
APPLE
BASIC PROGRAMMING

Published by
APPLE COMPUTER, INC.
10260 Bandley Drive
Cupertino, California 95014
(408) 996-1010

Written by Jef Raskin

All rights reserved . No part of this publication
may be reproduced without the prior written
permission of APPLE COMPUTER, INC. Please
call (408) 996-1010 for more information.

©1978 by APPLE COMPUTER, INC. Reorder Apple Product #A2L0005X

TABLE OF CONTENTS

INTRODUCTION
1 HOW TO BEGIN

3 Introduction
4 What you will need.
5 Hooking up the N.
5 Attaching the game controllers.
5 Connecting the cassette recorder.
6 The Apple keyboard.
6 The RESET key.
7 The SHIFT key.
9 The ESC Key.
9 Keyboard notation.

10 How to clear the screen.
10 The CTRL key.
11 The REPT key.
12 Getting into BASIC.

CHAPTERl

13 How to set controls on the cassette recorder.
15 Listening to a computer tape.
15 How to stop the computer.
16 Recovering from accidentally hitting RESET.
16 Fine adjustment of the cassette recorder.
17 How to load a tape.
17 Setting the N color controls.
19 Playing the BREAKOUT game.

CHAPTER2

BEGINNING BASIC
21 BEGINNING BASIC

23 A first look at the PRINT statement.
24 Using the Apple as a desk calculator.
25 Addition. Subtraction. Multiplication. Division, and Modulo.

26 Exponentiation.
27 The limit of 32767.
27 Why the RETURN is so much used.
28 A first look at editing.
30 Putting colors on the screen.
31 The GRaphic command.
31 The TEXT command.
32 The PLOT command.
32 Setting COLOR.
33 Plot error messages.
34 Drawing lines.
36 Using the game controls.
37 Introduction to variables.
40 Simulating a pair of dice.
41 Precedence among arithmetic operators.

42 Setting up your own precedence.

II

CHAPTER3

ELEMENTARY PROGRAMMING
45 ELEMENTARY PROGRAMMING

46 Deferred execution.
46 The NEW command.
46 The LIST command.
4 7 The RUN command.
48 Ordering statements by line number.
49 A second look at editing.
51 Introduction to loops.
52 The CONtinue command.
53 The DELete command.
54 A third look at editing.
55 An important message.
55 Avoiding accidental loss of programming lines.
56 True and false assertions.
57 Symbols used for comparisons.
59 Use of AND.
60 Use of OR and NOT.
61 Table of Precedence.
61 The IF statement.
62 Use of programs to produce graphics.
65 AUTOmatic line numbering.
66 Terminating AUTOmatic numbering with MANual.
67 Some graphics program examples (sketching with the controls).
68 The FOR . .. NEXT loop.
70 Nesting loops.
71 Fancier use of the PRINT statement.
73 The TAB feature.
74 The VfAB feature.
75 Bouncing dot program.
76 How to SAVE a program on cassette.
77 The INPUT statement.
77 Good programming practices involving the INPUT statement.
80 Bouncing a ball off the walls of program.
82 Making sounds with the Apple.
83 The PEEK function.
84 Adding sound to the bouncing ball.
85 HOW' to get multiple statements on one line.

Ill

CHAPTER4

STRINGS, ARRAYS AND
SUBROUTINES
87 STRINGS, ARRAYS AND SUBROUTINES

88 Introduction to strings.
88 The DIMension statement.
89 The LENgth function.
92 Putting strings together (concatenation).
94 Introduction to arrays.
96 A program to find prime numbers.
97 Array related error messages.
98 Debugging techniques.

100 The DSP feature.
102 A better program for finding prime numbers.
104 GOSUBroutine and RETURN (subroutines).
106 The TRACE feature.
107 More about subroutines.
111 Conclusion

IV

APPENDICES

114 Messages and error messages.
119 Making programs run faster.
120 Some additional functions and abilities.
121 PEEKS, POKES, and CALLS.

127 Index.

v

INDEX

Scanned by Dr. Kenneth Buchholz
www.Apple20nline.com

2

AN APPLE TODAY

keeps the doldrums away. This manual will show you how to plug in your
APPLE II (easy) and be a guide as you learn to program it (also easy). If you
are an Old Hand at programming,you will find some new features and conven
iences in APPLE BASIC that make programming a lot more fun. If you are a
Newcomer to programming, you will also find many features and conven
iences in APPLE BASIC that make programming a lot of fun. But, if you are a
Newcomer, be warned that programming, though not difficult, can only be
learned by doing. More will be said on this topic later, but remember-this is a
book to be used, not merely perused.

If you purchased your APPLE II from an authorized APPLE dealer, they will
be willing to let you set your APPLE II up in their shop, and make sure you
know how to set it up at home. If you received it as a gift or through the mail, it
is not difficult to hook up-it is as easy as setting up a stereo system and no
technical knowledge is needed at all.

If you have not already done so, please take a few minutes to complete and
mail your Owner/Warranty Registration Card.This Registration Card will reg
ister your APPLE II with the factory , give you membership in the APPLE
SOFTWARE BANK, and include you in the list of APPLE II owners. If you
don't send us this card you will not receive any newsletters, information about
new accessories for your APPLE 11 , nor any of the other information that is
frequently mailed to APPLE II owners. So please mail in the completed card.

3

WHAT YOU WILL NEED

This manual was in the accessory box. This box should also contain:
1. The power cord (the cord that plugs into the outlet on the wall).
2. A set (2) of controllers (the boxes with knobs).
3. A cable to connect the APPLE to a tape recorder. This cable has two plugs

on each end.
4. Some cassette tapes. These tapes contain programs for the APPLE.

In addition to the APPLE II itself and the contents of the accessory box, you
will need these two thing (neither are supplied):
1. A Cassette recorder. If you do not own one, we recommend the Panasonic

RQ309 (under $40).
2. You will need one of the following items:

or

a. A color TV monitor and a cable that has a phono plug (also called a
male RCA-type connector) at one end and something to match the
monitor at the other end. The dealer that sells you the monitor can sup
ply the cable.

b. An ordinary home color TV and an "RF Modulator" with the connecting
cables. The RF Modulator changes the signal put out by the APPLE II
so that it matches what your TV expects. A number of Modulators are
available. There is one made especially for the APPLE II called the
SUPERMOD II. Your computer dealer probably sold you one, or, if not, it
can be ordered from-

M&R Enterprises
P.O. Box 61011
Sunnyvale, CA 94088

The Modulator has instructions on how to hook it up. Your TV's ability to
receive normal programs will not be diminished (or enhanced) by having
the APPLE II hooked up to it.

4

HOOKING UP THE TV

If you have a color (or black and white) monitor, just connect the appropriate
cable from the jack marked "VIDEO OUT" (on the rear of the APPLE II) to
the input of the monitor.

If you have an ordinary TV, you will have to install an RF modulator. Open
the top of the APPLE II by pulling straight up on the back of the lid using both
hands, one on each side. Then install the modulator following the directions
that come with the modulator.

PLUGGING IN THE CONTROLLERS

With the lid open, plug the controllers' rather delicate plug into the GAME
1/0 socket located in the right-rear corner (front view) of the APPLE II board.
Be very careful and make sure that all the pins go into the socket. The white
dot should be toward the front of the computer.

THE CASSETIE RECORDER

Use the supplied cable (the one with two plugs on each end) to connect the
APPLE II to your cassette tape recorder. Connect one black plug to the MIC or
MICROPHONE jack on the recorder, and the other black plug (on the opposite
end of the cable) to the jack on the back of the computer marked
"CASSETTE OUT". Connect the grey plug on the recorder end to the EAR or
EARPHONE or MON or MONITOR jack on the recorder(different brands use
different words) and the grey plug on the computer end to the jack marked
" CASSETTE IN ". "OUT" means "out of the computer" and " IN" means
" into the computer. " Now the cassette recorder is hooked up.

Now close the top of the APPLE. Plug the APPLE end of the power cord into
the APPLE (on the rear of the APPLE, next to the Power switch), and the other
end into a three-prong grounded outlet. Now the APPLE II is completely set up
and you have only to turn the page to begin exploring the fascinating world
of personal computing.

5

THE APPLE KEYBOARD

The first thing to do, now that all the connections have been made, is to turr
the APPLE on. The switch is on the back of the computer. Push it into the
upward position. You will be rewarded by the light at the bottom of the keyboarc
marked "POWER" coming on. This light is not a key, and cannot be depressed.

~-------
Don't be concerned with what appears (or doesn't appear) on the TV screen

at this point. So that you will be able to hear the computer, turn the TV's volume
control all the way down. The TV's speaker is not used.

Whenever you turn the APPLE on, you have to press the cmD key located
in the upper right corner of the keyboard. Try it now. The APPLE will (if every
thing is OK) go "beep" when you release the m!D key. The screen should
show an asterisk(=+=) in its lower left hand corner, with a blinking square to the
right of the asterisk. The blinking square is called the cursor. At this point, don't
worry about the rest of the screen, nor about what colors are showing, if any.

=\

6

Study the keyboard. If you are familiar with standard typewriters, you will find
a few differences between the APPLE keyboard and a typewriter keyboard.
First, there are no lower case letters. You can get only capital letters on the
APPLE II. This is all you need for programming.

Using the diagram, locate the two mo keys on the keyboard. The reason
the keyboard has the mo keys is to allow for nearly twice as many characters
with the same number of keys. A keyboard with a separate key for each charac
ter would be very large, making it hard to find any desired key.

If you press a key which has two symbols on it, the lower symbol will appear
on the screen . If you press the same key while you hold down either of the
ED keys, the upper symbol will appear on the screen. You will find that the
SHIFTed coma and the SHIFTed period are < and > respectively. You will also
fi nd other symbols on the APPLE II keyboard that are not on a standard typewrit
er. Feel free to try operating any of these keys. Watch the characters appear on

the screen.

7

If there is no upper symbol on a key, then holding the mlD while the key is
pressed has no effect. There are two exceptions: the m key and the GI key.

_______ :_)

The SHIFTed m key gives a right hand square bracket (]) . The GI key
has the word "BELL" above the "G". But mlD GI does not put a bell on the
screen, it just puts a "G" there. The meaning of the word "BELL" on the GI key
will be explained later.

An important difference between using the APPLE keyboard and most
typewriters is that you cannot employ a lower case "L" for the number "1". Of
course, there is no lower case "L" on the APPLE, but some typists will have to
break the habit of reaching for the letter "L" when they mean the number "1".

When the Hindu mathematicians invented the open circle for the numeral
zero, they didn't use the Roman alphabet. So they chose a symbol that, while
not conflicting with their alphabet, looks just like our letter "O". The computer
(and any straight-thinking individual) will want to keep zeros and oh's distinct.
The usual method for doing this, on the APPLE II and many other computers,
is to put a slash through the zero. Now you can tell them apart. The keyboard
and the TV display both make the distinction clear. Try them.

8

After a bit of typing, the screen tends to get full of stuff. To clear the screen,

you need to use the key marked um. ESC stands for the word " ESCape. "

Press the um key, and then type an "at" sign (@)which is obtained by holding

down either mlD key and pressing the key marked D . You have to operate

three keys to clear the screen. First press the um, then, while holding down the

m:!i) , press the D key. Instant gratification: the contents of the screen

promptly disappear.

· ~-------

KEYBOARD NOTATION

At this point we will introduce a simple notation.

As you have seen, when a key is to be pressed, such as the key for the letter
.. '' that key's symbol will be shown m .To express pressing several keys in

s ccession , we will simply list the keys in the order to be pressed: mo1111m .
0 occasion, you will need to hold down one key while pressing another key.

F example , to type a dollar-sign ($) you must hold down the mlD key while
ress the D key. Whenever this dual action is required, we will show the

mbols for both keys, one above the other.

9

-II
The above key is to be held down while the bottom key is pressed. Here's how
to clear the screen using the new notation:

-1111•
Try it.

CONTROL, AND OTHER UNSAVORY CHARACTERS

When you press the IJ key, the numeral 5 appears on the TV screen. I'm
sure you believe this is true, but try it anyway. If you hold the m!ID key down
while pressing the IJ key, a percent sign (%) should appear on the screen.
Does it? The l!llm key permits some of the keys of the keyboard to have two
different functions. Several of the keys also have a third function. The th ird
function is obtained by holding the mm key down while other keys are press
ed." CTRL" stands for the word "ConTRol." Instead of putting new characters
on the screen when you use the &ml key, the computer responds by perform
ing certain actions. Control characters never appear on the screen.

Hold the &ml key down and press II

Ill
II

10

It doesn 't go "ding," but it does go "beep. " Whenever the computer wishes to
call your attention to something, it will sound the beeper. Control G is called
"BELL" for historical reasons. The present keyboard design is based on that of
the Teletype, and on that venerable machine, Control G rings a real bell.

Now type

II
1111•

By our conventions, this means to press the mil key , hold down the
GiD key while pressing the El , and then press the mii!lml key . As
you can see, our new notation is easier to read than the written instructions.

When you press

3. right-pointi ng arrowhead (>) should appear at the bottom of the screen. The
olinking square (called the cursor, remember?) will be to its right. If this doesn't
appen the first time, try again.

Another key that is not usually found on typewriters is the

II
ic stands for "REPeaT." Holding down the I& key while you press

11

any other key just makes that key's character appear repeatedly on the
screen. Experiment with it. If you happen to press

-you will sometimes get a "beep" and the message

will appear on the screen. For the time being, ignore this message.

The only keys left unmentioned are the right-and left-pointing arrows on the
keyboard . They move the cursor to the right and the left. They will be
explained more fully later. Test out these keys and any others you can find.
There is nothing you can do by typing at the keyboard that can cause any
damage to the computer. Unless you type with a hammer. So feel free to
experiment. With your fingers .

GETTING INTO BASIC

To put the APPLE II into a mood to be receptive, press the keys

II
11111 -
which not only gets you the prompt character (the right-pointing arrowhead: >)
and the blinking square cursor, but also puts the APPLE II into the BASIC
computer language. (More about what this means later.) For practice, turn the
computer off; then turn it back on, and get it back into BASIC. If you don 't get the
arrowhead the first time, just try it again. Notice that you don't have to type in
either the prompt character or the cursor. They are both generated by the
computer for your use.

12

Now that you are " in BASIC" or have BASIC "up" (as they say), you are ready
o set the volume control on the tape recorder.

SETIING THE TAPE RECORDER

When you play a tape recorder, it is usually with the intent of making sounds
that you can hear. If it is too soft, you miss some of the words or music. If it is too
loud , it is annoying. When you play the tape recorder into the APPLE, it is with
the intent of putting the tape's information into the computer. If the volume
setting is too soft, the APPLE will miss some of the information, and it will
complain by giving an error message. If the volume setting is too loud, the
APPLE will also complain .

To find the right volume setting, you will use a trial-and-error method. You will
play a tape softly to the computer and see if the information got in OK. If it
doesn 't work, you will try the tape again, a little louder this time. If that doesn't
work, you will make it a little louder still. Eventually the volume will be just right
for the APPLE and it will say so.

Put the computer in BASIC and clear the screen for action:

II -11111••11•
Place the tape marked "COLOR DEMOS" into your recorder. For each posi

tion of the volume control you are going to do the following:
1. Rewind the tape to the beginning.
2. Start the tape playing.
3. Type:

11111111•
When you do this, the cursor will disappear. It may take up to 15 seconds

before something happens. There are these possibilities:

a. The message :+=:+::+= 5\'r·(ff(:-:; ER~: appears.
b.. Nothing at all happens.
c. The message ERR appears (with or without a beep).
d. The message =+::+==+= r·tt::r·1 FULL E~:~: or

c- c> c· -.c- -.c- c,; c- c,; c' '' ' r:· c. c· appears (w1"th or w1"thout a beep) :...._ ;·-_:--.... ·:· ·:· ; : ;__;; ; :_: :...._ ;__ :...._:·-.:·-. .
e. The computer goes "beep" and nothing appears.

13

In case a., do not reset the volume control, but go back to step 1. where you
rewind the tape.

In cases b. and c., make sure you waited for 15 seconds before giving up. If
there is no prompt character or cursor, and the APPLE does not respond to its
keyboard, put the computer into BASIC again:

II
1111•
Set the volume control a bit higher and go back to step 1.

In case d., set the volume control a bit higher and go back to step 1.

In case e., you are on the right track. When you hear the beep, wait another
fifteen seconds. Either you will get an error message (case c. or d.), or the
prompt character (>) and the blinking cursor will reappear. If they do reap
pear, stop and rewind the tape. Then type

111111•
The screen should look like this:

Computerniks call this list of numbered descriptions a "menu." It works like a
menu at a roadside cafe. If you want scrambled eggs with hash brown potatoes,
toast, jelly and coffee you can just say,"1'11 have a number 5." Try selecting one 1

of the color demonstrations by typing its number (followed by a IDim, of
course). When you are viewing one of the demos, just press the space bar to

14

get back to the "menu."

A HELPFUL HINT

What is it that the computer finds so interesting about these tapes? Listen to
one of them. It's not music to your ears. Yet you can recognize some of the
sounds the computer listens for. The information starts with a steady tone. Then
there is a short "blip" followed by more of the steady tone. The tone is at 1000
cycles per second. This pitch is just below the C two octaves above middle C.
After the tone comes a burst of sound rather remin iscent of a rainstorm.

When you are used to the sound of a good tape, you can quickly check a tape
by ear to see if it is a computer tape or not. If you can tell what the tape contains
by listening to it, you are a mutant, and will go far in the computer world.

STOPPING THE COMPUTER

To stop the computer, type

II
11•
This will cause the prompt character and blinking cursor to appear. The prompt
character tells you that it is OK to proceed with typing information to the com
puter. That is why it is called the prompt character: it "prompts" you to type
something.

Once the computer is stopped, it may be started again by typing

1111111
(and, of course, a lliDm , but you hardly need to be told that anymore. In
fact , you won't be, from now on.)

Use

II
II
to stop the computer, and

15

mmm
to start it again. Try this a few times.

WHAT TO DO IF YOU HIT ID BY ACCIDENT

Sometimes when you reach to press the li!!i!lml key you may accidentally
strike the nearby Emil key - or you may hit Emil for some other rea
son. To get back into BASIC after hitting the Emil key, type

II
II
This will get you the prompt character {>) back, and you will not have lost any
information you may have read in from the cassette tape. You could get the
prompt character back by typing

II
II
but this would cause any information stored in the computer to be lost. When
you try these features, remember that we are no longer mentioning the required
1i!Ji!1m1 except for an occasional reminder.

16

THE USUAL PROCEDURE FOR LOADING TAPES

1. Make sure the computer is in BASIC
2. Rewind the tape
3. Start the tape playing
4. Type 11mam

After you hit mi!lml the cursor will disappear. Nothing happens from 5 to
20 seconds, and then the APPLE beeps. This means that the tape's informa
tion has started to go into the computer. After some more time (depending on
how much information was on the tape, but usually less than a few minutes)
the APPLE beeps again and the prompt character and the cursor reappear.

5. Stop the tape recorder and rewind the tape. The information has been trans
ferred, and you are fin ished with the tape recorder for the time being.

6. Type

mmm
and your program will begin to execute.

Computerniks use many different words to describe the process of taking
information from a tape and putting the information into the computer. The
computer is said to "read" (pronounced "reed") the tape. The information on
the tape is said to be "entered" or "read" (pronounced "red") into the comput
er. The act of reading a tape is also called "loading" a tape into the computer
and the information on the tape is said to be "loaded into" the computer. All
these expressions are ways of saying the same thing.

SETTING THE TV COLOR

If the "menu" is not on your TV screen, follow the USUAL PROCEDURE for
loading the tape marked "COLOR DEMOS." One of the items on the menu i::
called COLOR NAMES. We wi ll use th is DEMO to set the TV color. Type in the
number of the COLOR NAMES DEMO, 0 , and press lm!ID . A number of
bars of light (perhaps in color) will appear. Under each bar is a four letter ab
breviation of a color name. The fu ll names are:

0 BLACK
1 MAGENTA (a slightly bluish red)
2 DARK BLUE
3 PURPLE (a light purple, lavender)
4 DARK GREEN
5 GREY
6 MEDIUM BLUE
7 LIGHT BLUE

17

8 BROWN
9 ORANGE

10 GREY
11 PINK
12 GREEN
13 YELLOW
14 AQUA
15 WHITE

If you have a black-and-white television, adjust the brightness and contrast
until you are pleased. Of course , if the picture is flipping over, stop it the way you
would for any TV show. If you have a color set, a bit more work is necessary.

Remember that this color business is quite subjective, and that you can do
whatever you want with the color. The following instructions will give the picture
that we like, using the standard colors. But it's your eyes you 've got to please.
Besides, the optimum settings will vary with different amounts of room light as
well.

Turn off any Automatic Color switch. On some sets it is marked "AUTO
COLOR" or simply "AUTO. " Turn the TV set volume control all the way down
(but don't turn the set off) . Four controls are now important: Picture, Brightness,
Color and Hue. Some sets have a knob marked "Contrast" rather than "Pic
ture," but it does the same thing. Turn the Picture control to its dimmest position,
and then turn down the Brightness until the background just goes completely
dark. Turn the Color control to the middle of its range. Now turn up the Picture
control to make things brighter. Do not make it so bright that the colors "spill " off
the edges of the bars too much.

Now adjust the Color knob. At one extreme, all color is lost and the picture is
black and white. This setting is handy when you are just showing text on the
screen. Adjust the Color control until the colors are intense but not "blooming"
or spilling into one another. Lastly, adjust the Hue knob until all the colors agree
with their names. Purple, Pink and Yellow are especially sensitive indicators.
Also, make sure that the three Blues are distinct.

18

When the TV set's colors are OK, hit the space bar and the menu will re

appear. Now try DEMO 2, which shows the color bars with their code numbers.

Also try the other demonstrations. You'll never believe how talented your TV is

ntil you replace the local stations with your APPLE II.

PLAYING BREAKOUT

Put the tape labeled "BREAKOUT" into your recorder. Use the USUAL

PROCEDURE for getting the tape loaded, of course. The screen will look like

the photo on the left when you RUN the program. After the gaine announces

itself , the screen suddenly changes to look like the photo on the right.

When asked, type your name, and then hit mDlmJ , as usual. We will type,

for example, (as it appears on the screen) :

The APPLE will respond with a question:

STANDARD COLORS. MR. APPLESEED?

Before answering this earthshaking question, we should mention a few things

that can go wrong. If you put in a name that is just too long for the poor game

program to handle, the computer will say ·

Th is stands for "STRing OVerFLow ERRor, " which is just the computer's way of

saying, "Enough , already!" Don't be alarmed, just type

19

If you accidentally hit the mm key instead of the llliml3 key (it
can happen), the screen will light up. Don't panic. You know what to do. Hit

II
II
of course. Don't forget that we are no longer mentioning llliml3 every time it
is necessary.

Try deliberately making some errors, such as giving the computer a name
that's too long, or "accidentally" hitting the mm key , so that you can get
some confidence in your ability to recover from errors.

Meanwhile, back at the BREAKOUT program, MR. APPLESEED had been
asked if he wanted the standard colors. This time around he does. So type

and be ready with the game controller.

"Which controller?" you ask. Try them both. One of them will make the paddle
(the blue rectangle at the left of the screen) move up and down. The idea is to
bounce the ball off the paddle. You lose the ball if it hits the left edge of the
playing area. You get one point for hitting bricks in the first row, two for bricks in
the next and so on.

When you have run out of balls, or have won the game (by getting a score of
720) you will be asked the question

To play again using the same colors, just type

'/ ES

Of course, you are free to say

if you wish , and see what happens. But we'll let you figure that one out. Have
fun.

20

22

BEGINNING BASIC

As you know, you get BASIC by typing

II
1111
If you are already in BASIC, of course, you needn't bother.

Now that you have the prompt character (>) and the blinking cursor on the
screen, you are ready to begin using the BASIC language. Type

and the computer will print the word "HELLO" on the next line. If it didn't, ask
yourself this question: "Did I forget the cmml3 ?" If you make a mistake,
such as omitting one of the quotes or misspelling the word "PRINT", you will get
this error message:

If you forget both quotes, the computer will print a zero (you can tell it's a zero
by the slash):

The statement

is an instruction to the computer telling it to display on the screen all the charac
ters between the quotes-in this case a word of greeting. You can place any
message you wish between the quotes. However, if you try to PRINT something
that is much longer than 100 characters, you may get the message

23

If you type much beyond 240 characters, the computer will start to beep, then
give you a backward slash and let you start over again.

Now try the statement

The computer obediently prints the number 150 on the next line, as expected.

But type

..!.. ._ _ :

and the computer again prints the number, without any fuss or error message
about the missing quotation marks. In fact, the APPLE II will let you PRINT any
integer between 32767 and -32767 without enclosing it in quotes.

Without further study, the APPLE II can be used as a simple-minded desk
calculator. This calculator only operates with integers (numbers such as 67 or
935 or - 72, but not 3.14 or 56.9). There is a program on cassette tape to
handle numbers with decimal points (AppleSoft Floating Point BASIC). This
program is for APPLE II systems having 16K or more memory and is covered in
a separate manual.

Try this on your APPLE:

--·. ~

24

The answer, 7, appears on the next line. The APPLE can do six different
elementary arithmetic operations:

1. ADDITION. Indicated by the usual plus sign (+)
2. SUBTRACTION. Use the conventional minus sign (-)

3. MUL Tl PLICATION. This is more difficult. Many people use an "X" to repre
sent multiplication. This could be confused with the letter "X." Some people use
a dot (.), but this could be confused with a period or a decimal point. So the
APPLE uses an asterisk (=+=).To find 7 times 8 (in case you don't remember), just
type

and have your memory jogged.

4. DIVISION. As is customary, use a slash (/).To divide 63 by 7, type

and the correct answer will appear.

Try dividing 3 by 2. The correct answer is one and one-half. But the computer
stubbornly insists that the answer is one! Try it. This is because the computer
only gives you the number of times the divisor goes into the dividend. To get the
remainder (remember the remainder, from grade school?), you have to use the
next arithmetic operation.

5. MOD. Say you wanted to divide 13 by 5. You know to type

This will give you an answer of 2. Try it. Two times five, however, is only 10, not
13. There is a remainder of 3. If you type

.-. :. . ..; .-. :-". ;::::::
i. -::..= i "l UL-= -

the computer will print the remainder of 3. Thus the expression "13 MOD 5"
means "find the remainder upon dividing 13 by 5". "MOD", by the way, stands
for the mathematical term "MODulo," and a mathematician would say "13 mod
ulo 5 is 3." But all computer nuts just say "MOD".

You may wonder if you need to skip spaces, as in 13 MOD 5. Try it and find out.
Very often it will be faster for you to try something out on the computer
than to look it up in the manual. Besides, the computer is always right, and
the manual could be wrong.

25

Another thing we should point out is that you can use a number of arithmetic
operations on the same line. For example, it is legal to say

The exact rules governing such usage will be given later, but you can experi
ment with it now if you wish .

6. EXPONENTIATION. It is often handy to multiply a number by itself a given
number of times. Instead of bothering to write

you can substitute the shorthand

The upward pointing arrow is typed:

-II
In normal mathematical notation, this would be written with a superscript five,
like this: 45

If you are not familiar with exponentiation, don't worry. It isn't needed very often.

26

WHAT'S SPECIAL ABOUT 32767?

Whenever you do something that the APPLE II doesn't like or understand, it
gives you an error message. While it is rather abrupt and curt about it (Beep!
You goofed !) , the APPLE is trying to be helpful. The APPLE II has a rather
limited range of numbers that it can handle in calculations. The largest number
is 32767, and the smallest number is -32767. It can use -32768 internally, but
the smallest answer it can PRINT is- 32767. From now on, we will forget that
- 32768 exists on the APPLE. Any attempt to calculate a number outside of the
range - 32767 to + 32767 will give you this message:

:+: :+: :+: > :~~ 2 7 E. 7 E ~~ ~:

Some neat ways of getting this error message are:

These statements will get you error messages because: division by zero is a
no-no in mathematics, 6 to the 6th power (5s) is 6*6*6*6*6*6* or 46656 which
is larger than 32767, and 56789 is larger than 32767, too. Getting this error
message is not a disaster. Just fix whatever is wrong and carry on .

It is possible , through programming , to handle numbers of any size on the
APPLE II. However, the techniques for doing so are outside the scope of this
manual.

MORE ABOUT -

So far , you have been hitting lmml after every line, like a zombie. We
thought we might tell you why th is button gets so overworked. The reason is
simple: without the lmml , the computer does not know when you have
completed the instruction. For example, you might start typing

If the computer immediately jumped in and printed a 9, you might be upset
because you had planned to type

wh ich would have given a different answer entirely. Since the computer can 't tell
when you have finished typing an instruction, you must tell the computer. You do
~ h;s by press ing the mii!:li3 key. Since you always have to do this after
:yo<ng an instruction, we have (as you know) stopped mentioning lmml
after every instruction. Hitting rmD should be a habit by now , if you have
been doing all the examples.

27

We really hope you have been trying all the examples. Learning to program is
very much like learning to ride a bicycle, play the piano, or throw a baseball. You
can read all the books in the world on the subject of bicycle riding, and be a
great "paper expert." But all this book-learning is of little help when you actually
get on a bicycle for the first time. Once you have learned to ride through
experience (which can be a bit painful), you can go almost anywhere. The same
is true of programming. You can read this manual and think you understand it.
But you won't be able to program. Only if you do each example, as it is given,
will you learn to program. That's the truth.

EASY EDITING FEATURES,
or: WHAT TO DO BEFORE YOU HIT -

No one is a perfect typist. We make mysteaks (Oops. See what I mean?). The
APPLE II has several features that aid in correcting errors, thereby saving you
the effort of retyping a whole line for each goof. This is where the left-and
right-pointing arrows on the keyboard come in.

The left-pointing arrow is rather like the backspace key on a typewriter. A
few experiments will make this clear. Type (exactly as shown) the statement:

and, as usual, press the li1im key. The computer will reply

because of the missing quote. Now if we had typed

the computer would have responded with

28 .

Don t believe this manual . Try it. Now, without pressing Emm , type the
· mistaken" instruction:

Since you haven 't pressed E.!ii!lm , nothing has happened yet. As shown in
the photograph, the cursor is sitting to the right of the last quote. (Sorry, we can't
make the photo blink)

To change

"COMPUTEX"

into

''COMPUTER"

we can use the left-pointing arrow key. Notice that each time you press this key,
the blinking cursor moves back (to the left) one space. We will call this key the
backspace from now on. "Backspace" is also a verb. So backspace the cursor
back to the "X". Type an IJ . As you see, the "R" replaces the "X". Now press -You got

from the computer? That is because you backspaced over the quote. Any
character that is backspaced over is not sent to the computer when you press
~ . One solution would be to correct the X by backspacing to it, and
then type

t:::iJ

1111111
Try it.

29

It works! Now type this error (don't press ll!ilm!3 yet) :

Backspace to the incorrect "F. " Type "P." This leaves you in the condition
shown in the next photo.

To complete the word , we could (as we did before) retype all the characters
backspaced over. There is, however, an easier way. When you press the
right-pointing arrow, the cursor moves to the right. As the cursor moves to the
right across a character, it has the same effect as if that character had been
retyped . To complete the correction, then, merely press the right arrow five more
times, and then press Eiiiml3 . Does it all work? The use of the left and right
cursor-moving keys will save you a lot of time. Make a point of using them a
number of times on your own "mistakes," so that these keys become familiar.

PUTIING COLORS ON THE SCREEN

To put color graphics on the screen.we need a way to decribe which color out
of the sixteen available colors we want and where we want it. To specify where a
color goes, we divide the screen into forty columns, numbered zero through
thirty-nine. The zero column is at the left, and the numbers increase to the right.
You may wonder why the numbers didn 't go from one through forty, instead of
zero through thirty-nine. As you get more experience programming, you will find
that the choice we have made is somewhat handier, even though it may not
seem that way at first.

30

The screen is also divided into forty rows, again numbered zero to thirty-nine
starting at the top of the screen and moving downwards. These rows cut across
the columns, partitioning each column into 40 "bricks" numbered zero (the top
brick) through thirty-nine (the bottom one). Those who like formal terminology
will recognize that this is merely a system of rectangular Cartesian co-ordinates.
Those who don 't like fancy talk can just think in terms of columns of bricks.

For the purposes of using the screen colorfully, type the following instruction:

You remembered the CiDm3 , no doubt. When you use this command the
screen wipes itself clean, leaving only four lines for text at the bottom.The "GR"
stands for GRaphics. To get back to things as they were (before you typed
GR) you use the command

When you type this command the screen will suddenly change to a lot of "at"
signs(@). This is normal. Try typing the TEXT instruction, and then getting back

31

to graphics by typing the GR instruction.

Before you can place a dot of color on the screen, you must tell the computer
what color you want it to be. There are sixteen colors available. You have seen
them before. Each one has a number from zero to fi fteen , as shown in COLOR
DEMO 2.

Suppose you want to put a green dot somewhere . You first type

c: c~ Li)~: = 12

This means that any dot (or spot or brick) of color that you place will be green. In
fact, until otherwise instructed , everything the computer puts on the screen wi ll
be green. Except, of course , for the small area reserved at the bottom of the
screen for your instructions. To put a spot of color in the upper left-hand corner
of the screen (zeroth column , top or zeroth brick) , you type

To put a spot of the same color in the upper right-hand corner, you must specify
the 39th column, zeroth brick. So type

Notice that you always give the column first. Let's put an orange brick at the
lower left-hand corner. First, change the color. Type (Remember-you should
really be doing these exercises, not just thinking about them. So, put out your
fingers and type) :

Nothing happens on the upper, graphic portion, of the screen (even if you did
remember to hit l5DliD). But the computer remembers that when you next
PLOT something, it will be in orange, not in green. Now that we have chosen the
color, we can put a dot in the lower left-hand corner. That's the zeroth column,
and the thirty-ninth brick.

32

Did it work? Did you forget to type 1I!ii!Jm ? Is orange your favorite color?

Now put a magenta dot in the lower right-hand corner. Figure it out for yourself.

PLOT ERROR MESSAGES

There are two error messages that can easily turn up when you are using the
PLOT statement. You already know that if you typed

or

instead of

you would get the message

The first new error message occurs when you write a number higher than
those permitted for coordinates in a PLOT command. Type

and you get the message

=+= :+: :t: ~: A t-{ Cl E E R F.~

This message means that you have tried to plot a point out of range and off
the screen. The highest numbers you can use in a PLOT statement are 39 for
th e first coordinate, and 47 for the second. Use of numbers over 39 for the
second coord inate, as in a statement such as

33

will just give you peculiar characters in the text area at the bottom of the screen.

If you try to use negative values in a PLOT command , you get a somewhat
surprising error message. The statement

will give the seemingly illogical message

Don't worry, it is just the APPLE trying to tell you that you used a negative
number in a PLOT. Other mistakes can also give you these two messages, but
those will be discussed later.

DRAWING LINES

Suppose you want to draw a light blue horizontal line from the fifth column to
the ninth column at the 14th brick level. You could type

C:CiLC~~~=7

=-- : --- -:-r- L Li!

Notice that the joints between adjacent bricks do not show, and it looks like a
continuous line. However, there is an easier way to do horizontal lines. There
had better be. Suppose you want to draw a light green line across the middle of
the screen. Using the long way, it would take forty typed statements:

,-- ¥-1 : =-; !""': - -! --=
!_.i_ELl_1r;_- J.. C

PLOT 0,.20

PLOT 1,,20

and so on, until

The easier way is this: Just type

C:1]L(J~:= 12

34

Press the lii!ml key, and there you have it: an instant Horizontal LINe from
column 0 to column 39 at the 20th brick level.

NOTE: The grid shown on the screen
is for illustrative purposes only, and
does not appear on your screen.

Now try to place a purple line from the 19th to the 28th column at the 18th
level. Try a few others. Doing about 6 different horizontal lines should give you
the hang of it.

Notice that when you put a colored dot or line at the same location as an
existing dot or line, the new color takes over, and the old color disappears. To
clear the screen of all graphics at once, use the GR command.

There is a provision for automatic vertical lines similar to that for horizontal
lines. To draw a light green vertical line from the 11th to the 32nd row at
column 7, we type:

Try this statement.

35

NOTE: The grid shown on the screen
is for illustrative purposes only, and
does not appear on your screen.

Practice making several more vertical lines by changing the numbers for the
rows and column. You can test your proficiency with both horizontal and vertical
lines by drawing a magenta border around the screen in five statements. Then
put a green cross on the screen. Try drawing some lines with COLOR = 0. Play
with PLOT, HLIN and VLIN for a while. This manual's usefulness to you will
self-destruct in five seconds if you don 't experiment with these commands.
Pfffsssss.

THE GAME CONTROLS

Grab the control that you used in playing BREAKOUT. With the other hand
type

and a number should appear. Move the control a bit. Now type

again. Experiment with moving the control and typing

If the number never changes, you've got the wrong control. What are the high
est and lowest numbers you can get? What is the smallest change you can
make?

You can discover the position of the other control by PRINTing PDL(1). The
abbreviation "POL" comes from the word "PADDLE" since these controls are
most often used to control "paddles" in games. As we shall see, there are many
other uses for these controls.

PIGEONHOLES AND MORE CALCULATOR ABILITIES

On many simple calculators you can save a number for later reference or
use. To do this, you put the number into a special place in the calculator-a
place we shall call, for now, a pigeonhole. Usually this is done by pressing a
key marked "M" for "Memory." On the APPLE II you can do the same thing.
For instance, to save the value 77, you type

The value, 77, is not printed, just stored in the pigeonhole called M. If you now
type

the computer will print the value of M. Try typing the two statements.

Now type

36

and PRINT the value of M. It is 324, right? What happened to the 77? It is
gone forever. The pigeonhole can hold only one value at a time. When you put
a new value in M, the old value is erased.

Type

What happens? There is a big difference between

M

and

It is just like the difference between these two statements in English:

MICE HAVE FOUR FEET.

"MICE" HAS FOUR LETTERS.

In one case we are referring to little furry things with long tails . In the other
case we are referring to the word itself. This is how quotes are used in com
puterese. When we say

we mean to print the letter itself. When we say

we mean to print what the letter stands for. You would never confuse the name
of someone you love with the actual person that name stands for .

You can store the result of a computation in a pigeonhole. For example:

r=1=4+5

You can see that the answer has been stored by PRINTing the value of M.

You can also use the value of M in further computations. For example, try
this on your APPLE:

Is the answer what you expected? Try some other calculations using M.

A si mple calculator has one pigeonhole. Computers have hundreds or
thousands of pigeonholes. The formal term for pigeonholes is variables. But
this term is somewhat misleading since pigeonholes don 't behave like "vari-

37

ables" in mathematics. They are much simpler. Each one is merely a place
where one value is stored. But we will defer to common usage. Just forget the
math you 've learned. In the APPLE II all variables have the value of zero until
you put something into them. To reset all the pigeonholes to zero you type

II
II II
Note that the instruction

II
II II
does not reset the variables.

A pigeonhole, or variable, can have almost any name that you like, so long
as it starts with a letter. For example:

Some names are not allowed because they include a word that has a special
meaning to the APPLE II . These are known as reserved words. One of these
words is "COLOR." Thus a variable's name must not have the word "COLOR"
in it. Try typing

or

All you get for your pains is an error message. Whenever a variable name gives
you the =+= =+= =+= 5 Y HT R \ E F.'. F.'. error message, it means that you have unwit
tingly included a reserved word in the name. Don't worry. Just choose another
name. Names must also be less than about one hundred characters long. Not
much of a limitation. When you are choosing names, make them reflect the
use to which they are being put. This will make them easier to remember.

Here is a useful trick. Let's say that you had some value in the variable
PRICE, and you wanted to increase this value by 5. One way you could do this
would be to PRINT the value of PRICE, then add 5 to that value, and finally
store the resulting value back in PRICE. For instance:

38

But see how much easier it is to type

Try these statements:

At the end of this sequence of statements, you will probably have the value 3.
Is this correct? Is this what you expected? Try this sequence:

QUOTIENT=PLAYER/OPPONENT

First think what answer you expect, then see if you are right. If you are not,
find out why. Lastly, try these statements:

:: : ::--: : --- :: .. Ht...LLL~ --

What did you expect? What did you get?

39

SIMULATING A PAIR OF DICE

Try this on you APPLE:

Now, try it about 10 more times . Really. Just try it, then read on.

Each time you typed that instruction into the computer it PRINTed a number.
It is not likely that you can predict what number will come up next. If you can,
you are either a computer or have ESP. The numbers that were PRINTed
were all less than six and none were less than zero. The reason that they are,
for most practical purposes, unpredictable, is that you were using the RaN
Dom function. If LIMIT is a positive number, then
RND(LIMIT)
is an integer from zero through LIMIT-1. Thus RND(6) gives 0 or 1 or 2 or 3 or
4 or 5. Similarly the statement

would display either a O or a 1 or a 2.

To simulate a pair of dice we need two random numbers,
each between 1 and 6, inclusive. Since RND(6) gives a number between zero
and five, inclusive, it is pretty obvious that
RND(6)+1
gives a random number between 1 and 6, inclusive. The statements

will simulate the throw of a pair of dice. In the same vein, try the following
statements

WHITEDICE=RNDC6)+1

RND is a function . A function, in BASIC, is something that takes one or
more numbers and then performs some operation on them to yield a single
value. The numbers that the function uses are called its arguments and are
always put in parentheses after the function name. RND is a function that has
one argument. The number the function finds is said to be returned to the
program. The AND function returns a random number between zero and one
less than the argument, inclusive. This is only true, by the way, if the argument
is positive. If you make the argument to the AND function negative, AND does
something a bit different. You can find out what it does with just a few experi
ments.

40

PRECEDENCE
or: WHO'S ON FIRST?

At certain old-fashioned banquets, the people were served their food accord
ing to a strict plan: first the guest of honor, then the female guests (in order of
the rank of their husbands), then the male guests (in order of rank), and finally
the host. No matter where they were seated, the waiter went among them
choosing the appropriate persons to be served next. We could say there was a
certain precedence among the diners. In a simple calculation like

you can't tell whether the answer should be 6 or 8, until you know in which
order (or precedence) to carry out the arithmetic. If you add the 4 to the 8, you
get 12. If you then divide 12 by 2, you get 6. That's one possible answer.
However, if you add 4 to eight-divided-by-two, you have 4 plus 4, or 8. This is
another possible answer. Eight is the answer your APPLE II will give. Here's
how the APPLE chooses the order in which to do arithmetic:

1. When the minus sign is used to indicate a negative number, for example

-3+2

the APPLE will first apply the minus sign to its appropriate number or
variable. Thus -3+2 evaluates to -1. If the APPLE did the addition first,
- 3 + 2 would evaluate to -5. But it doesn't. Another example is

The answer is 4. (Notice, though, that in the expression 5-3 the minus sign is
indicating subtraction, not a negative number.)

2. After applying all minus signs, the APPLE then does exponentiations. The
expression

is evaluated by squaring three (three times three is nine), and then adding
four , for a grand total of 13. When there are a number of exponentiations, they
are done from left to right, so that

2·3·2

has the value 64, and not 512.

3. After all exponentiations have been calculated, all multiplications and divi
sions and MODs are done, from left to .right. Arithmetic operators of equal
precedence are always evaluated from left to right. Multiplication (:+:), division
(), and MOD have equal precedence.

41

4. Lastly, all additions and subtractions are done, from left to right. Addition
(+) and subtraction (-) have equal precedence.

Let's summarize the APPLE's order of precedence for carrying out
mathematical operations:

First : - (minus signs used to indicate negative numbers)

Second:.···. (exponentiations, from left to right)

Third : MOD:+: I (MOD, multiplications and divisions, from left to right)

Fourth: + - (additions and subtractions, from left to right)

Below, you will find some arithmetic expressions to evaluate. With each one,
first do it in your head (or with the help of a hand-held calculator, or pencil and
paper), and then try it on the APPLE. If your own answer is different from the
APPLE's answer, try to find out why. We will give only the expressions here.
You will have to put a PRINT in front of each one to get its value from the
computer.

Unless you have a lot of experience with the way computers evaluate ex
pressions, you should actually do these examples. Don 't do them all at once
and then check with the computer. Do an example by hand and then do it on
the computer. Then go on to the next one. And so on .

4_.--·2-2

4+-2
2 _.-._ 2 _.· .. :3 T l

2:+:2:+::~;+ 1

2=+=2+ 1 :+::~~

2=+=2=+= 1 +:3

;::;-2-2.---- 1

~=; :+: 2 .---- 2 + :::; :+: 2 _.·._ 2 :+: 1

42

No answers are given in this book. Your APPLE will give you the correct
answers.

HOW TO AVOID PRECEDENCE

Suppose you want to divide 12 by four-plus-two. If you write

12/4+ 2

you will get 12-divided-by-four, with two added on. But this is not what you
wanted. To accomplish what you wanted in the first place, you can write

12/(4+2)

The parentheses modify the precedence. The rule the computer follows is
simple: do what is in parentheses first. If there are parentheses within
parentheses, do the innermost parentheses first. Here is an example:

12/(3 + (1 +2) ' 2)

In this case, doing the innermost parentheses, you first add 1 +2. Now the
expression is, effectively,

12/(3+3 ' 2)

But you know that 3+3'2 is 3+9 or 12. So the expression has now been
simplified to 12/12, which is one.

In a case like (9+4):+:(1 +2), where there is more than one set of paren
theses, but they are not "nested" one inside the other, you just work from left
to right. This expression becomes 13:+:3, or 39.

Here are some more expressions to evaluate. Again, if you are not familiar
with computers, the few minutes you spend actually working these expres
sions out and trying them on the APPLE will be very valuable. You will be well
repaid for your efforts by being able to use the computer more effectively.
Incidentally, these rules for precedence and parentheses hold good for mos1
computer systems anywhere in the world, not just the APPLE II.

44./(2+2)

(44_...-2)+2

::_;-t--2):+:2

._, '-- < 1 + < 7- :3 > + < 5 .---- 4 > > (Remember how division works?

No remainders!)

43

44

DEFERRED EXECUTION

No, this section is not on last minute reprieves for condemned criminals. Up
to now, when you typed

and hit mm I the computer would do what you told it to do , immediately.
When a computer performs according to the statement you have given it, it is
said to execute that statement. Thus, you have been using the computer to do
immediate execution of each statement you have typed on the APPLE's
keyboard .

You are about to learn how to store statements for execution at a later time
(deferred execution). To make sure that the computer is cleared, type

Uke everything else you have seen, NEW has to be followed by a mm.
You tell the computer to store a statement by typing a number before the
statement when you type it in. For example, if you type

nothing seems to happen, even if you press aim. The APPLE II has
stored the statement. To see that it has stored the statement, you type the
instruction

LI ST

Try it. Unless you mistyped something (and probably got a
*** SYHTA>=: EF~~: for your effort),

appears on the screen. Now type the statement

and the answer

{

appears on the screen. You also get a message saying

For the time being, just ignore this message, which will appear many times.
This message indicates that the computer has finished executing (or attempt-

46

ng to execute) your stored statement. Pretend that it says "***DONE."

Typing RUN caused your stored statement to be executed, but the computer
nas not forgotten the statement. You can RUN the same statement as many
times as you like. Try it.

What's more, the computer does not forget the stored statement when you
clear the screen. Clear the screen as follows:

-II II
and type

LIST

The computer has not forgotten the stored statement. Clear the screen and
type

The computer faithfully executes the stored statement. Type

and then

: T :-T
L 1. =.,: ~

and see what happens. Typing NEW has caused the stored statement to be
lost permanently. Type

and you get the message

but nothing else. That is because your old statement has been erased by the
NEW statement .

It is possible to store many statements by giving each of them a different
number. Try typing this:

3 PRINT 67 MOD __

Nothing much has happened so far. But now type

and watch the answers appear.

47

The numbers that we put in front of statements in order to tell the computer
to store them are called line numbers. The computer stores and executes
statements in order of increasing line number. To see this in action, erase the
statements you stored by typing

and then type these statements:

Notice that zero is an allowed line number. The highest line number that you
can use is 32767. Now RUN these instructions. The results should look like
this:

L

To see what has happened inside the computer, type

LIST

Notice that you do not have to LIST a set of instructions before you RUN them.
It is, however, a good idea to do so.

A set of instructions that is executed when you type RUN is called a pro
gram. You have just typed and executed a computer program.

48

The program was meant to print

i.,_:

'

L

but, it seems, a PRINT statement was left out. How can you add it in? Only by
retyping the statements with line numbers 2 and 3, as statements 3 and 4 and
adding a new line number 2. To make the corrections type this:

_ FF.'.Ir·H "L"

To see what has happened, LIST the program.

Notice that in whatever order statements are entered, the APPLE II stores
them with their line numbers in numerically ascending order. Now RUN this
program.

It was a bother to have to retype those statements in order to merely add
one in the middle. It is therefore good programming practice to leave some line
number room between lines, and before the first line. Type

to eliminate that program and put in this one:

C=C= T kiT
i =--- .L li =

::c:::

When you RUN this program it doesn't quite print the word "CAT" vertically.
But now you can go back and type

LIST and RUN this program. From now on this book will start all programs at
a reasonably high line number (100 or more) and increment them by 10.

ELEMENTARY EDITING

Earlier, you discovered that the instruction

49

would print a number corresponding to the present position of one of the game
controls. It took quite a number of PRINTs to discover very much about the
control. Now that you can write programs, life is much easier. Clear the com
puter with a

and type

Now, each time you type RUN this short program is executed and you get to
see the position of the game control. If you are getting tired of the :+: :+: :+: N 0
Er<:. ERR you can get rid of it by putting in the instruction

It doesn't matter what line number the END statement has, as long as the line
number chosen makes it the last statement executed in a program. You have a
choice of either putting in the END statement, or getting the error message.
The program will run essentially the same with or without the END statement
at the end.

For doing something more than once, the stored program is already saving
you some work. Before, you had to retype a whole statement or group of
statements. Now, you merely retype

Deferred execution confers another advantage. You can modify part of a pro
gram and leave the rest the same, without having to retype the whole thing .
For example:

200 POSITION=PDL(0)

210 PRINT POSITION

: '!:..... :_~_:

RUN this program a few times, changing the game control's setting between
RUNs. Check to see if the program responds to both game controls. It should
work for only one of them. You might take this opportunity to mark this control
with the number zero.

This same program can be used, with a slight change, to look at the othe
game control. List the program the way it is now, then type

~~~ POSITION=PDLC1) 

50 



When you type a statement with the same line number as one that already 
exists in a program, the new line replaces the old one. LIST the program to 
see how it has changed. RUN it a few times to see what happens. Move the 
other game control between RUNs. Does this program respond to both con
trols? Mark a number one on the control to which this program responds. 

Modifying a program in this way is one example of editing a program. You 
will learn other ways to edit programs later in this book. 

As you have seen, there are several commands that help you deal with 
whole programs. They are 

which erases programs, 

which displays programs, and 

which executes programs, beginning with the statement having the lowest line 
number. It is also possible to start execution elsewhere, and to LIST only part 
of a program. These abilities will be covered later. 

ELEMENTARY AEROBATICS 

At this point you are beginning to fly, so this section will discuss loops. 

The best way to see how the POL function works-and to understand pro
gram "loops"-is to use a statement we haven't discussed, until now. It's very 
simple. Type the following lines (after clearing any old programs that might be 
around): 

Line 10 of this program PRINTs the number representing the current value of 
the game control. Line 20 does just what it seems to say: it causes program 
execution to go to line 10. What happens then? The program PRINTs the 
current value of the game control. Then it executes line 20, which says to do 
line 10 over again, and so on. Forever. This is a LOOP. A Loop is a program 
structure that exists when the program includes a command to return to 
a statement executed previously. RUN the program. Play with the game con
trol. In the next section, we will tell you how to stop this program. Meanwhile, 
admire the fact that-if you typed RUN when instructed to do so, three sen
tences back-your APPLE has executed the statement PRINT PDL(O) a few 
hundred times already. Now the power of a stored program begins to increase 
sign ificantly over what you can do by hand. Your abilities with the computer will 
increase dramatically in the next few sections, now that a good groundwork 
has been established. 

51 



SOME MORE THINGS THAT MAKE LIFE EASIER 

But first, you are probably wondering how to stop the paddle program. You 
have already noticed how the numbers ripple up the screen as you move the 
paddle. This is because the numbers are printed at the bottom of the screen 
and as each new number is printed, all the rest of them are moved up one line. 
This is called "scrolling" and you've been seeing it all along, but at a much 
slower rate. To stop the running program, press 

Ill 
II 

mm 
It is OK to press C!iJmm after the II , but in this case it is not 
necessary. (This is an exception to the cardinal rule that you need a 
mm after typing any instruction to the computer.) 

mm 
Although you need not press mm when using II to stop a 
program, you may reach for it anyway and accidentally press the lmD 

&ml 
key. To get back to BASIC, you use II with a mm . If you press 

mm 
llJ and CimD , you will also get back to BASIC, but your program 

mm 
will be lost. Therefore llJ is only used to get into BASIC when you first 
turn on your APPLE II. 

mm 
When you stop a program with B , you can resume its execution by 

typing the instruction 

which stands for "CONtinue." 

Try it. Now try this program: 

140 PRINT "AND CONT ROL ONE IS" 
150 

Earlier we said that when you type RUN, the program starts executing at the 
lowest numbered line. True. However, if you want to start RUNning at some 
other line, such as line 120, you simply type 

52 



You can specify line numbers in the LIST statement, as well. If you type 

i T ==T "i ·-::;;~ 
:...._ .i.. _; i .!. ·-• T_: 

the APPLE will LIST line 130 (if there is one, of course). If you type 

the APPLE will LIST all the lines of your program starting at line 110 and 
continuing through line 130. This feature is not available with the RUN instruc
tion. 

To erase line 100 (assuming there is a line 100 in your program) you can 
type 

100 -
You could also have used the DELete instruction, as in 

The advantages of the DELete are not apparent until we reveal to you that 
whole sections of programs can be erased with instructions like 

which deletes every statement whose line number is 120 or greater, but less 
than or equal to 140. Try these commands, and LIST the program to see what 
they do to it. The ability to DELete blocks of line-numbered statements will be 
handy when you are writing large programs. 

THE MOVING CURSOR 
HAVING WRIT 
CAN ERASE OR COPY 
ANY OF IT 

When the leftand right-pointing arrows on the keyboard are pressed, they 
move the cursor. But they also either erase or retype characters, as you have 
just seen. It is possible to move the cursor without affecting anything at all 
(except the cursor position). You do this by using pure cursor moves. Each 
pure cursor move requires that two keys be pressed, in sequence. To move 
the cursor up, for example, type 

II 
and then type 

II 
Do this a few times. Each time you type 

1111 
the cursor should move up one line. When the cursor reaches the top, and you 
try to go up further, the cursor stays there since it can't get any higher. As you 

53 



will see, this is the most useful pure cursor move. To move the cursor down, 

type II II 
When the cursor reaches the bottom, and you try to go down further, the 
cursor stays put, but the rest of the screen moves up! To make a pure cursor 
move to the right (without retyping the characters the cursor is moving over) 

use 11 IJ 
To make a pure cursor move to the left (without erasing the characters moved 
over), use 

1111 
These last two pure cursor moves, when seen on the screen, appear the 
same as the rightand left-pointing arrow moves. But the effect is different, as 
you will discover when you LIST the results. 

When the cursor reaches the right edge in a pure cursor move, and you try 
to make it move to the right some more, it appears one line lower down on the 
left edge. When you try to go beyond the left edge, the cursor sneakily ap
pears on the right edge, one line higher. 

These pure cursor moves do have an application, so they are not so pure 
after all . For example, if you typed this statement: 

130 PRINT 0 THE QUALITY OF MERCY IS NOT 

and mistakenly pressed mii!Iml before typing the final quote, you would 
get the message 

However, to make the correction you can use this trick to effectively retype the 
entire statement: Type 

1111 
three times to move the cursor up to the beginning of the incorrect statement. 
Then use the right-pointing arrow to effectively retype the entire line. This time, 
when you come to the end of the line, press the quote EI!ID before pressing 

II 
IDi!lml . Use LIST to see that the line is properly corrected. The computer 
does have mercy on poor typists. 

54 



.. 
Using El places a backslash at the end of the line, and it will be as if 

you never typed it at all. 

THE TRUTH 

The APPLE can distinguish between what is true and what is false. Since 
this is more than most of us can do, a few words of explanation are in order 
The symbol ">" means greater than. The assertion 

6>2 

(which is read "six is greater than two") is certainly true. The APPLE II uses 
the number 1 to indicate truth. If you type 

the computer will reply with a one. The assertion 

55> 78 

is false. The APPLE II uses the number 0 to indicate falsehood. If you type 

the computer will reply with a zero. 

56 



The symbol "< " means less than, and you can make assertions using it as 
well. Here is the full set of symbols used in making assertions: 

> greater than 

< less than 

equal to 

> = greater than or equal to 

< = less than or equal to 

# not equal to 

To type the symbols for "greater than or equal to" and "less than or equal to" 
on your APPLE II keyboard, you must first type either a "<" or a ">" and 
then type an"=." 

Think about and then test to see which of these assertions are true, and 
which are false. 

5#5 

E~ >2 

45>=-4 

Assertions can include variables and expressions as well as numbers. 
PRINT (45*6)1(45+6) 

will print the value 1 since 270 is not equal to 51 (remember that 1 means the 
assertion is true). 

So the APPLE can tell truth from falsehood in simple assertions about num
bers. An assertion such as 

57 



ABLE > BAKER 

may be true or false, depending on the value of the two variables, ABLE and 
BAKER. If 

ABLE= 5 

and 

BAKER= 9 

then 

ABLE > BAKER 

is false. But if 

ABLE= -8 

and 

BAKER = -15 

then 

ABLE > BAKER 

is true. 

Assertions have the numerical values of zero or one. They can be used in 
arithmetic expressions instead of ones and zeros. For example, 

will print the value 4. The statement 

gives T the value 1, since 4 does not equal three, and thus 

4#3 

has the value 1 . The statement 

looks very confusing at first, but it is easily understood. Since 67 does not 
equal 19, the assertion is false and has the value zero. The value of O is given 
to the variable "HOT." 

As we have seen, the APPLE uses 1 to mean true, and 0 to mean false. If 
something is not true, it is false. If something is not false , it is true. This may 
not always be the case in real life, but it is always the case with computers. Try 
this on the APPLE 

58 



and then try 

The computer agrees: not true is false and not false is true. Of course, you can 
use expressions instead of ones and zeros. For example 

The sentence 

TRIANGLES HAVE THREE SIDES. 

is true. And the sentence 

THIS BOOK IS IN ENGLISH. 

is true. Consider the sentence 

TRIANGLES HAVE THREE SIDES AND THIS BOOK IS IN ENGLISH. 

Is this sentence true or false? It is true. Consider the sentence 

TRIANGLES HAVE EIGHT SIDES AND THIS BOOK IS IN ENGLISH. 

This sentence, as a whole, is false. Lastly, consider the sentence 

TRIANGLES HAVE EIGHT SIDES AND THIS BOOK IS IN SWAHILI. 

This sentence is also false. In general , when you combine two sentences, or 
assertions, by joining them with the word "AND," you find that: 

a. The new sentence is true if both original sentences were true. 

b. The new sentence is false if at least one of the original sentences were 
false. 

The APPLE II knows how to determine whether an assertion containing the 
connecting word AND is true or false. Test your computer with the following 
instructions; try to predict each answer: 

Fl ~: I t·~ ! i A f-4[:• 1 

F: R i r·~ ! 1 .-. t·~ D 0 f1 

PRINT (3)2) AND 0 

PRINT <NOT 0) AND (3*3=9) 

PRINT (415) MNU (4=5) 

59 



Is this sentence true or false? 

A TRIANGLE HAS THREE SIDES OR THIS BOOK IS IN LATIN. 

It's true. A triangle does have three sides, even if this book isn't in Latin, so 
the sentence as a whole is true. Quad erat demonstrandum. In general, when 
you combine two sentences by joining them with the word "OR", you find that: 

a. The new sentence is true if one or both of the original sentences were true. 

b. The new sentence is false if both of the original sentences were false. 

The APPLE II can also determine if an assertion containing OR is true or 
false. Try each of these on your APPLE-after figuring out what the answer 
should be. 

F: ~'. I T i C! ,..-, 1 !-i ,_, P:. 

F: ~~ I §-.§ ~ 1 () ~~ 0 

PRINT C4•5> OR (4=5> 

PRINT 1 OR (0 AND 1) 

PRINT ((3)4) OR (54(337)) AND CNOT 0) 

AND, OR, and NOT will become very useful in the next section. 

You have already found that in the statement 

the computer regards 1 as true and 0 as false. Now try this: 

and this: 

PRINT -247 AND 32707 

In assertions, the APPLE II regards not only 1, but any integer which is not 
zero, as true. However, when the computer figures out the value of an asser
tion, that value will always be either O or 1. 

60 



While the following box gives the precedence rules for AND, OR, and NOT, 
we strongly recommend that you use parentheses to make your statements 
clear. 

ORDER OR PRECEDENCE FOR OPERATORS 
USED SO FAR IN THIS TEXT: 

1. > 
2. 

3. 

4. 

5. 

6. 

7. 

8. 

r·iu i - (when used to indicate a negative number) 
.-··. 

= <.= 

THE IF STATEMENT 

Suppose you want to print out numbers from 1 to 10, one number to a line. 
An obvious way to do this is 

and so on. But this would require 1 O statements, and if you wanted to print the 
numbers from 1 to 200 this way, it would require 200 statements. Using what 
you have already learned, you can PRINT all the numbers from 1 to 32767 in 
just four statements by using a loop: 

200 I=i 

220 I=I+i 

61 



The only thing that makes this program stop at 32767 is the upper limit on 
numbers that the APPLE can handle. 

There is another way to control how long a loop runs. What you want is a 
statement that does a GOTO if I is, for example, less than 11, but doesn't do 
the GOTO if I is greater than 11. The answer to your wishes is the IF state
ment. If a condition is met, the computer will execute the instruction included in 
the IF statement. If the condition is not met, the computer will skip this instruc
tion and execute the next one. 

Here is a program that counts from 1 to 10 and then stops: 

200 I=l 

220 I=I+i 

230 IF 1=11 THEN END 

Here is another way of doing exactly the same thing: 

2~30 I=i 

230 IF 1<11 THEN GOTO 210 

240 

Think about both programs, and check for yourself that they both perform as 
advertised. 

In general, the IF statement works like this: 

IF arithmetic expression THEN any statement 

First, the arithmetic expression is evaluated. If it evaluates to zero (false) the 
"THEN" portion of the IF statement is ignored, and the computer goes on to 
the next instruction. If the arithmetic expression is not zero (true) the "THEN" 
portion of the IF statement is executed. 

The most common statement to follow the word "THEN" is a GOTO. Be
cause of this, you may leave out the word GOTO in a statement like 

IF 1<11 THEN GOTO 

so that it may be written 

1r- 1-=-_11 THEr-~ c:1~ 

62 



This is not a recommended practice as it is less clear than writing the word 
GOTO-even if it is easier. The choice, of course, is up to you. 

The IF statement is a very powerful one, and it will appear in almost every 
program you write. For the fun of it, try this program: 

430 HLIN 0~39 AT ROW 

450 IF ROW<16 THEN GOTO 420 

MORE GRAPHICS PROGRAMS 

Earlier, you put four colors at the corners of the screen. Now type in this 
program: 

LIST the program to check that you typed it in correctly, and then RUN it. 
Quick, isn't it? To change the colors, just change line 200, and RUN the pro
gram again. Try to LIST the program. Notice that the listing slips through the 
narrow window at the bottom of the screen. This will happen unless you type 

: :..... :·: : 

to get out of GRaphics mode before you try to LIST. 

This program makes the entire screen a solid color. 

63 



230 VLIN 0.39 AT COLUMN 

~q~ COLUMN=COLUMN+l 

250 

Here's a blow-by-blow explanation of what happens when you RUN this 
program. Line 200 sets the APPLE into graphics mode. The color is chosen in 
line 210. The program is to start in the zeroth column of the screen and work 
its way over to the 39th column. Line 220 makes sure the program starts in 
column 0. At line 230, a vertical line is drawn in column 0. Now that the zeroth 
column is filled with the desired color, line 240 increments the column by one. 
The value of COLUMN is now 1. Line 250 checks to see if the new value of 
COLUMN is less than 40. If it is less than 40, the program goes back to line 
230, to draw a new vertical line in the next column . However, when the value 
of COLUMN reaches 40 (there are only 40 columns on the APPLE II screen), 
the program does not go back to line 230, but "drops through" (as we say) to 
line 260. Line 260 stops the program. 

LIST the program that fills the screen with a solid color. Remember that 
RND (16) will give a number between 0 and 15 inclusive. We could let the 
computer pick the color by changing line 210 to 

210 COLOR=RNDC16) 

Each time the program is executed, a random color will be chosen. If the color 
is zero, the screen will appear to be cleared. (Why?) Execute this program a 
few times. 

Another change eliminates the need to type RUN after the screen is filled 
with color. Rewrite line 260 as 

Observe what happens. When will this program stop? LIST the program and 
make sure you understand what it does. 

When you are finished playing with the solid color program, clear the com
puter and try the following program. It uses a new and very important instruc
tion: the REM statement." REM" stands for "REMark." This statement allows 
you to put commentary in a program. The computer ignores any REM state
ments; they are strictly for the benefit of humans. See how easy it is to follow 
this program where REMs are used liberally. 

200 REM SET GRAPHICS MODE 

64 



~~~ COLOR=RNDC16) 

240 REM CHOOSE A RANDOM POINT CX.Y>

270 REM PLOT THE RANDOM POINT
-=====:A :..... ~-= z:..1

290 REM CHOOSE ANOTHER RANDOM COLOR AND POINT

Think about what this program will do. Then try it out on your APPLE.

There are many easy modifications to this program that will make it more
interesting. For example, rewrite lines 270 and 280 as follows

270 REM PLOT A RANDOM HORIZONTAL

280 HLIN X.X+RNDC40-X) AT Y

Program statement 280 has especial interest. Clearly it draws a horizontal
line starting at column X. X has been chosen at random; it may be any number
from 0 to 39. The problem you face is this: how to choose a random value for
the right end of the horizontal line. You can't simply use RND (40), because it
might give you a number less than X (the computer will not plot a line from a
higher to a lower coordinate). And you can't use something like X+RND (40)
because if X were 39, say, the only legal value you could have the program
add to it would be zero, and the RND function might choose otherwise. You
want the RND function to choose a number that is at least X, but does not
exceed 39. Having chosen X, the amount of room to the right of column X is
(40-X). So that amount is used as the limit of the RND function.

Try the program, and then make up some of your own variations. Do not
worry about making errors. Errors are part of the learning process. Nobody
ever learned to walk without falling.

MAKING THINGS EASIER AND EASIER

By now you should have the habit of making your line numbers increase by
at least 10 for each consecutive line. Doesn't adding 10's seem like something
that a computer could do? It does, and it can. Clear any old programs that may
be lying around by the usual NEW command, for you are about to learn how
to make the APPLE II number your lines for you. Type in these statements and
watch the computer provide you with line numbers AUTOmatically:

65

==t: ii

::w ::
Ei

Now type

The APPLE responds with a :+::+::+: 5 Yr-~ TA i-=: ER~'. :rhis is because the command
RUN is not actually part of your program and it shouldn't have a line number.
You need to type the RUN without a line number. You can get rid of the line
number by backspacing over it. Try. There is another way that is a bit quicker.
When you want to issue an instruction without a line number, you hit

II
II
Do this, and then type

and your program will execute. -You can also use 13 to insert lines with line-numbers out of AUTOma-
tic sequence. For example, hit

II
II
then type -and RUN your program. (Don't forget you will need a 13 before a RUN
or a LIST.)

66

Do you feel like the sorcerer's apprentice? Now that you've got the AUTO
line numbering working, it seems to want to go on forever giving you line
numbers, like it or not. Well, to stop AUTOmatic line numbering altogether,
type

and the command

This command stands for "MANual."

Thus far, the line-numbers have been incremented by 10. However, you
may want to increase your line-numbers by more or less than 10. If you
wanted to start your line numbers at 1000 and to increment by 30, you would
type

Here is another program which uses the AUTO feature. Type the statements
in as shown, since you don't have to type the line numbers.

REM READ PADDLE ZERO

REM DIVIDE BY 7 SO MAXIMUM VALUE OF ~ IS 36
~:-:~ = >=~ _/ 7

REM READ PADDLE ONE

REM LIMIT RANGE ~u KEEP Y ON SCREEN TOO
=-{==··l-----7

REM ~LOT THE POINT

67

After you type RUN, operate the game controls . This program is called the
"Etch-a-sketch" (TM) after a device that behaves similarly. The division by
seven is necessary since the POL function gives values between 0 and 255,
whereas the screen can only accept column and row values from 0 to 39. By
dividing by seven, you get values from (017) = 0 to (255/7) = 36. This does
not utilize the full height or width of the screen. To get the full width of the
screen, instead of

X = X/7

you could use the two lines

The IF statement limits the value of X to 239. In the APPLE's integer arithme
tic, 239/6 = 39. The POL range of O to 255 is changed exactly to the screen's
requirements of O to 39. This use of the IF to limit the range of a variable is
very common.

Loops, whether executed by airplanes or computer programs, have a top
and a bottom. In the program

110 PRINT NUMBER
120 NUMBER=NUMBER+I
130 IF NUMBER<=12 THEN GOTO 110

line 110 is the top of the loop, and 130 is the bottom. The program prints the
integers from 0 to 12 inclusive. The number 12 is the limit of the loop. Another
way to write a loop is to use the FOR statement. We can use this statement to
rewrite the previous program.

200 FOR NUMBER=0 TO

Ef·~D

Use RUN 200 to execute this program. If you just type "RUN," the program
at line 100 (being the lowest line number around) will be executed.

68

Line 200 is the FOR statement. It starts by setting NUMBER to the value 0.
This is exactly the same task that line 100 performed. Then line 210 is exe
cuted. The bottom of a loop that begins with a FOR statement is always a
NEXT statement. The NEXT statement tells the computer to add one to the
variable mentioned in it. If the variable is not over the limit, execution con
tinues at the statement immediately following the FOR. If the variable is over
the limit, the program drops through (out of the loop) to the statement after the
NEXT. In this case, the program drops through to line 230 which terminates
the program.

The most obvious advantage of the FOR-NEXT method of constructing
loops is that it saves a statement. The most important advantage is that you
don't have to think so hard when writing a loop if you use a FOR-NEXT loop. If
you wanted to draw a line with each of the 15 colors on the screen, you could
type

3010 FOR 1=0 TO 15

:3020 - - - - - -
~_:iJL~Ji:;~= l

3030 HLIN 0.39 AT 1

Another advantage is that it is much easier to read a single FOR statement
than to look through three statements to figure out what a loop is doing. To find
the bottom of a FOR-NEXT loop, all you have to do is look for a NEXT which
has the same variable as the FOR.

It might be well to mention that, although you should know how the FOR
statement works, you don't have to use it. It doesn't add any new abilities to
those you already have. It just makes some programs easier to write (for some
people).

At this point, if you have been following along on your APPLE II, you should
remove the portion of the programs between lines 3000 and 3050, inclusive.
So type

To PRINT just the even numbers from Oto 12, you could use the program

100 TH I t-~~:J=0

120 THING=THING+2

IF TH I t-{ i:J(= 12 TH Et-{ 1. l t.i

69

The secret is in line 120, where 2 is added to THING. We say that the loop
steps by two. To step by two in a FOR loop, you would type

200 FOR THING=0 TO 12 STEP 2

the rest of the program would look like lines 210 through 230 above, except
that the name "NUMBER" would have to be changed, wherever it occurs, to
the name "THING". Try it. The STEP may be any number in the range of the
APPLE. It can even STEP backward, for example

200 FOR THING=39 TO 15 STEP-3

Type this and try it by typing RUN 200.

You should play with the FOR statement for a while, if you wish to learn to
use it. A number of the example programs from this point on will use the FOR
statement.

Along with the convenience of the FOR statement come some limitations.
For example, FOR-NEXT loops may be nested, but may not cross; a few
examples (which generate graphics) demonstrate the idea.

c:c~L()~:=H~JE-1

TC! --:;:::;
! •_z ·-= --·

This is an example of two-level nesting. Think about it and RUN this pro
gram before going on to the next. Remember, when writing programs using
FOR statements, that

EACH FOR MUST HAVE A MATCHING NEXT.

70

0:
c
·u;
rn
0 u
a.
0
0
_J

'

A WRONG PROGRAM:

r-~ E ~=-:~ T _J

This program won't work. Its loops are crossed, which not only gives an
error message, but doesn't make any sense. Whenever you find yourself writ
ing crossed loops, it means that your thinking has gotten tangled. If you are
sure that you know what you are doing, and still want to cross loops, use loops
made with IF statements. You can cross those all you want, for what good it
will do you.

A LAST EXAMPLE OF NESTED LOOPS:

FOR ROW=0 TO 30 STEP 10

FOR COLUMN=0 TO 35 STEP ~

TC~

f-~E~=-=~T

This program has three-level nesting, and draws quilts. Try removing lines
170 and 180. What happens? Add the line

71

145 COLOR=RND<16)

What happens? Is it what you expected?

PRINTS CHARMING

As an experiment, type in this program and see what it does when you RUN
it.

100

1 10

Now change line 100 by just one symbol

100 PRINT "HELLO"~

and RUN the program again. As you can see, this PRINTs the word in col
umns . Now substitute a semicolon(;) for the comma(,)

100 PRINT "HELLO";

and RUN the program again. This time the output is packed. This means that
there are no spaces between what you told the computer to PRINT. It prints
HELLO after HELLO, until the screen is quickly filled.

Change the program by adding th is statement

and changing line 100 to read

RUN this program. Now change line 100 to

and RUN it again. Then change line 100 to

and observe that the semicolon can be used with numerical values. The ability
to place numbers one after the other without intervening spaces is sometimes
quite useful.

Commas and semicolons can be used within a PRINT statement. Clear the
old program with NEW, and type

72

120 PRINT STRIKES~BALLS

You can make clearer output by including messages in the PRINT state
ment. For example, change line 120 into

120 PRINT " THE STRIKES AND BALLS ARE i! = =::: :r--

Notice that you probably want to have a space after the word "ARE," lest the
number of strikes gets printed too close to it. If you don't think that the large
space between the number of strikes and balls looks nice, you could use the
statement

120 PRINT "THE STRIKES AND BALLS ARE ";S
TRIKES;e ";BALLS

In this version, a blank is put between the number of strikes and balls.
Perhaps the prettiest way of doing this (are you trying all of these on your
APPLE?) is

This gives you a scoreboard-like display.

Let's say that you wanted to PRINT the word "HERE" starting in the 10th
t;Olumn (the screen is 40 columns across, by the way), you could use this
statement

HERE::

(You have to take our word for it that there are nine blanks before the word
"HERE"). Or you could use the TAB feature. Just as on typewriters, you can
set a tab on the APPLE. The statements

have the same effect as putting 9 blanks in the quotes as we did above. Try it,
you'll like it.

By combining the TAB with the FOR loop you can program some neat visual
effects. For example:

200 FOR 1=1 TO 24

2i0 TAE: I

73

~ :

You can also TAB up and down with the APPLE. There are 24 (not 40)
horizontal printing lines. That, by the way, is why the upper limit in the loop in
the program above is 24. To print on a particular line, you can vertical tab
(VTAB) to that line. Here is a small program that demonstrates the use of the
vertical tab:

E= 0 0 F i] ft:: ?=. = 1 T ~] 2 4

t:i ... tJ F '-' r-:: \' = 1 i Ci ::-::

E • .-, 0 T R C= ..
.::. ! LJ .--=

640 PRINT "APPLE "

Before you RUN this program, try (it ain't easy!) to figure out what it will do.
It's both surprising and pretty.

VTAB but not TAB works for immediate execution. You can only use TAB
in programs. While TAB and VTAB act a bit like the co-ordinates in PLOT,
there are some differences. The 40 columns for the TAB instruction are num
bered from 1 to 40, as they would be on a typewriter, while the first co-ordinate
of a PLOT instruction can run from 0 to 39, which is more convenient for
programming graphics. Since characters are taller than the "bricks" we build
graphics with, there is only room for 24 lines of printing on the screen. There
fore VTAB's limits are 1 and 24. A zero or a number that is too large for TAB
or VTAB will give the message

A number larger than 255 or a negative number causes the message

=+==+= =+= >255 E~~F:~

to appear.

The largest value for VTAB is 24, but the largest value for TAB is 255, so
you can TAB past the length of a screen line. To see this in action, try

4i0 TH~3 I

74

TALKING TO A PROGRAM ON THE RUN

Here is a program that makes a dot of color move across the screen, bounc
ing off the right and left sides.

CHOOSE A COLOR FOR THE
LL::

SET GRAPHICS MODE
4E.0 =....1=---

480 REM CHOOSE A STARTING POSITION
FC~R THE E~ALL

MOVE THE BALL BACK AND FOR
TH BY ADDING AN INCREMENT (CALLE
D XSPEED> TO THE X POSITION

540 REM TO MOVE THE BALL TO THE LEF
T. MAKE THE INCREMENT NEGATIVE

580 REM CALCULATE THE NEW X POSITIO
N BY ADDING THE INCREMENT XSPEED

TO THE OLD X POSITION
600 XNEW=XOLD+XSPEED

CHECK THAT THE BALL

640 IF CXNEW>-1) AND CXNEW<40) THEN

660 REM THE BALL WOULD BE OFF ONE S
IDE OF THE SCREEN.

DIRECTION OF X MOTION
680 XSPEED=-l*XSPEED

720 REM PLOT THE BALL 1N ITS NEW P

75

840 REM SAYE THE CURRENT BALL POSIT
ION FOR NEXT MOYE

880 REM MOYE AGAIN

The reason that the variable XSPEED was called "XSPEED" will be evident
if you change its value. Try XSPEED = 2 for example. If you set XSPEED too
high, the ball will appear to jump wildly across the screen, with no trace be
tween positions.

This kind of program is the basis for many typical TV games. It is worthwhile
to spend some time playing with the program, changing this and that, just to
see what can be done with it.

SAVING PROGRAMS

If your changes should prove inexplicably fatal to the program's operation,
you can always retype the original program and start over. However, to save
yourself a lot of typing, why not SAVE the working program now, on a tape
cassette? Then anytime you want that program, you can simply LOAD it back
into the computer, from your tape. To save this program, type

II
II
which stops the program, if it is running. Insert a blank cassette into your
recorder and rewind it to the beginning, where your recorded program will be
easy to find. On the recorder, hold down the Play button while pressing down
the Record button. Both should stay down. Back at the APPLE, type

When you hit Ciilll , the blinking cursor will disappear. After 10 or 15
seconds, the computer will give a "beep" to let you know the recording has
begun. Another "beep" will sound when the recording is completed, and the
cursor will reappear. Push Stop on the recorder, and you are ready to go back
to programming. Your program in the computer has not been affected in any

76

way by SAVEing it.

Though you are now in a position to understand the program above, you
might have friends who aren't. Suppose you wanted a friend to be able to
choose the color of the ball. You could explain how to change line 420, but
you·d also have to explain the possible error messages, and what to do if
. . . well. it would take a bit of explaining. It would be better to let your friend
interact with the program. To do this, you can use an INPUT statement.
Change line 420 to read

When the program executes this statement it will put a question mark (?) on
the screen, followed by the blinkin9 cursor, and then wait until someone types
a number and hits lilii!!ml . The number typed will become the value of
BALL and the program will resume execution. It might be a good idea to have
the computer tell your friends what they are expected to do. You could put in
PRINT statements such as

340 PRINT "TYPE A NUMBER FROM 1 TO 15"

380 PRINT "THEN PRESS THE KEY LABELL

You may also incorporate a message into the INPUT statement:
420 INPUT "WHAT COLOR WOULD YOU LIKE THE

BALL TO BE (1-15)".BALL
Notice that in an INPUT statement the message must be in quotes, that there
must be a comma before the variable name, and that the question mark ap
pears right at the end of your message. It usually makes sense to make the
message ask a question.

Your friends can use the right- and left-pointing arrows to correct mistakes in
typing. But if they make a mistake and then press lilii!!ml , they will get an
error message. If the character entered is not a number,

77

will appear on the screen. If too great a number is entered,

---=

will appear. Tell the person using the program (the "user") to simply ignore
these error messages and retype the number. However, if the user types a
negative number or a number between 255 and 32767, the error message

will appear, and the program will stop. For the most part, the user will not know
how to restart the computer-and shouldn't have to. Therefore you should
make the program check that all numbers typed by the user are correct. These
lines will do it:

424 REM CHECK THAT THE BALL COLOR TYPED
IS BETWEEN 1 AND 15. INCLUSIVE.

428 IF (BALL}0) HNU (BALL(16) lM~N uuiu

432 PRINT "THAT WASN'T BETWEEN .:... - -- -- i5==

Are you beginning to see why we advised you to leave so much room between
line numbers?

It is good programming practice to make a program as foolproof as possible.
You have advanced to the point where you are writing error messages for
others to read. It may be all right for a programmer like you to read jargon
such as "SYNTAX ERROR" but it is most definitely not all right to force an
innocent user to deal with such nonsense.

Each time you use an INPUT statement, your program must check that what
the user types is within certain limits, so that the program won't "blow up" or
fail in any way. Dealing with the untutored user (and you must assume users
are not programmers) is an art in itself. Use of clear English sentences and
careful checking of what the user types are always required.

By the way, you can INPUT several values with one input statement. The
statement

would display a question mark as usual, and then wait for three numbers to be
typed in. The first number would be stored in the variable named X, the sec
ond number in the variable named Y, and the third in the variable named Z.
The three numbers must be separated by mm 's or commas, and the
last number must be followed by a mm .

78

SAVE your best version of the bouncing ball program, just in case. Then, if
you have not done so already, try to add vertical motion to it. Use the new
variables YNEW, VOLD and YSPEED. A solution is given on the next page,
but try to work this out, yourself, before you look.

When you have this program running the way you want it to, SAVE it on
your tape cassette. We will use it again, later on.

79

OFF THE WALLS
Here is one way to make the ball bounce off all four walls. The statements in

black are ones that have been added to-or changed from-the program
which bounced the ball between two walls.

280 REM SET TEXT MODE

320 PRINT "TO SELECT A COLOR FOR THE

340 PRINT ~TYPE A NUMBER FROM 1 TO 1

"AFTER THE QUESTION

"THEN PRESS THE KEY

CHOOSE A COLOR FOR THE
LL"

Li C: i ii f\ = • ..= C: ~ i ~ ";"" : -- :-
:_111.: :_ : :_: =-- ::....-- i =-= :._: =-- ..!.. =--- !._

TYPED IS BETWEEN 1 AND 15. INCLU

428 IF CBALL>0> AND CBALL<16) THEN
460

432 PRINT "THAT WASN'T BETWEEN 1 AND
i i::' u
i ._i

~~l GRAPHICS MODE

480 REM CHOOSE A STARTING POSITION
FCif~: THE E~ALL

520 ~~Et=i MOVE THE BALL BACK AND FOR
TH BY ADDING AN INCREMENT CCALLE
D XSPEED> iu THE X POSITION

80

540 REM TO MOYE THE BALL TO THE LEF

560 XSPEED=i
565 REM MOYE THE BALL UP AND DOWN

BY ADDING AH INCREMENT <CALLED Y
SPEED> TO THE Y POSITION

570 REM TO MOYE THE BALL UP. MAKE
THE INCREMENT NEGATIVE

~ ' ~ YSPEED=l
580 REM CALCULATE THE HEW X POSITIO

H BY ADDING THE INCREMENT XSPEED
TO THE OLD X POSITION

600 XHEW=XOLD+XSPEED
620 REM CHECK THAT THE BALL WOULD B

E OH THE SCREEN
640 IF CXNEW>-1> AND CXNEW<40) THEN

GOTO 706
660 REM THE BALL WOULD BE OFF ONE S

IDE OF THE SCREEN. SC CHANGE THE
DIRECTION OF X MOTION

680 XSPEED=-l*XSPEED
700 GOTO 600
704 REM CALCULATE THE NEW Y POSITIO

N HY ADDING THE INCREMENT YSPEED
TO THE OLD Y POSITION

706 YHEW=YOLD+YSPEED
rs~ REM CHECK THAT THE BALL WOULD

STILL BE OH THE SCREEN
r1s IF CYHEW)-1) AND CYNEW<40) THEN

GOTO 740
712 REM THE BALL WOULD BE OFF THE TO

P OR BOTTOM OF THE SCREEN. SO CH
ANGE THE DIRECTION OF Y MOTION

719 GOTO rsb

81

720 REM PLOT THE BALL IN IT'S NEW
c~s IT I c~r-~

760 PLOT XNEW.YNEW
780 REM ERASE THE OLD BALL POSITION

820 PLOT ~ULU~TULU

ION FOR NEXT MOVE

880 REM MOYE AGAIN

As you will see when you RUN this program, the result is a bit repetitive.
You can alter the pattern of bouncing by changing the starting values of XOLD
and VOLD (lines 500 and 510), but here is a change you might like better:

600 XNEW=XOLD+XSPEEO* POL (0)/70
706 VNEW=VOLD+VSPEEO* POL (1)/70
To see what this does, play with the paddles.

One more suggestion. Why not have another INPUT, giving a value to a
variable called BACKGROUND? Fill the screen with the color
BACKGROUND once, at the beginning of your program (right after GR).
Then, to erase the old ball position, use
800 COLOR=BACKROUNO
or even
800 COLOR=BACKROUND+3
SAVE your favorite version of this program on tape.

MAKING SOUNDS

Clicks, ticks, tocks, and various buzzes are easily generated. You can make
sounds on your APPLE if you tap it, scratch your fingers across it or drop it,
but the sounds covered here are produced by programming it. So go to a
quiet place and try working through this section.

To construct any sound-producing program on the APPLE II, you will need
this magic formula.

150 SOUND=PEEKC-16336)

There is no easy explanation for this formula. The number, - 16336, is related
to the memory address of the APPLE's loudspeaker, and was built into the
electronics of the computer. You are just going to have to look this number up

82

when you need it.

PEEK returns the numerical code stored at a certain location in the computer.
At most locations PEEK only returns a numerical value, but at some locations,
such as -16336, it can cause something to happen. In this case, it causes the
speaker to make a click. Since you are programming in BASIC, the PEEK
function must be assigned to a variable. In this instance we have named the
variable SOUND. Every time the program executes this statement, the APPLE
will produce a miniscule "click." Add the statement

so that the APPLE won't beep loudly at the end of the program. RUN the
program. Listen to your computer closely.

Now substitute this line

and RUN the program. No problem hearing this!

To make your program beep for a limited period of time, add statements
such as

140 FOR I=1 TO 300

1 70 Et-4[:i

Try it.

A tone is generated by a rapid sequence of clicks. Any program that uses
PEEK(-16336) repeatedly will generate some sort of noise. Since -16336 is
such a bother to type, we will insert another statement that will allow us to
substitute a symbol which is easier to type. Enter the statement

To produce a nice, resonant click change line 150 to

150 SOUHD=PEEKCS>-PEEKCS>-PEEKCS>-PEEKCS)-

Different numbers of PEEKs in the statement will produce different quality
clicks. Try RUNning some variations. For more buzzy tones, put one of your
variations into a loop. In general, the faster the loop, the higher the pitch.

Now, to use these sounds, LOAD your bouncing-ball program (OFF THE
WALLS, in the last chapter) back into the computer, from your tape cassette.
Try adding a "bounce" sound each time the ball rebounds from a wall.

One possible solution is given on the next page, but try to work it out for
yourself , first. (Hint: a bounce occurs whenever either XSPEED or YSPEED
changes value.)

83

NOISE FOR THE BOUNCING BALL

Here is one way to make the bouncing audible. Add these lines to the OFF
THE WALLS program from the last chapter:

240 REM SET S 1u ADDRESS OF SPEAKER

683 K~n MAKE A BOUNCE NO ISE

685 FOR l=l TO 5

690 BOUNCE=PEEKCS>-PEEK(S)+PEEK(S)-PEEK(S)

715

716 FOR 1=1 ~0 5

717 BOUNCE=PEEKCS)-PEEKCS>+PEEKCS>-PEEK<S>

Now try your own sounds. Why not make a different sound off each wall?

FOR HIGHER NOTES, MULTIPLE STATEMENTS ON ONE LINE

To get still higher tones , another feature of APPLE BASIC can be intro
duced. It is possible to put more than one statement on the same line. Try this
one-line program:

50 S=PEEKC-16336):GOTO 50
The colon(:) can be used to separate statements in any program where you

wish to have more than one statement on a line. However, only the first state
ment on the line has a statement number, so you can only branch to the first
statement with a GOTO.

Now add:

40 FOR DELAV=l TO 2500: i ; :-- i : -=- ::-. :-- • .-. ; :
f\jt_I:·:: i L-=t:..LH T

The advantages of multiple statements with a common line-number are
these:
1. The statements are executed faster. (This is an advantage only if you need
more speed.)
2. More of your program can fit on the screen.

84

3. It can save some typing when you are not using AUTOmatic line
numbering .
4. You can group statements together that collectively perform one function,
such as the delay in line 40 above.
5. It requires less memory. (This is an advantage only if you are running out of
space, and the computer gives you a :-;-::-;-::;< MEN FULL ER~: while
entering a program.)

But there are also some disadvantages:
1. The program is harder to read.
2. It is harder to modify or correct the program.
3. You can't branch to any but the first statement.
4. It is very discouraging to type in a long multiple statement only to have it
return a =+= =+= * 5 '·f'l·-H fl:=·=~ ERR,, making it necessary to retype the whole
statement.

MULTIPLE STATEMENTS ON A LINE AND THE IF STATEMENT

The multiple statement

will print the word "NO" when executed. The word "YES" is not printed since the
assertion
4<2
is false. The program then goes on to the next statement (not to the next line
number) and prints "NO" since that is what the next statement in the program
tells the computer to do.

85

86

STRINGING ALONG

Would you like to see your name backwards? So far we have played with

graphics and numbers. But computers can also manipulate letters and sym

bols. Instead of handling them one at a time, as with the numerical values of

variables, your computer handles a whole string of characters at a time. This

will seem fairly natural , since we humans also usually deal with characters in

bunches. Strings, just like variables , have names. The names follow the same

rules as variable names except that they end with a dollar sign ($). Here are

some examples of string names:
MYNAME$
A$
SENTENCE$

Since there are going to be many characters in a string, you must tell the

APPLE, prior to using the string's name, the maximum number of characters

you will ever have in the string. Suppose you know that you will have 30 or

fewer characters in a string called NAME$ (pronounced "NAME-dollar"). Then

you would warn the computer with the statement (including a line-number if

part of a program, of course)

This is called "setting the DIMension of the string ."
You are now permitted to type

Notice that the characters put in a string must be enclosed in quotes. The

statement

will print the contents of NAME$: in this case, the name of the 33rd President

of the United States. Thus, when you have a string of characters that you need

often , you can store the string in a variable with a short name.

There are several more instructions that manipulate strings. Suppose you

want to know what the 12th through 14th characters of NAME$ are. You could

type

PRINT HAME$Cl2~14)

and the computer would print the requested characters. You must not ask for

more characters than there are-you will get an error message. A simple ex

periment will show you what the error message is. Do one and see.

Consider these immediate commands:

MAX$="AHVGARBAGEATALLOFSOMELENGTHSOTHAT

88

A question comes to mind: How many letters are stored at the present time in
MAX$? Don 't count. There is a function that counts the letters in a string.
Type

and you will find out what you want to know. Incidentally, there cannot be more
than 255 characters in a string (and as usual, you can only enter about 100
characters in a single statement), and a// spaces count as characters .

When you use the name of a string , such as MAX$, you mean the whole
string. You can refer to any portion of the string by giving the numerical posi
tions of the first and last characters in that segment. The segment of MAX$
from character number A to character number B is specified as MAX$ (A,B). If
you are interested in a segment which ends where the string ends, you may
omit the second positional value. Thus every character in a string, from the
Nth character to the end, is specified as MAX$ (N). Consider this program:

200 DIM ALPHABET$C100>~X$C30)
210 ALPHABET$="ABCDEFGHIJKLMNOPQRSTU

220 INPUT "TYPE A NUMBER BETWEEN 1 A
ND 26~ AND I WILL TELL YOU WHICH

LETTER HAS THAT POSITION IN

230 IF P> LENCALPHABETS> OR P<l

Ti i i""""
! r1L

240 PRINT ALPHABET$CP.P);" IS LETTER
NUMBER ";P;" IN THE ALPHABET."

~HH INPUT "TYPE A LETTER. AND I WILL
TELL .YOU WHERE IT IS IN THE ALP

~1~ FOR 1=1 TO LENCALPHABET$)
320 IF ALPHABET$CI.I>=X$ THEN uu~u

340 PRINT "THAT IS :::_=:

;I;" 1N ~H~ ALPHABET."

89

510

520

It is customary, and a good idea, to DIM strings a bit longer than you expect

them to be, especially if you aren't sure of their exact length. It is also a good

practice to use the LENgth function, as shown here in lines 230 and 310,

instead of a particular number. That way, if you change the string, the program

will continue to work. For example, if you change line 210 to

210 ALPHABET$="0123456789 "

the program will still run. But if you had used 26 instead of LEN(ALPHABET$)

in line 310, a

:+:=+==+= ST~: I t-4(i E~: f.:~

message would have resulted.

This program illustrates several other common programming practices.

Notice how this program finds the position of a character in a string. This

method of using a loop to scan through a string, one position at a time, is very

common. The program also shows that you can DIMension more than one

string at a time in a DIM statement, simply by separating the items with com

mas. Notice the function of the blanks in the quotes in line 500. What would

happen to the output without these blanks?

You can substitute one string for another with a replacement statement such

as

This statement copies the contents of ALPHABET$ into X$. However, you

must make sure that the receiving variable was DIMensioned large enough to

contain the replacement variable. In the example, the DIM for X$ must be at

least as large as LEN (ALPHABET$) . If the DIM of X$ is too small, you may

get the message

(which just means STRing OVerFLow ERRor).

YOU CANNOT USE THE PARTIAL STRING NOTATION ON THE LEFT

SIDE OF A REPLACEMENT STATEMENT
For example, the statement

is illegal. However, the statement

are both permitted. There is no logical reason for this ; it's just the way things are.

Here is a program that generates random words. How frequently a letter is

90

::'iosen depends on how many times it appears in HEAP$.

~0 COUNTER=l: REM INITIALIZE CHARA

100 DIM HEAP$(255): LETTE~: ST~~ I

110 HEAP$="AAAAABCDDEEEEEEEEEFGGHIII

JKLLLMMMNNNOOOOOPPRRRSSSSSTTTTTU

120
FROM 2 TO 6 LETTERS

130 LENGTH= RND (5)+2
140 REM WILL NEXT WORD

CEED 40 CHARACTERS?
150 IF COUNTER+LENGTH+1(40 THEN

LINE LENGTH EXCEEDED
170 COUNTER=l: REM RESET CHARACTER

180 PRINT : PRINT : REM SKIP A LINE

190 REM PICK 'LENGTH ' NUMBER u~ RAN
DOM LETTERS FROM HEAP$

200 FOR W=l TO LENGTH
210 L= RND (LENCHEAP$))+1

220
230 PRINT HEAP$CL.LJ;
240 COUNTER=COUNTER+1~ REM INCREMEN

T CHARACTER COUNTER

280 COUNTER=COUNTER+1: REM INCREMEN
T CHARACTER COUNTER

290 REM START A NEW WORD

91

Oh, yes-still want to see your name spelled backwards? Here's a program ,
that will do just that:

C·Wi ~
,_• i!~~

110 DIM NAMESC100)
INPUT ~TYPE YOUR NAME. :-i i

::.=n

OW IT TO YOU. SPELLED BACKWARDS.

130 REM STEP BACKWARDS THROUGH THE
t-~Rt=iE

140 FOR I= LENCNAME$) TO 1 STEP
-1

150 REM PRINT ONLY THE NEXT LETTER
160 PRINT NAME$Cl.I);

REM SKIP A LIN~.
200 REM DO IT ALL AGAIN

CONCATENATION GOT YOUR TONGUE?

It is possible to add a second string to the end of an existing string
assuming the DIM statement for the existing string allocated sufficient room to
contain both strings, joined end to end. You remember that the statement

permits A$ to be a string of characters up to 75 characters long. The actual
length of A$ is LEN(A$). For example, if you type

210 PRINT LENCA$)

RUN
the number printed should be 3. To add a character onto the end of A$-as it
stands now-you can type
220 R$(4)=HfiH

92

Add th is statement to your program. Then type

and RUN the program. Does A$ now contain XYZA? Next, retype line 220 as

and RUN the program again. Surprised at the result? In concatenation, the
notation
AS(4)
represents that part of A$ beginning at the fourth element. Thus, in this last
version of the program, A$(4) became the letter A, A$(5) became the letter B,
and so on. You have just concatenated the string
ABCDE
onto the string
XYZ

Erase the program you just used and type this portion of a new program:

100 DIM FIRSTSC100).SECOND$C100)

INPUT "GIVE ME ABOUT HALF R S

ENTENCE~ ".FIRSTS
120 INPUT "AND NOW THE SECOND HALF 0

F THE SENTENCE~ ~.SECONDS

Now, suppose you wish to concatenate FIRST$ and SECOND$, storing the
combined string in FIRST$. From the last program, you know that you simply
start SECOND$ one element after the last character in FIRST$. But you don't
know how long FIRST$ will be, except by use of the LEN function. So you can
concatenate the two strings by using this statement:

130 FIRSTS(LEN<FIRST$)+1>=SECOND$

This line reveals the trick. You know that you want to place the second string
one element beyond the end of the first string. Since LEN(FIRST$) tells where
the end of FIRST$ is, then LEN(FIRST$)+1 is one element after it ends. So
that is where you want SECOND$ to begin.

To watch this program work, type
140 PRINT FIRST$
150 PRINT : PRINT : GOTO 110

And that's how you can do concatenation.

93

ARRAYS

In this section on arrays we use examples from mathematics, but they are
from recreational mathematics and require nothing beyond elementary arith
metic. Nonetheless, it you feel put oft by such things , just skim through this
chapter. The APPLE II can do interesting numerical work, as well as string and
graphical processing, and we thought it would be good to have a few exam
ples of this type.

Arrays are neat. The programming power they give you more than compen
sates for the bit of thinking and experimenting it will take you to become
familiar with them . They are like strings, except that an array holds numbers
instead of letters. To create an array, you use a DIM statement, just as with
strings.
DIM A (400)
Unlike strings, there is no upper limit tor the amount of room you set aside tor
an array (except as dictated by the size of your computer's memory). Simply
keep in mind that the longer your program, the less room you have tor arrays,
and vice versa.

The DIM statement above has given us 400 new variables . They behave
exactly like the variables you have come to know and love. They are:

A(1)
A(2)
A(3)
and so on , down to
A(400)

Although you may find them awkward to type, they can be used just as any
other variable is used. The statement

A(34) = 45 + A(192)
is perfectly correct. The number in parentheses is called a subscript, and the
notation A(192) is read "A-sub-one-ninety-two."

Here is an interesting application which illustrates using arrays-it finds
prime numbers . The prime numbers are whole numbers that can 't be divided
evenly (except by themselves, and one). For instance, 12 is not prime since it
can be divided by 6 or by 4 or by 3 or by 2. But 17 is prime since the only
numbers that divide it evenly are 17 and 1. Prime numbers have had a strange
influence over people's minds since the ancient Greeks, it not before. They
seem very mysterious, since they don't appear to occur in a pattern. Prime
numbers have many useful properties in mathematics, and people have been
trying for 2000 years to figure out a formula that would give them these num
bers. So tar, nobody has even found a formula that gives only primes (never
mind every prime). But while there is no formula (yet) that produces primes,
we can write a program that will generate every prime-from 2 to the largest
number the APPLE can handle, 32767. (Note: By mathematical convention, 1
is not considered a prime number.)

94

The idea is this: the program will look at every number (called ISIT, since we
are asking is it a prime or not) and try to see if the number can be evenly
divided by some other number (called the TEST). If ISIT can be divided, the
program will go on to a higher ISIT and try that. If ISIT can't be divided, the
program will print the value of ISIT, since it is a prime.

APPLE BASIC has an excellent way of testing whether ISIT is divisible by
TEST: the MOD operator. If ISIT MOD TEST is zero, then TEST divides ISIT
evenly. Our first try at the program might look like this:

100 FOR ISIT=3 TO -:=-==-::=£. 7
--=:.....: "-"I

110 FOR TEST=2 TO ISIT-1

120 IF ISIT MOD TEST=0 THEN uu~u

Some questions to think about-if you can answer them, you understand
how the program works.

Why does the loop at line 100 start with 3 and not with 2?

Why does the loop at line 110 have an upper limit of ISIT-1?

This program is dreadfully slow. It will take days before it is done. Maybe
weeks. We can easily double the speed by changing line 100 to read

100 FOR ISIT=3 TO 32767 STEP 2

which will skip over the even numbers, which (except for two) are never prime
because they can all be divided by two. The next improvement comes in the
second loop. We are trying to divide ISIT by every number less than itself. This
is unnecessary. We only have to try dividing ISIT by primes . For if ISIT is
divisible by some non-prime (call it Q) then ISIT is certainly divisible by a prime
that divides into Q. So if we save all the primes we calculate, then we can just
divide by these, and the program will speed up a lot. Now here is where we
need an array-we will use one called PRIME to save all the primes that the
program generates.

95

500 REM PROGRAM TO FIND PRIMES.
510 REM MAKE SOME ROOM FOR PRIMES.
520 DIM PRIMEC4000)

RIPT OF LAST PRIME FOUND SO FAR.

550 REM SET THE FIRST PRIME.

600 REM MAIN LOOP LOOKS FOR POSSIBL

blu FOR ISIT=3 TO 32767 STEP 2
620 REM SCAN THROUGH THE PRIMES SAV

ED SO FAR AND DIVIDE BY

630 FOR SUBSCRIPT=l TO TOP
640 IF ISIT MOD PRIMECSUBSCRIPT)

650 NEXT SUBSCRIPT
690 REM IF THE PROGRAM GETS HERE~ I

SIT HAS BEEN DIVIDED BY ALL THE
PRIMES AND WASN'T DIVIDED EVENLY

700 REM ISIT IS PRIME.

720 REM SAVE THIS PRIME IN THE ARRA
! =

740 PRIMECTOP)=ISIT
790 REM LOOK FOR NEXT PRIME.

This program prints all the primes up to 32767 except 2 and 3. That problem
can be remedied by adding the line

-== ·-:::
~; --= .P

96

DEBUGGING

By now you have typed in some programs that didn't run the way you ex

pected. Whenever this happened you had to figure out what was wrong and fix

it. This fixing is called "debugging" since a programming error is often called a

"bug ." The APPLE II has some features that will help you stomp out any bugs

that might be in your programs. To demonstrate how to find bugs, we need a

program that has some.

First, a bit of background . If you multiply a number by itself, for example 5 *

5, you get the square of the number, in this case 25. Conversely, we say that 5

is the square root of 25. Most integers, for example 20, don 't have an integer

for a square root. 5 is too big to be the square root of 20, and 4 (whose square

is 16) is too small. Clearly, the square root is between 4 and 5.

It is easy to write a program to find the square of a number on the APPLE II

(try it!), but how would you find the approximate square root of a number?

First, notice that the largest square the APPLE II can handle is 32761 . The

square root of 32761 is 181, so any square root the APPLE can find must lie

between 0 and 181. Here's how the square root program will work:

We know the square root of a number (which we will call NUMBER) must be

between 0 and 181. Therefore we set up two counters MIN (for "minimum")

and MAX (for "maximum"):

Now, here comes a neat trick. The program will guess a number somewhere

between MIN and MAX. Then it will see if this number which will be called

GUESS, is too large or too small . One way of getting between MIN and MAX

is to choose a number halfway between them . This is done in the next line:

120 GUESS=CMIN+MAX)/2

Now we need to know whether this GUESS is larger than the correct square

root, or smaller. The correct square root, when squared, would equal

NUMBER, so let's square our GUESS

130 SQUARE=GUESS*GUESS

so that we can compare its square to NUMBER.

These statements contain the heart of the program. If SQUARE is too large,

then we know that the true square root is less than GUESS. So we lower the

value of MAX to GUESS. If SQUARE is too small, then we know the true

square root is more than GUESS, so we raise the value of MIN to GUESS . As

long as MAX and MIN are not equal, we must keep "guessing" new values for

98

GUESS. The safest guesses are between the new MIN and MAX, so we add
this line

which tells the computer to try again.

This way we squeeze MIN and MAX closer and closer together until the
approximate square root is caught between them.

140 IF SQUARE>NUMBER THEN MAX=GUESS

15~3 IF

When MAX and MIN are equal, we have found the square root, so we pro
gram this line

160 IF MAX=MIN THEN ~uiu 200
and at Ii ne 200 we can say

200 PRINT "THE SQUARE ROOT OF ";NUMBER

210 PRINT "IS APPROXIMATELY ";GUESS

Here is the program so far :

120 GUESS=CMIN+MAX)/2
130 SQUARE=GUESS*GUESS

150 IF SQUARE<NUMBER THEN MIN=GUESS
160 IF MAX=MIN THEN GOTO 200
18fi (iC~T() 120

200 PRINT "THE SQUARE ROOT OF "

210 PRINT "IS APPROXIMATELY ";GUESS

To test the program, add the statement

90 INPUT "OF WHAT NUMBER SHALL I

Run the program and when it asks

99

answer with

so that we can follow the program together. Oops. Nothing happens. The pro

gram is doing something, but it is not finding the answer. The program is not

quite right: it has some bugs. Stop it with

II
II
and find out what was happening. Type

PRINT NUMBER,GUESS,MIN~MAX,SQUARE

to see what these variables contained when you stopped the program. This

will give you a valuable clue to what is going on. NUMBER, of course, was 34.

You might wonder why we bother printing this value, since the program isn't

supposed to change it. Good question. NUMBER isn 't supposed to be

changed, but by printing it you know that it hasn 't been changed. There can be

a big difference between what a program is supposed to do and what it actu

ally does. Just remember: don't trust anything you haven't tested. GUESS was

5, which is the correct answer, MIN was 5, which is fine, but MAX was 6.

Hmmm .. .

Before you get carried away with fixing up the program, let's see what hap

pens while it is running. Type

This means to DiSPlay the values of MIN and DiSPlay the values of MAX. You

could also use

without a line number, but you could not say RUN, as this clears the DiSPlay

feature. You would have to start the program with a

The program immediately asks for a value for SQUARE, and you type the 34

again-but get ready to hit

II
II
immediately. With good timing your screen will look like this photograph:

100

This display shows that at line 100, MIN was set to 0 (correct); and then at
line 110, MAX was set to 181 (as you expected). Then you can see MAX
coming down to 11, while MIN (since it is not shown) stayed at zero. This
demonstrates clearly how DSP works : every time a DiSPlayed variable is
changed, the screen shows the line number and the variable name and its
value. Handy, no?

After MAX got to 11, MIN moved up to 5, then MAX went to 8 and then to 6.
Nothing ever changed after that, MIN just kept on being set to 5 in line 150.
Think about the program. Will MIN and MAX ever be the same number?
SQUARE, as you can tell by a PRINT, is at 25, since GUESS is at 5. Another
DiSPlay will convince you that GUESS is at 5 forever. Try it. So for the number
34, SQUARE will always be less than NUMBER, MIN will be set to GUESS
forever, and MAX will never equal MIN. Try changing the program with this
instruction

160 IF MAX=MIN+1 THEN GOTO 200

RUN the program for several values of NUMBER. It always gives an answer
with a maximum error of 1. Sometimes it doesn't get the closest integer to the
square root, but it is never more than 1 away from a correct answer. But! The
program gives no answer at all when you give it a NUMBER which is a perfect
square, such as 25. Try to use DSP and your head to find a fix. Our fix is next.
No peeking.

101

Our fix, after a bit of head scratching, is to change line 140 to

140 IF SQUARE>=NUMBER THEN MAX=GUESS
Changing MAX when SQUARE is exactly equal to NUMBER, as well as when
SQUARE is greater than NUMBER, makes the program work for exact
squares. But then GUESS may or may not be the square root of NUMBER.
However, MAX always is, so we change line 210 to read

ROUNDED UP TO THE NEAREST
INTEGER IF NECESSARVP ";MAX

Now the program works fine, and the answer is exact for perfect squares,
and is the correct answer rounded up to the nearest integer if SQUARE is not
a perfect square. You can fiddle with the program to make it find the nearest
integer, but we won 't bother doing it here.

A LAST WORD ON PRIMES

Now that we have a square root program and a prime program, it is hard to
(esist making a really fast prime-finding program by combining the two. When
we were testing primes, we divided by every prime less than the number we
were testing. But, it is not necessary to divide by every prime-only by every
prime less than or equal to the square root of the number being tested. The
reason is clear with a few minutes of thought, which we leave to you.

So we combined the two programs, and for still greater speed put as many
statements as we could on one line, inside the main loop. The listing shows
our fastest program so far. The steps above line 150 are only done once, so it
doesn't matter how fast they are. They have been written out separately for
clarity-which you should always do, unless there is a pressing need for
speed or compactness. We set the DIM at 3600 because there are 3512
primes between 0 and 32766. We ran the program and had it print TOP.
Notice that we have the loop stop at 32766. If you run it to 32767, you get a

32767 isn't a prime. 32767 = 7 * 31 * 151.

: _J=2

102

160 IF GUESS MOD PRIME(J)=0 THEN
500: IF PRIME<J>>=MAX THEN
400:J=J+l: GOTO 160

q~~ PRINT GUESS.:TOP=TOP+l:PRIME(
TOP>=GUESS:MIN=0:MAX=181

410 ROOT=CMAX+MIN)/2:TRIAL=ROOT*
ROOT: IF TRIAL>=GUESS TH EN
MAX=ROOT: IF TRIAL<GUESS THEN
MIN=ROOT: IF MAX=MIN+l THEN
500: GOTO 410

500 NEXT GUESS
510 END

103

SUBROUTINES

Imagine that there is a game for which you need a piece that looks like a

blue horse with orange feet and a white face. Here is a program that draws

such a piece:

1000 REM PROGRAM TO DRAW BLUE HORSE

h_~ I TH Qi-.~'f\
Ii!;:...··

1020 COLOR=?: REM LIGHT BLUE

1040 HLIN 15.17 AT 16

1050 COLOR=9: REM ORANGE
1:::::: 1 7
.!. --·,. .!. !

1080 COLOR=15~ REM WHITE

FE ET

There is nothing wrong with this program; it does draw a blue horse with

orange feet and a white face . Now, suppose you needed to draw another

horse somewhere else on the screen. You could rewrite this program with new

values for X and Y. But that is a bother. There should be some way of using

the same program to put a figure anywhere on the screen without having to

rewrite it each time.

The key to doing this begins with the observation that you can move a point

which is at co-ordinates (A,B) to the right by adding to A, the first co-ordinate .

For example, the point (4, 17) moves 10 columns to the right if you add 10 to

the first co-ordinate, making the point (14, 17). Likewise, a point moves left if

you subtract from the first co-ordinate (or add a negative value). A simple

experiment will show you that adding to and subtracting from the second co

ordinate moves points down and up, respectively.

With these facts in mind, you can rewrite your program to "center" the horse

at almost any point (X,Y) on the screen. Why "almost" any point? Because, if

you choose a center point at an edge of the screen, the horse will go off the

screen, and this might give you a :+::+::+: RAr·H:]E E~'.~'. message. Here is an

improved program:

104

1000 REM PUT n HORSE ANYWHERE ON THE

1010 COLOR=?: REM LIGHT BLUE

1030 HLIN X~X+2 AT r

1040 COLOR=9: ~~M ORANGE

1060 PLOT X+2.V+1
1070 COLOR=15: REM WHITE
1080 PLOT x-1.v-1

You notice that both the GR and the END have been left out. We want to
use this part of the program to put several horses on the screen. A GR here
would clear the screen before each new horse was drawn. An END statement
here would stop the program right after the first horse was displayed.

This program can't be run, just as it is. First you must set graphic mode, and
choose X and Y. A good first try at using the horse program might be:

30 REM CHOOSE THE FIRST HORSE CENT

40 :=<=12
50 =r==:35

If you try to RUN this, you do get a horse at the desired location, but the
program ends there. We want to put two horses on the screen. What if you
could write

60 Do the program at line 1000 and then come back to line 70

70 REM CHOOSE in~ SECOND HORSE CENTER

100 Do the program at line 1000 and then come back to line 110

105

Wouldn't that be nice and easy? You know that the computer can't read those
strange instructions at lines 60 and 100. But it can read

in BASIC. The GOSUB instruction tells the computer to GO to the SUBroutine
beginning at line 1000 and start executing at that statement. It also tells the
computer to come back to the line that follows the GOSUB statement
when it is finished with the subroutine. The computer knows it is finished when
it encounters a RETURN statement. To make your horse-drawing partial
program into a subroutine, add the line

Now you can write that "what if you only could" program:

30 K~n CHOOSE THE FIRST HORSE CENT

40 ~=<=12

THE C:Ef-~T

:...-. :.---

RUN the program.

In effect, you have added a new statement to BASIC: a horse-drawing
statement. Now whenever you use the statement

the computer will draw one of these special horses at whatever X,Y location you ,
have chosen.

TRACES

The portion of the program from line 1000 to line 1090 is called a sub
routine or subprogram. The portion of the program from line 20 to line 100 is
called the main program.

106

To see the program's flow, or path of execution, we can invoke a special
feature. Add this line to the main program :

and , for a moment, delete line 20. Put the APPLE II into TEXT mode and RUN
the program.

The numbers you see on the screen are the line-numbers of each state
ment, as it is executed. You can see how the program begins at line 10, con
tinues through the main program until the subroutine call, then executes the
subroutine, goes back to the main program, executes the subroutine again,
and finally finishes the main program. TRACE is very handy when you are
having problems with a program. If you want to TRACE only part of a program,
you can use the NOTRACE statement. Add this line:

Now the program will be TRAC Ed only up to the execution of line 65.

TRACE can also be issued in the immediate mode, like DSP. Simply type

and your program will be TRAC Ed.

Note: DSP without a line number is cleared by a RUN command. But once
you have issued the TRACE command, whether in immediate mode or as a
statement in your program, your program will be TRAC Ed every time you RUN
it, from then on. To stop TRACE, you must issue a NOTRACE , either in a line
of your program, or in immediate mode:

A BETTER HORSE-DRAWING SUBROUTINE

Subroutines should be written so that problems from possible errors do not
arise when the program is RUN. One problem with our horse-drawing sub
routine is that some values of X and Y will cause the horse to go off the edge
of the screen. This can be prevented by a set of statements such as:

1014 IF X>37 THEN X=37

1018 1~ V>38 ~M~N Y=38

107

(Why should the maximum Y value be 38, while X must be limited to 37?)

If there is any attempt to locate a horse off the screen, the horse will be
moved to the nearest edge. There are other possible strategies, such as giving
an error message and stopping the program. However, our choice has the
advantage that it doesn't stop the program, and you can see that something is
happening .

Sometimes you want to be able to change the values in a subroutine for
different program GOSUBs. For example, a second player may want to place
a piece, and that should be a horse of a different color. One way to do this
would be to type in the whole subroutine again, with different colors. However,
let's try using variables rather than numbers. Instead of line 1010 saying
COLOR= 7, it could say

Similarly, you could write

Then the main program could go like this:

FI ~~ST

40 BODV=7: REM LIGHT BLUE
~~ FEET=9: REM ORANGE
60 FACE=15: ~~M WHITE

CHOOSE CENTER OF FIRST

and so on (be sure to follow with an END statement, before you try to RUN it).
That's a lot of statements each time you want a horse, but it is still fewer than
if you had to type out the entire horse program each time. For additional pro
gramming ease, a rather subtle trick is to have a subroutine for each color
horse-and have those subroutines call the horse-drawing subroutine, in turn.

2000 REM ROUTINE DRAWS BLUE HORSE w1

TH ORANGE FEET AND ::: : ':." -:-:--
i_:.§H l ~ t....

2010 BODY=?: REM LIGHT BLUE

108

2020 FEET=9: REM ORANGE
2030 FACE=l5: REM WHITE

2500 REM ROUTINE DRAWS ORANGE HORSE
WITH PINK FEET AND GREEN FACE

2510 ~UDY=9: REM ORANGE
2520 FEET=ll: REM PINK
2530 FACE=l2: ~~M GREEN

Now all you need, to put a blue horse with white face and orange feet at
(1o,11), is

To put an orange horse at (19,2) all you need is

t~ K~n SECOND PLAYER'S HORSE

Each of these subroutines, 2000 and 2500, calls subroutine 1000. Things
get to be quite efficient at this stage. Once you have written a good subroutine
that checks for errors, that uses variables you can set in the calling program
(which may be the main program or another subroutine), then you can pyramid
other subroutines upon it. This makes main programs very easy to write. Using
the three subroutines, it is very easy to put up an attractive display of horses.
But first, another handy routine:

CHOOSE A RANDOM PAIR OF

~~I~ X= RND (38)+1
~~~~ V= RND <39)+1 

109 



And, now for the main program 

30 REM CHOOSE A RANDOM POINT 
40 
50 REM PUT A BLUE HORSE THERE 

AHOTHER 
.- .-.. - : : .--. .-.. -.. -.. -. 
t.1 L~ 2 : !j c; .::_; ;.;.1 ;::j i-..:! 

THIS is how a main program should look if you are a good programmer: 
mostly REMs and GOSUBs. The work should be done in relatively short sub
routines, each of which is easy to write , and complete in itself. To see how this 
sample program does its stuff, feel free to use TRACE. 

To make this program even easier to read, you might substitute 
variables-with easily recognized names-for the numbers in the GOSUB 
statements: 

~~ CHOOSEPOINT=3000 

26 ORANGEHOSS=2500 
28 DRAWHOSS=1000 

Now see how easy it is to understand statements such as 

or 

60 GOSUB BLUEHOSS 

110 



CONCLUSION 

This book has presented the core of APPLE's BASIC. If you now go through 
this book again, writing your own programs with the statements that have been 
presented here, you will solidify your knowledge considerably. There are many 
more abilities in the APPLE II; and once you have mastered these, there are 
whole new worlds for you to explore. 

111 



112 





APPLE COMPUTER MESSAGES: THEIR CAUSES AND CURES 

At times, your APPLE will print a message to you that is not the result of a 
PRINT statement in your program. These messages usually indicate that 
some kind of error has been made. All computer systems give error mes
sages. They are part of the milieu. If you think of them as friendly suggestions, 
rather than as nagging reminders, you will find programming all the more en
joyable. Messages fall into four natural groups. The first can occur when you 
are typing a program. The second group occurs during execution of a pro
gram. The third group is associated with responding to an INPUT statement. 
The last group occurs when you are using the cassette tape recorder. Some 
messages are associated with more than one group. 

GROUP I MESSAGES 

These messages usually occur when you are typing in a program or instruc
tion. 

This is the most common message. The APPLE II is saying, "/don't under
stand that. " What you have typed is not a well-formed BASIC statement. Re
think (if necessary) and retype the statement. Sometimes these errors are a bit 
obscure, such as typing the letter Oh for the number zero or vice versa. It is 
never difficult to correct a syntax error. 

You have typed a statement that is too long-that is, one containing more than 
about 127 characters. Break it up into two or more shorter statements. 

The backslash is printed, after several warning "beeps," when you have typed 
a line exceeding 255 characters. Although the characters remain on the sc
reen , the computer forgets all of the statement up to the backslash and lets 
you start over. 

You have typed a number greater than 32767 or less than -32767. Think 
small. 

:+::+:=+= >255 E~~~~ 

Some things in BASIC must not be less than zero or greater than 255: for 
example, the numbers in a PLOT statement. This is the message you get. 
Think smaller, but remain positive. 

114 



GROUP II MESSAGES 

Messages of this type occur most commonly during the execution of a pro
gram. These messages are usually accompanied by a further message 
such as 

which tells you what line the computer was trying to execute when the problem 
was discovered. 

*** BAD BRANCH ~~~ 

If you attempt a GOTO or GOSUB to a certain line number, and that line 
number doesn't exist (perhaps it was erased accidentally), you will get this 
error. 

*** BAD RETURN ERR 
To execute a RETURN, you must be in a subroutine which you reached by 
executing a GOSUB. This message occurs when you try to RETURN from 
some point in the program that was not reached by executing a GOSUB. In 
other words, you have just tried to execute one more RETURN than the 
number of GOSUBs you 've executed. 

To execute a NEXT, there must be some FOR statement that has been exe
cuted, and that hasn't finished its job. This message occurs when you attempt 
to execute a NEXT, without the previous execution of a corresponding FOR. A 
FOR and NEXT correspond when they are followed by the same variable 
name, such as FOR X = 2 TO 5 and NEXT X. 

*** 16 GOSUBS ERR 
An unlikely error to happen. It means that one subroutine had a GOSUB to 
another subroutine that had a GOSUB that went to another subroutine that 
had a GOSUB ... 16 times. The cure? Depends on how the subroutine got 
nested. A program like 

which GOSUBs over and over without any RETURNs will give the message. 
Make sure that each subroutine gets back to where it was called from by 
means of a RETURN. If the message arose because you really had 16 nested 
subroutines, you will have to make your program less ambitious or write out 
one of the subroutines where it is needed. (You may have as many sub-

115 



routines as will fit in your APPLE, this restriction only applies to nested sub
routines.) 

There were more than 16 nested FOR loops. Replace one or more of the FOR 
loops with written-out loops. 

If you don't like this message, make sure that the last statement executed is 
an END. Usually, when this message appears, nothing at all is wrong with your 
program. 

*** MEM FULL ERR 
One way this can occur is if you write a program, or the program uses data, 
that requires more memory than you have installed in your APPLE II. This 
message can also occur when loading tapes, in which case it may not mean 
that memory is full. See GROUP IV messages below. 

If someone is typing in response to an INPUT statement and they type more 
than 128 characters, they will get this message. Tell the person to be less 
verbose. This message can also arise if there are more than 12 nested sets of 
parentheses, as in a complicated arithmetic operation. In this case you can 
break up the expression into two or more simpler expressions. 

If a variable has been dimensioned, and you attempt to dimension it again 
under certain conditions, this message will appear. Just dimension strings and 
arrays once, and this message will not occur. 

This can occur a number of ways: if a subscript to an array is larger than 
allowed by the corresponding DIM statement; if a subscript is less than 1; if 
arguments to HLIN, VLIN , PLOT, TAB or VTAB are too large . In any case, 
make sure that the subscript or argument does not go out of range. 

=+==+==+= >:327E=? EF::F:: 
An INPUT statement or a calculation has given a number greater than 32767 
or less than -32767. Tell the user to INPUT smaller numbers, or make sure 
your program generates smaller numbers. 

116 



=+==+==+= >255 E~:~: 

Some things in BASIC must not be less than zero or greater than 255: for 
example, the arguments to COLOR, PLOT, and TAB statements. If your pro
gram or a user's response to an INPUT statement exceeds that range, this 
message will appear. 

*** STR OVFL ~~~ 
You get this message when you try to put more characters in a string than you 
said you would in your DIM statement. 

Almost any mistake involving strings can give this message. Inspect the of
fending statement, print out any values, and correct the cause. 

Where xxx is a line number. This message usually follows an error message, 
and tells you in which statement the error occured. This message is also given 
when (CTRL) C is typed to stop a program in the middle of execution. 

There are two kinds of messages that begin with a pound sign (#). An exam
ple of the first kind is 

and so on, perhaps filling the screen. These are line numbers being shown, in 
order of execution, as a result of the TRACE feature being enabled . To turn it 
off, type 

and the numbers and pound signs will stop appearing. The other kind looks 
like 

#15 1=55 120 J=3 
and so on . This is the result of a DSP statement in the program, which causes 
each variable named in the DSP statement to be displayed, with its current 
value and the line number, every time it is used in a statement. Eliminate the 
DSP statement(s) if this output is unwanted. 

117 



GROUP Ill 

These messages occur when someone is typing in response to an INPUT 
statement's request. 

000 TOO LONG ERR 
You have typed more than 128 characters. Make your reply shorter next time 
you run the program. This can really mess up a non-programmer who is using 
your program, so warn people not to just type a lot of garbage when using 
your programs that require input. See this message in GROUP II. 

Notice that this message does not have three asterisks in front of it. It means 
that the information typed was not of the sort expected by the INPUT state
ment. The information should be retyped. The program has not been stopped. 
This message usually arises when someone types characters when numbers 
are expected, or types the wrong number of numbers. The best cure is preven
tion: make sure the message that preceeds the user's response is clear. 

GROUP IV 

These messages arise when LOAD ing programs from the cassette tape re
corder. 

*** MEM FULL ERR 
ERR*** MEM FULL ~~~ 

Any one of these three messages means the same thing: the tape has not 
read correctly. When loading, the :+: :+: :+: r·E r·1 FULL E ~'. ~'. usually means that 
the tape has not read correctly. But if it is a long tape and you have a small ( 4K 
for example)machine, it might mean that the program on the tape is too long. If 
the tape was made on your computer, then it can't be too big. If it is a tape 
provided by APPLE or any other source, it should be marked with the memory 
requirements. 

If the program on the tape is not too long, then either the volume control is 
too low or too high, the tone control is not at maximum, or some other problem 
exists in your tape recorder. To check out your tape recorder, follow the in
structions in the material that came with the APPLE. 

118 



MAK™GPROGRAMSRUNFASHR 

You may occasionally wish to make a program run as fast as possible. To do 
this, some of the niceties of programming may have to be sacrificed. For 
example, since it takes time to skip over REM statements, when you are going 
for speed these should all be moved to the end of the program (after the END 
statement). This, like the other tricks being described here, makes the pro
gram less readable and more difficult to debug and modify. But racing cars are 
not made to be comfortable and carry a family of six to a picnic. 

Here are some tips which can be used to speed up your programs: 
1. Omit REMs or relocate them to the end of the program. 
2. Place all subroutines before the main program , with the most commonly 

used subroutines coming first. 
3. Use one-letter variable names. Shorter names run faster. Commonly used 

variable names should appear early in the program. Minimize the number 
of different variable names: reuse the same variable names wherever pos
sible. 

4. Use FOR loops instead of written-out loops. 
5. Place as many statements as possible on one line, separating them with 

colons. It takes time to process line numbers. 
6. Calculate common subexpressions once instead of each time they are 

needed. An example: You wish to test an element of an array T(M), and if it 
is not zero, to let B equal the element squared divided by 5. You could 
write 
I F TCM)#0 THEN B=CTCM)*T(M))/5 
But it would be much faster in execution if you wrote 

Removing extra parentheses also adds speed-again at the expense of 
clarity. Use the rules of precedence. 

7. If a subroutine is called from only one place in a program, write out the 
subroutine as part of the program. GOSUBs and RETURNs take time. If it 
is a short subroutine and is called from only two or three places, you may 
wish to write it out each time it is needed. This trades some memory space 
for speed. 

8. Parts of a program that are executed only once do not need to be com
pressed for speed. Save your attention for those parts of the program that 
run repeatedly, in loops. For example, eliminating a GOSUB (as suggested 
in tip 7) is only worthwhile if the subroutine is called many times, from the 
same point in a loop. 

Remember: these techniques are generally poor programming techniques 
and should only be used if you need to make a program run more rapidly. 
Many of these same tips will make a program fit into a smaller space as well 
as run faster. The exception is tip 7. Unless a subroutine is only one or two 
brief statements long or is called from only one place, using the subroutine 

119 



takes less room in memory than writing it out each time it is needed. Good use 
of subroutines can save a great deal of space. 

There is one method of saving time and space in a program that beats all 
the others combined: find a better method for solving the problem. Since this 
is an encyclopaedic topic (there are hundreds of books and articles describing 
better techniques for solving problems with computers), we offer only one 
idea: when your program works correctly, and you want it to run faster, throw 
the program away (or hide the tape for a few days). Then reprogram the entire 
problem from the ground up. This method really works! 

SOME OTHER FUNCTIONS AND ABILITIES 

These are some miscellaneous items that are part of APPLE II BASIC, but 
were not mentioned in the main body of the book. 

LE-r 
The verb "LET" is allowed (as in LETT =6) for compatibility with earlier BASICs. 
It is not necessary. 

This function returns a unique numerical value for each character. An example 
of its use is: 

which prints a numerical value for the letter "X." This numerical value is the 
ASCII code for the letter. If the value returned is greater than 128 then you must 
subtract 128 from the value to get the standard ASCII code. 
~:c=~:f-~ 
The function SCRN(X,Y) returns a number representing the color of the screen 
at the point (X,Y). 

The function ABS(M) returns the absolute value of M. ABS (4) is 4, ABS (-67) 
is 67, and ABS (0) is 0. 
~:fit-~ 
The Function SGN(M) returns -1 if Mis negative, 0 if Mis zero, and 1 if Mis 
positive. 

There are two instructions, IN# and PR#, that are used to control accessories. 
Directions on how to use these instructions are included with the accessories. 

When two or more NEXT statements occur one immediately after the other, 
as in 
2~::10 f-~E:=-=:T __ I 
21 fi f-~E>=:T ~< 

they may be combined in one statement 
200 f--4E>=~T _J .E ~< s- ~: 

There is also a POP command. See the APPLE II Reference Manual for a 
description of this command, which allows you to leave a subroutine without 
usinga E!mm . 

120 



POKE, PEEK AND CALL 

Underneath the friendly plastic case and convenient BASIC language of 
your APPLE II lurks an even more powerful, but somewhat harder to use, 
naked microcomputer. You may never need to summon this genie (whose 
master, the Monitor, is covered in a separate manual), but you can get in 
touch with it from BASIC. This genie, who is called the 6502, is programmed in 
a language known as Assembly Language-which you do not need to know 
in order to use the APPLE II. However, when you master BASIC, and are 
looking for new worlds to conquer, remember that you can learn what 
lies beneath! 

Some handy programs have been written in Assembly Language and are 
available to you even if you don't program in that language. To invoke these 
programs, you use statements that begin with the word "CALL." For example, 
you might want to clear the screen in the course of a program. Since you can't 
make a program type 

mm 
lmll 

you would include a statement such as 

This instruction inserts an assembler program for clearing the screen into your 
BASIC program. Other CALLs will be explained later. 

Every computer has memory locations. On the APPLE they are numbered 
from -32767 to 32767. Normally, you do not even need to know that these 
locations exist, since BASIC uses them automatically. But, as you will see, 
there are times when you may want to put something into a particular memory 
location, or to see what is in a memory location. Putting something into a 
memory location is done with a POKE command, and examining such a loca
tion is done with a PEEK command. Some useful POKEs and PEEKs are 
covered next. 

REFERENCE LIST OF POKES, PEEKS, AND CALLS 

There are various POKEs, PEEKs and CALLs available in APPLE BASIC. 
The ones most commonly used are explained in full. 

FULL SCREEN GRAPHICS 

To understand the first set of POKEs, you need to understand how the TV 
screen's area is allocated. Up to now, graphics on the screen have been on a 

121 



40 by 40 grid, with four lines at the bottom for text. If you wish, you can devote 
the entire screen to graphics, with no area saved for text. The instruction to do 
this is 

To get back to mixed text and graphics use 

When the entire screen is graphics, you can use Y values from 0 to 47 
instead of 0 to 39. Here's a program that uses full-screen graphics. 

STARRY NIGHT PROGRAM 

110 REM SET TO FULL-SCREEN GRAPHICS 
120 POKE -16302.0 
130 REM CLEAR BOTTOM ur SCREEN 
140 COLOR=0~ FOR 1=40 

lb~ COLOR= RND (15)+1 
170 PLOT RND (40). RND Z4~J 

190 FOR 1=1 TO 60 
200 PLOT RND (40). RND <47) 
210 f·4E>=:T I 

HOW TO INTERRUPT A PROGRAM BY TYPING A KEY 
BID 

The starry night program runs forever until you stop it with a II or 
turn off the computer. But let's say that you wanted it to run until you directed it 
to do something else. You need to be able to interrupt the program without 
stopping it. Change line 190 as follows 

Add this line 

122 



Test the program, it should run as it did before. Now change line 220 and add 
some new lines: 

220 HAS ANY KEV BEEN PRESSED? 
230 IF PEEK (-16384)(127 THEN GOTO 

i --- .-•. -- =-= 1-:S 
- i 0-::.1 C1 C=,,. i;:i 

250 DARK=DARK-30~ IF DARK<0 THEN 

Try the new program. The value at location -16384 is usually less than 127. 
When any key is hit (except for IDI ' mD ' a or ml!D ) 
this value suddenly changes to be greater than 127. Thus by testing this loca
tion every time we go through the loop, we can tell approximately when a key 
has been hit, and make the program do this or that accordingly. It is good form 
always to have the statement POKE -16368,0 right after the PEEK that reads 
the keyboard . This resets the keyboard so that your program can see when 
the next key is hit. At each press of any key (the space bar is especially 
handy) the "sky" will get brighter. Wait a while to see the effect and then hit 
the key again. Finally the value of DARK will be zero and the sky will be fully 
bright-good morning! Then you can press a key again , and have your 
starry sky. 

GENERATING SOUNDS 
As you have seen, 

clicks the speakers of the APPLE II. 

will also click the speaker , and any program which repeatedly PEEKs or 
POKEs the address - 16336 will produce a steady tone. 

THE GAME-CONTROL BUTTON 
You can tell if the buttons on the controllers are being pressed by PEEKing 

- 16287 for the button on controller number zero, and 
-16286 for the button on controller number one. 

Try this program: 

30 PRINT ~BUTTON ZERO= "; PEEK 

123 



40 PRINT "BUTTON ONE= n: PEEK 

The result of the PEEKs in lines 30 and 40 will be greater than 127 if the 
appropriate button is being pressed. 

TIRED OF WHITE ON BLACK? 

The statement 

will make all text printed by the computer appear in inverse (black on white), 
while the text you type will remain white on black. 

will set things back to normal. 

TEXT WINDOWING 

When BASIC comes up, the text appears in all 40 columns. When the cur
sor reaches the end of the bottom line, the whole screen "scrolls" up. Using a 
POKE statement, you can make a smaller area scroll and the rest of the 
screen stand still. The area that scrolls is called the "scrolling window." All 
text activity will occur inside this "window." The POKEs that set the dimen
sions of this window are: 

POKE 32, LEFTEDGE 
POKE 33, WIDTH 
POKE 34, TOP 
POKE 35, BOTTM (we can't use the variable name BOTTOM because of the 
TO in botTOm) 

The values are normally set to: 
LEFTEDGE = 0 
WIDTH= 40 
TOP= 0 
BOTTM = 24 
which results in the scrolling window being the entire screen (40 characters 
per line by 24 lines per screen). POKEing these locations with different values 
will change the dimensions of the scrolling window. After changing the dimen
sions of the scrolling window, you must always move the cursor "into" the new 
window by means of either VTABs and TABs or the statement CALL-936. If 
you forget to move the cursor into the new window, any PRINT statements will 
print in wrong places on the screen and the screen will seem to behave very 
strangely (it will not damage any programs, however). Type this program in: 

124 



10 REM CLEAR THE SCREEN 

~~ REM SET NEW WINDOW DIMENSIONS 
4~3 LEFTE[JGE= 15 

80 REM CHANGE SCROLLING WINDOW 
90 POKE 32.LEFTEDGE~ POKE 33.WIDTH~ 

POKE 34.TOP= POKE 35.BOTTM 
100 REM MOYE THE CURSOR INSIDE THE 

130 PRINT "*";: GOTO 130 

Try changing the dimensions of the scrolling window in lines 40 through 70 
and RUNing the program. To return to the original scrolling window (the entire 
screen, 40 x 24) you can set the variables back to the original values and run 
the program or you can hit EmD and re-enter BASIC using 

II 
II 

lmD will always set the scrolling window to be the entire screen. Have 
fun. 

COMPARING STRINGS 

Two strings may be compared for equality as was done at line 320 in the 
program on page 89. Two strings may be compared for inequality using the # 
symbol. The other symbols used for comparing the magnitude of numbers 
( > > = < < = <> )may not be used with strings. You may not print the result of 
a string compare directly: 
10 PRINT A$ = B$ 
will give you a syntax error, however 
10 C = A$=8$: PRINT C 
is legal , and will print a 1 or a 0 depending on whether A$ is equal to 8$ or not. 
This is a quirk in the language. 

125 



126 



INDEX TO THE APPLE II BASIC PROGRAMMING MANUAL 

-A-

ABS 120 
Absolute value 120 
Accessories 3, 4, 24, 111 
Addition 25, 41-42 , 61 
Adjusting the tape recorder 13-14 
Adjusting the television set 5, 6, 17-19 
AND 59, 61 
APPLE SOFTWARE BANK 3 
APPLESOFT Floating Point BASIC 24 
Argument (of a function) 40 
Arithmetic 25, 41-43 , 61 
Arrays 94 
Arrowhead, upward-pointing 26, 41-42, 61 
Arrow keys, right-pointing and 

left-pointing 12, 53-55, 77, 28-30 
ASC 120 
ASCII 120 
Assembly Language 121 
Assertion 56-61 
Asterisk as prompt 6 
Asterisk as multiply 25, 41-43, 61 
Asterisk in error messages 12, 114-118 
At sign 9, 31 
AUTO 65-67 
Automatic line numbering 65-67 

·B· 
Backslash 24, 56 
Backspace 28-29, 55 
BAD BRANCH ERR 115 
BAD NEXT ERR 115 
BAD RETURN ERR 115 
Ball, bouncing 20, 75-84 
BASIC, getting into 12-13, 23 
"Beep" on a tape recording 15 

on getting an error message 114-118 
on LOADing a tape 13-14, 17, 118 
on pressing CTRL G 10-11 
on pressing RESET 6 
on pressing RETURN 12, 28, 46, 114-118 
on purpose 82-84, 123 
onRUNningaprogram 115-118 
on SAVEing a program 76 
on typing too long a line 24, 114 

BELL 8, 10-11 
Black on white 124 
Blinking square: cursor 6, 11, 12, 13-14, 17, 53 
Bottom of a loop 68-69 
Bouncing ball 75-84 
BREAKOUT 19-20 
Brian 41, 111 
Bricks 19-20, 31 
Bugs in a program 97, 98-101 

-C-
C able for the tape recorder 4, 5 
Cable for the television 4, 5 
Calculator, APPLE II as a 24, 36 
CALL 121 
Capital letters 7 

127 

CASSETTE IN jack 5 
CASSETTE OUT jack 5 
Cassette tapes 4 
Cassette tape recorder 4, 5, 13, 17, 76, 79 
Clearing all variables to zero 38, 97 
Clearing the screen 9-10, 35, 121 
Clearing the computer of stored instructions 46 
CLR 38, 97 
Colon 84 
COLOR statement 32 
Color chart 18, 32, rear cover 
COLOR DEMOS tape 13, 32 
Color names 17 
Color numbers 17, 32, rear cover 
ColorTV 4,17-19 
Columns 30, 64, 68, 72, 74, 104, 124 
Comma 72, 77-78 
Comparing strings 89-90, 125 
CON 52 
Concatenation of strings 92-93 
Continue 52 
Control Characters 1 0 
Controllers, game 4, 5, 20, 36, 49-52, 82 
Co-ordinates 31, 73-74, 104, 122 
Corrections 28-30, 49-51, 53-55 
Crossed loops 71 
CTRL key 10 
CTRLB 11,12-13,16,23,38 
CTRL C 15, 16, 38, 52, 76, 100 
CTRL X 55-56, 66-67 
Cursor 6, 11 , 12, 13-14, 17, 53 
Cursor moves 28-30, 53-55 

-D-

Debugging programs 97, 98-101 
Decimal points 24 
Deferred execution 46, 74, 100, 107 
DEL 5;3, 69 
Delays 84 
Delete 53, 55, 69 
Delete a line 55 
Desk calculator 24, 36 
Dice 40 
DIM 88-90, 94-97, 116, 117 
Dimension 88, 124 
DIM ERR 116 
Displaying variables 100, 107, 117 
Division 25, 41-42, 61 
Division by zero 27 
Dropping through 64, 69 
DSP 100, 107, 117 

-E-
EAR or EARPHONE jack 5 
Editing 28-30, 49-51, 53-55 
END 50 
Entering a tape 17 
Equal, as a replacement sign 32, 36, 39, 88 
Equal, in an assertion 57, 61 
Equal precedence 41 



ERR 13, 114-118 
Error messages 114-118 
ESC key 9, 53, 54 
Escape 9 
Etch-a-Sketch 67-68 
Execution 46 
Exponentiation 26, 41 -42, 61 
Expressions 25, 42, 57 

-F-

F aster programs 84-85, 95, 97, 102, 119 
Fixing program bugs 97, 98-101 
Flow of program execution 107 
Formatting PRINT statements 72-74 
FOR ... NEXT loop 68-72, 116, 119 
FOR error message 116 
Full screen graphics 121-122 
Function 40, 68, 89, 120 

-G-

Game controls 4, 5, 36, 49-52, 82 
Game control buttons 123 
GAME 1/0 socket 5 
GOSUB 106, 115 
GOSUB error message 115 
GOTO 51 , 61-64, 68, 71 , 100, 115 
GR 31 
Graphics 31-36 , 63-64, 104, 121-122 
Greater than 56 , 61, 68, 78, 114-118 
Greeks 94 

-H-

Hindu 8 
HLIN 35 
Horizontal lines, plotting 35 
Horse-drawing program 104-110 
_,_ 

IF ... THEN 61-63 
Immediate execution 46, 74, 100, 107 
Increment 64 
Initial values 38, 97 
IN jack, CASSETTE 5 
IN# 120 
INPUT 77-78 
Integer 24 
Interacting with a program 77-78 
Interrupting a program 122 
Inverse video 124 

-J-

Jacks 5 
Jet Inside front cover 

-K-

Keyboard 6-12 
Keyboard notation 9 

-L-

Largest number 27 
Learning 25, 28, 55 
Left-pointing arrow key 28-29, 55 
LEN 89-90 
Less than 57, 61 , 62, 78 
LET 120 

Limit of a loop 68 
of array size 94 
of line length 23-24 
of memory 121 
of number sizes 27, 33, 34, 68 , 74, 
78, 97, 114-118 
of string length 88-89 

Limiting INPUT 78 , 89, 107 
Line numbers 48-49, 74 
Line numbering, automatic 65-67 
Lines (graphic) 34 

(text) 7 4, 124 
LIST 47, 53 
LOAD 13, 17, 76, 83 
Loading tapes 17 
Loop 51,61-63, 68-72, 119 
Lower case letters 7 

-M-
Main program 106 
MAN 67 
Manual line numbering 67 
MEM FULL ERR 13, 85, 116, 118 
Memory 36, 85, 94, 116, 118, 121 
Menu , COLOR DEMOS 14 
Messages 114-118 
MIC or MICROPHONE jack 5 
Minus 25, 41-42 , 61 
MOD 25, 41-42, 61,95 
Modulo 25 
Modulator, RF 4, 5 
Monitor program 121 
Monitor, TV 4, 5 
MON or MONITOR jack 5 
Multiple DIM statement 89-90 

INPUT statement 78 
NEXT statement 120 

Multiple statements on one line 84-85, 102, 119 
Multiplication 25, 41-42, 61 

-N-

Names of strings 88 
of variables 38 

Negative numbers 27, 41-42, 61 
Nested loops 70-71, 115-116 
NEW 46-48 
NEXT 69 , 120 
NO END ERR 46-47, 50, 116 
NOT 59, 61 
NOTRACE 107, 117 
Number sign 100, 106-107, 117, 120 

-0-
0pening the APPLE II case 5 
Operators, arithmetic 25, 41-42, 61 
OR 60, 61 
OUT jack, CASSETTE 5 
OUT jack, VIDEO 5 

-P-

P addle 36 
Parentheses 40, 43, 61 
Partial string notation 88-90 
POL 36, 49-52, 67, 82 

128 



PEEK 82-83, 121-123 
Pfffsssss 36 
Pigeonholes 36 
PLOT 32 
Plotting lines 34-35 
Plus 25, 41-42, 61 
POKE 121-125 
POP 120 
Pound sign 57, 61 , 100, 106-107, 117, 120, 125 
Power cord 4, 5 
POWER light, keyboard 6 
Power switch 5, 6 
PR# 120 
Precedence 41-43, 61 
Prime numbers 94 
PRINT 23-24, 36, 72-74 
Program, definition of 48 
Prompt character 12, 14, 16, 17, 23 

-Q-

Question mark 77 
Quotes 37, 88 

-R-

Random numbers 40 
RANGE ERR 33, 97, 116 
Reading tapes 15, 17, 83, 118 
Recorder, cassette tape 4, 5, 13, 17, 76, 79, 118 
Recording programs on tape 76 
REM 64, 119 
Remainder 25 
Remarks 64 
Repeat key 11 
Replacing a character in a statement 28-30, 

53-56 
a line in a progam 50-51, 53-56 
the value of a variable 32, 36, 39 

REPT key 11 
Reserved words 38 
RESET key 6, 11 , 38, 97 
RESET, if hit by mistake 16 
Resetting all the variables to zero 38, 97 

from AUTOmatic li ne numbering to MANual 67 
from DSP display of variables 100, 107, 117 
from GRaphics to TEXT mode 31, 63 
from TRACE mode to NOTRACE 107, 117 
from text scrolling window to full screen 63, 125 

Restarting a program 52 
Return (a value from a function) 'lo 
RETURN key 10, 15, 27 
RETURN statement 106 
RETYPE LINE 118 
RF Modulator 4, 5 
Right-pointing arrow 30, 53-54 
RND 40, 64, 65, 90-91 
Roman 8 
Rows 31, 63, 68, 74, 104, 122, 124 
RUN 14, 15, 17, 46-47, 52-53 

-S-

S AVE 76, 79 
Saving a program on tape 76, 79 
Scanning through a string 89-90, 125 
SCRN 120 

Scrolling 52, 124-125 
Scrolling window 63, 124-125 
Segment of string 88-90 
Semicolon 72 
Setting the tape recorder 13-14 
Setting the television color 17-19 
SGN 120 
SHIFT keys 7, 9 
Sketching programs 67-68 
Smallest number 27 
Small letters 7 
Sounds 82-84, 123 
Spaces 25,55, 73,89,90 
Speed of execution 84-85, 95, 97, 102, 119 
Square root 98 
Square, blinking: cursor 6, 11, 12, 13-14, 17, 53 
STEP 70 
STOPPED AT message 97, 115, 117 
Stopping the computer 15, 52, 76, 100, 122 
Storing a program statement 46 
Storing data in an array 94-95 
STR OVFL ERR 90, 117 
STRING ERR 90, 117 
Strings 88-93 
Subprogram 1 06 
Subroutines 104, 114-116, 119 
Subscripts 94, 97 
Subtraction 25, 41-42, 61 
Switch, power 5, 6 
SYNTAX ERR 12, 13, 23, 33, 38, 114 

-T-

TAB 73-74 
Tape cassettes 4 
Tape recorder 4, 5, 13, 17, 76, 79, 118 
Teletype 11 
Television set 4, 5, 6, 17-19 
TEXT 31, 63 
Text in graphics mode 31-32, 34, 63, 121-122 
Text windowing 63, 124 
THEN 62 
Tone generation 82-84, 123 
TOO LONG ERR 23, 114, 116, 118 
Top of a loop 68-69 
TRACE 106-107, 117 
Truth 25, 28, 56 
TV monitor 4, 5, 6, 17-19 

-U-

Unequal 57,61,125 
Usual procedure (for loading tapes) 17 

-V-

Value of variables 38 
Variables 37-38, 94, 97 
Vertical lines, plotting 35 
Vertical TAB 74 
VIDEO OUT jack 5 
VLIN 35 
Volume Control on TV 6, 18 
Volume Control on recorder 13-14 
VTAB 74 

129 



-W

Warranty 3 
Window 63 
Windowing text 63, 124 

-X-
X Co-ordinate 31 , 73-74, 104 

-V-
y Co-ordinate 31, 73-74, 104, 122 

-Z-
Zero 8, 38, 48, 58, 97 
Zero, division by 27 
Zombie 27 

-Cast of CHARACTERS-

In order of their appearance in the American Standard Code for Information 
interchange (ASCII). The number in parentheses is the ASCII code for the 
symbol. 
BELL (7) 8, 10 
ESC (27) 9 
Space (32) 25 , 55, 73 , 89 , 90 
" (34) 29, 37 
# (35) 57, 61, 100, 107, 117, 120, 125 
$ (36) 9, 88-93 
% (37) 10 
( (40) 40, 43, 61 
) (41) 40, 43, 61 
* (42) 6, 25, 41-42, 61 
+ (43) 25, 41-42, 61 
' ' (44) 7, 72, 77-78 
- (45) 25, 41-42, 61 
. (46) 7, 24 
I (47) 25,41-42,61 
0 (48) 8, 56 
1 (49) 8, 56 
2 (50) 
3 (51) 
4 (52) 9 
5 (53) 10 
6 (54) 
7 (55) 
8 (56) 
9 (57) 
: (58) 84 
; (59) 72 
< (60) 7, 57, 61 
= (61) 32, 36, 39, 57, 58, 61, 88 
> (62) 7, 11, 12, 14, 16, 17, 23, 27, 

34, 56, 61 , 114-117 
? (63) 77 
@(64) 9 
A (65) 
B (66) 
c (67) 
D (68) 
E (69) 
F (70) 
G (71) 8 
H (72) 
I (73) 
J (74) 
K (75) 

L (76) 8 
M (77) 8 
N (78) 26 
0 (79) 8 
p (80) 
Q (81) 
R (82) 
s (83) 
T (84) 
u (85) 
v (86) 
W(87) 
x (88) 
y (89) 
z (90) 
\ (92) 
l (93) 
A (94) 

130 

24, 56, 66-67 

8 
26, 41-42 , 61 





'- applcz cornputczr inc~ 
10260 Bandley Drive 

Cupertino, California 95014 


	Front Cover
	Table of Contents
	Ch. 1: Introduction
	Ch. 2: Beginning BASIC
	Ch. 3: Elementary Programming
	Ch. 4: Strings, Arrays & Subroutines
	Appendices
	Index
	Back Cover



