

•

I

-. f ; •

1 I

\ I
W
\1
I I '.

\ I
~ !

U

\ I
k...J

.,

\ !
I I
i...J

\ I
J...>

il
\ j

I-J

\ I , I
~

-.
\ I
\ !
-....;

, I

i ;
L.J

u
u
\ I
U

l !
.:-J . ,

Applesoft. for the lie

Dr. George H. Blackwood is a retired Navy
pilot and a former college professor with
bachelor's, master's, education specialist,
and D.D.S. degrees. He now devotes full
time to writing.

Brian D. Blackwood has studied computer
science and engineering at Michigan State
University, and has a B.S. degree in com
puter science from Lamar University. He is
presently employed as a programmer at a
large data processing center that services
banks and financial institutions.

nj

n
n
n
n

n
i \

n
i \

n
n
(\

n
I \

n
n

n
n

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

Applesoft for the lie

By
Brian D. Blackwood

and
George H. Blackwood

Howard W. Sams & Co., Inc.
4300 WEST 62ND ST. INDIANAPOLIS, INDIANA 46268 USA

Copyright © 1983 by Brian D. Blackwood and
George H. Blackwood

FIRST EDITION
FIRST PRINTING - 1983

All rights reserved. No part of this book shall be
reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without
written permission from the publisher. No patent
liability is assumed with respect to the use of the
information contained herein. While every precaution
has been taken in the preparation of this book, the
publisher assumes no responsibility for errors or
omissions. Neither is any liability assumed for
damages resulting from the use of the information
contained herein.

International Standard Book Number: 0·672·22259·0
Library of Congress Catalog Card Number:
83·50833

I

Edited by: Lou Keglovits
Illustrated by: William D. Basham

Printed in the United States of America.

1
l' "

I"~"~

1',:" "

1
1
1
1
1

1
l
1
1

r, rr, "
.'

r
r
r" 1!

r
r'" "
r
r
rl, /,

r
r
r,'"
i

r
r· (

r
[

Preface

The Apple computer is truly an amazing machine and programming the
Apple borders on the realm of a mystical science. To explain how detailed
and exacting programming is, let me bore you with a personal story about
programming the Apple.

Once h.took a course called Electrical Analysis (EE3301). It is a course de·
signed t& teach students to program mathematical and engineering prob·
lems using the FORTRAN language.

FORTRAN has several features such as single precision, double preci·
sion, and complex functions that are not available in the Applesoft Ian·
guage. One of the problems in the course dealt with converting complex im·
pedances (total resistance and reactance in a circuit) to admittances, and
using the admittance values to compute the current in each branch of the
circuit. Capacitors and inductors have reactance, while resistors have reo
sistance to current flow.

The class was divided into groups to develop a project to program.
Naturally, being an Apple advocate, I wanted to simulate the complex func·
tion on the Apple computer using the Applesoft language.

The program was relatively easy for the group to write. The program ran
and produced numbers, but the program had a bug in it. The bug was very
difficult to find. The program ran beautifully, and crunched a bunch of num·
bers. The only thing was that the answers were incorrect. Not only were they
incorrect, they changed in value each time the program was run. We
searched for the bug, and had classmates search for the bug. The bug
eluded us for about two weeks.

Finally, one of the members of the group had a friend who was an Apple
expert. He looked at the program. At that time the program had three lines
of code written in this order.

DEF FNA(X) = INT(X * 1000 + .5} /1000
READ M,N
DIM A(M,N}, B(N,N}, C(M,N}

When the DEF FN statement was placed before the DIMension statement,
each time the program was run, the "1000" inside the parentheses was
changed to a different value. One time it was "1500," which produced an
answer 50% greater than the actual answer. The next time it might be
"1040," or "1020," or some different number.

The statements were placed in this order within the program.

READ M,N
DIM A(M,N), B(N,N), C(M,N)
DEF FNA(X) = INT(X * 1000 + .5) /1000

Now each time the program ran, it produced the same answer.
Isn't it amazing that the computer operates in such an exact and precise

mode?
At times programming can be the most frustrating and irritating thing

that exists. But that's part of its beauty and challenge. For maximum per
formance and endurance on our journey, the mind must be continuously ir
ritated, stimulated, and challenged. Is there anything worse than boredom?

1
1
1
1
1
1
1
1
1
1
1
1
1
1
l
1

r
r
r

r

r
r

Table of Contents

SECTION I - 40 COLUMN MODE
LESSON 1

LET'S GET STARTED•.................................. 11

LESSON 2
SAVE AND LOAD PROGRAMS ON DISK•..... 16

LESSON 3
REFERENCE LIBRARY OF EDITING FUNCTIONS , 24

LESSON 4
PRINT RGLES•.......................•.•... 31

LESSON 5
VARIABLES•.•..••.•..... 37

LESSON 6
HTAB, TAB, AND VTAB STATEMENTS TO FORMAT OUTPUT ..•....•...•. 46

LESSON 7
PRECEDENCE•..•.................•.•..•.....•...•. 50

LESSON 8
Loops .. 56

LESSON 9
RELATIONAL AND LOGICAL OPERATORS•..... 64

LESSON 10
PROBLEM SOLVING AND FLOWCHARTING•........... 70

LESSON 11
RULES FOR EFFICIENT PROGRAMMING•........................ 76

LESSON 12
SUMMING. COUNTING. AND FLAGS•.•..•.....•..... 80

LESSON 13
SINGLE SUBSCRIPTED VARIABLES••..... 84

LESSON 14
DOUBLE SUBSCRIPTED VARIABLES ..••....•..•.•.....••....••...•. 92

LESSON 15
STRING ARRAYS•...•....•...............•......•.••..•. 97

LESSON 16
FUNCTIONS ..••.•.•............•••.......•••.•...•.•••••.• 118

LESSON 17
LIST, DELETE, AND EDIT .••..........••••...•.•.•...•.....•... 122

LESSON 18
PLAY COMPUTER •.......•..•..•••......••...•...••.......•. 129

LESSON 19
RESERVED WORDS •........•••........•....••...•.•........• 132

LESSON 20
MENU SELECTION AND CODING FORMULAS•......•.•.....• 134

LESSON 21
PROGRAM OUTLINE •.................••...•.......•.•..•...•. 144

LESSON 22
CLEANUP•............•.•.•...•.....•..• 148

LESSON 23
ApPROACHING THE PROBLEM•.•....•.............•... 161

LESSON 24
PROGRAM FLEXIBILITY ..•....................•....•........•• 169

LESSON 25

1
1
1
1

1·.(.· .. I,',

1
1

CIRCULAR LISTS, STACKS, AND POINTERS •.........••••...•..•....• 17 4 ~

LESSON 26 !)
SORTING, SEARCHING, AND DELETING•..••..•.•.•.. 183

LESSON 27
FORMULAS •......•.•.••..•..••..•.........••...••.•..•.••. 214

LESSON 28
CASH FLOW•.............•.••..•...•••.•.•.......•.. 228

LESSON 29
NUMERICAL PROGRAMS•......••...•.•...•.•....•.. 248

SECTION 11- 80 COLUMN MODE
LESSON 30

80 COLUMN MODE•.............. 279

LESSON 31
80 COLUMN FORMATTER ..•.......••.•.................•...... 288

INDEX ." .. 298

1

1 ,
1
1

r
r
r
r SECTION I

r
r
r
r
r
r
r
[

r
r
r
r

40 Column Mode

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

r
c
r
r
~
I

r
r
r
r
r
r
r
r
r
r
r

LESSON 1

Let's Get Started

OBJECTIVES

After completion of Lesson 1 you should be able to:

1. Turn on the Apple lie computer and monitor.
2. Place the DOS 3.3 master disk in the disk drive and load the Integer

BASIC language into memory. (The Apple lie comes up with Applesoft
language for use).

3. Be able to type in a simple program, RUN the program, and LIST the
program on the screen.

4. Clear the computer's memory by typing NEW, and pressing RETURN.

VOCABULARY

Applesoft Language - An extended BASIC language that handles real
numbers (instead of integers), and in most respects is an advance from
the Integer BASIC language. (BASIC stands for Beginners All-purpose
Symbolic Instruction Code, and was developed at Dartmouth College by
John G. Kenney and Thomas E. Kurtz.)

Deferred Execution - This means that a line is to be executed at a later
time. BASIC statements begin with a positive integer line number and are
run in the deferred mode. (Example: 10 FOR J = 1 TO 5)

Immediate Execution - This means that a line is to be executed
immediately. BASIC commands without a line number are run in the
immediate execution. (Example: PRINT J, or PRINT 10)

Input/Output - Commonly referred to as I/O, and is a general term used to
indicate communication with a computer. The process of transmitting
data from an external source, such as keyboard, disk, or modem, to
memory, and sending information from memory to an external device
such as disk, printer, or modem.

Integer - An integer is any whole number, its negative, or zero. Integers
never include decimal points, unless they are being expressed as real
numbers.

11

12 APPLESOFT FOR THE lie

Integer BASIC - A language that uses integers as the base and has limited
string and array capabilities.

Interface Card - A card that is used as a common means of communicating
between automatic data-processing parts of a single system. An interface
card must be used to communicate between the disk drive and the
computer's memory.

Interpreter - An interpreter translates program statements into a language
that the computer can understand while the program is running. If there
is an error in a program statement, the interpreter stops the program
from running until the error is corrected. (Example: PUNT "J = ";J
causes a SYNTAX ERROR)

Line Number - A line number is a positive integer that begins each
program statement.

List - An immediate command that displays the entire program on the
screen.

Logic - Logic is the science dealing with the formal principles or reasoning
in electronic data processing. A program may run when there are no
SYNTAX ERRORS, but the results may be incorrect because the logic is
incorrect.

Memory - The term used to describe the internal storage locations within
the computer.

Monitor - CRT- VDM - Screen - These are all words used to describe the
television screen where the program and/or data is viewed. CRT stands
for cathode ray tube. VDM stands for video display module.

NEW - NEW is the immediate execution command that erases the program
stored in memory.

Program - A program is a set of instructions that allows the computer to
solve a specific problem.

Program Statement - A program statement is an instruction to the
computer preceded by a positive integer, called a line number.

Return - Pressing the RETURN key tells the computer that the action is
finished, and to prepare for another action. When the RETURN key is
pressed, two things happen, (1) the line just typed is entered as part of the
program, and (2) the carriage moves to the beginning of the next line.

Slot - A slot is an opening into which an interface card is placed. The Apple
lie has seven (7) slots to accommodate interface cards.

40 Column - The Apple lie screen is 24 rows by 40 columns. Many
programs will be written using the 40 column mode.

80 Column - If an 80 column card is installed in the Apple lie, the screen is
24 rows by 80 columns. The 80 column screen is used primarily for word
processing using the Apple Writer II.

11
"

1
1

1 ,
1 ,
1
..,

!I
~\

1

[

r
r
r
r

r
r
r

r
r
r
b

r

LET'S GET STARTED 13

DISCUSSION

The Apple lie is plugged into a three wire grounded socket. The Apple
monitor is also plugged into a three wire grounded socket. The monitor is
connected to the Apple lie. The disk drive interface card is placed in
input{output (I/O) slot #6, and the disk drive cable is attached to drive #1 on
the interface card. If an 80 column card was purchased, it is placed in the
auxiliary slot (related to slot #3). Specific instructions for assembling the
Apple lie configuration are found in the Apple lie owners manual, Apple
Computer Inc., 20525 Mariani Avenue, Cupertino, California, 95014.

TO ACTIVATE THE DISK OPERATING SYSTEM

The DOS 3.3 SYSTEM MASTER disk is placed in the disk drive, and the
disk drive door is closed.

The monitor switch is placed in the "on" position. The Apple lie switch,
located at the left rear corner of the computer, is turned "on." The red light
on the disk drive shines, the disk drive turns, and the read/write bead loads
the Integer BASIC language into the computer. This takes about four
seconds and the screen information is shown in Fig. 1·1. When the
information is loaded, the Applesoft prompt and cursor (]) appear on the
screen, indicating that the Applesoft Language is the language to be used.

APPLE lie
DOS 3.3 SYSTEM MASTER

JANUARY 1, 1983
COPYRIGHT APPLE COMPUTER, INC. 1980-1982

LOADING INTEGER BASIC
INTO MEMORY

Fig. 1-1. Screen information while loading integer BASIC into the computer memory.

If you are inexperienced with a computer, your first reaction is probably,
now what do I do? Even an experienced computer operator has a lost
feeling, the first time he or she turns on a new computer. The monitor, with
its big eye, stares at you, and you stare back.

There are many details to learn. They can only be covered one step at a
time, so let's start with a few basics.

Please type in the following program.

10 FOR J = 1 TO 5
20 PRINT"J = ";J
30 NEXT J
40 END

PRESS RETURN
PRESS RETURN
PRESS RETURN
PRESS RETURN

14 APPLESOFT FOR THE lie

Now type in the word RUN, and press RETURN. If the program was typed
correctly, these results appear on the screen.

RUN
J = 1
J = 2
J = 3
J = 4
J = 5

Very good, this programming is going to be easy for you.
Now let's make a mistake to see how the computer reacts. Please type in

the following line.

20 PUNT "J = ";J PRESS RETURN
RUN
?SYNTAX ERROR IN LINE 20

The interpreter checked line 20, and found an error that would not allow
the program to RUN. Anytime the interpreter finds an error (other than a
logic error), the program stops running, and the computer prints out an
error message (Lesson 3, Table 3·5).

Now retype line 20 correctly.

20 PRINT "J = ";J

Now type RUN, and press RETURN, to see if the program runs correctly. If
the program does not run, make any corrections so that it does run. AT
THIS STAGE, RETYPE THE ENTIRE LINE WHERE THE ERROR OC
CURRED.

Now type LIST.

LIST
1 0 FOR J = 1 TO 5
20 PRINT "J = ";J
30 NEXT J
40 END

The program stored in memory appears on the screen when LIST (press
RETURN) is typed on the screen.

Now type NEW (press RETURN).
Now type LIST and press RETURN. Nothing appears on the screen. The

immediate execution command NEW clears the program from memory.
That's enough for the first sitting, however, let's summarize what we

learned.

1. RETURN must be pressed after each immediate or deferred execution
command is given to the computer. The RETURN tells the computer
that one action is finished, and another one is about to begin.

1
l
l ,

)

,
}

l ,
)

1
l

l
l
1

J

1

, .. 1 .. ' i'
i

r
r

r

r
r

r
r
r
r

LET'S GET STARTED 15

2. The program statement must begin with a positive integer line
number.

3. The program statement must be typed in the correct language before
the computer will accept it to RUN in a program.

4. After a program is typed from the keyboard, typing RUN and pressing
RETURN causes the program to execute.

5. To list all of a program stored in memory, type LIST, and then press
RETURN.

6. To erase a program stored in memory, type NEW, and then press
RETURN.

LESSON 2

Save and Load Programs on Disk

After completion of Lesson 2 you should be able to:

1. Initialize disks that are used to save and load programs ..
2. Copy a disk.
3. Type a program on the screen, use the reserved word SAVE, to save

the program on a disk.
4. Load a program stored on disk into the computer memory, by using

the reserved word LOAD.
5. Use a limited number of disk operating commands such as

CATALOG, RENAME, LOCK, and UNLOCK.

VOCABULARY
Booting DOS - The process of loading disk operating system commands

into the Apple computer. Bootstrap is the technique of loading a
program into a computer by means of certain preliminary instructions
which in turn call in instructions to read programs, and/or data. The
preliminary instructions are usually preset on a device (a disk, in this
case), and called into action by the power "on" switch, or a special
command from the keyboard, IN#6. Literally, the computer picks itself
up "by its bootstraps."

Disk - A magnetic disk is a storage device that consists of a flat circular
plate coated on both sides with some material (Mylar) that can be
magnetized. A number of tracks (13 on DOS 3.2, and 16 on DOS 3.3) are
available on the disk surface and data is read from or written to these
tracks by means of a READ/WRITE head. The Apple lie uses a single
density, soft sectored, 5%-inch disk as its virtual storage medium. The
51f4-inch floppy disk has a storage capacity of 118,000 bytes in the 3.2
disk operating system, and 146,000 bytes in the 3.3 disk operating
system. The DOS 3.3 will store between 100 and 120 pages of normal
text.

Directory - A directory is a translation table used to specify the size and
format of files stored on the disk. Each record type and field type is

16

1
1
1
1
1
1
1

1 ,
,
1
1
1

r
r
r
r
r
r
r
r
r

r
r
r
r
r
r

SAVE AND LOAD PROGRAMS ON DISK 17

identified by a data file name. The disk is divided into thirty-five (35)
tracks, three (3) of these tracks are used for the disk operating system,
and one (1) track, #11, is used for the directory. The remaining thirty-one
(31) tracks are for the programmer's use.

DOS - The disk operating system consists of a disk drive, or drives, an
interface card that plugs into one of the eight input/output (I/O) slots in
the Apple motherboard. The DOS interface card plugs into any slot
numbered one (1) through seven (7). I/O slots #6, and #4 are primarily
used for disk drives. When the disks are used in any manner, a request for
use is made to the disk operating system. A software program handles
the requests and is on the master disk, or any initialized disk.

Interface - Interface refers to the electronic connections between the
computer and a peripheral unit such as a cathode ray tube (CRT, or
screen), disk drives, modem, or printer. The interface is commonly
referred to as an interface board that plugs into an input/output (l/0) slot.
The cable from the peripheral unit plugs into the interface board.

Motherboard - A motherboard is a large insulating circuit board on
which components, modules, or other electronic assemblies are
mounted. Interconnections between board and components are made by
welding, soldering, or other means.

ROM (Read Only Memory) - ROM is a fixed memory and is any type of
memory which cannot be readily rewritten. The information ~n ROM is
stored permanently and is used repeatedly. Such storage is useful for
programs such as the disk operating system (DOS) boot program.

Write Protected - When a disk is write protected, it means that the disk
can be read from, but it cannot be written to. (It has no cutout hole in the
disk cover.) The Apple lie DOS 3.3 MASTER is write protected.

The interface card between the computer and the disk drive is placed in
input/output (I/O) slot #6 on the Apple motherboard. The interface card has
two male plugs for attaching two disk drives. The boot disk drive cable is
plugged into the plug marked "DRIVE #1." If there is a second di* drive, its
cable is plugged into the plug marked "DRIVE #2." On a two disk drive
system, the boot drive is referenced as DRIVE #1 (,D 1, or SLOT #6, DRIVE
#1 ,S6,D1). The other drive on a two disk drive system is referenced as
"DRIVE #2" (DRIVE #2 ,D2, or SLOT #6,DRIVE #2 ,S6,D2)

BOOT THE SYSTEM

To boot (bring up) the disk operating system (DOS), the disk drive door is
opened gently, the master disk (or initialized disk) is placed in the disk drive
gently, and the disk drive door is closed gently.

Many operators prefer to open the disk drive door, insert the master disk,
and LEAVE THE DISK DRIVE DOOR OPEN until after the power switch has

18 APPLESOFT FOR THE lie

been turned "on." When the power is turned "on," the read/write head
moves slightly and may damage the disk. After the power has been on for a
second or more, the disk drive door is closed so the disk can be read to boot
the system.

When the disk operating system is booting, the red light on the disk drive
is turned "on," and the cursor disappears from the screen. When the disk
operating system is loaded into memory, the red light on the disk drive
turns "off," and the cursor reappears on the screen.

INITIALIZE A DISK

If this is the first time you have booted DOS from the master disk, it is
important that you learn to initialize a disk for your own use. The master
disk is WRITE protected, so you cannot write to it, only read from it. A
WRITE protected disk has no square cutout hole on the right side when you
are facing the label on the disk.

To initialize a disk on a one disk drive system:

1. Take the master disk out of the disk drive.
2. Place the disk to be initialized into the disk drive.
3. Type the phrase, INIT HELLO, so it appears on the screen. (INIT is a

reserved word used to initialize a disk.)
4. Press RETURN.

To initialize a disk on a two disk drive system with the master disk in disk
drive #1 (boot drive):

1. For precaution, open the door on disk drive #1 (boot drive). Even
though the master disk is write protected, it is a good habit to open the
door on the disk drive that is not being used. Many times when you are
using DOS you will forget what you want to do. If the disk drive door is
open and you send information to the wrong disk, the DOS system will
print, I/O ERROR, on the screen. This I/O ERROR message makes you
think and realize what action should be taken to perform the correct
task.

2. Place the disk to be initialized in disk drive #2.
3. Type the phrase, INIT HELLO,D2, so it appears on the screen.
4. Press RETURN.

After RETURN is pressed, the red light on the #2 disk drive is turned "on,"
the cursor disappears from the screen, the stepper motor rotates the disk at
about 360 revolutions per minute, and the disk is initialized to thirty· five
tracks. Each track is broken into thirteen (13) sectors in DOS 3.2, and
sixteen (16) sectors in DOS 3.3.

The initialized disk has a directory which holds all the information about
programs or files that are stored on the disk. When a new program or file is

11
,I
>

1
1
1
1
1
1
.,

:j

1
1
1 ,

j

1
1

r L _

r,;·-· r

r
r

r
r
r
r
r
r
r
c
r
r

SAVE AND LOAD PROGRAMS ON DISK 19

placed on the disk, the directory is updated to contain the information.
After the disk is initialized, the red light on the disk drive is turned "off,"

and the cursor reappears on the screen.
You can see what is on the disk by typing one of the following messages:

1. CATALOG - The command used to see what is listed on a disk (on a
one disk drive system, or the disk drive that was last accessed on a two
disk drive system).

2. CATALOG,D2 - The command used to see what is listed on a disk in
disk drive #2.

3. CATALOG,D1 - The command used to see what is listed on a disk in
disk drive #1.

CA TALOG A DISK

When you type CATALOG (CATALOG,D2) and press RETURN, the
following information is written on the screen.

CATALOG
DISK VOLUME 254
A 002 HELLO
• (flashing cursor)

The "A" indicates the "HELLO" program is in the Applesoft language.
The "002" means the program takes up two (2) sectors.

SLOT, DRIVE, AND VOLUME OPTIONS

When using the INIT command to initialize a disk, there are three options
that can be used: slot number, drive number, and volume number. The
volume number option is especially useful when you want to number your
disks in a specific manner.

UNIT HELLO,S6,D2,V3
]CATALOG
DISK VOLUME 003
A 002 VOLUME 003
• (flashing cursor)

On a one disk drive system, INIT HELLO,V3 produces volume #3, since
the DOS system only sees slot #6, drive #1.

On a two disk drive system, INIT HELLO,D2,V3, produces the initialized
volume #3 in disk drive #2, since the DOS system sees the interface card in
I/O slot #6.

COpy A DISK

Apple Computer suggests that a copy be made of the DOS 3.3 MASTER
DISK. The copy is used to boot DOS and the master is placed in a safe place

20 APPLESOFT FOR THE lie

in case something happens to the copy of the master. It is always a good
idea to make a copy of any important programs or data. If the original
program or data is accidentally destroyed, the backup copy can be used.

On the DOS 3.3 MASTER DISK is a program to copy the contents of an
entire disk. The program is called COPY A.

To copy the DOS 3.3 MASTER DISK, place the DOS 3.3 MASTER DISK in
the disk drive and type RUN COpy A (press RETURN). The COPY A (A for
Applesoft) is loaded into memory. The screen contains the following state·
ments.

APPLE DISK DUPLICATION PROGRAM

ORIGINAL SLOT: DEFAULT = 6 (PRESS RETURN)
DRIVE: DEFAULT = 1 (PRESS RETURN)

DUPLICATE SLOT: DEFAULT = 6 (PRESS RETURN)
DRIVE: DEFAULT = 2 (if you have a one drive system

you must type in a 1 to change
the default value)
PRESS RETURN

- PRESS 'RETURN' KEY TO BEGIN COpy -

When RETURN is pressed, the message, INSERT ORIGINAL DISK AND
PRESS RETURN, appears on the screen. A portion of the DOS 3.3 MASTER
DISK is loaded into memory.

When a portion of the DOS 3.3 MASTER DISK is loaded into memory
(READ from disk), a message appears on the screen, INSERT DUPLICATE
DISK AND PRESS RETURN. When a disk is placed in the disk drive, the
COPY A program INITIALIZES the disk before writing to it. After the disk is
initialized, a portion of the DOS 3.3 MASTER DISK is written to the copy.
After the write procedure is completed, INSERT ORIGINAL DISK AND
PRESS RETURN, is written to the screen. Alternating the original and the
copy continues until all the original DOS 3.3 MASTER DISK is placed on the
copy. The DOS 3.3 MASTER DISK must be read six times, and the copy
must be written to six times, before the procedure is complete. With a two,
or more, disk drive system, the MASTER and copy would have been
inserted one time for the complete operation. After the copy is made, DO
YOU WISH TO MAKE ANOTHER COPY?, appears on the screen. "N," for
no, terminates the program.

FILE NAMES

In DOS the program must have a name that follows a certain pattern. A
legal file name in DOS must be from one (1) to thirty (30) characters in
length. The file name must begin with a letter from "A to Z," followed by
any alphabetic character, a number from one (1) to zero (0), or any other
character except a comma (,). A comma is the character reserved for the

l
1
l
1 ,

>

1
1
1

1
l

r
r
r
r
[

r

r

r

SAVE AND LOAD PROGRAMS ON DISK 21

slot, drive, and volume options. The command takes everything preceding
the comma as a file name (even control characters).

LEGAL FILE NAMES
LOOP
LOOPI
JOHN DOE
MIOOO

ILLEGAL FILE NAMES
1001 - starts with a number.
JOHN DOE, PhD - contains a comma
A NAME LONGER THAN THIRTY CHARACTERS IS TRUNCATED TO

THIRTY CHARACTERS
Now let's write a program, and SAVE it to disk.

10 FOR J = 1 TO 5
20 PRINT "J = ";J
30 NEXT J
40 END

Let's name the program LOOP.

SAVE A PROGRAM TO DISK

To save the program to disk, type SAVE LOOP (or SAVE LOOP,Dl - or
SAVE LOOP ,D2), and press RETURN. The cursor disappears, thel red light
on the disk drive goes "on," and the program is written to disk. When the
program has been written to disk, the red light goes "off," and the cursor
reappears on the screen. The DOS system requires that the program be
named before it can be SA VEd. SAVE LOOP is the proper command when
using DOS.

DOS remembers which disk drive was accessed last. If disk drive #2 was
last read from or written to, then SAVE LOOP is directed to disk drive #2.
To place LOOP on the disk in disk drive #1, use the command, SAVE
LOOP,Dl. The last disk accessed is the default drive. The default drive does
not require that the drive option be placed on the command.

CLEAR COMPUTER MEMORY

If you want to clear memory to write another program, or to load a
program from disk type NEW, and press RETURN. The NEW command
clears memory, but does not disturb the DOS system. Memory should be
cleared at any time a situation arises that requires a different memory use.

If you want to save a program, and then do more work on it, you do not
need to clear memory. You can add to, change, or delete part of a program,
and then save the program again. The last version SAVEd will be the
program on disk.

22 APPLESOFT FOR THE lie

LOAD A PROGRAM FROM DISK

Before loading a program type NEW, and press RETURN, so that memory
is cleared.

Now, let's LOAD LOOP from disk. Type:

LOAD LOOP - if the LOOP program is on the disk in the default disk
drive,
LOAD LOOP,D1 - if LOOP is on a disk in disk drive #1,
LOAD LOOP ,02 - if LOOP is on a disk in disk drive #2, and press
RETURN.

Entering the command LOAD LOOP, and pressing RETURN loads the
program into the computer memory. After the program is loaded, type
LIST, and the program is listed to the screen. The LIST and EDIT functions
are in Lesson 17.

RUN A PROGRAM FROM DISK

If you prefer to run the program directly from disk, type RUN LOOP, and
press RETURN. The program is loaded into memory and run.

RENAME A PROGRAM ON DISK

To change the name of a program saved on disk, use the RENAME
command, in this format.

RENAME LOOP, LOOP1 - if LOOP is on a disk in the default disk drive.
RENAME LOOP,LOOP1,D2 - to direct the command to the disk in disk
drive #2.
RENAME LOOP,LOOP1,D1 - if LOOP is in a disk in disk drive #1.

If LOOP1 is already on the disk, and you use the command RENAME
LOOP,LOOP1, you will have two files named LOOP1 on the disk. The
RENAME command does not look through the directory to see which files
are already on the disk.

DELETE A PROGRAM ON DISK

To delete the program named LOOP that has been saved on a disk, type,
DELETE LOOP, and press RETURN. The cursor disappears, and the disk
red light goes "on," and the program is deleted from the disk. When the
deletion is complete, the red light on the disk drives goes "off," and the
cursor returns to the screen.

LOCK A PROGRAM
To LOCK the program named LOOP, type LOCK LOOP, and press

RETURN.

l
l
l ,
l
l
l
l
l
l
.,
J

l
1
l
l
l

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

LOCK LOOP
CATALOG
DISK VOLUME 003
A 002 HELLO
*A 002 LOOP

SAVE AND LOAD PROGRAMS ON DISK 23

When a CATALOG is commanded, an asterisk (*) appears to the left of
the "A." This asterisk (*) indicates that the program LOOP is locked, and
cannot be deleted, or renamed.

DELETE LOOP or (RENAME LOOP, LOOP1)
FILE LOCKED

If the disk is reinitialized, the program named LOOP will be lost.
Initialization destroys all data on the disk.

UNLOCK A PROGRAM

To unlock the program named LOOP, so that it can be deleted or
renamed, type UNLOCK LOOP.

UNLOCK LOOP
CATALOG
DISK VOLUME 003
A 002 HELLO
A 002 LOOP

When the disk is CATALOGed, the asterisk (*) has been removed, and the
program named LOOP, can be deleted or renamed.

For more instructions on the DOS please refer to Apple II, The DOS
Manual, Disk Operating System, 1980, 1981 by APPLE COMPUifER INC.,
10260 BANDLEY DRIVE, CUPERTINO, CALIFORNIA, 95014.

LESSON 3

Reference Library of Editing Functions

DISCUSSION

The Apple lie computer has special keys, CAPS LOCK, CONTROL,
CURSOR ARROWS (+-, -+, ~ , t), DELETE, ESCAPE, OPEN APPLE (Ln,
SOLID APPLE (tl), AND FOUR SPECIAL CHARACTER KEYS
('N),([O,(]}),(V). The use of these keys and characters will be explained in
the alphabetical order of their first letter. The following library is only a
partial list of the special functions of the Apple lie. For a complete detailed
list of all applications, Apple lie software manual should be researched.

CAPS LOCK (40 column mode)

The CAPS LOCK key should be in the locked position when the DOS 3.3
MASTER DISK is booted. The CAPS LOCK key should be locked down
when writing programs in Applesoft. An Applesoft program written in lower
case (CAPS LOCK KEY UNLOCKED) will give a SYNTAX ERR when the
offending program statement reaches the interpreter. In the unlocked posi
tion the CAPS LOCK key can be used to place lower case letters in PRINT
and DATA statements.

10 PRINT "John Doe"
20 END
RUN
John Doe
DATA John Doe, (or "John Doe")

If the CAPS LOCK key is in the unlocked position, the shift key can be
used to capitalize letters, and then downshifted to make lower case letters.

CAPS LOCK (80 column mode)

The 80 column mode (if the 80 column card is in the auxiliary slot) can be
activated by typing PR#3, or IN#3. Once the 80 column card is activated,
the mode can be changed from 40 to 80 column modes by either of two

24

1
'}

l
1
l ,

y

l
l
l
l
1
l
l
l
IIIIIIIt

I
j

j ,
J

r
r
r

r
(

r

r
r
r
r
r

r

REFERENCE LIBRARY OF EDITING FUNCTIONS 25

ways. (1) ESCAPE 40 causes a return to the 40 column mode, and ESCAPE
80 returns to the 80 column mode. (2) CONTROL Q causes a return to the
40 column mode, and CONTROL R returns to the 80 column mode. The 80
column card is deactivated by pressing ESCAPE CONTROL Q. Another way
to deactivate the 80 column card is to press CONTROL RESET. When
CONTROL RESET is used to deactivate the 80 column card the program
stored in memory is destroyed.

Programs written in the 80 column mode must be written in capital
letters for the program to execute. Lower case can be used in PRINT and
DATA statements.

CONTROL

RESET cannot be activated directly. CONTROL RESET must be pressed
for the RESET to function. CONTROL functions are listed in Table 3·1 and
Table 3-3.

Table 3-1. Control Functions 40 Column Mode (SO Column Card Inactive)

CONTROL APPLE lie
CHARACTER NAME WHAT FUNCTION IS EXECUTED

CONTROL C Causes the program to stop running.
CONTROL G BEll Causes the bell to ring.
CONTROL H DOWN ARROW Causes the cursor to move one line down.
CONTROL I Horizontal tab.

CONTROL J DOWN ARROW line feed.
CONTROL K UPARROW Vertical tab.
CONTROll Form feed.
CONTROL M RETURN The same as the RETURN character.
CONTROL S Causes the program to stop running or listing.
CONTROL U RIGHT ARROW Negative acknowledge.
CONTROL X Causes the line that is being typed to be deleted.
CONTROL [ESC Escape.

ARROW KEYS (40 and 80 column mode)

The Apple lie has four arrow keys, LEFT, RIGHT, DOWN, and UP. The
LEFT and RIGHT arrow keys move the cursor to the left or right simply by
pressing the key. A built in REPEAT function can be activated by maintain
ing pressure on the arrow key. The DOWN arrow key will move down simply
by pressing .the down arrow key. The UP arrow key will move up after
ESCAPE is pressed. ESCAPE functions are listed in Table 3-2 and Table
3-4.

26 APPLESOFT FOR THE lie

Table 3-2. Escape Functions 40 Column Mode (80 Column Card Inactive)

CONTROL APPLE lie
CHARACTER NAME WHAT FUNCTION IS EXECUTED

ESCAPE Clears the screen and places the cursor at row #1,
SHIFT@ column #1, and leaves the escape mode.
ESCAPE A Moves cursor right one position, leaves escape

mode.
ESCAPE B Moves cursor left one position, leaves escape

mode.
ESCAPE C Moves cursor down one position, leaves escape

mode.
ESCAPE D Moves cursor up one position, leaves escape mode.
ESCAPE E Clears to the end of the line.
ESCAPE F Clears to the end of the screen.
ESCAPE I Moves cursor one line up, remains in escape mode.
ESCAPE J Moves cursor one space left, remains in the escape

mode.
ESCAPE K Moves cursor one space right, remains in the

escape mode.
ESCAPE M Moves cursor one line down, remains in the escape

mode.

ESCAPE ARROW KEYS ARE THE SAME AS I, J, K, M

DELETE KEY

The DELETE key is used with the Apple Writer II for word processing.
When using the Apple Writer II, the delete key used by itself is a destructive
delete key (text cannot be retrieved).

The delete key cannot be successfully used to delete program statements
in the 40 or 80 column mode.

ERROR MESSAGES

A list of error messages can be viewed in Table 3-5.

OPEN APPLE KEY

OPEN APPLE CONTROL RESET is a power-on start. Using OPEN APPLE
CONTROL RESET causes the program in memory to be lost.

The OPEN APPLE key is used with Apple Writer II in conjunction with the
question mark (?) to get to the Apple Writer II help section.

The OPEN APPLE key is used in conjunction with Apple Writer II and the
back arrow to place 128 characters in the text buffer, and the OPEN APPLE
and the forward arrow are used to retrieve 128 characters from the text
buffer and place the text on the screen.

,
)

1
1
l
1

J

l
1
1
l
1

l
1 ,

J

l
l

r
r
r
r
r

r

r

r

r
r

REFERENCE LIBRARY OF EDITING FUNCTIONS 27

Table 3-3. Control Functions 80 Column Card Active

CONTROL APPLE lie
CHARACTER NAME WHAT FUNCTION IS EXECUTED

CONTROL H BACKSPACE Moves the cursor one position to the left; from
the left edge of the window, moves to the right
end of the line above.

CONTROL J LINE FEED Moves cursor down to the next line in the
window; scrolls down if needed.

CONTROL K CLEAR EOS Clears the cursor position to the end of the
window.

CONTROL L CLEAR Moves the cursor position to the upper left
corner of the window and clears the window.

CONTROL M RETURN Moves the cursor position to the left end of the
text line in window, and scrolls.

CONTROL N NORMAL Sets the display to the normal mode.
CONTROL 0 INVERSE Sets the display to the inverse mode.
CONTROL Q 40 COLUMN Sets the screen to the 40 column mode after

MODE PR#3 has activated the 80 column card.
CONTROL R 80 COLUMN Sets the screen to the 80 column mode after

MODE PR#3 has turned the 80 column card on.
CONTROL S STOPS LIST Stops the program listing.
CONTROL U QUIT Deactivates the 80 column card, clears the

screen, and the cursor goes to row 1, column 1.
CONTROL V SCROLL Scrolls the program down one line, but leaves

the cursor in the same position.
CONTROL W SCROLL UP Scrolls the program up one line, but leaves the

cursor in the same position.
CONTROL X Causes the line being typed to be deleted.
CONTROL Y HOME Moves the cursor to the upper left corner of the

window.
CONTROL Z CLEARS LINE Moves the cursor position to the right edge of

the window.

REPEAT KEY

The REPEAT key is a built in function so all keys repeat themselves when
slight extra pressure is placed on the key.

RESET

The SOLID APPLE key is used in combination with the RESET key (when
pressed by itself, the RESET key performs no function) and the CONTROL
key. When the CONTROL RESET key combination is pressed, the action
taking place stop~, and the cursor returns to the screen.

SOLID APPLE

The SOLID APPLE key is used in combination with CONTROL RESET for
memory self test. When the SOLID APPLE CONTROL RESET combination

28 APPLESOFT FOR THE lie

Table 3-4. Escape Functions 80 Column Card Active

ESCAPE FUNCTION WHAT THE FUNCTION DOES

ESCAPE SHIFT @ Clears the screen window and moves the cursor to row
1, column 1.

ESCAPE A Moves the cursor one position to the right.
ESCAPE B Moves the cursor one position to the left.
ESCAPE C Moves the cursor one position down.
ESCAPE 0 Moves the cursor one position up.
ESCAPE E Clears to the end of the line.
ESCAPE F Clears to the bottom of the window.
ESCAPE I Moves the cursor one line up.
ESCAPE J Moves the cursor one space left.
ESCAPE K Moves the cursor one space right.
ESCAPE M Moves the cursor down one line.
ESCAPE R Turns on the upper case restrict mode after PR:fI:3 turns

on the 80 column card.
ESCAPE T Turns off the upper case restrict mode.
ESCAPE 40 Switches to a 40 column mode.
ESCAPE 80 Switches to an 80 column mode.
ESCAPE CONTROL Q Deactivates the 80 column card.

ESCAPE ARROW KEYS ARE THE SAME AS I, J, K, M

Table 3-5. Error Messages 40 Column or 80 Coiumn Mode

TYPE OF MESSAGE PROBABLE REASON

BAD RESPONSE TO INPUT Out of range, string to array, etc.
BAD SUBSCRIPT An attempt is made to reference an array

element which is outside the dimensions of the
array. This error can occur if the wrong number
of dimensions are used in an array reference.
For example, X(3,3) = 5.6 when the array was
dimensioned DIM X(6).

CAN'T CONTINUE An attempt was made to continue the program
with the CO NT command and no program was
in memory. CO NT was used after an error, or
after the program had been changed, deleted
from, or added to.

CONTROL C INTERRUPT The program was stopped by pressing CONTROL
C. The line number where the program stopped
is displayed on the screen.

DIVISION BY ZERO An attempt was made to divide by zero. This
often occurs when a variable is used in an
arithmetic expression before it is initialized to a
value other than zero.

l
l
1
l
1
1
-\

j

l ,

l
~

j
J

l
1

,!

r··

i

r REFERENCE LIBRARY OF EDITING FUNCTIONS 29

Table 3-S-cont. Error Messages 40 Column or 80 Column Mode

TYPE OF MESSAGE PROBABLE REASON

FORMULA TOO COMPLEX More than two statements of the form If "AA"
THEN were executed where "AA" is a quoted

r string. Applesoft IF - THEN was not intended to
be used with strings.

FORMAT ERROR Immediate execution statement -
?SYNTAX ERROR
Deferred execution statement -
?SYNTAX ERROR (in line) 30

ILLEGAL DIRECT An attempt was made to use one of the
following statements in immediate execution -
DEF FN, GET, INPUT, ONERR GOTO, READ,
RESUME.

ILLEGAL QUANTITY The parameter passed to a math or string
function was out of range, negative array
subscript, using a LOG with a negative or zero
number, using SQR with a negative number,
raising a negative number to a power and not r
using an integer power, using a string with an
improper argument.

NEXT WITHOUT FOR The NEXT statement variable is missing or did
not correspond with the FOR statement at the
beginning of the loop.

OUT OF DATA READ statement was executed but there was no
data left to be read. A RESTORE statement will
cause the DATA to be reset from the first item.

OUT OF MEMORY Program too large, too many variables,
FOR-NEXT loops nested over ten deep, GOSUBs
nested more than 24 levels deep, expression

r
\

too complicated, parentheses nested .more than
36 levels deep, LOMEM and HIMEM errors.

OVERFLOW Numbers are too large for the computer to
handle. r

REDIMENSIONED ARRAY Dimensioned the same array more than once.
RETURN WITHOUT GOSUB A RETURN statement was encountered without

a corresponding GOSUB statement being
executed.

STRING TOO LONG The maximum for a string is 255 characters.
SYNTAX ERR (and a beep) This syntax refers to the DOS.
?SYNTAX ERR The "?" before the message refers to r

APPLESOFT.

r

30 APPLESOFT FOR THE lie

Table 3-5-cont. Error Messages 40 Column or 80 Column Mode

TYPE OF MESSAGE PROBABLE CAUSE

SYNTAX ERR The "" refers to INTEGER BASIC.
A SYNTAX ERROR is caused by a missing
parentheses in an expression, an illegal
character in a line, an incorrect punctuation,
etc.

TYPE MISMATCH The left side of an argument was a string
variable and the left side was a numeric
variable, or vice versa.

UNDEFINED STATEMENT A DEF FN function was used, but it was never
defined.

FOR A COMPLETE LIST OF ERROR MESSAGES AND NUMBERS REFER TO:
Applesoft BASIC Programmer's Reference Manual - Volume 2 - For the Apple
lie Only

is pressed in the correct sequence, memory is tested. If memory is OK, the
message KERNEL OK is written on the screen. Any other message means
the computer requires service.

After memory tests are completed, the computer must be restarted,
either by using the off/on switch, or the ESCAPE CONTROL RESET combi
nation.

When using the Apple Writer II, the SOLID APPLE key is used in conjunc
tion with the TAB key. The combination causes the cursor to pass over the
existing text to the next tab position. For more detail see the Apple Writer II
manual.

TAB KEY

The TAB key is used with the Apple Writer II to tab from one tab position
to the next, after the tab stops have been set.

l
l
l
l
l

l
l
l
l
l
l
l
1 ,
J

l

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

LESSON 4

Print Rules

After completion of Lesson 4 you should be able to:

1. Write a program in Applesoft using PRINT statements.
2. Define and properly use the print rules pertaining to PRINT state

ments.

VOCABULARY

Applesoft BASIC - Applesoft lie basic is a more extended, comprehensive,
and flexible language than Integer BASIC. '

Command - Command is synonymous with instruction. It is a word direct
ing the computer to perform a specific action.

Documentation - Documentation is the total history of a program and its
component parts from inception to completion. Documentation enables
another programmer to understand the program.

Delimiters - Delimiters are the signals that tell the computer how closely
the output is to be printed, i.e., the comma, and the semicolon.

Format - The format is the prearranged assignment of data. The format
statements determine how the output will be printed.

Line Number - A line number is a positive integer, from zero (0) to 63999,
used to begin a program statement. Each program statement must begin
with a line number. The statements must be ordered from the least line
number to the highest.

PRINT - The PRINT statement causes the data to be output.
REM - The REM statement allows comment within the program but pro

duces no action in the program. In other words, "REM" remincis the pro
grammer what the program does. You can type any comment in a REM
statement.

Semicolon - The semicolon prevents the cursor from moving after output
is completed. The semicolon leaves a PRINT line "open," and inhibits
automatic repositioning of the cursor.

STATEMENT - A statement is an instruction that requires a line number,
and it tells the computer what action to take.

31

32 APPLESOFT FOR THE lie

DISCUSSION

The first objective of Lesson 4 .is to write a program using a PRINT state·
ment.

A program is a set of instructions developed to solve a specific problem.
In this example, the problem is to print out the statement, "THIS IS THE
USA."

5 REM - PROGRAM EXPLAINING 'PRINT' RULES
10 PRINT "THIS IS THE USA"
999 END

Now that was simple wasn't it? The number "5" is the first line number of
the first program statement, in this program. The first line number doesn't
have to start with number "0." You can use any beginning number up to
"63999." Any positive integer greater than "63999" is out of the range of
the machine, and will produce a "?SYNT AX ERR". Succeeding program
statements must have higher line numbers than previous statements. The
most practical way is to number every line in multiples of ten. This way you
will be able to insert extra program statements if you want to expand your
program. On the DOS 3.3 MASTER DISK, the RENUMBER program will reo
number a program.

The REM statement helps the programmer to document the program.
The line 10 PRINT "THIS IS THE USA" is a program statement that outputs

the information enclosed in the quotation marks.
The line 999 END is the end of the program. In most cases, a program will

run successfully without an END statement, but it is recommended that an
END statement always be used.

Now type in line 1 0 without quotation marks.

10 PRINT THIS IS THE USA (No quotation marks)
999 END
RUN
o (Zero)

The output is zero (0) because the computer reads THIS IS THE USA as a
variable that has zero (0) value. Variables are used to hold different values
as the program run progresses.

Now type in line lOusing a beginning quote and no closing quote.

10 PRINT "THIS IS THE USA
999 END
RUN
THIS IS THE USA

THIS IS THE USA prints even though there is no closing quote. Applesoft
is flexible enough to let you "get away" without a closing quote.

Now type line 10 with a no beginning quote but with a closing quote.

l
l
l
l
l
1
l
l
l
l

1
l
l

l

r
r
r
r
r
r
r
r
l

r
r
r
r
r
r
r
r

10 PRINT THIS IS THE USA"
999 END
RUN
o

PRINT RULES 33

The output is zero (O) because the computer recognizes THIS IS THE USA
as an uninitialized variable and the ending quote is ignored.

Retype line 10 again, this time spelling PRINT incorrectly, and see what
happens.

10 PUNT "THIS IS THE USA"
20 PRINT (This print causes a line feed - a space between lines)
999 END
RUN
?SYNTAX ERROR IN LINE 10

Now that you have all the errors out of your system, on to the print rules.
This program was written and tested line by line so the student can view the
results produced by each program statement.

1. Anything in quotation marks is printed exactly as in the PRINT state·
ment when the program is RUN.

10 PRINT "THIS IS THE USA"
20 PRINT
999 END
RUN
THIS IS THE USA

2. PRINT statement with no punctuation following the closing quote,
causes the output to be printed on one line and causes the computer·
to line feed (space down). Consecutive PRINT statements with no
closing punctuation causes the output to be printed vertically, one
output below the other.

30 PRINT "THIS IS THE"
40 PRINT "UNITED STATES"
50 PRINT "OF AMERICA"
60 PRINT
RUN
THIS IS THE
UNITED STATES
OF AMERICA

3. A comma placed at the end of a print statement places the output in
separate fields on the same line. Applesoft is designed to divide each
line into 3 fields. The first field begins in column 1, and ends at
column 16. The second field begins at column 17 and ends at
column 32. The third field begins at column 33 and ends at column
40.

34 APPLESOFT FOR THE lie

70 PRINT "THIS IS THE",
80 PRINT "USA"
90 PRINT
RUN
THIS IS THE USA

4. A semicolon placed at the end of a PRINT statement causes the out·
put to be packed (no space between characters).

100 PRINT "THIS IS THE";
110 PRINT "USA"
120 PRINT
RUN
THIS IS THEUSA

5. A comma between the two items in a PRINT statement places the
output in the next available field. .

130 PRINT "THIS IS THE","USA"
140 PRINT
RUN
THIS IS THE USA

6. A semicolon between two items in a PRINT statement causes the out·
put to be packed (no space).

150 PRINT "THIS IS THE";"USA"
160 PRINT
RUN
THIS IS THEUSA

(Note: Examples 3 and 5 give the same output, but are produced by dif·
ferent program statements. Examples 4 and 6 give the same output, but
are produced by different program statements.)

7. Spaces placed between quotation marks and the item will be in the
same relationship as in the output. (X's are placed in the PRINT state
ment to represent blank spaces).

170 PRINT "XXTHIS IS THEX";"USA"
190 PRINT
RUN
XXTHIS IS THEXUSA (X's represent blank spaces)

8. A PRINT following a PRINT statement closes out a line. (A PRINT fol
lowing a PRINT statement with no punctuation causes a line feed,
i.e., space between the lines. A PRINT following punctuation closes
out the line, but does not cause a line feed).

200 PRINT "THIS IS THE";
210 PRINT
220 PRINT "USA"
RUN

l
l

l
l
1
l ,

)

1
1
l
1
l
l
l
l

r
r
r
r
r
r

(iIliI
I
I

r
r
r
r
r
r
r

THIS IS THE
USA

PRINT RULES 35

9. With the upper and lower case mode, output can be in the upper and
lower case, when using PRINT statements.

230 PRINT: PRINT "John Doe" : PRINT
RUN
John Doe

1 O. To print variables with assigned values NO quotation marks are used
and the assigned values are printed.

240 A = 5 : B = 10 : C = 15
250 PRINT A
260 PRINT B
270 PRINT C
280 PRINT
290 PRINT A,B,C
300 PRINT
310 PRINT A;B;C
RUN
5
10
15
5 10
51015

15

The same punctuation rules that apply to items enclosed in quotation
marks apply to variables.

1. No punctuation prints vertically.
2. Commas after variables print in three columns.
3. Semicolons after variables pack the output leaving no space between

numbers.

The complete program and RUN appears in Fig. 4-1.

5 REM - PROGRAM EXPLAINING 'PRINT" RULES
10 PRINT "THIS IS THE USA"
20 PRINT
30 PRINT "THIS IS THE"
40 PRINT "UNITED STATES"
50 PRINT "OF AMERICA"
60 PRINT
70 PRINT "THIS IS THE",
80 PRINT "USA"
90 PRINT
100 PRINT "THIS IS THE";
110 PRINT "USA"
120 PRINT
130 PRINT "THIS IS THE ", "USA"

Fig. 4-1. Print rules program.

36 APPLESOFT FOR THE lie

140 PRINT
150 PRINT "THIS IS THE";"USA"
160 PRINT
170 PRINT "XXTHIS IS THEX";"USA"

190 PRINT
200 PRINT "THIS IS THE";
210 PRINT
220 PRINT "USA"
230 PRINT: PRINT "John Doe": PRINT

240 A = 5:B = 10:C = 15
250 PRINT A
260 PRINT B
270 PRINT C
280 PRINT
290 PRINT A,B,C
300 PRINT
310 PRINT A;B;C
999 END
RUN
THIS IS THE USA

THIS IS THE
UNITED STATES
OF AMERICA

THIS IS THE USA

THIS IS THEUSA

THIS IS THE USA

THIS IS THEUSA

XXTHIS IS THEXUSA

THIS IS THE
USA

John Doe

5
10
15

5

51015

10

Fig.4-1-cont. Print rules program.

15

l
l
l
l
l

l

l
1
l
1 ,

j

l
l
l

r
r
r
r
r
r

r
r
r

LESSON 5

Variables

After completion of Lesson 5 you should be able to:

1. Define the variables used in Applesoft.
2. Distinguish between variables and reserved words.
3. Understand the relationship between integers and reals and how

truncation affects mathematical calculations.
4. Use INT and DEF functions to round off calculations.

VOCABULARY

DEF FN - This allows the programmer to define functions within the pro
gram.

Deferred Execution - This means that a line is to be executed at a later
time. BASIC statements with a line number are run in the deferred execu
tion mode.

Immediate Execution - This means that a line is to be executed immedi
ately. BASIC commands without a line number are run in the immediate
execution mode.

Integer - This is any whole number, its negative, or a zero. Integers never
include decimal points, unless they are being expressed as real numbers.

Literal - This is a sequence of characters enclosed in quotation marks. In
A$ = "HELLO," A$ is a variable, HELLO is a string, and "HELLO" is a
literal. See the definition of STRING.

Real - This is any number, including integers, that can be written with a r· decimal point.
. Scientific Notation - This is the method of expressing numbers as a power

of ten. In scientific notation, the number 1234 is 1.234 X 103 , and the
number 0.001234 is 1.234 X 10- 3 • Applesoft uses the symbol "E" to indir cate that the number before the "E" is to be multiplied by ten raised to
power indicated after the "E". For instance, 1 X 1011 is expressed by
Applesoft as IE + 11. r String - This is any sequence of characters.

37

r

38 APPLESOFT FOR THE lie

Truncate - This is to drop off the digits from a real number (1.3456) and
produce an integer (1). In this case, the .3456 was truncated to form the
integer (1). Truncation is different from rounding. If the real (1.3456) was
rounded to two places, the result would be 1.35.

DISCUSSION

A variable, according to Webster is:

1. Something that is variable.
2. A quantity that may assume anyone of a set of values.
3. A symbol representing a variable.

In Applesoft, a variable can be an alpha (alphabet) character (A through
Z), two alpha characters (AA), or an alpha and a numeric (0 through 9)
character, unless these characters are part of a word reserved specifically
for the Applesoft language.

LEGAL APPLESOFT VARIABLES

A BB C1 Z2

LEGAL APPLESOFT VARIABLES - but only the first two characters are rec·
ognized by the Applesoft language.

DOE SlM SU3 PER

ILLEGAL APPLESOFT VARIABLES - these are reserved words.

ABS
LET

AND
LOAD

CALL
SAVE

DEL
VTAB

A complete list of reserved words is found on page 122 of the APPLE
SOFT II BASIC PROGRAMMING REFERENCE MANUAL, published by
Apple Computer, Inc.

What happens when a reserved word is used as a variable'?

10 FOR = 5
20 PRINT FOR
30 END
RUN
?SYNTAX ERROR IN 10

1
l
1
1
l
1

1

1
1

The syntax error message is produced and the program does not run. One 1
deficiency of the Applesoft language is that it does not give an error
message until the program is run. A better method would be to give an error
message when the statements are input. 1

l
1

r

r

r
r

r
r

r

TYPE
INTEGER
REAL
STRING

TYPES OF APPLESOFT VARIABLES

EXAMPLE
A% = 1
A = 1.23
A$ = "B2.5"

VARIABLES 39

An integer is any of the natural, or whole, numbers. The numbers 1, 2, 3,
and 5 are integers. In Applesoft, integers must be in the range of - 32767 to
+ 32767 or the computer will give an ILLEGAL QUANTITY ERR because
you are out of the range of its capabilities. Fig. 5·1 is a program written to
demonstrate the limits of the Apple computer. Any number less than
- 32767, or greater than + 32767 gives an ILLEGAL QUANTITY ERROR, in
a specific line number. If A % had been given a value of - 32768, the pro·
gram would not run, and would have printed out the error message,
ILLEGAL QUANTITY ERROR IN LINE 230.

ANY INTEGER LESS THAN -32767 OR GREATER THAN +32767 IS AN
ILLEGAL VALUE AND WILL PRINT THE ERROR MESSAGE - ?ILLEGAL
QUANTITY ERROR IN LINE???

230 A% = -32767
240 B% = 32767
250 PRINT
260 PRINT A%,B%
270 END

-32767 32767
Fig. 5-1. Program to demonstrate integer range.

Applesoft language uses the percent sign to indicate an integer variable.
Fig. 5-2 demonstrates that A % = lOis an integer quantity.

120 A% = 10
130 PRINT
140 PRINT "RESULTS ARE = ";A%
150 END

RESULTS ARE = 1 0

Fig. 5-2. Program to demonstrate integer function.

Fig. 5-3 is a program to demonstrate how an integer variable truncates a
real number. B% is an integer variable. The value in B% equals 3.1416 and
is a real (fractional) value. The B% is given the value 3.1416 in Fig. 5-3, line
120, but it truncates the real number and outputs it as an integer (3). An
integer variable converts a positive real toward the lower value.

Fig. 5-4 is a program written to demonstrate how an integer variable trun
cates a negative real. C% = - 0.843. When the program is run, the nega
tive real (- 0.8430) is truncated to a negative one (- 1). Applesoft truncates

40 APPLESOFT FOR THE lie

120 8% = 3.1416
130 PRINT
140 PRINT "RESUL TS ARE = ";8%
150 END

RES.UL TS ARE = 3

Fig. 5·3. Program to demonstrate truncation by the integer (INT) function.

120 C% = -0.843
130 PRINT
140 PRINT "RESULTS ARE = ";C%
150 END

RESULTS ARE = - 1

Fig. 5·4. Program showing how a negative real number is truncated by the INT function.

negative reals to negative integers by converting them down toward the
next whole number.

Fig. 5·5 shows how the output results differ when the area of a circle is
calculated with integers or reals. A % = PI % '" R% " 2 (R% = 3) calculates
the area of a circle using integers. The output of this calculation is twenty·
seven (27) square inches. A = PI '" R " 2 (R = 3) calculates the area of a
circle using real variables, and produces an output of 28.2744 square
inches. The correct type of variable must be used to produce accurate re
sults.

130 PI% = 3.1416:R% = 3
140 A% = PI% * R% A. 2
150 PI = 3.1416:R = 3
160 A = PI * R A. 2: PRINT
170 PRINT "INTEGER AREA OF THE CIRCLE IS ";A%;" SQUARE INCHES":

PRINT
180 PRINT "REAL AREA OF THE CIRCLE IS ";A;" SQUARE INCHES":

PRINT
190 END

INTEGER AREA OF THE CIRCLE IS 27 SQUARE INCHES

REAL AREA OF THE CIRCLE IS 28.2744 SQUARE INCHES

Fig. 5-5. Calculations with integers and reals.

Applesoft language outputs nine, or fewer, positive or negative digits as
they are input (Fig. 5-6). When more than nine positive digits are input, the
output is positive scientific notation. When more than nine negative digits
are input, the output is negative scientific notation.

Fig. 5-7 shows a program written to demonstrate how the INT (integer)
function is used to output real numbers with a specified number of deci-

1
l

l
1
l
1
1
1

'III!!!

:1

1 ,
J

1

r
r
r
r
r
r
r
r
r
r
r
r
r

r

130 A = 999999999
140 8 = 9999999999
150 C = - 999999999
160 D = - 9999999999
170 PRINT
180 PRINT "APPLESOFT PRINTS = ";A;" FIGURES"
190 PRINT
200 PRINT "GREATER THAN NINE FIGURES = ";8
210 PRINT "APPLESOFT PRINTS IN SCIENTIFIC NOTATION"
220 PRINT
230 PRINT "NEGATIVE VALUE PRINTS = ";C;" IN"
240 PRINT "NEGATIVE NINE FIGURES"
250 PRINT
260 PRINT "NEGATIVE VALUE OUTPUT = ";0;" IN"
270 PRINT "NEGATIVE SCIENTIFIC NOTATION"
280 END

APPLESOFT PRINTS = 999999999 FIGURES

GREATER THAN NINE FIGURES = 1E+10
APPLESOFT PRINTS IN SCIENTIFIC NOTATION

NEGATIVE VALUE PRINTS = -999999999 IN
NEGATIVE NINE FIGURES

NEGATIVE VALUE OUTPUT = -1E+10 IN
NEGATIVE SCIENTIFIC NOTATION

Fig. 5-6. Positive and negative integers.

VARIABLES 41

mals. For example, if the variable "A" whose value is 28.2743343 is to be
rounded to two places, the rounding value is 100 (Q = 100). The formula
INT(100*A + .5)/100 is used to round to two places. The computation fol
lows the rules of precedence. Precedence of operations is discussed in
Lesson 6.

100 x 28.2743343 = 2827.43343
2827.43343 +.5 = 2827.93343
INT(2827.93343) = 2827
2827 1 100 = 28.27

Fig. 5-8 is a program written to demonstrate what happens when an ex
pression or formula is divided ,by zero. In mathematics, dividi":g by zero
gives an undefined result. The computer does not allow division by zero.
When you attempt to divide by zero, accidentally or on purpose, the com
puter stops the program at the line number where the attempt to. divide by
zero was made and outputs an error message, ?DIVISION BY ZERO ERROR
IN 200 (Fig. 5-8).

42 APPLESOFT FOR THE lie

130 P = 1000
140 Q = 100
150 R = 10
160 5 = 1
170 PI = 3.1415927:RA = 3
180 A = PI * RA J\ 2
190 PRINT
200 PRINT "AREA OUTPUT AS INPUT = ";A
210 PRINT "AREA OUTPUT TO 3 PLACES = "; INT (A * P + .5) I P
220 PRINT "AREA OUTPUT TO 2 PLACES = "; INT (A * Q + .5) I Q
230 PRINT "AREA OUTPUT TO 1 PLACE = "; INT (A * R + .5) I R
240 PRINT "AREA OUTPUT TO 0 PLACES = "; INT (A * 5 + .5) IS
250 PRINT "AREA OUTPUT TRUNCATED = "; INT (A)
260 END

AREA OUTPUT AS INPUT = 28.2743343
AREA OUTPUT TO 3 PLACES = 28.274
AREA OUTPUT TO 2 PLACES = 28.27
AREA OUTPUT TO 1 PLACE = 28.3
AREA OUTPUT TO 0 PLACES = 28
AREA OUTPUT TRUNCATED = 28

Fig. 5-7. INT function used to output real numbers with a specified number of decimal
places.

130 P = 0
140 PI = 3.1416:RA = 3
150 A = PI * RA J\ 2
160 PRINT
170 PRINT "WHEN THE AREA IS DIVIDED BY ZERO AN"
180 PRINT "ERROR MESSAGE IS PRINTED"
190 PRINT"P = 0 THEREFORE WHEN INT(A*P+.5)/P IS"
200 PRINT "CALCULATED "; INT (A * P + .5) I P;"THE VALUE IS ZERO":

PRINT
210 END

WHEN THE AREA IS DIVIDED BY ZERO AN ERROR MESSAGE IS PRINTED
P = 0 THEREFORE WHEN INT(A*P+ .5)/P IS CALCULATED
?DIVISION BY ZERO ERROR IN 200

Fig. 5-8. Divide-by-zero gives an error message.

Applesoft has a built in function that can be used to round to a specific
number of decimal places. The results are the same as when using the lNT
function, but the DEF FN is more convenient when typing the output
variable. The DEF FN, Fig. 5·9, line 130, is used in the following format to
round to three decimal places.

130 DEF FNA(W) = INT(W*1000 + .5)/1000

The "A" variable is attached to the define function to identify it for later
use. The variable "W" is placed in parentheses, DEF FNA(W), and the same

,
j

l
l
1
1
1
1
1

1
1

1
1
1

r
r

r
r

r

r
r
r

r
r
r

130 DEF FN A(W) = INT (W * 1000 + .5) /1000
140 DEF FN B(X) = INT (X * 100 + .5) /100
150 DEF FN C(V) = INT (y * 10 + .5) /10
160 DEF FN D(Z) = INT (Z * 1 + .5) /1
170 A = INT (A)
180 PI = 3.1415927:RA = 3
190 A = PI * RA A 2
200 PRINT
210 PRINT "AREA OUTPUT AS INPUT = ";A
220 PRINT "AREA OUTPUT TO 3 PLACES = "; FN A(A)
230 PRINT "AREA OUTPUT TO 2 PLACES = "; FN B(A)
240 PRINT "AREA OUTPUT TO 1 PLACE = "; FN C(A)
250 PRINT "AREA OUTPUT TO 0 PLACES = "; FN D(A)
260 PRINT "AREA OUTPUT TRUNCATED = "; INT (A)
270 END

AREA OUTPUT AS INPUT = 28.2743343
AREA OUTPUT TO 3 PLACES = 28.274
AREA OUTPUT TO 2 PLACES = 28.27
AREA OUTPUT TO 1 PLACE = 28.3
AREA OUTPUT TO 0 PLACES = 28
AREA OUTPUT TRUNCATED = 28

Fig. 5-9. Decimal calculation using the DEF function.

130 PI = 3.1416
140 DEF FN C(X) = INT (X * 100 + .5) /100
150 DEF FN B(A) = PI * R A 2
160 FOR R = 1 TO 5
170 PRINT "AREA OF A CIRCLE = "; FN B(A)
180 NEXT R: PRINT
190 FOR R = 1 TO 5
200 PRINT "AREA OF A CIRCLE = "; FN C(FN B(A))
210 NEXT R
220 END

AREA OF A CIRCLE = 3.1416
AREA OF A CIRCLE = 12.5664
AREA OF A CIRCLE = 28.2744
AREA OF A CIRCLE = 50.2656
AREA OF A CIRCLE = 78.54

AREA OF A CIRCLE = 3.14
AREA OF A CIRCLE = 12.57
AREA OF A CIRCLE = 28.27
AREA OF A CIRCLE = 50.27
AREA OF A CIRCLE = 78.54

Fig. 5-10. Using the DEF function to store formulas.

VARIABLES 43

variable "W" is used in parentheses in the integer function, INT(W* 1000 +
.5)11000.

When the computed area is to be output to three places, the output func
tion is written, FNA(A). The "A" outside the parenthesis refers to the define

44 APPLESOFT FOR THE lie

function, and the "(A)" inside the parenthesis refers to the area of the circle.
The define function can be used to store formulas. In Fig. 5-10, line 150,

the formula for the area of a circle is stored in the form, DEF FNB(A) = PI *
R 1\ 2. The value of PI was initialized in Fig. 5-10, line 130, as PI = 3.1416.
The function FNB(A) was then used in Fig. 5-10, line 170, to print out the
area of the circle each time the radius changed (FOR R = 1 TO 5). In Fig.
5-10, line 140, the define function was initialized to round a real number to
two decimal places. This rounding function, FNC(X), was used to embrace
the "AREA" function, FNB(A), to produce the area of a circle to two decimal
places, FNC(FNB(A)). One function can be buried within another function to
produce desired results.

A literal is a set of alphanumeric characters enclosed in quotation marks.
The following are examples of literals.

"7-11 STORE" "BILL"
"44-50" "SUE"

String literals have been used in the PRINT statement. A string variable
may consist of 256 characters (one row on the screen consists of 40 charac
ters). The following are examples of string variables.

A$ Zl$ CC$ COB$
D2468$ HI $ MOLE$ HAIR$

A string variable must begin with an alphabetic character and may be fol
lowed by an alphabetic character or a numeric character, followed by a dol
lar sign ($). Only the first two characters of the string variables are recog
nized by Applesoft.

HA$ is equivalent to HAIR$
Z2$ is equivalent to Z2468$

130 A$ = "HI THERE SUE"
140 PRINT
150 PRINT "A$ PRINT = "A$
160 PRINT '
170 PRINT "NUMBER OF CHARACTERS IN THE STRING = "; LEN (A$)
180 PRINT
190 PRINT "NUMBER OF CHARACTERS IN THE NAME SUE = "; LEN ("SUE")
200 END

A$ PRINT = HI THERE SUE

NUMBER OF CHARACTERS IN THE STRING = 12

NUMBER OF CHARACTERS IN THE NAME SUE = 3

Fig. 5-11. Alphanumeric strings.

1

1

l

1
1

1
1 ,

1
l
1

r

r
r
r
r
r
r
r
r
r
r
r
r
r
r
Ii

VARIABLES 45

A string is used in replacement statement form by placing the string
variable on one side of an equals sign and the string literal on the other side
of the equals sign, Fig. 5·11. The number of characters in the string can be
determined by using the reserved word LEN. In Fig. 5·11, line 130, A$ =
"HI THERE SUE." When LEN(A$) is used in line 170, the output shows the
number of characters in the string is twelve (12). When LEN("SUE") is used
in line 190, the output shows there are three (3) characters in the name
"SUE."

The Apple has a LEN function that can be used in the immediate execu
tion mode. After the program in Fig. 5·11 has been run, the immediate
execution mode command can be used to determine the length of the string
and the literal.

PRINT LEN (A$), LEN ("SUE") (press RETURN)
12 3

In this immediate execution mode, no line number is needed.

LESSON 6

HTAB, TAB, and VTAB Statements to
Format Output

After completion of Lesson 6 you should be able to:

1. Use HTAB, TAB, and VTAB statements to format output on the CRT,
similar to using tabulators and return on a typewriter.

2. Draw the location of rows and columns on the CRT.
3. Clear the CRT by the use of HOME and CALL statements.

VOCABULARY

CALL - A CALL causes the execution of a machine language subroutine at
a memory location whose decimal address is specified in the call expres
sion. CALL -936 clears the screen. CALL -936 causes the same result as
HOME.

Colon - The colon separates multiple program statements that are on the
same line. The colon is also called the program statement separator.

HOME - This command clears the screen of all data and moves the cursor
"to the left uppermost position of the screen. HOME produces the same
results as CALL -936.

HTAB - This command moves the cursor from one to forty spaces over the
current line and prints at the HT AB numeric expression. HT AB 20 prints
data at column 20 on the current line.

Program Statement Separator - This is the colon in Applesoft. It allows
multiple program statements at the same line number.

TAB - This command must be used in a PRINT statement, and prints data
at the TAB numeric expression. PRINT T AB(20) causes a tab to column
twenty, and prints the data following the tab statement in column twenty.

VTAB - This command moves the cursor to the line that is in the numeric
expression. VTAB(20) moves the cursor to row twenty. The numeric ex
pression of VT AB can range from 1 to 24.

46

,
J

1
1

1
1

1

" i)

1
1
l
1

r
riC' ,

r
r
r
r
r
r
r
r
r

r
r
r
r

HTAB, TAB, AND VTAB STATEMENTS TO FORMAT OUTPUT 47

DISCUSSION

HT AB is a function that allows the programmer to place information or
data at a specific vertical column on the display screen. The screen has
columns numbered from 1 to 40. (In the 80 column mode, the HT AB com·
mand will go to only 40 columns)

VT AB is a function that allows the programmer to place information or
data on a specific horizontal row on the display screen. The screen has 24
rows, numbered from 1 to 24.

HT AB and VT AB are generally used together in the same program line
and are separated by a colon. HT AB 5 : VT AB 10, causes the cursor to be
placed at row 10, column 5 on the display screen. The colon is used as a
separator between two or more program statements with the same line
number.

TAB(26) is used only in a PRINT statement. (PRINT TAB(3);"JOHN" :
HTAB 5 : VTAB 10) The same print rules apply as discussed in Lesson 4.

SPC(5) is a command that spaces from the last position printed on the
screen. SPC is a relative command that moves the cursor a given number of
positions away from a previously printed item. SPC must be used in a PRINT
statement (PRINT SPC(5);"JOHN").

HOME is a command that moves the cursor and the prompt to the upper
left corner of the screen, and clears the screen of all text. CALL ·936 clears
the screen in the same way.

The program and run in Fig. 6·1 demonstrates the use of HTAB, VT AB,
and TAB functions.

10 HOME
20 VTAB 1: PRINT "A"
30 VTAB 1: HTAB 40: PRINT "B";
40 VTAB 24: HTAB 1: PRINT "C";
50 VTAB 24: HTAB 39: PRINT "D";: VTAB 10
60 VTAB 12: HTAB 13: PRINT "E"; TAB (26);"F"
999 END

(A) Program.

A 40 B

24 E F

C D

(B) Screen display.

Fig. 6·1. VTAB, HTAB, and TAB demonstration program.

48 APPLESOFT FOR THE lie

10 HOME
20 VTAB 1 : HTAB 1 : PRINT "A"

Lines 10 and 20 clear the screen and print an "A" at VTAB 1 : HTAB l.
Since the cursor is placed at row 1, column 1 on the screen, the HT AB 1
statement is not necessary to be written in the program.

30 VTAB 1 : HTAB 40 : PRINT "B";
RUN

Line 30 prints the letter "B" at VT AB 1 : HT AB 40. The semicolon after
the "B" is necessary to prevent a line feed.

40 VTAB 24 : HTAB 1 : PRINT "e"; : VTAB 10

Line 40 prints "e" at VT AB 24 : HT AB 1. The semicolon prevents line
feed. VT AB 10 shifts the cursor to VT AB 10, because if we didn't shift the
cursor, the computer would automatically shift the cursor to column #1 of
the twenty-fourth (24th) line.

50 VTAB 24 : HTAB 39 : PRINT "0"; : VTAB 10
RUN

Line 50 prints "0" at VTAB 24: HTAB 39. Even though the screen is 40
columns wide, it is not possible to print the "0" at VT AB 24 : HT AB 40 with
out shifting the "A" and the "B" characters off the screen. Immediately after
print "0" at VT AB 24 : HT AB 40 the cursor jumps to the next line. This cur
sor jump causes the screen to scroll upward, and "A" and "B" would be
shifted off the screen.

To clean up the program type LIST 40. Line 40 will be displayed on the
screen. Now retype the line.

40 VTAB 24 : HTAB 1 : PRINT "e";

The new line 40 leaves out the last colon and the VT AB 10. The program
still runs properly because the ":" and VTAB 10 are not necessary with the
inclusion of line 50. (The EOIT function will be discussed in Lesson 17.)

60 VTAB 12: HTAB 13 : PRINT "E"; TAB(26); "F"

Line 60 causes the letter "E" to be printed at VTAB 12: HTAB 13. A TAB
function is used in a PRINT statement and the numerical expression is con
tained in parentheses. The T AB(26) expression is separated from the PRINT
by semicolons on each side. Notice that the "F" does not have the PRINT re
peated but is enclosed in quotation marks.

The program and run in Fig. 6-2 further demonstrates the use of TAB and
HT AB statements.

Line 70 clears the screen. Line 80 prints "H" in column 40 on the top line
of the screen. After "H" is printed, the cursor moves to the second line first
column to prepare for the next item. Since the print is complete in line 80,

1

1
I

1
1
1
1

1

,
)

1

1

1

r
r

r
r

r
r
r
r
r
r
r
r
[

HTAB, TAB, AND VTAB STATEMENTS TO FORMAT OUTPUT 49

70 HOME
80 PRINT "HERE WE GO"; TAB(40); "H"
90 PRINT "A BLANK LINE??"
100 PRINT: PRINT
110 PRINT "ONE MORE TIME"; TAB(40);"1";
120 PRINT "NO BLANK LINE HERE!!!"
130 PRINT "HERE WE GO!";:HTAB 40: PRINT "J"
140 PRINT "ONE MORE TIME!;: HTAB 40: PRINT "K"
150 PRINT "WHAT A DIFFERENCE!!!"

160 END

(A) Program.

• 40

1
HEREWEGO

A BLANK LINE

(8) Screen display. ONE MORE TIME
24 NO BLANK LINE HERE!!!

j
HERE WE GO!

ONE MORE TIME!

WHAT A DIFFERENCE!!!

Fig. 6·2. Program to demonstrate PRINT results on the CRT.

..

H

J

K

the cursor moves to the second line, and closes out the second line. Line 90
prints on the third line, even though the second line is blank. Line 100
leaves two blank lines.

Line 110 is almost a duplicate of line 80, except for the semicolon after
"I." The semicolon does not close out the line. Line 120 is printed im·
mediately below "ONE MORE TIME" because the line was not closed out.

Lines 130 through 150 do essentially the same thing as lines 80 through
120 except the HTAB function is used instead of the TAB function. The
HT AB prints in the place where the HTAB value is assigned. HT AB 40 prints
at column 40.

You cannot print at VTAB 24 : HTAB 40 without pushing the top line of
print off the screen.

LESSON 7

Precedence

After completion of Lesson 7 you should be able to:

1. Write the order of precedence of arithmetic operators and show how to
modify precedence.

2. Demonstrate three methods to input data into a program.
3. Use constants to perform addition, subtraction, multiplication, divi

sion, and exponentiation.

VOCABULARY

Arithmetic Operators - Arithmetic operators are symbols that instruct the
computer to do arithmetic operations, addition, subtraction, multiplica
tion, division, and exponentiation.

ASC - This is the function that converts one string character to a numeric
value. PRINT ASq" A") returns the ASCII (American Standard Code for
Information Interchange) value of "A" which is 65.

CHR$ - This is the function that converts a numeric value into a string
character. PRINT CHR$(65) returns a character "A," which is the ASCII
value of 65.

Constant - A constant is an item of data that remains unchanged after each
program run.

Interactive Mode - The interactive mode is a method of operation in which
the user is in direct communication with the computer and is able to ob
tain an immediate response to his input messages. A display where the
user is allowed to input data in response to information displayed is said
to be in the interactive mode. Conversational mode (display) is synony
mous with interactive mode (display).

LET - LET is the replacement command that allows the value on the right
side of the equals sign to be stored in the variable on the left side of the
equals sign. LET may be a real, an integer, or a string. LET is an optional
statement. LET A = 5 equates with A = 5.

50

l
l

1
1
1
1
l
1
1
l
l
1
1

J

l
1
l

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

PRECEDENCE 51

Modem - Modem is a contraction of modulator and demodulator. A
modem is a device that codes and decodes information to send and re
ceive from a remote computer over telephone lines.

Operand - The operand is the item on which the operation is performed.
Operator - The operator is the action to be taken on the operand. In

A = 5*2, times is the operand.
Precedence - This is the order in which things are done.
Replacement Statement - The replacement takes the value on the right

side of the equals sign and stores it in the variable on the left side of the
equals sign (Le., A = 5 is a replacement).

Replacement Operator - In A = 5 the equals sign (=) is the replacement
operator.

String - A string is a set of items which has been arranged in a sequence.
The name "MARY" is a string.

Unary Operator - The unary operator is the sign preceding the first varia
ble or constant in an expression. This is a processing operation per
formed on one operand. NOT, plus (+), and minus (-) are unary opera
tors and apply to the sign of a number (- 5, + 3). If the unary is positive,
the sign is implied. It is the same as a monadic operator.

DISCUSSION

The order of precedence is very important in mathematic calculations.
Incorrect precedence produces incorrect answers. Correct precedence pro
duces correct answers if all other procedures are correct. The order of
precedence of arithmetic operators from highest to lowest is as follows:

1. () items enclosed in parentheses are operated on first - highest
priority.

2. NOT, +, -, NOT, POSITIVE, AND NEGATIVE are unary or
monadic operators.

3. Exponentiation.
4. Multiplication and division from left to right.
5. Addition and subtraction from left to right - lowest priority.

Operators listed on the same line have equal priority and are executed
starting from the left side of the expression and completed on the right side
of the expression.

Integers and reals are classified as arithmetic variables. (Variables were
discussed in Lesson 5.) Strings are classified as nonarithmetic variables.
When integers and reals are used in an expression, the integers are con
verted to reals before the calculation takes place. The final result can be
converted either to an integer or a real.

Examples of precedence follow.

52 APPLESOFT FOR THE lie

1. Items enclosed in parentheses can either be variables or numeric
values. If the variable is not given a value - a value of zero (0) is reo
turned. The innermost set of parentheses are evaluated first.

15*(2+(3+2)*3) = 255
15*(2+ 3+2)*3 = 315
15* 2+ 3+2 *3 = 39

Precedence can be modified by using parentheses.
2. The monadic or unary operator is the sign (NOT, +, -) of the number.

+ 3 + 2 = 5 (number is positive when no sign is printed)
+3-2 = 1
-3+2 = -1
-3-2 = -5

3. Exponentiation.

31\2=9
31\80 = 1.47808831E+38

4. Multiplication and division.

(10 * 5)/(2 * 5) = 5
(10*5)/2*5 = 125
10 * 5/2 * 5 = 125

5. Addition and subtraction.

(8 + 2) + (2 + 2) = 14
8 + 2 + 2 + 2 = 14

(8 + 2) - (2 + 2) = 6
8'+ 2 - 2 + 2 = 10

(8 - 2) + (2 - 2) = 6
8-2+2-2= 6

(8 - 2) - (2 - 2) = 6
8-2-2-2= 2

There are several ways to get data or information into the computer. The
replacement statement and the READ-DATA statement do not require any
outside action or external peripherals. The INPUT statement is interactive
between the user and the computer. Cassette tape, disks, and modem are
external sources to place information or data into the computer.

10 LET A = 1 + 2 + 3
20 PRINT A
30 END
RUN
6

Line 10 is a replacement statement. The values on the right side of the
equals sign are calculated and placed in a memory location that the com-

1

1
1
1
1
1
1

1

,
'\

1
1

1

r
r
r

r

r
r
r
r
r

r
r
r

PRECEDENCE 53

puter labels "A." The contents of memory location "A" are 1 + 2 + 3 or 6.
In this case, equals does not mean two equal values on opposite sides of

the equals sign, but the value on the right side of the equals sign is trans
ferred to the variable on the left side of the equals side. This is an operation
(transfer) for the computer to perform and not an evaluation (decision). The
equals is the replacement operator, and the LET is the replacement state
ment.

Line 20 PRINT A outputs 6, the value stored under the variable "A." The
LET is optional. You get the same results with A = 5 as with LET A = 5. A
= 5 saves memory and is easier to type.

The program in Fig. 7-1 was written to demonstrate the arithmetic opera-
tors, print rules, and replacement statements.

10 A = 5 : B = 10 : C = 20
20 D = C + B
30 E = C - B
40 F=A*B
50 G = C I A
60 H = M2
70 PRINT D : PRINT E : PRINT F : PRINT
80 PRINT F, G, H : PRINT
90 PRINT D; E; F : PRINT
100 D = A: E = B: F = C
110 PRINT D, E, F
999 END
RUN
30 (D, no punctuation, line 70)
10 (E, no punctuation, line 70)
50 (F, no punctuation, line 70)
(LINE 70, PRINT SKIPS A LINE)
50 (F comma) 4 (G comma)
(line 80, PRINT skips a line)
301050 (D; E; F; Semicolons, line 90)
5 (D = A) 10 (E = B)

Fig. 7-1. Program to demonstrate arithmetic operators.

25 (H comma)

20 (F = C)

Line 100 D = A replaces the existing value of D (30) with the value of A
(5). When "D" is printed, the replaced value of 5 is printed. E = B replaces
the existing value of E (10) with the value of B. These values happened to be
the same, so no difference is seen. F = C replaces the existing value of F
(50) with the value of C (20).

INPUT is used to place values directly in the progam on an interactive
basis. Type in the following lines, but leave the rest of the program as it is.
The variables G and H were assigned values, but the values were not printed
out.

54 APPLESOFT FOR THE lie

6 INPUT "A = ";A
8 INPUT liB = ";B
10 INPUT "C = ";C
RUN
A=5
B = 10
C = 20

The rest of the run is exactly the same as when A(5), B(1 0), and C(20) were
used in replacement statements.

Now RUN the program using any values that you choose, but do not de
lete the program because the next step is to use the READ-DATA input
method.

When you are through experimenting with different numbers using the
INPUT statement, type in the following ..

DEL 6,10 (PRESS RETURN)

This command deletes the INPUT statements at lines 6, and 8. Now type
in the following statements.

10 READ A, B, C
120 DATA 5,10,20

The results of the run are the same whether a replacement statement, IN
PUT statement, or a READ-DATA statement combination was used.

A string is a set of items which has been arranged into a sequence. String
variables (nonarithmetic) cannot be converted directly to integers or reals.

The program in Fig. 7-2 converts a string variable to a numeric variable
and converts a numeric variable to a string variable.

Line 10 sets A$ = "A." The computer uses coded numbers to represent
letters, as shown in Table 7-1. The letter "A" is converted to an ASCII num
ber. Each letter, number, and symbol on the keyboard has an ASCII num
ber.

Line 20 B = ASC(A$) places the ASCII number of "A" (65) into the varia
ble "B." Line 30 PRINT B produces "B" = 65 which is the conversion of A$
(a string) into a real number.

10 A$ = "A"
20 B = ASC (A$)
30 PRINT B
40 D = 65
50 C$ = CHR$ (D)
60 PRINT C$
70 END
RUN
65
A

Fig. 7-2. Program to demonstrate ASC and CHR$_

1
1
1

1
1
1
1
1

1
1
1
1
1

1

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

PRECEDENCE 55

Table 7-1. ASCII Character Codes

CODE CHAR CODE CHAR CODE CHAR CODE CHAR

Dec Hex Dec Hex Dec Hex Dec Hex
0 00 NUL 32 20 SP 64 40 @ 96 60
1 01 SOH 33 21 ! 65 41 A 97 61 a
2 02 STX 34 22 " 66 42 B 98 62 b
3 03 ETX 35 23 # 67 43 C 99 63 c
4 04 EOT 36 24 $ 68 44 0 100 64 d
5 05 ENQ 37 25 % 69 45 E 101 65 e
6 06 ACK 38 26 & 70 46 F 102 66 f
7 07 BEL 39 27 , 71 47 G 103 67 9
8 08 BS 40 28 (72 48 H 104 68 h
9 09 HT 41 29) 73 49 I 105 69 i

10 OA LF 42 2A * 74 4A J 106 6A j
11 OB VT 43 2B + 75 4B K 107 68 k
12 OC FF 44 2C , 76 4C L 108 6C I
13 00 CR 45 20 - 77 40 M 109 60 m
14 OE SO 46 2E 78 4E N 110 6E n
15 OF 51 47 2F I 79 4F 0 111 6F 0

16 10 OLE 48 30 0 80 50 P 112 70 P
17 11 DC1 49 31 1 81 51 Q 113 71 q
18 12 DC2 50 32 2 82 52 R 114 72 r
19 13 DC3 51 33 3 83 53 5 115 73 5
20 14 DC4 52 34 4 84 54 T 116 74 t
21 15 NAK 53 35 5 85 55 U 117 75 u
22 16 SYN 54 36 6 86 56 V 118 76 v
23 17 ETB 55 37 7 87 57 W 119 77 w
24 18 CAN 56 38 8 88 58 X 120 78 x
25 19 EM 57 39 9 89 59 Y 121 79 Y
26 1A SUB 58 3A 90 SA Z 122 7A z
27 1B ESC 59 3B , 91 5B [123 7B {
28 1C FS 60 3C < 92 5C \ 124 7C /
29 10 GS 61 3D = 93 50] 125 70 }
30 1E RS 62 3E > 94 5E A 126 7E ru

31 1F US 63 3F ? 95 SF - 127 7F DEL

ASC is the (unction that converts one string character into a number.

LINE 40 D = 65 places the ASCII value of the letter "A" into the variable
"D." Line 50 C$ = CHR$(D) changes the value of the variable "D" into the
string character C$. Line 60 PRINT C$ prints out the letter that was con
verted from the numeric equivalent (65) of the letter "A."

CHR $ is the {unction that converts a number into a string character.

In Applesoft the maximum length of a string is 255 character:s.

LESSON 8

Loops

After completion of Lesson 8 you should be able to:

1. Write a program using a GOTO loop.
2. Write a program using a FOR-NEXT loop.
3. Write a program using nested loops.

VOCABULARY

Branch - A branch is a departure (or the act of departing) from a sequence
of program steps to another part of the program. Branching is caused by
a branch instruction that can be conditional (i.e., dependent on some pre·
vious state or condition in the program) or unconditional (i.e., always oc·
curring). It is also known as a transfer or jump.

Conditional Transfer - See Branch.
FOR-NEXT - The FOR is the statement that is the beginning of a loop struc·

ture (FOR J = 1 TO 5). The NEXT statement is the foot of the loop struc·
ture (NEXT J).

GOTO - The GOTO statement is an unconditional branch (jump or transfer)
to another part of the program. It may be executed in the immediate or
deferred mode.

Increment - This is a fixed quantity that is added to another quantity.
Initialization - This is the process performed at the beginning of a program

or program section or subroutine to ensure that all indicators and
constants are set to prescribed conditions .and value before the program
or subroutine is run.

Loop - A loop is a set of instructions that is performed repeatedly until
some specified condition is satisfied, whereupon a branch (jump or trans
fer) instruction is obeyed to exit from the loop. There are two types of
loops, constructed (GOTO) and FOR NEXT.

Nested Loops - These are loops that exist within other loops.
STEP - FOR J = 1 TO 100 STEP 10. The STEP function causes the loop to

increment by the value designated by the STEP. The STEP may be posi
tive or negative. FOR J = 100 TO 1 STEP -10.

56

1
J

1

1
1
1 ,

j

1
1
l
1

J ,
J

ri .
" ,

[

r
r
r
r
r
r
r
r
r
r
r
I,

r
r
r

LOOPS 57

Test - A test is a means to examine an element of data or an indicator to
ascertain whether some predetermined condition is satisfied.

Unconditional Transfer - See Branch.

DISCUSSION

A loop is a series of instructions that are performed repeatedly until a
specific condition is satisfied.

Suppose a program was written to count from one to five. One version of
the program count could be as follows.

10 PRINT "1"
20 PRINT "2"
30 PRINT "3"
40 PRINT "4"
50 PRINT "5"
60 END

The program would not use the computer very efficiently. Writing a pro
gram to count to 1000 would take most of the day. A more efficient way to
use the computer would be to write a program using a GOTO loop, Fig. 8-1.

10 X = 1
20 PRINT X
30 X = X + 1
40 IF X > 5 THEN 60
50 GOTO 20
60 PRINT: PRINT "I'M THRU COUNTING!"
999 END
RUN
1
2
3
4
5

I'M THRU COUNTING!

Fig. 8-1. A constructed GOTO loop.

Line lOis the initializing statement, and is the top of the loop. The loop
begins by initializing the variable "X" to the first value of the count, which is
one (1). If a variable is not initialized before it is used, the computer may
initialize the variable to zero (0). The variable "X" could be initialized to any
number, such as 2, - 40, or 308. The programmer must know the correct
value to initializ~ the variable to produce the correct result.

Line 20 prints the value of "X" each time the loop is executed.
Line 30 is the incrementing statement that keeps track of the number of

times the loop has executed. The loop variable "X" was initialized to one (1).
Each time the loop is executed, the incrementing statement adds one to the

58 APPLESOFT FOR THE lie

value stored in the variable "X". In this case, when the incrementing
variable "X" is greater than five (5), the program (at line 40) jumps out of the
loop and branches to line 60.

Line 40 is a testing statement. Each time the loop executes, line 40 tests
to determine if "X" is greater than five (5). If "X" is less than five (5), then the
program falls through to line 50, which is GOTO 20. Line 50 is an uncondi·
tional branch statement. When "X" is greater than five (5), the program
jumps out of the loop, and branches to line 60, and outputs the statement,
''I'M THRU COUNTING!"

The FOR-NEXT loop in Fig. 8·2 also counts from one to five.

10 FOR X = 1 TO 5 (replacement statement)
20 PRINT X
30 NEXT X
40 PRINT: PRINT "I'M THRU COUNTING!"
999 END
RUN
1
2
3
4
5

I'M THRU COUNTING!

Fig. 8-2. FOR-NEXT loop.

This is how the GOTO and the FOR-NEXT loops look when they are
placed side by side.

GOTO Loop
10 X = 1
20 PRINT X
30 X = X + 1
40 IF X > 5 THEN 60

50 GOTO 20
60 PRINT: PRINT "I'M THRU

COUNTING!
999 END

FOR-NEXT Loop
10 FOR X = 1 TO 5
20 PRINT X
30 NEXT X
40 PRINT: PRINT "I'M THRU

COUNTING!"
999 END

The FOR-NEXT loop program is shorter and more efficient than the
GOTO loop program. The GOTO loop is used in cases where the number of
times of loop execution is not known beforehand. This will be explained
more clearly when the GOTO loop is used with decision statements in
Lesson 9.

The FOR-NEXT loop is used when the number of executions is known
before the program begins. The FOR-NEXT loop can use loop variables to
determine the number of times the loop is to be executed. In FOR X = 1 TO
5, the number of executions is going to be five (5). In FOR X = 1 TO N, the

1
},

'i
l

l

l
l
l ,
l ,

j

1

l
l
l
i

1

l

l

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

LOOPS 59

variable "N" determines the number of times the loop is to be executed. The
variable "N" can be entered as a replacement statement, an INPUT state
ment, or a READ DATA statement combination.

In the same FOR-NEXT loop program, type in these lines.

5 INPUT "COUNT TO #: ";N
10 FOR X = 1 TO N
RUN
COUNT TO #: 3
1
2
3
I'M THRU COUNTING!

Line 5 allows the user to input the highest number of the count. Line 10
causes X to start at the number "1," and go to "N," the highest number to be
counted. In this case the loop is FOR X = 1 TO 3.

Now type these lines in the same program.

5 READ N
60 DATA 3
RUN
1
2
3
I'M THRU COUNTING!

Fig. 8-3 demonstrates how to use loops to print forward and backward by
steps and how the HT AB function formats output from loops.

5 REM -HTAB IN LOOPS
10 FOR A = 1 TO 6
20 HTAB (A - 1) * 3 + 1: PRINT A;
30 NEXT A: PRINT
40 FOR B = 2 TO 6 STEP 2
50 HTAB (B - 1) * 3 + 1: PRINT B;
60 NEXT B: PRINT
70 FOR C = 6 TO 1 STEP - 1
80 HTAB (6 - C) * 3 + 1: PRINTC;
90 NEXTC
100 PRINT
110 FOR D = 6 TO 2 STEP - 2
120 HTAB (6 - D) * 3 + 1: PRINT D;
130 NEXT D: PRINT: PRINT
140 PRINT"A = ";A;" :B = ";B;" : C = ";C;" :D = ";D
RUN
1 2 3 4 5 6

2 4 6
6 5 4 3 2 1
6 4 2
A = 7 :B = 8 :C = 0 :D = 0

fig. 8-3. HT AB in loops.

60 APPLESOFT FOR THE lie

10 FOR A = 1 TO 6
20 HTAB(A - 1)*3 + 1 : PRINT A;
30 NEXT A : PRINT
RUN
1 2 3 456

Line 10 designates that the loop executions will go from 1 to 6. In line 20,
the HT AS function sets up the column in which the value of A is to be
printed. The "*3" begins a field every three positions ("*4" would begin a
field every four positions). The" + I" signifies column one of the screen. If
the" + I" is not used, the HTAS tries to print in column zero. Since there is
no column zero, the program does not run and prints out the error message,
"ILLEGAL QUANTITY ERROR". A "+ 2" would signify column two on the
screen. The "*3" controls the positions between numbers, while the" + I"
signifies the number of columns from the left hand side of the screen. The
value of A is printed horizontally because of the semicolon following the A
(Table 8·1).

Line 30 completes the loop and the PRINT closes out the line of printed
values of A.

Table 8-1. HTAB(A - 1)*3 + 1 : PRINT A;

LOOP
EXECUTIONS A (A - 1) (A - 1)*3

1 1 0
2 2 1
3 3 2
4 4 3
5 5 4
6 6 5

40 FOR B = 2 TO 6 STEP 2
50 HTAB(B - 1)*3 + 1 : PRINT B;
60 NEXT B : PRINT
RUN

246

0
3
6
9

12
15

(A - 1)*3 + 1

1
4
7

10
13
16

PRINT A;

1
2
3
4
5
6

The loop in line 40 starts with a value of 2. STEP 2 causes the loop to be
incremented by two (2) on each execution. The STEP can be any necessary
value, positive or negative, to achieve the solution to the problem. Lines 50
and 60 are similar to lines 20 and 30.

The lines from 70 to 130 cause the loop to decrement and print the num
bers backwards.

70 FOR C = 6 TO 1 STEP -1
80 HTAB(6 - 0)*3 + 1 : PRINT C;

1
}

1
l

1 ,
)

l

l
l
l
1
l
1

J

r
r

r
r

r
L

r
?

r
r
r

r
r
r

90 NEXT C
100 PRINT
110 FOR 0 = 6 TO 2 STEP - 2
120 HTA8(6 - 0)*3 + 1 :PRINT 0;
130 NEXT 0 : PRINT: PRINT
140 PRINT "A = ";A;" :8 = ";8;" :C = ";C" :0 = ";0
RUN
6 5 4
6 4
A=7

321
2

:8 = 8 :C = 0 :0 = 0

LOOPS 61

Line 70 sets loop C to go from 6 to 1 and is decremented in increments of
-l.

In line 80, since the loop values are to be printed backwards in increments
of - 1, the value of 6 must be printed to the left side of the screen in column
1. To accomplish this, the value of C must be subtracted from the maximum
value of the loop which is 6 (Table 8-2). Line 90 completes the "C" loop.
Line 1 00 PRINT closes out the line.

Table 8-2. HTAB (6 - C)*3 + 1 : PRINT C;

LOOP
EXECUTIONS C (6 - C) (6 - C)*3 (6 - C)*3 + 1 PRINT C;

1 6 0 0 1 6
2 5 1 3 4 5
3 4 2 6 7 4
4 3 3 9 10 3
5 2 4 12 13 2
6 1 5 15 16 1

Lines 110 through 130 cause the values in the D loop to be printed out
backwards in steps if - 2.

The first PRINT in line 130 closes out the line of print of loop D, and the
second PRINT skips a line before line 140 is printed.

The output from line 140 shows the next value of the variable after the
loop has completed its executions. After a loop has completed its execu
tions, the value of the loop variable is one unit more than the ending value
of the loop (or one unit less, if the loop is STEPing backwards). In loop A the
values go from 1 to 6, but the loop makes 7 the final value of A. In loop B
the values go from 2 to 6, but the loop STEP makes the final value of B
equal to eight (8). In loop C the values go from 6 to 1, but the loop makes
the final value of C equal to zero (0). In loop D the values go from 6 to 2, but
the loop makes the final value of D equal to zero (0). These are very
important facts to understand and remember.

It is important to keep track of these final variable values because they
can produce incorrect program results if the variables are used again and
not correctly initialized. The program and RUN are shown in Fig. 8-3.

62 APPlESOFT FOR THE lie

10 FOR S = 1 TO 3
20 FOR T = 1 TO 5
30 PRINT T; " ";
40 NEXT T : PRINT
50 NEXTS
60 END
RUN
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

Fig. 8·4. Double nested loops.

10 FOR S = 1 TO 10
20 HTAB (19 - S)
30 FOR T = 1 TO S
40 PRINT "*";
50 NEXT T : PRINT
60 NEXT S
70 END
RUN

I
INNER LOOP

I

*
**

Fig. 8·5. Graphics print using double nested loops.

I
OUTER LOOP ,

Nested loops are a loop within a loop (Fig. 8·4). In Applesoft, loops can be
nested 10 deep.

Line 20 sets the inner loop to execute 5 times. Line 30 causes the inner
loop to print out the value of T on each execution of the loop, and the quota·
tion marks cause one space to be placed between each of the values in the
printout. If two spaces were left between the quotation marks, there would
have been two spaces left between each value as it was printed. This is
another method of spacing in a loop.

Line 10 and line 50 cause the outer loop to execute three times.
If loops are crossed, the program will not execute. Reverse lines 40 and

50 and observe that the NEXT variables are not in proper relation to the be·
ginning of the loops.

l
l
1

./

l
l
1 ,

j

l
1
l
l ,

}

l
l
l
1

r
r

[

r
r

r
r
r
r

r

10 FOR S = 1 TO 3-----,
20 FOR T = 1 TO 5 ---+-,
30 PRINT T; " ";
40 NEXT S : PRINT---...J
50NEXTT-------...l
60 END
RUN
111
?NEXT WITHOUT FOR ERROR IN 50

LOOPS 63

Fig. 8·5 is a program using nested loops and the HT AB to print out half a
triangle.

LESSON 9

Relational And Logical
Operators

After Lesson 9 you should be able to:

I. Define and use relational and logical operators in writing a program.
2. Use decision statements in programming.

VOCABULARY

Bug - A bug is a mistake or malfunction in a computer program.
Debug - This means to remove a mistake, or mistakes, from a computer

program or computer system.
Decision - This is an operation performed by a computer that enables it to

choose between alternative courses of action. A decision is usually made
by comparing the relative magnitude of two specified operands. A
branch instruction is used to select the required path according to the
results.

Default - The rule of default states that a computer program runs sequen
tially according to increasing line numbers unless a branch is executed.

Logical Operator - A logical operator is a word or symbol to be applied to
two or more operands (NOT, AND, and OR are logical operators).

Relational Operator - A relational operator is a method of comparing
quantities in order to make a decision.

DISCUSSION

Program statements have line numbers so the program can run sequen
tially from the lowest line number to the highest. The program runs sequen
tially until a program statement containing a relational or logical operator
is reached. The program then must weigh the decision. If the decision is
TRUE (1 or yes), then the program branches to a line number out of
sequence. If the decision is FALSE (0 or no), then the program continues in
its sequential run. That is, the program "falls through" or defaults to the
next line number. The rule of default states that unless a branch is executed,
the statement with the next highest line number is executed. With the

64

1

l
l
1

;.

1
l
1
1
1
1
1
1 ,

j

1
1

r
r
r
r
r
r
r
r
r

r
r
r
r
r
r

RELATIONAL AND LOGICAL OPERATORS 65

computer there are only two decision choices, true or false. There can be no
other answer to the decision.

The following relational operators compare two quantities. Based on the
result of the comparison, the computer can make a decision.

1. = Left expression "equals" the right expression (in this case, equals is
not a replacement statement).

2. < > Left expression "does not equal" right expression.
3. > Left expression "is greater than" right expression.
4. < Left expression "is less than" right expression.
5. > = Left expression "is greater than or equal to" right expression.
6. < = Left expression "is less than or equal to" right expression.

Relational operators are related to logical operators.

1. NOT - NOT is the negation of an expression (IF NOT A GOTO 300)
2. AND - AND joins two OR MORE expressions together. For the state·

ment to be true both expressions must be true. (IF A>B AND C>D
GOTO 999.)

3. OR - OR joins two or more expressions. If either (or one) is true, the
decision is true. (IF A>B OR C>D GOTO 999.)

The following program combines PRINT statements, loops, GOTO state·
ments, decision statements, and program sections in one unit to further the
learning experience. In Lesson 8 GOTO loops were discussed. This lesson
details why a GOTO loop is used in cases where the total number of inputs is
not known beforehand. The program deals with applicants who come into a
drivers license bureau to apply for an operators permit. The office never
knows how many applicants will present themselves on a given day. The
GOTO loop accommodates the unknown number of applicants by using
decision statements.

An applicant enters the drivers license office and the attendant asks the
applicant's name and age. An operators license is issued or not issued on
the basis of the age of the applicant. The total number of applicants by age
groups and the total number of applicants for the day are printed out and
the program terminates.

The program was intentionally written with REM statements in the pro·
gram to demonstrate how programs can be written in sections to determine
if each section runs properly. This is one method of debugging a program.
These variables are used in the program.

AGE = age of the applicant UNDER 18 = the applicant is under 18
IS 18 = the applicant is 18 OVER 18 = the applicant is over 18
NA = number of applicants

10 REM * PROGRAM TO DETERMINE
20 REM * LICENSE ELIGIBILITY AND

66 APPlESOFT FOR THE lie

30 REM * COUNT THE NUMBER OF APPLICANTS
40 REM * INITIALIZE VARIABLES
50 INPUT "AGE = "; AGE
60 IF AGE < = 0 THEN 190
70 REM * COUNTING VARIABLE
80 IF AGE 18 THEN 130
90 IF AGE= 18 THEN 160
100 REM * COUNTING VARIABLE
110 PRINT "OPERATORS LICENSE"
120 GOTO 50
130 REM * COUNTING VARIABLE
140 PRINT "NO OPERATORS LICENSE"
150 GOTO 50
160 REM * COUNTING VARIABLE
170 PRINT "JUNIOR OPERATORS LICENSE"
180 GOTO 50
190 REM * PRINT HEADINGS
200 PRINT
210 REM: PRINT TOTALS
220 END
RUN
AGE = 36
OPERATORS LICENSE
AGE = 15
NO OPERATORS LICENSE
AGE = 0

The program RUNs as planned. When age is input, the output shows the
eligibility of the applicant. The first program revision counts the number of
applicants. Change the program by typing the following line numbers and
program statements.

40 NA = 0 (INITIALIZE SUMMING VARIABLE TO ZERO)

70 NA = NA + 1 (COUNTING STATEMENn

190 PRINT "TOTAL APPLICANTS"
210 PRINT NA
RUN
AGE = 25
OPERATORS
AGE = 0
TOTAL APPLICANTS
1

It worked just as planned. Line 40 initializes the variable NA (number of
applicants) to zero. A summing location must be initialized to the correct
value before the variable is used. Many computers do not clear memory
locations, and those locations could contain an undesired value.

Line 70 is a replacement statement that is also a counting statement
which counts the number of applicants. The value of NA (originally zero) is
incremented by the value of one (1) for each applicant. This incremented

l
1 ,

)

1
l
l
1

1;
i
j

l
1
1
l
1

r
i

r
r
r
r
r
r
r
i
r
r
r
r
r
r
r

RELATIONAL AND LOGICAL OPERATORS 67

value (NA + 1) is placed on the left side of the equals into NA. When proces
sing the first applicant, the counter looks like this: NA = 0 + 1. With the
second applicant the process is repeated, so the counter is NA = 1 + 1 and
the results are placed on the left side of the equals sign into the variable NA.
As each applicant's age is input, the counter is incremented by on.e (1). The
incrementing continues until zero (0) is input, which causes the program to
branch to line 190 to print out the totals (see line 60).

The second revision separates the applicants by age, counts ~nd prints
out the total number of applicants, and prints out the number of applicants
that are UNDER 18, NOW 18, and OVER 18.

Type in the following line numbers and program statements.

40 NA = 0: UNDER18 = 0: NOW18 = 0: OVER18 = 0
100 OVER18 = OVER18 + 1
130 UNDER18 = UNDER18 + 1
160 NOW18 = NOW18 + 1
190 PRINT "TOTAL NUMBER UNDER 18 NOW 18 OVER 18"
210 HTAB 5 : PRINT NA; TAB(16); UNDER18; TAB(25); NOW18; TAB(33);

OVER18
RUN
AGE = 15
NO OPERATORS LICENSE
AGE = 18
JUNIOR OPERATORS LICENSE
AGE = 25
OPERATORS LICENSE
AGE = 0
TOTAL NUMBER UNDER 18 NOW 18 OVER 18

3 1 1 1

The second revision initializes three more counting variables to zero.

40 NA = 0: UNDER18 = 0: NOW18 = 0: OVER18 = 0
100 OVER18 = OVER18 + 1
130 UNDER18 = UNDER18 + 1
160 NOW18 = NOW18 + 1

Lines 100, 130, and 160 add counting statements to count the number of
applicants in each age bracket. The counting statements are placed in the
program sections that deal with the specific age of the applicant. The GOTO
statements of lines 120, 150, and 180 are the ends of GOTO loops. The
statements are unconditional jumps to line 50, the line that accepts the age
of the next applicant.

The two program revisions complete the program and solve the problem
of totaling the number of applicants and the total number of applicants by
age.

The program section pertaining to applicants UNDER 18 is as follows:

68 APPLESOFT FOR THE lie

80 IF AGE < 18 THEN 130
130 UNDER18 = UNDER18 + 1
140 PRINT "NO OPERATORS LICENSE"
180 GOTO 50

The program section pertaining to those applicants who are 18 years of
age follows:

90 IF AGE= 18 THEN 160
160 IS18 = IS18 + 1
170 PRINT "JUNIOR OPERATORS LICENSE"
180 GOTO 50

The program section dealing with those applicants OVER 18 is as follows:

90 IF AGE = 18 THEN 160 (IF THE AGE IS OVER 18 THE STATEMENT IS FALSE AND THE
PROGRAM DEFAULTS TO LINE 100)

100 OVER18 = OVER18 + 1
110 PRINT "OPERA TORS LICENSE"

The program section that deals with line 60. If the age is input as equal to
zero in line 60, the program branches to line 160 to print out the results and
end the program.

60 IF AGE < =0 THEN 190
190 PRINT "TOTAL NUMBER UNDER 18 NOW 18 OVER 18"
200 PRINT
210 HTAB 5 : PRINT NA; TAB(16); UNDER18; TAB(25);

NOW 18; TAB(33); OVER18
220 END

In the operators eligibility program, there are three age classifications,
UNDER 18, NOW 18, and OVER 18. There are, however, only two decision
statements to select the three age categories. Line 60 does not select an age
category.

80 IF AGE < 18 THEN 130
90 IF AGE=18 THEN 160

The age groups start from the youngest group first. Line 80 selects off the
youngest age group. Line 90 selects off the age group equal to 18. Thus, two
of the three age groups are selected. This leaves the over 18 age group to
follow the rule of default when that decision reaches line 90.

The complete operators license eligibility program is shown in Fig. 9-1.
In Applesoft, an IF-THEN statement that is TRUE executes all statements

after the THEN. For example, all statements in line 20 are executed.

10 A = 5
20 IF A> 4 THEN A = 6: B = A/12 : GOTO 90

In this case, since A>4 is TRUE, all statements are executed before the
computer branches to line 90.

l

l
l
1
1
l
l

,
J

1
1
l
l

r
r
r
r
r
!Bl
l

r

r

i
L

r
r
r
r
r

10 REM -PROGRAM TO DETERMINE
20 REM -LICENSE ELIGIBILITY AND

RELATIONAL AND LOGICAL OPERATORS 69

30 REM -COUNT THE NUMBER OF APPLICANTS
40 NA = 0:UNDER18 = 0:1518 = 0:OVER18 = 0
50 INPUT "AGE = ";AGE
60 IF AGE < = 0 THEN 190
70 NA = NA + 1
80 IF AGE < 18 THEN 130
90 IF AGE = 18 THEN 160
100 OVER18 = OVER18 + 1
110 PRINT "OPERATORS LICENSE"
120 GOTO 50
130 UNDER18 = UNDER18 + 1
140 PRINT "NO OPERATORS LICENSE"
150 GOTO 50
160 1518 = 1518 + 1
170 PRINT "JUNIOR OPERATORS LICENSE"
180 GOTO 50
190 PRINT "TOTAL NUMBER UNDER 18 IS 18 OVER 18"
200 PRINT
210 HTAB 5: PRINT NA; TAB(16);UNDER18; TAB(25);1518; TAB(33);OVER18
220 END
RUN
AGE = 36
OPERATORS LICENSE
AGE = 21
OPERATORS LICENSE
AGE = 18
JUNIOR OPERATORS LICENSE
AGE = 15
NO OPERATORS LICENSE
AGE = -1
TOTAL NUMBER UNDER 18 IS 18 OVER 18
411 2

Fig. 9-1. Operators license eligibility program.

With the operators eligibility program completed, the following concepts
have been reinforced.

1. PRINT statement rules.
2. HT AB and TAB rules.
3. aOTO loops
4. Operators and decision statements.
5. Initializing variables and counting statements have been introduced and

will be discussed in greater detail in Lesson 12.

LESSON 10

Problem Solving and Flowcharting

After completing Lesson 10 you should be able to:

1. Begin using a logical method in problem solving.
2. Flowchart simple problems with flow chart symbols.

VOCABULARY

Code - Code is the representation of data or instructions in symbolic form;
sometimes used as a synonym for instruction.

Hardware - This is the name for all physical units of a computer system.
Hardware is made up of all the apparatus rather than the programs.

Logic - Logic is the science dealing with the formal principles of reasoning
in electronic data processing. A program may run because there are no
SYNTAX errors, but the results may be incorrect because the logic is in
correct.

Logic Flowchart - This is a chart representing a system of logical elements
and their relationship within the overall design of the system or hardware
unit. It is a representation of the various logical steps in any program or
routine by means of a standard set of symbols. A flowchart is produced
before detailed coding for the solution of a particular problem.

Software - In its most general form, software refers to all the programs
that can be used on a particular computer system.

DISCUSSION

When you write a computer program, you solve a problem. The most
basic approach to solving a problem is to first understand the problem. In
the program to compute the area of a circle, the formula was discussed and
thought out in high school math. The knowledge simplifies programming
the output. A program to compute and compare the three types of deprecia
tion somewhat changes the problem. The first approach to programming is
to understand the problem and its ramifications.

Once the problem is understood, the solution must be placed in the

70

1
1
1
1
l

1
1
1
1 ,

J

1
1

l
l

r
r
r

r
r
r
r
r
r

r
r

r

PROBLEM SOLVING AND FLOWCHARTING 71

proper order. The exact output must be known. The precise formulas to out
put the correct answers must be used. The exact language that the com
puter understands must be programmed in the proper order, and the idio
syncrasies and normal operations of the computer must be understood. The
computer can only output according to specific input. The excuse is often
heard, "[t's the computer's fau[t." Computers seldom (if ever) make errors;
it's the human input that is in error. Computers are stupid, but exacting.
Many programmers pray for a program statement DW[T (do what [think).
The DW[T function is not yet available in App[esoft, so we'll do the best we
can with what we have. Remember, the computer does exactly what you tell
it to do, nothing more, nothing less.

Once the problem, the language, and the computer are understood, all
other problems are relatively simple. The program can now be written to
solve the problem.

The output must be tested for correct results with as many different in
puts as possible. Simple inputs may produce correct results, but are there
cases where the outputs are incorrect? The program should be tested and
debugged to produce correct output under all circumstances. What if the
program to put a man on the moon had a bug in it?

Has the program been documented with REM statements and all other
written records been recorded so another person could RUN the program
and understand the output? Have the variables been recorded so the com
putational formulas can be easily understood? Has the program been
properly indexed so it can be easily located in the library? The answers to all
these questions should be yes. [t is easy to forget what problem the program
solves, what the variables represent, and where the program is 'located.

Flowcharting, or logic flowcharting, is a technique representing a succes
sion of events in symbolic form. Flowcharting is the first step in [ogical pro
gram development. [t aids in thinking the program through from the prob
[em stage to the computer stage.

[n data processing, flowcharts may be divided into two types, system
flowcharts, and program flowcharts.

System flowcharts, using symbols, show the logical relationship between
successive events using hardware. Such symbols include data input (for
example, magnetic tape, paper tape, disks, and punched cards), and data
output (for example, magnetic tape, paper tape, disks, printers, and
modem), Fig. 10-1.

Program flowcharts show diagrammatically the logica[relationships be
tween successive steps in a program. For most complicated programs, an
outline flowchart precedes a detailed flowchart, before the program is
written.

The purposes of outline or initial flowchart are to show:

1. All input and output functions.

72 APPlESOFT FOR THE lie

SYSTEM SYMBOLS

t:::l 0 0
PUNCHED TAPE MAGNETIC DRUM MAGNETIC TAPE

C1 D 0
MANUAL INPUT DOCUMENT PUNCHED CARD

Fig. 10-1. Computer system flowchart symbols.

2. How input and output are to be processed.
3. How the program will be divided into routines and subroutines.

The purposes of a detailed or final flowchart are:

1. To interpret the detailed program specifications.
2. To determine the programming techniques to be used.
3. To provide direction for code and comment.
4. To fix the program style for ease of interpretation.

PROGRAM FLOWCHART SYMBOLS

(TERMINAL)

GOTO

Used for the beginning and ending of a
program. A symbol representing a termi
nal point in a flowchart.

Flowlines show the transfer of control
form one operation to another by default,
conditional or unconditional branching.

Input data entered into the computer and
represents results returned from the com
puter. INPUT PRINT

Indicates decision or switching type of
operation that determines which of two
alternate paths to follow. IF-THEN

,
1
1
1
l
1
1
1
1
1
1
1
1

.J

1
l
1

r
r
r
r
r
I

r
r
r

r
r
r
r
r
r

OPERATION

PREDEFINED
PROCESS

o CONNECTOR 0

PROBLEM SOLVING AND FLOWCHARTING 73

Operation or process symbol that repre
sents any kind of processing function
such as initializing, summing, or comput
ing.

Indicates a routine outside the main pro
gram, such as a subroutine. GOSUB

A symbol (pair) to represent the exit from
or the entry to, another part of the flow
chart. It is used to indicate transfer of
control from one point to another point
that cannot be conveniently shown on the
flowchart because of the confusion of
connector lines, or because the flowchart
is continued on another page.

Figs. 10-2, 10-3, and 10-4 demonstrate flowcharts graphically and de
scribe a program. Fig. 10-2 represents the Drivers License Program in
Lesson 9. Figs. 10-3 and 10-4 represent the Sum of the Integers Program in
Lesson 8. Fig. 10-4 shows how a FOR-NEXT loop is more efficient than a
GOTO loop because it contains fewer statements.

l
74 APPLESOFT FOR THE lie

l

l
l
l

l
l
l
1
l

Fig. 10-2. Flowchart for license ellglblIlty program. l ,
J

l
l
l

r
r
I

r

r

r

r
r
r
r
r

r
r

PROBLEM SOLVING AND FLOWCHARTING 75

10 X = 0

20 SUM = 0

30 FOR X = 0

40 PRINT X

50 SUM = SUM + X

60 NEXT X

70 PRINT" SUM = "; SUM

80 END

Fig. 10-3. Sum of the integers 1 through
5 using a FOR-NEXT loop.

10 X = 0

20 SUM = 0

30 PRINT X

40 IF X = 5

50 X = X + 1 THEN 80

60 SUM = SUM + X

70 GOTO 30

80 PRINT" SUM = .. ; SUM

99 END

Fig. 10-4. Sum of the integers 1 through 5 using a <iOTO loop.

LESSON 11

Rules for Efficient Programming

After completion of Lesson 11 you should be able to:

1. Write three pairs of opposites to be used with decision statements.
2. Use three rules for efficient programming.
3. Understand how to save memory space and increase the speed at

which a program runs.

DISCUSSION

This lesson deals with how to program more efficiently and how to make
the program run faster. Efficiency and speed may be well and good, but to
the average computer hobbyist speed is not that important. The important
thing is to enjoy the hobby and write programs that are readable and can be
deciphered six months from now. Place REM statements within the pro
gram that will help you understand and remember what the variable repre
sented. Did that single "R" stand for RUN or RAIN? These points are very
important if the program is to be reused at a later date. A couple of micro
seconds lost here and there isn't going to change the world. Write under
standable programs. Write programs that jog your memory when you pick
them out of your library four months from now. The variable SUM (even
Applesoft recognizes only the first two letters) means something. The var
iable "S," now what did that stand for? Now back to speed and efficiency.

There are three pairs of opposites that are used to reverse the logic of the
IF-THEN statement.

1. > is the opposite of < =
2. < is the opposite of > =
3. = is the opposite of < >

These pairs of opposites select a range. If the range is below age 18, the
statement is AGE < 18. If the range includes age 18 and those ages below
18, the statement is AGE < = 18. If the over 18 group is to include the 18
year olds, the statement is written AGE> = 18.

76

l
1

,\

l
1
1
l
1

l
l

l
l
l
l
l
l

r
r
r
r
r
r
r
r
r

r
r
r
r
r
r

RULES FOR EFFICIENT PROGRAMMING 77

Age less than 18
Age less than 18
but includes 18
Age is equal to 18
Age is not 18
Age greater than 18
Age greater than 18

AGE < 18

AGE< = 18
AGE = 18
AGE<> 18
AGE> 18

but includes 18 AGE> = 18

Decision statements (IF-THEN) operate on a TRUE (1 or YES), or FALSE
(0 or NO) basis and are flowcharted as shown in Fig. 11-1.

YES

Fig_ 11-1. Decision statement flowchart.

Decision statements should select the range from least to greatest by
sequential line number for maximum programming 'efficiency. In other
words, the ranges involving the smallest number should be selected first,
and the increasing value of the range should be selected sequentially from
the first value.

60 IF AGE < = 0 THEN 190
80 IF AGE < 18 THEN 130
90 IF AGE = 18 THEN 160 (Age < 18 defaults to line 100)

100 OVER18 = OVER18 + 1

Selecting the range from least (line 60) to greatest (line 90) makes pro
gramming an orderly endeavor, and thus, easier to perform and interpret.
Fig. 11-2 demonstrates three rules for efficient programming.

Memory space can be saved and program speed increased by:

1. Using multiple statements for each line number.

100 UNDER18 = UNDER18 + 1 : PRINT "OPERATORS LICENSE" : GOTO 50

This saves memory space, but also it sometimes helps keep track of
program sections. In a long program, if short program sections are
written with a single line number it eases readability.

2. Using variables within the program instead of constants. PI =
3.1415926. If PI is used in the program (instead of 3.1415926), it runs
faster. It takes more time to convert a constant to a real nurt;}ber than it
does to fetch a variable. This is true in computations and in
FOR-NEXT loops. Use FOR X = 1 TO PI, instead of FOR' X = 1 TO
3.1415926. '

78 APPLESOFT FOR THE lie

1. IF CONDITION IS TRUE DO ONE THING.

YES
10 X=6: Y=4
20 IF X> Y THEN X=Y

NO

2. IF THE CONDITION IS TRUE DO TWO OR MORE THINGS.

YES

NO

30 IF X> Y THEN S=S+ X+ Y: C=C+5
WHEN X> Y THE STATEMENT IS TRUE AND BOTH S=S+X+Y AND C=C+5 WILL BE DONE.

3. IF THE CONDITION IS TRUE DO ONE OR MORE THINGS AND IF THE CONDITION IS FALSE DO
ONE OR MORE THINGS.

40 IF X > Y THEN MAX = Y: GOTO 60
50 MAX = Y: T = T + 1
60 REM

Fig. 11-2. For efficient programming use these three rules for the decision statements.

l
l

1
1

1
1 ,

j

l ,
1

1

1

r
r
r
r
r
r
r
r
r
r
r
r
r
[

r
r

RULES FOR EFFICIENT PROGRAMMING 79

3. Place items that are used frequently at the beginning of the program.
When the program reaches an item that must be converted or fetched,
the computer must search through the program sequentially until the
item is found. If the item is on line 10, the search is much shorter than
if the item is on line 10000.

There are other methods that save space and increase program speed but
they do not increase efficiency greatly. Learn to program efficiently so the
programs are usable, accurate, and understandable.

LESSON 12

Summing, Counting, and Flags

After completion of Lesson 12 you should be able to:

1. Write a program using summing and counting variables.
2. Initialize variables in the proper program location.
3. Use a flag to control all or part of a program.

VOCABULARY

Counting Variable - A counting variable is a variable used to count within
a loop, e.g., C = C + 1. The variable is incremented by one (1) on each
loop execution.

Flag - A flag is an additional piece of information added to a data item
which gives information about the data. An error flag indicates that the
data item has given rise to an error condition.

Illegal Value - In Applesoft, this means using a reserved word for a vari
able, i.e., using TO as a variable when it is a reserved word.

Legal Value - In Applesoft, this means using a variable that meets the re
quirements of the language, i.e., X = 5.

Summing Variable - A summing variable is used within a loop to sum the
values of the loop variable. For example FOR X = 1 TO 5 : SUM = SUM
+ X. The summing statement SUM = SUM + X sums the values of X.

DISCUSSION

Counting variables are used to count some function within the program
and are generally initialized to zero. The increment is one (1) if each execu
tion of the loop is to be counted. C = C + 1 is the statement used to incre
ment the count by one and store the count in the variable location "c."

Summing, also known as totaling, variables are used to sum or total
within a loop. If "T' is the totaling variable, then "T" is usually initialized to
zero. A program that totals daily and adds the daily total to the previous
day's total would not be initialized to zero, but would be initialized to the
previous day's total. If the variable is "X," then the totaling statement would

80

i
)

,.,
I

\

l

l

l
l

..,
j

J

l
,..,

)

j

1

r" I·!

r
r

r
r
r
r
r
r

r
r

r

SUMMING, COUNTING, AND FLAGS 81

be T = T + X. The value of "X" is added to the total (T + X) and that value
is placed in the variable "T' on the left side of the equals sign. The state
ment "T = T + X" is placed inside the loop and the total is output outside
the loop, after the loop has made its final execution.

Variables are initialized at the beginning of the program. The statements
that initialize the variables have no further function in the program. The
GOTO statement should go to a line number below the line where the vari
ables are initialized.

Fig. 12-1 is a program that demonstrates counting and totaling variables,
and the location where these variables should be initialized.

10 C = 0: T = 0: REM * INITIALIZE VARIABLES
20 FOR X = 1 TO 5
30
40
50
60
70
80
999
RUN

PRINT X; " ";
C = C + 1 : REM * COUNTING STATEMENT
T = T + X : REM * TOTALING STATEMENT
NEXT X : PRINT: PRINT
PRINT "COUNT = "; C : PRINT
PRINT "TOTAL = "; T
END

1 2345

COUNT = 5

TOTAL = 15
Fig. 12-1. Counting and totaling variables.

Note that the counting and totaling statements are within the body of the
loop and the count and total change with every execution of the loop. When
the loop has completed its last execution, the computer prints out the total
count (line 70), prints out the total value of the variable "T," and the pro
gram ends.

A flag is a value stored in a variable. Flags are signals to the computer
and are used to indicate the start of some programmed function. In the pro
gram in Fig. 12-2, the flag has a legal value of zero (0), one (1),: and minus
one (- 1). Flag = 0 causes the program to print out the number of addi
tions, number of subtractions, final total, and the program ends. Flag = 1
causes the program to jump to the section of the program to input a number
to add. Flag = - 1 causes the program to jump to a section of the program
to input a number to be subtracted. After each addition and subtraction
there is a GOTO 20 statement that is an unconditional jump to input
another flag value.

If an illegal value (any value other than 0, 1, or - 1) is typed in the INPUT
(20 for example) the program defaults to line 70. When Flag = 20, the deci
sion at line 40 is FALSE, and the program defaults to line 50. In line 50, the
decision is also FALSE and the program defaults to line 60. Line 60 is

82 APPLESOFT FOR THE lie

FALSE and the program defaults to line 70. Line 70, GOTO 20, is an un·
conditional jump to line 20 to input another flag value.

The variables follow, and the program and RUN may be viewed in Fig.
12-2.

CA = count to be added
N = number to be input
T = total

CS = count to be subtracted
F = flag

Line 10 initializes the variables to zero. Line 20 prints out the flag values
that control a spec;ific part of the program. F = ° outputs the results and
causes the program to end. F = 1 adds a number that has been input and
keeps a total. F = - 1 subtracts a number that has been input and keeps a
total. Line 30 allows the user to input the flag value. Fig. 12-3 is the flow
chart of the FLAG VALUE program.

10
20

30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
RUN

CA=O:CS=O:T=O
PRINT "ENTER FLAG VALUE (0 TO QUIT: 1 TO ADD NUMBER:
-1 TO SUBTRAcT NUMBER)"
INPUT "?" ;F
IF F = 0 THEN 140
IF F = 1 THEN 80
IF F = -1 THEN 110
GOTO 20
INPUT "NUMBER TO BE ADDED "; N
CA=CA+l:T=T+N
GOTO 20
INPUT "NUMBER TO BE SUBTRACTED "; N
CS = CS + 1 : T = T - N
GOTO 20
PRINT: PRINT "# OF ADDS = "; CA
PRINT: PRINT "# OF SUBTRACTS = "; CS
PRINT: PRINT "FINAL TOTAL = "; T
END

ENTER FLAG VALUE (0 TO QUIT: 1 TO ADD NUMBER: -1 TO
SUBTRACT NUMBER)
? 1
NUMBER TO BE ADDED 34
ENTER FLAG VALUE (ALL OF LINE 20)
? -1
NUMBER TO BE SUBTRACTED 18
?O
OF ADDS = 1
OF SUBTRACTS = 1
FINAL TOTAL = 16

Fig. 12-2. Program to demonstrate flag variables.

FIll)

1 ,
j

l

" \
l

,.,
J

j
I

l
l
l

1

r

" r'
r,'· :,

r
r

r

r
r
r
r

SUMMING, COUNTING, AND FLAGS 83

Fig. 12-3. Flowchart for flag program.

GOTO lines in Fig. 12-3 are represented by lines from one symbol to
another but are not named in the flowchart. Unless F = 0, all GOlD lines re
turn to input another flag value. Lines 140, 150, and 160 print out the re
sults and the program ends at line 170.

LESSON 13

Single Subscripted Variables

After completion of Lesson 13 you should be able to:

1. Set DIMension limits using constants and variables.
2. Write programs using subscripted variables for numeric lists.

a. To output the list as it is input.
b. To output the list in reverse order.
c. To operate on the numbers in the list.
d. To total the numbers in the list.

VOCABULARY

A.rray (subscripted variable) - The array is an arrangement of items of data,
each identified by a key or subscript. It is constructed in such a manner
that a program can examine the array in order to extract data relevant to
a particular key or subscript. The dimension of an array is the number of
subscripts necessary to identify an item. Ticket reservations based on the
day of the month would need a (DIM R(31», and the array would be
(R(DA Y». Ticket reservations based on the day and the month would
need a double subscripted variable (DIM R(31, 12», and the array would
be (R(DAY,MONTH».

DIM - The dimension statement reserves memory locations for numeric or
string arrays, such as A$(14) for string arrays, B(5) for real arrays, and
C%(l2) for integer arrays. DIM A(15) reserves 16 strings of 255 charac
ters in length, starting from zero (0). DIM A$(N) must be placed in the
program after the variable "N" has been input. The DIM A(N) must not be
placed inside a loop.

List - A list is a series of data items.
Literal- A literal is a sequence of characters. (MARY is a literal---- "MARY"

is a string)
Operate - This is a defined action by which a result is obtained from an

operand.

84

1 ,
)

l .,
I~

1
1
1
i

.~

1
""II)

1\

1

r:,·: I

r· i

r
r
r
r
r
r
r
r
r
r
r
r
r
r

SINGLE SUBSCRIPTED VARIABLES 85

String - A string is a sequence of characters. A string can be stored in a var·
iable which is a letter followed by a dollar sign, for example A$, RE$, or
H1$.

DISCUSSION

Lesson 13 introduces a new type of variable, the subscripted variable for
numeric lists, or array.

SUBSCRIPTED VARIABLE

SIMPLE VARIABLES
SUBSCRIPTED VARIABLES

C(A) C(1)
CA X9
C(A) X(9)

CX4 G3H
CX(4) G3(H)

The variables A, A %, A(O), AB, and A(B) can all be used in the same pro·
gram successfully. A subscripted variable, like a simple variable, reserves a
memory location with a label and contents.

Table 13·1 shows five subscripted variables with the memory locations
labeled C(A) with no values in the memory locations.

Table 13-1. Subscripted Variables

LABEL CONTENTS

C(1)

C(2)

C(3)

C(4)

C(5)

C(A) represents C(1), C(2), C(3), C(4), and C(5). Suppose the contents of
the memory locations whose label is C(A) is filled with random numbers.
LET C(1) = 8. LET C(2) = 5. LET C(3) = 19. LET C(4) = 1. LET C(5) = - 8.
Table 13·2 shows the five memory locations whose labels are C(A) and
whose contents are shown above.

Table 13-2. Subscripted Variables

LABEL CONTENTS

C(1) 8

C(2) 5

C(3) 19

C(4) 1

C(5) -8

86 APPLESOFT FOR THE lie

The subscripted variable, or array, is now filled with a list of numbers.
When you remember that the subscript of a variable can be a variable (C(A»,
or a constant (C(1», you begin to realize what a powerful tool the single sub
scripted variable can be.

IF A = 1 THEN C(A) = C(1)
IF A = 2 THEN C(A) = C(2)
IF A = 3 THEN C(A) = C(3)

Subscripted variables give great processing power to the computer, and
make the job of the programmer much easier.

To practice conversion of using constants and variables in the sub
scripted portion of the variable, complete the following exercise.

L(1) = 2
L(2) = 5
M(3) = 7
M(4) = -2

L(l) =
L(2) =
M(R) =
M(S) =
2
5
7
-2

N(l) = 6
N(2) = 3
0(3) = 1
0(4) = 4
p =
Q=
N(Q) =
M(S) =
1
2
3
-2

p = 1
Q=2
R = 3
S=4
L(P) =
O(R) =
N(Q) =
N(P) =
2
1
3
6

A DIM statement is necessary to reserve memory locations for a numeric
array. The array range goes from zero (0) to 255 characters in length. An
array can consist of up to 11 (0 to 10) elements before a DIM statement is re
quired.

Integer arrays A %(N) will not be discussed separately because they are
handled in a manner similar to real arrays A(N).

In the program in Fig. 13-1, three numbers are input into a list, so the DIM
statement is not necessary. However, it is a good procedure to always in
clude a DIM statement in the program that contains subscripted variables.

The program in Fig. 13-1 allows the user to input "N" numbers into a list.
The list of numbers is printed out as input, printed backwards, operated on,
and totaled.

In the program, the variable "L" automatically references the list. To
reference items in the list, the variable "L" must be used and it must be fol
lowed by a subscript value enclosed in parentheses (L(A), L(2), or L(N*2 -
3». The subscript can either be a variable, constant, or an expression. This
flexibility is what gives arrays their real power. Anything can be placed in
the subscript parentheses to reference a single part of the list, as long as it is

> = 0 and < = the DIM statement value.

,
~\ ,
l

1
1

l
1
l
1

1
1

,
)

r

r
r

r
r

r
r

r
r

SINGLE SUBSCRIPTED VARIABLES 87

90
100
110
120
130
140
150
160
170

HOME: VTAB 3
REM : ARRAYS - SINGLE SUBSCRIPTED
REM: VARIABLES - USED FOR LISTS
REM: 4 WAYS TO USE THEM
REM: INPUT 4 NUMBERS
INPUT "HOW MANY NUMBERS = ";N
DIM L(N)
FOR X = 1 TO N : L(X) = 0 : NEXT X
FOR K = 1 TO N

180 PRINT "NUMBER";K; "=";
190 INPUT L(K)
200 NEXT K
210 PRINT "PRINT LIST AS INPUT" : PRINT
220 FOR A = 1 TO N
230 PRINT L(A); " ";
240 NEXT A : PRINT: PRINT
250 PRINT "PRINT LIST BACKWARD" : PRINT
260 FOR B = N TO 1 STEP - 1
270 PRINT L(B); " ";
280 NEXT B : PRINT: PRINT
290 PRINT "TO OPERATE ON THE LIST" : PRINT
300 PRINT "C"; TAB (7); "L(C)"; TAB (14); "L(C)+5"; TAB (23);

"C*L(C)"; TAB (33); "L(C)A2"
310 FOR C = 1 TO N
320 PRINT C; TAB (9); L(C); TAB (16); L(C) + 5;

TAB (24); C*L(C); TAB (34); L(C)A2
330 NEXT C : rr.INT
340 PRINT "THE LIST IS TOTALED" : PRINT
350 T = 0
360 FOR D = 1 TO N
370 T = T + L(D)
380 NEXT D
390 PRINT "TOTAL OF THE LIST = "; T
400 END
RUN
HOW MANY NUMBERS 3
NUMBER 1 = ? 4
NUMBER 2 = ? -5
NUMBER 3 = ? 2.5
PRINT LIST AS INPUT

4 -52.5

PRINT LIST BACKWARD

2.5 -54

TO OPERATE ON THE LIST

C
1

L(C)
4

Fig. 13·1. Operating on lists.

L(C)+5
9

C*L(C)
4

L(C)A2
16

88 APPLESOFT FOR THE lie

2 -5
3 2.5
THE LIST IS TOTALED

TOTAL OF THE LIST = 1.5

o
7.5

Fig.13-I-cont. Operating on lists.

-10
7.5

25
6.25

Line 90 clears the screen and places HOW MANY NUMBERS on line 3 of
the screen. The screen holds the complete input and output of the program
(if no more than three numbers are entered in the list). When viewed to
gether, the input and output help the user determine if the output is correct
in relation to the input. Lines 100 through 130 are REM statements that par
tially document the intent of the program.

Line 140 sets up the user request and prepares for the input of the num
ber of numbers to be entered into the list. The user then types in a number.

Line 150 DIM L(N) reserves memory locations N + 1 numbers in the list
"L." Line 160 initializes the memory locations of "N" numbers in the list to
zero (0). L(X) could have been initialized to zero (0) by using L(1) = 0, L(2) =
0, L(3) = O. The loop is much more efficient, especially for an array with
many values in the list.

Lines 170 through 200 set up the input format for the numbers to be
entered into the list.

170 FOR K = 1 TO N
180 PRINT "NUMBER";K;" =";
190 INPUT L(K)
200 NEXT K

In line 180, the variable "K" is placed between the NUMBER and the" ="
to inform the user which of the numbers in the list is to be entered. The "K"
in the print statement begins as number one (l) and is incremented by one
(1) with each execution of the loop. "

Lines 210 through 240 set up the list to be printed out as it was input. The
loop structure is used and the loop variable is "A," so the subscripted varia
ble is L(A).

210 PRINT "PRINT THE LIST AS INPUT" : PRINT
220 FOR A = 1 TO N
230 PRINT L(A);" ";
240 NEXT A : PRINT: PRINT

Line 230 prints the numbers in the list by placing them in the subscripted
variable (L(l) = 4) and prints one number on each loop execution. The" "
represents 2 spaces enclosed between the quotation marks. The" "causes
two spaces to be left between each printed number each time the loop exe
cutes.

l

l ,
\

l
l
l
l
l

l
l
l
l
1

r
r
r
r
r
r
r

r
r
r
r
r
r
r
r ,--.

SINGLE SUBSCRIPTED VARIABLES 89

Line 240 closes out the loop, and the first PRINT closes out the line after
all the numbers in the list have been printed. The second PRINT statement
leaves a blank line between program sections in the printout.

Lines 250 through 280 print out the list backwards.

250 PRINT "PRINT LIST BACKWARD" : PRINT
260 FOR B = N TO 1 STEP -1
270 PRINT L(B);" ";
280 NEXT B : PRINT: PRINT

Line 250 is the print statement that labels the output. Line 260 sets up to
print the list backwards by increments of one (1). In line 270, the list is refer
enced by the letter "L," so the subscripted variable is L(B). The value of the
number contained in L(B) is printed out on each execution of the I'oop. The
" " leaves two spaces between each number as they are printed. Line 280
completes the loop. The first PRINT statement closes out the line after all
numbers in the list are printed. The second PRINT statement leaves a blank
line between the output sections of the program.

Lines 290 through 330 operate on the numbers in the list.

290 PRINT "TO OPERATE ON THE LIST: PRINT
300 PRINT "C"; TAB(7);"L(C)"; TAB(14);"L(C) + 5";

TAB(23);"C*L(C)";
T AB(33); "L(C)A2"

310 FOR C = 1 TO N
320 PRINT C; TAB(9);L(C); TAB(16);L(C) + 5; TAB(24);C * L(C);

TAB(34);L(C) 2
330 NEXT C : PRINT

Line 290 prints the output section header. Line 300 prints out the head
ings over each column of the output. Line 310 is the beginning of the loop
statement. Line 320 is the statement that outputs the results of the opera
tions. These operations are output each time the loop increments. Line 330
is the foot of the loop, and the PRINT statement leaves a blank Iin~ between
output sections. Each line of print was closed out because there was no
semicolon at the end of line 320 to leave the line open.

Lines 340 through 390 total the list and print out the results.

340 PRINT "THE LIST IS TOTALED" : PRINT
350 T = 0
360 FOR D = 1 TO N
370 T = T + L(D)
380 NEXT D
39.0 PRINT "TOTAL OF THE LIST = ";T
400 END

Line 350 initializes the totaling variable to zero (0). Line 370 is the total
ing statement that places the list values in the subscripted variable L(O) and
adds one list number on each loop execution. Line 380 is the fQot of the

90 APPLESOFT FOR THE lie

loop statement. When loop "0" has completed its last execution, the pro
gram defaults to line 390 to print out the total of the numbers in the list, and
line 400 ENDs the program.

The program in Fig. 13-2 is similar to the list of numbers program but it
has the READ DATA statement to read the number of numbers in the list,
and then reads the list.

160 RESTORE
170 READ N
180 PRINT "NUMBER OF NUMBERS = ";N
190 FOR K = 1 TO N
200 READ L(K) : NEXT K
210 PRINT "PRINT LIST AS INPUT":PRINT
220 FOR A = 1 TO N
230 PRINT L(A);" ";
240 NEXT A: PRINT: PRINT
250 PRINT "PRINT LIST BACKWARD":PRINT
260 FOR B = N TO 1 STEP - 1
270 PRINT L(B);" ";
280 NEXT B: PRINT: PRINT
290 PRINT "TO OPERATE ON THE LIST": PRINT
300 PRINT "C"; TAB (7);"L(C)"; TAB(14); "L(C) + 5"; TAB(23);"C*L(C)"; TAB(

33); "L(C)A2"
310 FOR C = 1 TO N
320 PRINT C; TAB(9);L(C); TAB(16);L(C) + 5; TAB(24);C * L(C); TAB(34);L(C)A2
330 NEXT C: PRINT
340 PRINT "THE LIST IS TOTALED": PRINT
350 T = 0
360 FOR D = 1 TO N
370 T = T + L(D)
380 NEXT D
390 PRINT "TOTAL OF THE LIST = ";T
400 DATA 3,4,-5,2.5
410 END
RUN
NUMBER OF NUMBERS = 3
PRINT LIST AS INPUT

4 -52.5

PRINT LIST BACKWARD

2.5 -54

TO OPERATE ON THE LIST

C L(C)
1 4
2 -5
3 2.5

THE LIST IS TOTALED
TOTAL OF THE LIST = 1.5

L(C)+5
9
o
7.5

Fig. 13-2. Using DATA statements for lists.

C*L(C)
4
-10
7.5

L(C)A2
16
25
6.25

1
1

1

1
l
1
1
1

,
1
1

1

r
r
r
r
r
r
r
(

r
r
r
r
r
r
r

SINGLE SUBSCRIPTED VARIABLES 91

160 RESTORE
170 READ N (IN LINE 400-N = 3--THE FIRST DATA ITEM IN LINE 400)
180 PRINT "NUMBER OF NUMBERS = ";N : PRINT
190 FOR K = 1 TO N
200 READ L(K) : NEXT K

400 DATA 3,4,-5,2.5
410 END

Line 160 RESTORE is not applicable in this program but it should be
introduced at this point. If the data statement was to be read two or more
times, the RESTORE statement would reset the data values ana make it
available to be reread for other program executions.

Line 180 prints out the number of numbers in the list after it has been
READ from the DATA statement. Lines 190 and 200 include the, loop and
the READ statement to read the values in the list through the s~bscripted
variable L(K).

When the last item in the list is read, the program defaults to line 210 to
print out the section heading and continue with the program.

Line 400 DATA 3(N), 4(K), - 5(K), 2.5(K) sets up the data items to be read
in the proper order. READ N (line 170) reads the first item in the DATA
statement, and the other three items in the data statement are r~ad by the
"K" loop and the READ L(K). .

Fig. 13·3 is a program to demonstrate how integers, reals, and strings are
processed in the READ DATA statements. To read the correct item, the
variables in the READ statement must be aligned with the correct item in
the DATA statement.

5 REM *DATA STATEMENTS
10 READ A%,A,A$,B$
20 PRINT A%,A,A$,B$
30 DATA 4.5,2.5,HELLO,"BYE"
40 END
RUN
4 2.5 HELLO
BYE

Fig. 13·3. DATA statements.

10 READ A%, A, A$
20 DATA 4, 2.5, HELLO (or "HELLO")

A$ will read either HELLO or "HELLO" in the DATA statement. A string
variable in a READ statement will read a literal or a string, but ou~puts only
in the string form.

LESSON 14

Double Subscripted Variables

After completion of Lesson 14 you should be able to:

1. Discuss double subscripted arrays.
2. Write programs using double subscripted arrays.

DISCUSSION

Double subscripted arrays are arrays that have two subscripts. Double
subscripted arrays are used for outputting data or information in table form.
The following variables are examples of double subscripted arrays.

CF(I,4) X(5,10) JANE(R,C) FOB(6,S)

Tables and arrays have rows and columns. Columns are positioned verti
cally on the screen. Rows are positioned horizontally on the screen. Table
14-1 shows how an array of three rows and three columns is arranged.

CF(R,C)

ROW 0

ROW 1

ROW 2

CF = array name
R' = row subscript
C = column subscript

Table 14-1. CF{R,C) Array

COLUMN 0 COLUMN 1 COLUMN 2

CF(O,O) CF(0,1) CF(0,2)

CF(1,0) CF(1,1) CF(1,2)

CF(2,0) CF(2,1) CF(2,2)

1
l

l
1
1
l
1
l
l
l
1
l The double sU9scripted array references a memory location that holds. a

value, the same as a simple variable. Values for CF(R,C) could be assigned
as shown in Table 14-2.

An array can use variables or constants as subscripts. For example if R = l
1 arid C = 3 then CF(R,C) = CF(1,3). Subscripts can also combine with
arithmetic operators and have an expression as a subscript (CF(R+ I,C- 1)
or CF(R*2,C/3». l

92

r
r

r
r

r
r
r
r
r···· .'

r
r
r
r

DOUBLE SUBSCRIPTED VARIABLES 93'

Table 14-2. eF(R,e} Array With Values Entered

CF(R,C) COLUMN 1 COLUMN 2 COLUMN 3

ROW 1 CF(1,1)=20 CF(1,2)=30 CF(1,3)=40
,

ROW 2 CF(2,1)= 25 CF(2,2)= 35 CF(2,3)=45

ROW 3 CF(3,1)=30 CF(3,2)=40 CF(3,3)= 50

CF = array name
F = row subscript
C = column subscript

Values entered into a program as constants can be stored in subscripted
arrays.

10 INPUT "GROSS INCOME = ";GI
20 INPUT "EXPENSES = ";EX (EXP is a reserved word)
30 CF(C,1) = GI
40 CF(C,2) = EX

Whole columns or rows in an array can be added or subtracted the same
as simple variables. As a matter of fact, any arithmetic operator that can be
used on a simple variable can be used on an array. In the following example,
column 2 is subtracted from column 1 to produce column 3 in the array CF.

CF(C,3) = (CF(C,l) - CF(C,2)

Variables, single subscripted arrays, and double subscripted arrays can
be handled in a similar fashion.

The program written for Lesson 14 is a very elementary business program
(Fig. 14·1). The user inputs the amount of his or her gross income, ex
penses, and years to operate. The expenses are subtracted from the gross
income to produce the net income. The gross income, expenses, and the
net income are the same for each year of the output. A line is drawn under
the matrix, and the totals are output. The program is for teaching purposes.
A commercial grade program would allow for the income and expenses to
change each year.

A FOR-NEXT loop is used to compute and print out the information on a
yearly basis. After the yearly figures are computed and printed, doubly
nested loops are used to print out the totals of each column.

The variables used in Fig. 14-1 are as follows.

CF = cash flow R = row
GI gross income C = column

EX = expenses YRS = years to operate
HI $ = print heading H2$ = print heading

The program was designed so the input and output would remain on the
screen at the same time.

94 APPLESOFT FOR THE lie

100 REM:PROGRAM TO DEMONSTRATE
110 REM:DOUBLE SUBSCRIPTED VARIABLES
120 . HOME: VTAB 2:HTAB 6:PRINT "DOUBLE SUBSCRIPTED VARIABLES"
130 H1$ = "GROSS INCOME EXPENSES YEARS TO OPERATE"
140 VTAB 4 : PRINT H1$
150 VTAB 5 : HTAB 3 : INPUT" ";GI : VTAB 5 :

HTAB 17 : INPUT" "; EX
160 VTAB 5 : HTAB 30 : INPUT" "; YRS : PRINT: PRINT
170 DIM CF(YRS,3)
180 FOR R = 1 TO YRS
190 FOR C = 1 TO 3
200 CF(R,C) = 0
210 NEXT C, R
220 H2$ = "YEAR GROSS INCOME EXPENSES NET INCOME"
230 PRINT H2$
240 FOR C = 1 TO YRS
250 CF(C,1) = GI : CF(C,2) = EX
260 CF(C,3) = CF(C,1) - CF(C,2)
270 HTAB 2 : PRINT C; TAB (8); CF(C,1); TAB (21);

CF(C,2); TAB (30); CF(C,3)
280 TYRS = TYRS + C : NEXT C
290 FOR R = 1 TO YRS
300 FOR C = 1 TO 3
310 CF(O,C) = CF(O,C) + CF(R,C)
320 NEXT C,R
330 PRINT " __
340 HTAB 1 : PRINT TYRS; TAB (8); CF(0,1);

"

TAB (21); CF(0,2) TAB (29) CF(0,3) (There are no semicolons between the
last three items)

350 END
RUN

DOUBLE SUBSCRIPTED ARRAYS
GROSS INCOME EXPENSES YEARS TO OPERATE

1500.21 875.35 4

YEAR GROSS INC. EXPENSES NET INCOME
1 1500.21 875.35 624.86
2 1500.21 875.35 624.86
3 1500.21 875.35 624.86
4 1500.21 875.35 624.86

10 6000.84 3501.4 2499.44

Fig. 14-1. Double subscripted arrays.

Lines 100 and 110 are REM statements used to partially document the
program, which is a demonstration of doubly subscripted variables.

Line 120 HOME clears the screen and prints on line 2, DOUBLE SUB·
SCRIPTED VARIABLES.

Line 130 places the literal "GROSS INCOME EXPENSES YEARS TO
OPERATE," into HI $ by using an assignment statement. Placing the literal
into the string is useful if the same heading is printed out several times duro

l
l
1
l

1
l
l
1
l
l
1
l
1
1
l

r
r
r
r
C
t
r
r
r

r
r
r

[

r

DOUBLE SUBSCRIPTED VARIABLES 95

ing the program. Line 140 tabs to line 4 on the screen and prints out the
heading.

Lines 150 and 160 ask for input below the subject heading, thereby let
ting the user know what input is requested. In Applesoft, the statement
INPUT GI could be used, but it leaves a question mark on the screen in front
of the data. INPUT" ";GI is used because it leaves no question mark on the
screen in front of the data.

The DIMension statement is not necessary in the program if fewer than 11
array elements are used. Applesoft automatically sets up 10 array element
memory locations. The DIM statement that allows a variable number of
rows is CF(YRS,3). If we knew that the number of rows needed would never
be more than 5, the DIM statement could be written DIM CF(4,3). This ver
sion allows 4 + 1 rows and 3 + 1 columns, or 20 real number elements in
the array. Don't forget the computer uses zero as a counting number, so
when you tell it four (from 1 to 4), the computer count reserves five loca
tions.

Lines 170 through 200 initialize the locations in the table to zero.

170 FOR R = 1 TO YRS
180 FOR C = 1 TO 3
190 CH(R,C) = 0
200 NEXT C,R

The double nested loop is the most efficient method to initialize the loca
tions in the table to zero. The table locations could have been initializing
every element in the array and setting them to zero (0).

CF(1,1) = 0
CF(1,2) = 0
CF(1,3) = 0
CF(2,1) = 0
CF(2,2) = 0
CF(2,3) = 0
CF(3,1) = 0
CF(3,2) = 0
CF(3,3) = 0 etc.

A single FOR-NEXT loop could also be used.

FOR C = 1 TO 3
CF(1,C) = 0
CF(2,C) = 0
CF(3,C) = 0
CF(4,C) = 0 etc.

Line 210 is the header to be printed before the output of data. The header
must be printed before the loop executes. If the header is within the loop, it
will be printed each time the loop is executed. Line 220 prints the header.
There is no VT AB statement because the table is printed below the input

96 APPlESOfT fOR THE lie

information. Two blank lines separate the input data from the output infor
mation. The two PRINT statements in line 160 cause the two blank lines
below the input.

In line 160, the number of years on which to compute the table was en
tered. In line 240, CF(C,l) = GI is a replacement statement that stores the
input variable on the right side of the equals sign into the array element
CF(C,l) on the left side of the equals sign. CF(C,2) = EX is a replacement
statement to place the expense item into the cash flow array CF(C,2).

Line 250 is a replacement statement that sets up the third column of the
table. The column (C,-3) is to hold the net income, which is the gross income
(C,l) less the expenses (C,2).

Line 260 places the results of each execution of the loop in the proper
location under the header. The CF(C,l) is used directly in the PRINT state
ment to print out the results of that column.

Line 270 totals the number of years in the period and NEXT C is the end
ing statement in the loop.

Lines 280 through 310 compute the totals for each column and place
them in row number zero (0).

280 FOR R = 1 TO YRS
290 FOR C = 1 TO 3
300 CF(O,C) = CF(O,C) + CF(R,C)
310 NEXT C, R

The elements CF(O,l), CF(0,2), and CF(0,3) have not been used in the
table, but are available. Each of the loops started at 1, so the zero (0) was un
used. The locations CF(O,l), CF(0,2), and CF(0,3) are used to place the
totals of each column. Line 300 inside the doubly nested loops is the state
ment that totals each of the columns. Line 310 is the ending statement of
the doubly nested loops.

Line 320 draws a line under the columns and the totals are placed below
the lines. Line 340 prints out the totals in the proper positions below the
lines. Notice that some of the semicolons between the T AS statements are
missing. Applesoft is flexible enough to accept statements without semi
colons and still operate properly. Line 340 ends the program.

1

1

1

1
1 ,

]

1
l

r

[

r

r

r

r

LESSON 15

String Arrays

After completion of Lesson 15 you should be able to:

1. Use LEFT$, MID$, and RIGHT$.
2. Use string arrays (or string subscripted variables) in loops.
3. Output alphanumeric lists using string arrays.
4. Write programs using string arrays to print lists of names and ad

dresses.

VOCABULARY

Concatenate - This means to link together in a set, series, or chain.
GO~UB - This is a statement that causes a branch to a subroutine at a

specific line number (GOSUB 1000).
Null String - A null string is a string which contains no characters. Strings

are initialized with zero characters. A$ = .. " is a null string and PRINT
A$ will not print any characters on the screen, nor will the cursor advance
on the screen.

ON ERR GOTO 430, 440, etc. - This is a statement that causes an ,uncondi·
tional GOTO branch when a particular error is encountered. Error #1
jumps to line 430, error #2 jumps to line 440, etc. The equivalent state·
ment for a GOSUB branch is ON ERR GOSUB 430, 440, etc.

String Array - This is a complex variable used to manipulate all or part of
a string.

Subroutine - A subroutine is a discrete part of a program that performs a
logical section of the overall function of the program. It is available when·
ever a particular set of instructions is required. The instructions forming
a subroutine do not need to be repeated every time they are needed, but
can be entered by means of a branch from the main program. Sub
routines may be written in general form to perform operations common
to several programs. In Applesoft, the statements GOSUB or ON (ERR)
GOSUB direct the program to the subroutines. The last line of a sub
routine is a RETURN statement, that jumps to the line in the main pro·

97

98 APPLESOFT FOR THE lie

gram directly below the GOSUB or ON (ERR) GOSUB. Subroutines can
be called from the main body of the program or from other subroutines.
GOSUBs can be nested 25 deep in Applesoft.

DISCUSSION

1

1
String variables were introduced in Lesson 5 with simple variables, 1,

integers and reals. The complex variables, integer and real arrays were dis
cussed in Lessons 13 and 14.

The complex variable (also known as the string array, or string sub- l
scripted variable) is a variable with a subscript. The string array is used to !

output alphanumeric information, such as lists of names and addresses.

A$ = a string variable.
HI SUE = a literal.

"HI SUE" = a literal enclosed in quotation marks (a string).
LEFT$(A$,J) = a string function having two arguments.

RIGHT$(A$,J) = a string function having two arguments.
MID$(A$,J,l) = a string function having three arguments.

1
1

In a string array, the dollar sign ($) follows the name of the array. The
Applesoft language uses three functions to retrieve all or part of a string, or 1;
to print all or part of a string. A function is that part of a computer instruc- ,
tion that specifies the operation to be performed. An argument is a variable
factor, the value of which determines the value of the function_ The three 1:,
functions used to manipulate strings are LEFT$, MID$, and RIGHT$. When
string arrays are manipulated as single entities, they are handled as il
lustrated in Fig. 15-1.

-----.;::::::. lEFTS (A$, 2) 1
function A stri?-;::ctfrs are printed beginning at the

first character.

~$"'2)

function A string 1 = firl character in the string. 1
2 = two characters are printed beginning at
character #1.

1
'! LEFT$(A$,2) = MID$(A$, ',2)

./ RIGHT$(A$,3)

f ·/A· ·--~I \h h . h . unctIOn string prints ast tree c aracters In t e string.
1

Fig. 15-1. String functions.

l

r
[

r
[

r
r
r
r
r
r
r

STRING ARRAYS 99

Fig. 15·2 is a program written using constants in the LEFT$, MID$, and
RIGHT$ functions to demonstrate the output of A$ = "HI SUE."

100 A$ = "HI SUE"
110 PRINT LEFT$ (A$,2)
120 PRINT RIGHT$ (A$,3)
130 PRINT MID$ (A$,1)
140 PRINT MID$ (A$,2)
1S0 PRINT MID$ (A$,3)
160 PRINT MID$ (A$,4)
170 PRINT MID$ (A$,S)
180 PRINT MID$ (A$,6)
190 PRINT MID$ (A$,1, 1)
200 PRINT MID$ (A$,2,1)
210 PRINT MID$ (A$,3,1)
220 PRINT MID$ (A$,4,1)
230 PRINT MID$ (A$,S,1)
240 PRINT MID$ (A$,6,1)
2S0 PRINT MID$ (A$,4,1)
260 PRINT MID$ (A$,4,3)
999 END
RUN
HI
SUE
HI SUE
ISUE
SUE

SUE
UE
E
H
I

S
U
E
S
SUE

Fig. 15-2. Program of string functions.

The program also demonstrates that the function MID$ can output the
same characters as LEFT$ and RIGHT$. With proper manipulation the pro
grammer does not need LEFT$ or RIGHT$. MID$ alone will do the job.

LEFT$, MID$ and RIGHT$ functions can be used in loops to output all or
parts of a string. A loop variable J is used in this example (Fig. 15-3), and
the program is shown in Fig. 15-4. The variable L holds the value of the r length of the string.

To concatenate is to link together in a series, set, or chain. Applesoft has
the ability to concatenate. Strings can be altered to produce desired output r (Fig. 15-5).

r

r

100 APPLESOFT FOR THE lie

FOR J = 1 TO L (L = LEN(A$»

~ LEFT$(A$,J)

function A strin~ritble. Prints forward from left to
right.

~I~$,J)

functio-~n---A-s-tr-ing loop varifble. Prints complete A$ on 1st
loop pass and decrements by 1 for each
character in the string beginning from the
left side of the string.

RIGHT$(A$,J)

f . ~A .~.1 f . h If' b k unction stnng prmts stnng rom ng t to e t, I.e., ac-
wards.

Fig. 15-3_ String functions in a loop.

100 A$ = "HI SUE"
110 PRINT LEN (A$), LEN ("HI SUE"): PRINT
120 FOR J = 1 TO LEN (A$)
130 PRINT LEFT$ (A$,J)
140 NEXT J: PRINT :L = LEN (A$)

150 FOR J = 1 TO L
160 PRINT RIGHT$ (A$,J)
170 NEXT J: PRINT
180 FOR J = 1 TO L
190 PRINT MID$ (A$,J)
200 NEXT J: PRINT
210 FOR J = 1 TO L: PRINT MID$

(A$,4): NEXT J: PRINT
220 FOR J = 1 TO L: PRINT MID$

(A$,J,2): NEXT J: PRINT
230 FOR J = 1 TO L: PRINT MID$

(A1,J,1);: NEXT J
999 END
RUN
6 6

H
HI
HI
HI S
HISU
HI SUE

Fig. 15-4. Program of string functions in a loop.

l

l
l
l

l

l

1
l
..,

\
!

l
/IIII\l

I

l
l
l

r
r
r

r
r
r

r

r

E
UE
SUE

SUE
I SUE
HI SUE

HISUE
I SUE
SUE

SUE
UE
E

SUE
SUE
SUE
SUE
SUE
SUE

HI
I

S
SU
UE
E

HI SUE
Fig.15·4-cont. Program of string functions in a loop.

10
20
30
40
50

A$ = "HI SUE"
B$ = A$ +"" + "AND JIM"
PRINT A$
PRINT B$
($ = LEFT$(A$,3) + RIGHT$(B$,3) + "!!!"

STRING ARRAYS 101

PRINT ($ ~
END (3 includes the space after HI - if 2 was used the output

60
999
RUN
HI SUE

would be HIJIM!!!)

HI SUE AND JIM
HI JIM!!!

Fig. 15-5. Concatenation.

The rest of Lesson 15 is on program development. The objective !is to pro
duce a program that accepts a person's name and address for the purpose of
compiling a mailing list. The program has error checking to notify the input
operator if the input is incorrect. Once the input is correct, the name and ad
dress is output in the proper format.

A correct program is not usually written on the first attempt. The pro
gram is written and then revised. This lesson presents an outline for pro
gram development and shows some of the steps you should follow when
writing usable programs.

102 APPLESOFT FOR THE lie

The original program, Fig. 15-6, is inflexible. A$ holds the name and ad
dress of an individual. If an individual with another name and address is
placed in A$, the output is not correctly formatted. As an extra learning ex
perience, the program demonstrates the use of MID$ to replace LEFT$, and
RIGHT$.

15
20
30
40
50
60
70
80
90
999
RUN

REM: NEXT PROGRAM CHANGE - INPUT A$ AT LINE 20
A$ = "JOHN DOE 2200 MAIN ST. ANYTOWN USA 00000"
PRINT A$
PRINT LEFT$(A$,8)
PRINT MID$(A$,1 0,13)
PRINT RIGHT$(A$,18) : PRINT
PRINT MID$(A$,1,8)
PRINT MID$(A$,10,13)
PRINT MID$(A$,24,19)
END

JOHN DOE 2200 MAIN ST. ANYTOWN
JOHN DOE
2200 MAIN ST.
ANYTOWN USA 00000

JOHN DOE
2200 MAIN ST.
ANYTOWN USA 00000

USA 00000

Fig. 15-6. First version of name and address program.

When the program is typed and RUN, it can be readily understood that the
program is useful only if the name and the address of the individual input is
JOHN DOE 2200 MAIN ST. ANYTOWN USA 00000.

When line 20 is changed to "20 INPUT A$," the input must be the same
number of letters and characters as in the original JOHN DOE name and ad
dress to be output in the correct format.

For a program to be valuable, it must be flexible. The name line of the
program must be able to accept any reasonable name, no matter if it has
three characters or 255 characters. The address field must be able to accept
different numbers of characters for different street numbers and street
names. The city, state, and zip code line must also be able to accept a dif
ferent number of characters. To achieve flexibility, a delimiter (;) is used
after each line of the name and address.

JOHN DOE;2200 MAIN ST.;ANYTOWN USA 00000

As a step toward developing flexibility, an inflexible formula is first
demonstrated (Fig. 15-7). The semicolon (;) is used as a delimiter at the end
of each field. No spaces are left between the contents of the field and the de
limiter. Table 15-1 is an explanation of the line positions.

The following is an explanation of the expressions used in this program.

1
l
l
1
1

1
1

1

1
1 ,
l
l

r

r
r

r

r

r
r

r

STRING ARRAYS 103

N = 9 N = variable of the delimiter at the end of the 1st field.
Nine (9) is the column the delimiter occupies.

Al = 23 Al = variable of the delimiter at the end of the 2nd field.
Twenty-three (23) is the column the delimiter occupies.

L = LEN(A$) L points to the end of the 3rd field. The column L occupies
is determined by the length of the city, state, and zip code.

10 DIM A$(60)
20 INPUT A$
30 N = 9:A 1 = 23:L = LEN (A$)
40 PRINT A$
50 PRINT LEFT$ (A$,N - 1)
60 PRINT MID$ (A$,N + 1,A1 - (N + 1»
70 PRINT RIGHT$ (A$,L -A1)
999 END
RUN
?JOHN DOE 2200 MAIN ST. ANYTOWN USA 00000
JOHN DOE 2200 MAIN ST. ANYTOWN USA 00000
JOHN DOE
2200 MAIN ST.
ANYTOWN USA 00000

Fig. 15-7_ Second version of name and address program.

Table 15-1. Line positions

LINE START SYMBOL END

1 Position #1 LEFT$(A$, Before 1st del

2 After 1 st del N+1 Before 2nd del

3 After 2nd del A1+1 Length of string

Line 1 LEFT$ (A$,N-1)

Line 2 MID$ (A$,N+ 1,A1-(N+ 1»

SYMBOL

N-1

A1-1

L

Line 3 RIGHT$ (A$,L-A 1) the closing delimiter should be A 1 + 1, but Applesoft picks up
the delimiter position as A 1.

In this sequence of learning events, the first string function used,
LEFT$(A$,8), had constants within the parentheses that printed out the first
through the eighth characters in the string. The second type of stJ;'ing func
tion used, LEFT$(A$, N - 1), had a constant and a variable with a fixed value
in relation to the delimiter and a fixed A$ input. The program to be studied
next has a variable length input and a delimiter that is determined by the
variable length input, LEFT$(A$, DIe - 1). The variable length input and
input error checks produce a useful program.

Developing a complicated program is a detailed, exacting and thought
provoking experience. Not all the programmer's thoughts can be written on

104 APPLESOFT FOR THE lie

paper. The following program is presented in the detailed manner in which
it was developed. The final program varies from the outline flowchart and
this is a feature of progressive thought. For the benefit of the learning pro·
grammer, the initial flowcharts were not changed to conform to the finished
program. The differences from one step to the next emphasize how develop·
ment occurs.

GENERAL OUTLINE FOR PROGRAM DEVELOPMENT
A. What is the problem?
B. Detailed input format
C. Detailed output format
D. Outline flowchart
E. Assignment of variables
F. Start and end of lines
G. Basic flowchart
H. Error checking

1. Number of delimiters
2. Length of lines

a. Length of line 1
b. Length of line 2
c. Length of line 3

I. Write error checking section of the outline flowchart
J. Write final flowchart
K. Write program
L. Debug and modify the program
M. Code the final program

The explanation and details of the logic use the same code and headings
as the general outline for program development.

A. What is the problem? The problem is to input three lines of variable
length, each separated by a delimiter (;) to allow any length of name, any
length of street number and address, and any length of city, state, and zip
code up to 255 characters each.

B. Detailed input format. Line = A$.

JOHN DOE;2200 MAIN ST.;ANYTOWN USA 00000

C. Detailed output format.

JOHN DOE
2200 MAIN ST.
ANYTOWN USA 00000

D. Outline flowchart (shown in Fig. 15·8).
E. Assignment of variables and expressions, Tables 15-1 and 15-2. The

variables use the logic that a delimiter (D) is used after line 1 to close the
line, hence D1 C, means the delimiter that closes line one (1). A delimiter (D)

l
l
l
..,
j

.,
)

l
l
l
l
l
l
l
l
l
l
l

r
r
r
[

r
r
r
r
r
r
r
r
r
r
L

r
r

Fig. 15-8. Outline flowchart.

CHECK INFORMATION
TO MAKE SURE IT'S
LEGAL & DETERM I N E

3 LINES OF INFO

STRING ARRAYS 105

is used after line 2 to close out the line, hence D2C. L = LEN(A$)! is the de
limiter at the end of line three. The list of variables is shown in Table 15-2.

F. Start and end of lines. Once the delimiter variables are assigned, they
are placed at the start and end of the lines (Table 15-3).

G. Basic flowchart. The basic flowchart is shown in Fig. 15-9. l"he basic
flowchart shows the beginning pattern to develop the program. A$ is input
by the user. The length of A$ is stored in the variable L. The first: delimiter
D 1 C is initialized to zero. A$ starts at the first character and ends at L (L =
LEN(A$». The statements D1C = D1C + 1 and IF MID$(A$,DHt, 1) = ";"
THEN - branch to D 1 C = D 1 C + 1, counts the number of characters in the
first line of A$. This looping continues until the first delimiter (;) is found.
The numeric value stored in D1C is then transferred to D2C.1f after the end

I

of line 1, DIC has a value of 10, then 10 is transferred to D2C. D2C = DIe.
D2C is then initialized to a value of 10. The second line starts after the first
delimiter (11). The same logic is applied to count the number of characters
in line 2. D2C = D2C + 1 and IF MID$(A$,D2C, 1) = ";" THEN - branch to
D2C = D2C + 1 and count the number of characters in line 2 until the de
limiter is reached. These two delimiters set the end of the first arid second
lines. The third line is composed of all the characters between D2C and L.

106 APPLESOFT FOR THE lie

Table 15-2. Assignment of Expressions

1 (st column)
01C

Beginning of line 1 - LEFT $(A$,
Points to the delimiter at the end of line 1.
End of line 1. 01C-1

01C+1
02C
02C-1
02C+1
L
ERR

J - (J,J)

LINE

1

2

3

Beginning of line 2.
Points to the delimiter at the end of line 2.
End of line 2.
Beginning of line 3.
End of line 3.
Variable that is assigned a value when an input error
has occurred, and the value is used to print the type of
error.
Loop variable or subscript variable.

Table 15-3. Delimiters and Line Positions

(01C-1) (01C+ 1) 02C-1) (02C+ 1)

INPUT JOHN OOE;2200 MAIN ST.;ANYTOWN USA OOOOO(L)

1st OEL (01C) 2nd OEL (02e) L = LEN (A$)

START SYMBOL END SYMBOL

Beginning col. 1 LEFT$(A$, Before 1st del. 01C-1

After 1st del. 01C+1 Before 2nd del. 02C-1

After 2nd del. 02C+1 Length of String L

Line 1 LEFT$(A$,01C-1)
Line 2 MI0$(A$,01C+1,02C-(01C+1»
Line 3 RIGHT$(A$,L - 02C)

H. Error checking (Table 15-4). For a program to be effective and effi
cient, those sections that interrupt the flow of the program must be elim
inated. The algorithm from Section G. specifies that the input section (A$)
must have two delimiters separating three lines. The first error check is to
determine if D 1 C is greater than the length of the line. If D 1 C > L THEN. IF
DIC> L, the loop has searched through A$ completely, and has not found
a delimiter. Fig. 15-10 shows input with no error check. Compare Figs.
15-11 and 15-12 with Fig. 15-10 to see how this process looks logically. If
the first loop finds a delimiter, the flowchart goes to the second loop to
search for the second delimiter. If D2C > L, the second delimiter is not
found. This is another error. If two delimiters are found, there is no error.
Another error would occur if there are three semicolon delimiters. Another
error would occur if the first delimiter was the first character in line 1. Line 1
would be zero length. If the second delimiter is the next character after the

1
l
l
l
l
1
1
1
1
1

J

l
1
1
1
l
l

r
r STRING ARRAYS 107

r
r
r
r NO

NO

r
r Fig. 15-9. Basic flowchart.

r
r
r
r
r
r
r
r

Table 15-4. Errors

ERROR # CONDITION

1 IS D1C > L ?

2 IS D1C = 1 ?

3 IS D2C> L?

4 IS D1C + 1 = D2C?

5 IS D2e = L ?

6 IS A 3rd DELIMITER FOUND IN THE LAST PART OF THE

INPUT?

first delimiter, line 2 would be zero length. If line 3 had no characters be
tween D2C and L, another error would occur. This gives a possibility of six
errors, three delimiter errors, and three line length errors.

ILLEGAL CONDITIONS

1. Delimiters - not exactly 2
2. Length of lines

a. Length of line 1 = 0 characters
b. Length of line 2 0 characters
c. Length of line 3 0 characters

108 APPlESOFT FOR THE lie

DOE MAIN USA

D1C

1
2
3
4
5
6
7
8
9

10
11
12
13

Fig. 15-10. Input with no error check.

NO

MID$(A$.D1C.1)

D
0
E

M
A
I
N

U
S
A
ILLEGAL QUANTITY ERR
(when Ole = 256)

Fig. 15-11. Case No.1 - flowchart with
no error checking.

H.l Number of deHmiters. The input format has two, and only two de
limiters (the L delimiter is not input). If there are any more or any less than
two delimiters, the input is illegal, Fig. 15·13.

H.2 Length of lines. There are three lines of input separated by two de
limiters. If any, or all, of these lines are zero length, the input is illegal (Fig.
15·14).

LINE 1 = 0 ;2200 MAIN ST.;ANYTOWN USA OOOOO(L)
LINE 2 = 0 JOHN DOE;;ANYTOWN USA OOOOO(L)
LINE 3 = 0 JOHN DOE;2200 MAIN ST.;(L)

l ,
l
l
1
1

J

1
l
l

l
1

l
1
l

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

STRING ARRAYS 109

Fig. 15-12. Case No.2 - flowchart with error checking statement.

of Delimiters Test Decision Statement

0 ILLEGAL 01C>L

1 ILLEGAL 02C>L

2 LEGAL

3 ILLEGAL FOR J = 02C+1 TO L
IF MI0$(A$,J,1) = ";"
NEXT J

Fig. 15-13. Check for the number of delimiters.

Line Condition Decision Statement

1 ;MAIN;USA D1C = 1 ILLEGAL

2 OOE;;USA 01C+1 =02C ILLEGAL

3 OOE;MAIN;(L) L = 02C ILLEGAL

Fig. 15-14. Error check for line length.

I. Write error checking routine section of the flowchart. Fig. 15-15 shows
the error checking aspects of the flowchart. Examine Fig. 15-15 carefully to
determine where each error case is checked. Fig. 15-10 shows what hap
pens with no error checking. If there are no delimiters separating the name
and address fields in "DOE MAIN USA" (A$), the DIe = DIe + 1 loop
executes until DIe is greater than L. When DIe> L, the computer prints

l
110 APPlESOFT FOR THE lie ,

l
l
l
l
1

~

1
l ERR = 1 : GOSUB 400

: GOTO 120

l
NO

l
ERR = 2 : GOSUB 400 l : GOTO 120

l ,
J

Fig. 15-15. Final flowchart. 1
1

r
r
r
r
r
r
r
r
r

r
r
r
r
r
r

STRING ARRAYS 111

> __ ... ERR = 3: GOSUB 400
: GOTO 120

>--__�-.1 ERR = 4 : GOSUB 400
: GOTO 120

>-__ .. ERR = 5 : GOSUB 400
: GOTO 120

>-__ ofERR = 6: GOSUB 400
: GOTO 120

PRINT LEFT$(A.01C - 1)
PRINT MIO$(A$.OlC + 1. 02C - (OlC + 1))

PRINT RIGHT$(A$. L - 02C)

Fig. 15-15 - cont. Final flowchart.

112 APPLESOFT FOR TH E lie

Fig. 15-15 - cont. Final flowchart.

PRINT "NO DELIMITER IN STRING"
: RETURN

PRINT "LINE 1 IS ZERO LENGTH"
: RETURN

PRINT "ONLY 1 DELIMITER IN STRING"
: RETURN

PRINT "LINE 2 IS ZERO LENGTH"
: RETURN

PRINT "LINE 3 IS ZERO LENGTH"
: RETURN

PRINT "MORE THAN 2 DELIMITERS
IN STRING"

: RETURN

ILLEGAL QUANTITY ERROR because it is telling the machine to compare a
nonexistent character with ";".

J. Final flowchart. The final flowchart is an incorporation of all the de·
tails, charts, ideas, and logic to this point. The final flowchart should be
written so very few changes are needed to code the program. The final flow
chart is shown in Fig. 15-15.

K.L.M. Write, debug and modify the program (Fig. 15-16). Most pro
grammers are perpetual students, tinkerers, and perfectionists. They will
usually seek modifications to do the job better. This is the real idea of pro
gramming and life.

This is how the logic developed from conception to completion. The fol-

l
l
1

1

l
l
l
l
l
1
l
l
l
l
1
1
l

r
r
r
r
r
r

r
r
r
r
r
r
r
r
r

100 REM: PRINT NAME AND ADDRESS
110 REM: CHECK FOR INPUT ERRORS

STRING ARRAYS 113

120 PRINT: PRINT "INPUT 'NAME;ADDRESS;CITY STATE ZIP' "
130 INPUT "?";A$
140 L = LEN (A$) : D1C = 0
150 D1C = D1C + 1
160 IF D1C>L THEN ERR = 1 : GOSUB 400 : GOTO 120
170 IF MID$(A$,D1C, 1) <> ";" THEN 150
180 IF D1C = 1 THEN ERR = 2 : GOSUB 400: GOTO 120
190 D2C = D1C
200 D2C = D2C + 1
210 IF D2C>L THEN ERR = 3 : GOSUB 400 : GOTO 120
220 IF MID$(A$,D2C,1) <> ";" THEN 200
230 IF D1C + 1 = D2C THEN ERR = 4: GOSUB 400: GOTO 120
240 IF D2C = L THEN ERR = 5 : GOSUB 400 : GOTO 120
250 FOR J = D2C + 1 TO L
260 IF MID$(A$,J,1) = ";" THEN ERR = 6 : GOSUB 400: GOTO 120
270 NEXT J
280 PRINT: PRINT LEFT$(A$,D1C - 1)
290 PRINT: PRINT MID$(A$, D1C + 1, D2C - (D1C + 1»
300 PRINT: PRINT RIGHT$(A$, L - D2e)
301 REM: LEFT$(A$,D1C - 1) = = MID$(A$,1,D1C - 1)
302 REM: RIGHT$(A$,L - D2e)= = MID$(A$,D2C + 1, L - D2C)
310 PRINT: INPUT "MORE INPUT (Y OR N)" ; Q$
320 IF Q$<>"N" THEN 120
330 END
400 PRINT "***ILLEGAL INPUT***"
410 ON (ERR) GOTO 430, 440, 450, 460, 470, 480
420 RETURN
430 PRINT "NO DELIMITER IN STRING" : RETURN
440 PRINT "L1NE 1 IS ZERO LENGTH" : RETURN
450 PRINT "ONL Y ONE DELIMITER IN STRING" : RETURN
460 PRINT "L1NE 2 IS ZERO LENGTH" : RETURN
470 PRINT "L1NE 3 IS ZERO LENGTH" : RETURN
480 PRINT"MORE THAN 2 DELIMITERS IN STRING" : RETURN

RUN

INPUT 'NAME;ADDRESS;CITY STATE ZIP'
?JOHN DOE 2200 MAIN ST. ANYTOWN USA 00000
ILLEGAL INPUT
NO DELIMITER IN STRING

INPUT 'NAME;ADDRESS;ClTY STATE ZIP'
?;2200 MAIN ST.;ANYTOWN USA 00000
ILLEGAL INPUT
LINE 1 IS ZERO LENGTH

Fig. 15·16. Final flowchart for name and address program.

114 APPLESOFT FOR THE lie

INPUT 'NAME;ADDRESS;CITY STATE ZIP'
?JOHN DOE:2200 MAIN ST. ANYTOWN USA 00000
lllEGAl INPUT
ONLY ONE DELIMITER IN STRING

INPUT 'NAME;ADDRESS;ClTY STATE ZIP'
?JOHN DOE;;ANYTOWN USA 00000
lllEGAl INPUT
LINE 2 IS ZERO lENGTH

INPUT 'NAME;ADDRESS;CITY STATE ZIP'
?JOHN DOE;2200 MAIN ST.;
lllEGAl INPUT
LINE 3 IS ZERO lENGTH

INPUT 'NAME;ADDRESS;CITY STATE ZIP'
?JOHN DOE;2200 MAIN ST.;ANYTOWN ;USA 00000
lllEGAl INPUT
MORE THAN 2 DELIMITERS IN STRING

INPUT 'NAME;ADDRESS;ClTY STATE ZIP'
?JOHN DOE;2200 MAIN ST.;ANYTOWN USA 00000

JOHN DOE
2200 MAIN ST.
ANYTOWN USA 00000

MORE INPUT (Y OR N) N

Fig. 15-16 - cont. Final flowchart for name and address program.

lowing explanation of statements may be repetitious but it may also be
helpful.

FLOWCHART NORMAL LOGIC
D1C < = L
MID$(A$,D1C,1) = ","
MID$(A$,D2C,1) = ";"
D2C < = L
Q$ = "N"

PROGRAM EXPEDIENT LOGIC
D1C> L
MID$(A$,D 1 C, 1) < > ";"
MID$(A$,D2C, 1) < > ";"
D2C> L
Q$ < > "N"

The flowchart is written with normal logic. The program was coded with
expedient logic. Once the flowchart is developed, the sections are broken
down to determine the most efficient and fastest way for the program to
run. A flowchart is simply a tool to help clarify the logic involved in solving
a problem. When converting a flowchart to a program, sometimes it is use
ful to reverse the "IF" check to save memory. The common practice is to
use MID$(A$,D1C,1) = ";". The program must search for ";" until it is
found. When = ";" is not true, the program must unconditionally branch

l ,
1

1
l

l
l
l
1

J

l ,
)

1
1
l

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

STRING ARRAYS 115

(GOTO) backwards to increment DIC. Expedient logic MID$(~$,DIC,I)
< > ";" causes the program to search for < > ";". If it is not found, the pro
gram conditionally branches to increment D 1 C, thus saving a °GOTO state
ment with each decision. This not only saves program statements, but
makes the program more efficient, run faster, and uses less memory. Ex
pedient logic makes the program simpler and more efficient. It gets the job
done better and faster.

Lines 100 and 110 are REM statements that document that the intent of
the program is to print the name and address of an individual and to check
for input errors.

Line 120 prints out the format to enter the name and the address: of the in
dividual. Line 130 is the statement that allows A$ to be input. The user is
soon aware that the name and address must be entered exactly the same
way as the prompt header. If the input is different from the prompt header, 0

the program prints out an error message why the input is incorrect. The pro
gram will not accept the name and address unless it is entered correctly.

Line 140 sets the value of the end of the third line delimiter as L =
LEN(A$). The DIC delimiter is initialized to zero. The D2C and L delimiters
are not initialized to zero, because in line 190 D2C = D 1 C takes the value of
DIC at the end of line 1 and stores it in D2C. This value assignment main
tains continuity of the program in checking for the relationship with L =
LEN(A$).

Line 150 is a counting statement that is incremented on each character of
line 1 of A$, until it detects the delimiter (;).

In line 160, if the counting statement increments until the value of D 1 C is
greater than L, the THEN is executed to send the program to ERR = 1. In
Applesoft, when the statement (IF DIC > L THEN ERR = 1) is TRUE, all
statements at the line number are executed. GOSU8 400 branches to the
subroutine beginning at line 400. ***ILLEGAL INPUT*** is printed. The
ERR = 1 sends the program to line 430. The error-line relationship is shown
in Fig. 15-17.

ERROR # ON (ERR) GOTO
1 430
2 440
3 450
4 460
5 470
6 480

Fig. 15-17. Error-line number relationship.

At the end of line 430 is a RETURN statement. A RETURN statement
must be placed at the end of a subroutine. The RETURN causes the program
to branch to the program statement immediately after the GOSU8.

116 APPLESOFT FOR THE lie

The sequence of events that occur after ERR = 1 is as follows.

1. GOSUB 400 Branch to line 400.
2. ERR = 1 ON (1) GOTO 430 to print the input error. RETURN fol·

lows the error printout.
3. RETURN GOTO 120 - line immediately following GOSUB 400.

The ON-GOTO (ON-GOSUB) is a relationship programmed in Applesoft.
A specific ERROR number relates to a specific error condition in the pro·
gram.

In line 170, the decision statement checks to see if the delimiter (;) at the
end of the first line has been reached. If the character is not the delimiter,
the program branches to line 150 to increment the value stored in DIe.

In line 180, if there is only one delimiter in A$, then ERROR = 2. The
statement GOSUB 400 sends the program to line 400 to print out
* * * ILLEGAL INPUT* * * and then to line 440 to print out the input error,
LINE 1 IS ZERO LENGTH.

In line 190, the value stored in DIC is assigned to D2C. This statement
maintains the relationship from one delimiter to the next delimiter. The
value relationship is continued as the program moves to L, the delimiter at
the end of line 3.

In line 210, if the present value stored in D2C is greater than L, THEN
input error #3 is printed on the screen. The program executes GOSUB 400,
ON (ERR = 2) GOTO 450, to print ONLY ONE DELIMITER IN STRING. The
RETURN statement branches to the line immediately after the GOSUB 400.
The statement is GOTO 120, and immediately branches to line 120, for
more input.

Line 220, if the decision statement does not find the D2C delimiter, it
branches to line 200 to increment D2e.

In line 230, if the two semicolon delimiters are together (;;) with no
characters between them, line #2 is missing. ERR = 4. GOSUB 400 exe·
cutes to line 400 to print out * * * ILLEGAL INPUT* * * , ON (ERR = 4) GOTO
460, prints out, LINE 2 IS ZERO LENGTH. RETURN branches to the third
statement in line 230 (GOTO 120) to input the correct information.

In line 240, if D2C = L there are no characters in line #3, and ERR = 5,
causes a branch to the subroutine to print * * * ILLEGAL INPUT* * * , ON(ERR
= 5) GOTO 470 prints, LINE 3 IS ZERO LENGTH.

Lines 250 through 270 is a loop to check the number of delimiters from
D2C to L. The program has checked that there are 2 delimiters to this point.
Line 170 checks the delimiter at the end of line #1. Line 220 checks for the
delimiter at the end of line #2. If the loop FOR J = D2C + 1 TO L executes
and finds another semicolon delimiter then ERR = 6. The program
branches to line 400, prints out ** * ILLEGAL INPUT* * *, IN(ERR = 6)

,
'j

1
l

,
1

1

1
J

1
l
1
1
1
l
l
1

f", "

r

r
r
r
r:," , .

r
r
r
r
r
r
r
r
r
r
r

STRING ARRAYS 117

GOTO 480, MORE THAN 2 DELIMITERS IN STRING. The RETURN is exe·
cuted to' GOTO 120, and GOTO 120 branches to' input infermatien.

Lines 280, 290, and 300 print eut the name and address ef the individual
in the cerrect fermat.

Lines 301 and 302 are inserted to' inferm the user ef the cel1rect MID$
functiens to' replace the LEFT$ and RIGHT$ to' print eut lines #1 and #3.

Line 310 PRINT: INPUT "MORE INPUT (Y OR N)";Q$ queries the user, is
anether name and address to' be input, er dees the user wish to' end the pre·
gram?

Line 320 IF Q$ < > "N" THEN 120 is the decisien statement to' branch to'
line 120 fer mere input, er to' end the pregram. This line ceuld be flew·
charted in either ef two. ways fer equal efficiency (Fig. 15-18).

Fig_ 15-18. Decision flowchart.

Lines 400 threugh 480 are the subreutines and the ON (ERR) GOTO state
ments. Subreutines ae placed after the main bedy ef the pregram. Apple
seft indicates an END statement is eptienal and need net be used. Ex
perience shews that cemplicated programs will net always run preperly
witheut an end statement. The subreutines perferm better when they
branch past the end statement ef the pregram. The subreutine runs and the
RETURN branches to' the statement immediately after the GOSUB in the
main bedy ef the pregram. Use an END statement with all pregrams.

LESSON 16

Functions

After completion of Lesson 16 you should be able to:

1. Use arithmetic functions in programming.
2. Convert radians to degrees using the DEF FN.

VOCABULARY

Argument - An argument is a variable factor, the value of which is deter
mined by the function.

Degree - A degree is defined as 1/360 of a complete circle. Conversion
from degrees to radians is - Degree / (180/PI) = Radian. The conversion
factor (180/PI) = 57.29578.

Function - A function is that part of a computer instruction that specifies
the operation to be performed.

Radian - A radian is the unit of plane angular measurement that is equal to
the angle at the center of a circle subtended by an arc equal to the length
of the radius. Conversion from radians to degrees is - Radians * (180/PI)

Degrees. The conversion factor (180/PI) = 57.29578.

DISCUSSION

In Lesson 16, the arithmetic functions are placed in alphabetical order in
a program to demonstrate their use (Fig. 16·1).

A function is that part of the computer instruction that specifies the
operation to be performed. Functions act upon the input to the function.
The function then performs some operation on the argument, and outputs
the result. The operation may involve many steps in a program stored in
memory. Calling a function automatically makes use of these programmed
steps.

Fig. 16-1 is a program to demonstrate what each function outputs. The
output is defined in the RUN by using a PRINT statement with the function
type placed in the output.

ABS - returns the absolute, or positive value of a number.

118

,
j

l
l
1
1 ,

)

l
1 ,

j

1
l
l

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

100 M = - 4:N = 2.5:P = 3:Q = 0
110 PRINT
120 PRINT "M = ";M;" N = ";N;" P = ";p;" Q = ";Q: PRINT
130 PRINT "ABS(M) = "; ABS (M)
140 PRINT "EXP(P) ="; EXP (P)
150 PRINT "LOG(P) = "; LOG (P)
160 PRINT "RND(P) = "; RND (P)
170 PRINT "SGN(M) = "; SGN (M)
180 PRINT "SGN(Q) = "; SGN (Q)
190 PRINT "SGN(N) = "; SGN (N)
200 PRINT "SQR(P) = "; SQR (P)
210 REM :GEOMETRIC FUNCTIONS GIVEN IN RADIANS
220 REM :USE DEF FN TO CONVERT RADIANS TO DEGREES
230 PRINT "SIN(P) ="; SIN (P);" RADIANS"
240 DEF FN SD(X) = SIN (X / 57.2958)
250 PRINT "SIN (P) "; FN SD(P);"DEGREES"
260 PRINT "COS(P) = "; COS (P);"RADIANS"
270 DEF FN CD(X) = COS (X / 57.2985)
280 PRINT "COS(P) ="; FN CD(P); " DEGREES
290 PRINT "TAN(P) = ~'; TAN (P);" RADIANS
300 DEF FN TD(X) = TAN (X /57.2958)
310 PRINT "TAN(P) = " FN TD(P);"DEGREES"
320 PRINT "ATN(P) = "; ATN (P);" RADIANS"
330 DEF FN AD(X) = ATN (X /57.2958)
340 PRINT "ATN(P) = "; FN AD(P); "DEGREES"
350 END
RUN
M = -4 N = 2.5 P = 3 Q = 0

ABS(M) = 4
EXP(P) = 20.0855369
LOG(P) = 1.09861229
RND(P) = .0430616123
SGN(M) = -1
SGN(Q) = 0
SGN(N) = 1
SQR(P) = 1.73205081
SIN(P) = .141120008 RADIANS
SIN (P) .0523359375 'DEGREES
COS(P) = - .989992497 RADIANS
COS(P) = ;998629665 DEGREES
TAN(P) = - .142546543 RADIANS
TAN(P) = .0524077605 DEGREES
ATN(P) = 1.24904577 RADIANS
ATN(P) = .0523120883 DEGREES

Fig. 16-1. Functions program.

FUNCTIONS 119

EXP - raises the value to six places to the indicated power of 2.718289.
LOG - this is the natural logarithm function. The conversion from the

natural log. log base lOis to divide by 2.302585093.

120 APPLESOFT FOR THE lie

RND - returns a real number greater than zero and less than one. The ran·
dom number returned should be different each time the program is RUN.

SGN - if the expression is positive, a value of + 1 is returned. If the ex
pression is zero, a zero is returned. If the expression is negative, - 1 is re
turned.

SQR - returns the square root of a number.
SIN, COS, TAN, ATN - are trigonometric functions. Their values are re

turned in radians. The conversion from radians to degrees, and vice
versa, is discussed in the vocabulary section of Lesson 16. Many people
work in degrees, so the DEF FN is a simple way to convert radians to
degrees.

Table 16-1. ASCII Character Codes

CODE CHAR CODE CHAR CODE CHAR CODE CHAR

Dec Hex Dec Hex Dec Hex Dec Hex
0 00 NUL 32 20 SP 64 40 @ 96 60
1 01 SOH 33 21 ! 65 41 A 97 61 a
2 02 STX 34 22 " 66 42 B 98 62 b
3 03 ETX 35 23 # 67 43 C 99 63 c
4 04 EOT 36 24 $ 68 44 0 100 64 d
5 05 ENQ 37 25 % 69 45 E 101 65 e
6 06 ACK 38 26 & 70 46 F 102 66 f
7 07 BEL 39 27

,
71 47 G 103 67 9

8 08 BS 40 28 (72 48 H 104 68 h
9 09 HT 41 29) 73 49 I 105 69 i

10 OA LF 42 2A * 74 4A J 106 6A j
11 OB VT 43 2B + 75 4B K 107 6B k
12 OC FF 44 2C , 76 4C L 108 6C I
13 00 CR 45 20 - 77 40 M 109 60 m
14 OE SO 46 2E 78 4E N 110 6E n
15 OF SI 47 2F I 79 4F 0 111 6F 0
16 10 OLE 48 30 0 80 50 P 112 70 P
17 11 OC1 49 31 1 81 51 Q 113 71 q
18 12 OC2 50 32 2 82 52 R 114 72 r
19 13 OC3 51 33 3 83 53 S 115 73 5
20 14 OC4 52 34 4 84 54 T 116 74 t
21 15 NAK 53 35 5 85 55 U 117 75 u
22 16 SYN 54 36 6 86 56 V 118 76 v
23 17 ETB 55 37 7 87 57 W 119 77 w
24 18 CAN 56 38 8 88 58 X 120 78 x
25 19 EM 57 39 9 89 59 Y 121 79 Y
26 1A SUB 58 3A : 90 SA Z 122 7A z
27 18 ESC 59 3B ; 91 5B [123 7B {
28 1C FS 60 3C < 92 5C \ 124 7C /
29 10 GS 61 3D = 93 50] 125 70 }
30 1E RS 62 3E > 94 5E A 126 7E rv

31 1F US 63 3F ? 95 SF - 127 7F DEL

l

1

1
1

1

1
1 ,

) ,
'I

1
1
l

r
r
r
r

r
r
r
r
r
r
r
r
r
r
r

FUNCTIONS 121

Other language, string, and numeric functions are listed and defined
below.

ASq"A") - returns the ASCII code for the character in the argument. The
ASCII character codes are shown in Table 16-1. Strings cannot be con
verted directly to numerics. ASq"A") is used to convert the character in
the string to an ASCII numeric value, which is 65.

CHR$(65) - numerics cannot be converted directly to strings. CHR$(65)
converts the ASCII value 65 to the string character "A."

FRE (0) - returns the number of bytes of free memory available. PRINT
FRE(O) is the immediate execution command. Changing the argument
from 0 to 10 has no effect on the amount of memory returned.

INT - returns the largest integer value of a real number. PRINT INT(3.14)
returns the integer 3. .

LEFf$ - discussed in detail in Lesson 15.
LEN - returns the length of the string. A$ = "HI SUE". PRINT LEN(A$),

LEN("HI SUE") returns the number 6 for each LEN, the number of charac
ters and spaces in the string.

MID$ - discussed in detail in Lesson 15.
RIGHT$ - discussed in detail in Lesson 15.
STR$ - returns a string that represents the value of the argument. PRINT

STR$(3.14) returns a string value of 3.14. The STR$ function converts a
real to a string.

VAL - interprets a string value. PRINT VAL("3.14") returns 3.14. The VAL
function converts a string to a real.

LESSON 17

List, Delete, and Edit

After completion of Lesson 17 you should be able to:

1. List programs or parts of programs, and delete a program or delete
part of a program.

2. Edit using ESCAPE and I, J, K, or M, or ESCAPE and the direction
arrow keys.

3. Comprehend four types of program statements to edit.
4. Delete text and/or spaces from an existing line of text.
5. Insert text into an existing line of text.

VOCABULARY

Cursor - The cursor is the symbol next to the prompt on the screen. In the
40 column mode (80 column card inactive) the cursor is the checker
board green on black symbol. In the 80 column mode (80 column card
active) the cursor is a solid symbol green on black.

DEL - This is the immediate execution command that deletes a line or lines
from a program in Applesoft. DELETE is the immediate command that
deletes a program from DOS 3.3.

Edit - This means to arrange data into a format required for subsequent
processing. Editing may involve deletion of data not required, con
version of fields into machine language (Le., Applesoft language state
ments converted to binary), and preparation of data for subsequent out
put (i.e., zero printing).

LIST - This command lists all the line numbers and program statements
in a program.

Prompt - The prompt is the symbol that designates the language the com
puter is using. In Applesoft, the prompt is (]), and in Integer Basic the
prompt is (».

DISCUSSION

If a program is in memory, the entire program can be listed at one time,
or parts of it can be listed. The following examples show how the LIST func-

122

l
l
l
l
l
l
l
l
i

.\

l
l ,

J

l
l
1
l

r
r
r
\'

r
r
r
r
r
r
r
r
r
r
r
r

LIST, DELETE, AND EDIT 123

tion can be used. In this example, the line numbers of the program run from
10 through 500.

LIST - Lists the entire program.
LIST 10,10 - Lists line number 10.
LIST 10,100 - List lines 10 through 100.
LIST -100 - Lists all lines above 100.
LIST 100- - Lists all lines below 100.

The DEL function deletes portions of Applesoft programs. The DEL func
tion is different from the DELETE function. The DELETE command relates
to the disk operating system. With a proper file name, DELETE will clear
the file off the disk. See Lesson 4, SAVE AND LOAD PROGRAMS TO
DISKS.

NEW
DEL 10,10
DEl 10

- Deletes an entire program stored in memory.
- Deletes line 10 of the program.
- Causes the message ?SYNTAX ERROR to be printed on the screen. The
proper form for a one line deletion is DEL 10,10.

10 - Press RETURN causes line 10 to be deleted from the program.
DEl 10,100 - Causes lines 10 through 100 to be deleted from the program.
DEl 10-100 Causes a message ?SYNTAX ERROR to be printed on the screen.

In the 40 column mode, the Apple lie has six edit methods.

1. 80 column card inactive - checkerboard cursor.
Press ESCAPE once.

1. I - moves cursor up
2. J - moves cursor left
3. K - moves cursor right
4. M - moves cursor down

2. 80 column card inactive - checkerboard cursor.
Press ESCAPE once.

1. +- moves cursor left
2. -+ moves cursor right
3 . .j. moves cursor down
4. t moves cursor up

3. 80 column card inactive - checkerboard cursor
Press ESCAPE before each cursor key is pressed.

1. B - moves cursor left
2. A - moves cursor right
3. D - moves cursor up
4. C - moves cursor down

4. 80 column card active - solid cursor
Press ESCAPE - produces a "+" in the solid cursor to indicate the edit
mode.

1. I - moves cursor up
2. J - moves cursor left

124 APPLESOFT FOR THE lie

3. K - moves cursor right
4. M - moves cursor down

5. 80 column card active - solid cursor.
Press ESCAPE - produces a .. +" inside the solid cursor.

1. +- moves cursor left
2. moves cursor right
3. ~ moves cursor down
4. t moves cursor up

6. 80 column card active - solid cursor
Press ESCAPE before each cursor move key is pressed. The "+" sign is
placed inside the solid cursor.

1. B - moves cursor left
2. A - moves cursor right
3. D - moves cursor up
4. C - moves cursor down

(Only the cursor-edit moves in items #1, #2, #4, and #5 will be discussed.
The edit moves in items #3, and #6 are not discussed because the cursor
edit moves are so slow and tedious to perform.)

In the 40 column mode, 80 column card inactive, the cursor looks like a
checkerboard. The cursor configuration does not change when going from
the nonedit mode to the edit mode (Fig. 17-1).

In the 40 column mode with the 80 column card active, the cursor is solid
and inverse of the screen (Le., green on black). In the edit mode, the cursor
contains a " + " sign (Fig. 17-2).

NON EDIT MODE] -
PROMPT CURSOR

] -EDIT MODE

PROMPT CURSOR

Fig. 17-1. 40 column mode with 80
column card inactive.

NONEDIT MODE] I
PROMPT CURSOR

EDIT MODE] I
PROMPT CURSOR

Fig_ 17-2_ 80 column mode with 80
column card active.

1

1
1 ,

'1

1
1

1
1

The editing tecl)nique is the same in the 80 column card inactive mode as 1.,',',
it is in the 80 column card active mode.

To use the edit mode, press ESCAPE and then move the cursor to the de
sired edit position by using I, J, K, M, or the four direction arrow keys.

To leave the edit mode, press any alpha, numeric, or special character 1
key, except I, J, K, or M_ For simplicity of discussion, the SPACE BAR will
be the special character key that is pressed to change from the edit mode to
the nonedit mode. There are four types of statements that are edited. 1

j

1

r
r
r
r
r
r
r
r
r
r
r
r
r
[

r
r

LIST, DELETE, AND EDIT 125

1. Characters enclosed in quotation marks that occupy one line, or less,
on the 40 column screen.

2. Characters that are not enclosed in quotation marks that occupy one
line, or less, on the 40 column screen.

3. Characters enclosed in quotation marks that occupy more than one
line on the 40 column screen.

4. Characters not enclosed in quotation marks that occupy more than
one line on the 40 column screen.

To edit characters enclosed in quotation marks occupying one line, or
less in the 40 column mode, do the following steps.

1. Press ESCAPE.
2. Move the cursor to the first integer in the line number of the program

statement using I, J, K, M, or the direction arrow keys.
3. Press the SPACE BAR to change from the edit mode to the nonedit

mode.
4. Use the forward arrow (repeat key) key to position the cursqr past the

closing quote in the line.
5. Press RETURN.
6. If the cursor is stopped before the last character in the line, and RE

TURN is pressed, all characters from the cursor position to the end of
the statement will be lost.

To edit characters not enclosed in quotation marks and occupying one
line, or less, in the 40 column mode, do the following:

10 X = INT(4000*2.948E+21/SIN(B»

1. Press ESCAPE.
2. Move the cursor to the first integer in the line number of the program

statement to be edited, using I, J, K, M, or the direction arrow keys.
3. Press the SPACE BAR to change from the edit mode to the nonedit

mode.
4. Use the forward arrow (repeat key) key to place the cursor past the last

character in the line.
5. Press RETURN.
6. If the cursor is stopped before the last character in the line, and RE

TURN is pressed, all characters after the cursor position will be lost.

To edit characters enclosed in quotation marks occupying more than one
line, in the 40 column mode, follow this procedure.

1. Press ESCAPE.
2. Place the cursor over the first integer in the line number of the pro

gram statement to be edited.

126 APPLESOFT FOR THE lie

3. Press the SPACE BAR to change from the edit mode to the nonedit
mode.

4. Move the cursor past the last character in the first line.

10 PRINT "THIS IS THE UNITED STA
TES OF AMERICA"XX(XX REPRESENTS CURSOR)

5. Press ESCAPE to change to the edit mode.
6. Press "K," or the forward arrow (repeat key) key until the cursor is over

the "T" in TES OF AMERICA.

10 PRINT "THIS IS THE UNITED STA
TES OF AMERICA"

7. Press the SPACE BAR to change from the edit mode to the nonedit
mode.

a. Press the forward arrow (repeat key) key until the cursor is past the
closing quotation mark in the second line.

10 PRINT "THIS IS THE UNITED STAXX
TES OF AMERICA"XX (POSITION OF THE CURSOR)

9. Press RETURN.

If the cursor (in the nonedit mode) is run from the first integer in the line
number of the statement to be edited over both of the lines in quotation
marks, spaces will be left between the STA and the TES OF AMERICA.

10 PRINT "THIS IS THE UNITED STA

20 END
RUN

TES OF AMERICA"

THIS IS THE UNITED STA
AMERICA

]

TES OF

To edit characters not enclosed in quotation marks that occupy more
than one line in the 40 column mode, follow this procedure.

10 X = INT(10000.87694*1E+23/SIN(B»
* COS(B + W)/EXP(B + G)

1. Press ESCAPE.
2. Move the cursor to the first integer in the line number of the statement

to be edited.
3. Press the SPACE BAR to change from the edit mode to the nonedit

mode.
4. Use the forward arrow (repeat key) key to place the cursor past the last

character in the second line. (Text leaves spaces when the cursor
passes over the entire two lines. Formulas do not leave spaces when
the cursor passes over both lines.)

1
l
1
1
1

1
1: (

1

l
1
1
1

r
r
r
r
r
r

r
r

r

r

LIST, DELETE, AND EDIT 127

5. Press RETURN.
6. If the cursor is stopped before the last character in the second line, and

RETURN is pressed, all characters from the cursor to the end of the
statement will be lost.

To take words and/or spaces out of a line of text without retyping the line,
follow this procedure.

10 PRINT "THIS IS THE USA"
20 END

1. Press ESCAPE.
2. Move the cursor over the one (1) in the ten (10) of the line number of

the program statement to be edited, by using I, J, K, M, or the direc
tion arrow keys.

3. Press the SPACE BAR to change from the edit mode to the nonedit
mode. The IS (and following space) is to be removed without leaving
blanks and unusual spaces when the program is run.

4. Use the forward arrow key to move the cursor to the "I" in IS.

10 PRINT "THIS IS THE USA"
20 END

5. Press ESCAPE.
6. Use the "K" or forward arrow to move the cursor over the "T' in THE.

iO PRINT "THIS IS THE USA"
20 END

7. Press the SPACE BAR to change from the edit mode to the nonedit
mode.

8. Use the forward arrow key to move the cursor past the closing quota-
tion mark.

9. Press RETURN.

10 PRINT "THIS THE USA"
20 END
RUN
THIS THE USA

To add text into a line of text enclosed in quotation marks, follow this
procedure.

10 PRINT "THIS IS THE USA" (The object is to place the words GOOD OlDX (X REP
RESENTS A SPACE) between THE and USA)

1. Press ESCAPE.
2. Place the cursor over the one (1) in the line number ten (10) in the

statement to be edited by using I, J, K, M, or the direction arrow keys.
3. Press the SPACE BAR to change from the edit mode to the nonedit

mode.

128 APPLESOFT FOR THE lie

4. Use the forward arrow key to place the cursor over the "U" in USA.

10 PRINT "THIS IS THE USA"
20 END

5. Press ESCAPE.
6. Press the "\" key, or the up arrow key, one time to raise the cursor one

line above the line of text.
7. Press the SPACE BAR to change from the edit mode to the nonedit

mode.
8. Type in the words GOOD OLDX (X represents a space).

GOOD OLDX
10 PRINT "THIS IS THE USA"

9. Press ESCAPE.
10. Press the "J" key or the back arrow key until the cursor is over the "G"

in GOOD, and above the "U" in USA.

1
)

l

l

11. Press the" M" key, or the down arrow key one time so the cursor is over l
the "U" in USA.

12. Press the SPACE BAR to change from the edit mode to the nonedit
m~. ~

13. Press the forward arrow key until the cursor is past the closing quota- 1
tion mark.

14. Press RETURN.

10 PRINT "THIS IS THE GOOD OLDXUSA"
20 END

RUN
THIS IS THE GOOD OLDXUSA 1

l
1
l
1
l
l

r
r
r
r

r

r
[

r

LESSON 18

Play Computer

After completion of Lesson 18 you should be able to:

1. Play computer and RUN a program manually, or mentally, to deter·
mine the output.

2. Play computer to determine why a program doesn't RUN or why a
program doesn't run correctly (debug).

3. Use the TRACE function to aid in debugging programs.
4. Use NOTRACE function to counter the TRACE function.

VOCABULARY

NOTRACE - This command turns off the TRACE mode (see TRACE below).
Pass - A pass is the single execution of a loop, or the passage of magnetic

tape or disks under the read/write head of a device.
TRACE - The TRACE function is an aid in following the sequence of execu·

tion of a program. It is used as an aid in debugging programs. TRACE
causes the line number to be printed as the program executes. The data
or information is also printed out in relation to the line number. TRACE
is turned off by NOTRACE. TRACE and NOTRACE are immediate or de·
ferred commands.

DISCUSSION

The primary purpose of this lesson is to "think" like a computer and run
the program mentally and manually. Will you be able to determine exactly
what the program will output, instead of what you think it will output? You
must learn to think like a computer if you are going to understand and out·
smart this exacting machine. When you play computer, the program is RUN
exactly as it is written. If the rule of default applies, use the rule of default. If
the program should branch, follow the branch. Chart 18·1 is designed to
allow you to write the value of each variable as the program progresses.
RUN the program mentally several times to get the feel of the program.
Complete Chart 18·1 to see if you think like a computer. The program, RUN,
and TRACE of the program are shown in Fig. 18·1.

129

130 APPLESOFT FOR THE lie

10 REM: PROGRAM TO PLAY COMPUTER
20 A = 5 : B = 10 : C = -10
30 IF C > 0 THEN 130
40 IF (B > A) THEN 90

(without parentheses: IF B>A THEN 90, produces a SYNTAX ERR be

cause AT is a reserved word - to correct this, use parentheses around
B>A)

50 IF C < = 0 THEN C = C + 1
60 B = B-2
70 PRINT A, B, C
80 GOTO 30
90 A=A+1,....
100 C = C + 2
110 PRINT A, B, C
120 GOTO 30
130 C = C - 10
140 PRINT A, B, C
150 END

RUN
6 10
7 10
8 10
9 10

10 10
10 8
10 8
TRACE
RUN

-8
-6
-4
-2

0
1

-9

#10 #20 #20 #20 #30 #40 #90 #100
10 -8
#120 #30 #40 #90 #100 #110 7
10 -6
#120 #30 #40 #90 #100 #110 8
10 -4
#120 #30 #40 #90 #100 #110 9
10 -2
#120 #30 #40 #90 #100 #110 10
10 0
#120 #30 #40 #50 #60 #70 10
8 1
#80 #30 #130 #140 10 8
-9
#150

Fig. 18-1. Program Play Computer.

#110 6

1
J

1
1
1
1
1 ,

]

1
1
l
1
1
1
l
1

r
r
r
r
r

r
r

PLAY COMPUTER 131

CHART 18-1. Variable Chart

ASSIGN VALUE OF VARIABLES A B C

From line 20 5 10 -10

Values-1st pass

Values-2nd pass

Values-3rd pass

Values-4th pass

Values-5th pass

Values-6th pass

Values-7th pass

After Chart 18-1 has been completed and you are satisfied you under
stand how and why to program functions, RUN the program to get the cor
rect results. Did you do as well as the computer?

Type in the immediate command TRACE, and press RETURN. Now RUN
the program. When the program runs, the line numbers, and variable
values, are printed on the screen. If the program does not RUN, TRACE can r. aid in debugging the program, to determine why it doesn't run. The error
messages built into the language can also aid in debugging a program. If
the program stops at line 120, and no error message is given, many times r. the TRACE mode can aid in correcting the problem.

TRACE function can be removed by typing NOTRACE on the screen. The
next program RUN will be without line numbers on the screen. The
sequence of commands to run the program and use the TRACE and r NOTRACE functions should follow this routine.

r
r
r
r
r

RUN

TRACE
RUN

NOTRACE

LESSON 19

Reserved Words

After completion of Lesson 19 you should be able to:

1. Use reserved words in programs in their proper relationship.
2. Use parentheses to separate characters that the computer interprets

as reserved words.

VOCABULARY

Reserved Words - Reserved words are words programmed into the lan
guage to aid in carrying out the programming functions.

DISCUSSION

Reserved words are an aid in programming. These words cannot be used
as variables. Applesoft tokenizes reserved words to a decimal number
similar to the decimal number that represents an ASCII symbol. For
example, there is a ?SYNT AX ERROR in the following statement.

40 IF B = A THEN 90

When the program is RUN, the program is stopped at line 40 and
?SYNTAX ERROR is printed on the screen. When line 40 is LISTed, the vari
able A and the reserved word THEN have been changed to the reserved
word AT and a new variable HEN90.

40 IF B = AT HEN90

To use the same variable A in relation to the reserved word THEN place
the variables and the equals sign within parentheses.

40 IF (B = A) THEN 90

The list of reserved words is taken directly from Applesoft Basic Pro
grammer's Reference Manual, Volume 2 For the /Ie Only, by the Apple
Computer Inc., 10260 Bandley Dr., Cupertino, California 95014

132

l
IOIII!

I
j

l
l
l
l
l
l
l
j

l ,
J

l
l
l
l

r
RESERVED WORDS IN APPLESOFT

&
ASS AND ASC AT ATN
CALL CHR$ CLEAR COLOR = CO NT COS
DA T A DEF DEL DIM DRAW
END EXP
FLASH FN FOR FRE
GET GOSUS GOTO GR

RESERVED WORDS 133

HCOLOR = HGR HGR 2 HIMEM: HLIN HOME HPLOT HT AS
IFIN# INPUT INT INVERSE
LEFT$ LEN LET LIST LOAD LOG LOMEM:
MID$ r-NEW NEXT NORMAL NOT NOTRACE

- ON ONERR OR
PDL PEEK PLOT POKE POP POS PRINT PR#
READ RECALL REM RESTORE RESUME RETURN RIGHT$ RND ROT =
RUN
SA VE SCALE = SCRN(SGN SHLOAD SIN SPC(SPEED = SQR STEP
STOP STORE STR$
TAS(TAN TEXT THEN TO TRACE
USR
VAL VLlN VT AS r-' WAIT

XPLOT XDRAW

r
r

r

LESSON 20

Menu Selection and Coding Formulas

After completion of Lesson 20 you should be able to:

1. Write programs using a menu selection.
2. Translate formulas to computer code for computational purposes.

VOCABULARY

Code - Code is the representation of data or instructions in symbolic form.
It is sometimes synonymous with instruction. Coding is the act of con
verting data or instructions into program statements.

Comment - Comment is the written note that can be included in the coding
of a computer program to clarify the procedures and variables, but has
little effect on the computer itself. The REM statement is used for com·
ment, or to document a program.

Get A$ - GET A$ stops the program in order to view the output. The pro
gram will resume when any key is pressed.

Menu Selection - A menu selection is a method of using a terminal to dis·
playa list of options that can be chosen by the user. The menu asks a
simple question. The user can respond to the question by entering a
number value, or an alphabetic character. This is referred to as "user
friendly."

DISCUSSION

Many people have little knowledge of computers. For those people, the
programs must be written to tell them what input is required, and in what
format. One way to aid these people with the correct selection is to use a
menu. A menu selection is a method to display a list of optional choices.
The user can select his or her choice by entering a number, or a letter.

Lesson 20 deals with the menu selection process. The program written for
this lesson deals with three types of depreciation, (1) straight line deprecia
tion, (2) double declining balance depreciation, and (3) sum of the years
digits depreciation. The variables used in the program are listed in Fig.
20-1.

134

1

..
J

1
l

,
j

1
1'.· i

1

,
J

1
1 ,
1

r
r
r
r

r

r

r
r

r
r

BV
DY
GA
GET A$
LA
P
S
SV
TO

BV
DY
GA
GET A$
K
LA
SV
TD

BV
DY
GA
GET A$
K
LA
SV
TO
Z

MENU SELECTION AND CODING FORrytULAS 135

STRAIGHT LINE DEPRECIATION
Book value
Depreciation per year
Gross amount or gross cost of the asset
Stops the program to allow the user to view the output
Life of the asset
Rounded to 2 places (100)
Selection
Salvage value
Total depreciation

DOUBLE DECLINING BALANCE
Book value
Depreciation per year
Gross amount or gross cost of the asset
Stops the program to allow the user to view the output
Constant
Life of the asset
Salvage value
Total depreciation

SUM OF THE YEARS DIGITS
Book value
Depreciation per year
Gross amount or gross cost of the asset
Stops the program to allow the user to view the output
Constant
Life of the asset
Salvage value
Total depreciation
Variable to hold (LA - V). Z = (LA - Y) + 1. A method to compute and
print the years forward, after they were computed backwards

Fig. 20-1. Variables.

500 HOME: VTAB 3 : HTAB 8 : PRINT "***DEPRECIATION***" :
PRINT: PRINT

510 HTAB 5 : PRINT "1. STRAIGHT LINE DEPRECIATION" : PRINT
520 HTAB 5 : PRINT "2. DOUBLE DECLINING BALANCE" : PRINT
530 HTAB 5 : PRINT "3. SUM OF THE YEARS DIGITS" : PRINT
540 HTAB 8: INPUT "SELECTION PLEASE!" : PRINT
550 IF S < 1 OR S > 3 THEN 500
560 ON S GOTO 1500, 2500, 3500

Fig. 20-2. Menu section of depreciation program.

The menu selection of the program is listed in Fig. 20-2, and consists of
lines 500 through 560.

Line 500 clears the screen and sets the position at which * * * DEPRECIAr TION PROGRAM * * * is printed. The two PRINT statements after

r

136 APPLESOFT FOR THE lie

* * *DEPRECIATION PROGRAM* * * leave two blank lines before the first
menu selection.

Lines 510 through 530 print out the three types of depreciation. The user
must determine which type of depreciation to select (Table 20-1).

Table 20-1. Formulas and Computations

STRAIGHT LINE DEPRECIATION

DEPRECIATIONIYEAR = COST OF ASSET-SALVAGE VALUE

YEAR
1
2
3

DEP/YR
200
200
200

TOTAL DEP.
200
400
600

NUMBER OF YEARS

DOUBLE DECLINING BALANCE (the numbers have been rounded)

l
l
l
1

3 year straight line = 1/3 .333 (K) l
200% double declining balance = 2 * 1/3 .667 (K)

YEAR CONSTANT COST DEP/YR BOOK Vl. TOTAL DEPRECIATION
1 .667 * 625 417 208 417 ...,
2 .667 * 208 139 69 554 J
3 .667 * 69 46 25 600

SUM OF THE YEARS DIGITS (the numbers have been rounded) l
SYD = n (n + 1)

2

YEAR CONSTANT
1 .500 *
2 .333 *
3 .167 *

PRINT YEARS
1
2
3

GA -SV
600
600
600

DEP/YR
300
198
100

SYD = 3 * (3 + 1) = 6

BOOK Vl.
325
125
25

2

TOTAL DEPRECIATION
300
500
600

Z = (LA-Y) + 1
3 - 3 = 0 + 1 = 1
3 - 2 = 1 + 1 = 2
3 - 1 = 2 + 1 = 3

l
l ,

J

Line 3560 uses the INT function to round off the results to 2 places. DEF FN was used
to round off to 2 places in line 2560. The two different methods expose the student to l
the fact that either method will accomplish the same rounding results.

Line 540 allows the user to select any number. The choice of the number
is not limited to 1, 2, or 3. l

Line 550 is a decision statement that causes a branch to line 500 if a
number other than 1, 2, or 3 is entered. This is a form of error checking that
limits the input choices that will be accepted by the program. Since there l

l

r
[

r

r
r
r

r
r
r
r
r
r
r
r

MENU SELECTION AND CODING FORMULAS 137

are three choices, the computer is programmed so only an input of' I, 2, or 3
will allow the program to continue.

In line 560, the input value is placed in the variable. When S ,= I, the
program branches to line 1500. When S = 2, the program branches to line
2500. When S = 3, the program branches to line 3500. The ON S GOTO
statement was discussed in Lesson 15 in conjunction with input errors.

When a correct selection is entered, the program branches to either line
1500, line 2500, or to line 3500. At each of these lines is a GOSUB 100. The
GOSUB 100 causes a branch to line 100 of the program. Line 100 is the
beginning of the input subroutine. This subroutine is placed at the begin
ning of the program because it is used with each type of depreciation. The
program is more efficient with the input subroutine at the beginnIng of the
program because fewer lines are searched before the subroutine ;is found.
The headings are printed and the input is requested (Fig. 20-3).

100 INPUT "GROSS AMOUNT = $" ;GA : PRINT
105 IF GA < 1 THEN 100
110 INPUT "SALVAGE VALUE = $" ;SV : PRINT
115 IFSV<OTHEN110
120 IF GA < SV THEN 100
130 INPUT "LIFE OF ASSET = " ;LA : PRINT
135 IF LA < 1 THEN 130
140 RETURN

Fig. 20-3. Input section of depreciation program.

The gross amount of the asset is entered at line 100. Line 105 checks to
determine that the gross amount is not a negative value. A negative gross
amount would have no meaning in a depreciation schedule.

In line 110, the salvage value of the asset is entered. Line 115 checks to
determine if the salvage value is less than zero. The salvage value could be
zero at the end of the depreciation term, but it could not be less than zero.

In line 120, if the gross cost of the asset is less than the salvage value, the
depreciation formula will not compute the depreciation properly.

In line 135, the asset must have a useful life of at least one year, or some
period of time greater than zero. ,

In line 140, RETURN causes a branch to the section of the program that
requested the information.

If 1 is entered from the menu section, the program branches to line 1500
which is the section to compute straight line depreciation (Fig. 20-4).

Line 1500 branches to the input routine. After the input vc:llues are
entered, line 140 causes a RETURN to line 1510 to begin calculatipn of the
straight line depreciation. The values used for all three depreciation
examples are: cost of asset (GA) = $625, salvage value (SV) = $25, and life
of the asset (LA) = 3 years. The straight line depreciation formulas are con
verted to the program statements.

138 APPLESOFT FOR THE lie

1500 GOSUB 100
1510TD=0
1520 PRINT "YEAR DEP/YR TOTAL DEP.": PRINT :P = 100
1530 FOR X = 1 TO lA
1540DY = (GA - SV) I LA
1550 TO = TO + DY
1560 PRINT X; TAB(10); INT (DY * P + .5) I P; TAB(25); INT (TO * P + .5) I P
1570 IF X = INT (X 18) * 8 THEN GET A$
1580 NEXT
2400 GOTO 9990
RUN

DEPRECIATION PROGRAM

1. STRAIGHT LINE DEPRECIATION
2. DOUBLE DECLINING BALANCE
3. SUM OF THE DIGITS

SELECTION PlEASE!1
GROSS AMOUNT = $625
SALVAGE VALUE $25
LIFE OF ASSET 3

YEAR

1
2
3

DEP/YR

200
200
200

ANOTHER PROBLEM? (y OR N)N

TOTAlDEP.

200
400
600

Fig. 20-4. Section of program to compute straight line depreciation.

l

l
1
l
1

J

l
1

STRAIGHT LINE DEPRECIATION 1 .. , ..
DEPRECIA TION/YEAR = COST OF ASSET - SALV AGE VALUE .

NUMBER OF YEARS

DEPRECIATION INFORMATION
LIFE OF THE ASSET = 3
DEPIYR = (GA - SV)/LA
DEP/YEAR = $200
TOT AL DEPRECIATION = $600

PROGRAM STATEMENT
FOR X = 1 TO LA
DY = (GA - SV)/LA
TD = TD + DY
1580 NEXT X

Line 1560 prints the year, the amount of each year's depreciation, and the
total depreciation. Line 1560 is included within the loop, so the results will
be printed for each year's computation.

Line 1570 performs the same function in lines 1570, 2570, and 3570. It
causes the loop to stop after every eight executions (as shown in Table
20-2). This is useful when the life of the asset is a long period (over ten
years) of time and the user needs to study the sections of the printout. The
integers could be any number such as 10, 12, or 20, as long as the number
of lines is less than the number of lines on the screen.

1
1
1
1
l
l

r
r

r
r

r
r
r
r
r

r
r
r

MENU SELECTION AND CODING FORMULAS 139

Table 20-2 IF X = INT(X/8) * 8 THEN GET A$

x INT(X/B) INT(X/B) * B

1 0 0
2 0 0 ---- -------- --------
7 0 0
8 1 8
9 1 8

10 1 8
----1---------1----------

15 1 8
16 2 16
17 2 16

GET A$, from line 1570, is a function to stop the program to allow the
user to press any key on the keyboard to continue the program. RETURN
does not have to be pressed after the GET A$.

DOUBLE DECLINING BALANCE

The double declining balance method of depreciation applies a constant
depreciation rate to a reducing book value. This method charges off high
depreciation in the early years and lower amounts in later years. The rate
used in this program is 200%, or twice the straight line depreciation. This
fact is expressed in the formula K = (lilA) * 2. The formula for the 150%
rate is K = (lilA) * 1.5. The formula for the 125 % rate is K = (lILA) * 1.25

Please be aware that this is a programming manual, not an accounting
text. The double declining balance formula is taken from an accounting text
and has been checked by a qualified accountant. The computed figures in
the final year of the depreciation may cause questions. The final book value
does not equate with the salvage value, nor does the total depreciation
equate with the allowable depreciation. Adjustments must be made to the
figures computed in the final year of the life of the asset.

In the double declining balance depreciation method, the constant "K" is
multiplied by the initial cost of the asset to determine the amount of yearly
depreciation. The cost (Book Value) is reduced by the depreciation amount
each year, but the book value cannot be reduced below the salvage value.
The total depreciation cannot be greater than the cost of the asset less the
salvage value.

This example uses the same input as does the straight line depreciation.
The cost of the asset (Book Value) = $625, salvage value = $25, and the
life of the asset = 3 years.

The double declining balance routine begins at line 2500 and ends at line
3400 (Fig. 20·5).

Line 2500 branches to the input routine. The input routine RETURNs to
line 2510 (K = (lilA) * 2: BV = GA). The constant "K" is computed by the

140 APPLESOFT FOR THE lie

2500 GOSUB 100
2510 K = (1 / LA) * 2:BV = GA
2512 TO = 0
2515 PRINT "YR. CONST. DEPNR BK. VAL. TOT DEP"
2520 FOR X = 1 TO LA
2530 DY = BV * K
2540 BV = BV - DY
2545 TO = TO + DY
2550 DEF FN A{X) = INT (X * 100 + .5) /100
2560 PRINT X; TAB{ 5); FN A{K); TAB{ 14); FN A (Dy); TAB{ 22); FN A{BV); TAB{ 31);

FNA{TD)
2570 IF X = INT (X / 8) * 8 THEN GET A$: REM -CAUSES LOOP TO STOP EVERY

8 TIMES
2580 NEXT
3400 GOTO 9990
RUN

DEPRECIATION PROGRAM

1 .. STRAIGHT LINE DEPRECIATION
2. DOUBLE DECLINING BALANCE
3. SUM OF THE DIGITS

GROSS AMOUNT = $625
SALVAGE VALUE = $25
LIFE OF ASSET = 3

SELECTION PLEASE !2

1
l
l
l
l
1
1

YR.
1

CONST.
.67

DEPNR
416.67
138.89
46.3

BK. VAL.
208.33
69.44
23.15

TOTDEP .,
416.67 J'

2 .67 555.56
3 .67 601.85

ANOTHER PROBLEM ? (y OR N)N

Fig. 20-5. Double declining balance routine.

formula (lilA) * 2) for 200% of straight line depreciation. BV = GA is the
gross cost of the asset stored in the variable BV. The constant times the
reducing book value will give the yearly depreciation.

Line 2512 initializes the total depreciation to zero, and line 2515 causes
the headings to be printed.

Line 2520 is the beginning statement of the loop for the computations.
Line 2530 computes the depreciation for one year and stores that value in

the variable DY (depreciation per year).
Line 2545 is the summing statement that adds each year's depreciation to

the previous year's depreciation and stores the total depreciation in the
total depreciation variable TD.

Line 2550 is a DEF FN statement that rounds the printed calculations to
two decimal places.

Line 2560 causes the information to be printed in table form on each loop
execution. Line 2570 is the same as 1570; results are seen in Table 20·2.

Line 3400 branches to line 9990, which cues the user for more input.

l

1
1
1
l
l

r
r
r
r
L

r
r
r
r

MENU SELECTION AND CODING FORMULAS 141

3500 GOSUB 100
3510 T = O:P = 100:BV = GA - SV:T D = 0
3520 PRINT "YEAR CONSTANT DEP/YR TOTAL DEP."
3522 PRINT
3530 FOR X = 1 TO LA:T = T + X: NEXT

3535 REM :T = LA * (LA + 1)/2
3540 FOR Y = LA TO 1 STEP - 1:K = Y 1 T
3550 DY = K * BV
3555 TD = TD + DY
3558 Z = (LA - Y) + 1
3560 PRINT Z; TAB(7); INT (K * P + .5) 1 P; TAB(18); INT (DY * P + .5) 1 P;

TAB(26 + (TD < 100»; INT (TD * P + .5) 1 P
3570 IF Z = INT (Z 1 8) * 8 THEN GET A$
3600 NEXT
RUN

DEPRECIATION PROGRAM

1. STRAIGHT LINE DEPRECIATION
2. DOUBLE DECLINING BALANCE
3. SUM OF THE DIGITS

GROSS AMOUNT = $625
SALVAGE VALUE = $25
LIFE OF ASSET = 3

SELECTION PLEASE !3

r- YEAR CONSTANT DEP/YR

300
200
100

TOTALDEP.

300 l 1 .5

r
r
r
r

2 .33 500
3 .17 600

ANOTHER PROBLEM? (y OR N)N

Fig. 20·6. Sum of the years digits section.

50
100
105
110
115
120
130
135
140
500

510
520
530
540
550

GOTO 500
INPUT" GROSS AMOUNT = $" ; GA : PRINT
IF GA < 1 THEN 100
INPUT "SALVAGE VALUE = $" ;SV : PRINT
IF SV < 0 THEN 110
IF GA < SV THEN 100
INPUT "LIFE OF ASSET = " ;LA : PRINT
IF LA < 1 THEN 130
RETURN
HOME: VTAB 3 : HTAB 8 : PRINT "***DEPRECIATION***" :
PRINT: PRINT
HTAB 5 : PRINT "1. STRAiGHT LINE DEPRECIATION" : PRINT
HTAB 5 : PRINT "2. DOUBLE DECLINING BALANCE" : PRINT
HTAB 5 : PRINT "3.SUM OF THE YEARS DIGITS" : PRINT: PRINT
HTAB 8 : INPUT "SELECTION PLEASE!" ; S : PRINT
IF S < 1 OR 5 > 3 THEN 500 . r Fig. 20·7. Depreciation program.

r

142 APPLESOFT FOR THE lie

560 ON S GOTO 1500, 2500, 3500
1500 GOSUB 100
1510 TO = 0
1520 PRINT "YEAR OEP/YR TOTAL OEP." : PRINT:

P = 100
1530 FOR X = 1 TO LA
1540 OY = (GA - SV)/LA
1550 TO = TO + OY
1560 PRINT X; TAB (10); INT (OY*P + .5)/P; TAB (25);

INT(TO*P + .5)/P
1570 IF X = INT (X/8) * THEN GET A$
1580 NEXT
2400 GOTO 9990
2500 GOSUB 100
251 0 K = (1/LA) * 2 : BV = GA
2512 TO = 0
2515 PRINT" YR CONST. OEP/YR BK.VAL. TOT OEP"
2520 FOR X = 1 TO LA
2530 OY = BV * K
2540 BV = BV - OY
2545 TO = TO + OY
2550 OEF FN A(X) = INT (X*100 + .5)/100
2560 PRINT X; TAB (5); FNA (K); TAB (14); FNA (OY);

TAB (22); FNA (BV); TAB(31); FNA (TO)
2570 IF X = INT (X/8) * 8 THEN GET A$
2580 NEXT
3400 GOTO 9990
3500 GOSUB 100
3510 T = 0: P = 100 : BV = GA - SV : TO = 0
3520 PRINT "YEAR CONSTANT OEP/YR TOTAL OEP." : PRINT
3530 FOR X = 1 TO LA : T = T + X : NEXT X
3535 REM: T = LA * (LA+ 1)/2
3540 FOR Y = LA TO 1 STEP - 1 : K = Y IT
3550 OY = K * BV
3555 TO = TO + OY
3558 Z = (LA - Y) + 1
3560 PRINT Z; TAB (7); INT (K*P + .5)/P; TAB (18);

INT (OY*P + .5)/P; TAB (26 + (TO < 100»;
INT (TO*P + .5)/P

3570 IF Z = INT (Z/8) * 8 THEN GET A$
3600 NEXT
9990 PRINT
9991 INPUT "ANOTHER PROBLEM? (Y OR N)" ; A$:

IF A$ = "Y" THEN 500
9999 END

Fig.20-7-cont. Depreciation program.

l
1
l
1
l
1
1
1
1
l
1
1
l
1
1

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

MENU SELECTION AND CODING FORMULAS 143

SUM OF THE YEARS DIGITS DEPRECIATION

The third type of depreciation is the sum of the years digits (Fig. 20·6) and
consists of lines 3500 through 3600. In this method of depreciation, the
years of the asset life are listed numerically and totaled. The highest year in
the life of the asset is then divided by the total to compute the depreciation
constant for the first year. The changing yearly constant is multiplied by a
fixed gross amount of the asset less the salvage value.

SUM OF THE YEARS DEPRECIATION
DEPRECIATION INFORMATION PROGRAM STATEMENTS
Total years 3 + 2 + 1 = 6 FOR X = 1 TO LA

3/6 = 1st year's maximum
depreciation

2/6 = 2nd year's depreciation
116 = 3rd year's depreciation

T = T + X : NEXT X
T = LA'" (LA+ 1)12

FOR Y = LA TO 1 STEP - 1
K = Y/T

DY = K'" BV
TD = TD + DY
Z = (LA·Y) + 1
NEXTY

The entire program is shown in Fig. 20·7.

LESSON 21

Program Outline

After completion of Lesson 21 you should be able to:

1. Comprehend that all computer programs are written according to a
general outline, but no program will exactly follow such an outline.

VOCABULARY

DATA - Data is a general expression used to describe any group of
operands that denote any conditions, values, or states (Le., all values
and descriptive data operated on by a computer program but not part
of the program itself). The word data is used as a collective noun and is
usually accompanied by a singular verb: "data are" may be pedanti
cally correct but is awkward syntax. Data is sometimes contrasted to
information, which is said to be the result of processing data. Informa
tion is derived from the assembly, analysis, or summarizing of data
into meaningful form.

DATA Statement - A DATA statement contains a list of items that can be
used by the READ statement. DATA statements can contain integers,
reals, variables, literals, or strings. The item in the DATA statement
must be in the same relationship and position as the item in the READ
statement.

READ Statement - The READ statement is used by the program to read
data into memory.

DISCUSSION

The outline for program structure must be considered very general and
no program will rigidly comply with the outline. There must be a starting
point to writing a program. The logical start to writing a program must exist
within the framework of an outline.

COMPUTER PROGRAM GENERAL OUTLINE
A. Beginning of the program.

144

l
l
j

l
l
l
l
l
l
l
l
l

j

l
l
l

i' r'
r
r
I.

r
r
r
r
r
r
r
r
r
r
r
r
r

PROGRAM OUTLINE 145

B. Initialize the variables
1. C = 0 counting variable.
2. S = 0 summing variable.
3. F = 0 flag variable.
4. DEF FN define functions for formulas or rounding.
5. DIM (2,3) DIM statements when constants are used.
6. DIM (R,C) DIM (R,C) statements are used after the vari~bles

have been entered either by READ, INPUT, or
assignment statements.

7. RESTORE RESTORE resets the "data list pointer" to the first
element of data. RESTORE causes the next READ
statement encountered to re-READ the DATA state
ments from the first one.

C. Print the general program headings.
D. Menu selection.
E. INPUT-READ statements.
F. Beginning of the FOR-NEXT loop, or GOTO loop.
G. Decision statements.
H. Computation statements.
I. Incrementing statements.

1. C = C + 1 counting statement.
2. S = S + X summing statement.

J. PRINT - A PRINT statement inside a loop prints each time the loop
executes.

K. End of the loop NEXT for a FOR-NEXT loop, or GOTO for a GOTO
loop.

L. PRINT - A PRINT statement in this position outputs information after
the last execution of the loop.

M. DATA - The DATA statement(s) can be placed anywhere in the pro
gram. Generally they are placed just above the END statement.

N. END - The END statement denotes the end of the main body of the
program.

O. SUBROUTINES - SUBROUTINES are placed after the END state
ment of a program.

The FOR-NEXT loop will be used to demonstrate the effects of state
ments inside the loop, and outside the loop. The program will follow the
general outline, where possible.

10 SUM = 0
20 FOR X = 1 TO 5
30 PRINT X
40 SUM = SUM + X
50 NEXT X
60 PRINT "SUM = "; SUM

initialize variables
head of the for next loop
print a variable inside the loop
summing statement inside the loop
foot of the loop statement
print statement outside the loop for final values

146 APPLESOFT FOR THE lie

RUN
1
2
3
4
5
SUM = 15

The program generally conforms to the outline. Lines 30 and 40 should
be reversed according to the outline. Does it make a difference if they are
reversed?

30 SUM = SUM + X
40 PRINT X
RUN
1
2
3
4
5
SUM = 15

No, the reversal of lines 30 and 40 within the loop make no difference.
Generally, the PRINT X statement comes after the FOR statement at the
beginning of the loop unless there are computation statements inside the
loop.

Now reverse lines 30 and 40 to return to the original program. From the
original program, make these changes.

DEL 30,30
55 PRINT X

The complete program looks like this.

10 SUM = 0
20 FOR X = 1 TO 5
40 SUM = SUM + X
50 NEXT X
55 PRINT X
60 PRINT "SUM = ";SUM
70 END
RUN
6
SUM = 15

The loop executes from 1 to 5 and prints out the next number in the
series. There are two important points in this example, (1) because the gen
eral outline was violated, the program did not produce the correct results,
and (2) the loop variable value is one more than the final index value (5)
after the last execution of the loop.

To the original program, make these changes.

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l

r
r
r
r
r

r
l

r
t

r
r
r
r
r
r

r

DEL 60,60
45 PRINT "SUM = ";SUM

The entire program follows.

10 SUM = 0
20 FOR X = 1 TO 5
30 PRINT X
40 SUM = SUM + X
45 PRINT "SUM = ;SUM
50 NEXT X
70 END
RUN
1
SUM = 1
2
SUM = 3
3
SUM = 6
4
SUM = 10
5
SUM = 15

PROGRAM OUTLINE 147

Since the SUM was within the loop, SUM = was printed with each execu-
tion of the loop. Make the following changes to the original program.

DEl 10,10
25 SUM = 0

The complete program follows.

20 FOR X = 1 TO 5
25 SUM = 0
30 PRINT X
40 SUM = SUM +X
50 NEXT X
60 PRINT "SUM = ";SUM
70 END
RUN
1
2
3
4
5
SUM = 5

In this case, the summing variable was initialized to zero each time the
loop executed, so the final value is SUM = 5. The initialized variable must
be outside the loop, or it will be reset to zero each time the loop executes.

LESSON 22

Cleanup

After completion of Lesson 22 you should be able to:

1. Open the closet door and have all the final tidbits of the Applesoft lan
guage fall out for your inspection and pleasure.

VOCABULARY

Center Justify - This means the text is centered with no well defined right
or left margins.

Fill Justify - This means that the right and left margins are aligned.
Left Justify - This means to format the output so the printed field is aligned

on the left hand boundary. Most computers left justify alphabetic data.
Print Field Definition - This is the technique of print output to fit a stan

dard form, thus making it more readable.
Right Justify - This means to format the output so the printed field is

aligned on a right hand boundary. Most computers right justify numeric
data.

Zero Printing - This is the printing of zeros to fill decimal places. Applesoft
does not zero print. A special routine must be written in the program to
cause zero printing. For example, if the number should be $123.10,
Applesoft only prints $123.l.

Zero Suppression - This is the elimination of nonsignificant zeros before
printing, i. e., those zeros to the left of the significant digits. It is also
known as zero elimination.

DISCUSSION

This lesson "cleans up" many parts of the language not covered in the
first 21 lessons.

Applesoft does not align columns of different numbers to the power of
ten. All numbers are printed starting from one selected space and are
printed to the right.

148

l
1
l
1
1 ,

J

l
1
1
1 ,

I

l
1
1

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

284.6
98.3
2
3.47

CLEANUP 149

Fig. 22-1 is a program that causes numbers to be aligned in the proper
columns, so the units are aligned, the tens are aligned, etc. The program
causes the printout to right justify by two methods, (1) by aligning the right
hand number, and (2) by aligning the decimal point. Either justification can
be used in a program as a routine or a subroutine. Lines 60 through 80 right
justify any number. Lines 90 through 130 right justify the decimal of num
bers that are greater than or equal to one-tenth (.1) but less than 1E+9.

5 D = LOG (10)
6 DEF FN MA (X) = INT (LOG (M)! D)
10 HOME
20 INPUT "ENTER?" ;M
30 IF M = 0 THEN END
40 GOSUB 60
50 GOTO 20
60 L = LEN (STR$ (M» : PRINT "R JUST = ";
70 FOR J = L to 12 : PRINT ":" ; : NEXT J
80 PRINT M;
90 L = FN MA (M)
100 FOR J = L + (L < - 1) TO 8: PRINT "$" ; : NEXT J
120 PRINT M;
130 PRINT: RETURN
JRUN
ENTER?2.34
R JUST = :::::::::::::::2.34$$$$$$$$$2.34
ENTER?234.69
R JUST = ::::::::::::234.69$$$$$$$234.69
ENTER? .5678
R JUST = :::::::::::::.5678$$$$$$$$$$.5678
ENTER?3456789
R JUST = :::::::::3456789$$$3456789
ENTER?2123.5678
R JUST = ::::::2123.5678$$$$$$2123.5678
ENTER?O

Fig. 22-1. Justification.

Lines 5 and 6 are used to compute the magnitude of the number to be
printed. D holds a constant value which is 2.30258509. This is the value
used to compute the power to which base 10 is raised. The power is used to
right justify on the decimal point in lines 90 through 130.

DEF FN MA(X) = INT(LOG(M)/D) is the function that computes the
magnitude of the number.

150 APPLES OFT FOR THE lie

Line 10 clears the screen. Line 20 asks the user to input a number. Line
30 is a decision statement that ends the program.

In this example, the number 2.34 will be input and the results will be dis·
cussed as it is justified.

In line 60, L = LEN(STR$(M» converts the number into a string. This
allows the string "2.34" to be evaluated. The number of characters (4) is
stored in the variable L. PRINT "R JUST = " prints out the header that is
printed in the first eight columns of the screen.

Line 70 computes the number of colons to be printed out before the num·
ber (M) is printed. FOR J = L TO 12 outputs 13 places (0 - 12) and subtracts
off the length of the string. R JUST = occupies the first eight columns. The
string contains four characters, so FOR J = 4 TO 12 will print nine colons
before printing the number.

COLUMN 8,9 17 ... 21
R JUST =: : : : : : : : :2.34

Line 80 prints the number after the colons so all numbers are right justi
fied. The semicolon after the M keeps the line open to print the next section
that is to justify on the decimal point.

The right justification is based on adding the number of columns
occupied by R JUST = ,less the number of columns occupied by the string.
All numbers are right justified to column 21 on the screen.

Lines 90 through 130 justify by placing the decimal in column 32 and
aligning the numbers in the proper columns in relation to the decimal point.

In line 90, the power of the number is determined by the formulas in lines
5 and 6. The value of the power is stored in the variable L. The value stored
in L, shown in Table 22-1, is used to determine how many places to print.

Line 10 is a loop to print dollar signs ($) from column 21 to nine places
(0 - 8) (L + , the number of $ signs, = 9). The power of the number is placed
in the variable L, and L TO 8, determines the number of dollar signs to be
printed before the number is printed. The number input is 2.34.

COLUMN 8,9 17 ... 21 32
R JUST =: : : : : : : : :2.34$$$$$$$$$2.34

In this case, 2.34 has a power of zero (see Table 22·1). FOR J = 0 TO 8
prints out nine (9) dollar signs.

Line 120 prints 2.34 immediately after the ninth dollar sign so the
decimal falls in column 32.

Line 100 must handle a special case when the decimal input is less than
.01 and greater than .099 (see special case, Table 22-1). This special case is
handled by (L < - 1)). FOR J = L TO 8 works in all cases where "L" is
greater than or equal to one-tenth (.1). When "L" is less than one-tenth (.1), a
one (1) is added back to align the decimal points.

1

,
Ij ,
I)

1
o

1
1
1
1
1

,
'J

r
r
r
r

r

r

r
r
r
r
r
r

CLEANUP 151

Table 22-1. L = FN MA (M)

CASE M FN MA (M)

0 o ILLEGAL VALUE

1 >0 to ~.01 -2 This (ase causes

2 >.01 to ~1 -1 special handling
by (L < -1)

3 >1.0 to ~10 0

4 >10 to ~100 1

5 >100 to ~1000 2

6 > 1000 to ~ 10000 3 --- -------------- ------
1 E +8to~1 E-9

A simpler method of controlling the column printout is to use decision
statements. Using uN" as a variable to hold the value of the number, the
decision statements are shown in Table 22-2.

With these four statements, the number to be placed in columns must be
less than 1000. Decision statemets can cause any number to be printed in
specific columns as long as the number is in the range of the computer.

Table 22-2. HTAB Using Decision Statements

COLUMN 32 33 34 35 36 37

N = .78 IF N < 1.00 THEN HTAB 35 7 8
N = 1.78 IF N> .99 THEN HTAB 34 1 7 8
N = 11.78 IF N> = 10.00 THEN HTAB 33 1 1 7 8
N = 111.78 IF N> = 100 THEN HTAB 32 1 1 1 7 8

CONTINUE STATEMENT

The CONT (Fig. 22-2) is an immediate execution command that causes
the program to continue running after it has been stopped by a STOP, END,
or Control C. If the program was stopped at line 40, and a CO NT command
was typed, the CONT starts the program at line 100. CONTinue will not be
successful in continuing the program if a program line has been modified. A
?CAN'T CONTINUE ERROR will be printed on the screen when no further
instructions exist, after an error has occurred, or after a line has been
changed or deleted in the existing program. If a GOTO 100 was typed, this
immediate execution command causes the program to start running at line
100.

FLASH, INVERSE, and NORMAL functions are demonstrated in the
FLASH SCREEN program (Fig. 22-3). (FLASH IS NOT A COMMAND IN

152 APPLESOFT FOR THE lie

THE 80 COLUMN CARD ACTIVE MODE). The program combines FLASH,
NORMAL, INVERSE, and RND functions to randomly print the letters of the
alphabet, and changes the video mode surrounding the character.

Line lOis the beginning of a loop that sets up the number of times the
program is executed. The number 653 was selected at random. Any number
could be used.

5 REM -PROGRAM STRUCTURE
10 SUM = 0
20 FOR X = 1 TO.5
40 SUM = SUM + X
50 NEXT X
55 PRINT X
60 PRINT "SUM = ";SUM
70 END
1 00 REM :TO RUN TYPE GOTO 100
110 SUM = 0
120 FOR X = 1 TO 5
130 PRINT X
140 SUM = SUM + X
145 PRINT "SUM = ";SUM
150 NEXT X
170 END
RUN
6
SUM = 15

)CONT
1
SUM = 1
2
SUM = 3
3
SUM = 6
4
SUM = 10
5
SUM = 15

)GOT0100
1
SUM = 1
2
SUM = 3
3
SUM = 6
4
SUM = 10
5
SUM = 15

Fig. 22·2. CONTinue and GOTO 100.

l

,
J

~
\

i ,
.,

!

i
J ,
1

l
l
l
l

r
r
r

r

r
r
r
r
r
r
r

4 REM FLASH SCREEN
5 HOME
10 FOR J = 1 TO 653
20 I = INT (RND (1)*39) + 1
30 K = INT (RND (1.) * 23) + 1
40 L = INT (RND (1.) * 3) + 1
50 ON L GOTO 60, 70, 80
60 INVERSE: GOTO 100
70 NORMAL: GOTO 100
80 FLASH
100 HTAB I : VTAB K : PRINT CHR$ (RND (1.) * 26 + 65);
110 N = RND (1.) : NEXT J : NORMAL
120 END

Fig. 22·3. Random numbers program.

CLEANUP 153

Line 20 randomly selects the column in which the character is to be
printed. The screen has a line 40 characters long. RND returns a number
from zero to less than one. RND(1) * 39 always returns a number less than
39, from zero to 38. RND(1) * 39 + 1 always returns a number greater than
zero but less than 40. The" + 1" is used to prevent the illegal value zero
from being generated. The screen has 40 columns, from one to 40. [f the
RND function generated a zero, the program would stop and the error meso
sage ?[LLEGAL QUANT[TY would be printed on the screen. [t is important
to remember the parameters and limits of each function.

Line 30 randomly sets the limit of the rows on the screen. The screen has
24 rows, from one to 24. RND(1.) * 23 + 1 sets the limit to 22 + 1, which
prevents the screen from scrolling while the program is running. [n line 20,
RND(1) is used. In line 30, RND(1.) is used. Either 1 or 1. can be used with·
out changing the function.

The program is designed so that no character is printed in column 40, nor
is any character printed in row 24. A print at column 40, row 24 causes the
screen to scroll.

[n line 40, the positive argument of RND returns a different sequence of
numbers each time. RND(1.) * 3 returns the numbers 0, 1, 2. The" + 1"
changes the sequence of numbers to 1, 2, 3.

The 1, 2, 3 generated by the program in line 40 is used by line 50 to cause
the program to jump to line 60 for L = 1, line 70 for L = 2, and line 80 for
L = 3.

Line 100 prints the characters and the video mode randomly according to
VTAB [(line 20), and HTAB K (line 30). The PR[NT CHR$(RND(1.)*25 + 65)
changes the 26 values (0 to 25) + 65, from the ASCII numeric code to the
alphabetic characters (Table 16·1).

A = 65
B = 66

154 APPLESOFT FOR THE lie

C = 67
D = 68
etc.

In line 110, N = RND(l.) seems to serve no useful purpose. It is included
because the random function that the Apple uses to generate random num·
bers may get into an endless loop that generates the same series con
tinuously. N = RND(l.) prevents the random number generator from con
tinued repetition of the same series. This knowledge comes from two
sources, (1) previous programming experience with the theory of
algorithms that generate random numbers, and (2) from the program not
printing any new positions, but printing the same position over and over.
NEXT J is the foot of the loop statement. NORMAL causes the screen to re
turn to the normal mode (green letters on a black background), and HOME
clears the screen. The program ENDs at line 120.

There is no printed RUN on this hypnotic eye blinker. You have to RUN it
to see and believe.

The program in Fig. 22-4 introduces ONERR GOTO, POKE, PEEK, and
RESUME.

10 ONERR GOTO 8000
20 PRINT "DISCO KID" : STRIKESAGAIN
30 READ 0, A, B
40 DATA 1007, 34.5
50 INPUT "LETTER?" ;A
60 POKE 216, 0
70 NEXT J
7999 END
8000 Y = PEEK (222) : L = PEEK (218) + PEEK (219) * 256
8010 IF Y = 16 THEN PRINT "SYNTAX ERROR IN LINE" ;L : PRINT: GOTO 30
8020 IF Y = 42 THEN PRINT "OUT OF DATA IN LINE" ;L : PRINT: GOTO 50
8030 IF Y = 254 THEN PRINT "ANSWER THE CORRECT TYPE IN LINE" ;L: PRINT:

RESUME
RUN
DISCO KID
SYNTAX ERROR IN LINE 20
OUT OF DATA IN LINE 30
LETTER?A (letter E - reserved for exponentiation)
ANSWER THE CORRECT TYPE IN LINE 50
LETTER?5
NEXT WITHOUT ERROR IN LINE 70

Fig. 22-4. ONERR GOTO.

Line lOis a declarative statement that tells the computer what to do when
an error is detected. The computer handles errors in normal fashion until it
executes an ONERR GOTO statement. The ONERR GOTO statement is
similar to TRACE in that it affects the entire program during its execution.

1

,
3 ,
'j

1
1

1

1
1

1

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

CLEANUP 155

After an ON ERR GOTO statement has been executed, anytime an error is
detected, the program branches to the line specified (ON ERR GOTO 8000).
The computer remembers line 10 for all errors. The program handles three
error conditions. With more detailed programming, all seventeen possible
error conditions could be placed in the program.

Line 60 places zero into memory location 216. POKE 216,0 is a state·
ment that clears the error flag so that normal error messages may occur.
When information is to be placed in a specific memory location, the POKE
command is used.

In line 8000, V = PEEK(222) returns the contents of memory location
222. The value of "V" is stored in a variable to make it easier to use. L =
PEEK(218) + PEEK(219) * 256 sets the value of the line number in the pro·
gram where the error occurred.

In line 8010, the number 16 is the value for the error code ?SYNTAX
ERROR.

In line 8020, the number 42 is the value that prints out OUT OF DATA
error.

In line 8030, the number 245 is the "V" value that gives a bad response to
an INPUT statement.

PAUSE LOOPS

Pause loops (Fig. 22·5) cause a delay in a program to allow the user time
to view the information. GET A$ (line 120) is a form of pause loop that stops
the program after every ten loop executions. A simple pause loop that
allows the program to continue without user participation is:

FOR P = 1 TO 1000: NEXT P.

A nested pause loop that allows the program to continue without user
participation is:

FOR N = 1 TO 1000
FOR P = 1 TO 100
NEXT P, N

A pause loop (similar to GET A$) that stops the program after a certain
number of printouts (fifty in this example), and requires the user to press
RETURN is:

FOR X = 1 TO 1000
IF X = INT(X/50) * 50 THEN INPUT Q$
NEXT X

HTAB AND VTAB SPACING IN LOOPS

HTAB, TAB, and VTAB tab from the #1 position of the column or row.
SPC(6) leaves six spaces between the previous item and the next item.

156 APPLESOFT FOR THE lie

HTAB(I*2) + 1 leaves two (2) spaces between items printed and the + 1
starts in column #1. Zero is an megal column value.

10 REM -PAUSE LOOPS
20 FOR A = 1 TO 1000
30 NEXT A
40 PRINT END OF 1ST PAUSE LOOP" : PRINT
50 FOR a = 1 TO 10
60 FOR C = 1 TO 100
70 NEXT c,a
80 PRINT "END OF 2ND PAUSE LOOP"· : PRINT
90 FOR 0 = 1 TO 20
100 PRINT 0
120 IF 0 = INT (0 /10) * 10 THEN GET A$
130 NEXT 0
140 PRINT "END OF 3RD PAUSE LOOP"
150 END
RUN
END OF 1ST PAUSE LOOP

END OF 2ND PAUSE LOOP

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
END OF 3RD PAUSE LOOP

Fig. 22-5. Pause loops.

The use of VT AB and HT AB in loops is illustrated in the program in Fig.
22-6. Line 40 prints the numbers one (1) through five (5) beginning in
column #1 of the screen, with two spaces between each number. This print
out is used a~ a reference with which to compare the spacing in line 70. Line
70 produces similar output and spacing as line 40. Line 72 causes the first

1

1

1

l

l

1
1

1

r
r
r
r
r
r
r
r
r
r
r
r
r
r

r

CLEANUP 157

print in column five (5) rather than in column one (1), with two spaces be
tween each number. Line 74 produces the first print in column one (1) with
five (5) spaces between each number. The program RUN demonstrates that
"·5" produces the number of spaces between the items, while" + I" deter
mines in which column the first item is to be printed.

10 HOME
20 FOR X = 1 TO 5
30 FOR I = 1 TO 5
40 VTAB 10: HTAB (I - 1) * 2 + 1

50 PRINT I;
60 NEXT I: VTAB 12
70 HTAB (X - 1) * 2 + 1
72 REM :HTAB (X-1)*2+5
74 REM :HTAB (X-1)*5+1
80 PRINT X;
90 NEXT X
100 END
RUN
1 2 345
1 2 3 4 5

RUN - LINE 70
(I) 1 2345

(X)12345

RUN - LINE 72
(1)12345

(X) 12345

RUN - LINE 74
(1)12345

(X) 1 234 5

Fig. 22-6. HT AB spacing.

The programs in Fig. 22-7, 22-8, and 22-9 produce identical spacing re
sults. These results are produced by three different methods, (1) decision
statements, (2) loops, and (3) HT AB formula.

Applesoft suppresses leading and trailing zeros. Suppressing trailing
zeros leaves a blank column where the trailing zero is supposed to be. It
leaves the same feeling as reading a suspense story without knowing how it
ended, you know, an empty feeling in the pit of your stomach.

The final program in Lesson 22 (Fig. 22-10) was initially written to print
out a zero in the position where the zero had been suppressed. As it turned
out, the program not only demonstrated printing the zero in the trailing

158 APPlESOFT FOR THE lie

position, but it also reenforced HT ASing by decision statements. Fig.
22-10, and Tables 22-3 and 22·4 are used to explain the zero printing. The
important line in the program for overcoming zero suppression and printing
the trailing zero is line 110.

110 IF (INT(A*100 + .5) - INT(A*10 + .5)*10 = 0 THEN PRINT "0";

Case No.6, Table 22-3.

Without line 100 the output is
With line 110 the output is

8171.3
8171.30

The key to line 100 is to subtract the integer A from itself in two different
ways, (1) (INT(A*100 + .5», and (2) (INT(A*10 + .5)*10). If the result of
these subtractions equals zero (0), then a zero (0) is printed in the last
column of the output.

10 FOR X = 1 TO 3
20 FOR Y = 1 TO 5
30 PRINT Y;" ";
40 IF X> 1 THEN PRINT" ";
50 IF X > 2 THEN PRINT" ";
60 NEXT Y: PRINT: PRINT
70 NEXT X
80 END
RUN
12345

1 2 3 4 5

1 2 345

Fig. 22-7. Decision statement spacing.

10 FOR X = 1 TO 3
20 FOR Y = 1 TO 5
30 PRINT Y;
40 FOR M = 1 TO X
50 PRINT"";
60 NEXT M
70 NEXT Y
80 PRINT: PRINT
90 NEXT X
100 END
RUN
12345

1 2 345

234 5

Fig. 22-8. Loop spacing.

1

l
1
1

1
1
1
1
1
1
1
1
l

r'·' {,

r
r
r
r
r

r
r
r

r
r
r
r
r

10 FOR X = 1 TO 3
20 FOR Y = 1 TO 5
30 HTAB (X + 1) * Y - X
40 PRINT Y;
50 NEXTY
60 PRINT: PRINT
70 NEXT X
80 END
RUN
12345

1 2 345

2 3 4 5

Fig. 22·9. Loop and HTAB spacing.

CLEANUP 159

Line 10 sets up a formula to round the printout to two places. The rudi·
ments of print field definition involve printing a suppressed trailing zero so
the printout looks normal. The technique of printing the trailing zero re
enforces the print rules of Lesson 4. To print the zero and not disrupt the
printout format, the print rules must be diligently applied. The value held in
A must be printed and the line left open for the possibility of printing a zero.
If the zero is printed, the line must be closed. The option to close the line
after "Au is printed must be valid.

10 DEF FN A(X) = INT (X * 100 + .5) /100
20 PI = 3.1416
30 FOR R = 1 TO 100 STEP 10
40 A = PI * RA2
50 IF A < = 10 THEN HTAB 20
60 IF A > 10 THEN HTAB 19
70 IF A > 100 THEN HTAB 18
80 IF A > 1000 THEN HTAB 17
90 IF A > 10000 THEN HTAB 16
100 PRINT FN A(A);
110 IF (INT (A * 100 + .5) - INT (A * 10 + .5) * 10) = 0 THEN PRINT "0";
120 PRINT: NEXT R
130 END
RUN

3.14
380.13

1385.45
3019.08
5281.03
8171.30

11689.89
15836.81
20612.04
26015.59

Fig. 22-10. Zero printing.

160 APPLESOFT FOR THE lie

Table 22-3. Zero Printing Right Justify by Decision Statements

CASE COLUMN 20

1 3.14
1

2 380.13
3 1385.45
4 3019.08
5 5281.03
6 8171.30***
7 11689.89
8 15836.81
9 20612.04

10 26015.59

***ZERO PRINTING 1
Table 22-4. IF (INT (A*100 + .5) - INT (A*10 + .5) * 10) = 0 1,'

THEN PRINT "0" j

CASE INT (A*100 + .5) INT (A*10 + .5)*10

1 314 310
2 38013 38010
3 138545 138540
4 301908 301910
5 528103 528100
6 817130 817130
7 1168989 1168990

***ZERO PRINTING

Case No. 1 - A printed, no zero printed, line closed.
Case No.2 - A printed, zero printed, line closed.

The simplest way to handle both cases is as follows.

COLUMN 20

3.14
380.13

1385.45
3019.08
5281.03
8171.30***

11689.89

1. PRINT FN A(A); - semicolon leaves the line open.
2. THEN PRINT "0"; - semicolon leaves the line open.
3. PRINT - PRINT on a separate line number after the PRINT

"0";. This satisfies Case No.1 - the number is printed, no zero, the
PRINT "0"; is false, and a default to the PRINT occurs.

Case No. 2 - the number is printed, (zero suppressed), THEN
PRINT "0";, prints the zero, and a default to the PRINT statement
closes the line.

Lines 50 through 90 demonstrate how decision statements and HTAB's
can right justify (Table 22·3).

1
1
1
1
1
1
l

r

r
[

r
r
r
r
r
r
r'· ..
r
r
r
,.
I:

r

LESSON 23

Approaching the Problem

Programming is the process by which a set of instructions is produced for
the computer to make it solve a specific problem.

Before programming, there is preprogramming. Preprogramming is the
ability to understand the problem and to be able to successfully work the
problem. To be able to program a problem, the programmer must be able to
understand and develop each step of the problem. The variables assigned to
each formula must be understood. The steps in computing the solution
must be understood. The program must produce the correct solution to the
problem. If the solution is incorrect, the programmer must determine why
the solution is incorrect and rectify the problem.

If you are an accountant, you must be able to solve the problem using a
pencil and paper (or mentally) before you can program it. This is a most im·
portant fact in programming. You must be very adept at solving the prob
lem because you must explain the complete process to the computer. If you
cannot solve the problem using pencil and paper, do not attempt to write a
program for the computer to solve it.

Think of programming this way. An understudy machine is taught to do
something for you. The understudy is electronic, not human. This elec
tronic understudy does not understand the English language, so it must be
instructed in its own language. This electronic understudy, the computer,
does not understand what it is doing. It is processing so fast that it does not
have time to care what the results are. The speed at which the computer
does tedious, repetitious, complex tasks is one of its great advantages. Un
less there is a hardware malfunction, the results of running a program are
accurate as to input and according to the programming instructions.

To make use of the advantages, the disadvantages must be overcome.
The advantages are speed and accuracy. The disadvantages are, procedures
used in the solutions must be completely specified, and conversion of the
spoken language to the language of the computer must be performed. This
aligns the advantages of speed and accuracy versus the disadvantages of
procedure and language.

161

'62 APPlESOFT FOR THE lie

In Lesson 15, the Name and Address program was written to cause the
computer to look through a string of characters in order to recognize
special markers, called delimiters. In that <:ase, semicolons were used as de
limiters. The program also checked for six input errors.

To begin the learning process, write down this string of characters on a
piece of paper.

RESIDENT;STREET;CITY STATE ZIP CODE

Now separate the string of characters into different fields when a semi·
colon is encountered.

RESIDENT;
STREET;
CITY STATE ZIP CODE

What did that accomplish? It accomplished the need to think of the
minute steps involved in breaking down data so it can be converted into de·
tailed one step instructions that the computer can process.

The list of characters must have a starting point. The individual may use a
finger to point at the first character in the string, or he or she may put a pen
cil mark on the first character. The first character must be marked as the
place to begin, so the field between the first character and the first delimiter
can be determined. Each character in the field is checked to see if it is a de
limiter. This character checking continues until the first delimiter is dis
covered. The first field is then separated from the remaining fields by writ
ing down the first character in the field, and each succeeding character in
the field is written down until the delimiter is encountered. This process is
repeated until the string of characters is separated into three fields.

The programmer must tell the computer each individual step to separate
the string of characters. The computer must be told to mark the first charac
ter in the string. The computer must be told to look at each character in the
string of characters, checking to see if it had encountered a semicolon. If a
semicolon is not encountered, the computer must be told what action to
take. If a semicolon is encountered, the computer must be told what action
to take. The computer must determine when the end of the first field is
reached. The first field starts with a special condition, the first character in
the string. All other fields start with a semicolon. The last field ends with a
special condition, the last character in the string (L = LEN(A$». All other
fields end with a semicolon. These are special starting and ending condi
tions.

These points must be understood in relation to what is necessary to solve
the programming problem. The programmer must thoroughly understand
all facets of the problem and be able to solve it before the problem can be
detailed in computer language. The problem is now approached from the
computer's side of the program.

1
1 s ,
l
IIIIIIIf

il
J

1

1
1

1
1
1

J

1
l

r
r

r
r
r
r
r
r
r
r
r
r

r

APPROACHING THE PROBLEM 163

The line of characters is placed in a string variable. The computer marks
the first character in the string as 1, the second character as 2, the third
character as 3, etc., until it reaches the end of the string. This is a logical as
signment of the character position, as a reference of the programmer, and
the computer uses a numeric variable to hold the position value. When a
loop is used that will increment the numeric variable, one by one, each in·
dividual character will be compared to the delimiter. An IF statement is
used to test the individual character with the delimiter, to see if the de
limiter has been reached. The LEN function (L = LEN(A$» is used to store
the length of the string variable, and the LEN function stores the number of
characters in the string that are to be examined. Three characters have been
discussed, (1) the first or beginning character, (2) the semicolon between
the fields, and (3) the ending delimiter.

There are three reasons why the semicolon is used as a delimiter.

1. In Applesoft, a comma is used as a special separator in INPUT, READ,
GET, and DATA statements. A comma incorrectly placed causes an
?EXTRA IGNORED. A colon is a special separator used to place mul
tiple statements at a single line number. An incorrectly placed colon
causes an ?EXTRA IGNORED. These are limitations of the language.
All languages have some types of limitations.

2. Few addresses display a semicolon as part of the basic information. A
pound sign (#) could have been used except apartment numbers are
usually designated by a pound sign. Diligent research of the problem
will eliminate programming difficulties. Perhaps there are address for
mats that use a semicolon, but it is not frequently seen in address for
mats. One type of research is to write down many varied examples,
and chart which examples are most used and which examples are least
used.

3. The semicolon is easy for the input operator to produce. It is on the
home keys and does not require a shift. A division sign (I) could be
used as a delimiter but it is not as easy to produce as a semicolon.

Operator convenience, ease of production, and language compatibility
are three points that comprise the major network of logic used to write a
program for the computer. To extend a program to the complex task of
error checking (similar to the program in Lesson 15), the complete string of
information must be checked and tested to insure the correct format before
the lines are printed. For each line of output to be correctly printed, the
numeric value of the beginning and end of each field and the end of each
field must be stored. An efficient way to mark the beginning and end of
each field is to store the numeric value in the position with a semicolon de
limiter.

Error detecting routines look for three types of errors.

164 APPLESOFT FOR THE lie

1. Errors that do not "make sense" for purposes of processing data.
2. Errors that cause the program to stop running.
3. Errors that create undesired output.

Errors that do not "make sense" for the purpose of processing data in
volve the length of the field. Fields of zero length must be checked because
the print formula would give an ILLEGAL VALUE error. This can be tested
by removing the program lines that check the values of one 1 to DIC, 01 C to
D2C, and D2C to L.

Errors that cause the program to stop running are those lines with less
than two delimiters. While this option is not used in the program under dis
cussion, it could be used as a method to stop the execution of the program.

Errors that create undesired output include those of more than two semi
colon delimiters, and the improper use of the LEN function. These errors
would indicate that there are more than two delimiters in the string.

A great deal of discussion has centered on the NAME AND ADDRESS
program because it has many features that make it a good learning tool.

As an exercise for logic development, we will discuss a situation that hap
pens from time to time. While driving home from work late at night, a
thumping sound is heard and the car steering pulls unexpectedly. After the
possibility of a flat tire flashes through the driver's mind, the car is stopped
for visual inspection. The possible actions are shown in Table 23-1.

Table 23-1. Flat Tire

SITUATION CATEGORY ACTION

1. No tire flat I 1. Continue on the trip
2. One flat tire - the spare II 2. Exchange the flat and

is usable spare
3. One flat tire - the spare III 3. Walk for assistance

is unusable
4. More than one tire flat IV 4. Walk for assistance

While other options could be cited, the four possible actions from differ
ent situations will be discussed. The actions are reached by using common
sense and understanding of a given situation.

When the situation is examined, the action will be taken according to NO
FLAT TIRES, or THE NUMBER OF FLAT TIRES as shown in Table 23-1. If
after observing all tires, and the flat count is zero (0), then action taken is
placed in Category I. If the flat count is one (1) and the spare tire is usable,
then the action is placed in Category II. If the flat count is one (1) and the
spare tire is unusable, then the action taken is placed in Category III. If the
flat count is greater than one (1), then the action taken is placed in Category
IV.

1

1

1
1
1
1
1
1
1
1

,
j

1

r
r
r
r
r

r
r
r
r
r
r
r
r

APPROACHING THE PROBLEM 165

The overall reaction to the thumping sound and the car pull is included in
the general framework.

1. Stop the car.
2. Shut off the engine.
3. Open the door. Exit the car. Close the door.
4. Initialize the flat count to zero.
5. If the left front tire is flat, increment the flat count.
6. If the left rear tire is flat, increment the flat count.
7. If the right rear tire is flat, increment the flat count.
8. If the right front tire is flat, increment the flat count.
9. If the flat count is zero, then continue the trip home.

10. If the flat count is more than one, then call for assistance ..
11. Open the trunk.
12. If the spare is unusable then go to step #20.
13. Exchange the flat tire and the spare.
14. Close the trunk.
15. Open the door on the driver's side of the car.
16. Get in the car. Close the door.
17. Start the engine.
18. Continue on the journey home.
19. End the actions.
20. Walk to a phone and call for assistance.

These are decisions and actions involved in the thought process. Most
humans do these actions naturally, but they must be completely detailed to
the computer.

The flowchart (Fig. 23-1) initializes the flat count to zero (0). An inspec
tion of the tires is conducted, and the flat count is recorded. Since the flat
count starts at zero (0) (through initialization) and there are three situations
to check, only two decision statements are needed. This is similar to cutting
a log into three pieces - only two cuts are needed. In the first flat count
decision statement, there are two exit paths. If the flat count is zero (0) and
the statement is true, the decision is made to continue the trip home. If the
flat count is not zero (0) and the decision is false, the exit path is to the next
decision statement. Is the flat count greater than one (1)? This decision
statement selects the path to follow if the flat count is one (1), or if the flat
count is greater than one (1). If the flat count is greater than one (1) the
statement is true, and the exit path flows to the walk for assistance action. If
the flat count is one (1), then the statement is false, and the exit path flows
to the open the trunk action, and to another decision statement. Is the spare
tire usable? The flowchart details the conclusion, either walk for assistance
or continue the journey homeward.

Flowcharts can be detailed or general. Fig. 23-1 has both detailed steps

166 APPLESOFT FOR THE lie

(STOP THE CAR - SHUT OFF ENGINE) and general steps (EXCHANGE
FLAT AND THE SPARE). A flowchart can be on many different levels. It can
be a long complicated written tool to help the programmer keep the action
in the proper sequence. The flowchart can be so simple the programmer
doesn't have to write it down. The flowchart can help to clarify a complex
point. It can be a step by step set of instructions, complete with line num
bers, that will be followed exactly when the program is typed and stored in
memory. Since the FLAT TIRE program is not a programmable problem,
the flowchart is used to keep the action in program context.

The ability to break the actions into minute, detailed steps is the essence
of programming. Breaking the action into small steps helps develop the
ability to process data in the same manner as the computer.

To verify that the flowchart works properly, a table of possibilities is con·
structed (Table 23·2). The table of possibilities follows the flowchart logic to
determine that the problem is solved correctly.

Fig. 23-1. Flat tire flowchart.

,
\

l
l
1
l

l
.,

J

l ,
\

l
l
1

l

r
r
r

r
r
r
r
r
r
r
r
r
,.,
I

r

APPROACHING THE PROBLEM 167

>----1 INCREMENT COUNT

YES

YES

NO

Fig. 23-1 - cont. Flat tire flowchart.

Over half of the thirty-two possibilities are listed in Table 23-2. The table
shows the status of four tires, the spare and the course of action to be taken.
Table 23-2 was produced by writing down different combinations of tire
status and determining the best possible action to take. Common sense was
used to confirm the algorithm and produce the table. If the "YES" or "NO"
decisions on the flowchart had been switched, the flowchart would give in
correct results even though the logic was correct. For correct results to be
produced from the written program, logic, flowcharts, and program coding
must be correct.

168 APPLESOFT FOR THE lie

Table 23-2. Flat Tire Possibilities

LEFT LEFT RIGHT RIGHT
FRONT REAR REAR FRONT

0 0 0 0
0 0 0 0
0 0 0 F
0 0 0 F
0 0 F 0
0 0 F 0
0 0 F F
0 0 F F
0 F 0 0
0 F 0 0
0 F 0 F
0 F 0 F
0 F F 0
0 F F 0
0 F F F
0 F F F
F 0 0 0
F 0 0 0
F 0 0 F
F 0 0 F

TIRE STATUS (FLAT - F, 0 - OKAY)
CONTINUE - C, WALK FOR ASSISTANCE - W
EXCHANGE FLAT AND SPARE - E

SPARE

0
F
0
F
0
F
0
F
0
0
0
F
0
F
0
F
0
F
0
F

ACTION
TO BE
TAKEN

C
C
E&C

W
E&C

W
W
W
E&C

W
W
W
W
W
W
W
E&C
W
W
W

The first two lines of Table 23·2 show the four tires, the spare, and the ac·
tion to be taken. Both lines show all four tires are okay, but the first line
shows the spare okay, while the second line shows the spare is flat. Accord·
ing to logic, if all four tires are okay, the spare does not need to be checked.

There is at least one drawback to producing a table of possibilities to
check a logic flowchart. On a complex problem, the table of possibilities
may have so many entries, it is unusable. In that case, five or ten compre·
hensive sample situations are used to try to catch all possible errors.

To sum up, there are three basic steps in programming.

1. The. programmer must be able to completely describe the problem to
be set into basic programming instructions.

2. The programmer must be able to outline the logical progression from
one step to another, especially where decisions need to separate ac·
tions into different sections.

3. The programmer must be able to change instructions from English
into equivalent computer language by understanding what the com·
puter can process.

1

1

,
I

-'

1

.,
J

1
1
l
1
1 ,

J

l

r
r
r
[

[

r
r
[

r
r
r
r
r
[

r
r

LESSON 24

Program Flexibility

The only thing permanent in life is change. This also applies to programs
and programming. The banking industry is highly regulated by the govern·
ment. Although the regulations are rigid, the bank computer programs
change constantly. The bank's needs and equipment are constantly
changed and updated. Customer's relations with the bank and customer's
situations change constantly. The government regulations constantly
change so the bank must revise and check their programs to maintain com
pliance. This beehive of activity affects the bank's programmers who must
constantly revise and rewrite programs. The programmer must constantly
upgrade his or her education to adapt to the new methods and equipment.

In programming, flexibility is a key word. Is the program flexible? Can the
program be easily and quickly changed to accommodate a new situation, a
new set of government rules, or a new output format, and produce the cor
rect results? Using a programming team, a long complex program may take
a year to write. This program should be flexible enough so minor changes in
regulations do not make the program completely obsolete.

If a mailing list has a three line input, can a fourth line be easily inserted
into the program and produce a four line output?

In an inventory program, can data be entered both in the .alpha and
numeric modes?

In an accounts receivable program, can customer information be easily
changed without having to rewrite the program and without having to re
write the whole business package of programs?

The programs used for this example of flexibility are the computation of
federal income tax and net income. The user enters the adjusted gross in
come and the program computes the tax due and the net income. The tax
table was taken from the 1979 Tax Rate Schedule for Married Taxpayers Fil
ing Joint Returns and Qualifying Widows and Widowers. For simplicity,
only one tax table was used in the program. In reality, the tax rate schedule
has four separate tables, (1) for single taxpayers, (2) married filing jointly,
(3) married filing separate returns, and (4) heads of households, etc. The

169

170 APPlESOFT FOR THE lie

point is that an accountant filing income tax returns for the general public
needs all four tables. A flexible program could easily be changed to accept
the revised tables, while an inflexible program could not accept the new
tables easily.

The inflexible program (Fig. 24·1) is written with IF statements. In this
program, it would be difficult to change one table, much less four tables.
The flexible program (Fig. 24·2) is written with the tax table in DATA state·
ments. The flexible program would be relatively easy to change, or add to
by this simple routine.

INPUT "ENTER ADJUSTED GROSS INCOME ";AGI
MENU
1. SINGLE TAX PAYER
2. MARRIED FILING JOINT RETURN
3. MARRIED FILING SEPARATE RETURN
4. I1EAD OF THE HOUSEHOLD
INPUT "ENTER STATUS # ";STATUS
ON STATUS GOSUB 2000, 3000, 4000, 5000

1000 HOME: VTAB 3
1010 INPUT "ENTER ADJUSTED GROSS INCOME ";AGI
1020 IF AGI < 0 THEN END
1030 RESTORE
1040 BF = 0
2000 IF AGI > 3400 THEN 2020
2010 BT = O:TB = O:BF = 0: GOTO 7010
2020 IF AGI > 5500 THEN 2040
2030 BT = O:TB = .14:BF = 3400: GOTO 7010
2040 IF AGI > 7600 THEN 2060
2050 BT = 294:TB = .16:BF = 5500: GOTO 7010
2060 IF AGI > 11900 THEN 2080
2070 BT = 630:TB = .18:BF = 7600: GOTO 7010
2080 IF AGI > 16000 THEN 2100
2090 BT = 1404:TB = .21:BF = 11900: GOTO 7010
2100 IF AGI > 20200 THEN 2120
21.10 BT = 2265:TB = .24:BF = 16000: GOTO 7010
2120 IF AGI > 24600 THEN 2140
2130 BT = 3273:TB = .28:BF = 20200: GOTO 7010
2140 IF AGI > 29900 THEN 2160
2150 BT = 4505:TB = .32:BF = 246110: GOTO 7010
2160 IF AGI > 35200 THEN 2180
2170 BT = 6201:TB = .37:BF = 29900: GOTO 7010
2180 IF AGI > 45800 THEN 2200
2190 BT = 8162:TB = .43:BF = 35200: GOTO 7010
2200 IF AGI > 60000 THEN 2220
2210 BT = 12720:TB = .49:BF = 45800: GOTO 7010
2220 IF AGI > 85600 THEN 2240
2230 BT = 19678:TB = .54:BF = 60000: GOTO 7010

Fig. 24·1. Inflexible tax program.

l

l
l
1
l
l
l
1

J

l
l
l
l
l
l
l

r
r
r
r
r
r
r
r ..
!

r
r
r
r
r
i
r

2240 IF AGI > 109400 THEN 2260
2250 BT = 33502:TB = .59:BF = 85600: GOTO 7010
2260 IF AGI > 162400 THEN 2280
2270 BT = 47544:TB = .64:BF = 109400: GOTO 7010
2280 IF AGI > 215400 THEN 2300
2290 BT = 81464:TB = .68:BF = 162400: GOTO 7010
2300 BT = 117504:TB = .7:BF = 215400

PROGRAM FLEXIBILITY 171

7010 IT = BT + (AGI - BF) * TB: PRINT: PRINT "YOUR INCOME TAX IS ";IT
7020 PRINT: PRINT "YOUR NET IS ";AGI - IT
7030 PRINT: GOTO 1010
RUN
ENTER ADJUSTED GROSS INCOME 20000

YOUR INCOME TAX IS 3225

YOUR NET IS 16775

ENTER ADJUSTED GROSS INCOME 30000

YOUR INCOME TAX IS 6238

YOUR NET IS 23762

ENTER ADJUSTED GROSS INCOME 40000

YOUR INCOME TAX IS 10226

YOUR NET IS 29774

ENTER ADJUSTED GROSS INCOME 220000

YOUR INCOME TAX IS 120724

YOUR NET IS 99276

ENTER ADJUSTED GROSS INCOME 0

YOUR INCOME TAX IS 0

YOUR NET IS 0

ENTER ADJUSTED GROSS INCOME -1

Fig.24-1-cont. Inflexible tax program.

At 2000, 3000, 4000, and 5000 the tables could be placed in DATA state-
ments similar to the flexible tax computation program, Fig. 24-2.

The following variables are used in both programs in Figs. 24-1 and 24-2.

AGI ADJUSTED GROSS INCOME
UL UPPER LIMIT OF THE TAX RANGE
BF BASE FIGURE FROM WHICH THE TAX IS COMPUTED. IF

BT
TB
IT
AGI-IT

THE BASE FIGURE IS 24,600, THE TAX BASE IS 3272 PLUS
28% OF EVERYTHING OVER 24,600
BASE TAX IS THE SECOND NUMBER IN THE TABLE
TAX BRACKET IS THE THIRD NUMBER IN THE TABLE
INCOME TAX
NET INCOME IS THE ADJUSTED GROSS INCOME LESS THE
INCOME TAX

172 APPLES OFT FOR THE lie

1000 HOME: VTAB 3
1010 INPUT "ENTER ADJUSTED GROSS INCOME ";AGI
1 020 IF AGI < 0 THEN END
1030 RESTORE
1040 BF = 0
1050 READ UL,BT,TB
1060 IF UL = 0 THEN 1080
1070 IF AGI > UL THEN BF = UL: GOTO 1050
1080 IT = BT + (AGI - BF) * TB: PRINT: PRINT "YOUR INCOME TAX IS ";IT
1090 PRINT: PRINT "YOUR NET IS ";AGI - IT
1100 PRINT: GOTO 1010
7100 DATA 3400,0,0
7110 DATA 5500,0,.14
7120 DATA 7600,294,.16
7130 DATA 11900,630,.18
7140 DATA 16000,1404,.21
7150 DATA 20200,2265,.24
7160 DATA 24600,3275,.28
7170 DATA 29900,4505,.32
7180 DATA 35200,6201,.37
7190 DATA 45800,8162,.43
7200 DATA 60000,12720,.49
7210 DATA 85600,19678,.54
7220 DATA 109400,33502,.59
7230 DATA 162400,47544,.64
7240 DATA 215400,81446,.68
7250 DATA 0,117504,.70
RUN
ENTER ADJUSTED GROSS INCOME 20000

YOUR INCOME TAX IS 3225

YOUR NET IS 16775

ENTER ADJUSTED GROSS INCOME 30000

YOUR INCOME TAX IS 6238

YOUR NET IS 23762

ENTER ADJUSTED GROSS INCOME 40000

YOUR INCOME TAX IS 10226

YOUR NET IS 29774

ENTER ADJUSTED GROSS INCOME 220000

YOUR INCOME TAX IS 120724

YOUR NET IS 99276

ENTER ADJUSTED GROSS INCOME 0

YOUR INCOME TAX IS 0

YOUR NET IS 0

ENTER ADJUSTED GROSS INCOME -1

Fig. 24·2. Flexible tax program.

1; !,

1
1]

l

1
1
1
1
1

1

r

r

r

~

I

r

r
r
r
r
r
r

PROGRAM FLEXIBILITY 173

RESTORE has been previously discussed. RESTORE resets the pointer so
the data can be reused. RESTORE-READ-DAT A allows the data tables to
be reused when the program is in constant use. Without the RESTORE, the
program would have to be RUN again (started over) if the data were to be
reused.

After the adjusted gross income (AGI) is entered, it is checked ito see if it
is less than zero (0). If the adjusted gross income is less than zero (0), the
program ends. The processing starts at the lowest range of the base figure
value. If the adjusted gross income is greater than the upper limit value in
the first range, the adjusted gross income is tested against the next higher
upper limit value. The processing continues until the adjusted gross income
is less than the upper limit value in the range. The correct range is found
when the adjusted gross income is equal to or greater than the base figure,
but less than the upper limit value. The correct range then sets the base tax,
tax bracket, and base figure for this range. Both the inflexible and the
flexible programs process the ranges in approximately the same manner.

The flexible tax program in Fig. 24·2 gets the base figure from the upper
limit value of the previous range. If the adjusted gross income is in the first
range, zero (0) to 3400, the base figure is zero (line 1040). In line 1040 BF =
0, the base figure was initialized to zero. When the processing begins in the
first range (0-3400), the base figure has been initialized to zero (0).

If the adjusted gross income is greater than $215,400, the upper limit
value of the next range is zero (0). The zero (0) indicates there is no upper
limit to this range. The upper limit value is zero, so that range applies to any
amount greater than $215,400.

Line 1060 (IF UL = 0 THEN 1080) tests the upper limit value for zero. If
line 1060 is true, the program branches to line 1080 (IT = BT + (AGI - BF)
* TB : PRINT: PRINT "YOUR INCOME TAX IS .. ;IT) to compute the tax. If the
upper limit value is zero (0), the adjusted gross income is greater than
$215,400. This sets the base figure as $215,400.

LESSON 25

Circular Lists, Stacks, and Pointers

A circular list is a list from which all insertions are made at one end and
all retrievals are made at the other end (Fig. 25-1). This type of list has
several names: circular buffer, queue, and FIFO (first in·first out). The pro-

CUSTOMERS
ORDERS
aliT
TAIL

BUFFER
OUT

POINTER

A

B

Fig. 25-1. Circular list (FIFO).

COMPANY
PURCHASES
IN
HEAD

BI + 1 = BO

174

101 CELLS

c

BUFFER
IN
POINTER

BUFFER
OUT
POINTER

IF BI = BO THEN THE
BUFFER IS EMPTY. IF
THE BUFFER CONTAINS
100 CELLS THE
POINTERS CAN BE
EQUAL AT ANY
LOCATION FROM 0 - 100
AND THE BUFFER
IS EMPTY.

IF BI+ 1 -llll= 1001"101 = BO

BI BI + 1 - I BI = 100 1 " 101 BO

0 1 BI < 100 1

1 2 81 < 100 2

2 3 BI < 100 3

3 4 BI < 100 J

4 5 BI < 100 S

5 6 BI < 100 6

6 7 BI < 100 7

I I I I
100 101 100 = 1 " 101 101 ""

"" SPECIAL CASE
D

l
l
l
l
l
l
l
l

l
1
l
l
l
~

J

l

r, i

[

r
r
r
r
r
r
r
r
r
r
r
r
r
r

CIRCULAR LISTS, STACKS, AND POINTERS 175

gram (Fig. 25-2) written for this lesson uses FIFO in two ways, computer
\ists and inventory.

A stack is a linear list from which all insertions and all retrievals are made
from the top. LIFO (last in-first out) is synonymous with stack (Fig. 25-3).
The program (Fig. 25-2) written for this lesson uses LIFO in two ways, com
puter lists and inventory.

5 REM: CIRCULAR LISTS, STACKS, AND POINTERS
10 DIM A$(100),PR(100),AO(100)
20 HOME: VTAB 5: HTAB 12: PRINT "FIFO/LIFO DEMONSTRATION"
30 VTAB 8: PRINT SPC(12);"0.END"
40 VTAB 10: PRINT SPC(12);"1.FIFO"
50 VTAB 12: PRINT SPC(12);"2.LlFO"
60 VTAB 14: INPUT "ENTER SELECTION 7";S
70 IF S = 0 THEN HOME: PRINT "THAT'S ALL": END
80 ON S GOSUB 300,600
90 GOTO 20
300 BI = O:BO = O:T = 0
310 HOME: VTAB 5: HTAB 12: PRINT "FIFO ENTRY SYSTEM"
320 VTAB 8: PRINT SPC(12);"0.ENDING REPORT"
330 VTAB 10: PRINT SPC(12);"1.ENTER PURCHASE"
340 VTAB 12: PRINT SPC(12);"2.ENTER ORDER"
350 VTAB 14: INPUT "ENTER SELECTION 7";S
360 IF S > 0 THEN 400
370 HOME: VTAB 5: HTAB 12: PRINT "FIFO ENDING REPORT"
380 VTAB 14: GOSUB 1020: GOSUB 1010: RETURN
400 ON S GOTO 420,500
410 GOTO 310
420 HOME: VTAB 5: HTAB 12: PRINT "FIFO PURCHASE HANDLER"
430 IF (BI + 1 - (BI = 100) * 101) = BO THEN VTAB 15: PRINT

"INVENTORY IS FULL!!!!": PRINT: PRINT "NO PURCHASES PERMITIED
TODAY": GOSUB 1000: GOTO 310

440 VTAB 8: PRINT "ENTER DATE(MM/DD/YY),PRICE,AMOUNT"
450 VTAB 10: HTAB 11: INPUT A$(BI),PR(BI),AO(BI)
460 N = T:T = AO(BI) + T: IF T < 1 THEN 490
470 IF T < N THEN AO(BI) = T
480 BI = BI + 1 - (BI + 100) * 101
490 VTAB 12: GOSUB 1020: GOSUB 1000: GOTO 310
500 HOME: IF BO = BI THEN VTAB 8: PRINT "THERE IS NO INVENTORY IN

STOCK": GOSUB 1000: GOTO 310
510 VTAB 4: INPUT "ENTER NUMBER OF ITEMS ORDERED 7";NU: IF NU < 1

THEN 510
515 T = T - NU
520 IF AO(BO) > NU THEN 560
530 PRINT: PRINT AO(BO);" ITEMS AT $";PR(BO);" PURCHASED ";A$(BO):NU

= NU - AO(BO):BO = BO + 1 - (BO = 100) * 101: IF NU
= 0 THEN 570

540 IF BI = BO THEN PRINT: PRINT "WE ARE OUT OF STOCK WITH ";NU;"
ITEMS": PRINT: PRINT "LEFT ON ORDER": GOSUB 1010: GOTO 310

Fig. 25-2. Inventory program.

176 APPLESOFT FOR THE lie

550 GOTO 520
560 PRINT: PRINT NU;" ITEMS AT $";PR(BO);" PURQiASED ";A$(BO):AO(BO)

= AO(BO) - NU
570 PRINT: GOSUB 1020: GOSUB 1000: GOTO 310
600 BI = O:T = 0
610 HOME: VTAB 5: HTAB 12: PRINT "LIFO ENTRY SYSTEM"
620 VTAB 8: PRINT SPC(12);"0.ENDING REPORT"
630 VTAB 10: PRINT SPC(12);"1.ENTER PURCHASE"
640 VTAB 12: PRINT SPC(12);"2.ENTER ORDER"
650 VTAB 14: INPUT "ENTER SELECTION ?";S
660 IF S > 0 THEN 700
670 HOME: VTAB 5: HTAB 12: PRINT "LIFO ENDING REPORT"
680 VTAB 14: GOSUB 1020: GOSUB 1010: RETURN
700 ON S GOTO 720,800
710 GOTO 610
720 HOME: VTAB 5: HTAB 12: PRINT "LIFO PURCHASE HANDLER"
730 IF BI = 100 THEN VTAB 15: PRINT "INVENTORY IS FULL!!!!": PRINT:

PRINT "NO PURCHASES PERMITTED TODAY": GOSUB 1000: GOTO 610
740 VTAB 8: PRINT "ENTER DATE(MM/DD/YY),PRICE,AMOUNT"
750 BI = BI + 1: VTAB 10: HTAB 11: INPUT A$(BI),PR(BI),AO(BI):N = T:T

= AO(BI) + T: IF T < 1 THEN BI = BI - 1: GOTO 770
760 IF T < N THEN AO(BI) = T
770 VTAB 12: GOSUB 1020: GOSUB 1000: GOTO 610
800 HOME: IF BI = 0 THEN VTAB 8: PRINT "THERE IS NO INVENTORY IN

STOCK": GOSUB 1000: GOTO 610
810 VTAB 4: INPUT "ENTER NUMBER OF ITEMS ORDERED ?";NU: IF NU < 1

THEN 810
815 T = T - NU
820 IF AO(BI) > NU THEN 860
830 PRINT: PRINT AO(BI);" ITEMS AT $";PR(BI);" PURCHASED ";A$(BI):NU =

NU - AO(BI):BI = BI - 1: IF NU = 0 THEN 870
840 IF BI = 0 THEN PRINT: PRINT "WE ARE OUT OF STOCK WITH ";NU;"

ITEMS": PRINT: PRINT "LEFT ON ORDER": GOSUB 1010: GOTO 610
850 GOTO 820
860 PRINT: PRINT NU;" ITEMS AT $";PR(BI);" PURCHASED ";A$(BI):AO(BI) =

AO(BI) - NU
870 PRINT: PRINT: GOSUB 1020: GOSUB 1010: GOTO 610
1000 FOR J = 1 TO 1800: NEXT J: RETURN
1010 VTAB 20: PRINT "PRESS RETURN TO CONTINUE!!! ";: GET Q$: RETURN
1020 PRINT "THERE ARE ";T;" ITEMS IN INVENTORY": RETURN
1050 T = O:PT = BI
1060 FOR J = PT TO 0 STEP - 1
1070 T = T + AO(J): NEXT J: PRINT "THERE ARE ";T;" ITEMS IN INVENTORY":

RETURN

RUN FIFO/LIFO DEMONSTRATION
O.END
1.FIFO
2.LlFO

ENTER SELECTION ?1

Fig. 25-2 -cont. Inventory program.

1
l
l
1
l
l
l
l
l
l
IlIIIIi\

J

l
l
l
l
l

r
r
r
r
r

r
r
r
r
r
r
r
r
r
r

FIFO ENTRY SYSTEM
O.ENDING REPORT
1.ENTER PURCHASE
2.ENTER ORDER

ENTER SELECTION ?1

CIRCULAR LISTS, STACKS, AND POINTERS 177

FIFO PURCHASE HANDLER
ENTER DATE(MM/DDIYy),PRICE,AMOUNT

?05/17/83,23.00,66.00
THERE ARE 66 ITEMS IN INVENTORY

FIFO ENTRY SYSTEM
O.ENDING REPORT
1.ENTER PURCHASE
2.ENTER ORDER

ENTER SELECTION ?2
ENTER NUMBER OF ITEMS ORDERED ?4
4 ITEMS AT $23 PURCHASED 05/17/83

THERE ARE 62 ITEMS IN INVENTORY
FIFO ENTRY SYSTEM

O.ENDING REPORT
1.ENTER PURCHASE
2.ENTER ORDER

ENTER SELECTION ?O
FIFO ENDING REPORT

THERE ARE 62 ITEMS IN INVENTORY
PRESS RETURN TO CONTINUE!!! FIFO/LIFO DEMONSTRATION

O.END
1.FIFO
2.L1FO

ENTER SELECTION ?2
LIFO ENTRY SYSTEM

O.ENDING REPORT
1.ENTER PURCHASE
2.ENTER ORDER

ENTER SELECTION ?1
LIFO PURCHASE HANDLER

ENTER DATE(MM/DDIYY),PRICE,AMOUNT
?05/17/83,23.00,66.00

THERE ARE 66 ITEMS IN INVENTORY
LIFO ENTRY SYSTEM

O.ENDING REPORT
1.ENTER PURCHASE
2.ENTER ORDER

ENTER SELECTION ?2
ENTER NUMBER OF ITEMS ORDERED ?6

6 ITEMS AT $23 PURCHASED 05/17/83

THERE ARE 60 ITEMS IN INVENTORY
PRESS RETURN TO CONTINUE!!! LIFO ENTRY SYSTEM

O.ENDING REPORT

Fig. 25-2 -cont. Inventory program.

178 APPLESOFT FOR THE lie

1.ENTER PURCHASE
2.ENTER ORDER

ENTER SELECTION ?O
LIFO ENDING REPORT

THERE ARE 60 ITEMS IN INVENTORY
PRESS RETURN TO CONTINUE!!! FIFO/LIFO DEMONSTRATION

O.END
1.FIFO
2.LlFO

ENTER SELECTION ?O
THAT'S ALL

Fig. 25-2 -cont. Inventory program.

A pointer, as shown in Figs. 25·1 and 25-3, is an address location used to
designate the location of data contained in a cell of a linear list. A pointer is
considered a pointer only if it points at some data item within the list. An
address location is not considered a pointer unless it specifically points to
data.

A circular list has two buffer pointers, buffer in (BI) pointer, and a buffer
out (BO) pointer. A stack has only one pointer, a buffer in (BI) pointer.

The program in Fig. 25-2, written to demonstrate the circular list, stack,
and pointers, accepts only one inventory item. The fields for this one inven
tory item contain (1) the date the item was purchased by the company, (2)
the price of the item, (PR(BI)), and (3) the number of items the company pur
chased, (AO(BI)).

The circular list and the stack contain 101 cells (DIM A$(100, PR(100),
AO(100)), into which purchase information is placed and from which
customer orders are taken.

The FIFO (circular list) and the LIFO (stack) give the program flexibility.
The program could be used by a company that uses either the FIFO or LIFO
inventory method.

Lines 10 through 80 (Fig. 25-2) DIMension the variables and set up the
main menu from which to select the topics: O. END THE PROGRAM, 1.
FIFO, or 2. LIFO.

Lines 420 through 490 process the purchasing information for the cir
cular list (FIFO). Line 430 detects the buffer full condition, Fig. 25-1, part A.

The buffer is dimensioned to 101 cells. DIM A$(100) was arbitrarily
selected and could have been a smaller number or any number within rea
sonable limits.

When BO and BI are pointing to adjacent cells, there are no empty cells in
the circular list, and consequently, the list is full. In line 430, a special case
is used when BI = 100 (Fig. 25·1, part D). The special case is used so the cir
cular list can continue uninterrupted. The BI = 100 portion of the formula
is activated when BI = 100.

l
l
l
-I

-J

IImIj

J

l
l
l
l
l
l .,
J

I'IiII!
I
J

l
l

r
r
r
r
r

r
r
r
r
r
r
r
r
r
r

CIRCULAR LISTS, STACKS, AND POINTERS 179

PULL OFF 3

PULL OFF 2

PULL OFF 1

DIM A$(100)

0

1

2

99

100

ACTION SERI ES

INIINIINIOUT lOUT lOUT

a
1

2

99

100

Fig. 25-3. Stack (LIFO) 101 cells.

BUFFER IN POINTER

BUFFER IN POINTER

3 BUFFER IN POINTER

BI = a STACK EMPTY

BI = BI + 1

BI = 100 STACK FULL

Line 440 prints out the informational header, ENTER DATE (MMlDD/YY),
PRICE, AMOUNT. Line 450 allows the user to enter the date of purchase
(A$(BI», the price of the item (PR(BI», and the number of items :purchased
(AO(BI». These items are placed within a specific cell in the Circular list
(Fig. 25-4).

In line 460, the total number of items purchased is placed in the variable
N. N holds the total number of items for comparison purposes in relation to
back orders. When N is greater than T (total items), there are not enough
items in stock to fill a customer's order, and the items have to be back
ordered. T = AO(BI) + T holds the total number of items purchased (Fig.
25-5).

Line 460 IF T < 1 THEN 490. When T is less than one (1), there are items
back ordered and the subroutine at line 1020 prints out a negativ:e value for
the number of items in inventory.

Line 470 IF T < N THEN AO(BI} = T. If there is a back order, the next
purchase may not eliminate the back order. When the next purchase does
not eliminate the back order, or when the purchase equals the back order,
the purchase does not go into the buffer. If the purchase is greater than the

180 APPLESOFT FOR THE lie

back order, the excess is stored in N. The excess in N can then be compared
to T (1) before the purchase order, and (2) after the purchase order. If the
total after the order is less than the order, the purchase must be reduced by
the number of items in the order. When the purchase is greater than the
back order, the back order is subtracted from the purchase, and the balance
of the purchase is stored in a cell in the buffer.

5 . 15 . 79 A$(5)

$1.39 PR(5)

400 AO(5) Fig. 25-4. Individual cell and contents.

CELL #5

Line 480 increments the buffer pointer to the next cell in the buffer, and
line 490 causes the program to jump to the FIFO menu.

In line 500, when both buffer pointers rest at the same cell in the buffer
(Fig. 25-1, part C) the buffer is empty. The buffer has three conditions:

1. BI = BO BUFFER EMPTY - input company purchases only.
2. BI + 1 = BO BUFFER FULL - take out customer's orders only.
3. BI + 1 < > BO company purchases can be placed in the buffer and

customer's orders can be taken from the buffer.

Line 510 checks to determine if an order of less than one (1) has been en
tered. If an order of less than one (1) has been entered, the program returns
to line 510 for a legal order value to be entered.

Line 515 subtracts the number of items ordered from the total number of
items.

In line 520, if the number of items of a particular purchase in the buffer is
greater than the number of items ordered, the program branches to line 560
to process the order.

A$ =
AO =
BI =
BO =
N
NU
PR
PT
T

date of purchase of items by company.
number of items purchased by the company.
buffer in pOinter.
buffer out pointer.
holds total number of items for later comparison to total items (T).
number of items ordered by the customer.
price of the items.
temporary pointer.
total number of items.

Fig. 25-5. Variables for circular list, stack, and pointers.

l
1

J

l
l
l
l
l
l
1 ,

j

l
1
l
,.,

I
J

l
l

r
r
r
r
r
r
r

r
r
r
r
r
r
r
r

CIRCULAR LISTS, STACKS, AND POINTERS 181

If the statement in line 520 is false, the program defaults to Hne 530 to
print out the number of items purchased and updates the buffer, as neces·
sary, to complete the order. The order is processed against inventory
buffers until the order is filled. If there are not sufficient items in inventory
to fill the order, the inventory buffers are depleted and the balance is back
ordered, making T a negative value. AO(BO) is printed each time the inven·
tory is reduced by the order. NU = NU - AO(BO) updates the number of
items left on the order that need to be filled. If NU is greater thafl AO(BO),
the first buffer cell is emptied, and this process continues until all buffer
cells are emptied, or until the order is filled. If the order is not cpmpletely
filled, and there is no remaining inventory, the balance of the items is back
ordered. The logic of this situation is implemented in lines 520 through
550.

The reduction in inventory is contained in the statement NU = NU -
AO(BO). The buffer out cell is computed by the statement BO = BO + 1 -
(BO = 100)* 101. IF NU = 0 THEN 570 takes care of the conditioI') when the
number of items ordered comes out even, with BO entry on the buffer
empty.

Line 560 prints out the number of items purchased, the price and the pur·
chase date.

The statement AO(BO) = (BO) - NU in line 560 computes the number of
items that remain in a specific cell in the inventory buffer.

When the transactions are completed, the FIFO menu is displayed. Zero
(0) selection prints out the ending report of the number of items remaining
in inventory (GOSUB 1020). GOSUB 1000 causes PRESS RETURN TO
CONTINUE!!! to be printed below the ending report. When RETURN is
pressed, the program returns to line 90 - GOTO 20, and the FIFO/LIFO
DEMONSTRATION menu is displayed on the screen. Selection zero (0)
from the FIFO/LIFO DEMONSTRATION menu causes the program to end.

Selection 2 from the FIFO/LIFO DEMONSTRATION menu causes the
program to GOSUB 600 to the LIFO (stack) section of the program.

Line 600 BI = 0 : T = 0 initializes the buffer in pointer and the total to
zero. The stack has only one pointer, the buffer in pointer. The LIFO ENTRY
SYSTEM menu is printed: O. ENDING REPORT, 1. ENTER PURCHASE, and
2. ENTER ORDER.

If 1. ENTER PURCHASE is selected, the program branches to line 720, to
print out LIFO PURCHASE HANDLER.

LINE 730, IF BI = 100, the program prints out, INVENTORY IS FULL.

1. BI = 1 00 STACK IS FULL - customer orders can be filled.
2. BI = 0 STACK IS EMPTY - company purchases can be placed in

the stack.
3. BI = Bl + 1 company purchases may be inserted, and customer's

orders may be processed.

182 APPLESOFT FOR THE lie

Line 750 BI = BI + 1 increments the stack pointer, and purchasing infor
mation is entered into the array_ A$(BI) is the date of purchase, PR(BI) is the
price of the item, and AO(BI) is the number of items purchased_

Line 750 N = T places the total number of items in a variable to be used
for comparison later in the program_

Line 760 IF T < N THEN AO(BI) = T_ If the total number of items in
inventory is less than the number ordered, the purchases go to eliminate the
back order. If the purchases are less than, or equal to, the back order, the
purchases do not go to inventory. If the purchases are greater than the back
order, the excess purchases are stored in N. The excess in N is compared to
T before the purchase, and T after the purchase. If T after the purchase is
greater than N, the back order is eliminated and the excess purchases go
into a cell in the buffer.

Line 800 HOME: IF BI = 0 THEN VT AB 8 : PRINT ''THERE IS NO IN
VENTORY IN STOCK" : GOSUB 1000 : GOTO 610. The BI pointer is set to
the top of the stack (Fig. 25-3). Cell number 100 is the bottom of the stack.
The top of the stack and the bottom of the stack is a matter of semantics.
The important aspect is how the stack is filled and emptied. If the number of
items in inventory is greater than the number of items ordered by the
customer, the program branches to line 860 to process the order and only
this cell in the stack is reduced .
. If line 820 is false, the program defaults to line 830 to print out the num

ber of items purchased, subtract the number of items purchased from in
ventory (NU = NU - AO(BI», decrement the stack pointer (BI = BI - 1),
and go to the next cell to try to complete the order. The order is processed
against inventory buffer cells until the order is filled. If there is not sufficient
inventory to fill the order, all inventory buffer cells are depleted and the
balance is back ordered. T is then a negative value. Line 815 T = T - NU.
AO(BI) is printed out each time the inventory is reduced by the order. NU =
NU - AO(BI) updates the number of items left on order that need to be
filled. If NU is greater than AO(BI), the cell is emptied, and the adjacent cells
are emptied, until the order is filled. If the order is not completely filled, and
there is no remaining inventory, the remaining items are back ordered. The
logic is implemented in lines 828 through 850.

Line 830 IF NU = 0 THEN 870 is true, the program prints an inventory
status report of zero (0) items.

When all purchases and orders have been completed, the program re
turns to line 610 to print out the LIFO ENTRY SYSTEM. Zero (0) selection
from this menu prints out an ending inventory report, and press RETURN re
turns the program to the FIFO/LIFO DEMONSTRATION menu. A zero (0)
selection from this menu ends the program.

l
l
1
l
l
1
l
l
l
l
l
1
l
l
1
l

r
r
r

LESSON 26
r
l Sorting, Searching, and Deleting

r
r
r
r
r
r
r
r
r
r
r
r

The program written for Lesson 26 was originally written for the Apple II
computer when cassette tape was the primary method to save and load pro
grams_ In the old days, disks were in very limited production and not readily
available to the public_

Since cassettes and cassette tapes are an out of date item, the program
was rewritten so a file could be saved (and loaded) from either tape or disk.

There was discussion, between the authors, whether to rewrite the pro
gram to save and load a file to disk only. The decision was to present the
program with both the tape and disk option. The logic behind this decision
came from experience in commercial programming. In commercial pro
gramming, the rule is to keep the contents of the present program and add
options. Fig. 26-1 is the program containing both options, load and save a
file to tape and disk. Fig. 26-2 gives the list of statements used to convert
the original program (load and save a file to tape) to the present program
(load and save a file to tape or disk).

1 DIM CA(45),CH(1),DA$(1000),CL(1000) : REM: PHONE LIST
10 SP$ = " ":SP$ = SP$ + SP$ + SP$
15 DC$ = "713"
16 D$ = CHR$ (4)
20 HOME: VTAB 4: HTAB 12: PRINT "PHONE LISTING"
30 VTAB 10: HTAB 8: PRINT "1.ENTER"
40 VTAB 12: HTAB 8: PRINT "2.MODIFY/DELETE"
50 VTAB 14: HTAB 8: PRINT "3.LlST/SEARCH"
60 VTAB 16: HTAB 8: PRINT "4.SAVE LIST AND END"
70 VTAB 18: HTAB 8: INPUT "ENTER SELECTION ?";MS
80 ON MS GOTO 1000,2000,3000,4400
90 GOTO 20
1000 HOME: VTAB 4: HTAB 12: PRINT "FILE MAINTENANCE"
1010 VTAB 10: HTAB 8: PRINT "1.LOAD OLD FILE"
1020 VTAB 12: HTAB 8: PRINT "2.ENTER NEW ITEMS"
1030 VTAB 14: HTAB 8: PRINT "3.RETURN TO MAIN MENU"
1040 VTAB 16: HTAB 8: INPUT "ENTER SELECTION ?";MS

Fig. 26-1. Program and run of the RAM phone list.

183

184 APPLESOFT FOR THE lie

1050 ON MS GOTO 1070,1200,1400
1060 GOTO 1000
1070 PRINT: PRINT "IS THE FILE ON (T)APE OR (D)ISK ?": PRINT: INPUT "EN

TER (T) OR (D) ?";Q$
1075 IF Q$ = ''T'' GOTO 1100
1080 IF Q$ = '"D" GOTO 1170
1090 GOTO 1000
1100 HOME: VTAB 4: HTAB 4: INPUT "READY CASSETTE AND PRESS RETURN

! ";Q$
1110 RECALL CH
1120 IF CH(O) =" 0 THEN PRINT "THERE IS NO ARRAY ON TAPE": GOTO 1000
1130 FOR J = 1 TO CH(O)
1140 RECALL CA
1150 DA$(J) = "": FOR K = 1 TO 44:DA$(J) = DA$(J) + CHR$ (CA(K»:

NEXT K:CL(J) = CA(45):NEXT J
1160 GOTO 1000
1170 HOME: VTAB 4: HTAB 4: PRINT "ENTER THE DISK FILE NAME !": PRINT
1175 PRINT: INPUT "FILE NAME = ";F$: IF LEN (F$) = 0 GOTO 1000
1180 PRINT D$;"OPEN ";F$: PRINT D$;"READ ";F$: INPUT CH(O)
1185 FOR J = 1 TO CH(O): INPUT DA$(J),CL(J): NEXT J
1190 PRINT D$;"CLOSE ";F$: PRINT D$;"IN#O": PRINT D$;"PR#O"
1195 GOTO 1000
1200 HOME:VT = 6: GOSUB 10010
1210 IF CL(CH(O) + 1) = 0 THEN 1000
1260 VT = 12: GOSUB 10080
1310 DA$(CH(O) + 1) = DA$(CH(O) + 1) +

.. (.. + TC$ + ") -" + LEFT$(PT$,3)
+ .. -" + RIGHT$ (PT$A)

1320 PRINT: GOSUB 10000
1330 PRINT: INPUT "ENTER 'R' TO REENTER ELSE 'RETURN' ?";Q$: IF Q$

< > "R" THEN CH(O) = CH(O) + 1
1340 GOTO 1200
1400 GOSUB 1410: GOTO 20
1410 IF CH(O) < 2 THEN RETURN
1420 FOR J = 1 TO CH(O) - 1
1430 M = J: FOR K = J + 1 TO CH(O)
1440 IF LEFT$ (DA$(K),30) < LEFT$ (DA$(M),30) THEN M = K
1450 NEXT K
1460 IF M = J THEN 1480
1470 TC$ = DA$(M):DA$(M) = DA$(J):DA$(J) = TC$:CL(O)

= CL(M):CL(M) = CL(J):CL(J) = CL(O)
1480 NEXT J
1490 RETURN
2000 HOME: VTAB 4: IF CH(O) = 0 THEN PRINT "THERE IS NO LIST ";

CHR$ (7): FOR J = 1 TO 2000: NEXT J: GOTO 20
2010 PRINT "ENTER NAME TO BE CHANGED": PRINT: INPUT NA$
2020 IF LEN (NA$) = 0 THEN 20
2030 FOR K = 1 TO CH(O)
2040 IF NA$ < > LEFT$ (DA$(K),CL(K» THEN 2060

Fig.26-t-cont. Program and run of the RAM phone list.

l

l
1

J

l
l

l
l

l
l
l
l
l
l
l

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
'r

SORTING, SEARCHING, AND DELETING 185

2050 GOTO 2100
2060 NEXT K: VTAB 10: HTAB 6: PRINT "THIS NAME NOT ON LIST"!: PRINT

CHR$ (7): FOR J = 1 TO 1000 : NEXT J: GOTO 2000
2100 CH(1) = CH(O):CH(O) = K - 1 :VTAB 6: PRINT "CURRENT RECORD IS ":

PRINT
2110 VTAB 8: GOSUB 10000: PRINT: PRINT "ENTER 'C' TO CHANGE, '0' TO

DELETE": PRINT: INPUT "ELSE 'RETURN' 7";0$
2120 IF 0$ < > "C" AND Q$ < > "0" THEN 2240
2125 IF 0$ = "0" THEN OA$(K) = "DELETE" + LEFT$ (SP$,24) + ;"(000)-

000 - 0000": GOTO 2230
2130 VTAB 12: CALL -958: VTAB 12: PRINT "ENTER 'N'-NAME, 'P'-PHONE#,

'B'-BOTH" : PRINT
2140 T$ = RIGHT$ (OA$(K),14): INPUT "LETTER PLEASE 7";C$: IF C$ < >

"N" AND C$ < > "P" AND C$ < > "B" THEN 2130
2150 IF C$ = "P" THEN 2170
2160 VT = 14: GOSUB 10010
2170 IF C$ = "N" THEN 2190
2180 VT = 16: GOSUB 10080
2190 IF C$ = "N" THEN OA$(K) = OA$(K) + T$: GOTO 2230
2200 IF C$ = "P" THEN OA$(K) = LEFT$(OA$(K),30)
2220 OA$(K) = OA$(K) + "(" + TC$ + ") -"

+ LEFT$ (PT$,3) + "-" + RIGHT$ (PT$,4)
2230 CH(O) = CH(1): PRINT: INPUT "ANY MORE CORRECTIONS (Y'OR N)

7";0$: IF 0$ = "Y" THEN 2000
2240 K = 0: FOR J = 1 TO CH(O)
2250 IF LEFT$ (OA$(J),6) = "DELETE" THEN 2280
2260 K = K + 1: IF K = J THEN 2280
2270 OA$(K) = OA$(J):CL(K) = CL(J)
2280 NEXT J
2290 CH(O) = K
2300 GOSUB 1410: GOTO 20
3000 HOME: VTAB 3: INPUT "ENTER'S' TO SEARCH OR 'L' TO LlSiT" 7";0$:

IF 0$ < > "L" AND 0$ < > "S" THEN 3000
3010 IF 0$ = "s" THEN 3100
3030 FOR J = 1 TO CH(O)
3040 IF J < > INT ((J - 1) I 5) * 5 + 1 THEN 3070
3050 IF J < > 1 THEN PRINT: INPUT "!";O$
3060 HOME: VTAB 3
3070 PRINT "NAME = "; LEFT$ (OA$(J),30): PRINT SPC(7);"PHO",E # = ";

RIGHT$ (OA$(J),14): PRINT
3080 NEXT J
3090 PRINT: INPUT "!";O$: GOTO 20
3100 HOME: VTAB 3: HTAB 12: PRINT "SEARCH SELECTION": PRINT
3110 HTAB 12: PRINT "1.NAME SEARCH": PRINT: HTAB 12: PRINT '~2.NUMBER

SEARCH": PRINT: HTAB 12: PRINT "3.RETURN TO MAIN MENU": PRINT
3120 INPUT "ENTER SEARCH KEY 7"; MS
3130 ON MS GOTO 3150,3250,20
3140 GOTO 3100
3150 HOME: VTAB 4: PRINT "ENTER NAME OR FRAGMENT 7": PRINT:

INPUT NA$:L = LEN (NA$): IF L = 0 THEN 3100 .

Fig.2.6-1-cont. Program and run of the RAM phone list.

186 APPlESOFT FOR THE lie

3160
3170
3180
3190

3200
3210
3220
3230

3250

3260
3270

3280
3290
3300

3310
3320
4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
4100
4110
4400
4410
4420
4430
4440
4450
4460
4470
4480
4490
4500
4510
4520
4530
10000

co = 0: FOR J = 1 TO CH(O): IF L > CL(J) THEN 3220
FOR K = 1 TO CL(J) - L + 1
IF NA$ < > MID$ (DA$(J).K.L) THEN 3210
CH(l) = CH(O):CH(O) = J - 1: PRINT: GOSUB 10000: PRINT:
INPUT Q$
CH(O) = CH(l):CO = CO + 1: GOTO 3220
NEXT K
NEXT J: IF CO > 0 THEN 3100
PRINT: PRINT "THIS WORD IS NOT ON FILE": FOR J = 1 TO 1000:
NEXT J: PRINT CHR$ (7): GOTO 3100
HOME: VTAB 6: HTAB 6: INPUT "ENTER AREA CODE. PHONE # 7";
AC$.PN$
IF LEN (AC$) = 0 THEN AC$ = DC$
TC$ = "(" + AC$ + ") -" + LEFT$(PN$.3)
+ "-" + RIGHT$ (PN$.4)
FOR J = 1 TO CH(O)
IF TC$ < > RIGHT$ (DA$(J).14) THEN 3310
CH(l) = CH(O):CH(O) = J - 1: GOSUB 10000: PRINT :CH(O) = CH(l):
INPUT Q$: PRINT
NEXT J
GOTO 3100
HOME: VTAB 6: HTAB 10: INPUT "READY CASSETIE TO SAVE FILE ''';Q$
STORE CH
FOR J = 1 TO CH(O)
FOR K = 1 TO 44
CA(K) = ASC (MID$ (DA$(J).K.l»
NEXT K
CA(45) = CL(J)
STORE CA
NEXT J
PRINT CHR$ (7); CHR$ (7)
HTAB 10: PRINT "PHONE SYSTEM IS ENDED"
END
HOME: VTAB 4: HTAB 4: PRINT "SAVE THE FILE ON (T)APE OR (D)ISK 7":
PRINT: INPUT "ENTER (T) OR (D) 7";Q$
IF Q$ = 'T' THEN 4000
IF Q$ < > "D" THEN 1000
PRINT: PRINT: PRINT: PRINT "ENTER THE DISK FILE NAME ''': PRINT
INPUT "FILE NAME = ";F$
IF LEN (F$) = 0 THEN END
PRINT D$;"OPEN ";F$
PRINT D$;"WRITE ";F$
PRINT CH(O)
FOR J = 1 TO CH(O)
PRINT DA$(J); ;CL(J): NEXT J
PRINT D$;"CLOSE ";F$
END
PRINT "NAME = "; LEFT$ (DA$(CH(O) + 1).30): PRINT: PRINT "PHONE
#= "; RIGHT$ (DA$(CH(O) + 1).14): RETURN

Fig.26-1-cont. Program and run of the RAM phone list.

~

'J ,
)

II'IIII!

]

1

1
1

1
1 ,
l
l
l
1

r
r
r
l

r
r
r
r
r
r
r
r
r
r
r
r
r

SORTING, SEARCHING, AND DELETING 187

10010 VTAB VT: CALL - 958: VTAB VT: PRINT "ENTER NAMES(LESS THAN 31
CHARACTERS)"

10020 PRINT: INPUT DA$(CH(O) + 1)
10030 CL(CH(O) + 1) = LEN (DA$(CH(O) + 1»: IF CL(CH(O) + 1) = 0 THEN

RETURN
10040 IF CL(CH(O) + 1) > 30 THEN PRINT: PRINT "NAME IS TOO LONG";

CHR$ (7): FOR J = 1 TO 1000: NEXT J: GOTO 10010
10050 IF CL(CH(O) + 1) = 30 THEN RETURN
10060 DA$(CH(O) + 1) = DA$(CH(O) + 1) + LEFT$ (SP$,30 - CL(CH(O)

+ 1»
10070 RETURN
10080 VTAB VT: PRINT "ENTER AREA CODE,PHONE NO."
10090 PRINT: PRINT: INPUT AC$, PN$
10100 IF LEN (AC$) = 0 THEN AC$ = DC$
10110 IF LEN (AC$) < > 3 OR LEN (PN$) < > 7 THEN 10080
10120 TC$ = STR$ (VAL (AC$»:PT$ = STR$ (VAL (PN$»: IF TC$ < > AC$

OR PT$ < > PN$ THEN PRINT: PRINT "PLEASE USE NUMERICS"; CHR$
(7): FOR J = 1 TO 1000: NEXT J: GOTO 10080

10130 RETURN

RUN
PHONE LISTING

1.ENTER
2.MODIF¥/DELETE
3 . LIST /SEARCH
4.SAVE LIST AND END
ENTER SElECTION 71

FILE MAINTENANCE
1.LOAD OLD FILE
2.ENTER NEW ITEMS
3.RETURN TO MAIN MENU
ENTER SELECTION 72

ENTER NAME(LESS THAN 31 CHARACTERS)

7JERRY HUGHES
ENTER AREA CODE, PHONE NO.

7409,8325133

NAME = JERRY HUGHES

PHONE #= (409)-832-5133

ENTER 'R' TO REENTER ELSE 'RETURN' 7
ENTER NAME(LESS THAN 31 CHARACTERS)

7MARY ABCDEF
ENTER AREA CODE, PHONE NO.

7,8014982

NAME = MARY ABCDEF

PHONE #= (713)-801-4982

Fig.26-1-cont. Program and run of the RAM phone list.

188 APPLESOFT FOR THE lie.

ENTER 'R' TO REENTER ELSE 'RETURN' 7
ENTER NAME(LESS THAN 31 CHARACTERS)

7CHARLES NOBLES
ENTER AREA CODE,PHONE NO.

7409,8626148

NAME = CHARLES NOBLES

PHONE #= (409)-862-6148

ENTER 'R' TO REENTER ELSE 'RETURN' 7
ENTER NAME(LESS THAN 31 CHARACTERS)

7JANET RUSSELL
ENTER AREA CODE,PHONE NO.

7409,8606623

NAME = JANET RUSSELL

PHONE #= (409)-860-6623

ENTER 'R' TO REENTER ELSE 'RETURN' 7
ENTER NAME(LESS THAN 31 CHARACTERS)

7ALlCE STEWART
ENTER AREA CODE,PHONE NO.

7,8134549

NAME = ALICE STEWART

PHONE #= (713)-813-4549

ENTER 'R' TO REENTER ELSE 'RETURN' 7
ENTER NAME(LESS THAN 31 CHARACTERS)

7JOHN TALBERT
ENTER AREA CODE,PHONE NO.

7409,8326619

NAME = JOHN TALBERT

PHONE #= (409)-832-6619

ENTER 'R' TO REENTER ELSE 'RETURN' 7
ENTER NAME(LESS THAN 31 CHARACTERS)

7
FILE MAINTENANCE

1.LOAD OLD FILE
2.ENTER NEW ITEMS
3.RETURN TO MAIN MENU
ENTER SELECTION 73

PHONE LISTING
1.ENTER
2.MODIFY/DELETE
3.L1ST/SEARCH
4.SAVE LIST AND END

Fig.26-I-cont. Program and run of the RAM phone list.

l

~
1

1
)

l
l
l
,..,

1

l
.,
I
J

,..,
\
l

l
l
l
l
l

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

ENTER SELECTION ?2
ENTER NAME TO BE CHANGED

?ALlCE STEWART
CURRENT RECORD IS

NAME = ALICE STEWART

PHONE #= (713)-813-4549

ENTER 'c' TO CHANGE, 'D' TO DELETE

ELSE 'RETURN' ?C
ENTER 'N'-NAME, 'P'-PHONE#, 'B'-BOTH

LETTER PLEASE ?N

SORTING, SEARCHING, AND DELETING 189

ENTER NAME(LESS THAN 31 CHARACTERS)

?ALlCE STEWARD

ANY MORE CORRECTIONS (y OR N) ?Y
ENTER NAME TO BE CHANGED

?JANET RUSSELL
CURRENT RECORD IS

NAME = JANET RUSSELL

PHONE #= (409)-860-6623

ENTER 'e' TO CHANGE, 'D' TO DELETE

ELSE 'RETURN' ?D

ANY MORE CORRECTIONS (y OR N) ?Y
ENTER NAME TO BE CHANGED

?

FILE MAINTENANCE
1.LOAD OLD FILE
2.ENTER NEW ITEMS
3.RETURN TO MAIN MENU
ENTER SELECTION ?3

PHONE LISTING
1.ENTER
2.MODIFY/DELETE
3.L1ST/SEARCH
4.SAVE LIST AND END
ENTER SELECTION ?3

ENTER'S' TO SEARCH OR 'L' TO L1ST?S
SEARCH SELECTION
1.NAME SEARCH
2.NUMBER SEARCH
3.RETURN TO MAIN MENU

ENTER SEARCH KEY ?1
ENTER NAME OR FRAGMENT?

?ABC

Fig.26-1-cont. Program and run of the RAM phone list.

190 APPlESOFT FOR THE lie

NAME = MARY ABCDEF

PHONE #= (713)-801-4982

7

SEARCH SELECTION

1.NAME SEARCH

2.NUMBER SEARCH

3.RETURN TO MAIN MENU

ENTER SEARCH KEY 73
PHONE LISTING

1.ENTER
2.MODIFY/DELETE
3.LlST/SEARCH
4.SAVE LIST AND END
ENTER SELECTION 73

ENTER'S' TO SEARCH OR 'L' TO LIST 7L
NAME = ALICE STEWARD

PHONE # = (713)-813-4549

NAME = CHARLES NOBLES
PHONE # = (713)-862-6148

NAME = JERRY HUGHES
PHONE # = (409)-832-5133

NAME = JOHN TALBERT
PHONE # = (409)-832-6619

NAME = MARY ABCDEF
PHONE # = (713)-801-4982

PHONE LISTING
1.ENTER
2.MODIFY/DELETE
3. LIST/SEARCH
4.SAVE LIST AND END
ENTER SELECTION 74

SAVE THE FILE ON (T)APE OR (D)ISK 7

ENTER (T) OR (D) 70

ENTER THE DISK FILE NAME!

FILE NAME = RAM PHONE TEST

Fig.26-1-cont. Program and run of the RAM phone list.

Following is a list of the variables as they appear in the program.

CA CA array is used to store and retrieve information from
tape. The Applesoft language cannot store string
arrays directly. The string arrays are converted to the

~ ,
)

",
j

l ,
.1

.,
1

j
J

l
l
l
l
l
l

r
r
r
r
r
r

r
r

SORTING, SEARCHING, AND DELETING 191

16 D$ = CHR$ (4)
80 ON MS GOTO 1000,2000,3000,4400
1010 VTAB 10: HTAB 8: PRINT "1.LOAD OLD FILE"
1050 ON MS GOTO 1070,1200,1400
1070 PRINT: PRINT "IS THE FILE ON (T}APE OR (D}ISK ?": PRINT: INPUT

"ENTER (T) OR (D) ?" ;Q$
1075 IF Q$ = "T" GOTO 1100
1080 IF Q$ = "D" GOTO 1170
1090 GOTO 1000
1170 HOME: VTAB 4: HTAB 4: PRINT "ENTER THE DISK FILE NAME !" : PRINT
1175 PRINT: INPUT "FILE NAME = ";F$: IF LEN (F$) = 0 GOTO 1000
1180 PRINT D$;"OPEN ";F$: PRINT D$;"READ ";F$: INPUT CH(O)
1185 FOR J = 1 TO CH(O}: INPUT D A$(J},CL(J}: NEXT J
1190 PRINT D$;"CLOSE ";F$: PRINT D$;"IN#O": PRINT D$;"PR#O"
1195 GOTO 1000
4400 HOME: VTAB 4: HTAB 4: PRINT "SAVE THE FILE ON (T}APE OR (D}ISK ?":
4410 PRINT: INPUT "ENTER (T) OR (D) ?";Q$
4420 IF Q$ = "T" THEN 4000
4430 IF Q$ < > "D" THEN 1 000
4440 PRINT: PRINT: PRINT: PRINT "ENTER THE DISK FILE NAME !" : PRINT
4450 INPUT "FILE NAME = ";F$
4460 IF LEN (F$) = 0 THEN END
4470 PRINT D$;"OPEN ";F$
4480 PRINT D$;"WRITE ";F$
4490 PRINT CH(O)
4500 FOR J = 1 TO CH(O}
4510 PRINT DA$(J};",";CL(J}: NEXT J
4520 PRINT D$;"CLOSE ";F$
4530 END

r Fig.26-2. Lines changed to make program compatible for both disk and tape.

r
P-
l

r
r
r
r

CH(O)
CH(l)

DA$

CL

number equivalent in order to store the number. CA(K)
= ASC(MID$(DA$(J),K,l». Lines 4010-4050 of Fig.
26-1. STORE CA saves the file to tape. RECALL CA
loads the file from tape. The file is converted into a
string by the statement DA$ = DA$ + CHR$(CA(K» in
lines 1110-1150.
CH(O) holds the number of records in the list.
CH(l) is an array used as temporary storage for the
record count.
DA$ is the string array in which the name, area code,
and the telephone number are stored.
CL holds the length of DA$ before it is padded to
exactly 30 characters.

192 APPLESOFT FOR THE lie

SP$

DC$

D$

MS
TAPE

DISK

Q$

RECALL CH

RECALL CA

J,K
F$

GOSUB 10000

VT

CL(CH(O) + 1)

LEN

SP$ is a string that contains only blank characters and
is used to pad DA$ to thirty characters.
DC$ holds the default value of the area code. This is an
easy method to store the local area code. DC$ is used
to save typing.
D$ = CHR$(4) is the key to the disk operating system.
All commands that relate to DOS must be preceded by
PRINT D$.
MS is the variable used for menu selection.
A cassette tape is a linear magnetic medium used to
store computer programs.
A disk is a circular magnetic medium to store com·
puter programs.
Q$ is the string variable that is used to store a Y for
yes, or N for no, on which the program makes a deci·
sion.
RECALL CH is the command used to retrieve a real or
integer array that has been stored on tape. The array
must be DIMensioned in the program. Subscripts are
not used when storing or recalling arrays. CA(O),
CA(1), CA(2), etc., are stored and recalled as CA.
CA(45) contains 45 characters including the padded
spaces to make DA$ exactly 30 characters.
RECALL CA is the command used to store the number
of records on tape.
J and K are used as loop variables.
F$ is the string array used to hold the name of the file
on disk.
PRINT D$;"IN#O" is the command that changes the in·
put direction to come from the keyboard instead of the
disk operating system.
PRINT D$;"PR#O" is the command that changes the
print direction to go to the CRT instead of to the disk
operating system.
GOSUB 10000 causes the "NAME = and PHONE # = "
on the screen. A name and phone number from the list
is printed after the prompt.
VT is the variable that is used to store the value used in
the TAB function.
CL(CH(O) + 1) holds the length of the name string
(DA$) before it is padded to thirty characters.
LEN is the Applesoft function that returns the number
of characters in a string, between 0 and 255.

/IIIIl!
\
J

l
l
""'" l

l

,.,
)
J

1

l
l
l
l
l

GOSUB 10010

r GOSUB 10080

TC$

r
PT$

R

M

NA$

C

D
N
P

B

C$

S
L
CO

r CHR$(7)

AC$
PN$

STORE CA

STORE CH

r

SORTING, SEARCHING, AND DELETING 193

GOSUB 10010 allows the user to enter a name into the
list.
GOSUB 10080 allows the user to enter an area code,
and telephone number in the list.
TC$ is the temporary area code string to check the
number entered into the area code. To determine that
the area code is numeric, the statement TC$ =
STR$(VAL(AC$» is used.
PT$ is the temporary phone number string to check
that the telephone number entered is numeric. To
determine that the phone number is numeric, the
statement PT$ = STR$(VAL(PN$» is used.
R is the variable used when the REENTER question is
asked.
M is a variable used in the delete section of the pro
gram. An interchange between the variables J and K
(Fig. 26-8) determines if the record is to be deleted.
NA$ is the string array that holds the name to be
changed.
C is the variable used when a change is to be made in a
name or telephone number.
D is the variable used when a record is to be deleted.
N is a variable used when the name is to be changed.
P is a variable used when the phone number is to be
changed.
B is a variable used when both the name and phone
number are to be changed.
C$ is the string array used to hold the letters N, P, or B
when the name, phone, or both are to be changed.
S is the variable when the search routine is used.
L is the variable used when the file is to be listed.
CO is the variable that holds the count of the number
of times a match is found on the list (search).
CHR$(7) is the command used to ring the bell in the
computer.
AC$ is the string array that holds the area code.
PN$ is the string array that holds the telephone num
ber.
STORE CA is the command that stores the number of
records on tape.
STORE CH is the command that stores the length of
the record on tape.

194 APPLESOFT FOR THE lie

STR$

VAL

STR$ is the Applesoft function that converts a numeric
value into a string.
VAL is an Applesoft function that changes a string
value to a numeric value.

The same variables are now presented in alphabetical order.

AC$ AC$ is the string array that holds the area code.
B B is the variable used when both the name and tele-

C

C$

CA

CH(O)
CH(I)

CHR$(7)

CL

CL(CH(O) + 1)

D
D$

DA$

DC$

F$

GOSUB 10000

phone number are to be changed.
C is the variable used when a change is to be made in
the name and/or telephone number.
C$ is the string array used to hold the letters N, P, or B
when the name, phone, or both are to be changed.
CA is the array used to store and retrieve information
from tape. The Applesoft language cannot store string
arrays directly. The string arrays are converted to the
number equivalent in order to store the number. CA(K)
= ASC(MID$(DA$(J),K,I». Lines 4010-4050 of Fig.
26-1. STORE CA stores the file to tape. RECALL CA
loads the file from tape. The file is converted into a
string array by the statement DA$ = DA$ +
CHR$(CA(K» in lines 1110-1150_
CH(O) holds the number of records in the list.
CH(1) is an array used as temporary storage for the
record count.
CHR$(7) is the command used to ring the bell in the
computer.
CL holds the length of DA$ before it is padded to
exactly thirty characters_
CL(CH(O) + 1) holds the length of the name string
(DA$) before it is padded to thirty characters.
D is the variable used when the record is to be deleted.
D$ = CHR$(4) is the key to the disk operating system.
All commands that relate to DOS must be preceded by
PRINT D$.
DA$ is the string array in which the name, area code,
and the telephone number are stored.
DC$ is the string array that holds the default value of
the area code. DC$ is a method used to save typing.
F$ is the string array used to hold the name of the file
stored on disk.
GOSUB 10000 causes the "NAME = and PHONE # = ..

l

,
J

FIIIII!j

1
J

1
)

-r
I

}

l
iIIIIIIj

1

l
l

prompt to be displayed on the screen. A name and IIIII!

.~

l

r
r
r
r
r
r
f.
r

r
r
r
r
r
r
r

GOSUB 10010

GOSUB 10080

IN#O

J,K
LEN

M

MS
N
NA$

p

PN$

PR#O

PT$

Q$

R

RECALL CA

RECALL CH

SORTING, SEARCHING, AND DEl!.ETING 195

telephone number from the list is printed after the
prompt.
GOSUB 10010 allows the user to enter a name into the
list.
GOSUB 10080 allows the user to enter an area code,
and telephone number in the list.
PRINT D$;"IN#O" is the command that changes the in
put direction to come from the keyboard instead of the
disk operating system_
J and K are used as loop variables_
LEN is the Applesoft function that returns the number
of characters in a string, between 0 and 255.
M is a variable used in the delete section of the pro
gram. An interchange between variables J and K (Fig.
26-8) determines if the record is to be deleted.
MS is the variable used for the menu selection.
N is the variable used when the name is to be changed.
NA$ is the string array that holds the name to be
changed.
P is the variable used when the phone number is to be
changed.
PN$ is the string array that holds the telephone num
ber.
PRINT D$;"PR#O" is the command that changes the
print direction to go to the CRT instead of to the disk
operating system.
PT$ is the temporary phone number string to check
that the telephone number entered is numeric. To
determine that the phone number is numeric, the
statement PT$ = STR$(VAL(AC$» is used.
Q$ is the string variable that is used to store a Y for
yes, or N for no, on which the program makes a deci
sion.
R is the variable used when the REENTER question is
asked.
RECALL CA is the command used to recall the number
of records stored on tape.
RECALL CH is the command used to retrieve!a real or
integer array that has been stored on tape. The array
must be DIMensioned in the program. Subscripts are
not used when storing or recalled as CA. CA(45) con
tains exactly 45 characters including the padded
spaces to make DA$ exactly thirty characters.

196 APPLESOFT FOR THE lie

S
SP$

STORE CA

STORE CH

STR$

TAPE

TC$

VT

VAL

S is the variable used in the search routine.
SP$ is a string that contains only blank characters and
is used to pad DA$ to thirty characters.
STORE CA is the command that stores the number of
records on tape.
STORE CH is the command that stores the length of
the record on tape.
STR$ is an Applesoft function that converts a numeric
value into a string.
A cassette tape is a linear magnetic medium used to
store computer programs.
TC$ is a temporary area code string used to check the
number entered into the area code. To determine that
the area code is numeric, the statement TC$· =
STR$(V AL(AC$)) is used.
VT is the variable used to store the value used in the
TAB function.
VAL is an Applesoft function that changes a string
value to a numeric value.

The program is designed to input up to 1000 names and telephone num
bers in a sequential file. The list is sorted alphabetically by name each time
it is written to tape or disk. This program is designed to be an introduction
to files, file maintenance, sorting, searching, and deleting.

Sorting is the act of placing information in a predetermined sequence.
Sorting depends on sequencing items according to a key word. Lists of
names are usually keyed or sorted alphabetically on the first letter of the
last name. Telephone numbers are usually keyed or sorted on the area code.
Mailing lists may be sorted according to the zip code. Lists can be sorted in
any manner that meets the needs of the user. Lists are sorted to increase the
speed and efficiency of the search and delete functions. From the human
point of view, lists are sorted because we expect to see lists in the proper
order.

The correct time to sort the list is after file maintenance is complete and
before it is saved to tape or disk. File maintenance includes all changes to
the list, all updates to the list, and all deletions to the list.

There are several types of sorts used in programming. Ripple, modified
ripple, bubble, and Shell-Metzner are some of the better known sorts. Shell
Metzner is the most efficient sort of this group. A detailed discussion of
sorts is out of the scope of this book.

1

1:·
..

1

1
1 ,

)

~

'1

1,',:,' ..

1 In the program in Fig. 26-1, the sort is set up using double nested loops so
each item on the list can be compared and ordered (Fig. 26-3). Each com
parison is called a pass. The items on the list are compared to each other ,

\
o

1

r
r
r
r
r
r
r

r

r
r

r
r

SORTING, SEARCHING, AND DELETING 197

during the passes, and items on the list are swapped to place them in the
correct order.

A search is an act of examining items on a list to discover whether the key
being searched for is on the list. All items related to that key are then dis-

DA$(K)

NUMBER OF ITEMS IN THE LlST-5
ORIGINAL ORDER OF THE LIST

DA$(1) DA$(2) DA$(3) DA$(4) DA$(5)
E D C B A

CONTAINS NAME AND TELEPHONE NUMBER
FOR J = 1 TO CH(O)-1
(FOR J = 1 TO 4)

NUMBER OF PASSES IS ONE LESS THAN THE # OF ITEMS
IN THE LIST

FOR K = J + 1 TO CH(O) IF K STARTED AT #1 THE SAME ITEM WOULD BE
(FOR K = 2 TO 5) COMPARED TO ITSELF
(1 st pass only)

(A) Information for sort.

PASS J Ms J+1 K DA$(1) DA$(2) DA$(3) DA$(4) DA$(S)

0 1 1

1 1 1 2

M=5, J=1

2 2 2 3

M=4,J=2

3 3 3 4

NO EXCHANGE M = J

4 4 4 5

NO EXCHANGE M = J

Ms-M AT SORT PASS
Ma-M AFTER CHANGE

E 0 C B

2 0

3 C

4 B

5

A 0 C B
3 C

4 B

5

A B C 0

4 A B C 0

5

5 A B C 0

1 st PASS EXCHANGE M = 5(A), J = 1 (E)
2nd PASS EXCHANGE M = 4(B), J = 2(D)

A

A

E

E

E

E

E

LINE # CONDITION

1430-
1470

1440 TRUE

1440 TRUE

1440 TRUE

1440 TRUE

1460 FALSE

1440 TRUE

1440 TRUE

1440 FALSE

1460 FALSE

1440 FALSE

1440 FALSE

1440 FALSE

3rd PASS NO EXCHANGE 3rd ITEM IN THE LIST IS IN THE CORRECT ORDER
4th PASS NO EXCHANGE 4th ITEM IN THE LIST IS IN THE CORRECT ORDER

(8) Compuler sorl.

Fig. 26-3. Sorting a list.

Ma

2

3

4

5

3
4

4

3

4

198 APPLESOFT FOR THE lie

played. A search aids the user in discovering all items on the list related to
the key. A key can be a name or a fragment of a name or a phone number.
How often do you remember the last name of a person but not his or her first
name? If the name is on the list, a search will reveal it. A search allows the
user to pull one record off the list by using a keyword with which to search.
A search can be made any time the user needs information from the records
in the list.

1470 T$ = DA$(M) : DA$(M) = DA$(J) : DA$(J) = T$CL(O) = CL(M) :
CL(M) = CL(J) : CL(J) = CL(O)

TS

DASIJI

(C) Exchange rouline.

ORIGINAL

1st PASS 1st EXC
2nd EXC
3rd EXC

2nd PASS 1st EXC
2nd EXC
3rd EXC

CL = length of DA$
before it is padded.
In this example. CL
is always 1 character.

ClIOI

T$ DA$(M) DA$(J)

E A

E E A
E A A
A A E

D D B
D B B
B B D

CLIJ I

T$ = DA$(5)
DA$(5) = DA$(l)
DA$(l) = T$

T$ = DA$(4)
DA$(4) = DA$(2)
T$ = DA$(2)

3rd PASS NO EXCHANGE-3rd ITEM IS IN THE CORRECT POSITION

4th PASS NO EXCHANGE-4th ITEM IS IN THE CORRECT POSITION

(D) Table of passes and exchanges.

Fig.26-3-cont. Sorthing a list.

l

iGI!

J

l ,
\

l
l

l

1
1
l
l

l

r
r
r
r
r

r
r
r
r
r
r

SORTING, SEARCHING, AND DELETING 199

Deletion is the act of removing a record or records from the list (Fig.
26-4). Deleting is used to keep the file as small as possible to use the least
memory and to keep the file current. A list containing unneeded names is
nonproductive and costly to most users.

Deletions should be made any time names on the list become of no use to
the user. If the list is for subscriptions, each name on the list costs money
for production costs, mailing costs, and labor. Nonsubscribers' names on
the list should be deleted.

FILE:
DA$(1) = "JONES (713)-688-1212"
DA$(2) = "SMITH (713)-688-1213"
DA$(3) = "DELETE (000)-000-0000"
DA$(4) = "ACTION (713)-688-1214"

PASS K J DA$(J)

0
1 1 1 JONES
2 2 2 SMITH
3 2 3 DELETE
4 3 4 ACTION-

FILE:
DA$(1) = "JONES (713)-688-1212"
DA$(2) = "SMITH (713)-688-1213"
DA$(3) = "ACTION (713)-688-1214"
DA$(4) = "ACTION (713)-688-1214"

CH(O) = 4

DA$(K) LINE 2250

JONES FALSE
SMITH FALSE

TRUE

2290 CH(O) = K (K = 3)-LAST RECORD DA$(4) IS REMOVED

Fig. 26-4. Delete routine.

K = J

FALSE
FALSE
JUMPS OVER I

Line 1 of the program (Fig. 26-1) DIMensions the arrays used in the pro·
gram. CA(45) is dimensioned to hold the forty-five (45) name and telephone
number digits. CH is an array that holds the number of records in the file.
DA$ is the array into which the name, area code, prefix, and phone number
are placed. The program is designed to accept and retain a file of up to 1000
names and phone numbers. CL is an array to hold the name string (DA$)
before it is padded to exactly thirty characters. Since the store and recall
commands do not store string arrays, they must be converted into numeric
arrays, lines 4010 through 4070.

4010 STORE CH

Stores the number of records to be placed on the tape. In this case, CH(O)
= 5 (5 is an arbitrary number). r 4020 FOR J = 1 TO CH(O)

r

200 APPLESOFT FOR THE lie

Sets the beginning of the loop to store 5 records on tape (CH(O)

4030 FOR K = 1 TO 44

5).

States that there are 44 characters in each record plus CL = 1. CL stores
the length of DA$ before it is padded. There are 30 characters in the name
string including padded characters (spaces), produced by SP$.

(713) - 688 - 1212

1 +3+ 1 + 1 +3+ 1 +4+30 = 44 characters in DA$. CL = 1. CL is the
length of DA$ before it is padded.

30 characters in DA$
14 characters in area code (AC$) and phone number (PN$)
~aracter for CL = length of DA$ before padding.

45 = CA(45)

=~(K). A7)l')~

relates to record # relates to character #K converts one character
in record J for each execution of

the loop

Line 4040 converts the string array, DA$, into ASCII characters and
places it in CA numeric array to be stored on tape.

4050 NEXT K

Completes the conversion of one record.

4060 CA(45) = CL(J)

CL is the length of DA$ before it is padded and stored in CA(45). CL(J) is
one number. One added to the 44 characters produced in line 4020 equals
45 numbers; thus, CA(45).

4070 STORE CA

Stores the real array, CA, on tape. The subscript of the array is not indi
cated when STORE is used. This stores all 45 values from each record.

4080 NEXT J

When one record is converted to a numeric array and stored, the next
record is processed. This processing continues until all five records have
been stored. Returning to line 1, we see that CL holds the length of DA$
(name) before it is padded. DA$ (1000) can contain 1000 records (name and
phone number) and CL (1000) can contain 1000 lengths of names in DA$.

1

1i.·
j'
J

1
1
1

1
1
1

1
1.,.,.· i

1
1

r
r
r
[

r: ..

r

r
r
r
r
r
r
[

r
r

SORTING, SEARCHING, AND DELETING 201

10 SP$ = " " : SP$ = SP$ + SP$ + SP$

Line 10 SP$ = " " : SP$ = SP$ + SP$ + SP$, is a
string used to place spaces in the name string (DA$) so it is padded to
exactly thirty characters, (line 10060). SP$ = " ", sets
ten spaces between the quotation marks. SP$ = SP$ + SP$ + SP$, con
catenates the SP$ to thirty blank spaces to pad the name string.

10060 DA$(CH(O) + 1) = DA$(CH(O) + 1) +LEFT$(SP$, 30- CL(CH(O) + 1»

,. ",.<e< ---::th of oAS J.m,) ,",o,d bo;ng
built

10070 RETURN

The seven digits often referred to as the "phone number" consists of
seven digits. The area code consists of three digits. The central branch or
exchange code consists of three digits. The phone number consists of four
digits. In this discussion, the phone number will be defined as the seven
digits of the central branch office and the phone number.

Line 15 DC$ = "713," is a line designed to save typing when the area
code is in the "713" area. Line 10090 is INPUT AC$, PN$. If a comma (,) is
entered before the phone number, then LEN(AC$) = O. When LEN(AC$) =
o then the program accepts DC$ = "713" as the area code. Line 15 can be
easily changed to accept any area code. The area code in your area would be
the choice to enter in line 15, so local phone numbers would be quicker and
easier to type.

Line 16 D$ = CHR$(4) is the key· to the disk operating system. When data
or information is directed to the disk operating system, the deferred com
mand must be preceded by PRINT D$. In line 1180 the file is to be opened,
so PRINT D$;"OPEN ";F$: PRINT D$;"READ ";F$, causes the computer to
read the file stored on disk.

When the file has been read from disk, the direction of the input and print
must be returned to the keyboard and the CRT. To change the direction,
PRINT D$;"IN#O", returns the input direction to the keyboard. PRINT
D$;"PR#O" causes the PRINT statements to go from the disk operating sys
tem to the CRT. Each time the direction is changed, DOS must be aware of
the change, or the system and program will not work.

The main menu, PHONE LISTING, is contained in lines 30 through 60.

LINE 30 - 1.ENTER
LINE 40 - 2.MODIFY/DELETE
LINE 50 - 3.L1ST/SEARCH

(ON MS GOTO 1000)
(ON MS GOTO 2000)
(ON MS GOTO 3000)

202 APPLESOFT FOR THE lie

LINE 60 - 4.SA VE LIST & END (ON MS GOTO 4400)

Line 30 - 1.ENTER is required to be selected as the first step in order to
load a file from tape or disk into memory.

When 1.ENTER is selected, the program branches to line 1000. The
secondary menu, FILE MAINTENANCE, is contained in lines 1000 through
1030.

LINE 1010 - l.LOAD OLD FILE
LINE 1020 - 2.ENTER NEW ITEMS
LINE 1030 - 3.RETURN TO MAIN MENU

(ON MS GOTO 1070)
(ON MS GOTO 1200)
(ON MS GOTO 1400)

If option 1 from the secondary menu, FILE MAINTENANCE, is selected,
the program branches to line 1070, to ask the user, "IS THE FILE ON (T)
TAPE OR (D) DISK?"

If the "T" tape option is selected, the program branches to line 1100 -
RECALL CH. The number of records previously SAVEd to tape is stored in
the array CH. If CH is greater than zero (line 1120), the records are read into
computer memory. In line 1150 DA$(J) is initialized to a null value. The K
loop reads the 44 characters in the name and phone number from tape. The
forty-fifth character (CA(45» is a count of the number of characters in the
name. The J loop increments until all the records have been placed in
memory. The program then jumps to the secondary menu at line 1000.

If option I, line 1010, from the secondary menu, FILE MAINTENANCE, is
selected, the program branches to line 1070 to ask the user, "IS THE FILE
ON (T)APE OR (D)ISK?"

If the (D) disk option is selected, the program branches to line 1170.
At line 1170, the user is asked, "ENTER THE DISK FILE NAME!" The

user enters the specific name of a file saved to disk.
In line 1180, PRINT D$;"OPEN ";F$: PRINT D$;"READ ";F$: INPUT

CH(O), PRINT D$;"OPEN ";F$, is the command that alerts the disk operat
ing system (DOS) that it should open a file on disk having the same name as
is stored in F$. After the file is opened, the PRINT D$;"READ ";F$, tells
DOS that records are to be read from disk and the INPUT command tells
DOS to fill the file's buffer in the computer's memory. The number of
records stored on disk are read. The number of records (CH(O» is used as
the ending loop index to read in the number of records stored on disk.
INPUT DA$(J), CL(J), reads in the name and telephone number into DA$(J)
and the character count into CL(J) (one record) for each loop increment.

When the records stored on disk have been read into memory, and the
user is ready to end file usage, the file must be closed before the program
ends. PRINT D$;"CLOSE ";F$, closes the file. After a file is read, it should
always be closed. This makes a buffer available for use by another file.

The commands to write to disk are used in the combination - WRITE
PRINT.

1
11.

(

1
1
1
1
1

J

1
1

.!

1

1

1

r
r
r
r
r
r
r r .

r
r
r
r
r
[

[

r

4470 PRINT D$;"OPEN ";F$
4480 PRINT D$;"WRITE ";F$

SORTING, SEARCHING, AND DELETING 203

4490 PRINT CH(O) - NUMBER OF RECORDS
4500 FOR J = 1 TO CH(O)
4510 PRINT DA$(J);",";CH(J)

NEXT J
4520 PRINT D$;"CLOSE ";F$

The commands to read from disk are used in the combination, - READ
INPUT.

1180 PRINT D$;"OPEN ";F$
PRINT D$;"READ ";F$
INPUT CH(O) - NUMBER OF RECORDS

1185 FOR J = 1 TO CH(O)
INPUT DA$(J), CL(J)
NEXT J

1190 PRINT D$;"CLOSE ";F$

The commands to return control to the CRT and the screen are as follows.

PRINT D$;"IN#O" RETURNS INPUT CONTOl TO THE KEYBOARD
PRINT D$;"PR#O" RETURNS THE PRINT DIRECTION TO THE CRT

PRINT D$;"IN#O", returns control to the keyboard and specifies that all
input is to come from the keyboard. PRINT D$;"PR#O", specifies that all
PRINT statements are to go to the CRT. PR#O is also the command that
turns off the printer, so if this program RUN is to be placed on tlite printer,
the program has to be changed to avoid turning off the printer at each
PR#O. To prevent the printer from being turned off, replace PR#O with
PR#l, if the printer is in slot 1.

The program returns to the secondary menu, FILE MAINTENANCE, to
line 1000. If selection 2.ENTER· NEW ITEMS is selected, the program
branches to line 1200.

1200 HOME: VT = 6: GOSUB 10010

In line 1200, HOME clears the screen, VT = 6 sets the vertical tab value
that is to be used in the subroutine beginning at line 10010.

The subroutine that begins at line 10010 receives the characters in the
name. There are four cases to be considered, (1) if the user does not place
any characters in DA$ (RETURN is pressed), (2) if the user enters more than
30 characters in DA$, (3) if the user enters exactly 30 characters in DA$,
and (4) if the user enters less than 30 characters in DA$.

Case 1, line 10030, if the length ofthe name string CL(CH(O) + 1) is equal
to zero (0), then RETURN was pressed, and no characters were entered into
DA$. Case 1 causes the program to RETURN to line 1000, via line 1210.

Case 2, line 10040, if more than thirty characters were entered into DA$,
the program prints the message, "NAME IS TOO LONG", rings a bell

204 APPlESOFT FOR THE lie

(CHR$(7», pauses for 1000 loop incrementations, and jumps to line 10010,
to allow the user to enter another name.

Case 3, if the number of characters entered into DA$ is exactly 30
characters, line 10050, the program RETURNS to line 1210, defaults to
1260, GOSUB 10080.

Case 4, if the number of characters entered into DA$ is less than 30, the
program defaults to line 10060. Line 10060 uses the space string (SP $, line
1) to create a DA$ of exactly 30 characters. The program then returns to line
1310 to concatenate the name, area code, prefix, and phone number into
DA$ (Fig. 26-1).

10010 VTAB VT : CALL -958 : VTAB VT : PRINT "ENTER NAME (LESS THAN 31
CHARACTERS)"

10020 PRINT: INPUT DA$(CH(O) + 1»
10030 CL(CH(O) + 1) = LEN(DA$(CH(O) + 1» : IF CL(CH(O) = THEN RETURN
10040 IF CL(CH(O) + 1) > 30 THEN PRINT: PRINT "NAME IS TOO LONG" : CHR$(7)

: FOR J = 1 TO 1000: NEXT J : GOTO 10010
10050 IF CL(CH(O) + 1 = 30 THEN RETURN
10060 DA$(CH(O) + 1) = DA$(CH(O) + 1 + LEFT$ (SP$, 30 - CL(CH(O) + 1»
10070 RETURN

In line 10010, VTAB VT tabs to line #6 on the screen, and CALL - 958 is
a machine language call that clears the screen below the cursor.

Line 10020, INPUT DA$ (CH(O) + I), allows the name to be entered into a
specific record number.

10030 CL(CH(O) + 1) = LEN(DA$(CH(O)+ 1» : IF CL(CH(O) + 1) = 0 THEN RETURN

Line 10030 stores the length of DA$ for the current record being built.
This information is stored in CL array. The second statement in line 10030,
IF CL(CH(O) + 1) = 0 THEN RETURN, checks to see if a record is entered. If
no record is entered, the program RETURNS to line 1000.

10040 IF CL(CH(O) + 1) > 30 THEN PRINT: PRINT "NAME IS TOO LONG" : CHR$(7):
for J = 1 TO 1000 : NEXT J : GOTO 10010

DA$ can be a total of 30 characters. If the length of the name string is
over 30 characters, it is disallowed, because the file is not designed to hold
over 30 characters in the name part of DA$.

The CHR$(7) rings the computer bell, and the loop FOR J = 1 TO 1000
pauses for a count of 1000. GOTO 10010 causes the program to jump back
to line 10010 to allow the user to enter a name of 30 characters or less.

10050 IF CL(CH(O) + 1) = 30 THEN RETURN

In line 10050, if the name is exactly 30 characters, it is the proper length
to fit the file and the program returns to line 1260.

10060 DA$(CH(O) + 1) = DA$(CH(O) + 1 + LEFT$ (SP$,30 - CL(CH(O) + 1»
1260 VT = 12: GOSUB 10800

1

,
,

1 ,
')

1
1
1
1

.,
!\
)

1
1

1
1

r
\

r
r
r
r
r
r
r
r
r
r
r
r
r
r

SORTING, SEARCHING, AND DELETING 205

10080 VTAB VT : PRINT "ENTER AREA CODE, PHONE NO."
10090 PRINT: PRINT: INPUT AC$,PN$

Line 10080 prints the user prompt, and line 10090 allows the user to
enter the area code, prefix, and the phone number.

10100 IF LEN (AC$) = 0 THEN AC$ = DC$

The input format is AC$,PN$. If there is no entry into AC$ (a comma is
the first character typed), line 10100 is true and then AC$ = DC$, which is
the area code "713" (line 15).

10100 IF LEN(AC$) < > 3 OR LEN (PN$) < > 7 THEN 10080

In line 10110, if the area code is not three characters, or the prefix and
phone number is not seven characters, then the program jumps to line
10080 for the correct entry.

10120 TC$ = STR$ (VAL (AC$»: PT$ = STR$ (VAL (PN$» : IF TC$< > AC $ OR PT
$ < > PN $ THEN PRINT: PRINT "PLEASE USE NUMERICS"; CHR$(7) : FOR J
= 1 TO 1000 : NEXT J : GOTO 10080

Line 10120 converts the string arrays to numeric arrays as a further check
that the area code, prefix, and phone number are numerics. TC$ =
STR$(V AL(AC$)) converts the area code string to a numeric value and that
value is converted to a string. PT$ = STR$(VAL(PN$)) converts the prefix
and phone number string to a numeric value and that value is converted to a
string. IF TC$ < > AC$ OR PT$ < > PN$ THEN PRINT: PRINT "PLEASE
USE NUMERICS", is a check to determine that the area code string and the
phone number string have been input correctly. CHR$(7) rings the com·
puter's bell. The pause loop is activated, and the program returns to line
1310 to concatenate the name, area code, and phone number into a single
array, DA$.

1310 DA$(CH(O) + 1) = DA$(CH(O) + 1) + "(" + TC$ + "(-" + LEFT$(PT$,3) +
"-" + RIGHT$ (PT$,4)

As an example, line 1310 translates to the following

JOHN SMITHXXXXXXXXXXXXXXXXXXXX 30 CHARACTERS
(713)-688-1212 14 CHARACTERS

1320 PRINT: GOSUB 1000

Line 1320 causes the record entered to be printed on the screen by the
subroutine at line 10000. A sample printout is shown.

NAMEX = XXJOHN SMITH
PHONEX#=X(713) - 688 - 1212
1330 PRINT: INPUT "ENTER 'R' TO REENTER ELSE 'RETURN'?";Q$: IF Q$ < > "R"

THEN CH(O) = CH(O) + 1

206 APPlESOFT FOR THE lie

In line 1330, IF Q$ < > "R," then the record count is incremented and a
new record may be entered. The program then defaults to line 1340, and
jumps to line 1200. Line 1200 clears the screen and jumps to the subroutine
at line 10010. If no record is entered (RETURN is pressed), the program
jumps to the secondary menu at line 1 000.

1410 IF CH(O) < 2 THEN RETURN

Line 1410 makes the decision that if there is only one record in the file,
there is no need to sort the list.

Lines 1420 through 1490 perform the sort routine. In this example (Fig.
26-3), there are five records in the list. The five records "E, D, C, B, AU repre
sent the list of names, area codes, and telephone numbers. Fig. 26-3 shows
the details of program lines 1420, 1430, 1440, 1450, 1460, 1470, and 1480.
The number of records in the list is CH(O) = 5.

1420 FOR J = 1 TO CH(O)

Line 1420 determines the maximum number of passes through five
records to order the list. This list took only two passes to order.

1430 M =J : FOR K = J TO CH(O)

In line 1430, the K variable begins at the second record in the list. If both
K and J started at the same record, the same record would be compared to
itself and this would be a useless comparison.

1440 IF LEFT$(DA$(K),30) < LEFT$(DA$(M),30) THEN M = K

Line 1440 compares the position of the records in the list. If record K is
less than record M, then the value of K is stored in M. This comparison
continues for K times.

1460 IF M = J THEN 1480

,
j

"..

I
J

1
1 ,

3

1
1
1
1 ,

J

If line 1460 is true, the records for a specific pass are in the correct order l
and no exchange is made. If line 1460 is false, the program defaults to line
1470 to exchange the records in the list. In a sort, all items out of order
must be exchanged. The DA$'s are ordered by exchanging records that are 1:
out of position. _

1480 NEXT J

Line 1480 processes the next record in the list.

1490 RETURN

Line 1490 returns the program to the second statement in line 1400,
which is GOTO 20. GOTO 20 causes the program to jump to the main
menu, PHONE LISTING.

40 VTAB 12 : HTAB 8: PRINT "2.MODIFY/DELETE"

1
1
1
l

[

r
r

r

r

r

SORTING, SEARCHING, AND DELETING 207

Selection 2 of the main menu causes the program to jump to I;ne 2000 to
modify or delete records in the list.

2000 HOME: VTAB 4 : IF CH(O) = 0 THEN PRINT "THERE IS NO LIST"; CHR$(7) :
FOR J = 1 TO 2000 : NEXT J : GOTO 20

If CH(O) = 0 there are no records in the list.

2010 PRINT "ENTER NAME TO BE CHANGED" : PRINT: INPUT NA$
2020 IF LEN(NA$) = 0 THEN 20

If the length of the name string is zero, the program branches to the main
menu, PHONE LISTING.

2030 FOR K = 1 TO CH(O)

Line 2030 sets the beginning of the loop to process each record in the list.

2040 IF NA$ < > LEFT$ (DA$(K)) THEN 2060

If the name string that was entered does not match any name in the list,
then the program jumps to line 2060.

2050 GOTO 2100
2060 NEXT K : VTAB 10 : PRINT "THIS NAME IS NOT ON LIST" : PRINT CHR$ (7) :

FOR J = 1 TO 1000 : NEXT J : GOTO 2000

If line 2040 is false, the program defaults to line 2050, and jumps to line
2100.

2100 CH(1) = CH(O) : CH(O) = K - 1 : VTAB 6: PRINT "CURRENT RECORD IS " :
PRINT

CH(1) = CH(O) stores the value of the 5 records in the list in CH(1) for
temporary storage. CH(O) = K - 1 stores the value of the record to be
changed. Each time the loop executes, it is incremented by one greater than
the loop value. K - 1 decrements the loop value to correspond to the num·
ber of records on the list.

2110 VTAB 8 : GOSUB 10000 : PRINT: PRINT "ENTER '(' TO CHANGE, 'D' TO
DELETE" : PRINT: INPUT "ELSE 'RETURN' ?";Q$

Line 2110 sets up the record to be modified (GOSUB 10000 prints the
current record on the screen), prints the heading to change or delete the
record, and requests user input.

2120 IF Q$ < > "c" AND Q$ < > "D" THEN 2240

If C is not pressed, and D is not pressed, and RETURN is pressed, the pro·
gram branches to line 2240 to reestablish the list in correct alphabetical
order. Line 2300 causes the list to be sorted in alphabetical order and the
program jumps to line 20, the main menu, PHONE LISTING.

208 APPlESOFT FOR THE lie

2125 IF Q$ = "D" THEN DA$(K) = "DELETE" + LEFT$ (SP$,24) +
"(000)-000-0000" : GOTO 2230

If D is entered, the program jumps to line 2230 to r"eset the value of the
number of records in the list into CH(O) (CH(O) = CH(1)), and prints the user
prompt, "ANY MORE CORRECTIONS (Y OR N)?".

2230 CH(O) = CH(1) : PRINT: INPUT "ANY MORE CORRECTIONS (Y OR N) ?";Q$:
IF Q$ = "Y" THEN 2000

If there are no more corrections to the list, the program defaults to line
2240 to the delete routine (Fig. 26-4).

2240 K = 0 : FOR J = 1 TO CH(O)
2250 IF LEFT$ (DA$(J),6 = "DELETE" THEN 2280
2260 K = K + 1 : IF K = J THEN 2280

If line 2250 is false, line 2260, K = K + 1, increments the value of K to
accommodate the record. If K = J THEN 2280 is false, the record is stored
in DA$(J), DA$(K) = DA$(J), and the length of the record CL(K) is also
stored, CL(K) = CL(J). The transfer places the record in K.

Records are taken from DA$(J) and placed in DA$(K) unless they are
equal to DELETE. If K = J, no action is taken because the record DS$(J) =
DA$(K) and the records are not moved. Each time a DELETE record is
encountered, J is incremented, but K remains the same. As an example
(Fig. 26-4) if the third record on the list is DELETE, then when the fourth
record is processed, K is still equal to three (3), but J is equal to four (4).
DA$(4) is then moved into DA$(3). If line 2250 is true, K remains the same
value for the next loop execution. The next record is written over the
deleted record.

2300 GOSUB 1410 : GOTO 20

Line 2300 causes the program to jump to the subroutine that sorts the list
alphabetically, and then branches to the main menu, PHONE LISTING.

Going back to line 2120, IF Q$ < > "C" AND Q$ < > "D" THEN 2240. IF
Q$ < > "C" is true, the program defaults to line 2130.

2130 VTAB 12 : CALL -958: BTAB 12 : PRINT "ENTER 'N' -NAME, 'P'-PHONE#,
'B'-BOTH" : PRINT

CALL -958 is a machine call that clears the screen below the cursor at
VTAB 12. The name and telephone number headings are printed, and
remain on the screen as a prompt during the changes. The program defaults
to line 2140 to store the area code and phone number in T$, and requests
the user to enter a letter.

2140 T$ = RIGHT (DA$(K, 14) : INPUT "LETTER PLEASE ?";C$: IF C$ < > "N" AND
C$ < > "P" AND C$ < > "B" THEN 2130

l
l .,

J

l
l ,

j

l
l
l
l
l
l
l
l
l
l

r
r
r
[

r
r
r
r
r
r
r
c

r
r
r
r
r

SORTING, SEARCHING, AND DELETING 209

If the letter B is entered, the program defaults to line 2150, which is "IF
C$ = "P" THEN 2170". Since the letter B is entered, line 2150 is false, and
the program defaults to line 2160.

2160 VT = 14: GOSUB 10010

Line 2160 sets the VTAB variable to 14 and the subroutine at line 10010
asks for the name change to be entered. The subroutine retums to line
2170.

2170 IF ($ = "N" THEN 2190

The letter B was entered and this makes line 2170 false, and the program
defaults to line 2180.

2180 VT = 16 : GOSUB 10080

The subroutine at 10080 asks the user to enter the new telephone num·
ber.

The B for both name and telephone number is not written into the pro·
gram routine. B is the default value when N or P is not entered. Remember
the cliche about cutting a log in two places to get three sticks of wood? This
example demonstrates the use of the default value in programming. B was
the selection, but B was not written into the program as a decision state·
ment. Another point to be reenforced is, when an IF statement is true, all
following statements on that line are executed.

In line 2140, the user enters the letter N for a name change. The program
defaults to line 2150.

2150 IF ($ = "P" THEN 2170

The letter N was entered, so line 2150 is false, and the program defaults
to line 2160.

2160 VT = 14 : GOSUB 10010

The subroutine at line 10010 asks for the name change to be entered. The
subroutine at 10010 returns to line 2170.

2170 IF ($ = "N" THEN 2190
2190 IF ($ = "N" THEN DA${K) = DA${K) + T$: GOTO 2230

Line 2170 is true, so the program branches to line 2190. The name
change is concatenated to the area code and telephone number stored in
T$. Line 2230 sets CH(O) = CH (1) and asks the user for more corrections. If
there are no more corrections, the number of records in the list is stored in
CH(O), the list is sorted, and the program jumps to the main menu, PHONE
LISTING.

If the user enters the letter P in line 2140, the program defaults to line
2150.

210 APPlESOFT FOR THE lie

2150 IF C$ = "P" THEN 2170

The letter P was entered, line 2150 is true, so the program branches to
line 2170.

2170 IF C$ = "N" THEN 2190

The letter P was entered, line 2170 is false, and the program defaults to
line 2180.

2180 VT = 16: GOSUB 10080

".' i'
I'

'1,

l ,
J

l
GOSUB 10080 allows the user to enter the new telephone number and reo 1,.,

turns to line 2190.

2190 IF C$ = "N" THEN DA$(K) = DA$(K) + T$: GOTO 2230

The letter P was entered, so line 2190 is false, and the statement GOTO
2230 is not executed. The program defaults to line 2220.

2220 IF C$ = "P" THEN DA$(K) = lEFT$(DA$(K),30)

Line 2200 is true and sets up DA$(K} so it contains the name in a specific
record. The program defaults to line 2220 to concatenate the name and new
telephone number into DA$(K}.

2220 DA$(K) = DA$(K) + "(" + TC$ + ") -" + lEFT$ (PT$,3) + "-" + RIGHT$
(PT$,4)

The program defaults to line 2230 to ask for more corrections. If there are
no more corrections, the program defaults to line 2300.

2300 GOSUB 1410 : GOTO 20

GOSUB 1410 sorts the list and GOTO 20 causes the program to jump to
the main menu, PHONE LISTING.

Entry 3 in the main menu is "3.L1ST/SEARCH." This selection causes the
program to jump to line 3000.

3000 HOME: VTAB 3 : INPUT "ENTER '5' TO SEARCH OR 'l' TO lIST?";Q$: IF Q$
< > "l" AND Q$ < > "5" THEN 3000

3010 IF Q$ = "5" THEN 3100

The user enters the letter "L" to list the records. Line 3010 is false, so the
program defaults to line 3030.

3030 FOR J = 1 TO CH(O)

Line 3030 is the beginning of a loop to process the records in the list.

3040 IF J < > INT((J - 1) 15) * 5 + 1 THEN 3070
3050 IF J < > 1 THEN PRINT: INPUT "!";Q$

Lines 3040 and 3050 use negative logic and are both related (Fig. 26-5).
On the first pass of the loop, line 3040 is false and the program defaults to

1
1
1
1
1
1

j

1
1
1
l
1

r
r
r c

r
r
r
r
r
r
r
r
r
r
r
r
r

SORTING, SEARCHING, AND DELETING 211

line 3050. On the first pass J = 1, so line 3050 is false and the program de·
faults to line 3060, to clear the screen and VT AB 3.

3060 HOME: VTAB 3

3070 PRINT "NAME = "; LEFT$ (DA$(J),30) : PRINT SPC(7); "PHONE # = ";
RIGHT$ (DA$(J),14) : PRINT

Line 3070 is executed and prints the first record. On loop executions 2, 3,
4, and 5, line 3040 is true and the program branches to print records 2, 3, 4,
and 5.

ACTION OF
J J-1 INT((J - 1)/5) INT«J -1)/5)*5 + 1 3040 GOES TO 3050 3050

1 0 0 1 FALSE 3050 FALSE GOES TO 3060
PRINTS RECORD #1

2 1 0 1 TRUE 3070 PRINTS RECORD #2
3 2 0 1 TRUE 3070 PRINTS RECORD #3
4 3 0 1 TRUE 3070 PRINTS RECORD #4
5 4 0 1 TRUE 3070 PRINTS RECORD #5

6 5 1 6 FALSE 3050 TRUE INPUTS "!"iO$
PRESS RETURN TO
CONTINUE
PRINTS RECORD #6

7 6 1 6 TRUE 3070 PRINTS RECORD #7
8 7 1 6 TRUE 3070 PRINTS RECORD #8
9 8 1 6 TRUE 3070 PRINTS RECORD #9

Fig. 26-5. Relationship of lines 3040 and 3050.

On the sixth loop execution, line 3040 is false (6 = 6). The program de
faults to line 3050, "IF J < > 1 THEN PRINT: INPUT "!";Q$". On the sixth
execution (6 < > 1), and line 3050 is true. The loop execution stops, "!" is
printed, and the computer waits for the user to press RETURN to continue
printing the list. Line 3080 NEXT J, completes the loop execution.

3090 PRINT: INPUT "!";O$: GOTO 20

Line 3090 stops the program. When the user presses RETURN, the pro
gram jumps to line 20, the PHONE LISTING menu.

Selection 3 on the PHONE LISTING menu is ,"3.L1ST/SEARCH/' causes
the program to jump to line 3000. If S for search is selected at line 3000, the
program branches to line 3100 to begin the search.

3100 HOME: VTAB 3 : HTAB 12 : PRINT "SEARCH SELECTION" : PRINT

Line 3100 prints out three selections.

212 APPLESOFT FOR THE lie

I.NAME SEARCH
2.NUMBER SEARCH
3.RETURN TO MAIN MENU

Selection 1 causes the program to branch to line 3150 to begin the name
search.

3150 HOME: VTAB 4 : PRINT "ENTER NAME OR FRAGMENT 7" : PRINT: INPUT
NA$: L = LEN (NA$) : IF L = 0 THEN 3100

The name search is processed in lines 3160 through 3220. For this
example, variables are given specific values to make the learning process
easier.

NA$
L
DA$(J)
CL(J)
CO

CH(O)
FOR J = 1
FOR K = 1

"ABC" - SEARCH FOR ABC
LEN(NA$) = 3
"EDABC" - THIS NAME IS SEARCHED
LENGTH OF DA$(J) IS 5 CHARACTERS
COUNTING VARIABLE TO COUNT THE NUMBER OF
MATCHES FOUND IN THE LIST
CH(O) = 7 - THERE ARE 7 RECORDS IN THE LIST
TO CH(O) - FOR J = 1 TO 7
TO CL(J) - L + 1 - FOR K = 1 TO 3

Fig. 26·6 should be studied in detail to learn the name search routine. The
record count is stored in a temporary location, CH(1). In line 3200, CH(O) =
CH(1), the record count is stored in CH(O). This step is necessary to preserve
the record count before the program jumps to the subroutine at line 10000.

If at line 3100, the user had entered selection 2, "2.NUMBER SEARCH,"
the program would jump to line 3250 to search for a specific telephone
number.

3250 HOME: VTAB 6 : HTAB 6 : INPUT "ENTER AREA CODE, PHONE #
7";AC$,PN$

3260 IF LEN (AC$) = 0 THEN AC$ = DC$

Line 3260 allows the user to enter a comma for the area code, if the user
wants the default area code of 713. The area code and the telephone num
ber are always the last 14 characters of DA$. The telephone number for a
specific record is RIGHT$(DA$(J),14).

3270 TC$ = "(" + AC$ + ") -" + LEFT$ (PN$,4)

Line 3270 concatenates the area code and the telephone number in the
proper format and stores it in the temporary string variable, TC$.

3280 FOR J = 1 TO CH(O)

Line 3280 sets up the loop that will list the area codes and telephone
numbers on the list.

1
1

J

1
.J ,
J

1
J

1
1
l
1

J

l
1
l
1
l
1

r
r
r
[

r
r
r
r
'---

r
r
r
r
r
r
r
r

SORTING, SEARCHING, AND DELETING 213

SPECIFIC VARIABLES USED FOR THE NAME SEARCH

NA$ LEN(NA$) DA$(J) LEN(DA$(J)) # OF RECORDS CL(J) - L + 1
ABC 3 EDABC 5 7 3

FOR J = 1 TO 7 FOR K = 1 TO 3

PROGRAM liNES 3160 - 3220 FOR NAME SEARCH
3160 CO = 0: COUNTS THE NUMBER OF MATCHES IN THE LIST.

FOR J = 1 TO CH(O) - FOR J = 1 TO 7
3170 FOR K = 1 TO CL(J) - L + 1 - FOR K = 1 TO 3

IF NA$ < > MID$(DA$(J), K, L) THEN 3210
ABC EDABC

1st PASS ABC(TRUE) <>EDA 1,3K=1,L=3 3210
2nd PASS ABC (TRUE) < > DAB 2,3 K=2, L=3 3210
3rd PASS ABC (FALSE) < > ABC 3,3 K=3, L=3 3190

3190 CH(l) = CH(O) 7 = 7 - THE RECORD COUNT MUST BE STORED BEFORE
THE GOSUB 10000 OR RECORD COUNT WILL BE WIPED OUT
CH(O) = J - 1 - SEE Fig. 25-2 OR Fig. 25-3
GOSUB 10000 - PRINTS OUT THE RECORD
INPUT Q$ - STOPS THE PROGRAM - PRESS RETURN TO CONTINUE

3200 CH(O) = CH(l) 7 = 7 - CH(l) RESTORES THE RECORD COUNT TO CH(O)
CO = CO + 1 - INCREMENTS THE COUNT TO DETERMINE IF A MATCH
OCCURS MORE THAN ONCE IN THE LIST
GOTO 3220 - PREVENTS THE SAME ITEM ON THE LIST FROM 'BEING
MATCHED TWICE

3210 NEXT K
3220 NEXT J - SEARCHES THE NEXT RECORD

Fig. 26-6. Name search.

3290 IF TC$ < > RIGHT$ (DA$(J),14) THEN 3310

All telephone numbers are composed of 14 numeric characters located in
the last 14 places in DA$ as RIGHT$(DA$(J),14), so the comparison is rela
tively simple. It is much simpler than the name search, though not nearly so
flexible.

3300 CH(l) = CH(O) : CH(O) = J -1 : GOSUB 10000 : PRINT:
CH(O) = CH(l) : INPUT Q$: PRINT

The record count is again stored in a temporary location, CH(1), so it will
not be lost during the execution of the subroutine at line 10000. The sub
routine prints out both the name, area code, and telephone number pro
duced from the number search. On returning from the subroutine, the
record count is again stored in CH(O) (CH(O) = CH(1».

3310 NEXT J

Each record on the list is searched for the telephone number in question
and line 3320, GOTO 3100, causes the program to jump to the "SEARCH
SELECTION" menu. Selection 3, "3.RETURN TO MAIN MENU," causes a
jump to line 20, the PHONE LISTING menu. Selection 4, "4.SAVE LIST
AND END," from the PHONE LISTING menu causes the program to end.

LESSON 27

Formulas

Lesson 27 contains three programs dealing with formulas for (1) decimal
to hexadecimal conversion (Fig. 27·1), (2) hexadecimal to decimal con·
version (Fig. 27·6), and (3) systematic and efficient output (Fig. 27·9).

"Formula" has many different meanings, but a good definition is "the
rule for doing something." A formula is a recipe or a prescription. Formulas
have been used and demonstrated in almost every lesson of this book.

The computer, which understands only binary (l and 0), must use a
formula to convert any input to binary. Program computations are carried
out in binary, and this binary must be converted to the required type of out·
put. The formulas to make these internal conversions reside in the Apple·
soft interpreter. These conversion formulas are not readily visible. The
formulas to be discussed are the ones you write.

The most efficient way to use a formula in programming is to input the

5 REM: DECIMAL TO HEXADECIMAL
10 HOME: VTAB 6
20 INPUT "ENTER DECIMAL INTEGER 7";DEC
30 IF DEC < 1 THEN END
40 DEC = INT (DEC)
50 HEX = O:HX$ = " "
60 FOR J = 0 TO 15: IF DEC < 16 t J THEN 80
70 NEXT J: PRINT "THE NUMBER IS TOO LARGE" : PRINT: GOTO 20
80 FOR K = J - 1 TO 0 STEP - 1
90 HEX = INT (DEC /16 t K)
100 HX$ = HX$ + CHR$ (HEX + 48 + (HEX>9) * 7)
110 DEC = DEC - HEX * 16 t K
120 NEXT K
130 PRINT: HTAB 9: PRINT "HEX DISPLAY IS ";HX$
140 PRINT: GOTO 20

)RUN
ENTER DECIMAL INTEGER 7863
HEX DISPLAY IS 35F

Fig. 27-1. Decimal to hexadecimal conversion program.

214

1
1

j

1
1
1

1
1
1
1

J

1
l
1
1
1

J

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

FORMULAS 215

data in a variable, or variables. The variables in the formula recei",e the data
values, use these values to make computations, and output the information
in a variable. In this way, the data entered and the information output can be
easily changed and the program remains relatively constant.

In the first program (Fig. 27·1) a decimal value is converted to a hexa·
decimal value. In the second program (Fig. 27·6) a hexadecimal value is
converted to a decimal value. The conversion formulas point out two impor·
tant aspects of the computer, (1) humans speak decimal, and computers
speak hexadecimal, before it is converted to binary, and (2) decimal
contains numeric characters, while hexadecimal contains alpha and
numeric characters. In the conversion process, decimal is entered as
numerics and converted to string arrays. In converting hexadecimal to
decimal, the hexadecimal is entered as a string array and converted to
numerics.

The decimal system uses a base of 10. The hexadecimal system uses a
base of 16. The decimal figure 312 means:

3 * 102 = 300
+ 1 * 101 = 10
+2*10°= 2

312

The hexadecimal system uses the decimal numbers from 0 through 9, as
the first ten digits, and uses the letters A = 10, B = 11, C = 12, D = 13, E
= 14, and F = 15, as the last five letters (Fig. 27·2). The hexadecimal num·
ber 35F means:

3 * 162 = 768
+ 5 * 161 = 80
+ F * 16° = 15

863

Fig. 27·3 shows. the manual system for converting decimal to hexa·
decimal. Fig. 27-4 details the decimal to hexadecimal conversion of the
program statements in relation to the manual conversion of decimal to
hexadecimaL Figs. 27-2, and 27·5 should be studied closely before going to
the conversion program. Fig. 27-2 presents the relationship between the
first fifteen decimal numbers and the first fifteen hexadecimal numbers.
Fig. 27-5 shows the ASCII numerics and the character strings they
represent. Conversion of string arrays to numeric arrays and conversion of
numeric arrays to string arrays was discussed in Lesson 7. The sequence of
ASCII characters for ten numerics and twenty-six alpha characters goes
from 48 through 90. The character strings represented by the ASCII
characters run from zero (0) to zebra (Z). Between the numeric and alpha
characters is an intervening group of special characters (58 - 64) that inter-

216 APPLESOFT FOR THE lie

rupt the chain of continuity. This interruption is very important to under·
stand. It is programmed in line 100 of Fig. 27·1. The hexadecimal number is
converted into a string array to accommodate both alpha and numeric char·
acters.

100 HX$ = HX$ + CHR$ (HEX + 48 + (HX> 9) * 7)

The ASCII number 48 represents the string character zero (0). If the ASCII
characters were set so 48 through 57 represented zero (0) through nine (9),
and ASCII 58 through 84 represented A through Z, there would be no need
for the logical expression, «HEX> 9) * 7), in line 100. Since ASCII 59
through 64 interrupt the continuity of the numeric and alpha characters,
+ 48 is necessary to establish base zero for the character string. The + 48
corrects for the offset of the ASCII values.

HEXADECIMAL
o
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

NUMBER
IN DECIMAL

863

DECIMAL
o

DIVIDE BY
863/16

53/16
3/16

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

QUOTIENT
53

3
o

Fig. 27-2. Comparing the first sixteen
hexadecimal and decimal digits.

REMAINDER
IN DECIMAL

15
5
3

REMAINDER
IN HEXADECIMAL

i. I I
3 5 F

Fig. 27-3. Manual system for decimal to hexadecimal conversion.

Line 100 converts in this manner: (HEX>9) * 7) is a logical expression
used as a bridge between ASCII 48 through 57 (0-9), and ASCII 65 through
90 (A through Z). When HEX is less than 9, the expression is FALSE times
zero (0). Zero times 7 = O. If HEX is greater than 9, the expression is TRUE
or one (1). One times 7 = 7. The hexadecimal alpha values A through Fare
used in the conversion, so only the ASCII values from 65 through 70 are

1
1
1
1
l
l
1
1
l
1
l
1
1
1
1
1

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

FORMULAS 217

needed for the conversion from decimal (10 - 15) to hexadecimal (A - F).
The following example shows how line 100 works.

HEX = 6
HX$ = HX$ + CHR$ (6 + 48 + 0) = CHR$(54)
CHR$(54) = "6"
HEX = 14
HX$ = HX$ + CHR$ (14 + 48 + (1 *7)) = CHR$(69)
CHR$ (69) = "E"

In line 50, we see HX$ = .. ". This means HX$ is initialized to a null value.
Fig. 27·4 shows three loop executions by each program :statement

involved in converting decimal 863 to hexadecimal 35F. This was done to

20 INPUT "ENTER DECIMAL
INTEGER ?";DEC

30 IF DEC < 1 THEN END
40 DEC = INT(DEC)

50 HEX = 0 : HX$ = " "

60 FOR J = 0 TO 15 : IF DEC <
16> J THEN. 80

70 NEXT J : PRINT" THE NUMBER
IS TOO LARGE"

80 FOR K = J - 1 TO 0 STEP - 1

90 HEX = INT(DECI16 > K)

100 HX$ =
HX$+CHR$(HEX+48+(HEX> 9)
*7)

110 DEC = DEC - HEX*16 > K

120 NEXT K

130 PRINT "HEX DISPLAY IS ";HX$

863

If a real number is input, this statement
converts it to an integer.

Initializes variables. HX$ is a null string
with no characters.

Numbers larger than 1.15*1018 will not
be accepted.

Sets up the position of DEC - 863 = 163

The largest power is divided 1st. When
the J loop checks the size of DEC, J is 1
more than the greatest power when J
jumps out of the loop. J -1 is the offset
for the correct power. K sets up posi
tional values.

I Divides DEC by the positional value to

I give the HEX value. .
I 1. INT(DECl162) = 863/162 = HEX 3 R95
'2. INT(DEC/161)=95/161 =HEX 5 R15

3. INT(DEC/16°) = 15/16° = HEX ~ (15)

1.15+48+(1*7)=70 ASC(70)= F
2. 5+48+(0*7)=53 ASC(53) = 5
3. 3+48+(0*7)=51 ASC(51) = 3

1. DEC = 863 - HEX(3)* 162 = 768
2. DEC = 95 - HEX(5)*161 = 80
3. DEC = 15 - HEX(15)*16° = 15

35F

Fig. 27·4. Decimal to hex conversion program statements as related to manual conversion
to hex.

218 APPLESOFT FOR THE lie

show how the individual loop executions compared with the manual conver·
sion.

The formulas in Fig. 27·6 convert hexadecimal to decimal. Since hexa·
decimal must contain both alpha and numeric characters, the value is
entered as a string array. The string array is converted into a numeric vari·
able to print out the decimal number. The hexadecimal number 35F, is
entered and converted to the decimal value, 863. The manual conversion is
shown in Fig. 27·7. The program statements and manual conversion are
detailed in Fig. 27·8. The three loop executions are included with each
program statement to view the change in values during the computation.

ASC
48
49
50
51
52
53
54
55
56
57

58
59
60
61

CHR$
o
1
2
3
4
5
6
7
8
9

<

62 >
63 ?
64 @

65 A
66 B
67 C
68 D
69 E ____ Z9 _________ f ____ _

90 Z

CONVERSION OF A NUMERIC ARRAY TO
A STRING ARRAY
ASC(65) = A

CONVERSION OF A NUMERIC ARRAY TO
A STRING ARRAY
CHR$(A) = 65

Fig. 27·5. ASCII characters.

The hexadecimal value is entered as a string array in line 10.

10 INPUT "ENTER HEX VALUE ?";Q$

Line 40 converts the hexadecimal value entered into Q$ into a numeric
variable by the ASC function. In conjunction with the loop beginning at line
30, line 40 processes the characters, one at a time.

J 1: HEX = 3 (CHR$(51))
J 2 : HEX 5 (CHR$(53))
J 3 : HEX = F (CHR$(70))

1
1
1
l
l
1
11,,' " ,

,

1 j

1
" 111

1
l

1

r

r
r
r
r

1 REM: HEXADECIMAL TO DECIMAL
5 HOME: VTAB 6
10 INPUT "ENTER HEX VALUE T";O$
20 IF LEN (0$) = 0 THEN END
30 DEC = 0: FOR J = 1 TO LEN (0$)

FORMULAS 219

40 HX = ASC (MID$ (0$,J,1»: IF (HX > 47 AND HX < 58) OR (HX > 64
AND HX < 71) THEN DEC = DEC * 16 + HX - 48 - (HX> 58) * 7

50 NEXT J
60 PRINT: PRINT "DEC = ";DEC: PRINT
70 GOTO 10

)RUN
ENTER HEX VALUE ?35F
DEC = 863

Fig. 27-6. Hexadecimal to decimal conversion program.

If the hexadecimal character is a numeric value, it must be between the
~I_i ASCII values of 48 through 57. If the hexadecimal character is an alpha

character, it must be between 65 through 90. The statement in line 40, IF
(HX> 47 AND HX < 58) OR (HX > 64 AND HX < 71) THEN DECX = DEC ... r 16 + HX - 48 - (HX > 58) ... 7, is similar to a summing statement (for
example, DEC = DEC + HX). This statement converts from a hexadecimal
value entered to the decimal number (Fig. 27-8) in that it takes the sum of
the computed DEC and adds it to DEC on each loop execution. r Line 50 is the foot of the loop, and line 60 displays the numeric. number
that has been converted from the hexadecimal value.

60 PRINT "DEC = ";DEC r Line 70 gives the user a chance to enter another hexadecimal value.
The formulas in the OGIVE Program (Fig. 27-9) produce systematic and

efficient output and are applied to a statistical problem. The statistical r problem randomly inputs student grades. The grades are output in seven
teen different ranges. The grades are used to produce an ogive of cumula
tive distribution.

r
r
r
r
r

The definition of cumulative distribution is "heaped up," or "growing in
amount."

HEXADECIMAL
NUMBER

35F
POSITIONAL VALUE

F * 160

5 * 161

3 * 162

MULTIPLY BY
F * 1 = 15
5 * 16 = 80
3 * 256 = 768

863

Fig. 27-7. Manual system for hexadecimal to decimal conversion.

220 APPLESOFT FOR THE lie

5 HOME: VTAB 5

10 INPUT "ENTER HEX VALUE ?";Q$

20 IF LEN(Q$) = 0 THEN END

30 DEC = 0 : FOR J = 1 TO LEN(Q$)

40 HX = ASC(MID$(Q$,J,1» :

IF (HX >47 AND HX <58) OR (HX
>64 AND HX < 71) THEN

DEC = DEC*16+HX-48-(HX>58)*7
1. DEC= 0*16+ 51-48- (51)58) =3

DEC=3 (0 * 7)
2. DEC=3*16+48-53-(53)58)=53

DEC=53 (0 * 7)
3. DEC= 53*16=848+ 70-48- (70)58)

DEC = 863 (1 * 7)

50 NEXT J

60 PRINT: PRINT "DEC = ";DEC

70 GOTO 10

35F - HEX is input in a string array.
It may contain alpha and numeric
characters.

Initialized DEC to zero. Sets up loop
to check each character.

Converts the string array to a
numeric array one character at a
time. Picks off the 1 st, 2nd, and 3rd
character.

ASC numerics 48 through 57 repre
sent the numbers zero to 9. ASC
numbers 64 through 70 represent
the letters A - F (Fig. 27-5).
Positional value
35F

16° * 15 = 15
161 * 5 = 80
162 * 3 =768

863

DEC = 863

Fig. 27·8. Comparing program statements and manual conversion.

5 REM: OGIVE PROGRAM
10 HOME
20 DIM CG(17)
30 GOSUB 800
40 T = 0: FOR J = 1 TO 17
50 IF J < > INT ((J - 1) / 5) * 5 + 1 THEN 80
60 IF J < > 1 THEN PRINT "OGIVE COUNT=";T;" OF 80 =";T / 80;"%":

INPUT "!";Q$
70 PRINT "RANGE# BASE TOP COUNT"
80 R = J: GOSUB 900:UL = RL:R = J - 1: GOSUB 900:LL

= RL + 1: IF LL = 1 THEN LL = 0
90 PRINT SPC(3);J;: HTAB 13: PRINT LL;: HTAB 20: PRINT UL;: HTAB 30:

PRINT CG(J)
100 T = T + CG(J): NEXT J
110 PRINT "OGIVE COUNT=";T;" OF 80 =";T / 80;"%"
120 END
800 FOR J = 1 TO 80:SG = INT (RND(1.0) * 101): IF SG = 0 THEN

SG = 1

Fig. 27·9. OGIVE program.

l
..,

J

1
1
1
l
l
l
1

)

l
l
1
l
l
l
l

r
(

r
(

r

FORMULAS 221

810 IF SG > 32 THEN 830
820 CG((SG - 1) /16 + 1) = CG((SG - 1) /16 + 1) + 1: GOTO 880
830 IF SG > 64 THEN 850
840 CG(3 + (SG - 33) / 8) = CG(3 + (SG - 33) / 8) + 1:: GOTO 880
850 IF SG > 92 THEN 870
860 CG(7 + (SG - 65) / 4) = CG(7 + (SG - 65) / 4) + 1:: GOTO 880
870 CG(14 + (SG - 93) /2) = CG(14 + (SG - 93) /2) + 1
880 NEXT J: RETURN
900 RL = R * 16 - (R > 2) * (R - 2) * 8 - (R > 6)

* (R - 6) * 4 - (R > 13) * (R - 13)
* 2

910 RETURN

RUN
RANGE # BASE TOP COUNT

1 0 16 10
2 17 32 14
3 33 40 7
4 41 48 7
5 49 56 11

OGIVE COUNT=49 OF 80 =.6125%
!

RANGE # BASE TOP COUNT
6 57 64 7
7 65 68 3
8 69 72 2
9 73 76 4

10 77 80 2
OGIVE COUNT = 67 OF 80 = .8375%

RANGE # BASE TOP COUNT
11 81 84 1
12 85 88 3
13 89 92 1
14 93 94 3
15 95 96 2

OGIVE COUNT=77 OF 80 =.9625%
!

RANGE # BASE TOP COUNT
16 97 98 1
17 99 100 2

OGIVE COUNT = 80 OF 80 = 1 %

Fig.27 -9-cont. OGIVE program.

Ogive is a distribution curve or graph in which the frequencies are
cumulative. A teacher takes the 80 student grades, places them in 17
ranges of varying widths, adds the number of grades in each range, and r plots them on a graph (Fig. 27-10).

222 APPlESOFT FOR THE lie

The program in Fig. 27-9 uses a RND function to produce the 80 grades.
The grades are placed in ranges by a formula and the ranges are computed
by a formula. A formula is used to break the printout into a heading and five
ranges and then the printout continues. The ogive is produced by hand to
demonstrate the use of the output (Fig. 27-10). One point to note - since
the grades are produced by the RND function, /'10 TWO PROGRAM RU/'IS
OR GRAPHS WILL BE THE SAME. The ogive does not pattern itself in the
manner of the standard distribution curve.

Line 20 DIM CG(17), dimensions the numeric array for the seventeen
grade ranges.

Line 30 branches to the subroutine at line 800, which will produce the 80
student grades. Lines 810 through 880 place them in the proper range.

In line 800, FOR J = 1 TO 80, is the beginning of a loop to produce the 80
student grades. SG = INT(RND(1.0) * 101) produces student grades from 0
to 100. The purpose of IF SG = 0 THEN SG = 1 is a special case. If the RND
function produces a student grade of zero (0), the grade has to be modified
to fit the program pattern. The grade ranges have no place for a grade of
zero (0), so zero grade will be replaced with a grade of one (1).

Lines 810,830, and 850 set up to divide the ranges into four divisions, (1)
two ranges containing 16 scores each, (2) four ranges containing 8 scores
each, (3) six ranges containing 4 scores each, and (4) four ranges containing
2 scores each (Figs. 27-11 and 27-12).

810 IF SG > 32 THEN 830 (handles grades from 1 to 32)
830 IF SG > 64 THEN 850 (handles grades from 33 to 64)

(handles grades 65 to 92 if statement is false)
850 IF SG > 92 THEN 870 (handles grades 93 to 100 if statement is true)

If line 810, IF SG > 32 THEN 830, is false, the program defaults to line
820 to tabulate the grades in the first two grade ranges from zero (0) to 32.

820 CG((SG - 1) /16 + 1) = CG((SG - 1) /16 - 1) /16 + 1) + 1 : GOTO 880

The summing statement in line 820 sums the number of grades in each of
the first two grade ranges (Fig. 27-12).

There are statements similar to the statement at line 820 at lines 840,
860, and 870. These statements compute and total the number of student
grades in each range (Fig. 27-12).

830 IF SG > 64 THEN 850

If line 830 is false, line 840 increments the number of grades in the proper
grade range from 33 to 64 (Fig. 27-12).

850 IF SG > 92 THEN 870

If line 850 is false, line 860 increments the number of grades in the proper

l
....,
l

l
l
1
l
l

1
)

1
)

l
l
l

l
l

r
r

r
r
r
r

r
r
r
r
r
r
r

CUMULATIVE
FREQUENCY

80

70

60

50

40

30

20

10

00

/

/
/

FORMULAS 223

/
/

J

I
J

J

/
/

/

16 32 40 48 56 64 72 80 88 96100

SCORE

Fig. 27 -1 O. OGIVE of the distribution of 80 scores.

range from 65 to 92. If line 850 is true, line 870 increments the number of
grades in the proper range from 93 to 100 (Fig. 27-12).

880 NEXT J : RETURN

NEXT J completes the loop to input 80 student grades and to place them
in the proper range, and RETURN causes the subroutine to return to line 40.

40 T = 0 : FOR J = 1 TO 17

The totaling variable is initialized to zero, and the 17 grade ranges are
placed in a loop structure for processing.

50 IF J < > INT((J -1)/5)*5 + 1 THEN 80
60 IF J < > 1 THEN PRINT "OGIVE COUNT = ";T;" OF 80 = ";T/80;"%" : INPUT

0$

224 APPLESOFT FOR THE lie

Lines 50 and 60 control the printout. The printout changes its routine
every five (5) lines. The details of the RUN can be viewed in Fig. 27-9. State
ments similar to the statements in lines 50 and 60 are routinely used
formulas to control printouts to the screen.

70 PRINT "RANGEl BASE TOP COUNT"

Line 70 prints the headings for each column in the printout.

80 R = J : GOSUB 900 : UL = RL : R = J - 1 : GOSUB 900 : LL = RL + 1 : IF LL = 1
THEN LL = 0

R = J is used as a temporary storage for the range loop J. If J is not
stored, it will be lost during the jump to, or return from the subroutine.

J LL(BASE) UL(TOP) SPREAD NO. OF RANGES

1 0 16 16 2
2 17 32 16

3 33 40 8 4
4 41 48 8
5 49 56 8
6 57 64 8

7 65 68 4 7
8 69 72 4
9 73 76 4

10 77 80 4
11 81 84 4
12 85 88 4
13 89 92 4

14 93 94 2 4
15 95 96 2
16 97 98 2
17 99 100 2

Fig. 27-11. Ranges and score points.

The branch to the subroutine at line 900 computes the range level (RL) by
using a logical comparison of all ranges (Fig. 27-13).

900 RL = R * 16 - (R>2) * (R - 2) * 8 - (R>6) * (R -6) * 4 - (R>13) * (R - 13) * 2

R * 16 - (R> 2),the range number times 16 (# of grade points in the first
two ranges), separates the first two ranges. The logical expression (- (R >
2», separates the first two grade ranges based on a spread of 16 points. If R
is less than two (2), the statement is true, or one (1). When the logical
expression is true, it is activated for the first two grade loop values (R = J)
If R is greater than two (2), the logical expression is false, or zero (0). When
the expression is false (0), zero (0) times 16 = 0, and the logical expression

,
)

1
1
1

1
1 ,

J

l
1
1
1

r

r

r
r

r

FORMULAS 225

810 IF SG > 32 THEN 830
820 CG«SG - 1)/16 + 1) = CG«SG - 1)/16 + 1) + 1 : GOTO 880

GRADE (SG - 7) CG«SG - 7)1 7 + 7
1 0 1

17 16 2
32 31 2

830 IF SG > 64 THEN 850
840 CG(3 + (SG - 33)/8) = CG(3 + (SG - 33)/8) + 1 : GOTO 880

33 0 3
41 8 4
49 16 5
57 24 6
64 31 6

850 IF SG > 92 THEN 870
860 CG(7 + (SG - 65)/4) = CG(7 + (SG - 65)/4 + 1 : GOTO 880

65· 0 7
69 4 8
73 8 9
77 12 10
81 16 11
85 20 12
89 24 13
92 27 13

870 CG(14 + (SG - 93)/2) = CG(14 + (SG - 93)/2 + 1
93 0 14
95 2 15
97 4 16
99 6 17

100 7 17

Fig. 27 -12. Grades and ranges.

is not included in any other computation (Fig. 27-14). Line 900 produces
the range levels from one (1) through 17. This is the power of using
formulas in programming.

Lines 80 and 900 work in conjunction to produce the upper level (TOP),
UL = RL, of the range, and the lower level (BASE), LL = RL + 1, of the
range.

When the subroutine at line 900 has completed processing each range
level, it returns to line 80, UL = RL, to store the range level computed, into
the upper level variable.

R = J - 1 decrements the value of the loop variable stored in R, so the
upper level and the lower level remain at the same value. The program
jumps to the subroutine at line 900 to process the range level again. When
the subroutine at line 900 returns to line 80, the range limit is incremented
by one (1), (LL = RL + 1), to produce the lower limit (BASE) of the grade
range. Line 80 and the formula at line 900 have now produced the upper and

~ ___ lo_w __ er __ li_m_i_ts __ o_f_th_e __ g_ra_d_e __ ra_n_g_e __ fr_o_m __ 1_t_O __ 10_0_._T __ he __ g_r_ad_e __ r_an_g_e __ f_U_n_s __ from

226 APPlESOFT FOR THE lie

40 FOR J = 1 TO 17
80 R = J : GOSUB 900 : UL = RL: R = J - 1 : GOSUB 900 :

LL = RL + 1 : IF LL = 1 THEN LL = 0

IF LL = 1 THEN LL = 0
RL = R * 16 - (R> 2) LL = RL + 1 J - 1

0
1 * 16 = 16 0 1
2 * 16 = 32 17 2

RL = (R - 2) * 8 - (R> 6)
3 - 2 = 1 * 8 = 8 33 3
4 - 2 = 2 * 8 = 16 41 4
5 - 2 = 3 * 8 = 24 49 5
6- 2 = 4 * 8 = 32 57 6

RL = (R - 6) * 4 - (R> 13)
7 - 6 = 1 * 4 = 4 65 7
8- 6 = 2 * 4 = 8 69 8
9 - 6 = 3 * 4 = 12 73 9

10 - 6 = 4 * 4 = 16 77 10
11 - 6 = 5 * 4 = 20 81 11
12 - 6 = 6 * 4 = 24 85 12
13- 6 = 7 * 4 = 28 89 13

RL = (R - 13) * 2
14 - 13 = 1 * 2 = 2 93 14
15-13=2* 2 = 4 95 15
16-13=3* 2 = 6 97 16
17-13=4* 2 = 8 99 17

Fig. 27·13. Compute lower limit range.

one (1) to 100, so a special case must be accommodated to produce a grade
range from zero (0) to 100.

The last statement in line 80 handles this special case. IF LL = 1 THEN
LL = 0 converts the lower level of the first grade range from one (1) to zero
(0).

90 PRINT SPC(3);J; : HTAB 13 : PRINT LL;: HTAB 20 : PRINT UL;: HTAB 30 : PRINT
CG(J)

Line 90 prints the output information under the proper headings.

lOOT = T + CG(J): NEXT J

T = T + CG(J) totals the number of grades in each grade range, and
NEXT J completes the loop structure, so all 17 grade ranges are produced.

110 PRINT "OGIVE COUNT = ";T;" OF 80 = ";T/80;"%"

Line 110 prints out the final ogive count as a check to determine if all 80
student grades have been input and processed. The ogive count was printed

,
j

1
1

,
(~

1· !~

IIII\I!

:l

1
1
1

r
r
r
r

r
r·
r
r
r
r

FORMULAS 227

40 FOR J = 1 TO 17
80 R = J : GOSUB 900 : UL = RL : R = J - 1

RL = R * 16 - (R > 2) UL = RL R = J - 1
1*16=16 16 1
2 * 16 = 32 32 2

RL = (R - 2) * 8 - (R> 6)
3 - 2 = 1 * 8 = 8 40 3
4 - 2 = 2 * 8 = 16 48 4
5 - 2= 3 * 8 = 24 56 5
6 - 2= 4 * 8 = 32 64 6

RL = (R - 6) * 4 - (R > 13)
7 - 6 = 1 * 4 = 4 68 7
8 - 6= 2 * 4 = 8 72 8
9 - 6= 3 * 4 = 12 76 9

10 - 6= 4 * 4 = 16 80 10
11 - 6= 5 * 4 = 20 84 11
12 - 6= 6 * 4 = 24 88 12
13- 6= 7 * 4 = 28 92 13

RL = (R - 13) * 2
14 - 13 = 1 * 2 = 2 94 14
15-13=2* 2 = 4 96 15
16-13=3* 2 = 6 98 16
17 - 13= 4 * 2 = 8 100 . 17

Fig. 27-14. Compute upper limit range.

for each of the five ranges by line 60. The percentage is printed out as 1 %. If
"T/80" had been multiplied by 1 00 ((T/80)* 1 00)) the percentage would have
been 100%. Line 120 ENDs the program.

Formulas produce fast, efficient, orderly output. The program written
without formulas would take approximately six times the number of lines to
solve the same problem. When possible, use formulas to save memory
space, increase speed, and efficiency, and to systematize output.

LESSON 28

Cash Flow

Double subscripted arrays were introduced in Lesson 14. In that lesson, a
business program was presented that accepted inputs of gross income and
expenses and produced outputs of net income and column totals.

Double subscripted arrays may be thought of as an arrangement of
numbers in rows and columns. Values in a double subscripted array table
may be accessed by specifying the row and column of the array. For
example, CF(2,3) accesses the value stored in row 2, column 3, of the CF
array. The size of the table is determined by the DIMension statement. Each
element of the table can be manipulated as if it were a simple variable. Each
element of the table can be operated on by the arithmetic operators.

The cash flow program (Fig. 28-1) does an analysis of an investment in in
come producing property to assist a potential buyer to determine if the pur
chase will be profitable. Information concerning the value of the property,
loan amount, length of loan, interest rate, net operating income, cash
equity, and personal income, are entered (Fig. 28-2). The data entered is
processed by the program (Fig. 28-3). The program outputs financial
information and ratios to aid in the decision whether to purchase the prop
erty (Fig. 28-4). The cash flow program was written to be used as a valid
investment tool. It was written according to accounting and real estate
guidelines.

10 REM: CASH FLOW PROGRAM TO
20 REM: DETERMINE INVESTMENT
30 REM: YIELDS ON INCOME PROP-
40 REM: ERTY:::COPYWRITED 1980
50 REM : BRIAN D. BLACKWOOD AND
60 REM: GEORGE H. BLACKWOOD
70 REM: 7020 BURLINGTON
80 REM: BEAUMONT, TEXAS 77706
90 REM: 713-866-6141
140 DEF FN R(Z) = (INT (Z * 1000 + .5) I 1000)
145 DEF FN A(X) = INT «X) + .5)

Fig. 28-1. Cash flow program and run.

228

1

1 ,
3

1 ,
1

1 ..
'J
}

1
1

1
1

r
r
r
r
r
r

r
r
r
r
r
r
r
r
r

CASH' FLOW 229

150 DIM Hl$(15),NUM(2),H4(15,l)
160 HOME: VTAB 3
200 Hl$ = "NET OP INC LOAN VAL INT RATE LOAN LEN"
210 PRINT Hl$
220 VTAB 4: INPUT" ";NOI: VTAB 4: HTAB 12: INPUT" ";PV: VTAB 4:

HTAB 23: INPUT" ";1: VTAB 4: HTAB 33: INPUT" ";LL
240 H2$ = "ASSET COST ASSET LIFE SALVAGE VALUE": VTAB 5: PRINT H2$
245 VTAB 6: HTAB 1: INPUT" ";CA
250 VTAB 6: HTAB 15: INPUT" ";LA: VTAB 6: HTAB 26: INPUT" ";SV
255 DIM CF(LL + 1,14)
260 H3$ = "RATE OF DEP YRL Y INCOME CASH EQUITY"
270 VTAB 7: PRINT H3$
280 VTAB 8: HTAB 4: INPUT" ";RD : VTAB 8: HTAB 14: INPUT" ";iYI:

VTAB 8: HTAB 26: INPUT" ";CE
290 IF I> = 1 THEN I = 1/100 : GOTO 290
292 IF RD < 1 THEN RD = 100
310 GOSUB 8000
320 DP = 1 / LA:DEP = (RD / 100) * DP:BV = CA - SV:TB = BV
360 CF(1,8) = 0:CF(l,9) = O:NE = YI:CF(O,14) = O:J = 1: GOSUB 7000
365 CF(O,14) = IRS
370 GOSUB 9000
380 AN = PV / OF: FOR J = 1 TO LL
385 CF(J,2) = NOI
390 11 = PV * I:CF(J,3) = 11
395 CF(LL + 1,3) = CF(LL + 1,3) + CF(J,3)
410 PR = AN - 11:CF(J,4) = PR
415 CF(LL + 1,4) = CF(LL + 1,4) + CF(J,4)
420 BR = PV - PR:PV = BR
425 REM: COMPUTE CASH FLOW
430 CF(J,5) = CF(J,2) - (CF(J,3) + CF(J,4»
435 CF(LL + 1,5) = CF(LL + 1,5) + CF(J,5)
462 01 = TB * DEP .
464 CF(J,6) = 01
466 CF(LL + 1,6) = CF(LL + 1,6) + CF(J,6)
470 TB = TB - 01
500 CF(J,7) = CF(J,3) + CF(J,6)
505 (F(LL + 1,7) = CF(LL + 1,7) + CF(J,7)
520 CF(J,8) = CF(J,2) - CF(J,7)
523 IF CF(J,8) < 0 THEN CF(J,8) = 0
525 CF(LL + 1,8) = CF(LL + 1,8) + CF(J,8)
540 CF(J,9) = CF(J,2) - CF(J,7)
545 CF(J,9)= (SGN (CF(J,9» - 1) * CF(J,9) /2
547 CF(LL + 1,9) = CF(LL + 1,9) + CF(J,9)
560 CF(J,10) = CF(J,8) * CF(J - 1,14)
565 CF(LL + 1,10) = CF(LL + 1,10) + CF(J,10)
580 CF(J,ll) = CF(J,9) * CF(J - 1,14)
585 CF(LL + 1,11) = CF(LL + 1,11) + CF(J,ll)
590 CF(J,O) = YI + CF(J,10) - CF(J,ll)
595 NE =·YI + CF(J,10) - CF(J,ll) : GOSUB 7000:CF(J,14) = IRS
600 CF(J,12) = CF(J,5) + CF(J,ll) - CF(J,10)

Fig.28-1-cont. Cash flow program and run.

230 APPLESOFT FOR THE lie

610 CF(LL + 1,12) = CF(LL + 1,12) + CF(J,12)
660 CF(J,13) = CF(J,12) + CF(J,4)
670 CF(LL + 1,13) = CF(LL + 1,13) + CF(J,13): NEXT J:CF(LL + 1,2) =

CF(1,2) * LL
675 CF(J,14) = IRS
680 VTAB 9: INPUT "YRS OWNED=";YO
690 IF YO = ° THEN 900
695 IF YO < 1 OR YO > LL THEN 680
697 VTAB 9: CALL -958
700 FOR K = 3 TO 13
710 CF(O,K) = °
720 FOR J = 1 TO YO
730 CF(O,K) = CF(O,K) + CF(J,K)
740 NEXT J,K
750 CF(0,2) = YO * CF(1,2)
760 IRS = CF(YO,14)
770 NE = CF(YO,O)
780 VTAB 9: PRINT "YRS OWNED = ";YO; TAB(16);"END INC=";

FN A(CF(YO,O»;"(";IRS;")"
810 VTAB 11: HTAB 16: PRINT YO;" YR TOT ";YO:"YR AV";

TAB(35); "YIELD"
820 VTAB 12: PRINT "CASH FLOW"; TAB(18); FN A(CF(0,5»; TAB (28);

FN A(CF(0,5) I YO); TAB(35); FN R(CF(0,5) I (YO * CE)
830 VTAB 14: PRINT "TAX SAV'S"; TAB(11); FN A(CF(0,11»
840 VTAB 16: PRINT "TAX PAY"; TAB(11); FN A(CF(0,10»; TAB(19);

FN A(CF(O, 11) - CF(O, 1 0»
850 VTAB 18: PRINT "CASH BENEFITS"; TAB(18); FN A(CF(O, 12»; TAB(28);

FN A(CF(O, 12) I YO); TAB(35); FN R(CF(0,12) I (YO * CE»
860 VTAB 19: PRINT "ADD:PRINCIPAL"; TAB(18); FN A(CF(O,4»
870 VTAB 21: PRINT "TOTAL CASH AND"
880 VTAB 22: PRINT "AMORTIZATION"; TAB(18); FN A(CF(O, 13»; TAB(28);

FN A(CF(O,13) I YO); TAB(35); FN R(CF(O,13) I (YO * CE»
890 GOTO 680
900 H1$(0) = "0.INCOME":H4(0,0) = 6:H4(0,1) = 0:H1$(1) = " 1.TAX

PAYABLE":H4(1,0) = 3:H4(1,1) = 7
910 H1$(2) = " 2.NET OP INCOME":H4(2,0) = 6:H4(2,1) = 6:H1$(3) =

" 3.1NTEREST":H4(3,0) = 8:H4(3,1) = °
920 H1 $(4) = " 4.PRINCIPAL":H4(4,0) = 9:H4(4,1) = 0:H1 $(5) = " 5.CASH

FLOW":H4(5,0) = 4:H4(5,1) = 4
930 H1$(6) = "6.TOT DEPRECIATION ":H4(6,0) = 9:H4(6,1) = 7:H1$(7) =

" 7.INC TAX DEDUCTS":H4(7,0) = 7:H4(7,1) = 7
940 H1$(8) = "8.TAXABLE INC.":H4(8,0) = 7:H4(8,1) = 4:H1$(9) = "

9.TAXABLE LOSS":H4(9,0) = 7:H4(9,1) = 4
950 H1$(10) = "10.TAX PAYABLE":H4(10,0) = 3:H4(10,1) = 7:H1$(11) =

"11.TAX SAVINGS":H4(11,0) = 3:H4(11,1) = 7
960 H1$(12) = "12.CASH AVAILABLE":H4(12,0) = 4:H4(12,1) = 9:H1$(13) =

"13.TOTAL BENEFITS":H4(13,0) = 5:H4(13,1) = 8
965 H1$(14) = "14.TAX BRACKET":H4(14,0) = 3:H4(14,1) = 7:H1$(15) =

"15.ANNUAL PAYMENT":H4(15,0) = 6:H4(15,1) = 7
970 CALL -936: HTAB 14: PRINT "TABLE LlSTING":PRINT: PRINT "ENTER 3

Fig.28·1-cont. Cash flow program and run.

1'·.·.' 1

1

1
1
1
1
1

,
j ,
j

1

1

r
r
r
r
r

r

r
r
r
r
r

CASH FLOW 231

COLUMN VALUES FOR TABLE PRINT"
980 FOR J = 0 TO 14 STEP 2: PRINT Hl$(J); TAB(19);Hl$(J + 1): NEXT J:

PRINT
990 FOR N = 0 TO 2: PRINT "COLUMN ";N + 1;" = ";: INPUT NUM(N):

IF NUM(N) < 0 OR NUM(N) > 15 THEN 1010
'1000 NEXT N
1010 N = N - 1: IF N < 0 THEN 3000
1020 FOR L = 1 TO LL
1030 IF L < > INT ((L - 1) / 15) * 15 + 1 THEN 1080
1040 IF L < > 1 THEN INPUT "''';A$
1050 CALL -936: PRINT "YEARS";: FOR J = 0 TO N: HTAB (J + 1) * 10:M

= NUM(J): PRINT MID$(H1$(M),4,H4(M,0»;: NEXT J: PRINT
1060 FOR J = 0 TO N: HTAB (J + 1) * 10:M = NUM(J): IF H4(M, 1) > 0

THEN PRINT RIGHT$ (Hl$(M),H4(M, 1»;
1070 NEXT J: PRINT: PRINT
1080 PRINT L;: FOR J = 0 TO N
1090 HTAB (J + 1) * 10:M = NUM(J): IF M = 14 THEN 1110
1095 IF M < > 15 THEN 1100
1096 PRINT FN A(AN);: GOTO 1120
1100 PRINT FN A(CF(L,M»;: GOTO 1120
1110 PRINT FN R(CF(L,M»;
1120 NEXT J: PRINT: NEXT L
1130 INPUT "''';A$: GOTO 970
3000 END
7000 RESTORE
7010 BS = 0
7020 READ UL,BF,IRS
7030 IF NE > = UL AND UL < > 0 THEN BS = UL: GOTO 7020
7040 CF(J,14) = IRS
7050 CF(J,l) = BF + CF(J - 1,14) * (CF(J,O) - BS)
7100 DATA 3400,0,0
7110 DATA 5500,0,.14
7120 DATA 7600,294,.16
7130 DATA 11900,630,.18
7140 DATA 16000,1404,.21
7150 DATA 20200,2265,.24
7160 DATA 24600,3273,.28
7170 DATA 29900,4505,.32
7180 DATA 35200,6201,.37
7190 DATA 45800,8162,.43
7200 DATA 60000,12720,.49
7210 DATA 85600,19678,.54
7220 DATA 109400,33502,.59
7230 DATA 162400,47544,.64
7240 DATA 215400,81464,.68
7250 DATA 0,117504,.70
7900 RETURN
8000 FOR J = 3 TO 13
8010 CF(LL + 1,J) = 0
8020 NEXT J

Fig.28·1-cont. Cash flow program and run.

232 APPLESOFT FOR THE lie

8030 RETURN
9000 FOR J = 1 TO LL
9010 DF = DF + 1/(1 + l)tJ
9020 NEXT J
9030 RETURN

RUN

NET OP INC LOAN VAL INT RATE LOAN LEN

80000
600000

12
25

ASSET COST ASSET LIFE SALVAGE VALUE

80000
40

50000

RATE OF DEP YRLY INCOME CASH EQUITY

200
40000

200000

YRS OWNED=1
YRS OWNED=1 END INC=28495(.29)

1 YR TOT 1 YRAV

CASH FLOW 3500 3500

TAX SAV'S 11505
TAX PAY 0 11505

CASH BENEFITS 15005 15005

ADD:PRINCIPAL 4500
TOTAL CASH AND
AMORTIZATION 19505 19505

YRS OWNED=2
YRS OWNED=2 END INC=32145(.33)

2 YRTOT 2YRAV

CASH FLOW 7000 3500

TAX SAV'S 19360
TAX PAY 0 19360
CASH BENEFITS 26360 13180

ADD:PRINCIPAL 9540
TOTAL CASH AND
AMORTIZATION 35900 17950

YRS OWNED= 10
YRS OWNED= 10 END INC=37014(.39)

10 YR TOT 10 YR AV

CASH FLOW 35000 3500

TAX SAV'S 63463
TAX PAY 0 63463
CASH BENEFITS 98463 9846

Fig.28-1-cont. Cash flow program and run.

YIELD
.018

.075

.098

YIELD
.018

.066

.09

YIELD
.018

.049

,
1
1
1
1
1 ,

9

1

,
j

1 ,
1

1; ~'

1
1

r
r CASH FLOW 233

ADD:PRINCIPAL 78969
TOTAL CASH AND

r AMORTIZATION 177432 17743 .089
YRS OWNED=20
YRS OWNED=20 END INC= 52367(.44)

20 YR TOT 20 YR AV YIELD
(iIiiI CASH FLOW 70000 3500 .018

! TAX SAV'S 66253
TAX PAY 44386 21867
CASH BENEFITS 91867 4593 .023 r ADD:PRINCIPAL 324235
TOTAL CASH AND
AMORTIZATION 416102 20805 .104
YRS OWNED=O

r TABLE LISTING
ENTER 3 COLUMN VALUES FOR TABLE PRINT

O. INCOME 1. TAX WIO INVEST
2. NET OP INCOME 3. INTEREST

r 4. PRINCIPAL 5.CASH FLOW
6. TOT DEPRECIATION 7. INC TAX DEDUCTS
8. TAXABLE INC. 9. TAXABLE LOSS

10. TAX WITH INVEST 11. TAX SAVINGS r 12. CASH AVAILABLE 13. TOTAL BENEFITS
14. TAX BRACKET 15. ANNUAL PAYMENT

COLUMN 1 = ?O

r COLUMN 2 = ?1
COLUMN 3 = ?2

TAXWIO NETOP
YEARS INCOME INVEST INCOME

r 1 28495 5556 80000
2 32145 6225 80000
3 31849 6217 80000
4 32631 6475 80000

r 5 33412 6733 80000
6 34197 6992 80000
7 34989 7253 80000
8 35796 7520 80000
9 36008 7638 80000 r 10 37014 8031 80000

11 38059 8438 80000
12 39151 8864 80000
13 40300 9312 80000 r 14 41515 9786 80000
15 42810 10291 80000

r TAX WIO NETOP
YEARS INCOME INVEST INCOME

16 44195 10831 80000

r Fig.28-1-cont. Cash flow program and run.

r-
l

l
234 APPLESOFT FOR THE lie l

17 45687 11413 80000
18 47300 12042 80000
19 50212 13398 80000 ,
20 52367 14346 80000 ,
21 54725 15384 80000
22 57312 16522 80000
23 60160 17775 80000 ..,
24 65950 20621 80000 ! 25 69818 22516 80000

TABLE LISTING l ENTER 3 COLUMN VALUES FOR TABLE PRINT
O. INCOME 1. TAX WIO INVEST
2. NET OP INCOME 3. INTEREST , 4. PRINCIPAL 5. CASH FLOW
6. TOT DEPRECIATION 7. INC TAX DEDUCTS
8. TAXABLE INC. 9. TAXABLE LOSS

10. TAX WITH INVEST 11. TAX SAVINGS

l 12. CASH AVAILABLE 13. TOTAL BENEFITS
14. TAX BRACKET 15. ANNUAL PAYMENT
COLUMN 1 = 73
COLUMN 2 = 74 1 COLUMN 3 = 75

CASH ,
YEARS INTEREST PRINCIPAL FLOW

1 72000 4500 3500 1 2 71460 5040 3500
3 70855 5645 3500
4 70178 6322 3500
5 69419 7081 3500 l 6 68569 7931 3500
7 67618 8882 3500
8 66552 9948 3500
9 65358 11142 3500

1 10 64021 12479 3500
11 62524 13976 3500
12 60847 15653 3500
13 58968 17532 3500

1 14 56864 19636 3500
15 54508 21992 3500 -~

CASH l YEARS INTEREST PRINCIPAL FLOW
16 51869 24631 3500
17 48913 27587 3500
18 45603 30897 3500 l 19 41895 34605 3500

Fig.28-1-cont. Cash flow program and run. 1
,.,
1

r
r CASH FLOW 235

20 37743 38757 3500
21 33092 43408 3500 r 22 27883 48617 3500
23 22049 54451 3500
24 15515 60985 3500
25 8196 68304 3500 r TABLE LISTING

ENTER 3 COLUMN VALUES FOR TABLE PRINT

r O. INCOME 1. TAX W/O INVEST
2. NET OP INCOME 3. INTEREST
4. PRINCIPAL 5. CASH FLOW
6. TOT DEPRECIATION 7. INC TAX DEDUCTS

r 8. TAXABLE INC. 9. TAXABLE LOSS
10. TAX WITH INVEST 11. TAX SAVINGS
12. CASH AVAILABLE 13. TOTAL BENEFITS
14. TAX BRACKET 15. ANNUAL PAYMENT

r COLUMN 1 = 71
COLUMN 2 = 710
COLUMN 3 = 713

TAX W/O TAX WITH TOTAL

r YEARS INVEST INVEST BENEFITS
1 5556 0 19505
2 6225 0 16395
3 6217 0 17295 r 4 6475 0 17191
5 6733 0 17169
6 6992 0 17234
7 7253 0 17393 r 8 7520 0 17652
9 7638 0 18634

10 8031 0 18964
11 8438 0 19417

r 12 8864 0 20002
13 9312 300 20732
14 9786 1515 21620
15 10291 2810 22682

r TAX W/O TAX WITH TOTAL
YEARS INVEST INVEST BENEFITS

r 16 10831 4195 23936
17 11413 5687 25400
18 12042 7300 27097
19 13398 10212 27893
20 14346 12367 29890 r 21 15384 14725 32184
22 16522 17312 34805

r fig.28-1-cont. Cash flow program and run.

r

236 APPLES OFT FOR THE lie

23 17775
24 20621
25 22516

20160
25950
29818

37791
38535
41985

TABLE LISTING
ENTER 3 COLUMN VALUES FOR TABLE PRINT
o. INCOME 1. TAX WIO INVEST
2. NET OP INCOME 3. INTEREST
4. PRINCIPAL 5. CASH FLOW
6. TOT DEPRECIATION 7. INC TAX DEDUCTS
8. TAXABLE INC. 9. TAXABLE LOSS

10. TAX WITH INVEST 11. TAX SAVINGS
12. CASH AVAILABLE 13. TOTAL BENEFITS
14. TAX BRACKET 15. ANNUAL PAYMENT

COLUMN 1 = 7
7REENTER
7-1

Fig.28-1-cont. Cash flow program and run.

The cash flow program demonstrates the power of the double subscripted
array by producing twenty· five rows (25 years is the length of the loan, in
this example) and fourteen columns. Fig. 28·3 shows six rows and fourteen
columns of the cash flow problem. The columns are J, 1 through J, 14.
Columns within the array are operated on to produce other columns. The
cash flow column (CF(J,5)) is produced by subtracting the amortized princi·
pal (CF(J,4)) and the yearly interest (CF(J,3)) from the net operating income
(CF(J,2)).

PURCHASE PRICE
LAND 50,000
BUILDING 750,000
TOTAL PURCHASE PRICE 800,000
SALVAGE VALUE 50,000
CASH EQUITY 200,000

NET OPERATING INCOME 80,000 per year
OUTSIDE INCOME 40,000 per year
MORTGAGE

LIFE OF THE LOAN 25 years
INTEREST RATE 12 %
ANNUAL PAYMENTS (INTEREST & PRINCIPAL) 76,500

DEPRECIATION
LIFE OF THE BUILDING 40 years
DEPRECIATION METHOD 200 % double declining

.balance

Fig. 28·2. Cash flow and tax benefits of investment property ownership.

1

1
1

1

.,
'I
j

1
1
1
1
1

r
r CASH FLOW 237

NET AMORTI- TOTAL
OPERATING ZATION CASH TOTAL DEDUC-r YEAR INCOME INTEREST PRINCIPAL FLOW DEPRECIAT. TIONS
J,2 J,3 J,4 J,5 J,6 J,7

1 8,000 72,000 4,500 3,500 35,000 107,000
2 8,000 71,460 5,040 3,500 33,250 104,710 r 3 8,000 70,855 5,645 3,500 31,588 102,443
4 8,000 70,178 6,322 3,500 30,008 100,186
5 8,000 69,419 7,081 3,500 28,508 97,927

r TOTALS 40,000 353,912 28,588 17,500 158,354 512,266

\ CASH
AVAILABLE

r AFTER TOTAL
MORT- CASH &
GAGE AMORTI-

TAXABLE TAX TAX TAX & TAX ZATION TAX

r INCOME LOSS PAYABLE SAVINGS BENEFIT BENEFITS BRACKET
J,8 J,9 J,10 J,11 J,12 J,13 J,14

0 27,000 0 11,610 15,110 19,610 .32
0 24,710 0 7,907 11,407 16,447 .37

r 0 22,443 0 8,304 11,804 . 17,449 .37
0 20,186 0 7,469 10,969 17,291 .37
0 17,927 0 6,633 10,133 17,214 .37

0 122,266 0 41,923 59,423 88,011

r Fig. 28-3. Cash flow input information.

r CF(J,5) = CF(J,2) - (CF(J,3) + CF(J,4»

Net operating income is entered into the variable NOI, and an assignment

r
statement places the net operating income into CF(J,2).

CF(J,2) = NOI

r 10 YR. 10 YR.
SUMMARY OF CASH & BENEFITS TOTAL AVG. YIELD
CASH FLOW (BEFORE INCOME

TAX EFFECT) 35,000 3,500 .018

r TAX SAVINGS +63,023
TAX PAYABLE - 0

SUB TOTAL 63,023
TOTAL CASH BENEFITS AFTER TAXES 98,023 9,802 .049

r ADD PRINCIPAL PAID ON MORTGAGE 78,969
TOTAL CASH & AMORTIZATION BENEFITS 176,992 17,699 .088

AFTER TAXES

r Fig. 28-4. Summary of cash and tax benefits.

r

238 APPlESOFT fOR THE lie

The variables used as they appear in the program follow.

Hl$ Header.
H2$ Header.
H3$ Header.
NOI Net operating income.
PV Amount of the loan.
I Rate of interest.
LL Life of the loan.
CA Cost of the asset.
LA Life of the asset.
SV Salvage value of the asset.
CF Cash flow array variable.
RD Rate of depreciation.
YI Your personal income outside of what the property will

CE
DF

DP
DEP
RD
BV
TB
NE
RESTORE

BS
UL

BF

IRS

J - K
AN
CF(J,2)
CF(LL +

11
CF(J,3)
CF(LL +

1,2)

1,3)

generate.
Cash equity - the down payment on the property.
The discount factor to determine the annual payment
of the loan.
lILA is the depreciation factor.
Depreciation per year - (RDIlOO)*DP.
Rate of depreciation.
Book value of the asset.
Total book value of the asset.
Net income.
Allows values in the data table to be reused without
having to reRUN the program.
A base from which the income tax is computed.
The upper limit of the tax range. The first value in the
data statement.
The base figure is the amount of tax that must be paid
in a specific tax bracket. The second value in the data
statement.
The tax bracket of the investor. The third value in the
data statement.
Loop variables.
Annual payment on the loan.
Used to store the value of the net operating income.
Used to store the total value of the net operating in
come.
Yearly interest.
Used to store the value of the yearly interest.
Total interest paid during the life of the loan.

1

1
1
1

1
1 ,

3

11.'.', I.

1
1
1

r CASH FLOW 239

PR Principal value paid on the loan.

r CF(J,4) Principal value paid on the loan is stored in this ele-
ment.

CF(LL + 1,4) Total principal paid on the loan.
BR Balance remaining on the loan.
CF Variable for the cash flow array.
CF(J,5) Element that holds the cash flow values.
CF(LL + 1,5) Used to hold the total value of the cash flow.
01 Total depreciation for one year.
CF(J,6) Element that holds the depreciation.
CF(LL + 1,6) Total depreciation for the period analyzed.
TB Total book value.
CF(J,7) Total deductions - interest and depreciation.
CF(LL + 1,7) Total deductions for the period analyzed.
CF(J,8) Taxable income.

r CF(LL + 1,8) Total taxable income.
CF(J,9) Tax loss.
CF(LL + 1,9) Total taxable loss.

r CF(J,10) Tax payable.
CF(LL + 1,10) Total tax payable for the period analyzed.
CF(J,l1) Tax savings.

r
CF(LL + 1,11) Tax savings for the period analyzed.
CF(J,O) Yearly tax payable - CF(J,O) - CF(J,II).
CF(J,12) Cash available after mortgage payments and payment

of income tax.
CF(LL + 1,12) Total of the cash available after the mortgage pay-

ments and income tax effect for the period analyzed.
CF(J,13) Total cash and amortization benefits after taxes.

r CF(LL + 1,13) Total of cash and amortization benefits after taxes for
the period analyzed.

CF(J,14) Holds the tax bracket of the investor for the specific
year.

r YO Years owned.
HI $(0) See Fig. 28-7.
Hl$(15) See Fig. 28-7.
H4(O,0) See Fig. 28-7.
H4(15,1) See Fig. 28-7.
NUM(J) Number of columns to be printed.
N Number of the column. r M = NUM(J) Loop variable J, placed in array NUM, stored in the

variable M.

r

240 APPLESOFT FOR THE lie

Following are shown the same variables, but in alphabetical order.

AN
BF

BR
BS
BY
CA
CE
CF
CF(J,O)
CF(J,2)
CF(LL + 1,2)

CF(J,3)
CF(LL + 1,3)
CF(J,4)

CF(LL + 1,4)

CF(J,5)
CF(LL + 1,5)
CF(J,6)
CF(LL + 1,6)
CF(J,7)

CF(LL + 1,7)

CF(J,8)
CF(LL + 1,8)

CF(J,9)
CF(LL + 1,9)

CF(J,10)
CF(LL + 1,10)

CF(J,l1)
CF(LL + 1,11)

Annual payment on the loan.
The base figure is the amount of tax that must be paid
in a specific tax bracket. The base figure plus the
bracket percentage over the base figure.
Balance remaining on the loan.
A base from which the income tax is computed.
Book value of the asset.
Cost of the asset.
Cash equity - the down payment on the property.
Cash flow array variable.
Yearly tax payable - CF(J,O) - CF(J,ll).
Used to store the value of the net operating income.
Used to store the total value of the net operating
income.
Used to store the value of the yearly interest.
Total interest paid during the life of the loan.
Principal value paid on the loan is stored in this ele
ment of the table.
Total principal paid on the loan. At the end of the pro
gram this value should be equal to the original loan
value.
This element of the table holds the cash flow values.
Used to hold the total value of the cash flow.
Element that holds the depreciation.
Holds the total depreciation for the period analyzed.
Holds the value of the total deductions - interest and
depreciation.
Holds the total value of the deductions for the period
analyzed.
Stores the value of the taxable income.
Holds the total value of the taxable income for the
period analyzed.
Holds the value of the tax loss.
Holds the total value of the tax loss for the period
analyzed.
Holds the value of the tax payable.
Holds the total value for the tax payable for the period
analyzed.
Holds the value of the tax savings.
Holds the total value of the tax savings for the period
analyzed.

1
1 ,

1
1

,
j

1
1
1
1
l
1
1
l

r

r

r
c

r

[

r
r

CF(J,12)

CF(LL + 1,12)

CF(J,13)
CF(LL + 1,13)

CF(J,14)
DEP
DF

DP
D1
H1$
HI $(0)
HI $(15)
H2$
H3$
H4(O,O)
H4(15,l)
I
11
IRS

J-K
LA
LL
M NUM(J)

N
NE
NOI
NUM(J)
PR
py
RD
RESTORE

SY
TB
UL

CASH FLOW 241

Cash available after mortgage payments and income
tax.
Holds the total value of the cash available for the
period analyzed.
Total cash and amortization benefits after taxes.
Total cash and amortization benefits for the period
analyzed.
Holds the tax bracket of the investor for a specific year.
Depreciation per year - (RDIlOO)*DP.
The discount factor is used to determine the annual
payment on the loan.
The depreciation factor - liLA.
Total depreciation for one year.
Header.
See Fig. 28-7.
See Fig. 28-7.
Header.
Header.
See Fig. 28-7.
See Fig. 28-7.
Rate of interest.
Yearly interest.
The tax bracket of the investor. The third value in the
data statement.
Loop variables.
Life of the asset.
Life of the loan.
Loop variable J, placed in the array NUM, and stored in
the variable M.
Number of the column to be printed.
Net income.
Net operating income.
Number of columns to be printed.
Principal value remaining on the loan.
Principal value of the loan.
Rate of depreciation.
Allows the values in the data statements to. be reused
without having to reRUN the program.
Salvage value of the asset.
Total book value of the asset.
The upper limit of the tax range. The first value in the
data statement.

242 APPlESOFT FOR THE lie

YI

YO

Your personal income outside what the property will
generate.
Years owned.

The double declining balance depreciation constant is computed in line
320, and applied to the remaining depreciation (line 462) as each year is
incremented during the life of the loan loop.

There are three subroutines in the program. Line 310 calls the subroutine
at line 8000. Line 370 calls the subroutine at line 7000. Line 370 calls the
subroutine at line 9000.

The subroutine at 'line 7000 sets the RESTORE command so the values in
the OAT A table can be reused on each life of the loan loop execution. The
income base (BS = 0) is set to zero in order to be able to use the tax table.
The tax table selected is the 1982 IRS tax table for married couples filing
jointly. Line 7020 reads the first value in the tax table as the upper limit (UL)
of the tax range, the second value as the base figure for tax payment in that
bracket (BF), and the third value as the tax bracket (IRS).

Line 7030 tests to determine where net income (NE) is equal to or greater
than the upper limit of the tax table and when the upper limit is not equal to
zero (0). If this is true, then the entry in the table needed to compute the tax
has not been located, and the program goes back to read the next entry.

Line 7040 assigns the income tax bracket rate (IRS) to CF(J,14) so the tax
bracket can be printed out in table form.

'Line 7050 computes the tax that would be paid to the IRS if the invest
ment is not made.

Lines 7100 through 7220 compute the tax consequences for each year of
the life of the loan, so the potential buyer can determine the profitability of
ownership. The program computes the tax consequences on personal in
come in two cases, (1) with ownership of the property, and (2) without
ownership of the property. See the run of the program in Fig. 28-1.

The subroutine that begins at line 8000 zeros out the total line of the
table. Only columns three through thirteen are to hold computations (FOR
J = 3 TO 13). The totals are to be placed in the row below the last row in the
table (LL + 1). The life of the loan variable (LL) is incremented by one (LL +
1), so the totals line is always related to the life of the loan.

The subroutine that begins at line 9000 computes the discount factor
(OF). The annual payment is equal to the loan amount divided by the dis
count factor (AN = PV / OF).

The discount factor is computed using the life of the loan (FOR J = 1 TO
LL). The inverse of one (1) plus the interest rate (1/(1 + I» is raised to the
power of the loop variable (1 / (1 + I) t J) (1 + I raised to the J power). This
value is computed yearly and is summed on each execution of the loop and
the value is placed in the discount factor (OF) variable.

1

1
1
1
1
1
1
1

1 .>

1
l
1 ,
1

r
r
r

r

r

r
r
r
r

CASH FLOW 243

Lines 380 through 670 are the life of the loan loop that computes the rows
and columns in the cash flow array.

After the table is generated, which takes about sixty (60) seconds on a
twenty-five year loan, the program defaults to line 780. Line 780 requests
the user to enter the years owned. This entry allows the user to view the cash
benefits, tax benefits, and ratios for periods of one year. This table can be
displayed for each year of the life of the loan. This output helps the user
determine which period of holding time results in the greatest profit.

If zero (0) is entered after YRS OWNED =, the program branches to the
menu at line 900 to print out the individual columns of the table.

The menu selections and headings for the tables are set up in lines 900
through 965. This ingenious method uses single subscripted string arrays to
hold the column header, and double subscripted numeric arrays to hold the
number of spaces in the first and second lines of the headers (Figs. 28-5,
28-6, and 28-7). HI $ (0 through 15) holds the menu selection headings of
each column. The string arrays and the numeric arrays are related. The first
subscript in the numeric array relates to the string array, and the second
subscript relates to the line of the header. Some of the two line headers are

LENGTH LENGTH OF
H1$ 1st LINE 2nd LINE 1st LINE 2nd LINE

H1$(0)=" O.INCOME" INCOME NONE H4(0,0) = 6 H4(0,1)=0
H1$(1)=" 1.TAX PAYABLE" TAX PAYABLE H4(1 ,0) = 3 H4(1, 1) = 7
H1$(2)=" 2.NET OP

INCOME" NET OP INCOME H4(2,0) =6 H4(2, 1)= 6
H1$(3)=" 3.INTEREST" INTEREST NONE H4(3,0) =8 H4(3,1) =0
H1$(4)=" 4.PRINCIPAL" PRINCIPAL NONE H4(4,0) = 9 H4(4, 1) = °
H 1 $(5) =" 5.CASH FLOW CASH FLOW H4(5,0) =4 H4(5,1)=4
H1$(6)=" 6.TOT

DEPRECIATION"TOT DEPRECIATION H4(6,0) = 9 H4(6,1)=7
H1$(7)=" 7.INC TAX

DEDUCTS" INC TAX DEDUCTS H4(7,0) = 7 H4(7, 1) = 7
H 1 $(8) =" 8. TAXABLE INC." TAXABLE INC. H4(8,0) = 7 H4(8, 1) =4
H 1 $(9) =" 9. TAXABLE LOSS" TAXABLE LOSS H4(9,0) = 7 H4(9,1)=4

H1$(10)="10.TAX PAYABLE" TAX PAYABLE H4(10,0)=3 H4(10,0)=7
H1$(11)= "ll.TAX SAVINGS" TAX SAVINGS H4(11 ,0) = 3 H4(11 ,1) = 7
H1$(12)= "12.CASH

AVAILABLE" CASH AVAILABLE H4(12,0)=4 H4(12,1)=9
H1$(13)= "13.TOTAL

BENEFITS" TOTAL BENEFITS H4(13,0) = 5 H4(13,1)=8
H1$(14)="14.TAX BRACKET" TAX BRACKET H4(14,0) = 3 H4(14,1)=7
H1 $(15) = "15.ANNUAL

PAYMENT" ANNUAL PAYMENT H4(15,0) =6 H4(15,1)=7

THE 1st ALPHA CHARACTER OF H1$(?) IS ALWAYS THE
4th CHARACTER OF THE HEADER

Fig. 28-5. Header construction.

244 APPLESOFT FOR THE lie

incorrectly separated, as in line 930 (Fig. 28-5) but they produce the correct
results.

The logic of the algorithm stores the values to indicate a one line header
(H4«O,O) = 6: H4(O,l) = 0), or a two line header (H4(5,0) = 4: H(5,1) = 4),
and indicates how many characters and spaces are contained in the first line
and how many characters and spaces are contained in the second line, Figs.
28-6 and 28-7.

H1$(O)= "O.INCOME"-------------------------HEADER STRING ARRAY
H4(O,O) = 6--------------------------------------SIX CHARACTERS IN THE FIRST LINE
H4(O, 1)=O-------------------------------------ZERO CHARACTERS IN THE SECOND LINE

After all fifteen values are set for the menu, line 970 clears the screen
(CALL -936) and prints TABLE LISTING and ENTER 3 VALUES FOR
TABLE PRINT.

Line 980 prints out the menu selection. Line 990 sets up a loop to output
to the screen three columns (0-2). The user enters the number of the
column in a single subscripted array and the array is checked to determine
if the value is between one (1) and fifteen (15). If the number is not between
one and fifteen, the program jumps out of the loop to line 1010.

In line 1010, N = N - 1 : IF N < 0 THEN 3000, the value of N is decre
mented to produce the correct value of N. When the program jumps out of
the loop, the loop value is one more than the correct value. To produce the
correct value of N, one must be subtracted. Determining the correct value
of the loop variable was discussed in Lesson 8.

H1$(5)=" 5.CASH FLOW" HEADER STRING ARRAY
/RELATES TO THE FIRST LINE OF THE HEADER

H4(5.0)= 4

>RElATES TO Hl$(S)

H4(5.1)=4

~ELATES TO THE SECOND LINE OF THE HEADER

Fig. 28-6_ Header detail.

l
....,
1

1
l
l

l
1
1
l

1
l
l
1
l

r
r
r
r
r

r

r

r

r
r

4th~$(5) AND ALL Hl$(')',

Hl$(5)=" 5.CASH FLOW"

CASH FLOW 245

'" UNE OF HEADER/" ~2nd LINE OF HEADER

\ /
H4(5'O~ /",)=4

RELATED TO Hl$(5)

Fig. 28·7. Header detail.

IF N < 0 THEN 3000. When the user is through working with the pro·
gram, an entry of - 1 (less than zero) causes a branch to line 3000 to end the
program.

Line 1020 is the beginning of the loop to compute the values on the table.
LL is the variable to hold the life of the loan. The only function of line 1040
is to stop the program. On the first loop pass, L = 1. The program defaults
through lines 1030, 1040, and prints the headings in lines 1050 and 1060.
On subsequent loop passes, the program branches from 1030 to 1080.
When line 1030 is false, the program defaults to line 1040. If L is not one (1)
(L = 16) the program inputs "'" and stops. This allows the user to view and
study the fifteen (15) rows of the column printed on the screen. When the
user is ready for the program to continue, RETURN is pressed.

Line 1050 (Fig. 28·8) clears the screen and prints the first line of the
column header on the screen. In line 1050, N is the variable that holds the
number of columns, and HTAB(J + 1)*10 sets the column in the correct
position on the screen. The column value is stored in the variable M.

In line 1060 (Fig. 28·9) the second line of the header is printed. N is the
variable that holds the number of columns. The value of the column is
placed in the variable M.

When the column headings have been printed, the program defaults to
line 1080 to print L, which represents the year (FOR L = 1 TO LL - LINE
1020). The second statement in line 1080, for J = 0 TO N, is the beginning
of a loop that controls the number of columns to be printed. Line' 1090 tabs
to the proper location on the screen to print the columns. M ~ NUM(J)
stores the number of the column to be printed in the variable M.

246 APPlESOFT FOR THE lie

PRINT MID$(HI$(M), 4, H4(M,O»

HEADER ARRAY

HEADER STRING 4th CHARACTER IN H1$(M)

COLUMN VALUE

RELATED TO 1st LINE OF H4(M,O)

RELATED TO H1$(M)

Fig. 28-8. Header detail.

IF H4(M, 1) > 0 THEN PRINT RIGHT1(H1$(M), H4(M,1»

/ l~ATED TO 2nd
LINE OF H4(M,1)

IF THERE IS A
2nd LINE

RELATED TO H 1 $(M)

HEADER STRING

HEADER ARRAY

COLUMN VALUE

Fig. 28-9. Header detail.

annual payment. The annual payment on the loan is computed by dividing
the amount of the loan (AN) by the discount factor (DF) (line 380).

The SGN function (Fig. 28·10) is used in line 545. The SGN function reo
turns only three values + I, 0, and - 1. These values relate to the greater

If line 1090 is true, the program branches to line 1110, to print out the
rounded (line 140) cash flow array values for row L, and column M. If M =
14 is false, the program defaults to line 1095. If line 1095 is true, the pro
gram branches to line 1100 to print out the integer function (line 145) of the
cash flow array, row L, column M. If M < > 15 is false, the program defaults
to line 1096. PRINT FN A(AN) is the integer (line 145) cash flow array of the

1

1
1
1

J

l
1
1
1

J

l
1
1

r
r
r
r
r
r

r

r
r

r

SGN FUNCTION MAKES ALL NEGATIVE NUMBERS-POSITIVE
SGN FUNCTION MAKES ALL ZERO NUMBERS-ZERO
SGN FUNCTION MAKES ALL POSITIVE NUMBERS-ZERO

TAXABLE LOSS NET OPERATING INCOME
CF(J,9) = CF(J,2) - CF(J,7)

CF(J,9) = (SGN(CF(J,9)) - 1)*CF(J,9)/2

IF CF(J,9) < 0 THEN SGN IS - 1
IF CF(J,9) = - 2000

(SGN(CF(J,9)) - 1)*CF(J,9)/2
(SGN(- 2000) - 1)* - 2000/2

(-1 -1)* -2000/2
- 2* - 200012

+4000/2
= 2000

IF CF(J,9) = 0 THEN SGN = 0
(0 - 1)* 0/2 = 0

IF CF(J,9) = + 2000 THEN SGN = + 1
(SGN(CF(J,9)) -1)* CF(J,9)/2

(+ 1 -1)* 2000/2
0* 2000/2

= 0

Fig. 28-10. Sign (SON) function.

DEDUCTIONS

CASH FLOW 247

than zero, zero, and less than zero. In this case, if the tax loss is a positive
number, SGN(CF(J,9)) = + 1, (SGN(CF(J,9)) - 1) = 0, and zero times
CF(J,9)/2 = zero (0). When the tax loss is a negative number, (SGN(CF(J,9)
- 1) = - 2. When - 2 is multiplied by a negative value, CF(J,9)/2, the fac
tor (- 2 / + 2) divides out leaving a negative value. A negative times a nega
tive is a positive value. The purpose of the SGN function is to make all nega·
tive numbers positive, leave zero as a zero, and make all positive numbers
zero. This causes the tax savings to be calculated. The SGN function is used
so a tax loss, which is a negative number, can be converted into a positive
number. The positive number is then multiplied by the previous year's tax
rate, (CF(J - 1),14)), and the results are placed in the tax savings column,
CF(J, 11). CF(J - 1,14) gives the tax rate for the previous year which is used
to compute this year's taxes. CF(J,14) gives the tax rate for the previous
year.

The cash flow program outputs financial information for a single year or a
number of years. This information assists the prospective buyer to deter
mine how the purchase will affect his or her cash flow and future net worth.
This information will aid the potential buyer whether to buy, or not to buy,
the property.

LESSON 29

Numerical Programs

QUADRA TIC FORMULAS

A polynomial is an algebraic expression consisting of two or more ra
tional or integral terms. The polynomial consists of more than one
monomial in the form ofAxn . A is a real number coefficient, X is a variable,
and n is the power (integer) to which it is raised. A polynomial in X assumes
the following form.

Anxn+ A(n_l)x(n-l) + ... A1X + Ao

Fig. 29-1 deals with a polynomial of 2nd degree, and X2 + 5X + 6 is a
specific polynomial. If a polynomial is the product of two polynomials, it
can be factored. Factoring plays a major role in the solution of a polynomial
«X + 3)(X + 2» - (X = - 3, X = - 2). However, when a 2nd degree poly
nomial cannot be easily factored, it must be solved by using the quadratic
formula.

100 REM -PROGRAM TO COMPUTE THE ROOTS OF A QUADRATIC EQUATION OF
THE FORM

110 REM -: Y = A*XA2 + B*X + C
120 REM -BY ENTERING THE VALUES A,B, AND C
130 REM -THE PROGRAM ALSO INDICATES IF THE ROOTS ARE REAL OR

"IMAGINARY"
140 REM -IF ALL THREE VALUES ARE ZERO THEN THEN PROGRAM TERMINATES
150 PRINT "ENTER 3 VALUES (A,B,C) ";
160 INPUT A,B,C
170 IF A = 0 AND B = 0 AND C = 0 GOTO 250
18001 = B A 2
190 02 = 4 * A * C
200 0 = (SQR (ABS (01 - 02))) 1(2 * A)
210 B = - B 1(2 * A)
220 IF (01 - 02) > 0 THEN GOSUB 260: GOTO 150
230 IF (01 - 02) = 0 THEN GOSUB 300: GOTO 150
240 GOSUB 330: GOTO 150
250 END

Fig. 29-1. Quadratic formula program.

248

1
l
l
1
l
l

J

1
l
1

l
l
1
l

r
[

r
r
r
r
r
r
r
r
r
r
r
r
r
r

NUMERICAL PROGRAMS 249

260 PRINT: PRINT "TWO SOLUTIONS - BOTH REAL": PRINT
270 PRINT "SOLUTION 1 = ";B + D
280 PRINT "SOLUTION 2 = ";B - D: PRINT
290 RETURN
300 PRINT: PRINT "ONE REAL SOLUTION": PRINT
310 PRINT "THE SINGLE SOLUTION = ";B: PRINT
320 RETURN
330 PRINT: PRINT "TWO SOLUTIONS - BOTH IMAGINARY": PRINT
340 PRINT "SOLUTION 1 = ";B;" + J";D
350 PRINT "SOLUTION 2 = ";B;" - J";D: PRINT
360 RETURN
RUN
ENTER 3 VALUES (A,B,C) 71,5,6

TWO SOLUTIONS - BOTH REAL

SOLUTION 1 = - 2
SOLUTION 2 = - 3

ENTER 3 VALUES (A,B,C) 71,2,1

ONE REAL SOLUTION

THE SINGLE SOLUTION = -1

ENTER 3 VALUES (A,B,C) 71,-1,12

TWO SOLUTIONS - BOTH IMAGINARY

SOLUTION 1 = .5 + J3.4278273
SOLUTION 2 = .5 - J3.4278273

ENTER 3 VALUES (A,B,C) 70,0,0

Fig. 29-1-cont. Quadratic formula program.

The quadratic formula is an equation in the form AX2 + BX + C = O. In
this expression, A, B, and C are real numbers, and A must not be zero (0).

If A is not equal to zero (0), then the roots of the equation AX2 + BX + C
o are determined by the following equation.

X = - B ± SQR(B2 - 4AC)

2A

The number B2 - 4AC which appears under the radical sign (SQR) is
called the discriminant of the quadratic equation. The discrimipant is used
to determine the nature of the roots of the quadratic equation. The nature of
the roots is determined if the discriminant is greater than zero (0), equal to
zero (0), or less than zero (0).

If B2 - 4AC> 0 (line 220 is TRUE) the equation has two real and unequal
solutions, or roots.

If B2 - 4AC = 0 (line 230 is TRUE) the equation has one real solution, or
root.

If B2 - 4AC < 0 (line 230 is FALSE) the equation has two complex solu·
tions.

250 APPLE50FT FOR THE lie

The program (Fig. 29·1) lines 180 through 210, sets up to compute the
quadratic formula in four parts. These are (1) Dl = B2, (2) D2 = 4AC, (3) D
= SQR(D 1 - D2)/(2A), and (4) B = - B/(2 * A).

The equation X2 + 5X + 6 is used to demonstrate a discriminant value
greater than zero.

When the discriminant is one (1), that is, greater than zero (l > 0), the
program branches to the subroutine that begins at line 260. The dis
criminant and base were computed in the main body of the program, and
the two solutions are printed out.

Xl = -5 + -4 = -2
2 2

X2 = - 5 -1 -6 = -3
2 2

When a polynomial takes the form X2 + 2X + 1, the discriminant, (+ 22)
- 4 * 1 * 1, is equal to zero (0), line 230. When the discriminant is equal to
zero, the program branches to the subroutine at line 300. When the dis
criminant is equal to zero, there is only one root to the equation.

Xl = - 2 + 0 = - 2 = - 1
2 2

X2 = - 2 + 0 = - 2 = - 1
2 2

In the third case, line 230 is FALSE; X2 - X + 12 = 0 causes the dis
criminant to be less than zero, ((+ 12) - 4*1 * 12) equals the SQR(- 47). The
situation of a negative square root causes the discriminant to be handled by
a special case, line 200, D = (SQR (ABS(D 1 - D2)). In case 1, the dis
criminant is greater than zero, and case 2, when the discriminant is equal to
zero, the ABS command is unnecessary. In efficient programming, a single
method should be searched for in order to calculate a value in the same way
for all cases. Thus, the D = (SQR(ABS(DI - D2)) calculates the dis-
criminant in all three cases.

When the discriminant is less than zero, there are two roots, both being
complex. Complex solutions are output in a different form than in cases 1
and 2.

The complex solution has a real part and an imaginary (bad word descrip
tion) part. To take the square root of a negative number, a minus one (- 1) is
factored from the negative to produce a positive number. The negative one
(- 1) is referred to as the "J" operator and is printed out to designate the
imaginary part of the complex number.

1 + j2
6 - j4.7

l
l

J

l
l
l
l
l
l
..,

J

l
1

l
1

l
l
l

r

r

r

r
r

r
r
r
r
r
r
r

NUMERICAL PROGRAMS 251

A complex number takes the form A + jB, (not directly related to AX2 +
BX + C = 0). The real value A is called the real part of the complex num·
ber. The jB is called the imaginary part of the complex number.

When the discriminant is less than zero (X2 - X + 12 = 0), the program
branches to line 330 to print out the two complex solutions.

SOLUTION 1 = .5 + j3.4278273
SOLUTION 2 = .5 - j3.4278273

MATRIX ADDITION

Fig. 29·2 is a program to add matrices. A matrix is a rectangular array of
scalars. A scalar is a real number capable of being represented as a point on
a scale. Each matrix contains a fixed number of rows and a fixed number of
columns. The row value is listed first, and the column value is then listed. A
2 x 3 matrix has the following configuration. It has two rows and three
columns.

123
456

A 3 x 2 matrix has the following configuration. It has three rows and two
columns.

1 4
2 5
3 6

A square matrix has the same number of rows and columns. A 3 x 3
matrix has the following configuration.

1 4 7
258
369

The size of a matrix is designated by the letter M for the number of rows,
and N for the number of columns. A rectangular matrix could be either an M
x N, or an N x M, while a square matrix would be either an M x M, or an N
x N.

The lower case letter "i" represents the internal row number of a matrix,
and the lower case "j" represents the internal column number of the matrix.

A = a ij

A(3 x 3) = all a l2 a13

a2l a22 a23
a3l a32 a33

When matrices are added, the same row-column value in each matrix is
added.

252 APPlESOFT FOR THE lie

A + B = (a jj) + (bjj) = (a jj + bjj)

Thus, when adding, the matrices must be the same dimensions. A 2 x 3
matrix can be added to a 2 x 3 matrix, and a 4 x 4 matrix can be added to a
4 x 4 matrix. A 2 x 3 matrix cannot be successfully added to a 4 x 4
matrix, because the row·column combinations are not compatible. To add
matrices A and B, they must be first read into memory. The addition takes
place in doubly nested loops, lines 290 through 360. The outer loop, I, line
290, represents the number of rows of the matrix. The loop index goes from
row one to the number of rows in the matrix.

290 FOR I = 1 TO M

The inner J loop, line 300, represents the number of columns in the
matrix. The loop index goes from column one (1), to the number of columns
(N).

300 FOR J = 1 TO N

The A and B matrices are summed into the C matrix.

320 C(I,J) = A(I,J) + B(I,J)

The A matrix and the B matrix are read from data statements and are
printed out as a debugging procedure. For correct output, it is essential that
the input be correct. When the matrices are printed out, the programmer
can view each step. If the A or B matrix output data is incorrect, it can be
checked and corrected before it is used to multiply into the C matrix.

100 REM MATRIX ADDITION
110 REM -THIS PROGRAM WILL READ TWO MATRICES FROM DATA STATE-

MENTS
120 REM -AND ADD THEM TOGETHER
130 REM -MATRIX A AND B ARE SUMMED INTO MATRIX C
140 REM -THE NUMBER OF ROWS AND COLUMNS ARE STORED AS DATA TO

MAKE THE PROGRAM MORE FLEXIBLE
150 REM - liS THE ROW VARIABLE
160 REM - J IS THE COLUMN VARIABLE
170 REM - M IS THE # OF ROWS IN THE MATRIX
180 REM - N IS THE # OF COLUMNS IN THE MATRIX
190 READ M,N
200 DIM A(M,N),B(M,N),C(M,N)
210 FOR I = 1 TO M
220 FOR J = 1 TO N
230 READ A(I,J)
240 PRINT A(I,J);" ";
250 NEXT J
260 PRINT
270 NEXT I
280 PRINT: PRINT

Fig. 29-2. Matrix addition program.

1
I

J

1
l
l
l
l
l ,

j

l
l
1
l
l
1
l

r
l

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

NUMERICAL PROGRAMS 253

290 FOR I = 1 TO M
300 FOR J = 1 TO N
310 READ 8(1,J)
320 C(I,J) = A(I,J) + 8(1,J)
330 PRINT 8(1,J);" ";
340 NEXT J
350 PRINT
360 NEXT I
370 PRINT: PRINT
380 PRINT SPC(12);"MATRIX ADDITION": PRINT
390 PRINT SPC(5);" COL 1 COl2 COl3 COl4 COl5"
400 FOR I = 1 TO M
410 PRINT "ROW";I; SPC(2);
420 FOR J = 1 TO N
430 HTA8 (J - 1) * 7 + 8: PRINT C(I,J);
440 NEXT J
450 PRINT: PRINT
460 NEXT I
470 DATA 3
480 DATA 5
490 DATA 1,4,2,3,5
500 DATA 4,2,3,2,1
510 DATA 0,0,3,2,5
520 DATA 2,3,1,0,1
530 DATA 2,1,5,0,0
540 DATA 3,2,1,0,2
550 END
RUN
14235
4 2 3 2 1
00325

23101
2 1 5 0 0
32102

ROW 1
ROW 2
ROW 3

COU
3
6
3

MATRIX ADDITION
COl2 COl3

7 3
3 8
2 4

Fig.29-2-cont. Matrix addition program.

COl4
3
2
2

SCALAR-MATRIX MULTIPLICATION

COl5
6
1
7

Fig. 29-3 is a program to multiply a matrix by a scalar. When a matrix is
multiplied by a scalar, each row-column value is multiplied by the scalar.

290 C(I,J) = S * A(I,J)

254 APPlESOFT FOR THE lie

100 REM SCALAR * MATRIX MULTIPLICATION
110 PRINT: PRINT
120 REM -liS THE ROW VARIABLE

130 REM - J IS THE COLUMN VARIABLE
140 REM - M IS THE # OF ROWS IN THE MATRIX
150 REM - N IS THE # OS COLUMNS IN THE MATRIX
160 REM - S IS THE SCALAR VALUE

170 READ M,N,S
180 DIM A(M,N),C(M,N)
190 FOR I = 1 TO M
200 FOR J = 1 TO N
210 READ A(I,J)
220 PRINT A(I,J);" ";
230 NEXT J
240 PRINT
250 NEXT I
260 PRINT
270 FOR I = 1 TO M
280 FOR J = 1 TO N
290 C(I,J) = S * A(I,J)
300 NEXT J
310 NEXT I
320 PRINT SPC(8);"SCALAR ' ";S;" , TIMES MATRIX": PRINT
330 PRINT SPC(5);" COL1 COL2 COL3 COL4 COL5"
340 FOR I = 1 TO M
350 PRINT "ROW";I; SPC(2);
360 FOR J = 1 TO N
370 HTAB (J - 1) * 7 + 8: PRINT C(I,J);
380 NEXT J
390 PRINT: PRINT
400 NEXT I
410 DATA 3
420 DATA 5
430 DATA 2
440 DATA 1.4,2,3,5
450 DATA 4,2,3,2,1
460 DATA 0,0,3,2,5
470 END
RUN

1 4 2 3 5
42321
o 0 3 2 5

SCALAR '2' TIMES MATRIX

ROW 1
ROW 2
ROW3

COL1
2
8
o

COL2
8
4
o

Fig. 29-3. Scalar matrix multiplication program.

COL3
4
6
6

COL4
6
4
4

l
l

j

l
l
IBIj

j

l ,
J

l
l
l .,

J

l
l

COL5

1 10
2
10

1
l

r
r
r
r

r
L.

r
r
r
r
r
r
r
r

NUMERICAL PROGRAMS 255

MATRIX MULTIPLICATION

The next step in the progression of matrix operations is matrix multiplica·
tion (Fig. 29·4). Without discussing the logic, multiplying matrices does not
follow the routine of adding matrices. In this example, the X matrix is a 5 x
3 matrix, and the Y matrix is a 3 x 3 matrix.

X = 5 x 3 (column of "X" matrix)
3 x 3 = Y (row of "Y" matrix)

The resultant Z matrix is a 5 x 3 matrix.

100 REM - MATRIX MULTIPLICATION
110 REM - I IS THE ROW VARIABLE
120 REM - J IS THE COLUMN VARIABLE
130 REM - K IS THE COLUMN VARIABLE OF 'A1' AND THE ROW VARIABLE OF

'B'
140 REM - N IS THE NUMBER OF COLUMNS IN THE MATRIX
150 REM - 'A' MATRIX 2 (X) 3
160 REM - 'Al' MATRIX 3 (X) 2
170 REM - 'B' MATRIX 2 (X) 2
180 REM - 'C' MATRIX 3 (X) 2
190 READ M,N
200 PRINT: PRINT "THE 'A' MATRIX IS:": PRINT
210 DIM A(M,N),A 1 (N,M),B(M,M),C(N,M)
220 FOR I = 1 TO M
230 FOR J = 1 TO N
240 A(I,J) = 0
250 READ A(I,J)
260 PRINT A(I,J);" ";
270 NEXT J
280 PRINT
290 NEXT I
300 PRINT: PRINT "THE 'A' MATRIX IS TRANSPOSED": PRINT
310 FOR I = 1 TO N
320 FOR J = 1 TO M
330 Al(I,J) = A(J,I)
340 PRINT Al(I,J);" ";
350 NEXT J
360 PRINT
370 NEXT I
380 PRINT: PRINT "THE 'B' MATRIX IS:": PRINT
390 FOR I = 1 TO M
400 FOR J = 1 TO M
410 B(I,J) = 0
420 READ B(I,J)
430 PRINT B(I,J);" ";
440 NEXT J
450 PRINT
460 NEXT I
470 FOR I = 1 TO N

Fig. 29·4. Matrix multiplication program.

256 APPLESOFT FOR THE lie

480 FOR J = 1 TO M
490 C(I,J) = 0
500 FOR K = 1 TO M
510 ((I,J) = C(I,J) + A1(I,K) * B(K,J)
520 NEXT J
5'30 NEXT I
540 PRINT: PRINT "THE PRODUCT MATRIX IS:": PRINT
550 FOR I = 1 TO N
560 FOR J = 1 TO M
570 PRINT ((I,J);" "
580 NEXT J
590 PRINT
600 NEXT I
610 DATA 2 : REM - M
620 DATA 3: REM - N
630 DATA 2,3,4
640 DATA 1,2,2
650 DATA 2,1
660 DATA 7,3
670 END
RUN

THE 'A' MATRIX IS:

234
1 2 2

THE 'A' MATRIX IS TRANSPOSED

2 1
3 2
4 2

THE 'B' MATRIX IS:

2 1
7 3

THE PRODUCT MATRIX IS:

4 2
6 3
8 4

Fig.29-4-cont. Matrix multiplication program.

The rule for multiplying matrices is that the column value of the X matrix
must equal the row value of the Y matrix. The resultant matrix takes the
dimensions of the X matrix row, and the Y matrix column. If the C matrix
(line 320, Fig. 29-2) has been previously zeroed out, the multiplying state
ments are as follows.

290 FOR I = 1 TO 5
300 FOR J = 1 TO 3
310 FOR K = 1 TO 3
320 (I,J) = (I,J) + A(I,K) * B(K,J)

l
l
1
l
.,

J

1
l
1

1
l
l
l
l
l ,
l

r
r
r

330 NEXT K
340 NEXT J
350 NEXT I

NUMERICAL PROGRAMS 257

The program in Fig. 29-4 is written to read in the A as a 2 x 3 matrix.
Lines 220 through 270 read in and print out a 2 x 3 A matrix. The A (2 x 3)
matrix cannot be multiplied by the B (2 x 2) matrix because the A column
value is 3, and the B row value is 2. Therefore, the A matrix is tran~posed to
an "AI" (3 x 2) matrix. Lines 310 through 370 transpose the A matrix into r the Al (3 x 2) matrix.

The outer loop variable I line 310, has an index from one (1) to three (3).
The inner loop variable J line 320, has an index from one (1) to two (2).

r 320 A1(I,J) = A(J,I)

The loop variables are reversed in the A matrix so the transposition can
take place. r The B (2 x 2) matrix is read into memory and printed out on lines 390
through 460.

Lines 470 through 530 zero out the elements of the C matrix, multiply the
A matrix by the B matrix, and place the results in the C matrix. r

r
GAUSSIAN ELIMINATION

Now that we've learned to add and multiply matrices, how are we going to
use this information? In many aspects of the working world, situations
present a system of equations that contain several unknown variables. One r method of solving a system of equations is by elimination of variables.

(1) 2X + 9Y = 10

r
r

(2) - 4X - 2Y = 0
(1) Multiply by -2 -4X -18Y = -20

4X - 2Y = 0
-20Y = -20

Y = 1
4X - 2 = 0

4X = 2
X = .5 r For two equations and two unknowns, the solution is rather simple.

Multiply the first equation by - 2. Then add the two equations, to produce
the result - 20 Y = - 20. Dividing by 20, we get Y = 1. Substitute the Y = r 1 into equation number two to determine that X = .5.

With three or more equations, the solution is not so simple. One method
to solve a system of equations is to use the Gaussian elimination method. r Before attempting the program, let's solve a system of equations using the

r
L

258 APPLESOFT FOR THE lie

Gaussian elimination method. This is the same problem solved by the
program in Fig. 29-5.

(1) 3X - 2Y = 1 Divide #1 by (3)
(2) 5X + Y = 6 Divide #2 by (5)

(1) IX - .667Y = .333
(2) IX + .2Y = 1.2 Multiply by (- 1)

(1) IX - .667Y = .333
(2) - IX - .2Y = - 1.2

OX - .867Y = 0.867 Divide #2 by (- _867)
Y = 1

5X + 1 = 6
5X = 5

X = 1

l
l
l
l
l
l

The Gaussian elimination method produces zeros in the lower left tri- l
angle until only one variable is unknown. The value of the variable is then
back substituted to determine the values of the other unknowns.

100 REM
110 REM
120 REM GAUSSIAN ELIMINATION
130 REM
140 REM
150 REM -THIS PROGRAM WILL SOLVE A SERIES OF EQUATIONS USING THE

MATRIX TECHNIQUE
160 REM -OF GAUSSIAN ELIMINATION
170 REM -THE PROGRAM ALLOWS THE USER TO ENTER THE COEFFICIENTS FOR

EACH VARIABLE
180 REM -IN THE EQUATION AND THE CONSTANT THAT IS ON THE RIGHT SIDE

OF THE EQUALS SIGN
190 REM -THE PROGRAM THEN PRINTS OUT THE INTERMEDIATE STEPS OF

TRANSFORMING THE EQUATIONS
200 REM -WHEN THE PROCESS IS COMPLETE, THE VALUES ARE DISPLAYED
210 DEF FN A(X) = INT (X * 1000 + .5) /1000
220 DIM A(25,25)
230 PRINT: PRINT
240 INPUT "ENTER NUMBER OF EQUATIONS: ";N
250 PRINT
260 FOR I = 1 TO N
270 FOR J = 1 TO N + 1
280 PRINT "A(";I;", ";J;") = ";
290 INPUT" ";A(I,J)
300 NEXT J
310 NEXT I
320 PRINT

Fig. 29-5_ Gaussian elimination program_

l
l
l
l
l
l
l
l
l

r
r
r
r
r
r
r
r
r
r
r
r
r
r

330 FOR I = 1 TO N
340 FOR J = I TO N
350 D = A(J,I)
360 IF D = 0 THEN D = 1 E - 25
370 FOR K = I TO N + 1
380 A(J,K) = A(J,K) I D

NUMERICAL PROGRAMS 259

390 PRINT "A(";J;",";K;") = "; FN A(A(J,K»;" D = "; FN A(D)
400 NEXT K
410 NEXT J
420 PRINT
430 FOR J = I + 1 TO N
440 FOR K = I TO N + 1
450 A(J,K) = A(J,K) - A(I,K)
460 PRINT "A(";I;",";J;") = "; FN A(A(I,J»;" A(";J;","K;") = "; FN A(A(J,K»
470 NEXT K
480 NEXT J
490 NEXT I
500 PRINT
510 PRINT: PRINT "X(1) IS 1ST COLUMN VARIABLE:"
520 PRINT: PRINT "X(2) IS 2ND COLUMN VARIABLE:": PRINT
530 PRINT "X(3) IS 3RD COLUMN VARIABLE: ETC.": PRINT
540 FOR K = N TO 1 STEP - 1
550 X(K) = A(K,N + 1)
560 FOR W = N TO K STEP - 1
570 X(K) = X(K) - A(K,W + 1) * X(W + 1)
580 NEXTW
590 PRINT "X(";K;") = ";X(K)
600 NEXT K
610 PRINT: PRINT
620 END
RUN

ENTER NUMBER OF EQUATIONS: 2

A(1,1) = 3
A(1,2) = -2
A(1,3) = 1
A(2,1) = 5
A(2,2) = 1
A(2,3) = 6

A(1,1) = 1 D = 3
A(1,2) = -.667 D = 3
A(1,3) = .333 D = 3
A(2,1) = 1 D = 5
A(2,2) =.2 D = 5
A(2,3) = 1.2 D = 5

A(1,2) = - .667 A(2,1) = 0
A(1,2) = - .667 A(2,2) = .867
A(1,2) = - .667 A(2,3) = .867
A(2,2) = 1 D = .867 r Flg.29-5-cont. Gaussian elimination program.

r

260 APPLESOFT FOR THE lie

A(2,3) = 1 D = .867

A(2,3) = 1 A(3,2) = - 1
A(2,3) = 1 A(3,3) = -1

X(1) IS 1ST COLUMN VARIABLE:

X(2) IS 2ND COLUMN VARIABLE:

X(3) IS 3RD COLUMN VARIABLE: ETC

X(2) = 1
X(1) = 1

Fig.29-5-cont. Gaussian elimination program.

Now let's see how to tell the computer how to solve a system of equations

l
l ,

)

l
l

using th Gaussian elimination system (Fig. 29-5). l
Line 220 DIM (25,25) dimensions memory to store up to twenty-five equa

tions. Line 240 allows the user to enter the number of equations to be
solved. Lines 260 through 310 allow the user to enter the values into the
elements of the matrix. The input prompt (see RUN) shows which element is '1
to receive the coefficient of the variable. J

Lines 330 through 360 determine the divisor for the first equation (3XJ3
= 1), and the second equation (5XJ5 = 1), and divides each real value by 1
the divisor. This sets the equations so that the coefficient of the first column)
variable is one, and prepares to subtract one equation from the other.

Line 360 IF D = 0 THEN D = 1 E-25 prevents the division by zero error. l
This value is very close to zero. If D equals zero (0), the program stops run- ..
ning. If D equals 1 E - 25 the program runs, but the answer is not absolutely
correct.

Lines 430-480 subtract equation number two from equation number one. l
The Y is then - .867. The loop that begins at line 330 increments for the
second time to divide the Y by - .867 so the resulting value of Y is equal to
o~. ~

Lines 540-610 solve the system of equations through back substitution.]
Line 540 is the beginning of a loop whose beginning index starts at N (num-
ber two in this example) and decrements to one. Line 550 assigns the value l
stored in A(K,N + 1) (A(2,3», in this example into X(K) (X(2)). This back .
substitution is completed in lines 560-580. The results are printed out in .
reverse order. The definitions in lines 510, 520, and 530 are valid if there
are no more than three equations. l

NEWTON-RAPHSON

Fig. 29-6 is a program and RUN of the Newton-Raphson method to deter- l·
mine the roots of a function. The Newton-Raphson method is probably the
most widely used method to determine the root(s) of a function because of
its rapid convergence and its ease in programming. To use the Newton-l

l

r
r
r
r
r
r
r
r
i
I

r
r
r
r
r
r

NUMERICAL PROGRAMS 261

100 REM NEWTON RAPHSON ITERATION METHOD
110 REM -USING THE EQUATION Y=XA3 AS THE BASIS FOR THE EXAMPLE. THE

NEXT GUESS IS FOUND
120 REM -BY CALCULATING X - «XA3) / (3*XA2»
130 REM -AS SOON AS THE DIFFERENCE IN THE GUESSES IS LESS THAN .00005

THEN ITERATION PROCESS QUITS
140 DEF FN A(X) = INT (X * 10000 + .5) /10000
150 PRINT "N","X","Y"
160 Y = 0
170 N = 1
180 X = 1
190 X1 = X - «XA3) / (3 * XA2»
200 PRINT N, FN A(X), FN A(XA3)
210 N = N + 1
220 IF (ABS (X1 - X» < = .00005 GOTO 250
230 X = X1
240 GOTO 190
250 PRINT: PRINT "THE FUNCTION CROSSES THE 'X' AXIS AT:": PRINT

260 PRINT" X = ";X
270 END
RUN

N X Y
1 1 1
2 .6667 .2963
3 .4444 .0878
4 .2963 .026
5 .1975 7.7E-03
6 .1317 1.2E-03
7 .0878 7E-04
8 .0585 2E-04
9 .039 1E-04

10 .026 0
11 .0173 0
12 .0116 0
13 7.7E-03 0
14 5.1E-03 0
15 3.4E-03 0
16 2.3E-03 0
17 1.5E-03 0
18 1E-03 0
19 7E-04 0
20 5E-04 0
21 3E-04 0
22 2E-04 0
23 1E-04 0

THE FUNCTION CROSSES THE 'X' AXIS AT:
X = 1.33657182E-04

Fig. 29-6. Newton-Rhapson method for determining roots of a function.

262 APPlESOFT FOR THE lie

Raphson method two criteria must be fulfilled, (1) the function must be
continuous over the defined area, and (2) the function must have a deriva
tive. A relatively simple function that fits the criteria is Y = X3. It is known
that Y = X3 crosses the X-Y axis at X = 0 and Y = 0, so the results of the
program are easy to check.

A series of points that fits the function Y = X3 is as follows.

The derivative of X3 is 3X2.

X Y
- 5 -125

-4
-3
-2
-1

o
1
2
3
4
5

-64
-27
-8
-1

o
1
8

27
64

125

The function is divided by the first derivative. This value is subtracted
from the value of Xn • This value is assigned to the next value of X.

X = X _ f (X)
(N+l) n f' (X)

X2 = Xl -
f (X)

f' (X)

Y = X - «X3) / (3X2»

To determine the root of a function, (1) guess where the function will
cross the X axis, and (2) use the first approximation to compute the second,
third, etc., approximation.

The first approximation, X = 1 is placed in the program in Fig. 29-6, in
line 180. Line 200 prints out the number of the increment N, the value of X
to four places, and the value of Y to four places. Line 210 counts the number
of increments before the final X value is printed.

Line 220, IF (ABS(XI - X» < = .00005 GOTO 250 determines how pre
cise the value of X will be.

The program increments until the value of ABS(XI - X) is less than, or
equal to, .00005. After the value of Xl is calculated, it is assigned to the
variable X, line 230. This places the calculated Xl value into X so the
program can perform the next approximation.

l
l ,

.I ,
) ,
l

l
,.,

1

l
l

l
l
l
l
l
l

r
r
r
r
r
r
r
r

r
r· .:.

r
r
r

NUMERICAL PROGRAMS 263

The Newton-Raphson method does not always determine the root of a
function. It will fail if the function does not cross the X axis. It will also fail if
the function lies entirely on the X axis or oscillates rapidly across the X axis
from the positive Y to the negative Y area.

BISECTION METHOD TO DETERMINE
THE ROOTS OF A FUNCTION

The bisection method to determine the roots of a function is used when
the derivative of a function cannot be easily determined (Fig. 29-7).

10 DEF FN FT(X) = XA3 - 12 * XA2 + 47 * X - 60
100 REM -FINDING ROOTS BY THE BISECTION METHOD
110 REM -THIS PROGRAM USE THE BISECTION METHOD TO SCAN FOR ROOTS

TO AN EQUATION
120 REM -LISTED IN LINE 10. THE USER SPECIFIES A RANGE TO SEARCH (FROM

X1 TO X2) AND AND INCREMENT TO USE (X3)
130 REM -IF THE PROGRAM FINDS THAT THE FUNCTION HAS CROSSED THE X

AXIS SOMEWHERE BETWEEN X1 AND X1 +X3 THEN
140 REM -THEN THE BISECTION TECHNIQUE IS USED TO PINPOINT THE' VALUE

OF THE ROOT
150 REM -IF THE FUNCTION IS ABOVE THE X AXIS AT BOTH X1 AND X1 +X3

BUT HAS GONE BELOW THE X AXIS BETWEEN THE TWO, THE PROGRAM
WON'T FIND THE ROOT

160 REM -IN THIS CASE THE INCREMENT VALUE (X3) SHOULD BE MADE
SMALLER TO FIND THE PLACE ROOT

170 DEF FN RN(R) = INT (R * X5 + .5) I X5
180 HOME: LIST 10
190E=1E-6
200 X1 = 0: REM -START RANGE
210X2 = 10: REM -STOP RANGE
220 X3 = 1: REM -INCREMENT
230X4 = .001
240 X5 = 10000
250 PRINT "BEGIN 'X' AT: ";X1
260 PRINT" END 'X' AT: ";X2
270 PRINT "INCREMENT BY: ";X3
280 PRINT: PRINT
290 Y1 = FN FT(X1)
300 IF ABS (y1) < E THEN XR = X1: GOTO 500
310XL = X1
320YL = Y1
330 IF X1 > X2 THEN 560
340X1 = X1 + X3
350 Y1 = FN FT(X1)
352 PRINT: PRINT: PRINT "LEFT CALCULATED BOUNDARY = ";XL: PRINT

"FUNCTION VALUE AT LCB = ";YL
355 PRINT: PRINT "RIGHT CALCULATED BOUNDARY = ";X1: PRINT

"FUNCTION VALUE AT RCB = ";Y1 r Fig. 29-7. Bisection method for determining roots of a function.

i
!

264 APPLESOFT FOR THE lie

360 IF ABS (y1) < E THEN XR = X1: GOTO 500
370 IF SGN (yL) * SGN (y1) > 0 THEN 310
380 G1 = XL:V1 = YL
390 G2 = X1:V2 = Y1
400 XG = G1 + (G2 - G1) 12: IF ABS (FN FT(XG» < E THEN 480
410 IF ABS (G2 - G1) < E THEN 480
420 YG = FN FT(XG)
423 PRINT: PRINT "LEFT BISECTED BOUNDARY = ";G1: PRINT "FUNCTION

VALUE AT LBB = ";V1
424 PRINT: PRINT "RIGHT BISECTED BOUNDARY =" ;G2: PRINT "FUNCTION

VALUE AT RBB = ";V2
426 PRINT: PRINT "NEXT GUESS = ";XG: PRINT "FUNCTION VALUE AT NG =

";YG

430 IF SGN (V1) * SGN (YG) > 0 THEN 460
440 G2 = XG:V2 = YG
450 GOTO 400
460 G1 = XG:V1 = YG
470 GOTO 400
480XR = XG
490 REM *FOUND A ROOT
500 PRINT: PRINT: PRINT: PRINT "A ROOT EXISTS AT "; FN RN(XR)
505 PRINT: PRINT: PRINT
510 XL = XR + X4 * X3
520 YL = FN FT(XL)
530X1 = XL + X3
540 Y1 = FN FT(X1)
550 GOTO 352
560 END
RUN

10 DEF FN FT(X)=XA3 - 12 * XA2 + 47 * X - 60
BEGIN 'X' AT: 0
END 'X' AT: 10
INCREMENT BY: 1

LEFT CALCULATED BOUNDARY = 0
FUNCTION VALUE AT LCB = -60
RIGHT CALCULATED BOUNDARY = 1
FUNCTION VALUE AT RCB = -24
LEFT CALCULATED BOUNDARY = 1
FUNCTION VALUE AT LCB = -24
RIGHT CALCULATED BOUNDARY = 2
FUNCTION VALUE AT RCB = -6
LEFT CALCULATED BOUNDARY = 2
FUNCTION VALUE AT LCB = -6
RIGHT CALCULATED BOUNDARY = 3
FUNCTION VALUE AT RCB = 0
A ROOT EXISTS AT 3
LEFT CALCULATED BOUNDARY = 3.001

Fig.29-7 -cont. Bisection method for determining roots of a function.

1 ,
\

l

,
1

l
IIIIj

)

..,
i
)

l
l ,

j

,.,
1

,.,
\

.1

l
j

l

r
r
r
r
r
r
r

r

r
r
r
r

FUNCTION VALUE AT LCB = 1.99697912E-03

RIGHT CALCULATED BOUNDARY = 4.001
FUNCTION VALUE AT RCB = -1.00015104E-03

LEFT BISECTED BOUNDARY = 3.001
FUNCTION VALUE AT LBB = 1.99697912E-03

RIGHT BISECTED BOUNDARY = 4.001
FUNCTION VALUE AT RBB = -1.00015104E-03

NEXT GUESS = 3.501
FUNCTION VALUE AT NG = .374748483

LEFT BISECTED BOUNDARY = 3.501
FUNCTION VALUE AT LBB = 1.99697912E-03

RIGHT BISECTED BOUNDARY = 4.001
FUNCTION VALUE AT RBB = -1.00015104E-03

NEXT GUESS = 3.751
FUNCTION VALUE AT NG = .233561739

LEFT BISECTED BOUNDARY = 3.751
FUNCTION VALUE AT LBB = 1.99697912E-03

RIGHT BISECTED BOUNDARY = 4.001
FUNCTION VALUE AT RBB = -1.00015104E-03

NEXT GUESS = 3.876
FUNCTION VALUE AT NG = .122093305

LEFT BISECTED BOUNDARY = 3.876
FUNCTION VALUE AT LBB = 1.99697912E-03

RIGHT BISECTED BOUNDARY = 4.001
FUNCTION VALUE AT RBB = -1.00015104E-03

NEXT GUESS = 3.9385
FUNCTION VALUE AT NG = .0612673014

LEFT BISECTED BOUNDARY = 3.9385
FUNCTION VALUE AT LBB = 1.99697912E-03

RIGHT BISECTED BOUNDARY = 4.001
FUNCTION VALUE AT RBB = -1.00015104E-03

NEXT GUESS = 3.96975
FUNCTION VALUE AT NG = .0302222818

LEFT BISECTED BOUNDARY = 3.96975
FUNCTION VALUE AT LBB = 1.99697912E-03

RIGHT BISECTED BOUNDARY = 4.001
FUNCTION VALUE AT RBB = -1.00015104E-03

NEXT GUESS = 3.985375
FUNCTION VALUE AT NG = .0146218389
LEFT BISECTED BOUNDARY = 3.985375
FUNCTION VALUE AT LBB = 1.99697912E-03
RIGHT BISECTED BOUNDARY = 4.001
FUNCTION VALUE AT RBB = -1.00015104E-03
NEXT GUESS = 3.9931875
FUNCTION VALUE AT NG = 6.81217015E-03

NUMERICAL PROGRAMS 265

Fig.29-7-cont. Bisection method for determining roots of a function.

266 APPlESOFT FOR THE lie

lEFT BISECTED BOUNDARY = 3.9931875
FUNCTION VALUE AT lBB = 1.99697912E-03

RIGHT BISECTED BOUNDARY = 4.001
FUNCTION VALUE AT RBB = -1.00015104E-03

NEXT GUESS = 3.99709375
FUNCTION VALUE AT NG = 1.90621817E-03

lEFT BISECTED BOUNDARY = 3.99709375
FUNCTION VALUE AT lBB = 1.99697912E-03

RIGHT BISECTED BOUNDARY = 4.001
FUNCTION VALUE AT RBB = -1.00015104E-03
NEXT GUESS = 3.99904688
FUNCTION VALUE AT NG = 9.53122973E-04

lEFT BISECTED BOUNDARY = 3.99904688
FUNCTION VALUE AT lBB = 1.99697912E-03

RIGHT BISECTED BOUNDARY = 4.001
FUNCTION VALUE AT RBB = -1.00015104E-03
NEXT GUESS = 4.00002344
FUNCTION VALUE AT NG = -2.35885382E-05

lEFT BISECTED BOUNDARY = 3.99904688
FUNCTION VALUE AT lBB = 1.99697912E~03
RIGHT BISECTED BOUNDARY = 4.00002344
FUNCTION VALUE AT RBB = -1.00015104E-03
NEXT GUESS = 3.99953516
FUNCTION VALUE AT NG = 4.64841723E-04

lEFT BISECTED BOUNDARY = 3.99953516
FUNCTION VALUE AT lBB = 1.99697912E-03
RIGHT BISECTED BOUNDARY = 4.00002344
FUNCTION VALUE AT RBB = -1.00015104E-03
NEXT GUESS = 3.9997793
FUNCTION VALUE AT NG = 2.20701098E-04

lEFT BISECTED BOUNDARY = 3.9997793
FUNCTION VALUE AT lBB = 1.99697912E-03

RIGHT BISECTED BOUNDARY = 4.00002344
FUNCTION VALUE AT RBB = -1.00015104E-03

NEXT GUESS = 3.99990137
FUNCTION VALUE AT NG = 9.86009836E-05
lEFT BISECTED BOUNDARY = 3.99990137
FUNCTION VALUE AT lBB = 1.99697912E-03
RIGHT BISECTED BOUNDARY = 4.00002344
FUNCTION VALUE AT RBB = -1.00015104E-03

NEXT GUESS = 3.9999624
FUNCTION VALUE AT NG = 3.75956297E-05
lEFT BISECTED BOUNDARY = 3.9999624
FUNCTION VALUE AT lBB = 1.99697912E-03
RIGHT BISECTED BOUNDARY = 4.00002344

Fig.29-7-cont. Bisection method for determining roots of /I function.

1
l ,

)

..,
i
)

l
l
l ,

J

1
l

1

l
l
l

r
r
r

r

r
r
r
r

r
r
r

FUNCTION VALUE AT RBB = -1.00015104E-03

NEXT GUESS = 3.99999292
FUNCTION VALUE AT NG = 7.07805157E-06

LEFT BISECTED BOUNDARY = 3.99999292
FUNCTION VALUE AT LBB = 1.99697912E-03

RIGHT BISECTED BOUNDARY = 4.00002344
FUNCTION VALUE AT RBB = -1.00015104E-03

NEXT GUESS = 4.00000818
FUNCTION VALUE AT NG = -8.32974911E-06

LEFT BISECTED BOUNDARY = 3.99999292
FUNCTION VALUE AT LBB = 1.99697912E-03
RIGHT BISECTED BOUNDARY = 4.00000818
FUNCTION VALUE AT RBB = -1.00015104E-03

NEXT GUESS = 4.00000055
FUNCTION VALUE AT NG = 1.25318766E-05
LEFT BISECTED BOUNDARY = 4.00000055
FUNCTION VALUE AT LBB = 1.99697912E-03
RIGHT BISECTED BOUNDARY = 4.00000818
FUNCTION VALUE AT RBB = -1.00015104E-03

NEXT GUESS = 4.00000436
FUNCTION VALUE AT NG = -4.51505184E-06

LEFT BISECTED BOUNDARY = 4.00000055
FUNCTION VALUE AT LBB S1.99697912E-03

RIGHT BISECTED BOUNDARY = 4.00000436
FUNCTION VALUE AT RBB = -1.00015104E-03

NEXT GUESS = 4.00000246
FUNCTION VALUE AT NG= -2.66730785E-06

LEFT BISECTED BOUNDARY = 4.00000055
FUNCTION VALUE AT LBB = 1.99697912E-03
RIGHT BISECTED BOUNDARY = 4.00000246
FUNCTION VALUE AT RBB = -1.00015104E-03

NEXT GUESS = 4.0000015
FUNCTION VALUE AT NG = -1.65402889E-06
A ROOT EXISTS AT 4

LEFT CALCULATED BOUNDARY = 4.00100103
FUNCTION VALUE AT LCB = -1.00108981E-03
RIGHT CALCULATED BOUNDARY = 5.00100103
FUNCTION VALUE AT RCB = 2.00501084E-03
LEFT BISECTED BOUNDARY = 4.00100103
FUNCTION VALUE AT LBB = -1.00108981 E-03

RIGHT BISECTED BOUNDARY = 5.00100103
FUNCTION VALUE AT RBB = 2.00501084E-03
NEXT GUESS = 4.50100103
FUNCTION VALUE AT NG = - .375248879
LEFT BISECTED BOUNDARY = 4.50100103

NUMERICAL PROGRAMS 267

Fig.29-7 -cont. Bisection method for determining roots of a function.

268 APPLES OFT FOR THE lie

FUNCTION VALUE AT LBB = -1.00108981 E-03

RIGHT BISECTED BOUNDARY = 5.00100103
FUNCTION VALUE AT RBB = 2.00501084E-03

NEXT GUESS = 4.75100103
FUNCTION VALUE AT NG = - .32743457

LEFT BISECTED BOUNDARY = 4.75100103
FUNCTION VALUE AT LBB = -1.00108981E-03

RIGHT BISECTED BOUNDARY = 5.00100103
FUNCTION VALUE AT RBB = 2.00501084E-03

NEXT GUESS = 4.87600103
FUNCTION VALUE AT NG = - .203777343

LEFT BISECTED BOUNDARY = 4.87600103
FUNCTION VALUE AT LBB = -1.00108981E-03

RIGHT BISECTED BOUNDARY = 5.00100103
FUNCTION VALUE AT RBB = 2.00501084E-03

NEXT GUESS = 4.93850103
FUNCTION VALUE AT NG = - .111884207

LEFT BISECTED BOUNDARY = 4.93850103
FUNCTION VALUE AT LBB = -1.00108981E-03

RIGHT BISECTED BOUNDARY = 5.00100103
FUNCTION VALUE AT RBB = 2.00501084E-03

NEXT GUESS = 4.96975103
FUNCTION VALUE AT NG = - .0577806532

LEFT BISECTED BOUNDARY = 4.96975103
FUNCTION VALUE AT LBB = -1.00108981E-03

RIGHT BISECTED BOUNDARY = 5.00100103
FUNCTION VALUE AT RBB = 2.00501084E-03

NEXT GUESS = 4.98537603
FUNCTION VALUE AT NG = - .028609544
LEFT BISECTED BOUNDARY = 4.98537603
FUNCTION VALUE AT LBB = -1.00108981E-03

RIGHT BISECTED BOUNDARY = 5.00100103
FUNCTION VALUE AT RBB = 2.00501084E-03

NEXT GUESS = 4.99318853
FUNCTION VALUE AT NG = -.0134841502

LEFT BISECTED BOUNDARY = 4.99318853
FUNCTION VALUE AT LBB = -1.00108981E-03

RIGHT BISECTED BOUNDARY = 5.00100103
FUNCTION VALUE AT RBB = 2.00501084E-03

NEXT GUESS = 4.99709478
FUNCTION VALUE AT NG = -5.78519702E-03

LEFT BISECTED BOUNDARY = 4.99709478
FUNCTION VALUE AT LBB = -1.00108981 E-03

RIGHT BISECTED BOUNDARY = 5.00100103
FUNCTION VALUE AT RBB = 2.00501084E-03

Fig.29·7-cont. Bisection method for determining roots of a function.

.,
J ,
)

l
i

J

l
~

1

1

..,
l .,
1

IIIIIi!
\

J

l
l

r
r
r
r
r
r
r
r
r

r
r
r
r
r

NEXT GUESS = 4.9990479
FUNCTION VALUE AT NG = -1.90153718E-03
LEFT BISECTED BOUNDARY = 4.9990479
FUNCTION VALUE AT LBB = -1.00108981E-03
RIGHT BISECTED BOUNDARY = 5.00100103
FUNCTION VALUE AT RBB = 2.00501084E-03
NEXT GUESS = 5.00002447
FUNCTION VALUE AT NG = 4.88460064E-05
LEFT BISECTED BOUNDARY = 4.9990479
FUNCTION VALUE AT LBB = -1.00108981E-03
RIGHT BISECTED BOUNDARY = 5.00002447
FUNCTION VALUE AT RBB = 2.00501084E-03
NEXT GUESS = 4.99953619
FUNCTION VALUE AT NG = -9.27060843E-04
LEFT BISECTED BOUNDARY = 4.99953619
FUNCTION VALUE AT LBB = -1.00108981E-03
RIGHT BISECTED BOUNDARY = 5.00002447
FUNCTION VALUE AT RBB = 2.00501084E-03
NEXT GUESS = 4.99978033
FUNCTION VALUE AT NG = -4.3925643E-04
LEFT BISECTED BOUNDARY = 4.99978033
FUNCTION VALUE AT LBB = -1.00108981E-03
RIGHT BISECTED BOUNDARY = 5.00002447
FUNCTION VALUE AT RBB = 2.00501084E-03
NEXT GUESS = 4.9999024
FUNCTION VALUE AT NG = -1.95235014E-04
LEFT BISECTED BOUNDARY = 4.9999024
FUNCTION VALUE AT LBB = -1.00108981E-03
RIGHT BISECTED BOUNDARY = 5.00002447
FUNCTION VALUE AT RBB = 2.00501084E-03
NEXT GUESS = 4.99996343
FUNCTION VALUE AT NG = -7.32243061E-05
LEFT BISECTED BOUNDARY = 4.99996343
FUNCTION VALUE AT LBB = -1.00108981E-03
RIGHT BISECTED BOUNDARY = 5.00002447
FUNCTION VALUE AT RBB = 2.00501084E-03
NEXT GUESS = 4.99999395
FUNCTION VALUE AT NG = -1.21891499E-05
LEFT BISECTED BOUNDARY = 4.99999395
FUNCTION VALUE AT LBB = -1.00108981E-03
RIGHT BISECTED BOUNDARY = 5.00002447
FUNCTION VALUE AT RBB = 2.00501084E-03
NEXT GUESS = 5.00000921
FUNCTION VALUE AT NG = 1.83284283E-05
LEFT BISECTED BOUNDARY = 4.99999395

NUMERICAL PROGRAMS 269

Fig.29-7-cont. Bisection method for determining roots of a function.

270 APPlESOFT FOR THE lie

FUNCTION VALUE AT LBB = -1.00108981E-03
RIGHT BISECTED BOUNDARY = 5.00000921
FUNCTION VALUE AT RBB =2.00501084E-03
NEXT GUESS = 5.00000158
FUNCTION VALUE AT NG = 3.06963921E-06
LEFT BISECTED BOUNDARY = 4.99999395
FUNCTION VALUE AT LBB = -1.00108981E-03
RIGHT BISECTED BOUNDARY = 5.00000158
FUNCTION VALUE AT RBB = 1.00501084E-03
NEXT GUESS = 4.99999776
FUNCTION VALUE AT NG = -4.55975533E-06
A ROOT EXISTS AT 5
LEFT CALCULATED BOUNDARY = 5.00099967
FUNCTION VALUE AT LCB = 2.00216472E-03
RIGHT CALCULATED BOUNDARY = 6.00099967
FUNCTION VALUE AT RCB = 6.01100224
LEFT CALCULATED BOUNDARY = 6.00099967
FUNCTION VALUE AT LCB = 6.01100224
RIGHT CALCULATED BOUNDARY = 7.00099967
FUNCTION VALUE AT RCB = 24.0260003
LEFT CALCULATED BOUNDARY = 7.00099967
FUNCTION VALUE AT LCB = 24.0260003
RIGHT CALCULATED BOUNDARY = 8.00099968
FUNCTION VALUE AT RCB = 60.0469966
LEFT CALCULATED BOUNDARY = 8.00099968
FUNCTION VALUE AT LCB = 60.0469966
RIGHT CALCULATED BOUNDARY = 9.00099967
FUNCTION VALUE AT RCB = 120.073991
LEFT CALCULATED BOUNDARY = 9.00099967
FUNCTION VALUE AT LCB = 120.073991
RIGHT CALCULATED BOUNDARY = 10.0009997
FUNCTION VALUE AT RCB = 210.106983

Fig.29· 7 -cont. Bisection method for determining roots of a function.

The logic of the bisection method is to set a specific range to determine if
the function crosses the X axis. The function (FI) is assigned a specific X
value which is the beginning range on the X axis. The beginning X value is
added to the X at the end of the range, and the values are averaged. The
average X value is used to calculate the second function value (F3).

When FI is multiplied by F3, the value is greater than zero, (above the X
axis), equal to zero (on the X axis), or less than zero (below the X axis).

The value of FI * F3 is used to adjust the beginning or ending range value
to determine where the function crosses the X axis. The program in Fig.
29·7 was developed to determine all the roots of a function over a wide
range.

1
1
1
1
1
1

1
1
1

1

1

r

r
r
r
r
r
r
r
r

r
r
r
r
r

NUMERICAL PROGRAMS 271

To test the program, the beginning range Xl, ending range X2, and incre
ment X3, lines 200-220, were assigned values. Lines 200-240 could be
replaced with INPUT statements for user convenience. The function (line
10) was placed in a DEF FN statement. The user may enter almost any func
tion in line 10 to determine the roots.

The program will not accurately determine the roots of a function that is
rapidly oscillating, for example, a trigonometric function that oscillates
across the X axis very rapidly.

In line 290, VI = FN FT (Xl), the function value (V) is calculated at the
beginning of the X range. This produces a value in relation to the V axis.

Line 300 tests to determine if the X 1 location produces a root of the func
tion. If ABS(V1) < E (lE-6) the function is located on the X axis, and the
program branches to line 500.

The routine that begins at line 500 prints out the value of the root, and
resets the values over the X range so the next root can be discovered.

If line 300 is FALSE, the program defaults to line 310. If the V value was
not zero, the beginning range X and V values are assigned to the left side of
the subrange, into XL and VL.

Line 330 is a check to determine if the entire "X" rang~ has been scanned.
If it has, the program branches to line 560, which is the END of the program.

In line 340, the increment (X3 = 1) is added to the beginning of the sub
range and the value is assigned to X 1. The value of the function is again cal
culated in line 350.

Lines 352, 355, 423, 424, and 426 were an afterthought to allow the
beginning programmer to view how the program searched the X axis to
determine when a root had been found. A nonteaching program would
delete lines 352, 355, 423, 424, and 426.

Line 360 again checks to determine if a root has been discovered. Line
370 uses the SGN function (Table '29-1) to determine the location of the
function in relation to the V axis.

If the V value has the same SGN at the left subrange boundary as the SGN
at the right boundary, the function has not crossed the X axis. The program
branches to line 310 to reset the left boundary values.

If line 370 is FALSE, the program defaults to set the right subrange
values. VI, and V2 are values of the function at the left and right boundaries
of the subrange.

Line 400 calculates the next guess as half the distance between guess #1
and guess #2. This is the logic of the bisection method, it cuts the range in
half on each guess.

If line 410 is TRUE, the difference between the two guesses is v:ery close
to the root of the function.

Lirie 420 determines the value of the function at the calculated guess.
Line 430 is similar to line 370. It checks to determine the function in rela-

272 APPLESOFT FOR THE lie

tion to the X axis. Fig. 29-8 shows the variable relationships before if line
430 is TRUE. Fig. 29-9 shows the variable relationships after if line 430 is
FALSE. Fig. 29-10 shows the variable relationships on the second guess.
These three figures illustrate the logic of cutting a subrange in half and
again determining on which side of the break the function crosses the X
axis.

Table 29-1. Table of Possibilities for Y Value of the Function FT to
Determine if the Function Has Crossed the X Axis

SGN(YL)

-1 0 +1

-1 BOTH VALUES BELOW XL IS A ROOT YL ABOVE "X" AXIS
THE "X" AXIS Yl BELOW "X"

SGN(Y1) 0 Xl IS A ROOT Xl IS A ROOT Xl IS A ROOT
LINE 360 GOT IT LINE 360 GOT IT LINE 360 GOT IT

+ 1 YL BELOW "X" AXIS XL IS A ROOT BOTH VALUES ABOVE
Yl ABOVE "X" AXIS THE "X" AXIS

Vl

Gl 1- --------- ---- I --- --- ------- -I G2
~ ~

XG

~ __ I:.JV2

Fig. 29-8. Values before if line 430 is true.

XG
!-------------! -- G2

,/,
Gl

,/,

V2

Fig. 29-9. Values after if line 430 is false.

1

1
1
1
1
1

.,
I

1
1

r
r

r
r
r
r
r

r
r
r
r
r

NUMERICAL PROGRAMS 273

Lines 380 and 390 save the values of the left boundary in Gland the func
tion at the left boundary in VI, and save the value at the right boundary in
G2 and its function value in V2. These values will be used to start the bisec
tion logic.

In Line 400, XG is calculated to be half the distance between Gland G2.
The second statement in line 400 checks to determine if the value of the
function at that point is less than the error allowed for the root value.

Line 410 checks to determine if the difference between the left and right
subrange boundaries is small enough to make further guessing unneces
sary.

In line 420, the value of the function at XG is determined and stored in
VG.

Line 430 will, in a manner similar to line 370, determine whether the
function at XG is on the same side of the X axis as V 1. The statement will be
TRUE if both points are either above or below the X axis. The program will
then branch to line 460 to reset the left subrange boundary to the value of
XG.

Fig_ 29-10. Values on the second guess.

If line 430 is FALSE, then the program defaults to line 440 to set the right
sub range boundary to the calculated guess (XG) which cuts the sub range in
half. The value of the function at the new right boundary is then transferred
into V2. The program then branches back to line 400 to repeat the process.

Line 460 eliminates the left half of the sub range by replacing the value of
Gl by XG, and stores the value of the function at XG into VI.

When a root is discovered, the program branches to line 500. The routine
that begins at line 500, prints the rounded value of the root to five places
(X5 = 10000). Line 510 reestablishes the left boundary of the subrange very
close to the location where the root was found. (XL = XR + (X4 = .001) *
(X3 = 1).

Line 520 calculates the function value at the new left boundary of the sub
range.

Line 530 calculates the new right boundary of the subrange, and line 540
calculates the function value at the right boundary of the subrange.

274 APPLESOFT FOR THE lie

Line 550 causes the program to jump back to determine if there are any
roots in the range.

TRAPEZOIDAL METHOD

The trapezoidal method can be used to approximate the area under a
function over a specific range. When a function is integrated it gives the
area of the function. The trapezoidal rule is used to determine area when a
function is difficult to integrate. The program in Fig. 29-11 uses X2 as the
function to integrate: This is a simple function to integrate, but it is an easy
example for a learning experience.

X A 2 OX = X~3 = (_8_ - _1_) = _7_ = 2.333
3 3 3 3

The trapezoidal method of approximation uses the following formula.

T = (8 - A)/(2*N) * (Y(O) + 2Y(1) + 2Y(2) + ... 2Y(n -1) + Y(n»

The trapezoidal method divides the area under a curve (Fig. 29-12), calcu
lates the area of each trapezoid, and adds all these values to produce a final
value.

The trapezoidal program (Fig. 29-11) allows the user to enter the begin
ning ranges of the function in relation to the X axis, and the number of divi
sions (lines 140-160).

The subroutine that begins at line 230 calculates the size of the step used
to divide the area (OX = (8 - A) / N). Line 240 assigns the beginning range
on the X axis (A), to the variable OS. The multiplying factor is calculated in
line 250 and the area (MS) is initialized to zero (0).

100 REM -AREA UNDER A FUNCTION USING THE TRAPEZOIDAL METHOD
110 REM -THIS PROGRAM WILL CALCULATE THE AREA UNDER A CURVE FROM

POINT "A" TO POINT "B" USING THE DEFINED FUNCTION FA AT LINE 130
120 REM -THE USER IS ASKED TO ENTER THE A AND B POINTS AND THE NUM-

BER OF DIVISIONS TO BE USED IN THE CALCULATION
130 DEF FN FA(B)=BA2
140 PRINT: INPUT "BEGIN 'X' AT: ";A
150 PRINT: INPUT" END 'X' AT: ";B
160 PRINT: INPUT "1 OF DIVISIONS: ";N
170 PRINT : PRINT: GOSUB 230: PRINT
180 PRINT "THE AREA UNDER THE FUNCTION FROM X = ";A: PRINT
190 PRINT· "TO X = ";B: PRINT
200 PRINT SPC(10);"EQUALS ' ";T;" , "
210 PRINT: PRINT
220 END
230 DX = (B - A) / N
240DS=A

Fig_29-11. Trapezoidal program to determine area under a function.

1

l
l
l
l
1
...,

)
j

1 ,
)

l
l
l
1
l

[

r
\

r

r
r
r
r
r

r
r

250 MF = (B - A) 1(2 * N)
260 MS = 0
270 FOR J = 0 TO N
280 TA = ABS (FN FA (OS»
290 IF J = 0 OR J = N THEN 310
300 TA = TA * 2
310 MS = MS + TA
320 OS = OS + OX
330 NEXT J
340 T = MF * MS
350 RETURN
RUN

BEGIN 'X' AT: 1

END 'X' AT: 2

OF DIVISIONS: 4

THE AREA UNDER THE FUNCTION FROM X = 1

TO X = 2

EQUALS '2.34375'

NUMERICAL PROGRAMS 275

Fig.29-11-cont. Trapezoidal program to determine area under a function.

The loop in line 270 increments from zero, the beginning on the X axis, to
the number of divisions selected by the user.

There are three cases to be handled. Case 1, the beginning of the range is
squared and added to the total value. Case 2, the end of the range is squared
and added to the total value. Case 3, all intermediate values are multiplied
by two (2).

Line 280 adds the total area of each loop increment, and line 310 sums up
the total as each area is calculated.

Line 320, DS = DS + DX, adds the step increment (DX = (8 - A)I N) on
each loop execution.

When the last loop execution is complete, the total area (MS) is multiplied
by the multiplying factor (MF) to produce the total area under the function.

276 APPLESOFT FOR THE lie

36

16

49

16

64

16

_______ , _______ ! _______ I _______ ! -------!

o

A

XO

5

Xl

6

X2

Fig. 29·12. Trapezoidal method for area under a curve.

2

B

Xln-l) Xn

1
.,

\

l
l
l
1
l

l
l
1
,.,

.l

l

1

l
..,

J

[

r
r SECTION II

r 80 Column Mode

r
r
r
r
r
r
r
r
r
r
r

1
1!·1.' •.. . 14

1

1(.1.
; II!

11.[.1 ... III

1~. I{

1

11! ... II

[

r

r
r
r
r

r
r
r
r
r

LESSON 30

80 Column Mode

The 80 column mode in the Apple lie is designed primarily for the Apple
Writer II word processing system. The special keys on the Apple lie are de
signed especially for the Apple Writer II (with the exception of a memory
test function). Those special keys are TAB, DELETE, SOLID APPLE, OPEN
APPLE, CAPS LOCK (upper and lower case), and the four special character
keys. These keys were discussed in Lesson 3.

Programs can be written and run in the 80 column mode. The programs
must be written in UPPER CASE (CAPS LOCK KEY DEPRESSED). Lower
case can be used in the DATA, PRINT, and REM statements. Both upper and
lower case characters can be produced on the printer, and the output will be
produced in the 80 column mode. The software that controls the 80 column
mode produces some unexpected results when the printer is turned "on,"
and "off." (In this example, the printer was a TRS-80, DWP-410 impact
printer, MICROTEC, INC., RV-61IC parallel printer interface card in slot
#l.) To activate the 80 column card type this command.

PR#3

Once the 80 column card is activated, it can be changed between the 40
column mode and the 80 column mode in one of two ways.

CONTROL Q - 40 column mode with the 80 column card active.
CONTROL R - 80 column mode with the 80 column card active.
ESCAPE 40 - 40 column mode with the 80 column card active.
ESCAPE 80 - 80 column mode with the 80 column card active.

When the 80 column card is inactive, the cursor is a blinking checker
board pattern. When the 80 column card is active, the cursor is solid and
nonblinking.

The following sequence of commands causes the 80 column card to be
activated, turns the printer "on," RUNs the program, and turns .the printer
"off."

PR#3 - 80 column card active.

279

280 APPlESOfT FOR THE lie

PR#1 - Turns the printer "on." It also causes any letters typed to the
screen to be superimposed over the cursor.

RUN - The "R" is overwritten by the "U," which is overwritten by the
"N." This causes the program to RUN and the output goes to the
printer and the screen.

PR#O - Turns the printer "off," but causes the program listing to the
screen to be printed in the 80 column mode. However, there is a
space between each character. This happens to the screen, but if
the program is RUN again to the printer (before the printer is
turned "off'), there is no change to the printer output.

210 PRINT "47"
210 PRINT"47"

The following list of commands turns the 80 column card "on," turns the
printer "on," RUNs the program, and turns the printer "off' with no ab
normal spacing to the CRT.

PR#3 - 80 column card active.
PR#1 - Turns the printer "on" and causes any character typed on the

screen to be superimposed over the cursor.
RUN- "R" is overwritten by "U," which is overwritten by "N."
PR#3 - Turns the printer "off," leaves the 80 column card active, and

does not cause unusual spacing on the screen.

As discussed previously, programs written in the 80 column mode must
use upper case letters. DATA, PRINT, and REM statements can use lower
case letters.

Fig. 30-1 is a program and RUN to demonstrate the use of VT AB, HT AB,
and TAB functions. The VT AB function operates in the range from one (1)
through twenty-three (23). VT AB 0 causes an ?ILLEGAL QUANTITY
ERROR. VT AB 24 causes the top line of the screen to be pushed up (out of
sight) as the screen scrolls.

HTAB tabs from one (1) through forty (40), even in the 80 column mode.
HT AB 0 produces undesirable results, but no error message. Fig. 30-2
demonstrates the effects of using an HT AB greater than forty (40). The pro
gram causes forty asterisks to be printed on one line. When the forty limit is
reached, the HT AB function closes out the line, and prints the last ten aster
isks on separate lines. It is suggested that an HT AB greater than thirty-nine
(39) not be used in the 80 column mode. Use TAB or SPC to format at
greater than thirty-nine columns.

The TAB function ranges from a value of T AB(1) through T AB(79). TAB 0
causes the output to be printed incorrectly, but does not generate an error
message. TAB 80 causes the print to wrap around the screen and be printed
in column I, row 2.

1
1

1 ,
1 ,
j

1

1
1
1 ,

J

1
1
1
1
1

r
[

r
r

r
r
r
r
r
r
r
r
[

r
r

80 COLUMN MODE 281

100 REM -this is a program to demonstrate the tab and space functions
110 HOME
120 VTAB 1: HTAB 1: PRINT "A"; TAB(79);"B"
130 VTAB 11: PRINT SPC(40);"C"

140 VTAB 23: PRINT "D"; TAB(79);"E";: VTAB 12
150 END
RUN
A

C
D

B

E

NOTE - THE RUN OF Fig. 30-1 OUTPUTS TO THE PRINTER IN THE MODE DEMONSTRATED
ABOVE.
THE OUTPUT TO THE SCREEN OF THE APPLE lie COMPUTER IS SHOWN BELOW.

A

C

D

Fig. 30-1. 80 column card active. TAB and SPC functions.

100 FOR J = 1 TO 50
110 HTAB (J): PRINT "*";
120 NEXT J
130 END
RUN
**
*

*
*

*
*

*
*

*
*

*
Fig. 30-2. 80 column card active. HTAB function demonstration.

B

E

Fig. 30-3 demonstrates that eighty columns can be printed by using the
integers zero (0) through 79, or one (1) through 80, to print out 80 columns
across the screen or the printer.

Fig. 30·4 demonstrates how the program is written using upper case let·
ters (note - 40 column printout) but the PRINT statements can output both
upper case and lower case letters. PRINT SPC(60) moves the cursor out
sixty spaces and prints Brian; SPC(5) moves the cursor out five more spaces
and prints George. The TAB function tabs out (50 + J) and prints the value
of J for each increment of the loop.

282 APPLESOFT FOR THE lie

100 REM - FOR J = 0 TO 79 PRODUCES THE SAME RESULTS AS 'FOR J = 1 TO
80

110 FOR J = 1 TO 80
120 PRINT "*";
130 NEXT J
140 END
RUN

Fig. 30-3. 80 column card active. 80 column output.

1
l
l
l

100 VTAB 10 l
110 PRINT SPC(60);"Brian"; SPC(5):"George"
120 FOR J = 1 TO 5
130 PRINT TAB(50 + J);" J = ";J l
140 NEXT J
150 END
RUN

Brian George 1
J = 1

J = 2
J = 3

J=4 l
J = 5

Fig. 30-4. 80 column card active. SPC and TAB function demonstration.

Fig. 30-5 is a program that demonstrates how a COMMA affects spacing.
A RUN of the program causes a different output on the screen than it does
on the printer. On the screen, COMMA (,) spacing causes the first print to be
placed in columns 1,2, and 3, fifteen (15) spaces are skipped, and all other
values, except the characters placed in columns I, 2, and 3, are overwritten
in the same three columns (16, 17, and 18).

Fig. 30-6 is a program written to demonstrate SEMICOLON (;) spacing.
As in the 40 column mode, the output is packed.

Fig. 30-7 demonstrates spaces between quotation marks for spacing out
put. The SPC(16) and TAB(16) in the REM statements produce similar re
sults.

PRINT L(I,J,K);" "; causes the triple subscripted array program to
output a total of fifteen (15) characters and sixty-four (64) spaces. The fif
teen characters and sixty-four spaces add to a total of seventy-nine (79)
columns to fill the 80 column screen.

Fig. 30-8 is a program to set the scrolling window (screen) to its maxi
mum limits. POKE is a command to place a value into a memory location
and may be used in the immediate or deferred mode. POKE is followed by
two expressions.

POKE 32,0

1
l
l
1
l
l
l

r
r
r
r
r
r
r
r
r
r
r
r
r
[

r
r

80 COLUMN MODE 283

100 N = 5
110 DIM l(5,5,5)
120 FOR I = 1 TO N
130 DEF FN FA(B) = BA2
140 FOR K = 1 TO N
150 l(l,J,K) = I * 100 + J * 10 + K
160 NEXT K,J,I
170 FOR I = 1 TO N
180 FOR J = 1 TO N
190 FOR K = 1 TO N
200 PRINT l(l,J,K),
210 NEXT K
220 PRINT
230 NEXT J
240 PRINT
250 NEXT I
260 END

RUN
111 112 113
114 115
121 122 123
124 12~
131 13~ 133
134 135
141 142 143
144 145
151 152 153
154 155
211 212 213
214 215
221 222 223
224 225
231 232 233
234 235
241 242 243
244 245
251 252 253
254 255
311 312 313
314 315
321 322 323
324 325
331 332 333
334 335
341 342 343
344 345
351 352 353
354 355
411 412 413

Fig. 30-5. 80 column card active. Triple subscrIpted array comma spacing.

284 APPlESOFT FOR THE lie

414 415
421 422 423
424 425
431 432 433
434 435
441 442 443
444 445
451 452 453
454 455
511 512 513
514 515
521 522 523
524 525
531 532 533
534 535
541 542 543
544 545
551 552 553
554 555

Fig. 30-5-cont. 80 column card active. Triple subscripted array comma spacing.

The first expression is the specific memory location from - 65535 to
65536. The second expression is an integer from zero (0) to 255.

There are four memory locations that deal with cursor window position.
The POKEs are ABSOLUTE values.

POKE 32,0 - Sets left window cursor position.
POKE 33,80 - Sets window width position. Locations 32 and 33 sum to

give the right edge of the window.
POKE 34,0 - Sets top window cursor position.
POKE 35,24 - Sets bottom window cursor position.

Using the four POKE commands in line 10 (Fig. 30-8) sets the cursor posi
tions to their maximum limits on the 80 column screen.

100 N = 5
110 DIM L(5,5,5)
120 FOR I = 1 TO N
130 FOR J = 1 TO N
140 FOR K = 1 TO N
150 L(I,J,K) = I * 100 + J * 10 + K
160 NEXT K,J,I
170 FOR I = 1 TO N
180 FOR J = 1 TO N
190 FOR K = 1 TO N
200 PRINT L(I,J,K);
210 NEXT K
220 PRINT

Fig. 30-6. 80 column card active. Triple subscripted array semicolon spacing.

1
j

'I
)

1
1
1
1
1
1

j

1
11 .•.. .'

1

1
1
1

r
r
r
r
(

r

r
r
r
r
r
r
r
r
r

230 NEXT J
240 PRINT
250 NEXT I
260 END
RUN
111112113114115
121122123124125
131132133134135
141142143144145
151152153154155
211212213214215
221222223224225
231232233234235
241242243244245
251252253254255
311312313314315
321322323324325
331332333334335
341342343344345
351352353354355
411412413414415
421422423424425
431432433434435
441442443444445
451452453454455
511512513514515
521522523524525
531532533534535
541542543544545
551552553554555

80 COLUMN MODE 285

Fig.30-6-cont. 80 column card active. Triple subscripted array semicolon spacing.

100 N = 5
110 DIM L(5,5,5)
120 FOR I = 1 TO N
130 FOR J = 1 TO N
140 FOR K = 1 TO N
150 L(I,J,K) = 1* 100 + J * 10 + K
160 NEXT K,J,I
170 FOR I = 1 TO N
180 FOR J = 1 TO N
190 FOR K = 1 TO N
200 REM -PRINT L(I,J,K);SPC(16); PRODUCES 16 SPACES AS DOES THE LINE

BELOW
210 REM -PRINT L(I,J,K);TAB(16); PRODUCES 16 SPACES AS DOES THE LINE

BELOW
220 PRINT L(I,J,K);" ";: REM -16 SPACES BETWEEN QUOTES

Fig. 30-7. 80 column card active. Triple subscripted array quotation mark spacing.

286 APPlESOFT FOR THE lie

230 NEXT K
240 PRINT
250 NEXT J
260 PRINT
270 NEXT I
280 END
RUN
111 112 113 114 115
121 122 123 124 125
131 132 133 134 135
141 142 143 144 145
151 152 153 154 155
211 212 213 214 215
221 222 223 224 225
231 232 233 234 235
241 242 243 244 245
251 252 253 254 255
311 312 313 314 315
321 322 323 324 325
331 332 333 334 335
341 342 343 344 345
351 352 353 354 355
411 412 413 414 415
421 422 423 424 425
431 432 433 434 435
441 442 443 444 445
451 452 453 454 455
511 512 513 514 515
521 522 523 524 525
531 532 533 534 535
541 542 543 544 545
551 552 553 554 555

Fij.30· 7 -cont. 80 column card active. Triple subscripted array question mark spacing.

10 POKE 32,0: POKE 33,80: POKE 34,0: POKE 35,24: HOME
20 PRINT SPC(60); "Brian"; SPC(5);"George"
30 END
RUN

Brian George

Fig. 30·8. 80 column card active. Demonstration of POKE commands to control window
size.

Many Apple lie memory locations contain specific values that are neces·
sary for proper operation of the computer. An illegal value POKEd into one
of these memory locations may alter the system, program, or the Applesoft
language. Apple reference manuals give a complete list of the values stored
in each memory location.

l

1
l

1
l
1
l

1

1
l
l
1
l
l
1
l

r
r

r

r
r

r
r
r
[

80 COLUMN MODE 287

The command to determine the value stored in a memory location is
PRINT PEEK (J)

POKE 32,0
PRINT PEEK(32)
o

(RETURNS A VALUE OF ZERO)

SUMMARY - 80 COLUMN CARD ACTIVE

1. PR#3 Activates the 80 column card.
2. ESCAPE 40 40 column mode.
3. ESCAPE 80 80 column mode.
4. CONTROL Q 40 column mode.
5. CONTROL R 80 column mode.
6. ESCAPE CONTROL Q Deactivates the 80 column card.

80 COLUMN CARD ACTIVATED

10. COMMA (,) SPACING

11. SEMICOLON (;)
12. VTAB

13. HTAB

14. PRINT TAB
15. PRINT SPC

Turns "on" the printer if the printer interface
card is in slot #1.
Turns "off" the printer but leaves the 80
column card activated.
Turns off the printer but distorts the output to
the CRT.
Prints in the first column, skips 15 columns
and overprints all columns of data (other than
the first columns).
Semicolon packs output.
Legal values from one (1) through twenty
three (23).
Legal values one (1) through forty (40). Does
not extend past 40 columns in the 80 column
mode. It is suggested that HT AB > 39 NOT BE
USED.
Legal values one (1) to eighty (80).
Legal values one (1) to eighty (80).

LESSON 31

Formatting in the Eighty Column Mode

Most printers have at least an eighty (80) column capability, and many
have a 163 column capability at twelve characters per inch (12 pitch).

The program in Fig. 31·1 is one solution to the problem of formatting out·
put in Applesoft. Using variables which indicate the type of value to be out·
put, the size of the field, the type of justification, etc., and whether the out·
put is to go to the printer or CRT, this program will format a line of output
and help create the displays.

VARIABLE DICTIONARY

The variable dictionary is written directly in the program from lines 10
through 130.

Numeric input (NI), is the variable into which all numeric values are
stored for output.

The field size (FS) is determined by how many columns the numeric input
(NI) is going to use.

The column position (CP) is the position in which the field for outputting
the value is to start. If the print string (P$) has been built to a column posi·
tion of 40, and a column of 30 is specified, it will not cause the printer to
back up. The program was written to add spaces to extend the print line
further. The print line should be built one field at a time from left to right.

The decimal rounding (DR) variable is used to round a real number to a
specific number of decimal places. When the decimal rounding variable is
equal to zero (DR = 0), it means the numeric value is to be rounded to the
one's place. There is no maximum or minimum limit placed on DR. If the
number in NI is to the power of E + 10 or E - 10 (scientific notation), the
rounding function will be bypassed.

FP$ is the string variable into which literals are placed for outputting.
This is for headings or lines of explanation.

P$ is the string variable that outputs to the printer.
LP is the variable used to determine the length of FP$.

288

1
-I

1

1
l

l
l
l
l ,

J

l

1
l
l
1
l

r
r
r

r

[

r
r
r
r

[

r

80 COLUMN FORMATIER 289

LL is the line length. In line 1000, LL is set to 75. The line length can be
the same value as the line length of the printer.

SP$ is a string variable that holds 256 spaces. This is used for packing
spaces into the printline and justifying the individual fields.

FJ is field justification. FJ = 0 will left justify the field. FJ = 1 will right
justify the field. FJ = 2 will center justify the field.

Field type (FT) is the variable which determines if the field to be output is
string or numeric type. FT = 0 indicates numeric, while FT = 1 indicates a
string.

The variables J and L are used as loop variables, counters and position
holders.

NS is the variable which indicates whether the eighty column card is
active or not. This is used to return control to DOS(NS = 0) or the 80
column card(NS = 3) as is the case.

OS is used to indicate where the display line is being output. OS = 3
means the display is in 80 column mode. Any other value of OS means that
the display is to a printer.

1 REM *FORMATTER SUBROUTINE
10 NI = 0: REM *NUMERIC INPUT
20 FS = 0: REM *FIELD SIZE
30 CP = 0: REM *COLUMN POSITION
40 DR = 0: REM *DECIMAL PLACES TO ROUND TO
50 FP$ = " ": REM *STRING FIELD VARIABLE
60 P$ = " ": REM *PRINT OUT STRING

70 LP = 0: REM *LENGTH OF FP$
80 LL = 0: REM *LlNE LENGTH
90 SP$ = " ":SP$ = SP$ + SP$:SP$ = SP$ + SP$:SP$ = SP$ + SP$:SP$

= SP$ + SP$:SP$ = SP$ + LEFT$ (SP$,127)
110 FJ = 0: REM *FIELD JUSTIFICATION(0=LEFT;1 = RIGHT;2 = CENTER)

120 FT = 0: REM *FIELD TYPE(0=NUMBERIC;1 = STRING)
130 OS = 1: REM *OUTPUT SLOT(3=80 COLUMN CARD; 1 = PRINTER)
150 GOTO 1000
200 IF FS > 0 THEN 230
210 PRINT P$:P$ = " ": IF FS = 0 THEN RETURN
220 FOR J = 1 TO ABS (FS): PRINT: NEXT J: RETURN
230 IF LEN (P$) < CP THEN P$ = P$ + LEFT$ (SP$,CP - LEN (P$»
240 IF FT THEN 350
250 IF ABS (NI) > = 1 E1 0 OR ABS (NI) < = 1 E - 10 THEN FP$ = STR$ (NI):

GOTO 350
260 NI = INT (NI * 10ADR + .5) /10ADR
270 FP$ = STR$ (NI)
280 FOR J = 1 TO LEN (FP$)
290 IF MID$ (FP$,J,1) = "." THEN 320
300 NEXT J:FP$ = FP$ + "."
310 IF DR < 1 THEN 350

Fig. 31·1. 80 column card active. 80 column formatter program.

290 APPLESOFT FOR THE lie

320 IF LEN (FP$) = J + DR THEN 350
330 J = DR + J - LEN (FP$)
340 FOR L = 1 TO J:FP$ = FP$ + "0": NEXT L
350 LP = LEN (FP$)
360 IF LP > = FS THEN 420
370 ON FJ GOTO 390,400
380 FP$ = FP$ + LEFT$ (SP$,FS - LP): GOTO 420
390 FP$ = LEFT$ (SP$,FS - LP) + FP$: GOTO 420
395 REM
400 L = INT «FS - LP) 12):J = FS - LP - L: IF L> 0 THEN FP$ = LEFT$ (SP$,L) +

FP$
410 IF J > 0 THEN FP$ = FP$ + LEFT$ (SP$,J)
420 P$ = P$ + FP$: IF LEN (P$) > LL THEN PRINT LEFT$ (P$,LL):P$ = RIGHT$

(P$, LEN (P$) - LL)
430 RETURN
435 REM

1000 LL = 75:SN = 0: IF PEEK (33) > 40 THEN SN = 3
10100$ = CHR$ (4): IF OS = 3 THEN 1020
1015 PRINT D$;"PR#";OS: PRINT CHR$ (9);LL;"N"
1 020 OR J = 1 TO LL - 1: PRINT "*";: NEXT J: PRINT
1030 CP = O:FT = 1 :FP$ = "TEST HEADER"
1040 FS = 75:FJ = 2
1050 GOSUB 200
1060 FS = - 2: GOSUB 200
1070 FT = 1:FS = 15:FJ = 1
1080 FOR M = 1 TO 4: READ FP$:CP = 15 * (M - 1)
1090 GOSUB 200: NEXT M:FS = - 1: GOSUB '200
1100FT = O:FJ = 1:DR = 3
1110 AVG = O:CNT = 0
1120 FOR M = 1 TO 2
1130 FS = 15
1140 FOR N = 1 TO 4
1150 READ 0
1160AVG = AVG + D:CNT = CNT + 1
1170 NI = D:CP = 15 * (N - 1)
1180 GOSUB 200
1190 NEXT N
1200 FS = 0: GOSUB 200
1210 NEXT M
1220 GOSUB 200
1230 FT = 1:FS = 15:FP$ = "AVERAGE=":FJ = 1:CP = 35: GOSUB 200
1240 FT = O:FJ = O:DR = O:CP = 50:NI = AVG I CNT: GOSUB 200
1250 FS = 0: GOSUB 200
1260 IF OS < > 3 THEN PRINT D$;"PR #";SN
1270 END
2500 DATA 1ST POINT,2ND POINT,3RD POINT,4TH POINT
3500 DATA 150.3427,860.2176,1021.3347,15.32
3510 DATA 106.72,75.712,89.098,569.0119

Fig. 31-1-cont. 80 column card active. 80 column formatter program.

l
l

J

,.,
I

l
l
l
l
l
l
l
1

1

l
l
l
l
l

r
r
r
r
r
r

r
r
r
r
r
r
r
r

80 COLUMN FORMATTER 291

PROGRAM TO CONTROL OUTPUT TO THE PRINTER

When the program (Fig. 31·1) is RUN it defaults through lines 1 to 130 to
initialize the variables. Line 150 causes the program to GOTO 1000.

MAIN PROGRAM LINES 1000-1050

At Line 1000, LL = 75, the length of the line is initialized to 75 columns.
The length of the line on the printer will be 75 columns long. SN is then set
to zero to indicate that the 80 column card is inactive. If the length of the
line is greater than forty (LL > 40 THEN SN = 3), then SN is set to three to
have the routine return control to the 80 column card.

1010 D$ = CHR$ (4) : IF SN = 3 THEN 1020

Line 1010 initializes D$ the key to DOS, turns the printer on, and checks
to see if output is being generated to the CRT in 80 column mode(OS = 3).
If this is TRUE, then the program goes to line 1020.

1015 PRINT D$;"PR#";OS: PRINT CHR$ (9);LL;"N"

Line 1015 is performed when the printer is to be the output device. This
tells DOS to set the output direction to slot number OS and turns off the
output to the CRT.

1020 FORJ = 1 TO LL-l: PRINT ".";: NEXT J: PRINT

Line 1020 prints out a test heading of asterisks to show the range of the
printline.

1030 CP = O:FT = 1:FP$ = "TEST HEADER"

Line 1030 sets the column position to zero, sets the field type to one (1),
which is a string value, and stores the literal, 'TEST HEADER" in FP$. The
field is to be center justified (FJ = 2).

Line 1040 initializes the field size to seventy five (75), and center justifies
the field. The program jumps to the subroutine that begins at line 200. The
column position should run from zero to one less than the line length (74 in
this program), and the column position, plus field size should be less than,
or equal to, the line length (CP + FS < = LL).

FUNCTION OF FORMA TTING SUBROUTINE AT 200

The subroutine at line 200 examines parameters that are set in the main
program and either prints out the print string (P$) or builds a value in a field
onto the tail end of the print string. These parameters include what type of
field justification, field size, field type, and decimal rounding if the field is
numeric.

292 APPLESOFT FOR THE lie

200 IF FS > 0 THEN 230

If the field size is greater than zero, it means something is to be added to
P$, either a numeric value, or a string value.

If the field size is less than or equal to zero, P$ is printed, and P$ is then
initialized to a null value. IF FS = 0 the program returns to line 1060.

(210) IF FS = 0 THEN RETURN

If FS is less than zero, the third statement in line 210 is FALSE, and the
program defaults to line 220.

220 FOR J = 1 TO ABS (FS) : PRINT: NEXT J: RETURN

Line 220 causes a number of blank lines to be printed. The number of
blank lines is determined by the absolute value of the field size. For
example, if FS = - 3, P$ is printed and three (blank) lines are skipped. If
FS = 0, PRINT P$, and don't leave any blank lines. If FS is greater than
zero, add a numeric or literal value to P$, and don't print anything.

230 IF LEN (P$) < CP THEN P$ = P$ + LEFT$ (SP$,CP-LEN (P$))

To get to line 230, FS> 0, which means a numeric value, or literal, is to
be added to P$. If the length of P$ is greater than the column position on the
printer, then add as many spaces as necessary to get to the correct column
position. The column position (CP) changes with every field. If additional
spaces do not need to be inserted before a field is printed, that is, the
boundaries of adjacent fields touch, then column position can remain
unchanged.

240 IF FT THEN 350

Line 240 separates the field type into numeric and string. FT = 0 is a
numeric input, and FT = 1 is a string value.

If FT = 0, a numeric value is to be added to P$, and the program defaults
to line 250.

250 IF ABS (NI) > = 1 E+ 10 OR ABS (NI) < = 1 E - 10 THEN FP$ = STR$ (NI) : GOTO
350

If the absolute value of the numeric input value is greater than or equal to
1 E + 10 or less than or equal to 1 E - 10, then the value is output in scientific
notation. If the value is to be output in scientific notation, the program con·
verts NI to a string representation and jumps to line 350.

260 NI = INT (NI * 10 A DR + .5 /10 A DR

Line 260 causes the numeric input value to be rounded.

270 FP$ = STR$ (NI)

1 ,
1

1
1
1
l
1
1
1
1
1
11

.. i r

1
1
1
l

r

r

r
r
!IIIII
l

80 COLUMN FORMATTER 293

The numeric input is converted to a string value to be able to examine it
for the decimal point and the correct number of decimal places.

Lines 280 through 300 are a loop used to search the string value to dis
cover if a decimal point needs to be added. If there is no decimal point, the
second statement in line 300 (FP$ = FP$ + ".") adds a decimal point.

310 IF DR < THEN 350

If the decimal rounding is less than one, then the value is rounded to the
one's place or above (lO's, 100's etc.) and no trailing zeros need to be
added.

320 IF LEN (FP$) = J + DR THEN 350

If line 320 is TRUE, the numeric input has the correct number of decimal
places, and no trailing zeros are added. If line 320 is false, then trailing
zeros must be added.

330 J = DR + J - LEN (FP$)

Line 330 calculates the number of trailing zeros to be added. For
example, FP$ = "173.4," and decimal rounding is three (DR = 3), then two r trailing zeros must be added. J in this case is 4 (decimal point is the 4th
character in FP$), and LEN (FP$) is five. (The value of J was determined in
lines 280-300).

r
r
r
r
r
r
!

J = 3(DR) + 4 (J) - 5(LEN(FP$» = 2

The loop at line 340 adds the trailing zeros to FP$.

350 LP = LEN (FP$)

Line 350 is the point where the numeric value and the string value join to
follow one logical path.

360 IF LP > = FS THEN 420

If the length of the literal (FP$) is greater than or equal to the field size, no
field justification is necessary, and the field justification routine is by
passed. Line 420 concatenates the output value onto P$ and returns.

If line 360 is FALSE, the program defaults to the field justification routine
at line 370. If the field is to be left justified (FJ = 0), the program defaults to
line 380. If the field is to be right justified (FJ = 1), the program branches to
line 390. If the field is to be center justified (FJ = 2), the program branches
to line 400. Lines 380, 390, and 400 add blanks to the field for the correct
justification code, and concatenate that value onto P$.

380 FP$ = FP$ + LEFT$ (SP$,FS-LP) : GOTO 420

If the field is to be left justified, spaces are added to the end of FP$ to fill
the field size. The second statement in line 380 branches to 420 to con
catenate FP$ onto the end of P$.

294 APPLESOFT FOR THE lie

390 FP$ = LEFT$ (SP$,FS - LP) + FP$: GOTO 420

Line 390 right justifies the output value by adding spaces to the begin
ning of FP$, then branches to 420

400 L = INT «FS - LP)/2):J = FS - LP - L: IF L> 0 THEN FP$ = LEFT$ (SP$,L) + FP$

If the field is to be center justified, the unused portion of the field size (FS
LP) is divided in half. The correct number of spaces to be added to the end
of FP$ is then calculated. For example, if FS is 15 and LP is 8, then L = INT
(15-8)/2 = INT (7/2) = 3. Therefore, three spaces will be added to the begin
ning of FP$ (L = 3). J will be the number of spaces left after three spaces
are added to the eight characters in FP$. J = 15 - 8 - 3 = 4. L on the left
side = 3, and J on the right side = 4. If L is greater than zero, then add that
many spaces to the beginning of FP$. If J is greater than zero (line 410),
then add the spaces to the end of FP$. The length of FP$ is equal to the field
size (FS), for all three justification cases.

420 P$ = P$ + FP$: IF LEN (P$) > LL THEN PRINT LEFT$ (P$,LL): P$=RIGHT$
(P$,LEN (P$) - LL)

Line 420 concatenates the literal (FP$) onto the print line stored in P$. If
the length of P$ goes over the number of characters in the line length, the
correct number of characters will be printed, and P$ will be replaced with
unprinted characters, and the subroutine returns. The first time the sub
routine at line 200 is called, it returns to line 1060 in the main program.

MAIN PROGRAM LINES 1060-3510

1060 FS = -2: GOSUB 200

When the field size is set to a negative value, it indicates lines are to be
skipped (line 220). The number of lines to be skipped causes the subroutine
at 200 to output into P$ and sent this line to the printer. In this case, two
blank lines are skipped.

1070 FT = 1:FS = 15:FS = 1
1100 FT = O:FJ = 1: DR = 3
1230 FT = 1:FS = 15:FP$ = "AVERAGE=":FJ=1:CP = 35: GOSUB 200
1240 FT = O:FJ = 0: DR = O:CP = 50:NI = AVG I CNT: GOSUB 200

Lines 1070,1100,1230, and .1240 are the lines where the information is
input to determine how the output is formatted. Field type, field size, field
justification, decimal rounding, and column position are set in the lines.

1080 FOR M = 1 TO 4: READ FP$:CP = 15 * (M - 1)

Four heading literals are read from data statements, and the third state
ment in line 1080 calculates the heading position at 0, 15, 30, and 45 to
place the literals.

1

1

1

1
11

!
-"

1
1
l
1 ,

il
11

r
l

r
t

r

r
r

r
r

80 COLUMN FORMATTER 295

1090 GOSUB 200: NEXT M:FS = - 1: GOSUB 200

Line 1090 puts the literals read in from line 1080 on P$, and closes the
loop. FS = - 1 causes P$ to output one blank line by calling the subroutine
at line 200.

noo FT = O:FJ = 1:DR = 3

Line 1100 controls the formatting of the field type. FT = 0 is a numeric
field, while FT = 1 is a string field. The field justification is of three types,
FJ = 0 is left justified, FJ = 1 is right justified, and FJ = 2 is center justi
fied. Decimal rounding is set to three places. See discussion of subroutine
at 200, lines 250 through 340.

1110 AVG =O:CNT =0

Line 1110 initializes the value of average and the counter to zero. The
values input are to be counted, summed, and averaged.

Lines 1120 through 1210 contain doubly nested M and N loops to read
the values in the data statements, sum the values, count the rlumber of
values, and assign the values in the data statements to the numeric input
(NI). These values are placed into P$ and output to the printer by calling the
subroutine at line 200.

1120 M LOOP - NUMBER OF LINES INPUT
1130 FIELD SIZE SET TO 15 CHARACTERS
1140 READ IN FOUR NUMBERS FROM DATA STATEMENTS
1150 READ STATEMENT
1160 SUMS AND COUNTS THE NUMBERS READ IN
1170 ASSIGNS THE NUMBER READ IN TO THE NUMERIC INPUT (NI),

AND COMPUTES COLUMN POSITION
1180 ADDS NUMERIC INPUT TO P$
1190 NEXT N
1200 SETS FIELD SIZE TO ZERO, AND PRINTS A LINE OF FOUR NUM-

BERS JUST CONSTRUCTED
1210 NEXT M
1220 GOSUB 200

Line 1220 prints out a blank line since FS = 0, consequently P$ is a null
value (line 210).

1230 FT = 1:FS = 15:FP$ = "AVERAGE=":FJ = 1:CP =35: GOSUB 200

Line 1230 sets the field type to a string value (FT = 1), sets the field size to
15 (FS = 15). It assigns the literal to FP$ (FP$ = "AVERAGE = "), sets the
field to be right justified (FJ = 1), sets the column position to 35, and calls
the subroutine at line 200 to put FP$ onto P$.

1240 FT = O:FJ = O:DR = O:CP = 50:NI = AVG I CNT: GOSUB 200

The field type is set to numeric (FT = 0), the field is left justified (FJ = 0),
the decimal round is set to the one's place (DR = 0), the column position is

296 APPLESOFT FOR THE lie

set to fifty. Line 1240 also assigns the average to the numeric input, and
calls the subroutine at 200 to put the numeric input value onto P$.

Lines 1230 and 1240 combine to print "AVERAGE = 361.", by right justi·
fying the literal whose field ends in position 49 and left justifying the
numeric value whose field starts in column 50. By setting the borders of
these two fields adjacent to one another and using the proper justification,
the two fields are made to appear as one.

1250 FS = 0: GOSUB 200

Line 1250 sets the field size to zero, and calls the subroutine at line 200 to
print out P$ (line 420).

1260 IF OS < > 3 THEN PRINT D$;"PR#";SN

Line 1260 turns the printer off if the 80 column card is not active and the
program ends.

1srr POINT
150.343
106.720

2ND POINT
860.218

75.712

TEST HEADER

3RD POINT 4TH POINT
1021.335 15.320

89.098 569.012
AVERAGE=361.

Fig. 31-2. 80 column card active. Run of the 80 column formatter program.

1ST POINT
150.343
106.720

2ND POINT
860.218

75.712

TEST HEADER

3RD POINT 4TH POINT
1021.335 15.320

89.098 569.012
AVERAGE=361.0

l ,
1

l
l
l
l
l
l
l
l
l

Fig. 31-3. 80 column card active. Run of the 80 column formatter program after l
modification of lines 1070, 1100, 1240.

1ST POINT
150.343
106.720

2ND POINT
860.218

75.712

TEST HEADER

3RD POINT 4TH POINT
1021.335 15.320

89.098 569.012
AVERAGE=361.

Fig. 31-4. 80 column card active. Run of the 80 column formatter program after
modification of line 1070.

,
J

l
l
l

r
r
r

r
r
r
r

r

r

80 COLUMN FORMATTER 297

Fig. 31·2 was created by the RUN of the program in Fig. 31·l.
Fig. 31-3 was created by a modification of lines 1070, 1100, and 1240 in

the program in Fig. 31-l.

1070 FT =l:FS =15: FJ =2
1100 FT =O:FJ =1: DR =2
1240 FT =O:FJ =0: DR = O:CP =50:NI =AVG I CNT: GOSUB 200

Fig. 31·4 was created by a modification of line 1070 in the program in
Fig. 31-l.

1070FT =l:FS =12:FJ = 0

Index

A

ABS, 118
Activating disk operating system, 13
Alphanumeric strings, 44
Applesoft BASIC, 31
Argument, 118
Arithmetic operators, 50'
Array, 84
Arrow keys, 25
ASC, 50
ASC ("A"), 121
ASCII character codes, 120,218
Assignm'ents of expressions, 106

B

Basic flowchart, 107
Bisection method to determine roots of a

function, 263-276
program, 263-270

Booting DOS, 16, 17-18
Bootstrap, 16
Branch,56
Buffer pointers, 178
Bug, 64

CALL,46
Caps lock key, 24-25

c

Cash flow program and run, 228-236
variables used, 238-242

Catalog a disk, 19
Center justify, 148
Check for number of delimiters, 109
CHR$,50
CHR$(65), 121
Circular list (FIFO), 174
Clear computer memory, 21
Code, 70, 134
Colon, 46
Command(s), 31

read from disk, 203
write to disk, 202

Comment, 134
Comparing first sixteen hexadecimal and

decimal digits, 216

298

Complex variable, 98
Computer

program general outline, 144-145
system flowchart symbols, 72

Concatenate, 97
Concatenation, 101
Conditional transfer, 56
Constant, 50
Constructed GOTO loop, 57
Continue (CO NT) statement, 151-155
Control,25
Copy a disk, 19-20
Counting and totaling variables, 81
Counting variable, 80
Cursor, 122, 124

D

DATA,144
statements, 91, 144

Debug, 64
Decimal to hexadecimal conversion

program, 214, 217
Decision, 64

flowchart, 117
statement flowchart, 77

Default, 64
Deferred execution, 11, 37
DEF FN, 37
Degree, 118
DEL,122
Delete

a program from disk, 22
key, 26
routine, 199

Deletion, 199
Delimiters, 31

and line positions, 106
DIM,84
Directory, 16-17
Disk, 16
Divide by zero, 42
Documentation, 31
DOS, 17
Double

declining balance, 139·142
nested loops, 62
subscripted arrays, 92, 94

l
1

j

l
l
l
l
l
1
l ,
1
l
1

j

1
1

j

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
l

E

Edit, 122
methods, 40 column mode, 123-124

80 column, 12
80 column card active

demonstration of POKE commands to
control window size, 286

80 column formatter program, 289-290
80 column output, 282
HTAB function demonstration, 281
SPC and TAB function

demonstration, 282
TAB and SPC functions, 281

quotation mark spacing, 285-286
triple subscripted array

comma spacing, 283-284
semicolon spacing, 284

Error(s), 107
check for line length, 109
-line number relationship, 115
messages, 26

Examples of precedence, 52
EXP, 119

File names, 20-21
Fill justify, 148

F

Final flowchart, 110-112, 113-114
First version of name and address

program, 102
Flag, 80, 81
Flat tire flowchart, 166-167
Flexible tax program, 172
Flowchart

for flag program, 83
for license eligibility program, 74
with error checking statement, 109
with no error checking, 108

Flowcharting, 71
Format, 31
Formulas and computations, 136
FOR-NEXT, 56

loop, 58
40 column, 12
FRE(O), 121
Function, 118

program, 119

G

Gaussion elimination, 257-260
program, 258-260

General outline for program
development, 104

Get A$, 134
GOSUB,97
GOTO,56

INDEX 299

Graphics print using double nested
loops, 62

H

Hardware, 70
Header

construction, 243
detail, 244, 245, 246

Hexadecimal to decimal conversion
program, 219

HOME, 46, 47
HTAB, 46, 47

and VTAB spacing in loops, 155-160
in loops, 59
spacing, 157
using decision statements, 151

Illegal
Applesoft variables, 38
value, 80

Immediate execution, II, 37
Increment, 56
Individual cell and contents, 180
Inflexible tax program, 170-171
Initialization, 56
Initializing a disk, 18-19
Input/Output, 11
Input section of depreciation program, 137
Input with no error check, 108
INT, 121
Integer, II, 37

arrays, 86
BASIC, 11

Interactive mode, 50
Interface, 17

card, 11
Interpreter, 12
Inventory program, 175

Justification, 149

Left justify, 148
LEFT$,121

L

300 APPLESOFT FOR THE lie

LEFT$, MID$ and RIGHT$, 98, 99
Legal Applesoft variables, 38
Legal value, 80
LEN, 121

function, 45
LET,50
Line

number, 12, 31
positions, 103

List, 12,84
LIST, 122
Literal, 37, 84
Loading programs from disk, 22
Lock a program, 22·23
LOG,119
Logie, 12, 70

flowchart, 70
Logical operator, 64
Loop, 56

and HTAB spacing, 159
spacing, 158

M

Manual system
for decimal to hexadecimal

conversion, 216
for hexadecimal to decimal

conversion, 219
Matrix

addition, 251·253
program, 252·253

multiplication, 255·257
program, 255·256

Memory, 12
Menu section of depreciation program, 135
Menu selection, 134
MID$, 121
Modem, 51
Monitor, 12
Motherboard, 17

N

Name search, 213
Nested loops, 56
NEW, 12·
Newton·Raphson, 260·263

program, 261
NOTRACE, 129
Null string, 97

o
OGIVE

of the distribution of 80 scores, 223
program, 220·221

ON ERR GOTO, 97, 154
Open Apple key, 26
Operand,51
Operate, 84
Operating on lists, 87
Operator, 51
Operators license eligibility program, 69
Order of precedence, arithmetic

operators, 51
Outline flowchart, 105

P

Pass, 129
Pause loops, 155, 156
Positive and negative integers, 41
Precedence, 51
PRINT,31
Print field definition, 148
Program, 12

and run of the RAM phone list, 183·190
list of variables, 190·196

flexibility, 169·173
flowcharts, 71

symbols, 72·74
of string functions in a loop, 102
statement separator, 46
to control output to the printer, 291
to demonstrate

arithmetic operators, 53
ASC and CHR$, 54
flag variables, 82
PRINT results, 49

Prompt, 122

Q

Quadratic formulas, 248·251
program, 248·249

R

Radian, 118
Random numbers program, 153
READ statement, 144
Real,37
Relational operator, 64

l
l
1

)

l
l
l
l
l
l
l
l
l
l
l
l
l

r

r

REM,31
statements in programs, 76

Rename a program on disk, 22
Repeat key, 27
Replacement

operator, 51
statement, 51

Reserved words, 132
in Applesoft, 133

Reset key, 27
RESTORE, 173
Return, 12
Right justify, 148
RIGHT$, 121
RND,120
ROM,17
Rule of default, 64
Run a program from disk, 22

s
Save a program on disk, 21
Saving memory space, 77-79
Scalar·matrix multiplication, 253-254

program, 254
Scientific notation, 37
Search, 197
Second version of name and address

program, 103
Semicolon, 31

as delimiter, 163
SGN,120
Sign (SGN) function, 247
SIN, COS, TAN, ATN, 120
Slot, 12
Slot, drive, and volume options, 19
Software, 70
Solid Apple key, 27
Sorting a list, 197-198
SPC,47
SQR,120
Stack (UFO) 10 1 cells, 179
Statement, 31
STEP, 56
Straight line depreciation, 138
String, 37, 51, 85

array, 97
functions, 98

in a loop, 100
variables, 44

STR$, 121
Subroutine, 97

INDEX 301

Subscripted variable, 85
Summary, 80 column card active, 287
Summing variable, 80
Sum of integers 1 through 5

FOR-NEXT loop, 75
using a GOTO loop, 75

System flowcharts, 71

TAB, 46, 47
Test, 57

T

Three basic steps in programming, 168
TRACE,129
Trapezoidal method, 274-276
Truncate, 37
Truncation with the INT function, 40
Types of

Applesoft variables, 39
errors, 164

u

Unary operator, 51
Unlock a program, 23
Using

DATA statements for lists, 90
define function to store formulas, 44
the DEF FN function for rounding, 42-44
the edit mode, 124-138

v

VAL,121
Variable

chart, 131
dictionary, 288-290

Variables for circular list, stack, and
pointers, 180

VTAB, 46, 47

w

Write protected, 17
Writing a program using PRINT

statement, 32-36

Zero
printing, 148, 159
suppression, 148

Z

Ii, 1il
,
II
II

1
1@

i'

11
II
if

1
1
1

1

1
1
liii
: \k
. \p.

1

r
r
r
r

r
r

r
r
r
r
r

Many thanks for your interest in this Sams Book about Apple II® microcomputing. Here are a few more Apple
oriented Sams products we think you'll like:
POLISHING YOUR APPLE®, Vol. 1
Clearly written, highly practical, concise assembly of all procedures needed for writing, disk-filing, and printing
programs with an Apple II. Positively ends your searches through endless manuals to find the routine you need!
By Herbert M. Honig. 80 pages, 5112 x 8112, comb. ISBN 0-672-22026-1. © 1982.
Ask for No. 22026 .. $4.95

POLISHING YOUR APPLE®, Vol. 2
A second Apple II timesaver that guides intermediate-level programmers in setting up professional-looking
menus, using effective error trapping, and making programs that run without the need for detailed explanations.
Includes many sample routines. By Herbert M. Honig. 112 pages, 5112 x 8112, soft. ISBN 0-672-22160-8.
© 1983.
Ask for No. 22160 .. $4.95
APPLESOFT LANGUAGE (2nd Edition)
Quickly introduces you to Applesoft syntax and programming, including advanced techniques, graphics, color
commands, sorts, searches, and more! New material covers disk operations, numbers, and number pro
gramming. Many usable routines and programs included. By Brian D. Blackwood and George H. Blackwood.
274 pages, 6 x 9, comb. ISBN 0-672-22073-3. © 1983.
Ask for No. 22073 ...•..... $13.95

APPLE® II APPLICATIONS n.
Presents a series of board-level interfacing applications you can modify if necessary to help you use an Apple II
as a development system, a data-acquisition or control device, or for making measurements. Includes
programs. By Marvin L. De Jong. 256 pages, 5112 x 8112, soft. ISBN 0-672-22035-0. © 1983.
Ask for No. 22035 " ,".$13.95
DISKS, FILES, AND PRINTERS FOR THE APPLE® II .
Provides you with basic-to-advanced details for using disks, files, and printers with an Apple II, including
outstanding explanations for programming with sequential-access, random-access, and executive files. By
Brian D. Blackwood and George H. Blackwood. 216 pages, 6 x 9, comb. ISBN 0-672-22163-2. © 1983.
Ask for No. 22163 ... $15.95

THE APPLE® II CIRCUIT DESCRIPTION
Provides you with a detailed circuit description for all revisions of the Apple II and Apple II + motherboard,
including the keyboard and power supply. Highly valuable data that includes timing diagrams for major signals,
and more. By Winston D. Gayler. 176 pages plus foldouts, 8112 x 11, comb. ISBN 0-672-21959-X. © 1983.
Ask for No. 21959 ... $22.95
INTERMEDIATE LEVEL APPLE®II HANDBOOK
Provides you with a nicely paced transition from Integer BASIC into machine- and assembly-language
programming with the Apple II. Covers text display, video POKEs, graphics, using machine language with
BASIC, memory addresses, debugging, and more. By David L. Heiserman. 328 pages, 6 x 9, comb. ISBN-
0-672-21889-5. © .1983.
Ask for No. 21889 ... $16.95

APPLE® FORTRAN
Only fully detailed Apple FORTRAN manual on the market! Ideal for Apple programmers of all skill levels who
want to try FORTRAN in a business or scientific program. Many ready-to-run programs provided. By Brian D.
Blackwood and George H. Blackwood. 240 pages, 6 x 9, comb. ISBN 0-672-21911-5. © 1982.
Ask for No. 21911 ... $14.95

APPLE® II ASSEMBLY LANGUAGE lJ.
Shows you how to use the 3-character, 56-word vocabulary of Apple's 6502 to create powerful, fast-acting
programs! For beginners or those with little or no assembly language programming experience. By Marvin L. De
Jong. 336 pages, 5112 X 81/2, sofl.ISBN 0-672-21894-1. © 1982.
Ask for No. 21894' ... $15.95

ENHANCING YOUR APPLE® II - Vol. 1
Shows you how to mix text, LORES, and HIRES anywhere on the screen, how to open up whole. new worlds Gf
3-0 graphics and special effects with a one-wire modification, and more. Tested goodies from a trusted Sams
author! By Don Lancaster. 232 pages, 81/2 x 11, soft. ISBN 0-672-21846-1. © 1982.
Ask for No. 21846 ... $17 .95

CIRCUIT DESIGN PROGRAMS FOR THE APPLE® \I lJ.
Programs quickly display "what happens if" and "what's needed when" as they apply to periodic waveform,
rms and average values, design of matching pads, attenuators, and heat Sinks, solution of simultaneous
equations, and more. By Howard M. Berlin. 136 pages, 81/2 x 11, comb. ISBN 0-672-21863-1. © 1982.
Ask for No. 21863 ... $15.95

APPLf® INTERFACING n.
Brings you real, tested interfacing circuits that work, plus the necessary BASIC software to connect your Apple
to the outside world. Lets you control other devices and communicate with other computers, modems, serial
printers, and more! By Jonathan A. Titus, David G. Larsen, and Christopher A. Titus. 208 pages, 51/2 x 81/2,
soft. ISBN 0-672-21862-3. © 1981.
Ask for No. 21862 ... $11.95

INTIMATE INSTRUCTIONS IN INTEGER BASIC
Explains flowcharting, loops, functions, graphics, variables, and more as they relate to Integer BASIC. Used
with Applesoft Language (No. 22073), it gives you everything you need to program BASIC with your Apple II or
Apple II Plus. By Brian D. Blackwood and George H. Blackwood. 160 pages, 5'12 x 8'12, soft. ISBN
0-672-21812-7. © 1981.
Ask for No. 21812 " ... $8.95

MOSTLY BASIC: APPLICATIONS FOR YOUR APPLf® II, BOOK 1
Twenty-eight debugged, fun-and-serious BASIC programs you can use immediately on your Apple II. Includes a
telephone dialer, digital stopwatch, utilities, games, and more. By Howard Berenbon. 160 pages, 8'12 x II,
comb. ISBN 0-672-21789-9. © 1980.
Ask for No. 21789 ... $13,95

MOSTLY BASIC: APPLICATIONS FOR YOUR APPLf® II, BOOK 2
A second gold mine of fascinating BASIC programs for your Apple II, featuring 3 dungeons, 11 household
programs, 6 on money or investment, 2 to test your ESP level, and more - 32 in all! By Howard Berenbon. 224
pages, 8'12 x II, comb. ISBN 0-672-21864-X. © 1981.
Ask for No. 21864. $12.95

SAMS SOFTWARE FOR THE APPLf®
FINANCIAL PLANNING WITH VISICALC® AND THE APPLf® II
Automatically sets up your VisiCalc spreadsheet to perform 16 different calculations commonly needed in
business and financial planning, and lets you compare as many as four possibilities. Works with 80-column
board if you have one. You'll need VisiCalc, 64K RAM, and one disk drive. ISBN 0-672-29059-6.
Ask for No. 29059 ... $79.95

FINANCIAL PLANNING WITH MULTIPLANTM AND THE APPLE® 1\
Same as Financial Planning with VisiCalc, except works with Multiplan spreadsheet, 64K RAM, and one disk
drive. ISBN 0-672-29058-8.
Ask for No. 29058 ... $79.95

MONEY TOOL
Helps you manage income, expenses, and tax information for home or small business. Can reconcile checking,
provide simple reports, and more. By Herb Honig. Takes 48K RAM, Applesoft in ROM, and one disk drive. ISBN
0-672-26113-8.
Ask for No. 26113 ... $59.95

FINANCIAL FACTS
Instantly computes the majority of data you'll commonly need in personal and small-business financial
management, and prints out the major factors. By Ed Hanson. Takes 48K RAM, Applesoft in ROM, and one disk
drive. ISBN 0-672-26099-9.
Ask for No. 26099 ... $59.95

INSTANT RECALL
Friendly, unconventional, and instantaneous data handler. Each free-form, alphanumeric screenful you enter is
an 840-character page you can edit, file, or print out as it appears. By Charles R. Landers. Takes 48K RAM,
Ap'plesoft in ROM, and one disk drive. ISBN 0-672-26097-2.
Ask for No. 26097 ... $59.95

PEN-PAL
Sophisticated, powerful, affordable word processor. Provides block movement,line deletion, character and text
insertion, and more. Takes 48K RAM, Applesoft in ROM, and one disk drive. ISBN 0-6n-26115-4.
Ask for No. 26115 ... $59.95

HELLO CENTRAL!
Versatile, menu-controlled terminal program you can use with any compatible modem to communicate with net
works and other computers. Has built-in text editor, auto dialing, much more. By Bruce Kallick. Takes 48K
RAM, Applesoft in ROM, one disk drive, and modem. ISBN 0-672-26081-6.
Ask lor No. 26081 : ... $99.95

You can usually find these Sams products at better computer stores, bookstores, and electronic distributors
nationwide.
If you can't find what you need, call Sams at 800-428-3696 toll-free or 317-298-5566, and charge it to your
MasterCard or Visa account. Prices subject to change without notice.
For a free catalog of all Sams Books available, write P.O. Box 7092, Indianapolis, IN 46206.

1
)

l

I""'!
I
j

'1
)

l

l
...,

I
1

~
I
I

l
I""'!

l

l
.,

)
I

-

il

r-.

S~N~ ________________ .L

Applesoft®
For The Ile®
• Written for the Apple lie computer us·ing Applesoft language.

• Instructions are presented in a lesson-type format using terms
easily understood.

• Rules for programming are .given in a logical and progressive method.

• Programming techniques expand from a simple level to advanced .

• Details how to write and run programs in an 80 column mode.

• Presents an 80 column formatter program.

Howard W. Sams & Co., Inc.
4300 West 62nd Street, Indianapolis, Indiana 46268 U.S.A.

$19.95 122259 ISBN: 0-672-22259-0

1

l

_I

