
'
•

A Touch of Applesoft BASIC

Apple lie, Apple lie, Apple II rs"

9 Apple. II A Touch of Applesoft BASIC

• APPLE CO.\iPl.JrEII, l1'C.

Cl Copyright 1986, Apple
Computer, Inc, for all non
textual matcnal, graphics,
figures, photographs. and all
computer program listmgs or
code m any form. ,ncludmg
object and source code All
rights reserved

Apple and the Apple !ogo are
registered trademarks of Apple
Computer. Inc

Macintosh rs a trademark of
Mcintosh Laboratories, Inc.,
and is bemg used wnh express
permission of its owner

,\hcrosoft ,s a registered trade
mark of Microsoft corporauon.

POSTSCRIPT rs a trademark of
Adobe Systems Incorporated

ITC Garamond, ITC Avant
Garde Gothic, and ITC Zapf
Dmgbats arc registered
trademarks of International
Typeface Corporation

Pnnted m Singapore

Contents

Preface vll

Wh,-1's a computer language? ,·,i

What's a program? v,u

Do you have 10 program, vui

\\:'hy would you want to lcam to progrllm? v,u

Patience required ix

I low 10 gee .surted u;

And now-begin' x

Session 1 G•lllng Storied 1

1nc clcmcnury stuff 2

Editmg· program first aid 4

Summary and review 5

Session 2 Arithmetic and Vorlobles 7

Arnhmctic 8

Precedence: the order of calculaucns 10

Use parentheses 10 change precedence 10

variables 11

l'\ammg vari:ablcs 13

Break a few rules 14

Summary and review IS

Contents I

Contents

Session 3 The Outside World 17

ll\'PLIT 18

Prompts 19

More editmg. addmg lines 20

Cle:mmg up w,th H0.\1E 20

LIST 21

Stnng vanables 22

Variables rules recap 23

Debugging 23

Summary and review 25

Session 4 Using the Dl1k and Other Devices 27

Computer memory 28

Files and catalogs 29

How to save programs 29

Readmg the catalog and rctncvmg a program 31

Clcamng up 32

For prmtcr owners. pnntmg your listings 33

l!smg what you've learned 34

Summary and review 34

Session 5 Loops and Condlllon1 35

Loops 36

GOTO 36

Conditional branchmg wnh IF TIIEN 37

Bu,ldmg on the model 38

Refat,onal operators 38

use REM for remarks 41

pracuce tune � 1

Summary and rev,ew 42

Session 6 Graphics 43

Text and graphics 44

A '10-by-40 canvas 45

Seeing your hstmg ag;un 46

Plottmg colors w,th COLOR• 47

Usmg variables for plomng and colonng 47

lncrcment,ng columns and rows 48

Drawing honzontal and vcrucal Imes 48

A universal \me-drawer 49

Random graphics SO

Summary and rcv,cw 52

Session 7 Controlled loops 53

FOR\NEXT 54

Usmg STEP wnh FOR\ Nf<Xr s6

Delay loops 57

A qinck review 59

Expcnmcnt before you continue 60

Summary and review 6o

Session 8 Programming With Style: Modular Prog,ommlng 61

GOSUB\IIE'IURN 62

[:\'0 pmtects subrouunc:, 63

Subroutines and orgamzauon 64

Mu!uple mstrucucns on one hne 65

Organmng your programs one step at a \lrTIC 66

The great checkbook lnlancmg program challenge 67

One version of a checkbook balanong program 67

Summary md review 68

ccoteots

Session 9 Formolllng Scr11ens 69

Horizontal and vertical tabs 70

Prompt placemen! 73

Gelling nouccd. INVERSE and /\"OR.MAL 74

A text·cemerirtg algonthm 75

One solution 10 the centering problem 75

Summuy and review 76

Session 10 Programming !or People 77

A .sord,d history 78

People-program gu,dchncs 79

lluman11.ing programs isn't easy 81

n gets easier 81

Where do you go from here? 81

[)o it! 82

A pan.mg word 83

Appendix A A Summary ol Apple1oll Instructions IIS

Appendix 8 Reserved Words 99

Glonary IOI

Index 107

Preface

This tutonal will help you get started writing simple Applcsoft BASIC compuccr
programs on your Apple• II computer You won't learn all there Ls to know about
Applcsoft BASIC from just this nnonal, but by the time you finish these ten sessions,
you'll be able 10 dcode whether you want to contmuc learning about programm,ng.

1l\C product tnimng disk that came with your computer gives you a bncf introduct,on
to Applcsoft, you might WllOL to work with Um disk before yoo read this tutonal.

What's a computer language?

A computer b.nguagc rs like the languages th:it people speak. lt nas a vocallubry :md
a symax-word order ,s tmponam and spelling counts Your Apple computer spc:aks
a language called Applcsoft llASIC. Ot speaks other b.nguagcs, too, but they aren't
built mto the computer; you buy them on disks) The computer rc:ads che BASIC
instructions you type from the kcybo:ird, and then it docs exactly what it's told
Luck,ly, it's easier to learn BASIC than :i. human language because BASIC has far fewer
words, and us gramm:i.r IS usually very straightforward,

·> IMSIC /Jy any other name •.. There are rnany v:i.ri:i.tions on the BASIC computer
language But in this little tutorial the terms BASIC, ,1ppfesojl BASIC, and
Apf)lesoft :i.11 refer to the same thing.

What, o computer language? vi

What's a program?

Computer progr.i.mmmg 1$ wntmg 1ruuucuons for your computer 1hc entire .set of

irutruCl.101\S you give 10 a computer to make u do something is lhc progr.am. Imagine
lh:lt your COlllpulCr is a pct you want to tra,n. You 01n't talk lO your pct m the same

,,.,':IY you talk w,th a hum;m, you have to use a h1111ted YOCilbubry to ICll ,t euctly ,,.,hat

to do If you wan I.Cd ,t to do a seres of th,ngs, you would give it a set of ,ruuucttons,

one in.struc.1ion at a time For ,rui.ance, suppose you want your pct to su, he down,
and roll over You"d do H like UllS

'King, Sil
O

(King sns)

'King, lie down •

(K,ng hes down)

'King, roll ovcr "

(Kmg rolls over)

'Good dog!"

(King wags u,l)

Of course your Apple v.'Qfl"l s,t, he down, or roll over, bu1 ,1 ,11 do a lot of things for
)"OU ,f you grve it irmrucuoru in a syscemauc and logical order You u.se 1hc same kmd
of eocoocss. s,mphoty, and order m computer programming u 1n pct uaining
(cxa:pt that you don"1 have to prai.sc your computer ,,.,hen 11 docs what)"OU tell ,1)

-
Do you have to program?

You don't have to wnte progr.i.m.s to u.se your computer Thouund.s of programs
ha,e already been written for your Apple-progr.i.ms for word processing, firunoal
analvsts. computerized file cabinets, and dozens of other applications You just put
a d�k wuh programs on 1t cue your disk dnvc and tum on your computer

Why would you want to learn to program?

l 1ri.l of all,)OU might find progranumng to be a lot ol fun U"hcn yoo learn Lo
program, you d,scovcr th.n)"OOr Apple isn't really ma1J1cal (although ,t ecru.inly
-ccms that ay at umcs), n's)USl following the ,rui.ruchons th.u you give u \li"hcn you
program }Our computer, yoo make 11 do what you w:mt u to do-you get 10 cre.1.1c yoor
'"' n magic "ccond,)"OU learn a lot about how a computer ,,,ork.s as you learn to

vii Preface

program LL llui gives you a better understanding of what your computer can and
can'\ do. Finally, you might find that programming LS something that really mtngues
you and .sumulates your own creauviry in ways you'd never thought about You might
evemually decide to become a profcssioiul programmer

You can create simple entertainment, educational, and busmc.s.s progr.ims with just
an elementary set of Insuucucns. For enmple, you can wntc very errecuvc
educauonal games m Apple.soft BASIC, or even home budgeting and checkbook
programs to keep your finances in order

Wnung your own program LS an oplfon available on your Apple Wlulc you're likely
to find progr.immmg useful and interesting, you don't have 10 learn how to program
to use your computer But if you do want to program, you'll find Apple.soft BASIC a
great place 10 start.

Patience required

teammg to program is a little hke learning how to become a chef You've got to be an
expenenced chef to pull off great sevee-eocrse meals; but the essentials of the craft
beg,n w,th melung butter, turmng an egg, and so on. And the payaff LS similar, too

You don't have to be a master chef 10 enjoy a homemade omeleue (OI amaze your
friends wuh your culiru.ry prowes.s)

From lime to \lme, you'll just have to be patient-but only for a hule while Have
fa1Lh

How to get started

Apple.soft ,s btnlt mto your Apple II computer. But you need to prepare your
computer 10 store the ptograrns you create so that you can u.sc them again. (You11
learn more about .storing your programs onto di.sk in Sc.ssion 4.) Herc are the steps 10
take to begin your srudy of Applcsoft BASIC.

I Read your Apple computer owner's guide first. It contams lots of valuable
information about the computer that you'll need to know before you can begin to
use Apple.soft. Pay specal anemion to the section on formatung disk.s. You11
need at lea.st one formatted disk before you an st.art.

2 Insert the cuhucs di.sk that amc with your computer into the disk dnve, close the
disk dnvc door, and turn on the computer (Sec your owner's manual for
mstruction.s) Choose the Apple.soft BASIC option and press Return; you .should
sec th,s .symbol I

3 Remove the disk from the drive and replace 11 w,th a jcrmaued disk. Ile sure to
close the dnvc door

How to get started tx

.:, USi,ig Apptes-Ojl U,UhOUJ a diSk drive If you don't have a d,sk dm•e, you can sull
wnte programs, bot you won't be able to store them. To start BASIC wnhout a disk
drive, turn on your computer and then press the Comrol and RC.SCI keys at the
ume umc, then release them You11 5CC th,s symbol J

And now-begin!

Tlus tutorial is drvidcd into ten sessions; you'll need about an hour for each session.
Be sure to spend lots or time praCllcing what you've learned m each session before

gomg on to the next one-, each session builds on the previous one.

Above all, have a gocxi time. Experiment as much as you can Brc.i.k ihe rules Try
crazy thmg.s--------the worst thing that can happen is that ihe computer will beep at you
(When tlus happens, beep back.)

Now, all you have to do is tum lhe page and beg,n.

K Preloce

Session 1

Getting Started

11-ie best way to find out if you like programming IS to do some To keep
thmg� simple, do everythmg exactly as it's presented in this tutorial Of

course if you get bored, 'llrike out on your own! You won't break the
computer b) typmg something wrong, and the important thing is to
expcnment, learn, and h3\'C fun

In this first session, you'll learn the rudiments You'll read about program
Imes and hnc numbers, and how to type in programs. You"ll sec how to
put messages on the screen with the PR"T instruction, and }'Ou"\1 Jcam
some thmgs about programming mistakes and how to fi:,r:. them.

-
The elementary stuff

Before you do anything else, type the word rffll and press the Return key.
:",'EW tells your Apple computer to make way for a new program Pressing
RClum tells your Apple 10 look al what you JUst typed. t.:ntil you press

Return, your Apple thmks you're juSt talking to yourself

l,Lll -----------------Pl"- A•fum '"*•

Xow t)"IX' the following hne exactly as you sec 11, and then press Return.

re H:•;T -�lTw ------------Pl"- Ae'um l"lere

The number 10 IS called a line numbtt Your Apple executes the Imes of
mstructJOns you type in numeric order, always bcginmng v. uh the lowest
number. For the lime bemg, number your program lines by IO's You"ll
learn why later m Session 3

After you've typed all the mstrue1ions (v.hich you've 1ust done-your first
progr.am is a short one), type 111.N and press Return. The RUN command
tells your Apple that you've finished g,,..mg It instructions and that you want
u 10 carry them out

- -----------------P,- Ael\.llTl '"*•

Your video d1.-.play should look somethmg like this.

'.. ,i

"" 0 PIIU,T woe;, -

'"
I

2 Gettng Slated

You've just written and executed (another word for nm) your first computer
program. Congratulations! You've also just learned one of the most often
used programming instructions: PRI;-.;T. The PRll\-r instruction tells your
computer to display whatever appears within quotation marks. I rere's
some more practice using PIUl'\-r. Type the followmg program exactly as it
appears. (If you make a mistake, just press Return and retype the line.) Be

sure to press Return at the end of each !inc:

10 p��e.t • •• e dows"

20 Pr�nt "Sol. Over"

30 pi'.\: -cer w"';Rd"

'" You'll sec this on your screen.

He down

Roll Over

Gf,T WLlRd

•:• Why you don't need NEW here When you re-use a !inc number, the new hne
replaces the old one. The last program }'OU typed had only one l,ne-Jrne 10
This new program a!so has a !me 10, rcplacmg the old one It's as 1f you'd typed
KEW anyway

Your computer doesn't care whether the letters arc uppercase or
lowercase, or some combination of both. But you've got to be careful how
you type your msuuaions. Your computer expects to be told exactly what
to do ma way that ii can understand or you'!! get an error message like this
one.

!SYY'.'AX ':RRC • 'N 10

Computers always do exactfywhat you say, not necessarily what you 1na111

to say. Even minor typing errors will bring up a syntax error message
(usually with a lme number to help you find the error). Type:

and press Return; then type this one-line program and try running it:

- PIUHT ·�HOOPS" -----------Wotch outll

t
(Ile sure to press Return at the end of the line-this is your last reminder.)

After you run the program, you'll sec this message:

,SYN':'AX FRROR lN 10----------10111helhero:nber

lhe elementary stuff 3

Even though you and any other human who saw it would know that you
meant PRll\l instead of PRIMT, the tesuucnon baffied your Apple. Luckily,
most mistakes make your computer show a built-in error message that will
tell you what you did wrong. As you program more (and, naturally, make
more mistakes along the way), you'll see more messages 10 help you
understand how your computer operates. sememter- the computer
displays error messages 10 help you correct mistakes, not 10 tell you you're
a dummy Treat these messages as helpful guides and not as nagging
annoyances.

Editing: program first aid

You've just seen that you have to be careful when you enter a computer
program to avoid introducing a bug, or error. Many bugs arc the result of
simple typmg errors; you can avoid a lot of debugging later by checking
your typing as you go along.

Retyping a whole line every time you make a simple typing error gets
tiresome ,•ery quickly. Your Apple has some built-m features 10 make
debugging easier.

Type the following line, but don't press Return yet:

1� Pllll>T K "!..OOK OUT. YOU IIUG"I Oon"tpr955Reti.xnyetl

That K between the PIU:",.I mstruc1ion and the message is going to cause
problems. You could re-type the whole line, but if you had to do that
every time you made an error, you'd never get anything done. Instead,
locate the four arrow keys in the lower-right corner of your keyboard
Then do this:

1. Press the Left-Arrow key until the cursor is directly over the offending
K.

2. Press the Space bar once to erase the K (don'! use the Delete key, it
won't work wiUl Applesoft).

3. Using the Right-Arrow key, move the cursor until it is to the right of the
last quotation mark in the line. (If you press Return in the middle of the
line, you'll lose cvcrythlng from that point to the unc's end)

ii Now check and make sure your line is correct.

Your line should look like this:

Piii�· "LOCK r , Y(IIUG"I

xow you can press Return and run the program; il'II work fine.

4 Getting Stated

,0. The orlgtns of fm&: Back in the old days, computers used vacuum tubes, had a
million miles of wires, and required large, air-conditioned rooms to keep them
working. Computer folklore ms it thal one day a moth got into the computer
room and flew into the computer. The moth was fried to a crisp, but it didn't die
alone-its demise brought the computer to a de:ad Stop. Arter searching high :and
low 10 find wh:at caused the computer to "crash," a progr:ammer found the moth's
rcm:airu and :aMounced (with no rcg:ard for genus or phylum), "Hey. There's a
bug in the computer." The rest is histOf)'.

Summary and review

In this first session, you learned how to m:ake way for new programs with
NEW, how to execute programs with RUN, and how to put messages on the
screen with PIUl\'T. You saw how programs use line numbers 10 arrange
the sequence of instructions. Finally, you learned a few things :about bugs
:and how 10 get rid of them.

Before you go on to the next session, experiment with the PRl1''T
instruction. Wri1e :a Ilve-llne program; then change the line numbers by
retyping the lines (making the last line the first one, for example) to see
what happens. And don't be afraid to make mis1akcs--nobody's keeping
score!

Sunmory O"d review 5

Session 2

Arithmetic and Variables

You don't have to know a lot about arithmetic to learn to program your
Apple computer. But most programs require arithmetic functions to make
them work. (For example, in a checkbook balancing program you might
want to subtract the amount of each check that you write from the account
balance.) In this session, you'll learn the basics of computer arithmetic.
You'll also read about variables, the storage areas in the computer's
memory that hold values. Finally, you'll learn the rules for giving names to
variables to make them easier to handle-and then you'll be encouraged to
break the rules to see what happens.

Arithmetic

You learned in the first session that your Apple displays anything enclosed
m quotation marks after the PRINT instruction. To do arithmetic, use the
l'IUNT instruction umhout quotation marks.

For example, type this program and run it:

NE"�

10 P!l!NT "S • S"

20 Pl'l!Nt S • 5

'"' , , , ------------ l.l'l& 10 p,h,ted &KOcttv v.hol was nll'de me QIJOTOlion marks

1 o Line 20 printed tt-.. a.m al me two runben

In the first line, you told your Apple to print the phrase 5 + 5. But in the
second line, you said, "Add the numbers 5 plus 5, and show the answer on
the screen."

As you might expect, your Apple can do more than just add. In fact, it can
do some extremely complex math. But in this tutorial, you'll stick to the
basics· addition, subtraction, multiplication, and division. rtcrc's a chart
that shows the symbols (called operators) your computer uses to do simple
arithmetic:

8 AMtvnelic and Vorlobles

•

I

Acllon

add

subtract

multiply

divide

The addition and subtraction operators are the same ones you've always
used. You've probably seen the division operator before, used to express
a fraction (as in 7/8). The only one that looks a little different is the
multiplication operator; it's an asterisk (') instead of an X. Many
programmers use the letter Xto represent some unknown value, so
somebody decided to use the asterisk (which is like an X with a horizontal
line through its center) instead.

Herc's a sample program. Type it; but before you run it, predict what the
answers will be:

--------====:!-lete'1 *ripe oddlllon.
10 PlllNT 4 , s��::::�=========Vou compurer honctes eeceecn eotl!y
20 PRINT 1.s, • 4 . 4 4 Remember ·meonimi.Attpty
JO PRINT 4 • S 40 PRINT 4.6 / 2 Here"1llmpledMtlon
50 PRINT 11 + 12 - lJ • 14-------ncondomU!lpleoperoMOOI
60 PRINT 12 I J • 4;--;::::======::: 10 PRIN'T 10 • 2 • 8 I 2 The COIT\pul8f &Olvel problemt trorn left to rlghT

buT 11"\818 ore om91 con,defo!ION (rood ot>out precedence In me nHI 18Cllonl
Line 20 shows you that your computer can handle fractions-you just need
to express them in a way your computer can understand. For example, if
you mean to tell your computer to determine the sum of two and one-half
plus three by typing this;

PRINT 2 1/2 • J

rou'll get an answer you hadn't counted on. Your computer will display
13.5 instead of 5.5. ll interprets 2 1/2 + 3 as "divide the number 21 by 2;
take that answer and add 3 to it." Spaces between numbers mean nothing
to your electronic friend.

If you worked out all of the problems in your head before you ran the
program, the last answer may have been a surprise:

10 PRINT 10 • 2 • 8 I 2---------Theonswer�24.noll41
The result of the calculations is based on precede.nee Precedence is the
order in which your computer docs mathematical operations.

-

Precedence: the order of calculations

In general, your Apple does calculations from left to right. But all
multiplication and division happens before addition and subtraction. Step
through the calculations in line 70 to sec how precedence works.

Calculation:

Step I:

Step 2:

Step 3:

1 0 ' 2 + 8 / 2

1 0 · 2 - 2 0

8 I 2 .. 4

2 0 + 4 •24

Use parentheses to change precedence

Sometimes you'll need to re-order precedence so that you can first do
addition and subtraction and then do multiplication and division For
example, what if you meant

PIUNT lB • 4 I 2

to mean you wamed to add 18 and 4 firSl, and then divide the sum by 2?
Look at the following little program to see how to do it:

�DI

10 PRINT 18 • 4 / 2----------Thl1come1out 20

20 PRINT !18 • 41 I 2 bu!lhllcome1out 11

Line 10 first handles the division, then adds the result to 18. Linc 20 11?·

oraors precedence by enclosing the sum within parentheses. Parentheses
change the order of precedence. whatever you type within parentheses is
solved first, again from left 10 right and multiplication/division before
addition/subtraction.

If you need to, you c:m embed parentheses within other parentheses to
show precedence in more complex situations. Just remember to go from
the innermost set of parentheses and move outward.

Take a look at this next program and sec if you can guess what the results
will be before you run it.

10 Ar1ttmellc ond Vorlobles

10 PRINT ri-at • 2

20 PRINT 3 • HlO • 6) I 21
30 PRINT ((4 • 3) I 19 • 2 1) • 2

40 PRINT (l (l • 2) • 12·1)1 • lll I 10

Now nm the program and see if you were right.

Whenever you start using a IOt of parentheses, check to make sure that the
number of left parentheses matches the number of right parentheses. If
the totals of left and right parentheses arc different, you'll get a syntax error
message.

+ Pretend you're the computer: Every ume you write a program or a section of a
progr.am, run it in your head before you run it in your computer. The more you
'play computer,' the more you'll understand how your computer operates. As
that happens, you'll aut0maucally type instructions the way the computer needs
to sec them; you'll soon find that you get far fewer error messages Try n for a
while and see what happens.

txpcrtmem with your own arithmetic programs. Try rnlxmg the
precedence up. Mix in some phrases to label what you're doing. For
example:

"" 10 PRINT "The 1u,o of 12 plu1 20, divided by the diUerence bet.....,en !i •nd J.5, is "

20 PRINT 02 • 201 I !5 - 3.51

<, ttboUI IUJS'8htly N,unooorN fines, rr your computer is set to display 40 columns on
your screen, line !O's quotation ran over I.he edge of the screen and wrapped lO
Lhc next line. TIIC word dwtdcd was split in the process. As you go along you'll
pick up little tricks to avoid such unsightly split words, for the time being, try to
ignore them-your computer docs.

So now you know how to use your Apple to do arithmetic. And you can
use it as you would a calculator (although using a calculator is probably
quicker and easier). But Lhc simple arithmetic functions you just learned
become much more powerful when you use them with variables.

Variables

Variables arc symbols for values. They're called wriab/cs because their
values can change or vary. Variables look like phrases you forgot lO put m

quotation marks:

Varlobles 11

"' 10 PRINT •KtLL0-

20 PRINT HELLO

'" -------------1.N 10 pmtl "*· �tLLO •

0 � 20'•work.

In this program, the first IIELLO is a phrase for the computer to print just
as it is. The second I ll�LLO is a variable whose value happens to be zero.
You give a value to a variable by using the equal sign(•).

\dd these lines to the IIELLO program and run it:

lO H!LLO 1'1

41 PP:l!IT IIELLO --------- Thllwl lt\OW 14) ot 12151

'
""

l 2 I New y(llue la VO!loble HEUO 090"*' 'l'I lne XI

You've just assigned the value 128 to a variable called HELLO. Think ofa
variable as a temporary storage box. Whatever you put into the box stays
mere until you replace it with something else. Add these two lines to)'Our
program and run it again:

SO HELLO lSOO

60 PRINT lltLLO

- :'l

You can do math with variables. Try the following program:

'.! w

.o >, IS

20 II 9!

JO P R I N T /\ • B

Vanablcs can hold the result of catcctaucns on other variables as well as on
numbers. Type the following program and sec if you can guess the results
before you run it:

I O LO W • 5

20 HlCII • 9

JO SUM• LO W • HIGH

,o PIHHT St:M

The sum of variables LOW and IIIGII ends up in the third variable, SUM.

Try out the following program to sec the various ccmbtnattcos or numbers
and variables you can gel.

12 AllltYnellc crld Valot:>les

10 II • 14.5
2 0 X • 6 . 5

30 PRINT CW + JC) • 2

C O Y • II - lC •)
50 PRINT Y

, o i • J " Y - 2

lO PRiil! i

Naming variables

Applesoft imposes a few restric:tions on naming variables. Herc's a list:

I A variable name must begin with a lener.

, Characters after the first one am be a mixture of letters and digits (no
symbols).

I Cectain letter combinations (called reserved words) have special meaning
to Applesoft and can't be used in any part of a variable name. (You'll
!cam more about this rule in Session 3.)

• A name can be up to 238 characters long, but the computer recognizes
only the first two. ('Ibe others are to remind you what the variable
stands for.)

When you write a very short and simple program, using single Jetter
wriab!es is a safe way to make sure a variable name doesn't conn.ct with
another vanable. (Your computer sees SUM and SUNDAY as the same
variable because of the last rule in the chart.) But when you begin writing
longer programs. it really helps to have variable names that describe what's
going on

For example, if you're calculating the area of a circle, you'll need the value
of pi (x) in your program. You could have the variable X hold the value of
pi (3.141592). It makes more sense, though, to give variables more
meaningful names:

"' 10 PI • 3.141592
20 RADIUS • 5

30 AP.EA � l't " RAOIUS " AAOIUS------Moll'I A•11R2
CO PP.INT ARl:A

Descriptive variable names make it easy for you to see what the program is

doing when you read your code (a synonym for program).

Vor1oble• 13

•:• Store only numbers In numeric variables. The kinds of vanablcs you're learning
about now arc called numeric variables. That means that you can use them only
to hold the value of numbers ln Session 3. you'll learn about string variables,
which hold anything-numbers, letters, special characters. If you get an error
message like "!YPE MJS/11ATCH, you've probably 1ried to gwe a non-numeric
value 10 a numeric variable

Break a few rules

One of the best ways to understand a programming rule is to break it.
Break every variable rule there is and sec what happens. Go
ahead-question authority. Here are some examples.

':EN

10 PRINT lV

RU�

re

Your computer thought you wanted it to print a 1 and then the value of the
variable V (All variable names start wnh a lcucr.) Variables that you
haven't assigned a value to automatically hold the value O; a l with a O next to
it is ,a

� PRlN! 1

Rt:'<

?S"l"N!A� !:RROR lN 10

?RINr is a reserved word; you can't use it as a variable.

1 0 M I M i a 5

20 MIAMI a S

JO PRINT MIMI

RUN

•
Only the first two characters of a variable name really count. As far as your
Apple is concerned, you assigned the value 5 to MI in line 10; but you
changed it to 8 in !inc 20.

r-,nding variable names that arc both meaningful and legal can be a bit
tricky at first. So when you run into a program bug, Lheflr.\"1 thing you
should do is check your variable names

14 Ar\thrnetlc or.d Varlob�

Summary and review
This session taught you how to use computer arithmetic and variables. You
teamed the rules of precedence and how to program your computer to
calculate simple and then somewhat complicated arithmetic problems.
You found out that variables arc storage areas used to hold values and that
the names you give variables should reflect the kinds of values they hold.
And you saw that, like everything else in programming, there arc rules for
naming variables (and that breakmg those rules is a great way to learn
them).

Sl.mmory and review 15

Session 3

The Outside World

Up to now, all the information that went in10 the computer got there
through your program lines. When you wanted a variable 10 hold some
value, you used an assignment lnslJUCtlon (as in NUMB!:R • 23, so called
because it assigmthc valuc aa to the variable NU!'!&E11). You, the programmer,
gave the program the variable's value. In this scs.sion, you"ll lcam how 10
use J'\'l'UT, an instruction that lets the program get a variable's value from
the person using your program. You'11 read how to construct meaningful
prompting messages so your user will know what information the program
needs. And you'll learn about string ,�.uiabk:s, which let you assign letters
and special characters (not just numbers) to variables.

You'll also learn the difference between inuncdiatecxecutkmand deferred
execution, and you'll encounter new instructions that let you clear the
screen (110:-.11:) and get an updated listing of your program (llSli.

INPUT

The l;\PlJr instruction is at the hean of ln1cractni:: programntlng
programming that lets the computer and a human hold a conversation.
l'\"PLT lets you give information to your program while it's running. ll
makes the program wait until you (or the person using your program)
types something and presses Return.

·1 ypc and run the following program: when a question mark (the !:'\PUT
prompt) appears on the screen, type a number and press Return:

\'�

10 U,PU::" I\

2: PP.HI":" I\ • 5

Your Apple computer prints whatever number you typed after the
question mark. If you typed 3, your screen would look like this:

n ------------Your computer SUPPies ma QU&lllOl"I mork ouromo•,caov

"
It's just as if you had typed A • 3 as a program line. Whatever you type in
response to an J'.'\PL-r prompt gets assigned to the lnput \'arbble (a variable
whose value is assigned by the user, as opposed to one whose value is

assigned by the programmer).

Hi lhe Outside World

Prompts

The question mark prompts you to type something. You knew what to
type (a number) because this tutorial told you. But people using your
program would have a hard time knowing what to do if all they had to go
on was what appeared on the screen; a question mark in it.self doesn't say
much.

Applcsoft !cts you use descriptive prompts to solve this problem.
Prompts tell a computer user what to do next. You can use either of two
ways to show what the program wants. First, you can print a tine lhat says
what to do; then use an INPUT line.

Type thls program and run it.

N�il

10 Plll:-IT "l had a tough night. What y"ar ls thh?"

20 INPUT Year

Now when you run the program, the message on the screen lets you know
that you need to type the year.

You can also use the INPtn' instruction itself to prmt a prompt. A prompt
with INPt.rr works almost like a prompt with PRINT, except that the
prompt appears on the same line as the 1:-.'Pllf instruction:

��1<1 .- INPUT ond prompt

10 INPUT "I had a tough night. What yea< i• thi•? "; y, ••• --

20 PRINT "Oh. great. I thought it wa• "; Year • 1-----NIIWITUffherlll

30 PRINT "and I "'iued Ch<ht,oa•."

(&: sure to give the computer an answer when it prompts you for one.)
The semicolon between the quotation mark and the variable name in line 10
is important; you have to include a semicolon when you're using a
prompting phrase with an 1:-,IPtrr instruction. Note that when you use a
semicolon after an INPlJr instruction, your Apple omits the question mark
prompt.

+ same tips on using !'RINI: line 20 has impl,cations you can investigate on your
own. To gel you started, note that·

There's a semicolon after the final quotation mark-the semicolon rcns BASIC
to show the value of uc variable on the same line as !he quouuon.

2. Your Apple docs a lmle amhmcuc on the variable Year.

Herc's a program that shows several examples of self-prompting INPlff
lines:

Prompts 19

• •• ti

n. PRINT �-::R:VJA PP.OM. T :;Am."

zc PRH.-r

31 l�?tT "l!ow ,u,r.y c .. rds .ro .n "deck? "; Cuds

(I n,;c··- "l!ow ,..ny U.S. congreuperaons are there? "; C

!NO "How ,.any keys are ,ere on your keyboard? "; Keys

6< lNf "Hew ... any days ••• J • loap yvu! "; Loap

-:- lfif!8al names and syntax em::in The tnv1a program uses descnpuvc vanable
names in all lines CX!..Cpl line 40 The variable name Cl' ,s not very ocscnpove.
but both Congress and Persons contain the reserved word Q"\; (Sec the list m
Appendix ll) \'>:11en you get a synmc error in your program and you don't know
why, try changing the vanablc names

More editing: adding lines

Sometimes you have 10 add line� 10 your program If the new lines belong
at the end of the program. you Just type a line number larger than the last
line number 111 the old program and start typing Bui what happens 1f you
need to add a line in the middle? l'\othing to it. All)"OU have to do is type
a lmc number that's between the numbers that already exist

t·or example, suppose you have the folio\\ mg program, and you want lO
nxjude a lmc between lines 10 and 20

11 Pl!:IIT "Rern<'-.-r e e-

P!ll',r "tnv c,q"

You want to remember to feed the dog. All you do is add the Iollow ing
!me to your program

15 PRl'd -reec-

Go ahead and run tbc program. You"II sec that everything turned out m the
right order

-:- teaoe intcrualt tetueen line numbers All the .sample programs you've seen m
rhrs tutorial have hnc numbers spaced JO apart If lhe current progr,.m had been
numbered I, 2 instead of 10, 20, you wouldn't have had room to insert the new
line, and you 1>,ould hace h.1d to retype !he who!c program

Cleaning up with HOME
Your screen gets cluttered after you've typed and run a few programs. The
I roxrr instruction clears the screen and places the cursor at the upper-left

20 The Outside World

corner (the cursor's beginning, or home, posilion). Each time the
program encounters IJ0:0.11�. it clears the screen and homes the cursor:

4, :�Pl "riOW !'.ANY POUNDS ARE IN A KlLO:.RAM? " Lil
)()),\�

,. '

"
The screen cleared with each new question. That way there's no conluston
about what the program expects, and there's no cluucr from other
programs.

You can also use 110:0.IE without a line number whenever you feel like doing
some light houscclc:ming. Just type l!OME and press Return.

Try it now:

1101\!E clears the screen-it doesn't clear memory. I IOME just erases the
1unk cluttering your display. It has absolutely no impact on memory.
(Don't confuse it with NEW.) Out after you use l lOME to clear your screen,
you'll need a way to sec your program lines again.

LIST

Type LIST and press return to sec your program again. Try it now.

LIST

As your programs get longer, you'll use LIST more and more. Type the
following program to test the different ways to use LIST:

,W 01.D IS THE PRESIDENT? -. PRES

m:li

10 HOME
,, PRINT
re PR!��
•• PRl?.T
"

PRINT
'°

PRlNT

"And Maud Pritch11.rd"

"waddled the bible-black path"

"to the beat-bobbing sea"

"vith nary a mind"

"fer l'r. Pritchard, dead U biscuit•."

l-irst, run the program; then list it. Once you've listed your program, try
the following variations of the UST command to sec what happens.

Ll ST (O ---------------,Usts line 40 only LIST (0
L!ST _ ,o �;;-:=============Ustsllomf,ne4Dtoendo1Pfogram
LIST 20 - 40 Ushlrombog,ronlngtolno40 usn llom line 20 to llne40

LIST 21

\Vllh the small programs you've written so far, you won't need al! these
variations in the LIST command nut later, when your programs are so
large they roll off the top or your screen, you'll want to list small program
segments

String variables

In Session 2, you learned how to use variables with numbers. You can also
use vanablcs with text. Variables that hold text arc called string variables.
'itrmg variable names always end with a dollar sign (S), and you define them
(th:u is, give them values) in nearly the same way as numeric variables·

• •

2c l\untS• "Aunt LiuyM

]O PRINT l\,nt:$

\Vhcn you run this program, the words Aum uzzy appear on the screen.
line 30 works the same as

,:�T MA,nt Lizzy•

You can put Just about anything into a string variable. Unlike numeric
variables, which accept only numbers, string variables can hold letters,
numbers, symbols-even punctuation:

' '
lO HOMt

20 (;I\RBl\(E$• "Allot this junk-> 1 4 3 $, ' ' : ; •

'< PRD,1 �All.BA(·:S

Your computer printed everything between the quotation marks in line 20.
trs important to remember that numbers arc not treated as numbers \\ hen
they arc in string variables. They're treated as text-just symbols, a string
(get 11?) or characters without meaning to the computer.

Hun this next program to sec numbers treated at text:

"](B1, "2

�(PRINT A$ + BS

Instead of getting 30, you got 1020. 'rhc plus sign(+) doesn't "add" the
striug vartublcs (I low do you add lcucrsf) It just strings them together
In computer terms, iL concncnorcs them.

22 The OJtside Wo�d

You can also use string variables wilh lt,.l'lIT. You use prompts wilh a
string variable IXPLIT just as you do with a numeric variable 1:-.Ptrr. This
next program mixes OOth kinds of variables:

10 11.0'!E

2C !�?UT -��a�'s you� na�e? "; NA.'I.E.S
J� =�PUT •:ype yo.r age: NGM

�: ecxs Note the semicolon
�� PR:X� :<A..'!E:$:------------

6� r11.:x:-" is "; ihere·1ospocebefaethel andafferlhe$

re PR:xr)...:M;
10 PR:x: "Y••�s old."

Just to sec what happens, type some letters when your Apple asks for
numbers. (For example, rype •ight11en instead of the number 18.)

l\s soon as you press Return, you get lhis error message:

That just means your program expected a number and got something else.
Do as it says-re-enter a number (your computer wouldn't lie to you), and
c,·erything will work fine.

Variables rules recap

In case you've forgotten, here arc the rules for naming variables. The last
one applies only to string variables:

I A variable name must begin wilh a letter.

• Characters after the first one can be letters or digits.

• A name can be up to 2}8 characters long, but lhe computer recognizes
only the first two. (The olhcrs arc to remind you what lhe vanablc
stands for.)

• Certain lcuer combinations (called reserved words) can't be used in any
part of a variable name. See Appendix B for a list.

• All string variable names end wuh S.

Debugging
Murphy"s law, "lf anythmg can go wrong, 1t will; applies doubly to
programming. (Lubarsky"s Law of Cybernetic Entomology applies equally:
"rbcrc's always one more bug"; bur thars for a more advanced tutcrtal)

Debugging 23

Experienced hackers (another term for programmers) and beginners ahke
make all kinds of little errors while programming. Debugging a program
(that is, ruthlessly tracking down and exterminating bugs) is a nonnal part
of creating a computer program; more often than not, it's a major pan.
That's why your computer has error messages.

Knowing Lhc difference between lnuncilia1eanddderrcdexccutionis
helpful in debugging programs. When you type 11u:. or NEW or LIST without
a line number, the computer docs what you want as soon as you press
Return. This is known as immediate execution. When you wrnc a program
wnh line numbers, the computer defers execution until you run it. 111is is
called deferred execution. Immediate execution is extremely useful in
debugging programs.

ror example, type and run the following program:

I! ·�1

2r MC�EY$ = "$1,000"

JO PR!r.r MONEYS

You get ?SYSTAX ERROR lN 20 instead of the S 1,000 you expected List line
20, and you will be in for a surprise.

;, I' lN tY$ "$1,000"

What happened to M ON En? It's all broken up. Type:

l'���Y$ "Sl,000"

As soon as you press Return, you get a syntax error. You have a reserved
word (O:'\') embedded in your variable name. In your program listing, you
can sec that 0:-1 has been separated from v os EYS in Jines 20 and 30. You
can rewrite your program with another variable name, but first test the
alternate name by using immediate execution. Try the following:

B:JCll'.$ - "$1, 000"

There was no error message this time. That means aocss is acceptable as a
variable name. In this case, changing the program takes only a few
seconds; you've used MONtYS only once. But consider a situation in which
you've typed a much longer program, usmg MONEY$ 25 or 30 times-it would
take quite a bit of time to change each instance ofl'oliEYS to BUCKS. It's a lot
quicker testing out possible errors by using immediate execution than re
wmmg your program every time you encounter an error.

"111c trick to successful debuggmg is isolating the problem. Some error
messages give you the line number where your computer detects the
problem. This helps you zero in on the problem. Test the possible
problem from the immediate mode as you saw in the example with 1-to�EYS
and aucxs . Correct the error in the program, and re-run it to sec 1f more

24 The C>.Jlslde World

errors occur. If no more errors happen, then your debugging
succeeded-at least as far as variable names arc concerned.

vec-n find more uses for immediate execution as you go along.
Experimentation is the key. Try everything first with immediate execution;
you'll be in for some pleasant surprises.

Summary and review
In this session, you learned that you can get information from the user with
the INPUf instruction while your programs are running. uc sure to use
descriptive prompts with INPIJr; that way people who use your programs
can know what they're supposed to type. Descriptive prompts are to the
users of your programs what descriptive variable names arc to you, the
programmer.

You a!so learned about strmg vanablcs. You saw that they work and look
much like numeric variables, except that string variables end with S, and
I.heir values arc surrounded by quotation marks in a program line.

The I 10:0.1E instruction clears the screen for you. LISf lets you see all or
some of the lines of the program in memory to make program debugging
easier.

You also learned that you can use many programming instructions with
immediate execution to help you debug programs.

Su'TYnory and review 25

Session 4

Using the Disk and Other
Devices

As you wntc longer and better programs, you'll want to start saving them
to use again. This session explains how to store programs onto disks and
how to get them back again.

You'll learn about three different kinds of memory (){AM, RO!tl, disk), with
emphasis on disk memory. You'll see how to store a program onto a disk
with SA VE, retrieve the program with LOAD, and see a list of all the
programs on a disk with CAT. You'll learn how to get rid of outdated
programs on a disk by using DELETE.

You'll also learn how to use PR•l to get a version of your program on
paper mstcad of on the screen, and how to usePR•O to use the screen
again. And you'll end the session with a review of everythmg you've
learned so far.

Computer memory

RA.\I stands forRtmdomAccessMemory. RAM is temporary. When you
fin,t turn on your computer, this memory has nothing meaningful in it.
\\ hen you wrue a program or tell your computer to retrieve a program
stored on a disk, that information goes into RAM. When you turn off your
computer, all of the information in RAM evaporates.

HO:\I is Read-Only.Memory. It's a kind of memory that holds information
permanently. The Applesoft llASJC language is stored in this kind of
memory; when you turn your computer off, the language stays in RO:\I (but
1101 your program). Xothing that you type gets stored m this kind of
memory.

\ disk is what you save programs on. Disk drives (the devices that disks go
mto) work a lot like tape recorders. With a tape recorder, you talk into
the microphone, and your voice is recorded on magnetic tape. Then you
rewmd the tape and listen to your voice. Your computer works the same
w.1y, except that instead of usmg tape recorders to save what's in RAM onto
tape, u uses disk drives to 53.\C information onto disks Once you've got a

program on disk, you can "play u back" agam and again.

You don't have to worry about the technical details of RAM, ROM, and
disks llut you'll save yourself a lot of grief if you remember that when you
turn off your computer, everything in RAM disappears into electronic
oblivion.

28 Using the Disk ond Other Devices

Files and catalogs
Most well-organized people put written records in fi!cs so they can find the
records again. So too with computer records. Programs stored on disk are
also called files. 'rherc arc several other kinds of flies, but the only kind
you have to know about for now arc program files-the name given to
programs stored on disks.

Making a list or calalog of what files arc stored m a me cabinet makes it

easier to locate a file when you need lt. Essentially, that's what your
computer docs when you save a program on a disk. You store your
program by using the SAVE command, and the name of the program is
placed in a catalog. When you want to use a program, you look it up in the
disk's catalog with the CAT command to make sure it's there, then you
retrieve it by usmg the I.CAD command.

-:, Commands wnus tnstrucnons-:a matter of tenninology· Thal last paragraph
used the term wmmand several times A command is like an mstrucllon m that it

tells the computer to do something. The djffercnce between a command and an
mstrucuon hes almost enurcly m when the computer does what you want.
Essentially, a command is an order that the computer executes rmmcdratclv. an
instruction is an order whose execution is deferred It's just a mauer of
terminology

How to save programs

Storing a program onto a disk is the easiest thing in the world. You issue
the SAVE command, giving your program a name you can use later to get it
back from the disk

To get some practice, first type m tlus program.

"" ?l\l\T "Thh is r-y very !lut uv<1d proqr.oo,,"

20 ?I\!�� "!'ffl very prOYd of it"

]0 PRU.: "Cnr I wl�l be, 11 I c.on qet it back)."

Now you need to think of a name. Here arc the rules for naming a
program.

• A program's name can be up to fifteen characters long.

• The name must begin with a lcucr.

Kow to save progoms

• You can use letters, digits, and periods in the filename, but you can't use
any other characters, and you can't include any spaces. You can use

both uppercase and lowercase characters, but the computer converts all
tcucrs to uppercase.

• All filenames on a given disk must be unique. Uut � characters in the
name count, not just the firSt two, and you don't have to worry about
reserved words. So coming up with different filenames shouldn't be
much of a problem.

• The name should reflect what the program docs.

I tcrc arc some legal filenames:

CJ II.CK BOOK

1\DDJ'\G PROGRAM

\II IA'\DAll.2

'\OT '1.SALE

these names, though, arc tffcgal:

10'\E

Tl 115 PROGRAM!

1'01:\T

A Ill" \LLY TRUL Y.i\"ll'TY.PROGRAM

GJU'.\T STL'IT

Problem

Begins whh a number.

Exclamation mark is illegal.

Begins with a period.

Too, too, Jong.

There's a space.

(.\!any people use periods in filenames where they'd use spaces if they
could.)

Save your program onto a disk now. You can use whatever legal name you
want, MY.FIRST.1'11.E seems like an appropriate one.

Trpc this line and press Return:

S�Vf MY.rl�ST.r!L[

The disk whirs and kcrchunks a bit. When it stops, a copy of your
program is safely stored on the disk. xore tha1 word-c-copy. Storing a
program on disk doesn't have any effect on what's in the computer's
m..:mory.

Type 1s1 and press Return; you"JI sec that the program is still there.

30 Using the Disk and Othef Devices

Reading the catalog and retrieving a program

Once you've saved your program 10 the disk, type NEW and press Return.
Now you know for sure that there's nothing in memory. ('l'ype LIST and
press Return to sec for yourself.)

To look at the files on your disk, use the CAT command. You'll get a list of
al! the files on the disk.

Type this command and press Return:

'" Assuming there arc no other programs on the disk, your screen will look
like this·

]CAT

/PIIACTICE

t1Y. FIRST FILE

BLOCI<S FREE

TYPE

$08

240

BLOCKS MODIFIED

33 cl'fO DATE>

BLOCI<S USED: 40

{Of course, your screen will look different if the disk already has other
programs on it.) The program MY.FIRST.FII.E is now in the catalog. (For
information on what the rest of the display means, sec the manual Lhat
came with your computer.) The next step is to retrieve the program. To
do that you need a new command, LOAD

Type this command and press Return:

LO�D MY.rIRST.rILt

Reading the cotalog ond retr1evlng o program 31

You'll hear your disk drive whir a second, and then the prompt and cursor
\\ ill reappear. That means your program was successfully loaded mto
memory

To make sure it's the program you saved, list it:

Your program appears, just as it was when you saved it.

•:• LOAD does a NE\ff \X'hen you load a prognm, your computer first dears us

memory of any program that might already be there This means rou don't have
to worry about two programs being mixed 1ogcthcr Ot's possible to combine two
programs. but the technique is too advanced for this tutorial) lbmk of LOAD as

hav mg an automatic :-:EW attached to it.

Cleaning up

If you're really careful when you write programs, you'll save different
versions as you go along. For example, you might have saved these
programs on your disk:

STAMPS.VI
STAMPS.V2
ST,\,\IPS.V3

If you know for sure that the last version of your program, STA.\1PS.V3, is
the only one you plan to use, you might as well get rid of the other versions
and free up room on your disk. You delete mes by using the DEL�'TE
command

lo delete STAMPS.VI, type

)E, .:t S7A.� 'S. ll -----------Pres., Rotum

You'll hear the disk whir, and STA.\IPS.VI will be just a memory (human,
not computer). Just think of Dl:LLTE as the opposite of SAVE, and use the
same format.

-> Dl:'/EJ7,'s not m,entble DELETE is forever Once you ocicie a program from
the duk, it's gone Be sure that you wam lO get nd of a program before you use
on.ere.

32 Using the Disk and Othel' Devices

For printer owners: printing your listings
So far, you've sent your program to the screen and to the dssk You can
also send your program (and anything else you type) to the printer

Prmtmg out a program, ccpecrally a long one, 15 extremely helpful m
program debugging, > our cxpcncnce \\ 111 show you how very true this 1.,<,

To hst a program on y our pruner, follov. these steps

I Make sure your printer 1., properly connected to the computer

2 Check thar you have paper property loaded

3. Ile 'lure the printer l-, turned on

I ypc ., • and prcvs Return

Of you don't follow ant one of the fif'>t three instructions, rour computer
will appear to be stuck) 11,c PR•l comm:md makes e\erything that would
go to the screen go to the pnnter If you typ..: UST after you've typed a
PR•\ command, your pnmcr will clank out the listmg (unless you've typed
UST incorrcctly-m which case the syntax error message gets prm1cd)

To <;CC the computer's output on your screen again and 10 stop usmg your
printer, type thls

P�t(

and press ncturn The command will appear on the prmted page, but after
that, subsequent ccmrnandv and listmgs wrll appear on the screen mstcad

Bugs can be tough to find m longer programs, especially when your h:.tmg
LS -'>O long that 11 serous off the screen Pnnung out your ll'itmg.� can "3\"C a
great deal of debugging time

Tj pc th1:, program and try 11 .. tmg it on your prmtcr

lO RO"!

Jr PRl'."? ".,.h!I o.,.-oq...-am w b.- lhted · �v pr:ntee."
11 PR:,;;: " r t•e-re•s a t,�q here, the prtnCl!e"

41) PR!NT "W •• eJ.p m < • down."

�F•

t, ,.

Your printer gi .. e-'> you a hard copy hsting of the program

Before you turn ofT your printer with PR•O, run the program to sec what
happens Then tvpe PR"O to get your BA<;JC prompt (D back on your
display screen

For pmrer owners pmtng you istngs 33

Using what you've learned
You've had less to learn in this session than in the three previous ones.
use your remaining BASIC study time to write some programs that use all
the instructions and operators you've learned so far. I rcrc's a list to jog
your memory:

lnilrucllon1

IIOME

Ope1olo11

•

cemmeees

CAT

LIST

PR•O

INPlJf

(

DELElli

LOAD

RUN

PRINT

)

NEW

PR"'i

SAVE

Coneepll

Jmmcd,atc and Deferred Exccullon

Meaningful Names

Precedence

Stnng Variables

Linc Numbers with Intervals

:-lumcric Variables

Prompting Messages

Summary and review
In this session, you learned how to store programs onto disks by usmg the
SAVE command, and how to get them back by using LOAD. You learned
how to name programs, and which characters arc legal in a name and which
ones aren't. You saw that CAT gives you a list of all the files on your disk,
and that 1f you use PR•!, whatever ordinarily goes to the screen goes lo lhc
printer. (PR•O sends information to the screen again)

34 USlng 1he Olsk and Other Devices

Session 5

Loops and Conditions

In the first few sessions, you learned the rudiments of 111\SIC
programming. Now n's time 10 get down to some more advanced stuff.
In this session you're gomg to learn about three very powerful principles:
loops, rclationals, and conditionals. You'll also read about some BASIC
-uon cuts that make programming easier, and you'll learn some other
helpful instructions.

Loops

To loop is to go over the same part of a program more than once. for
example, suppose you want to get ten names with l:,,/Pl.Jl" and print them
one after another onto the screen. It would be a lot easier to repeat the
part of the program with the INPUT instruction than to write ten separate
lines with l:'\PUT:

�DI

10 HO�E:

20 IN?�": "Girr-o a na-11:

30 PR!'.; Nl\.'11:$

� o How do you ;;.iet bock to lne 207

\Vhat you need is some instruction that lets your program loop back to line
20 10 get another name. That instruction is GOTO.

GOTO

111e GOTO instruction directs the program to go to any line you name
This program clears the screen, then skips to (or branches 10) line 40
instead of going to line 30:

"' 10 l!J'II

2, cc ; , 40

3[PR!'!": ""!loy• I thoJqht I wa, ne��'"-lhl1n11v111;;,i11T1prlnTodl
�I P�J�- "1''" the only line you'll seal""

l Jere's another example. Type the first program of this session, but this
time type

ro 21

36 loops and Conditions

for the last line. Then list the program. It should look like this:

10 HOl'f.
20 ti.PUT "Cil0tme a �ame, "; 11"1'.tS

lC PRINT NAMtS

4C CiOT(2

This program repeatedly asks for a name and then prints out what you
type. The program will go on doing this forever as long as somebody
keeps typing in names (or until somebody pulls the plug); every lime the
program reaches line 40, it goes back to line 20.

* lnftnlle loops What you've got here is an infinite loop. Sometimes, infinite
loops can be helpful-this isn't one of those times. To get out of the loop before
you run out of names (or patience), press the keys muked Control and C at the
same t,me, release them and press Return. That's called pressing Comrol-C;
you'll run across this term often if you read computer books and magaiiocs
When you press Control-C, yoor computer will announce:

BR!'.A)(IN 20

The message means that you "broke into" the program at line 20. Vt:'hen a
program gets stuck (or hangs), sometimes the only way 10 regain control is with
Control-C.

This program solves the problem of geuing lots of names without retyping
I\JPL"l' lines again and again. But it's out of control. You need a way (other
than Control-C) of getting the program to stop looping when you've had
enough.

Conditional branching with IF THEN
BASIC has a two-part instruction called IF 111EN. It gives your program
the power to make decisions-which, as it turns out, is just what you need
to solve the infinite loop problem. The general format of IF ... TIIEN looks
like this:

!I' <something is trne> Tl lEN <perfonn some actton>

An 11' .. :n IEN instruction decides whether or not something is true. If what
you say in the first part between the words /Fand 77/EN(callcd the
condition) is true, then your computer docs whatever you put after 1111I.N.

If the condition is not true, then the program ignores everything after
71/£.V and drops to the next line.

To sec this in action, add two lines to your infinitely looping program:

25 If t,l',.,'1£$ �enouqhft TH[!I CiOTO 50

5� PRINT ftAnd that and• the na..,. llat.-

Coodlllonal txcnctwv.;i wtlh IF ... THEN 37

I tcrc's the whole hsting:

l O l\C)1E
20 INPUT "Gim,.e a n.a,-a: "; NAME$

25 If NA"ES - ""enoug'1" !HEN GO:O 50
30 PRINT NAMES
40 GOTO 20
50 PR!�T "And t'1.at ends the n.a�e list."

nun tho program now, after you've typed a few names, type enough and the
program ends.

Building on the model

Going by the model IF <sometlung 15 trne> THEN <pe,jonn some action>,
in the previous example the something-that's-true (the condition) isM4S
"enough." When '.\'AS was anything except "enough," the program went on

looping; when it was enough, the program branched to the final line. The
branching was the perform-some-action part.

•:• Start a 5az.lng plan. As you type in your programs, you should get into the habit of
saving them to your disk lx:fore you run them Then, save them often as you
develop and change them-once every ten minutes or so will do nicely. There'll
be situations when even Comrol-C won't get you out of trouble (hkc, for instance,
when your httlc brother playfully fl,cks off the power swnch) IF you save the
program oncn, you won't have to recreate and retype your latest refinements

Relational operators

llcre arc some more examples of IF ... TIIE:,./ instructions. Pay careful
aucnucn to Lhe conditions; you'll sec some symbols you haven't seen
before:

If NAS - ""OUIT" THEN GOTO 100 �<>means ·not the some OS°
tr 1\$ <> "APPLE" THE� PRINT "YOU r..ost··--

rr s�M > 10 THUi x • �o;�;;-::::::::==== > moons ·o,eo•er Thon'
Ir COUNT< 100 THEN GOTO 20

< meon1 '10$$ mon·
Those little angle brackets arc called rctauonat operators. They describe a
retauon thnt exists between two things. I rcrc's a chart that shows all the
rclatlcnal operators und what they rncan-

38 Loop, and Cond11loos

Oi,.rator M•anln<jjl

> greater than

< less than

equal to

-c- not equal to

>- not less than

<- not greater than

The next two programs give you some examples of what you can do with
relationals, GOTO and IF ... TIIEN instructions. They also present you with
some challenges, Leach you a new instruction or two, and give you a few
BASIC short CUL�.

Compadng Values: This program asks you for two numbers, then tells you
which number is the lower one. The program has a few surprises m it to
keep you from getting bored.

First, type the program. Then sec if you can figure out what's going on
before you run it Finally, run it and see if you were right.

"' 10 HOM£

15 PRINT "To end the progr•m, cype • O for Che rt.-.c number."
20 INPUT "Ent.er Che first number: '"; Nl

25 IF Nl * 0 TH.E:N [NO

30 INPUT ".E:ncer Che •econd number: ""; N2

35 lF Nl > N2 THEN COTO 100

40 If Nl < N2 TH.E:N GOTO 200

45 PRINT "Tho�e number• •re the umB1"--Howdoo1tt1iswork'"l?""I

50 GOTO 20

100 PRINT N2; " is lowor thftn "; Nl

110 COTO 20

200 PRINT Nl:" 1s lower than "; N2

210 COTO 20

llcrc arc some questions for you to consider before reading further:

I. 'there's a new instruction in line 25-CND. What docs it do?

2 Lme 45 will print its message only if both numbers you type for lines 20
and 30 are the same. Why?

I low The Program Works: Line l 5 lets you know what to do to stop the
program without using Control-C. The END instruction in line 25 docs the
work of stopping the program-but only if you type a 0. Linc 45 is

Relotionol coerctco J9

executed only when values for NI and 1':2 are lhe same. To see why, look
at the two previous lines. Line 35 goes to one part of the program if N2's
value is lower lhan :'-11; line 40 goes to another pan of lhe program if lhe
opposite is true. Dcing the literal "thinker" that it is, your computer
continues on to the next line (line 45) only if there's no reason not to-in
uus case, if bolh values arc the same.

Assigning Variables: This next program shows how IF ... TI IEN can assign
different values 10 variables. In this instance, lhe values arc different words.
('Ibey could just as well be numbers.)

Type the program Before you run it, flgure out
I What arc all lhose question marks for?
2 What's strange about line 80?

3 What's line 80 for, anyway?

Be sure to flgure out the challenges before you run lhis zoologically
questionable program.

2(' "I. STIIUIS"

re I "2. l>A:.l<S"

�� i "J. n.res-

fiO PR:�T "Thln• of an ani!l'al. Th•n choo •• •"
,� ' ·�w.-.ber that �•t dc,cri�• how yo�r·

7e :SPUT "•nt�tl movat. "; SUMStR
IC tr \�"!ltR, J Tiit,; 10
90 If ��MBtR < I THtS 10

ICO :r �"J!'BER • l Tiit.\ A.,;11'.ALS •"fhh"
110 Ir ��MBtR • 2 TlltN ASil'.ALS "Mt,.,,..al"
�20 tr NU!'BtR • 3 TlltN A�ll'.ALS • "Bird"

!'RIST
n�:�- "I bet yo�r aniwal 11 a " ; A.1l!'.AL$

Those question marks are a short-hand way of typing PRINT. Saving four
keystrokes each time you want to use PR1:,..1 can save you lots more time
than you think. When you ltsr your program, each question mark will be
converted to PIU:--T.

Linc 80 IS peculiar in that it tcavcs out the word GOTO. It turns out that any
of the following forms work for lhc GOTO instruction within an JF...TI-IEN:

IF :--t:MBER > 3 TIIE:'-1 GOTO 10
II' :--U,\BER > 3 TI IEi\" 10
Ir :--L":>IBER > 3 GOTO 10

In other words, you can omit THE:-- or GOTO-but not bolh.

40 Loops and Condrtiom

The purpose of lines 80 and 90 is to set traps to make sure anyone using
the program doesn't put in a number that's beyond the range of choices.
Traps give your users another chance in case they make a mistake (which is
an annoying human tendency).

Use REM for remarks

The REM instruction lets you write notes to yourself about what your
program docs, and lets you mc\udc the notes in the program. These notes
show up only when you list your program, people can't see them when
they run 1L

For example, you can use REM instructions to keep informaoon about the
program handy, or to tell you what the program segment is doing:

100 !IEM• •• •• •• • • • • • • • • • • • • • • • • • · • · • • • • • • •

110 REM

115 REM

120 ltEM

125 REM

130 REM

1J5 IIE.M

140 HOM!:

145 COMJ'..ENT$ �11EM co...,ent• don't app,,ar on the •creen,tt

150 ll£M Print a message on the •creen
155 PRI�T COMMtNT$

'"
RE.M instructions are reminders for people, not for computers. REM
instructions do nothing to your program. When the program reaches one,
it ignores the REM instruction (and anything after it on the same line) and
goes on to the next line.

* Put pros mm name tn a REM ttne M:tke the fi�t or second hne of your program a
REM line containing the program's name. Then, when you change Lhe progr.am
;md want to save the new version onto :1. disk, you'll :1.lwa� know what narne to use

Practice time

You covered a lot of ground in this session. Before going on, experiment
with what you've learned. Go back and change the example programs.
Try to "break" some programs; f1nd the limits of the instructions you

srocece !!me 41

Clear the screen
· · · · · · · · · · • · · · · · · · · · · · · · · · · • · · · · · ·

The Great,rican Co,oputer Program

by Throckmorton Scrlbblemonger

Verdon 16.5

July 4, 1987

!earned in this session. Certainly write some programs of your own. Make
mistakes-they're free.

Summary and review

This session showed you how your computer can loop and make decisions
(that is, process information). You use loops to repeat a process several
times. Instead of having to repeat the same line throughout your program,
you can use GOTO to repeat the lines. This saves a lot of time in building
\ our programs

1 he !F. 1111::-.: mstructfon is your computer's "decision maker." With
tr Tiil:..._, you can branch to different options and jump out of infimtc
loops. You can trap mistakes with IF ... THEN to make sure the person
using your program types information for INPUr instructions within the
program's range.

You learned some short cuts for writing GOTO instructions within
lF ... TIIEN instructions, and you saw how to use the question mark in place
or PRINT.

Finally, you saw how to use REM to remind yourself what a particular part of
your program docs. 13y using REM throughout your programs, you can
clearly organize your program lines; by marking program segments to
make them easier to find, you make debugging easier.

42 loops and Conditions

Session 6

Graphics

Up to this point, all you've seen on your Apple computer Is text. Uut you
can also produce some wonderful color graphics. Your computer has
several graphics modes; in this session you'll learn the one called low
resolntjon graphlcs. (It's the easiest to use.)

You'll learn the difference between your computer's text and graphic
modes, while learning the GR and TEXT instructions. You'll sec how to use
COLOR• 10 set one of sixteen colors to use with PLOT (for plotting points),
VU;'/ (for drawing vertical lines) and JILIN (for drawing horizontal lines).

Besides all this, you'll learn the RND tnstrucrlon for producing random
numbers-which you'll use, in tum, to produce some pretty snazzy
graphics.

Text and graphics

Your computer has separate modes for tCllt and graphics. (A mode is anv
of several ways a computer interprets information.)

To get started, you need to know two instruc1ions---one to get into
graphics mode and one to get out. When you turn on your computer, it
automatically goes into text mode. When you type the instruction GR for
graphics, your computer goes into graphics mode.

Type the command

"
(don't use a line number) and press Return.

Your screen went blank, and 1he cursor popped up at the bottom of the
.. creen. The top of the screen, above the cursor, is for graphics; it takes
up 20 of the screen's 24 lines. The bottom four lines arc for text.

-> For non-color 14.S"C'l" Everything in this sesstcn assumes you're using a color
monitor or color rclcvrsrcn set ff you're using a black and white lV or ll

monochrome monitor, the shapes you draw arc displayed in diITercm patterns
instead of in colors .

.ti.ti Graphics

Type and run this program: -Turn Ol'I gophlc1

•:tw �======:__-----==:::::::::: Pick o color. 10 GR -

JC COLOR• J --===---------------Plo!oPQlnl
30 PLOT 19, 19·
,o Pl'.INT "Purple Square on Black rhld ll9861"---Greotor1otwoysho1ott11e

A 40-by-40 canvas

The low-resolution graphics screen is a 40·by·40 grid. The PLOT instruction
places a block in the hcrfzcrual and vertical positions you specify. PLOT 0,
O would place a block in the upper-left corner, and PLOT 39, 39 would put
a block in the lower-right corner.

Add the following lines to the program you just typed ro see the limits of
PLOT. (Don't worry about not being able to sec the rest of your program;
you'll see it all again in a minute.)

40 PLOT O, 0
50 PLOT 39, 39
-"

when you run it now, you'll sec three blocks running diagonally down the
screen. 'rhc one in the upper-left corner is position 0, O; the one at the
lower-left is position 39, 39. l tcrc's what the whole rnatnx looks like:

0, 0

0, 39

19,0

19, 39
39, 39

A 40-by·40 COIWOS 45

Before continuing, sec if you can plot blocks in the lower-left corner,
upper-right corner, and the middle of the left and right sides. Once you
know how to do that, you can plot anywhere you want.

Seeing your listing again
when you added new lines to your program, all the text above the new
lines scrolled out of sight behind the graphics. To sec your listing agam,
you'll need to get back to text mode.

Using immediate execution (that is, giving an inst.ruction without a line
number), type .

:EX':'

and press Return.

The strange pattern you sec is the result of your Apple looking at its own
graphics symbols and interpreting them as text. To humans, it's just junk
(or Punk Art). Type:

HOHi,;

and press Return. Then list the program. If you got the last program
right, your listing looks something like this:

LIST

10 �JI.

20 COLOR� 3

re PLOT
"· "

'°
e icr

'·
c

"
eicr

"· "
"

,w, ,.

" re Pl.Ci as. c

BO Pl.OT 0,

" 90 Pl.OT 39, 19

100 PRINT "Purpl• Squar• en Black Field (198Ef�

46 Graphics

Plotting colors with COLOR=

The COLOR• instruction (the • is part of the instruction) lets you decide
what colors go where. 1 lcrc's a chart of all the colors you can use:

·-
Coo

·-
Coo

0 lllack 8 Urown

Magcma

'
Orange

2 Dark Blue 10 Dark Gray

'
Purple 11 Pink

'
Dark Green 12 Green

, Gny 1, Yellow

6 uroe 1' Aqua

7 Light Uluc 15 While

111c COLOR• Instruction by itself won'! add color to anything. It colors
only what you draw on the screen. The color you set with COLOR- stays in
force until the next COi.OR• instruction.

Add this new line to your program:

65 ctlLOR•lJ

Now run the program and sec what happens .

.o, Uncluucri'18 ths text. You've got ooty four lines o(tc1tt when you use graph,cs
mode, you don't need to have one of those four lines clultcrcd up with a left-over
RUN instruction Acs1hc1ics arc, after all, important. Adding a HOME
instruction c:irly in the program (say, at line)) w,11 take care of the problem
nicely

Using variables for plotting and coloring
You can use variables for plotting points and setting colors. Instead of
using absolute numbers as m COLOR• 10 Of PLOT 10, 20, you an type COLOR•
l!UE or PLOT COLUMN, ROW.

Type this next program. Defore you run it, sec 1f you can figure out what's
happening,

Using YOl!obles fQt plo111ng and colonng 47

"' 10 GR

20 COLOR• ll�;�s���������� 11 �i;ri" lO PLOT ccucvv, ROW lntlol vok.Je or ol vorocbkt111 Z9fo
(0 COL;;!'\ • COLUl'\ • Don't panic, explonotlon to lolow

50 l r COL!W'l � 39 COTO 8 391, h'gheit column numbor on grid

70 COTO JO Do H ol ogan.
81) eso

Incrementing columns and rows
I.inc 40 LS called a counter in computer terms. Every Lime the computer
executes line 40, the value of the counter (called COLUMN) increases by
one. In everyday language, the line says, "Take the old value of COLUMN
and add I to it From now on, use the new value." The original value of
COLUMN is O (all variables start with a value of 0). After the computer
passes line 10 the first time, COLUMN holds I; after the second time, it

holds 2. And so it goes until COLUMN holds a value greater than 39
(according to line 50), and the program ends.

,;. For' budding com/)IIICT gcnl1iscs only, Draw a diagonal lme that crosses Che fin.c

one-that is, one that starts at the upper-nght comer and goes to the lower-lef't
It's tougher than ,t sounds, but once you figure rt out, its srmpbcnv w,1! astound
you.

Maybe

I lint. Stan at 39 and worlc backwards

Drawing horizontal and vertical lines
The PLOT insuuction creates one block at a time. To draw a vcnlcal or
horizontal line with PLOT, you could program a sequence of connected
blocks, just as you did to make a diagonal line. With Applesoft BASIC,
though, it's a lot easier to use I !LIN (for nonrontat /me) and VLIN (for
uertlcaf fine). You use lhe same plotting coordinates as with PLm·. For
JILIN, you put in the beginning and ending horuoruat positions at a vertical
position with the AT instruction:

H�lN FIRST, LAST AT ROW

For \'LIN, give the beginning and ending vertical positions at a horizontal
position:

VL!N FIRST, LIIST AT COLU�N

48 Groptvcs

Look at this next example to sec how to make a cross on the screen:

\EW

10 CR

20 COLOR · 15

JO HLlN 10,JO AT 19----------Drawsahlel'II0""'1

40 YLlN 10,JO AT 19 OrowsolneupondOOW'I

Lines 30 and 40 look identical except one uses IIUN and the Other VUN

As an exercise, change line 30 so that instead of a cress, the lines make a T

with the hortzcntal line right across the top of the vertical line.

A universal line-drawer

This program lets you put in different values to draw different lines. Use it
until you get a feel for where different values draw lines on the matrix:

"Beginning block ot HL!N: "; HB

"£ndlng bloc• or HLIN: "; Ht

"Row for HLrN: ";HI'

"Beginning block of YLIN: ";YB

"E.ndtng block ot YLIN: ";YE

"Colu�n tor YLIN: ";YP

100 RE.M •• •• • ••• ••• • ••• •• •

110 RE.H DRAW THE. LtNE.S

120 RE.M •• • •• •• •• • •• •• •• ••

\JO CR

. 10 COLOR• 15

150 KLIN HB,HE. AT HP

1'0 VL:N YB,YE AT YP

170 ISPUT "'!ote lines C Y / N I ? " ; A.'lS

180 If" AN$ "Y" THEN 10

Try different values until you can predict exactly where the vertical and
horizontal lines will go. Just for the experience, enter values beyond the
range of the matrix (that is, greater than 39). For example, enter a value of
SO to see what happens. Leaming what error messages mean is juSI as

important as learning how to do things WU/wut gelling error messages.
Later, when you make a mistake (and everybody makes mistakes while
learning to program), you'll have a better idea of how to fix it.

Defore you go on, modify the program so that it asks you what color you
want to use. If you're really feeling on top of things, add some code that

Drawing horizontal aid vertical l'leS 49

'" � TEXT

" ""'"
"'

INPUT

"
INPUT

"'
Hll'UT

"'
t!il'UT

'"
llil'UT

"
INl'UT

displays the line coordinates at the bonom of the screen; the resulting tcxr
should look like this,

�rlzo�t•l llr.e fro,. 10 to 35 In ro., 15

Vertlca1 ne fro� 11 lo 26 in colu�n 25

Random graphics
Your computer has a random-number generator built into it. With it, you
can have your computer pull numbers out of its electronic hat. The R.J'-D

instruction by itself generates random decimal numbers between O and 1.

Try this program;

R.'<D always pnnts a decimal number between O and 1. Bui by multiplying
,, hatcver 11 produces by some whole number, you can make it cough up
numbers your computer can use to make graphics.

Change hne 40 lo this:

40 PP.lNT P.NOt l! • 40 Parenlhese1onerRNDrequl1ed

vow run the program again. All the numbers arc greater than O and less

than 40.

,) PflrenlhC$es Tf!qldrcdwfth RND You must follow RND with a nurober cnctcsed in
parentheses To make sure RND produces a d11Tercnt series o(r.mdom numbers
every tune you use it, use 1 or a higher number. (Expcnmcntors. 10 get a
repeating scncs of numbers, use O or a ecgauve number)

Type and run this variation on the same program; it puts each random
number m a variable as the random number is produced:

SO GropNa:

5 TEXT

10 HOME

20 NUMBER• RNOI 11 • 40

JO PRINT NUMBER

40 tr NUMBER> 38 THEN GOTO 60

50 GOTO 20

60 PRINT "Thi&'• it!"

10 END

This program runs until the random-number generator produces a number
greater than 38. Sometimes it liSIS a lot of numbers, and other times just a
few, depending on how soon a number greater than 38 comes up. Notice,
by the way, that the program generates numbers between O and
39.9999-never any number as high as 40.

All you do to generate random graphics ls to use randomly generated
variables in PLOT. You can also use randomly generated numbers 10
produce different colors as well.

Type and run this next program for some colorful rescue

l O GR

15 REM COLORS O - 15

20 HU[• RNO(lf • 16

25 REM HORIZONTAL VAUl[S O • 39

30 COLUl'N • RND(ll • 40

35 REM VERTICAL VALUES O J9

40 ROW• RSOl u • 40

50 COLOR • HUE

60 PLOT COLUMN, RO\;"

10 Ir RO\;"> 39 THEN END

80 GOTO 20

<- What about lhefractlorwl pan? A grapluca instroction looks only at the whole
part of a number; it ignores the fractional part. To a graphics instn.Jction,
39.99')()99 is 39; 1 . 1 1 1 1 1 1 is 1, and any positive number less than 1 is O.

A Minor Challenge for You: Nothing heavy-just change the program so

that it randomly generates horizontal and vertical lines of random length.

Random graphics 51

Summary and review

Color graphics add another dimension to your programming. You can
create useful programs with lhcm, and they're lots of fun to play with.
Low-rcsolutton graphics make rough figures, but they have a lot of color
and make good graphs. You use PLOT, HUN, VLIN, and COLOR• along
with other programming instructions to build graphic images. The
random-number generator inside your Apple can automatically churn out
any range of numbers you want. When you combine R.t'\'D and the
graphics instruaions, you can create a kaleidoscope of shapes and colors

52 Grapt,lcs

Session 7

Controlled Loops

In this session, you'll continue to learn about loops. You already know how
10 do loops with GOTO. llerc, you'll learn about the rOR\KEXT
mstrucuon, which lets you decide in advance how many times a loop gets
executed. You'll learn some trick.s using loops (like how to slow down
program execuucn). And as a bonus, you'll sec how to do simple
animation

The session ends with a hsr of all the commands, Instructions, operators,
and programmmg concepts you've learned so far, the list iS Jmprcssb-e.

FOR\NEXT

You saw in Session 5 how to use a counter with IF .. TI IEN lo control how
many times your computer performs a loop.

',. ii

. "'
lC. COLOR- 1, -----------LOOP ifOrb Mle
JC PUlT CtlU:l'ffl, R0..-
40 COU")I - eou;�\ • 1---------Hefe"11hecouit•

3� If COLO''< > 39 GOro 80 togelyououloflheloop
�<" -:Cli - -ow • l

ro ll -------------- LOOP endl Mle
, -,

The l'OR\:\"EXT instruction lets)OU define :u the outset how many times
your program will loop. It has iLS own built-in ccurucr. ucrc's the
structure of this two-pan tosuuceoo.

I O R < uartable> • < Slart > TO <finish>
< snurucuons in llere get canted out>
xnxr < vanablc >

'rbts program uses ro1n:-,.txr to repeal a loop 10 times. Type and run 11

Controlled Loops

-------------:::::::
Lost progiom was grophlcs. rosto,as 10,t mode

"' 10 TEXT-==-------------- Cklor1 �(J-f me)l.nl(
20 HOM.£•

30 FOR ROIJNO • l TO 10 ThllillhaFORpor!
40 l'RINT "Th1t i• round f ROUND ol lnilrucMons w11t1ln me rcco get exocvtod

NEXT ROUND and lhil II the NEXT port

When you run this program, the value of ROUND goes from one to ten.
The variable ROUND behaves just like any other variable, and as you sec on
your screen, the numbers represent the values the loop generates. t\!l of
the lines between the FOR and the NEXT arc repeated until the loop
reaches its maximum value. In this case that value ls ten.

You can start the loop at any value you want. Herc's a bunch of line 30's
you can substitute (one at a time, of course) to see what happens:

lO FOR ROUND O T O 20

30 FOR ROIJ�O -10 TO 10,-------- Beghw1Tl'lonego!Ne nunber
30 "OR ROUND 128 TO 25�

Instead of using numbers to set up lhe l'OR\NEXT loop, you can use
variables. For example, the following program lets you use INPlJr to set
up the beginning and ending values of the loop:

"'' 10 IIOMt

20 I�PIJT "Levon nur,,ber: "; LOW

30 INPUT "lliqhut number: "; HIGH

40 HOME

50 FOR NIJM - LOW TO HlGU

60 PRINT);IJH

lO NEXT !.UM

The FOR\NEXT loop works equally well with graphics. Dy setting up a
rOR\NEXT loop, you can draw diagonal lines to go with your vertical and
horizontal ones. l lcrc's the onginal program:

FOR\NEXT 55

l O GR

Loop nom here

30 PLOT COLU�.N, ROW

40 COLUMN • COLUMN • l ---------Here·, The counter ...

so IF COLUMN> 39 GOTO BO togetyououtollheloop
60 RCil - II.Oil • 1.

70 GOTO 30 --------------LOOp end1 hae
BO tl,0

l tcrc's the FOR\NEXT version:

'. 0 GR

20 COLOR• l l

30 FOR COUNT• 0 TO 39

40 PLOT COUNT, COUNT

�O NtXt COUNT

Using STEP with FOR\ NEXT
Sometimes you'll want to count backwards or skip numbers in a program.
use STEP with l'OR\NEXT to speciFy the direction of the count and the
increment.

For example, thts program counts by S's. Type and run 11:

xrn

o :-rx:-

1 0 HO'-:>:

20 roa Nml!IER 10 TO 100 ST£P s-----Here'1Thellr1atolookot

30 PRINT NUMBER

f,O NtXT NUMBER

And this one counts backwards:

'. 0 HO:-'E

20 FOR COUNTOO�'N • 10 T O O STEP -1

30 PRlNT COUNTDOWN

�0 NEXT COUNTOO�N

so PRINT "i:ILJiS'.l' OFF'"

(1'1\'C extra points if you can draw the rocket.)

You can C\'Cn create simple animation that uses forward and backward
stcppmg in graphics. Here's a bouncing b!ock:

56 Controlled Loops

10 COLOR• l l

��2=========== Sell colof to wtile c so you con $&9 The block
-------------- Sets color to block so yo.., con erose It

Nu;

10 GR

20 FOR BOU�C£ • 0 TO

" 30 COLOR •

" �O Pl.OT

"·
BOUNCE

SO COLOR • 0

60 PLOT

"·
BOIJNC£

70 �£Xt BOUNCE:

100 REM

110 REM BOUNCE: IJP

120 RFM • . . .

130 FOR BOUNCt •

"
ro 0 STEP

-· 140 COLOR• 15

150 Pl.OT 19, BOUNCE

160 COLOR • O

l70 PLOT 19, DOU>:CE:

.80 NEXI BOUNCE

You can see how easy that was to do with a backward STEP. By the way,
the ball will keep on bouncing if you add :

.90 GOTO 20

It'll get really pretty if lines 30 and 140 read:

COLOR• RNO! ll " 16

To make the ball bounce diagonally, change-well,)'OU figure that out on
your own.

Deloy loops

Sometimes you'll want to slow down your program so that you can see
things happen on the screen that ordinarily go by too fast.

ror example, type and run this next program to print a message on the
screen, dear the screen, and print another message:

"" 2 TEXT

5 STALL· 1000--------------Chong&�V(a)Otochoogelhepouselonglh
10 HOME

lO roa PAUS£•l TO STA!.!.----------

35 NEXT PAUSE

20 PRINT .. ,,. VERY IMPORTANT MESSAGE- -----Show me=ge

''""'
to HC'"E .. clear The screen
sc Pill',! "BE SURi: TO SAVE YOUR PROG=s· --- Sl'lOW mo=ge
60 FOR PAUSE•l TO STALL holdlt
65 NEXT PAUSE.

70 HC:-E .cloor The screen
80 PRINT "BErORE YOU TIJR'l orr YOUR COM?IJTl:R'"

Deloy loops 57

The empty rOR\NEXT loops between showing the messages and the
110:.IE instructions give you time 10 read what's on the screen (Take out
Imes 30, 35, 60, and 65- just type their line numbers and press
Return-and the messages will ny by too fast for you to read when you run
the program.)

Use dcluy loops when you want several messages to be presented
Jutomatically, and when you don't want 10 press any keys to sec the next
message You can make nashcard-typc review programs wnh short delay
loops

I or a spelling quiz, have a word pop on the screen long enough to be read
but not long enough to be spelled. I rcre's a quick one to try.

"' ' STA! • �O-------------Chongelh4volU.IO chong91hel)Ol.ll81onglh

10 IIC�

20 RL't • ' • • • ' • • • ' • ' • • • • • • • •
lO REM SPELLING WORDS
4 0 Rf.!'! • • • • • ' • • • " " • • • • • •

�0 A i • "JOCK"

,o HS "JEWELRY"
10 CS • "PROGJlAMKlhG"
100 REM • • • • • • • • • • • • • • • •

110 RIM SPEL.ING TEST
120 RI 't "•" • • • •' • • • • • •
UO PR:�-:- ,.,
lCO FOi\ LOOK I TO STALL --------He<•"1 0 ooloy loop

!0 N.X� LOOK

160 11>,'J:' "1PELL THE ;.ORO "; SPELL$
: 10 It' SPELLS ,\$ TH.� RIGl!T • R!CiK
110 H!NT B$
190 flR LOO K • l TO STALL--------AnoTherOOoyloop
19� ','XT LOOK
.i:O ·:-�;;

110 11>,lr. "SPELL Tiil WORD -. 6P[LL$
,20 Ir SPELL$ - BS Tl![� RIGHT• RIGHT•l
130 PIUN':' C$

HO fOR LOOK • l TI) ST"LL--------Y•tonoin.ro.loyloop
245 Nf X:' LOCK

2�0 ,'�..?;

160 lNPU':' "5l'ELl. ll'!: io�iO "; .PELl.S
2i0 lt SPELLS· C$ THEN RIGHT• �IGJIT •l

280 I "'·
290 P�:\T "You q�· "; RIGHT; • ,1,ndt riqht."

You can change the values in the delay loop Oinc S) to grve yourself more
or less «me 10 sec the word

58 Contfoll&d Loops

A quick review

You've come a long way in programming already, so now would be a good
time to review what you've learned in these first seven sessions. In general,
it's important to keep things simple-take programming a little chunk at a
time. Here's a list of everything you've learned so far. If you've forgotten
any of these terms, look them up in the glossary or check the todcx and go
back to the appropriate session to read about them again:

Commands

DELETE NEW

LOAD PR•l

RUN SAVE

END GR

FOR[STEP]\NEXT GOTO

IF ... THEN !:,;'PUT

PRINT RND

TEXT VLIN REM

Operators

CAT

UST

PR•O

COLOR•

HOME

IILIN

PLOT

Instruction,

•

I ()

< > •

>• <•

Concepts

Counter

Immediate and Deferred Execution

Loops

Numeric Variables

Prompting Mes.sages

Delay Loops

Linc Numbers

Meaningful Name.s wuh Intervals

Precedence

Siring Variables

A Qulek revtew 59

Experiment before you continue

The final three sessions give you some refinements on the instructions and
techniques you've learned so far, and introduce some more tricks and
technlqucs. Before you go on, use what you've learned to invent your own
programs and to cxpcnmcnt It's Important to cnjOy what you do with
your computer, and by writing programs that do things you like, not only
will you learn programming, but you'll have a good time as well.

Summary and review

Jn this session you worked with loops again-but these were controlled
loops. You refined your use of counters and discovered a new loop called
FOR\�EXT You learned somethmg about computer ammatlon, and you
saw how to slow down a program by using delay loops. Then (unless you
took this opportunity to challenge authority) you went over all the
instructions and concepts you've learned so far, and you created new

programs of your own design.

60 Contl'olled loops

Session 8

Programming With Style:
Modular Programming

You have enough knowledge now to write some very useful programs. In
fact, al the end of this session, you'll be assigned the task of constructing a
program to balance a checkbook.

vouce the word conssrucung in that last sentence. 111e bcsL programs
aren't just lists of code lines; rather, they're well-planned collccucns of
program segments, each segment with its own job. In this session, you're
gomg to learn about program crganlzauon and the concept of program
modules

GOSUB\RETURN

You'll often warn to do the same thing in different parts of a program tor
example, m Session 7)OU used the same delay loop three times in a fairl}
short program.

,o roa PA';=· • l J ITAL"
10 MJCT PAUSt

Imagine a program tn "h1ch you used the same Imes ten, twenty, or thirty
tunes-and how tiresome trping the same thing again and again would
become (and how much of your computer's RAM your program would
use). vow consider the more common situation, "here the repeated
routine (1ha1 i'i, collection of Imes that docs one specific function), rather
than being JOSI four lines long, rs 10 or more lines long Uy the hme }OU

were Iimvhcd, you'd wear your fingers down to the second knuckle.

llA�IC's GOSL:D\RJ:Tl.'R'\' m�tructmn IS made for ju�t such suuauons. You
type a routine juM once and keep using the same lines (\\ ith exactly the
same hnc numbers) again and again

ucrc's how the PACSE program looks \\1thout GOSCB\RE'n'R'.\

Programming Witt, Styte Mod�r Programming

5 srALL • 1000
10 C.,�.£

20 PR!',T "A VERY l)'.i'ORTANT �ESSAGE"
10 fO� PAUS£-l TO STALL

15 �FKT PA.!SE

40 H'.::-!E

50 n::ir "BE S\JRf TO SAVE 'l"OUR PROGRA.�s·

lO TOil PAUS! • TO STAL•.

6S �EKT PA:JSE
70 ve

10 �!NT "BEfORE YOU TUR� orr '!"OUR COl!rUTER'"

And here it is u,id1 GOSL:B\ RCTL:R.\L Type and run it:

11rw

� STALL IOOC"

.c nc�i.

20 "':SSI\GE$ • "A VER'I" ll!?OR";At,;T !'.ESSMiE"

10 GC""JB 210

40 �·SSAGtS "BE SURE TO SAVE YOUR PRO::RAMS"

so c;o:ua 210

,o l!!SSAGES - "BETORE YOU TUHN orr 'l"OUR Cc»'.PUTER'"

70 GOS:JB 210
l'n E,:i-------------------Voumus1haveltuh&re

200 Ill-� • • • • MESSAGE SUBROVTn� • • • • • • •
210 HO!'E------------------ Subr0Uli"letton1r.oie

220 PRl�T MESSAGES

230 FOR PAUSE• I TO srALL

HO NEX!" PAUSE
2$0 iu:TUR/1----------------- $.JbrOUlna ondl here. progrom 101\ms to ploc;e

1hOI sen n hale win GOSIJ9

GOSl..:U means "Go to a subroutine.· (A subroutine is a rounnc within a
program reached through a GOSL:B instruction.) Like GOTO, GOSt:13
makes the program go out of the normal sequence of line numbers to do
somcthing. Cnlike GOTO, GOSUB returns to the point that it left; that's
what RETUR......: docs at the end of the subroutine. You don't have to keep
track of the line number to go back to; GOSL:B\RETURN keeps track for
you.

END protects subroutines
Subroutines usually appear at the end of a program (sub is Latin for under),
as in the examples in this session. You need to include an E:\'D Instruction

between your main program and your subroutines.

To see why, take out the E:\"D instruction at line 190 and run the program.
(To take out a line, just type its line number and press Return.)

END protects sutxouta,es 63

Go too u:wourne Ill line 210

You got the error message Ri::rCR'\ Wffi!OLI GOSUll Your computer
expects to sec a RETUR.'\ instruction only when a GOSUD sends 11 to a
wbroounc. If it encounters a Rl:.TURN by chance (as m this case), it

doesn't know where to return to, gets confused, and tells you so with the
error message.

One way to make sure your subroutines arc ISOiated from the mam
program IS to decide right away what line number your subroutines will
.. tan at, then put a line number and an E;,..D tosrrucuon nght before that
number In the program you've been working with, the subroutine starts
at lme 210, JUSl afler the REM msirucnon at lme 200, so the I :-.:o instruction
comes m line 190.

Subroutines and organization
In this next example, the code appears m subroutines, not because the
program re-uses certam lmc segments often, but jus. because the program
IS easier to read and more organi£Cd that way. As)'OU get better as a
programmer, your programs tend to get longer and do more thmgs As
that happens, havmg good organization in your code becomes more and
more important

Tj-pe and run this program. 'cote what's new about some of the lines that
hold RE,\! msuucuoos.

'· Hf

!:> JU,.,

'
,,.

., Rl!'l

"
,,.

" "'"

· · · · · · · · · · · · · · · - · - · · · - - - · - · · · · · · · · - · · - - · ·

ltlndo11 N.,,-.t>er C:.neutor froqre•

7hi• progra11 qGflerates •• 11any rando• n.,,.bo>,1

•• the "aer wants. t also lets he user ,:te, !Oa

the ranqe or nu,.betl,

.I l'UI • , • • • • • • • • , • • • • • • •

20 GOS:.B 1010 lllM title paqe

)0 c;o.;;;a , 10 P.rM lk>w ,.any nu,..ber• , what u"qe?

40 GOStJB 1210

!C t.OSIJB 131�

,o •, A.�; - -v-

10 H:q

10 PR:�-:, �:�ar�s lor he scr.aa a""oor.� , l'.lM • . • I no;, end

ll[M r aqaln?

-KFII)l;l Ill"" llepea� ii yu,, •

002 IU.Jo\ • • • • • • • • • • • • • · · • · · · · • · · • · · · · · •

CC4 IU.",

:"' .. _,., .

OlO /1:.:,>J;

2! PR,- w;tandoO' \Jllber Genorat,,rw

tlt,e Paqe

64 Progrorrrnlng With Style ModUOI" Progrorrrnlng

;020 PRINT flRando• N��ber Generator"

1030 PRlr.!

l040 PRINT "Thl• proqra� Frint• as �any rando� nu-ber1"

10�0 PRINT "as you want between O and any ll�it you choose."

1060 PR!liT

1010 PRIIG

1080 INPUT "Press RatLrn to start: ";StutS

1090 R£TU!IS

1102 Rl:H •I• • •••• I• ••• • •• I•••••••• I••••

1104 REM How O'any n�-.bers , w'iat Ll,nlt?

1106 RrM •• I • • • •

1110 Cl""

1120 INPUT -�cw �any n�·bers do you w1nt? "; R.�UMS

1130 PIUl,T

1140 ti;PUT "W'ia�·• the hl9heat a nu ... bar can be? "; LI�IT

H 50 P:ETUII>{

1202 P:tM • • • • • • • • • • • • • • '·" • • • • • '· ·". • ••

1204 RtM C.rerate Rando� N�O'bers

1206 Rl:H • • •' '• •' • • • • •' 1 •' • •' • •' • • • •' •'

1210 roR co��T � I T O 11-�:!(S

1220 toUM - R�:14 l) " LIMIT

1230 PRINT i;;,:M

1240 NEXT cccvr

12�0 PRINT

1260 RETURS

ll02 REM •' •" • • •' • •'' • •

1304 Rl:H

1306 REM • • •' • • • • • •' • • • •

1310 INPUT "Oo you want .-ore ra-do.., nL"bers? CY/NI "; A:-.S

1320 RtT!:RN

This program uses a lol of subroutines to make it easier co see what's
happening. Add co that all the RE...\I instructions and the meaningful
variable names, and you have a program that's especially easy to
follow-both now, when you've just written it, and six months from now
when you might decide to change a few of the Jines.

Multiple instructions on one line

You've probably already figured out that you can have more than one
instruction on a line if you put a colon (:) between instructions. D:amplcs
abound throughout the previous program. The program uses the colon

� hstructlonson one h 65

Go a9ain?

only to add REM insuucuons, but you can use the colon with all
instructions Be careful, though; someumes the results can surpnsc)'OU

rcr example, if you start a line with a REM instruction, your computer
ignores the whole lme and not just the REM instruct1on

10 J.D< This ":tLl• an• 19nor..i , cosoa 1010-GOSU!llgnofedl

We'll leave u to your own expenmentmg to discover other such surprises.

Organizing your programs: one step at a time
Someumes the scope of a program feels overwhclmmg It sccm-, too
complex or too long or JUSt beyond your skrll level -omcnmcs 111�1"'> uuc.

You really don't have the ability to wrrte a program t.h:n "111 control Lhe
nation's budget (and apparen1ly, neither docs anybody dsc) Uut you can
do more than you probably rcanvc with the thmg.'> you've already learned
You can, for example, wrne a program to balance your checkbook

·111e tnck is to break down the task mto easily manageable scgmernv, ·1111nk
for a moment how you balance your checkbook \\ hen you do n by hand

1 Get the stanmg balance.

2 Add m the deposits

a Get the amount of a deposn

b Add that amount to the balance to produce a new balance

c. Keep doing steps a and b until all dcposiLS arc added m

3 Subtract amounts for checks

a Get the amount of a check.

b. Subtract that amount from the balance lO produce a new balance

c. Keep doing steps a and b until all checks are deducted

4 Print the balance

What you've JUSl done is written out the a.lgori1hm (that is, the method to
sotve the problem) for balancing a checkbook Your next step is to wruc
modules for the steps m the algorithm, then all you need to do is hne up
the modules m the proper way. Program organization IS a matter of lmmg
up simple modules to work together.

The great checkbook balancing program challenge
Use the algorithm to wnte your own checkbook balancing program. Add
a module that sets up a little menu so you can choose what to do first-add
the total of checks written, or add up deposits.

After you've written your own version, have your computer print it out and
then check it against the one listed here. Treat this as an opportunity to
see how well you've understood what you've read in this tutorial. Take all
the time you need; and remember to use REM lines liberally!

One version of a checkbook balancing program

This is just one version. If your version works, then it's just as good as lhis
one. This version rs here just in case you got stuck.

The important thing about this version is that it breaks the task down into
simple steps:

Module 1

� i!L'I •

10 RtM CHECKBOOI< BALAl>CER

lS R!:.'I • • • • • • • • • • • • • • • •' • • • • •

20 IIOXE
JO lKPUT "Please type starting balance: S "; BALANCE

40 PRINT
�O PRIST "!. Enter Deposit•"
60 PRINT "2, Write Checks"
10 PRINT "3. End"
80 INPUT "CHOOSE BY NUMBER"; NUMBER
90 If NU�.3ER • l THEN GOSUB 200

100 If NUMBER • 2 THEN GOSUII JOO
110 tr NUXBER • 3 THEN GOTO 11

120 IF NUMBER> J THEN GOTO 40---------T!apaoutof,ongonr..mberl
130 PRINT "Yo�, working balance i s $ " ; BALANCE
140 PRINT
CSO INPUT "Preu P.Bt\lrn to c:ontin�e: ":STALLS---WOIIJ IOf usei tobe reody

ua GOTO 40

no PRI�•
180 PRIST "Your ending balance i s $ ";BALANCE

190 ti.

The first module represents the "body" of the program. Subroutines
handle every other task. The next module handles dcposi!S and adds them
to the balance.

The great checkbool< bolonclng Pfogtom challenge 67

....... ,

200 R[M • • • • • • • • • • • • • • • •

, 10 RI� �.AKJ DEPOSITS

)20 Rl:-1 •' ••• •••• ••• •• ••

.t30 IC"�
140 U.,< _; -�'"' many depoalu did you .. ue7 -1 ND

2!0 rca K• 1 TO NO
260 ::.111: -...,.,.,,..,,� of a.pot.It: $ -, OtP
270 l!A:A-\C:t • IIA:.A',tCt • DU---------- l<HPI n.n1W'og lolal
180 �Ell:' X
- 91) IU:T1 lrn

vcc, do the same thing for checks, except instead of adding to the
balance, you subtract from it

Module 3

JOO RtM • •' • • • •• • • • • • • '•

310 RU! Wll?Tt C:ltCKS

»e 111.'I •• •• •• •• ••• • ••• •

lJC l!:.".t
340 :•.,i::7 -�cv '"'"Y checu did you vrit•? w; ',C
3S� FOR x� l 7� NC

360 :\PllT •Mo·�nt <>! chec�1 S •, Clltc,:
nl' B11u-.::1. - u.:.A,:;t - c,11:c1---------l<1H1Ctl\N'W'IQIO'ol
llCI lfC lC

]9('1 FltTtllUf

\'C'hen you go O\'Cr this program, it's easy to sec what each pan does The
RD! lines show at a glance what happcm m the subroutines.

Save your program onto the d!Sk. In the next .scssion, you'll learn how to
make your programs more :mractive, and this program wtll be a good one
for you to prac.tice on.

Summary and review

In this session, you lea med about the GOS CB\ Rl:.,iJRN instruction pair and
about the importance of good program orgamzallon.

111c GOSCB\RETCR., inslJ'Uc.tion pair helps to orgaruze programs mto
simple modules Each subroutine is simply a task Pulling all lhc tasks
together in an organlzed v.ay is lhc secret to efficient programmmg H's
not how complex a program is, but rather how simple and well orgamzcd
11 rs. Keep that m mmd, and you can tackle much larger tasks

"Keep it simple" best summarizes this chapter Dreak a program down
1010 its component pans, and 11 becomes far easier to write.

68 ProgronYTW'IQ With Sly1e ModUOf Progrorrmng

Session 9

Formatting Screens

Generating information on a computer is exciting and rewarding. l\ut the
way you present the information is often JUSt as important as the
information itself. Just as a neatly crganlzed and printed page conveys
more information than a bunch of scribbles on .a scrap of paper, so too
does a well laid-out d15play have a greater impact than a barrage of

characters hurled at the screen

Clear screen prcseruatton not only helps communicate ideas; ii helps you
organize your program as \.\ell \'t'hen you lhink about how something is
going to look on your screen, you're also deciding what order your
program must follow to get the results you want M.any programmers
decide what all the screens arc going to look like even before they begin to
write the program

This session teaches you the instructions and some of the techniques you
need to create good screen presentations You"ll learn about placing text,
highlighting important v.ords, and creaung menus lffAB and VfAU let
you place text anywhere on the screen. INVERSE lets you display
uppercase text in dark characters against a light background (the opposite
of what it usually !s); �OR.MAL turns INVERSE orr You"JI see how to
control the placement of ivnrr prompts. And you'll learn an algorithm
for centering text.

Horizontal and vertical tabs

On a typewriter, you place your lab stops acro.ss the page. On your
computer, you use lffAB to determine where I.he next lab stop will be.

Type and run this program

..

HO"I

• 7AB 2,

JC Pit.lilt "'IEIII r , IS"

\Vuhout line 20, the message appears in the upper-left corner of your
screen. '\ he I ITAB instruction makes the text begin twenty columns to the
right. IITAB has a range from Oto 255; you use it to place text anywhere
across the screen On the '10-column screen, each increment over '10
places the text one more line down. For example, I !TAB 120 places text
down three lines (120 I ,IQ .. 3)

70 Fonnottlng screeos

Type the following program and run it:

10 H(;'I,.
20 !!:PUT "HT.A.II value l0-255) "; HZ

ac HTIIII 117

40 PR;\T •x•

SO PRIN:

60 HTAB 10

10 INPUT "l\1Cther HTI\B?IY/N) "; /\NS

80 IF /\NS "Y" THEN 10 -- Lel1 vwr know PfOQIOffl"I over
90 PRINT "Thankl !er trying 11a cut I"
100 t'lD Opllord erdng

Usually you'll use I ITAB just to position your text horlzonta\1y. To make
vertical tabs, you'll use VJ"All VTAU works just like IITAU, but it can have
values only from I to 24.

To get a quick idea of how VI"AB works, run this next little program:

,.,

10 !!('"

20 \lt"B �0

JC PRINT "l\llOUT HERE"

Combinmg I !TAB and VTAB, you can place text anywhere on the screen.

This next program lets you experiment with putting things on your screen
anywhere you want. Type and run it:

10 HO"E
20 INPUT "HtAB pcsiticn (1 - 40f "; HZ
25 I!" HZ > 40 tHtN PRINT "Too high!" : l:iOTO 20
JO INPUT "VT"B position (l - 24) "; \IT
15 IF V T > 24 tHtN PRINT -roe high'" : GOTO JO

40 HO�E
so v:AB VT : HTIIB l!Z : PRINT •x·
60 \/TAii 22 : RTll!l 20

10 INPUT '"l\noH.er? ("t/NI AN$

80 IF l\�S <> "N" THEN 10
90 PRINT "ave. now."

?0 E).D

Jn lines 50 and 60, the IITAB and VTAU instructions arc on the same line.
If you put 1 ITAU and VfAB together like that, it's a little easier to organize
text placement.

Making stylish program menus is easy with IITAD and VJ'Ail This next
program uses a fO!t\NEXf loop to generate positions for text.

Horlzontal o-c vertical tabs 71

II!!,,'

10 IIOM!
20 ro11. x-1 ro 6
}0 HTAB :o : V:M 42 • XI Conyoullgi..reOUlwnotTti\st:*>8''1

40 COSUB 100

50 Pl'llllT X; ". -. ".l:':JS
60 NEXT X
70 ViAB 20 : BTAB 5
80 INPUT "Che ,n by nu..,b4H, ": NUMBER
90 [SI

100 11.IM • • • • • • • • • • • • • • • • • • •
'10 lt[M l(T�J S[l.£CTI0l<S

.10 lttM • • · · · • · • · · · · · · • · · · ·
1 l O i r X ..

140 Jr X

150 tr X •
:u tr)I

,o rr x

' -, �'I

That menu doesn't do anything other than show you how to use I ITAI1 and
VrAD Dul you can use this concept as a model in rour own programs.

-:- U"hy mcmu WUh n11mben! Good menus let U.!oCJ'5 make cholOCS by typing JU5I. one
or two kcywt)kes Yoo can see how lmporuni good menu design an be when)'OU

look at this s:amplc menu

l,,'hlch 1ni1111l do you w1nt infor�•t.ion 1bout?

P1,:..yo ,r,.

Ptero<bctyl

Ru!red (;rou••

..arv•l

Proqr,..,"oru, M1chinelinqu1e

�x.t. Pr ,gr,.,

Pleue type your choioe h•r•, I

Tius menu practically guarantees a typing error from all but the finest spcllcf5
Yoor code w,11 h:ave 10 include all kinds of special error prorecuon to check your
user's wpmg. '\'umbered menU5 ehminate lhc problem.

1 ! P•chydeu,

2JPterodactyl

31RuU..::t Grouse

415erv11

S)Proqra�-orus M1chJr.eling�••

61 -xa Proqra:-,

Pleas, �yp, your ch ,ioe here (l - 61: I

72 Formatting screens

'
Tll£'1 M[!/"JS "Brlno in th• dog"

' "'"
Mf\'.JS "Put

'"'
th• c•t"

'
TIIEN Ml�:s "feed th• oorlll•"

• tit:' Ml ',JS "lil•h th• ••• :·
, !HEN I'! \.'S "Pn

"'
co�puter"

• T�tN l't,JS ·[�:)·

All your user has to do in this menu is type a number (and all your code has to

check for 1s a numeric range). Numeric menus make things easier for both the
user (who must type-and perhaps retype-choices) :and for the programmer
(who must write the code)

Prompt placement

Good screen design demands that you pay attention to how your INPUT
prompts appear. Programmers often need to ask users for a number of
inputs in a row-several street addresses, a number of prices, a series of
names.

Type and run this program. It gets a series of mputs while keeping things
neat It uses IITAl3 and Vl'AB, plus a new programming trick:

�£11

:c GOSUB 2co-------------vo1.(lreodobOu!IT'iSIOl91

20 KC)(·.
30 lNP�T "llov 1114ny na�e• to ent•r? "; Nk�ES
�o K::0"{

�o HTAB � : VTAB to
60 PRINT "�YP9 in th• n•�•• o�• at a ti�e.•
lO FOR X - l TO Nk�tS
10 KTAB ll : VTAB 10 : PRINT SPACES
90 ll!AB ll : VTAB 10
100 INPUT "Na.-e: "; NAS

cco �•xt x
:20 EN:>
200 RH! • • • • • • •• •• • ••• •

110 RF.� SPACE �./\�ER

220 Rt" 0 • • • • • • • • • · ' • '

)JO FOR s • I TO 20 Rf.M SPACES IS 20 SPACES LONC

J�O �?ACES SPACE$ • " "

Again, thts is just a sample. In a "real" program, you wouldn't just get names
and throw them away!

The SpaccMakcr: The subroutine at line 200 introduces a nifty
programming trick. You could have defined SPACES like this:

SPAC!:$ 20 SPOC9$ i-1on(lstl

But that doesn't give you a very good idea of how many spaces arc between
the quotation marks. Using a loop to build SPACES, as the subroutine at
!me 200 docs, lets you sec exactly how big the "blank out" space is going 10
be.

Prompt placement 73

Of course, you aren't limited to just using spaces. Instead of using spaces,
use dashes or underline characters. Be creali\'c-jUSl change what's
between the quotation marks In line 240.

Getting noticed: INVERSE and NORMAL
Your computer can print inverse characters on rbe screen. 1he INVERSE

instruction changes text from llght-on-cbrk to dark-on-ligh1. All 1cx1 after
an l�Vf:RSE instruction stays inverse until the program comes across a
,oRMAL instruction

'rvpc and run thls little program for a quick demonstration

. '

20 :i;v£1tS£

?lllNT •TKIS 15 ti.VEJISt•

4! /.OIU'.AL

Plltll" -r ltS U i.ORl'.At.•

If you take out line 40, all of the text will be inverse. llcausc inverse text is

more useful in getting attention lhan in presenting general displays, it's a
good idea to put in the NORMAL instruction right after you've finished whh

l�\�RSE.

To gel the user's attention when 1hc program wants information, use an
inverse prompt. l'or example, in a menu program, an inverse prompt

separates ii from the menu choices:

,:i -rn cs -�u ... -

,:i fJUl,7 "ITU5

to ro11 x • 1 TO 4

�o IITAI J : VTAI 12 ' XI • 2-------Rgl6emlloutvef?

60 PRHIT •choice Nu..t.er •; X
10 i.tx1' X

to VTAI 20 : tSY£RSl. Tinwltonl'!Clfe

93 I�PUT -c1oosr. osr, CJtOOSES

100 i.Ok."AL ondlumlllorlhafe

'"

,:, INV£NSE IS FOil UPPERCASE 01\'LY, !/\'VERSE doesn'l work well wilh lowercase

letters. For perverse technical reasons, lowercase jcucrs sometimes get changed
to other characters when they're displayed in inverse. Experiment before you U!iC

lowercase lencrs in your programs, just to be sure.

Experiment some with INVERSE. Try making an inverse line of spaces.
Put your name in inverse-in fact, use inverse text with asterisks lo create a
movie marquee and sec your name in lighlS!

A text-centering algorithm

As you saw in the last session, algorithms arc formulas written to perform
different tasks. All of the tricks you've seen in these sessions arc actually
algorlthms translated into computer code. As you've been experimenting
with programs on your Apple, chances arc you've developed some of your
own algorithms. Most of rhc subroutines you've used arc algorithms.

An algorithm for centering text is handy to have around, especially in a
session on screen formauing. To construct that algorithm, you'll need to
learn the I.EN instruction. LE;\ calculates the length of a string. llcrc's an
cumple:

�Eli

10 �$•"Apple• Aw•y'"

20 PRINT LE'H Ml----------- Poretllheses ore r&QWed (l](e RNO)

" 11pples Away' has 12 characters (including the space).

\'i'hen you center text, you put half the characters to the left of a line's
midpoint and half the characters to the right.

Now that you have the baste idea, figure out on your own how the
computer would sec it. Write the code, try it out, and then read the
solution in the next section.

One solution to the centering problem

Once again, this is just one possible solution. If yours is different and it
,, orks, then yours is just as valid as this one.

I tcre's the algorithm·

I. Get the number of characters that fit on one line (the screen width);
that's either 40 or SO on your Applc--choosc the one you're using.

2. Find the string length by using LE:-.:.

A !ext-centering olgorlltvn 75

}. Subtract the suing length from the screen width; divide the rcsul! by 2
·11,e result is the position you're looking for.

4. Use l!TAB to move to !hat position.

Expressed as computer code, it looks like !his:

HTAB (WIDTH - LE'll LETTtRStl I /2 Al lheae po1enrr.ese1 0!8 necessory

Use that algori!hm in a program that will center any text you type in.
Here's an example that keeps the algorithm in a subroutine. If your display
is 80 columns, change 40 in line 130 to 80:

-..i:w

10 HO!-!E

10 11'Pt!T M£nte� any W<><d: ff; W$

JO GOSl!B 100

4C lNVERSl!: VTAB 20

�0 :r.PUT M�OULO YOU LIKE A�OTHER (Y/NI M; ANS

6l !.OR/'.J\L : 1r ANS • MY" THEN 10

10 ENO
100 Rl" • • • • • • • • • • • • • •

110 REM CFNTER TEXT
120 RE!' •• •' • • •• • • • •••

130 HSA8 C40 - LEN(WSf)/2 REM CENTERUIG ALGORITHM

HO VTAB 8

150 PFl!Nr WS

1'0 RETl!R�

Summary and review

In this session, you learned about the importance of designing clear screen
displays and about program menus.

Using I ITAU and VrAB, you can place te:ii:t anywhere on !he screen. Text
placement helps make dear what you're ttying to say or what the program
expects you to do next.

You learned that the l;\,VERSI: and NOR,\IAL Instructions separate and
highlight text on your screen These instructions help you make the
program easier to use by highlighting important clements on the screen
display.

You also learned that the soul of programming is algorithms. I lke all other
asr,ccts of programming, you can build your own algorithms by reducing a
ta�k to a set of simple parts. Each algorithm, in turn, becomes a program
building block

76 Formatting Screens

Session 10

Programming for People

Congratulations! You've nearly completed your introduction to Applcsoft
BASIC and Lo the prmciplcs of programming. Most of the concepts you
learned in this tutorial are traditional ones (as much as a science that's been
around for only 45 years can have traditions) In this final session, you'll
read about some even newer traditions, ones that have been developing
only since the coming of persona! computers The ultimate goal is lo gel
you to "humanize" your programs, to set them up in such a way that any
computer novice can learn them quickly and use them easily.

You'll also read about how you can get a lot more help learning lo program
by joining a users group, taking programming classes, reading books, and
subscribing to computer magazines.

A sordid history

Back in the old days (that is, before 1980 or so), programmers spent
almost none of their time teaching lheir computers how to behave with
humans. Programmers were primanly concerned with getting their
programs to work without being stopped too often by error messages;
because they themselves were usually the only people who used their
programs, what they wrote didn't have to be "user-friendly." That was OK
then; most people programmed for themselves and didn't share their
programs with too many other people.

But remarkable changes have taken place over the last few years. Literally
millions of people now own computers, and many thousands write
programs for themselves, their business colleagues, and their friends Most
programmers, both hobbicsts and professionals, belong to users
groups-associations of computer owners who get together monthly (the
fanatics do it weekly) Lo share their experiences, discoveries, and
homemade programs

lf you're going to team up with this ever-growing group of sharing
programmers (and if you continue to program, it's likely you will), it's
imponam that you make your programs as easy to use as possible. The
idea that programs and computers should be made for people and not the
other way around is still revolutionary in a lot of circles. You arc hereby
officially invited to join the revolution.

78 Programming for People

People-program guidelines
llcre arc a few principles you can follow when you write programs for
people. This list cenainly doesn't exhaust the possible ways you can make
your programs fit for human consumption, but n's enough to gel you
started.

Give Clear Prompts. To make it easy for your users to see what your
program expects when it wants information, your program must
communicate exactly what it wants. Prompts should stand out, be worded
simply, and give the range of choices if there is a range.

Include Error Traps. People make mistakes. Your program should catch
errors as much as it can and give your users a chance to make things right.
Your program can easily check for the two most common problems: range
errors and typing mistakes. In a range error, your user types in something
that is beyond the range either of the computer or of the program:

--------------Bronche1 II choice OK
------·Error trap here

c .:.':'-====================== Goet bOck 101 another l!y l 70 . . . - Comes here II OK

" no INPJJT "Yo�r c!loice - ,. L ,. o, a , CHOICE
:20 rr CHOICE <

'
THEN GOTO no

i ac PIIINT "Sorry - choice must � c, L ,. o, ,.·
,., PRl!iT "Pl .. as" ma�e another cho!c ... "
iso P!llNT
'"

GOTO 110

In a typing mistake, your user types something he or she didn't mean, or
makes a simple spelling error:

so
100 INPUT "'Name o! progum to erne: "; ERASES
110 Pll!liT
,,, :liVEIISE
rac PRINT "t!ARNING'
,., PRINT EIIASU
150 PRINT "IT'S GONE
; 60 Plll'd
"'

�ORMAL
no ll>�UT '"t!IPE cur

,c If KILLS <>
.,.

, "

tr YOV FRASE" Gives O worrwlg
Repilnts entry

FOREVEII' "

THE PROGIIAM7 (Y/Nl -. KILLS TIEN l!Qlo!f: C:OTO 100----------C01"1Celsllnotv&1,r'8<1

tcave an Exlt Open. Don't forget to give users a way out of your program.
As wonderful as your program might be to use, people do like to do other
things like cat, go to school, and take vacations. There arc several ways you
can determine when your user has finished using your program.

People·progrom guldeRnes 79

ror example, you can have a question at the outset to ask how many entries
the user needs to make .

•
1.1 :�,u-

1',; iClt X

"'
Or)·ou on glvc an exu option after each entry.

toe INP�--Y ·11� ... ffluch h th• neKt. chec� for, 1 •: AH(X.ST

l 10 8.0.:.A�t • BAU.>,::;S • AMO:,ST

'"
' :

"'
Or you can have lhe program rctum to a menu with an exit Option arter
each entry or series of cmnes:

"

"
"
"

. "
•••
:50 l'l?UT "Your choice: ": CHOICE

16(II Ct l!CE 4 TRt.'I ENO

To sec the rules in action, type and run each of the following two
programs; the first doesn't follow the rules and the second docs:

Nottd Progronvnlng (Yueh)

·; ,.., "'•"Y �•co did you "rite? •1 CMECJCS

1'0 f'l![CMS

INPJT •.t,nother chec�� tY/N): •:ANS$

A\SS •s• TIIIN G0508 1000 : AEM S�o" balance and end

Pl: 'lT . . Ent•r � .. na-.a•

Piil NT . , . Chanq• 00 er.try"

PAlNT .,. Prlr.t

'"' "'
•ntrl••"

PA:Nt ••• Leave , .. proq •• ,..•

YTAB

" • HTAB

"

l'IPOT A

J, $C�·SIJM • A

lt. Pllt�T SC"

4� GOTO I�

'

,eopie Prog1ammlng (fonlaJtlc)

:o 10!'.E

20 ;i;pu� •.>.mount to add co to atopt•; 1'.'IOUNT : REN Get a-,unt.

l� :F 1'.�()(.�T • 0 THEN GOTO llO : RD4 End if u•er'• through.

40 i'RINT

50 PRr:-:r •You added•; >..'!OUN't; "• right? CY/II)";

60 :i.;,u:r --; YNS : RD4 Entry OK?

70 :FYI,$ •"V" 7REV GOTO 20 ; RE..� Jt not, get it again.

ao S.J" • s;;-. • 1'."0UllT ; Rl;.'I Keep Running total.,.

90 PR!'H

!00 Pll.l!.T •yo�r running total i• "; SUM: RE..'I • • • and report it.

!10 PRINT

!2C COTO 20 : RE�

:JO i'Rl!,7

:(O ;>Rti.7 "final total: "; SUM : REM Print the final total.

Humanizing programs isn't easy
The second program requires more work than the first one. It takes more
planning, more typing, and more debugging to wrne a good lnteraah-c

program (Iha! is, one that talks to people). It is also wonh it. Real people
make mistakes, write programs wilh that in mind.

It gets easier
The mare you learn about programmmg, !he easier it gets. After you've
been programming for a while, you'll find !hat what once tock you twenty
Imes of programming you may do in only five lines. By cxpcrimen1ing,
playing, and trying new lhmgs wnh your Apple compu1cr, your
programming ability will grow quicker lhan you can imagine.

Where do you go from here?
If)'OU decide tha1 programming's not for you, then there's no problem.
You don't have to know how an internal combustion engine works to drive
a car, and you Con'! have to know how to program to use a computer. But
1f you've enjoyed going lhrough this nncnal and you've decided that
programming is fun and interesting, you can do lots of things to help
yourself learn more

Where do VoU go from here? 81

Get anoth4tr numb,or

Read Books on Applcsoft Program.ming: J lundreds of books have been
written on Applcsoft, from tutorials to advanced technical documents. Any
decent bookstore has al leas! a few Applcsof1 lilies; the larger stores carry
dozens. The absolutely indispcnsiblc resource is the Appleso/t BASIC
Programmer's Rc/crcrice Manual, published by Addison-Wesley (ISilN 0-
201-17722-6). Written by the experts at Apple Computer, Inc., this is the
official Applesoft book. Your Apple Computer dealer or local bookstore
carries it or can order it for you.

Join an Apple Users Group: Made up of people at all levels of cxpcn.ise,
Apple users groups arc a new computcrtsrs best friend. As each member
learns something, he or she passes ii on to the others. Most dubs have
special subgroups for beginners, virtually all of them have special interest
subgroups for learning Applcsoft BASIC, as well as for other computer
languages. (Logo, Pascal, C, and Fon.h arc the most popular ones) Dcsidcs
being practical, these groups arc a lot of fun.

e- Free soflu:arct One of the best ways to learn how to wnte programs is to look al
somebody else's When you pn an Apple users group, you'll have aCCCS5 to tons
of pubhc domain software. And many public domain programs are wntten in
Applesoft

Programmlng Classes: You can find programming classes in high schools,
untvcrsmes, community colleges, computer stores, specialty schools, and
users groups. Check with the instructor about the level of the class before
you take it; if possible, talk to some graduates. Then you'll be sure that the
instruction ls at the level you want.

Subscribe to l\lag:ulnes About Apple Computers: There arc dozens of
computer magazines, many spcc1alizing in Apple computers. See if you can
find one that deals exclusively with your model of Apple. Some Apple
magazines cover both Macintosh and Apple II family computers, while
others cover only one or the other. And some are aimed more at program
users than at program writers. Again, this is :an area where a users group
can really help out Not only can members recommend magazines that
bave beginners' columns, but many clubs have libraries of back issues you
an use

Do it!

111e most imponant thing you can do to learn to program is-to program.
\\:'me silly programs and serious programs, long and shon programs,
programs that arc fancy, and programs that arc plain Just do ii! You'll
learn more from an hour of mistakes than from a week's listening in a
classroom. Code to rour heart's content

A parting word

This brief book has been a guided exploration lhrough some of the most
important concepts in elementary programming. You didn't learn all of
the instructions in Applcsoft BASIC; there arc far too many of them to
teach in one short manual. But what)'OU learned here can serve you well if,
whenever you write a program, you remember that you're writing for other
people.

And keep on coding!

A paling w"Ord 83

Appendix A

A Summary of Applesoft
Instructions

'tlns is a brief summary of all the tosnocuoos in the Applcsoft IV.SIC language 1bis
summary IS included for those programmers already proficient in some ocher

computer language, but new to Applcsoft BASIC.

�or a complete dcscnpnon of these instructions, see the AJJ()JeM>jl IJ/IS/C
l'r0grtm1mcr's R('jerc71ce Mtm11a/ (Addison-Wesley Publishing Company, Inc)

ABS

ABS 1 - 2 , 1 1 1

Yields the absolute value (value wnhout regard to sign) of the argument. 1bc
example yields 2 77

ASC

/\! l"OUE�TH)

Yields the ASCll code for the fir�t char2ctcr in the argument The example yields 81
ccscn code for Q)

Asslgnmenl lnitrucllon

l E T A w 23.567

AS - "HUMBUG"

As:,,gn,,, Lhc value of the expression follcwrng e to the variable prcccdmg it LET is
optional

Appencllx A 85

AIN

, . .

Yields the arc tangem, m radians, o(the argument 1nc example yields 720001187
(rad,1ru)

CALL

l..xecutes a maclune.languagc subroutmc at the spcoficd decimal memory address
The example is.sue., :a line feed.

CHR$

Yield\ the ch1r;1ctcr corrcspomlmg 10 lhc ASCII code g,vcn 15 an argument The

eumplc y,clds the letter A

CLEAR

"
«cscu all vanablcs and mternal control mrcrmaucn to their ,mtoal stale Program
ccdc » un1rrcaed

COLOR•

Scis the d,spb.y color for plomng low resolution graphics 111c cumplc sets the
d,�pby color 10 green

CONT

acsumcs program cxccuuoo aflcr ,1 has been halted by STOP, FM), CO'.',.i"ROL-C, or
(somchmcs) CO:-.'TROL-R[SET.

cos

,�. , '

Yields the cosine of the argument, ,,.h,ch must be expressed ,n r:ld1ans The example
yields - -116146836

CATA

. 4i, -6

Crcatc5 a hst of aems for use by Rl'AD ,nsUuct,ons
the wmgJOI-L'l' SMrnt, the second LS the string ·c
number 23 -IS, and the fourth ,s the integer -6

.. """""""'

In the example, the first ,tern ,s
32·, the th,rd is the real

DEF FN

DI fN CllBt 1X) x • x • x

Defines a new funa,on for use m the program The cumple defines a function that
yields the cube of us argument.

DEL

23, 56

Deletes a range of conseccuvc Imes from the program. The example deletes Imes 23
lo 56, mctcsrvc

DIM

·� � RX 1 5 0 , 3 1 , �•',MES !SC)

Defines and allocates space for one or more arrays. The example defines a two
d,mens,onal real array MARK, whose first subscript varies from O to 50 and whose

second vanes from O 10 3. and a smng array NMIE.S with one subscript that varies
from Oto 50

DRAW

>RI\� 4 AT 5 0 , 1 0 0

!AW 4

Draws a shape at a specified point on the high-resolution graphics screen from the
shape table currently in memory The first e:rample draws shape number 4,

bcgmnmg in column 50, row 100, using the current color, scale, and rotation
semngs; 11,c second cumple draw:s shape 4 at the last poim ploued by IIPLOT,
DliA \V, or XDRA W

END

Terminates the csccouoo of the program and rerurns control to the user No message
15 displayed.

EXP

EXP !21

Y,cld.s the mathemancal exponcnual of us argument (trult is, the constam e-
2 7182818---raLSCd to the power spcofied by the argument). 1be example yields e
squared, or 7 3890561

FLASH

fl.ASH

Causes all text displayed on the screen with subsequent PRJ;..T statements to flash

between light-on-dark and dark-on-light. May not work properly for lowercase
Jeuers (and other characters wnh ASCII codes above 95) if the computer LS running in
•aoive-80" mode.

Appendix A 87

FN

f'I CUBE 46)

Applies a designated function to the value of the ;1rgument expression. Assuming the

dcfimuon for the function Ct'BE given under DEF FN, the example yields the value
216

FOR

' C 'l } - ! T O I O

FOR V.AR�, 0 TO 100 STEP 5

f0R \,�3ER 20 TO -20 STEP -2

\1J.rks the begmmng of a loop, rdenuflcs the mde"' vanabje. and gives the variable's
starnng and cndmg values and {optmnally) the :amount by which ,1 is to ch:mge {step)
on each pass lhrough the loop 1be fir51. example begms a loop whose index variable
J takes on all values from l to 10, stcppmg by 1, the second begins a loop whose index
vanable MARK takes on values from O lO 100, stcppmg by 5; the third bcg,ns a loop
v.hose mde:,; vanable XU.\IBER Lakes on values from 20 to -20, stepping by -2.

"'
"RE (0)

Yields the amount of rcm::umng memory, m bytes, available to the program Also
forces "garbage conecuon' of dead Slrmgs The :argument IS ignored, but must be a
valid App!csoft expression

G£1

'T A\S<itR$

accepts a single character from Lhc keyboard without displaying it on Lhc screen and
without requiring that the Return key be pressed. Program execution IS suspended
unt,1 lhc user presses a key In the example, the character typed LS assigned to the
variable A:,.:SW'ERS

GOSUB

cn�i.;a 25�

faccuccs a subroutmc bcgmmng at the designated lme number aso m the example)

GOTO

GOTO 400

Sends control uncondrnonally to the designated hnc number ('100 m the example)

GR

Converts the duplay to ,j() rows of low-rcsolut.Jon graphics with four Imes of text 3t the
bouom 1l1c screen is cleared 10 dark, the cursor IS moved to the bcgmmng of the
l3st line, and the lcw-rcsoluucn displ3y rolor LS sec tO bl3dt

83 Appendl,< A

HCOlOR•

:O:.OR• l

sets the display color for ploumg h,gh-rcsoluuon graphics The example set.s the
display color lO green

HG,

-,

Converts the display to 16o rows of high-resoluL,on graphics w,th four Imes for text at
the bouom The screen is cleared 10 black and page I of high-resolution graphics is

displayed. The contents of the text display, 1hc loo.uon of the cursor, and the h1gh
resclunon display color arc unaffected.

HGR2

OJl2

ConverlS the display to full-screen (192 rows) high-resolution graphics wuh no text.
The screen is cleared 10 black and page 2 of high-resolution graphscs LS displayed
1be cooreots of the text display, the loc:n,on of the cursor, and the h,gh-rcsoluuon
display color are unaffected.

HIMEM:

Hl'.£'1: 32767

Sets the address of the highest memory locauon available to the Applcsoft program,
mctudmg 11$ vanablcs The cx1mplc sets 1he end of program and 11anable storage to
32767 Used to protect an area of memory for daL111. high-rcsolut,on graphics, or
machme-langu1ge code

HUN

KLrN >O, 20 AT JO

[)raws a hor11.0n1al lme m low-resolution graphics, ming the current low-rcsoluuon
displ1y color The example dr.iws a hnc across row 30 from column 10 to column 20

HOME

�0""

Clears all text from the text wmdow and fflO\lCS the cursor to the top-left corner of the

window

HP LOT

KPL.OT 75, 20

RPI.OT 48, 115 TO 111. 84 TO llO, 115

!PLOT TO 270, 10

Plots a pomt or 1,nc on the high-rcsolution graphics screen m the current h,gh
rcsoluuon display color TilC first example plots 1 single point al column 75, row 20,
the second example draws Imes from column 48, row 115 to column 79, row 8'I to

Appendix A 89

column 110, row 115, the c.turd draws a hnc to column 270, row 10 from lhc last pomc
ploned wuh I !PLOT, using the color of the last point plotted (not nccessanly the
current display color)

HTAB

l!TAa n

Positions the cursor to a specified column of the text display. 1lK: example moves

the cursor to column 23

IF ... THfN

lf A G E < \8 THEN A - 0 : 8 - I: C • l

!f ANSWER$ "YES" THEN GOTO 100

If N > MAX THEN GOTO 25

If N > !':AX THEN 25

IF N > !':AX GOTO 15

Executes or skips one or more lnstrucnons, depending on the truth of a stated
condition The first example sets A to 0, B to I, and C to 2 1f the value of AGE is less
than 18, the second branches to hnc JOO 1fthe value of AKSWERS is the suing "YES";
the last three all branch to hne 25 ,f the value of N is greater than \/1at of MAX. In all
cases, if the slated condition is false, exccunon conunucs wuh the next program line.

INI

I v I l

Specifics the source for subsequent inpuL 1lK: example causes subscquem inpul 10 be

read from the device at port 2.

INPUT

INPUT Al

JNPUT "TYPE AGf. THEN A COMMA. THfN NAl'E ": AGF. NA.'IES

Reads a line of input from the currem input device 11\C first example reads a value
into variable A%; the second displays a promptmg message and then reads values
into variables AGE and NA!IH:.S

INT

lNl 1�8.61

,i.; lM273, 61

Yields the integer part of the argumem value 11\C examples yield 98 and -27'1,
respectively

INVE!lSE

:t.:VFRSI

Causes all uppercase text d1sp13red on the screen with subsequent PRl�'T msuucuons

lo appear m dark-on-light instead of the usual light-on-dark I IU unprcd,ctable
crrccs on lowercase text

90 AppencHx A

LEFT$

n· $ ("AP LE' r-, IJ

Yields a specflcd number or char.11aers from the bcginnmg or :1. smng 1lW? example
y1c!di, uic Strmg Al)J>LP.

LEN

·\ !"NEVEII A "C'!''l;""i

Yields the length or :1. sLrmg m characters The example yields 19

LET

'ee "Assignment lnstrucucn •

LISI

.Ii

.l T l!I(

i l·J•

; •• JC

Di.Splays all or pan of the program on the 50'CCn, or wrncs it 10 lhe c:urn:m ou1pu1
device The first example llSl.'l Lhe entire program, lhe second hsl.'l line 150 only, the
last 1wo l,st lines 200 10 300, indus,vc

LOAD

)AL)EMO

Reads :i program imo memory from I disk. Tbe example reads a program from a
disk file named Dl',\lO

LOG

UXl 121

Yields the natural logar,thm or the argument The example yields 693147181.

LOMEM:

� ... ,!", 245 ,,

!)el.'l tlic address of the lowest nicmory location available 10 the program for variable
etor age '!11C example sets lhe beginnmg or variable storage to 24576

MIO$

'110$ C"A!l APPU A JAY". 4,

)o! lS l"Ml -"l'Plt--" l-"Y", 41

Yields a specified number of char.11aers bcgmning at a specified povuon ma gn en
eumg. ·n-.e first example yields the stnng AP tr, the second yields the string >.1 �Lt .,.
JA y •

Appendhc A 91

NEW

"' Clears the current program from memory and resets all variables and internal
control mformauon to thc,r ,mt,al stales

NEXT

�l'.)(1'

'lEJr. lND!:X

'lEXT J, I

Marks the end of a loop and causes the loop to be repeated for the next value of the
mdcx vanablc, as specified m the correspondmg FOR ,nstructmn The first example
ends the m051 recently entered loop, the second ends the loop whose mdcx variable
ts INDEX; the third ends the pair of nested loops whos,c index vamblcs are J and J

NORMAL

•;o;i.v.AL

Causes all text dispbycd on the screen wnh subsequent l'R!i\T mstrucuons to appear
,n the usual light-on-dark, cancers the effects of IXVERSE.

NOTRACE

!,OTRAC!:

Stops che display of hnc numbers for each mstruct,on executed, cancels the effects of
TRACE..

ON ..• GOSUB

O� lD GO.SUB 100, 200, 23, 400�, 500

Chooses a subrouunc to execute depending on the value of an expression. TI1c
example transfers control to the subroutine bcginnmg at line 100, 200, 23, <1005, or
500, dcpendmg on whether the value of ID is 1, 2, 3, 4, or 5, ,f I[) has none of these
values, cxecuuon commues w,th the nc><t mstrucuon.

ON ... GOTO

Oil IO GOTO 100. loo. 2J. 4005, �00

Chooses a line number to hranch to depending on the value of an expression ·n1e
example transfers comrcl to hnc 100, 200, 23, 4005, or 500, depending on whether
the value of ID IS l, 2, 3, <I, or 5. ,f 11) has none of these values, execution continues
w,th the next inslrucuon

ONERR GOTO

ONtlOI GOT() sec

Replaces Applcsoft's normal error-handling mcchamsm wnh a subroutmc bcgmnmg
at a spce.ned lme number ·nlC example esobtubcs an error handhng subroutine
bcginnmg at l,nc 500

92 Appendix A

POL

PDL (l J

Reads the current d,a! setting on a designated hand control The example reads the
dial on hand control I.

PEEK

Pl:f.K (37)

Yields the contents of a specified location in memory. 1lJc example yields the

contents of location 37, which contains the current verucal posruon of the text cursor
on the display screen.

PLOT

PLOT 10. 20

Plots a smglc block of the current display color at a specified position on the low
rcsoluuon graphics screen. The example plots a block at column 10, row 20

POKE

POI(!: -16302. 0

Stores a value ma specified loan,on in memory. 111c example stores the value Oat
location 1\9231 (65536 - 16302), causing the display to swucb from nuxcd graphrca
and text lo full-screen graplucs

POP

'"
Removes the most recent return address from the control suck, causing the next
kE'IUI!.'\ insuuction 10 send control to the instruction following the second most
recently executed GOSUB

PCS

POS CO)

Y,ckls the current horizontal pos.uoo of the cursor on the text d,splay The
ugument ,� ignored, but must be a valid Apple.soft expres.s,on

p ••

'" Spcc,lics the dc5tmation for subsequent OUlpul. 1hc example causes subsequent
output 10 be sent 10 the device at pon I

PRINT

Pll!NT

PIIINT A$, "X "; X

Writes a line of output to Lhe current output dcv,cc 1nc first c,;ample wnics a blank
lone; the second wntes the value of variable AS, followed at the ncKt available tab
pos.ucn by the string "X • ', followed ,mrncdiately by the value of vanablc X.

Appendix A 93

REAO

EAD A, Bl, C$

Reads v:alues from DA TA instruct,ons m the body of the program 11\C example
reads v:alucs into vanablcs /\, U%, and CS

""
llf � Tl A lF.!Q\IIK

Includes rcmuk.s m the l>ody of :1 program for the !)cncfit of a hum:an reader

RESTORE

ll[ST<llll

Causes the next READ mstrucucn executed to bcgm readmg at the first nem of the
first DATA instruction m the program

RESUME

11:!'.SU"·

At the end of an error-handling rouunc (see Q--.:FRR GOTO), causes resumption of
the program at the bcgmmng of the 1ns1n.ict1on m wh,ch the error occurred

RETURN

�ETl.lll\

The last 1nsiruruon m a subroutmc returns control from a subroutine to the
msuucncn following the GO�L:ll tllll called the subrouunc

RIGHT$

R1CIIT$!�APPL[l �T�, 4J

Yields a specfied number of characters from the end of a Stnng The example } rcld,
the stung SOFT.

RND

<1,D 11)

Yields a random number between O and l Zero and negative argument ,·alucs }1eld
repeatable sequences of random numbers

ROT•

IIOT• 16

Sets the angular rcuuon for Iugh-rcsoluuon shapes 10 be drawn wuh DRAW or
XDRAW The cumple causes the shape lo be rotalcd ')() degrees clockwise

94 ApperdxA

OUN

II.UN

!IUN !CO

II.UN DEMO

Exca.ncs an Applesort program The first example executes the program currently m
memory from the beginning, the second executes the program in memory, stamng
at lmc 500, the third loads and executes a program from a duk file named DEMO

SAVI:

,.._VE on•,

Wmcs the named Applcsoft program currently m memory to a disk ·111c enmplc
wmcs the program to a drsk file named [)l�\!O

SCALI:•

;cALE IO

ScLS the scale factor for lugh resolution shapes to be drawn wuh DRAW or XDRA W
·111e example causes the shape Lo be drawn ten mncs b,gger than the dcflmt,on g,vcn
m the shape table

SCllN

SCRN no, 201

Yields the code for the color currently displayed at :a designated position on the low·
rcscluucn graphics screen 1lic example yields the code for the color at column 10,
,OW 2()

SGN

SG'! l·lHI

Yields a value of -1, 0, or +1, depending on the s,gn of the ugumcnt The example
yields -1

SIN

SlN 12)

Yield'! the sine of the argument, wluch must be expressed in radians Titc example
yields 909297427.

SPC

SPC (8)

Introduces a specified number of spares uuc the line bemg wrinen by a PRI/\Pf'
mstrucuon The example writes c,ght spaces

SPEED"

SP!l:O• !>C

Sets the rate at which text characters arc 10 be sent to the display screen or other
mpuVoutpul device '!he slowest rate IS 0, the fastest rs 255

Appendix A 95

SQR

SORl21

Yields lhc posarve square root of the argument, the CJ<llmplc yields I 41421356

STOP

"'
Tcnnmatcs the execut,on of the program and returns control co 1he user A message
,s displayed idcni,fymg the program hne ,n which the STOP mstrucuon appears

STR$

STRS 02.451

Yields a stnng representing the numeric v:alue of the argument The example yields
the smng "12.4S"

TAO

TAB 1231

Pos,tions the text cursor lit a spcoficd position on the output !me dunng exccu11on of
a PRlt\l" msuucucn The example moves the CUISOr lo column 23

TAN

TA:! C2l

Yields the tangent of the argument, which musr be expressed ,n radians The
cx.i.mple yields -2 18503987.

TEXT

"�

ccoveus the d,spb.y to 24 Imes of text, wu.h the aHSOf" pos.uoocd at the bcgmnmg of
the bottom line.

TRACE

,=,

Causes the hnc number of each mstruction 10 be d,splaycd on the screen as u ,s
executed

us,

USR 0)

Exccuces ll machine-language subroutme supphcd by the user, p;i.ssmg ,1 a spccrfled
argument lhc subroutine is entered via a JMP (jump) tnsuucuon stored at addrCS5C5
SOA through SOC hexadecimal lhc example passes the argumcm value 3

96 Append,<A

VAL

VAL r-c a. 7E:4•J

Yields the numcnc value represented by thc suing supplied as an argument. The
example yields -37000.

VLIN

vux 10, 20 AT 30

Draws a vertical line rn low-resolution graphics, using the wrrcm low-resolution
display color lhe example draws a line down column 30 from row 10 to row 20.

VTAB

VTAB 15

Positions !he cursor to a spccflcd row of the text display. llie example moves the
cursor to row 15

WAIT

�AIT 49347, 15

liAfT 49341. 15, 12

Suspends program execution until a specified b,t pattern appears at a specified
memory loauon. Used to w:i.it ror a stams signal from a peripheral device. lnc
second :md (opuonatj third arguments arc masks the second spccf'cs which bits or
the designated location arc of interest, the tlnrd specifics the values to be tested for ,n
those bns lnc first example suspends cxecuuon unltl :i l bn appears in any of the
four low-order bit positions of locauon 49347; the :second waits for a 1 bu in pos11ton
O or I or a O bit in position 2 or 3

XDRAW

KOIIA\ol 4 AT 50, 100

KOii>.;; 4

Draws a shape from the shape ublc currcnt.ly m memory at a spcafied poml on the

h,gh·rcsoluuon graphics i,crccn Lllch pomt m the shape 1s p!oued using the
complement of the color currently displayed al Lhal point Typically used to erase a
shape already drawn The first example erases �h:1.1:ic number ,i, beginning m
column SO, row 100, using the current sale and «xauon setungs, the second
CJl.ample erases shape ,j at the last pomr p!oucd by ltf>LOT, OKAW, or XOKA W

Apper.diK A 97

Appendix B

Reserved Words

Table U· l shov. � a list of Applesoft s reserved words In most cases these character
sequences cannor be used as. or embedded m, v:uiablc names.

11,c ampersand character (&) is reserved for Applcsoft's mtcnul use and for user·
supplied machmc fanguagc routmcs

XPLOT IS a rescrvcd word that docs not coercspend 10 a currcm Applcsoft statement

Some reserved words arc rccogmzcd by Applcsoft only m a:rt:am contexts

COLOR, I ICOLOR, ROT, SCALF� and SPEED are uucrprcrcd as reserved words only
rf the next llOnSpaa: chanctcr IS an equal s,gn (•) 11u.s is of Liulc benefit ,n the case
of COLOR :md HCOLOR, as the cmlx:ddcd reserved word OR prevents their use as
vanablc names anyw:iy

HL\1L\I and [.0\11::.\I arc mtcrprctcd as reserved words only ,f thc next nonspacc
chararter ,s :a colon (-)

I'\ and PR arc uucrprctcd as reserved words only ,f the nc:ict norupacc du.r:1.ctcr is a
number sgn (•)

�R:\'. ':il"C, :md 1 Al\ :uc ,mcrprctcd as reserved words only 1f the next nonspare
character ·� a left parcmhests, (

AT'\ is mtcrprclcd as a rcsc:rvcd word only if there ,s no space between the T and Lhc

'- If a space occurs between the T and the N, the ICSCNcd word AT is mtcrprctcd
11\SlCad of AT'

Append1K B

10 •• ,n:c,p«.t,d ·", ""' ,vul v.or I uni(,ss •I ,s prcr<'Jcd by an \ and thc,c tS; 'I""
I, OW<� " 11 .. I and th(' 0 In 11\Jl Cl.W, � "'"'''"d wo, d ,\ f « ml, IJ m k d "·" ><. nf
,o

!.\en ,f y,x, d,m'I, ml, d r<" ,..,,1 wmds 1n ;om ,amble names, they c1n ,um, IIHK,
!"'!'up"'" ,pcctedly and au\:C pr<Jbkm.s for cxcalllplc, th, ,1,1, rrwnl

"· FCP � - :,::n en ..::r� n i;

1' 1'1!< fJU<:'!ed H

00 f�� I, - 1.0? tt, RT HT •" "

and c,u..,, a ,ynli� error fo I01C<. \)1<: rnn.:,1 ml< t[>r<.,lal1on. ""' parcmhcs,:�

:�o Fe>� - os.,i ,.� (1• ,1 ·,i ls

s 1-!A�II

"
o, �,\ y I'

''
j:,JN l'DI !,(,,\Jr

AT!\ PLl"K <;(,!(!\(
CET 11'1 I� l'L()T SC'<

(.,\ I I c.oscu Ll v l'()f.l' �IILO�D
C!!Rl (',() 10 un J>01> �I\'

CLLAR c, 1 I'll l'OS SP(',(
COLOR• LOAD PIU!\T �l'l'l'I)•
coon I.()(', Pl!• so,
CO\ I ICOI ()\!• LOM!.M Sll'I'

JJC:11 sror-
t),\ I A J l/JJU IO' I\ IJ STORF
oer MIMl''-1 MlllS 1!1'.CALL �·1 I(S
D!'I 1 iu:. 1u·�·1u1rn
Dlo\l IICIMt l!L�t:MP
IJRA \\' JJJ>!.O"J r-t-w RfTCH� 1,\H(

llTAB l\"l'XT 1(1 o I I 1"$!.\�
J!:,Jl) l\"QH,\I \I. I(\' I) Ii XT
!!XJ' M..YJ" l!OJ"m 1111''1

J\"O"! R \("!' l(LI N ,o

IHlll.L

'" Vl.J'I

Vl,\lJ

Wo\11

\l'J.(/'I
Xl)R�\V

Glossary

addros: A number used to 1dcn1,fy something,
such as a tocanon ,n the computer's memory

algorltJun: A srcp-bv see procedure for solv,ng a
problem or accomplishing a task

Apple 11: A family of personal computers,
manufactured and sold by Apple Computer, Inc.,
gencnc name for all computers m the sc:ncs

ApplcsoR, An extended version of the IIA!.IC
prognmm1ng language used wnh the Apple ti

family of computers and capable of processing
numbers ,n floacmg·pomt form An mtcrprctcr

for creating and CXCC\ll1ng progr.uns in A1>plcsof1
IS brnlt into !he Apple II S)'SlCffi in RO\I

arithmetic operator, An operator. such as +, that
combmcs numeric values to produce a numeric
ecsch. compuc rcl:itlonal operator,

BASIC: Jkgtm1crs Alf pu,pose f,)1rtbollc
t-uuucuon Code, a h,gh-lcvcl prcgramrumg
language o:b,gncd to be c.uy to Jcun and use

branch: To send program CXCC\ll!On to a lone or
insl!Uction other Lhan 1hc next m sequence

bug: An error in a program Lha1 CllUSC!i 1t not lO
work as mrended.

catalog: A hsL of au files stored on a disk,
someumes cancc a dl�ctory

chnracrerr A Jeuer, dig,t, punctual.Jon mark, or
Olhcr wnttcn symbol used m pnntmg Of displaying
mformatton ,n a form readable by humans

code, (1) A number or symbol used to represent
some pcce of mformauon m a compact or ea�1ly
processed form. (2) The statements Of

,nstn.ict,ons making up a program

comm:md: A commumcaL,on frnrn Lhc U'>Cr LO a

computer system (u�ually typed fmm the
keyboard) d,rcctmg u to perform •,or,1<, ,mrncd,�t1
action

c:omputcr: An electronic dcv.cc lor r11,rform111,;
prcdeflncd (programmed) compuL;u,on, �L h11,d1

speed and w,Lh great acairacy

oomputcr .!i)'Stcm: A compulcr and 1t, �"lolJ<..>lLL'U

hardware, firmware, and software

conca1cnate: Literally, 'to cham Logcthcr", to
combmc two or more sirmgs uuo a cmglc, longer
string conuinlng all the charattcri, 1111hc ongmal
strmgs

condltlona1 branch: A lJranch Lhat rkpends on
the truth oh. cond,tton or Lhc value ofan
expression.

ccoeor variable: sec Index variable

counter. A variable used Lo keep track of passe,
through a loop Countef'5 often have the form X •
X • I

crash.: When a program unexpectedly ceases
operating, possibly damaging or dcslroymg
mfonn:u,on m Lhe process

cursor. A marker or symbol d,spllycd on the

screen Lhat marks where the user's next acuon "111
take effect or where the next charaaer typed from

Lhc kcyl)o;ird will appear

debug: To locate and correct an error or the cause
of a prol>lem or malfuncuon 111 a computer
system Typically used to refer LO sofrwarc.rctned
problems

Glossary 101

deferred cxecul.lon: TIIC savmg of an Apple.soft
program lme for excccuon at a later time as pan of
a complete program, occurs when the Jme rs typed
wnh a hne number Compare Immedlnte
o::ecut.ion

deL1y loop: A loop whose purpose is ro slow dnwn
the execution of a program

dcfh1l': To assign a value to a variable

disk, An mforroaticn-storagc medium consrsung
of a flat, circular magneuc surracc on which
mformauon am be recorded in the form or small
magncuzcd SpotS, sim1!1rly 10 the way sounds arc
recorded on tape

disk drive: A pe.nphcral device that writes and
reads informacion on the surface of a magncnc
disk

dispfay, (I) Information cxhtlntcd visually,
cspcc,ally on the screen of a v,dco display device
(2) To cxhrbn information vuually (3) A display
device

dispL1y device, A device that extubus Inforrnauon

visually, such as a television receiver or video
monitor

display screen: The glass or plasuc panel on the
front of a display device, on which Images arc
displayed

cd!l: To change or modify, for example, to Insert,
remove, replace, or move text in a documenc

error message: A message displayed or printed to
not,fy the user of an error or problem in the
execution of a program

executes To perfonn or carry out a epecuicd
acuon or sequence of actions, such as those
defined by a program.

file, A collection of mformation stored as a
named unit on a peripheral storage medium such
as a disk.

mcnamc: lhc name under which a file is stored
on a disk.

10'2 Glossary

firmware: 'came applied to programs scored 111

read-only memory

formal, (\) The form m which mformatJ.on is

organized or presented (2) To �pec,fy or control
the format of mformauon (3) To prepare a blank
disk to receive mfurmanon by d1v1dmg 1h \urfalc
mto tracks and scao�. also ln!tlallze

graphics, (I) Information presented ,n Che form
of pictures or images (2) 'l11C d"play of prcuncv
or images on a compcrcr's d1�plJ� �uccn
Compare text

hacker. An experienced programmcr

hand comrol, /\n cpuonat pcnphcral dcv1<.c that
an be connected to the Apple IJ\ hand comml
connector and has a rotatmg dial and a J)USh
button, typ1ally used co ooocrol game playmg
programs, but an be used m more scnous
apphauons u well

hang: l'or a program or system to "spm us wheels"
indcfio1tcly, pcrformmg no useful work

hard copy: lnformauon pnmed on paper for
human use

immedlale execution, 'lli.c cxccuuoo of an
Applcsoft program hnc as soon as 1t L� typed,
occurs when ue hnc is typed w,1hou1 a hnc
number. Compare deferred exccuucn

Index variable: A variable whose value changes on
each pase through a loop, often called conlrol
variable or k>op variable

infinite loop, A SCC\lon of a program that repeats
the same sequence of acuons mdefimtcly

information: Facts, concepts, or msuucnoes
represented m an organized fonn

init.ialuc: (1) To set to an m1tial stale or value ,n

preparation for some computation (2) To
prepare a blank disk to receive informauon by

dsvsdmg ns surface mto tracks and sccioes. also
format,

Input: (1) lnformalion transferred rnto a
computer from some external source, such as the
keyboard, a disk dnvc, or a modem (2) The act
or process of transfcmng such informauon

input variable: Vanablc whose value is assigned
by the user via an l!\'.PlIT instrucuon, as opposed
to one whose value is assigned by the programmer
using an assignment or similar instruction

Instruction: A unit of a program m a h1gh-!evel
programming language Lhat specifics an action for
the computer to perform, typically corresponding
\0 several mstrucuons of machine language

interactive: Operating by means of a dialog
between the computer system and a human user

interactive programming: Generating programs
Lhat operate by means of a dialog between the
computer system and a human user

Interface: 11,e devices, rules. or conventions by
which one component of a system commun,catcs
with another

Inverse video: 111e display of text on the
computer's display screen m the form of dark dots
on a light (or other smgle phosphor color)
background, instead of the usual light dots on a
dark background.

keyboard Tiic set of keys, similar to a 1ypewnter
keyboard, for lyprng information to the computer

language: See programming L'Ulgu:tge.

line: See program (;ne.

Une number: A number that identifies a program
hnc 1n an Applesoft program

load: To transfer inforrnatJOn from a peripheral
storage medium (such as a disk) rnw main
memory for use, for example, to transfer a
program mto memory for cxccouoo

loop: A section of a program that lS executed
repeatedly unul some cond,uon is met, such as an
rndex vanable reaching a specified ending value

loop variable: See Index mriabk:

low-eesoludon graphics: The display of graphics
on the Apple Il's display screen as a sixteen-color
array of blocks, 40 column.s wide and erther 40 or
48 rows high.

memory: A component of a computer system that
can store information for later remcval, see main
memory, random-access memory, read only
memory

menu, A hst of choices presented by a program.
usually on the display screen, from which the user
can select.

mode: {I) Any of several ways a computer
rrucrprcts information. (2) A stale of a computer
or system that determines its behavior

nested loop: A loop contained wnhm the body of
another loop and executed repeatedly durmg each
pass through the contarnrng loop

nested suhrouune call, A call to a subrouunc from
within Lhe body of another suhroutme

numeric v.uiabk: sec variable.

operator, A symbol or sequence of characters,
such as-+- or A:'.','D, specifying an opcraucn to be
performed on one or more values (the operand...)
\0 produce a result

output: (\) Information transferred from a
computer to some external dcstmauon, such a�

the display screen, a disk dnve, a printer, or a
modem. (2) The act or process of transferring
such informauon

pass: A single cxcccuou of a loop.

precedence: ·nic order m which operators arc
apphcd in evaluatmg an expression

printer: A peripheral device Lhat writes
information on paper in a form eas,ly readable by
humans

program: (I) A set of UlSlnJCI.IOllS that dcscnbcs
actions for a computer to perform m order to
accomplish some task, conformmg to the ru\ei
and conventions of a parncular programming

Glouo·y 103

language In Applcsoft, a sequence of program
lines, each with a different !me number (2) To
wnte a progt:1m

program line 11lc basic unit of an Applcsoft
program, conseung of one or more mstruCLions
scpamed by colons (.)

programmer: The human author of a progr:.im,
one who wntes programs

programming; The actJ, 1ty of wntmg progr.1ms

progr.uruning l:mh-uage: A set of rues or
convcnuons for wnllng progr.1rns

prompt: (I) To renund or signal the user that
some aaion 1s expected, typically by displaymg a
dssuncuvc symbol, a remmdcr message, or a
menu of choices on the display screen (2) An
mstrucuon or remmdcr message that appears on
the display screen

promp1 character- (I) A u:xt character d1SpL3)'Cd
on the screen to prompt the user for some action
Often also identifies the program or component of
the system that ,s domg the promptmg, for
example, the prompt character J ,s used by the
Applcsoft BASIC lmerprcter Abo called
prom/)llng charocter (2) Someone "ho is alw:1.}\
on time

prompl meo.s.,ge, A message displayed on the
screen to prompt the user for some acuon Also

called prompting message

RAM: Sec r.mdom-acccss memory

rnndom·acccss memory: Memory whose
comems c:;in be lxxh read and wnuen, often
called rcad·wrile memory The contents of an
md,v,dual location m random-access memory
an be referred to ,n an arb,tr.1ry or r.mdom
order lbe mformaucn comamed m ttus type of

memory IS erased wben the computer's power 15

turned off, and IS permanently lost unlc.s5 11 has
been saved on a more permanent MOtagc
mcd,um, such as a disk Compare read-only
memory

104 Glossary

read: To tt2nsfcr mformation mto the computer's
memory from a source external to the computer
(such as a duk dnve or modem) or mto the
computer's processor from a source external 10

the processor (such as the keyboard or masn

memory).

read-only memory: Memory whose contents an
be read but flOI wntLCn, used for stonng finnware

lnformauon IS wntten ,mo read-only memorv
once, dunng manufacture, ll then remains there
permanently, even when the computer's power ,s
turned off, and an never be erased or changed
Com1>3-re random-access memory

read-write memory, Sec random-access mcruorv

relational operator: An oper:uor, such as>, that
compares numenc values lo produce a logical
result, compare aritluuelic operator

reserved word, II word or sequence of charaocrs
rcscncd by a programming language for some
speaat use, and therefore unavailable as a varrablc
name m a program

RO!tt, Sec read-0nl)' memory

routine: A part of a program that acccrnphsbcv
some wk subordmate to the O\'Ct:111 task of the

program

rum (!) To cxccnc a program (2) To load a
progr.1m mto mam memory from a peripheral
storage medium, such as a disk, and execute u

save: To transfer mformauon from main memor.
to a peripheral storage medium for later use

sen-en: Sccd�pbyscreen

suutlng value Tbe vatce assigned to the index
vanablc on 1he first pass through a loop

step value: lbc amount by which the index
vanable changes on each pass through a loop

!tlcpwi.se rdlnt.'fllt."f"II= A tcchruque of program
development m which broad secuons of the
program arc lasd out fir�t. then elaborated step I"
step unul a complete program is obca:ned

string: An item or 1nfonrot1on consisting of a
sequence of cext characters

string v.ui.,blc: sec varl3ble

subroutines A part of a program tha1 an be

executed on request from any pomt m the
program, and that rcrurns control to the pomt of
the rcqucsc on completLon

syntax: The rules goverrung the strucrurc of
statements or mstrucuons m a programmmg
language

S}"Stem, A coordmatcd collccuon of mterrebted
and mtcractmg pans orgam1ed to perform some
function or achieve some purpose

text: (l) Information presented m the form of

charaaers readable by humans (2) The display of
characters on the Apple ll's display screen
Compare graphic;

user. The person opcraung or comrolhng a
computer system

user intcrl"ace: The rub and conventJoos by
which a computer system commumatcs with the

person opcratmg u,

value: An uem of mformatmn that am be smred
in a variable, such as a number or a smng.

\·arlable: (I) A locauon m the computer's
memory where a value an be stored. (2) The
symbol used m a program to represent such a
tocaucn

wraparound- Tbe autcmauc COtl\Jnua\Jon of text
from the end of one line to the bcgmnmg of the

next, as on the display .screen or a printer

write: To transfer mfurmauon from the compucer
to a desunanon external ro the computcr (such as a
disk dnve, pnnter. or modem) or from the

computer's processor 10 a dcsnnancn cxccrnal to
chc processor (such as mam memory)

Glossary 105

Cost of Choroete,s

) {dnllu < �n) 22
& (amp<'rwnd) 99
· (plu� �·i:n) 8-11, 22

c�ubuanoon operat<>r) R-11
(p<'rlOd) 30

• (rnult1phc-21,on operator) 8-11
I (d"ISIOn oper.itor) 8-11

(colon) 65--(,6

, (K-micolon) 19, 39
< (1<:M th.in operator) 39
<• (not sre;11.cr than operator) 39
<> (not equal to opemor) 39
• (c.iual �,gn) I 2, 39
> (J:f<:alcr than operator) 3?
- <oot kM th.in op,:u.10,) W
'(<1uc,unn mark) IK 19--:ZO, 10
I (ni;ht luckei prompt} ,� �

A

\BS msuucuon 85
adchns l,ne,; 20
:add,t,onopcr.ator(•) 8-11

precroerw::c and 10-1 t

algor,1hms 66
ampersand(&) 99
an,nu.t,on 56-57
arithmeuc: 8-11
ar1Lhrnc,t,c opcr.tl015 8-9
UfOW kC:)5 1

.\SC m.'il.ruc:tion 8�
ass,snmc:nt ,nswc:tions 18, 85
i\T m.'il.ruc:uon 48--49, 99, 100
,\T'- lnslIUc:IIOrl 85, 99

I n d e x

•
hranc:h,ng Soe GOTO ,n.�ruc:tion,

II' TIIL' 1rutruc:11on
bugs 4-5

� also dc:bugsmg, errors

c

L\U. instruction 86
Jta1og 29

c.vr oomnund 29, 31
m�'lmi; 1ex1 75- i6

heckbook balancing
prognm 66--68

CIIRS m1,truc:toon 86
cleaung <erecn 20-21
ur AR ,nstruc:toon 86
C<>Jc: Se,e programming, programs
colon () 65--(,6

COLOR· inslruc:t,on 4'7, 86, 99
color graph,cs H-51
c:olOI monHor 44
commc,nt.s S.... Rl'..\I ,n..truc:tion
compu1c,1 bnguagcs ""
concatenation 22
c:ond11,oru.l branchmg

Sc,: 1F TilE.'>: lll.'ilrucuon
C0''T IOWUCIIOII 86
Com,ol--C 37
Conuol-Rcsct x
c:onuollc,d loops 54-S8
cos ,nstruct!Orl 86
counters 48

0

DA[',\ IOSlruc:\IOn 86
clt:bugg,ng 4-5, M, 23-25

by pr,nung 32-33
-� a/Jo errors

clt:forrcd CXCCUIIOn 24-25
[)J.[' r-, IOW'UCIIOn 86

clt:lay loops 5i-S8
Dl'LITE oommand 32
Ddcte key 4
OFL ,�1rue11on 87
Dl\1 instruction 87
J,sk drwcs 28

Sl.artlng up w•houL x
d ... ks 28
dc,pla)', 40,column II, 70
d,�.,.,on op,,r.alor Cl) 8-11

prcccdcnc:e and 10-11
doll.ii s,gn (SJ 22
dr�w,ng Imes ,\8-50
ORA W ,nstructinn 87

' ed,cmg pecgrarns 4-5, 20
E.'-0 lnsttuc:IIOII 39. 63----0,4, 87
equal "'G'l (·) 12
equal to(•) opentor 39
err� =e=s= 3--4, 24-25

REF..'\ T!R 23
RETt:R.'l WITHO:JT GOSUB 64
sn,::AX !RROR 3-4
TYPE �IS�.ATCB \,j

errors 4-5
LOlppmg 41, 79
Sc,: also debuggmg

eXCCUllOII 3, 24-25
ex,t opllOOS, dcs,gn,ng 79-80
EXP instruction 87

hdex 107

F

f,lcs S()o J'>foS'"ITU
11.ASII 1n1>1rucuon 87
I -, ,iutructlon 87
fo1mau,ng screens 70- 76
l O!!"l:Xl" 1n1,lruC110I\ 54-5!1, AA

STI P mmucuon and 56-57
10 column display l l

Jrl"Atl lnstfUCl1on ar,d 70

fracuons 9
I Ill ,ns.irucuon 88

G

(,IT ,nstroctoon 88
t;OSLB\IU-JURN

11\:;ifUCIIOn 62--{i), 88
C.OJ'O insuucuon 36-37, 63, fill

IJ Tlll"N 111S1rucuon and 10
<;u mstruci,on 14-45, 81:1

craphics
!OR\'l"XT m5U1.Jctoon and 55-�i
low rc.wluuon 44-5 l
lt'-D m.wuctlO<l and 50-51

nmW� arnl 47--18

waph>Cli ,node 1�-45
gr<'atcr than(>) opctatce 39

H

hard copy Sec prmung
l ICOl.OJI� llll>INct!on 8$, 9'l

l rc.n ,nsm,mon 89
l 1Gll2 ,nstruct1on 89
!JI\II \1 mSlructoon 89, 99
I IUN m.struction 4S-49, 89
110.,11: msuucuon l0-21, 89

I ll'LOT tnsuucuon 89
fll'AB mstrucuon 70-73, 90

108 lflde)(

I. J. K

II 1111s;m,111.1C11on 37-41,51,911
(;OTO 1m,1ruc1lon an<J 10

unm,:d,at<, execution l4-25
I'• ,n.siructlon 90, 99
mc1cmem11,g counters 48
mfmHe loops 37
l'PLT m,;trueuon 18-lO, 7J, 9()

,1rmi; vamblcs and 23
mput ,aroablc 18
"',truCIIOn(\)

a$.1;1gnmcm 18, BS

multiple 6S-66
summary of 85-97
we also ,pcc,fic "'s1roc1<0"

,mcraci,ve pror,ramm,ni; HI, �IHil

I\. I ,n1,1ruct1cm 90
I\.Vl ll�f m.<m>ct,on 7� ?S, 9()

L

unguages vu
LI 1·15 lnsuumon 91
l.cf1 Arrow key 4
JI \ m;iruc:uon 75-76. 91
1., ... � lhan (<) operator 39
I !"I" m;iructlon 91
line number 2, 3, 20
I tnCS

a<.h.hn,: 20
drawing 48-50
nrnovcr 11

11�!" command 21-l2, 91

I 0.\1) cummand 29, 3!-32. 91
LOG Ln!.lrucuon 91
10\!l \1 ,rio,tructoon 91, 9'J

loop\ 36-J7
oomrolluJ 54-58
dday 57-SS

lowercase 3
I\Vl US!· instrumon and 75

low-re.solution graph,cs �4-51

M

memory ,;;...., RA.\!, llO\I
1)1C1lU5 71-73
\lll)S ltwnictlon 91

mo.Jes �1

modular proi;rammms 62-68
mon1lor1 44
monochrome monitor 44

mull,ple m<truct,ons 65-66
mul;,phc:iuon opcrwor (') 8- 1 1

precedence and 10-11

N

namms
numeric variables 13, 23
programs 29-30
'>lrmr, variables 23

I\! w command 2-3, 92
\.l XT m'>lrucuon SOii rolt\1'1 xr

irwruct!on
\.OR"1AL ,ns1rue11on 74-75, 92
tKJl C<jual lO (o) opcraior 39
nOl i;realcr than(<•) opcmor 39
nOl less than(>•) opcr.uor 39
'>;QT!tACI: mstrucuon 92
numbers, u tc:<t 22
nurner1e var\ablc.1 11-M

nanuni; 13, 23

0

0'1 20
0'11 HR GOTO instruction 92
0'< GOSt:U mstrucuon 92
0,\ GOTO lnMruct,on 92
opc,ator�

ar11llmcl1C 8-9
rc!auonal 3!!--41

order of precedence 9-11
parcnlhcscs and 10-11

org.,n,1,,ng programs 66
011. ,nstruct10<1 99

p

p.:lfcnthcscs
prca,dcncc and I()- I\

fe5<:r.L'<J worth ar>d 99--100
R."1;0 iT\SU"Uction and W

PAL.:SE program 62--63

l'[)L lrt!ilrUCllon 93

PtEK lnstruc\ion 93
perood (), ,n r,1enamca 30
l'l.OT iruuucuon <IS-16, .f&-49, 93
plus 511,'n (•), smng v:mablcs

and 22
POKE msuuction 93
POP 1m,tructoon 93
POS irutn.>Cloon 93
PR• command 33, 93, 99
prttedcncc 9-11

p:ircnthac:s and 10-1 I

prmuns 32-:H
enrcr mstrucuon 2-4, 11, 19, 93

amhmcuc and 8-11
qi.,,c9,on rrunk (>') anJ 10

program hnc 2, 3, 20
proi;umming vuJ-L,:

intcr.ichvt' 18, 78-81
modular 62-68
,c.sou,ccs 81-62

progr.ims v11;..,x
00,ting -t-S, 20
menus and 71-73
nammg 29--30
organl1.mg 66
printing 32-33

s:i.vrng 29-30, 38
•u,;,:r-frnend!y• S<,e ,ntcr:i.ctivc,

progranumng
prompt character (D ,x, x
prornpu 19-20, 73

des,gn,ng 79
II\V,:f5(' 74-�

public domam soft"-arc 82

Q

qucstio.� m:uk (') 18, 19-20
PIINT uutrucuon and 10

(1UOCat,on ma,U 8

'
It. .. .\! (r.,ndo,n-� n�mO<)) 2>l

range cno,s 79
11�.AO ,rutrunoon 94

� 'l-£11 1ncs,pg<: 2J
rclauonal opc1ators 38--'\ I
RrM lrutruct,on ,tJ,94
rcs,c,rvcd wor� M, 20. 99-100
ntsronr ,nsuuc11on 91

111:SUME 1mtruc11on 9'I

Rl'Tl:R."'I ,n,i,rucuon
S.. GOSL:ll\Rl:TUR.'
,n,i,ruaion

R«um key 2-3
1.:: ';;J>\ w:"'IIOUT ::::ie

=ll" 6<
lUGl ITS ,ruuucuon 9'1
R1i;ht·Anow key �
n-,o ,mtflK'I,..,... 9'I

gr:aphocs -nd '\0-51
ROM (rc:ad-0nly ""'IOOI')') 28
ROT- 1nS1ruction 9'1, 99
RU:-.1 command 2-3, 9S
runover hncs I I

$

SAVE romnu.nd 2'>--30. 95
SCALE- uatroctoon 95, 99

screen(s)
dormg 20-21
fornu.u,ng 70-76
low·resolut,on 15-'16

sce-c mSlroct>On 95, 99
s,,micolon (,) 19, 39
SG'\ orlSlructoon 95
srx 1J1S1JU«ion 95
!;Of\w::ire, pubhc dom::i,n 82
s� bar 4

Spacc�l::iker 73-74
•,== 9

SPC(msuucuon 95, 99

SPEED- ,rutruc:tion 95, 99

SQR in,i,ruct>on 96
•urung up ix-ll
ST[P ,ruuua,on s&--57
STOP ,nstroct>On 96
STRS in,i,rucuon 96
'>I.Ong v;uo;1bles 22-23
S1Jbrouuncs 6.t-68

>t1btracuon operator(-) 8-11
peeccocnce :and 10-11

SY!>":'AX ERROii. mcssa1,-c 3-4

T

TAO(1mtruct,on 96. 99

tabs Sro IITAB INlruCtoon,
TAB(,nsu'UCl.oon, VTAB
mSlfUCUOn

TA."'I ,ratruct,on 96
ictev ISIOll Kt �4

lClll 22-23
ccnlermg �76

n:.xr lratructoon �6. 96
ten mode: 46
rue- lnstruct,on SatlF TIIE.-.:

msiru«oon
TO ,nscruction 100
TRACE 1nS1ructoon 96
trapping error5 � I, 79
T'!'Pr H!S'Q\TCK message H

l)l»ng misl:ikes 3. 79

u

upperc:asc 3
ISVERSE msuuctoon :and "'5

·....,,.fnendly" prosr::im5
See interact""' programmmg

"""'5 group,, 82
USR ,rosuuctoon 96

hdex 109

v

VA!. msuua,on 97

varo:.bl,:,s 11-14

l"Otl\NEXT insuucuon �nd 55

c,aphia �rn:1 n-4e
mpul 18
nammg 13, 23

numcrk l 1-14

smng 22-23
\'!J'- 1�rue11on 48-49, 97

VfA!l lnstructoon 70-73, 'iF1

w

w ... rr ,nstrucllon 97

X, Y, Z

XDltA w msuuc1lon 97
Xl'I.OT ,nwualon 99

110 Index

Ill
•

• •

•

" c
,

c

' c

e

' c

'

.,

c

•

t

- ,,

c

•

" c

r

'
w

" c

c

�

'
c

c

,
- • :g
z-

•

•

c

c

' •
'

e
c

§

' c

'

w

c

'

•
•
c

E

-

r

•

-

•

'

•
c

•
•
c

' c

•

' c

'

c

c

'

'

• ,

5 =

" " . ,
•

" z-

• ,
,

'

•
•
c

•
c

c

c

1

•
[il'

��
::?

'

I I

c

I I I

B
B
B

B
B
B

I I I I I

B B B B B
B B B B B
B B B B

B B B B

B B B
B B B

I I I I I I I

B B B B B B B
B B B B B B B

a B B B
B B B B

B B
B B

1 1 1 1 1 1 1 1

D D D D D D D D
D I D D D D D D

f D D D D D D D D
� D D D D D D D D
� D D D D D D D D
{ D D D D D D D D
8 D D D I D D I D
• D D D D D D D D
" ' 0 I D I D D D
� D D D D D I D I
D D D D D D D D
D D D D D D D D

