
21811

APPLESOFT
LANGUAGE

BY
BRIAN D. BLACKWOOD

& GEORGE H. BLACKWOOD

Applesoft

Language

Dr. George H. Blackwood is a retired Navy pilot and
a fonner college professor with bachelor's, master's,
education specialist, and doctor of philosophy degrees.
He now devotes full time to writing.

Brian D. Blackwood has studied computer science and
engineering at Michigan State University. For the last
four years he has been employed as a supervisor at a
large data processing center that services banks and
financial institutions.

Applesoft
Language

(Detailed Programming Instructions
Specifically for the Apple® Computer)

by

Brian D. Blackwood
and

George H. Blackwood

Howard W. Sams & Co., Inc.
4300 WEST 62ND ST. INDIANAPOLIS. INDIANA 46268 USA

Copyright © 1981 by Brian D. Blackwood
and George H. Blackwood

FIRST EDITION
FIRST PRINTING-1981

All rights reserved. No part of this book shall be
reproduced, stored in a retrieval system, or transmitted
by any means, electronic, mechanical, photocopying,
recording, or·otherwise, without written permission
from the publisher. No patent liability is assumed
with respect to the use of the information contained
herein. While every precaution has been taken in the
preparation of this book, the publisher assumes no
responsibility for errors or omissions. Neither is any
liahility assumed for damages resulting from the use
of the information contained herein.

International Standard Book Number: 0-672-21811-9
Library of Congress Card Number: 81-51550

Edited by: Richard Kta;ews'ki
illustrated by: Liane Krajewski

Printed in the United States of America.

Preface

Programming is detailed, exacting, and thought provoking. Do not
expect to become an expert overnight. Some advertisements may
lead you to believe that there is nothing to it. This is simply not true.
Programming takes effort that many people are not willing or able
to expend. Furthermore, because a program written for one brand
of computer will probably not run on a different brand of computer
you must not only understand the programming language, but the
design of the computer as well. You see, many programming lan
guage details and functions are applicable only to a specific brand
of computer.

In programming, every character, item, formula, punctuation, and
format means something specific to the computer. Exact steps must
be programmed for each action the computer takes. Any step not
correctly programmed, or improperly placed within the program,
will cause the program to fail. This failure may be partial or total,
but the program will not produce the desired results. Rote memori
zation will aid in programming, but comprehensive understanding
of how the rules interact and relate will produce more efficient
programs.

Programming is the truest form of building on a foundation. A
solid foundation must be in place to begin the building process. The
computer is an inanimate object that is designed according to a set
of specifications. The machine does not know anything, nor does it
assume anything. The computer does exactly what it is told to do.
The programmer must understand machine capabilities and apply
proper programming rules to produce correct results.

The lessons in this book are designed to present programming

rules in a logical, detailed, progressive method hom a beginners
level to an advanced level. The lessons attempt to always establish
a reference point. If you have trouble with programming errors,
you can always return to the last reference point to attempt to un
derstand the correct procedure. When the correct programming pro
cedure is understood, you have to practice it. Practice reenforces the
learning experience. With practice comes perfection, and with per
fection comes enjoyment.

Do not force the learning experience. Most learning is accom
plished by studying in a regular routine. The same surroundings and
location aid learning. Some people learn best during the morning,
while others learn best at night. Establish your place and time for
maximum learning enjoyment.

Unless the computer has a hardware problem, it does not make
mistakes. Many times the statement is heard, "It's the computer's
fault." Don't you believe it! If an error comes hom a computer, it
was caused by a' person or persons, and a person or persons must
correct the error.

Computers are a great part of our daily lives and will be a greater
part in the future. The more you understand about computers, their
operations, and programming, the better you will understand the
future. Much of the future of the world is tied to computer opera
tions.

GEORGE H. BLACKWOOD

Contents

INTRODUCTION. • . • • . • . . • • . • . . 11

SECTION I-Applesoft Language

LESSON 1

LOAD AND SAVE PROGRAMS. . • · 15

LESSON 2

PRINT RULES · 20

LESSON 3

HTAB, TAB, AND VTAB STATEMENTS TO FORMAT OUTPUT. . 26

LESSON 4

VARIABLES • • • • • · 31

LESSON 5

PREcEDENCE 37

LESSON 6

Loops 43

LESSON 7

RELATIONAL AND LOGICAL OPERATORS • 51

LESSON 8

PROBLEM SOLVING AND FLOWCHARTS 58

LESSON 9

RULES FOR EFFICIENT PROGRAMMING • 64

LESSON 10

SUMMING, COUNTING, AND FLAGS • 67

LESSON 11

SINGLE SUBSCRIPTED VARIABLES • 71

LESSON 12

DOUBLE SUBSCRIPTED VARIABLES • 78

LESSON 13

STRING ARRAys 84

LESSON 14

FUNCTIONS. • • • • · 106

LESSON 15

LIsT AND EDIT. . . · 109

LESSON 16

PLAy COMPUTER. • • · 117

LESSON 17

REsERVED WORDS. • · 120

LESSON 18

MENU SELECl'ION AND CODING FORMULAS. • • • • • • 122

LESSON 19

PROGRAM OUTLINE . 131

LESSON 20

CLEANUP • • • • · 135

SECTION II-Programming

LESSON 21

APPROACHING THE PROBLEM • · 149

LESSON 22

. . 158

LESSON 23

CmCULAR LISTS, STACKS, AND POINTERS. • • • • . • • 162

LESSON 24

SORTING, SEARCHING, AND DELETING · 171

LESSON 25

FORMULAS. • • • • · 194

LESSON 26

DotmLE SUBSCRIPTED AlmAYS • • • • • 208

SECTION III-Supplement

LESSON 27

GRAPma · 223

LESSON 28

HIGH REsOLUTION GRAPma. 236

Introduction

In November 1978, Brian and I purchased an Apple computer. I
looked forward with great anticipation to using the computer to
solve all the problems I had never been able to solve. The problems
were: how to make a million dollars, how to beat the stock market,
and how to solve the energy problem. After working with the com
puter for a couple of months, I discovered I had an even greater
problem. I could not write a program that would solve those prob
lems. As a matter of fact, I could not write a program that would
solve a problem of any difficulty. So, I had to learn how to program
the computer. I do not have a mathematical background, so the
terms reals and integers didn't mean anything to me. I not only had
to learn to program, I had to understand the vocabulary used in re
lation to the computer. Now, almost two years after the computer
was purchased, I can write simple programs. I don't think I could
have ever learned to program had it not been for the co-author,
Brian. Brian is a computer engineer.

Not everyone is fortunate enough to have a computer engineer
answer questions about computers and programming. Neither can
everyone study programming on a formal basis. For those who want
to learn how to program, don't have access to a computer engineer,
and have no opportunity for formal instruction, this book is the an
swer. It is written for people who have very little comprehension of
computer programming and need someone to hold their hand during
the struggle. The object is to produce a programming manual for
those persons interested in serious programming, but do not have
the necessary fundamentals or assistance.

If you can ~nderstand and identify with this "most basic" level of

11

computer programming. then this book is for you. If you understand
Kunth's Fundamental Algorithms. then this book is not for you. Do
not waste your time or money.

The book begins on a simple level for the person who has little
knowledge of programming, but progresses to the advanced pro
gramming techniques that are applied at the highest level of the art.
For clarity of presentation. few references are made to the hexadeci
mal numbering system. assembly language, or machine language.
The neophyte programmer has enough to handle mastering BASIC.

We present the book in three sections, Applesoft Language, Pro
gramming, and Supplement.·

The first section, Applesoft Language, assumes the reader can
push the OFF-oN switch to the ON position so the little light on the
keyboard glows. Once the light is glOwing, Lesson 1 attempts to in
troduce the user to detailed programming routines. The explanations
may be tedious and repetitious, but programming is exact and any
detail affects the program. The explanations use lay language and
try to avoid ambiguous computer engineering phrases. There is an
old computer cliche that covers this situation, "If you can't dazzle
them with brilliance, then bafBe them with bs."

The second section, Programming, deals with the logic, formulas,
and thought that enable interaction among the programmer, the
program, and the computer. This section brings the reader from the
hand holding stage to the thinking stage. The section stimulates
those seldom used brain cells. You can feel the rust breaking loose
and the dendrites pull and strain.

The third section, Supplement, presents simulations, games, and
graphics,

We have written this book specifically for the Apple II microcom
puter, which uses microsoft (Applesoft) language. We are not con
nected directly or indirectly with Apple Computer Co.@ or Bell and
Howell.

12

SECTION I

Applesoft Language

LESSON 1

Load and Save Programs

After completion of Lesson 1 you should be able to:

1. Type a program on the keyboard and store it in memory.
2. Save a program on cassette tape.
3. Load a program from cassette tape into memory.
4. Save a program on disk.
5. Load a program from disk into memory.

VOCABULARY
CRT -This abbreviation stands for cathode ray tube. The picture

tube in your television is a CRT. The CRT can be used to display
the output from and the typed-in input to your Apple computer.

Cursor-This is a blinking square of white light on a black field in the
NORMAL mode. A blinking square of black light on a white field
in the INVERSE mode.

Input-This is the process of transferring data, or program instruc
tions, into memory from some peripheral unit. It also can denote
the data itself. The word "input" sometimes denotes the signal
applied to a circuit or a device, such as a timing signal.

Line Number-This is a positive integer that begins each program
statement.

LIST-This command displays the entire program on the screen.
LIST 0,100 lists the program statements from 0 to 100 on the
screen.

LOAD-This command reads a program from cassette tape and
stores it in computer memory. LOAD USA loads a program named
USA from disk into computer memory.

lS

NEW-This command deletes the current program and all variables
from computer memory.

Program-This is the set of statements or instructions that tell the
computer how to solve a given problem or accomplish some other
task.

Program Statement-This is a discrete instruction to the computer,
stored in memory, that begins with a positive integer.

RUN-This command clears all variables, pointers, and stacks, and
begins execution at the line number indicated. RUN generally
begins at the lowest number and executes the complete program.

SAVE-This command stores a program on cassette tape. SAVE USA
stores a program named USA on disk. (Programmers describe this
action as a SAVE to tape or a SAVE to disk.)

VDM-This abbreviation stands for video display module, which is
an electronic screen for displaying data or information.

DISCUSSION

The starting point of this lesson is after Applesoft is in place in the
Apple II computer. When Applesoft is loaded into the computer
from ROM (read only memory), disk, or cassette tape, the cursor
(]) and the prompt (.) appear on the left side of the screen.

The older version of the Apple II came with Integer BASIC as
standard equipment and Applesoft as an accessory available either
on ROM or cassette tape. The present Apple II Plus comes with Ap
plesoft as a standard ROM card and the Integer BASIC language as
an accessory to be purchased separately.

Programs typed on the keyboard are stored in memory. Programs
of value are SAVEd to cassette tape or disk. From your program
library programs are LOADed from tape or disk into memory. Pro
grams are also referred to as software.

After the screen has been cleared, type in the following program.

10 PRINT ''THIS IS THE USA"
20 PRINT
30 PRINT "THIS IS THE"
40 PRINT "UNITED STATES"
50 PRINT "OF AMERICA"
60 PRINT
70 PRINT ''THIS IS THE",
80 PRINT "USA"
999 END

Type in RUN and press RETURN. The output from the program
appears on the screen. Study the output in relation to the program
statements. Now type LIST and press RETURN. The program is

16

listed on the screen. To save this program on cassette tape follow
these steps.

1. Type in SAVE-DO NOT PRESS RETD"RN.
2. Place a cassette into the tape recorder and rewind until the

tape stops.
3. Press the stop-pause button.
4. Set the mechanical counter on the recorder to zero.
5. Forward the tape to a specific number on the counter (for

example, forward the counter to 005).
6. Set the recorder volume to 6 and the tone to medium.
7. Press record-play buttons (or the combination that will cause

your recorder to record).
8. Now press the RETURN key on the computer. The cursor

leaves the screen and the computer beeps. This indicates the
program is being SAVEd to tape.

9. When the recording is completed, the computer beeps and
the cursor returns to the screen.

10. Press the stop-pause button on the recorder.

The program has been SAVEd to tape. To facilitate future location
of the program, label the program on the cassette cover in the fol
lOwing manner.

1. Name and description of the program.
2. Starting number (on the counter) of the program.
3. Ending number (on the counter) of the program.
4. Volume and tone of the recording. (generally a volume of 6

and a medium tone from a Panasonic recorder will satisfac
torily SAVE and LOAD programs on the Apple II)

Keeping a record of programs on tape aids in finding and LOAD
ing programs. Four programs for each 15 minute tape are sufficient
for program protection. Record programs on only one side of the
tape. Valuable programs should be duplicated on separate tapes
and stored in a safe place.

To check the program just recorded, LOAD the program back
into computer memory as follows.

1. Type in NEW. This clears memory.
2. Type in LIST. This checks to see that memory is clear.
3. Type in LOAD-DO NOT HIT RETURN.
4. Rewind tape until it stops.
5. Press counter to read zero.
6. Forward tape to 004 (program recording started at 005).
7. Stop tape recorder.
8. Pull out monitor plug from recorder so sound can be heard.

17

9. Press play button on the recorder.
10. When the shrill sound is heard, press plug into monitor.
11. Now press RETURN.
12. Cursor leaves the screen, the co~puter beeps, and the pro

gram LOADs.
13. When the program is LOADed a beep is heard and the cursor

returns to the screen.
14. Type RUN to run or LIST to list the program.

After each operation, the RETURN key must be pressed to com
plete the operation. From this point when an operation is complete,
you must press the RETURN key. Enough said about the RETURN
key.

In most cases a volume of 6 and a medium tone will produce a
satisfactory LOAD or SAVE. A volume and/or tone that is too low
will produce an ERR below the LOAD or SAVE on the screen. A
volume that is too high will produce a MEM FULL ERR below the
LOAD or SAVE. Persistent difficulty in LOAD or SAVE routines
indicates the tape recorder should be checked to determine if the
frequency of the recorder synchronizes with the frequency of the
computer.

Tapes should be of the highest quality and low background noise.
Low quality tapes will give the user great difficulty in LOADing and
SA VEing programs.

To SAVE programs to disk, the disk operating system must be
booted. To SAVE a program to disk it is necessary to type the pro
gram on the keyboard and to store the program in memory. The
same program that was SAVEd to tape will be the same program
SAVEd to disk. The program will be named "USA".

1. Place initialized disk in the disk drive.
2. Close disk drive door.
3. Type in SAVE USA.
4. Press RETURN.

The program has now been SAVEd to disk.
To clear memory, type NEW, then LIST. This clears memory

and prepares the computer to load the program from disk.

1. Type in LOAD USA.
2. Press RETURN.

The program is now LOADed from disk. The main difference be
tween tape and disk is that disk programs must be named.

Here is a suggestion that is slightly oH the subject. Many com
panies advertise vinyl dust covers for your computers, disks, and
printers. These valuable machines definitely need dust covers-but

18

dust covers that breathe. Vinyl covers trap moisture under the cover
and this condensation falls into the machine. This excess moisture
held against the working parts causes an oxide called rust. This
excess moisture is also bad for the integrated circuits, capacitors,
and other parts of the computer. To keep out the dust, use a canvas
material that breathes.

19

LESSON 2

Print Rules

After completion of Lesson 2 you should be able to:

1. Write a program in Applesoft using PRINT statements.
2. Define and properly use the rules pertaining to PRINT state

ments.

VOCABULARY
Applesoft II BASIC-This is a more extended, comprehensive, and

flexible language than INTEGER BASIC.
Command-Commands are executed immediately and do not require

a line number but can be used as program statements in certain
cases.

Documentation-This is the total history of a program and its com
ponent parts from inception to completion. Documentation en
ables another programmer to understand the program.

Delimiters-These are the signals that tell the computer how closely
the results are to be printed, i.e., the comma and the semicolon.

Format-This is the predetermined arrangement of data, the layout
of the printed document.

PRINT-This statement outputs data.
REM-This statement allows comment within the program but pro

duces no action in the program. In other words, "REM" reminds
the programmer of what the program does. You can type any com
ment you like in a REM statement.

Semicolon-This prevents the cursor from moving after output is
completed. In other words, it inhibits the automatic repositioning
of the cursor.

20

Statement-Statements are instructions that require line numbers
and tell the computer what action to take.

DISCUSSION

The first objective of this lesson is to write a program using a
PRINT statement.

A program is a set of instructions developed to solve a specific
problem. In this example, the problem is to print out the statement
"THIS IS THE USA."

5 REM - PROGRAM - PRINT RULES
10 PRINT "THIS IS THE USA"
999 END

Now that was simple, wasn't it? This programming sure is easy.
The number "5" in the first line is the line number that identifies

a statement of the program for reference use by the programmer.
The first line doesn't have to start with the number "1." You can use
any number you like up to 63999, the highest line number possible
on an Apple II. However, succeeding lines must have higher line
numbers than previous lines. The most practical way is to number
every line in 5s or lOs. This way you'll be able to insert extra pro
gram steps later if you want to expand your program.

The "REM" statement helps the programmer document the pro
gram.

The line 10 PRINT "THIS IS THE USA" is a program statement
that outputs the information enclosed in quotation marks.

The line 999 END is the end of the program. Apple Company's
Applesoft guide states that an END statement is unnecessary and
eliminating it is one way to conserve memory space. It is strongly
suggested that an END statement always be used in every program.
In many cases a program will not run properly without an end
statement.

Now type in line 10 without quotation marks.

10 PRINT THIS IS THE USA (no quotation marks)
999 END
RUN
o (zero)

The output is zero (0) because the computer reads THIS IS THE
USA as a variable that has a zero (0) value. Variables are used to
hold values that change as the program progresses.

Now type in line 10 using a beginning quote and no closing quote.

10 PRINT "THIS IS THE USA
999 END

21

RUN
THIS IS THE USA

THIS IS THE USA prints even though there is no closing quote.
Applesoft is flexible enough to let you "get away" without a closing
quote.

Now type line 10 with no beginning quote but with a closing
quote.

10 PRINT THIS IS THE USA"
999 END
RUN
o

The output is zero (0) because the computer recognizes THIS
IS THE USA as an uninitialized variable and the ending quote is
ignored.

Retype line 10 again, this time spelling PRINT incorrectly, and
see what happens.

10 PUNT "THIS IS THE USA"
999 END
RUN
SYNTAX ERR #10

Now that you have all the errors out of your system-on to the
PRINT rules. This program was written and tested line by line so
the student can view the results produced by each program state
ment.

1. Anything in quotation marks is printed exactly as in the PRINT
statement when RUN.

10 PRINT "THIS IS THE USA"
20 PRINT (this PRINT causes a line feed - a space between lines)
999 END
RUN
THIS IS THE USA

2. PRINT statements with no punctuation following the closing
quote cause the output to be printed on one line and causes the
computer to line feed (space down). Consecutive PRINT
statements with no closing punctuation causes the output to be
printed vertically, one output below the other.

30 PRINT "THIS IS THE"
40 PRINT "UNITED STATES"
50 PRINT "OF AMERICA"
60 PRINT
RUN
THIS IS THE

22

UNITED STATES
OF AMERICA

3. A comma placed at the end of a print statement places the out
put in separate fields on the same line. Applesoft is designed to
divide each line into 3 fields. The first field begins at column 1
and ends at column 16. The second field begins at column 17
and ends at column 33. The third field begins at column 34 and
ends at column 40.

70 PRINT "THIS IS THE",
80 PRINT "USA"
90 PRINT
RUN
THIS IS THE USA

4. A semicolon placed at the end of a PRINT statement causes
the output to be packed (no space).

100 PRINT "THIS IS THE";
110 PRINT "USA"
120 PRINT
RUN
THIS IS THEUSA

5. A comma between the two items in a PRINT statement places
the output in the 1st field and the next output in the next avail
able field.

130 PRINT "THIS IS THE" , "USA"
140 PRINT
RUN
THIS IS THE USA

6. A semicolon between two items in a PRINT statement causes
the output to be packed (no space).

150 PRINT "THIS IS THE" ; "USA"
160 PRINT
RUN
THIS IS THEUSA

(Note that examples 3 and 5 give the same output, but are
produced by a different program statement format. The same
is true of examples 4 and 6.

7. Spaces placed between quotation marks and the item will be
outputted in the print format. (X's are placed in the PRINT
statement to represent blank spaces).

170 PRINT "XXTHIS IS THEX" ; "USA"
180 PRINT

23

RUN
XXTHIS IS THEXUSA (X's represent blank spaces)

8. A PRINT following a PRINT statement closes out the line. (A
PRINT following a PRINT statement with no punctuation
causes a line feed, i.e., space between the lines. A PRINT fol
lowing punctuation closes out the line, but does not cause a
line feed).

190 PRINT "THIS IS THE";
200 PRINT
210 PRINT "USA"
220 PRINT
RUN
THIS IS THE
USA

9. To print variables with assigned values NO quotation marks
are used and the assigned values are printed.

230 A = 5 : B = 10 : C = 15
240 PRINT A
250 PRINT B
260 PRINT C
270 PRINT
RUN
5
10
15

2BO PRINT A,B,C
290 PRINT
RUN
5

300 PRINT A; B; C
RUN
51015

10 15

The same punctuation rules that apply to items enclosed in quo-
tation marks apply to variables.

1. No punctuation prints vertically.
2. Commas after variables print in three vertical columns.
3. Semicolons after variables pack the output leaving no space

between numbers.

The complete program and RUN follows.

5 REM - PRINT RULES
10 PRINT "THIS IS THE USA"
20 PRINT
30 PRINT ''THIS IS THE"

24

40 PRINT "UNITED STATES"
50 PRINT "OF AMERICA"
60 PRINT
70 PRINT "THIS IS THE" ,
80 PRINT "USA"
90 PRINT
100 PRINT ''THIS IS THE" ;
110 PRINT "USA"
120 PRINT
130 PRINT " THIS IS THE" , "USA"
140 PRINT
150 PRINT "THIS IS THE" ; "USA"
160 PRINT
170 PRINT "XXTHIS IS THEX" ; "USA"
180 PRINT
190 PRINT "THIS IS THE" ;
200 PRINT
210 PRINT "USA"
220 PRINT
230 A=5:B= 10: C = 15
240 PRINT A
250 PRINT B
260 PRINT C
270 PRINT
280 PRINT A, B, C
290 PRINT
300 PRINT A; B; C
999 END
RUN
THIS IS THE USA

THIS IS THE
UNITED STATES
OF AMERICA

THIS IS THE USA

THIS IS THEUSA

THIS IS THE USA

THIS IS THEUSA

XXTHIS IS THEXUSA

THIS IS THE
USA

5
10
15

5 10 15

51015

25

LESSON 3

HTAB, TAB, and VTAB
Statements to
Format Output

After completion of Lesson 3 you should be able to:

1. Use HTAB, TAB, and VTAB statements to format output on
the CRT, similar to using the tabulators and return on a type
writer.

2. Draw the location of rows and columns on the CRT.
3. Clear the CRT by the use of HOME and CALL statements.

VOCABULARY
CALL-This causes the execution of a machine language subroutine

at a memory location whose decimal address is specified in the
call expression. CALL -936 clears the screen. CALL -936 causes
the same results as HOME.

Colon-The colon separates multiple statements that are on the same
line. The colon is also called the program statement separator.

HOME-This clears the screen of all data and moves the cursor to
the upper left position within the scrolling window. Produces the
same results as CALL -936.

HT AB-This moves the cursor from 1 to 40 spaces over on the cur
rent line and prints data at the HTAB numeric expression. HTAB
20 prints data at column 20 on the current line.

Program Statement Separator-This is the colon'in Applesoft lan
guage that allows multiple statements at the same line number.

26

TAB-This must be used in a PRINT statement and prints data one
column past the numeric expression. PRINT TAB (20) prints data
at column 21 of the current line.

VT AB-This moves the cursor to a line that is in the numeric expres
sion .. VTAB 12 moves the cursor to row 12 on the screen. The
numeric expression in VT AB can range from 1 to 24.

DISCUSSION

HTAB is a function that allows the programmer to place informa
tion on a specific vertical column on the VDM. The VDM has col
umns numbered from 1 to 40.

VTAB is a function that allows the programmer to place informa
tion on a specific horizontal row on the VDM. The VDM has 24 rows
numbered from 1 to 24.

HT AB and VT AB are generally used together in the same pro
gram line and are separated by a colon (:). The colon is used as a
separator between two or more program statements with the same
line number.

TAB (26) is used only in a PRINT statement and is separated
from other statements by semicolons, and it accomplishes the same
purpose as the HT AB.

HOME is a command that moves the cursor and the prompt to
the upper left hand corner of the screen of all text. Call -936 clears
the screen in the same way.

HOME and CALL -936 are discussed because the following pro
gram must clear the screen to see the HTAB and VT AB functions
executed properly.

10 HOME
20 VTAB 1 : PRINT "A"
RUN

This clears the screen and prints "A" at VTAB 1 : HTAB 1 (see
Fig. 3-1).

A B

40 CHARACTERS

E F

24 LINES

C 1 0

Fig. 3-1. VDM screen.

27

30 VTAB 1 : HTAB 40 : PRINT "B";
RUN

This prints "B" at VT AB 1 : HT AB 40. The semicolon is necessary
to prevent line feed.

40 VTAB 24 : HTAB 1 : PRINT "C"; : VTAB 10
RUN

This prints "C" at VT AB 24 : HTAB 1. The semicolon prevents
line feed and the colon closes out the line. VTAB 10 shifts the cursor
to VTAB 10, because if we didn't, the computer would automatically
shift the cursor to the next line when we close out line 40. Since the
cursor is already on the last line of the screen, the present screen
display must shift up one line to make more room. That will cause
us to lose "A" and "B" from the display, and it will shift "C" up one
line. To avoid all that, we just tell the computer to move the cursor
up instead of down. Of course, if we weren't running this line by
itself, the next line could instruct the computer to put the cursor
elsewhere. And that's just what we do in the next line, line 50.

50 VTAB 24 : HTAB 39 : PRINT "0"; : VTAB 10
RUN

This prints "D" at VT AB 24 : HTAB 39. Even though the screen
is 40 columns wide it is not possible to print the "0" at VT AB 24 :
HTAB 40 without shifting the "A" and "B" characters off the screen,
because, immediately after we print there and before we can do
anything else, the cursor jumps to the next line.

To clean up the program type LIST 40. Line 40 will be displayed
on the screen. Now retype the line.

40 VTAB 24 : HTAB 1 : PRINT "C";

That leaves out the last colon and the VT AB 10. The program still
runs properly because the a:" and VTAB 10 are not necessary with
the inclusion of line 50. (The edit function is discussed in further
detail in Lesson 15.)

60 VTAB 12 : HTAB 13 : PRINT "E" ; TAB (26) ; "F"

Line 60 causes the letter "E" to be printed at VT AB 12 : HTAB
13. A TAB function is used in a PRINT statement and the numerical
expression is contained in the parentheses. The TAB (26) expres
sion is separated from the PRINT by semicolons on each side. Notice
that the "F" does not have the PRINT repeated but is enclosed in
quotation marks.

Here is the program written as a unit.

28

10 HOME
20 VTAB 1 I PRINT "A"
30 VTAB 1 I HTAB 40 : PRINT "B" ;
40 VTAB 24 : HTAB 1 : PRINT "C" ;
50 VTAB 24 : HTAB 39 : PRINT "D" ; : VTAB 10
60 VTAB 12 : HTAB 13 : PRINT "E" ; TAB (26); "F"
999 END

Type in and RUN the follOwing program to learn more about con
trolling PRINT statements (see Fig. 3-2) .

•• ~--------40--------~ ••

1
24

I
70 HOME

HERE WE GO

A BLANK LINE??

ONE MORE TIME
NO BLANK LINE HERE!!!
HERE WE GO!

ONE MORETIME!!!

WHAT A DIFFERENCE!!!

Fig. 3-2. PRINT program results.

80 PRINT "HERE WE GO" ; TAB (39); "H"
90 PRINT "A BLANK LINE??"
100 PRINT I PRINT
110 PRINT "ONE MORE TIME" ; TAB (39) ; "I" ;
120 PRINT "NO BLANK LINE HERE III"
130 PRINT "HERE WE GO I" ; : HTAB 40 : PRINT "J"
140 PRINT "ONE MORE TIME I" ;: HTAB 40 : PRINT "K"
150 PRINT "WHAT A DIFFERENCE III"
160 END

Line 70 clears the screen.

H

J

K

Line 80 prints "H" in column 40 on the top line. PRINT TAB (39)
actually prints one column past the value of the TAB statement.
After "H" is printed the cursor went to the second line, first column
to prepare for the next item. Since the PRINT statement was com
plete, the second line was closed out.

Line 90 prints on the third line even though the second line is
completely blank.

Line 100 leaves 2 blank lines.
Line 110 is almost a duplicate of line 80, except for the semicolon

after "I." The semicolon does not close out the line.
Line 120 is printed immediately below "ONE MORE TIME" be

cause the line was not closed out.
Lines 130 through 150 do essentially the same things as lines 80

through 120 except the HTAB function is used instead of the TAB

29

function. The HTAB prints in the place where the HTAB value is
assigned. HTAB 40 prints at column 40. TAB (39) prints at one
column more than the assigned value. TAB (39) prints at column
40.

You cannot print at VT AB 24 : HTAB 40 without pushing the top
line off the screen.

You cannot print at VT AB 24 : PRINT TAB (39) without pushing
the top line off the screen.

30

LESSON 4

Variables

After completion of Lesson 4 you should be able to:

1. Define the variables used in Applesoft.
2. Distinguish between variables and reserved words.
3. Understand the relationship between integers and reals and

how truncation affects mathematical calculations.
4. Use INT and DEF functions to round off calculations.

VOCABULARY
DEF FN-This allows the programmer to define functions within the

program.
Deferred Execution-This means that a line is to be executed at a

later time. Basic statements with a line number are run in the
deferred mode.

Immediate Execution-This means that a line is to be executed im
mediately. Basic commands without a line number are run in the
immediate execution mode.

Integer-This is any whole number, its negative, or a zero. Integers
never include decimal points, unless they are being expressed as
real numbers.

Literal-This is a sequence of characters enclosed in quotation marks.
In A$ = "HELLO", A$ is a variable, HELLO is a string, and
"HELLO" is a literal. See the definition of String below.

Real-This is any number, including integers, that can be written
with a decimal.

31

Scientific Notation-This is the method of expressing numbers as
powers of ten. In scientific notation, the number 1234 is 1.234 X
lOS and the number 0.001234 is 1.234 X 10-3• Applesoft uses the
symbol "E" to indicate that the number before the E is to be multi
plied by ten raised to the power indicated after the E. For in
stance, 1 X 1011 is expressed by Applesoft as 1 E + 11.

String-This is any sequence of characters.
Truncate-This is the act of rounding a number upward or down

ward to the next whole number. It is also the act of removing a
normal or expected element at the end of a number.

DISCUSSION

A variable, according to Webster, is:

1. Something that is variable.
2. A quantity that may assume anyone of a set of values.
3. A symbol representing a variable.

In AppJesoft, a variable can be an alpha (alphabet) character
(A through Z), two alpha characters (AA), or an alpha and a nu
meric (0 through 9) character unless these characters are part of a
word reserved specifically for Applesoft language.

LEGAL APPLESOFT VARIABLES
A BB Cl Z2

LEGAL APPLESOFT VARIABLES-but only the firSt 2 charac-
ters are recognized by the language.

DOE SIM SU3 PER

ILLEGAL APPLESOFT VARIABLES-that are reserved words.

ABS AND CALL DEL
LET LOAD SAVE VTAB

A complete list of reserved words is found on page 122 of the
Applesoft II BASIC PROGRAMMING REFERENCE MANUAL,
published by Apple Computer, Inc.

What happens when a reserved word is used as a variable?

10 FOR = 5
20 PRINT FOR
30 END
RUN
? SYNTAX ERR IN 10

The syntax err message is produced and the program does not
run. One deficiency of the Applesoft language is that it does not give

32

an error message until the program is run. A better method would
be to give an error message when the program statement is input.

TYPES OF APPLESOFT VARIABLES

TYPE EXAMPLE
INTEGER A% = 1
REAL A = 1.23
STRING A$ = B2.5

An integer is any of the natural, or whole, numbers, the negatives
of these numbers, or a zero. The numbers 1, 2, 3, 4, and 5 are inte
gers. Integers must be in the range of -32768 to +32767 or the ma
chine will give an ILLEGAL QUANTITY ERR because you are out
of the range of its capabilities. Applesoft uses a percent (%) sign
to designate integer variables.

10 A% = 10
20 PRINT A%
30 END
RUN
10

A real number converted to an integer is truncated. A truncated
number is cut short, or lacks an expected or normal element at the
end of the number. How does Applesoft handle positive numbers
that are truncated?

10 B% = 3.1416
20 PRINT B%
30 END
RUN
3

Applesoft converts positive reals to positive integers by truncating
them down toward zero.

3.1416 truncated = 3

How does Applesoft handle negative rea1s when it converts them
to integers?

10 C% = -0.843
20 PRINT C%
30 END
RUN
o (zero)

Applesoft converts negative reals to integers by converting them
up toward zero.

How does truncation affect mathematical computations? The

33

computation of the area of a circle 3 feet in radius is given as an
example.

10 Pl% = 3.1416 : R = 3
20 A% = Pl% * R/\2 The symbol "/\" tells the computer that the following

number is an exponent.
30 PRINT A%
40 END
RUN
27

The answer 27 is not very accurate compared to the actual answer
of 28.27. The integer function is inaccurate when performing mathe
matical calculations, but it is extremely important in other situations
that will be explained later.

Reals are numbers that relate to practical or every day numbers.
Dollars and cents, 3.1416, -2.5, and 0 are real numbers. Applesoft
prints reals of nine digits or less directly. Numbers requiring more
than nine digits, such as 9999999999 or 0.000000009, are converted
to scientific notation.

For 9 digits or less, Applesoft prints out a maximum of 9 digits.

10
20
30

A = 999999999
PRINT A
END

RUN
999999999

Over 9 digits, Applesoft converts to scientific notation with an
exponent from 10 to 38.

10
20

A = 9999999999
PRINT A
END 30

RUN
lE+10

Now that we have all the power of real numbers how do we con
trol it to the number of digits we want?

The number of digits printed when outputting real numbers can
be controlled by the INT function. The following program demon
strates how reals can be rounded to a specific number of places.

10

20
30
40

P = 1000 (P = a variable to determine the number of
places to which the number is rounded)

PI = 3.1416 : R = 3
A = PI * R/\2
PRINT A, INT (A * P + .sl/p, INT (A)

RUN
28.2744 28.274 28

34

In this example, the INT function outputs to one place. For the
last time, change line 10

10 P = 100
RUN
28.2744 28.27 28

In this example, the INT function outputs to two decimal places.
Again change line 10.

10 P = 10
RUN
28.2744 28.3 28

In this example, the INT function outputs to one place. For the last
time, change line 10

10 P = 0
RUN
? DIVISION BY ZERO ERROR IN 40

Remember the old rule? Thou shalt not divide by zero.
An easier way to handle rounding is by using DEF FN. Any func

tion may be defined by using DEF FNA (X), where "X" is a dummy
variable that holds the equation and A is the function name.

10
20
30
40
50
60
99

DEF FNM (X) = INT (X*1000 + .5)/1000
DEF FNN (Y) = INT (Y*loo + .5)/100
DEF FNO (Z) = INT' (Z*10 + .5)/10
PI = 3.1416 : R = 3
A = PI* R 2
PRINT FNM(A), FNN(A), FNO(A)
END

RUN
28.274
(line 10)

28.27
(line 20)

28.3
(line 30)

By using the DEF FN the rounding can be controlled and the
PRINT statement is much simpler to write. In this example, if you
want A to be displayed to three decimal places you must use FNM
(A). Similarly, if you want two or one decimal place displays, yOUi
must use FNN (A) or FND (A), respectively.

A literal is a set of alphanumeric characters enclosed in quotation
marks. The following are examples of literals:

"7 - 11 STORE" "BILL"
"44 - 50" "SUE"

String literals have already been used in the PRINT statement.
A string variable may consist of 255 characters (one row on the

35

screen consists of 40 characters). The following are examples of
string variables:

A$
02468$

ZI$
HI$

CC$
MOLE$

COB$
HAIR$

A string variable must begin with an alpha character and may be
followed by an alpha or numeric character, followed by a dollar sign
($). Remember that only the first two characters are recognized by
Applesoft.

HA$ is equivalent to HAIR$
Z2$ is equivalent to Z2468$

A string is used by placing the string variable on one side of the
equals sign and the string literal on the other side.

A$ = "HI THERE SUE"
10 A$ = "HI THERE SUE"
20 PRINT A$
999 END
RUN
HI THERE SUE

The Apple has a function that tells the number of characters in a
string and the length of a literal. To use this function LEN, type in
the following:

PRINT LEN (A$), LEN ("SUE") (return)
13 3

In this case, NO line number is needed. The PRINT is an immedi
ate command that prints out the number of characters in the literal.
The length of a literal can be printed by using LEN and placing the
literal in parentheses. Did you get a SYNTAX ERR while typing the
last PRINT statement? Sure you did I Very few programmers get by
with less than a zillion syntax errors.

It should be noted, that A, A%, and A$ are different variables and
can be used in the same program.

36

LESSON 5

Precedence

After completion of Lesson 5 you should be able to:

1. Write the order of precedence of arithmetic operators and
show how to modify precedence.

2. Demonstrate three methods to input into a program.
3. Use constants to pedorm addition, subtraction, multiplication,

division, and exponentiation.

VOCABULARY
Arithmetic Operators-These are symbols that instruct the computer

to do arithmetic operations, addition, subtraction, multiplication,
division, and exponentiation.

ASC-This is the function that converts one string character to a
numeric value. PRINT ASC ("A") returns the American Standard
Code for Information Interchange (ASCII) value of A which
is 65.

CHR$-This is the function that converts a numeric value into one
string character. PRINT CHR$ (65) returns the character A
which is the ASCII value of 65.

Constant-This is an item of data that remains unchanged after each
run.

Interactive Mode-This is a method of operation in which the user
is in direct communication with the computer and is able to obtain
immediate response to his input messages. A display where the
user is allowed to input data in response to information displayed
is said to be in an interactive mode. Conversational mode (dis
play) is synonymous with interactive mode (display).

37

LET-This is a replacement statement that allows the value on the
right side of the equals sign to be stored in the variable on the
left side of the equals sign. LET may be a real, an integer, or a
string.

MODEM-This word is a contraction of modulator and demodula
tor. It means a device that codes or decodes information to send
or receive from a remote computer over telephone lines.

Operand-This is the item on which the operation is performed.
Operator-This is the action to be taken on the operand. In A = 5 02,

times is the operator.
Precedence-This is the order in which things are done.
Replacement Statement"":This statement takes the value on the right

side of the equals sign and stores it in the variable on the left side
of the equals sign (e.g., A = 5 is a replacement statement).

RelJlacement Operator-In A = 5, the equals (=) sign is the replace
ment operator.

Unary Operator-This is a processing operation performed on one
operand. NOT, plus (+), and minus (-) are unary operators and
apply to the sign of a number (-5, +3). It is the same as the
monadic operator.

DISCUSSION

The order of precedence is very important in mathematic calcu
lations. Incorrect precedence produces incorrect answers. Correct
precedence produces correct answers if all other procedures are
correct. The order of precedence of arithmetic operators from
highest to lowest is

1. () items enclosed in parentheses are operated on first-high
est priority.

2. NOT, +, - NOT, POSITIVE, and NEGATIVE unary or mo-
nadic operators.

3. Exponentiation.
4. Multiplication and division.
5. Addition and subtraction.

Operators listed on the same line have the same priority and are
executed starting at the left side of the formula and completed on
the right side.

Integers and reals are classified as arithmetic variables. Strings
are classified as non-arithmetic variables. When integers and reals
are used in a formula, the integers are converted to reals before the
calculation takes place. The final result can be converted either to
an integer or left as a real. String variables (non-arithmetic) cannot

38

be converted directly to integers or reals, but can be converted in
directly by other functions provided for that purpose.

The following program converts a string variable to a numeric
variable and converts a numeric variable to a string variable.

10 A$ = "A"
20 B = ASC (A$)
30 PRINT B
40 0=65
50 C$ = CHR$ (D)
60 PRINT C$
70 END
RUN
65
A

Line 10 sets A$ = "A". The computer uses coded numbers to rep
resent letters. "A" is converted to the ASCII number. Each letter,
number, and symbol on the keyboard has an ASCII number.

Line 20 B = ASC (A$) puts the ASCII number of A (65) into B.
Line 30 PRINT B produces B = 65 which is the conversion of A$

(a string) to a real number.

ASC IS THE FUNCTION THAT CONVERTS ONE STRING
CHARACTER TO A NUMBER.

Line 40 D = 65 places the ASCII value of the letter A into D.
Line 50 C$ = CHR$ (D) changes the value of D into a string char

acter in C$.
Line 60 PRINT C$ prints out the letter that was converted from

the numeric equivalent of (65) of the letter A.

CHR$ IS THE FUNCTION THAT CONVERTS A NUMBER
INTO ONE STRING CHARACTER.

The maximum length of a string is 255 characters.
Now for some examples of precedence.

1. Items enclosed in parentheses can either be variables or nu
meric values. If the variable is not given a value - a value of
zero (0) is returned. The innermost set of parentheses are eval
uated first.
15°(2+(3+2)°3) = 255
15°(2+ 3+2)°3 = 315
15° 2+ 3+2 °3 = 39
Precedence can be modified by using parentheses as demon
strated by the previous example.

2. The monadic or unary operator is the sign (+, -, or NOT) of
the number.

39

+3 +2 = 5 (number is positive when no sign is printed)
+3-2 = 1

\ -3+2=-1
-3-2 =-5

3. Exponentiation.
31\2 = 9
31\80 = 1.47808831 E + 38

4. Multiplication and division.
(10 ° 5)/(2°5) = 5
(10°5)1 2°5 =125
10 ° 5 1 2°5 = 125

5. Addition and subtraction.
(8 + 2) + (2 + 2) = 14
8+2 + 2+2 =14

(8+2) - (2+2) =6
8+2 - 2+2 =10

(8-2) + (2-2) =6
8-2 + 2-2 =6

(8-2) - (2-2) =6
8-2 - 2-2 =2

There are several ways to get information or data into the com
puter. The replacement statement and the READ-DATA statement
do not require any outside action or external peripherals. The IN
PUT statement is interactive between the user and the computer.
Cassette tape, disk, and modem are external sources to place infor
mation or data into the computer.

10 LET A = 1 + 2 + 3
20 PRINT A
999 END
RUN
6

Line 10 is a replacement statement. The values on the right side
of the equals sign are calculated and placed in a memory location
that the computer labels "A." The contents of A are 1 + 2 + 3 or 6.

In this case, equals does not mean two equal values on opposite
sides of the equals sign, but the value on the right side of the equals
sign is transferred to the left side of the equals sign. This is an oper
ation (transfer) for the computer to perform and not an evaluation
(decision). The equals is the replacement operator, and the LET is
a replacement statement.

Line 20 PRINT A outputs 6, the value stored under the variable
label A.

The LET is optional. You get the same results with A = 5 as with

40

LET A = 5. A = 5 saves memory and is easier to type.
The following program is written to demonstrate the arithmetic

operators, print rules, and replacement statements.

A = 5 : B = 10 : C = 20
D = C + B
E=C-B
F = A * B
G = C I A
H = AI\2

10
20
30
40
50
60
70
80
90
100
110
999
RUN

PRINT D : PRINT E : PRINT F : PRINT
PRINT F. G, H : PRINT
PRINT D; E; F : PRINT
D=A:E=B:F=C
PRINT D. E. F
END

30 (D. no punctuation. line 70)
10 (E. no punctuation. line 70)
50 (F. no punctuation. line 70)
(line 70. PRINT skips a line)
50 (F comma) 4
(line 80. PRINT skips a line)
301050 (0; E; F. semicolons. line 90)
(line 90. PRINT skips a line)
5 (0 = A) 10

(G comma)

(E = B)

25 . (H comma)

20 (F=C)

Line 100 0 = A replaces the existing value of D (30) with the
value of A (5). When D is printed, the replaced value 5 is printed.
E = B replaces the existing value of E (10) with the value of B
(10). These values happened to be the same, so no difference is
seen. F = C replaces the existiIlg value of F (50) with the value of
C (20).

INPUT is used to place values in the program on an interactive
basis. Type in the following lines but leave the rest of the program
as it is.

6
8
10
RUN

INPUT "A = ";A
INPUT "S = ";S
INPUT "C = ";C

A = 5
S = 10
C = 20

The rest of the run is exactly the same as when the replacement
statement was used to input the values of A (5), B (10), and C
(20).

Now RUN the program using any values that you choose, but do
not delete the program because the next step is to use the READ
DATA input method.

41

When you are through experimenting with different numbers
using the INPUT statement type in

DEL 6, 10 (return)

This deletes the INPUT statements at lines 6, 8, and 10.
Now type in:

10 READ A, B, C
120 DATA 5, 10, 20

The results of the ruIi are the same as using a replacement state
ment, INPUT statement, or a READ-DATA statement when the
values are A = 5, B = 10, and C = 20.

42

LESSON 6

Loops

After completion of Lesson 6 you should be able to:

1. Write a program using a GOTO loop.
2. Write a program using a FOR - NEXT loop.
3. Write a program using nested loops.

VOCABULARY
Branch-This is a departure (or. the act of departing) from a se

quence of program steps to another part of the program. Branch
ing is caused by a branch instruction that can be conditional (i.e.,
dependent on some previous state or condition in the program)
or unconditional (i.e., always occurring). It is also known as a
transfer or jump.

Conditional Transfer-See Branch.
FOR - NEXT-This is a conditional branch instruction used to make

the computer jump to another part of the program.
GOTO-This is an unconditional branch (jump or transfer) to an

other part of the program. It may be executed in the immediate
or deferred mode.

Graphics-This is the art or science of drawing a representation of
an object on a two dimensional surface according to mathematical
rules of projection.

Increment-This is a fixed quantity that is added to another equiva
lent quantity.

Initialization-This is a process performed at the beginning of a pro
gram or program section or subroutine to ensure that all indica-

tors and constants are set to prescribed conditions and values be
fore that subroutine is run.

Loop-This is a set of instructions that are performed repeatedly
until some specified condition is satisfied, whereupon a branch
(jump or transfer) instruction is obeyed to exit from the loop.

Nested Loops-These are loops that exist within other loops.
STEP-In a FOR - NEXT loop, STEP is that function that causes

the loop to increment by the value designated by the STEP. It
may be positive or negative.

Test-This means to examine an element of data or an indicator to
ascertain whether some predetermined condition is satisfied.

Unconditional Transfer-See Branch.

DISCUSSION

A loop is a series of instructions that are performed repeatedly
until a specified condition is satisfied.

Suppose a program was written to count from one to five. One
variation of the program could be

10 PRINT "1"
20 PRINT "2"
30 PRINT "3"
40 PRINT "4"
50 PRINT "5"
60 END

The program would not use the computer very efficiently; writing
a program this way to count to a thousand would take all day. A
more efficient way to use the computer would be to write a program
to count from 1 to 5 by using a GOTO loop.

10 X = 1
20 PRINT X
30 X=X+l
40 IF X>5 THEN 60
50 GOTO 20
60 PRINT: PRINT "I'M THRU COUNTINGI"
999 END
RUN
1
2
3
4
5

I'M THRU COUNTINGI

Line 10 is the initializing top. The loop begins by initializing the
variable X to the first value of the count one. If a simple variable is

not initialized, the computer initialized the value to zero. The vari
able could be initialized to any number such as 2, -40, or 308. The
programmer must know the correct value to initialize the variable
to produce the right answer.

Line 20 prints X each time the loop is executed.
Line 30 is the summing or incrementing statement that keeps

track of the number of times the loop has executed. The loop vari
able was initialized to one. Each time the loop is executed, the sum
ming statement adds one to the initialized value of the variable. In
this case, when the summing statement is equal to five, the program
(at line 40) jumps out of the loop and executes line 60.

Line 40 is a testing step, a conditional branch or transfer that says,
IF the loop has execut~d five times THEN jump out of the loop to
line 60 in the program.

Line 50 is an unconditional branch or transfer that makes the
computer go back to line 20.

When the loop has been executed five times and X > 5, line 40
checks that X > 5 and THEN causes a branch to line· 60 to print
'1'M THRU COUNTINGl" and the program ends.

The FOR - NEXT loop program to count from one to five follows.

10 FOR X = 1 TO 5 (replacement statement)
20 PRINT X
30 NEXT X
40 PRINT: PRINT "I'M THRU COUNTINGI"
999 END
RUN
1
2
3
4
5

I'M THRU COUNTING!

This is how the GOTO loop and the FOR - NEXT loop look when
they are placed side by side.

GOTO loop
10 X = 1
20 PRINT X
30 X=X+l
40 IF X>5 THEN 60

50 GOTO 20
60 PRINT: PRINT "I'M THRU

COUNTlNGI"
END

FOR - NEXT loop
10 FOR X = 1 TO 5
20 PRINT X
30 NEXT X
40 PRINT: PRINT "I'M THRU

COUNTINGI"
999 END

The FOR - NEXT loop program is shorter and more efficient than
the GOTO loop program. The GOTO loop is used in cases wheI=e

45

the number of times of loop execution is not known beforehand.
This will be explained more clearly when the GOTO loop is used
with the decision statement in Lesson 7.

The FOR - NEXT loop is used when the number of times of loop
execution is known. The FOR - NEXT loop can use loop variables
to determine the number of times that the loop is to be executed.
In FOR X = 1 TO 5, the number of times the loop will be executed
is 5. In FOR X = 1 TO N, the variable "N" determines the number
of times the loop will be executed.

In the same FOR - NEXT loop program type in these lines.

5 INPUT "COUNT TO # : "; N
10 FOR X = 1 TO N
RUN
COUNT TO # : 3
1
2
3

I'M THRU COUNTINGI

Line 5 allows the user to input the highest number in the count.
Line 10 causes X to start at the number "1", and go to "N", the

highest number to be counted. In this case, X = 1 TO 3.
Now type these lines in the same program.

5 READ N
60 DATA 3
RUN
1
2
3

I'M THRU COUNTINGI

The following program demonstrates how to use loops to print
forward, to print forward by steps, and to print backward by steps.
It also demonstrates how the HTAB function formats output from
loops.

10 FOR A = 1 TO 6
20 HTAB (A - 1)*3 + 1 : PRINT A;
30 NEXT A : PRINT
RUN

2 3 4 5 6

Line 10 designates that the loop executions will go from 1 to 6.
In line 20, the HTAB function sets up the column in which the

value of A is to be printed. The "03" begins a field every three posi
tions ("04" would begin a field every four positions). The "+ 1"

46

Table 6-1. HTAB (A - 1)*3 + 1 PRINT Ai

LOOP
EXECUTIONS A (A - 1) (A - 1)*3 (A - 1)*3 + 1 PRINT Ai

1 1 0 0 1 1
2 2 1 3 4 2
3 3 2 6 7 3
4 4 3 9 10 4
5 5 4 12 13 5
6 6 5 15 16 6

signifies column one on the left side of the screen. If the "+ 1" is not
used the HT AB tries to print in column zero. Since there is no col
umn zero, the program bombs (a "+2" would signify column two
on the left-hand side of the screen). The «°3" controls the positions
between the numbers, while the "+1" signifies the number of col
umns from the left-hand side of the screen. The value of A is printed
horizontally because of the semicolon following the A. See Table
6-1 for details.

Line 30 completes the loop and the PRINT closes out the line.

40 FOR B = 2 TO 6 STEP 2
50 HTAB (B - 1)*3 + 1 : PRINT B;
60 NEXT B : PRINT
RUN

246

Line 40 starts with a value of 2, to change the learning experience.
STEP 2 causes the loop to be incremented by 2 numbers on each ex
ecution. The STEP can be any necessary value, positive or negative,
to achieve the solution to the problem.

Lines 50 and 60 are similar to lines 20 and 30.
The next sections of the program use the loop to print the num

bers backward.

70 FOR C = 6 TO 1 STEP -1
80 HTAB (6 - q*3 + 1 : PRINT C;
90 NEXT C
100 PRINT
110 FOR 0 = 6 TO 2 STEP - 2
120 HTAB (6 - 0)*3 + 1 : PRINT 0;
130 NEXT 0 : PRINT: PRINT

The first PRINT in line 130 closes out the line and the second
PRINT causes the program to skip a line between the previous sec
tion and the next section of the program printout.

140 PRINT "A = ";A; " : B = ";B; ": C = ";c; " : 0 = ";0
RUN
A=7:B=8:C=0:D=0

47

The output from line 140 shows the next value of the variable
after the loop has completed .its executions. In loop A, the values
go from 1 to 6, but the loop makes 7 the final value of A. In loop B,
the values go from 2 to 6, but the loop makes 8 the final value of B.
In loop C, the values go from 6 to 1, but the loop makes 0 the final
value of C. In loop D, the values go from 6 to 2, but the loop makes 0
the final value of D. This is a very important fact. It is important to
keep track of these final values because they can produce incorrect
results if the variables are used again and are not initialized. This
fact will be detailed in the CASH FLOW program.

The complete program and RUN follows.

10 FOR A = 1 TO 6
20 HTAB (A - 1)*3 + 1 : PRINT A;
30 NEXT A : PRINT
40 FOR B = 2 TO 6 STEP 2
50 HTAB (B - 1)*3 + 1 : PRINT B;
60 NEXT B : PRINT
70 FOR C = 6 TO 1 STEP -1
80 HTAB (6 - C)*3 + 1 : PRINT C;
90 NEXT C
100 PRINT
110 FOR D = 6 TO 2 STEP -2
120 HTAB (6 - D)*3 + 1 : PRINT D;
130 NEXT D : PRINT: PRINT
RUN
65432

Line 70 sets the loop to go from 6 to 1 and is stepped in incre
ments of -1.

In line 80, since the loop values are to be printed backwards in
increments of -1, the value of 6 must be printed on the left side of
the screen in column 1. To accomplish this; the value of C must be
subtracted from the maximum value of the loop which is 6. (See
Table 6-2.)

Line 90 completes the loop.
Line 100 closes the output line.

Table 6-2. HTAB (6 - C)*3 + 1 : PRINT C;

LOOP
EXECUTIONS C (6 - C) (6 - C)*3 (6-C)*3+1

1 6 0 0 1
2 5 1 3 " 3 4 2 6 7
4 3 3 9 10
5 2 4 12 13
6 1 5 15 15

48

PRINT C;

6
5
4
3
2
1

The next section of the program causes the loop to print back
wards in steps of -2.

110 FOR 0 = 6 TO 2 STEP -2
120 HTAB (6 - 0)*3 + 1 : PRINT 0;
130 NEXT 0 : PRINT: PRINT
RUN
6 4 2
140 PRINT "A = ";A; " :B = ";B; II :C = ";C; II :0 = ";0
150 END
RUN
123 4 5 6

2 4 6
6 5 4 3 2 1
6 4 2

A = 7 :B = 8 :C = 0 :0 = 0

Nested loops are a loop within a loop or loops within a loop. In
Applesoft, loops can be nested 10 deep.

10 FORS=IT03

I 20 FORT=IT05 I
30 PRINT T; II "; INNER lOOP OUTER lOOP
40 NEXT T : PRINT I I 50 NEXT S
60 END
RUN

2 3 4 5
2 3 4 5
2 3 4 5

Line 20 sets the inner loop to execute 5 times. Line 30 causes the
inner loop to print out the value of T on each execution and the
quotation marks cause one space to be placed between each of the
values in the printout. If two spaces were left between the quota
tion marks, there would have been two spaces created between the
values as they were printed. This gives a second method of spacing
in a loop. The first method demonstrated was with the HTAB.

Line 10 and line 50 cause the outer loop to execute three times.
Loops must never be crossed or the program will not execute.

Reverse lines 40 and 50 and observe what happens to the program.

10 FOR 5 = 1 TO 3-----,
20 FOR T = 1 TO 5----+---------.1
30 PRINT T; " "; CROSSED lOOP CROSSED lOOP
40 NEXT S : PRINT----....II I
50 NEXTT-------------~·
60 END
RUN

49

?NEXT WITHOUT FOR ERROR IN 50

Nested loops give the computer more power in computations and
simpler more efficient programming for the programmer. They are
very useful in graphics.

The following program uses nested loops and a graphic print to
produce the triangle shown in Fig. 6-1.

10 FOR S = 1 TO 10
20 HTAB (19 - 5)
30 FOR T = 1 TO ,5
40 PRINT "*";
50 NEXT T : PRINT
60 NEXT 5
70 END
RUN

50

*
**

*'It***
*'It****

Fig. 6-1. Triangle.

LESSON 7

Rational and Logical
Operators

After completion of Lesson 7 you should be able to:

1. Define and use relational and logical operators in writing a
program.

2. Use decision statements in programming.

VOCABULARY
Bug-This is a mistake or malfunction in a computer program.
Debug-This means to remove a mistake, or mistakes, from a com

puter program or system.
Decision-This is an operation performed by a computer that en

ables it to choose between alternative courses of action. A decision
is usually made by comparing the relative magnitude of two speci
fied operands. A branch instruction is used to select the required
path according to the results.

Default-The rule of default states that a computer program runs
sequentially according to increasing line numbers unless a branch
is executed.

Logical Operator-This is a word or symbol to be applied to two or
more operands (AND, OR, and NOT are logical operators).

Relational Operator-This is a method of comparing quantities to
make decisions.

51

DISCUSSION

Program statements have line numbers so the program can run
sequentially hom the lowest line number to the highest. The pro
gram runs sequentially until a program statement containing a rela
tional or logical operator is reached. The program then must weigh
the decision. If the decision is true (1 or YES), then the program
branches to a line number out of sequence. If the decision is false
(0 or NO), then the program continues in its sequential run. The
program "falls through" or defaults to the next line number. The
rule of default states that unless a branch is executed, the statement
with the next highest number is executed. With the computer there
are only two decision choices, true or false. There can be no other
answer to the decision.

The following relational operators compare two quantities. Based
on the result of the comparison, the computer can make a decision.

1. NOT. This is the logical negation of an expression.

1. Left expression "equals" right expression (in this case,
equals is not a replacement statement).

2. <> Left expression "does not equal" right expression.
Left expression "is greater than" right expression.
Left expression "is less than" right expression.

3. >
4. <
5. >= Left expression "is greater than or equal to" right expres-

sion.
6. < = Left expression "is less than or equal to" right expression.

NOT is a replacement symbol in an IF - THEN statement.

Relational operators are related to iogical operators.

1. NOT. This is the logical negation of an expression.
2. AND - IF A> Band C> D THEN 999.

Expression A>B AND expression C>D must be true for the
statement to be true.

3. OR - IF A>B OR C>D THEN 999.
If either expression A>B OR C>D is true, then the expression
is true.

The following program combines PRINT statements, GOTO
loops, decision statements, and program sections in one unit to fur
ther the learning experience. In Lesson 6 GOTO loops were dis
cussed. This lesson details why a GOTO loop is used in cases where
the total number of inputs is not known beforehand. The program
deals with applicants who come into a drivers license bureau to
apply for an operators permit. The office never knows how many
applicants will present themselves on a given day. The GOTO loop

52

accommodates the unknown number of applicants by using decision
statements.

An applicant enters the drivers license office and the attendant
asks the applicants name and age. The program asks for the age of
the applicant. An operators license is issued or not issued on the
basis of the age of the applicant. The total number of applicants by
age groups and the total number of applicants for the day are
printed out and the program terminates.

The program was intentionally written with REM statements in
the program to demonstrate how programs can be written in sec
tions to determine if each section runs properly. This is one method
of debugging a program. These variables are used in the program:

AGE = age of the applicant

IS 18 = the applicant is 18
years of age

NA = number of applicants

10 REM * PROGRAM TO DETERMINE
20 REM * LICENSE ELIGIBILITY AND

UNDER 18 = the applicant is
under 18

OVER 18 = the applicant is
over 18

30 REM * COUNT THE NUMBER OF APPLICANTS
40 REM * INITIALIZE VARIABLES
50 INPUT "AGE = "; AGE
60 IF AGE <= 0 THEN 190
70 REM * COUNTING VARIABLE
80 IF AGE <18 THEN 130
90 IF AGE = lB THEN 160
100 REM * COUNTING VARIABLE
110 PRINT "OPERATORS LICENSE"
120 GOTO 50
130 REM * COUNTING VARIABLE
140 PRINT "NO OPERATORS LICENSE"
150 GOTO 50
160 REM * COUNTING VARIABLE
170 PRINT "JUNIOR OPERATORS LICENSE"
180 GOTO 50
190 REM * PRINT HEADINGS
200 PRINT
210 REM * PRINT TOTALS
220 END
RUN
AGE = 36
OPERATORS LICENSE
AGE = 18
JUNIOR OPERATORS LICENSE
AGE = 15
NO OPERATORS LICENSE
AGE = 0
] .

53

The program RUNs as planned. When age is input, the output
shows the eligibility of the applicant. The first program revision
counts the number of applicants. Change the program by typing in
the following line numbers and program statements.

40 NA = 0 (initialize summing variable to zero)
70 NA = NA + 1 (counting statement)
190 PRINT "TOTAL APPLICANTS"
210 PRINT NA
RUN
AGE = 25
OPERA TORS LICENSE
AGE = 0
TOTAL APPLICANTS

It worked just as planned. Now let's try the second revision.
Line 40 initializes the variable NA (number of applicants) to

zero.
Line 70 is a replacement statement that is also a counting state

ment that counts the number of applicants. This will be discussed in
detail in Lesson 10. The value of NA (originally zero) is incre
mented by the value of 1 for each applicant. This incremented value
(NA + 1) is placed on the left side of the equals into NA. When
processing the first applicant, the counter looks like this: NA = 0
+ 1. With the second applicant the process is repeated, so the
counter is NA = 1 + 1 and the results are placed on the left side of
the equals ,sign into the variable NA. As each applicant's age is in
put, the counter is incremented by 1. The incrementing continues
until a zero is input, which causes the program to branch to line 190
to print out the totals (see line 60).

The second revision separates the applicants by age, counts and
prints out the total number of applicants, and prints out the number
of applicants that are UNDER 18, NOW 18, and OVER 18.

Type in the following line numbers and program statements.

40 NA = 0 : UNDER 18 = 0 : NOW 18 = 0 : OVER 18 = 0
100 OVER 18 = OVER 18 + 1
130 UNDER 18 = UNDER 18 + 1
160 NOW 18 = NOW 18 + 1
190 PRINT "TOTAL NUMBER UNDER 18 NOW 18 OVER 18"
210 HTAB 5 : PRINT NA; TAB (16); UNDER 18; TAB (25);

NOW 18; TAB (33); OVER 18
RUN
AGE = 15
NO OPERATORS LICENSE
AGE = 18
JUNIOR OPERATORS LICENSE
AGE = 25

54

OPERATORS LICENSE
AGE = 0
TOTAL NUMBER UNDER 18 NOW 18 OVER 18

3 1

The second revision initializes three more counting variables to
zero.

40 NA = 0 : UNDER 18 = 0 : NOW 18 = 0 : OVER 18 = 0
100 OVER 18 = OVER 18 + 1
130 UNDER 18 = UNDER 18 + 1
160 NOW 18 = NOW 18 + 1

Lines 100, 130, and 160 add counting statements to count the
number of applicants in each age bracket. The counting statements
are placed in the program sections that deal with the specific age of
the applicant. The GOTO statements of lines 120, 150, and 180 are
the ends of GOTO loops. The statements are unconditional jumps
to line 50, the line that accepts the age of the next applicant.

The two program revisions complete the program and solve the
problem of totaling the number of applicants and total the appli
cants by age.

The program section pertaining to applicants UNDER 18 is

80 IF AGE<18 THEN 130
130 UNDER 18 = UNDER 18 + 1
140 PRINT "NO OPERATORS LICENSE"
150 GOTO 50

The program section pertaining to those applicants who are 18 is

90 IF AGE = 18 THEN 160
160 IS 18 = IS 18 + 1
170 PRINT "JUNIOR OPERATORS LICENSE"
180 GOTO 50

The program section dealing with those applicants OVER 18 is

90 IF AGE = 18 THEN 160

100 OVER 18 = OVER 18 + 1
110 PRINT "OPERATORS LICENSE"
120 GOTO 50

(if the AGE is OVER 18 the statement is FALSE
and the program defaults to line 100)

Finally, the program section that deals with line 60:

60 IF AGE <= 0 THEN 190
190 PRINT "TOTAL NUMBER UNDER 18 NOW 18 OVER 18"
200 PRINT
210 HTAB 5 : PRINT NA; TAB (16); UNDER 18; TAB (25);

NOW 18; TAB (33); OVER 18
220 END

55

In the operators eligibility program, there are 3 age classifications,
UNDER 18, NOW 18, and OVER 18. There are, however, only two
decision statements to select the 3 age categories. Line 60 does not
select an age category.

80 IF AGE <18 THEN 130
90 IF AGE = 18 THEN 160

As shown above, line 80 selects applicants UNDER 18. If line 80
is TRUE it branches to line 160. If line 80 is FALSE the program
defaults to line 100.

10 REM * PROGRAM TO DETERMINE
20 REM * LICENSE ELIGIBILITY AND
30 REM * COUNT THE NUMBER OF APPLICANTS
40 NA = 0 : UNDER 18 = 0 : IS 18 = 0 : OVER 18 = 0
50 INPUT "AGE = "; AGE
60 IF AGE <= 0 THEN 190
70 NA=NA+l
80 IF AGE <18 THEN 130
90 IF AGE = 18 THEN 160
100 OVER 18 = OVER 18 + 1
110 PRINT "OPERATORS LICENSE"
120 GOTO 50
130 UNDER 18 = UNDER 18 + 1
140 PRINT "NO OPERATORS LICENSE"
150 GOTO 50
160 IS 18 = IS 18 + 1
170 PRINT "JUNIOR OPERATORS LICENSE"
180 GOTO 50
190 PRIIljT "TOTAL NUMBER UNDER 18 IS 18 OVER 18"
200 PRINT
210 HTAB 5 : PRINT NA; TAB (16); UNDER 18, TAB (25);

IS 18; TAB (33); OVER 18
220 END

In Applesoft, an IF - THEN statement that is TRUE executes all
statements after the THEN.

10 A = 5
20 IF A>4 THEN A = 6 : B = A/l2: PRINT: GOTO 90

In this case, since A> 4 is TRUE all statements at line 20 are exe
cuted before the computer branches to line 90.

10 A = 5
20 IF A>4 THEN 90 : A = 6 : B = A/12 : PRINT

In this case, since A>4 is TRUE it branches to line 90 without
executing the other statements at line 20.

With the Age Eligibility Program completed, the following con
cepts have been reinforced.

56

1. PRINT statement rules.
2. HTAB and TAB rules.
3. GOTO loops.
4. Operators and decision statements.
5. Initializing variables and counting statements have been intro

duced and will be discussed in greater detail in Lesson 10.

57

LESSON 8

Problem Solving and
Flowcharts

Mter completing Lesson 8 you should be able to:

1. Begin using a logical method in problem solving.
2. Flowcart simple problems with flowchart symbols.

VOCABULARY

Hardware-This is the name for all of the physical units of a com
puter system. Hardware is made up of the apparatus rather than
the programs.

Logic Flowchart-This is a chart representing a system of logical
elements and their relationship within the overall design of the
system or hardware unit. It is the representation of the various
logical steps in any program or routine by means of a standard set
of symbols. A flowchart is produced before detailed coding for
the solution of a particular problem.

Software-In its most general form, software refers to all programs
that can be used on a particular computer system.

DISCUSSION

When you write a computer program, you solve a problem. The
most basic approach to solving a problem is to first understand the
problem. In the program to compute the area of a circle, the formula
was discussed and thought out in high school math. The knowledge

58

simplifies the programming of the output. A program to compute
and compare three types of depreciation somewhat changes the
problem. The first problem in programming is to understand the
problem and its ramifications.

Once the problem is understood, the solution must be placed in
the proper order. The exact output format must be known. The pre
cise formulas to output the correct answers must be used. The exact
language that the computer understands must be programmed in
the proper order, and the idiosyncracies and normal operations of
the machine must be understood. The computer can only output
according to specific input. The excuse is often heard; <CIt's the com
puter's fault." Computers seldom (if ever) make errors, it's the
human input that is in error. Computers are stupid but exacting.
Many programmers pray for a program statement DWIT (do what
I think). The DWIT statement is not yet available in Applesoft, so
we'll do the best we can with what we have. Remember, the com
puter does exactly what you tell it to do, nothing more, nothing less.

Once the problem, the language, and the computer are under
stood, all other problems are relatively simple. The program can
now be written to solve the problem.

The output must be tested for correct results with as many dif
ferent inputs as possible. Simple inputs may produce correct out
puts, but are there cases where the outputs are incorrect? The pro
gram should be tested and debugged to produce the correct output
under all circumstances. What if the program to put a man on the
moon had had bugs in it?

Has the program been documented with REM statements and
other written records so another person could RUN the program and
understand the output? Have the variables been recorded so the
computational formulas can be easily understood? Has the program
been properly indexed so it can be easily located in the library? The
answers to all these questions should be yes. It is easy to forget what
problem a program solves, what the variables represent, and where
the program can be located.

Flowcharting, or logic flowcharting, is a technique for represent
ing a succession of events in symbolic form. Flowcharting is the first
step in logical program development. It aids in thinking the program
through from the problem to the computer stage.

In data processing, flowcharts may be divided into two types, sys
tem #owcharts and program flowcharts.

System flowcharts, using symbols, show the logical relationship
between successive events using hardware. Such symbols include
data input (on, for example, magnetic tape, disks, and punched
cards) and data output (through, for instance, printers, magnetic
tape, or disk).

59

o o
PUNCHED TAPE MAGNETIC DRUM MAGNETIC TAPE

D
MANUAL INPUT DOCUMENT PUNCHED CARD

SYSTEM SYMBOLS

Program flowcharts show diagrammatically the logical relation
ship between successive steps in the program. For most complicated
programs, an outline flowchart precedes a detailed flowchart, before
the program is written.

The purposes of an outline or initial flowchart are to show:

1. All input and output functions.
2. How input and output are to be processed.
3. How the program will be divided into routines and subroutines.

The purposes of a detail or final flowchart are:

1. To interpret the detailed program specifications.
2. To determine the programming techniques to be used.
3. To provide direction for code and comment.
4. To fix the program style for ease of interpretation.

Flowcharting symbols usually conform to some standard set in
which each symbol has a specific meaning. Flowchart symbols and
definitions are as follows.

60

PROGRAM FLOWCHART SYMBOLS

(TERMINAL)

GOTO

Used for the beginning and ending of a pro
gram. A symbol representing a terminal
point in a flowchart.

Flowlines show the transfer of control from
one operation to another by default, condi
tional, or unconditional branching.

Fig. 8·1. Flowchart for license eligibility program.

Indicate data entered into the computer
and results returned from the computer.
INPUT PRINT

Indicates a decision or switching type of
operation that determines which of a num
ber of alternate paths to follow. IF - THEN

61

10 X = 0
20 SUM = 0

30 FOR X = 0

40 PRINT X

50 SUM = SUM + X

60 NEXT X

70 PRINT "SUM = ": SUM

80 END

Fig. 8-2. Sum of the integers 1 through 5 using a FOR-NEXT loop.

OPERATION

PREDEFINED
PROCESS

(2) CONNECTOR CD

Operation or process symbol that represents
any kind of processing function such as ini
tializing, counting, summing, or computing.

Indicates a sequence of the program state
ment items in a list. GOSUB

A symbol (pair) to represent the exit or
entry from another part of the Howchart. It
is used to indicate a transfer of control from
one point to another that cannot be conve
niently shown on a Howchart because of the
confusion of connector lines, or because the
Howchart is continued on another page.

Figs. 8-1, 8-2, and 8-3 demonstrate how Howcharts graphically
describe a program. Fig. 8-1 represents the driver's license program
of Lesson 7. Figs. 8-2 and 8-3 represent new Sum of the Integers
programs. The last two figures also show how a FOR - NEXT loop

62

10 X = 0

20 SUM = 0

30 PRINT X

40 IF X = 5

50 X = X + 1 THEN 80

60 SUM = SUM + X

70 GOTO 30

80 PRINT" SUM = " ; SUM

99 END

Fig. 8-3. Sum of integers 1 through 5 using a GOTO loop.

is more efficient than a GOTO loop because it is shorter (program
loop efficiency was discussed in Lesson 6).

63

LESSON 9

Rules for Efficient
Programming

After completion of Lesson 9 you should be able to:

1. Write three pairs of opposites to be used with decision state
ments.

2. Use three rules for efficient programming.
3. Understand how to save memory space and increase the speed

at which a program runs. .

DISCUSSION

This lesson deals with how to program more efficiently and how
to make the program run faster. Efficiency and speed may be well
and good, but for the average computer hobbyist speed is not that
important. The important thing is to enjoy the hobby and write pro
grams that are readable and can be deciphered six months from
now. Place REM statements within the program that will help you
understand and remember what that variable represented. Did that
single "R" variable stand for RUTH or RAIN? These points are very
important if the program is to be reused at a later date. A couple
of microseconds lost here and there isn't going to change the world.
Write understandable programs. Write programs that jog your mem
ory when you pick them out of your library four months from now.
The variable SUM, (even though Applesoft recognizes only the 1st
two letters) means something. The variable "S", now what did that
stand for? Now back to speed and efficiency.

64

There are three pairs of opposites that are used to reverse the
logic of the IF - THEN statement.

1. > is opposite <=
2. < is opposite >=
3. = is opposite <>

These pairs of opposites select a range. If the range is below age
18, the statement is AGE < 18. If the range includes age 18 and
those ages below age 18, the statement is AGE <= 18. If the over
18 group is to include the 18 year olds, the statement is written
AGE >= 18.

AGE less than 18 = AGE < 18
AGE less than 18 but
includes the 18 year
old group = AGE <= 18
AGE greater than 18 = AGE> 18
AGE greater than 18 but
includes the 18 year
old group = AGE >= 18
AGE is 18 = AGE = 18
AGE is not 18 = AGE <> 18

Decision statements (IF - THEN) operate on a TRUE (lor
YES) or FALSE (0 or NO) basis and are Howcharted as shown in
Fig. 9-1.

YES

Fig. 9-1. Decision statement flowchart.

Decision statements should select the range from least to greatest
by sequential line number for maximum programming efficiency. In
other words, the ranges involving the smallest numbers should be
programmed first, and the ranges involving the largest numbers
should be programmed last.

60 IF AGE<= 0 THEN 190
80 IF AGE<18 THEN 130
90 IF AGE = 18 THEN 160

100 OVER 18= OVER 18 + 1
(AGE 'B defaults to line '00)

Selecting the range from least (line 60) to greatest (line 90)

65

makes programming an orderly endeavor and, thus, easier to per
form and interpret.

Memory space can be saved and program speed increased by:

1. Using multiple statements for each line number.
100 UNDER 18 = UNDER 18 + 1 : PRINT "OPERATORS LI-

CENSE" : GOTO 50
This saves memory space, but also it sometimes helps to keep
track of program sections. In a long program, if short program
sections are written with a single line number it eases read
ability.

2. Using variables within the program instead of constants. PI =
3.1416. If PI is used in the program (instead of 3.1416), it runs
faster. It takes more time to convert a constant to a real number
than it does to fetch a variable. This is true in computations and
in FOR - NEXT loops. Use FOR X = 1 TO PI instead of FOR
X = 1 TO 3.1416.

3. Placing items that are used frequently at the beginning of the
program. When the program reaches an item that must be con
verted or fetched, the computer must search through the pro
gram sequentially until the item is found. If the item is on line
10, the search is much shorter than if the item is on line 10,000.

There are other methods to save space and increase program
speed but they do not increase efficiency greatly. Learn to program
efficiently so the programs are usable, accurate, and understandable.

66

LESSON 10

Summing, Counting, and
Flags

After completion of Lesson 10 you should be able to:

1. Write a program using summing and counting variables.
2. Initialize variables in the proper program location.
3. Use a Hag to control all or part of a program.

VOCABULARY

Counting Variable-This is a variable used to count within a loop,
e.g., C = C + 1. The variable is incremented by 1 on each loop
execution.

Flag-This is an additional piece of information added to a data item
which gives information about the data itself. An error Hag indi
cates that the data item has given rise to an error condition.

Illegal Value-In Applesoft, this means using a reserved word for a
variable, e.g., using TO as a variable when it is a reserved word.

Legal Value-In Applesoft, this means using a variable that meets
the requirements of the language, e.g., X = 5.

Summing Variable-This is a variable used within a loop to sum the
values of the loop variable, e.g., FOR X = 1 TO 5. The summing
statement SUM = SUM + X sums the value of X.

DISCUSSION

Counting variables are used to count some function within the
program and are generally initialized to zero. The increment is one·

67

if each execution of the loop is to be counted. C = C + 1 is the state
ment used to increment the count by one and store the count in vari
able location "C".

Summing, also known as totaling, variables are used to sum or
total within a loop. If "1'" is the totaling variable, then T is usually
initialized to zero, the value at the beginning of the operation. A
program that totals daily and adds the daily total to the previous
day's total would not be initialized to zero, but to the previous day'~
total. If the variable is "X", then the totaling statement would be
T = T + X. The value of X is added to the total (T + X) and that
value is placed in the variable T. The statement T = T + X is placed
inside the loop and the total value is outputted outside the loop,
after the loop has made its final execution.

Variables are initialized at the beginning of the program. The
statements that initialize the variables have no further function in
the program. If a GOTO statement returns the program to the line
that initializes all variables to zero, each loop execution will initial
ize all variables to zero. The GOTO statement should go to a line
number below the line where the variables are initialized.

The following program demonstrates counting and totaling vari
ables.

10 C = 0 : T = 0 : REM * INITIALIZE VARIABLES
20 FORX=IT05
30 PRINT X; " ";
40 C = C + 1 : REM * COUNTING STATEMENT
50 T = T + X : REM * TOTALING STATEMENT
60 NEXT X : PRINT : PRINT
70 PRINT "COUNT = "; C : PRINT
80 PRINT "TOTAL = "; T
999 END
RUN
12345
COUNT = 5
TOTAL = 15

Note that the counting and totaling statements are within the
body of the loop and the count and total change with every execu
tion of the loop. When the loop has completed its last execution the
computer prints out the total count (line 70), prints out the total
value of the variable T (line 80), and the program ends.

A Hag is a value stored in a variable. Flags are signals to the com
puter used to start some programmed function. In the following
program the Hag has a legal value of zero (0), one (1), or minus one
(-1). Flag = 0 causes the program to print "# of adds", "# of sub
tracts", final total, and the program ends. Flag = 1 causes a jump to
the section of the program to input a number to add. Flag = -1
causes the program to jump to a section of the program to input a

68

number to be subtracted. After each addition and subtraction there
is a GOTO 20 statement that is an unconditional jump to input an
other Bag value.

If an illegal value (any item other than 0, 1, or -1) is typed in
the INPUT (20 for instance) the program defaults to line 70. When
Flag = 20, the decision in line 40 is false, and the program defaults
to line 50. In line 50, the decision is also false and the program de
faults to line 60. The same thing happens in line 60 and the program
defaults to line 70. Line 70, GOTO 20, is an unconditional jump to
line 20 to input another Bag value.

The variables used in the program are:

CA = count to be added.
N = number
T = total
10 CA = 0 : CS = 0 : T = 0

CS = count to be subtracted.
F=fiag

20 PRINT "ENTER FLAG VALUE (0 TO QUIT: 1 TO ADD NUM~ER :
-1 TO SUBTRACT NUMBERY'

30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
RUN

INPUT "?" ;F
IF F = 0 THEN 140
IF F = 1 THEN 80
IF F = -1 THEN 110
GOTO 20
INPUT "NUMBER TO BE ADDED "; N
CA=CA+l:T=T+N
GOTO 20
INPUT "NUMBER TO BE SUBTRACTED "; N
CS=CS+l:T=T-N
GOTO 20
PRINT: PRINT "# OF ADDS = "; CA
PRINT: PRINT "# OF SUBTRACTS = "; CS
PRINT : PRINT "FINAL TOTAL = ", T
END

ENTER FLAG VALUE (0 TO QUIT: 1 TO ADD NUMBER: -1 TO SUB
TRACT NUMBER)
? 1
NUMBER TO BE ADDED 34
ENTER FLAG VALUE (ALL OF LINE 20)
? -1
NUMBER TO BE SUBTRACTED 18
? 0
OF ADDS = 1
OF SUBTRACTS = 1
FINAL TOTAL = 16

Line 10 initializes the variables to zero. Line 20 prints out the Hag
values that control a specific part of the program. F = 0 outputs and
ends the program. F = 1 adds a number that has been input and
keeps a total. F = -1 subtracts a number that has been input and

69

Fig. 10-1. Flowchart for flag program.

keeps a total. Line 30 allows the user to input the Hag value. The
flowchart for the FLAG PROGRAM is shown in Fig. 10-1.

GOTO lines in Fig. 10-1 are represented by lines from one symbol
to another but are not named on the flowchart. Unless F = 0, all
GOTO lines return to input another flag value.

Lines 140, 150, and 160 print out the results and the program ends
at line 170.

70

LESSON 11

Single Subscripted
Variables

After completion of Lesson 11 you should be able to:

1. Set DIMension limits using constants and variables.
2. Write programs using subscripted variables for numeric lists

a. To output the list as it was input.
b. To output the list in reverse order.
c. To operate on the numbers in the list.
d. To total the numbers in the list.

VOCABULARY
Array (subscripted variable) -This is an arrangement of items of

data, each identified by a key or subscript. It is constructed in
such a manner that a program can examine the array in order to
extract data relevant to a particular key or subscript. The dimen
sion of an array is the number of subscripts necessary to identify
an item. Reservations based on the day of the month would need
a (DIM R (31)) subscripted variable R (D), while reservations
based on the day and the month would need a (DIM R (31, 12))
doubly subscripted variable R (D, M).

DIM-The DIM statement reserves memory locations for numeric or
string arrays, such as A$ (14), B (5), and C% (12). DIM A (15)
reserves 16 strings of 255 characters in length, starting from zero.
DIM A (N) sets aside N + 1 number of arrays of up to 255 char
acters in length. The DIM A (N) must be placed in the program

71

after N has been input. The DIM A (N) must not be placed in a
loop, except under very special conditions.

List-This is any printing operation in which a series of records on
a file, or in memory, are printed one after another.

Operate-This is a defined action by which a result is obtained from
an operand.

DISCUSSION

Lesson 11 introduces a new type of variable, the subscripted vari
able for numeric lists, or array.

SUBSCRIPTED VARIABLE

C(A) C(I)

SIMPLE VARIABLES CA X9 - CX4 G3H

SUBSCRIPTED VARIABLES C(A) X(9) CX(4) G3(H)

The variables A, A (0), AB, and A (B) can all be used in the same
program successfully. A subscripted variable, like a simple variable,
reserves a memory location with a label and contents.

Table 11-1 shows five subscripted variables with the memory loca
tions labeled C (A) with no values in the locations.

Table 11-1. Subscripted Variables

LABEL CONTENTS

C(1)

C(2)

C(3)

C(4)

C(5)

C(A) represents C(I), C(2), C(3), C(4), and C(5).
Suppose the contents of the memory locations whose label is

C(A) is filled with random numbers. LET C(I) = 8. LET C(2) =
5. LET C(3) = 19. LET C(4) = 1. LET C(5) = -8.

Table 11-2 shows the five memory locations whose labels are
C (A) and whose contents are as stated above.

The subscripted variable, or array, is now filled with a list of
numbers.

When you remember that the subscript of a variable can be a

72

Table 11-2. Subscripted Variables

LABEL CONTENTS

C(1) 8

C(2) 5

C(3) 19

C(4) 1

C(5) -8

variable (C (A)), or a constant (C (1)), you begin to realize what
a powerful tool the single subscripted variable turns out to be.

IF A = 1 THEN C(A) = C(I)
IF A = 2 THEN C(A) = C(2)
IF A = 3 THEN C(A) = C(3)

Subscripted variables give great processing power to the com
puter, and make the job of the programmer much easier.

To practice conversion of using constants and variables in the
subscripted portion of subscripted variables, complete the following
exercises.

L(I) 2 N(I) 6 P 1

L(2) 5 N(2) 3 Q 2

M(3) 7 0(3) 1 R 3
M(4) -2 0(4) 4 S 4

L(I) = P= L(P) =
L(2) = Q= OCR) =
M(R) = N(Q) N(Q) =
M(S) = M(S) N(P)

2 1 2
5 2 1
7 3 3

-2 -2 6

A DIM statement is necessary to reserve memory locations for a
numeric array. The array range goes from zero to the number dimen
sioned. DIM A(15) reserves 16 elements for array A (0 to 15). Each
element may be up to 255 characters in length. An array can be up
to 11 (0 to 10) elements large without a DIM statement.

Integer arrays A % (N) will not be presented separately because
they are handled in a manner similar to real arrays A (N).

73

In the following program there are only three numbers in the
numeric list so a DIM statement is not necessary. However, a DIM
statement is used anyway as a teaching example. A DIM statement
should always be used in programs with subscripted variables to
reserve specific memory locations.

The program allows the user to input N numbers into a list. The
list of numbers is printed as input, printed backwards, operated on,
and totaled.

90 HOME: VTAB 3
100 REM: ARRAYS - SINGLE SUBSCRIPTED
110 REM: VARIABLES - USED FOR LISTS
120 REM: 4 WAYS TO USE THEM
130 REM: INPUT 4 NUMBERS
140 INPUT "HOW MANY NUMBERS = ";N
150 DIM L(N)
160 FOR X = 1 TO N : L(X) = 0 : NEXT X
170 FOR K = 1 TO N
180 PRINT "NUM8ER";K; "=";
190 INPUT L(K)
200 NEXT K
210 PRINT "PRINT LIST AS INPUT" : PRINT
220 FOR A = 1 TO N
230 PRINT L(A); " ";
240 NEXT A : PRINT : PRINT
250 PRINT "PRINT LIST BACKWARD" : PRINT
260 FOR B = N TO 1 STEP - 1
270 PRINT L(B); " ";
280 NEXT B : PRINT : PRINT
290 PRINT"TO OPERATE ON THE LIST" : PRINT
300 PRINT "C"; TAB (7); "L(C)"; TAB (14); "L(C)+5"; TAB (23);

"C*L(C)"; TAB (33); "L(C)/\2"
310 FOR C = 1 TO N
320 PRINT C; TAB (9); L(C); TAB (16); L(C) + 5;

TAB (24); C*L(C); TAB (34); L(C) /\2
330 NEXT C : PRINT
340 PRINT "THE LIST IS TOTALED" : PRINT
350 T=O
360 FORD=lTON
370 T=T+L(D)
380 NEXT D
390 PRINT "TOTAL OF THE LIST = "; T
400 END
RUN
HOW MANY NUMBERS 3
NUMBER 1 = ? 4
NUMBER 2 = ? -5
NUMBER 3 = ? 2.5
PRINT LIST AS INPUT
4 -5 2.5
PRINT LIST BACKWARD
2.5 -54
TO OPERATE ON THE LIST

74

C L(C) l(C)+5 C*L(C) l(C)t\2
1 4 9 4 16
2 -5 0 -10 25
3 2.5 7.5 7.5 6.25

THE LIST IS TOTALED
TOTAL OF THE LIST = 1.5

In this program, the variable L automatically references the list.
To reference this list, the variable L must be used, followed by a
subscript value, (L(A), L(2), L(N°2-3» or no subscript value
L(O). L(O) is the same as L. The subscript can either be a constant,
variable, or an arithmetic expression. This Hexibility is what gives
arrays their real power. Anything can be placed in parentheses to
reference a single part of the list as long as it is ~ 0 and ~ the DIM
value.

Line 90 clears the screen and places HOW MANY NUMBERS on line
3 of the screen. The screen holds the complete input and output of
the program (if no more than three numbers are placed in the list).
When viewed together, the input and output help the user deter
mine if the output is correct in relation to the input.

Lines 100 to 130 are REM statements that partially document the
intent of the program.

Line 140 sets up the user request and prepares for the input of the
number of numbers to be contained in the list. The user then types
in the number.

Line 150 reserves memory locations for N + 1 numbers in List L.
Line 160 initializes the memory locations of N numbers in the list

to zero. L(X) could have been initialized to zero by using L(I)
= 0: L (2) = 0 : L (3) = 0, etc. The loop is much more efficient. This
step is unnecessary in this program but is given to show loop/array
Hexibility.

Lines 170 to 200 set up the input format of the numbers them
selves. Again the loop is used for efficiency.

170 FOR K = 1 TO N
180 PRINT "NUMBER"; K; "=";
190 INPUT L(K)
200 NEXT K

In line 180, the K variable is placed between the "NUMBER" and
the "=" to inform the user which of the numbers in the list to be in
put. The K in the PRINT statement begins as number 1 and incre
ments by 1 with each execution of the loop.

Lines 210 to 240 set up the list to be printed out as it is input. The
loop is used and the loop variable is A, so the subscripted variable
is L(A).

75

210 PRINT "PRINT THE LIST AS INPUT" : PRINT
220 FORA=ITON
230 PRINT l(A); " ";
240 NEXT A : PRINT : PRINT

Line 230 prints the numbers in the list by placing them in the sub
scripted variable (L(1) = 4) and printing one number on each
loop execution. The" .. represents 2 spaces enclosed in quotation
marks. The" .. causes two spaces to be left between each printed
number each time the loop executes.

Line 240 closes out the loop, and the first PRINT closes out the
line after all the numbers in the list have been printed. The second
PRINT statement leaves a blank line between program sections in
the printout.

Lines 250 to 280 print out the list backward.

250 PRINT "PRINT LIST BACKWARD" : PRINT
260 FOR B = N TO 1 STEP -1
270 PRINT L(B); " ";
280 NEXT B : PRINT : PRINT

Line 250 is the PRINT statement.
Line 260 sets up to print the list out backwards in increments of

1 on each print.
In line 270, the list is referenced by the letter L. The loop variable

B becomes the subscript, so the subscripted variable is L (B). The
value of the number contained in L(B) is printed out on each exe
cution of the loop. Again, the" .. leaves two spaces between each
number as they are printed.

Line 280 completes the loop. The first PRINT statement closes
out the line after all numbers in the list are printed. The second
PRINT leaves a blank line between the output sections.

Lines 300 to 330 operate on the numbers.
Line 300 PRINTS the headings.
Line 310 is the beginning loop statement.
Line 320 prints the operation results and tabs those results so they

are printed out below the proper headings. The list variable L is
combined with the loop variable to produce the subscripted variable
L(e).

Line 330 closes out the loop and leaves a blank line between out-
put sections.

Lines 340 to 390 total the list and print out the results.
Line 350 initializes the totaling variable T to zero.
Line 370 is the totaling statement that places the list values in the

subscripted variable L(D) and adds one list number on each loop
execution.

Line 380 is the ending statement of loop D.

76

When loop D has completed its last execution, the program de
faults to line 390 to print out the total of the list of numbers and line
400 ends the program.

To change the program from an INPUT mode to a READ-DATA
mode, delete lines 100 to 200.

The command DEL 100,200 leaves line 90 in place.
Type in these lines:

160 RESTORE
170 READ N (in line 400 - N = 3 - the first data value in the line)

180 PRINT "NUMBER OF NUMBERS = "; N : PRINT
190 FOR K = 1 TO N
200 READ L(K) : NEXT K

400 DATA 3, 4, -5, 2.5
410 END

Line 160 is not applicable in this program but it should be intro
duced at this point. If the arrays were to be read two or more times
the RESTORE statement would reset the data and make it available
for further program executions.

Line 180 prints out the number of numbers in the list after it had
been READ from DATA.

Lines 190 and 200 are a loop that READS the list of numbers
through the subscripted variable L (K).

190 FOR K = 1 TO N
200 READ L(K) : NEXT K

When the last number in the list is READ, the program defaults
to line 210 to print out the list as it was READ.

Line 400 DATA 3(N), 4(K), -5(K), 2.5(K) sets up the data to
be READ in the proper order.

READ statements may contain integer, real, and string variables.
To be read properly the READ variables must be aligned with the
items in the DATA statement.

10 READ A%, A, A$
20 DATA 4, 1.7, HELLO (or "HELLO")

A$ will print out HELLO or "HELLO" in either form as HELLO.

10 READ A%, A, A$, B$
20 PRINT A%, A, A$, B$
30 DATA 4.5, 2.5, HELLO, "BYE"
RUN
4 (input as a real but truncated to an integer)
4 2.5 HELLO
BYE

A string variable in a READ statement will READ a literal or a
string in a DATA statement but outputs only in the literal form.

77

LESSON 12

Double Subscripted
Variables

After completion of Lesson 12 you should be able to:

1. Discuss double subscripted arrays.
2. Write programs using double subscripted arrays.

DISCUSSION

Double subscripted arrays are arrays that have two subscripts.
Double subscripted arrays are used for outputting data or informa
tion in table form. The following are examples of double subscripted
arrays:

CF(1,4) X(O,O) JANE(R,C) FOB(L,S)

Tables and arrays have rows and columns. Columns are positioned
vertically on the screen. Rows are positioned hOrizontally on the
screen. Fig. 12-1 shows how an array of three columns and three
rows is arranged.

CF = array name
R = row subscript
C = column subscript

CF(R,C)

ROW 0

ROW 1

ROW 2

78

COLUMN 0 COLUMN 1 COLUMN 2

CF(O,O) CF(O,l) CF(O,2)

CF(O) CF(1,l) CF()

CF() CF() CF()

Fig. 12·1. CF (R, C) array.

The double subscripted array references a· memory location that
holds a value, the same as an ordinary variable. Values for CF(R,C)
could be assigned as follows:

CF(l,l) = 20 CF(1.2) = 30 CF(1.3) = 40

CF(2.l) = 25 CF(2.2) = 35 CF(2.3) = 45

CF(3.1) = 30 CF(3,2) = 40 CF(3,3) = 50

An array can use variables as subscripts instead of constants. For
instance, if R = 1 and C = 3, then CF(R,C) = CF(I,3). Subscripts
can also be combined with arithmetic operators (e.g., CF(R+l,
C-l) or CF(R02, C/3».

Values input into the program as constants can be stored in sub
scripted arrays.

10 INPUT "GROSS INCOME = ";GI
20 INPUT "EXPENSES = "; EX (EXP is a reserved word)

30 CF(C,l) = GI
40 CF(C,2) = EX

Whole columns or rows in an array can be added or subtracted
the same as ordinary variables. As a matter of fact, any arithmetic
operator that can be used on ordinary variables can be used on
arrays. In the following example, column 2 is being subtracted from
column 1 to produce column 3 in array CF.

CF(C,3) = CF(C,l) - CF(C,2)

Variables, single subscripted arrays, and double subscripted ar
rays can be handled in a similar fashion.

The program written for this lesson is a very elementary business
program. The user inputs the amount of his gross income, expenses,
and years (months or days) to operate. From these three inputs is
output the period of operation, in this case years, the gross income,
expenses, net income, and the totals for each column.

A FOR-NEXT loop is used to compute and print the figures on
a yearly basis. After the yearly figures are outputted, double nested
loops are used to output the totals of each column.

Some large computers have the capacity to handle arrays with up
to 16 subscripts. In the automobile industry, each style of automo
bile could have 15 items of optional equipment. The subscripted
variable might look like this.

CAR (MODEL,STYLE,AIR CONDITIONER, RADIO,
HEATER, ENGINE, TIRES,SPORTS PACKAGE,

COLOR OF PAINT,HUBCAPS)

19

From the subscripted variable, the manufacturer could keep track
of what is produced. The reports could then break down sales per
centages into the most popular models and options. This information
could be fed back to the computer to aid the production department
to produce the cars the public was buying.

Now back to our elementary program.

REM:PROGRAM TO DEMONSTRATE
REM:DOUBLE SUBSCRIPTED VARIABLES

100
110
120
130
140

HOME: VTAB 2:HTAB 6:PRINT "DOUBLE SUBSCRIPTED VARIABLES"
Hl$ = "GROSS INCOME EXPENSES YEARS TO OPERATE"
VTAB 4 : PRINT Hl$

150 VTAB 5 : HTAB 3 : INPUT" ";GI : VTAB 5 :

160
170
180
190
200

HTAB 17 : INPUT" "; EX
VTAB 5 : HTAB 30 : INPUT" "; YRS : PRINT: PRINT
DIM CF(yRS,3)
FORR=lTOYRS
FORC=lT03
CF(R,C) = 0
NEXT C, R 210

220
230
240
250
260
270

H2$ = "YEAR GROSS INCOME EXPENSES NET INCOME"
PRINT H2$

280
290
300
310
320
330
340

FORC = 1 TOYRS
CF(C,1) = GI : CF(C,2) = EX
CF(C,3) = CF(C,1) - CF(C,2)
HTAB 2 : PRINT C; TAB (8); CF(C,1); TAB (21);
CF(C,2); TAB (30); CF(C,3)
TYRS = TYRS + C : NEXT C
FORR=lTOYRS
FORC=lT03
CF(O,C) = CF(O,C) + CF(R,C)
NEXT C,R
PRINT " __ ____ ""

,HTAB 1 : PRINT TYRS; TAB (8); CF(O,l);
TAB (21); CF(O,2) TAB (29) CF(O,3) (There are no semicolons between the last

350 END
RUN

DOUBLE SUBSCRIPTED ARRAYS

three items)

GROSS INCOME EXPENSES YEARS TO OPERATE
1500.21 875.35 4

YEAR GROSS INC. EXPENSES NET INCOME
1 1500.21 875.35 624.86
2 1500.21 875.35 624.86
3 1500.21 875.35 624.86
4 1500.21 875.35 624.86 -
10 6000.84 3501.40 2499.44

The variables used in the program are:

CF = cash How R = row
C = column GI = gross income

80

EX = expenses
H1$ = print heading

YRS = years to operate
H2$ = print heading

The program was designed so the input and output would be
visible on the screen at the same time.

Lines 100 and 110 are used to partially document the teaching
objective of the program, namely double subscripted variables.

Line 120 HOME clears the screen and prints on line 2 of the
screen VTAB 2, DOUBLE SUBSCRIPTED VARIABLES.

Line 130 places the string into H1$ for ease of output. This is es
pecially valuable if the same heading is to be printed many times
during the program.

Line 140 tabs to line 4 on the screen and prints out the heading.
Lines 150 and 160 ask for input below the subject in the heading,

thereby cluing the user as to what input is requested. In Applesoft,
the statement INPUT GI could be used, but it leaves a question
mark on the screen in front of the data. INPUT" "; GI is used be
cause it leaves no question mark on the screen in front of the data.

The DIMension statement of line 170 would not be necessary if
fewer than 12 array elements were needed, since Applesoft auto
matically sets aside up to 11 array element memory locations. But
because the array CF requires 15 elements (five rows, including the
totals row, and three columns), a DIM statement must be used. The
DIM statement that we use allows a variable number of rows
(CF (YRS,3)) to be allocated. If we knew that the number of rows
needed would never be more than five, we could have written line
170: DIM CF (4,3). This version allocates 4 + 1 rows and 3 + 1 col
umns, or 20 real number elements to the array (don't forget that the
computer uses zero as a counting number, so that when you tell it
four, the computer counts five places including zero).

Lines 180 to 210 initialize the locations in the table to zero.

180 FOR R = 1 TO YRS
190 FOR C = 1 TO 3
200 CF(R,C) = 0
210 NEXT C, R

The double nested loop is the most efficient method to initialize
the locations in the table to zero. The table locations could have
been initialized by listing every element in the array and setting
them equal to zero.

CF(1,l1 = 0
CF(1,2) = 0
CF(1,3) = 0
CF(2,11 = 0
CF(2,2) = 0
CF(2,3) = 0

81

CF(3,l) = 0
CF(3,2) = 0
CF(3,3) = 0 , etc.

Or a FOR-NEXT loop could have been used.

FORC=lT03
CF(1,C) = 0
CF(2,C) = 0
CF(3,C) = 0
CF(4,C) = 0
NEXT C

Line 220 is the header to be printed before the output of data.
The header must be printed before the loop executes. If the header
is within the loop, it will be printed each time the loop is executed.

Line 230 prints out the header. There is no VTAB statement be
cause the table is printed below the input information. Two blank
lines separate the input information from the output data. The two
PRINT statements in line 160 cause the two blank lines below the
input.

In line 240, the number of years on which to compute the table
was input.

In line 250, CF(C,l) = GI is a replacement statement that stores
the input variable on the left side of the equals sign into CF (C,1),
the column that is to hold the yearly gross income. CF(C,2) = EX is
a replacement statement to place the expenses into the cash How
CF(C,2) column.

Line 260 is a replacement statement that sets up the third column
of the table. The column (C,3) is to hold the net income, which is
the gross income (C,l) less the expenses (C,2).

Line 270 places the results of each execution of the loop in the
proper location under the header. The CF(C,l) is used directly in
the PRINT statement to print out the results of that column.

Line 280 totals the number of years in the period. NEXT C is the
ending statement of the loop.

Lines 290 through 320 compute the totals for each column by
using double nested loops.

290 FOR R = 1 TO YRS
300 FOR C = 1 TO 3
310 CF(O,C} = CF(O,C} + CF(R,C)

The elements (0,1), (0,2), and (0,3) have not been used in this
table yet, but are available in the dimension arrangement. The
locations (0,1) , (0,2), and (0,3) are used to place the totals of
(C,l), (C,2), and (C,3), respectively. Line 310 inside the double
nested loops is the totaling statement that totals each of the columns.

Line 320 is the ending statement of the double nested loops.

82

Line 330 draws a line under the columns and the totals are placed
below the lines.

Line 340 prints the totals in the proper positions below the lines.
Notice that some of the semicolons between the TAB statements
and the PRINT statements are missing. Applesoft is flexible enough
to accept the instructions without semicolons and still operate prop
erly.

Line 350 ends the program.

83

LESSON 13

String Arrays

Mter completion of Lesson 13 you should be able to:

1. Use LEFT$, MID$, and RIGHT$.
2. Use string arrays (or string subscripted variables) in loops.
3 .. Output alphanumeric lists by using string arrays.
4. Write programs using string arrays to print lists of names and

addresses.

VOCABULARY
Concatenate-This means to link together in a set, series, or chain.
GOSUB-This is a statement that causes a branch to a subroutine at

a specific line number.
Null String-This is a string which contains no characters. Strings

are initialized with zero characters. A$ = "" is a null string and
a PRINT A$ will not print any characters on the screen, nor will
the cursor advance on the screen.

ON ERR GOTO 430, 440, etc.-This is a statement that causes an
unconditional GOTO branch when a particular error is encount
ered. Error #1 jumps to line 430, error #2 jumps to line 440, etc.
The equivalent statement for a GOSUB branch is ON ERR GO
SUB 430, 440, etc.

String Array-This is a complex variable used to manipulate all or
part of a string.

Subroutine-This is a discrete part of a program that performs a
logical section of the overall function of the program and that is
available whenever the particular set of instructions is required.

The instructions forming the subroutine do not need to be re
peated every time they are needed, but can' be entered by means
of a branch from the main program. Subroutines may be written
for a specific program or they may be written in general form to
perform operations common to several programs. In Applesoft,
the statements GOSUB or ON (ERR) GOSUB direct the program
to the subroutines. The last line of a subroutine is a RETURN
statement, that jumps to the line in the main program directly be
low the GOSUB (or ON (ERR) GOSUB). Subroutines can be
called from the main body of the program or from other subrou
tines. GOSUBs can be nested 25 levels deep in Applesoft.

DISCUSSION

String variables were introduced in Lesson 4 with the other simple
variables, integers and reals. The complex variables, integer arrays
and real arrays were discussed in Lessons 11 and 12.

The complex variable (also known as the string array, or string
subscripted variable) is a variable with a subscript. The string array
is used to output alphanumeric information, such as lists of names
and addresses.

A$ = a string variable.
HI SUE = a literal.

"HI SUE" = a literal enclosed in quotation marks (a string).
LEFT$ (A$.J) = string function having 2 arguments.

RIGHT${ A$,J) = string function having 2 arguments.
MID${ A$,J,I) = string function having 3 arguments.

In a string array, a dollar sign ($) follows the name of the array.
The Applesoft language uses three functions to retrieve all or part
of a string, or to print all or part of a string. A function is that part
of a computer instruction that specifies the operation to be per
formed. An argument is a variable factor, the value of which deter
mines the value of the function. The three functions used to manip
ulate strings are LEFT$, MID$, and RIGHT$.

When string arrays are manipulated as single entities they are
handled in this manner.

----------=/$,\
function A string 2 characters are printed beginning

at the first character.

85

-7$,1,2)

funCtiO~ 1 = ~rst character in the string.
2 = two characters are printed be
ginning at character #1.

LEFT$(A$,2) = MID$(A$,1,2)

/~ ..
function A string prints ~ three characters in the

string.

The following program demonstrates the use of LEFT$, MID$,
and RIGHT$. The printout caused by each line is printed next to
the line for your convenience.

100 A$ = "HI SUE"
110 PRINT LEFT$(A$,2) HI
120 PRINT RIGHT$(A$,3) SUE
130 PRINT MID$(A$,I) HI SUE
140 PRINT MID$(A$,2) I SUE
150 PRINT MID$(A$,3) SUE
160 PRINT MID$(A$,4) SUE
170 PRINT MID$(A$,5) UE
180 PRINT MID$(A$,6) E
190 PRINT MID$(A$,I,I) H
200 PRINT MID$(A$,2,1) I
210 PRINT MID$(A$,3,1) space
220 PRINT MID$(A$,4,1) S
230 PRINT MID$(A$,5,1) U
240 PRINT MID$(A$,6,1) E
250 PRINT MID$(A$,4,1} S
260 PRINT MID$(A$,4,3) SUE
999 END

This program also demonstrates that the function MID$ can out
put the same characters as LEFT$ and RIGHT$. With proper ma
nipulation the programmer does not need LEFT$ or RIGHT$.
MID$ alone will do the job.

LEFT$, MID$, and RIGHT$ functions can be used in loops to
output all or parts of a string. A loop variable J is used in this ex
ample. The L variable holds the value of the length of the string.

FOR J = 1 TO L (L = LEN(A$»

~$,J)

functio~ loop \Variable. Prints forward from
left to right.

86

'------------:;MID$(A$,J)

function A s~op \ariable. Prints complete A$
on 1st loop pass and decrements by
1 for each character in the string
beginning from the left side of the
string .

.-------------:~A$)\
function A string prints string from right to left, i.e.,

backwards.

100 A$ = "HI SUE"
110 PRINT LEN(A$), LEN("HI SUE")
120 FOR J = 1 TO LEN(A$)
130 PRINT LEFT$(A$,J)
140 NEXT J : PRINT : L = LEN(A$)
150 FOR J = 1 TO L
160 PRINT RIGHT$(A$,J)
170 NEXT J : PRINT
180 FOR J = 1 TO L
190 PRINT MID$(A$)
200 NEXT J : PRINT
210 FOR J = 1 TO L : PRINT MID$(A$,4) : NEXT J : PRINT
220 FOR J = 1 TO L : PRINT, MID$(A$,J,2) : NEXT J : PRINT
230 FOR J = 1 TO L : PRINT MID$(A$),I); : NEXT J
999 END
RUN
(PRINT LEN(A$), LEN("HI SUE"» NOT PRINTED FROM PROGRAM
6 6
H
HI
HI S PRINT LEFT$(A$,J)
HI SU
HI SUE

E
UE
SUE

SUE
I SUE
HI SUE

HI SUE
I SUE

SUE
SUE
UE
E
SUE
SUE

PRINT RIGHT$(A$)

PRINT MID$(A$)

87

SUE
SUE
SUE
SUE

HI

S
SU
UE
E

HI SUE

PRINT MID$(A$,4)

PRINT MID$(A$,J,2)

PRINT MID$(A$,J,1);

To concatenate is to link together in a set, series, or chain. Apple
soft has the ability to concatenate. Strings can be altered to produce
desired output.

10
20
30
40
50
60
999
RUN

A$ = "HI SUE"
B$ = A$ + " " + "AND JIM"
PRINT A$
PRINT B$
C$ = LEFT$(A$,3l...;t RIGHT$(A$,3) + "III"
PRINT C$ ~
END (3 includes the space after HI-if 2 was used the output

would be HIJIMIII)

HI SUE
H.I SUE AND JIM
HI JIMIII

The balance of this lesson is on program development. The objec
tive is to produce a program that accepts a person's name and ad
dress for the purpose of compiling and printing a mailing list. The
program has error checking to notify the input operator if the input
is incorrect. Once the input is correct the name and address is out
put in the proper format.

A correct program is not usually written on the first attempt. In
this example, an unusable program is written as a first attempt. The
program is then revised. The lesson presents an outline for program
development and shows some of the steps you should follow when
writing usable programs.

The original program is inflexible. A$ holds the name and address
of the individual. If an individual with another name and address
was placed in A$, the output is not formatted correctly. As an extra,
the program demonstrates the use of MID$ to replace LEFT$, and
RIGHT$.

15 REM: NEXT PROGRAM CHANGE - INPUT A$ AT LINE 20
20 A$ = "JOHN DOE 2200 MAIN ST. ANYTOWN USA 00000"
30 PRINT A$
40 PRINT LEFT$(A$,8)

88

50 PRINT MID$(A$.10.13)
60 PRINT RIGHT$(A$.18) : PRINT
70 PRINT MID$(A$.1.8)
80 PRINT MID$(A$.10.13)
90 PRINT MID$(A$.24,19)
999 END
RUN
JOHN DOE 2200 MAIN ST. ANYTOWN, USA 00000
JOHN DOE
2200 MAIN ST.
ANYTOWN USA 00000

JOHN DOE
2200 MAIN ST.
ANYTOWN USA 00000

When the program is typed and RUN, it can be readily under
stood that the program is useful only if the name and address input
is JOHN DOE 2200 MAIN ST. ANYTOWN USA 00000.

When line 20 is changed to

20 INPUT A$

the input must be the same number of letters and characters in the
original JOHN DOE name and address to be output in the correct
format.

For a program to be valuable, it must be flexible. The name line
of the program must accept any name, no matter if it has three char
acters or 255 characters. The address field must be able to accept
different numbers of characters for different street numbers and
street names. The city, state, and zip line must also be able to accept
different numbers of characters. To achieve this flexibility, a delim
iter (;) is used after each line of the name and address.

JOHN DOE;2200 MAIN ST.;ANYTOWN USA ooOOO(L)

As a step toward developing a flexible program, an inflexible for
mula is first demonstrated.

INPUT A$ 20
30
40
50
60
70
999
RUN

N = 9 : Al = 23 : L = LEN(A$)
PRINT A$
PRINT LEFT$(A$.N-l)
PRINT MID$(A$.N+l.Al-(N+1)
PRINT RIGHT$(A$.L-Al)
END

JOHN DOE;2200MAIN ST.;ANYTOWN
JOHN DOE
2200 MAIN ST.
ANYTOWN USA 00000

USA 00000

89

The semicolon (;) is used as a delimiter separating the fields in
A$. The variables locate the delimiters at the end of each field. No
spaces are left between the contents of the field and the delimiter.

The following is an explanation of the expressions used in this
program.

N = 9 N = variable of the delimiter at the end of the
first field. Nine (9) is the column the delimiter
occupies.

AI= 23 Al = variable of the delimiter at the end of the
second field. Twenty-three (23) is the column
the delimiter occupies.

L = LEN (A$) L points to the end of the third field. The col
umn that L occupies is determined by the
length of the city, state, and zip code.

Table 13-1. Where Lines Start and End

Line Start Symbol End Symbol

1 Position #1 LEFT$(A$, Sefore lst del N-l

2 After lst del N+l Sefore 2nd del Al-l

3 After 2nd del Al+l Length of string L

line I LEFT$(A$,N :-1)
line 2 MID$(A$,N+l,Al-(N+l»
line 3 RIGHT$(A$ L-Al) (the closing delimiter should be Al+l, but Apple-

, soft picks up the delimiter position as AI)

In this sequence of learning events, the first string function used,
LEFT$(A$,8), had constants within the parentheses that printed out
the first through the eighth characters in the string. The second
type of string function, LEFT$(A$, N-l), had a constant and a vari
able with a fixed value in relation to the delimiter and a fixed A$
input. The program to be studied next has a variable length input
and a delimiter that is determined by the variable input LEFT$ (A$,
DIC-I). The variable length input and input error checks produce
a useful program.

Developing a complicated program is a detailed, exacting, and
thought provoking experience. Not all the programmer's thoughts
can be written on paper. The following program is presented in the
detailed manner in which it was developed. The final program var
ies from the outline flowchart and this is a feature of progressive
changing thought. For the benefit of the learning programmer, the
initial flowcharts were not changed to conform to the finished pro-

90

gram. The differences from one step to the next emphasize how
development occurs.

I. GENERAL OUTLINE FOR PROGRAM DEVELOPMENT
A. What is the problem?
B. Detailed input format
C. Detailed output format
D. Outline flowchart
E. Assignment of variables
F. Start and end of lines
G. Basic flowchart
H. Error checking

1. Number of delimiters
2. Length of lines

a. Length of line 1
b. Length of line 2
c. Length of line 3

I. Write error checking section of outline flowchart
J. Write final flowchart
K. Write program
L. Debug and modify the program
M. Code the final program

The explanations and details of the logic use the same code and
headings as the outline.

I. A. What is the problem? The problem is to input three lines of
variable length separated by a delimiter (;) to allow any length of
name, any length of street number and address, and any length of
city, state, and zip code up to 255 characters each.

I. B. Detailed input format. Line of input = A$
JOHN DOE;2200 MAIN ST.;ANYTOWN USA 00000
I. C. Detailed output format.
JOHN DOE
2200 MAIN ST.
ANYTOWN USA 00000
I. D. Outline flowchart. (Shown in Fig. 13-1.)
I. E. Assignment of variables. The variables use the logic that a

delimiter (D) is used after line 1 to close the line, hence, DIC
means the delimiter that closes line 1. A delimiter (D) is used after
line 2 to close the line, hence, D2C. L = LEN (A$) is the delimiter
used at the end of line 3. The entire list of variables is as shown
below:

ASSIGNMENT OF EXPRESSIONS
1 (st column) Beginning of line 1-LEFT$(A$,
DIC Points to the delimiter at the end of line 1.

NO

NO

Fig. 13-2. Basic flowchart.

91

put by the user. The length of A$ is stored in the variable L. The
first delimiter DIC is initialized to zero. A$ starts at the first char
acter and ends at L (L = LEN A$). The statements DIC = DIC +
1 and IF MID$(A$,DIC,I) = cc;" THEN-branch to DIC = DIC
+ 1, counts the number of characters in the first line of A$. This
looping continues until the first delimiter (;) is found. The numeric
value stored in DIC is then transferred to D2C. If after the end of

93

DIC-I
DIC+I
D2C
D2C-I
D2C+I
L
ERR

INPUT LINE

CHECK INFORMATION
TO MAKE SURE IT'S
LEGAL & DETERMINE

3 LINES OF INFO

Fig. 13·1. Outline flowchart.

End of line 1.
Beginning of line 2.
Points to the delimiter at the end of line 2.
End of line 2.
Beginning of line 3.
End of line 3.
Variable that is assigned a value when an input ____ '- _________ ..:1 __ ..:I .. t. ____ , ___ = _____ ..:I .. _ ___ =_L

line 1, DIC has a value of 10, then 10 is transferred to D2C. D2C =
DIC. D2C is then initialized to a value of 10. The second line starts
after the first delimiter (11). The same logic is applied to count the
number of characters in line 2. D2C = D2C + 1 and IF MID$ (A$,
D2C,I) = ";" THEN-branch to D2C = D2C + 1 and count the
number of characters in line 2 until the second delimiter is reached.
These two delimiters set the end of the first and second lines. The
third line is composed of all the characters between D2C and L.

I. H. Error checking. For a program to be effective and efficient,
those sections that interrupt the flow must be eliminated. The algo
rithm from section I. G. specifies that the input section (A$) must
have two delimiters separating three lines. The first error check is
to determine if DIC is greater than the length of the line. IF
DIC>L THEN. If DIC>L, the loop has searched through A$ com
pletely, and has not found a delimiter. Fig. 13-3 shows input with

DOE MAIN USA

01C MIO$(A$,OlC,l)

1 0
2 0
3 E
4
5 M
6 A
7 I
8 N
9

10 U
11 5
12 A
13 ILLEGAL QUANTITY ERR

(when D1C :; 256)

Fig. 13·3. Input with no error check.

no error check. Compare Figs. 13-4 and 13-5 to see how this process
looks logically. If the first loop finds a delimiter, the flowchart goes
to the second loop to search for the second delimiter. If D2C>L, the
second delimiter was not found. This is another error. If two delim
iters are found there is no error, but logic dictates a search for a
third delimiter. Another error would occur if there are three semi
colon delimiters. Another error would occur if the 1st delimiter was
the first character in line 1. Line 1 would be zero length. If the sec
ond delimiter is the next character after the 1st delimiter, line 2
would be zero length. If line 3 had no characters between D2C and
L, another error would occur. This gives a total possibility of six
errors, three delimiter errors, and three line length errors.

94

NO

Fig. 13·4. Case No.1-flowchart with no error checking.

Fig. 13·5. Case No.2-flowchart with error checking statement.

95

ILLEGAL CONDITIONS
1. Delimiters-not exactly 2.
2. Length of lines

a. Length of line 1 = 0 characters.
b. Length of line 2 = 0 characters.
c. Length of line 3 = 0 characters.

1. H. 1. Number of delimiters. The input format has two, and only
two delimiters. If there are any more or any less than two delimiters,
the input is illegal.

Table 13-3. Check for the Number of Delimiters

of DelimiteR Test Decision Statement

0 ILLEGAL OIC>L

I ILLEGAL 02C>L

2 LEGAL

3 ILLEGAL FOR J = 02C+I TO L
IF MID$(A$.J,I) = ";"
NEXT J

I. H. 2. Length of lines. There are 3 lines of input separated by
delimiters. If any, or all, of these lines are zero length, the input is
incorrect.

Line 1 = 0
Line2=0
Line 3 = 0

;2200 MAIN ST.;ANYTOWN USA OOOOO(L)
JOHN DOE;;ANYTOWN USA OOOOO(L)
JOHN DOE;2200 MAIN ST.;(L)

Table 13-4. Error Check for Line Length

Line Condition Decision Statement

I ;MAIN;USA OIC = I ILLEGAL

2 DOE;;USA D1C+l=D2C ILLEGAL

3 DOE;MAIN;(L) L = 02C ILLEGAL

I. I. Write error checking section of the flowchart. Fig. 13-6 shows
the error checking aspects in the flowchart. Examine Fig. 13-6 care
fully to determine where each error case is checked. Fig. 13-3 shows
what happens with no error checking. If there are no delimiters sep
arating the name and address fields in "DOE MAIN USA" (A$), the
DIC = DIC + 1 loop executes until DIC is greater than L. When
DIC>L, the computer prints ILLEGAL QUANTITY ERR because

96

it is telling the machine to compare a nonexistent character with
"." , .

E"or#

I
2
3
4
5
6

Table 13-5. Errors

Condition

IS DIC > L ?
IS DIC = I ?
IS D2C > L ?
IS DIC + I = D2C ?
IS D2C = L ?
IS A 3rd DELIMITER FOUND
IN THE LAST PART OF THE INPUT ?

I. J. Final flowchart. The final flowchart is an incorporation of all
the details, charts, ideas, and logic to this point. The final flowchart
should be written so very few changes are needed to code the pro
gram. The final flowchart is shown in Fig. 13-6.

FiS. 13-6. Final flowchart.

97

NO

98

ERR = 1 : GOSUB 400 r----. : GOTO 120

ERR = 2 : GOSUB 400
~--~ : GOTO 120

ERR = 3 : GOSUB 400
.7-----4-. : GOTO 120

ERR = 4 : GOSUB 400 r--" : GOTO 120

Fig. 13-6. (Cont) Final flowchart.

>-_ ___. ... ERR = 5 ; GOSUB 400
; GOTO 120

>-__ ... ERR = 6 ; GOSUB 400
; GOTO 120

PRINT LEFT$(A,D1C - 1)
PRINT MID$(A$,D1C + 1, D2C - (D1C + 1))

. PRINT RIGHTS A$, L - D2C

Fig. 13-6. (Cant) Final flowchart.

99

PRINT "NO DELIMITER IN STRING"
: RETURN

PRINT "LINE 1 IS ZERO LENGTH"
: RETURN

PRINT "ONLY 1 DELIMITER IN STRING"
: RETURN

PRINT "LINE 2 IS ZERO LENGTH"
: RETURN

PRINT "LINE 3 IS ZERO LENGTH"
: RETURN

PRINT "MORE THAN 2 DELIMITERS
IN STRING"

: RETURN

Fig. 13-6. (Cont) Final flowchart.

I. K. L. M. Write, debug, and modify the program. Most program
mers are perpetual students, tinkerers, and perfectionists. They will
usually seek modifications to do the job better. This is the real idea
of programming and life.

100 REM: PRINT NAME AND ADDRESS
110 REM: CHECK FOR INPUT ERRORS
120 PRINT: PRINT "INPUT 'NAME;ADDRESS;CITV,STATE ZIP' U

130 INPUT "?";A$
140 L = LEN (A$) : DIC = 0
150 DIC = DIC + 1
160 IF D1C>L THEN ERR = 1 : GOSUB 400 : GOTO 120
170 IF MID$(A$,D1C,1)<>";" THEN 150
180 IF DIC = 1 THEN ERR = 2 : GOSUB 400 : GOTO 120
190 D2C = DIC
200 D2C = D2C + 1
210 IF D2C>L THEN ERR = 3 : GOSUB 400 : GOTO 120
220 IF MID$(A$,D2C,1)<>";" THEN 200
230 IF DIC + 1 = D2C THEN ERR = 4 : GOSUB 400 : GOTO 120
240 IF D2C = L THEN ERR = 5 : GOSUB 400 : GOTO 120
250 FOR J = D2C + 1 TO L
260 IF MID$(A$,J,I) = ";" THEN ERR = 6 : GOSUB 400 : GOTO 120
270 NEXT J
280 PRINT: PRINT LEFT$(A$,D1C - 1)
290 PRINT: PRINT MID$(A$, DIC + 1, D2C - (DIC + 1)
300 PRINT: PRINT RIGHT$(A$, L - D2C)
301 REM: LEFT$(A$,DIC - I) = = MID$(A$,I,DIC - 1)
302 REM: RIGHT$(A$,L - D2C) = = MID$(A$,D2C + 1, L - D2C)
310 PRINT: INPUT "MORE INPUT (V OR N)" ; Q$

100

320 IF Q$<>"N" THEN 120
330 END
400 PRINT """"ILLEGAL INPUT""""
410 ON (ERR) GOTO 430, 440, 450, 460, 470, 480
420 RETURN
430 PRINT "NO DELIMITER IN STRING" : RETURN
440 PRINT "lINE 1 IS ZERO LENGTH" : RETURN
450 PRINT "ONLY ONE DELIMITER IN STRING" : RETURN
460 PRINT "LINE 2 IS ZERO LENGTH" : RETURN
470 PRINT "L1NE 3 IS ZERO LENGTH" : RETURN
480 PRINT "MORE THAN 2 DELIMITERS IN STRING" : RETURN
RUN
INPUT 'NAME,ADDRESS;CITY STATE ZIP'
?JOHN DOE 2200 MAIN ST. ANYTOWN USA 00000
"""ILLEGAL INPUT
NO DELIMITER IN STRING

INPUT 'NAME;ADDRESS;CITY STATE ZIP'
$;2200 MAIN ST.;ANYTOWN USA 00000
...... ILLEGAL INPUT
LINE 1 IS ZERO LENGTH

INPUT 'NAME;ADDRESS;CITY STATE ZIP'
?JOHN DOE;2200 MAIN ST. ANYTOWN USA 00000
...... ILLEGAL INPUT

ONLY ONE DELIMITER IN STRING

INPUT 'NAME;ADDRESS;CITY STATE ZIP'
?JOHN DOE;;ANYTOWN USA 00000
...... ILLEGAL INPUT
LINE 2 IS ZERO LENGTH

INPUT 'NAME;ADDRESS;CITY STATE ZIP'
?JOHN DOE;2200 MAIN ST.;
"""ILLEGAL INPUT
LINE 3 IS ZERO LENGTH

INPUT 'NAME;ADDRESS;CITY STATE ZIP'
?JOHN DOE;2200 MAIN ST.;ANYTOWN ;USA 00000
"""ILLEGAL INPUT"""
MORE THAN 2 DELIMITERS IN STRING

INPUT 'NAME;ADDRESS;CITY STATE ZIP'
?JOHN DOE;2200 MAIN ST.;ANYTOWN USA 00000
JOHN DOE
2200 MAIN ST.
ANYTOWN USA 00000

This is how the logic developed from conception to completion.
The following explanation of statements may be repetitious but it
may also be helpful.

101

FLOWCHART NORMAL
LOGIC
DIC <= L
MID$(A$,DIC,!) = ";"
MID$ (A$,D2C,I)
D2C <= L
Q$ = "N"

CC." ,

PROGRAM EXPEDIENT
LOGIC
DIC > L
MID$(A$,DIC,I) <>";"
MID$ (A$,D2C,I) < > ";"
D2C > L
Q$ <> "N"

The Rowchart was written with normal logic. The program was
coded with expedient logic. Once the Rowchart is developed, the
sections are broken down to determine the most efficient and fastest
way for the program to run. A Rowchart is simply a tool to help
clarify the logic involved in solving a problem. When converting a
Rowchart to a program it is sometimes useful to reverse the "IF"
check to save memory. The common practice is to use MIP$(A$,
DIC,!) = "t. The program must search for ";" until it is found.
When = ";" is not true the program must unconditionally branch
(GOTO) backwards to increment DIC. Expedient logic MID$(A$,
DIC,I)<>";" causes the program to search for <>";". If it is not
found, the program conditionally branches to increment DIC, thus
saving a GOTO statement with each decision. This not only saves
program statements, but makes the program more efficient, run
faster and uses less memory. Expedient logic makes the program
simpler and more efficient. It gets the job done better and faster.

Lines 100 and 110 are REM statements that document the program
to print the name and address of an individual and to check for in
put errors.

Line 120 prints out the exact input format for the user. The user
is soon aware that the name and address must be input exactly the
same way as the input header. If the input is diHerent, the user is
given an error message why the input is incorrect. The program will
not accept the name and address unless it is correctly input.

Line 140 is a programming convenience. It is much easier to type
L than it is to type LEN (A$). DIC = 0 initializes the first delimiter
to zero. The D2C and L delimiters are not initialized to zero, be
cause in line 190 D2C = DIC takes the value of DIC at the end of
line 1 and stores it in D2C. This value maintains the continuity of
the program in checking for the relationship with L (LEN (A$».

Line 150 is a counting statement that is incremented on each
character of line 1 of A$ until it detects the delimiter (;).

In line 160, if the counting statement increments until the value
of DIC is greater than L, the THEN is executed to send the program
to ERR = 1. In Applesoft when the statement (IF DIC > L) is true,
all statements at that line number are executed (unless there is an
unconditional branch THEN 400). GOSUB 400 branches to the sub-

102

routine beginning at line 400. oooILLEGAL INPUTooO is printed.
The ERR = 1 sends the program to line 430. The error-line number
relationship is shown in Fig. 13-7.

ERROR # ON (ERR) GOTO

1 430
2 440
3 450
4 460
5 470
6 480

Fig. 13-7. Error-line number relationship.

At the end of line 430 is a RETURN statement. A RETURN state
ment must be placed at the end of a subroutine. The RETURN
causes the program to branch to the program statement immediately
after the GOSUB.

The sequence of events that occur after ERR = 1 is

1. GOSUB 400 Branch to line 400.
2. ERR = 1 ON (1) GOTO 430 to print the input error.

RETURN follows the error printout.
3. RETURN GOTO 120-line immediately following GO

SUB 400.
The ON-GOTO (ON-GOSUB) is a relationship programmed

into Applesoft. A specific ERROR number relates to a specific line
number in the program.

In line 170, the decision statement checks to see if the delimiter
(;) at the end of the first line has been reached. If the character is
not the delimiter, the program branches to line 150 to increment the
value of DIC.

In line 180, if there is only one delimiter in A$, the ERROR = 2.
The statement GOSUB 400 sends the program to line 400 to print
out ***ILLEGAL INPUT*** and then to line 440 to print out the input
error, LINE 1 IS ZERO LENGTH.

In line 190, the value held in the delimiter DIC is stored in D2C.
This statement maintains the value relationship from one delimiter
to the next. This value relationship is continued as the program
moves to L, the delimiter at the end of line 3.

In line 210, if the present value stored in D2C is greater than L,
THEN input error #3 is printed on the screen. The program exe
cutes GOSUB 400, ON 2 GOTO 450, to print, ONLY ONE DELIMITER
IN STRING. The RETURN statement branches to the line immedi
ately after GOSUB 400. The statement is GOTO 120, and immedi
ately branches to line 120, for more input.

In line 220, if the decision statement does not find the D2C delim
iter, it branches to line 200 to increment D2C.

103

In line 230, if the two semicolon delimiters are together with no
characters in between, line 2 is missing. ERR = 4. GOSUB 400 exe
cutes to line 400 to print out ***ILLEGAL INPUT***, ON 4 GOTO
460, prints out, LINE 2 IS ZERO LENGTH. RETURN branches to
GOTO 120 (line 230) to input the correct information.

In line 240, if D2C = L there are no characters in line 3, and
ERR = 5, causes a branch to the subroutine to print * * * ILLEGAL
INPUT***. ON 5 GOTO 470 prints, LINE 3 IS ZERO LENGTH.

Line 250 to 270 is a loop to check the number of delimiters from
D2C to L. The program has checked that there are 2 delimiters to
this point. Line 170 checks the delimiter at the end of line #1. Line
220 checks the delimiter at the end of line #2. If the loop FOR J =
D2C + 1 TO L executes and finds another semicolon delimiter then
ERR = 6. The program branches to line 400, .prints out * * * ILLEGAL
INPUT***, ON 6 GOTO 480, MORE THAN 2 DELIMITERS IN STRING.
The RETURN is executed to GOTO 120, and GOTO 120 branches
to input information.

Lines 280, 290, and 300 print out the name and address of the in
dividual in the correct format.

Lines 301 and 302 are inserted to inform the user the correct
MID$ functions to replace the LEFT$ and RIGHT$ to print out
lines #1 and #3.

Line 310 PRINT: INPUT "MORE INPUT (Y OR N)" ;Q$ quer
ies the user, is another name and address to be input, or does the user
want to end the program?

Line 320 IF Q$<>"N" THEN 120 is a decision statement to
branch to line 120 for more input, or to end the program. This line
could be Howcharted in either of two ways with equal efficiency as
shown in Fig. 13-8.

Fig. 13·8. Decision flowchart.

104

Lines 400 to 480 are the subroutines and the ON (ERR) GOTO
statements. Subroutines placed after the main body of the program
do not clutter up the main body of the program. Applesoft indicates
an END statement is· optional and need not be used. Experience
shows that complicated programs will not always run properly with
out an end statement. The subroutines perform better when the
program branches past the end statement of the program. The sub
routine runs and the RETURN branches to the statement immedi
ately after the GOSUB in the main body of the program. Use an
END statement with all programs.

105

LESSON 14

Functions

After completion of Lesson 14 you should be able to:

1. Use arithmetic functions in programming.
2. Convert radians to degrees by using the DEF FN.
3. List and define language, string, and numeric functions.

VOCABULARY

Argument-This is a variable factor, the value of which determines
the value of the function.

Function-This is that part of the computer instruction that specifies
the operation to be performed.

Radian-This is a unit of plane angular measurement that is equal to
the angle at the center of a circle subtended by an arc equal in
length to the radius.

DISCUSSION

In this lesson, the arithmetic functions will be placed alphabeti
cally in a program to demonstrate their use, and they will be clari
fied by explanation.

A function, as explained in the vocabulary, is that part of the com
puter instruction that specifies the operation to be performed. Func
tions act upon the input to a function. The function then performs
some operation on the argument, and outputs the result. The opera
tion itself may involve many program steps. Calling a function auto
matically makes use of these preprogrammed steps.

106

The following program shows how functions work. The output of
each function is placed beside the function, rather than at the end
of the program, for clarity.

100 M = -4 : N = 2.5 : P = 3 : Q = 0
110 PRINT ABS (M) (4)
120 PRINT EXP (P) (20.0855369)
130 PRINT LOG (P) (1.09861229)
140 PRINT RND (P) (.889939655)
150 PRINT SGN (M) (-1)
160 PRINT SGN (Q) (0)
170 PRINT SGN (N) (1)
180 PRINT SQR (P) (1.73205081)
190 REM: GEOMETRIC ARGUMENTS GIVEN IN RADIANS
200 REM: USE DEF FN TO CONVERT DEGREES TO RADIANS
210 PRINT SIN (P) • (.1411200008)
220 DEF FN SD(X) = SIN (X/57.2958)
230 PRINT FN SO (P)· (.0523359375)
240 PRINT COS (P) (-.989992497)
250 DEF FN CD (X) = COS (X/57.2958)
260 PRINT FN CD (P) (.998629665)
270 PRINT TAN (P) (-.142546543)
280 DEF FN TO (X) = TAN (X/57.2958)
290 PRINT FN TO (P) (.05240n605)
300 PRINT ATN (P) (1.249045n)
310 DEF FN AD (X) = ATN (X/57.2958)
320 PRINT FN AD (P) (.0523120883)
999 END

ABS-retums the absolute or positive value.
EXP-raises the value to 6 places to the indicated power of

2.718289. This is used in hyperbolic and exponential functions
in biology, chemistry, physics, and engineering. EXP (P) =
20.0855369.

LOG-This function in Applesoft is the natural log. In mathe
matics, LOG = log to base 10. LN = the natural log. The con
version factor from the natural log to the log base 10 is
2.302585093.

LOG BASE 10-10 LOG = 1.
NATURAL LOG-IO LNX = 2.30258093.
RND-returns a real number greater than zero and less than one.

RND (P) = .889939655. M = -4. RND (M) = 2.99214662E-OS.
SGN-if the expression is less than zero, a value of -I is returned.

If the expression is zero, a zero is returned. If the expression
is greater than I, a value of 1 is returned.

SQR-returns the square root of the number.
SIN, COS, TAN, ATN-are trigonometric functions. Their argu

ments are in radians. A radian is an angular measurement that
is equal to the angle at the center of a circle subtended by an

107

arc equal in length to the radius. Many people work in degrees,
so the DEF FN function is used to convert radians to degrees.

Language, string, and numeric functions are listed and defined
below.

ASC (CCA")-returns the ASCII code for the character in the argu
ment. Strings cannot be converted directly to numerics. ASC
(CCA") is used to convert the character of the string to an ASCII
numeric value, which is 65.

CHR$ (65)-numerics cannot be converted directly to strings.
CHR$ (65) converts the ASCII value 65 to the string character
A.

FRE (O)-returns to the user, the number of bytes of memory
available. PRINT FRE (O)-must be used to return the amount
of memory. Changing the argument from 0 to 10 has no effect
on the amount of memory returned.

INT -returns the largest integer in the number. PRINT INT
(3.14) returns the number 3.

LEFT$-function detailed in Lesson 13.
LEN-returns the length of the string. A$ = "HI SUE". PRINT

LEN (A$), LEN ("HI SUE") returns the number 6 for each
LEN, the number of characters and spaces in the string.

MID$-function detailed in Lesson 13.
POS-returns the position of the cursor. If the cursor is in column

1, PRINT POS (0) returns O. VTAB 20 : HTAB 30. PRINT
POS (0) returns the cursor location as 29.

RIGHT$-function detailed in Lesson 13.
STR$-returns a string that represents the value in the argument.

PRINT STR$ (3.14) returns 3.14.
VAL-interprets a string value. PRINT VAL ("3.14") returns

3.14.

108

LESSON 15

List and Edit

After completion of Lesson 15 you should be able to:

1. List programs or parts of programs, and delete parts of pro
grams or a whole program.

2. Edit using escape cursor moves mode and pure cursor moves
mode.

3. Comprehend three types of program statements to edit.
4. Insert text into an existing line.

VOCABULARY
DEL-This is a command to remove a line or lines from a program.

DEL 20-70 or DEL 20,70 removes lines 20 through 70 from the
program.

Edit-This means to arrange data into a format required for subse
quent processing. Editing may involve deletion of data not re
quired, conversion of fields into a machine format (e.g., value
fields converted to binary), and preparation of data for subse
quent output (e.g., zero suppression).

Escape Cursor Moves Mode-In this mode, the ESCAPE key must
be pressed at the same time a cursor move key is pressed. If
ESCAPE is not pressed simultaneously with a cursor move key,
the computer will not move the cursor. Cursor move keys are A,
B, C, and D. Escape cursor moves mode is used by Apple com
puters supplied with Applesoft on tape or disk.

LIST -This command lists all the line numbers and program state
ments in a program. LIST 50,100 lists lines 50 to 100 of a program.

109

Prompt-This is any message given to an operator by an operating
system.

Pure Cursor Moves Mode-In this mode, the ESCAPE key does not
have to be pressed at the same time as the cursor move keys. In
stead, ESCAPE is pressed only once to enable the cursor move
keys. To leave this mode, any character key but the cursor move
keys must be pressed. Cursor move keys are I, J, K, and M. This
mode can only be used by Apple computers with Applesoft sup
plied by firmware, rather than by tape or disk.

DISCUSSION

In editing, probably the most used keys are the left arrow, the
right arrow, and the repeat keys. The left arrow key, when pressed,
moves the cursor one space to the left. The right arrow key, when
pressed, moves the cursor one space to the right. When the repeat
key is pressed, the last character printed is repeated on the screen.
To prevent this undesirable reprinting, a shift arrow key should be
pressed and released. The repeat and shift arrow key (or desired
key) can then be held down simultaneously to move the cursor (or
chosen character). When the repeat key and any other key are
pressed simultaneously, the character is repeated until the keys are
released.

Type in this program.

10 PRINT "THIS IS THE USA"
20 END

To list the program, type LIST and the total program appears.
To list only one line of the program, type LIST and the line number.

LIST 10
10 PRINT "THIS IS THE USA"

To list a long section of a program, type LIST and the beginning
line number, followed by a comma, and the last line number.

LIST 10,20 (for a long program LIST 5O.IDO-the screen only holds 24 lines of the
program statements)

10 PRINT "THIS IS THE USA"
20 END

In the list function, a minus sign (-) may be used to replace the
comma between the line numbers.

LIST 50,100 = LIST 5()'lOG

To list those lines above 500 (program runs from 0 to 1000) type

110

LIST -500. To list those lines below 500 type LIST 500-. This con
venient feature saves a great deal of typing.

To delete a single line of the program, type in DEL and the line
number, followed by a comma, and the same line number.

DEL 10,l0-deletes line 10 of the program.
Another way to delete line 10 is to type 10, and press RETURN.
The minus sign (-) cannot be used to replace the comma (,) in

the DEL command.
Type in DEL 10 to delete line 10. The computer gives a ? SYN

TAX ERR for this illegal command, because the command did not
include a comma and the repeat of the line number.

Sections of a program can be deleted by typing in: DEL first line
number, comma, second line number.

DEL 100,200 deletes all lines from 100 to 200, including 100 and
200.

To delete the total program from memory, type NEW. To check
that the program has been deleted from memory, type LIST. If no
program appears on the screen, the program has been deleted from
memory.

There are two types of edit functions, (1) escape cursor moves,
and (2) pure cursor moves.

The escape cursor moves require the escape key be pressed, and
held down before the key to move the cursor is pressed. To move
the cursor again, the escape key must be pressed before the key to
move the cursor is pressed. The routine is press the escape key and
then press the cursor move key. The escape cursor move mode
works on Applesoft that is loaded from tape or disk.

The keys that control the cursor in the escape cursor moves mode
are:

KEY
ESCAPE A
ESCAPE B
ESCAPE C
ESCAPE D

DIRECTION
RIGHT
LEFT
DOWN
UP

If the escape key is not pressed before the A key, the letter A will
be printed on the screen. When the escape key is pressed and the
A key is pressed, no letter is printed on the screen; only the cursor
is moved one space to the right. .

The pure cursor moves mode edit function is available on Apple
soft firmware, and does not work on Applesaft loaded from tape or
disk.

The pure cursor moves mode requires the escape key be pressed
once and the proper character key is pressed to move the cursor.

111

The cursor can be moved in any direction until some key other than
I, J, K, or M is pressed.

The keys that control the cursor iIi the pure cursor moves mode
are:

KEY
ESCAPE
K
J
M
I

DIRECTION
(pressed only once)

RIGHT
LEFT
DOWN
UP

To recover from the pure cursor moves mode, any key (other than
I, J, K, or M) may be pressed one time. The second time the key is
pressed the operator regains control of the computer.

For example, in editing line 10:

LIST 10
10 PRINT "THIS IS THE USA"

ESCAPE is pressed and released. Key J is pressed one time to bring
the cursor to column 1 of the screen. Key I is pressed twice to place
the cursor over the 1 in line 10. The pure cursor moves mode is
exited by pressing the right arrow key twice. The right arrow and
repeat keys are then pressed to place the cursor over the area to be
changed. The changes are made by typing in the proper character.
The cursor is moved past the closing quote' to complete the edit.
Did you print an incorrect character in the statement? Go back and
do it correctly.

There are three types of statements that can be edited. They are
the statements containing,

1. Characters enclosed in quotation marks that occupy one line
on the screen.

2. Characters not enclosed in quotation marks that occupy more
than one line on the screen.

3. Characters enclosed in quotation marks that occupy more than
one line on the screen.

In editing Applesoft loaded from tape or disk, only the escape
cursor moves mode can be used.

Statements with characters enclosed in quotation marks that oc
cupy one line and characters not enclosed in quotation marks that
occupy more than one line offer no editing problems. The cursor
must be past the last character in the line before RETURN is
pressed. If the cursor is before the last character and RETURN is
pressed, all characters after the cursor are deleted.

112

The editing problems come in statements with characters enclosed
in quotation marks occupying more than one line.

10 PRINT "THIS IS THE UNITED STATES OF
AMERICA"
20 END
RUN
THIS IS THE UNITED STATES OF AMERICA

Now type LIST 10

10 PRINT "THIS IS THE UNITED STA
TES OF AMERICA"

The LIST causes line 10 to break in the middle of STATES. If not
edited correctly, spaces will be left in the printout when the pro
gram is run. The method to eliminate spaces is to use the escape
cursor moves mode, in the areas where spacing is possible.

Press ESCAPE and B. This moves the cursor to column 1 of the
screen. Press ESCAPE and D. This moves the cursor one row up.
Pressing ESCAPE and D moves the cursor over the 1 in line 10.

Press repeat and right arrow keys simultaneously. D is printed on
the screen over the 1. The repeat key repeats the last character key
pressed. To prevent printing D (or the last character pressed), the
right arrow key must first be pressed and released. The right arrow
key and the repeat key can then be pressed simultaneously without
printing a character.

To erase the D, press the left arrow key and retype the number 1.
Press the right arrow key and the repeat key simultaneously until
the cursor moves past the ending quotation mark on the 2nd line.
Now press RETURN and type LIST 10.

10 PRINT "THIS IS THE UNITED STA
TES OF AMERICA"

The spacing between the A and the T in STATES has been
changed. Now type RUN.

RUN
THIS IS THE UNITED STA TES OF AMERICA

The spacing in the RUN has also been changed. To prevent this
error the line must be edited to look like this:

10 PRINT "THIS IS THE UNITED STATES OF
AMERICA"
RUN
THIS IS THE UNITED STATES OF AMERICA
LIST 10

113

10 PRINT ''THIS IS THE UNITED STA
TES OF AMERICA"

To edit line 10 so the proper spacing is maintained, the following
procedure is used:

1. Press ESCAPE and B to bring the cursor to column 1.
2. Press ESCAPE D three times to bring the cursor over 1 in line

10.
3. Press right arrow key and release.
4. Press right arrow key and repeat key simultaneously until the

cursor rests immediately past the A in STA.
5. Press ESCAPE and A in proper sequence and the correct num

ber of times to bring the cursor over the T in TES (on the sec
ond line of the statement). Sounds like a galloping horse,
doesn't it?

6. Press right arrow key and release it.
7. Press right arrow key and repeat key simultaneously until the

cursor is past the closing quotation mark in the statement.
8. Press RETURN.

Type LIST 10

10 PRINT ''THIS IS THE UNITED STA
TES OF AMERICA"

The statement lists all right. Now type RUN

RUN
THIS IS THE UNITED STATES OF AMERICA

The printed line now has the correct spacing. The ESCAPE and
A must be used to prevent changed spacing on statements with char
acters enclosed in quotation marks that occupy more than one line.

For Apple computers with Apple firmware using the pure cursor
moves mode, editing is very simple. The same procedure is used for
the pure cursor moves mode as is used for the escape cursor moves
mode, but ESCAPE is pressed once and then I,J ,K, or M is used to
place the cursor over the character to be edited. After the statement
is edited, the RETURN key must be pressed twice for the operator
to regain control of the computer.

To delete a character in an existing line using the escape cursor
moves mode, type in the line.

10 PRINT ''THIS IS THE USA"

Place the cursor over the I in IS. Press ESCAPE and A. The I is
still visible and the cursor moves over the letter S in IS. Move the

114

cursor past the closing quote. Another way to edit the I is to place
the cursor over the I in IS, and press the space bar. Type LIST 10.

10 PRINT "THIS S THE USA" (the leller I has been deleted)

To insert the letter I in IS, type LIST 10.

10 PRINT "THIS S THE USA"

Place the cursor over the letter S. Press ESCAPE and B to prepare
to insert the word IS. Type IS THE USA. Press RETURN and type
LIST 10.

10 PRINT "THIS IS THE USA"

To delete a letter using the pure cursor moves mode, type in line
10.

10 PRINT "THIS IS THE USA"

Bring the cursor over the letter I in IS. Press ESCAPE and K.
The cursor moves over the S and the I is still visible. Move the cur
sor past the closing quotation mark. Press RETURN and type LIST
10. The I can also be deleted by placing the cursor over the I and
pressing the space bar.

10 PRINT "THIS S THE USA"

To type in the letter I in the existing line, place the cursor over the
letter S. Back the cursor into the space between the THIS and the S.
Press ESCAPE and B for escape cursor moves mode, and then ES
CAPE and J for the pure cursor moves mode. Type in I. Press the
right arrow once and release. Press the right arrow and repeat keys
simultaneously to place the cursor past the closing quote. Press
RETURN. Type LIST 10.

10 PRINT "THIS IS THE USA"

The IS is in proper spacing in the literal again.
To insert text into an existing line, place the cursor over the letter

where the inserted item is to be placed. In the case of line 10, GOOD
OLE is to be placed before USA.

10 PRINT "THIS IS THE USA"

1. Place the cursor over the letter U in USA.
2. Use the escape cursor moves mode. Press ESCAPE D to move

the cursor one line above the statement.
3. Type in GOOD OLE leaving a space after OLE (space).

115

4. Press ESCAPE C to move the cursor back to the statement line.
5. Press ESCAPE B to back the cursor over the U in USA.
6. Press right arrow key and release it.
7. Press right arrow and repeat keys simultaneously to place the

cursor past the closing quote.
S. Press RETURN.

RUN
THIS IS THE GOOD OLE USA

LIST 10
10 PRINT ''THIS IS THE GOOD OLE U

SA"

Greatl This programming is moving in the right direction.

116

LESSON 16

Play Computer

After completion of Lesson 16 you should be able to:

1. Play computer and RUN a program manually, or mentally, to
determine the output.

2. Play computer to determine why a program doesn't RUN or
why a program doesn't run properly (debug).

3. Use TRACE function to aid in debugging programs.
4. Use NOTRACE function to counter the TRACE function.

VOCABULARY

NOTRACE-This command turns off the TRACE mode (see
TRACE below).

Pass-This means the single execution of a loop, or the passage of
magnetic tape across the read or write heads of a recording device.

TRACE-This is an aid in following the sequence of execution of a
program. It is used as an aid in debugging programs. TRACE
causes the line number and output data to be printed on the
screen in the sequence of line number execution. TRACE is
turned off by NOTRACE. TRACE and NOTRACE are immedi
ate commands.

DISCUSSION

The primary purpose of this lesson is to "think" like a computer.
When you think like a computer and run the program mentally and
manually, you will be able to determine what the actual output of

117

the program will be, rather than what you think it should be. You
must think like a computer if you are going to understand and out
smart this exacting machine. When you play computer the program
is RUN exactly as it is written. If the rule of default applies, use the
rule of default. If the program uses a decision statement, you must
make the proper decision to branch or default. Tables should be
made to determine how the variables change with each pass. RUN
the program mentally several times to get the feel of the program.
Complete the chart to see if you think like a computer. The RUN
and TRACE are shown in Fig. 16-1.

RUN
6 10 -8
7 10 -6
8 10 -4
9 10 -2
10 10 0
10 8 1
10 8 -9
TRACE
RUN
#10 #20 #20 #20 #30 #40 #90 #100 #110 6
10 -8
#120 #30 #40 #90 #100 #110 7
10 -6
#120 #30 #40 #90 #100 #110 8
10 -4
#120 #30 #40 #90 #100 #110 9
10 -2
#120 #30 #40 #90 #100 #110 10
10 0
#120 #30 #40 #50 #60 #70 10
8 1
#80 #30 #130 #140 10 8
-9
#150

Fig. 16-1. RUN and TRACE.

10 REM: PROGRAM TO PLAY COMPUTER
20 A = 5 : B = 10 : C = -10
30 IF C > 0 THEN 130
40 IF (B > A) THEN 90

(without parentheses: IF B > A THEN 90. produces a SYNTAX ERR because
AT is a reserved word-to correct this. use parentheses around B> A)

50 IF C < = 0 THEN C = C + 1
60 B=B-2
70 PRINT A. B. C
80 GOTO 30
90 A=A+l
100 C = C + 2
110 PRINT A. B. C
120 GOTO 30

118

130 C = C - 10
140 PRINT A, B, C
150 END

Chart 16-1. Variable Chart

Assign value of variables A B

from line 20 5 10

Values-1st pass

Values-2nd pass

Values-3rd pass

Values-4th pass

Values-5th pass

Values-6th pass

Values-7th pass

C

-10

After the chart has been completed and you are satisfied you
understand how and why the program functions, RUN the program
to get the correct results. Did you do as well as the computer?

Type in the immediate command TRACE. When the program is
RUN, the line numbers, and variable values, are printed on the
screen. If a program does not RUN, TRACE can aid in determining
why it doesn't run. The error messages built into the language can
also aid in debugging programs. If a program stops at line 120, and
no error message is given, many times the TRACE mode can aid in
correcting the problem.

TRACE function can be removed by typing NOTRACE on the
screen. The next program RUN will be without the line numbers
on the screen to give an example of how TRACE and NOTRACE
are typed on the screen.

RUN

TRACE
RUN

NOTRACE

119

LESSON 17

Reserved ~ords

Mter completion of Lesson 17 you should be able to:

1. Use reserved words in programs in their proper relationship.
2. Use parentheses to separate characters that the computer inter

prets as reserved words.

VOCABULARY

Reserved Words-These are words programmed into the language to
aid in carrying out the programming functions.

DISCUSSION

Reserved words are used to aid in programming. These words
cannot be used as variables. Applesoft tokenizes reserved words to
a decimal number similar to the decimal number that represents an
ASCII symbol. For example,

40 IF B = A THEN 90.

When the program is RUN, the program is stopped at line 40 and
SYNTAX ERR is printed on the screen. When line 40 is LISTed it
appears as:

40 IF B = AT HEN90.

The variable A attaches to T in THEN to become the reserved
AT. To overcome this problem and use the variable A in the same
sequence, use parentheses around B = A.

120

40 IF (B = A) THEN 90

The list of reserved words is taken directly from Applesoft II.
BASIC PROGRAMMING REFERENCE MANUAL. page 122. by
the Apple Computer Inc .• 10260 Bandley Dr .• Cupertino. California
95014.

RESERVED WORDS IN APPLESOFT

&

ABS AND ASC AT ATN

CALL CHR$ CLEAR COLOR= CONT COS

DATA DEF DEL DIM DRAW

END EXP

FLASH FN FOR FRE

GET GOSUB GOTO GR

HCOLOR= HGR HGR2 HIMEM: HLIN HOME

HPLOT HTAB

IF IN# INPUT INT INVERSE

LEFT$ LEN LET LIST LOAD LOG LOMEM:

MID$

NEW NEXT NORMAL NOT NOTRACE

ON ONERR OR

PDL PEEK PLOT POKE POP POS PRINT PR#

READ RECALL REM RESTORE RESUME RETURN

RIGHT$ RND ROT= RUN

SAVE SCALE= SCRN (SGN SHLOAD SIN SPC(

SPEED= SQR STEP STOP STORE STR$

TAB (TAN TEXT THEN TO TRACE

USR

VAt. VLIN VTAB

WAIT

XPLOT XDRAW

121

LESSON 18

Menu Selection and
Coding Formulas

Mter completion of Lesson 18 you should be able to:

1. Write programs using a menu selection.
2. Translate formulas to computer code for computational pur

poses.

VOCABULARY

Code-This is the representation of data or instructions in symbolic
form. It is sometimes used as a synonym for instructions. Coding
is the act of converting data or instructions into program state
ments.

Comment-This is a written note that can be included in the coding
of computer instructions in order to clarify the procedures, but
has no effect on the computer itself.

GET A$-This stops the program in order to view the output until
any key is pressed.

Menu Selection-This is a method of using a terminal to display a
list of optional facilities that can be chosen by the user in order
to carry out different functions in the system.

DISCUSSION

Many people have little knowledge of computers. For these peo
ple, the programs must be written to tell them what input is required,
and in what format. One way to aid these people with the correct

122

selection is to use a menu. A menu selection is a method of using a
terminal to display a list of optional facilities that can be chosen by
the user in order to carry out different functions in the system.

The following program computes depreciation by using either
the straight line method, double declining balance method (200%),
or the sum of the years digits method. The variables are shown in
Fig. 18-1.

BV
DY
GA
GET A$
LA
P
S
SV
TD

BV
DY
GA
GET A$
K
LA
SV
TD

BV
DY
GA
GET A$
K
LA
SV
TD

STRAIGHT LINE DEPRECIATION
Book value
Depreciation per year
Gross amount or gross cost of the asset
Stops the program to allow the user to view the output.
Life of the asset
Rounded to 2 places (100)
Selection
Salvage value
Total depreciation

DOUBLE DECLINING BALANCE
Book value
Depreciation per year
Gross amount or gross cost of the asset
Stops the program to allow the user to view the output.
Constant
life of the asset
Salvage value
Total depreciation

SUM OF THE YEARS DIGITS
Book value
Depreciation per year
Gross amount or gross cost of the asset
Stops the program to allow the user to view the output.
Constant
life of the asset
Salvage value
Total depreciation

Z Variable to hold (LA - Y). Z = (LA - Y) + 1. A method to compute and
print the years forward, after they computed backwards.

Fig. 18-1. Variables.

The program shows the menu selection. The user selects which
method of depreciation is to be used for computation. The menu
secti?n of the program is contained in lines 500 to 560.

500 HOME: VTAB 3 : HTAB 8 : PRINT "***DEPRECIATION***" :
PRINT : PRINT

510 HTAB 5 : PRINT "1. STRAIGHT LINE DEPRECIATION" : PRINT
520 HTAB 5 : PRINT "2. DOUBLE DECLINING BALANCE" : PRINT
530 HTAB 5 : PRINT "3. SUM OF THE YEARS DIGITS" : PRINT
540 HTAB 8 : INPUT "SELECTION PLEASE I" : PRINT

123

550 IF S < 1 OR S > 3 THEN 500
560 ON S GOTO 1500. 2500. 3500

Line 500 clears the screen and sets the position at which oooDE_
PRECIATION° OO is to be printed. The two PRINT statements
leave two blank lines below ***DEPRECIATlON***.

Lines 510 through 530 print out the three types of depreciation.
The user selects one choice.

STRAIGHT LINE DEPRECIATION

COST OF ASSET - SALVAGE VALUE
DEPRECIATION/YEAR = ---__ ---__ --:---

NUMBER OF YEARS

YEAR
1
2
3

DEP/YR
200
200
200

TOTAL DEP.
200
400
600

DOUBLE DECLINING BALANCE (the numbers have been rounded)

3 year straight line = 1/3 .333 (K)
200% double declining balance = 2 * 1/3 .667 (K)

YEAR
1
2
3

CONSTANT COST
.667 * 625
.667 * 208
.667 * 69

DEP/YR BOOK VL. TOTAL DEPRECIATION
417 208 417
139 69 554
46 25 600

SUM OF THE YEARS DIGITS (the numbers have been rounded)

SYD = n (n + 1)
2

YEAR
1
2
3

CONSTANT
.500 .,.
.333 ...
.167 *

PRINT YEARS
1
2
3

GA - SV
600
600
600

DEP/YR
300
198
100

Book VL.
325
125
25

SYD=3*(3+1l=6
2

TOTAL DEPRECIATION
300
500
600

Z=(LA-y)+1
3 - 3 = 0 + 1 = 1
3 - 2 = 1 + 1 = 2
3-1=2+1=3

line 3560 uses the INT function to round off the results to 2 places. DEF FN was used to
round off to 2 places in line 2560. The two different methods expose the student to the fact that
either method will accomplish the same rounding result •.

Fig. 18-2. Formulas and computations.

Line 540 allows the user to select any number. The number does
not necessarily have to be 1, 2, or 3.

Line 550 is a decision statement that causes a branch to line 500 if
a number other than 1, 2, or 3 is input. This is a form of error check
ing that limits the input choices that will be accepted by the pro-

124

gram. Since there are three choices, the machine is programmed so
only an input of 1, 2, or 3 will allow the program to continue.

In line 560, the input value is placed in the variable S. When S = 1
the program branches to line 1500. When S = 2 the program
branches to line 2500. When S = 3 the program branches to line
3500. The ON S GOTO type of statement was discussed in Lesson 13
and was the method used to print the input errors.

When a correct menu selection has been input, the program
branches to line 1500, 2500, or 3500. At each of these lines is a
GOSUB 100. The GOSUB 100 causes a branch to line 100 of the pro
gram. Line 100 is the beginning of the input subroutine. This sub
routine is placed at the beginning of the program because it is used
by each type of depreciation. The program is more efficient because
fewer lines are searched before the input information is found. The
headings are printed, and the input information is requested.

100 INPUT "GROSS AMOUNT = $" ;GA : PRINT
105 IF GA < 1 THEN 100
110 INPUT "SALVAGE VALUE = $" ;SV : PRINT
115 IF SV < 0 THEN 110
120 IF GA < SV THEN 100
130 INPUT "LIFE OF ASSET = .. ;LA : PRINT
135 IF LA < 1 THEN 130
140 RETURN

In line 105, the gross amount of the asset cannot have a negative
value to be used in the formula.

In line 115, the asset may be valued at zero at the end of the de
preciation period, but the formula will not properly compute assets
with a negative salvage value.

In line 120, if the gross cost of the item is less than the salvage
value, the formula will not compute the depreciation properly.

In line 135, the asset must have a useful life of at least one year or
some period greater than zero.

The depreciation formula must compute positive real numbers
greater than zero. The error checks attempt to eliminate any input
that would not give a meaningful computation to the user.

Line 140 causes a branch to the section of the program that re
quested the input information.

If 1 is input from the menu selection, the program branches to
line 1500. Line 1500 branches to the input subroutine. After input is
received, line 140 causes a branch to line 1510 to begin calculation
of straight line depreciation. The numbers have been rounded. The
numbers used for all examples are: cost of asset (GA) = $625, sal
vage value (SV) = $25, and life of the asset (LA) = 3 years.

1500 GOSUB 100
1510 TD = 0

125

1520 PRINT "VEAR OEP/vR TOTAL OEP." : PRINT:
P = 100

1530 FOR X = 1 TO LA
1540 OV = (GA - SV)I LA
1550 TO = TO + OV
1560 PRINT X; TAB (10); INT (OV*P + .5)/p; TAB (25);

INT (TO*P + .5)/p
1570 IF X = INT (X/8) * 8 THEN GET A$
1580 NEXT
2400 GOTO 9990

STRAIGHT LINE DEPRECIATION

DEPRECIATION/YEAR =
COST OF ASSET - SALVAGE VALUE

NUMBER OF YEARS
DEPRECIATION INFORMATION
LIFE OF THE ASSET = 3
DEP/YR = GA - SV / LA
DEP/YR = $200
TOTAL DEPRECIATION = $600

PROGRAM STATEMENT
FOR X = 1 TO LA
DY = (GA - SV)/LA
TD = TD + DY
1580 NEXT X

Line 1560 prints the year, the amount of each year's depreciation,
and the total depreciation. Line 1560 is included within the loop,
so the results will be printed for each year's computation.

Line 1570 performs the same function in lines 1570, 2570, and 3570.
It causes the loop to stop after every eight executions (as shown in
Table 18-1). This is useful when the life of the asset is a long period
(over 10 years) of time and the user needs to study sections of the
printout. The integers could be any number such as 10, 12, or 20, as
long as the number is less than the number of lines on the screen.

GET A$, from line 1570, is a function to stop the program to allow
the user to view the output. GET A$ allows the user to press any
key on the keyboard to continue the program. The key pressed does
not print a character on the screen. RETURN does not have to be
pressed.

Table 18-1. IF X = INT(X/8) * 8 THEN GET A$

x INT(X/8) INT(x/a) * a

1 0 0
2 0 0 ------- --------------------7 0 0
8 1 8
9 1 8

10 1 8 ------- ----------- ---------
15 1 8
16 2 16
17 2 16

126

The conversion of straight line depreciation to program state
ments uses no decision statements. The complete program is shown
in Fig. 18-6 at the end of the lesson.

The double declining balance method of depreciatio~ applies a
constant depreciation rate to a reducing book value. This method
charges off high depreciation in the early years and lower amounts
in later years. The rate used in this example is 200%. or twice the
straight line depreciation, as expressed in the formula K = (1/
LA) 02. The formula for the 150% rate is K = (1/ LA) 0 1.5. The
formula for the 125% rate is K = (1 / LA) 0 1.25.

Please be aware that this is a programming manual, not an ac
counting text. The double declining balance formula is taken from
an accounting text and has been checked by a qualified accountant.
The computed figures in the final year of the depreciation schedule
may cause questions. The final book value does not equate with the
salvage value, nor does the total depreciation equate with the allow
able depreciation. Adjustments must be made to the figures com
puted in the final year of the life of the asset.

In the double declining balance method, the constant (K) is
multiplied by the initial cost of the asset to determine the amount
of yearly depreciation. The cost (Book Value) is reduced by the
depreciation amount each year, but the book value cannot be re
duced below the salvage value. The total depreciation cannot be
greater than the cost of the asset less the salvage value.

This example uses the input: cost of the asset (Book Value) =
$625, salvage value = $25, and the life of the asset = 3 years.

The double declining balance routine begins at line 2500, and
ends at line 3400.

2500 GOSUB 100
2510 K = (11 LA) * 2 : BV = GA
2512 TO = 0
2515 PRINT "YEAR CONST. OEP/YR BK. VAL. TOT OEP"
2520 FOR X = 1 TO LA
2530 OY = BV * K
2540 BV = BV - OY
2545 TO = TO + OY
2550 OEF FN A(X) = INT (X* 100 + .5)/100
2560 PRINT X; TAB (5); FNA(K); TAB (14); FNA(Oy); TAB (22);

FNA(BV); TAB (31); FNA(TO)
2570 IF X = INT (xIs) * S THEN GET A$
25S0 NEXT
3400 GOTO 9990

Line 2500 branches to the input routine. The input routine RE
TURN s to line 2510 {K = (1/ LA) * 2 : BV = GA). The constant (K)
is computed by the formula (1/ LA) 0 2 for 200% straight line
depreciation. BV = GA is the gross cost of the asset stored in the

127

variable BV. The constant times the reducing book value will give
the yearly depreciation.

Line 2512 initializes the total depreciation to zero, and line 2515
causes the headings to be printed.

Line 2520 is the beginning statement of the loop for the compu
tations.

Line 2530 computes the depreciation for one year and stores
that value in the variable DY (depreciation per year).

Line 2540 computes the reducing book value by subtracting off
the depreciation each year.

Line 2545 is a summing statement that adds each year's depreci
ation to the previous year's and stores the total in the total depreci
ation variable, TD.

RUN
VEAR
1
2
3

DEP/VR
200
200
200

TOTAL DEP.
200
400
600

Fig. 18-3. Straight line depreciation run •.

Line 2550 rounds the print calculations to two places.
Line 2560 causes the information to be printed in table form on

each loop execution.
Line 2570 is the same as line 1570 and is shown in Table 18-1.
Line 3400 branches to line 9990, which cues the user for more

input.

RUN
VR
1
2
3

CONST.
.67
.67
.67

DEP/VR
416.67
138.89
46.3

BK.VAL
208.33
69.44
23.15

Fig. 18-4. Double declining balance run.

TOT DEP
416.67
555.56
601.85

The third type of depreciation is the sum of the years digits. In this
method, the years of the asset's life are listed numerically and to
taled. The highest year in the life of the asset is then divided by the
total to compute the depreciation constant for the first year. The
changing yearly constant is multiplied by a fixed gross amount of

RUN
VEAR
1
2
3

128

CONSTANT
.5
.33
.17

DEP/VR
300
200
100

Fig. 18-5. Sum of the years digits run.

TOTAL DEP.
300
500
600

the asset less the salvage value. The method is shown in the program
lines 2500 to 3600 in Fig. 18-6, and the RUN in Fig. 18-5.

DEPRECIATION
INFORMATION PROGRAM STATEMENTS
Total years 3 + 2 + 1 = 6 FOR X = 1 TO LA :

T = T + X : NEXT X
T = LA 4) (LA+l)/2

3/6 = 1st year maximum
depreciation

FOR Y = LA TO 1 STEP -1 :

2/6 = 2nd year depreciation
1/6 = 3rd year minimum
depreciation

DY
.500 4) $600 = $300
.333 4) 600 = 200
.167 4) 600 - 100

50 GOTO 500

TD
$300
500
600

K = Y/T

DY = K 0 BV
TD = TD + DY

100 INPUT" GROSS AMOUNT = $" I GA : PRINT
105 IF GA < 1 THEN 100
110 INPUT "SALVAGE VALUE = $" ;SV : PRINT
115 IF SV < 0 THEN 110
120 IF GA < sv THEN 100
130 INPUT "LIFE OF ASSET = " lLA
135 IF LA < 1 THEN 130
140 RETURN
500 HOME: VTAB 3 : HTAB B : PRINT "***DEPRECIATION***" :

PRINT : PRINT
510 HTAB 5 : PRINT "I. STRAIGHT LINE DEPRECIATION" : PRINT
520 HTAB 5 : PRINT "2. DOUBLE DECLINING BALANCE" : PRINT
530 HTAB 5 : PRINT "3. SUM OF THE VEARS DIGITS" : PRINT: PRINT
540 HTAB 8 : INPUT "SELECTION PLEASE I" IS: PRINT
550 IF S < 1 OR S > 3 THEN 500
560 ON S GOTO 1500, 2500, 3500
1500 GOSUB 100
1510 TO = 0
1520 PRINT "VEAR DEP/vR TOTAL DEP." : PRINT:

P = 100
1530 FOR X = 1 TO LA
1540 DV = (GA - Sv)/LA
1550 TD = TD + DV
1560 PRINT X; TAB (10); INT (DV*P + .s)/p; TAB (25);

INT (X*P + .5)/p
1570 IF X = INT (x/8) * THEN GET A$
1580 NEXT
2400 GOTO 9990
2500 GOSUB 100
2510 K = (lILA) * 2 : BV = GA

Fig. 18-6. Menu-depreciation.

129

2512 TO = 0
2515 PRINT" VR CONST. OEP/vR BK.VAL. TOT OEP"
2520 FOR X = 1 TO LA
2530 OY = BV * K
2540 BV = BV - OV
2545 TO = TO + OV
2550 OEF FN (A{X) = INT (X*100 + .5)/100
2560 PRINT X; TAB (5); FNA (K); TAB (l4); FNA (OYl;

TAB (22); FNA (BV); TAB(31); FNA (TO)
2570 IF X = INT (XIS) * S THEN GET A$
25S0 NEXT
3400 GOTO 9990
3500 GOSUB 100
3510 T = 0 : P = 100 : BV - GA = SV : TO = 0
3520 PRINT "VEAR CONSTANT OEP/vR TOTAL OEP." : PRINT
3530 FOR X = 1 TO LA : T = T + X : NEXT X
3535 REM: T = LA * (LA+1l/2
3540 FOR V = LA TO 1 STEP -1 : K = V/T
3550 OV = K * BV
3555 TO = TO + OV
355S Z={LA-Yl+l
3560 PRINT Z; TAB (7); INT {K*P + .5)/p; TAB (lS);

INT {OV*P + .5)/p; TAB {26 + (TO < 100»;
INT {TO*P + .5)/p

3570 IF Z = INT (Z/S) * S THEN GET A$
3600 NEXT
9990 PRINT
9991 INPUT "ANOTHER PROBLEM? (y OR N)" ; A$:

IF A$ = "V" THEN 500
9999 END

Fig. 18·6. (Cont) Menu-depreciation.

130

LESSON 19

Program Outline

After completion of Lesson 19 you should be able to:

1. Comprehend that all computer programs are written accord
ing to a general outline, but no program will exactly follow such
an outline.

VOCABULARY
Data-This is a general expression used to describe any group of

operands that denote any conditions, values, or states (i.e., all
values and descriptive data operated on by a computer program
but not part of the program itself). The word data is used as a
collective noun and is usually accompanied by a singular verb:
"data are" may be pedantically correct but is awkward to under
stand. Data is sometimes contrasted with information, which is
said to result from the processing of data, so that information de
rives from the assembly, analysis, or summarizing of data into a
meaningful form.

DAT A-This statement contains a list of items that can be used by
a READ statement. DATA statements can contain literals, strings,
reals, and integers. The item in the DATA statement must contain
the same relationship and position as the item in the READ state
ment.

READ-This is a statement used by the program to read data into
memory.

131

DISCUSSION

The outline for program structure must be considered very gen
eral and probably no program will rigidly comply with the outline.
There must be a starting point to writing a program. The logical
start to writing a program must exist within the framework of an
outline.

Computer program general outline.

A. Start the program.
B. Initialize the variables.

1. C = 0 counting variable
2. S = 0 summing variable
3. F = 0 flag variable
4. DEF FN
5. DIM-where constants are used-DIM CF (3,20)
6. DIM CF (R,C)-must be placed in the program after

R & C have been given values either by a program state
ment, INPUT, or READ.

7. RESTORE-resets the "data list pointer" to the first element
of DATA. Causes the next READ statement encountered to
re-READ the DATA statements from the first one.

C. Print general program headings.
D. Menu
E. INPUT - READ

1. DIM CH (R,C)-after variables are input.
F. Beginning statement for FOR - NEXT loop, or GOTO loop.
G. Decision statements
H. Computation statements
I. Incrementing statements

1. C = C + I-counting statement
2. T = T + X-summing statement

J. PRINT-in this position the information is printed each time
the loop executes.

K. End of loop-NEXT for FOR-NEXT loop, and GOTO for
GOTOloop.

L. PRINT-in this position the information totals are printed
after the last execution of the loop.

M. DATA statements are placed anywhere in the program. Gen
erally placed close to the END.

N. END
O. Subroutines

The FOR - NEXT loop will be used to demonstrate the effects of
statements within, and outside, the loop structure.

132

10 SUM = 0
20 FORX=IT05
30
40
50
60
70
RUN
1
2
3
4
5

PRINT X
SUM=SUM+X
NEXT X
PRINT "SUM = ";SUM
END

SUM = 15

(initialize variable)
(FOR - NEXT loop beginning)
(print variable inside the loop)
(summing statement)
(end of loop statement)
(print statement outside the loop)
(end of the program)

The program generally conforms to the outline.
Lines 30 and 40 should be reversed according to the outline. Does

it make a difference if they are reversed?

30 SUM=SUM+X
40 PRINT X
RUN
1
2
3
4
5
SUM = 15

No, the reversal of lines 30 and 40 within the loop make no differ
ence. Generally, the PRINT X statement comes after the FOR state
ment.

Now reverse lines 40 and 30 to return to the original program.
From the original program, make these changes:

DEL 30,30
55 PRINT X

The entire program is:

10 SUM = 0
20 FOR X = 1 TO 5
40 SUM = SUM + X
50 NEXT X
55 PRINT X
60 PRINT "SUM = ";SUM
70 END
RUN
6
SUM = 15

The loop runs from 1 to 5 and prints the next number in the series,
namely 6. This is a very important point to realize. Because the gen
eral outline was violated, the program did not produce the desired
results, namely, printing X at every iteration of the loop.

133

To the original program, make these changes:

DEL 60,60
45 PRINT "SUM = " ; SUM

The entire program is:

10
20
30
40

SUM = 0
FORX=lT05
PRINT X
SUM=SUM+X

45 PRINT "SUM = " ; SUM
50 NEXT X
70 END
RUN
1
SUM = 1
2
SUM = 3
3
SUM = 6
4
SUM = 10
5
SUM = 15

Since the SUM was within the loop, SUM = was printed with
each execution of the loop. Make the following changes to the
original program:

DEL 10, 10
25 SUM = 0

The entire program is now:

20 FORX=lT05
25 SUM=O
30 PRINT X
40 SUM=SUM+X
50 NEXT X
60 PRINT "SUM = " ;SUM
70 END
RUN
1
2
3
4
5
SUM = 5

In this case, the summing variable was initialized to zero each
time the loop executed, so the :Rnal SUM = 5. The initialized vari
able must be outside the loop or it will be reset to zero each time the
loop executes.

134

LESSON 20

Clean Up

Mter completion of Lesson 20 you should be able to:

1. Open the closet door and have all the final tidbits of the Apple
soft language fall out for your inspection and pleasure.

VOCABULARY

Print Field Definition-This is the technique of printing output to fit
a standard pattern or form, thus making the output more readable.

Right lustify-This means to format output so the printed field is
aligned on a right hand boundary.

Zero Suppression-This is the elimination before printing of non
significant zeros, e.g., those to the left of significant digits. The
suppression is a function of editing. It is also known as zero elimi
nation.

DISCUSSION

This lesson "cleans up" many parts of the language not covered
in the first 19 lessons. Here we go with all the bits and pieces.

Applesoft does not align columns of different numbers to the
power of ten. All numbers are printed starting from one selected
space and printed to the right.

.7
284.6
98.3
2
3.47

135

The following program. makes numbers align in the proper col
umns, so the units are aligned, the tens are aligned, etc. The program
causes the printout to right justify by two methods, (1) by aligning
the right hand number, and (2) by aligning the decimal point.
Either method of justification can be used in a program as a routine
or a subroutine. Lines 60 to 80 right justify any number. Lines 90 to
130 right justify the decimal of numbers that are greater than or
equal to .1 but less than 109•

5 0 = LOG (10)
6 DEF FN MA (X) = INT (LOG (M)! D)
10 HOME
20 INPUT "ENTER?" ;M
30 IF M = 0 THEN END
40 GOSUB 60
50 Goro 20
60 L = LEN (STR$ (M» : PRINT "R JUST =";
70 FOR J = L TO 12 : PRINT ":" ; : NEXT J
80 PRINT M;
90 L=FNMA(M)
100 FOR J = L + (L < -1) TO 8 : PRINT "$" ; : NEXT J
120 PRINT M;
130 PRINT: RETURN
]RUN
ENTER?2.34
R JUST = :::::::::::::::2.34$$$$$$$$$2.34
ENTER?234.69
R JUST = ::::::::::::234.69$$$$$$$234.69
ENTER? .5678
R JUST = :::::::::::::.5678$$$$$$$$$$.5678
ENTER?3456789
R JUST =:::::::::3456789$$$3456789
ENTER?2123.5678
R JUST =::::::2123.5678$$$$$$2123.5678
ENTER?O

Lines 5 and 6 are used together to compute the magnitude of the
number to be printed. D holds a constant value which is 2.30258509.
That is the value used to compute the power to which base 10 is
raised. The power is used to right justify on the decimal point in lines
90 to 130.

OEF FN MA (X) = INT (LOG (M) / 0) is the function that computes
the magnitude of the number.

136

M = 2.34
D = 2.30258509

LOG (M) = 3.17805383
LOG (M) / D = 3.17805383 / 2.30258509

INT (LOG (M) / D) = 1

Line 10 clears the screen. Line 20 asks the user to input a number.
Line 30 is a decision statement that ends the program.

In this example, the number 2.34 will be input and the results will
be discussed as it is justified. _

In line 60, STR$ converts the number 2.34 into a string. This con
version allows the string "2.34" to be evaluated. The number of
characters (4) is then stored in the variable L. PRINT ,"R JUST =";
prints out the header that is printed in the first eight columns of the
screen.

Line 70 computes the number of colons to be printed before the
number (M) is printed. FOR J = L TO 12 outputs 13 places (0-12)
and subtracts off the length of the string. R JUST = occupies the first
eight columns. The string contains four characters, so FOR J = 4 TO
12 will print nine colons before printing the number.

COLUMN 8,9, ••• 17 ••• 21
R JUST = :::::::::2.34

Line 80 prints the number after the colons so all numbers are right
justified. The semicolon after the M keeps the line open to print the
next section that is to justify on the decimal point.

The right justification is based on adding the number of columns
occupied by R JUST =, plus the number of colons to be added to
R JUST =, less the number of columns occupied by the string. All
numbers are right justified to column 21 on the screen.

Lines 90 to 130 justify by placing the decimal in column 32 and
aligning the numbers in the proper columns in relation to the deci
mal point.

In line 90, the power of the number is determined by the formulas
in lines 5 and 6. The value of the power is stored in the variable L.
The value stored in L, shown in Fig. 20-1, is then used to determine
how many places to print.

Line 100 is a loop to print dollar signs ($) from column 21 to nine
places (0 - 8) (L +, the number of $ signs, = 9). The power of the

CASE M FN MA (M)

0 o ILLEGAL VALUE

1 >0 to ~ .01 -2 This case causes special han-

2 > .01 to ~1 -1 dling by (L < -1)

3 > 1.0 to ~ 10 0
4 > 10 to ~100 1
5 > 100 to ~ 1000 2
6 > 1000 to ~ 10000 3

> 1 E +8 to ~ 1 E -9

Fig. 20-1. L = FN MA (M).

137

number is placed in the variable Land L TO 8 determines the num
ber of dollar signs to be printed before the number is printed. The
number input is 2.34.

COLUMN 8,9, •.• 17,21 ... 32
R JUST = :::::::::2.34$$$$$$$$$2.34

In this case, 2.34 has a power of zero (see Fig. 20-1). FOR J = 0
TO 8 prints out 9 dollar signs.

Line 120 prints 2.34 immediately after the ninth dollar sign so the
decimal falls in column 32.

Line 100 must handle a special case when the decimal input is
less than .01 and greater than .099 (see Case #1, Fig. 20-1). This
special case is handled by (L < -1). FOR J = L TO 8 works in all
cases where L is greater than or equal to .1 . When L is less than .1,
a one has to be added back to align the decimal points.

A simpler, but less effective, method of controlling the column
printout is to use decision statements. Using N as a variable to hold
the value of the number, the decision statements are as shown in
Chart 20-1.

Chart 20-1. Decision Statement Chart

COLUMN 32 33 34 35 36 37

N = .78 IF N < 1.00 THEN HTAB 35 7 8
N = 1.78 IF N > .99 THEN HTAB 34 1 7 8
N = 11.78 IF N > = 10.00 THEN HTAB 33 1 1 7 8
N = 111.78 IF N > = 100 THEN HTAB 32 1 1 1 7 8

With these four statements the number to be placed in columns
must be less than 1000. Decision statements can cause any number
to be printed in specific columns as long as the number is in the range
of the computer.

CONT is an immediate command that causes the program to con
tinue RUNning after it has been stopped by a STOP, END, or Con
trol C. CONT causes the program to continue at the next instruction.
If the program was stopped on line 40, a GOTO 100 statement, the
program will execute line number 100, not the default line after line
40. CONTinue will not be successful in continuing the program if
the program line has been modified, or if an error message has oc
curred since the execution stopped. A ?CAN'T CONTINUE ERROR
will be printed when no further instructions exist, after an error has
occurred, or after a line has been changed or deleted in the exist
ing program.

FLASH, INVERSE, and NORMAL functions are demonstrated in
the FLASH SCREEN program. The program combines FLASH,
NORMAL, INVERSE, and RND functions to randomly print the

138

letters of the alphabet and change the video mode surrounding the
character.

" REM FLASH SCREEN
5 HOME
10 FOR J = 1 TO 653
20 I = INT (RND (1)*39) + 1
30 K = INT (RND (1.) * 23) + 1
40 L = INT (RND (1.) * 3) + 1
50 ON L GOTO 60, 70, 80
60 INVERSE: GOTO 100
70 NORMAL: GOTO 100
80 FLASH
100 HTAB I : VTAB K : PRINT CHR$ (RND (1.) * 26 + 65);
110 N = RND (1.) : NEXT J : NORMAL
120 END

Line 10 is the loop that sets the number of times the program is to
be executed. The number 653 was selected at random. Any number
could be used.

Line 20 randomly selects the column in which the character is to
be printed. The screen has a line 40 characters long. RND returns a
number from zero to less than one. RND (1) * 39 always returns a
number less than 39, from zero to 38. RND (1) * 39 + 1 always re
turns a number greater than zero and less than 40. The "+ I" is used
to prevent the illegal value zero from being generated. The screen
has 40 columns, from 1 to 40. If the RND function generated a zero,
the program would stop and an ILLEGAL QUANTITY error would
be printed. It is important to remember the parameters and limits
of each function.

Line 30 randomly sets the limit of the rows on the screen. The
screen has 24 rows, from 1 to 24. RND (1.) * 23 + 1 sets the limit to
22 + 1 which prevents the screen from scrolling while the program
is running. In line 20, RND (1) is used. In line 30, RND (1.) is
used. Either 1 or 1. can be used without changing the function.

The program is designed so that no character is printed at column
40, nor is any character printed in row 24. A print at column 40, row
24 causes the screen to scroll.

In line 40, the positive argument of RND returns a different se
quence of numbers each time. RND (1.) * 3 returns the numbers 0,
1, 2. The "+ I" changes this sequence to 1, 2, and 3.

The 1, 2, or 3 generated by the program in line 40 is used by line
50 to send the program to line 60 for L = 1, line 70 for L = 2, and line
80 for L = 3.

Line 100 prints the characters and the video mode randomly ac
cording to VTAB I (line 20), and HTAB K (line 30). The PRINT
CHR$ (RND (1.) * 25 + 65) changes the 26 characters of the alphabet

139

(0 - 25) + 65, from the ASCII numeric code to the alphabetic
characters.

A=65
B = 66
C=67
D=68
etc.

In line 110, N = RND (1.) seems to serve no useful purpose. It is
included because the function that the Apple computer uses to gen
erate the random numbers may get into an endless loop that gener
ates the same series continuously. N = RND (1.) prevents the random
number generator from continued repetition of the same series.
This knowledge comes from two sources: (1) previous program
ming experience with the theory of algorithms that generate random
numbers, and (2) from viewing the program not printing any new
positions, but printing the same position over and over. NEXT J is
the last statement in the loop, and NORMAL brings the screen back
to its normal mode. The program ENDs at line 120.

There is no RUN on this program because it would be impossible
to type this hypnotic eye blinker. You have to RUN it to see and
believe.

The next program introduces ONERR GOTO, POKE, PEEK, and
RESUME.

10 ONERR GOTO 8000
20 PRINT "DISCO KID" : STRIKESAGAIN
30 READ D, A, B
40 DATA 1007, 34.5
50 INPUT "LmER?" ;A
60 POKE 216, 0
70 NEXT J
8000 Y = PEEK (222) : L = PEEK (218) + PEEK (219) * 256
8010 IF Y = 16 THEN PRINT "SYNTAX ERROR IN LINE" ;L :

PRINT : GOTO 30
8020 IF Y = 42 THEN PRINT "OUT OF DATA IN LINE" ;L :

PRINT: GOTO 50
8030 IF Y = 254 THEN PRINT "ANSWER THE CORRECT TYPE IN

LINE" ;L : PRINT: RESUME
RUN
DISCO KID
SYNTAX ERROR IN LINE 20
OUT OF DATA IN LINE 30
LEITER? A (letter E-reserved for exponentiation)

ANSWER THE CORRECT TYPE IN LINE 50
LmER?5
NEXT WITHOUT ERROR IN LINE 70

Line 10 is a declaration statement that tells the computer what
to do when an error is detected. The computer handles errors in a

140

normal fashion until it executes an ONERR GOTO statement. The
ONERR GOTO statement is similar to TRACE in that it affects the
entire program during its execution. After an ONERR GOTO state
ment has been executed, anytime an error is detected, the program
branches to the line specified. The computer remembers line 10 for
all errors. This program handles three error conditions. Given time,
all seventeen possible errors could be placed in the program.

Line 60 places a zero into memory location 216. POKE 216, 0 is
the statement that clears the error Hag so that normal error messages
may occur. When information is to be placed in a specific memory
location the POKE command is used.

In line 8000, Y-PEEK (222) returns the contents of memory location
222. The value of Y is stored in a variable to make its use easier.
l = PEEK (218) + PEEK (219) * 256 sets the value of the line number
in the program where the error occurred.

In line 8010, the number 16 is the value for the error code SYN
TAX ERROR.

In line 8020, the number 42 is the value that prints the OUT OF
DATA error.

In line 8030, the number 254 is the Y value that gives a bad re
sponse to an INPUT statement.

Pause loops cause a delay in the program to allow the user to view
the information.

GET A$ pause loops were discussed in Lesson 18.
A simple pause loop that allows the program to continue without

user participation is:

FOR P = 1 TO 10000 : NEXT P

A nested loop pause that allows the program to continue without
user participation is:

FOR N = 1 TO 1000
FOR P = 1 TO 100
NEXT P. N

A pause loop (similar to GET A$) that stops the program after a
certain number of printouts, 50 in this example, and requires the
user to press RETURN is: .

FOR I = 1 TO 1000
IF I = INT 0/50) * 50 THEN INPUT Q$
NEXT I

HTAB and VTAB are used for spacing in loops. VTAB and TAB
are used for straight spacing not in loops. HTAB, TAB, and VTAB
tab from the #1 position of the column or row. SPC (6) leaves six
spaces between the items.

141

HT AB (1°2) + 1 leaves 2 spaces between items printed and the
+ 1 starts in column #1. Zero is an illegal value.

The use of VT AB and HT AB in loops is illustrated in the following
program. Line 40 prints the numbers 1 through 5 beginning in col
umn 1 of the screen, with two spaces between each number. This
printout is used as a reference with which to compare the spacing in
line 70. Line 70 produces similar output and spacing as line 40. Line
72 causes the first print in column 5 rather than in column 1, with two
spaces between each number. Line 74 produces the first print in col
umn #1 with 5 spaces between each number. This program RUN
demonstrates that the times (°5) produces the number of spaces
between printed items, while the plus (+1) determines in which
column the first item is to be printed.

10 HOME
20 FORX=IT05
30 FOR I = 1 TO 5
40 VTAB 10 : HTAB (1 - 1) * 2 + 1
50 PRINT I;
60 NEXT I : VTAB 12
70 HTAB (X - 1) * 2 + 1 : REM : 1ST RUN
72 REM :HTAB (X - 1) * 2 + 5 : REM: 2ND RUN
74 REM :HTAB (X - 1) * 5 + 1 : REM : 3RD RUN
80 PRINT X;
90 NEXT X
100 END
RUN - LINE 70
(I) 1 2 3 4 5
(X)12345
RUN - LINE 72
(I) 1 2 3 4 5
(X) 12345
RUN - LINE 74
(1)12345
(X) 1 2 3 4 5

The following three programs produce identical spacing results.
Those results are produced by three different methods:

1. Decision statements.
2. Loops.
3. HTAB formula.

5 REM: DECISION STATEMENT SPACING
10 FOR X = 1 TO 3
20 FOR Y = 1 TO 5
30 PRINT Y; " ";
40 IF X > 1 THEN PRINT" ";
50 IF X > 2 THEN PRINT" ";
60 NEXT Y : PRINT : PRINT
70 NEXT X
80 END

142

RUN
1 2345
12345
12345
5 REM : LOOP SPACING
10 FOR X = 1 TO 3
20 FORV=lT05
30 PRINT V;
40 FORM=lTOX
50 PRINT" ";
60 NEXT M
70 NEXT V
80 PRINT: PRINT
90 NEXT X
100 END
RUN
1 2345
1 2 3 4 5
1 2 3 4 5
5 REM : HTAB FORMULA SPACING
10 FOR X = 1 TO 3
20 FORV=IT05
30 HTAB (X + 1) * V - X
40 PRINT V;
50 NEXT V
60 PRINT: PRINT
70 NEXT X
80 END
RUN
1 2 345
1 2 3 4 5

2 3 4 5

Applesoft suppresses leading and trailing zeros. Suppressing trail
ing zeros leaves a blank space in the column where the trailing zero
was supposed to be. It leaves the same feeling as reading a suspense
story without learning how it ended, you know, an empty feeling in
the pit of your stomach.

The final program in this lesson was initially written to print a
zero in the position where the zero had been suppressed. As it
turned out, the program not only demonstrated printing the zero in
the trailing position, but also reenforced HTABing by decision state
ments and print rules and introduced the rudiments of print field
definition.

10 DEF FN A(X) = INT (X*I00 + .5)/100
20 PI = 3.1416
30 FOR R = 1 TO 100 STEP 10
40 A = PI * R 2
50 IF A < = 10 THEN HTAB 20 : REM : FIG. 20-2
60 IF A > 10 THEN HTAB 19
70 IF A > 100 THEN HTAB 18
80 IF A > 1.000 THEN HTAB 17

143

90 IF A > 10000 THEN HTAB 16
100 PRINT FN A(A);
110 IF (lNT(A* 100 + .5) - INT (A*10 + .5)* 10) = 0 THEN PRINT "0";
120 PRINT
130 NEXT R
140 END
RUN (see Fig. 20·2)

The important line in the program for overcoming zero suppres
sion and printing the trailing zero is line 110.

CASE COLUMN 20

1 3.14
2 380.13
3 1385.45
4 3019.08
5 5281.03
6 8171.30***

7 11689.89
8 15836.81
9 20612.04

10 26015.59

••• ZERO PRINTING

Fig. 20-2. Zero-printing right justify by decision statements.

110 IF (lNT (A*I00 + .5) - INT (A*10 + .5)*10) = 0 THEN PRINT "0";

Case #6 of the RUN (Fig. 20-2)
Without line 110 8171.3
With line 110 8111.30

The key to line 110 is to subtract the integer of A from itself. If
the result equals zero, then a zero is printed in the last column, as
shown in Fig. 20-3.

Line 10 sets up to round the print to two decimal places.
The rudiments of print field definition involve printing a sup-

CASE INT (A*I00 + .5) INT (A*10 + .5)*10 COLUMN 20

1 314 310 3.14
2 38013 38010 380.13
3 138545 138540 1385.45
4 301908 301910 3019.08
5 528103 528100 5281.03
6 817130 817130 8171.30***

7 1168989 1168990 11689.89

ee. ZERO PRINTING

144

Fig. 20-3. If UNT (A*100+.5) - INT(A*lO+.5)*lO) = 10. then
PRINT "0".

pressed trailing zero so the printout looks normal. The technique of
printing the trailing zero reenforces the print rules of Lesson 2. To
print the zero and not disrupt the printout format the print rules
must be diligently applied. The value held in A must be printed and
the line left open for the possibility of printing a zero. If the zero is
printed the line must be closed. The option to close the line after A
is printed must be valid.

CASE #l-A printed, no zero printed, line closed.
Case #2-A printed, print zero, line closed.

The simplest way to handle both cases is:

1. PRINT FN A (A) ;-semicolon leaves the line open.
2. THEN PRINT "O";-semicolon leaves the line open.
3. PRINT-on a separate line number after the PRINT "0";. This

satisfies CASE #l-the number is printed, no zero, the PRINT
"0"; is false, and a default to the PRINT occurs.

CASE #2-the number is printed, zero suppressed, THEN
PRINT "0";, prints the zero, and a default to the PRINT closes
the line.

Lines 50 to 90 demonstrate how decision statements and HTABs
can right justify (see Fig. 20-2).

145

SECTION II

Programming

LESSON 21

Approaching the Problem

Programming is the process by which a set of instructions is pro
duced for the computer to make it perform a specified activity.

Before programming, there is preprogramming. Preprogramming
is the ability to understand the problem and work the problem. This
point cannot be emphasized too strongly. To be able to program a
problem, the programmer must be able to understand and develop
each step of the problem. The variables assigned to the formula must
be understood. The steps in computing the solution must be under
stood. The solution must produce the correct results. If the results
are incorrect, the programmer must determine why the results are
incorrect and rectify the problem.

H you are an accountant, you must be able to solve the problem
on paper before you can program it. This is the most important fact
in programming. You must be so adept at solving the problem that
you can explain it to the computer. If you cannot solve the problem
using a pencil and paper, do not attempt to write a program to solve
it.

Think of programming this way. An understudy machine is taught
to do something you do not have time to do. The understudy is elec
tronic, not human. This electronic understudy does not understand
the English language, so it must be instructed in its own language.
This electronic understudy, the computer, does not understand what
it is doing. It is processing so fast that it does not have time to care.
The speed at which the computer does tedious, repetitious, complex
tasks is one of it's great advantages. Another advantage is its great
accuracy. Unless there is a hardware malfunction, the answers are
accurate as to input and according to programming instructions.

149

To make use of the advantages, the disadvantages must be over
come. The disadvantages are (1) procedures used in the solutions
must be completely specified and (2) conversion of the spoken lan
guage to the language of the computer must be performed. This
aligns the advantages of speed and accuracy versus the disadvan
tages of procedure and language.

In Lesson 13, the NAME AND ADDRESS program was written
to cause the computer to look through a string of characters in order
to recognize special markers, called delimiters. In that case, semi
colons were used as delimiters. The program also checked for six
input errors.

To begin the learning process, write this string of characters on
a piece of paper.

RESIDENT;STREET;CITY STATE ZIP

Now separate the string of characters into different fields when a
semicolon is encountered.

RESIDENT;
STREET;
CITY STATE ZIP

What did that accomplish? It accomplished the need to think of
the minute steps involved in breaking down information so it can be
converted into detailed one step instructions that the computer can
process.

The list of characters must have a starting point. The individual
may use a finger to point at the starting character, or may put a pen
cil mark on the first character. The first character is marked as the
place to begin, so the field between the first character and the first
delimiter can be determined. Each character in the field is checked
to see if it is a delimiter. This character checking continues until the
first delimiter is discovered. The first field is then separated from the
remaining fields by writing down the first character in the field, and
each succeeding character in the field is written down until the de
limiter is encountered. This process is repeated until the string of
characters is separated into three fields.

The programmer must tell the computer each individual step to
separate the string of characters. The computer must be told to mark
the first character in the string. The computer must be told to look
at each character in the string of characters, checking to see if it
had encountered a semicolon, and told how to determine when it
had reached the end of a field. The first field starts with a special
condition, the first character in the string. All other fields start with
a semicolon. The last field ends with a special condition, the last

150

character. All other fields end with a semicolon. These are special
starting and ending conditions.

These points must be understood in relation to what is necessary
to solve the programming problem. The programmer must thor
oughly understand all facets of the problem and be able to solve it
before the problem can be detailed in computer language. The
problem is now approached from the computer's side of the pro-
gram. .

The line of characters is placed in a string variable. The computer
marks the first character in the string as I, the second character as
2, the third character as 3, etc., until it reaches the end of the string.
This is a logical assignment of the character position, as a reference
for the programmer, and the computer uses a numeric variable to
hold a position value. When a loop is used that will increment the
numeric variable, one by one, each individual character will be com
pared to the delimiter. An IF statement is used to test the individual
character with the delimiter, to see if the delimiter has been reached.
The LEN function (L = LEN (A$)) is used to store the length of
the string variable, and this LEN function stores the number of
characters in the string that are to be examined. Three delimiters
have been discussed, (1) the first or beginning character, (2) the
semicolon between the fields, and (3) the ending delimiter.

There are three reasons why the semicolon is used as a delimiter.

1. In Applesoft, a comma is used as a special separator in INPUT,
READ, GET, and DATA statements. A comma incorrectly
placed causes a ? EXTRA IGNORED. A colon is a special
separator used to place multiple statements in a single line
number. An incorrect placement of a colon causes a ? EXTRA
IGNORED. These are limitations of the language. All lan
guages have some types of limitation.

2. Few addresses display a semicolon as a part of the basic infor
mation. A pound sign (#) could be used except apartment
numbers are usually designated by the pound sign. Diligent
research of the problem will eliminate many programming dif
ficulties. Perhaps there are address formats that use a semicolon
as part of the basic format, but it is not frequently seen. One
type of research is to write down many varied examples and
chart which examples are most used and which are least used.

3. The semicolon is easy for the input operator to produce. It is
on the home keys and does not require a shift. A division sign
(I) could be used as a delimiter but it is not as easy to pro
duce as a semicolon.

Operator convenience, ease of production, and language compati
bility are three points that comprise the major network of logic used

151

to write a program for the computer. To extend a program to the
complex task of error checking (similar to the program in Lesson
13),' the complete string of information must be checked and tested
to ensure correct format before the lines are printed. For each line
of output to be printed correctly, the numeric value for the begin
ning of each field and the end of each field must be stored. An effi
cient way to mark the beginning and end of each field is to store the
numeric value in the position of the semicolon delimiter.

Error detecting routines look for three kinds of errors:

1. Errors that do not "make sense" for purposes of processing
data.

2. Errors that cause the program to stop running.
3. Errors that create undesired output.

Errors that do not "make sense" for the purposes of processing
involve the length of the field. Fields of zero length must be checked
because the print formula would give an ILLEGAL VALUE error.
This can be tested by removing from the following program the pro
gram lines that check the values of 1 to DIC, DIC to D2C, and D2C
to L.

Errors that cause the program to stop running are those lines with
less than two delimiters. While this option is not used in the pro
gram under' discussion, it could be used as a method to stop the
execution of the program.

Errors that create undesired output include the use of more than
two semicolon delimiters and the improper use of the LEN function.
If a semicolon was used to end the third field instead of the LEN
function, this would indicate that there are more than two delimiters
in the string.

A great deal of discussion has centered on the NAME AND AD
DRESS program because it has many features that make it a good
learning tool.

As an exercise for logic development a situation that occurs fre
quently will be discussed. While driving home from work late at
night, a thumping sound is heard and the car steering pulls unex
pectedly. After the possibility of a Hat tire Hashes through the
driver's mind, the car is stopped for a visual inspection. The possible
actions are as shown in Fig. 21-1.

While other options could be cited, the four possible actions from
the different situations will be discussed. The actions are reached
by using common sense and an understanding of a given situation.

When the situation is examined, the action will be taken accord
ing to NO FLAT TIRES, or THE NUMBER OF FLAT TIRES as
shown in Chart 21-1. If after observing all tires, the Hat count is zero,
then the action taken is placed in category I. If the Hat count is 1,

152

Chart 21-1. Flat Tire

Situation Category Action

1. No tire flat I 1. Continue the trip
2. One flat tire-the spare is II 2. Exchange the flat and spare and

usable continue trip
3. One flat tire-the spare is III 3. Walk for assistance

unusable
4. More than one tire flat IV 4. Walk for assistance

and the spare in the trunk is usable, then the action taken is placed
in category II. If the flat count is 1, and the spare is unusable, then
the action taken is placed in category III. If the flat count is greater
than 1, then the action taken is placed in category IV.

The overall reaction to the thumping sound and car pull is in
cluded in a general framework.

1. Stop the car.
2. Shut off the engine.
3. Open the door. Exit the car. Close the door.
4. Initialize the flat count to zero.
5. If the left front tire is flat, increment the flat count.
6. If the left rear tire is flat, increment the flat count.
7. If the right rear tire is flat, increment the flat count.
B. If the right front tire is flat, increment the flat count.
9. If the flat count is zero, then continue the trip home.

10. If the flat count is more than one, then call for assistance.
11. Open the trunk.
12. If the spare is unusable then go to step #20.
13. Exchange the flat tire and the spare.
14. Close the trunk.
15. Open the door on the driver's side of the car.
16. Get in the car. Close the door.
17. Start the engine.
lB. Continue on the journey home.
19. End the actions.
20. Walk to a phone and call for assistance.

These are decisions and actions involved in the thought process.
Most humans do these actions naturally, but they must be com
pletely detailed to the computer.

The flowchart tests to determine if the flat count is zero or greater
than one. Since the flat count starts at zero (through initialization)
and there are three situations to check, only two decision statements
are necessary (This is the same as cutting a log in three pieces-only
two cuts are needed). In the first flat count decision statement in

153

Fig. 21-1, there are two exit decision paths. If the Hat count is zero
the statement is true, and the decision is made to continue the trip
home. If the Hat count is not zero the statement is false, and the exit
path goes to a second decision statement. Is the Hat count greater
than one? This decision statement selects the path to follow if the
Hat count is one, or if the Hat count is greater than one. If the Hat
count is greater than one the statement is true, the exit path Hows to
the walk for assistance action. If the Hat count is greater than one the
statement is false, the exit path Hows to the open the trunk action, and
to another decision statement. Is the spare tire usable? The Howchart
details the conclusion, either walk for assistance or continue the
homeward journey.

Fig. 21-1. Flat tire flowchart.

154

>--~ INCREMENT COUNT

>-_...;.;YE;.;;S_--c. 3

YES

NO

Fig. 21-1. (Cont) Flat tire flowchart.

Flowchart steps can be detailed or general. Fig. 21-1 has both de
tailed steps (stop the car, shut off the engine, etc.) and general steps
(exchange the spare for the Hat tire). A Howchart can be on many
different levels. It can be a long, complicated written tool to help
the programmer keep the action in proper sequence. Or the How
chart can be so simple that the programmer doesIit have to write it
down. The Howchart can help to clarify a complex point. It can be
a step-by-step set of instructions, complete with line numbers, that
will be followed exactly when the program is keypunched. Since the
FLAT TIRE is not a programmable problem, the Howchart is used
to keep the action in program context.

155

The ability to break actions into minute, detailed steps is the es
sence of programming. Breaking the action into small steps helps
develop the ability to process information in the same manner as
the computer.

Table 21-1. Flat Tire Possibilities

LEFT LEFT RIGHT RIGHT
FRONT REAR REAR FRONT

0 0 0
0 0 0
0 0 0
0 0 0
0 0 F
0 0 F
0 0 F
0 0 F
0 F 0
0 F 0
0 F 0
0 F 0
0 F F
0 F F
0 F F
0 F F
F 0 0
F 0 0
F 0 0
F 0 0

TIRE STATUS (FLAT - F, 0 - OKAY)
CONTINUE - C, WALK FOR ASSISTANCE - W
EXCHANGE FLAT AND SPARE - E

0
0
F
F
0
0
F
F
0
0
F
F
0
0
F
F
0
0
F
F

SPARE

0
F
0
F
0
F
0
F
0
0
0
F
0
F
0
F
0
F
0
F

ACTION
TO BE
TAKEN

C
C
E&C
W
E&C
W
W
W
E&C
w
W
W
w
W
W
W
E&C
W
W
W

To verify that the flowchart works properly,. a table of possibilities
is constructed. The table of possibilities, Table 21-1, follows the
flowchart logic to determine that the problem is solved correctly.

Over half of the thirty-two possibilities are listed in Table 21-1.
The table shows the status of four tires, the spare, and the course of
action to be taken. Table 21-1 was produced by writing down differ
ent combinations of tire status and determining the best possible
action to take. Common sense was used to confirm the algorithm and
produce the table. If the "YES" or ''NO'' decisions on the flowchart
had been switched, the flowchart would give incorrect results even
though the logic was correct. For correct results to be produced
from the written program, logic, flowcharts, and program coding
must be correct.

The first two lines of the table of possibilities show the four tires,
the spare, and the action to be taken. Both lines show all four tires
are okay, but the first line shows the spare is okay, and the second

156

line shows the spare is Hat. According to logic, if all four tires are
okay, the spare does not need to be checked.

There is at least one drawback in producing a table of possibilities
to check the Howchart logic. On a complex problem, a table of pos
sibilities may have so many entries, it may be unusable. In that case,
five or ten comprehensive sample situations are used to try to catch
all possible errors.

To sum up, there are three basic steps in programming. The pro
grammer must:

1. Be able to completely describe the situation to be set in basic
instructions.

2. Be able to outline the logical progression from one step to an
other, especially where decisions need to separate actions into
different sections.

3. Be able to change instructions from English to equivalent com
puter form by understanding what the computer can process.

157

LESSON 22

Program Flexibility

The only thing permanent in life is change. This also applies to
programs and programming. The banking industry is highly regu
lated by the government. Although the regulations are rigid, the
bank computer programs change constantly. The bank's needs and
equipment are constantly changed and updated. Customer's rela
tions with the bank and customer's situations constantly change. The
government regulations constantly change so the bank must revise
and check their programs to maintain compliance. This beehive of
activity affects the bank's programmers who must constantly revise
and rewrite the programs. The programmer also must constantly up
grade his or her education to adapt to new methods and equipment.

In programming, flexibility is a key word. Is' the program flexible?
Can the program be easily and quickly changed to accommodate a
new input situation, a new set of government tables, or a new output
format, and produce correct results? Using a programming team, a
long complex program may take a year to write. This program
should be flexible enough so minor changes do not make the pro
gram completely obsolete.

If a mailing list program has a three line input, can a fourth line of
input be easily inserted in the program to produce a four line output?

In an inventory program, can data be input both in the alpha and
numeric modes?

In an accounts receivable program, can customer information be
easily changed without having to rewrite the program and without
having to rewrite the whole business program package?

The programs used for this example of flexibility are the compu
tation of federal income tax and net income. The user inputs the

158

adjusted gross income and the program computes the tax due and
the net income. The tax table was taken from the 1979 Tax Rate
Schedule for married taxpayers filing joint returns and qualifying
widows and widowers. For simplicity, only one tax table was used
in the program. In reality, the tax rate schedule has four separate
tables, (1) for single taxpayers, (2) married filing joint retums, (3)
married filing separate returns, and (4) heads of households, etc.
The point is that an accountant filing income tax returns for the gen
eral public needs all four tables. A flexible program could be easily
changed to accept revised tables, while an inflexible program could
not accept new tables easily.

The inflexible program in this example is written with IF state
ments. In this program, it would be difficult to change one table,
much less four tables. The flexible program is written with the table
inserted in DATA statements. The flexible program would be rela
tively easy to change or add to by a simple routine.

INPUT "ADJUSTED GROSS INCOME ";AGI

MENU
1. SINGLE TAX PAYER
2. MARRIED FILING JOINT RETURN
3. MARRIED FILING SEPARATE RETURN
4. HEAD OF HOUSEHOLD

INPUT "STATUS ";STATUS

ON STATUS GOSUB 2000, 3000, 4000, 5000

At 2000,3000,4000, and 5000 the tables could be placed in DATA
statements similar to the flexible tax computation program.

The variables used for both programs are:

AGI adjusted gross income.
UL upper limit.
BF base figure from which tax is computed. If the base figure

is 24,600, the base tax is 3273 plus 28% of everything over
24,600.

BT base tax is the second number in the table.
TB tax bracket is the third number in the table.
TR tax rate is the third number in the table.
IT income tax.
RANGE between the base figure and the upper limit.

RESTORE has been previously discussed. RESTORE resets the
pointer so the data can be reused. RESTORE-READ-DATA allows

159

data tables to be reused when the program is in constant use. With
out the RESTORE, the program would have to be RUN again
(started over) if the data were to be reused.

After the adjusted gross income (AGI) is input, it is checked to
see if it is less than zero. If the adjusted gross income is less than zero
the program ends. The processing starts at the lowest range of base
figure values. If the adjusted gross income is greater than the upper
limit value for the first range, the adjusted gross income is tested
against the next higher upper limit value. The processing continues
until the adjusted gross income is less than the upper limit value in
the range. The correct range is found when the adjusted gross in
come is equal to or greater than the base figure, but is less than the
upper limit value. The correct range then sets the base tax, tax
bracket, and base figure for this range. Both the inflexible and the
flexible program process the ranges in approximately the same man
ner.

The flexible program gets the base figure from the upper limit
value of the previous range. If the adjusted gross income is in the
first range, zero to 3400, the base figure has been initialized to zero
before the processing begins (Line l04O-BF = 0).

If the adjusted gross income is greater than 215,400, the upper
limit value of the next range is zero. The zero indicates there is no
upper limit to this range. The upper limit value is zero, so that range
applies to any amount greater than 215,400.

Line 1060 tests the upper limit value for zero. If line 1060 is true,
the program branches to line 1080 to compute the tax. If. the upper
limit value is zero, the adjusted gross income is greater than 215,400.
This sets the base figure as 215,400. Line 1080 computes the income
tax.

The inflexible program is shown first, followed by the flexible
program.

995 REM: INFLEXIBLE TAX PROGRAM
1000 HOME: VTAB 3
1010 INPUT "ENTER ADJUSTED GROSS INCOME ";AGI
1020 IF AGI < 0 THEN END
1030 RESTORE
1040 BF = 0
2000 IF AGI > 3400 THEN 2020
2010 BT = O:TB = O:BF = 0: GOTO 7010
2020 IF AGI > 5500 THEN 2040
2030 BT = O:TB = .14:BF = 3400: GOTO 7010
2040 IF AGI > 7600 THEN 2060
2050 BT = 294:TB = .16:BF = 5500: GOTO 7010
2060 IF AGI > 11900 THEN 2080
2070 BT = 630:TB = .1B:BF = 7600: GOTO 7010
20BO IF AGI > 16000 THEN 2100
2090 BT = 1404:TB = .21:BF = 11900: GOTO 7010

160

2100 IF AGI > 20200 THEN 2120
2110 BT = 2265:TB = .24:BF = 16000: GOTO 7010
2120 IF AGI > 24600 THEN 2140
2130 BT = 3273:TB = .28:BF = 20200: GOTO 7010
2140 IF AGI > 29900 THEN 2160
2150 BT = 4505:TB = .32:BF = 24600: GOTO 7010
2160 IF AGI > 35200 THEN 2180
2170 BT = 6201:TB = .37:BF = 29900: GOTO 7010
2180 IF AGI > 45800 THEN 2200
2190 BT = 8162:TB = .43:BF = 35200: GOTO 7010
2200 IF AGI > 60000 THEN 2220
2210 BT = 12720:TB = .49:BF = 45800: GOTO 7010
2220 IF AGI >. 85600 THEN 2240
2230 8T = 19678:TB = .54:BF = 60000: GOTO 7010
2240 IF AGI > 109400 THEN 2260
2250 BT = 33502:T8 = .59:BF = 85600: GOTO 7010
2260 IF AGI > 162400 THEN 2280
2270 BT = 47544:TB = .64:BF = 109400: GOTO 7010
2280 IF AGI > 215400 THEN 2300
2290 BT = 81464:TB = .68:BF = 162400: GOTO 7010
2300 BT = 117504:TB = .7:BF = 215400
7010 IT = BT + (AGI - BF) * TB: PRINT: PRINT "YOUR INCOME TAX IS";IT
7020 PRINT: PRINT "YOUR NET IS";AGI - IT
7030 PRINT: GOTO 1010
7040 END

995 REM: FLEXIBLE TAX PROGRAM
1000 HOME: VTAB 3
1010 INPUT "ENTER ADJUSTED GROSS INCOME ";AGI
1020 IF AGI < 0 THEN END
1030 RESTORE
1040 8F = 0
1050 READ UL,BT,TB
1060 IF UL = 0 THEN 1080
1070 IF AGI > UL THEN BF = UL: GOTO 1050
1080 IT = BT + (AGI - BF) * TB: PRINT : PRINT ''YOUR INCOME TAX IS";IT
1090 PRINT: PRINT "YOUR NET IS";AGI - IT
1100 PRINT: GOTO 1010
1110 END
7100 DATA 3400,0.0
7110 DATA 5500.0 •. 14
7120 DATA 7600,294,.16
7130 DATA 11900,630,.18
7140 DATA 16000,1404,.21
7150 DATA 20200,2265,.24
7160 DATA 24600,3275,.28
7170 DATA 29900,4505,.32
7180 DATA 35200,6201,.37
7190 DATA 45800,8162,.43
7200 DATA 60000,12720 •• 49
7210 DATA 85600,19678,.54
7220 DATA 109400,33502,.59
7230 DATA 162400.47544,.64
7240 DATA 215400,81446,.68
7250 DATA 0,117504,.70

161

LESSON 23

Circular Lists, Stacks,
& Pointers

Lessons 23 through 26 will deal with specialized methods to aid
in solving problems in programming. The lessons deal with (1) cir
cular lists, stacks, and pointers, (2) lists, sorting, searching, and de
leting, (3) formulas-how to construct and use them, and (4) dou
ble subscripted variables.

A circular list is a list from which all insertions are made at one
end and all retrievals are made at the other end (Fig. 23-1). This
type of list has several names: circular buffer, queue, and FIFO
(first in-first out). FIFO is also applicable to computers, inventory,
and science.

The program written for this lesson (Fig. 23-2) uses FIFO in two
ways, computer lists and inventory.

A stack is a linear list from which all insertions and all retrievals
are made from the top. LIFO (last in-first out) is synonymous with
stack (Fig. 23-3). The program written for this lesson uses LIFO in
two ways, computer lists and inventory.

A pointer, as shown in Figs. 23-1 and 23-3, is an address location
used to designate the location of data contained in a cell of a linear
list. A pointer is considered a pointer only if it points at some data
within a list. An address location is not considered to be a pointer
unless it specifically points to data.

A circular list has two buffer pointers, buffer in (BI) and buffer
out (BO). A stack has one buffer pointer (BI).

The program in Fig. 23-2, written to demonstrate a circular list,
stack, and pointers, accepts only one inventory item. The fields for

162

CUSTOMER'S
ORDERS
OUT
TAIL

BI + 1 = BO

A

IF BI + 1 - (BI = 100) * 101 = BO

BI BI + 1 - (BI = 100) * 101 BO

a 1 BI < 100 1

2 BI < 100 2

2 3 BI < 100 3

3 4 BI < 100 4

4 5 BI < 100 5

5 6 BI < 100 6

6 7 BI < 100 7

I I I I

BUFFER
OUT

POINTER

100 101 - 100 = 1 * 101 101**

** SPECIAL CASE

C

Fig. 23·1. Circular list (FIFO).

8
BUFFER
IN
POINTER

BUFFER
OUT
POINTER

BUFFER
IN
POINTER

BI + 1 <> BO

IF BI = BO THEN THE
BUFFER IS EMPTY_ IF
THE BUFFER CONTAINS
100 CELLS THE
POINTERS CAN BE
EQUAL AT ANY
LOCATION FROM a -100
AND THE BUFFER
IS EMPTY.

this one inventory item contain (I) the date the item was purchased
by the company, A$(BI), (2) the price of the item, PR(BI), and
(3) the number of items the company purchased, AO(BI).

The circular list and the stack contain 101 cells (DIM A$(IOO),
PR(lOO), AO(IOO», into which purchase information is placed and
customer orders are taken (Fig. 23-4).

The FIFO (circular list) and the LIFO (stack) give the program
flexibility. The program could be used by a company that uses either
the FIFO or LIFO inventory method.

163

5 REM : CIRCULAR LISTS, STACKS, AND POINTERS
10 DIM A$(l OO},PR(l OO},AO(l OO}
20 HOME: VTAB 5: HTAB 12: PRINT "FIFO/liFO DEMONSTRATION"
30 VTAB 8: PRINT SPC(12};"0.END"
40 VTAB 10: PRINT SPC(12};"1.FIFO"
50 VTAB 12: PRINT SPC(12};"2.lIFO"
60 VTAB 14: INPUT "ENTER SELECTION ?";S
70 IF S = 0 THEN HOME: PRINT "THAT'S ALL": END
80 ON S GOSUB 300,600
90 GOTO 20
300 BI = O:BO = O:T = 0
310 HOME: VTAB 5: HTAB 12: PRINT "FIFO ENTRY SYSTEM"
320 VTAB 8: PRINT SPC(12};"0.ENDING REPORT"
330 VTAB 10: PRINT SPC(12};"l.ENTER PURCHASE"
340 VTAB 12: PRINT SPC(12};"2.ENTER ORDER"
350 VTAB 14: INPUT "ENTER SELECTION ?";S
360 IF S > 0 THEN 400
370 HOME: VTAB 5: HTAB 12: PRINT "FIFO ENDING REPORT"
380 VTAB 14: GOSUB 1020: GOSUB 1010: RETURN
400 ON S GOTO 420,500
410 GOTO 310
420 HOME: VTAB 5: HTAB 12: PRINT "FIFO PURCHASE HANDLER"
430 IF (BI + 1 - (BI = 100) * 101} = BO THEN VTAB 15: PRINT

"INVENTORY IS FULlI!Il": PRINT: PRINT "1\:0 PURCHASES PERMITTED
TODAY": GOSUB 1000: GOTO 310

440 VTAB 8: PRINT "ENTER DATE(MM/DD/yy},PRICE,AMOUNT"
450 VTAB 10: HTAB 11: INPUT A$(BI},PR(BI},AO(BI}
460 N = T:T = AO(BI} + T: IF T < 1 THEN 490
470 IF T < N THEN AO(BI} = T
480 BI = BI + 1 - (BI = 100) * 101
490 VTAB 12: GOSUB 1020: GOSUB 1000: GOTO 310
500 HOME: IF BO = BI THEN VTAB 8: PRINT "THERE IS NO INVENTORY IN

STOCK": GOSUB 1000: GOTO 310
510 VTAB 4: INPUT "ENTER NUMBER OF ITEMS ORDERED ?";NU: IF NU < 1

THEN 510
515 T = T - NU
520 IF AO(BO} > NU THEN 560
530 PRINT: PRINT AO(BO};" ITEMS AT $";PR(BO};" PURCHASED ";A$(BO):NU

= NU - AO(BO}:BO = BO + 1 - (BO = 100) * 101: IF NU
= 0 THEN 570

540 IF BI = BO THEN PRINT: PRINT "WE ARE OUT OF STOCK WITH ";NU;"
ITEMS": PRINT: PRINT "LEFT ON ORDER": GOSUB 1010: GOTO 310

550 GOTO 520
560 PRINT: PRINT NU;" ITEMS AT $";PR(BO};" PURCHASED ";A$(BO}:AO(BO}

= AO(BO} - NU
570 PRINT: GOSUB 1020: GOSUB 1000: GOTO 310
600 BI = O:T = 0
610 HOME: VTAB 5: HTAB 12: PRINT "lIFO ENTRY SYSTEM"
620 VTAB 8: PRINT SPC(12};"0.ENDING REPORT"
630 VTAB 10: PRINT SPC(12};"l.ENTER PURCHASE"
640 VTAB 12: PRINT SPC(12};"2.ENTER ORDER"
650 VTAB 14: INPUT "ENTER SELECTION ?";S
660 IF S > 0 THEN 700
670 HOME: VTAB 5: HTAB 12: PRINT "LIFO ENDING REPORT"

Fig. 23-2. Circular Jist, stack and pointers.

164

680 VTAB 14: GOSUB 1020: GOSUB 1010: RETURN
700 ON S GOTO 720,800
710 GOTO 610
720 HOME: VTAB 5: HTAB 12: PRINT "LlFO PURCHASE HANDLER"
730 IF BI = 100 THEN VTAB 15: PRINT "INVENTORY IS FULL!!!!": PRINT:

PRINT "NO PURCHASES PERMITTED TODAY": GOSUB 1000: GOTO 610
740 VTAB 8: PRINT "ENTER DATE(MM/DD/YY),PRICE,AMOUNT"
750 BI = BI + 1: VTAB 10: HTAB 11: INPUT A$(BI),PR(BI),AO(BI):N = T::T

= AO(BI) + T: IF T < 1 THEN BI = BI - 1: GOTO 770
760 IF T < N THEN AO(BI) = T
770 VTAB 12: GOSUB 1020: GOSUB 1000: GOTO 610
800 HOME: IF BI = 0 THEN VTAB 8: PRINT "THERE IS NO INVENTORY IN

STOCK": GOSUB 1000: GOTO 610
810 VTAB 4: INPUT "ENTER NUMBER OF ITEMS ORDERED ?";NU: IF NU < 1

THEN 810
815 T = T - NU
820 IF AO(BI) > NU THEN 860
830 PRINT: PRINT AO(BI);" ITEMS AT $";PR(BI);" PURCHASED ";A$(BI):NU

NU - AO(BI):BI = BI - 1: IF NU = 0 THEN 870
840 IF BI = 0 THEN PRINT: PRINT "WE ARE OUT OF STOCK WITH ";NU;"

ITEMS": PRINT: PRINT "LEFT ON ORDER": GOSUB 1010: GOTO 610
850 GOTO 820
860 PRINT: PRINT NU;" ITEMS AT $";PR(BI);" PURCHASED ";A$(BI):AO(BI) =

AO(BI) - NU
870 PRINT: PRINT: GOSUB 1020: GOSUB 1010: GOTO 610
1000 FOR J = 1 TO 1800: NEXT J: RETURN
1010 VTAB 20: PRINT "PRESS RETURN TO CONTINUE!!! ";: GET Q$: RETURN
1020 PRINT "THERE ARE ";T;" ITEMS IN INVENTORY": RETURN
1050 T = O:PT = BI
1060 FOR J = PT TO 0 STEP - 1
1070 T = T + AO(J): NEXT J: PRINT "THERE ARE ";T;" ITEMS IN INVENTORY":

RETURN

Fig. 23-2. (Cont) Circular list, stack and pointers.

Lines 10 through 80 DIMension the variables and set up the ini
tial menu to select: O. END THE PROGRAM, 1. FIFO, or 2. LIFO.

Lines 420 through 490 process the purchasing information for the
circular list (FIFO). Line 430 detects the buffer full condition (Fig.
23-1, part A).

The buffer is DIMensioned to 101 cells. DIM A$(100) was arbi
trarily selected and could have been a smaller number or any num
ber within usable memory limits.

When BO and BI are located in adjacent memory cells there are
no empty cells. Therefore, the buffer is full. In line 430, a special
case is used when BI = 100 (Fig. 23-1, part D). This special case is
used so the circle can continue uninterrupted. The BI = 100 portion
of the formula is activated when BI = 100.

Line 440 prints the informational headers, ENTER DATE (MM/
DD/YY), PRICE, AMOUNT. Line 450 allows input of the date of
purchase, A$ (BI), the price of the item, PR (BI), and the number

165

PULL OFF 3

PULL OFF 2

PULL OFF 1

DIM A$(100)

0
1

2

99

100

ACTION SERIES

INIINIINIOUT lOUT lOUT

0

1

2

99

100

1 BUFFER IN POINTER

2 BUFFER IN POINTER

3 BUFFER IN POINTER

BI = 0 STACK EMPTY

BI=BI+1

BI = 100 STACK FULL

Fig. 23-3. Stack (LIFO) 101 cells.

5 • 15 • 79 A$(5)

$1.39 PR(5)

400 AO(5)

CELL #5

Fig. 23-4. Indiyidual cell and cantents.

of items purchased, AO(BI). These items are placed within a spe
cific cell in the circular list (Fig. 23-4).

In line 460, the total number of items purchased is placed in the
variable N. N holds the total number of items for comparison pur
poses in relation to back orders. When N is greater than T, there
are not enough items to llll a customer"s order and the items have to
be back ordered. T = AO(BI) + T holds the total number of items
purchased.

166

A$ = date of purchase of items by company.
AO = number of items purchased by the company.
81 = buffer in pointer.
BO = buffer out pointer.
N = holds total number of items for later comparison to total items (T).
NU = number of items ordered by the customer.
PR = price of the items.
PT = temporary pointer.
T = total number of items.

Fig. 23-5. Variables for circular list, stack, and pointers.

Line 460 IF T < 1 THEN 490. When T is less than 1, there are
items back ordered and the subroutine at line 1020 prints out a
negative value for the number of items in inventory.

Line 470 IF T < N THEN AO(BI) = T. If there is a back order,
the next purchase may not eliminate the back order. When the next
purchase does not eliminate the back order, or when the purchase
equals the back order, the purchase does not go into the buffer. If
the purchase is greater than the back order, the excess is stored in
N. The excess in N can then be compared to T, (1) before the pur
chase order, and (2) after the purchase order. If the total after the
order is less than the order, the purchase must be reduced by the
number of items in the back order. When the purchase is greater
than the back order, the back order is subtracted from the purchase,
and the balance of the purchase is stored in a cell in the buffer.

Line 480 increments the buffer in pointer to the next cell in the
buffer and line 490 causes the program to jump back to the FIFO
menu.

In line 500, when both buffer pointers rest at the same cell in the
buffer (Fig. 23-1, part C) the buffer is empty. The buffer has three
conditions:

1. BI = BO BUFFER EMPTY-input company purchases
only.

2. BI+l = BO BUFFER FULL-take out customer's orders
only.

3. BI + 1 < > BO company purchases can be placed in the buffer
and customer's orders can be taken from the
buffer.

Line 510 checks if an order of less than one has been input. If it
has, the statement branches back to itself.

Line 515 subtracts the number of items ordered from the total
number of items.

In line 520, if the number of items of a particular purchase in the
buffer is greater than the number of items ordered, the program
branches to line 560 to process the order.

167

If the statement in line 520 is false, the program defaults to line
530 to print out the number of items purchased and updates the
buffer as necessary to complete the order. The order is processed
against inventory buffers until the order is filled. If there are not
sufficient items in inventory to fill the order, the inventory buffers
are depleted and the balance is back ordered, making T a negative
number. AO(BO) is printed each time the inventory is reduced by
the order. NU = NU - AO(BO) updates the number of items left on
the order that need to be filled. If NU is greater than AO(BO), the
first buffer cell is emptied, and each following buffer cell is emptied
until all buffer cells are empty, or until the order is completely filled.
If the order is not completely filled, and there is no remaining in
ventory, the balance of the items is back ordered. This logic is
implemented in lines 520 through 550.

The reduction in inventory is contained in the statement NU = NU
- AO(BO). The buffer out cell is computed in the statement BO =
BO + 1- (BO = 100)°101. IF NU = 0 THEN 570 takes care of the
condition when the number of items ordered comes out even, with
BO entry on the buffer empty.

Line 560 prints out the number of items purchased, the price, and
the date of purchase.

The statement AO(BO) = AO(BO) - NU in line 560 computes
the number of items that remain in a specific cell in the inventory
buffer.

When the transactions are completed, the FIFO menu is displayed.
Zero selection prints out an ending report of the number of items
remaining in inventory (GOSUB 1020). GOSUB 1000 causes PRESS
RETURN TO CONTINUE!!! to be printed below the ending report.
When RETURN is pressed, the program returns to line 90-GOTO
20, and the FIFO/LIFO DEMONSTRATION menu is displayed on
the screen. Selection zero from the FIFO/LIFO DEMONSTRA
TION menu causes the program to end.

Selection #2 from the FIFO/LIFO DEMONSTRATION menu
causes the program to GOSUB 600 to the LIFO (stack) section of
the program.

Line 600 BI = 0 : T = 0 initializes the buffer in pointer and the
total to zero. The stack has only one pointer, the buffer in pointer.
The LIFO ENTRY SYSTEM menu is printed and there are three
selections available, o. ENDING REPORT, 1. ENTER PUR
CHASE, and 2. ENTER ORDER.

If 1. ENTER ORDER is selected the program branches to line
720, to print out LIFO PURCHASE HANDLER.

Line 730 IF BI = 100 the program prints out INVENTORY IS
FULL.

The stack has three conditions (Fig. 23-3).

168

1. BI = 100 STACK IS FULL-customer orders can be
filled.

2. BI = 0 STACK IS EMPTY-company purchases can
be placed in the stack.

3. BI = BI + 1 company purchases may be inserted, and cus
tomer's orders may be processed.

Line 750 BI = BI + 1 increments the pointer, and purchasing in
formation is input into an array. A$(BI) is the date of purchase,
PR(BI) is the price of the item, and AO(BI) is the number of items
purchased.

Line 750 N = T places the total number of items in a variable to
be used in comparison later in the program. T = AO(BI) + T totals
the number of items iIi inventory. IF T < 1 THEN BI = BI - 1. If
there are items on back order T is less than one and the buffer in
pointer is decremefited. This means that any purchase received goes
first to fill the back orders.

Line 760 IF T < N THEN AO(BI) = T. If the total number of
items in inventory is less than the number ordered, the purchases go
to eliminate the back order. If the purchases are less than, or equal
to the back order, the purchases do not go to inventory. If the pur
chases are greater than the back order, the excess purchases are
stored in N. The excess in N is compared to T before, and T after
the purchase. If T after the purchase is greater than N, the back
order is eliminated and the excess purchases go into a cell in the
buffer.

Line 800 IF BI = 0 THEN PRINT "THERE IS NO INVENTORY
IN STOCK". The BI pointer is 'set to the top cell in the stack (Fig.
23-3). Cell number 100 is the bottom cell in the stack. The top and
the bottom of the stack is a matter of semantics. The important as
pect is how the stack is filled and emptied.

Line 800 allows the user to enter the number of items ordered by
the customer.

Line 820 IF AO(BI) > NU THEN 860. If the number of items in
inventory is greater than the number of items ordered by the cus
tomer, the program branches to line 860 to process the order and
only this cell in the stack is reduced.

If line 820 is false, the program defaults to line 830 to print out
the number of items purchased, subtract the number from inventory
(NU = NU - AO(BI», decrement the stack pointer, BI = BI - 1,
and go to the next cell to try to complete the order. The order is
processed against inventory buffer cells until the order is filled. If
there is not sufficient inventory to fill the order, all inventory buffer
cells are depleted and the balance is back ordered. T is a negative
number. Line 815 T = T - NU. AO(BI) is printed out each time the

169

inventory is reduced by the order. NU = NU - AO (BI) updates the
number of items left on order that need to be filled. If NU is greater
than AO (BI), this cell is emptied, and adjacent cells are emptied,
until the order is filled. If the order is not completely filled, and there
is no remaining inventory, the remaining items are back ordered. The
logic is implemented in lines 820 through 850.

Line 830 IF NU = 0 THEN 870 is true the program prints an in
ventory status report of zero items.

\¥hen all purchases and orders have been completed, the program
returns to line 610 to print out the LIFO ENTRY SYSTEM. Zero
selection from this menu prints out an ending inventory report, and
press RETURN returns the program to the FIFO/LIFO DEMON
STRATION menu. A zero selection from this menu ends the pro
gram.

170

LESSON 24

Sorting, Searching,
& Deleting

The program written for Lesson 24 (Fig. 24-1) prepares a list of
names and telephone numbers. The list is sorted and SAVEd to
tape. The list may be loaded from tape into the program, searched

1 DIM CA(45),CH(1).DA$(1000),CL(1000) : REM: PHONE LIST
10 SP$ = " ":SP$ = SP$ + SP$ + SP$
15 DC$ = '713"
20 HOME: VTAB 4: HTAB 12: PRINT "PHONE LISTING"
30 VTAB 10: HTAB 8: PRINT "1.ENTER"
40 VTAB 12: HTAB 8: PRINT "2.MODIFY/DELETE"
50 VTAB 14: HTAB 8: PRINT "3.LlST/SEARCH"
60 VTAB 16: HTAB 8: PRINT "4.SAVE LIST AND END"
70 VTAB 18: HTAB 8: INPUT "ENTER !iELECTION ?";MS
80 ON MS GOTO 1000,2000,3000,4000
90 GOTO 20
1000 HOME: VTAB 4: HTAB 12: PRINT "FILE MAINTENANCE"
1010 VTAB 10: HTAB 8: PRINT "l.LOAD TAPE FILE"
1020 VTAB 12: HTAB 8: PRINT "2.ENTER NEW ITEMS"
1030 VTAB 14: HTAB 8: PRINT "3.RETURN TO MAIN MENU"
1040 VTAB 16: HTAB 8: INPUT "ENTER SELECTION ?";MS
1050 ON MS GOTO 1100,1200,1400
1060 GOTO 1000
1100 HOME: VTAB 4: HTAB 4: INPUT "READY CAssmE AND PRESS RETURN

I ";Q$
1110 RECALL CH
1120 IF CH(O) = 0 THEN PRINT ''THERE IS NO ARRAY ON TAPE": .00TO 1000
1130 FOR J = 1 TO CH(O)
1140 RECALL CA

Fig. 24-1. Program written for on 24.

171

1150 DA$(J) = "": FOR K = 1 TO 44:DA$(J) = DA$(J) + CHR$ (CA(K»:
NEXT K:CL(J) = CA(45):NEXT J

1160 GOTO 1000
1200 HOME :VT = 6: GOSUB 10010
1210 IF CL(CH(O) + 1) = 0 THEN 1000
1260 VT = 12: GOSUB 10080
1310 DA$(CH(O) + 1) = DA$(CH(O) + 1) +

"(" + TC$ + ")-" + LEFT$(PT$,3)
+ "-" + RIGHT$ (PT$,4)

1320 PRINT: GOSUB 10000
1330 PRINT: INPUT "ENTER 'R' TO REENTER ELSE 'RETURN' ?";Q$: IF Q$

< > "R" THEN CH(O) = CH(O) + 1
1340 GOTO 1200
1400 GOSUB 1410: GOTO 20
1410 IF CH(O) < 2 THEN RETURN
1420 FOR J = 1 TO CH(O) - 1
1430 M = J: FOR K = J + 1 TO CH(O)
1440 IF LEFT$ (DA$(K),30) < LEFT$ (DA$(M),30) THEN M = K
1450 NEXT K
1460 IF M = J THEN 1480
1470 TC$ = DA$(M):DA$(M) = DA$(J):DA$(J) = TC$:CL(O)

= CL(M):CL(M) = CL(J):CL(J) = CL(O)
1480 NEXT J
1490 RETURN
2000 HOME: VTAB 4: IF CH(O) = 0 THEN PRINT "THERE IS NO LIST ";

CHR$ (7): FOR J = 1 TO 2000: NEXT J: GOTO 20
2010 PRINT "ENTER NAME TO BE CHANGED": PRINT: INPUT NA$
2020 IF LEN (NA$) = 0 THEN 20
2030 FOR K = 1 TO CH(O)
2040 IF NA$ < > LEFT$ (DA$(K),CL(K» THEN 2060
2050 GOTO 2100
2060 NEXT K: VTAB 10: HTAB 6: PRINT "THIS NAME NOT ON LIST": PRINT

CHR$ (7): FOR J = 1 TO 1000 : NEXT J: GOTO 2000
2100 CH(1) = CH(O):CH(O) = K - l:VTAB 6: PRINT "CURRENT RECORD IS ":

PRINT
2110 VTAB 8: GOSUB 10000: PRINT: PRINT "ENTER 'C' TO CHANGE, '0' TO

DELETE": PRINT: INPUT "ELSE 'RETURN' ?";Q$
2120 IF Q$ < > "C" AND Q$ < > "0" THEN 2240
2125 IF Q$ = "0" THEN DA$(K) = "DELETE" + LEFT$ (SP$,24) + "(000)-

000-0000": GOTO 2230
2130 VTAB 12: CALL - 958: VTAB 12: PRINT "ENTER 'N'-NAME, 'P'-PHONE#,

'B'-BOTH" : PRINT

2140 T$ = RIGHT$ (DA$(K),14): INPUT "LETTER PLEASE ?";C$: IF C$ < >
"N" AND C$ < > "P" AND C$ < > "B" THEN 2130

2150 IF C$ = "P" THEN 2170
2160 VT = 14: GOSUB 10010
2170 IF C$ = "N" THEN 2190
2180 VT = 16: GOSUB 10080
2190 IF C$ = "N" THEN DA$(K) = DA$(K) + T$: GOTO 2230
2200 IF C$ = "P" THEN DA$(K) = LEFT$(DA$(K),30)
2220 DA$(K) = DA$(K) + "(" + TC$ + ")-"

+ LEFT$ (PT$,3) + "-" + RIGHT$ (PT$,4)

Fig. 24-1. (Cont) Program written for Lesson 24.

172

2230 CH(O) = CH(1): PRINT: INPUT "ANY MORE CORRECTIONS (y OR N)
?";Q$: IF Q$ = "Y" THEN 2000

2240 K = 0: FOR J = 1 TO CH(O)
2250 IF LEFT$ (DA$(J),6) = "DELETE" THEN 2280
2260 K = K + 1: IF K = J THEN 2280
2270 DA$(K) = DA$(J):CL(K) = CL(J)
2280 NEXT J
2290 CH(O) = K
2300 GOSUB 1410: GOTO 20
3000 HOME: VTAB 3: INPUT "ENTER'S' TO SEARCH OR 'L' TO LIST ?";Q$:

IF Q$ < > "L" AND Q$ < > "5" THEN 3000
3010 IF Q$ = "5" THEN 3100
3030 FOR J = 1 TO CH(O) .
3040 IF J < > INT «J - 1) I 5) * 5 + 1 THEN 3070
3050 IF J < > 1 THEN PRINT: INPUT "I";Q$
3060 HOME: VTAB 3
3070 PRINT "NAME = ,~; LEFT$ (DA$(J),30): PRINT SPC(7);"PHONE # = ";

RIGHT$ (DA$(J),14): PRINT
3080 NEXT J
3090 PRINT: INPUT "I";Q$: GOTO 20
3100 HOME: VTAB 3: HTAB 12: PRINT "SEARCH SELECTION": PRINT
3110 HTAB 12: PRINT "1.NAME SEARCH": PRINT: HTAB 12: PRINT "2.NUMBER

SEARCH": PRINT: HTAB 12: PRINT "3.RETURN TO MAIN MENU": PRINT
3120 INPUT "ENTER SEARCH KEY?"; MS
3130 ON MS GOTO 3150,3250,20
3140 GOTO 3100
3150 HOME: VTAB 4: PRINT "ENTER NAME OR FRAGMENT ?": PRINT:

INPUT NA$:L = LEN (NA$): IF L = 0 THEN 3100
3160 CO = 0: FOR J = 1 TO CH(O): IF L > CL(J) THEN 3220
3170 FOR K = 1 TO CL(J) - L + 1
3180 IF NA$ < > MID$ (DA$(J),K,L) THEN 3210
3190 CH(1) = CH(O):CH(O) = J - 1: PRINT: GOSUB 10000: PRINT:

INPUT Q$ •
3200 CH(O) = CH(1 loCO = CO + 1: GOTO 3220
3210 NEXT K
3220 NEXT J: IF CO > 0 THEN 3100

3230 PRINT: PRINT "THIS WORD IS NOT ON FILE": FOR J = 1 TO 1000:
NEXT J: PRINT CHR$ (7): GOTO 3100

3250 HOME: VTAB 6: HTAB 6: INPUT "ENTER AREA CODE,PHONE # ?";
AC$,PN$

3260 IF LEN (AC$) = 0 THEN AC$ = DC$
3270 TC$ = "(" + AC$ + ")-" + LEFT$(PN$,3)

+ "-" + RIGHT$ (PN$,4)
3280 FOR J = 1 TO CH(O)
3290 IF TC$ < > RIGHT$ (DA$(J),14) THEN 3310
3300 CH(1) = CH(O):CH(O) = J - 1: GOSUB 10000: PRINT :CH(O) = CH(1):

INPUT Q$: PRINT
3310 NEXT J
3320 GOTO 3100
4000 HOME: VTAB 6: HTAB 10: INPUT "READY CASSETTE TO SAVE FILE I";Q$
4010 STORE CH
4020 FOR J = 1 TO CH(O)

Fig. 24-1. (Cont) Program written for Lesson 24.

173

4030 FOR K = I TO 44
4040 CA(K) = ASC (MID$ (DA$(J),K,I))
4050 NEXT K
4060 CA(45) = CL(J)
4070 STORE CA
4080 NEXT J
4090 PRINT CHR$ (7); CHR$ (7)
4100 HTAS 10: PRINT "PHONE SYSTEM IS ENDED"
4110 END
10000 PRINT "NAME = "; LEFT$ (DA$(CH(O) + 1),30): PRINT: PRINT "PHONE

#= "; RIGHT$ (DA$(CH(O) + 1),14): RETURN
10010 VTAS VT: CALL - 958: VTAS VT: PRINT "ENTER NAME(LESS THAN 31

CHARACTERS)"
10020 PRINT: INPUT DA$(CH(O) + 1)
10030 CL(CH(O) + I = LEN (DA$(CH(O) + 1)): IF CL(CH(O) + 1) = 0 THEN

RETURN
10040 IF CL(CH(O) + I) > 30 THEN PRINT: PRINT "NAME IS TOO LONG";

CHR$ (7): FOR J = 1 TO 1000: NEXT J: GOTO 10010
10050 IF CL(CH(O) + I) = 30 THEN RETURN
10060 DA$(CH(O) + 1) = DA$(CH(O) + I) + LEFT$ (SP$,30 - CL(CH(O)

+ 1))
10070 RETURN
10080 VTAS VT: PRINT "ENTER AREA CODE,PHONE NO."
10090 PRINT: PRINT: INPUT AC$, PN$
10100 IF LEN (AC$) = 0 THEN AC$ = DC$
10110 IF LEN (AC$) < > 3 OR LEN (PN$) < > 7 THEN 10080
10120 TC$ = STR$ (VAL (AC$»:PT$ = STR$ (VAL (PN$)): IF TC$ < > AC$

OR PT$ < > PN$ THEN PRINT : PRINT "PLEASE USE NUMERICS"; CHR$
(7): FOR J = I TO 1000: NEXT J: GOTO 10080

10130 RETURN

Fig. 24-1. (Cont) Program written for Lesson 24.

for a name or fragment of a name, and searched for an area code and
a phone number. Items on the list may be deleted. There are many
techniques to sort, search, and delete items on a list. The techniques
introduced in this lesson are a basis for further study. The variables,
as they appear in the program, are shown in Fig. 24-2. The variables
are given in Fig. 24-3 in alphabetical order.

Sorting is the act of placing information in a predetermined se
quence. Sorting depends on sequencing items according to a key
word. Lists of names are usually keyed or sorted alphabetically on
the first letters of the last name. Telephone numbers are usually
keyed or sorted on the area code. Mailing lists may be sorted accord
ing to the zip code. Lists can be sorted in any manner that meets the
needs of the user.

Lists are sorted to increase the speed and efficiency of the search
and delete functions. From the human point of view, a list is sorted
because we expect to see lists in proper order.

The correct time to sort the list is after file maintenance is com
plete and before the list is SAVEd to tape, disk, or paper. File main-

174

CA

CH

CH(1)

DA$

CL

SP$

DC$

MS

Q$

RECALL CA

J,K

VT

Array used to store to, and retrieve from, tape. AS language cannot
store string arrays directly. The string arrays are converted to the
numbered equivalent to store the number. CA(K) = ASC(MID$(DA$
(J),K,l». Lines 4010-4050. STORE CA saves the tile. RECALL CA loads
the tile. The tile is converted into a string - DA$ = DA$ + CHR$
(CAOO) in lines 1110 - 1150.

CH(O) holds the number or records in the record count.

Temporary storage for the record count.

String in which the name, area code, and phone number are held.

Length of the name string before it is padded to exactly 30 charac
ters.

Padding string that contains 30 blank spaces.

713. Default string holds the area code. A comma input places 713
in the area code. A different area code can be inserted by typing in
the numbers.

Menu selection.

String that holds "Y" for yes, "N" for no, or "R" for return.

Retrieves a real or integer array that has been STOREd on tape. The
array must be DIMensioned in the program. Subscripts are not used
when storing or recalling arrays. CA(O), CA(l). CA(2), etc., are stored
and reca lied as CA. CA(45) contains 45 characters including the
padded spaces.

44 CHARACTERS NAME STRING PADDED TO 30 CHARACTERS
(713) - 688 - 1212 = 44 + CL = 45
1311314 1+30=45

Loop variables used throughout the program.

Sets up VTA8 VT to VTAB to different rows according to program
structure.

Cl(CH(O)+ 1) Holds the length of the name being input before padding in rela·
tion to the length of DA$ before it was padded.

GOSUB 10010 Inputs name into the 1st part of DA$ and pads the 1st part of the
string to 30 characters.

GOSUB 10080 Inputs area code and phone number into the last 14 characters of
DA$. PT$ = STR$(VAL(PN$» - checks that all phone numbers are
numeric characters and not alpha characters.

PN$ Phone number string.

TC$ Temporary area code string to check numeric character input into
area code. TC$ = STR$(VAL(AC$».

PT$ Temporary phone number string to check numeric character input
into the phone number string.
PT$ = STR$(VAL(PN$».

Fig. 24-2. Variables as they appear in the program.

175

AC$ Area code string. A comma defaults to DC$ = 713.

M Minimum.

NA$ Name to be changed.

GOSUB 10000 Prints out name, area code, and telephone number before it is
changed.

STORE CA Stores real or integer numbers on tape. SEE RECALL CA.

2125 Delete line-see Fig. 24-4.

CHR$(7) PRINT CHR$(7) rings the bell on the computer-CONTROL G.

CH(O)=J-l The name and phone number are placed in CH(O) + 1.
Subroutines 10010 and 10080 input name and phone number.

CO Count of the number of times a match is found on the list.

Fig. 24-2. (Cont) Variables as they appear in the program.

tenance includes all changes to the list, all updates to the list, and
all deletions from the list.

The sort is set up inside double nested loops so the items on the
list can be compared and ordered (Fig. 24-4). Each comparison is
called a pass. The items on the list are compared to each other dur
ing the passes and items on the list are swapped to place them in the
correct order.

There are several types of sorts used in programming. Ripple,
modified ripple, bubble, and Shell-Metzner are some of the better
known sorts. Shell-Metzner is the most efficient sort of this group.
A detailed discussion of sorts is out of the scope of this book.

A search is the act of examining items in the list to discover
whether the key being searched for is on the list. All items related
to that key are then displayed. A search aids the user in discovering
all items on a list related to a key. A key can be a name or fragment
of a name or a phone number. How often do you remember the last
name of a person but not his first name? H the name is on the list a
search will reveal it. A search allows the user to pull one record
off the list by using a keyword with which to search.

A search can be made anytime the user needs information from
the records on the list.

Deletion is the act of removing a record or records from the list
(Fig. 24-5). Deleting is used to keep the file as small as possible to
use the least memory and to keep the file current. A list containing
unneeded names is nonproductive and costly to most users.

Deletions should be made anytime names on the list become of
no use to the user. H the list is for subscriptions, each name on the
list costs money in production costs, mailing costs, and labor. N on
subscribers' names on the list should be deleted.

Line 1 DIMensions the variables. CA(45) is the array used to

176

AC$

CA

CH

CH(0)=J-1

CH(1)

CHR$(7)

CL

Area code string.

Array used to store to, and retrieve from, tape. AS language cannot
store string arrays directly. The string arrays are converted to the
numbered equivalent to store the number. CA(K) = ASC(MID$(DA$
(J),K,l». Lines 4010 - 4050. STORE CA saves the file. RECALL CA
loads the file. The file Is converted into a string - DA$ = DA$ +
CHR$(CA(K» in lines 1110 - 1150.

CH(O) holds the number of records in the record count.

The name, area code, and the phone number are placed in CH(O)
+1. Subroutines 10010 and 10080 input the name, area code, and
the phone number. In order to print the list CH(O) must be decre
mented (jump out of the loop) to the correct end of the list. J+l
and J -1 must be offset so CH(O) is the one name on the list to be
printed out.

Temporary storage for the record count.

PRINT CHR$(7) rings the ben on the computer-CONTROL G.

Length of the name string before it is padded to exactly 30 char
acters.

CL(CH(O) + 1) Holds the length of the name being input before padding.

CO Count of the number of times a match is found on the list.

DA$ String in which the name, area code, and phone number are held.

DC$ 713. Default string holds the area code. A comma input places 713
in the area code. A different area code can be inserted by typing

. in the numbers.

GOSUB 10000 Prints out the name, area code, and telephone number before it is
changed.

GOSUB 10010 Inputs name into the lst part of DA$ and pads the 1st part of the
string to 30 characters.

GOSUB 10080 Inputs area code and phone number into the last 14 characters of
DA$. PT$ = STR$(VAL(PN$)}-checks that all phone numbers are nu
meric characters and not alpha characters.

J,K Loop variables used throughout the program.

M Minimum.

MS Menu selection.

NA$ Name to be changed.

PN$ Phone number string.

PT$ Temporary phone number string to check numeric character input
into the phone number string.
PT$ = STR$(VAL(PN$».

Q$ String that holds "Y" for yes, "N" for no, or "R" for return.

Fig_ 24-3. Variables in alphabetical order.

177

RECALL CA

SP$

STORE CA

TC$

VT

Retrieves a real or integer array that has been STOREd on tape.
The array must be DIMensioned in the program. Subscripts are not
used when storing or recalling ar.rays. CA(O), CA(I), CA(2), etc., are
stored and recalled as CA. CA(45) contains 45 characters including
the padded spaces.
44 CHARACTERS NAME STRING PADDED TO 30 CHARACTERS.
(713) - 688 - 1212 = 44 + CL = 45
1311314 1+30=45

Padding string that contains ten blank spaces.

Stores real or integers on tape. SEE RECALL CA.

Temporary area code string to check numeric character input into
area code. TC$ = STR$(VAL(AC$)).

Sets up VTAB VT to VTAB to different rows according to program
structure.

2125 Delete line-see Fig. 24-4.

Fig. 24·3. (Cant) Variables in alphabetical order.

store to and retrieve from tape. The record (name and telephone
number) is input as a string array. Each record is stored as 45 num
bers because the store and recall commands do not store string ar
rays. The conversion is shown in lines 4010 through 4070 in Fig. 24-l.

4010 STORE CH

Line 4010 stores the number of records to be placed on the tape.
In this case, CH (0) = 5 (5 is an arbitrary number).

4020 FOR J = 1 TO CH(O)

Line 4020 sets the beginning of the loop that stores five records on
tape (CH(O) = 5).

4030 FOR K = 1 TO 44

Line 4030 states there are 44 characters in each record plus CL
= L CL stores the length of DA$ before it is padded. Thirty charac-

DA$(K)
FOR J= 1 TO CH(O)-1
(FOR J= 1 TO 4)

NUMBER OF ITEMS IN THE lIST-5
ORIGINAL ORDER OF THE LIST

DA$(l) DA$(2) DA$(3) DA$(4) DA$(5)
E D C B A

CONTAINS NAME AND TELEPHONE NUMBER
NUMBER OF PASSES IS ONE LESS THAN THE # OF
ITEMS IN THE LIST

FOR K= J+l TO CH(O)
(FOR K= 2 TO 5)

IF K STARTED AT #1 THE SAME ITEM WOULD BE
COMPARED TO ITSELF

(I st pass only) (A) Information for sort.
Fig. 24-4. Sorting a list.

178

PASS J Ms J+ 1 K DA$(1) DA$(2) DA$(3) DA$(4) DA$(5) LINE # CONDITION Ma

0 1 1 E

1 1 1 2 2

3

4

5

M=5, J=1 A

2 2 2 3 3

4

5

M=4, J=2 A

3 3 3 4 4 A

5

NO EXCHANGE M = J

4 44 5 5 A

NO EXCHANGE M = J

Ms-M AT SORT PASS
Ma-M AFTER CHANGE

0 C B

D

C

B

D C B

C

B

B C 0

B C 0

B C 0

1st PASS EXCHANGE M = 5(A), J = HE)
2nd PASS EXCHANGE M = 4(B), J = 2(0)

A 1430-
1470

1440 TRUE

1440 TRUE

1440 TRUE

A 1440 TRUE

E 1460 FALSE

1440 TRUE

1440 TRUE

E 1440 FALSE

E 1460 FALSE

E 1440 FALSE

1440 FALSE

E 1440 FALSE

3rd PASS NO EXCHANGE 3rd ITEM IN THE LIST IS IN THE CORRECT ORDER
4th PASS NO EXCHANGE 4th ITEM IN THE LIST IS IN THE CORRECT ORDER

(8) Computer sort.

1470 T$ = DA$(M) : DA$(M) = DA$(J) : DA$(J) = T$CL(O) = CL(M) :
CL(M) = CL(J) : CL(J) = CLIO)

T$ --.....;.;;;;...;;;.;.;'--~ DA$(M) Cl(O) --.....;.;;;='--~ Cl(M)

DA$(J)
CL = length of DA$
before it is padded.
In this example, CL
is always 1 character.

(C) Exchange routine.

Cl(J)

Fig. 24-4. (Cont) ·Sorting a list.

2

3

4

5

3

4

4

3

4

179

T$ DA$(M) DA$(J)

ORIGINAL E A

1st PASS 1st EXC E E A T$ = DA$(5)
2nd EXC E A A DA$(5) = DA$(J)
3rd EXC A A E DA$(J) = T$

2nd PASS 1st EXC D D B T$ = DA$(4)
2nd EXC D B B DA$(4) = DA$(2)
3rd EXC B B D T$ = DA$(2)

3rd PASS NO EXCHANGE-3rd ITEM IS IN THE CORRECT POSITION

4th PASS NO EXCHANGE-4th ITEM IS IN THE CORRECT POSITION

(D) Table of passes and exchanges.
Fig. 24-4. (Cont) Sorting a list.

ters are in the name string, including padded characters (spaces)
produced by SP$.

(713) 688 - 1212

There are 1 + 3 + 1 + 1 + 3 + 1 + 4 + 30 = 44 characters in
DA$. CL = 1. CL is the length of DA$ before it is padded.

30 characters in DA$
14 characters in area code (AC$) and phone number (PN$)
1 character for CL = length of DA$ before padding.

45 = CA(45)

FILE:
DA$(l) = "JONES (713)-688-1212"
DA$(2) = "SMITH (713)-688-1213"

CH(O) = 4
DA$(3) = "DELETE (000)-000-0000"
DA$(4) = "ACTION (713)-688-1214"

PASS K J DA$(J) DA$(K)

0
1 1 1 JONES JONES
2 2 2 SMITH SMITH
3 2 3 DELETE
4 3 4 ACTION ~

FILE:
DA$(1) = "JONES (713)-688-1212"
DA$(2) = "SMITH (713)-688-1213"
DA$(3) = "ACTION (713)-688-1214"
DA$(4) = "ACTION (713)-688-1214"

LINE 2250

FALSE
FALSE
TRUE

2290 CH(O) = K (K = 3)-LAST RECORD DA$(4) IS REMOVED

Fig. 24-5. Delete routine.

180

K = J

FALSE
FALSE
JUMPS OVER

'~~)'1~
RELATES TO RECORD RELATES TO CHARACTER CONVERTS ONE CHARACTER
NUMBER NUMBER K IN RECORD J FOR EACH EXECUTION OF

THE LOOP

Line 4040 converts the string array, DA$, into ASCII characters
and places it in CA numeric array to be stored on tape.

4050 NEXT K

Line 4050 completes the conversion of one record.

4060 CA(45) = CL(J)

In line 4060, CL is the length of DA$ before it is padded and
stored in CA(45). CL(J) is one number. One added to the 44 char
acters produced in line 4020 equals 45 numbers, thus, CA (45).

4070 STORE CA

Line 4070 stores the real array, CA, on tape. The subscript of the
array is not indicated when STORE is used. This stores all 45 values
from each record.

4080 NEXT J

Line 4080 ends the J loop. In this loop, when one record is con
verted to a numeric array and stored, the next record is processed.
This processing continues until all five records have been stored.

But returning to line 1, we see that CL holds the length of DA$
(name) before it is padded. DA$(1000) can contain 1000 records
stored in DA$.

10 SP$ = " " : SP$= SP$ + SP$ + SP$ - SP$

Line 10 contains the string that pads DA$ (name) to 30 charac
ters. SP$ originally contained 10 blank spaces. SP$ concatenated
contains 30 blank spaces. SP$ is used in the subroutine 10010
through 10070, partially shown below.

10060 D'$(CH(O)+ 1) ~ DA$(CH(7'7"CH~l+ '.

10070 RETURN

30 SPACES LENGTH OF DA$ (name) RECORD
BEING BUILT

Going back to line 15, we see

15 DC$ = "713"

181

which is the area code of Beaumont, Texas. The default area code
is used to save input time. The area code can be input directly, or the
default area code can be input by typing a comma followed by the
phone number. The default area code can be easily changed to any
area code.

10100 IF LEN (AC$) = 0 THEN AC$ = DC$

In line 10100, we see that the comma input works successfully
because everything before the comma is put in AC$ and everything
after the comma goes into PN$.

Lines 20 through 90 present the PHONE LISTING menu that
asks the user to make a selection before proceeding. Based on that
selection, the computer goes to different parts of the program. Line
80 tells the computer to where it must branch: to line 1000 if item 1
(line 30) is selected, to line 2000 if item 2 (line 40) is selected, to
line 3000 if item 3 (line 50) is selected, and to line 4000 if item 4
(line 60) is selected.

Lines 1000 through 1060, selected by item 1 of the PHONE LIST-
1NG menu, make up the FILE MAINTENANCE menu. If item 1 of
the new menu is selected (items from the FILE MAINTENANCE
menu are selected when the computer reaches line 1040), the pro
gram jumps to line 1100 to load tape into memory. We assume for
the purposes of this explanation that the user has prepared a tape
containing names and phone numbers.

Let's follow this path of the program to line 1100. After the tape
is loaded, line 1110, RECALL CH, obtains however many records from
tape that CH designates. We set that number to 5 earlier in line 4010.

1120 IF CH(O) = 0 THEN PRINT "THERE IS NO ARRAY ON TAPE" : GOTO 1000

Line 1120 tells us if there are no records on the tape to be re
called.

1130 FOR J = 1 TO CH(O)

Line 1130 is the beginning of the loop to load the records into
memory.

1140 RECALL CA

In Line 1140, RECALL CA retrieves a real array which has been
stored on tape. Subscripts are not used with STORE or RECALL.

1150 DA$ = " " : FOR K = 1 TO 44 : DA$(J) = DA$(J) + CHR$(CA(K)) :
NEXT K : CL(J) = CA(45) : NEXT J

DA$ = " .. sets DA$ to a null value. There are no characters in
DA$. It is just initialized for later use. FOR K = 1 TO 44 sets the

182

number of characters to be retrieved and converted from a numeric
array to a string array.

DA$ = DA$ + CHR$(CA(K» converts the numeric arrays stored on
tape to string arrays used within the program.

NEXT K completes the loop and CL(J) = CA(45) completes the
transfer from tape to RAM by adding the length of DA$ before it is
padded with spaces.

NEXT J is the end of the loop and processes until all five records
have been loaded into memory.

If we had picked item 2 of the FILE MAINTENANCE menu
(line 1020), the program would have branched to line 1200.

1200 HOME: VT = 6; GOSUB 10010

In line 1200, HOME clears the screen. VT = 6 sets the vertical
tab value that is used in the subroutine beginning at 10010.

10010 VTAB VT : CALL -958 : VTAB VT : PRINT "ENTER NAME (LESS THAN 31
CHARACTERSY'

In line 10010, VT AB VT (tabs to line 6 on the screen). CALL
-958 is a machine language call that clears the screen below the
cursor.

10020 INPUT DA$(CH(O)+ 1)

Line 10020 allows the name to be input into a specific record
number.

10030 CL(CH(O)+l) = LEN(DA$(CH(O)+l» : IF CL(CH(O)+l) = 0 THEN RETURN

Line 10030 stores the length of DA$ for the current record being
built. This is held in CL array of the next position available (indi
cated by the + 1 added to CH (0)). The second part of line 10030,
IF CL(CH(O)+ 1) = 0 THEN 1000, checks to see if no record is input.
If there is no record input, the program branches to line 1000. Line
10020 is related to line 10030.

10040 IF CL(CH(O)+ 1) > 30 THEN PRINT: PRINT "!'lAME IS TOO LONG"
CHR$(7) : FOR J = 1 TO 1000 : GOTO 10010

DA$ (name) can be a total of 30 characters. If the length of the
name string is over 30 characters it is disallowed because the file is
not designed to hold over 30 characters in the name part of DA$.

The pause loop FOR J = 1 TO 1000 delays for the count of 1000.
CHR$(7) rings a bell on the computer to attract the user's attention
and GOTO 10010 causes the program to jump to 10010 to input a
name of 30 characters or less. If the DA$ is a correct entry, the pro
gram RETURNS to line 1260, which merely changes the value of
VT and begins another subroutine.

183

1260 VT = 12 : GOSUB 10080
10080 VTAB VT : PRINT "ENTER AREA CODE, PHONE NO."
10090 INPUT AC$, PN$

Line 10090 allows the area code and the phone number to be
input.

10100 IF LENCAC$) = 0 THEN AC$ = DC$

The input format is AC$,PN$. If there is no input into AC$ (a
comma is the first character typed), line 10100 is true and the
AC$ = DC$, which is the area code 713.

10110 IF LENCAC$)<>3 OR LENCPN$)<>7 THEN 10080

In line 10110, if the area code is not three characters or the phone
number is not seven characters, then the computer goes to line 10080
for the correct input.

10120 TC$ = STR$ (VAL(AC$)):PT$ = STR$(VALCPN$)); IF T C$<>AC$ OR PT$
<>PN$ THEN PRINT: PRINT "PLEASE USE NUMERICS"; CHR$(7): FOR J
= 1 TO 1000: NEXT J: GOTO 10080

Line 10120 converts the string arrays to numeric arrays as a fur
ther check that the area code and the phone number are numerics.
TC$ = STR$(V AL(AC$» converts the area code string to a numeric
value and that value is reconverted to a string. PT$ = STR$(V AL
(PN$» converts the phone number string to a numeric value and that
value is reconverted to a string. IF TC$<>AC$ OR PT$<>PN$ THEN
PRINT: PRINT "PLEASE USE NUMERICS" is a check to determine that
the area code string and the phone number string have been input
incorrectly. CHR$(7) rings the bell. The pause loop is activated and
the program branches to line 10080 for the correct input. If the in
put is correct, the program returns to line 1310 to concatenate the
name, area code, and phone number into a single string array, DA$.

1310 DA$CCHCO)+l) = DA$(CHCO)+l)+"C" + TC$ + ") - " + LEFTCPT,3)
+ "-" + RIGHT$(PT$,4).

This translates to:

JOHN SMITHXXXXXXXXXXXXXXXXXXXX
(713) - 688 - 1212

1320 PRINT: GOSUB 10000

30 CHARACTERS
14 CHARACTERS.

Line 1320 causes the record entered to be printed on the screen
by the subroutine at line 10000. A sample output is shown below:

NAMEX=XXJOHN SMITH
PHONEX#=X(713) - 688 - 1212

184

1330 PRINT: INPUT "ENTER 'R' TO REENTER ELSE 'RETURN' ";Q$: IF Q$<>"R"
THEN CH(O) = CH(OH 1.

In line 1330, IF Q$<>"R", then the record count is incremented
and a new record may be entered. IF "R" has been input, the next
record input is placed over the last record entered. The program
then goes to line 1200.

1210 IF CL(CH(OH 1) = 0 THEN 1000

In line 1210, if no record is input and RETURN is pressed in the
subroutine at 10010, line 1210 is true and the program branches to
line 1000, the FILE MAINTENANCE menu.

If selection #3 is chosen in the menu, the program jumps to line
1400 to sort the list in alphabetical order using the full name as the
key.

1410 IF CH(O) < 2 THEN RETURN

Line 1410 says, if there is only one record, there is no need to sort
the list.

Lines 1420 through 1480 perform the sort routine. In this example,
there are five records in the list (Fig. 24-4A). The five records E, D,
C, B, A represent a list of names, area codes, and telephone numbers.
Fig. 24-4B shows the details of program lines 1420, 1430, 1440, 1450,
1460, and 1480. The details of the exchange produced by line 1470
are shown in Fig. 24-4D. The number of records in the list is
CH{O) = 5.

1420 FOR J = 1 TO CH(O) -1

Line 1420 determines the maximum number of passes through five
records to order the list. This list took only two passes to order.

1430 M = J : FOR K = J+l TO CH(O)

In line 1430, the K variable begins at the second record in the list.
If J and K both started at the same record, the same record would
be compared to itself and this would be a useless comparison.

1440 IF LEFT$(DA$(K), 30) < LEFT$(DA$(M), 30) THEN M = K

Line 1440 compares the position of the records in the list. If
record K is less than record M, then the value of K is stored in M
(Fig. 24-4B). This comparison continues K times.

1460 IF M = J THEN 1480

If 1460 is true, the records for a specific pass in the list are in the
correct order and no exchange is made. If 1460 is false, the program
defaults to line 1470 to exchange the records on the list. In a sort,

185

all items out of order must be exchanged. The DA$'s are ordered by
exchanging records that are out of position.

1480 NEXT J

Line 1480 processes the next record on the list.

1490 RETURN

Line 1490 returns the program to the second statement in line
1400, which is GOTO 20. GOTO 20 causes the program to jump to
the PHONE LISTING main menu.

40 VTAB 12 : HTAB 8 : PRINT "2.MODIFV/DELETE"

Selection #2 of the main menu (line 40) causes a jump to line
2000 to modify or delete records in the list.

2000 HOME: VTAB 4 : IF CH(Ol = 0 THEN PRINT "THERE IS NO LIST";
CHR$(7l : FOR J = 1 TO 2000 : NEXT J : GOTO 20

If CH (0) = 0, there are zero records in the list and there is no list.

2010 PRINT "ENTER NAME TO BE CHANGED" : PRINT: INPUT NA$
2020 IF LEN(NA$l = 0 THEN 20

If the length of the name string is zero, the program branches to
the main menu.

2030 FOR K = 1 TO CH(Ol

Line 2030 sets the beginning of the loop to process each record
on the list.

2040 IF NA$<>LEFT$(DA$(Kl, CL(K» THEN 2060

If the name string that was input does not match any name on the
list then the computer goes to line 2060.

2060 NEXT K : VTAB 10: HTAB 6 : PRINT "THIS NAME IS NOT ON THE LIST" :
PRINT CHR$(7) : FOR J = 1 TO 1000 : NEXT J : GOTO 2000

If line 2040 is false, the program defaults to line 2100.

2100 CH(ll = CH(Ol : CH(Ol = K -1: VTAB 6 : PRINT "CURRENT RECORD IS "
: PRINT

CH(1) = CH(O) stores the value of the 5 records in the list in CH(1)
for temporary storage. CH(O) = K -1 stores the value of the record
to be changed. Each time the loop executes, it is incremented by
one greater than the loop value. K -1 decrements the loop value to
correspond to the number of records on the list.

GOSUB 10000 prints the current record on the screen.

186

2110 VTAB 8 : GOSUB 10000 : PRINT: "ENTER 'C' TO CHANGE, '0' TO
DELETE" : PRINT: INPUT "ELSE 'RETURN' ?";Q$

Line 2110 sets up the record to be modified, prints the heading to
change or delete the record, and requests the user input.

2120 IF Q$<>"C" AND Q$<>"D" THEN 2240

If "C" is not pressed, and "D" is not pressed, and RETURN is
pressed, the program branches to line 2240 to reestablish the list in
the correct order. Line 2300 causes the list to be sorted in alphabeti
cal order and then makes the program jump to line 20 of the
PHONE LISTING menu.

2125 IF Q$ = "0" THEN DA$(K) = "DELETE" + LEFT$(SP$,24) + "(000) - 000
- 0000" : ooTO 2230

If "D" is entered, the program jumps to line 2230 to reset the value
of the list into CH(O), and print "ANY MORE CORRECTIONS (y OR
N) ?".

2230 CH(O) = CH(l) : PRINT: INPUT "ANY MORE CORRECTIONS (Y OR N)
?" ;Q$: IF Q$ = "Y" THEN 2000

If there are no more corrections, the program defaults to line 2240
to the delete routine (Fig. 24-5).

2240 K = 0: FORJ = 1 TOCH(O)
2250 IF LEFT$(DA$(J),6) = "DELETE" THEN 2280
2260 K = K + 1 : IF K = J THEN 2280

If 2250 is false, line 2260, K = K + 1, increments the value of K to
accommodate the record. IF K = J THEN 2280 is false, the record is
stored in DA$(K), (DA$(K) = DA$(J) and· the length of the record
CL(K) is also stored (Cl(K) = CL(J). This transfer places the record in K.

Records are taken from DA$(J) and placed in DA$(K) unless they
are equal to "DELETE". If K = J, no action is taken because the record
DA$(J) = DA$(K) and the records are not moved. Each time a DELETE
record is encountered, J is incremented but K remains the same. As
an example (Fig. 24-5), if the third record is DELETE, then when the
fourth record is processed, K is still equal to 3, but J = 4. DA$(4)
is then moved into DA$(3). If 2250 is true, K remains the same value
for the next loop execution. The next record is placed over the de
leted record.

2230 GOSUB 1410 : ooTO 20

Line 2230 causes the program to sort the list and jump to the
PHONE LISTING menu.

Going back to line 2120, if the statement IF Q$<>"C" is true, the
program defaults to line 2130.

187

2130 VTAB 12 : CALL -95B : VTAB 12 : PRINT "ENTER 'N'-NAME, 'P'-PHONE#,
'B'-BOTH" : PRINT

CALL -958 is a machine call that clears the screen below the cur
sor at VT AB 12. The name and phone number headings are printed,
and remain on the screen as a prompt during the changes. The pro
gram defaults to line 2140 to store the area code and phone number
in T$, and requests a letter input from the user.

2140 T$ = RIGHT$(DA$(K),14) : INPUT "LETTER PLEASE ?;C$: IF C$<>"N"
AND C$<>"P" AND C$<>"B" THEN 2130

If the letter input is "B", the program defaults to line 2150, which
is, IF C$ = "P" TH EN 2170. Since the letter "B" is input, this makes
line 2150 false, and the program defaults to line 2160.

2160 VT = 14 : GOSUB 10010

Line 2160 sets the VTAB variable to line 14 and the subroutine at
10010 asks for the name change to be input. The subroutine returns
to line 2170.

2170 IF C$ = "N" THEN 2190

The letter "B" was input and this makes line 2170 false, and the
program defaults to line 2180.

2180 VT = 16 : GOSUB 10080

The subroutine at 10080 asks the user to input the new telephone
number.

The "B" for both name and phone number is not written into the
program routine. "B" is a default when "N" or «P" is not input.
Remember the cliche about cutting a log in two places to get three
sticks of wood? This example demonstrates the use of the default
value in programming. «B" was the selection, but «B" was not written
into the program. Another point to be reenforced is, when an IF
statement is true, all following statements on that line are executed.
When an I F statement is false, no following statements on that line
are executed.

In line 2140, the user inputs the letter "N" for a name change. The
program defaults to line 2150.

2150 IF C$ = "P" THEN 2170

The letter «N" was input, so line 2150 is false and the program de
faults to line 2160.

2160 VT = 14 : GOSUB 10010

The subroutine at 10010 asks for the name change to be input.

188

The subroutine at 10010 returns to line 2170.

2170 IF C$ = uNu THEN DA$(K) = DA$(K) + T$: GOTO 2230

The name change is concatenated to the area code and the phone
number stored in T$. Line 2230 sets CH(O) = CH(l) and asks for more
corrections. If there are no more corrections, the number of records
in the list is stored in CH(O), the list is sorted, and the program
jumps to the PHONE LISTING menu.

If the user inputs the letter "P" in line 2140, the program defaults
to line 2150.

2150 IF C$ = uP" THEN 2170

The letter "P" is input. Line 2150 is true, so the program branches
to line 2170.

2170 IF C$ = uN" THEN 2190

The letter "P" was input. Line 2170 is false. The program defaults
to line 2180.

2180 VT = 16 : GOSUB 10080

GOSUB 10080 allows input of the phone number to be changed
and returns to line 2190.

2190 IF C$ = uNu THEN DA$(K) = DA$(K) + T$: GOTO 2230

The letter "P" was input, so line 2190 is false and the statement
GOTO 2230 is not executed. The program defaults to line 2200.

2200 IF C$ = uP" THEN DA$(K) = LEFT$(DA$(K),30)

Line 2200 is true and sets up DA$(K) so it contains the name in the
specific record. The program defaults to line 2220 to concatenate the
name and new phone number into DA$(K).

2220 DA$(K) = DA$(K) + U(U + TC$ + U)_U
+ LEFT$(PT$,3) + RIGHT$(PT$,4)

The program defaults to line 2230 to ask for more corrections. If
there are no more corrections, the program defaults to line 2300.

23do GOSUB 1410 : GOTO 20

GOSUB 1410 sorts the list, and GOTO 20 causes the program to
jump to the PHONE LISTING menu.

Entry 3 in the PHONE LISTING menu is "3.UST /SEARCH". This
selection causes the program to jump to line 3000.

189

3000 HOME: VTAB 3 : INPUT "ENTER '5' TO SEARCH OR 'L' TO LIST ?";Q$:
IF Q$<>"L" AND Q$<>"s" THEN 3000.

3010 IF Q$ = "5" THEN 3100

The user typed in the letter eeL" to list the records. Line 3010 is
false, so the program defaults to line 3030, the next line.

3030 FOR J = 1 TO CH(O)

Line 3030 is the beginning of a loop to process the records in the
list.

3040 IF J<>INT«J-1)/5)*5+1 THEN 3070
3050 IF J<> 1 THEN PRINT: INPUT "I";Q$

Lines 3040 and 3050 use negative logic and are both related (Fig.
24-6). On the first pass of the loop, line 3040 is false and the program

3040 IF J<>INT(J-l)/5)*5+1 THEN 3070
3050 IF J<>1 THEN PRINT: INPUT "I";Q$

ACTION OF
J J-l INT«J-1)/5) INT((J-l)/5)*5+1 3040 GOES TO 3050 3050

1 0 0 1 FALSE 3050 FALSE GOES TO 3060
PRINTS RECORD #1

2 1 0 1 TRUE 3070 PRINTS RECORD #2
3 2 0 1 TRUE 3070 PRINTS RECORD #3
4 3 0 1 TRUE 3070 PRINTS RECORD #4
5 4 0 1 TRUE 3070 PRINTS RECORD #5

6 5 1 6 FALSE 3050 TRUE INPUTS "I";Q$
PRESS RETURN TO
CONTINUE
PRINTS RECORD #6

7 6 1 6 TRUE 3070 PRINTS RECORD #7
B 7 1 6 TRUE 3070 PRINTS RECORD #B
9 8 1 6 TRUE 3070 PRINTS RECORD #9

Fig. 24-6. Relationship of lines 3040 and 3050.

defaults to line 3050. On the first loop pass J = 1, so line 3050 is false
and defaults to line 3060, to clear the screen and VT AS 3.

3060 HOME: VTAB 3

3070 PRINT "NAME" = ";LEFT$(DA$(J),30) : PRINT SPC!n;"PHONE # = ";
RIGHT$(DA$(J),14) : PRINT

Line 3070 is executed and prints the first record. On loop execu
tions 2, 3, 4, and 5, line 3040 is true, so the program branches to
line 3070 to print records 2, 3, 4, and 5.

On the sixth loop execution line 3040 is false (6 = 6). The pro-

190

gram defaults to line 3050 IF J<> 1 THEN PRINT: INPUT "!"; Q$. On
the sixth execution (6<>1), and line 3050 is true. The loop execu
tion stops, "!" is printed, and the computer.waits for the user to press
RETURN to continue printing the list.

3080 NEXT J

Line 3080 completes the loop execution.

3090 PRINT: INPUT "!" ;Q$: GOTO 20

Line 3090 stops the program. When the user presses RETURN, the
program jumps to line 20, the PHONE LISTING menu.

Selection 3 on the PHONE LISTING menu "3.LlST/SEARCH"
causes the program to jump to line 3000. If "5" for search is typed
at line 3000, the program branches to line 3100 to begin the search.

3100 HOME: VTAS 3 : PRINT "SEARCH SELECTION" : PRINT

Line 3110 prints out the three selections.

1 .NAME SEARCH
2.NUMSER SEARCH
3.RETURN TO MAIN MENU

Selection 1 causes the program to jump to line 3150 to begin the
NAME search.

3150 HOME: VTAS 4 : PRINT "ENTER NAME OR FRAGMENT ?" : PRINT:
INPUT NA$: L = LEN(NA$) : IF L = 0 THEN 3100

The name search is processed in lines 3160 through 3220. For this
example, variables are given specific values to make the learning
easier.

NA$
L
DA$(J)
CL(J)
CO

CH(O)

"ABC"-SEARCH FOR ABC
LEN(NA$) = 3
"EDABC"-THIS NAME IS SEARCHED
LENGTH OF DA$(J) IS 5 CHARACTERS
COUNTING VARIABLE TO COUNT THE
NUMBER OF MATCHES FOUND IN THE
LIST
CH(O) = 7-THERE ARE 7 RECORDS IN
THE LIST

FOR J = 1 TO CH (0) - FOR J = 1 TO 7
FOR K = 1 TO CL(J) - L + 1 - FOR K = 1 TO 3

Lines 3160 through 3220, using variables with specific values, are
detailed in Fig. 24-7. Fig. 24-7 should be studied in detail to learn
the name search routine. The record count is stored in a temporary
location, CH(l). In line 3200, CH(O) = CH(l), the record count is

191

SPECIFIC VARIABLES USED FOR THE NAME SEARCH

NA$ LEN(NA$) DA$(J) LEN(DA$(J» # OF RECORDS eL(J) - L + 1
ABC 3 EDABC 5 7 3

FOR J = 1 TO 7 FOR K = 1 TO 3

PROGRAM LINES 3160 - 3220 FOR NAME SEARCH
3160 CO = 0 : COUNTS THE NUMBER OF MATCHES IN THE LIST.

FORJ = 1 TOCH(O) - FORJ = 1 T07
3170 FOR K = 1 TO CL(J) - L + 1 - FOR K = 1 TO 3

IF NA$ < > MID$(DA$(J), K, L) THEN 3210
ABC EDABC

1st PASS ABC (TRUE) < > EDA 1, 3 K=l, L=3 3210
2nd PASS ABC (TRUE) < > DAB 2, 3 K=2, L=3 3210
3rd PASS ABC (FALSE) < > ABC 3, 3 K=3, L=3 3190

3190 CH(1) = CH(O) 7 = 7 - THE RECORD COUNT MUST BE STORED BEFORE
THE GOSUB 10000 OR RECORD COUNT WILL BE WIPED OUT
CH(O) = J - 1 - SEE Fig. 24·2 OR Fig: 24-3
GOSUB 10000 - PRINTS OUT THE RECORD
INPUT Q$ - STOPS THE PROGRAM - PRESS RETURN TO CONTINUE

3200 CH(O) = CH(ll 7 = 7 - CH(1) RESTORES THE RECORD COUNT TO CH(O)
CO = CO + 1 - INCREMENTS THE COUNT TO DETERMINE IF A MATCH
OCCURS MORE THAN ONCE IN THE LIST
GOTO 3220 - PREVENTS THE SAME ITEM ON THE LIST FROM BEING
MATCHED TWICE

3210 NEXT K
3220 NEXT J - SEARCHES THE NEXT RECORD

Fig. 24-7. Name search.

stored in CH (0). This step is necessary to preserve the record count.
This storage process occurs before the GOSUB 10000, and after the
GOSUB 10000. Fig. 24-7 should be more explanatory than comment.

If at line 3100, the user had input 2, "2.NUMBER SEARCH", the
program would jump to line 3250 to search for a specific phone
number.

3250 HOME: VTAB 6 : HTAB 6 : INPUT "ENTER AREA CODE,PHONE#
?";AC$,PN$

3260 IF LEN(AC$) = 0 THEN AC$ = DC$

Line 3260 allows the user to enter a comma for the area code, if
the user wants the default area code of 713. The area code and the
phone number are always the last 14 characters of DA$. The phone
number for a specific record is RIGHT${DA${J),14).

3270 TC$ = "(" + AC$ + ")_" + LEFT$(PN$,3)
+ "-" + RIGHT$(PN$,4)

Line 3270 concatenates the area code and phone number in the
proper format and stores it in the temporary string variable, TC$.

3280 FOR J = 1 TO CH(O)

192

Line 3280 sets up the loop that will list the area codes and phone
numbers on the list.

3290 IF TC$<>RIGHT$(DA$(J),14) THEN 3310

All phone numbers are composed of 14 numeric characters located
in the last 14 places in DA$. The TC$ was formatted in the same
places in DA$ as RIGHT$(DA$(J),14), so the comparison is relatively
simple. It is much simpler than the name search, though not nearly
as flexible.

3300 CH(I) = CH(O) : CH(O) = J -1: GOSUB 10000 : PRINT: CH(O) = CH(1) :
INPUT Q$: PRINT

The record count is again stored in a temporary location, CH(l),
so it will not be lost during the execution of the subroutine at line
10000. The subroutine prints out both the name, area code, and tele
phone number produced from the number search. On returning
from the subroutine, the record count is again stored in CH(O)
(CH(O) = CH(l».

3310 NEXT J

Each record on the list is searched for the phone number in ques
tion and line 3320, GOTO 3100, causes the program to jump to the
SEARCH SELECTION menu. Selection 3, "3.RETURN TO MAIN
MENU", causes a jump to line 20, the PHONE LISTING menu.
Selection 4, "4. SAVE LIST AND END", from the PHONE LISTING
menu causes the program to end.

193

LESSON 25

Formulas

Lesson 25 contains three programs dealing with formulas for (1)
decimal to hexadecimal conversion (Fig. 25-1), (2) hexadecimal to
decimal conversion (Fig. 25-6), and (3) systematic and efficient
output (Fig. 25-9).

"Formula" has many diHerent meanings but a good definition is
"the rule for doing something." A formula is a recipe or a prescrip
tion. Formulas have been used and demonstrated in almost every
lesson of this book.

The computer, which understands only binary (1 and 0), must
use a formula to convert binary input and output, which are in deci-

5 REM : DECIMAL TO HEXADECIMAL
10 HOME: VTAB 6
20 INPUT "ENTER DECIMAL INTEGER ?";DEC
30 IF DEC < 1 THEN END
40 DEC = INT (DEC)
50 HEX = O:HX$ = " "
60 FOR J = 0 TO 15: IF DEC < 16 t J THEN 80
70 NEXT J: PRINT "THE NUMBER IS TOO LARGE" : PRINT : GOTO 20
80 FORK=J-1TOOSTEP-l
90 HEX = INT (DEC I 16 t K)

100 HX$ = HX$ + CHR$ (HEX + 48 + (HEX > 9) * 7)
110 DEC = DEC - HEX * 16 t K
120 NEXT K
130 PRINT: HTAB 9: PRINT "HEX DISPLAY IS ";HX$
140 PRINT: GOTO 20

]RUN
ENTER DECIMAL INTEGER ?863
HEX DISPLAY IS 35F

Fig. 25-1. Decimal to hexadecimal conversion program.

194

mal form. This formula is invisible to you because you won't see it
on your program listing .. The visible ones are the formulas you write.
The invisible ones are the formulas that your computer needs to
interpret your program. The invisible formulas reside in the Apple
soft interpreter.

The most efficient way to use a formula in programming is to in
put the data in a variable. The variable or variables in the formula
compute the data and output the information in a variable. In this
way, the input data and the output information can be easily
changed. and the program remains relatively constant.

In the first program (Fig. 25-1) decimal is converted to hexa
decimal. In the second program, hexadecimal is converted to deci
mal. The conversion formulas encompass two important aspects of
the Apple computer: (1) humans speak decimal and computers
speak hexadecimal, before it is converted to binary, and (2) decimal
contains numeric characters and hexadecimal contains alpha and
numeric characters. In the conversion process, decimal is input as
numerics and converted to string arrays. In converting hexadecimal
to decimal, the hexadecimal is input as a string array and converted
to numerics.

The decimal system uses a base of 10. The hexadecimal system
uses a base of 16. The decimal figure 312 means

3 * 102 = 300
+ 1 * 101 = 10
+ 2 * 100 = 2

312

The hexadecimal system uses the decimal numbers from 0 to 9 as
its first ten digits, and uses A = 10, B = 11, C = 12, D = 13, E = 14,
and F = 15 as its last 5 digits (Fig. 25-2). The hexadecimal number
35F means

3 * 162 = 768
+ 5 * 161 = 80
+ F * 160 = 15

863

Fig. 25-3 shows the manual system for converting decimal to hexa
decimal. Fig. 25-4 details the decimal to hex conversion program
statements in relation to the manual conversion to hex. Figs. 25-2
and 25-3 should be studied closely before going to the conversion
program.

Fig. 25-2 presents the relationship between the first 15 decimal
numbers and the first 15 hexadecimal numbers.

Fig. 25-3 shows the ASCII numerics and the character strings they
represent. Conversion of string arrays to numeric arrays and conver-

195

HEXADECIMAL

o
1
2
3 ..
5
6
7
8
9
A
B
C
D
E
F

DECIMAL

o
1
2
3 ..
5
6
7
8
9

10
11
12
13
14
15

Fig. 25-2. Comparing fint sixteen hna.ecimal an •• ecimal .igits.

ASC CHR$ CONVERSION OF A NUMERIC ARRAY TO
48 0 A STRING ARRAY
49 1 ASC(65) = A
50 2
51 3
52 4 CONVERSION OF A NUMERIC ARRAY TO
53 5 A STRING ARRAY
54 6 CHR$(A) = 65
55 7
56 8
57 9

58
59 ;
60 <
61 =
62 >
63 ?
64 @

65 A
66 B
67 C
68 D
69 E
70 F ------------90 z

Fig. 25-3. ASCII characten.

sion of numeric arrays to string arrays were discussed in Lesson 5.
The sequence of ASCII characters for ten numerics and 26 alpha
characters goes from 48 through 90. The character strings repre
sented by the ASCII characters run from zero to zerba (Z). Between
the numeric and the alpha characters is an intervening group of

196

NUMBER REMAINDER REMAINDER
IN DECIMAL DIVIDE BY QUOTIENT IN DECIMAL IN HEXADECIMAL

863

~m 1 1~ :lll
3 5 F

Fig. 25-4. Manual system for clecimal to hexaclecimal convenion.

characters (58 - 64) that interrupt the chain of continuity. This in
terruption is very important to understand. It is programmed in line
100 of Fig. 25-1. The hexadecimal number is converted into a string
array to accommodate both the alpha and numeric characters.

100 HX$ = HX$ + CHR$(HEX + 48 + (HEX> 9)*7)

The ASCII number 48 represents the string character zero (0).
If the ASCII characters were set so 48 through 59 represented zero

to 9, and ASCII 60 through 86 represented A through Z, there would
be no need for the logical expression, (HEX> 9)*7), in line 100.
Since ASCII 59 through 64 interrupt the continuity of the numeric
and alpha characters, "+48" is necessary to establish base zero for
the character string. The "+48" corrects for the offset of the ASCII
values.

Line 100 converts in this manner: (HEX> 9)*7) is a logical ex
pression used as a bridge between ASCII 48 to 59 (0 - 9), and
ASCII 65 to 90 (A to Z). When HEX is less than 9, the expression
is false or zero. Zero times 7 = O. If HEX is greater than 9, the ex
pression is true or 1. One times 7 = 7. The follOWing example shows
how line 100 works:

HEX = 6
HX$ = HX$ + CHR$(6 + 48 + 0) = CHR$(54)
CHR$(54) = "6"

HEX = 14
HX$ = HX$ + CHR$(14 + 48 + (1 *7» = CHR$(69)
CHR$(69) = "E"

In line 50 we see HX$ = " ". This means HX$ is initialized as a
null string.

Fig. 25-5 shows three loop executions by each program statement
involved in converting decimal 863 to hexadecimal 35F. This was
done to show how the individual loop executions compared with the
manual conversion.

The formulas in program 2 (Fig. 25-6) convert hexadecimal to
decimal. Since hexadecimal may contain both alpha and numeric
characters (Fig. 25-2), it is input in a string array. The string array

197

20 INPUT "ENTER DECIMAL INTEGER
?";DEC 863

30 IF DEC < I THEN END

40 DEC = INT(DEC) If a real number is input, this statement
converts it to an integer.

50 HEX=O:HX$= II " Initializes variables. HX$ is a null string
with no characters.

60 FOR J = 0 TO 15 : IF DEC < Numbers larger than 1.15* 1018 will not
16 /\ J THEN 80 be accepted.

70 NEXT J : PRINT " THE NUMBER Sets up the position of DEC - B63 = 163

IS TOO LARGE"

SO FOR K = J-I TO 0 STEP -I The largest power is divided 1st. When the
J loop checks the size of DEC, J is I more
than the greatest power when J jumps out
of the loop. J -I is the offset for the cor·
rect power. K sets up positional values.

90 HEX = INT(DEC/16/\ K) Divides DEC by the positional value to give
the HEX value.
I. INT(DEC/162) = S63/162 = HEX 3 R95
2. INT(DEC/161) = 95/161 = HEX 5 RI5
3. INT(DEC/160) = 15/16° = HEX F (15)

100 HX$ = I. 15+48+(1 *n=70 AsC(70) = F
HX$+CHR$(HEX+4S+(HEX > 9) 2. 5+48+(0*7)=53 AsC(53) = 5
*7) 3. 3+48+(0*n=51 AsC(51) = 3

110 DEC = DEC - HEX*'6/\ K I. DEC = 863 - HEX(3)* 162 = 768
2. DEC = 95 - HEX(5) * 161 = SO
3. DEC = 15 - HEX(l5)* 16°= 15

120 NEXT K

130 PRINT "HEX DISPLAY IS ";HX$ 35F

Fig. 25-5. Decimal to hex conversion program statements as relateel to manual
conversion to hex.

is converted into a numeric variable to print out the decimal num
ber. The hexadecimal number, 35F, is input and converted to deci
mal 863. The program statements and manual conversion compari
sons are detailed in Fig. 25-8. The three loop executions are included
with each involved program statement to view the change in com
putation.

The hexadecimal value is input as a string array in line 10.
10 INPUT "ENTER HEX VALUE ?";Q$

Line 40 converts the hex input string array (Q$) into a numeric
variable by the ASC function. In conjunction with the loop begin
ning at line 30, line 40 processes the characters one at a time.

198

J :::::: 1 HEX = 3 CHR$(51)
J = 2 HEX = 5 CHR$(53)
J = 3 HEX = F CHR$(70)

REM : HEXADECIMAL TO DECIMAL
5 HOME: VTAB 6
10 INPUT "ENTER HEX VALUE T";Q$
20 IF LEN (Q$) = 0 THEN END
30 DEC = 0: FOR J = 1 TO LEN (Q$)
40 HX = ASC (MID$ (Q$,J,l»: IF (HX > 47 AND HX < 58) OR (HX > 64

AND HX < 71) THEN DEC = DEC * 16 + HX - 48 - (HX > 58) * 7
50 NEXT J
60 PRINT: PRINT "DEC = ";DEC: PRINT
70 GOTO 10

lRUN
ENTER HEX VALUE ?35F
DEC = 863

Fig. 25·6. Hexadecimal to decimal conversion program.

HEXADECIMAL
NUMBER

35F
POSITIONAL VALUE

F * 16°
5 * 161

3 * 162

MULTIPLY BY

F * 1 = 15
5 * 16 = 80
3 * 256 = 768

863

Fig. 25·7. Manual system for hexadecimal to decimal conversion.

If the hexadecimal character is a numeric it must be between
48 and 58. If the hexadecimal character is an alpha character it must
be between 65 and 70.

The statement THEN DEC = DEC * 16 + HX - 48 - (HX > 58) * 7)
is similar to the summing statement DEC = DEC + HX. This state·
ment converts from hexadecimal display input to an actual numeric
number (Fig. 25·8) in that it takes the sum of the computed DEC
and adds it to DEC on each loop execution. An input display string
can be converted to an actual numeric number and display the nu·
meric number because of machine design or configuration.

Line 50 is the end of the loop, and line 60 displays the numeric
number that has been converted from hexadecimal input.

60 PRINT "DEC = ";DEC

Line 70 gives the user a chance to input another hexadecimal
number.

The formulas in program number three (Fig. 25-9) produce sys
tematic and efficient output and are applied to a statistical problem.

The statistical problem inputs student grades. The grades are out
put in seventeen different ranges. The grades are used to produce
an ogive of cumulative distribution.

The definition of cumulative distribution is "heaped up," or
"growing in amount."

199

5 HOME: VTAB 5

10 INPUT "ENTER HEX VALUE ?";Q$

20 IF LEN(Q$) = 0 THEN END

35F - HEX is input in a string array. It
may contain alpha and numeric characters.

30 DEC = 0 : FOR J = 1 TO LEN(Q$) Initialized DEC to zero. Sets up loop to
check each character.

40 HX = ASC(MID$(Q$,J,1) :
IF (HX > 47 AND HX < 58) OR
(HX > 64 AND HX < 71) THEN
DEC = DEC*16+HX-48-(HX >
58)*7
1. DEC=0*16+51-48-(51 > 58)

=3
DEC=3 (0 * 7)

2. DEC=3*16+48-53-(53 > 58)
=53
DEC=53 (0 * 7)

3. DEC=53*16=848+70-48-
(70 > 58)

DEC = 863 (1 * 7)

50 NEXT J

60 PRINT: PRINT "DEC = ";DEC

70 GOTO 10

Converts the string array to a numeric ar·
ray one character at the time. Picks off
the 1st, 2nd, and 3rd character. ASC nu·
merics 48 - 58 represent the numbers
zero to 9. ASC numbers 64 - 71 repre
sent the letters A - F, Fig. 25·3.
Positional val ue
35F

16° * IS = IS
161 * 5 = 80
162 * 3 = 768

863

DEC = 863

Fig. 25-8. Comparing program statements and manual conversion.

Ogive is a distribution curve or graph in which the frequencies
are cumulative.

The educator takes the 80 student grades, places them in 17
ranges of varying widths, adds the number of grades in each range,
and plots them on a graph (Fig. 25-10).

The program in Fig. 25-9 uses a RND function to produce the 80
grades. The grades are placed in ranges by a formula and the ranges
are computed by a formula. A formula is used to break the printout
into a heading and five ranges, then the printout continues. The
ogive is produced by hand to demonstrate the use of the output. In
Lesson 27, LOW RESOLUTION GRAPHICS, the ogive is produced
by a graphics program. One point to note-since the grades are pro
duced by the RND function, NO TWO PROGRAM RUNS OR
GRAPHS WILL BE THE SAME. The ogive does not pattern itself
in the manner of the standard distribution curve.

Line 10 provides dimensions for 17 grade ranges.

200

5 REM : OGIVE PROGRAM
10 HOME
20 DIM CG(17)
30 GOSUB 800
40 T = 0: FOR J = 1 TO 17
50 IF J < > INT «J - 1) I 5) * 5 + 1 THEN 80
60 IF J < > 1 THEN PRINT "OGIVE COUNT=";T;" OF 80 =";T I 80;"%":

INPUT "I";Q$
70 PRINT "RANGE # BASE TOP COUNT"
80 R = J: GOSUB 900:UL = RL:R = J - 1: GOSUB 900:LL

= RL + 1: IF LL = 1 THEN LL = 0
90 PRINT SPC(3);J;: HTAB 13: PRINT LL;: HTAB 20: PRINT UL;: HTAB 30:

PRINT CG(J)
100 T = T + CG(J): NEXT J
110 PRINT "OGIVE COUNT=";T;" OF 80 =";T I 80;"%"
120 END
800 FOR J = 1 TO 80:SG = INT (RND(1.0) * 101): IF SG = 0 THEN

SG = 1
810 IF SG > 32 THEN 830
820 CG«SG - 1) I 16 + 1) = CG«SG - 1) I 16 + 1) + 1: GOTO 880
830 IF SG > 64 THEN 850
840 CG(3 + (SG - 33) I 8) = CG(3 + (SG - 33) I 8) + 1:: GOTO 880
850 IF SG > 92 THEN 870
860 CG(7 + (SG - 65) I 4) = CG(7 + (SG - 65) I 4) + 1:: GOTO 880
870 CG(14 + (SG - 93) I 2) = CG(14 + (SG - 93) I 2) +
880 NEXT J: RETURN
900 RL = R * 16 - (R > 2) * (R - 2) * 8 - (R > 6) * (R - 6) * 4 - (R > 13) * (R - 13)

* 2
910 RETURN

]RUN
RANGE # BASE TOP COUNT

1 0 16 11
2 17 32 11
3 33 40 4
4 41 48 9
5 49 56 5

OGIVE COUNT=40 OF 80 =.5%
I
RANGE # BASE TOP COUNT

6 57 64 6
7 65 68 3
8 69 72 3
9 73 76 5
10 77 80 3

OGIVE COUNT=60 OF 80 =.75%
I
RANGE # BASE TOP COUNT

11 81 84 4
12 85 88 2
13 89 92 7
14 93 94 2

Fig. 25-9. OGIVE program.

201

15 95 96
OGIVE COUNT=76 OF 80 =.95%
I
RANGE # BASE TOP

16 97 98
17 99 100

OGIVE COUNT=80 OF 80 =1%

COUNT
2
2

Fig. 25-9. (Cont) OGIVE program.

Line 30 branches to the subroutine at 800, which produces the 80
student grades. Lines 810 through 880 place them in the proper
range.

80'

70

60

50

CUMULATIVE 40 FREQUENCY

30

20

10

16 32 40 48 56 64 72 80 88 96100

SCORE

Fig. 25-10. Ogive of the distribution of 80 scores.

In line 800, FOR J = 1 TO 80 is the beginning of a loop to produce
the 80 student grades. SG = INT (RND(1.0) * 101) produces student
grades from 0 to 100. The purpose of IF SG= 0 THEN SG = 1 is as
follows: If the RND function produces a student grade of zero, the
grade has to be modified to fit the program pattern. The grade
ranges have no place for a grade of zero, so a zero grade is replaced
with a grade of one.

202

Lines 810, 830, and 850 set up to divide the ranges into four divi
sions, (1) two ranges containing 16 score points each, (2) four
ranges containing 8 score points each, (3) six ranges containing 4
score points each, and (4) four ranges containing 2 score points each
(Figs. 25-11 and 25-12).

J LL(BASE) UL(TOP) SPREAD NO. OF RANGES

1 0 16 16 2
2 17 32 16

3 33 40 8 4
4 41 48 8
5 49 56 8
6 57 64 8

7 65 68 4 7
8 69 72 4
9 73 76 4

10 77 80 4
11 81 84 4
12 85 88 4
13 89 92 4

14 93 94 2 4
15 95 96 2
16 97 98 2
17 99 100 2

Fig. 25-11. Ranges and Icore points.

810 IF SG > 32 THEN 830
830 IF SG > 64 THEN 850
850 IF SG > 92 THEN 870

(handles grades from 1 to 32)
(handles grades from 33 to 64)
(handles grades from 65 to 92 if the statement is false,
and grades from 93 to 100 if the statement is true)

If line 810, IF SG > 32 THEN 830, is false the program defaults
to line 820 to tabulate the grades in the first two grade ranges from
zero to 32.

820 CG«SG-1)/16 + 1) = CG«(SG-l)/16 + 1) + 1 : GOTO 880

The summing statement in line 820, CG((SG-l)/16 + 1) == CG
((SG-l) /16 + 1) + 1, sums the number of student grades in each
of the first two grade ranges (Fig. 25-12).

There are statements similar to the statement in line 820 at lines
840, 860, and 870. These statements compute and total the number
of student grades in each grade range (Fig. 25-12).

830 IF SG > 64 THEN 850

If line 830 is false, line 840 increments the number of grades in
the proper grade range from 33 to 64 (Fig. 25-12).

850 IF SG >. 92 THEN 870

203

810 IF SG > 32 THEN 830
820 CG{(SG-1)/16+1) = CG{(SG-1)/16+1)+1 : GOTO 880

GRADE (SG-?) CG{(SG-?)/?+1

1 1~ I 1~ I ! ·1
32 31 2

830 IF SG > 64 THEN 850
840 CG{3+{SG-33)/8) = CG{3+(SG-33)/8)+1 : GOTO 880

33 0 3
41 8 4
49 16 5
57 24 6
64 31 6

850 IF SG > 92 THEN 870
860 CG{7+(SG-65)/4) = CG(7+(SG-65)/4+1 : GOTO 880

65 0 7
69 4 8
73 8 9
77 12 10
81 16 11
~ 20 12
~ 24 13
~ ~ 13

870 CG{I4+(SG-93)/2) = CG{I4+(SG-93)/2+1
93 0 14
95 2 15
97 4 16
99 6 17

100 7 17

Fig. 25.12. Grade. and range ••

If line 850 is false, line 860 increments the number of grades in the
proper grade range from 65 to 92. If line 850 is true, line 870 incre
ments the number of grades in the proper grade range from 93 to
100 (Fig. 25.12).

880 NEXT J : RETURN

NEXT J completes the loop to input 80 student grades and to place
them in the proper range limit, and RETURN causes the subroutine
to return to line 40.

40 T = 0 : FOR J = 1 TO 17

The totaling variable is initialized to zero, and the 17 grade ranges
are placed in a loop structure for processing.

50 IF J <> INT«J-1)/5)*5 + 1 THEN 80
60 IF J <> 1 THEN PRINT "OGIVE COUNT = ";T/SO; "%" I INPUT Q$

Lines 50 and 60 control the printout. The printout changes its
routine after every 5 lines. The details of the printout can be viewed
in the RUN section of Fig. 25-9. Similar operational details of lines

204

.40 FOR J = 1 TO 17
80 R = J : GOSUB 900 : UL = RL : R = J - 1

RL = R * 16 - (R > 2) UL = RL R = J - 1
1 * 16 = 16 16 1
2 * 16 = 32 32 2

RL = (R - 2) * 8- (R > 6)
3 - 2= 1 * 8 = 8 40 3
4 - 2= 2 * 8 = 16 48 4
5 - 2= 3 * 8 = 24 56 5
6 - 2= 4 * 8 = 32 64 6

RL = (R - 6) * 4- (R > 13)
7 - 6= 1 * 4= 4 68 7

8 - 6= 2 * 4= 8 72 8

9 - 6= 3 * 4 = 12 76 9
10 - 6= 4 * 4 = 16 80 10
11 - 6= 5 * 4 = 20 84 11
12 - 6= 6 * 4 = 24 88 12
13 - 6= 7 * 4 = 28 92 13

RL = (R -13) * 2
14 -13= 1 * 2= 2 94 14
15 -13= 2 * 2= 4 96 15
16 -13= 3 * 2 = 6 98 16
17 -13= 4 * 2= 8 100 17

Fig. 25-13. Computer upper limit range.

50 and 60 may be seen in Fig. 24-6. Statements similar to the state
ments in lines 50 and 60 are routinely used formulas to control print
outs to the screen.

70 PRINT "RANGE# BASE TOP COUNT"

Line 70 prints the heading for each column in the printout.

80 R = J : GOSUB 900 : UL = RL : R = J - 1 : GOSUB 900 :
LL = RL + 1 : IF LL = 1 THEN LL = 0

R = J is used as a temporary storage for the range loop J. If J is
not stored, it will be lost during the jump to, and return from, the
subroutine.

The branch to line 900 computes the range level (RL) by using
a logical comparison for all ranges (Fig. 25-14).

900 RL = R * 16 - (R > 2) * (R - 2) * 8 - (R > 6) * (R - 6) * 4 - (R > 13) * (R - 13)

* 2

R * 16 - (R > 2), the range number times 16 (#: of grade points
in the first two ranges), separates the first two ranges. The logical
expression, (- (R > 2)), separates the first two grade ranges based
on a spread of 16 points. If R is less than 2, the statement is true, or 1.
When the logical expression is true, it is activated""for the :6rst two

205

40 FOR J = 1 TO 17
80 R = J : GOSUB 900 : UL = RL : R = J - 1 : GOSUB 900 :

LL = RL + 1 : IF LL = 1 THEN LL = 0

IF LL = 1 THEN LL = 0
RL = R * 16 - (R > 2) LL=RL+l J - 1

0
1 * 16 = 16 0 1
2 * 16 = 32 17 2

RL = (R - 2) * B - (R > 6)
3 - 2 = 1 * 8= 8 33 3
4-2=2* 8 = 16 41 4
5-2=3* 8 = 24 49 5
6-2=4* 8 = 32 57 6

RL = (R - 6) * 4 - (R > 13)
7-6= 1 * 4= 4 65 7
8-6=2* 4 = 8 69 8
9-6=3* 4 = 12 73 9

10 - 6 = 4 * 4 = 16 77 10
11 -6=5* 4 = 20 81 11
12 - 6 = 6 * 4 = 24 85 12
13 - 6 = 7 * 4 = 28 89 13

RL = (R -13) * 2
14 -13 = 1 * 2 = 2 93 14
15 -13 = 2 * 2= 4 95' 15
16 -13 = 3 * 2 = 6 97 16
17 -13 = 4 * 2 = 8 99 17

Fig. 25-14. Compute lower limit range.

loop values (R = J). If R is greater than 2, the logical expression is
false, or zero. When the expression is false (0), zero times 16 = 0,
and the logical expression is not included in any other computation
(Fig. 25-13). Line 900 processes the range levels from 1 through 17.
This is the power of formulas in programming.

Lines 80 and 900 work in conjunction to produce the upper level
(TOP), UL = RL, of the range, and the lower level (BASE), LL
= RL + 1, of the range.

When the subroutine at line 900 has completed processing each
range level, it returns to line 80, UL = RL, to store the range level
computed into the upper level variable.

R = J -1 decrements the value of the loop variable stored in R,
so the upper level and the lower level will remain at the same value.
The program jumps to line 900 (GOSUB 900) to process the range
level again. When the subroutine at line 900 returns to line 80, the
range limit is incremented by 1 (LL = RL + 1), to produce the
lower limit (BASE) of the grade range. Line 80 and the formula at
line 900 have now produced the upper and lower limits of the grade
range from 1 to 100. The grade ranges run from one to 100, so a

206

special case must be accommodated to produce a grade range from
zero to 100.

IF II = 1 THEN II = 0 converts the lower level of the first grade
range from one to zero.

90 PRINT SPC(3); J : HTAB 13 : PRINT LL; : HTAB 20 : PRINT UL; :
HTAB 30 : PRINT cG(J)

Line 90 prints the output information under the proper headings.

100 T = T + CG(J) : NEXT J

T = T + CG(J) totals the number of grades in each grade range,
and NEXT J completes the loop structure, so all 17 grade ranges are
produced.

110 PRINT "OGIVE COUNT = ";T; " OF BO = "; T/BO; ""'''

Line 110 prints out the final OGIVE count as a check to deter
mine if all 80 student grades have been input and processed. The
ogive count was printed for each five ranges by line 60.

120 END

Formulas produce fast, efBcient, orderly output. This program,
written without formulas, would take approximately six times the
number of program statements to solve the same problem. When
possible, use formulas to save memory space, increase speed and
efficiency, and to systematize output.

207

LESSON 26

Double Subscripted
Arrays

Double subscripted arrays were introduced in Lesson 13. In that
lesson, a business program was presented that accepted inputs of
gross income and expenses and produced outputs of net income and
totals for all columns.

Double subscripted arrays may be thought of as an arrangement
of numbers in rows and columns. Numbers in the array may be ac
cessed by specifying the row and column of the array. For instance,
CF (2,3) calls the number in the array named CF (cash How). The
number is located in the row numbered 2 and in the column num
bered 3. Double subscripted arrays permit great Hexibility. The size
may be determined exactly. The array serves as a storage area for
large amounts of data or information. The contents of an array can
be processed and the results entered in other parts of the same array
with tremendous maneuverability.

The cash How program (Fig. 26-1) does an analysis of an invest
ment in income producing property to assist the potential buyer to
determine if the purchase will be profitable. Information concerning
the loan, depreciation, and investors' income is input (Fig. 26-2).
The input information is processed by the program (Fig. 26-3). The
output is a summary of cash benefits, tax benefits, and yields on
which to aid the purchase decision (Fig. 26-4).

The cash How program was written to be used as an investment
tool, and is being used to evaluate income situations.

The cash How program demonstrates the power of the double sub
scripted array by producing 25 rows (the length of the loan) and

208

10 REM : CASH FLOW PROGRAM TO
20 REM : DETERMINE INVESTMENT
30 REM: YIELDS ON INCOME PROP-
40 REM: ERTY:::COPYWRITED 1980
50 REM : BRIAN D. BLACKWOOD AND
60 REM : GEORGE H. BLACKWOOD
70 REM : 7020 BURLINGTON
80 REM : BEAUMONT, TEXAS 77706
90 REM : 713·866-6141
140 DEF FN R(Z) = (INT (Z * 1000 + .5) / 1000)
145 DEF FN A(X) = INT «X) + .5)
150 DIM HI$(15),NUM(2),H4(15,ll
160 HOME: VTAB 3
200 Hl$ = "NET OP INC LOAN VAL INT RATE LOAN LEN"
210 PRINT HI$
220 VTAB 4: INPUT" ";NOI: VTAB 4: HTAB 12: INPUT" ";PV: VTAB 4:

HTAB 23: INPUT" ";1: VTAB 4: HTAB 33: INPUT" ";Ll
240 H2$ = "ASSET COST ASSET LIFE SALVAGE VALUE": VTAB 5: PRINT H2$
245 VTAB 6: HTAB 1: INPUT" ";CA
250 VTAB 6: HTAB 15: INPUT" ";LA: VTAB 6: HTAB 26: INPUT" ";SV
255 DIM CF(ll + 1,14)
260 H3$ = "RATE OF DEP YRlY INCOME CASH EQUITY"
270 VTAB 7: PRINT H3$
280 VTAB 8: HTAB 4: INPUT" ";RD : VTAB 8: HTAB 14: INPUT" ";YI:

VTAB 8: HTAB 26: INPUT" ";CE
290 IF I > = I THEN I = I / 100 : GOTO 290
292 IF RD < I THEN RD = 100
310 GOSUB BOOO
320 DP = 1 / LA:DEP = (RD / 100) * DP:BV = CA - SV:TB = BV
360 CF(1,8) = 0:CF(I,9) = O:NE = YI:CF(O,14) = O:J = 1: GOSUB 7000
365 CF(O,14) = IRS
370 GOSUB 9000
380 AN=PV/DF:FORJ=ITOll

385 CF(J,2) = NOI
390 11 = PV * I:CF(J,3) = 11
395 CF(lL + 1,3) = CF(ll + 1,3) + CF(J,3)
410 PR = AN - I1:CF(J,4) = PR
415 CF(ll + 1,4) = CF(ll + 1,4) + CF(J,4)
420 BR = PV - PR:PV = BR
425 REM: COMPUTE CASH FLOW
430 CF(J,5) = CF(J,2) - (CF(J,3) + CF(J,4)
435 CF(lL + 1,5) = CF(ll + 1,5) + CF(J,5)
462 Dl = TB * DEP
464 CF(J,6) = DI
466 CF(LL + 1,6) = CF(LL + 1,6) + CF(J,6)
470 TB = TB - DI
500 CF(J,7l = CF(J,3) + CF(J,6)
505 CF(ll + 1,7) = CF(ll + 1,7) + CF(J,7l
520 CF(J,8) = CF(J,2) - CF(J,7l
523 IF CF(J,8) < 0 THEN CF(J,8) = 0
525 CF(Ll + 1,8) = CF(ll + 1,8) + CF(J,8)
540 CF(J,9) = CF(J,2) - CF(J,7l
545 CF(J,9)= (SGN (CF(J,9)) - 1) * CF(J,9) / 2

Fig. 26-1. Cash flow program.

209

547 CF(LL + 1,9) = CF(LL + 1,9) + CF(J,9)
560 CF(J,10) = CF(J,8) * CF(J - 1,14)
565 CF(LL + 1,10) = CF(LL + 1,10) + CF(J,10)
580 CF(J,ll) = CF(J,9) * CF(J - 1,14)
585 CF(LL + 1,11) = CF(LL + 1,11) + CF(J,l1)
590 CF(J,O) = YI + CF(J,10) - CF(J,11)
595 NE = YI + CF(J,10) - CF(J,l1) : GOSUB 7000:CF(J,14) = IRS
600 CF(J,12) = CF(J,s) + CF(J,l1) - CF(J,10)
610 CF(LL + 1,12) = CF(LL + 1,12) + CF(J,12)
660 CF(J,13) = CF(J,12) + CF(JA)
670 CF(LL + 1,13) = CF(LL + 1,13) + CF(J,13): NEXT J:CF(LL + 1,2) =

CF(1,2) * LL
675 CF(J,14) = IRS
680 VTAB 9: INPUT "YRS OWNED=";YO
690 IF YO = 0 THEN 900
695 IF YO < 1 OR YO > LL THEN 680
697 VTAB 9: CALL -958
700 FOR K = 3 TO 13
710 CF(O,K) = 0
720 FORJ=lTOYO
730 CF(O,K) = CF(O,K) + CF(J,K)
740 NEXT J,K
750 CF(0,2) = YO * CF(1,2)
760 IRS = CF(YO,14)
770 NE = CF(yO,O)
780 VTAB 9: PRINT "YRS OWNED=";YO; TAB(16);"END INC=";

FN A(CF(YO,O));"(";IRS;")"
810 VTAB 11: HTAB 16: PRINT YO;" YR TOT ";YO;" YR AV"; TAB(35);''YIELD''
820 VTAB 12: PRINT "CASH FLOW"; TAB(18); FN A(CF(0.5»; TAB (28);

FN A(CF(O,5) I YO); TAB(35); FN R(CF(O,5) I (YO * CE)
830 VTAB 14: PRINT "TAX SAV'S"; TAB(11); FN A(CF(O,l1))
840 VTAB 16: PRINT "TAX PAY"; TAB(11); FN A(CF(O,10»; TAB(19);

FN A(CF(O,l1) - CF(O,10»

850 VTAB 18: PRINT "CASH BENEFITS"; TAB(18); FN A(CF(0,12»; TAB(28);
FN A(CF(O,12) I YO); TAB(35); FN R(CF(O,12) I (YO * CE»

860 VTAB 19: PRINT "ADD:PRINCIPAL"; TAB(18); FN A(CF(OA»
870 VTAB 21: PRINT "TOTAL CASH AND"
880 VTAB 22: PRINT "AMORTIZATION"; TAB(18); FN A(CF(O,13)); TAB(28);

FN A(CF(O,13) I YO); TAB(35); FN R(CF(O,13) I (YO * CE»
890 GOTO 680
900 Hl$(O) = " 0.INCOME":H4(O,O) = 6:H4(O,1) = O:Hl$(1) = " 1.TAX

PAYABLE":H4(l,O) = 3:H4(l,l) = 7
910 Hl$(2) = " 2.NET OP INCOME":H4(2,O) = 6:H4(2,l) = 6:Hl$(3) =

" 3.INTEREST":H4(3,O) = 8:H4(3,l) = 0
920 Hl$(4) = " 4.PRINCIPAL":H4(4,O) = 9:H4(4,1) = 0:Hl$(5) = " 5.CASH

FLOW":H4(5,O) = 4:H4(5,l) = 4
930 Hl$(6) = 6.TOT DEPRECIATION ":H4(6,O) = 9:H4(6,1) = 7:Hl$(7) =

" 7.INC TAX DEDUCTS":H4(7,O) = 7:H4(7,l) = 7
940 Hl$(8) = 8.TAXABLE INC.":H4(8,O) = 7:H4(8,ll = 4:Hl$(9) = "

9.TAXABLE LOSS":H4(9,O) = 7:H4(9,1) = 4
950 Hl$(10) = "10.TAX PAYABLE":H4(10,O) = 3:H4(10,1) = 7:Hl$(11) =

"l1.TAX SAVINGS":H4(l1,O) = 3:H4(11,1) = 7

Fig. 26-1. (Cant) Cash flow program.

210

960 Hl$(12) = "12.CASH AVAILABLE":H4(12,0) = 4:H4(12,1) = 9:Hl$(13) =
"13.TOTAL BENEFITS":H4(13,0) = 5:H4(13,1) = 8

965 Hl$(14) = "14.TAX BRACKET":H4(14,0) = 3:H4(14,1) = 7:Hl$(15) =
"15.ANNUAL PAYMENT":H4(15,0) = 6:H4(15,1) = 7

970 CALL - 936: HTAB 14: PRINT "TABLE LISTING": PRINT: PRINT "ENTER 3
COLUMN VALUES FOR TABLE PRINT"

980 FOR J = 0 TO 14 STEP 2: PRINT Hl$(J); TAB(19);Hl$(J + 1): NEXT J:
PRINT

990 FOR N = 0 TO 2: PRINT "COLUMN ";N + 1;" = ";: INPUT NUM(N):
IF NUM(N) < 0 OR NUM(N) > 15 THEN 1010

1000 NEXT N
1010 N = N - 1: IF N < 0 THEN 3000
1020 FOR L = 1 TO LL
1030 IF L < > INT «L - 1) I 15) * 15 + 1 THEN 1080
1040 IF L < > 1 THEN INPUT "I";A$
1050 CALL - 936: PRINT "YEARS";: FOR J = ° TO N: HTAB (J + 1) * 10:M

= NUM(J): PRINT MID$(Hl$(M),4,H4(M,0»;: NEXT J: PRINT
1060 FOR J = 0 TO N: HTAB (J + 1) * 10:M = NUM(J): IF H4(M,1) > 0

THEN PRINT RIGHT$ (Hl$(M),H4(M,1»;
1070 NEXT J: PRINT : PRINT
1080 PRINT L;: FOR J = ° TO N
1090 HTAB (J + 1) * 10:M = NUM(J): IF M = 14 THEN 1110
1095 IF M < > 15 THEN 1100
1096 PRINT FN A(AN);: GOTO 1120

1100 PRINT FN A(CF(L,M»;: GOTO 1120
111 ° PRINT FN R(CF(L,M»;
1120 NEXT J: PRINT : NEXT L
1130 INPUT "I";A$: GOTO 970
3000 END
7000 RESTORE
7010 BS = 0
7020 READ UL,BF,IRS
7030 IF NE > = UL AND UL < > ° THEN BS = UL: GOTO 7020
7040 CF(J,14) = IRS
7050 CF(J,l) = BF + CF(J - 1,14) * (CF(J,O) - BS)
7100 DATA 3400,0,0
7110 DATA 5500,0,.14
7120 DATA 7600,294,.16
7130 DATA 11900,630,.18
7140 DATA 16000,1404,.21
7150 DATA 20200,2265,.24
7160 DATA 24600,3273,.28
7170 DATA 29900,4505,.32
7180 DATA 35200,6201,.37
7190 DATA 45800,8162,.43
7200 DATA 60000,12720,.49
7210 DATA 85600,19678,.54
7220 DATA 109400,33502,.59
7230 DATA 162400,47544,.64
7240 DATA 215400,81464,.68
7250 DATA 0,117504,.70
7900 RETURN
8000 FOR J = 3 TO 13

Fig. 26-1. (Cont) Cash flow program.

211

8010 CF(LL + 1,J) = 0
8020 NEXT J
8030 RETURN
9000 FOR J = 1 TO LL
9010 DF = DF + 1 I (1 + I) t J
9020 NEXT J
9030 RETURN

Fig. 26-1. (Cont) Calh flow program.

PURCHASE PRICE
LAND •• 50,000
BUILDING •••••••••••••••••••••••••••••••••••• 750,000
TOTAL PURCHASE PRiCE •••••••••••••••••••••••• 800,000
SALVAGE VALUE ••••••••••••••••••••••••••••••• 50,000
CASH EQUiTY ••••••••••••••••••••••••••••••••• 200,000

NET OPERAnNG INCOME ••••••••••••••••••••••••••• 80,000
OUTSIDE INCOME ••••••••••••••••••••••••••••••••• 40,000

per year
per year

MORTGAGE
LIFE OF THE LOAN ••••••••••••••••••••••••••••• 25
INTEREST RATE •••••••••••••••••••••••••••••••• 12
ANNUAL PAYMENTS (INTEREST & PRINCIPAL) •••••• 76,500

DEPRECIATION

years
%

40 years LIFE OF THE BUILDING •••••••••••••••••••••••••
DEPRECIATION METHOD •••••••••••••••••••••••• 200 % double declining

balance

Fig. 26-2. Calh flow and tax llenefits of inveltment property ownenhip.

NET TOTAL
OPERATING AMORTIZATION TOTAL DEDUC-

YEAR INCOME INTEREST PRINCIPAL CASH FLOW DEPRECIAT. TIONS
J,2 J,3 J,4 J,5 J,6 J.7

1 8.000 72,000 4,500 3.500 35.000 107.000
2 8.000 71,460 5,040 3.500 33,250 104.710
3 8.000 70.855 5,645 3.500 31.588 102.443
4 8.000 70.178 6.322 3.500 30.008 100.186
5 8.000 69,419 7.081 3.500 28.508 97.927

TOTALS 400.000 353,912 28.588 28,558 158,354 512.266

CASH
AVAILABLE
AFTER TOTAL
MORTGAGE CASH &

TAXABLE TAX TAX TAX & TAX AMORTIZAT. TAX
INCOME LOSS PAYABLE SAVINGS BENEFIT BENEFITS BRACKET
J.8 J.9 J.l0 J.ll J.12 J.13 J.14

0 27.000 0 11.610 15,110 19,610 .32
0 24.710 0 7.907 11.407 16,447 .37
0 22,443 0 8.304 11.804 17.449 .37
0 20.186 0 7,4lI1 10,969 17.291 .37
0 17.927 0 6.633 10.133 17,214 .37

0 122,266 0 41,923 59,423 88,011

Fig. 26-3. Input information.

14 columns. Fig. 26-3 shows 5 rows and 14 columns of the cash How
problem. The columns are J, 1 through J,14. Columns within the
array are operated on to produce other columns. The cash How col-

212

SUMMARY OF CASH & BENEFITS lOYI. TOTAL lOYl.AVG. YIRD
CASH FLOW (BEFORE INCOME TAX EFFECT) 35,000 3,500 .018
TAX SAVINGS •••••••••••••••• +63,023
TAX PAYABLE •••••••••••••••• - 0

SUB TOTAL 63,023
TOTAL CASH BENEFITS AFTER TAXES 98,023 9,802 .049
ADD PRINCIPAL PAID ON MORTGAGE 78,969
TOTAL CASH & AMORTIZATION BENEFITS 176,992 17,699 .088

AFTER TAXES

Fig. 26-4. Summary of cash and tax benefits.

umn (J,5) is produced by subtracting the principal 0,4) and the
interest (J,3) from the net operating income (J,2). CF(J,5) = CF(J,2)
- «CF(J,3) + CF(J,4». Net operating income is input as NOI, and a
replacement statement is used to place NOI into CF(J,2). CF(J,2)
= NOI.

The variables used in the program are shown in Fig. 26-5, as they
appear in the program. The variables in Fig. 26-6 are placed in
alphabetical order.

The double declining balance depreciation constant is computed
in line 320, and applied to the remaining depreciation (line 462) as
each year is incremented during the life of the loan loop.

310 GOSUB 8000

Line 310 initializes the columns that hold the totals to zero.
Line 360 sets up the investors' tax information contained in the

table at lines 7000 to 7900.
Lines 380 to 670 are the life of the loan loop that computes all the

rows and columns in the cash flow array.
Mter the rows and columns are generated, which takes about 60

seconds on a 25 year loan, the program defaults to line 780. Line 780
requests the user to input the YEARS OWNED. This input allows the
user to view the cash and tax benefits and yields for periods from one
year to the life of the loan. This output helps the user to determine
which period of holding time results in the greatest profit.

If zero is input in YEARS OWNED, the program branches to the
menu at line 900 to print out the individual tables in the array.

The menu selections and headings for the tables are set up in lines
900 through 965. This ingenious method uses single subscripted
string arrays to hold the header and double subscripted numeric
arrays to hold the number of spaces in the first and second lines of
the headers (Figs. 26-7 and 26-8). H1$(0-15) holds the menu selec
tion headings of each table. The string arrays and the numeric ar
rays are related. The first subscript in the numeric array relates to
the string array, and the second subscript relates to the line of the
header. Some of the two line headers are incorrectly separated, as in

213

Hl$
H2$
H3$
NOI
PV
I
II
CA
lA
SV
CF
CF(ll + 1,?)
RO
YI
CE
OP
OEP
BV
TB
NE
IRS
AN
CF(J,2)
11
CF(J,3)
CF(ll + 1,3)
PR
CI'(J,4)
CF(ll + 1,4)
BR
CF
CF(J,5)
01
CF(J,6)

= Header.
= Header.
= Header.
= Net operating income.
= loan amount
= Interest rate.
= life of the loan.
= Cost of the asset.
= life of the asset.
= Salvage value.
= Cash flow array.
= Holds totals for the individual column.
= Rate of depreciation - 200% double declining balance.
= Your personal yearly income.
= Cash equity.
= 11 lA - depreciation factor.
= (RO/l00)*OP - depreciation per year.
= Book value.
= Total book value.
= Net income.
= Tax bracket - CF(J,14) = IRS
= Annual payment on the loan.
= NOI - net operating income.
= Yearly interest.
=11
= Total interest paid for the period of analysis.
= Principal remaining.
.= PR
= Total principal paid for the period analyzed.
= Balance remaining.
= Cash flow.
= CF
= Total depreciation for one year.
= 01.

CF(ll + 1,6) = Total depreciation for the period analyzed.
TB = Total book value.
CF(J,7)
CF(LL + 1,7)
CF(J,8)
CF(ll + 1,8)
CF(J,9)
CF(LL + 1,9)
CF(J,10)

= Total deductions - interest and depreciation.
= Total deductions for the period of analysis.
= Taxable income.
= Total taxable income for the period of analysis.
= Tax loss.
= Total tax loss for the period analyzed.
= Tax payable.

CF(ll +
CF(J,ll)
CF(ll +
CF(J,O)
CF(J,12)

1,10) = Tax payable for the period analyzed.
= Tax savings.

1,11) = Total tax savings for the period analyzed.
= Yearly income and tax payable - CF(J,10)-CF(J,ll)
= Cash available after mortgage payments and payment of income

tax effect.
CF(ll + 1,12) = Total of cash available after mortgage payments and income tax

effect for period analyzed.
CF(J,13) = Total cash and amortization benefits after taxes.
CF(ll + 1,13) = Total of cash and amortization benefits after taxes for the period

analyzed.

Fig. 26-5. Variables as they appear in the program.

214

YO
HI $(0)
Hl$(15)
H4(0,0)
H4(15,1)
NUM(N)
N
M = NUM(J)

= Years owned.
= See Fig. 26-7
= See Fig. 26-7
= See Fig. 26-7
= See Fig. 26-7
= Number of column to be printed.
= Number of the column.
= loop variable J, placed in column array NUM, stored in the

variable M.

Fig. 26-5. (Cant) Variables as the, appear in the program.

AN
BR
BV
CA
CE
CF
CF(J,O)
CF(J,2)
CF(ll + 1,2}
CF(J,3)
CF(lL + 1,3)
CF(J,4)
CF(LL + 1,4)
CF(J,5)
CF(LL + 1,5}
CF(J,6)
CF(lL + 1,6)
CF(J,7)
CF(ll + 1,7}
CF(J,S)
CF(LL + I.S)
CF(J,9)
CF(LL + 1,9)
CF(J,10)
CF(lL + 1,10)
CF(J,I1)

= Annual payment on the loan.
= Balance remaining.
= Book value.
= Cost of the asset.
= Cash equity.
= Cash flow.
= Yearly income and tax payable - CF(J,10)-CF(J,1l)
= Net operating income.
= Total net operating income for the period analyzed.
= 11 - yearly interest.
= Total interest for the period analyzed.
= PR = principal remaining.
= Total principal for the period analyzed.
= CF = cash flow.
= Total cash flow for th~ period analyzed.
= 01 = depreciation for one year.
= Total depreciation for the period analyzed.
= Total deductions - interest and depreciation.
= Total deductions for the period analyzed.
= Taxable income.
= Total taxable income for the period analyzed.
= Tax loss.
= Total tax loss for the period analyzed.
= Tax payable.
= Total tax payable for the period analyzed.
= Tax savings.
= Total tax savings for the period analyzed. CF(lL + 1,11)

CF(J,12) = Cash available after mortgage payments and payment of income tax
effect.

CF(ll + 1,12) = Total of cash available after mortgage payments and income tax
effect for period analyzed.

CF(J,13) = Total cash and amortization benefits after taxes.
CF(lL + 1,13) = Total of cash and amortization benefits after taxes for the period

CF(J,14)
OEP
OP
01
Hl$
H2$
H3$
Hl$(?)

analyzed.
= IRS = tax bracket.
= (Rol 100)* OP - depreciation for one year.
= lILA - depreciation factor.
= Total depreciation for one year.
= Header.
= Header.
= Header.
= See Fig. 26-7.

Fig. 26-6. Variables in alphabetical order.

215

H4(O,0)
J
LA
LL

= See Fig. 26-7.
= Loop variable - FOR J = 1 TO N
= Life of the asset.
= Life of the loan.

M = NUM(J) = Loop variable J, placed in array column NUM, stored in the
variable M.

N
NOI
NUM(N)
PR
PV
RD
SV
TB
YI
YO

= Number of the column.
= Net operating income.
= Number of the column to be printed.
= Principal remaining.
= Loan amount.
= Rate of depreciation - 200% double declining balance.
= Salvage value.
= Total book value.
= Your personal yearly income.
= Years owned.

Fig. 26-6. (Cont) Variables in alphabetical order.

Hl$(5)=" 5.CASH FLOW" HEADER STRING ARRAY
/ELATES TO THE FIRST LINE OF THE HEADER

->RElATES TO .,$(5)

H4(5'~

RELATES TO THE SECOND LINE OF THE HEADER

(H1$(6) - TOT. DEPRE-CIATlON), but the technique produces the
correct results.

The logic of the algorithm stores the values to indicate a one line
header (H4(0,0)=6 - H4(0, 1)=0) or a two line header (H4(5,0)=4 -
H4(5,l)=4), and indicates how many characters are contained in the
first line and how many characters are contained in the second line.

Hl$(O)=" O.INCOME" ----HEADER STRING ARRAY
H4(O,O) = 6 SIX CHARACTERS IN THE FIRST LINE
H4(O,1)=O ZERO CHARACTERS IN THE SECOND LINE

Mter all fifteen values are set, line 970 clears the screen and prints
TABLE LISTING and ENTER 3 VALUES FOR TABLE PRINT.

Line 980 prints the menu selection.
Line 990 sets up a loop to output to the screen three columns

(0 to 2). The user inputs the number of the column in a single sub
scripted array and the array is checked to determine if it is between
1 and 15. If the column number is not between I and 15, the program
jumps out of the loop to line 1010.

216

LENGTH OF LENGTH OF
H1$ lstLlNE 2nd LINE lst LINE 2nd LINE

Hl$(O)=" O.INCOME" INCOME NONE H4(0.0) = 6 H4(0.1)=0
Hl$(1)=" I.TAX PAYABLE" TAX PAYABLE H4(1.0)=3 H4(1.1)=7
Hl$(2)=" 2.NET OP INCOME" NET OP INCOME H4(2.0) = 6 H4(2.1)=6
Hl$(3)=" 3.INTEREST" INTEREST NONE H4(3,O) = 8 H4(3.1)=0
Hl$(4)=" 4.PRINCIPAL" PRINCIPAL NONE H4(4.0) = 9 H4(4.1)=0
Hl$(5)=" 5.CASH FLOW CASH FLOW H4(5.0)=4 H4(5.1)=4
Hl$(6)=" 6.TOT DEPRECIATION" TOT DEPRE CIATION H4(6.0) = 9 H4(6.1)=7
Hl$(7)=" 7.INC TAX DEDUCTS" INC TAX DEDUCTS H4(7.0)=7 H4(7. 1) = 7
HI $(8)= " 8.TAXABlE INC." TAXABLE INC. H4(8.0) = 7 H4(8.1)=4
Hl$(9)=" 9.TAXABLE LOSS" TA~ABLE LOSS H4(9.0) = 7 H4(9.1)=4

Hl$(10)="10.TAX PAYABLE" TAX PAYABLE H4(10.0)=3 H4(10.0)=7
Hl$(ll)="ll.TAX SAVINGS TAX SAVINGS H4(11.0)=3 H4(11.1)=7
Hl$(12)="12.CASH AVAILABLE" CASH AVAILABLE H4(12.0)=4 H4(12.1)=9
Hl$(13)="13.TOTAL BENEFITS" TOTAL BENEFITS H4(13,O)=5 H4(13.1)=8
Hl$(14)="14.TAX BRACKET TAX BRACKET H4(14.0) = 3 H4(14.1)=7
Hl$(15)="15.ANNUAL PAYMENT" ANNUAL PAYMENT H4(15.0) = 6 H4(15.1)=7

THE 1st ALPHA CHARACTER OF Hl$(?) IS ALWAYS THE 4th CHARACTER OF THE HEADER

Fig. 26-7. Header construction.

4th CHARACTER IN Hl$(5) AND ALL Hl$(?)'s

~~ROW'
To< LINE OF HEADER r LINE OF HEADER

H"'5'~ /,1)='
RELATED TO Hl$(5)

Fig. 26-8. Header detail.

In line 1010, N = N - 1 decrements the column number to pro
duce the correct value of N. When the program jumps out of the
loop, the loop value is one more than the correct value. To produce
the correct value of N, one must be subtracted. This was discussed
in Lesson 6.

IF N < 0 THEN 3000. When the user is through working with the
program, an input of -1 (less than zero) causes a branch to line
3000 to end the program.

217

Line 1020 is the beginning of the loop to compute the values in the
tables. LL is the variable used to hold the life of the loan value.

Program statements similar to lines 1030 and 1040 are detailed in
Fig. 24-6 in Lesson 24. Line 1030 computes when 15 years of the
table have been printed on the screen.

The only function of line 1040 is to stop the program. On the first
loop pass L = 1. The program defaults through 1030, 1040, and prints
the headings in 1050 and 1060. On each subsequent loop pass, the
program branches from 1030 to 1080. When line 1030 is false the
program defaults to line 1040. If L is not one (L = 16) the program
inputs "I" and stops. This allows the user to view and study the 15
rows of the tables printed on the screen. When the user is ready for
the program to resume, RETURN is pressed.

Line 1050 prints the first line of the column header on the screen
and clears the screen. In line 1050, N is the variable that holds the.
number of columns, and HTAB (J + 1)*10 sets the column in the
correct position on the screen. The column value is stored in the
variable M. P7' '·'~

HEADER STRING 4th CHARACTER IN HI $(M)

COLUMN VALUE

RELATED TO 1st LINE OF H4(M,O)

RELATED TO Hl$(M)

In line 1060, second line of the header is printed. N is the variable
that holds the number of columns. The value of the column is placed
in the variable M.

IF H4(M,1) > 0 THEN PRINT RIGHT$(Hl$(M), H4(M,l»

/ lR~TED TO 2nd
IF THERE IS A LINE OF H4(M,1)
2nd LINE

RELATED TO Hl$(M)

HEADER ARRAY
COLUMN VALUE

218

When the column headings have been printed, the program de
faults to line 1080 to print L, which represents the year. The second
statement in line 1080, FOR J = 0 TO N, is the beginning of a loop
that controls the number of columns to be printed. Line 1090 tabs
to the proper location on the screen to print the columns. M = NUM{J)
stores the number of the column to be printed in the variable M.

If line 1090 is true the program branches to line 1110 to print out
the rounded (line 140) cash How array values for row L, column M.
If M = 14 is false, the program defaults to line 1095. If line 1095 is
true, the program branches to line 1100 to print out the integer func
tion (line 145) of the cash How array, row L, column M. If M<>15
is false, the program defaults to line 1096. FNA (AN) is the integer
(line 145) cash How array of the annual payment. The annual pay
ment on the loan is computed by dividing the loan value by the dis
count factor (line 380), and is not computed by the loop execution
and placed in the table.

SGN FUNCTION MAKES ALL NEGATIVE NUMBERS-POSITIVE
SGN FUNCTION MAKES ALL ZERO NUMBERS ZERO
SGN FUNCTION MAKES ALL POSITIVE NUMBERS -ZERO

TAXABLE LOSS NET OPERATING INCOME DEDUCTIONS
CF(J,9) = CF(J,2) - CF(J,7)

CF(J,9) = (SGN(CF(J,9» -1)*CF(J,9)/2

IF CF(J,9) < 0 THEN SGN IS -1
IF CF(J,9) = -2000

(SGN(CF(J,9» -1)*CF(J,9)/2
(SGN(-2000) -1)* -2000/2

(-1 -1)* -2000/2
-2* -2000/2

+4000/2
= 2000

IF CF(J,9) = 0 THEN SGN = 0
(0 -1)* 0/2 = 0

IF CF(J,9) = + 2000 THEN SGN = + 1
(SGN(CF(J,9» -1)* CF(J,9)/2

(+1 -1)* 2000/2
o * 2000/2

= 0

Fig. 26-9. Sign (SGN) function.

The SGN function (Fig. 26-9) is used in line 545. The SGN func
tion returns only three values +1, 0, and -1. These values relate to
greater than zero, zero, or less than zero. In this case, if the tax loss
is a positive number, SGN(CF(J,9» = +1, (SGN(CF(J,9» -1)

219

= 0, and zero times CF(J,9)/2 = zero. When the tax loss is a nega
tive number, (SGN(CF(J,9» -1) = -2. When -2 is multiplied
by a negative CF(J,9)/2. the factor (-2/+2) divides out leaving

. a negative value. A negative times a negative is a positive value.
The purpose of the SGN function is to make all negative numbers
positive, leave zero numbers zero, and make all positive numbers
zero. The SGN function is used so a tax loss, which is a negative
number, can be converted into a positive number. The positive
number is then multiplied by the previous year's tax rate, (CF(J -1,
14)), and the results are placed in the tax savings column, CF(J,l1).

CF(J-1, 14) gives the tax rate for the previous year which is used
to compute this year's taxes. CF(J, 14) gives the tax rate for the
present year.

The cash How program outputs the cash How, tax benefits, and
yields for a single year or a number of years. This information as
sists the prospective buyer in determiiling how the purchase will
affect his cash How and future net worth. This information will aid
with the decision to buy the property or not to buy the property.

220

SECTION III

Supplement

LESSON 27

Graphics

Lesson 27 contains two programs. The first program, LO - RES
EXPLAINER, explains the details of low resolution graphics. The
second program, OGIVE, uses the program in Lesson 25 to generate
a graph of cumulative distribution of student grades.

Graphics is the art or science of drawing, especially by mechani
cal principles, as in mechanical drawing. It is also the science of cal
culating by means of graphics, diagrams, etc.

The Apple II computer has three modes of screen display: (1)
full text, (2) split screen graphics with four lines of text at the bot
tom of the screen, and (3) full screen graphics (Figs. 27-1 and 27-2).

The full text mode has 24 rows, 1 to 24, and 40 columns, 0 to 39,
to display text on the screen.

The split screen graphics mode contains 40 X positions, 0 to 39,
and 40 Y positions, 0 to 39, leaving four rows for text. The text rows
are 21, 22, 23, and 24. Each two rows of graphics equals one row of
text.

The full screen graphics mode contains 40 X positions, 0 to 39,
and 48 Y positions, 0 to 47. In the full screen graphics mode, one X
position is the same width as one column of text, but one Y position
is equal to one-half row of text, Fig. 27-1, and Fig. 27-2.

Fig. 27-3 lists the low resolution graphics commands and state
ments.

Fig. 27-4 lists the color names and related values used in low
graphics.

The LO - RES EXPLAINER program (Fig. 27-5) was written to
explain and demonstrate the use of low resolution graphics.

When the Apple computer is turned on, it comes up in the text
mode. To change the TEXT mode, GR is typed on the screen as an

223

Y COORDINATE

QUADRANT I

X COORDINATE

0.0 39.0

TEXT SCREEN

QUADRANT II

20
21
22
23
24

THE ·SCREEN POSITION IS IN THE
POSITIVE X AND NEGATIVE Y
COORDINATE AREA BUT IS A
MIRROR IMAGE OF QUADRANT I

Fig. 27-1. Textscrean.

0.0 39.0

GRAPHICS
SPLIT SCREEN

0.39 39.39

40
42 POKE - 16302.0
44
46 GRAPHICS FULL SCREEN
48

(THE SCREENS ARE NOT TO SCALE)

Fig. 27-2. Graphics screen.

immediate execution, or GR is placed in a program statement to be
executed in the deferred mode. GR mode comes up with COLOR =
o (black). The color must be changed before a PLOT, VLIN, or
HLIN execution. H the color is not designated, it remains the same
color as previously set.

Line 10 clears the screen and VT AB's to row 10 on the screen.

224

COLOR = 8 Sets color for 10 - resolution graphics. 8 = pink.
GR Sets 10 - resolution graphics mode of screen.

40 rows by 40 columns. Sets COLOR = 0 (black).
POKE - 16301.0 = GR.

HLiN 1. 39 AT 20 Draws a horizontal line from column 1 to column 39 at row 20.
PLOT 5.10 Places a square on the screen at X coordinate 5. and Y coordi

nate 10. COLOR must be set to other than zero or the square
will be black on a black screen.

SCRN 5.10 Returns the color value of the square at location 5. 10.
TEXT Sets the screen to the full screen TEXT mode.
VLlN 10.20 AT 20 Draws a line from row 10 to row 20 at column 20.

Fig. 27-3. Low resolution graphics commands and statements.

Line 20 indicates the program content.
Line 40 is a pause loop to allow the user time to view the printout.

GOSUB 1000 is used throughout the program, and will not be men
tioned again during the discussion.

o BLACK 8 B~OWN
1 MAGENTA 9 ORANGE
2 DARK BLUE 10 GREY
3 PURPLE 11 PINK
4 DARK GREEN 12 GREEN
5 GREY 13 YELLOW
6 MEDIUM BLUE 14 AQUA
7 LIGHT BLUE 15 WHITE

Fig. 27·4. Low resolution graphics color names and related numbers.

Line 50 sets the graphics mode and VTAB's to line 21, which is the
first usable line in the TEXT portion of the screen, and prints the
line in the print statement. This line remains on the screen as a re
minder of the beginning of the first portion of usable text, in split
screen graphics.

Line 70 places the screen in the text mode and returns it to the
GRaphics mode to demonstrate what a graph looks like when the
screen is changed back to text.

In line 80, COLOR = 15 sets the color to white before the square
is colored. The computer retains the color designation in memory
and sets all lines and squares to that color, until the color designa.
tion is changed (Fig. 27-4).

PLOT 0,0 in line 80 sets the square at column 0, row 0 to white. The
column value is the first digit or digits, and the row value is the sec
ond digit or digits (Fig. 27-6). PLOT 0,0 and PLOT 39,0 cause two
white squares to be placed at the outermost positions on the top
row (Fig. 27-6).

In line 90, the color is changed to magenta (COLOR = 1), and
PLOT 0,39 and PLOT 39,39 place two magenta squares on the outer
most position of the split screen graphics.

225

10 HOME: VTAB 10
20 HTAB 12: PRINT "LO·RES EXPLAINER"
30 PRINT : PRINT
40 GOSUB 1000
50 GR : VTAB 21: PRINT" ---- THIS IS THE BOnOM

EDGE-----"
60 GOSUB 1000
70 TEXT : GOSUB 1000: GR
80 COLOR= 15: PLOT 0,0: PLOT 39, 0: GOSUB 1000
90 COLOR= 1: PLOT 0,39: PLOT 39, 39: GOSUB 1000
100 COLOR= 11: HUN 2,37 AT 0: GOSUB 1000
110 HLIN 2,37 AT 39: GOSUB 1000
120 COLOR= 12: VUN 2,37 AT 0: GOSUB 1000
130 VUN 2,37 AT 39: GOSUB 1000
140 FOR K = 1 TO 4: GOSUB 1000: NEXT K
150 FOR X = 2 TO 36: COLOR= X - INT (X I 16) * 16
160 PLOT X,(37 - .122 * (X - 19)t 2)
170 NEXT X: VTAB 22: HTAB 2: PRINT "GRAPH OF Y = -.122 * (X-19) t

2 + 37": GOSUB 1000: GOSUB 1000: GOSUB 1000
180 PLOT 15,47: GOSUB 1000
190 POKE - 16302,0: GOSUB 1000
200 COLOR= 0
210 FOR K = 40 TO 47: HUN 0,39 AT K: NEXT K: GOSUB 1000
220 COLOR= 1: VUN 42,46 AT 0: HUN 1,2 AT 41: HUN 1,2 AT 47: VUN

45,46 AT 3: PLOT 3,42: PLOT 2,44
240 COLOR= 3: VUN 42,47 AT 5: HUN 6,7 AT 41: VUN 42,43 AT 8: HUN

6,7 AT 44: PLOT 6,45: PLOT 7,46: PLOT 8,47
260 COLOR= 5: VUN 42,47 AT 10: HUN 11,12 AT 41: VUN 42,47 AT 13:

HLIN 11,12 AT 44
280 COLOR= 7: VUN 42,47 AT 15: HUN 16,17 AT 41: VLIN 42,43 AT 18:

HUN 16,17 AT 44
300 COLOR= 9: VUN 41,47 AT 20: HUN 21,22 AT 44: VUN 41,47 AT 23
320 COLOR= 11: HLIN 25,27 AT 41: VUN 42,47 AT 26: HUN 25,27 AT 47
340 COLOR= 13: VLIN 42,46 AT 29: HUN 30,31 AT 41: PLOT 32,42: VUN

45,46 AT 32: HUN 30,31 AT 47
360 COLOR= 15: HLIN 35,37 AT 41: HUN 35,37 AT 47: PLOT 34,46: PLOT

38,46: PLOT 37,45: PLOT 36,44: PLOT 35,43: PLOT 34,42: PLOT 38,42
950 FOR K = 1 TO 30: GOSUB 1000: NEXT K
960 POKE - 16301,0: HOME: VTAB 22: PRINT "THAT'S ALL" .
970 GOSUB 1000: GOSUB 1000: GOSUB 1000
980 TEXT: HOME
999 END
1000 FOR J = 1 TO 1800: NEXT J: RETURN

Fig. 27-5. LO-RES EXPLAINER program.

In line 100, the color is changed to pink and a horizontal line is
drawn from column 2 to column 37 at row 0, across the top of the
screen (Fig. 27-6). HUN is the statement for a horizontal line.

Line 110 draws a horizontal line at row 39, across the bottom of
the screen. The line is pink.

In line 120, the color is changed to green, and a vertical line is
drawn from row 2 to row 37 at column zero. VLIN sets the column

226

COLOR = 15 PLOT 0,0 (A)
WHITE PLOT 39,0 (B)

COLOR = 1 PLOT 0, 39 (C)
MAGENTA PLOT 39, 39 (0)

COLOR = 11 HLiN 2, 37 AT 0 (El
PINK HLiN 2, 37 AT 39 (F)

COLOR = 12 VLlN 2, 37 AT 0 (G)
GREEN VLlN 2, 37 AT 39 (H)

POKE -16302,0 GOES TO FULL SCREEN GRAPHICS

A E B

I I
G H

C F 0

20
21 VTAB 21 THIS IS THE BOTTOM LINE
22 GRAPH OF Y - - .122 • (X -19) 2 + 37
23
24

Fig. 27-6 LO-RES EXPLAINER

value to color the squares. The "AT 0" designates the column in
which to draw the line (Fig. 27-6).

In line 130, a green vertical line is drawn on the right side of the
screen. The screen now has four colored squares at each comer and
a colored line on each side of the screen. The lines are separated
from the squares by a single space.

Line 140 is a pause loop that is four times as long as the normal
pause loop at GOSUB 1000.

In line 150, FOR X = 2 TO 36 is the beginning of a loop used to
plot a parabola on the screen starting at column 2. The loop has a
second function, to set the color value for the squares to be plotted.

COLOR = X - INT(X/16) * 16 in line 150 subtracts color values
over 15. If the color value went over 15 the program would stop
running. The values input to the computer must be in the legal
range (0 to 15) or a processing error will occur.

Line 160 plots the parabola.
The standard X, Y axes are the basis of the screen display (Fig.

27-7). In the standard graph, the value of X increases from le~ to
right. The value of Y increases from bottom to top. The two axes

227

cross at the 0,0 position. There are four quadrants on the graph.
Quadrant I is positive X, positive Y. Quadrant II is positive X, neg-

STANDARD GRAPH

+y

IV

-x 0,0 +x

III II

-y

Fig. 27-7. Standard graph.

ative Y. Quadrant III is negative X, negative Y. Quadrant IV is
negative X, positive Y.

The Apple screen is located in quadrant I of the graph. However,
the negative Y and positive Y axes are reversed. This causes the
Apple screen to be a mirror image of quadrant I (Fig. 27-8).

-x

APPLESCREEN

-y

+y

0,0 +x

SCREEN AREA
MIRROR IMAGE OF
QUADRANT I
ABOVE THE X AXIS

Fig. 27-8. Apple screen.

The problem to be solved in the graphics demonstration is to plot
the graph of a parabola with its apex pointing toward the bottom of
the display screen. Figs. 27-9, 27-10, 27-11, 27-12, 27-13, and 27-14
show the formula graph display as it appears on the screen.

The formula for a parabola is Y = AX2 + B. Variations of this
formula are used to plot the parabola. Lines 150, 160, and 170 of
the program produce the graph of a parabola with its apex pointed
toward the bottom of the screen.

Plotting Y = X2 (Fig. 27-9) produces a graph in the proper quad
rant. The apex of the graph is pointing up, but only the right half of
the graph is displayed on the screen.

228

-v

-x +X

+Y

Fig. 27-9. Y = X2.

Plotting Y = (X - 19)2 (Fig. 27-10) produces a graph with its
apex pointing up, and the graph is centered on the screen. The
graph has been moved nineteen X positions to the right on the posi
tive X axis.

v = (X-19)2

-v

-x

+Y

Fig. 27-10. Y = (X-19)2.

The remaining usable screen is between the line 2,0 to 37,0, and
the line 2,37 to 37,37 (Lines and squares created by the program fill
the screen at 0,0 to 39,0, and 0,39 to 39,39). To fit the graph into the
usable screen space, the graph must be sized to the screen. We do
this using the sizing factor. SF stands for sizing factor.

LEFT EDGE SIZING FACTOR

37 = SF * (2 - 19)2 = 172 = 289
SF = 37/289 = .128

RIGHT EDGE SIZING FACTOR

37 = SF * (37 - 19)2 = 182 = 324
SF = 37/324 = .114

The two sizing factors are averaged, {.128 + .114)/2 = .122, and
the constant .122 is the figure we use to size the graph vertically.

229

The formula is changed to include the sizing constant, Y = .122 *
(X - 19)2 (Fig. 27-11).

v= .122*(X-19)2

-v

-x

2.37 37.37
+v

'il.27-11. Y = .122 *(X-19):I.
The next step is to place the apex of the parabola towards the

bottom of the screen. To invert the graph, a negative sign is placed
before .122. The formula, Y = -.122 * (X - 19)2, is shown in Fig.

v = -.122 * (X-19)2

-v

-x

+v

.il.27-12.Y= -.122*(X-19):I.
27-12. The formula places the apex toward the bottom of the screen.
The negative sign causes the graph to disappear from the screen be
cause it shifts to the true quadrant I.

v = -.122 * (X-19)2 + 37

-v

-x +X

v
+v

'il.27-13. Y = -.122 *(X-19):I + 37.

230

To cause the graph to he displayed on the screen, +37 is added
to the formula. The formula is, Y = -.122 * (X - 19)2 + 37 (Fig.
27-13). This adjustment to the formula places the graph, apex down,
on the viewing screen.

The formula in Fig. 27-14 is coded to plot the graph. The program
statement at line 160 causes the parabola to be graphed on the
screen with its apex pointing down, thus solving the problem.

Line 170 completes the plot of the graph. VT AS 22 : HT AS 2 sets
the location for the print statement. GRAPH OF Y = -.122 *
(X - 19) A 2) + 37 is printed on line 22 of the TEXT area of the split
screen graph (Fig. 27-6).

PLOTX, (37 - .122· (X -19) 1\ 2)

-y

-X \)37.37
+y

Fig. 27-14. Plot X, (37-.122*(X-19)A2).

Line 180 plots the square at 15,47. The square is plotted in the
TEXT area of the screen and shows as a light "@".

40~--~--r--.---'

43~--+---~~--~

44~--+-~~-+--~

46;---+---r--;---i

47;---+---~~--~

481---+---~~--~

o 3 4

Fig. 27-15. Graphics G.

231

Line 190, causes the display to go to full screen graphics.
Line 200 sets the color to black.
Line 210 blacks out horizontal lines in the £ull screen graphics

from lines 40 to 47.
Lines 220 through 360 produce the word GRAPHICS, each letter

in a different color, at the bottom of the screen in lines 40 to 47
(Fig. 27-15).

Line 950 is a long pause loop. It gives the user time to view the
demonstration.

In line 960, POKE -16301,0 switches display from graphics mode
5 REM : OGIVE GRAPHICS
10 HOME
20 DIM CG(m
30 GOSUB 800
40 T = 0: FOR J = 1 TO 17
50 IF J < > INT «J - 1) I 5) * 5 + 1 THEN 80
60 IF J < > 1 THEN PRINT "OGIVE COUNT=";T;" OF 80 =";T I 80;"%":

INPUT "I";Q$
70 PRINT "RANGE # BASE TOP COUNT"
80 R = J: GOSUB 900:UL = RL:R = J .,.. 1: GOSUB 900:LL = RL + 1:

IF LL = 1 THEN LL = 0
90 PRINT SPC(3);J;: HTAB 13: PRINT LL;: HTAB 20: PRINT UL;: HTAB 30:

PRINT CG(J)
100 T = T + CG(J): NEXT J
110 PRINT "OGIVE COUNT=";T;" OF 80 = ";T I 80;"%"
120 INPUT "I";Q$
130 GR: HOME: COLOR= 1: VLIN 0,39 AT 0: HLIN 2,39 AT 39
140 T = 0: FOR J = 1 TO 17: COLOR= J - 1 + (J = 1) * 15 -

(J = m
150 VLIN 37 - (CG(J) + T - CG(1» I (80 - CG(1) * 37,37 AT J * 2 + 2
160 T = T + CG(J): NEXT J
170 VTAB 21: PRINT" R# ";: FOR J = 1 TO 9: PRINT J;" ";: NEXT J:

FOR J = 1 TO 8: PRINT "1";: NEXT J
180 VTAB 22: HTAB 23: FOR J = 0 TO 7: PRINT J;" ";: NEXT J
190 PRINT
690 INPUT "I";Q$
700 TEXT: HOME : END
800 FOR J = 1 TO 80:SG = INT (RND(1.0) * 101): IF SG = 0 THEN

SG = 1
810 IF SG > 32 THEN 830
820 CG«SG - 1) I 16 + 1) = CG«SG - 1) I 16 + 1) + 1: GOTO 880
830 IF SG > 64 THEN 850
840 CG(3 + (SG - 33) I 8) = CG(3 + (SG - 33) I 8) + 1:: GOTO 880
850 IF SG > 92 THEN 870
860 CG(7 + (SG - 65) I 4) = CG(7 + (SG - 65) I 4) + 1:: GOTO 880
870 CG(14 + (SG - 93) I 2) = CG(14 + (SG - 93) I 2) + 1
880 NEXT J: RETURN
900 RL = R * 16 - (R > 2) * (R - 2) * 8 - (R > 6) * (R - 6) * 4 - (R > 13) * (R - 13)

* 2
910 RETURN

Fig. 27-16. OGIVE program.

232

back to text mode. HOME clears the screen. VT AB 22 tabs to line 22
to print THAT'S All.

The second program in Lesson 27 is OGIVE (Fig. 27.,16). In Les
son 25, FORMULAS, the OGIVE program was presented. The pro
gram randomly input 80 student grades and placed them in 17
ranges. The output was information on which to make an ogive of
cumulative distribution. Lesson 27 adds graphics to the original
program so the ogive is printed on the screen. Lines 130 through 700
(Fig. 27-16) produce and print the ogive on the screen.

RANGE # BASE TOP COUNT
1 0 16 11
2 17 32 11
3 33 40 4
4 41 48 9
5 49 56 5

OGIVE COUNT=40 OF.80 =.5%

RANGE # BASE TOP COUNT
6 57 64 6
7 65 68 3
8 69 72 3
9 73 76 5
10 77 80 3

OGIVE COUNT=60 OF 80 =.75%

RANGE # BASE TOP COUNT
11 81 84 4
12 85 88 2
13 89 92 7
14 93 94 2
15 95 96 1

OGIVE COUNT=76 OF 80 =.95%

RANGE # BASE TOP COUNT
16 97 98 2
17 99 100 2

OGIVE COUNT=80 OF 80 =1%

Fig. 27-17. OGIVE data.

In line 130 GR sets the split screen graphics mode. HOME clears
the screen. COLOR = 1 sets the color to white.

VUN 0,39 AT 0 draws a vertical line in column zero. HUN 2,39 AT
39 draws a horizontal line at row 39. These lines highlight the left

.side and bottom area in which the ogive is placed (Fig. 25-10). The
student grades are randomly input, so no two ogives will be the
same.

In line 140, T = 0 initializes the totaling variable to zero. FOR J =
1 TO 17 is the beginning of the loop to display the 17 different grade
ranges.

233

COLOR = J - 1 + (J = 1) * 15 - (J = 17) is a formula used to
change the color on each loop execution. J = 1 is a logical expression
used to eliminate J = 0 (black). J = 17 is a logical expression used
to subtract the value of J = 17, and cause the color value to be gen
erated in a circular mode.

The formula at line 150 processes the ogive data generated by the
program and graphs the ogive of cumulative distribution.

Fig. 27-18 details the processing action to produce the bar graph.
The value of the loop variable, J, is recorded in column Cl. J rep

resents the 17 ranges used in the graph.
COLUMN4'CG(1)' = 11 COLUMN6'80 - C4' = 69

J CG(J) T C2+C3-C4 C5/C6 C7*37 37-C8
Cl C2 C3 C5 C7 C8 C9

1 11 0 0 0000 0 37
2 11 11 11 .159 5 32
3 4 22 15 .217 8 29
4 9 26 24 .348 12 25
5 5 35 29 .420 15 22
6 6 40 35 .507 18 19
7 3 46 38 .551 20 17
8 3 49 41 .594 21 16
9 5 52 46 .667 24 13

10 3 57 49 .710 26 11
11 4 60 53 .768 28 9
12 2 64 55 .797 29 8
13 7 66 62 .899 33 4
14 2 73 64 .928 34 3
15 1 75 65 .942 34 3
16 2 76 67 .971 35 2
17 2 78 69 1000 37 0

VLlN C9,37 AT J*2+2
Cl0

37,37 AT 4
32,37 AT 6
29,37 AT 8
25,37 AT 10
22,37 AT 12
19,37 AT 14
17,37 AT 16
16,37 AT 18
13,37 AT 20
11,37 AT 22
9,37 AT 24
8,37 AT 26
4,37 AT 28
3,37 AT 30
3,37 AT 32
2,37 AT 34
0,37 AT 36

Fig. 27· 18. OGIVE graph information.

Column C2 holds the value of the number of grades in grade
range CG(J). These are the same values generated by the program
and listed in Fig. 27-17.

Column C3 holds the total number of grades and is computed by
the fonnula in line 160, T = T + CG(J).

Column C4 is a constant, whose value is 11 . Eleven is the number
of grades in the first grade range.

Column C5, C2 + C3 - C4, computes the number of grades in
each grade range less the number of grades in the first grade range
(11). This causes range 1 to be printed as one instead of 11. The 11
is subtracted out of the number of grades in each grade range. Sub
tracting the 11 from all range values expands the rest of the ranges
to accurately relate how many students are in each range. It expands
the graph to give better definition without distorting the truth.

Column C6 is a constant to reflect the total number of grades less
the grades in range 1. Total grades = 80, less the 11 grades in range 1,
leaves the constant with a value of 69.

234

Column C7, C5/C6, divides the total grades less the grades in
range 1, by the constant 69. Column C7 produces a percentage of
the total grades in each range.

The maximum length of any bar in the graph is 37. Column CS,
C7*37, takes the percentage of grades and multiplies by 37 to get
the number of squares to be subtracted from the bar in the graph.

Column C9, 37 - CS, subtracts the value computed in CS from
37 (maximum length of the bar), so that the bar extends from the
bottom line upwards.

Column CI0, VLlN C9,37 AT J * 2 + 2, produces the vertical line
to be printed in the proper column on the ogive.

The column at which the bar is printed is computed by the for
mula J * 2 + 2.

Careful study of Figs: 27~17 and 27-1S shows the power and beauty
of formulas, and how they produce speed and efficiency.

Lines 170 and ISO produce the range labels, below the ogive.

VTAB 21 R# 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1
VTAB 22 : HTAB 23 0 1 2 3 4 5 6 7

The range labels are tied with the formula in line 150, so J * 2 + 2
prints the bar in the properly labeled column.

Line 190 causes a line to be skipped between the lowest label in
the ogive and the input at line 690.

Line 690 causes an exclamation mark to be placed at line 24, col
umn 1, and allows the user time to study the ogive. When the user
has completed his study of the ogive, RETURN is pressed. Pressing
RETURN places the screen in the TEXT mode. HOME clears the
screen and the program ends.

235

LESSON 28

High Resolution
Graphics

High resolution graphics is very similar to low resolution graphics
in Lesson 27. High resolution graphics will not run with Applesoft
on tape or disk. HGR WILL ONLY RUN WITH APPLESOFT IN
ROM.

High resolution graphics has two modes: (1) split screen graph
ics, with the four bottom lines for text, and (2) full screen graphics.

The split screen mode (Fig. 28-1) divides the screen into 280

236

Y COORDINATE

QUADRANT I

X COORDINATE

0,0 39,0

TEXT SCREEN

QUADRANT II

20
21
22
23
24

THE SCREEN POSITION IS IN THE
POSITIVE X AND NEGATIVE Y
COORDINATE AREA BUT IS A
MIRROR IMAGE OF QUADRANT I

Fig. 28-1. Tellt screen.

0,0 279,0

HGR - SPLIT SCREEN

160 X 280

0,159 159,279

160 - 167
HGR 2 - FULL SCREEN

192 X 280

0,191 191,279

(THE SCREENS ARE NOT TO SCALE)

Fig. 28-2. High resolution graphics screen.

o Black 1 1 Green (depends on TV)
2 Blue (depends on TV) 3 White 1
4 Black 2 5 (depends on TV)
6 (depends on TV) 7 White 2

Fig. 28-3. High resolution graphics color names and related numlters.

columns (0,279), and 160 rows (0,159). The bottom four lines are
reserved for text. Each seven high resolution graphics columns rep
resent one text column. There are 40 text columns and 280 graphics
columns. Every eight high resolution graphics rows represent one
text row. There are 20 text rows and 160 graphics rows.

The full screen high resolution screen (Fig. 28-2) contains 280
columns (0,279) and 192 rows (0,191).
sets of lines. There are columns with odd numbered lines and col
umns with even numbered lines. The color statement (HCOLOR

The high resolution graphics screen is divided into two distinct
=) is related to the odd-even line system. The odd number lines are
colored by the odd numbered colors (Fig. 28-3) and the even num
bered lines are colored by the even numbered colors.

Two programs are presented in Lesson 28, (1) HI - RES EX
PLAINER (Fig. 28-7) and (2) ORBITAL WAR GAME (Fig. 28-9).

The HI - RES EXPLAINER details the use of the high resolution
graphics commands and statements (Fig. 28-4).

Line 10 of the HI - RES EXPLAINER sets the TEXT mode, clears

237

DRAW 1 AT 30,40

HCOLOR=3

HGR

HGR 2

HPLOT 10,20

HPLOT 9,0 TO 271,0
HPLOT TO 159,271

ROT =

SCALE

SHLOAD
TEXT

XDRAW 1 AT 30,40

Draws shape as defined in the shape table. Shape # 1 is
drawn at X location 30, Y location 40. The color, scale, and
rotation must be specified before DRAW is executed. See
line 10 of Fig. 21J.8.
Sets the color of the screen to white. Color values range
from ()"7 (Fig. 28-4). Even color values print on even num-
bered lines on the screen. Odd color values print on odd
numbered lines on the screen.
Sets high resolution, split screen, graphics mode to 160 X
280 for the screen. Leaves four lines for TEXT at the bottom
of the screen. Sets COLOR = 0 (black). HGR IS AVAILABLE
ONLY ON APPLESOFT IN ROM.
Sets high resolution, full screen, graphics mode to 192 X
280 on the screen.
Places a dot at X location 10, Y location 20, using last
HCOLOR designation. X is even numbered line, so HCOLOR
value must be even. Odd value color prints black on even
numbered line.
Plots a line from column 9 to column 271 at row O.
Plots a line from the last designated point (271,0) to the
next designated point (159,271).
Value ranges from 0 to 64. Causes a shape to be rotated
clockwise after a DRAW or XDRAW.
Value ranges from ()"255. Scale 1 is the smallest size, and
scale 0 is the largest size. See line 1000, Fig. 21J.8.
Loads a shape table from cassette tape.
Sets the screen to the TEXT mode of 24 rows and 40 col-
umns.
Draws shape 1, from previously loaded shape table, at X
location 30, Y location 40.

Fig. 28·4. High resolution graphics commands and statements.

the screen, and places the HI - RES EXPLAINER PROGRAM in
the center of the screen.

10 TEXT: HOME: VTAB 8 : PRINT" HI - RES EXPLAINER PROGRAM"
20 GOSUB 1000 : HOME: HGR : VTAB 21 : PRINT" THIS IS

THE BOTTOM L1N~E -----'

In line 20, GOSUB 1000 is a delay loop to allow the user time to
view the results as the program progresses. HOME clears the screen.
HGR is the statement that places the screen in high resolution split
screen graphics (most high resolution graphics statements are pref
aced with the letter "H" to distinguish them from low resolution
graphics statements). THIS IS THE BOTTOM LINE is printed at line 21
in the text section of the graphics screen. Line 20 is not usable be
cause of computer design.

Lines 30 through 34 set up the basic data to plot rectangles, one
in each comer of the screen (Fig. 28-5).

30 FOR J = 1 TO 4 : ON J GOTO 31, 32, 33, 34
31 XP = 1 : YP = 0 : GOTO 40
32 XP=277:YP=0:GOT040

238

33 XP = 277 : YP = 157 : GOTO 40
34 XP = 1 : YP = 157
40 HCOLOR = 1 : HPLOT XP,XY TO XP + 2,YP TO XP + 2,YP + 2 TO

XP,YP + 2 TO XP,YP : NEXT J : GOSUB 1000

In line 40, HeOlOR = 1 sets the color to green (Fig. 28-4). The
color green has a value of 1. All colors with an odd value print only
on the odd numbered lines. All colors with an even value print on
the even numbered lines.

0,0

XP = 1
yp = 0

PRINTS AS
yp + 2 = 2
GOES TO
YP = 0

XP = 1
YP + 2 = 2

o

31 XP = 1 : YP = 0 : GOTO 40

o

XP + 2 = 3
yp + = 0

PRINTS AS
YP = 0
GOES TO
YP + 2 = 2

XP+ 2 = 3
YP+ 2 = 2

40 HCOLOR = 1 : HPLOT. XP,YP TO XP + 2,YP TO XP + 2,YP + 2 TO
XP,YP + 2, TO XP,YP : NEXT J : GOSUB 1000

Fig. 28-5. HPLOT diagram. HCOLOR = 1 (Prints on odd numbered lines).

HPLOT XP,YP TO XP + 2,YP prints on the dot whose value is XP
= 1, YP = 0. The XP value is odd, so the odd value of the color is
printed at 1,0. The next dot printed is 3,0. The color on column #2
prints on an even color value, so column #2 is black (Fig. 28-5).

If no dot is specified, HPLOT plots from the last printed dot. The
last printed dot is 3,0 (XP + 2,YP). The HPLOT continues from 3,0
to plot XP + 2, yP + 2. An increment of 2 is added to the Y value,
so a dot is placed at 3,2. In placing the dot at 3,2 a dot is also placed
at 3.1 (Fig. 28-5).

The plot continues from 3,2 to XP,YP + 2, or from 3,2 to 1,2. The
color value is odd, so the even valued line does not show a print. The
square would be three dots wide by three dots long, but the color
value is odd. This causes the square to look like a 2 x 3 rectangle
(Fig. 28-5),

The NEXT J in line 40 causes a rectangle to be placed in each cor
ner of the screen.

GOSUB 1000 branches to a delay loop at line 1000 that delays for
a count of 1500 to enable the viewer time to view the dots.

239

50 FOR J = 0 TO 150 STEP 157 : FOR K = 0 TO 2 : HPLOT 9,J + K
TO 271,J + K : NEXT K,J : GOSUB 1000

FOR J = 0 TO 157 STEP 157 sets up to print a line at row 0, and
a line at row 157. FOR K = 0 to 2 sets up to print three lines. The
three lines in columns 0, 1, 2 produce a line 3 rows wide (Fig. 28-6).

HPLOT 9,J + K TO 271,J + K plots three lines,

9, J + K 271, J + K
9,0 _____ .. __________________ .. ___ 271,0
9,1 __ 271,1
9,2 ___ 271,2

and also plots three lines at 9, J + K TO 271, J + K.

319.0~
9.1
9.2

32
271.0
271.1
271.2

33

9.157
9.158
9.159

<&271.157
271.158
271.159

34

160-167
168 - 175
176-183
184-191

30 FOR J = 1 TO 4 : ON J GOTO 31, 32, 33, 34
31 XP = 1 : YP = 0 : GOTO 40
32 XP=277:YP=0:GOT040
33 XP = 277 : YP = 157 : GOTO 40
34 XP = 1 : YP = 157
40 HeOLOR = 1 : HPLOT XP,YP TO XP + 2,YP TO XP + 2,YP + 2 TO XP,

YP + 2, TO XP,YP : NEXT J : GOSUB 1000
50 FOR J = 0 TO 157 STEP 157 : FOR K = 0 TO 2 : HPLOT 9,J + K TO

271, J + K : NEXT K, J : GOSUB 1000

Fig. 28-6. High resolution explainer.

9,J + K 271,J + K 9,157 __ 271,157
9,158 __ 271,158
9,159 __ 271,159

Line 60 causes two vertical lines (of three lines each) to be
printed on the right and left sides of the screen. The statement FOR
K = 1 TO 3 STEP 2 prints on the odd lines one and three, and steps
over the even line because the color value of green (1) does not
print on even numbered lines.

240

5 REM : HI-RES EXPLAINER
10 TEXT: HOME: VTAB 8: HTAB 8: PRINT "HI-RES EXPLAINER PROGRAM"
20 GOSUB 1000: HOME: HGR : VTAB 21; PRINT "----THIS IS

THE 80TTOM LlNE----"
30 FOR J = 1 TO 4: ON J GOTO 31,32,33,34
31 XP = l:YP = 0: GOTO 40
32 XP = 2n:YP = 0: GOTO 40
33 XP = 2n:Vp = 157: GOTO 40
34 XP = l:VP = 157
40 HCOLOR= 1: HPLOT XP,YP TO XP + 2,YP TO XP + 2,YP + 2 TO XP,

YP + 2 TO XP,VP: NEXT J: GOSUB 1000
50 FOR J = 0 TO 157 STEP 157: FOR K = 0 TO 2: HPLOT 9,J + K TO

271,J + K: NEXT K,J: GOSUB 1000
60 FOR J = 0 TO 276 STEP 276: FOR K = 1 TO 3 STEP 2: HPLOT J + K,5

TO J + K,154: NEXT K,J: GOSUB 1000
70 HPLOT 9,79: FOR J = 0 TO 130: X = J * 2 + 11: HPLOT TO X,

INT «(X - 139) t 2} * .00435 + 4.5}: NEXT J
80 VTAB 22: PRINT "PLOT: Y=.00435*(X-139}t2+4.5": GOSUB 1000

90 FOR J = 129 TO 0 STEP - 1:X = J * 2 + 9: HPLOT TO X,(INT
(151 - «X - 139) t 2} * .00435 + 4.5}}: NEXT J

100 VTAB 23: PRINT "PLOT: Y=151-.00435*(X-139}t2+4.5";: GOSUB 1000
110 FOR J = 1 TO 129 STEP 2:X = J * 2 + 9:Y = INT «(X - 139) t 2}

* .00435 + 4.5}:X2 = 271 - J * 2:V2 = INT (151 - «X - 139)
t 2} * .00435 + 4.5}: HPLOT X,V TO X2,Y2: NEXT J

999 END
1000 FOR J = 0 TO 1500: NEXT J: RETURN

Fig. 28-7. HI-RES EXPLAINER program.

Line 70 causes the graph of a parabola to be sized and printed,
with its apex toward the top of the screen. The parabola at line 70
is printed in the upper half of the screen. Steps similar to those in
Lesson 25 are used to size and print the graph of the parabola.

70 HPLOT 9,79 : FOR J = 0 TO 130 : X = J*2 + 11: HPLOT TO X,
INT«(X - 139} A 2}* .00435 + 4.5} : NEXT J

HPlOT 9,79 designates the location of the first dot to be printed
in the graph. FOR J = 0 TO 130 prints 131 dots in the graph (Fig.
28-7).

X = J * 2 + 11 is the formula used to compute the value along the
X axis. When J = 0, the second dot is placed at 11, along the X axis.
The first dot is plotted at HPlOT 9,79. The last value of X is equal to
130*2 + 11 = 27l.

The value along the Y axis is plotted by the formula INT{{« X
- 139) A2)* .00435)+ 4.5). The graph is plotted in the center of
the screen by dividing the range (0,279) by 2 = 139. The center of
the X axis is X - 139.

The graph is sized to the usable space between columns 9 and 271,
and rows 4 to 79. The Y range = 75.

241

x = 9 : (9-139)2 * CONSTANT = 75

CONSTANT = 75/(130)2 = .00437

The constant, .004437 is reduced by guesstimate to .00435 to make
sure the graph does not extend past the screen limits. The formula
is now.

y = (X - 139)2 * .00453.

Vertical lines are printed along the left side of the screen to form
a border. Three vertical lines are printed from row 5 to 154, at col
umns 0, 1, and 2. The left edge of the parabola starts at column 4.
The 4 is added to the formula.

y = (X - 139)2 * .00435 + 4

To make sure the integer function is always rounded properly, .5
is added to the formula. The final formula is

y = (X - 139)2 * .00435 + 4.5.

The formula is converted to a program statement, and the data
is in Fig. 28-8.

HPLOT TO X,INT«(X - 139)/\ 2)*.00435 + 4.5)

80 VTAB 22 : PRINT "PLOT: Y = .00453 * (X-139) /\ 2 + 4.5" :
GOSUB 1000

Line 80 VT AB's to row 22 and prints out the formula used to
graph the parabola.

J J*2+11 INT«(X -139)t2) * .00435)+4.5)

0 11 75
1 13 73
2 15 71
3 17 69
4 19 67
5 21 65
6 23 63
7 25 61
8 27 59
9 29 57

10 31 55
11 33 53
12 35 51
13 37 49
14 39 48
15 41 46
16 43 44
17 45 42
18 47 41

Fig. 28-8. Data to plot graph.

242

19 49 39
20 51 38
21 53 36
22 55 35
23 57 33
24 59 32
25 61 30
26 63 29
27 65 28
28 67 27
29 69 25
30 71 24
31 73 23
32 75 22
33 77 21
34 79 20
35 81 19
36 83 18
37 85 17
38 87 16
39 89 15
40 91 14
41 93 13
42 95 12
43 97 12
44 99 11
45 101 10
46 103 10
47 105 9
48 107 8
49 109 8
50 111 7
51 113 7
52 115 7
53 117 6
54 119 6
55 121 5
56 123 5
57 125 5
58 127 5
J J*2+11 INT«(X-139>t2)* .00435)+4.5)

59 129 4
60 131 4
61 133 4
62 135 4
63 137 4
64 139 4
65 141 4
66 143 " 67 145 4
68 147 4
69 149 " 70 151 5

Fig. 28-8. (Cont) Data to plot graph.

243

71 153 5
72 155 5
73 157 5
74 159 6
75 161 6
76 163 7
77 165 7
78 167 7
79 169 8
80 171 8
81 173 9
82 175 10
83 177 10
84 179 11
85 181 12
86 183 12
87 185 13
88 187 14
89 189 15
90 191 16
91 193 17
92 195 18
93 197 19
94 199 20
95 201 21
96 203 22
97 205 23
98 207 24
99 209 25

100 211 27
101 213 28
102 215 29
103 217 30
104 219 32
105 221 33
106 223 35
107 225 36
108 227 38
109 229 39
110 231 41
111 233 42
112 235 44
113 237 46
114 239 48
115 241 49
116 243 51
117 245 53
118 247 55

J J*2+11 INT«(X -139)t2) * .00435)+4.5)

119 249 57
120 251 59
121 253 61

Fig. 28-8. (Cont) Data to plot graph.

244

122 255 63
123 257 65
124 259 67
125 261 69
126 263 71
127 265 73
128 267 75
129 269 78
130 271 80

J J*2+11 INT«(X -139)t2)* .00435)+4.5)
J J*2+11 INT«(X -139lt2) * .00435)+ 4.5)

Fil. 28-8. (Cont) Data to plot lraph.

90 FOR J = 129 TO 0 STEP -1 : X = J*2 + 9 : HPLOT TO X,
(INT(151 - «X - 139) A 2) * .00435 + 4.5)) : NEXT J

Line 90 prints the graph of a parabola starting from the right hand
side of the screen. The parabola is in the lower half of the screen,
with its apex pointing down. FOR J = 129 TO 0 STEP -1, joins point
130,261 and plots the graph clockwise to point 4,6.

100 VTAB 23 : PRINT "PLOT: Y = 151 - .00435*(X-139) /\ 2 + 4.5"
; : GOSUB 1000

Line 100 VTAB's to row 23 and prints out the formula to graph
the parabola in the lower half of the screen.

110 FOR J = 1 TO 129 STEP 2 : X = J * 2 + 9 : Y = INT «(X - 139)
A 2) * .00435 + 4.5) : X2 = 271 - J * 2 : Y2 = INT (151-
«X - 139) A 2) * .00435 + 4.5) : HPLOT X,Y TO X2,Y2 : NEXT J

Line 110 causes lines to be printed from the upper graph boun
dary, through the center of the screen, to the lower graph boundary.
The loop causes 129 points to be plotted beginning at the junction of
the graphs on the left to the junction of the graphs on the right. Two
sets of X points are computed and plotted, X and X2. X is the point
on the boundary of the upper graph. X2 is the point on the boundary
of the lower graph.

Two sets of Y points are computed, Y and Y2. Y is the point on the
boundary of the upper graph. Y2 is the point on the boundary of the
lower graph.

The two points, X,Y and X2,Y2, are the opposite ends of a series
of clockwise lines filling the interior of the two graphs.

X=J*2+9
Y = «(X - 139) A 2) * .00435 + 4.5)

X2 = 271 - J * 2
Y2 = INT (151 - «X - 139) A 2) * .00435 + 4.5)

HPLOT X,Y TO X2,Y2 plots the lines related to the FOR J = 1 TO
129 STEP 2 loop.

245

The second program written for Lesson 28 is called ORBITAL
WAR GAME (Fig. 28-9). The game runs only on Apple Computet's

1 REM : ORBITAL WAR GAME
2 GOSUB 1600
5 GOTO 1000
10 FOR J = 0 TO 1: HCOlOR= 0: DRAW J + 1 AT VS(J,4),YS(J,s):

HCOlOR= ABS (VS(J,O»: DRAW J + 1 AT V5(J,6),VS(J,7):VS(J,2) = VS
(J,2) + V5(J,3)

20 V5(J,4) = V5(J,6):V5(J,5) = V5(J,7):V5(J,6) = cos (V5(J.2» * VS(J,9) +
V5(J,l1):V5(J,7) = SIN (V5(J,2» * V5(J,lO) + VS(J,12): IF V5(J,O) > - 1
THEN 40

30 HCOlOR= 0: FOR K = 0 TO VS(J,16): DRAW 4 - J AT V5(J,4) -
+ SD(3 - J,l,O) + RND (1) * 7,YS(J,s) - 5D(3 - J,l,l) + RND (1) * 9: NEXT :V5(J,16) = VS(J,16) + .47

35 FOR D = 1 TO 180: NEXT D
40 NEXT :V5(l,15) = 5QR «(V5(0,4) + 50(0,1,0» - (V5(1,4) + 50(1,1,0))) t

2 + «(V5(O,5) + SO(O,l,l» - (V5(1,s) + 50(1,1,1») t 2): RETURN
50 FOR K = 0 TO 3: IF NOT W(K,O) THEN 70
60 NEXT : GOTO 100
70 W(K,3) = COS (V5(O,15) - C(O,6» * 50(0,0,0) + VS(O,6) + 5D(O,l,O):

IF W(K,3) < CCO,3) OR W(K,3) > CCO,4) THEN W(K,3) = CCO,4): GOTO 100
80 W(K,4) = SIN (V5(O,l5) - CCO,6» * 5D(O,O,1) + V5(O,7) + 50(0,1,0):

IF W(K,4) < CCl,3) OR W(K,4) > CCl,4) THEN W(K,3) = C(O,4):W(K,4) =
CCl,4): GOTO 100

90 W(K,O) = 1:W(K,5) = COS (V5(O,15) - CCO,6» * 18:W(K,6) = SIN
(V5(O,15) - C(O,6» * 8:V5(0,14) = V5(0,14) - VS(0,13)

100 FOR J = 0 TO 3: HCOlOR= 0: ORAW 3 AT W(J,ll,W(J,2): HCOlOR=
W(J,O): DRAW 3 AT W(J,3),W(J,4):W(J,l) = W(J,3):W(J,2) = W(J,4):W(J,3)
= W(J,3) + W(J,5):W(J,4) = W(J,4) + W(J,6)

110 IF W(J,3) < C(O,3) OR W(J,3) > CCO,4) OR W(J,4) < CCl,3) OR W(J,4) >
CCl,4) THEN W(J,O) = O:W(J,3) = C(O,4):W(J,4) = CCl,5):W(J,s) = 0:W(J,6)
=0

120 NEXT: RETURN
140 FOR J = 0 TO 3: IF W(J,O) = 0 OR VS(l,O) < > 1 THEN 170

150 IF ABS (V5(1,4) + 50(1,1,0) - W(J,1) - 50(2,1,0» < 9 AND ABS (V5(1,5)
+ 50(1,1,1) - W(J,2) - 50(2,1,1» < 5 THEN V5(l,O) = - 1: VTAB 24:
HTAB 1: PRINT "INTRUDER DESTROYED";:V5(1,16) = O:DC = DC + 1:
GOTO 475

170 NEXT :V5(O,15) = PDl (0) * C(O,5):V5(O,14) = V5(0,14) + V5(0,8):
VTAB 23: HTAB 17: PRINT INT (V5(0,15) + CCl,5) + .5); SPCC 3);: RETURN

390 HCOlOR= 0: DRAW 4 AT W(4,1), W(4,2): IF V5(l,l5) > V5(1,14) OR
VS(I,O) < 1 THEN W(4,3) = CCO,4):W(4,4) = C(1,4}: FOR J = 0 TO 300:
NEXT : RETURN

400 V5(1,B) = (1 - V5(1,l5) < V5(1,13» * «(VS(1,15) - V5(1,13» I
(V5(1,14) - V5(I,13»):W(4,5) = V5(1,6) - V5(O,6): IF ABS (W(4,5» < .001
THEN W(4,s) = CCO,6) + (VS(l,7) > V5(0,7» * PI: GOTO 420

410 W(4,5) = ATN «(VS(I,7) - V5(O,7» I W(4,s» + (V5(1,6) > V5(O,6» * PI
420 W(4,5) = W(4,5) + (- 1) tiNT (RND (1) + .5) * RND (1) * V5(I,8)

Fil. 28-9. ORBITAL WAR GAME prolram.

* PI I 5:W(4,6) = V5(1,15) + (- 1) tiNT (RND (1) + .5) * RND
(l) * V5(1,8) * (V5(1,14) - V5(1,15»

430 W(4,3) = V5(1,6) + COS (W(4,5» * W(4,6):W(4,4) = V5(1,7) + SIN
(W(4,5» * W(4,6): IF W(4,3) < C(0,3) OR W(4,3) > C(0,4) OR W(4,4) <
C(1,3) OR W(4,4) > C(1,4) THEN FOR J = 0 TO 55: NEXT J: RETURN

440 FOR J = 1 TO 6: HCOlOR= J - INT (J I 2) * 2: HPlOT V5(1,6) +
5D(2,O,O),V5(I,7) + 50(2,0,1) TO W(4,3),W(4,4): NEXT: HCOlOR= 1:
DRAW 4 AT W(4,3),W(4,4):W(4,l) = W(4,3):W(4,2) = W(4,4)

450 V5(I,8) = 5QR «W(4,3) - (VS(O,6) + 50(0,1,0))) t 2 + (W(4,4) -
(V5(O,7) + 50(0,1,1))) t 2)

460 V5(O,14) = V5(O,14) - (V5(1,14) - INT (V5(1,8») * 6: IF V5(O,14) > 0
THEN 480

470 VTAS 24: HTAS 1: PRINT "DEFENDER DESTROYED ";:V5(O,O) = - I:V5(O,16)
= 0:VS(O,14) = 0:V5(O,8) = O:IC = IC + 1

475 HCOlOR= 0: DRAW 4 AT W(4,ll.W(4,2): RETURN
480 W(4,3) = C(O,4):W(4,4) = C(I,4): RETURN
610 G05US 140
620 G05US 10: VTAS 22: HTAB 15: PRINT V5(0,14); 5PC(2);: HTAB 34: PRINT

INT (V5(1,15) + .5); 5PC(3);
640 IF VS(O,O) + V5(1,0) = 2 AND PEEK (- 16287) > 127 AND V5(O,14) >

V5(0,13) THEN G05UB 50: GOTO 740
660 G05UB 100
740 GOSUB 140: IF V5(0,0) + VS(l,O) = 2 THEN G05UB 390
800 IF V5(O,16) < 5 AND VS(I,16) < 5 THEN 610
840 IF V5(0,0) < 0 THEN V5(O,O) = 0
850 IF VS(I,O) < 0 THEN V5(1,0) = 0
860 FOR K = 0 TO 7: G05UB 10: FOR 0 = 1 TO 500: NEXT D,K
998 RETURN
1000 DIM V5(1,16),W(4,7): POKE 232,0: POKE 233,3:J = 0: 5CAlE= 1: ROT=

O:K = 0
1010 DIM C(1,6),5D(3,1,1),OV(1): PI = 3.14159
1020 FOR J = 0 TO 3: FOR K = 0 TO 1: FOR l = 0 TO 1: READ 5D(J,K,l):

NEXT l,K,J
1030 FOR K = 0 TO 1: FOR J = 0 TO 4: READ C(K,J): NEXT J,K: READ

QO,5),C(1,5)
1040 OV(I) = 5 I 57.2958:0V(0) = OV(I) I 1.5435
1050 G05UB 3000
1070 IC = O:DC = 0:V5(0,16) = 0:V5(1,16) = 0:C(O,6) = 1.5707
1080 V5(0,0) = l:V5(1,0) = 0:V5(0,1) = INT (RND (1) + .5):V5(I,I) = INT

(RND (1) + .5):VS(O,2) = RND (2 * PI):V5(1,2) = V5(0,2) + PI +
(- 1) t (INT (RND (1) + .5» * RND (PI)

1090 VS(O,3) = OV(V5(0,1» * (1 - 2 * INT (RND (1) + .5»:V5(I,3) =
OV(V5(1,I» * (1 - 2 * INT (RND (1) + .5»

1100 FOR J = ° TO 4:W(J,0) = 0:W(J,3) = QO,4):W(J,4) = Ql,4):W(J,5) =
0:W(J,6) = O:W(J, I) = W(J,3):W(J,2) = W(J,4): NEXT

1110 FOR K = 0 TO I:VS(K,9) = C(VS(K,I),O) - SD(K,O,O) I 2:VS(K,10) =
C(V5(K,1),1) - 5D(K,0,1) I 2:V5(K,11) = C(0,2) - SD(K,I,O):V5(K,12) =
C(1,2) - SD(K,I,I): NEXT K

1120 FOR K = ° TO I:VS(K,4) = COS (V5(K,2» * V5(K,9) + V5(K,l):V5(K,6)
= V5(K,4):VS(K,5) = SIN (V5(K,2» * V5(K,10) + V5(K,12):V5(K,7) =
V5(K,5): NEXT K

1130 V5(O,8) = 85:V5(0,13) = 134:V5(1,13) = 40:V5(1,14) = 120

Fig. 28-9. (Cont) ORBITAL WAR GAME program.

247

1140 HGR: VTAB 21: HOME: VTAB 21: PRINT "DEFENDER = ";DC;: HTAB 23:
PRINT "INTRUDER =";IC

1150 PRINT "ENERGY LEVEL ="; SPC(8);"DISTANCE ="
1160 PRINT "FIRE DIRECTION ="
1170 HCOLOR= 1: HPLOT 1,0 TO Xl9,O TO 279,159 TO 1,159 TO 1,0: DRAW 1

AT VS(O,4),vS(0,5):V5(O,16) = 0:VS(I,16) = 0
1180 FOR K = 0 TO 8: GOSUB 10: FOR 0 = 1 TO 550: NEXT D,K: VTAB 24:

FLASH: PRINT "WARNINGI I INTRUDER APPROACHING";
1190 NORMAL: FOR K = 0 TO 4: GOSUB 10: FOR 0 = 1 TO 550: NEXT D,K:

VTAB 23: CAll - 958:VS(I,O) = 1:VS(O,14) = 3000
1200 GOSUB 610: IF IC < 5 AND DC < 5 THEN 1080
1210 VTAB 23: HTAB 24: INPUT "TRY AGAIN ?";Q$: IF Q$ < > "N"

THEN 1070
1220 TEXT: HOME : END
1600 FOR K = 768 TO 1000: READ J: IF J - 1 THEN 1840
1610 POKE K,J: NEXT K: GOTO 1840

1620 DATA 4,0,10,0,105,0,189,0,202,0
1630 DATA 45,5,45,5,45,5,45,5,73,58,7
1640 DATA 63,7,63,7,63,7,63,7,63,5,63,7
1650 DATA 191,73,73,105,5,45,5,141,251,63,7,255
1660 DATA 74,45,5,109,21,7,59,7,7,255,31,7
1670 DATA 74.45,5,7,45,5,45,5,13,5,250,63
1680 DATA 7,63,7,7,255,31,7,155,41,5,45,5
1690 DATA 45,5,45,5,45,5,45,5,45,5,218,59
1700 DATA 7,63,7,63,7,63,7,7,63,7,7,0
1710 DATA n,9,5,73,n,n,58,7,63,7,63
1720 DATA 7,31,7,63,7,63,7,159,45,5,45,5
1730 DATA 45,5,45,5,45,5.45,7,7,5,45,5
1740 DATA 45,5,218,59,7,63,5,63,7,63,7,15
1750 DATA 63,7,63,7,5,63.25,191,73,13,5,45
1760 DATA 5,45,5,5,45,5,209,31,7,63,7,63
1770 DATA 7,63,7,159,41,5,105,41,5,73,5,45,0
1780 DATA 77,250,31,7,155,9,5,105,n,218,27
1790 DATA 7,0
1800 DATA n,109,58,7,63,7,255,87,41,5,5
1810 DATA 9,5,13,5,218,63,7,5,63,7,255,87
1820 DATA 9,5,9,5,5,0
1830 DATA-l
1840 RETURN
2100 DATA 10,10,4,2
2110 DATA 11,7,3,3
2120 DATA 3,4,0,1
2130 DATA 5,5,1,2
2140 DATA 128,75,138,5.270
2150 DATA 92,60,80,5,150
2160 DATA .02464,57.2958
3000 HOME: VTAB 8: HTAB 8: PRINT "=== ORBITAL WAR GAME ===" :

PRINT: PRINT: HTAB 12: PRINT 'BRIAN BLACKWOOD"
3010 PRINT: PRINT: HTAB 12: PRINT "7020 BURLINGTON": PRINT: PRINT:

HTAB 12: PRINT "BEAUMONT TX, n706"
3020 PRINT: PRINT: HTAB 12: PRINT "COPYRIGHT JULY 20,1980"
3030 FOR J = 1 TO 1500: NEXT J: RETURN

Fig. 28-9. (Cont) ORBITAL WAR GAME program.

248

with Applesoft in ROM. It can be loaded from tape and saved to
tape. The shape tables are written into the program in data state
ments. The information necessary to create and save shape tables
is found in Applesoft Basic Programming Manual, pages 91 to 100,
published by Apple Computer Inc.®

The program will not be explained in detail because this is the
final examination. The lessons in the book give sufficient information
and detail for all the sharp students to replicate the program. This
program draws on logic, graphics, mathematics, science, and pro
gramming ability to create an interesting game.

The program creates four shapes: defender, intruder, defender's
missiles, and intruder's space rays. The defender and intruder move
in either of two randomly selected orbits, an inner orbit, and an
outer orbit.

The defender has four missiles to fire at the intruder that are con
trolled and fired by the player through game paddle zero (0). Each
missile is replenished when it leaves the screen, so the defender has
an unlimited number of missiles, within a controlled time frame.

The intruder automatically fires its space rays when the defender
is in range. The invader has an unlimited number of space rays to
fire, but they are only effective within a specified range.

The game ends when either adversary has five kills.
The game is written entirely in Applesoft BASIC for teaching

purposes. In Applesoft the game is a bit slow. If the orbital and
firing routines were written in assembly language, the game would
be faster.

CONSTANTS
Orbit values - 2 orbits
DIM C(l,6)
C(A,B)

A=orbitOorl
B = range of orbit

o = X range
1 = Y range

C(O,O), C(0,t), C(l,O), and C(1,1) = orbit values
(SCREEN LIMITS)
C(A,B)

A = 0 = X axis value
A = 1 = Y axis value
B = 2 = offset
B = 3 = minimum
B = 4 = minimum on selected axis

,B = 5 = maximum on selected axis
C(1,3) = minimum on Y axis
C(1,4) = maximum on Y axis
CCO,5) = conversion factor of paddle zero «()'255) to radians (0, pi)

Fig. 28-10. Orbital war game variables.

249

C(I,5) = conversion factor of radians to degrees (57.2958)
C(O,6) = conversion of paddle value to degrees on the screen

360 - North, 90 - East, 180 - South, and 270 - West
C(I,6) = # of times to draw space ship destruction
DC = defender count - the number of kills
IC = intruder count - the number of kills
J, K = loop and temporary variables

ORBITAL
OV(O) = angular velocity of outer orbit #0
OV(I) = angular velocity of inner orbit #1
PI = 3.1417
ROT = 0 = HGR rotation value (value range from 0·64)
SCALE = I = HGR scaling factor - value range 0·255·1 smallest 0 largest

SHAPE DATA-four different shapes
o defender
1 intruder
2 missile (defender)
3 space ray (intruder)
SO(3,I,l) = shape data
SO(A,B,C)

A 0 to 3 shape number
B 0 range
B 1 offset-center of space ship to center position of the screen from

position 0,0
COX axis value
C Y axis value

SO(O,l,1) = V axis, offset of the shape 0
SO(3,O,O) = X axis, range of shape 3

VEHICLE STATUS
VS(I,15)

250

VS(O,1) = defender
VS(I,1) = intruder
VS(A,B)

A 0 defender
A = I intruder
B 0 status

VS(l,O) O-intruder does not exist
VS(I,O) = I-intruder functional
VS(l,O) = -I-intruder damaged

B = I = orbit
VS(O,1) = O-defender is in the outer orbit
VS(O,I) = I-defender is in the inner orbit

B 2 angle value
B 3 orbital velocity
B 4 X axis value
B 5 Y axis value
B 6 next X axis value
B 7 next Y axis value

VS(O,8) = energy increment
VS(l,8) = accuracy factor or distance to defender by intruder's space rays

B 9 X range
B 10 = Y range
B 11 = X offset
B 12 = Y offset

Fig. 28-10. (Cont) Orbital war game variables.

VS(O,13) = defender's energy base
VS(I,13) = intruder's base firing distance
VS(O,14) = defender's energy level
VS(1,14) = intruder's maximum firing distance
VS(O,15) = defender's fire direction
VS(1,15) = intruder's distance to the defender
VS(O,16) = defender's damage count
VS(1,16) = intruder's damage count

WEAPON STATUS
W(4,6) = weapon data
W(A,8) = weapon data

A = 0, I, 2, 3-defender has 4 missiles
A = 4-intruder has unlimited space rays at specified range

(DEFENDER'S WEAPONS)
8 = 0 = HeOLOR = 0 (black) or HeOlOR = 1 (green)

W(1,O) = O-HeOlOR = 0 (black)
W(I,O) = l-HeOlOR = 1 (green)

B = 1 = X position value
8 = 2 = X positive value
8 = 3 = next X positive value
8 = 4 = next Y positive value

(INTRUDER'S WEAPON)-same Bl through 84
8 = 5 = change in X value random value
8 = 6 = change in Y value random value

Fig. 28-10. (Cont) Orbital war game variables.

The variables in the program are shown in Fig. 28-10.
Line 1 GOSUB 1600 causes the shape tables to be loaded into

memory.

1600 FOR K = 768 TO 1000: READ J : IF J = -1 THEN 1840
1610 POKE K, J : NEXT K : GOTO 1840

Line 1600 sets up the number of memory addresses (decimal) into
which the shape table data is placed. READ J reads the data.

IF J = -1 THEN 1840 is a clean way to end a READ-DATA state
ment without getting a processing error.

POKE K, J fills a specific memory address with specific data. NEXT
K continues processing the data until it has all been placed in
memory.

The program RETURNS to line 2, which is GOTO 1000.
Lines lOOO to 1040 contain the initialization of constants. These

constants are set up one time and do not change throughout the
program. The constants initialized are vehicle status (VS), weapon
status (W), SCALE = 1, ROT = 0, constants (C), shape data (SD),
orbit'aI value (OV), and pi = 3.14159. OV(I) produces the angular
velocity of orbit 1, the inner orbit. OV (0) is the angular velocity of
the outer orbit (Fig. 28-10).

1020 FOR J = 0 TO 3 : FOR K = 0 TO 1 : FOR L = 0 TO 1 :
READ SD(J, K, L) : NEXT L, K, J

251

Line 1020 reads the shape data at lines 2100 through 2130. This
data tells the height and width of the shape, and the distance from
the shape's center to the first plot of the shape. This is the offset of
the vehicle from the center of the screen.

1030 FOR K = 0 TO 1 : FOR J = 0 TO 4 : READ C(K.J) : NEXT J.K :
READ C(0.5). C(1,5)

Line 1030 reads the data in lines 2140 through 2160 to set up the
constant array values. C(0,5) is the conversion factor of the paddle
range (0-255) to radians. C(1,5) is the conversion factor of radians
to degrees (Fig. 28-10).

1050 GOSUB 3000 branches to line 3000 to display the name of
the game, the author's name and address, and the copyright date.

Lines 1070 through 1130 initialize all Hight and gunnery informa
tion before the start of the program. Such information includes the
orbit number, direction of motion, initial angle between space ships,
shape data, vehicle status, weapon status, and constants.

Lines 1130 through 1170 set up the screen display headers in the
text portion of the screen. The headers include the defender count
of the number of kills, the intruder count of the number of kills, the
energy level of the defender, the distance of the defender to the
intruder, and the fire direction of the defender to the intruder.

Line 1180 sets up the preconHict movement by Hashing WARNING
!! INVADER APPROACHING.

1200 GOSUB 610 : IF IC < 5 AND DC < 5 THEN 1080

The lines from 610 through 850 tie all actions together and create
the battle.

610 GOSUB 140

Lines 140 through 170 determine if the defender's missile has de
stroyed the intruder. This routine returns to 620, which begins with
the statements GOSUB 10.

Line 10 DRAWS and redraws both space ships at the old position.
It also draws the space ships at the new position.

Line 20 calculates the next position of the space ships.
Line 30 blacks out part of the damaged space ship and increments

the damage count which is held in VS (0,16) for the defender, and
VS(1,16) for the intruder.

Line 35 FOR 0 = 1 TO 180 : NEXT 0 is a timing loop so projectiles
and space ships run at the same speed. This timing loop causes a
delay before the program can continue. If a space ship is damaged,
its weapons will not fire during this delay.

Line 40 calculates the distance between defender and intruder
and RETURNS to the second statement in line 620, to print out the
defender's energy level, and the intruder's distance to the defender.

252

In line 640, if both space ships are functional, if the paddle key is
pressed, and if the defender's energy level is greater than the de
fender's base energy level, the program jumps to line 50.

Lines 50 and 60 determine if a missile is available to :fire. If it is,
and if the paddle :firing button was pressed, a missile is :fired (if
a missile is available, go to line 70. If no missile is available, go to
line 100).

Lines 70, 80, and 90 set the missile :firing direction, give missile
speed, and :fire the missile.

Lines 100, 110, and 120 move the defender's missile toward the
intruder. The program returns to line 740, which is GOSUB 140.

Lines 140, 150, and 170 determine if the defender's missile has
destroyed the intruder. If the defender's missile has not, the program
branches to line 390.

Lines 390 through 480 calculate the action, angle, range, and dis
tance to the defender. This information prepares the intruder's space
ray to :fire on the defender.

Line 440 creates a series of Hashes and explosions when the intrud
er's space ray is :fired and when it hits the defender. Line 440 plots
an HCOLOR = 1 three times, and wipes out the lines. This routine
causes a Hashing line from the intruder at the point where the space
ray is going to appear. The area Hashes three times, and then the
space ray appears on the screen. This is to simulate an explosion.
This brings the program back to lines 610 through 998 to continue
the action of the program.

This is a general outline of the program:

I.

II.

III.

IV.

V.

VI.

VII.

Line 1 - GOSUB 1600
A. Loads the shape tables at lines 1600 through 1840
Line 2 - GOTO 1000
A. Lines 1000 - 1050 initialize constants and display copy-

right information at lines 3000 - 3020
Lines 10 - 40
A. Draws space vehicles
B. Line 30 - if either vehicle is damaged, part of the in-

terior is blacked out
Lines 50 - 90
A. Fires defender's missile
Lines 100 - 120
A. Moves defender's missile
Lines 140 - 170
A. Determine if defender's missile destroyed the intruder
Lines 390 - 480
A. Calculate action, range, angle, :fire, and damage to de

fender by intruder's space ray

253

=== ORBITAL WAR GAME ===
WELCOME TO THE WORLD OF ORBITAL DEFENSE. YOU HAVE BEEN ASSIGNED

DUTY ON AN ORBITING SPACE STATION. YOUR ORDERS ARE TO SCAN DEEP SPACE
AND STOP ANY INTRUDING ALIEN VEHICLE FROM REACHING THE EARTH. WHEN
YOU HAVE DESTROYED FIVE ENEMY CRAFT YOU WILL BE TRANSFERRED TO A NEW
UNIT. (YOUR VEHICLE IS THE CYLINDRICAL CRAFT)

THERE ARE TWO ORBITS FOR THIS PROGRAM. BOTH YOUR VEHICLE AND THE
INTRUDER CAN BE IN EITHER ORBIT. IN ADDITION THE VEHICLES CAN MOVE IN A
CLOCKWISE OR COUNTER·CLOCKWISE DIRECTION. THIS IS DETERMINED RANDOMLY
BEFORE EACH ENCOUNTER. THE TWO CRAFT FOLLOW GRAVITATIONAL FORCES
AND CANNOT BE MANEUVERED.

YOU WILL HAVE TIME TO PREPARE FOR COMBAT BEFORE THE INTRUDER APPEARS.
AlSO, YOU WILL RECEIVE A MESSAGE JUST BEFORE THE INTRUDER RETURNS FROM
HYPERSPACE TRAVEL. THEN THE BAnLE WILL COMMENCE.

SCREEN DISPLAY WILL AUTOMATICALLY INDICATE DISTANCE TO INTRUDER, YOUR
ENERGY LEVEL, AND THE DIRECTION YOUR MISSILES ARE AIMED. THIS DIRECTION
IS STANDARD COMPASS ANGLES (0 AND 360-STRAIGHT UP, 9O·RIGHT, 1 BO·DOWN,
270-LEFT). TO CHANGE DIRECTION ROTATE PADDLE ZERO. TO FIRE MISSILES PUSH
PADDLE ZERO BunON. YOU CAN HAVE ONLY FOUR MISSILES ON THE SCREEN AT
ANY ONE TIME. THESE ARE AUTOMATICALLY RESTOCKED AS THEY LEAVE THE
SCREEN. THESE MISSILES TRAVEL SLOWLY SO YOU WILL HAVE TO FIRE AT AN
ANGLE THAT WILL LEAD THE PATH OF THE INTRUDER.

THE INTRUDER'S WEAPON IS SLIGHTLY DIFFERENT THAN THE DEFENDER'S. WHEN
IT IS WITHIN A DISTANCE OF 120 THEN HE WILL FIRE HIS RAY BEAM AT YOU.
LUCKILY, HIS WEAPON IS INEXACT AND HE WON'T HIT YOU DEAD CENTER WITH
EVERY SHOT. HIS BLASTS DRAIN YOUR ENERGY UNTIl YOU HAVE ZERO LEFT.
THEN YOU ARE GONE.

Fig 28-11. Orbital war game instructions.

VIII. Lines 610 - 998
A. Loop that ties all program actions together
B. Post destruction let down at lines 860 - 998

IX. Lines 1000 - 1070
A. Initializes all battle variables
B. Screen display headers at lines 1140 -1170

x. Lines 1180 - 1220
A. Pre-conHict movement
B. Intruder warning period at line 1190
C. Call subroutine for battle at line 1200
D. Another game and END at lines 1210 -1220

XI. Lines 1600 - 1840
A. Shape table data

XII. Lines 2100 - 2160
A. Shape data at lines 2100 - 2130
B. Constant array values at lines 2140 - 2160

XIII. Lines 3000 - 3030
A. Copyright information

254

TO THE READER
Sams computer books cover Fundamentals - Programming - Interfacing -
Technology written to meet the needs of computer engineers, professionals,

. scientists, technicians, students, educators, business owners, personal com·
puterlsts and home hobbyists.

Our Tradition is to meet your needs
and in so doing we invite you to tell us what
your needs and interests are by completing
the following:

1. I need books on the following topics:

2. I have the following Sams titles:

3. My occupation is:

__ Scientist, Engineer

__ Personal computerlst

__ TechniCian, Serviceman
__ Educator

__ D P Profession~1

__ Business owner

__ Computer store owner

__ Home hobbyist

__ Student Other ________ _

Name(prlnt) ____________________ _

Address ______________________ _

City ___________ State _____ Zip ____ _

Mail to: Howard W. Sams & Co., Inc.
Marketing Dept. #CBS1IBO
4300 W. 62nd St., P.O. Box 7092
Indianapolis, Indiana 46206

21811

. .. -.
... .".., 1I:00000Uo;,IU;-:a:,'a • •• •

. • ., ~·!D·~'tJi[·liimiltim

