Aztec C65
for the Apple //

version 3.2
July 1986

Copyright (c) 1985 by Manx Software Systems, Inc.
All Rights Reserved
Worldwide

Distributed by:

Manx Software Systems, Inc.
P.O. Box 55
Shrewsbury, N.J. 07701
201-542-2121

USE RESTRICTIONS

The components of the Aztec C65 software development system are
licensed software products. Manx Software Systems reserves all
distribution rights to these products. Use of these products is
prohibited without a valid license agreement. The license agreement is
provided with each package. Before using any of these products the
license agreement must be signed and mailed to:

Manx Software Systems
P. O. Box 55
Shrewsbury, N. J 07701

The license agreement limits use of these products to one machine.
Any uses of these products that might lead to the creation of or
distribution of unauthorized copies of these products will be a breach
of the licensing agreement and Manx Software Systems will excercise
its right to reclaim the original and any and all copies derived in whole
or in part from first or later generations and to pursue any appropriate
legal actions.

Software that is developed with Aztec C65 software development
system can be run on machines that are not licensed for these
products as long as no part of the Aztec C software, libraries,
supporting files, or documentation is distributed with or required by
the software. In the latter case a licensed copy of the appropriate Aztec
C software is required for each machine utilizing the software. There
is no licensing required for executable modules that include runtime
library routines.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to
restrictions as set forth in subdivision (b)(3)(ii) of the Rights in
Technical Data and Computer Software clause at 52.227-7013. DAC
#84-1, 1 March 1984. DOD Far Supplement.

COPYRIGHT

Copyright (C) 1981, 1982, 1984 by Manx Software Systems. All rights
reserved. No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into any
language or computer language, in any form or by any means,
electronic, mechanijcal, magnetic, optical, chemical, manual or
otherwise, without prior written permission of Manx Software
Systems, Box 55, Shrewsbury, N. J. 07701.

DISCLAIMER

Manx Software Systems makes no representations or warranties with
respect to the contents hereof and specifically disclaims any implied
warranties of merchantability or fitness for any particular purpose.
Manx Software Systems reserves the right to revise this publication
and to make changes from time to time in the coutent hereof without
obligation of Manx Software Systems to notify any person of such
revision or changes.

TRADEMARKS

Aztec C65, Manx AS, Manx LN, Aztec SHELL, and Z are trademarks
of Manx Software Systems. CP/M-86 is a tradmark of Digital
Research. MSDOS is a trademark of Microsoft. PCDOS is a trademark
of IBM. UNIX is a trademark of Bell Laboratories. Macintosh is a
trademark of Apple Computer. .

-iv -

Manual Revision History

INOV 1985 ettt sttt eesesrtse e sesseeesnen st ens st sseseons First Edition
JULY 1986 ...t ss e csesess e enese st Second Edition

Summary of Contents

Apple-specific Chapters

title code
OVEIVIEW ...oooecveeeeeceeenn st eeeeees e esese e oo e ee e es oo ov
Tutorial INtrodUCHION w.uuerveeneeeeeeee oo tut
The SHELL ...ttt eeee e eees e e oeeos shell
THE COMPIIETS w.vvvooeeeeoe e e cc
The ASSCIMDIETScvoeeereereenees e e cceseeseee oo as
TRE LADKET c..oooecveeccirinns ceveeerie o eeens e eeeesess s oo eeeseeeeeeeee oo In
ULility PrOZIAMS .ooveceeereeveereees oo seeseseeeess e oeeoeeoeee oo eeesseoe util
Library Functions Overview: Apple // Information libov65
APDIE // FUNCHONS w.ceerreerreeeeeces ceeeeeeeseees e lib65
Technical INfOrmationeevvies oo tech
System Independent Chapters
Overview of Library FUNCHONSeueeeveeveeeee oo libov
System-Independent FURCHONSv.eovveevveeoon oo Iib
SEYIE ottt ettt esr et ceseeesseseseese s s eeee e eseeseeees oo style
Compiler Error MESSABES «.......vuvuueereeeece meeeeeseeseees oo eoesee oo err
Index
INAEX oottt ettt et e mdex

- vii -

Contents

OVETVIEW ..cceirrrictnieersstesestesssree e ss s s e se s eas e ees s s sassersss s es s e s s een ov
Tutorial INrOAUCHIONveveeeeeeeecres et sserseees s eenes e eenns tutor
1. Prepare Disks for DeVEIOPMENT ... eeeeveeeeeeeeeeeeeee e eesee e 3
L1 SEAIE thE filEF aeereeeeeceeeeeteee e ceesvseasssess e e sees s emens 3
1.2 Make a Copy of the Distribution DiSKSocoveveveees oo 4
1.3 Make @ WOrking DIiSKccvcieirivieees ceeeeeeesesseseesesssessssssessesssssees 4
1.4 Exit the filer and Restart the SHELLooovvvoviveee oo, 4
1.5 Copy the SHELL to the Working DisK c...cc.ccoevvvveeevrs coveeernn. 5
1.6 Copy exmpl.c to the Working DisK ...coeeeeeeeeeevvveres ceveeeeeeererensrnn, 5

2. Creating an EXecutable PLOZIAIM ..oeeceeevuvveeeeeeeereeeeeeeeeeeeeee e eeeeens 5
2.1 GEE REAAY ettt ettt essvesesesesssessessssmseeess s seeses 5
2.2 Create the SoUrce Programcoooceeeeeeeovueereeeceresesesessessen 6
2.3 Compile and ASSEMDIEccoveeereeee coreemreeeessererseeessssesssssesnns 6
2.4 LADNK ot sttt ettt et ee e s e s e s e ane e 7
2.5 EXCCULE eereereteices ceeteeeneeeetsess e e sesseeeeseseesssss s s sesss e sesseses s 7
2.0 ClEANUD ..o ervaee et cese e teeeeesesssessasassnessesesesssasssmnes 7

3. More 0N the SHELL ..o et eeeeees e s s e ses s s s 7
3.1 The Is COMMANG .vvrvvereriieiteee eeeeeeeeesressresesesesseesesessssrs s sorsees 8
3.2 The CUrrent DITECIOTY wouueueeeeeeeeeeeee eereeeseessssesssosessesssssessseseses 8
3.3 File NAINES ..ececeeerecteren ettt terenssessssssssesesesessees 9

4. Types of COMMANGScuververcriens e eeee s ses v e sesssssesaeses 9
5. Loading the SHELL from DiSKcoeieeereeeiereseeesesessessenesssesssens 10
6. Device CONfIGUIAION ...c.cveeeeeeeeirire oo eeseseseeseserssssesassssesosens 10
7. Native Code vs. PSEUdD COAEvueeeeeivineee e eeeeeeesesvesseanes 11
8. Installing Aztec C65 0n a hard disK ...oceeeveeee ceeeereeeeeeereeeserersnaens 11
9. Where to 80 fTom HETE ..uveeveeneeee e e ves s e enas 12
ThE SHELL ..ottt ettt emee s e e seeseevtsnsnssasnsssssssseaeas shell
L. The file SYStEIM ..cuoveverevens ettt eeeeeevees e e e sessesssesessensanas 4
L1 FIIE NAMES e et tetteee e ceeeeeees e eeeseseessessssssssnessssassnns 7
1.2 The current dif€COTYcuve veererrrereesisenereeeereeeessessesesesesseens 8
1.3 Directory-related builtin commandscoeeeueeereeereeeeeeeerennee. 9
1.4 Miscellaneous file-related commandsocoveeee veeeeeeeesveevennnn 11

2. USINg the SHELLcovoierner st seseeseeeee e eeseseseseseeeeeessssssssssnens 12
2.1 Simple COMMAINASccooovvereeeeeeeeeeeeeeserrereessssseseesesssssesssrasssesans 13
2.2 Pre-opened I/O channels ... e 14

ese
= Vil -

2.3 Expansion of filename templatesooovveeeeeeoeeoeeeeesisrsoons 16

2.4 QUOBING vt ettt et ee e sressessetesesseses e sesess s sseeseens 18
2.5 PIOIMIPLS ovvvrrrrrecreetesescere e cscenesessese s st ssessssssssssesnass s sanassases 21
2.6 Command line argUMENLSeeueeeveeereeeverrersrsseressssessessesesnes 23
2.7 DIEVICES wvueuieerrees ceverreieeeeeseessesssstesessetesseesessaseesessessssssssssnssesassses 25
2.8 EXCEC fIIES ouvrreeereen cevrerereescteeees e eeee e seeeeseseeseeeeseeesssssessssassenenes 28
2.9 Environment Variables ... eeeeeeeeeeeeesseesesssessssssssssesesessees 34
2.10 Searching for commandscoes ceeeeereeerereeeeeeeeeeee e esensnns 37
2.11 Starting the SHELLcuouivetcoviieiieeeeeeeeeeeeeeeeeeeeseeeeeseseaeenas 38

2. 12 EXTOT COAES crvrrreretierreceretetestce e seseeeeesessssasssssesansssssnsassnsses 42
The compllers .. cc
1. Operanng INSEIUCLIONS ..o vttt e es e st st eeeen s 3
L1 The C SOUICE File ..ot eesstens e e sessasassnne 3
1.2 The OUtpUt FAlES .cvvuvvir oo eeeeesees s esresessasesessesenseees 4
1.3 Searching for #include files ooeeeoeoeeeeeeeeeeeerreeerereresesernnn, 6

2. ComPiler OPLIONS ..covvevers ceecceeereeeeeeeeeeeee e e esesseseesesessesesessesesssessesesens 7
2.1 SumMMAry of OPtiONSc. ceeeeeeceereeeceneeereeeeesseeereeeeresessessessesessenes 7
2.2 DesCription Of OPLiONS .cciueeees ceeeeeeveveeeeesessessssessessssesssssrsssessons 8

3. Programmer INfOrmation coeeeeeoeeeeeeeeeeees s e eeseeresneseseesnns 13
3.1 Supported Language FEAtuIEsooeeeves voveereeeeeeesereresseeeesees 13
3.2 Structure ASSIZNMENTcoeveves woeereeeeieececeeeeeseesscsessessessessssessans 13
3.3 Line CONtiNUAION wu...ccevvives ceeeeeeeeeeeeeeeseesessseesssssssssseeseonsenens 13
3.4 The v0id Datd TYDPE ..cuueereeee veveriereeeeeeereseesesesessesessessesessessessees 13
3.5 Special SYMDBOIS ..ovueivrereeeeeeeeeeeneesesreeseseseeesesesessessssesss s se e 14
3.6 String MEIING ..oucueieeeee et e esseseseesee s e raens 14
3.7 LONE NAMESoveveeecrirern e eeeeeeesesesessesssssssossrsessssessssessesesesnns 15
3.8 RESEIVEA WOIAS .eovuerececs oo seeesseresenesesss s 15
3.9 Global Variablesc.cuuieeeeeeeecceeeceserseeeeresssersssesessssrsessssnns 15
3.10 Data FOTMALScuovies vt eeeeeeeeeessereseeeessssssess s sesesens 16
3.11 Floating Point EXCEPLIONScueveveree eeeeeeerrevserereseeeeserssesssessessnns 18
3.12 RegISter Variables ...uveis ceieeeeeceeereeeeeesssssssssesssesesssssessennns 19
3.13 In-line Assembly Language Codecooreeveereerererennnnnn. 19
3.14 Writing Machine-Independent Codeuvromveeveeereeenn. 20

4. ETTOT PrOCESSINEG cuvvucuivere vertertiesieisiesenececeeeereseeeeeessesessssssssassesssasssnns 23
The ASSEINDIETS ...cvvrieeerens ceeviseeeeetetecresensemeesenseseseeesessasseresassesesses s e sesens as
1. Operating INSEIUCLIONSceueuneiiirirerieireeseremeeeeeeeeeeeesessesseneessessssesssenes 3
L1 The SOULCE FIIE ..ououvreririireeeieee et eeevevs s sesnsasasssssnaes 3
1.2 The Object Code File ... e enessens 4
1.3 LiSHING FIlE e ettt veseeee s e en 4
1.4 Searching for instxt FAIESoueeeveeeveieitvie et eeeeeeeee s eeeeeeeeseeeas 4

2. ASSCINDIET OPLIONSeoeeecececeiiae eeeeteteeereresesesessesssesassssesensassssssesrsseens 5
3. Programmer infOrmationcovvceceeeeeeseeeeeee e eeeeeeeeeeeeeeeeeessens 5
THE LINKET .t vttt sescsistss e seeeesesee e s as et st semenseses e esenesens In
1. Introduction to HNKINGc.c.cevieieieeeieecieeeeeeeee et s e eeenene e 3
2. USING the LINKET .cuvviivereeeeveeeis ettt eeeeee st st snenese e ansees s naes 7

-ix -

UHIItY PrOZLAMSooveveveeeeniteeens ceeretiesseeeee e st ee e sessesssssssssssesesesssssssssssen util
ATCV creiiiniirantsseesecnssesns saesssorersssesssessessessosseassensssssanssnsssassssssesssessmensessessons 4
DYC orrrreresntnnesenesnsnessssssesessesensst st sesnsnsnsssssssasasesesnsssesesstssnsnsessssnsasesssssensassssens 5
CAL ettt it ccreere e sneesaeses sasrasensenssesssesss sosnsssessenss seseesasensesnssesnesnnssssessesnnesns 6
C ettt aes s bebeaesssessebe e ses e sestase enonne s ea et anenesasnnenetsn et sassensene 7
CIIID coiiieccnrnsnnesneessansensrenseessans sevesssnnerssnesssesssssssssosssesssnssssssossosssssosasssssssssossesen 9
CIII ceeiiiiiuieainreaennensessesessasensass sessneessessesossessansassesssmsnsessseesssnssssesssanesssnesasssnnne 10
COMPIG cecnrrerrrrrrresrereererarsssssesesesetsrssssssssssnsessssssassssssessasssssssess essasassaseseses 14
CD errerstesetestiintisnnsneeseessesensnsnresssessssssnaseeses seserssensassenssesstesssosnssessessenas e nmessans 27
CTC cuvereiiiressinsraesesssesseessenses sessasssessressessuessossessassssssseessensss sassesssesnssansessenneesnne 28
GALE .ovvrerrreririreeierre et sesteses crmceesisies e ses et tesesetase s senensasnsserrasatensesesseans 29
AEDUE ...ttt ceteassseen s ses s st s nesessss e e sememsasensesesassessssnsnsenes 30
AE e s bbbt oottt ees e ens e et seeneeetsaea s s s eessaee 31
GIEE ettt ins seeesesie et e oo e st ees e easeea e e senen e eneaa es s asseevanee 32
ECRO ettt eteaes s e asaests et seressoresteteeeseasa e eeeee e asene e arannns 36
BICD tooitiicnet et ssecerr et eesatas sessaaeertteeaaesaesessae s bease e bt s nbeseseses sraensnneennnsors 37
B s e eener e ses e esssses st ser s ees e s s s e seeseeesenea 43
LD e e e se s eee et eea e e et st een e e ee e renennsenn s 44
LOCK ettt et etesesteeeesese st seasere e asase e eess e semesen s e senenna 55
IS et ettt saeseneaseseeteetesss st e s setetenses e ansearasenesesesenes 56
TIKATCV cecvviivirintereienriressssessosesorsassissssssesessessestessasssnssssssessssersessesssassssssssesss 4
IKAIT covoviveieieiernrsreieeseresemsioseses seteesesseessesenenssesosesessnsasasssssssasessssssssnrssesssees 59
TNV Loiiiiiiiinrtessieinnesssasssssssenses sensesssesssnsssessessssasesssensensssessonsensesnsnsenasansessssssses 60
OB et v ere et e s e reast e tenen e eeeat st sesae et esetsaeasstesesees 61
OTA ettt eee e streeetees seebesesbesssusessatessmsensasansasessssasessessessnressensssonsssen 62
DT ittt sresstestases sesesaessee e rrresae s b srreobes b aa stesster e e seesnane st esaneneen 63
PWA ettt eneeeaees cevevesensessseseseessresssssssasessasasassssssessssasorsnsssrsseses 64
TIND coiitieiiistincrnennessesussanessessnesssessesnsessesssesssanns ssonseemsensnesnessssesssesnssnsensnessnes 65
BT ottt et et ereesnesres ey seeestessenreerreba s e beanae st oot st te saeasnes st e seesasenne e arennen 66
SHIEE et ceeeneriis sttt e seeeeesasee e sestess s s sesessna e s neseesesoseraraens 67
SOZ cererrirtereerneesssesesnenessnssens serssnrssessosserseseossssssstsssertessssnsassesesssesssesesnssnsenesnes 68
LY ettt et ere e b s ea e a e e sr s be s en e e sa st e eananenn 69
UDNUOCK centiviteinrcrerenteeee et eess et e sesesseses e ssesnsesssensassneressensssssessnssssasssens 55
VEW ceeeecreeereesninireneeteestsertes seessssssesssisssssssstsssessersossssssnsssseonssssssssssssasess 70

Library Overview: Apple // Informationc..cceceeeevees veveveesessennns libov65

ADPDIE FUNCHONS ..vvevrererececi et seeeeeonessesesessssssssssnssessesesssesesenen 1ib65

INACX ettt s e s 4

THE FUNCHONS ...ceceereiceerein sttt ceeeeee e eeeesse st st eeseeesssesssensasennsnas 6
Technical INfOrmMAtioNocuiieees oot eeceeeesesesse st se seesesesasons tech
MemOry Organizationc..oeeeeeercreneoreneeesecnsesssessssessorsassseessssessssns 4
Command ProSrams ... coeiiireeeiiieneeresesessssesseesssasssecsssssseessesesssesses 9
OVETIAYS .ovevreereereeres cermerecsiisies e srsss s ssssssis st sssatens s sssmsasasssssarasessnsnsnsosseons 15
J B510) ¢ o TR 22
Interfacing to Assembly Language ... coeeevreereeecceerneeeserensessescsenns 23

Debugging PSeudo €odeuveeeieeeeeeeeee et seeeenssssa e e 27

Object Code FOIMALcvviiviivcere ettt esasserassnesessesssnesasssssessssssssns 30
DOS 3.3 PrOSTAIMS ..cueeeeerererreernes srereerneserssssssssesessssserasessessessessessassessessosns 41
The tmpdev Console DIIVETcvvcvrs vereeernineneriressstessssansssssesssesesssnsnns 44
Overview of Library FUNCHONSocceveveveereirerercerneeressseeeseseesssnssanaes libov
L. J/O OVETVIEW .ueriiirecceeinne et seeseesisssssasssessasssssossassessessossessensesnssnen 4
1.1 Pre-opened devices, command hne ATES .uvrveerrenrereersessneressassnans 4
1.2 FIlE T/ ceereteterece e sests e s s seseesssessssesessasssssasssssssssreseesessasans 6
1.2.1 Sequential I/ Occineenieeninnereerenersseesesssessonsesssssssensenn 6

1.2.2 Random I/ eetieecristic e esvssnssessaessesssesssnssenees 6

1.2.3 Opening FilESccecvceerrreerereersrverneserseresnesssessesansesessssessosens 6

1.3 DEVICE I/O ettt esss s ss s sesae s sess s e spsnanasons 7
1.3.1 COnSO0IE I/ O ..oevererrereeererrerrrenereessessensessessssasssessessessessessnons 7

1.3.2 I/0 t0 Other DEVICES ...oovvvverirerrrrenrenersrerssssensessssessssssasresas 7

1.4 Mixing unbuffered and standard I/O callsccccecvcrnenneene. 7

2. Standard I/ O OVEIVIEWeeceeeeieereeieeersnsessvevesseessessossessesssssersnsssses 9
2.1 Opening files and deVICESoovvivcererieenrerrereneeereeseeeereeseessenes 9
2.2 ClOSING SIIEAMSvvvververieeiriirierreeereereisesrnereessessessasssssensessesnsrassans 9
2.3 Sequential I/ O ...ttt csts s e srbeabe sro e srbesnen 10
2.4 RaANAOM I/ O ..auririircnreecreeseesistesiossssessssessessssasnossssessesennes 10
2.5 BUFTEIING .ooriiviicrccrrcrenrerereerernersresecsresrsescenssessenessesensansesassensanen 10
2.6 ETTOTS oevceeererereererereersenesnssassnssassersessessessassassnsssssnssasssenssssesesssssses 11
2.7 The standard I/O fUnCLIONScccieeeiniervernrreninrerieserereoressesees 12

3. Unbuffered I/ O OVEIVIEWcieevrereirieisinseeservessessessssssssessessssses 14
31 FlIE I/ O aceecseceercrrnntreeresesnsnessarssseseessrsessenessosessessonsassssssans 15
3.2 DEVICE T/O ettt sarss s s s s sr et s eneon 15
3.2.1 Unbuffered I/O to the Consoleccvrereerernereeceevereenenns 15

3.2.2 Unbuffered I/O to Non-Console Devicesocoureune... 16

4. Console I/ O OVEIVIEWocvvveeererercrereinesesssssesessessssrssssssssesessssanns 17
4.1 Line-oriented iNPULoovvevvvrerenveeereiereee e cesceenesesesereesessens 17
4.2 Character-oriented INPULeevvverieveriornnervererseresrersoreesersssessenes 18
4.3 USING T0CHeevrereerreerererrerereeresnnesreressssnesaesessssessesssssnssssessssssssseses 19
4.4 The Sy fIElAdSooeveeeeereeereeeeerc e se e e 19
4.5 EXAMPIES oivvvreiirerririerisssessessessessssessersssssssessessesssassensessestessassesses 20

5. Dynamic Buffer AlIOCAtiONcovevevrerreerveneeinereneeecesveeersesssessesenne 22
6. Error Processing OVEIVIEWcceveeeeiieennseereressessssesseseessssesassesses 23
System Independent FUNCHONS ...cocvecciiieiecintieiccerciecrenesre e se e reneeseeseneenes lib
INACX oot rctrctee e stees e eneseereeaessesrsessnsssnessssnessansnsesas s st arssbesussrsesrannessns 5
The fUNCHOMNS ...oviviirecectrcreierreserrnnrseerses e tesse st essessesaesnsssasasasssamsssesessssans 8
SEYIE vrerrrerreereeetrieetsreestrees cresrssrersrsoraresesesaessassssosmsessaressersssesestostossstsnssnsases style
1. INETOAUCHION woeeeeeeieece e ceteienecrtseeseeseessssasserseensessessssssssessesssnsensasssresane 3
2. Structured Programmingceceerecerrecesccsiecsiesesisresssssissenssereess 7
3. Top-dOWn ProSraminingcccceeeererenerserescerssesesessecsiesssssessesensessseses 8
4. Defensive Programming and Debuggingccecceeeevcicivincnennnennns 10
5. Things to WatCh OULt fOr ... e 15

- Xi -

Compiler ETTOr COAES wuuuuvuneueiameee ceeeeeeeeeseeee oo err

Lo SUMMATY oot 4
2. Explanations ..e.eo.cceeeeeeveeeeeessereeeeeeeesooons 7
3. Fatal EITOr MESSABES ..vu.vuuvuieeemeeecemeseernscessees oo eeee oo 35
IRAEXK ettt ceeeeee e eee e eesesseses s oee s e s e e index

- xii -

OVERVIEW

-ov.l -

Overview

- ov.2 -

Aztec C65

Aztec C65

Overview

Overview

The Aztec C65 Software Development Package is a set of programs
for developing programs in the C programming language; the resulting
programs run on an Apple // that use either ProDOS or DOS 3.3. The
development is done using ProDOS.

Some of the features of Aztec C65 are:

*

The full C language, as defined in the book The C
Programming Language, by Brian Kernighan and Dennis
Ritchie, is supported.

Development is done using a program called the SHELL,
which provides a UNIX-like environment.

You can easily define to the SHELL and other programs the
devices that are on your system.

C programs can be translated into native 6502 or 65C02 code,
or into "pseudo code". A program’s native code is directly
executed by the processor, while its pseudo code is executed
by an Aztec routine that is in the program. A program can
contain both native and pseudo code.

A full-screen editor, ved, is provided; With some versions of
Aztec C65, utility programs are provided that are similar to

UNIX programs: grep, a pattern-matcher; diff, a program that
determines the difference in source files;

An extensive set of user-callable functions is provided.

Features and functions are provided that allow programs to
call the operating system.

Code can be partitioned into overlays, allowing programs to
be created and executed that are larger than available
memory.

Modular programming is supported, allowing the components
of a program to be compiled separately, and then linked
together.

Programs can be developed that can only be activated from
within the SHELL environment. Such programs have many
UNIX features.

Programs can also be developed that can be activated from
within either the SHELL or Basic Interpreter environments.
Such programs have fewer UNIX features than do those that

-ov.3-

Overview Aztec C65

can only be executed within the SHELL environment.

* Assembly language code can either be combined in-line with
C source code, or placed in separate modules which are then
linked with C modules.

There are two classes of user-callable functions: system independent
and system dependent. The system-independent functions are
compatible with their UNIX counterparts and with the system-
independent functions provided with Aztec C packages for other
systems. Use of these functions allows programs to be recompiled for
use on UNIX-based systems or on other systems supported by Aztec C
with little or no change.

The system-dependent functions allow programs to take advantage
of special features of the Apple //.

Versions

Several versions of the Aztec C65 Software Development System
are available, for use in different environments. Some, called "native
development systems”, allow development to be done on the Apple //
running ProDOS; the others, called "cross development systems”, allow
development to be done on other machines, with the resulting
programs downloaded to the Apple //.

For information about the systems on which cross development can
be done, see the Aztec C65 product bulletins.

Requirements

To develop Apple // programs on an Apple using Aztec C65, your
Apple must meet the following requirements:

* It must be able to run ProDOS.

* It must have at least two floppy disk drives.

* It must support keyboard entry of lower case characters.

* It must support console display of the full set of displayable
ASCII characters.

If you have an Apple // or Apple // Plus, support for the keyboard
and console requirements can be provided by installing the single wire
shift key mod and by installing a lower case adaptor. For information,
see your Apple dealer.

Components
Aztec C65 contains the following components:
* ¢c and as, the native-code compiler and assembler;
* ¢ci and asi, the interpretive-code compiler and assembler;
* [n, the linker;

- ov.4 -

Aztec C65 Overview

Preview
This
divided

Ib, the object module librarian;

The SHELL, a command processor that replaces the Basic
Interpreter and provides a UNIX-like environment in which
to develop programs;

Object libraries containing user-callable functions and support
functions;

Several utility programs, including, with some versions of
Aztec C65, programs similar in function to the UNIX utilities
grep and diff.

manual is divided into two sections, each of which is in turn
into chapters. The first section presents Apple-specific

information; the second describes features that are common to all
Aztec C packages. Each chapter is identified by a symbol.

The Apple-specific chapters and their identifying codes are:

tutor describes how to get started with Aztec C65: it discusses
the installation of Aztec C65, presents an introduction to the
SHELL, and gives an overview of the process for turning a C
source program into an executable form;

sh describes the SHELL,;

cc, as, and In present detailed information on the compilers,
assemblers, and linker;

util describes the utility programs that are provided with Aztec
C65;

libov65 describes Apple-specific overview information;

lib65 describes the special, Apple-specific functions provided
with Aztec C65;

tech discusses several miscellaneous topics, including memory
organization, creation of command programs, overlays,
writing assembly language functions, and debugging;

The System-independent chapters and their codes are:

libov presents an overview of the system-independent features
of the functions provided with Aztec C65;

lib describes the system-independent functions provided with
Aztec C635;

style discusses several topics related to the development of C
programs;

err lists and describes the error messages which are generated
by the compiler and linker,

-ov.5-

Overview Aztec C65

- 0v.6 -

TUTORIAL INTRODUCTION

- tutor.1 -

TUTORIAL

Tutorial Introduction
1.

e R AR

Chapter Contents

Aztec C65

Prepare Disks for Developmcnt

1.1 Start the filer

1.2 Make a Copy of the Distribution Disks

1.3 Make a Working Disk
1.4 EXit the filer and Restart the SHELL

1.5 Copy the SHELL to the Working Disk
1.6 Copy exmpl.c to the Working Disk

Creating an Executable Program

2.1 Get Ready wueeceieinin e
2.2 Create the Source Program

2.3 Compile and Assemble
2.4 Link

2:6 Cleanup
More on the SHELL
3.1 The Is Commandcccooeeeoveoeeeeenen.

3.2 The Current Directory

3.3 File Namescccoevveveecene <.

Types of Commandscceveeeeeeen. ...

Loading the SHELL from Disk

Device Configuration

Native Code vs. Pseudo Code

Installing Aztec C65 on a hard disk ...

Where to go from Here

- tutor.2 -

Aztec C65 TUTORIAL

Tutorial Introduction

This chapter describes how to quickly start using Aztec C65 for
ProDOS.

We first present the steps to prepare a set of disks with which to
develop programs. Then we describe the steps to make an executable
version of a sample C program whose source is on one of the Aztec
C65 disks. Then we introduce some of the features of Aztec C65,
including, in particular, the SHELL. This is the Aztec C65 command
processor program, which replaces the ProDOS Basic Interpreter
program and provides a UNIX-like environment in which to develop
programs. Finally, we introduce the rest of the manual.

1. Prepare Disks for Development

To get started developing programs with Aztec C65, you need a
copy of the Aztec C65 distribution disks and a "working disk" on
which you’ll place your own files. In this section we’ll lead you
through the steps to create these disks, using the ProDOS filer
program. Once you’ve made a copy of the distribution disks, place the
originals in a safe place.

1.1 Start the filer
To start the filer, follow these steps:

1. Put the Aztec C65 disk labeled /system in drive 1 and turn on
the Apple. This will start ProDOS, loading it into memory
from the file named prodos that's on the /system disk, and
then transferring control of the processor to it. ProDOS will
then start the Aztec program named SHELL, loading it from
the file named shellsystem on the /system disk, and then
transferring control of the processor to it. The SHELL is the
program to which you will enter commands while developing
programs. The SHELL will display the prompt -?, indicating
that it is ready for you to enter a command.

2. Enter the command

filer

and then type the Return key. The SHELL will start the filer,
loading it into memory from the file on the /system disk
named filer and transfering control of the processor to it. The
filer will display its main menu and wait for you to enter a
command.

- tutor.3 -

TUTORIAL Aztec C65

1.2 Make a Copy of the Distribution Disks

With the filer running, follow these steps to make a copy of the
Aztec distribution disks:

1. Place one of the distribution disks and a blank disk in the
disks drives.

2. With the filer's main menu displayed, type V. This will bring
up the filers menu of volume-related commands.

3. With the filer's menu of volume-related commands displayed,
type C. This will bring up the filer's disk-copying screen.

4. Enter the slot and drive numbers of the drives that contain
the distribution disk and the blank disk, and then type the
Return key.

5. The filer will set the name of the blank disk to that of the
distribution disk, and wait for you to select a different name.

6. Don’t change the name that the filer has selected for the copy
of the distribution disk; just type the Return key.

7. The filer will copy the contents of the distribution disk onto
the blank disk, after formatting the blank disk.

8. When the copy is completed, the filer will then allow you to
copy another disk. Continue until you have copied all the
distribution disks.

1.3 Make a working disk

After the last distribution disk is copied, type the ESC key to exit
the copy command and return to the menu of volume-related
commands.

You next need to format a "working disk”, which is a disk onto
which you will place your own files. To do this, with the menu of
volume-related commands displayed type F. The filer will display a
screen for the volume command. Place a blank disk in a drive and
enter the slot and drive numbers of the drive to the filer, select a name
for the disk, and type the Return key.

1.4 Exit the filer and Restart the SHELL

You have now prepared all the disks that you’ll need to start
developing programs, so it's time to exit the filer and restart the
SHELL.

The filer still has its format screen displayed, and is waiting for
your approval to format another disk. You only neced one working
disk right now, so type the ESC key to return to the mienu of volume-
related commands. Type ESC again to return to the filer's main menu.
Put your copy of the /system disk back in drive 1 and type Q. The
filer will display a screen for the Quit command, and wait for you to
enter the name of the command processor program that you want it to
start. By default, the filer assumes that this is the Basic interpreter, in
the file basic.system on the /system disk. You want to use the SHELL

- tutor.4 -

Aztec C65 TUTORIAL

as the command processor, so type the name of the file that contains
1t, shell.system, over the name basic.system. Now type the Return key.

The filer will load the SHELL into memory and tranfer control of
the processor to it. The SHELL will display its -? prompt, indicating
that it’s ready for you to enter a command.

1.5 Copy the SHELL to the Working Disk

The last step necessary to prepare disks for developing programs
using Aztec C65 is to copy shell.system to the working disk and then
restart the SHELL from this new file.

For example, assuming that your working disk is named /work, the
first of the following commands copies shell.system to the working disk:
the second command reloads the SHELL from the working disk:

cp shell.system /work/shell.system
/work/shell.system

If your system has a ram disk, you could alternatively copy
shell system to the ram disk and reload it from there. The commands
would look like this:

cp shell.system /ram/shell.system
/ram/shell.system

Later in this tutorial we will talk more about the reasons for
copying and reloading the SHELL.

1.6 Copy exmpl.c to the Working disk

In the next section, we are going to lead you through the steps to
convert a C source program to executable form. The source for this
program is in the file exmpl.c on the /system disk. You’ll need to have
this file on your working disk, so, again assuming that this disk is
named /work, enter the following command to copy exmpl.c to the
working disk:

cp exmpl.c /work/exmpl.c

2. Creating an executable program

As promised, in this section we will lead you through the steps
necessary to translate the sample C program whose source is in exmpl.c
into an executable form, and then execute it.

For these steps (and later on, for the development of your own
programs), you will have your working disk in drive 2 and will swap
disks containing the Aztec programs in and out of drive 1.

2.1 Get Ready

If the SHELL isn’t already active from the disk preparatior} th:at
you did previously, start it in the usual way: put the /system disk in

- tutor.5S -

TUTORIAL Aztec C65

drive 1; turn on the Apple; and wait for the SHELL to display its -?
prompt.

Then put the working disk in drive 2 and enter the command
/work/shellsystem

to make the shell.system file that is on the working disk the copy from
which the SHELL will be loaded following the execution of a
command.

Next, enter the command
cd /work

to set the "current directory" to the volume directory on the /work
disk.

When a command doesn’t explicitly specify the directory that
contains a file, it’s assumed to be in the "current directory”. Since the
files that you will create in the following steps will be in the volume
directory of the working disk, it simplifies the entry of commands to
make this directory the current directory.

2.2 Create the Source Program

The first step to creating a C program is, of course, to create a disk
file containing its source. This step isn’t needed for this
demonstration, since the source code already exists in the file exmpl.c
that is supplied with Aztec C65. To list the contents of this file, enter

cat exmpl.c

For your own programs, you can create the C source using any text
editor, including the ved editor that is provided with Aztec C65. For
information on ved, including a tutorial introduction to it, see the
Utility Programs chapter,

2.3 Compile and Assemble

Put the copy of the /cc distribution disk in drive 1 and enter the
command:

cc exmpl.c

This compiles the C source that’s in exmpl.c, translating the C source
code into assembly language source and writing it to a temporary file.
When done, cc starts the as assembler. as assembles the assembly
language source for the sample program, translating it into object code
and writing the object code to the file exmplo in the current directory.
When done, as deletes the temporary file, which is no longer needed.

Aztec C65 contains two compilers and two assemblers with which
you can develop programs. As you've seen, one compiler and its
associated assembler are on the /cc disk. The other compiler and
assembler, cci and asi, are on the /cci disk. We'll discuss the

- tutor.6 -

Aztec C65 TUTORIAL

differences in these compilers and assemblers below.
2.4 Link
The object code version of the exmpl program must next be linked

to needed functions that are in the c.lib library of object modules and
converted into an executable form.

To do this, put the Aztec disk labeled /n in drive 1 and enter the
command:

In exmplo /In/c.lib

The output of the In linker is sent to the file exmpl in the current
directory.

During the link step, the linker will search libraries specified to it;
when it finds a module containing a-needed function, it will include
the module in the executable file it’s building.

All C programs need to be linked with c.lib. (or an equivalent, as
discussed below). This library contains the non-floating point
functions which are defined in the functions chapter, lib of this
manual. It also contains functions which are called by compiler-
generated code.

If a program performs floating point operations, it must also be
linked with a math library. The math library that you will use when
getting familiar with Aztec C is m.lib. Another version can also be
used, as described below.

When a program is linked with a math library, that library must be
specified before c.lib. For example, if exmplc performed floating
point, the following would link it:

In exmpl.o /In/m.lib /In/c.lib
2.5 Execute
To execute exmpl, enter the name of the file that contains it
exmpl
2.6 Cleanup

You now have several files on your working disk that are related to
the sample program: exmpl.c, exmplo, and exmpl. You may want to
keep exmplc as an example; you don’t need exmplo or exmpl, so
remove them by entering

rm exmplo exmpl

3. More on the SHELL

Now that you’re gone through the creation and execution of a C
program, we want to introduce you to the commands that let you

- tutor.7 -

TUTORIAL Aztec C65

examine and move around in a ProDOS file system. For this, we’ll
assume that you’ve just finished creating and executing the exmpl
program; thus, the /work working disk is in drive 2, the /In disk is in
drive 1, and the current directory is the volume directory of the
/work disk. We’ll also assume that you have a ram disk named /ram.
3.1 The Is Command

The Is command displays information about files and directories.
To display the contents of the current directory, enter
Is
To display the contents of the volume directory on the /In volume (by
convention, a disk has the same name as its volume directory), enter:
Is /In '
If you ask Is to display information about files or directories that
aren’t on mounted disk drives, Is will display an error message. For

example, since /cc isn’t in a drive you would get this message if you
entered the command

Is /cc

You would also get this message if you remove the disk that contains
the current directory and enter the command

Is

To display the names of the volume directories of the disks that are
in drives, enter

Is/

A directory can contain entries to other directories. In an Is list,
names of directories that are in a directory are preceded by a dash, ’-’.

3.2 The Current Directory

The "current directory" is the directory in which you are most
interested at a given moment: when you enter a command, the SHELL
assumes, unless you specify otherwise, that the command is to access
the current directory. That's why typing Is without any parameters
caused Is to display the contents of the current directory: you didn’t
specify otherwise, so Is assumed that you were interested in the
current directory. To see what the current directory is, enter the
command

pwd

The c¢d command changes the current directory. For example,
entering

cd /In
makes the volume directory on the /In disk the current directory. If

- tutor.8 -

Aztec C65 TUTORIAL

you now reenter the Is command without any parameters, it will
display the files that are in the /In directory.

If the directory specified in the ¢d command isn’t on a mounted
disk, the current directory will remain unchanged.

3.3 File Names

A file in the current directory can be identified by just specifying
its name; for example, with the /work directory as the current
directory, the contents of the file exmpl.c that is in this directory can
be displayed by entering

cat exmpl.c

To completely identify a file, you must precede its name with the
path of directories that must be passed through to get to it. If you
don’t specify this path, the file is assumed to be in the current
directory. The above cat command didn’t explicitly say where exmpl.c
was, so it was assumed to be in the current directory, /work. An
equivalent command, that explicitly defines the directory that contains
exmpl.c, is

cat /work/exmpl.c

4. Types of Commands

The SHELL can execute three types of commands: builtins,
programs, and excc files:

* The code for a builtin command is contained in the SHELL.
Is, pwd, and cd are some of the SHELL’s builtin commands.
To execute a builtin command’s code, the SHELL simply
transfers control of the processor to it; when done, the builtin
code returns to the SHELL.

* The code for a program is in a disk file. The compiler,
assembler, linker, and the programs that you create are all
command programs. To execute a program’s code, the
SHELL must load the code into memory, thus overlaying the
SHELL. When the program is done, the SHELL must be
reloaded from disk.

* An exec file is a file containing a list of commands. We're
not going to discuss exec files any further in this section. For
more information on them, see the chapter on the SHELL.

When a command is given to the SHELL it checks its builtin list
first. If it’s not found there, the SHELL then looks for a file that has
the same name. This file can contain either a command program, or a
sequence of commands that the SHELL is to execute.

When you want to execute a command program or an exec file, you
can explicitly specify the directory containing the file. For example,
the as assembler is in the /cc directory. Thus, to run the assembler

- tutor.9 -

TUTORIAL Aztec C65

you could say:
/cc/as

If you enter the name of a command program or exec file without
specifying the directory containing it, the SHELL will search for a file
of that name in the directories specified by the PATH environment
variable. An "environment variable" is a variable whose character
string value you define using the SHELL's set builtin command. For
more information, see the sections in the SHELL chapter on
environment variables.

S. Loading the SHELL

When the SHELL starts a program, it loads the program’s code into
memory from a disk file and then transfers control of the processor to
the memory resident code. When the program terminates, the SHELL
is restarted. The program is loaded into the memory that the SHELL
occupied; thus, when the program terminates, the SHELL must be
reloaded from disk into memory.

Since the SHELL is frequently reloaded from disk, it’s best to have
it reloaded from a disk that is usually mounted, such as a ram disk or a
hard disk. If your system doesn’t have a ram disk or a hard disk, it’s
best to have the SHELL reloaded from your "working disk” (ie, the
disk on which you’ve placed your own files), since this disk is usually
in a drive,

To redefine the file from which the SHELL is reloaded, just type
the name of the file when the SHELL is waiting for you to enter a
command. For example, to have the SHELL loaded from a ram disk,
enter the following commands:

cp /system/shell.system /ram
/ram/shell.system

The first-command copies shell.system from the /system disk to the
/ram disk. The second command then reloads the SHELL from the
ram disk. After this, when ever the SHELL needs to be reloaded, it
will be reloaded from the file shell.system on the /ram disk.

As implied by the above discussion, the SHELL is loaded from the
file from which it was last loaded. If the disk containing this file isn’t
in a drive when a program terminates, a message will be displayed and
you can then place the disk into a drive.

6. Device Configuration

When the SHELL that is on the /system disk starts, it will
determine the attributes of the console; then it and PRG programs will
make use of these attributes. It will also assume that your system has a
printer having certain attributes.

- tutor.10 -

Aztec C65 TUTORIAL

You can also explicitly define the devices that are on your system
using the config program. For information, see the Devices section of
the SHELL chapter, and the description of config in the Utility
Programs chapter.

7. Native Code vs. Pseudo Code

Aztec C65 comes with two compilers and two assemblers: The cc
compiler and as assembler, which together generate native machine
code; and the cci compiler and asi assembler, which together generate
pseudo code that must be interpreted.

There are advantages and disadvantages to using each
compiler/assembler pair:

* Code generated by cc and as is fast but large;
* Code generated by cci and asi is small but slow.

Thus, when you are going to create an executable program, you
must decide which compiler/assembler pair to use. We recommend
that you first use cc and as. If it gets too large, use cci and asi. If
neither of these alternatives is acceptable, with a native code version
being too large and an interpreted version being too slow, you can
divide the program into modules, compiling and assembling some of
them into native code, the rest into interpreted code, and linking them
all into a single executable program.

8. Installing Aztec C65 on a Hard Disk

To install Aztec C65 for use on a system having a hard disk, follow
these steps:

1. Copy the Aztec C65 program files from the distribution disks
into a directory on the hard disk. This can be done using the
SHELL’s cp command or using the ProDOS filer.

2. Copy the Aztec C65 header files from the /cc disk into a
directory on the hard disk.

3. Copy the Aztec C65 library files (c.lib, etc) from the distribution
disks into a directory on the hard disk.

4. To make ProDOS automatically activate the SHELL from the
hard disk during system startup, copy shell.system from the
/system distribution disk into the hard disk’s volume directory.
This must be the first .system file in the hard disk’s volume
directory.

5. Using ved, create a file named profile in the hard disk’s volume
directory containing commands that define frequently-used
environment variables; when the SHELL starts, it will
automatically execute the commands in this file. The
environment variables that should be defined in the profile are:

- tutor.11 -

TUTORIAL
PATH

INCLUDE

CLIB

Aztec C65

Defines a sequence of directories in which the
SHELL should look for command and batch
files. For details, see section 2.8 of the Shell
chapter.

Defines directories in which the compilers and
assemblers should look for files that are specified
in #include statements. For details, see section
1.3 of the Compilers chapter.

Defines the directory in which the linker will
look for libraries that are specified using the
linker’s -/ option. For details, see the discussion
of this option in section 3.2.1 of the Linker
chapter.

For example, suppose that your hard disk’s volume directory
is named /pro, and that you want the SHELL, when it goes
looking for a command or batch file, to look first in the current
directory, then in a ram disk named /ram, and finally in
/pro/bin. Suppose further that your programs are in directory
/pro/bin, that include files are in directory /pro/include, and
that libraries are in /pro/lib. Then the profile file could contain
the following commands:

set PATH=::/ram:/pro/bin
set INCLUDE=/pro/include
set CLIB=/pro/lib/

Note the terminating slash on the set CLIB command.

9. Where to go from here

In this chapter, we’ve just begun to describe the features of Aztec
C65. You should know enough now to create some simple programs
and use the SHELL, which you can do while continuing to read the

rest of this manual

In your reading, be sure to read the sections on the SHELL,
compiler and linker. You should scan through the Utility Programs
chapter, which describes in detail each of the builtin commands and
command programs that are provided with Aztec C65.

The Technical Information chapter also discusses several topics
which might be of interest to you.

- tutor.12 -

THE SHELL

- sh.1 -

SHELL Aztec C65

Chapter Contents

TRE SHELL ...t sreererrenstetessssesssssssossssossossssasessssssssssossssssnsnes shell
L. The fIle SYSEIM ...ecuieieeeees vevtiremerenerce e sreesresesresrenesesessssussesasseone 4
1.1 FAlE DAIMIES ..ocvvvverivieee ceveeeeeniniie e erest e sscssesisonsossssessasessesessorssenson 7
1.2 The CUrrent dir€CLOrY ...occvreeves ererreeerrerneeereresesenssresessssessorsosessens 8
1.3 Directory-related builtin commandscoceeeeveeveveineseseeecrennne 9
1.4 Miscellaneous file-related commandsoceveevesveeesrveeanens 11
2. Using the SHELL ...ttt saenssseene 12
2.1 Simple COMMANGScocoeereee e et s 13
2.2 Pre-opened I/0 channels ... vevncemveeeececeenr e 14
2.3 Expansion of filename templatescocevrvvvverimnereceseneennenns 16
2.4 QUOLING ..cruerecveres serrrerereisrereteessssssss e sssssssssesssssssssnsssernsnsesesorns 18
2.5 PIOMIPLS covoeieeeeieeieieeieiseereeseestssessesseesss st seessnessesesnsenseseessseeesesans 21
2.6 Command ling argUmENtSccecee ceeveeereeereeereeesressseresseesisenes 23
2.7 DEVICES eoverceeererens ceerereteeereressseeeenesessesssessss e ssssssstssessassrsssssassssnes 25
2.8 EXEC fH1ES vt ettt e e sssrs s seseesssaras s ebe e ss e s s 28
2.9 Environment variablescovieiieeerececiieersieeerese e s 34
2.10 Searching for cOMMANScceeve veereeerecree e 37
2.11 Starting the SHELL ..o vt seseseenes 38

2.12 ETTOT COES veiiierireririecrireme e csssstesee s satessesee st sasessenesssssmsasenes 42

-sh.2 -

Aztec C65 SHELL

The SHELL

The SHELL is a program, which runs under ProDOS, that provides
an efficient and convenient environment in which to develop
programs.

The basic function of the SHELL is to execute commands. You
enter commands by typing on the keyboard. When it finishes
executing a command, the SHELL writes a prompt to the screen and
waits for another command to be entered.

There are three types of commands: builtins, programs, and exec
files. The operator doesn’t have to specify the type of an entered
command, just its name. When a command is entered, the SHELL first
searches for a builtin command, and then for a program or exec file.

Builtins are commands whose code is built into the SHELL. To
execute a builtin command, the SHELL simply transfers control of the
processor to the command’s code. When done, the command’s code
returns control of the processor to the main body of the SHELL.

Programs are commands whose code resides in a disk file. The
name of a command is the name of the file containing its code. The
SHELL executes a program by loading its code into memory,
overlaying the SHELL, and then transfering control of the processor to
the loaded code. When the program is done, the SHELL is
automatically reloaded into memory and regains control of the
processor.

Exec files are disk files containing text for a sequence of
commands. The SHELL executes an exec file by executing each of the
file’s commands.

This chapter first discusses the file system supported by the SHELL
and then describes the features of the SHELL. The utilities chapter
describes the SHELL’s builtin commands and the program commands
that are provided with the Aztec C package.

-sh.3 -

SHELL The file system Aztec C65

1. The file system

The SHELL supports the ProDOS file system. In this section we
want to describe this file system, in case you aren’t familiar with it,
and then briefly describe the SHELL's file-related commands.

Programs can access information contained on one or more disks,
or ’volumes’, as they’re called in ProDOS. The information is
contained in logical entities called ’files’, each of which has a name. A
single file is contained within one volume; that is, a file can’t span
several volumes.

Along with files, a file system contains directories. A directory
contains a number of entries, each of which identifies a file or another
directory. Files having entries in a particular directory are said to be
contained in the directory, and the directories having entries in a
directory are said to be subdirectories of that directory. A file is
contained in exactly one directory, and a directory other than a special
directory called the "root directory" is a subdirectory of exactly one
directory. The root directory isn’t a subdirectory of any directory.

Each volume has a special directory called the "volume directory".
All directories on a volume can be reached by passing through a

sequence of directories that begins with the volume’s volume
directory.

The volume directories of the volumes that are in disk drives, or
that are otherwise known to ProDOS (for example, the ram disk), are
subdirectories of the file system’s root directory.

All directories, except for the root directory, have a name. The
name of a file or directory must be unique within the directory that
contains it, but two files or directories that are in different directories
can have the same name.

An example

For example, figure 1 depicts the organization of a file system.
This file system contains two volumes: one volume (whose volume
directory is named work) is a disk in a disk drive, and the other (whose
volume directory is named ram) is the ram disk

The root directory for the file system contains, as subdirectories,
the work and ram directories.

The work volume contains the files hello.c and hello.o, and the
directory subs.

The ram volume contains the files stdio.h and ctype.h, and the
directory subs. Notice that there are two directories named subs. We'll
describe below the naming convention for directories, which will make
clear how a directory is uniquely identified.

-sh.4 -

Aztec C65 The file system SHELL

The subs directory that is a subdirectory of the ram directory
contains just the file in.c.

The subs directory which is a subdirectory of the work directory
contains two files: in.c and out.c. The in.c file in this directory is
different from the in.c which is in the other subs directory.

-sh.S -

SHELL The file system Aztec C65

: I The root directory

Figure 1: a sample file system

- sh.6 -

Aztec C65 The file system SHELL

1.1 File names

There are two parts to a name that identifies a file:

* The path to the directory containing it;
* The file name itself.

For example, the file in.c in figure 1, which is in the subs directory,
which is a subdirectory of the work directory, which is a subdirectory
of the root directory, is identified by the name:

/work/subs/in.c
where /work/subs/ is the path identifier and in.c is the file name.
The following paragraphs describe the naming convention in detail
File and Directory Names

A file or directory name can contain up to 15 alphabetic characters,
digits, and periods. The case (upper or lower) of an alphabetic
character is not significant.

By convention, the Manx programs assume that a file name
contains a main part, usually called the "filename”, optionally followed
by a period and an extension. With this convention, related files can
have the same basic filename, and different extensions. Extensions
used by the Manx software are:

extension file contents
.c C source
.asm assembler source
.0 relocatable 6502 object code
A relocatable pseudo-code object code
.rsm symbol table for overlay use
.sym symbol table for an executable file
st assembler listing

By default, the file created by the linker which contains executable
code has no extension.

For example, the C source code for the "hello, world" program
might be put in a file named kello.c. The file containing the relocatable
object code for this program would by default be named hello.o, and
the file containing the executable code for the program would be
named hello.

Path identifiers

The path component of a file name specifies the directories that
must be passed through to get to the directory containing the file. It is
a list of the directory names, with each pair separated by a forward
slash character, /. The root directory doesn’t have a name, and is
represented by single slash, ’/’.

-sh.7 -

SHELL The file system Aztec C65

For example, the paths to the directories used in figure 1 are:
/ Path to the root directory.

/ram Path to the ram subdirectory of the root
directory. This subdirectory is also the volume
directory of the ram disk.

/ram/subs Path to the subs directory that is a subdirectory
of the ram directory;

/work path to the work directory, which is a
subdirectory of the root directory. This
subdirectory is also the volume directory of the
floppy disk that’s in a disk drive.

/work/subs Path to the subs directory that is a subdirectory
of the work directory.

Each directory can be reached from the root directory by passing
through a unique path of directories. This is why two directories
which are subdirectories of two different directories can have the same
name and still be uniquely identified: the path to each one is different.

Examples
The complete names of some of the files in figure 1 are:

/ram/stdio.h
/ram/subs/in.c
/work/hello.c
/work/subs/in.c

Frequently, the complete file name needn’t be given to identify a
file. The file can be located relative to a directory called the ’current
directory’, thus allowing the path to be omitted from the file name.
This is discussed below.

1.2 The current directory

Having to specify the complete name of each file you want to
access would be very cumbersome. Also, when developing programs, at
any time, you are generally interested in the files on a single directory.
For these reasons, the SHELL allows one directory, called the ’current
directory’, to be singled out.

When the SHELL is first started, the root directory on the volume
containing the SHELL is the current directory; there is also a
command, ¢d, which allows the operator to make another directory the
current directory.

A file on or near the current directory can be specified by the
operator or program without having to list the complete name of the
file:

-sh.8 -

Aztec C65 The file system SHELL

* If the name doesn’t specify the path, the file is assumed to be
in the current directory.

* If the name doesn’t specify a path which begins at the root,
the path is assumed to begin with the current directory.

For example, suppose that the current directory on the volume
depicted in figure 1 is work. The complete name of the file hello.c in
this directory is

/work/hello.c

Since this file is in the current directory, the operator or a program
can refer to it without the path; that is, simply as

hello.c

Since the directory /work/subs is a subdirectory of the current
directory, the file out.c within /work/subs can be identified with only
a partial path name; that is, as

subs/out.c
1.2.1 The’. directory

The current directory can be referred to using the character °.’. For
example, the following command will copy the file kello.c that is in the
/ source directory to the file new.c in the current directory:

¢p /source/hello.c ./new.c

Since a file is assumed to be in the current directory unless you
specify otherwise, the above command is equivalent to the following

cp /source/hello.c new.c
1.2.2 The’..’ directory

The parent directory of the current directory can be specified using
two periods as the path name. For example, in figure 1, with the
/work/subs directory as the current directory, the file hello.c could be
referred to as

../hello.c

and the file ciype.h in the directory ram could be identified as:
../../ram/ctype.h

1.3 Directory-related builtin commands

The SHELL has several builtin commands for examining and
manipulating directories: pwd, cd, Is, and df. We want to introduce
these commands in this section; complete descriptions are presented in
another section of the manual.

-sh9 -

SHELL The file system Aztec C65
pwd

This command, whose name is a mnemonic for *print working
directory’, displays the names of the directories that must be passed
through to get to the current directory. The names are separated by a
slash, /.
od

This command makes another directory the current directory. If
the new directory doesn’t exist, the current directory remains
unchanged.

The command has one argument, which specifies the directories
that must be passed through to get to the desired directory. This
argument has the same format as the path component of a file name.

For example, considering figure 1, with /work being the current
directory, the following c¢d commands change the current directory as
indicated:

command new current directory
cd /ram /ram

cd subs /work/subs

cd.. / (the root directory)

Is

Is displays the names of files and the contents of the directories
whose names are passed to it.

The format is:
Is [-1] [name] [name] ...
where square brackets indicate that the enclosed field is optional.

-1 causes /s to display information about the files or directories in
addition to their names.

The name arguments are the names of the files and directories of
interest. If no name’ arguments are specified, the command displays
information about the current directory.

For example, the following displays the names of the files and
directories in the current directory:

Is

The following displays information about the files and directories
in the current directory:

Is -1

The following displays the names of the files and directories
contained in the /ram directory:

-sh.10 -

Aztec C65 The file system SHELL

Is /ram

The following displays information about the file inc in the
directory / john/ progs:

Is -1 john/progs/in.c

For more information about the Is command, particularly about the
information displayed when the ’-I’ option is used, see the description
of Is in the utilities chapter.

1.4 Miscellaneous file-related commands

In this section we want to list the rest of the file-related commands
that are built into the SHELL. For complete descriptions, see the
utilities chapter.

rm - Remove files
cp - Copy files
mv - Move files This will either rename the

files or copy them and erase the originals,
depending on whether the old and new files
are on the same volume.

cat - Display text files.
df - Display file information
lock/unlock - Lock/unlock files.

- sh.11 -

SHELL Using the SHELL Aztec C65

2. Using the SHELL

The previous section presented information on the SHELL’s file
system, which you need to know before you can use the SHELL., With
that information in hand, you can continue on with this section, which
shows you how to use the SHELL.

-sh.12 -

Aztec C65 Simple commands SHELL
2.1 Simple Commands

Simple commands consist of one or more words separated by
blanks. The first word is the name of the command to be executed; the
other words are arguments to be passed to the command. The name of

the command is always passed to a command as an argument. For
example,

Is

lists the names of the files and directories that are in the current
directory. The first word on the command line, /s, is the name of the
command. No other words are specified, so the only argument passed
to the ’Is’ command is the name of the command.

The Is command can also be passed arguments; the command
Is /bin

displays the names of the files and directories in the directory named
/bin. The first word on this command line, /s is the name of the
command to be executed. Two words are passed to the /s command as
arguments: Is and /bin/.

The command
rm hello.bak temp /include/head.o

removes the files hello.bak, temp, and /include/head.o. The name of
this command is rm. Four words are passed to it as arguments: rm,
hello.bak, temp, and include / head.o.

The command
Is -1 /include

displays the names of the files and directories in the directory
/include. The ’-I’ causes the Is command to display other information
about the files and directories in addition to their names. For this

command, three words are passed to the Is command: Is, -/, and
/include.

The meaning of the arguments following the command name on a
command line is particular to each command. Usually, either they are
’switches’, indicating a particular command option, as in the Is -/
/include command above, or they are file names. By convention,
switches usually precede file names in a command line, although there
are exceptions to this.

- sh.13 -

SHELL Pre-opened 1/0 channels Aztec C65
2.2 Pre-opened I/0O channels

When a builtin command or command program is started by the
SHELL, three I/O channels are automatically pre-opened for it by the
SHELL: standard input, standard output, and standard error. By
default, these channels are connected to the console, and most
programs use these devices when communicating with the operator.
For example, the /s command displays information about files and
devices on the standard output channel and writes error messages to
the standard error channel

2.2.1 Standard output

The operator can rcquest that the standard output channel be pre-
opened to another file or device other than the console by including a
phrase of the form ’> name’ on the command line . For example, the
following command causes Is to write information about the files and
directories in the current directory to the file files.out, instead of the
console:

Is > files.out

If the specified file doesn’t exist, it is created; otherwise, it is
truncated to zero length.

The standard output channel can also be redirected so that output to
a file via the standard output is appended to the file. This is done by
including a phrase of the form ’>> file’ on the command line. For
example, the following command causes /s to append information
about the files and directories in the current directory to files.out.

Is >> files.out

If the specified file doesn’t exist, it is created; otherwise it is
opened and positioned at its end.

2.2.2 Standard input

The operator can request that the standard input device be pre-
opened to a file or device other than the console by including a phrase
of the form ’< name’ on the command line. For example, if the
program prog reads from the standard input channel, then the
command

prog

causes prog to read from the console, and the command
prog <names.in

causes it to read from the file names.in.

2.2.3 Standard error

A program’s standard error channel can also be redirected to
another file or device other than the console, by including a phrase of

- sh.14 -

Aztec C65 Pre-opened 1/0 channels SHELL

the form:
2> name

where name is the name of the device or file to which standard
output is to be connected.

For example, the following causes Is to display the names of all files
in the directory /work having extension .c. The names are sent to the
file Is.out in the current directory and any error messages are sent to
the file err.msg:

Is /work/*.c >1s.out 2>.bout
2.2.4 Other 1/0 channels

Channels other than standard input, standard output, and standard
error can be pre-opened for a program. The channel having file
descriptor i is pre-opened for output to a device or file named name by
including the phrase

i> name

on the command line. And it’s pre-opened for input by including
i< name

on the command line.

For example, the following command pre-opens the channel having
file descriptor 3 for output to the file info.out:

prog 3>info.out
2.2.5 Creating empty files

The SHELL allows you to enter a command line containing only
I/O redirection components. In this case, the SHELL processes the
I/0 redirection clauses and then reads another command line.

Such a command line can be used for recording the time at which
events occur. For example, the command

> mytime

creates an empty file named mytime. The last-modified field for this file
is set to the time at which it was created.

-sh.15 -

SHELL File name expansion Aztec C65

2.3 Expansion of file name templates

When the characters ’?’ and/or ’* appear in a command line
argument, the SHELL interprets the argument as a template to be
matched to file names. Each matching name is passed to the program
as a separate argument, and the template isn’t passed. If the template
doesn’t match any file names, it is passed to the program, unaltered.

These characters can only be used within the filename component
of a file name, and not the volume or path components.

2.3.1 The’? character

The character ’?” in a template matches any single character. For
example, the command

rm ab?d

would remove files in the current directory whose names are four
characters long, the first two being *ab’ and the last being *d’. Thus, it
would remove files with names such as

abcd abxd ab.d
from the current directory.

Continuing with this example, if the three files listed above were
the only ones in the current directory that matched the template
"ab?d", then pointers to those three names are passed to the rm
command in place of a pointer to the template. So the rm command
would behave as if the operator had entered

rm abcd abxd ab.d

If no files matched the template, a pointer to the template itself
would have been passed to rm.

Notice that the template "ab?d" matches "ab.d". This emphasises the
fact that extensions in file names, and their preceding period, are
simply conventions and are not afforded special treatment by the
SHELL, as they are in some other systems.

2,3.2 The’* character

The character *® matches any number of characters, even none. For
example,

rm /work/ab*d

removes all files in the /work directory whose names begin with the
characters ’ab’ and end with ’d’. Thus, it would match files in the
/work/ directory having names such as

abd abcd abl23d ab.exd

As with templates containing ’?’, the names of files which match a
template containing ** are passed to the program, each as a separate

-sh.16 -

Aztec C65 File name expansion SHELL

argument, and the template isn’t passed. The template is passed only if
no files match it. Thus, if the files listed above were the only ones that
matched the template, then the following would have been equivalent
to ’rm /work/ab*d’;

rm /work/abd /work/abcd /work/abl123d /work/ab.exd

The use of ’* templates can be dangerous. For example, if you
wanted to type

rm abc*
but mistyped it as
rm abc *

then rm will remove "abc", if it exists, and then remove all other files
in the current directory.

-sh.17 -

SHELL Quoting strings Aztec C65
24 Quoting

Characters such as *, <, and > are special, because they cause the
SHELL to perform some action and are not normally passed to a
program. There are occasions when you want such characters to be
passed to a program without having the SHELL interpret them. This
can be done by preceding the character with a backslash character, °\’.
Any character can be preceded by a backslash; when the SHELL
encounters '\’ in a command line it removes the backslash from the
line and treats the following character as a normal character, without
attempting to interpret it.

For example, the command
echo *

displays the names of all files and directories in the current directory
on the console. The command

echo *
displays the character *® on the console.
The backslash character and multi-line commands

The backslash character can also be used to enter long command
lines on several physical lines. Normally, a newline character causes
the SHELL to terminate the reading of a command line and to begin
execution of the command. When the newline character is preceded by
a backslash, the SHELL removes both characters from the command
line and continues reading characters for the command line. For
example,

echo abc\
def

displays ’abcdef” on the console.

When the SHELL needs additional input from the console before it
can execute a command, it will prompt you with its secondary prompt.
By default, this is the character ’>’. The primary prompt, which is
displayed when the SHELL is ready for a new command, is by default
-7, Prompting is discussed in more detail below.

Quoted strings

A string in the command can be surrounded by single quotes. In
this case, the SHELL considers the entire string within the quotes to
be a single argument. The SHELL doesn’t try to interpret any special
characters contained in a string that is surrounded by single quotes.

For example, consider a program, args, which prints the arguments
passed to it, each on a separate line. The command

-sh.18 -

Aztec C65 Quoting strings SHELL

args 123 234 345
would print

args
123
234
345

(the command name is passed to the program as an argument), while
the command

args *123 234 345
would print

args
123 234 345

The command
args *

would print the names of each of the files on the current directory,
cach on a separate line, while

args '¥
would print the character **.

A quoted string can contain newline characters. That is, if the
SHELL sees a quote character and then reads a newline character
before finding another quote, it will keep prompting for additional
input until it finds another quote. The argument corresponding to the
quoted string then consists of the string with the newline characters
still imbedded in it.

For example, if you enter
echo ’ab

the SHELL will prompt you for additional input, using its
secondary prompt. If you then enter

1
2
3’
the echo command will be activated with arguments

echo
ab\nl\n2\n3

(where *\n’ stands for the newline character) and will print

-sh.19 -

SHELL Quoting strings Aztec C65

ab
1
2
3

Double-quoted strings

A string on the command line can also be surrounded by double
quotes. The only difference in the treatment of singly- and doubly-
quoted strings by the SHELL is that variable substitution is done for
double-quoted strings but not for single-quoted strings. This is
discussed in detail in the section on environment variables.

-sh.20 -

Aztec C65 Prompts SHELL
2.5 Prompts

The SHELL prompts you when it wants you to enter information,
by writing a character string, called a ’prompt’ to the console. There
are two types of prompts: one when the SHELL is waiting for a new
command to be entered, and the other when it needs additional input
before it can process a partially-entered command.

2.5.1 The primary prompt

The first type of prompt is called the ’primary’ prompt. By default,
it is the string ’-?°. This can be changed by entering the command of
the form

set PS1=prompt
where *prompt’ is the desired prompt string. For example,
set PS1=">>"

sets the primary prompt to ’>>’. Note the single quotes surrounding
>>. These are necessary to prevent the SHELL from trying to interpret
these special characters.

set PS1="hi there, fred. please enter a command: ’
sets the primary prompt to the specified, space-containing string.
2.5.2 The secondary prompt

The second type of prompt is called the ’secondary’ prompt. By
default, it is the string ’>’. This can be changed by entering a command
of the form

set PS2=prompt
2.5.3 The command logging prefix

When command logging is enabled, the SHELL logs each command
to the console, and precedes it with a character string called the
’command logging prefix’. By default, this prefix is the character *+’,
and can be set by entering a command of the form

set PS3=prefix
2.5.4 Special substitutions

The prompts and prefix described above can contain codes that
cause variable information to be included in a prompt. The codes
consist of a lower case letter preceded by the character *%’. For
example, to set the primary prompt to the time, followed by ’ :” enter

set PS1="%t ’
The list of letters and their substituted values are:

- sh.21 -

SHELL

letter

O < ~a

Prompts

substituted value
Date

Time

Current volume
Current directory

-sh.22 -

Aztec C65

Aztec C65 Programs & arguments SHELL

2.6 The program’s view of command line arguments

In this section we want to describe the passing of arguments by the
SHELL to the three types of programs that the Aztec linker can create:
programs of type PRG (that can be started by the SHELL but not by
the Basic Interpreter); programs of type BIN (that can be started by the
SHELL and by the Basic Interpreter); and system programs (that are
loaded at 0x2000).

For more information on the different types of Aztec-generated
programs, see the Command Programs section of the Technical
Information chapter.

2.6.1 Passing Arguments to PRG Programs

The main function of a program is the first user-written function to
be executed when the program is started. The SHELL passes two
arguments to the main function of a program of type PRG, as follows:

main(argc, argv)
int argc; char *argv(];

argc contains the number of command line arguments passed to the
program. The command itself is included in the count.

argv is an array of character pointers, each of which points to a
command line argument.

For example, if the operator enters the command
prog abc def ghi

then the argc parameter to main will be set to 4, and the argv array is
set as follows:

argv element points to

0 "prog"
1 "abc"
2 "def"
3 B "ghi "

As another example, for the command
prog "abc def ghi"
argc is set to 2, and the argv array as follows:

argv element points to
O llprog”
1 "abc def ghi"

With the command
prog *.c
and the current directory containing the files

-sh.23 -

SHELL Programs & arguments Aztec C65

acaoab.c
argc will be set to 5, and the argv array as follows:
argy element points to

0 llpro g"
1 "a C“

2 lla O"

3 lla"

4 "b.c"

2.6.2 Passing Arguments to BIN and system programs

A program that can be activated by the Basic Interpreter (that is, a
program of type BIN or a system program) can also be activated by the
SHELL. When the SHELL starts such a program, the first parameter
of the program’s muain function (argc) is set to 0, and its second
parameter (argv) is set to a null pointer.

-sh.24 -

Aztec C65 Devices SHELL

2.7 Devices
Programs can access the following devices:

* The console, named con.
* A printer, named pr:
* A serial device, named ser:

For example, the following command copies the output of the Is
command to the printer:

Is > pr:

In addition, programs can access the card in a particular slot using
the name sx:;, where x is the slot’s number. For example, the
following command copies the output of Is to the card in slot 2:

Is >s2:
2.7.1 Device Configuration

Using the config program, you can define to the SHELL the devices
that are connected to your Apple. Knowledge of this configuration is
then available both to the SHELL and to PRG programs that you tell
the SHELL to start. You can also use config to define a configuration
to stand-alone programs that you create using the Aztec software; that
is, to ProDOS BIN and SYS programs, and to programs that run on
DOS 3.3.

For details on config see its description in the Utility Programs
chapter.

The console is one device for which you can define attributes using
config. If the SHELL or a stand-alone program starts without your
having predefined the console attributes to it using config, the SHELL
or stand-alone program will determine the type of Apple on which it’s
running and set the console attributes accordingly.

Similarly, if the SHELL or a stand-alone program starts without
your having predefined the printer attributes to it using config, the
program will assume that the printer has the following attributes:

Its card is in slot 1,

It is initialized using the string ~I*Y*Y255N.,

Characters sent to it must have their most significant bit set;
A carriage return character must be followed by a line feed
character.

2.7.2 Console I/0 on an Apple // Plus

A standard Apple // Plus does not support the full ASCII character
set on keyboard input or screen output. There are hardware
modifications that you can make to an Apple // Plus that provide
some help, and our software assumes that you have made these
modifications. One of these changes is the "single wire shift key mod",

* ¥ * *

- sh.25 -

SHELL Devices Aztec C65

and the other is a modification that allows the console to display the
full set of displayable ASCII characters. For information on these
modifications, see your Apple dealer.

Even with these changes, you still can’t enter the special C
characters on an Apple // Plus, so our software translates certain
control characters that you type into those characters. The following
table lists these control characters and the characters to which they are
translated. In this table, as in the rest of this manual, ~X is an
abbreviation for "type X while holding the control key down". The
first column identifies control codes that you type; the second
identifies the characters to which control codes are translated when the
SHIFT key is held down; and the last column identifies the characters
to which control codes are translated when the SHIFT key is held
down.

Press: To get (lower): To get (upper):
A P 3 @

~A { [

~E | \

“R } 1

A N -~ A

~C DEL

To enter a TAB character on an Apple // Plus, type the right arrow
key that is on the far right of the Apple keyboard.

27.3 Other special control keys

Regardless of the type of console you are using, several control
characters that you type have special meaning:

~C Causes the program to halt and return control to the
command processor program (ie, to the SHELL or the
Basic Interpreter); A check for ~C is made both when
a program is reading from the keyboard and when it is
writing to the screen.

~S Causes screen output to be suspended until you type
another *S.

~D Causes EOF to be sent to a program that is reading the
keyboard.

~H Moves the cursor one character to the left on the

screen. When the SHELL has requested input, it also
crases that character from the screen and from the
SHELL’s input buffer. The SHELL reads characters
into this buffer when its waiting for 2 command and
then executes the command when you type the

RETURN key.
DEL Same as *"H.
~rX Causes the SHELL to clear its input buffer and move

-sh.26 -

Aztec C65 Devices SHELL

the cursor to the next line on the screen. Thus, *X
essentially deletes the command line that you are
currently typing.

RETURN When you type RETURN, the keyboard input routine
translates it to a Newline character.

- sh.27 -

SHELL Exec Files Aztec C65

2.8 Exec files

An "exec file" is a file containing a sequence of commands. The
operator causes the SHELL to execute the commands in an exec file
by simply typing its name.

For example, if the file named dir in the current directory contains
the commands

pwd
Is -1

then when the operator types
dir
the SHELL will execute the commands pwd and Is -

An exec file can contain any command that can be entered from
the console. In particular, an exec file can execute another exec file;
that is, exec files can be chained. However, when one excc file calls
another, control never returns to the calling exec file; that is, exec files
cannot be nested.

2.8.1 Exec file arguments

The command line that activates an exec file looks just like a
command line that activates a builtin or program command. Exec files
can be passed arguments in the same way that builtin and program
commands are passed arguments:

* a space-delimited string is normally passed to the exec file as a
single argument;

* A quoted string is passed as a single argument;

*« Filename-matching templates, containing ’?" and ¥, are
replaced, when a match is made, by the matching file names;

* “* causes the next character to be passed to the exec file
without interpretation, and the °\’ isn’t passed. "\\’ is replaced
by a single backslash character.

The method by which an exec file accesses command line
arguments is necessarily different from that used by builtin and
program commands, since the exec file is not a program. The exec file
can be passed any number of arguments, and it refers to them as 31,
$2, ..., where $1 represents the first argument, $2 the second, and so
on. $0 refers to the name of the exec file.

Before executing a command in an exec file, the SHELL replaces
the $x variables with the corresponding command line arguments. $x
variables which don’t have a corresponding argument are replaced by
the null string.

For example, the following exec file displays the value of the first,
fourth, and ninth arguments, and the name of the command itself,

- sh.28 -

Aztec C65 Exec Files SHELL

each on a separate line:

echo the first argument is $1
echo the fourth argument is $4
echo the ninth argument is $9
echo and me, I’'m $0

If the exec file is named names then
namesabcdefghij
would print

the first argument is a
the fourth argument is d
the ninth argument is i
and me, ’'m names

and the command
names *

would display the names of the first, fourth, and ninth files in the
current directory, and the name of the command.

The command
names "this is one argument”
would print
the first argument is this is one argument
The $# variable

Several other variables are set when an exec file is activated. $# is
set to the number of arguments that were passed to the exec file. For
example, an exec file named hello might contain

echo My name is $0
echo I was run with $# arguments

Typing
hello one two three
would print

My name is hello
I was run with 3 arguments

The $* and $@ variables

$* and $@ are two other variables that are set when an exec file is
activated. Both of these are set to a character string consisting of all the
exec file’s arguments, less $0. For example, consider an exec file
allargs, which contains

-sh.29 -

SHELL Exec Files Aztec C65
args $*

where args is a command program that prints its arguments, each on a
separate line. Typing

allargs one two three
would give

args
one
two
three

Exec file variables and quoted strings

When an exec file variable is contained within a character string
surrounded by single quotes, the SHELL does not replace the variables
with their values. Thus, given the exec file info, which contains

echo ’number of args = $0’
echo ’args = $0 $1 $2°
echo ’all args = $* and $@’

then typing
info one two three
gives

number of args = $0
args = $0 $1 $2
all args = $* and $@

As mentioned in section 2, the SHELL does substitute variables
that are contained within character strings that are surrounded by
double quotes. Thus, the exec file

args n$:|m

will pass the exec file arguments to echo as a single argument and is
equivalent to

args "$1 $2 $3..."

$* and $@ are the same, except when surrounded by double quotes.
The exec file
args "$@"
is equivalent to
args "$1" "$2" ...
2.8.2 Exec file options

There are three options related to exec files: logging of exec file
commands to the screen, continuation of an exec file following

-sh.30 -

Aztec C65 Exec Files SHELL

execution of a command which terminates with a non-zero exit code,
and execution of commands.

Each option has an identifying character. An option’s value is set
by issuing a sef command, giving the option’s character preceded by a
minus or plus sign. Minus enables an option and plus disables it.

The options, their identifying characters, and their default values
are listed below:

character option de fault
X log commands disabled
[abort on non-zero enabled
n don’t execute cmds disabled

Several options can be enabled or disabled in a single set command,
and an exec file can contain several option-setting commands.

The same set command is used to set exec file options and to set
environment variable values. set commands which set environment
variables can also be contained in an exec file. However, a single set
command cannot set both environment variables and exec file options.

When the SHELL logs exec file commands to the console, it
precedes each command line with the character *+’. This prefix can be
changed by entering a command of the form

set PS3=’string’
where ’string’ is the desired prefix.

The following are valid set commands for manipulating exec file
options:

set -x enable logging

set +x disable logging

set -x -n enable logging and non-execution of cmds
set -X +e enable logging, disable return code chk

Exec file options are inherited by a called exec file. That is, if you
type

set -x
docmds

where docmds is an exec file, the *x’ option is enabled in docmds.

An exec file can change the setting of the exec file options, but
these changes don’t affect the settings of the options in the caller.
Thus, if docmds includes the command

set +x

then the ’x’ option will be disabled during the execution of docmds,
but when control returns to the operator, the ’x’ option is reenabled.

-sh.31 -

SHELL Exec Files Aztec C65
2.8.3 Comments

In an exec file, any line beginning with the character *#° is
considered to be a comment, and is not executed. Argument
substitution is performed on it, though, allowing exec files like:

set -x
the first arg is $1
the second is $2

~ 2.8.4 Loops

Exec files can contain ’loops’; that is, sequences of commands that
are executed repeatedly, each time with an environment variable
assigned a different value.,

A loop has the format

loop
cmdlist
eloop

where cmdlist is the sequence of commands. The SHELL will
repeatedly execute the cmdlist commands; after each pass through the
commands it will shift down the exec file’s arguments, so that
argument 2 becomes argument 1, argument 3 becomes argument 2, and
so on. When the argument list becomes empty, the SHELL will exit
the loop and execute the command that follows the eloop.

For example, the following exec file compiles the C source files
whose names are passed to it (without the ".c" extension):

loop

echo compiling $1

cc $l

eloop

echo "*** all done***"

2.8.5 The shift command
The command
shift

causes the exec file variable $1 to be assigned the value of $2, $2 to be
assigned the value of $3, and so on. The original value assigned to $1 is
lost. When all arguments to the exec file have been shifted out, $1 is
assigned the null string,

For example, the following exec file, del, is passed a directory as its
first argument and the names of files within the directory that are to
be removed:

- sh.32 -

Azt2c C65 Exec Files SHELL

set j = $1
shift
loop

rm $j/$1
eloop

9

In this example, ’j is an environment variable. Environment
variables are described in the section on environment variables, so you
may want to reread this section after reading that section.

The first two statements in the exec file save the name of the
directory and then shift the directory name out of the exec file
variables.

The loop then repeatedly calls rm to remove one of the specified
files from the directory.

Entering
del /work filel.bak file2.bak
will remove the files filel.bak and file2.bak from the /work directory.

-sh.33 -

SHELL Environment variables Aztec C65

2.9 Environment variables

An environment variable is a variable having a name and having a
character string as its value. Environment variables have two functions:

* They can be used to pass information to a program;
* They can be used to represent character strings within
command lines.

Information can also be passed to programs as command line
arguments, as described in a previous section.

2.9.1 Defining environment variables

Environment variables can be created by the operator, using the set
command, and retain their value until changed by another set
command. In particular, environment variables retain their existence
and values even when programs are executed.

Environment variables are case-sensitive, so the variable named
VAR is different from one named Var.

The format of the set command which sets the value of an
environment variable is:

set VAR=string

where VAR is the name of the variable, and string is the character
string to be assigned to it. string can be null, in which case the
specified variable is deleted. The variable will be created, if it didn’t
previously exist.

For example, to set the environment named PATH to the string
" /cc/bin:/progs” the following command would be used:

set PATH=:/cc/bin:/progs

To delete the PATH variable, the following command would be
used:

set PATH=
Environment variables can be assigned quoted strings:
set NAMES="Penelope Matilda Esmarelda’

The set command, when issued without any arguments, will display
the names and values of the environment variables.

The set command can also be used within exec files to set exec file
options. This use of the ser command is discussed in the exec file
section of this chapter.

2.9.2 Passing environment variables to programs

A program can fetch the value of an environment variable using
the getenv function, passing to it the name of the variable. Programs

- sh.34 -

Aztec C65 Environment variables SHELL

cannot change the value of an environment variable.
2.9.3 Use of environment variables in command lines

When the SHELL finds an environment variable name in a
command line, preceded by the character ’$’, it replaces the name and
the ’$’ with the value of the variable.

For example, if the environment variable color has the value violet,
then entering

echo $color

is equivalent to entering
echo violet

and results in the displaying of
violet

on the screen.

As another example, given the environment variable b, having
value ’/ fred/bin/’, the following command will move the file pgm
from the current directory to the directory / fred / bin:

mv pgm $b

The use of environment variables isn’t restricted to command line
arguments. For example, given the environment variable cmd, having
value ’Is -l /usr/math/lib/’, the following command will list the
contents of the directory /usr/math /lib:

$cmd

Environment variables names that are used in command lines can
be surrounded by { and } to prevent ambiguity in cases where the
variable is immediately followed by a character string. For example, if
the following environment variables are defined

user=fred
userdy=john

then
echo ${user}
is equivalent to
echo $user
and displays
fred
Entering

- sh.35 -

SHELL Environment variables Aztec C65

echo $userdy
will display
john

since the SHELL interprets the entire string following $ to be the
name of the variable. And entering

$(user}dy
will display
freddy

since the SHELL assumes that the environment variable name is
contained in the braces.

2.9.4 Standard environment variables

A few environment variables are created and assigned initial values
by the SHELL when it is first activated. These are described in the
section on starting the SHELL.

- sh.36 -

Aztec C65 Command searches SHELL

2.10 Searching for commands

When the operator enters a command, the SHELL first checks to
see whether it is a builtin command. If so, the SHELL executes it.
Otherwise, the command must be the name of a file to be exccuted, so
the SHELL attempts to find the file.

2.10.1 Searching for command files

The SHELL will look for a command file in the directories that are
specified in the PATH environment variable. PATH consists of the
directories to be searched, separated by colons. Thus, the following
command will cause the SHELL to search for commands first in
directory dirl, then in directory dir2, ..., and finally in directory dirn,
issue the command

set PATH=dirl:dir2: ... :dirn

If an entry doesn’t specify a complete path (that is, doesn’t begin
with the root directory), the path to the directory begins at the current
directory. And if the entry is null, the entry specifies the current
directory. The "current directory" is the directory that is current when
the SHELL attempts to find a command, and not when the setr PATH
command is entered.

For example, the following command will cause the SHELL to
search the current directory, then the directory /ram/bin, and finally
the directory progs, which is a subdirectory of the current directory.

set PATH=:/ram/bin:progs

The next command causes the SHELL to search the directory
/system/bin, then the /cmds subdirectory of the current directory,
and finally the current directory:

set PATH=/system/bin:cmds::

To display the value of all the environment variables, including
PATH, enter the set command by itself; eg,

set

By default, PATH is set so that the SHELL will search for
commands first in the current directory and then if your system has a
ram disk, in the volume directory of the ram disk.

2.10.2 Program or exec file?

When the SHELL finds a file that matches the name that the
operator entered, it has to decide whether it contains a program or is
an exec file. It bases its decision on the file’s type: if it is TX7, then its
assumed to be an exec file; if its type is PRG it’s assumed to contain a
program.

-sh.37 -

SHELL Starting the SHELL Aztec C65

2.11 Starting the SHELL
The SHELL can be started in several ways:

* By ProDOS, when ProDOS is itself started;

* By the Basic Interpreter, at your command,

* By a loader that is activated when a SHELL-activated program
terminates;

* By the SHELL itself, at your command.

The following paragraphs discuss each of these ways of starting the
SHELL.

2.11.1 ProDOS activation of the SHELL

When you turn on the Apple or type the appropriate reset keys, a
bootstrap loader is loaded from the first two sectors on the disk that’s
in the Apple’s boot drive. This loader then loads ProDOS into the
high part of memory from the first file in volume directory of the disk
in the boot drive whose name is ProDOS and whose type is SYS.
ProDOS then loads and tranfers control of the processor to a command
processor program; that is, a program to which you will enter
commands. ProDOS loads this program from the first file in the
volume directory of the disk in the boot drive whose name ends in
.system and whose type is SYS.

The distribution disk that's labeled /system is "bootable", as are
copies that you make of it: the disk contains a bootstrap loader,
ProDOS in the file named ProDOS, and the SHELL in the file named
shell.system. Thus, when you turn on the Apple or hit the appropriate
reset keys with this disk in the Apple’s boot drive, ProDOS and the
SHELL are automatically loaded and started.

2.11.2 Starting the SHELL from the Basic Interpreter

With the Basic Interpreter running, you can start the SHELL by
entering a command consisting of the name of the file that contains
the SHELL, preceded by a dash character:

-shell.system

This loads the SHELL into memory below ProDOS (which is
always in memory), overlaying the Basic Interpreter and any basic
program that was in memory.

2.11.3 Restarting the SHELL when a Program Stops

There are two parts to the SHELL: a transient section and a
memory-resident "environment” section. When the SHELL starts
another program, the SHELL’s transient section is overlayed by the
program, but its environment section usually isn’t. When a SHELL-
started program terminates, the transient section of the SHELL needs
to be reloaded, but the memory-resident section need not be, unless it
has been destroyed.

- sh.38 -

Aztec C65 Starting the SHELL SHELL

The memory-resident "environment" section of the SHELL
contains information, such as environment variables, that the SHELL
wants to preserve during the execution of another program. It also
contains a small loader routine.

When a SHELL-activated program terminates, control is passed to
the loader routine in the SHELL’s environment section. This routine
loads the SHELL’s transient section into memory, thus overlaying the
program that was active, and then transfers control of the processor to
the SHELL.

The file from which the SHELL is loaded is named shell.systenr, the
path to the directory containing this file is defined in a field within
the SHELL’s environment section. We’ll describe how this field is set
below.

2.11.3.1 Destruction of the SHELL’s environment section

The SHELL’s environment section is located in the area of memory
just below 0xBF00. Programs of type PRG or BIN that you create
using the Aztec C65 linker and libraries will not modify the SHELL’s
environment section.

When the SHELL starts a program, it sets the Applesoft and Integer
Basic HIMEM fields to the base of the SHELL’s environment section.
Thus, even if a program started by the SHELL hasn’t been created
using Aztec software, the program won’t destroy the SHELL’s
environment section, if the program respects the HIMEM fields by not
modifying memory above this address. For example, the filer is an
example of a program that wan’t created using Aztec software, that can
be started by the SHELL, and that won’t destroy the SHELL’s
environment section.

System programs, which are programs whose starting address is
0x2000, are assumed to use all memory below 0xBF00, which is the
first location that ProDOS uses. Accordingly, when a system program
is activated, including one created using the Aztec software, it usually
destroys the SHELL’s environment section.

When the SHELL is restarted, it can tell if the area of memory in
which it stores its environment section contains in fact a valid
environment section. The SHELL will initialize this section of
memory only if the area doesn’t contain a valid environment section.

2.11.4 Starting the SHELL from the SHELL

The SHELL is a program, and so you can start the SHELL just as
you would any other program while the SHELL is active; that is, by
entering the name of the file that contains it.

The SHELL is a system program; however, when it starts itself the
environment section of the original SHELL is not destroyed.

-sh.39 -

SHELL Starting the SHELL Aztec C65

2.11.5 The SHELL’s Startup Procedure

When the SHELL starts, it first checks to see whether its
environment section is in memory, by testing the area of memory
where it should be for known values. If the environment section is
not in memory, the SHELL creates a new one.

The SHELL next sets the field in the directory that defines the path
to the directory from which the SHELL will be reloaded to the path to
the directory from which the SHELL was just loaded.

If the SHELL created a new environment section, it next initializes
some environment variables, defines the device configuration if one
was not predefined, executes the commands in the profile, and goes
into a loop, reading and processing commands.

For information on device configuration, see the Devices section of
this chapter and the description of the config program in the Utility
Programs chapter.

2.11.6 Defining the SHELL’s Startup Directory

When you develop programs using Aztec C65, you will usually swap
disks in and out of disk drives as you execute the different Aztec
programs. For example, you may have one disk for initially starting
the SHELL, that contains the bootstrap loaded, ProDOS, the SHELL,
and perhaps the filer; another disk that contains the native code
compiler and assembler, another that contains the interpretive
compiler and assembler, another that contains the linker and libraries,
and another containing your own files.

From the above discussion, you know that when a SHELL-activated
program terminates, the SHELL will be reloaded from the file from
which it was last loaded, and that the disk containing this file must be
in a drive when the SHELL-activated program terminates.

Thus, it’s best to have the file from which the SHELL will be
reloaded following program termination on a disk that is usually in a
disk drive. The Aztec disks don’t meet this criteria, since you are
frequently swapping them in and out of drives; a better place is a disk
that contains your own files; and the best place is the ram disk, if your
system has one.

You usually won’t want the disk from which the SHELL is reloaded
following program termination to contain ProDOS, since it will take
up space that could be used by your own files. Hence, the disk from
which the SHELL is initially loaded when the Apple is turned on is
different from the disk from which the SHELL is reloaded following
program termination.

But following program termination, the SHELL is reloaded from
the file from which it was previously loaded. So once the SHELL is
initially loaded following powering on of the Apple, you must have the

- sh.40 -

Aztec C65 Starting the SHELL SHELL

SHELL start itself, in order to redefine to the SHELL the identity of
the file from which the SHELL will be reloaded following program
termination. For example, you could put a boot disk in the boot drive
and turn on the Apple to start ProDOS and the SHELL. Then, with
your own disk, named /work in another drive, you could copy the
SHELL to this disk and define this disk as containing the file from
which the SHELL should be reloaded by entering:

cp shell.system /work/shell.system
/work/shell.system

2.11.7 Executing the profile

When the SHELL is initially started (ie, following power-up on the
Apple), it will automatically search the directory from which it was
loaded for a file named profile. If such a file is found, the SHELL will
assume that it is an exec file and will execute its commands.

For example, the profile could create environment variables, copy
shell.system to the ram disk, or change the default values assigned to
the SHELL-created variables.

2.11.8 Initial environment variables

A few environment variables are created and assigned initial values
by the SHELL when it is first activated. These are:

PATH - Defines the directories to be searched for a
command line. If your Apple has a ram
disk, PATH is initially set to ::/ram, which
causes the SHELL to look for a command
first in the current directory and then in
the ram disk. If your Apple doesn’t have a
ram disk, PATH is initially set to ., which
cause the SHELL to look for commands
just in the current directory.

PS1 - Primary prompt. Initially set to *-? °.

PS2 - Secondary prompt. Initially set to ’>’.

PS3 - Cmd logging string. Initially set to +’.
HOME - The volume directory of the disk from

which the SHELL was loaded.

You can change the values of these variables just as you would any
other environment variable.

- sh.41 -

SHELL

2.12 Error codes

Error Codes Aztec C65

When the SHELL detects an error, it says so with a message that
usually contains a numerical code that defines the error. These are
ProDOS error codes, and are defined in the following table:

hex code

Meaning

No error

Invalid number for system call
Invalid param count for system call
Interrupt vector table full

I/0O Error

No device connected/detected
Disk write protected

Disk switched

Invalid characters in pathname
File control block table full
Invalid reference number
Directory not found

Volume not found

File not found

Duplicate file name

Volume Full

Volume directory full
Incompatible file format
Unsupported storage type

End of file encountered
Position out of range

File Access error; eg, file locked
File is open

Directory structure damaged
Not a ProDOS disk

Invalid system call parameter
Volume control block table full
Bad buffer address

Duplicate volume

Invalid address in bit map

- sh.42 -

THE COMPILERS

-ccl -

-cc2-

COMPILERS Aztec C65
Chapter Contents

TRE COMPILETS ...oreveeeereiereie et st ser s s st e e s sse s srs s e sss s s senns cc
1. Operating INSIrUCHIONScucvceee ettt e rse e sne e sessanes 3
1.1 The C SOUICE FlE auuivieteeeeeecereeeeeeeeereenereseeseesssssessessessssssssssens 3
1.2 The Output FIles ..ot st enesaererese s 4
1.3 Searching for #include f11ES ...t coveeeeeeceiercreeereseereereseseseens 6

2. CoMPIIET OPLOTS ...cveeevin cerreereeessseessssssessssesssssseessesssressmseessesesossessenes 7
2.1 Summary Of OPLIONScvceveerrerireerirrernnrerinnieste e sesesssesnsnssnas 7
2.2 Description Of OPLIONScevvceees cevviieciseerestsscserseseeeeeereeesessessessns 8

3. Programmer INfOrmation ... cvciviinencieece e esseeeesenseenens 13
3.1 Supported Language Featuresoee. ovveveeereemneeecrireseeesneniees 13
3.2 Structure ASSIZNMENTcceeiees veemerreerieeeesesesessesesesserssesssessaennas 13
3.3 Line CONtINUALIONccvieee v crensesnsnssesessesesssasnen 13
3.4 The void Data TYDPE ..ooreeeeeee et ssesesessese s en e sese s sensnens 13
3.5 Special SYMDOIS ..ottt st ss e sesasseseseanas 14
3.6 String MEIBING ..ouvvviviviees ceerrieieirereeeere e sessssssasssssssssssassonns 14
3.7 LONE NAIMES ..ocieereeeet s e eiereeresesrenesesessesenssessesssessssssessns 15
3.8 ReESEIVEd WOTIMS ...ccoveeeeerens creriieecerisiinesees e rserensssasse s snssssenne 15
3.9 GIobal Variablescoccuevevveieeerrree et et ressssesesens 15
3.10 Data FOIMALSccccoves cererrriecriectiierineressesessessesessssessesesessesmesnes 16
3.11 Floating Point EXCEPHIONSceeeveee creeeirecceenesesesesnsssassssssssnees 18
3.12 Register Variables ... veevceeeieieericencsesss e e sesnsseseseenen 19
3.13 In-line Assembly Language Code ccovvvnervrecrnerrennnenes 19
3.14 Writing Machine-Independent Codevvvrvrerrverereresrensienses 20

4. Error PrOCESSINGcceeve et sreaessse s s sesessessansrsssnesens 23

Aztec C65 COMPILERS

The Compilers

This chapter describes cc and cci, the Aztec C compilers for Apple
// ProDOS. It is not intented to be a complete guide to the C
language; for that, you must consult other texts. One such text is The
C Programming Language, by Kernighan and Ritchie. The compilers
were implemented according to the language description in the
Kernighan and Ritchie book.

cc translates C source code into native 6502 assembly language
source code. cci translates C source code into assembly language source
for a "pseudo machine"; in an executable program, cci-compiled code
must be interpreted by a special Aztec C routine.

This description of the compilers is divided into four subsections:
which describe how to use the compilers, compiler options,
information related to the writing of programs, and error processing.

To the operator and programmer, the two compilers are very
similar. In the discussion that follows, we will use the name cc when
describing features that are common to both compilers. Where
differences exist, we will say so.

1. Compiler Operating Instructions
cc is invoked by a command of the form:
cc [-options] filename.c

where [-options] specify optional parameters, and filename.c is the
name of the file containing the C source program. Options can appear
either before or after the name of the C source file.

The compiler reads C source statements from the input file,
translates them to assembly language source, and writes the result to
another file.

When the compiler is done, it by default activates the as assembler
(cci by default starts the asi assembler). The assembler translates the
assembly language source to relocatable object code, writes the result
to another file, and deletes the assembly language source file. The -4
option tells the compiler not to start the assembler.

1.1 The C source file

The extension on the source file name is optional. If not specified,
it’s assumed to be .c. For example, with the following command, the
compiler will assume the file name is text.c:

-cc.3-

COMPILERS Aztec C65

cc text

The compiler will append .c to the source file name only if it doesn’t
find a period in the file name. So if the name of the source file really
doesn’t have an extension, you must compile it like this:

cc filename.

The period in the name prevents the compiler from appending .c to
the name.

1.2 The output files
1.2.1 Creating an object code file

Normally, when you compile a C program you are interested in the
relocatable object code for the program, and not in its assembly
language source. Because of this, the compiler by default writes the
assembly language source for a C program to an intermediate file and
then automatically starts the assembler. The assembler then translates
the assembly language source to relocatable object code, writes this
code to a file, and erases the intermediate file.

By default, the object code generated by a ce-started assembly is
sent to a file whose name is derived from that of the file containing
the C source by changing its extension to .o (the default extension for
a cci-started assembly is .7). This file is placed in the directory that
contains the C source file. For example, if the compiler is started with
the command

cc prog.c

the file prog.o will be created, containing the relocatable object code
for the program.

The name of the file containing the object code created by a
compiler-started assembler can also be explicitly specified when the
compiler is started, using the compiler’s -O option. For example, the
command

cc -O myobj.rel prog.c

compiles and assembles the C source that’s in the file prog.c, writing
the object code to the file myobj.rel.

When the compiler is going to automatically start the assembler, it
by default writes the assembly language source to a temporary file
named ctmpxxx.xxx, where the x’s are replaced by digits in such a
way that the name becomes unique. This temporary file is placed in
the directory specified by the environment variable CCTEMP. If this
variable doesn’t exist, the file is placed in the directory specified by
the current default prefix.

When CCTEMP exists, the fully-qualified name of the temporary
file is generated by simply prefixing its value to the ctmpxxx.XxXxX

-ccd -

Aztec C65 COMPILERS

name. For example if CCTEMP has the value
/RAM/TEMP/

then the temporary file is placed in the TEMP directory on the RAM
volume.

For a description on the setting of environment variables, see the
SHELL chapter.

If you are interested in the assembly language source, but still want
the compiler to start the assembler, specify the option -T when you
start the compiler. This will cause the compiler to send the assembly
language source to a file whose name is derived from that of the file
containing the C source by changing its extension to .asm. The C
source statements will be included as comments in the assembly
language source. For example, the command

cc -T prog.c
compiles and assembles prog.c, creating the files prog.asm and prog.o.
1.2.2 Creating just an assembly language file

There are some programs for which you don’t want the compiler to
automatically start the assembler. For example, you may want to
modify the assembly language generated by the compiler for a
particular program. In such cases, you can use the compiler’s -4
option to prevent the compiler from starting the assembler.

When you compile a program using the -4 option, you can tell the
compiler the name and location of the file to which it should write the
assembly language source, using the -O option.

If you don’t use the -O option but do use the -4 option, the
compiler will send the assembly language source to a file whose name
is derived from that of the C source file by changing the extension to
.asm and place this file in the same directory as the one that contains
the C source file. For example, the command

cc -A prog.c

compiles, without assembling, the C source that’s in prog.c, sending the
assembly language source to prog.asm.

As another example, the command
cc -A -O temp.ab5 prog.c

compiles, without assembling, the C source that’s in prog.c, sending the
assembly language source to the file temp.a65.

When the -A option is used, the option -T causes the compiler to
include the C source statements as comments in the assembly language
source.

- ¢c.5 -

COMPILERS Aztec C65
1.3 Searching for #include files

You can make the compiler search for #include files in a sequence
of directories, thus allowing source files and #include files to be
contained in different directories.

Directories can be specified with the -I compiler option, and with
the INCLUDE environment variable. The compiler itself also selects a
few areas to search. The maximum number of searched areas is eight.

If the file name in the #include statement specifies a directory, just
that directory is searched.

1.3.1 The -I option.

A -1 option defines a single directory to be searched. The area
descriptor follows the -1, with no intervening blanks. For example, the
following -I option tells the compiler to search the include directory on
the ram volume:

-I/ram/include
1.3.2 The INCLUDE environment variable.

The INCLUDE environment variable also defines a directory to be
searched for #include files. For example, the following command sets
INCLUDE so that the compiler will search for include files in the
directory /ram/include:

set INCLUDE=/ram/include

See the SHELL chapter for details on the setting of environment
variables.

1.3.3 The search order for include files
Directories are searched in the following order:

1. If the #include statement delimited the file name with the
double quote character, ", the current directory on the default
drive is searched. If delimited by angle brackets, < and >, this
area isn’t automatically searched.

2. The directories defined in -I options are searched, in the
order listed on the command line.

3. The directory defined in the INCLUDE environment variable
is searched.

- ¢cc.6 -

Aztec C65 COMPILERS
2. Compiler Options

There are two types of options in Aztec C compilers: machine
independent and machine dependent. The machine-independent
options are provided on all Aztec C compilers. They are identified by
a leading minus sign.

The Aztec C compiler for each target system has its own, machine-
dependent, options. Such options are identified by a leading plus sign.

The following paragraphs first summarize the compiler options and
then describe them in detail

2.1 Summary of options
2.1.1 Machine-independent Options
-A Don’t start the assembler when compilation is done.

-Dsymbol[=value |
Define a symbol to the preprocessor.

-Idir Search the directory named dir for #include files.

-0 file Send output to file.

-S Don’t print warning messages.

-T Include C source statements in the assembly code

output as comments. Each source statement appears
before the assembly code it generates.

-B Don’t pause after every fifth error to ask if the
compiler should continue. See the Errors subsection
for details.

-Enum Use an expression table having num entries.
-Lnum Use a local symbol table having num entries.
-Ynum Use a case table having num entries.
-Znum Use a literal table having num bytes.

2.1.2 Special Options for the ProDOS Compilers

+C Generate 65C02 code (cc only).
+B Don’t generate the statement "public .begin".
+L Turn automatic variables into statics (cc only).

- cc.7 -

COMPILERS Aztec C65

2.2 Detailed description of the options
22,1 Machine-independent options
The -D Option (Define a macro)
The -D option defines a symbol in the same way as the
preprocessor directive, #define. Its usage is as follows:
cc -Dmacro[=text] prog.c
For example,
cc -DMAXLEN=1000 prog.c

is equivalent to inserting the following line at the beginning of the
program: _

#define MAXLEN 1000

Since the -D option causes a symbol to be defined for the
preprocessor, this can be used in conjunction with the preprocessor
directive, #ifdef, to selectively include code in a compilation. A
common example is code such as the following:

#ifdef DEBUG
printf{"value: %d\n", i);
#endif

This debugging code would be included in the compiled source by
the following command:

cc ~-dDEBUG program.c

When no substitution text is specified, the symbol is defined to have
the numerical value 1.

The -I Option (Indude another source file)

The -I option causes the compiler to search in a specified directory
for files included in the source code. The name of the directory
immediately follows the -I, with no intervening spaces. For more
details, see the Compiler Operating Instructions, above.

The -S Option (Be Silent)

The compiler considers some errors to be genuine errors and others
to be possible errors. For the first type of error, the compiler always
generates an error message. For the second, it generates a warning
message. The -S option causes the compiler to not print warning
messages.

2.21.1 The Local Symbol Table and the -L Option

When the compiler begins processing a compound statement, su_ch
as the body of a function or the body of a for loop, it makes entries
about the statement’s local symbols in the local symbol table, and

-oc8 -

Aztec C65 COMPILERS

removes the entries when it finishes processing the statement. If the
table overflows, the compiler will display a message and stop.

By default, the local symbol table contains 40 entries. Each entry is
26 bytes long; thus by default the table contains 640 bytes.

You can explicitly define the number of entries in the local symbol
table using the -L option. The number of entries immediately follows
the -L, with no intervening spaces. For example, the following
compilation will use a table of 75 entries, or almost 2000 bytes:

cc -L75 program.c
2.2.1.2 The Expression Table and the -E Option

The compiler uses the expression table to process an expression.
When the compiler completes its processing of an expression, it frees
all space in this table, thus making the entire table available for the
processing of the next expression. If the expression table overflows,
the compiler will generate error number 36, "no more expression
space”, and halt.

By default, the expression table contains 80 entries. Each entry is
14 bytes long; thus by default the table contains 1120 bytes.

You can explicitly define the number of entries in the expression
table using the -E option. The number of entries immediately follows
the -E, with no intervening spaces. For example, the following
compilation will use a table of 20 entries:;

cc -E20 program.c
2.2.1.3 The Case Table and the -Y Option

The compiler uses the case table to process a switch statement,
making entries in the table for the statement’s cases. When it
completes its processing of a switch statement, it frees up the entries
for that switch. If this table overflows, the compiler will display error
76 and halt.

For example, the following will use a maximum of four entries in
the case table:

-¢cc9 -

COMPILERS Aztec C65

switch (a) {

case 0: /¥ one */
a+=1I;
break;
case I: /¥ two */
switch (x) {
case ’a” /* three */
funcl (a);
break;
case ’b’: /¥ four */
func2 (b);
break;
} /* release the last two */
a=35;
case 3: /* total ends at three */
func2 (a);
break;
}

By default, the table contains 100 entries. Each entry is four bytes
long; thus by default, the table occupies 400 bytes.

You can explicitly define the number of entries in the case table
using the compiler’s -Y option. The number of entries immediately
follows the -Y, with no intervening spaces. For example, the following
compilation uses a case table having 50 entries:

cc -Y50 file
2.2.1.4 The String Table and the -Z Option

When the compiler encounters a "literal" (that is, a character
string), it places the string in the literal table. If this table overflows,
the compiler will display error 2, "string space exhausted", and halt.

By default, the literal table contains 2000 bytes.

You can explicitly define the number of bytes in this table using
the compiler’s -Z option. The number of bytes immediately follows
the -Z, with no intervening spaces. For example, the following
command will reserve 3000 bytes for the string table:

cc -Z3000 file
2.2.1.5 The Macro/Global Symbol Table

The compiler stores information about a program’s macros and
global symbols in the Macro/Global Symbol Table. This table is
located in memory above all the other tables used by the compiler. Its
size is set after all the other tables have been set, and hence can’t be
set by you. If this table overflows, the compiler will display the
message "Out of Memory!" and halt. You must recompile, using
smaller sizes for the other tables.

- cc.10 -

Aztec C65 COMPILERS

2.2.2 ProDOS Options
2.2.2.1 The +C Option (Generate 65002 code - cc only)

The +C option causes cc to generate assembler source for a 65C02
processor. If this option isn’t used, cc will generate code for a 6502
processor.

2.2.2.2 The +B Option (Don’t generate reference to .begin)

Normally when compiling a module, the compilers generate a
reference to the entry point named .begin. Then when the module is
linked into a program, the reference causes the linker to include in the
program the library module that contains .begin.

The +B option prevents the compilers from generating this
reference.

For example, if you want to provide your own entry point for a
program, and its name isn’t .begin, you should compile the program’s
modules with the +B option. If you don’t, then the program will be
bigger than necessary, since it will contain your entry point module
and the standard entry point module. In addition, the linker by default
sets at the program’s base address a jump instruction to the program’s
entry point; if it finds entry points in several modules, it will set the
jump to the last one encountered.

2.2.2.3 The +L Option (Turn Autos into Statics - cc only)

The +L option causes the compiler to change the class of variables
whose class is automatic to static. This can cause a significant increase
in execution speed, since it is faster to address static variables, which
are directly addressable, than automatic variables, which are on the
stack and must be indirectly addressed.

Automatic variables that are declared using the auto keyword, (for
example auto int i), aren’t affected by the +L option: they will remain
automatic.,

Also, if a register is available for an automatic variable that is
declared using the register keyword (for example, register int i), the
variable will be placed in a register and will not be turned into a static.
If a register is not available, however, such a variable will be turned
into a static variable.

Like any other static data, an auto-turned-static is initialized to zero
before the program begins.

A function that recursively calls itself may not work correctly when
it is compiled with the +L option. For example, the following program
will print 1 when compiled without the +L option, and 100 when
compiled with the +L option:

-ccl1 -

COMPILERS Aztec C65
main()

printf("%d", qtest());

qtest()
€.
it 1;
if (++i < 100)

qtest(i);
return (i);

}

-cc.12 -

Aztec C65 COMPILERS

3. Writing programs

The previous sections of this description of the compiler discussed
operational features of the compiler; that is, presented information that
an operator would use to compile a C program. In this section, we
want to present information of interest to those who are actually
writing programs,

3.1 Supported Language Features

Aztec C supports the entire C language as defined in The C
Programming Language by Kernighan and Ritchie. This now includes
the bit field data type.

The following paragraphs describe features of the standard C
language that are supported by Aztec C but that aren’t described in the
K & R text.

3.2 Structure assignment

Aztec C supports structure assignment. With this feature, a
program can cause one structure to be copied into another using the
assignment operator.

For example, if s/ and s2 are structures of the same type, you can
say:

sl = s2;
thus causing the contents of structure sl to be copied into structure s2.

Unlike other operators, the assignment operator doesn’t have a
value when it’s used to copy a structure. Thus, you can’t say things
like "a = b = ¢", or "(a=b).fld" when a, b, and ¢ are structures.

3.3 Line continuation

If the compiler finds a source line whose last character is a
backslash, \, it will consider the following line to be part of the current
line, without the backslash. For example, the following statements
define a character array containing the string "abcdef™:

char array[]="ab\
cd\
ef™;

3.4 The void data type

Functions that don’t return a value can be declared to return a void.
This provides a safety check on the use of such functions: if a void
function attempts to return a value, or if a function tries to use the
value returned by a void function, the compiler will generate an error
message.

Variables can be declared to point to a void, and functions can be
declared as returning a pointer to a void.

-cc.13 -

COMPILERS Aztec C65

Unlike other pointers, a pointer to a void can be assigned to a
pointer to any type of object, and vice versa. For other types of
pointers, the compiler will generate a warning message if an attempt is
made to assign one pointer to another, when the types of objects
pointed at by the two pointers differ.

That is, the compiler will generate a warning message for the
assignment statement in the following program:

main()
char *cp;
int *ip;
ip = cp;
}
The compiler won’t complain about the following program:
main()
char *cp;
void *getbuf();
cp = getbuf();
}
3.5 Special symbols

Aztec C supports the following symbols:

___FILE____ Name of the file being compiled. This is a
character string.

___LINE____ Number of the line currently being
compiled. This is an integer.

___FUNC__ Name of the function currently being

compiled. This is a character string.

In case you can’t tell, these symbols begin and end with two
underscore characters.

For example,

printf("file= %s\n", __ FILE__),
printf("line= %d\n" LINE)
printf("func=%s\n", ___FUNC__);

3.6 String merging
The compiler will merge adjacent character strings. For example,

printf("file=" __ FILE____ " line= %d func=" FUNC y
LINE);

-cc.14 -

Aztec C65 COMPILERS

3.7 Long names

Symbol names are significant to 31 characters. This includes
external symbols, which are significant to 31 characters throughout
assembly and linkage.

3.8 Reserved words

const, signed, and volatile are reserved keywords, and must not be
used as symbol names in your programs.

3.9 Global variables

Aztec C supports the rule of the standard C language regarding
global variables that are to be accessed by several modules. This rule
requires that in the modules that want to access such a variable, exactly
one module declare it without the extern keyword and all others
declare it with the extern keyword.

Previous versions of Aztec C did not strictly enforce this rule. In
these versions, the following modified version of the rule was
enforced:

* multiple modules could declare the same variable, with the
extern keyword being optional;

* when several modules declared a variable without using the
extern keyword, the amount of space reserved for the variable
was set to the largest size specified by the wvarious
declarations;

* when one module declared a variable using the extern
keyword, at least one other module must have declared the
variable without using the extern keyword;

* at most one module could specify an initial value for a global
variable;

* when a module specified an initial value for a global variable,
the amount of storage reserved for the variable was set to the
amount specified in the declaration that specified an initial
value, regardless of the amounts specified in the other
declarations.

In order both to enforce the standard C rule regarding global
variables and to provide compatibility with previous versions of Aztec
C, the current Aztec linker will generate code consistent with the
previous versions, but will by default generate a "multiply defined
symbol" message when multiple modules are found that declare a
global variable without the extern keyword. The -M linker option can
be used to cause the linker to treat global variables just as they were in
previous versions of Aztec C; in this case, the "multiply defined
symbol" message won’t occur when several modules declare the same
variable without the extern keyword, as long as no more than one
specifies an initial value for the variable. If multiple modules declare
an initial value for the same variable this message will be issued,

- cc.15 -

COMPILERS Aztec C65

regardless of the use of the -M option.

Both previous and the current versions of Aztec C prevent a global
symbol from being both a variable name and a function name. When
such a situation arises, the linker will issue the "multiply defined
symbol" message, regardless of the use of the -M option.

If you have programs whose modules follow the modified version
of the rule regarding global variables, and you either want to link the
modules using the Aztec linker without having to specify the -M linker
option and without having the "multiply defined symbols" message
appear, the compiler’s -U option can be useful. When a module is
compiled with this option, all the declarations of global variables that
don’t specify an initial value are implicitly turned into extern
declarations. Thus, you can place the declarations of a program’s
global but uninitialized variables into one file, place #include
statements for that file in the modules that need those variables, and
compile one of the modules without the -U option, and the others with
it.

3.10 Data formats
3.10.1 char

Variables of type char are one byte long, and can be signed or
unsigned. By default, a char variable is unsigned.

When a signed char variable is used in an expression, it’s converted
to a 16-bit integer by propagating the most significant bit. Thus, a char
variable whose value is between 128 and 255 will appear to be a
negative number if used in an expression.

When an unsigned char variable is used in an expression, it’s
converted to a 16-bit integer in the range 0 to 255.

A character in a char is in ASCII format.
3.10.2 pointer

Pointer variables are two long.
3.10.3 int, short

Variables of type short and int are two bytes long, and can be signed
or unsigned.

A negative value is stored in two’s complement format. A -2 stored
at location 100 would look like:

location contents in hex
100 FE
101 FF

- cc.16 -

Aztec C65 COMPILERS
3.10.4 long

Variables of type long occupy four bytes, and can be signed or
unsigned.

Negative values are stored in two’s complement representation.
Longs are stored sequentially with the least significant byte stored at
the lowest memory address and the most significant byte at the highest
memory address.

3.10.5 float

A float variable is represented internally by a sign flag, a base-256
exponent in excess-64 notation, and a three-character, base-256
fraction. All variables are normalized.

The variable is stored in a sequence of four bytes. The most
significant bit of byte 0 contains the sign flag; 0 means it’s positive, 1
negative.

The remaining seven bits of byte 0 contain the excess-64 exponent.

Bytes 1,2, and 3 contain the three-character mantissa, with the most
significant character in byte 1 and the least in byte 3. The ’decimal
point’ is to the left of the most significant byte.

As an example, the internal representation of decimal 1.0 is 41 01
00 00.

3.10.6 double

A floating point number of type double is represented internally by
a sign flag, a base-256 exponent in excess-64 notation, and a seven-
character, base-256 fraction.

The variable is stored in a sequence of eight bytes. The most
significant bit of byte 0 contains the sign flag; 0 means positive, 1
negative.

The excess-64 exponent is stored in the remaining seven bits of
byte 0.

The seven-character, base-256 mantissa is stored in bytes 1 through
7, with the most significant character in byte 1, and the least in byte 7.
The "decimal point" is to the left of the most significant character.

As an example, (256**3)*(1/256 + 2/256**2) is represented by the
following bytes: 43 01 02 00 00 00 00 00.

For accuracy, floating point operations are performed using
mantissas which are 16 characters long Before the value is returned to
the user, it is rounded.

-cc.17 -

COMPILERS Aztec C65

3.11 Floating Point Exceptions

When a C program requests that a floating point arithmetic
operation be performed, a call will be made to functions in the floating
point support software.

While performing the operation, these functions check for the
occurence of the floating point exception conditions; namely,
overflow, underflow, and division by zero. On return to the caller, the
global integer flierr indicates whether an exception has occurred:

flterr value returned meaning
0 computed valueno error has occurred
1 +/-29e-157 underflow
2 +/- 5.2el151 overflow
3 +/- 5.2e151 division by zero

If the value of flterr is zero, no error occurred, and the value
returned is the computed value of the operation. Otherwise, an error
has occurred, and the value returned is arbitrary. The table lists the
possible settings of flterr, and for each setting, the associated value
returned and the meaning,

When a floating point exception occurs, in addition to returning an
indicator in flterr, the floating point support routines will either log an
error message to the console or call a user-specified function. The
error message logged by the support routines define the type of error
that has occurred (overflow, underflow, or division by zero) and the
address, in hex, of the instruction in the user’s program which follows
the call to the support routines.

Following the error message or call to a user function, the floating
point support routines return to the user’s program which called the
support routines.

To determine whether to log an error message itself or to call a
user’s function, the support routines check the first pointer in Sysvec,
the global array of function pointers. If it contains zero (which it will,
unless the user’s program explicitly sets it), the support routines log a
message; otherwise, the support routines call the function pointed at by
this field.

A user’s function for handling floating point exceptions can be
written in C. The function can be of any type, since the support
routines don’t use the value returned by the user’s function. The
function has two parameters: the first, which is of type int, is a code
identifying the type of exception which has occurred. The value |
indicates underflow, 2 overflow, and 3 division by zero.

The second parameter passed to the user’s exception-handl@ng
routine is a pointer to the instruction in the user’s program which
follows the call instruction to the floating point support routines. One

-cc.18 -

Aztec C65 COMPILERS

way to use this parameter would be to declare it to be of type int. The
user’s routine could then convert it to a character string for printing in
an €rror message.

The example below demonstrates how floating point errors can be
trapped and reported. In main, a pointer in the Sysvec array is set to
the routine, usertrap. If a floating point exception occurs during the
execution of the program, this routine is called with the arguments
described above. The error handling routine prints the appropriate
error message, and returns to the floating point support routines.

#include <stdio.h>

main() {
Sysvec[FLT _FAULT] = usertrap;

usertrap(errcode,addr)
int errcode,addr;

char buff[4];

switch (errcode) {
case ’1”
printf("floating point underflow at %x\n",buff);
break;
case "2’
printf("floating point overflow at %x\n",buff);
break;
case ’3"
printf("division by zero at %x\n", buff);
break;
default:
printf("usertrap: invalid code %d \n", errcode);
break;
}

3.12 Register Variables

A cc-compiled program can have up to eight register variables. A
cci-compiled program can declare variables to be of type register, but
the compiler will ignore the declaration.

3.13 In-Line Assembly Language Code

Assembly language source can be included in a C program, by
surrounding the assembly language code with the preprocessor
directives #asm and #endasm.

When the compiler encounters a #asm statement, it copies lines
from the C source file to the assembly language file that it’s
generating, until it finds a #endasm statement. The #asm and
#endasm statements are not copied,

-¢cc.19 -

COMPILERS Aztec C65

While the compiler is copying assembly language source, it doesn’t
try to process or interpret the lines that it reads. In particular, it won’t
perform macro substitution.

A program that uses #asm ..#endasm must avoid the following
placing in-line assembly code immediately following an if block; that
1s, it should avoid the following code:

if (.)(
-

#asm
#endasm

The code gencrated by the compiler will test the condition and if false
branch to the statement following the #endasm instead of to the
beginning of the assembly language code. To have the compiler
generate code that will branch to the beginning of the assembly
language code, you must include a null statement between the end of
the if block and the asm statement:

if ()
}

k4

#asm
#endasm

3.14 Writing machine-independent code

The Aztec family of C compilers are almost entirely compatible.
The degree of compatibility of the Aztec C compilers with v7 C,
system 3 C, system 5 C, and XENIX C is also extremely high. There
are, however, some differences. The following paragraphs discuss
things you should be aware of when writing C programs that will run
in a variety of environments.

If you want to write C programs that will run on different
machines, don’t use bit fields or enumerated data types, and don’t pass
structures between functions. Some compilers support these features,
and some don’t.

3.14.1 Compatibility Between Aztec Products

Within releases, code can be easily moved from one
implementation of Aztec C to another. Where release numbers differ
(i.e. 1.06 and 2.0) code is upward compatible, but some changes may
be needed to move code down to a lower numbered release. The

- ¢c.20 -

Aztec C65 COMPILERS

downward compatibility problems can be eliminated by not using new
features of the higher numbered releases.

3.14.2 Sign Extension For Character Variables

If the declaration of a char variable doesn’t specify whether the
variable is signed or unsigned, the code generated for some machines
assumes that the variable is signed and others that it’s unsigned. For
example, none of the 8 bit implementations of Aztec C sign extend
characters used in arithmetic computations, whereas all 16 bit
implementations do sign extend characters. This incompatibility can be
corrected by declaring characters used in arithmetic computations as
unsigned, or by AND’ing characters used in arithmetic expressions
with 255 (0xff). For instance:

char a=129;

int b;

b = (a & 0xff) * 21;
3.14.3 The MPU... symbols

To simplify the task of writing programs that must have some
system dependent code, each of the Aztec C compilers defines a
symbol which identifies the machine on which the compiler-generated
code will run. These symbols, and their corresponding processors, are:

symbol processor
MPU68000 68000
MPU8086 8086/8088
MPU80186 80186/80286
MPU6502 6502
MPUB080 8080
MPUZ80 780
MPUINT Interpreter

Only one of these symbols will be defined for a particular compiler.

For example, the following program fragment contains several
machine-dependent blocks of code. When the program is compiled for
execution on a particular processor, just one of these blocks will be
compiled: the one containing code for that processor.

- ¢cc.21 -

COMPILERS Aztec C65

#ifdef MPU68000
/¥ 68000 code */

#else

#ifdef MPU8086
/* 8086 code */

#else

#ifdef MPUS080
/* 8080 code */

#endif

#endif

#endif

-¢c.22 -

Aztec C65 COMPILERS

4. Error checking

Compiler errors come in two varieties-- fatal and not fatal Fatal
errors cause the compiler to make a final statement and stop. Running
out of memory and finding no input are examples of fatal errors. Both
kinds of errors are described in the Errors chapter. The non-fatal sort
are introduced below.

The compiler will report any errors it finds in the source file. It
will first print out a line of code, followed by a line containing the
up-arrow (caret) character. The up-arrow in this line indicates where
the compiler was in the source line when it detected the error. The
compiler will then display a line containing the following:

* The name of the source file containing the line;

* The number of the line within the file;

* An error code;

* The symbol which caused the error, when appropriate.

The error codes are defined and described in the Errors chapter.

The compiler writes error messages to its standard output. Thus,
error messages normally go to the console, but they can be associated
with another device or file by redirecting standard output in the usual
manner. For example,

CC prog errors sent to the console
cc prog >outerr errors sent to the file outerr

The compiler normally pauses after every fifth error, and sends a
message to its standard output asking you want to continue. The
compiler will continue only if you enter a line beginning with the
character ’y’. If you don’t want the compiler to pause in this manner,
(if, for example, the compiler’s standard output has been redirected to
a file) specify the -B option when you start the compiler.

The compiler is not always able to give a precise description of an
error. Usually, it must proceed to the next item in the file to ascertain
that an error was encountered. Once an error is found, it is not
obvious how to interpret the subsequent code, since the compiler
cannot second-guess the programmer’s intentions. This may cause it to
flag perfectly good syntax as an error.

If errors arise at compile time, it is a general rule of thumb that the
very first error should be corrected first. This may clear up some of
the errors which follow.

The best way to attack an error is first to look up the meaning of
the error code in the back of this manual. Some hints are given there
as to what the problem might be. And you will find it easier to
understand the error and the message if you know why the compiler
produced that particular code. The error codes indicate what the
compiler was doing when the error was found.

- ¢c.23 -

COMPILERS Aztec C65

- cc.24 -

THE ASSEMBLERS

- as.1 -

ASSEMBLERS Aztec C65

Chapter Contents

TRE ASSCINDICTS ...eveceeereeees cerreeeesseeseesneesnsssssssssssessessarsnsoseessemsasssssssssssasassessaas as
1. Operating INStIUCLIONSc.ccveiieiereeren cereresereereeenseseeesnesseessssessssesssnses 3
1.1 The SOUICE FilE .ot et eeenaesessessesrneesessssssasssnsnnenas 3

1.2 The Object Code Fileoeiereceiereneneeseneeseseesesseseseessssessosesses 4

1.3 LASHINE FULE oot eereetree s e ese st ssessasessssssecrsnssessanssosessanes 4

1.4 Searching for imstxt FilEScoeiienneieevensrnnceeenresecrennencsessines 4

2. ASSEIDIET OPLIONS .oovervreieeririerines eeeeeieaeseressesessasesseseessssesesasesensesesseses 5

3. Programmer infOrmMationcceccerremiinnerecenessssnessonsssssessssssessssesnons 5

- as.2 -

Aztec C65 ASSEMBLERS

The Assemblers

as and asi are relocating assemblers that translate an assembly
language source program into relocatable object code. The two
assemblers support different machines: as accepts assembly language
for a 6502 or 65c02; asi accepts assembly language for a "pseudo
machine”.

In an executable program, an asi-assembled module must be
interpreted by a routine that is in the Aztec libraries.

An executable program can contain both modules that have been
assembled with as and modules that have been assembled with asi.

This description has three sections: the first describes how to
opcrate the assembler; the second describes the assembler’s options;
and the third presents information of interest to those writing
assembly language programs.

1. Operating Instructions

Operationally, the two assemblers are very similar. In the following
paragraphs, we will use the name as when referring to features that are
common to both assemblers. When the two assemblers differ, we will
say so.

as is started with a command line of the form
as [-options] prog.asm

where [-options] are optional parameters and prog.asm is the name of
the file to be assembled. as reads the source code from the specified

file, translates it into object code, and writes the object code to another
file.

1.1 The Source File

The extension on the source file name is optional. If not specified,
it’s assumed to be .asm. For example, with the following command,
the compiler will assume that the file name is fest.asrr

as test

as will append .asm to the source file name only if it doesn’t find a
period in the file name. So if the name of the source file really
doesn’t have an extension, you must compile it like this:

as filename.

The period tells the assembler not to append .asm to the name.

- as.3 -

ASSEMBLERS Aztec C65
1.2 The Object File

By default, the name of the file to which as writes object code is
derived from the name of the source code file, by changing its
extension to .o (or to .j, if asi is used). Also by default, the object code
file is placed in the directory that contains the source code file. For
example, the command

as test.asm

writes object code to the file test.o (or to testi, if asi is used), placing
this file in the current directory.

You can explicitly specify the name of the object code file, using
the -O option. The name of the object code file follows the -0, with
spaces between the -O and the file name. For example, the following
command assembles fest.asm, writing the object code to the file
prog.out.

as -0 prog.out test.asm
1.3 The Listing File

The -L option causes the assembler to create a file containing a
listing of the program being assembled. The file is placed in the
directory that contains the object file; its name is derived from that of
the object file by changing the extension to .Ist.

1.4 Searching for instxt files

The instxt directive tells as to suspend assembly of one file and
assemble another; when assembly of the second file is completed,
assembly of the first continues.

You can make the assembler search for instxt files in a sequence of
directories, thus allowing source files and instxt files to be in different
directories.

Directories that are to be searched are defined just as for the
compilers; that is, using the -I assembler option and the INCLUDE
environment variable. Optionally, the compiler can also search the
current directory.

Directory search for a particular instxt directive can be disabled by
specifying a directory name in the directive. In this case, just the
specified directory is searched.

1.4.1 The -I option

A -1 option defines a cingle directory to be searched. The directory
name follows the -I, with no intervening blanks. For example, the
following -I option tells the assembler to search the include directory
on the ram volume:

- as.4 -

Aztec C65 ASSEMBLERS

-I/ram/include
1.4.2 The INCLUDE environment variable.

The INCLUDE environment variable defines a directory to be
searched for instxt files. For example, the following command sets
INCLUDE so that the compiler will search for instxt files in the
directory /ram/include:

set INCLUDE=/ram/include

See the SHELL chapter for details on the setting of environment
variables.

1.4.3 The search order
Directories are searched in the following order:

1. If the instxt directive delimited the file name with the double
quote character, ", the current directory on the default drive
is searched. If delimited by angle brackets, < and >, this
directory isn’t automatically searched.

2. The directories defined in -I options are searched, in the
order listed on the command line.

3. The directory defined in the INCLUDE environment variable
is searched.

2. Assembler Options
The assembler supports the following options:

Option Meaning

-0 objname Send object code to objname.

-L Generate listing,

-C Disable assembly of 65C02 instructions. Not
supported by asi.

-ZAP Delete the source file after assembling it.

3. Programming Information

This section discusses the assembly language that is supported by as.
A description of the assembly language supported by asi is not
available.

as supports the standard MOS Technology syntax: a program
consists of sequence of statements, each of which is in the standard
MOS Tech form; and the assembler supports the MOS Tech
mnemonics for the standard instructions. as supports some of the
MOS Tech directives and their mnemonics; it also supports others, as
defined below.

The following paragraphs define in more detail the language
supported by as.

- as.5 -

ASSEMBLERS Aztec C65

3.1 Statement Syntax

[label] [opcode] [arguments] [[;]Jcomment]
where the brackets "[...]" indicate an optional element.
3.2 Labels

A statement’s label field defines a symbol to the assembler and
assigns it a value. If present, the symbol name begins in column one.
If a statement is not labeled, then column one must be a blank, tab, or
asterisk. An asterisk denotes a comment line.

Normally, the symbol in a label field is assigned as its value the
address at which the statement’s code will be placed. However, the equ
directive can be used to create a symbol and assign it some other
value, such as a constant,

A label can contain up to 32 characters. Its first character must be
an alphabetic character or one of the special characters °_* or °.’. Its
other characters can be alphabetic characters, digits, *_°, or °.. A label
followed by "#" is declared external '

The cc compiler places a’__* character at the end of all labels that it
generates.

3.3 Opcodes

The assembler supports the standard MOS Tech instruction
mnemonics for both the 6502 and 65C02 processors. The directives it
supports are defined below.

3.4 Arguments

A statement’s arguments can specify a register, a memory location,
or a constant.

A memory location can be referenced using any of the standard
6502 or 65C02 addressing modes, and using the standard MOS Tech
syntax.

A memory location reference or a constant can be an expression
containing any of the following operators:

multiply

divide

add

subtract

constant

constant

low byte of expression
high byte of expression

VAR# '+~ *

Expressions are evaluated from left to right with no precedence as
to operator or parentheses.

- as.6 -

Aztec C65 ASSEMBLERS

3.5 Constants

The default base for numeric constants is decimal. Other bases are
specified by the following prefixes or suffixes:

Base Prefix Suffix
2 % b,B
8 @ 0,0,0,Q
10 null,& null
16 $ h,H

A character constant consists of the character, preceded by a single
quote. For example: ’A.

3.6 Directives

The following paragraphs describe the directives that are supported
by the assembler.

END
end
The end directive defines the end of the source statements.
CSEG
cseg

The cseg directive selects a module’s code segment: information
generated by statements that follow a cseg directive is placed in
the module’s code segment, until another segment-selection
directive is encountered.

DSEG
dseg

The dseg directive selects a module’s data segment: information
generated by statements that follow a dseg directive is placed in
the module’s data segment, until another segment-selection
directive is encountered.

EQU
symbol equ <expr>

The equ directive creates a symbol named symbol (if it doesn’t
already exist), and assigns it the value of the expression expr.

PUBLIC
public <symbol>[<symbol>...]

The public directive identifies the specified symbols as having
external scope. If a specified symbol was created within the
module that’s being assembled (by being defined in a statement’s
label field), this directive allows it to be accessed by other

- as.7 -

ASSEMBLERS Aztec C65

modules. If a symbol was not created within the module that’s
being assembled, this directive tells the assembler that the symbol
was created and made public in another module.

bss <symname>,<size>

The bss directive creates a symbol named symnam and reserves
size bytes of space for it in the uninitialized data segment. The
symbol cannot be accessed by other modules.

GLOBAL

global <symnam>,<size>

The global directive creates a symbol named symmnam that other
modules can access using the global and public directives.

If other modules create symnam using just the global directives,
then symnam will be located in a program’s uninitialized data
area. In this case, the amount of space reserved in this area for
symnam will equal the largest value specified by the size fields in
the global statements that define symmnam.

If other modules define symnam in a public statement, but none
of them create symnam (by specifying it in a label field), then
symnam will still be located in the uninitialized data segment and
space will be reserved for it as defined above.

If one module both defines synmmam using a public statement and
creates the symbol by specifying it in a label field, then symnam
will be located in the program’s code or data segment and no
space will be reserved for it in the uninitialized data segment.

ENTRY

FCB

entry <symnmam>

The entry directive defines the symbol symmam as being a
program’s entry point.

When a program is linked, the linker normally places a jump
instruction at the program’s base address. If the linker found a
module containing an entry directive, it sets the target of the
jump to the location that was specified in the last entry directive
that it found; otherwise, it sets the target to the beginning of the
program’s code segment.

[label] feb <value>[,<value>, <value> ...]

Each value in an fcb directive causes one or more bytes of
memory to be allocated and then initialized to the specified
value. The memory is allocated in the currently active segment

- as.8 -

Aztec C65 ASSEMBLERS

(code or data, as defined by the last segment-selection directive).
FDB

[label] fdb <value>[<value>, <value> ...}

The fdb directive is like fcb, except that each value causes a two-
byte field of memory to be allocated and initialized.

FCC
[label] fec "string”

The fec directive allocates a field that has the same number of
characters as are in string, and places string in it. The field is
placed in the currently-active segment.

RMB
[label] rmb <expr>

The rmb directive reserves a field containing expr bytes in the
currently-active segment. The contents of the field are not
defined.

INSTXT

instxt <file>
instxt "file”
instxt / file/

The instxt directive causes the assembler to suspend assembly of
the current source file and to assemble the source that's in file.
When done, the assembler will continue assembling the original
file.

The assembler can search for a file in several directories. If file
is surrounded by quotes or by slashes, the assembler will begin
the search at the current directory; it will then search directories
specified in the -I option and the INCLUDE environment
variable. If file is surrounded by <>, the assembler will search
just the -I and INCLUDE directories.

- as.9 -

ASSEMBLERS Aztec C65

- as.10 -

THE LINKER

-In.1 -

LINKER Aztec C65

Chapter Contents

TRE LADKET ..eveeeeeeetetiens cterieer et e ceeaseees e ess e sessees s ensns st eas s esnsessesas In
1. Introduction t0 HNKINEGcocoeieeeccien e senssse e eneerneseonns 3
2. USING the LINKET ..ot ettt erconereeseresesnessessasensaseneen 7
3. LANKET OPLONS .oovverieiciceieienreetertrr s s seesteecessssessesassessessassorsssssesessesses 9

-1In.2 -

Aztec C65 LINKER

The Linker

The in linker has two functions:

* It ties together the pieces of a program which have been
compiled and assembled separately;

* It converts the linked pieces to a format which can be loaded
and executed.

The pieces must have been created by the Manx assembler.

The first section of this chapter presents a brief introduction to
linking and what the linker does. If you have had previous experience
with linkage editors, you may wish to continue reading with the
second section, entitled "Using the Linker." There you will find a
concise description of the command format for the linker.

1. Introduction to linking
Relocatable Object Files

The object code produced by the assembler is "relocatable” because
it can be loaded anywhere in memory. One task of the linker is to
assign specific addresses to the parts of the program. This tells the
operating system where to load the program when it is run.

Linking hello.o

It is very unusual for a C program to consist of a single, self-
contained module. Let’s consider a simple program which prints "hello,
world" using the function, printf. The terminology here is precise;
printf is a function and not an intrinsic feature of the language. It is a
function which you might have written, but it already happens to be
provided in the file, c.iib. This file is a library of all the standard i/o
functions. It also contains many support routines which are called in
the code generated by the compiler. These routines aid in integer
arithmetic, operating system support, etc.

When the linker sees that a call to printf was made, it pulls the
function from the library and combines it with the "hello, world"
program. The link command would look like this;

In hello.o c.lib

When hello.c was compiled, calls were made to some invisible support
functions in the library. So linking without the standard library will
cause some unfamiliar symbols to be undefined.

-In.3 -

LINKER Aztec C65

All programs will need to be linked with one of the versions of
c.lib. Initially, you can use c.iib itself. Later on, if you find that c.lib
doesn’t suit your requirements, you can use one of the other versions.
For more details, see the Libraries section of the Technical
Information chapter.

The Linking Process

Since the standard library contains only a limited number of
general purpose functions, all but the most trivial programs are certain
to call user-defined functions. It is up to the linker to connect a
function call with the definition of the function somewhere in the
code.

In the example given below, the linker will find two function calls
in file 1. The reference to funcl is "resolved" when the definition of
funcl is found in the same file. The following command

In filel.o c.lib

will cause an error indicating that func2 is an undefined symbol. The
reason is that the definition of func2 is in another file, namely file2.0.
The linkage has to include this file in order to be successful:

In filel.o file2.0 c.lib

file 1 file 2
main() func2()
{

funcl(); return;
func2(); }

}

funcl()

{
return;

}

Libraries

A library is a collection of object files put together by a librarian.
Libraries intended for use with /n must be built with the Manx
librarian, /b. This utility is described in the Utility Programs chapter.

All the object files specified to the linker will be "pulled into" the
linkage; they are automatically included in the final executable file.
However, when a library is encountered, it is searched. Only those
modules in the library which satisfy a previous function call are pulled
in,

For Example

Consider the "hello, world" example. Having looked at the module,
hello.o, the linker has built a list of undefined symbols. This list

-Indg -

Aztec C65 LINKER

includes all the global symbols that have been referenced but not
defined. Global variables and all function names are considered to be
global symbols.

The list of undefined’s for hello.o includes the symbol printf. When
the linker reaches the standard library, this is one of the symbols it
will be looking for. It will discover that printf is defined in a library
module whose name also happens to be printf. (There is not any
necessary relation between the name of a library module and the
functions defined within it.)

The linker pulls in the printf module in order to resolve the
reference to the printf function.

Files are examined in the order in which they are specified on the
command line. So the following linkages are equivalent:

In hello.o
In c.lib hello.o

Since no symbols are undefined when the linker searches c./ib in the
second line, no modules are pulled in. It is good practice to leave all
libraries at the end of the command line, with the standard library last
of all.

The Order of Library Modules

For the same reason, the order of the modules within a library is
significant. The linker searches a library once, from beginning to end.
If a module is pulled in at any point, and that module introduces a new
undefined symbol, then that symbol is added to the running list of
undefined’s. The linker will not search the library twice to resolve any
references which remain unresolved. A common error lies in the
following situation:

module of program re ferences (function calls)
main.o getinput, do__calc
input.o gets

calc.o put__value

output.o printf

Suppose we build a library to hold the last three modules of this
program. Then our link step will look like this:

In main.o proglib.lib c.lib

But it is important that proglib.lib is built in the right order. Let’s
assume that main() calls two functions, getinput() and do_ calc().
getinput() is defined in the module input.o. It in turn calls the standard
library function gets(). do__cale() is in calc.o and calls put _value().
put__value(') is in output.o and calls printf().

-In.5 -

LINKER Aztec C65

What happens at link time if proglib.lib is built as follows?

proglib.lib: input.o
output.o
calc.o

After main.o, the linker has getinput and do__calc undefined (as well as
some other support functions in c.lib). Then it begins the search of
proglib.lib. 1t looks at the library module, input, first. Since that module
defines getinput, that symbol is taken off the list of undefined’s. But
gets is added to it.

The symbols do__calc and gets are undefined when the linker
examines the module, output. Since neither of these symbols are
defined there, that module is ignored. In the next module, cale, the

reference to do__calc is resolved but put value is a new undefined
symbol.

The linker still has gets and put _value undefined. It then moves on
to clib, where gets is resolved. But the call to put value is never
satisfied. The error from the linker will look like this:

Undefined symbol: put__value

This means that the module defining put _value was not pulled into the
linkage. The reason, as we saw, was that put_value was not an
undefined symbol when the output module was passed over. This
problem would not occur with the library built this way:

proglib.lib: input.o
calc.o
output.o

The standard libraries were put together with much care so that this
kind of problem would not arise.

Occasionally it becomes difficult or impossible to build a library so
that all references are resolved. In the example, the problem could be
solved with the following command:

In main.o proglib.lib proglib.lib c.lib

The second time through proglib.lib, the linker will pull in the
module output. The reason this is not the most satisfactory solution is
that the linker has to search the library twice; this will lengthen the
time needed to link.

-In.6 -

Aztec C65 LINKER

2. Using the Linker
The general form of a linkage is as follows:
In [-options] filel.o [file2.0 ...] [libL.lib ...]

The linker combines object modules produced by the as and/or asi
assemblers into an executable program. It can search libraries of object
modules for functions needed to complete the linkage; including just
the needed modules in the executable program. The linker makes just
a single pass through a library, so that only forward references within a
library will be resolved.

Types of Programs
The linker can create programs having the following types:

* PRG programs, which can only be executed in the SHELL
environment;

* BIN programs, which can be executed in either the SHELL or
the Basic Interpreter environments;

* SYS programs, which are ProDOS system programs.

By default, the linker creates a PRG program. The +B option
makes it create a BIN program, and the +S option makes it create a
SYS program. When creating a BIN or SYS program, you will also
have to include the startup routine samain.o in the program.

For a complete discussion of the different types of programs, see
the Command Programs section of the Technical Information chapter.

The executable file

The name of the executable output file can be selected using the -O
linker option. If this option isn’t used, the linker will derive the name
of the output file from that of the first object file listed on the
command line, by deleting its extension. In the default case, the
executable file will be located in the directory in which the first object
file is located. For example,

In prog.o c.lib

will produce the file prog. The standard library, c.lib, will have to be
included in most linkages.

A different output file can be specified with the -O option, as in
the following command:

In -0 program modl.o mod2.0 c.lib

This command also shows how several individual modules can be
linked together. A "module", in this sense, is a section of a program
containing a limited number of functions, usually related. These
modules are compiled and assembled separately and linked together to
produce an executable file.

-In.7 -

LINKER Aztec C65
Libraries

Several libraries of object modules are provided with Aztec C65.
The most frequently-used of these are c.lib, which contains 6502
versions of the non-floating point functions, and m.lib, which contains
6502 versions of the floating point functions. Other libraries are

provided with some versions of Aztec C65; for their description, see
the Libraries section of the Technical Information chapter.

All programs must be linked with one of the versions of c.lib. In
addition to containing 6502 versions of all the non-floating point
functions described in the Functions chapter, it contains internal
functions which are called by compiler-generated code, such as
functions to perform long arithmetic.

Programs that perform floating point operations must be linked
with one of the versions of m.lib, in addition to a version of c.lib. The
floating point library must be specified on the linker command line
before c.lib.

Libraries of user modules can also be searched by the linker. These
are created with the Manx /b program, and must be listed on the linker
command line before the Manx libraries.

For example, the following links the module program.o, searching
the libraries mylib.lib, new.lib, m.lib, and c.lib for needed modules:

In program.o mylib.lib new.lib m.1lib c.lib

Each of the libraries will be searched once in the order in which
they appear on the command line.

Libraries can be conveniently specified using the -L option. For
example, the following command is equivalent to the following:

In -0 program.o -lmylib -lnew -Im -I¢

For more information, see the description of the -L option in the
Options section of this chapter.

-In.8 -

Aztec C65

LINKER

3. Linker Options
3.1 Summary of options
General Purpose Options

311

-0 file
-Lname
-F file

Write executable code to the file named file.
Search the library name.lib for needed modules.
Read command arguments from file.

Generate a symbol table file.

Don’t issue warning messages.

Don’t abort if there are undefined symbols.

Be verbose.

3.1.2 Options for Segment Address Specification

3.13

3.14

-B addr Set the program’s base address to the hex value addr.

-C addr Set the starting address of the program’s code segment
to the hex value addr.

-D addr Set the starting address of the program’s data segment
to the hex value addr.

-U addr Set the starting offset of the program’s uninitialized
data segment to the hex value adar.

Options for Overlay Usage

-R Create a symbol table to be used when linking
overlays.

+C size Reserve size bytes at end of the program’s code
segment (the overlay’s code segment is loaded here).
size 1s a hex value.

+D size Reserve size bytes at end of the program’s initialized
and uninitialized data segments (the overlay’s data is
loaded here). size is a hex value.

Special Options for ProDOS

+B Create a BIN program.

+S Create a SYS program.

+H startend Define a hole in the program, whose beginning and

ending addresses are the hex values start and end.

-In9 -

LINKER Aztec C65

3.2 Detailed description of the options
3.2.1 General Purpose Options:
The -O option

The -O option can be used to specify the name of the file to which
the linker is to write the executable program. The name of this file is
in the parameter that follows the -O. For example, the following
command writes the executable program to the file progout:

In -0 progout prog.o c.lib

If this option isn’t used, the linker derives the name of the
executable file from that of the first input file, by deleting its
extension. .

The -L option

The -L option provides a convenient means of specifying to the
linker a library that it should search, when the extension of the library
is .Iib.

The name of the library is derived by concatenating the value of
the environment variable CLIB, the letters that immediately follow the
-L option, and the string ./ib. For example, with the libraries subs.lib,
io.lib, m.lib, and c.lib in a directory specified by CLIB, you can link the
module prog.o, and have the linker search the libraries for needed
modules by entering

In prog.o -Isubs -lio -Im -lc

CLIB is set using the SHELL’s set command. For example, the
following command defines CLIB when the libraries are in the
directory /In/libs:

set CLIB=/In/libs/

Note the terminating slash on the CLIB variable: this is required
since the linker simply prepends the value of the CLIB variable to the
-L string,

The -F option

-F file causes the linker to merge the contents of the given file with
the command line arguments. For example, the following command
causes the linker to create an executable program in the file myprog.
The linker includes the modules myprog.o, modl.o, and mod2.0 in the
program, and searches the libraries mylib.lib and c.lib for needed
modules,

In myprog.o -f argfil c.lib
where the file argfil, contains the following:

- In.10 -

Aztec C65 LINKER

modl.o mod2.0
mylib.lib

The linker arguments in argfile can be separated by tabs, spaces, or
newlines.

There are several uses for the -F option. The most obvious is to
supply the names of modules that are frequently linked together. Since
all the modules named are automatically pulled into the linkage, the
linker does not spend any time in searching, as with a library.
Furthermore, any linker option except -F can be given in a -F file. -F
can appear on the command line more than once, and in any order.
The arguments are processed in the order in which they are read, as
always,

The -T option

The -T option creates a disk file which contains a symbol table for
the linkage. This file is just a text file which lists each symbol with a
hexadecimal address. This address is either the entry point for a
function or the location in memory of a data item. A perusal of this
file will indicate which functions were actually included in the
program.

The symbol table file will have the same name as that of the file
containing the executable program, with extension changed to .sym.

There are several special symbols which will appear in the table.
They are defined in the Memory Organization section of the Technical
Information chapter.

The -M option

The linker issues the message "multiply defined symbol" when it
finds a symbol that is defined with the assembly language directives
global or public in more than one module. The -M option causes the
linker to suppress this message unless the symbol is defined in more
than one public directive.

To maintain compatibility with previous versions of Aztec C, the
linker will generate code for a variable that is defined in multiple
global statements and in at most one public statement, and also issue the
"multiply defined symbol" message. Thus, if you use the global and
public directives in this way, and don’t want to get this message, use
the -M option to suppress them.

The definition of a symbol in more than one public directive is
never valid, so the -M option doesn’t suppress messages in this case.

For more information, see the discussion on global symbols in the
Programmer Information sections of the Compiler and Assembler
chapters.

-In.11 -

LINKER Aztec C65

The -N option

Normally, the linker halts without generating an executable
program if there are undefined symbols; The -N option causes the
linker to go ahead and generate an executable program anyway.

The -V option

The -V option causes the linker to send a progress report of the
linkage to the screen as each input file is processed. This is useful in
tracking down undefined symbols and other errors which may occur
while linking.

3.2.2 Options for segment address specification

The linker organizes a program into three segments: code,
initialized data, and uninitialized data areas. You can define the
starting address of these segments using the -C, -D, and -U linker
options, respectively. A fourth linker option, -B, will set the "base
address" of the program. These options are followed by the desired
offset, in hex.

By default, the base address of a PRG or BIN program is 0x800,
while the base address of a SYS program is 0x2000. Also by default, a
program’s code segment starts three bytes after the base address, its
initialized data segment follows the code, and its uninitialized data
follows the initialized data.

A file created by the linker contains a memory image of the
program, from its base address through the end of its code or
initialized data segments (whichever is higher). This image is loaded
into memory, with the first byte in the file loaded at the program’s
base address.

By default, a program is expected to begin execution at its base
address. Most programs have a startup routine, which performs
initialization activities and then calls the program’s main function.
This entry point to the startup routine is usually somewhere in the
middle of the program, so at the base address the linker will normally
set a jump instruction to the entry point.

You can explicitly specify that a label in a module is an entry point
by placing the label in the operand field of the module’s assembly
language entry directive. For example, the crt0 module in c.lib contains
the function .begin. This label is declared in a public directive and also
in the module’s entry directive. When a C module is compiled, the
compiler always generates a reference to .begin; thus, when the
program is linked, in will include the crt0 module from c.lib and place a
jump to .begin at the program’s base address.

If the linker doesn’t find a startup routine when it links a program,
it won’t set the jump instruction at the program’s base address. In this
case, if you don’t specify a starting offset for the program’s code

-In.12 -

Aztec C65 LINKER

segment, it will begin right at the base address.

For example, the following command sets the base address of prog
to 0x4000:

In -b 4000 -0 prog prog.o -Ic

Because none of the other segment selection options were used in this
example, the program’s code will begin at offset 0x4003, followed by
its initialized data, followed by its uninitialized data.

In the next example, the program’s base address is set to 0x900 the
offset of its code, initialized data, and uninitialized data segments to
0x2000, 0x2800, and 0x3000, respectively:

In -b 900 -c 2000 -d 2800 -u 3000 prog.o -Ic
3.2.3 Options for Overlay Usage

The -R option causes the linker to generate a file containing the
symbol table. It’s used when linking a program which calls overlays.

The name of the symbol table file is derived from that of the
executable file by changing the extension to .rsm. The file is placed in
the same directory as the executable file.

The linker reserves space in a program between its uninitialized
data area and its heap, into which the program’s overlays will be
loaded. The amount of space equals the sum of the values that you
define using the +C and +D options. For example,

In +c 3000 +d 1000 prog.o -Ic

will reserve 0x4000 bytes for overlays. See the Overlay section of the
Technical Information chapter for more details.

3.2.4 Special Options for ProDOS
The +B Option

The +B option causes the linker to set the type of a file containing
a created program to BIN.

The +S Option

The +§ option causes the linker to set the type of a file containing
a created program to SYS and to set the default base address for the
program to 0x2000.

The +H Option

The +H option defines a "hole"; that is,an area of memory into
which the linker should not place a program’s code or data. You can
create at most four holes in a program using +H options.

The option has the following form:

-In.13 -

LINKER Aztec C65

+h start,end

where start and end are the addresses, in hex, of the hole’s starting and
ending addresses.

For example, suppose you want to create a program, line, that uses
the primary graphics page (between addresses 0x2000-0x4000) and that
begins at address 0x800. The following command will link the
program:

In +h 2000,4000 line.o -Ic

The linker will place as much of the program’s code and data as
possible in the area between 0x800-0x2000, and place any additional
code and data in the area above 0x4000.

The linker creates a program’s code segment by concatenating
module code segments, until and unless a module’s code overlaps a
reserved area. If this occurs, the linker moves the module’s entire
code segment above the reserved area, in the first non-reserved area in
which it will entirely fit, and then continues the concatenation of
module code segments.

The linker creates a program’s initialized data segment in the same
way: it concatenates module initialized data segments as much as
possible, without overlapping a reserved area and without breaking a
module’s initialized data segment into discontiguous pieces.

Because the linker won’t break up a module’s code segment or data

segment, it’s likely that some space below a hole will be left unused by
the linker.

-In.14 -

UTILITY PROGRAMS

- util.1 -

UTILITIES Aztec C65

Chapter Contents

ULIIEY PIOBIAINS ..oceeeeeieceievenieenes coereeseesssessassassessscsssensessesnessasarans sesesssssnssnses util
ATCV ceteiirreeinneecnnreseasstessase sesseessssesssaasssssessssssssssssssssessssssssssssssssssosssnssesssssessnrssnn 4
DY ottt et e st b r e ae s e a e b et sr R ere b sne st ensnssnate s s 5
CAL crveeiereeereerinriestrassnessesessresns sessnessssnasssessssessssssssssssesssesssssas sonssssnensssssnsntessnesane 6
C cericrtrrerrerestesssts e araesss shesessnsasesrsssesas st e bsat st a bt st arese st st sesseseatesasetanns 7
CINID cvveererrueerereresssesseesenssesseesns sesssesssnasessssessesnsasssssssnessesssenssensssssssesossssnsosmesnee 9
CIIITL L.uceeiiieeeeseeeeeeesaessenssensssees sossassssssaessssesssassssesnsonssossessesossessssassasensssssnnsane 10
COMEIG ceoererrrrcerereereesasie s tre st etsssstssssasssessssssssessssesssassssassasassassatarsessrasasen 14
CD teceerrrrnrernnesseensissssesssesessesssrsnsnsssassssesassasossasssssnnssnssssessntesessonstsssasenssessnnsens 27
CIC aoiieveeerreeressessseesssesnnesrenss sessssssssssesssasssssossesssssssnsons sossassssasssoossesssnsane 28
FALE ceeereeeeeeciectireneseeeeneeins cesretesasssesssesssmesssosssssasasessasasensssenssasnesasasssesnsars 29
AEDUE oot cttenes st iseessessessesssssessssesasssssmsesassarsensessensasseseesasasens 30
AE et reres caevensaesassesstsae s stststasseeneas e sasne e ssaseseseneasntanns 31
QEEE et eris cmebssestsasstesassasss st sseststonsasseseesesaresensnsnsnasasnn 32
ECRO ccecectcteeieeeertsrertenane sessetssiosesssstsrossene esesaensen e enesteneesssesasneseansaen 36
BICD coeeerrecreesrecrsestrenersersnsssssases sessassnessasssessasssesnessessesssnsnsssessasssssssons . 37
R et creneresrtensarereaere et sesssetstonsssseatens st ene s seanesesennnnat 43
LD e e asae s e ss s e ers e sn s s see s sa s sas s sasS e RS e s e sbmanane 44
JOCK et eietreeeteesnernsnerirens csvssssesseseerosessenssssnssssssnsssarensonsrssntssonassenassasses 55
IS et et s s casrsebesebteteasaessasaaRe et et sa e s onsessen e seenananen 56
INKATCV ..o.oiitirererivnsienieresessessessossessssessessossssessasensssssssnsesmsssssossossssensensnsnsessnen 4
IOKAIT oottt st eaes cenesereresesssasess sesesesessatsussssseses sesesssasnssseenent 59
ITIV coeereeereeereeesnensessersnensrnsenans suesssassessssessssssnsssssssnesnessesstessanssrassesssosssssassnesss 60
OB et resnets eeeeannt s ere st essas s senerentesasebeseshans s st se st sbssesen 61
OFA o eectrteeeeecreestrscns sersssessssess e s sesssssssssessessesssesssnssssssessssssssnssneessens 62
T ceeereecrersensseessessesssesssssansners suvessreseesnssssssnsessesssesassnesneestensssssossanssssssessansranane 63
DWA corteeeesrecniesessessirsnesesses sesessvsssessessesssssossessssmsessssssnseosesssensonsssessonsssnens 64
TIIL coeeeerreerceeseesterassseessessnesssessssessrorsrssssssssassesssesseresssesssssrosssessesssesseessasasasssoass 65
SEL ceeieeeiretieirsteeernrererarress srsteressrnressssaseesssnnsssssesesasesnssasasseessssaesssanasassrssessnne 66
SR .eoeiieieieieieenicentetes eteaessestesseressss e s ssnassasessseseasossersssantsssasesensesnsssns 67
SQZ weeereeerrerreesreesersssssnsseessassss sesssssssssesssssssesssessensenssssessssssesssssssrssessessesssssssesns 68
BEY triteerereerreersrsenssessnessessenses sessnsssnssnressesstesnesseesnessassesssennssaseseassseseressesnssnsenees 69
UDLOCK .eveeveieciseircenreerecneers sreeiesssessessessenssssssssessestssssassessaressessasssssssenss 55
VA ceeeeertecieeticnestississeesssias sobessssssessseessasssessassessasssestssssesssosssssaessesssesssanses 70

- util.2 -

Aztec C65 UTILITIES

Utility Programs

This chapter describes commands whose code is built into the
SHELL and utility programs that are provided with this package.

- util.3 -

ARCY Program commands ARCY

NAME

arcv & mkarcv - source dearchiver & archiver
SYNOPSIS

arcv arcfile

mkarcv arcfile
DESCRIPTION

arcy extracts the source from the archive arcfile, which has been
previously created by mikarcy, placing the results in separate files in the
current directory.

mkarcv creates the archive file arcfile, placing in it the files whose
names it reads from its standard input. Only one file name is read
from a standard input line.

EXAMPLES

For example, the file header.arc contains the source for all the
header files. To create these header files, enter:

arcv header.arc
The files will be created in the current directory.

The following command creates the archive myarc.arc containing
the files in.c, out.c, and hello.c

mkarcv myarc.arc <myarc.bld
The names of the three files are contained in the file myarc.bid:
in.c
out.c
hello.c

- util.4 -

BYE Builtin Command BYE

NAME

bye - exit to monitor
SYNOPSIS

bye
DESCRIPTION

bye transfers control of the processor to the Apple monitor program
that’s in ROM, by jumping to location $FF65. To return to the
SHELL from the monitor, enter the command

3D0G

On machines having the autorestart ROM, you can also reenter the
SHELL by hitting the reset key.

- util.5 -

CAT Builtin command CAT

NAME

cat - catenate and print
SYNOPS{S

cat [file] [file] ...
DESCRIPTION

cat reads each file in sequence and writes it to its standard output
device. If no files are specified, cat reads from its standard input
device.

Each argument can specify a complete or partial file name, in the
normal manner.

By default, cafs standard input and output devices are assigned to
the console. Either or both can also be redirected to another device or
file, if desired, in the normal fashion.

The code for cat is built into the SHELL.
EXAMPLES
cat hello.c
Writes hello.c to the screen.
cat hello.c input.c >cat.out

Writes data: /hello.c and input.c, in that order, to cat.out.
cat

Copies typed characters to the screen.
cat >../newfile

Copies typed characters to .. /newfile.
cat </stdio/printf.c >tmp.c

Equivalent to cat /stdio/ printf.c >tmp.c.
SEE ALSO

<p

- util.6 -

CDh Builtin command CD

NAME

c¢d - change current directory
SYNOPSIS

cd [directory]
DESCRIPTION

cd makes directory the current directory. If directory isn’t specified,
the current directory is set to the directory that’s defined in the
HOME environment variable, if this variable exists.

If the specified directory doesn’t exist, the current directory is
unchanged.

‘The directory argument defines the path of directories which must
be passed through to reach the new current directory. The path can
define a complete path from the root directory or it can define a
partial path, which is assumed to begin at the current directory.

The code for c¢d is contained in the SHELL.
EXAMPLES
cd /work/io

The directory /work/io is made the current directory.
cd subs/io

The directory jo, which is reached from the current
directory by passing through the subdirectory subs of the
current directory and then into ie, is made the current
directory. For example, if /work was the current directory,
then after this command /work /subs/io is the new current
directory.

cd..

The current directory is set to the parent directory of the
directory which was current before the issuance of this
command.

cd ../include
The current directory is set to the directory which is
reached by passing through the parent directory of the

directory which was current before the issuance of this
command and then to its include subdirectory.

cd../..

The current directory is set to the directory which is
reached by passing through the parent directory of the
directory which was current before the issuance of this

- util.7 -

(6))

Builtin command

command and then to its parent directory.

- util.8 -

CD

CMP Utility program CMP

NAME

cmp - File comparison utility
SYNOPSIS

cmp [-1] filel file2
DESCRIPTION

cmp compares two files on a character-by-character basis. When it
finds a difference, it displays a message, giving the offset from the
beginning of the file.

If the -/ option isn’t specified, the program will stop after the first
difference, displaying a message in the format:

Files differ: character 10

If the -/ option is specified, cmp will list all differences, in the
format:

decimal-offset hex-offset filel-valuefile2-value
EXAMPLES

cmp otst ntst

Files differ: character 10
and

cmp -l otst ntst

10 a: 0045
100 64: 1a23

- util.9 -

CNM Aztec Utility Program CNM

NAME

cnm - display object file info
SYNOPSIS

cnm [-sol] file [file ...]
DESCRIPTION

cnm displays the size and symbols of its object file arguments. The
files can be object modules created by the as or asi assemblers,
libraries of object modules created by the /b librarian, and ’rsm’ files
created by the In linker during the linking of an overlay root.

For example, the following displays the size and symbols for the
object module subl.o, the library c.lib, and the rsm file root.rsm:

cnm subl.o c.lib root.rsm

By default, the information is sent to the console. It can be
redirected to a file or device in the normal way. For example, the
following commands send information about subl.o to the display and
to the file dispfile:

cnm subl.o
cnm subl.o > dispfile

The first line listed by cnm for an object module has the following
format

file (module): code: cc data: dd udata: uu total: tt (Oxhh)
where

* file is the name of the file containing the module,

* module is the name of the module; if the module is unnamed,
this field and its surrounding parentheses aren’t printed;

* ¢c is the number of bytes in the module’s code segment, in
decimal;

* dd is the number of bytes in the module’s initialized data
segment, in decimal;

* uu is the number of bytes in the module’s uninitialized data
segment, in decimal;

* ¢t is the total number of bytes in the module’s three segments,
in decimal;

* hh is the total number of bytes in the module’s three
segments, in hexadecimal

If cnm aisplays information about more than one module, it
displays four totals just before it finishes, listing the sum of the sizes
of the modules’ code segments, initialized data segments, and
uninitialized data segments, and the sum of the sizes of all segments of
all modules. Each sum is in decimal; the total of all segments is also
given in hexadecimal

- util.10 -

CNM Aztec Utility Program CNM

The -s option tells cnm to display just the sizes of the object
modules. If this option isn’t specified, cnm also displays information
about each named symbol in the object modules.

When cnm displays information about the modules’ named symbols,
the -/ option tells cnm to display each symbol's information on a
separate line and to display all of the characters in a symbol’s name; if
this option isn’t used, cnm displays the information about several
symbols on a line and only displays the first eight characters of a
symbol’s name.

The -0 option tells cnm to prefix each line generated for an object
module with the name of the file containing the module and the
module name in parentheses (if the module is named). If this option
isn’t specified, this information is listed just once for each module:
prefixed to the first line generated for the module.

The -0 option is useful when using cnm in combination with grep.
For example, the following commands will display all information
about the module perror in the library c.lib:

cnm -0 c.lib >tmp
grep perror tmp

cnm displays information about an module’s *named’ symbols; that
is, about the symbols that begin with something other than a dollar
sign followed by a digit. For example, the symbol guad is named, so
information about it would be displayed; the symbol .0123 is unnamed,
so information about it would not be displayed.

For each named symbol in a module, cnm displays its name, a two-
character code specifying its type, and an associated value. The value
displayed depends on the type of the symbol.

If the first character of a symbol’s type code is lower case, the
symbol can only be accessed by the module; that is, it’s local to the
module. If this character is upper case, the symbol is global to the
module: either the module has defined the symbol and is allowing
other modules to access it or the module needs to access the symbol,
which must be defined as a global or public symbol in another module.
The type codes are:

ab The symbol was defined using the assembler’s
EQUATE directive. The value listed is the equated
value of its symbol.

The compiler doesn’t generate symbols of this type.

g The symbol is in the code segment. The value is the
offset of the symbol within the code segment.

The compiler generates this type symbol for function
names. Static functions are local to the function, and

- util.11 -

CNM

dt

ov

un

bs

Aztec Utility Program CNM

so have type pg; all other functions are global, that is,
callable from other programs, and hence have type Pg.

The symbol is in the initialized data segment. The
value is the offset of the symbol from the start of the
data segment.

The compiler generates symbols of this type for
initialized variables which are declared outside any
function. Static variables are local to the program and
so have type dt; all other variables are global, that is,
accessable from other programs, and hence have type
Dt

When an overlay is being linked and that overlay itself
calls another overlay, this type of symbol can appear
in the rsm file for the overlay that is being linked. It
indicates that the symbol is defined in the program
that is going to call the overlay that is being linked.

The value is the offset of the symbol from the
beginning of the physical segment that contains it.

The symbol is used but not defined within the
program. The value has no meaning.

In assembly language terms, a type of Un (the U is
capitalized) indicates that the symbol is the operand of
a public directive and that it is perhaps referenced in
the operand field of some statements, but that the
fQrogram didn’t create the symbol in a statement’s label
ield.

The compiler generates Un symbols for functions that
are called but not defined within the program, for
variables that are declared to be extern and that are
actually used within the program, and for
uninitialized, global dimensionless arrays. Variables
which are declared to be extern but which are not used
within the program aren’t mentioned in the assembly
language source file generated by the compiler and
hence don’t appear in the object file.

The symbol is in the uninitalized data segment. The
value is the space reserved for the symbol.

The compiler generates bs symbols for static,
uninitialized variables which are declared outside all
functions and which aren’t dimensionless arrays.

The assembler generates bs symbols for symbols
defined using the bss assembler directive.

- util.12 -

CNM

Gl

Aztec Utility Program CNM

The symbol is in the uninitialized data segment. The
value is the space reserved for the symbol.

The compiler generates G/ symbols for non-static,
uninitialized variables which are declared outside all
functions and which aren’t dimensionless arrays.

The assembler generates GI symbols for variables
declared using the global directive which have a non-
zero size.,

- util.13 -

CONFIG CONFIG

NAME

config - Define device attributes
SYNOPSIS

config [file]
DESCRIPTION

config defines device attributes to a program that was created using
Aztec C. It does this by modifying, as directed by you, the table that
defines these attributes.

This description of config first describes the device table, then how
to use config, and finally gives some examples of config usage.

1. The Device Table

The device table used by the SHELL and by programs of type PRG
(ie, programs that can only be run in the SHELL environment, because
they have been linked with the shmain module instead of the samain
module), resides in the SHELL’s memory-resident environment area.
This area, which contains information that the SHELL needs to
maintain between program executions, is loaded from the file that
contains the SHELL. It is loaded only when necessary: when the
SHELL is first loaded and when the SHELL detects that its
environment area has been corrupted PRG programs and BIN
programs created wusing Aztec C won’t corrupt the SHELL’s
environment area unless they go out of their way to do so, and the
SHELL tries to keep programs that were created without using Aztec C
from corrupting this area by setting the HIMEM field to the base of
this area. So when you’re doing standard development activities under
the SHELL, the SHELL’s memory-resident environment area (and
hence the SHELL’s memory-resident device table) is normally only
loaded once: when the SHELL is first loaded.

A program created using Aztec C that either runs under ProDOS
and is of type BIN and SYS (ie, that can run outside the SHELL
environment) or that runs under DOS 3.3 uses a device table that
resides in the program’s memory space. This table is loaded along with
the program from a copy in the file from which the program is loaded.

config can modify the copy of a program’s device table that is in
the file that contains the program. For example, the SHELL is just a
program created using Aztec C, and you can modify the device table
that is within the file that contains the SHELL, shellsystem. The
modifications that you make to this copy of the SHELL’s device table
will take affect (ie, affect executing SHELL and PRG-type programs)
when the SHELL next reloads this table into its memory-resident
environment area.

- util.14 -

CONFIG CONFIG

config can also directly modify the SHELL's memory-resident
device table, without modifying a file-resident device table. This
feature allows you to temporarily redefine device attributes; you can
modify a program’s file-resident table when you want to make a more
permanent redefinition of device attributes.

Before getting into the description on config usage, we are going to
define the names by which you will refer to devices. Then, since
config lets you access a device table at a low level, allowing you to
examine and modify specific fields and bits, we define the device table
in detail

1.1 Device Names
The following list defines the names of devices:

con: The console device

pr: The printer

ser: The serial device

sX: The device that’s in slot x. For example s3: is the

name of the device in slot 3.
1.2 Device Table Organization

The include file device.h contains definitions related to devices.
This section defines information that is in that file.

A device table has the following structure:
struct _dev__info {

char fnd__str{14]; /* signature */
short con__flags; /* console flags */
struct sgttyb tty; /* con info for ioctl */
struct __name__dev

dev__con, /* con: info */

dev_ pr, /* pr: info */

dev__ser; /* ser: info */
struct _slot__dev

slots[8]; /* slot info */
int init__max; /¥ init space size */
int init_len; /* init space used */
char init__bufl]; /* init space */

%
1.2.1 The fnd_str Field

The fnd _str field contains a (hopefully) unique character string;
when told to find a file’s device table, config looks for this string.

1.2.2 The con__flags Field

The con__flags field contains bits that define console attributes. the
following tables lists for each bit its symbolic name, a val}le in
parentheses that defines its location in the field, and the meaning of

- util.15 -

CONFIG CONFIG

the bit.

CON__IMAP (0x01)
When this bit is set, the console driver will perform
keyboard mapping. This mapping is needed needed
for Apples whose keyboards don’t support the full
ASCI character set.

CON__UPPR (0x02)
When this bit is set, the console driver will turn lower
case characters into upper on output.

CON__HIGH (0x80)
When this bit is set, the console driver will set the
high order bit of each character it outputs,

The config commands dump con: and mod con: are used to display
and modify the con__flags field.

1.2.3 The #ty Field

The tty field contains those fields related to a program’s console I/O
that the program modifies by calling the ioctl function. For example,
this field defines whether the console is in line-oriented or character-
oriented mode. config doesn’t modify this field, so we won’t discuss it
further here. For a complete discussion of console 1/0O and ioctl, see
the Console I/0 section of the Library Overview chapter.

1.2.4 The dev__con, dev__pr, and dev__ser Fields

The dev__con, dev__pr, and dev__ser fields define the slot devices
that are associated with the con:, pr:, and ser: devices, respectively.
These three devices are just generic names that allow a program to
access the console, printer or serial card without having to know the
exact slot that contains the card. When a program performs I/0 to one
of these generic devices, the I/O operation is simply passed on to its
associated slot device. For example, if a program writes to pr:, and
during one execution the device table used by the program specifies
that pr: is associated with slot device sl., then the data will be written
to the card in slot 1. If during another execution the table specifies
that pr: is associated with slot device s2:, then the data will be written
to the card in slot 2.

The config commands dump con:, dump pr:, and dump ser: display
the slot device that's associated with a generic device. And the
commands mod con:, mod pr:, and mod ser: define the slot device that’s
associated with a generic device.

The console device driver does not currently look at the dev_ con
field; it always performs console input by calling the RDKEY ROM
routine that begins at 0xfdOc, which in turn calls the console input
routine whose address is in the KSW zero-page field It performs
console output by calling the COUT ROM routine that begins at
0xfded, which in turn calls the console output routine whose address is

- util.16 -

CONFIG CONFIG

in the CSW zero-page field. If the Apple on which the SHELL is
running has an 80 column card, the SHELL will automatically set up
the CSW and KSW zero page fields to use it.

1.2.5 The slot Fields

The slot field is an array of eight structures of type struct
__slot__dev, each of which defines the attributes of one slot device.
This structure will be defined after we finish describing the fields in
the device table structure.

1.2.6 The init_buf, init_max, and init_len Fields

When a program opens a slot device, the slot device driver can
optionally send an initialization string to the device. The following
_dev__info fields define information related to device initialization
strings:

* jnit__buf contains the strings;
* init_max defines the length of the init _buf space;

* init__len defines the number of bytes in init_buf that have
been allocated to initialization strings.

config allocates an initialization string by placing the string at the
current location defined by init_len and then incrementing init__len
past the string,

The size of the SHELL’s init_buf area is hard-coded into the
SHELL to be 64 bytes; this limit can’t be exceeded. The size of a BIN,
SYS, or DOS 3.3 program’s init__buf area is also hard-coded to be 64
bytes, but you can change this by modifying and replacing the deviab
module in the various versions of c.lib (c.lib, cilib, d.lib, and di.lib).

The following config commands access the string initialization
fields:

* The dump init command displays the contents of the init_max
and init__len fields.

* The mod init command resets the init_len field and turns off
cach slot device’s INIT__STR bit, thus freeing all of the string
initialization space.

* The commands that display and modify information about slot
devices (dump sx.: and mod sx:) access the device table’s string
initialization fields.

1.3 The _ slot_dev Structure

A slot device’s struct __slot__dev structure has the following form:

- util.17 -

CONFIG CONFIG

struct _slot__dev {
short outvec; /* CSW vector ($36-37) */
short invec; /* KSW vector ($38-39) */

short init; /* init str offset in initbuf */
char slot; /% $s0 */
char hi_slot; /* slot number */
char type;

/* -1=BASIC, 0=Pascall.0, 1=Pascall.l */
char flags; /* slot attr flags*/
char tabp; /* line pos for tab mapping */
char tabw; /¥ tab width */
char iflags; /¥ slot init flags */
char xtra; /¥ unused */

5
1.3.1 The outvec and invec Fields

The outvec and invec fields in a slot device’s _ slot__dev structure
contains the addresses of the routines that the slot device driver will
call to transfer each character to or from the slot device, respectively.
Normally, the slot device driver sets these addresses to locations within
the associated card’s ROM space at the time the device is opened, by
determining the type of protocol (Basic, Pascal 1.0, or Pascal 1.1) used
by the ROM routines. As discussed below, the setting of these fields
for a particular slot device by the slot device driver can be disabled by
turning off its INIT _VEC bit in the iflags field of its __Slot__dev
structure.

config doesn’t have commands to modify these fields, although the
dump sx: commands display their contents.

1.3.2 The init Field

The init field in a slot device’s _ slot_ dev structure contains the
offset within the _ dev_info structure’s init__buf area at which the
device’s initialization string begins.

As discussed below, when a slot device is opened, the INIT _STR
bit in the iflags field of the device’s _slot _dev structure determines
whether the device’s initialization string should be sent to it.

The dump sx: command will display the initialization string that’s
associated with slot device sx., and the mod sx.: str=... command will
assign an initialization string to sx..

1.3.3 The type Field

The type field in a slot device’s _slot_dev structure defines the
type of protocol used by the device’s ROM routines. It can have the
following values:

Value Meaning
-1 Basic

- util.18 -

CONFIG CONFIG

0 Pascal 1.0
1 Pascal 1.1

This field is normally set when the device is opened, but if the
INIT _VEC bit in the iflags field of the device’s structure is off, the
type ficld is not set.

The dump sx: command will display sx.’s type field, but config
doesn’t have a command to set it.

1.3.4 The slot and hi_slot fields

The slot field in a slot device’s __slot_ dev structure defines the
high-order byte of the address of the device’s ROM space. The hi__slot
field defines the number of the slot.

The dump sx: command will display sx.’s slot and hi__slot fields, but
config doesn’t have commands that will modify these fields.

1.3.5 The flags Field

The flags field in a slot device’s __slot_dev structure contains bits
defining various attributes of the slot. The following table lists for
each bit the symbolic name of the bit, a value in parentheses that
defines the location of the bit, and the bit’s meaning.

SLOT_LFCR (0x01)
When this bit is set, an carriage return character that
is read from the device will be translated to a linefeed,
and a linefeed character that is written to the device
will be translated to a carriage return.

SLOT__TABS (0x02)
When this bit is set, an output tab character will be
replaced by enough space characters to position the
device at the next "tab stop". For more information
on tab stops, see the descriptions of the tabw and tabp
fields.

SLOT__UPPR (0x04)
When this bit is set, an output alphabetic character
will be converted to upper case.

SLOT_CRLF (0x08)
When this bit is set, and a program writes a carriage
return character to the device, the device driver will
also write a line feed character to the device.

SLOT_HIGH (0x80)
When this bit is set, the high order bit will be set on
all output characters.

The dump sx: command will display in binary the contents of sx.’s
flags field, and the mod sx: command can be used to modify it.

- util.19 -

CONFIG CONFIG

1.3.6 The iflags Field

The iflags field in a slot device’s __slot_dev structure contains bits
that define attributes of the device. The followmg table lists for each
bit the symbolic name of the bit, a value in parentheses that defines
the location of the bit, and the bit’s meaning.

INIT__VEC (0x01)
When this bit is set and the slot device is opened, the
addresses of its input and output vectors will be
determined and set in the structure’s invec and outvec
fields based on the type of protocol used by the card,
and the type field will be set.

INIT__CAL (0x02)
When this bit is set and the slot device is opened, the
card will be initialialized by issuing a call to the first
byte of its ROM space.

INIT__STR (0x04)
When this bit is set and the slot device is opened, the
device’s initialization string (which is pointed at by
the init field of the device’s __slot _dev structure) will
be written to the device.

INIT__ONCE (0x08)
When this bit is set, the initialization activities
described above will only be performed once for the
slot device.

The dump sx: command will display in binary the contents of sx.’s
iflags ficld, and the mod sx: command can be used to modify it.

1.3.7 The tabw Field

The tabw field in a slot device’s slot ' _dev structure defines the
number of characters between each of the device’s tab stops. If 0, it’s
assumed to be eight.

When a tab character is written to a slot device, the slot device
driver can optionally output spaces in its place until thc next tab stop is
reached. This replacement is enabled by setting the SLOT _TABS bit
in the flags fields of the device’s _ slot__dev structure.

The dump sx: and mod sx: commands can be used to display and
modify the contents of sx.’s tabw and tabp fields.

1.3.8 The tabp Field

The tabp field in a slot device’s __slot_ dev structure defines the
number of characters that have been send to it since the last carriage
return or linefeed. When a tab character is sent to a device, the device
driver uses the device’s tabp field to decide how many spaces it should
output to reach the next tab stop.

- util.20 -

CONFIG CONFIG

1.3.9 The xtra Field
This field is unused.

2. Using config

config is an interactive program: you enter commands to it to
examine device information, make modifications, and so on. These
commands access a copy of the table that resides in an internal buffer
within config: when you define the file whose device table you want to
modify (or the table that’s in the SHELL’s memory-resident
environment area), config finds the table and reads it into its internal
buffer; your examination and modification commands then access the
table that is in this internal buffer. When you’ve completed the
modifications, you type the write command, which causes config to
write the table back to the location from which it was obtained.

The location of a table to be modified can be specified to config as
an argument when it is started. This argument can be the name of a
file containing a program whose device table is to be modified. It can
also be the word mem:, which specified that the SHELL’S memory-
resident device table is to be modified. When config is started with
this optional argument, it automatically searches for the table in the
specified location and, if found, reads it into its table; if config doesn’t
find the table, it will tell you.

Alternatively, the location of a device information table that’s to be
modified can be specified once config is active, by typing the open
command. This command takes a single argument the name of the
file whose device table is to be modified; or mem:, if the SHELL’s
memory-resident table is to be modified. The open command searches
for the table in the specified location, but doesn’t load it into config’s
internal buffer; if you want the table read, you must explicitly say so,
using config’s read command. This allows you to make changes to one
program’s device table and then write the modified table to several
different programs.

‘3. Commands

config has just a few basic commands, most of which have
arguments. We’ll first list the commands and give a brief description.
The following paragraphs will then discuss the commands in detail.

command Description
dump Display information
mod Make modifications
open Prepare to examine/modify a device table
read Read a device table into config’s internal buffer
write Write a device table from config’s internal buffer
quit Halt config

- util.21 -

CONFIG CONFIG

3.1 The dump Command

The dump command displays information about one device, about
all devices, or about the device initialization string space. The
command has the following format:

dump [dev]

The optional argument dev is the name of the device about which you
want to get information, or the word init if you want information
about string space. If an argument isn’t specified, information about
all devices and about string space is displayed.

3.2 The »vd Command

The mod command is used to modify device attributes and to reset

the device initialization string space. The command has the following
format

mod dev [args]

where dev is the name of the device whose attributes are to be
changed, or init if string space is to be initialized; [args] are arguments
defining the attributes that are to be changed. The arguments to the
mod command depend on the device being modified. The following
paragraphs discuss the modification of each device.

3.2.1 Modifying con:
The command for modifying con: has the following format
mod con: {flags=xx] [imap] [uppr] [high]

where square brackets surround optional arguments. imap, uppr, and
high usually cause a bit to be turned on in the con__ flags field. If

preceded by a ~ character, they cause the designated bit to instead be
turned off.

The arguments have the following meanings.
Argument Meaning

flags=xx sets the field in the device table that defines console
attributes, con__flags, to the hex value xx.

imap Set (or reset, if preceded by ~) the CON__IMAP bit in
con__flags.

uppr Set or reset the CON__UPPR bit in con__flags.
high Set or reset the CON_HIGH bit in con__flags.
3.2.2 Modifying pr: and ser:

The commands that modify the pr: and ser: attributes are similar:

- util.22 -

CONFIG CONFIG

mod pr: sx:
mod ser: sx:

where sx: is the name of the slot device that is to be associated with
pr: or ser..

3.2.3 Modifying Slot Devices

The command for modifying the attributes of a slot divice has the
following form:

mod sx: [flags=xx] [iflags=xx] [tabw=dd]
[1fcr] [crif] [tabs] [uppr] [high] [cal] [once] [vec]
[str=string]

where sx. is the name of the slot device.
3.2.3.1 The flags and iflags Arguments

The flags=xx argument sets the device’s flags field to the hex value
XX.

Similarly, the iflags=xx argument set the device’s iflags field to the
hex value xx.

3.2.3.2 The ifcr, ... Arguments

The arguments specified on the second line (Ifcr, ...) usually cause a
bit in the device’s flags or iflags field to be turned on; if preceded by a
~ character, they instead cause the designated bit to be reset. The
symbolic name of the bit represented by these arguments can be
derived by appending "SLOT_" (for a flags bit) or "INIT_" (for an
iflags bit). For example, the command "mod s2: Ifcr" sets the bit
SLOT__LFCR in the flags field in the _slot__dev structure for the s2:
device.

3.2.3.3 The str=string Argument

The argument str=string usually sets the initialization string for the
specified slot device to string and turns on the INIT__STR bit for the
device. If the argument has the form ~str (ie, prcceded by a ~

character and not followed by =string), the INIT_STR bit is instead
turned off.

Strings are usually specified by surrounding them with double-
quote characters, although if a string contains just printable characters
with no spaces it can be specified without the surrounding quotes.

In a quoted string, a printable character is represented by itself.
Unprintable characters are represented by a sequence that begins with
a backslash character, as defined in the following table.

Sequence Meaning
\n Newline

- util.23 -

CONFIG CONFIG

\t Horizontal tab
\b Backspace

\r Carriage return
\f Form Feed

\\ Backslash

\Xyy The hex value yy

For example, the command to set the initialization string for slot
device s2: to a string consisting of an escape character (hex value 1b),
followed by the character Q would be:

mod s2; str="\x1bQ"
3.2.4 Reseting Device Initialization String Space
The following command resets the use of the space used for device
initialization strings:
mod init
It resets the field that points to the top of allocated string space

(init_len in the device information structure), and turns off the
INIT__STR bit and clears the init field for each slot device.

3.3 The open Command

The open command prepares config for accessing a device table that
is in a file or in the SHELL’s memory-resident environment area. The
command has the following form:

open file

where file is the name of the file whose device table is to be accessed,
or mem: to access the table in the SHELL's memory-resident
environment area.

If a file is specified, the open command causes config to open the
file and search for the file’s device information table. If the table is
not found, config will say so.

Note that the open command does not read the specified device
information table into config’s internal buffer; you must explicitly tell
config to do that, using the read command.

3.4 The read Command

The read command causes config to read the device information
table from the currently open file or SHELL environment area into
config’s internal buffer.

Note that when a file or the SHELL’s environment area is specified
as a command-line argument, config automatically reads the device
information table into its internal buffer, making it unnecessary to

- util.24 -

CONFIG CONFIG

issue a read command.
3.5 The write Command

The write command causes config to write the device information
table that’s in its internal buffer to the currently open file or SHELL
environment area.

3.6 The quit Command
The quit command causes con fig to halt.

4. Examples ,

In this example, the device table in shell.system is modified for use
with an Image Writer printer that’s connected to a Super Serial card in
slot 2. The changes are also written to the SHELL’s memory-resident

table. First, we get config started by entering the following command
to the SHELL:

config shell.system

Once started, config finds the device table that’s in the file shell.system
and reads it into config’s internal buffer.

We next display the current settings of s2.’s flags and fields by
entering to config:

dump s2:

We next set and reset flags and fields that define how i/o to s2: is to be
performed. These changes are made just to the device table that’s in
config’s internal buffer; they won’t be made to the device table that’s
in shell.system until the write command is issued.

mod s2: vec cal ~Ifcr tabs tabw=4 str="\x1bQ"
The operands to the mod command have the following meanings:

* vec tells the device driver to determine the addresses of s2:-°s
ROM routines when s2: is opened;

* cal tells the driver to call the device’s initialization code,
which begins at the first byte of its ROM, when the device is
opened;

* ~[fcr tells the driver not to send a linefeed after a carriage
return;

* tabs tells the driver to output spaces in place of tabs;

* tabw=4 says that there are 4 spaces between tab stops;

* str="\ x1bQ" tells the driver to send the specified character
string to the device when it is opened.

We next display the modified settings of s2.’s flags and fields, which
are in the device table that’s in config’s internal buffer:

- util.25 -

CONFIG CONFIG

dump s2:

Everything’s OK, so we write the modified device table back to
shell.systenr.
write

The changes that have just been made won’t affect an executing
SHELL or PRG programs until the SHELL detects that its
environment area has been corrupted, or until the SHELL is loaded
following system power-up. To make these changes take effect
immediately, we need to write them to the SHELL’s memory-resident
device table. To do this, we first tell config that we want to access this
memory-resident table by entering:

open mem:

This doesn’t affect the device table that’s in config’s internal buffer, so
we can immediately issue the following command to overwrite the
SHELL’s memory-resident table:

write
We're all done, so we exit config by entering:
quit

- util.26 -

Ccp Builtin Command Ccp

NAME
cp - copy files
SYNOPSIS

cp {-f] infile outfile
cp [-f] filel [file2 ...] dir
DESCRIPTION

cp copies files, and their attributes. The first form of the
command, as shown above, copies infile to outfile. The second copies
filel, file2, ... into the directory named dir.

The -f option causes cp to automatically overwrite any existing
files. If this option isn’t specified and if a file to be created already
exists, cp will ask if you want it overwritten.

For example, the following command copies the file hello.c that is
in the current directory to the file newfile.c in the /source directory.

¢p hello.c /source/newfile.c

The next command copies all ".c" files in the /arc/ directory to the
current (ie, the ".") directory:

cp /arc/*.c.

- util.27 -

CRC CRC generator CRC

NAME
crc - Utility for generating the CRC for files
SYNOPSIS
cre filel file2 ...
DESCRIPTION
crc computes a number, called the CRC, for the specified files.

The CRC for a file is entirely dependent on the file’s contents, and
it is very unlikely that two files whose contents are different will have
the same CRCs. Thus, crc can be used to determine whether a file has
the expected contents.

As an example of the usage of crc, the following command
computes the crc of all files whose extension is .c:

cre *.¢

- util.28 -

DATE Builtin command

NAME

date - display date and time
SYNOPSIS

date
DESCRIPTION

Displays the date and time.

- util.29 -

DATE

DEBUG Builtin Command DEBUG

NAME

debug - set debug mode
SYNOPSIS

debug
DESCRIPTION

To debug a SHELL-activated program using the monitor program
that’s in ROM, first enter the debug command, and then enter the
command to start the program. The SHELL will load the program,
perform i/o redirection and pass arguments to it if necessary; then,
when it sees that the debug command was entered, it will jump to the
monitor,

When you’re done debugging, return to the SHELL by entering the
command

3D0G

The debug command affects only the next program that the SHELL
starts. That is, for each program that you want to debug, you must
first enter the debug command and then enter the command to start
the program.

- util.30 -

DF Builtin command DF

NAME
df - Display Volume info
SYNOPSIS
df [/vol]
DESCRIPTION
Displays information about disk space utilization.

The optional parameter /path defines the disk of interest. It can be
the name of a file or directory; in this case, information is displayed
about the disk that contains the specified file or directory.

/ path can also be the single character */°, (ie, specify the SHELL’s
simulated root directory of the entire file system); in this case,
information is displayed about all on-line disks.

If /path isn’t specified, and if the current directory isn’t the
simulated root directory of the file system, information is displayed
about the disk that contains the current directory.

If /path isn’t specified, and if the current directory is the simulated
root directory of the file system, information is displayed about all
on-line disks.

EXAMPLES

The following command displays information about the disk that
contains the current directory:

df

The next command displays information about the /ram disk:
df /ram

The next command displays information about all on-line disks:
df /

- util.31 -

DIFF File Comparator DIFF

NAME

diff - Source file comparison utility
SYNOPSIS

diff [-b] filel file2
DESCRIPTION

diff is a program, similar to the UNIX program of the same name,
that determines the differences between two files containing text. filel
and file2 are the names of the files to be compared.
1. The -b option

The -b option causes diff to ignore trailing blanks (spaces and tabs)
and to consider strings of blanks to be identical. If this option isn’t

specified, diff considers two lines to be the same only if they match
exactly.

For example, if filel contains the the line
~abc$

(” and $ stand for "the beginning of the line" and "the end of the line",

respectively, and aren’t actually in the file) and if file2 contains the
line

~abc $

then diff would consider the two lines to be the same or different,
depending on whether or not it was started with the -b option.

And diff would consider the lines
ra bc$
and
*abc$

to be the same or different, depending on whether or not it was started
with the -b option.

diff will never consider blanks to match a null string, regardless of
whether -b was used or not. So diff will never consider the lines

~abc$
and

~a bc$
to be the same.

- util.32 -

DIFF File Comparator DIFF

2. The conversion list

diff writes, to its standard output, a "conversion list" that describes
the changes that need to be made to filel to convert it into file2. The
list is organized into a sequence of items, each of which describes one
operation that must be performed on filel.

2.1 Conversion items

There are three types of operations that can be specified in a
conversion list item:

* adding lines to filel from file2;
* deleting lines from filel,;
* replacing (changing) file! lines with file2 lines.

A conversion list item consists of a command line, followed by the
lines in the two files that are affected by the item’s operation.

2.1.1 The command line

An item’s command line contains a letter describing the operation
to be performed: ’a’ for adding lines, ’d’ for deleting lines, and ’¢’ for
changing lines.

Preceding and following the letter are the numbers of the lines in
filel and file2, respectively, that are affected by the command. If a
range of lines in a file are affected, just the beginning and ending line
numbers are listed, separated by a comma.

For example, the following command line says to add line 3 of file2
after line 5 of filel:

5a3

and the next command line says to add lines 8,9, and 10 of file2 after
line 16 of filel:

16a8,10

The next command line says to delete lines 100 through 150 from
filel, and that the last line in file2 that matched a file! line was number
75:

100,150d75

The following command says to replace (change) line 32 in file]
with line 33 in file2:

32¢33

and the next command says to replace lines 453 through 500 in filel
with lines 490 through 499 in file2:

453,500c490,499

- util.33 -

DIFF File Comparator DIFF

2.1.2 The affected lines

As mentioned above, the lines affected by a conversion item’s
operation are listed after the item’s command line. The affected lines
from filel are listed first, flagged with a preceding ’<’. Then come the
affected lines from file2, flagged with a preceding ’*>’. The filel and
file2 lines are separated by the line

For example, the following conversion item says to add line 6 of file2
after line 4 of filel. Line 6 of file2 is "for (i=1; i<10;++i)":

4a6

> for (i=1; i<10;++1)

Since no lines from file! are affected by an *add’ conversion item, only

the file2 lines that will be added to filel are listed, and the separator
line "---" is omitted.

The following conversion item says to delete lines 100 and 101
from filel, and that the last file2 line that matched a filel line was
numbered 110. The deleted lines were "int a;" and "double b;". Only
the deleted lines are listed, and the separator line "---" is omitted:

100,101d110
< int a;
< double b;

The following conversion item says to replace lines 53 through 56
in filel with lines 60 and 61 in file2. Lines 53 through 56 in filel are
“if (a=b){("," d=a"," at+;", and"}". Lines 60 and 61 of file2 are
"if (a==b)" and "d = a++;".

53,55¢60,61

< if (a=b){

< d=a

< at+;

<}
> if (a==b)
> d=at+;

3. Differences between the UNIX and Manx versions of diff

The Manx and UNIX versions of diff are actually most similar
when the latter program is invoked with the -h option. As with the
UNIX diff when used with the -h option, the Manx diff works best
when changed stretches are short and well separated, and works with
files of unlimited length.

Unlike the UNIX diff, the Manx diff doesn’t support the options e,
f, or h.

- util.34 -

DIFF File Comparator DIFF

Unlike the UNIX diff, the Manx version requires that both
operands to diff be actual files. Because of this, the Manx version of
diff doesn’t support the features of the UNIX version which allows
one operand to be a directory name, (to specify a file in that directory
having the same name as the other operand), and which allows one
operand to be *-’ (to specify dif/’s standard input instead of a file).

- util.35 -

ECHO Builtin command ECHO

NAME

echo - echo arguments
SYNOPSIS

echo [arg] [arg] ...
DESCRIPTION

echo writes its arguments, separated by blanks and terminated by a
newline, to its standard output device.

The output thus goes, by default, to the screen. It can also be
redirected to another device or file in the normal manner.

- util.36 -

GREP Pattern-matching utility GREP

NAME

grep - pattern-matching program
SYNOPSIS

grep [-cflnv] pattern [files]
DESCRIPTION

grep is a program, similar to the UNIX program of the same
name, that searches files for lines containing a pattern. By
default, such lines are written to grep’s standard output.

1. Input files

The files parameter is a list of files to be searched. If no files are
specified, grep searches its standard input. Each file name can specify
a single file to be searched.

2. Options
The following options are supported:

v Print all lines that don’t match the pattern.

c Print just the name of each file and the number of
matching lines that it contained.

1 Print the names of just the files that contain matching
lines.

n Precede each matching line that’s printed by its
relative line number within the file that contains it.

f A character in the pattern will match both its upper

and lower case equivalent.

3. Patterns

A pattern consists of a limited form of regular expression. It
describes a set of character strings, any of whose members are said to
be matched by the regular expression.

Some patterns match just a single character; others, which match
strings, can be constructed from those that match single characters. In
the following paragraphs, we’ll first describe the patterns that match
a single character, and then describe patterns that match strings of
characters.

3.1 Matching single characters
The patterns that match a single character are these:

* An ordinary character (that is, one other than the special
characters described below) matches itself.

* A period (.) is a pattern that matches any character except
newline.

- util.37 -

GREP

Pattern-matching utility GREP

* A non-empty string of characters enclosed in square

brackets, [], matches any one character in that string For
example, the pattern

[ad9@]

matches any one of the characters a, d, 9, or @.

If, however, the string begins with the caret character
(%), the regular expression matches any character except
the other enclosed characters and newline. The '*’ has this
special meaning only if it is the first character of the string.
For example, the pattern

[*adS@]
matches any single character except a, d, 9, or @.

The minus character ,-, can be used to indicate a range of
consecutive ASCII characters. For example, [0-9] is equivalent
to {0123456789].

A backslash (\) followed by a special character matches the
special character itself. The special characters are:

. * [, and \, which are always special, except when
they appear in square brackets, [].

A~ (caret), which is special when it is at the
beginning of an entire regular expression (as
discussed in 3.4) and when it immediately follows
the left of a pair of square brackets.

$, which is special at the end of an entire regular
expression (discussed in 3.4).

3.2 Matching character strings

Patterns can be concatenated. In this case, the resulting pattern
matches strings whose substrings match each of the concatenated
patterns. For example, the pattern

abc

matches the string abc. This pattern is built from the patterns a, b, and
¢. The pattern

a.c

matches strings containing three characters, whose first and last
characters are a and ¢, respectively, such as

abc
a@c

axc

- util.38 -

GREP Pattern-matching utility GREP

3.3 Matching repeating characters

A pattern can be built by appending an asterick (*) to a pattern
that matches a single character. The resulting pattern matches zero or
more occurrences of the single-character pattern For example, the
pattern

a*

matches any line containing zero or more a characters. And the pattern
subf 1-4]*end

matches lines’ containing strings such as

subend
subl32132end

3.4 Matching strings that begin or end lines

An entire pattern may be constrained to match only character
strings that occur at the beginning or the end of a line, by
beginning or ending the pattern with the character ’*’ or %,
respectively. For example, the pattern

Amain
matches the line that begins
main
but not one that begins
the main ...
The pattern
line$
matches the line ending in
... the end of the line
but not the line ending in
a hard-hit line drive.

4, Examples
4.1 Simple string matching

The following command will search the files filel.txt and file2.txt
and print the lines containing the word hereto fore:

grep heretofore filel.txt file2.txt

If you aren’t interested in the specific lines of these files, but
just want to know the names of the files containing the word
hereto fore, you could enter

- util.39 -

GREP Pattern-matching utility GREP

grep -1 heretofore filel.txt file2.txt

The above two examples ignore lines in which heretofore contains
capital letters, such as when it begins a sentence. The following
command will cover this situation:

grep -If heretofore filel.txt file2.txt

grep processes all options at once, so multiple options must be
specified in one dash parameter. For example, the command

grep -1 -f heretofore filel.txt file2.txt
won’t work.
4.2 The special character’.

Suppose you want to find all lines in the file prog.c that contain a
four-character string whose first and last characters are 'm’ and ’n’,

respectively, and whose other characters you don’t care about. The
command

grep m..n prog.c

will do the trick, since the special character °.’ matches any single
character.

4.3 The backslash character

There are occasions when you want to find the character °.” in a
file, and don’t want grep to consider it to be special. In this case, you
can use the backslash character, ’\’, to turn off the special meaning of
the next character.

For example, suppose you want to find all lines containing

PP

Entering
grep (PP prog.doc

isn’t adequate, because it will find lines such as
THE APPLICATION OF

since the °.” matches the letter *A’. But if you enter
grep \.PP prog.doc

grep will print just what you want.

The backslash character can be used to turn off the special
meaning of any special character. For example,

grep \\n prog.c
finds all lines in prog.c containing the string *\n’.

- util.40 -

GREP Pattern-matching utility GREP

4.4 The dollar sign and the caret ($ and *)

Suppose you want to find the number of the line on which the
definition of the function add occurs in the file arith.c. Entering

grep -n add arith.c

isn’t good, because it will print lines in which add is called in addition
to the line you'’re interested in. Assuming that you begin all function
definitions at the beginning of a line, you could enter

grep ~add arith.c
to accomplish your purpose.

The character ’$’ is a companion to **’, and stands for ’the end of
the line’. So if you want to find all lines in file.doc that end in the
string time, you could enter

grep time$ file.doc

And the following will find all lines that contain just .PP:
grep “\.PP$

4.5 Using brackets

Suppose that you want to find all lines in the file file.doc that begin
with a digit. The command

grep *[0123456789] file.doc
will do just that. This command can be abbreviated as
grep ~[0-9] file.doc

And if you wanted to print all lines that don’t begin with a digit,
you could enter

grep ~[*0-9] file.doc
4.6 Repeated characters

Suppose you want to find all lines in the file prog.c that contain
strings whose first character is e’ and whose last character is ’Z.
The command

grep e.*z prog.c

will do that. The ’¢’ matches an ’¢’, the .* matches zero or more
arbitrary characters, and the ’z’ matches a ’z".

S. Differences between the Manx and UNIX versions of grep

The Manx and UNIX versions of grep differ in the options they
accept and the patterns they match.

- util.41 -

GREP Pattern-matching utility GREP

5.1 Option differences

* The option -f is supported only by the Manx grep.

* The options -b and -s are supported only by the UNIX grep.
5.2 Pattern differences

Basically, the patterns accepted by the Manx grep are a subset of
those accepted by the UNIX grep.

* The Manx grep doesn’t allow a regular expression to be surrounded

by ’\(and ’\)".
* The Manx grep doesn’t accept the construct *\{m\})'.

* The Manx grep doesn’t allow a right bracket, ’]’, to be specified
within brackets.

* Quoted strings can’t be passed to the Manx grep. For example, the
Manx grep won’t accept

grep ’this is a fine kettle of fish’ file.doc

- util.42 -

HD Program command HD

NAME

hd - hex dump utility
SYNOPSIS

hd [-r] [+n[.]] filel [+n[.]]} file 2 ...
DESCRIPTION

hd displays the contents of one or more files in hex and ascii to its
standard output.

filel, file2, ... are the names of the files to be displayed.

+n specifies the offset into the file where the display is to start, and
defaults to the beginning of the file. If +n is followed by a period, » is
assumed to be a decimal number; otherwise, it’s assumed to be
hexadecimal. Each file will be displayed beginning at the last specified
offset.

EXAMPLES
hd +16b oldtest newtest +0 junk

Displays the data forks of the files oldtest and newtest,
beginning at offset 0x16b, and of the file named junk
beginning at its first byte.

hd -r +1000. tstfil

Displays the contents of the resource fork of fstfil,
beginning at byte 1000.

- util.43 -

LB Object file librarian LB

NAME

Ib - object file librarian
SYNOPSIS

Ib library {options] [modl mod2 ...]
DESCRIPTION

/b is a program that creates and manipulates libraries of object
modules. The modules must have been created by the Manx
assembler.

This description of /b is divided into three sections: the first
describes briefly /p’s arguments and options, the second Ib’s basic
features, and the third the rest of Ib’s features.

1. The arguments to /b

1.1 The library argument

When started, /b acts upon a single library file. The first argument
to Ib (library, in the synopsis) is the name of this file. The filename
extension for library is optional; if not specified, it’s assumed to be .lib.

1.2 The options argument

There are two types of options argument: function code options, and
qualifier options. These options will be summarized in the following
paragraphs, and then described in detail below.

1.2.1 Function code options
When b is started, it performs one function on the specified

library, as defined by the options argument. The functions that /b can
perform, and their corresponding option codes, are:

function code
create a library (no code)
add modules to a library -3, -1, -b
list library modules -t
move modules within a library -m
replace modules -r
delete modules -d
extract modules -X
ensure module uniqueness -u
help -h

In the synopsis, the options argument is surrounded by square
brackets. This indicates that the argument is optional; if a code isn’t
specified, Ib assumes that a library is to be created.

- util.44 -

LB Object file librarian LB

1.2.2 Qualifier options

In addition to a function code, the options argument can optionally
specify a qualifier, that modifies /b’s behavior as it is performing the
requested function. The qualifiers and their codes are:

verbose -V
silent -s

The qualifier can be included in the same argument as the function
code, or as a separate argument. For example, to cause /b to append
modules to a library, and be silent when doing it, any of the following
option arguments could be specified:

-as
-sa
-a-s
-5 -a
1.3 The mod arguments

The arguments modl, mod2, etc are the names of the object
modules, or the files containing these modules, that /» is to use. For
some functions, /b requires an object module name, and for others it
requires the name of a file containing an object module. In the latter
case, the file’s extension is optional; if not specified, /b assumes that
it’s .o.

1.4 Reading arguments from another file

Ib has a special argument, -f filename, that causes it to read
command line arguments from the specified file. When done, it
continues reading arguments from the command line. Arguments can
be read from more than one file, but the file specified in a -f filename
argument can’t itself contain a -f filename argument.

2. Basic features of /b

In this section we want to describe the basic features of /b. With
this knowledge in hand, you can start using /b, and then read about the
rest of the features of /b at your leisure.

The basic things you need to know about /b, and which thus are
described in this section, are:

* How to create a library

* How to list the names of modules in a library
* How modules get their names

* QOrder of modules in a library

* Getting /b arguments from a file

- util.45 -

LB Object file librarian LB

Thus, with the information presented in this section you can create
libraries and get a list of the modules in libraries. The third section of

this description shows you how to modify selected modules within a
library.

2.1 Creating a Library

A library is created by starting /b with a command line that
specifies the name of the library file to be created and the names of
the files whose object modules are to be copied into the library. It
doesn’t contain a function code, and it’s this absence of a function
code that tells /b that it is to create a library.

For example, the following command creates the library exmpllib,

copying into it the object modules that are in the files objl.o and
obj2.0:

Ib exmpl.lib objl.o obj2.0

Making use of Ib’s assumptions about file names for which no

extension is specified, the following command is equivalent to the
above command:

Ib exmpl objl obj2

An object module file from which modules are read into a new
library can itself be a library created by /b. In this case, all the
modules in the input library are copied into the new library.

2.1.1 The temporary library

When /b creates a library or modifies an existing library, it first
creates a new library with a temporary name. If the function was
successfully performed, /b erases the file having the same name as the
specified library, and then renames the new library, giving it the name
of the specified library. Thus, /b makes sure it can create a library
before erasing an existing one.

Note that there must be room on the disk for both the old library
and the new.

2.2 Getting the table of contents for a library

To list the names of the modules in a library, use /»’s -t option. For
example, the following command lists the modules that are in exmpllib:

Ib exmpl -t

The list will include some **DIR** entries. These identify blocks
within the library that contain control information. They are created
and deleted automatically as needed, and cannot be changed by you.

2.3 How modules get their names

When a module is copied into a library from a file containing a
single object module (that is, from an object module generated by the

- util.46 -

LB Object file librarian LB

Manx assembler), the name of the module within the library is derived
from the name of the input file by deleting the input file’s volume,
path, and extension components.

For example, in the example given above, the names of the object
modules in exmpllib are objl1 and o0b;2.

An input file can itself be a library. In this case, a module’s name
in the new library is the same as its name in the input library.

2.4 Order in a library

The order of modules in a library is important, since the linker
makes only a single pass through a library when it is searching for
modules. For a discussion of this, see the tutorial section of the
Linker chapter.

When /b creates a library, it places modules in the library in the
order in which it reads them. Thus, in the example given above, the
modules will be in the library in the following order:

objl obj2

As another example, suppose that the library oldlib.lib contains the
following modules, in the order specified:

subl sub2 sub3

If the library newlib.lib is created with the command
Ib newlib modl1 oldlib.lib mod2 mod3

the contents of the newly-created newlib.lib will be:
modl subl sub2 sub3 mod2 mod3

The ord utility program can be used to create a library whose
modules are optimally sorted. For information, see its description later
in this chapter.

2.5 Getting /b arguments from a file

For libraries containing many modules, it is frequently
inconvenient, if not impossible, to enter all the arguments to /b on a
single command line. In this case, /b’s -f filename feature can be of
use: when /b finds this option, it opens the specified file and starts
reading command arguments from it. After finishing the file, it
continues to scan the command line.

For example, suppose the file build contains the line
exmpl objl obj2
Then entering the command
Ib -f build
causes /b to get its arguments from the file build, which causes /b to

- util.47 -

LB Object file librarian LB

create the library exmpl.lib containing objl and 0b;2.

Arguments in a -f file can be separated by any sequence of
whitespace characters ("whitespace’ being blanks, tabs, and newlines).
Thus, arguments in a -f file can be on separate lines, if desired.

The /b command line can contain multiple -f arguments, allowing /b
arguments to be read from several files. For example, if some of the
object modules that are to be placed in exmpllib are defined in
arith.inc, input.inc, and output.inc, then the following command could be
used to create exmpl.lib:

Ib exmpl -f arith.inc -f input.inc -f output.inc
A -f file can contain any valid /b argument, except for another -f.
That is, -f files can’t be nested.
3. Advanced /b features

In this section we describe the rest of the functions that /b can

perform. These primarily involve manipulating selected modules
within a library.

3.1 Adding modules to a library

Ib allows you to add modules to an existing library. The modules
can be added before or after a specified module in the library or can
be added to the beginning or end of the library.

The options that select //’s add function are:

option Sfunction
-b target add modules before the module target
-1 target same as -b target
-a target add modules after the module target
-b+ add modules to the beginning of the library
-i+ same as -b+
-a+ add modules to the end of the library

In an /b command that selects the add function, the names of the
files containing modules to be added follows the add option code (and
the target module name, when appropriate). A file can contain a single
module or a library of modules.

Modules are added in the order that they are specified. If a library

is to be added, its modules are added in the order they occur in the
input library.

3.1.1 Adding modules before an existing module

As an exmple of the addition of modules before a selected module,
suppose that the library exmpllib contains the modules

objl obj2 obj3

- util.48 -

LB Object file librarian LB

The command
Ib exmpl -i obj2 modl mod2

adds the modules in the files modl.o and mod2.0 to exmpl.lib, placing
them before the module 0bj2. The resultant exmpl.lib looking like this:

objl modl mod2 obj2 obj3

Note that in the b command we didn’t need to specify the
extension of either the file containing the library to which modules
were to be added or the extension of the files containing the modules
to be added. /b assumed that the extension of the file containing the
target library was ./ib, and that the extension of the other files was .o.

As an example of the addition of one library to another, suppose
that the library mylib.lib contains the modules

modl mod2 mod3

and that the library exmpl.lib contains
objl obj2 obj3

Then the command
Ib -b obj2 mylib.lib

adds the modules in mylb.lib to exmpllib, resulting in exmpllib
containing

objl modl mod2 mod3 obj2 obj3

Note that in this example, we had to specify the extension of the
input file mylib.lib. If we hadn’t included it, /> would have assumed
that the file was named mylib.o.

3.1.2 Adding modules after an existing module

As an example of adding modules after a specified module, the
command

1b exmpl -a objl modl mod2

will insert mwod! and mod2 after objl in the library exmpllib. If
exmpl.lib originally contained

objl obj2 obj3
then after the addition, it contains
objl modl mod2 obj2 obj3
3.1.3 Adding modules at the beginning or end of a library

The options -b+ and -a+ tell /b to add the modules whose names
follow the option to the beginning or end of a library, respectively.
Unlike the -i and -a options, these options aren’t followed by the name
of an existing module in the library.

- util.49 -

LB Object file librarian LB

For example, given the library exmpl.lib containing
objl obj2

the following command will add the modules mod! and mod2 to the
beginning of exmpl.lib:

Ib exmpl -i+ mod]l mod2
resulting in exmpl.lib containing
mod] mod2 objl obj2

The following command will add the same modules to the end of
the library:

Ib exmpl -a+ modl mod2
resulting in exmpl.lib containing

objl obj2 modl mod2
3.2 Moving modules within a library

Modules which already exist in a library can be easily moved about,
using the move option, -m.

As with the options for adding modules to an existing library, there
are several forms of move functions:

option meaning
-mb target move modules before the module rarget
-ma target move modules after the module rarget
-mb+ move modules to the beginning of the library
-ma+ move modules to the end of the library

In the /b command, the names of the modules to be moved follows
the *move’ option code.

The modules are moved in the order in which they are found in
the original library, not in the order in which they are listed in the b
command.

3.2.1 Moving modules before an existing module

As an example of the movement of modules to a position before an
existing module in a library, suppose that the library exmpl.lib contains

objl obj2 obj3 ob4 obj5 objd
The following command moves 0bj3 before 0bj2:

Ib exmpl -mb obj2 obj3
putting the modules in the order:

objl obj3 obj2 ob@d obj5 objd

- util.50 -

LB Object file librarian LB

And, given the library in the original order again, the following
command moves 0bj6, 0b;j2, and objl before obj3:

Ib exmpl -mb obj3 obj6 obj2 objl
putting the library in the order:
objl obj2 obj6 obj3 obj4 obj5

As an example of the movement of modules to a position after an
existing module, suppose that the library exmpllib is back in its
original order. Then the command

Ib exmpl -ma obj4 obj3 obj2
moves obj3 and obj2 after obj4, resulting in the library
objl obj4 obj2 obj3 obj5 obj6
3.2.2 Moving modules to the beginning or end of a library

The options for moving modules to the beginning or end of a
library are -mb+ and -ma+, respectively.

For example, given the library exmpl.lib with contents
objl obj2 obj3 obj4 obj5 objb

the following command will move 0b;3 and 0bj5 to the beginning of
the library:

Ib exmpl -mb+ obj5 obj3
resulting in exmpllib having the order
obj3 obj5 objl obj2 objd4 obj6

And the following command will move 062 to the end of the
library:

Ib exmpl -ma+ obj2
3.3 Deleting Modules

Modules can be deleted from a library using /b’s -d option. The
command for deletion has the form

Ib libname -d modl mod2 ...
where modl, mod?2, ... are the names of the modules to be deleted.
For example, suppose that exmpl.lib contains
objl obj2 obj3 objd obj5 objb
The following command deletes 0bj3 and 0bj5 from this library:
Ib exmpl -d obj3 obj5

- util.51 -

LB Object file librarian LB

3.4 Replacing Modules

The b option ’replace’ is used to replace one module in a library
with one or more other modules.

The ’replace’ option has the form -r target, where target is the name
of the module being replaced. In a command that uses the 'replace’
option, the names of the files whose modules are to replace the target
module follow the ’replace’ option and its associated target module.
Such a file can contain a single module or a library of modules.

Thus, an /b command to replace a module has the form:
1b library -r target modl mod? ...

For example, suppose that the library exmpllib looks like this:
objl obj2 obj3 obj4

Then to replace obj3 with the modules in the files modl.o and mod2.0,
the following command could be used:

Ib exmpl -r obj3 modl mod2
resulting in exmpl.lib containing

objl obj2 modl mod2 obj4
3.5 Uniqueness

Ib allows libraries to be created containing duplicate modules, where
one module is a duplicate of another if it has the same name.

The option -u causes /b to delete duplicate modules in a library,
resulting in a library in which each module name is unique. In
particular, the -u option causes /b to scan through a library, looking at
module names. Any modules found that are duplicates of previous
modules are deleted.

For example, suppose that the library exmpllib contains the
following:

objl obj2 obj3 objl obj3
The command
Ib exmpl -u

will delete the second copies of the modules objl and o0bj2, leaving the
library looking like this:

objl obj2 obj3
3.6 Extracting modules from a Library

The /b option -x extracts modules from a library and puts them in
separate files, without modifying the library.

- util.52 -

LB Object file librarian LB

The names of the modules to be extracted follows the -x option. If
no modules are specified, all modules in the library are extracted.

When a module is extracted, it’s written to a new file; the file has
same name as the module and extension .o.

For example, given the library exmpl.lib containing the modules
objl obj2 obj3
The command
Ib exmpl -x

extracts all modules from the library, writing objl to objl.o, 0bj2 to
obj2.0, and obj3 to obj3.0.

And the command
Ib exmpl -x obj2
extracts just 0bj2 from the library.
3.7 The *verbose’ option

The ’verbose’ option, -v, causes /b to be verbose; that is, to tell you
what it’s doing

This option can be specified as part of another option, or all by
itself. For example, the following command creates a library in a
chatty manner:

Ib exmpl -v modl mod2 mod3

And the following equivalent commands causes /b to remove some
modules and to be verbose:

Ib exmpl -dv modl mod2
1b exmpl -d -v mod]l mod2

3.8 The ’silence’ option
The ’silence’ option, -s, causes /b to not display its signon message.

This option is especially useful when redirecting the output of a list
command to a disk file, as described below.

3.9 Rebuilding a library

The following commands provide a convenient way to rebuild a
library:

Ib exmpl -st > tfil
1b exmpl -f tfil

The first command writes the names of the modules in exmpllib to
the file ¢fil. The second command then rebuilds the library, using as
arguments the listing generated by the first command.

- util.53 -

LB Object file librarian LB

The -s option to the first command prevents /b from sending
information to ¢fil that would foul up the second command. The
names sent to ¢fil include entries for the directory blocks, **DIR**, but
these are ignored by /b.

310 Help

The -h option is provided for brief lapses of memory, and will
generate a summary of /b functions and options.

- util.54 -

LOCK Builtin commands LOCK

NAME

lock, unlock - lock and unlock files
SYNOPSIS

lock filel file2 ...

unlock filel file2 ...
DESCRIPTION

These commands lock and unlock the specified files. When locked,
a file can’t be removed, renamed, or written to.

The code for these commands is contained in the SHELL.

- util.55 -

LS Builtin Command LS

NAME

Is - list directory contents
SYNOPSIS

Is [-options] [mamel name?2 ...]
DESCRIPTION

Is displays information about the files and directories namel,
name2, ... If no names are specified, Is displays information about all
the files and directories in the current directory. For example, the
following command displays information about the files subl.o and
subl.c in the current directory, and the files in the directory
/pl/include:

Is subl.o subl.c /pl/include

A name can optionally specify multiple files, using the "wildcard
characters” * and 7. These have their standard meaning: * matches one
or more characters, and ? matches a single character. For example, the
following command displayes information about all files that have
extension .c and that are in the directory /fest/src:

Is /test/src/*.c

Is sends the information to its standard output. This information
thus by default is sent to the console, but can be redirected to a file or
other device in the normal way. For example, the first of the
following commands displays on the console information about files
that have extension .0 and that are in the current directory. The
second command sends information about the same files to the file
info.obj.

Is *.0
Is *.0 >info.0bj

Is by default displays information in ’short form’, listing just the names
of the specified files and directories. You can also specify the -/ option
to cause Is to display information in ’long form’, listing lots of
information.

When Is sends information in short form to the console, the names
are in columns on the screen, with a dash preceding directory names.
When the information is sent to a file or other device, the names are

listed one per line, and a directory name isn’t by default preceded by a
dash.

Is usually sorts the list it’s going to display. By default, the list is
sorted alphabetically; you can also specify options to cause Is to sort
based on other the list such as ’last modified’ time and file size, and,
for a given criteria, to sort in the reverse of the normal order.

- util.56 -

LS

Builtin Command LS

Is supports the following options:

1. Long format

List in long form. For a description of the ’long form’
information, see below.

When listing in short form, precede directory names
with a dash.

Sort by ’last-modified’ time.
Sort by file size.

Reverse the order of the sort. For example, when
sorting alphabetically, list names beginning with ’z’
first and those beginning with ’a’ last.

Don’t sort the file list.

The -/ option causes the listing to be made in ’long format’, in
which additional information is displayed for each file. In this case, the
listing for a file or directory has the following format:

where:

® X € *

*

The
fields.

flags type (aux__type) size date name

name is the name of the file or directory;

date is the date and time at which it was last modified;

size is the number of bytes that have been written to it;
aux__type is its aux__type field (for a program, this is its load
address);

type defines the contents of the file or directory;

flags defines other attributes of the file or directory.

following paragraphs define the meanings of the flags and type

1.1 The Flags Field

The Flags field consists of five characters, each of which defines
whether or not the file has a certain attribute. If the file or directory
has all these attributes, the Flags field will be "debwr". If the file or
directory doesn’t have a particular attribute, the attribute’s character is
replaced in this list by a dash, ’-’,

The meanings of the characters are:

ST oS

Deletable.

Erasable.

Needs to be backed up.
Writable.

Readable.

- util.57 -

LS Builtin Command LS

1.2 The Type Field
The type ficld defines the type of the file. Possible values:

PRG File contains a program that can only be run in the
SHELL environment.

BIN File contains a type program that can be run in the
SHELL or Basic environment.

SYS File contains a ProDOS system file.

DIR Directory.

XT This is the only other type of file created by the Aztec

programs. fopen, open, and related functions also
create files of type TXT.
2. Mounted volumes

The SHELL pretends that the file system has a root directory, and
that all volume directories are subdirectories of this root directory. So
to display the names of all mounted volumes, enter the command

Is /

And to display the names of all mounted volumes along with the
numbers of the slots and drives that contain them, enter the command

Is-1/

- util.58 -

MKDIR Builtin Command MKDIR

NAME

mkdir - make directory
SYNOPSIS

mkdir dirnamel dirname2 ...
DESCRIPTION

mkdir creates one or more directories, named dirmamel, dirname?2,

SEE ALSO
An empty directory can be removed with the rm command.

- util.59 -

MV Builtin command MV

NAME
mv - move files
SYNOPSIS

myv [-f] infile outfile
mv [-f] filel [file2 ...] dir
DESCRIPTION

mv moves files, and their attributes. The original files then cease to
exist.

The first form of the command, as shown above, copies infile to
outfile. The second copies filel, file2, ... into the directory named dir.

The -f option causes mwv to automatically overwrite any existing
files. If this option isn’t specified and if a file to be created already
exists, mv will ask if you want it overwritten.

In both its forms, mv will simply change the name of the original
file to that of the target file if the two files are in the same directory.

It physically copies a file and then deletes the original only when the
directories of the two files differ.

For example, the following command moves the file hello.c that is
in the current directory to the file newfile.c in the /source directory.

mv hello.c /source/newfile.c

The next command moves all ".1ib" files in the /In directory to the
/pl/lib directory:

mv /In/*lib /pl/lib

- util.60 -

OBD Aztec Utility Program OBD

NAME

obd - list object code
SYNOPSIS

obd <objfile>
DESCRIPTION

obd lists the loader items in an object file. It has a single parameter,
which is the name of the object file.

- util.61 -

ORD Aztec Utility Program ORD

NAME

ord - sort object module list
SYNOPSIS

ord [-v] [infile [outfile]]
DESCRIPTION

ord sorts a list of object file names. A library of the object modules
that is generated from the sorted list by the object module librarian, /b,
will have a minimum number of ’backward references’; that is, global

symbols that are defined in one module and referenced in a later
module,

Since the specification of a library to the linker causes it to search
the library just once, a library having no backward references need be
specified just once when linking a program, and a library having
backward references may need to be specified multiple times.

infile is the name of a file containing an unordered list of file
names. These files contain the object modules that are to be put into a
library. If infile isn’t specified, this list is read from ord’s standard

input. The file names can be separated by space, tab, or newline
characters.

outfile is the name of the file to which the sorted list is written. If
it’s not specified, the list is written to ord’s standard output. outfile can
only be specified if infile is also specified.

The -v option causes ord to be verbose, sending messages to its
standard error device as it proceeeds.

- util.62 -

PR Builtin command PR

NAME

pr - initialize devices
SYNOPSIS

prsl[s2..]
DESCRIPTION

pr initializes the devices that are in slots si, s2, ..., by calling each
device’s ROM.

For example, the following command initializes the card in slot 2
by calling address 0xc200:

pr 2

- util.63 -

PWD Builtin command PWD

NAME
pwd - "print working directory"”
SYNOPSIS
pwd
DESCRIPTION
pwd prints the name of the current directory.

The name is written to pwd’s standard output device. Hence, the
name is printed on the screen, by default, and can be redirected to
another device or file, if desired.

The code for pwd is contained in the SHELL.
SEE ALSO
cd

- util.64 -

RM Builtin command RM

NAME
rm -~ remove files and directories
SYNOPSIS
rm file [file] ...
DESCRIPTION
rm removes the specified files and directories.
rm will not remove locked files or non-empty directories.

For example, the following command removes the files filel.bak
and file2.bak from the current directory:

rm filel.bak file2.bak

- util.65 -

SET Builtin command SET

NAME

set - environment variable and exec file utility
SYNOPSIS

set

set VAR=string
set [-+x] [-+e] [-+n]
DESCRIPTION

set is used to examine and set environment variables, to set exec
file options, and to enable the trapping of errors by the SHELL.

set is a builtin command; that is, its code is contained in the
SHELL.

Displaying and setting environment variables

The first form listed for set causes set to display the name and value
of each environment variable.

The second form assigns string to the environment variable VAR,
Setting Exec file options

The third form, which can only be used within an exec file, sets
options for the exec file. The options are associated with a character, as
follows:

X Command line logging. With this option enabled,
before a command line in an exec file is executed, it's
logged to the screen. By default, this option is
disabled.

e Exit prematurely. With this option enabled, a
command which terminates with a non-zero return
code causes the exec file to be aborted. By default, this
option is enabled.

n Non-execution. With this option enabled, commands
in the exec file aren’t executed. By default, this option
is disabled.

Preceding an option’s character with a minus sign enables the
option, and preceding it with a plus sign disables it.

- util.66 -

SHIFT Builtin command SHIFT

NAME

shift - shift exec file variables
SYNOPSIS

shift [n]
DESCRIPTION

shift causes the values assigned to an exec file variable to be
reassigned to the next lower-numbered exec file variable. n is the
number of the lowest-numbered variable whose value is to be
reassigned, and defaults to 1.

Thus,
shift

causes the exec file variable $1 to be assigned the value of $2, $2 to be
assigned the value of $3, and so on. The original value assigned to $1 is
lost. When all arguments to the exec file have been shifted out, $1 is
assigned the null string.

EXAMPLES
The following exec file, del, is passed a directory as its first

argument and the names of files within the directory that are to be
removed:

set j=§$1
shift

loop i in $*
rm $j/%i
eloop

In this example, j is an environment variable. The first two statements
in the exec file save the name of the directory and then shift the
directory name out of the exec file variables.

The loop then repeatedly calls rm to remove one of the specified
files from the directory.

Entering

del filel.bak file2.bak
will remove the files filel.bak and file2.bak from the current directory.

- util.67 -

SQzZ Aztec Utility Program SQz

NAME

$qz - squeeze an object library
SYNOPSIS

sqz file [outfile]
DESCRIPTION

sqz compresses an object module that was created by the Manx
assembler.

The first parameter is the name of the file containing the module
to be compressed The second parameter, which is optional, is the
name of the file to which the compressed module will be written.

If the output file is specified, the original file isn’t modified or
erased.

If the output file isn’t specified, sqz creates the compressed module
in a file having a temporary name, erases the original file, and renames
the output file to the name of the original file. The temporary name is
derived from the input file name by changing it’s extent to .5qz.

If the output file isn’t specified and an error occurs during the

creation of the compressed module the original file isn’t erased or
modified.

- util.68 -

TTY Program command TTY

NAME

tty - terminal emulation program
SYNOPSIS

tty -syy -bxx
DESCRIPTION

ity is a terminal emulation program that allows an Apple //
operator to talk to another computer. To the other system, the Apple
// will appear to be a terminal that supports some of the special
features of the ADM-3A terminal.

ity reads characters from the keyboard and writes them to a serial
interface. It also reads characters from this interface and writes them
to the console. This interface must be compatible with the Super
Serial Card.

The -s option defines the number of the slot containing the
interface. The number immediately follows the -s, with no
intervening spaces. If this option isn’t specified, the interface is
assumed to be in slot 2.

The -b option defines the baud rate of the serial interface. The
baud rate immediately follows the -b option, with no intervening

spaces. If this option isn’t specified, the baud rate is assumed to be
9600.

To exit #y, type control-2; ie, type the *2’ key while holding down
the control key.

- util.69 -

VED VED

NAME

ved - Vi-like text editor
SYNOPSIS

ved [-tn] [-gprog] [file] [+L,c msg]
DESCRIPTION

ved is a screen oriented text editor that has some of the features of
the UNIX Vi editor.

This description of ved has two sections: the first is a tutorial,
showing how ved can be used to create a simple program. The second
section then describes the features of ved in detail.

1. VED Tutorial

In the following paragraphs, we will use ved to create a short C
program. The following is a listing of the program:

main(argge, argv)
int argc;
char *argv[];

register int 1 = I;

printf("Program <%s> has %d arguments\n", argv{0], argc-1);
while (--argc) { .
printf("Arg %d = <%s>\n", i, argv[i]);
i++4;
)
}

As can be scen, the program prints its name, which is the first
argument, and the number of arguments. Since the number of
arguments includes the program name, argc-1 is used as the number of
real arguments. Then, each argument is listed on a separate line.

To start ved type:
ved args.c

ved will be loaded from the current execution drive, and will try to
find args.c on the disk. When it doesn’t find it, it will say so and will
start with an empty document. Note that the screen should look like:

"args.c" line 1 of 1

The cursor should be on the second line, and a single ’-’ on all the
remaining lines. The ’-’ indicates that the line is after the end of the

- util.70 -

VED VED

file.

ved has two modes, command and insert. Normally, ved is in
command mode. For a list of most of the commands available, try
typing a question mark without a return. The screen should clear, and
the list should appear. Pressing the return key should repaint the
screen with the document being edited. To enter insert mode, simply
press the '’ key. On the status line, the <INSERT> mode indicator
should appear. This will always be there when in insert mode.

At this point, type in the test program, using the left arrow key to
correct any mistakes. The indentation in the program is produced by
using a tab character. The tab width defaults to four. It can be changed
using the -t option when the editor is started. For example, starting
ved with the command

ved -t8 file.c
sets tab stops every eight characters.

In order to use VED on older Apple 2’s, which don’t have a full
ASCII keyboard, you need to have the single wire switch key
modification installed. You can then enter upper and lower case
alphabetic characters using the SHIFT key. You can enter the special
character used by C programs by typing a control character; that is, by
holding down the control key and then typing another key. The
following table lists these control characters and the characters to
which they are translated. In this table, ~X is an abbreviation for "type
X while holding the control key down". The first column identifies
control codes that you type; the second identifies the characters to
which control codes are translated when the keyboard is in lower case
mode (that is, when the SHIFT key is off); and the last column
identifies the characters to which control codes are translated when the
keyboard is in upper case mode.

Press: To get (lower): To get (upper):
A P L3 @

~A ([

~E I \

“R } 1

AN -~ A

~C DEL _

~Q ESC

~U TAB

~U is generated by typing the ’right arrow’ key.

To exit insert mode, type is ESC key. In addition to the ESC key,
you can type control-Q (ie, type Q while holding down the CTRL key)
to exit VED’s ’insert’ mode. This is useful on some older Apple 2¢’s,
for which ESC is intercepted by the ROM and never gets back to VED.

- util.71 -

VED VED

Once out of insert mode, the cursor can be moved around using the
space bar to move right and the left arrow to move left. To move a
number of characters to the right or left, type the number of
characters to skip followed by the space or backspace. To move to the
beginning of the next line, use the return key. Similarly, use the ’-
key to move to the beginning of the previous line. Characters can be
deleted by placing the cursor on the character and pressing the ’x’ key.
Characters can be inserted by placing the cursor at the insertion point
and pressing 1’ to enter insert mode.

When the program has been entered and corrected, type w
followed by a return. This will write the document to the file we
originally tried to edit, args.c. To write the document to a different
file, simply type :w file.c followed by a return.

When the file has been written, exit the editor by typing .q
followed by return. If you try to exit without writing the file, ved will
display the message:

file modified - use q! to override

This message will appear whenever you try to exit ved after making a
change without writing the file out. To exit without saving the changes
made, type g/ followed by return.

2. VED Reference Section

If ved is invoked with a file name, that file will be loaded into the
memory buffer, otherwise it will be empty. ved will only edit text files:
binary files cannot be edited. ved does all its editing in memory and is
thus limited in the size of files that it will edit. In ved, the memory
buffer is never completely empty. There will always be at least one
newline in the buffer.

2.1 The screen

ved has a 1000 character limit on the size of a line. If a line is
longer than the width of the screen, it will wrap to the next line. If a
line starts at the bottom of the screen, and is too wide to fit, the line
will not be displayed. Instead, the '@’ character will be displayed.
Likewise, at the end of the file, all lines beyond the end will consist
only of a single ’-’ on each line.

A number of commands take a numeric prefix. This prefix is
echoed on the status line as it is typed.

2.2 Moving around in the file

The normal mode of ved is command mode. During command
mode, there are a number of ways to move the cursor around the
screen and around the whole file.

newline - move to the beginning of the next line.

- util.72 -

VED VED

- - move to the start of the previous line.

space - move to the next character of the line.
backspace - move to the previous character.

0 - move to the first character of this line.
$ - move to the last character of this line.
h - move to the top line of the screen.

1 - move to the bottom line of the screen.
b - move to the first line of the file.

g - move to the n’th line of the file.
/string - move to the next occurrence of “string’.

2.3 Deleting text

When the cursor is in the appropriate spot, there are two commands
used to delete existing text.

X - delete characters on the current line,
beginning at the cursor and continuing up
to, but not including, the newline.

dd - delete lines starting with the current line.

The x and dd commands can be prefixed with a number, which
defines the number of characters or lines to be deleted. If a number
isn’t specified, just one character or line is deleted. For example, the
first of the following commands deletes one line and the second deletes
10 lines:

dd
10dd

Note that deleting the last character on the line (newline character)
causes the following line to be appended to the current line.

2.4 Inserting text

To add new text, hitting the ’i’ key will cause the top line of the
screen to indicate that you are now in <INSERT> mode. To exit insert
mode, type ESCAPE. To insert a control character which means
something special to ved into a text file, first type control-v followed
by the control character itself. Control characters are displayed as " X’,
where X is the appropriate character.

Typing ’0’ will cause a new line to be created below the current
line, and the cursor will be placed on that line and the editor placed
into <INSERT> mode.

2.5 Moving text around

There are three commands used for moving text around. These
commands make use of a 1000 character yank buffer. The contents of
this buffer is retained across files.

vy - vank lines starting with the current line
into the yank buffer.

- util.73 -

VED VED

yd - yank lines starting with the current line
and then delete them.

p - "put" the lines in the yank buffer after the
current line. The yank buffer is not
modified.

A number can be prefixed to the yank commands, defining the
number of lines to be yanked. If a number isn’t specified, just one
line is yanked. For example, the first of the following commands
vanks one line and the second yanks and then deletes 5 lines.

Yy
Syd

2.6 Miscellaneous commands

The ’Z’ command redraws the screen with the current line in the
center of the screen.

The ’r’ command replaces the character under the cursor with the
next character typed.

2.7 File-related commands

When in command mode, if the *’ key is hit, a *’ will be displayed
on the status line. At this point, a number of special file-related
commands may be given.

|f - displays info about the current file.

'w file - writes the buffer to the specified file name.

W - writes the buffer to the last specified file.

:e[!] file - clears the buffer and prepares file for
editing.

ir file - reads the named file into the buffer.

q] - exits the editor.

In the above table, square brackets surrounding a character indicate
that the character is optional. The exclamation mark tells ved to
execute the command in which it’s specified, even if the file that’s
currently being edited has been modified since it was last written to
disk.

- util.74 -

LIBRARY FUNCTIONS OVERVIEW:
APPLE // INFORMATION

- libov65.1 -

LIBRARY Aztec C65

- libov65.2 -

Aztec C65 LIBRARY

Library Functions Overview:
Apple // Information

The Library Functions Overview chapter presented overview
information that is independent of the system on which your programs
run. This chapter presents overview information about the library
functions that is specific to programs that run on Apple //.

The sections of this chapter are numbered; the information
discussed in a section is related to the section in the Library Functions
Overview chapter that has the same number.

1. Overview of 1/0: Apple // Information

A program running on Apple ProDOS can have at most eight files
and devices open at once; this includes the standard i/o devices, and
files and devices opened for both standard and unbuffered i/o. When

this limit is reached, an open file or device must be closed before
another can be opened.

1.1 Pre-opened devices and command line arguments

Redirection of a program’s standard i/o devices and the passing of
arguments to it are only available to PRG programs that is, programs
that only run under ProDOS in the SHELL environment. These
features are not available to BIN and SYS ProDOS programs or to DOS
3.3 programs.

For a PRG-type program, the program’s name is pointed at by the
first item in the array that is pointed at by the second argument of the
of the program’s main function, That is, if the main function begins

main(arge, argv)
int argc; char *argv(];

then argv/0] is a pointer to the program’s name.

For PRG-type programs that are activated by the SHELL, a
command line argument can be a quoted string.

A PRG-type program can activate another program, by calling one
of the exec functions that are described in the ProDOS functions
chapter. If the calied program is of type PRG, the calling program can
pass arguments that the called program will see in its main function’s
argv array. Also, the called program will *inherit’ the files and devices
that were left open for unbuffered i/o by the caller; that is, these files
and devices are open when the called program is started, and it can

- libov65.3 -

LIBRARY Aztec C65

access them using the same file descriptors as did the caller. For more
details, see the Command Programs section in the Technical In formation
chapter.

1.2 File I/O
122 Random I/O
1.2.2.1 ProDOS Information

ProDOS keeps track of the last byte that has been written to a file.
Because of this, the appending of data to a file and positioning of a file
relative to its end by a program is always correctly done.

1.2.2.2 DOS 3.3 Information

On DOS 3.3, a program cannot always append data to a file or
position the file relative to its end. This is discussed in the following
paragraphs.

UNIX keeps track of the last character written to a file. Since the
Aztec I/0 functions attempt to make a file look like a UNIX file to a
program, when a program requests that a file be positioned relative to
its end (that is, relative to the last character which was written to it),
the Aztec C routines must try to locate the last character which was
written to it. This can always be done on ProDOS, since this this
system keeps track of the last character written to a file.

However, DOS 3.3 only keeps track of the last record written to a
file, and not the last character. Because of this, it is not always
possible for the Aztec C i/o functions to determine the last character
written to the file, when the program in which they are contained is
running on DOS 3.3. And because of this, it is not always possible for
a program running on DOS 3.3 to correctly position a file relative to
its end.

When a program running on DOS 3.3 requests positioning of a file
relative to its end, the Aztec i/o0 functions try to find the last character
written to the file. They always succeed if the file contains only text;
for files containing arbitrary data, they may not succeed.

To locate the last valid character in a file on DOS 3.3, the Aztec
routines use the following fact: when a file is created on these systems
using Aztec C, the last record in the file is padded at the end with the
special character which denotes the end of a text file. For DOS 3.3, the
special character is 0. If the program exactly filled the last record, it
won’t have any padding.

When a program requests that a file be positioned relative to its
end, the Aztec C i/0 routines search the file’s last record; end of file is
declared to be located at the position following the last non-end-of-file
character.

- libov65.4 -

Aztec C65 LIBRARY

For files of text, this algorithm always correctly determines the last
character in the file, so appending to text files is always correctly done.

For other files, this algorithm will still correctly determine the last
valid character in the file..most of the time. However, if the last valid
characters in the file are end-of-file characters, the file will be
incorrectly positioned.

1.2.3 Opening Files

To open a file on ProDOS, a program can use either a fully- or
partially-qualified file name, as described in the chapter on the
SHELL.

When a file is created on ProDOS, its type is set to TXT, and flags
are set allowing it to be read, written, renamed, and erased. To change
these attributes, a program can fetch and reset them, using the getfinfo
and setfinfo functions.

There are two descriptions of the open and creat functions in the
manual. You should read the descriptions that are in the Apple //
Functions chapter, since they present the special Apple // features of
these functions. The descriptions in the System Independent
Functions chapter aren’t complete, since they don’t discuss these
special features.

1.3 Device I/O

Two groups of devices are supported by Aztec C for Apple //:
devices that are of a particular type, and devices that are identified
only by the slot in which they are located.

The devices of a particular type are:

device description
con: Console

pr Printer

ser: Serial Device

The name of a "slot device" has the form su:, where n is the
number of the slot. Thus, s2: is the name of the device in slot two.

s0: is another name for the console. There are thus two ways to
access the console: as the con: device; and as the s0: device. We'll
discuss these two ways below.

A program can issue a request to access a certain device without
knowing the specific attributes of the device. The Aztec routine that
services the request, (called a "device driver") will translate the request
into a sequence of device-dependent operations. For this, it uses
information about the devices on your system that you provided using
the config program or that it itself detected. For information, see the
Devices section in the SHELL chapter and the description of config in
the Utility Programs chapter.

- libov65.5 -

LIBRARY Aztec C65
1.3.1 The Console

As mentioned above, a program can access the console using either
the con: or the s0: device. con: provides a program "high level" access
to the console, allowing a program to easily perform console i/o in a
variety of ways. The features of console i/o that are described in the
System Independent Library Overview chapter are available to
programs that access the console using con:. Those features are system
independent: a program using these features can run on any system
supportgd by Aztec C. Other features of console i/o when using the
con: device, which may or may not be available on other systems

supported by Aztec C, are described in the Console I/0 section of this
chapter.

s0: provides a program "low level” access to the console. An i/o
request to s0: is simply passed on to the Apple’s console i/o routines
for processing (cout for output, keyin for input), with the Aztec driver
performing some manipulation on the i/o data, if the console requires
it (as defined by you using the config program). These manipulations
are the same that are available when i/o is performed to any slot
device; for information, see the discussion of slot devices, below.

1.3.2 1/0 to Other Devices
1.3.2.1 The Printer

pr., the printer device, is associated with a slot device and an
initialization string (as defined by you using the config program).

When a program opens pr., the device that’s in the associated slot
will be initialized, just as if the slot device was being opened. Then
the initialization string is sent to the device.

Output requests to pr: are performed just as if the request was sent
to the device’s slot device.

1.3.2.2 The Serial Device

The serial device, ser, is associated with a slot device (as defined by
you using the config program). I/0 requests to ser: are processed just
as if the request was made to the associated slot device.

1.3.2.3 The Slot Devices

There is a slot device for each slot in an Apple //: slot device si: is
associated with the device in slot 1, s2: with the device in slot 2, and so
on. s0. is special, being associated with the console.

As mentioned above, the slot devices provide "low level" access to
the devices in the slots: an i/o request to a slot device from a program
is simply passed onto the device’s ROM routine for processing, with
some manipulations on the transferred data being performed by the
Aztec slot driver if required (as defined by you using config).

- libov65.6 -

Aztec C65 LIBRARY

The Aztec slot driver can distinguish between three types of slot
devices: those using the Pascal 1.1 protocol, those using Pascal 1.0
protocol, and those using Basic protocol. When a program opens the
device, the Aztec slot driver determines the I/O protocol used by the
device and calls the appropriate ROM routine to initialize the device.

4. Overview of Console I/O using con: Apple // Information

This section discusses features of the con: device that aren’t
discussed in the Library Overview chapter.

On Apple //, the con: device supports the UNIX console i/o
options that are described in the Library Overview chapter. In
addition, other options are supported by con: that aren’t UNIX-
compatible, including the automatic expansion of tabs to spaces on
output (the XTAB option) and whether or not the program will wait if
it issues a read to the console when a key hasn’t yet been depressed
(the NODELAY option).

A program’s default console mode on Apple // is line-oriented,
with ECHO and CRMOD enabled, just as it would be on another
system. In addition, an Apple // program’s default mode has the
special options XTAB and ECHOE (defined below) enabled,
NODELAY disabled, and tab stops set every four characters.

4.1 Line-oriented Input

On Apple //, all console options are program-selectable, even in
line-oriented input mode.

Thus, line-oriented input doesn’t automatically enable ECHO for a
Apple // program.

On Apple //, a non-UNIX option, NODELAY is available, which
defines whether a program wants to wait if its read request can’t be
immediately satisfied. With NODELAY reset and with the console in
line-oriented mode, a read request to the console will wait if an entire
line hasn’t been typed. With NODELAY sct and with the console in
line-oriented mode, a read request will always return immediately: if
an entire line hasn’t been typed, no characters will be returned to the
program (even if some characters have been typed); if an entire line
has been typed, the requested characters will be returned.

4.2 Character-oriented Input on Apple //

On Apple //, there is one exception to the rule that RAW mode
resets all other options: with the console in RAW mode, a program still
has control over the NODELAY option.

With the console in character-oriented input mode, the driver’s
treatment of a read request to the console depends on the console’s
NODELAY option: if this option is reset, the program will be
suspended until at least one character has been received; then, the

- libov65.7 -

LIBRARY Aztec C65

requested number of characters, up to the number in the internal
buffer, are returned to the program. Thus, suppose a program issues
the input call

read (0, buf, 80)

to the console, which is in a character-oriented mode with NODELAY
reset. If there are characters in the driver’s internal buffer, it will
return the requested number of characters from this buffer, up to the
number in the buffer; if 80 characters aren’t already in the buffer, it
won’t wait for the operator to enter the remaining characters. If there
are no characters in the driver’s buffer, the driver will suspend the
program until the operator types a character, and then return that
character to the program.

If the console is in character-oriented mode with NODELAY set, a
read request to the console will always return immediately: if no
characters are in the driver’s buffer, no characters are returned to the
program; otherwise, the characters in the buffer are returned, up to
the number requested.

4.4 The sgtty fields
4.4.1 The sg_ flags field

On Apple //, the following non-UNIX flags for sg__ flags are
supported in addition to the UNIX-compatible flags:

XTAB Convert tabs to spaces on output, with tab stops
set as specified by TABSIZ. By default, XTAB is
enabled.

TABSIZ A mask for a four-bit field that defines the

tabwidth to be used when XTAB is set. By
default, TABSIZ is set to four.

ECHOE When ECHO is set, and the ’erase’ character is
entered, output the ’erase’ character, then a
space, and then another ’crase’ character (thus
erasing the character from the screen); By
default, ECHOE is enabled.

NODELAY When a read is issued to the console and no keys
have been typed, return immediately. By
default, NODELAY is disabled.

4.4.2 The sg_erase field

This field is supported on Apple //. When a program reads from
con: and the console is in line-oriented mode, receipt of the sg__erase
character causes the console driver to "erase" the last-typed character,
by backspacing the cursor over it and by removing the last-typed
character from its internal buffer.

By default, this character is ~H (that is control-H), or equivalently,
the left-arrow key.

- libov65.8 -

Aztec C65 LIBRARY
4.4.3 The sg_ kill field

sg__kill is supported on Apple //. When a program reads from con:
and the console is in line-oriented mode, receipt of the sg kill
character causes the console driver to "erase" the line that’s currently
being entered, by moving the cursor to the beginning of the next line
and by deleting all characters in its internal buffer that haven’t yet
been returned to the program.

By default, this character is ~X, that is, control-X.
4.6 Screen Control Codes

Most characters that a command program sends to con: are simply
written to the screen. Some, however, are control codes that cause the

console driver to perform special functions. The control codes (in
hex) and their functions are:

code function

07 beep

08 non-destructive backspace

09 tab character

Oa cursor down/linefeed (scroll at bottom)
Ob cursor up

Oc non-destructive cursor right

0d return to beginning of line

la home and clear screen

le home the cursor

1b 45 insert blank line at cursor

1b 51 insert blank character at cursor
1b 52 delete line at cursor

1b 54 clear to end of line from cursor
1b 57 delete character at cursor

1b 59 clear to end of screen

1b 3d y+20 x+20 move cursor to X,y position

Note: the "insert character" and "delete character" operations are not
availble when you’re using the standard Apple // console.

- libov65.9 -

LIBRARY

6. Error codes

Aztec C65

The following table lists the ProDOS-specific error codes that may
be returned to a program.

hex code

Meaning
No error
Invalid number for system call

Invalid param count for system call

Interrupt vector table full

I/0O Error

No device connected/detected
Disk write protected

Disk switched

Invalid characters in pathname
File control block table full
Invalid reference number
Directory not found

Volume not found

File not found

Duplicate file name

Volume Full

Volume directory full
Incompatible file format
Unsupported storage type

End of file encountered
Position out of range

File Access error; eg, file locked
File is open

Directory structure damaged
Not a ProDOS disk

Invalid system call parameter
Volume control block table full
Bad buffer address

Duplicate volume

Invalid address in bit map

- libov65.10 -

Apple // FUNCTIONS

- 1ib65.1 -

Apple // Functions Aztec C65

Chapter Contents

ADDIE FUNCHIOMNS ..oeveerieeeseieecenicesesees st csssssessostersssarsmsassscesmssesseenasaseseenes 1ib65
TRACK ittt ettt re s essssses e e sesassssessasssssssnensasssnsessonsensessonaesen 4
The fUNCHONS ...ooicveeererererere serrereenesessessssssnstssosssessesesssssosessosessessosessessnsan 6

- 1ib65.2 -

Aztec C65 Apple // Functions

Apple // Functions

This chapter describes functions which are available only to
programs which are running on an Apple //, running either ProDOS
or DOS 3.3.

The header to the description of a set of functions defines the
environments in which the functions can be used, as does the index
that follows this introduction.

This chapter is divided into sections, each of which describes a
group of related functions.

As with description of the system independent functions, the
header to a section of this chapter has a parenthesised letter that
specifies the library containing the section’s functions. The codes and
their related libraries are:

C c.lib;

S s.lib;

G g.lib.
The Graphics Functions

The graphics functions described in this section can be used to
draw points, lines, and ovals in the hi-res primary graphics page.

With the screen in full-screen hi-res mode, the screen is a matrix
280 dots wide by 192 dots high, with the top left dot having
coordinates (0,0).

With the screen in mixed-mode, the bottom four lines of the screen
are used to display text and the remainder of the screen is in hi-res
mode. The hi-res part of the screen in this case is 280 dots wide by
160 high.

- 1ib65.3 -

Apple // Functions Aztec C65

Index to Apple // Functions

This section lists the Apple-specific functions that are provided
with Aztec C65. The list is sorted alphabetically by function name.
For each function it gives the function’s name, the title of the section
in which the function is described, and a phrase describing the
function’s purpose.

function page description
ACCESS .overrreerreenes ACCESSoooeeeevrcereerenens determine file accessibility
ASSCTL coveveveecenennen ASSERTcinrrevrererenencsesseeneas verify program assertion
black ...ocovvrerenne COLOR ...otrrcresreeeneerserressersessessassases paint screen black
blueccovvvneee (6]0] 50 2 SOOI paint screen blue
5] ¢ BREAKooeeeteeeireeeceerneereesennnnesenseseessesnes set heap pointer
chdir ... DIRECTORY change current directory (ProDOS only)
CIrcle .vveveerenn. CIRCLE ...oerivereesernrsrernsseesstsssssessssssssssssseraes draw circle
Creat .ooveeveeereenes CREAT ...vrvreereeeesevenesrecnesenens creat file on Apple //
[0110) o JNUUIRIU [O 1 0) I C-to-Pascal string conversion
drw, etc LINE ..ottt e eseresecssossessessssessnssssssssesnarsssns draw line
execl, etc EXECcovvvvveeenee jump to program (ProDOS SHELL)
(56 | ST EXIT coeeeeerteeeeeenrersoressessessessecsssnsrssnne terminate program
_EXit e EXIT oot cneses terminate program
fixnam FIXNAMovvveee convert file name (ProDOS only)
fscreen MODE ... cenennee select full-screen mode
getenyveeeecen. GETENY ... get env var (ProDOS SHELL only)
geteof .vnnrennnn.) 20) SRR get file’s EOF (ProDOS only)
getfinfo FILEINFO get file information (ProDOS only)
getprefix PREFIX ... get default prefix (ProDOS only)
Sreenvvvvenennns COLOR ...cereeverreesrnreesesressrssnsssavases paint screen green
173 OO MODE ...t nesaesanene select hi-res mode
lineto, etc LINEooteteveeerernreiecscressesnsessssesacscessssssssassesonsanas draw line
mktemp MKTEMPccevvecueen make name for temporary file
mkdire... DIRECTORY make a directory (ProDOS only)
MSCreen ... MODE ... ricnvecrenesnesrecsenssnsseennes select mixed mode
(0773 1 RS OPENcovvvereeerreecnerernresessessesaesees open file on Apple //
pagel, page2 ... PAGE ... ncereniessenssenns Page selection
perror, etc PERRORovovrreterreenrneseenenncsneens write error message
plot, €tCc.... POINTctrvrerrereenterererersraessssssssessaasssssssssasssnsone plot point
plotchar PLOTCHAR ..oreireernrrreneeseesesseesesnsenes plot character
010 oS CTOPoeevrcevrreenenenens Pascal-to-C string conversion
__system SYSTEM ProDOS system call (ProDOS only)
SOIK eeeeievivevenens BREAK ...t reesvsresseaesesnasssensase set heap pointer
scr__curs, €tC ... SCREENincnenercincnns screen manipulation

- lib65.4 -

Aztec C65 Apple // Functions

Set__asp e CIRCLEooooeeieererereeeeeerveesreneaesanes set oval eccentricity
seteofcvvrnnee. EOF ...cetererteneesneenns set file’s EOF (ProDOS only)
setfinfo FILEINFO set file information (ProDOS only)
Setiob .evveeerenenn. SETIOB................ preallocate i/o blocks (ProDOS only)
setprefix PREFIXovvvevrrenens set default prefix (ProDOS only)
1 ol 11 G STRCHR ... find character in string
strrchr ..., STRCHR ...t find character in string
[£52.¢ SR MODKEcertreerenereresseneernssssessesnnans select text mode
time, etc TIME ot time functions (ProDOS only)
tmpfile TMPFILEvevvrnne. create & open temporary file
tmpnam TMPNAM ...vvvreeneee make name for temporary file
1'210) (<] N (6/0) 56 SRR paint screen violet

- 1ib65.5 -

ACCESS (O) ProDOS & DOS Function ACCESS

NAME
access - determine accessibility of a file or directory

SYNOPSIS
int access (filename, mode)
char *filename;
int mode;

DESCRIPTION
access determines whether a file or directory can be accessed in
the way that the calling function wants to access it. It can also
be used to just test for the existence of a file or directory.

filename points to the name of the file or directory; this name
optionally contains the drive and path of directories that must
be passed through to get to the file or directory. If the drive
component isn’t specified, the file or directory is assumed to
reside on the default drive. If the path component isn’t
specified, the file or directory is assumed to reside in the
current directory on the specified drive.

mode is an int that specifies the type of access desired:

mode meaning

4 read

2 write

1 execute (if a file) or search (if a directory)
0 check existence of the file or directory.

If the existence of the file or directory is being checked (ie,
mode=0), access returns 0 if the file exists and -1 if it doesn’t.
In the latter case, access also sets the symbolic value ENOENT in
the global integer errno.

When access is called to determine if a file can be accessed in a
certain way (ie, mode isn’t 0), access returns 0 if the file can be
accessed in the desired manner; otherwise, it returns -1 and sets

a code in the global integer errno that defines why the access is
not permitted.

When asked, access says that a directory can be read or written;
this means that a program can create and delete files on the

directory, not that it can directly read and write the directory
itself.

The symbolic values that access may set in errno when it’s called
with a non-zero mode parameter are:

errno meaning

ENOTDIR A component of the path prefix is not a
directory.

- 1ib65.6 -

ACCESS (O ProDOS & DOS Function ACCESS

ENOENT The file or directory doesn’t exist.
EACCES The file or directory can’t be accessed in
the desired manner.
SEE ALSO
The "Errors" section of the Library Overview chapter discusses
errno.

- lib65.7 -

ASSERT (Macro) ProDOS & DOS Function ASSERT

NAME

assert - verify program assertion
SYNOPSIS

#include <assert.h>

assert (expr)

int expr;
DESCRIPTION

assert is useful for putting diagnostic messages in a program.
When executed, it will determine whether the expression expr is
true or false. If false, it prints the message

Assertion failed: expr, file fff, line Innn

where fff is the name of the source file and nnn is the line
number of the assert statement.

To prevent assertion statements from being compiled in a
program, compile the program with the option -DNDEBUG, or
place the statement #define NDEBUG ahead of the statement
#include <assert.h>.

- lib65.8 -

BREAK (C) ProDOS & DOS Functions BREAK

NAME
sbrk, brk, rsvstk - heap management functions

SYNOPSIS
void *sbrk(size)

brk(ptr)
void *ptr;

rsvstk(size)

DESCRIPTION
sbrk and brk provide an elementary means of allocating and
deallocating space from the heap. More sophisticated buffer
management schemes can be built using these functions; for
example, the standard functions malloc, free, etc call sbrk to get
heap space, which they then manage for the calling functions.

sbrk increments a pointer, called the ’heap pointer’, by size
bytes, and, if successful, returns the value that the pointer had
on entry. Initially, the heap pointer points to the base of the
heap. size is a signed int; if it is negative, the heap pointer is
decremented by the specified amount and the value that it had
on entry is returned. Thus, you must be careful when calling
sbrk: if you try to pass it a value greater than 32K, sbrk will
interpret it as a negative number, and decrement the heap
pointer instead of incrementing it.

brk sets the heap pointer to ptr, and returns 0 if successful.

rsvstk sets the heap-stack boundary size bytes below the current
top of stack, thus changing the amount of space allocated to the
stack and heap.

SEE ALSO
The functions malloc, free, c¢tc, implement a dynamic buffer-
allocation scheme using the sbrk function. See the Dynamic
Buffer Allocation section of the Library Functions Overviews
chapter for more information.

The standard i/o functions usually call malloc and free to allocate
and release buffers for use by i/o streams. This is discussed in
the Standard 1/0 section of the Library Functions Overviews.

Your program can safely mix calls to the malloc functions,
standard i/o calls, and calls to sbrk and brk, as long as the your
calls to sbrk and brk don’t decrement the heap pointer. Mixing
sbrk and brk calls that decrement the heap pointer with calls to
the mualloc functions and/or the standard i/o functions is
dangerous and probably shouldn’t be done by normal programs.

For more information on the heap and its relationship to _the
other areas of a program, see the Memory Organization section

- 1ib65.9 -

BREAK (C) ProDOS & DOS Functions BREAK

of the Technical Information chapter.

ERRORS
If an sbrk or brk request would make the heap space pointer go
past the end of the heap, the function will return -1 as its value,
without modifying the heap space pointer.

- 1ib65.10 -

CIRCLE (G) ProDOS & DOS Functions CIRCLE

NAME
circle, set__asp - circle-drawing functions

SYNOPSIS
circle (x, y, rad)
int x, y, rad;
set__asp (xasp, yasp)
int xasp, yasp;

DESCRIPTION
circle draws an oval on the primary hi-res graphics page, with
center at (x,y). By default, the horizontal and vertical radii of
the oval are both rad, resulting in circle drawing a circle.

set__asp controls the eccentricity (ie, the "ovalness") of the
figure drawn by circle: circle draws an oval whose horizontal
radius is rad * xasp and whose vertical radius is rad * yasp,
where xasp and yasp have the values defined by the last call to
set _asp. If set _asp isn’t called, circle will use the value 1 for
xasp and yasp, resulting in in a circle of radius rad being drawn.

SEE ALSO
color, line, mode, page, plotchar, point

- lib65.11 -

COLOR (G) ProDOS & DOS Functions COLOR

NAME
black, blue, green, violet - color selection functions

SYNOPSIS
black()
blue()

green()
violet()

DESCRIPTION
Each of these functions sets the screen in Hi-res, full-screen
graphics mode, using the primary graphics page, and clears the
screen.

The entire screen will be a single color, as determined by the
function that is called. For example, calling green makes the
entire screen green.

SEE ALSO
circle, line, mode, page, plotchar, point

- 1ib65.12 -

CREAT (C) CREAT

NAME
creat - create a new file

SYNOPSIS
creat(name, pmode)
char *name;
int pmode;

DESCRIPTION

There are two descriptions of the creat function in this manual:
the one in the System Independent Functions chapter (which is
supplied with all versions of Aztec C) describes creaf’s
implementation on most systems, while the one you’re now
reading describes its implementation on the Apple //. So to
learn about the Apple // version of creat, you can read just this
description and ignore the one in the System Independent
Functions chapter.

creat creates a file and opens it for unbuffered, write-only
access. If the file already exists, it is truncated so that nothing is
in it (this is done by erasing and then creating the file).

creat returns as its value an integer called a "file descriptor".
Whenever a call is made to one of the unbuffered i/o functions
to access the file, its file descriptor must be included in the
function’s parameters.

name is a pointer to a character string which is the name of the
device or file to be opened. See the 1/O overview section for
details.

.P For ProDOS programs, the pmode parameter of the creat
function is the file’s access mode. The meanings of the bits in
this parameter (bit 0 is the least significant bit, bit 15 is the
most significant):

Bit number Meaning

0 File can be read

1 File can be written
2-4 Reserved

5 File modified since last backup
6 File can be renamed

7 File can be deleted

8-15 Unused

Thus, to create a file on which all types of operations are
permitted, set its mode parameter to 0xc3.

For DOS 3.3 programs, pmode is the file’s type. Type codes:

- 1ib65.13 -

CREAT (C) CREAT

param3, in hex File type
00 Text
01 Integer basic
02 Applesoft basic
04 Binary
08 Relocatable
10 S-type file
20 A-type file
40 B-type file
SEE ALSO
Unbuffered I/0 (O), Errors (O)
DIAGNOSTICS

If creat fails, it returns -1 as its value and sets a code in the
global integer errno.

- 1ib65.14 -

CTOP (C) ProDOS & DOS Functions CTOP

NAME
ctop, ptoc - C <-> Pascal string functions

SYNOPSIS
char *
ctop(str)
char *str;

char *
ptoc(str)
char *str;

DESCRIPTION
ProDOS expects character strings to be in Pascal format, in
which a string consists of a leading byte containing the number
of characters in the string, followed by the characters in the

string. In C, on the other hand, a character string consists of the
characters followed by a null character.

ctop and ptoc convert a string from C form to Pascal form and
from Pascal form to C form, respectively. The converted string

overlays the original string, and the function returns a pointer
to the converted string.

- lib65.15 -

EOF (C) ProDOS Functions EOF

NAME
geteof, seteof - get and set end-of-file position
SYNOPSIS
long geteof(fd) /* ProDOS functions */
int fd;

long seteof(fd, pos)
int fd; long pos;
DESCRIPTION

geteof returns as its value the end-of-file value of the file whose

file descriptor is fd, by issuing the GET _EOF ProDOS MLI
function.

seteof sets the eof-of-file value for the file whose file descriptor
is fd to pos, and returns pos as its value. To do this, set_eof
issues the SET__EOF ProDOS MLI function.

- 1ib65.16 -

EXEC

NAME

© ProDOS SHELL Functions EXEC

execl, execv, execlp, execvp - program activation functions

SYNOPSIS

execl(name, arg0, argl, arg2, ..., argn, 0)
char *name, *arg0, *argl, *arg2, ...;

execv(name, argv)

char *name, *argv|];

execlp(name, arg0, argl, arg2, ..., argn, 0)
char *name, *arg0, *argl, *arg2, ...;

execvyp(name, argv)
char *name, *argv[];

DESCRIPTION

These functions load, and transfer control to, another program.
The called program is loaded on top of the calling program;
thus, if the exec functioh succeeds, it doesn’t return to the
caller.

The functions can be called by PRG programs; that is, by
programs that can only be run in the SHELL environment. The
functions can start any type of program, including those that
have not been created using the Aztec software.

The functions can also be called by BIN programs, when the
programs are running in the SHELL environment. However,
unlike BIN programs, these functions can’t be used outside the
SHELL environment; thus, you should be wary about using
these functions in a BIN program.

The following paragraphs will first describe the parameters to
the exec functions, then describe the differences between the
functions, and finally discuss other features of the functions.

Parameters

name is the name of the file containing the program to be
loaded. It can optionally specify, using the standard ProDOS
syntax, the complete or a partial path of directories that must be
passed through to get to the file.

The exec functions can pass arguments to the called program.
execl and execlp build a command line by concatenating the
strings pointed at by argl, arg2, and so on. If a C program is
being called, its main function will see arg0 as argv[0], argl as
argv[1], and so on. By convention, arg0 is the name of the
program being called.

execv and execvp build a command line by concatenating the
strings pointed at by argv/0], argv[1], and so on. The argv array
must be have a null pointer as its last entry. If a C program is

- 1ib65.17 -

EXEC (O) ProDOS SHELL Functions EXEC

being called, its main function will see the calling function’s
argv[i] as its argv[i]. By convention, argv[{0] is the name of
the program being called.

The Functions

execl and execv load a program from the specified file: execl is
useful when a fixed number of arguments are being passed to a
program. execv is useful for programs which are passed a
variable number of arguments.

execlp and execvp search a list of directories for the program to
be loaded, beginning with the current directory. If the program
isn’t there, the directories specified in the PATH
environment variable are searched.

Passing Open Files and Devices

When both the calling and the called programs are of type PRG,
the following comments describe the passing of open files and
devices between the programs:

* Files that are left open for unbuffered i/o in the calling
program will be open for unbuffered i/o in the called
program, and will have the same file descriptors.

* Except for files that are associated with the stdin,
stdout, and stderr standard i/o devices, files left open
for standard i/o in the calling program won’t be open
for standard i/o in the called program, although they
will be open for unbuffered i/o; thus, before a PRG
program activates another using an exec function, it
should cause the buffered data for files opened for
standard i/o to be written to disk, using either the
Sclose or fflush functions.

* The standard input, standard output, and standard error
devices are open in the called program to the same
devices or files as in the calling program. For the
reasons discussed above, care is needed when either the
calling or called program accesses these logical devices
using standard i/o calls.

When both programs are not of type PRG, open files and
devices can not be passed between the programs.

DIAGNOSTICS
If an exec function fails, for example because the file doesn’t
exist, it will return -1 as its value.

- lib65.18 -

EXIT (C) ProDOS & DOS Functions EXIT

NAME
exit, _ exit

SYNOPSIS
exit(code)

__exit(code)

DESCRIPTION
exit and __exit terminate the execution of a program and restart
the operating system-type program that activated the program
(that is, the SHELL or the Basic Interpreter). exit closes files
opened for both standard and unbuffered i/0, calling fclose to
close each file opened for standard i/o, and then calling close to
close any other files that are open for unbuffered i/o. _ exit

closes files opened for unbuffered i/0, calling close to close each
such file.

For a PRG program, code is its return code. The return code is
set to 0 for a PRG program that terminates by either explicitly
or implicitly returning from its main function. An exec file that
starts a PRG program can test the program’s return code and act
accordingly.

The return code of a BIN program is always 0, regardless of the
value specified in the call to exit or __exit.

- 1ib65.19 -

FILEINFO (C) ProDOS Functions FILEINFO

NAME

getfinfo & setfinfo - get & set file information
SYNOPSIS

#include <prodos.h> /* ProDOS Functions */

getfinfo (file, fp)
char *file; struct finfo *fp;

setfinfo (file, fp)
char *file; struct finfo *fp;

DESCRIPTION
getfinfo fetches information from the directory about a file
named file, by issuing the GET__FILE INFO ProDOS MLI
call, and returns the information in the structure pointed at by

/p.

setfinfo sets information in the directory about the specified
file, as defined by the structure pointed at by fp. To do this, it
issues the SET__FILE _INFO ProDOS MLI call.

file can optionally specify, using the standard ProDOS syntax,
the complete or partial sequence of directories that must be
passed through to get to the directory that contains the file.

The structure that is pointed at by fp has the following format;
struct finfo ('
unsigned char access;
unsigned char file__type;
unsigned short aux__type;
unsigned char storage type; /* getfinfo only */
unsigned short blocks__used; /* getfinfo only */
unsigned short mod__date;
unsigned short mod__time;
unsigned short create_date; /* getfinfo only */
unsigned short create__time; /* getfinfo only */
I
For the definition of these fields, see the description of the
GET__FILE_INFO and SET_FILE_INFO ProDOS MLI calls
in the ProDOS Technical Reference Manual.

DIAGNOSTICS

If no error occurs, these functions return 0 as their value. If an
error occurs, they set a code in the global int errno and return -1
as their value.

- 1ib65.20 -

FIXNAM (O) ProDOS Function FIXNAM

NAME
fixnam - convert file name to fully-qualified name

SYNOPSIS

fixnam(in__name, buf) /* ProDOS only */
char *in__name, *buf;

DESCRIPTION
fixnam converts the file name pointed at by in__name into a
fully-qualified name consisting of the file name itself prefixed
by the directories that must be passed through to get to the file.
in__name can use "." to refer to the current directory, and ".." to
refer to a parent directory.

The converted name is placed in the buffer pointed at by buf.

For example, suppose that the current directory being
/work/source/input. The first call to fixnam that follows
places /work/source/input/indvr.c in inbuf. The second places
/ work / source /output /outdvr.c in outbuf.

fixnam("indvr.c",inbuf)
fixnam("../output/outdvr.c",outbuf)

DIAGNOSTICS
fixnam returns 0 if successful. If the input file name contains
so many "." references that the resultant directory is above the
root directory, fixnam sets EINVAL in the global integer errmo
and returns -1 as its value.

- 1ib65.21 -

GETENY (C) ProDOS SHELL Function GETENY

NAME
getenv - Get value of environment variable

SYNOPSIS

char *getenv(name) /* ProDOS SHELL Function */
char *name;

DESCRIPTION
getenv, returns a pointer to the character string associated with
the environment variable name, or 0 if the variable isn’t in the
environment.

The character string is in a dynamically-allocated buffer; this
buffer will be released when the next call is made to getenv.

geteny can be called by PRG programs; that is, by programs that
can only be run in the SHELL environment. It can also be
called by BIN programs that are running in the SHELL
environment. However, unlike BIN programs, getenv cannot be
used outside of the SHELL environment; thus, you should be
wary of calling getenv in a BIN program.

- 1ib65.22 -

LINE (G) ProDOS & DOS Functions LINE

NAME

drw ..., lineto ... - line-drawing functions
SYNOPSIS

drw (x1, yl, x2, y2)

bdrw (x1, y1, x2, y2)

gdrw (x1, y1, x2, y2)

rdrw (x1, y1, x2, y2)

vdrw (x1, y1, x2, y2)

lineto (x, y)

blineto (x, y)
glineto (x, y)
rlineto (x, y)
vlineto (x, y)

DESCRIPTION
These functions draw straight lines on the primary hi-res
graphics page. The "drw" functions (ie, the first five functions)
draw a line from the point whose coordinates are (xI, yI) to
(x2, y2), differing in the color of the line, as follows:

Sfunction color
drw white
bdrw blue
gdrw green
rdrw red
vdrw violet

The "drw" functions set the global variables _oldx and __oldy to
x2 and y2, respectively.

The "lineto" functions (ie, the last five functions) draw a line
from the point whose coordinates are (__oldx, _oldy) to the
point (x, y), and then set _oldx and _oldy to x and y,
respectively. These functions differ in the color of the drawn
line, as follows:

function color
lineto white
blineto blue
glineto green
rlineto red
vlineto violet

SEE ALSO
circle, color, mode, page, plotchar, point

- 1ib65.23 -

MKDIR (C) ProDOS Function MKDIR

NAME
mkdir - make directory

SYNOPSIS
mkdir (name) /* ProDOS function */
char *name;

DESCRIPTION

mkdir creates the directory named name.

name can optionally specify, using the standard ProDOS syntax,
the complete or partial sequence of directories that must be
passed through to get to the directory that is to be the parent of
the created directory.

DIAGNOSTICS
If no error occurs, mkdir returns O as its value. If an error

occurs, it sets a code in the global int errno and returns -1 as its
value.

- 1ib65.24 -

MKTEMP (O) ProDOS & DOS Function MKTEMP

NAME
mktemp - make a unique file name

SYNOPSIS
char *
mktemp (template)
char *template;

DESCRIPTION

mktemp replaces the character string pointed at by template with
the name of a non-existent file, and returns as its value a
pointer to the string.

The string pointed at by template should look like a file name
whose last few characters are Xs with an optional imbedded
period.

mktemp replaces the Xs with a letter followed by digits. The
digits are set to the address of the program’s _ muain function.
The letter will be between *A’ and ’Z, and will be chosen such

that the resulting character string isn’t the name of an existing
file.

DIAGNOSTICS ,
For a given character string, mktemp will try to convert the
string into one of 26 file names. If all of these files exist,

mktemp will replace the first character pointed at by template
with a null character.

SEE ALSO
tmpfile, tmpnam

EXAMPLES

The following program calls mktemp to get a character string
that it can use as a file name. If the program’s _ main function
begins at decimal address 1234, then the generated name will be
one of the strings abc4001.234, abcB001.234, ..abcZ001.234. 1f
all the strings that mktemp considers are names of existing files,
mktemp will replace the first character of the string passed to it,
a in this case, with 0.

- 1ib65.25 -

MKTEMP (C) ProDOS & DOS Function MKTEMP

#include <stdio.h>
main()

char *fname, *mktemp();
FILE *fp, fopen();
fname=mktemp("abc XXX XXX")==0)
if (*fname){

printf("mktemp failed");

exit(1);
} else

fp=fopen(fname, "w");

- 1ib65.26 -

MODE (G) ProDOS & DOS Functions MODE

NAME

text, hgr, fscreen, mscreen - mode-selection functions
SYNOPSIS

text ()

hgr ()
fscreen ()
mscreen ()

DESCRIPTION
text sets the screen in text mode.

hgr sets the screen in Hi-res graphics mode. Unlike the Color
functions, hgr doesn’t clear the screen.

fscreen gives you a full screen to work with in the graphics

mode. This means that you have a 280 by 192 matrix to work
with,

mscreen scts the screen in mixed text and Hi-res modes. In this
mode, the four lines at the bottom of the screen are used to
display text, and the remainder of the screen (a 280 by 160
matrix) is in Hi-res mode.

SEE ALSO
circle, color, line, page, plotchar point

- 1ib65.27 -

OPEN (O) OPEN

NAME
open

SYNOPSIS
#include "fentl.h"

open(name, mode, param3) /* Apple // calling sequence */
char *name;

DESCRIPTION

There are two descriptions of the open function in this manual:
the System Independent Functions chapter (which is supplied
with all versions of Aztec C) describes the open function that is
provided for most systems, while the one you’re now reading
describes the open function that is provided for the Apple //.
So to learn about the Apple // version of open, you can read
just this description and ignore the one in the System
Independent Functions chapter.

open opens a device or file for unbuffered i/o. It returns an
integer value called a file descriptor which is used to identify
the file or device in subsequent calls to unbuffered i/o
functions.

name is a pointer to a character string which is the name of the
device or file to be opened. For details, see the overview section
I/0.

mode specifies how the user’s program intends to access the file.
The choices are as follows:

mode meaning
O _RDONLY read only

O_WRONLY write only

O_RDWR read and write

O_CREAT Create file, then open it

O_TRUNC Truncate file, then open it

O_EXCL Cause open to fail if file already exists;
used with O CREAT

O__APPEND Position file for appending data

These open modes are integer constants defined in the files
fentLh. Although the true values of these constants can be used
in a given call to open, use of the symbolic names ensures
compatibility with UNIX and other systems.

The calling program must specify the type of access desired by
including exactly one of O_RDONLY, O_WRONLY, and
O_RDWR in the mode parameter. The three remaining values
are optional. They may be included by adding them to the mode
parameter, as in the examples below.

- 1ib65.28 -

OPEN (O) ‘ OPEN

By default, the open will fail if the file to be opened does not
exist. To cause the file to be created when it does not alrecady
exist, specify the O__CREAT option ™ O_EXCL is given in
addition to O__CREAT, the open wiu tail if the file already
exists; otherwise, the file is created.

If the O_TRUNC option is specified, the file will be truncated
so that nothing is in it. The truncation is performed by simply
erasing the file, if it exists, and then creating it. So it is not an
error to use this option when the file does not exist.

Note that when O__TRUNC is used, O__CREAT is not needed.

If O__APPEND is specified, the current position for the file
(that is, the position at which the next data transfer will begin)
is set to the end of the file. For systems which don’t keep track
of the last character written to a file (for example, CP/M and
Apple DOS), this positioning cannot always be correctly done.
See the 1/0 overview section for details. Also, this option is not
supported by UNIX.

When open is used to create a file under ProDOS, param3 is the
file’s access mode. The meanings of the params3 bits, where bit 0
is the least significant bit, bit 15 is the most significant:

Bit number Meaning

0 File can be read

1 File can be written
2-4 Reserved

5 File has been modified since last backup
6 File can be renamed

7 File can be deleted
8-15 Unused

Thus, to create a file on which all types of operations are
permitted, set its param3 parameter to 0xc3.

When open is used to create a file under DOS 3.3, param3 is the

file’s type:
param3, in hex File type
00 Text
01 Integer basic
02 Applesoft basic
04 Binary
08 Relocatable
10 S-type file
20 A-type file
40 B-type file

If open does not detect an error, it returns an integer called a
"file descriptor." This value is used to identify the open file
during unbuffered i/0 operations. The file descriptor is very

- 1ib65.29 -

OPEN (O) OPEN

different from the file pointer which is returned by fopen for
use with buffered i/o functions.

SEE ALSO
I/0 (O), Unbuffered I/0 (O), Errors (O)

DIAGNOSTICS
If open encounters an error, it returns -1 and sets the global
integer errno to a symbolic value which identifies the error.
EXAMPLES
1. To open the file testfile for read-only access:

fd = open("testfile", O__RDONLY, 0);

The third parameter of open is not important in this case, since
open won't create the file. If testfile does not exist open will just
return -1 and set errno to ENOENT.,

2. To open the file subl on ProDOS in read-write mode,
allowing it to be deleted, read, written, and renamed:

fd = open("subl”, O_ RDWR+O__CREAT, 0xc3);
If the file does not exist, it will be created and then opened.

3. The following program opens a ProDOS file whose name is
given on the command line. The file must not already exist.

main(argc, argv)
char **argyv;

int fd;

fd = open(*++argv,
O_WRONLY+O__CREAT+0O__EXCL, 0xc3);
if (fd=-1) {
if (errno == EEXIST)
printf("file already exists\n");
else if (errno == ENOENT)
printf("unable to open file\n");
else
printf("open error\n");

- 1ib65.30 -

PAGE (G) ProDOS & DOS Functions PAGE

NAME

pagel, page2 - page-selection functions
SYNOPSIS

pagel ()

page2 ()
DESCRIPTION

pagel and page? enable the primary and secondary pages,
respectively.

SEE ALSO
circle, color, line, mode, plotchar, point

- 1ib65.31 -

PERROR (C) ProDOS & DOS Functions PERROR

NAME

perror, errno - System error messages
SYNOPSIS

int perror (s)

char *s;

#include <errno.h>

extern int errno;

DESCRIPTION
When a library function detects an error, it will generally set an
error code, which is a positive integer, in the global integer
errno and return an appropriate, function-dependent value.

The extern declaration of errno is 1n errno.h.

When an error occurs, perror can be called to write a message
describing the error on the standard error device. The message
consists of the following:

* 5, the string pointed at by the argument to perror,
* a colon and a blank,

* the sys__errlist message corresponding to the current
value of errno,
* a newline character.

perror returns 0 if errmo contains a valid value; otherwise it
returns -1 without printing a message.

SEE ALSO
Error Overview (O)

- 1ib65.32 -

PLOTCHAR (G) ProDOS & DOS Functions PLOTCHAR

NAME
plotchar - plot character

SYNOPSIS
plotchar (¢, x, y)
int ¢, x, y;

DESCRIPTION
plotchar displays the printable char ¢ on the primary hi-res
graphics page, at the location having coordinates (x, y).

SEE ALSO
circle, color, line, mode, page, point

- 1ib65.33 -

POINT (G) ProDOS & DOS Functions POINT

NAME
plot, ... - point-plotting functions
SYNOPSIS
plot (x, y)
bplot (x, y)
gplot (x, y)
rplot (x, y)
vplot (x, y)
DESCRIPTION
These functions plot a point on the primary hi-res page, at the
location (x, y). They differ in the color of the point:

function color
plot white
bplot blue
gplot green
rplot red
vplot violet

SEE ALSO
circle, color, line, mode, page, plotchar

- 1ib65.34 -

PREFIX (C) ProDOS Functions PREFIX

NAME
getprefix & setprefix - get & set current default prefix
SYNOPSIS
getprefix (bp) /* ProDOS functions */
char *bp;
setprefix (bp)
char *bp;
DESCRIPTION
getprefix returns the current default prefix in the buffer pointed
at by bp. The buffer should be at least 64 bytes long.

setprefix sets the current default prefix to the character string

pointed at by bp. This string can’t contain more than 63
characters.

The prefix character string that is passed between a program and
these functions is in C format (ie, it’s a null-terminated string).

DIAGNOSTICS

If no error occurs, getprefix and setprefix return 0 as their value.
If an error occurs, they set a code in the global int errno and
return -1 as their value.

- 1ib65.35 -

SCREEN (S) ProDOS & DOS Functions SCREEN

NAME
screen manipulation functions:
scr__beep, scr__bs, scr__tab, scr__If,
SCr_cursup, SCr__cursrt, scr__cr,
scr__clear, scr__home, scr__curs, scr__eol,
scr__linsert, scr__ldelete,
scr__cinsert, scr__cdelete

SYNOPSIS
scr__beep()

scr__bs()
scr__tab()
scr_If()
scr__cursup()
scr__cursrt()
scr__cr()
scr__clear()
scr__home()
scr__eol()
scr__linsert()
scr__ldelete()
scr__cinsert()
scr__cdelete()
scr__curs(lin, col)

int lin, col;

DESCRIPTION
These functions can be called by command programs to
manipulate screens of text. For example, there are functions to
clear the screen, position the cursor, and insert and delete
characters and lines.

These functions can be used in conjunction with the normal
standard i/o and unbuffered i/o functions to display characters
on the console.

scr__beep rings the keyboard bell.

scr_bs moves the cursor back one character space, without
modifying the character that was backspaced over.

scr__tab moves the cursor right one tab stop.

- 1ib65.36 -

SCREEN (S) ProDOS & DOS Functions SCREEN

scr__lf moves the cursor down one line, scrolling if at the
bottom of the screen.

scr__cursup moves the cursor up without changing its column
location.

scr__cursrt moves the cursor right one character space, without
modifying the character that was spaced over.

scr__cr causes a carriage return.
scr__clear clears the screen and homes the cursor.

scr_home homes the cursor to the upper left hand corner of
the screen.

scr__curs moves the cursor to the line and column specified by
the lin and col parameters, respectively.

scr__eol erases the line at which the cursor is located, from the
current cursor positon to the end of the line.

scr__linsert inserts a blank line at the cursor location, moving the
lines below the cursor down one line.

scr__ldelete deletes the line at the cursor location, moving the
lines below the cursor up one line and placing a blank line at the
bottom of the screen.

scr__cinsert inserts a space at the cursor location, shifting right
one character the characters in the line which are on the right
of the cursor.

scr__cdelete deletes the character at the cursor location, shifting
left one character the characters in the line which are on the
right of the cursor.

- 1ib65.37 -

SETIOB (C) ProDOS Function SETIOB

NAME
setiob - pre-allocate unbuffered i/o blocks
SYNOPSIS
setiob(cnt) /* ProDOS function */
int cnt;
DESCRIPTION

setiob preallocates cnt i/o blocks in the heap, setting pointers to
them in the unbuffered i/o table.

When a file is opened, a 1K-byte block of memory that begins
on a 1K-byte boundary must be allocated to the file; this block
is used by ProDOS when it performs i/o operations on the file.

By default, i/o blocks are allocated only when a file is opened
for which an unallocated i/o block can’t be found. In this case,
the i/o block is allocated by calling the sbrk function. When this
is done, an area greater than 1K bytes may have to be allocated
in order to place the i/o block on a 1K-byte boundary.

There are two reasons for using setiob:

* It causes needed i/o blocks to occupy a minimum
amount of space.

* When used in conjunction with the sethbuf function
(which defines the i/o buffer to be used for standard
i/o to a file), it allows a program to manage its own
heap space, without the possibility of library functions
taking a chunk out of the middle of the heap.

- 1ib65.38 -

STRCHR (C) ProDOS & DOS Functions STRCHR

NAME
strchr & strrchr - find a character in a string

SYNOPSIS
char *strchr(s,c)
char *s; int ¢;

char *strrchr(s,c)
char *s; int ¢;

DESCRIPTION
strchr returns a pointer to the first occurrence of the character ¢
in string s, or NULL if ¢ isn’t in the string. ¢ can be the null
character.

strrchr is like strchr, except that it returns a pointer to the last
occurrence of ¢ in s, rather than the first.

SEE ALSO
strchr and strrchr are the ANSI standard equivalents of the non-
standard functions index and rindex, respectively. The only
difference between them is that the str... functions can find a
null character, while the index functions can’t.

- 1ib65.39 -

SYSTEM (C) ProDOS Function SYSTEM

NAME
__system - issue ProDOS function call
SYNOPSIS
#include <sysfunc.h> /* ProDOS function */
__system (func)
int func;
DESCRIPTION

__system issues the function call whose number is func, using as
the parameter area the globally-accessible character array named
__Sys__parm.

DIAGNOSTICS

__system returns as its value the value that ProDOS returned in
register A.

- 1ib65.40 -

TIME (C) ProDOS Functions TIME

NAME
time, get__time, ctime, localtime, gmtime, asctime
SYNOPSIS

long time(tloc) /* DOS functions */
long *tloc;

get_ time(buf)
struct tm *buf;

char *ctime(clock)
long *clock;

#include "time.h"

struct tm *localtime(clock)
long *clock;

struct tm *gmtime(clock)
long *clock;

char *asctime(tm)
struct tm *tm;

DESCRIPTION
time and get _time return the date and time, which they get from
the operating system. The other functions convert the date and
time, which are passed as arguments, to another format.

time returns the current date and time packed into a long int. If
its argument tloc is non-null, the return value is also stored in
the field pointed at by the argument. The format of the value
returned by time is described below.

get__time returns the current date and time in the buffer pointed

at by its argument, buf. The format of this buffer is described
below.

ctime, localtime, and gmtime convert a date and time pointed at
by their argument, which is in a format such as returned by
time, to another format:

ctime converts the time to a 26-character ASCII string of
the form

Mon Apr 30 10:04:52 1984\n\0

localtime and gmtime unpack the date and time into a
structure and return a pointer to it. The structure, named
tm, is described below and defined in the header file
time.h.

asctime converts a date and time pointed at by its
argument, which is in a structure such as returned by
localtime and gmtime, to a 26-character ASCII string in the

- 1ib65.41 -

TIME (C) ProDOS Functions TIME

same form as returned by ctime.

The long int returned by time and passed to ctime, localtime, and
gmtime has the following form (bit 0 is the least significant bit
in the field, bit 31 the most significant):

bits meaning
00-07 minute
08-15 hour
16-20 day
21-24 month
25-31 year

The structure returned by get_time, localtime and gmtime, and
passed to asctime, has the following format:

struct tm {
short tm__sec; /* seconds */
short tm__min; /* minutes */
short tm hour /* hours */
short tm mday,/ * day of the month */
short tm__mon; /* month */
short tm__year; /* year since 1900 */
short tm__wday;/* day of the week (0 = Sunday */
short tm_yday; /* day of year */
short tm_isdst; /* not used */
short tm__hsec; /* hundredths of seconds */

- 1ib65.42 -

TMPFILE (C) ProDOS & DOS Function TMPFILE

NAME
tmpfile - create a temporary file

SYNOPSIS
#include <stdio.h>
FILE *
tmpfile ()
DESCRIPTION
tmpfile creates a temporary file and opens it for standard i/o in

update (w+) mode. tmpfile returns as its value the file’s FILE
pointer.

When the temporary file is closed, either because the program
explicitly closes it or because the program terminates, the
temporary file will automatically be deleted.

SEE ALSO
tmpnam, mktemp

- 1ib65.43 -

TMPNAM (C) ProDOS & DOS Function TMPNAM

NAME

tmpnam - create a name for a temporary file
SYNOPSIS

char *tmpnam (s)

char *s;
DESCRIPTION

tmpnam creates a character string that can be used as the name
of a temporary file and returns as its value a pointer to the
string. The generated string is not the name of an existing file.

s optionally points to an area into which the name will be
generated. This must contain at least L__tmpnam bytes, where
L__tmpnam is a constant defined in stdio.h.

s can also be a NULL pointer. In this case, the name will be
generated in an internal array. The contents of this array are
destroyed each time tmprnam is called with a NULL argument.

The generated name is prefixed with the string that is associated
with the symbol P__tmpnam; this symbol is defined in stdio.h.
In the distribution version of stdio.h, P__tmpnam is a null string;
this results in the generated name specifying a file that will be
located in the current directory.

SEE ALSO
tmpfile, mktemp

- 1ib65.44 -

