
l•l(t))l!l

Alan G. Porter and Martin G. Rezmer·

BASIC Business Subroutines
for the

Apple Ir· and II e

BASIC BUSINESS SUBROUTINES
FOR THE APPLE II AND lie

BASIC
BUSINESS

SUBROUTINES FOR
THE APPLE II

AND lie

ALAN G. PORTER
MARTIN G. REZMER

.,•., Addison-Wesley Publishing Company
Reading, Massachusetts • Menlo Park, California

London • Amsterdam • Don Mills, Ontario • Sydney

This book is in the
Addison-Wesley Microcomputer Books
Popular Series

Cover Design: Marshall Henrichs

Apple II, Apple lie, and Apple II Plus are registered trademarks of the Apple Computer Co.

Library of Congress Cataloging in Publication Data
Porter, Alan (Alan G.)

BASIC business subroutines for the Apple II and lie.
(Addison-Wesley microbooks popular series)
Includes index.
1. Apple II (Computer)-Programming. 2. Apple lie

(Computer)- Programming. 3. Basic (Computer program
language) 4. Business- Data processing. I. Rezmer,
Martin. II . Title. III. Series.
HF5548.4.A65P67 1984 001.64 '25 83-15833
ISBN 0-201-05663-1 (pbk.)

Copyright © 1984 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieva l
system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the
publisher. Printed in the United States of America . Published simultaneously in Canada .

ISBN 0-201 -05663-1

ABCDEFGHIJ-HA-8987654

PREFACE

Is there life after the Applesoft Tutorial? This book is a first step in the
quest for the answer to this question. After reading the Tutorial cover to
cover several times, you may still find it difficult to perform certain func
tions with your Apple computer. Even though you are armed with an
understanding of how INPUT, PRINT, and FOR-NEXT work, you may still
have difficulty putting them together in a meaningful order. You know
what you want the computer to do, but you are not a professional pro
grammer, so you do not know how to make the computer do it. In this book
we present solutions to some of the most frequently encountered
programming problems. We define what each problem is, show how to
solve it, and give an exact solution (a program) in Applesoft BASIC. We
also explain how you can modify the program for your own needs. The
basis here is to learn efficient programming techniques and good style by
example-a very powerful teaching method.

v

PREFACE

vi

This book is intended for use by people with widely varying skill
levels-from the enthusiastic novice to the advanced programmer. Each
chapter will provide you with tools and building blocks to be used in
programs you will create in the future.

The material is presented in modular fashion. That is, the materials
from Chapter 2 (an input line editor) are expanded on in Chapter 3 to
create a screen editor, and so on. The end result is a set of tools that can
be used in every program you write. With these tools your programs will
be more professional and easier to use, take less time to write, and be
able to be modified easily when change becomes necessary.

Our special thanks to the following people: Carol Beal, Tom Bell,
Zach Bovinette, Kathy Cukar, Takeshi Endo, Barb Odom, Vicki Porter,
Jim Speir, Hal Tobin, Shelley Wright.

CONTENTS

PROGRAMMING FUNDAMENTALS
Introduction
Subroutines: What They Are and How to Use Them
Programming Style
Writing Your Programs
Make the Apple Work for You
About the Structure of the Book

AN INPUT LINE EDITOR FOR APPLESOFT BASIC
Introduction
Line Editor Test Routine
Basic Line Editor Program
Displaying a Cursor
Processing a Key
Processing Control Keys: Editing Routines

Chapter 1

1
1
2
4
8
9

11
Chapter 2

13
13
17
20
33
35
39

•• VII

CONTENTS

User Instructions 49
Complete Line Editor Program 50

Chapter 3

SCREEN TEXT EDITOR 61
Introduction 61
Part 1: Text Editor Program 64
Screen Editor Control Character Commands 70
Summary of Part I 80
Part 2: Complete Text Editor Program 81
Command Display and Processor 82
Enhancements 96
Merging Programs by Using EXEC 96
User Instructions 97
Complete Screen Text Editor Program 101

Chapter 4

ANSWERING USER HELP REQUESTS 111
Introduction 111
Help Program 113
Pause Subroutine 118
Turning INVERSE On and Off 119
Help Test Routine 120
User Instructions 121
Complete Help Program 122

Chapter 5

A DATA ENTRY SCREEN PROCESSOR 125
Introduction 125
Creating a Data Entry Screen 128
Sample Variable-Exchange Routine 130
Data Entry Program 131
Changes to the Help Subroutine 135
Subroutine for Setting the Field Parameters 136
Displaying the Original Values 138
Editing Subroutine 139
Additional Option 142
User Instructions 143
Complete Data Entry Screen Program 145

Chapter 6

A MENU SYSTEM 151
Introduction 151
Menu Program 154

...
VIII

Explanation of Program
Sample Menu Screen
User Instructions
Complete Menu Program

REPORT GENERATION
Introduction
Philosophical Considerations
Simple Report Generator
Program Features
Complete Report Generator Program

PERSONALCALENDAR:ASAMPLEPROGRAM
Introduction
Basic Calendar Program
User Instructions
Complete Personal Calendar Program

INDEX

155
159
160
161

165
165
166
168
170
174

179
179
183
198
200

223

CONTENTS

Chapter 7

Chapter8

ix

CHAPTER

PROGRAMMING
FUNDAMENTALS

1

INTRODUCTION

This book is divided into the following subject areas:

• The input of data , Chapter 2,

• Data storage and manipulation, Chapters 3-6,

• Outputting the data, Chapter 7,

• Putting it all together, a summary exercise, Chapter 8.

Subroutines are provided that show you how to input data into the com
puter, how to store and work with this data, and then how to output the
data to the screen or printer.

The final chapter provides a stand-alone program that summarizes
all of these techniques into a personal calendar program.

1

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

In this preliminary chapter we will discuss subroutines, program
ming style and technique, and efficient methods for writing and testing
your own programs. We will also present the common structure used in
the succeeding chapters in order to prepare you for getting the most out
of this book.

SUBROUTINES: WHAT THEY ARE AND HOW TO USE THEM

2

Simply stated, a subroutine is a program that is used over and over again
in one program or in many programs. A subroutine can be as small as two
lines or as large as several thousand lines. In general, however, subrou
tines are kept small so that they will be understandable and manageable.
Ideally, a subroutine will only perform one function, such as allowing
alphanumeric input from the keyboard. By performing only one function,
it will always behave as expected, and you will not be surprised by an un
usual response. If a subroutine is to perform several functions, it can be
made up of several single-function subroutines that are nested together.

A subroutine is distinguished from a "regular" program by two
BASIC statements: GOSUB and RETURN. A GOSUB is used by the "call
ing" program (the main or originating program) to access the subroutine,
and a RETURN is used by the subroutine, upon completing its task, tore
turn to the calling program. Except for these two statements, a subrou
tine is a regular BASIC program.

GOSUB-RETURN When the program encounters GOSUB, it uncondi
tionally branches to the referenced line number. Upon encountering
a RETURN, the program branches back to the statement immediately
following the most recently executed GOSUB.

EXAMPLE

5000 GOSUB 6000
5100 PRINT X%*3
5200 END
6000 INPUT
6100 RETURN
RUN
?100
300

CHAPTER 1 PROGRAMMING FUNDAMENTALS

In this GOSUB example, when line 5000 is encountered, the program
execution sequence jumps to line 6000 and asks for the input of X%.
The number 100 is input from the keyboard (see the line following
RUN). Then execution resumes at line 5100, and the result of X%*3
(which is 300) is printed on the screen.

The reason for the existence of a subroutine is fairly straight
forward: to make the computer do as much of your work as possible. If
you have a function in your program that is required several times, you
have the option of retyping the function in several places or typing it in
once, adding RETURN as the last line and using a GOSUB when you want
to use it. Why should you do all the work when the computer will gladly
do it at the mere typing of the command GOSUB? Subroutines serve one
additional purpose: They make the programs consistent. If the same sub
routine is used throughout your programs, then this function will be per
formed exactly the same way each time. You will not have to remember
the exact details of how it works everytime you wish to use it in the pro
gram.

To visualize a subroutine, we can think in terms of any function or
action that is done repeatedly. By using a subroutine to perform this
action, we are always assured that it will be performed exactly the same
way each time we need it. Let's use a common example to illustrate this
point. How do we start our car? A modern automobile simply requires us
to get in and turn the key. The manufacturers have created a "subrou
tine" (actually, a group of subroutines nested together) to perform there
quired tasks for us when we turn the key. The action of turning the key
starts the subroutine chain that does the following tasks:

• Determines if the choke is needed,

• Turns on the fuel pump,
• Runs the electrical system checkout,

• Engages the starter.

And we are done. We get the same results everytime-unless the system
has broken down on us!

The following chapters will present a series of subroutines that you
may use in your own programs. These subroutines present only one of
many possible ways to solve the problem and may be modified for your
own requirements.

3

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

PROGRAMMING STYLE

4

We like to consider computer programming as an art form. As with all art
forms, the creator has a "style." This style can determine whether the
creation is a work of beauty or something else. Some of us were not born
with enormous amounts of style; we have to study others and copy where
we can. Style also evolves with time; most of us get better as we gain ex
perience. We rarely, however, go back to an older creation and improve
or update its style. It is therefore important to do as good a job as possible
the first time through.

The subroutines in this volume reflect our style. Some people will like
it, and others will not; but that is art. In the following subsections we sum
marize some of the elements of our programming style. The elements of
style that are most important are those that lead to an increase in under
standing and readability of the program. We try to adhere to them as
much as possible, but, being human, we do slip from time to time. We
hope that by studying our style, you will be able to add those characteris
tics that you like to your own style.

Meaningful Variable Names

It will come as no surprise to you that not all variable names are mean
ingful. Even a variable name that is meaningful to you may be totally con
fusing to another person reading your program. Part of this problem
stems from Applesoft BASIC, which only recognizes the first two charac
ters in a variable name. Although BASIC may consider only the first two
characters, there is nothing that restricts the use of longer names if you
keep the first two characters unique. Thus it is our convention to use as
long a name as necessary to clearly define the variable being addressed.
Sometimes, the first two characters are a little unusual, but we can still
understand what the variable is to be used for.

It is important to remember that for programs in BASIC, variables
are used by the entire program. Any variable may be assigned a value at
any point in a program, and that value can be used at any other place in
the program. This procedure is how information is passed to and from
subroutines. Before calling a subroutine, we assign values to the vari-

CHAPTER 1 PROGRAMMING FUNDAMENTALS

abies used by that subroutine. After the subroutine has completed its
task, those same variables are still available for use by the rest of the
program, even though some of the values may have changed in the sub
routine.

Line Numbers and Subroutines

We use lots of subroutines in our programs. Since we must use line num
bers and not labels (names) to address subroutines, how do we keep them
all straight in our mind? We do not renumber the subroutines. Once a
subroutine is created and assigned a starting line number, we keep that
line number intact. It may look nice to have an entire program evenly
numbered, but even numbering is not worthwhile if the subroutines keep
moving around. Therefore, we only renumber the main program sections
if we must; we do not renumber the subroutine sections.

Our choice of line numbers was not random. There was a plan.
First, we wanted you to be able to add these routines to existing pro

grams, and since most people tend to use smaller-value line numbers, we
elected to use larger-value line numbers. This way our routines will not
conflict with yours

Second, by carefully selecting line numbers, we can make a program
run as fast as possible. When BASIC looks for a line number (as in
GOSUB 10000 or GOTO 11000), it first checks to see if the current line
number is larger or smaller than the one being searched for. If the cur
rent line number is smaller, it begins the search for the desired line
beginning at the current line. If the current line number is larger, it be
gins the search with the first line number in memory.

For example, consider the following program:

100

1000 PRINT "HELLO"
1100 GOSUB 2000
1200 GOTO 1000
2000 PRINT "RANDY"
2100 RETURN

5

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

6

When BASIC executes line 1100

GOSUB 2000

it begins the search for line 2000 at line 1200. But when it executes line
1200

GOTO 1000

it must begin searching at the first line in memory, which is line 100.
If this program were a large one, a lot of time would be wasted going

from line 100 to line 1000, simply because there a re a lot of line numbers
to check. However, getting to line 2000 will be faster because there are
fewer line numbers to check. Therefore, because of this characteristic of
BASIC, we have tried to place subroutines at a line larger than the line
calling the GOSUB or GOTO. Obviously, this technique is not always pos
sible, but it is an easy constraint to live with.

Remark Statements, or What's This?

Most programmers fail to use enough remark (REM) statements in their
programs.

REM REM statements are nonexecuting line statements. They are used
in programs to provide notes and reminders to the original program
author and to others who may subsequently need to go back into the
program and figure out its purpose or method.

EXAMPLE

1090 REM
1095 REM
1100 REM
1105 X = 11.005 REM THIS IS A FIXED VALUE
1110 y = 5.026 REM THIS IS A FIXED VALUE
1115 REM
1120 REM
1125 REM

CHAPTER 1 PROGRAMMING FUNDAMENTALS

In this example lines 1090-1100 and 1115-1125 are used to isolate
what is found between them. This technique makes the program eas
ier to read and calls attention to lines 1105 and 1110. The remarks
after lines 1105 and 1110 indicate what the values in these lines are,
where they carne from, or what they are used for. In your remarks,
use any description desired to remind yourself just what these lines
are doing.

When the original author of a REMless program is gone, who will
support and modify the work? Usually, no one; the REMless program will
be thrown out and rewritten from scratch by another programmer.
Therefore it is good practice to use remark statements as much as possi
ble to help both yourself and subsequent users of a program.

In the programs in this book we have used remark lines to separate
major sections of the program and to clearly explain, in detail, how it
works and what it does. We use remarks wherever possible in the body of
a routine to help clarify the processes it is going through. Even groups of
blank REM lines add to the clarity of a program by being used to separate
the text.

Since program branches, such as GOTO and GOSUB, use line
numbers, we use a remark with each one to clarify where the program is
going. We also often branch to a REM line that contains the meaning of
the routine.

Regardless of who you are or what your position is, the debugging of
a program is tedious. But the more remarks you have in a program, the
sooner you can fix it and get on to another program.

Multiple Statements on a Line

Most versions of the BASIC language allow you to put several program
statements on the same line, usually separated by a colon. Applesoft also
allows this procedure. In general, this technique is a poor one, and we do
not use it or recommend it, but it does enhance the execution speed of
completed programs by eliminating the need to process the extra line
numbers. Also, certain commands such as IF-THEN statements frequent
ly require multiple commands on the same line, and they are acceptable
there. However, if the line is very long, it should probably be made into a

7

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

subroutine and a GOSUB used. As far as we are concerned, only REM
statements should be tagged onto a line. So please feel free to add on
REM statements as often as you like.

WRITING YOUR PROGRAMS

8

Once you begin to write your own programs, your own personal program
ming style will develop, which may be very different from ours as we
have described it so far. However, all of your programs should incorpo
rate two important features: They should be user friendly, and they
should be tested.

User-Friendly Programs

A user-friendly program is also a programmer-friendly program. A pro
gram is considered to be user friendly if it is understandable , predict
able, and easy to use. If the program meets these requirements , then the
user will be friendly to the programmer. If the program does not meet
these requirements, then the user will be very unfriendly to the program
mer. Therefore the easier it is to use your program, the happier everyone
will be.

Testing Your Programs

All programs should be thoroughly tested before they are given to users.
Testing is time-consuming; and the larger a program is, the more vari
ables and conditions there are to test. However, you must remember that
a running program is the most essential element of a program that is user
friendly, and the only way to verify that a program works is to test it. We
readily admit that we have delivered programs that users subsequently
found errors in. Unless you spend years testing, you may never find all
the errors in your programs, but you must try to be as thorough as pos
sible. If you test a program in steps, as it is being developed, many prob
lems can be discovered and corrected before they become serious. It is
also beneficial to have another person test your work as you progress. A
second opinion can be very valuable.

CHAPTER 1 PROGRAMMING FUNDAMENTALS

MAKE THE APPLE WORK FOR YOU

The whole purpose in writing a program is to have the computer do some
of your work. When you design the program, think about the problems
that may arise and how they can be solved by the computer automatically
as they are encountered. Once again, user-friendly software is program
mer friendly. This idea gets us back to the building block concept.

The building blocks we are providing in this book are intended to
make the Apple work for both the programmer and the user. The pro
grammer benefits by being able to use ready-made pieces over and over
again, and the user benefits by having a consistent and professional pro
gram to work with.

We suggest that you purchase a software development system or tool
kit. There are several different products available. One such product
that is an invaluable aid to development is the Apple DOS Tool Kit. It con
tains many programs, including the Programmer 's Aid. This program can
renumber and merge programs, remove remark statements, and produce
a variable cross-reference table. This program will come in very handy
for those planning to write their own software. The new Apple lie comes
with a merge program and a renumber program on diskette, but it lacks
the other helpful programs.

Other hints for making the Apple work for you are given in the fol
lowing subsections.

Review the Reference Manual

Before you start reading the next chapter, we recommend that you
review two sections of the Applesoft Basic Programming Reference Man
ual. They contain some helpful and informative suggestions. Our com
ments on some of these points follow.

First, read Appendix D, "Space Savers." The following hints are
given there:

• Hint 1. "Use multiple statements per line. " This technique is not a
good one. The readability of the program by you or anyone else is
greatly hindered by multiple statements on a line, making the pro
gram much more difficult to debug.

9

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

10

• Hint 2. "Delete all REM statements." This procedure is a good idea
after the program is completely debugged.

• Hint 3. "Use integer instead of real arrays whenever possible. " A
very good idea.

• Hint 4. "Use variables instead of constants. " Another very good
idea.

• Hint 6. "Reuse the same variables." This procedure can be danger
ous. If you must do it, then pick a certain combination of letters to
represent your "garbage" variables and use the same ones through
out your programming.

• Hint 9. Using X= FRE(O) to houseclean old strings is a good thing to
remember and to do.

Second, read Appendix E, "Speeding Up Your Program." The follow
ing hints are given there:

• Hint 1. "Use variables instead of constants. "

• Hint 2. "Place the most frequently used variables at the top of your
program.' '

• Hint 4. " Frequently referenced line numbers should be located as
early in the program as possible. "

These three hints can't be emphasized enough-these are the small
things that make a big difference.

Note: The Apple lie owners will not find these same hints in their
manuals. In this case newer is not better.

Apple II Family Differences

The introduction of the Apple lie with the 80-column card necessitated
some changes so that this book is useful for all Apple II users. All of our
examples and test programs are formatted for 40-column screens while
at the same time working with the lie 80-column card activated. Satis
fying both requirements at once meant that we had to make compromises
in our programs. The FLASH command is an excellent example. This
command gives your menus and screens a very commanding presence,

CHAPTER 1 PROGRAMMING FUNDAMENTALS

but it does not work when the SO-column card is activated. If you are
working in 40 columns, you can implement FLASH in the same way as
you implement INVERSE (shown in a following chapter).

The SO-column card can also be turned on and off, and its presence
can be checked for under program control. Checking for card presence is
done by PEEKing memory location C300 and comparing the first ten bytes
found with the first ten bytes of the SO-column card ROM.

Perhaps the strongest single factor in favor of the 80-column card is
the availability of uppercase and lowercase letters. They provide the
most aesthetic screens and are highly recommended if available.

ABOUT THE STRUCTURE OF THE BOOK

The real learning experience in this book lies in the programs that are
supplied. Although individual cases may vary, probably the easiest way
to read this book is to go through the text of each chapter lightly to get a
feel for what is to be done. Then study the programs carefully and study
how each was created (recall the learning-by-example statement from
the Preface). Diagraming the flow of the program can be very helpful.
Read the text again in more detail, and then type in the program, verify
ing your progress at each test point. Next, start your debugging pro
cess-correcting the mistakes made in the entry of the program. By the
time the debugging is done, you will have a good feel for what we have
presented. Please enjoy yourself, and remember to back up your diskettes
as you go.

The following chapters are divided into sections such as design, user
features, and programmer features. In using these section topics, we are
trying to structure your thinking to help you create programs more effi
ciently. Here are the points we are trying to make:

Design
User features

Programmer features

Define the basic program function.
Define specific user functions and the spe
cial conditions to be met.

Define specific features needed to meet
the design criteria.

11

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

12

As each new BASIC command is encountered in the text, we will pro
vide a brief explanation and example. These examples are given to re
fresh your memory only, and we suggest that you review your Applesoft
II reference manual for more detail, as needed.

The format of the program listings in the chapters that follow cannot
be precisely duplicated on the Apple II. We have taken artistic license in
the placement of the remark statements (through the use of our word pro
cessor) to make the listings easier to read.

Many of the chapters build on one another. For instance, the pro
gram presented in Chapter 2, the line editor, gets combined with the addi
tional material in Chapter 3 to yield the screen editor. The following list
describes which chapters are added together to yield the new one:

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7
Chapter 8

Stand-alone

Chapters 2 + 3

Stand-alone
Chapters 2 + 4 + 5

Chapters 2 + 4 + 6

Stand-alone
Chapters 2 + 4 + 5 + 6 + 7 + 8

For Chapters 2 and 3 the programs are entered by using the Apple's built
in editing capability, which is limited and cumbersome. Once you have a
finished product from Chapter 3, you can use the resulting screen editor
to enter and debug the programs in the remaining chapters-a real time
saving tool.

CHAPTER

AN INPUT
LINE EDITOR FOR

APPLESOFT BASIC

2

INTRODUCTION

One feature is common to almost every program: The program asks a
question and the user types in an answer. In a BASIC program you nor
mally get the user 's answer by using an INPUT statement.

INPUT The INPUT statement requests an input from the user at the
keyboard, and the program will not proceed until the input is made.

EXAMPLE

5000 INPUT AGE%
5100 PRINT AGE%*2
RUN
?34
68

13

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

14

In this example line 5000 causes the user to be prompted, by a
question mark on the screen, to supply a number for the variable
AGE% (34). Once the number is typed in at the keyboard, line 5100 is
executed, and the result (68) is printed on the screen.

The INPUT statement, however, accepts all user input , and the
Apple itself only allows rudimentary editing. The programmer tests every
entry for a valid response (i.e., a number in the proper range, or a name
with only alphabet characters), and the user reenters the information if
an error is detected. This process is repeated for every INPUT statement.

Why not have the Apple do some of the programmer's work and at
the same time give the user some additional editing capabilities? This
task can be done with a line editor. A line editor is a subroutine that
accepts data entered on the keyboard and processes any special editing
characters entered. These characters perform such functions as insert
ing a space or deleting a character. The line editor is also used to control
the exact characters the user is allowed to enter. For example, you could
restrict the user to entering numbers only, with :rio other characters
allowed, or you could ask for a simple yes or no response. Of course,
many more functions are available with a line editor.

The line editor program is one of the largest routines in this book. It
is presented first because it is used as a building block for most of the
routines in the following chapters. We have attempted to present this
routine in an understandable manner, but don't be too concerned if you
must reread a couple of sections before understanding it.

The development of the line editor program in this chapter will pro
gress through a discussion of the major components needed, the methods
for displaying the cursor and processing input keystrokes, some editing
routines, and finally a set of user instructions. The sections that immedi
ately follow will review the thought processes we want you to go through
each time you consider a programming problem.

In this chapter, as in all the following chapters, you will encounter
program modules that are to be entered into your computer and de
bugged. These modules will ultimately result in complete working pro
grams, one for each chapter of the book.

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

Design

Before writing a computer program, you must define what problem is to
be solved and exactly what you want the program to do-a task we call
design. The problem we wish to begin solving in this chapter is an un
friendly-user interface to the computer. The INPUT statement does not
allow editing of existing text or any program control over what the user
enters. INPUT does not display the default or existing value; therefore
the user cannot edit an existing value. The solution to these problems is a
line editor.

What general characteristics should the line editor have? It should
display the original text, if any, and allow the user to edit it. Periods
should be used to show the user the maximum number of characters that
can be entered. For example, to enter a field (a piece of information the
user is entering or editing) 10 characters long, we could have the follow
ing displays:

Hello
110 . 27

Our line editor includes these features.
The editor should also allow the user to edit and correct mistakes in

the text. We want the computer to do some error checking for us, so the
line editor should be able to selectively control the type of data entered. It
should be able to force numeric entries, or a yes or no response, or to
accept any text. Also, since one of the most useful features of a program
is an on-line help capability, the line editor should be able to notify the
program of a user 's help request. All these features are incorporated in
our line editor program.

User Features

The specific features of the line editor can be divided into those directed
toward the user and those directed toward the programmer. We will
address the user features first.

15

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

16

It would be nice if the user could correct typing mistakes in addition
to being able to move the cursor left and right. So we implement these
editing functions :

• Move cursor left one position.

• Move cursor right one position.

• Skip to the previous word.
• Skip to the next word.
• Skip to end of line.

• Insert a character and slide the text to the right.

• Delete the current character and move the remaining text to the left.

• Delete text from the current character to the end of the line.

Another user feature of the line editor is that it will show one period
per allowed character on the screen; the programmer will select the
maximum allowable number of characters per field when setting up the
screen. This feature is handy, for example, when the user is working with
items such as zip code fields, where only five spaces are required, or
names, where one space is needed for a middle initial.

As mentioned, an important part of any program is the on-line help
system. The line editor supports the help system by allowing the user to
request help by striking control Q. (The help system will be presented in
detail in Chapter 4.)

Programmer Features

The programmer's features relate to how the programmer interfaces to
the line editor. This interface should be as simple as possible, because we
do not want it to add more work in creation than it saves in entry. Thus
for the basic editor we require four pieces of information:

1. Screen row number where the input is to take place,

2. Screen column number where the input is to take place,

3. A "mask" to define the type and the length of the field,
4. The original text to be edited, if any.

A mask allows the programmer to specifically define what is going to
be entered and how many characters are going to be entered. That is,

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

the program tests the input and rejects any that does not meet the mask
requirement. For instance, suppose we want a zip code to be entered.
Then we will have the program accept only numerical input up to five
spaces. Nonnumeric input is rejected, and any input over five spaces is
rejected. In this case we are using a numeric-only, five-space mask.

The line editor accepts four types of input data: help request, num
ber, yes/no, and any text. The yes/no field only accepts the letters Y or N,
and the any-text field accepts any printable ASCII character. A number
field may contain the following symbols:

- 0 0 1 2 3 4 5 6 7 8 9

A Word of Advice

Before you start to enter the first lines of the program given in the next
section, we have several suggestions.

First, it is important to type in the program with all of the remark
statements intact. The REMs will help you in the debugging of the pro
gram, and they are also used as entry points for most of the GOSUBs.

Second, Apple has kindly included some elementary editing capabil
ities in the Apple II computer family . Use of this built-in editing ability can
save many hours of time and frustration in the entry of the line editor pro
gram presented in this chapter and the screen editor program in Chapter
3. The editing commands are not exactly the same for all members of the
Apple II family, so please check the following references for your specific
machine:

• Apple II and Apple II+ : page 116 of the Applesoft Tutorial , middle of
the page-the ESC I, ESC J, ESC K, or ESC M.

• Apple lie: pages 71-86 of the new Applesoft Tutorial for all of the
above plus expanded ESC commands.

LINE EDITOR TEST ROUTINE

The program segment that follows is the first program module you will
enter in your computer. This module is the first of many you will enter in
this chapter and succeeding chapters. The programs (one for each chap-

17

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

18

ter) are broken down into modules for two reasons. First, it is easy to
understand and enter small modules. Second, it is far easier to debug
small pieces of code than to debug large pieces.

This first module is a test program for the line editor modules pre
sented in succeeding sections of the chapter. It allows you to define a
field at any location on the screen and then use the line editor to input
and edit.

The line editor test routine program is as follows:

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
50000
52130
60000

REM
REM LINE EDITOR TEST ROUTINE
REM ASKS FOR INITIAL CONDITIONS THEN
REM USES THE LINE EDITOR.
REM
HOME
INPUT "ENTER MASK "; MASK$
INPUT "ENTER TEXT ";ENTRY$
INPUT "ENTER ROW ";ROW%
INPUT "ENTER COL "; COL%
HOME
GOSUB 50000 REM THE LINE EDITOR
VTAB 20
PRINT

IT

IF HELP% = 1 THEN PRINT "HELP REQUESTED "
PRINT
PRINT ">";ENTRY$;"<"
VTAB 24
INPUT "ENTER (CR) TO CONTINUE OR END TO EXIT "; A$
IF A$ < > "" THEN END
GOTO 60
REM
END
REM BASIC LINE EDITOR
REM DISPLAY TEXT$
RETURN : REM UNIVERSAL RETURN FOR TESTING

At the end of the test routine, note the many strange line numbers.
Each line number represents a subroutine that may be called but isn't

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

written yet. By including the line number, we prevent our getting an error
message later. The RETURN on line 60000 sends the program back to the
calling program. As each routine is entered, we simply overwrite and
thus erase a line number as it is used.

TEST POINT

Test points, encountered here for the first time, will appear regularly
from now on to enable you to test each program module before adding it
to the next module. We will point out the most pertinent conditions to test
for, simplifying your debugging to small modules.

Perform the following steps after the line editor test program has
been entered:

1. Save the program on your disk.

2. Enter

RUN (CR)

where (CR) means to strike the return key.

The program should clear the screen and ask you to ENTER MASK.
Enter the desired mask and hit return. Then you will be asked for the text
to fill the mask and also for the row/column location for the display on the
screen. After you enter (CR), the process should repeat itself. When you
wish to stop going through this loop, strike control C and reset, or enter
END (CR) on the ENTER (CR) TO CONTINUE line.

It is always a good idea to provide your users with a consistent and
clean way to exit your programs. For example, in the line editor test pro
gram you are allowed to enter the word END as a response. Terrible
problems can crop up if your users get in the habit of striking control Cor
reset to exit a program. For example, if users strike reset when working
with disk files , there may be some information in the disk buffer area that

19

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

has not been saved on the disk. It will be saved only if the file is closed
properly. Therefore, striking the reset key will effectively ruin the file be
cause it has not been updated completely.

BASIC LINE EDITOR PROGRAM

20

A flowchart for the basic line editor process is shown in Fig. 2.1. This
flowchart gives a general overview of the program to be developed.
Basically, the flowchart says that the programmer defines the charac
teristics of the field to be entered and the current contents of the field.
The line editor first displays the field with periods, and then it allows the
user to enter and/or edit the field. Finally, the field will be redisplayed
and the periods erased.

The basic line editor program is as follows :

50000 REM BASIC LINE EDITOR
50005 REM
50010 REM
50015 REM THIS IS A BASIC LINE EDITOR
50020 REM
50025 REM THE PROGRAMMER CALLS IT USING THE FOLLOWING VARIABLES
50030 REM
50035 REM ROW% => SCREEN LINE NUMBER
50040 REM COL% => SCREEN COLUMN NUMBER
50045 REM ENTRY$ => TEXT TO BE EDITED
50050 REM MASK$ => DATA TYPE TO BE ALLOWED
50055 REM WHERE:
50060 REM A = ALPHANUMERIC
50065 REM # = NUMBER FIELD ONLY
50070 REM Y = YES/NO FIELD
50075 REM Q = HELP REQUEST OK , USE IN ANY CHARACTER
50080 REM THE LENGTH OF MASK$ IS THE MAXIMUM LENGTH OF THE
50085 REM INPUT STRING
50090 REM
50095 REM
50100 PLACE% = 1 REM SET THE STARTING POSITION

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

FIG. 2.1 Overview of line editor program

Subroutine
start

50105
50110
50115
50120
50125
50130
50135
50140
50145
50150
50155
50160

RETURN

REM
FILL$ " "
HELP% 0
CTRL% 0
GOSUB 52130
GOSUB 50165
FILL$ = " "

GOSUB 52130
RETURN
REM
REM **********************
REM

REM DISPLAY DOTS
REM CLEAR THE HELP FLAG
REM CLEAR THE EXIT FLAG
REM DISPLAY ENTRY$
REM EDIT THE STRING
REM CLEAR THE SCREEN
REM DISPLAY ENTRY$
REM GO BACK TO CALLER

The explanations for various parts of this program and its GOSUBs
are given in the following subsections.

21

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

22

Explanation of Variables

The basic line editor program consists mostly of REM statements
(remarks). It is always good practice, at the beginning of a subroutine, to
define who wrote it, when it was last changed, what it does, and the pur
pose of the major variables used, as shown in the remarks in lines
50000-50160.

The variables ROW% and COL% (lines 50035 and 50040) are used
to position the text on the screen. ROW% is a number between 1 and 24.
In 40-character mode COL% is a number between 1 and 40; while in
SO-character mode it is a number between 1 and 80. HELP% will be set
equal to 1 if the user requests help; otherwise, it will be set equal to 0 .

The % symbol in the names means that these variables are integer
variables. An integer is a whole number between - 32 ,767 and
+ 32,767. Throughout this book we will use integers whenever possible.

We do so for several reasons. First, most programmers do not use integer
variables; therefore by using integer variables, we can avoid variable
name conflicts within your programs. For example, A, A%, and A$ are
all treated as individual and unique variables, even though they have
similar names. Second, integer variables require less memory space than
floating-point (decimal-point) variables, and we want the subroutines to
be as compact as possible.

FILL$ (line 50135) is the character used to illustrate the field 's
maximum length. For example, if FILL$ equals a "." and the field is to be
six characters long, then the line editor will display

six dots, to show the field's maximum length.
ENTRY$ (line 50045) contains the text to be edited. If there is no text

to be edited, then ENTRY$ is cleared by the line

ENTRY$ ""

MASK$ (line 50050} is used to define the type and the length of the
field to be edited. In the programs in this book we will use one symbol to
represent each character in the field. Thus an A will be used to indicate

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

FIG. 2.2 Field parameter examples

MASK$

AAAAAAAAAAAAAAAAAAAA

AAAAAAAA

AAAAAAAAAAAAAAAAAAAA

##########

y

AAA###

DESCRIPTION

Accept any 20 characters.
Accept any 8 characters.
Accept any 20 characters.
Accept a 6-digit number.
Accept a 10-digit number.
Allow only Y or N entry.

Accept a total of 6 characters;
the first 3 may be any
character and the last 3 must
be numeric . (For example, this
entry could be an inventory
part number.)

that any text may be entered, that is, any printable ASCII character. For
example,

MASK$ = "AAAAAAAAAA "

means " accept any character up to a maximum length of ten charac
ters. " A# is used for numeric fields ; a Y for yes/no fields . Figure 2.2 con
tains several examples of how these various parameters are used. And,
as always, help is available to the user anytime entry is requested, no
matter what the mask definition.

Notice that we have not restricted the variable names to only two
characters, but we have tried to use meaningful names. And not just a
name meaningful today as we design the program, but one still meaning
ful twelve months from now when we return to make further enhance
ments.

23

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

24

TEST POINT

At this point the program is not yet functional, but it is a good idea to test
what is entered to make sure it at least returns you to the beginning of the
program. Execute the program by entering

RUN (CR)

If the program does not return you to the test routine, then verify that you
typed in the above routine correctly.

FIG. 2.3 Display subroutine

Subroutine
start

Before calling program,

must define FILL$

and maximum s i ze allowed

Position cursor at
ROW% , COL% and
print ENTRY$

Fill to end of field
with the FILL$
character

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

Explanation of the Display Subroutine

The display subroutine, called by line 50125 GOSUB 52130, is flowchart
ed in Fig. 2.3. This routine displays the text in the current ENTRY$ at the
requested screen position and the requested length of the field, using the
FILL$ character. If there is no text to display, then it will simply show one
dot for each character allowed.

FILL$ must be set before this subroutine is called. FILL$ is the
character used to show the maximum field length. Figure 2.1 shows that
the first time this subroutine is used, it displays a period; the last time it is
used, a blank or space character is used as FILL$. The space will remove
the periods and clean up the screen display.

The display program corresponding to the flowchart in Fig. 2.3 is as
follows:

52135 REM FILL$ IS THE FILL CHARACTER
52140 REM TXTSIZE% IS THE LENGTH OF ENTRY$
52145 REM MAXSIZE% IS THE MAXIMUM ALLOWED LENGTH
52150 REM
52155
52160
52165

REM
TXTSIZE% = LEN (ENTRY$)
MAXSIZE% = LEN (MASK$)

52170 REM
52175 REM IS ENTRY$ TOO LONG?
52180 REM

REM HOW LONG IS THE CURRENT FIELD?
REM WHAT IS THE MAX LENGTH ALLOWED?

52185 IF TXTSIZE% > MAXSIZE% THEN
ENTRY$= LEFT$ (ENTRY$,MAXSIZE%):TXTSIZE% = MAXSIZE%

52190 REM
52195 REM POSITION THE CURSOR
52200 REM
52205 VTAB ROW%
52210 POKE 36 , COL%
52215 REM

REM PRINT THE TEXT
REM
PRINT ENTRY$;
REM

REM ROW POSITION
REM COLUMN NUMBER - HTAB

: REM NO LINE FEED

52220
52225
52230
52235
52240
52245

REM PRINT THE FILL CHARACTER
REM

25

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

26

52250 IF TXTSIZE% = MAXSIZE% THEN RETURN REM NO FILL$ TO PRINT
52255 FOR XX = TXTSIZE% TO MAXSIZE% - 1
52260 PRINT FILL$;
52265 NEXT XX
52270 RETURN
52275 REM

: REM ALL DONE

52280 REM **********************
52285 REM

The display subroutine starts by using the LEN (LENgth) command
(lines 52160 and 52165) to determine the length of ENTRY$ and MASK$.

LEN The LEN command returns the number of characters contained in
the referenced string as an integer value between 0 and 255.

EXAMPLE

5000 A$ = "HAPPY DAYS "
5100 PRINT A$;LEN(A$)
RUN
HAPPY DAYS 10

As the example shows, the number of characters and spaces in A$,
HAPPY DAYS, is equal to ten.

Remember that the length of MASK$ is the maximum length of the
field.

Next, a test is made in the display program (line 52185) to see if
ENTRY$ is larger than MASK$. This test can only occur the first time the
line editor is called, because the editor will not allow the user to enter too
many characters. If ENTRY$ is too long, then the editor will truncate the
extra characters.

After ENTRY$ fits into the allotted space, the cursor is positioned
and ENTRY$ is printed (lines 52205, 52210, and 52230). Finally, a FOR-

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

NEXT loop (lines 52250 through 52265) is used to fill the remainder of the
field with the FILL$ character.

FOR-NEXT The FOR-NEXT looping command executes the statements
after the FOR statement until the NEXT statement is encountered.
Then the counting variable is incremented, and the process is re
peated until the counting variable reaches the maximum value de
sired. Once the maximum value is reached, program execution pro
ceeds to the sta tement following the NEXT. A STEP statement can
also be used in a FOR-NEXT loop to increment the loop in values
other than 1 (the default value).

EXAMPLE

5000 FOR I = 1 TO 5
5100 PRINT I
5200 NEXT
RUN
1
2
3
4
5

In this FOR-NEXT loop we simply count up from 1 to 5 by ones.

EXAMPLE

5000 FOR I = 1 TO 20 STEP 5
5100 PRINT I
5200 NEXT
RUN
1

6
11

16

This FOR-NEXT loop counts up in intervals of five .

27

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

28

EXAMPLE

5000 FOR I = 10 TO 1 STEP - 1
5100 PRINT I
5200 NEXT
RUN
10
9
8
7
6
5
4
3
2

1

This example shows how to count down by using a negative step.

At this point in the display subroutine, we have positioned ENTRY$
on the screen and shown the field's maximum length.

Variables such as X, XX, andY (see line 52255) are "garbage" var
iables. That is, they have only immediate meaning and may be changed by
any routine. They are used to count loops and to temporarily hold values.
Remember that garbage variables are not used by a subroutine that you
call. Always use a unique name if you want to make sure that the var
iable remains unchanged by subroutines.

TEST POINT

The display program is the first subroutine that really does someting; it
displays any preexisting text and a dot to indicate the number of allow
able characters. How do you select a series of tests to perform? Exper
ienced programmers test the extremes of a subroutine. Programs tend to
be stable in the midranges of their operation but may fail at the extremes
of their operations. The best way to illustrate what is meant by this state
ment is to look at what tests should be performed on this subroutine.

Take a moment now and think about what tests you might perform.
Although this routine is simple, there are a number of extremes that need
to be tested. First, identify the important variables used in this subrou
tine . They are as follows:

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

ENTRY$

MASK$

ROW%

COL%

Text field

Field type and length

Screen row number

Screen column number

Next, identify the extreme values for each of these variables:

VARIABLE

ENTRY$

MASK$

ROW%

COL%

TEST EXTREME

Length = 0 (i.e., null field)
Length = length of MASK$
Length > length of MASK$

Length= 1
Length = screen width
Line 1
Line 24

First column
Last column

Since this subroutine is to be controlled by the programmer, certain
extremes that will cause an error condition have been intentionally ig
nored. These errors occur if ROW% or COL% point to locations off the
screen, as when one or both are equal to 0, or when ROW% > 24 or
COL% >screen width. Also, if MASK$ is a null string, an error will
occur. If you find yourself being forgetful, then you can add simple tests
before line 50100 in the basic line editor program to verify that ROW%,
COL%, and MASK$ have valid values. The meaning of "extremes"
should become apparent to you as you read through the above list.

Make sure that the routine works properly for all ENTRY$ text fields.
Test it with no text, too much text, and the maximum accept
able amount of text. Additionally, be sure to test those combinations of
extremes that appear to be extreme extreme cases-for example,
ROW % = 24, MASK$ length = screen width, and ENTRY$ > MASK$
length.

Note that the editor described in this chapter is not a "wraparound"
editor-it is a line editor. If the input string goes beyond the last column
of the screen, some commands, such as DELETE TO END OF LINE, will
give strange results. Keep the limits of the program in mind during your
testing and experiment with them.

29

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

30

Explanation of the Edit Subroutine

The flowchart shown in Fig. 2.4 describes the process for editing the
field. This subroutine is called by line 50130, GOSUB 50165, in the basic
line editor program. The flowchart details the following sequence of
events: Position and display a cursor over the first character in the field.
Next, accept a single character from the keyboard, process it, and then
get another one. When a RETURN is entered, or if a help request is made,
then return to the calling program.

Here is the program that edits the field:

50165 REM EDIT THE ENTRY$ FIELD
50170 REM
50175 REM POSITION THE CURSOR
50180 REM
50185 VTAB ROW%
50190 GOSUB 52000
50195 REM

REM VERTICAL POSITION
REM PRINT THE CHARACTER IN INVERSE

50200 REM ACCEPT A KEY FROM THE KEYBOARD
50205 REM
50210 KEY% = PEEK (49152) : REM TEST FOR INPUT
50215 IF KEY% < 128 THEN GOTO 50210 : REM LOOP UNTIL ENTRY
50220 REM
50225 REM IF HERE THEN A KEY PUSHED
50230 REM
50235 XX = PEEK (49168) REM CLEAR KEYBOARD
50240 KEY% = KEY% - 128 REM STRIP OFF FLAG BIT
50245 REM
50250 REM PROCESS THE KEY
50255 REM
50260 GOSUB 50295 : REM KEY% PROCESSOR
50265 IF HELP% > 0 THEN RETURN : REM HELP REQUESTED BY USER
50270 IF CTRL% > 0 THEN GOSUB 52070: RETURN : REM CONTROL KEY EXIT
50275 GOTO 50210 : REM GET THE NEXT KEY
50280 REM
50285 REM ****************************
50290 REM

VTAB (line 50185) is used to position the cursor on the correct
screen row.

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

FIG. 2.4 Subroutine for editing the field

Position the cursor on
the first character
and display cursor

Accept a single key
from keyboard

VTAB The VTAB command places the cursor on the specified line with
out changing the horizontal position.

EXAMPLE

VTAB 10

This command moves the cursor to row 10.

PEEK (see lines 50210 and 50235) is used to accept characters from
the keyboard. PEEK returns the numeric value of a memory location; it
can return a value between 0 and 255. You may recall that the Apple
uses eight-bit memory, named bit 0 through 7. Bit 0 is the low bit, and bit 7

31

W

F
IG

.
2

.5

A
S

C
II

 c
ha

ra
ct

er
 c

od
es

1

\)

H
ex

.
0

1
2

3
4

5
6

7
8

9
A

B

c

D

E

F
N

o
.

H
ex

.
B

in
a

ry

0
0

0
0

0

0
0

1

0
0

1
0

0

0
1

1

0
1

0
0

01

01

0
1

1
0

01

11

1
0

0
0

10

01

1
0

1
0

1

0
1

1

1
1

0
0

11

01

1
1

1
0

11
11

N

o.

N
o

.

SP
IJ

2
0

@

p
'

SP

ff
@

G
_

p
'

0
0

0
0

0

G6
 p

rua

r;
~

_E
 p

lo

G
il

32

1-W

164

[8
0

rm
·rw

o
rrn

19

2
[2

o8

pw

DC
IL

I

1
A

Q

a

q
DC

~'

I
1

A

-
Q

a

q
-

1
0

0
0

1

lr

.1
33
~

J65

rBI

197
.

ru
-3·

r-

.
·-

~~
77

[20

9.

~

17

!2
9

14

5
__

11
61

[19

3
E

r
-

·

D
C

G
a

I
I

2
Is~

-
B

R

b

r

~~
 "

2
B

R

b

r
2

0
0

1
0

[2

/34

f56

Js2

-
J9a

G

14

J1
30

§

..
Fa

[19
~

jzl
o

[2
26

[24

z
1a

50

14

6

3
0

0
1

1
[3

 D
Cr

1

3
c

s
c

s
11

31

D
C
~
 t-#

}

c
J1

-
s

c
s

19

liS

~

~

163

199

F5

14
7

f\63
 _

[17
9

19
5

[21
1

Ji
ll

f24
3:

1
-

-

4
0

1
0

0

I~

DC
 Fa

$
4

D

T

d
t

f13
2

DC
 Fa

$
4

D

T

d
[2-

t
20

J36

J52

J6s

J84

fW

D
fli

6
14

a
f16

4
[18

0
roo

Fz

22

a
24

4

5
0

1
0

1
J5

rz;

 %
F

5
E

u

e
u

rm

r:w
 %

5

E
 J

1-
u

e
u

37

Js3

J69

J85

rm
fill

!16

5
F

19

7
f2D

~

Fs

6
0

1
1

0

J
6

Jz2

 &

6
F

v
f

v

F
~0
 &

6

F

v
f

v
J38

15

4
Fa

Js6

Fz

Fa

~

fW
2

lt98

[21
4

§
[24

6
B

E
G

-
'

7
G

w

B

Et
J5

'

7
G

w

g

7
0

1
1

1

f23

J39

g
w

~

f16
7

w

js
5

F
t

Js7
.

fW
3

rm
13

5
f18

3
~

[21
5

. £3
!:

IW

8
1

0
0

0

B
S

J6

C
A
~

(
8

H

X

h
X

B

S
C

A
F

z
(

8
H

X

h

X

24

J4o

[5
6

172

Ja8

~

Fa

-§
6

15
2
~

~

._
§

[21

6
[23

2
__

§
·
-

9
1

0
0

1

~

)
9

I
y

i
y

HT

§
)

9
I

y
i

y
[2

5
J41

15

7
J73

Js9

Fs

fill

 -~

~

fW
5
~

J2
17

~

24
9

A

1
0

1
0

L

E

f26
 *

.F
a

J
z

j
z

LF

*
-~

J
~
~
 j

z
10

Fz

[7

4
roo

]!0

6: [
F

.§

8

fs4

J1
70

[20

2
a

[23
~

f5
a

-
f-

--

7
B

1

0
1

1

VT

ES
,C

_
+

'
[~

9
K

[

k
G

-{
VT

ES

,C
_

+

J
K

-

[
k

lll
!2

7
f43

f75

19

1
-

10
7

11
23

h

. j
l5

5
Jt7

1
£

a7

j2
o3

_1

2_
19

[23

~
J2

s1

c
1

1
0

0

FF
[l

Z

'
~

<

L

"
1

- l
J

24

FF

J
<

L

-
\

1
u

25
2

12

l2
a

.16
0

E

192

Jt
()!l_

~
 _

j
15

6
_E

:
f

aa

£
o4

_E

zi

[2
36

-

r
-

-
-

D

1
1

0
1

CR

I1
3

-
145

 ~
[!

D
M

J

m

} r:
-

CR

J-
-
~
 M

J

m

}
J:

-
13

lz9

F

19

3
fW

9
12

5
~
 _[

il
l

. 1
73

_

§:

12
21

e

25
3

-
-

1
--

·

E

1
1

1
0

so

.I
%

 >

N

(\

n
so

[
§

 >

N

;\

n
-

l i4

f30

]6
2

Fa

1M

jtw

112
6

-11
42

§
Fa

J2

06

[2
22

E

Jz

s4

-
·

-
t
-
-
-
-

F

1
1

1
1

S

I
F

I

?
0

-
o

_
D

EL

S
I

I
?

_
0

-
o

D
EL

15

f3t

E

.f
63

179

~
-

P11

J
~

J~

115
9

117
5

rl9
1

rw
1z2

3
rm

rzs;

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

is the high bit. In the Apple, text information is stored in ASCII format
(see Fig. 2.5). There are only 128 ASCII characters; therefore bit 7 is not
used when describing an ASCII character.

The Apple keyboard is located at memory address location 49152. If
a PEEK is made of this location, then the value of the last key entered will
be returned. The Apple informs you that a key is entered by setting bit 7
equal to 1 and bits 0 through 6 equal to the ASCII value of the key en
tered. Whenever bit 7 is equal to 0, no key input has been received from
the keyboard. In other words, if the PEEK returns a value greater than
128, then a key has been entered; if the value is less than 128, no key has
been entered. Once a key is entered and accepted, Apple considers it the
program's responsibility to inform the Apple that the key has been re
ceived and that another key may be entered. This information is given by
PEEKing address 49168; this procedure will set bit 7 back to 0 until an
other key is entered.

The following sample routine is provided to let you experiment with
and to help you fully understand the keyboard PEEK routine just dis
cussed. Type it in and experiment by running this routine by itself.

10 KEY% = PEEK (49152)
20 PRINT KEY%
30 IF KEY% < 128 THEN GOTO 10
40 XX = PEEK (49168)
50 KEY% = KEY% - 128
60 PRINT KEY%, CHR$(KEY%)
70 INPUT "ENTER CR ";A$
80 GOTO 10

You might experiment and delete line 40 to see what effect this action
will have.

DISPLAYING A CURSOR

In order for the user to know what character is being edited, the current
cursor position must be displayed. In the field-editing program (line
50190, GO SUB 52000) the current character is displayed in inverse

33

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

34

video. When there is no character to display, then a space is used. A
space is a bright box when displayed in inverse.

The following program will print a character in inverse:

52000 REM PRINT CHARACTER IN INVERSE
52005 REM THIS GIVES THE ILLUSION OF CURSOR MOVEMENT
52010 REM
52012 VTAB ROW%
52015 POKE 36, (COL% + PLACE% - 1)
52020 INVERSE
52025 XX$ = MID$ (ENTRY$,PLACE%,1)
52030 IF XX$ = "" THEN XX$ = " "
52035 PRINT XX$;
52040 NORMAL
52045 POKE 36, (COL% + PLACE% - 1)
52050 RETURN
52055 REM
52060 REM **********************
52065 REM

REM
REM
REM
REM
REM
REM
REM
REM

POSITION CURSOR
HTAB
REVERSE VIDEO
MOVE FOR THE NEXT IF
IF NULL MAKE IT A SPACE
PRINT THE INVERSE
RESTORE TO NORMAL VIDEO
REPOSITION THE CURSOR - HTAB

PLACE% is used to keep track of the current cursor position. How
ever, PLACE% could have been set by the calling program. For example,
if we wanted to begin editing at the end of a field instead of the beginning,
we would set PLACE% equal to the length of the field instead of 1.

After the cursor is positioned over the current character, using a
POKE (line 52015), the INVERSE command is given (line 52020) and the
character is printed. A NORMAL command is given (line 52040), and
then the cursor is repositioned over the character (line 52045).

PRINT The PRINT command causes a line feed (increments one line)
when encountered without option parameters. With options, the val
ues of the list following the PRINT command are evaluated and
printed.

INVERSE The INVERSE command causes all subsequent characters to
be printed as black letters on a white background instead of the nor
mal white on black.

NORMAL The NORMAL command negates the preceding command and
restores the video to the regular white-on-black mode.

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

TEST POINT

The print-in-inverse subroutine displays the cursor. After the line editor
displays the text field to be edited, it positions the cursor over the first
character. If there is a character in the first position, it will be shown in
inverse; otherwise, a bright block will be shown.

PROCESSING A KEY

Subroutine GOSUB 50295 (line 50260 of the field-editing program) is used
to display or process the key pressed by the user. A key can be either a
control, a special character, or regular text.

Control characters are used for editing the text and moving the cur
sor. A control character is produced by holding down the CTRL (control)
key while simultaneously pushing any letter key, A through Z. From Fig.
2.5 we see that the ASCII value of control A is 1, while the ASCII value of
letter A is 65 . Similarly, the ASCII value of control Z is 26, while the letter
Z is represented by the value 90. The ESC (escape) key is a special key
that has an ASCII value of 27.

The program that tests for a control key is as follows:

50295
50300
50305
50310
50315
50320
50325
50330
50335
50340
50345
50355
50360
50365
50370
50375

REM TEST FOR CONTROL KEY
REM
I F KEY% < = 31 THEN GOSUB 51000 : RETURN: REM PROCESS AND RETURN
REM
REM MUST BE AN ALPHANUMERIC
REM
REM TEST THE MASK TO DETERMINE DATA TYPE
REM
IF MID$ (MASK$,PLACE%,1)
IF MID$ (MASK$, PLACE%,1)
IF MID$ (MASK$,PLACE%,1)
REM
REM BAD MASK CHARACTER
REM
RETURN
REM

"A" THEN GOSUB 50900: RETURN
"#" THEN GOSUB 50390: RETURN
"Y" THEN GOSUB 50440: RETURN

50380 REM *****************************
50385 REM

35

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

36

If the user presses a control or special key, a branch is made to the
control character subroutine, GOSUB 51000 (line 50305). If any other key
is pressed, the program checks this character to see if it is acceptable.

MID$ (lines 50335 through 50345) is used to determine the data type
defined in MASK$. Then a branch is made to the appropriate character
checking subroutine.

MID$(A$,N,X} The MID$ command returns the character string start
ing at N in the string A$ for X characters. If X is not present, then the
program continues until the end of the string is reached.

EXAMPLE

5000 A$ = "HAPPY DAYS"
5100 PRINT MID$(A$,7,3)
RUN
DAY

In this example of MID$ we count seven characters into A$ and ex
tract the next three characters encountered. The result is that DAY
is e~tracted from A$.

As an example, suppose that in the line editor program we are
viewing the first character position, and MASK$ is defined as

MASK$ = "AAAAAAAAAA "

Then the branch is made to subroutine 50900, the universal-character
accept routine. In contrast, if MASK$ is

MASK$ = "####"

then the branch is made to subroutine 50390, where a check verifies that
a number has been entered. When a number is entered, it will be added
to ENTRY$ and displayed; otherwise, it will be ignored. These tests occur
in lines 50335-50345, but the subroutines called in these lines have not
been presented yet.

In our version of the editor only five different data types are allowed.
You can add other branches to this routine if more data types are
desired. For example, Apple lie users may wish to have a mask that con
verts all lowercase letters to uppercase.

Additional features of processing a key are illustrated in the follow
ing subsections.

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

Processing the Input Keys

After a key is pressed, the program must determine whether it is a con
trol key (character) or an alphanumeric key. If it is a control character,
then the routine must decide whether it is a valid character, and, if so,
perform the required action. If it is not a control character, the mask

FIG. 2.6 Flowchart for accepting a character

Subroutine
start

Alphanumeric
field

Help
field

Yesjno
field

Perform
requested
action

Number
field

Shor t en ENTRY$
if too long RETURN

37

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

50900
50905
50910
50915
50922
50925
50926
50930
50932
50935

50936
50940
50945
50946
50950
50955
50960
50965
50970
50975
50980

character must be checked and the character-type test performed. If a
valid character has been entered, then it is added to ENTRY$ and dis
played on the screen. This process is flowcharted in Fig. 2.6.

Character-Accept and Display Routines

When a valid character is entered, it is added to ENTRY$ and displayed
on the screen. Then the cursor is moved right one position.

There are several tests that must be performed in the character
accept routine. First, a check is made to see whether the insert mode is on
(INSERT% = 1); if it is, a space is inserted before the character is added.
Second, a check is made to determine how to add the character; there are
different ways to add the character depending on where the character is
to go. Finally, a check is made to see whether the new field is too long; if it
is, it must be truncated to MAXSIZE%.

The test program to check for an alphanumeric field is as follows:

REM PRINT KEY% AND ADD TO ENTRY$
REM
IF INSERT% = 1 THEN GOSUB 51315 : REM INSERT A SPACE
TXTSIZE% = LEN (ENTRY$) : REM MAKE SURE WE HAVE CORRECT TXTSIZE%
REM ADD TO END OF ENTRY
IF PLACE% > TXTSIZE% THEN ENTRY$ = ENTRY$+ CHR$ (KEY%): GOTO 50945
REM ADD AS FIRST CHARACTER
IF PLACE%= 1 THEN ENTRY$ = CHR$(KEY%) + MID$(ENTRY$,PLACE% + 1) : GOTO 50945
REM ADD AS LAST CHARACTER
IF PLACE% = TXTSIZE% THEN

ENTRY$= LEFT$(ENTRY$,PLACE%- 1) + CHR$(KEY%): GOTO 50945
REM ADD IN THE MIDDLE SOMEWHERE
ENTRY$ = LEFT$(ENTRY$, PLACE% - 1) + CHR$(KEY%) + MID$(ENTRY$, PLACE% + 1)
TXTSIZE% = LEN (ENTRY$)
REM IF TOO BIG TRUNCATE IT
IF TXTSIZE% > MAXSIZE% THEN ENTRY$ = LEFT$ (ENTRY$, MAXSIZE%)
REM
REM NEED TO MOVE RIGHT ONE PLACE
REM
GOSUB 51425
RETURN
REM

: REM RIGHT ARROW

50985 REM ***************************
50990 REM

38

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

The programs for the other two data tests-yes/no field and number
field-are listed next.

50390 REM ACCEPT A NUMBER
50395 REM
50400 REM TEST TO SEE IF IT IS A VALID NUMERIC TYPE OF CHARACTER
50405 REM
50410 IF (KEY% < 45) OR (KEY% > 57) THEN RETURN : REM BAD KEY
50415 IF KEY% = 47 THEN RETURN REM BAD KEY ALSO
50420 GOSUB 50900 : REM GOOD KEY SO ACCEPT IT
50425 RETURN
50430 REM *************************************
50435 REM
50440 REM TEST FOR YES OR NO
50445 IF (KEY% < > 89) AND (KEY% < > 78) THEN RETURN REM BAD KEY
50450 GOSUB 50900 : REM ACCEPT IT
50455 RETURN
50460 REM **************************************

For each data type, if KEY% is in the correct range, then a valid key
has been entered. If a bad key is entered, then the routine RETURNs and
the key is effectively ignored. If a good key is entered, then the routine is
called that places the character into the field .

PROCESSING CONTROL KEYS: EDITING ROUTINES

The line editor uses control characters to move the cursor and edit the
text. These characters are summarized in Fig. 2.7. The letter selections
are arbitrary. If you do not like them or if another program on your com
puter uses different characters, you may redefine them to be consistent.

The right and left arrows, control U and H, respectively, are used to
move the cursor right and left. In our editor the right arrow key will not
erase the characters as it passes over them. Control A is used to skip to
the previous word. Control D is used to delete a character and compress
the field. A character may be inserted into the middle of text by using a
control F to turn the insert mode on. The insert mode is kept on until any
control character is entered, including a control F. A control N is used to
jump to the end of the line. Control W is used to skip to the next word, and
control Y will delete everything to the right of the cursor.

39

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

40

FIG. 2.7 Control characters

Control A

Control D

Control F
Control N

Control Q

Control W

Control Y
Right arrow
Left arrow

Skip to the previous word.

Delete this character and compress the line.

Insert a character into the line.
Skip to the end of the line.

HELP request at any time.

Skip to the next word.

Erase to the end of the line.
Move right one character.

Move left one character.

Subroutine 51000 in the program that follows uses conditional IF
statements to branch to the editing routines. To add new editing features ,
you would simply add more conditionals and insert the code in the space
before line 52000.

The following subroutine processes the control keys. The individual
editing routines for the various control characters are described in the
succeeding subsections.

51000 REM PROCESS A CONTROL KEY
51005 REM
51010 REM EXIT KEYS SUCH AS RETURN SET CTRL%
51015 REM
51020 REM
51025 REM AA = 1 > PREVIOUS WORD
51030 REM AD = 4 > DELETE THIS CHARACTER
51035 REM
51040 REM AF = 6 > FILL WITH A SPACE
51045 REM AH = 8 > LEFT ARROW
51050 REM AN = 14 > SKIP TO END
51055 REM AQ = 17 >HELP REQUEST
51060 REM AU = 21 > RIGHT ARROW
51065 REM AW = 23 > NEXT WORD

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

51070 REM AY = 25 > ERASE TO END
51075 REM IGNORE ALL OTHER KEYS
51080 REM
51085 CTRL% = 0 REM CLEAR EXIT FLAG
51090 IF KEY% = 6 THEN GOSUB 51280 RETURN : REM INSERT
51095 INSERT% = 0 REM TURN INSERT OFF
51100 IF KEY% = 1 THEN GOSUB 51555 REM PREVIOUS WORD
51105 REM
51110 IF KEY% = 4 THEN GOSUB 51210 REM DELETE
51115 REM
51120 IF KEY% = 8 THEN GOSUB 51380 REM LEFT ARROW
51125 REM
51130 IF KEY% = 13 THEN CTRL% = 1 REM RETURN KEY
51135 REM CHECK HELP REQUEST
51140 IF KEY% = 17 THEN HELP% = 1 RETURN : REM HELP REQUEST
51145 REM
51150 IF KEY% = 14 THEN GOSUB 51680 : REM GOTO END
51155 REM
51160 IF KEY% = 21 THEN GOSUB 51425: REM RIGHT ARROW
51165 REM
51170 IF KEY% = 23 THEN GOSUB 51475: REM NEXT WORD
51175 REM
51180 IF KEY% = 25 THEN GOSUB 51630: REM ERASE TO END
51184 I F KEY% = 27 THEN CTRL% = 27 : RETURN : REM ESC
51185 REM
51190 RETURN
51195 REM
51200 REM *******************************
51205 REM

Moving the Cursor Right and Left

The right and left arrow subroutines, which are presented below, are
very simple. First, the program redisplays the current cursor position in
normal video. Next, it increments or decrements PLACE%, and then it
displays the new cursor position in inverse video. Notice in the program
that follows that both routines test the size of PLACE% and that it is
changed only if it meets the boundary condition.

41

BASIC BUSINESS SUBROUTINES FOR T HE APPLE II AND lie

42

51380
51385
51390
51395
51400
51405
51410
51415
51420
51425
51430
51435
51440
51445
51450
51455
51460
51465
51470

REM LEFT ARROW
REM
GOSUB 52070 : REM DISPLAY NORMAL
IF PLACE% > 1 THEN PLACE% = PLACE% - 1: REM MOVE LEFT ONE
GOSUB 52000
RETURN
REM

: REM DISPLAY INVERSE

REM ***********************************
REM
REM RIGHT ARROW
REM
IF MID$ (ENTRY$, PLACE% ,1) = "" THEN RETURN
GOSUB 52070 : REM DISPLAY AS NORMAL
IF PLACE% < MAXSIZE% THEN PLACE% = PLACE% + 1
GOSUB 52000 : REM DISPLAY AS INVERSE
RETURN
REM
REM ******************************
REM

TEST POINT

Enter some text, then enter the left arrow. The cursor should move left
one position each time you strike the key. Continue striking the left arrow
key until you have returned to the beginning of the field. Now strike the
left arrow a couple of times just to make sure it works properly in the first
character position. Test the right arrow by striking it until you have gone
to the end of the field.

Jump to the Next Word

Skipping to the next word on the line moves the cursor to the first charac
ter of the next word, to the right of the current cursor position. To do this
operation, the program looks at each character to the right of the cursor
and stops at the first one after the next space or group of spaces. If the
cursor is positioned over a word, then it must move right to the first space
and then over the spaces to the first nonspace.

The following routine allows the user to skip to the next word:

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

51475 REM SKIP TO NEXT WORD
51480 REM
51485 REM
51490 IF PLACE% = > TXTSIZE% THEN RETURN : REM ALREADY AT END
51495 GOSUB 52070 : REM REMOVE CURSOR
51500 PLACE% = PLACE% + 1 : REM LOOK FOR FIRST SPACE
51505 IF PLACE% = TXTSIZE% THEN GOTO 51530
51510 IF MID$ (ENTRY$, PLACE% ,1) < > " " THEN GOTO 51500: REM IS IT A SPACE?
51515 PLACE% = PLACE% + 1 : REM MOVE RIGHT ONE
51520 IF PLACE% = TXTSIZE% THEN GOTO 51530
51525 IF MID$ (ENTRY$, PLACE% ,1) " " THEN GOTO 51515: REM SKIP OVER SPACES
51530 GOSUB 52000
51535 RETURN
51540 REM

: REM DISPLAY CURSOR

51545 REM *******************************
51550 REM

TEST POINT

Enter the sentence:

"THIS IS A TEST. "

Now use the left arrow to move to the front of the line. Enter a /\Wand the
cursor should jump to the front of the next word. Try this exercise with
several sentences and vary the number of spaces between words.

Jump to the Previous Word

To skip to the previous word, we first want to force the cursor to move
over any spaces, in case we are at the front of a word, and then stop at
the character to the right of the next space. The following program
performs the skip to the previous word:

51555 REM SKIP TO PREVIOUS WORD
51560 REM
51565 IF PLACE% = 1 THEN RETURN REM AT THE FRONT ALREADY
51570 GOSUB 52070 REM REMOVE CURSOR

43

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

44

51575 PLACE% = PLACE% - 1 : REM LOOK FOR SPACE
51580 IF PLACE% = 1 THEN GO~O 51610: REM FORCE MOVE AT LEAST ONE SPACE
51585 IF MID$(ENTRY$,PLACE%,1) = " " THEN GOTO 51575: REM SKIP OVER SPACES
51590 PLACE% = PLACE% - 1
51595 IF PLACE% = 1 THEN GOTO 51610
51600 IF MID$(ENTRY$,PLACE%,1) < > " " THEN GOTO 51590 : REM IS IT A SPACE?
51605 PLACE% = PLACE% + 1 REM POSITION OVER FIRST LETTER
51610 GOSUB 52000 : REM DISPLAY THE CURSOR
51615 RETURN
51620 REM
51625 REM ******************************

TEST POINT

Enter the sentence:

"PREVIOUS WORD TEST."

Then enter a 11 A and the cursor should move left one word. Repeat the
tests you just did for jumping to the next word.

Jump to End of Line

We can skip to the end of the line by testing the length of the field and
moving the cursor there. The following program gives the routine:

51680 REM SKIP TO END OF LINE
51685 REM
51690 GOSUB 52070 : REM MOVE THE CURSOR
51695 PLACE% = LEN (ENTRY$) + 1
51700 IF PLACE% > MAXSIZE% THEN PLACE% = MAXSIZE%: REM DO NOT GO PAST END
51705 GOSUB 52000
51710 RETURN
51715 REM
51720 REM ********************
51725 REM

TEST POINT

: REM SHOW THE CURSOR

After you enter some text, move the cursor left and enter 11N. The cursor
should jump to the end of the line.

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

Deleting a Character

The delete subroutine uses MID$ and LEFT$ commands to compress the
field , and then it displays the new text with the cursor. In the delete
program that follows you will note that there are several conditional
tests. These tests check for special circumstances at the boundaries of
the subroutine. Many routines require special handling at the minimum
or maximum points of the routine . In this case the special handling is
needed when the cursor is at the very beginning or end of the field .

As you develop programs, you should carefully design and test the
boundaries or extremes of the routine, because most errors will occur at
the boundaries and not in the middle range of a routine. For example, fill
ing a disk or initializing a file are common boundary conditions that can
cause problems. While you may not always be able to think of every pos
sible error condition, you can generally think of the limits of a routine so
that they can be tested.

The delete subroutine is as follows:

51210 REM DELETE AND PACK
51215 REM
51220 TXTSIZE% = LEN (ENTRY$)
51225 I F TXTSI ZE% = 0 THEN RETURN : REM NOTHING TO DELETE
51230 IF TXTSIZE% = 1 THEN ENTRY$ = "": PLACE% = 1: GOTO 51250 : REM DELETE LINE
51235 IF PLACE%= 1 THEN ENTRY$ = MID$ (ENTRY$,2): GOTO 51250
51240 IF PLACE% > = TXTSIZE% THEN

ENTRY$= LEFT$(ENTRY$,TXTSIZE%- 1) :PLACE% = PLACE%- 1: GOTO 51250
51245 ENTRY$= LEFT$ (ENTRY$, (PLACE% - 1)) +MID$ (ENTRY$, PLACE% +1)
51250 GOSUB 52130 REM PRINT NEW STRING
51255 GOSUB 52000 : REM PRINT INVERSE
51260 RETURN
51265 REM
51270 REM ******************************
51275 REM

TEST POINT

At this point you should be able to enter text and move the cursor back
and forth. To test the delete routine, enter some text and then delete a
character at the following positions:

45

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

46

1 . Cursor on the first character,

2. Cursor in middle of text,
3. Cursor on last character,

4. Cursor past end of text.

Inserting Characters

Characters are inserted by an insert mode toggle. In other words, we
turn, or toggle, the insert mode on or off. The control F key is used to turn
the mode on, and this or any other control key can be used to turn the
mode off.

Once the insert mode is turned on, any regular characters typed will
be inserted into the field, with any characters to the right of the cursor
being shifted to the right one place for each character inserted. Any
characters at the very end of the field will spill off into that never-never
land of lost characters.

The actual insertion is done by first inserting a space into the field
and printing the line. Next, the desired character is written over this
space. Finally, the cursor is moved right one place. The LEFT$ command
is essential in this routine.

LEFT$ The LEFT$(A$,N) command returns the character string start
ing at the left end of A$ for N characters.

EXAMPLE

5000 A$ = "HAPPY DAYS "
5100 PRINT LEFT$(A$,4)
RUN
HAPP

In this example of LEFT$ we take the character in A$ starting at the
leftmost position and count to the right four positions and stop. In this
case the results are HAPP.

Any characters pushed off the end of the field are lost. A variation
you could implement is to allow insertion only until the field is full and
then stop. If users did not want the characters at the end, they would
have to move the cursor there and erase them.

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

The program for inserting characters is as follows:

51280 REM TOGGLE THE INSERT MODE
51285 REM
51290 IF INSERT% = 1 THEN INSERT% = 0: RETURN : REM TURN IT OFF
51295 INSERT% = 1 : REM TURN IT ON
51300 RETURN
51305 REM *********************************
51310 REM
51315 REM INSERT A SPACE
51320 REM
51325 REM
51330 REM IS IT THE FIRST CHARACTER?
51335 IF PLACE% = 1 THEN ENTRY$ = " " + ENTRY$: GOTO 51350
51340 REM INSERT IN THE MIDDLE
51345 ENTRY$ = LEFT$ (ENTRY$,PLACE% - 1) + " " + MID$ (ENTRY$,PLACE%)
51350 GOSUB 52130 REM PRINT THE FIELD
513 55 GOSUB 52070 : REM REPOSITION CURSOR
51360 RETURN
51365 REM
51370 REM *********************************
51375 REM

TEST POINT

Begin by entering some text on the line and moving the cursor into the
middle of the text. Now enter "F followed by some other letters. As each
character is entered, the text should split, with the right side sliding right
one place for each new character entered. The cursor should step right
one place. Press another control key-left arrow, for example-and
make sure that the insert mode is turned off. Next, toggle insert mode
back on and verify that a second "F turns it off. Finally, move the cursor
to the front of the text and check that the insert mode works there.

Displaying a Character

After a valid key has been pressed, the following display subroutine will
display the character on the screen. If a character has been removed,
then the FILL$ character will be displayed.

47

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

48

52070 REM POSITION AND DISPLAY NORMAL
52075 REM
52077 VTAB ROW% : REM POSITION CURSOR
52080 POKE 36, (COL% + PLACE% - 1) REM HTAB
52085 XX$ = MID$ (ENTRY$,PLACE% ,1) REM PRINT ONE LETTER
52090
52095
52100
52105
52110

IF XX$ = "" THEN XX$ = FILL$
PRINT XX$;
REM
POKE 36, (COL% + PLACE% - 1)
RETURN

52115 REM

REM IF NULL THEN MAKE IT A SPACE

REM REPOSITION THE CURSOR - HTAB

52120 REM *********************************
52125 REM

TEST POINT

The display subroutine is tested in conjunction with the character-accept
and display routine. RUN the program and press a key. This key's charac
ter should be displayed on the screen in a NORMAL video, and the cursor
should move one position to the right.

Erase to End of Line

This erase feature is very handy. You will frequently decide to change
everything to the right of the cursor, and the erase routine allows you to
do so in one keystroke. Erasing to the end of the line only requires a
LEFT$ command and then a redisplay of the field.

51630 REM ERASE TO END OF LINE
51635 REM
51640 IF PLACE% = 1 THEN ENTRY$ = "": GOTO 51650: REM ERASE WHOLE LINE
51645 ENTRY$ = LEFT$ (ENTRY$, PLACE% - 1)
51650 GOSUB 52130
51655 GOSUB 52000
51660 RETURN
51665 REM

REM PRINT THE FIELD
: REM DISPLAY THE CURSOR

51670 REM *********************************
51675 REM

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

TEST POINT

Enter some text and move the cursor left. Now enter 11Y and everything to
the right of the cursor should disappear. Test this routine at the begin
ning, the middle, and the end of the line.

The Escape Key

Striking the ESC (escape) key will cause the CTRL% flag to be set and the
line editor to return to the calling program. This feature is used exten
sively later in the book.

USER INSTRUCTIONS

Whenever it is appropriate, we will include a sample set of instructions
that can be included in your user's (operator 's) manual. We naturally are
assuming that every program that you write includes a user 's manual.
Portions of the user's manual can be extracted and used as help files.

The line editor program allows you to enter and edit text. You can
move the cursor left and right, insert and delete characters anywhere on
the line, and request help from the computer.

The line editor will check every character that you enter and verify
that it is acceptable. For example, if the program is requesting a number,
then it will allow you to enter only numbers, not letters. When it wants a
yes or no response, it will only allow you to enter a Y or anN. Periods(.)
are displayed to illustrate the maximum length of the field. You cannot
enter text that will exceed the space shown.

Whenever you have any doubts about how you should respond to an
input, you can request help by pressing control Q (for question). If help is
available, then a message will be displayed for you. After you have read
the message, enter RETURN and the program will continue.

The following list summarizes the editing commands available.
Recall that a control character is entered by holding down the CTRL key
while entering the desired letter. For example, control A is activated by
holding down the CTRL key while striking the A key.

49

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

Control A

Control D
Control F

Control N

Control Q

Control W

Control Y
Right arrow

Left arrow

Skip to the previous word.

Delete this character and compress the line.
Insert characters into the line.

Skip to the end of the line.

HELP request at any time.

Skip to the next word.

Erase to the end of the line.
Move right one character.

Move left one character.

When you are in the insert mode, you will keep inserting letters until
you enter any control or arrow key.

COMPLETE LINE EDITOR PROGRAM

50

The complete program listing for the line editor follows. It may look like a
formidable program, but if the remark statements were removed, the pro
gram would be about 160 lines long. Considering what this routine does,
that length is not overly long.

10 REM
20 REM LINE EDITOR TEST ROUTINE
30 REM ASKS FOR INITIAL CONDITIONS THEN IT
40 REM USES THE LINE EDITOR .
50 REM
60 HOME
70 INPUT "ENTER MASK "; MASK$
80 INPUT "ENTER TEXT "; ENTRY$
90 INPUT "ENTER ROW "; ROW%
100 INPUT "ENTER COL "; COL%
110 HOME
120 GOSUB 50000 : REM THE LINE EDITOR
130 VTAB 20
140 PRINT
150 IF HELP% = 1 THEN PRINT "HELP REQUESTED "

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

160
170
180
190
200
210
220
230

50000
50005
50010
50015
50020
50025
50030
50035
50040
50045
50050
50055

PRINT
PRINT ">";ENTRY$;"<"
VTAB 24
INPUT "ENTER (CR) TO CONTINUE OR END TO EXIT ";A$
IF A$ < > " " THEN END
GOTO 60
REM
END

REM BASIC LINE EDITOR
REM
REM
REM THIS IS A BASIC LINE EDITOR
REM
REM THE PROGRAMMER CALLS IT USING THE FOLLOWING VARIABLES
REM
REM ROW% => SCREEN LINE NUMBER
REM COL% => SCREEN COLUMN NUMBER
REM ENTRY$ => TEXT TO BE EDITED
REM MASK$ => DATA TYPE TO BE ALLOWED
REM WHERE:

50060 REM
50065 REM
50070 REM
50075 REM

A = ALPHANUMERIC
= NUMBER FIELD ONLY
Y = YES/NO FIELD
Q = HELP REQUEST OK, USE IN ANY CHARACTER

50080 REM THE LENGTH OF MASK$ IS THE MAXIMUM LENGTH OF THE
50085 REM INPUT STRING
50090
50095
50100
50105
50110
50115
50120
50125
50130
50135
50140
50145
50150

REM
REM
PLACE% = 1
REM
FILL$ = "·"
HELP% = 0
CTRL% = 0
GOSUB 52130
GOSUB 50165
FILL$ = " "
GOSUB 52130
RETURN
REM

REM

REM
REM
REM
REM
REM
REM
REM
REM

50155 REM **********************

SET THE STARTING POSITION

DISPLAY DOTS
CLEAR THE HELP FLAG
CLEAR THE EXIT FLAG
DISPLAY ENTRY$
EDIT THE STRING
CLEAR THE SCREEN
DISPLAY ENTRY$
GO BACK TO CALLER

51

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

52

50160
50165
50170
50175
50180

REM
REM EDIT THE ENTRY$ FIELD
REM
REM POSITION THE CURSOR
REM

50185 VTAB ROW%
50190 GOSUB 52000
50195 REM

REM VERTICAL POSITION
REM PRINT THE CHARACTER IN INVERSE

50200 REM ACCEPT A KEY FROM THE KEYBOARD
50205 REM
50210 KEY% = PEEK (49152) : REM TEST FOR INPUT
50215 IF KEY% < 128 THEN GOTO 50210 REM LOOP UNTIL ENTRY
50220
50225
50230
50235
50240
50245
50250
50255
50260
50265
50270
50275
50280
50285
50290
50295
50300
50305
50310
50315
50320
50325
50330
50335
50340
50345
50355
50360
50365

REM
REM IF HERE THEN A KEY PUSHED
REM
XX = PEEK (49168) REM CLEAR KEYBOARD
KEY% = KEY% - 128 REM STRIP OFF FLAG BIT
REM
REM PROCESS THE KEY
REM
GOSUB 50295 : REM KEY% PROCESSOR
IF HELP% > 0 THEN RETURN : REM HELP REQUESTED BY USER
IF CTRL% > 0 THEN GOSUB 52070: RETURN : REM CONTROL KEY EXIT
GOTO 50210 : REM GET THE NEXT KEY
REM
REM ****************************
REM
REM TEST FOR CONTROL KEY
REM
IF KEY% < = 31 THEN GOSUB 51000: RETURN REM PROCESS AND RETURN
REM
REM MUST BE AN ALPHANUMERIC
REM
REM TEST THE MASK TO DETERMINE DATA TYPE
REM
IF MID$ (MASK$,PLACE%,1)
IF MID$ (MASK$,PLACE%,1)
IF MID$ (MASK$,PLACE%,1)
REM
REM BAD MASK CHARACTER
REM

"A" THEN GOSUB 50900: RETURN
"# " THEN GOSUB 50390: RETURN
"Y" THEN GOSUB 50440: RETURN

50370
50375
50380
50385
50390
50395
50400
50405
50410
50415
50420
50425
50430
50435
50440
50445
50450
50455
50460
50465
50900
50905
50910
50915
50922
50925
50926
50930
50932
50935

50936
50940
50945
50946
50950
50955
50960
50965
50970
50975

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

RETURN
REM
REM *****************************
REM
REM ACCEPT A NUMBER
REM
REM TEST TO SEE IF IT IS A VALID NUMERIC TYPE OF CHARACTER
REM
IF (KEY% < 45) OR (KEY% > 57) THEN RETURN : REM BAD KEY
IF KEY% = 47 THEN RETURN REM BAD KEY ALSO
GOSUB 50900 : REM GOOD KEY SO ACCEPT IT
RETURN
REM *****************************
REM
REM TEST FOR YES OR NO
IF (KEY% < > 89) AND (KEY% < > 78) THEN RETURN : REM BAD KEY
GOSUB 50900 : REM ACCEPT IT
RETURN
REM ******************************
REM
REM PRINT KEY% AND ADD TO ENTRY$
REM
IF INSERT% = 1 THEN GOSUB 51315: REM INSERT A SPACE
TXTSIZE% = LEN (ENTRY$) : REM MAKE SURE WE HAVE CORRECT TXTSIZE%
REM ADD TO END OF ENTRY
IF PLACE% > TXTSIZE% THEN ENTRY$ = ENTRY$ + CHR$ (KEY%): GOTO 50945
REM ADD AS FIRST CHARACTER
IF PLACE%= 1 THEN ENTRY$= CHR$(KEY%) + MID$(ENTRY$,PLACE% + 1): GOTO 50945
REM ADD AS LAST CHARACTER
IF PLACE% = TXTSIZE% THEN

ENTRY$= LEFT$(ENTRY$,PLACE%- 1) + CHR$(KEY%): GOTO 50945
REM ADD IN THE MIDDLE SOMEWHERE
ENTRY$ = LEFT$(ENTRY$,PLACE% - 1) + CHR$(KEY%) + MID$(ENTRY$,PLACE% + 1)
TXTSIZE% = LEN (ENTRY$)
REM IF TOO BIG TRUNCATE IT
IF TXTSIZE% > MAXSIZE% THEN ENTRY$ = LEFT$ (ENTRY$, MAXSIZE%)
REM
REM NEED TO MOVE RIGHT ONE PLACE
REM
GOSUB 51425 : REM RIGHT ARROW
RETURN

53

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

54

50980 REM
50985 REM ***************************
50990 REM
51000
51005
51010
51015
51020
51025
51030
51035
51040
51045
51050
51055
51060-
51065
51070
51075
51080
51085
51090
51095
51100
51105
51110
51115
51120
51125
51130
51135
51140
51145
51150
51155
51160
51165
51170
51175
51180
51184

REM PROCESS A CONTROL KEY
REM
REM EXIT KEYS SUCH AS RETURN SET CTRL%
REM
REM
REM AA = 1 > PREVIOUS WORD
REM AD = 4 > DELETE THIS CHARACTER
REM
REM AF = 6 > FILL WITH A SPACE
REM AH = 8 > LEFT ARROW
REM AN = 14 > SKIP TO END
REM AQ = 17 > HELP REQUEST
REM AU = 21 > RIGHT ARROW
REM AW = 23 > NEXT WORD
REM Ay = 25 > ERASE TO END
REM IGNORE ALL OTHER KEYS
REM
CTRL% = 0 REM CLEAR EXIT FLAG
IF KEY% = 6 THEN GOSUB 51280 : RETURN : REM INSERT
INSERT% = 0 REM TURN INSERT OFF
IF KEY% = 1 THEN GOSUB 51555: REM PREVIOUS WORD
REM
IF KEY% = 4 THEN GOSUB 51210: REM DELETE
REM
IF KEY% = 8 THEN GOSUB 51380: REM LEFT ARROW
REM
IF KEY% = 13 THEN CTRL% = 1: REM RETURN KEY
REM CHECK HELP REQUEST
IF KEY% = 17 THEN HELP% = 1 : RETURN : REM HELP REQUEST
REM
IF KEY% = 14 THEN GOSUB 51680 : REM GOTO END
REM
IF KEY% = 21 THEN GOSUB 51425: REM RIGHT ARROW
REM
IF KEY% = 23 THEN GOSUB 51475 : REM NEXT WORD
REM
IF KEY% = 25 THEN GOSUB 51630: REM ERASE TO END
IF KEY% = 27 THEN CTRL% = 27 : RETURN : REM ESC

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

51185 REM
51190 RETURN
51195 REM
51200 REM ******************************
51205 REM
51210 REM DELETE AND PACK
51215
51220
51225
51230
51235
51240

51245
51250
51255
51260
51265

REM
TXTSIZE% = LEN (ENTRY$)
IF TXTSIZE% = 0 THEN RETURN : REM NOTHING TO DELETE
IF TXTSIZE% = 1 THEN ENTRY$ = "":PLACE% = 1:GOTO 51250 : REM DELETE LINE
IF PLACE% = 1 THEN ENTRY$ = MID$ (ENTRY$,2): GOTO 51250
IF PLACE% > = TXTSIZE% THEN

ENTRY$= LEFT$(ENTRY$,TXTSIZE%- 1):PLACE% =PLACE%- 1:GOTO 51250
ENTRY$= LEFT$ (ENTRY$,(PLACE%- 1)) +MID$ (ENTRY$,PLACE% + 1)
GOSUB 52130 REM PRINT NEW STRING
GOSUB 52000 : REM PRINT INVERSE
RETURN
REM

51270 REM ******************************
51275 REM
51280 REM TOGGLE THE INSERT MODE
51285 REM
51290 IF INSERT% = 1 THEN INSERT% = 0: RETURN REM TURN IT OFF
51295 INSERT% = 1 : REM TURN IT ON
51300
51305
51310
51315
51320
51325
51330
51335
51340
51345
51350
51355
51360
51365
51370
51375

RETURN
REM ******************************
REM
REM INSERT A CHARACTER
REM
REM
REM IS IT THE FIRST CHARACTER?
IF PLACE% = 1 THEN ENTRY$ = " " +ENTRY$: GOTO 51350
REM INSERT IN THE MIDDLE
ENTRY$ = LEFT$ (ENTRY$,PLACE% - 1) + " " + MID$ (ENTRY$,PLACE%)
GOSUB 52130
GOSUB 52070
RETURN
REM

REM PRINT THE FIELD
: REM REPOSITION CURSOR

REM ******************************
REM

55

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

56

51380 REM LEFT ARROW
51385 REM
51390 GOSUB 52070 : REM DISPLAY NORMAL
51395 IF PLACE% > 1 THEN PLACE% = PLACE% - 1: REM MOVE LEFT ONE
51400 GOSUB 52000 : REM DISPLAY INVERSE
51405 RETURN
51410
51415
51420
51425
51430
51435
51440
51445
51450
51455
51460
51465
51470
51475
51480
51485
51490
51495
51500
51505
51510
51515
51520
51525
51530
51535
51540
51545
51550
51555
51560
51565
51570
51575
51580

REM
REM ******************************
REM
REM RIGHT ARROW
REM
IF MID$ (ENTRY$,PLACE%,1) = "" THEN RETURN
GOSUB 52070 : REM DISPLAY AS NORMAL
IF PLACE% < MAXSIZE% THEN PLACE% = PLACE% + 1
GOSUB 52000 : REM DISPLAY AS INVERSE
RETURN
REM
REM ******************************
REM
REM SKIP TO NEXT WORD
REM
REM
IF PLACE% = > TXTSIZE% THEN RETURN : REM ALREADY AT END
GOSUB 52070 : REM REMOVE CURSOR
PLACE% = PLACE% + 1: REM LOOK FOR FIRST SPACE
IF PLACE% = TXTSIZE% THEN GOTO 51530
IF MID$ (ENTRY$,PLACE%,1) < > " " THEN GOTO 51500: REM IS IT A SPACE?
PLACE% = PLACE% + 1: REM MOVE RIGHT ONE
IF PLACE% = TXTSIZE% THEN GOTO 51530
IF MID$ (ENTRY$,PLACE%,1) = " " THEN GOTO 51515: REM SKIP OVER SPACES
GOSUB 52000 : REM DISPLAY CURSOR
RETURN
REM

REM ******************************
REM
REM SKIP TO PREVIOUS WORD
REM
IF PLACE% = 1 THEN RETURN : REM AT THE FRONT ALREADY
GOSUB 52070 : REM REMOVE CURSOR
PLACE% = PLACE% - 1: REM LOOK FOR SPACE
IF PLACE% = 1 THEN GOTO 51610: REM FORCE MOVE AT LEAST ONE SPACE

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

51585 IF MID$(ENTRY$,PLACE%,1) = " " THEN GOTO 51575: REM SKIP OVER SPACES
51590 PLACE% = PLACE% - 1
51595 IF PLACE% = 1 THEN GOTO 51610
51600 IF MID$(ENTRY$,PLACE%,1) < > " " THEN GOTO 51590: REM IS IT A SPACE?
51605 PLACE% = PLACE% + 1 REM POSITION OVER FIRST LETTER
51610 GOSUB 52000
51615 RETURN
51620 REM

: REM DISPLAY THE CURSOR

51625 REM ******************************
51630 REM ERASE TO END OF LINE
51635 REM
51640 IF PLACE% = 1 THEN ENTRY$ = "": GOTO 51650: REM ERASE WHOLE LINE
51645 ENTRY$ = LEFT$ (ENTRY$,PLACE% - 1)
51650 GOSUB 52130 REM PRINT THE FIELD
51655 GOSUB 52000 : REM DISPLAY THE CURSOR
51660 RETURN
51665 REM
51670 REM ******************************
51675 REM
51680 REM SKIP TO END OF LINE
51685 REM
51690 GOSUB 52070 : REM MOVE THE CURSOR
51695 PLACE% = LEN (ENTRY$) + 1
51700 IF PLACE% > MAXSIZE% THEN PLACE% = MAXSIZE%: REM DO NOT GO PAST END
51705 GOSUB 52000 : REM SHOW THE CURSOR
51710 RETURN
51715 REM
51720 REM ******************************
51725 REM
52000 REM PRINT CHARACTER IN INVERSE
52005 REM THIS GIVES THE ILLUSION OF CURSOR MOVEMENT
52010 REM
52012 VTAB ROW% : REM POSITION CURSOR
52015 POKE 36, (COL% + PLACE% - 1) : REM HTAB
52020 INVERSE : REM REVERSE VIDEO
52025 XX$ = MID$ (ENTRY$,PLACE%,1): REM MOVE FOR THE NEXT IF
52030 IF XX$= ""THEN XX$= " "· REM IF NULL MAKE IT A SPACE
52035 PRINT XX$; : REM PRINT THE INVERSE
52040 NORMAL : REM RESTORE TO NORMAL VIDEO
52045 POKE 36, (COL% + PLACE% - 1) : REM REPOSITION THE CURSOR - HTAB
52050 RETURN

57

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

58

52055 REM
52060 REM ******************************
52065 REM
52070 REM POSITION AND DISPLAY NORMAL
52075 REM
52077 VTAB ROW% : REM POSITION CURSOR
52080 POKE 36, (COL% + PLACE% - 1) REM HTAB
52085 XX$ =MID$ (ENTRY$,PLACE% ,1) REM PRINT ONE LETTER
52090 IF XX$ = "" THEN XX$ = FILL$ REM IF NULL THEN MAKE IT A SPACE
52095 PRINT XX$;
52100 REM
52105 POKE 36, (COL% + PLACE% - 1) REM REPOSITION THE CURSOR
52110 RETURN
52115 REM
52120 REM ******************************
52125 REM
52130 REM DISPLAY TEXT$
5213 5 REM FILL$ IS THE FILL CHARACTER
52140 REM TXTSIZE% IS THE LENGTH OF ENTRY$
52145 REM MAXSIZE% IS THE MAXIMUM ALLOWED LENGTH
52150 REM
52155 REM
52160 TXTSIZE% = LEN (ENTRY$)
52165 MAXSIZE% = LEN (MASK$)
52170 REM
52175 REM IS ENTRY$ TOO LONG?
52180 REM

REM HOW LONG IS THE CURRENT FIELD?
REM WHAT IS MAX LENGTH ALLOWED?

52185 IF TXTSIZE% > MAXSIZE% THEN
ENTRY$ = LEFT$ (ENTRY$,MAXSIZE%) :TXTSIZE% = MAXSIZE%

52190 REM
52195 REM POSITION THE CURSOR
52200 REM
52205 VTAB ROW%
52210 POKE 36, COL%
52215 REM
52220 REM PRINT THE TEXT
52225 REM
52230 PRINT ENTRY$;
5223 5 REM

REM ROW POSITION
REM COLUMN NUMBER - HTAB

: REM NO LINE FEED

52240 REM PRINT THE FILL CHARACTER
52245 REM

CHAPTER 2 AN INPUT LINE EDITOR FOR APPLESOFT BASIC

52250 IF TXTSIZE% = MAXSIZE% THEN RETURN REM NO FILL$ TO PRINT
52255
52260
52265
52270
52275
52280

FOR XX = TXTSIZE% TO MAXSIZE% - 1
PRINT FILL$;
NEXT XX
RETURN : REM ALL DONE
REM

REM ******************************
52285 REM
60000 RETURN : REM UNIVERSAL RETURN FOR TESTING

59

CHAPTER

SCREEN
TEXT EDITOR

3

INTRODUCTION

In the previous chapter we created a line editor capable of editing a
single line of text. Often, however, it is necessary to enter and edit a
paragraph or more of text. In this chapter we will develop a screen text
editor that will enable us to enter and edit many pages of text. This pro
gram will be developed in two parts. The first part is the actual text edi
tor that can be added to your own programs. The second part provides
disk input/output capability. By combining both parts, you will have a
stand-alone, text-editing and program development system.

Before we present part 1 of the program, we will discuss the design
and the features of the text editor and the complete text editor.

61

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

62

Design

This program is going to be a multipurpose text editor. Not only do we
want to be able to edit text as part of a program, but we also want to de
velop a stand-alone text editor that can be used for writing letters or com
puter programs. Thus our program supports both purposes.

Another design feature of the program is the output to the printer
portion of the program, which may require special commands to be
passed depending on the type of printer used. One of the most popular
makes, the Epson, requires the code CONTROL I 80 N to be sent to the
printer to initialize it before printing more than 40 columns (many other
makes also have this requirement). The "80" can be any number between
1 and 255 or the limit of the printer, whichever is smaller. The most com
mon value used is 80. Many special features such as different character
fonts and bold printing are possible. See your printer manual for the spe
cial codes it requires.

In part 2 we will add to the text editor, giving the complete editor a
command area. In this area the user is given the option to print, load,
save, auto number, or quit.

Building the Program

The heart of the text editor is the line editor developed in Chapter 2. To
build the screen text editor, start with a copy of the line editor program
from Chapter 2 and add the additional program lines presented in this
chapter. Be sure to make backups at each stage of entry and each time
you successfully get through a test point.

User Features

To edit several pages of text, the user must be able to move the cursor up
and down a line or a page of text at a time and insert or delete lines.
These features are incorporated in the text editor.

Also, you may have noticed that your Apple II screen is only 40 char
acters wide (this limitation also applies to the Apple lie with the
SO-column card deactivated or off), but most printers are 80 or more

CHAPTER 3 SCREEN TEXT EDITOR

characters wide. Since it would be very nice to be able to print a docu
ment wider than 40 characters, we include in our program a line con
tinuation (wraparound) feature that allows us to combine several lines
into one. However, in entering text, the user will have to enter a CR at the
end of each line; the editor will not do wraparound on the screen.

For a stand-alone text editor we also need to be able to send text to
the printer, to load and save text files to the disk, or to quit and forget
everything entered. These features are included in our program and are
presented in detail in the part 2 discussion. The following list gives the
commands, and their explanations, for these additional features. The
commands consist of a complete word followed, in some commands, by a
disk file name or number. The command words are as follows:

LOAD FN
CATALOG
SAVE FN

DONEFN

PACK FN

AUTO#

AUTO

EDIT#

EDIT or ESC key
PRINT
FORMAT
QUIT

Load disk file called FN.
Display directory.
Save text to disk file called FN.

Save text and then QUIT.

Concatenate and save the text file and then
QUIT.
Turn auto line numbering on or off.
Turn auto line numbering off.

Edit the text starting at line number #.

Return to current page in text editor.

Print text file.
Pack and print text file.

Return to BASIC and clear the array.

For example, to load and then edit a text file called SALES LETTER,
the user would enter

LOAD SALES LETTER

After the file is loaded, the user could enter either

EDIT or EDIT 1 or ESC

to begin editing on line 1.

63

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

Programmer Features

So that the text editor can be used as a program development tool, the
only additional feature needed is auto line numbering, which we have
included.

From a programming standpoint all text is kept in a string array. The
calling program must tell the editor how large the array is , what line to
begin editing on, and the number of the last array element that contains a
valid text field.

For part 2, the complete text editor, the programmer must decide
how many lines the LINE$ array should contain. In a 48K system 1000
lines are a good choice. This choice will allow the average line to be
about 24 characters long. The same choice applies to the 64K Apple //e,
since the additional memory is not available for use by a BASIC program.

PART 1: TEXT EDITOR PROGRAM

64

The flowchart for the basic text editor is shown in Fig. 3.1. This flow
chart says that the calling program defines the starting conditions; then
the text editor displays a screen of text and edits the first line of text.
After the line is edited, it tests to see if the user is done. If the user is not
done, the text editor will process the last command. To leave the line edi
tor, the user has to enter either a control character (a RETURN is control
M), or an ESCape. Depending on the key entered, the text editor will
either move up/down a line/page of text or insert/delete a line.

The program corresponding to the flowchart in Fig. 3.1 (page 66) is
as follows:

41000 REM TEXT EDITOR
41005 REM
41010 REM VARIABLE DEFINITION
41015 REM LROW% STARTI NG ROW NUMBER
41020 REM LCO L% STARTING COL NUMBER
41025 REM LI NE$() TEXT ARRAY
41030 REM LAST% DIMENSIONS OF TEXT ARRAY
41035 REM MLINE% LARGEST LINE USED IN ARRAY
41040 REM LINE% CURRENT LINE BEING EDITED
41045 REM FIRST% LI NE AT TOP OF SCREEN

CHAPTER 3 SCREEN TEXT EDITOR

41050
41055
41060
41065
41070
41075
41080
41085
41090

41095
41100
41105
41110
41115

41120
41125
41130

FILL$ = " "

GOSUB 41800
ROW% = LROW%
COL% = LCOL%
REM
REM TOP OF EDIT LOOP

REM DEFINE THE FILL CHARACTER
REM DISPLAY THE SCREEN
REM START AT LAST ROW
REM START AT LAST COL

CTRL% = 0: REM CLEAR THE EXIT FLAG
ENTRY$ = LINE$(LINE%) : REM PUT CURRENT LINE INTO LINE EDITOR
IF PLACE% > LEN (ENTRY$) THEN PLACE% = LEN (ENTRY$) + 1: REM

ASSIGN PLACE% HERE
IF PLACE% = 0 THEN PLACE% = 1: REM NULL LINE
GOSUB 50165: REM EDIT THE TEXT BUT DO NOT REDISPLAY ENTRY$
LINE$(LINE%) = ENTRY$: REM SAVE THE EDITED LINE
IF KEY% = 27 THEN LROW% = ROW%:LCOL% = COL%: RETURN : REM BACK TO CALLER
ON CTRL% GOSUB 41130,41165,41215,41635,41675,

41735,41490,41560,41435,41320,41370 : REM PROCESS KEY
GOTO 41075
REM **************************************
REM

The following subsections describe various aspects of the text editor
program.

TEST POINT

Enter the following program lines. They will be used later to test the
screen editor.

100 REM
110 REM SCREEN EDITOR TEST ROUTINE
120 REM
130 DIM LINE$(50) REM DEFINE SCREEN ARRAY
140 LAST% = 50 REM NUMBER OF TEXT LINES
150 MLINE% = 0 REM INITIALIZE VARIABLES
160 ANUM% = 0
170 LROW% = 1
180 LCOL% = 1
190 LINE% = 1
200 FIRST% = 1
500 REM

65

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

66

FIG. 3.1 Text editor flowchart

Call ing program sets

510 REM LEAVE A GAP HERE
520 REM
530 GOSUB 41000 : REM CALL THE EDITOR
590 END

Explanation of Variables

The text editor program requires only a few more variables than the line
editor. LROW% (line 41060) and LCOL % (line 41065) are used to set the
starting position on the screen. The first time the text editor is called,
these variables should be set to 1.

C HAPTER 3 SCREEN T EX T EDITOR

The text to be edited is contained in array LINE$() (see line 41080).
The calling program must either clear (equate to nulls) or fill in the array
with text before it calls the text editor. LAST% is the dimension of the
array LINE$. For example, LINE$ is dimensioned by the statement DIM
LINE$(LASTo/o), where LAST% is the number of lines in the array.

DIM The DIMension statement is used to allocate space for an array.

EXAMPLE:

DIM A(12)

This command provides for elements in the array A from position 0
through 12.

MLINE% is the number of the last used array element. For instance,
if the array is dimensioned to 100, but only the first 23lines contain infor
mation, then MLINE% is set equal to 23 and LAST% is equal to 100. If
the array is cleared, then MLINEo/o is set equal to 1.

LINE% is the number of the line currently being edited. The calling
program must set it equal to 1 if there is nothing in the array or if editing
is to begin on line 1, the first line. If editing is not to begin on the first line,
then LINE o/o is set equal to the line number to be used. For example, if
you wish to begin editing on line 25, you set LINE% equal to 25.

FIRST% is the number of the line to appear at the top of the screen.
Normally, FIRST% will start with the same value as LINE%.

ANUM% (line 160 of the test routine) will be used to contain the
current auto numbering incremental value. If it is equal to 0, then auto
numbering will be turned off.

Explanation of the Program

The text editor routine displays the current screen, keeps track of the
cursor's position, and processes the exiting control characters. The text
editor enters the line editor routine at line 50170 (see line 41100 of the

67

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

68

text editor program). This GOSUB is used because the text editor does not
need to have the line redisplayed before or after editing.

PLACE % (lines 41085 and 41090) is used by the line editor to
mark the current character being edited. In the text editor PLACE % is
set equal to 1 for a RETURN but not for a line feed or a down arrow.
Setting PLACE o/o equal to 1 will cause the cursor to start at the begin
ning of the line. If the user desires to use the up and down arrows, it
looks nicer and is usually more convenient if the cursor stays in the
current column position as the cursor is moved up and down through
the lines of text, rather than return to the beginning of the line. If
PLACE o/o is larger than the length of the line the cursor is moving to,
PLACE% is set equal to the length of the new line so that editing may
begin at the end of the line.

Explanation of Screen Display Subroutine

The screen display subroutine (line 41055 , GOSUB 41800) clears the
screen by using the HOME command and then uses a FOR-NEXT loop to
display the text array, starting with text line FIRST% .

HOME The HOME command clears the text a rea and moves the cursor
to the upper left corner of the screen.

The program for the screen display routine is as follows :

41800
41805
41810
41815
41820
41825
41830
41835
41840
41845
41850
41855

REM DISPLAY THE CURRENT SCREEN
REM
HOME : REM CLEAR THE SCREEN
FOR X = 1 TO 24

Z = FIRST% + X - 1
POKE 36, 1
VTAB X
PRINT LINE$(Z) ;

NEXT X
RETURN

REM POSITION THE CURSOR - HTAB

REM ***********************************
REM

CHAPTER 3 SCREEN TEXT EDITOR

TEST POINT

Before testing the screen display routine, you will need to add a tempo
rary program line:

41057 END

Since we do not want to proceed past this subroutine, this temporary line
will cause execution to stop after the screen is displayed. If you now
enter

RUN (CR)

the screen should clear and the program will stop with the cursor on the
last line.

If this routine worked so far, add some more temporary lines:

400 FOR X = 1 TO 50

410 LINE$(X) = "THIS IS LINE NUMBER "+STR$(X)

420 NEXT X

These lines fill the array with text.
Enter

RUN (CR)

and you should now see the text for lines 2 through 24 displayed. The text
for line 1 scrolled off the top of the screen because of the END statement
on line 41057.

After the screen display section is tested, line 41057 is no longer
needed, so delete it and add

41107 END

You can now test the line editor as part of the screen editor. Enter

RUN (CR)

69

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

and the screen should clear, the text in the first 24 lines should be dis
played, and the cursor should be left on line 1 over the L. You should now
be able to edit this line. The program will stop after you enter (CR).

After you are satisfied that everything is working, delete line 41107.

SCREEN EDITOR CONTROL CHARACTER COMMANDS

70

The screen text editor requires several new control character commands
to be added to the line editor routine . These characters will set the
CTRLo/o variable. Recall that if CTRLo/o is not 0, the line editor will return
to the caller. After the text editor saves the edited line, it will process the
exit character.

The following new characters and commands are implemented:

A B (control B) Insert a blank line into array.
1\ E (control E) Jump to last page.
1\ I (control I) Tab over 8 spaces or add spaces to a line.
1\ J (control J) Down arrow, move down one line.
1\ K (control K) Up arrow, move up one line.
1\ M (control M) RETURN, move down one line.
1\ 0 (control 0) Jump to first page of text.
1\ p (control P) Concatenate two lines of text.
1\ R (control R) Scroll up one full page of text.
1\ T (control T) Scroll down one full page of text.
1\ z (control Z) Delete a line and compress array.

ESC (ESCape) All done. Exit the text editor.

The tests for these commands are inserted directly into the line editor
program from Chapter 2 (see the program lines that follow). They must be
inserted manually. After the line editor exits, the text editor interprets
the CTRL o/o character and performs the requested action.

The program lines for inserting the new control characters are as
follows:

CHAPTER 3 SCREEN TEXT EDITOR

50347 IF MID$(MASK$,PLACE%,1) = "N" THEN
GOSUB 41270: RETURN REM 50347 AUTO NUMBER

51102 IF KEY% = 2 THEN CTRL% = 8 REM 51102 "B INSERT LINE
51112 IF KEY% = 5 THEN CTRL% = 9 REM 51112 "E LAST PAGE
51122 IF KEY% = 9 THEN CTRL% = 10 REM 51122 "I TAB
51124 IF KEY% = 10 THEN CTRL% = 2 REM 51124 "J LINE FEED
51126 IF KEY% = 11 THEN CTRL% = 3 REM 51126 "K UP ARROW
51132 IF KEY% = 15 THEN CTRL% = 4 REM 51132 "O FIRST PAGE
51134 IF KEY% = 16 THEN CTRL% = 11 REM 51134 Ap CONCATENATE
51142 IF KEY% = 18 THEN CTRL% = 5 REM 51142 "R UP PAGE
51157 IF KEY% = 20 THEN CTRL% = 6 REM 51157 "T DOWN PAGE
51182 IF KEY% = 26 THEN CTRL% = 7 REM 51182 "Z DELETE LINE

In the following subsections we will enter and test the new
commands.

Inserting a Blank Line

Control B ("B) is used to insert a blank line. To insert a blank line, we split
the array at the current line number and move all the text on higher line
numbers down one line. After the array is moved, the current line be
comes the blank line, MLINE% is incremented, and the screen is redis
played.

The following routine is used to insert a blank line:

41560
41565
41570
41575
41580
41585
41590
41595
41600
41605
41610

REM INSERT A BLANK LINE
REM
IF MLINE% < LAST% THEN MLINE% = MLINE% + 1
Y = LINE% : REM LINE COUNTER
IF LINE% = 1 THEN Y = 2 : REM AT TOP OF TEXT
FOR X = MLINE% TO Y STEP - 1

LINE$(X) = LINE$(X - 1) : REM MOVE TEXT DOWN A LINE
NEXT X
LINE$(LINE%)
GOSUB 41800
RETURN

"" REM CLEAR THE OLD LINE
REM DISPLAY SCREEN

71

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

72

41615 REM
41620 REM ***********************************
41625 REM
41630 REM

TEST POINT

There are two special boundary conditions that must be tested for at this
point. These occur when inserting on either the first or the last line of the
array.

Enter RUN (CR) and the cursor will appear on line 1. You can test the
first boundary condition by entering ~''B. The screen should clear and all
the lines be redisplayed, but shifted down one line. The first line should
be blank.

The testing of the second boundary condition will be done later, after
the cursor can be moved to the bottom of the text.

Jump to the Last Page

Control E (AE) is used to jump to the last page. When you are editing a
document, it is very convenient to be able to jump directly to the end of
the document. You must test to verify that there is more than one page of
text; otherwise, you simply adjust the pointers for the last page.

The following subroutine allows you to jump to the last page of text:

41435 REM JUMP TO LAST PAGE
41440 REM
41445 FIRST% = MLINE% - 23 : REM FIND THE LINE AT THE TOP OF THE SCREEN
41450 IF FIRST% < 1 THEN FIRST% = 1: REM CANNOT HAVE LINE LESS THAN 1
41455 LINE% = FIRST%
41460 ROW% = 1
41465 COL% = 1
41470 GOSUB 41800 : REM DISPLAY THE SCREEN
41475 RETURN
41480 REM ************************************
41485 REM

CHAPTER 3 SCREEN TEXT EDITOR

TEST POINT

Execute the program and enter "E. The last page of the text should be dis
played and the cursor should be on the top line of the screen.

Tab Stops

A control I is the traditional TAB key on a computer terminal, and the de
fault tabs are set at eight spaces each.

Tab stops are a convenient feature to include in the text editor. Their
use in program development provides increased readability. In a letter
they provide the ability to easily indent text.

The TAB key will move the cursor right to the next tab stop, every
eight characters (this is the default value), if there is already text on the
line. However, if we are moving the cursor past the end of the text on the
line, we must insert spaces into the text liiie as we TAB.

As an option, this feature could be added directly to the line editor. If
you choose to do so, you must modify the line feed routine for the con
tinuation character since it currently uses the TAB routine to indent the
next line.

The TAB routine is as follows:

41320 REM TAB
41325 REM
41330 PLACE% = (INT (PLACE% / 8) + 1) * 8: REM SLIDE THE CURSOR RIGHT
41332 IF PLACE% > MAXSIZE% THEN PLACE% = MAXSIZE%
41335 IF PLACE%<= LEN (LINE$(LINE%)) THEN

RETURN : REM WITHIN CURRENT FIELD
41340 FOR X= LEN (LINE$(LINE%)) TO PLACE%- 1
41345 LINE$(LINE%) = LINE$(LINE%) + " " : REM ADD SPACES TO THE END
41350 NEXT X
41355 RETURN
41360 REM ******************************
41365 REM

73

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

74

TEST POINT

At this point you will do two tests. First, enter "I on line 1, and the cursor
should move over to the eighth column. Since the line contains text, no
blanks will be inserted. Next, move the cursor to the front of the line and
then delete all of the text by using the delete-to-end-of-line command.
Now enter "I, and eight spaces should be inserted and the cursor posi
tioned on column 8.

Moving Down a Line

Two different keys can be used to move down a line: "J (line feed) or
RETURN. The line feed commmand will keep the cursor in the same col
umn on the screen. The RETURN acts like a carriage return on a type
writer and will move the cursor to the first character of the next line.

To move down a line, we increment both LINE% and ROW% by one.
However, we must also test a number of boundary conditions. LINE%
cannot be larger than LAST%, since LAST% is the array dimension. If
LINE% becomes larger than MLINE% (the bottom of the array), then
MLINE% must be incremented. Next, we test the line we are leaving for
continuation characters. If there is a continuation character and the next
line is blank, editing will begin at the first tab stop on the next line. This
feature is especially convenient for the user if a BASIC program is being
written. Indenting the line will make it stand out from the rest of the text.
We do not indent if the line is not blank because a nonblank line means
that the user is editing existing text. Finally, we test the line we are
leaving to see whether it is the bottom line. If we want to go down one
more line, the screen must be moved up. The screen is moved up by call
ing the page scroll subroutine.

The following routine moves the text down a line:

41135
41140
41145
41150
41155
41160
41165

REM CARRIAGE RETURN
REM
PLACE% = 1

GOSUB 41170
RETURN

: REM LINE FEED

REM ***
REM

CHAPTER 3 SCREEN TEXT EDITOR

41170 REM LINE FEED
41175 REM
41180 IF LINE% = LAST% THEN RETURN : REM MAX NO MORE LINES LEFT
41185 LINE% = LINE% + 1
41190 IF LINE% > MLINE% THEN MLINE% = LINE% : REM INC THE LARGEST LINE COUNTER
41195 ROW% = ROW% + 1
41200 IF ROW% > 24 THEN ROW% = 24 :X = 1: LINE% =LINE% - 1: GOSUB 41755
41205 IF (RIGHT$ (ENTRY$, 1) = "&") AND (LEN (LINE$(LINE%)) = 0) THEN

PLACE% = 0: GOSUB 41320: REM TAB IN ON NEXT LINE
41210 RETURN
41215 REM ***********************************
41220 REM

TEST POINT

After the program for moving down a line has been typed in, enter RUN
(CR). Once the new screen is displayed, enter another (CR) and the cursor
should move to line 2. Now edit line 2 and enter "J. If there is no text on
line 3, the cursor drops down to line 3 and moves to the first column. If
there is text on the following lines, then the cursor drops down to the next
line, staying in the same column. The page-scrolling test will have to be
done after you have entered that routine (which is presented in a later
subsection).

Moving Up a Line

The control K ("K) is used to move up one line. To move up a line, we
decrement both LINE % and ROW % by one. As in moving down a line, we
must also test a number of boundary conditions. LINE% must be greater
than 0. If ROW % becomes equal to 0, the screen must be rolled down a
line. Rolling down a line is done by telling the page scroll subroutine to
move up one line.

The following routine moves the text up a line:

41225
41230
41235
41240

REM UP ARROW
REM
IF LINE% = 1 THEN RETURN
LINE% = LINE% - 1

REM AT TOP ALREADY

75

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

76

41245 ROW% = ROW% - 1
41250 IF ROW% < 1 THEN ROW% = 1: LINE% = LINE% + 1:X = 1: GOSUB 41695
41255 RETURN
41260 REM
41265 REM **************************************

Instead of scrolling just one line up or down, you may wish to scroll
half a page or 12 lines. You will have to adjust both ROW% and LINE%
to do so. Some users may be annoyed that the screen refreshes every time
it scrolls one line. Others may be annoyed by the cursor jumping from ei
ther the top or the bottom row to the middle of the screen. Your imple
mentation is a matter of personal preference.

TEST POINT

Execute the program we have presented so far , and after the screen has
displayed, enter a couple of carriage returns to move the cursor down the
screen. Now enter "K and move back up one line. Edit this line and enter
another "K. Next, enter a (CR) and return to the line you just edited. It
should contain the text you edited. Before proceeding to the next section,
check to make sure everything is working correctly. Move the cursor up
and down several times and edit several lines. Also, try some of the previ
ous commands, such as line insert and jump to the last page.

Jump to the Home Page

To jump to the original or horne page, you strike control 0 ("0). This fea
ture comes in handy, for example, when you are proofreading a docu
ment. Jumping to the first page is done by setting LINE% , ROW%,
COL% , and FIRST% equal to 1 and then displaying the text.

The program for returning to the horne page is as follows:

41635
41640
41645
41650
41655

REM GOTO THE HOME PAGE
REM
GOSUB 41860
GOSUB 41800
RETURN

REM RESET THE POINTERS
REM SHOW THE SCREEN
REM A OK

CHAPTER 3 SCREEN TEXT EDITOR

41660 REM
41665 REM **
41670 REM

TEST POINT

To test the routine for jumping to the home page enter "E to jump to the
last page. Enter "0 to jump back to the first page, and test some of the
previous commands to be sure they are still working correctly.

Concatenate Two Lines

We use control P ("P) to concatenate (combine) two lines of text into one.
The routine that follows will combine the two lines and then delete the
second line from the array.

If we are already on the last line, there is nothing to concate
nate-this condition is the only special one. If the new line is too long, it
will be truncated by the line editor.

The following program combines two lines:

41370
41375
41380
41385
41390
41395
41400
41405
41410
41415
41420
41425
41430

REM PACK TWO LINES
REM
IF LINE% = MLINE% THEN RETURN : REM AT THE END
LINE$(LINE%) = LINE$(LINE%) + LINE$ (L INE% + 1) : REM PACK THE LINES
IF LINE% = MLINE% THEN GOTO 41410: REM LAST LINE
FOR X = LINE% + 1 TO MLINE% - 1
LINE$(X) = LINE$(X + 1) REM MOVE LINE UP ONE
NEXT X
LINE$(MLINE%) = ""

MLINE% = MLI NE% - 1
GOSUB 41800
RETURN

REM CLEAR THE LAST LINE
REM REDUCE MAX LINE BY ONE
REM DISPLAY SCREEN

REM ********************************

TEST POINT

To test the concatenating feature, enter "P on the first line. The screen
should clear and the new line 1 should contain the original line 1 with the

77

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

78

original line 2. The rest of the text lines will move up one line. If you jump
to the last line, you can test the boundary condition of concatenating a
blank line.

Scroll Up a Page

Control R ("R) is used to move up one page of text at a time. In the routine
that follows , FIRST% and LINE % are decremented, and the text window
(the space occupied by text) is moved up. For this routine we need to test
for the top of the document. If the user is already on the top page of text ,
we will move them to the top row on the screen.

The scrolling-up routine is as follows:

41675
41680
41685
41690
41695

41700
41705
41710
41715
41720
41725
41730

REM SCROLL UP A PAGE
REM
X = 24 : REM JUMP A FULL PAGE
REM ENTRY POINT FOR ROLL UP
IF FIRST% < = X THEN GOSUB 41860 :

ROW% = 1: GOSUB 41800: RETURN : REM JUMP TO TOP OF FIRST PAGE
FIRST% = FIRST% - X REM MOVE THE TOP LINE
LINE% = LINE% - X
GOSUB 41800
RETURN
REM

REM CHANGE THE ARRAY POINTER
REM DISPLAY THE SCREEN

REM **
REM

TEST POINT

Enter "E and jump to the last page. Then use "R to scroll up one page. Test
all of the functions as you did for moving the cursor up one line. Verify
that when "K is entered on the top line of the screen, the text is scrolled
down one line.

Scroll Down a Page

Control T ("T) is used to move down a page of text. Scrolling down is just
the opposite of scrolling up. Scrolling down is used whenever a document
is longer than 24 lines , since a display longer than 24 lines cannot be

CHAPTER 3 SCREEN TEXT EDITOR

shown on one screen page. So in large documents it becomes necessary to
be able to jump up and down through the text 24 lines at a time.

The scroll-down subroutine must increment FIRST% and LINE%,
then redisplay the screen. The boundary conditions occur at the bottom
line and the last page. The variable X is used to set the number of lines to
be scrolled. For a full page, scroll X is set equal to 24. The single-line
scroll sets X equal to 1, and a half-page scroll sets X equal to 12. If the
cursor is already on the last page of text, then it will move to the last line;
otherwise, it will remain on the same row on the screen and the text will
move one page.

The scrolling-down routine is as follows:

41735 REM SCROLL DOWN A PAGE
41740 REM
41745 X = 24 : REM JUMP A FULL PAGE
41750 REM ENTRY POINT FOR ROLL DOWN
41755 IF MLI NE% < = 24 THEN LINE% = MLINE% :

ROW% = MLINE%: RETURN : REM ON FIRST PAGE
41760 IF FIRST% + X > MLINE% THEN FIRST% = MLINE% - 23

LINE% = MLI NE% :ROW% = 24: GOTO 41775: REM BOTTOM
41765 FIRST% = FIRST% + X
41770 LINE% = LINE% + X
41775 GOSUB 41800 REM DISPLAY THE SCREEN
41780 RETURN
41785 REM
41790 REM **************************************
41795 REM

TEST POINT

Use "T to scroll down a page. Then perform the same tests you performed
for scrolling up a page.

Deleting a Line

The control Z ("Z) command is used to delete a line of text. To delete a
line, we split the array at the current line number, and all the text on the
higher line numbers is moved up one line. MLINE% is decremented, and
the last line is cleared.

79

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

The program for deleting a line is as follows:

41490 REM DELETE A LINE
41495 REM
41500 IF MLINE% = 1 THEN LINE$(1) = "": GOTO 41535: REM ONLY ONE LINE
41505 IF LINE% = MLINE% THEN

ROW% =ROW% - 1: LI NE% =LINE% - 1: GOTO 41525: REM LAST LINE IN TEXT
41510 FOR X = LINE% TO MLINE% - 1
41515 LINE$(X) = LINE$(X + 1) : REM MOVE THE LINES UP
41520 NEXT X
41525 LINE$(MLINE%) = "" REM CLEAR BOTTOM LINE
41530 IF MLJNE% > 1 THEN MLINE% = MLINE% - 1
41535 GOSUB 41800 : REM DISPLAY SCREEN
41540 RETURN
41545 REM
41550 REM *************************************
41555 REM

TEST POINT

Special boundary conditions occur on the first and last lines of the pro
gram, so special tests are performed by the subroutine for deleting a line
to detect these conditions.

Enter RUN (CR) and the cursor will appear on the first line. Enter 11Z
and the screen should clear and show what appears to be lines 2 through
25 but are now really lines 1 through 24. Now enter 11E and jump to the
bottom of the text. Enter 11Z and the last line should disappear.

The Escape Key

The ESC (escape) key is used to exit the text editor subroutine and return
the user to the calling program (this will be the command area of part 2).

SUMMARY OF PART 1

80

We have now created a simple text editor. This subroutine can be used
as part of a larger program. There are countless applications where such
a text editor can be used.

CHAPTER 3 SCREEN TEXT EDITOR

In part 2 of this chapter we will add the routine needed to make this
program a full stand-alone screen text editor.

PART 2: COMPLETE TEXT EDITOR PROGRAM

The previous subroutines will edit text. It is up to the program that calls
the text-editing subroutines to load or save the information edited by the
user. If we add these routines to the text editor, we will have a stand
alone screen text editor. We will call this program the complete text edi
tor.

The flowchart for the complete text editor is shown in Fig. 3.2. When
a valid command is entered, the editor will execute the command and re
turn to the command screen to await another command.

FIG. 3.2 Flowchart for the complete text editor

Program
start

Display the
corrunand screen

Perform
requested
function

CATALOG
EDIT
Line number
PRINT

81

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

COMMAND DISPLAY AND PROCESSOR

82

The rather lengthy program listing that follows is the command display
and processor routine . The display gives information on the current sta
tus of the text being edited and a HELP screen illustrating the available
commands.

Before the display is shown, a FRE() command is executed. If there
is a lot of text in the editor, this command can take several seconds to
execute. The FRE() command is valuable for two reasons: First, it tells
the user how much memory is available to accept additional text; second,
it does some housekeeping of the memory for you.

FRE(O) The FRE command returns the amount of memory available to
the user in bytes. FRE(O) performs the housekeeping task of clearing
unused values from memory, freeing that space for current use.

The number of lines used and the auto line numbering values, if any,
are shown in the command area of the program. Additionally, an ex
planation of the command is displayed.

The line editor is used to accept a command from the user. LEFT$ is
used in the command routine to determine if a valid command has been
entered. We have chosen to use full words and not abbreviations for the
commands.

After a command is executed, the command screen is redisplayed
and another command is accepted. Notice in the listing that follows
that some of the commands return to line 40045 and some to line
40040. If the command affects the amount of free memory, then an
other FRE() command is executed; otherwise, no FRE() command is
needed. As mentioned above, the FRE() command can take some time
to execute if there is a lot of text, so we do not want to use it more
often than necessary.

The complete text editor line numbering begins with number 40000.
For this complete editor, change the value on lines 130 and 140 in the
screen editor test routine from 50 to 1000. Also, delete lines 500 through
540 from the test routine.

The program listing for the command display and processor is as fol
lows:

40000
40005
40010
40015
40020
40025
40030
40035
40040
40045
40050
40055
40060
40065
40070
40075
40080
40085
40090
40095
40100
40105
40110
40115
40120
40125
40130
40135
40140
40145
40150
40155
40160
40165
40170
40175
40180
40185
40190
40195
40200

CHAPTER 3 SCREEN TEXT EDITOR

REM EDITOR * COMPLETE TEXT EDITOR WITH COMMAND AREA
REM
REM USES THE LINE EDITOR WITH A FEW ADDITIONAL EXIT KEYS
REM
REM COMMAND AREA ROUTINE
REM
MLINE% = 1
GOSUB 41860
FX = FRE (0)
HOME

REM SET THE MAX LINE COUNTER
REM CLEAR VARIABLES
REM CLEAR THE MEMORY

PRINT "EDITOR COMMAND AREA FREE ";FX: REM TITLE AND FREE MEMORY
PRINT "LINES USED ";MLINE%;" ON LINE ";LINE%;
IF ANUM% > 0 THEN PRINT " AUTO ";ANUM%;
PRINT : PRINT
PRINT ">";
PRINT
PRINT
PRINT "LOAD NAME LOAD A TEXT FILE"
PRINT "CATALOG DISPLAY DIRECTORY"
PRINT
PRINT "EDIT ## EDIT LINE NUMBER"
PRINT "ESC EDIT CURRENT LINE NUMBER"
PRINT "EDIT EDIT CURRENT LINE NUMBER"
PRINT
PRINT "AUTO ## AUTO LINE NUMBER"
PRINT "AUTO TURN OFF LINE NUMBERING"
PRINT
PRINT "SAVE NAME SAVE THE FILE"
PRINT "DONE NAME SAVE AND EXIT TO BASIC"
PRINT "PACK NAME PACK, SAVE AND EXIT"
PRINT
PRINT "PRINT PRINT TEXT FILE"
PRINT "FORMAT PACK AND PRINT TEXT FILE"
PRINT
PRINT "QUIT EXIT TO BASIC"
MASK$ = "NAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
ENTRY$ = "" REM CLEAR IT
ROW% = 4 REM COMMAND INPUT LINE
COL% = 3
PLACE% = 1 REM EDITOR SETS PLACE%
FILL$ = " "

83

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

40205
40210
40215
40220
40225
40230
40235
40240
40245
40250
40255
40260

40265
40270
40275
40280

84

GOSUB 50120 : REM ENTER LINE EDITOR AT HELP% = 0 LINE
REM IF E THEN CALL THE EDITOR
IF KEY% = 27 THEN ENTRY$ = "EDIT": REM ESC MEANS EDIT TEXT
IF LEFT$ (ENTRY$, 4) "AUTO" THEN GOSUB 40285 : REM AUTO LINE NUMBER
I F LEFT$ (ENTRY$,4) "PACK" THEN GOSUB 40545: HOME : END : REM PACK
IF LEFT$ (ENTRY$, 4) "EDIT" THEN GOSUB 40335: GOTO 40040: REM EDIT
IF LEFT$ (ENTRY$,4) "DONE " THEN GOTO 40510: REM SAVE AND END
IF LEFT$ (ENTRY$,4) "LOAD" THEN GOSUB 40395: GOTO 40040: REM LOAD
IF LEFT$ (ENTRY$,7) "CATALOG " THEN GOSUB 40745: REM DISK CATALOG
IF LEFT$ (ENTRY$,4) "SAVE" THEN GOSUB 40595: REM SAVE THE TEXT
IF LEFT$ (ENTRY$,5) "PRINT" THEN PR# 1: PRT% = 1: GOSUB 40595 : REM PRINT
IF LEFT$ (ENTRY$,6) "FORMAT " THEN

PR# 1:PRT% = 1: GOSUB 40545: HOME : END : REM PACK PRINT
IF LEFT$ (ENTRY$,4) = "QUIT " THEN HOME : END : REM CLEAR AND QUIT
GOTO 40045 : REM TRY AGAIN
REM **
REM

The following routine is used to initialize several variables:

41860 REM CLEAR EVERYTHING
41865 REM
41870 LINE% = 1
41875 FIRST% = 1
41880 LROW% = 1
41885 LCOL% = 1
41890 ROW% = 1
41895 COL% = 1
41900 RETURN

REM CURRENT LI NE NUMBER
REM TOP LINE ON THE SCREEN
REM START ON FIRST LINE

41905 REM **************************

Various aspects of the command display routine are described in the
subsections that follow.

TEST POINT

After RUN (CR) is entered, the screen should clear, the command area
and the HELP screen should be displayed, and the cursor should be posi
tioned on the fourth line next to the > symbol. The editor is waiting for a

CHAPTER 3 SCREEN TEXT EDITOR

command. The only command that can be executed at this time is QUIT.
Try it to verify that at least this command works. As you can see from line
40265, QUIT clears the screen and stops execution.

The Edit Command

The EDIT command, or the ESC key, is used to toggle from the command
area to the text editor. The ESC key is used to be consistent with using the
ESC key to exit the text editor. The EDIT command has two modes: with
or without a line number. If the user knows which line number is to be
edited, then EDIT## is used, where## is the line to be edited. If the cur
rent text window is desired, the user does not enter a line number.

The program detects which method is used by checking the length of
the command entered. If it is four characters long, then only EDIT has
been entered. If it is longer than four characters, a number must be ex
tracted from ENTRY$. This number is extracted by using a VAL() com
mand. If the value (line number) does not fall within the range of line num
bers available, then the user is returned to the command area and gets to
try again.

VAL() The VAL() command searches the assigned string for a numeri
cal value and returns that value. The search stops when the first
nonnumerical value is encountered.

EXAMPLE

5000 HAZEL$ = "AGE 12 "
5100 CAT$= VAL(MID$(HAZEL$,4))
5200 PRINT CAT$
RUN
12

In this example we search the string HAZEL with VAL(), starting at
character position 4 (use of MID$), to avoid the search from stopping
when it encounters the first nonnumerical value.

85

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

86

The edit routine is as follows:

40335 REM EDIT THE TEXT
40340 REM
40345 I F LEN (ENTRY$) = 4 THEN GOSUB 41000 : RETURN : REM START AT CURRENT LINE
40350 FIRST%= VAL (MID$ (ENTRY$,5)): REM LINE NUMBER USER WANTS TO EDIT
40355 IF (FIRST% < 1) THEN FIRST% = 1
40360 LINE% = FIRST%
40365 LROW% = 1 REM START AT TOP LINE
40370 LCOL% = 1 REM START IN FIRST COLUMN
40375 GOSUB 41000 REM TEXT ED ITOR
40380 RETURN
40385 REM *********************************
40390 REM

TEST POINT

After the edit routine is entered, you will be able to move back and forth
between the command area and the editor. Either enter EDIT (CR) or hit
the ESC key. The screen should clear and you should be able to enter and
edit text. Use the ESC key when you wish to exit the editor and return to
the command area. Once in the command area, hit the ESC key again to
be sure that the editor returns the correct display. You are rapidly ap
proaching an operational text-editing system.

Text-Saving Subroutine

Another important capability in editing is saving the text that has been
entered or edited. Text is saved on disk in a sequential text file. But be
fore a sequential text file is saved to disk, any old file with the same name
must be erased. If the old text file is not erased, the new text file will be
written over the old text file. If the new file is not as long as the old file ,
part of the old file will remain at the end of the new file.

The DELETE command is used to delete or erase a file . However, a
two-line command sequence is needed and not simply a DELETE com
mand. The sequence that must be used is

PRINT DSK$; "OPEN SALES LETTER "
PRINT DSK$; "DELETE SALES LETTER "

CHAPTER 3 SCREEN TEXT EDITOR

An attempt to delete a file that does not exist will generate an error mes
sage, and the program will abort. If the file is opened before a DELETE is
issued, then you have ensured that there is a file to delete. In other
words, if the file was there, it was OPENed; but if the file was not there,
then the OPEN command created a new file. In either case we have a file
that can be deleted, and we do not have to be concerned about getting a
FILE NOT FOUND error.

DELETE The DELETE command removes a file name from the disk di
rectory, and you will no longer have access to the file. The DELETE
command must be preceded by a CHR$(4) in the program.

EXAMPLE

5000 PRINT CHR$(4) "DELETE LETTER"

or

5000 A$ = "FRED "
5100 PRINT CHR$(4) ; "DELETE ";A$

These two examples simply show how you would delete files from
within a program. The first example deletes a specific file named
LETTER. The second example deletes whatever file has been as
signed to A$.

OPEN The OPEN command is used in conjunction with the READ and
WRITE commands to create and retrieve sequential text files. It allo
cates a buffer in memory for the text file, and it allows the system to
read or write from the beginning of the file.

As mentioned above, if a file with the name you selected does not
exist, then the OPEN command will automatically add it to the disk cata
log. Once we are sure that a file is deleted, we OPEN it and begin saving
the text. If this process seems complex, it is. But it is part of the Apple
operating system, and we must work within it.

Text is sent to the disk by using a FOR-NEXT loop and PRINTing the
text after a WRITE command has been issued, as follows:

PRINT DSK$; "WRITE SALES LETTER "

87

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND li e

88

WRITE The WRITE command causes all subsequent PRINT statements
to print to the disk. WRITE is in effect until an error, an INPUT state
ment, or a CHR$(4) occurs. A WRITE command must be preceded by
a CHR$(4).

EXAMPLE

5000 PRINT CHR$(4); "WRITE MAY SALES"

or

5000 A$ = "JUNE WHEAT"
5100 PRINT CHR$(4); "WRITE "; A$

The first example shows how a specific file can be written to disk
(SALES). The second example shows how any file can be assigned
the value of A$.

The text-saving routine that follows allows text to be saved in two
different formats . In the first format the text is saved exactly as it looks
on the screen. In the second format the continuation symbols are re
moved and the text is saved in packed or concatenated form. For the sec
ond format the array is processed looking for & symbols as the last char
acter of a line. When an & is found, the current line and the next line are
concatenated and MLINE% is decremented. After the entire array is
packed, it is written to disk by using the same save routine that is used by
the first save format.

The & symbol is used as the continuation line symbol within the text
editor. When you are typing a lengthy piece of text within the editor, use
an & as the last character on a line. The PACK command later removes
the & symbols and saves the text.

For the reading of a sequential file without error, the number of lines
in the file must be known. Therefore the number of lines (MLINE%) is
printed as the first line in the file.

When two lines are concatenated, all leading spaces in the second
line are removed. The leading spaces are there to indent the text and
make it more legible. If you want spaces at this point in the line, they must
be added in front of the & symbol.

CHAPTER 3 SCREEN TEXT EDITOR

Once all the text is written to the disk, it is necessary to CLOSE the
file. Closing the file must be done to ensure that the text has actually been
written to the disk. That is, as a line is PRINTed, the Apple does not im
mediately put it on the disk. The text first goes to a temporary storage lo
cation in memory (commonly called a BUFFER). This buffer is 256 bytes
(characters) long; it is the same size as one sector on the disk. Rather than
write the text out at every PRINT command, the Apple waits until it has a
full 256-byte sector before it writes. This feature is included for efficien
cy. It is done automatically as data is sent to or retrieved from the disk.

What happens if the buffer is not completely filled and nothing else
is to be sent to the disk? Well, the computer will wait for you to finish fill
ing the buffer, not realizing that you are done. If you turn off the com
puter, that last partial buffer will never make it to the disk. Hence we
have the CLOSE command. It tells the computer that you are done using
that disk file and to write the buffer to disk.

CLOSE The CLOSE command deallocates the buffer and, in the WRITE
mode, forces the remaining bytes in the buffer to disk. CLOSE must
follow a CHR$(4). There are two modes: with and without a file
name. With a file name, only that file is closed. Without a file name
all files are closed.

EXAMPLE

5000 PRINT CHR$(4) ; "CLOSE LETTER"

or

5000 A$ = "MAY SALES "
5100 PRINT CHR$(4) ; "CLOSE "; A$

or

5000 PRINT CHR$(4); "CLOSE "

In these three examples we see that the CLOSE command must al
ways be preceded by a CHR$(4), the disk command, and that we do
not have to be file-specific, although we may find it convenient to be.

89

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

90

40510
40515
40520
40525
40530
40535
40540
40545
40550
40555
40560
40565
40570
40575
40580
40585
40590
40595
40600
40605
40610
40615
40620
40625
40630
40635
40640
40645
40650
40655

40660

The following subroutine saves text on a disk:

REM SAVE TEXT AND END
REM
GOSUB 40595
HOME
END

REM SAVE THE TEXT

REM ***********************************
REM
REM CONCATENATE AND SAVE FILE
REM
y = 0

FOR X = 1 TO MLINE%
y = y + 1

LINE$(Y) = LINE$(X)
IF RIGHT$ (LINE$(X) ,1)
NEXT X
MLINE% = Y
REM
REM SAVE THE TEXT
REM
DSK$ = CHR$ (4)
PRINT

: REM PACK THE ARRAY
"&" THEN GOSUB 40700: GOTO 40580

: REM NEW MAX LINE COUNT

REM SET FOR DISK IO

ENTRY$ = MID$ (ENTRY$,5) REM GET THE FILE NAME
IF PRT% > 0 THEN GOTO 40650: REM PRINT IT DON'T WRITE TO DISK
PRINT DSK$; "OPEN ";ENTRY$
PRINT DSK$; "DELETE ";ENTRY$: REM ERASE IT
PRINT DSK$; "OPEN ";ENTRY$ REM OPEN A NEW CLEAN FILE
PRINT DSK$; "WRITE ";ENTRY$
PRINT MLINE% REM NUMBER OF LINES
FOR X = 1 TO MLINE%
IF PRT% > 0 THEN

PRINT LINE$(X): REM SEND IT TO THE PRINTER NO QUOTES
IF PRT% = 0 THEN PRINT CHR$(34);LINE$(X);CHR$(34): REM SEND IT TO

THE DISK
40665 NEXT X
40670 IF PRT% > 0 THEN PRT% = 0: PRINT CHR$(12):PR#O: RETURN REM SET

CRT AND FORM FEED
40675 PRINT DSK$; "CLOSE ";ENTRY$
40680 PRINT
40685 RETURN

CHAPTER 3 SCREEN TEXT EDITOR

40690 REM *************************************
40695 REM
40700 REM CONCATENATE IT
40705 IF MID$ (LINE$(X + 1),1,1) = " "THEN

LINE$(X + 1) =MID$ (LINE$(X + 1),2): GOTO 40705: REM STRIP SPACES
40710 XX= LEN (LINE$(Y)) - 1
40715 LINE$(Y) =LEFT$ (LINE$(Y),XX) + LINE$(X + 1): REM STRIP ' &'AND PACK
40720 X = X + 1
40725 IF RIGHT$ (LINE$(Y), 1) = "&" THEN GOTO 40700: REM CONTINUE PACK ING
40730 RETURN
40735 REM
40740 REM **

TEST POINT

This test is the first part of a two-part test. (The second part occurs after
the next subsection.) Edit some text, and then save it by entering SAVE
TEST TEXT (CR). Next, execute the save subroutine to see if TEST TEXT
was saved.

Text-Loading Subroutine

Text is saved as a sequential text file by using a PRINT statement. In con
trast, an INPUT command is used to load the text into the editor.

The Apple II uses the same commands for reading and writing to the
disk and the screen. For the computer to know that you really want the
data to go to or come from the disk, you must use CHR$(4), control D, in
front of the disk command. For convenience, instead of typing CHR$(4)
every time we have a disk command in our programs, we set DSK$ equal
to CHR$(4).

To load a text file, we use a READ command, such as

PRINT DSK$; "READ SALES LETTER "

While the READ command is in effect, all INPUT statements will receive
their data from the disk and not the keyboard. The READ command is in
effect until another CHR$(4) is encountered.

91

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

92

READ The READ command is used to allow the INPUT command or the
GET command to retrieve data from a sequential text file one field at
a time.

The following routine loads text into the editor:

40395
40400
40405
40410
40415
40420
40425
40430
40435
40440
40445
40450
40455
40460
40465
40470
40475
40480
40485
40490
40495
40500
40505

REM LOAD A TEXT FILE
REM
DSK$ = CHR$ (4)
PRINT
ENTRY$ =MID$ (ENTRY$, 5)

REM SET FOR DISK IO

IF LEN (ENTRY$) = 0 THEN RETURN REM THE USER FORGOT THE NAME
PRINT DSK$; "OPEN ";ENTRY$
PRINT DSK$; "READ ";ENTRY$
INPUT X
REM
FOR Y = 1 TO X

REM NUMBER OF LINES

Z = LINE% + Y - 1: REM START INSERT AT THIS LINE
INPUT LINE$(Z): REM READ A LINE
NEXT Y
PRINT : REM TO CLEAR EVERYTHING
PRINT DSK$; "CLOSE ";ENTRY$
IF MLINE% < Z THEN MLINE% = Z : REM SET THE UPPER LIMIT
RETURN
REM
REM
REM **********************
REM
REM

TEST POINT

The test here is to reload the file just saved in the previous test point. To
be sure that all the variables are cleared, enter QUIT, RUN the program,
and then enter LOAD TEST TEXT (CR). Depress the ESC key, and the
screen should display the text you previously saved. If it does not, deter
mine whether the error occurred in the load or the save routine. Check
the save routine first.

CHAPTER 3 SCREEN TEXT EDITOR

Auto Line Numbering

Auto line numbering is a convenience feature for editing BASIC pro
grams with the editor. The routine consists of two sections: the switch
section, which turns the line-numbering feature on and off, and the ac
tual line-numbering routine.

When the AUTO command is entered without a number or with the
number 0, then line numbering will be turned off. Otherwise, line num
bering will begin with the line number entered.

When line numbering is turned on, the editor calls the numbering
routine with every key (see line 50347 in the program for inserting control
characters). The numbering routine tests to see if a space was entered
(ASCII value 32) as the first character. If a space was not entered or if
numbering is turned off, the key will be accepted as normal and the rou
tine will return to the caller. If a space is entered and line numbering is
on, a line is created by using the current line number. Next, the line num
ber is incremented. We prefer to increment by five, but you can select
any value. It is not advisable to increment by one unless you write error
free programs.

A new MASK$ character, N, has been added to support auto num
bering. The screen editor's MASK$ is defined only once (on line 40175 in
the command display routine). There are a number of different ways to
implement this MASK$ feature, but we believe that the method we have
used is the most understandable and straightforward.

The routine for auto line numbering is as follows:

40285 REM SET THE AUTO NUMBER SWITCH
40290 REM FLIP ITS VALUE
40295 REM
40300 TXTSIZE% = LEN (ENTRY$)
40305 IF TXTSIZE% = 4 THEN ANUM% = 0: RETURN : REM TURN OFF AUTO NUM
40310 ENTRY$ = MID$ (ENTRY$, 5) : REM GET THE VALUE
40315 ANUM% = VAL (ENTRY$)
40320 RETURN
40325 REM ***
40330 REM

41270 REM NUMBER
41275 IF KEY% < > 32 THEN GOSUB 50900 : RETURN

93

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

94

41280 IF ANUM% = 0 THEN GOSUB 50900 : RETURN
41285 ENTRY$ = STR$ (ANUM%) + "

41290 ANUM% = ANUM% + 5
41295 PLACE% = LEN (ENTRY$)
41300 GOSUB 52130 REM PRINT ENTRY$
41305 GOSUB 52000 REM CURSOR DISPLAY
41310 RETURN
41315 REM ***********************************

TEST POINT

In the command area, turn auto line numbering on by using the command

AUTO 100 (CR)

Hit the ESC key to move to the editor. Once in the editor, hit the space
bar. The number 100 should appear and the cursor should be positioned
at the first tab stop. Enter some text and a (CR). On the second line, hit the
space bar again. The number 105 should appear with the cursor at the
first tab stop.

To turn auto line numbering off, return to the command area and
enter

AUTO (CR)

Return to the editor and verify that it has turned off.

Catalog

There is nothing more annoying than being in a program and discovering
that you have forgotten the name of a file or the specific diskette that is in
the disk drive. The CATALOG command saves you time and frustration
because it eliminates the need to exit the program to do a CATALOG.
This feature is user friendly. Since in our editor we use everything the
user enters in ENTRY$ as a disk command, this feature can be used to
catalog any diskette. For example, CATALOG D2 entered as ENTRY$ will
print a catalog of disk 2 to the screen.

CHAPTER 3 SCREEN TEXT EDITOR

CATALOG The CATALOG command displays the directory of the files
on diskette. When used in a program, it must be preceded by a
CHR$(4).

EXAMPLE

5000 PRINT CHR$(4) ; "CATALOG "

or

5000 PRINT CHR$(4); "CATALOG D2 "

These examples illustrate the use of the CATALOG command from a
program. As shown, the command must be preceded by a CHR$(4),
the disk command.

The INPUT command at the end of the routine that follows is pro
vided to allow the user time to read the last group of file names.

The catalog routine is as follows:

40745
40750
40755
40760
40765
40770
40775
40780
40785
40790
40795
40800

REM CATALOG DISK
REM
HOME
DSK$ = CHR$ (4)
PRINT
PRINT DSK$; ENTRY$
PRINT
PRINT

REM CLEAR SCREEN

REM ENTRY$ CONTAINS FULL REFERENCE

INPUT "ENTER RETURN TO CONTINUE "; ENTRY$: REM PAUSE AT BOTTOM
RETURN
REM ***********************************
REM

TEST POINT

Type in catalog (CR) from the command area. Drive one should activate,
and the directory should appear on the screen. The catalog routine is the
end of the text editor program. To be sure that nothing has been acciden-

95

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

tally changed during entry, go back and test every feature and verify that
the program works properly.

If everything has tested satisfactorily so far, delete lines 100-590
and replace them with the following lines:

100 LAST% = 1000: REM NUMBER OF LINES OF TEXT
110 DIM LINE$(LAST%): REM THE TEXT ARRAY
120 REM

These lines are necessary for executable code in the future.

ENHANCEMENTS

The screen text editor is very useful for program development and for
creating help files and letters. It should be used to enter the programs for
the subsequent chapters. Enhancements can be made either by imple
menting more commands in the command mode or by using the remaining
control characters in the text editor itself. By looking at some of the word
processors on the market, you may find additional features to add. Re
member, however, that as more features are added, the amount of mem
ory available for text becomes smaller, so the size of your largest possible
document shrinks.

MERGING PROGRAMS BY USING EXEC

96

Working your way through the rest of the book will become much easier.
Now you can use the editor, which you just typed in and debugged, for the
entry of all the subsequent programs.

Keep in mind that the files you type in with the editor are saved as
text files . To load a program saved as a text file, use the command EXEC
(file name). EXEC loads a text file and executes it as a program. During
an EXEC the Apple treats each line of the text file as if it were being
typed in from the keyboard. In this manner the text is converted to pro
gram format (it can be saved as an Applesoft file now).

CHAPTER 3 SCREEN TEXT EDITOR

If you used continuation symbols in your text, then you must save the
file by using the PACK command to strip out the continuation symbols.
When using PACK, remember to use a file name different from the one
you used with SAVE; otherwise, you will erase the original unpacked text
file. Next, this packed text file can be EXECed; the DOS SAVE command
is used to save the file as an Applesoft file .

Two text files can be merged together by EXECing first one and then
the other into memory (they are loaded sequentially) and then saving
them to disk under a new name-thus giving you a new, contiguous pro
gram. These merging techniques will see a lot of use in the coming chap
ters and in your own programming as you write programs and add pieces
of others to new programs.

As a text file is being EXECed, the Apple prints a] symbol for each
line accepted. Occasionally, a SYNTAX ERROR message will be printed
on the screen. This error means that the Apple has encountered an illegal
command and that this line was not accepted. You will have to correct
the line by comparing a listing of the original text file with the accepted
program listing. Remember, the Apple treats every line of the EXECed
text file as though it were typed directly from the keyboard. When you en
ter a bad program line from the keyboard, the Apple gives you a SYNTAX
ERROR; therefore it will give the same message when a bad line is
EXECed.

Be aware that EXECing a file into memory will cause it to merge with
anything that is already present in memory-like your HELLO program.
It is a good idea to type NEW before EXECing a file into memory.

USER INSTRUCTIONS

The user instructions presented here are included for two reasons. First,
they will help you understand the text editor program and its capabili
ties. Second, they should be part of the documentation you prepare for
any program you write that incorporates the text editor.

The following sections cover entry and editing of text, using the com
mand area, creating new documents, and saving, loading, merging, and
printing documents.

97

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

98

Entering and Editing Text in the Text Editor

With the text editor you are able to enter and edit text. You may move the
cursor up or down from line to line or page to page. You can insert blank
lines or delete lines anywhere in the text, and you can enter lines longer
than the screen width.

The text editor uses all the commands of the line editor plus several
additional control keys. The newly added keys and their functions are as
follows:

1\B (control B) Insert a blank line into array.
1\E (control E) Jump to last page.
/\ I (control I) Tab over 8 spaces or add spaces to line.
1\J (control J) Down arrow, move down one line.
1\ K (control K) Up arrow, move up one line.
1\M (control M) RETURN, move down one line.
1\0 (control 0) Jump to first page of text.
Ap (control P) Concatenate two lines of text.
1\R (control R) Scroll up one full page of text.
AT (control T) Scroll down one full page of text.
Az (control Z) Delete a line and compress array.

ESC (ESCape) All done. Exit the text editor.

Command Area

In addition to being able to enter and edit text, the screen editor is capa
ble of loading and saving text to the disk or sending it to the printer. The
commands consist of a complete word followed, in some commands, by a
disk file na-me or number. The command words are as follows:

LOAD FN

CATALOG

AUTO #

Load the disk file called FN.
Display the disk directory.

Turn auto line numbering on or off.

CHAPTER 3 SCREEN TEXT EDITOR

AUTO

EDIT #

EDIT or ESC

SAVE FN

DONE FN

PACK FN

PRINT

FORMAT

QUIT

key

Turn auto line numbering off.
Edit the text starting at line number #.

Return to the current page in the text editor.

Save text to disk file called FN.

Save text and then QUIT.
Concatenate, save text file, and then quit.
Print the text file.

Pack and print the text file.

Return to BASIC and clear the array.

Creating a New Document

To enter a new document, you simply enter either

EDIT 1 or EDIT or ESC

while in the command mode. When the cursor reaches the bottom of the
screen, the text will scroll up a line so that you may continue editing with
out interruption. Also, if you are on the top row of the screen and going
up , the text scrolls down a line until you reach the first line of text.

When you finish editing text, enter ESC to return to the command
area.

Saving a Document

There are three different ways to save text. First, you can use the SAVE
FN command, where FN is the disk file name of your choice. This com
mand will save the current text file and return you to the command area.
Second, DONE FN will save the text file and return you to BASIC. Finally,
PACK FN will concatenate all the continuation lines and save the con
catenated file. Once completed, PACK will return you to BASIC.

Here are some examples of how to use these commands:

99

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

100

SAVE LETTER TO FRED
SAVE MAILING LIST

DONE EDITOR PROGRAM
DONE PRICES

PACK LETTER TO FRED PACKED
PACK PACKED EDITOR PROGRAM

All the files saved to disk are called TEXT FILES. They are identified by a
T in front of them when you do a catalog.

Loading an Existing Document

An existing document is loaded by using the LOAD FN command. For
example, to load and then edit an existing text file called PARTS LIST,
you enter

LOAD PARTS LIST

After the file is loaded, enter either

EDIT or EDIT 1 or ESC

to begin editing the text on line 1.
If you wish to begin editing the document on some line other than line

1, enter

EDIT #

where # is the number of the line you wish to edit. For example, to begin
editing on line 34, enter EDIT 34.

Merging Documents

A text file on the disk can be merged with text already in memory. This
task is accomplished by placing the cursor one line lower than the last de
sired line of the text in memory; the line marked by the cursor and all fol-

CHAPTER 3 SCREEN TEXT EDITOR

lowing lines will be lost. Then ESC to the command mode. Load the new
text from disk (you must load all of it) by using the LOAD FN command,
and the text will be merged. Save this new document under a new name
or you will lose the original.

Printing Documents

Any loaded document can be printed by using either the PRINT FN or the
FORMAT FN command. The PRINT command will print the document ex
actly as seen on the screen. The FORMAT command will concatenate the
continuation lines before printing.

COMPLETE SCREEN TEXT EDITOR PROGRAM

Here is the complete screen text editor listing:

100
110
120

40000
40005
40010
40015
40020
40025
40030
40035
40040
40045
40050
40055
40060
40065
40070
40075
40080

LAST% = 1000
DIM LINE$(LAST%)
REM

REM NUMBER OF LINES OF TEXT
REM THE TEXT ARRAY

REM EDITOR * COMPLETE TEXT EDITOR WITH COMMAND AREA
REM
REM USES THE LINE EDITOR WITH A FEW ADDITIONAL EXIT KEYS
REM
REM COMMAND AREA ROUTINE
REM
MLINE% = 1
GOSUB 41860
FX = FRE (0)
HOME

REM SET THE MAX LINE COUNTER
REM CLEAR VARIABLES
REM CLEAR THE MEMORY

PRINT "EDITOR COMMAND AREA FREE "; FX : REM TITLE AND FREE MEMORY
PRINT "LINES USED "; MLINE%;" ON LINE "; LINE%;
IF ANUM% > 0 THEN PRINT " AUTO ";ANUM% ;
PRINT : PRINT
PRINT ">" ;
PRINT
PRINT

101

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

40085
40090
40095
40100
40105
40110
40115
40120
40125
40130
40135
40140
40145
40150
40155
40160
40165
40170
40175
40180
40185
40190
40195
40200
40205
40210
40215
40220
40225
40230
40235
40240
40245
40250
40255
40260

40265
40270
40275
40280

102

PRINT "LOAD NAME LOAD A TEXT FILE"
PRINT "CATALOG DISPLAY DIRECTORY"
PRINT
PRINT "EDIT ## EDIT LINE NUMBER"
PRINT "ESC EDIT CURRENT LINE NUMBER"
PRINT "EDIT EDIT CURRENT LINE NUMBER"
PRINT
PRINT "AUTO ## AUTO LINE NUMBER"
PRINT "AUTO TURN OFF LINE NUMBERING"
PRINT
PRINT "SAVE NAME SAVE THE FILE"
PRINT "DONE NAME SAVE AND EXIT TO BASIC"
PRINT "PACK NAME PACK, SAVE AND EXIT"
PRINT
PRINT "PRINT PRINT TEXT FILE"
PRINT "FORMAT PACK AND PRINT TEXT FILE"
PRINT
PRINT "QUIT EXIT TO BASIC"
MASK$ = "NAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
ENTRY$ = "" REM CLEAR IT
ROW% = 4 REM COMMAND INPUT LINE
COL% = 3
PLACE% = 1 REM EDITOR SETS PLACE%
FILL$ = " "

GOSUB 50120 REM ENTER LINE EDITOR AT HELP% = 0 LINE
REM IF E THEN CALL THE EDITOR
IF KEY% = 27 THEN ENTRY$ = "EDIT": REM ESC MEANS EDIT TEXT
IF LEFT$ (ENTRY$,4) "AUTO" THEN GOSUB 40285: REM AUTO LINE NUMBER
IF LEFT$ (ENTRY$,4) "PACK" THEN GOSUB 40545: HOME : END : REM PACK
IF LEFT$ (ENTRY$,4) "EDIT" THEN GOSUB 40335: GOTO 40040: REM EDIT
IF LEFT$ (ENTRY$,4) "DONE" THEN GOTO 40510: REM SAVE AND END
IF LEFT$ (ENTRY$,4) "LOAD" THEN GOSUB 40395: GOTO 40040: REM LOAD
IF LEFT$ (ENTRY$,7) "CATALOG" THEN GOSUB 40745: REM DISK CATALOG
IF LEFT$ (ENTRY$,4) "SAVE" THEN GOSUB 40595: REM SAVE THE TEXT
IF LEFT$ (ENTRY$,5) "PRINT" THEN PR# 1:PRT% = 1: GOSUB 40595: REM
IF LEFT$ (ENTRY$,6) "FORMAT" THEN

PR# 1:PRT% = 1: GOSUB 40545: HOME : END : REM PACK PRINT
IF LEFT$ (ENTRY$, 4) = "QUIT" THEN HOME : END : REM CLEAR AND QUIT
GOTO 40045 : REM TRY AGAIN
REM **
REM

PRINT

40285
40290
40295
40300
40305
40310
40315
40320
40325
40330
40335
40340
40345
40350
40355
40360
40365
40370
40375
40380
40385
40390
40395
40400
40405
40410
40415
40420
40425
40430
40435
40440
40445
40450
40455
40460
40465
40470
40475
40480
40485

CHAPTER 3 SCREEN TEXT EDITOR

REM SET THE AUTO NUMBER SWITCH
REM FLIP ITS VALUE
REM
TXTSIZE% = LEN (ENTRY$)
IF TXTSIZE% = 4 THEN ANUM% = 0: RETURN : REM TURN OFF AUTO NUM
ENTRY$ = MID$ (ENTRY$,5) : REM GET THE VALUE
ANUM% = VAL (ENTRY$)
RETURN
REM **
REM
REM EDIT THE TEXT
REM
IF LEN (ENTRY$) = 4 THEN GOSUB 41000: RETURN : REM START AT CURRENT LINE
FIRST%= VAL (MID$ (ENTRY$,5)): REM LINE NUMBER USER WANTS TO EDIT
IF (FIRST% < 1) THEN FIRST% = 1
LINE% = FIRST%
LROW% = 1
LCOL% = 1
GOSUB 41000
RETURN

REM START AT TOP LINE
REM START IN FIRST COLUMN
REM TEXT EDITOR

REM *************************************
REM
REM LOAD A TEXT FILE
REM
DSK$ = CHR$ (4)
PRINT
ENTRY$ =MID$ (ENTRY$,5)

REM SET FOR DISK IO

IF LEN (ENTRY$) = 0 THEN RETURN REM THE USER FORGOT THE NAME
PRINT DSK$; "OPEN ";ENTRY$
PRINT DSK$; "READ ";ENTRY$
INPUT X : REM NUMBER OF LINES
REM
FOR Y = 1 TO X
Z = LINE% + Y - 1: REM START INSERT AT THIS LINE
INPUT LINE$(2): REM READ A LINE
NEXT Y
PRINT : REM TO CLEAR EVERYTHING
PRINT DSK$; "CLOSE ";ENTRY$
IF MLINE% < Z THEN MLINE% = Z: REM SET THE UPPER LIMIT
RETURN
REM

103

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

104

40490
40495
40500
40505
40510
40515
40520
40525
40530
40535
40540
40545
40550
40555
40560
40565
40570
40575
40580
40585
40590
40595
40600
40605
40610
40615
40620
40625
40630
40635
40640
40645
40650
40655

40660

40665
40670

REM
REM *******************
REM
REM
REM SAVE TEXT AND END
REM
GOSUB 40595
HOME
END

REM SAVE THE TEXT

REM ***********************************
REM
REM CONCATENATE AND SAVE FILE
REM
y = 0
FOR X = 1 TO MLINE%
y = y + 1

LINE$(Y) = LINE$(X)
IF RIGHT$ (LINE$(X), 1)
NEXT X
MLINE% = Y
REM
REM SAVE THE TEXT
REM
DSK$ = CHR$ (4)
PRINT

: REM PACK THE ARRAY
"&" THEN GOSUB 40700: GOTO 40580

: REM NEW MAX LINE COUNT

: REM SET FOR DISK IO

ENTRY$ = MID$ (ENTRY$,5) : REM GET THE FILE NAME
IF PRT% > 0 THEN GOTO 40650: REM PRINT IT DON'T WRITE TO DISK
PRINT DSK$; "OPEN ";ENTRY$
PRINT DSK$; "DELETE ";ENTRY$: REM ERASE IT
PRINT DSK$; "OPEN ";ENTRY$: REM OPEN A NEW CLEAN FILE
PRINT DSK$; "WRITE ";ENTRY$
PRINT MLINE% REM NUMBER OF LINES
FOR X = 1 TO MLINE%
IF PRT% > 0 THEN

PRINT LINE$(X) : REM SEND IT TO THE PRINTER NO QUOTES
IF PRT% = 0 THEN PRINT CHR$(34);LINE$(X) ;CHR$(34): REM SEND IT TO

THE DISK
NEXT X
IF PRT% > 0 THEN PRT% = 0: PRINT CHR$(12): PR#O: RETURN REM SET

CRT AND FORM FEED
40675 PRINT DSK$; "CLOSE ";ENTRY$

40680
40685
40690
40695
40700
40705

40710
40715
40720
40725
40730
40735
40740
40745
40750
40755
40760
40765
40770
40775
40780
40785
40790
40795
40800
41000
41005
41010
41015
41020
41025
41030
41035
41040
41045
41050
41055
41060
41065
41070

CHAPTER 3 SCREEN TEXT EDITOR

PRINT
RETURN

REM *************************************
REM
REM CONCATENATE IT
IF MID$ (LINE$(X + 1),1,1) = " "THEN

LINE$(X + 1) = MID$ (LINE$(X + 1),2): GOTO 40705: REM STRIP SPACES
XX = LEN (LINE$(Y)) - 1
LINE$(Y) = LEFT$ (LINE$(Y),XX) + LINE$(X + 1): REM STRIP "&"AND PACK
X = X + 1
IF RIGHT$ (LINE$(Y),1) = "&"THEN GOTO 40700: REM CONTINUE PACKING
RETURN
REM
REM **
REM CATALOG DISK
REM
HOME
DSK$ = CHR$ (4)
PRINT
PRINT DSK$;ENTRY$
PRINT
PRINT

REM CLEAR SCREEN

REM ENTRY$ CONTAINS FULL REFERENCE

INPUT "ENTER RETURN TO CONTINUE";ENTRY$: REM PAUSE AT BOTTOM
RETURN
REM ***********************************
REM
REM TEXT EDITOR
REM
REM VARIABLE DEFINITION
REM LROW%
REM LCOL%
REM LINE$()
REM LAST%
REM MLINE%
REM LINE%
REM FIRST%
FILL$ = " "
GOSUB 41800
ROW% = LROW%
COL% = LCOL%
REM

STARTING ROW NUMBER
STARTING COL NUMBER
TEXT ARRAY
DIMENSIONS OF TEXT ARRAY
LARGEST LINE USED IN ARRAY
CURRENT LINE BEING EDITED
LINE AT TOP OF SCREEN

REM DEFINE THE FILL CHARACTER
REM DISPLAY THE SCREEN
REM START AT LAST ROW
REM START AT LAST COL

105

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

41075
41080
41085
41090

41095
41100
41105
41110
41115

41120
41125
41130
41135
41140
41145
41150
41155
41160
41165
41170
41175
41180
41185
41190
41195
41200
41205

41210
41215
41220
41225
41230
41235
41240
41245
41250
41255
41260

106

REM TOP OF EDIT LOOP
CTRL% = 0; REM CLEAR THE EXIT FLAG
ENTRY$ = LINE$(LINE%) : REM PUT CURRENT LINE INTO LINE EDITOR
IF PLACE% > LEN (ENTRY$) THEN PLACE% = LEN (ENTRY$) + 1: REM

ASSIGN PLACE% HERE
IF PLACE% = 0 THEN PLACE% = 1: REM NULL LINE
GOSUB 50165: REM EDIT THE TEXT BUT DO NOT REDISPLAY ENTRY$
LINE$(LINE%) = ENTRY$: REM SAVE THE EDITED LINE
IF KEY% = 27 THEN LROW% = ROW%:LCOL% = COL% : RETURN : REM BACK TO CALLER
ON CTRL% GOSUB 41130,41165,41215,41635,41675,

41735,41490,41560,41435,41320,41370 : REM PROCESS KEY
GOTO 41075
REM **************************************
REM
REM CARRIAGE RETURN
REM
PLACE% = 1
GOSUB 41170
RETURN

: REM LINE FEED

REM ***
REM
REM LINE FEED
REM
IF LINE% = LAST% THEN RETURN : REM MAX NO MORE LINES LEFT
LINE% = LINE% + 1
IF LINE% > MLINE% THEN MLINE% = LINE%: REM INC THE LARGEST LINE COUNTER
ROW% = ROW% + 1
IF ROW% > 24 THEN ROW% = 24:X = 1:LINE% = LINE% - 1: GOSUB 41755
IF (RIGHT$ (ENTRY$,1) = "&") AND (LEN (LINE$(LINE%)) = 0) THEN

PLACE% = 0: GOSUB 41320: REM TAB IN ON NEXT LINE
RETURN
REM ***********************************
REM
REM UP ARROW
REM
IF LINE% = 1 THEN RETURN REM AT TOP ALREADY
LINE% = LINE% - 1
ROW% = ROW% - 1
IF ROW% < 1 THEN ROW% = 1:LINE% = LINE% + 1:X = 1: GOSUB 41695
RETURN
REM

41265
41270
41275
41280
41285
41290
41295
41300
41305
41310
41315
41320
41325
41330
41332
41335

41340
41345
41350
41355
41360
41365
41370
41375
41380
41385
41390
41395
41400
41405
41410
41415
41420
41425
41430
41435
41440
41445
41450
41455

CHAPTER 3 SCREEN TEXT EDITOR

REM **************************************
REM NUMBER
IF KEY% < > 32 THEN GOSUB 50900: RETURN
IF ANUM% = 0 THEN GOSUB 50900: RETURN
ENTRY$ = STR$ (ANUM%) + "

ANUM% = ANUM% + 5
PLACE% = LEN (ENTRY$)
GOSUB 52130
GOSUB 52000
RETURN

REM PRINT ENTRY$
REM CURSOR DISPLAY

REM ***********************************
REM TAB
REM
PLACE% = (INT (PLACE% I 8) + 1) * 8: REM SLIDE THE CURSOR RIGHT
IF PLACE% > MAXSIZE% THEN PLACE% = MAXSIZE%
IF PLACE%<= LEN (LINE$(LINE%)) THEN

RETURN : REM WITHIN CURRENT FIELD
FOR X= LEN (LINE$(LINE%)) TO PLACE%- 1
LINE$(LINE%) = LINE$(LINE%) + " ": REM ADD SPACES TO THE END
NEXT X
RETURN
REM ******************************
REM
REM PACK TWO LINES
REM
IF LINE% = MLINE% THEN RETURN : REM AT THE END
LINE$(LINE%) = LINE$(LINE%) + LINE$(LINE% + 1): REM PACK THE LINES
IF LINE% = MLINE% THEN GOTO 41410: REM LAST LINE
FOR X = LINE% + 1 TO MLINE% - 1
LINE$(X) = LINE$(X + 1) REM MOVE LINE UP ONE
NEXT X
LINE$(MLINE%) = ""

MLINE% = MLINE% - 1
GOSUB 41800
RETURN

REM CLEAR THE LAST LINE
REM REDUCE MAX LINE BY ONE
REM DISPLAY SCREEN

REM ********************************
REM JUMP TO LAST PAGE
REM
FIRST% = MLINE% - 23 : REM FIND THE LINE AT THE TOP OF THE SCREEN
IF FIRST% < 1 THEN FIRST% = 1: REM CANNOT HAVE LINE LESS THAN 1
LINE% = FIRST%

107

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

41460
41465
41470
41475
41480
41485
41490
41495
41500
41505

41510
41515
41520
41525
41530
41535
41540
41545
41550
41555
41560
41565
41570
41575
41580
41585
41590
41595
41600
41605
41610
41615
41620
41625
41630
41635
41640
41645
41650
41655

108

ROW% = 1
COL% = 1
GOSUB 41800
RETURN

: REM DISPLAY THE SCREEN

REM ************************************
REM
REM DELETE A LINE
REM
IF MLINE% = 1 THEN LINE$(1) = "": GOTO 41535: REM ONLY ONE LINE
IF LINE% = MLINE% THEN

ROW% =ROW% - 1:LINE% = LINE% - 1: GOTO 41525: REM LAST LINE IN TEXT
FOR X = LINE% TO MLINE% - 1
LINE$(X) = LINE$(X + 1): REM MOVE THE LINES UP
NEXT X
LINE$(MLINE%) = "" : REM CLEAR BOTTOM LINE
IF MLINE% > 1 THEN MLINE% = MLINE% - 1
GOSUB .41800 : REM DISPLAY DSCREEN
RETURN
REM

REM *************************************
REM
REM INSERT A BLANK LINE
REM
IF MLINE% < LAST% THEN MLINE% = MLINE% + 1
Y = LINE% : REM LINE COUNTER
IF LINE% = 1 THEN Y = 2 : REM AT TOP OF TEXT
FOR X = MLINE% TO Y STEP - 1
LINE$(X) = LINE$(X - 1) REM MOVE TEXT DOWN A LINE
NEXT X
LINE$(LINE%)
GOSUB 41800
RETURN
REM

" " REM CLEAR THE OLD LINE
REM DISPLAY SCREEN

REM ***********************************
REM
REM
REM GOTO THE HOME PAGE
REM
GOSUB 41860
GOSUB 41800
RETURN

REM RESET THE POINTERS
REM SHOW THE SCREEN
REM A OK

41660
41665
41670
41675
41680
41685
41690
41695

41700
41705
41710
41715
41720
41725
41730
41735
41740
41745
41750
41755

41760

41765
41770
41775
41780
41785
41790
41795
41800
41805
41810
41815
41820
41825
41830
41835
41840
41845

CHAPTER 3 SCREEN TEXT EDITOR

REM
REM **
REM
REM SCROLL UP A PAGE
REM
X = 24 : REM JUMP A FULL PAGE
REM ENTRY POINT FOR ROLL UP
IF FIRST% < = X THEN GOSUB 41860 :

ROW% = 1: GOSUB 41800: RETURN : REM JUMP TO TOP OF FIRST PAGE
FIRST% = FIRST% - X REM MOVE THE TOP LINE
LINE% = LINE% - X REM CHANGE THE ARRAY POINTER
GOSUB 41800 REM DISPLAY THE SCREEN
RETURN
REM
REM **
REM
REM SCROLL DOWN A PAGE
REM
X = 24 : REM JUMP A FULL PAGE
REM ENTRY POINT FOR ROLL DOWN
IF MLINE% < = 24 THEN LINE% = MLINE% :

ROW% = MLINE%: RETURN : REM ON FIRST PAGE
IF FIRST% + X > MLINE% THEN FIRST% = MLINE% - 23

LINE% = MLINE% :ROW% = 24 : GOTO 41775: REM BOTTOM
FIRST% = FIRST% + X
LINE% = LINE% + X
GOSUB 41800
RETURN
REM

REM DISPLAY THE SCREEN

REM **************************************
REM
REM DISPLAY THE CURRENT SCREEN
REM
HOME
FOR X = 1 TO 24

Z = FIRST% + X - 1
POKE 36, 1
VTAB X
PRINT LINE$ (Z) ;

NEXT X
RETURN

: REM CLEAR THE SCREEN

REM POSITION THE CURSOR - HTAB

109

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

110

41850
41855
41860
41865
41870
41875
41880
41885
41890
41895
41900
41905
50347

51102
51112
51122
51124
51126
51132
51134
51142
51157
51182

REM **********************************
REM
REM CLEAR EVERYTHING
REM
LINE% = 1
FIRST% = 1
LROW% = 1
LCOL% = 1
ROW% = 1
COL% = 1
RETURN

REM CURRENT LINE NUMBER
REM TOP LINE ON THE SCREEN
REM START ON FIRST LINE

REM **************************************
IF MID$ (MASK$,PLACE%,1) = "N" THEN

GOSUB 41270: RETURN : REM 50347 AUTO NUMBER
IF KEY% = 2 THEN CTRL% = 8 REM 51102 AB
IF KEY% = 5 THEN CTRL% = 9 REM 51112 A£
IF KEY% = 9 THEN CTRL% = 10 REM 51122 AI TAB
IF KEY% = 10 THEN CTRL% = 2 REM 51124 AJ
I F KEY% = 11 THEN CTRL% = 3 REM 51126 AK
IF KEY% = 15 THEN CTRL% = 4 REM 51132 AO
IF KEY% = 16 THEN CTRL% = 11: REM 51134 Ap
IF KEY% = 18 THEN CTRL% = 5 REM 51142 AR
IF KEY% = 20 THEN CTRL% = 6 REM 51157 AT
IF KEY% = 26 THEN CTRL% = 7 REM 51182 Az

CHAPTER

ANSWERING
USER HELP
REQUESTS

4

INTRODUCTION

An on-line help system is one of the most user-friendly features a pro
gram can have. A good help system will save everyone involved with the
computer both time and frustration. If the operators are not familiar with
computers, they often feel afraid of making mistakes or of appearing
stupid when they are confused about what the computer wants them to
do. With an on-line help system they can ask the computer for assistance
as often as needed. They do not have to bother you, and you will not have
to answer the same question a dozen times. Once again, user-friendly
software is programmer friendly.

In this chapter we develop a subroutine to display user-help screens.
These screens are kept on disk and can be called automatically by the
help routine whenever the user has questions. This subroutine uses the
line editor subroutine from Chapter 2 as one of its building blocks.

111

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

112

A help system is easy to implement with the use of our line editor. We
add new features to the line editor that set a variable called HELP%
whenever the user requests help by entering control Q ("Q). In addition to
the help subroutine, the help system consists of a series of sequential text
files. A separate text file is used for each help request to be supported.

In your program you must test HELP% after every call to the line
editor. If the user has requested help, then the help subroutine is called.
It will clear the screen and display the appropriate help file and pause at
the bottom of the screen with a request for a carriage return. After users
have read the help message, they enter RETURN, and the program redis
plays the original screen and continues processing.

The help text files can be entered by using the text editor developed
in Chapter 3. For a help screen to be useful, it should give a manual page
reference (you are going to document your program, aren't you?) and as
much information as possible on what the program wants the user to do
at that point. Be sure to incorporate these features in your program.

In the following sections we develop the user help program. First, we
describe the design and features of the program. Then we create and test
each of its component subroutines.

Note that Chapter 4 is a stand-alone chapter, i.e. , it does not merge
with any other chapter.

Programmer Features

For the help program presented in this chapter, the programmer only
needs to pass a file name to the help subroutine and restore the original
screen after the help subroutine is finished. The help file contains infor
mation about what to display in normal or inverse text and when to
pause.

Design and User Features

We want the help subroutine to display a text file with highlights and
pause periodically to allow the user to read the screen. Thus our help sys
tem supports INVERSE video and pauses every 22 lines (a full screen) or
whenever directed by the text file.

CHAPTER 4 ANSWERING USER HELP REQUESTS

The user should be able to terminate the help display and return to
the program and should be able to control the pace at which the screen is
read. These features are included in our help program.

Building the Program

To build the help program, start with a copy of the line editor program
from Chapter 2 and add the program lines from this chapter. The easiest
way to accomplish this task is to proceed as follows:

1. Start with a fresh, initialized disk for the program in this chapter.

2. Transfer a copy of the line editor from Chapter 2 to the new disk (it
should be an A, or Applesoft, file), using DOS.

3. Using the screen editor from Chapter 3, type in the program lines
presented in this chapter and save them (these lines will be T, or
text, files), call them HELP.T.

4. Using DOS, load the copy of the line editor from Chapter 2 into mem
ory, and EXEC the file from this chapter (HELP.T), or as much as you
have entered so far, into memory. Now the two files are merged and
can be saved again on the disk as Applesoft files , ready to run the
next time you load them.

5. Repeat steps 3 and 4 each time you enter more of the program from
this chapter.

HELP PROGRAM

Figure 4.1 shows the flowchart for the help program. The processing of
the screen is straightforward. After the text file is opened and the total
number of lines contained in the file (LAST%) is determined, then each
line is read and processed, one character at a time. The subroutine is
looking for the characters used to toggle inverse video or the pause sym
bol. If one of these characters is found, then a GOSUB is made to the ap
propriate supporting subroutine. If a regular text character is found,

113

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

FIG. 4.1 Help screen flowchart

Open help text
file and get
number of lines

0

Pause and
clear screen

Toggle
the inverse

c

Pause and
close file ;
then clear
screen

then it is printed. Finally, after all the characters on a line have been pro
cessed, a carriage return is printed and a line counter is incremented.

114

After 22 lines have been shown, the subroutine pauses and the user
is asked,

DO YOU WISH MORE?

CHAPTER 4 ANSWERING USER HELP REQUESTS

This message gives the user time to read the screen and an opportunity to
stop the help display process if the question has already been answered.
This procedure is repeated until all the lines contained in the help file
have been shown or the user requests an exit.

The following program corresponds to the flowchart in Fig. 4.1 :

21000
21005
21010
21015
21020
21025
21030
21035
21040
21045
21050
21060
21065

REM SHOW HELP * SCREEN DISPLAY ROUTINE
REM
REM
REM
REM DISPLAYS SCREEN AND USES INVERSE
REM WILL PAUSE WHEN THE SCREEN IS FULL
REM PROVIDES USER TIME TO READ
REM
REM
REM IMPORTANT VARIABLES USED :
REM LINE% NUMBER OF LINES TO DISPLAY
REM
REM

INVERSE FLAG

21070 REM
21075 REM
21080 REM

y

ROW%
XX

TOTAL NUMBER OF LINES DISPLAYED
NUMBER OF LINES IN CURRENT SCREEN

NOPAUSE% 1 = DO NOT PAUSE AT END OF PAGE . 0 = PAUSE
HELP$ NAME OF HELP TEXT FI LE

21085 REM
21090 REM LOAD AND DISPLAY THE SCREEN
21095 REM
21100 REM SCREEN READ ONE CHARACTER AT A TIME
21110 REM INVERSE TOGGLED ON ' A' CHARACTER
21115 REM
21120
21125
21130
21135
21140
21145
21150

REM
REM
REM
ROW% = 0
XX = 0
DSK$ = CHR$ (4)
PRINT

21155 PRINT DSK$; "OPEN ";HELP$
21160 PRINT DSK$; "READ ";HELP$
21165 REM

REM CLEAR COUNTER

REM DISK AD
REM CLEAR ANY DSK COMMANDS

21170 REM READ THE NUMBER OF LINES ON THE SCREEN
21175 REM
21180 INPUT LINE%
21185 REM

115

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

21190 REM CLEAR THE COUNTERS
21195 REM
21200 ROW% = 0
21205 REM
21215 y = 0 REM INVERSE FLAG
21220 REM
21225
21230
21235
21240
21245
21250
21255
21265
21270
21275
21280
21285
21290
21295
21300

21305
21310
21315

REM INPUT THE SCREEN
REM
HOME
INPUT A$
FOR Z = 1 TO LEN (A$)
ENTRY$ = MID$ (A$, 2, 1)

REM CLEAR SCREEN
REM GET A TEXT LINE

IF ENTRY$ = "©" THEN GOSUB 21430: REM PAUSE WANTED
IF ENTRY$ = nA n THEN GOSUB 21380: REM TOGGLE INVERSE VIDEO
PRINT ENTRY$;
NEXT Z
PRINT
ROW% = ROW% + 1 : REM INCREMENT LINE COUNTER
XX = XX + 1 : REM INCREMENT THIS PAGE LINE COUNTER
I F (ROW% = LINE%) OR (XX = 22) THEN GOSUB 21430 : REM DO I PAUSE?
IF ROW% > = LINE% THEN PRINT DSK$; "CLOSE ";HELP$: RETURN :

REM RETURN TO THE CALLER
REM
GOTO 21240 : REM GET NEXT CHR
REM

21320 REM *****************************
21325 REM

116

The following subsections explain various aspects of the help
routine.

Explanation of Variables

Most of the variables used in the help program are the garbage variables
Y, XX, and YY. Check to be sure that the calling routine is not also using
these variables if you are adding HELP to one of your programs.

There are two variables that must be set by the calling routine:
HELP$ and NOPAUSE% . HELP$ is to contain the name of the text file to

CHAPTER 4 ANSWERING USER HELP REQUESTS

be shown. NOPAUSE% is tested to determine whether the pause line is to
be printed. It is normally set to 0 so that the pause is performed, but occa
sionally a pause may not be wanted. For example, this feature is used in
Chapter 5.

Explanation of Main Help Routine

The help routine is fairly simple, but we would like to discuss a few spe
cific lines and explain why they were used.

Line 21250 sets

ENTRY$ = MID$(A$, Z, l)

This statement sets one character from the input line and puts it in EN
TRY$.

On lines 21255 and 21265 ENTRY$ is compared with the special help
characters. We could have written these tests as

IF MID$(A$,Z,l) = "®" THEN GOSUB 21430

and so on. However, MID$ is a slow command, and the routine runs much
faster if MID$ is used only once.

Two separate counters are maintained in the routine: one for the to
tal number of lines to be displayed and the other for the number of lines
shown on this screen. When the screen counter reaches 22, or when the
end of the text file is reached, then the pause subroutine is called. After
all the lines have been shown, the screen is cleared and the subroutine
returns to the calling program.

TEST POINT

Before you can start testing the help routine, you need to enter a sample
help screen. We suggest that you use the editor to enter the CHAPS
MENU HELP text on pages 193-194.

The following program will test the help routine. It will not pause or
set inverse, but it will display the text and then end.

117

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

100 REM
110 REM HELP TEST ROUT INE
120 REM
130 HELP$ = "CHAPS MENU HELP "
140 GOSUB 21000 : REM DISPLAY HELP
150 END
21430 RETURN REM PAUSE
21480 RETURN REM INVERSE TOGGLE

PAUSE SUBROUTINE

118

The pause subroutine is called when an @ symbol is encountE:red in the
help text and at the end of the text file.

When the help text is created, the writer can make the routine pause
by placing @ symbols in the body of the text. Pauses improve the read
ability of the help text by separating topics in the text. For example, the
help text may first give a brief explanation of what the user is to do, then
give several screens of detailed explanation. If the brief explanation only
uses ten lines, it would look awkward and confusing to mix it with the be
ginning of the detailed explanation that follows. So a pause is used to
separate the sections. The pause subroutine also gives the user the
chance to exit the help system and return to the original screen.

21430
21435
21440
21445
21450
21455
21460
21465
21470
21475
21480
21485

The pause routine looks like this:

REM PAUSE AND ASK FOR MORE?
REM
REM
IF NOPAUSE% > 0 THEN RETURN : REM PROGRAMMER DOES NOT WANT PAUSE
PRINT : REM CLEAR GET COMMAND
PRINT DSK$: REM TURN READ OFF
VTAB 23 : REM PAUSE LINE
ENTRY$ = " ": REM MAKE SURE NOTHI NG HERE
INPUT "DO YOU WISH MORE? "; ENTRY$
HOME : REM CLEAR THE SCREEN
IF ENTRY$ = "N" THEN ROW% = LINE% : RETURN : REM THEY WANT OUT
PRINT DSK$; "READ "; HELP$: REM TURN DISK INPUT BACK ON

CHAPTER 4 ANSWERING USER HELP REQUESTS

21490 XX = 0: REM RESET PAGE LINE COUNTER
21495 ENTRY$ = " ": REM REMOVE Y
21500 RETURN : REM GET NEXT LINE
21505 REM
21510 REM *******************************
21515 REM

If NOPAUSE% is greater than 1, then this whole routine is ignored
and a pause is not allowed. If the user responds N to the question

DO YOU WISH MORE?

then the program sets the line counter YY to LINE%. This statement tells
the line-processing routine that the complete file has been read, and it
will CLOSE the help text file and return to the calling routine.

TEST POINT

The pause routine can be tested by using the previous test routine, but
first delete line 21430 from the pause routine. Execute the program and it
should pause at the end of the help screen.

TURNING INVERSE ON AND OFF

The Apple BASIC command INVERSE can be used to highlight important
sections of the help text. This feature enhances the overall quality and
appearance of the help screens.

The 1\ symbol is used to mark the beginning and the end of the text to
be shown in INVERSE. Whenever this symbol is encountered, the current
state of INVERSE is reversed. In other words, if the display is in the NOR
MAL condition and a 1\ is encountered, then the INVERSE command is is
sued and a flag is set to remind the user that INVERSE is on. When the
next 1\ is encountered, a NORMAL command is issued and the flag is reset
to 0. This technique allows an individual letter or word or the entire text
to be highlighted.

119

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

EXAMPLE:

THIS IS A "TEST"

This statement results in the word TEST being shown in inverse
video.

The program listing for turning INVERSE on and off is as follows:

REM
REM TOGGLE INVERSE ON/OFF
REM
ENTRY$ = ""

21375
21380
21385
21390

21395
21400
21405
21410

IF Y > 0 THEN Y = 0: NORMAL : RETURN : REM CLEAR INVERSE
INVERSE REM TURN INVERSE ON
y = 1
RETURN

21415 REM

: REM SET FLAG

21420 REM *****************************
21425 REM

TEST POINT

The inverse routine can also be tested by using the previous test routine,
but first delete line 21375 from the inverse routine. Once executed, the
program should show highlighted areas and pause at the bottom of the
screen.

HELP TEST ROUTINE

120

This help test routine can be used to test any help file. It asks for the
name of the help file and displays it. A sample help file is provided on the
disk called CHAPB MENU HELP.

The test routine is as follows:

100 REM TEST ROUTINE FOR HELP DISPLAY
110 REM

CHAPTER 4 ANSWERING USER HELP REQUESTS

120 HOME
130 PRINT "SAMPLE IS CALLED : CHAP8 MENU HELP"
140 PRINT
150 INPUT "ENTER HELP SCREEN NAME ";HELP$
160 GOSUB 21000 : REM DISPLAY SCREEN
170 GOTO 100
180 REM
190 REM *********************************
200 REM

Note that the test routine presented above is a general-use testing
routine. It is not for use in this chapter if the previously presented testing
routine is used. They will not work together.

USER INSTRUCTIONS

The following list contains the user instructions for the help system just
created. Please add these instructions to your user 's manual.

• If you have any questions about what information is to be entered or
how to respond to a particular request from the computer, you can
request help by striking a control Q ("Q). If the computer can help
you in this section, it will clear the screen and display a help mes
sage.

• Periodically, and at the end of the message, the computer will pause
and ask,

DO YOU WISH MORE?

If you enter either a Y and a RETURN or simply a RETURN, then
more text will be displayed if it is available. If you enter anN, or if
the end of the help text has been reached, then the computer will re
display the original screen, and you may continue processing.

• If the help message does not answer your questions, refer to the man
ual or contact the system operator.

121

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

COMPLETE HELP PROGRAM

Here is the complete listing of the help program:

100 REM TEST ROUTINE FOR HELP DISPLAY
110 REM
120 HOME
130 PRINT "SAMPLE IS CALLED : CHAP8 MENU HELP"
140 PRINT
150 INPUT ~ENTER HELP SCREEN NAME ";HELP$
160 GOSUB 21000 : REM DISPLAY SCREEN
170 GOTO 100
180 REM
190 REM *********************************
200 REM

21000 REM SHOW HELP * SCREEN DISPLAY ROUTINE
21005 REM
21010 REM
21015 REM
21020 REM DISPLAYS SCREEN AND USES INVERSE
21025 REM WILL PAUSE WHEN THE SCREEN IS FULL
21030 REM PROVIDES USER TIME TO READ
21035 REM
21040 REM
21045 REM IMPORTANT VARIABLES USED:
21050 REM LINE% NUMBER OF LINES TO DISPLAY
21060 REM y INVERSE FLAG
21065 REM ROW% TOTAL NUMBER OF LINES DISPLAYED
21070 REM XX NUMBER OF LINES IN CURRENT SCREEN
21075 REM NOPAUSE% 1 = DO NOT PAUSE AT END OF PAGE. 0 = PAUSE
21080 REM HELP$ NAME OF HELP TEXT FILE
21085 REM
21090 REM LOAD AND DISPLAY THE SCREEN
21095 REM
21100 REM SCREEN READ ONE CHARACTER AT A TIME
21110 REM INVERSE TOGGLED ON tAt CHARACTER
21115 REM
21120 REM
21125 REM

122

CHAPTER 4 ANSWERING USER HELP REQUESTS

21130
21135
21140
21145
21150
21155
21160
21165
21170
21175
21180
21185
21190
21195
21200
21205

REM
ROW% = 0
XX = 0
DSK$ = CHR$ (4)
PRINT
PRINT DSK$; "OPEN ";HELP$
PRINT DSK$; "READ ";HELP$
REM

REM CLEAR COUNTER

REM DISK "D
REM CLEAR ANY DSK COMMANDS

REM READ THE NUMBER OF LINES ON THE SCREEN
REM
INPUT LINE%
REM
REM CLEAR THE COUNTERS
REM
ROW% = 0
REM

21215 y = 0 REM INVERSE FLAG
21220
21225
21230
21235
21240
21245
21250
21255
21265
21270
21275

REM
REM INPUT THE SCREEN
REM
HOME
INPUT A$
FOR Z = 1 TO LEN (A$)
ENTRY$ = MID$ (A$,2,1)

REM CLEAR SCREEN
REM GET A TEXT LINE

IF ENTRY$ = "©" THEN GOSUB 21430: REM PAUSE WANTED
IF ENTRY$ = """ THEN GOSUB 21380: REM TOGGLE INVERSE VIDEO
PRINT ENTRY$;
NEXT Z

21280 PRINT
21285 ROW% = ROW% + 1 : REM INCREMENT LINE COUNTER
21290
21295
21300

21305
21310
21315
21320
21325
21375
21380

XX = XX + 1 : REM INCREMENT THIS PAGE LINE COUNTER
IF (ROW% = LINE%) OR (XX = 22) THEN GOSUB 21430: REM DO I PAUSE?
IF ROW% > = LINE% THEN PRINT DSK$; "CLOSE ";HELP$: RETURN :

REM RETURN TO THE CALLER
REM
GOTO 21240 : REM GET NEXT CHR
REM
REM *****************************
REM
REM
REM TOGGLE INVERSE ON/OFF

123

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND li e

124

21385
21390
21395
21400
21405
21410
21415
21420
21425
21430
21435
21440
21445
21450
21455
21460
21465
21470
21475
21480
21485
21490
21495
21500
21505

REM
ENTRY$ = ""

IF Y > 0 THEN Y = 0: NORMAL : RETURN : REM CLEAR INVERSE
INVERSE
y = 1

RETURN
REM

REM TURN INVERSE ON
: REM SET FLAG

REM *****************************
REM
REM PAUSE AND ASK FOR MORE?
REM
REM
IF NOPAUSE% > 0 THEN RETURN : REM PROGRAMMER DOES NOT WANT PAUSE
PRINT : REM CLEAR GET COMMAND
PRINT DSK$: REM TURN READ OFF
VTAB 23: REM PAUSE LINE
ENTRY$ = "": REM MAKE SURE NOTHING HERE
INPUT "DO YOU WISH MORE? ";ENTRY$
HOME : REM CLEAR THE SCREEN
IF ENTRY$ = "N" THEN ROW% = LINE%: RETURN : REM THEY WANT OUT
PRINT DSK$; "READ ";HELP$: REM TURN DISK INPUT BACK ON
XX = 0 : REM RESET PAGE LINE COUNTER
ENTRY$ = " " : REM REMOVE Y
RETURN : REM GET NEXT LINE
REM

21510 REM *******************************
21515 REM

CHAPTER

A DATA ENTRY
SCREEN

PROCESSOR

5

INTRODUCTION

Two of the most time-consuming problems encountered when you are de
veloping a program are data entry screens and printed reports. The lay
out, verification, and modification of these items takes up a significant
portion of your time. These two functions , however, really represent the
finished product. They are what the user actually sees and interacts
with.

Users can appreciate this interface with the computer, and it is this
interface-data entry screens and printed reports-that forms their
image of the computer, the program, and you. No matter how much
energy you put into creating a solution to a problem, the user only sees as
far as the input/output. They do not care how flexible you made the pro
gram, how easy it is to maintain, or how much thought you put into it.

125

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

126

They only care about how readable, presentable, and understandable the
input/output is.

As a programmer, you have two choices: You can accept this fact
and give the users whatever they want, or you can give them what you
think they need and deal with their complaints. We naturally believe in
following the path of least resistance, so this chapter is about a user
friendly and very programmer-friendly data entry screen processor.
Chapter 7 will deal with the problem of putting the output information on
paper.

The data entry screen is what the user sees and interfaces with.
Many users consider the screen a barrier between them and their getting
a job done. The screens and their logical flow can make the use of the
program an enjoyable, productive task-or an unpleasant chore. The
data entry screen is where most of the input errors take place. Thus it is
particularly important that this part of your program be understandable,
predictable, and forgiving.

In this chapter we design and develop a data entry screen program.
This program incorporates both the line editor from Chapter 2 and the
help system from Chapter 4. This program is a good example of how we
build programs from pieces previously created.

In the following subsections we describe the design and features of
the data entry screen program. Then in the remaining sections of the
chapter we develop, test, and document this program.

Design

We want the data entry system to be easy for the user to work with. We
also want it to be flexible and easily modifiable, with any modifications
not seriously impacting the existing program.

The data entry program builds on the routines that have been devel
oped in previous chapters. The routines of this chapter will be combined
with those of Chapters 2 and 4 by the EXEC technique (described in
Chapter 3 in the section "Merging Programs by Using EXEC") to give you
the full data entry screen processor.

Building the Program

Here is the method to use to build the data entry system:

CHAPTER 5 A DATA ENTRY SCREEN PROCESSOR

1. Start with a fresh, initialized di-sk for the program of this chapter.

2. Transfer copies of the programs developed in Chapters 2 and 4 to
your new disk (A, or Applesoft, copies), using DOS. Merge them and
save the results under the name DES.A.

3. Using the screen editor from Chapter 3, type in the program lines
presented in this chapter and save them (these lines will be T, or
text, files) under the name DES.T.

4. Using DOS, load DES.A into memory and EXEC the file of this chap
ter (DES.T), or as much of it as you have entered so far, into memory.
Now the two programs are merged and can be saved again on disk as
Applesoft files, ready to run the next time you load them.

5. Repeat steps 3 and 4 each time you enter more of the program from
this chapter.

User Features

The line editor is used in the data entry system so that all those won
derful editing features, particularly the ability to edit existing data,
are available to the user. The entry system allows the user to move up
and down through the fields, editing and making corrections. Before
exiting the screen, the user is given the chance to verify and correct
entries. All of the editing is done without excessive keystrokes or the
implication that the user does not know how to operate the computer.
(It is never good practice to have the computer program talk down to
the user.)

One very useful feature of the data entry system is the use of origi
nal, or default, values. You may recall that the line editor can either ac
cept new information or be started with an initial value. This feature is
used to allow default values for every field in the data entry screen. For
example, if the user is entering data ,not used previously, all the data
fields are blank. However, if the user wishes to edit data already entered,
the user can actually go to the field of interest and modify it by using all
the editing features created in Chapter 2. In contrast, the Apple INPUT
statement does not allow the display of a default value or allow the user
to edit it.

127

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

Programmer Features

For the programmer we want to minimize the amount of work that has to
be done to create and modify screens. It is rather pointless and very bor
ing to keep writing the same type of program over and over again (this ap
plication is one that most program generators do fairly well). Therefore
we want to write one routine, give it the data, and have it process andre
turn the user input without having to worry about the display or the edit
ing. Our data entry system includes these features.

For our data entry system the programmer must enter two routines
plus the data entry screen. The data screen processor edits data stored
as a string array. For each routine the programmer must write one rou
tine to load the data into the string array and another routine to retrieve
the edited data from the array.

The data entry screen is made up of text describing what informa
tion is desired plus data fields . (Recall that a field is what we call each
piece of information that the user will be inputting.) A field 's data type,
screen position, and length, along with all the general screen text, is
stored in a sequential text file (created by using the screen text editor of
Chapter 3).

The data entry program also loads and displays the screen. As it is
displaying the screen, it extracts each field's characteristics. After it has
displayed the text portion of the screen, it displays the original, or de
fault, values of each of the fields and then begins editing in the first field.
The program performs these steps for every screen in the program
hence there is no duplicated effort and every screen is of a consistent,
high quality.

CREATING A DATA ENTRY SCREEN

128

The data entry screen processor uses both the line editor and the help
subroutines. As mentioned previously, the line editor is more flexible
than the INPUT statement. The help subroutine, with a few additional
program lines, is used to display the screen text and process the input
mask information. By using the help subroutine, you can have highlighted
areas, and you do not duplicate the program lines necessary to display

CHAPTER 5 A DATA ENTRY SCREEN PROCESSOR

the screen text. Thus you are in the position of being able to implement
help with all of your screens without having to do anything special with
the programs.

When using the help subroutine, you can utilize A (inverse) symbols
to highlight areas of special interest. For example, displaying the title of
the screen in inverse by enclosing it in A symbols is a nice touch. Be care
ful not to overuse this feature though; overuse can make the screens ap
pear cluttered and confusing.

In addition to containing the text the user is to see, the data screen
contains information defining where variables are to be accepted and
what their masks will be. For this feature the data mask is enclosed be
tween < and > symbols (less than and greater than). For example, if a
ten-character alphabet field is desired, it is represented as

<AAAAAAAAAA>

Text entry begins after the < symbol (the < and > symbols will not ap
pear on the screen that the user fills out). As ,an example, Fig. 5.1 illus
trates a sample screen for a mailing list program.

FIG. 5.1 Sample data entry screen (saved on disk as CHAP5 SCREEN)

ANAME AND ADDRESSA

1. NAME <AAAAAAAAAAAAAAAAAAAAAAA>

2. TITLE <AAAAAAAAAAAAAAAAAAAAAA>

3. ADDRESS <AAAAAAAAAAAAAAAAAAAAAAA>

4. CITY <AAAAAAAAAAAAAAAAAAAAAAA>

5. STATE <AA>

6 . ZIP CODE <#########>

7 . TELEPHONE <AAAAAAAAAAAAAAAAAAAAAAA>

129

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

A data entry screen can be created by using the text editor present
ed in Chapter 3. By using the text editor, you can lay out the screen ex
actly the way you wish it to appear. This method is easier and faster than
the trial-and-error approach necessary when using POKES, HT ABs, and
VTABs. If the appearance of a screen is to change and the variables that
are used in the screen are not changed, then there will be no changes re
quired in the BASIC program. You merely edit the screen, and the next
time the screen is used, it will be the new screen. This technique also al
lows you to easily print copies of the screens so that they can be used as
part of the specifications for the project or as part of the user's manual.
Even if you have not created as many data entry screens as we have, you
can appreciate the ease and flexibility this procedure gives you in cre
ating screens. Having them automatically processed is an added bonus.

SAMPLE VARIABLE-EXCHANGE ROUTINE

130

The variables used for the example in Fig. 5.1 would have names like
NAME$, ADDRESS$, ZIP, and so on. A general-purpose screen editor
cannot use these exact names but must work with a string array. So we
use the array LINE$() for this purpose.

In order for the data screen processor to use actual data, the actual
variables must be exchanged with the string array before the data
screen is called. After the data is edited, the array is exchanged with the
actual variables. The exchange is done by two subroutines for each
screen. One moves the data from the variables into the string array, and
the other moves the edited array values back into the actual variables.
For example, the following routine moves the data for Fig. 5.1 from the
variables into the string array:

26000 REM DEFINE CHAP5 SCREEN
26010 REM
26020 REM FILL SCREEN ARRAY WITH VALUES
26030 REM
26040 LINE$(1) = NAME$
26050 LINE$(2) = TITLE$
26060 LINE$(3) = ADDRESS$

CHAPTER 5 A DATA ENTRY SCREEN PROCESSOR

26070 LINE$(4) = CITY$
26080 LINE$(5) = ST$
26090 LINE$ (6) = STR$ (ZIP)
26100 LINE$(7) = TELE$
26110 RETURN

26120 REM ************************************

After the data has been edited and the user exits the data entry
screen, the following routine is used to exchange the string array with
the actual variables: 1

26500 REM DEFINE CHAP5 SCREEN
26510 REM

I

26520 REM FILL VALUES FROM SCREEN ARRAY
26530 REM
26540 NAME$ = LINE$(1)
26550 TITLE$ = LINE$(2)
26560 ADDRESS$ = LINE$(3)
26570 CITY$ = LINE$(4)
26580 ST$ = LINE$(5)
26590 ZIP= VAL (LINE$(6))
26600 TELE$ = LINE$(7)
26610 RETURN
26620 REM ******************** ********
26630 REM
26640 REM

Other than a few minor changes, which are noted in the next section,
these routines are all that you have to write to process the screen of Fig.
5.1. A pair of subroutines like these are required for every screen
created.

DATA ENTRY PROGRAM

The flowchart for the data entry screen processor is shown in Fig. 5.2.
The basic steps are as follows: display the data entry screen, using the
help screen processor; load the string edit array with the starting, or de-

131

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

132

FIG. 5.2 Flowchart for da ta entry screen processor

Show HELP screen

Show screen and
extract mask ;
position data

fault, values and show the default values; edit the data. Next, save the
edited values and test to see if help has been requested. If help was re
quested, then show the HELP screen and redisplay the entire screen. If
help was not requested, then return to the calling program.

CHAPTER 5 A DATA ENTRY SCREEN PROCESSOR

The following program listing corresponds to the flowchart in Fig.
5.2:

20000 REM DATA ENTRY * SCREEN PROCESSOR
20005 REM
20010 REM
20015 REM
20020 REM DISPLAYS SCREEN, LOADS MASK DATA
20025 REM DISPLAYS DEFAULT VALUES
20030 REM EDITS AND SAVES VALUES
20035 REM
20040 REM VARIABLES USED:
20045 REM LINE$() HOLDS EDIT DATA
20050 REM ITEM% NUMBER TO EDIT

PAGE TO EDIT
FIELD ROW NUMBER
FIELD COL NUMBER
FIELD MASK$
NAME OF SCREEN

20055
20060
20065
20070
20075
20080

REM
REM
REM
REM
REM
REM

PAGE%
SROW%()
SCOL%()
SMASK$()
SCREEN$()
LINE% CURRENT LINE BEING EDITED

20085 REM
20090 REM
20095 REM
20100 REM
20105 REM EDIT A DATA SCREEN
20110 REM
20115 REM SHOW THE DATA SCREEN
20120 REM
20125 ITEM% = 0
20130 NOPAUSE% = 1
20135 COL% = 1
20140 HELP$ = SCREEN$(PAGE%)
20145 GOSUB 21000
20150 NOPAUSE% = 0
20155 ON PAGE% GOSUB 25000 , 26000
20160 GOSUB 20295
20165 GOSUB 20350
20170 ON PAGE% GOSUB 25500,26500:

REM
REM
REM
REM
REM
REM

REM
REM
REM

CLEAR NUMBER OF ITEMS
INFORM HELP SCREEN NOT TO PAUSE
RESET POSITION COUNTER
NAME OF SCREEN TO PROCESS
SHOW SCREEN
RESET TO PAUSE

SHOW DEFAULT VALUES
EDIT DATA
SAVE THE EDITED DATA

20175 IF HELP% > 0 THEN HELP$ = HELP$ + " HELP ": GOSUB 21000
GOTO 20000 : REM SHOW HELP SCREEN AND START OVER

133

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

134

20180 RETURN
20185 REM

20190 REM *****************************
20195 REM
20200 REM

Various aspects of the data screen entry processor are discussed in
the following subsections.

Explanation of the Program

Lines 20155 and 20170 are GOSUBs to the program sections that load
and retrieve the data from the screen processor. This program allows
multiple screens to be processed by the subroutine. The screen you wish
to process is selected by setting PAGE % to the appropriate value. For
example, to use the screen you entered for Fig. 5.1, starting on line
26000, you would set PAGE% equal to 2. (Note: We have not created a
screen for lines 25000; this task is left as an exercise for you.) If you wish
to use more than two screens, then simply add these line numbers to lines
20155 and 20170. If only one screen is being processed, replace the ON
GOSUB commands with a GOSUB command.

If the user requests help , line 20175 will create a help text file name
and call the help routine to display the text. We are adopting the conven
tion of adding HELP to the end of the screen name to create a name of the
screen's help text. For example, if the data entry screen has the name
MAIL LIST, then the help text will have the name MAIL LIST HELP. If
you choose to use a different convention, then modify this line.

Explanation of Variables

NOPAUSE% (line 20130) and HELP$ (line 20140) are used by the help
subroutine while displaying the screen. If NOPAUSE% is not equal to 0,
then the help routine will not ask DO YOU WISH MORE? at the end of the
file. HELP$ is the name of the data entry screen.

PAGE% (line 20140) and SCREEN$() are used in multiple-screen
processing to define which data screen is being processed. If there is only

CHAPTER 5 A DATA ENTRY SCREEN PROCESSOR

one screen, you will not need these variables. Just assign the screen name
directly to HELP$.

This data entry program uses several arrays that must be dimen
sioned before they are used. In the test routine (presented in the next sec
tion) they a re dimensioned on lines 1030 through 1080. But in your pro
gram you may need to put them elsewhere. The arrays are as follows :

1030 LAST% = 10
1040 DIM LINE$(LAST%)
1050 DIM SROW%(LAST%)
1060 DIM SCOL%(LAST%)
1070 DIM SMASK$(LAST%)
1080 DIM SCREEN$(LAST%)

: REM (OR WHATEVER SIZE IS REQUIRED)

LAST% is the maximum number of fields allowed. LINE$() holds
the values of the fields being edited. SROW%() and SCOL%() contain
the screen coordinates of each field. SMASK$() is the data entry mask,
and SCREEN$() has the actual name of each screen.

CHANGES TO THE HELP SUBROUTINE

Four lines must be added to the help subroutine so that it can process the
field masks or definitions . These lines are as follows:

21262 IF ENTRY$ = "<" THEN GOSUB 20205 : REM ASSIGN FIELD CHARACTERIST ICS
21263 IF ENTRY$ < > CHR$ (13) THEN COL% = COL% + 1 : REM INC COLUMN

POSITION COUNTER
21286 COL% = 1 : REM RESET COLUMN COUNTER
21457 IF NOPAUSE% < > 0 THEN PRINT DSK$; "CLOSE ";SCREEN$: RETURN REM

RETURN WITHOUT A PAUSE

These lines recognize the < symbol and increment or set the screen col
umn position counter, COL%. Also, a line is added to close the file when
NOPAUSE % does not equal 0.

A < symbol is used to mark the beginning of a field definition. When
it is encountered, a branch is made to a subroutine that sets the field pa
rameters, GOSUB 20205.

135

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

SUBROUTINE FOR SETTING THE FIELD PARAMETERS

136

The field parameter routine sets the screen row and column coordinates
and the edit mask for the field. It continues stepping across the text line
one character at a time searching for the >symbol that marks the end of
the mask. All the characters in between the symbols are moved into the
field mask.

The program looks like this:

20205 REM SET FIELD PARAMETERS
20210
20215
20220
20225
20230

REM
ITEMS% = ITEMS% + 1
SMASK$(ITEMS%) = ""
SROW%(ITEMS%) = ROW% + 1
SCOL%(ITEMS%) = COL%

REM INC FIELD COUNTER
REM CLEAR IT
REM CURRENT ROW NUMBER
REM CURRENT COLUMN NUMBER

20235 PRINT " "; REM PRINT SPACE
20240 z = z + 1
20245 ENTRY$ =MID$ (A$,2 , 1) REM GET ONE CHARACTER
20250 IF ENTRY$ = ">" THEN GOTO 20270 : REM ARE WE AT END OF MASK?
20255 SMASK$(ITEM%) = SMASK$(ITEMS%) + ENTRY$: REM ADD TO FIELD MASK
20260 COL% = COL% + 1 REM INC COL CNT
20265
20270
20275
20280
20285

GOTO 20235
ENTRY$ = " "
RETURN
REM
REM **************

20290 REM

REM GET NEXT CHAR
REM CLEAR ENTRY$

In the program above three arrays plus one counter are used to con
tain the field parameters. In lines 20225 and 20230 the integer arrays
SROW%() and SCOL%() contain the starting screen coordinates for
the fields. These arrays will be assigned to ROW% and COL % when the
line editor routine is called. SMASK$() in line 20200 is a string array
used to contain the mask for the fields. MASK$ will be set from this ar
ray. Finally, ITEMS% (line 20215) is used to count the number of fields on
the screen. ITEMS% is incremented by one as each field is processed.
You may have noticed that ITEMS % is reset to 0 before the screen dis
play subroutine is called.

CHAPTER 5 A DATA ENTRY SCREEN PROCESSOR

TEST POINT

At this point you should have entered all the programs presented thus
far . Now enter the following program and the data screen shown in Fig.
5.1 (saved as CHAPS SCREEN). After you enter RUN (CR), this screen
should be displayed. The program will stop on line 20160 because the de
fault display routine has not been entered yet.

The following test routine for the data entry screen program is de
signed for only 10 fields and will display the results of the editing. The
first time the program is run, the data screen will be blank; the second
and subsequent times it will display the values of the previous edit ses
sions as defaults.

The test routine is as follows:

1000 REM TEST PROGRAM FOR DATA SCREEN PROCESSOR
1010 REM
1020 REM
1030 LAST% = 0
1040 DIM LINE$(LAST%)
1050 DIM SROW%(LAST%)
1060 DIM SCOL%(LAST%)
1070 DIM SMASK$(LAST%)
1080 DIM SCREEN$(LAST%)
1090 REM
1100 REM
1110 REM

REM SCREEN NAMES

1120 PAGE% = 2 : REM ENTER CHAP5 SCREEN
1130 SCREEN$(2) "CHAP5 SCREEN"
1140 GOSUB 20000 : REM EDIT THE DATA
1150 HOME
1160 PRINT "NAME ",NAME$
1170 PRINT "TITLE ", TITLE$
1180 PRINT "ADDRESS ", ADDRESS$
1190 PRINT "CITY ", CITY$
1200 PRINT "STATE ", ST$
1210
1220
1230
1240

PRINT "ZIP CODE ", ZIP
PRINT "TELEPHONE ",TELE$
VTAB 23
POKE 36, 1 REM HTAB

137

BASIC BUSINESS SUBROUTINES F OR T HE APPLE II AND lie

1250 INPUT "ENTER RETURN TO CONTINUE ";A$
1260 GOTO 1120 : REM THAT FELT SO GOOD LET'S DO IT AGAIN
1270 REM **********************************
1280 REM
1290 REM

DISPLAYING THE ORIGINAL VALUES

138

After the text is displayed and LINE$() has been loaded with the original
or default values, subroutine GOSUB 20295 is called to display these val
ues. By displaying the values, we are presenting the user with a complete
picture of what data the computer currently contains. This technique is
better than the method of serially showing and editing one field at a time.
By being shown all the information at once, the user has a better under
standing of what is being requested.

The display routine uses a FOR-NEXT loop to position the cursor
from the values in SROWo/o() and SCOLo/o() and then prints the corre
sponding value from LINE$(). The program listing is as follows:

20295 REM SHOW DEFAULT VALUES
20300 REM
20305 FOR X = 1 TO ITEMS%
20310 VTAB SROW%(X) REM LINE
20315 POKE 36, SCOL%(X) REM COLUMN - HTAB
20320 PRINT LINE$(X); REM DATA
20325 NEXT X
20330 RETURN
20335 REM
20340 REM *****************************
20345 REM

TEST POINT

After the display subroutine is entered, the program should display the
screen and stop at line 20165. Since values have not been assigned to
LINE$(), no default will be shown. As an exercise, you might temporarily

CHAPTER 5 A DATA ENTRY SCREEN PROCESSOR

add the following lines and RUN the program again just to make sure
everything is correct.

1131 LINE$(1) "NAME"
1132 LINE$(2) "TITLE "
1133 LINE$(3) "ADDRESS"
1134 LINE$(4) "CITY"
1135 LINE$(5) "STATE "
1136 LINE$(6) "ZIP CODE "
1137 LINE$(7) "PHONE NUMBER "

To prevent confusion later, delete these lines after a successful test.

EDITING SUBROUTINE

Once the screen text and the values are displayed, all that remains is to
edit the individual fields. The line editor is used, because it allows editing
in an existing field and offers cursor controls not available with INPUT.
So that the up arrow, down arrow, and ESC can be used, the following
program lines must be added to the standard line editor routine:

51124 IF KEY% = 10 THEN CTRL% = 2 REM AJ LINE FEED 51124
51126 IF KEY% = 11 THEN CTRL% = 3 REM AK UP ARROW EXIT 51126

Figure 5.3 (page 141) is a flowchart of the field-editing subroutine,
which is as follows:

20350 REM EDIT THE DATA FIELDS
20355 REM
20360 LINE% = 1 REM START IN DATA FIELD
20365 ENTRY$ = LINE$(LINE%) REM FIELD
20370 ROW% = SROW%(LINE%) REM ROW
20375 COL% = SCOL%(LINE%) REM COL
20380 MASK$ = SMASK$(LINE%) REM MASK
20385 GOSUB 50000 REM EDIT FIELD
20390 LINE$(LINE%) = ENTRY$ REM SAVE THE EDITED DATA FIELD

139

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

20395 IF HELP% > 0 THEN RETURN : REM HELP REQUESTED IN THE FIELD
20400 IF (CTRL% = 3) AND (LINE% > 1) THEN LINE% = LINE% - 1 :

GOTO 20365 : REM UP ARROW
20405 IF CTRL% = 3 THEN GOTO 20365 : REM UP ARROW BUT ALREADY AT TOP
20410 IF CTRL% = 27 THEN GOTO 20425 : REM ESC SO GO TO BOTTOM
20415 IF LINE% <ITEMS% THEN LINE% = LINE% + 1: GOTO 20365: REM MOVE DOWN A LINE
20420 REM
20425
20430
20435
20440
20445
20450
20455
20460
20465
20470
20475
20480
20485
20490

20495
20500

REM VERIFY ENTRIES
REM

'VTAB 24
HTAB 10

: REM GOTO BOTTOM

PRINT "CHANGE WHICH ITEM?" ;
MASK$ = "##" REM ALLOW HELP AND UP TO 99 FIELDS
ENTRY$ = "0 " : REM DEFAULT
ROW% = 24
COL% = 30
GOSUB 50000 : REM EDIT DATA
IF CTRL% = 3 THEN LINE% = ITEMS%: GOTO 20365: REM UP ARROW
LINE% = VAL (ENTRY$) : REM LINE TO EDIT
IF LINE% = 0 THEN RETURN : REM ALL DONE WITH THIS SCREEN
IF (LINE% < = ITEMS%) AND (LINE% > 0) THEN GOTO 20365 : REM EDIT

THE REQUESTED FIELD
GOTO 20425 : REM BAD ENTRY
REM

20505 REM *****************************
20510 REM

140

Editing begins at the first field, and LINE% (line 20360) is used to
mark the field being edited. Next, the variables required for the line edi
tor and ENTRY$ are set. After editing, the contents of ENTRY$ are re
turned to LINE$(). Then a check is made to see if the user entered an up
arrow or an ESC or requested help. If none of these requests were made,
then the program steps to the next field .

After the last field has been edited, or an ESC has been entered, the
user is asked,

CHANGE WHICH ITEM?

If either 0 (CR) or (CR) is entered, then the editing is completed and the
program returns to the main routine . Otherwise, the cursor is moved to
the field requested.

CHAPTER 5 A DATA ENTRY SCREEN PROCESSOR

FIG. 5.3 Flowchart for field-editing routine

Move f i eld from
LINE$() to ENTRY$

RETURN

Yes

Al ready at top ,

Ask , CHANGE
WHICH ITEM?

141

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

The up arrow and ESC are user-friendly, laborsaving features. The
user does not have to eni.er a RETURN for every field on the screen just to
get to the CHANGEs line, and it is not necessary to move to the bottom of
the screen in order to move up a variable. You may have noticed that the
user can enter an up arrow on the CHANGEs line in order to move to the
last field. It is often easier to enter several up arrows than to find and
enter a field number.

TEST POINT

The data entry system is now complete. You will now want to test the up
arrow ("K) and ESC keys. Also, verify that a field number can be entered
on the CHANGEs line and that the field can be edited.

After you enter (CR) on the CHANGEs line, you will be asked by the
test routine to ENTER RETURN TO CONTINUE. After you enter this (CR),
you will be looped back to the beginning of the data entry screen, and the
values you just entered should be displayed as the new defaults.

Before you test the help feature, you will have to create a text file
named PAGE 2 HELP. This file can be created by using the text editor
from Chapter 3 and can contain any of the help features developed in
Chapter 4. After the help screen is displayed and you wish to return to
the data entry screen, the screen should be cleaned and the current
screen redisplayed.

ADDITIONAL OPTION

142

In our editing subroutine we chose to begin editing with the first field.
You may wish to begin editing with the CHANGEs line instead. When you
are editing a blank screen with no defaults, then you will want to begin
editing at field one. When you are editing an existing item, then you will
wish to begin editing at the CHANGEs line.

If you allow for both alternatives, you have the option of using the
editing screen to review data. In addition, one user keystroke, ESC, is re
moved. This option can be implemented by changing line 20165 to branch

CHAPTER 5 A DATA ENTRY SCREEN PROCESSOR

to either 20350 or 20425 depending on a variable set by the routine that
called the screen editor. For example, you could use

20165 ON EDITSTART% GOSUB 20350 , 20425

where EDITSTART% equals 1 to start in field one and 2 to start on the
CHANGEs line.

USER INSTRUCTIONS

The following subsections contain the user instructions for the data entry
system. Please add these instructions to your user's manual.

Entering and Editing Data

All data entry screens function in the same manner. They all have fea
tures that make it easier for you to edit and change data. The data entry
screen consists of three parts: (1) the text used to describe the screen; (2)
the data fields , i.e., the actual data you can edit; and (3) a line at the bot
tom of the screen that asks,

CHANGE WHICH ITEM?

We refer to this line as the CHANGEs line.
Portions of the text may be highlighted and appear as black letters

on a white background.
In addition to all the editing capabilities described in the line editor

chapter, you can move up and down through the fields or jump directly to
the bottom of the screen to the CHANGEs line.

Editing a Field

Whenever a field is being edited, its current value is shown. If you do not
wish to change the field, then enter a RETURN or a line feed (control J, "J)
and you will move to the next field. If you do wish to change a field , then

143

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

144

just change it by using the various editing commands. Remember that the
field is accepted exactly as you see it, so do not leave out or forget any
thing.

Moving Between Fields

If you are in a field and wish to go to the next field, enter either a
RETURN or a line feed ("J). If you wish to go to the previous field, then
enter an up arrow ("K). You may step up and down through the fields as
often as necessary to correct the entries.

How to Exit the Data Entry Screen

If you are editing fields and wish to stop editing and go to the CHANGEs
line, you may either step down through the fields by entering RETURNs or
jump across all the fields directly to the CHANGEs line by pushing the
ESC key.

CHANGE WHICH ITEM?

The CHANGE WHICH ITEM? question is asked at the bottom of every
data entry screen. If you wish to change a field, you enter its number fol
lowed by a RETURN. The program will then jump to the field you re
quested.

An up arrow ("K) can be used to step up from the CHANGEs line, one
field at a time, to the field you wish to change.

If you do not wish to make any corrections, then enter a RETURN and
the program will proceed.

Help Requests

All data entry screens have help text to explain what information the
screen wants and what each of the fields means. To request help, go to
the CHANGEs line and press control Q ("Q). After the help text has been
displayed, the original screen will be displayed and you may edit the
data.

CHAPTER 5 A DATA ENTRY SCREEN PROCESSOR

COMPLETE DATA ENTRY SCREEN PROGRAM

The complete listing of the data entry program is as follows:

1000 REM TEST PROGRAM FOR DATA SCREEN PROCESSOR
1010 REM
1020
1030
1040
1050
1060
1070
1080
1090
1100

REM
LAST% = 10
DIM LINE$(LAST%)
DIM SROW%(LAST%)
DIM SCOL%(LAST%)
DIM SMASK$(LAST%)
DIM SCREEN$(LAST%)
REM
REM

1110 REM

REM SCREEN NAMES

1120 PAGE% = 2 : REM ENTER CHAP5 SCREEN
1130 SCREEN$(2) "CHAP5 SCREEN"
1140 GOSUB 20000 : REM EDIT THE DATA
1150
1160
1170
1180
1190
1200

HOME
PRINT
PRINT
PRINT
PRINT
PRINT

"NAME ", NAME$
"TITLE", TITLE$
"ADDRESS",ADDRESS$
"CITY" , CITY$
"STATE",ST$

1210 PRINT "ZIP CODE",ZIP
1220 PRINT "TELEPHONE",TELE$
1230 VTAB 23
1240 POKE 36, 1 : REM HTAB
1250 INPUT "ENTER RETURN TO CONTINUE ";A$
1260 GOTO 1120 1 : REM LET'S DO IT AGAIN
1270 REM ****'*****************************
1280 REM
1290 REM

26000 REM DEFINE CHAP5 SCREEN
26010 REM
26020 REM FILL SCREEN ARRAY WITH VALUES
26030 REM
26040 LINE$(1) = NAME$
26050 LINE$(2) = TITLE$

145

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

26060 LINE$(3) = ADDRESS$
26070 LINE$(4) = CITY$
26080 LINE$(5) = ST$
26090 LINE$(6) = STR$ (ZIP)
26100 LINE$(7) = TELE$
26110 RETURN
26120 REM *************************************
26500 REM DEFINE CHAP5 SCREEN
26510 REM
26520 REM FILL VALUES FROM SCREEN ARRAY
26530 REM
26540 NAME$ = LINE$(1)
26550 TITLE$ = LINE$(2)
26560 ADDRESS$ = LINE$(3)
26570 CITY$ = LINE$(4)
26580 ST$ = LINE$(5)
26590 ZIP= VAL (LINE$(6))
26600 TELE$ = LINE$(7)
26610 RETURN
26620 REM *****************************
26630 REM
26640 REM

20000 REM DATA ENTRY * SCREEN PROCESSOR
20005 REM
20010 REM
20015 REM
20020 REM DISPLAYS SCREEN, LOADS MASK DATA
20025 REM DISPLAYS DEFAULT VALUES
20030 REM EDITS AND SAVES VALUES
20035 REM
20040 REM VARIABLES USED:
20045 REM LINE$() HOLDS EDIT DATA
20050 REM ITEM% NUMBER TO EDIT
20055 REM PAGE% PAGE TO EDIT
20060 REM SROW%() FIELD ROW NUMBER
20065 REM SCOL%() FIELD COL NUMBER
20070 REM SMASK$() FIELD MASK$
20075 REM SCREEN$() NAME OF SCREEN
20080 REM LINE% CURRENT LINE BEING EDITED
20085 REM

146

CHAPTER 5 A DATA ENTRY SCREEN PROCESSOR

20090 REM
20095 REM
20100 REM
20105 REM EDIT A DATA SCREEN
20110 REM
20115 REM SHOW THE DATA SCREEN
20120
20125
20130
20135
20140
20145
20150
20155
20160
20165
20170
20175

20180
20185

REM
ITEM% = 0
NOPAUSE% = 1
COL% = 1
HELP$ = SCREEN$(PAGE%)
GOSUB 21000
NOPAUSE% = 0
ON PAGE% GOSUB 25000,26000

REM CLEAR NUMBER OF ITEMS
REM INFORM HELP SCREEN NOT TO PAUSE
REM RESET POSITION COUNTER
REM NAME OF SCREEN TO PROCESS
REM SHOW SCREEN
REM RESET TO PAUSE

GOSUB 20295 REM SHOW DEFAULT VALUES
GOSUB 20350 REM EDIT DATA
ON PAGE% GOSUB 25500,26500: REM SAVE THE EDITED DATA
IF HELP% > 0 THEN HELP$ = HELP$ + " HELP": GOSUB 21000

GOTO 20000 : REM SHOW HELP SCREEN AND START OVER
RETURN
REM

20190 REM *****************************
20195
20200
20205
20210
20215
20220
20225
20230
20235
20240
20245
20250
20255
20260
20265
20270
20275
20280
20285

REM
REM
REM SET FIELD PARAMETERS
REM
ITEMS% = ITEMS% + 1
SMASK$(ITEMS%) = nn

SROW%(ITEMS%) = ROW% + 1
SCOL%(ITEMS%) = COL%
PRINT " ";
z = z + 1
ENTRY$ = MID$ (A$,2,1)

REM INC FIELD COUNTER
REM CLEAR IT
REM CURRENT ROW NUMBER
REM CURRENT COLUMN NUMBER
REM PRINT SPACE

REM GET ONE CHARACTER
IF ENTRY$ = ">" THEN GOTO 20270 : REM ARE WE AT END OF MASK?
SMASK$(ITEM%) = SMASK$(ITEMS%) + ENTRY$: REM ADD TO FIELD MASK
COL% = COL% + 1 REM INC COL CNT
GOTO 20235 REM GET NEXT CHAR
ENTRY$ = " " REM CLEAR ENTRY$
RETURN
REM
REM *****************************

147

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

148

20290 REM
20295 REM SHOW DEFAULT VALUES
20300
20305
20310
20315
20320
20325
20330
20335
20340
20345
20350
20355
20360
20365
20370
20375
20380
20385
20390
20395
20400

20405
20410
20415

20420
20425
20430
20435
20440
20445
20450
20455
20460
20465
20470
20475
20480

REM
FOR X = 1 TO I TEMS%

VTAB SROW%(X)
POKE 36, SCOL% (X)
PRINT LINE$ (X) ;

NEXT X
RETURN
REM

REM LINE
REM COLUMN - HTAB
REM DATA

REM *****************************
REM
REM EDIT THE DATA FIELDS
REM
LINE% = 1 REM START IN DATA FIELD
ENTRY$ = LINE$(LINE%) REM FIELD
ROW% = SROW%(LINE%) REM ROW
COL% = SCOL%(LINE%) REM COL
MASK$ = SMASK$(LINE%) REM MASK
GOSUB 50000 REM EDIT FIELD
LINE$(LINE%) = ENTRY$ REM SAVE THE EDITED DATA FIELD
IF HELP% > 0 THEN RETURN REM HELP REQUESTED IN THE FIELD
IF (CTRL% = 3) AND (LINE% > 1) THEN LINE% = LINE% - 1 :

GOTO 20365 : REM UP ARROW
IF CTRL% = 3 THEN GOTO 20365 : REM UP ARROW BUT ALREADY AT TOP
IF CTRL% = 27 THEN GOTO 20425 : REM ESC SO GO TO BOTTOM
IF LINE% < ITEMS% THEN LINE% = LINE% + 1 : GOTO 20365: REM MOVE

DOWN A LINE
REM
REM VERIFY ENTRIES
REM
VTAB 24
HTAB 10
PRINT "CHANGE WHICH ITEM? ";
MASK$ = "##"
ENTRY$ = "0"
ROW% = 24
COL% = 30

REM GOTO BOTTOM

REM ALLOW HELP AND UP TO 99 FIELDS
REM DEFAULT

GOSUB 50000 : REM EDIT DATA
IF CTRL% = 3 THEN LINE% =ITEMS% : GOTO 20365 : REM UP ARROW
LINE% = VAL (ENTRY$) : REM LINE TO EDIT

CHAPTER 5 A DATA ENTRY SCREEN PROCESSOR

20485
20490

20495
20500
20505
20510
21262
21263

21286

IF LINE% = 0 THEN RETURN : REM ALL DONE WITH THIS SCREEN
IF (LINE% < = ITEMS%) AND (LINE% > 0) THEN GOTO 20365 : REM EDIT

THE REQUESTED FIELD
GOTO 20425 : REM BAD ENTRY
REM

REM *****************************
REM
IF ENTRY$ = "<" THEN GOSUB 20205 : REM ASSIGN FIELD CHARACTERISTICS
IF ENTRY$ < > CHR$ (13) THEN COL% = COL% + 1 : REM INC COLUMN

POSITION COUNTER
COL% = 1 : REM RESET COLUMN COUNTER

21457 IF NOPAUSE% < > 0 THEN PRINT DSK$; "CLOSE ";SCREEN$: RETURN REM
RETURN WITHOUT A PAUSE

51124
51126

IF KEY% = 10 THEN CTRL% = 2
IF KEY% = 11 THEN CTRL% = 3

REM AJ LINE FEED 51124
REM AK UP ARROW EXIT 51126

149

CHAPTER 6

A MENU SYSTEM

INTRODUCTION

In this chapter we develop a menu display program. A menu is a list of
actions the computer can perform. The user selects one action, and then
either a particular portion of the current program is executed or an en
tirely new program is loaded and executed. Almost all programs have at
least one menu. From a programming standpoint a menu is similar to a
data entry screen: It is a simple (and boring) program to write and time
consuming to adjust and modify.

The menu system presented in this chapter is based on the concepts
and · techniques developed in the previous chapters. The text editor is
used to create a menu screen. Imbedded within the text of this screen is
information about what programs are to be executed when a particular

151

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

152

option is selected. As for the data entry screen, the help subroutine is
used to display the menu. This routine allows highlighting of important in
formation and provides consistency for all of the screens.

In the following subsections we describe the prograrn design and its
features.

Design

Depending on how we wish to implement the menu driver, we should be
able to either chain to and run another program or branch to a subrou
tine within the current program. The menu program we present allows
for these options. In addition, the program builds on the routines that
have been developed in the previous chapters. That is, the routines of this
chapter are combined with those of Chapters 2 and 4 by the EXEC tech
nique described in Chapter 3 (see the "Merging Programs by Using
EXEC" section) to give you the complete menu system.

Building the Program

Here is the method to use to build the menu program:

1. Start with a fresh, initialized disk for the program of this chapter.

2. Transfer copies of the programs developed in Chapters 2 and 4 to
your new disk (A, or Applesoft, copies), using DOS. Merge them and
save the results under the name MENU.A.

3. Using the screen editor from Chapter 3, type in the program lines
presented in this chapter and save them (these lines will be T, or
text, files) under the name MENU.T.

4. Using DOS, load MENU.A into memory and EXEC the file of this
chapter (MENU.T), or as much of it as you have entered so far,
into memory. Now the two programs are merged and can be saved
again on disk as Applesoft files, ready to run the next time you
load them.

5. Repeat steps 3 and 4 each time you enter more of the program from
this chapter.

CHAPTER 6 A MENU S YSTEM

User Features

The menu is the user 's road map. Without a menu to remind them about
what options are available, most users would be hopelessly lost. The
menu text must clearly and unambiguously describe what options are
available to the user and what the consequences of a particular selection
are. A help file , such as we have provided, is therefore absolutely essen
tial with every menu.

In a menu system it is important that consistency be maintained. In
our menus we always use the ESC key to step the user back to the pre
vious menu. By knowing this convention, the users will always be able to
retrace their steps and return to the beginning of the program. Another
technique we always include is an option on every menu that will return
the user to the first, or "master," menu.

Our menu selections are always numbered, and a carriage return
must be entered every time a selection is made. Occasionally, you may
come across a program that requires a carriage return in response to
certain questions and none in others. For example, in one place in the
program you may have to enter a 1 (CR), while in another similar situa
tion a simple 1 is all that is necessary. The computer automatically adds
the (CR). Such a program is a prime example of inconsistent program
ming, and most users find this inconsistency annoying, irritating, and
irrational. Unless a program like this one is used on a daily basis, the user
is always entering the unneeded carriage return and accidently causing
an undesired action.

Remember, user-friendly software contains no surprises or hidden
pitfalls and is consistent. A good menu should provide your users with the
visibility necessary to really understand where they are going and why.

Programme r Features

The menu routine can be written by using either one of two methods.
Method 1 automatically chains to and runs another program, while meth
od 2 causes a branch to a routine within the current program.

In method 1 the programmer includes the names of the programs to
be executed with the actual menu text. The help screen display routine
from Chapter 4 is modified to extract the names and not display them.

153

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

Method 2 requires either an ON GOSUB or an ON GOTO statement to
branch to the appropriate routine within the current program. For either
option the programmer simply passes the name of the desired menu
screen to the menu routine and it takes over from there.

The program names may be placed on any line of the screen file . A
name must be between two # symbols, begin on column 1, and contain the
option number in columns 2 and 3. For example,

#01 ACCOUNTS RECEIVABLE#

#02 GENERAL LEDGER#

#03 PAYROLL#

This listing means that accounts receivable is menu option 1, general
ledger is option 2, etc.

The # symbol was chosen in our program to avoid a conflict with the
< and > symbols used for the data entry screen, just in case a program

contains both a menu and a data entry screen. The choice of symbols is
completely arbitrary, and if these symbols conflict with the way you use
the data entry or menu screens, then change the symbols. To avoid prob
lems, try to be consistent with your choice of symbols so that all the
screens of a given type use the same style.

MENU PROGRAM

154

A flowchart of the menu program is shown in Fig. 6.1. This program is
very simple. It first uses the help screen display subroutine to display the
text and to strip out the options and the names of the programs to chain to
or run. It then asks the user to select an option. After verifying that a
valid option number has been entered, the menu either runs the re
quested program or branches somewhere within the current program,
depending on what line 22160 (see below) of the menu contains.

The program listing is as follows :

22000 REM MENU DRIVER *
22005 REM
22010 REM
22015 REM

CHAPTER 6 A MENU SYSTEM

REM DISPLAYS MENU AND CHAINS TO PROGRAM OF USERS CHOICE
REM
REM
REM IMPORTANT VARIABLES USED:
REM LINE$() CONTAINS NAME OF PROGRAM TO CHAIN TO
REM

REM DISK 11D
REM NUMBER OF OPTIONS

22020
22025
22030

22035
22040
22045
22050
22055
22060
22065
22070
22075
22080
22085
22090
22095
22100
22105
22110
22115
22120
22125
22130
22135

DSK$ = CHR$ (4)
ITEMS% = 0
NOPAUSE% = 1
HELP$ = SCREEN$
GOSUB 21000
NOPAUSE% = 0

REM INFORM HELP SYSTEM NOT TO PAUSE
REM SEND THE MENU NAME
REM SHOW THE SCREEN USING HELP ROUTINE
REM RESTORE THE FLAG FOR OTHERS

22140
22145
22150
22152

REM
REM ASK FOR OPTION
REM
VTAB 3
POKE 36, 10 : REM HTAB
PRINT "PLEASE SELECT OPTION"
ROW% = 3
COL% = 35
MASK$ = "##"
ENTRY$ = "0 "
GOSUB 50000

REM ALLOW HELP REQUEST

REM ACCEPT OPTION
IF HELP% THEN HELP$ = SCREEN$ + " HELP ": GOSUB 21000

GOTO 22000: REM RESPONDED TO HELP REQUEST
X = VAL (ENTRY$) : REM OPTION SELECTED
IF X > ITEMS% THEN GOTO 22000: REM BAD ENTRY
IF LINE$(X) = "END " THEN HOME: END : REM RETURN TO BASIC
IF LINE$(X) = "HELP " THEN HELP% = 1:HELP$ = SCREEN$ + " HELP ":

21000: GOTO 22000 : REM RESPONDED TO HELP REQUEST
22155 PRINT REM CLEAR FOR DISK COMMAND
22160 PRINT DSK$; "RUN "; LINE$(X): REM CHAIN TO THE REQUESTED PROGRAM
22165 REM
22170 REM **********************************
22175 REM

GO SUB

EXPLANATION OF PROGRAM

The menu routine contains a feature that terminates execution and re
turns to BASIC. This task is accomplished by using the word END in place
of the program name. Line 22150 tests to see if the selected option con-

155

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

156

FIG. 6.1 Menu program flowchart

Display screen and
make program name list
from imbedded names

No

to desired option

sists of END for the program name; if it does, then the program clears the
screen and stops the program with an END statement.

The menu routine also contains a feature that allows you to call
HELP. This task is accomplished by using the word HELP in place of the
program name. Line 22152 tests to see if the selected option consists of
HELP for the program name; if it does, then the program clears the
screen and loads and displays the requested HELP screen.

The default option number assigned on line 22125 is 0. We usually
use 0 (CR) and ESC to mean the same thing-go back to the previous
menu. Thus those users not familiar enough with the programs to remem
ber to use ESC can still exit the programs with a single keystroke, a car
riage return (since 0 is defaulted). Also, since this line always has the
same meaning, it is positioned as the last option on the list instead of the
first option. When it is at the end of the list, the user is not forced to read
it every time a menu appears. This feature is a small touch, but it shows
that you have put some thought into the menus and attempt to make them
consistent and easy to use.

CHAPTER 8 A MENU SYSTEM

The menu routine uses the LINE$() array. This array must be di
mensioned to at least the maximum option number before the menu rou
tine is called. If you are also using the data entry screen, it is not neces
sary to dimension the array twice. If needed, be sure to place it at the
front of the program so that it only executes once.

Other features of the menu program are described in the following
subsections.

Chaining or Branching

Line 22160 currently is

22160 PRINT DSK$; "RUN "; LINE$(X) : REM CHA IN TO THE REQUESTED PROGRAM

This line will cause the menu to run another program once a valid option
has been selected. If you wish to branch to a point within the current pro
gram, this line should be changed as follows:

22160 ON X GOSUB 1000 , 2000 ,JOOO , ETC : REM BRANCH TO SUBROUTINE

where 1000, 2000, 3000, ETC are the subroutine entry points. Do not for
get to change these numbers to the correct line numbers in your program.

You will also have to add some lines at the end of your subroutines to
either terminate the program on the return or redisplay the menu. For
example,

22165 END : REM TERMINATE EXECUTION

will terminate the program, and

22165 GOTO 22000 : REM REDISPLAY THE MENU

will cause the menu to be redisplayed.
If you are branching to subroutines and not chaining to any other

programs, then you do not need to put any program names in your menu
screen. It can contain just the text you wish to display.

Finally, line 22145 must be deleted if you are branching since you are
not checking program names and ITEMS% is not being set properly.

157

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

158

Accepting a Program Name

When the screen display routine encounters a # symbol, it branches to
line 22180, where the program name is extracted and inserted into the
LINE$() array. ITEM% contains the value of the largest option found.
The program listing for this routine is as follows :

22180 REM ACCEPT A CHAIN NAME
22185 REM
22190 Z =VAL (MID$ (A$,2,2)) : REM GET THE OPTION NUMBER
22195 IF ITEM% < Z THEN ITEM% = Z: REM ADJUST COUNTER
22200 LINE$(Z) = MID$ (A$, 4) REM MOVE THE FILE NAME
22205
22210
22215

ROW% = ROW% + 1
RETURN
REM

: REM INCREMENT COUNTER

22220 REM *********************************
22225 REM

Modifications to the Help Screen Display Routine

Two lines must be added to the existing help screen display routine from
Chapter 4 to enable it to process menus. They are as follows:

21237 IF ROW% = LINE% THEN PRINT DSK$; "CLOSE ";HELP$: RETURN
REM 21237 ALL DONE

21242 IF MID$ (A$,1 , 1) = "#" THEN GOSUB 22180 : GOTO 21237 :
REM 21242 PROCESS MENU FILE NAMES

Using the Help Subroutine

The menu system employs the help routine for user on-line help in the
same way that the data entry system does. If the user enters AQ, then on
line 22135 the text

" HELP "

is added to the end of the menu screen name, SCREEN$. Since the help
system is a fundamental part of the menu system, you should use it.

CHAPTER 6 A MENU SYSTEM

SAMPLE MENU SCREEN

Figure 6 .2 illustrates one method of entering a menu. This menu is de
signed to chain to other programs or terminate execution and return to
BASIC. Note that both the title and the number 0 will be highlighted since
they have been enclosed within 11 symbols.

FIG. 6.2 Sample menu screen saved as CHAP6 MENU

11 ACCOUNTI NG MASTER MENU 11

PLEASE SELECT OPTION -

1. ACCOUNTS RECEIVABLE PROCESSING

#01 AR MENU#

2. PAYROLL PREPARATION

#02 PAYROLL MENU#

3. GENERAL LEDGER TRANSACTIONS AND REPORTS

#03 GL MENU#

4. INVENTORY MAI NTENANCE

#04 INV MENU#

5. ACCOUNTS PAYABLE PROCESSING

#05 AP MENU#

11011 . ESC - EXIT TO BASIC

#00 END#

159

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

TEST POINT

First, create a menu to chain onto some programs you previously created
or the programs developed in the earlier chapters (which is what is done
on the optionally available floppy). Run the program and make sure that
the screen is displayed properly and that the correct program is chained.

Second, change lines 22160 and 22165 presented earlier to branch
to some small subroutine that you create. These subroutines can do some
thing clever, like clear the screen and print " option 1," etc. After the sub
routine executes, the menu should be redisplayed.

Enter these lines for testing:

100 REM TEST ROUTINE FOR MENU DRIVER
110 REM
120 REM
130 DIM LINE$(10)
140 SCREEN$ = "CHAP6 MENU "
150 GOTO 22000: REM DISPLAY THE MENU AND CHAIN
160 END

USER INSTRUCTIONS

160

The following subsections contain the user instructions for the menu sys
tem. Please add these instructions to your user's manual.

Using a Menu

A menu is a list of actions that the computer can perform. After reading
the available options, select the one you want by entering its number fol
lowed by a carriage return. For example, if you were looking at the fol
lowing screen and you wished to run the general ledger program, you
would enter 3 (CR).

ACCOUNTING MASTER MENU

PLEASE SELECT OPTION -

1. ACCOUNTS RECEIVABLE PROCESSING

CHAPTER 6 A MENU SYSTEM

2. PAYROLL PREPARATION

] . GENERAL LEDGER TRANSACTIONS AND REPORTS

4. INVENTORY MAINTENANCE

5. ACCOUNTS PAYABLE PROCESSING

0. ESC - RETURN TO PREVIOUS MENU

Requesting Help

If you cannot decide which option to select or you do not understand what
is wanted from you, help can be requested by entering a 1\Q (control Q) in
response to PLEASE SELECT OPTION. The help text contains a detailed
explanation of what each option will do. After the help text has been dis
played, the menu will be redisplayed.

Exiting, or Which Way Is Out?

To return to the previous menu and eventually back to BASIC, either
enter 0 (CR) or simply strike the ESC (escape) key. [Note: The default
option is 0 ; therefore striking the RETURN key is the same as entering 0
(CR).]

COMPLETE MENU PROGRAM

The complete listing of the menu program is as follows:

????? DIM LINE$(10) (NOTE: DON'T FORGET TO INCLUDE THIS DIMENSION
STATEMENT AT THE FRONT OF YOUR
PROGRAM IF IT IS NOT INCLUDED IN
ANOTHER ROUTINE)

161

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

162

21237

21242

100
110
120
130
140
150
160

22000
22005
22010
22015
22020
22025
22030
22035
22040
22045
22050
22055
22060
22065
22070
22075
22080
22085
22090
22095
22100
22105
22110
22115
22120
22125
22130

IF ROW% = LINE% THEN PRINT DSK$; "CLOSE "; HELP$: RETURN
REM 21237 ALL DONE

IF MID$ (A$, 1,1) = "#" THEN GOSUB 22180: GOTO 21237 :
REM 21242 PROCESS MENU FILE NAMES

REM TEST ROUTINE FOR MENU DRIVER
REM
REM
DIM LINE$(10)
SCREEN$ = "CHAP6 MENU "
GOTO 22000: REM DISPLAY THE MENU AND CHAIN
END

REM MENU DRIVER *
REM
REM
REM
REM DISPLAYS MENU AND CHAI NS TO PROGRAM OF USERS CHOICE
REM
REM
REM IMPORTANT VARIABLES USED :
REM LINE$() CONTAINS NAME OF PROGRAM TO CHAIN TO
REM
DSK$ = CHR$ (4)
ITEMS% = 0
NOPAUSE% = 1
HELP$ = SCREEN$
GOSUB 21000
NOPAUSE% = 0
REM
REM ASK FOR OPTION
REM
VTAB 3
POKE 36 , 10

REM DISK "D
REM NUMBER OF OPTIONS
REM INFORM HELP SYSTEM NOT TO PAUSE
REM SEND THE MENU NAME
REM SHOW THE SCREEN USING HELP ROUTINE
REM RESTORE THE FLAG FOR OTHERS

: REM HTAB
PRINT "PLEASE SELECT OPTION"
ROW% = 3
COL% = 35
MASK$ = "##"
ENTRY$ = "0 "
GOSUB 50000

REM ALLOW HELP REQUEST

REM ACCEPT OPTION

CHAPTER 6 A MENU SYSTEM

22135 IF HELP% THEN HELP$ =SCREEN$ + " HELP": GOSUB 21000

22140
22145
22150
22152

22155
22160
22165

GOTO 22000: REM RESPONDED TO HELP REQUEST
X = VAL (ENTRY$) : REM OPTION SELECTED
IF X > ITEMS% THEN GOTO 22000: REM BAD ENTRY
IF LINE$(X) = "END" THEN HOME : END : REM RETURN TO BASIC
IF LINE$(X) = "HELP" THEN HELP% = 1:HELP$ =SCREEN$ + " HELP": GOSUB

21000: GOTO 22000: REM RESPONDED TO HELP REQUEST
PRINT REM CLEAR FOR DISK COMMAND
PRINT DSK$; "RUN ";LINE$(X): REM CHAIN TO THE REQUESTED PROGRAM
REM

22170 REM **********************************
22175
22180
22185
22190
22195
22200
22205
22210
22215
22220
22225

REM
REM ACCEPT A CHAIN NAME
REM
Z =VAL (MID$ (A$,2,2)) : REM GET THE OPTION NUMBER
IF ITEM% < Z THEN ITEM% = Z: REM ADJUST COUNTER
LINE$(Z) = MID$ (A$,4) REM MOVE THE FILE NAME
ROW% = ROW% + 1 : REM INCREMENT COUNTER
RETURN
REM

REM ********************************
REM

163

CHAPTER

REPORT
GENERATION

7

INTRODUCTION

Generating reports is a time-consuming programming task. Creating a
dump of the data is not time-consuming; creating polished and meaningful
reports is what takes the time. This chapter deals with the problem of
report generation. First, we discuss some philosophical aspects of report
creation, making some suggestions. Then we present and explain a pro
gram designed to make the task of actually creating a report easier for
you, the programmer.

165

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

PHILOSOPHICAL CONSIDERATIONS

166

We have all heard it said many times that "data goes into the machine;
information comes out." A report containing raw data is usually of little
value, unless the only purpose of the report is to record all data, as in a
scientific experiment notebook. But a programmer typically is trying to
change data into information, and this process can be broken into some
definite steps of action. We will describe these steps, giving an example
and our recommendations, in the following subsections.

Steps in Report Generation

The first thing to do is to consider what information is to be presented
and what data this information is generated from. How much of the data
is needed to support the information directly? How much can be left out
or output in a separate report (produced only when required) to be used
to verify the accuracy of data entry or collection?

Second, consider who the report is for. Is it for the vice-president of
marketing, the engineering staff, the secretarial pool, or the maintenance
team? Even though they are using the same data/information, these users
may have individual requirements and formats. Also, each group looks at
the data from a different perspective.

Third, consider how the report is going to be used. Several different
presentations of the same data/information may be required.

An Example

To illustrate what we mean, we'll look at a very common example that
most of us come into contact with at one time or another: the quarterly
stockholder's report for a corporation. It comes out in one style and one
format for everyone. Whether or not you understand it, that's how you
get it. It is usually dressed up on slick printing stock with many color
photographs. This trick is known as camouflage-no one reads the num
bers anyway, right? If the data were really important, we suspect, it
would not be presented only in standard CPA jargon and format. How
ever, the information could be presented in several formats within the

CHAPTER 7 REPORT GENERATION

same report so that the stockholders would have a clear understanding of
the company's financial condition and changes without having to learn
how to decipher the data .

In an improved reporting format the standard balance sheet and
profit/loss statement could be supplied in the report for reference and for
those who prefer to read them in their formal format. For the rest of us
the key points could be called out and explained as follows:

1. Our new warehouse in Irvine is now open and has been fully stocked
with 1,000,000 Widgets, raising our inventory value by $Z and the
overhead by $T.

2. A 1000-acre plot surrounding our Silicon Valley plant has been sold,
reducing the value of our physical assets by $X and increasing our
cash holdings by $Y.

3. The 10,000,000 model1963 Widgets stored in Alaska have been do
nated to the local junior college, giving us a tax credit of $C and an
inventory write-off of $D, and freeing 60,000 square feet of needed
warehouse space.

This type of disclosure tells the stockholders what has transpired. In
fact, it may tell them too much. For this reason you must consider the
three points listed previously and zero in on your target reader when you
write your report. The corporations may have decided that they will pre
sent their reports only one way because of the huge and varied audience
they address. You, on the other hand, have a smaller audience for your
reports, and hence you can be more specific in what you report and how
you present it.

Recommendations

So, if designing a good report requires addressing the three points, which
focus on user requirements, it follows that you should talk to the potential
users and survey their needs. Their responses will vary from ''We do not
have any idea" or "We do not care" to very specific and well-thought-out
requirements. Since these reports are for users, their requirements
should receive your thoughtful attention. For those of you unfortunate

167

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

enough to get the "no help" answers, try to consider the user's viewpoint.
Then try to visualize the finished product, and create a sample report.
Once you provide the users with a sample, they unfailingly have no prob
lem coming up with criticisms (they will call them suggestions).

Actually, trying to make all users happy is an impossible task, and
some political skills will be required. For instance, you may want to re
mind (inform, educate) the users that the computer does not do the orga
nization or report preparation. You must design it for the computer, and
the user's cooperation is necessary and appreciated.

SIMPLE REPORT GENERATOR

168

Getting information into the computer is usually easier than getting it out,
because you may take a single page of input data and create twenty
pages of output information. Designing and programming twenty pages of
output is a lot of work. The program presented in this chapter will be
helpful for outputting many types of reports. (However, it may be totally
worthless for others.)

The report generator is based on a concept similar to that used for
the data entry screen. The text file contains both the regular text to
appear on the page and information describing the variable and its posi
tion on the printed page. In cases where data is being extracted from a
file and listed one line at a time down the page, a simple loop may still be
the best way to create the report.

Design

As in the data entry screen, the report generator uses an array of var
iables. This situation is a simple one and will generally only be useful on
pages containing a small amount of information. You can improve on this
technique by adding additional markers to represent special or recurring
variables in your report. For example, you might use markers for general
ledger account numbers or inventory part numbers.

CHAPTER 7 REPORT GEN ERATION

Building the Program

The program presented in this chapter does not use any of the subrou
tines from the previous chapters. The easiest way to enter the program is
to use the screen editor from Chapter 3 (which creates aT, or text, file)
and then EXEC the file into memory, creating an A, or Applesoft, file to be
saved to disk-and be sure to use a new name!

The output to the printer portion of the program may require special
commands to be passed depending on the type of printer used. One of the
most popular makes, the Epson, requires the code CONTROL I 80 N to be
sent to the printer to initialize it before printing more than 40 columns (as
many other printers require). The "80" can be any number between 1
and 255 or the limit of the printer, whichever is smaller. The most com
mon value used is 80. Many special features such as different character
fonts and bold printing are possible. See your printer manual for the spe
cial codes it requires.

Programmer Features

With our program we want the programmer to be able to create and
modify a report layout without having to modify the BASIC program used
to create the report. The text editor from Chapter 3 can be used to create
and edit the report. In the text file describing the report the number of
the array element to be printed is placed between < and > symbols.
For example, < 23 > means "print array element 23 at this location."
Also, the & symbol at the end of the line is used to indicate that two or
more lines are to be concatenated before printing.

There are two possible ways of inserting information into an existing
line of text: expand the line to fit new data or truncate the data to fit
existing space. If the information to be inserted into the line is too long or
too short to fill the space between the < and > symbols, the line is ad
justed so that the data fits exactly the space described.

A simple code is used to tell the report generator which method is de
sired. If a space is included between the symbols, then a short line will be
filled with spaces and not expanded. For example, suppose we wish to in
sert "Marty and Alan" into these lines:

169

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

<1> are two great guys who write strange books .

<1 > are two great guys who write strange books.

<1 > 100 200 3000 100

These lines become

Marty and Alan are two great guys who write strange books .

Marty are two great guys who write strange books.

Marty and Alan 100 200 3000 100

The first example contains no spaces between the < and > sym
bols. Therefore the line is expanded to accept the entire insert without
extra spaces.

The second example has the two < and > symbols, the array ref
erence number (one digit or space), and two spaces, totaling five spaces
for the mask. Therefore, the report generator only accepts the first five
characters of the insert.

The third example has a mask size in excess of the size of the insert.
Thus the report generator prints the entire insert along with the remain
ing spaces to complete the mask.

As these examples show, if you want the entire insert and aren't
sure how long it is going to be, either leave no spaces or far too many.

PROGRAM FEATURES

170

The flowchart for the report generator is shown in Fig. 7.1. After the text
file describing the report page is opened and the length of the file is read,
the file is processed one line at a time. Each line is processed one charac
ter at a time, looking for a < symbol. If the character is not a < , then it
is printed. Once a < is encountered, the array element number is deter
mined and the decision is made about whether or not the line is to be ex
panded. Then the data is printed.

CHAPTER 7 REPORT GENERATION

FIG. 7.1 Flowchart for report generator

No

End of
file?

Open file and get

Yes

No

RETURN

Insert the field
into the line

We have included a couple of other variations in the program, which
is listed at the end of the chapter. First, we have included lines that cause
a single page to be selected from a group of pages (lines 30025 and
30065). If you have only one page, you will not need this option.

The second option allows you to print the report either to the disk or
directly to a printer by setting DEVICE o/o . If DEVICE o/o equals 0, you will

171

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

172

print to the disk; otherwise, the report will be sent to a printer port. Why
would you want to send the report to the disk? Convenience is the main
reason. A report can be created and stored on the disk much faster than
the average printer can print. Therefore, the operator can use the com
puter again sooner, and the report can be printed later , perhaps at a
more convenient time. If a large number of reports are being created and
user input is required in between each report, a lot of time can be wasted
waiting for the printer to finish .

Explanation of Variables

The report subroutine requires two arrays to be dimensioned, PAGE$()
and LINE$(). PAGE$() contains the names of the report pages to be
printed and should be dimensioned to at least the maximum number of re
port definition pages required. LINE$() contains the actual data to be
printed. It must be dimensioned to at least the maximum number of data
points used.

Report Generator Test Program

The report generator can be tested with the following routines:

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

REM TEST ROUTINE FOR DATA PRINT
REM
DEVICE% = 1
DIM LINE$(10)
DIM PAGE$(10)
PAGE$(1) = "CHAP7A RPT "
PAGE$(2) = "CHAP7B RPT "
PAGE% = 1
GOSUB 30000
PRINT
PRINT "DONE"; CHR$ (7)
PRINT
END
REM
REM
REM

REM FOR PRINTER IN SLOT #1

REM NAME OF REPORT
REM YOU PROVIDE THIS PAGE
REM TRY THE FIRST PAGE
REM PRINT A PAGE

REM RING THE BELL

CHAPTER 7 REPORT GENERATION

FIG. 7.2 Sample report

MASK

NAME <1>

STREET <2>

ZIP CODE <3>

AMOUNT <4>

<1> LIVE AT <2> AND OWES & US $ <4>

OUTPUT

NAME JOHN JONES

STREET 1234 FIRST STREET

ZIP CODE 1000

AMOUNT 3000

JOHN JONES LIVES AT 1234 FIRST STREET AND OWES US $ 3000

35000 REM DATA FOR TEST (CHAP7A RPT)
35010 REM
35020 LINE$(1) = "JOHN JONES "
35030 LINE$(2) = "1234 FIRST STREET "
35040 X = 1000
35050 LINE$(3) = STR$ (X)
35060 LINE$(4) = STR$ (X * 3)
35070 RETURN
35080 REM ********************
35090 REM
35100 REM

173

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

The first routine is the calling or "main" program. Lines 150 and 160
name two report pages assigned to the array PAGE$(). The second rou
tine sets up the LINE$() array for printing. In this progtam the values of
the array are assigned directly. In your programs you will usually use
variables.

The first report, CHAP7 A RPT, is shown in Fig. 7.2. The second re
port and the data assignment subroutine (line 35000) are left as exercises
for you to do.

Since there is only one report page, PAGE% on line 170 is set equal
to 1. If you add a second report, this line can be replaced with

170 INPUT "ENTER PAGE NUMBER : "PAGE%

COMPLETE REPORT GENERATOR PROGRAM

Here is the listing for the report generator program:

100 REM TEST ROUTINE FOR DATA PRINT
110 REM
120 DEVICE% = 1 REM FOR PRINTER IN SLOT #1
130 DIM LINE$(10)
140 DIM PAGE$(10)
150 PAGE$ (1) = "CHAP7A RPT" REM NAME OF REPORT
160 PAGE$ (2) = "CHAP7B RPT " REM YOU PROVIDE THIS PAGE
170 PAGE% = 1 REM TRY THE FIRST PAGE
180 GOSUB 30000 REM PRINT A PAGE
190 PRINT
200 PRINT "DONE "; CHR$ (7) REM RING THE BELL
210 PRINT
220 END
230 REM
240 REM
250 REM

30000 REM DATA PRINT SUBROUTINE
30005 REM
30010 REM THIS FILLS IN A DATA PAGE AND SENDS IT TO THE PRINTER OR DISK

174

30015
30020
30025
30030
30035
30040
30045
30050
30055
30060
30065
30070
30075
30080

30085
30090
30095
30100
30105
30110
30115
30120
30125
30130
30135
30140
30145
30150
30155
30160
30165
30170
30175
30180
30185
30190
30195

30200
30205

CHAPTER 7 REPORT GENERATION

REM
REM BE SURE TO ADD SPECIAL PRINTER COMMANDS
SCREEN$ = PAGE$(PAGE%) REM THE PAGE TO FILL
HOME REM INFORM THE USER OF PRINTING
VTAB 10
POKE 36, 10 REM HTAB
PRINT "PROCESSING ";SCREEN$
VTAB 12
POKE 36, 15 REM HTAB
PRINT "PLEASE WAIT"
ON PAGE% GOSUB 35000,35500: REM FILL LINE$ () WITH VALUES
DSK$ = CHR$ (4) REM DISK COMMAND CODE
PRINT DSK$; "OPEN ";SCREEN$: REM OPEN THE PAGE FOR INPUT
IF DEVICE% < > 0 THEN PRINT DSK$; "PR# ";DEVICE%: GOTO 30115: REM

SEND DIRECTLY TO THE PRINTER
REM
REM PRINT IT TO A DISK FILE
REM
PRINT DSK$; "OPEN ";SCREEN$;" REPORT"
PRINT DSK$; "DELETE ";SCREEN$;" REPORT": REM ERASE ANY OLD FILE
PRINT DSK$; "OPEN ";SCREEN$;" REPORT": REM OPEN A CLEAN NEW FILE
PRINT DSK$; "READ ";SCREEN$: REM GET THE NUMBER OF LINES
INPUT ITEMS%
REM
REM
ITEMS% = ITEMS% - 1 : REM DECREMENT COUNTER
IF ITEMS% < 0 THEN GOTO 30475: REM ALL DONE SO EXIT
PRINT DSK$; "READ ";SCREEN$: REM READ THE DATA PAGE
INPUT ENTRY$: REM GET A LINE FROM THE DATA PAGE
IF A$ < > "&" THEN C$ = "": REM CLEAR THE OUTPUT LINE
IF A$ = "&" THEN GOSUB 30240: REM STRIP LEADING SPACES
REM
REM PROCESS ENTRY$ ONE CHAR AT A TIME LOOKING FOR INSERTS
REM
FOR X = 1 TO LEN (ENTRY$) : REM STEP DOWN THE LINE
A$ =MID$ (ENTRY$,X,1) : REM GET ONE CHARACTER
IF A$ = "<" THEN GOSUB 30275: GOTO 30205: REM DO AN INSERTION
IF A$= "&"THEN X= LEN (ENTRY$): GOTO 30205: REM CONTINUATION

SYMBOL
C$ = C$ + A$: REM BUILD THE OUTPUT STRING
NEXT X

175

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

176

30210

30215
30220
30225
30230
30235
30240
30245
30250

30255
30260
30265
30270
30275
30280
30285
30290
30295
30300
30305
30310
30315
30320
30325
30330
30335
30340
30345
30350

30355
30360
30365
30370
30375
30380
30385
30390
30395

IF DEVICE% = O· THEN PRINT DSK$; "WRITE ";SCREEN$;" REPORT": REM
SEND OUTPUT TO DISK

IF A$ < > "&" THEN PRINT C$: REM OUTPUT THE STRING
GOTO 30135
REM *******************************
REM
REM
REM REMOVE THE LEADING SPACES
REM
IF MID$ (ENTRY$,1,1) = " "THEN ENTRY$= MID$ (ENTRY$,2):

GOTO 30250: REM FOUND ONE SO REMOVE IT
RETURN
REM *****************************
REM
REM
REM INSERT A FIELD INTO THE LINE
REM
REM TWO MODES:
REM 1) INSERT AND CONCATENATE
REM 2) INSERT BUT DO NOT CONCATENATE
REM MODE 1 IS USED WHEN NO SPACES EXIST BETWEEN <> SYMBOLS
REM MODE 2 IS USED IF A SPACE EXISTS BETWEEN <> SYMBOLS
REM
REM
REM
REM
REM FIRST REMOVE THE <> SYMBOLS
REM
y = 0 : REM DEFAULT TO MODE 1
X = X + 1
IF X >LEN (ENTRY$) THEN A$ = "": RETURN : REM

ONLY ONE SYMBOL SO ERROR
B$ = MID$ (ENTRY$,X,1) : REM GET ONE CHARACTER
A$ = A$ + B$
IF B$ < > ">" THEN GOTO 30345: REM NOT DONE SO GET ANOTHER CHARACTER
REM LOOK FOR A SPACE TO SET MODE
FOR Z = 1 TO LEN (A$)
IF A$ = " " THEN Y = Z:Z = LEN (A$)
NEXT Z
IF Y = 0 THEN Z =VAL (MID$ (A$,2, LEN (A$) - 1))
IF Y < > 0 THEN Z =VAL (MID$ (A$,2,Y - 1)) : REM GET THE FIELD NUMBER

30400
30405
30410
30415
30420
30425
30430
30435
30440
30445
30450
30455
30460
30465
30470
30475
30480
30485
30490
30495

30500
30505
30510
30515
30520

35000
35010
35020
35030
35040
35050
35060
35070
35080
35090
35100

CHAPTER 7 REPORT GENERATION

C$ = C$ + LINE$(2) : REM ADD THE FIELD
IF Y = 0 THEN A$ = ""· RETURN REM MODE 1 SO ALL DONE
REM
REM MODE 2 SELECTED SO WE MUST FILL WITH SPACES
REM
IF LEN (LINE$(2) = LEN (A$) THEN RETURN : REM NOTHING TO CLEAR
Y = LEN (A$) -LEN (LINE$(2))
FOR 2 = 1 TO Y

C$ = C$ + " " : REM ADD THE SPACES
NEXT 2
A$ = nn

RETURN : REM ALL DONE
REM ********************************
REM
REM
REM CLOSE EVERYTHING AND RETURN
REM
PRINT DSK$; "CLOSE ";SCREEN$
IF DEVICE% = 0 THEN PRINT DSK$; "CLOSE "; SCREEN$;" REPORT"
IF DEVICE% < > 0 THEN PRINT DSK$; "PR#O": REM RETURN TO

SCREEN OUTPUT
HOME
RETURN

: REM CLEAR THE SCREEN

REM ************************************
REM
REM

REM DATA FOR TEST (CHAP7A RPT)
REM
LINE$(1)
LINE$(2)
X = 1000

"JOHN JONES "
"1234 FIRST STREET "

LINE$(3) = STR$ (X)
LINE$(4) = STR$ (X * 3)
RETURN
REM ********************
REM
REM

177

CHAPTER

PERSONAL
CALENDAR:

A SAMPLE PROGRAM

8

INTRODUCTION

Thus far, several flexible subroutines have been developed. This chapter
will illustrate how easy it is to use these subroutines to create larger pro
grams. The sample program developed in this chapter will maintain a
personal appointment calendar. This program is a moderate-sized pro
gram, but it is easily and quickly constructed by using the building blocks
developed in the previous chapters. We will use the same methods to
create the personal calendar program that we used in the previous chap
ters.

In addition to using the routines developed in the previous chapters,
the personal calendar program introduces a few new routines and con
cepts. A subroutine is used to calculate the number of days a given date is

179

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

180

from the beginning of the year. Another subroutine uses a random-access
file to store the appointment information.

In the following subsections we design the input screens and the re
ports. Then in succeeding sections we create the various program mod
ules necessary to connect everything together.

Building the Program

The calendar program builds on the routines that have been developed in
previous chapters. The routines of this chapter can be combined with
those of Chapters 2, 4, 5, 6, and 7 by the EXEC technique described in
Chapter 3.

Here is the method to use to build the calendar program:

1. Start with a fresh, initialized disk for the program of this chapter .
2. Transfer copies of the programs developed in Chapters 2, 4 , 5, 6, and

7 to your new disk (A, or Applesoft, copies), using DOS. Merge them
and save the results under the name CAL.A.

3. Using the screen editor from Chapter 3, type in the program lines
presented in this chapter and save them (these lines will 'be T, or
text, files) under the name CAL.T.

4. Using DOS, load CAL.A into memory and EXEC the file of this chap
ter (CAL.T), or as much of it as you have entered so far, into memory.
Now the two programs are merged and can be saved again on disk as
Applesoft files, ready to run the next time you load them.

5. Repeat steps 3 and 4 each time you enter more of the program from
this chapter.

Design

The personal calendar program displays, accepts, and prints hourly ap
pointment information. The features of this program can best be seen by
looking at the various input screens and reports.

The menu, shown in Fig. 8.1 , lists the available options: (1) review, (2)
print, (3) help, and (4) exit. If options 1 and 2 are selected, then the pro-

CHAPTER 8 PERSONAL CALENDAR: A SAMPLE PROGRAM

FIG. 8.1 Appointment calendar menu

AAPPOINTMENT CALENDAR MENUA

1. REVIEW DAY 'S APPOINTMENTS

2. PRINT ONE DAY' S APPOINTMENTS

J. PRINT GROUP OF DAYS

AO . EXIT TO BASICA

gram will ask for the date to be reviewed or printed, as shown in Fig. 8.2.
If option 3 is selected, then the range of dates of interest is entered, as il
lustrated in Fig. 8.3.

The appointment data entry screen is shown in Fig. 8.4. It is designed
to accept hourly appointments between 8 A.M. and 5 P.M. The report gen
erator template, shown in Fig. 8.5, is very similar to the data entry
screen.

Since any date may be edited, random-access files are used to store
the data on the disk.

FIG. 8.2 Single date entry screen

AAPPOINTMENT DATEA

1. MONTH OF APPOINTMENT <##>

2. DAY OF MONTH <##>

181

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

FIG. 8.3 Data entry screen for group of dates

AAPPOINTMENT CALENDARA

1. BEGINNING MONTH <##>

2. DAY OF BEGINNING MONTH <##>

3. LAST MONTH <##>

4. DAY OF LAST MONTH <##>

FIG. 8.4 Data entry screen fo r appointments

AAPPOINTMENT CALENDARA

1. 8 AM <AAAAAAAAAAAAAAAAAAAAAAAAA>

2 . 9 AM <AAAAAAAAAAAAAAAAAAAAAAAAA>

3. 10 AM <AAAAAAAAAAAAAAAAAAAAAAAAA>

4. 11 AM <AAAAAAAAAAAAAAAAAAAAAAAAA>

5. 12 PM <AAAAAAAAAAAAAAAAAAAAAAAAA>

6. 1 PM <AAAAAAAAAAAAAAAAAAAAAAAAA>

7. 2 PM <AAAAAAAAAAAAAAAAAAAAAAAAA>

8. 3 PM <AAAAAAAAAAAAAAAAAAAAAAAAA>

9. 4 PM <AAAAAAAAAAAAAAAAAAAAAAAAA>

10. 5 PM <AAAAAAAAAAAAAAAAAAAAAAAAA>

182

CHAPTER 8 PERSONAL CALENDAR: A SAMPLE PROGRAM

FIG. 8.5 Appointment report generator template

AAPPOINTMENT CALENDARA

8 AM <1>

9 AM <2>

10 AM <J>

11 AM <4>

12 PM <5>

1 PM <6>

2 PM <7>

3 PM <8>

4 PM <9>

5 PM <10>

BASIC CALENDAR PROGRAM

The calendar program, flowcharted in Fig. 8.6, uses the following subrou
tines:

• Menu,
• Accept single date,

• Load data from disk,

• Edit/review appointment data,

• Write data to disk,

• Print data,
• User help text.

183

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

184

FIG. 8.6

Option 1 :

Edit/review Print date Print group
of dates

Option 4:
HELP

Option 2: ! Option J :

.-----~------.--- ~----,-----_.~----,

Accept date
from user

Wri te to
disk

RETURN

Accept range
of dates

Done?

Call help
system

Most of these routines are based on subroutines developed in the
previous chapters.

In the following subsections the personal calendar program will be
created one menu option at a time, beginning with the menu itself. Before
you begin editing the program, however, you should merge the subrou
tines from Chapters 2, 4, 5, 6, and 7.

CHAPTER 8 PERSONAL CALENDAR: A SAMPLE PROGRAM

Menu

The menu uses the menu system from Chapter 6 to display the options,
accept an option, and branch to the requested routine. This program
could be considered the master or main program because it calls the
other routines.

100 REM
110 REM CHAPTER 8 PERSONAL CALENDAR
120 REM
130 REM
140 REM
150 REM THIS MAINTAINS AN ANNUAL PERSONAL CALENDAR . IT IS
160 REM AN EXAMPLE OF HOW A LARGE PROGRAM CAN BE BUILT
170 REM FROM THE SUBROUTINES DEVELOPED THROUGHOUT THE BOOK .
180 REM
190 REM
200 LAST% = 10 REM NUMBER OF FIELDS ON THE DATA ENTRY SCREEN
210 DIM LINE$(LAST%): REM THESE ARE FOR DATA ENTRY ROUTINE
220 DIM SROW%(LAST%)
230 DIM SCOL%(LAST%)
240 DIM SMASK%(LAST%)
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400

REM
REM CALL THE MENU ROUTINE
REM
DSK$ = CHR$(4) : REM AD

DEVICE% = 1 : REM PRINTER SLOT NUMBER
PRINT DSK$; "OPEN CALENDAR,L280" REM OPEN THE CALENDAR FILE
PRINT
SCREEN$ = "CHAPS MENU " REM NAME OF MENU SCREEN
REM THE MENU ROUTINE WILL BRANCH TO THE APPROPRIATE ROUTINE
REM AND RETURN HERE OR IT WILL END
REM
GOSUB 22000
GOTO 320
REM
REM
REM

REM THE MENU ROUTINE
REM TRY AGAIN

185

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

186

In addition to using the above program, you must change some lines
in the original menu subroutine. Line 22145 must be deleted. Lines 22150
and 22165 must be changed to

22150 IF X = 0 THEN HOME END REM RETURN TO BASIC
22165 RETURN

Also, instead of chaining to another program, you change line 22160 to a
branch,

22160 ON X GOSUB 1000,2000,3000,4000

where the subroutines perform as follows:

1000 edit/reviews a day's appointments,
2000 prints a single day's appointments,

3000 prints a group of dates,

4000 provides user help text.

The help text is shown later in this chapter (in the "Option 4: Help"
subsection) and is saved on the disk as CHAP8 MENU HELP.

TEST POINT

When you execute the program, it should display the menu of Fig. 8.1.
The only option, (0), should be working. Verify that it does clear the
screen, and stop the program.

Option 1: Edit/Review a Day's Appointments

Option 1 combines two features: editing and reviewing the data. In some
programs you may want to separate these features. For example, you
may have several people using a program and you may not want all of
them to be able to edit the data. If you are not concerned about keeping

CHAPTER 8 PERSONAL CALENDAR: A SAMPLE PROGRAM

people from editing, then we feel it is more convenient to keep both fea
tures combined. Since this program is a personal calendar program, any
one who has access to the calendar can change it.

The program for option 1, shown below, is quite simple:

1000 REM OPTION 1 EDIT/REVIEW ONE DATE
1010 REM
1020 GOSUB 7000 REM ACCEPT THE DATE
1030 GOSUB 8000 REM LOAD FROM DISK
1040 SCREEN$(1) = "CHAP8 ENTRY" REM DATA SCREEN NAME
1050 PAGE% = 1 REM USE THE FIRST PAGE
1060 GOSUB 20000 REM EDIT THE DATA
1070 GOSUB 9000 REM WRITE TO DISK
1080 RETURN
1090 REM
1100 REM ******************************
1110 REM

Subroutines 7000, 8000, and 9000 are described in succeeding sections.
Subroutine 20000 is the data entry system from Chapter 5.

Additionally, a data entry screen, shown in Fig. 8.4, and the help
text, Fig. 8. 7, must be entered.

Accepting a Date

Two functions are performed by subroutine 7000: It accepts a month and
day from the user, and then it calculates the number of days this date is
from the beginning of the year.

The number of days between any two dates can be found by calculat
ing a value for both dates, using the following formulas, and then sub
tracting these values (subroutine 7500). The formula for dates in January
and February is

value = 365(year) + day + 31(month - 1) + INT[(year - 1)/4]
- INT(.75{INT[(year- 1)/100] + 1}).

187

BJl.SIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

188

For dates between March and December the formula is

value = 365(year) + day + 31(month - 1) + INT[(year - 1)/4]
- INT(.75 {1NT([year- 1)/100] + 1})- INT[.4(month) + 2.3].

The terms in the above equations have the following meanings:

• Year is the calendar year (e.g., 1983).

• Month is the number of the month (e.g. , March is 3).
• Day is the number of the day's date (e.g., 31).
• INT is the BASIC integer command.

INT The INT(N) command returns the integer (whole number) part of
the argument N.

EXAMPLE

100 X = 100 .25
110 PRINT "INTEGER ";INT(X)

When this program is executed, the computer will print

INTEGER 100

The program listing for the subroutine that accepts a date is as fol
lows:

7000 REM
7010 REM ACCEPT A DATE
7020 REM
7030 REM
7040 PAGE% = 2 REM ASSIGN TO DATA PAGE 2
7050 SCREEN$(PAGE%) "CHAPS DATE ": REM DATA SCREEN NAME
7060 GOSUB 20000 REM DATA ENTRY ROUTINE
7070 GOSUB 7500 REM CALCULATE DAY NUMBER
7080 RETURN
7090 REM
7100 REM
7110 REM
7500 REM CALCULATE DAY NUMBER

CHAPTER 8 PERSONAL CALENDAR: A SAMPLE PROGRAM

7510 YY = 1983 : REM CURRENT YEAR
7520 IF (MM = 0) OR (DD = 0) THEN DAY = 1: RETURN : REM ERROR SO FORCE 1
7530 IF (MM > 12) OR (DD > 31) THEN DAY = 1: RETURN : REM BAD DATE ENTERED
7540 JAN1 = 365 * YY + INT((YY- 1) I 4) - INT(.75 * (INT((YY- 1) I 100)

+ 1)) : REM VALUE FOR JAN 1, YY
7550 IF MM > 3 THEN GOTO 7590 : REM USE SECOND EQUATION
7560 DAY= 365 * YY + DD + 31 * (MM- 1) + INT ((YY- 1) I 4) - INT

(.75 * (INT ((YY- 1 I 100) + 1)) - JAN1: REM DAYS FROM JAN1
7570 RETURN
7580 REM
7590 REM NOW FOR MARCH THRU DECEMBER
7600 REM
7610 DAY= 365 * YY + DD + 31 * (MM- 1) + INT (YY I 4) - INT (.75 *

INT (YY I 100) + 1)) - INT (.4 * MM + 2.3) - JAN1: REM FOR
MARCH THRU DECEMBER

7620 RETURN
7630 REM
7640 REM ***************
7650 REM

The data entry routine of Chapter 5 (line 7060, GOSUB 20000) calls
routine 26000 (shown below) to fill the LINE$() array with the original
or default values and routine 26500 (below) to move LINE$() values into
the regular variable names. There are no default values in this routine, so
routine 26000 merely clears the LINE$() elements used. We could have
put these routines closer (with lower line numbers) to the front of the pro
gram; but since the original program used these addresses, we decided to
keep them as they were.

Subroutine 26000 is as follows:

26000 REM SINGLE DATE PAGE
26010 REM
26020 LINE$(1) ""
26030 LINE$(2) ""
26040 RETURN
26050 REM
26060 REM ***************
26070 REM
26500 REM RESTORE SINGLE DATE DATA
26510 REM

189

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

190

26520
26530
26540
26550
26560
26570

MM =VAL (LI NE$ (1))
DD = VAL (L:NE$ (2))
RETURN
REM
REM ***************
REM

TEST POINT

REM MONTH
REM DAY

Execute the program and verify that option 1 allows you to enter a month
and day. While in the data entry screen program, test the help feature
and the various editing commands available.

Random-Access Files

To edit any date 's data, we must use random-access disk files. A random
access file, as the name suggests, is a data file that can be read from or
written to in any order, i.e. , randomly. Up to this point all the files used
were sequential or text files. A sequential file is read in exactly the same
order it is written in. (Applesoft has a command called POSITION that
allows you to randomly access sequential files. It is difficult to use, how
ever, and we recommend that if you need to access files randomly, then
you use random-access files.)

Random-access files require a little more programming and book
keeping than sequential files require , because the computer stores ran
dom files slightly differently than it stores sequential files. The following
analogy will help explain the difference. A sequential file can be com
pared with a stack of papers. Such a stack is very compact, but it is dif
ficult to insert or remove papers from the stack unless they happen to be
next to each other in the stack. In contrast, a random-access file can be
thought of as a stack of identical shoe boxes numbered sequentially,
1,2,3, Each box contains pieces of paper. Some of the boxes a re full ,
some partially full, and some empty. When the contents of a box a re to be
read or changed, you tell your assistant to go get box number XX. The
shoe boxes take up more room than the stack of papers, but with the
boxes you can generally get to a particular set of papers faster .

CHAPTER 8 PERSONAL CALENDAR: A SAMPLE PROGRAM

In the computer, sequential files are written to the disk with the text
packed tightly together (the stacks of paper]. Random files are written in
pieces called records (the shoe boxes]; all the records in a file use exactly
the same amount of space. When a random file is opened for processing,
the computer is told how large the records are. The computer must also
be told which record is to be accessed. The length of the data stored in a
record must be less than or equal to the record size. Since, in general, the
data is smaller than the record size, some space is wasted. However,
since the computer can easily calculate exactly where the beginning of
each record is, it can quickly read or write the data.

In the personal calendar program we wish to store ten lines of data
with a maximum length of 25 characters each. In determining the record
size, we must count the carriage return at the end of each line. Also,
since we write text between double quotation marks, an additional two
bytes are needed for each line. The record size is therefore

10(25 + 1 + 2) = 280 bytes.

The records are consecutively numbered, beginning with 1. In our pro
gram January 1 is record 1, January 2 is record 2, etc.

Random-access files should be initialized before they are used. A file
is initialized by writing blank or null lines into every record. The follow
ing program initializes a one-week calendar:

100 REM CHAPTER 8 CALENDAR INITIALIZATION ROUTI NE
110 REM
120 REM CREATES AND CLEARS CALENDAR FILE
130 REM
140 HOME
150 PRINT "CREATING CALENDAR FILE"
160 NULL$ = CHR$(34) + CHR$(34) :REM TWO DOUB LE QUOTES MAKES NULL STRING
170 DAYS = 7 : REM EXAMPLE FOR ONE WEEK ONLY
180 DSK$ = CHR$(4) : REM AD
190 PRINT DSK$; "OPEN CALENDAR,L280": REM OPEN BYTE RECORD SIZE = 280
200 FOR X = 1 TO DAYS
210 PRINT DSK$; "WRITE CALENDAR, R"; X
220 FOR Y = 1 TO 10

191

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

192

230 PRINT NULL$
240 NEXT Y

:REM WRITE OUT NULL STRING

250 NEXT X
260 PRINT DSK$; "CLOSE CALENDAR"
270 END

Adjust the number of days in the routine above to the size of
calendar you want. But note that a full, one-year calendar will fill most of
a blank disk. So do not try to put a calendar on a disk already containing
other files.

The following subroutines will read and write the random files. Note
that when a line is written, it is surrounded by two quotation marks,
CHR$(34). This feature is necessary if commas are to be used in the text.
In Applesoft BASIC, fields can be on the same line if terminated with a
comma. Therefore commas can be used in the text only if the text is writ
ten between quotation marks.

The read and write subroutines are as follows:

8000 REM LOAD A DATE 'S DATA
8010 REM
8020
8030
8040
8050
8060
8070
8080
8090
8100
8110
9000
9010
9020
9030
9040
9050
9060
9070

PRINT : REM JUST TO MAKE SURE DISK COMMANDS WORK
PRINT DSK$; "READ CALENDAR , R"; DAY
FOR X = 1 TO 10
INPUT LINE$(X)
NEXT
PRINT DSK$
RETURN
REM
REM **************
REM

REM TURN DISK 10 OFF

REM WRITE DATE ' S DATA TO DISK
REM
PRINT : REM MAKE SURE DISK COMMANDS WORK
PRINT DSK$; "WRITE CALENDAR, R"; DAY : REM SET RECORD NUMBER
FOR X = 1 TO 10
PRINT CHR$(34) ; LINE$(X) ; CHR$(34) : REM SAVE WITH QUOTE MARKS
NEXT
PRINT DSK$: REM TURN DISK 10 OFF

CHAPTER 8 PERSONAL CALENDAR: A SAMPLE PROGRAM

9080 RETURN
9090 REM
9100 REM **************
9110 REM

Calendar Help Screens

The following illustrations show the four help screens that will be dis
played. Please enter them, using the editor, as four separate files with the
names specified.

1. File 'CHAPS MENU HELP '

AAPPOINTMENT MENU HELPA

THIS PROGRAM MAINTAINS A PERSONAL
APPOINTMENT CALENDAR. YOU CAN EDIT ,
REVIEW OR PRINT ANY DAY 'S APPOINTMENTS .

AOPTION l A ALLOWS YOU TO EDIT OR
REVIEW ANY SINGLE DAY 'S SCHEDULE .

AOPTION 2A PRINTS A SINGLE DAY'S
APPOINTMENTS .

AQPTION JA PRINTS SEVERAL DAYS
APPOINTMENTS .

AOPTION 4A DISPLAYS THIS HELP PAGE .

AOPTION QA STOPS THE PROGRAM AND
RETURNS TO BASIC .

ASELECT OPTION, ENTER ITS NUMBER AND
STRIKE RETURNA

193

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

194

2 . File ' CHAPS DATE HELP'

AAPPOINTMENT DATE HELPA

PLEASE ENTER THE MONTH AND DAY YOU
WISH TO EDIT OR REVIEW . IF YOU ENTER
AN IMPROPER DATE THE COMPUTER WILL
ASSUME THAT YOU WISH TO EDIT JANUARY 1.

J . File 'CHAPS 2DAYS HELP'

APRINTING GROUP OF DATESA

THIS SECTION PRINTS A GROUP OF DAYS
APPOINTMENTS . ENTER THE MONTH AND DAY
YOU WISH TO BEGIN PRINTING AND THE
LAST MONTH AND DAY YOU WISH TO PRINT .

4. File 'CHAPS ENTRY HELP'
•

APERSONAL CALENDARA

THIS IS A PERSONAL CALENDAR PROGRAM .
YOU MAY ENTER TEXT ON ANY LINE . TO
EXIT STEP THROUGH THE LINES, USING
THE RETURN KEY , UNTIL THE CHANGES LINE
AND ENTER 0 (CR).

Calendar Data Entry Subroutine

The data entry system needs the name of the entry screen and two sub
routines to move the data between the regular variable names and
LINE$(). Since we are not manipulating the data other than with the

CHAPTER 8 PERSONAL CALENDAR: A SAMPLE PROGRAM

data entry system, we are taking a shortcut here and not assigning regu
lar variable names. Therefore the two subroutines become RETURNs, as
follows:

25000 REM SETUP FOR PAGE 1
25010 RETURN REM NONE NEEDED
25020 REM
25030 REM **************
25040 REM
25500 REM RESTORE FOR PAGE 1
25510 RETURN REM NONE NEEDED
25520 REM
25530 REM **************
25540 REM

TEST POINT

In the menu, select option 1. In the date sceen, enter a date in January
and verify that appointment information can be entered and edited. After
the appointments have been edited, the program returns to the menu. Re
peat this test now to verify that the data has been properly written to the
disk and read from the disk. Finally, repeat the test again, and enter "Q
and verify that the help routine is working.

Option 2: Print a Day's Appointments

Option 2 uses some of the previous routines plus the report generator of
Chapter 7. The report generator needs a report template name and a rou
tine to move the data between the regular variable names and the
LINE$() array. As in the data entry screen, since we are not manipulat
ing the data, we can leave it in the LINE$() array. We take another
shortcut here and use the data entry routine 25000. Hence the report
generator program is quite small:

2000 REM PRINT A SINGLE DAY
2010
2020
2030

REM
GOSUB 7000
GOSUB 8000

REM ACCEPT DATE
REM LOAD FROM DISK

195

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

196

2040 PAGE% = 1
2050 PAGE$(1) = "CHAP8 RPT " REM NAME OF REPORT
2060 GOSUB 30000 REM REPORT GENERATOR
2070 RETURN
2080 REM
2090 REM **************
2100 REM

Line 30065 of the report generator becomes

30065 ON PAGE% GOSUB 25000 : REM FILL THE LINE$() ARRAY

And line 30487 below is added to force the printer to eject the page (form
feed) after each day:

30487 PRINT CHR$(12) : REM PRINT A FORM FEED

Your printer's slot number is entered in the following line 290. Verify that
the line is correct.

290 DEVICE% = 1 REM PRINTER SLOT NUMBER

TEST POINT

Run the program and select option 2. If everything goes according to plan,
the report should appear on your printer, and the program should return
to the menu.

Option 3: Print a Group of Dates

Option 3 is only a little more complicated than option 2. In option 3 sub
routine 10000 (shown below) is called to accept two dates instead of one,
and then the program loops until all the days have been printed.

Here is option 3:

3000 REM PRINT SEVERAL DAYS APPOINTMENTS
3010 REM

CHAPTER 8 PERSONAL CALENDAR: A SAMPLE PROGRAM

GOSUB 10000
PAGE% = 1
PAGE$(1) = "CHAP8 RPT "
FOR DAY = D1 TO D2
PRINT

REM GET TWO DATES
REM FOR REPORT GENERATOR

3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140

PRINT DSK$; "READ CALENDAR,R "; DAY : REM READ IN THE DATA
GOSUB 8000 REM LOAD THE DATA
GOSUB 30000
NEXT DAY
RETURN
REM
REM **************
REM

REM ACCEPT TWO DATES
REM

: REM PRINT A REPORT

: REM FOR DATA ENTRY ROUTINE

10000
10010
10020
10030
10040
10050
10060
10070
10080
10090
10100

PAGE% = 3
SCREEN$(PAGE%)
GOSUB 20000

"CHAP8 2DAYS"

MM =VAL (LINE$(1))
DD =VAL (LINE$(2))
GOSUB 7500
D1 = DAY
MM =VAL (LINE$(3))
DD =VAL (LINE$(4))

10110 GOSUB 7500
10120 D2 = DAY
10130 RETURN
10140 REM
10150 REM **************
10160 REM

TEST POINT

: REM DATA ENTRY ROUTINE

REM CALCULATE DAY NUMBER

REM SECOND DAY

Execute and select option 3. Enter two dates about three days apart and
verify that three reports are printed. Repeat and test the help system.
You may wish to enter several days' appointments to make sure that the
correct data is printed.

197

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

Option 4: Help

Option 4 uses the help subsystem and is a short routine. Enter the help
text and the following routine:

4000 REM
4010 REM MENU HELP OPTION
4020 REM
4030 HELP$ = "CHAPS MENU HELP" REM HELP SCREEN NAME
4040 GOSUB 21000 REM HELP SUBROUTINE
4050 RETURN REM ALL DONE
4060 REM
4070 REM
4080 REM

TEST POINT

Select option 4 from the menu and the menu help text should appear.

Summary

You now have a working personal calendar program built from reusable
subroutines. The number of new program lines required to create this
program is small compared with its overall size. We hope this example ,
has shown you the value of a library of subroutines.

USER INSTRUCTIONS

198

The calendar program maintains a daily personal calendar. You can edit,
review, or print any day's or group of days' schedules. Help is available
with every screen.

CHAPTER 8 PERSONAL CALENDAR: A SAMPLE PROGRAM

This menu is the first screen seen:

APPOI NTMENT CALENDAR MENU

1. REVIEW DAY 'S APPOINTMENTS

2. PRINT ONE DAY 'S APPOINTMENTS

]. PRINT GROUP OF DAYS

4. HELP

0. EXIT TO BASIC

The following subsections contain the user instructions for the per
sonal calendar system. Please add these instructions to your user's man
ual.

Option 1: Edit/Review a Day's Appointments

Option 1 allows you to edit or review any day's appointments. After the
option is selected, you will be asked to enter a month and a day. The
appointments for this day will be displayed and can be edited if desired.

Option 2: Print a Day's Appointments

Option 2 asks for the month and day to be printed. Make sure that the
printer is on line.

Option 3: Print a Group of Dates

In option 3 you will be asked to enter the beginning month and day and
the last month and day to be printed. These appointments will be printed
one day to a page. Make sure that the printer is on line.

199

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

Option 4: Help

When you select option 4, a brief description of the various options is pre
sented.

COMPLETE PERSONAL CALENDAR PROGRAM

200

Here is the listing for the complete personal calendar program:

100 REM
110 REM CHAPTER 8 PERSONAL CALENDAR
120 REM
130 REM
140 REM
150 REM THIS MAINTAINS AN ANNUAL PERSONAL CALENDAR. IT IS
160 REM AN EXAMPLE OF HOW A LARGE PROGRAM CAN BE BUILT
170 REM FROM THE SUBROUTINES DEVELOPED THROUGHOUT THE BOOK .
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370

REM
REM
LAST% = 10
DIM LINE$(LAST%)
DIM SROW%(LAST%)
DIM SCOL%(LAST%)

REM NUMBER OF FIELDS ON THE DATA ENTRY SCREEN
REM THESE ARE FOR DATA ENTRY ROUTINE

DIM SMASK%(LAST%)
REM
REM CALL THE MENU ROUTINE
REM
DSK$ = CHR$(4)
DEVICE% = 1
PRINT DSK$; "OPEN CALENDAR,L280 "
PRINT

REM AD
REM PRINTER SLOT NUMBER

REM OPEN THE CALENDAR FILE

SCREEN$ = "CHAPS MENU " REM NAME OF MENU SCREEN
REM THE MENU ROUTINE WILL BRANCH TO THE APPROPRIATE ROUTINE
REM AND RETURN HERE OR IT WILL END
REM
GOSUB 22000
GOTO 320

REM THE MENU ROUTINE
REM TRY AGAIN

CHAPTER 8 PERSONAL CALENDAR: A SAMPLE PROGRAM

REM
REM
REM

380
390
400
1000
1010
1020
1030
1040
1050
1060
1070
1080

REM OPTION 1 EDIT/REVIEW ONE DATE
REM
GOSUB 7000
GOSUB 8000
SCREEN$(1) "CHAP8 ENTRY"
PAGE% = 1
GOSUB 20000
GOSUB 9000
RETURN

1090 REM
1100 REM **************
1110 REM
2000 REM PRINT A SINGLE DAY
2010 REM
2020
2030
2040
2050
2060

GOSUB 7000
GOSUB 8000
PAGE% = 1
PAGE$(1) = "CHAP8 RPT"
GOSUB 30000

2070 RETURN
2080 REM
2090 REM **************
2100 REM

REM ACCEPT THE DATE
REM LOAD FROM DISK
REM DATA SCREEN NAME
REM USE THE FIRST PAGE
REM EDIT THE DATA
REM WRITE TO DISK

REM ACCEPT DATE
REM LOAD FROM DISK

REM NAME OF REPORT
REM REPORT GENERATOR

3000 REM PRINT SEVERAL DAYS APPOINTMENTS
3010
3020
3030
3040

REM
GOSUB 10000
PAGE% = 1
PAGE$(1) = "CHAP8 RPT"

3050 FOR DAY = D1 TO D2
3060 PRINT

REM GET TWO DATES
REM FOR REPORT GENERATOR

3070 PRINT DSK$; "READ CALENDAR,R";DAY: REM READ IN THE DATA
3080 GOSUB 8000 REM LOAD THE DATA
3090 GOSUB 30000 : REM PRINT A REPORT
3100 NEXT DAY
3110 RETURN
3120 REM
3130 REM **************

201

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

202

3140
4000
4010
4020
4030
4040
4050
4060

REM
REM
REM MENU HELP OPTION
REM
HELP$ = "CHAPS MENU HELP "
GOSUB 21000
RETURN
REM

4070 REM
40SO REM
7000 REM
7010 REM ACCEPT A DATE

REM
REM

REM HELP SCREEN NAME
REM HELP SUBROUTINE
REM ALL DONE

7020
7030
7040
7050
7060
7070
70SO
7090
7100

PAGE% = 2
SCREEN$(PAGE%)
GOSUB 20000
GOSUB 7500
RETURN

REM ASSIGN TO DATA PAGE 2
"CHAPS DATE" REM DATA SCREEN NAME

REM
REM

7110 REM
7500 REM CALCULATE DAY NUMBER

REM DATA ENTRY ROUTINE
REM CALCULATE DAY NUMBER

7510 YY = 19S3 : REM CURRENT YEAR
7520 IF(MM = 0) OR (DD = 0) THEN DAY = 1:RETURN: REM ERROR SO FORCE 1
7530 IF (MM > 12) OR (DD > 31) THEN DAY = 1: RETURN : REM BAD DATE ENTERED
7540 JAN1 = 365 * YY + INT((YY- 1) I 4) - INT(.75 * (INT((YY- 1) I 100)

+ 1)) : REM VALUE FOR JAN 1, YY
7550 IF MM > 3 THEN GOTO 7590 : REM USE SECOND EQUATION
7560 DAY= 365 * YY + DD + 31 * (MM- 1) + INT ((YY- 1) I 4) - INT

(. 75 * (INT((YY - 1) I 100) + 1)) - JAN1 : REM DAYS FROM JAN1
7570 RETURN
75SO REM
7590 REM NOW FOR MARCH THRU DECEMBER
7600 REM
7610 DAY= 365 * YY + DD + 31 * (MM- 1) + INT (YY I 4) - INT (. 75 *

(INT(YY I 100) + 1)) - INT (.4 * MM + 2.3) - JAN1: REM FOR
MARCH THRU DECEMBER

7620 RETURN
7630 REM

CHAPTER 8 PERSONAL CALENDAR: A SAMPLE PROGRAM

7640 REM **************
7650 REM
8000 REM LOAD A DATE'S DATA
8010 REM
8020 PRINT : REM JUST TO MAKE SURE DISK COMMANDS WORK
8030 PRINT DSK$; "READ CALENDAR ,R";DAY
8040 FOR X = 1 TO 10
8050 INPUT LINE$(X)
8060
8070
8080
8090

NEXT
PRINT DSK$
RETURN
REM

8100 REM **************
REM
REM WRITE DATE 'S DATA TO DISK
REM

REM TURN DISK IO OFF

8110
9000
9010
9020
9030
9040
9050
9060
9070
9080
9090

PRINT : REM MAKE SURE DISK COMMANDS WORK
PRINT DSK$; "WRITE CALENDAR,R" ; DAY : REM SET RECORD NUMBER
FOR X = 1 TO 10
PRINT CHR$(34);LINE$(X); CHR$(34): REM SAVE WITH QUOTE MARKS
NEXT
PRINT DSK$
RETURN
REM

9100 REM **************
9110 REM

REM ACCEPT TWO DATES
REM
PAGE% = 3

: REM TURN DISK IO OFF

REM FOR DATA ENTRY ROUTINE

10000
10010
10020
10030
10040
10050
10060
10070

SCREEN$(PAGE%) "CHAP8 2DAYS "
GOSUB 20000
MM =VAL (LINE$(1))
DD =VAL (LINE$(2))
GOSUB 7500

10080 D1 = DAY
10090 MM =VAL (LINE$(3))
10100 DD = VAL (LINE$(4))
10110 GOSUB 7500
10120 D2 = DAY
10130 RETURN

REM DATA ENTRY ROUTINE

REM CALCULATE DAY NUMBER

REM SECOND DAY

203

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

204

10140 REM
10150 REM **************
10160 REM

20000 REM DATA ENTRY * SCREEN PROCESSOR
20005 REM
20010 REM
20015 REM
20020 REM DISPLAYS SCREEN, LOADS MASK DATA
20025 REM DISPLAYS DEFAULT VALUES
20030 REM EDITS AND SAVES VALUES
20035 REM
20040 REM VARIABLES USED:
20045 REM LINE$() HOLDS EDIT DATA
20050 REM ITEM% NUMBER TO EDIT
20055 REM PAGE% PAGE TO EDIT
20060 REM SROW%() FIELD ROW NUMBER
20065 REM SCOL%() FIELD COL NUMBER
20070 REM SMASK$() FIELD MASK$
20075 REM SCREEN$() NAME OF SCREEN
20080 REM LINE% CURRENT LINE BEING EDITED
20085 REM
20090 REM
20095 REM
20100 REM
20105 REM EDIT A DATA SCREEN
20110 REM
20115 REM SHOW THE DATA SCREEN
20120
20125
20130
20135
20140

REM
ITEM% = 0
NOPAUSE% = 1
COL% = 1
HELP$ = SCREEN$(PAGE%)

20145 GOSUB 21000

REM CLEAR NUMBER OF ITEMS
REM INFORM HELP SCREEN NOT TO PAUSE
REM RESET POSITION COUNTER
REM NAME OF SCREEN TO PROCESS
REM SHOW SCREEN

20150 NOPAUSE% = 0 REM RESET TO PAUSE
20155 ON PAGE% GOSUB 25000,26000,27000
20160 GOSUB 20295 REM SHOW DEFAULT VALUES
20165 GOSUB 20350 REM EDIT DATA
20170 ON PAGE% GOSUB 25500,26500,27500: REM SAVE THE EDITED DATA
20175 IF HELP% > 0 THEN HELP$ = HELP$ + " HELP": GOSUB 21000 :

GOTO 20000 : REM SHOW HELP SCREEN AND START OVER

CHAPTER 8 PERSONAL CALENDAR: A SAMPLE PROGRAM

20180 RETURN
20185 REM
20190 REM **************
20195 REM
20200 REM
20205 REM SET FIELD PARAMETERS
20210
20215
20220
20225
20230
20235
20240
20245

REM
ITEMS% = ITEMS% + 1
SMASK$(ITEMS%) = • •

SROW%(ITEMS%) = ROW% + 1
SCOL%(ITEMS%) = COL%
PRINT • • ;
z = z + 1

ENTRY$ = MID$ (A$,2,1)

REM INC FIELD COUNTER
REM CLEAR IT
REM CURRENT ROW NUMBER
REM CURRENT COLUMN NUMBER
REM PRINT SPACE

REM GET ONE CHARACTER
20250 IF ENTRY$ = ">" THEN GOTO 20270 : REM ARE WE AT END OF MASK?
20255 SMASK$(ITEMS%) = SMASK$(ITEMS%) + ENTRY$: REM ADD TO FIELD MASK
20260
20265
20270
20275

COL% = COL% + 1
GOTO 20235
ENTRY$ = • •

RETURN
20280 REM
20285 REM **************
20290 REM
20295 REM SHOW DEFAULT VALUES
20300
20305
20310
20315
20320
20325
20330
20335
20340
20345
20350
20355
20360
20365
20370
20375
20380

REM
FOR X = 1 TO ITEMS%
VTAB SROW%(X)
POKE 36, SCOL%(X)
PRINT LINE$(X);
NEXT X
RETURN
REM
REM **************
REM
REM EDIT THE DATA FIELDS
REM
LINE% = 1
ENTRY$ = LINE$(LINE%)
ROW% = SROW%(LINE%)
COL% = SCOL%(LINE%)
MASK$ = SMASK$(LINE%)

REM INC COL CNT
REM GET NEXT CHAR
REM CLEAR ENTRY$

REM LINE
REM COLUMN - HTAB
REM DATA

REM START IN DATA FIELD
REM FIELD
REM ROW
REM COL
REM MASK

205

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

206

20385 GOSUB 50000 REM EDIT FIELD
20390 LINE$(LINE%) = ENTRY$ REM SAVE THE EDITED DATA FIELD
20395 IF HELP% > 0 THEN RETURN REM HELP REQUESTED IN THE FIELD
20400 IF (CTRL% = 3) AND (LINE% > 1) THEN LINE% = LINE% - 1 :

GOTO 20365 : REM UP ARROW
20405 IF CTRL% = 3 THEN GOTO 20365 : REM UP ARROW BUT ALREADY AT TOP
20410 IF CTRL% = 27. THEN GOTO 20425 : REM ESC SO GO TO BOTTOM
20415 IF LINE% < ITEMS% THEN LINE% =LINE% + 1: GOTO 20365: REM MOVE

20420
20425
20430
20435
20440
20445
20450
20455
20460
20465
20470
20475
20480
20485
20490

DOWN A LINE
REM
REM VERIFY ENTRIES
REM
VTAB 24
HTAB 10

: REM GOTO BOTTOM

PRINT "CHANGE WHICH ITEM?";
MASK$ = "## " REM ALLOW HELP AND UP TO 99 FIELDS
ENTRY$ = "0"
ROW% = 24
COL% = 30

: REM DEFAULT

GOSUB 50000 : REM EDIT DATA
IF CTRL% = 3 THEN LINE% = ITEMS%: GOTO 20365: REM UP ARROW
LINE% = VAL (ENTRY$) : REM LINE TO EDIT
IF LINE% = 0 THEN RETURN : REM ALL DONE WITH THIS SCREEN
IF (LINE% < = ITEMS%) AND (LINE% > 0) THEN GOTO 20365 : REM EDIT

THE REQUESTED FIELD
20495 GOTO 20425 : REM BAD ENTRY
20500
20505
20510
21262
21263

21286
21457

51124
51126
51184

REM
REM **************
REM
IF ENTRY$ = "<" THEN GOSUB 20205 : REM ASSIGN FIELD CHARACTERISTICS
IF ENTRY$ < > CHR$ (13) THEN COL% = COL% + 1 : REM INC COLUMN

POSITION COUNTER
COL% = 1 : REM RESET COLUMN COUNTER
IF NOPAUSE% < > 0 THEN PRINT DSK$; "CLOSE ";SCREEN$: RETURN : REM

RETURN WITHOUT A PAUSE
IF KEY% = 10 THEN CTRL% = 2
IF KEY% = 11 THEN CTRL% = 3
IF KEY% = 27 THEN CTRL% = 27

REM ~J LINE FEED 51124
REM ~K UP ARROW EXIT 51126
REM ESC EXIT 51184

21000 REM SHOW HELP * SCREEN DISPLAY ROUTINE
21005 REM

CHAPTER 8 PERSONAL CALENDAR: A SAMPLE PROGRAM

21010
21015
21020
21025
21030
21035
21040
21045
21050
21060
21065
21070
21075
21080
21085
21090
21095
21100
21110
21115
21120
21125
21130
21135
21140
21145
21150
21155
21160
21165
21170
21175
21180
21185
21190
21195
21200
21205

REM
REM
REM DISPLAYS SCREEN AND USES INVERSE
REM WILL PAUSE WHEN THE SCREEN IS FULL
REM PROVIDES USER TIME TO READ
REM
REM
REM IMPORTANT VARIABLES USED:
REM LINE% NUMBER OF LINES TO DISPLAY
REM
REM
REM
REM
REM
REM

y

ROW%
XX
NOPAUSE%
HELP$

INVERSE FLAG
TOTAL NUMBER OF LINES DISPLAYED
NUMBER OF LINES IN CURRENT SCREEN

1 = DO NOT PAUSE AT END OF PAGE. 0 = PAUSE
NAME OF HELP TEXT FILE

REM LOAD AND DISPLAY THE SCREEN
REM
REM SCREEN READ ONE CHARACTER AT A TIME
REM INVERSE TOGGLED ON •A• CHARACTER
REM
REM
REM
REM
ROW% = 0
XX = 0
DSK$ = CHR$ (4)
PRINT
PRINT DSK$; "OPEN ";HELP$
PRINT DSK$; "READ ";HELP$
REM

REM CLEAR COUNTER

REM DISK AD
REM CLEAR ANY DSK COMMANDS

REM READ THE NUMBER OF LINES ON THE SCREEN
REM
INPUT LINE%
REM
REM CLEAR THE COUNTERS
REM
ROW% = 0
REM

21215 y = 0
21220 REM

REM INVERSE FLAG

21225 REM INPUT THE SCREEN

207

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

208

21230 REM
21235 HOME : REM CLEAR SCREEN
21237 IF ROW% =LINE% THEN PRINT DSK$; "CLOSE ";HELP$: RETURN REM

ALL DONE
21240
21242

21245
21250
21255
21265
21270
21275
21280
21285
21290
21295
21300

21305
21310
21315
21320
21325
21375
21380
21385
21390
21395
21400

INPUT A$: REM GET A TEXT LINE
IF MID$ (A$,1,1) = "#" THEN GOSUB 22180: GOTO 21237: REM 21242

PROCESS MENU FILE NAMES
FOR Z = 1 TO LEN (A$)
ENTRY$ = MID$ (A$,2,1)
IF ENTRY$ = "®" THEN GOSUB 21430: REM PAUSE WANTED
IF ENTRY$ = nAn THEN GOSUB 21380: REM TOGGLE INVERSE VIDEO
PRINT ENTRY$;
NEXT Z
PRINT
ROW% = ROW% + 1 : REM INCREMENT LINE COUNTER
XX = XX + 1 : REM INCREMENT THIS PAGE LINE COUNTER
IF (ROW% = LINE%) OR (XX = 22) THEN GOSUB 21430 : REM DO I PAUSE?
IF ROW% = LINE% THEN PRINT DSK$; "CLOSE ";HELP$: RETURN :

REM RETURN TO THE CALLER
REM
GOTO 21240
REM
REM **************
REM
REM

: REM GET NEXT CHR

REM TOGGLE INVERSE ON/OFF
REM
ENTRY$ = ""

IF Y > 0 THEN Y = 0: NORMAL : RETURN : REM CLEAR INVERSE
INVERSE REM TURN INVERSE ON

21405 y = 1 : REM SET FLAG
21410
21415
21420
21425
21430
21435
21440
21445
21450
21455

RETURN
REM
REM **************
REM
REM PAUSE AND ASK FOR MORE?
REM
REM
IF NOPAUSE% > 0 THEN RETURN : REM PROGRAMMER DOES NOT WANT PAUSE
PRINT : REM CLEAR GET COMMAND
PRINT DSK$: REM TURN READ OFF

CHAPTER 8 PERSONAL CALENDAR: A SAMPLE PROGRAM

21457 IF NOPAUSE% < > 0 THEN PRINT DSK$; "CLOSE ";SCREEN$: RETURN REM

21460
21465
21470
21475
21480
21485
21490
21495

RETURN WITHOUT A PAUSE
VTAB 23: REM PAUSE LINE
ENTRY$ = "": REM MAKE SURE NOTHING HERE
INPUT "DO YOU WISH MORE? ";ENTRY$
HOME : REM CLEAR THE SCREEN
IF ENTRY$ = "N" THEN YY = LINE%: RETURN : REM THEY WANT OUT
PRINT DSK$; "READ ";HELP$ REM TURN DISK INPUT BACK ON
XX = 0 REM RESET PAGE LINE COUNTER
ENTRY$ "" REM CLEAR ANSWER

21500 RETURN REM GET NEXT LINE
21505
21510
21515

22000
22005
22010
22015
22020
22025
22030
22035
22040
22045
22050
22055
22060
22065
22070
22075
22080
22085
22090
22095
22100
22105
22110
22115

REM
REM **************
REM

REM MENU DRIVER *
REM
REM
REM
REM DISPLAYS MENU AND CHAINS TO PROGRAM OF USERS CHOICE
REM
REM
REM IMPORTANT VARIABLES USED:
REM LINE$() CONTAINS NAME OF PROGRAM TO CHAIN TO
REM
DSK$ = CHR$ (4)
ITEMS% = 0
NOPAUSE% = 1
HELP$ = SCREEN$
GOSUB 21000
NOPAUSE% = 0
REM
REM ASK FOR OPTION
REM
VTAB 3

REM DISK AD
REM NUMBER OF OPTIONS
REM INFORM HELP SYSTEM NOT TO PAUSE
REM SEND THE MENU NAME
REM SHOW THE SCREEN USING HELP ROUTINE
REM RESTORE THE FLAG FOR OTHERS

POKE 36, 10 : REM HTAB
PRINT "PLEASE SELECT OPTION"
ROW% = 3
COL% = 35

22120 MASK$ = "##"
22125 ENTRY$ = "0"

REM ALLOW HELP REQUEST

209

1-
BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

210

22130 GOSUB 50000 : REM ACCEPT OPTION
22135

22140
22150
22152

IF HELP% THEN HELP$ =SCREEN$ + " HELP": GOSUB 21000
GOTO 22000: REM RESPONDED TO HELP REQUEST

X = VAL (ENTRY$) : REM OPTION SELECTED
IF X = 0 THEN HOME : END : REM RETURN TO BASIC
IF LINE$(X) = "HELP " THEN HELP% = 1:HELP$ = SCREEN$ + " HELP ": GOSUB

21000: GOTO 22000: REM RESPONDED TO HELP REQUEST
22155 PRINT : REM CLEAR FOR DISK COMMAND
22160
22165
22170
22175
22180
22185
22190
22195
22200
22205
22210
22215

ON X GOSUB 1000,2000,3000,4000
RETURN
REM **************
REM
REM ACCEPT A CHAIN NAME
REM
Z =VAL (MID$ (A$,2,2)) : REM GET THE OPTION NUMBER
IF ITEM% < Z THEN ITEM% = Z: REM ADJUST COUNTER
LINE$(Z) = MID$ (A$,4) REM MOVE THE FILE NAME
ROW% = ROW% + 1 : REM INCREMENT COUNTER
RETURN
REM

22220 REM **************
22225 REM

25000 REM SETUP FOR PAGE 1
25010 RETURN

REM
REM **************
REM
REM RESTORE FOR PAGE 1

REM NONE NEEDED
25020
25030
25040
25500
25510
25520
25530
25540
26000
26010
26020
26030
26040
26050
26060

RETURN : REM NONE NEEDED
REM
REM **************
REM
REM SINGLE DATE PAGE
REM
LINE$(1)
LINE$(2)
RETURN
REM

""
""

REM **************

CHAPTER 8 PERSONAL CALEND,AR: A SAMPLE PROGRAM

26070 REM
26500 REM RESTORE SINGLE DATE DATA
26510 REM
26520 MM = VAL (LINE$(1)) REM MONTH
26530 DD = VAL (LINE$(2)) REM DAY
26540 RETURN
26550 REM
26560 REM **************
26570 REM
27000 REM
27010 REM
27020
27030
27040
27050
27060 .

FOR X = 1 TO 4
LINE$(X) ""
NEXT X
RETURN
REM

REM NULL STRING

27070 REM **************
27080
27500
27510
27520
27530
27540
27550

30000
30005
30010
30015
30020
30025
30030
30035
30040
30045
30050
30055
30060
30065
30070

REM
REM CHANGE NOTHING FOR TWO DATES
REM
RETURN
REM
REM **************
REM

REM DATA PRINT SUBROUTINE
REM
REM THIS FILLS IN A DATA PAGE AND SENDS IT TO THE PRINTER OR DISK
REM
REM BE SURE TO ADD SPECIAL PRINTER COMMANDS
SCREEN$ = PAGE$(PAGE%) REM THE PAGE TO FILL
HOME REM INFORM THE USER OF PRINTING
VTAB 10
POKE 36, 10
PRINT "PROCESSING ";SCREEN$
VTAB 12

REM HTAB

POKE 36, 15 : REM HTAB
PRINT "PLEASE WAIT"
ON PAGE% GOSUB 25000
DSK$ = CHR$ (4) REM DISK COMMAND CODE

211

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

212

30075
30080

30085
30090
30095
30100
30105
30110
30115
30120
30125
30130
30135
30140
30145
30150
30155
30160
30165
30170
30175
30180
30185
30190
30195

30200
30205
30210

30215
30220
30225
30230
30235
30240
30245
30250

30255

PRINT DSK$; "OPEN "; SCREEN$: REM OPEN THE PAGE FOR INPUT
IF DEVICE% < > 0 THEN PRINT DSK$; "PR#"; DEVICE%: GOTO 30115: REM

SEND DIRECTLY TO THE PRINTER
REM
REM PRINT IT TO A DISK FILE
REM
PRINT DSK$; "OPEN ";SCREEN$; 11 REPORT"
PRINT DSK$; "DELETE "; SCREEN$; " REPORT" : REM ERASE ANY OLD FILE
PRINT DSK$; "OPEN "; SCREEN$;" REPORT ": REM OPEN A CLEAN NEW FILE
PRINT DSK$; "READ "; SCREEN$: REM GET THE NUMBER OF LINES
INPUT ITEMS%
REM
REM
ITEMS% = ITEMS% - 1 : REM DECREMENT COUNTER
IF ITEMS% < 0 THEN GOTO 30475: REM ALL DONE SO EXIT
PRINT DSK$; "READ "; SCREEN$: REM READ THE DATA PAGE
INPUT ENTRY$: REM GET A LINE FROM THE DATA PAGE
IF A$ < > "&" THEN C$ = "": REM CLEAR THE OUTPUT LINE
IF A$ = "&" THEN GOSUB 30240: REM STRIP LEADING SPACES
REM
REM PROCESS ENTRY$ ONE CHAR AT A TIME LOOKING FOR INSERTS
REM
FOR X = 1 TO LEN (ENTRY$) : REM STEP DOWN THE LINE
A$ = MID$ (ENTRY$,X,1) : REM GET ONE CHARACTER
IF A$= "<"THEN GOSUB 30275 : GOTO 30205: REM DO AN INSERTION
IF A$= "&"THEN X= LEN (ENTRY$): GOTO 30205 : REM CONTINUATION

SYMBOL
C$ = C$ + A$: REM BUILD THE OUTPUT STRI NG
NEXT X
IF DEVICE% = 0 THEN PRINT DSK$; "WRITE ";SCREEN$;" REPORT" : REM

SEND OUTPUT TO DISK
IF A$ < > "&" THEN PRINT C$: REM OUTPUT THE STRING
GOTO 30135
REM **************
REM
REM
REM REMOVE THE LEADING SPACES
REM
IF MID$ (ENTRY$,1,1) = " "THEN ENTRY$= MID$ (ENTRY$, 2) :

GOTO 30250: REM FOUND ONE SO REMOVE IT
RETURN

CHAPTER 8 PERSONAL CALENDAR: A SAMPLE PROGRAM

30260 REM **************
30265 REM
30270
30275
30280
30285
30290
30295
30300
30305
30310
30315
30320
30325
30330
30335
30340
30345
30350

30355
30360
30365
30370
30375
30380
30385
30390
30395
30400
30405
30410
30415
30420
30425
30430
30435
30440
30445
30450
30455

REM
REM INSERT A FIELD INTO THE LINE
REM
REM TWO MODES:
REM 1) INSERT AND CONCATENATE
REM 2) INSERT BUT DO NOT CONCATENATE
REM MODE 1 IS USED WHEN NO SPACES EXIST BETWEEN <> SYMBOLS
REM MODE 2 IS USED IF A SPACE EXISTS BETWEEN <> SYMBOLS
REM
REM
REM
REM
REM FIRST REMOVE THE <> SYMBOLS
REM
y = 0 : REM DEFAULT TO MODE 1
X = X + 1
IF X> LEN (ENTRY$) THEN A$ = "": RETURN : REM

ONLY ONE SYMBOL SO ERROR
B$ = MID$ (ENTRY$,X,1) : REM GET ONE CHARACTER
A$ = A$ + B$
IF B$ < > ">" THEN GOTO 30345: REM NOT DONE SO GET ANOTHER CHARACTER
REM LOOK FOR A SPACE TO SET MODE
FOR Z = 1 TO LEN (A$)
IF A$ = " " THEN Y = Z:Z = LEN (A$)
NEXT Z
IF Y = 0 THEN Z =VAL (MID$ (A$,2, LEN (A$) - 1))
IF Y < > 0 THEN Z =VAL (MID$ (A$,2,Y- 1)): REM GET THE FIELD NUMBER
C$ = C$ + LINE$(Z) : REM ADD THE FIELD
IF Y = 0 THEN A$ = "": RETURN : REM MODE 1 SO ALL DONE
REM
REM MODE 2 SELECTED SO WE MUST FILL WITH SPACES
REM
IF LEN (LINE$(Z) = LEN (A$) THEN RETURN : REM NOTHING TO CLEAR
Y = LEN (A$) -LEN (LINE$(Z))
FOR Z = 1 TO Y
C$ = C$ + n n

NEXT Z
A$ = nn

RETURN

: REM ADD THE SPACES

REM ALL DONE

213

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

214

30460
30465
30470
30475
30480
30485
30487
30490
30495

REM **************
REM
REM
REM CLOSE EVERYTHING AND RETURN
REM
PRINT DSK$; "CLOSE ";SCREEN$
PRINT CHR$(12) : REM FORM FEED
IF DEVICE% = 0 THEN PRINT DSP$; "CLOSE ";SCREEN$;" REPORT"
IF DEVICE% < > 0 THEN PRINT DSK$; "PR#O": REM RETURN TO

SCREEN OUTPUT
30500 HOME : REM CLEAR THE SCREEN
30505
30510
30515
30520

50000
50005
50010
50015
50020
50025
50030
50035
50040
50045
50050
50055
50060
50065
50070
50075
50080
50085
50090
50095
50100
50105
50110
50115
50120

RETURN
REM **************
REM
REM

REM BASIC LINE EDITOR
REM
REM
REM THIS IS A BASIC LINE EDITOR
REM
REM THE PROGRAMMER CALLS IT USING THE FOLLOWING VARIABLES
REM
REM ROW% => SCREEN LINE NUMBER
REM COL% => SCREEN COLUMN NUMBER
REM ENTRY$ => TEXT TO BE EDITED
REM MASK$ => DATA TYPE TO BE ALLOWED
REM WHERE:
REM A = ALPHANUMERIC
REM # = NUMBER FIELD ONLY
REM Y = YES/NO FIELD
REM Q = HELP REQUEST OK, USE IN ANY CHARACTER
REM THE LENGTH OF MASK$ IS THE MAXIMUM LENGTH OF THE
REM INPUT STRING
REM
REM
PLACE% = 1
REM
FILL$= "."
HELP% = 0
CTRL% = 0

REM SET THE STARTING POSITION

REM DISPLAY DOTS
REM CLEAR THE HELP FLAG
REM CLEAR THE EXIT FLAG

CHAPTER 8 PERSONAL CALENDAR: A SAMPLE PROGRAM

GOSUB 52130 REM DISPLAY ENTRY$
GOSUB 50165 REM EDIT THE STRING
FILL$ = " " REM CLEAR THE SCREEN
GOSUB 52130 REM DISPLAY ENTRY$
RETURN REM GO BACK TO CALLER
REM
REM **************
REM
REM EDIT THE ENTRY$ FIELD
REM
REM POSITION THE CURSOR
REM
VTAB ROW% REM VERTICAL POSITION
GOSUB 52000 REM PRINT THE CHARACTER
REM
REM ACCEPT A KEY FROM THE KEYBOARD
REM
KEY% = PEEK (49152) : REM TEST FOR INPUT

IN INVERSE

50125
50130
50135
50140
50145
50150
50155
50160
50165
50170
50175
50180
50185
50190
50195
50200
50205
50210
50215
50220
50225
50230
50235
50240
50245
50250
50255
50260
50265
50270
50275
50280

IF KEY% < 128 THEN GOTO 50210 : REM LOOP UNTIL ENTRY
REM
REM IF HERE THEN A KEY PUSHED
REM
XX = PEEK (49168)
KEY% = KEY% - 128
REM
REM PROCESS THE KEY
REM
GOSUB 50295

REM CLEAR KEYBOARD
REM STRIP OFF FLAG BIT

: REM KEY% PROCESSOR
IF HELP% > 0 THEN RETURN : REM HELP REQUESTED BY USER
IF CTRL% > 0 THEN GOSUB 52070: RETURN : REM CONTROL KEY EDIT
GOTO 50210 : REM GET THE NEXT KEY
REM

50285 REM ****************************
50295 REM TEST FOR CONTROL KEY
50300 REM
50305 IF KEY% < = 31 THEN GOSUB 51000: RETURN REM PROCESS AND RETURN
50310 REM
50315 REM MUST BE AN ALPHANUMERIC
50320 REM
50325 REM TEST THE MASK TO DETERMINE DATA TYPE
50330 REM

215

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

50335
50340
50345
50355
50360
50365
50370
50375
50380
50385
50390
50395
50400
50405
50410
50415
50420
50425
50430
50435
50440
50445
50450
50455
50460
50465
50900
50905
50910
50915
50922
50925
50926
50930
50932
50935

509J6
50940
50945
50946

216

IF MID$ (MASK$,PLACE%, 1)
IF MID$ (MASK$, PLACE% ,1)
IF MID$ (MASK$,PLACE%,1)
REM
REM BAD MASK CHARACTER
REM
RETURN
REM

"A" THEN GOSUB 50900: RETURN
"#" THEN GOSUB 50390: RETURN
"Y" THEN GOSUB 50440: RETURN

REM *****************************
REM
REM ACCEPT A NUMBER
REM
REM TEST TO SEE IF IT IS A VALID NUMERIC TYPE OF CHARACTER
REM
IF (KEY% < 45) OR (KEY% > 57) THEN RETURN : REM BAD KEY
IF KEY% = 47 THEN RETURN REM BAD KEY ALSO
GOSUB 50900
RETURN

: REM GOOD KEY SO ACCEPT IT

REM *************************************
REM
REM TEST FOR YES OR NO
IF (KEY% < > 89) AND (KEY% < > 78) THEN RETURN REM BAD KEY
GOSUB 50900
RETURN

: REM ACCEPT IT

REM **************************************
REM
REM PRINT KEY% AND ADD TO ENTRY$
REM
IF INSERT% = 1 THEN GOSUB 51315 : REM INSERT A SPACE
TXTSIZE% = LEN (ENTRY$) : REM MAKE SURE WE HAVE CORRECT TXTSIZE%
REM ADD TO END OF ENTRY
IF PLACE%> TXTSIZE% THEN ENTRY$= ENTRY$+ CHR$ (KEY%): GOTO 50945
REM ADD AS FIRST CHARACTER
IF PLACE%= 1 THEN ENTRY$= CHR$(KEY%) + MID$(ENTRY$,PLACE% + 1): GOTO 50945
REM ADD AS LAST CHARACTER
IF PLACE% = TXTSIZE% THEN

ENTRY$ = LEFT$(ENTRY$, PLACE%- 1) + CHR$(KEY%): GOTO 50945
REM ADD IN THE MIDDLE SOMEWHERE
ENTRY$ = LEFT$(ENTRY$, PLACE% - 1) + CHR$(KEY%) + MID$(ENTRY$,PLACE% + 1)
TXTSIZE% = LEN (ENTRY$)
REM IF TOO BIG TRUNCATE IT

CHAPTER 8 PERSONAL CALENDAR: A SAMPLE PROGRAM

50950
50955
50960
50965
50970
50975
50980
50985
50990
51000
51005
51010
51015
51020
51025
51030
51035
51040
51045
51050
51055
51060
51065
51070
51075

IF TXTSIZE% > MAXSIZE% THEN ENTRY$ = LEFT$ (ENTRY$,MAXSIZE%)
REM
REM NEED TO MOVE RIGHT ONE PLACE
REM
GOSUB 51425
RETURN
REM
REM **************
REM
REM PROCESS A CONTROL KEY
REM

: REM RIGHT ARROW

REM EXIT KEYS SUCH AS RETURN SET CTRL%
REM
REM
REM 11A = 1 > PREVIOUS WORD
REM 11D = 4 > DELETE THIS CHARACTER
REM
REM 11 F = 6 > FILL WITH A SPACE
REM 11H = 8 > LEFT ARROW
REM 11N = 14 > SKIP TO END
REM 11Q = 17 > HELP REQUEST
REM 11U = 21 > RIGHT ARROW
REM 11W = 23 > NEXT WORD
REM 11Y = 25 > ERASE TO END
REM IGNORE ALL OTHER KEYS

51080 REM
51085 CTRL% = 0 : REM CLEAR EXIT FLAG
51090 IF KEY% = 6 THEN GOSUB 51280 : RETURN : REM INSERT
51095 INSERT% = 0 REM TURN INSERT OFF
51100 IF KEY% = 1 THEN GOSUB 51555 REM PREVIOUS WORD
51105 REM
51110 IF KEY% = 4 THEN GOSUB 51210 REM DELETE
51115 REM
51120 IF KEY% = 8 THEN GOSUB 51380 REM LEFT ARROW
51125 REM
51130 IF KEY% = 13 THEN CTRL% = 1: REM RETURN KEY
51135 REM CHECK HELP REQUEST
51140 IF KEY% = 17 THEN HELP% = 1: RETURN : REM HELP REQUEST
51145 REM
51150 IF KEY% = 14 THEN GOSUB 51680: REM GOTO END
51155 REM

217

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

51160 IF KEY% = 21 THEN GOSUB 51425: REM RIGHT ARROW
51165 REM
51170 IF KEY% = 23 THEN GOSUB 51475: REM NEXT WORD
51175 REM
51180 IF KEY% = 25 THEN GOSUB 51630: REM ERASE TO END
51184 IF KEY% = 27 THEN CTRL% = 27 RETURN : REM 51184 ESC
51185 REM
51190 RETURN
51195 REM
51200 REM **************
51205 REM
51210 REM DELETE AND PACK
51215 REM
51220 TXTSIZE% = LEN (ENTRY$)
51225 IF TXTSIZE% = 0 THEN RETURN : REM NOTHING TO DELETE
51230 IF TXTSIZE% = 1 THEN ENTRY$ = "" :PLACE% = 1: GOTO 51250: REM DELETE LINE
51235 IF PLACE%= 1 THEN ENTRY$= MID$ (ENTRY$,2): GOTO 51250
51240 IF PLACE% > = TXTSIZE% THEN

ENTRY$= LEFT$(ENTRY$,TXTSIZE%- 1):PLACE% =PLACE%- 1:GOTO 51250
51245 ENTRY$= LEFT$ (ENTRY$,(PLACE%- 1)) +MID$ (ENTRY$,PLACE% + 1)
51250 GOSUB 52130 REM PRINT NEW STRING
51255 GOSUB 52000 : REM PRINT INVERSE
51260 RETURN
51265 REM
51270 REM *********************************
51275
51280
51285
51290
51295
51300
51305
51310
51315
51320
51325
51330
51335
51340
51345
51350

218

REM
REM TOGGLE THE INSERT MODE
REM
IF INSERT% = 1 THEN INSERT% = 0: RETURN : REM TURN IT OFF
INSERT% = 1 : REM TURN IT ON
RETURN
REM *********************************
REM
REM INSERT A CHARACTER
REM
REM
REM IS IT THE FIRST CHARACTER?
IF PLACE% = 1 THEN ENTRY$ = " " + ENTRY$: GOTO 51350
REM INSERT IN THE MIDDLE
ENTRY$ = LEFT$ (ENTRY$,PLACE% - 1) + " " + MID$ (ENTRY$,PLACE%)
GOSUB 52130 : REM PRINT THE FIELD

51355
51360
51365
51370
51375
51380
51385
51390
51395
51400
51405
51410
51415
51420
51425
51430
51435
51440
51445
51450
51455
51460
51465
51470
51475
51480
51485
51490
51495
51500
51505
51510
51515
51520
51525
51530
51535
51540
51545
51550
51555

CHAPTER 8 PERSONAL CALENDAR: A SAMPLE PROGRAM

GOSUB 52070
RETURN
REM
REM **************
REM
REM LEFT ARROW
REM

REM REPOSITION CURSOR

GOSUB 52070 : REM DISPLAY NORMAL
IF PLACE% > 1 THEN PLACE% = PLACE% - 1 : REM MOVE LEFT ONE
GOSUB 52000 : REM DISPLAY INVERSE
RETURN
REM
REM **************
REM
REM RIGHT ARROW
REM
IF MID$ (ENTRY$,PLACE%,1)
GOSUB 52070
IF PLACE% < MAXSIZE% THEN
GOSUB 52000
RETURN
REM
REM **************
REM
REM SKIP TO NEXT WORD
REM
REM

= "" THEN RETURN
: REM DISPLAY AS NORMAL
PLACE% = PLACE% + 1
: REM DISPLAY AS INVERSE

IF PLACE% = > TXTSIZE% THEN RETURN : REM ALREADY AT END
GOSUB 52070 : REM REMOVE CURSOR
PLACE% = PLACE% + 1 : REM LOOK FOR FIRST SPACE
IF PLACE% = TXTSIZE% THEN GOTO 51530
IF MID$ (ENTRY$,PLACE%,1) < > " " THEN GOTO 51500: REM IS IT A SPACE?
PLACE% = PLACE% + 1 : REM MOVE RIGHT ONE
IF PLACE% = TXTSIZE% THEN GOTO 51530
IF MID$ (ENTRY$,PLACE%,1) = " " THEN GOTO 51515: REM SKIP OVER SPACES
GOSUB 52000 : REM DISPLAY CURSOR
RETURN
REM
REM **************
REM
REM SKIP TO PREVIOUS WORD

219

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

220

51560 REM
51565 IF PLACE% = 1 THEN RETURN REM AT THE FRONT ALREADY
51570
51575
51580
51585
51590
51595
51600
51605
51610
51615
51620
51625
51630
51635
51640
51645
51650
51655
51660
51665
51670
51675
51680
51685
51690
51695
51700
51705
51710
51715

GOSUB 52070 REM REMOVE CURSOR
PLACE% = PLACE% - 1 REM LOOK FOR SPACE
IF PLACE% = 1 THEN GOTO 51610: REM FORCE MOVE AT LEAST ONE SPACE
IF MID$(ENTRY$, PLACE%,1) = n n THEN GOTO 51575: REM SKIP OVER SPACES
PLACE% = PLACE% - 1
IF PLACE% = 1 THEN GOTO 51610
IF MID$(ENTRY$,PLACE%,1) < > " " THEN GOTO 51590: REM IS IT A SPACE?
PLACE% = PLACE% + 1 REM POSITION OVER FIRST LETTER
GOSUB 52000 : REM DISPLAY THE CURSOR
RETURN
REM
REM **************
REM ERASE TO END OF LINE
REM
IF PLACE% = 1 THEN ENTRY$ = "": GOTO 51650 : REM ERASE WHOLE LINE
ENTRY$ = LEFT$ (ENTRY$,PLACE% - 1)
GOSUB 52130 REM PRI NT THE FIELD
GOSUB 52000 : REM DISPLAY THE CURSOR
RETURN
REM
REM **************
REM
REM SKIP TO END OF LINE
REM
GOSUB 52070
PLACE% = LEN (ENTRY$) + 1

: REM MOVE THE CURSOR

IF PLACE% > MAXSIZE% THEN PLACE% = MAXSIZE%: REM DO NOT GO PAST END
GOSUB 52000 : REM SHOW THE CURSOR
RETURN
REM

51720 REM **************
51725 REM
52000 REM PRINT CHARACTER IN INVERSE
52005 REM THIS GIVES THE ILLUSION OF CURSOR MOVEMENT
52010
52012
52015
52020
52025

REM
VTAB ROW% : REM POSITION CURSOR
POKE 36, (COL% + PLACE% - 1) : REM HTAB
INVERSE : REM REVERSE VIDEO
XX$ = MID$ (ENTRY$,PLACE%,1) : REM MOVE FOR THE NEXT IF

CHAPTER 8 PERSONAL CALENDAR: A SAMPLE PROGRAM

52030 IF XX$ = "" THEN XX$ " "· REM IF NULL MAKE IT A SPACE
52035 PRINT XX$; REM PRINT THE INVERSE
52040 NORMAL REM RESTORE TO NORMAL VIDEO
52045 POKE 36, (COL% + PLACE% - 1) : REM REPOSITION THE CURSOR - HTAB
52050 RETURN

REM
REM **************
REM
REM POSITION AND DISPLAY NORMAL
REM
VTAB ROW% : REM POSITION CURSOR
POKE 36, (COL% + PLACE% - 1) : REM HTAB

52055
52060
52065
52070
52075
52077
52080
52085
52090
52095
52100

XX$ = MID$ (ENTRY$,PLACE%, 1) : REM PRINT ONE LETTER
IF XX$ = "" THEN XX$ =FILL$: REM IF NULL THEN MAKE IT A SPACE
PRINT XX$;
REM

52105 POKE 36, (COL% + PLACE% - 1) REM REPOSITION THE CURSOR
52110 RETURN
52115 REM
52120 REM **************
52125 REM
52130 REM DISPLAY TEXT$
52135 REM FILL$ IS THE FILL CHARACTER
52140 REM TXTSIZE% IS THE LENGTH OF ENTRY$
52145 REM MAXSIZE% IS THE MAXIMUM ALLOWED LENGTH

REM
REM

52150
52155
52160
52165

TXTSIZE% = LEN (ENTRY$)
MAXSIZE% = LEN (MASK$)

REM HOW LONG IS THE CURRENT FIELD?
REM WHAT IS MAX LENGTH ALLOWED?

52170 REM
52175 REM IS ENTRY$ TOO LONG?
52180 REM
52185 IF TXTSIZE% > MAXSIZE% THEN

ENTRY$= LEFT$ (ENTRY$,MAXSIZE%):TXTSIZE% = MAXSIZE%
52190 REM
52195 REM POSITION THE CURSOR
52200 REM
52205 VTAB ROW% REM ROW POSITION
52210 POKE 36, COL% REM COLUMN NUMBER - HTAB
52215 REM
52220 REM PRINT THE TEXT

221

BASIC BUSINESS SUBROUTINES FOR THE APPLE II AND lie

222

REM
PRINT ENTRY$;
REM

: REM NO LINE FEED
52225
52230
52235
52240
52245

REM PRINT THE FILL CHARACTER
REM

52250 IF TXTSIZE% = MAXSIZE% THEN RETURN REM NO FILL$ TO PRINT
52255 FOR XX = TXTSIZE% TO MAXSIZE% - 1
52260 PRINT FILL$;
52265 NEXT XX
52270 RETURN
52275 REM
52280 REM **************
52285 REM

REM ALL DONE

INDEX

ANUM%,67
Apple II family differences, 10- 11
ASCII character codes, table of, 32
Auto line numbering, 93

CATALOG, 94-95
Character-accept routine, 38-39
CLOSE, 89
COL%, 22
Command display and processor, 82
Concatenate two lines, 77
Control characters, 35, 39
Cursor movement, 41-42

Data entry screen, 125
Date algorithm, 187
Default values, 127
DELETE,86-87
Deleting a character, 45

Deleting a line, 79
DEVICE%, 171
DIM, 67
Displaying a cursor, 33
Display subroutine, 25, 38, 47, 68

EDIT command, 85
Editing capabilities of the Apple, 17
Editor features, 16
Edit subroutine, 30, 139-142
80 column card, 10
End of line, 44
ENTRY$, 22, 38
Erase to end of line, 48
ESC key, 49, 80
EXEC, 96

Field, 15
Field parameters, 136

223

INDEX

224

FILL$, 22
FIRST%, 67
FLASH, 10
FOR-NEXT, 27
FRE(O), 82

Garbage variables, 116
GOSUB-RETURN, 2-3

Help, 111, 158
HELP$, 116
HOME, 68

INPUT, 13-14
Input keys , processing the, 3 7
Inserting a blank line, 71
Inserting characters, 46
INSERT% , 38
Integer, 22
INVERSE, 11, 34, 119

Jump to home page, 76
Jump to last page, 72

KEY%, 39

LAST%, 67
LCOL%, 66
LEFT$, 46
LEN, 26
Line editor, 14
Line numbering, 5
LINE$, 67
LROW%, 66

MASK$, 22
MAX SIZE%, 38
Menu system, 151
Merging programs, 96
MID$, 36
MLINE%, 67,74
Moving down a line, 7 4
Moving up a line, 75
Multiple statements on one line, 7

Next word, 42
NOPAUSE%, 116

NORMAL, 34

OPEN, 87

PAGE%, 134
Pause subroutine, 118
PLACE%, 34, 41
Previous word, 43
PRINT, 34
Processing a key, 35
Programming style, 4-7

Random access files , 190
READ, 92
Remark (REM) statements, 6-7
Reports, philosophical, 165
ROW%, 22

Screen editor, 61
Scroll down a page, 78,
Scroll up a page, 78
Space savings in programming, 9
Speeding up programs, 10
Structure of the book, 11-12
Subroutines

defined, 2
display, 25, 38, 47,68
edit, 30, 139
and line numbers, 5
pause, 118
text loading, 91
text saving, 86

Tab stops, 73
Testing, 8, 23
Text loading subroutine, 91
Text saving subroutine, 86

User-friendly programs, 8

VAL(), 85
Variable-exchange routine, 130
Variable names, 4
Variables, explanation of, 22-23
VTAB, 30

WRITE, 88

Other books in the Microcomputer Books Series are available from your
local computer store or bookstore. For more information write:

General Books Division
Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts 01867
(617) 944-3700

(10483) Database for the ffiM PC
Sandra L. Emerson and Marcy Darnovsky

(11358) Database: A Primer
C. J. Date

(11065) A Buyer's Guide to Microcomputer Business
Software: Accounting and Spreadsheets
Amanda C. Hixson

(01245) 1-2-3 Go!
Julie Bingham

(10242) Executive VisiCalc for the Apple Computer
Roger E. Clark

(10241) Executive SuperCalc
Roger E. Clark

(15895) Introduction to the Lisa
Arthur Naiman

(10187) How to Choose Your Small Business Computer
Mark Birnbaum and John Sickman

(08848) The Business Guide to the UNIX System
J. Yates, S. Emerson

(08847) The Business Guide to the Xenix System
J. Yates, S. Emerson

(10355) CP/M and the Personal Computer
Thomas A. Dwyer and Margot Critchfield

(05793) Thinking Small: The Buyer's Guide to Portable
Computers
Charles Rubin and Michael McCarthy

(041 91) The Under-$800 Buyer's Guide: Evaluating
the New Generation of Small Computers
Anthony T. Easton

(05248) Executive Computing
John M. Nevison

(05092) Microcomputer Graphics
Roy E. Meyers

(06599) Basic Money: Managing Personal Finances on
Your Microcomputer
Charles Seiter

(07769) Discovering Apple Logo
David D. Thornburg

(11208) The Beginner's Guide to Computers
Robin Bradbeer, Peter DeBono, and Peter
Laurie

(09666) The Urgently Needed Parent's Guide to
Computers
Brian K. Williams and Richard J. Tingey

(16482) Astounding Games for Your Apple Computer
Hal Renko and Sam Edwards

(11507) Dr. C. Wacko Presents Applesoft BASIC and
the Whiz-Bang Miracle
David Heller and John Johnson

(14775) Applesoft BASIC Toolbox
Larry G. Wintermeyer

(14652) Introducing Logo
Peter Ross

(10341) Pascal: A Problem Solving Approach
Elliot B. Koffman

(08296) Pascal for FORTRAN Programmers
Robert Weiss and Charles Seiter

(06577) Pascal for BASIC Programmers
Charles Seiter and Robert Weiss

(06516) Using BASIC on the ffiM PC
Angela and Michael Trombetta

(05464) Pascal for the ffiM Personal Computer
Ted G. Lewis

(05209) Assembly Language for the Applesoft
Programmer
Clarence W. Finley, Jr., and Roy E. Myers

(01589) BASIC and the Personal Computer
Thomas A. Dwyer and Margot Critchfield

(05208) The Netweaver's Sourcebook: A Guide to
Micro Networking and Communications
Dean Gengle

(05157) Expanding and Maintaining Your Apple
Personal Computer
James Morrison

(10285) The Addison-Wesley Book of Apple Software
1984
J. Stanton, R. Wells, S. Rochowansky, and M.
Mellin

> $12-95 FPT USA

Alan G. Porter and Martin G. Rezmer

BASIC Business Subroutines
for the

Apple B and Be .
FOR PROFESSIONALS WHO PROGRAM IN BASIC

SOLUTIONS TO COMMON BUSINESS PROGRAMMING PROBLEMS

Does this describe you?

You 're a professional, not a professional programmer.
Standard documentation does not fill your needs.
You know what you want your Apple Computer to do, but it won 't
do it.

BASIC Business Subroutines takes frequent business programming problems,
describes how to solve them, and gives exact solutions in Applesoft BASIC.
Solutions are provided in subroutines {program modules} which are easy to
transpori between programs and easy to modify to match your particular
problem. Each solution builds upon techniques previously explained, and
all the techniques are brought together in a single program at the end.

With these solutions, your software will take less time to write and, finaiiYt
will be just what you need .

Alan Porter is a California-based microcomputer consultant.
Martin Rezmer has, for the last five years, been a computer store owner
a nd consultant.

Cover design by Marshall Henrichs

Apple puzzle courtesy of Meg-Nil, Inc .· s, ··Adorn 's Apple, " New York, NY

ISBN 0-201-05663-1

