

//)--

THE APPLE II
BASIC HANDBOOK

THE APPLE II®
BASIC HANDBOOK

DOUGLAS HERGERT

~EX~
BERKELEY· PARIS • DUSSELDORF v

Book design by Ingrid Owen
Cover art by Jean-Francois Penichoux

Apple II , II+ , lie, Applesoft BASIC, and Integer BASIC are registered trademarks of the
Apple Computer Corporation .

SYBEX is not affiliated with any manufacturer .

Every effort has been made to supply complete and accurate information. However,
SYBEX assumes no responsibility for its use, nor for any infringements of patents or other
rights of third parties which would result. Manufacturers reserve the right to change speci­
fications at any time without notice .

© I 983 SYBEX Inc., 2344 Sixth Street, Berkeley, CA 94710. No part of this publication
may be stored in a retrieval system, transmitted, or reproduced in any way, including but
not limited to photocopy, photograph , magnetic or other record, without the prior agree­
ment and written permission of the publisher .

Library of Congress Card Number: 83-61381
ISBN 0-89588- I I 5-2
Printed in the United States of America
10 9 8 7 6 5 4 3 2 I

CONTENTS

Acknowledgements XIV

Introduction xv

ill
1 ABS
2 Algorithm
4 AND
8 APPEND

10 Argument
11 Arithmetic Expression
12 Array
12 ASC
13 AT
15 ATN
16 AUTO

rn
18 BASIC
19 BLOAD
20 BRUN
20 BSAVE
22 Byte

v

Vl

23 CALL
24 CATALOG
24 CHAIN
25 CHR$
26 CLEAR
28 CLOSE
29 CLR
30 COLOR
33 CON
33 Concatenation
33 CONT
33 cos
35 Cursor

rn
36 DATA
37 DEFFN
39 DEL
40 DELETE
40 DIM
48 DOS Commands
50 DRAW
67 DSP

69 END

69 Error Message
70 EXEC
73 EXP

75 File
76 FLASH
77 FN
78 FOR
82 FP
82 FRE
83 Function

84 GET
87 GOSUB
95 GOTO
99 GR

101 HCOLOR
102 HGRandHGR2
105 HIMEM
106 HLIN
106 HOME
108 HPLOT
112 HTAB

Vll

Vlll

113 IF
118 Immediate Command
118 IN#
118 INIT
119 INPUT
123 INT-system command
123 I NT-function
125 Interactive
125 INVERSE

126 LEFT$
129 LEN
130 LET
133 LIST
134 Literal Value
135 LOAD
135 LOCK
136 LOG
138 Logical Expression
139 LOMEM

140 Machine Code
140 MAN

rn

~

140 MAXFILES
141 Menu
141 MID$
142 MOD
142 MON

144 NEW
144 NEXT
145 NODSP
145 NOMON
146 NORMAL
146 NOT
147 NO TRACE

148 ON
149 ONERR
153 OPEN
155 OR

157 PDL
157 PEEK
159 Pixel
160 PLOT
161 POKE
164 POP

ix

X

164 POS
164 POSITION
167 PR#
167 PRINT
171 Program
172 Programmer

rn
173 READ-command word
174 READ-DOS command
181 RECALL
181 REM
182 RENAME
182 RESTORE
183 RESUME
183 RETURN
183 RIGHT$
183 RND
190 ROT
191 RUN

193 SAVE
193 SCALE
195 Scientific Notation
195 SCRN
196 SGN
197 SHLOAD
198 SIN

TI

rn

200 SPC
200 SPEED
201 SQR
201 STEP
206 STOP
207 STORE
208 String
208 STR$
212 Subroutine

213 TAB-function
214 TAB-command
215 TAN
217 TEXT
218 THEN
218 TO
218 TRACE

219 UNLOCK
219 User-Friendly
220 USR

222 VAL
226 Variable

xi

Xll

Index 248

227 VERIFY
228 VLIN
228 VTAB

230 WAIT
231 WRITE

246 XDRAW

xzv

ACKNOWLEDGEMENTS

Once again I want to thank] ames Compton for a skillful and genial edit­
ing job. My thanks also go to Guy Orcutt for his painstaking work on the
screen photography; and to the following members of the Sybex editorial
and production staff: Valerie Robbins and Laura Meany, word processing;
Valerie Brewster and Donna Scanlon, typesetting; Jan is Lund and
Lorraine Aochi, proofreading; and Ingrid Owen, design and artwork.

INTRODUCTION

This book is designed to help you master the features of BASIC on your
Apple® computer. The entire Applesoft BASIC® and Integer BASIC®
vocabularies are included, along with all the DOS commands. The entries
are presented, not in formal dictionary style, but in a practical format that
should be easy to understand and use. In general, the entries are organized
into the following sections:

a description of a given BASIC command or function-what it
does, and how to use it correctly in a program;

a sample program and an explanation of how the program
works , focusing specifically on the BASIC word being illus­
trated;

a screen of output from the sample program;

" Notes and Comments," an assortment of interesting side­
lights and items of practical information-for example:
extended uses to experiment with; potential errors to watch out
for; other BASIC words to study in connection with the word
at hand .

This format sometimes varies to fit the needs of individual entries. In all
cases, the goal of this format is to incorporate the BASIC command words
into your active programming vocabulary, so that you can begin using the
commands in your own BASIC programs.

You will probably find yourself paying particular attention to the sample
programs in this book. The features of any computer programming lan­
guage are often easier to learn in the context of real examples than in the
abstract of descriptive prose. Consequently, you should enter the programs
into your computer and run them to benefit fully from their educational
value. Each program is designed to illustrate the characteristics, the sub­
tleties , and sometimes the quirks of a given Applesoft or Integer BASIC
command word . These programs are learning exercises and should be used
as such; their main goal is to serve as a medium of instruction. All the same,
some of them may prove to be useful or amusing in their own right. For
example, among the programs of this book you will find:

a program that creates bar graphs from numerical data entered
at the keyboard (see DIM and HPLOT);

programs that plot various kinds of graphics on the video
screen (see DRAW, STEP);

XV

XVI

a program that will get you started in writing any computerized
card game (see RND);

a guessing game program (see IF);

programs illustrating "menus" and "user-friendly" input (see
GOSUB and GET);

a program that helps you balance your checkbook (see
GOTO);

programs that help you explore the organization of your com­
puter's memory (see PEEK, POKE);

a program that converts numeric values into dollar-and-cent
display strings (see STR$).

In addition, under the relevant command headings throughout this
book, you will find complete introductions to two of the more difficult-but
ultimately most rewarding -aspects of BASIC programming on the Apple
II computers. The engaging high-resolution graphics package centered
around the DRAW command is explained in detail; a complete demon­
stration program illustrates how to create graphics shapes with this
command, and how to use the related commands-including SCALE,
ROT, HCOLOR, and XDRAW-to present those shapes in any way you

Algorithm Interactive

Argument Literal Value

Arithmetic Expression Logical Expression

Array Machine Code

BASIC Menu

Byte Pixel

Concatenation Program

Cursor Programmer

DOS Commands Scientific Notation

Error Message String

File Subroutine

Function User Friendly

Immediate Command Variable

Figure 1: General Programming Vocabulary Difined in This Book

XVll

want to on the screen . Another subject, the use of external text files, is also
treated in depth. A series of interrelated programs show you how to use all
the appropriate DOS commands-OPEN, WRITE, READ, APPEND,
POSITION, CLOSE, and others-to create, read, and revise both
sequential and random-access text files stored on disk.

Finally, the entries in this book include a number of general computer
terms that you will want to learn as you get involved in programming on
your Apple computer. A list of these terms appears in Figure 1. Generally,
the definitions in this book avoid unnecessary computer jargon; but some
terms, such as the ones in this list, are in common enough use that it is to
your benefit to learn what they mean as you master the various vocabu­
laries of BASIC.

A Note on the Program Listings ______________ _

To make the BASIC program listings in this book easier to read and
study, SYBEX has employed a number of typographical "formatting"
conventions, including the boldfacing of all BASIC and DOS commands
and functions, the indention of program lines in FOR loops, and the right­
alignment of line numbers. These conventions help to highlight program
structure and logic, just as some of the author's programming conventions
do-the use of the optional LET in assignment statements, and the use of
REM statements, for instance. A typical example of a formatted program
listing is shown below:

8 0 fOR J = TO E
90 INPUT H$

100 IF H$ <> "H" THEN GOSUB 300: GOTO 130
110 LETI=l+1
1?0 INPUT L$(l),F$(l),S(l)
1 30 NEXT J

Indention and alignment add spaces to program lines, and when you
type these lines into your Apple you will find that you don't have to include
the extra spaces. In fact, if you do, the computer will ignore them and close
them up. The program listing will appear as it always does on the Apple,
with line numbers left-aligned, no indention of loops, and long lines
"wrapped around." The example above would look something like this:

80 FOR ,I = 1 TO E
'10 INFUT H$
100 IF H$ 'H' THEN GOSUB 3

oo: GOlD 130
110 LET I = I + 1
120 INF·LJT L$(I) ,F$(I) ,S(I)
130 NEXT J

XVlll

In any case, the programs will run as described, and produce the sample
outputs shown, if they are entered accurately into your computer; we
believe it will be easiest for you to do that if the programs are presented as
clearly as possible .

ABS (function; Applesoft and Integer BASICs) ________ _

The ABS function supplies the absolute value of a number. The argument
of ABS may be a literal numeric value, a variable, or an arithmetic expres­
sion. ABS returns the unsigned magnitude of the resulting value.

sampkProgram ____________________________________ _

ABS is useful whenever the sign (negative or positive) of a number is
irrelevant, as it is in the program shown in Figure A.l . This program is a
simple exercise in which pairs of random numbers are chosen and com­
pared. For each comparison, the variables Rl and R2 store the two num­
bers. Line 60 finds and displays the difference between the numbers:

60 PRINT "IS"; ABS (R1 - R2);

10 PRINT
15 FOR I = 1 TO 3
20 LET R1 = RNDC10)
25 LET R2 = RND C10)
30 PRINT "FIRST NUMBER = " ;R1
40 PRINT "SECOND NUMBER = ";R2
45 PRINT
50 PRINT "==> THE FIRST NUMBER ";
60 PRINT "IS"; ABSCR 1 - R2)
70 IF R1 <= R2 THEN PRINT "LESS THAN ";
80 IF R1 > R2 THEN PRINT "GREATER THAN ";
90 PRINT "THE SECOND NUMBER."

100 PRINT : PRINT
110 NEXT I
120 END

Figure A.l: ABS-Sample Program

2 ABS

FIRST HUMBER = . 641032259
SECOND HUMBER = . 946861798
==> THE FIRST NUMBER IS .305829539
LESS THAN THE SECOND NUMBER.

FIRST NUMBER = .670450251
SECOND NUMBER = .730709669
==> THE FIRST NUMBER IS . 0602594186
LESS THAN THE SECOND NUMBER .

FIRST NUMBER = . 42364809
SECOND NUMBER = .29526273

==>THE FIRST NUMBER IS . 12838536
GREATER THAN THE SECOND NUMBER.

ll

Figure A.2: ABS-Sample Run

Since the two numbers are chosen randomly, there is no way of knowing
which will be larger. Therefore, the expression:

R1 - R2

may result in either a negative or a positive number. But in describing the
difference between Rl and R2, the sign is irrelevant , so we use the ABS
function to eliminate the sign. Figure A.2 shows a sample output from this
program, run in Applesoft BASIC . For each pair of random numbers, the
absolute value of their difference is given. If you run the program in Integer
BASIC, the random numbers will be integers from 0 to 9.

Algorithm (general programming vocabulary) _______ _

An algorithm is a series of steps designed to accomplish a defined task.
We often begin the process of planning a BASIC program by expressing an
algorithm in words, before attempting to write the algorithm as a sequence
of BASIC instructions. For example, consider the following steps:

1. Increase the value of the variable V by 5.

2. Display the new value ofV on the screen.

Algorithm 3

These two steps can be translated into the following two program lines:

10 LET V = V + 5
20 PRINTV

Sometimes, however, what seems like a simple algorithm when ex­
pressed in words will turn out to be much more complicated when im­
plemented as a BASIC program. Consider, for example, the following
algorithm:

1. Read ten 5-letter words from the keyboard.

2. Alphabetize the words.

3. Display the words in alphabetical order on the screen.

While this algorithm may seem simple and straightforward enough ex­
pressed in this way, you will find that no fewer than fifteen program state­
ments are required to carry it out successfully. An Applesoft program that
performs these steps appears in Figure A.3.

In the case of this algorithm, you may find that you'll have to return to
the steps as you originally expressed them, and think them through in more
detail before you undertake to write the program. The problem is that your
original steps involve larger tasks than BASIC can handle in single state­
ments. For example, think of the second step: "Alphabetize the words." If
BASIC had the command ALPHABETIZE in its vocabulary, you might
be able to write a statement such as:

20 ALPHABETIZE(W$)

10 Dill W$ (1 0)
20 FOR I = 1 TO 10
30 INPUT W$ (1)
40 NEXT I
so FOR I = 1 TO 9
60 FOR J = I + 1 TO 10
70 IF W$(I) < W$ (J) THEN GOTO 110
80 LET H$ = W$(I)
90 LET W$(I) w $ (J)

100 LET W$(J) = H$
110 NEXT J
120 NEXT I
130 FOR I = 1 TO 10
140 PRINT W $ (I)
150 NEXT I

Figure A.3: Algorithm-Sample Program

4 Algorithm

Unfortunately, no such command exists, so you must describe the alpha­
betization task in more detail. You might replace step 2 with the following
steps:

2a. Compare each word in the list, one at a time, with each of the
words below it in the list.

2b. If the two words in any given comparison are found to be out of
alphabetical order, then swap their places in the list.

These two steps bring you closer to the actual sequence of BASIC instruc­
tions that you must write; even so, the level of detail is not yet precise
enough. Eight program lines (50 to 120) are required to perform these two
steps. (These lines represent what is called a sorting algorithm.) Again, you
must examine the original language of your algorithm expression and find
where you have oversimplified the steps of the process. For example, con­
sider the phrase," swap their places in the list ," in step 2b. Applesoft
BASIC lacks the command that would allow you to write:

80 SWAP (W$(1),W$(J))

so instead, you must think through the three steps required to perform the
swap:

2b(1) Store the first word in a ''holding variable,'' H$.

2b(2) Store the second word in the place of the first word.

2b(3) Store the value of H$ in the place of the second word.

These steps are performed in the three program lines numbered 80 to 100.
In summary, the process of determining the steps of an algorithm may

often require successive "magnifications" until the level of detail corre­
sponds roughly to steps that can be translated into BASIC commands.

AND (logical operator; Applesoft and Integer BASICs) _____ _

The logical operator AND can be used to create a compound logical
expression for an IF decision . The value, true or false, of such a compound
expression depends on the values of the elements that are combined by
AND. A compound expression in the following form :

statement-1 AND statement-2

is true if and only if statement-! and statement-2 are both true . If either
statement is false, or if both are false, the compound expression is also false .

AND 5

sampkProgram ____________________________________ __

The program shown in Figure A.4 illustrates the use of AND. This pro­
gram is designed for the following hypothetical situation: A classroom
teacher is looking at a semester's test scores to see which students have
passed and which have failed. The teacher has given three quizzes and one
final exam during the semester, and has decided that a student must have
an average score of 7 5 or better for the quizzes, and a final exam score of 70
or better to pass the course. Using this program, then, the teacher can type
each student's name and test scores at the keyboard , and the computer will
make the appropriate calculations to determine whether the student has
passed or failed.

Lines 10 to 90 read the input information for a given student. Notice in
particular the FOR loop at lines 30 to 70, which reads each quiz score and
accumulates the total in the variable QT. Line 80 then assigns the average
of the quiz scores to the variable AVE. Line 90 reads the final exam score,
assigning it to the variable F.

Lines 100 to 150 display the student's test information on the screen.
Line 130 illustrates AND:

130 IF AVE > = 75 AND F > = 70 THEN PRINT "PASSED."

The action of this IF statement is to print the word PASSED on the screen,
but only if both of the following statements are true:

AVE>= 75
F > = 70

10 INPUT "STUDENT'S NAME: ";N$
20 PRINT "INPUT TEST SCORES FOR "; N$;" ==>"
25 LET QT = 0
50 FOR I = 1 TO 3
40 PRINT "QUIZ # ";!;
50 INPUT": ";Q
60 LET QT = QT + Q
70 NEXT I
80 LET AVE = QT I 3
90 INPUT "FINAL EXAM: ";F

100 PRINT
110 PRINT "QUIZ AVERAGE="; INT<AVE + .5);"; ";
120 PRINT "FINAL EXAM= ";F
125 PRINT "** ";N$;" HAS ";
130 If AVE >= 75 AND F >= 70 THEN PRINT "PASSED."
140 IF AVE < 75 OR F < 70 THEN PRINT "FAILED."
150 PRINT : PRINT
160 GOTO 10

Figure A. 4: AND-Sample Program

6 AND

In other words, the student passes only if the average quiz score (AVE) is
greater than or equal to 75, and the final exam score (F) is greater than or
equal to 70. Otherwise, if either one of these conditions is not met , or
if neither are, line 130 results in no action, and the program goes on to
line 140.

Figure A. 5 shows the scores for two different students. The first student
passed the course by satisfying both conditions. The second student had a
satisfactory quiz average, but received a score below 70 on the final exam;
the compound statement in line 130 is thus evaluated to false, and the stu­
dent fails.

Notes and Comments ___________________ _

Figure A.6 is a "truth table" for AND conditions. It shows the
resulting value of a compound statement, given different com­
binations of values for statement-! and statement-2. Notice
that the compound statement is true in only one case-when
both of the inner statements are true.

Compound statements may consist of more than two logical
statements. You can use parentheses to specify the order in

STUDENT'S NAME= CONRAD
INPUT TEST SCORES FOR CONRAD ==>
QUIZ I 1 = 75
QUIZ I 2 = 88
QUIZ I 3 = 96
FINAL EXAM = 85
QUIZ AUERAGE = 86 ; FINAL EXAM = 85
tt CONRAD HAS PASSED .

STUDENT'S NAME = DALTON
INPUT TEST SCORES FOR DALTON == >
QUIZ# 1 = 79
QUIZ # 2 = 8tt
QUIZ I 3 = 76
F I HAL EXAt1 = 65
QUIZ AVERAGE = 78; FINAL EXAM = 65
ll DALTON HAS FAILED .

STUDENT'S NAME = •

Figure A.5: AND-Sample Output

AND 7

which the statements are to be evaluated; for example, if our
hypothetical teacher wanted to allow for a class project, line 130
could be changed to read as follows:

IFF > = 70 AND (AVE> = 75 OR PROJECT > = 80) THEN
PRINT "PASSED"

The compound logical statement in this IF decision would be
evaluated as true only if both of the following conditions were
met:

1. The variable F contains a value that is greater than or equal
to 70, and

2. At least one of the following statements is true: AVE is
greater than or equal to 75, and/or PROJECT is greater
than or equal to 80.

For more information on compound logical statements and IF
decisions , see the entries under IF, NOT, and OR.

Figure A. 6: AND-Truth Table

8 APPEND

APPEND (DOS command; Applesoft and Integer BASICs) __ _

The APPEND command opens a sequential text file on the current disk
so that additional data can be stored in the file. Unlike the OPEN com­
mand, which prepares to write to or read from the beginning of a file , the
APPEND command sets the file pointer to the eru1 of the file , so that new
records can be written without destroying any data the file already con­
tains. A WRITE command should always follow the APPEND command.

The simplest form of the APPEND command is:

APPEND F

where F is any legal file name. APPEND may not be used as an immediate
command-like other DOS commands, it must appear inside a PRINT
statement in a BASIC program, and must be preceded by the
CONTROL-D character (ASCII code 4):

10 PRINT CHR$(4); "APPEND F"

(See the entry under DOS Commands for more details.)
Finally, the APPEND command allows the three optional parameters ,

S, D, and V, for slot, drive, and volume. (See "Notes and Comments"
under the heading OPEN.)

sampk Prog.ram __________________________________ __

The Applesoft program shown in Figure A. 7 illustrates the use of
APPEND for expanding the length of a sequential file. The file to which
this program writes is called EMPLOYEE FILE 1; this file is originally
written by the Sequential File Creation Program described under the head­
ing WRITE (Figure W. l). The file contains information about the employ­
ees of an imaginary company. Briefly, the specifications of the file are as
follows:

The first field (field 0) contains a four-digit integer that tells
how many employee records are stored in the file.

Each employee record takes up four fields thereafter. The fields
contain the following information:

(1) a single-character tag for the employee's status-H for
hourly; S for salaried;

(2) the employee ' s last name;

(3) the employee's first name;

(4) the employee's wages-hourly if the tag isH; biweekly if the
tag isS.

If the APPEND program expands the file with additional records, it
must also update the value stored in the file ' s first field. When the program

APPEND 9

run is complete, this value must indicate the new number of records stored
in the file . (Any program that reads this file can thus find out easily how
many records there are to read ; for an example of this process , see the entry
under READ.)

Broadly, then, the APPEND program performs three tasks. First, it
opens EMPLOYEE FILE 1 and reads the value stored in the first field.
The subroutine at line 300 does this job; it stores the value-the number of
employees-in the variable E.

The program's second task is to conduct an input dialogue for new

10 REM ** SEQUENTIAL FILE DEMO
20 LET 0$ = CHR$ (4): REM ** CONTROL-0
25 60SUB 300
30 HOI'IE
40 INPUT "ADD A NEW EMPLOYEE? ";A$
50 LET A$= LEFTS(A$,1)
60 IF NOT (A$ = "Y" OR AS = "N"l 60TO 40
70 IF AS "N" THEN 60SUB 400: END
75 LET E = E + 1
80 PRINT : PRINT
90 INPUT "SlALARY OR H)OURLY? ";T$

100 LETTS= LEFTS(T$,1)
110 IF NOT <TS = "S" OR T$ = "H") 60TO 90
120 INPUT "LAST NAME? ";LS
130 INPUT "FIRST NAME? ";F$
140 If T$ = "S" THEN INPUT "BIWEEKLY WAGE? ";S
150 If T$ = "H" THEN INPUT "HOURLY WAGE? "; S
160 PRINT DS;"APPEND EMPLOYEE FILE 1"
170 PRINT DS;"IIRITE EMPLOYEE FILE 1"
180 PRINT TS: PRINT LS
190 PRINT FS: PRINT S
200 PRINT DS;"CLOSE EMPLOYEE FILE 1"
210 GOTO 30
300 REM ** READ CURRENT NUMBER
310 REI'I ** OF EMPLOYEES, E
320 PRINT DS;"OPEN EMPLOYEE FILE 1"
330 PRINT DS;"READ EMPLOYEE FILE 1"
340 INPUT E
350 PRINT DS;"CLOSE EMPLOYEE FILE 1"
360 RETURN
400 RER ** UPDATE NUMBER
410 REM ** OF EMPLOYEES
420 LET ES = STRS<El
430 IF LEN(ESl = 4 60TO 460
440 LET ES = "0" + ES
450 60TO 430
460 PRINT OS; "OPEN EMPLOYEE FILE 1"
470 PRINT DS;"IIRITE EMPLOYEE FILE 1"
480 PRINT ES
490 PRINT DS;"CLOSE EMPLOYEE FILE 1"
500 RETURN

Figure A. 7: APPEND-Sample Program

10 APPEND

employee records. The main body of the program, from line 30 to line 210,
does this. For each new employee record, the program reads a data item for
all four fields and assigns each item to a variable-the status "tag" to the
variable T$, the last name to L$, the first name to F$, and the salary to S.
When the program has obtained all four data items from the keyboard, it
opens the file to append the new record:

160 PRINT D$; " APPEND EMPLOYEE FILE 1"
170 PRINT D$; " WRITE EMPLOYEE FILE 1"

Four PRINT statements send the data to the file:

180 PRINT T$: PRINT L$
190 PRINT F$: PRINT S

Finally, the file is closed again :

200 PRINT D$; " CLOSE EMPLOYEE FILE 1"

(Note that the variable D$ holds the CONTROL-D character.)
This dialogue continues until the user has entered all the new employee

records . For each new record, the program increments the value of E:

75 LET E = E + 1

Finally, when the dialogue is complete , the program calls the subroutine at
line 400 to perform the final task-updating the value of the first field to the
new value of E. This subroutine converts E to a string value, E$, and, if
necessary, adds leading zeros to assure that E$ will be four characters long.
Then it simply opens EMPLOYEE FILE 1 and rewrites the first field in the
file:

460 PRINT D$; "OPEN EMPLOYEE FILE 1"
470 PRINT D$; " WRITE EMPLOYEE FILE 1"
480 PRINT E$

This sequence illustrates clearly the different functions of OPEN and
APPEND . Here , OPEN sets the file pointer at the first field of the file
(again, field 0), and the PRINT statement rewrites the value of that field .

Argument (general programming vocabulary)------ -­

An argument is a value sent to a function . The function uses the argu­
ment in its operation, and then returns another value. In most versions of
BASIC , the argument appears in parentheses after the name of a function:

NAME(ARGUMENT)

Arithmetic Expression 11

An argument might be either a numeric or a string value, depending on the
nature of the function; for example:

INT(57.31)
LEN(" COMPUTER")

Some functions require more than one argument:

MID$(S$, 3, 5)

In general, the argument of a function may be expressed as a li teral value, a
variable, or an expression; for example:

COS(3.14)
COS(PI)
COS(PI • 2)

In the latter two examples, PI is a variable that would have to be assigned a
value at some time before the function call.

Arithmetic Expression (general programming vocabulary) __

An arithmetic expression is one that consists of one or more elements,
which the computer can evaluate to a single numeric value. Arithmetic
expressions may include literal numeric values , variable names (which rep­
resent the numeric values stored under those variables), functions, and
operations . The arithmetic operations are represented by the following
symbols:

"' exponentiation

* multiplication

I division

+addition

- subtraction

Integer BASIC also has the MOD operation, which supplies the remainder
from the division of one integer by another.

The established order of operations in arithmetic expressions is as fol­
lows: exponentiation; multiplication and division (from left to right); addi­
tion and subtraction (from left to right). To define a different order, you
may include parentheses in an arithmetic expression .

12 Array

Array (general programming vocabulary) __________ _

An array is a data structure defined for the storage of lists or tables of
data. The name, type, length, and number of dimensions in an array are
all defined in a DIM statement. Individual data elements stored in an array
are assigned or accessed via an index into the array. (See the entry under
DIM.)

ASC (function; Applesoft and Integer BASICs) ________ _

The ASC function is the reverse ofCHR$. ASC accepts a single charac­
ter as its argument and returns the ASCII code number (from 0 to 255) of
that character.

sampkProg.mm __________________________________ _

The program in Figure A .8 demonstrates the use of ASC. The program
reads a character from the keyboard (via the GET statement in line 20) and
then prints the code number of that character. Line 30 prints the character
and the code number:

30 PRINT"==> "; 1$; "IS"; ASC(I$);" IN THE ASCII CODE."

The program forms an endless loop (line 50), allowing you to examine as
many codes as you wish. Figure A .9 shows a sample run of the program.

Notes and Comments ___________________ _

10 HOllE

See the entry under CHR$ for information about the ASCII
character code as used on the Apple II computers .

20 GET IS
30 PRINT "==> ";IS;" IS"; ASC(l$);" IN THE ASCII CODE. "
40 PRINT
50 GOTO 20

Figure A.B: ASC-Sample Program

AT 13

==> B IS 66 IN THE ASCI I CODE.

==> A IS 65 IN THE ASCII CODE.

==> s IS 83 IN THE ASCII CODE .

==> I IS 7""1
I~· IN THE ASCII CODE.

==> c IS 67 IN THE ASCII CODE .

==> $ IC ·-· 36 It~ THE ASCII CODE .

==> % IC·
~· ·-·· It-~ THE A~::;c I I CODE.

==> & JC ·-· "?C• ._ .. _. Hl THE ASCII CODE.

==> 8 IS C" .-,_tb IN THE ASCII CODE .

==> 7 IS 55 IN THE ASCII CODE .

==> 6 IS 54 IN THE ASCII CODE .

I

FigureA.9: ASC-Sample Output

AT (graphics command; Applesoft BASIC) ___ ______ _

AT is an optional part of the syntax of the DRAW and XDRAW com­
mands. AT specifies the high-resolution graphics screen address where
these commands will begin to draw a predefined graphics shape. These
statements take the forms:

DRAWNATX,Y
X DRAW N AT X, Y

where X and Y are the horizontal and vertical coordinates of the screen
address, and N is the number of the shape that will be drawn at that
address. The valid ranges of X andY are as follows:

0 <= X <= 279
0 < = y < = 191

When the DRAW or XDRAW command is performed, the point (X, Y)
will be the starting point of the graphics shape. The first direction or plotting

14 AT

specification of the shape definition will appear at (X, Y). (See the entry
under DRAW for details.)

sampkProgram ____________________________________ __

The menu-driven graphics demonstration program listed and described
under the heading DRAW (Figure D.3) allows you to vary the location of
the "bug" graphics shapes on the screen. Menu option llets you set a new
location address. The subroutine that controls this capability starts at line
650. The subroutine reads and validates new input values for the horizon­
tal and vertical coordinates of the DRAW address, stored in the variables X
andY:

660 INPUT "HORIZONTAL (0 TO 279): ";X
665 IF X < 0 OR X > 279 GOTO 660
670 INPUT "VERTICAL (0 TO 159): "; Y
675 IF Y < 0 OR Y > 159 GOTO 670

Lines 665 and 675 prevent an invalid DRAW address by checking the
ranges of X and Y, respectively. The DRAW and XDRAW commands
appear in the subroutines at lines 900 and 920.

Figure A . 10: DRAW AT Illustration

ATN 15

Figure A.lO shows the "bug shape" drawn at several different locations
on the screen . You can read the address coordinates of the most recently
drawn shape in the text window at the bottom of the screen. Note that the
starting point of the shape definition is at the beginning of the bug's left leg.

lVo~andComnunu __________________________________ ___

See the entry under STEP for another example of the use of
AT.

AT also appears as part of the syntax of the HLIN and VLIN
commands, in low-resolution graphics . (See HLIN, VLIN,
and GR.)

ATN (function ; Applesoft BASIC) _____________ _

The ATN function supplies the arctangent of any negative or positive
argument. (The arctangent of a number xis defined as the angle whose tan­
gent is x.) The result of the ATN function is expressed in radians .

Sample Program ______________________________________ __

The program in Figure A.ll illustrates ATN . The FOR loop in lines 40
to 70 displays a series of ATN values . Line 50 supplies the arctangent of
negative values, and line 60 supplies the arctangent of positive values. The
output from this program appears in Figure A .12 . The result of ATN
approaches + n/2 as the argument approaches +co; likewise, the result of
ATN approaches -n/2 as the argument approaches -co . Notice that the
arctangent of 0 is 0.

10 HO"E : PRINT TAB(8J;"THE ARCTANGENT FUNCTION"
20 PRINT : PRINT
30 PRINT "ARGUMENT ATN ARGUMENT ATN"
35 PRINT "-------- --------
40 FOR l = 0 TO 16
so PRINT TAB(3); -I ; TAB(9J; ATN(-1);
60 PRINT TAB(24l;I; TAB<30); ATN(l)
70 NEXT l

Figure A.ll: ATN-Sample Program

16 ATN

THE ARCTAHGEHT FUHCTIOH

ARGUMENT ATH ARGUt1EtH ATN
B 0
-1 - . 785398163
-2 -1 . 10714872
-3 -1 . 24904577
-4 -1.~g~8!?~~
-5 -1 . ~r~4~~rr
-6 -1 . 40564765
-7 -1 . 42889927
-8 -1 . 44644133
-9 -1 . 46013911
-10 -1 . 47112768
-11 -1.48013644
-12 -1 . 4876551
-13 -1 . 49402444
-14 -1.49948886
-15 -1.50422816
-16 -1 . 50837752

Figure A.12: ATN-Sample Output

0
1

~
4
r

·-· 6
7
8
9
10
11
12
13
14
15
16

fl
~7::::5398163
1.10714872
1 . 24904577
1 . ~g~::: ! ?~6
1 .. _::.4~J~j { 7
1.40564765
1 .:i ·:: .. = .. =· 9 q ':• "7

1:44644133
1. 46013911
1 . 47112768
1 . 48013644
1.4876551
1 . 49402444
1.49948886
1 . 50422816
1.50837752

Notes and Comments ___________________ _

Figure A.13 shows a plot of the ATN function. Mathemati­
cally, the arctangent function is called a multi-valued junction,
since for any value of x (the argument of the function) we can
find multiple values ofy (the result). The portion of the graph
from y = -rt/2 toy = + rt/2 (as shown in Figure A.13) is called
the principal branch of the function. The ATN function returns
values from this principal branch.

To convert from radians to degrees, note that 180 degrees is
equal to 1t radians. Thus, 1 radian is equal to 180/rt, or approxi­
mately 57.3, degrees.

A UTQ (system command; Integer BASIC) ________ _

The AUTO command initiates automatic line numbering for a pro­
gram. It is a tool that will help you write Integer BASIC programs more
quickly and efficiently. You don't have to type the number of each line of a
program; the computer does it for you and then waits for you to type a

AUTO 17

Figure A.l3: ATN-Plotted Graph

statement. When you enter one statement, the computer responds by dis­
playing the line number of the next line and then waiting again.

AUTO allows you to specify the number of the first line of the program
and the incrementation amount from one line number to the next. The
syntax is:

AUTOS, I

where Sand I are both integers. S is the starting line number and I is the
incrementation amount. For example, the following command will result
in line numbers beginning at 100 and increasing by jumps of 5 (105, 110,
115, ...):

AUTO 100,5

If you omit the second number from the AUTO command, the default
incrementation amount is 10.

The MAN command resets the system at manual numbering.

18

D

D

BASIC (general programming vocabulary) ______ ___ _

BASIC, which stands for Beginner's All-Purpose Symbolic Instruction
Code, is a programming language available on most major microcom­
puters on the market today. BASIC is characterized by ease of use and a
powerful set of instruction commands; however, the plethora of versions of
the language adds confusion to the situation, and sometimes makes it diffi­
cult to transfer a BASIC program from one microcomputer to another.
Each version has its own features and liabilities . Compared to other lan­
guages (such as Pascal and FORTRAN), BASIC has a limited set of do.ta
types and repetition control structures. Applesoft BASIC has three data types­
integers , floating-point numbers, and strings; Integer BASIC has only
two-integers and strings. (Both versions also allow typed arrays.) Apple­
soft and Integer BASICs supply only two ways of creating repetition
loops-the FOR statement and the GOTO command.

All variables are global in BASIC ; that is, all variables defined in a pro­
gram are available for use anywhere in the program. There is no facility for
creating local subroutine variables or for passing values privately from one
subroutine to another. (The DEF FN statement, available in Applesoft
BASIC, might be considered the one exception to this limitation.)

The vocabulary oflnteger BASIC includes fewer commands than that of
Applesoft BASIC. In addition, a command available in both versions will
sometimes require a different format or produce different results, depend­
ing on the version being used. Such differences are described throughout
this book.

BLOAD 19

BLQAD (DOS command; Applesoft and Integer BASICs) ___ _

The BLOAD command loads a "binary " disk file directly into the com­
puter's memory. This file might represent a machine-language program,
or simply a series of data items destined to reside in a certain location in the
computer's memory.

The simplest form ofBLOAD is:

BLOAD F

where F is the name of a binary file stored on the current disk. With this
command, the computer loads F into memory at the file's original location;
that is, at the same memory location the file contents were in when the file
was originally created. (See BSAVE.) BLOAD also allows an address
parameter: the letter A followed by a memory address. If this parameter is
included, F will be loaded at the specified address. The address may be
expressed either as a decimal number:

BLOAD F, A 768

or as a hexadecimal number, starting with the character"$":

BLOAD F, A$300

BLOAD may be executed as an immediate command or as a program
statement. In a program, the command must be introduced to the system
via a PRINT statement and the CONTROL-D character. (See the entry
under DOS Commands.)

Sample Program ___________________ _

The program shown in Figure B.l loads a binary file called BUG
SHAPE, which is the shape table described under the heading DRAW. To
experiment with BLOAD, you should first run the sample program listed

10 RE~ ** BLOAD DEMO.
20 RE" ** LOAD THE BUG SHAPE .
30 PRINT CHR$ (4);" BLOAD BUG SHAPE"
~5 POKE 232,0: POKE 233,3
40 HGR
50 HCOLOR= 7: SCALE= 10: ROT= 0
60 DRAW 1 AT 30,150
70 DRAW 2 AT 160,150
80 HO"E : VTAB 23
90 PRINT "PRESS ANY KEY TO RETURN TO TEXT.";

100 GET A$: TEXT : END

Figure B. I: BLOAD-Sample Program

20 BLOAD

under BSAVE, which creates the file BUG SHAPE. Then reboot your sys­
tem, to be sure that the shape table is lost from current memory. Finally,
run the BLOAD program, which loads the table back into memory, and
displays the bug shapes on the high-resolution graphics screen.

Notice how line 30 gives the BLOAD command in the required format
for DOS statements:

30 PRINT CHR$(4); "BLOAD BUG SHAPE"

Notes and Comnumts _ _ ____ ____________ _

BLOAD also allows the optional parameters S, D , and V, for
slot, disk drive, and volume. See the entry under OPEN for
information about these parameters.

BR UN (DOS Command; Applesoft and Integer BASICs) ___ _

BRUN acts like a combination of the BLOAD and CALL commands.
BR UN loads a machine-language program (a binary fi le) from the current
disk and runs it; for example:

BRUN F, A768

This command loads the binary file F into memory locations starting at
address 768, and then performs a CALL 768 command. If the A parameter
is omitted, the file F is loaded into the same memory locations it was in
when the file was originally created. (See BSAVE.)

BRUN also allows the optional S, D, and V parameters. (See OPEN.)

BSAVE (DOS command; Applesoft and Integer BASICs) ___ _

The BSAVE command creates a binary disk file from the current values
stored in a specified sequence of memory locations. The com mand requires
three parameters: the name of the file to be created on disk; the letter "A"
followed by a memory address; and the letter "L" followed by the length,
in bytes , of the sequence that is to be stored. For example, consider the fol­
lowing command:

BSAVE F, A768, L79

This statement creates the binary file F, consisting of the 79 bytes of data
currently stored in memory locations 768 to 846.

The A and L parameters may also be expressed as hexadecimal num­
bers, beginning with the "$" character. BSAVE may be used as either an
immediate command or a program statement. (See DOS Commands.)

BSAVE 21

Sample Program ___________________ _

BSAVE presents a convenient method of storing shape tables for the
DRAW command, as illustrated in the program of Figure B.2. The sub­
routine at line 200 POKEs the "bug shape " -described under the heading
DRAW -into memory. Then line 50 saves the shape table as a binary file
called BUG SHAPE :

50 PRINT CHR$(4); "BSAVE BUG SHAPE, A768, L79"

With the shape table thus saved on disk, you can create the shape at any
time-in a program or otherwise-using BLOAD to load the shape back
into memory. (See the entry under BLOAD.)

Notes arul Comments ____________________ _

1 0
20
30
40
50
60

200
210
220
230
240
245
250
255
260
270
280
290
300
310
315
320
330
340
350
360
370
380

BSAVE allows the three optional parameters S, D , and V. (See
the entry under OPEN .)

REit ** BSAVE DEMO.
REit ** SAVE THE BUG SHAPE
REit ** IN A BINARY DISK FILE
GO SUB 200
PRINT CHR$(4);"BSAVE BUG SHAPE, A768, L79"
END
REit ** POKE THE SHAPE
FOR I = 768 TO 846

READ v
POKE I,V

NEXT I
REit ** INDEX TO TABLE
DATA 2,0,6,0,42,0
REit ** FROWNING BUG
DATA 45,36,60,60,60,36
DATA 44,44,44,45,45,53
DATA 53,53,54,55,55,55
DATA 54,45,192,3,56,63
DATA 7,40,44,53,5,192
DATA 32,53,223,39,53,0
REit ** SMILING BUG
DATA 45,36,60,60,60,36
DATA 44,44,44,45,45,53
DATA 53,53,54,55,55,55
DATA 54,45,192,3,56,63
DATA 7,24,8,53,45,44
DATA 24,32,53,223,39,53,0
RETURN

Figure B.2: BSAVE-Sample Program

22 Byte

Byte (computer vocabulary) _______________ _

A byte is a unit of memory space, the amount of memory required to
store one character. A byte consists of eight bits or binary digits . A bit stores
one of two possible values-0 or 1. Thus, a byte may hold binary values
ranging from:

00000000

to:

11111111

The decimal equivalent of this range is 0 to 255.

CALL (command word; Applesoft and Integer BASICs) ____ _

The CALL command directs the computer's operation to a specified
machine-language routine. The syntax of CALL is:

CALLM

where M is a decimal memory address. For example, the command:

CALL 768

instructs the computer to perform the machine code routine located in the
section of memory beginning at address 768. The end of the routine must
contain a machine language R TS command(" return from subroutine") to
return control back to the BASIC program that called it.

Notes and Comments ___________________ _

You can use the CALL command to perform the Apple sys­
tem's built-in routines. For example, the following statement
calls the routine that clears the screen:

CALL -936

This is a useful CALL statement in Integer BASIC, where the
HOME command is not available. (See HOME.)

For another example, the following statement puts you into
the Apple monitor program:

CALL -151

(The monitor program allows you to examine and change the
values contained in blocks of memory locations.)

23

24 CALL

The USR command, available only in Applesoft BASIC, also
sends control to a machine-language routine, and allows pass­
ing of parameter values. (See USR.)

CATALOG (DOS command; Applesoft and Integer BASICs) __

The CATALOG command displays a directory of all the files stored on a
specified disk. You can use CATALOG whenever you want to know what a
certain disk contains. The directory gives three pieces of information about
each file:

1. a tag indicating the type of file it is (A-Applesoft program;
B-binary file; !-Integer BASIC program; T-text file);

2. the number of disk sectors the file takes up;

3. the name of the file.

For example, the following directory entry gives information about an
Applesoft program file:

A 01 0 GRAPH ICS PROGRAM

The name of the file is GRAPHICS PROGRAM; it takes up 10 disk
sectors.

An asterisk flags any program that is locked. (See LOCK and
UNLOCK.)

If the directory is longer than one screenful of information, the display
will appear one screen at a time. You can press any key on the keyboard to
continue.

The Sand D parameters may be used with CATALOG. (See OPEN.)
CATALOG is most often used as an immediate command, but may also be
written as a program statement. (See DOS Commands.)

CHAIN (DOS command; Integer BASIC) _ _______ _

The CHAIN command, available only in Integer BASIC, loads a new
program from the disk and runs it, but does not clear any previously
defined variables. (Note that the RUN command does clear all previous
variable values.) As a result, the new program loaded by CHAIN can use
any variable values established by a previous program.

CHAIN may be used as an immediate command, but is clearly more
valuable as a program statement . In a program, CHAIN, like all DOS
commands, must be sent to the system via a PRINT statement and a
CONTROL-D character. (See DOS Commands.) Unfortunately, since the

CHR$ 25

CHR$ function does not exist in Integer BASIC, the CONTROL-D char­
acter will always be invisible in the PRINT statement:

1 00 PRINT "CHAIN F"

In typing this statement, you must enter the CONTROL-D character
directly from the keyboard, between the opening quotation mark and the C
of CHAIN. When the program encounters this line, it will load F (which
must be an Integer BASIC program file) from the disk and run the new
program, without clearing the variables of the previous program.

CHAIN also allows the optional parameters S, D, and V, described
under the heading OPEN.

CHR$ (function, Applesoft BASIC) __________ _

The Apple II computers store their keyboard characters in a numeric
code format. The code they use (called ASCII, for the American Standard
Code for Information Interchange) contains 256 elements; each character
in the code is assigned a code number from 0 to 255. The Apple version of
ASCII contains letters, digits, punctuation, and control characters. As a
result, any of these characters can be stored, in code form, in a single byte
of the computer's memory.

The CHR$ function supplies the character corresponding to a given
ASCII code number. The argument of CHR$ must be a code number from
0 to 255; the result is the character that corresponds to that code number.

sampkProgram ___________________ ___

The program shown in Figure C.l illustrates the use ofCHR$, and dis­
plays a portion of the ASCII character code on the screen. Figure C.2
shows the output from the program.

Lines 40 to 80 of the program form a FOR loop that displays the codes.

10 HOllE
20 PRINT TAB(13) "THE ASCII CODE"
30 PRINT
40 FOR I 33 TO 52
50 PRINT I ; II ". CHRS(I),

'
60 PRINT I + 1 9;" "· CHRS<I

'
+ 1 9),

70 PRINT I + 38;" "· CHRS<I
'

+ 38)
80 NEXT I

Figure C. I: CHR$-Sample Program

26 CHR$

THE ASCII CODE
33 I 52 4 71 (;
34 oi 53 5 72 H
35 I 54 6 73 I
36 $ 55 7 74 J
37 /.: 56 8 75 K
38 & 57 9 76 L
39 I 58 : 7'?

I I t'l
40 (59 ; EC• N I '-'

41) 60 < 79 0
42 * 61 = 80 p
43 + 62 > 81 (!
44 63 ? 82 R
45 64 @ 07' s '-"·-· 46

/
65 A 84 T

47 66 B .-.a::- u C• ·-•
48 0 67 c 86 IJ
49 1 68 0 87 w
50 2 69 E 88 X
51 3 70 F 89 v
52 4 71 (; 90 2].

Figure C. 2: CHR$-Sample Output

The index, I, of the FOR loop becomes the code number and also the argu­
ment of CHR$; for example:

50 PRINT I;""; CHR$(1) ,

Notes and Comments ___________________ _

An argument for CHR$ that is outside the legal range (i.e., 0
to 255) will result in the following error message:

?ILLEGAL QUANTITY ERROR

See the entry under ASC for more information.

CLEAR (command word; Applesoft BASIC) _______ _

The CLEAR command, which may be used either as an immediate
command or as a program statement, effectively erases the current values
of all variables and the dimensions of all arrays. After CLEAR is executed,
all numeric variables will have values of zero, and all string variables will
have null values. Furthermore, any arrays that you wish to use after
CLEAR must be redefined in a new DIM statement.

CLEAR 27

8ampkProgram ____________________________________ __

The program shown in Figure C.3 is an exercise that demonstrates the
effect of CLEAR. The program displays a series of messages on the screen
to tell you what it is doing during the performance, so that you can study
the results. The first step is to assign random values to each of three vari­
ables-X, Y, and Z. This is accomplished with the RND function in lines
50 to 70; the subsequent three lines display the variable names and the
three values on the screen. The second step is to execute the CLEAR com­
mand, in line 150. Finally, after CLEAR is performed, an attempt is made
to print the three values (of X, Y, and Z) on the screen again, in line 170 of
the program.

Figure C. 4 shows a run of this program. Study each of the three steps.
After the CLEAR command has been performed, the final value of all
three variables is 0.

Notes and Comments ___________________ __

Variables are also cleared under all of the following circum­
stances:

1. When you use the RUN command to begin a program
performance;

2. When you enter the NEW command to clear a current pro­
gram from memory;

3. When you revise a current program in any way-i.e., by
adding, deleting, or editing any line of the program.

10 PRINT " EFFECT OF THE CLEAR STATEMEN T"
20
30
40
so
60
70
90

100
11 0
1 2 0
130
140
1 so
160
170

PRINT "

"==> ASSIGNING
RND (1)

PRINT
PRINT
LET X
LET Y
LET Z
PRINT "
PRINT "
PRINT "
PRINT

RND (1)
RNDC1)

";X
y = "; y
z = "; z

VALUES TO VARIABLES X,Y,Z."

PRINT" ==> EXECUTING CLEAR STATE MENT."
PRINT
CLEAR
PRINT"= => ATTEMPTING TO PRINT VARIAB LE VALUES."
PRINT" X= ";X;", Y = ";Y;", Z = ";Z

Figure C.3: CLEAR-Sample Program

28 CLEAR

Figure C. 4: CLEA R -Sample Output

To run a program, or part of a program, without clearing vari­
able values, you must use GOTO as an immediate command.
This will only work, however, if you have not edited the pro­
gram in any way. (See the entry under GOTO.)

See the entry under DIM for information on defining and
redefining array variables.

CLOSE (DOS command; Applesoft and Integer BASICs) _ __ _

The CLOSE command closes a text file on the current disk. The format
of CLOSE is the same for both sequential and random access files; the
command:

CLOSE F

where F is any legal file name, closes the file F. The alternative form,
simply:

CLOSE

closes all files that are currently open (except any open EXEC file) .

CLR 29

If a file is open for writing, the computer automatically completes the
writing process before closing the file; this means that any remaining out­
put characters in the file buffer are sent to the file.

CLOSE may be executed either as an immediate command or as a
program statement. In a BASIC program, CLOSE, like other DOS com­
mands, must be sent to the system via a PRINT command and a
CONTROL-D character. (See DOS Commands.)

The entries under APPEND, EXEC, POSITION, READ , and
WRITE all present sample programs that demonstrate various file­
handling techniques. All of these programs contain examples of the
CLOSE statement.

CLR (command word; Integer BASIC) __________ _

The CLR command clears the values of all the variables and the dimen­
sions of all arrays of a current program in Integer BASIC. CLR may be
used only as an immediate command. As a result of CLR, numeric vari­
ables are set to zero, and string variables are assigned null values.

Sample Program __________________ _

The following exercise demonstrates the effect of the CLR command on
dimensioned arrays in Integer BASIC . Enter INT to switch the computer
into Integer BASIC , then enter each of the following statements as immedi­
ate commands (i.e., without line numbers):

DIM A(25)

This statement defines a numeric array A, of length 25 .

LET A(10) = 1
PRINT A(10)

The purpose of these two statements is to show that A is in fact a legal array.
The first statement assigns a value to one of the elements of A; the second
displays that value on the screen. The computer will print the value 1 below
the second statement.

Now enter the CLR command:

CLR

Try to access the same element of A again:

PRINT A{10)

30 CLR

The computer's speaker will beep, and you will see the following error mes­
sage on the screen:

• • • RANGE ERA

This message means that you have tried to access a nonexistent array ele­
ment (and the array index 10 is thus out of range). The CLR command
cleared the definition of the array A, making any reference to elements of
A illegal. To use A again, you would have to redefine it in another DIM
statement.

COLOR (low-resolution graphics command; Applesoft and Integer
BASICs) _______________ _

The COLOR command determines the color of picture elements dis­
played in low-resolution graphics. The format of the COLOR command is:

COLOR= C

where Cis a value from 0 to 15 . The table in Figure C.5 shows the color

Figure C.5: Table of Low-Resolution Graphics

COLOR 31

resulting from each value of C. After the color is set, any subsequent
PLOT, HLIN, or VLIN commands will display graphics elements in the
specified color.

The GR command initializes COLOR to 0, black.

5ampkProgram ____________________________________ __

The Applesoft program shown in Figure C .6 produces a low-resolution
graphics color chart. The output from the program is shown in black and
white in Figure C. 7. (The letters A through F identify colors 10 to 15 in the
chart.) You can see that COLOR produces a range of textural patterns that
can be useful even in black-and-white graphics .

Two FOR loops are used to create this color chart. The subroutine at line
150 produces the white background . It sets the color to white :

155 COLOR = 15

and then plots 40 horizontal lines down the screen:

160 FOR I = 0 TO 39
170 HLIN 0,39 AT I
180 NEXT I

The loop in lines 60 to 100 produces the 16 color stripes . In this case the

10 DI" C$(15)
20 FOR I = 0 TO 15
30 READ C $(1)

40 NEXT I
SO GR : HO"E : VTAB 21: HTAB 5
55 GOSUB 150
60 FOR I = 0 TO 15
70 COLOR= I
80 VLIN 0,39 AT I * 2 + 4
90 PRINT C$(1);" ";

100 NEXT l
110 PRINT : PRINT
120 INPUT " LOW-RESOLUTION GRAPHICS COLOR CHART ";A$
150 TEXT : HO"E : END
140 DATA 0,1,2, 3,4,5,6,7,8,9,A,B,C,D,E,F
150 RE" **WHITE OUT
155 COLOR= 15
160 FOR l = 0 TO 59
170 HLIN 0,39 AT l
180 NEXT l
190 RETURN

Figure C. 6: COLOR-Sample Program

32 COLOR

COLOR command is located inside the FOR loop; the control variable, I,
is used to change the color for each iteration of the loop:

60 FOR I = 0 TO 15
70 COLOR= I

Notes and Comments ____ _______________ _

For another example of the COLOR command, see the entry
under PLOT.

If, in the expression :

COLOR= C

C is a number greater than 15, the computer calculates the
value C modulus 16 (that is, the remainder from the division of C
by 16) to produce a value from 0 to 15.

Figure C. 7: COLOR- Sample Output

cos 33

CON (system command; Integer BASIC) _________ _

The CON (for continue) command resumes the performance of an Integer
BASIC program after a halt. Typing CONTROL-C halts a program run;
the CON command resumes execution at the next program statement.

Concatenation (computer vocabulary) _________ _

Concatenation is the combining of two strings to form a third string. The
plus symbol (+) is used to represent the operation, as in the following
example:

LET C$ = "CONCAT" + "ENATION"

This LET statement results in storing the string "CONCATENATION"
in the variable C$.

In a string expression, the elements of a concatenation might be repre­
sented in a variety of ways, including literal string values, string variables,
and the result of string functions. For example:

LET N$ = L$ + " " + LEFT$(F$, 1) + "."

might create a "name string" (N$) in this format: last name (L$), blank
space, first initial (LEFT$(F$, 1)), period.

CONT (system command; Applesoft BASIC) ________ _

The CONT command resumes the performance of an Applesoft BASIC
program after an interruption. The cause of the interruption might be an
END or STOP statement, or a keyboard interruption (CONTROL-C). In
any of these cases, CONT resumes execution of the program at the next
instruction (not necessarily the next line, in the case of a program contain­
ing multi-statement lines) .

COS (function; Applesoft BASIC) ___________ _

Given any angle (negative or positive) expressed in radians, the COS
function supplies the cosine of the angle.

34 cos

Sample Program ___________________ _

The program shown in Figure C.8 displays a series of cosine values for
arguments from - 2n to + 2n . The output from this program appears in
Figure C.9.

10
1 5
20
25
30
35
"57
40
50
60

DEF FN R(X) = INT<10 0 *X+ . 5) I 100

HO"E
PRINT TAB (11l;"THE COSINE FUNCTION"
PRINT
PRINT TAB <11l ;"AR GU MENT COS"
PRINT TAB<11l;"--------
PRINT
FOR I -2 TO 2 STEP 1 I 4

PRINT TAB (11l ;"Pl*"; I; TAB <27l; FN R(COS(l * 3 .14 16))
NEXT I

Figure C. 8: COS-Sample Program

F~gure C. 9: COS-Sample Output

Cursor 35

Figure C.JO: COS-Plotted Graph

Notes and Comments ___________________ _

Figure C.lO shows a graph of the cosine function, from x
- 2rr to x = + 2rr. This graph was created using Applesoft

high-resolution graphics.

Since 180 degrees equals rr radians, we can calculate 1 degree as
approximately .0175 radian.

The other trigonometric functions available in Applesoft
BASIC are SIN and TAN; the inverse trigonometric function
ATN is also implemented.

Cursor (computer vocabulary) _____________ _

The cursor is the small flashing rectangle that appears on the text display
screen; it indicates the current print location on the screen. Any informa­
tion sent to the screen will appear starting from this current position. Both
versions of BASIC have a number of commands and functions that help
you control the position of the cursor at any given point in a program
performance-for example, TAB, HOME, HTAB, VTAB.

36

DATA (data storage statement; Applesoft BASIC) ______ _

The DATA statement makes it possible to store a sequence of numeric or
string data items in an Applesoft BASIC program. The program can access
these data items via the READ command. In some circumstances , the
READ/DATA configuration can be a simpler and more convenient means
of storing and reading data than the creation of an external file .

Any number of DATA statements may be placed at any location in a pro­
gram listing. The items stored in a DATA statement are separated by com­
mas. A DATA statement may contain numeric data items:

100 DATA 10, 15, 17, 23, 39

or string data items :

110 DATA MONDAY, TUESDAY, WEDNESDAY

or a combination of both:

120 DATA JANUARY, 10, 16, 18.2

The number of data items stored in any given DATA statement in a pro­
gram may vary. (Notice that the statements above contain five , three, and
four items, respectively.)

A string data item in a DATA statement may appear with or without sur­
rounding quotation marks. However, if the string contains one or more
commas that are intended as part of the data item itself, the quotation
marks are required:

130 DATA "$1 ,527,631 ,82", "$776,821.91"

Note that the comma that separates one string data item from the next must
appear outside the quotation marks.

All the DATA statements of a given program together form, in effect,

DEF FN 37

a single sequential data file-that is, a group of data items that can be
accessed one at a time in the order in which they appear in the file.
(Remember, though, that the DATA statements store this file inside
the BASIC program itself, not on some external medium such as a disk
or a cassette tape.) The computer automatically sets up a pointer that keeps
track of the current dtlta item in the group of DATA statements. A READ
statement, then, accesses the current data item, and causes the computer to
increment the pointer to the next data item in the "file." The RESTORE
command resets the pointer back to the very first data item. (See the entries
under READ and RESTORE for more details.)

sampkProgra~--------------------------------------

Several programs under other headings show examples of the READ
and DATA statements. The programs under the headings DRAW (Figure
D.3) and STEP (Figure S.9) use DATA statements to store the numbers of
a graphics shape table. These programs read the numbers one at a time and
POKE them into appropriate locations in the computer's memory.
Another program, described under the heading HPLOT (Figure H.4)
stores abbreviations for the names of the months in DATA statements. The
program reads these items into a string array, and then uses them first as
prompts in an input dialogue and again as labels for the bar graph that is
the program's end product. In that program, an alternative approach
would have been to use assignment statements to create the array of month
names:

200 LET M$(1) "JAN"
210 LETM$(2) "FEB"
220 LET M$(3) "MAR"

... and so on. All in all, however, the READ/DATA approach seems sim­
pler and more economical when more than about ten data items have to be
assigned to the elements of an array.

DEF FN (function-definition statement; Applesoft BASIC) ______ _

With the DEF FN statement you can define your own arithmetic func­
tions for use in an Applesoft program. Defining such a function requires
that you specify the three distinct elements of the DEF FN statement:

1. a name for the function you are going to define;

2. a variable for use in the definition of the function;

3. an arithmetic expression that defines the function's actual
calculations.

38 DEF FN

We might state the general form of the DEF FN statement as follows:

DEF FN A(B) = arithmetic expression

where A represents the name of the function itself, and B represents a vari­
able name. The arithmetic expression following the equal sign will usually
contain at least one reference to the variable B. A "call" to this function will
take the form:

FN A(V)

where V is a literal value, a variable, or an arithmetic expression. This
function call results in the following actions:

1. Vis evaluated, and its value is "sent" to the variable Bin the
function definition.

2. The function's arithmetic expression is performed, using the
value sent to B.

3. The result of the arithmetic expression is returned as the value
of the function .

Consider an example. Let's say you are writing a program in which you
frequently have to perform the following operation on some given number:

Multiply the number by itself and add 9 to the result.

Of course, you could simply write a new, but similar, arithmetic expression
each time this operation must be performed; but creating a user-defined
function is more economical.

We'll name this function S9 (for "square plus 9"). To define the function
we'll use the variable X. The function's arithmetic expression will be:

Putting together the three elements of the function definition-the name,
the variable, and the arithmetic expression-we have:

DEF FN S9(X) = X • X + 9

Paraphrased, this function definition says, "Store in the variable X the
value received from the function call. Multiply X by itself and add 9.
Return the result as the value of the function."

An example of a statement that calls this function is:

PRINT FN 89(5)

This statement sends the value 5 to X in FN S9 and PRINTs the result
on the screen. The result displayed will be 34. You can see that FN S9
has indeed performed the calculation specified in the function definition
(5 X 5 + 9 = 34).

The value 5 in this example is called the argument of the function. The

DEL 39

argument is the value that is sent to the function for use in the specified
calculation . The argument can also be a variable or even an arithmetic
expression, as shown in the following two statements:

PRINT FN S9(M)
PRINT FN S9((M + N) • 2)

In these statements the variables M and N have values of their own. How­
ever the arguement is expressed, it is evaluated and sent to the function.

The variable X in the definition of FN S9 is sometimes called a
"dummy" variable . It is only defined for private use in the function itself.
In fact, a variable elsewhere in the program may also be named X; this
variable ' s value will be completely independent of, and remain totally
unchanged by, the activities of FN S9 . (See the entry under BASIC for a
discussion of local and global variables .)

Notes and Comments ___________________ _

The DEF FN statement may not be written as an immediate
command . However, once a function is defined, a call to the
function may be part of an immediate command.

See the entry under FN for a sample program using the DEF
FN statement.

DEL (system command; Applesoft and Integer BASICs) _____ _

You can use DEL to delete a sequence of line numbers from a BASIC
program. The format of the DEL command is:

DEL F, L

where F and L are both line numbers, and L is greater than F. All the lines
numbered from F to L will be deleted from the program. For example:

DEL 120,370

This command deletes the sequence of lines from line 120 to line 370 .
To delete a single line you need only enter the line number when the sys­

tem prompt is displayed on the screen ; for example, entering the number:

75

will result in deletion of line 7 5 from the program. This feature can be both
valuable and dangerous; you have to guard against line deletions resulting
from accidental entry of numbers in response to the system prompt.

40 DELETE

DELETE (DOS command; Applesoft and Integer BASICs) __ _

DELETE removes a file of any type (program, text, or binary) from the
disk directory. The DELETE command takes the form:

DELETE F

where F is any legal file name. DELETE will not remove a file that is
locked. (See LOCK and UNLOCK.) The DELETE command also allows
the three optional parameters S, D , and V. (See the entry under OPEN.)

The sample programs under the heading WRITE show examples of
DELETE as a program statement.

DIM (command word; Applesoft and Integer BASICs) _____ _

The DIM (for "dimension") statement allows the programmer to define
an array and to specify the characteristics of that array. (Both versions of
BASIC allow DIM to be used as either an immediate command or a pro­
gram statement.)

A variable is a place set aside in the computer's memory for a certain
value; an array is a collection of variables that are indexed for convenient
access. Arrays have dimensions. We sometimes refer to a one-dimensional
array as a list of variables, and to a two-dimensional array as a table of
variables. Only Applesoft BASIC allows multidirrumsional arrays (i.e., those
of more than one dimension). In Integer BASIC, arrays are limited to a
single dimension.

In addition to dimension, each array has a specified name, type , and
length. The DIM statement provides a convenient way to define all of these
characteristics in one simple program line. For example, the statement:

DIM 8(1 0)

defines a one-dimensional array named S. We know the array is one­
dimensional because only one number appears in parentheses after the
name of the array. The name itself specifies the type of the array. As with
simple variables, the last character of the array name indicates the type of
data the array can hold. In Applesoft BASIC, an array with a name that
ends in the % character is defined for storing integers; an array with a
name that ends in $ is defined for storing strings. The names of real­
number arrays end in a letter or a digit. Integer BASIC allows only two
array types : integer (with array names ending in a letter or a digit) , and
character (with array names ending in$).

Thus, the array S, as defined above, would be for real numbers in
Applesoft BASIC, or for integers in Integer BASIC. In both versions of
BASIC , the length of Sis 11; that is, Scan store up to eleven numbers. We

DIM 41

can think of S as a list of eleven numeric variables. The names of these
eleven variables are as follows:

S(O)

S(l)

S(2)

S(3)

S(4)

S(5)

S(6)

S(7)

S(8)

S(9)

S(lO)

Like any numeric variable, each of these variables can store one numeric
value at a time.

In general, a numeric array defined as:

DIMA(N)

contains N + 1 elements, because the first element of such an array is A(O).
Once the array S has been defined in a DIM statement, you can use

these eleven variables in the same ways that you would use any simple
numeric variable: you can assign values to them via LET or INPUT state­
ments; you can display their values using PRINT statements; or you may
include these variables in arithmetic expressions to perform calculations on
their values .

The number between parentheses in the name of an array element is
called the index into the array. This number does not have to be a literal
numeric value; it can also be represented by a variable, for example:

S(l)

As long as the variable I contains a value from 0 to 10 (the range of the
array S), S(I) refers to one of the eleven values of the array. You can begin
to see why arrays are such a convenient way to store data. With a variable
as the array index, you can create a working relationship between an array
and a FOR loop to perform long data-processing tasks in very few program
statements. For example, the following three lines could print all eleven of
the values stored in the array Son the screen:

1 00 FOR I = 0 TO 1 0
110 PRINT S(l)
120 NEXT I

42 DIM

In this sequence, the FOR loop's control variable, I, doubles as the index
into the arrayS. As the FOR loop increments the value of I from 0 to 10,
each value of the array is accessed and printed on the screen, one by one.
(This assumes, of course, that S has been assigned values somewhere ear­
lier in the program.) You will see further examples of arrays and FOR loops
in the sample program below.

The DIM statement itself may also have a variable name as the index of
the array:

40 DIM S(N)

In this case, the variable N must be assigned a value before the computer
encounters the DIM statement during the program run. The value of N
will then define the length of the array S.

In Applesoft BASIC, arrays may be defined with more than one dimen­
sion. An example of a two-dimensional array definition is the following:

DIM T(3,4)

The table of variables represented by the array T is:

T(O,O)
T(O, 1)
T(0,2)
T(0,3)
T(0 ,4)

T(1 ,0)
T(1 , 1)
T(1 ,2)
T{1 ,3)
T{1 ,4)

T(2,0)
T(2, 1)
T(2,2)
T{2,3)
T(2,4)

T(3 ,0)
T(3, 1)
T(3,2)
T(3,3)
T(3,4)

Note that the index of both dimensions starts at 0. Often you will find that
you have no particular use in your programs for this first element of the
arrays you define. This presents no problem; there is no rule that says you
have to make use of every element of an array you define. All the same, it is
good to keep in mind that an element zero is available for those occasions
when it is useful.

You can define as many arrays as you need for any given program. (The
only practical limitation is, of course, the amount of memory you have in
your computer.) The syntax of the DIM statement is flexible; you may
define several arrays in a single DIM statement:

10 DIM A(20), B${1 0 ,1 0) , C%{15)

or you may write several DIM statements in the same program:

10 DIM A(20)

20 DIM B$(1 0 ,1 0)

30 DIM C%(15)

DIM 43

sampkProgram ____________________________________ __

Figure D.l shows an Applesoft BASIC program that reads a series of
numeric data items from the keyboard and stores the data in an array. Spe­
cifically, the series of data consists of one item for each month over a given
number of years . The program specifies nothing about the nature of the
data; the numbers could represent any collection of monthly data-from
income to rainfall to bowling scores. Furthermore, this program, in its cur­
rent version, performs only a limited number of tasks:

1. it supplies an input prompt for each month 's data;

2. it reads the data;

3. it stores the data in a convenient and usable form.

These tasks alone supply some good illustrations of the use of arrays and the
DIM statement. Once the data is stored, any number of different process­
ing tasks are possible. (The sample program under the heading HPLOT

5 HO"E
10 PRINT "INPUT MONTHLY DATA"
20 PRINT "FOR UP TO THREE YEARS. "
30 PRINT
40 INPUT "FIRST YEAR? "; F
50 INPUT "HOW MANY YEARS? ";N
55 PRINT
60 DI" M$ (12J ,D (N ,12)
70 GO SUB 200: RE" MONTH NAMES
80 GOSUB 300: RE" INPUT DATA
90 RE" ** MORE TO COME ...

190 END
200 FOR I = 1 TO 1 2
210 READ M$ (I)
220 NEXT I
230 DATA JAN, FEB, MAR, APR
240 DATA MAY, JUN, J UL, AUG
250 DATA SEP, OCT, NOV, DEC
260 RETURN
300 FOR I = 1 TO N
310 PRINT F - 1 + I
31 5 PRINT "

320 FOR j 1 TO 1 2
330 PRINT M$ (J);
340 INPUT ". " ; D (I, J)
350 NEXT j

360 PRINT
380 NEXT I
390 RETURN

Figure D. I: DIM-Sample Program

44 DIM

provides an example of one of these processing tasks; it adds a subroutine
that builds a bar graph from the data that the DIM program reads and
stores.)

Near the beginning of the program, two values are read from the key­
board:

40 INPUT "FIRST YEAR? "; F
50 INPUT "HOW MANY YEARS? "; N

The program uses these two values, F and N , to determine the input
prompts and the amount of data that will be read . The variable F should
contain a date (for example, 1980), and the variable N should contain the
number of years' data the program will deal with.

The DIM statement follows, defining the two arrays M$ and D :

60 DIM M$(12}, D(N ,1 2}

T he string array M$ will hold abbreviated names of the twelve months.
T he actual numeric data will be assigned to the array D. The length of the
first dimension ofD is specified by the value of the variable N, the number
of years to be covered by the program. The array D will thus hold N X 12
items, or twelve values for each year. (Actually, since the elements of arrays
are numbered from zero-D(O), D(1), D(2), etc.-D could hold (N + 1)
X 13 elements, but this program does not use the (0) element of either
array.)

The next two lines of the program make subroutine calls:

70 GOSUB200
80 GOSUB300

The subroutine at line 200 initializes the values of the string array M$; the
subroutine at line 300 actually reads the input data and assigns the values to
D. Notice that an END statement appears at line 190. This leaves plenty of
room to add more subroutine calls to the "main program" section later
when we are ready to write subroutines to process the input data. For now,
however, you can learn a lot about arrays by examining the two subrou­
tines that are already written .

The subroutine at line 200 uses the Applesoft READ/DATA feature to
initialize the array M$. The index into the array is increm«nted from 1 to
12 by a FOR loop at line 200 :

200 FOR I = 1 TO 12
210 READ M$(1)
220 NEXT I

This is the program's first example of the use of a FOR loop to access the
elements of an array; these three short lines efficiently instruct the com­
puter to read a value for each of the twelve elements of M$-from M$(1) to

DIM 45

M$(12). The DATA statements in lines 230 to 250 store the twelve strings
that are to be read into M$. (We could have initialized M$ by writing
twelve assignment statements, but the READ/DATA method is consider­
ably more efficient. See the entries under READ and DATA.)

The input routine, starting at line 300, uses two nested loops to read and
store the values of the array D. The outer loop increments the control vari­
able I from 1 to the number of years:

300 FOR I = 1 TO N

As part of a series of input prompts, the outer loop begins by displaying the
year on the screen:

310 PRINTF- 1 +I

(Recall that F is the date of the first year; the expression F - 1 + N thus
gives the last year.) For each year of input, the inner loop increments the
control variable J from 1 to 12 for the months:

320 FOR J = 1 TO 1 2

The variable] is used as an index into the array M$, to display the name of
each month:

330 PRINT M$(J)

Finally, both control variables are used in the INPUT statement to store an
item of data for the Ith year and thejth month:

340 INPUT":"; D(I,J)

Figure D . 2 shows the first screen of a sample run of this program. After
displaying each month name, the computer waits for you to enter a value;
after December, the computer displays the data of the following year and
starts again at January.

Notes and Comments ___________________ _

Besides the disparities already noted, the Applesoft and Integer versions
of BASIC have several essential, and sometimes peculiar, differences in the
ways they deal with arrays. The following notes describe these differences:

In Applesoft BASIC, the elements of all numeric arrays are
automatically initialized to zero. In Integer BASIC, there is no
such initialization, and the initial values of a numeric array
are, in fact, unpredictable. To see exactly what this means, run

46 DIM

the following short program, first in Applesoft, and then in
Integer BASIC:

10 DIM A(1 00)
20 FOR I = 1 TO 1 00
30 PRINT A(l); "";
40 NEXT I
50 END

In Applesoft BASIC, this program will display a series of 100
zeros on the screen, the initial values of the array A. In Integer
BASIC , the hundred values will depend on what happens to be
in the computer's memory at the time you run the program,
but the chances are good that many of the initial values will not
be zero.

Applesoft BASIC allows you to use small arrays without first
defining them in a DIM statement. For example, consider the
following statement:

10 LET M(5) = 29

INPUT "ONTHLY DATA
FOR UP TO THREE YEARS .
FIRST YEAR? 1980
HOW MANY YEARS? 3
1980

JAN = 15
FEB = 23
MAR : 19
APR = 22
MAY = 25
JUN = 18
JUL : 17
AUG= 23
SEP= 29
OCT= 32
NOV= 30
DEC = 28

1981

JAN= •

Figure D. 2: DIM-Sample Output

DIM 47

If this instruction is not preceded by a DIM statement, Apple­
soft BASIC will automatically dimension the array M to a
length of 11 . In other words , there is an implied DIM state­
ment, as though you had actually written the following two
commands:

10 DIM M(10) : LET M(5) = 29

If you try to use arrays longer than 11 elements (i .e . , with ele­
ments numbered 0 to 10) without first defining them in a DIM
statement, however, your program will terminate with the fol­
lowing error message:

?BAD SUBSCRIPT ERROR

Even though this "default value" is available, you should get
into the habit of writing DIM statements for all arrays, what­
ever their length. Not doing so can lead at best to confusion,
and at worst to programs that fail.

Integer BASIC requires that all arrays be defined with DIM.

Applesoft BASIC does not allow you to define the same array
more than once in a program unless you first give the CLEAR
command. This can be an issue whenever you want to use the
same array to store several different sets of data during the
same program run. If you intend to change the length of an
array, you must first execute a CLEAR statement.

For example, consider the following short program:

10 INPUT " HOW MANY ITEMS?"; N
20 DIM T(N)
30 FOR I = 1 TO N
40 INPUT T(l)
50 NEXT I
60 REM •• PROCESS THE DATA
70 CLEAR
80 GOTO 10

This program might represent a situation in which you need to
process many lists of data in a certain way. The number of
items in any given list is defined in lines 10 and 20; lines 30 to
50 read the data. Line 60 could be replaced by a GOSUB state­
ment that calls the data processing subroutine. Finally, before
the program processes another list (line 80), line 70 clears the
previous definition of the array T. Try running the program;
you will see that you can define and process as many lists of
data as you want. Now delete line 70 and run the program
again. As soon as you try to process a second list of data, the

48 DIM

program run will terminate with the following error message :

?REDIM 'D ARRAY ERROR

This means that the computer has encountered the DIM state­
ment for T (at line 20) a second time, with no intervening
CLEAR statement.

In Integer BASIC you can redefine an array as many times
as you wish , with no problem. Each time the computer encoun­
ters a DIM statement for an already-defined array, it clears the
previous definition of the array, as though you have given the
CLR command .

Nonnumeric arrays are completely different in the two versions
of BASIC.

In Applesoft BASIC, each element of a string array is of ar­
bitrary length . For example, consider the array defined as
follows:

DIM S$(10)

S$ can hold up to 11 strings, and the length of each string can
be different. In other words, each element of S$ can contain a
different number of characters.

The same DIM statement in Integer BASIC defines a single
string whose length is 10 characters. String arrays do not exist
in Integer BASIC, but a simple string variable (i .e., an array of
characters) must be defined in a DIM statement before it can
be used.

If you try to access an array element that is outside the defined
length of the array, your program will terminate with an error
message in both versions of BASIC. In Applesoft BASIC, the
message Js :

?BAD SUBSCRIPT ERROR

In Integer BASIC, the error message is :

••• RANGE ERR

DOS Commands (General Information) ___ ____ _

The Disk Operating System (DOS) provides a variety of commands
that allow you to create and access data flies and program files stored on
disk . Some of these commands can only be given from within a BASIC pro­
gram ; others can be executed either as immediate commands or as
program statements.

To execute DOS commands from within a BASIC program (in both

DOS Commands 49

Applesoft and Integer BASICs), you must use the PRINT statement to
send the DOS command out to the system. Before the command itself, the
PRINT statement must send out a special control character that alerts the
system to the fact that a DOS command is coming next. This special char­
acter is CONTROL-D, and there are several different ways of putting it
into the PRINT command. Perhaps the simplest way is to type it in directly
from the keyboard . Let's say you have begun a PRINT statement as
follows:

10 PRINT"

To include the CONTROL-D character directly after the opening quota­
tion mark, you press the key marked CTRL and then the D key. Control
characters do not show up on the video screen, so as you continue typing
your statement , you won't be able to see that it is a system command:

10 PRINT "OPEN NEWFILE"

But the computer records the CONTROL-D all the same, and will conse­
quently treat the rest of the message inside the quotes as a DOS command:

OPEN NEWFILE

There is one disadvantage of typing the CONTROL-D character
directly from the keyboard: when you look at the program listing at some
point in the future, you will not be certain whether or not a PRINT state­
ment represents a system command. A better technique, then, is to rep­
resent CONTROL-D as an ASCII code character. The code for
CONTROL-Dis 4. Therefore, in Applesoft BASIC, the following expres­
sion represents the character itself:

CHR$(4)

Knowing this, you can write your DOS command as follows :

10 PRINT CHR$(4); "OPEN NEWFILE"

Or, since file-handing programs tend to use several DOS commands, you
can assign the CONTROL-D character to a variable, say D$, and use the
variable in the PRINT statement:

5 LET D$ = CHR$(4)
10 PRINT D$; "OPEN NEWFILE"

This last technique is the one used throughout this book. (Note that the
CHR$ function does not exist in Integer BASIC; consequently, you have
to enter the CONTROL-D character directly from the keyboard in Integer
BASIC programs.) For examples of DOS commands, see the entries under
APPEND, CLOSE, EXEC, OPEN, POSITION, READ , and WRITE.
All of these commands require a PRINT statement and CONTROL-D to
be executed from a BASIC program.

50 DRAW

DRAW (high-resolution graphics command; Applesoft BASIC) __ _

With the DRAW command, you can instruct the computer to place
high-resolution graphics shapes-shapes that you've designed yourself­
on the screen. DRAW may be used on either page 1 (HGR) or page 2
(HG R2) of high-resolution graphics.

Before using DRAW, you must prepare a shape table and place it in some
available area of the computer's memory. A shape table consists of up to
255 different shape definitions. A shape definition, in turn, is a series of direc­
tion and plotting specifications that the computer follows to draw a high­
resolution graphics shape on the screen. Learning to prepare a shape table
requires a certain amount of practice, and careful attention to detail. But
once you have learned the system you'll be able to design virtually any
graphics shape that you can imagine . (Shape tables are described in detail
in the "Notes and Comments" section below.) There are several different
methods available for placing a shape table in the computer's memory. In
the sample program below, we will store the table in a series of DATA lines
in the BASIC program itself. The program will READ each value of the
table and then POKE it into memory. (See the entries under READ,
DATA, and POKE for explanations of these commands. See also the
entries under BSAVE and BLOAD for an alternative approach to saving
and loading shape tables .)

The DRAW command takes the form :

DRAWN ATX,Y

In brief, this command tells the computer to draw the Nth shape of your
shape table on the screen, starting at the high-resolution graphics coordi­
nates (X,Y). N must be a value from 0 up to the number of shape defini­
tions in your shape table (maximum 255) . The coordinates X andY must
be within the range of the high-resolution graphics screen. X, the horizon­
tal coordinate, has the range:

0 <=X<= 279

andY, the vertical coordinate, has the range:

O<=Y<=191

The origin-that is, the point with the address (0,0)-is at the upper-left cor­
ner of the screen. (See the entries under HGR and HGR2 .)

DRAW may also be given without address coordinates:

DRAWN

DRAW 51

This command places the Nth shape in the shape table onto the screen,
starting at the most recently plotted point (i.e., the last point placed on the
screen by one of the three high-resolution plotting commands, HPLOT,
DRAW, or XDRAW).

While you may find the technique of defining a shape a bit demanding,
the DRAW command itself is both easy to use and extremely versatile. In
other words, once you have mastered the shape-definition process, you will
find yourself in possession of a delightful tool for putting graphics shapes on
the screen. Not only can you move the shapes to any position on the screen,
but you can also vary the size, rotation angle, and color of the shapes.
Three high-resolution graphics commands work along with DRAW to give
you almost total control over the appearance of the shape on the screen­
SCALE, ROT, and HCOLOR. You use these commands in advance of the
DRAW command to set the characteristics of the shape that DRAW will put
on the screen. These commands are described and illustrated under their
own headings, but here is a brief summary of what they do:

SCALE allows you to increase the size of your shapes. With one simple
command you can transform a tiny, barely visible graphics design into a
larger shape of any size.

ROT lets you rotate a shape around the first point of the shape defini­
tion, so that you can display your shapes sideways, upside-down, or slanted
at an angle.

HCOLOR gives you the range of high-resolution colors for displaying
your shapes.

Finally, an additional graphics command, XDRAW, command displays
the shape in the complement of the current high-resolution graphics color
setting.

sampkProgram ____________________________________ __

The program in Figure D.3 is a menu-driven demonstration program
for DRAW and its related commands. The program defines two shapes­
rather whimsical creatures that we' II call "bugs." The two bugs appear in
Figure D.4, located one above the other. Shape 1, a frowning bug, is on
top; shape 2, the same bug with a smile, appears below. (Both of these
shapes are shown enlarged by a scale factor of 5.) The program allows you
to display these bugs anywhere on the screen, in any size, rotation angle,
and color.

The first thing you'll see when you run the program is the menu. This
recurring screen (shown in Figure D.5) gives you several different options

52 DRAW

10 RE" ** THE DRAW COMMAND
20 RE" ** DEMO PROGRAM
2 5 RE"
30 RE" ** INITIALIZATIONS:
40 GOSUB 200: RE" ** SHAPE TABLE
50 LET X 120: LET Y = 120
55 LET N 2
60 LET S 5: GOSUB 720
70 LET R 0: GOSUB 770
80 LET C 7: GOSUB 820
90 GOSUB 450: RE" ** MENU

100 GOTO 90
200 POKE 232,0: POKE 233,3
210 FOR I = 768 TO 846
220 READ V
230 POKE I,V
240 NEXT I
245 RE" ** INDEX TO TABLE
250 DATA 2,0,6,0,42,0
255 RE" ** FROWNING BUG
260 DATA 45,36,60,60,60,36
270 DATA 44,44,44,45,45,53
280 DATA 53,53,54,55,55,55
290 DATA 54,45,192,3,56,63
300 DATA 7,40,44,53,5,192
310 DATA 32,53,22~,39,53,0
315 RE" ** SMILING BUG
320 DATA 45,36,60,60,60,36
330 DATA 44,44,44,45,45,53
340 DATA 53,53,54,55,55,55
350 DATA 54,45,192,3,56,63
360 DATA 7,24,8,53,45,44
370 DATA 24,~2,53,223,39,53,0
380 RETURN
450 RE" ** PRINT MENU
460 HO"E
470 PRINT "HIGH RESOLUTION GRAPHICS SHAPE: THE BUG"
475 PRINT " *** DEMONSTRATION PROGRAM ***": PRINT
480 PRINT : PRINT TAB(15)"MENU"
485 PRINT : PRINT TABC6);
490 PRINT "1) SET NEW LOCATION C";X;",";Y;")"
495 PRINT : PRINT TAB(6);
500 PRINT "2) SET NEW SCALE (";S;")"
505 PRINT : PRINT TAB(6);
510 PRINT "3) SET NEW ROTATION (";R;")"
515 PRINT : PRINT TAB(6);
520 PRINT "4) SET NEW COLOR (";C;")"
522 PRINT : PRINT TAB(6);
52 4 PRINT "5) C H 0 0 S E SHAPE ("; N; ") "
525 PRINT : PRINT TAB(6);
530 PRINT "6) DRAW ";N;" AT ";X;",";Y
535 PRINT : PRINT TAB(6);
540 PRINT "7) XDRAW ";N;" AT ";X;",";Y
545 PRINT : PRINT TAB(6);

Figure D.3: DRAW-Sample Program

560
565
570
580
585
590
600
650
655
660
665
670
675
680
700
705
710
71 5
720
730
750
755
760
765
770
780
800
805
810
81 5
81 7
820
830
850
855
860
865
870
875
880
890
900
910
920
940
950
960
965
970
975
980
990

1000
1050
1060

DRAW 53

PRINT "8) QUIT"
PRINT PRINT
PRINT " ==> OPTION? <1> TO <8>
IF MS < "1" OR MS > "8" 60TO 570
HO .. E

"·. , . GET MS: PRINT MS

ON VAL (M$) 60SUB 650,700,750,800,850,900,920,1150
RETURN
PRINT "LOCATION OF BUG:"
PRINT : PRINT
INPUT "HORIZONTAL (0 TO 279): " ;X
IF X < 0 OR X > 279 GOTO 660
INPUT "VERTICAL (0 TO 159): ";Y
IF Y < 0 OR Y > 159 GOTO 670
RETURN
PRINT "SCALE OF BUG"
PRINT : PRINT
INPUT "SCALE (1 TO 255): ";S
IF S < 1 OR S > 255 GOTO 710
SCALE= S
RETURN
PRINT "ROTATION OF BUG"
PRINT : PRINT
INPUT "ROTATION <O TO 255): ";R
IF R < 0 OR R > 255 GOTO 760
ROT= R
RETURN
PRINT "COLOR OF BUG"
PRINT : PRINT
PRINT "COLOR (0 TO 7): ";: GET C$: PRINT C$
IF C$ < "0" OR CS > "7" 60TO 810
LET C VAL(C$)
HCOLOR= C
RETURN
PRINT "CHOOSE NEW SHAPE"
PRINT : PRINT
PRINT "SHAPE 1 = FROWNING BUG"
PRINT "SHAPE 2 = SMILING BUG"
PRINT : PRINT "WHICH SHAPE? ";: GET N$: PRINT N$
IF NS <> "1" AND NS <> "2" 60TO 870
LET N = VAL (N$)
RETURN
60SUB 1050: DRAW N AT X,Y
60SUB 950: RETURN
GOSUB 1050: XDRAII N AT X,Y
GOSUB 950: RETURN
REN ** TEXT WINDOW
VTAB 21

II X II; IF MS "7" THEN PRINT
PRINT "DRAW ";N; " AT
IF MS = "7" THEN PRINT

";X;",";Y;" SCALE = ";S
"-"· - ,

PRINT "---­
PRINT : INPUT "
TEXT : RETURN

HCOLOR ";C;" ROT = ";R
PRESS <RETURN> TO CONTINUE.

REN ** CLEAR GRAPHICS?
HO .. E : PRINT

";AS

Figure D.3 : DRAW-Sample Program, continued

54 DRAW

1070 PRINT "CLEAR GRAPHICS SCREEN? <Y> OR <N> ";
1080 GET A$: PRINT A$
1090 IF NOT (A$ = "Y" OR A$ = "N") 60TO 1070
1100 IF A$= "Y" THEN HGR
1110 IF A$= "N" THEN POKE -16304,0: POKE -16300,0:

POKE -16297,0: POKE -16301,0
1120 RETURN
1150 END

Figure D.3: DRAW-Sample Program, continued

Figure D. 4: DRAW-Sample Output, Shapes I and 2

for changing the appearance of the bug. You can choose any of these op­
tions by pressing the appropriate number key. Options 1 to 5 are for chang­
ing the location, scale, rotation, color, and shape number, respectively.
The current settings for each of these options are displayed in parentheses
in the menu itself. For example, the current scale setting is 5, as you can see
in the second option description:

2) SET NEW SCALE (5)

Choosing any one of these options results in a new display of input prompts

DRAW 55

on the screen; the purpose of these prompts is to elicit a new setting for the
shape characteristic you've chosen from the menu. After you have typed a
new setting, the program returns you to the menu .

Options 6 and 7 allow you to switch the computer into high-resolution
graphics and display the current shape, its characteristics determined by
the current settings, on the screen. Option 6 DRAWs the shape; option 7
XDRAWs it. Before displaying the shape, however, these two menu
options display a prompt asking you whether or not you want to clear the
previous graphics screen:

CLEAR GRAPHICS SCREEN?< Y> OR< N>

If you answer with a Y, the new shape will appear on an otherwise blank
graphics screen; if you answer with anN, the new shape will join whatever
graphics shapes were already on the graphics screen from previous DRAWs
or XDRAWs. As you can see in Figure D .4, the shapes are drawn on page
1 of high-resolution graphics; a text window remains at the bottom of the
screen. The program uses the text window to give you more information

Figure D.5: DRAW-Menu

56 DRAW

about the most recently drawn shape-its location, size, color, and rotation
amount. Below this information appears the message :

PRESS< RETURN> TO CONTINUE.

When you press the RETURN key, the graphics screen disappears and the
menu reappears. You can then make more changes in the shape settings,
and look at the bug again, or you can press the 8 key to end the program
performance.

While the program listing (shown in Figure D.3) is long, its top-down,
modular structure makes it easy to understand. The shape definitions
themselves appear in the DATA statements in lines 250 to 370. The subrou­
tine at line 200 contains a FOR loop that reads this data, one element at a
time, and POKEs it into memory addresses 768 to 846. We'll examine this
subroutine carefully later. It is only called once, at the very beginning of the
program (line 40); thereafter, the shape definitions are always available at a
fixed point in the computer's memory.

The program stores all of the current shape settings in six variables, as
follows :

X the horizontal location coordinate

Y the vertical location coordinate

N the shape number (1 or 2)

S the shape size

R the rotation amount

C the color

All of these variables are initialized in the main program section (lines 50 to
80), but may receive new values via the "new setting" subroutines (lines
650 to 890). Here is a summary of the program, section by section:

The main program section (lines 10 to 1 00) is the top , controlling part of the
program . It calls the shape definition subroutine, initializes the setting
variables; and repeatedly calls the menu subroutine.

The shape r.f4inition (subroutine at lines 200 to 380). These lines POKE the
shape definitions into the computer's memory.

The menu (subroutine at lines 450 to 600). This subroutine displays the
menu on the screen, complete with the current settings . It also reads the
user's menu option from the keyboard (line 570), and subsequently calls
one of the eight option subroutines. The chosen menu option is stored in
the variable M$; line 590 uses the numeric conversion of M$ to branch to
the appropriate subroutine:

590 ON VAL(M$) GOSUB 650,700,750,800,850,900,920,1050

DRAW 57

New settings (subroutines at lines 650 to 890). Each of these five subrou­
tines displays different input prompts on the screen and reads a new value
for one (or two) of the setting variables .

Draw the shape (subroutines at lines 900 to 940) . These two subroutines
use the DRAW and XDRAW commands, respectively, to display the shape
on the screen. The commands use the current value of N to choose the
shape, and the values of X andY to determine the location of the shape on
the screen ; for example :

DRAWN ATX,Y

The other characteristics of the shape display are, of course , defined by the
current settings of SCALE, ROT, and HCOLOR. Both subroutines begin
by calling the subroutine at 1050, which switches the computer into high­
resolution graphics. Then, after the shape is drawn, the text window sub­
routine takes control.

The text window (subroutine at lines 950 to 1 000). This subroutine displays
the current setting information in the text window below the graphics dis­
play. (It takes this information from the six setting variables , N , X , Y, S, C,
and R .) If more than one shape is currently displayed on the screen , the
setting information applies, of course, to the most recently drawn shape.
The subroutine then waits for the RETURN key to be pressed before
switching the computer back into the TEXT display mode and returning
control of the program back up to the calling subroutine.

Switch to high-resolution graphics (subroutine at lines 1050 to 1120). This
subroutine gives you the option of placing the new shape on a cleared
graphics screen, or on an uncleared screen, along with any previously
drawn shapes . If you compare lines 1100 and 1110 you will see that the two
methods of switching into high-resolution graphics are very different. (See
the entry under HGR and HGR2 for an explanation.)

Some of the subroutines of this program are discussed further, and addi­
tional sample runs are displayed , in the entries under AT, HCOLOR,
HGR and HGR2 , ROT, SCALE, and XDRAW.

Notes and Comments ___________________ _

Creating a shape table. Once you have designed a shape on paper,
there are various methods for converting that shape into a
series of numerical specifications that the computer can read as
a shape definition . The method we will examine here is rela­
tively easy, and involves three main steps:

1. translating the shape into a list of one-digit direction and
plotting codes;

58 DRAW

2. combining the codes in this list into groups of one, two or
three digits;

3. converting these groups of digits into decimal numbers that
we can then POKE into the computer's memory.

We will follow through the steps of this method, using the
"frowning bug" shape as an example. This shape appears in
FigureD. 4, enlarged to a scale of 5. (This means that each one­
digit plotting specification is represented by five pixels in this
display of the shape.)

The bug shape consists of two eyes, a frowning mouth, two
legs, and the bug's body. We begin by choosing a starting point
for the plotting specifications; we'll start with the left leg.
Notice that the legs contain a horizontal portion and a vertical
portion . Our starting point, then, will be the left-most point of
the horizontal portion of the left leg.

We use a set of one-digit direction and plotting codes to
define a shape. A table of these codes appears in Figure D.6. As
you can see, codes 0, 1, 2, and 3 instruct the computer to move

, __________ , __________ , __________ ,
i i i i
i i MOUE i PLOT i
i i i i
j __________ j __________ j __________ j

i i i i
i UP i 0 i 4 i i . i i j __________ __________ · __________ j

i i
i RIGHT 1 5 .
i
j __________ ---------- ----------
i
i [IOl.JN 2 6
i
j __________ ---------- ----------
i
i LEFT 3 7
i
!---------- ---------- ----------!

Figure D. 6: DRAW- Table tif Direction and Plotting Codes for Shape
Difi.nitions

DRAW 59

in a specified direction, without plotting (that is, without draw­
ing a point) . Codes 4, 5, 6, and 7 tell the computer to plot a
point in a specified direction. We can thus define any shape
with sequential combinations of these eight codes. For exam­
ple, the left leg of the bug, our chosen starting point , requires
the following five plotting codes:

5
5
4
4
4

The computer will ultimately translate these codes as :

plot one position to the right
plot one position to the right
plot one position upward
plot one position upward
plot one position upward

resulting in the horizontal and vertical lines of the left leg.
From the top of the left leg, we'll move up the left side and then
clockwise around the bug's body, starting as follows :

7 (plot one position to the left)

4 (plot one position upward)

7 (plot one position to the left)

4 (plot one position upward)

7 (plot one position to the left)

4 (plot one position upward)

4 (plot one position upward)

4 (plot one position upward)

and so on, across the top of the body, down the right side, and
then down and across the right leg. The sequence of plotting
codes for the entire shape appears in Figure D. 7. Follow these
codes around the shape itself (Figure D .4) from the left leg up
and around the body, and down the right leg, and make sure
you understand how the codes work for these portions of the
shape.

When we reach the right-most point of the horizontal por­
tion of the right leg, we are faced with a new situation. We have
to tell the computer to move back up to the underside of the
body, without plotting. (This is comparable to lifting your pen

60 DRAW

left .!.!.i !.ii!!..! ~ ~ !..1..!.

5 6 4
5 6 5
4 6 6
4 5 7
4 5

move over
left side move back ~ .!_2 left !..1..!.

7 0 3
4 0 3
7 3
4 3
7 0 left !..1..!.
4
4 7
4 underside 4
5 5
4 7 6
5 7
4 7

7

!2.£
move up

5 to mouth
5
5 0
5
5
5 frowninlj mouth

5

~ side 4
5

6 5
5 6
6 5
5
6
6 move up
6 t 0 !.ii!!..! ~
7
6 0
7 0
6 3
7 0

Figure D. 7: DRAW-Direction and Plotting Specifications for the Frowning Bug
Shape

DRAW 61

off the paper and moving it to a new point.) To do this, we spec­
ify moving codes (i.e., 0, 1, 2, or 3) rather than plotting codes.
We want to move three positions up and two positions to the left
before we continue plotting. This move translates into the
codes:

0
0
0
3
3

Unfortunately, for reasons we'll see later, we cannot have more
than two sequential codes ofO (move up) in a row, so we'll reor­
ganize the move as follows:

0
0
3
3
0

The computer will read these codes as two moves up, two
moves to the left, and then a third move up, putting us at the
correct position for plotting the underside of the bug's body.
Now examine the rest of the codes required for the complete
shape of the bug-the mouth and the two eyes (Figure D. 7).
There are 70 codes in all.

We would like to store this list of codes in the computer's
memory in the most space-efficient way possible. The way to
accomplish this is to divide the list into groups of up to three
codes . Figure D.8 shows the list thus divided. There are some
specific rules that determine how many code digits can be in
each group . These rules may seem arbitrary, but they are
designed to pack as much information as possible into each
binary byte of the computer's memory. You don't really have to
understand how a byte of memory is organized in order to create
a shape table, all you have to do is follow these simple rules. The
simplest and most economical division would be in groups of
three digits each, which we might symbolize as follows:

62 DRAW

5 7 5
5 6 6

4 7 7
4 6 3

3
4 7
7 6 7

4
4 6
7 6 5

6
4 5
7 5

4 0
4 0

3
4
5 3

4 0
5 7

4 7
5 7

5 7
5

0
5 5
5

4
5 5
6

5
5 6
6

5
6 0

0
6 3
6

0
4

Figure D. 8: DRAW-Direction and Plotting Specifications, Divided into groups
ofOne, Two, or Three

DRAW 63

However, in such a group of three digits , the bottom digit, d3 ,

is limited to the code values 1, 2, or 3. This is the first rule. So,
for example:

7
3
3

and:

0
0
3

are both valid three-digit groups; but:

5
5
4

is not, because the digit d3 cannot have the value 4.
You can see in Figure D .8 that the opportunity for forming a

three-digit group does not appear often; most of the groups
consist of two digits, which we can symbolize as:

dl
d2

In a two-digit group, the upper digit, d 1, may be any of the
eight code numbers , from 0 to 7. However, the lower digit, d2,

may not be 0. This is another rule. Thus, the sequences:

4
5

and:

0
5

are valid groups; but:

7
0

is not . For this reason we are sometimes forced into creating
one-digit groups. You can see a few examples in Figure D.8.

Once the list of codes is divided into valid groups of one, two,
or three, the next step is to reorganize the list into one-, two-, or
three-digit numbers . Each group of codes becomes a number.
The last code in the group becomes the left-most digit in the
number, and the first code in the group becomes the right-most

64 DRAW

digit. For example, the following group of digits:

7
3
3

becomes the number 337. Likewise, the group:

7
6

becomes 67. Figure D.9 shows the entire list of codes (for the
bug shape) reorganized into a sequence of one-, two-, or three­
digit numbers.

Arranged in this way, our shape definition has become a
series of octal (base 8) numbers. The numbers must now be
converted into decimal (base 10) numbers before we can use
the POKE command to store them in the computer's memory.
The conversion requires only simple arithmetic. In the case of
a three-digit octal number, d3d2d1, the conversion formula is:

(d3 X 64) + (d2 X 8) + d1

So, for example, the number 337 becomes 223 :

(3 X 64) + (3 X 8) + 7 = 223

The conversion formula for a two-digit number, d2d1, is:

(d2 X 8) + d1

55, 44, 74, 74, 74, 44, 54, 54, 54, 55, 55, 65,

65, 65, 66, 67, 67, 67, 66, 55, 300, 3, 70, 77,

7, so, 54, 65, 5, 300, 40, 65, 337, 47, 65

Figure D. 9: DRAW-Direction and Plotting Specifications, As a Series q[One-,
Two-, or Three-Digit Octal Numbers

45, 36, 60, 60, 60, 36, 44, 44, 44, 45, 45, 53,

53, 53, 54, 55, 55, 55, 54, 45, 192, 3, 56, 63,

7, 40, 44, 53, 5, 192, 32, 53, 223, 39, 53

Figure D.JO: DRAW-Direction and Plotting Specifications, Converted into
Decimal Numbers

DRAW 65

Finally, a one-digit number, d 1, remains unchanged. If you
don't want to bother with all this arithmetic, the sample pro­
gram under the heading VAL is designed specifically for this
purpose . You input an octal number (from 1 to 377) into the
computer, and the program supplies the decimal conversion,
instantly.

Figure D.lO shows the final conversion of the shape table
into a series of decimal (base 10) numbers. If you look again at
the shape table subroutine, starting at line 200 (reproduced in
Figure D .11) you ' 11 see that these are exactly the numbers that
are stored in the DATA statements from lines 260 to 310 . As an
exercise to make sure you understand how to create a shape
definition, you might want to go through the steps of the proc­
ess for the smiling bug shape. In the end, your definition should
either be identical to, or produce the same shape as, the defini­
tion represented by the data in program lines 320 to 370 .

Completing the shape table requires two more elements:
First, each shape definition in a table must end with a value of
0; this value simply serves as a marker for the end of the defini­
tion . (If you forget to include the 0, the DRAW command may
produce some surprising results . The computer will continue
"drawing" memory locations beyond the values that you
intended as the shape definition.) Notice that DATA lines 310

200 POKE 232,0: POKE 233,3
210 FOR I = 768 TO 846
220 READ V
230 POKE I,V
240 NEXT I
245 RE" ** INDEX TO TABLE
250 DATA 2,0,6,0,42,0
255 RE" ** FROWNING BUG
260 DATA 45,36,60,60,60,36
270 DATA 44,44,44,45,45,53
280 DATA 53,53,54,55,55,55
290 DATA 54,45,192,3,56,63
300 DATA 7,40,44,53,5,192
310 DATA 32,53,223,39,53,0
315 RE" ** SMILING BUG
320 DATA 45,36,60,60,60,36
330 DATA 44,44,44,45,45,53
340 DATA 53,53,54,55,55,55
350 DATA 54,45,192,3,56,63
360 DATA 7,24,8,53,45,44
370 DATA 24,32,53,223,39,53,0
380 RETU RN

Figure D.ll: DRAW-The Shape Table Subroutine

66 DRAW

and 370 both end with data values ofO. These values represent
the ends of the two shape defintions.

Second, every shape table must have an index, to tell the com­
puter how many shape definitions there are, and how long each
definition is . In our shape table, the index is represented by the
data values in line 250 :

250 DATA 2, 0, 6, 0, 42, 0

The first value in the index tells how many shape definitions
there are in the table-2, in this case . The second value in the
index is always 0 . After these first two values, the index con­
tains a pair of values for every shape definition in the table.
These values tell the computer exactly where to start reading
each shape definition. Specifically, they indicate the number of
values there are in the shape table bifore the beginning value of a
specified shape. For example, 6 values in the shape table pre­
cede the beginning of the first shape definition . (These 6 values
make up the index .) Furthermore, the index indicates that
there are 42 values in the table before the beginning of the sec­
ond shape definition . (These 42 values are the 6 values of the
index plus the 36 values of the first shape definition.)

If we were to add a third shape definition to the table, the
index would have to be revised accordingly. The index itself
would contain two additional values , so the shape definition
location pointers would all change:

250 DATA 3, 0, 8, 0, 44, 0, 81, 0

The first shape definition is now 8 values from the beginning of
the table, and the second definition, 44. The third shape defini­
tion would begin just after the 81 st value in the table:

8 (index)
36 (first shape definition)

+ 37 (second shape definition)

81

One further consideration complicates the use of the DRAW
command . DRAW can read shape definitions from any loca­
tion in which you choose to store them in the computer' s mem­
ory. You must store your shape table in a location that you can
use without disturbing the system itself or any other programs
you may have written . We have stored our table at addresses

DSP 67

768 to 846, as you can see by examining the FOR loop at line
210:

210 FOR I = 768 TO 846
220 READ V
230 POKE I,V
240 NEXT I

Starting at location 768 there are 256 bytes of memory free for
use; you can store short machine code programs there, or small
shape tables.

Wherever you store your shape table, you must make the
address of the beginning of your table available to the DRAW
command. DRAW looks at memory locations 232 and 233 for
this address. It reads these two bytes as a four-digit hexadec­
imal value, as follows:

location 233 = most significant 2 digits
location 232 = least significant 2 digits

Notice that line 200 of our program POKEs an address into
these two memory locations:

200 POKE 232, 0: POKE 233, 3

The computer will thus read these two locations as the hexadec­
imal value 300-which thus points to the memory location 768
(decimal), the first byte of the shape table.

DSP (Command word; Integer BASIC) __________ _

DSP is a debugging tool for Integer BASIC programs. You can use it to
investigate the changing values of a given variable during a program run.
The DSP command takes the form:

DSP N

where N is the name of any numeric or string variable. After DSP, N will be
displayed on the screen each time it receives a new value during the pro­
gram run. The display will be in the following format:

#20 N =5

The expression "#20" means that N received a new value when program
line 20 was performed; "N = 5" means that the new value of N, at line 20,
is 5. Note that this display appears alongside any other screen display out­
put that the program produces.

68 DSP

Each DSP command may only contain one variable name; but a pro­
gram may contain many DSP commands, so that you can investigate the
progress of more than one variable at a time. DSP may be used as an imme­
diate command or a program statement. However, the RUN command
cancels DSP, so if you activate DSP as an immediate command you must
subsequently begin execution of your program via a GOTO command
rather than RUN.

The NO DSP command cancels DSP for a single specified variable .

END (command word; Applesoft and Integer BASICs) _____ _

END marks the final line of a BASIC program run. When the computer
encounters the END command it stops performance of the BASIC pro­
gram, and returns control to the command level of the system. In Integer
BASIC, a program run must finish with an END statement, or else the fol­
lowing error message will be displayed:

••• NO END ERR

Notes and Comments __________________ _

The STOP command in Applesoft BASIC also halts a program
run . See the entry under STOP

Error Message (computer vocabulary) _______ __ _

If, during the course of a program performance, the computer encoun­
ters some error situation that it cannot deal with in a normal way, it inter­
rupts the run and displays an error message on the screen . In the best of all
possible worlds, every error message would express unambiguously the
nature and, when appropriate, the location of the error. Unfortunately, this
cannot always be the case.

Applesoft BASIC, Integer BASIC, and the Disk Operating System
(DOS) all have their own sets of error messages and their own modes of
expressing them. Examples of these error messages are described through­
out this book. In addition, the entry under ON ERR supplies a list of all the
Applesoft error messages.

69

70 EXEC

EXEC (DOS command; Applesoft and Integer BASICs) ____ _

The EXEC command transfers temporary control of the computer ' s
activities to an EXEC file that is stored on disk. In terms of data storage, an
EXEC file is an ordinary sequential text file that you create with the OPEN
and WRITE commands . The special characteristic of an EXEC file is that
each of its fields consists of an executable BASIC or operating-system com­
mand. The EXEC command, then, opens an EXEC file and causes the
computer to perform each command contained in the file.

The simplest form of the EXEC command is:

EXECF

where F is the name of any EXEC text file stored on disk. (F may be any
legal file name; the name does not necessarily have to identify the file as an
EXEC file.) The EXEC command also allows four optional parameters.
(See "Notes and Comments" below for details.)

EXEC may be used either as an immediate command or as a program
statement. However, like other DOS commands, EXEC as part of a
BASIC program must be sent to the system via a PRINT statement and
the CONTROL-D character. (See DOS Commands.)

sampkPro~am _________________________________ __

The Applesoft program shown in Figure E.l creates an EXEC file
named EMPFILE EXEC. The program follows standard procedures

10 RER ** EXEC DEMO.
15 RER ** CREATES AN EXEC FILE
18 RER ** CALLED "EMPFILE EXEC"
20 LET D$ = CHR$ (4): RE" ** CONTROL-D
30 LET Q$ = CHR$ (34): RER ** QUOTE CHARACTER
40 LET F$ = "EMPFILE EXEC"
50 PRINT DS;"OPEN ";FS
60 PRINT DS;"WRITE "; F$
70 PRINT "HO .. E"
80 PRINT "PRINT:PRINT:PRINT"
90 PRINT "PRINT TAB(10l";QS;"CREATING EMPLOYEE FILE";Q$

100 PRINT "RUN WRITE RANDOM"
110 PRINT "CATALOG"
120 PRINT "FOR I = 1 TO 4000: NEXT I"
130 PRINT "RUN READ RANDOM"
140 PRINT D$;"CLOSE"

Figure E.l: EXEC-Sample Program

EXEC 71

for creating a sequential text file. At the beginning of the program the vari­
able D$ is assigned the CONTROL-D character:

20 LET D$ = CHR$(4)

and the variable F$ is assigned the name of the file that is to be created:

40 LET F$ = "EMPFILE EXEC"

Then lines 50 and 60 open the file for writing:

50 PRINT D$; "OPEN"; F$
60 PRINT D$; "WRITE "; F$

The PRINT statements from line 70 to 130 then write seven fields of data
to the file . Each field represents an executable BASIC or system command,
as follows:

HOME
PRINT : PRINT : PRINT
PRINT TAB(10) "CREATING EMPLOYEE FILE"
RUN WRITE RANDOM
CATALOG
FOR I = 1 TO 4000 : NEXT I
RUN READ RANDOM

Notice in program line 90 that the quotation marks of the third command
present a special problem. There is no direct way to PRINT quotation
marks, so instead we must refer to the appropriate character in the ASCII
code. (See the entry under PRINT.) Line 30 assigns the quotation mark
(ASCII code 34) to the variable Q$:

30 LET 0$ = CHR$(34)

and line 90 uses Q$ to write the quote character to the file:

90 PRINT "PRINT TAB(10)" ; 0$; "CREATING EMPLOYEE
FILE"; 0$

Running this program , then , creates an EXEC file that contains the
seven commands listed above . To execute the EXEC file you can then enter
the command:

EXEC EMPFILE EXEC

since EMPFILE EXEC is the name of the file.
What do the seven commands do? The first three commands are simple

BASIC statements performed in immediate mode; they clear the video
screen, move the cursor down three lines, and print the following message
on the screen:

CREATING EMPLOYEE FILE

72 EXEC

The fourth and seventh commands run programs; more on them shortly.
The fifth command, simply CATALOG, displays the disk directory on the
screen; and the sixth command is an empty FOR loop that results in a brief
pause in the action, giving the user time to examine the directory before the
next activity begins.

The RUN statements in the EXEC file refer to the names of two pro­
grams that must be stored on the cu"ent disk. The fourth command runs a
program called WRITE RANDOM ; this is the directory name of the dem­
onstration program listed in Figure W. 2. The WRITE RANDOM pro­
gram creates two files: a random access file called EMPLOYEE FILE 2
and a sequential file called EMPLOYEE FILE 2 INDEX. (You can read
about the program, and the two files it creates, under the heading
WRITE.)

The seventh, and last , command in the EXEC file runs a program called
READ RANDOM, the directory name of the demonstration program
listed in Figure R.3. This program reads the text file called EMPLOYEE
FILE 2 and displays a table of the information it contains on the screen .
(The program READ RANDOM is described under the heading READ.)

In summary, then, this EXEC file , when executed, conducts the follow­
ing sequence of activities:

displays a message on the screen;

runs a program that creates two text files;

displays the disk directory so you can verify that those files have
been created;

creates a pause in the action;

runs a second program that reads one of the text files and dis­
plays its information in table form on the screen.

When all of these activities are complete , the computer closes the EXEC
file and returns control to the command level of the system.

Notes arul Comments ___________________ _

The EXEC command allows four optional parameters, any
combination of which may be included. The following state­
ment contains examples of all four:

EXEC F, R3, 87, 02, V105

The R parameter directs the computer to begin executing the
EXEC file at some point beyond the first field of the file. Recall
that the fields of a text file are numbered starting from 0. Thus,
R3 refers to the fourth command in the EXEC file, which

EXP 73

would become the starting point of the execution in this case.
The first three commands (RO, R 1, and R2) would be skipped
altogether. The optional S, D, and V parameters indicate the
slot, disk drive, and disk volume, respectively. The entry under
OPEN includes a description of these three options.

EXP (function; Applesoft BASIC) ____________ _

The EXP function supplies the natural exponent of a number; that is, a

10 PRINT TAB<12) ;"THE EXP FUNCTION"
20 PRINT
30 FOR I -9 TO 10
40 PRINT TAB(9);"EXP(";I; ")";
50 PRINT TAB(17);"= "; EXP(l)
60 NEXT I

Figure E. 2: EXP-Sample Program

Figure E.3: EXP-Sample Output

74 EXP

power of e, where e has a value of 2. 71828183. The expression:

EXP(V)

means e to the power of V

Sample Program ___________________ _

The program in Figure E. 2 displays a range of values produced by the
EXP function, for a series of negative and positive arguments. The output
from the program appears in Figure E .3.

Note that as the argument increases in the negative direction, the value
returned by EXP moves closer and closer to zero.

Notes and Comments _________________ _

Figure E.4 shows a plotted graph of the EXP function, pro­
duced in high-resolution graphics.

Figure E. 4: EXP-Plotted Graph

File (general programming vocabulary) ____________ _

A file is a collection of information stored under a given name. The
Apple computer system can store files externally on diskettes . The Disk
Operating System (DOS) supplies a body of commands designed to create
and maintain such files. There are four kinds of disk files, distinguished by
the kind of information they contain: Applesoft BASIC program files; Inte­
ger BASIC program files; binary files; and text files. (See CATALOG.)

A text file is a collection of data, organized for efficient storage and
retrieval . A number of DOS commands are available for creating, reading,
and revising text files. There are two kinds of text files, distinguished by the
way the data is physically stored on the diskette, and thus the techniques
available for retrieving the data; they are seqUI!Tltial dntajiles, and random-access
dnta Jiles.

Sequential files consist of data .fields of arbitrary length. Each field in a
sequential file ends with a RETURN character (or with a comma; see
WRITE, "Notes and Comments"), which acts as a delimiter between one
field and the next. In general, the fields of a sequential file are accessed one
by one in the order in which they occur in the file. Sequential files are thus
characterized by efficient use of diskette space, but less efficient retrieval of
data.

Random-access files consist of fixed-length records; each record can con­
tain an arbitrary number of fields . Because each record is a specified num­
ber of bytes long, the computer can access records in any order; however, to
pay for this increased efficiency in data retrieval, the random-access file
may take up much more diskette space than a sequential file containing an
equivalent amount of data.

75

76 File

A file name may be from 1 to 30 characters long. Any keyboard charac­
ter except the comma(,) may be part of a file name. File names may even
contain spaces , so that the following examples are all legal:

NEW EMPLOYEES

CAKE RECIPES

EXPENSES FOR 1983

Notes and Comments _ ___ ______________ _

Applesoft BASIC also allows you to create a kind of data file
stored within the program listing itself. The DATA statement is
designed for the storage of the data itself, and the READ state­
ment is available for accessing the data for use in the program .
In addition, the RESTORE command allows you to access the
data , from the beginning of the "file," as many times as neces­
sary. (See DATA, READ, and RESTORE .) DOS also has a
READ command, but its syntax and operation are very differ­
ent from those of the Applesoft READ.

FLASH (display mode command; Applesoft BASIC) ____ _

The FLASH command causes all subsequent text-screen information to
be displayed in the "flashing" mode-i.e. , alternating normal and reverse­
video display. FLASH may be executed as an immediate command or as a
program statement. After FLASH, the information placed on the screen by
any text-producing statement-including PRINT, INPUT, LIST, and
CATALOG-will appear in the flashing mode. (FLASH has no effect in
the graphics modes.)

The NORMAL command instructs the computer to leave the flashing
mode. Subsequent new text displays are printed normally.

sampkProgram ____________________________________ _

To see FLASH in action, enter the following three lines into the com­
puter:

1 0 HOME : FLASH
20 VTAB 11 : HTAB 14
30 PRINT "APPLE COMPUTER"

FN 77

Run the program and you will see the words APPLE COMPUTER flash­
ing in the center of the screen . Now enter the command:

LIST

and the program itself will appear, also in the flashing mode.
Enter the command:

NORMAL

to leave the flashing mode.

FN (user-defined function call ; Applesoft BASIC) _______ _

FN designates a call to a user-defined function. The call takes the form

FN A(V)

where A is the name of a function that has been defined in a DEF FN state­
ment, and the value V is the argument that will be sent to the function. V
may be a literal value, a variable , or an arithmetic expression. (See the
entry under DEF FN for further details .)

sampkProgram ___________________________________ __

The Applesoft program shown in Figure F. 1 is a graphics exercise that
illustrates user-defined functions . The program places 1000 randomly col­
ored and randomly positioned pixels on the high-resolution graphics
screen . For each pixel the program must come up with three random
numbers-a horizontal and a vertical position coordinate, and a color
code. To produce these random numbers, the following function is defined:

5
1 0

20
30
4 0
50
60

70
80
90

1 00

1 0 DEF FN R(X) = INT(RND(1) • X)

HGR : HOllE

DEF FN R (X l

FOR I 1 TO
LET H = FN
LET v = FN
LET c = FN
HCOLOR = c
HPLOT H , V

NEXT I

= INT (RND (1) * X)

1000
R (2 80)
R (1 60)
R (8)

VTAB 22 : PRINT " RAND OM CO L ORS A T R AND OM PO SI TION S
GET A$: TEXT

Figure F. I: FN-Sample Program

II • 0

78 FN

Any subsequent call in the program to this function in the form:

FN R(V)

will return a random integer from 0 to (V - 1). (The entries under RND
and INT explain exactly how this user-defined function works.) The
assignment statements in lines 30 to 50 call the function to choose the values
required for plotting a point :

30 LET H = FN R(280)
40 LET V = FN R(160)
50 LET C = FN R(8)

The definition of FN R ensures that H will be a random number from 0 to
279; V will be a random number from 0 to 159; and C will be a random
number from 0 to 7. The next two statements use these numbers to set the
color and plot the pixel :

60 HCOLOR = C
70 HPLOT H, V

FOR (command word; Applesoft and Integer BASICs) _____ _

The FOR statement creates a repetition structure, often called a FOR
loop. In constructing a FOR loop, the programmer can instruct the com­
puter to repeat the performance of a certain series of program lines a speci­
fied number of times . An essential element of the FOR loop is that the
computer sets up a counting variable (called the control variable); the value
of this variable changes after each repetition of the loop, and the computer
uses the variable to determine the number of repetitions .

Two other BASIC words are always part of the FOR loop syntax-TO
and NEXT. TO indicates the range of values that the control variable will
take during the repetition process. NEXT is a marker for the last line of the
FOR loop. Consider this example :

40 FOR I = 1 TO 1 0

100 NEXT I

Line 40 specifies that the control variable of this FOR loop is I. The vari­
able I will initially be assigned the value 1, and will be incremented by 1 up to
10 during the repetition process . Line 100 marks the end of the FOR loop
with the word NEXT, and refers once again to the control variable, I. Since
the variable I will take on 10 different values during the repetition process,
the instructions located between line 40 and line 100 will be repeated 10
times , once for each value of I.

FOR 79

Any BASIC instructions may appear as lines inside the FOR loop . Often
the lines inside the loop make use of the control variable; for example :

40 FOR I = 1 TO 1 0
50 PRINT I

100 NEXT I

Line 50 would display each value of the control variable on the screen as the
repetition proceeds.

BASIC also allows FOR loops to appear inside other FOR loops; such
loops are called nested loops:

40 FOR I = 1 TO 1 0
50 FOR J = 1 TO 5

90 NEXT J
100 NEXT I

In this case, the inner loop will go through five repetitions for every repeti­
tion of the outer loop. The result will be that each line located between line
50 and line 90 will be performed 50 times (10 X 5) in all.

There are two essential rules to keep in mind while constructing nested
FOR loops:

1. The inner loop must have its own control variable, distinct
from the control variable of the outer loop. (In the example
above, the inner loop's control variable is J.)

2. The inner loop must be completely contained within the outer
loop. That is, the FOR and NEXT lines of the inner loop must
be located inside the section of the program marked off by the
FOR and NEXT lines of the outer loop . The following con­
struction is thus not legal:

1 0 FOR I = 1 TO 1 0
20 FOR J = 1 TO 5

50 NEXT I
60 NEXT J

In Applesoft BASIC, this error will result in the following
message:

?NEXT WITHOUT FOR ERROR IN 60

The equivalent message in Integer BASIC is:

• • • BAD NEXT ERR
STOPPED AT 60

80 FOR

The range of values for the control variable of a FOR loop may be
expressed as literal numeric values (as in the examples above) or as vari­
ables or arithmetic expressions, as in the following line:

40 FOR I = A TO B + C

The variables A, B, and C must be defined and initialized before the com­
puter arrives at line 40. The control variable I, then, will be incremented
by 1 from A to B + C during the repetition process.

Finally, the amount by which the control variable is incremented for each
repetition of the loop can be specified as some value other than 1, through
the use of the optional word STEP; for example:

FOR I = 2 TO 1 0 STEP 2

When STEP does not appear in the FOR statement, the default incrementa­
tion amount is 1, as we have already seen. (For more examples, see the
entry under STEP.)

SampkProgram ____________________________________ __

The program listed in Figure F. 2 is a classic exercise demonstrating the
action of FOR loops. It creates a multiplication table on the screen, the
kind that school-children used before the arrival of the pocket calculator.

The pair of nested loops in lines 10 to 70 create the table. The inner loop,
with the control variable J (lines 20 to 40), calculates and prints a single
horizontal row of values; the outer loop, with the control variable I, carries
the process down through the ten rows of the table. Line 30, then, is

5 PRINT TAB(9)"MULTIPLICATION TABLE"
7 PRINT

10 FOR I = 1 TO 10
20 FOR J = 1 TO 10
30 PRINT TAB(J * 5 + 1) I * J ;
40 NEXT J
so PRINT PRINT
70 NEXT I
80 VTAB 5: HTAB 4
90 FOR I = 1 TO 30

100 PRINT " -";
110 NEXT I
120 FOR I = 4 TO 23
130 VTAB I : HTAB 6
140 PRINT "lu

150 NEXT I

Figure F. 2: FOR -Sample Program

FOR 81

performed 100 times, once for each of the 100 entries of the table. Notice
that line 30 uses the control variables I and J to calculate each entry:

I * J

The same instruction also uses the control variable J to tab across the screen
for the correct placement of each new entry:

TAB(J • 3 + 1)

Two more FOR loops appear in the program, at lines 90 to 110 and at
lines 120 to 150. The first of these loops creates a horizontal line (of
hyphens), and the second creates a vertical line (of exclamation points) to
mark off the first row and the first column of the table, respectively. In line
130, the control variable of the second of these loops becomes part of a
VTAB instruction for determining the correct location of the vertical line.

The output from this program appears in Figure F.3.

Notes and Comments ___________________ _

ll

If the range of the control variable, as specified in the FOR
statement, is expressed in the wrong direction, the FOR loop

MULTIPLICATION TABLE

1 !2 3 4 5 6 7 8 9 10 -- ---------------------------
2 4 6 8 10 12 14 16 18 20

3 6 9 12 15 18 21 24 27 30

4 8 1 r, c.. 16 20 24 28 32 ? ·-
·-·t· 413

5 10 15 2€1 .-.c 30 35 4€1 45 50 ~--·

6 12 1 C• '-' 24 30 ? ·-._.t;. 42 4·=· ·-· 54 60

7 14 21 28 ?<="
._. ·-· 42 49 56 r?

t •·-· 70

8 16 24 32 40 48 56 64 7 ·-· .c.. ::::o
9 18 27 36 45 54 63 r· c.. 81 90

10 20 30 40 50 60 70 80 90 100

Figure F.3: FOR-Sample Output

82 FOR

will still perform all of its instructions once. For example:

1 0 FOR I = 1 0 TO 0
20 PRINT I
30 NEXT I

This loop will perform the PRINT statement once, resulting in
an output display of the value 10, the initial value ofl, and then
the loop's action will terminate.

The following loop, however, thanks to a STEP clause, has a
decrementing control variable, and will print out the values of the
variable from 10 down to 0:

1 0 FOR I = 1 0 TO 0 STEP - 1
20 PRINT I
30 NEXT I

See the entries under NEXT, STEP, and TO for additional
information about FOR loops.

FP (system command; Integer BASIC) ____________ _

The FP command switches the computer into Applesoft BASIC when
you are in Integer BASIC. Any program currently residing in the com­
puter's memory will be lost.

The screen prompt for Applesoft BASIC is a right square bracket:

J
FP stands for "floating point ," and thus refers to the fact that Applesoft

BASIC allows the use of real numbers, which the computer stores in a
"floating-point" system.

FRE (system function; Applesoft BASIC) __________ _

The FRE function returns the number of bytes of memory still available
for a BASIC program. The value of the argument of FRE is irrelevant; it
has no effect on the result.

The statement:

PRINT FRE(O)

will result in a display of the number of bytes remaining for your program.
If this value is negative, it means you have more than 32K bytes remain­
ing. In this case, the statement:

PRINT 65536 + FRE(O)

will tell you how may free bytes there are.

Function 83

Function (general programming vocabulary) _______ _

A function is a built-in routine that returns a specified type of value, or,
in a few cases, performs a screen-display operation. The name of the func­
tion itself gives the command to perform the routine, and, in arithmetic or
string expressions, stands for the value that the function returns. Functions
require arguments,· an argument is a value that you send to the function to
take part in the operation that the function performs. (See the entry under
Argument.)

84

GET (command word; Applesoft BASIC) _________ _

The GET command reads a single key entry from the keyboard and
assigns its value to a variable. GET is usually used with a string variable; it
appears in the following form:

10 GETS$

This statement causes the computer to wait for a character to be input from
the keyboard. It assigns that character to the variableS$. GET may not be
used as an immediate command.

The GET command is as important for what it does not do as for what it
does . GET does not automatically "echo" (i.e . , display on the screen) the
value of the key you press, nor does it display the question-mark prompt.
These are two of the important distinctions between GET and the INPUT
statement. INPUT displays a prompt, and then echoes each key you press
on the keyboard by displaying the corresponding character on the screen.
GET leaves it to you, the programmer, to decide if and where a prompt and
the input characters should be displayed on the screen.

sampkProgram __________________ ___

A good programmer always gives careful thought to the way the screen
display changes in response to the user's input from the keyboard . The
Applesoft program lines shown in Figure G.l (which really form only a
fragment of a program) are devoted to displaying a clear echo of the user's
keyboard input. As you study the algorithmic calisthenics performed in
these lines, you will realize that the GET function can be harder to use than
the INPUT statement, but that in return, GET allows some rather elegant
input-and-response patterns during a program run.

GET 85

Look first at what these program lines do. (To see the action, you should
type the Jines into your computer and run the program yourself.) The pro­
gram starts by displaying a column of letters and a column of digits on the
screen. The program is designed to read exactly one letter and one digit
from the keyboard, in that order. The somewhat whimsical title
"RECORD SELECTOR" is displayed at the top of the screen, as though
the letter-digit input combination identified a jukebox selection. Actually,
however, this kind of display could be appropriate in many programming
situations where the user has to make a menu choice to activate a step in the
program performance. (See the sample program under the GOSUB head­
ing for an example of a menu.)

Figure G. 2 shows the original screen display, in which the program is
waiting for input from the keyboard. First, the program will read a letter
from A to J. When the user presses one of these letters, the corresponding
letter on the screen will be flagged with an arrow("= = > "). No key out­
side the range of A to J will produce a response at this point. Next the com­
puter waits for a digit from 0 to 9. Again, if the key pressed is within this
range, the corresponding digit on the screen is flagged. Figure G.3 shows
the screen display for a keyboard selection of "G3".

After a letter-digit combination has been input and recorded on the
screen, the program would presumably be ready to move on to the selected
activity. This sample program simply prints the statement:

PRESS ANY KEY TO CONTINUE.

at the lower-left corner of the screen and waits for the user to press a key
before looping back to repeat the whole selection process again. If this were
part of a real program, an alternative action would be to print

10
20
30
40
50
60
70
80
90

100
110
120
130

IS THIS THE SELECTION YOU WANT?
(Y) OR (N)

HO"E : PRINT TAB(13l"RECORO SELECTOR": PRINT
FOR I = 1 TO 10

PRINT, CHRS(I + 64l;"
PRINT

NEXT I
GET L$

II; I - 1

IF NOT (L$ >= " A" AND L$ <= "J"l THEN GOTO 60
VTAB 3 + (ASC(L$) - 65) * 2 : HTAB 14: PRINT "==>"
GET 0$
IF NOT (0$ >= "0" AND 0$ <= "9") THEN GOTO 90
VTAB 3 + VAL (0$) * 2: HTAB 20: PRINT "==>"
VTAB 23: PRINT "PRESS ANY KEY TO CONTINUE.";: GET AS
GOTO 10

Figure G. I : GET-Sample Program

86 GET

and give the user the option of either confirming the selection or cancelling
it and trying again.

Now look at the program listing itself in Figure G .1. Concentrate on the
GET statements in lines 60 and 90. Line 60 assigns the input character to
the variable L$. IfL$ is any character outside the range" A" to"]", line 70
loops back again to line 60 :

60 GET L$
70 IF NOT (L$ > = "A" AND L$ < = "J") THEN GOTO 60

Likewise, line 100 repeatedly loops back to line 90 until GET reads a digit
from "0" to "9". These two loops, then, are the key to this program's
selective ability to respond only to an appropriate combination of input keys.

Lines 80 and 110 have the complicated task of placing the flags at the
correct screen addresses. This task requires the use of the VTAB and
HTAB statements, and also the ASC and VAL functions. To understand
exactly how line 80 works, recall that the ASCII code for the character "A"
is 65. (See the entries under VTAB, HTAB, ASC, and VAL.)

Figure G.2: GET-Sample Output, Bifore Keyboard Response

GOSUB 87

Figure G.3: GET-Sample Output, After Keyboard Response

GQSUB (command word; Applesoft and Integer BASICs) ___ _

The GOSUB statement sends control of a program to a subroutine. A
subroutine is a sequence of program statements, grouped together to per­
form a task . GOSUB instructs the computer to interrupt the usual line-by­
line sequential order of program execution, to go to the specified line of a
subroutine , and to begin executing the statements of that subroutine.
Implied in the GOSUB command is that somewhere in the subroutine will
be a RETURN statement. When the computer encounters the RETURN
command, it returns control of the program to the statement immediately
following the original GOSUB command and resumes the sequential exe­
cution of the program .

In Applesoft BASIC, GO SUB may be used either as an immediate com­
mand or as a program statement; in Integer BASIC, it may not be used as
an immediate command.

88 GOSUB

The GOSUB statement takes the following form :

GOSUB L

where L is the number of the first line of the subroutine. In Applesoft
BASIC, L must be expressed as a literal numeric value; for example:

GOSUB600

In Integer BASIC, the value after GOSUB may also be expressed as a vari­
able, where the variable contains the value of a line number representing
the beginning of a subroutine :

GOSUBS

or even as an arithmetic expression, where the expression evaluates to a
valid subroutine line number:

GOSUB S • 100

The form of this statement, sometimes referred to as a computed GOSUB,
allows you to use a single GOSUB statement to call, potentially, many dif­
ferent subroutines. For example, you can see that if the variableS contains
an integral value from 1 to 5, the value of the expression S * 100 will be a
multiple of 100 from 100 to 500. Thus, depending on the value of S, this
computed GOSUB statement will be equivalent to one of the following:

GOSUB 100
GOSUB200
GOSUB300
GOSUB400
GOSUBSOO

Using a computed GOSUB requires careful planning. (For example, you
must make sure that subroutines actually exist at lines 100, 200, 300, 400,
and 500.) All the same, this form of the GOSUB statement can be a valu­
able tool in Integer BASIC programs.

While Applesoft BASIC does not allow the computed GOSUB, it offers
an equivalent statement using the word ON. Given a value ofS from 1 to 5,
the following statement will function in the same way as the computed
GOSUB above :

ON S GOSUB 100,200,300,400,500

In the ON . . . GOSUB statement, Applesoft BASIC evaluates the expres­
sion after ON, finds its integral value, and then uses that value to decide
which of a list of subroutines to call. If the value is 1, it calls the first subrou­
tine in the list ; if the value is 2, it calls the second; and so on . You will see an
example of the ON ... GOSUB statement in the sample program below.

In both versions of BASIC, the computer's response to GOSUB is the

GOSUB 89

same: control of the program moves to the indicated line number and pro­
ceeds sequentially until a RETURN command is encountered .

From the programmer's point of view, there are several good reasons for
taking the trouble to isolate certain programming tasks into individual sub­
routines. First, in many programs there are tasks that need to be performed
more than once at different points during the performance. It would be a
waste of both computer memory space and programming time to repeat
the actual instruction lines for these tasks at several different points in the
program listing, so the obvious solution is to write the instructions once,
isolate them in a subroutine , and "call" the subroutine via a GOSUB state­
ment whenever the task must be performed.

Another, perhaps even more essential, reason for using subroutines is as
a means of achieving a well-organized, "modular" program structure.
Experienced programmers have long realized, often to their chagrin, that a
long and complex computer program can begin at a certain point to take on
a life of its own and become terribly difficult to control, correct, or revise.
One way to begin combatting this phenomenon is to organize a long pro­
gram into short , and hopefully controllable, tasks, which interact sequen­
tially or collectively to accomplish the whole job that the program is written
to perform . In this technique, each individual task is assigned to its own
subroutine and the top , controlling part of the program-sometimes called
the "main program" section-becomes, essentially, a series of subroutine
calls , or GOSUB statements. Some programming languages-Pascal, for
example-are specifically designed for this variety of modular, top-down
programming. While BASIC is lacking in a few of the essential characteris­
tics that make modular programming most successful, a BASIC program
can often be vastly improved if organized into small, tidy, easily understood
and easily revised subroutines.

Finally, the more programs you write, the more often you will find your­
self writing instructions for similar-or, indeed, identical-tasks, time after
time , for program after program. If you get into the habit of creating short
subroutines for such commonly required tasks, you will be able to "trans­
port" many of these subroutines directly, or with minimal revision, to other
programs, thus streamlining the job of creating new computer programs .

5ampkProgram ____________________________________ ___

Figure G. 4 shows what is merely the skeleton of a menu-driven program
(in Applesoft BASIC) organized in a modular, top-down structure. The
program doesn't do anything useful , but will serve all the same to illustrate,
in the abstract, some of the principles of good program structure. It may
also serve as a template for menu-driven programs that you may want to
write for real jobs.

90 GOSUB

1 HOME
3 RER ******************
5 REM ** MAIN PROGRAM **
7 RER ******************
9 REM

10 HTAB 10: VTAB 5: PRINT "MENU"
20 PRINT TAB< 1 OJ"====": PRINT
30 PRINT TAB(8) "1) OPT ION ONE": PRINT
40 PRINT TABC8J"2) OPTION TWO": PRINT
50 PRINT TABC8)"3) OPTION THREE": PRINT
60 PRINT TABC8J"4) QUIT"
70 GOTO 85
75 VTAB 18: HTAB 8
80 PRINT TABC8)"ENTER 1,2,3, OR 4 ";
85 VTAB 18: HTAB 26
90 INPUT "==> ";MS

100 IF M$ < "1" OR M$ > "4" OR LENCM$) > 1 THEN GOTO 75
110 HOME
120 GOSUB 700
130 ON VALCMSJ 60SUB 200,300,400,500
140 GOSUB 600
150 HOME
160 GOTO 10
200 REM ** OPTION ONE **
210 PRINT TABC15)"0PTION ONE"
220 RETURN
300 REM ** OPTION TWO **
310 PRINT TABC15J"OPTION TWO"
320 RETURN
400 REM ** OPTION THREE **
410 PRINT TABC14J"OPTION THREE"
420 RETURN
500 REM ** TERMINATION **
510 PRINT TABC16)"GOOD BYE."
520 PRINT : GOSUB 700
530 END
600 REM ** CONTINUE **
605 PRINT
610 GOSUB 700
620 VTAB 20
630 INPUT "CONTINUE? ";AS
640 RETURN
700 REM ** LINE OF STARS **
710 FOR I = 1 TO 40
720 PRINT "*";
730 NEXT I
740 PRINT
750 RETURN

Figure G.4: GOSUB-Sample Program

GOSUB 91

Lines 1 to 160 form the "main program" section, which controls the
action of the program, and performs three main jobs:

1. displays the " menu " on the screen;

2. accepts and validates the user's menu choice; and

3. calls the appropriate subroutines to implement the user's menu
choice .

A menu, in the context of computer software, is simply a message to the user
showing what options are available at any given point in a program per­
formance. In addition to showing the options, a menu should indicate a
clear and simple way for the user to express a choice among them . This
program's menu , produced by lines 10 to 60 of the program, is displayed in
Figure G.5 . There are four options, labeled ONE, TWO, THREE, and
QUIT. To activate one of these options, the user need only type and enter a
single digit-1, 2, 3, or 4. (The fourth option allows the user to terminate
the program run.)

You can probably think of many situations where a menu similar to this
one would be an appropriate way to offer choices to the user. For example,

Figure G.5: GOSUB-Sample Output, "Menu"

92 GOSUB

the program might be designed to play some sort of video game, and the
menu could offer the user three levels of difficulty:

1) EASY GAME
2) MODERATELY DIFFICULT GAME
3) VERY DIFFICULT GAME
4) QUIT

Or the program might be preparing a financial report, and the menu could
offer a choice of different reporting methods for one aspect of the report :

1) STRAIGHT-LINE DEPRECIATION
2) SUM-OF-THE-YEARS' DIGITS DEPRECIATION
3) DOUBLE-DECLINING-BALANCE DEPRECIATION
4) QUIT

Or, finally, the program could have a graphics capability, and offer the user
a choice of one variable to graph as a function of another :

1) GRAPH Y = F(X)
2) GRAPH X = F(Z)
3) GRAPH Z = F(Y)
4) QUIT

Whatever the options might be, the purpose of the menu is to present
those options clearly and to elicit an unambiguous response from the user
expressing a choice among them. Line 90 of the program reads a character
from the keyboard, and line 100 tests to make sure that the character is
within the appropriate range of menu choices:

90 INPUTM$
100 IF M$ < "1" OR M$ > "4" OR LEN(M$) > 1 THEN GOTO 75

The response is read as a string, M$ (rather than as a numeric value) in
order to allow for input errors. If the user, by mistake, enters any inappro­
priate response, (i.e., anything other than a single digit from 1 to 4), line
100 sends control of the program back to line 75, and a new message is
placed on the screen to prompt the user to try again. Figure G .6 shows this
message.

Once the computer has elicited an appropriate menu choice, the pro­
gram continues to a series of subroutine calls, in lines 120 to 140. The sub­
routines are located at lines 200, 300, 400, 500, 600, and 700 .

The first call is to the subroutine at line 700:

120 GOSUB 700

This subroutine simply prints a row of asterisks ("stars") across the screen.
As simple as it is , this subroutine is representative of many important sub­
routines you might write for the exclusive purpose of arranging some visual

GOSUB 93

detail of a screen display. This subroutine is also called from two other
places in the program.

The next GOSUB statement, at line 130, calls one of the four "option"
subroutines. The statement uses the ON .. . GOSUB syntax to choose
among the list of subroutines:

130 ON VAL(M$) GOSUB 200,300,400,500

Since M$ contains a value from "1" to "4", the expression VAL(M$)
returns an integer from 1 to 4, which in turn points to one of the subrou­
tines in the list, from the first to the fourth.

In Integer BASIC the VAL function does not exist, so the menu option
would have to be read as an integer from 1 to 4 rather than a character. If M
represents this integer, the following computed GOSUB would call the
same subroutines as the ON statement does in the Applesoft version:

130 GOSUB (M + 1) • 100

You'll notice that the option subroutines in this program are really noth­
ing but "stubs" of subroutines. All they do is display an identifying mes­
sage on the screen. In point of fact, you may often find yourself writing
such subroutine stubs to save room for real subroutines while you plan the

Figure G. 6: GOSUB-Sample Output, Menu with Input Error Message

94 GOSUB

overall structure of your program . When you are ready to do so, you can go
back and fill in the details of the subroutines themselves.

The final GOSUB statement calls a very important subroutine:

140 GOSUB 600

The subroutine at line 600 allows the user to examine a screenful of infor­
mation at leisure before moving on the next activity of the program. The
subroutine prints the query:

CONTINUE?

in the lower-left corner of the screen, and then waits for the user to enter
some response at the keyboard:

620 VTAB 20
630 INPUT " CONTINUE?"; A$

Figure G . 7 shows the result of this subroutine. If the option subroutine had
filled the screen with information, the user would be able to study the
screen for as long as necessary, and then simply press the RETURN key to
continue the program run .

Figure G. 7: GOSUB-Sample Output, "Continue"

GOTO 95

Notes and Comments ___________________ _

It 's always a good idea to identify subroutines with REM lines,
as is illustrated in Figure G.4. You should think of an appropri­
ate descriptive title for each subroutine you write .

Programs in both versions of BASIC will terminate with an
error message if a GOSUB statement attempts to send control
to a nonexistent line number. To demonstrate this error, run
the following short program in each version of BASIC:

10 GOSUB 20
30 END

Applesoft BASIC gives the message:

?UNDEF'D STATEMENT ERROR IN 10

The Integer BASIC version is:

• • • BAD BRANCH ERR
STOPPED AT 1 0

Likewise , programs in both versions of BASIC will terminate
with an error message if a RETURN statement is encountered
without the direction of a GOSUB statement. Run the follow­
ing one-line program to see the results of this error:

10 RETURN

Applesoft BASIC gives the message:

?RETURN WITHOUT GOSUB ERROR IN 10

Integer BASIC says:

• • • BAD RETURN ERR
STOPPED AT 10

The POP command in Applesoft BASIC causes the computer
to forget the RETURN address of a GOSUB statement, in
effect converting a GOSUB to a GOTO. See the entry under
POP for details.

GQTQ (command word; Integer and Applesoft BASICs) ____ _

The GOTO statement sends control of the current program to a speci­
fied line . In Applesoft BASIC, the line number must be expressed as a lit­
eral value; for example:

GOT010

96 GOTO

In Integer BASIC the line number may also be expressed as a variable :

GOTOL

or an arithmetic expression:

GOTO (L + 5) • 100

In both versions of BASIC, GOTO may be used as an immediate com­
mand or as a program instruction. If GOTO is part of a program, the
direction of the "jump" caused by the GOTO statement may be up to an
earlier line in the program:

90 GOTO 10

or down to a later point in the program:

100 GOTO 150

or even back to the beginning of the very same line:

20 PRINT I : LET I = I + 1 : IF I < 100 GOTO 20

Line 20 , above, illustrates the use ofGOTO in an IF statement . In such a
conditiorzalGOTO instruction, the jump will only be performed if the logical
expression contained in the IF statement (I < 100 in this case) is evaluated
as true.

sampkProgram ____________________________________ _

T he Applesoft BASIC program shown in Figure G .8 will help you to bal­
ance your checkbook by giving you a record of withdrawals , and the

10 DEF FN R<Xl = I NTC100 *X+ . 5) I 10 0
20 HO"E : I NPU T "CHECKB OOK BALANCE FORWARD ? ";B
30 I NPUT "# OF LA ST RECONCILED CHECK? ";N
40 HO"E : GO SUB 100 : PRINT , B
50 GOSUB 200: I F B < 0 GOTO 90
60 VTAB V: PRINT N,A, FN RCBl
70 LET V = V + 1: I f V > 22 GOTO 40
80 GOTO 50
90 VTAB V: PRINT N, A; TAB C27l;"*** OVERDRAFT" : END

10 0 PRINT " II ","AM'T ", "BALANCE"
110 PRINT : LET V = 4 : RETURN
200 VTAB 23: PRINT TAB C22)" " · VTAB 23
205 LET N = N + 1
210 PRINT "CHECK #";N ; " ==> ";
220 I NPUT "AMOUNT? ";A
230 LET B = B - A: RET URN

Figure G. 8: GO TO-Sample Program

GOTO 97

balance after each withdrawal . The program begins by asking you for the
previous balance forward from the last time you balanced your checkbook,
and for the number printed on the last check that you reconciled against
your account. These two values are assigned to the variables B and N,
respectively.
The main action of the program is controlled by lines 40 to 90. Line 40 calls
the subroutine at line 100 to print the column headings. This subroutine
also initializes the value of the variable V, which is a counter for the number
oflines of information displayed on the screen at any given point in the pro­
gram run. Line 50 calls the subroutine at line 200 for the actual input of a
check amount. This subroutine increments the check number, N (line
205); prints an input prompt at the bottom of the screen (line 210); reads
the input amount (line 220); and, finally, finds the new balance, B (line
230) .
Lines 50 to 80 contain a series of three GOTO statements (two of them con­
ditional GOTOs) that determine what will happen next in the program.
First, as soon as control of the program returns from the subroutine at line
200, line 50 tests the value of B, the checkbook balance:

50 GOSUB 200 : IF B < 0 GOTO 90

The purpose of this test is to provide contingency measures in the event of
an overdraft. Paraphrased, the statement says, "If the last check decreased
the checkbook balance to an amount less than zero, go to line 90." The
instruction in line 90 writes an overdraft message on the screen and termi­
nates the program.

If there is no overdraft, control of the program continues down to line 60,
which prints the check number, the amount, and the new balance at the
vertical screen position V:

60 VTAB V: PRINT N, A, FN R(B)

(The user-defined function R simply rounds the balance B to the nearest
cent. FN R is defined in line 10. See DEF FN and FN for an explanation of
user-defined functions.)

Line 70 increments the value ofV, the line counter, and then tests to see if
the screen is full:

70 LET V = V + 1 : IF V > 22 GOTO 40

IfV is greater than 22 (meaning that the screen is full, except for the line
where the input prompt appears), control is sent back up to line 40. Line 40
clears the screen, prints the column headings again, and displays the cur­
rent checkbook balance in the right-hand column:

40 HOME : GOSUB 1 00 : PRINT , , 8

98 GOTO

(Note the use of commas in the PRINT statement to tab forward to the
third column.)

Finally, if neither of the conditional GOTOs (lines 50 and 70) has
changed the course of the program run, control drops down to line 80:

80 GOT050

This statement simply sends control of the program back up to the begin­
ning of the block of instructions that processes each check, thus forming a
loop that allows you to enter as many checks as you want.

Figure G.9 shows a sample run of the program . Notice that this run ends
with an overdraft message.

Notes and Comments ____________________ _

You can use the GOTO statement as an immediate command
to instruct the computer to begin the performance of a pro­
gram. For example, if the current program in the computer's
memory begins at line 10, you can enter the command:

GOTO 10

Figure G.9: GOTO-Sample Output

GR 99

to start the program. The advantage of using GOTO in this
way is that you will not lose any variables left over from pre­
vious runs of the program. (Recall that the RUN command
clears the values of all variables before starting execution of the
program.)

In Applesoft BASIC, a conditional GOTO statement may be
written in any of three formats. For example, all of the follow­
ing statements mean the same thing:

IF 8 < 0 THEN 90
IF 8 < 0 THEN GOTO 90
IF 8 < 0 GOTO 90

Integer BASIC allows only the first two of these variations.

Applesoft BASIC provides the ON ... GOTO statement to
choose among a list of line numbers for the transfer of control;
for example:

ON V GOTO 100, 200, 300, 400

If V represents a value from 1 to 4 in this statement, the first,
second, third, or fourth line number in the list will be chosen.
Integer BASIC allows a computed GOTO statement to perform
the same function :

GOTO V • 100

(See the entries under ON and GOSUB for more details.)

GR (low-resolution graphics command; Applesoft and Integer BASICs)_

The GR command switches the screen display into low-resolution
graphics .

The low-resolution graphics screen has 40 rows by 40 columns of rectan­
gular picture elements, each of which can be controlled individually
through reference to its address . An address consists of two coordinates,
horizontal and vertical, as follows:

H,V

The visible range of both coordinates is the same:

0 < = H < = 39
0 < = v < = 39

The addresses of the four corners of the low-resolution graphics screen are:

(0,0)
(39,0)

upper left
upper right

100 GR

(39,39) lower right
(0,39) lower left

GR leaves a text window of four lines below the graphics portion of the
screen. These are simply the bottom four lines of the familiar text screen;
information may be placed on them by positioning the cursor properly and
using the PRINT command. The command:

VTAB 21

puts the cursor at the beginning of the top line of the text window.
Three different commands may be used to create low-resolution graph­

ics: PLOT, HLIN, and VLIN. In addition, the COLOR command deter­
mines the color of any low-resolution graphics displayed on the screen.
(These four commands are described under their own headings. See also
the entry under SCRN.)

The sample programs in the entries under PLOT <lnd COLOR show
examples of low-resolution graphics.

Notes and Comments ____________________ _

Once you are in low-resolution graphics, you can use the fol­
lowing POKE command to eliminate the text window, thus
extending to full-screen graphics:

POKE -16302, 1

This command gives you a screen of 48 rows by 40 columns of
picture elements. The new visible range of the vertical address
coordinate becomes:

0<=V<=47

Likewise, the following command will return the text window
to the bottom of the low-resolution graphics screen:

POKE - 16301 ,0

The TEXT command returns the screen to text display from
low-resolution graphics. When the switch occurs, any graphics
elements on the low-resolution screen will appear as "garbage"
characters on the text screen. Use the HOME command to
clear the text screen.

HCQLQR (high-resolution graphics command; Applesoft BASIC)_

HCOLOR sets the color of high-resolution graphics plotting to one of
eight possible values. The HCOLOR command takes the form:

HCOLOR = C

where C is a value from 0 to 7, representing one of eight colors. The table in
Figure H.1 shows the eight numeric codes and their corresponding colors.

You must set the color before you use any of the high-resolution graphics
plotting commands-HPLOT, DRAW or XDRAW. If you forget to set the
color, the results of these three commands will be unpredictable. None of
the following commands affects the color setting: TEXT, HGR, HGR2,
RUN, NEW, FP.

SampkProgram ______________________________________ __

In the graphics demonstration program listed under the heading DRAW
(Figure D .3), the color is set in the subroutine at line 800. The subroutine
reads an input value for the color, and stores the value in the variable C$;
then checks the range of the value:

810 PRINT "COLOR (0 TO 7): "; GET C$: PRINT C$
815 IFC$< "O"ORC$> "7"GOT0810

Finally, after C$ is converted to a numeric value, the HCOLOR statement
is performed:

817 LET C = VAL(C$)
820 HCOLOR = C

101

102 HCOLOR

HIGH RESOLUTION GRAPHICS COLORS

HCOLOR= COLOR

0 BLACK
1 GREEN :t:
..... 1-.JIOLET :t: c..

3 l·JHITE

4 BLACK
.::-
.J ORANGE :t:

6 BLUE :t:
-, l·JHITE (

* COLOR t1AY UARYi DEPENDS ON TU SET. I

Figure H. I: HCOLOR-Table of Color Codes

Since the menu-driven program allows you to change the color as often
as you want, you can easily experiment with the appearance of the shape on
the screen under various color settings.

HGR and HGR2 (high-resolution graphics commands; Applesoft
BASIC) ___________ _

Applesoft provides two "pages" of high-resolution graphics, that is, two
different sections of memory reserved for storing high-resolution graphics
screens. The commands that display these screens are HGR and HGR2.
(If you have less than 24K bytes of memory in your system, HGR2 will not
be available to you.) A whole set of Applesoft commands is available for use
in high-resolution graphics; all of these commands work for both pages 1
and 2. The HPLOT, DRAW, and XDRAW commands place graphics on
the screen; the HCOLOR command determines the color display of the
graphics produced by DRAW and XDRAW. (You can read about all of
these commands under their own headings.)

. HGR and HGR2 103

Page 1: HGR __________________ _

HGR switches the screen display to page 1 of high-resolution graphics.
This screen is divided into two parts: a large graphics area above a smaller
area reserved for four lines of text. These bottom four lines of the screen are
referred to as the "text window."

The graphics area of the HGR screen contains 160 rows by 280 columns
of tiny picture elements, often called "pixels." Each pixel can be controlled
individually through reference to its address on the screen. A pixel address
is written in two coordinates-first horizontal, then vertical, as follows:

H,V

The visible ranges of these two coordinates for page 1 can be expressed as:

0 < = H < = 279
0< = v < = 159

The four corners of the page 1 graphics screen thus have the following
addresses:

(0,0)
(279,0)
(279, 159)
(0, 159)

upper-left
upper-right
lower-right
lower-left

The HGR command clears the entire page-1 screen to black. (Unfortu­
nately, there is no single command that will switch to high-resolution
graphics without clearing the screen of any previous contents. This limita­
tion can be sidestepped, however, through a series of POKE commands.
See "Notes and Comments," below.)

The text window below page 1 of high-resolution graphics consists of the
bottom four lines of the familiar text screen. Placing information in the text
window, then, is simply a matter of positioning the cursor properly and
using the PRINT command. You might use a line like the following one
near the beginning of a program that displays page-1 high-resolution
graphics:

1 0 HOME : VTAB 21 : HGR

The first command clears the text screen, the second command positions
the cursor at the top of the HGR text window, and the third command
switches the screen display to page 1 of high-resolution graphics . After this
line is executed, you are ready to place graphics on the screen and text
information in the text window. For examples of page-1 high-resolution
graphics, see the sample programs under the headings DRAW and
HPLOT.

104 HGR and HGR2

P~e2:HGR2 __________________________________ _

HGR2 switches the screen display into page 2 of high-resolution
graphics-a full page of graphics, with no text window. It consists of 172
rows by 280 columns of pixels . The valid range of the horizontal and verti­
cal coordinates , H and V, can thus be expressed as:

0 < = H < = 279
0 < = v < = 171

and the four corner addresses of the page-2 screen are:

(0,0)
(279,0)
(279, 171)
(0,171}

upper-left
upper-right
lower-right
lower-left

Like HGR , HGR2 clears the entire page-2 screen to black. The sample
program under the heading STEP shows an example of the use of HG R2 .

Notes and Comments __________________ __

The TEXT command returns the screen to full-screen text dis­
play from either page 1 or page 2 of high-resolution graphics .
(See the entry under TEXT.)

In many graphics programs, it is important to be able to switch
back and forth between text display and graphics display with­
out clearing the graphics screen to black. In other words , you
may want to begin building some kind of page 1 graphics dis­
play, then switch temporarily to text display (or to page 2 of
graphics for that matter), and finally return to the page 1 dis­
play that you had begun earlier. To accomplish this, you have
to manipulate four graphics "switches" in the computer ' s
memory. The following four POKE commands do the job for
page 1 under any circumstances; they are equivalent to execut­
ing the HGR command- displaying page 1 of graphics plus
the text window-except that they redisplay whatever was pre­
viously contained in page 1 of memory:

POKE - 16304,0
POKE -16300,0
POKE -16297,0
POKE - 16301 ,0

(Under some circumstances, some of these POKEs may be
superfluous, but harmless . Rather than trying to remember
the function of each switch, however, it is easier to think of the

HIMEM 105

four commands as a "package," for use whenever you want to
return to page 1 of graphics without erasing previous contents.)

In the program under the heading DRAW, the subroutine at
line 1050 illustrates this technique. When the user wants to
switch from the menu display to the graphics display, the pro­
gram offers the choice of switching to page 1 with or without
clearing the previous contents:

1070 PRINT "CLEAR GRAPHICS SCREEN?< Y> OR< N> "·
1080 GET A$: PRINT A$

HGR is used if the user inputs a "Y":

1100 IF A$ = "Y" THEN HGR

The POKE commands are used if the user inputs an "N":

1110 IF A$ = "N" THEN POKE -16304,0 : POKE -16300,0 :
POKE -16297,0: POKE- 16301,0

The equivalent "package" of POKE commands for switching
to page 2 of high-resolution graphics without losing previous
contents is:

POKE -16304,0
POKE - 16299,0
POKE -16297,0
POKE - 16302,0

When the computer is displaying page 1 of high-resolution
graphics, it is possible to eliminate the text window, resulting in
a full page of graphics (172 rows by 280 columns), using the
following command:

POKE - 16302,0

To put the text window back on the screen again, use:

POKE - 16301,0

HIMEM (system command; Applesoft and Integer BASICs) __ _

With the HIMEM and LOMEM commands, you can specify the range
of memory locations that will be reserved for your BASIC program.
HIMEM sets the upper limit in memory of the program area. For ex­
ample, the command:

HIMEM: 14000

sets HIMEM at memory address 14000. You can then use memory loca­
tions above HIMEM for other purposes-high-resolution graphics shape

106 HIMEM

tables or machine-language programs, for example.
After you have set HIMEM, an error message will be displayed if a pro­

gram you are writing gets too large. In Applesoft BASIC you will see:

?OUTOFMEMORYERROR

And in Integer BASIC:

• • • MEM FULL ERR

If you try to load from disk a program that doesn't fit into the area you have
reserved, you will see the following error message:

PROGRAM TOO LARGE

You can always use the FRE function to find out how much memory
remains for your program. (See FRE, LOMEM.)

HLIN (low-resolution graphics command; Applesoft and Integer
BASICs) ________________ _

In low-resolution graphics, HLIN draws a horizontal line of picture ele­
ments across the screen. The HLIN command takes the form:

HLIN H 1 , H2 AT V

This command draws a line extending from address (H 1, V) to (H2, V). All
three coordinates in the HLIN command can take any value from 0 to 39.
If low-resolution graphics has been switched to full screen, eliminating the
text window, the vertical coordinate is extended to 48 lines:

O<=V<=47

The sample program under the COLOR command illustrates the use of
HLIN. (See also GRand VLIN.)

H 0 ME (command word; Applesoft BASIC) ________ _

The HOME command clears the text screen of all information and posi­
tions the cursor at the upper-left corner of the screen. HOME may be used
either as an immediate command or as a program statement.

Sample Program ____________________ _

The action of the short program shown in Figure H.2 occurs in two
steps: it first fills the screen with randomly chosen letters (lines 10 to 30);

HOME 107

then clears the screen, using HOME (line 40); and, finally, to demonstrate
what happens after HOME, prints a message on the screen. Figure H.3
shows the screen after HOME.

Notes and Comments ____________________ _

The HOME command is not available in Integer BASIC, but
you can use the following CALL command to clear the screen:

CALL -936

Use this statement as either an immediate command or a pro­
gram statement.

10 FOR I = 1 TO 960
20 PRINT CHRS <INT (RN0(1) * 26) + 65);
30 NEXT I

40 HO"E
50 PRINT "SCREEN AFTER THE HOME COMMAND" ;

Figure H.2: HOME-Sample Program

Figure H.3: HOME-Sample Output

108 HPLOT

HPLQT (high-resolution graphics command; Applesoft BASIC) __

The HPLOT command displays single pixels or lines of pixels on the
high-resolution graphics screen in either page 1 or page 2. (See the entry
under HGR and HGR2.) HPLOT takes several forms, all of which use
two-coordinate addresses to specify high-resolution screen locations. The
first coordinate, H, is the horizontal part of the address, and the second
coordinate, V, is the vertical. The values of these coordinates must be
within the following legal ranges:

0 < = H < = 279
0<= V<= 171

Here are the various forms of the HPLOT command:

1. To plot a single pixel on the screen at H, V:

HPLOT H,V

2. To plot a line on the screen from the previously plotted point to
H,V:

HPLOTTO H,V

Note that HPLOT can draw horizontal and vertical, as well as
diagonal, lines.

3. To plot a line on the screen from H 1, V 1 to H2, V2:

HPLOT H1 ,V1 TO H2,V2

4. To plot a series of connected lines on the screen, from H 1, V 1 to
H2,V2; from H2,V2 to H3,V3; and so on:

HPLOT H1 ,V1 TO H2,V2 TO H3,V3 ...

The HCOLOR command determines the color of the pixels that
HPLOT draws on the screen. HCOLOR must be specified once before the
first HPLOT command, and may be changed at any time thereafter. (See
the entry under HCOLOR.)

sampkProgram ____________________________________ ___

The program shown in Figure H.4 is an expanded version of the sample
program described under the heading DIM (Figure D.1). The original
program simply reads numerical input data, one data item per month for a
specified number of years; it then stores this data in the array D. This
expanded version of the program is one example of what can be done with
such an array of data, once it is stored. The program produces a bar graph
of monthly data for up to three years. The bar graph is placed on the screen
in page 1 of high-resolution graphics. Figure H.5 shows a sample output

5 HO"E: INPUT "TITLE OF GRAPH? ";T$
7 PRINT

10 PRINT "INPUT MONTHLY DATA"
20 PRINT "FOR UP TO THREE YEARS."
30 PRINT
40 INPUT "FIRST YEAR? ";F
50 INPUT "HOW MANY YEARS? ";N
53 IF N > 3 GOTO 50
55 PRINT
60 DI" M$(12l,D(N,12)
70 GOSUB 200: RE" MON TH NAM ES
80 GOSUB 300: RE" INPUT DATA
90 HO"E : VTAB 21 : HGR

100 GOSUB 700 : RE" WHITE OUT
110 GOSUB 400: RE" BAR GRAPH
120 GOSUB 600: RE" TEXT WIND OW
130 TEXT : HO"E : INPUT "AN OTHER GRAPH? ";A$
140 IF LEFTS (A $, 1) = "Y" THEN CLEAR : GOTO
150 END
200 FOR I = 1 TO 12
210 READ M$ (I)
220 NEXT I

DATA JAN, FEB, MAR,
DATA MAY, JUN, JUL,
DATA SEP , OCT , NOV,
RETURN
RE" ** INPUT ROUTINE
FOR I = 1 TO N

PRINT F - 1 + I
PRINT "
FOR J 1 TO 12

PRINT M$ (J);
INPUT": ";D(l,J)

APR
AUG
DEC

IF D(I,J) > BIG THEN LET BIG
NEXT J
PRINT

NEXT I
RETURN
RE" ** BAR GRAPH PLOTTER
LET FAC 159 I BIG
LET P = 6
FOR I = 1 TO N

PRINT " ";
FOR J 1 TO 12

PRINT LEFT$ (M$ (J) ,1);
LET HEIGHT = INT (D(I,J) * FAC)
FOR K = 1 TO 5

LET P = P + 1

D (I , J)

250
240
250
260
295
300
310
31 5
320
330
340
345
350
360
380
390
400
410
430
440
450
460
470
480
490
500
51 0
520
530
540
550
560
570
580

HPLOT P,159 TO P,<159- HEIGHT)
NEXT K
LET P P + 2

NEXT J
LET P

NEXT I
PRINT
RETURN

p + 7

Figure H . 4: HPLOT -Sample Program

HPLOT 109

110 HPLOT

600 RER ** TEXT WINDOW
610 PRINT" • ";F; TAB(15);"· ";F + 1; TAB(28l;"· ";F + 2
620 PRINT TAB ((40 - (LE N(T$)+ 14)) I 2l;"====== ";T$;"

630 PRINT " HIGHEST MONTH = ";BIG; TAB<30l;
640 INPUT "CONTINUE?";A$
650 RETURN
700 RER ** WHITE OUT
710 HCOLOR= 7
720 FOR I = 0 TO 279
730 HPLOT I,O TO I,159
740 NEXT I
750 HCOLOR= 0
760 RETURN

Figure H . 4: HPLOT -Sample Program, continued

from this program, for one set of input data. Notice that the program also
reads the title of the graph as input from the keyboard; every detail of the
graph's meaning is thus determined interactively.

The new subroutines of the program are at lines 400, 600, and 700 . The
subroutine at line 700 produces a white graphics screen, so that the bar
graph will be made up of black bars against a white background. The sub­
routine at line 400 produces the bar graph itself, and the subroutine at line
600 designs the text window that appears below the graph. The subroutines
at lines 700 and 400 both use the HPLOT command, so we will examine
them in some detail.

The "white-out" subroutine begins by setting the high-resolution
graphics color to white:

71 0 HCOLOR = 7

The subroutine then uses HPLOT inside a FOR loop to draw 280 vertical
lines, starting from the left side of the screen:

720 FOR I = 0 TO 279
730 HPLOT 1,0 TO 1,159
740 NEXT I

Notice that the control variable of the FOR loop, I , becomes the horizontal
coordinate in both of the HPLOT addresses .

The same technique is used to produce the bar graph itself, in the sub­
routine at line 400. Here, however, the situation is more complicated.
Three nested loops are needed to perform the task. The outer loop extends
the graph through all of the N years:

440 FOR I = 1 TO N

The middle loop produces 12 bars for each year:

460 FOR J = 1 TO 1 2

HPLOT 111

And the innermost loop draws each bar, consisting of five vertical lines
ap1ece :

490 FOR K = 1 TO 5

The variable P keeps track of the current horizontal position as the graph
is drawn from the left side of the screen to the right, allowing the program to
control the amount of white space between each bar and between each
year's group of bars . The variable HEIGHT determines the height of each
bar of the graph, and is calculated in two steps. A scale factor, FAC, is cal­
culated once, at the beginning of this subroutine, from the value BIG, the
largest number in the data set:

410 LET FAC = 159/ BIG

The number 159 represents the height, in pixels, of the tallest bar in the
graph. (The value of BIG was determined during the data input procedure.
See line 345.) To determine the height of each individual bar, then, we sim­
ply multiply the number that the bar will represent by FAC:

480 LET HEIGHT = INT(D(I,J)•FAC)

Figure H .S: HPLOT-Sample Output

112 HPLOT

The vertical coordinate of the top of each bar will thus be calculated as :

(159 - HEIGHT)

The HPLOT command in this subroutine is located inside the innermost
loop. It uses P as the horizontal coordinate of both addresses, and draws
vertical lines from (P,159)-the bottom of the bar-to (P,159- HEIGHT)­
the top of the bar:

510 HPLOT P, 159 TO P, 159- HEIGHT

HTAB (command word; Applesoft BASIC) ________ _

The HTAB command, along with VTAB, provides a means of position­
ing the cursor at any position in the 24-row-by-40-column text screen.
HTAB takes the form:

HTABC

where C is a column number from 1 to 40. C may take the form of a literal
numeric value , a variable, or an arithmetic expression that evaluates to a
valid column number. The result of HTAB is to position the cursor at the
Cth column of the current line. (The cursor may be moved backward or
forward.) The contents of the screen are not disturbed by this cursor move.

See the entry under VTAB for further details and examples .

IF (command word; Applesoft and Integer BASICs) _______ _

The IF statement allows you to incorporate a decision-making capacity
into a BASIC program. The syntax of the IF statement makes use of
another BASIC word, THEN. The general form of the IF statement is:

IF (logical expression) THEN (command)

When the computer performs an IF statement, it evaluates the logical
expression to either true or false. If the expression is true, then the com­
puter performs the command that is stated after THEN. If the logical
expression is false, then the IF statement will result in no action, and the
computer will simply continue on with the program.

Logical expressions are equalities or inequalities that are either true or
false . You can write such expressions using one or more of the following
symbols:

("is equal to")

< > ("is not equal to")

< ("is less than")

> ("is greater than")

< = ("is less than or equal to")

> = ("is greater than or equal to")

The BASIC words AND, OR, and NOT can also be used to build or to
modify logical expressions. (See the entries under these words for more
information.)

The action after the word THEN in an IF statement can be expressed as
any BASIC command word.

11 3

114 IF

Here are three examples of IF statements, followed by paraphrases of
what they do:

IF HOUR> 12 THEN LET HOUR = HOUR - 12

"If the variable HOUR contains a value that is greater than 12, then
store a new value in HOUR, equal to 12 less than the previous value."

IF AGE = 65 THEN GOSUB 300

"If the variable AGE contains the value 65, then perform the subroutine
located at line 300 . ''

IF T < = N THEN INPl.JT N

"If the value ofT is less than or equal to the value ofN, then read a new
value for N from the keyboard."

In Applesoft BASIC (but not in Integer BASIC) the logical expression in
an IF statement can compare two strings, as in the following example:

40 IF A$(1) < A$(J) THEN GOTO 80

This statement results in a character-by-character comparison of the
ASCII character codes in each string; it could be part of a program that
alphabetizes (or sorts) the strings in the array A$. (Such a program is listed
and described under the heading Algorithm.)

sampkProgram ____________________________________ _

The Applesoft program shown in Figure I .1 is a version of a classic com­
puter guessing game called "over/under." In this version of the game, the

10 HO"E : PRINT "OVER/UNDER"
20 PRINT : PRINT "I AM THINKING OF A NUMBER FROM 1 TO 100."
30 PRINT "YOU MAY HAVE 7 TURNS TO GUESS IT.": PRINT
40 LET N = 1 + INT<RND (1) * 100)
50 LET I = 1
60 PRINT I;: INPUT": ";G
70 PRINT ==> ";G;" IS";
80 IF G = N THEN GOTO 160
90 If G < N THEN PRINT "UNDER"

100 IF G > N THEN PRINT "OVER"
120 LET I = I + 1
130 IF I <= 7 THEN GOTO 60
140 PRINT "SORRY. THE NUMBER WAS "; N;".": PRINT
150 GOTO 170
160 PRINT "RIGHT!": PRINT
170 INPUT "ANOTHER GAME? ";A$
180 IF LEFTS(A$,1) = "Y" GOTO 10

Figure 1.1: IF-Sample Program

IF 115

computer chooses, at random, a number between 1 and 100 and gives you
seven chances to guess the right number. After each guess, the computer
tells whether your guess is "over" or "under" the correct number.

At the heart of this program is a series of IF statements that enable the
computer to evaluate your guess and to make the decisions that control
the game.

Lines 10 to 30 of the program display a set of instructions at the top of
the screen. Line 40 uses the RND function in a formula that ensures that
the computer's number will be between 1 and 100, inclusive. The number
is assigned to the variable N. Line 50 sets up a counter, I, to count the num­
ber of tries you have taken. Finally, line 60 reads your guess from the key­
board, and assigns it to the variable G, so the program can begin
comparing your guess to the correct number.

The first decision statement tests to see if you have guessed correctly:

80 IF G = N THEN GOTO 160

If so, then control of the program goes to line 160, which tells you that you
have guessed the right answer.

The next two IF statements print either "OVER " or "UNDER " on the
screen if your guess is not correct:

90 IF G < N THEN PRINT "UNDER"
100 IF G > N THEN PRINT "OVER"

Next, the counter I is incremented by 1, and a final IF statement looks to
see if you have used up all your chances:

130 IF I< = 7 THEN GOTO 60

If you still have turns left, then control of the program jumps up to line 60
to start the whole process over again. Otherwise, if the expression:

I<= 7

is false, then line 130 results in no action, and the program prints the
regretful message of line 14. Line 170 offers you another round.

Figure 1.2 shows a sample game.

Notes and Comments __________________ _

Sometimes it can be to your advantage to know how BASIC
evaluates logical expressions. The result of this evaluation is
actually coded numerically, as follows:

true =

false = 0

116 IF

This means that you can, if you want to, replace the logical
expression in an IF statement with a simple numeric variable;
for example:

IF N THEN PRINT "HELLO"

If the value of N is 0 in this statement, the computer will react
as though you had actually put a logical expression in the IF
statement, and the expression was false. If N has any value
other than 0 (not just 1), the computer will read it as a "true"
logical expression, and the PRINT command at the end of the
IF statement will be performed. (See the sample program
under VAL for an example.)

Both versions of BASIC allow more than one form for a condi­
tional GOTO (i .e., an IF statement in which the command
after THEN is GOTO). For details see the "Notes and Com­
ments" section under the heading GOTO.

Since both versions of BASIC allow a program line to contain
more than one statement (with the multiple statements sepa­
rated by colons) the following question arises: Will any state­
ments located on the same line with an IF statement be

OUER/UHDER
I AM THIHKIHG OF A HUMBER FROM 1 TO 100 .
YOU MAY HAUE 7 TURHS TO GUESS IT .

1 = 50
==> 50 IS OUER

2 25
== > 25 I S IJNOER

3 37 == > 37 IS QIJER
4 31 == > 31 IS UHOER
s 34 ==> 34 IS RIGHT!

AHOTHER GAME? •

Figure 1.2: IF-Sample Output

IF 117

executed if the logical expression in the IF statement is false? In
other words, given the following general form:

IF (logical expression) THEN (statement -1) : (statement -2)

we know that if the logical expression is false, statement #1 will
not be performed; but what about statement #2?

The answer to this question is different in each of the two
versions of BASIC. To explore the question , you can run the
following short program in each version:

1 0 FOR I = 1 TO 2
20 PRINT I;" :"
30 IF I = 2 THEN PRINT "ONE" : PRINT "TWO"
40 PRINT
50 NEXT I
60 END

The IF statement at line 30 is located inside a FOR loop that
performs the statement twice . The first time (I= 1), the logical
expression will be evaluated to false; the second time (I= 2),
the logical expression will be true. Notice that following the IF
statement in line 30 there is a second PRINT statement.

In Applesoft BASIC, this program results in the following
output display:

1:

2:
ONE
TWO

In other words, if the logical expression is false, the computer
moves on to the next line of the program, without performing arry
statements located on the same line as the IF statement itself.

In Integer BASIC , on the other hand, the same test program
produces the following output:

1:
TWO

2:
ONE
TWO

In Integer BASIC, any multiple statements on the same line
are executed whether or not the logical expression in the IF state­
ment is true .

118 Immediate Command

Immediate Command (computer vocabulary) _____ _

An immediate command is one that the computer performs as soon as
you enter it from the keyboard, as opposed to one that is part of a program.
Immediate commands are not numbered, as are the lines of a BASIC pro­
gram . Many Applesoft and Integer BASIC commands may be used either
as immediate commands or as program statements.

IN# (DOS command; Applesoft and Integer BASICs) _____ _

The IN# command directs the computer to receive subsequent input via
a specified slot number rather than from the keyboard; for example:

IN#5

identifies slot #5 as the source of input.

INIT (DOS command; Applesoft and Integer BASICs) _____ _

You can use the INIT command to initialize a new diskette, or to reini­
tialize a used diskette. In addition to the initialization process, INIT stores
a " greeting program" on the diskette. Subsequently, whenever you boot
the system using that diskette , the greeting program will automatically be
loaded into the computer and run, first thing.

INIT takes the form:

INIT F

where F is any legal file name. INIT stores whatever program is CUTTently residing
in the computer's memory on the disk, gives the program the file name F, and
identifies it as the greeting program. Thus, before you initialize a disk , you
should decide what you want the greeting program to be , and load this pro­
gram into the computer's active memory.

INIT also allows the optional parameters V, S, and D. The V parameter
stands for the volume number, an identification check-number that you may
assign to a disk at the time of initialization. For example, the command:

INIT F, V167

assigns the volume number 167 to the disk, and stores F as the greeting
program.

The S and D parameters, which stand for slot number and disk drive
number, respectively, are described in detail under the heading OPEN.

INPUT 119

INPUT (command word; Applesoft and Integer BASICs) ___ _

The INPUT command instructs the computer to wait for data to be
typed from the keyboard. When the data is entered, the computer assigns it
to the variable specified by name in the INPUT statement. The simplest
form of the INPUT instruction is:

INPUTV

where V is any variable name. In Applesoft BASIC the variable type can
be real, integer, or string; in Integer BASIC, only integer or string. The
computer, in turn, expects the input value entered from the keyboard to
correspond in type to the variable in the INPUT statement. Neither ver­
sion of BASIC allows INPUT to be used as an immediate command .

Depending on the form of the INPUT statement, the computer some­
times displays a question mark(?) on the screen to indicate that it is waiting
for input data. (The sample program, below, will help you explore this fea­
ture.) Each character of input data is "echoed" on the screen as it is typed
from the keyboard. Pressing the RETURN key completes the data input.

In addition, both versions of BASIC allow you to include a prompt string
in the INPUT statement. When the statement is performed, the computer
displays your prompt on the screen and then waits for the appropriate input
data. With the prompt string, the INPUT statement takes the following
form in Applesoft BASIC:

INPUT "PROMPT STRING"; V

In Integer BASIC a comma, rather than a semicolon , separates the prompt
string from the variable name:

INPUT "PROMPT STRING", V

Finally, INPUT allows more than one data element to be read by one
statement; for example:

INPUT "TYPE THREE NUMBERS: "; V1, V2, V3

This statement displays the following prompt on the screen:

TYPE THREE NUMBERS:

and then waits for three numerical data items to be entered from the key­
board . The data items may be typed all on one line, with commas separat­
ing each number:

21,37,52

or each number can be entered on a line of its own, followed by RETURN.

120 INPUT

Sample Program ___________________ _

You can use the program shown in Figure I. 3 to explore the computer's
reaction to the various forms of the INPUT statement. The program
appears in its Applesoft version , but you can change it to Integer BASIC by
making the following three modifications :

1. Add a DIM statement to define the strings V$ and S$:

5 DIM V$(1 0), S$(1 0)

2. Substitute commas for the semicolons in lines 120 and 150.

3. Eliminate the % character from all the numeric variable names
in lines 120 and 150. (Recall that all numeric variables are of
type integer in Integer BASIC .)

The program consists simply of a series of five INPUT statements (lines
30 , 60 , 90, 120, and 150), representing the variety offorms the command
can take in the two versions of BASIC . Before each INPUT statement, a
PRINT line displays on the screen a brief message explaining the kind of
INPUT statement that is coming up. Figure I.4 shows a sample run of the
Applesoft version of this program, and Figure 1.5 shows the output in Inte­
ger BASIC. Studying these two figures, you can see some of the differences
between the two versions of BASIC :

1 0
20
30
40
so
60
70
80
90

100
110
120
130
140
150
160

1. Applesoft BASIC places a question mark prompt on the screen
for any INPUT statement that does not itself contain a string
prompt (for example, program lines 30, 60, and 90). When the
INPUT statement does contain a prompt string (lines 120 and
150), Applesoft displays that prompt on the screen, without an

PRINT
PRINT "NUMERICAL INPUT:"
INPUT v
PRINT
PRINT "STRING INPUT:"
INPUT V$
PRINT
PRINT "THREE NUMERI CAL VARIABLES:"
INPUT V1,V2,V3
PRINT
PRINT "INPUT PROMPT:"
INPUT "STRING, INTEGER: 00

; s $,I r.
PRINT
PRINT "INPUT PROMPT:"
INPUT "INTEGER, STRING: ";IY.,S$
END

Figure 1.3: INPUT-Sample Program

INPUT 121

additional question mark, and waits for the input data. Integer
BASIC, on the other hand, places a question mark on the
screen whenever the expected input data is numerical­
whether or not the INPUT statement contains its own prompt
string. For string input data, Integer BASIC displays no addi­
tional question mark .

2. In response to an INPUT statement that contains several
numerical variables (line 90) both versions of BASIC allow the
data values to be typed onto a single line, separated by com­
mas; or each value may be typed onto a line of its own, followed
by RETURN. In the latter case , Applesoft BASIC displays
two question marks to prompt for each data item after the first:

THREE NUMERICAL VALUES:
?19
??20
??21

Integer BASIC displays a single question mark for each data
element.

3. For an INPUT statement that contains variables of different

Figure I. 4: INPUT -Sample Run, Appleso.ft BASIC

122 INPUT

types (as in lines 120 and 150), the two versions of BASIC have
different responses and requirements. Applesoft BASIC allows
all the data values-string or numeric-to be entered on the
same line, as long as each value is separated by a comma:

?HELLO, 15

If you wish to enter a string value that contains a comma in
Applesoft BASIC , the entire string must be enclosed in quota­
tion marks; for example:

?"JONES,D.",15

In Integer BASIC any string value must be entered on a line of
its own:

HELLO
?15

If you were to enter a string and a numeric value on the same
line, as follows :

HELLO, 15

Figure I . 5: INPUT -Sample Run, Integer BASIC

INT 123

the computer would read the entire line, including the comma
and the number, as the string value .

Notes arui Comments ___________________ _

In either version of BASIC, if you enter a string value when the
computer is expecting numerical input, an error message will
appear on the screen, prompting you to reenter the data. In
Applesoft BASIC the error message is:

?REENTER
?

After such an input error, Applesoft repeats the performance of
the entire INPUT statement; if the statement contains more
than one variable, you will have to reenter all the data values.
(See the entry under ONERR for an alternative approach to
handling input errors in Applesoft BASIC .)

In Integer BASIC the speaker beeps and the following error
message appears:

• • • SYNTAX ERR
RETYPE LINE
?

Integer BASIC only requires you to reenter the one value that
you originally entered incorrectly.

The INPUT statement also plays a role in the reading of exter­
nal data files. See the entry under READ (DOS command.)

INT (system command; Applesoft and Integer BASICs) _____ _

The INT command switches the computer from Applesoft BASIC into
Integer BASIC. Any program currently residing in the computer's mem­
ory will be lost as a result of this switch.

The screen prompt for Integer BASIC is the greater-than symbol:

>

INT (function; Applesoft BASIC) ____________ _

The INT function supplies the integral value of a number. In the case of
positive numbers , INT simply eliminates the fractional portion of the num­
ber. For example, the expression:

INT(2.7)

124 INT

10 DEF FN R(X) = INT(X + .5)
20 PRINT TAB(7);"NUMBER"; TAB(20l;"lNT"; TAB<30l;"ROUND"
25 PRINT : PRINT
30 FOR N = -2 TO 2 STEP .25
40 PRINT TAB<8l;N; TAB(21l; INT(N); TAB<31l; FN R(N)
50 NEXT N

Figure I. 6: /NT -Sample Program

NUMBER

-2
-1 ..,.,.

(.J

-1 1::"

. ·-· -1 .-.c . .L_ ._.
-1 ..,.,. - (·-· 1::" - ·-· .- , c - . .::. ._1
0

.- , c .::. ._1
£:"

·-· :c-

i
.. ·-·

1 1::"

·-· 1
1 1::"

·-· 2
].

Figure I. 7: /NT -Sample Output

would result in the value 2.

INT ROUHD

-2 -2
-2 -2
-2 -1
-2 -1
-1 -1
-1 -1
-1 0
-1 0
0 0
0 A
0 1
0 1
1 1
1 1
1 'J

"-
1

r,
c.

2 2

In the case of negative numbers, INT supplies the next lowerwhole num·
ber. For example:

INT(- 2.7)

would return the value -3.

Sample Program ___________________ _

The program shown in Figure 1.6 compares, for a series of arguments,
the value returned by INT with the value returned by a common rounding

INVERSE 125

formula. Line 10 of the program contains a user-defined function that
rounds a number, X , to the nearest whole number:

1 0 DEF FN R(X) = INT (X + .5)

The argument, N, is the control variable of a FOR loop, and ranges in
value from -2 to + 2 in steps of . 25 (line 30) . Figure I. 7 shows the output
from the program.

Interactive (computer vocabulary) ___________ _

The term interactive describes the computer's ability to respond, during
the run of a program, to information that the user types at the keyboard. A
program that takes advantage of this quality might create a diawgue between
the computer and the computer user; in such a program, the course of the
computer's action depends on the information that the user enters at the
keyboard during the program's performance.

INVERSE (display mode command; Applesoft BASIC) ___ _

The INVERSE command causes all subsequent text-screen information
to be displayed in the reverse-video mode-i .e . , black characters against a
white background . INVERSE may be executed as an immediate com­
mand or as a program statement; after INVERSE, the information placed
on the screen by any text-producing statement-including PRINT,
INPUT, LIST, and CATALOG-will appear in reverse video.

The NORMAL command instructs the computer to leave the reverse­
video mode; subsequent new text displays are printed normally.

&kProgram __________________ _

To see INVERSE in action, enter the following three lines into the
computer:

1 0 HOME : INVERSE
20 VTAB 11 : HTAB 14
30 PRINT "APPLE COMPUTER"

Run the program, and you will see the words APPLE COMPUTER dis­
played on the screen in reverse video. Now enter the command:

LIST

and the program itself will appear, also in reverse video. The command:

NORMAL

returns the computer to normal text mode .

126

LEFT$ (string function; Applesoft BASIC) ________ _

The LEFT$ function allows you to isolate the first n characters of a
string. The function takes the form:

LEFT$(S$,N)

where S$ represents a string, and N an integer. S$ may be expressed as a
literal string, a string variable , or a string expression (that is, a concatena­
tion) . The function returns the first N characters of S$.

Sample Program ____________________ _

The Applesoft program in Figure L.l demonstrates a "user friendly"
technique of accepting a yes-or-no response from the keyboard. In many

10 PRINT "DO YOU WANT TO CONTINUE' "
20 GOSUB 100: RE" GET ANSWER
30 If F$ = "N" 60TO 80
40 PRINT
SO PRINT "CONTINUING PROGRAM ·-·"
60 PRINT
70 GOTO 1 0
80 PRINT : PRINT "ENDING PROGRAM."
90 END

100 RE" *** YES OR NO ANSWER
110 INPUT "YlES OR N)O? ";A$
120 LET F$ = LEFTS(A$,1)
130 If NOT (f$ = "Y" OR F$ = "N"l GOTO 1SO
140 RETURN
1 SO PRINT : PRINT "REENTER."
16 0 GOTO 110

Figure L . l : LEFT$-Sample Program

LEFTS 127

programming situations such a response is required to determine the sub­
sequent action of the program. The following are examples of questions
that might appear on the screen during the performance of various interac­
tive programs:

DO YOU WANT TO SEE ANOTHER REPORT?
ARE YOU READY TO CONTINUE?
DO YOU NEED HELP?
DO YOU WANT TO PLAY AGAIN?
DO YOU HAVE MORE DATA TO INPUT?

You can undoubtedly think of many more. Each of these questions requires
the user to answer yes or no so that the computer can decide what to do next.
In reading your answer, a program should be able to accept a variety of valid
answers, and yet to safeguard against the occasional invalid answer. Specifi­
cally, the following two points should be considered in your design:

1. If you are answering affirmatively, you should be allowed to
type "YES" or simply "Y". Likewise, for a negative answer,
either "NO" or "N" should be acceptable.

2. If you make a typing error, the program should recognize it as
such and give you another chance to type a valid answer. For
example, if you should enter a "U" instead of a "Y" the pro­
gram should recognize the answer as invalid.

The subroutine at line 100 (Figure L.1) is designed to meet these two
requirements. It uses the LEFT$ function to determine if your response is:

1. affirmative,

2. negative, or

3. invalid,

and it acts accordingly.
Line 110 places the following input prompt on the screen:

Y)ES OR N)O?

and reads an answer into the variable A$. Line 120, which illustrates the
use of LEFT$, assigns the first character of the string A$ to the variable F$:

120 LET F$ = LEFT$(A$, 1)

The next statement tests to see if the character stored in F$ represents a
valid yes-or-no answer:

130 IF NOT(F$ = "Y" OR F$ = "N") GOTO 150

IfF$ contains neither a "Y" nor an "N" character, control of the program

128 LEFT$

goes down to line 150, which prints an error message; line 160 then loops
back up to the INPUT statement:

150 PRINT : PRINT "REENTER."
160 GOTO 110

The result, then, of an invalid response will be a screen display like this :

Y)ES OR N)O? U
REENTER.
Y)ES OR N)O?

If, on the other hand, F$ contains a valid answer, the computer will simply
proceed to line 140, which returns control to the main program section:

140 RETURN

For short, simple programs you might be tempted to take a more direct
approach to reading a yes-or-no answer:

100 INPUT "Y)ES OR N)O? ";A$
110 IF LEFT$(A$,1) < > "Y" THEN STOP

This sequence, which assumes that any response that does not begin with

Figure L.2: LEFTS-Sample Output

LEN 129

"Y" means no, is adequate when little is at risk, But in a long program­
especially one that requires elaborate data input-it can be very annoying
to terminate the performance accidentally by making a simple typing error
when you meant to enter "Y" or "YES".

The "main program" section in Figure L.1, at lines 10 to 90, merely
simulates the action of a program that depends on a yes-or-no response
from the keyboard . Study the sample output in Figure L.2 to see how the
program reacts to a variety of answers.

LEN (string function; Applesoft and Integer BASICs) ______ _

The function LEN stands for "length." LEN requires a string argu­
ment; it returns an integer that represents the length, in characters, of the
string. For example, the expression:

LEN(" HELLO")

would return the value 5, because HELLO contains 5 characters.
The argument of LEN may be expressed as a literal string value, as

shown above, or as a string variable name:

LEN(S$)

In Applesoft BASIC, LEN will also accept an argument that is a conca­
tenation of two or more strings:

LEN(S$ + G$)

This expression will return the combined length of the two strings S$ and G$.

SampkProgram ____________________________________ __

Figure L.3 shows a short program that uses LEN to center a string on the
screen. The centering formula appears as part of a TAB function in line 70:

TAB((40 - LEN(S$))/2 + 1)

This formula finds the difference between the length of the string, S$, and
the width of the screen (i.e., 40 characters); this difference is divided by 2 to
center the string.

The program allows you to enter a string from the keyboard (line 40). It
then displays this string in the center of the screen. So that you can ex­
periment with other strings, the program loops back to the beginning after
you press a key on the keyboard; to stop the program, press S (lines 90
and 100).

130 LEN

10 HOllE : PRINT : PRINT
20 PRINT "TYPE ANY STRING:"
30 PRINT : PRINT
40 INPUT " ";S$
SO HOllE
60 VTAB 12
70 PRINT TAB((40- LEN (S$)) I 2 + 1l;S$
80 VTAB 23
90 GET X$

100 IF X$ <> "S" GOTO 10
110 END

Figure L.3: LEN-Sample Program

LET (command word; Applesoft and Integer BASICs) _____ _

The LET statement assigns a value to a variable. If the variable does not
yet exist in the program, LET gives it its initial value. If the variable
already exists, LET gives it a new value.

The LET statement takes the following form:

LETV =value

where V, on the left side of the equal sign, is any variable name (string or
numeric). The value on the right side of the equal sign may be expressed as
a literal value, a variable, or an expression composed ofliterals and/or vari­
ables. The LET statement instructs the computer to evaluate whatever is
on the right side of the equal sign, and to store the resulting value in the
memory location represented by the variable name on the left side of the
equal sign.

Here are three examples, paraphrased:

LET AGE = 18

"Store the value 18 in the variable AGE."

LET I = J

"Store the value of the variable J in the variable I." (The variable J
should be assigned a value in advance of this statement. The value of] does
not change as a result of this statement.)

LET N = 5 • M + P /2

"Evaluate the expression on the right side of the equal sign, and store the
resulting value in the variable N." (The variables M and P are assumed to
contain values at the time the LET statement is performed. The values of
M and P do not change as a result of the statement.)

LET 131

Notice that while there is no practical limit to the complexity of the
expression on the right side of the equal sign , there is never more than a
single variable name on the left side.

If you refer to a numeric variable that has not yet explicitly been assigned
a value, that variable automatically receives the value zero. (However, it is
always a good idea to explicitly set a variable to zero when you have to be
sure of having a zero value at a particular point in the program.)

The LET statement may be performed either as an immediate com­
mand or as a program instruction.

SampkProgram ____________________________________ __

The Applesoft program shown in Figure L. 4 demonstrates several differ­
ent uses of the LET statement. The statements in lines 20 to 60 assign
string values to the five elements of the string array L$. Notice that, in each
of these LET statements, the variable name on the left side of the equal sign
is actually the name of an array element.

Lines 70, 130, and 140 work together to simulate the action of a FOR
loop in this program. Line 70 initializes the variable I to the value 1. This
variable will be used as a counter in the loop. The LET statement in line 130
increments the value of I by 1 for each repetition of the loop:

1 30 LET I = I + 1

This kind of statement often appears paradoxical to the beginning pro­
grammer; it can be paraphrased as follows:

"Add 1 to the current value of the variable I; then store the new, incre­
mented value in I." The old value of I is lost.

5 HO"E
10 Dl" L $ (5)
20 LET L $ (1) "FIRST"
30 LET L$(2) "SECOND"
40 LET L$(3) "THIRD"
so LET L$(4) "FOURTH"
60 LET L $ (5) "FIFTH"
70 LET I = 1
80 RE" *** BEGINNING OF LOOP
90 LET v = I * 3

100 LET H = I * 4
110 VTAB v: HTAB H
120 PRINT I . " ";LS(Il;" TIME AROUND. " , .
130 LET I = I + 1
140 If I <= 5 THEN GOTO 80
150 END

Figure L. 4: LET -Sample Program

132 LET

The LET statements in lines 90 and 100 determine the vertical and hori­
zontal coordinates that will be used in the VTAB and HTAB statements of
line 110:

90 LETV =I • 3
1 00 LET H = I • 4
11 0 VTAB V : HTAB H

Remember that neither of these LET statements changes the current value
of I. Only the variables V and H receive new values .

Study the output from this program (Figure L.5) carefully. Make sure
you understand how the LET statement in line 130 controls the action of
the loop that creates the screen display.

Notes and Comments __________________ _

In both versions of BASIC, the word LET is optional in an
assignment statement. Thus, you may see statements such as :

1301=1+1

Figure L. 5: LET -Sample Output

LIST 133

in some BASIC program listings. The advantage of using LET
is simply that it enhances clarity; its use is a matter of personal
preference. In this book, all assignment statements begin with
LET.

LIST (command word; Applesoft and Integer BASICs) ____ _

The LIST command instructs the computer to display on the screen the
lines of the program currently stored in its memory. While LIST may be
used as a program instruction, it is generally performed as an immediate
command . In both versions of BASIC, the command may take several
forms . The first is simply:

LIST

This command results in a listing display starting from the first line of the
program and continuing to the end of the program. The second form of
the LIST command is:

LIST L

where L is a value that represents a line number in the program. In this
case the computer displays only line Lon the screen.

The other allowed form of the command is:

LIST L 1, L2

where Ll and L2 are both literal numeric values representing line numbers
in the program. The result of this command is to display the portion of the
program from line L1 to line L2 .

Applesoft BASIC allows two variations on this final form of the LIST
command. To list the program from the beginning up to line L2, you can
give the command:

LIST, L2

and to list the program from line Ll to the end, you can type:

LIST L 1,

In all of these last three forms, Applesoft will also accept a hyphen in the
place of the comma:

LIST L 1 - L2
LIST- L2
LIST L 1 -

134 LIST

Notes and Comments __________________ _

If a program listing takes up more than one screen, the com­
puter simply scrolls the screen display down to the end of the
program. (This means that once the screen is full , the top line
will disappear, and each subsequent line will move up by one
row. The next line of the program will appear at the bottom of
the screen, and so on.) To stop this scrolling temporarily and
examine a portion of the program, type CONTROL-S (i .e . ,
press the CTRL and S keys together.) Afterwards, to continue
the listing, press any key.

Litera[Jiz[ue (general programming vocabulary) _____ _

A literal value is an actual numeric or string value, entered as a constant
in a program statement; as opposed to a variable name, which represents the
numeric or string value that is stored in the computer's active memory
under that name. A literal string value must appear within quotation
marks in a program instruction ; for example , the following statement
assigns a literal string value to the variable S$:

LETS$ = "COMPUTER"

A literal numeric value may appear in either decimal form or scientific
notation , as in the following examples:

LET N1 = 123.456
LETN2 = 3.1 E+8

PRINT statements in BASIC may contain combinations of!iteral values
and variables; for example :

PRINT "AVERAGE = "; TOT/3

The values stored in DATA statements must be literal values; variables
are not allowed. String values in DATA statements may appear without
quotation marks, except when the string contains a character-such as a
comma-that could be interpreted as a delimiter:

DATA ASSET, "$5,678,901.23", 89

See the entries under DATA, LET, and PRINT.

LOCK 135

LOAD (DOS Command; Applesoft and Integer BASICs) ___ _

The LOAD command retrieves an Applesoft BASIC program from a
disk file and places it in the computer's active memory. After LOADing,
the program is ready to run .

The LOAD command takes the syntactic form :

LOADF

where F represents the name of an Applesoft or Integer BASIC program
file stored on disk . When the computer loads F, any program previously
residing in the computer's active memory is lost. If the program file named
in the LOAD command does not exist on the current disk, the computer
loads no program , but instead displays the following error message:

FILE NOT FOUND

If the program named in the LOAD command is of the wrong type-that
is , a binary or a text file-the computer again loads no program , but dis­
plays the error message:

FILE TYPE MISMATCH

(All file names are tagged by a single letter that identifies type-A, I, B, or
T-in the disk directory. See CATALOG.)

The LOAD command allows the optional parameters S, D, and V See
OPEN for details .

Notes and Comments __________________ _

For a system that uses a cassette recorder instead of a disk
drive, the LOAD command is used to retrieve a program
stored on cassette tape .

LOCK (DOS command; Applesoft and Integer BASICs) ____ _

You can use the LOCK command to protect a disk file from accidental
deletions or overwrites . LOCK works on any of the four types of files­
Applesoft or Integer program files, text files, or binary files . The syntax of
LOCK is:

LOCKF

where F represents the name of any file on the current disk . After this com­
mand, all of the following attempts to change the file F will fail:

SAVEF
DELETE F

136 LOCK

RENAME F, F1

These commands, which attempt to overwrite, delete, and rename F,
respectively, will all result in the error message:

FILE LOCKED

Likewise, ifF is a locked text file, the WRITE command will fail. However,
the LOAD and RUN commands continue to operate normally even on a
locked file. The same is true of the READ command for a locked text file.

Notes and Comments _________________ _

A locked file is flagged by an asterisk in the disk directory. (See
CATALOG.) The UNLOCK command removes the protec­
tion established by LOCK.

The LOCK syntax allows the three optional parameters S, D,
and V. See the entry under OPEN for details.

LOG (function; Applesoft BASIC) ____________ _

The LOG function supplies the natural logarithm (base e) of a number.
The argument of LOG must be greater than 0.

Sample Program ___________________ _

Figure L.6 shows a program designed to display a sampling of natural
logarithms for arguments ranging from 90 down to .1. The program con­
tains two FOR loops that determine the arguments of LOG. The first loop,
at lines 40 to 60, produces arguments from 90 down to 10. The second

10 PRINT TAB< 11); "THE LOG fUNCTION"
20 PRINT TAB < 11); "--- --- -------- "
30 PRINT
40 FOR I 90 TO 10 STEP -10
50 GO SUB 200
60 NEXT I
70 FOR I = 1 TO . 1 STEP -. 1
80 GO SUB 200
90 NEXT I

100 END
20 0 PRINT TAB (9 l ; "L 0 G ("; I;" l ";TAB (1 7l ; "= II; LOG (Il
210 RETURN

Figure L. 6: LOG-Sample Program

L OG 137

loop, at lines 70 to 90, produces decimal arguments from 1 down to .1.
Both loops make repeated calls to the subroutine at line 200, to print each
line of information. The expression that contains the LOG function is at
the end of line 200.

The output from this program appears in Figure L. 7. Notice that the
natural logarithms of arguments greater than 1 are positive, and the natu­
rallogarithms of arguments less than 1 are negative.

Notes and Comments ___________________ _

ll

Figure L.8 shows a plotted graph of the LOG function. (This
curve was produced in Applesoft high-resolution graphics.)
The curve represents the equation:

y = log.x

The curve crosses the x-axis at (1 ,0).

THE LOG FUNCTION
--- --- --------

LOG 90) = 4.49980967
LOG 80) = 4 . 38202664
LOG 70) = 4 . 24849524
LOG 60) = 4 . 09434456
LOG 50) = 3 . 91202301
LOG 40) = 3.68887945
LOG 30) = 3 . 40119739
LOG 20) = 2 . 99573227
LOG 10) = 2 . 30258509
LOG 1) = 0
LOG . 9) = - 105360516
LOG . 8) = -:223143552
LOG . 7) = - . 356674944
LOG . t ·} = -.510825624
LOG .5) = -.693147181
LOG . 4) = -.916290733
LOG 7'•

. -..J) = -1 . 20397281
LOG . 2) = -1 . 60943791

Figure L. 7: LOG-Sample Output

138 LOG

Figure L. 8: L OG-Plotted Graph

Arguments of zero or values less than zero are illegal for LOG,
and result in the following error message:

?ILLEGAL QUANTITY ERROR

See also the entry under EXP.

Logical Expression (computer vocabulary) _ _ _____ _

A logical expression is one that the computer evaluates as either true or
false. Logical expressions typically take the form of equalities or inequali­
ties. (See IF.) The logical operators AND and OR can be used to build
compound logical expressions. The logical function NOT negates the value
of a logical expression.

A simple numeric variable may take the place of a logical expression in
an IF statement; if the variable contains the value 0, it will be evaluated as
false; if it contains any other value, it will be evaluated as true.

LOMEM 139

LOMEM (system command; Applesoft and Integer BASICs) __ _

The LOMEM command sets a lower limit to the memory area reserved
for a BASIC program. For example, the command:

LOMEM: 2500

sets the lower limit at memory address 2500 . The reason for establishing
this limit is generally to set aside memory space below LOMEM for other
purposes-shape tables or machine-language routines, for example. (See
the entry under HIMEM.)

140

Machine Code (computer vocabulary) _________ _

Machine code consists of instructions that a specific microprocessor can
perform directly, rather than those written in a language that must be inter­
preted, such as BASIC. Writing programs in machine code for the Apple II
computers requires an understanding of the instruction-set and the archi­
tecture of the 6502 microprocessor. Applesoft and Integer BASICs have
commands that allow you to store machine-code instructions at specific
memory locations (POKE); and to "call" a machine code subroutine dur­
ing the performance of a BASIC program (CALL and USR). Machine
code is also known as 11Ul£hine language.

MAN (system command; Integer BASIC) __________ _

MAN switches the system from automatic line numbering to manual
line numbering. (See AUTO .) To use MAN, you first have to type
CONTROL-X to create a break in the automatic numbering. Then enter
the command:

MAN

MAXFILES (DOS command, Applesoft and Integer BASICs)_

The MAXFILES command sets an upper limit to the number of files
that may be open at any one time. The syntax of the command is:

MAXFILES N

where N is an integer from 1 to 16. As a result of MAXFILES, the com­
puter reserves memory space for N file buffers. If you subsequently try

MID$ 141

to exceed the limit set by MAXFILES, you will get the following error
message:

NO BUFFERS AVAILABLE

Since MAXFILES results in memory shifts that may damage a BASIC
program residing in active memory, it is best to perform MAXFILES as an
immediate command, before you LOAD a program. When you first boot
the system, MAXFILES is set to 3 .

Menu (computer vocabulary) _______________ _

A menu is a display of the options available to the user at a given point
in an interactive program performance. The menu must also indicate an
unambiguous method of choosing an option. (See the entries under
GOSUB and DRAW.)

MID$ (string function; Applesoft BASIC) _________ _

The MID$ function accesses a specified portion of a string. The function
takes the form:

MID$(S$, P, N)

where S$ is a string and P and N are integers . (S$ may be expressed as a
literal string, a string variable, or a string expression .) MID$ returns theN
characters ofS$ that start from the Pth character in the string. For example,
in the following statement:

PRINT MID$("COMPUTER", 4, 3)

MID$ returns three characters of the string, starting from the fourth char­
acter. The statement will thus display the word PUT on the screen.

Notes and Comments __________________ _

The program listed and described under the heading STR$
shows the MID$ function in action. This program simulates
the PRINT USING feature, which is missing in Applesoft and
Integer BASICs.

See also the entries under LEFT$ and RIGHT$.

142 MOD

MOD (arithmetic operation; Integer BASIC) ________ _

MOD represents the rrwdulus operation, which supplies the remainder from
the division of one integer by another. MOD may appear as a part of any
arithmetic expression in an Integer BASIC program. The expression:

I MOD J

supplies the remainder from the division ofl by]. For positive values ofl
and J, the result of this expression will always be an integer from 0 to
(J-1).

N otes and Comments ___________________ _

The MOD operation is not available in Applesoft BASIC, but
can be calculated using the following expression:

I - J • INT(I/J)

For positive values ofl and J, this expression is equivalent to I
MOD] .

MON (DOS command; Applesoft and Integer BASICs) ____ _

The MON command allows you to monitor the activities of a file­
handling program; it displays input and output data, and the DOS com­
mands themselves, on the screen . Normally, when a text file is open for
writing, PRINT statements send data only to the disk file, and not to the
screen . Likewise, when a text file is open for reading, INPUT commands
read data from the file , but the data is not displayed on the screen. Some­
times, particularly during program development, you might wish to see a
listing of the data being transferred to or from a file . At such times the
MON command can be helpful.

The syntax of MON allows three single-letter parameters, which may
appear in any order and any combination . The parameters indicate which
file-handling activity will be displayed on the screen during the perform­
ance of a program. They are I, for input; 0 for output; and C, for com­
mands. The I parameter displays any data that is read from a file . The 0
parameter displays any data that is written to a file. Finally, the C parame­
ter displays the DOS commands themselves on the screen.

The following MON command initiates all three of these displays:

MON I, 0 , C

MON 143

Here are some examples of MON commands that establish only one or two
of the displays:

MON I, C
MON O
MON C

A MON command with no parameters produces no results. The MON
command remains in effect until a NO MON command is given. (See the
entry under NO MON.)

Notes and Comments ____________________ _

MON and NO MON may be used either as immediate com­
mands or as program statements. In a program, however, they
must be treated as DOS commands-introduced to the system
via a PRINT statement and the CONTROL-D character. (See
the entry under DOS Commands.)

144

NEW (command word; Applesoft and Integer BASICs) ___ _ _

The NEW command effectively erases the current program from the
computer's memory. After you have entered NEW, you cannot retrieve the
program unless you have first stored it on disk or cassette tape. While
NEW is most commonly used as an immediate command, Applesoft
BASIC allows it as a program statement.

NEXT (command word; Applesoft and Integer BASICs) _ ___ _

The NEXT statement marks the end of a sequence of program lines that
make up a FOR loop. The most straightforward form of the NEXT state­
ment is:

NEXTV

where Vis the control variable established in the FOR statement that intro­
duces the loop . (See the entry under FOR.) For the sake of programming
clarity, this is probably the best form of the NEXT statement to use,
although other forms are available .

NOMON 145

In Applesoft BASIC, the variable name may be omitted from the NEXT
statement, as in the following example:

1 0 FOR I = 1 TO 1 0
20 PRINT I
30 NEXT

Furthermore, both versions of BASIC allow a single NEXT statement to
mark the end of a series of nested loops; for example:

1 0 FOR I = 1 TO 1 0
20 FOR J = 1 TO 5
30 FOR K = 1 TO 20

100 NEXT K, J, I

Notice the order of the control variables in the NEXT statement: from the
innermost to the outermost loop. If this order is written incorrectly, or if
any NEXT statement includes an incorrect control variable, the program
will terminate with an error message. In Applesoft BASIC, the message is:

?NEXT WITHOUT FOR ERROR IN 100

indicating that the offending NEXT statement is at line 100. The Integer
BASIC version of the same error message is:

• • • BAD NEXT ERR
STOPPED AT 100

NO DSP (command word; Integer BASIC) ________ _

The NO DSP command cancels DSP for a single variable. DSP causes
the value of a specified variable to be displayed on the screen each time the
value changes; this feature is valuable for debugging an Integer BASIC
program. When you wish to turn off the display for a specific variable, you
can use NO DSP; the command takes the form:

NO DSP N

where N is the name of a variable that was previously referenced in a DSP
command. (See DSP.)

NO MON (DOS command; Applesoft and Integer BASICs) __ _

The NO MON command turns off one or more of the file-handling
monitoring displays established by the MON command. The NO MON
command must contain at least one of the following parameters: C, to turn
off the display of DOS commands; I, to turn off the input data display; and

146 NOMON

0, to turn off the output data display. The following are examples of the
NO MON command:

NOMONC, I, 0
NOMONC
NOMONC, I

See the entry under MON for further details .

NORMAL (display mode command; Apple soft BASIC) ___ _

When the screen is in the text mode, the NORMAL command returns
the display to normal (i .e. , white characters on a black background) after
either the FLASH or the INVERSE command has been executed. (See the
entries under FLASH and INVERSE for details.)

NOT (logical operator; Applesoft and Integer BASICs) _____ _

The logical operator NOT modifies a logical expression in an IF state­
ment ; it reverses the value of the expression it modifies:

If a logical expression is true, NOT results in a false expression.

If a logical expression is false, NOT results in a true expression.

NOT must always appear immediately before the expression it modifies:

IF NOT (logical expression) THEN (command)

sampkProgram __________________ ___

The program under the heading LEFT$ (Figure L.1) contains an inter­
esting example of NOT. It is used in a passage that validates what should be
a yes-or-no input response :

11 0 INPUT "Y)ES OR N)O? "; A$
120 LET F$ = LEFT$(A$, 1)
130 IF NOT (F$ = "Y" OR F$ = "N") GOTO 150

Line 130, paraphrased, says: Send control of the program to line 150 if nei­
ther of the following two statements is true:

F$ = "Y"
F$ = "N"

Thus, if a string starting with something other than "Y" or "N" is read

NOTRACE 147

from the keyboard , then the statements starting at line 150 are performed.
An IF statement that contains NOT can always be rewritten to eliminate

NOT. For example, line 130 of the sample program could have appeared
as:

130 IFF$ <> "Y" AND F$ < > "N" THEN GOTO 150

The computer's action would be the same for both versions of the line.
However, for a person who is reading the program listing for the first time,
the version with NOT is probably easier to understand. The use of NOT,
then, is largely a matter of programming clarity and style.

Notes and Comments ___________________ _

See the entry under VAL for an example of NOT used in an
assignment statement.

NO TRACE (command word; Applesoft and Integer BASICs) __

The NO TRACE command turns off the trace feature, a debugging tool.
(See TRACE.)

148

ON (command word; Applesoft BASIC) __________ _

ON provides a means of choosing among a list of program lines in
GOSUB and GOTO statements . The statement can take two forms:

ON N GOSUB (list of subroutine starting lines)

or:

ON N GOTO (list of program lines)

where N is any numeric variable or arithmetic expression that evaluates to
a positive number. The computer uses the integral value of this number to
choose one of the program lines in the list.

The best way to see how ON works is to look at an example:

15 ON I GOTO 150, 200, 250, 300, 350

This ON .. . GOTO statement contains a list of five program line
numbers-150 , 200, 250, 300, and 350 . Depending on the value ofl , con­
trol of the program can be sent to any one of these lines. If I equals 1,
control will be sent to the first line in the list, line 100; ifl equals 2, control
will be sent to the second line, 200; and so on . If I equals any number from
1 to 5, one of the five line numbers will be chosen for transfer of control.

You can see how economical the ON statement is; the example above
takes the place of five IF statements:

11 IF I = 1 GOTO 150
12 IF I = 2 GOTO 200
13 IF I = 3 GOTO 250
14 IF I = 4 GOTO 300
15 IF I = 5 GOTO 350

Since I is not necessarily an integer, an additional statement is also im plied

ONERR 149

by the ON ... GOTO command. The computer finds the integral value of
I before choosing one of the line numbers in the list:

1 0 LET I = INT(I)

There is no practical limit to the number oflines that the list can contain.
If the integral value of the variable named after ON is greater than the
number of lines in the list, the ON statement results in no action. (For
example, ifl equals 6 in the ON statement above, no transfer of control will
occur.) Likewise, if the integral value of the variable is zero, no action will
result. For this reason , you will usually want to test the value of the variable
before the performance of the ON statement, as in the following sequence:

10 INPUT I
20 IF I < 1 OR I > 5 GOTO 1 0
30 ON I GOSUB 100,200,300,400,500

Line 10 reads an input value from the keyboard. If the value ofl is outside
of the range that will produce action in the ON ... GOSUB statement, line
20 loops back for another input value. Only when an appropriate value is
input for I will the ON GOSUB statement be performed.

If the value of the variable named after ON is less than zero, the program
will terminate with an error message similar to the following:

?ILLEGAL QUANTITY ERROR IN 30

In this instance, 30 is the line number of the offending ON statement.
While Integer BASIC does not offer the ON statement, it does allow a

computed GOTO (or GOSUB) command, which can be written to perform
the same function as the ON statement. See the entries under GO SUB and
GOTO for details and examples.

ONERR (command word; Applesoft BASIC) _______ _

The ONERR command prevents the interruption of a program per­
formance in the event of a syntax error or other programming mistake.
There are over a dozen common errors that normally lead to a break in
execution of an Applesoft BASIC program, many of which involve misuse
of the syntax or structure of the BASIC language. Usually, when one of
these errors occurs during a program run, first the performance is halted,
then an error message appears on the screen, and finally control returns to
the system command level. When such an interruption happens, the error
message will generally give you a good idea of the reason for the interrup­
tion and the location of the error. You will simply correct the error and try
running the program again.

On occasion, however, you may want to anticipate certain kinds of

150 ONERR

potential errors , and include-in the program itself-a procedure for deal­
ing with them . The ONERR command allows you to plan such a scenario .
The syntax of the command is :

ONERRGOTO L

where L is a line number, expressed as a literal numeric value. Para­
phrased, the ONERR command says, "If any error occurs at some subse­
quent point in the program run, send control of the program to line L."
When the computer performs an ON ERR statement it keeps track of the
line number, L, for potential use in the event of a future error. A given
ONERR statement remains in effect until the program run is complete, or
until another ONERR statement is performed.

The instructions you write for the error routine, beginning at line L , will
of course depend on the kind of error you are anticipating. Each of the
errors that normally cause a break in the program run has a code number,
as shown in Figure 0.1 . After one of these errors has occurred, you can
find its code number by PEEKing into memory location 222:

PEEK(222)

Since the computer generates no automatic error message when an

Figure 0.1: Applesoft Error Codes

ONERR 151

ONERR statement is in effect , using this function is your only means of
finding out exactly which error has occurred.

Once you have found out what the error was, you can plan any course of
action to deal with it. At the end of your error routine, you may often use
the RESUME command . RESUME sends control of the program back to
the line where the error originally occurred.

ONERR will not work as an immediate command .

Sample Program ___________________ _

The program shown in Figure 0 .2 is designed to illustrate ONERR and
RESUME. Specifically, it deals with two kinds of numerical input errors:

1. input of nonnumerical characters when the program is expect­
ing a number;

2. input of a number that is too large for the computer to handle .

The computer's reaction in the event of the first of these errors is to display
the message:

?REENTER
?

and to wait for another input attempt from the keyboard. (See INPUT.)
The second error, however, normally results in a break in the program run,
and a display of the message:

?OVERFLOW ERROR

10 ONERR GOTO 500
1 5 HO"E
20 INPUT "ENTER A NUMBER: "; N
30 PRINT " OK == > ";N
40 PRINT
50 GOTO 20

500 LET C = PEEK<2 22l
510 IF NOT (C = 69 OR C = 254) THEN STOP
520 PRINT CHR$(7)
530 IF C = 69 THEN PRINT "** NUMBER TOO LARGE."
540 IF C = 254 THEN PRINT"** BAD INPUT."
550 PRINT
560 RESU"E

Figure 0.2: ONERR-Sample Program

152 ONERR

The first line of this program is the ONERR statement, establishing line
500 as the beginning of the error routine:

1 0 ON ERR GOTO 500

The rest of the " main program" section is simply an INPUT statement
that is performed repeatedly, allowing you to experiment with the results of
various input errors:

20 INPUT " ENTER A NUMBER: "; N

50 GOTO 20

The INPUT statement reads a numerical value into the variable N. Each
valid input value is echoed on the screen (line 30). As a result of the
ONERR statement, any invalid input value will send control of the pro­
gram to the error routine at line 500 .

T he error routine begins with a PEEK into memory location 222 to find
out the nature of the error. The error code is assigned to the variable C :

500 LET C = PEEK(222)

Ifyou look again at Figure 0 .1, you'll see that the invalid input and over­
flow errors are codes 254 and 69, respectively. Since this error routine is
designed to handle only these two errors, it must STOP the program if any
other error occurs:

510 IF NOT(C = 69 OR C = 254) THEN STOP

If C does represent one of the two input errors, however, the routine pro­
ceeds. It beeps the computer ' s speaker:

520 PRINT CHR$(7)

and then displays one of the two possible error messages:

530 IF C = 69 THEN PRINT NUMBER TOO LARGE."
540 IF C = 254 THEN PRINT "• • BAD INPUT."

and finally uses the RESUME statement to send control back to the
INPUT statement at line 20, where the error originally occurred:

560 RESUME

Figure 0 .3 shows some sample output from this program.

OPEN 153

Figure 0.3: ONERR-Sample Run

For a program that requires you to type many input values at the key­
board, the error-handling represented by this routine would probably seem
a good deal "friendlier" than the computer's usual approach to input
errors. Dealing with input errors is one of the situations in which you are
most likely to profit from use of the ON ERR feature .

Notes and Comments ___________________ _

In a file-handling program, ON ERR also sends control of the
program to the error routine in the event of a DOS error.

OPEN (DOS command; Applesoft and Integer BASICs) ____ _

The OPEN command opens a text file (on disk) for reading or writing.
Generally a second DOS command follows OPEN (for example, a READ
command or a WRITE command) to specify exactly what will be done
with the open file. OPEN can be used with either sequential files or
random-access files; the format of the command itself indicates which kind
of file is to be opened. The simpler format is for sequential-access files:

OPENF

154 OPEN

This command opens the sequential text file F (where F represents any
legal file name) and anticipates reading from or writing to the first field of
the file. The OPEN format for random access files requires an additional
parameter: the letter L followed by an integer, which specifies the fixed
length, in bytes, of each record in the file; for example:

OPEN F, L30

This command opens the random-access text file F, which will consist of
records that are each 30 bytes long.

As a result of the OPEN command, the computer sets aside a buffer area
in its memory to store data that is coming from or going to the file. Also
associated with the file is a pointer that keeps track of the current position in the
file. Both of these features are automatically implemented by the computer
when the file is opened.

OPEN may not be used as an immediate command. In a BASIC pro­
gram, you must place the OPEN command (like other DOS commands) in
a PRINT statement, introducing the command with a CONTROL-D
character (ASCII code 4); for example:

10 PRINT CHR$(4) ; "OPEN F"

You can read about this convention in detail under the heading DOS
Commands.

Finally, both formats of the OPEN command-for sequential and
random-access files-permit three optional parameters that specify the vol­
ume, slot, and disk-drive location of the file. These parameters are
explained under "Notes and Comments," below.

SampkProgram ____________________________________ ___

Under the headings EXEC, POSITION, READ , and WRITE, you
will find sample programs illustrating the OPEN command in a variety of
circumstances, including:

creating an EXEC file (Figure E.l);

creating a sequential text file (Figure W.l);

creating a random-access file (Figure W.2);

revising a random-access file (Figure W.3);

reading a sequential file (Figure R.l);

reading selected fields of a sequential file using the POSITION
command (Figure P7);

reading a random-access file (Figure R.3).

OR 155

lVo~sandCom~~-------------------------------------

The OPEN command, along with many other DOS com­
mands, has three optional parameters, which you can use to
identify the disk on which the file is located. These parameters
may sometimes supply redundant information, but their pur­
pose is to avoid confusion when you are using more than one
disk drive or multiple floppy disks.

The parameters are S, D, and V, for slot, drive, and volume,
respectively. The format of each parameter is the same: a letter
(S, D, or V) followed by a number; for example:

OPEN F, 87, D2, V58

The slot parameter indicates which slot (1 to 7) the disk control­
ler card is placed in. The drive parameter chooses between the
two drives (1 or 2) controlled by a specified disk controller card.
Finally, the volume is an identification number (from 1 to 254)
assigned to an individual floppy disk at the time it is initialized.
(See I NIT.) Any combination of these three parameters, in any
order, may appear in an OPEN command. If these parameters
are not specified explicitly in a DOS command, they take on
default values. Initially, the values default to the parameters of
the disk from which the system is booted . Thereafter, the
default values come from the parameters most recently speci­
fied in a DOS command.

OR (logical operator; Applesoft and Integer BASICs) ____________ _

The logical operator OR can be used to create a compound logical
expression for an IF decision . The value of such a compound expression
depends on the values of the elements combined by OR. A compound
expression in the following form:

statement-1 OR statement-2

is true if either statement-! or statement-2 is true , or if both statements are
true. If both statements are false, then the compound expression is also false.

Sample Program ______________________________________ __

The sample program presented under the AND entry (Figure A.4) also
contains an example of the use of OR. Line 140 of the program tests the
values of the two variables AVE (for "average quiz score") and F (for
"final exam score"):

140 IF AVE < 75 OR F < 70 THEN PRINT "FAILED"

156 OR

If either score falls below the cut-off point (75 for AVE; 70 for F), the com­
pound expression:

AVE < 75 OR F < 70

will be evaluated as true, resulting in the message "FAILED" appearing
on the screen. The compound expression will be evaluated as false only if
both of its elements are false; that is, if both scores are at the passing point
or better.

Notes and Comments __________________ _

Figure 0.4 is a "truth table" for OR conditions. It shows the
resulting value of a compound expression, given different com­
binations of values for statement-1 and statement-2. Notice
that the compound expression is true in three cases-when
either one of the inner statements is true, or when both are
true.

See AND, IF, and NOT for more information.

Figure 0.4: OR-Truth Table

0

PDL (function; Applesoft and Integer BASICs) ________ _

The PDL function is used in BASIC games programs to read the current
setting of a specified game paddle and return the value of that setting to the
program. (A game paddle is an input device for use with video games.) The
format of PDL is:

PDL(N)

where N, a value from 0 to 3, specifies which paddle is to be read . The func­
tion returns a value from 0 to 255.

PEEK (function; Applesoft and Integer BASICs) ______ _

The PEEK function supplies the contents of a specified memory loca­
tion, in decimal form. PEEK appears in the following format:

PEEK(M)

where M is a literal numeric value, variable, or arithmetic expression that
represents a memory location numbered 0 to 65535. PEEK returns a deci­
mal number from 0 to 255, the contents of one byte of memory.

The PEEK function and the POKE statement, which together supply a
much more intimate access to the computer's inner organization than do
other BASIC commands, are useful for programmers who wish to write
machine code routines . Such routines require a knowledge of the machine­
code instruction-set of the 6502 microprocessor, the central processing unit
of the Apple II computers. (See the entries under POKE, USR, and CALL
for more information .)

157

158 PEEK

SampkProgram ____________________________________ _

Figure P 1 shows an Applesoft program illustrating the use of PEEK.
The program is an exercise designed to locate the memory addresses in
which the program itself is stored and display its first hundred or so bytes.

Near the beginning of the program is a REM line that will serve as a kind
of flag for the beginning of the program in memory:

10 REM LOCATE THIS SENTENCE IN THE COMPUTER'S
MEMORY.

Program lines 20 through 70 form a FOR loop that PEEKs through the
memory locations 2040 to 2219 and prints their contents on the screen:

20 FOR I = 2040 TO 2219

It is within these memory locations that we will find our program. (Note
that LOMEM, the lower limit address for the BASIC program area of
memory, is set at 2048 by Applesoft BASIC .) Lines 30 and 50 arrange to
print every 30th address number on the screen. Line 50 actually prints the
number, I :

50 PRINT""; I;"> ";

and line 30 skips over the PRINT instruction in line 50 for all values of I
that are not multiples of 30 :

30 IF INT (1/30) • 30 < > I THEN GOTO 60

Line 60 actually prints the contents of the memory locations. Remember
that PEEK returns the contents in decimal numeric form. So that we will
recognize our REM line, line 60 uses the CHR$ function to convert each
value into its character equivalent according to the ASCII code :

60 PRINT CHR$(PEEK(I));

Figure P2 shows the output from this program. First, line 10 of the pro­
gram is listed on the screen, and then the memory image appears. Most of

5 PRINT : HO"E : LIST 10: PRINT : PRINT
10 RE" LOCATE THIS SENTENCE IN THE COMPUTER'S MEMORY.
15 RE"
20 FOR I = 2040 TO 2219
30 IF INT(I I 30) * 30 <> I THEN GOTO 60
40 PRINT
50 PRINT"";!;">";
60 PRINT CHRS<PEEK (I));
70 NEXT I
80 END

Figure P.l: PEEK -Sample Program

Pixel 159

Figure P.2: PEEK-Sample Output

the memory image is barely recognizable, since the computer has its own
way of storing a program in memory; however, it is easy to pick out the
REM line. You can see that the sentence in the REM line is stored in mem­
ory locations beginning at address 2070.

Notes and Comments ___________________ _

For a useful application of the PEEK function, see the entry
under ONERR.

Pixel (computer vocabulary) _______________ _

A pixel ("picture element") is one element of a graphics screen. The dis­
play of a pixel is controlled by reference to its address (that is, its vertical
and horizontal coordinates) on the screen. The low-resolution graphics
screen contains 1600 pixels (40 X 40); the high-resolution graphics screen
contains 44,800 pixels (280 X 160) with a text window, or 53,760 pixels
(280 X 192) without the text window. In this book, the term "pixel" is
reserved for the elements of the high-resolution graphics screen; the ele­
ments of the low-resolution screen are called "picture elements."

160 PLOT

PLOT (low-resolution graphics command; Applesoft and Integer
BASICs) ________________ _

In low-resolution graphics, the PLOT command places a single picture
element on the screen. PLOT takes the format:

PLOT H,V

where H and V, the horizontal and vertical address coordinates, respec­
tively, together form a valid low-resolution graphics address. (See GR.)
The result of PLOT is to place a picture element at (H,V) in the current
color setting. (See COLOR.)

If the screen is in the text display mode rather than low-resolution graph­
ics , the PLOT command places colored characters on the screen.

sampkProgram __________________ _

The Applesoft program shown in Figure P.3 demonstrates the use of
PLOT in coordination with the COLOR statement. The program fills the
low-resolution graphics screen with picture elements. The color of each ele­
ment is chosen randomly. Figure P.4 shows the results of the program on a
black-and-white screen .

The nested loops in lines 30 to 80 increment the address coordinates H
and V through all 1600 (40 X 40) low-resolution graphics addresses .
Before each PLOT command, a new color is chosen through use of the
RND function :

50 LET C = INT(RND(1) • 16)

This statement assigns to C a random integer from 0 to 15. Next, the color
is set and the picture element at (H ,V) is plotted :

55 COLOR= C
60 PLOT H,V

10 GR : HO"E : VTAB 22
20 PRINT "RANDOM LOW-RESOLUTION GRAPHICS PLOTTING"
30 FOR H = 0 TO 39
40 FOR V = 0 TO 39
50 LET C = lNT(RND (1) * 16)
55 COLOR= C
60 PLOT H,V
70 NEXT V
80 NEXT H

Figure P.3: PLOT-Sample Program

POKE 161

Figure P.4: PLOT-Sample Output

POKE (command word; Applesoft and Integer BASICs) ____ _

The POKE command writes a value into a specified memory location.
The POKE statement is written as follows :

POKE M, V

where M is a memory location from -65535 to + 65535, and V is the
value to be written into the memory location . V must be in the range:

0 <= v <= +255

Both M and V may be expressed as literal numeric values, variables, or
arithmetic expressions.

POKE can be used to store machine-code instructions in the computer's
memory. The instructions of the 6502 microprocessor (the central process­
ing unit of the Apple computer) are all coded in numbers from 0 to 255. It
can occasionally be useful to be able to write a sequence of machine code
instructions that will perform a certain task at some point during the run of
a BASIC program. Accomplishing this , however, requires a knowledge of
the 6502 instruction-set.

POKE is also useful for storing sets of data in specific locations of the

162 POKE

computer's memory. An example of such a data set is a shape table for use
by the DRAW command.

sampkProgram ____________________________________ __

The program shown in Figure P.5 provides a short demonstration of
POKE. The program is an expanded version of the one described under
the heading PEEK (Figure P.l). The main program (lines 5 to 90) simply
PEEKs at the program instructions themselves, as they are stored in the
computer's memory. When we first ran this part of the program (see
PEEK), we discovered that the sentence in the REM statement (line 10)
was stored in memory locations beginning at address 2070. Now, to dem­
onstrate how POKE is used to change the value stored in a memory location,
we will add a subroutine to our program to revise part of the REM line.

The subroutine is called at line 15, before the memory image is displayed
on the screen. The subroutine itself begins with two assignment state­
ments:

100 LET M = 2070
110 LET W$ = "REVISE"

The variable M contains the address of the starting point of the REM
comment in memory. The string variable W$ holds the characters that the
subroutine will POKE into the computer' s memory immediately after
location 2070.

The FOR loop at line 120 increments the control variable I from 1 to the
length, in characters, of the string W$:

120 FOR I = 1 TO LEN(W$)

5 PRINT : HO"E : LIST 10: PRINT : PRINT
10 RE" LOCATE THIS SENTENCE IN THE COMPUTER'S MEMORY.
15 GOSUB 100
20 FOR I = 2040 TO 2219
30 IF INT(I I 30) * 30 <> I THEN GOTO 60
40 PRINT
50 PRINT" ";I;">";
60 PRINT CHRS(PEEK (!));
70 NEXT I
80 PRINT PRINT : PRINT : LIST 10
90 END

100 LET M 2070
110 LET W$ = "REVISE"
120 FOR I = 1 TO LEN(W$)
130 POKE M + I, ASC(MID$ (W$,I,1))
140 NEXT I
150 RETURN

Figure P.5: POKE-Sample Program

POKE 163

The loop contains a single instruction, the POKE statement :

130 POKE M +I, ASC(MID$(W$,1 ,1)}

Starting with memory location 2071 (M + 1), each character of W$ is
accessed one at a time (via the MID$ function), converted to its decimal
equivalent (via the ASC function), and stored in the computer's memory.

The output from the program appears in Figure P.6 . The screen display
appears in three sections. Notice that lines 5 and 80 of the program both
contain the command :

LIST10

This causes the REM statement-line 10-to be displayed twice on the
screen, both before and after the revision is POKEd into memory. At the
top of the screen, then, you see the original version of the REM comment:
"LOCATE THIS SENTENCE ... "Then, after the POKE subroutine
has been performed, the memory image is displayed on the screen; the
characters " REVISE " have been POKEd into memory locations 2071
to 2076. Finally, line 10 appears again on the screen, in its revised form,

Figure P. 6: POKE-Sample Output

164 POKE

demonstrating the real effect of the POKE subroutine-an actual change
in the program listing itself.

This demonstration program is carefully designed to POKE information
only into memory locations where no harm can be done. POKE is not a
command to be used gratuitously. Before you revise memory locations for
whatever reason, find out exactly what parts of memory are currently
available for your use. Indiscriminate POKEs into memory can destroy the
program you are working on, or make it necessary to reboot the system.
(You can't, of course, do any permanent damage to your computer with the
POKE command, but you can cause temporary problems.)

See the entries under PEEK, CALL, and USR for more information.
Also, for a realistic example of the use of POKE , see the entry under
DRAW.

POP (command word; Applesoft and Integer BASICs) _____ _

POP is used in connection with GOSUB. The POP command may
appear inside a subroutine as a substitute for the RETURN command.
Instead of returning control of the program to the line following the original
subroutine call, POP makes the computer "forget" that the current
instructions constitute a subroutine. After a POP command, the computer
no longer expects a RETURN command to match up with the immedi­
ately preceding GOSUB command.

Do not use POP cavalierly; it can introduce chaos into an otherwise well­
structured program.

The Random Access File Revision Program under the heading WRITE
(Figure W.3) shows some examples of the POP command .

PQS (function; Applesoft BASIC) ___________ _

The POS function returns an integer from 0 to 39, representing the cur­
rent horizontal location of the cursor. The format of POS is:

POS(N)

The argument, N, may be any valid numeric value; it has no special signif­
icance in the function.

POSITION (DOS command; Applesoft and Integer BASICs) __

The POSITION command moves the .file pointer of a sequential text file
forward a specified number of fields. (The file pointer is a counter that the

POSITION 165

computer automatically establishes for every text file when it is opened; it
indicates the current field of the file, the field that would be accessed next by a
read or write sequence.) POSITION thus allows you to read or rewrite
selected fields in a sequential file stored on the current disk. To indicate the
number of fields you wish to jump forward from the current field, you use
the R parameter of the POSITION command; for example:

POSITION F, R5

IfF is a sequential text file that has already been opened, this statement will
move the file pointer five fields forward from the current field. Since POSI­
TION cancels the effect of any READ or WRITE statement that comes
before it, the POSITION command is always followed by a READ or
WRITE command.

If the computer encounters an empty field as it is trying to POSITION
the file pointer forward, the error message:

END OF DATA

is displayed on the screen, and the program execution is halted.
The POSITION command must be included in a program line, as part

of a PRINT statement, preceded by CONTROL-D. (See DOS Commands.)
POSITION may not be used as an immediate command.

sampkProgram ____________________________________ _

The Applesoft program shown in Figure P 7 uses the POSITION com­
mand to read selected fields of a file called EMPLOYEE FILE 1. This is
the file written by the Sequential File Creation Program described in the
entry under WRITE (Figure W.l). The file consists of a series of employee
records, each record taking up four fields of the file. The first field of each
record is a one-character status "tag" that indicates whether the employee
is hourly (H) or salaried (S). This program is designed to read the records
of only the hourly employees, and to display their names and salaries in
tabular form on the video screen.

Inside a FOR loop, the program reads the first field of each employee
record-the status tag-and stores it in the variable H$ (line 90). It then
tests the value of H$:

100 IF H$ < > "H" THEN GOSUB 300: GOTO 130

If the status tag is not "H"-if the employee is salaried, not hourly­
control is sent first to the subroutine at line 300 and then, upon return from
the subroutine, to the NEXT statement at the end of the FOR loop .

The subroutine at line 300 contains the POSITION command:

320 PRINT D$; "POSITION EMPLOYEE FILE 1, R3"

166 POSITION

This command tells the computer to move the file pointer forward by three
fields. In other words, if the tag indicates a salaried employee, the program
does not need to read the next three fields of the record (last name , first
name , and salary). Instead, it skips forward to the tag field of the next
employee record .

Following the POSITION command, the subroutine must give another
READ command before returning control to the main program:

330 PRINT D$; "READ EMPLOYEE FILE 1"

Looking again at the FOR loop in lines 80 to 130, we can see that if the
status tag is an '' H '', the program reads the remaining three fields of the
record and stores them in the arrays L$, F$, and S:

120 INPUT L$(1), F$(1), S(l)

After closing the file, the program uses these arrays in lines 150 to 210 to
produce a table of all the hourly employees. Figure P.8 shows the output
from the program.

10 RER ** SEQUENTIAL FILE DEMO
20 LET 0$ = CHR$(4): RER ** CONTROL-D
30 PRINT DS;"OPEN EMPLOYEE FILE 1"
40 PRINT DS;"READ EMPLOYEE FILE 1"
50 INPUT E
60 DIR T$(E),L$(E),F$(E),S(E)
70 LET I = 0
80 FOR J = 1 TO E
90 INPUT H$

100 If H$ <> "H" THEN GO SUB 300: GOTO 130
110 LET I = I + 1
120 INPUT L$(Il,F$(I),S(I)
130 NEXT J
140 PRINT D$;"CLOSE EMPLOYEE FILE 1"
150 HORE
160 PRINT "HOURLY EMPLOYEES"
170 PRINT " ---------
180 PRINT PRINT "NAME"; TAB(20l;"HOURLY IIAGE": PRINT
190 FOR J 1 TO I
200 PRINT L$(Jl;", ";F$(J); TAB<23l;S(J}
210 NEXT J
220 END
300 RER ** SKIP SALARIED
310 RER ** EMPLOYEES.
320 PRINT DS;"POSITION EMPLOYEE FILE 1,R3"
330 PRINT DS;"READ EMPLOYEE FILE 1"
340 RETURN

Figure P. 7: POSITION-Sample Program

PRINT 167

Figure P. 8: POSITION-Sample Output

PR# (DOS command; Applesoft and Integer BASICs) _____ _

The PR# command directs the computer to send subsequent output to a
specified I/0 slot number, rather than to the display screen; for example:

PR#5

identifies slot #5 as the destination of output. The command PR#O returns
output to the display screen .

PRINT (command word; Applesoft and Integer BASICs) ___ _

The PRINT command sends information to the video screen or other
output device. A single PRINT statement may contain many elements to
be displayed, including literal values (both numbers and strings); the val­
ues of numeric or string variables ; and even the results of arithmetic,
string, or logical expressions. The PRINT statement can be used in anum­
ber of ways, to position data at any location on the screen.

Figures P. 9 and P. l 0 show a series of eight Applesoft BASIC examples of
the PRINT command, and the screen display lines resulting from these

168 PRINT

commands. These examples illustrate the range of techniques available
with PRINT. The following notes discuss each example, from 1 to 8. If you
wish to try these examples on your computer, all ofthem may be entered as
immediate commands. (Notice that some of the examples contain more
than one command; Applesoft BASIC uses the colon character (" : ") as a
separator between multiple commands in a single line. Integer BASIC also
allows multi-statement lines, but not as immediate commands.)

1. Use of the semicolon. When a semicolon separates elements of a
PRINT command, the elements will be displayed on the screen
side-by-side with no space separating them, as shown in this
example . Furthermore, if a PRINT statement ends in a semico­
lon, any subsequent PRINT statement will begin its display
where the previous display left off. For example, consider the
following lines:

5 LET J$ = "JACK"
10 PRINT "HELLO";
20 PRINT J$

The semicolon at the end of line 10 prevents the screen display

Figure P. 9:PRINT -Examples

PRINT 169

from moving to a new line for a subsequent PRINT command.
Thus, the result of this sequence will be:

HELLO JACK

2. Use of the comma. A comma separating two elements of a PRINT
statement will cause a tab forward to a pre-set tab stop on the
current display line or to the beginning of the next display line,
depending on the position of the previous display element.
Applesoft BASIC has two such tab stops, at columns 17 and 33.
Thus, the first comma in this example places the X at the first
tab stop; the second comma places theY at the second tab stop;
and the third comma places the Z at the beginning of the next
display line. Integer BASIC has four pre-set tab stops across
the screen, each eight characters apart.

3. Use of the TAB junction. The argument of TAB indicates the
column number where the next display element will begin in
the current display line . TAB(36) in this example means that
the "H" of HELLO will appear in column 36, with the rest of
the characters following. (See the entry under TAB.)

Figure P. 10: PRINT -Examples (continued)

170 PRINT

4. Use of HTAB and VTAB. These two commands can be used to
position a display element at a specified address on the screen.
VTAB gives the row number, from 1 to 24, and HTAB gives
the column number, from 1 to 40. In this example, the display
is at row 8, column 34. (See the entries under HTAB and
VTAB.)

5. Printing the quotation-mark character. The only way to PRINT a
quotation mark is via a reference to the ASCII character code.
The ASCII code for the quotation mark is 34, so the following
statement assigns this character to the variable Q$:

LET Q$ = CHR$(34)

Then Q$ can be used in the following manner to display quota­
tion marks on the screen:

PRINT 0$; "APPLE II"; 0$

This statement results in the following output:

"APPLE II"

Printing reverse-video characters. The fifth PRINT example also
shows that the INVERSE command causes any subsequent
PRINT statement to display information in reverse video
(black characters against a white background). The NOR­
MAL command switches the computer back into normal video
display. (See the entries under INVERSE and NORMAL.)
Note that a FLASH command is also available in Applesoft
BASIC for creating flashing screen displays. (See FLASH.)

6. Use of variables. A variable name as an element of a PRINT
statement will result in a screen display of the value of that vari­
able. In this example the numeric variable N contains the value
18, which is displayed on the screen after a literal string value
(the phrase NUMBER=) . If you want spaces to separate one
element of a PRINT statement from another, you must supply
those spaces yourself in a string literal. For example, notice the
spaces on either side of the equal sign in the string, and their
resulting appearance in the screen display.

7. Arithmetic expressions, and scientific notation. If an arithmetic expres­
sion is included in a PRINT statement, the computer will first
evaluate that expression and then display the result on the
screen. In Applesoft BASIC, the resulting number will be dis­
played in scientific notation if it is less than . 01 or equal to 109

or greater. (See the entries under Arithmetic Expression, and Scien­
tific Notation.)

Program 171

8. Logical expression. A logical expression in a PRINT statement
results in 0 if the expression evaluates to false, or 1 if the expres­
sion evaluates to true. (See IF.)

One final note: The PRINT statement alone, with no display elements ,
will result in a blank line on the screen. For example:

10 PRINT "SOMETHING"
20 PRINT
30 PRINT "SOMETHING ELSE"

results in an empty line between the two output strings.
Almost every sample program in this book contains examples of PRINT.

Studying the illustrations in Figures P.9 and P.10 should help you under­
stand these examples .

Notes and Comments ___________________ _

PRINT also has a role in writing information to external text
files. See the entry under WRITE for details .

Program (computer vocabulary) ____________ _

A program is a sequence of instructions , written in a computer language,
designed to make the computer accomplish a specific task. The instruction
lines of a BASIC program are numbered; in both Applesoft
and Integer BASICs the lines of a program may contain either a single
instruction:

20 PRINT "CHECKBOOK BALANCE"

or several instructions, separated by colons:

30 PRINT : PRINT V, B, D : GOTO 120

The computer merely holds the instructions of a program in its memory
until you enter the RUN command, telling the computer to begin perform­
ing the program. (For this reason, writing instructions as numbered pro­
gram lines is sometimes referred to as "deferred-execution mode .")

A display of the lines of a program (either on the screen or on paper) is
called a program listing.

1 72 Programmer

Programmer (computer vocabulary) __________ _

The programmer is the person who writes a computer program , as
opposed to the user, the person who runs, and often interacts with, a pro­
gram. In the context of personal computers , the programmer and the user
are often the same person .

READ (command word; Applesoft BASIC) ________ _

The READ command reads the data items that are stored in a pro­
gram's DATA statements. READ accesses these data items sequentially,
and assigns each value it reads to a variable .

A single READ statement may read one or more data values . The com­
mand word READ is followed by a list of variable names; the statement
reads one value for each variable in the list. For example, consider the fol­
lowing statements:

10 READ V1
20 READ A, B, C, D
30 READ M$, N, 1%

These statements read one , four, and three values, respectively. Notice that
all of the values read by a statement need not be of the same type .

In effect, the computer treats the values stored in DATA statements as a
sequential file . A pointer to the current item in the file is automatically set up.
Initially this pointer is set to the first data value in the first DATA state­
ment. After a READ statement accesses the current value, the pointer is
"moved forward" to the next data value .

When you use the READ/DATA configuration, you must keep track of
the data type of each value that READ will access . If READ attempts to
assign a string value to a numeric variable, your program will be termi­
nated with a syntax-error message. Likewise, in any program the total
number of variables to be assigned values via READ statements must not
exceed the number of data items available in DATA statements. If you try
to READ more values than exist, your program will terminate with the fol­
lowing error message :

?OUT OF DATA ERROR IN 10

173

174 READ

where 10, in this instance, is the line number of the READ statement.
The following entries show programs that illustrate the READ and

DATA statements: DRAW, HPLOT, RND, STEP, and WRITE. (See the
entries under DATA and RESTORE for more information .)

READ (DOS command; Applesoft and Integer BASICs) ____ _

The READ command initiates the reading of a sequential or random
access text file stored on disk. READ may only be used as a program state­
ment, not as an immediate command. Like other DOS commands, READ
must be introduced to the system via a PRINT statement and a
CONTROL-D character. (See the entry under DOS Commands.)

In order to describe how the READ command works for the two differ­
ent kinds of files-sequential and random access-this entry is divided into
two sections.

READ-Sequentinl Fiks _______________ _

For a sequential file, the READ syntax is:

READF

where F represents any legal file name . An OPEN statement referring to
the same file name must precede the READ command.

Following the READ command, and as long as the file F remains open,
any INPUT statement in the BASIC program will read data from the disk
file rather than from the keyboard . Each INPUT statement can read one
field of data into a program variable , or several fields into several variables .
(Afield is a sequence of characters ending with a RETURN character or a
comma.) After an INPUT statement reads a given field, the computer
moves the file pointer forward by one field, so that the next INPUT state­
ment can read the next field.

In general, an INPUT statement containing more than one variable will
read a sequence of fields into variables . For example, the statement :

INPUT A, B, C, D

will read four fields of the file into the four variables , A, B, C, and D. After
this INPUT statement is performed, the file pointer will have been moved
forward by four fields, and the next INPUT statement will start reading
from the new current field.

READ 175

Sample Program-READ for Sequential Files ________ _

The Applesoft program shown in Figure R.l reads data from the file
called EMPLOYEE FILE 1, and displays a table of the data. EMPLOYEE
FILE 1 is created by the Sequential File Creation Program listed and
described under the heading WRITE (Figure W 1). The file contains a
series of employee records. The record for each employee takes up four
fields; the items in these fields are: (1) a status "tag"-H for hourly
employees, S for salaried employees; (2) the employee's last name; (3) the
employee's first name; (4) the employee's salary (hourly if the tag isH;
biweekly if the tag is S).

The very first field of EMPLOYEE FILE 1 (field 0) contains an integer
that represents the number of employee records currently stored in the file.

The READ program is divided into two functional parts . Lines 30 to 100
read the entire file. Lines 110 to 260 produce the table of employees under
two headings-salaried employees first, then hourly employees. The out­
put from the program appears in Figure R .2.

The file-reading process, in the first part of the program, is quick and
efficient. Using the variable D$, which contains the CONTROL-D

10 REN ** SEQUENTIAL FILE DEMO
20 LET D$ = CHR$(4): REN ** CONTROL-D
30 PRINT DS;"OPEN EMPLOYEE FILE 1"
40 PRINT DS;"READ EMPLOYEE FILE 1"
50 INPUT E
60 DIN T$(E),L$(E),F$(E),S(E)
70 FOR I = 1 TO E
80 INPUT T$ (IJ ,L$(IJ,F$(IJ,S (I)
90 NEXT I

100 PRINT DS; "CLOSE EMPLOYEE FILE 1"
110 HONE
120 PRINT "SALARIED EMPLOYEES"
130 PRINT "-------- ---------
140 PRINT : PRINT "NAME"; TAB (20l ;"BIWEEKLY WAGE": PRINT
150 FOR I = 1 TO E
160 IF T$(1) <> "S" 60TO 180
170 PRINT L$(1);", ";F$(1); TAB(23) S(I)
180 NEXT I
190 PRINT : PRINT

200 PRINT "HOURLY EMPLOYEES"
210 PRINT "------ ---------
220 PRINT : PRINT "NAME"; TAB(20l;"HOURLY WAGE": PRINT
230 FOR I = 1 TO E
240 IF T$ (I) <> "H" 60TO 260
250 PRINT L$(Il;", ";FS<Il; TAB (23l ; S(l)
260 NEXT I
270 END

Figure R.l: Sequential READ-Sample Program

176 READ

character, lines 30 and 40 open the file for reading:

30 PRINT D$; "OPEN EMPLOYEE FILE 1"
40 PRINT D$; "READ EMPLOYEE FILE 1"

The first INPUT statement performed after the file is open reads the value
stored in field 0 into the variable E :

50 INPUT E

Since E represents the number of employees, the set of four arrays that will
store the employee records can all be dimensioned with lengths of E :

60 DIM T$(E), L$(E), F$(E), S(E)

These arrays will store the " tags ," the last names, the first names, and the
salaries , respectively.

With these arrays established, the rest of the file can be easily read, four
fields at a time, by a FOR loop that goes through E iterations:

70 FOR I = 1 TO E
80 INPUT T$(1), L$(1), F$(1), S(l)
90 NEXT I

Figure R. 2: Sequential READ-Sample Output

READ 177

Finally, line 100 closes the file:

100 PRINT D$; "CLOSE EMPLOYEE FILE 1"

Reading a sequential file, then, is as simple as opening the file for reading
and performing an INPUT for each field of the file, from beginning to end.
The computer takes care of moving the file pointer forward after each file is
read.

~AD--Random-Ac~sFiks ____________________________ _

The READ syntax for random-access files includes an optional
parameter-the letter R followed by an integer. This parameter indicates
which record of the file will be read by the next INPUT statement or state­
ments. The records of a random-access file are numbered from 0 to N-1,
where N is the number of records in the file. Thus, the statement:

READ F, R5

positions the file pointer at the beginning of record 5 (actually the sixth
record in the file, since numbering begins with record 0) . Subsequent
INPUT statements will begin reading the fields of record 5.

Be careful to note the difference between a record and a j£eld in the context
of random-access files. A record is defined by its length. A random-access
file consists offixed-length records; every record in a given file contains the
same number of bytes (i .e., characters). This length is specified after the let­
ter Lin the OPEN command. (See the entry under OPEN.)

Afield, in any file, is a sequence of characters followed by a RETURN
character. Fields may be of any length; it is the ending RETURN character
that separates one field from the next, and determines the length
of a field . In a random-access file, a fixed-length record may consist of a
single field, or of several fields, each separated by RETURN characters .
Each field must be contained wholly within the length of one record; a field
may not begin in one record and end in the next.

The records of a random-access file may be read in any order­
sequential or otherwise. However, a READ statement is required before
each record . The purpose of the READ statement is to indicate precisely
which record is to be read next, even if the file is being read sequentially. In
other words, the READ statement instructs the computer where to set the
file pointer for the next INPUT statement.

Sampk Program--READ for Random-Access Fiks _______ _

The sample program shown in Figure R.3 reads the random access file
called EMPLOYEE FILE 2 and produces a table of its data. EMPLOYEE

178 READ

FILE 2 is created by the Random Access File Creation Program, listed and
described under the heading WRITE (Figure W.2). The file stores a
sequence of employee records . Associated with this file is a second, sequential
file called EMPLOYEE FILE 2 INDEX. As its name implies, the second
file is an index into the first file . You can read about these two files in detail,
and find out exactly why the second file is needed, under the heading
WRITE. For the purpose of understanding the present READ program,
you must know two things about these two files: First , the random-access
file stores, in its own record 0, the name of its index file. Second, the sequen­
tial index file stores, in its first field (field 0), the number of employee
records contained in the random-access file. As a result of this arrange­
ment, we must open two files just to find out how many employee records
there are. First we open EMPLOYEE FILE 2 and read its first record, to
find out the name of the index file. Then we open the index file and read its
first field to find out the number of employee records . In the context of the
current program, which actually reads the random-access file sequentially,
this may seem to be an unnecessarily complex file design. But the design is
justified in other circumstances-specifically, when we want to read
EMPLOYEE FILE 2 nonsequentially. (See WRITE.)

The record length of EMPLOYEE FILE 2 is 30 bytes. Each record after
the first contains an employee record consisting of four fields-the familiar
four items : a status "tag"; the employee's last name; the employee's first
name; and the salary. The technique of reading the file, then, is to perform
a READ command to position the file pointer at a specified record number,

10 RER ** RANDOM ACCESS FILE
15 RER ** DEMONSTRATION PROGRAM
20 LET DS = CHRS(4): RER CONTROL-I>
30 LET FILES = "EMPLOYEE FILE 2"
40 PRINT DS; "OPEN ";FILES;", L30"
50 PRINT I>S;"READ ";FILES;", RO"
60 INPUT IS
70 PRINT DS; "OPEN ";IS
80 PRINT DS;"READ ";IS
90 INPUT E

100 PRINT DS;"CLOSE ";IS
110 HORE
115 PRINT "STATUS"; TABC15l;"NAME"; TABC29l;"SALARY": PRINT
120 FOR I 1 TO E
130 PRINT DS;"READ ";FILE$;", R";I
140 INPUT T$,LS,FS,S
150 PRINT TABC3l;T$; TABC10);L$;", ";F$; TABC30l;S
155 PRINT
160 NEXT I
170 PRINT DS;"CLOSE ";FILES

Figure R.3: Random Access READ-Sample Program

READ 179

and then to INPUT the four fields of the record sequentially. In this sense,
you can think of each record of a random-access file as a short sequen­
tial file.

The program begins, in Jines 20 and 30, by assigning the CONTROL­
D character to the variable D$, and the name of the random access file to
the variable FILE$. This is merely a convenience that will end up simplify­
ing the DOS commands in the program. The next step is to open the file;
the OPEN statement's L parameter indicates the record length of the file:

40 PRINT 0$; "OPEN"; FILE$;", L30"

Next, the program reads the first record of the file to find out the name of
the index file. The R parameter of the READ command specifies which
record is to be read:

50 PRINT 0$; "READ"; FILE$;", RO"
60 INPUT 1$

After this INPUT statement, the variable I$ contains the name of the index
file. Remember that the index is a sequential file; the only information this
program needs from it is the first field, the number of employee records.
The following sequence opens the file and reads this number into E, and
then closes the file again:

70 PRINT 0$; "OPEN"; 1$
80 PRINT 0$; "READ"; 1$
90 INPUT E

1 00 PRINT 0$; "CLOSE"; 1$

Now the program has everything it needs to read EMPLOYEE FILE 2
sequentially. This program displays a line of output on the screen each time
it reads a record. Line 110 clears the screen and line 115 prints the table
heading. The FOR loop from lines 120 to 160 reads each record and prints
its four field items on the screen. Remember that a READ statement is
required for each record; for this reason, READ is inside the FOR loop,
but before the INPUT statement. The control variable I specifies the
record number:

120 FOR I = 1 TO E
130 PRINT 0$; "READ"; FILE$;", R"; I
140 INPUT T$, L$, F$, S

Line 150 then prints the four values on the screen. When all E records have
been read, line 170 closes the file.

Figure R .4 shows the output from the program.

180 READ

STATUS HAME SALARY

s SHEPARD, CLARA 3000

s IHEZ, ROBERT 2600

H SCULLY, LEE 21 . 29

s ALSTON, LOIS 19(1(1

H G I BSOt·t , DOt-tALD 18 . 75

H DUFF, JOANNE 8 . 95

H TIBBS, DAtHEL 7 . 25

H RACHEL, BEt·t ~ :c ... ; ·-·
s l.JINTERS, LEt·tA 85f1

H BENNET, ISABEL r 1:"

t:• . ·-·

].

FigureR. 4: Random Access READ-Sample Output

Notes and Comments ___________________ _

The READ command has an additional optional parameter
for use with both kinds of files-the letter B, followed by an
integer. The B parameter positions the file pointer at a speci­
fied byte of the file. For a sequential file the first byte is num­
bered zero; the following command thus positions the pointer
at byte 5 (the sixth byte of the file):

READ F, 85

In a random-access file, the B parameter positions the pointer
at a specified byte in the current record. For example, this
statement prepares the program to access byte 5 of record 2:

READ F, R2, 85

In Applesoft BASIC, if you wish to access single characters of a
file rather than whole fields at a time, you can use the GET
statement in place of the INPUT statement.

REM 181

RECALL (cassette command; Applesoft BASIC) _____ _

The RECALL command retrieves (that is, reads into a BASIC pro­
gram) numeric array values that have been saved on a cassette tape via the
STORE command. The syntax of RECALL is:

RECALL A

where A is the name of an array. The name need not be the same as the
array that was originally STOREd, but the lengths of the arrays should
match.

You must position the cassette tape properly and turn the tape recorder
on in PLAY mode. The RECALL command waits for the cassette to reach
the beginning of the stored data; the computer beeps once when the data
begins and again when the data retrieval is complete . (See the entry under
STORE.)

REM (command word; Applesoft and Integer BASICs) _____ _

The REM statement (for "remark") allows you to document your pro­
gram with short but permanent notes . After the keyword REM, you may
write any kind of comment or information that you think will help you
remember and understand what your program does. For example :

10 REM THIS PROGRAM HELPS YOU BALANCE YOUR
CHECKBOOK.

REM statements result in no action; the computer simply ignores them
during a program run . REM lines may appear anywhere in the program
listing, not just at the beginning.

Unfortunately, with limited memory, you have to be careful about the
length and number of REM lines in any one program. (Even though they
produce no action, they still take up memory space. See the sample pro­
grams under PEEK and POKE, where a REM line is first located in mem­
ory, then revised .) Particularly in long programs, you have to compromise
between the extra clarity supplied by REM commands and the need to con­
serve memory space.

For some examples of the use of REM , see the sample program under
the heading GOSUB (Figure G .4).

182 RENAME

RENAME (DOS command; Applesoft and Integer BASICs) __ _

The RENAME command changes the directory name of a file on the
current disk . The syntax of the command is:

RENAME F1, F2

where Fl and F2 represent legal file names. RENAME changes the name
of file Fl to F2, without otherwise changing the file in any way. (To prevent
duplication of file names on the same disk, make sure that F2 is not already
being used as a file name .)

RENAME does not work on files that are locked. (See LOCK.) The
RENAME command also allows the three optional parameters S, D, and
V. (See OPEN.)

RESTORE (command word; Applesoft BASIC) _____ _

The RESTORE command is used in connection with the READ and
DATA statements. (Note that this is not the DOS command READ , but
rather the Applesoft BASIC command READ.) The DATA statement
allows you to store a "file" of data elements inside your Applesoft pro­
gram . The READ statement accesses these elements sequentially and
assigns them to variables. The computer automatically sets up a pointer to
identify the current do.ta item in the DATA statement "file ." Initially, this
pointer is set at the first value in the first DATA statement. Each time
READ accesses a value, the pointer is incremented forward to the next data
element.

Sometimes it is convenient to be able to reset this pointer back to the
beginning of the " file. " The RESTORE command performs this task .
After RESTORE is performed, subsequent READ statements will begin
reading values starting from the first DATA statement in the program.

Sample Program __________________ _

An example of the use of RESTORE appears in the Random Access File
Creation Program under the heading WRITE (Figure W.2). This program
creates two data files on disk-a random-access file, and a sequential file
that functions as an index into the random-access file. The program reads
data elements for these two disk files from the same sequence of DATA
statements (lines 150 to 240). In order to read the data twice, the
RESTORE statement is required, to reset the pointer to the first data ele­
ment. This resetting is done just before the creation of the index file, in the
subroutine beginning at line 300:

310 RESTORE

RND 183

RESUME (command word; Applesoft BASIC) ______ _

RESUME is used with the ONERR statement. ONERR sends control
of a program to an error-handling routine whenever an error occurs that
would otherwise halt execution of the program. The RESUME command
returns control of the program to the line in which the error originally
occurred. (See ONERR.)

RETURN (command word; Applesoft and Integer BASICs) __ _

The RETURN statement marks the end of a subroutine. RETURN
tells the computer to send control of the program back to the command
immediately following the GOSUB statement that originally called the
subroutine. For a detailed description and examples, see the entry under
GOSUB. (See also POP)

RIGHT$ (string function; Applesoft BASIC) _______ _

The RIGHT$ function allows you to access the last n characters of a
string. The function takes the form:

RIGHT$(8$, N)

where S$ may be expressed as a literal string, a string variable, or a string
expression (a concatenation), and N represents an integer. The function
returns the last N characters of S$; for example, the following statement
will display the word SOFT on the screen:

PRINT RIGHT$("APPLESOFT", 4)

Notes and Comments ___________________ _

See also LEFT$ and MID$, two other string functions that
allow you to access a portion of a string.

RND (function; Applesoft and Integer BASICs) _______ _

Each call to the RND function returns a random number. Actually, the
numbers that RND generates are not truly random; they are the result of a
complex calculation the computer performs. However, they are random­
seeming enough for most programs.

The RND function always takes an argument, but this argument serves
two completely different purposes in the two versions of BASIC. In Integer

184 RND

BASIC the argument ofRND specifies the range in which the resulting ran­
dom number will fall. The format of RND in Integer BASIC is:

AND (N)

where N may be a negative or positive integer, with the following restric­
tions:

0< N < = 32767

or:

- 32767 < = N < 0

(Notice that N may not be zero .) If N is positive, RND will return a ran­
dom number, R , in the following range :

0<= R< N

If N is negative , R will be in the range:

N<R<=O

So, for example , if you write the expression:

RND(500)

in Integer BASIC , you can expect to receive a random integer between 0
and 499, inclusive.

In Applesoft BASIC, the RND function always returns a random num­
ber, R, in the range :

0<= R< 1

The argument of the RND function in Applesoft BASIC controls the
" seed" of the RND function, thus determining the starting point of a series
of random numbers produced by RND. The format of RND in Applesoft
BASIC is:

RND(S)

where S is any real number. The value of S determines which of three
modes the RND function will work in:

1. If S is any positive number, successive calls to RND will pro­
duce an unpredictable series of random numbers. This is the
most common way of using RND .

2. IfS equals zero , RND will repeat the previous random number
generated. This mode can be useful when you want to use the
same random number several times in a program.

3. For a given negative value of S, RND always returns the same

RND 185

"random" number. Furthermore , you can produce two identi­
cal series of random numbers if you begin each series by calling
RND with the same negative argument. For example, the fol­
lowing program will always produce the same series of random
numbers, no matter how often you run it :

10 PRINT RND(-1)
20 FOR I = 1 TO 5
30 PRINT RND(1)
40 NEXT I

The call to RND in line 10, with a negative argument, deter­
mines a set and predictable starting point for the series of num­
bers. As a result, the call to RND inside the FOR loop (line 30;
a positive argument) always produces the same five random
numbers. Now, however, if you delete line 10 from the pro­
gram, the starting point of the series will be unpredictable , and
the FOR loop will always produce a new and different set of
random numbers each time it is performed. (Type these lines
into your computer and perform this experiment for yourself.)

In some programming situations, you may have reasons for
wanting the computer to produce the same set of random num­
bers time after time. For example, you might wish to re­
examine the play of a game that depends on random numbers,
or to duplicate a certain scenario of a simulation model. Both of
these examples might involve running a program several times
and being certain that the computer will generate the same
sequence of random numbers for each run. You can accom­
plish this by including a line in your program similar to line 10
above . Then, when you are ready to start running the program
on different unpredictable series of random numbers, you can
simply delete line 10.

In Applesoft BASIC, the range of the numbers returned by RND­
between 0 and l-is not very convenient for many applications. The fol­
lowing formula is commonly used to convert the range; it supplies random
integers, R, between L (for "low") and H (for "high"), inclusive :

LET R = INT((H- L + 1) * RND(1)) + L

For random integers, R, in the range from 1 to H, inclusive, the formula
reduces to :

LET R = INT(H • RND(1)) + 1

In this formula, the expression:

H • RND(1)

186 RND

produces a number between 0 and H. Taking the integral value of this
expression:

INT(H • RND(1))

yields an integer from 0 to H - 1. Finally, adding a value of 1 gives the
desired range: 1 to H.

Sample Program __________________ _

The Applesoft program in Figure R .5 shows several of the algorithms
required for a computerized card game-in particular, the algorithm for
shuffling the cards , which uses the RND function. The output from this pro­
gram is simply a list of the 52 cards in their shuffled order. Figure R .6
shows the first of the four screens required to display all the cards.

The shuffling program stores the deck in array D . Line 10 defines the
array:

10 DIM 0(52)

Each card is represented by an integer from 1 to 52 . It is these integers that
the program "shuffles," by rearranging them in a random order in the
array D. Once that process is complete, the program uses other algorithms
to translate each integer into the name of a card. We'll see how all this done
as we examine the program's subroutines; here is a brief summary of those
routines:

1. Create the deck (subroutine at line 450) . Initializes the array D .

2. Shuffle the cards (subroutine at line 500) . Rearranges the order of
the values in D .

3. Initialize the card names (subroutine at line 300). Creates two
string arrays : S$ for the names of the suits, and R$ for the
names of the ranks.

4. Determine the name of each card (subroutine at line 200). Translates
each integer into a suit name (from S$) and a rank name (from
R$).

To create the deck, the subroutine at line 450 simply assigns the integers
1 to 52 , in order, to the 52 elements ofD:

460 FOR I = 1 TO 52
470 LET D(l) = I
480 NEXT I

5 RE" ** CARD SHUFFLER
10 DHI D(52)
20 GOSUB 450: RE" CREATE DECK
30 GOSUB 300: RE" SUITS, RANKS
40 GOSUB 500: RE" SHUFFLE #1
45 GOSUB 500: RE" SHUFFLE #2
48 RE" ** DISPLAY CARDS
SO FOR J = 1 TO 4

RND 187

60 HO"E : PRINT TAB<8l;"SHUFFLED DECK OF 52 CARDS"
70 LET H (J - 1) * 13
80 PRINT PRINT TAB (14) ;"CARD S ";H + 1;" TO ";H + 13
90 PRINT PRINT

100 FOR K 1 TO 1 3
110 LET I H + K: GOSUB 200
120 NEXT K
130 GOSUB 160
140 NEXT
150 END
160 RE" ** CONTINUE
165 PRINT PRINT
170 INPUT "CONTINUE? ";A$
180 HO"E
190 RETURN
200 RE" ** PRINT THE NAME
205 RE" ** OF A CARD.
210 LET D(I)
220 LET S INT< <C- 1) I 13) + 1
230 LET R C - 13 * (S - 1)
240 PRINT " ";I;". , TAB (12l;
250 PRINT "THE ";RS(R);" OF ";S$(5);"."
260 RETURN
300 RE" ** SUIT AND RANK NAMES
310 DI" S$(4),R$(13)
320 FOR I = 1 TO 13
330 READ RS(I)
340 NEXT I
350 FOR I = 1 TO 4
360 READ S$(I)
370 NEXT I
380 DATA ACE,TWO,THREE,FOUR
390 DATA FIVE,SIX,SEVEN,EIGHT
400 DATA NINE,TEN,JACK,QUEEN
410 DATA KING,HEARTS,DIAMONDS
420 DATA CLUBS,SPADES
430 RETURN
450 RE" ** CREATE THE DECK
460 FOR I = 1 TO 52
470 LET D<Il = I
480 NEXT I
490 RETURN
500 RE" ** SHUFFLE THE DECK
510 FOR I 1 TO 52
520 LET R INT(RND(1) * 52) + 1
530 LET H D(R)

Figure R . 5: RND-Sample Program

188 RND

540 LET D(R) 0(1)
550 LET D(I) H
560 NEXT I
570 RETURN

Figure R.5: RND-Sample Program (continued)

Figure R . 6: RND-Sample Output, first screen.

To rearrange these 52 integers , the shuffling subroutine chooses, at ran­
dom , a new position in D for each card of the deck. This operation is per­
formed inside a FOR loop:

51 0 FOR I = 1 TO 52

The first line inside the loop shows an example of the RND function in
action:

520 LET R = INT(RND(1) • 52) + 1

This line chooses a random number from 1 to 52 and stores it in the vari­
able R. The next three lines swap the cards in the deck positions repre­
sented by D(I) and D(R). (This swapping operation is reminiscent of a

RND 189

sorting algorithm. See the entry under Algon.thm.) First, the value ofD(R) is
saved in a holding variable, H:

530 LET H = D(R)

then the randomly chosen element D(R) receives the value of D(I):

540 LET D(R) = D(l)

and finally, D(I) receives the original value ofD(R), now stored in H:

550 LET D(l) = H

As the FOR loop increments the control variable I from 1 to 52, each card
in the deck is swapped with a randomly chosen card elsewhere in the deck.
By the time I reaches 52, the deck is completely shuffled.

The subroutine at line 300 determines the original order of the deck as it
assigns the card names to the arrays S$ and R$. These arrays are initialized
via two READ statements (lines 330 and 360), which read the data stored
in lines 380 to 420. The elements of R$-from R$(1) to R$(13)-store the
rank names: ACE, TWO, THREE ... QUEEN, KING. The elements of
S$-from S$(1) to S$(4)-store the suit names: HEARTS, DIAMONDS,
CLUBS, and SPADES. As a result, the suits are arranged as follows :

cards 1 to 13: hearts

cards 14 to 26: diamonds

cards 27 to 39: clubs

cards 40 to 52: spades

Within each suit the first card is the ace, the second through tenth cards are
the number cards, and the last three are the face cards.

The subroutine at line 200 has the somewhat complex job of determining
the name of each card, given a card number from 1 to 52. To do so, it must
reduce each card number, C, into two numbers:

S = the suit number (from 1 to 4)

R = the rank number (from 1 to 13)

The relationship among these numbers is expressed in the formula:

C = 13 • (S- 1) + R

The arithmetic required to find S and R for each card is performed in lines
220 and 230. Once these values have been determined, they can be used as
indexes into the string arrays S$ and R$, to display the name of a card on
the screen:

250 PRINT "THE"; R$(R) ; "OF"; S$(S); "."

The main program section shuffles the deck twice (lines 40 and 45), and
then arranges to display the entire shuffled deck in a sequence of four

190 RND

screens, 13 cards to a screen (lines 60 to 140). The subroutine at line 200 is
called once for each card.

ROT (high-resolution graphics command; Applesoft BASIC) ___ _

ROT determines the angle of rotation of a high-resolution graphics
shape drawn by the DRAW or XDRAW command. The ROT statement
takes the form:

ROT= R

where R is a value from 0 to 255. Values ofO and multiples of64 (64, 128,
192) produce no rotation-the shape is drawn exactly as defined in the
shape table. (See DRAW.) Other values of R rotate the shape clockwise
around the starting point of the shape definition. For values of R less than 64,
you can calculate the angle of rotation using the following formula:

angle = (R I 64) x 360°

So, in general, ROT= 8 produces a rotation of 45°; ROT= 16, 90°;
ROT= 32, 180°; etc. Note, however, that when a shape is displayed in a
very small scale (see SCALE), the number of possible angles of rotation
may be limited.

Values ofR greater than 64 are reduced to the valueR modulus 64 (that is,
the integer remainder from the division ofR by 64).

SampkProgram _____________________________________ __

The graphics demonstration program shown under the heading DRAW
(Figure D. 3) allows you to vary the angle of rotation of the shapes the pro­
gram produces. The program is menu-driven; option 3 on the menu lets
you change the ROT value.

The subroutine at line 750 controls the rotation of the shape. The sub­
routine reads an input value for the rotation amount into the variable R; it
verifies the range of R before moving on:

760 INPUT "ROTATION (0 TO 255): "; R
770 IF R < 0 OR R > 255 GOTO 760

Finally, it uses R in the ROT statement:

780 ROT= R

Subsequent DRAW or XDRAW commands display their shapes at an
angle defined by this ROT setting.

Figure R. 7 shows some examples of shape rotation. You can read the
rotation amount of the most recently drawn shape (i.e., the value of R for

RUN 191

FigureR. 7: Illustration of ROT

this shape) in the text window below the graphics portion of the screen. The
center shape illustrates ROT= 0. The other five shapes represent the fol­
lowing rotations (clockwise from the upside-down shape):

ROT= 32
ROT= 48
ROT =56
ROT= 8
ROT = 16

The scale of all these shape displays is 3.

RUN (command word and DOS command; Applesoft and Integer
BASICs) _________________ _

RUN instructs the computer to begin performing the current program
in memory. If you enter the command simply as:

RUN

192 RUN

the performance will begin with the first line of the program. If you enter
the command as:

RUN N

where N is a literal numeric value representing a line number, the perform­
ance will begin at lineN. In both cases , the computer first clears out of its
memory the values of any variables left over from previous program runs,
and then begins executing the program.

RUN may be used either as an immediate command or as a program
statement in Applesoft BASIC. Integer BASIC only allows RUN as an
immediate command .

As a DOS command, RUN takes the form :

RUNF

where F is any legal program file name. As a result of this command, the
file F is loaded from the current disk, and the program is run. This com­
mand also allows the parameters S, D, and V, which are described under
the heading OPEN.

SAVE (DOS command; Applesoft and Integer BASICs) ____ _

The SAVE command creates or overwrites a BASIC program file on the
current disk. The command's syntax is:

SAVEF

where F represents any legal file name. As a result of this command, the
computer saves the current program in active memory onto the disk and gives the
program the directory name F. If no program file named F already exists on
the disk, a new file F is created. If a program file named F does already
exist, the contents of that file are replaced by the new program being saved.

If the file F already exists and is locked, the SAVE command does not
overwrite the file. (See LOCK.)

The SAVE syntax also allows the three optional parameters S, D, and V
(See OPEN.)

Notes and Comments __________________ _

The SAVE command is also used to store a program onto a cas­
sette tape for a system that uses a cassette recorder for external
storage.

SCALE (high-resolution graphics command; Applesoft BASIC) __

SCALE determines the size of a graphics shape that a DRAW or
XDRAW command will display on the screen. The SCALE statement
takes the form:

SCALE=S

193

194 SCALE

where Sis a value from 0 to 255. The statement:

SCALE= 1

sets the scale at its smallest; DRAW or XDRAW will produce the shape in
the size in which it was defined-i.e., one "pixel" for each direction or
plotting specification of the original shape definition. Otherwise, if S is
greater than 1, the shape will be drawn with S pixels for each plotting speci­
fication of the shape definition.

Sample Program ___________________ _

The graphics demonstration program under the heading DRAW (Fig­
ure D .3) allows you to change the scale of the graphics shape, via menu
option 2. The subroutine at line 700 controls the scale. It reads an input
value for the scale, stores the value in the variable S, validates the value,
and finally executes the SCALE statement:

710 INPUT "SCALE (1 TO 255) : ";S
715 IF S < 1 OR S > 255 GOTO 71 0
720 SCALE= S

Figure S.l: Illustration of SCALE

SCRN 195

Figure S.1 shows several graphics shapes produced by this program,
drawn at SCALE settings of 1, 2, 4, 10, and 15. The SCALE value for the
most recently drawn shape is displayed in the text window below the graph­
ics portion of the screen.

Scientific Notation (computer vocabulary) _______ _

Scientific notation is a system of writing numbers in two distinct compo­
nents : the mantissa (the significant digits of the number), and the exponent
(the power of 10 that indicates the location of the decimal point in the num­
ber). Your computer uses scientific notation to display very large and very
small numbers on the screen. For example:

2.34 E + 14

In this number, the value located before the letter E is the mantissa, and the
value located after E is the exponent of 10 . You can read this number as
"2. 34 times 10 to the 14th power":

2.34 X 100,000,000,000,000

or:

234' 000 '000 '000 '000

A negative exponent translates into a fractional value. For example:

8.7E-10

means:

. 0000000008 7

SC RN (low-resolution graphics function; Apple soft and Integer
BASICs) ________________ _

The SCRN function takes as its argument a low-resolution graphics
address, and returns the current color of the picture element at that
address . SCRN takes the form:

SCAN (H,V)

where (H,V) represents a valid low-resolution graphics address. SCRN
returns an integer from 0 to 15, representing one of the 16 low-resolution
colors. (See the entries under GRand COLOR.)

SUmpkProgram __________________ __

To see the SCRN function in action, run the short program listed under
the heading PLOT. That program fills the low-resolution screen with

196 SCRN

picture elements in randomly chosen colors. When the program run is
complete, the cursor will be positioned at the lower-left corner of the text
window . If you then type immediate-mode commands, such as:

PRINT SCRN(25, 1 0)

the color of the address you indicate-(25, 1 0) in this instance-will be dis­
played in the text window. Try this command several times with different
addresses; each time the number returned will be between 0 and 15.

Notes and Comments __________________ _

The SCRN function can be useful in animated graphics games
programs. Often in such programs, events on the screen are
determined interactively-by the reactions of the person play­
ing the game-or randomly. SCRN can help the program keep
track ofthe game's action, by supplying easy access to the con­
tents of any given screen address.

SGN (function; Applesoft and Integer BASICs) ________ _

The SGN function identifies the sign of any number. SGN takes the
form:

SGN(N)

where N is a literal numeric value, a numeric variable, or an arithmetic
expression. It returns one of the following values:

-1 ifN < 0

0 ifN = 0

+ 1 ifN > 0

sampkPro~am __________________________________ _

The SGN function can be useful whenever a program defines different
courses of action, the choice among which depends on the sign of a number.
The Applesoft BASIC program shown in Figure S. 2 illustrates the use of
SGN in such a situation. Three subroutines are set aside at lines 100, 200,
and 300, for the cases N < 0, N = 0, and N > 0, respectively. The subrou­
tine call is in line 60 :

60 ON SGN(N) + 2 GOSUB 100,200,300

Since SGN(N) results in an integer from - 1 to + 1, the expression :

SGN(N) + 2

10 REN ** ACTION DEPENDS ON
20 REN ** THE SIGN OF N.
30 REN
40 INPUT "TYPE ANY NUMBER: "; N
45 PRINT
50 PRINT " ===> THE NUMBER IS ";
60 ON SGN(Nl + 2 GOSUB 100,200,300
70 PRINT : PRINT
80 GOTO 40

100 PRINT "NEGATIVE."
110 RETURN
200 PRINT "ZERO."
210 RETURN
300 PRINT "POSITIVE."
310 RETURN

Figure S. 2: SGN-Sample Program

SHLOAD 197

gives an integer from 1 to 3, resulting in a call to one of the three subrou·
tines listed after the word GOSUB. (See the entries under GOSUB and
ON.)

In Integer BASIC, we could write line 60 as a computed GOSUB:

60 GOSUB (SGN(N) + 2) • 100

Depending on the value of N, the expression:

(SGN(N) + 2) • 100

yields the starting line of one of the three subroutines-tOO, 200, or 300.
Without the benefit of the SGN function, the program would require

three lines to decide which subroutine to call:

55 IF N < 0 THEN GOSUB 100
60 IF N = 0 THEN GOSUB 200
65 IF N > 0 THEN GOSUB 300

Figure S.3 shows a sample run of this program.

SHLOAD (cassette command; Applesoft BASIC) ______ _

The SHLOAD command loads a high-resolution graphics shape table
from cassette tape into the computer's active memory. (See the entry under
DRAW for information on shape tables.) SHLOAD also loads the pointer
to the beginning address of the shape table, required for the DRAW com·
mand to function properly. SHLOAD takes no parameters.

Unfortunately, Applesoft BASIC has no equivalent command for storing

198 SHLOAD

Figure S.3: SGN-Sample Output

shape tables on cassette . To do that, you must use theW command of the
Apple Monitor program. An alternative is first to record the shape table in
an array, as a series of decimal values, then to use the STORE and
RECALL commands to save the array on a cassette, and finally to retrieve
it again . Once you have loaded such an array into a program , you can use
POKE to place the values of the table in the computer's memory.

SIN (function; Applesoft BASIC) ____________ _

Given any angle (negative or positive) expressed in radians , the SIN
function returns the sine of the angle.

Sample Program ___________________ _

The program shown in Figure S.4 displays a series of sine values for
arguments ranging from - 2n to + 2n . The output from this program
appears in Figure S. 5 .

SIN 199

10 DEF FN R (X) = INTC100 * X + • 5) I 100
1 5 HO"E
20 PRINT TAB(12); "THE SINE FUNCTION"
25 PRINT
30 PRINT TAB(11);"ARGUMENT SIN"
35 PRINT TAB(11);"--------
37 PRINT
40 FOR I -2 TO 2 STEP 1 I 4
so PRINT TAB (11) ; "PI*"; I; TABC27>; FN R(SIN (I * 3. 1 41 6))
60 NEXT I

Figure S.4: SIN-Sample Program

THE SIHE FUHCTIOH

ARGUMENT SIH

PI:t -2) e
Pl:t: -1 . 75) . 71
Pll -1 . 5) 1
Pll 1 ~. o::-)

- . ~.J ' . 71
Pll -1) e
Pll - . 75) - . 71
Pll - . 5) -1
Pll - . 25) -.71
PI:t: 0) e
PI:t: . 25) . 71
Pll . 5) 1
Pll . 75) .71
PU 1) 0
PU 1. 25) - . 71
PU 1 . 5) -1
PU 1 . 75) -.71
PU 2) 0

].

FigureS. 5: SIN-Sample Output

Notes and Comments ___________________ _

Figure S.6 shows a graph of the sine function, from - 2rr to
+ 2rr.

See the entries under COS and TAN for more information
about the trigonometric functions.

200 SIN

FigureS. 6: SIN-Plotted Graph

SPC (screen display function; Applesoft BASIC) _______ _

Used in a PRINT statement, the SPC function puts a specified number
of space characters in the line to be printed. The format of SPC is:

SPC(N)

where N is the number of spaces. N may be expressed as a literal numeric
value, a numeric variable, or an arithmetic expression.

The following PRINT instruction shows an example of SPC:

PRINT " X"; SPC(15); "Y"

In the output line, there will be 15 spaces between X andY.

SPEED (command word; Applesoft BASIC) _______ _

The SPEED command slows the rate at which characters are sent to the
display screen or printer. The syntax of the command is:

SPEED= N

where N is a value from 0 to 255. When you boot the system, the character

STEP 201

rate is at its fastest: SPEED = 255. To slow the rate down, enter the
SPEED command with a number less than 255 .

SPEED may be used as either an immediate command or a program
statement.

SQR (function; Applesoft BASIC) ____________ _

The SQR function supplies the square root of any nonnegative
argument.

sampkProgram __________________ ___

FigureS . 7 shows a program that uses the Pythagorean theorem to calcu­
late the length of the hypotenuse, C, of a right triangle given the lengths of
the two sides, represented by A and B. Program line 90 finds C using the
SQR function :

90 LET C = SQR(A•A + B•B)

A sample of this program's screen output appears in Figure S.8 on
page 202.

STEP (command word; Applesoft and Integer BASICs) _____ _

The STEP clause in a FOR statement indicates how much the control
variable will be incremented (or decremented) for each iteration of the
loop. STEP is optional in a FOR statement; without it, the default incre­
mentation value is 1.

HOlliE
10 PRINT TAB(9);"THE PYTHAGOREAN THEOREM"
20 PRINT : PRINT
30 PRINT TAB(15l;" 2 2 2"
40 PRINT TAB(15); "A + B = C"
50 PRINT PRINT : PRINT
60 INPUT " SIDE A:"; A
70 INPUT " SIDE B:";B
80 PRINT PRINT
90 LET c SQR(A * A + B * 8)

100 PRINT " HYPOTENUSE II; c
120 PRINT PRINT : PRINT
130 INPUT "CONTINUE? ";AS
140 GOTO 5

FigureS. 7: SQR-Sample Program

202 STEP

FigureS. 8: SQR- Sample Output

For example, the following FOR statement introduces a loop that has the
control variable 1:

FOR I= OT025

In this case the loop will go through 26 iterations, with I taking the values 0,
1, 2, 3, ... , 25 . Adding a STEP clause to this statement changes both the
series of values that I will take, and the number of iterations that the loop
will go through:

FOR I = 0 TO 25 STEP 5

Now the loop will repeat only 6 times, with the variable I taking the values
0, 5, 10 , 0 0 0 ' 25.

The step clause can also specify 11£gative, and in Applesoft BASIC frac­
tional, incrementation amounts. For example, the following FOR state­
ment defines a decrementing control variable:

FOR I = 20 TO 0 STEP - 2

Notice first that the number before TO is greater than the number after
TO; if not for the STEP clause, this FOR loop would perform only a single
iteration. STEP, however, defines a decrementation amount of -2. The

STEP 203

control variable will thus take values from 20 down to 0; i.e., 20 , 18 , 16,
14, . . . , 0.

Finally, in the following Applesoft loop the range of the control variable I
will be from - 1 to + 1 in increments of . 1:

FOR I = - 1 TO 1 STEP .1

The variable I will take the values -1 , - .9 , - .8, ... , 0 , .1 , .2, ... , 1.

Sample Program ___________________ _

Figure S.9 offers a program , just for fun, in which one of the computer's
bugs comes out to demonstrate the STEP clause. It is a simple example of a
moving graphics program . When you run it, you'll first see a staircase
appear on the screen. Then, out of nowhere , a bug starts climbing up and
down the stairs. The bug beeps each time he (she?) takes a step. Figure S.10

5 HGR2 : HCOLOR= 7: GOSUB 200
7 SCALE= 3: ROT= 0

10 FOR V = 40 TO 192 STEP 38
20 HPLOT V,V - 40 TO V,V - 2
30 HPLOT V,V - 2 TO V + 38,V - 2
40 NEXT V
45
50
55
60
62
65
70
75
80
90

100
110
200
210
220
230
240
250
260
270
280
290
300
310
320
400
410
420

LET F = 47: LET L = 199: LET S = 38
FOR I = F TO L STEP S

HCOLOR= 7
DRAW 1 AT I,I- 12
PRINT CHR$(7)
60SUB 400
HCOLOR= 0
DRAW 1 AT I,I - 12

NEXT I
LET H = F: LET F = L: LET L H
LET S = -S
GOTO 50
POKE 232,0: POKE 233,3
FOR I = 768 TO 807

READ V
POKE l,V

NEXT I
DATA 1,0,4,0
DATA 45,36,60,60,60,36
DATA 44,44,44,45,45,53
DATA 53,53,54,55,55,55
DATA 54,45,192,3,56,63
DATA 7,40,44,53,5,192
DATA 32,53,223,39,53,0
RETURN
FOR T = 1 TO 300
NEXT T
RETURN

Figure S. 9: STEP-Sample Program

204 STEP

shows the stairs and the bug, but not the movement, nor the sound . You'll
have to run the program for the full effect.

This program uses the full range of Applesoft high-resolution graphics
commands, including DRAW, SCALE and HPLOT. Each of these com­
mands is described in detail under its own heading. In addition, the sub­
routine at line 200 POKEs the bug' s shape definition into the computer's
memory; you can read about this process under the heading DRAW.

In the program, a loop in lines 10 through 40 has the task of drawing the
stairs . The FOR loop at lines 50 to 80 creates the moving bug. Concentrate
on understanding the latter loop, which actually illustrates STEP in two
different ways .

The' FOR statement introduces the control variable 1:

50 FOR I = F TO L STEP S

Inside the loop, the variable I will determine the address coordinates of a
pair of DRAW statements. These statements, at lines 60 and 7 5, place the
bug on one of the steps of the staircase, and then erase him again. We do
this by setting the color properly before each DRAW command . First , the
color is set at white, to place the bug on one of the steps:

55 HCOLOR = 7

Figure S.l 0: STEP-Sample Output

STEP 205

Then, before the second DRAW command, the color is set at black, to
erase the bug again :

70 HCOLOR = 0

Notice that the two DRAW commands are identical ; it is only the
HCOLOR commands that produce the opposite effects of drawing and
erasing. Also note that the subroutine at line 400 is called to effect a short
pause between the two DRAW commands.

All the values in the FOR statement are represented by variables. The
range variables , F (for "first") and L (for " last") and the STEP variable,
S, are initialized in line 45 . These initial values give the FOR loop the fol­
lowing effect:

50 FOR I = 47 TO 199 STEP 38

At this point in the program , then, the control variable I will take the values
4 7, 85, 123 , 161, 199 during the five iterations of the loop. Since the
DRAW commands use I to determine the address of each bug, these values
send the bug down the stairs:

60 DRAW AT I, I - 12

After the first complete performance of the FOR loop (when the bug has
reached the bottom of the stairs), line 90 swaps the values ofF and L, and
line 100 reverses the sign ofS . The GOTO statement in line 110 then sends
control back up to the beginning of the FOR loop . With the new values ofF,
L , and S, the effect of the FOR loop will be :

50 FOR I = 199 TO 4 7 STEP - 38

and I will take the values 199, 161 , 123 , 85, 4 7, sending the bug back up the
stairs . This process continues until you press the RESET key to stop the
program. Each time the FOR loop completes its action, the instructions in
lines 90 and 100 reverse the values of the variables, and the FOR loop starts
over again.

One last detail : After the bug is drawn on a step, line 62 PRINTs the
character equivalent of the ASCII code 7:

62 PRINT CHR$(7)

This is the code for the computer's " bell, " and so it is line 62 that gives the
bug its beep .

Notes and Comments ___________________ _

The STEP program could also have made use of the XDRAW
command to "erase" the bug from a step. For some shapes,
however, XDRAW appears to be slightly defective, leaving

206 STEP

behind occasional pixels from the shape it is supposed to have
erased. This is why the sample program uses two DRAW com­
mands, with a change of the HCOLOR setting in between
(lines 50 to 80).

STOP (command word; Applesoft BASIC) ________ _

The STOP command tells the computer to stop a program run. If the
computer encounters the STOP command as a program statement, the
program will terminate with a message such as:

BREAK IN 300

where 300, in this instance, is the line number of the STOP command.
In Integer BASIC the END statement is used in place of STOP END

may also be used in Applesoft BASIC to halt a program, but it produces no
termination message.

Sample Program ____________________ _

The program in Figure S.ll illustrates a situation in which either STOP
or END is essential for the correct flow of program control. Normally,
when the computer performs an Applesoft BASIC program that contains
no STOP command, it simply performs each line, from the first to the last,
until there are no more lines to perform. In such a case, the STOP com­
mand is not necessary; the computer stops on its own when the program is
finished.

In a program that contains subroutines, however, the situation is differ­
ent. Usually the subroutines are located at the end of the program listing;
the top section of the program, sometimes called the "main program sec­
tion," calls the subroutines at the appropriate moments.

10 RE" ** MAIN PROGRAM **
20 GO SUB 100
30 GOSUB 200
40 GOSUB 300
50 STOP

100 RE" ** SUBROUTINE ONE
11 0 RETURN
200 RE" ** SUBROUTINE TWO
210 RETURN
300 RE" ** SUBROUTINE THREE
310 RETURN

Figure S.ll: STOP-Sampk Program

STORE 207

The program in Figure S . 11 is really just an outline of this kind of
program structure. Lines 10 to 50 form the main program, and the sub­
routines are at lines 100, 200 , and 300 . After all the subroutines are called,
the computer must be told explicitly to stop, or else control of the program
will simply continue down into the subroutine instructions .

If you run this program , which performs no real action , you will see the
message :

BREAK IN 50

when the program run is complete. This tells you that the computer did
indeed stop at line 50 . To see what would happen without the STOP com­
mand, try removing line 50 and running the program again . You will get
the error message :

?RETURN WITHOUT GOSUB IN LINE 110

This means that the computer encountered a RETUR N statement , at line
110, that was not preceded by a GOSUB command. Control of the pro­
gram moved, improperly, into the subroutine instructions.

STORE (cassette command; Applesoft BASIC) _______ _

With the STORE command, you can save the values of a numeric array
on a cassette tape. The syntax of the command is :

STORE A

where A is the name of an array that has been dimensioned and assigned
values.

You must have the tape recorder connected properly to the computer and
ready to record before the STORE command begins. To give you time to
turn the machine on in RECORD mode, the performance of STORE
begins with a pause in the action that lasts for several seconds. The com­
puter beeps at the moment it begins sending the array values out to the cas­
sette recorder; it beeps again when all the values have been sent. When you
hear the second beep, you can turn the tape recorder off.

STORE may be executed as an immediate command or as a program
statement. In the latter case the program should provide adequate prompt­
ing so that you know when to operate the tape recorder.

The R ECALL command retrieves the array values from the cassette.
(See the entry under RECALL.)

208 String

String (general programming vocabulary) _________ _

A string is an item of nonnumeric data that consists of one or more char­
acters. The computer stores a string, one character to a byte of memory,
with each character translated into its numeric code (ASCII) equivalent .
(See the entries under CHR$, ASC , STR$, and VAL.) Applesoft BASIC
offers several functions that take string arguments and return string values,
including MID$, LEFT$, and RIGHT$, which are convenient for access­
ing a portion of a string. Literal string values in BASIC programs must be
enclosed in quotation marks, except in DATA statements.

STR$ (function; Applesoft BASIC) ___________ _

Given a numeric argument, the STR$ function returns a string version
of the numeric value . Specifically, the string returned by STR$ consists of
the characters the computer would put on the screen to display the number.

For example, consider the following lines:

LET N = 157.321
LET A$ = STR$(N)

The second line will store the string value "157 .321" in the string variable
A$. The difference between the value ofN and the value of A$ is in the way
the computer stores numeric and string values . Numeric values, such as
the value of N, are stored in a .floating-point system; the significant digits of
the number (the "mantissa") and the exponent of the number (i.e., its
power of 10) are stored as two separate entities, both for convenience and
for maximum accuracy given a very large range of numbers . String values
such as the value of A$, on the other hand, are stored character by charac­
ter, in their ASCII character code equivalents, one character to a byte of
memory. (See the entries under CHR$ and ASC for an explanation of this
code .)

SampkProgram __________________ __

Converting a number to a string allows you to manipulate the string for
special numeric display purposes . The program listed in Figure S. 12 con­
verts a numeric input value representing dollars and cents into a numeric
string display that includes a dollar sign, commas, and an alignable deci­
mal point. Figure S.13 shows a column of numbers produced by this pro­
gram . Some BASICs have the PRINT USING command, which performs
a similar task , but the Applesoft version of BASIC does not .

The dollar-and-cent formatting is performed by the subroutine at line
200. This subroutine is long and complicated, mostly because it must allow

STR$ 209

10 HO"E : PRINT "TEST PROGRAM FOR DOLLAR AND CENT FORMATS"
20 PRINT "INPUT 10 NUMERIC VALUES:"
30 PRINT : LET TTL = 0
40 FOR K = 1 TO 10
50 PRINT K;
60 INPUT": ";N: GOSUB 200
65 LET TTL = TTL + N
70 LET TESTS(K) = PS
80 NEXT K
90 HO"E : PRINT : PRINT

100 FOR I = 1 TO 10
110 PRINT TA8(25 - LEN(TESTS(I)ll; TESTS(!)
120 NEXT I
122
123
124
125
126
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430

LET N
PRINT
PRINT
PRINT
PRINT
END
RE" ••
RE" ••
RE" **

TTL: GOSUB 200

TAB(14l;"==========="

TAB<25 - LEN <PSll;PS

DOLLAR AND CENT
FORMATTER. RECEIVES
NUMERIC VALUE IN N;

RE" ** RETURNS PRINT
RE" ** STRING IN PS.
RE"
LET N = INT(N * 100 + .5) I 100
LET NS = STRS (N)
LET P = 0: LET CS = "": LET OS =
FOR I = 1 TO LEN(NS)

IF "ID$(NS,I,1) "." THEN LET P = I
NEXT I
IF P = 0 THEN LET P LEN(NSl + 1: LET NS
LET NS NS + "0"
LET CS "ID$(NS,P, 3)
IF P = THEN LET OS "0": GOTO 430
LET NS "IDS (NS,1,P - 1)
IF LEN(NS) <= 3 THEN LET OS = NS: GOTO 430
LET T = INT(LEN(NS) I 3) - 1
LET L = LEN(NS) - <T + 1) * 3
IF L = 0 THEN GOTO 360
LET OS = LEFT$(NS,Ll + ","
LET L = L + 1
IF T = 0 THEN GOTO 420
FOR I = 1 TO T
LET OS = 0$ + "IDS (NS,L,3l+
LET L = L + 3
NEXT I
LET OS OS + "IDS(NS,L,3l
LET PS "S" + 0$ + C$

II II ,

440 RETURN

Figure S.12: STRS-Sample Program

NS + ".0"

210 STR$

for several different kinds of input values. The main program section (lines
10 to 130) reads input values into the variable N. The subroutine ulti­
mately stores each formatted dollar-and-cent string in the variable P$.

The subroutine begins by rounding the number N to the nearest cent,
and then converting it to a string, which is assigned to the variable N$:

200 LET N = INT(N • 100 + .5) /100
210 LET N$ = STR$(N)

The rest of the subroutine formats the string according to the following
specifications:

1. The value will contain a decimal point, followed by exactly two
digits. If the original number did not include cents, two zeros
will be inserted after the decimal point.

2. Every group of three dollar digits (moving left from the decimal
point) will be separated by commas.

3. A dollar sign will be inserted at the beginning of the string.

The various algorithms of the subroutine can be summarized as follows:

Lines 230 to 270: Search for a decimal point in the string. If
one exists, store its position in the variable P If there is no deci­
mal point, add the characters ".00" to the end of the string,
and set P to 1 greater than the length of the original string.

Lines 280 to 310 : Separate the dollar digits from the cents .
Assign the decimal point and two decimal digits to the variable
C$, and the dollar digits to N$. If N$ contains three digits or
fewer, no commas are needed; in this case, assign the dollar
digits to D$ and jump down to the bottom of the subroutine .

Lines 320 to 420: Determine how many commas are required
for the dollar digits, and insert them correctly into the string.
(A new string, complete with properly placed commas, is built
from left to right and stored portion-by-portion in the variable
D$.)

Lines 430 and 440: CombineD$ and C$ with a leading dollar
sign, and assign the concatenated strings toP$. Return to the
calling program .

Notice that this subroutine makes frequent use of the MID$ function to
access portions of strings; for example:

280 LET C$ = MID$(N$, P, 3)

STR$ 211

Figure S.J3: STR$-Sample Output

This statement assigns three characters of the string N$, starting from posi­
tion P in N$, to the variable C$. (See the entry under MID$.)

Notes and Comments ___________________ _

If a number is over nine digits long, the computer displays it in
scientific notation. So, for example, the following PRINT
statement :

PRINT 10000000000

results in the display:

1E+09

Likewise, the statement:

LET N$ = STR$(1 0000000000)

will assign the string value:

" 1E+09"

to the variable N$. For this reason, the dollar-and-cent format­
ting subroutine described above will only work properly for

212 STR$

dollar values up to nine digits . In addition, you will begin
noticing a loss of precision (rounding off of cents) for dollar val­
ues of eight digits or greater ; the sample output in Figure S.13
illustrates this roundoff error.

Subroutine (general programming vocabulary) _______ _

A subroutine is a block of program instructions, set off from the main
body of the program, and designed to be performed via the GOSUB state­
ment. (See the entry under GOSUB.)

TAB (function; Applesoft BASIC) ___________ _

In Applesoft BASIC, TAB is a programming function that works exclu­
sively with the PRINT command to determine the starting column of a dis­
play element. TAB takes a single numeric argument:

PRINT TAB(N); "INFORMATION"

This statement instructs the computer to position the first character of the
display element (in this case, the string "INFORMATION") at column N
of the current line. The value N may be expressed as a literal numeric
value, a numeric variable, or an arithmetic expression. The semicolon
after TAB is optional.

For the screen display, the argument, N, of TAB refers to a column num­
ber from 1 to 40, the full width of the screen . If N is greater than 40, the
computer tabs over an entire line for every multiple of 40, and then tabs
forward to the column indicated by the remainder; for example, consider
the statement:

PRINT TAB(95); "X"

Since 95 equals 80 plus 15, this statement will skip over two lines­
TAB(80)-and then print the X at column 15 of the third line.

The legal range for the argument, N, of TAB is:

0 < N < = 255

The expression TAB(O) results in a tab forward, one column past
TAB(255).

213

214 TAB

sampkProgram ____________________________________ ___

The short program in Figure T.l allows you to experiment with different
arguments of TAB. When you run the program, the question:

TAB TO WHAT POSITION?

will appear at the top of the screen. If you enter any number from 0 to 255,
the screen will clear, and an asterisk will appear at the tab position corres­
ponding to the number you typed. Next to the asterisk will be a TAB
expression indicating the position ; for example:

• TAB(10)

The program forms a repeating loop, allowing you to examine as many
TABs as you wish.

Line 30 of the program reads the input value into the variable P Line 50
then tabs forward toP and prints the message:

50 PRINT TAB(P); "• TAB(";P;")"

Notes and Comrrumts ____________________ _

Other Applesoft statements that affect the cursor position on
the display screen are HTAB and VTAB . In Integer BASIC,
the TAB statement is available, but it does not operate in the
same way as the Applesoft TAB function. (See HTAB , VTAB,
TAB-Integer BASIC .)

TAB (command word; Integer BASIC) ___________________ ___

In Integer BASIC, the TAB command sends the cursor forward or back­
ward to a specified column. The TAB command takes the form :

TABN

10 RE .. ** TAB DEMO
1 5 RE .. ** APPLE SO FT BAS I C
20 HO .. E
30 INPUT "TAB TO WHAT POSITION? II; p

35 IF p > 255 THEN GOTO 30
40 HO .. E
50 PRINT TAB (P) ; "* TAB ("; P; ")"
60 PRINT : PRINT
70 INPUT "CONTINUE? ";A$
80 GOTO 20

Figure T.l: TAB (Applesoft BAS/C)-Sample Program

10 RE" ** TAB DEMO
20 RE" ** INTEGER BASIC
25 CALL -936: RE" ** CLEAR SCREEN
30 INPUT "TAB TO WHAT POSITION" ,P
35 If P > 255 THEN 30
37 CALL -936
40 TAB P
SO PRINT"* TAB ";P
60 PRINT : PRINT
70 INPUT "PRESS <RETURN> TO CONTINUE.",A$
80 GOTO 25

Figure T. 2: TAB (Integer BAS/C)-Sample Program

where N must be in the range:

0 < N < = 255

TAN 215

If N is a value from 1 to 40, the cursor will be moved to the specified
column in the current line . If N is greater than 40, the computer tabs over
an entire line for every multiple of 40, and then positions the cursor at the
column specified by the remainder. For example, the statement:

TAB95

will skip two lines and position the cursor at column 15 of the third line.

sampkProgram ____________________________________ _

The program in Figure T. 2 allows you to experiment with the Integer
BASIC TAB command. The program is similar to the demonstration pro·
gram described under the Applesoft BASIC TAB function heading. (The
distinction to keep in mind is that TAB is not a function in Integer BASIC .)
Line 30 reads a position from the keyboard, and stores it in the variable P.
Then line 40 uses the TAB command to move the cursor to that position,
where a message is printed. Run the program; try several different values
ofP and note the result ofTAB for each.

TAN (function; Applesoft BASIC) _____________________ __

Given an angle expressed in radians, the TAN function returns the tan·
gent of the angle. The tangent function approaches infinity as its argument
approaches odd multiples of ± n/2.

216 TAN

sampkProgram ____________________________________ __

The program shown in Figure T.3 displays a series of tangent values for
arguments ranging from -1.6n to + 1.4n. The control variable, I , of the
FOR loop at line 40 determines the arguments of TAN in line 50. The out­
put appears in Figure T.4.

10
1 5
20
25
30
35
37
40
45
50

60

DEF FN R(X) = INT (100 *X + .5) I 100
HOfiE
PRINT TAB(11l;"THE TANGENT FUNCTION"
PRINT
PRINT TAB(11l;"ARGUMENT TAN"
PRINT TAB (11); "--------
PRINT
FOR I -1.6 TO 1.6 STEP .2
IF ABS (I) < 1E-5 THEN LET I = 0
PRINT TAB (11l ;"PI* (" ;I;")" ; TAB<Z7l; FN R<TAN
(I* 3 . 1416))
NEXT I

Figure T. 3: TAN-Sample Program

THE TAHGEHT FUHCTIOH
ARGUMENT TAH

PI* -1 . 6) 3 . 08
PU -1 . 4) -3 . 08
PU -1 . 2) - ?? . ' ._.
PU -1) 0
PU - . 8) 77

• I ·- '

Pl:t: - . 6) 3 . 08
PI:t: - . 4) -3 . 0 :::
PU: - . 2) - . 73
PI:t: 0) 0
PI:t: . 2) . { .:,
PI:t: . 4) 3 . 08
PI* . 6) -3.08
PU . 8) - . 73
PU 1) 0
PU 1. 2) . 73
PU 1 . 4) 3.08

].

Figure T. 4: TAN-Sample Output

TEXT 217

Figure T.5: TAN-Plotted Graph

Notes and Comments ___________________ _

Figure T.5 shows a graph of the tangent function from x= -2TT
to x= + 2TT.

See the entries under SIN and COS for more information
about the trigonometric functions .

TEXT (graphics command; Applesoft and Integer BASICs) ___ _

The TEXT command returns the screen to text display from any of the
graphics modes, and positions the cursor at the beginning of the 24th line of
the text screen. A return to text mode from high-resolution graphics has no
effect on the previous contents of the text screen-they remain on the
screen, unchanged-but a return to text mode from low-resolution graph­
ics leaves" garbage" characters on the text screen, converted from the low­
resolution graphics picture elements. (See the entries under GR, HGR and
HGR2.)

218 THEN

THEN (command word; Applesoft and Integer BASICs)'----­

Every IF statement must have a THEN clause . If the logical expression
after the word IF is evaluated as true, then the computer will perform the
action expressed after THEN. A BASIC command always follows THEN:

IF (logical expression) THEN (command statement)

If THEN is followed by more than one statement, in the following form :

IF (logical expression) THEN (statement 1) : (statement 2)

the result will depend on the version of BASIC you are using. See the entry
under IF for details. A THEN clause in a conditional GOTO statement
may omit either the word THEN or the GOTO command . (See "Notes
and Comments" under the heading GOTO.)

TO (Applesoft and Integer BASICs) ___________ _

TO is part of the syntax of a FOR statement. Specifically, the TO clause
indicates the range of the control variable ; for example:

FOR I= 1 TO 30

In the performance of this FOR loop, the variable I will be incremented
in value from 1 to 30 . See the entries under FOR and STEP for further
information .

TRACE (command word; Applesoft and Integer BASICs) ___ _

TRACE is a debugging tool that can help you locate a logical error in an
Applesoft or Integer BASIC program. The command:

TRACE

turns the trace feature on; and the command:

NO TRACE

turns it off again. While the trace feature is on, the line number of each
program line will be displayed on the screen at the time the line is executed .
For example, if you see the display :

#20

you will know that line 20 is being performed.

Notes and Comments __________________ _

Using TRACE with a program that reads or writes text files
onto a disk is problematical and best avoided .

UNLOCK (DOS command; Applesoft and Integer BASICs) __ _

UNLOCK removes the file protection established by the LOCK com­
mand. UNLOCK takes the form:

UNLOCK F

where F represents the name of a locked file on the current disk . After this
command, the file F may once again be overwritten, deleted, or renamed.
(See the entry under LOCK.)

User-Friendly (computer vocabulary) _________ _

A program that helps, rather than confuses, the person who is running it
is described as user-friendly. Some of the elements of a user-friendly pro­
gram are:

a clear description of the options available to the user and the
methods of choosing those options;

precise and clear input prompts, telling the user what kind of
data is expected from the keyboard, and when it is expected;

efficient, simple ways of recovering from input errors.

For further discussion and examples, see the entries under GOSUB, GET,
LEFT$, ONERR.

219

220 USR

USR (function; Applesoft BASIC) ___________ _

The USR function allows you to call a machine-language subroutine
from within a BASIC program. Unlike the CALL command, USR lets
you send a real numeric value to the subroutine and receive a value back
from the subroutine. The value you send is the argument ofUSR, and the
value you get back is the value ofUSR on return from the subroutine.

The format of USR is:

USR(V)

where Vis a literal numeric value, a variable, or an arithmetic expression
that evaluates to a real number. USR always stores the value V in a fixed
memory location, so that the value will be available to the machine­
language routine called by USR. Since USR is a function, it cannot, of
course, stand alone in a BASIC program, but must be part of a statement.
For example, USR might appear as part of a PRINT statement:

PRINT USR(V)

or an assignment statement:

LET T = USR(V)

Specifically, the action ofUSR is as follows:

1. It stores the real value V in memory locations 157 to 163 (i.e.,
hexadecimal addresses 9D to A3).

2. It then performs a machine-languageJSR ("jump to a subrou-
tine") to memory location 10 (i.e., hexadecimal address OA).

Before you use the USR function, then, you must place a machine lan­
guageJMP ("jump") command in memory locations 10 to 12 (hexadeci­
mal addresses OA to OC). For example, the following sequence of POKE
commands places such a jump command:

10 POKE 10, 76
20 POKE 11, 0
30 POKE 12, 3

The value POKEd by line 10 of this sequence represents the JMP com­
mand itself, and the values POKEd by lines 20 and 30 represent the mem­
ory address 768 (hexadecimal address 300). Thus, in this instance, your
machine-language routine would begin at address 768. The end of the rou­
tine must contain an RTS command (return from subroutine). Upon
returning to the BASIC program, the value ofUSR is taken from memory
locations 157 to 163, the "floating-point accumulator"; thus, if your
machine-language routine is to send a specific value back to the BASIC
program, that value must be placed in those locations.

USR 221

Notes and Comments __________________ _

The CALL command, which is available in both versions of
BASIC, sends control directly to a machine language routine.
(See the entry under CALL.)

222

VAL (function; Applesoft BASIC) ___________ _

The VAL function supplies the numeric equivalent of a string. VAL
appears in the form :

VAL(S$)

where S$ is a string that can be converted into a number. S$ may consist of
digits and any of the following:

a decimal point;

a leading plus sign or minus sign ;

a scientific notation format, with the letter E.

For example, any of the following strings would be valid arguments for VAL:

"1235"
"9862.89"
"+7.3"
"-81"
"3.5E + 12"
"1E-15"

If VAL receives an argument that cannot be converted into a numeric
value, the computer terminates execution of the program and gives the fol­
lowing error message:

?TYPE MISMATCH ERROR

sampkProgram __________________ _

The program shown in Figure V 1 is a tool that you can use in preparing
shape tables for the DRAW command. (If you haven ' t read the discussion

VAL 223

of the use of shape tables under the heading DRAW, you should read it
now.) You can define a shape for the DRAW command by storing a series
of direction and plotting specifications in a certain part of the computer's
memory. One way to accomplish this is to convert the specifications into
decimal (base-10) numbers, which you can then POKE into memory.

The direction and plotting specifications initially take the form of one-,
two- , or three-digit octal (base-8) numbers :

where d3, if it exists, is an integer from 1 to 3, and the digits d2 and d 1 are
integers from 0 to 7. Thus, the largest number that has meaning in the
context of a shape table is 377 (in base 8), which is equivalent to 255 (in
base 10).

The VAL program , in effect , converts base-8 numbers in the range from
1 to 377 into base-10 numbers. It performs this task in four basic steps :

10
1 5
20
25
30
40
so
60
65
70
8 0
90

100
140
14 2
144
146
150
160
170
180
190
zoo
210
220
230
240
245
250

1. Read the digits from the keyboard and store them in the string
variable N$.

RE" ** DECIMAL CONVERSION
RE" ** FOR SHAPE TABLES.
LET FALSE = 0
LET TRUE NOT FAL SE
INPUT N$
LET L = LEN (N$l
IF L > 3 THEN BAD TRUE: GOTO 65
GO SUB 200
IF BAD THEN PRINT CHR$(7): GOTO 30
LET N = 0
ON 4 - L GO SUB 150,160,170
PRINT N: PRINT
GOTO 30
RE" ** CONVERSION ROUTINE.
RE" ** MULTIPLE ENTRY
RE" ** POINTS DEPENDING ON
RE" ** LENGTH OF N$.
LET N VAL(LEFTS(N$,1ll * 64
LET N = N + VALO'IID$(N$,L - 1, 1)) * 8
LET N = N + VAL<RIGHTS(NS,1ll
RETURN
RE" ** VALIDATION ROUTINE
LET BAD = FALSE
FOR I = 1 TO L

LET C$ = "IO$(NS,I,1l
IF C$ < "U" OR C$ > "7" THEN BAD = TRUE

NEXT I
IF L = 3 AND LEFTS(N$, 1 l > "3" THEN BAD = TRUE
RETURN

Figure V.l : VAL-Sample Program

224 VAL

2. Validate the input value (that is , make sure the digits stored in
N$ represent an octal number from 1 to 377) .

3. Convert the value into a decimal number, and store it in the
numeric variable N .

4. Display Non the screen .

The validation (step 2) is most conveniently performed on a string value,
which is why the number is read into the string variable N$. But the con­
version from octal to decimal requires that the value be represented in
numeric, not string, form . Step 3 thus makes use of the VAL function to
find the numeric equivalent of the digits stored inN$. The following para­
graphs describe these steps in detail.
The main program section (lines 10 to 100) reads the input value, calls the
program ' s two subroutines, and finally prints the resulting decimal conver­
sion . First, however, the program creates two variables, T R UE and
FALSE, for use in the validation subroutine:

20 LET FALSE = 0
25 LET TRUE = NOT FALSE

(Read the entry under IF to find out why these variables work the way
they do .)

After line 30 reads a value for N$, line 40 assigns the length of N$ to the
variable L :

30 INPUT N$
40 LET L = LEN(N$)

Lines 50 and 60 represent the validation of N$, first checking to see that
N$ is within the specified length, and then calling the subroutine at line
200 to examine the actual value of N$:

50 IF L > 3 THEN BAD = TRUE : GOTO 65
60 GOSUB200

If, at any point during the validation process, N$ is fou nd to contain an
invalid input value , then the variable BAD is set to T R UE. In such a case,
line 65 beeps the computer's speaker (CHR $(7)) and sends control back up
to line 30 for a new input value :

65 IF BAD THEN PRINT CHR$(7) : GOTO 30

The validation subroutine at line 200 assigns each character ofN$, in turn,
to the variable C$:

210 FOR I = 1 TO L
220 LET C$ = MID$(N$, I, 1)

VAL 225

If any character, C$, is outside of the valid range, then BAD is set to
TRUE:

230 IF C$ < "0" OR C$ > "7" THEN BAD = TRUE

In addition, if N$ contains three digits, the first digit must not be greater
than "3":

245 IF L = 3 AND LEFT$(N$,1) > "3" THEN BAD= TRUE

Notice that this validation routine not only checks for the correct numeric
range , but also safeguards against typographical errors: ifN$ contains non­
numeric characters (that is , characters outside the ASCII range "0" to
" 7"), BAD will be set to TRUE.

If the characters in N$ are shown to represent a valid number that is less
than or equal to 377 (octal), however, the number can safely be converted
to decimal. The subroutine starting at line 140 performs this task. Actually,
this subroutine has three valid entry points; the portion of the subrou­
tine that must be used depends on the length of N$, as you can see in the
ON ... GOSUB statement of line 80:

80 ON 4-L GOSUB 150, 160, 170

Figure V. 2: VAL-Sample Output

226 VAL

The following table shows how this line determines the correct entry point
of the subroutine:

length of value of entry point of
string, L 4-L subroutine

3 1 150
2 2 160

3 170

The three lines, 150, 160, and 170 are each designed to convert one of the
three digits into its octal equivalent, according to the formula:

But before any arithmetic can be performed, the digits must be converted
from character to numeric representation; that is the job of the VAL
function.
Figure V.2 shows a sample run of the program. You'll probably want to use
this conversion program when you start designing your own shape
definitions.

Variable (computer vocabulary) ____________ _

Think of a variable as a place set aside in the computer's active memory
for a data element of a specified type; in a program, the variable is repre­
sented by a given name. In both versions of BASIC, the variable name
itself indicates the type of data the variable can store; the last character of the
variable name is the type indicator:

Applesoft BASIC:

$ indicates a string variable;

% indicates an integer variable;

a name ending in a letter or a digit indicates a real-number
variable.

Integer BASIC:

$ indicates a string variable;

a name ending in either a letter or a digit indicates an integer
variable.

All variable names must begin with a letter from A to Z. In Integer
BASIC a variable name may be of any length up to 100 characters. In
Applesoft BASIC a variable name may also be of virtually unlimited

VERIFY 227

length, but only the first two characters (plus the type indicator) are significant. The
second character may be either a letter or a digit; the computer ignores
characters after the second, except for the last character, if it is a type indi­
cator. For this reason, Applesoft BASIC will treat the following pairs of vari­
ables as identical:

Tl and TIMES

AN$ and ANSWER$

QU% and QUANTITY%

In Applesoft BASIC, no command words or function names can be
"embedded" in a variable name. For example, the following statements
would result in syntax errors:

1 0 LET TOTAL = 15
20 LET INTEREST = .09
30 PRINT TOTAL, INTEREST

The variable name TOTAL contains the word TO; INTEREST con­
tains the function name INT.

Both versions of BASIC automatically initialize newly named simple
numeric variables to zero. For example, the following one-line program
will always display a 0 on the screen:

10 PRINT X

(See also the entries under DIM and Array.)

VERIFY (DOS command; Applesoft and Integer BASICs) __ _

The VERIFY command is used to check whether or not a file has been
stored correctly. The syntax of the command is:

VERIFY F

where F is the name of a file stored on the current disk. VERIFY works on
any type offile, locked or unlocked. If the file has been stored consistently,
VERIFY produces no message on the screen. If something is incorrect in
the file storage, the message:

1/0 ERROR

appears. Note that VERIFY does not check the syntax of a BASIC program
file, but simply the correctness of the storage itself.

228 VLIN

VLIN (graphics command; Applesoft and Integer BASICs) ___ _

In low-resolution graphics, VLIN draws a vertical line of graphics char­
acters up or down the screen . The VLIN command takes the form:

VLIN, V1, V2 AT H

This command draws a line extending from address (H,V1) to (H ,V2) . All
three coordinates in the VLIN command can take any value from 0 to 39.
If the low-resolution graphics mode has been switched to full screen, with­
out the text window, the vertical coordinates are extended to a range of 48
picture elements:

0 < = V1 < = 47
0 < = V2 < = 47

The sample program under the COLOR command illustrates the use of
VLIN . (See also GRand HLIN.)

VTAB (command word; Applesoft BASIC) _________ _

The VTAB command, along with HTAB, provides a means of placing
the cursor at any position in the 24-row by 40-column text screen. VTAB
takes the form :

VTABR

where R is a literal value, a variable , or an arithmetic expression that evalu­
ates to a row number from 1 to 24. The result of VTAB is to move the
cursor-up or down-to the first column position of row R. (The current
contents of the screen are not affected by this cursor move.)

VTAB is particularly useful in programs that use text windows with
graphics screens (low-resolution graphics, or page 1 of high-resolution
graphics; see GRand HGR). The following command positions the cursor
at the beginning of the top line of the text window:

VTAB21

sampkProgram __________________ __

The program listed under the heading GET (Figure G.1) illustrates the
use of both VTAB and HTAB. That program has the task of placing an
arrow next to one of a column of characters , in response to input from the
keyboard. This arrow must be placed correctly without disturbing the other
contents of the screen. In the following multi-statement program line, the

VTAB 229

HTAB and VTAB commands are used to position the cursor correctly
before the arrow is printed:

80 VTAB 3 + (ASC(L$)- 65) • 2 : HTAB 14: PRINT"==>"

Notice that the vertical position must be computed from the value of the
input character L$; the expression:

3 + (ASC(L$)- 65) • 2

forms the parameter of the VTAB command.

230

WAIT (command word; Applesoft BASIC) ________ _

WAIT is a seldom-used command whose ostensible purpose is to create a
pause in the action of a BASIC program. The command's design makes it
an uncharacteristically obscure BASIC instruction; it is not very useful
except in special circumstances involving input from external devices.

The syntax of WAIT is:

WAIT M, N1, N2

where M is the address of a memory location; and Nl and N2 are integer
values from 0 to 255. (N2 is actually an optional parameter, and is set to
zero if it is not present in the statement.) WAIT operates on the binary
equivalents of N 1 and N2, and the binary value stored in M. Technically, it
performs an XOR ("exclusive OR") on the two values, N2 and the value
stored at address M; then a logical AND on N 1 and the result of the XOR
operation. WAIT creates a pause in the program performance until the
binary result of these two operations contains at least one nonzero bit.

Notes and Comments ____________________ _

If you just want to make your program pause at a certain point
in the action, the simplest technique is to perform an empty
FOR loop:

1 00 FOR I = 1 TO N
110 NEXT I

You can experiment with different values of N, in line 100, to
produce pauses of different lengths. If you set N to 1000, the
pause will probably last for about two or three seconds. The
sample program under the heading STEP shows an example of
this kind of pause loop.

WRITE 231

WRITE (DOS command; Applesoft and Integer BASICs) ___ _

The WRITE command prepares the system to write data to a text file
stored on disk. WRITE may only be used as a program statement, not as
an immediate command. Like other DOS commands, WRITE must be
introduced to the system via a PRINT statement and a CONTROL-D
character. (See the entry under DOS Commands.)

In order to describe how the WRITE command works for the two differ­
ent kinds of text files-sequential and random-access-this entry is divided
into two sections.

WRITE-Sequential Files ______________ _

For sequential files the WRITE syntax is:

WRITE F

where F represents any legal file name . An OPEN statement (or an
APPEND statement) referring to the same file name, F, must precede the
WRITE command .

Following the WRITE command, and as long as the file F remains
open, any PRINT statements in the BASIC program will send data to the
disk file, rather than to the video screen. In general, a single PRINT state­
ment sends one field of data to the file . A field is a series of characters fol­
lowed by a RETURN character. (A comma can also serve as a field
delimiter; see "Notes and Comments," below.) To determine whether a
PRINT statement will send an entire field to the file, think of what the
statement would display on the video screen if the file were not open for
writing. Consider, for example, the following two statements:

100 PRINT A$
110 PRINT B$

As screen-display statements, these PRINT commands would send two
lines of text to the screen, the first line showing the contents of the string
variable A$, and the second line showing the contents ofB$. Each PRINT
sends out a RETURN character after displaying its data. Likewise, these
two PRINT statements would create two fields in a data file, as in the fol­
lowing sequence:

70 LET D$ = CHR$(4) : REM • • CONTROL-D
80 PRINT D$; "OPEN F"
90 PRINT D$; "WRITE F"

100 PRINT A$
110 PRINT B$

232 WRITE

The first field will contain the value of A$, and the second field , the value
ofB$.

The situation changes if the first PRINT statement ends in a semicolon:

1 00 PRINT A$;
110 PRINT B$

As screen-display statements, these PRINT commands would send only
one line of data to the screen. The semicolon at the end of line 100 prevents
a carriage return (i .e., the PRINT statement sends no RETURN character),
so the contents of the variables A$ and B$ would be displayed on a single
line. For the same reason , these two PRINT statements would write only
one field of data to a text file. The field would contain the values of A$ and
B$, side by side, followed by a RETURN character.

The computer automatically sets up a .file pointer for an open data file ; this
pointer keeps track of the cumnt field in the file. Each time a PRINT state­
ment writes a field to the file, the pointer is automatically moved forward so
that a subsequent PRINT statement will write the next field .

When a sequential file is open for writing (i.e., after the WRITE com­
mand has been given) , a series of PRINT commands will normally con­
tinue sending data to the file until a CLOSE command closes the file .
However, certain kinds of statements will cancel the WRITE command;
these include other DOS commands (preceded by CONTROL-D) and
any INPUT statement. The file will still be open after any of these state­
ments, but not for writing. Futhermore, in the case of an INPUT state­
ment, any input prompts that the statement generates will be sent to the
data file bifore the WRITE command is interrupted. For this reason, it is
clearly not wise to use the INPUT command while a file is open for writing.

Sample Program: WRITE- The Sequential File Creation Program __

The Applesoft program shown in Figure W.1 creates a sequential data
file called EMPLOYEE FILE 1. (Several other programs in this book are
designed to read or revise this file . These programs as a group illustrate an
important point: Once a data file is created and stored on disk, any pro­
gram may access it-even programs written in languages other than
BASIC. See the entries under APPEND, POSITION, and READ.)

EMPLOYEE FILE 1, as it is initially created by this program, contains
records for eight employees of an imaginary company. For each employee
the file holds four items of information, in the following order:

1. a single-character status "tag" -either H or S-indicating
whether the employee receives hourly wages or a salary;

2. the employee 's last name;

3. the employee's first name;

WRITE 233

4. the employee's wages-hourly if the tag is H; biweekly if the
tag isS.

Each item becomes a field of data in the file; thus, for the eight employees
the file will contain 32 sequential fields of data. In addition, there is one
item of data that precedes all the employee records. This item, which is
stored in field 0 of the file , is simply an integer that tells how many
employee records the file contains.

The task of this program , then, is to create the sequential file named
EMPLOYEE FILE 1, and to write all33 of these data items to the file. You
can see by the length of the program that this is a relatively simple task .
When you write such programs, the main problem to be solved is this : how
is the program to acquire the data in the first place? Somehow the data
must be input into the program before the program can, in turn, send the
data to the file . The fact that the INPUT statement interrupts the WRITE
command makes interactive data entry (i .e., input from the keyboard dur­
ing the run of the program) awkward.

There are actually several ways a program can read the data that it is to
store in a file . One simple way is to conduct an input dialogue before opening
the data file. All the data read from the keyboard during this dialogue must
be stored in arrays. Then, after the dialogue is complete, the program can
open the external data file and write values into the file from the arrays.
This technique is adequate as long as the amount of input data is not large.

10 REN ** SEQUENTIAL FILE DEMO
20 LET OS= CHRS(4): REN ** CONTROL-D
30 PRINT OS;"OPEN EMPLOYEE FILE 1"
40 PRINT DS;"DELETE EMPLOYEE FILE 1"
50 PRINT DS;"OPEN EMPLOYEE FILE 1"
60 PRINT OS; "WRITE EMPLOYEE FILE 1"
70 PRINT "0008"
80 FOR E = 1 TO 8
90 READ TS,LS,FS,S

100 PRINT TS: PRINT LS
110 PRINT FS: PRINT S
120 NEXT E
130 PRINT OS;"CLOSE EMPLOYEE FILE 1"
140 END
150 DATA S,SHEPARD,CLARA,3000
160 DATA S,INEZ,ROBERT,2600
170 DATA H,SCULLY,LEE,21.29
180 DATA S,ALSTON,LOIS,1900
190 DATA H,GIBSON,OONAL0,18.75
200 DATA H,OUFF,JOANNE,8.95
210 DATA H,TIBBS,DANIEL,7.25
220 DATA H,RACHEL,BEN,7.75

Figure W.l: WRITE- The Sequential File Creation Program

234 WRITE

One reason for creating data files on disk is , after all, to free the computer's
active memory for jobs other than sorting data.

Another approach can be outlined as follows:

1. Read a few data items at a time interactively from the key-
board; the data items might together constitute one "record."

2. Open the file and write these few data items.

3. Close the file again.

4. Start over again at step 1.

These steps, which form a "loop," can be performed repeatedly until there
is no more data to be stored. In this technique, however, step 2 must use the
APPEND command (rather than OPEN) to reopen the file each time .
(This approach is illustrated in the sample program described under the
heading APPEND.)

A third approach is to store the data in the program itself in a set of
DATA lines. The Applesoft READ command (not the same as the DOS
READ command) can be used to read each data item as it is needed. The
advantage of this technique is that the READ/DATA approach does not
interfere in any way with the DOS commands that create data files. This is,
in fact, the approach used by our Sequential File Creation Program in Fig­
ure W.1. While this technique may be less realistic than the interactive
technique, it suits our needs perfectly for this illustration .

The DATA statements are in lines 150 to 220. Each DATA line contains
the four data items of one employee record. You can see at a glance that
there are three salaried employees and five hourly employees.

Lines 50 and 60 open the file for writing, using the CONTROL-D char­
acter stored in the variable D$:

50 PRINT D$; "OPEN EMPLOYEE FILE 1"
60 PRINT D$; "WRITE EMPLOYEE FILE 1"

Line 70 sends the first field of data to the file-the value representing the
number of employee records. This number is sent as a four-character
string, reserving four bytes at the beginning of the file for the value. (We
have to anticipate that the value will increase as more employee records are
stored in the file.)

Finally, a short FOR loop reads the records from the DATA lines and
writes each item to the file . Four items-an entire employee record-are
read at a time:

90 READ T$, L$, F$, S

WRITE 235

Each item requires its own PRINT statement, in order to write four sepa­
rate fields to the file :

1 00 PRINT T$: PRINT L$
11 0 PRINT F$: PRINT S

One further feature of this program should be pointed out . Since the pro­
gram is designed to create a new file, it must , at the beginning, make sure
there is no file of the same name currently stored on the disk ; if one does
exist , it must be removed. The DELETE statement, a DOS command,
performs the task :

40 PRINT 0$; "DELETE EMPLOYEE FILE 1"

If there is no file of that name, however, this statement alone would cause a
break in the program run , with the following error message :

FILE NOT FOUND

For this reason , the DELETE command is preceded by an OPEN com­
mand, which opens EMPLOYEE FILE 1 whether it already exists or not:

30 PRINT 0$; "OPEN EMPLOYEE FILE 1"

WRITE-Random-Access Files _ _ ____________ _

A random-access file is made up of equal-length records . The length of
the records is specified by the L parameter of the OPEN command . Each
record may be thought of as a short sequential file, consisting of one or
more fields . Since the records are of equal length , the random-access ver­
sions of the R EAD and WRITE commands can identify, by number, pre­
cisely which record is to be read or written .

Like READ , the random-access version of WRITE includes an optional
parameter-the letter R , followed by an integer. T he R parameter specifies
which record will be written . The first record in the file is numbered 0.
Thus , for example , the statement:

WRITE F, R5

positions the file pointer at the beginning of the sixth record (record 5). Sub­
sequent PR INT commands will write fields to this record . (See the entries
under OPEN and READ for more information.)

sampkPrograms _ _____ ____________ _

The clear advantage of random-access files is that once you have created
such a file, you can easily write programs to revise any individual records in
the file . To illustrate this process, we will look at two sample programs for

236 WRITE

the random-access version of WRITE. The first program creates a
random-access file of the same employee records discussed earlier (in the
sequential file section of this entry). The second program conducts an
interactive dialogue that allows the user to revise records in the file.

TM Random-Access File Creation Program __________ _

The program shown in Figure W. 2 actually creates two files: a random­
access file called EMPLOYEE FILE 2 and a sequential file called

10 RE" ** RANDOM ACCESS FILE
15 RE" ** DEMONSTRATION PROGRAM
20 LET D$ = CHR$(4): RE" ** CONTROL-D
30 PRINT DS;"OPEN EMPLOYEE FILE 2"
40 PRINT DS;"DELETE EMPLOYEE FILE 2"
50 PRINT DS;"OPEN EMPLOYEE FILE 2, L30"
60 PRINT DS;"WRITE EMPLOYEE FILE 2, RO"
70 PRINT "EMPLOYEE FILE 2 INDEX"
80 FOR E = 1 TO 10
90 READ TS,LS,FS,S
95 PRINT DS;"WRITE EMPLOYEE FILE 2, R";E

100 PRINT TS: PRINT L$
110 PRINT FS: PRINTS
120 NEXT E
130 PRINT DS;"CLOSE EMPLOYEE FILE 2"
135 GOSUB 300
140 END
150 DATA S,SHEPARD,CLARA,3000
160 DATA S,INEZ,ROBERT,2600
170 DATA H,SCULLY,LEE,21.29
180 DATA S,ALSTON,LOIS,1900
190 DATA H,GIBSON,DONALD,18.75
200 DATA H,DUFF,JOANNE,8.95
210 DATA H,TIBBS,DANIEL,7.25
220 DATA H,RACHEL,BEN,7.75
230 DATA S,WINTERS,LENA,850
240 DATA H,BENNET,ISABEL,6.50
300 RE" ** CREATE INDEX
310 RESTORE
320 PRINT DS;"OPEN EMPLOYEE FILE 2 INDEX"
323 PRINT DS;"DELETE EMPLOYEE FILE 2 INDEX"
326 PRINT DS;"OPEN EMPLOYEE FILE 2 INDEX"
330 PRINT DS;"WRITE EMPLOYEE FILE 2 INDEX"
340 PRINT "0010"
350 FOR I = 1 TO 10
360 READ TS,LS,FS,S
370 PRINT L$ + LEFTS(F$,1)
380 PRINT I
390 NEXT I
400 PRINT DS;"CLOSE EMPLOYEE FILE 2 INDEX"
410 RETURN

Figure W. 2: WRITE- The Random Access File Creation Program

WRITE 237

EMPLOYEE FILE 2 INDEX. The technique of indexing a random-access
file is often used for large data storage tasks . The index is generally a rela­
tively short and systematically arranged file that contains two data items for
each record in the "main" random access file-a key entry that unambigu­
ously identifies a given record in the main file , and the record number of
that record in the main file .

As a result, you can use the index to find any record you wish to access in
the random-access file . The steps of the process are:

1. look up the key index entry

2. find the number associated with that entry, and

3. use the number to locate the record in the main file .

Like the sequential-access program described earlier, the random-access
file-creation program shown here reads the record entries from a series of
DATA lines stored in the program itself. The data is located in program
lines 150 to 240 ; ten employee records are included. Four of the employees
are salaried and six are hourly.

Lines 30 and 40 of the program begin by deleting any file of the same
name-EMPLOYEE FILE 2-that may exist on the disk. Line 50 then
opens the file; the length of each record, as specified in the L parameter, is
30 bytes :

50 PRINT D$; "OPEN EMPLOYEE FILE 2, L30"

The first record to be written, RO, will store the name of the sequential index
file :

60 PRINT D$; "WRITE EMPLOYEE FILE 2, RO"
70 PRINT " EMPLOYEE FILE 2 INDEX"

This feature makes the main file somewhat more self-contained, as we will
see later in the revision program.

Finally, a short FOR loop writes all the employee records to the file .
Each record is read in turn from the DATA statements:

80 FOR E = 1 TO 1 0
90 DATA T$, L$, F$, S

A WRITE command is required for each record written to the file, to con­
tinually move the file pointer forward . The value of the R parameter is
determined by the FOR loop's control variable , E :

95 PRINT D$; "WRITE EMPLOYEE FILE 2, R"; E

238 WRITE

After the WRITE command, the four items of a given record may be writ­
ten to the file:

1 00 PRINT T$: PRINT L$
11 0 PRINT F$: PRINT S

When all the data has been written to the file, line 130 closes the file .
The subroutine at line 300 creates the sequential index file . Since this

subroutine must once again use the information stored in the DATA state­
ments, the RESTORE command is given to enable the program to begin
READing from the first DATA statement again :

310 RESTORE

The first field written to the file indicates the number of records con­
tained in the main file (line 340). After that, two fields are written to the
index file for each record of the main file . The first item is a string, consist­
ing of the employee's last name and the first initial of the employee's first
name:

370 PRINT L$ + LEFT$(F$, 1)

The second data item is a value from 1 to 10-again, the control variable of
the FOR loop supplies this number-representing the employee's record
number in the main file:

380 PRINT I

The next program demonstrates the use of the index file to access records
from the main file .

The Random Access File Revision Program __________ _

The program shown in Figure W.3 allows you to revise any records in
the file EMPLOYEE FILE 2. In this illustration, as we have seen, the
employee records contain only four items of information each. In a more
realistic program, each employee record might contain a dozen fields or
more; additional information might include job title, social security num­
ber, date hired, and so on. In such a file, many of the items for a given
employee might require revision as various aspects of the employee's status
change . Also, new employee records might be added to the file; the longer
the main file becomes, the clearer the need is for an index into the file. In
this illustration the index file may not seem significantly shorter-or easier
to handle-than the main file itself; but if you imagine a file containing
1000 complete employee records, you can see that the technique of index­
ing a random-access file is an essential one.

WRITE 239

This program allows you to change the status and/or the salary of any
employee record in the file . When run, it conducts a simple dialogue to
elicit all the information it requires . It begins by asking you if you wish to
revise an employee record. If you answer affirmatively, you must then
enter the name of the employee whose record you want to revise . An example
of this first exchange might appear as follows :

REVISE AN EMPLOYEE RECORD? YES
WHICH EMPLOYEE?
LAST NAME: BENNET
FIRST NAME: ISABEL

After you have entered the employee's name, the program searches quickly
through the index file to find the key entry. If it finds no entry correspond­
ing to the name you have entered, the following message is displayed on the
screen:

**NO SUCH EMPLOYEE
PRESS< RETURN> TO CONTINUE

You have perhaps spelled the employee's name incorrectly, or made some
other error. When you press the RETURN key, the program starts the dia­
logue over from the beginning.

If the name you typed is correct, however, the program reads the
record's location from the index file, opens the main file, reads the record,
and displays the entire record on the screen for you:

BENNET, ISABEL
1) HOURLY EMPLOYEE
2) HOURLY WAGE: 6.5

Following the record, the program offers you a short menu of revision
options:

CHANGE WHICH FIELD?
0) NONE
1) STATUS
2) SALARY
<O> , < 1 > , OR <2> ?

If you decide , after examining the record, that you do not want to change
anything after all, you enter 0, and the program returns you to the begin­
ning of the dialogue. Entering 1 or 2, however, indicates that you wish to
change the employee's status or salary. Choosing one of these options leads
to a continued input dialogue to elicit the new data.

240 WRITE

If you choose option 2, the program asks you to enter the employee's
new salary. Once you have entered it, the program saves the revised
record immediately, displaying a message on the screen that explains what
is happening:

SAVING REVISED RECORD
FOR BENNET, ISABEL

When the revised record is written to the file, the dialogue starts over
again, to allow you to revise additional records.

If you choose option 1, the revision dialogue is more complicated. There
are three options for changing the status of an employee:

NEW STATUS
X = FORMER EMPLOYEE
S = SALARIED EMPLOYEE
H = HOURLY EMPLOYEE

<X> , <S> , OR <H>?

Notice that this program introduces a new status tag into the file; if an
employee has left the company, you can enter the X option. The em­
ployee's record is not deleted from the file; the status of the record is simply
changed to the tag representing FORMER EMPLOYEE. If you enter
either of the other two status changes-S or H-the dialogue continues one
step further: A status change usually indicates a salary change, so the pro­
gram also asks you to enter a new salary. Finally, the revised record is saved
in the main file, and the dialogue continues, potentially to revise additional
records.

As you can see by examining Figure W. 3, the program that conducts this
revision dialogue is long. Its top-down, modular organization makes it easy
to understand , however. It is divided into a controlling "main program"
section, and seven subroutines. The main program (lines 10 to 160) con­
ducts the first part of the input dialogue and calls three of the subrou­
tines. The following paragraphs briefly describe the action of the sub­
routines:

Open Irulex File (subroutine at line 200). This subroutine begins by
opening the main file and reading its first record to find out the
name of the index file. It then closes the main file, opens the
index file, and reads the entire index into the arrays INDEX (for
the record numbers) and NAME$ (for the employee names).

Search through Irulex (subroutine at line 400). This subroutine is
called after you input the name of an employee whose record you
want to revise . It searches through the index for the name; if it
finds the name, it assigns the name's record number to P (for
"position") and calls the subroutines that open the main file and

10 RE" ** RANDOM ACCESS FILE
15 RE" ** DEMONSTRATION.
18
20
30
35
40
50
60
70
80
90

RE" ** MAIN PROGRAM SECTION.
LET D$ = CHR$(4): RE" ** CONTROL-D
LET FILE$ = "EMPLOYEE FILE 2"
GOSUB 200: RE" ** OPEN INDEX
HO"E : PRINT : PRINT
INPUT "REVISE AN EMPLOYEE RECORD? ";AS
LET A$= LEFTS<AS,1l
IF NOT (A$ = "Y" OR A$ "N") GOTO 50
IF A$ = "N" THEN END
PRINT : PRINT
PRINT "WHICH EMPLOYEE?"
PRINT
INPUT "LAST NAME: ";L$
INPUT "FIRST NAME: ";F$
GOSUB 400: RE" ** SEARCH INDEX
GOSUB 1050: RE" ** SAVE REVISION
GOTO 40
RE" **OPEN INDEX FILE
PRINT D$;"0PEN ";FILES;" ,L30"
PRINT DS;"READ ";FILES;", RO"
INPUT l$: RE" ** INDEX NAME
PRINT D$;"CLOSE ";FILE$
PRINT DS;"OPEN ";I$
PRINT D$;"READ ";I$
INPUT E
DI" INDEX<El,NAME$(E)
FOR I = 1 TO E

INPUT NAME$(l),INDEX(l)
NEXT I
PRINT DS;"CLOSE ";I$
RETURN
RE" ** SEARCH THROUGH INDEX
LET P = 0
LET N$ = L$ + LEFTS(F$,1)
FOR I = 1 TO E

IF N$ NAME$(!) THEN P = INDEX(!)
NEXT I

WRITE 241

100
110
120
130
140
150
160
200
210
220
230
24 0
250
260
270
280
290
300
310
320
330
400
410
420
430
440
450
460
470
480
490
500
540
550
560
570
580
590
600
610
620
630

IF P <> 0 THEN GOSUB 540: GOSUB 600: RETURN
PRINT PRINT
PRINT "** NO SUCH EMPLOYEE": PRINT
INPUT "PRESS <RETURN> TO CONTINUE ";A$
POP : GOTO 40
RE" ** OPEN EMPLOYEE FILE
PRINT DS;"OPEN ";FILE$;", L30"
PRINT DS;"READ ";FILES;", R";P
INPUT T$,L$,F$,S
PRINT DS;"CLOSE ";FILE$
RETURN
RE" ** DISPLAY MENU
HO"E : PRINT : PRINT
PRINT L$;", ";F$: PRINT
PRINT "1) STATUS: ";

Figure W.3: WRITE- The Rarulom Access File Revisum Program

242 WRITE

640 IF TS <> "X" 60TO 670
650 PRINT "FORMER EMPLOYEE"
660 PRINT "2) ENDING SALARY: ";
670 IF TS <> "H" 60TO 700
680 PRINT "HOURLY EMPLOY<:E"
690 PRINT "2) HOURLY WAGE: ";
700 IF TS <> "S" 60TO 730
710 PRINT "SALARIED EMPLOYEE"
720 PRINT "2) BIWEEKLY WAGE: ";
730 PRINT S: PRINT : PRINT
740 PRINT "CHANGE WHICH FIELD? "
750 PRINT
760 PRINT " 0) NONE"
770 PRINT " 1l STATUS"
780 PRINT " 2) SALARY"
790 PRINT
800 PRINT " <0>, <1 >, OR <2>? ";: GET CS: PRINT CS
810 IF CS < "0" OR CS > "2" 60TO 800
820 IF CS "0" THEN POP : POP : GOTO 40
830 ON VAL(CSl 60SUB 850,950
840 RETURN
850 RE" ** STATUS CHANGE
860 HO"E : PRINT : PRINT
870 PRINT "NEW STATUS": PRINT
880 PRINT " X FORMER EMPLOYEE"
890 PRINT " = SALARIED EMPLOYEE"
900 PRINT " H = HOURLY EMPLOYEE"
910 PRINT PRINT "<X>, <S>, OR <H>? ";: GET TS: PRINT TS
920 IF NOT (TS = "X" OR TS = "S" OR TS = "H") 60TO 910
930 IF TS = "S" OR TS = "H" THEN GOSUB 950
940 RETURN
950 RE" ** SALARY CHANGE
960 HO"E : PRINT : PRINT
970 IF TS = "H" THEN PRINT "H OU RLY WAGE";
980 IF TS = "S" THEN PRINT "BIWEEKLY SALARY";
990 INPUT "? ";S

1000 RETURN
1050 RE" ** SAVE REVISION
1060 HO"E : PRINT : PRINT
1070 PRINT "SAVING REVISED RECORD"
1080 PRINT "FOR ";LS;", ";FS
1090 PRINT DS;"OPEN ";FILES;", L30"
1100 PRINT DS; "WRITE ";FILES;", R"; P
1110 PRINT TS: PRINT LS
1120 PRINT FS: PRINT S
1130 PRINT D$;"CLOSE ";FILES
1140 RETURN

Figure W. 3: WRITE- Th£ Random Access File Revision Program (continued)

display the record on the screen. If the search through the index
does not yield the input name, this subroutine prints the appro­
priate error message , and then sends control of the program

WRITE 243

back to the beginning of the dialogue routine, via a POP and a
GOTO:

500 POP : GOTO 40

This program represents only a crude example of the index­
ing technique. A more efficient approach would be to maintain
an alphabetized index (using a sort routine) and to implement a
real search algorithm (e .g. , a binary search) to find a name in the
index.

Open the Employee File (subroutine at line 540). Once the search
subroutine (above) finds an employee's record number-and
stores it in the variable P-this subroutine can open the main
file and prepare to read record number P:

560 PRINT D$; "READ"; FILE$;", R"; P

(The name of the main file is stored in the string variable
FILE$; see line 30.) The data items of that record are then
read :

570 INPUT T$, L$, F$, S

Display the Revision Menu (subroutine at line 600). This subrou­
tine displays the record on the screen (using the variables T$,
L$, F$, and S) and presents the revision menu . It also reads the
menu choice. If you enter a zero, indicating no revision, con­
trol returns to the main program via two POPs and a GOTO:

820 IF C$ = "0" THEN POP : POP : GOTO 40

(Two POP commands are required because this subroutine is
twice removed from the main program.) If the menu choice is 1
or 2, however, an ON/GOSUB statement sends control of the
program down to one of the revision subroutines:

830 ON VAL(C$) GOSUB 850,950

Change in Status (subroutine at line 850). This subroutine con­
ducts the input dialogue for a change in employee status, and
calls the subroutine that reads a new salary.

Change in Salary (subroutine at line 950) . This subroutine con­
ducts the dialogue for a change in the employee's salary.

Save the Revision (subroutine at line 1050). This final subroutine
is called from the main program section when the revision dia­
logue for a given record is complete. The subroutine opens the
main file and prepares to write a new record at position P:

1100 PRINT D$; "WRITE"; FILE$"; R"; P

244 WRITE

Recall that P still stores the record number of the record that
has been revised . The four fields of the record, one or two of
them containing new values, are written back to the file :

111 0 PRINT T$: PRINT L$
1120 PRINT F$: PRINT S

Finally, the main file is closed, control returns to the main pro­
gram , and the dialogue continues .

To see how this process works , you can run the revision program and
revise a few of the records . Then run the random-access file READ pro­
gram (described under the heading READ; Figure R.3) . If everything
worked correctly, you will see your revisions in the table created by the
READ program.

Notes and Comments __________________ _

The WRITE command also allows the optional B parameter,
which specifies a byte in the data file where writing will begin .
For example, the following sequential WRITE operation
would begin at byte 5 offile F :

WRITE F, 85

The following random-access file WRITE operation would
begin at byte 5 of record 4:

WRITE F, R4, 85

The first byte in a sequential file or in a random-access file
record is numbered 0.

In some data files, you may wish to separate fields by using the
comma character rather than the RETURN character. Like
RETURN, a comma that is actually written to the file will
serve as a field delimiter. The following program lines illustrate
one technique for separating fields by commas; notice that the
first line of this sequence assigns the comma character to the
string variable C$. Line 40 then uses C$ to separate the fields :

10 LET C$ = ",":LET D$ = CHR$(4)
20 PRINT D$; "OPEN"; FILE$
30 PRINT D$; "WRITE"; FILE$
40 PRINT V1; C$; V2; C$; V3
50 PRINT D$; "CLOSE"; FILE$

WRITE 245

The process of reading the fields of this file is identical to the
sequential read programs that ap~ear elsewhere in this book:

10 LET D$ = CHR$(4)
20 PRINT D$; "OPEN"; FILE$
30 PRINT D$; "READ"; FILE$
40 INPUT V1, V2, V3
50 PRINT D$; "CLOSE"; FILE$

246

XDRAW (graphics command; Applesoft BASIC) ______ _

The XDRAW command, like DRAW, displays a high-resolution graph­
ics shape on the screen; it "reads" this shape from a shape table that you
prepare and store at a specified location in the computer's memory. (See
DRAW.) XDRAW takes the form:

XDRAW N

or:

XDRAW N AT X,Y

where N is the number of the shape, and X and Y are the horizontal and
vertical screen coordinates of the shape's starting point. XDRAW draws
the shape in the "complement" of the current color, as specified by an
HCOLOR statement. If X and Y are not present in the XDRAW com­
mand, the shape is drawn starting at the last point previously plotted on the
high-resolution screen. You can experiment with the XDRAW command
using the sample program shown under the heading DRAW.

Not€s and Comments __________________ _

In principle, XDRAW should be an ideal command for " eras­
ing" a shape from the screen. However, see the " Notes and
Comments" section under the heading STEP for some practi­
cal observations.

248

INDEX

This index provides a cross-referencing tool for each word in the BASIC
vocabulary. You will, of course, find the most complete coverage of any
given word under the word's own entry (page numbers shown here in
boldface type); however, in many cases you will discover additional
insights and examples under other entries. The purpose of this index, then,
is to help you locate additional information about any word that you may
want to study in detail.

ABS, 1-2
AND, 4-7, 113 , 138, 146, 155-56
APPEND, 8-10, 231-45
ASC, 12-13,85-86,163,229
AT, 13-15, 31
ATN, 15-17,35
AUTO, 16-17

BLOAD, 19-20, 50
BRUN, 20
BSAVE, 19,20-21,50

CALL, 20, 23-24, 107, 140 , 157,
220-21

CATALOG, 24, 71-72, 76, 125, 135-
36

CHAIN, 24-25
CHR$, 12 , 24 , 25-26, 49, 71 , 152 ,

154, 158, 170, 205
CLEAR, 26-28, 48
CLOSE, 28-29
CLR, 29-30, 48
COLOR, 30-32, 100, 160, 195-96
CON, 33
CONT, 33
COS, 33-35, 199, 217

DATA, 21,31,36-37,43-45,50, 65-
66, 76, 134, 173, 182 , 234 , 236-38

DEF FN, 18 , 37-39, 77, 97 , 124-25
DEL, 39
DELETE, 40, 135, 235
DIM, 26 , 29, 40-48, 108-9, 120 ,

176, 186-88
DRAW, 13, 14, 19, 21, 37, 50-67,

101 , 102-3, 190, 193-95, 197-98,
203-5 , 222-23, 246

DSP, 67-68, 145

END, 33, 43-44, 69, 206
EXEC , 28 , 70-73, 154
EXP, 73-74

FLASH, 76-77, 146, 170
FN, 38-39, 77-78, 97
FOR, 18, 31 , 34, 41-44, 67 , 72 , 78-

82, 110-11, 144-45, 158 , 176,
178-179, 186-188, 201-6 , 218 ,
230

FP, 82, 101
FRE, 82, 106

GET, 84-87, 180

GOSUB, 43-44, 87-95, 148-149 ,
164, 183 , 196-97, 207, 212, 225-
26

GOTO, 18, 28, 68, 95-99, 11 5, 148-
49, 150, 218, 243

GR, 31, 99-100, 160, 195-96, 217,
228

HCOLOR, 51, 101-2, 108-10,204-
5, 246

HGR, 50, 101, 102-3,217,228
HGR2, 50, 101 , 102 , 103-5 , 217
HIMEM, 105-6, 139
HLIN, 15, 31, 100, 106
HOME, 23, 35, 100, 106-7
HPLOT, 37, 43, 101, 102-3, 108-

12, 203-4
HTAB, 35, 85-86, 112, 132, 170,

214, 228-29

IF, 5-7, 96-99, 113-17, 138, 146 ,
148-49, 155-56, 197, 218, 224-25

IN#, 118
!NIT, 118, 155
INPUT, 45, 76, 84, 119-23 , 125,

151-53, 174, 177-80, 233
!NT (system command), 29, 123,

185-180
INT (function) , 77, 123- 25, 142, 149
INVERSE, 125, 146, 170

LEFTS, 33, 126-29, 141, 183
LEN, 92, 129-30, 162
LET, 3, 33, 37, 78, 97, 111, 130-32,

134, 220, 244-45
LIST, 76, 125, 133-34, 163
LOAD, 135, 141
LOCK, 24, 40, 135-36, 182, 193,

219
LOG, 136-38
LOMEM, 105, 139, 158

MAN, 140
MAXFILES, 140-41
MID$, 141, 163, 183,209-11 ,224

Index 249

MOD, 142
MON, 142-43, 145

NEW, 27, 101, 144
NEXT, 78, 144-45
NO DSP, 68, 145
NO MON, 143, 145
NORMAL, 76, 125 , 146, 170
NOT, 113,127,138,146-47,155-56
NO TRACE, 147, 218

ON, 56, 88, 93, 99, 148-49, 196-97,
225-26, 243

ONERR, 69, 149-53, 159, 183
OPEN, 8-10, 49, 70-71, 153-55,

174, 177 ,23 1-45
OR, 7, 113 , 127 , 138 , 146, 155-56

PDL, 157
PEEK, 150-152 , 157-159, 162
PLOT, 31, 100, 160-61, 195-96
POKE, 21, 37, 50, 64-65 , 67, 100,

104-5, 140 , 157, 161-64, 198 ,
203-4, 220, 222-23

POP, 95, 164, 183 , 243
POS, 164
POSITION, 154, 164-67
PR#, 167
PRINT, 3, 10, 38-39, 49, 70 , 76, 97,

100, 125, 134, 154, 167-71, 174,
176-179, 183,200,205,213-14,
220, 231-45

READ (command word), 21 , 31 , 36-
37' 43-45, 50, 65, 76, 173-74,
234

READ (DOS command), 9-10, 136,
153-154, 165-167 , 174-80, 182

RECALL, 181, 197-198, 207
REM, 95, 158-159, 162 , 181
RENAME, 136, 182
RESTORE, 37, 173 , 182, 238
RESUME, 150, 152, 182
RETURN, 87 , 164, 183, 207

250 Index

RIGHT$, 141 , 183
RND, 1-2 ,27, 77, 115, 160, 183-90
ROT, 51, 190-91
RUN, 24, 27, 68, 101, 136, 191-92

SAVE, 135 , 193
SCALE, 51, 190, 193-95, 203-4
SCRN, 195-96
SGN, 196-97
SHLOAD, 197-98
SIN ,35, 198-200,217
SPC , 200
SPEED, 200-1
SQR,201
STEP, 37, 80, 82, 201-6, 218
STOP, 33, 69, 152, 206-7
STORE, 181 , 197-98 , 207
STR$, 141 , 208-12

TAB (function), 35, 81, 129-130, 169,
213-214

TAB (command word), 35, 214-15
TAN, 35, 199, 215-17
TEXT, 100, 101, 104, 217
THEN, 113,218
TO, 78, 201-6, 218
TRACE, 147 , 218

UNLOCK, 24, 40, 136, 219
USR, 24, 140, 157 , 220-21

VAL, 65, 85-86, 93, 222-26, 243
VERIFY, 227
VLIN, 15 , 31, 100, 228
VTAB, 35, 81, 85-86, 94, 97, 100,

112, 132, 170,214,218-29

WAIT, 230
WRITE, 70-71, 136, 153-54, 165-

67, 231-45

XDRAW, 13 , 51, 101, 190, 193 , 246

The SYBEX Library

INTRODUCTION TO COMPUTERS

DON'T (or How to Care for Your Computer)
by Rodnay Zaks 214 pp., 100 illustr., Ref. 0-065
The correct way to handle and care for all elements of a computer sys­
tem, including what to do when something doesn't work.

YOUR FIRST COMPUTER
by Rodnay Zaks 258 pp., 150 illustr., Ref. 0-045
The most popular introduction to small computers and their peripherals:
what they do and how to buy one.

INTERNATIONAL MICROCOMPUTER DICTIONARY
120 pp., Ref. 0-067
All the definitions and acronyms of microcomputer jargon defined in a
handy pocket-size edition. Includes translations of the most popular
terms into ten languages.

FROM CHIPS TO SYSTEMS:
AN INTRODUCTION TO MICROPROCESSORS
by Rodnay Zaks 552 pp., 400 illustr., Ref. 0-063
A simple and comprehensive introduction to microprocessors from both
a hardware and software standpoint: what they are, how they operate,
how to assemble them into a complete system.

FOR YOUR APPLE

THE EASY GUIDE TO YOUR APPLE II®
by Joseph Kascmer 160 pp. , illustr. , Ref. 0-0122
A friendly introduction to using the Apple II, II plus, and the new lie.

BASIC EXERCISES FOR THE APPLE®
by J.P. Lamoitier 250 pp. , 90 illustr., Ref. 0-084
Teaches Apple BASIC through actual practice, using graduated exer­
cises drawn from everyday applications.

APPLE II® BASIC PROGRAMS IN MINUTES
by Stanley R. Trost 150 pp., illustr., Ref. 0-121
A collection of ready-to-run programs for financial calculations, invest­
ment analysis, record keeping, and many more home and office applica­
tions. These programs can be entered on your Apple II plus or lie in
minutes!

YOUR FIRST APPLE II® PROGRAM
by Rodnay Zaks 150 pp. illustr., Ref. 0-136
A fully illustrated, easy-to-use introduction to APPLE BASIC program­
ming. Will have the reader programming in a matter of hours.

THE APPLE CONNECTION
by James W. Coffron 264 pp., 120 illustr., Ref. 0-085
Teaches elementary interfacing and BASIC programming of the Apple
for connection to external devices and household appliances.

BUSINESS & PROFESSIONAL

COMPUTER POWER FOR YOUR LAW OFFICE
by Daniel Remer 225 pp., Ref. 0-109
How to use computers to reach peak productivity in your law office, sim­
ply and inexpensively.

INTRODUCTION TO WORD PROCESSING
by Hal Glatzer 205 pp., 140 illustr., Ref. 0-076
Explains in plain language what a word processor can do, how it
improves productivity, how to use a word processor and how to buy one
wisely.

BASIC

YOUR FIRST BASIC PROGRAM
by Rodnay Zaks 150pp. illustr. in color, Ref. 0-129
A "how-to-program" book for the first time computer user, aged 8 to 88.

FIFTY BASIC EXERCISES
by J.P. Lamoitier 232 pp., 90 illustr., Ref. 0-056
Teaches BASIC by actual practice, using graduated exercises drawn
from everyday applications. All programs written in Microsoft BASIC.

INSIDE BASIC GAMES
by Richard Mateosian 348 pp. , 120 illustr., Ref. 0-055
Teaches interactive BASIC programming through games. Games are
written in Microsoft BASIC and can run on the TRS-80, Apple II and
PET/CBM.

FOR A COMPLETE CATALOG
OF OUR PUBLICATIONS

U.S.A.
SYBEX, Inc.
2344 Sixth Street
Berkeley,
California 94710
Tel: (800) 227-2346

(415)848-8233
Telex: 336311

FRANCE
SYBEX
4 Place Felix-Eboue
75583 Paris Cedex 12
France
Tel: 1/347-30-20
Telex: 211801

GERMANY
SYBEX-VERLAG
Heyestr. 22
4000 Dusseldorf 12
West Germany
Tel: (0211) 287066
Telex: 08 588163

THE
APPLE II
BASIC

D-
BOOK~~
This handy, computer-side reference will make programming your Apple II, II+ , or lie
easier, whether you 're an experienced programmer or a first-time user.
This unique book lists and explains, alphabetically, the entire Applesoft and Integer
BASIC vocabularies. All of the DOS commands are included along with many of the

most important and commonly-used computer terms.

Practical explanations include special tips and suggestions for using the BASIC vocabu­
lary to make programming as simple and efficient as possible.
Learn the best way to use:

- FOR/NEXT Loops

- IFffHEN Decisions

Sample programs show you what each command does, and give you practice using
them in their proper syntax.
One of the most exciting aspects of this book is the easy-to-follow discussion of the
DRAW command and the Apple's powerful graphics package. Use your Apple II to create
interesting and useful graphic displays!

This book makes it easy to program your Apple computer for a multitude of convenient
and exciting home and office tasks.

ABOUT THE AUTHOR:

Douglas Hergert is a freelance writer. He is the author of the SYBEX publications Your
Timex/Sinclair 1000 and ZX81, The Timex/Sinclair 1000 BASIC Handbook, BASIC {or
Business, and Mastering VisiCalc; coauthor of Apple Pascal Games and Doing Business
with Pascal; and the translator of X.T. Bui's Executive Planning with BASIC.

ISBN 0-89588-115-2

