Microsoft.
- BASIC Interpreter

for Premium SoftCarde IIe System
for Apples Ile

Reference Manual

Microsoft Corporation

Information in this document is subject to change without notice and does
not represent a commitment on the part of Microsoft Corporation. The
software described in this document is furnished under a license agree-
ment or nondisclosure agreement. The software may be used or copied
only in accordance with the terms of the agreement. It is against the law
to copy Microsoft BASIC Interpreter on magnetic tape, disk, or any other
medium for any purpose other than the purchaser’s personal use.

eCopyright Microsoft Corporation, 1981, 1982, 1983

Comments about this documentation may be sent to:

Microsoft Corporation
Microsoft Building
10700 Northup Way
Bellevue, WA 98004

Microsoft is a registered trademark of Microsoft Corporation.
SoftCard is a registered trademark of Microsoft Corporation.
CP/M is a registered trademark of Digital Research, Inc.

Apple is a registered trademark and the Apple logo is a trademark of Apple
Computer, Inc.

Intel is a trademark of Intel Corporation.

Document Number 8101A-527-00

ii

Contents

Introduction 1

1.1 How to Use This Manual 4
1.2 Syntax Notation 6
1.3 Resources for Learning BASIC 8

General Information
about Microsoft BASIC 9

2.1 Initialization 11
2.2 Operational Modes 13
2.3 Screen Display Modes 14
2.4 CP/M File Naming Conventions 15
2.5 Line Format 17
2.6 Character Set 18
2.7 Reserved Words 21
2.8 Constants 21
2.9 Variables 23
2.10 Type Conversion 27
2.11 Expressions and Operators 29
2.12 Input Editing 37
2.13 Error Messages 38

Microsoft BASIC
Commands and Statements 39

3.1 AUTO 42 3.9 CONT 50

3.2 BEEP 42 3.10 DATA 51

3.3 CALL 43 3.11 DEFFN 53

34 CHAIN 44 3.12 DEFINT/SNG/DBL
35 CLEAR 47 ISTR 54

3.6 CLOSE 48 3.13 DEFUSR 55
3.7 COLOR 49 3.14 DELETE 56

3.8 COMMON 50 3.15 DIM 56

iii

Contents

iv

3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24

3.25
3.26
3.27
3.28
3.29
3.30

3.31
3.32
3.33
3.34
3.35
3.36
3.37

3.38
3.39
3.40
3.41

3.42

3.43
3.44
3.45
3.46
3.47
3.48

EDIT 57
END 62
ERASE 63
ERROR 63
FIELD 65
FILES 68
FOR..NEXT 68
GET 71
GOSUB...
RETURN 72
GOTO 73
GR 74

HLIN 75
HOME 76
HTAB 77

IF.. THENI...ELSE]
IF..GOTO 177
INPUT 80
INPUT# 81
INVERSE 83
KILL 83
LET 84
LINE INPUT 85
LINE

INPUT# 86
LIST 87
LLIST 88
LOAD 89
LPRINT and
LPRINT
USING 90
LSET AND
RSET 90
MERGE 91
MID$ 92
NAME 93
NEW 93
NORMAL 94
ON ERROR
GOTO 94

3.49

3.50
3.51

3.52
3.53
3.54
3.55
3.56

3.57

3.58
3.59
3.60
3.61
3.62
3.63
3.64
3.65
3.66
3.67
3.68
3.69
3.70
3.71
3.712

3.73
3.74
3.75
3.76

3.77
3.78
3.79

ON...GOSUB and
ON...GOTO 95

OPEN 96
OPTION

BASE 97
PLOT 98
POKE 99
POP 99
PRINT 100
PRINT

USING 103
PRINT# and *
PRINT#

USING 108
PUT 111
RANDOMIZE 111
READ 113
REM 114
RENUM 115
RESET 117
RESTORE 117
RESUME 118
RUN 119
SAVE 120
STOP 121
SWAP 122
SYSTEM 122
TEXT 123
TRACE/
NOTRACE 123
VLIN 124
VTAB 125
WAIT 126
WHILE...
WEND 127
WIDTH 128
WRITE 129
WRITE# 130

Contents

4 Microsoft BASIC Functions 131

4.1 ABS 134 4.25 LPOS 147
4.2 ASC 134 4.26 MIDS$ 148
4.3 ATN 135 4.27 MKIS,
4.4 BUTTON 135 MKS$, MKD$ 148
4.5 CDBL 136 4.28 OCT$ 149
4.6 CHRS$ 136 4.29 PDL 150
4.7 CINT 137 4.30 PEEK 150
4.8 COS 137 4.31 POS 151
4.9 CSNG 138 4.32 RIGHTS 151
4.10 CV], 4.33 RND 152
CVSs, CVD 138 4.34 SCRN 152
4.11 EOF 139 4.35 SGN 153
412 EXP 139 4.36 SIN 153
4.13 FIX 140 4.37 SPACES$ 154
4.14 FRE 141 4.38 SPC 154
4.15 HEXS 142 4.39 SQR 155
4.16 INKEY$ 142 4.40 STRS$ 155
4.17 INPUTS$ 143 4.41 STRINGS$ 156
4.18 INSTR 144 4.42 TAB 156
4.19 INT 144 4.43 TAN 157
4.20 LEFTS 145 4.44 USR 157
4.21 LEN 145 4.45 VAL 158
4.22 LOC 146 4.46 VARPTR 159
4.23 LOF 146 4.47 VPOS 161

4.24 LOG 147

5 High-Resolution Graphics 163

5.1 Differences Between High-Resolution
and Low- Resolution Graphics 165

5.2 Sample Program 167

5.3 HGR 167

5.4 HCOLOR 169

5.5 HPLOT 170

5.6 HSCRN 171

Contents

Appendix A Microsoft BASIC and Applesoft:
A Comparison 175

A.1 Features of Microsoft BASIC Not Found in —
Applesoft 175
A.2 Applesoft Features Supported by Microsoft

BASIC 178
A.3 Applesoft Features Used Differently in Microsoft
BASIC 179

A.4 Applesoft Features Not Supported 180

Appendix B Differences Between
Microsoft BASIC Interpreter
Release 5.27 and Earlier
Releases 181

B.1 Microsoft BASIC 5.27 Features 181

Appendix C Converting Programs
to Microsoft BASIC 185

C.1 String Dimensions 185
C.2 Multiple Assignments 186
C.3 Multiple Statements 186
C.4 MAT Functions 186

Appendix D Microsoft BASIC Disk 1’0 187

D.1 Program File Commands 187

D.2 Protecting Files 189

D.3 Disk Data Files: Sequential and Random
Access I/0 189

N

vi

Contents

Appendix E Microsoft BASIC Assembly
Language Subroutines 201

E.1 Memory Allocation 201
E.2 USR Function Calls 202
E.3 CALL Statement 204

Appendix F Mathematical Functions 209

Appendix G Microsoft BASIC Floating-Point
Numeric Format 211

G.1 Encoding an Integral
Floating-Point Number 211

G.2 Decoding an Integral
Floating-Point Number 214

~ G.3 Decoding a Fractional
Floating-Point Number 215

Appendix H ASCII Character Codes 217

Appendix I Microsoft BASIC
Reserved Words 219

Appendix J Error Codes
and Error Messages 221

Index 227

vii

Chapter 1
. Introduction

1.1 How to Use This Manual 4
1.2 Syntax Notation 6
1.3 Resources for Learning BASIC

Chapter 1
Introduction

Microsofte BASIC Interpreter Release 5.27 is the most exten-
sive implementation of BASIC available for microprocessors. It
meets the requirements for the ANSI subset standard for BASIC,
and supports many features rarely found in other BASIC inter-
preters. In addition, Microsoft BASIC Interpreter has sophi-
sticated string-handling and structured programming features
that are especially suited for application development. And
Microsoft BASIC Interpreter is compatible with Microsoft BASIC
Compiler. Microsoft BASIC Interpreter gives users what they
want from BASIC — ease of use, plus the features that make a
microcomputer perform like a minicomputer or large mainframe.

In 1975, Microsoft wrote the first BASIC interpreter for micro-
computers. Today, Microsoft BASIC Interpreter has over 750,000
installations in over 20 operating environments. It’s the BASIC
you will find on all of the most popular microcomputers. Many
users, manufacturers, and software vendors have written applica-
tion programs in Microsoft BASIC. Standard Microsoft BASIC
Interpreter features include:

16-digit precision: Three variable types (fast two-byte true in-
teger variables, single precision variables, and double preci-
sion variables) provide 16-digit precision.

EDIT commands: Extensive editing commands let you edit
individual program lines easily and efficiently, without reenter-
ing the entire line.

Built-in disk I/0O statements: Provide fast and powerful disk
I/O access.

PRINT USING: Greatly enhances programming convenience
by making it easy to format output. Includes asterisk fill,
floating dollar sign, scientific notation, trailing sign, and com-
ma insertion.

Microsoft BASIC Interpreter Reference Manual

WHILE/WEND: Gives BASIC a more structured organiza-
tion. By putting a WHILE statement in front of and a WEND
statement at the end of a loop, you can continuously execute
the loop as long as a given condition is true.

AUTO and RENUM: AUTO generates a line number
automatically after every carriage return. RENUM automati-
cally renumbers lines in user-specified increments.

CHAIN and COMMON: Call in another BASIC program from
disk and pass variables to it.

IF..THENL...ELSE] Extends the IF statement to provide for
the negative case of IF.

Added operators: Microsoft BASIC provides AND, OR, XOR,
EQV, IMP, and NOT.

Expanded user-defined functions: Can have multiple
parameters.

1.1 How to Use this Manual

This manual has been specially prepared for use with Microsoft
BASIC Interpreter Release 5.27, which is included in your
Microsoft Premium SoftCardm ITe package. It serves as both a
user’s guide and a technical reference, documenting both general
information and detailed descriptions of Microsoft BASIC com-
mands, statements, and functions.

This manual is not intended as a tutorial on BASIC. It is as-
sumed that you have a working knowledge of the BASIC lan-
guage. If you need more information on BASIC programming,
refer to Section 1.3, “Resources for Learning BASIC.”

.

Introduction

This manual contains the following information:

Chapter 1 Introduction

Provides a brief description of the contents of this manual
and the notation used in describing BASIC language syn-
tax. Also includes a list of references for learning BASIC
programming.

Chapter 2 General Information
about Microsoft BASIC Interpreter

Explains how to get Microsoft BASIC up and running.

Also briefly describes modes of operation, program format,

special characters, data representation, and input editing.
Chapter 3 Microsoft BASIC Commands and Statements

Describes Microsoft BASIC commands and statements.

Chapter 4 Microsoft BASIC Functions
Describes Microsoft BASIC functions.

Chapter 5 High-Resolution Graphics:
Describes Microsoft GBASIC high-resolution graphic
statements and commands.
Appendix A Microsoft BASIC Interpreter and
Applesoft: A Comparison
Compares Microsoft BASIC Interpreter with Applesofte
BASIC.
Appendix B Differences Between Microsoft BASIC Inter-
preter 5.27 and Earlier Releases

Describes the features that are new to Microsoft BASIC
in Release 5.27 and how BASIC Release 5.27 differs from
previous releases.

Appendix C Converting Programs to Microsoft BASIC

Shows how to convert a program written in another
BASIC to Microsoft BASIC.

Microsoft BASIC Interpreter Reference Manual

Appendix D Microsoft BASIC Disk I/0
Explains disk I/O procedures for the user who is unfamiliar
with disk I/O conventions and routines.
Appendix E Microsoft BASIC Assembly Language
Subroutines
Discusses how to interface to assembly language sub-
routines with the USR function and the CALL statement.
Appendix F Mathematical Functions
Provides a set of formulas for math functions that are not
built into Microsoft BASIC Interpreter.
Appendix G Microsoft BASIC Floating-Point
Representation
Discusses how Microsoft BASIC handles floating-point
operations.
Appendix H ASCII Character Codes
Lists the values of the ASCII character set.

Appendix I Microsoft BASIC Reserved Words
Lists Microsoft BASIC reserved words.

Appendix J Error Codes and Error Messages

Presents a detailed description of all the error messages
in Microsoft BASIC and their possible causes.

1.2 Syntax Notation

Every language must be learned before it can be used. In this
manual, special notation has been developed to show the dif-
ferences in what you enter on the keyboard and what you see on
the display screen. Examples of use are given at the end of this
section.

i}

CAPS

Introduction

Angle brackets indicate information that you en-
ter. Angle brackets that enclose lowercase text are
for entries that you must supply, such as a
< filename >.

Square brackets indicate that the enclosed entry is
optional. The same rules about uppercase and lower-
case text also apply.

Braces indicate a choice between two or more en-
tries. At least one of the entries enclosed in braces
must be chosen, unless the entries are also enclosed
in square brackets.

Vertical bars separate choices within braces.

Ellipses indicate that an entry can be repeated as
many times as needed or desired.

Capital letters indicate portions of statements or
commands that must be entered exactly as shown.

All other punctuation, such as commas, colons, slash marks, and
equal signs, must be entered exactly as shown.

Examples

Command Line Explanation

SAVE <filespec> [{A|P}]

A

These two entries are optional as

L indicated by the square brackets.
They also must be typed in as
shown. The braces indicate that
you must enter either the /A or the
/P entry.

The lowercase filespec means you
must supply the file specification
(disk drive, filename and exten-
sion).

Capital letters indicate that the

word must be entered exactly as
shown.

Microsoft BASIC Interpreter Reference Manual

1.3 Resources for Learning BASIC

This manual provides complete instructions for using Microsoft
BASIC Interpreter. However, no teaching material for BASIC
programming has been provided. If you are new to BASIC or need
help in learning programming, we suggest you read one of the
following:

Albrecht, Robert L., Finkel, LeRoy, and Brown, Jerry. BASIC.
New York: Wiley Interscience, 2nd ed., 1978.

Billings, Karen and Moursund, David. Are You Computer
Literate? Beaverton, Oregon: Dilithium Press, 1979.

Coan, James. Basic BASIC. Rochelle Park, N.J.: Hayden Book
Company, 1978.

Dwyer, Thomas A. and Critchfield, Margot. BASIC and the Per-
sonal Computer. Reading, Mass.: Addison-Wesley Publishing Co.,
1978.

Simon, David E. BASIC From the Ground Up. Rochelle Park,
N.J.: Hayden Book Company, 1978.

Chapter 2

General Information
about Microsoft BASIC

2.1 Initialization 11

2.2 Operational Modes 13

2.3 Screen Display Modes 14

2.4 CP/M File Naming Conventions 15
2.4.1 Filename 15
2.4.2 Filename Extension 16
2.4.3 Disk Drive Identifier 17

2.5 Line Format 17

2.6 Character Set 18

2.7 Reserved Words 21

2.8 Constants 21

2.9 Variables 23
2.9.1 Variable Names 24
2.9.2 Declaring Variable Types 24
2.9.3 Array Variables 26
2.9.4 ERR and ERL Variables 26

2.10 Type Conversion 27

2.11 Expressions and Operators 29
2.11.1 Arithmetic Operators 29
2.11.2 Relational Operators 32
2.11.3 Logical Operators 33
2.11.4 Functional Operators 36
2.11.5 String Operators 36

2.12 Input Editing 37

2.13 Error Messages 38

Chapter 2

General Information
about Microsoft BASIC

GBASIC (file GBASIC.COM) is the CP/Me version of Microsoft
BASIC Interpreter which includes all standard Applesoft ex-
tensions including high-resolution graphics. This file can be found
on the SoftCard Master disk.

2.1 Initialization

To load and run GBASIC, bring up CP/M and wait for the A >
prompt. Once the prompt appears, type the following:

GBASIC <RETURN>
The system will reply:

BASIC-80 REV 5.27
(SOFTCARD //le CP/M VERSION)
COPYRIGHT 1983 (C) BY MICROSOFT

CREATED: DD-MM-YY
xxxxx BYTES FREE

This sets the number of files that can be open at one time during
execution of a BASIC program to three. It also sets the maximum
record size at 128 bytes and allows the use of all RAM memory
up to the start of FDOS (an arbitrary area in memory set by
CP/M).

11

Microsoft BASIC Interpreter Reference Manual

If you wish to change the memory configuration, the following
command line format can be used for initialization in place of the
simple GBASIC command.

GBASIC [<filespec >][/F: <number of files>]
[/M: < highest memory location >][/S: <maximum record size>]

The < filespec> option allows you to run a program after initializa-
tion is complete. < filespec> consists of a filename and optional
filename extension. A default extension of .BAS is used if none
is supplied and the filename is less than nine characters long. This
allows BASIC programs to be executed in batch mode using the
CP/M SUBMIT transient program. Such programs should include
a SYSTEM statement (see Section 3.70) to induce return to CP/M
command level when they have finished and allow the next pro-
gram in the batch stream to execute.

The /F: <number of files> option sets the number of disk files that
can be open at any one time during the execution of a BASIC pro-
gram. Each file data block allocated in this fashion requires 166
bytes plus 128 bytes (or the number specified in the /S: option)
of memory. If the /F option is omitted, the number of files defaults
to 3. The <number of files> can be entered in decimal form
(default condition), octal form (preceded by an &O), or hexadecimal
form (preceded by an &H).

The /M:<highest memory location> option sets the highest
memory location that will be used by GBASIC. In some cases,
it is desirable to set the amount of memory well below the FDOS

area to reserve space for assembly language subroutines. In all
cases, <highest memory location> should be set below the start

of FDOS (whose address is contained in locations 6 and 7). If the
/M option is omitted, all memory up to the start of FDOS is used.

The /S: < maximum record size > option sets the maximum record
size for use with random access files. Any whole number can be
specified, including numbers larger than 128 (the default record
size).

12

General Information

Here are a few examples of initialization options:

A>GBASIC PAYROLL.BAS Use all memory and three files,
load and execute

PAYROLL.BAS.
A>GBASIC INVENT/F:6 Use all memory and six files, load
and execute INVENT.BAS.
A>GBASIC /M:32768 Use the first 32K bytes of

memory and three files.

A>GBASIC DATACK/F:2/M: &H9000

Use the first 36K bytes of
memory, two files, and execute
DATACK.BAS.

To return to CP/M, use the SYSTEM command. SYSTEM closes
all files and then performs a CP/M warm start (reboots CP/M).
See Section 3.70, “SYSTEM.”

2.2 Operational Modes

When Microsoft BASIC is initialized, the prompt “Ok” is
displayed. “Ok” means BASIC is at command level; that is, it is
ready to accept commands. At this point, Microsoft BASIC can
be used in either of two modes: direct mode or indirect mode.

In direct mode, BASIC statements and commands are not pre-
ceded by line numbers; they are executed as they are entered.
Results of arithmetic and logical operations are displayed im-
mediately and stored for later use, but the instructions themselves
are lost after execution. This mode is useful for debugging and
for using BASIC as a “calculator” for quick computations that
do not require a complete program.

Indirect mode is used for entering programs. Program lines are

preceded by line numbers and are stored in memory. The program
stored in memory is executed by entering the RUN command.

13

Microsoft BASIC Interpreter Reference Manual

2.3 Screen Display Modes

There are four screen display modes in Microsoft BASIC:

Text display mode

Low-resolution graphics display mode
Mixed text display mode
High-resolution graphics display mode

The text display mode is the default screen display mode whenever
you initialize BASIC. In this mode, BASIC displays only text
characters on the screen.

Low-resolution graphics display mode allows graphics plotting on
a screen grid measuring 40 rows by 48 columns (40x48). No text
(ASCII) characters can be used. BASIC enters this mode through
the GR command. The TEXT command returns BASIC to text
display mode.

Mixed text display mode allows display of both graphics and text.
Low-resolution graphics can be plotted on a 40x40 screen grid
starting at the top of the screen. The bottom four screen lines are
for reserved text entry. BASIC enters mixed text display mode
by setting GR command to zero. The TEXT command returns
BASIC to text display mode.

High-resolution graphics (GBASIC) mode allows graphics plotting
on a 280x192 screen grid. No text (ASCII) characters can be used.
High-resolution graphics mode is initiated by setting the HGR
command to either 1 or 3. The TEXT command returns BASIC
to text display mode.

14

General Information

2.4 CP/M File Naming Conventions

CP/M disk files are described by their file specifications or
filespecs, for short. Filespecs are string expressions with the
format:

[drive identifier:] <filename >[.filename extension]

The drive identifier option tells CP/M where to look for the file.
< filename > tells CP/M which file to look for. The filename ex-
tension option is a label that tells CP/M what type of file it is.
<filename> is the only required argument. Each of these
arguments is described in the following sections.

2.4.1 Filename

CP/M filenames can be from one to eight characters in length,
and can consist of either uppercase or lowercase alphanumeric
characters, or a combination of both. However, if you use lower-
case letters in a filename, the CP/M built-in command ERA will
not recognize the filename. CP/M also does not recognize filenames
longer than eight characters.

Examples of valid filenames:
PAYROLL ACNT4 A2400 Barb

Certain special characters cannot be used as filenames. These
characters are:

In addition, no CONTROL characters can be used as filenames.

15

Microsoft BASIC Interpreter Reference Manual

2.4.2 Filename Extension

A filename extension identifies the type of a file. For example,
.ASM identifies an assembly language source file, whereas .BAS
identifies a BASIC program source file. Filename extensions in
CP/M consist of one to three characters and are preceded by a
period. The filename can be made up of letters or numeric
characters, or a combination of both. Most often, you will use one
of the extensions listed in Table 2.1.

Table 2.1. Filename Extensions

Extension Type

ASM Assembly language source file

.BAK Backup file

.BAS BASIC source file

.COM Command file

.COB COBOL source file

.DAT Data file

.DOC Text document file

.EXE Executable file

.FOR FORTRAN source file

.HEX Intel HEX format object code file

.LIB Library file

.MAC Macro assembler source file (usually a
subroutine used in assembly language
programs)

.OBJ Machine code (object file)

.PAS Pascal source file

.PRN Assembly language list file (PRINT file)

.REL Relocatable machine-code program file

TXT Text file

Although other extensions can be used, this table lists most of
the extensions you will use with CP/M.

The most common extension you will use is .BAS. .BAS is the
default extension for LOAD, SAVE, MERGE, and RUN com-
mands (if no other extension is given and the filename is less than
eight characters long).

Examples of filename extensions:

APPLE3.TXT ACCReciv.BAS PROGRAM.4 POLS.C12

16

General Information

2.4.3 Disk Drive Identifier

Disk drives are identified in CP/M by capital letters. The first drive
is the primary drive and is always identified by the letter A. Suc-
cessive drives are identified in alphabetical order.

Disk drive identifiers precede the filename, and consist of the iden-
tifying letter (A-F) and a colon (:). The colon separates the disk
drive identifier from the filename.

If no identifier is specified, CP/M searches the default drive (unless
otherwise specified, the default drive is always drive A:). For
example,

PROGRAM.BAS.

is assumed to be on a disk in drive A.:.

2.5 Line Format

Microsoft BASIC program lines have the following format:
nnnnn BASIC statement [: BASIC statement...] [comment]

Microsoft BASIC program lines always begin with a line number
(nnnnn) and end with a carriage return. A program line can con-
tain a maximum of 255 characters. More than one BASIC state-
ment can be placed on a line, but each must be separated from
the last by a colon.

Program lines are ended by pressing the <RETURN > key. It
is possible to extend a logical line over more than one physical
line by entering CONTROL-J near the end of a physical line.
CONTROL-J lets you continue typing a logical line on the next
physical line without entering < RETURN >. The line is not ter-
minated until you press <RETURN >.

Line numbers indicate the order in which the program lines are
stored in memory. They are also used as references in branching
and editing. Line numbers must be in the range 0 to 65529. A
period (.) can be used in EDIT, LIST, AUTO, and DELETE com-
mands to refer to the current line.

17

Microsoft BASIC Interpreter Reference Manual

2.6 Character Set

The Microsoft BASIC character set is composed of alphabetic,
numeric, and special characters. These are the only characters that
Microsoft BASIC recognizes. There are many other characters
which can be displayed or printed, but have no particular mean-
ing to Microsoft BASIC.

The Microsoft BASIC alphabetic characters include all the upper-
case and lowercase letters of the alphabet. Numeric characters are
the digits 0 through 9.

Table 2.2 lists the special characters and terminal keys that are
recognized by Microsoft BASIC.

18

General Information

Table 2.2. Microsoft BASIC Character Set

Character Name or Function

Blank

Equal sign or assignment symbol

Plus sign

Minus sign

Asterisk or multiplication symbol

Slash or division symbol

Up arrow or exponentiation symbol

Left parenthesis

Right parenthesis

Percent

Number (or pound) sign

Dollar sign

Exclamation point

Left bracket

Right bracket

Comma

Period or decimal point

Single quotation mark (apostrophe)

Semicolon

Colon

Ampersand

Question mark

Less than

Greater than

Backslash or integer division symbol

At-sign

_ Underscore

<ESCAPE > Escapes edit mode subcommands
(See Chapter 3)

<TAB> Moves print position to next tab stop
Tab stops are set at every eight columns

<RETURN > Terminates input of a line

‘HH-‘%*QQVA)*|+"

@ VAR

19

Microsoft BASIC Interpreter Reference Manual

Table 2.3 lists the CONTROL characters that are used in
Microsoft BASIC.

Table 2.3. Microsoft BASIC CONTROL Characters

CONTROL

Character Function

CONTROL-A Enters edit mode on the line being
typed.

CONTROL-B Backslash.

CONTROL-C Interrupts program execution and
returns to BASIC command level.

CONTROL-G Rings the bell (a beep from the
speaker) at the console.

CONTROL-H Backspace. Deletes the last character
typed. Same as the «— key.

CONTROL-I Tab. Tab stops are set at every
eight columns. Same as the —> key.

CONTROL-J Linefeed. Moves cursor to the next
physical line.

CONTROL-K Right square bracket.

CONTROL-O Halts program output while
execution continues. A second
CONTROL-O restarts output.

CONTROL-Q Resumes program execution after a
CONTROL-S has been executed.

CONTROL-R Redisplays the line that is
currently being typed.

CONTROL-S Suspends program execution.

CONTROL-U Deletes the line that is currently
being typed.

CONTROL-X Same as CONTROL-U.

CONTROL-Y Permits recovery after <RESET > has

been pressed.

20

General Information

2.7 Reserved Words

Reserved words are words that have special meaning in Microsoft
BASIC. They include all BASIC commands, statements, function
names, and operator names.

Always separate reserved words from data or other elements of
a BASIC statement with spaces or other special characters, as
allowed by the syntax. Reserved words cannot be used as variable
names.

A complete list of Microsoft BASIC reserved words is given in
Appendix I.

2.8 Constants

Constants are the actual values BASIC uses during program ex-
ecution. There are two types of constants: string and numeric.

A string constant is a sequence of up to 255 alphanumeric
characters enclosed in double quotation marks. Examples of string
constants:

“HELLO”
“$25,000.00”
“Number of Employees”

Numeric constants are positive or negative numbers. There are
five types of numeric constants:

Integer constants =~ Whole numbers between —32768 and
+32767. Integer constants do not con-
tain decimal points.

Fixed-point Positive or negative real numbers;
constants i.e., numbers that contain decimal
points.

21

Microsoft BASIC Interpreter Reference Manual

Floating-point Positive or negative numbers repre-

constants sented in exponential form (similar to
scientific notation). A floating-point
constant consists of an optionally
signed integer or fixed-point number
(the mantissa) followed by the letter E
and an optionally signed integer (the ex-
ponent). The allowable range for
floating-point constants is 107" to
1O+38.

Examples:

235.988E — 7 = .0000235988
2359E6 = 2359000000

(Double precision floating-point constants are denoted by the let-
ter D instead of E.)

Hex constants Hexadecimal numbers with the
prefix &H.

Examples:

&H76
&H32F

Octal constants Octal numbers with the prefix
&0 or &.

Examples:

&0347
&1234

Numeric constants can be either single precision or double preci-
sion numbers. Single precision numeric constants are stored with
6 digits of precision (plus the exponent) and printed with up to
6 digits of precision. Double precision numbers are stored with
16 digits of precision and printed with up to 16 digits of precision.

22

General Information

A single precision constant is any numeric constant that has one
of the following properties:

1. Seven or fewer digits
2. Exponential form denoted by E
3. A trailing exclamation point (!)

A double precision constant is any numeric constant that has one
of the following properties:

1. Eight or more digits
2. Exponential form denoted by D
3. A trailing number sign (#)

The following are examples of constants:

Single Precision Double Precision
46.8 345692811
—1.09E—-06 —1.09432D—-06
3489.0 3489.0#

22.5! 7654321.1234

Numeric constants in Microsoft BASIC cannot contain commas.

2.9 Variables

Variables represent values that are used in a program. As with
constants, there are two types of variables: numeric and string.
A numeric variable can only be assigned a value that is a number.
A string variable can only be assigned a character string value.
The value of the variable can be assigned by the user, or it can
be assigned as the result of calculations in the program. In either
case, the variable must always match the type of data that is
assigned to it.

Before a variable is assigned a value, its value is assumed to be
zero (numeric variables) or null (string variables).

23

Microsoft BASIC Interpreter Reference Manual

29.1 Variable Names

A Microsoft BASIC variable name can contain as many as 255
characters. Only the first 40 characters are significant. The
characters allowed in a variable name are letters, numbers, and
the decimal point. The first character in a variable name must be
a letter. Special type declaration characters are also allowed (see
Section 2.9.2).

A variable name cannot be a reserved word, but embedded re-
served words are allowed. If a variable begins with FN, it is as-
sumed to be a call to a user-defined function. (See “DEF FN,” in
Section 3.11, for more information on user-defined functions.)
A variable name cannot be a reserved word. For example,

10 LOG = 8
is illegal because LOG is a reserved word. Reserved words include
all Microsoft BASIC commands, statements, function names, and
operator names (see Appendix I).
2.9.2 Declaring Variable Types

Variable names can declare either a numeric value or a string value.

String variable names are written with a dollar sign ($) as the last
character. For example:

A$ = “SALES REPORT.”

The dollar sign is a variable type declaration character; that is,
it “declares” that the variable will represent a string.

Numeric variable names can declare integer, or single precision,
or double precision values. Computations with integer and single

24

General Information

precision variables are less accurate than those with double preci-
sion variables. However, you may want to declare a variable to
a lower precision type because:

1. Variables of higher precision take up more memory
space.

2. Arithmetic computation times are longer for higher preci-
sion numbers. A program with repeated calculations runs
faster with integer variables.

The type declaration characters for numeric variables and the

memory requirements (in bytes) for storing each variable type are
as follows.

Table 2.4. Variable Types

Declaration Variable Bytes

Character Type Required

% Integer 2

! Single precision 4

Double precision 8

$ String 3 bytes overhead plus the
present contents of the
string

The default type for a numeric variable is single precision.

Examples of Microsoft BASIC variable names:

Pl# Declares a double precision value
MINIMUM! Declares a single precision value
LIMIT% Declares an integer value

N$ Declares a string value

ABC Represents a single precision value

There is a second method by which variable types can be declared.
The Microsoft BASIC statements DEFINT, DEFSTR, DEFSNG,
and DEFDBL can be included in a program to declare the types
for certain variable names. These statements are described in
detail in Section 3.12,“DEFINT/SNG/DBL/STR.”

25

Microsoft BASIC Interpreter Reference Manual

2.9.3 Array Variables

An array is a group or table of values referenced by the same
variable name. The individual values in an array are called
elements. Array elements are variables also. They can be
used in any BASIC statement or function which uses variables.
Declaring the name and type of an array and setting the number
of elements in the array is known as dimensioning the array.

Each array element in an array is referenced by an array variable
that is subscripted with an integer or an integer expression. An
array variable name has as many subscripts as there are dimen-
sions in the array. For example, V(10) would reference a value in
a one-dimension array, T(1,4) would reference a value in a two-
dimension array, and so on. Note that the array variable T and
the variable T are not the same variable. The maximum number
of dimensions for an array is 255. The maximum number of
elements per dimension is 32767.

Array elements, like numeric variables, require a certain amount
of memory space, depending on the variable type. The memory
requirements for storing arrays are as follows.

Element Type Bytes

Integer two per element
Single Precision four per element
Double Precision eight per element

294 ERR and ERL Variables

When an error-handling routine is entered, the variable ERR con-
tains the error code for the error, and the variable ERL contains
the line number of the line in which the error was detected. The
ERR and ERL variables are usually used in IF..THEN
statements to direct program flow in the error trap routine.

26

General Information

If the statement that caused the error was a direct mode state-
ment, ERL will contain the line number 65535. To test if an error
occurred in a direct statement, use:

IF 65535 = ERL THEN ...

Otherwise, use:

IF ERR = error code THEN ...
IF ERL = line number THEN ...

If the line number is not given on the right side of the relational
operator, it will not be renumbered by RENUM. Because ERL and
ERR are reserved variables, neither may appear to the left of the
equal sign in a LET (assignment) statement. Microsoft BASIC
error codes are listed in Appendix J.

2.10 Type Conversion

When necessary, Microsoft BASIC will convert a numeric con-
stant from one type to another. The following rules and examples
should be kept in mind.

1.

If a numeric constant of one type is set equal to a numeric
variable of a different type, the numeric constant will be
stored as the type declared in the variable name. (If a
string variable is set equal to a numeric value or vice ver-
sa, a TYPE MISMATCH error occurs.) Example:

10 A% = 23.42
20 PRINT A
RUN

23

During expression evaluation, all of the operands in an
arithmetic or relational operation are converted to the
same degree of precision, i.e., that of the most precise
operand. Also, the result of an arithmetic operation is
returned to this degree of precision. Example:

10D =6/7 The arithmetic was per-
20 PRINT D formed in double precision
RUN and the result was returned

.8571428571428571 in D as a double precision value.
27

Microsoft BASIC Interpreter Reference Manual

28

Note

Both operands must be double precision variables. If one
of the variables is a single precision variable, then the last
eight digits in the result are meaningless. Example:

10D =6/7 The arithmetic was performed in

20 PRINT D double precision and the result was

RUN returned to D (a single precision
.857143 variable), rounded and printed as a

single precision value.

Logical operators (see Section 2.11.3) convert their
operands to integers and return an integer result.
Operands must be in the range —32768 to +32767 or an
OVERFLOW error occurs.

When a floating-point value is converted to an integer,
the fractional portion is rounded. Example:

10 C% = 55.88
20 PRINT C%
RUN

56

If a double precision variable is assigned a single preci-
sion value, only the first seven digits rounded of the con-
verted number will be valid, since only seven digits of ac-
curacy were supplied with the single precision value. The
absolute value of the difference between the printed dou-
ble precision number and the original single precision value
will be less than 6.3E—8 times the original single preci-
sion value. Example:

10 A = 2.04
20 B# = A

30 PRINT A;B#
RUN

2.04 2.039999961853027

General Information

2.11 Expressions and Operators

An expression can be a string or numeric constant, a variable, or
a single value obtained by combining a constant and a variable
with an operator.

Operators perform mathematical or logical operations on values.
The operators provided by Microsoft BASIC can be divided into
four categories:

1. Arithmetic
2. Relational

3. Logical
4

Functional

2.11.1 Arithmetic Operators

The Microsoft BASIC arithmetic operators, in order of operational
precedence, are listed in Table 2.5.

Table 2.5. Microsoft BASIC Arithmetic Operators

Operator Operation Sample Expression
) Exponentiation XY

- Negation -X

* Multiplication X*Y

/ Floating-point division XY

+,— Addition, Subtraction X+Y

To change the order in which the operations are performed, use
parentheses. Operations within parentheses are performed first.
Inside parentheses, the usual order of operation is maintained.

29

Microsoft BASIC Interpreter Reference Manual

Here are some sample algebraic expressions and their BASIC

counterparts.

Algebraic Expression

BASIC Expression

X+2Y

X+Y#*2

X-Y/Z

X*Y/Z

(X+Y)VZ

(X"2)'Y

X(Y"Z)

X*(—Y)

Note

Two consecutive operators must be separated by parentheses.

Integer Division and Modulo Arithmetic

Two additional operations are available in Microsoft BASIC: in-

teger division and modulo arithmetic.

30

General Information

Integer Division

Integer division is denoted by the backslash (\) instead of a +
sign. The operands are rounded to integers (must be in the range
—32768 to +32767) before the division is performed, and the quo-
tient is truncated to an integer. For example:

10 X = 10\

20 Y = 25.68\6.99
30 PRINT X;Y
RUN

2 3

Integer division follows multiplication and floating-point division
in the established order of operational precedence.

Modulo Arithmetic

Modulo arithmetic is denoted by the operator MOD. Modulo
arithmetic provides the integer value that is the remainder of an
integer division. For example:

10,4 MOD 4 = 2 (10 4=2 with a remainder 2)
25.68 MOD 699 = 5 (26 7=3 with a remainder 5)

Modulo arithmetic immediately follows integer division in the
established order of operational precedence.

Overflow and Division by Zero

If during the evaluation of an expression a division by zero is en-
countered, the DIVISION BY ZERO error message is displayed,
machine infinity with the sign of the numerator is supplied as the
result of the division, and execution continues. If the evaluation
of an exponentiation results in zero being raised to a negative
power, the DIVISION BY ZERO error message is displayed,
positive machine infinity (the highest number the computer can
produce) is supplied as the result of the exponentiation, and ex-
ecution continues.

If overflow occurs, the OVERFLOW error message is displayed,

machine infinity with the algebraically correct sign is supplied as
the result, and execution continues.

31

Microsoft BASIC Interpreter Reference Manual

2.11.2 Relational Operators

Relational operators are used to compare two values. The result
of the comparison is either “true” (—1) or “false” (0). This result
can then be used to make a decision regarding program flow (see
Section 3.30, “IF..THEN[..ELSE]").

Table 2.6 lists the relational operators.

Table 2.6. Relational Operators

Operator Relation Tested Expression
= Equality X=Y

<> Inequality X<>Y

< Less than X<Y

> Greater than X>Y

<= Less than or equal to X<=Y
>= Greater than or equal to X>=Y

(The equal sign is also used to assign a value to a variable. See
Section 3.35, “LET.”)

When arithmetic and relational operators are combined in one ex-
pression, the arithmetic operation is always performed first. For
example, the expression

X+Y < (T-1)Z

is true if the value of X plus Y is less than the value of T-1 divid-
ed by Z.

32

General Information

2.11.3 Logical Operators

Logical operators perform tests on multiple relations, bit mani-
pulation, or Boolean operations. Just as the relational operators
can be used to make decisions regarding program flow, logical
operators can connect two or more relations and return a true or
false value to be used to make a decision (see Section 3.30,
“IF..THEN[...ELSE]”). For example:

IF D<200 AND F<4 THEN 80
IF 1>10 OR K< 0 THEN 50
IF NOT P THEN 100

A logical operator returns a result from the combination of true-
false operands. The result (in bits) is either “true” (not zero) or
“false” (zero). The true-false combinations and the results of a
logical operation are known as truth tables.

There are six logical operators in Microsoft BASIC. They are: NOT
(logical complement), AND (conjunction), OR (disjunction), XOR
(exclusive or), IMP (implication), and EQV (equivalence). Each
operator returns results as indicated in Table 2.7. A “1” indicates
a true value and a “0” indicates a false value. Operators are listed
in order of precedence.

33

Microsoft BASIC Interpreter Reference Manual

Table 2.7. Logical Truth Tables

Operation Values Results
NOT X NOT X
1 0
0 1
AND X Y XANDY
1 1 1
1 0 0
0 1 0
0 0 0
OR X Y XORY
1 1 1
1 0 1
0 1 1
0 0 0
XOR X Y X XORY
1 1 0
1 0 1
0 1 1
0 0 0
IMP X Y XIMPY
1 1 1
1 0 0
0 1 1
0 0 1
EQV X Y XEQVY
1 1 1
1 0 0
0 1 0
0 0 1

In an expression, logical operations are performed after arithmetic
and relational operations.

34

General Information

Logical operators convert their operands to 16-bit, signed, two’s
complement integers in the range —32768 to +32767. (If the
operands are not in this range, an error results.) If both operands
are supplied as 0 or —1, logical operators return O or —1, respec-
tively. The given operation is performed on these integers in bits,
i.e., each bit of the result is determined by the corresponding bits
in the two operands.

Thus, it is possible to use logical operators to test bytes for a par-
ticular bit pattern. For instance, the AND operator can be used
to “mask” all but one of the bits of a status byte at a machine
1/0 port. The OR operator can be used to “merge” two bytes to
create a particular binary value. The following examples dem-
onstrate how the logical operators work.

63 AND 16=16 63 = binary 111111 and 16 = binary
10000, so 63 AND 16 = 16.

15 AND 14=14 15 = binary 1111 and 14 = binary
1110, so 15 AND 14 = 14 (binary
1110).

—1AND 8=8 —1 = binary 1111111111111111 and 8
= binary 1000, so —1 AND 8 = 8.

40R2=6 4 = binary 100 and 2 = binary 10, so 4
OR 2 = 6 (binary 110).

10 OR 10=10 10 = binary 1010, so 1010 OR 1010 =
1010 (10).

—-10R -2= -1 —1 = binary 1111111111111111 and

—2 = binary 1111111111111110, so —1
OR —2 = —1. The bit complement of
sixteen zeros is sixteen ones, which is
the two’s complement representation of
—1.

NOT X=—-(X+1) The two’s complement of any integer is
the bit complement plus one.

35

Microsoft BASIC Interpreter Reference Manual

2.11.4 Functional Operators

A function is used in an expression to call a predetermined opera-
tion to be performed on an operand. Microsoft BASIC has “in-
trinsic” functions that reside in the system, such as SQR (square
root) or SIN (sine). Microsoft BASIC functions are described in
Chapter 4.

You can also define your own functions (known as ‘“user-defined”)
with the DEF FN statement (see Section 3.11).

2.11.5 String Operators

A string expression is an expression that contains string con-
stant(s) or string variable(s), or a combination of both (with
operators) that evaluates to a single value.

There are two classes of string operations: concatenation and
string function.

Concatenation

Combining two strings together is called concatenation. The plus
symbol (+) is the concatenation operator. For example,

10 A$ =“FILE” : B$="“NAME”
20 PRINT A$ + B$
30 PRINT “NEW ” + A$ + B$

RUN

FILENAME
NEW FILENAME

combines the string variables A$ and B$ to produce the value
“FILENAME.”

String Function

Strings can be compared using the same relational operators that
are used with numbers:

= <> < > <= >=

36

General Information

A string function is the same as a numeric function, except the
result is a string value. String comparisons are made by tak-
ing one character at a time from each string and comparing the
ASCII codes. If all the ASCII codes are the same, the strings are
equal. If the ASCII codes differ, the lower code number precedes
the higher. If during string comparison the end of one string is
reached, the shorter string is said to be smaller. Leading and trail-
ing blanks are significant.

Examples:

££AAH < ((AB11

“FILENAME” = “FILENAME”

HX&)Y > “X#!!

KKCL” > “CL”

llkg”> “KG”

“SMYTH” < “SMYTHE”

B$ < “9/12/78” (where B$ = “8/12/78")

Thus, string comparisons can be used to test string values or to
alphabetize strings. All string constants used in comparison ex-
pressions must be enclosed in quotation marks.

2.12 Input Editing

If an incorrect character is entered as a line is being typed, it can
be deleted with CONTROL-H or the <— (backspace) key. Both
keys backspace over a character and erase it. Once a character
has been deleted, simply continue typing the line as desired.

To delete a line that is in the process of being typed, type
CONTROL-U or the —> (retype) key. A carriage return is ex-
ecuted automatically after the line is deleted.

To correct program lines for a program that is currently in
memory, simply retype the line using the same line number.
BASIC will automatically replace the old line with the new line.

To delete the entire program that currently resides in memory,
enter the NEW command (see Chapter 3).

Microsoft BASIC has other sophisticated editing facilities that
are part of the EDIT command. EDIT is discussed in Section 3.16.

37

Microsoft BASIC Interpreter Reference Manual

2.13 Error Messages

If BASIC detects an error that terminates program execution, an
error message is printed. For a complete list of Microsoft BASIC
error codes and error messages, see Appendix J.

38

Chapter 3

_ Microsoft BASIC
Commands and Statements

3.1 AUTO 42 3.22 FOR...
3.2 BEEP 42 NEXT 68
3.3 CALL 43 3.28 GET 71
3.4 CHAIN 44 3.24 GOSUB...

RETURN 72
3.25 GOTO 73
3.26 GR 74
3.27 HLIN 75
3.28 HOME 76

35 CLEAR 47

36 CLOSE 48

3.7 COLOR 49
~ 38 COMMON 50

3.9 CONT 50 3.29 HTAB 77

3.10 DATA 51 3.30 IF.THENL.ELSE]
311 DEFFN 53 IF..GOTO 77

3.12 DEFINT/SNG 3.31 INPUT 80

/DBL/STR 54 3.32 INPUT# 81

213 BEIFJE[’II‘SER 5565 3.33 INVERSE 83
' 3.34 KILL 83

3.15 DIM 56 3.35 LET 84
3.16 EDIT 57

3.36 LINE
3.17 END 62 INPUT 85
3.18 ERASE 63 3.37 LINE
" 319 ERROR 63 INPUT# 86
3.20 FIELD 65 3.38 LIST 87

3.21 FILES 68 3.39 LLIST 88

39

3.40
3.41

3.42

3.43
3.44
3.45
3.46
3.47
3.48

3.49

3.50
3.561

3.52
3.53
3.54
3.55
3.56

3.57

40

LOAD 89

LPRINT and
LPRINT
USING 90

LSET and
RSET 90

MERGE 91
MID$ 92
NAME 93
NEW 93

NORMAL 94

ON ERROR
GOTO 94

ON...GOSUB and

ON...GOTO
OPEN 96
OPTION
BASE 97
PLOT 98
POKE 99
POP 99
PRINT 100
PRINT
USING 103
PRINT# and
PRINT#

USING 108

3.58
3.59
3.60
3.61
3.62
3.63
3.64
3.65
3.66
3.67
3.68
3.69
3.70
3.71
3.72

3.73
3.74
3.75
3.76

3.77
3.78
3.79

PUT 111
RANDOMIZE 111
READ 113
REM 114
RENUM 115
RESET 117
RESTORE 117
RESUME 118

RUN 119
SAVE 120
STOP 121
SWAP 122
SYSTEM 122
TEXT 123
TRACE/
NOTRACE 123
VLIN 124
VTAB 125
WAIT 126
WHILE...
WEND 127
WIDTH 128
WRITE 129

WRITE# 130

Chapter 3

Microsoft BASIC
Commands and Statements

Microsoft BASIC commands and statements are described in this
chapter. Each description has the following components:

Syntax Shows the correct syntax for the instruction.
Purpose Tells what the instruction is used for.

Remarks Describes in detail how the instruction is used.
Example Shows sample programs or program segments

that demonstrate the use of the instruction.

Syntax notation for all commands and statements is given in
Chapter 1. Numeric and string arguments (where applicable) have
been abbreviated as follows:

Xand Y Represent any numeric expressions.

Iand J Represent integer expressions.

X$ and Y3 Represent string expressions.
If a floating-point value is supplied where an integer is required,

BASIC will round the fractional portion and use the resulting
integer.

41

Microsoft BASIC Interpreter Reference Manual

3.1 AUTO

Syntax

Purpose

Remarks

Examples

AUTO [<line number> [,<increment>]]

To generate a line number automatically after
every carriage return.

AUTO begins numbering at <line number > and
increments each subsequent line number by <in-
crement>. The default for both values is 10. If
<line number > is followed by a comma but <in-
crement> is not specified, the last increment
specified in an AUTO command is assumed.

If AUTO generates a line number that is already
being used, an asterisk is printed after the number
to warn the user that any input will replace the
existing line. However, typing a carriage return
immediately after the asterisk will save the line
and generate the next line number.

AUTO is terminated by typing CONTROL-C. The
line in which CONTROL-C is typed is not saved.

After CONTROL-C is typed, BASIC returns to
command level.

AUTO 100,50 Generates line numbers 100, 150, 200...

AUTO Generates line numbers 10, 20, 30, 40....

3.2 BEEP

Syntax
Purpose

Remarks

42

BEEP <pitch> <duration>
To create a tone of specified pitch and duration.

<pitch> is the desired pitch or frequency of a
tone. Zero (0) is the highest pitch; 255 is the lowest.

TN

Commands and Statements

<duration> is the desired duration in clock
cycles. Zero (0) is the shortest duration; 255 is the
maximum duration. A duration of 255 lasts ap-
proximately one second.

BEEP is intended for sound effect purposes. No
attempt has been made to match <pitches> or
< durations > with specific musical notes or note
lengths.

Example 10 BEEP PDL(0), PDL(1):GOTO 10

3.3 CALL

Syntax 1 CALL <variable name >[(<argument list>)}
Purpose To call an assembly language subroutine.
Remarks The CALL statement allows you to transfer pro-

gram flow to an external subroutine. This can also
be done with the USR function. (See “USR,” Sec-
tion 4.44.)

<variable name > contains an address that is the
starting point in memory of the subroutine.
<variable name> cannot be an array variable
name.

<argument list > contains the arguments that are

passed to the external subroutine. <argument
list> can contain only variables.

43

Microsoft BASIC Interpreter Reference Manual

Example 110 MYROUT = &HDO000
120 CALL MYROUT(,J,K)

3.4 CHAIN

Syntax CHAIN [MERGE] < filespec>[,[<line number exp>]
[LALL][,DELETE<m —n>]]

Purpose To call a program and pass variables to it from the
current program.

Remarks <filespec> contains the name of the program

44

called. For example:
CHAIN“A:PROG1.BAS”

or
:CHAIN“B:SECPROG6.BAS”

The first example calls the BASIC program
PROG]1 from disk drive A:. The second example
calls the BASIC program SECPROG®6 from drive
B:. If no other options are included by the user,
CHAIN will load the called program and execute
it beginning at the first line.

The MERGE option of the CHAIN statement
merges the called overlay into the currently run-
ning program. That is, the program lines of the
overlay are inserted into the current program in
sequential order, beginning at the point specified
by <line number exp >. The called program must
be an ASCII file if it is to be merged. Example 1
in this section shows how the MERGE option is
used.

Commands and Statements

Note

The CHAIN statement when used with the
MERGE option leaves the files open and
preserves the current OPTION BASE setting.

When using the MERGE option, insert user-
defined functions before any CHAIN MERGE
statements in the program. Otherwise, the user-
defined functions are left undefined after the
merge operation is complete.

If you choose not to use MERGE, CHAIN will
clear the effect of ON ERROR GOTO, disallow
program continuation, reset all DATA pointers,
and close all files. User-defined functions are
preserved only if the corresponding DEF FN
statements are not altered by MERGE. CHAIN
without MERGE does not preserve variable types
or user-defined functions for use by the chained
program. That is, any DEFINT, DEFSNG,
DEFDBL, DEFSTR, or DEF FN statements con-
taining shared variables must be restated in the
chained program.

<line number exp > is the line number (or an ex-
pression that evaluates to a line number) in the
called program. It is the starting point for execu-
tion of the called program. If it is omitted, execu-
tion begins at the first line.

Note

<line number exp> is not affected by a
RENUM command.

45

Microsoft BASIC Interpreter Reference Manual

Example 1

46

ALL is an option that allows all variables to pass
from the current program to the overlay. If the
ALL option is used, every variable in the current
program is passed to the overlay. If you do not
use ALL, a COMMON statement must be used to
pass variables to the overlay. With COMMON,
you can specify the variables to be passed. Array
variables can be used by appending parentheses
to the variable list. Note that the same variable
cannot appear in more than one COMMON state-
ment.

DELETE <m-n> is the option that deletes a
range of lines in the original program after the
overlay has been executed. m is the beginning line
number and n is the last line number of the overlay
range.

10 REM THIS PROGRAM DEMONSTRATES CHAIN-
ING USING COMMON TO PASS

20 REM VARIABLES. SAVE THIS MODULE ON DISK
AS “PROG1” AND USE THE A OPTION.

30 DIM A$(2),B$(2)

40 COMMON A$(), B$)

50 A$(1) = “VARIABLES IN COMMON MUST BE
ASSIGNED”

60 A$(2) = “VALUES BEFORE CHAINING.”

70 B§(1) = “": B§(2) =*"

80 CHAIN “PROG2”

90 PRINT: PRINT B$(1): PRINT: PRINT B$(2):

PRINT

100 END

10 REM THE STATEMENT “DIM A$(2),B$(2)" MAY
ONLY BE EXECUTED

20 REM ONCE. HENCE, IT DOES NOT APPEAR IN
THIS MODULE. SAVE

30 REM THIS MODULE ON THE DISK AS “PROG2”
AND USE THE A OPTION>

40 COMMON A$(), B$()

50 PRINT: PRINT A$(1);A$(2)

60 B$(1) = “NOTE HOW THE OPTION OF SPECIFY-
ING A STARTING LINE NUMBER”

70 B$(2) = “WHEN CHAINING AVOIDS THE DIMEN-
SION STATEMENT IN 'PROG1".”

80 CHAIN “PROG1”,90

90 END

Commands and Statements

Example 2 10 REM THIS PROGRAM DEMONSTRATES CHAIN-
ING USING THE MERGE AND ALL
20 REM OPTIONS. SAVE THIS MODULE ON THE DISK
AS “MAINPRG”.
30 A% = “MAINPRG”
40 CHAIN MERGE “OVERLAY1”,1010,ALL
50 END
1000 REM SAVE THIS MODULE ON THE DISK AS
“OVERLAY1” USING THE A OPTION.
1010 PRINT AS;“HAS CHAINED TO OVERLAY.”
1020 A$ ="“OVERLAY1”
1030 B$ = “OVERLAY2”
1040 CHAIN MERGE “OVERLAY2”, 1010, ALL, DELETE
1000-1050
1050 END
1000 REM SAVE THIS MODULE ON THE DISK AS
“OVERLAY 2” USING THE A OPTION.
1010 PRINT A$; “HAS CHANGED TO ”; B$:“.”
1020 END
3.5 CLEAR
Syntax CLEAR [[<expression1>],<expression2>]]
Purpose To set all numeric variables to zero and all string
variables to null, and to close all open files; and,
optionally, to set the end of memory and the
amount of stack space.
Remarks <expressionl > is a memory location which, if

specified, sets the highest location available for use
by BASIC.

<expression2 > sets aside stack space for BASIC.
The default is 512 bytes or one-eighth of the
available memory, whichever is smaller.

BASIC allocates string space dynamically. An

OUT OF STRING SPACE error occurs only if
there is no free memory left for BASIC to use.

47

Microsoft BASIC Interpreter Reference Manual

Examples CLEAR
CLEAR ,32768
CLEAR ,,2000
CLEAR ,32768,2000

3.6 CLOSE

Syntax CLOSE[[#]< file number>[,[#]< file number...>]]

Purpose To conclude 1/0 to a disk file. CLOSE can be
used either as a command or as a statement.

Remarks < file number > is the number under which the file
was opened. A CLOSE with no arguments closes
all open files. The option tells CP/M that a file is
to be opened.
The association between a particular file and file
number terminates upon execution of a CLOSE
statement. The file can then be reopened using the
same or a different file number; likewise, that file
number can now be reused to OPEN any file.
A CLOSE statement for a sequential output file
writes the final buffer of output.
The END statement and the NEW command
always CLOSE all disk files automatically. (STOP
does not close disk files.)

Examples CLOSE #1
CLOSE 2, 3

48

Commands and Statements

3.7 COLOR

Syntax COLOR = < color number >

Purpose To set the color for plotting in low-resolution
graphics mode.

Remarks The < color number> argument is an integer in
the range 0 to 15. The default value is 0. The col-
ors available and their corresponding numbers are:

0 black 8 brown

1 magenta 9 orange

2 dark blue 10 gray

3 purple 11 pink

4 dark green 12 green

5 gray 13 yellow

6 medium blue 14 aqua

7 light blue 15 white
COLOR specifies the color of the line or points for
plotting. The GR statement specifies the back-
ground color of the screen. GR is normally set to
zero (black). GR and COLOR cannot be the same
color. (See Section 3.26, “GR.")
To find out the COLOR of a given point on the
screen, use the SCRN function. (See Section 4.34,
“SCRN.”)
Important

The COLOR statement can be used in low-

resolution graphics mode only.

Example 10 GR
20 COLOR=13

49

Microsoft BASIC Interpreter Reference Manual

3.8 COMMON

Syntax
Purpose

Remarks

Example

COMMON < list of variables >
To pass variables to a chained program.

The COMMON statement is used in conjunction
with the CHAIN statement. COMMON state-
ments can appear anywhere in a program, though
it is recommended that they appear at the begin-
ning. The same variable cannot appear in more
than one COMMON statement. Array variables
are specified by appending “()” to the variable
name. If all variables are to be passed, use CHAIN
with the ALL option and omit the COMMON
statement.

<list of variables > can include any variable type,
including array variables.

100 COMMON A,B,C,D(),G$
110 CHAIN “PROG3”,10

3.9 CONT

Syntax

Purpose

Remarks

50

CONT

To continue program execution after a CONTROL-
C has been typed or a STOP or END statement
has been executed.

Execution resumes at the point where the break
occurred. If the break occurred after a prompt
from an INPUT statement, execution continues
with the reprinting of the prompt (“?”” or prompt
string).

Example

Commands and Statements

CONT is usually used in conjunction with STOP
for debugging. When execution is stopped, in-
termediate values can be examined and changed
using direct mode statements. Execution can be
resumed with CONT or a direct mode GOTO,
which resumes execution at a specified line num-
ber. CONT can be used to continue execution after
an error occurs.

CONT is invalid if the program has been edited
after the break has occurred.

10 INPUT AB,C

20 K=A'2*5.3:L=B3.26
30 STOP

40 M = C+K + 100:PRINT M
RUN

21,23

BREAK IN 30

Ok

PRINT L

30.7692

Ok

CONT

115.9

3.10 DATA

Syntax

Purpose

Remarks

DATA <list of constants>

To store the numeric and string constants that are
accessed by the program’s READ statement(s).

DATA statements are nonexecutable and can be
placed anywhere in the program. A DATA state-
ment can contain as many constants as will fit
on a line (separated by commas). Any number of
DATA statements can be used in a program. The
READ statements access the DATA statements
in order (by line number) and the data contained
therein can be thought of as one continuous list
of items, regardless of how many items are on a
line or where the lines are placed in the program.

51

Microsoft BASIC Interpreter Reference Manual

Example 1

Example 2

<list of constants> can contain numeric con-
stants in any format, ie. fixed-point, floating-
point, or integer. (No numeric expressions are
allowed in the list.) String constants in DATA
statements must be surrounded by double quota-
tion marks only if they contain commas, colons,
or significant leading or trailing spaces. Otherwise,
quotation marks are not needed.

The variable type (numeric or string) given in the
READ statement must agree with the correspond-
ing constant in the DATA statement.

DATA statements can be reread from the begin-
ning by using the RESTORE statement.

80 FOR I=1TO 10

90 READ A(l)

100 NEXT |

110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

This program segment reads the values from the
DATA statements into the array A. After execu-
tion, the value of A(1) will be 3.08, and so on.

10 PRINT “CITY”, “STATE”, “ ZIP”

20 READ C$,S%,Z

30 DATA “DENVER,”, COLORADO, 80211
40 PRINT C$,5%,Z

Ok

RUN
CITY STATE ZIP
DENVER, COLORADO 80211

This program reads string and numeric data from
the DATA statement in line 30.

Commands and Statements

3.11 DEF FN

Syntax

Purpose

Remarks

DEF FN<name>[(<parameter list>)]= <function
definition >

To define and name a function written by the user.

<name> is any legal variable name. <name>
must be preceded by DEF FN, and becomes the
name of the function.

< parameter list > is composed of those variable
names in the function definition that are to be
replaced when the function is called. The items in
the list are separated by commas.

The variables in the < parameter list > represent,
on a one-to-one basis, the argument variables or
values that will be given in the function call.

< function definition > is an expression that per-
forms the operation of the function. It is limited
to one line. Variable names that appear in this ex-
pression serve only to define the function; they do
not affect program variables that have the same
name.

A variable name used in a <function definition >
may or may not appear in the <parameter list>.
If it does, the value of the parameter is supplied
when the function is called. Otherwise, the current
value of the variable is used.

User-defined functions can be numeric or string
functions. If a type is specified in the function
name, the value of the expression is forced to that
type before it is returned to the calling statement.
If a type is specified in the function and the argu-
ment type does not match, a TYPE MISMATCH
error occurs.

Microsoft BASIC Interpreter Reference Manual

Example

A DEF FN statement must be executed before the
function it defines can be called. If a function is
called before it has been defined, an UNDEFINED
USER FUNCTION error occurs. DEF FN is il-
legal in direct mode.

410 DEF FNAB(X,Y) =X "3/Y 2
420 T=FNAB(L,J)

Line 410 defines the function FNAB. The function
is called in line 420.

3.12 DEFINT/SNG/DBL/STR

Syntax

Purpose

Remarks

54

DEF <type> <range(s) of letters>

To declare variables as integer, single precision,
double precision, or string variable types.

<type> is a variable type (INT, SNG, DBL, or
STR) and <range of letters> is the variable name
or names.

A DEF statement declares that the variable
names beginning with the letter(s) specified will
assume that variable type. However, a type
declaration character always takes precedence
over a DEF statement in the typing of a variable.

If no type declaration statements are encountered,
BASIC assumes that all variables without declara-
tion characters are single precision variables.

TN

Examples

Commands and Statements

10 DEFDBL L-P All variables beginning with the let-
ters I, M, N, O, and P will be double
precision variables.

10 DEFSTR A All variables beginning with the let-
ter A will be string variables.

10 DEFINT All variables beginning with the let-
I-N,W-Z tersI,J, K, L, M, N, W, X, Y, and
Z will be integer variables.

3.13 DEF USR

Syntax

Purpose

Remarks

Example

DEF USR[<digit>]= <integer expression>

To specify the starting address of an assembly
language subroutine.

<digit > can be any digit from 0 to 9. The digit
corresponds to the number of the USR routine
whose address is being specified. If <digit> is
omitted, DEF USRO is assumed.

The value of <integer expression> is the starting
address of the USR routine (see Appendix E,
“Microsoft BASIC Assembly Language Subrou-
tines”’).

Any number of DEF USR statements can appear
in a program to redefine subroutine starting
addresses, thus allowing access to as many
subroutines as necessary.

200 DEF USRO = 24000
210 X = USRO(Y " 2/2.89)

55

Microsoft BASIC Interpreter Reference Manual

3.14 DELETE

Syntax
Purpose

Remarks

Examples

3.15 DIM

Syntax

Purpose

Remarks

56

DELETE[< line number>] — <line number>]
To delete program lines.

BASIC always returns to command level after
a DELETE statement is executed. If <line
number > does not exist, an ILLEGAL FUNC-
TION CALL error occurs.

DELETE 40 Deletes line 40.

DELETE 40100 Deletes lines 40 through
100, inclusive.

DELETE — 40 Deletes all lines up to
and including line 40.

DIM <«list of subscripted variables >

To specify the maximum values for array variable
subscripts and allocate storage accordingly.

If an array variable name is used without a DIM
statement, the maximum value of its subscript(s)
is assumed to be 10. If a subscript is used that
is greater than the maximum specified, a
SUBSCRIPT OUT OF RANGE error occurs.
The minimum value for a subscript is always zero,
unless otherwise specified with the OPTION
BASE statement. (See Section 3.51, “OPTION
BASE.”)

Commands and Statements

The DIM statement sets all the elements of the
specified arrays to an initial value of zero.

Example 10 DIM A(20)
20 FOR I=0TO 20
30 READ A(l)
40 NEXT |
3.16 EDIT
Syntax EDIT <line number>
Purpose To enter edit mode at a specified line.
Remarks In edit mode, it is possible to edit portions of a line

without retyping the entire line. Upon entering
edit mode, BASIC types the line number of the line
to be edited, then types a space and waits for an
edit mode subcommand.

Edit mode subcommands

Edit mode subcommands are used to move the cur-
sor or to insert, delete, replace, or search for text
within a line. The subcommands are not echoed.
Most of the edit mode subcommands can be
preceded by an integer which causes the command
to be executed that number of times. When an in-
teger is not specified, it is assumed to be 1.

57

Microsoft BASIC Interpreter Reference Manual

Edit mode subcommands can be categorized ac-
cording to the following functions:

Moving the cursor

Inserting text

Deleting text

Finding text

Replacing text

Ending and restarting edit mode

NS e W

Entering edit mode from a syntax error

Note

In the descriptions that follow, <ch> repre-
sents any character, <text> represents a
string of characters of arbitrary length, i rep-
resents an optional integer (the default is 1),
and $ represents the <ESCAPE > key.

Moving the Cursor

Space Use the space bar to move the cursor to

Bar the right. i Space bar moves the cursor
I spaces to the right. Characters are
printed as you space over them.

CONTROL-H
In edit mode, i CONTROL-H moves the
cursor I spaces to the left. Characters
are printed as you backspace over them.

< <— or backspace moves the cursor to
the left. The cursor moves over the
characters already printed, but does not
delete them.

58

P

Commands and Statements

Inserting Text

I

I<text>$ inserts <text> at the cur-
rent cursor position. The inserted char-
acters are printed on the screen. To
terminate insertion, type < ESCAPE >.
If <RETURN> is typed during an
insert command, the effect is the same
as typing <ESCAPE> and then
<RETURN>. During an insert com-
mand, CONTROL-H, <, or the under-
score key can be used to delete
characters to the left of the cursor.
CONTROL-H will move the cursor over
the characters as you backspace over
them. <SHIFT>, CONTROL-\, and
underscore (when pressed simultaneous-
ly) will print an underscore for each
character you delete. If an attempt is
made to insert a character that will
make the line longer than 255
characters, an audio beep (CONTROL-
G) sounds and the character is not
printed.

The X subcommand is used to extend
the line. X moves the cursor to the end
of the line, enters insert submode, and
allows insertion of text as if an insert
command had been given. When you
are finished extending the line, type
<ESCAPE > or <RETURN>.

Deleting Text

D

iD deletes i characters to the right of the
cursor. The deleted characters are
echoed between backslashes, and the
cursor is positioned to the right of the
last character deleted. If there are fewer
than i characters to the right of the cur-
sor, 1D deletes the remainder of the line.

59

Microsoft BASIC Interpreter Reference Manual

60

H

H deletes all characters to the right of
the cursor and then automatically
enters insert submode. H is useful for
replacing statements at the end of a
line.

Finding Text

S

The subcommand iS <ch > searches for
the ith occurrence of <ch> and posi-
tions the cursor before it. The character
at the current cursor position is not in-
cluded in the search. If <ch> is not
found, the cursor will stop at the end of
the line. All characters passed over dur-
ing the search are printed.

The subcommand iK<ch> is similar
to 1IS<ch>, except all the characters
passed over in the search are deleted.
The cursor is positioned before <ch>,
and the deleted characters are enclosed
in backslashes.

Replacing Text

C

The subcommand C < ch> changes the
next character to <ch>. If you wish to
change the next i characters, use the
subcommand iC, followed by i charac-
ters. After the ith new character is
typed, you exit the change submode and
return to edit mode.

Ending and Restarting Edit Mode
<RETURN >

Typing <RETURN> prints the re-
mainder of the line, saves the changes
you made, and exits edit mode.

The E subcommand has the same effect
as <RETURN >, except the remainder
of the line is not printed.

Commands and Statements

Q The @ subcommand returns to BASIC
command level without saving any of
the changes that were made to the line
during edit mode.

L The L subcommand lists the remainder
of the line (saving any changes made so
far) and repositions the cursor at the
beginning of the line, still in edit mode.
L is usually used to list the line when
first entering edit mode.

A The A subcommand lets you begin
editing a line over again. It restores the
original line and repositions the cursor
at the beginning.

CONTROL-A

To enter edit mode on the line you are
currently typing, type CONTROL-A.
BASIC responds with a carriage return,
an exclamation point (!), and a space.
The cursor will be positioned at the first
character in the line. Proceed by typing
an edit mode subcommand.

Note

If BASIC receives an unrecognizable com-
mand or illegal character while in edit mode,

it sounds a beep (CONTROL-G) and the com-
mand or character is ignored.

Entering Edit Mode from a Syntax Error

When a syntax error is encountered dur-
ing execution of a program, BASIC
automatically enters edit mode at the
line that caused the error. For example:

10 K = 2(4)

run

?Syntax error in
10

61

Microsoft BASIC Interpreter Reference Manual

When you finish editing the line and press
<RETURN>(or the E subcommand), BASIC
reinserts the line, which causes all variable values
to be lost. To preserve the variable values for ex-
amination, first exit edit mode with the Q subcom-
mand. BASIC will return to command level, and
all variable values will be preserved.

Note

If you have just entered a line and wish to go
back and edit it, the command “EDIT .” will
enter edit mode at the current line. (The line
number symbol “.” always refers to the cur-

rent line.)
3.17 END
Syntax END
Purpose To terminate program execution, close all files,

Remarks

Example

62

and return to command level.

END statements can be placed anywhere in the
program to terminate execution. Unlike the STOP
statement, END does not cause a BREAK mes-
sage to be printed. An END statement at the end
of a program is optional. BASIC always returns
to command level after an END statement is
executed.

520 IF K>1000 THEN END ELSE GOTO 20

Commands and Statements

3.18 ERASE

Syntax ERASE: <array variable> [<array variable>...]

Purpose To eliminate arrays from a program.

Remarks Arrays can be redimensioned after they are
erased, or the previously allocated array space in
memory can be used for other purposes. If an at-
tempt is made to redimension an array without
first erasing it, a REDIMENSIONED ARRAY
error occurs.

Example 10 DIM B(5)

450 ERASE A,B
460 DIM B(99)

3.19 ERROR

Syntax ERROR <integer expression>

Purpose 1) To simulate the occurrence of a BASIC error;
or 2) to allow error codes to be defined by the user.

Remarks <integer expression> must be a value between

0 and 255. If the value of <integer expression >
equals an error code already in use by BASIC (see
Appendix J), the ERROR statement will simulate
the occurrence of that error, and the corresponding
error message will be printed. (See Example 1.)

63

Microsoft BASIC Interpreter Reference Manual

Example 1

Example 2

64

To define your own error code, use a value that is
greater than any used for the Microsoft BASIC
error codes. (It is preferable to use the highest
available values, so compatibility can be main-
tained when more error codes are added to
Microsoft BASIC.) This user-defined error code
can then be conveniently handled in an error-
handling routine. (See Example 2.)

If an ERROR statement specifies a code for which
no error message has been defined, BASIC
responds with the message UNPRINTABLE
ERROR. Execution of an ERROR statement for
which there is no error-handling routine causes an
error message to be printed and execution to halt.

108 = 10

20T =5

30 ERRORS + T
40 END

Ok

RUN

String too long in line 30
Or, in direct mode:

ERROR 15 (You type this line.)
String too long (BASIC types this line.)

110 ON ERROR GOTO 400
120 INPUT “WHAT IS YOUR BET";B
130 IF B > 5000 THEN ERROR 210

460 IF ERR = 210 THEN PRINT “HOUSE LIMIT IS
$5000”
410 IF ERL = 130 THEN RESUME 120

Commands and Statements

Note

Refer to Section 2.9.4 for more information on
ERR and ERL.

3.20 FIELD

Syntax

Purpose

Remarks

FIELD[#]< file number>, <field width> AS <string
variable>...

To allocate space for variables in a random access
file buffer.

A FIELD statement must be executed to get data
out of a random access buffer after a GET state-
ment has been executed or to enter data before a
PUT statement is executed.

The FIELD statement contains three arguments.
< file number > is the number under which the file
was opened. <field width> is the number of
characters to be allocated to <string variable>.
< string variable > is a string variable that will be
used for random file access.

The total number of bytes allocated in a FIELD
statement must not exceed the record length that
was specified when the file was opened (see
Section 3.50, “OPEN"). Otherwise, a FIELD
OVERFLOW error occurs. (The default record
length is 128.)

65

Microsoft BASIC Interpreter Reference Manual

Example 1

Example 2

66

Any number of FIELD statements can be ex-
ecuted for the same file, and all FIELD statements
that have been executed are in effect at the same
time.

Important

You cannot use a fielded variable name in an
INPUT or LET statement. Once a variable
name is fielded, it points to the correct place
in the random access file buffer. If a subse-
quent INPUT or LET statement with that
variable name is executed, the variable’s
pointer is moved to string space.

FIELD 1,20 AS N$, 10 AS ID$, 40 AS ADD$

Allocates the first 20 positions (bytes) in the ran-
dom access file buffer to the string variable N§,
the next 10 positions to ID$, and the next 40 posi-
tions to ADD$. FIELD does not place any data
in the random access file buffer. (See Section 3.42,
“LSET and RSET,” and Section 3.23, “GET.”)

10 OPEN “R,”#1,“A:PHONELST”,35

15 FIELD #1, 2 AS RECNBR$,33 AS DUMMY$

20 FIELD #1, 25 AS NAMES$, 10 AS PHONENBR$
25 GET #1

30 TOTAL = CVI(RECNBR)$

35 FOR | = 2TO TOTAL

40 GET #1, |

45 PRINT NAMES$, PHONENBRS$

50 NEXT |

Example 2 illustrates a multiple defined FIELD
statement. In line 15, the 35-byte field is defined
for the first record to keep track of the number of
records in the file. In the next loop of statements
(35-50), line 20 defines the field for individual
names and phone numbers.

Example 3

Example 4

Commands and Statements

10 FOR LOOP% =0 TO 7
20 FIELD #1, (LOOP%*16) AS OFFSETS$, 16 AS
AS(LOOP%)

30 NEXT LOOP%

Example 3 shows the construction of a FIELD
statement using an array of elements of equal size.
The result is equivalent to the single declaration:

FIELD #1,16 AS A$(0), 16 AS A$(1),....,16 AS A$(6), 16
AS A$(7)

5 NUMB% =5

10 DIM SIZE% (NUMB%): REM ARRAY OF FIELD
SIZES

20 FOR LOOP% =0 TO NUMB%: READ SIZE%

30 DATA 9, 10, 12, 21, 41

120 DIM A$(NUMB%): REM ARRAY OF FIELDED
VARIABLES

130 OFFSET% =0

140 FOR LOOP% =0 TO NUMB%

150 FIELD #1, OFFSET% AS OFFSET$, SIZE%
(LOOP%) AS A$(LOOP%)

160 OFFSET% = OFFSET% + SIZE%(LOOP%)
170 NEXT LOOP%

Example 4 creates a field in the same manner that
Example 3 does. However, the element size varies
with each element. The equivalent declaration is:

FIELD #1, SIZE%(0) AS A$(0), SIZE%(1) AS A$(1) ...
SIZE%(NUMB%) AS A$(NUMB %),

67

Microsoft BASIC Interpreter Reference Manual

3.21 FILES

Syntax FILES [<filespec>]

Purpose To print the names of files residing on the current
disk.

Remarks < filespec > is a string formula which can contain

question marks (?) to match any character in the
filename or extension. An asterisk (*) as the first
character of the filename or extension will match
any file or any extension.
If a disk drive is specified as part of the
< filespec >, then files under the specified filename
in that disk drive are listed. Otherwise, the cur-
rent or default drive is used.

Examples FILES
FILES “*.BAS”

FILES “B:*.*”

FILES “TEST?.BAS”

3.22 FOR..NEXT

Syntax

Purpose

Remarks

68

FOR <variable> = <x> TO <y> [STEP <z>]

NEXT [<variable>] [, <variable>...]

To allow a series of instructions to be performed
in a loop a given number of times.

< variable> is used as a counter and <x>, <y>,
and <z> are numeric expressions. The first nu-
meric expression, <x >, is the initial value of the
counter. The second numeric expression, <y>, is
the final value of the counter.

Commands and Statements

The program lines following the FOR statement
are executed until the NEXT statement is en-
countered. Then the counter is incremented by the
amount specified by STEP. A check is performed
to see if the value of the counter is now greater
than the final value of <y>. If it is not greater,
BASIC branches back to the statement which
follows the FOR statement and the process is
repeated. If it is greater, execution continues with
the statement following the NEXT statement.
This is a FOR..NEXT loop. If STEP is not
specified, the increment is assumed to be one. If
STEP is negative, the final value of the counter
is set to be less than the initial value. The counter
is decremented each time through the loop, and the
loop is executed until the counter is less than the
final value.

The body of the loop is skipped if the initial value
of the loop times the sign of the step exceeds the
final value times the sign of the step.

Nested Loops

FOR..NEXT loops can be nested; that is, a
FOR...NEXT loop can be placed within the con-
text of another FOR...NEXT loop. When loops are
nested, each loop must have a unique variable
name as its counter. The NEXT statement for the
inside loop must appear before that for the out-
side loop. If nested loops have the same end point,
a single NEXT statement can be used for all of
them.

The variable(s) in the NEXT statement can be
omitted, in which case the NEXT statement will
match the most recent FOR statement. If a NEXT
statement is encountered before its corresponding
FOR statement, a NEXT WITHOUT FOR error
message is issued and execution is terminated.

69

Microsoft BASIC Interpreter Reference Manual

Example 1

Example 2

Example 3

70

10 K=10

20 FOR1=1TO K STEP 2
30 PRINT I[;

40 K=K+ 10

50 PRINT K

60 NEXT

RUN

O~NOIW—
.S
o

10J=0

20 FOR I=1TOJ
30 PRINT |

40 NEXT |

In this example, the loop does not execute because
the initial value of the loop exceeds the final value.

101=5

20 FORI=1TO 1 +5

30 PRINT |

40 NEXT

RUN

1 2 3 456 7 8 9 10

In this example, the loop executes ten times. The
final value for the loop variable is always set before
the initial value is set.

3.23 GET

Syntax 1
Syntax 2

Purpose

Remarks

Example

Commands and Statements

GET [#]< file number>[,<record number>]
GET <keyboard character>

To read a record from a random access disk file
into a random access buffer; or (in Syntax 2} to
read a single character from the keyboard.

< file number > is the number under which the file
was opened and < record number > is the number
of the record to be read. The range is 1 to 32767.

If <record number > is omitted, the next record
(after the last GET) is read into the buffer. The
largest possible record number is 32767.

In Syntax 2, the <keyboard character > read from
the keyboard is not displayed on the screen. It is
not necessary to press the <RETURN > key. If
CONTROL-@ is the keyboard character, it returns
the ASCII null character. The result of getting a
left-arrow or CONTROL-H can also print as if the
null character were being returned.

Note

After a GET statement has been executed,
INPUT# and LINE INPUT# can be executed
to read characters from the random access file
buffer.

10 OPEN “R”,#1,“B: VENDOR, 85

20 FIELD #1, 20 AS VENDNAMES, 30 AS ADDRS,
30 GET #1

35 AS CITY$

40 PRINT VENDNAMES, ADDRS, CITY$

71

Microsoft BASIC Interpreter Reference Manual

3.24 GOSUB..RETURN

Syntax

Purpose

Remarks

72

GOSUB <line number>

RETURN
To branch to and return from a subroutine.

<line number > is the first line of the subroutine.

A subroutine can be called any number of times
in a program, and a subroutine can be called from
within another subroutine. Such nesting of
subroutines is limited only by available memory.

The RETURN statement(s) in a subroutine cause
BASIC to branch back to the statement following
the most recent GOSUB statement. A subroutine
can contain more than one RETURN statement,
should logic dictate a return at different points in
the subroutine. Subroutines can appear anywhere
in the program, but it is recommended that
subroutines be readily distinguishable from the
main program.

To prevent inadvertent entry into the subroutine,
the GOSUB statement can be preceded by a
STOP, END, or GOTO statement that directs pro-
gram control around the subroutine.

To prevent stack overflow, a subroutine called by
a GOSUB statement must always exit through a
RETURN statement.

Note

You can use an ON...GOSUB statement to
branch to different subroutines based on the
result of an expression.

Example

Commands and Statements

10 GOSUB 40

20 PRINT “BACK FROM SUBROUTINE”
30 END

40 PRINT “SUBROUTINE”;

50 PRINT “IN’;

60 PRINT “PROGRESS”

70 RETURN

RUN
SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE

3.25 GOTO

Syntax

Purpose

Remarks

Example

GOTO <iine number>

To branch unconditionally out of the normal pro-
gram sequence to a specified line number.

If <line number> is an executable statement,
that statement and those following are executed.
If it is a nonexecutable statement, execution pro-
ceeds at the first executable statement encoun-
tered after <line number>.

10 READ R

20 PRINT “R =";R,

30 A = 3.14*R 2

40 PRINT “AREA =";A
50 GOTO 10

60 DATA 5,7,12

Ok

RUN

R=5 AREA = 785
R=7 AREA = 153.86
R =12 AREA = 452.16

?0ut of data in 10

73

Microsoft BASIC Interpreter Reference Manual

3.26 GR

Syntax

Purpose

Remarks

74

GR <screen number> [,<color number>]

To initialize low-resolution graphics mode and set
the background color of the screen.

< screen number > is an integer in the range 0-1
and <color number> is an integer in the range
0-15.

< screen number > specifies the mode to be used
as follows:

Screen

Number Mode

0 40x40 graphics plus 4 lines
text (mixed text display
mode)

1 40x48 graphics with no lines

text (low-resolution graphics
display mode)

If <screen number> is not specified, a default
value of zero is assumed.

GR clears the screen when it initializes low-
resolution graphics mode.

< color number > specifies the background color
of the screen. The <color number> argument is

Commands and Statements

optional. If <color number > is not specified, col-
or is set to black. The GR <color number > argu-
ment cannot be the same as the COLOR < color
number >. The color names and their associated
numbers are:

0 black 8 brown
1 magenta 9 orange
2 dark blue 10 gray
3 purple 11 pink
4 dark green 12 green
5 gray 13 yellow
6 medium blue 14 aqua
7 light blue 15 white
Examples GR Same as Applesoft GR statement.
GR 1,15 Set the screen background to white
and initialize the low-resolution
screen display mode (40x48).
3.27 HLIN
Syntax HLIN <x1 coordinate>,<x2 coordinate > AT
<y coordinate>
Purpose To draw a horizontal line from point (x1,y) to point
(x2,y) (in low-resolution graphics display mode
only).
Remarks x1 and x2 are integers in the range 0 to 39 and y

is an integer in the range 0 to 47. The <x1 coor-
dinate> must be less than or equal to the <x2
coordinate >.

The color of the line is specified by the most recent-
ly executed COLOR statement.

75

Microsoft BASIC Interpreter Reference Manual

If any of the coordinates are not in the required
range as specified above, an ILLEGAL FUNC-
TION CALL error results.

The HLIN statement normally draws a line com-
posed of dots from x1 to x2 at the vertical coor-
dinate y. However, if used when in text display
mode, or when in mixed graphics display mode
with y in the range 40 to 47, a line of characters
is displayed instead of the line of dots.

Example 10 GR
20 COLOR =3
30 HLIN 14,20 AT 39

3.28 HOME

Syntax HOME

Purpose To clear the screen of all text and move the cur-
sor to the upper left corner of the screen.

Remarks When HOME is used with an external terminal,
it sends a “clear screen” character sequence to the
terminal. HOME can only be used with terminals
that support this feature.

Example 10 HOME
20 VTAB 12

76

30 PRINT “A CLEAN SCREEN”

Commands and Statements

3.29 HTAB

Syntax HTAB <screen position number>

Purpose To move the cursor to the screen position that is
< screen position number > spaces from the left
edge of the current screen line.

Remarks The first (leftmost) position on the line is 1, the

last (rightmost) position on the line is 40.

HTAB uses absolute moves, not relative moves.
For instance, if the cursor was at position 10, and
the command HTAB 13 was executed, the cursor
would be moved to position 13, not position 23.

If a <screen position number > greater than 40
but less than 255 is specified, it will be treated
modulo 40. The command HTAB 60 would place
the cursor at position 20 on the current line. A
< screen position number > greater than 255 re-
sults in an ILLEGAL FUNCTION CALL error.

3.30 IF..THENI..ELSE] and IF..GOTO

Syntax

Syntax

Purpose

IF <expression> THEN <clause> [ELSE <clause>]

IF <expression> GOTO <line number> [ELSE
<clause>]

To make a decision regarding program flow
based on the result returned by an expression.

77

Microsoft BASIC Interpreter Reference Manual

Remarks

78

<expression> is a unique expression which sets
the conditions for the IF statement to make a
decision about which program path to follow.
<clause> can be a BASIC statement or state-
ments, or a line number to branch to.

If the result of <expression> is not zero, the
THEN or GOTO clause is executed. THEN can be
followed by either a line number for branching or
one or more statements to be executed. GOTO is
always followed by a line number. If the result of
< expression > is zero (false), the THEN or GOTO
clause is ignored and the ELSE clause, if present,
is executed. Execution continues with the next
executable statement. A comma is allowed before
THEN.

Nesting of IF Statements

IF..THENI!...ELSE] statements can be nested.
Nesting is limited only by the length of the line.
For example,

IF X>Y THEN PRINT “GREATER” ELSE IF Y>X
THEN PRINT “LESS THAN” ELSE PRINT
“EQUAL”

is a legal statement. If a statement does not con-
tain the same number of ELSE and THEN
clauses, each ELSE is matched with the closest
unmatched THEN. For example,

IF A=B THEN IF B=C THEN PRINT “A=C”
ELSE PRINT “A< >C”

will not print “A < >C” when A< >B.

If an IF.. THEN statement is followed by a line
number in direct mode, an UNDEFINED LINE
error results, unless a statement with the specified
line number had previously been entered in in-
direct mode.

Example 1

Example 2

Example 3

Commands and Statements

Note

When using IF to test equality for a value that
is the result of a floating-point computation,
remember that the internal representation of
the value may not be exact. Therefore, the test
should be against the range over which the ac-
curacy of the value may vary. For example, to
test a computed variable A against the value
1.0, use:

IF ABS (A-1.0)<1.0E—-6 THEN ...

This test returns true if the value of A is 1.0
with a relative error of less than 1.0E—6.

200 IF | THEN GET#1,l

This statement GETs record number 1, if I is not
zero.

100 IF(1<20)*(1>10) THEN DB = 1979 — 1:GOTO 300
110 PRINT “OUT OF RANGE”

In this example, a test determines if I is greater
than 10 and less than 20. If I is in this range, DB
is calculated and execution branches to line 300.
If 1 is not in this range, execution continues with
line 110.

210 IF IOFLAG THEN PRINT A$ ELSE LPRINT A$

This statement causes printed output to go either
to the screen or to the line printer, depending on
the value of the variable (IOFLAG). If IOFLAG
is zero, output goes to the line printer; otherwise,
output goes to the screen.

79

Microsoft BASIC Interpreter Reference Manual

3.31 INPUT

Syntax INPUT[;][< “prompt string” >;]<variable list>

Purpose To allow input from the keyboard during program
execution.

Remarks When an INPUT statement is encountered, pro-

80

gram execution pauses and a question mark is
displayed to indicate the program is waiting for
data.

If INPUT is immediately followed by a semicolon,
then the < RETURN > typed by the user to input
data does not echo a carriage return/linefeed se-
quence.

If <“prompt string” > is included, the string is
displayed before the question mark. The required
data is then entered at the keyboard. A comma can
be used instead of a semicolon after the prompt
string to suppress the question mark. For exam-
ple, the statement INPUT “ENTER BIRTH-
DATE”,B$ will display the prompt with no ques-
tion mark.

The data that is entered is assigned to the
variable(s) given in < variable list >. The number
of data items supplied must be the same as the
number of variables in the list. Data items are
separated by commas.

The variable names in the list can be numeric or
string variable names (including subscripted
variables). The type of each data item that is in-
put must agree with the type specified by the
variable name. (Strings input to an INPUT state-
ment need not be surrounded by quotation marks.)

Examples

Commands and Statements

Responding to INPUT with too many or too few
items, or with the wrong type of value (numeric
instead of string, etc.) causes the message 7REDO
FROM START to be printed. No assignment of
input values is made until an acceptable response
is given.

10 INPUT X A

20 PRINT X “SQUARED I1S” X 2

30 END

RUN

?5 (The 5 was typed in by the user in

response to the question mark)
5 SQUARED 1S 25

10 PI=3.14

20 INPUT “WHAT IS THE RADIUS”;R

30 A=PI*R"2

40 PRINT “THE AREA OF THE CIRCLE [S”;A
50 PRINT

60 GOTO 20

Ok

RUN

WHAT IS THE RADIUS? 7.4 {(User types 7.4)

THE AREA OF THE CIRCLE IS 171.946
WHAT IS THE RADIUS?

3.32 INPUT#

Syntax

Purpose

Remarks

INPUT# < file number>,<variable list>

To read data items from a sequential disk file and
assign them to program variables.

< file number > is the number used when the file
was opened for input. <variable list > contains the
variable names that will be assigned to the items
in the file. (The variable type must match the type
specified by the variable name.)

81

Microsoft BASIC Interpreter Reference Manual

Example

82

The data items in the file should appear just as
they would if data were being typed in response
to an INPUT statement. Unlike INPUT, no ques-
tion mark is printed with INPUT#.

With numeric values, leading spaces, carriage
returns, and linefeeds are ignored. The first
character encountered that is not a space, carriage
return, or linefeed is assumed to be the start of a
number. The number terminates on a space, car-
riage return, linefeed, or comma.

If BASIC is scanning the sequential data file for
a string item, leading spaces, carriage returns, and
linefeeds are also ignored. The first character en-
countered that is not a space, carriage return, or
linefeed is assumed to be the start of a string item.
If this first character is a quotation mark (“), the
string item will consist of all characters read be-
tween the first quotation mark and the second.
Thus, a quoted string cannot contain a quotation
mark as a character. If the first character of the
string is not a quotation mark, the string is an un-
quoted string. It will terminate on a comma, car-
riage return or linefeed (or after 255 characters
have been read). If end of file is reached when a
numeric or string item is being INPUT, the item
is terminated.

10 OPEN “1”,#1,“DATA”
20 INPUT#1,N$,D$,H$
30 IF RIGHT$(H$,2) =“78” THEN PRINT N$
40 GOTO 20
RUN
EBENEEZER SCROOGE
SUPER MANN
Input past end in 20

Commands and Statements

3.33 INVERSE

Syntax INVERSE

Purpose To set video output so that the screen displays
dark characters on a light background.

Remarks When using an external terminal, INVERSE
sends a highlighted character sequence to ter-
minals that support this feature.
INVERSE does not affect characters that are
already on the screen when INVERSE is executed.
The NORMAL command restores the usual light
letters on a dark background. (See Section 3.47,
“NORMAL.”)

Example 10 PRINT “THESE ARE WHITE CHARACTERS”
20 INVERSE
30 PRINT “THESE ARE BLACK CHARACTERS”
40 NORMAL

3.34 KILL

Syntax KILL <filespec>

Purpose To delete a file from disk.

Remarks KILL is used for all types of disk files: program

files, random access data files, and sequential data
files.

If a KILL statement is given for a file that is cur-
rently OPEN, a FILE ALREADY OPEN error

occurs.

83

Microsoft BASIC Interpreter Reference Manual

Example

3.35 LET

Syntax
Purpose

Remarks

84

10 ON ERROR GOTO 2000

20 OPEN “I” #1,“NAMES”

30 REM IF FILE EXISTS, WRITE IT TO “COPY”
40 OPEN “O” #2,“COPY”

50 IF EOF(1) THEN 90

60 LINE INPUT#1,A$

70 PRINT#2,A$

80 GOTO 50

90 CLOSE #1

100 KILL “NAMES”

110 REM ADD NEW ENTRIES TO FILE

120 INPUT “NAME”;N$

130 IF N$ = “” THEN 200 'CARRIAGE RETURN EXITS
INPUT LOOP

140 LINE INPUT “ADDRESS? ";A$

150 LINE INPUT “BIRTHDAY? ”;B$

160 PRINT#2,N$

170 PRINT#2,A$

180 PRINT#2,B$

190 PRINT:GOTO 120

200 CLOSE

205 REM CHANGE FILENAME BACK TO “NAMES”
210 NAME “COPY” AS “NAMES”

2000 IF ERR =53 AND ERL =20 THEN OPEN
“O” #2,“COPY”:RESUME 120

2010 ON ERROR GOTO 0

See also Appendix D, “Microsoft BASIC Disk
Io.”

[LET] <variable> = <expression >
To assign the value of an expression to a variable.

Notice the word LET is optional; i.e., the equal
sign is all that is required to assign an expression
to a variable name.

Attempting to assign a numeric value to a string
variable or a string value to a numeric variable will
result in a TYPE MISMATCH error.

Examples

Commands and Statements

110 LET D=12

120 LET E=12"2

130 LET F=12"4

140 LET SUM=D+E+F

or

110 D=12
120 E=12"2
130 F=12"4

140 SUM=D+E+F

3.36 LINE INPUT

Syntax

Purpose

Remarks

LINE INPUT[;][< “prompt string” >;] <string
variable >

To input an entire line (up to 254 characters) to
a string variable without the use of delimiters.

The optional < “prompt string” > is a string literal
that is displayed on the screen before input is ac-
cepted. A question mark is not printed unless it
is part of the prompt string.

< string variable > is the input. All input from the
end of the prompt to the <RETURN > is assigned
to <string variable>. However, if a linefeed/car-
riage return sequence (this order only) is encoun-
tered, both characters are echoed, but the carriage
return is ignored, the linefeed is put into < string
variable>, and data input continues.

85

Microsoft BASIC Interpreter Reference Manual

Example

If LINE INPUT is immediately followed by a
semicolon, then the carriage return typed by the
user to end the input line does not echo a carriage
return/linefeed sequence at the keyboard.

A LINE INPUT statement can be escaped from
by typing CONTROL-C. BASIC will return to
BASIC command level and displays the “Ok”
prompt. Typing CONT resumes execution at the
LINE INPUT statement.

See the example in the following section (LINE
INPUTS#).

3.37 LINE INPUT#

Syntax

Purpose

Remarks

86

LINE INPUT#< file number>, < string variable >

To read an entire line (up to 254 characters),
without delimiters, from a sequential disk data file
to a string variable.

< file number > is the number under which the file
was opened and < string variable > is the variable
name to which the line will be assigned. LINE
INPUTH# reads all characters in the sequential file
up to a <RETURN>. It then skips over the
linefeed/carriage return sequence. The next LINE
INPUT# reads all characters up to the next
<RETURN >. (If a linefeed/carriage return se-
quence is encountered, it is preserved.)

LINE INPUTY# is especially useful if each line of
a data file has been broken into fields, or if a
BASIC program saved in ASCII mode is being
read as data by another program.

Example

Commands and Statements

10 OPEN “O",1,“LIST”
20 LINE INPUT “CUSTOMER INFORMATION? ”;C$
30 PRINT #1, C$
40 CLOSE 1
50 OPEN “1”,1,“LIST”
60 LINE INPUT #1, C$
70 PRINT C$
80 CLOSE 1
RUN
CUSTOMER INFORMATION? LINDA JONES 234,4
MEMPHIS
LINDA JONES 234,4 MEMPHIS

3.38 LIST

Syntax 1
Syntax 2

Purpose

Remarks

LIST [<line number>]
LIST [<line number>[—[<line number>]]]

To list all or part of the program currently in
memory on the screen.

BASIC always returns to command level after
LIST is executed.

Syntax 1

If <line number > is omitted, the program is listed
beginning at the lowest line number. (Listing is ter-
minated either when the end of the program is
reached or by typing CONTROL-C. If <line
number > is included, only the specified line is
listed. CONTROL-S suspends a listing. Pressing
CONTROL-S again (or CONTROL-Q or any other
key) allows the listing to continue.

87

Microsoft BASIC Interpreter Reference Manual

Syntax 2
This format allows the following options:
1. If only the first number is specified, that
line and all subsequent lines are listed.

2. If only the second number is specified, all
lines from the beginning of the program
through that line are listed.

3. If both numbers are specified, the entire
range is listed.

Examples Syntax Format 1
LIST Lists the program currently in
memory.
LIST 500 Lists line 500.
Syntax Format 2
LIST 150 - Lists all lines from 150 to the end.
LIST —1000 Lists all lines from the lowest
number through 1000.
LIST 150 — 1000 Lists lines 150 through 1000,
inclusive.
3.39 LLIST
Syntax LLIST [<line number>[-[<line number>]]]
Purpose To list all or part of the program currently in
memory to the line printer.
Remarks BASIC always returns to command level after an

88

LLIST is executed. The options for LLIST are the
same as for LIST, Syntax 2.

Examples

Commands and Statements

<line number > is a valid line number in the range
0 to 65529.

LLIST assumes a 132-character-wide printer.

LLIST 150 - Lists all lines from 150 to the end.

LLIST - 1000 Lists all lines from the lowest
number through 1000.

LLIST 1560-1000 Lists lines 150 through 1000,
inclusive.

340 LOAD

Syntax
Purpose

Remarks

Examples

LOAD <filespec>[,R]
To load a file from disk into memory.

< filespec> includes the name and extension of
the file saved. With CP/M, the default extension
.BAS is supplied.

LOAD closes all open files and deletes all variables
and program lines currently residing in memory
before it loads the designated program. However,
if the R option is used with LOAD, the program
is RUN after it is loaded, and all open data files
are kept open. Thus, LOAD with the R option can
be used to chain several programs (or segments of
the same program). Information can be passed be-
tween the programs using disk data files.

LOAD “STRTRK”,R

LOAD “B:MYPROG”

89

Microsoft BASIC Interpreter Reference Manual

3.41 LPRINT and LPRINT USING

Syntax
Syntax
Purpose

Remarks

LPRINT [<list of expressions>]
LPRINT USING < string exp >;<list of expressions >
To print data at the line printer.

Same as PRINT and PRINT USING (Sections
3.55 and 3.56), except output goes to the line
printer.

LPRINT assumes a 132-character-wide printer.

342 LSET and RSET

Syntax
Syntax

Purpose

Remarks

90

LSET <string variable> = <string expression>
RSET <string variable> = <string expression>

To move data from memory to a random access
file buffer (in preparation fof a PUT statement).

If <string expression > requires fewer bytes than
were fielded to <string variable>, LSET left-
justifies the string in the field, and RSET right-
justifies the string. (Spaces are used to pad the ex-
tra positions.) If the string is too long for the field,
characters are dropped from the right. Numeric
values must be converted to strings before they
are LSET or RSET. See Section 4.27, “MKIS$,
MKS$, MKD$.”

Commands and Statements

Note

LSET or RSET can also be used with a non-
fielded string variable to left-justify or right-
justify a string in a given field. For example,
the program lines

110 A$ = SPACE$(20)
120 RSET A$=N$

right-justify the string N$ in a 20-character
field. This can be very handy for formatting
printed output.

Examples 150 LSET A$ = MKS$(AMT)
160 LSET D$ = DESC$
See also Program 6 in Appendix D, “Microsoft
BASIC Disk I/0.”

3.43 MERGE

Syntax MERGE <« filespec >

Purpose To merge a specified ASCII disk file into the pro-
gram currently in memory.

Remarks < filespec > is the filename and extension of the

saved file. CP/M will append a default filename ex-
tension of .BAS if one was not supplied in the
SAVE command. Refer to Section 2.4, “CP/M File
Naming Conventions” for more information about
possible filename extensions under CP/M. The file
must be saved in ASCII format. (If not, a BAD
FILE MODE error occurs.)

If any lines in the disk file have the same line
numbers as lines in the program in memory, the
lines from the file on disk will replace the cor-
responding lines in memory. (Merging may be

91

Microsoft BASIC Interpreter Reference Manual

Examples

thought of as “inserting” the program lines on disk
into the program in memory.)

BASIC always returns to command level after a
MERGE operation.

MERGE “A:CATPRO”
MERGE “B:LSTPROG”

See also Example 1 for the CHAIN statement in
this chapter.

3.44 MIDS$

Syntax

Purpose

Remarks

Example

92

MID$(< string exp1>,n[,m]) = <string exp2>

To replace a portion of one string with another
string.

n and m are integer expressions and <string
expl > and <string exp2> are string expressions.

The characters in < string expl >, beginning at
position n, are replaced by the characters in
<string exp2>. The optional m refers to the
number of characters from <string exp2> that
will be used in the replacement. If m is omitted,
all of <string exp2> is used. However, regardless
of whether m is omitted or included, the replace-
ment of characters never goes beyond the original
length of <string expl>.

MIDS$ is also a function that returns a substring
of a given string (see Section 4.26).

10 A$ = “KANSAS CITY, MO”
20 MID$(AS,14) = “KS”
30 PRINT A$
Ok
RUN
KANSAS CITY, KS

Commands and Statements

345 NAME

Syntax
Purpose

Remarks

Example

NAME <filespec> AS <new filename>
To change the name of a disk file.

< filespec> is a file specification as outlined under
“CP/M File Naming Conventions” in Section 2.4.
<new filename > is the new filename. It must be
a valid filename as outlined in the same section.

< filespec > must exist and < new filename > must
not exist; otherwise, an error will result. If the de-
vice name is omitted, the current drive is as-
sumed. After NAME is executed, the file exists
on the same disk, in the same area of disk space,
under the new name.

NAME “A:ACCTS” AS “LEDGER”

In this example, the disk file that was formerly
named ACCTS in drive A: will now be named
LEDGER.

3.46 NEW

Syntax

Purpose

Remarks

NEW

To delete the program currently in memory and
clear all variables.

NEW is entered at command level to clear memory
before entering a new program. BASIC always
returns to command level after a NEW command
is executed.

93

Microsoft BASIC Interpreter Reference Manual

347 NORMAL

Syntax

Purpose

Remarks

NORMAL

To restore video output to the normal light
characters on dark background.

NORMAL is used in conjunction with the IN-
VERSE command. (See Section 3.33.)

NORMAL does not affect characters already
displayed on the screen in INVERSE mode when
the NORMAL command is executed.

For external terminals that support the highlight
feature of INVERSE, NORMAL sends a “low-
light” character sequence instead of a dot.

3.48 ON ERROR GOTO

Syntax

Purpose

Remarks

94

ON ERROR GOTO <line number>

To enable error trapping and specify the first line
of the error-handling routine.

Once error trapping has been enabled, all errors
detected, including direct mode errors (e.g. , syn-
tax errors), will generate a jump to the specified
error-handling routine. If <line number > does not
exist, an UNDEFINED LINE error results.

To disable error trapping, execute an ON ERROR
GOTO 0. Subsequent errors generate an error
message and halt execution. An ON ERROR
GOTO 0 statement that appears in an error-hand-
ling routine causes BASIC to stop and print the
error message for the error that caused the trap.
It is recommended that all error-handling routines
execute an ON ERROR GOTO 0 if an error is en-
countered for which there is no recovery action.

Commands and Statements

Note

If an error occurs during execution of an error-
handling routine, the BASIC error message is
printed and execution terminates. Error trapping
does not occur within the error-handling routine.

Example 10 ON ERROR GOTO 1000

3.49 ON..GOSUB and ON...GOTO

Syntax ON <expression> GOSUB <list of line numbers >
Syntax ON <expression> GOTO <list of line numbers>
Purpose To branch to one of several specified line numbers,

depending on the value returned when an expres-
sion is evaluated.

Remarks The value of <expression> determines which line
number in the list will be used for branching. For
example, if the value is three, the third line number
in the list will be the destination of the branch. (If
the value is a non-integer, the fractional portion
is rounded.)

In the ON. .. GOSUB statement, each line number
in the list must be the first line number of a
subroutine.

If the value of <expression> is zero or greater
than the number of items in the list (but less than
or equal to 255}, BASIC continues with the next
executable statement. If the value of <expres-
sion> is negative or greater than 255, an IL-
LEGAL FUNCTION CALL error occurs.

Example 100 ON L-1 GOTO 150,300,320,390

95

Microsoft BASIC Interpreter Reference Manual

3.50 OPEN

Syntax

Purpose

Remarks

96

OPEN <mode > [#]<file number>, <filespec>
[,<reclen>]

To allow 1/O to a disk file.

<mode> is a string expression whose first
character is one of the following:

o specifies sequential output mode

I specifies sequential input mode

R specifies random access input/output
mode

< file number > is an integer expression with a
value between 1 and 15. The < file number> is
associated with the file for as long as it is OPEN
and is used to refer other disk I/O statements to
the file.

<filespec> is a string expression for a file speci-
fication which contains a name that conforms to
CP/M’s rules for disk filenames.

<reclen> is an integer expression which, if includ-
ed, sets the record length for random access files.
<reclen> is not valid for sequential files. The
default record length is 128 bytes. To use OPEN
with record lengths longer than 128 bytes, see Sec-
tion 2.1,"Initialization.”

A disk file must be opened before any disk I/O
operation can be performed on that file. OPEN
allocates a buffer for I/O to the file and determines
the mode of access that will be used with the
buffer.

Example

Commands and Statements

Note

A file can be opened for sequential input or
random access on more than one file number
at a time. A file can be opened for output,
however, on only one file number at a time.

10 OPEN “I”,2,“INVEN"

See also the example for the FIELD statement in
this chapter.

3.51 OPTION BASE

Syntax

Purpose

Remarks

OPTION BASE <n>

To declare the minimum value for array sub-
scripts.

n is either 1 or 0. The default value is 0. If the
statement

OPTION BASE 1

is executed, the lowest value an array subscript
can have is 1.

OPTION BASE must be coded before you define
or use any arrays.

97

Microsoft BASIC Interpreter Reference Manual

3.52 PLOT

Syntax PLOT <x coordinate>, <y coordinate>

Purpose To plot a dot on the screen in low-resolution
graphics mode.

Remarks < x coordinate > is an integer in the range 0-39 and
<y coordinate> is an integer in the range 0-47.
The coordinate points (0,0) are located in the up-
per left corner of the screen.
The color of the dot placed by PLOT is deter-
mined by the most recently executed COLOR or
GR statement.
PLOT normally places a dot at (x,y). However, if
PLOT is used while in text mode or in mixed text
mode with the y coordinate in the range 40 to 47,
a character is displayed instead of a dot.
If either <x coordinate> or <y coordinate> is
not in the required range specified above, an
ILLEGAL FUNCTION CALL error results.

Example GR
COLOR=9
PLOT 24,37

98

Commands and Statements

3.53 POKE

Syntax
Purpose

Remarks

Example

3.54 POP

Syntax

Purpose

Remarks

POKE 1,J
To write a byte into a memory location.

I and J are integer expressions. The expression I
represents the address of the memory location and
J represents the data byte. I must be in the range
—32768 to 65535. For interpretation of negative
values of I, see Section 4.46,“VARPTR.”

The complementary function of POKE is PEEK
(see Section 4.30). The argument to PEEK is an
address from which a byte is to be read.

POKE and PEEK are useful for efficiently stor-
ing data, loading assembly language subroutines,
and passing arguments and results to and from
assembly language subroutines.

10 POKE 106,0

POP

To return from a subroutine that was branched to
by a GOSUB statement without branching back
to the statement following the most recent
GOSUB statement.

POP is used instead of a RETURN to nullify a
GOSUB statement. Like RETURN, it nullifies the
last GOSUB in effect, but it does not return to the
statement following the GOSUB. After a POP, the

99

Microsoft BASIC Interpreter Reference Manual

next RETURN encountered will branch to one
statement beyond the second most recently exe-
cuted GOSUB. Thus, POP, in effect, takes one ad-
dress off the top of the “stack” of RETURN
addresses.

See also “GOSUB...RETURN" in Section 3.24.

Example 10 POP 106,0

3.55 PRINT

Syntax PRINT [<list of expressions>]

Purpose To display data on the screen.

Remarks If <list of expressions> is omitted, a blank line

100

is printed. If <list of expressions> is included, the
values of the expressions are displayed on the
screen. The expressions in the list can be numeric
and/or string expressions. (Strings must be en-
closed in quotation marks.)

Print Positions

The position of each printed item is determined by
the punctuation used to separate the items in the
list. BASIC divides the line into print zones of 14
spaces each. In the list of expressions, a comma
causes the next value to be printed at the begin-
ning of the next zone. A semicolon causes the next
value to be printed immediately after the last
value. Typing one or more spaces between expres-
sions has the same effect as typing a semicolon.

Example 1

Commands and Statements

If a comma or a semicolon terminates the list of
expressions, the next PRINT statement begins
printing on the same line, spacing accordingly. If
the list of expressions terminates without a com-
ma or a semicolon, a <RETURN > is printed at
the end of the line. If the printed line is longer than
the screen width, BASIC goes to the next physical
line to continue printing.

Printed numbers are always followed by a space.
Positive numbers are preceded by a space. Nega-
tive numbers are preceded by a minus sign. Sin-
gle precision numbers that can be represented with
6 or fewer digits in the unscaled format no less ac-
curately than they can be represented in the
scaled format are output using the unscaled for-
mat. For example, 10~ is output as .0000001 and
107% is output as 1E—08. Double precision
numbers that can be represented with 16 or fewer
digits in the unscaled format no less accurately
than they can be represented in the scaled format
are output using the unscaled format. For exam-
ple, 1D—15 is output as .0000000000000001 and
1D—16 is output as 1D—16.

A question mark can be used in place of the word
PRINT in a PRINT statement.

10 X=5
20 PRINT X+5, X~5, X+{-5), X"5
30 END
RUN
10 0 -25 3125

In this example, the commas in the PRINT state-
ment cause each value to be printed at the begin-
ning of the next print zone.

101

Microsoft BASIC Interpreter Reference Manual

Example 2

Example 3

102

10 INPUT X
20 PRINT X “SQUARED IS” X"2 “AND”;
30 PRINT X “CUBED 1S” X"3
40 PRINT
50 GOTO 10
Ok
RUN
?9
9 SQUARED IS 81 AND 9 CUBED IS 729
?21
21 SQUARED IS 441 AND 21 CUBED IS 9261
?

In this example, the semicolon at the end of line
20 causes both PRINT statements to be printed
on the same line. Line 40 causes a blank line to be
printed before the next prompt.

10FORX =1TO5

204d=J+5

30 K=K+ 10

40 ?2J;K;

50 NEXT X

Ok

RUN

5 10 10 20 15 30 20 40 25 50

In this example, the semicolons in the PRINT
statement cause each value to be printed im-
mediately after the preceding value. (Don’t forget,
a number is always followed by a space and a
positive number is preceded by a space.) In line
40, a question mark is used instead of the word
PRINT.

Commands and Statements

3.56 PRINT USING

Syntax

Purpose

Remarks

PRINT USING <string exp>;<list of expressions>

To print strings or numbers using a specified
format.

< string exp > is a string literal (or variable) com-
posed of special formatting characters. These for-
matting characters (see below) determine the field
and the format of the printed strings or numbers.

<list of expressions> consists of the string ex-
pressions or numeric expressions that are to be
printed, separated by semicolons.

String Fields

When PRINT USING is used to print strings, one
of three formatting characters can be used to for-
mat the string field:

“r Specifies that only the first character in
the given string is to be printed.

“\n spaces\”

Specifies that 2+n characters from the
string are to be printed. If the back-
slashes are typed with no spaces, two
characters will be printed; with one
space, three characters will be printed,
and so on. If the string is longer than the
field, the extra characters are ignored. If
the field is longer than the string, the
string will be left-justified in the field and
padded with spaces on the right.

103

Microsoft BASIC Interpreter Reference Manual

Example:

10 A$=“LOOK™:B$ = “OUT”
30 PRINT USING “!”;A$;B$ ~
40 PRINT USING “\ \”;A$;B$
50 PRINT USING“ \ \";A$;B$;“t!”
RUN
LO
LOOKOUT
LOOK OUT !

“&” Specifies a variable length string field.
When the field is specified with “&”’, the
string is output exactly as input.

Example:

10 A$ =“LOOK”:B$ = “OUT”
20 PRINT USING “!”;A$;
30 PRINT USING “&”;B$
RUN

LOUT

Numeric Fields

When PRINT USING is used to print numbers,
the following special characters can be used to for-
mat the numeric field:

A number sign is used to represent each
digit position. Digit positions are always
filled. If the number to be printed has
fewer digits than positions specified, the
number will be right-justified (preceded
by the appropriate number of spaces) in
the field.

A decimal point can be inserted at any
position in the field. If the format string
specifies that a digit is to precede the

104

* Kk

Commands and Statements

decimal point, the digit will always be
printed (as 0, if necessary). Numbers are
rounded, as necessary.

Examples:

PRINT USING “##. ##7,.78
0.78

PRINT USING “###.##7,987.654
987.65

PRINT USING “##.## 7,
10.2,5.3,66.789,.234

10.20 5.30 66.79 0.23

In the last example, three spaces were in-
serted at the end of the format string to
separate the printed values on the line.

A plus sign at the beginning or end of the
format string causes the sign of the
number (plus or minus) to be printed
before or after the number.

A minus sign at the end of the format
field causes negative numbers to be
printed with a trailing minus sign.

Examples:

PRINT USING “+##.## 7
; — 68.95,2.40,55.6, — .90

—-68.95 +240 +5560 -0.90

PRINT USING “##.##—- 7
; —68.95,22.449, - 7.01

68.95—- 2245 7.01-

A double asterisk at the beginning of the
format string causes leading spaces in
the numeric field to be filled with
asterisks. The ** also specifies positions
for two more digits.

105

Microsoft BASIC Interpreter Reference Manual

106

38

**$

Example:

PRINT USING“**#.#7;12.39, - 0.9,
765.1

*124 *-09 7651

$$ specifies two more digit positions, one
of which is the dollar sign. A double
dollar sign causes a dollar sign to be
printed to the immediate left of the for-
matted number. The exponential format
cannot be used with $$. Negative num-
bers cannot be used unless the minus
sign trails to the right.

Example:

PRINT USING “$$###.##7,456.78
$456.78

The **$ at the beginning of a format
string combines the effects of the ** and
$8% symbols (see above). Leading spaces
are asterisk-filled and a dollar sign is
printed before the number. **$ specifies
three more digit positions, one of which
is the dollar sign.

Example:

PRINT USING “**$##.##7,2.34
***$2.34

A comma specifies another digit position.
A comma to the left of the decimal point
in a formatting string causes a comma to
be printed to the left of every third digit
to the left of the decimal point. A com-
ma at the end of the format string is
printed as part of the string. The comma
has no effect if used with exponential

AAAA

(} format.

P

AAAA

Commands and Statements

Examples:

PRINT USING “##i##, .##7,1234.5
1,234.50

PRINT USING “####.##,7,1234.5
1234.50,

Four carets can be placed after the digit
position characters to specify exponen-
tial format. The four carets allow space
for E4+xx to be printed. Any decimal
point position can be specified. The
significant digits are left-justified, and
the exponent is adjusted. Unless a
leading + or trailing + or — sign is
specified, one digit position will be used
to the left of the decimal point to print
a space or a minus sign.

Examples:

PRINT USING “##.## ”;234.56

2.35E + 02
PRINT USING “.#### "~ — ;888888
.8889E + 06
PRINT USING “+ .## "~ 7123
+.12E+ 03

An underscore in the format string
causes the next character to be output as
a literal character.

Example:

PRINT USING “__'##.#4__17;12.34
112.34!

The literal character itself may be an

underscore by placing two underscore
characters (__ _) in the format string.

107

Microsoft BASIC Interpreter Reference Manual

%o If the number to be printed is larger than
the specified numeric field, a percent sign
is printed in front of the number. If
rounding causes the number to exceed
the field, a percent sign is printed in front
of the rounded number.

Examples:

PRINT USING “##.##7,111.22
%111.22

PRINT USING “.##”;.999
%1.00

If the number of digits specified exceeds

24, an ILLEGAL FUNCTION CALL er-
ror results.

3.57 PRINT# and PRINT# USING

Syntax PRINT# < filenumber > [USING < string exp >;] < list of
expressions >

Purpose To write data to a sequential disk file.

Remarks < filenumber > is the number used when the file
is opened for output.

<string exp> is composed of formatting char-
acters as described in the previous section (PRINT
USING).

The expressions in <list of expressions> are the
numeric and/or string expressions that will be writ-
ten to the file.

PRINT# does not compress data on the disk. An
image of the data is written to the disk, just as

108

Examples

Commands and Statements

it would be displayed on the screen with a PRINT
statement. For this reason, care should be taken
to delimit the data on the disk so that it will be
input correctly from the file.

In the list of expressions, numeric expressions
should be delimited by semicolons. For example:

PRINT#1,A;B;C;X;Y;Z

(If commas are used as delimiters, the extra blanks
that are inserted between print fields will also be
written to the file.)

String expressions must be separated by semi-
colons in the list. To format string expressions cor-
rectly on the file, use explicit delimiters in the list
of expressions.

Let A$=“CAMERA” and B$="93604—1". The
statement

PRINT#1,A$;B$

would write CAMERA93604—1 to the file.
Because there are no delimiters, this could not be
input as two separate strings. To correct the prob-
lem, insert explicit delimiters into the PRINT#
statement, as follows:

PRINT#1,A$;",”;B$
The image written to the file is

CAMERA,93604 — 1
which can be read back into two string variables.
If the strings themselves contain commas, semi-
colons, significant leading blanks, carriage returns,

or linefeeds, write them to the file surrounded by
explicit quotation marks using CHR$(34).

109

Microsoft BASIC Interpreter Reference Manual

110

For example, let A$=“CAMERA, AUTOMAT-
IC” and B$=*“ 93604—1". The statement

PRINT#1,A$;B$
would write the following image to the file:
CAMERA, AUTOMATIC 93604 —1
The statement
INPUT#1,A$,B$
inputs “CAMERA” to A$ and “AUTOMATIC
93604—1" to B$. To separate these strings prop-
erly on the file, write double quotation marks to

the file image using CHR$(34).The statement

PRINT#1,CHR$(34):A$;CHR$(34); CHR$(34);BS;
CHR$(34)

writes the following image to the file:
“CAMERA, AUTOMATIC”* 93604 - 1"
The statement
INPUT#1,A$,B%

inputs “CAMERA, AUTOMATIC” to A$ and
“ 93604—1" to BS.

The PRINT# statement can also be used with the
USING option to control the format of the disk
file. For example:

PRINT#1,USING “‘$$###.##,”,J;K;L
For more examples using PRINT#, see the exam-

ple for the KILL statement in this chapter and
Program 1 in Appendix D.

3.58 PUT

Syntax

Purpose

Remarks

Example

Commands and Statements

PUT [#]< file number>[,<record number>]

To write a record from a random access buffer to
a random access disk file.

< file number > is the number under which the file
was opened and <record number > is the record
number for the record to be written.

If <record number> is omitted, the record will
assume the next available record number (after the
last PUT). The largest possible record number is
32767. The smallest record number is 1.

Note

PRINT#, PRINT# USING, and WRITE# can
be used to put characters in the random access
file buffer before a PUT statement is executed.

In the case of WRITE#, BASIC pads the buf-
fer with spaces up to the carriage return. Any
attempt to read or write past the end of the
buffer causes a FIELD OVERFLOW error.

See the examples in Appendix D.

3.59 RANDOMIZE

Syntax

Purpose

RANDOMIZE [<expression>]

To reseed the random number generator.

111

Microsoft BASIC Interpreter Reference Manual

Remarks

Example

112

The optional <expression> argument is a
numeric expression. If <expression> is omitted,
BASIC suspends program execution and asks for
a value by printing

Random Number Seed (— 32768 to 32767)?

before executing RANDOMIZE.

If the random number generator is not reseeded,
the RND function returns the same sequence of
random numbers each time the program is run. To
change the sequence of random numbers every
time the program is run, place a RANDOMIZE
statement at the beginning of the program and
change the argument with each RUN.

10 RANDOMIZE
20FORI=1TO5
30 PRINT RND;
40 NEXT |
Ok
RUN
RANDOM NUMBER SEED (- 32768 to 32767)? 3

You type 3:

.88598 .484668 .586328 .119426 .709225

RUN
RANDOM NUMBER SEED (- 32768 to 32767)? 4

You type 4 for new sequence:

.803506 .162462 .929364 .292443 .322921

RUN
RANDOM NUMBER SEED (- 32768 to 32767)? 3

Same sequence as first RUN:

.88508 .484668 .586328 .119426 .709225

Commands and Statements

3.60 READ

Syntax

Purpose

Remarks

Example 1

READ <variable list>

To read values from a DATA statement and
assign them to variables.

A READ statement must always be used in
conjunction with a DATA statement. READ
statements assign variables to DATA statement
values on a one-to-one basis. READ statement
variables can be numeric or string. The values read
must agree with the variable types specified. If
they do not agree, a SYNTAX ERROR will result.

A single READ statement can access one or more
DATA statements (they will be accessed in order),
or several READ statements can access the same
DATA statement. If the number of variables in
<variable list > exceeds the number of elements
in the DATA statement(s), an OUT OF DATA
message is printed. If the number of variables
specified is fewer than the number of elements in
the DATA statement(s), subsequent READ
statements will begin reading data at the first
unread element. If there are no subsequent READ
statements, the extra data is ignored.

To reread DATA statements from the start, use
the RESTORE statement.

80 FOR I=1TO 10

90 READ A(l)

100 NEXT |

110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

113

Microsoft BASIC Interpreter Reference Manual

This program segment reads the values from the
DATA statements into the array A. After execu-
tion, the value of A(1) will be 3.08, and so on.

Example 2 10 PRINT “CITY”, “STATE”, “ZIP”
20 READ C$,5%,2
30 DATA “DENVER,”, “COLORADO”,“80211"
40 PRINT C$,S8%,Z
Ok
RUN
CITY STATE ZIP
DENVER, COLORADO 80211
This program reads string and numeric data from
the DATA statement in line 30.
3.61 REM
Syntax REM <remark>
Purpose To allow explanatory remarks to be inserted in a
program.
Remarks REM statements are not executed, but are output

114

exactly as entered when the program is listed.

REM statements can be branched into or from a
GOTO or GOSUB statement; execution continues
with the first executable statement after the REM
statement.

Remarks can be added to the end of a line by
preceding the <remark > with a single quotation
mark instead of REM. <remark > can consist of
any sequence of characters.

Warning

Do not use REM in a data statement, as it is
considered legal data.

Commands and Statements

Examples
1:’20 REM CALCULATE AVERAGE VELOCITY
130 FOR I=1TO 20
140 SUM = SUM + V())
or:
1.20 FOR I=1 TO 20 "CALCULATE AVERAGE
VELOCITY
130 SUM = SUM + V()
140 NEXT |
3.62 RENUM
Format RENUM [[<new number>],[<old number>][, <incre-
ment>]]]
Purpose To renumber program lines.
Remarks The <new number> argument is the first line

number to be used in the new sequence. The
default new number is 10.

The <old number> argument is the line in the
current program where renumbering is to begin.
The default old number is the first line of the
program.

The <increment> argument is the increment to

be used in the new sequence. The default value is
10.

115

Microsoft BASIC Interpreter Reference Manual

Examples

116

RENUM also changes all line number references
following GOTO, GOSUB, THEN, ON...GOTO,
ON...GOSUB, and ERL statements to reflect the
new line numbers. If a nonexistent line number ap-
pears after one of these statements, the error
message UNDEFINED LINE xxxxx IN yyyyy is
printed. The incorrect line number reference xxxxx
is not changed by RENUM, but line number
yyyyy can be changed.

Note

RENUM cannot be used to change the order
of program lines (for example, RENUM 15,30
when the program has three lines numbered
10, 20, and 30) or to create line numbers
greater than 65529. If it is used for such pur-
poses, an ILLEGAL FUNCTION CALL error

occurs.

RENUM Renumbers the entire program. The
first new line number will be 10.
Lines will be numbered in in-
crements of 10.

RENUM Renumbers the entire program. The

300,,50 first new line number will be 300.
Lines will be numbered in in-
crements of 50.

RENUM 1000, Renumbers the lines from 900 up so

900,20 they start with line number 1000

and continue in increments of 20.

Commands and Statements

3.63 RESET
Syntax RESET
Purpose To execute a disk system reset. After disks are ex-

Remarks

changed in a disk drive, RESET must be executed
before reading or writing to the new disk. This is
called a “warm start.”

Always execute a RESET command after chang-
ing disks. Otherwise, you will not be able to write
to the new disks.

RESET also closes all open files. Therefore, when
changing disks, a CLOSE statement should be ex-
ecuted before removing the old disks.

3.64 RESTORE

Syntax

Purpose

Remarks

Example

RESTORE [<line number>]

To allow DATA statements to be reread begin-
ning at a specified line.

After RESTORE is executed, the next READ
statement accesses the first item in the first
DATA statement in the program. The optional
<line number> argument specifies a DATA
statement. If <line number > is specified, the next
READ statement accesses the first item in the
specified DATA statement.

10 READ A,B,C

20 RESTORE

30 READ D,E,F

40 DATA 57, 68, 79

117

Microsoft BASIC Interpreter Reference Manual

3.65 RESUME

Syntax

Purpose

Remarks

Example

118

RESUME [{NEXT |<0>|<line number>}]

To continue program execution after an error
recovery procedure has been performed.

Any of the arguments shown above can be used,
depending upon where execution is to resume:

RESUME Execution resumes at the statement
or that caused the error.
RESUME 0

RESUME NEXT

Execution resumes at the statement
immediately following the one that
caused the error.

RESUME < line number>

Execution resumes at <line
number >.

A RESUME statement that is outside an error-

handling routine generates a RESUME WITH-
OUT ERROR message.

10 ON ERROR GOTO 900

900 IF (ERR = 230)AND(ERL = 90) THEN PRINT “TRY
AGAIN":RESUME 80

Commands and Statements

3.66 RUN

Syntax 1 RUN [<line number>]

Purpose To execute the program currently in memory.

Remarks If <line number > is specified, execution begins
on that line. Otherwise, execution begins at the
lowest line number. BASIC always returns to com-
mand level after a RUN is executed.

Example RUN

Syntax 2 RUN < filespec>[,R]

Purpose To load a file from disk into memory and run it.

Remarks < filespec > is a string expression that includes the
name used when the file was saved. With CP/M,
if no filename extension is given the default exten-
sion .BAS is supplied.
RUN closes all open files and deletes the current
contents of memory before loading the designated
program. However, with the R option, all data files
remain OPEN.

Examples RUN “NEWFIL"”,R

RUN “B:PROG”

See also the programs listed in Appendix D,
“Microsoft BASIC Disk I/0.”

119

Microsoft BASIC Interpreter Reference Manual

3.67 SAVE

Syntax
Purpose

Remarks

Examples

120

SAVE <filespec>[{<A>|<P>}]
To save a program file on disk.

<filespec> is a string expression that includes the
name used when the file was saved. With CP/M,
if no filename extension is given, the default ex-
tension .BAS is supplied. If the<filespec> al-
ready exists, the file will be overwritten.

Use the A option to save the file in ASCII format.
Otherwise, BASIC saves the file in a compressed
binary format. ASCII format takes more space on
the disk, but some disk access requires that files
be in ASCII format. For example, the MERGE
command requires an ASCII format file.

Use the P option to protect the file by saving it
in an encoded binary format. When a protected file
islater RUN (or loaded), any attempt to list or edit
it will fail.

Warning

Once the P option is used, a file cannot be
‘“unprotected.”

SAVE“COM2” A
SAVE“PROG”,P
SAVE “B:PROG”

See also the programs listed in Appendix D,
“Microsoft BASIC Disk 1/0.”

Commands and Statements

3.68 STOP

Syntax STOP

Purpose To terminate program execution and return to
command level.

Remarks STOP statements can be used to terminate execu-
tion anywhere in a program. When a STOP is en-
countered, the following message is printed:

BREAK IN LINE nnnnn
Unlike the END statement, the STOP statement
does not close files.
BASIC always returns to command level after a
STOP is executed. Execution is resumed by issu-
ing a CONT command.

Example 10 INPUT A,B,C
20 K=A"2+5.3:.L=B"3/.26
30 STOP
40 M=C+K + 100:PRINT M
RUN
21,23
BREAK IN 30
Ok
PRINT L

30.7692
Ok
CONT

115.9

121

Microsoft BASIC Interpreter Reference Manual

3.69 SWAP

Syntax SWAP <variable>,<variable>

Purpose To exchange the values of two variables.
Remarks Any type variable can be swapped (integer, single

precision, double precision, string), but the two
swapped variables must be of the same type, or
a TYPE MISMATCH error results.

Example 10 A$=“ONE ” : B$=“ ALL ” : C$="FOR”
20 PRINT A$.C$ BS
30 SWAP A3, B$
40 PRINT A$ C$ B$
RUN
Ok
ONE FOR ALL
ALL FOR ONE

3.70 SYSTEM

Syntax SYSTEM

Purpose To close all files and return to CP/M command
level.

Remarks You cannot use CONTROL-C to return to CP/M,

as it always returns you to BASIC.

Example SYSTEM
A>

122

Commands and Statements

3.71 TEXT
Syntax TEXT
Purpose To reset the screen to normal full Apple text

Remarks

Example

display mode (24x40) from low-resolution graphics
or high-resolution graphics display modes.

TEXT will clear the screen if it is used to return
from low-resolution graphics. It will not clear the
screen if used to return from high-resolution
graphics.

If used while in text display mode, TEXT has the
same effect as VTAB 24,

10 GR

20 COLOR = 5

30 VLIN 24,30 AT 35
40 TEXT

50 PRINT “THIS IS A VERTICAL LINE”

3.72 TRACE/NOTRACE

Syntax
Syntax
Purpose

Remarks

TRACE
NOTRACE
To trace the execution of program statements.

The TRACE statement (executed in either direct
or indirect mode) is an aid to troubleshooting
which enables a trace flag that prints each line
number of the program as it is executed. The
numbers are enclosed in square brackets where
they are displayed. The trace flag can be disabled
either with the NOTRACE statement or when a
NEW command is executed.

123

Microsoft BASIC Interpreter Reference Manual

Example 10 K=10
20 FORJ=1TO 2
30L=K + 10
40 PRINT J;K;L
50 K=K+ 10
60 NEXT
70 END
TRACE
Ok
RUN
(10]720]30]{40] 1 10 20
[50](60](30]{40] 2 20 30
[50](60](70]
Ok
NOTRACE
3.73 VLIN
Syntax VLIN <y1 coordinate >, <y2 coordinate> AT
<x coordinate >
Purpose To draw a vertical line from the point at (x,y1) to

the point at (x,y2) on the screen in low-resolution
graphics mode only.

Remarks The <yl coordinate > and <y2 coordinate > are
integers in the range 0-47. The <x coordinate >
is an integer in the range 0-39. The <yl coor-
dinate> must be less than or equal to the <y2
coordinate >.

If any of the coordinates are not in the required
range as specified above, an ILLEGAL FUNC-
TION CALL error results.

The color of the line is determined by the most re-
cent COLOR statement.

The VLIN statement normally draws a line from

coordinates y1 to y2 at the horizontal coordinate
x. However, if used when in text mode or when in

124

Example

Commands and Statements

mixed graphics mode with y2 in the range 40 to
47, the part of the line that falls in the text area
will be displayed as a line of characters.

10 GR
20 COLOR=3
30 VLIN 20,45 AT 12

3.74 VTAB

Syntax

Purpose

Remarks

Example

VTAB < screen line number>

To move the cursor vertically to the line on the
screen that corresponds to the specified <screen
line number >.

The first line (the top line) on the screen is line 1;
the last line (the bottom line) on the screen is line
24.

VTAB uses absolute moves. For instance, if the
cursor was on line 10 of the screen and the com-
mand VTAB 13 was executed, the cursor would
be moved to line 13, not line 23.

If a <screen line number > greater than 24 is
specified, it will be treated as modulo 24. For ex-
ample, the command VTAB 26 would place the
cursor on screen line 2. If a < screen line number >
greater than 255 is specified, it results in an IL-
LEGAL FUNCTION CALL error.

VTAB can move the cursor either up or down.
When used with an external terminal, VTAB

sends a “cursor address” character sequence to
terminals that address this feature.

10 VTAB 12: PRINT “MIDDLE OF SCREEN”

125

Microsoft BASIC Interpreter Reference Manual

3.75 WAIT

Syntax

Purpose

Remarks

Example

126

WAIT <address>, I[J]

To suspend program execution while you monitor
the status of an address.

I and J are integer expressions.

The WAIT statement causes execution to be
suspended until a specified address develops a
specified bit pattern. The data read at the port per-
forms an exclusive OR operation with the integer
expression J, and then performs an AND opera-
tion with L. If the result of either is zero, BASIC
loops back and reads the data at the address again.
If the result is nonzero, execution continues with
the next statement. If J is omitted, it is assumed
to be zero.

Warning

It is possible to enter an infinite loop with the
WALIT statement. If this happens, you must
manually restart the computer. To avoid this
and continue execution, WAIT must have the
specified value (I or J) at <address> at some
point in the program execution.

100 WAIT &HEO000,128
200 PRINT “KEYPRESS!”:GOTO 100

Commands and Statements

3.76 WHILE..WEND

Syntax

Purpose

Remarks

Example

WHILE <expression>
[.<Ioop statements>]
WEND

To execute a series of statements in a loop as long
as a given condition is true.

If <expression> is not zero (i.e., true), <loop
statements > are executed until the WEND state-
ment is encountered. BASIC then returns to the
WHILE statement and checks <expression>. If
it is still true, the process is repeated. If it is not
true, execution resumes with the statement follow-
ing the WEND statement.

WHILE/WEND loops can be nested to any level.
Each WEND will match the most recent WHILE.
An unmatched WHILE statement causes a
WHILE WITHOUT WEND error, and an un-
matched WEND statement causes a WEND
WITHOUT WHILE error.

90 'BUBBLE SORT ARRAY A$
100 FLIPS =1 'FORCE ONE PASS THRU LOOP
110 WHILE FLIPS

115 FLIPS=0
120 FOR I=1TO J-1
130 IF A$(l)>AS$(l + 1) THEN
SWAP A$
(1),AS$(1 + 1):FLIPS = 1
140 NEXT |
150 WEND

127

Microsoft BASIC Interpreter Reference Manual

3.77 WIDTH

Syntax

Purpose

Remarks

Example

128

WIDTH [LPRINT] <integer expression>

To set the line width for the screen or line printer
to a specified number of characters.

<integer expression> must have a value in the
range 15 to 255. The default width is 80 characters.

If the LPRINT option is omitted, the line width
is set at the screen. If LPRINT is included,the line
width is set at the line printer.

If <integer expression> is 255, the line width is
“infinite,” that is, BASIC never inserts a carriage
return. However, the position of the cursor or the
print head, as given in the POS or LPOS function,
returns to zero after position 255.

10 PRINT “ABCDEFGHIJKLMNOPQRSTUVWXYZ”
RUN
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Ok
WIDTH 18
Ok
RUN
ABCDEFGHIJKLMNOPQR
STUVWXYZ

Commands and Statements

3.78 WRITE

Syntax
Purpose

Remarks

Example

WRITE [<expression>,<expression>,...]
To output data on the screen.

If <expression> is omitted, a blank line is out-
put. If <expression> is included, the values of the
expression(s) are output on the screen. The expres-
sions can be numeric and/or string expressions.
They must be separated by commas.

In printed output, each item is separated from the
last by a comma. Printed strings are delimited by
quotation marks. After the last item in the list is
printed, BASIC inserts a carriage return/linefeed
sequence.

WRITE outputs numeric values using the same
format as the PRINT statement.

10 A =80:B=90:C$ = “THAT'S ALL”
20 WRITE A,B,C$
RUN

80, 90,“THAT’S ALL”

129

Microsoft BASIC Interpreter Reference Manual

3.79 WRITE#

Syntax

Purpose

Remarks

Example

130

WRITE# < file number>, <expression>,
[<expression>,...]

To write data to a sequential file.

< file number > is the number under which the file
was opened in “O” mode. The <expression>s can
be either string or numeric expressions. They must
be separated by commas.

WRITE#, unlike PRINT#, inserts commas be-
tween the items as they are written to disk and
delimits strings with quotation marks. Therefore,
it is not necessary for the user to put explicit
delimiters in the list. A carriage return/linefeed se-
quence is inserted after the last item in the list is
written to disk.

Let A$=“CAMERA"” and B$=93604—1". The
statement

WRITE#1,A$,B$

writes the following image to disk:
“CAMERA”,“93604 — 1”

A subsequent INPUT# statement, such as
INPUT#1,A3%,B$

would input “CAMERA"” to A$ and “93604—1"
to BS.

Chapter 4
_ Microsoft BASIC Functions

41 ABS 134 425 LPOS 147
42 ASC 134 426 MID$ 148
43 ATN 135 4.27 MKIS$, MKSS,
4.4 BUTTON 135 MKD$ 148
45 CDBL 136 428 OCT$ 149
46 CHR$ 136 429 PDL 150
47 CINT 187 430 PEEK 150
48 COS 137 431 POS 151
19 CSNG 138 432 RIGHT$ 151
410 CVI, CVS, 4.33 RND 152
- CVD 138 4.34 SCRN 152
411 EOF 139 435 SGN 153
412 EXP 139 436 SIN 153
413 FIX 140 437 SPACE$ 154
414 FRE 141 438 SPC 154
415 HEXS$ 142 439 SQR 155
416 INKEY$ 142 440 STR$ 155
417 INPUT$ 143 441 STRINGS 156
418 INSTR 144 442 TAB 156
419 INT 144 443 TAN 157
420 LEFT$ 145 444 USR 157
421 LEN 145 445 VAL 158
~ 422 LOC 146 4.46 VARPTR 159
423 LOF 146 447 VPOS 161
424 LOG 147

131

Chapter 4
Microsoft BASIC Functions

The intrinsic functions provided by Microsoft BASIC are de-
scribed in this chapter. The functions can be called from any pro-
gram without further definition.

Functions differ from commands and statements in that they can-
not be performed by themselves. They must be used in conjunc-
tion with either a statement or a command. If used with an assign-
ment statement (=), a function must appear on the right side of
the = sign.

Each function description consists of the following components:

Syntax Shows the correct format for the function.

Action Describes the action the function takes.

Remarks Describes in detail how the function is used;
also discusses special conditions for using the
function.

Example Shows sample programs or program segments

that demonstrate the use of the instruction.

Syntax notation for all functions is given in Chapter 1. Numeric
and string arguments (where applicable) have been abbreviated
as follows:

Xand Y Represent any numeric expressions.

Tand J Represent integer expressions.

X$ and Y$ Represent string expressions.
If a floating-point value is supplied where an integer is required,

BASIC rounds the fractional portion and uses the resulting
integer.

133

Microsoft BASIC Interpreter Reference Manual

41 ABS

Syntax
Action

Example

42 ASC

Syntax

Action

Remarks

Example

134

ABS(X)
Returns the absolute value of the expression X.

PRINT ABS(7+(- 5))
35

ASC(X$)

Returns a numerical value that is the ASCII code
of the first character of the string X$. (See Appen-
dix H for ASCII codes.)

If X$ is null, an ILLEGAL FUNCTION CALL
error is returned.

See Section 4.6, “CHR$” for ASCII-to-string
conversion.

10 X$ = “TEST”
20 PRINT ASC(X$)
RUN

84

Functions

4.3 ATN
Syntax ATN(X)
Action Returns the arctangent of X in radians.
Remarks The result is in the range —pi/2 to pi/2.
The calculation of ATN(X) is performed in single
precision format, regardless of the declared vari-
able type (integer, single precision, or double preci-
sion) of X.
Example 10 INPUT X
20 PRINT ATN(X)
RUN
?3
1.24905
44 BUTTON
Syntax BUTTON(I)
Action Returns the current value of the push button on
the Apple game controller specified by I.
Remarks I is in the range 0 to 3.
The returned value is either 0 if the button is not
currently depressed, or —1 if the button is current-
ly depressed.
Example 10 IF BUTTON(0) THEN PRINT “BOOM”

135

Microsoft BASIC Interpreter Reference Manual

4,5 CDBL
Syntax CDBL(X)
Action Converts X to a double precision number.
Example 10 A = 454.67
20 PRINT A;CDBL(A)
RUN

454.67 454.6700134277344

46 CHRS$
Syntax CHRS$(!)
Action Returns a single element whose ASCII string is

code I. (ASCII codes are listed in Appendix H.)

Remarks CHRS$ is commonly used to send a special
character to the terminal. For instance, the BEL
character (CHR$(7)) could be sent as a preface to
an error message.

See Section 4.2, “ASC” for ASCII-to-numeric
conversion.

Example PRINT CHR$(66)
B

136

Functions

4.7 CINT

Syntax CINT(X)

Action Converts X to an integer.

Remarks Converts X to an integer by rounding the frac-

tional portion. If X is not in the range —32768 to
432767, an OVERFLOW error occurs.

See Section 4.5, “CDBL”, and Section 4.9,
“CSNG,” for converting numbers to double preci-
sion and single precision data types. See also Sec-
tion 4.13, “FIX,” and Section 4.19, “INT,” both
of which return integers.

Example PRINT CINT(45.67)
48
4.8 COS
Syntax COS(X)
Action Returns the cosine of X.
Remarks COS is the trigonometric cosine function. X must

be in radians. To convert from degrees to radians,
multiply by pi/180 (pi = 3.141593).

The calculation of COS(X) is performed in single
precision, regardless of the declared variable type
(integer, single precision, or double precision) of X.

Example 10 X = 2+COS(.4)
20 PRINT X
RUN
1.84212

137

Microsoft BASIC Interpreter Reference Manual

49 CSNG

Syntax CSNG(X)

Action Converts X to a single precision number.

Remarks See Section 4.7, “CINT,” and Section 4.5,“CDBL,”
for converting numbers to the integer and double
precision data types.

Example 10 A# = 975.3421#

20 PRINT A#; CSNG(A#)
RUN
975.3421 975.342

410 CVI, CVS, CVD

Syntax

Action

Remarks

138

CVI(<2-byte string>)
CVS(< 4-byte string>)
CVD(< 8-byte string>)

Convert string variable values to numeric variable
values.

Numeric values that are read in from a random ac-
cess disk file must be converted from strings back
into numbers. CVI converts a 2-byte string to an
integer. CVS converts a 4-byte string to a single
precision number. CVD converts an 8-byte string
to a double precision number.

See also Section 4.27, “MKI$, MKS$, MKDS$,”
and Section D.3.2, “Random Access Files,” in Ap-
pendix D.

Functions

Example
70 FIELD #1,4 AS N$, 12 AS BS, ...
80 GET #1
90 Y =CVS(N$)

4.11 EOF

Syntax EOF(<file number>)

Action Tests for an end-of-file condition.

Remarks <file number> is the number specified in the
OPEN statement.
The EOF function returns —1 (true) if the end of
a sequential file has been reached. Use EOF to test
for an end-of-file condition while inputting, to
avoid INPUT PAST END errors.

Example 10 OPEN “1”,1,“DATA”
20C=0
30 IF EOF(1) THEN 100
40 INPUT #1,M(C)
50 C=C+1:GOTO 30

4.12 EXP

Syntax EXP(X)

Action Calculates the exponential function e.

139

Microsoft BASIC Interpreter Reference Manual

Remarks EXP returns the mathematical number e raised to
the X power. X must be <=87.3365. If EXP
overflows, the OVERFLOW error message is
displayed, machine infinity with the appropriate
sign is supplied as the result, and execution
continues.

The calculation of EXP(X) is performed in single
precision format, regardless of the declared
variable type (integer, single precision, or double
precision) of X.

Example 10X =5

20 PRINT EXP (X-1)

RUN

54.5982

413 FIX
Syntax FIX(X)
Action Truncates X to an integer.
Remarks FIX(X) is equivalent to the expression SGN(X)+*

INT (ABS(X)). The difference between FIX and
INT is that FIX does not return the next lower
number when X is negative, as INT does.

See Section 4.19, “INT,” and Section 4.7, “CINT.”
They also return an integer.

Examples PRINT FIX(58.75)
58

PRINT FiX(—58.75)
—58

140

Functions

414 FRE
Syntax FRE{(0) | (<X$>)}
Action Returns the number of bytes in memory not be-

ing used by BASIC.

Remarks Strings in BASIC often have variable lengths.
That is, each time you assign a value to a string,
its length can change. Strings are also manipu-
lated dynamically. For this reason, string space
can be scattered or fragmented.

FRE(“) forces a reallocation of memory space
(otherwise known as “housecleaning,” “garbage
collection,” etc.) before returning the number of
free bytes. Housecleaning collects useful data and
frees up unused areas of memory that were once
used for strings. The data is compressed so you
can use memory space more efficiently.

BASIC initiates housecleaning when all free
memory is used up. The housecleaning process can
take from a minute to a minute and a half.

Arguments to FRE are dummy arguments.

Example PRINT FRE(0)
14542

Note

The actual value returned by the FRE func-
tion may differ from the value returned in this
example.

141

Microsoft BASIC Interpreter Reference Manual

415 HEX$
Syntax HEXS$(X)
Action Returns a string that represents the hexadecimal

Remarks

Example

value of the decimal argument.

X is rounded to an integer before HEX$(X) is
evaluated.

See Section 4.28, “OCTS$,” for octal conversion.

10 INPUT X
20 A$ = HEX$(X)
30 PRINT X “DECIMAL IS ” A$ “HEXADECIMAL”
RUN
7 32
32 DECIMAL IS 20 HEXADECIMAL

416 INKEYS$

Syntax
Action

Remarks

Example

142

INKEY$
Reads a character from the keyboard.

INKEYS$ returns either a one-character string con-
taining a character read from the keyboard; or a
null string if no character is pending at the
keyboard. No characters are echoed and all char-
acters are passed through to the program except
for CONTROL-C, which terminates the program.

1000 'TIMED INPUT SUBROUTINE

1010 RESPONSE$ =" "

1020 FOR 1% =1 TO TIME LIMIT%

1030 A$ = INKEY$: IF LEN(A$)=0 THEN 1060
1040 IF ASC(A$) =13 THEN TIMEOQUT% =0
RETURN

1050 RESPONSE$ = RESPONSES + A$

1060 NEXT 1%

1070 TIMEOUT% =1 : RETURN

Functions

4.17 INPUTS

Syntax

Action

Remarks

Example 1

Example 2

INPUTS(X[,[#]Y])

Returns a string of X characters, read from the
keyboard or from file number Y.

X is a string of characters and Y is the file number
used in the OPEN statement. File number 0 is
used to denote the keyboard.

If the keyboard is used for input, no characters are
echoed and all CONTROL characters are passed
through; except CONTROL-C, which is used to
interrupt the execution of the INPUTS$ function.

5 'LIST THE CONTENTS OF A SEQUENTIAL
FILE IN HEXADECIMAL

10 OPEN“1”,1,“DATA”

20 IF EOF(1) THEN 50

30 PRINT HEXS$(ASC(INPUT$(1,#1)));

40 GOTO 20

50 PRINT

60 END

100 PRINT “TYPE P TO PROCEED OR S TO
STOP”

110 X$ = INPUT$(1)

120 IF X$ = “P” THEN 500

130 IF X$=“S” THEN 700 ELSE 100

143

Microsoft BASIC Interpreter Reference Manual

418 INSTR

Syntax INSTR(I,]X$,Y$)

Action Searches for the first occurrence of string Y$ in
X$ and returns the position at which the match
is found. Optional offset I sets the start position.

Remarks I is a numeric expression in the range 1 to 255.
If I>LEN(X$), or if X8 is null, or if Y$ cannot be
found, INSTR returns 0. If Y$ is null, INSTR
returns I or 1. X$ and Y$ can be string variables,
string expressions, or string literals.

If I=0 is specified, the error message ILLEGAL
ARGUMENT IN <line number > is returned.
Example 10 X$ = “ABCDEB”
20 Y$ = uBn
30 PRINT INSTR(X$,Y$);INSTR(4,X$,Y$)
RUN
2 6

419 INT

Syntax INT(X)

Action Returns the largest integer <=X.

Remarks See Section 4.7, “CINT,” and Section 4.13, “FIX,”
which also return integer values.

Examples PRINT INT(99.89)

144

99

PRINT INT(—12.11)
-13

Functions

420 LEFTS$
Syntax LEFT$(X$,1)
Action Returns a string composed of the leftmost I

characters of X8$.

Remarks I must be in the range 0 to 255. If Iis greater than
LEN(X$), the entire string (X$) will be returned.
If 1=0, the null string (length zero) is returned.

Also see Section 4.26, “MIDS$,” and Section 4.32,

“RIGHTS.”
Example 10 A$ = “BASIC”
20 B$ = LEFT$(A$,5)
30 PRINT B$
RUN
BASIC
4.21 LEN
Syntax LEN(X$)
Action Returns the number of characters in X8$.
Remarks Nonprinting characters and blanks are counted.
Example 10 X$ = “PORTLAND, OREGON”
20 PRINT LEN(X$)
RUN
16

145

Microsoft BASIC Interpreter Reference Manual

4.22 LOC

Syntax LOC(< file number>)

Action Returns the current position in the file.
Remarks With random access disk files, LOC returns the

record number just read or written from a GET
or PUT statement. If the file was opened but no
disk I/0O has been performed yet, LOC returns a 0.

With sequential files, LOC returns the number of
sectors (128 byte blocks) read from or written to
the file since it was opened.

Example 200 IF LOC(1)>50 THEN STOP

4.23 LOF

Syntax LOF(< file number>)

Action Returns the number of records present in the last

extent (128 records) read or written. If the file does
not exceed one extent, then LOF returns the true
length of the file.

Example 110 IF NUM% >LOF(1) THEN PRINT “INVALID
ENTRY”

146

Functions

4.24 LOG

Syntax LOG(X)

Action Returns the natural logarithm of X.
Remarks X must be greater than zero.

The calculation of LOG(X) is performed in single
precision, regardless of the declared variable type
(integer, single precision, or double precision) of X.

Example PRINT LOG(45/7)
1.86075

4.25 LPOS
Syntax LPOS(X)

Action Returns the current position of the line printer
print head within the line printer buffer.

Remarks LPOS does not necessarily give the physical posi-
tion of the print head. X is a dummy argument.

Example 100 IF LPOS(X)>60 THEN LPRINT CHR$(13)

147

Microsoft BASIC Interpreter Reference Manual

4.26 MID$

Syntax

Action

Remarks

Example

MIDS$(XS, I [,JD

Returns a string of length J characters from X$
beginning with the Ith character.

I and J must be in the range 1 to 255. If J is omit-
ted or if there are fewer than J characters to the
right of the Ith character, all rightmost characters
beginning with the Ith character are returned. If
I>LEN(X$), MID$ returns a null string.

If I=0 is specified, the error message ILLEGAL
ARGUMENT IN <line number > is returned.

Also see Section 4.20, “LEFTS$,” and Section 4.32,
“RIGHTS.”

10 A$=“GOOD ”
20 B$ = “MORNING EVENING AFTERNOON”
30 PRINT A$;MID$(B$,9,7)
Ok
RUN
GOOD EVENING

427 MKIS$, MKS$, MKD$

Syntax

Action

148

MKI$(< integer expression>)
MKS$(< single precision expression >}
MKD$(< double precision expression>)

Convert numeric values to string values.

Functions

Remarks Any numeric value that is placed in a random ac-
cess file buffer with an LSET or RSET statement
must be converted to a string. MKI$ converts an
integer to a 2-byte string. MKS$ converts a single
precision number to a 4-byte string. MKD$ con-
verts a double precision number to an 8-byte
string.

See also Section 4.10, “CVI, CVS, CVD,” and Sec-
tion D.3.2, “Random Access Files,” in Appendix
D.
Example 90 AMT=(K +T)
100 FIELD #1, 8 AS D$, 20 AS N$
110 LSET D$ = MKSS$(AMT)
120 LSET N$ = A$
130 PUT #1

428 OCTS

Syntax OCT$(X)

Action Returns a string which represents the octal value
of the decimal argument.

Remarks X is rounded to an integer before OCT$(X) is
evaluated.

See Section 4.15, “HEXS$,” for hexadecimal con-
version.

Example PRINT OCT$(24)

30

149

Microsoft BASIC Interpreter Reference Manual

4.29 PDL

Syntax

Action

PDL(1)

Returns the current value of the controller knob,
in the range 0 to 255, of the game controller
specified by 1.

Remarks I is an integer in the range 0 to 3.
The values of two game controllers should not be
read in consecutive instructions, as the reading
from the first may affect the second. A delay such
as 10 FOR X=1TO 10: NEXT X between the two
instructions provides sufficient separation for a
correct reading.
Example 10 PRINT PDL(0): GOTO 10
RUN
0
23
79
100
190
255
C
BREAK IN
430 PEEK
Syntax PEEK(I)
Action Returns the byte read from the indicated memory
location (I).
Remarks I must be in the range —32768 to +65535. The

150

returned value is an integer in the range 0 to 255.
For an interpretation of a negative value of I, see
Section 4.46, “VARPTR.”

Functions

PEEK is the complementary function of the
POKE statement (see Section 3.53).

Example A = PEEK(&H5A00)

431 POS

Syntax POS(l)

Action Returns the current cursor position.

Remarks The current horizontal (column) position of the cur-

sor is returned. The returned value is in the range
of 1 (the leftmost position) to 80. X is a dummy
argument.

Also see Section 4.25, “LPOS.”

Example IF POS(X)>60 THEN PRINT CHR$(13)

432 RIGHTS

Syntax RIGHTS$(X$,1)
Action Returns the rightmost I characters of string X$.
Remarks If I=LEN(X$), returns X$. If I=0, the null string

(length zero) is returned.

Also see Section 4.26, “MIDS$,” and Section 4.20,
“LEFTS.”

Example 10 A$ = “DISK BASIC”
20 PRINT RIGHT$(A$,8)
RUN
BASIC

151

Microsoft BASIC Interpreter Reference Manual

433 RND

Syntax RND[(X)]

Action Returns a random number between 0 and 1.

Remarks The same sequence of random numbers is gener-
ated each time the program is run, unless the ran-
dom number generator is reseeded (see Section
3.59, “RANDOMIZE”). However, X <0 always
restarts the same sequence for any given X.
X >0 or X omitted generates the next random
number in the sequence. X=0 repeats the last
number generated.

Example 10 FORI=1TO5
20 PRINT INT(RND+100);
30 NEXT
RUN

24 30 31 51 5

434 SCRN

Syntax SCRN(X,Y)

Action Returns the code number of the color of the coor-
dinate point specified by (X,Y).

Remarks X is an integer in the range 0 to 39 and Y is an
integer in the range 0 to 47.

Example 10 GR
20 COLOR =13

152

30 PLOT 10,15
40 PRINT SCRN(10,15)
RUN

13

Functions

435 SGN

Syntax SGN(X)

Action Returns the mathematical sign (signum) function.
Remarks If X>0, SGN(X) returns 1.

If X=0, SGN(X) returns 0.
If X <0, SGN(X) returns —1.

Example ON SGN(X) +2 GOTO 100,200,300

Branches to 100 if X is negative, 200 if X is 0, and
300 if X is positive.

436 SIN

Syntax SIN(X)

Action Calculates the trigonometric sine function of the
angle X.

Remarks Returns the sine of X in radians.

The calculation of SIN(X) is performed in single
precision format, regardless of the declared vari-
able type (integer, single precision, or double pre-
cision) of X.

If you want to convert degrees to radians, multiply
by pi/180 (pi = 3.141593).

Example PRINT SIN(1.5)
997495

153

Microsoft BASIC Interpreter Reference Manual

437 SPACES$S

Syntax SPACES$(X)
Action Returns a string of spaces of length X.
Remarks The expression X is rounded to an integer and

must be in the range 0 to 255.

Also see Section 4.38, “SPC.”

Example 10 FORI =1T0O5
20 X$ = SPACE$(l)
30 PRINT X$;l
40 NEXT |
RUN
1
2
3
4
5
438 SPC
Syntax SPC(l)
Action Prints I spaces on the screen.
Remarks SPC may only be used with PRINT and LPRINT

statements. I must be in the range 0 to 255. A
semicolon (;} is assumed to follow the SPC(I)
command.

Also see Section 4.37, “SPACES.”

Example PRINT “OVER” SPC(15); “THERE”
OVER THERE

154

Functions

4.39 SQR
Syntax SQR(X)
Action Returns the square root of X.
Remarks X must be >=0.
Example 10 FOR X = 10 TO 25 STEP 5
20 PRINT X, SQR(X)
30 NEXT
RUN
10 3.16228
15 3.87298
20 4.47214
25 5
440 STRS$
Syntax STR$(X)
Action Returns a string representation of the value of X.
Remarks The VAL function (Section 4.45) returns the in-

verse of the value of X.

Example 5 REM ARITHMETIC FOR KIDS
10 INPUT “TYPE A NUMBER”;N
20 ON LEN(STR$(N)) GOSUB 30,100,200,300,400,500

155

Microsoft BASIC Interpreter Reference Manual

441 STRINGS

Syntax

Action

Remarks

Example

442 TAB

Syntax
Action

Remarks

Example

156

STRING$(l,J)
STRING#$(1,X$)

Returns a string of length I whose characters all
have ASCII code J or the first character of X8$.

I and J are in the range 0 to 255.

10 X$ = STRINGS$(10,45)
20 PRINT X$ “MONTHLY REPORT” X$
RUN

TAB())
Tabs to position I on the screen.

I must be in the range 1 to 255. If the current print
position is already beyond space I, TAB goes to
that position on the next line. Space 1 is the left-
most position, and the rightmost position is the
width minus one.

TAB can only be used in PRINT and LPRINT
statements.

10 PRINT “NAME"” TAB(25) “AMOUNT” : PRINT
20 READ AS$,B$
30 PRINT A$ TAB(25) B$
40 DATA “G. T. JONES”,“$25.00"
RUN
NAME AMOUNT
G. T. JONES $25.00

Functions

443 TAN

Syntax TAN(X)

Action Calculates the trigonometric tangent of the angle
X.

Remarks Returns the tangent of X in radians.

The calculation of TAN(X) is performed in single
precision, regardless of the declared variable type
(integer, single precision, or double precision) of X.

If the result of a TAN operation overflows, the
OVERFLOW error message is displayed, machine
infinity with the appropriate sign is supplied as
the result, and execution continues.

Example 10Y = Q+«TAN(X)/2

444 USR

Syntax USR[< digit >](X)

Action Calls the indicated assembly language subroutine

with the argument X.

157

Microsoft BASIC Interpreter Reference Manual

Remarks <digit> is in the range 0 to 9 and corresponds
to the digit supplied with the DEF USR statement
for that subroutine. If <digit> is omitted, USRO
is assumed.

The CALL statement is another way to call an
assembly language subroutine. See Appendix E
for more information on using assembly language

subroutines.
Example 40 B = T*SIN(Y)
50 C = USR(B/2)
60 D = USR(B/3)
445 VAL
Syntax VAL(X$)
Action Returns the numerical value of string X$.
Remarks The VAL function also strips leading blanks, tabs,
and linefeeds from the argument string. For exam-
ple,
VAL (“ -3

returns —3.

See also Section 4.40, “STRS$,” for numeric-to-
string conversion.

158

Example

Functions

10 READ NAMES,CITY$,STATES,ZIP$

20 IF VAL(ZIP$)< 90000 OR VAL(ZIP$)>96699 THEN
PRINT NAME$

TAB(25) “OUT OF STATE”

30 IF VAL(ZIP$)> =90801 AND VAL(ZIP$)< =90815
THEN

PRINT

NAME$ TAB(25) “LONG BEACH”

446 VARPTR

Syntax

Action

Remarks

VARPTR{ <variable name> | #<file number>}

Returns the memory address of a variable or file
control block.

For either argument, the returned address is an
integer in the range 0 to 65535.

VARPTR(< variable name >) returns the address
of the first byte of data identified with a variable.
In the case of a string variable, VARPTR gets the
address of the first byte of the string descriptor.
(See Appendix E.2, “USR Function Calls.”)

A value must be assigned to <variable name >
prior to execution of VARPTR. Otherwise, an IL-
LEGAL FUNCTION CALL error results. Any
type of variable name can be used (numeric, string,
array). The address returned is an integer in the
range +32767 to —32768. If a negative address
is returned, add it to 65536 to obtain the actual
address.

159

Microsoft BASIC Interpreter Reference Manual

Example

160

VARPTR is usually used to obtain the address of
a variable or array so the address can be passed
to an assembly language subroutine. A function
call of the form VARPTR(A(0)) is usually specified
when passing an array, so that the lowest ad-
dressed element of the array is returned.

Note

All simple variables should be assigned before
calling VARPTR for an array, since the ad-
dresses of the arrays change whenever a new
simple variable is assigned.

VARPTR(# < file number >) is used for sequential
files. It returns the starting address of the disk
I/O buffer assigned to < file number>. For ran-
dom access files, it returns the address of the
FIELD buffer assigned to <file number>.

100 X = USR(VARPTR(Y))

Functions

447 VPOS

Syntax VPOS(X)

Action Returns the current vertical position of the cursor.

Remarks The topmost screen position is 1. X is a dummy
argument.

Example 10 PRINT “NOW YOU SEE IT.”

20 FOR T=0 TO 1000: NEXT T
30 VTAB VPOS(0) ~ 1
40 PRINT “NOW YOU DON'T”

161

Chapter 5
— High-Resolution Graphics

5.1

5.2
5.3
5.4
5.5
5.6

Differences Between High-Resolution
and Low-Resolution Graphics 165

Sample Program 167
HGR 167

HCOLOR 169
HPLOT 170

HSCRN 171

163

Chapter 5
High-Resolution Graphics

The graphics commands in this chapter let you plot high-resolution
shapes on a 280x160 or 280x192 screen grid. High-resolution
graphics in the Microsoft BASIC Interpreter consists of the
following commands:

HGR For setting the high-resolution display mode

HCOLOR For setting the background color of the
screen

HPLOT For plotting lines from point to point

The function HSCRN is also included as an aid in developing high-
resolution graphics programs. High-resolution commands can also
be used as statements in the indirect operational mode.

5.1 Differences Between High-Resolution
and Low-Resolution Graphics

The high-resolution graphics mode is set within the HGR com-
mand. HGR allows either ‘“mixed-text plotting” (graphics on a
280x160 grid in the upper part of the screen, and four lines of text
in the lower part of the screen) or graphics plotting on a 280x192
grid (the entire screen).

The GR command sets the low-resolution display mode in mixed-
text plotting on a 40x40 grid with 4 lines of text; or in graphics
plotting on a 40x48 grid with no lines of text. The HGR command
also differs from the GR command by two additional <screen
number > options which can prevent the screen from being cleared
when setting the display mode. This can be useful for program-
mers who want to draw a shape in their program then go back
to text mode, but don’t want the drawing erased while the pro-
gram performs other functions.

165

Microsoft BASIC Interpreter Reference Manual

5.1.1 The Use of Colors

The HGR and HCOLOR commands have a larger selection of
black and white shades than the low-resolution GR and COLOR
commands. The high-resolution commands also permit the use of
inverse video when plotting. The low-resolution commands,
however, give you a wider selection of colors.

5.1.2 Plotting High-Resolution Shapes

The syntax of the HPLOT commands allows the plotting of dif-
ferent shapes with the execution of a single command. For exam-
ple, use HPLOT in the following statement to draw a triangle:

10 HPLOT 30,50 TO 35,40 TO 40,50 TO 30,50

To draw the same shape with low-resolution graphics, you would
need to plot each individual point in the sloping sides of the
triangle, as in the following sample of code:

10 HLINE 10,20 AT 25
20 PLOT 10,25
30 PLOT 11,24
40 PLOT 12,23
50 PLOT 13,22
60 PLOT 14,21
70 PLOT 15,20
80 PLOT 16,21
90 PLOT 17,22
100 PLOT 18,23
120 PLOT 19,24
130 PLOT 20,25

166

High-Resolution Graphics:

5.2 Sample Program

The following program demonstrates the use of high-resolution
graphics commands in a program for black and white monitors.

1 REM GRFTST.BAS

2 DIM X(23),Y(23)

31IF A=1THEN 200

10 HGR 1,3: HCOLOR =0

20 HPLOT 140,96

30 FOR A=0 TO 3.14159*20 STEP .05

40 R=SIN (A*2.9)

50 HPLOT TO 140+ 107*R*COS(A),96 + 95*R*SIN(A)
60 NEXT

70 HGR 1,12:FOR T=0 TO 500:NEXT:HGR 1,12

80 GOTO 70

200 N=INT (RND*14)+ 13

210 P! =6.28318/N:FOR | =0 TO N — 1:A = PI*I

220 X(l) = COS(A)*107 + 140:Y (1) = SIN(A)*95 + 96

230 NEXT

240 HGR 1,0:HCOLOR =3

250 FOR1=0TO N —=1:FORJ—1TO N — 1:HPLOT X(l), Y(I) TO X(J),
Y(J):NEXT:NEXT

260 HGR 1,12:FOR T=0 TO 500:NEXT:HGR 1,12
270 GOTO 260

53 HGR
Syntax HGR <screen number>, [<color number>]
Purpose Initializes high-resolution graphics mode.

167

Microsoft BASIC Interpreter Reference Manual

Remarks

Examples

168

< screen number > is an integer in the range 0 to
3, and <color number > is an integer in the range
1 to 12. <screen number> specifies the screen
grid to be used as follows:

Clear Screen
Screen Screen Grid
0 yes 280x160 graphics and

4 lines of text

1 yes 280x192 graphics,
no lines text

2 no 280x160 graphics and
4 lines text

3 no 280x192 graphics,
no lines text

If <screen number> is not specified, <screen
number > =0 is assumed.

The < color number > option specifies the color to
be used and is optional. If < color number > is not
specified, color is set to 1. When used with screen
grids 0 and 1, <color number > will fill the screen
with the color specified by < color number >. The
following table lists the color names and their
associated numbers.

0 black 5 orange 9 whitel
1 green 6 blue 10 black2
2 violet 7 white 11 white2
3 white 8 blackl 12 reverse
4 black
10 HGR This is the same as the Applesoft

HGR statement.

High-Resolution Graphics:
10 HGR 1,2 Fills screen with violet, sets the
280x192 screen grid.

10 HGR 3 Sets 280x192 screen grid, doesn’t
clear screen.

Note

This statement can be used differently in
GBASIC than it can in Applesoft.

54 HCOLOR

Syntax HCOLOR = <color number>

Purpose To set the color for plotting in high-resolution
graphics mode.

Remarks < color number > is an integer in the range 0 to

12. The colors available and their corresponding
numbers are:

0 black 5 orange 9 whitel
1 green 6 blue 10 black2
2 violet 7 white 11 white2
3 white 8 blackl 12 reverse
4 black

To distinguish between the different shades of
whites and blacks: Color codes 0, 3, 4, and 7 plot
a very fine line. Colors blackl, whitel, black2, and
white2 (8, 9, 10, and 11) plot a larger dot or thicker
line that is equal in size (width) to dots or lines plot-
ted with green, violet, orange, or blue. Blackl and
whitel should be used with green or violet if you
want dots or lines of the same position and width.
Black2 and white2 should be used with orange or
blue.

169

Microsoft BASIC Interpreter Reference Manual

If you are using a black and white monitor, use
0, 3,4, and 7.

<color number> can be specified in the HGR
statement (see “HGR,” Section 5.2.1). If it is not
specified in HGR, it is set to zero by HGR until
another color is specified with the HCOLOR
statement.

HCOLOR can be used in high-resolution graphics
mode only.

Note that because of the way in which home
TVs work, a high-resolution dot plotted with
HCOLOR=3 (white) or HCOLOR="7 (white) will
be white only if both (x,y) and (x+1,y) are plotted.
If only (x,y) is plotted, the dot will be blue when
x is even and green when x is odd.

5.5 HPLOT

Syntax 1

Purpose

Syntax 2

Purpose

Remarks

170

HPLOT <x1>,<y1>][TO<x2>,<y2>...
[TO<xn>,<yn>]]

Plots a point or draws a line on the high-resolution
screen, specified by points: (xl,y1), (x2,y2), etc.

HPLOT TO <x2>, <y2>

Draws a line from the last dot plotted to the coor-
dinate point at (x2,y2).

In Syntax 1, HPLOT <x1>, <yl > plots a single
point. HPLOT <x1>, <yl> TO <x2>, <y2>
TO ... <xn>, <yn> plots aline starting at (x1,y1)
and proceeding through each of the points
specified. The plotted line can be extended from
point to point in the same HPLOT statement by
specifying additional points, limited only by screen
limits and the 239-character limit.

High-Resolution Graphics:

In Syntax 1, the color of the dot or line is deter-
mined by the most recent HCOLOR statement. If
no color has been specified, the default color 0 will
be assigned.

In Syntax 2, the color of the line is determined by
the last HCOLOR executed. Syntax 2 cannot be
used if no dot has previously been plotted.

Use HPLOT in high-resolution graphics mode
only.

Example 10 HGR
20 HCOLOR = 2
30 HPLOT 24,125 TO 100,12 TO 270,1

5.6 HSCRN

Syntax HSCRN (X,Y)

Action In high-resolution graphics mode, HSCRN checks
to see if a dot exists at a specified coordinate (X,Y).
If a dot does exist, HSCRN returns —1 (true).

Remarks Note that unlike SCRN, HSCRN does not
recognize COLOR.
X must be in the range 0 to 279 and Y must be
in the range 0 to 191.

Example 10 HGR

15 HCOLOR = 3
20 HPLOT 0,100 TO 279,100
30 PRINT HSCRN (46,100), HSCRN (20,20)

RUN
-10

171

Appendices

A Microsoft BASIC
and Applesoft: A Comparison 175

Al

A2

A3

A4

Features of Microsoft BASIC
Not Found in Applesoft 175

Applesoft Features
Supported by Microsoft BASIC

Applesoft Features Used
Differently in Microsoft BASIC

Applesoft Features Not Supported

B Differences Between
Microsoft BASIC Interpreter

Release 5.27 and Earlier Releases

B.1

Microsoft BASIC 5.27 Features

181

178

179

180

181

C Converting Programs to Microsoft BASIC

C.1
C.2
C.3
C4

String Dimensions 185
Multiple Assignments 186
Multiple Statements 186
MAT Functions 186

D Microsoft BASIC Disk 1/0 187

D.1
D.2
D.3

Program File Commands 187
Protecting Files 189

Disk Data Files: Sequential and
Random Access 1/0 189

D.3.1 Sequential Files 189
D.3.2 Random Access Files 193

185

173

E

H

Microsoft BASIC
Assembly Language Subroutines 201

E.1 Memory Allocation 201
E.2 USR Function Calls 202
E.3 CALL Statement 204

Mathematical Functions 209

Microsoft BASIC
Floating-Point Numeric Format 211

G.1 Encoding an Integral Floating-Point
Number 211

G.2 Decoding an Integral Floating-Point
Number 214

G.3 Decoding a Fractional Floating-Point
Number 215

ASCII Character Codes 217

I Microsoft BASIC Reserved Words 219

J

174

Error Codes and Error Messages 221

Appendix A

Microsoft BASIC
and Applesoft: A Comparison

Microsoft BASIC Interpreter Version 5.27 includes many features
not found in Applesoft BASIC. In addition, some features that
are common to both Microsoft BASIC and Applesoft BASIC work
differently, depending on which version of BASIC you have.

By taking note of these differences and using the new features
provided by Microsoft BASIC, you can take advantage of in-
creased BASIC programming power.

A.1 Features of Microsoft BASIC
Not Found in Applesoft

The following features are found in Microsoft BASIC only. A brief
description of these features is given here; for more information
on the syntax, purpose, and peculiarities of each feature, see
Chapters 2 through 4 of this manual.

CHAIN and COMMON
Used to call in another BASIC program from disk and pass

variables to it. This feature allows the disk to be used as program
memory.

CALL

Used to call 6502 or Z80 assembly language subroutine or FOR-
TRAN subroutine.

175

Microsoft BASIC Interpreter Reference Manual

PRINT USING

Greatly enhances programming convenience by making it easy to
format output. Includes asterisk fill, floating dollar sign, scien-
tific notation, trailing sign, and comma insertion.

Built-in Disk I/O Statements

Since standard Applesoft BASIC and Integer BASIC were not
designed for a disk environment, disk I/O commands have to be
included in PRINT statements. With Microsoft BASIC Inter-
preter 5.27’s built-in disk I/O statements, this process is eliminated
{you don’t need to enter PRINT “CTRL-D”).

WHILE/WEND
Gives BASIC a more structured flavor. By putting a WHILE
statement in front of a loop and a WEND statement at the end

of a loop, you can make BASIC continuously execute the loop as
long as a given condition is true.

EDIT Commands

Let you edit individual program lines easily and efficiently without
reentering the whole line.

AUTO and RENUM
RENUM makes it easier to edit and debug programs by letting
you automatically renumber lines in user-specified increments.

AUTO is a convenience feature that generates line numbers
automatically after every carriage return.

IF..THEN|...ELSE]

Extends the IF statement to provide for handling the negative
case of IF.

176

Microsoft BASIC and Applesoft

ANSI Compatibility

Microsoft BASIC Interpreter Version 5.27 meets the ANSI quali-
fications for BASIC, as set forth in document BSRX3.60-1978.
That means any program you write on your Apple in Microsoft
BASIC can be run on any other machine that has an ANSI-
standard BASIC.

Compilability

Microsoft has developed a BASIC compiler that compiles
Microsoft BASIC Interpreter programs into directly executable
780 machine code. The compiler is available separately.

Powerful Data Types

Microsoft BASIC Interpreter Version 5.27 has three variable
types —fast two-byte true integer variables, single precision
variables, and double precision variables—to give it 16-digit preci-
sion, as opposed to the 9-digit precision available on the Apple.
Also, hexadecimal and octal constants can be used.

Added String Functions
The functions: INSTR, HEX$, OCT$, STRINGS, and direct

assignment of substrings with MID$ are implemented in
Microsoft BASIC.

Added Operators
New Boolean operators AND, OR, XOR, IMP, and EQV are pro-

vided with Microsoft BASIC. True integer arithmetic is supported
with an integer division and MOD operators.

User-Defined Functions

Microsoft BASIC user-defined functions allow multiple ar-
guments.

177

Microsoft BASIC Interpreter Reference Manual

Protected Files

Programs can be saved in protected binary format. See “SAVE,”
Section 3.67.

We have also added four new features to Microsoft BASIC, to take
advantage of the Apple’s unique characteristics. They are:

BUTTON

A function used to determine whether a paddle button has been
pressed.

BEEP

A statement that generates a tone of specified pitch and duration.

HSCEN

A function used to determine if a point has been plotted on the
high-resolution screen at a specified point.

VPOS

A function that returns the cursor’s vertical position.

A.2 Applesoft Features
Supported by Microsoft BASIC

This version of Microsoft BASIC supports low-resolution
graphics, sound, cursor control, as well as other Applesoft BASIC
features. This version also supports all of the Applesoft high-
resolution graphics features except DRAW, XDRAW, SCALE,
and ROT.

178

Microsoft BASIC and Applesoft

Applesoft-compatible statements and functions found in GBASIC
are listed below.

COLOR NORMAL
GR PDL(0)
HCOLOR PLOT
HGR POP
HLIN SCRN
HPLOT TEXT
HTAB VLIN
INVERSE VTAB

A.3 Applesoft Features
Used Differently in Microsoft BASIC

Certain Microsoft BASIC statements and commands are used dif-
ferently than their Applesoft counterparts. You should be aware
of these differences when writing Microsoft BASIC programs.
Those statements that differ are listed below; for more informa-
tion see Chapters 2 and 3 of this manual.

CALL
FOR..NEXT

GR

HGR

IF.. THEN[..ELSE]
INPUT

ON ERROR GOTO
RESUME

TEXT

179

Microsoft BASIC Interpreter Reference Manual

A.4 Applesoft Features Not Supported

The following features found in Applesoft BASIC are not sup-
ported in Microsoft BASIC.

cassette LOAD RECALL

cassette SAVE ROT

DRAW SCALE

FLASH screen editing (ESC A, B, C, D)
HIMEM..LOMEM SHLOAD

IN# STORE

PR# XDRAW

180

Appendix B

Differences Between
Microsoft BASIC Interpreter
Release 5.27 and Earlier Releases

B.1 Microsoft BASIC 5.27 Features

For the SoftCard version of Microsoft BASIC, we have made a
few very minor changes to normal CP/M and Microsoft BASIC
features. If you are accustomed to programming in Microsoft
BASIC under CP/M, you will want to note the following changes:

TRON/TROFF

Statement name has been changed to TRACE/NOTRACE. Opera-
tion of this statement remains the same.

DELETE

DELETE and DEL can be used interchangeably. Operation of this
statement remains the same.

WIDTH
The default width is 40 columns for Apple video output and 80

columns for external terminals or 80-column display interface
boards.

181

Microsoft BASIC Interpreter Reference Manual

WAIT

WAIT now monitors the status of an address rather than that
of a machine input port. The effect, however, remains the same.

The following statements are not implemented in this version:

CLOAD
CSAVE
NULL
INP
ouT

Note

Microsoft BASIC Interpreter (Version 5.27) programs trans-
ferred to the Apple must be in ASCII format (i.e., saved with
the A option). They cannot be in binary format.

The execution of BASIC programs written under Microsoft
BASIC Interpreter Release 4.51 and earlier can be affected by
some of the new features in Releases 5.0 and higher. Before at-
tempting to run such programs, check for the following:

New reserved words: CALL, CHAIN, COMMON, WHILE,
WEND, WRITE, OPTION BASE, and RANDOMIZE.

Conversion from floating-point to integer values results in
rounding, as opposed to truncation. This affects not only
assignment statements (e.g., 1% = 2.5 results in [% = 3), but
also function and statement evaluations (e.g., TAB(4.5) goes
to the 5th position; A(1.5) yields A(2); and X = 11.5 MOD 4
yields 0 for X).

The body of a FOR..NEXT loop is skipped, if the initial value
of the loop times the sign of the step exceeds the final value
times the sign of the step.

Division by zero and overflow no longer produce fatal errors.
See Chapter 2.

182

Differences

The RND function has been changed so that RND with no
argument is the same as RND with a positive argument. The
RND function generates the same sequence of random
numbers with each RUN, unless RANDOMIZE is used. See
Section 3.59, “RANDOMIZE” and Section 4.33, “RND.”

The rules for printing single precision and double precision
numbers have been changed. See Section 3.55, “PRINT.”

String space is allocated dynamically. The first argument in
a two-argument CLEAR statement sets the end of memory.
The second argument sets the amount of stack space. See Sec-
tion 3.5, “CLEAR.”

Responding to INPUT with too many or too few items, or with
the wrong type of value (numeric instead of string, etc.), or
with a carriage return causes the message 7ZREDO FROM
START to be printed. No assignment of input values is made
until an acceptable response is given.

Two additional field formatting characters are available for
use with the PRINT USING statement. An ampersand (&)
is used to designate variable length string fields, and an
underscore (__) signifies a literal character in a format string.

If the expression supplied with the WIDTH statement is 255,
BASIC uses an “infinite” line width; that is, it does not in-
sert carriage returns. WIDTH LPRINT can be used to set the
line width at the line printer. See Section 3.77, “WIDTH.”

The at-sign (@) and underscore (_) are no longer used as
editing characters.

Variable names are significant up to 40 characters and can
contain embedded reserved words. However, reserved words
must now be delimited by spaces. To maintain compatibility
with earlier versions of Microsoft BASIC, spaces are auto-
matically inserted between adjoining reserved words and vari-
able names.

183

Microsoft BASIC Interpreter Reference Manual

184

Warning

This insertion of spaces may cause the end of a line to be
truncated if the line length is close to 255 characters.

Microsoft BASIC programs can be saved in a protected binary
format. See Section 3.67, “SAVE.”

Reserved words must be preceded by and followed by a space.

Appendix C

Converting Programs
to Microsoft BASIC

If you have programs written in a BASIC other than Microsoft
BASIC, some minor adjustments may be necessary before they
can be run with Microsoft BASIC Interpreter. Here are some
specific things to look for when converting BASIC programs to
Microsoft BASIC.

C.1 String Dimensions

Delete all statements that are used to declare the length of strings.
A statement such as DIM A$(I,J), which dimensions a string ar-
ray for J elements of length I, should be converted to the Microsoft
BASIC statement DIM AS$(J).

Some BASICs require use of a comma or ampersand for string
concatenation. Each of these must be changed to a plus sign, which
is the operator for Microsoft BASIC string concatenation.

In Microsoft BASIC, the MID$, RIGHTS$, and LEFT$ functions
are used to form substrings out of strings. Forms such as AS$(I)
to access the Ith character in A$, or A$(1,J) to take a substring
of A$ from position I to position J, must be changed as follows:

Other BASIC Microsoft BASIC
X$=As8(I) X$=MID$(AS,1,1)
X$=A$(1,J} X$=MID$(A3,IJ-1+1)

185

Microsoft BASIC Interpreter Reference Manual

If the substring reference occurs on the left side of an assignment
operator and X$ is used to replace characters in A$, convert as
follows:

Other BASIC Microsoft BASIC
A$(1)=X$ MID$(A$,1,1)=X$
AS$(1,J9)=X$ MID$(AS$,I,J—1+1)=X$

C.2 Multiple Assignments

Some BASICs allow statements of the form

10LETB=C=0
to set B and C equal to zero. Microsoft BASIC would interpret
the second equal sign as a logical operator and set B equal to —1
if C equalled 0. To ensure compatibility with Microsoft BASIC,
convert this statement to two assignment statements:

10C=0:B=0

C.3 Multiple Statements

Some BASICs use a backslash (\) to separate multiple statements
on a line. With Microsoft BASIC, be sure all statements on a line
are separated by a colon (:) instead.

C.4 MAT Functions

Programs using the MAT functions available in some BASICs
must be rewritten using FOR...NEXT loops to execute properly
in Microsoft BASIC.

186

Appendix D
Microsoft BASIC Disk 1I/0

Disk I/O procedures for the beginning BASIC user are examined
in this appendix. If you are new to BASIC, or if you are encounter-
ing disk-related errors, read through these procedures and program
examples to make sure you are using all the disk statements
correctly.

Note

Refer to Section 2.4, “CP/M File Naming Conventions,” to
determine how to specify disk files correctly.

D.1 Program File Commands

The following is a review of the commands and statements used
in program file manipulation.

Note

The CP/M operating system appends a default extension of
.BAS to the filename given in a SAVE, RUN, MERGE, or
LOAD command.

SAVE <filespec>[,A] Writes to disk the program that
currently resides in memory. Op-
tional A writes the program as a
series of ASCII characters. (Other-
wise, BASIC uses compressed
binary format.)

187

Microsoft BASIC Interpreter Reference Manual

188

LOAD <filespec>[,R]

RUN <filespec>[,R]

MERGE <filespec >

KILL <filespec>

NAME <old filespec >
AS <filename>

Loads the program from disk into
memory. Optional R runs the pro-
gram immediately. LOAD always
deletes the current contents of
memory and closes all files before
loading. If R is included, however,
open data files are kept open. Thus,
programs can be chained or loaded
in sections and access the same
data files. (LOAD <filespec>,R
and RUN < filespec>,R are
equivalent.)

RUN <filespec> loads the pro-
gram from disk into memory and
runs it. RUN deletes the current
contents of memory, and closes all
files before loading the program. If
the R option is included, however,
all open data files are kept open.
{RUN < filespec>,R and LOAD

< filespec>,R are equivalent.)

Loads the program from disk into
memory but does not delete the cur-
rent contents of memory. The pro-
gram line numbers on disk are
merged with the line numbers in
memory. If two lines have the same
number, only the line from the disk
program is saved. After a MERGE
command is executed, the “merged”
program resides in memory, and
BASIC returns to command level.

Deletes the file from the disk.

< filespec> can be a program file or
a sequential or random access data
file.

Changes the name of a disk file.
NAME can be used with program
files, random access files, or sequen-
tial files.

Microsoft BASIC Disk 1/0

D.2 Protecting Files

If you wish to save a program in an encoded binary format, use
the “Protect” option with the SAVE command. For example:

SAVE “MYPROG”,P

A program saved this way cannot be listed or edited. You may
also want to save an unprotected copy of the program for listing
and editing purposes.

D.3 Disk Data Files:
Sequential and Random Access I/0

There are two types of disk data files that can be created and ac-
cessed by a BASIC program: sequential files and random access
files.

D.3.1 Sequential Files

Sequential files are easier to create than random access files, but
are limited in flexibility and speed when it comes to accessing data.
The data written to a sequential file is a series of ASCII characters
stored, one item after another (sequentially), in the order sent. The
data is read back in the same way.

The following statements and functions are used with sequential
files in sequential order.

OPEN
PRINT_ #
PRINT USING#
WRITE _#
INPUT#

LINE INPUT#
EOF

LOC

LOF

CLOSE

189

Microsoft BASIC Interpreter Reference Manual

Accessing a Sequential File

The following program steps are required to create a sequential
file and access the data in it:

1. OPEN the file in “O”mode. OPEN “O” #1,“DATA”

2. Write data to the file PRINT#1,A%;B$;C$
using the PRINT#
statement. (WRITE# can be
used instead.)

3. To access the data in the CLOSE #1
file, you must CLOSE the OPEN “1” #1,“DATA”
file and reopen it in “I”
mode.

4. Use the INPUT# statement INPUT#1,X$,Y$,Z$

to read data from the se-
quential file into the
program.

Program 1 is a short program that creates a sequential file,
“DATA,” from information you input at the keyboard.

Program 1—Create a Sequential Data File

10 OPEN *O”,#1,“DATA”

20 INPUT “NAME";N$

25 |[F N$ = “DONE” THEN END
30 INPUT “DEPARTMENT”;D$
40 INPUT “DATE HIRED”;H$
50 PRINT#1,N$;*,";D$;",”;H$
60 PRINT:GOTO 20

RUN

NAME? MICKEY MOUSE
DEPARTMENT? AUDIO/VISUAL AIDS
DATE HIRED? 01/12/72

NAME? SHERLOCK HOLMES
DEPARTMENT? RESEARCH
DATE HIRED? 12/03/65

NAME? EBENEEZER SCROOGE
DEPARTMENT? ACCOUNTING
DATE HIRED? 04/27/81

190

Microsoft BASIC Disk I/O

NAME? SUPER MANN
DEPARTMENT? MAINTENANCE
DATE HIRED? 08/16/81

NAME? etc.

Now look at Program 2. It accesses the file “DATA” that was
created in Program 1 and displays the name of everyone hired in
1981.

Program 2—Accessing a Sequential File

10 OPEN “1”#1,“DATA”

20 INPUT#1,N$,D$,HS

30 IF RIGHT$(H$,2)="81" THEN PRINT N$
40 GOTO 20

RUN

EBENEEZER SCROOGE
SUPER MANN
Input past end in 20

Program 2 reads, sequentially, every item in the file. When all the
data has been read, line 20 causes an INPUT PAST END error.
To avoid this error, insert line 15, which uses the EOF function
to test for the end-of-file,

15 IF EOF(1) THEN END
and change line 40 to GOTO 15.
A program that creates a sequential file can also write formatted
data to the disk with the PRINT# USING statement. For exam-
ple, the statement

PRINT#1,USING“####.##,";A B,C,D
could be used to write numeric data to disk without explicit
delimiters. The commas at the end of the format string separate
the items in the disk file.
The LOC function, when used with a sequential file, returns the

number of sectors that have been written to or read from the file
since it was opened. A sector is a 128-byte block of data.

191

Microsoft BASIC Interpreter Reference Manual

Adding Data to a Sequential File

If you have a sequential file residing on disk and want to add more
data to the end of it, you cannot simply open the file in “O” mode
and start writing data. As soon as you open a sequential file in
“0O” mode, you destroy its current contents.

The following procedure can be used to add data to an existing
file called “NAMES.”

1. OPEN “NAMES” in “I” mode.
OPEN a second file called “COPY” in “O” mode.

3. Read in the data in “NAMES” and write it to
“COPY.”

4. CLOSE “NAMES” and KILL it.

5. Write the new information to “COPY.”

6. Rename “COPY” as “NAMES” and CLOSE.

7. Now there is a file on disk called “NAMES” that in-

cludes all the previous data plus the new data you
just added.

Program 3 illustrates this technique. It can be used to create or
add onto a file called NAMES. This program also illustrates the
use of LINE INPUT# to read strings with embedded commas from
the disk file. Remember, LINE INPUT# reads in characters from
the disk until it sees a carriage return (it does not stop at quota-
tion marks or commas) or until it has read 255 characters.

192

AN

Microsoft BASIC Disk I/O

Program 3—Adding Data to a Sequential File

10 ON ERROR GOTO 2000

20 OPEN “1” #1,“NAMES”

30 REM IF FILE EXISTS, WRITE IT TO “COPY”

40 OPEN “O",#2,“COPY”

50 IF EOF(1) THEN 90

60 LINE INPUT#1,A$

70 PRINT#2,A%$

80 GOTO 50

90 CLOSE #1

100 KILL “NAMES”

110 REM ADD NEW ENTRIES TO FILE

120 INPUT “NAME”;N$

130 IF N$ =“”” THEN 200 'CARRIAGE RETURN EXITS INPUT LOOP
140 LINE INPUT “ADDRESS? ”;A$

150 LINE INPUT “BIRTHDAY? ”;B$

160 PRINT#2,N$

170 PRINT#2,A$

180 PRINT#2,B$

190 PRINT:GOTO 120

200 CLOSE

205 REM CHANGE FILENAME BACK TO “NAMES”
210 NAME “COPY” AS “NAMES”

2000 IF ERR=53 AND ERL=20 THEN OPEN “O”,#2,“COPY™:
RESUME 120

2010 ON ERROR GOTO 0

The error-trapping routine in line 2000 traps a FILE NOT FOUND
error in line 20. If this happens, the statements that copy the file
are skipped, and “COPY” is created as if it were a new file.

D.3.2 Random Access Files

Creating and accessing random access files requires more program
steps than creating and accessing sequential files. However, there
are advantages to using random access files. One advantage is
that random access files require less room on the disk, since
BASIC stores them in a packed binary format. (A sequential file
is stored as a series of ASCII characters.)

The biggest advantage of using random access files is that data
can be accessed randomly, i.e., anywhere on the disk. However,
it is not necessary to read through all the information from the
beginning of the file, as with sequential files. This is possible
because the information is stored and accessed in distinct units
called records, each of which is numbered.

193

Microsoft BASIC Interpreter Reference Manual

The statements and functions that are used with random access

files are:
Statements Functions
CLOSE CVD
FIELD CVI
GET CVS
LOC LOF
LSET MKD$
OPEN MKI$
PUT MKS$
RSET

Creating a Random Access File

The following program steps are required to create a random ac-
cess file.

194

1.

OPEN the file for random access (“R"”’mode). The following
example specifies a record length of 32 bytes. If the record
length is not specified, the default is 128 bytes.

Example:
OPEN “R”, 1,“FILE”,32

Use the FIELD statement to allocate space in the random
access buffer for the variables that will be written to the
random access file.

Example:

FIELD #1, 20 AS N8,
4 AS A3, 8 AS P$

Microsoft BASIC Disk 1/0

3. Use LSET to move the data into the random access buffer.
Numeric values must be made into strings when placed in
the buffer. To do this, use the “make” functions: MKI$ to
make an integer value into a string, MKS$ to make a single
precision value into a string, and MKD$ to make a double
precision value into a string.

Example:

LSET N$ = X$
LSET A$ = MKS$(AMT)
LSET P$ = TELS$

4. Write the data from the buffer to the disk using the PUT
statement.

Example:
PUT #1,CODE%

Program 4 takes information that is input at the terminal and
writes it to a random access file. Each time the PUT statement
is executed, a record is written to the file. The two-digit code that
is input in line 30 becomes the record number.

Note

Do not use a fielded string variable in an INPUT or LET state-
ment. Doing so causes the pointer for that variable to point
into string space instead of the random access file buffer.

Program 4—Create a Random Access File

10 OPEN “R” #1,“FILE”,32
20 FIELD #1,20 AS N$, 4 AS A$, 8 AS P$
30 INPUT “2-DIGIT CODE”;CODE %

40 INPUT “NAME”;X$

50 INPUT “AMOUNT”;AMT

60 INPUT “PHONE”;TELS$:PRINT

70 LSET N$ = X$

80 LSET A$ = MKSS$(AMT)

90 LSET P$ = TELS$

100 PUT #1,CODE%

110 GOTO 30

195

Microsoft BASIC Interpreter Reference Manual

Accessing a Random Access File

The following program steps are required to access a random ac-
cess file:

OPEN the file in “R” mode.

Example:

OPEN “R”, 1,“FILE”,32

2. Use the FIELD statement to allocate space in the random

access buffer for the variables that will be read from the
file.

Example:

FIELD #1 20 AS N$,
4 AS A%, 8 AS P$

Note

In a program that performs both input and output on the same
random access file, you can often use just one OPEN state-
ment and one FIELD statement.

196

Use the GET statement to move the desired record into
the random access buffer.

Example:

GET #1,CODE%

The data in the buffer can now be accessed by the pro-
gram. Numeric values must be converted back to numbers
using the “convert” functions: CVI for integers, CVS for
single precision values, and CVD for double precision
values.

Example:

PRINT N$
PRINT CVS(A$)

Microsoft BASIC Disk I/0

Program 5 accesses the random access file “FILE” that was
created in Program 4. By entering a three-digit code at the
keyboard terminal, the information associated with that code is
read from the file and displayed.

Program 5—Access a Random Access File

10 OPEN “R”#1,“FILE”,32

20 FIELD #1, 20 AS N$, 4 AS AS, 8 AS P$
30 INPUT “2-DIGIT CODE”;CODE%

40 GET #1, CODE%

50 PRINT N$

60 PRINT USING “$$###.##",CVS(AY)

70 PRINT P$:PRINT

80 GOTO 30

The LOC function, when used with random access files, returns
the “current record number.” The current record number is one
plus the last record number that was used in a GET or PUT state-
ment. For example, the statement

IF LOC(1)>50 THEN END

ends program execution if the current record number in file#1 is
greater than 50.

197

Microsoft BASIC Interpreter Reference Manual

Program 6 is an inventory program that illustrates random file

access.

Program 6—Inventory

198

120 OPEN“R” #1,“INVEN.DAT”,39

125 FIELD#1,1 AS F$,30 AS D$,2 AS Q%,2 AS R$,4 AS P$
130 PRINT:PRINT “FUNCTIONS:”:PRINT

135 PRINT 1,“INITIALIZE FILE”

140 PRINT 2,“CREATE A NEW ENTRY”

150 PRINT 3,“DISPLAY INVENTORY FOR ONE PART”
160 PRINT 4,“ADD TO STOCK”

170 PRINT 5,“SUBTRACT FROM STOCK”

180 PRINT 6,“DISPLAY ALL ITEMS BELOW REORDER LEVEL”

220 PRINT:PRINT:INPUT“FUNCTION”;FUNCTION
225 |F (FUNCTION < 1)OR(FUNCTION >6) THEN PRINT
“BAD FUNCTION NUMBER”:GO TO 130

230 ON FUNCTION GOSUB 900,250,390,480,560,680
240 GOTO 220

250 REM BUILD NEW ENTRY

260 GOSUB 840

270 IF ASC(F$)< >255 THEN INPUT“OVERWRITE”;A$:
IF A$< >“Y” THEN RETURN

280 LSET F$ = CHR$(0)

290 INPUT “DESCRIPTION”;DESC$

300 LSET D$ = DESC$

310 INPUT “QUANTITY IN STOCK”:Q%

320 LSET Q$ = MKI$(Q%)

330 INPUT “REORDER LEVEL”;R%

340 LSET R$ = MKI$(R%)

350 INPUT “UNIT PRICE”;P

360 LSET P$ = MKS$(P)

370 PUT#1,PART %

380 RETURN

390 REM DISPLAY ENTRY

400 GOSUB 840

410 IF ASC(F$) = 255 THEN PRINT “NULL ENTRY”:RETURN
420 PRINT USING “PART NUMBER ###”;PART %

430 PRINT D$

440 PRINT USING “QUANTITY ON HAND #####";CVI(Q$)
450 PRINT USING “REORDER LEVEL #####”;CVI(RS$)
460 PRINT USING “UNIT PRICE $$##.4#";CVS(P$)

470 RETURN

480 REM ADD TO STOCK

490 GOSUB 840

Microsoft BASIC Disk 1/0

500 IF ASC(F$)=255 THEN PRINT “NULL ENTRY”:RETURN
510 PRINT D$:INPUT “QUANTITY TO ADD ";A%

520 Q% = CVI(Q$) + A%

530 LSET Q% = MKI$(Q%)

540 PUT#1,PART %

550 RETURN

560 REM REMOVE FROM STOCK

570 GOSUB 840

580 IF ASC(F$) =255 THEN PRINT “NULL ENTRY”:RETURN
590 PRINT D$

600 INPUT “QUANTITY TO SUBTRACT”;S%

610 Q% = CVIQ$)

620 IF (Q% —S%)<0 THEN PRINT“ONLY";Q%;" IN STOCK":
GOTO 600

630 Q% =Q% —S%

640 IF Q% = <CVI(R$) THEN PRINT “QUANTITY NOW"”;Q%;
“ REORDER LEVEL”;CVI(R$)

650 LSET Q% = MKI$(Q%)

660 PUT#1,PART %

670 RETURN

680 REM DISPLAY ITEMS BELOW REORDER LEVEL

690 FOR I=1 TO 100

710 GET#1,1

720 IF CVI(Q$)< CVI(R$) THEN PRINT D$; QUANTITY?”,
CVI(Q$) TAB(50) “REORDER LEVEL”;CVI(R$)

730 NEXT |

740 RETURN

840 INPUT “PART NUMBER”;PART %

850 IF(PART % < 1)OR(PART% >100) THEN PRINT “BAD PART
NUMBER":GOTO 840 ELSE GET#1,PART%:RETURN

890 END

900 REM INITIALIZE FILE

910 INPUT “ARE YOU SURE”;B$:IF B$< >“Y” THEN RETURN
920 LSET F$ = CHR$(255)

930 FOR I=1 TO 100

940 PUT#1,1

950 NEXT 1

960 RETURN

In this program, the record number is used as the part number.
It is assumed the inventory will contain no more than 100 different
part numbers. Lines 900-960 initialize the data file by writing
CHR$(255) as the first character of each record. This is used later
(line 270 and line 500) to determine whether an entry already ex-
ists for that part number.

Lines 130-220 display the various inventory functions that the pro-
gram performs. When you type in the desired function number,
line 230 branches to the appropriate subroutine.

199

TN

Appendix E

Microsoft BASIC
Assembly Language Subroutines

The SoftCard version of Microsoft BASIC, like all versions of
Microsoft BASIC, contains provisions for interfacing with
assembly language subroutines through the USR function and the
CALL statement.

E.1 Memory Allocation

Memory space must be set aside for an assembly language
subroutine before it can be loaded. During initialization, enter the
highest possible memory location minus the amount of memory
needed for the assembly language subroutine(s) by using the
/M:switch. BASIC uses all memory available from its starting loca-
tion upwards, so only the topmost locations in memory can be set
aside for assembly language subroutines.

If, when an assembly language subroutine is called, more stack
space is needed, BASIC’s stack can be saved and a new stack set
up for use by the assembly language subroutine. BASIC’s stack
must be restored, however, before returning from the subroutine.

The assembly language subroutine can be loaded into memory
through the operating system or the BASIC POKE statement.
In addition, routines can be assembled with the Microsoft 8080
Macro Assembler and loaded with the Microsoft 8080 Linking
Loader.

201

Microsoft BASIC Interpreter Reference Manual

E.2 USR Function Calls

The USR function allows assembly language subroutines to be
called in the same way BASIC intrinsic functions are called.

The format of the USR function is
USR[< digit>(<argument>)

where <digit> is a number from 0 to 9 and the <argument>
is any numeric or string expression. <digit > specifies which USR
routine is being called, and corresponds to the digit supplied in
the DEF USR statement for that routine. If <digit > is omitted,
USRO is assumed. The address given in the DEF USR statement
determines the starting address of the subroutine.

When the USR function call is made, register A contains a value
that specifies the type of argument that was given. The value in
A can be one of the following:

Value in A Type of Argument

2 Two-byte integer (two’s
complement)
String

Single precision floating-
point number

8 Double precision floating-
point number

If the argument is a number, the HL register pair points to the
Floating-Point Accumulator (FAC) where the argument is stored.

If the argument is an integer:

FAC+0 contains the lower 8 bits of the argument.
FAC+1 contains the upper 8 bits of the argument.

202

Assembly Language Subroutines

If the argument is a single precision floating-point number:

FAC+0 contains the lowest 8 bits of mantissa.
FAC++1 contains the middle 8 bits of mantissa.

FAC+2 contains the highest 7 bits of mantissa with leading
1 suppressed (implied). Bit 7 is the sign of the number
{0=positive, 1=negative)}.

FAC+3 is the exponent minus 128; the binary point is to
the left of the most significant bit of the mantissa.

If the argument is a double precision floating-point number:

FAC-4 through FAC-1 contain four more bytes of mantissa
(FAC-7 contains the lowest 8 bits).

If the argument is a string, the DE register pair points to 3
bytes called the “string descriptor.” Byte O of the string
descriptor contains the length of the string (0 to 255). Bytes
1 and 2, respectively, are the lower and upper 8 bits of the
string starting address in string space.

Warning

If the argument is a string in the program, the string descrip-
tor will point to program text. Be careful not to alter or destroy
your program this way. To avoid unpredictable results, add
+“” to the string literal in the program. For example:

A$ = “BASIC”"‘“”

This copies the string literal into string space and prevents
alteration of program text during a subroutine call.

203

Microsoft BASIC Interpreter Reference Manual

Usually, the value returned by a USR function is the same type
(integer, string, single precision, or double precision) as the argu-
ment that was passed to it. However, calling the MAKINT routine
returns the integer in the HL register pair as the value of the func-
tion, forcing the value returned by the function to be an integer.
To execute MAKINT, use the following sequence to return from
the subroutine:

PUSH H ;save value to be returned
LHLD xxx ;get address of MAKINT
;routine
XTHL ;save return on stack and
) ;get back HL
RET ;return

Also, the argument of the function, regardless of its type, can be
forced to an integer by calling the FRCINT routine to get the in-
teger value of the argument in the HL register pair. Execute the
following routine:

LXI H,sub1 ;get address of subroutine
;continuation
PUSH H ;place on stack
LHLD xxx ;get address of FRCINT
PCHL
SUB1:.....

E.3 CALL Statement

User function calls to Z80 assembly language subroutines can be
made with the CALL statement (see “CALL,” Section 3.3). A
CALL statement with no arguments generates a simple “CALL”
instruction. The corresponding subroutine should return with a
simple “RET” instruction. (CALL and RET are 8080 assembly
language instructions—see an 8080 reference manual for details.)

A subroutine CALL with arguments results in a somewhat more
complex calling sequence. For each argument in the CALL argu-
ment list, a parameter is passed to the subroutine. That parameter
is the address of the low byte of the argument. Therefore, para-
meters always occupy two bytes each, regardless of type.

204

Assembly Language Subroutines

The method of passing the parameters depends upon the number
of parameters to pass:

1. If the number of parameters is less than or equal to three,
they are passed in the registers. Parameter 1 will be in HL,
2 in DE (if present), and 3 in BC (if present).

2. If the number of parameters is greater than 3, they are
passed as follows:

a. Parameter 1 in HL
b. Parameter 2 in DE

c. Parameters 3 through n in a contiguous data block.
BC will point to the low byte of this data block (i.e.,
to the low byte of parameter 3).

Note that with this scheme the subroutine must know how many
parameters to expect in order to find them. Conversely, the call-
ing program is responsible for passing the correct number of
parameters. There are no checks for the correct number or type
of parameters.

If the subroutine expects more than three parameters, and there
is a need to transfer them to a local data area, use a system
subroutine to perform the transfer. The subroutine $AT (listed
in the following paragraphs) is called with HL pointing to the local
data area, BC pointing to the third parameter, and A containing
the number of arguments to transfer (i.e., the total number of
arguments minus 2). The subroutine is responsible for saving the
first two parameters before calling AT. For example, if a sub-
routine expects five parameters, it should look like the following
example:

205

Microsoft BASIC Interpreter Reference Manual

SUBR:

SHLD
XCHG
SHLD
MVI
LXI
CALL

[Body of subroutine]

P1 ;SAVE PARAMETER 1

P2 ;SAVE PARAMETER 2

A3 ;NO. OF PARAMETERS LEFT

H,P3 ;POINTER TO LOCAL AREA

SAT ;TRANSFER THE OTHER 3
PARAMETERS

;RETURN TO CALLER

2 ;SPACE FOR PARAMETER 1
2 ;SPACE FOR PARAMETER 2
6 ;SPACE FOR PARAMETERS 3-5

A listing of the argument transfer routine $AT follows.

00100
00200
00300

00400

00500
00600
00700
00800
00900
01000

01100
01200
01300
01400
01500

01600
01700
01800
01900
02000
02100

02200
02300

206

SAT:

AT1:

ARGUMENT TRANSFER
POINTS TO 3RD PARAMETER.
POINTS TO LOCAL STORAGE FOR
PARAMETER 3

CONTAINS THE # OF PARAMETERS
TO XFER (TOTAL-2)

ENTRY $AT
XCHG

MOV H,B
MOV LC
MOV CM
INX H
MOV BM
INX H
XCHG

MOV M,
INX H
MOV M,
INX H
XCHG

DCR A
JNZ AT
RET

;SAVE HL IN DE

;HL = PTR TO PARA-
METERS

;BC = PARAMETER ADR
;HL POINTS TO LOCAL
STORAGE

;STORE PARAMETER IN
LOCAL AREA

;SINCE GOING BACK TO
AT1

;TRANSFERRED ALL
PARAMETERS?

;NO, COPY MORE

;YES, RETURN

Assembly Language Subroutines

When accessing parameters in a subroutine, remember that they
are pointers to the actual arguments passed.

Note

You must match the number, type, and length of the
arguments in the calling program with the parameters ex-
pected by the subroutine. This applies to BASIC subroutines
as well as those written in assembly language.

207

Appendix F

Mathematical Functions

The derived functions that are not intrinsic to Microsoft BASIC

can be calculated as follows.

Mathematical Microsoft

Function BASIC Equivalent
Secant SEC(X)=1/COS(X)
Cosecant CSC(X)=1/SIN(X)

Cotangent COTX)=1/TAN(X)

Inverse sine

Inverse cosine
Inverse secant
Inverse cosecant

Inverse cotangent
Hyperbolic sine
Hyperbolic cosine
Hyperbolic tangent

Hyperbolic secant
Hyperbolic cosecant
Hyperbolic cotangent

Inverse hyperbolic sine

ARCSIN(X)=ATN(X/SQR(—X*+1))

ARCCOS(X)=-—ATN
(X/SQR(—X*X+1))+1.5708

ARCSEC(X)=ATN(X/SQR(X*X—1))
+SGN(SGN(X)—1)*1.5708

ARCCSC(X)=ATN(X/SQR(X*X—1))
+(SGN(X)—1)*1.5708

ARCCOT(X)=ATN(X)+1.5708
SINH(X)=(EXP(X)—EXP(—X))/2
COSH(X)=(EXP(X)}+EXP(—X))/2

TANH(X)=(EXP(—X)/EXP(X)+EXP
(—X)*2+1

SECH(X)=2/(EXP(X)+EXP(—X))
CSCH(X)=2/(EXP(X)—EXP(—X))

COTH(X)=EXP(—X)/(EXP(X)—EXP
(—X)*2+1
ARCSINH(X)=LOG(X+SQR(X*X+1))

209

Microsoft BASIC Interpreter Reference Manual

Mathematical
Function

Microsoft
BASIC Equivalent

Inverse hyperbolic cosine

Inverse hyperbolic
tangent

Inverse hyperbolic secant

Inverse hyperbolic
cosecant

Inverse hyperbolic
cotangent

ARCCOSH(X)=LOG(X+SQR(X*X—1))
ARCTANH(X)=LOG((1+X)/(1—X))/2

ARCSECH(X)=LOG((SQR(—X*X+1)
+1)/X)

ARCCSCH(X)=LOG{(SGN({X)*SQR(X*X
—+1)+1)/X

ARCCOTH(X)=LOG{X+1)/(X—1))/2

210

Appendix G

Microsoft BASIC
Floating-Point Numeric Format

This discussion provides the information needed to encode and
decode Microsoft floating-point representation. This information
is intended for advanced assembly language programmers, and
should not be viewed as an introduction to binary math.

Note that the encoding information presented below pertains on-
ly to integral numbers. Encoding fractional numbers is a very com-
plex process. We recommend that you contact the Microsoft
Technical Support office if you need help encoding fractional
numbers.

G.1 Encoding an Integral
Floating-Point Number

Microsoft floating-point representation is a normalized binary ap-
proximation of the argument number. It consists of two parts,
the mantissa and the exponent.

The mantissa is a 24-bit (single precision) or 56-bit (double
precision) normalized approximation of the number. The most
significant bit of the mantissa is always assumed to be a 1 after
normalization. Therefore, this bit is free to represent the sign of
the mantissa.

The exponent is an “excess-80" (80H) representation of the binary
(powers of two) exponent of the number. 80H is added to the binary
exponent, so that positive exponents are assumed to have an ex-
ponent of 80H or greater, while negative exponents are assumed
to have an exponent of 7FH or less. An exponent of zero indicates
the number itself is zero, regardless of the mantissa.

211

Microsoft BASIC Interpreter Reference Manual

The procedure for encoding an integral number into floating-point
representation consists of four steps:

1
2
3.
4

Convert to binary format
Normalize

Compute the exponent
Store

This process is best explained through an example. In the steps
explained below, the number 5.00 is converted to a single preci-
sion number.

1.

212

The conversion to binary format can be done in many
ways. The simplest of these is the subtraction method.

This method uses repeated subtractions of the powers of
two until the number is converted. For the purposes of our
example, a partial table of the positive powers of two is
shown:

20=1
2l=9
22=4
23=38
24=16

Subtract the largest power of two that produces a positive
result or zero. If the result is positive or zero, mark a 1
in the binary equivalent column as shown below. If the
result is a negative number, mark a zero in the binary
equivalent column. If there is a remainder, repeat the sub-
traction process with the next power of two.

Floating-Point Numeric Format

For example:

Conversion Binary equivalent

5—4=1 1
4 (22) is the largest number that can be subtracted from
5. The result is a remainder of 1.
Now, see if the next power of two (21) can be subtracted
from the remainder.

Conversion Binary equivalent

1-2=-1 01
Since 1—2 produces a negative number, do not subtract.
Instead, mark a zero.
Repeat the subtraction process with the next largest
power of two (2V=1).

Conversion Binary equivalent

1—1=0 101

One will subtract evenly, so the final binary result is 101.

Note

If you get to the point of subtracting 1 and the result
is not zero, you have made an error.

Now the binary number must be normalized. This is
accomplished by moving the binary point (the binary equi-
valent of the decimal point) to the left until it is immediate-
ly left of the leftmost 1 of the number (the most signifi-
cant bit); as the point is moved, count the number of
“shifts” that were made. Thus, 101.00... becomes .10100....

213

Microsoft BASIC Interpreter Reference Manual

The next step in normalization is converting the most sig-
nificant bit into the sign bit. Because Microsoft floating-
point representation assumes that the most significant bit
is 1 (this is why the number is normalized), this bit
represents the sign of the number. Since the original
number was positive, the sign bit becomes zero (1 indicates
negative). Therefore, the normalized number is .0010
0000....

3. To convert the number to its final form, calculate the
exponent by adding 80H to the number of shifts performed
during normalization. Since the binary point was shifted
3 places, add 3. This results in an exponent of 83H. The
floating-point number is, therefore, .0010 0000 0000 0000
0000 0000 with an exponent of 83H, or 00 00 20 83 in Hex.

4. The floating-point number is stored as LSB (Least
Significant Byte), NSB (Next Significant Byte), MSB
(Most Significant Byte), and EXP (Exponent), with LSB
stored in low memory and EXP stored in high memory.
This is the form presented by a USR function call or a
CALL statement.

G.2 Decoding an Integral
Floating-Point Number

To decode an integral floating-point number, simply perform the
above steps in reverse: Find the most significant bit of the man-
tissa, check it for sign, set it, and denormalize. For example, the
following steps are required to decode 00 00 20 83 Hex:

1. Check the most significant bit of the Most Significant
Byte (MSB) for the sign of the number. In this case, the
MSB is 0010 0000, so the sign of the number is positive.

2. Set the Most Significant Bit to 1. This results in a binary
number of 1010 0000.

3. Denormalize the number by shifting the binary point the
necessary number of places. 83H implies shifting the
binary point 3 places right, giving us 101.00000, or 5
decimal.

214

Floating-Point Numeric Format

G.3 Decoding a Fractional
Floating-Point Number

If the number to be converted is a fraction, it will have a negative
exponent.

A negative exponent (7F or less) simply implies that the binary
point is shifted to the left instead of the right when decoding.
Therefore, 1010 0000 with an exponent of 7DH would become
.0001 0100 after denormalization. Because the sign bit was set,
we know the original number was negative. Computing from the
negative powers of two, we have 27 44+27%=.0625+.015625=
.078125. Since the sign of the number is negative, the final result
is —.078125.

215

Appendix H
ASCII Character Codes

Dec Hex CHR Dec Hex CHR Dec Hex CHR
000 O00H NUL 043 2BH + 086 56H \%
001 Ol1H SOH 044 2CH , 087 57H w
002 02H STX 045 2DH - 088 58H X
003 03H ETX 048 2EH . 089 59H Y
004 04H EOT 047 2FH / 090 5AH Z
005 O05H ENQ 048 30H 0 091 5BH [
006 06H ACK 049 31H 1 092 5CH \
007 07H BEL 050 32H 2 093 5DH i
008 08H BS 051 33H 3 094 5EH -
009 O09H HT 052 34H 4 095 5FH _
010 OAH LF 053 35H 5 096 60H ’
011 0BH VT 054 36H 6 097 61H a
012 0CH FF 055 37H 7 098 62H b
013 0DH CR 056 38H 8 099 63H c
014 OEH SO 057 39H 9 100 64H d
015 OFH SI 058 3AH : 101 65H e
016 10H DLE 059 3BH H 102 66H f
017 11H DC1 060 3CH < 103 67TH g
018 12H DC2 061 3DH = 104 68H h
019 13H DC3 062 3EH > 105 69H i
020 14H DC4 063 3FH ? 106 6AH j
021 15H NAK 064 40H @ 107 6BH k
022 16H SYN 065 41H A 108 6CH 1
023 17H ETB 066 42H B 109 6DH m
024 18H CAN 067 43H C 110 6EH n
025 19H EM 068 44H D 111 6FH 0
026 1AH SUB 069 45H E 112 T0H p
027 1BH ESCAPE | 070 46H F 113 71H q
028 1CH FS 071 4TH G 114 72H r
029 1DH GS 072 48H H 115 73H s
030 1EH RS 073 49H I 116 74H t
031 1FH Us 074 4AH J 117 75H u
032 20H SPACE |075 4BH K 118 76H v
033 21H ! 076 4CH L 119 TTH w
034 22H * 077 4DH M 120 78H X
035 23H # 078 4EH N 121 79H y
036 24H $ 079 4FH (6] 122 TAH z
037 25H % 080 50H P 123 7BH {
038 26H & 081 51H Q 124 7CH |
039 27TH ’ 082 52H R 125 7DH }
040 28H (083 53H S 126 7EH -
041 29H) 084 54H T 127 7FH DEL
042 2AH * 085 55H U

Dec=decimal Hex=hexadecimal (H) CHR =character

LF=Line Feed FF=Form Feed CR=Carriage Return

DEL=Rubout

217

Appendix I
Microsoft BASIC

Reserved Words

The following is a list of reserved words used in Microsoft BASIC.

ABS
AND
ASC
ATN
AUTO
BEEP
BUTTON
CALL
CDBL
CHAIN
CHRS$
CINT
CLEAR
CLOSE
COLOR
COMMON
CONT
COSs
CSNG
CvVD
CVI
CVS
DATA
DEFDBL
DEFINT
DEFSNG
DEFSTR
DEF FN
DEF USR
DELETE

DIM
EDIT
ELSE
END
EOF
EQV
ERASE
ERL
ERR
ERROR
EXP
FIELD
FILES
FIX
FOR
FRE
GET
GOSUB
GOTO
GR
HCOLOR
HEXS$
HGR
HOME
HPLOT
HTAB

IMP
INKEY
INP

INPUT
INPUT#
INPUTS$
INSTR
INT
INVERSE
KILL
LEFT$
LEN
LET
LINE
LIST
LLIST
LOAD
LOC
LOF
LOG
LPOS
LPRINT
LSET
MERGE
MID$
MKD#$
MKI$
MKS3
MOD
NAME
NEW
NORMAL
NOT

NOTRACE
OCTs$

ON
OPEN
OPTION
OR

PDL
PEEK
PLOT
POKE
POP

POS
PPRINT
PRINT
PRINT#
PUT
RANDOMIZE
READ
REM
RENUM
RESET
RESTORE
RESUME
RIGHTS
RND
RSET
RUN
SAVE
SCRN
SGN

SIN
SPACE$
SPC
SQR
STOP
STR$
STRINGS$
SWAP
SYSTEM
TAB
TAN
TEXT
THEN
TO
TRACE
USING
USR
VAL
VARPTR
VLIN
VPOS
VTAB
WAIT
WEND
WHILE
WRITE
WRITE#
XOR

219

Appendix J

Error Codes and Error Messages

This Appendix lists Microsoft BASIC error messages.

Table J.1. Operational Errors

Error

Code

Message Explanation

1

NEXT WITHOUT FOR
A variable in a NEXT statement does not correspond
to any previously executed, unmatched FOR state-
ment variable.

SYNTAX ERROR
A line is encountered that contains some incorrect
sequence of characters {such as unmatched paren-
thesis, misspelled command or statement, incorrect
punctuation, etc.).

RETURN WITHOUT GOSUB

A RETURN statement is encountered for which there
is no previous, unmatched GOSUB statement.

OUT OF DATA
A READ statement is executed when there are no
DATA statements with unread data remaining in the
program.

221

Microsoft BASIC Interpreter Reference Manual

Error
Code Message Explanation
5 ILLEGAL FUNCTION CALL
A parameter that is out of range is passed to a math
or string function. This error may also occur as the
result of:
1. A negative or unreasonably large subscript.
2. A negative or zero argument with LOG.
3. A negative argument to SQR.
4. A negative mantissa with a non-integer
exponent.
5. A negative record # on a GET or PUT
statement.
6. A call to a USR function for which the start-
ing address has not yet been given.
7. An improper argument to MID$, LEFTS,
RIGHTS$, PEEK, POKE, TAB, SPC,
STRINGS$, SPACE$, INSTR, or
ON...GOTO.
6 OVERFLOW

The result of a calculation is too large to be
represented in Microsoft BASIC’s number format.
If underflow occurs, the result is zero and execution
continues without an error.

7 OUT OF MEMORY
A program is too large, has too many FOR loops or
GOSUBs, too many variables, or expressions that are
too complicated.

8 UNDEFINED LINE xxxxx IN yyyyy
A line referenced in a GOTO, GOSUB, IF.. THEN
[...ELSE], or DELETE statement does not exist.

9 SUBSCRIPT OUT OF RANGE
Caused by one of three conditions:

1. An array element is referenced with a
subscript that is outside the dimensions of
the array.

2. An array element is referenced with the
wrong number of subscripts.

3. A subscript was used on a variable that is
not an array.

222

Error Codes and Error Messages

Error
Code Message Explanation
10 REDIMENSIONED ARRAY

Caused by one of three conditions:

1. Two DIM statements are given for the same
array.

2. A DIM statement is given for an array after
the default dimension of 10 has been
established for that array.

3. An OPTION BASE statement has been en-
countered after an array has been dimen-
sioned by either default or a DIM statement.

11 DIVISION BY ZERO
Caused by one of two conditions:

1. A division by zero operation is encountered
in an expression. Machine infinity with the
sign of the numerator is supplied as the
result of the division.

2. The operation of raising zero to a negative
power occurs. Positive machine infinity is
supplied as the result of the exponentiation,
and execution continues.

12 ILLEGAL DIRECT
A statement that is illegal in direct mode is entered
as a direct mode command. For example, DEF FN.

13 TYPE MISMATCH
A string variable name is assigned a numeric value
or vice versa; a function that expects a numeric argu-
ment is given a string argument or vice versa. This
error can also be caused by trying to SWAP single
precision and double precision values.

14 OUT OF STRING SPACE
String /ariables have caused BASIC to exceed the
amount of free memory remaining. BASIC will
allocate string space dynamically, until it runs out
of memory.

15 STRING TOO LONG
An attempt was made to create a string more than
255 characters long.

16 STRING FORMULA TOO COMPLEX
A string expression is too long or too complex. The
expression should be broken into smaller expressions.

223

Microsoft BASIC Interpreter Reference Manual

Error

Code

Message Explanation

17

18

19

20

21

22

23

26

29

30

224

CAN'T CONTINUE
An attempt is made to continue a program that:

1. Has halted due to an error.

2. Has been modified during a break in
execution.

3. Does not exist.

UNDEFINED USER FUNCTION
A USR function is called before the function defini-
tion (DEF statement) is given.

NO RESUME
An error-handling routine is entered, but it contains
no RESUME statement.

RESUME WITHOUT ERROR
A RESUME statement is encountered before an
error-trapping routine is entered.

UNPRINTABLE ERROR
An error message is not available for the error con-
dition which exists. This is usually caused by an ER-
ROR statement with an undefined error code.

MISSING OPERAND
An expression contains an operator without a follow-
ing operand.

LINE BUFFER OVERFLOW
An attempt has been made to input a line that has
too many characters.

FOR WITHOUT NEXT
A FOR statement was encountered without a
matching NEXT statement.

WHILE WITHOUT WEND
A WHILE statement was encountered without a
matching WEND statement.

WEND WITHOUT WHILE
A WEND statement was encountered without a
matching WHILE statement.

Error Codes and Error Messages

Table J.2. Disk Errors

Error

Code Message Explanation

50 FIELD OVERFLOW
A FIELD statement is attempting to allocate more
bytes than were specified for the record length of a
random access file.

51 INTERNAL ERROR
An internal malfunction has occurred in Microsoft
BASIC. Report to Microsoft the conditions under
which the message appeared.

52 BAD FILE NUMBER
A statement or command references a file with a file
number that is not OPEN or is out of the range of
file numbers specified at initialization.

53 FILE NOT FOUND
A FILES, LOAD, NAME, or KILL command or
OPEN statement references a file that does not ex-
ist on the current disk.

54 BAD FILE MODE

An attempt was made to:

1. Use PUT, GET, or LOF with a sequential
file.

LOAD a random access file.

Execute an OPEN statement with a file
mode other than I, O, or R.

225

Microsoft BASIC Interpreter Reference Manual

Error

Code Message Explanation

55 FILE ALREADY OPEN
A sequential output mode OPEN is issued for a file
that is already open or a KILL is given for a file that
is open.

57 DISK I'O ERROR
An 1/O error occurred during a disk 1/O operation.
It is a fatal error; i.e., the operating system cannot
recover from the error.

58 FILE ALREADY EXISTS
The filename specified in a NAME statement is iden-
tical to a filename already in use on the disk.

61 DISK FULL
All disk storage space is in use.

62 INPUT PAST END
An INPUT statement is executed after all the data
in the file has been INPUT, or for a null (empty) file.
To avoid this error, use the EOF function to detect
the end-of-file.

63 BAD RECORD NUMBER
In a PUT or GET statement, the record number is
either greater than the maximum allowed (32767) or
equal to zero.

64 BAD FILE NAME
Anillegal form is used for the filespec with a LOAD,
SAVE, or KILL command or an OPEN statement
(e.g., a filename with too many characters).

66 DIRECT STATEMENT IN FILE
A direct statement is encountered while loading an
ASCII-format file. The LOAD operation is termin-
ated.

67 TOO MANY FILES

226

An attempt is made to create a new file (using SAVE
or OPEN) when all 255 directory entries are full.

Index

ABS, 134, 219
Addition, 29
ALL, 44-47, 50
AND, 4, 33-35, 177, 219
Applesoft
features not supported, 181
features supported, 178-179
Arctangent, 135
Arithmetic operators, 29-31
Array variables, 26, 56
Arrays, 26
ASC, 134, 219
ASCII character codes, 37, 134,
136, 156, 217
ASCII characters, 14, 193, 217
ASCII format, 86, 120, 182
Assembly language subroutines
CALL statement, 43, 182,
204-207
DEF USR, 55
FRCINT, 204
MAKINT, 204
memory allocation, 201
POKE, 99
POP, 99
USR, 157-158
USR function calls, 202-204
VARPTR, 159-160
780, 204
ATN, 135, 219
AUTO, 4, 17, 42, 176, 219

BASIC
Applesoft comparison, 175-180

assembly language subroutines,

99, 201-207
commands and statements,
39-130
conversion programs, 185
disk I/O procedures, 187-199
floating-point numeric format,
211-215
functions, 131-161

general information, 9-38
learning resources, 8
MAT functions, 186
multiple assignments, 186
multiple statements, 186
reserved words, 21, 219
string dimensions, 185
BEEP, 42-43, 178, 219
Boolean operators, 33, 177
BUTTON, 135, 178, 219

CALL, 43-44, 175, 179,
204-207, 219

CDBL, 136, 219
CHALIN, 4, 44-47, 175, 219

ALL option, 46

DELETE option, 46

MERGE option, 44
Character set, 18-20
CHRS, 109-110, 136,199, 219
CINT, 137, 219
CLEAR, 47-48, 183, 219
CLOSE, 48, 194, 219
COLOR, 49, 179, 219
Columns, 14
Commands

AUTO, 42

CLOSE, 48

CONT, 50-51

DELETE, 56

EDIT, 57-62

FILES, 68

HCOLOR, 169-170

HGR, 167-169

HPLOT, 170-171

HSCRN, 171

LIST, 87-88

LLIST, 88-89

LOAD, 89

MERGE, 91-92

NAME, 93

NEW, 93

OPTION BASE, 97

227

Index

Commands, continued
RENUM, 115-116
RESET, 117
RUN, 119
SAVE, 120
SYSTEM, 122
WIDTH, 128
COMMON, 4, 46, 50, 175,
182, 219
Concatenation, 36, 185
Constants, 21-23
CONT, 50-51, 121, 219
CONTROL characters
general, 15
CONTROL-A, 20, 61
CONTROL-B, 20
CONTROL-C, 20, 42, 50, 87,
122, 142, 143
CONTROL-G, 20, 59, 61
CONTROL-H, 20, 37, 58-59
CONTROL-I, 20
CONTROL-J, 17, 20
CONTROL-K, 20
CONTROL-O, 20
CONTROL-Q, 20, 87
CONTROL-R, 20
CONTROL-S, 20, 87
CONTROL-U, 20, 37
CONTROL-X, 20
CONTROL-Y, 20
COS, 137, 219
Cosine, 137
CP/M, 11-17, 165-166, 181, 187
CSNQG, 138, 219
CVD, 138-139, 194, 196-198, 219
CVI, 138-139, 194, 196-198, 219
CVS, 138-139, 194, 196-198, 219

DATA, 51-52, 113, 219

Data types
array elements, 26
array variables, 26
constants, 21-23
double precision constants, 23
fixed-point constants, 21
floating-point constants, 22
hex constants, 22
integer constants, 21

228

numeric constants, 22-23
octal constants, 22
single precision constants, 23
string constants, 21-22
type conversion, 27-28
variables, 3, 23-27
DEF FN, 36, 45, 53-54, 219
DEF USR, 55, 158, 219
DEFDBL, 25, 45, 54-55, 219
DEFINT, 25, 45, 54-55, 219
DEFSNG, 25, 45, 54-55, 219
DEFSTR, 25, 45, 54-55, 219
DELETE, 17, 46, 56, 181, 219
DIM, 56-57, 185, 219
Dimensioning arrays, 26
Direct mode, 13
Disk Data Files, 189, 199
Disk drive identifiers, 17
Disk errors, 225-226
Disk I/O, 176, 187-199
Display modes (MBASIC),
14, 49, 83, 123, 124
Display modes (GBASIC),
163-171
Division, 29-31
Division by zero, 31
Double precision constants, 23

EDIT, 3, 17, 37, 57-62, 176, 219

Edit mode, 57-62
backspace, 58
CONTROL-H, 58
deleting text, 59-60
ending the edit mode, 60-61
extending the line, 59
finding text, 60
inserting text, 59
moving the cursor, 58
replacing text, 60
restarting the edit mode, 61
space bar, 58
subcommands, 57-58
syntax errors, 61-62

ELSE, 219

END, 50, 62, 219

EOF, 139, 219

EQV, 4, 33-34, 177, 219

ERASE, 63, 219

ERL, 26-27, 219

ERR, 26-27, 219

ERROR, 63-65, 219

Error codes, 221-226

Error messages, 38, 221-226
Error trapping, 26, 94, 118, 193
ESCAPE, 19, 58-59

EXP, 139-140, 219
Exponential function, 139-140
Exponentiation, 22, 23, 29-31
Expressions, 29-32, 34, 129

FIELD, 65-67, 194, 196, 219
Filename extensions, 16
FILES, 68, 219
Files

program file commands, 187-

189

protected, 120, 189

random access, 193-199

sequential, 189-193
Filespec, 7, 12, 15, 120, 188
FIX, 140, 219
Floating-point numeric format,

211-215

FOR, 219
FOR...NEXT, 68-70, 179, 182, 186
Fractional floating-point

numbers, 215
FRCINT, 204
FRE, 141, 219
Free string space, 141
Functional operators, 36
Functions, 131

ABS, 134

ASC, 134

ATN, 135

BUTTON, 135

CDBL, 136

CHRS, 136

CINT, 137

COS, 137

CSNG, 138

CVD, 138-139

CVI, 138-139

CVS, 138-139

EOF, 139

EXP, 139-140

Index

FRE, 141

FIX, 140

HEXS$, 142

INKEYS, 142

INPUTS, 143

INSTR, 144

INT, 144

intrinsic, 133

LEFTS, 145

LEN, 145

LOC, 146

LOF, 146

LOG, 147

LPOS, 147

mathematical, 209-210

MIDS$, 148

MKD$, 148-149

MKIS$, 148-149

MKSS$, 148-149

nonintrinsic, 209-210

OCTS$, 149

PDL, 150

PEEK, 150-151

POS, 151

RIGHTS, 151

RND, 152

SCRN, 152

SGN, 153

SIN, 153

SPACES, 154

SPC, 154

SQR, 155

STRS$, 155

STRINGS, 156

string, 36-37, 141, 145, 148-149,
151, 154, 155-156,
158-159, 185-186

TAB, 156

TAN, 157

user-defined, 53-54

USR, 157-158, 202-204

VAL, 158-159

VARPTR, 159-160

VPOS, 161

GBASIC
/F option, 12-13
/M option, 12-13

229

Index

/S option, 12
display modes, 14, 49, 83
filespec option, 12
initialization, 11-13
memory configuration, 12
Ok prompt, 13
operational modes, 13
GET, 71, 146, 194, 196,
197, 219
GOSUB, 72-73, 219
GOTO, 51, 73, 219
GR, 14, 49, 74, 179, 219

HCOLOR, 169-170, 179, 219

HEXS, 142, 219

Hexadecimal, 22, 142

HGR, 167-169, 179, 219

High-resolution graphics display
mode, 5, 11, 14, 163-171

HLIN, 75-76, 179

HOME, 76, 219

HPLOT, 170-171, 179, 219

HSCRN, 171, 178

HTAB, 77, 179, 219

IF, 219

IF..GOTO, 77-79

IF..THENI...ELSE], 4, 77-79,

176, 179

IMP, 4, 33-34, 177, 219

Indirect mode, 13

Initialization, 11-13, 165-167

INKEY, 219

INKEYS, 142

INP, 219

INPUT, 80-81, 179, 183, 195, 219

Input editing, 37

INPUT#, 81-82, 130, 219

INPUTS, 143, 219

INSTR, 144, 219

INT, 144, 219

Integers, 3, 137, 138, 140,
144, 153, 177, 196

Integer division, 30-31

Integral floating-point
numbers, 211-214

Intrinsic functions, 133

INVERSE, 83, 179, 219

230

KILL, 83-84, 192, 219

LEFTS, 145, 185, 219

LEN, 145, 219

LET, 84-85, 195, 219

LINE, 219

Line format, 17

LINE INPUT, 85-86

LINE INPUT#, 86-87, 192

Line numbers, 17, 73, 94, 95,
115-116

Line printer, 88-90, 128, 147

LIST, 17, 87-88, 219

LLIST, 88-89, 219

LOAD, 16, 89, 187-188, 219

LOC, 146, 197. 219

LOF, 146, 194, 219

LOG, 147, 219

Logarithms, 147

Logical operators, 28, 33-35

Logical truth tables, 33-34

Loops, 4, 68-70, 126, 127

Low-resolution graphics display
mode, 14, 49, 123, 124

LPOS, 147, 219

LPRINT, 90, 128, 219

LPRINT USING, 90

LSET, 90-91, 194, 195, 219

Machine infinity, 31

MAKINT, 204

Mathematical functions, 209-210

Mathematical sign, 153

MERGE, 16, 44-45, 91-92,
188, 219

MIDS$, 92, 148, 185-186, 219

Mixed text display mode, 14,
73, 76

MKDS$, 148-149, 194-195, 219

MKIS$, 148-49, 194-195, 219

MKSS$, 148-149, 194-195, 219
MOD, 31, 177, 182, 219
Modulo arithmetic, 30-31
Multiplication, 29

NAME, 92, 219

Negation, 29

Nesting of IF statements, 78-
79

NEW, 93, 219

NORMAL, 94, 179, 219

NOT, 4, 33-35, 219

NOTRACE, 123-124, 181, 219

Numeric constants, 22-23

OCTS$, 149, 219
Octal, 22, 142, 149
ON, 219
ON ERROR GOTO, 45, 94-95
179
ON...GOSUB, 95
ON...GOTO, 95
OPEN, 96-97, 189-192, 194, 219
Operational errors, 221-224
Operational modes, 13
Operators
arithmetic, 29-31
backslash, 31
functional, 36
general, 29
logical, 28, 33-35
MOD, 31, 182, 219
operational precedence, 29
relational, 32
string, 36-37
OPTION, 219
OPTION BASE, 97, 182
OR, 4, 33-35, 177, 219
Overflow, 28, 31, 140, 157, 222
Overlays, 44-47

PDL, 150, 179, 219
PEEK, 150, 219
PLOT, 98, 179, 219
POKE, 99, 201, 219
POP, 99-100, 179, 219
POS, 151, 219

Index

PPRINT, 219
PRINT, 100-102, 219
PRINT USING, 3, 103-108, 176
PRINT#, 108-110, 130, 219
PRINT# USING, 108-110
Program conversion, 185-186
MAT functions, 186
multiple assignments, 186
multiple statements, 186
string concatenation, 185
string dimensions, 185
string functions, 185
substrings, 185-186
Program remarks, 114
Protected files, 120, 189
PUT, 111, 146, 194, 195,
197, 219

Random access files, 193-199
applicable functions, 194
applicable statements, 194
strings, 195

Random numbers, 111-112, 152

RANDOMIZE, 111-112, 182,

183, 219

READ, 51-52, 113-114, 117, 219

Relational operators, 32

REM, 114-115, 219

RENUM, 4, 45, 115-116, 176, 219

Reserved words, 21, 219

RESET, 117, 219

RESTORE, 117, 219

RESUME, 118, 179, 219

RETURN, 14, 17, 19, 59-60,

72-73, 165

RIGHTS, 151, 185, 219

RND, 111-112, 152, 183, 219

Rows, 14

RSET, 90-91, 194, 219

RUN, 13, 16, 119, 187-188, 219

SAVE, 16, 120, 187, 189, 219
SCRN, 152, 171, 179, 219
Sequential files, 189-193
SGN, 153, 219

Signum, 153

SIN, 153, 219

231

Index

Sine, 153
Single precision constants, 23
SPACES, 154, 219
SPC, 154, 219
SQR, 155, 219
Square roots, 155
Statements
BEEP, 42-43
CALL, 43-44, 204-207
CHAIN, 44-47
CLEAR, 47-48
CLOSE, 48
COLOR, 49
COMMON, 50
DATA, 51-52
DEF FN, 53-54
DEF USR, 55
DEFDBL, 54-55
DEFINT, 54-55
DEFSNG, 54-55
DEFSTR, 54-55
DIM, 56-57
END, 62
ERASE, 63
ERROR, 63-65
FIELD, 65-67
FOR...NEXT, 68-70
GET, 71
GOSUB...RETURN, 72-73
GOTO, 73
GR, 49, 74, 219
HCOLOR, 169-170
HGR, 167-169
HLIN, 74-75
HOME, 76
HPLOT, 170-171
HSCRN, 171
HTAB, 77
IF..GOTO, 77-79
IF..[THEN...ELSE], 77-79
INPUT, 80-81
INPUT#, 81-82
INVERSE, 83
KILL, 83-84
LET, 84-85
LINE INPUT, 85-86
LINE INPUTY#, 86-87
LPRINT, 90
LPRINT USING, 90

232

LSET, 9091
MIDs$, 92
NORMAL, 94
NOTRACE, 123-124
ON ERROR GOTO, 94-95
ON...GOSUB, 95
ON...GOTO, 95
OPEN, 96-97
PLOT, 98
POKE, 99
POP, 99-100
PRINT, 100-102
PRINT USING, 103-108
PRINT#, 108-110
PRINT# USING, 108-110
PUT, 111
RANDOMIZE, 111-112
READ, 113-114
REM, 114-115
RESTORE, 117
RESUME, 118
RSET, 9091
STOP, 121
SWAP, 122
TEXT, 123
TRACE, 123-124
VLIN, 124-125
VTAB, 125
WAIT, 126
WHILE..WEND, 127
WRITE, 129
WRITE¥#, 130
STOP, 50, 121, 219
STRS, 155, 219
String comparisons, 37
String concatenation, 36, 185
String constants, 21-22
String descriptor, 203
String dimensions, 185
String functions, 36-37, 141, 145,
148-149, 151, 154, 155-156
158-159, 185-186
String operators, 36-37
String space, 47, 154
String variables, 24-25
STRINGS, 156, 219
SUBMIT transient program, 12
SUBMIT facility, 166
Subroutines, 43, 72, 99,
201-207

Subscripts, 26, 97
Subtraction, 29

SWAP, 122, 219

Syntax notation, 6-7
SYSTEM, 12-13, 122, 219

TAB, 19, 156, 219

TAN, 157, 219

Tangent, 157

TEXT, 14, 123, 179, 219
THEN, 219

TO, 219

TRACE, 123-124, 181, 219
TRON/TROFF, 181

USING, 219
USR, 55, 157-158, 202-204,
219

VAL, 158-159, 219
Variables, 3, 23-27

array, 26

defining of, 54-55

ERL, 26-27

ERR, 26-27

line input, 85-87

names, 24-25, 183

string, 24-25, 85-87

type conversion, 138-139

type declaration, 24-25

use with LET, 84-85
VARPTR, 159-160, 219
VLIN, 124-125, 179, 219
VPOS, 161, 178, 219
VTAB, 125, 179, 219

WAIT, 126, 182, 219

WEND, 4, 127, 176, 182, 219
WHILE, 4, 127, 176, 182, 219
WIDTH, 128, 181

WIDTH LPRINT, 128, 183
WRITE, 129, 182, 219
WRITE#, 129, 219

XOR, 4, 33-34, 177, 219

780 subroutine calls, 204-207

Index

233

MICRSGSOFT. Software

10700 Northup Way, Bellevue, WA 98004 Problem Report

Name
Street
City State Zip
Phone Date

Instructions

Use this form to report software bugs, documentation errors, or suggested
enhancements. Mail the form to Microsoft.

Category
Software Problem Documentation Problem
Software Enhancement (Document #)
Other
Software Description
Microsoft Product
Rev._ _ Registration #
Operating System
Rev. Supplier
Other Software Used
Rev. ___ Supplier
Hardware Description
Manufacturer CPU Memory _____ KB
Disk Size " Density: Sides:
Singie Single
Double Double

Peripherals

Problem Description

Describe the problem. (Also describe how to reproduce it, and your
diagnosis and suggested correction.) Attach a listing if available.

Part no.: SPROO

DIGITAL RESEARCH LICENSE

INFORMATION

CAREFULLY READ ALL THE TERMS AND CONDITIONS OF THIS AGREEMENT PRIOR TO
BREAKING THE DISKETTE SEAL. BREAKING THE SEAL INDICATES YOUR ACCEPTANCE OF THESE
TERMS AND CONDITIONS.

IMPORTANT: Our lice nse with Digital Research for the CP/Mas Operating Systern requiresthat
each purchaser of the SoftCardm with CP/M register with Microsofts Corporation so that records can be
maintained of all CP/M owners. This requirement is made by Digital Research, not by Microsoft, and a post-
Eﬁréjéfsenclosed for reply. THE SERIAL NUMBER ON THE CARD IS THE NUMBER STAMPED ON THE DISK

SOFTWARE LICENSE AGREEMENT

IMPORTANT: All Digital Research programs are sold only on the condition that the purchaser
agrees to the following license. READ THIS LICENSE CAREFULLY. If you do not agree to the terms contained
in this license, return the packaged diskette UNOPENED to your distributor and your R‘urchase price will be
refunded. If you agree to the terms contained in this license, fill out the REGISTRATION information and
RETURN by mail to Microsoft Corporation.

DIGITAL RESEARCH agrees to grant and the Customer agrees to accept on the following terms
and conditions nontransferable and nonexctusive license to use the software program(s) (Licensed
Programs) herein delivered with this agreement.

1. TERM: This agreement is effective from the date of receipt of the above-referenced pro%ram(s)
and shall remain in force untit terminated by the Customer upon one month's prior written notice, or by Digital
Research as provided below.

Any license under this A%reemem may be discontinued by the Customer at any time upon one
month’s prior written notice. Digital Research may discontinue any license or terminate this Agreement if the
Customer fails to com| IE with any of the terms and conditions of this Agreement.

. 2. LICENSE: Each program license granted under this Agreement authorizes the Customer to use
the Licensed Program in any machine readable form on any single computer system (referred to as System).
A separate license is required for each System on which the Licensed Program will be used.

This Agreement and any of the licenses, programs or materials to which it applies may not be
assigned, sublicensed or otherwise transferred by the Customer without prior written consent from Digital
Research. No right to print or copy, in whole or in part, the Licensed Programs is granted except as
hereinafter expressly grovided.

3. PERMISSION TO COPY OR MODIFY LICENSED PROGRAMS: The Customer shall not copy, in
whole or in part, any Licensed Programs which are provided by Digital Research in printed form under this
Agreement. Additional copies of printed materials may be acquired from Digital Research.

~ Any Licensed Programs which are provided by Digital Research in machine readable form may be
copied, in whole or in part, in printed or machine readable form in sufficient number for use by the Customer
with the designated System, to understand the contents of such machine readable material, to modify the
Licensed Program as provided below, for back-up purposes, OR FOR ARCHIVE PURPOSES, provided,
however, that no more than five (5) printed copies will be in existence under any license at any one time
without prior written consent from Digital Research. The Customer agrees to maintain appropriate records of
the number and location of all such copies of Licensed Programs. The original, and any copies of the
Licensed Programs, in whole or in part, which are made by the Customer shalt be the propertﬁ of Digital
Research. This does not implé, of course, that Digital Research owns the media on which the Licensed
Programs are recorded. The Customer may modify any machine readable form of the Licensed Programs for
his own use and merge it into other program material to form an updated work, provided that, upon
discontinuance of the license for such Licensed Program, THE LICENSED PROGRAM SUPPLIED BY DIGITAL
RESEARCH WILL BE COMPLETELY REMOVED FROM THE UPDATED WORK. ANY PORTION OF THE
LICENSED PROGRAM INCLUDED IN AN UPDATED WORK SHALL BE USED ONLY IF ON THE DESIGNATED
SYSTEM AND SHALL REMAIN SUBJECT TO ALL OTHER TERMS OF THIS AGREEMENT.

The Customer agrees to reproduce and include the copyright notice of Digital Research on all
copies, in whole or in part, in any form, including partial copies of madifications, of Licensed Programs made
hereunder.

4. PROTECTION AND SECURITY: The Customer agrees not to provide or otherwise make
available any Licensed Program including but not limited to program listings, object code and source code,
in any form, to any person other than Customer or Digital Research employees, without prior written consent
from Digital Research, except with the Customer’s permission for purposes specifically related to the
Customer’s use of the Licensed Program.

5. DISCONTINUANCE: Within one month after the date of discontinuance of anz license under this
Agreement, the Customer will furnish Digital Research a certificate certifying that through his best effort, and
to the best of his knowled?e, the original and all copies, in whole or in Ipart, in ANY form, including partial
copies in modifications, of the Licensed Program received from Digital Research or made in connection with
such license have been destroyed, except that, upon prior written authorization from Digital Research, the
Customer may retain a copy for archive purposes.

6. DISCLAIMER OF WARRANTY: Digital Research makes no warranties with respect to the
Licensed Programs. The sole obligation of Digital Research shall be to make availabie all published
modifications or updates made by Digital Research to Licensed Programs which are published within one
(1) year from date of purchase, provided Customer has returned the Registration Card delivered with the
Licensed Program.

7. LIMITATION OF LIABILITY: THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER
WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL DIGITAL
RESEARCH BE LIABLE FOR CONSEQUENTIAL DAMAGES EVEN IF DIGITAL RESEARCH HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.)

8. GENERAL: If any of the provisions, or portions thereof, of this Agreement are invatid under any
applicable statute or rule of law, they are to that extent to be deemed omitted.

Part No. 999-999-990

