now you can put FORT 2 : back in
the drive and continue the linking operation. See Appendix A for a
complete description of this procedure.

28 APPLE FORTRAN

USING THE LINKER

Even if a compiled FORTRAN program is contained in a single CODE file,

the Linker is still required to link in code from the FORTRAN

SYSTEM. LIBRARY. The SYSTEM. LIBRARY is necessary to execute all FORTRAN
programs. So running the Linker will always be a step in creating a

running program. With the R(un command, this step is done

automatically. The following describes how to run the Linker manually.

Start the Linker by typing L for L(ink from the COMMAND level prompt

of the FORTRAN system and receive the prompt:

LINKING. .

.

LINKER II. 1 [AA]

HOST FILE?

The hostfile is the main program CODE file into which subprograms are

to be linked. If you just press the RETURN key in response to the

prompt, the Linker uses the boot diskette's workfile SYSTEM. WRK. CODE

as the hostfile. If your main program is not in the workfile, enter

the filename containing it. If the Linker cannot find a file with the

exact filename you typed, it adds the suffix .CODE to the filename, if

the suffix was not specified originally, and tries again. For this

reason, if you respond by typing the non-existent filename

MYDISK:MYFILE the Linker returns the message

NO FILE MYDISK:MYFILE. CODE

You'll also notice that when the Linker reports information about a

file it always displays the full name, including the diskette name.

After successfully finding a host file, the Linker then asks for the

name of the first CODE file containing separately compiled subprograms

that are to be linked to the main program.

LIB FILE?

There are two kinds of files that can be supplied here, either a

library file or a single compilation unit. The Linker treats them in

exactly the same way. Typing * and then pressing the RETURN key in

response to a request for a library file name will cause the Linker to

reference SYSTEM. LIBRARY on the boot diskette. This must always be

done for FORTRAN main programs, because a special unit, called RTUNIT
which contains all the required FORTRAN runtime routines is in that

library.

THE LINKER 29

Example

:

LIB FILE? *

OPENING SYSTEM. LIBRARY

Once it has referenced SYSTEM. LIBRARY, it again prompts you with

LIB FILE?

Now, if appropriate, is the time to enter the names of any CODE files
besides SYSTEM. LIBRARY that your program requires. Again, the Linker
looks first for the exact filename that you type, and if the search
was unsuccessful, adds the suffix .CODE and looks again. In any case,
it always displays the name of the file actually opened. The Linker
will continue to prompt you for files. Up to eight library files may
be included in one linking operation.

The term "library" is a little confusing, because in fact any CODE
file can be treated as a library. A CODE file can be thought of as a

library with only one compilation unit in it. Using the library
utility program, FORTLIB.CODE, supplied on diskette FORT 1

: , it is

possible to make CODE files contain more than one entry. You may also
remove compilation units from libraries with the library utility
program. The file SYSTEM. LIBRARY on diskette F0RT2: was created with
this program. For information on LIBRARIES and the LIBRARIAN see the
documentation for the Pascal Operating System in the Utility Programs
Section.

If you specify a library file that does not contain the proper
information, you may get one of these messages:

BAD SEG KIND (Is this really a Pascal or FORTRAN program?)
BAD SEG NAME (Is this a text file ?)

If the file SYSTEM. LIBRARY is not available on the diskette in volume
#4, this somewhat odd message appears:

NO FILE *SYSTEM.LIBRARY
TYPE <SP> (CONTINUE) , <ESC> (TERMINATE)

This is that same interesting feature of the Linker that causes it to

append .CODE to the end of a file not found and look again. In this
case, its own internal specification told it to look for
* SYSTEM. LIBRARY. Failing to find that, it then looked again, this time
for *SYSTEM. LIBRARY. CODE which also failed because it was still
looking on the boot diskette. After giving this message, the Linker
does not allow you to specify a different library file so there is
little point in continuing. Press the ESC key to go back to Command
level and try again after relocating the SYSTEM. LIBRARY back on the
boot diskette.

30 APPLE FORTRAN

When all relevant library file names have been entered, answer the

next LIB FILE? prompt by just pressing the RETURN key to proceed. The

Linker will now prompt with:

MAP NAME?

If you respond by typing a file name, the Linker writes a mapfile

which contains a text version of what the Linker did to link the CODE

files. Note that the suffix .TEXT is appended to the specified

filename unless a period is the last letter of the filename. Normally

you will simply press the RETURN key. This causes no mapfile to be

written. The mapfile is a diagnostic and system programming tool, and

is not required for most uses of the Linker.

The Linker now reads all the CODE files presented and begins the

linking process. If all the right subprograms are not present, the

Linker will respond with an appropriate message:

UNIT,

PROC,
FUNC,
GLOBAL,

PUBLIC <identifier> UNDEFINED
TYPE <SP> (CONTINUE) , <ESC> (TERMINATE)

You can press the spacebar, and the Linker will proceed, trying to

link whatever routines or UNITs are available in SYSTEM. LIBRARY.

Later, you can use the Linker explicitly to link in the remaining

subprograms

.

When the Linker is ready to write an output CODE file, you are

prompted to type a filename for it to use:

OUTPUT FILE?

You will often want the same filename as that of the host file, but

you may not use the $ same-name option offered by the Compiler and

Filer. The Linker may not add any suffix to the output filename you

specify; if you want to insure a normal, executable code file, you

should explicitly include the . CODE suffix in the filename when you

type it. After this output file specification has been typed, press

the RETURN key and linking will commence. Responding with no filename

by pressing only the RETURN key causes the linked output to be saved

in the boot diskette's workfile, SYSTEM. WRK. CODE.

During the linking process, the Linker will report on all subprograms

being copied into the output CODE file. The linking process will be

stopped if any required routines are missing or undefined. You will be

told what was missing and allowed to terminate or continue the linking

process

.

THE LINKER 31

Here is a sample session with the Linker for linking a main program
called MYPRG to a separately compiled code file named X.CODE. The ma
program has a $USES statement in it that references a subprogram in
X.CODE.

Linker II. 1 [A4]

Host file? MYPRG
Opening MYPRG. CODE
Lib file? *

Opening SYSTEM. LIBRARY
Lib file? X

Opening X.CODE
Lib file?
Map name?

Reading MAINSEGX
Reading MYPRG
Reading RTUNIT
Reading X

Output file? OUTPRG.CODE
Linking MYPRG // 7

Linking RTUNIT // 8
Linking X // 9

Linking MAINSEGX ifl

You could then eX(ecute the code file OUTPRG.CODE. If you don't
specify the output file name, boot diskette is used.

32 APPLE FORTRAN

CHAPTER 6

PROGRAM STRUCTURE

34 Introduction

34 Character Set

35 Lines

35 Columns

36 Blanks
36 Comment Lines
36 Statements, Labels, and Lines

37 Statement Ordering
38 The END Statement

PROGRAM STRUCTURE

INTRODUCTION

A FORTRAN program is a sequence of characters that are interpreted by
the compiler in various contexts as characters, identifiers, labels,
constants, lines, statements or other syntactic groupings. The rules
the compiler uses to group the character stream into substructures, as
well as various constraints on how these substructures may be related
to each other in the source program, are the topic of this chapter.

First, however, it is important to note the notation conventions
used in this manual:

* Upper case and special characters are to be written as shown in
programs

.

* Lower case letters and words indicate entities for which there is a
substitution in actual statements as described in the text. The reader
may assume that once a lower case entity is defined, it retains it
meaning for the entire context of discussion.

Example: The format which describes editing of integers is denoted
'Iw', where w is a nonzero, unsigned integer constant. Thus, in an
actual statement, a program might contain 13 or 144. The format which
describes editing of reals is 'Fw.d', where d is an unsigned integer
constant. In an actual statement , F7.4 or F22.0 are valid. Notice that
the period, as a special character, is taken literally.

* Brackets indicate optional items.

Example: 'A [w] ' indicates that either A or A12 are valid as a means of
specifying a character format.

* Three dots (...) are used to indicate ellipsis. That is, the
optional item preceding the three dots may appear one or more times.

Example: The computed GOTO statement is described by 'GOTO (s [, s]

•••) [>] i' indicating that the syntactic item denoted by s may be
repeated any number of times with commas separating the items.

* Blanks normally have no significance in the description of FORTRAN
statements. The general rules for blanks, covered in this chapter,
govern the interpretation of blanks in all contexts.

CHARACTER SET

A FORTRAN source program consists of a stream of characters,
originating in a .TEXT file, consisting of:

* Fifty-two upper and lower case letters A through Z and a through z

34 APPLE FORTRAN

* Digits from f! to 9

* Special characters consisting of the remaining printable characters

of the ASCII character set

The letters and digits, treated as a single group, are called the

alphanumeric characters. FORTRAN interprets lower case letters as if

they were upper case letters in all contexts except in character

constants and holler ith fields. Thus, the following user defined names

are all the same to the FORTRAN system:

ABCDE abcde AbCdE aBcDe

In addition, actual source programs submitted to the FORTRAN compiler

contain certain hidden or nonprintable control characters inserted by

the text editor which are invisible to the user. FORTRAN interprets
these control characters in exactly the same way that the text editor

does and transforms them, using the rules of Apple Pascal .TEXT files,

into the FORTRAN character set.

The collating sequence for the FORTRAN character set is the same as

the ASCII sequence. Refer to Table 5 in Appendix C.

LINES

A FORTRAN source program may also be thought of as a sequence of

lines, corresponding to the normal notion of lines in the text editor.

Only the first 72 characters in a line are treated as significant by

the compiler, with any trailing characters in a line ignored. Note

that lines with fewer than 7 2 characters are possible and, if shorter

than 72 columns, the compiler does treat as significant the length of

a line. See Chapter 7 which describes character constants for an

illustration of this. This 72 column format is a throwback to the days

of punched cards, when each statement or line required its own card.

COLUMNS
The characters in a given line fall into columns that are numbered

from left to right, beginning with column 1. The column in which a

character resides is significant in FORTRAN. Columns 1 through 5 are

reserved for statement labels, column 6 is used to indicate a

continuation line, and executable statements start in column 7.

PROGRAM STRUCTURE 35

BLANKS

The blank character, with the exceptions noted below, has no
significance in a FORTRAN source program and may be used for the
purpose of improving the readability of FORTRAN programs. The
exceptions are:

* Blanks within string constants are significant.

* Blanks within Hollerith fields are significant.

* Blanks on compiler directive lines are significant.

* A blank in column 6 is used in distinguishing initial lines from
continuation lines.

* Blanks are included in the total count of characters that the
compiler must process per line and per statement.

COMMENT LINES

A line is treated as a comment if any one of the following conditions
is me t

:

* A C or c character in column 1.

* Asterisk (*) in column 1.

* Line all blanks.

Comment lines do not effect the execution of the FORTRAN program in
any way. Comment lines must be followed immediately by an initial line
or another comment line. They must not be followed by a continuation
line. Note that extra blank lines at the end of a FORTRAN program
result in a compile time error since the system interprets them as
comment lines but they are not followed by an initial line.

STATEMENTS, LABELS, AND LINES

We will define a FORTRAN statement in terms of the input character
stream. The compiler recognizes certain groups of input characters as
complete statements according to the rules specified here. Specific
statements and their properties will be covered individually. When it
is necessary to refer to specific kinds of statements here, they are
simply referred to by name.

A statement label is a sequence of from one to five digits. At least
one digit must be nonzero. A label may be placed anywhere in columns 1

through 5 of an initial line. Blanks and leading zeros are not

36 APPLE FORTRAN

significant. It is traditional to left-justify statement labels. A
statement label on a nonexecutable statement is ignored.

An initial line is any line that is not a comment line or a compiler

directive line and contains a blank or a in column 6. The first five

columns of the line must either be all blank or contain a label. With

the exception of the statement following a logical IF, FORTRAN

statements begin with an initial line.

A continuation line is any line which is not a comment line or a

compiler directive line and contains any character in column 6 other

than a blank or a 0. The first five columns of a continuation line

must be blanks. A continuation line is used to increase the amount of

room to write a given statement. If a statement will not fit on a

single initial line, it may be extended to include up to 9

continuation lines.

A FORTRAN statement consists of an initial line, which may be followed

by up to 9 continuation lines. The characters of the statement are the

total number of characters, up to 660, found in columns 7 through 7 2

of these lines.

STATEMENT ORDERING

The FORTRAN language enforces a certain ordering among statements and

lines which make up a FORTRAN compilation. In general, a compilation

consists of from zero to some number of subprograms and at most one

main program. Refer to Chapter 13 for more information on programs,

subroutines, and functions, as well as the FORTRAN statements
mentioned in this section. The rules for ordering statements appear

below.

A subprogram begins with either a SUBROUTINE or a FUNCTION statement

and ends with an END statement. A main program begins with a PROGRAM

statement, or any other than a SUBROUTINE or FUNCTION statement, and

ends with an END statement. A subprogram or a main program is often

called a program unit.

Within a program unit, whether a main program or a subprogram,

statements must appear in an order consistent with the following

rules

:

* A SUBROUTINE or FUNCTION statement, or PROGRAM statement if present,

must appear as the first statement of the program unit.

* FORMAT statements may appear anywhere after the SUBROUTINE or

FUNCTION statement, or PROGRAM statement if present.

* Specification statements must precede all DATA statements, statement

function statements, and executeable statements.

PROGRAM STRUCTURE 37

* DATA statements must appear after the specification statements and
precede all statement function statements and executable statements.

* Statement function statements must precede all executable
s tatements

.

* Within the specification statements, the IMPLICIT statement must
precede all other specification statements.

These rules are summarized in the program rules chart that follows.

PROGRAM, FUNCTION, or SUBROUTINE Statement

IMPLICIT Statements

Comment
Lines

FORMAT
Statements

Other Specification Statements

DATA Statements

Statement Function Statements

Executable Statements

END Statement

Guidelines for interpreting the Program Rules Chart:

* Classes of lines or statements above or below other classes must
appear in the designated order.

* Classes of lines or statements may be interspersed with other
classes which appear across from one another.

THE END STATEMENT

When creating FORTRAN programs with the Apple editor, the final END
statement must be entered as an initial line. That is, there must be a
RETURN character following the statement. Otherwise, the compiler will
not find the END statement and will issue an error message. In
addition, that RETURN character must be the final character in the
program source file. Any further characters, even blanks, may be
considered part of a subsequent subprogram by the compiler. The END
statement is a source of many compilation errors. When you are ready
to put the END statement in your program, type it carefully with the E
in column 7. Type the three letters, followed immediately by one and
only one RETURN.

38 APPLE FORTRAN

CHAPTER 7

DATA TYPES

40 Introduction

40 The Integer Type
40 The Real Type
41 The Logical Type
41 The Character Type

INTRODUCTION

There are four basic data types in Apple FORTRAN: Integer, real,
logical, and character. This chapter describes the properties of each
type, the range of values for each type, and the form of constants for
each type.

THE INTEGER TYPE

The integer data type consists of a subset of the integers. An integer
value is an exact representation of the corresponding integer. An
integer variable occupies one word, two bytes, of storage and can
contain any value in the range -32768 to 32767. Integer constants
consist of a sequence of one or more decimal digits preceded by an
optional arithmetic sign, + or -, and must be in the allowable value
range. A decimal point is not allowed in an integer constant. The
following are examples of integer constants:

123 +123 -123 00000123 32767 -32768

THE REAL TYPE

The real data type consists of a subset of the real numbers. A real
value is normally an approximation of the real number desired. A real
variable occupies two consecutive words, four bytes, of storage. The
range of real values within a power of 10 is approximately:

-1.7E+38 ... -5.8E-39 0.0 5.8E-39 ... 1.7E+38

A basic real constant consists of an optional sign followed by an
integer part, a decimal point, and a fraction part. The integer and
fraction parts consist of one or more decimal digits. Either the
integer part or the fraction part may be omitted, but not both. Some
examples of real constants follow:

-123.456 +123.456 123.456
~ 12 3- +123. 123.

-•456 +.456 .456

An exponent part consists of the letter 'E' followed by an optionally
signed integer constant. An exponent indicates that the value
preceding it is to be multiplied by 10 to the value of the exponent
part's integer. Some sample exponent parts are:

E12 E-12 E+12 E0

40 APPLE FORTRAN

A real constant is either a basic real constant, a basic real constant
followed by an exponent part, or an integer constant followed by an

exponent part. For example:

+1.000E-2 l.E-2 1E-2

+0.01 100.0E-4 .0001E+2

all represent the same real number, 1/100.

THE LOGICAL TYPE

The logical data type consists of the two logical values true and
false. A logical variable occupies one word, two bytes, of storage.

There are only two logical constants, .TRUE. and .FALSE., representing
the two corresponding logical values. The internal representation of

.FALSE, is a word of all zeros, and the representation of .TRUE. is a

word of all zeros except a one in the least significant bit. If a

logical variable contains any other bit values, its logical meaning is
undef ined

.

THE CHARACTER TYPE

The character data type consists of a sequence of ASCII characters.

The length of a character value is equal to the number of characters
in the sequence. The length of a particular constant or variable is

fixed, and must be between 1 and 255 characters. A character variable
occupies one word of storage for each two characters in the sequence,
plus one word if the length is odd. Character variables are always
aligned on word boundaries. The blank character is allowed in a

character value and is significant.

A character constant consists of a sequence of one or more characters

enclosed by a pair of apostrophes. Blank characters are allowed in
character constants, and count as one character each. An apostrophe
(or single quote) within a character constant is represented by two

consecutive apostrophes with no blanks in between. The length of a
character constant is equal to the number of characters between the
apostrophes, with doubled apostrophes counting as a single apostrophe
character. Some sample character constants are:

'A' ' ' 'Help!' 'A very long CHARACTER constant' ""

Note the last example, "", that represents a single apostrophe,

FORTRAN allows source lines with up to 72 columns. Shorter lines are
not padded out to 72 columns, but left as input. When a character
constant extends across a line boundary, its value is as if the

portion of the continuation line beginning with column 7 is juxtaposed
immediately after the last character on the initial line. Thus, the

FORTRAN source:

DATATYPES 41

200 CH = 'ABC<cr>
X DEF'

where <cr> indicates a carriage return, or the end of the source
line is equivalent to:

200 CH = 'ABC DEF'

with the single space between the C and D being the equivalent to the
space in column 7 of the continuation line. Very long character
constants can be represented in this manner.

42 APPLE FORTRAN

CHAPTER 8

FORTRAN STATEMENTS

44 Introduction

44 FORTRAN Names
44 Scope of FORTRAN Names
45 Undeclared Names

45 Specification Statements
46 IMPLICIT Statement
47 DIMENSION Statement

48 Type Statement
49 COMMON Statement
50 EXTERNAL Statement

51 INTRINSIC Statement
51 SAVE Statement
51 EQUIVALENCE Statement

52 DATA Statements
53 Assignment Statements

54 Computational Assignment Statement

54 Label Assignment Statement

FORTRAN STATEMENTS

INTRODUCTION

This chapter describes specification statements, DATA statements, and
assignment statements in Apple FORTRAN. The rules for forming FORTRAN
names and the scope of names are included in this chapter also.

FORTRAN NAMES
A FORTRAN name, or identifier, consists of an initial alphabetic
character followed by a sequence of through 5 alphanumeric
characters. Blanks may appear within a FORTRAN name, but have no
significance. A name is used to denote a user or system defined
variable, array, function, subroutine, and so forth. Any valid
sequence of characters may be used for any FORTRAN name. There are noreserved names as in other languages. Sequences of alphabetic
characters used as keywords are not to be confused with FORTRAN names.
The compiler recognizes keywords by their context and in no way
restricts the use of user chosen names. Thus, a program can have, for
example, an array named IF, READ, or GOTO, with no error indicated by
the compiler, as long as it conforms to the rules that all arrays must
obey.

Scope of FORTRAN Names
The scope of a name is the range of statements in which that name is
known or can be referenced within a FORTRAN program. In general the
scope of a name is either GLOBAL or LOCAL, although there are several
exceptions. A name can only be used in accordance with a single
definition within its scope. The same name, however, can have
different definitions in distinct scopes.

A name with global scope may be used in more than one program unit, a
subroutine, function, or the main program, and still refer to the same
entity. In fact, names with global scope can only be used in a single,
consistent manner within a program. All subroutine, function
subprogram, and common names, as well as the program name, have global
scope. Therefore, there cannot be a function subprogram that has the
same name as a subroutine subprogram or a common data area. Similarly,
no two function subprograms in the same program can have the same
name.

A name with local scope is only defined within a single program unit.
A name with a local scope can be used in another program unit with a
different or similar meaning, but is in no way required to have a
similar meaning in a different scope. The names of variables, arrays
parameters, and statement functions all have local scope. A name with
a local scope can be used in the same compilation as another item with
the same name but a global scope as long as the global name is not
referenced within the program unit containing the local name. Thus, a
function can be named F00, and a local variable in another program
unit can be named FOO without error, as long as the program unit

44 APPLE FORTRAN

containing the variable FOO does not call the function FOO. The
compiler detects all scope errors, and issues an error message should
they occur, so the user need not worry about undetected scope errors
causing bugs in programs.

One exception to the scoping rules is the name given to common data
blocks. It is possible to refer to a globally scoped common name in
the same program unit that an identical locally scoped name appears.
This is allowed because common names are always enclosed in slashes,
such as /NAME/, and are therefore always distinguishable from ordinary
names by the compiler.

Another exception to the scoping rules is made for parameters to

statement functions. The scope of statement function parameters is
limited to the single statement forming that statement function. Any
other use of those names within that statement function is not

allowed, and any other use outside that statement function is allowed.

Undeclared Names
When a user name that has not appeared before is encountered in an

executable statement, the compiler infers from the context of its use
how to classify that name. If the name is used in the context of a
variable, the compiler creates an entry into the symbol table for a

variable of that name. Its type is inferred from the first letter of

its name. Normally, variables beginning with the letters I, J, K, L,

M, or N are considered integers, while all others are considered
reals, although these defaults can be overridden by an IMPLICIT
statement. If an undeclared name is used in the context of a function
call, a symbol table entry is created for a function of that name,
with its type being inferred in the same manner as that of a variable.
Similarly, a subroutine entry is created for a newly encountered name
that is used as the target of a CALL statement. If an entry for such a

subroutine or function name exists in the global symbol table, its

attributes are coordinated with those of the newly created symbol
table entry. If any inconsistencies are detected, such as a previously
defined subroutine name being used as a function name, an error

message is issued.

In general, one is encouraged to declare all names used within a

program unit, since it helps to assure that the compiler associates
the proper definition with that name. Allowing the compiler to use a

default meaning can sometimes result in logical errors that are quite
difficult to locate.

SPECIFICATION STATEMENTS

This section describes the specification statements in Apple FORTRAN.
Specification statements are non-executable. They are used to define
the attributes of user defined variable, array, and function names.
There are eight kinds of specification statements: These are the

FORTRAN STATEMENTS 45

IMPLICIT, DIMENSION, type, COMMON, EXTERNAL, INTRINSIC, SAVE, and

EQUIVALENCE statements.

Specification statements must precede all executable statements in a

program unit. If present, any IMPLICIT statements must precede all

other specification statements in a program unit as well. The

specification statements may appear in any order within their own
group.

IMPLICIT Statement
An IMPLICIT statement is used to define the default type for user

declared names. The form of an IMPLICIT statement is:

IMPLICIT type (a [,a]...) [.type (a [,a]...)]...

where: type is one of INTEGER, LOGICAL, REAL, or CHARACTER [*nnn]

a is either a single letter or a range of letters. A
range of letters is indicated by the first and last

letters in the range separated by a minus sign. For
a range, the letters must be in alphabetic order.

nnn is the size of the character type that is to be

associated with that letter or letters. It must be

an unsigned integer in the range 1 to 255. If *nnn
is not specified, it is assumed to be *1.

The following are examples of IMPLICIT statements:

IMPLICIT INTEGER (I-N)

IMPLICIT INTEGER (I-Z) ,REAL (A-G)

IMPLICIT CHARACTER* 100 (H)

An IMPLICIT statement defines the type and size for all user defined

names that begin with the letter or letters that appear in the

specification. An IMPLICIT statement applies only to the program unit

in which it appears. IMPLICIT statements do not change the type of any

intrinsic functions.

Implicit types can be overridden or confirmed for any specific user

name by the appearance of that name in a subsequent type statement. An

explicit type in a FUNCTION statement also takes priority over an

IMPLICIT statement. If the type in question is a character type, the
user name's length is also overridden by a later type definition.

The program unit can have more than one IMPLICIT statement, but all

implicit statements must precede all other specification statements in

that program unit. The same letter cannot be defined more than once in

an IMPLICIT statement in the same program unit.

46 APPLE FORTRAN

DIMENSION Statement
A DIMENSION statement is used to specify that a user name is an

array. The form of a DIMENSION statement is:

DIMENSION var(dim) [,var (dim)] . .

.

where: var(dim) is an array declarator of the form:

var is the user defined name of the array.

dim is a dimension declarator.

The following are examples of the DIMENSION statement:

DIMENSION A(100,2) ,B3(10,4)

DIMENSION ARRAY (10)

DIMENSION MATRIX(16, 10)

DIMENSION MAXDIM(4, 4, 5)

The number of dimensions in the array is the number of dimension

declarators in the array declarator. The maximum number of dimensions

is three. A dimension declarator can be one of three forms:

* An unsigned integer constant.

* A user name corresponding to a non array integer formal argument.

* An asterisk.

A dimension declarator specifies the upper limit of the dimension. The

lower limit is always one. If a dimension declarator is an integer

constant, then the array has the corresponding number of elements in
that dimension. An array has a constant size if all of its dimensions

are specified by integer constants. If a dimension declarator is an

integer argument, then that dimension is defined to be of a size equal

to the initial value of the integer argument upon entry to the

subprogram unit at execution time. In such a case the array is called
an adjustable sized array.

If the dimension declarator is an asterisk, the array is an assumed

sized array and the upper bound of that dimension is not specified.
The following program is an example of an asterisk array dimension:

PROGRAM ARR
DIMENSION RLARR1(10),RLARR2(20)

C TWO ARRAYS OF DIFFERENT SIZE TO PASS TO SUBARR BELOW.

RLARR1(1)=1.0
RLARR2(1)=3. 14159

C TWO DUMMY VALUES TO BE CLOBBERED BY SUBARR
CALL SUBARR (RLARR1)
CALL SUBARR (RLARR 2)

FORTRAN STATEMENTS 47

C TWO CALLS OF SUBARR WITH DIFFERENT SIZE ARRAYS
WRITE (*, 100) RLARRl(l), RLARR2 (1

)

100 FORMAT (2F8. 4)
END
SUBROUTINE SUBARR (R)

DIMENSION R(*)
C WHEN AN ACTUAL ARGUMENT IS PASSED TO SUBARR AS R, IT MAY HAVE
C ANY NUMBER OF ELEMENTS.

R(l)=2.0
C CLOBBER THE FIRST ELEMENT OF R

END

All adjustable and assumed sized arrays must also be formal arguments
to the program unit in which they appear. Additionally, an assumed
size dimension declarator may only appear as the last dimension in an
array declarator.

The order of array elements in memory is column-major order. That is,

the left most subscript changes most rapidly in a memory sequential
reference to all array elements. Note that this is the opposite of
Pascal which has row-major order.

The form of an array element name is:

arr (sub [,sub] ...)

where: arr is the name of an array.

sub is a subscript expression.

A subscript expression is an integer expression used in selecting a

specific element of an array. The number of subscript expressions must

match the number of dimensions in the array declarator. The value of a
subscript expression must be between 1 and the upper bound for the
dimension it represents.

The following is an example of an array element name:

MATRIX(2,3) referring to column 3, row 2

Type Statement
Type statements are used to specify the type of user defined names. A
type statement may confirm or override the implicit type of a name.
Type statements may also specify dimension information.

A user name for a variable, array, external function, or statement

function may appear in a type statement. Such an appearance defines
the type of that name for the entire program unit. Within a program
unit, a name may not have its type explicitly specified by a type
statement more than once. A type statement may confirm the type of an
intrinsic function, but is not required. The name of a subroutine or

main program cannot appear in a type statement.

48 APPLE FORTRAN

The form of an INTEGER, REAL, or LOGICAL type statement is:

type var [,var] . .

.

where: type is INTEGER, REAL , or LOGICAL.

var is a variable name, array name, function name, or an

array declarator.

The following are examples of the TYPE statement:

INTEGER MATRIX Does not include Dimension information

INTEGER MATRIX(1 6 , 10) Includes Dimension information

REAL A Declares that A holds a REAL value

The form of a CHARACTER type statement is:

CHARACTER [*nnn [,]] var [*nnn] [, var [*nnn]]...

where: var is a variable name, array name, or an array declarator.

nnn is the length in number of characters of a character

variable or character array element. It must be an
unsigned integer in the range 1 to 255.

The following are examples of CHARACTER type statements:

CHARACTER* 10(3, A A holds up to 100 characters

CHARACTER*50, STRING Variable name STRING can hold up to

50 characters

The length nnn following the type name CHARACTER is the default length

for any name not having its own length specified. If not present, the

default length is assumed to be one. A length immediately following a
variable or array overrides the default length for that item only. For

an array the length specifies the length of each element of that

array.

COMMON Statement
The COMMON statement provides a method of sharing storage between two

or more program units. Such program units can share the same data

without passing it as arguments. The form of the COMMON statement is:

FORTRAN STATEMENTS 49

COMMON [/ [cname] /] nlist [[,] / [cname] / nlist].

where: cname is a common block name. If a cname is omitted, then
the blank common block is specified.

nlist is a list of variable names, array names, and array
declarators separated by commas. Formal argument
names and function names cannot appear in a COMMON
statement

.

The following is an example of the COMMON statement :

COMMON/SHARE/MATRIX, ARRAY, A Block SHARE can refer to the
variable names MATRIX, ARRAY,
and A.

In the COMMON statement, all variables and arrays appearing in each
nlist following a common block cname are declared to be in that common
block. If the first cname is omitted, all elements appearing in the
first nlist are specified to be in the blank common block.

Any common block name can appear more than once in COMMON statements
in the same program unit. All elements in all nlists for the same
common block are allocated storage sequentially in that common storage
area in the order that they appear.

All elements in a single common area must be either all of type
CHARACTER or none of type character. Furthermore, if two program units
reference the same named common containing character data, association
of character variables of different length is not allowed. Two
variables are said to be associated if they refer to the same actual
storage

.

The size of a common block is equal to the number of bytes of storage
required to hold all elements in that common block. If the same named
common block is referenced by several distinct program units, the size
must be the same in all program units.

EXTERNAL Statement
An EXTERNAL statement is used to identify a user defined name as an
external subroutine or function. The form of an EXTERNAL statement
is

:

EXTERNAL name [,name] . . .

where: name is the name of an external subroutine of function.

Appearance of a name in an EXTERNAL statement declares that name to be
an external procedure. Statement function names cannot appear in an
EXTERNAL statement. If an intrinsic function name appears in an
EXTERNAL statement, then that name becomes the name of an external
procedure, and the corresponding intrinsic function can no longer be

50 APPLE FORTRAN

called from that program unit. A user name can only appear once in an

EXTERNAL statement.

INTRINSIC Statement
An INTRINSIC statement is used to declare that a user name is an

intrinsic function. The form of an INTRINSIC statement is:

INTRINSIC name [,name]...

where: name is an intrinsic function name.

Each user name may only appear once in an INTRINSIC statement. If a

name appears in an INTRINSIC statement, it cannot appear in an

EXTERNAL statement. All names used in an INTRINSIC statement must be

system-defined INTRINSIC functions. For a list of these functions, see

Table 2 in Appendix C. Note that the use of the INTRINSIC statement is

optional. The INTRINSIC function can be used without the INTRINSIC

statement

.

SAVE Statement
A SAVE statement is used to retain the definition of a common block
after the return from a procedure that defines that common block.

Within a subroutine or function, a common block that has been
specified in a SAVE statement does not become undefined upon exit from
the subroutine or function. The form of a SAVE statement is:

SAVE /name/ [,/narae/]...

where: name is the name of a common block.

Note: In Apple FORTRAN, all common blocks are statically allocated, so

the SAVE statement has no effect and is not normally used.

EQUIVALENCE Statement
An EQUIVALENCE statement is used to specify that two or more variables
or arrays are to share the same storage. If the shared variables are

of different types, the EQUIVALENCE does not cause any kind of

automatic type conversion. The form of an EQUIVALENCE statement is:

EQUIVALENCE (nlist) [, (nlist)]...

where: nlist is a list of at least two variable names, array names, or

array element names separated by commas.

Argument names may not appear in an EQUIVALENCE statement. Subscripts

must be integer constants and must be within the bounds of the array
they index.

An EQUIVALENCE statement specifies that the storage sequences of the

elements that appear in the nlist have the sane first storage

location. Two or more variables are said to be associated if they

FORTRAN STATEMENTS 51

refer to the same actual storage. Thus, an EQUIVALENCE statement
causes its list of variables to become associated. An element of type
character can only be associated with another element of type
character with the same length. If an array name appears in an
EQUIVALENCE statement, it refers to the first element of the array.

An EQUIVALENCE statement cannot specify that the same storage location
is to appear more than once, such as:

REAL R,S(10)
EQUIVALENCE (R, S (1)) , (R, S (5)

)

which forces the variable R to appear in two distinct memory locations.

Furthermore, an EQUIVALENCE statement cannot specify that consecutive
array elements are not stored in sequential order. For example:

REAL R(10) ,S(10)

EQUIVALENCE (R (1) , S (1)) , (R (5) , S (6)

)

is not allowed.

When EQUIVALENCE statements and COMMON statements are used together,
several further restrictions apply. An EQUIVALENCE statement cannot
cause storage in two different common blocks to become equivalenced

.

An EQUIVALENCE statement can extend a common block by adding storage
elements following the common block, but not preceding the common
block. For example:

COMMON /ABCDE/ R(10)

REAL S(10)

EQUIVALENCE (R(1),S(10))

is not allowed because it extends the common block by adding storage
preceding the start of the block.

DATA STATEMENTS
The DATA statement is used to assign initial values to variables. A
DATA statement is a non-executable statement. If present, it must
appear after all specification statements and prior to any statement
function statements or executable statements. The form of a DATA
statement is:

52 APPLE FORTRAN

DATA nlist / clist / [[,] nlist / clist /]

.

where: nlist is a list of variable, array element, or array names.

clist is a list of constants or constants preceded by an
integer constant repeat factor and an asterisk,
such as:

5*3.14159 3*'Help' 100*0

A repeat factor followed by a constant is the
equivalent of the value of the constant repeated
a number of times that is equal to the repeat
constant

.

There must be the same number of values in each clist as there are
variables or array elements in the corresponding nlist. The appearance
of an array in an nlist is the equivalent to a list of all elements in
that array in storage sequence order. Array elements must be indexed
only by constant subscripts.

The type of each non-character element in a clist must be the same as
the type of the corresponding variable or array element in the
accompanying nlist. Each character element in a clist must correspond
to a character variable or array element in the nlist, and must have a
length that is less than or equal to the length of that variable or
array element. If the length of the constant is shorter, it is

extended to the length of the variable by adding blank characters to
the right. Note that a single character constant cannot be used to
define more than one variable or even more than one array element.

Only local variables and array elements can appear in a DATA
statement. Formal arguments, variables in common, and function names
cannot be assigned initial values with a DATA statement.

The following are examples of the DATA statement:

DATA X, Y, Z, A, C/ 1.0, 3. 8, A. 5, 6. 7, 1.9/

DATA MATRIX/ 1.5, 2. 0,2. 5, 3.0, 10.5,3-2/

Note in the second example that the array called MATRIX must have 6

elements, one for each DATA constant.

ASSIGNMENT STATEMENTS
An assignment statement is used to assign a value to a variable or an
array element. There are two kinds of assignment statements,
computational assignment statements and label assignment statements.

FORTRAN STATEMENTS 53

Computational Assignment Statement
The form of a computational assignment statement is:

var = expr

where: var is a variable or array element name.

expr is an expression.

Execution of a computational assignment statement evaluates the

expression and assigns the resulting value to the variable or array
element appearing on the left. The type of the variable or array

element and the expression must be compatible. They must both be

either numeric, logical, or character, in which case the assignment

statement is called an arithmetic, logical, or character assignment

statement

.

If the types of the elements of an arithmetic assignment statement are

not identical, automatic conversion of the value of the expression to

the type of the variable is done. The following table gives the

conversion rules:

Type of

variable or

array element

Type of expression

integer real

integer expr INT (expr)

real REAL (expr) expr

Table of Type Conversions for Arithmetic Assignment Statements

If the length of the expression does not match the size of the

variable in a character assignment statement, it is adjusted so that

it does. If the expression is shorter, it is padded with enough blanks
on the right to make the sizes equal before the assignment takes

place. If the expression is longer, characters on the right are

truncated to make the sizes the same.

Label Assignment Statement
The label assignment statement is used to assign the value of a format

or statement label to an integer variable. The form of the statement

is

:

ASSIGN label TO var

where: label is a format label or statement label,

var is an integer variable.

54 APPLE FORTRAN

Execution of an ASSIGN statement sets the integer variable to the
value of the label. The label can be either a format label or a

statement label, and it must appear in the same program unit as the

ASSIGN statement. When used in an assigned GOTO statement, a variable
must currently have the value of a statement label. When used as a
format specifier in an I/O statement, a variable must have the value

of a format statement label. The ASSIGN statement is the only way to
assign the value of a label to a variable.

FORTRAN STATEMENTS 55

CHAPTER 9

EXPRESSIONS

58 Introduction

58 Arithmetic Expressions
59 Integer Division
59 Type Conversions and Result Types

60 Character Expressions
60 Relational Expressions
61 Logical Expressions
62 Operator Precedence

APPLE FORTRAN EXPRESSIONS

INTRODUCTION

This chapter describes the four classes of expressions found in the
FORTRAN language. They are the arithmetic, the character, the
relational, and the logical expression. Note that any variable, array
element, or function referenced in an expression must be defined at
the time of the reference. Integer variables must be defined with an

arithmetic value, rather than a statement label value as set by an
ASSIGN statement.

ARITHMETIC EXPRESSIONS
An arithmetic expression produces a value which is either of type
integer or type real. The simplest forms of arithmetic expressions
are

:

* Unsigned integer or real constant.

* Integer or real variable reference.

* Integer or real array element reference.

* Integer or real function reference.

The value of a variable reference or array element reference must be

defined for it to appear in an arithmetic expression. Moreover, the
value of an integer variable must be defined with an arithmetic value,
rather than a statement label value previously set in an ASSIGN
statement

.

Other arithmetic expressions are built up from the above simple forms
using parentheses and these arithmetic operators:

Operator Representing Operation Precedence

** Exponentiation Highest

/ Division
Intermediate

* Multiplication

Subtraction or Negation

Lowest
+ Addition or Identity

Table of Arithmetic Operators

58 APPLE FORTRAN

All of the operators are binary operators appearing between their

arithmetic expression operands. The + and - may also be unary,

preceding their operand. Operations of equal precedence are left

associative except exponentiation which is right associative. Thus,

A / B * C is the same as (A / B) * C and A ** B ** C is the same as

A ** (B ** C). Arithmetic expressions can be formed in the usual

mathematical sense, as in most programming languages, except that

FORTRAN prohibits two operators from appearing consecutively. Thus,

A ** -B is prohibited, although A ** (-B) is permissible. Parenthesis

may be used in a program to control the order of operator evaluation

in an expression.

Certain arithmetic operations are illegal, since they are not

mathematically meaningful; such as dividing by zero. Other prohibited
operations are raising a zero-valued operand to a zero or negative

power and raising a negative -valued operand to a power of type real.

Integer Division
The division of two integers results in a value which is the

mathematical quotient of the two values, rounded toward 0. Thus,

7/3 evaluates to 2, (-7) / 3 evaluates to -2 , 9 / 10 evaluates to

and 9 / (-10) evaluates to 0.

Type Conversions and Result Types
Arithmetic expressions may involve operations between operands which

are of different types. The general rules for determining type

conversions and the result type for an arithmetic expression are:

* An operation between two integers results in an expression of type

integer

.

* An operation between two reals results in an expression of type

real

.

* For any operator except **, an operation between a real and an

integer converts the integer to type real and performs the operation,

resulting in an expression of type real.

* For the operator **, a real raised to an integer power is computed

without conversion of the integer, and results in an expression of

type real. An integer raised to a real power is converted to type real

and the operation results in an expression of type real. Note that for

integer I and negative integer J, I ** J is the same as

1 / (I ** IABS(J)) which is subject to the rules of integer division.

For example, 2 ** (-4) is 1 / 16 which is 0.

* Unary operators result in the same result type as their operand

type.

The type which results from the evaluation of an arithmetic operator

is not dependent on the context in which the operation is specified.

For example, evaluation of an integer plus a real results in a real

EXPRESSIONS 59

even if the value obtained is to be immediately assigned into an
integer variable.

CHARACTER EXPRESSIONS
A character expression produces a value which is of type character.
The forms of character expressions are:

* Character constant.

* Character variable reference.

* Character array element reference.

* Any character expression enclosed in parenthesis.

There are no operators which result in character expressions.

RELATIONAL EXPRESSIONS

Relational expressions are used to compare the values of two
arithmetic expressions or two character expressions. It is not legal
in Apple FORTRAN to compare an arithmetic value with a character
value. The result of a relational expression is of type logical.

Relational expressions may use any of these operators to compare
values

:

Operator Representing Operation

.LT. Less than

.LE. Less than or equal to

• EQ. Equal to

.NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to

Table of Relational Operators

All of the operators are binary operators, appearing between their
operands. There is no relative precedence or associativity among the
relational operands since an expression of the form A .LT. B .NE. C

60 APPLE FORTRAN

violates the type rules for operands. Relational expressions may

only appear within logical expressions.

Relational expressions with arithmetic operands may have an operand of

type integer and one of type real. In this case, the integer operand
is converted to type real before the relational expression is

evaluated.

Relational expressions with character operands compare the position of

their operands in the ASCII collating sequence. An operand is less

than another if it appears earlier in the collating sequence, etc. If

operands of unequal length are compared, the shorter operand is

considered as if it were blank extended to the length of the longer
operand.

LOGICAL EXPRESSIONS
A logical expression produces a value which is of type logical. The

simplest forms of logical expressions are:

* Logical constant.

* Logical variable reference.

* Logical array element reference.

* Logical function reference.

* Relational expression.

Other logical expressions are built up from the above simple forms

using parenthesis and these logical operators:

Operator Representing Operation Precedence

.NOT. Negation Highest

• AND. Conj unction

• OR. Inclusive disjunction Lowest

Table of Logical Operators

The .AND. and -OR. operators are binary operators, appearing between

their logical expression operands. The .NOT. operator is unary,

preceding its operand. Operations of equal precedence are left

associative. For example, A .AND. B .AND. C is equivalent to (A .AND.

B) .AND. C. As an example of the precedence rules, .NOT. A .OR. B

.AND. C is interpreted the same as (.NOT. A) .OR. (B .AND. C) . It is

not permitted to have two .NOT. operators adjacent to each other,

EXPRESSIONS 61

although A .AND. .NOT. B is an example of an allowable expression with
two operators being adjacent.

The meaning of the logical operators is their standard mathematical
semantics, with .OR. being nonexclusive, that is .TRUE. .OR. .TRUE,
evaluates to the value .TRUE..

OPERATOR PRECEDENCE
When arithmetic, relational, and logical operators appear in the same
expression, their relative precedences are:

Operator Precedence

Ar ithmet ic Highest

Relational

Logical Lowest

Table of Operator Precedence

62 APPLE FORTRAN

CHAPTER 10

CONTROL STATEMENTS

64 Introduction
64 Unconditional GOTO
64 Computed GOTO
65 Assigned GOTO
65 Arithmetic IF
66 Logical IF

66 Block IF . . . THEN ... ELSE
68 Block IF

69 ELSEIF

69 ELSE
69 ENDIF

70 DO

71 CONTINUE
72 STOP
72 PAUSE

72 END

CONTROL STATEMENTS

INTRODUCTION
Control statements are used to control the order of execution of
statements in a FORTRAN program. This chapter describes the control
statements UNCONDITIONAL GOTO, COMPUTED GOTO, ASSIGNED GOTO,
ARITHMETIC IF, LOGICAL IF, BLOCK IF. . .THEN. . .ELSE, BLOCK IF, ELSEIF,
ELSE, END IF , DO, CONTINUE, STOP, PAUSE, and END.

The two remaining statements which control the order of execution of
statements are the CALL statement and the RETURN statement, both of
which are described in Chapter 13.

UNCONDITIONAL GOTO
The format for an unconditional GOTO statement is:

GOTO s

where s is a statement label number of an executable statement that is
found in the same program unit as the GOTO statement. The effect of

executing a GOTO statement is that the next statement executed is the
statement labeled s. You are not allowed to GOTO into a DO, IF,
ELSEIF, or ELSE block from outside the block.

COMPUTED GOTO
The format for a computed GOTO statement is:

GOTO (s [, s] ...) [,] i

where i is an integer expression and each s is a statement label of an
executable statement that is found in the same program unit as the
computed GOTO statement. The same statement label may appear
repeatedly in the list of labels. The effect of the computed GOTO
statement can be explained as follows: Suppose that there are n labels
in the list of labels. If i < 1 or i > n then the computed GOTO
statement acts as if it were a CONTINUE statement, otherwise, the next
statement executed will be the statement labeled by the ith label in
the list of labels. It is illegal to jump into a DO, IF, ELSEIF, or
ELSE block from outside the block.

Here is an example:

GOTO(l,2,3,4)X

If X=2, the program will branch to the line labeled 2 since 2 happens
to be the second, or Xth, label in the s list.

64 APPLE FORTRAN

ASSIGNED GOTO
The format for an assigned GOTO statement is:

GOTO i [[,] (s [, s] ...)]

where i is an integer variable name and each s is a statement label of

an executable statement that is found in the same program unit as the

assigned GOTO statement. The same statement label may appear

repeatedly in the list of labels. When the assigned GOTO statement is

executed, i must have been assigned the label of an executable
statement that is found in the same program unit as the assigned GOTO

statement. The effect of the statement is that the next statement

executed will be the statement labeled by the label last assigned to

i. If the optional list of labels is present, a runtime error is

generated if the label last assigned to i is not among those listed.

It is illegal to jump into a DO, IF, ELSEIF, or ELSE block from

outside the block.

Example

:

GOTO TARGET

If TARGET, which is a variable name in this example, = 100, the

statement causes a branch to the statement with the label 100.

ARITHMETIC IF

The format for an arithmetic IF statement is:

IF (e) si, s2, s3

where e is an integer or real expression and each of si, s2, and s3

are statement labels of executable statements found in the same

program unit as the arithmetic IF statement. The same statement label

may appear more than once among the three labels. The effect of the

statement is to evaluate the expression and then select a label based

on the value of the expression. Label si is selected if the value of e

is less than 0, s2 is selected if the value of e equals 0, and s3 is

selected if the value of e exceeds 0. The next statement executed will
be the statement labeled by the selected label. It is illegal to jump

into a DO, IF, ELSEIF, or ELSE block from outside the block.

Example

:

IF (I) 100,200,300

CONTROL STATEMENTS 65

If I evaluates to a negative number, the branch will be to the
statement labeled 100. If I is 0, it will be to 200. If I is a
positive number, the branch will be to the statement labeled 300.

LOGICAL IF

The format for a logical IF statement is:

IF (e) st

where e is a logical expression and st is any executable statement
except a DO, block IF, ELSEIF, ELSE, END IF, END, or another logical IF
statement. The statement causes the logical expression to be evaluated
and, if the value of that expression is true, then the statement, st,
is executed. Should the expression evaluate to false, the statement st
is not executed and the execution sequence continues as if a CONTINUE
statement had been encountered.

BLOCK IF... THEN... ELSE

The following sections describe the block IF statement and the various
related statements. These statements are new to FORTRAN 77 and can be
used to dramatically improve the readability of FORTRAN programs and
to cut down the number of GOTOs. As an overview of these sections, the
following three code skeletons illustrate the basic concepts:

Skeleton 1 - Simple Block IF which skips a group of statements if the
expression is false:

IF(I.LT. 10)THEN

Some statements executed only if I.LT. 10

ENDIF

66 APPLE FORTRAN

Skeleton 2 - Block IF with a series of ELSEIF statements:

IF(J.GT. 1000)THEN

Some statements executed only if J.GT.1000

ELSEIF (J. GT. 100)THEN

Some statements executed only if J.GT.100 and J.LE.1000

ELSEIF (J. GT. 10)THEN

Some statements executed only if J.GT.10 and J.LE.1000

. and J.LE. 100
ELSE

Some statements executed only if none of above conditions

were true

ENDIF

Skeleton 3 - Illustrates that the constructs can be nested. (Also, an

ELSE statement can follow a block IF without intervening ELSEIF

statements.) The indentation is solely to enhance readability.

IF(I.LT. 100)THEN

Some statements executed only if I.LT. 100

IF(J.LT. 10)THEN

Some statements executed only if I.LT. 100 and J.LT.l

ENDIF

Some statements executed only if I.LT. 100

ELSEIF (I. LT. 1000)THEN

Some statements executed only if I.GE.100 and I.LT. 1000

IF(J.LT. 10) THEN

Some statements executed only if I.GE.100 and I.LT. 100

. and J.LT. 10

ENDIF

Some statements executed only if I.GE.100 and I.LT. 1000

ENDIF

CONTROL STATEMENTS 67

In order to understand, in detail, the block IF and associated
statements, the concept of an IF-level is necessary. For any
statement, its IF-level is

nl - n2

where nl is the number of block IF statements from the beginning of
the program unit that the statement is in up to and including that
statement, and n2 is is the number of ENDIF statements from the
beginning of the program unit) up to, but not including, that
statement. The IF-level of every statement must be greater than or
equal to and the IF-level of every block IF, ELSEIF, ELSE, and ENDIF
must be greater than 0. Finally, the IF-level of every END statement
must be 0. The IF-level will be used to define the nesting rules for
the block IF and associated statements and to define the extent of IF
blocks, ELSEIF blocks, and ELSE blocks.

BLOCK IF

The format for a block IF statement is:

IF (e) THEN

where e is a logical expression. The IF block associated with this
block IF statement consists of all of the executable statements,
possibly none, that appear following this statement up to, but not
including, the next ELSEIF, ELSE, or ENDIF statement that has the same
IF-level as this block IF statement. The IF-level defines the notion
of matching ELSEIF, ELSE, or ENDIF. The effect of executing the block
IF statement is that the expression is evaluated. If it evaluates to
true and there is at least one statement in the IF block, the next
statement executed is the first statement of the IF block. Following
the execution of the last statement in the IF block, the next
statement to be executed will be the next ENDIF statement at the same
IF-level as this block IF statement. If the expression in this block
IF statement evaluates to true and the IF block has no executable
statements, the next statement executed is the next ENDIF statement at
the same IF level as the block IF statement. If the expression
evaluates to false, the next statement executed is the next ELSEIF,
ELSE, or ENDIF statement that has the same IF-level as the block IF
statement. Note that transfer of control into an IF block from outside
that block is not allowed.

68 APPLE FORTRAN

ELSEIF

The format of an ELSEIF statement is:

ELSEIF (e) THEN

where e is a logical expression. The ELSEIF block associated with an

ELSEIF statement consists of all of the executable statements,
possibly none, that follow the ELSEIF statement up to, but not

including, the next ELSEIF, ELSE, or ENDIF statement that has the same

IF-level as this ELSEIF statement. The execution of an ELSEIF
statement begins by evaluating the expression. If its value is true
and there is at least one statement in the ELSEIF block, the next

statement executed is the first statement of the ELSEIF block.
Following the execution of the last statement in the ELSEIF block, the
next statement to be executed will be the next ENDIF statement at the

same IF-level as this ELSEIF statement. If the expression in this
ELSEIF statement evaluates to true and the ELSEIF block has no

executable statements, the next statement executed is the next ENDIF

statement at the same IF level as the ELSEIF statement. If the
expression evaluates to false, the next statement executed is the next

ELSEIF, ELSE, or ENDIF statement that has the same IF-level as the

ELSEIF statement. Note that transfer of control into an ELSEIF block
from outside that block is not allowed.

ELSE

The format of an ELSE statement is:

ELSE

The ELSE block associated with an ELSE statement consists of all of

the executable statements, possibly none, that follow the ELSE

statement up to, but not including, the next ENDIF statement that has
the same IF-level as this ELSE statement. The matching ENDIF statement
must appear before any intervening ELSE or ELSEIF statements of the
same IF-level. There is no effect in executing an ELSE statement. Note
that transfer of control into an ELSE block from outside that block is

not allowed.

ENDIF

The format of an ENDIF statement is:

ENDIF

There is no effect in executing an ENDIF statement. An ENDIF statement
is required to match every block IF statement in a program unit in

order to specify which statements are in a particular block IF

statement

.

CONTROL STATEMENTS 69

DO
The format of a DO statement is:

DO s [,] i=el, e2 [, e3]

where s is a statement label of an executable statement. The label
must follow this DO statement and be contained in the same program
unit. In the DO statement, i is an integer variable, and el, e2, and
e3 are integer expressions. The statement labeled by s is called the
terminal statement of the DO loop. It must not be an unconditional
GOTO, assigned GOTO, arithmetic IF, block IF, ELSEIF, ELSE, END IF

,

RETURN, STOP, END, or DO statement. If the terminal statement is a
logical IF, it may contain any executable statement EXCEPT those not
permitted inside a logical IF statement.

A DO loop is said to have a range, beginning with the statement which
follows the DO statement and ending immediately after the terminal
statement of the DO loop. If a DO statement appears in the range of

another DO loop, its range must be entirely contained within the range
of the enclosing DO loop, although the loops may share a terminal
statement. If a DO statement appears within an IF block, ELSEIF block,
or ELSE block, the range of the associated DO loop must be entirely
contained in the particular block. If a block IF statement appears
within the range of a DO loop, its associated ENDIF statement must
also appear within the range of that DO loop. The DO variable, i, may
not be set by the program within the range of the DO loop associated
with it. It is not allowed to jump into the range of a DO loop from
outside its range.

The execution of a DO statement causes the following steps to happen
in order:

1. The expressions el, e2, and e3 are evaluated. If e3 is not
present, it is as if e3 evaluated to 1; e3 must not evaluate
to 0.

2. The DO variable, i, is set to the value of el.

3. The iteration count for the loop is computed to be
MAX0(((e2 - el + e3)/e3),0)

which may be zero (Note: unlike FORTRAN 66) if either

el > e2 and e3 >

or
el < e2 and e3 < 0.

4. The iteration count is tested, and if it exceeds zero, the
statements in the range of the DO loop are executed.

70 APPLE FORTRAN

Following the execution of the terminal statement of a DO loop, the

following 'steps occur in order:

1. The value of the DO variable, i, is incremented by the

value of e3 which was computed when the DO statement

was executed.

2. The iteration count is decremented by one.

3. The iteration count is tested, and if it exceeds zero, the

statements in the range of the DO loop are executed again.

The value of the DO variable is well defined regardless of whether the

DO loop exits as a result of the iteration count becoming zero or as a

result of a transfer of control out of the DO loop.

Example of final value of DO variable:

C This program fragment prints the number 1 to 1 1 on the CONSOLE:

DO 200 1=1,10

200 WRITE(*,'(I5)')I
WRITE(*,' (15) ')I

CONTINUE

The format of a CONTINUE statement is:

CONTINUE

There is no effect associated with execution of a CONTINUE statement.

The primary use for the CONTINUE statement is as a convenient

statement to label, particularly as the terminal statement in a DO

loop

.

Here's an example of the CONTINUE statement in action:

C EXAMPLE OF CONTINUE STATEMENT

DO 200 1=1,10
WRITE(*,' (I5)')I

200 CONTINUE
WRITE(*,' (I5)')I

END

Note that CONTINUE simply acts as the terminator statement for the DO

loop in the routine.

CONTROL STATEMENTS 71

STOP

The format of a STOP statement is:

STOP [n]

where n is either a character constant or a string of not more than 5
digits. The effect of executing a STOP statement is to cause the
program to terminate. The argument, n, if present, is displayed on the
CONSOLE: upon termination.

Example: STOP 'DONE!'

The message DONE! will be displayed on the screen when the program
executes the STOP statement.

PAUSE

The format of a PAUSE statement is:

PAUSE [n]

where n is either a character constant or a string of not more than 5

digits. The effect of executing a PAUSE statement is to cause the
program to PAUSE until input is received from the keyboard. Execution
will then continue. The contents of n, if present, are displayed as
part of the prompt requesting input. When input is received, execution
resumes as if a CONTINUE statement had been executed.

END

The format of an END statement is:

END

Unlike other statements, an END statement must be entered as an
initial line. No other FORTRAN statement, such as the ENDIF statement,
may have an initial line which APPEARS to be an END statement. The
effect of executing the END statement in a subprogram is the same as
execution of a RETURN statement and the effect in the main program is
to terminate execution of the program. The END statement must appear
as the last statement in every program unit.

72 APPLE FORTRAN

CHAPTER 11

INPUT/OUTPUT OPERATIONS
74 I/O Overview
74 Records
75 Files
75 Formatted vs. Unformatted Files

75 Sequential vs. Direct Acccess

76 Internal Files
76 Units
77 Choosing a File Structure

79 I/O Limitations
79 I/O Statements
81 OPEN

83 CLOSE
83 READ
84 WRITE
85 BACKSPACE
85 ENDFILE
85 REWIND

85 Notes on I/O Operations

INPUT/OUTPUT OPERATIONS

I/O OVERVIEW
Input/output (I/O) statements are all statements that transfer data
between the program and any devices attached to your Apple, such as
diskette drives, the Apple's keyboard and screen, a printer, and the
like. Each device to be used as the source or target of I/O is
assigned a unit number. The transfer of data takes place between the
variables in your program and the appropriate device number, both of
which must be properly specified in the I/O statements that indicate
the direction of data transfer. FORMAT statements are used to edit the
form of the data to be transferred.

This chapter discusses the FORTRAN I/O system and statements, and
gives some general considerations that apply to handling files under
the system. The I/O system provided by Apple FORTRAN is a superset of
the ANSI Standard subset FORTRAN 77.

In order to fully understand the I/O statements, it is necessary to be
familiar with a variety of terms and concepts related to the structure
of the FORTRAN I/O system. Most I/O tasks can be accomplished without
a complete understanding of this material and the reader is encouraged
to use this chapter primarily for reference.

Records
The building block of the FORTRAN file system is the Record. A Record
is a sequence of characters or a sequence of values. There are three
kinds of records:

* Formatted
* Unformatted
* Endfile

A formatted record is a sequence of characters terminated by the
character value 13 which corresponds to the RETURN key on the Apple.
Formatted records are interpreted on input in the same way that the
operating system and text editor interpret characters. Thus, reading
characters from formatted records from FORTRAN is identical to other
system programs and other languages on the system.

An unformatted record is a sequence of values, with no system
alteration or interpretation. No physical representation for the end
of record exists.

The system makes it appear as though an endfile record exists, but no
actual record is there.

It should be noted that FORTRAN numbers records starting from 1, but
Pascal numbers records from 0.

74 APPLE FORTRAN

Files

FORTRAN files are sequences of records. FORTRAN files may be either

internal or external.

An external FORTRAN file is a file on a device or a device itself. An

internal FORTRAN file is a character variable that serves as the

source or destination of some I/O action. From this point on, both

FORTRAN files and the notion of a file (as known to the operating

system and to the editor) will be referred to simply as files, with

the context determining which meaning is intended. The OPEN statement

provides the linkage between the two notions of files and, in most

cases, the ambiguity disappears since after opening a file, the two

notions are one and the same.

A file which is being acted upon by a FORTRAN program has a variety of

properties as described below:

* A file may have a name. If present, a name is a character string

identical to the name by which it is known to the UCSD file system.

There may be more than one name for the same file, such as SYS: A. TEXT

and #4: A. TEXT.

* A file has a position property which is usually set by the previous

I/O operation. There is a notion of the initial point in the file, the

terminal point in the file, the current record, the preceding record,

and the next record of the file. It is reasonable to be between

records in a file, in which case the next record is the successor to

the previous record and there is no current record. The file position

after sequential writes is at the end of file, but not beyond the

endfile record. Execution of the ENDFILE statement positions the file

beyond the endfile record, as does a read statement executed at the

end of file (but not beyond the endfile record). Reading an endfile

record may be trapped by the user using the END= option in a READ

statement. Should the end of file record be detected in this manner,

the program can then be directed to branch, or other appropriate

action may be taken.

Formatted vs. Unformatted Files

An external file is opened as either formatted or unformatted. All

internal files are formatted. Files which are formatted consist

entirely of formatted records and files which are unformatted consist

entirely of unformatted records. Files which are formatted obey all

the structural rules of .TEXT files, so that they are fully compatible

with the system editor.

Sequential vs. Direct Access
An external file is opened as either sequential or direct. Sequential

files contain records with an order property determined by the order

in which the records were written. These files must not be read or

written using the REC= option which specifies a position for direct

access I/O. The system will attempt to extend sequential access files

if a record is written beyond the old terminating boundary of the

INPUT OUTPUT OPERATIONS 75

file, but the success of this depends on the existence of room on the
physical device at the end of the file.

Direct access files may be read or written in any order (they are
random access files). Records in a direct access file are numbered
sequentially, with the first record numbered one. All records in a
direct access file have the same length, which is specified at the
time the file is opened. Each record in the file is uniquely
identified by its record number, which was specified when the record
was written. It is entirely possible to write the records out of
order, including, for example, writing record 9, 5, and 11 in that
order without the records in between. It is not possible to delete a
record once written, but it is possible to overwrite a record with a
new value.

It is an error to read a record from a direct access file which has
not been written, but the system will not detect this error unless the
record which is being read is beyond the last record written in the
file. Direct access files must reside on blocked peripheral devices
such as diskettes, so that it is meaningful to specify a position in
the file and reference it. The system will attempt to extend direct
acceos files if an attempt is made to write to a position beyond the
previous terminating boundary of the file, but the success of this
depends on the existence of room on the physical device.

Internal Files
Internal files provide a mechanism for using the formatting
capabilities of the I/O system to convert values to and from their
external character representations. That is, reading a character
variable converts the character values into numeric, logical, or
character values and writing into a character variable allows values
to be converted into their external character representation.

An internal file is a character variable or character array element.
The file has exactly one record, which has the same length as the
character variable or character array element. Should less than the
entire record be written by a WRITE statement, the remaining portion
of the record is filled with blanks. The file position is always at
the beginning of the file prior to I/O statement execution. Only
formatted, sequential I/O is permitted to internal files and only the
I/O statements READ and WRITE may specify an internal file.

Units
A unit is a means of referring to a file. A unit specified in an I/O
statement may be either an external unit specifier or an internal unit
specif ier

.

External unit specifiers are either integer expressions which evaluate
to positive values or the character * which stands for the CONSOLE:
device. In most cases, external unit specifier values represent
physical devices or files resident on those devices by name using the
OPEN statement. After the OPEN statement, FORTRAN I/O statements refer

76 APPLE FORTRAN

to the unit number instead of the name of the external entity. This
continues until an explicit CLOSE occurs or until the program
terminates. The only exception to the above is that the unit value
is initially associated with the CONSOLE: device for reading and
writing and no explicit OPEN is necessary.

CHOOSING A FILE STRUCTURE

FORTRAN provides a multitude of possible file structures. Choosing
from among these may at first seem somewhat confusing. However, two

kinds of files will suffice for most applications.

* An asterisk (*) which specifies the Apple console: This is a

sequential, formatted file, also known as unit 0. This particular unit
has the special property that an entire line terminated by the return
key, must be entered when reading from it, and the various backspace
and line delete keys familiar to the system user serve their normal
functions. Note that reading from any other unit will not have these
properties, even though that unit is bound to the console by an
explicit OPEN statement.

* Explicitly opened external, sequential, formatted files: These files
are bound to a system file by name in an OPEN statement. They can be
read and written in the system text editor format.

Here is an example program which uses the kinds of files discussed in
this chapter for reading and for writing. The various I/O statements
are explained in detail later in this chapter.

C Copy a file with three columns of integers, each 7 columns wide
C from a file whose name is input by the user to another file named
C OUT. TEXT reversing the positions of the first and second column.

PROGRAM COLSWP
CHARACTER*23 FNAME

C Prompt to the CONSOLE: by writing to *

WRITE (*, 900)
900 FORMAT ('Input file name - '$)

C Read the file name from the CONSOLE: by reading from *

READ (*, 910) FNAME
910 FORMAT (A)

C Use unit 3 for input, any unit number except will do

OPEN (3 , FILE=FNAME

)

C Use unit 4 for output, any unit number except and 3 will do

OPEN (4 , FILE='0UT. TEXT' , STATUS='NEW'

)

C Read and write until end of file
100 READ(3,920,END=200)I,J,K

WRITE(4,920)J,I,K
920 FORMAT (317)

GOTO 100

200 WRITE(*,910)'Done'
END

INPUT/OUTPUT OPERATIONS 77

The less commonly used file structures are appropriate for certain
classes of applications. A very general indication of the intended
usages for them follows: If the I/O is to be random access, such as in

maintaining a database, direct access files are probably necessary. If

the data is to be written by FORTRAN and reread by FORTRAN on the same
type of system, unformatted files are more efficient both in file

space and in I/O overhead. The combination of direct and unformatted
is ideal for a database created, maintained, and accessed exclusively
by FORTRAN. If the data must be transferred without any system

interpretation, especially if all 256 possible bytes will be
transferred, unformatted I/O will be necessary, since .TEXT files may

contain only the printable character set as data.

A good example of unformatted I/O would be the control of a device

which has a single byte, binary interface. Formatted I/O would
interpret certain characters, such as the ASCII representation for

carriage return, and fail to pass them through to the program
unaltered. Internal files are not I/O in the conventional sense but

rather provide certain character string operations and conversions.

Use of formatted direct access files requires special caution. FORTRAN

formatted files attempt to comply with the operating system rules for

.TEXT files. The FORTRAN I/O system is able to enforce these rules for
sequential files but it cannot always enforce them for direct access

files. Direct access files are not necessarily legal .TEXT files since
any unwritten record "holes" contain undefined values which do not

follow .TEXT file conventions. Direct files do obey FORTRAN I/O rules.

A file opened in FORTRAN is either old or new. An old file just means
one that already exists, while a new one is being used for the first

time. There is no concept of opened for reading as distinguished from
opened for writing. Therefore, you may open old files and write to

them, with the effect of modifying existing files. Similarly, you may

alternately write and read to the same file, providing that you avoid
reading beyond end of file or trying to read unwritten records in a

direct file. A write to a sequential file effectively deletes any

records which had existed beyond the freshly written record. Normally,
when a device is opened as a file, such as CONSOLE: or PRINTER:, it

makes no difference whether the file is opened as old or new. With
diskette files, opening a file with STATUS='NEW' creates a new
temporary file. If that file is closed using the keep option, or if

the program is terminated without doing a CLOSE on that file, a

permanent file is created with the name given when the file was

opened. If a previous file existed with the same name, it is deleted.

If closed using the delete option, the newly created temporary file is

deleted, and any previous file of the same name is left intact.
Opening a diskette file as old that does not exist, will generate a

run-time error. Note that within FORTRAN, it is safer to explicitly

CLOSE a file that was OPENed.

78 APPLE FORTRAN

I/O LIMITATIONS

Within the FORTRAN I/O system, there are limitations pertaining to

direct access files, backspacing, and function calls within I/O
statements. These limitations are discussed in this section.

The operating system has two kinds of devices, blocked and sequential.
A sequential file may be thought of as a stream of characters, with no
explicit motion allowed except reading and/or writing. The CONSOLE:
and PRINTER: are examples of sequential devices. Blocked devices, such
as diskette files, have the additional operation of seeking a specific
location. They can be accessed either sequentially or randomly and
thus can support direct files. Since there is no notion of seeking a
position on a file which is not blocked, the FORTRAN I/O system does
not allow direct file access to sequential devices.

Sequential devices cannot be backspaced meaningfully under the Apple
Pascal operating system, so the FORTRAN I/O system disallows
backspacing a file on a sequential device.

BACKSPACE may not be used with unformatted sequential files. It was
not possible to implement BACKSPACE on unformatted sequential files
because there is no indication in the file itself of the record
boundaries. It would be possible to append end of record marks to
unformatted sequential files, but this would conflict with the idea of

an unformatted file being a pure sequence of values. It would also
interfere with the most common usage for such files; the direct
control of an external instrument. Direct files contain records of
fixed and specified length, so it is possible to backspace direct

unformatted files. Refer to the BACKSPACE Section in this chapter for
more information on the BACKSPACE statement.

There is also a limitation on calling functions within an individual
I/O statement. During the course of executing any I/O statement, the
evaluation of an expression may cause a function to be called. That
function call must not cause any I/O statement to be executed.

I/O STATEMENTS
I/O statements that are available from FORTRAN are as follows: OPEN,

CLOSE, READ, WRITE, BACKSPACE, ENDFILE, and REWIND.

In addition, there is an I/O intrinsic function called EOF that
returns a logical value indicating whether the file associated with
the unit specifier passed to it is at end of file. A familiarity with
the FORTRAN file system, units, records, and access methods as

described in the previous sections is assumed for the purpose of

describing these statements.

The various I/O statements use certain parameters and arguments which
specify sources and destinations of data transfer, as well as other

INPUT OUTPUT OPERATIONS 79

facets of the I/O operation. The abbreviations for these are used in

the descriptions of the statements and explained below.

The unit specifier, u, can take one of these forms in an I/O
statement

:

* An asterisk (*) refers to the CONSOLE :

.

* An integer expression refers to external file with unit number equal
to the value of the expression (* is unit number 0).

* A name of a character variable or character array element refers to
the internal file which is the character datum.

The format specifier, f, can take one of these forms in an I/O
statement

:

* A statement label that refers to the FORMAT statement labeled by
that label.

* An integer variable name that refers to the FORMAT label which that
integer variable has been assigned to using the ASSIGN statement.

* A character expression that is specified as the current value of the
character expression.

The input-output list, or iolist, specifies the entities whose values
are transferred by READ and WRITE statements. An iolist is a comma-
separated list of items which consist of:

* Input or Output entities

* Implied DO lists

An input entity may be specified in the i/t) list of a READ statement
and is of one of these forms:

* Variable name

* Array element name

* Array name which is a means of specifying all of the elements of the
array in storage sequence order.

An output entity may be specified in the iolist of a WRITE statement
and is of one of these forms:

* Variable name.

* Array element name.

* Array name: This is a means of specifying all of the elements of the
array in storage sequence order.

80 APPLE FORTRAN

* Any other expression not beginning with the character '(' to

distinguish implied DO lists from expressions.

Implied DO lists may be specified as items in the iolist of READ and

WRITE statements and are of the form:

(iolist, i = el, e2 [, e3]

)

where the iolist is as above, including nested implied DO lists, and
i, el, e2 and the optional e3 are as defined for the DO statement.
That is, i is an integer variable and el, e2, and e3 are integer

expressions. In a READ statement, the DO variable i or any associated
entity must not appear as an input list item in the embedded iolist,

but may have been read in the same READ statement outside of the

implied DO list. The embedded iolist is effectively repeated for each
iteration of i with appropriate substitution of values for the DO

variable i.

The following I/O statements are supported in the FORTRAN system. The

possible form for each statement is specified first, with an

explanation of the meanings for the forms following. Certain items are

specified as required if they must appear in the statement and are

specified as optional if they need not appear. The defaults are

indicated for optional items. All punctuation marks, parentheses, and
the like must be entered exactly as shown. Optional parameters and

other items are enclosed in brakets [] . Commas within brackets are

required if the bracketed parameters are used. The single quotes
within the brackets are likewise required if the optional parameter is

used. Lower case items in the statement descriptions are explained.

OPEN
OPEN (u,FILE=fname [,ACCESS=' '][,STATUS=' '][,F0RM=' '

] [,RECL=rl]

)

0PEN(u Required, must appear as the first

argument. Must not be internal unit

specifier.

,FILE=fname The file name, fname, is a character
expression. This argument to OPEN is

required and must appear as the

second argument.

INPUT/OUTPUT OPERATIONS 81

The following arguments are all optional and may appear in any order.
The options are character constants with optional trailing blanks
except RECL=. Defaults are indicated.

, STATUS='OLD' or Default, for reading or writing
existing files.

'NEW' For writing new files.

,ACCESS=' SEQUENTIAL' or Default.
'DIRECT'

,FORM=' FORMATTED' or Default.
"UNFORMATTED'

,RECL=rl) The record length rl is an integer
expression. This argument to OPEN
is for direct access files only, for
which it is required.

The OPEN statement binds a unit number with an external device or file
on an external device by specifying its file name. If the file is to
be direct, the RECL=rl option specifies the length of the records in
that file.

Note that STATUS='OLD' is the default. To open a new file, you must
specify STATUS ='NEW' in the OPEN statement.

If a file is to be written to a printer, the format of the OPEN
statement must be:

OPEN(X,FILE='PRINTER: ') where X is an integer.

Example program fragment 1:

C Prompt user for a file name
WRITE(*,' (A$)') 'Specify output file name - '

C Presume that FNAME is specified to be CHARACTER*23
C Read the file name from the CONSOLE:

READ (*,' (A) ') FNAME
C Open the file as formatted sequential as unit 7, note that the
C ACCESS specified need not have appeared since it is the defaults

OPEN (7 ,FILE=FNAME, ACCESS =' SEQUENTIAL ' , STATUS =' NEW')

;

Example program fragment 2:

C Open an existing file created by the editor called DATA 3. TEXT
C as unit #3

OPEN (3, FILE= 'DATA3 . TEXT '

)

82 APPLE FORTRAN

CLOSE
CLOSE (u [,STATUS=' '])

CLOSE (u Required. Must appear as the first

argument. Must not be internal unit

specifier.

, STATUS='KEEP')
Optional argument which applies only

, STATUS='DELETE') to files opened NEW, default is KEEP.
The option is character constant.

CLOSE disconnects the unit specified and prevents subsequent I/O from

being directed to that unit unless the same unit number is reopened,

possibly bound to a different file or device. Files opened NEW are

temporaries and discarded if STATUS =' DELETE' is specified. Normal

termination of a FORTRAN program automatically closes all open files

as if CLOSE with STATUS='KEEP' had been specified. It is generally

safer, however, to explicitly CLOSE all files.

Example program fragment:

C Close the file opened in OPEN example, discarding the file

CL0SE(7,STATUS='DELETE')

READ
READ (u [

, f] [,REC=rn] [,END=s]) iolist

READ (u Required, must be first argument.

t f Required for formatted read as second

argument, must not appear for

unformatted read.

,REC=rn For direct access only, otherwise error.

Positions to record number rn, where rn

is a positive integer expression. If

omitted for direct access file, reading

continues from the current position in

the file.

,END=s) Optional, statement label. If not

present, reading end of file results in

a run time error. If present,
encountering an end of file condition

results in the transfer to the

executable statement labeled s which
must be in the same program unit as the

READ statement.

iolist See description above. Note closing

parentheses follows last of above
parameters and immediately precedes the

iolist

.

INPUT/OUTPUT OPERATIONS 83

The READ statement sets the items in iolist, assuming that no end of
file or error condition occurs. If the read is internal, the character
variable or character array element specified is the source of the
input, otherwise the external unit is the source.

Example program fragment:

C Need a two dimensional array for the example
DIMENSION IA(10,20)

C Read in bounds for array off first line, hopefully less than
C 10 and 20. Then read in the array in nested implied DO lists
C with input format of 8 columns of width 5 each.

READ (3,990)I,J, ((IA(I,J) , J=l , J) , 1=1 , 1, 1

)

990 FORMAT (215/, (815))

WRITE
WRITE (u[,f] [,REC=rn]) iolist

Required, must be first argument.

Required for formatted write as

second argument, must not appear for
unformatted write.

For direct access only, otherwise
error. Positions to record number
rn, where rn is a positive integer
expression. If omitted for direct
access file, writing continues at
the current position in the file.

Note parentheses after last parameter
and immediately before iolist.

The WRITE statement transfers the iolist items to the unit specified.
If the write is internal, the character variable or character array
element specified is the destination of the output, otherwise the
external unit is the destination.

Example program fragment:

C Place message: "One = 1, Two = 2, Three = 3" on the CONSOLE:
C not doing things in the simplest way!

WRITE(*,980)'One =',l,l+l,'ee = ',+(1+1+1)
980 FORMAT (A, 12, ' , Two =',1X,I1,', Thr',A,Il)

WRITE (u

,f

, REC=rn

) iolist

84 APPLE FORTRAN

BACKSPACE
BACKSPACE u Unit is not internal unit specifier.

Only useable with blocked devices
that are set up for direct access or
are both sequential and formatted.

BACKSPACE causes the file connected to the specified unit to be
positioned before the preceding record. The file position is not

changed if there is no preceding record. If the preceding record is

the endfile record, however, the file becomes positioned before the
endfile record.

ENDFILE
ENDFILE u Unit is not an internal unit

specif ier

.

ENDFILE writes an end of file record as the next record of the file
that is connected to the specified unit. The file is then positioned

after the end of file record. This prohibits any further sequential
data transfer until either a BACKSPACE or REWIND is executed. If an

ENDFILE is written on a direct access file, all records written beyond
the position of the new end of file disappear.

REWIND
REWIND u

Execution of a REWIND statement
specified unit to be positioned

Unit is not an internal unit
specif ier

.

causes the file associated with tue

at its initial point.

NOTES ON I/O OPERATIONS

1. Any function referenced in an expression within an I/O statement

cannot cause any I/O statement to be executed.

2. The ANSI Standard subset FORTRAN 77 language includes only

formatted sequential files and unformatted direct (random access)

files. As in the full ANSI Standard FORTRAN 77, Apple FORTRAN has all
combinations of formatted, unformatted, sequential, and direct access
files, with these restrictions:

* Unformatted sequential access files do not support the BACKSPACE

operation.

* Direct access files must be connected to blocked devices such as

disk drives, since only these devices can implement random access.

* The BACKSPACE operation is only supported when using files connected
to blocked devices, since it depends on random access to the files.

INPUT/OUTPUT OPERATIONS 85

3. Since the Apple system is interactive, it is sometimes desirable to

be able to write or read partial records in formatted READ and WRITE
statements. In order to accomplish this, the dollar sign format
control inhibits advancing to the next record when the next record is
also the last format control executed in a READ or WRITE operation.
This allows interactive prompting and reading from the console on the
same line of the screen instead of having to prompt on one line and
take user input from the next one. This also gives you the ability to
read and write formatted files in units smaller than one record. On
input, formatted records are almost infinitely extended with blanks
(ASCII space character, decimal code 32) to satisfy multiple read
operations until the next record is explicitly called for.

For convenient interaction with the console, you will find that
several features have been included in the FORTRAN system. ANSI
FORTRAN specifies that devices may be preconnected without an OPEN
statement, and that one such device may be given the special unit
number and may also be referred to with the character *. In Apple
FORTRAN, the preconnected unit * is connected to the CONSOLE: device,
for reading and writing to the user of the system when a FORTRAN
program is executing. Reading from this unit will continue until
terminated by a RETURN character (ASCII CR, decimal 13). In addition,
this unit supports the backspace key (ASCII DEL, decimal 127) to
delete one character at a time as well as the line rubout key (ASCII

DLE, decimal 16) to delete the entire line entered since the last
RETURN.

The preconnected unit feature in conjunction with the end of record
inhibitor $ for writing on the CONSOLE:, the infinite blank extension,
and the standard BN format control option allow for very convenient
interaction. Here's an example of one-line prompting:

WRITE(*,900)'Input a five digit integer: '

900 FORMAT (A$

)

READ (* , 910)

I

910 FORMAT (BN, 15)

This example prompts without a terminating carriage return after the

first WRITE statement and the cursor is left one space beyond the word
'integer:'. If the program user then typed the digits 123 and then
pressed RETURN, it would be interpreted as the number 123, since the
record is automatically blank-extended two columns to satisfy the 15,
and the BN edit control right-justifies the 123 input in the edit
field.

Don't confuse the use of the * in FORTRAN I/O statements with the use
of the same character by the Pascal operating system to specify the
volume name of the system or boot diskette. There is no real ambiguity
here, because the context of these two usages is different. The unit *

always means the CONSOLE: when it appears in READ and WRITE
statements; the unit * will never appear in OPEN statements because it
is preconnected. The volume * can and does appear in OPEN statements

86 APPLE FORTRAN

where it can be a part of a complete file name specification. The *

boot diskette volume name will never appear in a READ or WRITE
statement because only the unit number associated to it will appear
there

.

4. To make interactive access to the Pascal operating system file
manager possible, the OPEN statement contains a reference to a Pascal
operating system filename. The following program fragment prompts for
a filename to be used as an input file to be connected to unit 3:

CHARACTER*23 FNAME
WRITE (*, 920) 'File name for input:'

920 FORMAT (A$)
READ (*, 930) FNAME

930 FORMAT (A)

OPEN (3 ,FILE=FNAME)

Unformatted files are ideal for control of I/O devices which require
or produce arbitrary bit-patterns. The files are "pure" to FORTRAN,
with no end-of-record marks provided or expected by the system, and
with no character interpretation done at the system level. Patterns
such as those that correspond to characters with values 13 (RETURN on
the keyboard) and 16 (DLE), which ordinarily have special meanings
when treated as ASCII characters, are passed directly through the I/O
system. Thus, instrument control or monitoring applications can be
programmed in a straightforward manner. Unformatted I/O is also quite
a bit more efficient than the formatted I/O procedures in execution
time and in file-space required. Data bases that will be reread by
FORTRAN should usually be written as unformatted files.

INPUT/OUTPUT OPERATIONS 87

APPLE FORTRAN

CHAPTER 12

FORMATTED I/O

90 Introduction
90 Formatting I/O

91 Formatting and the I/O List

92 Nonrepeatable Edit Descriptors
92 Apostrophe Editing
93 H Hollerith Editing

93 X Positional Editing
93 / Slash Editing
93 $ Dollar Sign Editing

94 P Scale Factor Editing
94 BN/BZ Blank Interpretation
94 Repeatable Edit Descriptors

95 I Integer Editing
95 F Real Editing
95 E Real Editing

96 L Logical Editing
96 A Character Editing

FORMATTED I/O

INTRODUCTION

This chapter describes formatted I/O and the FORMAT statement. Some
familiarity with the FORTRAN file system, units, records, access
methods, and I/O statements as described in the previous chapter is

assumed

.

FORMATTING I/O

If a READ or WRITE statement specifies a format, in parentheses
immediately following the READ or WRITE statement, it is considered a
formatted, rather than an unformatted I/O statement. Such a format may
be specified in one of three ways, as explained in the previous
chapter. Two ways refer to FORMAT statements and one is an immediate
format in the form of a character expression containing the format
itself. The following are all valid and equivalent means of specifying
a format:

WRITE(*, 990)1, J,K
990 FORMAT (215, 13)

ASSIGN 990 TO IFMT

990 FORMAT(2I5,I3)
WRITE(*,IFMT)I, J,K

WRITE (*,' (2I5,I3)')I, J,K

CHARACTER*8 FMTCH
FMTCH = '(215,13)'
WRITE(*,FMTCH)I, J,K

The format specification itself must begin with a left or opening
parenthesis, possibly following initial blank characters. It must end

with a matching closing or right parenthesis. Characters beyond the
closing parenthesis are ignored.

FORMAT statements must be labeled, and like all nonexecutable
statements, may not be the target of a branching operation.

Between the initial and terminating parentheses is a list of items,
separated by commas, each of which is one of these:

[r] ed - repeatable edit descriptors

ned - nonrepeatable edit descripors

[r] fs - a nested format specification. At most 3 levels of

nested parentheses are permitted within the outermost level.

90 APPLE FORTRAN

where r is an optional, nonzero, unsigned, integer constant called a

repeat specification. The comma separating two list items may be

omitted if the resulting format specification is still unambiguous,

such as after a P edit descriptor or before or after the / edit

descriptor

.

The repeatable edit descriptors, explained in detail below, are:

Iw

Fw.d
Ew.d

Ew.dEe
Lw
A
Aw

where I, F, E, L, and A indicate the manner of editing and,

w and e are nonzero, unsigned, integer constants, and

d is an unsigned integer constant.

The nonrepeatable edit descriptors, also explained in detail

below, are:

'xxxx' - character constants of any length

nHxxxx - another means of specifying character constants

nX

/

$

kP
BN

BZ

where apostrophe, H, X, slash, dollar sign, P, BN, and BZ indicate the

manner of editing and,

x is any ASCII character,

n is a nonzero, unsigned, integer constant, and

k is an optionally signed integer constant.

FORMATTING AND THE I/O LIST

Before describing in greater detail the manner of editing specified by

each of the above edit descriptors, it should be understood how the

format specification interacts with the input/output list (iolist) in

a given READ or WRITE statement.

If an iolist contains one or more items, at least one repeatable edit

descriptor is required in the format specification. In particular, the

empty edit specification, (), may be used only if no items are

specified in the iolist, in which case the only action caused by the

I/O statement is the implicit record skipping action associated with

FORMATTED I O 91

formats. Each item in the iolist will become associated with a
repeatable edit descriptor during the I/O statement execution. In
contrast, the remaining format control items interact directly with
the record and do not become associated with items in the iolist.

The items in a format specification are interpreted from left to
right. Repeatable edit descriptors act as if they were present r
times; omitted r is treated as a repeat factor of 1. Similarly, a
nested format specification is treated as if its items appeared r
times

.

The formatted I/O process proceeds as follows: The format controller
scans the format items in the order indicated above. When a
repeatable edit descriptor is encountered, either:

* A corresponding item appears in the iolist in which case the item
and the edit descriptor become associated and I/O of that item
proceeds under format control of the edit descriptor, or

* The format controller terminates I/O.

If the format controller encounters the matching right parentheses of
the format specification and there are no further items in the iolist,
the format controller terminates I/O. If, however, there are further
items in the iolist, the file is positioned at the beginning of the
next record and the format controller continues by rescanning the
format starting at the beginning of the format specification
terminated by the last preceding right parenthesis. If there is no
such preceding right parenthesis, the format controller will rescan
the format from the beginning. Within the portion of the format
rescanned, there must be at least one repeatable edit descriptor.
Should the rescan of the format specification begin with a repeated
nested format specification, the repeat factor is used to indicate the
number of times to repeat that nested format specification. The rescan
does not change the previously set scale factor or BN or BZ blank
control in effect. When the format controller terminates, the
remaining characters of an input record are skipped or an end of
record is written on output, except as noted under the $ edit
descriptor

.

NONREPEATABLE EDIT DESCRIPTORS

Here are the detailed explanations of the various format specification
descriptors, beginning with the nonrepeatable edit descriptors.

Apostrophe Editing
The apostrophe edit descriptor has the form of a character constant.
Embedded blanks are significant and double " are interpreted as a
single '. Apostrophe editing may not be used for input (READ). It
causes the character constant to oe transmitted to the output unit.

92 APPLE FORTRAN

H Hollerith Editing
The nH edit descriptor causes the following n characters, including

blanks, to be transmitted to the output. Hollerith editing may not to

be used for input (READ).

Examples of Apostrophe and Hollerith editing:

C Each write outputs characters between the slashes: /ABC'DEF/

WRITE (*, 970)
970 FORMAT ('ABC'DEF')

WRITE (*,' ("ABC DEF")
'

)

WRITE (*,' (7HABC"DEF) '
)

WRITE(*,960)
960 FORMAT (7HABCDEF)

X Positional Editing
On input (READ), the nX edit descriptor causes the file position to

advance over n characters, thus the next n characters are skipped. On

output (WRITE), the nX edit descriptor causes n blanks to be written,

providing that further writing to the record occurs, otherwise, the nX

descriptor results in no operation.

/ Slash Editing
The slash indicates the end of data transfer on the current record. On

input, the file is positioned to the beginning of the next record. On

output, an end of record is written and the file is positioned to

write on the beginning of the next record.

$ Dollar Sign Editing
Normally when the format controller terminates, the end of data

transmission on the current record occurs. If the last edit descriptor

encountered by the format controller is the dollar sign, this

automatic end of record is inhibited. This allows subsequent I/O

statements to continue reading or writing out of or into the same

record. The most common use for this mechanism is to prompt the user

to respond on the keyboard, and to READ a response off the same line

as in

:

WRITE (*,' (A$)') 'Input an integer ->

READ (*
,

' (BN,I6)') I

The dollar sign edit descriptor does not inhibit the automatic end of

record generated when reading from the * unit. Input from the CONSOLE:

must always be terminated by the return key. This permits the

backspace character and the line delete key to function properly.

FORMATTED I/O 93

P Scale Factor Editing
The kP edit descriptor is used to set the scale factor for subsequent
F and E edit descriptors until another kP edit descriptor is
encountered. At the start of each I/O statement, the scale factor
begins at 0. The scale factor effects format editing in the following
ways

:

* On input, with F and E editing, providing that no explicit exponent
exists in the field, and F with output editing, the externally
represented number equals the internally represented number multiplied
by 10**k.

* On input, with F and E editing, the scale factor has no effect if
there is an explicit exponent in the input field.

* On output, with E editing, the real part of the quantity is output
multiplied by 10**k and the exponent is reduced by k, effectively
altering the column position of the decimal point but not the value
output

•

BN/BZ Blank Interpretation
These edit descriptors specify the interpretation of blanks in numeric
input fields. The default, BZ , is set at the start of each I/O
statement. This makes blanks, other than leading blanks, identical to
zeros. If a BN edit descriptor is processed by the format controller,
blanks in subsequent input fields will be ignored until a BZ edit
descriptor is processed. The effect of ignoring blanks is to take all
the non-blank characters in the input field, and treat them as if they
were right-justified in the field with the number of leading blanks
equal to the number of ignored blanks. For instance, the following
READ statement accepts the characters shown between the slashes as the
value 123 where <cr> indicates hitting the return key:

READ(*,100) I

100 FORMAT (BN, 16)

/123 <cr>/,

/123 456<cr>/,
/123<cr>/, or

/ 123<cr>/.

The BN edit descriptor, in conjunction with infinite blank padding at
the end of formatted records, makes interactive input very convenient.

REPEATABLE EDIT DESCRIPTORS
The I, F, and E edit descriptors are used for I/O of integer and real
data. The following general rules apply to all three of them:

94 APPLE FORTRAN

* On input, leading blanks are not significant. Other blanks are

interpreted differently depending on the BN or BZ flag in effect, but

all blank fields always become the value 0. Plus signs are optional.

* On input, with F and E editing, an explicit decimal point appearing

in the input field overrides the edit descriptor specification of the

decimal point position.

* On output, the characters generated are right justified in the field

with padding leading blanks if necessary.

* On output, if the number of characters produced exceeds the field

width or the exponent exceeds its specified width, the entire field is

filled with asterisks.

I Integer Editing
The edit descriptor Iw must be associated with an iolist item which is

of type integer. The field width is w characters in length. On input,

an optional sign may appear in the field. The general rules of numeric

editing apply to the I edit descriptor.

F Real Editing
The edit descriptor Fw.d must be associated with an iolist item which

is of type real. The width of the field is w positions, the fractional

part of which consists of d digits. The input field begins with an

optional sign followed by a string of digits optionally containing a

decimal point. If the decimal point is present, it overrides the d

specified in the edit descriptor, otherwise the rightmost d digits of

the string are interpreted as following the decimal point. Leading

blanks are converted to zeros if necessary. Following this is an

optional exponent which is one of these:

* Plus or minus followed by an integer.

* E or D followed by zero or more blanks followed by an optional sign

followed by an integer. E and D are treated identically.

The output field occupies w digits, d of which fall beyond the decimal

point and the value output is controlled both by the iolist item and

the current scale factor. The output value is rounded rather than

truncated

.

The general rules of numeric editing apply to the F edit descriptor.

E Real Editing
An E edit descriptor either takes the form Ew.d or Ew.dEe. In either

case the field width is w characters. The e has no effect on input.

The input field for an E edit descriptor is identical to that

described by an F edit descriptor with the same w and d. The form of

the output field depends on the scale factor set by the P edit

descriptor that is in effect. For a scale factor of 0, the output

FORMATTED I O 95

field is a minus sign if necessary, followed by a decimal point,
followed by a string of digits, followed by an exponent field for
exponent, exp , of one of the following forms:

Ew.d -99 <= exp <= 99

-((10**e) - 1) <=

Ew.dEe exp
<= (10**e) -1

E followed by plus or minus followed
by the two digit exponent.

E followed by plus or minus followed
by e digits which are the exponent
with possible leading zeros.

The form Ew.d must not be used if the absolute value of the exponent
to be printed exceeds 999.

The scale factor controls the decimal normalization of the printed E
field. If the scale factor, k, is in the range -d < k <= then the
output field contains exactly -k leading zeros after the decimal point
and d + k significant digits after this. If < k < d+2 then the
output field contains exactly k significant digits to the left of the
decimal point and d - k - 1 places after the decimal point. Other
values of k are errors.

The general rules of numeric editing apply to the E edit descriptor.

L Logical Editing
The edit descriptor is Lw, indicating that the field width is w
characters. The iolist element which becomes associated with an L edit
descriptor must be of type logical. On input, the field consists of
optional blanks, followed by an optional decimal point, followed by T
(for .TRUE.) or F (for .FALSE.). Any further characters in the field
are ignored, but accepted on input, so that .TRUE. and .FALSE. are
valid inputs. On output, w - 1 blanks are followed by either T or F as
appropriate.

A Character Editing
The forms of the edit descriptor are A or Aw, in which the former
acquires an implied field width, w, from the number of characters in
the iolist item with which it becomes associated. The iolist item must
be of the character type if it is to be associated with an A or Aw
edit descriptor. On input, if w exceeds or equals the number of
characters in the iolist element, the rightmost characters of the
input field are used as the input characters, otherwise the input
characters are left justified in the input iolist item and trailing
blanks are provided. On output, if w should exceed the characters
produced by the iolist item, leading blanks are provided, otherwise,
the leftmost w characters of the iolist item are output.

96 APPLE FORTRAN

CHAPTER 13

PROGRAM UNITS

98 Introduction
98 Main Programs
98 Subroutines

98 SUBROUTINE Statement
99 CALL Statement

1(20 Functions
100 External Functions
101 Intrinsic Functions
102 Table of Intrinsic Functions
105 Statement Functions
106 The RETURN Statement

106 Parameters

PROGRAM UNITS

INTRODUCTION
This chapter describes the format of program units. A program unit is
either a main program, a subroutine, or a function program unit. The
term procedure is used to refer to either a function or a subroutine.
This chapter also describes the CALL and RETURN statements as well as
function calls.

MAIN PROGRAMS
A main program is any program unit that does not have a FUNCTION or
SUBROUTINE statement as its first statement. It may have a PROGRAM
statement as its first statement. The execution of a FORTRAN program
always begins with the first executable statement in the main
program. Consequently, there must be one and only one main program in
every executable program. The form of a PROGRAM statement is:

PROGRAM pname

where: pname is a user defined name that is the name of the main
program.

The name, pname, is a global name. Therefore, it cannot be the same
as another external procedure's name or a common block's name. It is
also a local name to the main program, and must not conflict with any

other local name. The PROGRAM statement may only appear as the first
statement of a main program.

SUBROUTINES
A subroutine is a program unit that can be called from other program
units by a CALL statement. When called, it performs the set of

actions defined by its executable statements, and then returns control
to the statement immediately following the statement that called it.

A subroutine does not directly return a value, although values can be
passed back to the calling program unit via parameters or common
variables

.

SUBROUTINE Statement
A subroutine begins with a SUBROUTINE statement and ends with the

first following END statement. It may contain any kind of statement
other than a PROGRAM statement or a FUNCTION statement. The form of

a SUBROUTINE statement is:

98 APPLE FORTRAN

SUBROUTINE sname [([farg [, farg]...])]

where: sname is the user defined name of the subroutine.

farg is a user defined name of a formal argument.

The name, sname, is a global name, but it is also local to the

subroutine it names. The list of argument names defines the number

and, with any subsequent IMPLICIT, type, or DIMENSION statements, the

type of arguments to that subroutine. Argument names cannot appear in

COMMON, DATA, EQUIVALENCE, or INTRINSIC statements.

CALL Statement
A subroutine is executed as a consequence of executing a CALL

statement in another program unit that references that subroutine.
The form of a CALL statement is:

CALL sname [([arg [,arg]...])]

where: sname is the name of a subroutine.

arg is an actual argument.

An actual argument may be either an expression or the name of an

array. The actual arguments in the CALL statement must agree in type

and number with the corresponding formal arguments specified in the

SUBROUTINE statement of the referenced subroutine. If there are no

arguments in the SUBROUTINE statement, then a CALL statement

referencing that subroutine must not have any actual arguments, but

may optionally have a pair of parentheses following the name of the

subroutine. Note that a formal argument may be used as an actual

argument in another subprogram call.

Execution of a CALL statement proceeds as follows: All arguments that

are expressions are evaluated. All actual arguments are associated

with their corresponding formal arguments, and the body of the

specified subroutine is executed. Control is returned to the

statement following the CALL statement upon exiting the subroutine, by

executing either a RETURN statement or an END statement in that

subroutine.

A subroutine specified in any program unit may be called from any

other program unit within the same executable program. Recursive

subroutine calls, however, are not allowed in FORTRAN. That is, a

subroutine cannot call itself directly, nor can it call another
subroutine that will result in that subroutine being called again

before it returns control to its caller.

PROGRAM UNITS 99

FUNCTIONS
A function is referenced in an expression and returns a value that is
used in the computation of that expression. There are three kinds of
functions: external functions, intrinsic functions, and statement
functions. This section describes the three kinds of functions.

A function reference may appear in an arithmetic expression.
Execution of a function reference causes the function to be evaluated,
and the resulting value is used as an operand in the containing
expression. The form of a function reference is:

fname ([arg [,arg]...])

where: fname is the name of an external, intrinsic, or statement
function.

arg is an actual argument.

An actual argument may be an arithmetic expression or an array. The
number of actual arguments must be the same as in the definition of
the function, and the corresponding types must agree.

External Functions
An external function is specified by a function program unit. It
begins with a FUNCTION statement and ends with an END statement. It
may contain any kind of statement other that a PROGRAM statement, a
FUNCTION statement, or a SUBROUTINE statement. The form of a FUNCTION
statement is:

[type] FUNCTION fname ([farg [, farg]...])

where: type is one of INTEGER, REAL, or LOGICAL.

fname is the user defined name of the function.

farg is a formal argument name.

The name, fname, is a global name, and it is also local to the
function it names. If no type is present in the FUNCTION statement,
the function's type is determined by default and any subsequent
IMPLICIT or type statements that would -determine the type of an
ordinary variable. If a type is present, then the function name
cannot appear in any additional type statements. In any event, an
external function cannot be of type character. The list of argument
names defines the number and, with any subsequent IMPLICIT, type, or
DIMENSION statements, the type of arguments to that subroutine.
Neither argument names nor fname can appear in COMMON, DATA,
EQUIVALENCE, or INTRINSIC statements.

The function name must appear as a variable in the program unit
defining the function. Every execution of that function must assign a
value to that variable. The final value of this variable, upon

100 APPLE FORTRAN

execution of a RETURN or an END statement, defines the value of the

function. After being defined, the value of this variable can be

referenced in an expression, exactly like any other variable. An

external function may return values in addition to the value of the

function by assignment to one or more of its formal arguments.

Intrinsic Functions
Intrinsic functions are functions that are predefined by the FORTRAN

compiler and are available for use in a FORTRAN program. The table

following this section gives the name, definition, number of

parameters, and type of the intrinsic functions available in Apple

FORTRAN 77. An IMPLICIT statement does not alter the type of an

intrinsic function. For those intrinsic functions that allow several

types of arguments, all arguments in a single reference must be of the

same type.

An intrinsic function name may appear in an INTRINSIC statement, but

only those intrinsic functions listed in the table may do so. An

intrinsic function name also may appear in a TYPE statement, but only

if the type is the same as the standard type of that intrinsic

function.

Arguments to certain intrinsic functions are limited by the definition

of the function being computed. For example, the logarithm of a

negative number is mathematically undefined, and therefore not

allowed

.

PROGRAM UNITS 101

TABLE OF INTRINSIC FUNCTIONS

Intrinsic
Function Definition

No.

Args Name
Type

Argument
of

Function

Type Conversion Conversion
to Integer
int (a)

See Note 1

1 INT
IF IX

Real
Real

Integer
Integer

Conversion
to Real

See Note 2

1 REAL
FLOAT

Integer
Integer

Real
Real

Conversion
to Integer

See Note 3

1 ICHAR Character Integer

Conversion
to Character

1 CHAR Integer Character

Truncation int (a)

See Note 1

1 AINT Real Real

Nearest Whole
Number

int(a+.5) a>=0
int (a-. 5) a<0

1 ANINT Real Real

Nearest Integer int(a+.5) a>=0
int(a-.5) a<0

1 NINT Real Integer

Absolute Value Ia| 1

1

IABS

ABS

Integer

Real

Integer

Real

Remaindering al-int(al/a2)*a2
See Note 1

2 MOD

AMOD
Integer
Real

Integer
Real

Transfer of Sign
I

a 1
j

if a2>=0

-|al| if a2<0
2 ISIGN

SIGN

Integer

Real

Integer

Real

Positive
Dif f erence

al-a2 if al>a2
if al<=a2

2 IDIM
DIM

Integer
Real

Integer
Real

102 APPLE FORTRAN

TABLE OF INTRINSIC FUNCTIONS - Continued

Intrinsic
Function Definition

No.

Args. Name
Type

Argument
of

Function

Choosing Largest
Value

max (a 1 ,a2, . . •

)

>=2 MAX0
AMAX1

Integer
Real

Integer
Real

AMAX0
MAX1

Integer
Real

Real
Integer

Choosing Small-
est Value

min(a 1 , a2, • • •

)

>=2 MIN0
AMINl

Integer
Real

Integer
Real

AMIN0
MINI

Integer
Real

Real
Integer

Square Root a**0.

5

1 SQRT Real Real

Exponential e**a 1 EXP Real Real

Natural Logarithm log(a) 1 ALOG Real Real

Common Logarithm logl0(a) 1 ALOG10 Real Real

Sine sin (a) 1 SIN Real Real

Cosine cos (a) 1 COS Real Real

Tangent tan(a) 1 TAN Real Real

Arcsine arcsin (a) 1 ASIN Real Real

Arccosine arccos (a) 1 ACOS Real Real

Arctangent arctan(a) 1 ATAN Real Real

arc tan(a l/a2

)

ATAN2 Real Real

Hyperbolic Sine sinh(a) SINH Real Real

Hyperbolic Cosine cosh(a) COSH Real Real

PROGRAM UNITS 103

TABLE OF INTRINSIC FUNCTIONS - Continued

Intrinsic
Function Def init ion

No.
Args. Name

Typ
Argument

5 of

Function

Hyperbolic
Tangent

tanh (a) 1 TANH Real Real

Lexically Greater
Than or Equal

al >= a2
See Note 4

2 LGE Character Logical

Lexically
Greater Than

al > a2
See Note 4

2 LGT Character Logical

Lexically Less
Than or Equal

al <= a2
See Note 4

2 LLE Character Logical

Lexically
Less Than

al < a2
See Note 4

2 LLT Character Logical

End o£ File End_Of_File(a)
See Note 5

1 EOF Integer Logical

The number of each of the notes that follow refers to the number in
column 2 of the Table.

(1) For a of type real, if a >= then int(a) is the largest integer
not greater than a, if a < then int(a) in the most negative integer
not less than a. IFIX(a) is the same as INT (a)

.

(2) For a of type integer, REAL (a) is as much precision of the
significant part of a as a real value can contain. FLOAT (a) is the
same as REAL (a)

.

(3) ICHAR converts a character value into an integer value. The
integer value of a character is the ASCII internal representation of

that character, and is in the range to 127. For any two characters,
cl and c2, (cl .LE. cl) is true if and only if (ICHAR(cl) .LE.

ICHAR(c2)) is true.

(4) LGE(al,a2) returns the value true if al = a2 or if al follows a2

in the ASCII collating sequence; otherwise, it returns false.

LGT(al,a2) returns true if al follows a2 in the ASCII collating

sequence; otherwise, it returns false.

LLE(al,a2) returns true if al = a2 or if al precedes a2 in the ASCII

collating sequence; otherwise, it returns false.

104 APPLE FORTRAN

LLT(al,a2) returns true if al precedes a2 in the ASCII collating
sequence; otherwise, it returns false.

The operands or LGE, LGT, LLE, and LLT must be of the same length.

(5) EOF(a) returns the value true if the unit specified by its

argument is at or past the end of file record, otherwise it returns
false. The value of a must correspond to an open file, or to zero

which indicates the CONSOLE: device.

(6) All angles are expressed in radians.

(7) All arguments in an intrinsic function reference must be of the

same type.

Statement Functions
A statement function is a function that is defined by a single

statement. It is similar in form to an assignment statement. A
statement function statement can only appear after the specification
statements and before any executable statements in the program unit in

which it appears. A statement function is not an executable statement;
since it is not executed in order as the first statement in its

particular program unit. Rather, the body of a statement function
serves to define the meaning of the statement function. It is

executed, as any other function, by the execution of a function
reference. The form of a statement function is:

fname ([arg [, arg]...]) = expr

where
fname is the name of the statement function,
arg is a formal argument name.

expr is an expression.

The type of the expr must be assignment compatible with the type of

the statement function name. The list of formal argument names serves
to define the number and type of arguments to the statement function.
The scope of formal argument names is the statement function.
Therefore, formal argument names may be used as other user defined
names in the rest of the program unit containing the statement

function definition. The name of the statement function, however, is

local to its program unit, and must not be used otherwise, except as

the name of a common block, or as the name of a formal argument to

another statement function. The type of all such uses, however, must
be the same. If a formal argument name is the same as another local

name, then a reference to that name within the statement function
defining it always refers to the formal argument, never to the other
usage

.

Within the expression expr, references to variables, formal arguments,

other functions, array elements, and constants are allowed. Statement
function references, however, must refer to statement functions that

PROGRAM UNITS 105

have been defined prior to the statement function in which they
appear. Statement functions cannot be recursively called, either
directly or indirectly.

A statement function can only be referenced in the program unit in
which it is defined. The name of a statement function cannot appear in
any specification statement, except in a type statement which may not
define that name as an array, and in a COMMON statement as the name of

a common block. A statement function cannot be of type character.

The RETURN Statement
A RETURN statement causes return of control to the calling program
unit. It may only appear in a function or subroutine. The form of a
RETURN statement is:

RETURN

Execution of a RETURN statement terminates the execution of the
enclosing subroutine or function. If the RETURN statement is in a
function, then the value of that function is equal to the current
value of the variable with the same name as the function. Execution of
an END statement in a function or subroutine is treated in exactly the
same way as is execution of a RETURN statement.

PARAMETERS
This section discusses the relationship between formal and actual
arguments in a function or subroutine call. A formal argument refers
to the name by which the argument is known within the function or

subroutine, and an actual argument is the specific variable,
expression, array, and so forth, passed to the procedure in question
at any specific calling location.

Arguments are used to pass values into and out of procedures.
Variables in common can be used to perform this task as well. The
number of actual arguments must be the same as formal arguments, and
the corresponding types must agree.

Upon entry to a subroutine or function, the actual arguments become
associated with the formal arguments, much as an EQUIVALENCE statement
associates two or more arrays or variables, and COMMON statements in

two or more program units associate lists of variables. This
association remains in effect until execution of the subroutine or
function is terminated. Thus, assigning a value to a formal argument
during execution of a subroutine or function may alter the value of
the corresponding actual argument. If an actual argument is a
constant, function reference, or an expression other than a simple
variable, assigning a value to the corresponding formal argument is
not allowed, and may have some strange side effects.

106 APPLE FORTRAN

If an actual argument is an expression, it is evaluated immediately

prior to the association of formal and actual arguments. If an actual

argument is an array element, its subscript expression is evaluated

just prior to the association, and remains constant throughout the

execution of the procedure, even if it contains variables that are

redefined during the execution of the procedure.

A formal argument that is a variable may be associated with an actual

argument that is a variable, an array element, or an expression. A

formal argument that is expressed as an array may be associated with

an actual argument that is an array or an array element. The number

and size of dimensions in a formal argument may be different than

those of the actual argument, but any reference to the formal array

must be within the limits of the storage sequence in the actual array.

While a reference to an element outside these bounds is not detected

as an error in a running FORTRAN program, the results are

unpredictable

.

PROGRAM UNITS 107

CHAPTER 14

COMPILATION UNITS

110 Introduction

110 Units, Segments, Partial Compilation
111 Linking
112 $USES Compiler Directive
113 Separate Compilation
113 FORTRAN Overlays

108 APPLE FORTRAN COMPILATION UNITS 109

INTRODUCTION
This chapter describes the relationship between FORTRAN and the Apple
Pascal segment mechanism. In normal use, the user need not be aware of
such intricacies. However, if you want to interface FORTRAN with
Pascal, to create overlays, or to take advantage of separate
compilation or libraries, the details contained here are helpful.

The first section of this chapter discusses the general form of a

FORTRAN program in terms of the operating system object code
structure. The next section deals with linking FORTRAN programs. The
third describes the $USES compiler directive. This directive provides
access to libraries or already compiled procedures, and provides
overlays in FORTRAN. The next section describes how you link FORTRAN
with Pascal.

UNITS, SEGMENTS, PARTIAL COMPILATION
When a full FORTRAN program is compiled in one piece, the .CODE file
created contains 2 distinct segments and a reference to a third. Unit
number 1, called MAINSEGX, contains code to manage all other segments,
defines named common blocks, initializes the run time system, etc. No
actual user code resides in the segment MAINSEGX. It must, however,
remain as a distinct unit in order for the linker to properly define
named common data areas and file support for the run time system.
Unit number 7, given the name of the main program, contains all of the

user code. A reference to unit number 8, RTUNIT, is also contained in
the .CODE file. This is the FORTRAN run-time system.

If a FORTRAN compilation contains no main program, then it is output
as if it were a Pascal unit compilation. The unit is given the name U,
followed by the name of its first procedure. For example:

C No PROGRAM statement present
SUBROUTINE X

END
SUBROUTINE Y

END

SUBROUTINE Z

END

would be compiled into a single unit named UX. Assume for later
examples that the object code is output to file X.CODE. All procedures
called from within unit UX must be defined within unit UX, unless a

$USES or a $EXT statement has shown them to reside in another unit.

110 APPLE FORTRAN

Similarly, procedures in unit UX cannot be called from other units

unless the other units contain a $USES UX statement. Thus, a typical
main program that would call X might be:

C

C This is the main program BIGGIE
C

$USES UX IN X.CODE
PROGRAM BIGGIE

CALL X

END
SUBROUTINE W

CALL Y

END

If the $USES statement were not present, the FORTRAN compiler would
expect subroutines X and Y to appear in the same compilation,
somewhere after subroutine W. Assume that the object code for this

compilation is output to the file BIGGIE. CODE.

Thus, the user can create libraries of functions and partial

compilations, and save compilation time and disk space, by a simple
use of the $USES statement. More inforation on the $USES statement,
will be found later on in this chapter.

LINKING
Since the FORTRAN run time library must be linked into any user

program in order that it may be executed, you must always L(ink a

program before it can be executed. Normally, you specify the file
containing the main program as the 'host file' and the SYSTEM. LIBRARY

as one of the 'lib file' entries. In addition, you must specify the
files containing any user defined units referenced via the $USES

statement as 'lib file' entries. Thus, to link the program BIGGIE you

would run the linker by using the L(ink command, and respond as shown
below.

COMPILATION UNITS 111

Linker II. 1 [A4]

Host file? BIGGIE
Opening BIGGIE. CODE
Lib file? SYSTEM. LIBRARY
Opening SYSTEM. LIBRARY
Lib file? X
Opening X.CODE
Lib file?
Map name?
Reading MAINSEGX
Reading BIGGIE
Reading RTUNIT
Reading UX
Output file? BIG. CODE
Linking BIGGIE # 7

Linking RTUNIT // 8

Linking UX # 9

Linking MAINSEGX # 1

User inputs the name of the file
containing the main program.

File containing run time library.

File containing user defined unit.

File for linked object code

You could then eX(ecute the code file called BIG. CODE.

$USES COMPILER DIRECTIVE

The $USES compiler directive provides several distinct functions. It
allows procedures and functions in separately compiled units, such as
the system library, to be called from FORTRAN. It provides a
relatively secure form of separate compilation for FORTRAN programs.
It allows us to call Pascal routines that have been compiled into
Pascal units. It also provides an overlay mechanism to the FORTRAN
user that is somewhat more general than that provided in the Pascal
language

.

The format of the $USES control statement is:

$USES unitname [IN filename] [OVERLAY]

where
unitname is the name of a unit,

filename is a valid file name.

As with all $ control statements, the $ must appear in column one.
This compiler directive directs the compiler to open the .CODE file
filename, or the SYSTEM. LIBRARY if the filename is absent, locate the
unit unitname, and process the INTERFACE information associated with
that unit, generating a reasonable FORTRAN equivalent declaration for
the FORTRAN compilation in progress. There cannot be any global
variables in the INTERFACE portion of a Pascal unit. All $USES
commands must appear before any FORTRAN statements, specification or
executable, but they are allowed to follow comment lines and other $

control lines. If the optional 'IN filename' is present, the name
filename is used as the file to process. If it is not, the file
*SYSTEM. LIBRARY is used as a default. If the optional field OVERLAY is

112 APPLE FORTRAN

present, the unit in question is treated as an overlay. It is only
present in memory when one of its procedures is active. If the OVERLAY

field is not present, the unit is loaded into memory before the user
program is executed, and remains there until execution is over.

Warning: If a FORTRAN main program $USES a Pascal unit, that Pascal

unit cannot have any global variables in the INTERFACE part of its

declarations.

SEPARATE COMPILATION
Separate compilation is accomplished by compiling a set of subroutines
and functions without any main program. Each such compilation creates

a code file containing a single unit. Then, when the main program is

compiled, possibly along with many subroutines or functions, it $USES
the separately compiled units. The routines compiled with the main
program obtain the correct definition of each externally compiled

procedure through the $USES directive.

In the simplest form, when no $USES statements appear in any of the

separate compilations, the user simply $USES all separately compiled
FORTRAN units in the main program. However, this limits the procedure
calls in each of the separately compiled units to procedures defined
in the that particular unit. If there are calls to procedures in unit
A from unit B, then unit B must contain a $USES A statement. The main
program must then contain a $USES A statement as its first $USES

statement, followed by a $USES B statement. This is necessary for the
compiler to get the unit numbers allocated consistently.

In more complex cases, the user must insure that all references to

procedures in outside units are preceded by the proper $USES statement
in the same order, and are not missing any units. If unit B $USES unit

A, and unit C $USES unit B , then unit C must first $USES unit A.

Likewise, if units D and E both $USES unit F, they both must contain
exactly the same $USES statements prior to the $USES F statement.

FORTRAN OVERLAYS
The FORTRAN overlay mechanism is slightly more general than the Pascal

mechanism. In Pascal, an overlay procedure is specified by the
reserved word SEGMENT appearing prior to that procedure's name. The
meaning is that the procedure and all nested procedures are to become
an overlay. Thus, whenever that procedure is active, the segment is

present in memory, and not otherwise! There is no way to combine two

or more procedures into a single overlay such that the calling of

either one causes the overlay to be loaded into memory, due to the
fact that the static nesting of Pascal procedures hides any sub-

procedures from any outside caller. The FORTRAN mechanism allows many
such procedures to be visible to outside procedures, thus overcoming
this limitation.

COMPILATION UNITS 113

CHAPTER 15

BI-LINGUAL PROGRAMS
116 Introduction
116 Pascal in FORTRAN Main Programs

118 FORTRAN in Pascal Main Programs

119 I/O from Bilingual Programs
120 Calling Machine Code Routines

APPLE FORTRAN
BI-LINGUAL PROGRAMS

INTRODUCTION
As was discussed in Chapter 3, Programs in Pieces, if you want to mix
FORTRAN and Pascal code, you must first separately compile all the
subprograms that will be needed using the compiler of their native
language. For instance, in order to call Pascal functions and
procedures from a FORTRAN program, the Pascal routines must first be
compiled into a Pascal unit. The FORTRAN program must then contain a
$USES compiler directive statement for that unit as described in
Chapter 4.

In attempting to interface the two languages, there are some
fundamental differences which must be pointed out. For instance, the
exceedingly rich type and data structures in Pascal are not available
in FORTRAN. Also, the I/O systems of FORTRAN and Pascal are not
compatible. The fact that they both execute P-code on the Apple Pascal
operating system overcomes most of the other problems, however. This
section is designed to help you interface the two languages.

PASCAL IN FORTRAN MAIN PROGRAMS
Since there are Pascal types that have no FORTRAN equivalent, the way
FORTRAN looks at Pascal data structures is somewhat limited. Thus,
when a FORTRAN program $USES a Pascal unit, the FORTRAN compiler must
make some translations of the kinds of data it finds there. The table
below shows how these are mapped into FORTRAN data types.

Ordinary FORTRAN compilers do not recognize the passing of an argument
by value to a subprogram; they only recognize passing arguments by
reference. It should be noted that FORTRAN does not recognize global
variables declared in the INTERFACE portion of a Pascal unit. If there
is a global variable in a unit called by FORTRAN, the Linker will
gemerate the error message: PUBLIC <varname> UNDEFINED.

The difference between value and reference arguments is that, for a

variable passed to a subprogram by reference, the address of the
variable is passed to the subroutine, so that the subroutine can then
fetch the contents of that variable, and possibly replace its contents
with another value. When a variable is passed to a subroutine by
value, the contents of the variable is first copied into a special
temporary location before the subroutine is called. The subroutine is
only given the address of this temporary cell, which allows the
original variable to be protected from the subroutine.

It should be understood that the Apple FORTRAN compiler cannot create
FORTRAN subroutine argument calls by value, but that if, via a $USES
statement, it encounters a Pascal procedure or function which does
have value parameters in its argument list, it will generate the
correct calling sequence for that Pascal procedure.

116 APPLE FORTRAN

The following table shows how FORTRAN views Pascal declarations that
it finds via a $USES statement:

Pascal

DECLARATIONS:

FORTRAN

CONST anything ...
;

TYPE anything ...
;

VAR anything ...
;

PROCEDURE X(arg-list);
FUNCTION X(arg-list): type;

Ignored
Ignored
Ignored
SUBROUTINE X(arglist)
type FUNCTION X(arglist)

Note: Type of FUNCTION may only be INTEGER, LOGICAL, or REAL.

DATA TYPES:

REAL
BOOLEAN
CHAR

any other identifier

REAL
LOGICAL
CHARACTER*

1

INTEGER

Note: Be aware that the results of passing some of the more esoteric
Pascal data types to FORTRAN INTEGER data types can be tricky. You
should do trials first to determine the exact results.

Note: There is no proper FORTRAN equivalent to value parameters, but
the FORTRAN compiler does generate the correct calling sequence for
Pascal routines with value parameters.

The following FORTRAN program calls a Pascal unit called PUNIT found
in Z:PAS.CODE. If your diskette is not designated Z:, you will have to

change the FORTRAN program to give the correct name.

C FORTRAN PROGRAM TO CALL PASCAL ROUTINE

$USES PUNIT IN Z: PAS. CODE
I=ADD0NE(3)
WRITE (*, 100)1

100 FORMAT (18)

END

BI-LINGUAL PROGRAMS 117

This is the Pascal unit called by the FORTRAN program:

(*$S+*)
UNIT PUNIT;

INTERFACE
FUNCTION ADDONECINT: INTEGER) : INTEGER;

IMPLEMENTATION

FUNCTION ADDONE;
BEGIN

ADDONE :=INT+1;
END

BEGIN
(* NO INITIALIZATION CODE IN THIS EXAMPLE *)

END

FORTRAN IN PASCAL MAIN PROGRAMS
The following table gives the data type correspondences:

FORTRAN Pascal

DECLARATIONS

:

SUBROUTINE X(arg-list)
type FUNCTION X(arg-list)

PROCEDURE X(arg-list);
FUNCTION X(arg-list): type;

DATA TYPES:

INTEGER
REAL
LOGICAL
CHARACTER*

INTEGER
REAL
BOOLEAN

CHAR

argument list:

(I)

type I

(VAR I: type)

When a Pascal program USES a FORTRAN unit, it is the responsibility of

the Pascal program to make sure that any needed type declarations for

the string or packed array of CHAR types are properly defined for the

FORTRAN unit. This cannot consistently be done by FORTRAN as it would
lead to duplicate type definitions should a program use two FORTRAN
units in which each declare the same entity.

Note: Pascal stores its multidimensional arrays by row-major order,
while FORTRAN stores them by column-major order.

The following Pascal program is used to call a FORTRAN function called

ADDONE

:

118 APPLE FORTRAN

PROGRAM CALLFORTRAN;
(*$U Z: FOR. CODE*)
USES UADDONE;
BEGIN
WRITELN (ADD0NE(3)) ;

END

This is the FORTRAN function saved as Z: FOR. CODE:

INTEGER FUNCTION ADDONE (I)

ADDONE=1+1
END

Note that the FORTRAN unit got the name UADDONE automatically from the

concatenation of U to the first function or subroutine name
encountered in the file, ADDONE.

I/O FROM BILINGUAL PROGRAMS
Because the I/O systems of FORTRAN and Pascal are not compatible, it

is not always possible to do everything that is desired. This section
does, however, help the user to do what is possible in interfacing the
two languages

.

The FORTRAN compiler assumes that the run time support unit RTUNIT is
assigned unit number 8. Therefore, it is generally a good idea for
Pascal programs that use FORTRAN units to USES RTUNIT in such a manner
that it will be assigned number 8. For this to happen, RTUNIT must be
the second unit used by the Pascal program. While not all FORTRAN
units actually call run time support routines that reside in RTUNIT,
the absence of RTUNIT in such a case can lead to very mysterious
results

.

It is not generally possible to do I/O from Pascal routines called
from a main program that is written in FORTRAN. Normal Pascal I/O to
and from the console, however, can always be done from Pascal routines
providing that there is no file name in the I/O statement. The Pascal
routines RESET, REWRITE, CLOSE, etc., should not be called from Pascal
routines running under a FORTRAN program.

It is possible to do I/O from a FORTRAN procedure that is called from
a Pascal main program. In general, however, this practice should be

avoided. The following information is provided to allow the user who
absolutely must mix I/O operations from both languages to do what is
possible

.

There are several precautions that the user must take for FORTRAN I/O

to work from a Pascal program. The Pascal main program must USES the

FORTRAN run time unit RTUNIT. This must be done in such a manner that
RTUNIT is assigned unit number 8 by the Pascal main program. Prior to
any FORTRAN I/O operations, the Pascal program must call the procedure
RTINITIALIZE. After all FORTRAN I/O is completed, the Pascal program

BI-UNGUAL PROGRAMS 119

must call the procedure RTFINALIZE. Both of these procedures exist in

the FORTRAN run time unit. The FORTRAN I/O procedures use the heap for

the allocation of file related storage, so the user should not force
the deallocation of heap memory via calls to MARK and/or RELEASE. If
the user USES TURTLEGRAPHICS in the Pascal program, then INITTURTLE
must be called prior to calling RTINITIALIZE. This is due to the way
that TURTLEGRAPHICS handles the heap marker. Other restrictions may
apply in special cases.

CALLING MACHINE CODE ROUTINES
The following example uses a machine code function and a subroutine.

SAMPLE MACRO POPS 16 BIT ARGUMENT

.MACRO POP
PLA
STA Zl
PLA
STA %1+1

• ENDM

.FUNC PADDLE, 1 ;ONE WORD OF PARAMETERS

SAMPLE GAME PADDLE FUNCTION FOR PASCAL
(This function provided in APPLESTUFF unit.)

FUNCTION PADDLE (SELECT: INTEGER): INTEGER;

TEMP

PREAD

2

.EQU ;TEMP VAR FOR RETURN ADDR
;note: 0..35 hex available

• EQU 2 ;TEMP VAR FOR ARGUMENT ADDR

POP RETURN ;SAVE PASCAL RETURN ADDR

PLA ; DISCARD 4 BYTES STACK BIAS
PLA ;(ONLY DO FOR .FUNC)

PLA
PLA

POP TEMP ;GET ARGUMENT ADDR
LDY #0
LDA (TEMP) ,Y ;LOAD ARGUMENT'S VALUE

AND #3 ; FORCE INTO RANGE 0..3
TAX
LDA 0C070 ; TRIGGER PADDLES

LDY #0 ;INIT COUNT IN Y REG
NOP ; COMPENSATE FIRST COUNT

NOP
LDA 0C064.X ;TEST PADDLE

120 APPLE FORTRAN

DONE

BPL DONE

INY
BNE PREAD

2

DEY
LDA #0
PHA

TYA
PHA

LDA RETURN+1
PHA
LDA RETURN

PHA
RTS

; BRANCH IF TIMER DONE

;ELSE INC Y EVERY 12 USEC

;LOOP UNLESS 255 EXCEEDED
;MAKE INTO 255 (MAX COUNT)

;PUSH MSB OF RETURN VALUE=0

;PUSH LSB OF RETURN VALUE

;RESTORE PASCAL RETURN ADDR

;AND RETURN TO PASCAL CALLER

.PROC TTLOUT,2 ;TWO WORDS OF PARAMETERS

ROUTINE TO SET OR CLEAR ONE OF THE TTL I/O BITS

(This procedure provided in APPLESTUFF unit.)

PROCEDURE TTLOUT (SELECT : INTEGER; DATA: BOOLEAN);

RETURN .EQU

POP RETURN

PLA
LSR A
PLA
PLA
AND #03

ROL A
TAY
LDA 0C058.Y

PLA
LDA RETURN+1
PHA

LDA RETURN
PHA
RTS

TEMP RETURN ADDR

SAVE PASCAL RETURN ADDRESS

POP PARAMETERS, LAST FIRST

GET LSB BOOLEAN DATA 1=TRUE

SAVE BOOLEAN IN CARRY

; DISCARD MSB BOOLEAN DATA

GET LSB SELECT
TREAT IT MOD 4

DOUBLE, ADD DATA FOR INDEX

PUT I/O STROBE INDEX IN Y

ACTIVATE I/O STROBE

DISCARD MSB SELECT PARAM

RESTORE PASCAL RETURN ADDR

:GO BACK TO PASCAL

• END ;END OF ASSEMBLY

The $EXT statement can be used to call machine language routines from
a FORTRAN program. The following example calls the machine language

routines listed above. You should note a couple of things here. First,

we don't use the normal $USES statement, but substitute $EXT.

Secondly, we don't have to CALL the routine called PADDLE because it

is a function. We do, of course, CALL TTLOUT.

BI-LINGUAL PROGRAMS 121

$EXT INTEGER FUNCTION PADDLE 1

$EXT SUBROUTINE TTLOUT 2

C

PROGRAM CALASM
DO 100 1=1, 100

WRITE(*,400)PADDLE<0) , PADDLE (1)
100 CONTINUE

CALL TTLOUT (0, .TRUE.

)

400 FORMAT(2I12)
END

The example simply reads the two control paddles and writes the values
returned to the screen. This is a handy routine for game programming,
and the incredible speed of the machine language operations can be
very useful in such real-time applications.

122 APPLE FORTRAN

CHAPTER 16

SPECIAL UNITS

124 The Turtle Graphics Unit

124 The Apple Screen

124 The INITTU Subroutine
125 The GRAFMO Subroutine
125 The TEXTMO Subroutine

125 The V1EWP0 Subroutine
126 Subroutines for Using Color

127 Cartesian Graphics
127 Turtle Graphic Subroutines
128 Turtle Graphic Functions
129 Sending an Array to the Screen

130 Text on the Graphic Screen
131 The Applestuff Unit
132 RANDOM Function/RANDOI Subroutine

132 Using the Game Controls
134 Making Music: the NOTE Subroutine

134 The KEYPRE Function

THE TURTLE GRAPHICS UNIT

There is a CODE unit in SYSTEM. LIBRARY which contains a set of
subroutines that have been designed to enable the use of fancy color-
graphics on your Apple.

The following compiler directive statement must appear near the top of
the program or subprogram that uses this CODE unit:

$USES TURTLEGRAPHICS

The statement must come before any executable statement or
specification statement. It may appear after other compiler directive
statements or comment lines.

If this statement appears, the graphics subroutines and functions
described in this section can be used. This statement tells the
FORTRAN system to get the graphics subprograms from the library. These
subprograms are loaded in at run-time, which means that the library
file must be available to the system when any program using
TURTLEGRAPHICS or APPLESTUFF is executed.

Incidentally, this graphics package is called Turtle Graphics since it
is based on the turtles devised by S. Papert and his co-workers at the
Massachusetts Institute of Technology. To make graphics easy for
children who might have difficulty understanding Cartesian
coordinates, Papert et al. invented the idea of the turtle who could
walk a given distance and turn through a specified angle while
dragging a pencil along. Very simple algorithms in this system, which
could be called relative polar coordinates, can give more interesting
images than an algorithm of the same length in Cartesian coordinates.

The Apple Screen
The Apple screen is a rectangle with the origin (X=0,Y=0) at the lower
left corner. The upper right corner has the coordinates (X=279,Y=191).
Since points may only be placed at integral coordinates, all arguments
to the graphics functions are integers.

There are two different screen images stored in the Apple's memory.
One of them holds text, the other holds a graphic image. There are
three statements that switch between the modes. They are INITTU,
TEXTMO and GRAFMO.

The INITTU Subroutine
This subroutine has no parameters,
the screen to be used for graphics
to use this routine before starting

It clears the screen, and allows
rather than text. It is a good idea
any graphics.

124 APPLE FORTRAN

INITTU does a few other things as well: the turtle (more about it

later) is placed in the center of the screen facing right, the pen
color is set to NONE (more about this later too) and the viewport is

set to full screen.

The GRAFMO Subroutine
The GRAFics MOde subroutine has no parameters. It switches the monitor

or TV to show the graphics screen, without the other initialization
that INITTU does. It is usually used to show graphics in a program
that switches between graphics and text display.

The TEXTMO Subroutine
The TEXT MOde subroutine has no parameters. It switches from graphics

mode, obtained by INITTU or GRAFMO, to showing text. It is a very,

very good idea to conclude any graphics program with a return to text

mode. If you forget to do this, you may not be able to see the usual
COMMAND: prompt or any other text. When you switch to text mode, the

image that you saw in GRAFMO is not lost, but will still be there when
you use GRAFMO to go into graphics mode again, unless you deliberately

changed it.

The VIEWPO Subroutine
The VIEWPOrt subroutine has the form

VIEWPO (left, right, bottom, top)

where the four parameters are integers which give the boundaries you

want the viewport to have. If you don't use this subroutine, Apple

FORTRAN assumes that you want to use the whole screen for your
graphics

.

VIEWPO (130, 150, 86, 106)

This example would allow the screen-plotting of all points whose

X-coordinates are from 130 through 150 and whose Y-coordinates are
from 86 through 106. For further information on VIEWPO see the

descriptions of the line drawing subroutines, FILLSC and DRAWBL.

Clipping: When a line is drawn using any of the graphic commands, it

is automatically clipped so that only the portion which lies within
the current viewport is displayed. Points whose coordinates are not in

the current viewport, even those points that would not be on the

screen at all, are legal but are ignored.

This allows some dramatic effects. It also allows you to plot off-

screen all day, and never see a thing or get an error message.

Clipping cannot be disabled.

SPECIAL UNITS 125

Subroutines for Using Color
The PENCOL and FILLSC subroutines are used for color in Turtle
Graphics. The PENCOL subroutine sets the pen color. It has the form

PENCOL (PENMODE)

where penmode is an integer which corresponds to a particular color or
other mode as described in the table below.

Integer PENMODE color

NONE
Drawing with this "color" produces no change on the
screen. You can consider it as drawing with the color
that happens to be there already, or as invisible ink.

1 WHITE

2 BLACK

3 REVERSE
Drawing with REVERSE changes BLACK to WHITE and WHITE
to BLACK. It also changes WHITE1 to BLACK 1 , WHITE2
to BLACK2, GREEN to VIOLET and ORANGE to BLUE and
vice versa. It is rather a magical pen. It allows
you to draw, say, a line across a complex background
and have it still show up.

4 RADAR
This "color" has been left unused for future
applications

.

5 BLACK1 (two dots wide, for use with green and violet)

6 GREEN

7 VIOLET

8 WHITE 1 (two dots wide, for use with green and violet)

9 BLACK2 (two dots wide, for use with orange and blue)

10 ORANGE

1 1 BLUE

12 WHITE2 (two dots wide, for use with orange and blue)

If you'd like the drawing to be in GREEN, you would use the statement:

CALL PENCOL (6)

126 APPLE FORTRAN

Now, it may seem strange that aside from WHITE, BLACK, GREEN, VIOLET,

ORANGE, and BLUE, there are two additional flavors of WHITE and BLACK.

These are due to the intricate, not to say bizarre, way that color

television sets concoct their color, interacting with the technique

that Apple uses to get a lot of color very economically. Rather than

explaining how this all works, suffice it to say here that WHITE and

BLACK give the finest lines possible, and the colors give a wider line

in order to make the colors show. If you wish to make a white or black
line that corresponds exactly in position and width with a green or

violet line then you should use WHITE 1 or BLACK1 . If you wish to make

a white or black line that corresponds exactly in position and width

with an orange or blue line, then you should use WHITE2 or BLACK2.

On a black-and-white monitor or TV set, just use WHITE and BLACK for

your colors.

The FILLSC subroutine has the form

FILLSC (PENMODE)

where PENMODE is any of the integers standing for colors described

above. FILLSC fills the entire viewport with the color indicated by

PENMODE. For example

FILLSC (2)

clears the viewport. The statement

FILLSC (3)

makes a color negative of the contents of the viewport.

Cartesian Graphics
The MOVETO subroutine has the form

MOVETO (X, Y)

where X and Y are integer screen coordinates. MOVETO creates a line in

the current penmode from the last point drawn to the coordinates given

by (X,Y). When you INITTU, the turtle moves (with color NONE) to the

center of the screen.

The direction of the turtle, as described below, is not changed by

MOVETO.

Turtle Graphic Subroutines
To understand turtle graphics, first imagine a small turtle sitting at

the center of the screen, facing right. This turtle can turn or it can

walk in the direction it is facing. As it walks, it leaves behind a

trail of the current pen color.

SPECIAL UNITS 127

The TURNTO subroutine has the form

TURNTO (DEGREES)

where DEGREES is an integer. It is treated modulo 360, and thus never
gets out of the range -359 through 359. When invoked, this subroutine
causes the turtle to turn from its present angle to the indicated
angle. Zero is exactly to the right, and counterclockwise rotation
represents increasing angles. This command never causes any change to
the image on the screen. A negative argument causes clockwise
rotation; a positive argument causes counterclockwise rotation.

The TURN subroutine has the form

TURN (DEGREES)

where DEGREES is again an integer number treated modulo 360. This
subroutine causes the turtle to rotate counterclockwise from its
current direction through the specified angle. It causes no change to
the image on the screen.

The MOVE subroutine has the form

MOVE (DISTANCE)

where DISTANCE is an integer. This subroutine makes the turtle move in
the direction in which it is pointing a distance given by the integer
DISTANCE. It leaves a trail in the current pen color. The sequence of
statements

:

CALL PENCOL (1)

CALL MOVE (50)

CALL TURN (120)
CALL MOVE (50)
CALL TURN (120)
CALL MOVE (50)

draws an equilateral triangle, for instance.

Turtle Graphic Functions
The functions TURTLX, TURTLY, TURTLA and SCREEN allow you to ask your
Apple about the current state of the turtle and the screen. Note that
any functions specified without parameters must have () following
the function name.

The TURTLX and TURTLY functions, no parameters, return integers giving
the current X and Y coordinates of the turtle.

The TURTLA function, no parameters, returns an integer giving the
current turtle angle as a positive number of degrees modulo 360.

128 APPLE FORTRAN

The SCREEN function has the form

SCREEN (X,Y)

where X and Y are screen coordinates. This function returns the

logical value true if the specified location on the screen is not

black, and false if it is black. It doesn't tell you what color is at

that point, but only whether there is a turtle-mark, anything

nonblack, there.

Sending an Array to the Screen
The DRAWBL subroutine has the form

DRAWBL (SOURCE, ROWSIZE, XSKIP, YSKIP, WIDTH, HEIGHT, XSCREEN,

Y SCREEN, MODE)

where the SOURCE parameter is the name without subscripts of a two-

dimensional array of type LOGICAL. All the other parameters are

integers

.

DRAWBL copies an array of dots in memory or a portion of the array

onto the screen to form a screen image. You may choose to copy the

entire SOURCE array, or you may choose to copy any specified window

from the array, using only those dots in the array from XSKIP to

XSKIP+WIDTH and from YSKIP to YSKIP+HEIGHT. Furthermore, you can

specify the starting screen position for the copy, at (XSCREEN,

YSCREEN)

.

The DRAWBL subroutine parameters have the following meaning:

SOURCE is the name of the two-dimensional BOOLEAN array to be

copied

.

ROWSIZE is the number of bytes per row in the array.

XSKIP tells how many horizontal dots in the array to skip over

before the copying process is started.

YSKIP tells how many vertical dots in the array to skip over

before beginning the copying process. Note that copies are

made starting from the bottom up. The array, in effect,

gets turned upside down.

WIDTH tells how many dots width of the array, starting at XSKIP,

will be used.

HEIGHT tells how many dots height of the array, starting at

YSKIP, will be used.

XSCREEN and YSCREEN are the coordinates of the lower left corner

of the area to be copied into. The WIDTH and HEIGHT

determine the size of the rectangle.

SPECIAL UNITS 129

MODE ranges from through 15. The MODE determines what appears
on the portion of the screen specified by the other
parameters. It is a powerful option which can simply
send white or black to the screen, irrespective of what is
in the array, copy the array literally, or combine the
contents of the array and the screen and send the result to
the screen. The following table specifies what operation is
performed on the data in the array and on the screen, and
thus what appears on the screen. The algebraic notation
uses A for the array, and S for the screen. The symbol ~

means NOT.

MODE EFFECT

Fills the on thp nrrppn uri th hi ar*lr

1 NOR of array and the screen* (A NOR S)

2 ANDs arrav with thp rnmnl pmpnl" nf f- h anroort (A a vm o)

3 Complements the screen. (""S)

4 ^i.'" l-'o i. iic Luuiy j- cine ii l ui aiidy wi in eric screen • (A A_ND S)

5 \ c\m 1 ononfo lyroiT f ~~ h ~\

\j\JVtX\J J. culu LI L o d.L Ldy • ^ A)

6 AunQ ai l ci_y wj. in Liie t>c iccn • \i\ auk. o /

7 NANDs array with the screen. (A NAND S)

8 ANDs array and the screen. (A AND S)

9 EQUIVALENCES array and the screen. (A = S)

10 Copies array to the screen. (A)

11 ORs array with the complement of the screen. (A OR ~S)

12 Screen replaces screen. (S)

13 ORs complement of array with screen. (~A OR S)

14 ORs array with screen. (A OR S)

15 Fills area with white.

Text on the Graphic Screen
Two subroutines, WCHAR and CHARTY, allow you to annotate graphics. If
the turtle is at (X,Y) you can use these subroutines to put a
character or string on the screen with its lower left corner at (X,Y).
The WCHAR subroutine uses an array stored in the file SYSTEM. CHARSET.
This array contains all the characters used, and is read in by the

130 APPLE FORTRAN

initialization routine when your program $USES TURTLEGRAPHICS . The

subroutine DRAWBL is then used to copy each character from the array

onto the screen. (Note that WSTRING is not available in FORTRAN

because its argument is a string.)

If you make up a file containing your own character set, you should

rename the old SYSTEM. CHARSET and then name your new array

SYSTEM. CHARSET.

The WCHAR subroutine has the form

WCHAR (CH)

where CH is an expression of type CHAR. This subroutine places the

character on the screen with its lower left corner at the current

location of the turtle. When this subroutine is used, the turtle is

shifted to the right 7 dots from its old position. For example, this

puts an X in the center of the screen:

CALL PENCOL (0)

CALL MOVETO (137,90)
CALL WCHAR ('X')

In this example, note that it was not necessary to specify a new

PENCOL before calling WCHAR. The character is not plotted with the

current pen color; rather it depends on the current MODE, just as

DRAWBL does. For details, see CHARTY below.

The CHARTY subroutine has the form

CHARTY (MODE)

where MODE is an integer selecting one of the 16 modes described above

for DRAWBL. MODE defines the way characters get written on the screen.

The default MODE is 10, which places each character on the screen in

white, surrounded by a black rectangle. One of the most useful other

MODES is 6, which does an exclusive OR of the character with the

current contents of the screen. Note that redrawing a character in

exclusive OR mode effectively erases the character, leaving the

original image unaffected. This is especially useful for user messages

in a graphics oriented program.

Another useful MODE is 5, which gives inverse characters. Lastly,

inverted exclusive OR would be a MODE of 9.

THE APPLESTUFF UNIT

This section tells you how to generate random numbers, how to use the

control paddle and button inputs, how to read the cassette audio

input, how to switch the control's TTL outputs and how to generate

SPECIAL UNITS 131

sounds on the Apple's speaker. To use these special Apple features
from FORTRAN, you first have to place the statement

$USES APPLESTUFF

before any executable statements in your program. The $ must appear in
column 1. This compiler directive statement may appear after other
compiler directive statements or comment statements. If you wish to
use both TURTLEGRAPHICS and APPLESTUFF you would say both:

$USES TURTLEGRAPHICS
$USES APPLESTUFF

RANDOM Function/RANDOI Subroutine
RANDOM is an integer function with no parameters. It returns a value
from through 32767. If RANDOM is called repeatedly, the result is a
psuedo-random sequence of integers. The following routine will display
a random integer on the screen that is between the indicated limits:

C DEMO PROGRAM OF RANDOM FUNCTION
$USES APPLESTUFF

INTEGER HI, LO, RESULT
HI=100
LO=10
DO 100 1=1,10
X=(HI-LO)/32767.0
RESULT=X*RANDOM () +L0

100 WRITE (*,200)RESULT
200 FORMAT (18)

END

RANDOI is a subroutine with no parameters. Each time you run a given
program using RANDOM, you will get the same random sequence unless you
use RANDOI.

RANDOI uses a time-dependent memory location to generate a starting
point for the random generator. The starting point changes each time
you do any input or output operation in your program. If you use no
I/O, the starting point for the random sequence does not change.

Using the Game Controls
The PADDLE and BUTTON functions and the TTLOUT subroutine are
known as the game controls.

The PADDLE function has the form

PADDLE (SELECT)

where SELECT is an integer treated modulo 4 to select one of the four
paddle inputs numbered 0, 1, 2, and 3. PADDLE returns an integer in

132 APPLE FORTRAN

the range to 255 which represents the position of the selected

paddle. A 150K ohm variable resistance can be connected in place of

any of the four paddles.

If you try to read two paddles too quickly in succession, the hardware

may not be able to keep up. PADDLE data will be clipped and the PADDLE

function will not return the correct results. A suitable delay is

given by using a do-nothing loop as illustrated in the following example
This program reads the paddles and loops until a key is pressed.

C DEMO OF PADDLE FUNCTION

C

C HERE WE ARE USING A DO (NOTHING) LOOP TO SLOW DOWN

C

$USES APPLESTUFF

300 I=PADDLE(0)
DO 200 K=0,3

200 CONTINUE

J=PADDLE(1)
WRITE (*, 100) I,

J

IF (.NOT. KEYPRE ()) GOTO 300

100 F0RMAT(2I8)
END

The BUTTON function has the form

BUTTON (SELECT)

where SELECT is an integer treated modulo 4 to select one of the three

button inputs numbered 0, 1, and 2, or the audio cassette input

numbered 3. The BUTTON function returns a logical value of true if

the selected game-control button is pressed, and false otherwise.

When BUTT0N(3) is used to read the audio cassette input, it samples

the cassette input, which changes from true to false and vice versa at

each zero crossing of the input signal.

There are four TTL level outputs available on the game connector along

with the button and paddle inputs. The TTLOUT subroutine is used to

turn these outputs on or off. TTLOUT has the form

TTLOUT (SELECT, DATA)

where SELECT is an integer treated modulo 4 to select one of the four

TTL outputs numbered 0, 1, 2, and 3. DATA is a logical expression.

If DATA is true, then the selected output is turned on. It remains on

until TTLOUT is invoked with the DATA set to false.

SPECIAL UNITS 133

Making Music: the NOTE Subroutine
The NOTE subroutine has the form

NOTE (PITCH, DURATION)

where PITCH is an integer from through 50 and DURATION is an integer
from through 255.

A PITCH of is used for a rest, and 2 through 48 yield a tempered
(approximately) chromatic scale. DURATION is in arbitrary units of
time.

NOTE (1,1) gives a click.

A musical scale is played by the following program:

C PROGRAM PLAYS MUSICAL SCALE
C

$USES APPLESTUFF
PROGRAM MUSIC

INTEGER PITCH
DO 100 PITCH=2,48

100 CALL NOTE(PITCH,10)

END

The KEYPRE Function
The KEYPRE function returns a value of true if a key is pressed from
the console. Refer to the program in the Using the Game Controls
Section for an example of the KEYPRE function.

134 APPLE FORTRAN

APPENDIX A—PART ONE

SINGLE-DRIVE OPERATION

136 Introduction
136 Configuring Your System
138 System Startup
139 Changing the Date

140 Making Backup Diskettes
140 How We Make Backups
141 Formatting Diskettes
143 Making the Actual Copies
145 Using the System

147 And Now, Some Fun
151 Executing a Program
151 Writing a Program
152 What to Leave in the Drive

SINGLE-DRIVE OPERATION

INTRODUCTION
Appendix A Part One covers configuring your Apple FORTRAN System,
booting Pascal and FORTRAN for the first time, and using the Editor
and Filer programs of the Apple Pascal Operating System to format and
make backup copies of diskettes. This appendix is for the user of a
single-drive system.

The procedures described in the section immediately following,
Configuring Your System, are a tutorial on how to configure your Apple
FORTRAN System. The sections after that provide step-by-step
instructions for those of you unfamiliar with the Pascal Operating
System.

CONFIGURING YOUR SYSTEM
To run Apple FORTRAN

, you should have the following equipment:

* Your 48K Apple computer, with a Language Card installed, and one
disk drive attached to the connector marked DRIVE 1 on the disk
controller card. The disk controller card must have the new PROMs, P5A
and P6A which came with the Language System, and must be installed in
the Apple's peripheral device slot 6.

* A TV set or video monitor properly connected to your Apple.

* The following diskettes and at least two blank diskettes:

FORT 1

:

FORT 2:

APPLE 1

:

APPLE2

:

APPLE3

:

Your new Apple FORTRAN System consists of the following diskettes:

* Two identical diskettes labeled FORT 2 : each containing two files:
SYSTEM. COMPILER and SYSTEM. LIBRARY. The SYSTEM. COMPILER is protected
from being copied.

* One diskette labeled F0RT1: containing the file FORTLIB.CODE.

To create an Apple FORTRAN System, you must transfer certain files
from diskettes APPLE1: and APPLE2: of your Apple Pascal System to the
two FORTRAN diskettes, F0RT1: and FORT 2 : . This section explains how to
transfer the required files from APPLE1: and APPLE 2 : to create a
working FORTRAN system. It is our recommendation for an Apple FORTRAN
System; it is not the only way to do this.

First, plug in the TV or monitor and turn it on. Then plug in the
Apple. Put diskette APPLE1: in the disk drive and turn on the Apple.

136 APPLE FORTRAN

You need to transfer the following files from APPLE1: to F0RT1

:

SYSTEM.APPLE
SYSTEM. PASCAL

SYSTEM.MI SCINFO
SYSTEM. CHARSET
SYSTEM. FILER

SYSTEM. EDITOR

You also need to transfer the following file from APPLE 2: to FORT 1

:

SYSTEM. LINKER

Type F to enter the Filer, and then type T to Transfer files from one

diskette to another. The screen asks TRANSFER ?, and you type

SYSTEM. APPLE
The screen then asks TO WHERE ?, and you respond by typing

FORT 1 :

$

The dollar sign means to use the same file name for the file on

diskette FORT 1 : . The name of the file after being transferred is

FORT 1: SYSTEM.APPLE.

The screen then says:

PUT IN FORT 1

:

TYPE <SPACE> TO CONTINUE

Put in FORT 1 : and press the spacebar. Take the diskettes in and out of

the disk drive as instructed to do so by the directions on the screen.

Note that the disk drive is known as unit #4. After the entire file

has been transferred, the Filer prompt line appears on the screen. Put

APPLE 1 : back in the disk drive, and type T for Transfer. Repeat the

transfer process just described for all the files on APPLE1: listed

above.

When all the required files have been transferred from APPLE1: to

FORT 1 : , put APPLE 2 : in the disk drive and type T for Transfer. When

the screen asks TRANSFER ? , you respond by typing

APPLE 2 : SYSTEM . LINKER
The screen then asks TO WHERE ?, and you type

F0RT1:$
The transfer process proceeds as described above. When this file is

transferred, you have a complete FORT 1 : diskette.

You now need to transfer the following files from APPLE1: to F0RT2:

SYSTEM. APPLE
SYSTEM. PASCAL
SYSTEM.MISCINFO
SYSTEM . CHARSET

SINGLE-DRIVE OPERATION 137

Note that FORT 2 : came to you with two files on it:

SYSTEM. COMPILER
SYSTEM. LIBRARY

Transfer the four required files from APPLE1 : to FORT 2
: , following the

procedures described above. When those files are transferred, you
have a complete FORT 2 : diskette.

At the conclusion of the transfer process, F0RT1: and FORT 2 : should
contain the following files:

F0RT1:

SYSTEM.APPLE
SYSTEM. PASCAL
SYSTEM.MISCINFO
SYSTEM. CHARSET
SYSTEM. FILER
SYSTEM. LINKER
SYSTEM. EDITOR
FORTLIB.CODE

F0RT2:

SYSTEM. APPLE
SYSTEM. PASCAL
SYSTEM.MISCINFO
SYSTEM. CHARSET
SYSTEM. COMPILER
SYSTEM. LIBRARY

SYSTEM STARTUP

To start Apple FORTRAN running on your system, first insert the
diskette marked FORT 2 : into the disk drive. As you will soon discover,
you can boot FORTRAN using either of the two diskettes provided. If
you'll remember that the Filer, Linker, and Editor are on F0RT1

: , and
the Compiler and Library are on FORT 2

: , you will easily be able to
decide which diskette should be in your drive to provide the functions
you want to use.

Close the door to the disk drive, and turn on the Apple. First, the
message

APPLE II

appears at the top of your TV or monitor screen, and the disk drive's
IN USE light comes on. Then this message appears:

WELCOME FORT 2, TO

U.C.S.D. PASCAL SYSTEM II.

1

CURRENT DATE IS 26-JUL-79

The date may be different. This is followed in a second or so by a
line at the top of the screen:

COMMAND: E(DIT, R(UN, F(ILE, C(OMP, L(IN

This line at the top of the screen is called a prompt line. When you
see this prompt line, you know that your Apple computer is running the
Apple FORTRAN System.

138 APPLE FORTRAN

CHANGING THE DATE

The date that comes on the diskette will probably not be correct. It

is a good habit to reset the date the first time you use the Apple

FORTRAN System on any given day. It only takes a few seconds. First

put FORT 1 : in the drive. Press F on the keyboard without pressing the

RETURN key or any other keys. The screen goes blank, and then this

line appears at the top:

FILER: G, S, N, L, R, C, T, D, Q [C.l]

This is a new prompt line. Prompt lines are named after their first

word. The prompt line you first saw was the Command prompt line. This

one is the Filer prompt line. Sometimes we say that you are "in the

Filer" when this line is at the top of the screen. Each of the letters

on the prompt line represents a task that you can ask the system to

do. For example, to change the date, press D. Again, just type the

single key, without pressing RETURN or any other key.

When you do, another message is put on the screen. It says:

DATE SET: < 1 . . 31>-<JAN. .DEC>-<00. . 99>

TODAY IS 26-JUL-79
NEW DATE ?

It doesn't really mean that today is 26-JUL-79 or whatever date your

screen shows, but that the Apple thinks that is today's date. Since it

isn't, you can change the date to be correct. The correct form for

typing the date is shown on the second line of the message: one or two

digits giving the day of the month, followed by a minus sign, followed

by the first three letters of the name of the month, followed by

another minus sign, followed by the last two digits of the current

year. Then press the key marked RETURN. If the date is correct, or if

you change your mind and decide not to change the date, just press the

RETURN key.

If the month and year are correct, as they will often be when you

change the date, all you have to do is type the correct day of the

month, and press the RETURN key. The system will assume that you mean

to keep the same month and year displayed by the message. If you type

a day and a month, the system will assume you mean to keep only the

year the same. Go ahead and make the date correct. Your new date is

saved on the diskette, so the system remembers this date the next

time you turn the Apple on.

Usually, at the top of the screen there will be a prompt line which

represents several choices of action. When you type the first letter

of one of the choices, either you will be shown a new prompt line

giving a further list of choices, or else the system will carry out

the desired action directly. If you type a letter that does not

correspond to one of the choices, the prompt line blinks but otherwise

nothing happens. Remember to type only a single letter to indicate

your choice; it is not necessary to press the RETURN key afterward.

SINGLE-DRIVE OPERATION 139

Sometimes, as when setting the date, you are asked to type a response
of several characters. You tell the system that your response is
complete by pressing the RETURN key. If you make a typing error before
pressing the RETURN key, you can back up and correct the error by
pressing the left-arrow key. You should experiment by making
deliberate errors in entering a date, and then erasing the errors with
the left-arrow key.

MAKING BACKUP DISKETTES

Ask yourself this question: What would happen to your system if you
were to lose or damage one of the system diskettes? Without the
diskettes, you don't own a FORTRAN system.

The first thing you should do, therefore, is to make a backup copy of
F0RT1 :

. Afterward, you should never use the original, but put it
someplace where the temperature is moderate, where there is no danger
of it getting wet, and where magnetic fields cannot get at it. Since
the FORTRAN compiler on diskette F0RT2: is protected from being
copied, Apple provides a backup copy of FORT 2 :

.

It is a good idea to have two backup copies of each original. That
way, you will need to use an original only in the very rare case when
both of its backup copies are lost. When one copy is lost or damaged,
another backup copy is made from the surviving backup copy. If your
backups were damaged or erased while in use, find out why they were
destroyed before inserting your only surviving copy. If you can't
figure out what the problem is, bring your system to the dealer to
make sure it is working correctly.

How We Make Backups
The Apple FORTRAN system can copy all or any portion of information
from one diskette onto another diskette unless the information is
protected from being copied. But the system cannot store information
on a new diskette without first preparing that diskette for use on the
Apple. Therefore, the FORTRAN/Pascal system includes a program that
allows you to purchase any 5-inch floppy diskette and format it so
that it will work with the Apple FORTRAN system. But remember that you
cannot use diskettes that you formatted for BASIC (using DOS) with
your FORTRAN system. These are quite different. Of course, if you have
an old BASIC diskette you'd like to convert to store FORTRAN programs,
you can reformat it for the purpose, just as if it were a new, blank
diskette. The old BASIC programs or data on the diskette will be lost,
however

.

If you have been following this discussion by carrying out the
instructions on your Apple, diskette F0RT1: should be in your drive,
and the FILER prompt line should be showing at the top of the screen:

FILER: G, S, N, L, R, C, T, D, Q [C.l]

140 APPLE FORTRAN

Put FORT 2: in the disk drive and type Q to Quit the Filer. When you

Quit the Filer, the disk whirrs, and you see the Command prompt line
again:

COMMAND: E(DIT, R(UN, F (ILE, C(0MP, L(IN

There is actually more of this prompt line, off to the right of your

TV or monitor. To see the rest of the screen, hold down the CTRL key

and, while holding it down, press the A key right alongside it. In the

future we will simply say CTRL-A to abbreviate this procedure.

You now see

K, X(ECUTE, A(SSEM, D (EBUG, ? [II. 1]

This is simply the rest of the line that began COMMAND : . All

together, the full prompt line would look like this:

COMMAND: E (DIT, R(UN, F(ILE, C(0MP, L (INK, X(ECUTE, A(SSEM, D (EBUG,

?

The Apple FORTRAN system displays information on a screen that is 80

characters wide, but your TV or monitor shows only the leftmost 40
characters or the rightmost 40 characters at any one time. You use
CTRL-A whenever you wish to see if there is more information on the
other half of the screen. Repeated pressing of CTRL-A flips back and
forth between the left half of the screen and the right half. If your
TV screen appears to be completely blank, it might mean that you are
just staring at the empty right half of the screen.

Formatting Diskettes
Insert diskette APPLE 3 : from the Pascal package. Now, type

X

and the screen responds:

EXECUTE WHAT FILE?

You type
APPLE3: FORMATTER
and press the RETURN key. The disk whirrs a bit and the screen says:

APPLE DISK FORMATTER PROGRAM
FORMAT WHICH DISK (4, 5, 9.. 12) ?

Take all the new, blank diskettes that you are going to use with the

Apple FORTRAN System. Do not, of course, take any diskettes that have
precious information on them, such as the diskettes that came with the

Apple FORTRAN System. Place the diskettes in a pile. Their labels

should be blank. Make sure that you don't have any diskettes with data
in a non-FORTRAN or non-Pascal format, such as BASIC diskettes.

SINGLE-DRIVE OPERATION 141

Remove APPLE3: from the disk drive, and place one of the blank
diskettes into the drive. Type
4

and press the RETURN key. The number 4 is the volume number of your
disk drive. Note for information only that if you had four drives,
these would be volumes 4, 5, 11, and 12 in the FORTRAN-Pascal
Language System.

If the diskette in the drive has already been formatted, you will
receive a warning. For example, if you have left APPLE3: in the drive
you will be warned with the message

DESTROY DIRECTORY OF APPLE3: ?

At this point you can type

N
(which stands for No) without pressing the RETURN key, and your
diskette will not be destroyed.

Let's assume that you have placed a new, unformatted diskette in the
disk drive. Then you will not get any warning, but the Apple will
place this message on the screen:

NOW FORMATTING DISKETTE IN DRIVE 4

The drive will make some clickings and buzzings and begin to whirr.
The process takes about 30 seconds. When formatting is complete, the
screen again shows the message

FORMAT WHICH DISK (4, 5, 9.. 12) ?

Now you have a formatted diskette. We suggest that you write the word
FORTRAN in small letters at the top of the diskette's label, using a

marking pen.

Never use a pencil or ballpoint pen, as the pressure may damage the
diskette. The label will let you know that the diskette is formatted
for use with the Apple FORTRAN system, and you can distinguish it from
unformatted diskettes, BASIC diskettes, or diskettes for use with
other systems. Diskettes that are formatted for FORTRAN will also
store Pascal files and vice-versa because the formatting used for
FORTRAN and Pascal is identical.

While you are at it, repeat this formatting process on all the new

diskettes that you want to use with the Apple FORTRAN System. With
each new diskette, place it in the disk drive, type 4, and press the

RETURN key. When each diskette is removed from the drive, label it.

You may wonder why your one-and-only disk drive is called "4". It has

to do with the way the Pascal operating system deals with all of its

peripherals. Your disk drive is just one of the many peripherals, such

as printers, other disk drives, the keyboard, the TV monitor, and so

142 APPLE FORTRAN

forth. It just happened that among these other peripherals, the first

disk drive connected to the system got the number 4.

When you have finished formatting all your new diskettes, and have

written the word FORTRAN on each of them, answer the question

FORMAT WHICH DISK (4, 5, 9.. 12) ?

with a simple press of the key marked RETURN. You get the message

PUT SYSTEM DISK IN #4 AND PRESS RETURN

By SYSTEM DISK the Apple means the FORT 2 : diskette. Sometimes your

disk drive is called DRIVE 4 and sometimes #4:, but it's all the same
thing.

Do as it says, place the F0RT2: diskette in the disk drive and press

the RETURN key.

The Apple says

:

THAT'S ALL FOLKS. .

.

And if you watch the top of the screen, the line:

COMMAND: E(DIT, R(UN, F(ILE, C(OMP, L(INK, X(ECUTE, A(SSEM, D(EBUG,

?

appears. Of course, it doesn't all appear, but you know it's there,

and can check with CTRL-A.

Making the Actual Copies
As you have seen, you can get into the Filer by typing F when you have

the Command prompt line on the screen. You must have diskette F0RT1:

in the disk drive when you type F for the Filer, or you will get the

message

NO FILE FORT 1: SYSTEM. FILER

If this happens, just put FORT1: in the disk drive and type F again.

The Filer is that portion of the system that allows you to manipulate

information on diskettes. One of the Filer's abilities is to transfer

information from one diskette to another. To invoke this facility,

once you have the Filer prompt line on the screen, type T for

T(ransfer

.

This is what you see:

TRANSFER ?

SINGLE-DRIVE OPERATION 143

Answer the question as follows:
FORT 1

:

which means that you want to transfer the entire contents of the

source diskette called F0RT1:. After you have specified which
diskette's information you want transferred and pressed the key

marked RETURN, the computer checks to make sure the correct diskette
is in the disk drive. If you have forgotten to put diskette FORTl:

in the drive, you will see the message

FORTl:

NO SUCH VOL ON LINE <SOURCE>

In that case you must type T for Transfer again, and repeat the
process. With the correct source diskette in the drive, the Transfer
process continues and the computer asks

TO WHERE ?

Answer this question by typing

BLANK:
This is the name of the destination diskette, onto which you want

FORTl: 's information transferred. When a diskette is formatted it is

automatically given the name BLANK:. Incidentally, those colons (:)

are very important. You use them to indicate that you are referring to

an entire diskette, and not just a part of one.

After you have told the computer where you want FORTl: 's information

transferred and pressed the key marked RETURN, it says:

TRANSFER 280 BLOCKS ? (Y/N)

This message is mainly there to give you a chance to abandon the

transfer if you made a typing error in the names of the source or the

destination diskettes. The phrase "280 BLOCKS" means merely the
whole diskette. In any case, you type
Y

The disk whirrs a few times, and you see the message:

PUT IN BLANK:

TYPE <SPACE> TO CONTINUE

By the colon, you know that it means to put the diskette called BLANK:

into the disk drive. The second line tells you to press the space bar
when the diskette is in place and the door closed.

Some of the information which is on diskette FORTl:, including the
diskette's name, is now in the Apple's memory and will be copied onto
diskette BLANK:, completely overwriting BLANK:. Therefore, the

computer warns you that you are about to lose any information that

might be stored on BLANK: . It says

DESTROY BLANK: ?

144 APPLE FORTRAN

Since you want to turn BLANK: into a perfect copy of FORTl:, the

answer is Y. The process is under way. The computer will tell you to

first put in one diskette and then the other. Follow the instructions.

Your screen will look like this after a while:

PUT FORTl: IN UNIT #4

TYPE <SPACE> TO CONTINUE

PUT BLANK: IN UNIT #4

TYPE <SPACE> TO CONTINUE

PUT FORTl: IN UNIT #4

TYPE <SPACE> TO CONTINUE

PUT BLANK: IN UNIT #4

TYPE <SPACE> TO CONTINUE

and so on. You will have to insert the two diskettes a total of 20

times, and press the spacebar 20 times, to copy the entire diskette.

When copying is done, the screen says

FORTl: —> BLANK:

By this remark, the computer is telling you that the contents of

FORTl: , including the diskette's name, have been copied onto the

diskette that used to be called BLANK: . Now label the diskette and

store the original in a cool, safe place.

When you are through making backup copies, be sure to put FORT 2 : back

into the disk drive, before typing Q to Quit the Filer. If you forget

to do this, the system will stop responding to the keyboard after you

type Q; you will have to turn the Apple off and repeat the entire

startup procedure.

USING THE SYSTEM

You are now ready to use the Apple FORTRAN system to run a program.

The first thing for you to know is that you should always start or

boot the system using FORT 2 : in the drive. FORT 2 : will thus be known

as your system diskette or boot diskette, as it is often called.

We'll assume that you have never used the Editor to create any new

text files on it before.

But let's check and make sure! Put FORTl: in the drive and type F to

get into the F(iler. Now type E for Extended listing. When your

Apple asks you which diskette you want to examine, type

FORTl:

and press the RETURN key.

There should be no files on the diskette except SYSTEM files. (If any

TEXT or CODE files are there, R(emove them.) While you're at it, do a

listing of FORT 2: , and R(emove any files that don't begin with SYSTEM.

Leave FORT 2 : in the drive and type Q(uit to leave the Filer.

SINGLE-DRIVE OPERATION 145

Remember that F0RT2: must always be in the drive when you leave either
the Editor or the Filer. Going the other way, into the Editor or
Filer, FORT 1 : must be in the drive, as it contains the Filer and
Editor programs.

Soon you'll get the Command prompt. Now put FORT 1 : in the drive
and type

E

to call the Editor. When you see the Editor's prompt line, it should
look like this:

>EDIT:

NO WORKFILE IS PRESENT. FILE? (<RET> FOR NO FILE <ESC-RET> TO EXIT)

As usual, you must use CTRL-A to see the right half of the message.
The prompt message gives you some information and some choices. The
first word, >EDIT

: , tells you that you are now in the Editor. The next
sentence, NO WORKFILE IS PRESENT, tells you that you have not yet used
the Editor to create a workfile, which is a scratchpad diskette copy
of a program you are working on. If there had been a workfile on
FORT 1 : , that file would have been read into the Editor automatically.

Since there was no workfile to read in, the Editor asks you, FILE? If

you now typed the name of a .TEXT file stored on FORT 1 : , that textfile
would be read into the Editor. However, there are no .TEXT files on
F0RT1: yet, and besides, you want to write a new program. In
parentheses, you are shown how to say that you don't want to read in
an old file: <RET> FOR NO FILE. This means that, if you press the
Apple's RETURN key, no file will be read in and you can start a new
file of your own. That's just what you want to do, so press the
Apple's RETURN key. The rest of the message says if you first press
the ESC key and then press the RETURN key, you'll be sent back to the
Command prompt line. When you have pressed only the RETURN key, the
full Edit prompt line appears:

>EDIT: A(DJST C(PY D(LETE F(IND I(NSRT J(MP R(PLACE Q(UIT X(CHNG Z(AP

Refer to the Pascal documentation (of whichever Pascal manual you
have) for an explanation of these commands. The first one you will use
here is

I (NSRT

which selects the Editor's mode for inserting new text. Type I to

select Insert mode, and yet another prompt line appears:

>INSERT: TEXT [<BS> A CHAR, A LINE] [<ETX> ACCEPTS, <ESC> ESCAPES]

The meaning of this prompt message is simply that anything you type
will be placed on the screen, just to the left of the white square
cursor. If the cursor is in the middle of a line, the rest of the line
is pushed over to make room for the new text. If you make a mistake,

146 APPLE FORTRAN

just use the left-arrow key to backspace over the error, and then

retype. At any time during an insertion, if you press the Apple's ESC

key your insertion will be erased. If you press CTRL-C at any time

during an insertion, the insertion is made a permanent part of your

file, safe from being erased by ESC or by the left-arrow key. You can

then type I to enter Insert mode and type more text.

And Now, Some Fun
Now for our program. With the Insert prompt line showing, press the

RETURN key a couple of times, to move the cursor down the screen a

bit, and then type

C FOOTRAM DEMO
and press CTRL-C.

Your insertion so far is made permanent, and the Edit prompt line

reappears. But that's not how to spell FORTRAN. Since you have

already pressed CTRL-C, it is too late to backspace over your errors

and re-type them.

Fortunately, there are other ways. First, let's delete the extra in

FORTRAN. Using the left arrow key, move the cursor left until it is

sitting directly on the second 0. Then type D to enter the Editor's

D (LETE mode. Then press the right-arrow key once and the superfluous

will disappear. Now press CTRL-C to make this deletion permanent.

Now let's insert the missing R. The cursor is already correctly placed

to make this insertion, right on top of the T. Type I to enter Insert

mode. Ignore the fact that the remainder of the line seems to have

suddenly disappeared, and type the missing letter R. When you press

CTRL-C to make this insertion permanent, the rest of the line returns:

C FORTRAM DEMO

The letter M is certainly not correct, so move the cursor right using

the right-arrow key until it is sitting directly on the M . Now type X

to select the Editor's exchange option. When the exchange prompt line

appears, press the N key and the offending M is instantly transformed.

Here's another thing to know: for all these modes, I(nsert, D(elete

and exchange, if you press the ESC key instead of CTRL-C, the

alteration is undone, as if it had never happened. If you press
CTRL-C, the alteration is made a permanent part of your file. To

change that M permanently, press CTRL-C. Finally we have:

C FORTRAN DEMO

Now you know how to use the Editor's Insert, Delete and exchange modes

to write text and to correct your errors. Try typing the rest of the

program that follows into your file for practice. Be sure to accept

your insertions, from time to time, by pressing CTRL-C. That way, you

minimize your loss if you accidentally press the ESC key. Here is the

complete program:

SINGLE-DRIVE OPERATION 147

C FORTRAN DEMO
DO 10 1=1,100
X=I

10 WRITE(*,1)I,X,X*X
1 FORMAT (I6,3X,F7.2,3X,F8. 2)

END

When you are typing this program, the punctuation and spelling must be
exactly as shown. The indentation of the lines is important in
FORTRAN. Note especially that the indented lines must be in the
seventh vertical column. Put them under the second R in FORTRAN. You
will notice that, once you have started a new indentation, the Editor
maintains that indentation for you. To move back to the left, just
press the left-arrow key before you type anything on the new line.

Now you want to write this program to the diskette. With the Edit
prompt line showing, type Q to select the Q(uit option. The following
message appears:

>QUIT:

U(PDATE THE WORKFILE AND LEAVE
E(XIT WITHOUT UPDATING
R(ETURN TO THE EDITOR WITHOUT UPDATING
W(RITE TO A FILE NAME AND RETURN

Type W to tell it you want to write to a file. Now it will prompt you
to enter the name of the file you want to use. Before you answer the
Apple's question, put in diskette F0RT2: . This is done for two
reasons: First, you are leaving the Editor, and the boot diskette must
be in the drive. Secondly, you are going to put your file onto FORT 2: ,

because that's where the Compiler is. With F0RT2: in the drive, you
can answer the Apple's query with: FORT 2 : DEMO 1 which names the file
DEM01 and stores it on FORT 2 :

.

Your Apple responds with the message:

WRITING. .

.

YOUR FILE IS 127 BYTES LONG.

The number of bytes in your file may be different. Then you will see
the question:

DO YOU WANT TO E(XIT FROM OR R(ETURN TO THE EDITOR?

Type E to exit from the Editor. The Command prompt line reappears.

There are three separate but related steps that must now be taken to

run your program. First it must be compiled, that is, translated into
the pseudo-code used by the interpreter. Second, the code must be
linked to the SYSTEM. LIBRARY routines needed by virtually all FORTRAN
programs. Finally, the compiled, linked P-code program must be

executed by the Apple in its own native language.

148 APPLE FORTRAN

Your file DEM01 is on FORT 2 : and so is the Compiler program. All
you do at this point is type
C

to get into the Compiler. Almost immediately, you will see:

COMPILE WHAT TEXT ?

to which you respond:

FORT 2: DEMO

1

Now it asks you:

TO WHAT CODEFILE ?

and you type

F0RT2:DEM01

It whirrs a very short while, then asks you about a LISTING FILE. The
single-drive user cannot create a listing file, but the listing file
can be sent to the console or printer by typing CONSOLE: or PRINTER:

.

If no listing file is to be sent to the console or printer, we reply
by simply pressing the RETURN key.

Now the compilation takes place. If the Compiler discovers mistakes,
it will give you a message that will resemble the following:

FORTRAN COMPILER II. 1 [1.0]

< 0>...

RTEST [3577 WORDS]
< 3>
***** ERROR NUMBER: 161 IN LINE: 10

<SP> (CONTINUE) , <ESC> (TERMINATE) , E(DIT

Put in FORT 1 : and type E to go back to the Editor. Since the file was
not saved in a workfile, it is necessary to reenter the file. When
the file is reentered, type Q to Q(uit, write the file back to FORT 2

:

,

and try compiling again.

When your program has been successfully compiled, it is ready for
linking. The Linker routine is on FORT 1 : . You can load the Linker
routine into your Apple's memory by putting F0RT1: in the drive and
typing L. It then asks you

HOST FILE ?

By this question, the Apple means that it wants you to tell it the
name of the file to be linked. Reply with:
F0RT2:DEM01
without pressing the RETURN key yet.

Now put FORT 2 : in your drive and press RETURN. It will ask you for
more information. The routine goes like this, with your responses and

SINGLE-DRIVE OPERATION 149

the Apple's prompts in ALL CAPITAL LETTERS and any comments in lower

case and in parentheses:

OPENING FORT 2: DEMO 1. CODE

LIB FILE ?

*

OPENING *SYSTEM. LIBRARY
LIB FILE ?

<RETURN>

MAP NAME ?

<RETURN>

Now your Apple flashes red lights,

screen:

(Any library routines?)
(* means the system's library)

(In case you have more than one)

(You don't, so just hit RETURN)

(No, just press the RETURN key)

It then puts these messages on the

READING MAINSEGX

READING NONAME (Your program)

READING RTUNIT (Another library routine)

Finally it asks

OUTPUT FILE? (Where shall I put the linked

code?)

You can use the same name, but you must now specify that it is to be a

CODE file, not a TEXT or DATA file. So you answer

FORT 2: DEMO 1. CODE

Now the Apple begins showing you these messages:

LINKING NONAME #7 (Your program)

LINKING RTUNIT #8

LINKING MAINSEGX #1

The Command prompt line comes back. You are now ready to execute the

program. To get it running, just type X. You should still have F0RT2

in the drive. It will ask you for the file name to be executed. You

respond
DEM01
or whatever FORT 2 : filename you gave it.

It will come up with the message:

RUNNING

and you will get a screenful of squares. Numbers, not the four sided

kind!

Try making changes to the program by altering the equation at the end

of program line 10. Where it now reads X*X, substitute SQRT(X) to get

a sequence of square roots. But first DEM01 must be transferred to

FORT 1 : to be read in to the Editor. To do this, put in FORT 1 : and typ

F to enter the F(iler. Then type T to T(ransfer FORT 2 : DEMO 1 to

FORT 1 : DEMO 1 . Follow the prompts for putting the diskettes into the

150 APPLE FORTRAN

drive and typing the file names. When the file is transferred, F0RT1:
will be in the drive. Type Q to Q(uit the Filer and E to enter the
E(ditor.

Use I(nsert and D(lete to make changes, and then Q(uit, put in F0RT2:,
and write the file to F0RT2:DEM01. Then Compile, Link, and Execute
again. This cycle of Edit-Run-Edit-Run is the basis of program
development with the Apple FORTRAN System.

Diskette F0RT2: contains the text and the code versions of your
program. You can use the T(ransfer command in the F(iler to move your
developed program onto another diskette for storage. When this is

done, clear the workfile by using the N(ew command that is also in the
Filer program on FORTl:.

Executing a Program
To execute a previously compiled program, put FORTl: into the disk
drive. With the Command prompt line showing, enter the Filer by typing
F. When the Filer prompt line appears, put the diskette containing
the program codefile that you wish to execute into the disk drive.
Then type T for T(ransfer. To the question TRANSFER ? from the system,
reply by typing the name of the name of the program's diskette and
codefile. For example:

APPLE3 : GRAFDEMO . CODE
To the next question from the system, TO WHERE ?, reply with the name
of your system diskette, F0RT2: , and the same filename or another
name, if you wish. For example:
FORT 2 : GRAFDEMO . COD E

When you are prompted PUT IN F0RT2:, follow the instruction and press
the spacebar. The program is then transferred onto your system
diskette, which is where it must be to be executed. Now type Q to

Q(uit the Filer. When the Command prompt appears, type X to eX(ecute
the program. When the Apple prompts EXECUTE WHAT FILE?, answer by
typing:

FORT 2: GRAFDEMO
The program should now run.

Writing a Program
To start a new file in the Editor, put FORTl: into the disk drive.
With the Command prompt line showing, type F to enter the Filer. Then
type N for N(ew. If you are asked THROW AWAY CURRENT WORKFILE ? type Y
for Y(es. When you see the message WORKFILE CLEARED, put in FORT 2: and
then type Q to Q(uit the Filer. Then put in FORTl: and type E to enter
the Editor. This message appears:

>EDIT: NO WORKFILE IS PRESENT.

FILE? (<RET> FOR NO FILE <ESC-RET> TO EXIT)

Press the RETURN key, and the full Edit prompt line appears. You can
now insert text at the cursor position by typing I for I(nsert and
then typing your program. Conclude each insertion by pressing CTRL-C.

SINGLE-DRIVE OPERATION 151

Delete text at the cursor position by typing D for D(elete and then

moving the cursor to erase text. Conclude each deletion by pressing

CTRL-C . When you have written a version of your program, type Q to

Q(uit the Editor, then type W(rite to tell it you want to write your

file out to a new filename.

When it asks you for the name of the file, answer with a FORT 2 : file

name to get your text file and all the rest of the routines you need

to compile it on the same diskette. First put in FORT 2
: , and then

press RETURN to start the writing. Then type E to E(xit from the

Editor.

With the Command prompt line showing, you can then type C to start the

Compiler. Answer its prompts in the appropriate manner, and if you

have questions, refer to the earlier part of this appendix.

With compilation complete, and still in Command mode, put in FORT 1

:

and type L to load the Linker routine into memory. Now put in FORT 2:

and answer the questions as the Apple asks them. When it finishes the

task of linking your program to the various library files, it signals

completion presenting you with the Command prompt. To run your

program, (you are still in the Command mode) , just type X and answer

the Apple's question EXECUTE WHAT FILE ?

When a version of your program is complete, you can T(ransfer the text

and code forms of the routine to another diskette for later use.

Type

T

while you are in the Filer. The Apple says:

TRANSFER WHAT FILE ?

which you answer by entering the name of the diskette and the file

name as in the following example. Note you must specify whether it is

the CODE or TEXT version you are transferring to a new diskette from

FORT 2:

FORT 2 : MYFILE . TEXT

Now it asks:

TO WHERE?

And you key in the message

MYDISK:MYFILE. TEXT
and press RETURN and take the diskettes in and out of the disk drive

as the Apple instructs.

What to Leave in the Drive
When you turn the Apple off, it is a good idea to leave diskette

F0RT2: in the disk drive. If another diskette or no diskette is in

the drive when the Apple is turned on, the drive may spin

indefinitely. This will cause unnecessary wear on the drive and the

diskette.

152 APPLE FORTRAN

APPENDIX A-PART TWO

MULTI-DRIVE OPERATION
154 Introduction
154 Equipment You Will Need
155 More Than Two Disk Drives
155 Numbering the Disk Drives
155 Configuring Your System
157 FORTRAN in Seconds
157 Changing the Date
159 Making Backup Diskettes
159 How We Make Backups
160 Formatting Diskettes
162 Making the Actual Copies
164 Using the System
165 And Now, Some Fun
167 Executing a Program
168 Writing a Program
170 What to Leave in the Drive

MULT! -DRIVE OPERATION

INTRODUCTION

Appendix A Part Two covers configuring your Apple FORTRAN System,
booting Pascal and FORTRAN for the first time, and using the Editor
and Filer programs of the Apple Pascal Operating System to format and
make backup copies of diskettes. This appendix is for the user of a
system with two or more disk drives.

The procedures described in the section, Configuring Your System, are
a tutorial on how to configure your Apple FORTRAN System. The sections
after that provide step-by-step instructions for those of you
unfamiliar with the Pascal Operating System.

EQUIPMENT YOU WILL NEED

To run Apple FORTRAN, you should have the following equipment:

* Your 48K Apple computer, with a Language Card installed, and at

least two disk drives. The first two should be attached to a disk
controller card in slot 6. All your disk controller cards should have
the PROMs, P5A and P6A, that came with the Language System.

* A TV set or video monitor connected to your Apple.

* The following diskettes and at least two blank diskettes:

FORT 1

:

FORT 2:

APPLE1

:

APPLE2

:

APPLE3

:

Your new Apple FORTRAN System consists of the following diskettes:

* Two identical diskettes labeled F0RT2: each containing two files:
SYSTEM. COMPILER and SYSTEM. LIBRARY. The SYSTEM. COMPILER is protected
from being copied.

* One diskette labeled FORT 1 : containing the file FORTLIB.CODE.

To create an Apple FORTRAN System, you must transfer certain files
from diskettes APPLE1: and APPLE2: of your Apple Pascal System to the
two FORTRAN diskettes, F0RT1: and FORT 2 : . The Configuring Your System
Section of this appendix explains how to transfer the required files
fromAPPLEl: and APPLE2: to create a working FORTRAN system. It is

our recommendation for an Apple FORTRAN System; it is not the only
way to do thi s

.

154 APPLE FORTRAN

More Than Two Disk Drives
If your system has more than two disk drives, the third drive gets

connected to the DRIVE 1 pins on the second controller, which goes in

slot 5. A fourth drive is connected to the DRIVE 2 pins on the second

controller in slot 5. A fifth and even a sixth drive can be connected

to a controller in slot 4, using the DRIVE 1 and DRIVE 2 pins,
respectively.

Numbering the Disk Drives
Apple FORTRAN assigns a volume number to each of the disk drives. It

is not a bad idea to place tags with these numbers on your disk

drives. Here's how the volume numbers are assigned to the various disk

drives

:

Apple disk drive FORTRAN volume #

Slot 6, Drive 1 #4:

Slot 6, Drive 2 #5:

Slot 5, Drive 1 #11:

Slot 5, Drive 2 #12:

Slot 4, Drive 1 #9:

Slot 4, Drive 2 #10:

You will find that you can refer to any diskette by either the name of

the diskette (e.g., APPLE3:) or by the volume number of the drive in

which it is installed (e.g., #11:).

CONFIGURING YOUR SYSTEM

First, plug in the TV or monitor and turn it on. Then plug in the

Apple. Put diskette APPLE1: in drive 1 (volume #4) and diskette FORTl

in drive 2 (volume #5). Turn on the Apple.

You need to transfer the following files from APPLE1: to FORTl:

SYSTEM. APPLE

SYSTEM. PASCAL

SYSTEM.MISCINFO
SYSTEM. CHARS ET

SYSTEM. FILER
SYSTEM. EDITOR

You also need to transfer the following file from APPLE2: to FORTl:

SYSTEM.LINKER

MULTI-DRIVE OPERATION 155

Type F to enter the Filer, and then type T to Transfer files from one
diskette to another. The screen asks TRANSFER ?, and you respond by
typing
APPLE1:?,F0RT1:$
The question mark means ask before transferring if the file is to be
transferred. The dollar sign means give the file the same file name
on the new diskette. The screen then asks TRANSFER SYSTEM.APPLE, and
you respond by typing
Y
The file is then transferred from APPLE1: to FORT 1 :

.

Reply Y to the question to transfer files SYSTEM. PASCAL,
SYSTEM.MISCINFO, SYSTEM. EDITOR, SYSTEM.CHARSET , and SYSTEM. FILER.
Reply N to the question to transfer files SYSTEM. LIBRARY and
SYSTEM. SYNTAX.

Now put APPLE2: in drive 1 and leave FORT 1 : in drive 2. Type T and
respond to the question TRANSFER ?, by typing
APPLE2: SYSTEM. LINKER, F0RT1:$
This transfers the file SYSTEM. LINKER to FORT 1 : . When that file is
transferred, you have a complete F0RT1: diskette.

You now need to transfer the following files fromAPPLEl: to FORT 2

:

SYSTEM.APPLE
SYSTEM. PASCAL
SYSTEM.MISCINFO
SYSTEM. CHARSET

Note that FORT 2 : came to you with two files on it:

SYSTEM.COMPILER
SYSTEM. LIBRARY

Put APPLE1: in drive 1 and FORT2 : in drive 2. Type T for Transfer and
respond to the question TRANSFER ?, by typing
APPLE1:?,F0RT2:$
Answer Y to the question to transfer files SYSTEM.APPLE

,

SYSTEM. PASCAL, SYSTEM.MISCINFO , and SYSTEM.CHARS ET . After
transferring those files, you now have a complete F0RT2: diskette.

At the conclusion of the transfer process, F0RT1: and FORT 2 : should
contain the following files:

FORT 1 : FORT 2:

SYSTEM.APPLE SYSTEM.APPLE
SYSTEM. PASCAL SYSTEM. PASCAL
SYSTEM.MISCINFO SYSTEM.MISCINFO
SYSTEM. CHARSET SYSTEM.CHARSET
SYSTEM. FILER SYSTEM. COMPILER
SYSTEM. LINKER SYSTEM. LIBRARY
SYSTEM. EDITOR
FORTLIB.CODE

156 APPLE FORTRAN

FORTRAN IN SECONDS
To start Apple FORTRAN running on your system, place the diskette

marked FORT 2 : in disk drive #4: (slot 6, drive 1). Please note at this

point that diskette FORT 2 : will always be your boot or system

diskette. Later you may find exceptions to this rule.

Close the door to disk drive #4:, and turn on the Apple. The message

APPLE II

appears at the top of your TV or monitor screen, and the IN USE light

for disk drive #4: comes on. The disk drive emits a whirring sound
to let you know that everything is working. Then the message

WELCOME FORT 2, TO

U.C.S.D. PASCAL SYSTEM II.

1

CURRENT DATE IS 26-JUL-79

appears. The date may be different, and is almost certainly wrong.

This is followed in a second or so by a line at the top of the screen:

COMMAND : E(DIT, R(UN, F(ILE, C(OMP, L(IN

This line at the top of the screen is called a prompt line. When you

see this prompt line, you know that your Apple computer is running the

Apple FORTRAN system.

Starting the system depends only on having either FORTRAN diskette in

disk drive #4:. This time, you left the other drives empty; but you
will soon discover that the system starts more quickly and quietly if

the other drives have FORTRAN diskettes in them. For now, you could
put any properly formatted diskettes in the empty disk drives. For

example, you could put F0RT1: in drive volume #5, APPLE3: in drive
volume #11, and a blank but formatted diskette in volume #12. You

should get in the habit of always having F0RT2: in volume #4: and
FORT 1 : in volume #5:

.

Make sure you never put two diskettes with the same names into the

system at the same time. This may cause the directories of those
diskettes to get scrambled.

CHANGING THE DATE
The date that comes on the diskette will not be correct. It is a good
habit to reset the date the first time you use the FORTRAN System on

any given day. It only takes a few seconds. Put F0RT1: diskette into
disk drive #5:. Press F on the keyboard without pressing the RETURN

MULTI-DRIVE OPERATION 157

key or any other keys. The screen goes blank, and then this line
appears at the top:

FILER: G, S, N, L, R, C, T, D, Q [C.l]

This is a new prompt line. Prompt lines are named after their first

word. The prompt line you first saw was the Command prompt line. This

one is the Filer prompt line. Sometimes we say that you are "in the

Filer" when this line is at the top of the screen. Each of the letters

on the prompt line represents a task that you can ask the Apple to do.

For example, to change the date, press D. Again, just type the single
key without pressing RETURN.

When you do, another message is put on the screen. It says:

DATE SET: <1 . . 31>-<JAN. .DEC>-<00 . . 99>

TODAY IS 26-JUL-7 9

NEW DATE ?

It doesn't really mean that today is 26-JUL-7 9 or whatever date your

screen shows, but that the Apple thinks that is today's date. Since

you know better, you can change the date to be correct. The correct
form for typing the date is shown on the second line of the message:

one or two digits giving the day of the month, followed by a minus

sign, followed by the first three letters of the name of the month,
followed by another minus sign, followed by the last two digits of the
current year. Then press the key marked RETURN.

If the month and year are correct, as they will often be when you

change the date, all you have to do is type the correct day of the

month, and press the RETURN key. The system will assume that you mean
to keep the same month and year displayed by the message. If you type
a day and a month, the system will assume you mean to keep only the

year the same. Go ahead and make the date correct. Your new date is

saved on diskette F0RT1:, or whatever diskette you have in volume #4,

so the system remembers this date the next time you turn the Apple on.

In general, at the top of the screen there will be a prompt line which

represents several choices of action. When you type the first letter
of one of the choices, either you will be shown a new prompt line

giving a further list of choices, or the system will carry out the

desired action directly. If you type a letter that does not correspond
to one of the choices, the prompt line blinks, but otherwise nothing
happens. Type only a single letter to indicate your choice; it is not

necessary to press the RETURN key afterward.

Sometimes, as when setting the date, you are asked to type a response
of several characters. You tell the system that your response is

complete by pressing the RETURN key. If you make a typing error before
pressing the RETURN key, you can back up and correct the error by

pressing the left-arrow key. You should experiment by making
deliberate errors in entering a date, and then erasing the errors with
the left-arrow key.

158 APPLE FORTRAN

MAKING BACKUP DISKETTES

Ask yourself this question: What would happen to your system if you

were to lose or damage one of the system diskettes? Without your
system diskettes, you don't own a FORTRAN programming capability. The

first thing you should do, therefore, is to make backup copies of

F0RT1:. Afterward, you should never use the original, but put it

someplace where the temperature is moderate, where there is no danger
of it getting wet, and where magnetic fields cannot get at it. Since

the FORTRAN compiler on FORT 2 : is protected from being copied, Apple

provides a backup copy of F0RT2:.

A truly cautious person will keep on hand two backup copies of F0RT1:.

That way, you will need to use the original only in the very rare case

when both of its backup copies are lost. When one copy is lost or

damaged, another backup copy is made from the surviving backup copy.

If your backups were damaged or erased while in use, find out why they
were destroyed before inserting your only surviving copy. If you can't

figure out what the problem is, bring your system to the dealer to

make sure it is working correctly.

How We Make Backups
The FORTRAN system can copy all or any portion of information from one

diskette onto another diskette unless the information is protected
from being copied. But the system cannot store information on a raw

diskette, just as that diskette comes from the store. Therefore, the

system is supplied with a program that allows you to take any 5-inch

floppy diskette and format it so that it will work with the Apple
FORTRAN system.

If you have been following this chapter by carrying out the

instructions on your Apple, the Filer prompt line should be showing at

the top of the screen:

FILER: G, S, N, L, R, C, T, D, Q [CI]

Type Q on the keyboard to Quit the Filer. When you Quit the Filer, the

drives whirr, and soon you see the Command prompt line again:

COMMAND: E(DIT, R(UN, F(ILE, C(OMP, L(IN

There is actually more of this prompt line, off to the right of your

TV or monitor. To see the rest of the screen, hold down the key marked
CTRL and, while holding it, press the A right alongside it. Or, to be

brief, we say press CTRL -A.

You now see

K, X(ECUTE, A(SSEM, D(EBUG, ? [II. 1]

This is simply the rest of the line that began COMMAND: . All together,

the full prompt line would look like this:

MULTI-DRIVE OPERATION 159

COMMAND: E(DIT, R(UN, F(ILE, C(OMP, L (INK , X(ECUTE, A(SSEM, D(EBUG,

?

The Apple FORTRAN system displays information on a screen that is 80
characters wide, but your TV or monitor shows only the leftmost 40
characters or the rightmost 40 characters at any one time. You use
CTRL-A whenever you wish to see if there is more information on the
other half of the screen. Repeated pressing of CTRL-A flips back and
forth between the left half of the screen and the right half.

Also, sometimes the TV display will seem to be blank. This might mean
that you are just staring at the empty right half of the screen.
Before you come to the conclusion that something is wrong, always try
CTRL-A.

Formatting Diskettes
pi ace diskette APPLE3: in any available disk drive except drive $4:

•

This has to be done because the Formatter program is on APPLE3: . Now,
with the Command prompt line at the top of the screen, type
X

and the screen responds:

EXECUTE WHAT FILE?

You type
APPLE 3: FORMATTER
and press the RETURN key.

The disk drive containing APPLE3: whirrs a bit and the screen says:

FOR DISK FORMATTER PROGRAM
FORMAT WHICH DISK (4, 5, 9. . 12) ?

Now take all the new, blank diskettes that you are going to use with
the FORTRAN system. Do not, of course, take any diskettes that have
precious information on them, such as the diskettes that came with the
FORTRAN system. Place the diskettes in a pile. Their labels should be
blank. Make sure that you don't have any diskettes with data in a non-
FORTRAN or non-Pascal format, such as BASIC diskettes, unless of
course you wish to throw away their contents and reformat them for use
with FORTRAN.

Remove the diskette in disk drive #5:. If yours is a two-drive system,
you will be removing diskette APPLE3: . Put one of the new, blank
diskettes into disk drive #5. Then type
5

and press the key marked RETURN.

If the diskette in drive #5: has already been formatted, you will
receive a warning. For example, if you have left APPLE 3: in that drive
you will be warned with the message

DESTROY DIRECTORY OF APPLE3 ?

160 APPLE FORTRAN

At this point you can type

N

(which stands for No) without pressing the RETURN key, and your

diskette will not be destroyed. Let's assume that you have a new,

unformatted diskette. Then you will not get any warning, but the

Apple will place this message on the screen:

NOW FORMATTING DISKETTE IN DRIVE 5

Disk drive #5: will make some clickings and begin to whirr. The

process takes about 30 seconds. When formatting is complete, the

screen again shows the message

FORMAT WHICH DISK (4, 5, 9.-12) ?

Now you have a formatted diskette. We suggest that you write FORTRAN

in small letters at the top of the diskette's label, using a marking

pen

.

Never use a pencil or ballpoint pen, as the pressure of writing may

damage the diskette. The label will let you know that the diskette is

formatted for use with the Apple FORTRAN system, and you can

distinguish it from unformatted diskettes, BASIC diskettes, or

diskettes for use with other systems. Diskettes that are formatted

for FORTRAN will also store Pascal files and vice-versa because the

formatting for FORTRAN and Pascal is identical.

While you are at it, repeat this formatting process on all the new

diskettes that you want to use with the Apple FORTRAN System. With
each new diskette, place it in drive #5:, type 5 and press the RETURN

key.

Note: If you have more than two drives, you can simplify the procedure

by putting the next diskette to be formatted into any unoccupied
drive. Then, when the system asks

FORMAT WHICH DISK (4, 5, 9.-12) ?

just type the correct volume number of the drive containing your new,

blank diskette, and then press the RETURN key.

When the pile of unformatted diskettes is depleted, and you have

written the word FORTRAN on each diskette, answer the question

FORMAT WHICH DISK (4, 5, 9. - 12) ?

with a simple press of the key marked RETURN. You get the message

THAT'S ALL FOLKS. .

.

MULTI-DRIVE OPERATION 161

And if you watch the top of the screen, the line

COMMAND : E(DIT, R(UN, F(ILE, C(OMP, L (INK, X(ECUTE, A(SSEM, D (EBUG,

?

appears. Of course, it doesn't all appear; but you know it's there,
and can check with CTRL-A.

Making the Actual Copies
As you have seen, you can get into the Filer by typing F when you have
the Command prompt line on the screen. You must have diskette F0RT1:
in one of the disk drives when you type F to enter the Filer. Put
FORT 1 : in disk drive #5.

The Filer is that portion of the system which allows you to manipulate
information on diskettes. One of the Filer's abilities is to transfer
information from one diskette to another. To invoke this facility,
once you have the Filer prompt line on the screen, type T for
T (ransf er

.

This is what you see:

TRANSFER ?

Let's say that you want to make a backup copy of diskette F0RT1: by
copying it onto one of your newly formatted diskettes. Put FORT 1 : into
any available disk drive, and put a newly formatted diskette into any
other drive. Now, answer the question by typing the name of the source
diskette to be copied:
FORT 1

:

When you press the RETURN key, the computer checks to see that
diskette F0RT1: is in one of the disk drives. If it is not, you will
see the message

F0RT1:

NO SUCH VOL ON-LINE <SOURCE>

In that case, just put F0RT1: in a disk drive and type T for Transfer
again. If the Apple succeeds in finding FORT 1

: , it asks you the
question

:

TO WHERE ?

•

Answer this question by typing the name of the diskette that is to

become an exact backup copy of F0RT1:
BLANK:

Remember that BLANK: is the name given to all newly formatted
diskettes by the Formatter program. The colons (:) that appear
after the diskette names are quite significant: They indicate that you
are referring to the entire diskette.

After you have told the computer where you want F0RTl:'s information
transferred and pressed the key marked RETURN, it checks to see that

162 APPLE FORTRAN

BLANK: is also in one of the disk drives. If it is not, you will see

the message

PUT IN BLANK:
TYPE <SPACE> TO CONTINUE

In that case, put BLANK: into any disk drive except the one containing

F0RT1 : , and press RETURN. When the computer succeeds in finding both

the source and the destination diskettes, it says

TRANSFER 280 BLOCKS ? (Y/N)

This message is mainly there to give you a chance to abandon the

transfer if you made a typing error in the names of the source or the

destination diskettes. The phrase "280 BLOCKS" means merely the whole

diskette. In any case, you type

Y

All the information on diskette FORT 1 : , including the diskette's name,

will be copied onto diskette BLANK: ,
completely overwriting BLANK:

.

Therefore, the computer warns you that you are about to lose any

information that might be stored on BLANK:. It says

DESTROY BLANK: ?

Since you want to turn BLANK: into a perfect copy of FORT 1 : , the

answer is

Y

The process is under way. It takes about two minutes to copy and check

the entire diskette. When copying is done the screen says:

F0RT1: ~> BLANK:

By this remark the computer is telling you that the contents of

FORT 1
: , including the diskette's name, have been copied onto the

diskette that used to be called BLANK:

.

There are now two diskettes with the same name, both in the system at

once. This is a risky situation, so remove one of the copies right

away. Write FORT 1 : on the new diskette's label.

Before you type Q to Quit the Filer and return to the Command prompt

line, be sure that diskette FORT 2 : is still in drive //4:. If you Quit

the Filer or Editor without FORT 2 : in place, the computer may stop

responding to its keyboard after you type Q; even the RESET key will

have no effect. You will have to turn your Apple off, put FORT 2 : in

drive #4:, and reboot the system.

MULTI-DRIVE OPERATION 163

USING THE SYSTEM
To use the Apple FORTRAN System, put FORT 2 : in the boot drive, volume
#4: and FORT 1 : in drive #5:. With the Command prompt line showing,
type E to select the E(dit option. Soon, this message appears:

>EDIT:
NO WORKFILE IS PRESENT. FILE? (<RET> FOR NO FILE <ESC-RET> TO EXIT)

As usual, you must use CTRL-A to see the right half of the message.
This message gives you some information and some choices. The first
word, >EDIT

: , tells you that you are now in the Editor. The next
sentence, NO WORKFILE IS PRESENT, tells you that you have not yet used
the Editor to create a workfile, which is a scratchpad diskette copy
of a program you are working on. If there had been a workfile on
F0RT2:, that file would have been read into the Editor automatically.

Since there was no workfile to read in, the Editor asks you, FILE? If

you now typed the name, including the drive's volume number or the
diskette's name, of a .TEXT file stored on either diskette, that
textfile would be read into the Editor. However, there are no .TEXT
files on FORT 1 : or FORT 2 : yet, and besides, you want to write a new
program. In parentheses, you are shown how to say that you don't want
to read in an old file: <RET> FOR NO FILE . This means that, if you
press the Apple's RETURN key, no file will be read in and you can
start a new file of your own. That's just what you want to do, so
press the Apple's RETURN key. The rest of the message says if you
first press the ESC key and THEN press the RETURN key, you'll be sent
back to the Command prompt line. When you have pressed the RETURN key,
the full Edit prompt line appears:

>EDIT: A(DJST C(PY D (LETE F(IND I(NSRT J(MP R(PLACE Q(UIT X(CHNG Z(AP

The Pascal documention on the Editor (in whichever Pascal manual you
have) explains all of these command options in detail; for now you
will only need a few of them. The first one you will use is I(nsert,
which selects the Editor's mode for inserting new text. Type I to
select Insert mode, and yet another prompt line appears:

> INSERT : TEXT [<BS> A CHAR, A LINE] [<ETX> ACCEPTS, <ESC> ESCAPES]

This line of symbols means that anything you type will be placed on
the screen, just to the left of the white square cursor. If the cursor
is in the middle of a line, the rest of the line is pushed over to
make room for the new text. If you make a mistake, just use the
left-arrow key to backspace over the error, and then retype. At any
time during an insertion, if you press the Apple's ESC key your
insertion will be erased. At any time during an insertion, if you
press CTRL-C the insertion will be made a permanent part of your file,
safe from being erased by the ESC or left-arrow key. You can then type
I to enter Insert mode and type more text.

164 APPLE FORTRAN

And Now, Some Fun
Now for our program. With the Insert prompt line showing, press the

RETURN key a couple of times, to move the cursor down the screen a
bit, and then type
C FOOTRAK DEMO
Now press CTRL-C. Your insertion so far is made permanent, and the

Edit prompt line reappears. But that's not how to spell FORTRAN.
Since you have already pressed CTRL-C, it is too late to backspace
over your errors and retype them.

Fortunately, there are other ways. First, let's delete the extra in

FORTRAN. Using the left arrow key, move the cursor left until it is

sitting directly on the second 0. Then type D to enter the Editor's
D(lete mode. Then press the right-arrow key once and the superfluous
will disappear. Now press CTRL-C to make this deletion permanent.

Now let's insert the missing R. The cursor is already correctly placed
to make this insertion, being right on top of the T. Type I to enter
Insert mode. Ignore the fact that the remainder of the line seems to

have suddenly disappeared, and type the missing letter R. When you
press CTRL-C to make this insertion permanent, the rest of the line
returns

:

C FORTRAM DEMO

The letter M is certainly not correct, so move the cursor right, using
the right-arrow key, until it is sitting directly on the M. Now type

X to select the Editor's exchange option. When the exchange prompt
line appears, press the N key and the offending M is instantly

transformed. For Insert, Delete and exchange modes, if you press the
ESC key, the alteration is undone, as if it had never happened. If you
press CTRL-C, the alteration is made a permanent part of your file.

To change that M permanently, press CTRL-C. Finally we have:

C FORTRAN DEMO

Now you know how to use the Editor's Insert, Delete and exchange modes
to write text and to correct your errors. Try typing the rest of the

program that follows into your file for practice. Be sure to accept
your insertions, from time to time, by pressing CTRL-C. That way, you
minimize your loss if you accidentally press the ESC key. Here is the
complete program:

C FORTRAN DEMO

DO 10 1=1,100
X=I

10 WRITE(*,1)I,X,X*X
1 FORMAT (I6,3X,F7.2,3X,F8.2)

END

When you are typing this program, the punctuation and spelling must be

exactly as shown. The indentation of the lines is important in

FORTRAN. The indented lines must start in column seven. In the case of

MULTI-DRIVE OPERATION 165

our example, start the indented lines under the second R in FORTRAN.

You will notice that once you have started a new indentation, the
Editor maintains that indentation for you. To move back to the left,

just press the left-arrow key before you type anything on the new
line.

Now you should save this program. With the Edit prompt line showing,

type Q to select the Q(uit option. The following message appears:

>QUIT:

U(PDATE THE WORKFILE AND LEAVE
E(XIT WITHOUT UPDATING
R (ETURN TO THE EDITOR WITHOUT UPDATING
W(RITE TO A FILE NAME AND RETURN

Type U to create a workfile diskette copy of your program. Future
versions of this file will be Updates. This workfile is a file on your

boot diskette FORT 2: , called SYSTEM. WRK. TEXT . The Apple says

WRITING. .

.

YOUR FILE IS 127 BYTES LONG.

The number of bytes in your file may be a little different. Then the

Command prompt line appears. Now type R to select the R(un option.

This automatically calls the FORTRAN compiler for you, since the
workfile contains text. If you have typed the program perfectly, the
following message appears:

COMPILING. .

.

The compiler assumes that it is the workfile (SYSTEM. WRK. TEXT) on the

boot diskette that is to be compiled.

If the compiler discovers mistakes, it will give you a message such as

FORTRAN COMPILER II. 1 [1.0]

< 0>...

RTEST [3577 WORDS]
< 3>
***** ERROR NUMBER: 161 IN LINE: 10

<SP> (CONTINUE) , <ESC> (TERMINATE) , E(DIT

Don't despair; just type E for E(dit. Your workfile will be

automatically read back into the Editor so that you can make repairs.

A brief error message corresponding to the error message above will

appear at the top of the screen, along with instructions which say to

press the spacebar when you want to start editing. Make any necessary
changes using I(nsert and D(elete. Then Q(uit, U(pdate the workfile,

and R(un your program again, by typing Q U R. You can type them in

rapid succession if you like, since the Apple can store up several
commands in advance.

166 APPLE FORTRAN

During the compilation process, you will be asked LISTING FILE? by

your Apple. Listing files are discussed in Chapter 4 of this manual.
For now, just press <RETURN> to go on. Note that the listing file
cannot be written to the same volume as the output file.

The Apple will tell you that corapilatiion is successful with the

message: "NNN LINES. ERRORS." Upon successful compilation of your
program, the Linker is called to link your coded program to the other

files needed to make up a complete, executable program in P-Code.
After linking, the program is run.

Try making changes in the TEXT file. Just get into E(dit, make the

changes, Q(uit the Editor by U(pdating the workfile, and then R(un the

changed program. This cycle of Edit-Run-Edit-Run is the basis of all

program development in the Apple FORTRAN System.

The workfile on F0RT2: now contains the text version of your program
in a file named SYSTEM. WRK. TEXT , and the compiled P-code version of

your program in another file named SYSTEM. WRK. CODE. When your program
is running as you want it to, you should save the text and code
workfile under other file names. With the Command promptline showing,

type F to enter the Filer. When the Filer prompt line appears, type S

for S(ave. You will be asked

SAVE AS ?

and you should respond by typing a filename.

For example, you might type
DEMO
This changes the names of the workfile from SYSTEM. WRK. TEXT to

DEMO. TEXT, and from SYSTEM. WRK. CODE to DEMO. CODE. If you want to keep
a permanent copy of your program on another diskette, you should now

use the T(ransfer command to transfer DEMO. TEXT and DEMO. CODE, one at

a time, to the other diskette. Put the source diskette in one drive
and the destination diskette in the other drive.

Executing a Program
To execute a previously compiled and linked program in FORTRAN, just

leave F0RT2: in the boot drive, and place your program diskette in

any other drive. Now type
X
to start execution. The Apple will ask you

EXECUTE WHAT PROGRAM ?

Tell it the diskette name or number, and the file name of the program.

Here are two examples:

DISK1:FILE2
#5:FILE3

MULTI-DRIVE OPERATION 167

Either one will work. The Apple will load the codefile into memory and

begin execution automatically.

Writing a Program
With multi-drive systems, there are two possible ways to create and
run a program. Both begin by calling up the Editor and typing in the
text of a FORTRAN program, as you did for the demonstration program in
this appendix. When this is done, Q(uit and U(pdate the workfile,
which will be automatically stored on F0RT2: in the boot drive. At
this point, you have a choice: You can either R(un the program or
separately compile, link, and execute it. R(un is simply a command
that automatically first compiles, then links, and finally executes
the workfile called F0RT2 : SYSTEM. WRK. CODE . When the compilation part
is done, the result is stored as F0RT2 : SYSTEM. WRK.CODE . After linking
to the necessary library or other routines, the final code, ready for
execution, is stored in the same F0RT2 : codefile and automatically
executed.

The second option is to type C for Compile instead of R. This starts
compilation in a less automatic mode. The Apple will ask you first

COMPILE WHAT TEXT ?

You would then tell it

SYSTEM. WRK. TEXT
It knows that it's on F0RT2: because that's your boot diskette.

You will be asked for the name of the output file:

OUTPUT FILE ?

You can give it any name you prefer, but usually you will supply it

with the workfile:
SYSTEM. WRK. CODE

Soon it will ask you

LISTING FILE ?

You don't need one here, so you press RETURN, or type CONSOLE: or
PRINTER: to send the listing file to the console or printer.

When compilation is complete, you will see the Command prompt line
reappear on the screen at the top. Now you are ready to link, so type
L

to call the Linker routine. Soon the linking process starts, and you
will be asked

HOST FILE ?

168 APPLE FORTRAN

Give it the name under which your program is stored:

SYSTEM. WRK
and soon it will ask you:

LIB FILE ?

You will normally reply:
* or SYSTEM. LIBRARY or FORT 2 : SYSTEM. LIBRARY
and the question will be repeated. This time, just type RETURN with no

other entry. Now it will ask you

MAP NAME ?

Just press RETURN, as you don't want to do anything here.

Finally, it will ask you

OUTPUT FILE ?

Again, you can specify any diskette and filename, but for our purposes

enter
SYSTEM. WRK. CODE

Now the linking process is automatic. When it is complete, the Command

prompt will appear once more at the top of your screen.

To test your compiled and linked program, type

X

When the Apple asks you

EXECUTE WHAT PROGRAM ?

Answer with the name of the codefile:

SYSTEM. WRK

Once you have your program running and debugged, you may store it on

any formatted diskette by using the T(ransfer command to transfer only

the codefile. If you want to save the textfile and the codefile on the

same disk, the suggested technique is to use the S(ave command from
the Filer. Get into the Filer and type S.

The Apple soon asks

SAVE AS ?

and you answer with the diskette and file name, but do not specify

either CODE or TEXT. For example, you could type

DISK34:F002U2
The Apple will now store both your text and code in two separate files

on DISK34:. The code will be under DISK34:F002U2.C0DE, while the text,

your FORTRAN source program, will be filed under DISK34:F002U2.TEXT.

MULTI-DRIVE OPERATION 169

What to Leave in the Drive
When you turn the Apple off, it is a good idea to leave diskette
F0RT2: in the boot drive. If some other diskette or no diskette is in
the drive when the Apple is turned on, the drive will spin
indefinitely. This places unnecessary wear on the drive and the
d iskette

.

Note that you can boot with FORT 1 : as your boot diskette. If you do

this, you cannot switch the two diskettes later without rebooting.
Also note that FORT 2: containing the SYSTEM. LIBRARY must be in the
boot drive when Linking if the Run option is used, and that if you are
going to run programs from the workfile, that workfile must be on
F0RT2:. If you want to link manually, F0RT2: can be in any drive.

170 APPLE FORTRAN

APPENDIX B

FORTRAN ERROR MESSAGES
172 Compile-time Erxor Messages

176 Run-time Error Messages

ERROR MESSAGES

COMPILE-TIME ERROR MESSAGES
1 Fatal error reading source block
2 Nonnumeric characters in label field
3 Too many continuation lines
4 Fatal end of file encountered
5 Labeled continuation line
6 Missing field on $ compiler directive line
7 Unable to open listing file specified on $ compiler directive

line

8 Unrecognizable $ compiler directive
9 Input source file not valid textfile format
10 Maximum depth of include file nesting exceeded
11 Integer constant overflow
12 Error in real constant
13 Too many digits in constant
14 Identifier too long
15 Character constant extends to end of line
16 Character constant zero length
17 Illegal character in input
18 Integer constant expected
19 Label expected
20 Error in label

21 Type name expected (INTEGER, REAL, LOGICAL, or CHARACTER [*n]

)

2 2 Integer constant expected
23 Extra characters at end of statement
24 '

(
' expected

25 Letter IMPLICIT' ed more than once
26 '

)
' expected

27 Letter expected
28 Identifier expected
29 Dimension(s) required in DIMENSION statement
30 Array dimensioned more than once
31 Maximum of 3 dimensions in an array
32 Incompatible arguments to EQUIVALENCE
33 Variable appears more than once in a type specification

statement
34 This identifier has already been declared
35 This intrinsic function cannot be passed as an argument
36 Identifier must be a variable
37 Identifier must be a variable or the current FUNCTION
38 '/' expected
39 Named COMMON block already saved
40 Variable already appears in a COMMON block
41 Variables in two different COMMON blocks cannot be equivalenced
42 Number of subscripts in EQUIVALENCE statement does not agree

with variable declaration
43 EQUIVALENCE subscript out of range
44 Two distinct cells EQUIVALENCE' d to the same location in a COMMON

block
45 EQUIVALENCE statement extends a COMMON block in the negative

direction
46 EQUIVALENCE . statement forces a variable to two distinct

172 APPLE FORTRAN

locations, not in a COMMON block
47 Statement number expected
48 Mixed CHARACTER and numeric items not allowed in same COMMON

block
49 CHARACTER items cannot be EQUIVALENCE' d with non-character items
50 Illegal symbol in expression
51 Can't use SUBROUTINE name in an expression
52 Type of argument must be INTEGER or REAL
5 3 Type of argument must be INTEGER, REAL, or CHARACTER
54 Types of comparisons must be compatible
55 Type of expression must be LOGICAL
56 Too many subscripts
57 Too few subscripts
58 Variable expected
59 '=' expected

60 Size of EQUIVALENCE 'd CHARACTER items must be the same
61 Illegal assignment - types do not match
62 Can only call SUBROUTINES
6 3 Dummy parameters cannot appear in COMMON statements
64 Dummy parameters cannot appear in EQUIVALENCE statements
65 Assumed-size array declarations can only be used for dummy

arrays

66 Adjustable-size array declarations can only be used for dummy
arrays

67 Assumed-size array dimension specifier must be last dimension
68 Adjustable bound must be either parameter or in COMMON prior to

appearance

69 Adjustable bound must be simple integer variable
70 Cannot have more than 1 main program
71 The size of a named COMMON must be the same in all procedures
72 Dummy arguments cannot appear in DATA statements
7 3 COMMON variables cannot appear in DATA statements
7 4 SUBROUTINE names, FUNCTION names, INTRINSIC names, etc. cannot

appear in DATA statements
7 5 Subscript out of range in DATA statement
7 6 Repeat count must be >= 1

77 Constant expected
78 Type conflict in DATA statement
7 9 Number of variables does not match number of values in DATA

statement list
80 Statement cannot have label
81 No such INTRINSIC function
82 Type declaration for INTRINSIC function does not match actual

type of INTRINSIC function
83 Letter expected
84 Type of FUNCTION does not agree with a previous call
85 This procedure has already appeared in this compilation
86 This procedure has already been defined to exist in another unit

via a $USES command
87 Error in type of argument to an INTRINSIC FUNCTION
88 SUBROUTINE/FUNCTION was previously used as a FUNCTION/ SUBROUTINE
89 Unrecognizable statement
90 Functions cannot be of type CHARACTER
91 Missing END statement

ERROR MESSAGES 173

92 A program unit cannot appear in a $SEPARATE compilation

93 Fewer actual arguments than formal arguments in

FUNCTION/ SUBROUTINE call

94 More actual arguments than formal arguments in

FUNCTION/SUBROUTINE call

95 Type of actual argument does not agree with type of format

argument

96 The following procedures were called but not defined:

97 This procedure was already defined by a $EXT directive

98 Maximum size of type CHARACTER is 255, minimum is 1

100 Statement out of order

101 Unrecognizable statement

102 Illegal jump into block

103 Label already used for FORMAT

104 Label already defined

105 Jump to format label
106 DO statement forbidden in this context

107 DO label must follow DO statement

108 ENDIF forbidden in this context
109 No matching IF for this ENDIF

110 Improperly nested DO block in IF block

111 ELSEIF forbidden in this context

112 No matching IF for ELSEIF

113 Improperly nested DO or ELSE block
114 '(' expected
115 ')' expected
116 THEN expected

117 Logical expression expected
118 ELSE statement forbidden in this context

119 No matching IF for ELSE
120 Unconditional GOTO forbidden in this context

121 Assigned GOTO forbidden in this context

122 Block IF statement forbidden in this context

123 Logical IF statement forbidden in this context

124 Arithmetic IF statement forbidden in this context

125 ',' expected

126 Expression of wrong type

127 RETURN forbidden in this context

128 STOP forbidden in this context

129 END forbidden in this context
131 Label referenced but not defined

132 DO or IF block not terminated
133 FORMAT statement not permitted in this context

134 FORMAT label already referenced

135 FORMAT must be labeled
136 Identifier expected

137 Integer variable expected
138 'TO' expected

139 Integer expression expected

140 Assigned GOTO but no ASSIGN statements

141 Unrecognizable character constant as option

142 Character constant expected as option

143 Integer expression expected for unit designation

174 APPLE FORTRAN

144 STATUS option expected after ',' in CLOSE statement

145 Character expression as filename in OPEN
146 FILE= option must be present in OPEN statement
147 RECL= option specified twice in OPEN statement

148 Integer expression expected for RECL= option in OPEN statement
149 Unrecognizable option in OPEN statement
150 Direct access files must specify RECL= in OPEN statement

151 Adjustable arrays not allowed as I/O list elements
152 End of statement encountered in implied DO, expressions beginning

with ' (' not allowed as I/O list elements

153 Variable required as control for implied DO

154 Expressions not allowed as reading I/O list elements
155 REC= option appears twice in statement

156 REC= expects integer expression
157 END= option only allowed in READ statement
158 END= option appears twice in statement

159 Unrecognizable I/O unit

160 Unrecognizable format in I/O statement
161 Options expected after ',' in I/O statement

162 Unrecognizable I/O list element
163 Label used as format but not defined in format statement
164 Integer variable used as assigned format but no ASSIGN statements

165 Label of an executable statement used as a format

166 Integer variable expected for assigned format

167 Label defined more than once as format

169 Function calls require '()'

200 Error in reading $USES file

201 Syntax error in $USES file

202 SUBROUTINE/FUNCTION name in $USES file has already been declared

203 FUNCTIONS cannot return values of type CHARACTER
204 Unable to open $USES file

205 Too many $USES statements
206 No .TEXT info for this unit in $USES file

207 Illegal segment kind in $USES file

208 There is no such unit in this $USES file

209 Missing UNIT name in $USES statement

210 Extra characters at end of $USES directive

211 Intrinsic units cannot be overlayed
212 Syntax error in $EXT directive

213 A SUBROUTINE cannot have a type
214 SUBROUTINE/ FUNCTION name in #EXT directive has already been

define

400 Code file write error
401 Too many entries in JTAB

402 Too many SUBROUTINES/FUNCTIONS in segment

403 Procedure too large (code buffer too small)

404 Insufficient room for scratch file on system disk

405 Read error on scratch file

ERROR MESSAGES 175

RUN-TIME ERROR MESSAGES
600 Format missing final ')'

601 Sign not expected in input

602 Sign not followed by digit in input
603 Digit expected in input
604 Missing N or Z after B in format
605 Unexpected character in format
606 Zero repetition factor in format not allowed
607 Integer expected for w field in format
608 Positive integer required for w field in format

609 '.' expected in format
610 Integer expected for d field in format
611 Integer expected for e field in format
612 Positive integer required for e field in format
613 Positive integer required for w field in A format
614 Hollerith field in format must not appear for reading
615 Hollerith field in format requires repetition factor
616 X field in format requires repetition factor
617 P field in format requires repetition factor
618 Integer appears before '+' or '-' in format
619 Integer expected after '+' or '-' in format
6 20 P format expected after signed repetition factor in format

6 21 Maximum nesting level for formats exceeded
622 ')' has repetition factor in format
6 23 Integer followed by ',' illegal in format
624 '.' is illegal format control character
625 Character constant must not appear in format for reading
6 26 Character constant in format must not be repeated

627 '/' in format must not be repeated
628 in format must not be repeated
6 29 BN or BZ format control must not be repeated

630 Attempt to perform I/O on unknown unit number
631 Formatted I/O attempted on file opened as unformatted
632 Format fails to begin with '('

633 I format expected for integer read

634 F or E format expected for real read
635 Two characters in formatted real read

636 Digit expected in formatted real read
637 L format expected for logical read
639 T or F expected in logical read
6 40 A format expected for character read
641 I format expected for integer write
642 w field in F format not greater than d field + 1

643 Scale factor out of range of d field in E format
644 E or F format expected for real write
645 L format expected for logical write
646 A format expected for character write
647 Attempt to do unformatted I/O to a unit opened as formatted
648 Unable to write blocked output, possibly no room on device

for file
649 Unable to read blocked input
650 Error in formatted textfile, no <cr> in last 512 bytes

176 APPLE FORTRAN

651 Integer overflow on input

652 Too many bytes read out of direct access unit record

653 Incorrect number of bytes read from a direct access unit record

654 Attempt to open direct access unit on unblocked device

655 Attempt to do external I/O on a unit beyond end of file record

656 Attempt to position a unit for direct access on a nonpositive

record number
657 Attempt to do direct access to a unit opened as sequential

658 Attempt to position direct access unit on unblocked device

659 Attempt to position direct access unit beyond end of file for

reading
660 Attempt to backspace unit connected to unblocked device

661 Attempt to backspace sequential, unformatted unit

662 Argument to ASIN or ACOS out of bounds (ABS(X) .GT. 1.0)

663 Argument to SIN or COS too large (ABS(X) .GT. 10E6)

664 Attempt to do unformatted I/O to internal unit

665 Attempt to put more than one record into internal unit

666 Attempt to write more characters to internal unit than its length

667 EOF called on unknown unit

697 Integer variable not currently assigned a format label
698 End of file encountered on read with no END= option

699 Integer variable not ASSIGNed a label used in assigned goto

1000+ Compiler debug error messages - should never appear in

correct programs

ERROR MESSAGES 177

APPENDIX C

TABLES

180 Unit Identifiers

181 Intrinsic Functions
184 Transcendental Functions
185 Lexical Comparisons
186 ASCII Character Codes

APPLE FORTRAN TABLES

UNIT IDENTIFIERS

The identifiers listed below are declared or defined only if your
program $USES the unit under which they are listed. If your program
does not use the particular unit, you can use the identifier names for
other purposes.

TURTLEGRAPHICS UNIT IDENTIFIERS

CHARTY
DRAWBL
FILLSC
GRAFMO
INITTU

MOVE

MOVETO
PENCOL
SCREEN
TEXTMO
TURN

TURNTO

TURTLA
TURTLX
TURTLY
VIEWPO
WCHAR

APPLESTUFF UNIT IDENTIFIERS

BUTTON KEYPRE NOTE
PADDLE RANDOM RANDOI
TTLOUT

180 APPLE FORTRAN

INTRINSIC FUNCTIONS
This is the list of intrinsic functions available in Apple FORTRAN.

The type of the result is listed first, followed by the name of the

function in all caps, and the type of the argument(s) in parentheses.

TYPE CONVERSION

integer INT (real)

integer IFIX (real)

Converts from real to integer.

real REAL (integer)

real FLOAT (integer)

Converts integer to real.

integer ICHAR (character)

Converts the first character of the argument string to its

corresponding integer value, according to the ASCII

collating sequence. CHAR is the reverse of ICHAR.

TRUNCATION

real AINT (real)

Removes the fractional part of a real variable, returning

the result as a real.

NEAREST WHOLE NUMBER

real ANINT (real)

Finds nearest whole number, that is: INT (argument+. 5) if the

argument is .GE. 0, otherwise INT(argument-. 5)

.

NEAREST INTEGER

integer NINT (real)

Finds nearest integer: INT (argument+. 5) if argument .GE. 0,

otherwise INT (argument-. 5)

•

TABLES 181

ABSOLUTE VALUE SQUARE ROOT

integer IABS (integer)

real ABS (real)

real SORT (real)

Returns the square root of the argument.
Returns absolute value.

REMAINDERING

integer MOD (integer_a, integer_b)
real AMOD (real_a, real_b)

Returns the result of a-INT(a/b) *b.

TRANSFER OF SIGN

integer ISIGN (integer_a, integer_b)

real SIGN (real_a, real_b)

Converts sign of a according to sign of b. Result is |a| if

b .GE. 0, otherwise result is -|a|.

Takes the positive difference of the two arguments. Result is

a-b if a .GE. b, otherwise result is 0.

MAGNITUDE COMPARISON

integer MAX0 (integer_a, integer_b, . . . integer_n)

real AMAX1 (real_a, real_b,... real_n)
real AMAX0 (integer_a, integer_b , . . . integer_n)

integer MAX1 (real_a, real_b,... real_n)

Returns the largest (most positive) of all the actual

arguments.

integer MIN0 (integer_a, integer_b , . . . integer_n)

real AMIN1 (real_a, real_b,... real_n)
real AMIN0 (integer_a, integer_b , . . • integer_n)
integer MINI (real_a, real_b,... real_n)

Returns the smallest (least positive) of all the actual

arguments.

POSITIVE DIFFERENCE

integer IDIM (integer_a, integer_b)

real DIM (real_a, real_b)

182 APPLE FORTRAN TABLES 183

TRANSCENDENTAL FUNCTIONS
The transcendental functions all return real results, and all

arguments are real. The arguments to SIN, COS, TAN, SINH, COSH and

TANH are in radians. The results of ASIN, ACOS, ATAN and ATAN 2 are in

radians.

EXP (a) Exponential

ALOG(a) Natural logarithm

ALOG10(a) Common logarithm

SIN(a) Sine

COS{a) Cosine

TAN (a) Tangent

ASIN(a) Arcsine

ACOS(a) Arccosine

ATAN (a) Arctangent

ATAN2 (a, b) Arctan(a/b)

SINH(a) Hyperbolic Sine

COSH(a) Hyperbolic Cosine

TANH(a) Hyperbolic Tangent

184 APPLE FORTRAN

LEXICAL COMPARISONS
The lexical functions all return logical results, and all arguments

are character strings.

LGE (a, b)

Returns true if the two strings are identical, or if the first

non-identical character in string a has an ASCII collating

sequence number greater than or equal to the corresponding

character in string b.

LGT(a, b)

Returns true if the first non-identical character in string a

has an ASCII collating sequence number greater than the

corresponding character in string b.

LLE (a , b)

Returns true if the two strings are identical, or if the first

non- identical character in string a has an ASCII collating

sequence number less than the corresponding character in

string b.

LLT(a, b)

Returns true if the first non-identical character in string a

has an ASCII collating sequence number less than the

corresponding character in string b.

TABLES 185

ASCII CHARACTER CODES

Code Char Code Char Code Char Code Char

Dec Hex Dec Hex Dec Hex Dec Hex
00 NUL 32 20 SP 64 40 @ 96 60

1 01 SOH 33 21 ; 65 41 A 97 61 a
2 02 STX 34 22

it
66 42 B 98 62 b

3 03 ETX 35 23 t 67 43 C 99 63 c

4 04 EOT 36 24 $ 68 44 D 100 64 d
5 05 ENQ 37 25 % 69 45 E 101 65 e
6 06 ACK 38 26 & 70 46 F 102 66 f

7 07 BEL 39 27
'

71 47 G 103 67 g
8 08 BS 40 28 (72 48 H 104 68 h
9 09 HT 41 29) 73 49 I 105 69 i

10 0A LF 42 2A * 74 4A J 106 6A j
11 0B VT 43 2B + 75 4B K 107 6B k
12 0C FF 44 2C 76 4C L 108 6C 1

13 0D CR 45 2D - 77 4D M 109 6D m
14 0E SO 46 2E 78 4E N 110 6E n
15 0F SI 47 2F / 89 4F 111 6F

16 10 DLE 48 30 80 50 P 112 70 P
17 11 DC1 49 31 1 81 51 Q 113 71 q
18 12 DC 2 50 32 2 82 52 R 114 72 r

19 13 DC 3 51 33 3 83 53 S 115 73 s

20 14 DC 4 52 34 4 84 54 T 116 74 t

21 15 NAK 53 35 5 85 55 U 117 75 u
22 16 SYN 54 36 6 86 56 V 118 76 V
23 17 ETB 55 37 7 87 57 w 119 77 w
24 18 CAN 56 38 8 88 J o X 1 ?ct 7R/ o X
25 19 EM 57 39 9 89 59 Y 121 79 y
26 1A 58 3A 90 5A z 122 7A z

27 IB ESC 59 3B j 91 5B [123 7B {

28 1C FS 60 3C < 92 5C \ 124 7C
1

29 ID GS 61 3D 93 5D] 125 7D >

30 IE RS 62 3E > 94 5E 126 7E

31 IF US 63 3F 1 95 5F 127 7F DEL

186 APPLE FORTRAN

APPENDIX D

FORTRAN SYNTAX DIAGRAMS

SYNTAX DIAGRAMS 187

FORTRAN SYNTAX DIAGRAMS
The following charts describe the syntax of Apple FORTRAN. They are
only an informal guide to its use, however; they are not a rigorous
definition of the language.

These charts are revisions of the charts given in the ANSI 77 manual,
but made to conform to the subset rather than the full language, and to
take into account those small areas where Apple FORTRAN is different
from the subset. As with the ANSI charts, these charts are not
accurate with respect to the use of blanks, the use of continuation
lines, comment lines or context dependent features. Wherever there is
a conflict between these charts and the formal description earlier
in this manual, the formal description is to be taken instead.

These charts are sometimes called "railroad diagrams," and in fact it
is more truth than not. You typically enter any given chart from the
upper left, where the name of the syntactical object represented by
the chart is given. The lines connecting the different objects in the
chart indicate all the possible ways that these objects can be
connected in an Apple FORTRAN program. Where they branch you may take
any fork of the branch; where two paths unite, you must go in the
direction that the line bends when it unites.

Any numbers embedded in half-circles on a line indicate that the line
may be traversed at most that many times. If a number appears in a
complete circle, then that path must be traversed exactly that many
t imes

.

Objects appearing in upper case are FORTRAN key words, such as DO, or
OPEN. They must appear in programs as written (although they may be
written in lower case). Other uncapitalized objects are names for
syntactic categories. For instance, a label is a kind of syntactic
category in FORTRAN. The names chosen for these categories are adopted
from the ANSI standard where possible, but even the standard sometimes
abreviates terms, such as where "statement label" is shortened to
"label," or "expression" to "expr."

For instance, the syntax of a symbolic name is the list of all legal
character sequences that can be called symbolic names. Specifically, a
symbolic name must start with a letter, and may be followed by up to 5

more letters or digits. Here is its syntax diagram:

s ymbo 1 i c__name

:

188 APPLE FORTRAN

executable_prograra:

r main program

function_subprogram —

.
subroutine_subprogram_

(1) An executable program must contain one and only one

main program.

An executable program may contain external procedures

specified by means other than FORTRAN.

main_program: program_statement

function_subprogram:-

subrout ine_subprogram:

label" f ormat_s t a t emen t

iraplicit_statement

f unct ion_statement —

'subroutine statement

label format_statement

other_specif ication_statement

SYNTAX DIAGRAMS 189

> label- -format_s tat ement

— data statement -

. label

.

I
format statement

X statement_functlon_^stat ement

label format statement

executable statement

label

1 END

(2) A main program may not contain a RETURN statement.

other_specif icat ion_statement

:

dimension statement »

equivalence_statement

. common_statement

type_statement

s externa l_statement -

^ intrinsic_statement

save statement

APPLE FORTRAN

executable statement:

assignment_st at ement

goto_statement

arithmet ic_if_st at ement

logical_if_statement

block_if_statement

else_if_stat ement

else statement

• end_if_statement

do statement

cont inue_statement

stop statement

pause_statement

read statement

wr 1 1 e_s t a t emen

t

print_statement

rewind statement

backspace_statement

endfile_s tat ement —

open_statement

. close_statement

.call statement

return statement

(6) An END statement is also an executable statement and must

appear as the last statement of a program unit, followed by

exactly one carraige return.

SYNTAX DIAGRAMS

program_statement

:

PROGRAM program_name

function statement:

INTEGER

REAL

• LOGICAL

'

FUNCTION function_name

(—Z)

TZ
va r 1 ab 1 e__name

array_name —

(8) The parentheses must appear in a FUNCTION statement, even
if there are no arguments.

subroutine_statement : — SUBROUTINE subroutine name

va

ar—

o

variable_name

ray_name—

(
7-J

192 APPLE FORTRAN

dimension_statement

:

DIMENSION

X
array_declarator

array_declarator

:

array_name

c
T dim bound

(11) Only a dummy array declarator may contain an asterisk.

equivalence_statement : EQUIVALENCE

J

(— equiv_entity

X o- equiv entity

equiv_entity

:

variable name

^ array_element_name

array_name

(13) A subscript expression in an EQUIVALENCE statement must be

an integer constant.

SYNTAX DIAGRAMS 193

14 common statement: COMMON

>^
common_block_name^^" / ^ ' variable_name

array_name —
array_declarator

15 type_statement

:

INTEGER

REAL —

LOGICAL

variable_name

" array_name

function name

— array_declaratoro—
CHARACTER

variable_name

array_name—
— array_declarator

o
^^*-len_specif icatic

^
* len_speclf Icatlon ^

^

194 APPLE FORTRAN

implicit_statement

:

IMPLICIT

I
J

^ ^ INTEGER

- REAL

LOGICAL

CHARACTER

* len_specif ication

^— (j letter

^— - lettc

X
len_spec if ication: nonzero_unsigned_int_constant

external statement:

EXTERNAL procedure_name

intrinsic statement:

INTRINSIC

save statement:

SAVE

r
function name

z
I common_block_name /

SYNTAX DIAGRAMS

21
^

data_stat ement

:

DATA

variable name

array_e lement_name

array_name

nonzero_unsigned_int_constant *

C constant

o

22 assignment_statement

:

^ variable name

array_element_name expression

ASSIGN label TO variable name

23 goto_statement

:

uncondit ional_goto

computed_goto

assigned_goto

24 unconditional goto: GO TO label

196 APPLE FORTRAN

computed_goto:

GO TO (label integer_variable

assigned goto:

1 GO TO variable name.

{ -7 labeaDel ^)

arithmetic_if_statement

:

L IF (int_real_expr) label , label , label

logical_if_stat ement

:

^ IF (
logical_expression) executable_statement

(2 8) The executable statement of a logical IF statement must

not be a DO, block IF, ELSE IF, ELSE, END IF, END, or

another logical IF statement.

block_if_statement

:

V IF (logical_expression) THEN

else_if_statement

:

ELSE IF (logical_expression) THEN

else statement:

end if statement:

ELSE

END IF

SYNTAX DIAGRAMS 197

do statement

:

DO label

C varlable_name = int_expr intexpr_<7\- J
(33) The control parameters must be integer expressions.

If the Iteration count of the DO statement is zero, the
statements in the range of the DO statement will not be
executed, unlike ANSI 66 where they would still be executed
once.

continue statement: CONTINUE

stop_statement

:

pause_statement

:

STOP -

PAUSE

digit

T
character constant

write_statement

:

read statement:

WRITE

. READ

c (control_info list) io list

APPLE FORTRAN

control info list:

unit identifier

c
7

format identifier

REC = int_expr

END = label

-A.

(39) A control_info_list must contain exactly one unit_ident if ier

.

An END = specifier must not appear in a WRITE statement.

io list:

expression

array_name

io_imp 1 i ed_do_l i s t

(40) In a WRITE statement, an I/O list expression must not

begin with "(".

io_implied_do_list

:

(io_list , variable_name

c
J

int_expr ^T) int_expr

^

(41) The control parameters must be integer expressions.
If the iteration count of the I/O implied DO list is zero,

the statements in the range of the DO list will not be

executed, unlike ANSI 66 where they would still be executed

once

.

SYNTAX DIAGRAMS 199

42 open_statement

c OPEN (unit_identifier

FILE = char_expr

ACCESS = char_expr

RECL = integer_const_var

STATUS = char_expr

. FORM = char_expr

43

44

45

46

close statement: CLOSE (

c unit identifier STATUS = char_expr

backspace_statement : BACKSPACE

endf ile_statement : ENDFILE -

rewind statement: REWIND —

cunit identifier

47 unit_ident if ier

:

integer_expr

200 APPLE FORTRAN

4 8 format_identif ier

:

s label

*s integer_variable_name
^

v character_constant \ ^

49 format_statement : FORMAT format_specif ication

50 format_specif ication: _ (fmt_specif ication) £>.

SYNTAX DIAGRAMS 201

51 fmt_specif ication:

^ repeat_spec (fmt_specif ication).

202 APPLE FORTRAN

repeat_spec

:

V nonzero_unsigned_int_constant

unsigned_int_constant

integer_constant

ASCII character

stat emetit_func t ion_st at ement

function_name (variable_name

h) = expression

call_statenient

:

V CALL subroutine name

expression

_
array_name

3

return statement: RETURN

function_reference

:

^ function_name (

expression

array_name

J

SYNTAX DIAGRAMS 203

63 expression

:

^ arithmetic_expression

v* character_expression .

logical_expression

64 arithmet ic_expression

:

6 5 integer_expr :

66 int_real_expr :

7"

\ unsigned_arithmet ic_constant

^« variable name

^ array_element_name

^ function_reference

(arithmet ic_expression)

(64) A variable name, array element name, or function
reference in an arithmetic expression must be of type
integer or real.

(65) An integer expression is an arithmetic expression of type
integer

.

(66) An int_real_expression is an arithmetic expression of

type integer or real.

204 APPLE FORTRAN

dim_bound_expr

:

unsigned_int_const_var

(69) Variables in a dimension bound expression must be of type

integer, unsigned, and be either a constant or variable name.

character_expression

:

^ character_constant

t variable_name

array_elemenrename

(character_expression) A.

(70) A constant name, variable name or array element name

must be of type character in a character expression. There

is no concatenation operator in the subset.

character_const_expr

:

s character_constant

(character_const_expr) 1

SYNTAX DIAGRAMS 205

72

73

logical_expression

:

-.NOT.

.AND.

.OR.

logical_constant

variable name

array_element_name

function reference

relat ional_express ion

(logical_expression)

(72) A constant name, variable name, array element name or

function reference must be of type logical in a logical

expression. .EQV. and .NEQV. are not in the subset.

relat ional_expression

:

arithmetic_expression rel_op arithmetic_expression

character_expression rel_op character_expression

(73) Character expressions in relational expressions are evaluated

in a lexicographical comparison, using the ASCII character
collating sequence-

74 rel_op:

h .LT.

.LE.

.EQ.

.NE.

. GT.

. GE

.

206 APPLE FORTRAN

75 array_element_name

:

^ array_name integer_expr

o
(75) Arrays are restricted to three dimensions in the subset.

76

77

78

79

80

81

82

variable_name:

array_name: —

common_b lock_name

:

program_name: —

procedure_name

:

^ subroutine_name:

function name: — symbolic_name

83 symbolic_name

:

7~ letter

digit -

J
84 constant

:

ignsign unsigned_arithmet ic_constant

character_constant

logical_constant

85 unsigned_arithmetic_constant

:

unsigned_int_constant -

unsigned_real_constant 1

SYNTAX DIAGRAMS 207

unsigned_int_constant

:

87 nonzero__unsigned_int_constant

:

88 integer_constant :

^— sign ^- digit
^

(88) A nonzero, unsigned, integer constant must contain a
nonzero digit.

unsigned_real_constant

:

unsigned_int_constant unsigned_int_constant

E integer_constant

logical_constant

:

^ .TRUE.

.FALSE. -

91 character constant: apostrophe

nonapost rophe^charact er

apostrophe apostrophe _

. apostrophe

(91) An apostrophe within a character constant is represented
by two consecutive apostrophes with no intervening blanks.

208 APPLE FORTRAN

label:

digit J 5

(92) A label must contain a nonzero digit.

SYNTAX DIAGRAMS 209

210 APPLE FORTRAN

APPENDIX E

FORTRAN STATEMENT SUMMARY

STATEMENT SUMMARY 211

In the following summary of Apple FORTRAN statements, FORTRAN reserved
words are capitalized; other entities that are required by the
statement, such as arguments and type qualifiers, are in lower case.
Items enclosed in square brackets: [] are optional. An ellipsis
indicates that the previous item may be repeated. For instance in the
CALL statement shown below, the named subroutine can have no
arguments, in which case the name of the subroutine is not followed by
anything, or it can have one argument, in which case the argument is

enclosed in parentheses, or it can have more than one argument in
which case the argument list is enclosed in parentheses and the
individual arguments are separated by commas.

The type identifier below can be any of INTEGER, REAL, LOGICAL, or

CHARACTER [*length] . The length argument specifies the number of
characters that the entity can store, and is an unsigned, nonzero,
integer constant. I/O device unit numbers may be integer expressions.

ASSIGN statement label TO integer variable

BACKSPACE unit

CALL subroutine [([argument [, argument] ...])

]

CHARACTER [*length[,]] name [.name]...

COMMON [/ [common_block] /]name_list [[,] / [common_block] /name_list] . .

.

CONTINUE

DATA name_list/constant_list/ [[,] name_list /cons tant_list /] . .

.

DIMENSION array (dimension) [, array (dimension)]..

.

DO statement [,] integer_variable=expression_l , expression_2

[, expression_3]

ELSE

ELSE IF (expression) THEN

END

END IF

ENDFILE unit

EQUIVALENCE (name_list) [, (name_list)] . . .

EXTERNAL procedure [.procedure]...

FORMAT fonnat_specif ication

212 APPLE FORTRAN

function ([dummy_argument [, dummy_argument] . . .]) = expression

[type] FUNCTION function ([dummy_argument [
,dummy_argument] . . .]

)

GO TO integer_variable [[,] [statement_label [, statement_label] . . .)

]

GO TO statement_label

GO TO (statement_label [,statement_label] ...)[,]
integer_variable

IF (expression) statement

IF (expression) statement 1, statement2, statement3

IF (expression) THEN

IMPLICIT type (a [,a]...) [.type (a [,a] ...)].

INTEGER variable_name [,var iable_name]

INTRINSIC function [.function]...

LOGICAL variable_name [
,variable_name] . .

•

OPEN (open_list)

PAUSE [character_constant or integer]

PROGRAM program_name

READ (control_information_list) [i/o_list]

REAL variable_name [,variable_name]

RETURN

REWIND unit

SAVE a[,a] ...

STOP [character_constant or integer]

SUBROUTINE subroutine [([dummy_argument [,dummy_argument] . . .])

]

arithmetic_variable = arithmetic_expression

logical_var iable = logical_expression

character_variable = character_expression

WRITE (control_information_list) [i/o_list]

STATEMENT SUMMARY

APPENDIX F

ANSI FORTRAN 66 VS. 77

216 Introduction

216 Conflicts
216 Line Format
216 Hollerith

216 Arrays
216 I/O
217 Intrinsic Functions

217 Other Conflicts
217 Adapting Programs
218 Additions

214 APPLE FORTRAN ANSI STANDARD 66 VS. 77 FORTRAN 215

INTRODUCTION

This Appendix contains a brief description of the major differences
between the new ANSI 77 Standard FORTRAN and the earlier, much more
common ANSI 66 Standard FORTRAN that you are probably more familiar
with. These differences break down into two categories, first, changes
that cleaned up those undefined areas remaining in the ANSI 66

specification, and secondly changes that added capabilities not
available in ANSI 66.

CONFLICTS
There are some conflicts between ANSI 66 and ANSI 77 FORTRAN. These
are listed in the sections immediately following. The additions made
to the language are described under ADDITIONS.

Line Formats
A line that contains only blanks which are defined in Apple FORTRAN to

be the standard ASCII SPACE character in columns 1 to 72 is treated as
a comment line whereas ANSI 66 treated it as the initial line of a

statement

.

Columns 1 through 5 of a continuation line must now contain blanks.

ANSI 66 made no requirement except that column 1 could not contain a C

unless it were to be treated as a comment. Noncontinuation lines must
be blank in column 6.

Hollerith

Hollerith constants and Hollerith data have been deleted. A new

character type has been substituted in their place, see below under
ADDITIONS. There is still an H edit descriptor, but it is not a

Hollerith constant.

Arrays
Each array subscript expression must not exceed its corresponding
upper bound. ANSI 66 allowed this under some circumstances.

You must now always specify all the dimensions of an array element.
ANSI 66 allowed multi-dimensional arrays to be specified with a one-

dimensional subscript in EQUIVALENCE statements.

I/O
No records may be written after an endfile record in a sequential
file. (This is made to be impossible by Apple FORTRAN I/O.)

216 APPLE FORTRAN

Only positive values are allowed for I/O unit identifiers. ANSI 66 did

not specifically prohibit negative values.

You may not read into an H edit descriptor in a FORMAT statement.

Intrinsic Functions
An intrinsic function must appear in an INTRINSIC statement prior to

its use as an actual argument. ANSI 66 allowed it to appear in an

EXTERNAL statement instead. The intrinsic function class includes the
basic external function class of ANSI 66.

Naming an intrinsic function in a type-statement that conflicts with

the type of the intrinsic function does not remove the function from

the class of intrinsic functions. For ANSI 66, this would have been

sufficient to remove it.

There are now more intrinsic functions available than defined in ANSI

66. See Appendix B for a list of these.

Other Conflicts
This section summarizes the other conflicts between ANSI 66 and

ANSI 77.

* It is illegal to specify the type of an identifier more than once.

* The range of a DO loop may be entered only by execution of a DO

statement. The concept of extended range of a DO as described in ANSI

66 no longer exists and will be trapped by the compiler. Also, in

ANSI 66 a large number of systems extended the standard by allowing

the terminal parameter in a DO statement to be less than the initial

parameter, but executed the DO loop one time, rather than zero times

as specified in ANSI 77.

* A labeled END statement could conflict with the initial line of a

statement in ANSI 66.

* The E or D output FORMAT edit descriptors will now append a plus or

minus before the exponent field. This is an ANSI 77 feature not

present in ANSI 66.

ADAPTING PROGRAMS
Here are some problem areas that you should consider if you are

contemplating translating programs into Apple FORTRAN from other

versions.

Subprograms written in languages other than FORTRAN or Pascal will

need to be rewritten. This is especially true of machine language

ANSI STANDARD 66 VS, 77 FORTRAN 217

subprograms. It may be possible, however, to use a program written in
Pascal 6502 assembler code for the Apple without rewriting it.

FORTRAN has never specified the collating sequence of the character
set used. Apple FORTRAN uses both the ASCII encoded binary
representation as shown in Appendix B and its collating sequence.
Character relational expressions may not necessarily have the same
value if the translated program used another character collating
sequence. It is possible that the character set of the source program
contains characters not in the ASCII set.

* File name formats may be different.

* I/O capabilities may be different.

* The program may utilize full language features not available in the
ANSI Standard subset.

* There are usually some language extensions introduced in most
versions of FORTRAN that may not be available In Apple FORTRAN which
is subset standard conforming.

* The program may utilize aspects of ANSI 66 FORTRAN that have been
deleted from ANSI 77.

ADDITIONS

The three major additions to ANSI 77 are the IF statement constructs,
the CHARACTER data type, and the standardizations to I/O. I/O is
treated extensively in Chapter 11. The IF statement is discussed in
Chapter 10, and the CHARACTER statement is discussed in Chapter 7.

ANSI FORTRAN 66 had only an Arithmetic IF statement. ANSI 77 has
extended this to include the Logical IF statement, the Block IF

statement and the ELSE IF, ELSE and END IF statements. Together these
statements provide a vastly improved method of clearly and accurately
specifying the flow of program control. Refer to Chapter 10 for a
discussion of these IF statements.

218 APPLE FORTRAN

APPENDIX G

APPLE FORTRAN VS. ANSI 77

220 Introduction

220 Unsupported Features

220 Full-Language Features
221 Extensions to the Standard

APPLE FORTRAN VS. ANSI 77

INTRODUCTION

This appendix is directed at the reader who is familiar with the ANSI
Standard FORTRAN 77 Subset language as defined in ANSI X3. 9-1978. It
describes how Apple FORTRAN 77 differs from the standard language.
The differences fall into three general categories, unsupported
features, full-language features, and extensions to the Standard.

UNSUPPORTED FEATURES

There are two significant places where Apple FORTRAN 77 does not
comply with the Standard. One is that procedures cannot be passed as
formal parameters and the other is that INTEGER and REAL data types do

not occupy the same amount of storage. Both differences are due to
limitations of the UCSD P-Code architecture.

Parametric procedures are not supported simply because there is no
practical way to do so in the UCSD P-Code. The instruction set does
not allow the loading of a procedure's address onto the stack, and
more significantly, does not allow the calling of a procedure whose
address is on the stack.

REAL variables require 4 bytes (32 bits) of storage while INTEGER and
LOGICAL variables only require 2 bytes. This is due to the fact that
the UCSD P-Code supported operations on those types are implemented in
those sizes.

FULL-LANGUAGE FEATURES

There are several features from the full language that have been
included in this implementation for a variety of reasons. Some were

done at either minimal or zero cost, such as allowing arbitrary
expressions in subscript calculations. Others were included because it

was felt that they would significantly increase the utility of the

implementation, especially in an engineering or laboratory
application. In all cases, a program which is written to comply with
the subset restrictions will compile and execute, since the full
language includes the subset constructs. A short description of full
language features included in the implementation follows.

The subset does not allow function calls or array element references

in subscript expressions, but the full language and this
implementation do.

The subset restricts expressions that define the limits of a DO
statement, but the full language does not. Apple FORTRAN also allows
full integer expressions in DO statement limit computations.

Similarly, arbitrary integer expressions are allowed in implied DO
loops associated with READ and WRITE statements.

220 APPLE FORTRAN

Apple FORTRAN allows an I/O unit to be specified by an integer
expression, as does the full language.

The subset does not allow expressions to appear in an I/O list whereas
the full language does allow expressions in the I/O list of a WRITE
statement. Apple FORTRAN allows expressions in the I/O list of a WRITE
statement providing that they do not begin with an initial left
parenthesis. User note: the expression (A+B)*(C+D) can be specified in

an output list as + (A+B) * (C+D) which, incidentally, does not generate
any extra code to evaluate the leading plus sign.

Apple FORTRAN allows an expression for the value of a computed GOTO,
consistent with the full language rather than the subset language.

Apple FORTRAN allows both sequential and direct access files to be
either formatted or unformatted. The subset language requires direct
access files to be unformatted and sequential to be formatted. Apple
FORTRAN also contains an augmented OPEN statement which takes
additional parameters that are not included in the subset. There is
also a form of the CLOSE statement, which is not included at all in

the subset. I/O is described in more detail in Chapters 11 and 12.

Apple FORTRAN includes the CHAR intrinsic function. CHAR (i) returns
the character in the ith position of the ASCII collating sequence.

ICHAR (CHAR (i))=i

EXTENSIONS TO THE STANDARD

The language implemented has several minor extensions to the full
language standard. These are briefly described below.

Compiler directives have been added to allow the programmer to

communicate certain information to the compiler. An additional kind of

line, called a compiler directive line, has been added. It is
characterized by a dollar sign ($) appearing in column 1. Certain
directives are restricted to appear in certain places. A compiler
directive line is used to convey certain compile-time information to
the FORTRAN system about the nature of the current compilation. The
set of directives is briefly described below:

APPLE FORTRAN VS. ANSI 77 221

$INCLUDE filename Include textually the file

filename at this point in the

source. Nested includes are

implemented to a depth of nesting
of five files. Thus, for

example, a program may include
various files with subprograms,
each of which includes various
files which describe common

areas; this would be a depth of

nesting of three files.

$USES ident

[IN filename]

[OVERLAY]

Similar to the USES command in the

UCSD Pascal compiler. The already

compiled FORTRAN subroutines or

Pascal procedures contained in

the file filename, or in the

file *SYSTEM. LIBRARY if no

file name is present, become

callable from the currently
compiling code. This directive

must appear before the initial

non-comment line.

$XREF Produce a cross-reference listing

at the end of each procedure
compiled

.

$EXT SUBROUTINE name #parms The subroutine or function called

or name is an assembly language

$EXT [type] FUNCTION routine. The routine has exactly

name #params #params reference parameters.

The edit control character $ can be used in formats to inhibit the

normal advance to the next record which is associated with the

completion of a READ or a WRITE statement. This is particularly useful

when prompting to an interactive device, such as the CONSOLE:, so that

a response can be on the same line as the prompt.

An intrinsic function, EOF, has been provided. The function accepts a

unit specifier as an argument and returns a logical value which

indicates whether the specified unit is at its end of file.

Upper and lower case source input is allowed. In most contexts, lower

case characters are treated as indistinguishable from their upper case

counterparts. Lower case is significant in character constants and

hollerith fields.

222 APPLE FORTRAN

BIBLIOGRAPHY

BIBLIOGRAPHY 223

The FORTRAN readings suggested here provide information on the full

FORTRAN language.

Brainerd, Walter S., Charles H. Goldberg, and Jonathan L. Gross.

"FORTRAN 77 Programming," New York, N.Y.: Harper & Row

Publishers Inc. , 1978.

Brainerd, Walter S. "FORTRAN 77." Communications of the ACM,

Vol. 21, No. 10 (Oct. 1978).

Katzan, Harry, Jr. "FORTRAN 77," New York, N. Y. : Van Nostrand
Reinhold Company, 19 7 8.

Meissner, Loren P., and Elliott I. Organick. "FORTRAN 77,"

Reading, Mass.: Addi son-Wesley Publishing Co., 1980.

Wagener, Jerrold L. "FORTRAN 77 Principles of Programming,"

New York, N. Y.: John Wiley and Sons, 1980.

224 APPLE FORTRAN

INDEX

INDEX 225

A
A edit descriptor 96

ANSI FORTRAN 66 4, 6, 216-218
ANSI FORTRAN 77 4, 6, 216-222

APPLESTUFF unit
BUTTON function 133

game controls 132, 133

KEYPRE function 134

NOTE subroutine 134
PADDLE function 132, 133

RANDOI subroutine 132

RANDOM function 132
APPLE1 diskette 136-138, 154-156

APPLE2 diskette 136-138, 154-156

APPLE3 diskette 10

arguments
by reference 116

by value 116

arithmetic expressions
integer division 59

operators 58, 59
result type 59

type conversions 59
arithmetic IF statement 65

arrays

ANSI 66 vs. ANSI 77 216
assumed size 48
asterisk dimension 47

element name 48
number of dimensions 47

order of elements 48

storage 48, 118

subscript expression 48

Turtle Graphics 129, 130

ASMDEMO program 10, 120-122

ASSCII Character Codes Table 186

Assembly language routines
120-122

ASSIGN statement 54, 55

assigned GOTO statement 65

assignment statements
computational 54
label 54, 55

B

BACKSPACE statement 79, 85

bilingual programs 119-122

block IF statement 66-68
BN edit descriptor 86, 94

BUTTON function 133

BZ edit descriptor 94

c
CALL statement 98, 99

Cartesian coordinates 125, 127

CHAR intrinsic function 5, 221

character collating sequence
35, 186

character data type 41, 42

character expressions 60

character set 34, 35

CHARACTER type statement 49

CHARTY subroutine 131

CLOSE statement 78, 83

CODE files 8, 12-15

comment lines 36

COMMON statement 23, 49, 50

compilation
CODE file 12-15

error messages 20, 21, 26,

172-175
modules 12, 13

organizing programs 12

partial 12

same name option 20

separate 13, 113

TEXT file 12, 13

Compiler
input requirements 18

operation 18-26

sample listing 25

compiler directives 5, 221, 222

$EXT 14, 23, 24, 121

$ INCLUDE 23

$USES 13, 14, 23, 110-113,

116, 121

$XREF 23, 26

compile-time error messages
172-175

computational assignment statemei

54

computed GOTO statement 64

configuring Apple FORTRAN
multi-drive user 155, 156

single-drive user 136-138
CONSOLE: 10, 76, 80, 82, 84, 86

100, 105

CONTINUE statement 71

control statements
arithmetic IF 65

226 APPLE FORTRAN

assigned GOTO 65

block IF 66-68

CONTINUE 71

DO 70, 71

END 72

logical IF 65

PAUSE 72

STOP 72

D

DATA statements 37, 38, 52, 53
data type correspondence 118

data types
character 41

integer 40

logical 41

real 40, 41
database 78, 87

DIMENSION statement
asterisk array dimension 47, 48
dimension declarator 47

form 47

direct access files 75,76,78,85
diskettes

formatting 141-143, 160-162
making backups 140-145, 159-163

DO loop range 217

DO statement 70, 71
DO variable expression 5

DRAWBL subroutine 129-131

E

E edit descriptor 95

edit descriptors
apostrophe 92

blank interpretation 86, 94
character 96
dollar sign 86, 93, 222
Hollerith 93, 216
integer 95

logical 96

nonrepeatable 92-94
positional 93

real 95

repeatable 94-96

scale factor 94, 95

slash 93
Editor 138-152, 157-170

ELSE statement 69

ELSEIF statement 69

END statement 22, 37, 38, 72, 99
ENDFILE statement 85

ENDIF statement 69

EOF 5, 79, 222

EQUIVALENCE statement 51, 52
error messages 172-177
expressions

arithmetic 58-60

character 60
logical 61, 62

operator precedence 62
relational 60, 61

external files 75-77

external FUNCTION 100

EXTERNAL statement 50

F

F edit descriptor 95

Filer 138-152, 157-170

files
direct access 5, 75, 76, 78, 85
external 75-77

internal 75, 76

name 75

sequential 5, 75, 77, 79, 85
FILLSC subroutine 127
formal parameters 5

FORMAT statement 37, 90-92
formatted files 75, 77, 78

formatted I/O 90-96
FORTLIB.CODE 10, 15, 30

FORTRAN
ANSI 66 vs. 77 216-218
Apple unsupported features 220
Apple vs. ANSI 77 220-222
Pascal interface 8, 116-120
program development facility 2

running a compiled program
151, 167

running a new program 145-151,
165-167

transferring programs 217, 218
writing a program 151, 152, 168

FORTRAN statement summary 212,
213

FORTRAN statements
assignment 53-55

continuation 37

control 64-72

INDEX 227

defined 37

initial line 37

ordering 37, 38

specification 45-52

statement label 36

FORTRAN syntax diagrams 188-209

FORT 1

:

configuring 136-138, 155, 156
system files 138, 156

FORT 2:

configuring 136-138, 155, 156

system files 138, 156

FUNCTION statement 13, 37, 38,
98-100

functions
calling with I/O statements 79

external 100

formal and actual arguments
106, 107

intrinsic 101-105

G
game controls 132, 133

global names 44, 45, 100

global symbol table 26

GOTO statements 64, 65
GRAFMO subroutine 125

H

H edit descriptor 93

heap marker 120

I

I edit descriptor 95

identifiers 20, 28

IMPLICIT statement 38, 46
INITTU subroutine 124, 125

INITTURTLE 120

integer data type 4, 40

integer division 59

INTEGER type statement 49

internal files 75, 76

intrinsic function 101-105

CHAR 5

EOF 5, 79

placement in statement 216

Intrinsic Functions Table 181-183
INTRINSIC statement 51

iolist
defined 80

expressions in 5

formatting 91, 92

implied DO list 81
I/O device
blocked 76

external files 75
I/O statements
BACKSPACE 85, 91

CLOSE 83
END FILE 85

OPEN 81, 82

READ 83, 84
REWIND 85

WRITE 84

I/O System 74-87
1/0 unit number 5

I/O unit specifier 80

J

K

KEYPRE function 134

keywords 44

L

L edit descriptor 96

label assignment statement 54, 55

Lexical Comparisons Table 185

library 29-31

Linker
mapfile 31

operation 28-32, 111

system files used 28

local scope names 44, 45
logical data type 41

logical expressions 61, 62

logical IF statement 65
LOGICAL type statement 49

228 APPLE FORTRAN

M
main program 12-15, 98

MAINSEGX 110, 112

memory after compilation 26
modules 12, 13

MOVE subroutine 128

MOVETO subroutine 127
multi -drive user

compilation 19

Linker 28
system configuration 155, 156

N

PENCOL subroutine 126, 127

preconnected unit 86
PRINTER: 78

program identifier 20

program input
blanks 36

character set 34, 35

col umns 35

comment lines 36

END statement 22

form 21
line length 22

upper and lower case 21, 222
PROGRAM statement 37, 98
program units 37, 98-107

names

common data blocks 45

global scope 44, 45
integers 45

keywords 44
local scope 44, 45

undeclared 45
variables 45

notation conventions 34
NOTE subroutine 134

o
OPEN statement 81, 82, 86, 87

operator precedence 62

overlay 14, 15, 23, 113

P

P edit descriptor 94, 95
P-code 8, 18

PADDLE function 132, 133

partial compilation 110, 111
Pascal

FORTRAN interface 8, 116-120
INTERFACE 116

RTFINIALIZE 120

RTINITIALIZE 119, 120
USES 118

Pascal documentation 9, 10
Pascal Operating System 2, 3

PAUSE statement 72
pen colors 126

Q

R

RANDOI subroutine 132

RANDOM function 132

READ statement 83, 84
real data type

basic real constant 41

defined 4, 40
real constant 41

REAL type statement 49

record
endfile 74, 75

formatted 74-78

kinds of 74
unformatted 74-79, 85

recursive subroutine calls 99

relational expressions 60, 61
REMIN 21

RETURN character 38

RETURN statement 99, 106
REWIND statement 85
RTUNIT 8, 10, 15, 29, 110, 119

RUN Command 19

run-time error messages 176, 177

s

SAVE statement 51

SCREEN function 129

sequential files 75, 77, 79, 85

INDEX 229

single-drive user
compilation 18, 19

Linker 28

system configuration 136-138

specification statements
COMMON 49, 50
DIMENSION 47

EQUIVALENCE 51, 52
EXTERNAL 50
IMPLICIT 46

INTRINSIC 51

SAVE 51

statement ordering 37, 38

type 48, 49

statement function 105, 106
statement label 64, 65
STOP statement 72

subprograms 12-15
SUBROUTINE statement 13, 37, 38,

98-100

subscript expressions 5

symbol table 45

SYSTEM. COMPILER 8, 18, 19

SYSTEM. EDITOR 18, 19
SYSTEM.LIBRARY 8, 10, 14, 29, 111

SYSTEM.WRK. CODE 19-21

SYSTEM.WRK. TEXT 18, 19

T

TEXT files 8, 12, 13

TEXTMO subroutine 125

Transcendental Functions Table
184

TTLOUT subroutine 133
TURN subroutine 128

turnkey system 2, 9

TURNTO subroutine 128

TURTLA function 128

Turtle Graphics
Apple screen coordinates 124

arrays 129, 130
Cartesian graphics 127
CHARTY subroutine 131

DRAWBL subroutine 129-131
FILLSC subroutine 127
GRAFMO subroutine 125

INITTU subroutine 124, 125
MOVE subroutine 128
MOVETO subroutine 127

Pascal programs 120
PENCOL subroutine 126, 127

SCREEN function 129

text on screen 130, 131

TEXTMO subroutine 125
TURN subroutine 128
TURNTO subroutine 128

TURTLA function 128
TURTLX function 128

TURTLY function 128
VIEWPO subroutine 125
WCHAR subroutine 130, 131

TURTLX function 128

TURTLY function 128

u

unconditional GOTO statement 64

unformatted files 75, 78, 79,

85, 87

Unit Identifiers Table 180

V
VIEWPO subroutine 125

w
WCHAR subroutine 28, 130, 131

WRITE statement 84

X,Y,Z

6502 Assembly Language 8-10, 18

230 APPLE FORTRAN

