Apple IIGS
Assembly Language
Programming

Apple 1IGS
Assembly Language
Programming

Leo J. Scanlon

BBBBBBBBB

Trademarks

Apple, Apple II, 11+, //e, //c, TIGS, Applesoft, Disk 1I, ProDOS,
QuickDraw, and SANE are registered trademarks, trademarks, or
copyrighted by Apple Computer, Inc.

Macintosh is a trademark licensed to Apple Computer, Inc.

ORCA/M is a trademark of The Byte Works, Inc.

IBM is a trademark of International Business Machines Corporation.

Figures 6-3, 11-3, 12-1, 12-2, 12-3, 12-4, 12-6,
are used with the permission of Apple Computer, Inc.

Apple IIGS Assembly Language Programming
A Bantam Book /| August 1987

All rights reserved.
Copyright © 1987 by Leo Scanlon.
Cover design copyright © 1987 by Bantam Books, Inc.
Interior design by Margaret Fletcher, Slawson Communications, Inc., San Diego, CA.
Production by Slawson Communications, Inc., San Diego, CA.

This book may not be reproduced in whole or in part, by
mimeograph or any other means, without permission.
For information address: Bantam Books, Inc.

ISBN 0-553-34395-5

Published simultaneously in the United States and Canada

Bantam Books are published by Bantam Books, Inc. Its trademark, consisting of the
words “Bantam Books™ and the portrayal of a rooster, is Registered in U.S. Patent
and Trademark Office and in other countries. Marca Registrada. Bantam Books,
Inc., 666 Fifth Avenue, New York, New York 10103.

PRINTED IN THE UNITED STATES OF AMERICA
8o 9 8 7 6 S5 4 3 1

Acknowledgments

While my name is the only one on the cover of this book, many people
helped along the way, and I want to thank them publicly. Top honors belong
to Bill Gladstone of Waterside Productions, Steve Guty of Bantam Books,
and Martha Steffen of Apple Computer for their encouragement and unflag-
ging enthusiasm for this project.

Special thanks also to Jim Merritt, Manager of Apple’s Developer
Technical Support department, who reviewed the manuscript for technical
accuracy and overall usability. If you find any errors in the book, blame me,
not Jim. (And please write to me about them, in care of Bantam Books.)
Pete McDonald, Guillermo Ortiz and the rest of Jim’s staff deserve credit,
too, for patiently explaining some of the more subtle details of the IIGS.

A few other folks also provided help — without realizing it! I refer
especially to Eagle Berns and the others at Apple who developed sample
programs to aid IIGS developers. Their listings showed the “right” way to
get things done and saved me untold hours (or days or weeks) of program-
ming time.

Danny Goodman’s excellent book The Apple IIGS Toolbox Revealed
was also a valuable resource. It gave me a good starting point for digging
deeper into Apple’s voluminous documentation.

Finally, I thank Pat, who has always been there to listen.

Contents

Preface vii
Chapter 0 — About Computer Numbering 1
Binary Numbering 2
Converting Decimal Values to Binary 3

Bytes 4

Adding Binary Numbers 4

Signed Numbers 5
Two’s-Complement 6
Hexadecimal Numbering 7
Chapter 1 — Introduction to Assembly Language 9
What Is Assembly Language? 9
Overview of the 65816 Microprocessor 10
Data and Address Buses 10

Memory Organization 11

Software Features 11
Interrupts 12
Operating Modes 13

Internal Registers 13
General-Purpose Registers 15

Data Bank Register 15

Stack Pointer 15

Direct Register 16

Program Counter 16

viii APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Program Bank Register 16
Processor Status Register 17
Inside the Apple IIGS 19
Fast (2.5-MHz) Components 20
Slow (1-MHz) Components 20
System Memory 22
Read/Write Memory 23
Memory Shadowing 23
Banks $E0and $SE1 23
ROM . .. 25
Programming the Apple IIGS 25
Chapter 2 — Using an Assembler 27
Developing an Assembly Language Program 28
Editor 29
Assembler 29
Linker 29
Debugger e 29
Top-Down Program Design 31
Source Statements 32
Assembly Language Instructions 33
Label Field 33
Mnemonic (Opcode) Field 34
Operand Field 34
CommentField 35
Assembler Directives L, 35
Program Control Directives 36

File Control Directives 39
Space Allocation Directives 39
Equate Directives 40
Listing Directives 41
Mode Directives e 42
Advanced Directives 0. 42
Operators e 42
Arithmetic Operators 43
Logical Operators 45
Relational Operators 46
Entering, Assembling, and Running Programs 47
Starting the Apple IIGS Programmer’s Workshop 47

A Simple Speaker-Beeping Program 48

Entering the Program 49

CONTENTS ix

Correcting Typing Errors 50
Leaving the Editor 53
Assemble, Link, and Run Commands 54
Shell Load Files and System Load Files 62
Automating the Assembly Process 62
Multisegment Programs 63
Debugger 63
Starting the Debugger 63
Subdisplays on the Debugger Screen 64
Single-Step and Trace Commands 66
Editing Commands 69
Register Commands 69
Memory Commands 70
Disassembly Commands 70
Conversion Commands 71
Breakpoints L o L 71
Leaving the Debugger 72
Chapter 3 — 65816 Addressing Modes 73
Immediate 74
Accumulator L L 75
Implied e e 75
Absolute and Absolute Long 75
Absolute Indirect L 77
Absolute Indexed with X orY 78
Absolute Long Indexed with X 79
Absolute Indexed Indirect 79
Direct e 80
Direct Indirect and Direct Indirect Long 81
Direct Indexed with X orY 82
Direct Indirect Indexed and Direct Indirect
Indexed Long 82
Direct Indexed Indirect 83
Program Counter Relative and Program Counter
Relative Long 83
Stack 84
Stack Relative and Stack Relative Indirect Indexed 84
Block Move e 85
Addressing Mode Summary L. 85
Read-Modify-Write Instructions 86

Final Thoughts on Addressing Modes 88

x APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Chapter 4 — 65816 Instruction Set 90
Instruction Types 91
Alternate Mnemonics 91
Functional Groups 94
Data Transfer Instructions 94
loadand Store 94
Register Transfer 96
Block Move 96
Arithmetic Instructions 99
Data Formats 99
Addition, 100
How the 65816 Subtracts 102
Subtraction 103
Signed Arithmetic 104
Increment and Decrement 104
Compare 105
Control Transfer Instructions 106
Unconditional Transfer 106
Conditional Transfer 107
Using Branch Instructions with Compares 109
Subroutine Instructions 111
Stack Instructions 113
Overview of the Stack 115
Push and Pull Registers 115
Push Immediate Data or Effective Address 118

Bit Manipulation Instructions 119
Logical 119

Bit Testing 122
Processor Status Bits 123
Shift and Rotate Instructions 124
Shifts 124
Rotates 125
Shifting Signed Numbers 126
Mode Control Instruction 127
Interrupt-Related Instructions 128
Interrupt Control 129
Return from Interrupt 129
Software Interrupts 130
Wait for Interrupt L 130

Miscellaneous Instructions 131

CONTENTS «xi

Chapter 5— Macros 132
Introduction to Macros, 132
Macros Vs. Subroutines, ... 133
Macros Speed Up Programming 133
Contents of Macros 134
Macro Directives L 136
Macro Language Directives 136
Library Directives 139
Symbolic Parameter Directives 139
Branching Directives 140
Listing Directives 141
Creating Macro Libraries 142
Macros on the Programmer’s Workshop Disk 143
ProDOS 16 Macros 144
Utility Macros 144
Push and Pull Macros 144
Load and Store Macros 149
Add and Subtract Macros 0., 150
Define Macros 150
Move Macros i 151
Shift Macros 152
Mode Macros 153
Write Macros 153
Check Error Macro 154
Using Predefined Macros 154
Chapter 6 — The Apple IIGS Toolbox 155
Tool Locator i 156
Memory Manager 156
QuickDraw IT 157
Managers 158
Window Manager 158
Menu Manager 158
Control Manager 159
Event Manager 160
Dialog Manager 161
Desk Manager 161
Sound Manager 162
Other Managers 162

Other Tool Sets e e 163

xii

APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Line Editor 163
TextTools 163
Integer Math Tools 163
Standard File Operations 163
SANE 163
Miscellaneous Tools 164
Tool Set Interactions 164
Using Tool Calls in Programs 165
Making Tool Calls 166
Calling Conventions 166
Words, Integers, and Pointers 168
General Structure of an Application Program 168
Using the Program Bank as the Data Bank 168
Starting the Tool Locator and Memory Manager 169
Allocating Working Space in Bank 0 169
Starting ROM-Based Tool Sets 171
Reading RAM-Based Tools from Disk 171
Starting RAM-Based Tool Sets 176
Shutting Down the Tool Sets 176
Leaving the Program 177
Generalized Program Model 177
What’s Inthe Model 183
Creating the Model File 183
Validating MODEL.SRC 183
Usingthe Model 184
Copying Between Programs 186
Tool Locator, Memory Manager, and Miscellaneous Tools Calls . 186
Start-Up and Shut-Down Sequences 186
Common Programming Errors 189
Chapter 7 — Drawing with QuickDraw 191
Graphics Modes 191
Drawing Environment 192
Conceptual Drawing Space 192
Pixelsand Points 194
QuickDraw Draws withaPen 194
Starting and Stopping QuickDraw 196
ThePen 198
Pen Location 198

CONTENTS xiii

PenMode 198
PenPattern L L. 198
Pen Mask 201
Pen State Tool Calls 202
Colors 202
320 Mode Colors 205
640 Mode Colors 206
Dithering in 640 Mode 207
Tool Calls for Colors 208
Drawing Lines, Rectangles, and Polygons 209
Lines e 210
Rectangles o . 211
A Program that Draws Rectangles 213
Polygons 214
Drawing Other Shapes 219
Ovals e 220
Regions e 225
Calculation Calls for Shapes 232
A Color-Dithering Program 232
Mouse Pointer Tool Call 236
Text . . e e e 237
Pixel Images 237
Macintosh Bit Maps 238
Contents of a Pixel Image 241
Image Width 241
BoundsRect 242
The GrafPort 243
Entries in the GrafPort Record 244
Muitiple GrafPorts 247
Displaying a Pixel Image 248
Tool Calls to Display Pixel Images 248
Pencil Display Program 250
Animation 250
Animating Shapes oL 255
Animating Pixel Images 255
Time and Date Operations 255
Tool Calls for Reading the Time and Date 260
Generating Delays 262

Working with Color Tables 267

xiv APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Chapter 8 —Events 271
Modal Programs 271
The EventLoop 273
Event Types 273

Mouse Events 273
Keyboard Events 274
Window Events 274
Switch Events 275
User-Defined Events 275
Desk Accessory Events 275
The Null Event 275
Event Priorities 276
EventRecords 277
What — Event Codes 277
Message — Event Message 279
When — Elapsed Time 279
Where — Mouse Pointer Location 279
Modifiers — Modifier Flags 279
Event Manager Tool Calls 281
Housekeeping Calls 282
Calls that Access Events 283
Mouse-Reading Calls 286
A Simple Program that Uses the Event Manager 286
What’s Next? 293

Chapter 9 — Working with Windows 294

Window Components 295
Content Region 295
Title Bar 295
Close and Zoom Boxes 295
Grow BoxX, 296
Scroll Bars 297
Information Bar 298

Active and Inactive Windows 299

Fundamental Tool Calls for Windows 300
NewWindow 300
ShowWindow 306
CloseWindow 307
Window-Shuffling Calls 307

The TaskMaster i .. 307

CONTENTS «xv

Calling TaskMaster, 308
Processing Events 309
Tool Sets Required by TaskMaster 311

An Example Window Program 311
Chapter 10 — Menus 326
Menu Bars and Pull-Down Menus 326
The System MenuBar 327
Pull-Down Menus 328
Enabled and Disabled Menus 328
Menu tems o e e 329
Creating Menu Bars and Menus 331
The Menw/Item Line List 332
Menu Modifiers oo 334
Responding to Menu Events 337
Mouse Events e 337
Responding to Mouse Events 338
KeyEvents 338
Providing for New Desk Accessories 340
An Example Program that Provides Menus 340
Chapter 11 — Controls 356
Predefined Controls 357
BUttONS o o e e e e e e e 357
Check Boxes i i 358
Radio Buttons 358
Scroll Bars e 358
Scroll Bar Components 358
Active and Inactive Controls 359
Control Manager Tool Calls 360
Chapter 12 — Conducting Dialogs 362
Dialog Boxes 363
Modal Dialog Boxes 363
Modeless Dialog Boxes 363
Alert Boxes e 364
Types of Alert Boxes 365
Stages of an Alert 366
Programming Dialogs and Alerts 366

Ttem LiStS o o e e e e e e e e e e e 367

xvi APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

IDNumber 368

Display Rectangle 368

Item Type 368

Item Descriptor and Value 371
ItemFlag 372

Tool Calls for Dialog Boxes 372
Handling Modal Events 375
Handling Modeless Events 376

GetText 376

Example Dialog Box Program, .. 378
Tool Calls for Alert Boxes 393
Alert Template 393

Item Template 395

Final Comments 396
Appendix A — Hexadecimal/Decimal Conversion 397
Appendix B— ASCII Table 398
Appendix C — 65816 Instruction Set Summary 399
Appendix D — Requirements for Using Tool Sets 432
Loading RAM-Based Tools from Disk 432

Working Space for Tool Sets 434

Preface

Why Assembly Language?

Many people write all of their computer programs in one of the so-called
high-level languages, particularly BASIC. BASIC is easy to learn, easy to
use, and fast enough for most computing tasks. That being the case, why
would anyone want to use any other language? One reason is that BASIC,
like human languages, is not well-suited to everything. Some tasks are much
easier in other languages. Imagine, for example, trying to describe fine
cooking without some French words, or symphonies without some Italian
terms. Similarly, special computing tasks like graphics, music, or word pro-
cessing are often easier in other languages.

Furthermore, BASIC is quite slow. The term slow may surprise the
beginner, since most programs seem to run instantaneously. However,
BASIC tends to fall short in the following situations:

1. When large amounts of data are involved. Notice how slow BASIC
is when a program must, for example, sort a long list of names and
addresses or accounts. Similarly, BASIC is quite slow when a pro-
gram must search through a 50-page report or keep inventory records
on thousands of items.

2. When graphics are involved. If a program is drawing a picture on
the screen, it must work quickly or the delay is intolerable. If
objects in the picture are supposed to move, the program must be
fast enough to make the motion look natural. This is particularly

xviii APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

difficult when the picture contains many objects (such as spaceships,
base stations, and alien invaders), all of which are moving in dif-
ferent directions.

3. When a lot of decisions or “thinking” is required. This is often
necessary in complex games like checkers or chess. The program
has to try many possibilities and decide on a reasonable move.
Obviously, the more possibilities there are and the more analysis
required, the longer it will take the computer to move.

Why is BASIC slow? In the first place, the computer actually translates
each BASIC statement into one or more simple internal commands (so-
called machine language). It does this every time it runs the BASIC pro-
gram. Thus, much of the computer’s time is spent decoding the program,
not running it.

There are versions of BASIC called compilers that perform the transla-
tion once and then save the translated version. However, unless the compiler
is efficient at “optimizing” programs, even a compiled BASIC program may
be slow. A BASIC program is really like an automobile with an automatic
transmission; no amount of coaxing can get you the performance or fuel eco-
nomy that a skillful driver can achieve with a manual transmission. The
human being is simply a more flexible, more skillful, and smarter operator
than the automatic transmission or the BASIC interpreter or compiler.

Assembly language is like a manual transmission. It gives the prog-
rammer greater control over the computer at the cost of more work, more
detail, and less convenience. Like an automatic transmission, BASIC is
good enough for most programmers. But for those who must get optimum
performance from their computers, assembly language is essential. You will
find that most complex games, graphics programs, and large business pro-
grams are written at least partially in assembly language.

Even if assembly language is your likely choice, you may be wondering
if you have enough background to learn assembly language programming.
You do if you have done some programming of any kind. If you know BASIC,
Pascal, C, or some other so-called “high-level” language, that’s even better.

The Contents of This Book

For the benefit of former users of high-level languages, this book has two
starting points. If you have never programmed in assembly language,

PREFACE xix

read Chapter 0, which gives a “crash course” in the binary and hexadecimal
numbering systems. Otherwise, if you already know what these terms mean
and understand how to use them, proceed directly to Chapter 1.

Chapter 1 describes the 65816 microprocessor — the “brain” of the
Apple IIGS — and the major hardware components inside the IIGS. It also
provides a general introduction to assembly language programming and
gives an overview of programming the Apple IIGS using its Toolbox.

Chapter 2 discusses assemblers in general and then describes the Apple
HIIGS Programmer’s Workshop, a software development package offered by
Apple Computer. Chapter 2 also presents a simple program and tells how to
enter it into the computer, assemble it, and execute (run) it. It also describes
the Workshop’s Debugger, a utility that helps you track down errors in your
programs.

Chapter 3 describes the 65816 addressing modes you can use to access
the data on which your program is to operate.

Chapter 4 discusses the 65816’s instruction set, the assembly language
commands you can use to communicate with the IIGS. This book treats the
instructions in functional groups, rather than alphabetically. That is, I have
grouped add with subtract, load with store (the assembly language equiva-
lents of BASIC’s Peek and Poke, respectively), and so on. Through this
approach, you not only get to understand what the instructions do, but you
also appreciate how they fit together.

Chapter 5 covers macros. A macro is a miniprogram that you can insert
in a main program simply by mentioning its name. Macros can make
assembly language programs nearly as easy to develop as BASIC programs,
and the Programmer’s Workshop disk contains hundreds of them.

Chapter 6 surveys the Apple IIGS Toolbox and the tool sets within it.
There are tool sets that produce graphics, sound, windows, menus, and vir-
tually any other feature you might want to include in a program. Chapter 6
also includes a program model that contains the “boilerplate” programs
needed to communicate with the IIGS.

Chapter 7 shows you how to display graphics objects on the screen
using the built-in QuickDraw II tool set. With QuickDraw, you can easily
produce predefined shapes such as rectangles and circles, or objects of your
own design.

Chapter 8 tells how to deal with “events,” such as the user pressing a
key or the mouse button.

Chapter 9 discusses on-screen windows and the “controls” the user can
employ to operate on them. Chapter 10 covers menus that appear on the
screen to let the user select a course of action.

xx APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

The final two chapters are also concerned with user interactions.
Chapter 11 provides a brief introduction to buttons, check boxes, and other
controls provided by the Control Manager. Chapter 12 shows how to use
those controls along with other on-screen items to conduct a conversation or
dialog with the user.

The book provides four appendixes for your convenience. Appendix A
has tables that help you convert hexadecimal numbers to decimal, and vice
versa. Appendix B shows the text characters you can display on the screen.
Appendix C summarizes the 65816’s instruction set in alphabetical order,
and shows the legal form for each instruction, how long it takes to execute,
how many bytes it occupies in memory, and which status flag it affects.
Finally, Appendix D tells what’s required to use the tool sets; that is, how
they interact and how much working space in memory they need.

For Further Reference

The Apple IIGS is a powerful computer that can do virtually any program-
ming task you want, and I have attempted to describe its most important
programming features in the order people generally use them. However, as
you gain experience, you will probably want to know more about this fas-
cinating machine. The full details are available in a comprehensive set of
technical manuals. They are:

Technical Introduction to the Apple IIGS

Programmer’s Introduction to the Apple IIGS

Apple IIGS Hardware Reference

Apple IIGS Firmware Reference

Apple lIGS Toolbox Reference (Volumes 1 and 2)

Apple IIGS Programmer’s Workshop

Apple IIGS Programmer’s Workshop Assembler Reference
Apple IIGS ProDOS 16 Reference

Apple IIGS Human Interface Guidelines

These manuals are available from your Apple dealer or from the Apple Prog-
rammer’s and Developer’s Association (APDA): 290 SW 43rd Street,
Renton, WA 98055.

At the very least, you should have the Technical Introduction, the
Programmer’s Introduction and both volumes of the Toolbox Reference, to
help you proceed from where this book leaves off.

PREFACE xxi

I also recommend two other books in Bantam’s “Apple IIGS Library”
series. The first, The Apple IIGS Book by Jeanne DuPrau and Molly Tyson,
is an excellent general-purpose reference on all aspects of the IIGS. Written
by two Apple insiders, the book also contains the complete history of the
IIGS, including some interesting (and often humorous) anecdotes about the
people who designed it. For example, the authors reveal that “GS” stands
for . . . are you ready for this? . . . Gumby Software(!), after The Man of
Clay, the official mascot of the IIGS design team.

Danny Goodman’s The Apple IIGS Toolbox Revealed is another worth-
while addition to your library. Danny’s plain-English treatment of the
Toolbox and the tool sets within it is first-rate. I refer to it often and I'm sure
you will, too.

CHAPTER 0

About Computer Numbering

Unless you’re visiting from another planet (and if so, welcome!), you have
spent your entire life counting things using decimal numbers. Mathemati-
cians call decimal the base 10 numbering system because it has ten digits,
0 through 9.

Humans are comfortable counting in decimal (probably because we
have ten fingers and ten toes), but computers are not. Instead, they count
with the base 2, or binary, numbering system. The binary system has only
two digits, 0 and 1. Hence, to communicate with a computer at its own
level — as you do when you program in assembly language — you must be
familiar with binary numbering. Besides binary, assembly language prog-
rammers also use the base 16, or hexadecimal, numbering system, so you
must be familiar with it as well. The hexadecimal system has 16 digits, 0
through 9 and A through F.

This chapter is a “crash course” in computer numbering systems, for
readers who have had no previous exposure to them. That’s why I numbered
it Chapter 0. If you already understand binary and hexadecimal numbering,
feel free to skip directly to Chapter 1.

2 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Binary Numbering

A computer gets all program instructions and data from its memory.
Memory consists of integrated circuits (or ‘““chips™) that contain thousands
of electrical components. Like light switches and the power switch on your
computer, these components have only two possible settings: “on” and
“off.” Still, with only these two settings, combinations of memory compo-
nents can represent numbers of any size.

The on and off settings of a memory component correspond to the 1 and
0 digits of the base 2 or binary numbering system. The switch-like compo-
nents of memory are called “bits,” short for binary digits. By convention, a
bit that is on has the value 1, while a bit that is off has the value 0. This
appears woefully limiting until you consider that a decimal digit (no, it’s not
called a “det”) can only range from O to 9. Just as one can combine decimal
digits to form numbers larger than 9, one can also combine binary digits to
form numbers larger than 1.

As you know, to represent a decimal number larger than 9, you must
attach an additional “tens position™ digit; to represent a number larger than
99, you must attach a “hundreds position” digit, and so on. Each decimal
digit you add “weighs” 10 times as much as the digit to its immediate right.

For example, 324 can be represented as

(3 x 100) + (2 x 10) + (4 x 1)
or as
(3 x 10%) + (2 x 10Y) + (4 x 10%)

Thus, reading right to left, each decimal digit is a power of 10 greater than
the preceding digit.

The binary numbering system works the same way, except each binary
digit is a power of 2 greater than the preceding digit. That is, the rightmost
bit has a weight of 2° (decimal 1), the second bit has a weight of 2! (decimal
2), the third bit has a weight of 22 (decimal 4), and so on. For example, the
binary value 1001 has a value of decimal 9 because:

1001, = (1 x 2%) + (1 x2% = (1 x8) + (1x1)=g"

In short, to find the value of any given bit position, double the weight
of the preceding bit position. Thus, the weights of the first 8 bits are 1, 2,
4, 8, 16, 32, 64, and 128, as shown in Figure 0-1.

ABOUT COMPUTER NUMBERING 3

7 6 5 4 3 2 1 0 Bitposion

27 26 25 24 p3 22 o' 20 Ppowerof?
128 64 32 16 8 4 2 1 Decimal value

Figure 0-1

Converting Decimal Values to Binary

To convert a decimal value to binary, you make a series of simple sub-
tractions, where each subtraction produces the value of a single binary
digit (bit). To begin, subtract the largest possible power of 2 from the
decimal value and enter a 1 in the corresponding bit position. Then subtract
the next largest possible power of 2 from the result and enter a 1 in thar bit
position. Continue making subtractions until the result is zero. Enter a O in
any bit position whose weight cannot be subtracted from the current decimal
value.

For example, to convert decimal 52 to binary:

52
-32 bit position5 =1

-16 bit position4 =1

~4 bit position2 =1

Entering a 0 in the other bit positions (3, 1, and 0) yields the final binary
result of 110100.

To verify that decimal 52 is indeed binary 110100, add the decimal
weights of the “1” positions:

32 (bit 5)
16 (bit 4)
+ 4 (bit 2)

4 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Bytes

The Apple II series, Commodore 64, Tandy/Radio Shack TRS 80, and many
other popular microcomputers are designed around 8-bit microprocessors.
Eight-bit microprocessors are so named because they transfer data eight bits
at a time. To transfer more than eight bits, they must perform additional
operations.

In computer terminology, an 8-bit unit of information is called a byte.
With eight bits, a byte can represent decimal values from O (binary
00000000) to 255 (binary 11111111).

Because bytes are a convenient unit of data, microcomputers are usu-
ally described in terms of the number of bytes (rather than bits) their
memories can hold. Manufacturers typically organize memory in blocks of
1,024 bytes. This particular value reflects the binary orientation of com-
puters in that it represents 2'° bytes.

The value 1,024 has a standard abbreviation: the letter K. Hence a
computer that has a “512K memory” contains 512 X 1024 (or 524,288)
bytes.

Adding Binary Numbers

You can add binary numbers the same way you add decimal numbers: by
“carrying” any excess from one column to the next. For example, adding the
decimal digits 7 and 9 produces 6 in the “ones” column and an excess 1 that
you must carry into the “tens” column. Similarly, adding the binary digits 1
and 1 produces a 0 in the “ones” column and an excess 1 that you must carry
to the “twos” column.

Adding multibit binary numbers can be somewhat more complex,
because you must keep track of multiple carries. For example, this operation
involves two carries:

1011
+ 11
1110

Adding the rightmost column (1 + 1) produces a result of 0 and a carry of 1
into the second column. With the carry, adding the second column
(14 1+ 1) produces a result of 1 and a carry of 1 into the third column. Table
0-1 summarizes the general rules for binary addition.

ABOUT COMPUTER NUMBERING 5

Table 0-1
Inputs Results
Operand #1 Operand #2 Carry Sum Carry
0 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
0 0 1 1 0
0 0 1 0 1
i 0 1 0 1
1 1 1 1 1
Signed Numbers

Until now, I have concentrated on unsigned binary numbers, in which each
bit has a weight that reflects its position. However, sometimes you want to
operate on positive or negative values; that is, on signed numbers.

When a byte contains a signed number, only the seven low-order bits
(0 through 6) represent data; the high-order bit (7) specifies the sign of
the number. The sign bit is O if the number is positive or zero, and 1 if
it is negative. Figure 0-2 shows the arrangement of unsigned and signed
bytes.

A byte that holds a signed number can represent positive values
between O (binary 00000000) and + 127 (01111111) and negative values
between —1 (11111111) and — 128 (10000000). Clearly, the way negative
numbers are represented needs an explanation.

Note that — 1 in binary is 11111111. Wouldn’t it be simpler to make it
just 10000001 (that is, 1 with a minus sign bit)? It might be simpler, but it
would also produce wrong answers. For example, consider what would
happen if you were to add + 1 and — 1. The answer should, of course, be
0, but instead you would get:

00000001 = +1
10000001 = -1
10000010 = +2(!)

Thus, what we need is some way to represent — 1 so that adding + 1 and — 1
produces 0. Indeed, that’s how mathematicians arrived at 11111111 to repre-
sent — 1: it produced the right answer. Now the preceding addition becomes:

6 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Unsigned Number

All bits represent data

7 6 5 4 3 2 1 0
0 Positive Signed Number
~ g
L lowseven bits represent data
Sign Bit=0
7 6 5 4 3 2 1 0
1 Negative Signed Number
v Low seven bits represent data,
in two's-complement form
Sign Bit = 1
Figure 0-2

00000001 = +1
11111111 = —1
1 00000000 = -0

The extra 1 bit at the front is a carry that’s been left over from the addi-
tion. Since we are operating on 8-bit numbers, we simply ignore this ninth
bit.

Two’s-Complement

Like — 1, all negative signed numbers are represented in a special form that
makes additions and subtractions produce the right answers. This is called
the two’s-complement form.

To find the binary representation of a negative number (that is, to find
its two’s-complement), simply take the positive form of the number and
reverse each bit — change each 1to a 0 and each O toa 1 — then add 1 to
the result. The following example shows how to calculate the binary
representation of —32 in two’s-complement form:

ABOUT COMPUTER NUMBERING 7

00100000 +32

11011111 Reverse everybit
+ 1 Add 1l
11100000 +32in two's complement form

Of course, the two’s-complement convention makes negative numbers
difficult to decipher. Fortunately, you can use the procedure I just gave to
find the positive form of a (two’s-complemented) negative number. For
example, to find what value 11010000 has, proceed as follows:

00101111 Reverse everybit
+ 1 Add 1l

00110000 = 16 + 32 = +48

You’ll be happy to hear that you don’t normally have to conduct this
kind of exercise too often, because the assembler lets you enter numbers in
decimal form (signed or unsigned) and does all the converting automatically.
However, sometimes you may want to interpret a negative number that is
stored in a register or memory, so you should know how to make these con-
versions manually.

Hexadecimal Nombering

Although computers process only binary values, working with strings of
nothing but ones and zeroes can be maddening for humans. It’s also easy to
induce errors with them, because it’s extremely easy to mistype something
like 10110101. A single misplaced 1 or O can ruin all your calculations.

Years ago, programmers found that they were generally operating on
groups of bits rather than individual bits. The first microprocessors were 4-
bit devices (they processed data four bits at a time), so the reasonable alter-
native to binary was a system that numbered bits in groups of four.

As you now know, four bits can represent the binary values 0000 through
1111 — decimal O through 15 — a total of 16 possible combinations. If a
numbering system is to represent 16 combinations, it must have 16 different
digits. That is, it must be a base /6 numbering system.

If base 2 numbers are called “binary” and base 10 numbers are called
“decimal,” what term is appropriate for the base 16 system? Well, whoever

8 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Table 0-2
Hexadecimal Binary Decimal Hexadecimal Binary Decimal
Digit Value Value Digit Value Value
0 0000 0 8 1000 8
1 0001 1 9 1001 9
2 0010 2 A 1010 10
3 0011 3 B 1011 11
4 0100 4 C 1100 12
5 0101 5 D 1101 13
6 0110 6 E 1110 14
7 0111 7 F 1111 15

named the base 16 system combined the Greek word hex (for six) with the
Latin word decem (for ten) to form the word hexadecimal. Hence the base
16 system is called the hexadecimal numbering system.

Of the 16 digits in the hexadecimal numbering system, the first ten are
labeled O through 9 (as in the decimal system), while the last six are labeled
A through F (decimal 10 through 15). Table 0-2 lists the binary and decimal
values for each hexadecimal digit.

Like binary and decimal digits, each hexadecimal digit has a weight
that is some multiple of its base. Since the hexadecimal system is based on
16, each digit weighs 16 times more than the digit to its immediate right.
That is, the rightmost digit has a weight of 16°, the next has a weight of 16',
and so on. For example, the hexadecimal value 3AF has the decimal value
943 because

(3 x 16%) + (A x 16%) + (F x 16°)
(3 x 256) + (10 x 16) + (15 x 1) = 943

While BASIC and other high-level languages usually display numbers
in decimal form, the utilities that programmers use to develop assembly lan-
guage programs generally display numbers in hexadecimal form. This
includes memory addresses, instruction codes, and data. Therefore, to get
maximum benefit from your programming, try to “think hexadecimal.” This
is difficult at first, but it will become easier as you gain experience. To help
you along, Appendix A provides a table for converting between decimal and
hexadecimal.

CHAPTER 1

Introduction to
Assembly Language

What is Assembly Language?

Like BASIC, assembly language is a set of commands that tell the computer
what to do. However, the commands in the assembly language instruction
set refer to computer components directly. It’s like the difference between
telling someone to walk down to the corner and telling them precisely how
to move their muscles and maneuver past obstacles. Obviously, a simple
command is sufficient most of the time; only athletes and mountain climbers
need the more detailed instructions.

Assembly language programs give the computer detailed commands,
such as “load 32 into the X register,” “copy the contents of the A register
into the Y register,” and “store the number in the Y register into memory
location 300.” As you see, BASIC and assembly language differ in how you
instruct the computer. With BASIC, you speak in generalities; with
assembly language, you speak in specifics.

Although assembly language programs take more time and effort to
write than BASIC programs, they also run much faster. The level of detail

10 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

is the key here. The idea is the same as an athlete who runs faster or jumps
further by watching every step of what he or she does. Precise form is essen-
tial to achieving maximum performance.

Because assembly language requires you to make direct use of the com-
puter’s internal components, you must understand the features and
capabilities of the integrated circuit (or “chip”) that contains these compo-
nents, the computer’s microprocessor. The microprocessor inside the Apple
IIGS is a Western Design Center 65C816. (The “C” stands for CMOS, short
for Complimentary Metal-Oxide Semiconductor. CMOS is the process used
to manufacture the chip.) In this book, I'll call it the 65816 — or sometimes
just 816 — simply because it’s easier to read.

Overview of the 65816 Microprocessor

The 65816 is a 16-bit version of the 8-bit 6502, the microprocessor inside
the Apple II series and many other personal computers. However, I don’t
mean to imply that size is the only difference between the two microproces-
sors. That would be like saying a Cadillac is an 8-cylinder version of a Volks-
wagen. The 65816 has quite a few powerful features that the 6502 does not
have, and I will note them when necessary.

Data and Address Buses

The 65816 always transfers information to or from memory and I/O devices
8 bits at a time, on its 8-line data bus. (Normally, a processor that has
an 8-bit data bus would be classified as an 8-bit device. The 65816 is
called a 16-bit microprocessor because all its internal circuitry is 16 bits
wide.)

Note that I say “memory and I/0 devices”. Like the 6502, the 65816
does not distinguish between memory and I/O — it treats all external
devices the same. Hence, it has no special input or output instructions; it has
only “load” and “store” instructions, and you use them to transfer data to any
external device, regardless of whether it is memory or a peripheral. Like
each memory location, each peripheral device has a unique address; the
address determines where the 816 sends the data or obtains it.

The 65816 transmits addresses to external devices over 24 lines that are
collectively called the address bus. Being 24 bits wide, the address bus
allows the 816 to access up to 16,777,216 bytes, or 16 megabytes (abbre-
viated 16M) — the same range as an IBM System/370! Contrast this with

INTRODUCTION TO ASSEMBLY LANGUAGE 11

the 6502, which can address only 64K bytes directly. (Old-timers may recall
when 64K was considered a lot of memory!)

Memory Organization

Because the 65816 must be able to work with so much more memory than
the 6502 (16M bytes versus 64K bytes), accessing the 65816’s memory is
slightly more complex.

In the 6502, memory is divided into 256-byte pages. Since the 6502
can address up to 64K directly, there are 256 pages in all. Page 0 occupies
addresses 0 to 255, page 1 occupies addresses 256 to 511, and so on. (The
6502 treats the lowest page in memory — page 0 or the zero page — dif-
ferently from other pages. The 65816 has an equivalent, special purpose
page, called the direct page, in low memory. I'll discuss it later.)

If you have a recent Apple //e, you may be thinking, “Scanlon doesn’t
know what he’s talking about. My //e has a 6502, yet it has a 128K mem-
ory.” Ah, but reread the preceding paragraph, where I state . . . the 6502
can address up to 64K bytes directly”. Apple’s engineers gave the //e the
ability to access 128K bytes by installing circuits that switch between two
64K banks of memory. Bank 0 is the lower 64K locations, while bank 1 is
the upper 64K. Only one bank can be active at any given time, so my state-
ment about the 6502 addressing only 64K still stands.

The 65816 uses the same page-and-bank scheme as the 6502, except it
has bank-switching circuitry built in. Specifically, it has two bank selection
registers, where one selects the bank that contains program instructions and
the other selects the bank that contains data. With its 16-megabyte address-
ing range, the 816 can address up to 256 banks. (It’s no coincidence that
both pages and banks involve the number 256. As I mentioned in Chapter 0,
the value 256 and other multiples of 2 reflect the binary nature of com-
puters.) Just because the computer can address this much memory doesn’t
mean that it’s all actually available. For example, the standard 256K model
of the Apple IIGS has only four banks of read/write memory.

Software Features

The 65816 provides 91 types of assembly language instructions, 35 more
than the 6502. It also provides 24 addressing modes, 11 more than the 6502.
(An addressing mode is a technique the microprocessor uses to obtain a
number it is to add, subtract, or whatever.)

How fast does an instruction execute? That depends on which instruc-
tion you’re referring to, which addressing mode you’re using, and how fast

12 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

the microprocessor is operating. Like electronic watches, microprocessors
are regulated by quartz crystals. The crystal emits pulses at a fixed rate,
which determines how fast the microprocessor operates. In the Apple IIGS,
the crystal emits either 1.0 million or 2.5 million pulses per second,
depending on which operating speed is active in the Control Panel.

Computerists don’t refer to pulses per second, however, but to cycles
per second or, more often, Hertz. Pulses per second, cycles per second, and
Hertz all mean the same thing, but in this book I use the term Hertz or its
abbreviation, Hz. Hence, one can say that the clock in the IIGS normally
runs at 2.5 million hertz, or 2.5 MHz (short for megahertz). At 2.5 MHz,
the 816’s clock “ticks” every 400 nanoseconds, where a nanosecond (abbre-
viated ns) is one-billionth of a second, or 10 seconds. At 1.0 MHz, the
clock “ticks” every 1,000 nanoseconds; 1,000 nanoseconds, which is one
millionth of a second or 10°® seconds, is called one microsecond (s).

The fastest instructions — for example, those that increment a
register — execute in 2 cycles, or 800 ns at 2.5 MHz. The slowest instruc-
tions — for example, ones that call a subroutine — take 8 cycles, or 3,200
ns at 2.5 MHz. (Note that even the “slow” instructions execute in the
remarkable time of 0.0000032 seconds!) Most instructions require between
3 and 6 cycles to execute.

Interrupts

The microprocessor in a computer (an Apple or any other) does not simply
run programs. As the chief regulator of the system, it gets involved in one
way or another with everything that happens. For instance, when someone
presses a key at the keyboard, the processor must find out which key was
pressed and do whatever is appropriate for that particular key. Similarly,
when a disk drive is transferring data to or from the computer’s memory, the
processor is responsible for carrying out the instructions that make that
transfer happen. As I just said, the microprocessor has a role in everything
the computer does. :

Well, how does a microprocessor get involved with a peripheral
device? It doesn’t have ESP, so it can’t know which device needs attention.
Then again, it shouldn’t sit there asking or “polling” each peripheral whether
it needs something. If the processor polled peripherals all day, it wouldn’t
be able to do anything else — it would have no time to run programs. This
would be like having a telephone with no bell. You would have to pick up
the receiver every so often just to find out whether anyone was on the line!

In fact, microprocessors and peripherals communicate in a very efficient

INTRODUCTION TO ASSEMBLY LANGUAGE 13

fashion. The microprocessor continues to run a program (say, DOS or BASIC
or a word processor) until the keyboard, display unit, or some other peri-
pheral says, “Excuse me, micro, but I need your help in getting something
done. Would you please stop what you’re doing long enough to help?” Of
course, peripherals don’t actually talk to the microprocessor; they send a
special “help me” signal called an interrupt request.

Interrupts operate differently between various microprocessors, but in
the 65816 (and 6502 and 65C02), here is what happens. When a peripheral
device needs servicing, it activates an interrupt request line that is connected
to the 816. There is only one interrupt request line; all devices in the system
share it.

So, in essence, here is a device ringing the processor’s doorbell. Some-
times the processor is doing something so important that it can’t stop to
respond to the request. In that case, the 816 simply says, “Let the bell ring.
I'll answer when I can.”

Otherwise, if the processor is doing a job that can wait until later, it
makes some notes about the job (so it knows where to resume later), then
reads a new program address from a special interrupt vector in memory and
starts executing that program. The program determines which device is
making the request, then transfers to the routine for that particular device.
When the 816 finishes servicing the peripheral, it uses the notes it made ear-
lier to get back to the original job.

Operating Modes

The 65816 is actually two microprocessors in one, insofar as it can operate
in two different modes, called native and emulation. In the normal operating
mode, native, the 816 can process data either 8 or 16 bits at a time. In emu-
lation mode, it acts like a 6502, and can only process 8-bit data. When you
switch the Apple IIGS on, the 65816 starts in native mode; it stays in this
mode until a program explicitly switches it to emulation mode.

Internal Registers

Figure 1-1 shows the 65816’s internal registers and, because it can operate
in emulation mode, the 6502’s registers. Note that the 6502’s data registers
(A, X, and Y) and status register (P) are 8 bits long, whereas its address
registers (S and PC) are 16 bits long. This is typical for an 8-bit micropro-
cessor; it has an 8-bit data bus and a 16-bit address bus. (Incidentally, the

14 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

shaded “01” that represents the high-order byte of the stack pointer is a
hexadecimal value. It indicates that the 6502’s stack is always located in
page 1 of memory. More about stacks later.)

As you can see, the 65816 microprocessor provides all the 6502 data
registers (as the low bytes of its own data registers) and address registers (as
the low 16-bit words of its own address registers), but extends data registers
to 16 bits and address registers to 24 bits.

Lest you be mistaken, I must emphasize that the 65816 contains only
one set of registers: those shown in the right-hand column of Figure 1-1.
When emulating a 6502, however, the 816 uses those registers as a 6502
would. It interprets any program reference to the A or X register as meaning
AL or XL, limits the stack pointer to 16 bits (and puts hex 01 in the upper

6502 Registers 65816 Registers
(Emulation Mode) (Native Mode)
7 0 15 87 0
Accumulator AH or {36‘ ?r CA[_ orA
X Index Register | X XH X x
Y Index Register | Y YH Y v
23 16

Data Bank Register

15 87 0
Stack Pointer S SH IS SL
Direct Register DH '13 DL
Program PC PC
Counter PCH : PCL PBR PCH "v PCL
PBR = Program Bank Register
Status Register P P

|
|
[
|
|
l
[
!
|
|
l
I
!
l
|
|
|
|
l
|
|
|
|
I
|
|
|
|
[
[

Figure 1-1

INTRODUCTION TO ASSEMBLY LANGUAGE 15

byte), and so on. In emulation mode, then, the 816 acts like an adult
speaking to a child. It uses only the vocabulary the child can understand,
which is something less than the full vocabulary the adult knows.

The following sections describe only the 65816’s regular registers, the
ones it uses when operating in native mode. To learn about the 6502 regis-
ters, which are active in emulation mode, buy one of the many 6502
assembly language books on the market.

General-Purpose Registers

You can treat these registers as either three 16-bit registers or six 8-bit regis-
ters, depending on whether you’re operating on 16-bit words or 8-bit bytes.
The 16-bit registers are named A, X, and Y. The 8-bit registers within them
are named AH, AL, XH, XL, YH, and YL. In each case, “H” and “L” indi-
cate the high-order and low-order bytes of the 16-bit registers.

A, the accumulator, isthe main register for performing arithmetic and
logical operations; it holds one operand and the result of most of these oper-
ations. X and Y serve primarily as index registers to calculate a memory
address. However, the 816 also provides instructions that increment and
decrement X and Y, which make them useful as counters.

Data Bank Register

The 8-bit data bank register (DBR) provides the bank number in addressing
modes that otherwise generate only the lower 16 bits of an address. There,
DBR acts as an 8-bit “extension” of the X or Y register that effectively
makes X or Y 24 bits long. When you switch the Apple IIGS on, the 65816
initializes DBR to zero, thereby selecting bank O.

Stack Pointer

As with most other microprocessors, the 65816’s memory contains a special
data structure called a stack that serves as a temporary holding area for data
and addresses. When you execute, or “call,” a subroutine, the 816 uses the
stack to hold the return address — a place marker that eventually brings the
processor back to its original spot in the program. You can also use the stack
to preserve the contents of registers that a subroutine alters.

The 65816 enters data onto the stack and extracts data from it the same
way you (or, with any luck, your children) stack dishes in your kitchen; that
is, the last item to be placed on the stack is also the first item to be removed
from it. Computerists usually refer to this type of stack as “last in, first out”

16 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

(or LIFO). As data items are pushed onto the stack, they are stored in
memory at ever-lower addresses; the stack “builds” toward address 0.

The stack pointer (S) is a 16-bit register that points to the next available
location on the stack; it is the stack’s maitre d’. The 65816 decrements S by
1 as each new byte is pushed onto the stack and increments it by 1 whenever
a byte is pulled off the stack.

As the shaded “00” in Figure 1-1 indicates, the stack is always in bank
0. Note, however, that while the 6502’s stack must be in page 1, the 65816’s
stack can be in any page. In general, though, you shouldn’t worry about
where the stack is located, what the stack pointer contains, or what’s on the
stack (unless you specifically stored something there). The computer’s
software handles all stack operations, so unless you do something awful —
such as push two items on the stack but extract only one — you should have
no problems.

Direct Register *

Recall under “Memory Organization” that I mentioned a special-purpose
direct page in bank 0. The 24-bit direct register (D) determines which block
of 256 bytes is to be used as the direct page. When you switch the Apple
IIGS on, the 65816 initializes the direct register to 0.

Program Counter

The 65816 executes (runs) programs by obtaining instructions from memory,
one at a time. The program counter (PC) determines which memory loca-
tion the 816 will access next. The 816 increments the PC automatically after
each memory access so that it points to the next consecutive location. Because
the program counter is 16 bits wide, it can access any location in the active
64K bank. A separate program bank register (PBR) specifies the bank.

Like the stack pointer, the program counter is a register that the micro-
processor uses to keep track of addresses (in this case, the addresses of
instructions), and you shouldn’t be concerned with it unless you’re trouble-
shooting or “debugging” a program.

Program Bank Register

The 8-bit program bank register (PBR) provides the bank number for the
instruction that the 816 is to execute next. Thus, it “extends” the program
counter to 24 bits. When you switch the Apple IIGS on, the 65816 initializes
PBR to zero, thereby selecting bank 0.

INTRODUCTION TO ASSEMBLY LANGUAGE 17

Processor Status Register

The 8-bit processor status (P) register contains one-bit indicators. Some of
these bits are status flags that reflect the result of a previous instruction (gen-
erally, the preceding instruction), others are mode control bits that determine
how the 65816 operates. The P register can take either of two forms,
depending on whether the 816 is operating in emulation mode (Figure 1-2)
or native mode (Figure 1-3).

In native mode, the P register bits do the following:

Bit 0 — The carry (C) flag is 1 if an addition produces a carry or a
subtraction produces a borrow; otherwise, C is 0. C also holds

army
= 0 Carry did not occur
=1 Carry occurred

Zero
= 0 Result not zero
=1 Result zero

IRQ Disable
=0 IRQ enabled
=1 |RQ disabled

Decimal Mode
=0 Binary Mode
=1 Decimal Mode

Break
= 0 Interrupt was not a Break
=1 Interrupt was a Break

Overflow
= 0 Overflow did not occur
= 1 Overflow occurred

Negative
= 0 Result was not negative
= 1 Result was negative

Figure 1-2

18 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Lec
=0 Carry did not occur
=1 Carry occurred

Zero
=0 Result not zero
=1 Result zero

IRQ Disable
=0IRQ enabled
=1 IRQ disabled

Decimal Mode
=0 Binary Mode
= 1 Decimal Mode

Index Register Select
= 0 Index registers are 16 bits
=1 Index registers are 8 bits

Memory/Accumulator Select
= 0 Memory/Accumulator
references are 16 bits

= 1 Memory/Accumulator
references are 8 bits

Overflow
= 0 Overflow did not occur
= 1 Overflow occurred

Negative
= 0 Result was not negative
= 1 Result was negative

Figure 1-3

the value of a bit that has been shifted or rotated out of a
register or memory location, and reflects the result of a com-
pare operation.

Bit 1 — The zero (Z) flag is 1 if the result of an operation is zero; a
nonzero result clears Z to 0.

INTRODUCTION TO ASSEMBLY LANGUAGE 19

Bit 2 — The IRQ disable (1) flag allows the 65816 to recognize inter-
rupts from external devices in the system. Setting I to 1 makes
the 816 ignore interrupt requests until I becomes 0.

Bit 3 — The decimal mode (D) flag controls whether the 65816 is
operating on binary numbers (0) or decimal numbers (1). In
the decimal mode, the 816 treats arithmetic operands as
binary-coded decimal (BCD) digits “packed” two per byte.

Bit 4 — The index register select bit (X) specifies whether X and Y
are to be treated as 16-bit registers (0) or 8-bit registers (1).
Switching the X bit from O to 1, or vice versa, leaves XL and
YL unchanged, but clears XH and YH to 0.

Bit 5§ — The memory/accumulator select bit (M) specifies whether
operands in memory or the accumulator are 16-bit values (0)
or 8-bit values (1). Switching M from O to 1, or vice versa,
has no effect on AH (B) or AL (A).

Bit 6 — The overflow (V) flag is an error indicator for operations on
signed numbers. V is 1 if adding two like-signed numbers or
subtracting two opposite-signed numbers produces a result
that the operand can’t hold; otherwise, V is 0.

Bit 7 — The negative (N) flag is meaningful only for operations on
signed numbers. N is 1 if an arithmetic, logical, shift, or
rotate operation produces a negative result; otherwise, N is 0.
In other words, N reflects the most-significant bit of the result,
regardless of whether it is 8 or 16 bits long.

Unless you are an experienced programmer or a daring one, I suggest
you always leave the M and X bits set to 0. Setting either or both to 1 some-
times produces unexpected results.

The processor status bits are the same in emulation mode, except bit 4 is
a break command flag and bit 5 is unused; it’s always 1. The break command
(B) flag indicates whether an interrupt request to the processor was generated
by a BRK instruction (1) or by an externally-generated interrupt (0).

Inside the Apple IIGS

Although you must understand the internal architecture of the 65816 to be an
effective assembly language programmer, you needn’t know much about the

20 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

hardware within the Apple IIGS. Still, a general understanding of the
hardware can’t hurt. In fact, you will probably feel more comfortable pro-
gramming the IIGS if you know what goes on inside it.

Figure 1-4 shows an engineering-style block diagram of the major
hardware components in the Apple IIGS. Note that the diagram is divided
into a “slow” and “fast” side. On the slow side are components that can only
run at 1.0 MHz, the standard Apple II operating speed. The fast side has the
components that can run at 2.5 MHz, the speed at which the 1IGS operates
in native mode.

Fast (2.5-MHz) Components

The “fast” side of the block diagram includes the 65816 microprocessor, a
fast processor interface (FPI) chip, a 128K block of read-only memory
(ROM), two 64K banks of RAM, and a connector for expanding RAM
beyond its standard 256K bytes.

The FPI chip regulates the computer’s operating speed. It sends out a
2.5-MHz clock signal when the IIGS is running in native mode and a 1-MHz
clock when the IIGS is running in emulation mode. The FPI also syn-
chronizes the processor running at 2.5 MHz with circuits on the “slow” side
running at | MHz.

The 128K ROM holds all of the computer’s built-in programs, or
Jfirmware. ROM is non-volatile; its contents stay intact even when the power
is off. ROM includes, of course, the program that puts the IIGS into some
predefined initial state (native mode, registers set to zero, and so on) when
you switch it on. But ROM also includes many more “goodies” that I
describe later.

The two banks of RAM are, in fact, the banks that regular Apple II pro-
grams use. Since Apple IIs are 1-MHz computers, why is their memory on
the tast (2.5-MHz) side? The answer to that question is somewhat involved,
so I’ll postpone discussing it until later.

Slow (1-MHz) Components

As you can see from the block diagram see Figure 1-4, the slow side
includes the computer’s built-in sound circuitry, the second 128K of stan-
dard RAM, plus all the components necessary for the IIGS to communicate
with peripheral devices. A major component here is a chip called Mega I1.
Mega II contains all the circuitry necessary to produce the display
modes needed by programs for earlier Apple IIs (low-resolution, high-resol-
ution, and so on). Because this is no easy task, Mega I is virtually packed

21

INTRODUCTION TO ASSEMBLY LANGUAGE

oer 1od
olpny MV Lod sng uod uod Jaluugd
duwy dopise@ ¥SIg WoPOW [euss i
Joreads _uu.l opny _ Siev | Wod [
T ﬁv _ BUES ez [
| 3 [£oa
10¥e19sO z o> _ 3. m
renbig < 538 [g
I g SE® [I
Wvd 3 S® <5 s90| | ey ZAN ST
A9 S & 33 23g| | 282 z-0q | 4"
4 =9 s3=| [Wwd [Wwd 88 - 91859
o - & @5 Il e | e | L0V (T8 L0V
o o LPUNoS I Sa 8 | GL-8Y
g3 ¢ no 3 S _ /'y
3932 prEcqAa)| % !
83¢ T 1 | /-0a
.m < * — /-0a hd »r |||||||||||||| rIJ
295 Q OSIN ZHNBZ | & I
<] m ol goY —] ZHW bL "
3! _
[o]
&S Avd | Wwvd 11 !
HOd Jojuopy onig a et
10|00 oY Geemm 101 8 A9 | 9 [7-ov | EOOW !
=y _ h T o opISIsed
L 3 < apIS MOIS
£-0Q On
sieuts eurEn
Buiu 10/S F
uod
Zod D auen
-0V
S1-8v

sjojg uoisuedx3

Figure 1-4

22 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

with components. In all, it contains the equivalent of about 3000 transistors
and a 2K ROM that holds display characters. Mega Il is, in fact, close to
being an Apple II on a chip! Besides its display functions, Mega II also
interacts with external devices plugged into the computer’s expansion slots
and rear-panel connectors (or ports).

The video generator chip (VGC) does the actual interfacing with
attached display monitors. Its output lines are converted to red, blue, and
green signals for RGB monitors and are combined into a single signal for
monochrome and composite video monitors, such as home television sets.

The serial communications controller (SCC), integrated Woz machine
(IWM), and Apple desktop bus microcontroller (ADBM) service the serial,
disk, and desktop bus ports on the computer’s rear panel. Both the disk and
desktop port can handle a number of peripherals that are “chained” together.
For example, the IIGS keyboard connects directly to the desktop bus port
and the mouse is chained to it.

System Memory

As I mentioned earlier, the 65816 can address 16 megabytes of memory.
Figure 1-5 shows how the Apple IIGS uses this space.

Bank
Numbers
Fast RAM Slow Ram ROM
A— A
"$00 $01 $02-$3F © $E0 SE $FO-SFD S$FE $FF
______ - il ol
| l
| |
I |
: 128K I
128K RAM | Systern, |ROM 128K
Apple If Expansion 1O, and | Expansion ROM
RAM Area |Area ! Display |Area
| Memory :
|] |
n |
| {
______ J | S,

I—-L Memory shadowing 1

Figure 1-5

INTRODUCTION TO ASSEMBLY LANGUAGE 23

Read/Write Memory

The base model IIGS comes with 256K bytes of read/write memory, or
RAM, consisting of four 64K banks: $00, $01, $EO, and $E1. (RAM, short
for random access memory, is really a misnomer, since disk storage is also
random access. It might just as well be called RWM, but it’s too late to
change the industry now.) Apple II programs use the first 128K. The system
uses some of the second 128K for working storage, /O (remember, the
65816 treats external devices just like ordinary memory), and the display.
I’ll discuss that second 128K, banks $EO0 and $E1, shortly. Programs written
for the Apple IIGS — that is, those that run in the 65816’s native mode —
can use about 176K of the 256K bytes available.

Banks $02 through $3F provide memory space for a RAM expansion
card that can be plugged into the IIGS motherboard. In all, the 62 banks
numbered $02 through $3F provide addressing space for an additional 3.875
additional megabytes of RAM, bringing the total RAM capacity to 4.125
megabytes. All of the expansion RAM is available to application programs;
the system doesn’t use it.

Memory Shadowing

Note that in Figure 1-5, banks $EO and $E1 are labeled slow RAM, while the
rest is fast RAM. Slow RAM operates at the Apple II's normal speed, 1
MHz, while fast RAM operates at the IIGS’s normal speed, 2.5 MHz.

You’re probably wondering how Apple II programs can run in banks
$00 and $01, which is fast, 2.5 MHz RAM. The designers took care of this
problem by using a technique called memory shadowing. When a program
writes something into bank $00 or $01, the IIGS writes the same thing into
the corresponding location in bank $EO or $E1. Because the memory in $EO
and $E1 is synchronized to the video hardware, the instruction must execute
at the slow speed. However, that only applies to write operations; the 65816
always reads from the affected areas of banks $00 and $01 at the faster
speed.

To summarize, the trick is: only fast memory is read; both fast and slow
memory are written. A write must be constrained to the 1-MHz speed
because the operation isn’t done until the slower component has been accessed.

Banks $E0 and $EI

Figure 1-6 shows a memory map of banks $EO and $E1. Starting at the top
of the figure, the reserved 1K is a working storage area for various IIGS

24 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

system software. There is another working storage area at address $0C00.
Starting at address $0400 are the buffers that hold screen data for text and
low-resolution graphics. The regular and double high-resolution buffers start
at $2000. Note that when super hi-res is active, the buffer extends from loca-
tion $2000 to location $9FFF; that’s 32K total. The last 8K of the free space
is the memory that the Memory Manager manages. Finally, you encounter
the /O, banks 0 and 1, and language-cards areas.

Bank EO Bank E1
— $0000 —
1K reserved 1K reserved
— $0400 —
Text Page 1 Text Page 1
— $0800 —
Text Page 2 ; Text Page 2
— $0C00 —
5K reserved 5K reserved
— $2000 —
Double Hi-Res Page 1 Double Hi-Res Page 1
($2000-$3FFF) ($2000-$3FFF)
— $4000 — - ——————— —— —— -
Double Hi-Res Page 2 Double Hi-Res Page 2
($4000-$5FFF) ($4000-$5FFF)
—$600 —}—————————— ——
Super Hi-Res
24K free space ($2000-§9FFF)
— $A000 —
8K free space
— $C000 —
f[@] lle}
Bank 0 Bark1 | P00 Eako Bank 1
(4K (4K (4K (4K
reserved) | reserved) — $E000— reserved) | reserved)
Main Language Card Aux Language Card
(8K reserved) (8K reserved)
— $FFFF —

Figure 1-6

INTRODUCTION TO ASSEMBLY LANGUAGE 25

ROM
The ROM in banks $FE and $FF contains the following firmware:

—_—

Monitor

Control Panel menu

Mouse support

Appletalk

Support for modem and printer serial ports
Disk support

Front Desk Bus (FDB) support

Diagnostics

R R I N

Desk Accessory Manager support

__
e

Tools

Programming the Apple IIGS

Like all microcomputers, the Apple IIGS has an internal operating system
stored in read-only memory. This internal operating system, called the
Monitor, holds the program that starts the computer when you switch the
power on. It also holds programs that communicate with the keyboard, dis-
play information on the screen, and transfer data to the printer and whatever
else is attached to your computer. The Monitor does these jobs by running
miniprograms called subroutines contained in the ROM. There are many
useful subroutines within the Monitor and, if you wish, you can use them to
do common programming chores such as displaying a message on the screen
or reading what the operator types at the keyboard.

In other Apple Ils, the Monitor subroutines are the only built-in aids
available to the programmer. While the subroutines provide shortcuts for
simple chores, they fall short in several areas. For example, the Monitor has
no subroutines that multiply or divide numbers (functions that the 6502 and
65816 microprocessor instruction sets don’t do), nor does it have sub-
routines that produce high-resolution graphics. The Monitor doesn’t include
these kinds of operations because they aren’t needed to make the computer
operate — and, after all, that’s the Monitor’s sole purpose of existence.

26 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Thus, if you want to multiply, divide, or display graphics on an Apple II,
I+, /le, or //c, you must either find some software that will do the job for
you or (gasp!) create the software yourself.

Fortunately, as an Apple IIGS programmer, you need not rely on the
Monitor subroutines to help you do things. In fact, you may never use the
Monitor, because the IIGS includes a large Toolbox that includes powerful
programming aids called tool sets. Some of these tool sets are built into
ROM, while others are fetched from the Apple IIGS System Disk. Each tool
set is responsible for a particular variety of tasks. One set displays graphics,
another handles sound generation, still another handles communication with
the keyboard and mouse, and so on.

Just as a plumber’s toolbox contains tools for working with pipes, and
an electrician’s toolbox has tools for working with wires, sockets, and fuses,
each Apple IIGS tool set contains tools that relate to its specific area of
responsibility. For example, the graphics tool set (called QuickDraw II) has
tools that draw shapes on the screen, fill in areas with a specified color, and
SO on.

Quite simply, there is a tool for virtually every programming task one
might want to do. In light of that, your assembly language programs will
look quite different from programs people wrote for other Apple IIs. Instead
of dozens (or hundreds or thousands) of assembly language instructions and
calls to the Monitor, your programs will consist primarily of tool “calls,”
with just a sprinkling of assembly language instructions here and there.

Because the tools do most of the work, your programs will be much
shorter, “cleaner,” and easier to understand than equivalent programs
written for other Apple IIs. They’ll also take you less time to develop.

I’ll discuss using tools later in the book, but in the next few chapters,
I'll introduce the mechanics of developing assembly language programs and
describe the 65816’s instruction set. Read this material casually to get an
overall understanding of it, but don’t try to memorize every detail. In later
chapters, where I describe actual programs, you will see how the micropro-
cessor instructions and instructions to the assembler (or directives) fit in. In
writing your own programs, you can always come back to these earlier chap-
ters to look up specific details of an instruction or directive.

CHAPTER 2

Using an Assembler

Assembly language offers the best of two worlds. That is, it lets you write
programs at the level the microprocessor understands, which helps ensure
that they will be both fast and efficient. Yet assembly language doesn’t force
you to memorize a lot of numeric codes. Instead, you enter instructions as
English-like abbreviations, then run an assembler program to convert the
abbreviations to their numeric equivalents.

The program comprised of abbreviations is called the source program,
while the numeric, microprocessor-compatible form of it is the object pro-
gram. Thus, the assembler’s job is to convert source programs you can
understand into object programs the microprocessor can understand. It does
much the same thing a compiler does in a high-level language such as
BASIC, C, or Pascal.

There are several assembler software packages available for.the Apple
IIGS, but this book describes just one: Apple Computer’s Apple IIGS Prog-
rammer’s Workshop (or APW for short). The assembler within the APW is
actually an enhanced version of the popular ORCA/M assembler from The
Byte Works, Inc., so ORCA programmers will feel quite comfortable with
it. In any case, the features the APW provides should be similar to those of
any other IIGS-compatible assembler you might have, because they all deal
with the same computer.

28 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

The Programmer’s Workshop manual provides complete details, so I
won’t attempt to describe everything. Instead, I'll concentrate on the fea-
tures you will probably use most often, and provide some summary tables
for quick reference.

Developing an Assembly Language Program

Although assembly language programs look quite different from BASIC, C,
or Pascal programs, one follows the same procedures to develop them. How-
ever, in assembly language the mechanics are more involved. There are
seven steps in developing an assembly language program:

1. Define the task and design the program. This often requires
drawing a flowchart, a road map of how the program should oper-
ate.

2. Type the program instructions into the computer using an editor,
then save the program on disk.

3. Assemble the program using the assembler. This produces a disk
file called an “object module.” If the assembler reports errors, cor-
rect them with the editor and reassemble the program.

4. Convert the object module to an executable “shell load file” using
the linker. Shell load files can be run from the Programmer’s Work-
shop disk.

5. If the program is to be run from the System Disk’s Program
Launcher, redefine the shell load file as a “system load file.”

6. Execute (run) the program.

7. Check the results. If they differ from what you expected, you
must find the errors or “bugs.” The debugger is handy for doing
this.

If your program is short and simple, you can perform these steps
quickly. But longer and more complex programs require more time on each
step, especially defining the program. I discuss an efficient approach for
developing programs under “Top-Down Program Design” at the end of this
section.

USING AN ASSEMBLER 29

Editor

Step 2 above refers to an editor. This is a program that lets you enter and
prepare your program. You can use any word processor or editor program
that can produce puze ASCII text — regular characters without any special
control codes or formatting codes. One such program is MouseWrite, from
Roger Wagner Publishing, Inc. If you don’t have one of these programs, you
can use the editor program that comes on the Programmer’s Workshop disk
(see the editor later in the chapter).

Assembler

The computer cannot execute the program you prepare with the editor. You
must use the assembler to convert it into an object module the computer can
understand.

Linker

The linker converts object modules into shell load files. A load file contains
the numeric (object) form of the program in a form the system loader can
load into memory. A shell load file can be run under the Programmer’s
Workshop by entering its name. The linker also does another important job:
it combines two or more object modules — a main module and one or more
subroutine modules — to form a load file.

Note that you must run the linker for every program you write, even those
that have only one object module. If a program has only one module, the
linker simply puts it in loadable form. If a program has two or more object
modules, the linker combines them and makes the result loadable. Figure 2-1
illustrates the stages involved in editing, assembling, and linking a program.

If you want to be able to run the program from the System Disk’s Pro-
gram Launcher, there is one more job to do: you must redefine the shell load
file as a system load file. This takes only a simple command that changes
the file’s “type.”

Debugger

Unfortunately, most programs don’t run exactly as expected the first time;
they usually contain errors. The easiest kind of error to correct is a syntax
error, such as accidentally typing %F4 when you intended to type $E4, or
mistyping an LDA instruction as LDQ. Syntax errors are easy to spot
because the assembler identifies them and issues an appropriate error mes-
sage when it assembles the program.

30 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Editor j_’ E}I)urce
a,. ile

y
7 —
Assembler Object

Q,o \" File

v

Fam— .

Other Linker N Iﬁﬁgd
Object

Files E (o) N

Figure 2-1

Errors that show up when you run the program are also sometimes easy
to correct. For example, if the prompt “Please enter your name” shows up
as “Please enter your nabe”, you know at once that there’s a typo in your
program’s message string. Simply correct it with the editor and reassemble
the program.

If syntax and typographical errors are the only kinds you encounter,
you’re either a genius or living a charmed life. Most people occasionally
get errors that are difficult to locate. The more minor errors just produce
an incorrect result, such as a 26 where you expected a 140. Other errors
“crash” the program, sending the computer off to a never-never land in
which the screen goes blank. Here, your only recourse is to switch the
power off.

When these kinds of things happen, programmers usually list the pro-
gram and search for obvious errors. More often than not, their search is fruit-
less. Where does one go from here? Well, generally the best approach is to
run the program one instruction at a time, and check each step of the way
whether everything is going as expected. The utility that lets you “step”
through programs is called the debugger.

Among other things, the debugger also lets you display and change
values and stop the program at a specific point, to see how things are

USING AN ASSEMBLER 31

proceeding. The debugger thus provides tools that help you to identify and
correct errors in programs.

Top-Down Program Design

When creating a program on a computer, you are usually inclined to charge
into it just as you would with pencil and paper, entering the first instruction,
then the second, third, and so on, to the end. This “brute force” approach
may work for programs that are short or simple, but generally it leads to
errors and produces programs that are difficult to understand and even more
difficult to update later. Thanks to the editing capabilities of word processors
and editors, there is an easier, more reliable, and more efficient way to
develop programs. It is called top-down design.

Top-down design simply means starting with general issues and pro-
gressing methodically to specifics. Outlines, tree diagrams, and flowcharts
are all valid mechanisms for achieving the ends of top-down design.

One way to approach top-down design is to start with a plain-English
outline of the program, then filling in the details gradually. The outline
should be a series of lines that tell what steps you want the program to per-
form. For example, to develop a program that performs one of several tasks
based on a choice the user makes from a menu, your outline might look like
this:

; Display a menu of selections.
; Ask the user to choose.

; Read the user's selection.

; Do what the user has asked.

The semicolons here indicate that these lines represent comments rather than
instructions. They do the same thing as REMs in BASIC.

From here, you can use the editor to insert instructions between the
comment lines. Because each line defines a simple task, you can complete
them individually and test each one before proceeding to the next one. That
is, begin by inserting the first group of instructions (the ones that display a
menu, in my example), then save the program on disk and assemble, link,
and execute it. Executing this partially completed program tells you whether
it is working correctly so far. If it isn’t, debug it and try again. When the
first part is working, proceed to the second part, then the third, and so on.

This may seem like a slow way to develop a program, but it has several
advantages:

32 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

1. It forces you to plan the program in an orderly fashion.

2. The comment lines provide a certain amount of top-level documen-
tation to the finished product.

3. It helps ensure that each step is working correctly before you pro-
ceed. This way, you know that any error was probably caused by
something you did in the current group of instructions, not in a pre-
vious group.

Source Statements

Now that I have discussed the mechanics of developing programs, it’s time
to take a look at what can go into them. The source program you enter into
the computer is a sequence of statements that are designed to perform a spe-
cific task. A source statement (a line in a program) can be any of five things:

1. A blank line.
A comment.
An assembly language instruction.

An assembler directive.

woR W e

A macro call.

Assembly language instructions are shorthand for the 65816 micropro-
cessor’s instruction set. Some manuals refer to them as machine language
instructions, because they tell the “machine” (the 65816) what to do. By
contrast, assembler directives tell the assembler what to do (with the instruc-
tions and data you enter).

Macros are labeled groups of instructions. To run the entire group, you
simply enter its name and specify any parameters it is designed to accept.
You could think of a BASIC statement such as PRINT as a macro, because
the interpreter or compiler must replace PRINT with several machine lan-
guage instructions. (Remember, regardless of which language your program
is written in, the microprocessor only understands machine language. Every
program file must ultimately translate to machine language.) Macros are dis-
cussed in Chapter 5.

USING AN ASSEMBLER 33

Assembly Language Instructions

Each assembly language instruction in a source program can have up to four
fields, as follows:

{Label} Mnemonic {Operand} {; Comment}

Of these, only the mnemonic field is always required. The label and com-
ment fields are always optional. The operand field applies only to instruc-
tions that require an operand; otherwise, you must omit it. (I show the label,
operand, and comment fields in braces to identify them as optional; don’t
type the braces in your programs.)

The label must start in column 1, but you can enter the other fields any-
where on the line, as long as you separate them with at least one space (or
tab). An assembly language instruction that uses all four fields is:

SetCount LDX #4 ;Initialize count
Label Field

The label field assigns a name to an assembly language instruction, letting
other instructions in the program refer to this instruction. Thus, labels in
assembly language programs serve the same purpose as line numbers in
BASIC programs.

The label must start in column 1 and cannot contain blanks. It must
begin with an alphabetic character, A through Z — or a through z, the
assembler doesn’t distinguish between lowercase and uppercase. The
remaining characters may consist of:

* The letters A through Z (or a through z).

* The numeric digits 0 through 9.

* The underscore character)

* The tilde character (~).

The assembler can process instruction labels of up to 255 characters
long (!). However, because most printers produce 80-column lines, the prac-

tical limit is somewhat less than 80 characters, to provide for mnemonic and
operand fields.

34 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Because the assembler lets you enter various combinations of charac-
ters, most labels you can think of are acceptable. However, I recommend
the following guidelines for selecting labels:

* Make the name as short as possible, while still being reasonable.

* Make the name easy to type without errors. The usual typing prob-
lems are several identical letters in a row (such as HHHH) and
similar-looking characters (such as the letter O and the number O,
letter I and number 1, letter S and number 5, and letter B and
number 8). There is no reason to invite typing errors; most of us
make enough of them anyway.

* Don’t use labels that can be confused with each other. For example,
avoid using similar names like Datal.oc and Datel.oc. There’s no
sense tempting fate and Murphy’s law.

Mnemonic (Opcode) Field

The mnemonic field (the first » in mnemonic is silent) contains the three-
letter abbreviation for the instruction. For example, LDA is the abbreviation
for the Load Accumulator instruction and JMP is the abbreviation for the
Jump instruction. The assembler uses an internal table to translate each
mnemonic into its numeric equivalent.

Many instructions require you to specify an operand as well as a
mnemonic. For example, the JMP instruction must know where to jump.
The mnemonic tells the assembler what type(s) of operand, if any, it should
expect to find in the operand field.

Operand Field

The operand field tells the 65816 where to find the data it is to operate on.
This will be either the data itself, a memory address, or a register name. The
operand field is mandatory with some instructions and prohibited with
others. (The addressing characteristics for each instruction in the 65816’s
instruction set are discussed in Chapter 3.)

The assembler differentiates constants in the operand field based on
which prefix is used. A hexadecimal or binary number must be preceded by
a $ or % symbol, respectively, while a decimal number must be unprefixed.
For example, the following instructions are equivalent:

USING AN ASSEMBLER 35

LDA #$E ;Hexadecimal
LDA #%1110 ;Binary
LDA #14 ;Decimal

Text characters must be enclosed in single quotes (’). For example, LDA
#’Y’ loads the numeric code for capital letter Y into the accumulator.

Comment Field

Like a REM in BASIC, this optional field lets you describe statements in a
program, to make the program easier to understand. You must precede a
comment with either a semicolon (;), an asterisk (*), or an exclamation point
(1) — most programmers use the semicolon — and separate it from the pre-
ceding field by at least one space or tab. The assembler ignores comments,
but prints them when you list the program.

Put anything you want in a comment field, but to be useful, make com-
ments describe what is happening in the program, not just restate the instruc-
tion. For example,

LDA #0 ;5et result register to 0 to begin
is more meaningful than
LDA #0 ;Move O into 1

You may also put a comment on a line by itself, to describe a block of
instructions. To do this, enter a semicolon at the beginning of the line. The
assembler recognizes ; as the start of a comment line and ignores whatever
follows it.

Assembler Directives

Directives are commands to the assembler, rather than to the microproces-
sor. They can be used to set up subroutines, define symbols, reserve
memory for temporary storage, and perform a variety of other housekeeping
tasks. Unlike assembly language instructions, however, most directives gen-
erate no object code.

Directive statements can have up to four fields. They are:

36 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

{Label} Directive {Operand} {;Comment}

As the braces indicate, only the directive itself is always required. A label
is mandatory with some directives and optional with the rest. The same
applies to an operand. Of course, the comment is always optional. As with
an assembly language instruction, you can put a directive anywhere on a line
(except in column 1), but you must separate it from the label with at least
one space or tab. Table 2-1 divides the commonly used directives into six
groups: program control, file control, space allocation, equate, listing, and
mode.

Program Control Directives

In the Apple IIGS, assembly language programs are divided into named
groups called code segments. Every program has at least one code segment:
the segment that holds the main program. That code segment may also con-
tain subroutines that the main program uses. If you want to call a subroutine
from some other segment, however, you must define it in a separate code
segment.

Each code segment must begin with a START directive and end with an
END directive. The START directive must be preceded by a label, which is
the name of the segment. For example, a segment named MainSeg that
includes a call to a subroutine named Subrl would have this general form:

MainSeg START ;Start of main segment
:JSI.R Subrl ;Call Subrl
ﬁle ;Endof main segment

Subrl START ;Start of subroutine segment
}.ENL;J ;End of subroutine segment

Again, this assumes that Subrl is a subroutine you want to share between
segments. If it is used only by MainSeg, you could put it in MainSeg’s seg-
ment. (In that case, you wouldn’t need the second START and END. Subrl

USING AN ASSEMBLER 37

Table 2-1

Function Format
Program Control
Start code segment label START
End segment END
Define global entry point label ENTRY
Start data segment label DATA
Use data segment USING label
Enable/disable long

accumulator and memory LONGA ON/OFF
Enable/disable long index

registers LONGI ON/OFF
File Control
Append source file APPEND pathname
Copy source file COoPY pathname
Save object file KEEP pathname
Space Allocation
Define storage DS byte-count
Define constant DC {repeat-count} value(s)
Set origin ORG address
Equate
Equate name EQU expression
Global equate name GEQU expression
Listing
List/don’t list output LIST ON/OFF
List/don’t list absolute

addresses ABSADDR ON/OFF
List/don’t list symbol table SYMBOL ON/OFF
Send output to printer/to screen PRINTER ON/OFF
Start new page EJECT
Print page number and header TITLE {’header’}
Mode
Enable/disable 65C02

instructions 65C02 ON/OFF
Enable/disable 65816

instructions 65816 ON/OFF

would simply be the label of the first instruction in the subroutine.) The JSR
here stands for Jump to Subroutine; it does the same thing as GOSUB in
BASIC.

38 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

START labels are termed “global,” because instructions in any segment
of the program can refer to them. By contrast, labels within code segments
are “local.” Only instructions within that segment can refer to them. (This
has a side benefit: it means that you can use the same label in more than one
segment.)

However, you can also declare an instruction global, by preceding it
with an ENTRY directive. The label on the ENTRY directive assigns a
global name to the instruction that follows. As its name implies, the ENTRY
directive is convenient for providing an alternate entry point to a subroutine.
For example, in a subroutine of the following form:

Subrl START

AltEnt ENTRY

END

your program could contain a JSR Subrl instruction to start at the beginning
or a JSR AltEnt instruction to start at the ENTRY point (AltEnt).

You can also set up data segments to hold constants and variables that
are used by your code segments. Every data segment must begin with a
DATA directive (rather than a START directive) and end with an END direc-
tive. To use a variable or constant in a data segment, a code segment must
contain a USING directive that names the data segment. For example, the
statement USING DS1 must precede the first instruction that refers to an
item in the data segment named DS1.

The LONGA and LONGI directives specify whether the accumulator
and index registers are 8 bits long (OFF) or 16 bits long (ON). ON is the
default to both directives. You can use these directives outside of a code seg-
ment as well as within one. LONGA OFF and LONGI OFF are convenient
in emulation-mode programs. Without LONGA OFF, for example, the
instruction

LDA #4

that is, load decimal 4 into the accumulator would make the assembler
assemble 4 as a 16-bit number.

USING AN ASSEMBLER 39

File Control Directives

File control directives specify a disk path name as the operand. APPEND is
used to construct programs that are too large for the editor to handle all at
one time. APPEND simply reads a file in from disk and tacks it onto the cur-
rent program. You can specify any valid ProDOS path name for the
APPENDed file. If it is on a different disk, the assembler will tell you to
switch disks before continuing.

COPY does the same thing as APPEND, except COPY may appear
anywhere within a program, while APPEND may only appear at the end.
COPY is convenient for inserting a file of equates (description upcoming) in
a program.

KEEP is used to assign a file name to an object module (which must
have a different name than its parent, the source module). You can only use
KEEP once, at the beginning of the program and preceding the first START
directive. For example, in a program called MYPROG.SRC, you could
enter KEEP MYPROG. To store the object module on a different disk or in
a different directory, you must precede MYPROG with a complete path
name. The KEEP directive is optional, by the way. You can also name the
object module when you assemble the program (details later).

Space Allocation Directives

Many programs use locations in memory to hold variables, and the assem-
bler provides two directives to reserve space for them. DS (Declare Storage)
reserves a specified number of bytes without assigning a value to them,
whereas DC (Declare Constant) both reserves bytes and gives them an initial
value. The DC directive is commonly used to define integers, addresses,
hexadecimal constants, binary constants, and character strings. Table 2-2
shows the férmats for these data types.

Table 2-2
Type Format
Integer {repeat-count}I{size} valuel,value2...’
Address {repeat-count}A’address1,address2,...’
Hexadecimal constant {repeat-count}H"digit(s)’
Binary constant {repeat-count}B’digit(s)’

Character string {repeat-count}C’string’

40 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Note that you can precede the type identifier with a repeat-count that
tells the assembler how many times to repeat the data between the single
quote marks. Note also that you can follow the integer specifier, I, with a
size value. This specifies the size of the integer in bytes; it can range from
1 to 8. If you omit the size, the assembler makes each data item two bytes
long. For example, the following directive stores six integers in memory.
The first four are two bytes long (because size is omitted), while the last two
are one byte long (size = 1).

TABLE DC 2I'4,5',I1'1,2'
If you displayed that portion of memory, you would see:
04 00 05 00 04 00 0500 01 02

Here are examples of the other types, including the hexadecimal values
they store in memory:

Directive Memory values

DC A’Tablel,Table2’ (16-bit addresses of Tablel and Table2)
DC H’01234ABCD’ 0123 4A BC DO

DC H’AAAA BBBB CCCC° AA AABBBBCCCC

DC B’10110110° B6

DC C’Are you sure?’ 4172652079 6F 752073757265 3F

(See Appendix B for the numeric values of the characters in the string.)

When you run your program, the system loader will store it at any con-
venient place in memory. However, you can specify the starting location
yourself by putting an ORG (short for Origin) directive at the beginning of
the program. For example, ORG $3000 will locate the program at $3000.

ORG'’s operand can also include an asterisk (*) to indicate the current
location. Thus, ORG * + 2 makes the assembler skip 2 bytes before storing
the next instruction. This statement does the same thing as DS 2.

Equate Directives

The equate directives assign the value of an operand expression to a name.
Thereafter, you can use the name anywhere you would normally use the
expression. The first of these directives, EQU, is a “local” equate; its name
can only be used in the segment in which it is defined. The other, GEQU,

USING AN ASSEMBLER 41

is a “global” equate; its name can be used in any segment in the program,
Global equates are normally defined in data segments rather than code seg-
ments. Some examples of equates are:

TWO EQU 2
FOUR EQU TWO*TWO
K GEQU 1024

The operand for an equate can also contain an instruction label. If it is
the label of a direct (zero) page address or a long address (I'll describe
address types in the next chapter), it must precede the labeled instruction; if
it is the label of an instruction in any other page, it must follow the labeled
instruction. Note that you can also use the ENTRY directive to define a
global label.

Listing Directives

The assembler automatically displays the names of your program’s segments
as it assembles them. However, you can also make it list the numeric
machine code for each instruction by entering a LIST ON directive at the
beginning of the program. If you want to list only a portion of the program,
you can shut off the listing with LIST OFF. These directives can also be
applied selectively within a program. To list a subroutine, for example, pre-
cede it with LIST ON and follow it with LIST OFF.

Program listings include an address for each instruction, but they are
given relative to the start of the segment. (Each segment starts at address 0.)
To obtain addresses relative to the start of the program, enter an ABSADDR
ON directive at the beginning. These so-called absolute addresses do not
indicate where in memory the program will actually be loaded, because
loading is the system loader’s job, not the assembler’s. However, you can
easily add them to the starting load address (more on this later) to calculate
actual or “effective” addresses. Having effective addresses comes in handy
during debugging.

The assembler also generates an alphabetical list of all local symbols
after each END directive and a list of all global symbols at the end of the
program. The SYMBOL directive lets you turn symbol table generation ON
or OFF. This speeds up the assembly slightly and saves paper.

The PRINTER directive determines whether the assembler listing is
sent to the printer (PRINTER ON) or the display screen (PRINTER OFF).
The default is OFF. The assembler assumes that you have an 80-column
printer connected to IIGS.

42 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

EJECT makes the printer start a new page. This is handy for dividing
a listing into logical groups — say, to put each subroutine on a page of its
own or to separate symbol tables from listings.

The final listing directive, TITLE, prints the page number and (option-
ally) a header at the top of each page. You can use as many TITLE directives
as you want. For example, you can enter a title for each subroutine, to give
your listing a polished, professional look.

Mode Directives

The assembler is designed to work with 6502 and 65C02 programs, as well
as those written for the 65816. The 65816 includes all the 6502 and 65C02
instructions and addressing modes, plus some additional ones of its own
(details are upcoming in Chapters 3 and 4). The mode directives tell the
assembler which microprocessor’s instruction set to recognize. The first
one, 65C02, lets you tell the assembler whether to accept 65C02 instructions
(65C02 ON) or only 6502 instructions (65C02 OFF). The first form is con-
venient for writing programs to run on an Apple //c; the second can be used
to write Apple 1I, II+, and //e programs.

The second mode directive, 65816, lets you tell the assembler whether
to accept 65816 instructions and addressing modes (65816 ON) or only those
for the 65C02 and 6502 (65816 OFF). The latter form is convenient if you
are writing a program for earlier Apple IIs, because with it, you needn’t
worry about whether you have used a 65816 feature accidentally.

Advanced Directives

The assembler offers a variety of other directives (see Table 2-3), but most
are only of use for advanced applications. If you’re interested in any of these
directives, refer to Apple’s Assembler Reference manual. There are also
some directives related to macros; they’ll be discussed in Chapter 3.

Operators

Note: This is primarily a reference section. If you are a beginner, read
it casually, then come back later if you need to look up details.
An operator is a modifer used in the operand field of an assembly lan-
guage or directive statement. There are three kinds of operators: arithmetic,
logical, and relational. Table 2-4 summarizes them.

USING AN ASSEMBLER 43

Table 2-3
Function Format
Program Control Directives
Define private code segment label PRIVATE
Define private data segment label PRIVDATA
Memory Designation Directives
Align to a boundary ALIGN number
Reserve memory MEM start, end

Assembler Option Directives

Generate IEEE format number IEEE ON/OFF

Set maximum error level MERR level

Set the most-significant bit for MSB ON/OFF
characters

Specify case sensitivity CASE ON/OFF

Specify case sensitivity in OBIJCASE ON/OFF

object module

Listing Option Directives

Expand DC statements EXPAND ON/OFF
Set comment column SETCOM column-number
Show instruction times INSTIME ON/OFF
List/don’t list errors ERR ON/OFF

Miscellaneous Directive
Rename opcodes (mnemonics) RENAME original, new

Arithmetic Operators

The arithmetic operators combine numeric operands and produce a numeric
result. The most common arithmetic operators are those that add (+), sub-
tract (—), multiply (*), and divide (/). The divide operator returns the quo-
tient produced by a divide operation. For example,

Pi_Quot EQU 31416/10000

returns 3.

Finally, the bit shift operator (|) displaces a numeric operand to the left
or right, depending on whether the specified bit count value is positive or
negative. About the only time you need this capability is when you're setting
up “masks” that you will apply to binary patterns in memory. For example,
if you set up a mask with the statement

44 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Operator

Table 2-4

Function

Arithmetic

+

Format: valuel + value2
Adds valuel and value?.

Format: valuel-value?2
Subtracts value2 from valuel .

Format: valuel*value2
Multiplies value2 by valuel .

Format: valuel/value2
Divides valuel by value2, and returns the quotient.

Format: value|count
Shifts value by count bit positions. Shifts left if count is positive
and right if it is negative.

Logical
.AND.

.OR.

.EOR.

.NOT.

Format: operand1.AND.operand2
True (1) if both operands are nonzero; false (0) if either operand is
Zero.

Format: operand1.OR.operand2
True (1) if either or both operands are nonzero; false (0) if both
operands are zero.

Format: operand1.EOR .operand?2
True (1) if either operand, but not both, is nonzero; false (0) if
both operands are nonzero.

Format: .NOT.operand
True (1) if the operand is zero; false (0) if it is nonzero.

Relational

<>

Format: operand1 = operand2
True (1) if the operands have the same value; false (0) if they have
different values.

Format: operand 1 <>>operand2
True (1) if the operands have different values; false (0) if they have
the same value.

Format: operand | < = operand?2
True (1) if operand] is less than or equal to operand2; false (0) if
operandl is greater than operand?.

Format: operand1> = operand2
True (1) if operand] is greater than or equal to operand2; false (0)
if operandl is less than operand?2.

USING AN ASSEMBLER 45

Table 2-4 (cont.)

Operator Function

> Format: operand1>operand2
True (1) if operandl is greater than operand?; false (0) if
operandl is less than or equal to operand?2.

< Format: operand1 <operand2

True (1) if operandl is less than operand?; false (0) if operandl
is greater than or equal to operand?.

Mask EQU %10110010

the statement
Mask_Left_2 EQU Mask|2

sets up a new constant with the value %11001000. Similarly,
Mask_Right_2 EQU Mask|—-2

sets up a new constant that has the value %00101100.

Logical Operators

Logical operators are so named because they operate according to the rules
of formal logic, as opposed to the rules of mathematics. The rules of logic
are formed with a series of true/false “if” statements that lead to a “then”
conclusion. A typical example is “If A is true and B is true, then C is true.”
In fact, this very statement has an assembly language counterpart in the
.AND. operator.

.AND. tests two operands and returns a 1 (true) if both have a value
other than zero (true). If either operand is zero (false), .AND. produces a
result of O (false).

.OR. is somewhat more liberal. It produces a 1 (true) result if either or
both operands are nonzero.

.EOR. is a variation on .OR. that returns a 1 (true) if either operand,
but not both, is nonzero. In fact, the “but not both” exclusion is how .EOR.
got its name; EOR is short for Exclusive-OR. Table 2-5 summarizes how
.AND., .OR., and .EOR. operate.

46 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Table 2-5

Result
Operand #1 Operand #2 .AND. .OR. .EOR

Nonzero Nonzero 1 1 0
Nonzero 0 0 1 1
0 Nonzero 0 1 1
0 0 0 0 0

The final logical operator, .NOT., tests only one operand. It produces
a 1 (true) if the operand is zero, or a 0 (false) if the operand is nonzero. Note
that .NOT. differs from the other three logical operators in that it is looking
for a zero value rather than a nonzero value.

Relational Operators

Relational operators compare two numeric values or memory addresses and,
like the logical operators, produce 1 if the relationship is “true,” or 0 if it is
“false.” For example, if CHOICE is a predefined constant,

LDA #CHOICE<R20

assembles as either LDA #1 (if CHOICE is less than 20) or as LDA #0 (if
CHOICE is equal to or greater than 20).

Because the relational operators can only produce two values (1 or 0),
they are rarely used alone. Instead, they are usually combined with other
operators to form a decision-making expression. For example, suppose you
want the accumulator to contain 10 if CHOICE is less than 20 and to contain
5 otherwise. A statement that performs this task is:

LDA #5+5%(CHOICE<20)

Here, if CHOICE is greater than or equal to 20, CHOICE<20 is “false,” and
the assembler replaces it with 0. Since 5 times O is 0, the accumulator will
receive 5 when you run the program.

You can even get fancier than that, by building more complex expres-
sions. For example, suppose you want the accumulator to contain 10 if
CHOICE is less than 20 but greater than 0 (i.e., CHOICE is between 1 and
19), and to contain 5 otherwise. This statement will do the job:

USING AN ASSEMBLER 47

LDA #5+5*((CHOICE<20).AND. (CHOICE>0))

Recall that . AND. also produces a 1 (true) or O (false) result, so it is the per-
fect operator for letting the computer make range decisions like this one.

Entering, Assembling, and Running Programs

Since I haven’t yet discussed the details of the 65816’s assembly language
instruction set (that’s in Chapter 4), I can’t expect you to write any useful
programs at this point. Thus, I will provide a simple program that sounds a
tone through the speaker inside the Apple 1IGS.

The details of the program are unimportant, however. The main point
is that you will learn how to enter a program into the computer, assemble it,
produce a load module (i.e., an executable program file), and execute it.
This exercise will give you hands-on experience with the basic steps, and
should help you proceed with confidence through more complex material in
the rest of the book.

Starting the Apple IIGS Programmer’s Workshop

The Apple IIGS Programmer’s Workshop (APW) disk is bootable, so you can
start with it directly. You may want to do this to create a program that you will
run in some later session. However, the APW disk does not contain all the tool
sets your programs may need. These sets are contained on the Apple IIGS
System Disk, however, so you should start using the following procedures:

1. Insert the System Disk into your main disk drive and turn the com-
puter on. (If it is already on, insert the System Disk and press
Ctrl-OpenApple-Reset.)

2. When the Program Launcher screen appears, replace the System
Disk with the APW disk and click the mouse on Disk. The Program
Launcher loads the APW disk (volume name /APW/) and lists its
contents.

3. Run the highlighted file, APW.SYS16, by clicking on Open. This
makes the APW prompt, #, appear.

You’ll learn what to do next in a moment, but first here’s the example pro-
gram that beeps the speaker.

48 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

A Simple Speaker-Beeping Program

Every Apple II has a location in memory that controls the computer’s
internal speaker. Whenever the microprocessor accesses this location, by
either reading from it or writing to it, the speaker emits a “click” sound. A
single click isn’t very exciting, but if you make the speaker click fast
enough, it sounds like a continuous tone, or in some frequency ranges, like
a musical note. The program I am about to present reads the contents of the
speaker location repeatedly to produce a “beep.” In other Apple II models,
the speaker “occupies” location $C030 of bank 0; in the Apple IIGS, it
occupies location $C030 of bank $EO (and is copied, with shadowing, into
$00C030).

Example 2-1 lists the speaker-beeping program. This program consists
of two loops. The outer loop, which starts at Beeplt, controls the duration
of the beep — how long it lasts. The inner loop, which starts at Loop2, con-
trols the beep’s frequency — the rate at which the speaker gets clicked. The
faster the speaker is clicked, the higher pitched the tone will be.

Briefly, here’s what the lines in the program do:

* The keep beep directive at the beginning tells the assembler what
name to give the object file. The linker will also assign this name to
the load file it produces.

* The Beep START directive marks the beginning of the program’s only
code segment. (The final END directive marks the end of this
segment.)

Example 2-1

; BEEP beeps the speaker by repeatedly accessing the speaker
; location in bank $EO.

keep beep ;Name object and load files
Beep START
speaker equ $E0C030 ;This is the speaker location

1dy #1000 ;Y is outer loop (duration) counter
BeepIt 1da speaker ;Beep the speaker

1dx #1000 ;X is inner loop (frequency) counter
Loop2 dex ;Decrement X by 1

bne Loop2 ;Loop until X is O,

dey ; then decrement Y by 1

bne BeepIt ;If Y is not 0, go beep the speaker

rel ;Otherwise, if Y is 0, exit

END

USING AN ASSEMBLER 49

* The speaker EQU directive simply allows me to use the word
“speaker” in instructions where I would otherwise use the potentially
cryptic number $SE0C030.

» The first instruction in the program, Idy #1000, loads decimal 1000
into the Y register. The program will repeatedly decrement Y by 1
until it contains 0. At that point, it will exit back to the calling pro-
gram; the Programmer’s Workshop “shell,” in this case. Thus, Y
determines the duration of the beep. (The value 1000 is arbitrary. I
have used it only because it produces a beep that lasts long enough to
be heard easily.)

» The instruction Ida speaker at Beeplt clicks the speaker once. It
loads the contents of the locations $E0C030 and $EOCO031 into the
accumulator, but the value it has obtained is inconsequential. I sim-
ply want to access the speaker location somehow, and this does the
job.

 The Idx #1000 loads decimal 1000 into the X register.
» The dex at Loop2 decrements (decreases) the X register by 1.

« The bne Loop?2 instruction (where bne stands for Branch if Not Equal
to 0) tests what happened when X was decremented. If X contains
anything other than 0, the processor transfers to the preceding dex at
Loop2; if X contains 0, the processor “drops through” to the next
instruction. Hence, this two-instruction loop makes the processor
wait until dex has been executed 1000 times. The wait interval deter-
mines the frequency of the tone in that it controls how often the
speaker location is accessed. (As before, the value 1000 is arbitrary.
I could have used a lower number to produce a higher-pitched tone
or vice versa.)

» The instructions dey and bne Beeplt complete the outer loop, the one
that determines how long the beep lasts. With each pass through the
loop, Y gets decremented by 1. As long as it contains a nonzero
value, the processor “branches” to the instruction at Beeplt, to click
the speaker. When Y reaches 0, the processor executes the r#/ (Return
Long) instruction, which makes it exit the program.

Entering the Program

Now it’s time for you to enter the example program into the computer. Start
the computer using the Programmer’s Workshop disk, or reboot by pressing

50 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Control-OpenApple-Reset. When the Workshop prompt (#) appears, enter
the command:

asm65816

This tells the editor to format the program you are about to enter as an assem-
bler source code file, as opposed to a text file or some other kind of file.
Now, start the editor by entering

edit beep.src

where beep.src (for beep.source) is the name of the new program. You’re
actually telling the editor to load BEEP.SRC from disk, but since that file does
not yet exist, the editor starts with a blank screen. It shows a rectangular cur-
sor at the upper left-hand corner and a format line and status line at the bottom.

The format line shows a dot for each column position and a caret symbol
(") for each tab position. The editor provides tabs at columns 10, 16, 41, 48,
56, 64, 72, and 80 (the end of the line) automatically. The first three tabs —
at columns 10, 16, and 41 — are convenient for entering the mnemonic,
operand, and comment fields (respectively) of assembly language instructions.

The status line reports the position of the cursor (it is at “Line: 1” and
“Col: 17 initially), the editor mode (EDIT, to begin), and the name of the
file being edited (BEEP.SRC, in this case).

Now, enter the source program shown in Example 2-1, line by line, using
the Tab key to move between fields and Return to start a new line. If you
finish without omitting or mistyping anything, press Control-Q to leave or
“quit” the editor (see “Leaving the Editor” in this chapter). Otherwise, if you
made some mistakes along the way (most of us do), simply go back and cor-
rect them.

Correcting Typing Errors

The editor provides a variety of useful commands for manipulating text.
Table 2-6 summarizes the ones you will probably use most often.
Note the following points about these commands:

1. Pressing Return from anywhere on a line moves the cursor to
column 1 of the next line. This differs from most word processors,
where pressing Return moves any remaining characters to a new
line.

USING AN ASSEMBLER 51

Table 2-6

(Note: The abbreviation OA represents the Open Apple key.)

Quit Command

Quit (Exit to the Editor Menu) OA-Q or Ctrl-Q

Cursor-Moving Commands

Bottom of Screen/Page Down OA-DownArrow or Control-OA-J
Moves the cursor to the bottom of the screen, at the current column position.
If it is already at the bottom, the screen scrolls down one page (22 lines).

Cursor Down DownArrow or Control-J
Cursor Left LeftArrow or Control-H
Cursor Right RightArrow or Control-U
Cursor Up UpArrow or Control-K
End of Line OA-> or OA-. (period)
Start of Line OA-< or OA-, (comma)
Tab Tab or Control-I
Tab Left OA-A or Control-A
Top of Screen/Page Up OA-UpArrow or Control-OA-K

Moves the cursor to the top of the screen, at the current column position. If it is
already at the top, the screen scrolls up one page (22 lines).

Word Left (Previous Word) OA-LeftArrow or Control-OA-H
Word Right (Next Word) } OA-RightArrow or Control-OA-U

Insert Commands

Insert Line OA-B or Control-B
Inserts a blank line ahead of the current line. The cursor may be anywhere on the
line when you issue this command.

Insert Space OA-Spacebar
Inserts a space at the current cursor position by moving the remaining characters
one column to the right.

Delete Commands

Delete Block OA-Delete
Puts the editor in “select” mode, where it highlights text as you move the cursor.
Pressing Return removes the highlighted block from the screen; pressing Esc cancels
the delete operation. Note: You cannot Undo the work of the Delete Block command.

Delete Character OA-F or Control-F

Delete Preceding Character Delete or Control-D

52 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Table 2-6 (cont.)

Delete Commands (cont.)

Delete Line OA-T or Control-T
The cursor may be anywhere on the line.

Delete to End of Line OA-Y or Control-Y

Delete Word OA-W or Control-W
The cursor may be anywhere within the word.

Remove Blank Lines OA-R or Control-R

If the cursor is on a blank line, this command deletes that line and any others up to
the next nonblank line.

Undo (Restore) Last Deletion OA-Z or Control-Z
Restores text deleted by any of the preceding commands except Delete Block.

Search and Replace Commands

Search Down (Forward) OA-L
Search Up (Backward) OA-K
Search Down and Replace OA-]
Search Up and Replace OA-H

Block Move and Copy Commands

Cut OA-X or Control-X
Puts the editor in “select” mode, where it highlights text as you move the cursor.
Pressing Return removes the highlighted material from the screen and stores it in a
temporary disk file called SYSTEMP. Pressing Esc cancels the cut operation.

Copy OA-C or Control-C
Puts the editor in “select” mode, where it highlights text as you move the cursor.
Pressing Return copies the highlighted block into a temporary disk file called
SYSTEMP. Pressing Esc cancels the copy operation.

Paste OA-V or Control-V
inserts the previously cut or copied text at the cursor position, by reading the
contents of SYSTEMP.

Tab-Changing Command

Set or Clear a Tab OA-Tab or Control-OA-I
If there is a tab stop at the cursor position, this command removes it. If there is no
tab stop at the cursor position, it sets one.

2. The editor always starts in overstrike mode, replacing existing text
with characters you type. However, you can put it in insert mode by
pressing Control-E or OA-E (the status line shows Mode: EDIT

USING AN ASSEMBLER 53

INSERT). Here, the editor inserts typed characters at the cursor
position and shifts the remaining characters on the line to the right.
To return to overstrike mode, press Control-E or OA-E again.

3. When you delete a character, line, or word, the editor saves it in
an “Undo buffer” in memory. The Undo buffer acts like a barrel,
where each newly-deleted unit is placed on top of the unit that was
last deleted. The Undo (Control-Z) command removes a unit from
the top of the buffer and inserts it at the cursor position. Thus, by
doing successive Undos, you can restore everything you deleted!

As you can see, the editor’s built-in power and flexibility make it more
closely resemble a word processor than an ordinary “editor.”

Leaving the Editor

When you finish editing a program, press Control-Q or OA-Q to leave the
editor. This produces the editor menu, which looks like Figure 2-2.

Now, to save the program on disk, press S for “Save to the same name”
(i.e., save with the name BEEP.SRC). The editor writes the program to disk
and shows “Writing . . .” on the screen. When the Enter selection: prompt
reappears, leave the editor entirely by pressing E for “Exit without updat-
ing.” This makes #, the APW system prompt, reappeat.

To make sure the program’s source file is really on the disk, issue a

File name: BEEP.SRC

{R>) Return to editor.

{S) Save to the same name.
{N) Save to a new name.
(L) Load another file.

(E)> Exit without updating.

Enter selection:

Figure 2-2

54 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

catalog command. The entry for the example program should have the Name
BEEP.SRC, the Type SRC (for assembler source file), and the Subtype
ASM65816.

Assemble, Link, and Run Commands

Now that the source file is on disk, you can use the commands the Workshop
provides to assemble, link, and run it. Table 2-7 shows the commands you
will probably use most often. To keep things simple, I have omitted some
command parameters that are rarely used. Refer to the APW manual for
complete details.

Table 2-7

Language Commands

ASM65816
Lets the language to 65816 assembler source, thereby informing the editor to produce a SRC
type file.

CHANGE pathname language
Changes the language type of a source (SRC) or text (TXT) file. For example,

CHANGE MYFILE.SRC ASM65816

changes MYFILE.SRC to the assembler source code type, ASM65816. This is handy if the
editor was set to the wrong type (say, EXEC) when you created a file.

EXEC
Sets the language to EXEC. EXEC files are used to store a list of Workshop commands. You
run these commands by entering the name of the file.

Edit Command

EDIT [pathname]
EDIT loads a specified text file or assembler source file into the editor. If the file does not
exist, the editor starts with a blank screen and assigns the specified filename to it.

Display Commands

CATALOG [pathname]
Displays the directory of the deafult disk (CATALOG) or subdirectory (CATALOG path-
name) you specify. You can also use the = wildcard character in filenames. For example,

USING AN ASSEMBLER 55

Table 2-7 (cont.)

Display Commands (cont.)
CATALOG /MYFILES/P=

displays all the files on the MYFILES disk that begin with the letter P. You may abbreviate
CATALOG as CAT.

HELP [command-name]

Displays a descriptive summary of an APW command. For example, HELP DELETE sum-
marizes the DELETE command. If you omit the command name, HELP lists the names of
all available commands.

TYPE [+ N] pathname [startline {endline]] [>device]
Lists the contents of a text, source, or EXEC file. The parameters are:

+N Makes APW number the lines.

pathname The pathname of the file.

startline The number of the first line to be listed. Omitting this parameter causes the
entire file to be listed.

endline The number of the last line to be listed. Omitting this parameter causes all
lines between startline and the end of the file to be listed.

>device Sends the listing to an output device (e.g., >.printer). Omitting this para-
meter sends the listing to the screen.

Assembly and Link Commands

ASML [+L/-L] [+ S/-S] sourcefile [KEEP = outfile]
[NAMES = (seg/ [seg2 [. . .1D

Assembles and links a source file. The optional parameters are:

+L/-L. Makes the assembler produce (+L) or omit (-L) a source listing. -L is the
default.

+8/-S Makes the assembler produce (+ S) or omit (-S) an alphabetical listing of all
global references in the object module. -S is the default.

KEEP If your source file contains no KEEP directive, you must use this parameter
to specify the name of the output (object) file. For a one-segment program,
the object file is named outfile. ROOT. For a multi-segment program, the
first (main segment) is stored in outfile. ROOT and the remaining segments
are stored in outfile A.

NAMES Causes the assembler to assembled only the specified segments. The object
code for these segments are stored in a file named outfile.B.

ASMLG [+ L/-L1[+ S/-S] sourcefile [KEEP = outfile]

[NAMES = (seg! [seg2 [. . . 1D
Similar to ASML, except ASMLG (for “Assemble, Link, and Go™) runs the program after
linking it.

ASSEMBLE [+ L/-L][+ S/-S] sourcefile [KEEP = outfile]

[NAMES = (segl [seg2 [. . . 1]
Assembles a source file, but does not link it. Hence, ASSEMBLE does not produce a load
module. To link ASSEMBLEd modules, use the LINK command.

56 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Table 2-7 (cont.)

Assembly and Link Commands (cont.)

LINK [+ S/-S] objectfile [KEEP = outfile]
or
LINK [+ S/-S] objectfile]l objectfile2 . . . [KEEP = outfile]

Links object modules to create an APW shell load file. The first form of the command is used
to link object modules that have the same name (e. g., MUSIC.ROOT and MUSIC.A). The
second form is used to link modules that have different names (e.g., to link modules named
TUNE with those named MUSIC). The +S/-S parameter is as described for ASML. The
others are:

objectfile The pathname (minus filename extension) of the object modules to be
linked. All modules to be linked must have the same filename (except for
extensions) and must be in the same subdirectory.
For example, if the program MUSIC consists of the object modules
MUSIC.ROOT, MUSIC.A, and MUSIC.B, all located in directory
/MYFILES, use /MYFILES/MUSIC for objectfile.
KEEP Use this parameter to specify the name of the load file. Warning: If you
omit KEEP, the linker will not produce a load file.
objectfilen You can use a single LINK command to link object files having different
names into one load file, by giving their pathnames, minus filename
extensions.
For example, suppose /MYFILES contains the object modules for a
program called MUSIC (say, modules MUSIC.ROOT, MUSIC.A, and
MUSIC.B) and the modules for another program called TUNE (TUNE.
ROOT and TUNE.A). To link TUNE’s modules with MUSIC’s, specify

/MYFILES/MUSIC /MYFILES/TUNE
for objectfile.

File and Directory Commands

COPY [-C] pathnamel [pathname2]
Copies a file to a different subdirectory, or to a duplicate file with a different name. The
parameters are:

-C Normally, if a file named newparh already exists, APW asks if you want to
replace it. The -C option lets you copy without the prompt.

oldpath The pathname of the file to be copied. Wildcards may be used to copy multi-
ple files. If oldpath is a directory, COPY copies the directory and any sub-
directories and filesin it.

newpath The pathname of the copy. If you omit the pathname, the file is copied to the
current directory.

CREATE pathname
Creates a new subdirectory with the specified pathname.

DELETE pathname
DELETE deletes the specified file. It can also delete a multiple files if you use a = wildcard
in the pathname.

USING AN ASSEMBLER 57

Table 2-7 (cont.)

File and Directory Commands (cont.)

ENABLE DIN][B][W][R] pathname

ENABLE enables one or more of the access attributes of a ProDOS file. It is generally used
after a FILETYPE command, to guarantee the file has the attributes you want; in most cases,
you enable all the attributes by specifying DNBWR.

FILETYPE pathname filetype-abbrev
Changes the ProDOS 16 “filetype” of a file. The filetypes are:

Abbreviation File Type

BIN ProDOS 8 binary load file
CDA Classic desk accessory
DIR Directory

EXE Shell load

LIB Library
NDA New desk accessory

OBJ Object

S16 ProDOS 16 system load file
SRC Source

STR Startup load

SYS ProDOS 8 system load file
TOL Toolkit load

TXT Text

The Programmer’s Workshop linker produces a shell load (EXE) file. To convert it to a
ProDOS 16 system load (S16) file, enter:

filetype pathname S16

INIT device [name]
Formats a disk as a ProDOS volume. Here, device is the device number of the drive con-

taining the disk to be formatted and name is the volume name for the disk. If you omit name,
INIT names the disk BLANK.

MOVE oldpath newpath
Moves a file from one location to another; it does the same thing as a COPY command fol-
lowed by a DELETE. The parameters are the same as for COPY.

PREFIX directory
Tells the Programmer’s Workshop that any pathnames you enter are to be found in the
specified directory. For example,

PREFIX /MYPROGS/MY.MACROS
tells it to look for files in the MY.MACROS directory of the disk named MYPROGS.

RENAME oldpath newpath
Changes the name of a file. The parameters are:

oldpath The pathname of the file to be renamed or moved.
newpath The pathname to which oldpath is to be changed or moved.

58 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Table 2-7 (cont.)

File and Directory Commands (cont.)

SHOW [LANGUAGE] [LANGUAGES] [PREFIX] [TIME] [UNITS]
Lists information about the system in one or more of the following categories:

LANGUAGE Lists the current default language.
LANGUAGES Lists the available languages.

PREFIX Lists the current subdirectories to which the ProDOS 16 prefixes are set.
TIME Lists the current date and time.
UNITS Lists the available units, including device names and (for disks)

volume names.

Debugger Command

DEBUG
Starts the debugger utility.

The commands are divided into six groups: language, edit, display,
assembly and link, file and directory, and debugger. You have already used
the ASM65816 language command and the EDIT editor command. As Table
2-7 shows, the Programmer’s Workshop provides assembly and link com-
mands that let you do as much or as little as you want at one time. That is,
you can:

* Assemble a file and link it later,

* Assemble and link it immediately (ASML), or

* Assemble, link, and execute it (ASMLG).
If you’re an optimist, you may be inclined to assemble, link, and execute a
program directly. You won’t lose anything by doing that, because both the
assembler and linker will stop if it can’t proceed due to errors.

At this point, you should assemble, link, and execute the example pro-
gram, BEEP .SRC, by entering:

ASMLG + L BEEP .SRC
(ASMLG is short for “Assemble, Link, and Go.”) The assembler reads the

source file from disk, then assembles it.
When the assembly process finishes, the listing shown in Figure 2-3

USING AN ASSEMBLER 59

appears on the screen. (Well, not exactly; I cheated a little. Since the screen
is only 80 columns wide, the comments “wrap” onto a new line. I omitted
the comments from the figure so I could show each statement on a single line.)

Unfortunately, the listing scrolls by so fast that it’s virtually unreada-
ble. To stop the scrolling temporarily, and to resume after it’s stopped, press
any key.

Another solution — and probably a better one — is to make the
assembler send its listing to your printer, rather than to the screen. To do
this, insert a PRINTER ON directive at the beginning of your program,
ahead of the KEEP statement. This assumes, of course, that you have con-
figured the Apple IIGS to work with your particular printer and that the
printer is “on-line.”

The Apple IIGS assumes that you have a serial interface card in slot 1
that operates with a specific set of parameters (9,600 baud, 8 data bits, 1
stop bit, no parity, and so on). If you have a serial printer with different

0001 00QOO

0002 0000

0003 0000

0004 0000 keep beep
0005 0000

0006 Q00O Beep START

0007 0000 speaker equ $EQCO030
ooos 0000

0009 0000 AO EB8 03 1dy #1000
0010 0003 AF 30 CO EO BeeplIt ida speaker
001t 0007 A2 E8 03 1dx #1000
0012 000A CA Loop2 dex

0013 000B BO FD bne Loop2
0014 000D 88 dey

0015 O000E DO F3 bne Beeplt
0016 0010 4B rtl

0017 0011 END

17 source lines
0 macros expanded
0 lines generated

Figure 2-3

60 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

parameters, change the settings using the Control Panel’s Printer Port
option. If you have a parallel printer attached to slot 1, switch the slot setting
to “Your Card” using the Control Panel’s Slots option.

For this example and other short programs, you probably won’t care
about the listing. But when you’re debugging long or complex programs,
and trying to find that elusive “bug” that’s making things go haywire, the
listing can be quite useful — indeed, at times, indispensable. Therefore, it’s
worth spending a little time examining exactly what’s being shown. The
listing shows the following:

* The leftmost column shows the line numbers in decimal. (Except for
instruction operands, the rest of the columns show hexadecimal
numbers exclusively.)

* The second column shows where the object code for the statement
(the instruction or directive) will be stored in memory relative to the
starting address of the code. For example, if the system loader
stores the program starting at location $800 of bank 1, the first
instruction, Idy #1000, will be stored at location $800 (i.e., $800
+ offset $0000); the next instruction, Ilda speaker, will be stored
at $803 (i.e., $800 + offset $0003); and so on.

* The third column shows the hexadecimal byte value that will be stored
in memory for that particular instruction or assembler directive.

For an instruction, the byte represents the instruction’s opcode
— the numeric representation of the mnemonic and the addressing
mode it uses. For example, 1dy, which uses immediate addressing,
is translated to the value $A0. (Appendix C summarizes the opcodes
for the 65816’s instruction set.)

For an assembler directive that generates data (none of the
directives in my program do), the byte in the third column represents
the first value that the directive stores in memory. For example, the
Declare Constant directive dc C’'H’ stores a byte value of $48 in
memory, the ASCII code for the “H” character. (Appendix B sum-
marizes the ASCII character set.)

* The remaining numeric columns show the operand values for each
instruction that uses an operand. Some instructions take a 1-byte
operand, others take a 2-byte or 3-byte operand, and a few, such as
dex, dey, and rtl, take no operand at all.

USING AN ASSEMBLER 61

For example, the operand “1000” for the Idy gets assembled into a
2-byte number, $03E8. Note that on the listing $O3E8 appears as
“E8 03! This reflects the low-byte/high-byte order in which the
65816 stores numbers in memory. Similarly, the value of “speaker,”
$E0CO030, is stored in low-byte to high-byte order — 30, then CO,
then EO. Remember this arrangement when you’re viewing data in
memory.

» The remaining columns of the listing are, of course, the source pro-
gram that you entered using the editor.

The lines below the listing provide additional information about the
assembly. The first, “17 source lines,” tells you that there are 17 lines in the
source program (including blank lines), while “0O macros expanded” and “0
lines generated” refer to macros (a concept explained in a later chapter).
There are no macros in this program; hence, the zeros.

When the linker finishes, it displays some information about the seg-
ments in the program (this has only one segment, Beep) and shows:

There is 1 segment, for a length of $00000011 bytes.

This says that the program is 17 ($11) bytes long. (The 8-digit length field
suggests that the linker can handle exceptionally large programs!)

Finally, the program is loaded into memory and run. The beep sounds
for about three seconds and then the # prompt reappears. CATALOGing the
disk at this point will reveal three files for your program:

» BEEP.SRC — The source file you created using the editor.
« BEEP.ROOT — The object file that the assembler produced.
» BEEP — The load file that the linker produced.

BEEP.SRC, BEEP.ROOQOT, and BEEP have the types SRC (for source), OBJ
(for object), and EXE (for shell load), respectively.

If everything went smoothly and you heard the beep, you have success-
fully entered, assembled, linked, and run the program (congratulations!).
Otherwise, if you received any error messages, you must edit the source pro-
gram, then give another ASMLG command.

62 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Shell Load Files and System Load Files

You can run the shell load (EXE) file that the linker has produced by
entering its pathname from the # prompt. However, to run it from the
System Disk’s Program Launcher, you must convert it to ProDOS 16 system
load file format. To do this, enter the command:

filetype pathname sl6

After that, cataloging the disk will reveal that your program has a “Type” of
S$16, which identifies it as a ProDOS 16 system load file.

Automating the Assembly Process

If your program is long or complex (or even short, but error-ridden), you
will probably have to assemble and link it many times. Typing the same
ASML command over and over is pure drudgery, and if you’re fumble-
fingered like I am, you often wind up with the added monotony of retyping
commands. Fortunately, there is a way to automate the process: put your
commands in an EXEC (Executive) file.

An EXEC file contains a list of APW commands that the Wordshop’s
shell program will execute when you enter the file’s pathname. For example,
suppose you want to assemble and link a program called MYPROG.SRC,
then convert the linker’s output to a system load file. An EXEC file that does
this would contain:

asml myprog.src¢c keep=myprog
delete myprog.root
filetype myprog S16

Here, the keep on the first line indicates that there is no KEEP direc-
tive in the program. Note the command to delete MYPROG.ROOT. Once
you have linked a program, its object file is no longer needed; you can dis-
card it.

To create an EXEC file, enter exec from the # prompt (that changes
the active language to EXEC), then start the editor with a command of the
form edit pathname. EXEC files are, by convention, given the extension
BUILD, so you may enter, say, edit myprog.build.

Once in the editor, enter the commands that belong in your EXEC file,
then save it to disk. To run the file (i.e., to perform the commands in it),
enter its name from the # prompt; e.g., enter myprog.build.

USING AN ASSEMBLER 63

Multisegment Programs

The example program contains only one segment, Beep. However, if your
program is large, you should divide it into functional segments. When the
assembler assembles a multisegment program, it puts the first (main) seg-
ment in an object file that has the extension ROOT and puts all other seg-
ments in a file that has the extension A. For example, if MYPROG.SRC
contains segments named Main, Init, and Dolt, the assembler would store
Main in MYPROG.ROOT and store Init and Dolt in MYPROG.A.

The linker handles multiple object files automatically. If you enter an
ASSEMBLE, ASML, or ASMLG command for MYPROG.SRC or a LINK
command for MYPROG, the linker will find and link every object file
whose name starts with MYPROG. (As I mentioned earlier, object files are
unneeded after they have been linked. Your BUILD file should generally
contain commands to delete them.)

Debugger

Sometimes a program doesn’t do what you expected, but you don’t know
quite why. If you can’t spot the problem by examining the assembler listing,
you probably need the services of the debugger. The debugger is a handy
utility that lets you run a program one instruction at a time, or keep running
the program until you tell it to stop. Each time the debugger executes an
instruction, it highlights the instruction it will execute next and shows the
current values of the registers and the data on the stack.

The debugger can also display the contents of memory and disassemble
programs; that is, it can display an assembled and linked program in its
mnemonic form. Disassembling is convenient, for example, for examining
programs stored in ROM.

Starting the Debugger

To start the debugger with the APW prompt on the screen, enter the com-
mand debug. When the debugger’s initial screen appears, press Return to
clear the copyright information at the bottom. Now you must load the pro-
gram you want to debug. To do this, put the program’s disk in the drive and
enter a command of the form '

load pathname

where pathname is the program’s pathname.

64 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Since you only have one program at this point, load it by entering load
beep. When BEEP has been loaded, the screen will look similar to Figure 2-4.

Subdisplays on the Debugger Screen

The Apple IIGS Programmer’s Workshop manual refers to the entire screen
as the “master display,” and to areas on the screen as “subdisplays.” The two
lines at the top of the screen are called the register subdisplay. They show

the following:

* KEY is a keystroke modifier. The debugger normally interprets key-
strokes as commands to itself (more about these commands shortly).
Thus, if the program you are debugging involves any kind of key-
board input, you must tell the debugger that a keystroke is for your
use by pressing another key (a “modifier”) with it.

KEY BRK Debugd K/PC
00 od 1400 01/0CE9

3011:00 00/0000: 71
2010:6F 00/0000: 71
300F:7E 00/0000: 71
00E:80 00/0000: 71
3000:03 00/0000: 71
00C:A2 00/0000: 71
3008:2C 00/0000: 71
00A:B0 00/0000: 71
3009:4A 00/0000: 71
8008:40 00/0000: 71
3007:20 00/0000: 7t
004:80 00/0000: 71
3005:FD 00/0000: 71
004:23 00/0000: 71
3003:20 00/0000: 71
3002:06 00/0000: 7t
3001:90 00/0000: 71
200:02 00/0000: 71
FFF:C9 00/0000: 71

LH 0 0 00 00 00000000800

-

: {Cowsand line)

B D0 S

A

X

Y

@ L P nvexdizce

00 2C00 2FFF 100A 0000 0000 00 9E O 00 00000000 0

00/0000-00-00
00/0000-00~00
00/0000-00-00
00/0000-00-00
00/0000-00-00
00/0000-00-00
00/0000-00-00
00/0000-00-00
00/0000-00-00

€1/0000.000F-T
00/0000. 0000-7
00/0000.0000-7
00/0000.0000-7
00/0000.0000-7
00/0000. 0000-7
00/0000.0000-7
00/0000.0000-7
00/0000.0000~7

Figure 2-4

USING AN ASSEMBLER 65

You can make the debugger recognize Shift, Control, Caps Lock,
Option, OpenApple, a keypad key, or a repeating key as a keystroke
modifier. Details are in the Programmer’s Workshop manual.

* BRK is a breakpoint flag. A breakpoint is a location in a program at
which the debugger is to stop executing and let you examine the
registers or memory. I discuss breakpoints later.

* DebugD points to a direct page that the debugger uses internally.
You can generally ignore it.

* The next seven entries are the 65816’s registers: K/PC is program
bank register and program counter, B (data bank register), D (direct
page register), S (stack pointer), A, X, and Y. Here, K/PC points
to the first instructions in your program, although that instruction
is not yet displayed on the screen.

* M and Q are the so-called machine-state and quagmire registers.
These registers aren’t very useful for most applications.

* L is the language card bank.

* P is the processor status register. Its individual bits are shown at the
end of the register subdisplay. Note that m, x, and e are O; the
debugger assumes you want full native mode.

The debugger provides commands that let you change the contents of any
register, and I will discuss them shortly.

The leftmost column on the screen is the stack subdisplay. It shows the
address and contents of the memory locations that precede and follow the
location pointed to by the stack pointer. The entry in inverse video at the
bottom indicates the current stack location.

The columns that extend to the end of the K/PC data comprise the RAM
subdisplay. By entering mem, you can display the contents of up to 19 different
locations in memory — one memory entry on each line. Once the cursor is
in the RAM subdisplay, move to the line you want and type a hexadecimal
address; the digits shift left as you type them. Then type one of three letters:

* H displays the 1-byte hex contents of that location and its correspond-
ing ASCII character (e.g., FA ‘z°).

* P displays the contents of the location and the next location as a 4-
digit number (e.g., E9E6).

66 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

+ L displays the contents of the location and the next two locations as
a 6-digit number (e.g., 008721).

To return to the command line, press Esc.

The rightmost column in Figure 2-4 contains two subdisplays: the
breakpoints subdisplay at the top and the memory protection subdisplay
at the bottom. I discuss the breakpoints subdisplay later, under “Break-
points.” The memory protection subdisplay is only useful for advanced
applications, but you might like to read about it in the Programmer’s Work-
shop manual.

The blank area at the right of the screen is reserved for the disassembly
subdisplay, in which the debugger will display your program. Now it’s time
to look at the available debugger commands.

Table 2-8 lists the most commonly used debugger commands. Note that
they are divided into six groups, arranged in order of importance.

Single-Step and Trace Commands

These commands let you execute a program one instruction at a time (single
step) or execute it until you tell the debugger to stop (trace). In either case,
you can tell the debugger to start at the current K/PC address or at another
address of your choice.

The debugger will accept an address in nearly any form, as long as you
follow it with an S or T. Hence, 104EDS, 0104EDS, 1/04EDS, and
01/04EDS are all valid commands to enter step mode at location $04ED of
bank 1. If you omit the bank number (and enter, say, 04EDS), the debugger
assumes you're referring to the current program bank, so it obtains the bank
number from the program bank register (K).

Once the debugger is in single-step or trace mode (SINGLE STEP or
TRACE appears at the bottom of the screen), you can enter single-key “sub-
commands” to trace to the end of a subroutine, skip the next instruction (usu-
ally BRK), turn the sound on or off, suspend tracing, or change the trace
speed.

The T subcommand, which changes the screen to text mode, is impor-
tant for any program that displays graphics. Once the program starts run-
ning, it switches the screen from the debugger’s display to the application’s,
and you lose sight of the instructions being traced. The T subcommand puts
the screen back into the debugger, where you can once again follow the trace
operation.

USING AN ASSEMBLER 67

Table 2-8

Command Description

Single-Step and Trace Commands

S Enter single-step mode at the current instruction. The current instruction.
The current instruction is the one the 65816 will execute next, the one
K/PC points to; the debugger highlights it on the screen. To execute that
instruction, press the spacebar; to leave single-step mode, press Esc.

addressS Enter single-step mode at address.

T Enter trace mode at the current instruction. The debugger begins execut-
ing immediately, and stops only when you press Esc or it encounters a
breakpoint or BRK instruction.

addressT Enter trace mode at address.

The following are subcommands. They are only available when the debugger is in single-step
or trace mode.

Esc Exit single-step or trace mode.

OpenApple Stop tracing until the OpenApple key is released.

Spacebar Execute highlighted instruction (in single-step mode).

R Trace up to the next RTS, RTI, or RTL instruction. This lets you trace
through one subroutine at a time.

T Change the display to text mode.

Left-arrow Change to the slow trace speed.

Right-arrow Change to the fast trace speed (default).

Down-arrow Skip the next instruction. This is convenient for skipping over a BRK,
for example.

Q Turn the sound off if it is on, or vice versa.

Editing Commands

Control-E Toggle insert/replace mode. In insert mode, typed characters are inserted
betweem existing characters; in replace mode, typed characters replace
existing characters.

Delete Delete the character to the left of the cursor.
Control-F Delete the character at the cursor position.
Esc Delete the current line.

Control-Y Delete to the end of the line.

Return Execute the command. The cursor can be anywhere on the line.

68 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Table 2-8 (cont.)

Command Description
Register Commands
e Toggle the emulation mode flag.
m Toggle the index register flag.
X Toggle the memory/accumulator flag.

register = value

Load the specified register with the specified value. Register names are:
KEY — Key modifier
K — Program bank register
PC — Program counter
B — Data bank register
D — Direct page register
S — Stack pointer
A — Accumulator
X — Index register X
Y — Index register Y
M — Machine-state
Q — Quagmire
L. — Language card bank
P — Processor status register

address:

address:value(s)

address:’ string

address:” string

Memory Commands

Display 368 consecutive bytes in memory, starting at address. The
debugger also shows the ASCII equivalent of each byte in either normal
video (values between $20 and $7F) or inverse video (values between
$CO0 and $FF). ASCII values that can’t be displayed appear as either a
period ($00 to $1F) or an inverse period ($80 to $BF).

Store the hexadecimal value(s) in memory, starting at address. For
example, the following command stores $A1 at location $100 in bank 1:

01/0100:A1

You can store up to three bytes at a time. For example, the following
command stores $A1 at 01/0100, $A2 at 01/0101, and $A3 at 01/0102:

01/0100:A1A2A3

Store the values corresponding to string in memory, starting at address.
The high bit of each byte is 0, which produces normal video if you display
the string.

Store the values corresponding to string in memory, starting at address.
The high bit of each byte is 1, which produces inverse video if you display
the string.

USING AN ASSEMBLER 69

Table 2-8 (cont.)

Command Description

Memory Commands (cont.)

address:instruction
Assemble the specified instruction and store its opcode and operand at
address. The debugger will display the disassembled form of the new
instruction when you enter single-step or trace mode.

Disassembly Commands

addressL. Disassemble 19 instructions, starting at address.
L Disassemble the next 19 instructions, starting at the current K/PC address.
ASM Clear the disassembly subdisplay. This only removes the disassembled

instructions from the screen; it does not affect K/PC.

Conversion Commands

value = Convert value from hexadecimal to decimal. The value can range from 0
to FFFF.

+value = Convert value from decimal to hexadecimal. The value can range from 0
to 65535.

—value= Convert value from decimal to hexadecimal. The value can range from 0
to —32768.

Editing Commands

The editing commands let you correct typing errors on the command line.
Note that except for Esc, these are the same commands you use in the editor.

Register Commands

You can change any register by entering a command of the form
register=value

where register is the abbreviation for the register (it must be uppercase) and
value is a hexadecimal number. For example, X =10 loads $10 (decimal 16)
into the X register. You may want to change a register at some point in a
program to see what would happen under some alternate set of cir-
cumstances. You may also want to change an index register to terminate a
long loop operation that you don’t care about.

You can also reverse, or “toggle,” the setting of the status register’s

70 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

emulation, memory/accumulator, or index register bit by entering e, m, or
x, respectively. You probably won’t do this very often, however; the pro-
gram should regulate these bits.

Memory Commands

These commands let you display and, optionally, alter the contents of mem-
ory. The address: command makes the debugger display a screenful of bytes
in memory (368 bytes, to be exact), starting at the specified address. It also
shows the ASCII equivalent of each byte, where applicable, and shows non-
character bytes as either a period (.) or inverse period. To leave the memory
display and return to the regular debugger screen, press Esc.

Of course, the mem command also displays memory, on the RAM sub-
display, but it can only show 3 bytes on a line — or 1 byte, if you want the
ASCII representation. The address: command provides much more informa-
tion, but it doesn’t let you see the registers or your program at the same time.
Alas, nothing comes for free.

You can also change data in memory, by entering a hexadecimal value
or string after address:. Finally, if you enter an instruction after address:,
the debugger will assemble it and store its opcode and operand starting at
that location. For example,

0834 :LDY #0010

stores $AO (opcode for LDY immediate), $10, and $00 at locations $834,
$835, and $836 of the current program bank. The operand 0010 tells the
debugger that the 65816 is running in native mode with 16-bit index registers
(status flag X =0). The debugger isn’t smart enough to know that the shorter
form, LDY #10, means the same thing if Y is 16 bits long, because it
doesn’t look at the X flag. It simply assembles what you give it.

Disassembly Commands

Sometimes you may want to look at instructions in other parts of memory,
say, a subroutine in ROM or instructions in another part of your own pro-
gram. To do this, you can make the debugger “disassemble” memory
starting at a specified address by entering addressL. Figure 2-5 shows a typ-
ical disassembly that was produced with the command 01/1200L. The
debugger always disassembles 19 instructions, but only the first eight are
shown here.

Note that for the program counter relative mode and relative long

USING AN ASSEMBLER 71

12/1000: AD 15 18 LDA 1815
12/1003: 9D 350 10 STA 1050, X
12/1006: 9F 20 30 05 STA 050320
12/100A: A9 77 66 LDA #6677
12/100D: 82 20 10 BRL 2030 (+1020)
12/7/1010: 80 20 BRA 1032 (+20)
12/1012: F4q4 12 34 PEA 3412
12/1015: 62 10 10 PER 2028 (+1010)

11l _more instrugtions

Figure 2-§5

modes, as used by the BRL, BRA, and PER instructions, the debugger lists
the effective address followed in parentheses by the relative displacement.
You probably won’t care about the displacements, but they’re there if you
ever need them.

Conversion Commands

Finally, the debugger can perform on-screen conversions of hex-to-decimal
or vice versa. You might use one of these commands to determine the
decimal form of a hexadecimal operand that the debugger has displayed.
Once you give a conversion command, it remains on the command line until
you press Esc.

Breakpoints

As mentioned earlier, there are two ways to execute a program using the
debugger. You can single step through it one instruction at a time, or you
can trace through it, executing instructions until the processor encounters a
BRK instruction or you press Esc. The debugger also lets you set break-
points in a program.

A breakpoint is a location at which the debugger is to stop tracing so
you can examine the contents of registers and memory. Breakpoints can be
valuable for locating an elusive “bug” that’s making your program produce
incorrect answers or crash. They put you (rather than the microprocessor) in
control of the program.

How you use breakpoints will depend on your application. You might
set one at the instruction that follows a loop, to see what the loop produced

72 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

before continuing. You could also set a breakpoint to determine whether a
particular instruction is ever executed; if tracing never stops there, the
instruction has not been executed.

The debugger lets you set up to 17 breakpoints. The breakpoints sub-
display (above the memory protection subdisplay) has space for nine entries,
but you can enter more by using some of the memory protection subdisplay’s
lines.

Entries in the breakpoints subdisplay are initially set to 00/0000-00-00,
where the first item is (as you may have guessed) the breakpoint address.
The second item is the “trigger value”; the number of times the debugger is
to execute the breakpoint instruction before stopping. The third item is a rep-
etition counter. During tracing, it displays a running total of the number of
times the instruction has been executed.

To set a breakpoint, enter bp on the command line. This moves the
cursor to the hyphen that separates the address and trigger value in the first
entry. To enter a breakpoint there, type its address, then press the right-
arrow key and type the trigger value. If that’s the only breakpoint you want,
press Esc to return to the command line; otherwise, press the down-arrow
key to reach the next line where you want to enter a breakpoint. If you make
a mistake entering a breakpoint or decide you don’t want it, move to its line
and either reenter it or press Delete to clear it.

You can also enter three breakpoint commands from the command line:
clr clears all breakpoints, in makes the debugger insert BRK instructions at
the breakpoint locations (the register subdisplay’s BRK entry shows “i”),
and out removes the BRKs that in inserted (the BRK entry shows “0”).

Leaving the Debugger

To leave the debugger and restore the # prompt, press Q for Quit.

CHAPTER 3

65816 Addressing Modes

The 65816 provides 24 different ways to obtain the data on which your pro-
gram is to operate. Table 3-1 lists these addressing modes in the order I
describe them in this chapter. It also gives the assembler format for each
mode (which is how the 816 differentiates them) and shows, with shading,
which modes are new with the 816.

In this table, Loc and LongLoc represent 16- or 24-bit addresses in a
program bank or data bank (which one depends on the instruction), while
DLoc and DLongLoc represent 16- or 24-bit addresses in the direct page.
These memory address operands are generally labels, and the assembler
converts them to the numeric addresses they represent.

For example, suppose your program contains the instruction JMP
NEWLOC (i.e., jump or GOTO the instruction labeled NEWLOC), where
NEWLOC is at location $1200 in the program bank. When you assemble
the program, the assembler will translate NEWLOC into the numeric
address $1200.

The terms direct, indirect, and indexed need a general introduction.
Direct means that the address of the data is in the direct page (called the zero
page in 6502 literature). Indirect means that the address of the data is in the
specified location. Indexed means that the address of the data is obtained by
adding the contents of an index register to the specified address.

74 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Table 3-1
Mode Operand Format
Immediate #Num
Accumulator A
Implied blank (no operand)
Absolute Loc
Absolute Long LongLoc
Absolute Indirect (Loc)
Absolute Indexed with X Loc,X
Absolute Indexed with Y Loc,Y
Absolute Long Indexed with' X Longloc, X
Absolute Indexed Indirect (Loc,X)
Direct (Zero Page) DLoc
Direct Indirect (DLoc):
Direct Indirect Long [DLongLoc}
Direct Indexed with X DLoc,X
Direct Indexed with Y DLoc,Y
Direct Indirect Indexed (DLoc),Y
Direct Indirect Indexed Long [DLongLocl,Y
Direct Indexed Indirect (DLoc, X)
Program Counter Relative Disp8
Program Counter Relative Long Disp16
Stack (Various operands)
Stack Relative Disp8.S
Stack Relative Indirect Indexed (Disp8,8),Y
Block Move srcbk, destbk

Notes: (1) Shaded modes are new with the 65816; they are not available on the 6502.
(2) Symbols have the following meanings:

Num = 8- or 16-bit constant

Loc = 16-bit address

Longloc = 24-bit address

DLoc = 16-bit address in the direct page

DLongLoc = 24-bit address in the direct page

Disp8 = 8-bit signed relative displacement (distance forward or backward)
Displ6 = 16-bit signed relative displacement

srcbk = Source bank number
destbk = Destination bank number

Immediate

The immediate addressing mode lets you specify a constant as the operand.
Here, you must precede the constant with a # symbol. For example, the

instruction

LDA #§4A

65816 ADDRESSING MODES 75

loads the hexadecimal value 4A (decimal 74) into the accumulator (the A
register). '

Sometimes you will want to work with the address of a memory loca-
tion, rather than its contents. (Address operations are common in the IIGS
Toolbox.) Memory addresses are 3 bytes long — a 1-byte bank number and
a 2-byte offset — and are stored in offset/bank number order in memory.
Thus, to read the offset into a register, you would do a load immediate of
the location’s label (e.g., LDA #ThisLabel); to read the bank number, you
would do a load immediate of the label plus 2 (e.g., LDA #ThisLabel + 2).

Accumulator

In the accumulator mode, the operand is in the accumulator. For example,
this instruction increments the accumulator (adds 1 to it):

INC A

Instructions that use the accumulator addressing mode are only 1 byte long,
because the opcode provides all the information the processor needs.

Implied

About half of the 65816’s instructions perform simple tasks such as setting
or clearing a bit in the processor status register, incrementing or decre-
menting a register, or copying the contents of one register into another.
These instructions need no operand because the operand is “implied” in the
opcode. Some examples are:

CLC ;Clear CarryFlag

DEY ;Decrement the YRegister

INX ;Increment the XRegister

TAY ;Transfer Accumulator to YRegister

All implied addressing instructions are 1 byte long.

Absolute and Absolute Long

Absolute addressing allows you to access any of the 64K locations in a bank
of memory. Absolute addressing instructions are 3 bytes long: the opcode,

76 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

followed by a 16-bit address. When you’re accessing data, the 65816 uses
the data bank register (DBR) to select the bank. For example, if the location
DATALOOC is in the active data bank,

LDA DATALOC

reads its contents into the accumulator.

The instructions Jump (JMP) and Jump to Subroutine (JSR) — the
assembly language counterparts of GOTO and GOSUB in BASIC — also
use absolute addressing. However, because they are used to move within a
program, the 65816 employs the program bank register (PBR), rather than
the data bank register, to select the bank. For example,

JMP THERE

makes the 816 continue at the instruction that is labeled THERE, by putting
its address in the program counter.

You may be wondering what happens if the target location or instruc-
tion is in a different bank than the one to which the bank register (DBR or
PBR) is pointing. When that happens, the assembler encodes the instruction
using the absolute long mode. In absolute long mode, the instruction con-
tains a 24-bit address that points to your target location. Here, the high-order
8 bits of the address specify the bank, while the remaining 16 bits specify
the location within that bank. For example, if DATALOC is not in the active
data bank, the assembler assembles

LDA DATALOC

using absolute long addressing.

The key point is that you needn’t be concerned about where your data
is located. The assembler will determine its location and apply the correct
mode, absolute or absolute long, automatically.

In general, absolute operands are labels, but you may (for some reason)
want to specify the numeric form of an address. To do this, simply enter the
number directly. For example, LDA $100 reads the contents of location $100
in the active data bank. However, to use a numeric operand for absolute long
addressing, you must precede it with a < symbol. For example, LDA <$100
reads the contents of location $100 in bank 0.

65816 ADDRESSING MODES 77

Absolute Indirect

Absolute indirect is really two addressing modes, one used only by the JMP
instruction and the other used only by the JML instruction. (As mentioned
in the preceding section, JMP is the assembly language version of BASIC’s
GOTO. JML, short for JumpLong, is the same, except it can transfer to any
bank; JMP is limited to the current bank.) The term indirect here indicates
that the operand contains the target address; the operand is not itself the
target address, as it is for a JMP absolute instruction.

In the case of JMP, the indirectly addressed location contains a 2-byte
address in the 65816’s standard order: with the high byte following the low
byte. The 65816 combines this address with the 8-bit program bank register
(PBR) to produce the 24-bit destination address. For example,

JMP (TADD)

makes the 65816 transfer to the location in the active program bank whose
address is contained in the 16-bit location TADD. Figure 3-1 shows how this
instruction operates if TADD contains $014C.

In the case of JML, the indirectly addressed location contains all 3
bytes of the destination address, with the low byte first. To make the trans-
fer, the 65816 loads the low and middle bytes into the program counter (PC)
and the high byte into the program bank register (PBR).

You may be thinking, “Why all this rigmarole? If your destination is
some specific address, why not simply use regular absolute long addressing
to load it into the program counter and PBR?” The answer is that absolute

JMP (TADD)

TADD $4C
TADD + 1| $01

Program counter $014C

Figure 3-1

78 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

indirect addressing allows you to work with variable destination addresses.
For example, in a program where a user chooses from options in a menu,
you can use the option number to look up the address of that option’s sub-
program in a table, store the address in memory, then jump to it using abso-
lute indirect addressing. Absolute indirect addressing also allows the effec-
tive address to be in read/write memory (RAM) even when the program is
in ROM or PROM.

The absolute indirect mode has one restriction that limits its use:
the location that holds the indirect address must be in bank 0! That be-
ing the case, you may want to make indirect jumps using the absolute
indexed indirect mode (discussed shortly), which doesn’t have the bank 0
restriction.

Absolute Indexed with X or Y

In absolute indexed addressing, the 65816 computes the effective address by
adding the contents of an index register (X or Y) to the absolute address in
the instruction. That is,

Effective address Absolute address + X

or
Effective address = Absolute address + Y

All absolute indexed instructions are 3 bytes long. Absolute indexed
operands are formed by attaching a ,X or,Y to the address or address label.

Absolute indexed addressing is particularly useful for accessing tables.
Here, you would enter the table’s name as the address operand and use an
index register to select the item you want. For example, if DTABLE is a
table of 16-bit words and X contains 6, this instruction

LDA DTABLE,X

loads the third word of DTABLE into the accumulator. Figure 3-2 shows
how this instruction operates.

Note that it is necessary to put 6 into X because you are referring to a
table of words (rather than bytes), and words are 2 bytes long. Using 3 here
would cause the 816 to load the third and fourth bytes of DTABLE into the
accumulator, and that’s not what you intended.

65816 ADDRESSING MODES 79

DTABLE
LDA DTABLE, X Word 0
Y —— e
} Word 2
DTABLE +6 | $BC ’ Word 3
DTABLE +7| $04 or

A $04BC

Figure 3-2

Absolute Long Indexed with X

The absolute indexed modes just described always obtain their operands
from the active data bank — that is, from the bank to which the data bank
register (DBR) is pointing. If you give an absolute indexed with X instruc-
tion that refers to a location in some other bank, the assembler assembles it
using the absolute long indexed with X mode. In that case, the instruction
is 4 bytes long, rather than 3, because it contains a 3-byte (24-bit) address.
Note that there is no comparable mode for the Y register.

If your operand is a number rather than a label, you must tell the
assembler which mode to use by preceding the absolute long indexed
operand with a > symbol. For example, LDA $100,X refers to location $100
in the active data bank, while LDA >$100,X refers to location $100 in
bank 0.

Absolute Indexed Indirect

This is a combination of two modes that were discussed earlier: absolute
indirect and absolute indexed with X. Recall that with absolute indirect
addressing, the operand is the address of the location that contains the effec-
tive address. Recall also that absolute indexed with X involves adding a dis-
placement in the X register to a base address in the instruction to produce
the effective address.

With absolute indexed indirect addressing, the 65816 adds the contents

80 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

of the X register to the absolute address in the instruction to obtain the indi-
rect address. That is,

Indirect address = Absolute address + X
then
Effective address = (Indirect address)

where the parentheses mean “contents of.” Absolute indexed indirect
operands have the general form (Loc,X).

To see how this mode is used, suppose your program displays a menu
and prompts the user to type a number from 0 to 4 to select an option. Sup-
pose also that it has a table called JTABLE that contains five 16-bit addres-
ses, one for each option. To begin, the program reads the number into the X
register and doubles it (because you’re accessing words, not bytes). Then,
to start the routine for the selected option, it executes:

JMP (JTABLE, X)

where JTABLE is assumed to be in the current program bank (nor the data
bank). Figure 3-3 shows how this instruction operates if X contains 4.

Direct

Within bank 0 of memory, there is a certain page (i.e., a 256-byte block of
locations) that the 65816 can access faster than any other page. If you think

JMP (JTABLE, X)

\ JTABLE

JTABLE +4 | $EO
JTABLE+5 | $12

PC $12E0

Figure 3-3

65816 ADDRESSING MODES 81

of the computer’s memory as a group of boxes in a post office — one for
each mail carrier in a city — consider this “direct” page (or zero page, in
6502 terminology) as the box that is closest to the person sorting mail.
Because of this direct box’s proximity, the sorter can toss items into it
immediately, without even thinking. However, whenever the sorter encoun-
ters an item that belongs in any other box, he or she must first search for the
box, and that takes more time.

The 65816 acts exactly like the mail sorter in my hypothetical post
office; it can transfer data between the direct page — the page in bank O at
which the direct register (D) is pointing — and a register faster than it can
transfer to or from any other page. Thus, when you give an instruction that
refers to a location in the direct page, the assembler says, “Oh, that’s in the
direct page. The 816 can do that operation faster than normal.” It then
assembles the instruction using direct addressing.

Direct addressing is, then, a form of absolute addressing in which the
65816 accesses only a specific 256-byte page within bank 0. Direct
addressed instructions are one byte shorter and one clock cycle faster than
absolute addressed instructions. To construct the operand address, the 65816
adds the 8-bit offset in the instruction to the 16-bit contents of the direct
register (D). Again, the assembler will use direct addressing rather than
absolute addressing automatically, where applicable; you needn’t tell it
which mode to use.

Except for JMP (Jump) and JSR (Jump to Subroutine), all instructions
that can use absolute addressing can also use direct addressing. However,
considering the savings in storage space and execution time with direct
addressing, you should, whenever possible, use the direct page to hold fre-
quently accessed data. The direct page is also useful for storing temporary
data values.

Direct Indirect and Direct Indirect Long

With direct indirect addressing, the processor adds an 8-bit offset contained
in the instruction to the 24-bit contents of the direct register to produce an
address within the direct page. It then combines the 16-bit contents of the
addressed location with the 8-bit data bank register (DBR) to produce the 24-
bit effective address of the data. The operands for direct indirect instructions
have the general form (DLoc). For example, if DLOC is in the direct page,

LDA (DLOC)

82 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

uses the contents of DLOC as an address in the active data bank from which
it obtains the data to be loaded into the accumulator.

The direct indirect long mode is the same, except the processor obtains
a 24-bit (3-byte) address from the indirect location. Direct indirect long
operands have the general form [DLongLoc]. For example,

LDA [DLOC)

Direct Indexed with X or Y

In direct indexed addressing, the 65816 computes the effective address by
adding the contents of the direct register (D) and an index register (X or Y)
to the 8-bit offset in the instruction. That is,

Effective address = Offset + D + X
or

Effective address = Offset + D + ¥
All direct indexed instructions are 2 bytes long, and their operands are
formed by attaching a ,X or ,Y to the offset.

Direct indexed addressing is particularly useful for accessing tables.
Here, you would enter the table’s name as the offset operand and use an
index register to select the item you want. For example, if DTABLE is a
table of 16-bit words and X contains 6, this instruction

LDA DTABLE,X

loads the third word of DTABLE into the accumulator.

Direct Indirect Indexed and Direct Indirect Indexed Long

Direct indirect indexed addressing is similar to direct indirect addressing,
except that after obtaining the indirect address, the 65816 adds the contents
of the Y register to it to form the 24-bit effective address. That is:

Effective address = (DLOC) + Y

65816 ADDRESSING MODES 83

This is useful if the indirectly addressed location points to a table. Then,
adding the Y register produces the address of an element in the table. Direct
indirect indexed operands have the general form (DLoc),Y.

Direct indirect indexed long is the same, but the 816 extracts a 24-bit
addresss, rather than a 16-bit address, from the indirectly addressed location.
Direct indirect indexed long operands have the general form [DLongLoc],Y.

Direct Indexed Indirect

The direct indexed indirect mode is somewhat like the similar-sounding
direct indirect indexed mode, except that the 65816 uses the X register to
calculate the location in the direct page from which it is to obtain the address
of the data. That is,

Indirect address = D + offset + X
then
Effective address = (Indirect address)

Direct indexed indirect operands have the general form (DLoc,X).
This mode is useful for selecting an address from a table of addresses
in the direct page. If ADDRTBL is such a table,

LDA (ADDRTBL,X)

extracts the address at offset X and uses it to obtain the operand that it loads
into the accumulator.

Program Counter Relative and
Program Counter Relative Long

Program counter relative addressing is just what its name implies: the effec-
tive address is some offset from the current value of the program counter
(PC). Since the 65816 updates the PC before it executes an instruction, the
PC will be pointing to the next instruction when the offset is applied. A posi-
tive offset produces a higher-numbered address; a negative offset produces
a lower-numbered address.

84 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Program counter relative addressing is only used by the 65816’s branch
instructions. These instructions make the 816 transfer forward or backward
if a specified condition is met (e.g., if a preceding add operation produced
a zero result). Otherwise, if the condition is not met, the 816 proceeds to the
next instruction. For example, the following BCC (Branch on Carry Clear)
instruction will make the 816 transfer to the instruction at NEXT if the carry
flag is 0, or to NOTTEXT if carry is 1:

BCC NEXT ;Iscarry =07
NOTNEXT LDA #$3A ;No. Continue here.

NEXT LDA #4 ;Yes. Transfer here.

Branch instructions are two bytes long, where the second byte contains the
signed offset. With an offset of 8 bits, regular branch instructions can only
transfer 127 bytes forward or 128 bytes backward — about half a page in
either direction. However, there is a Branch Long (BRL) instruction that can
transfer halfway up or down the program bank. BRL uses program counter
realtive long addressing, which adds a 16-bit offset to the PC.

Stack

This is actually several different modes that are used by various instructions
that access the stack, either to “push” data onto it or “pull” data off it.

Stack Relative and Stack Relative Indirect Indexed

These are two modes that you can use to access data on the stack. These
modes are rarely used, however; most people only put data on the stack or
retrieve data from it. Still, it’s nice to know that the 65816 provides some
stack-accessing capability if you ever need it.

With stack relative addressing, the 816 adds an 8-bit signed offset in
the instruction to the 16-bit contents of the stack pointer (S) to produce an
effective address in bank 0. Stack relative operands have the general form
Disp8,S.

Stack relative indirect indexed addressing is similar, except that the
sum of the offset and the stack pointer is an indirect address. The 65816 adds

65816 ADDRESSING MODES 85

the value in the Y register to the contents of the indirectly addressed location
to produce the effective address. Stack relative indirect indexed operands
have the general form (Disp8,S),Y.

Block Move

This mode is only used by the Block Move Negative (MVN) and Block
Move Position (MVP) instructions. These instructions copy a specified
number of bytes from a “source” bank to a “destination” bank, starting at
either the beginning of the source block (MVN) or the end of it (MVP).

The two distinct block move instructions are designed to keep you from
overwriting data. For example, if you move a block forward one byte pos-
ition in memory (to the next higher numbered address), and start at the
beginning of the block, the first byte you move will overwrite the second
byte. Instead, you must start moving from the end of the block, using MVP.

Similarly, if you move a block downward one byte position (to the next
lower numbered address), and start at the end of the block, the first byte you
move will overwrite the preceding byte. This time you must start moving
from the beginning of the block, using MVN.

The operands for the block move instructions have the general form
srcbk,destbk, where srcbk and destbk are the numbers of the source and
destination banks, in hexadecimal. For each instruction, the X register con-
tains the offset of its destination, and the A register specifies the number of
bytes to bemoved minus one. Hence, if X and Y contain 4 and A contains
99, the instruction

MVP 5,6

tells the 65816 to copy 100 bytes from bank 5 to bank 6, starting with the
fifth byte (byte 4).

Addressing Mode Summary

As you now know, the addressing modes that access memory have many
variations, and they can be somewhat confusing. To help sort things out, I
have included Table 3-2. This table lists the name and operand format for
each mode, but in addition it shows — in equation form — how the 65816
calculates the actual address of an operand; that is, its effective address.

86 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Table 3-2
Mode Operand Format Effective Address =
Absolute Loc Loc
Absolute Long LongLoc LongLoc
Absolute Indirect (Loc) (Loc)
Absolute Indexed with X Loc,X Loc + X
Absolute Indexed with Y Loc,Y Loc +Y
Absolute Long Indexed with X Longloc, X LongLoc + X
Absolute Indexed Indirect (Loc,X) (Loc + X)
Direct (Zero Page) DLoc DLoc
Direct Indirect {(DLoc) (DLog)
Direct Indirect Long [DLongloc] (DLongLoc)
Direct Indexed with X DLoc,X DLoc + X
Direct Indexed with Y DLoc,Y DLoc + Y
Direct Indirect Indexed ; (DLoe),Y (Dlocy +Y
Direct Indirect Indexed Long [DLonglocl,Y (DLongLoc) + Y
Direct Indexed Indirect {DLoc, X) (DLoc + X)
Program Counter Relative Disp8 or Loc PC + Disp®
Program Counter Relative Long DispléorLoc PC 4+ Displ6
Stack Relative Disp8.S S + Disp8
Stack Relative Indirect Indexed (Disp8,S),Y (S + Disp8) + Y

Notes: (1) Shaded modes are new with the 65816; they are not available on the 6502.
(2) Symbols have the following meanings:

Loc = 16-bit address.

LongLoc = 24-bit address.

DLoc = 16-bit address in the direct page.

DLongLoc = 24-bit address in the direct page.

Disp8 = 8-bit signed relative displacement (distance forward or backward).
Displ6 + 16-bit signed relative displacement.

For example, in an 8-bit mode, an immediate instruction such as LDA
#10 will execute in two cycles and occupy two bytes in memory, versus
three cycles and three bytes in full native mode. Appendix C gives time and
storage data for each instruction.

Note that the table also correlates each addressing mode with the micro-
processor on which it was introduced. This is intended to benefit readers
who have done some assembly language work on earlier models of the
Apple II, and those who are writing programs which are to be 6502 and
65C02 compatible.

Read-Modify-Write Instructions

Four of the modes in Table 3-3 have increased cycle times when they are
being used with a Read-Modify-Write instruction. As the name implies,

65816 ADDRESSING MODES 87

Table 3-3
Introduced in

Addressing mode Example Cycles Bytes 6502 65C02 65186
Accumulator INCA 2 1 X
Immediate LDA #30 3 3 X
Implied INX 2 1 X
Absolute X

Read-Modify-Write ins. INC Loc 8 3

Other instructions LDA Loc 5 3
Absolute Long LDA LongLoc 6 4
Absolute indexed with X X

Read-Modify-Write ins. INC Loc,X 8! 3

Other instructions LDA Loc,X 5! 3
Absolute long indexed with X LDA LongLoc,X 6 4
Absolute indexed with Y LDX Loc,Y 5! 3 X
Absolute indirect JMP (Loc) 5 3 X
Absolute indexed indirect JMP (Loc¢,X) 6 3
Direct X

Read-Modify-Write ins. INC DLoc 7 2

Other instructions LDA DLoc 43 2
Direct indexed with X X

Read-Modify-Write ins. INC DLoc¢,X 8’ 2

Other instructions LDA DLoc,X 53 2
Direct indexed with Y LDX DLoc,Y 5? 2 X
Direct indirect LDA (DLoc) 6° 2
Direct indirect long LDA [DLongLoc] 7’ 2
Direct indirect indexed LDA (DLoc),Y 63 2 X
Direct indirect indexed long LDA [DLongLoc],Y 7 2
Direct indexed indirect LDA (DLoc,X) 73 2 X
Relative BEQ Label 22 2 X
Relative long BRL Label 32 3
Stack PHA 3-8 1-4 X
Stack relative LDA 3,8 5 2
Stack rel. indirect indexed LDA (4,9),Y 8 2
Block move MVP Source,Dest 7 3

'Add 1 cycle if adding index crosses a page boundary.

2Add 1 cycle if branch is taken.

31f direct register low (DL) does not equal zero, add 1 cycle.

Read-Modify-Write instructions operate by reading the contents of a memory
location, changing it in some way, then returning the result to memory.
As the table shows, the INC (Increment) instruction is of the Read-

88 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Modify-Write variety. INC adds one to the contents of an operand. If the
operand is a memory location, INC must read the location’s contents, add
one to it, then write the result back to the original location. These extra tasks
take time, and it’s reflected in the higher cycle count. Among other Read-
Modify-Write instructions are DEX (Decrement) and the shift and rotate
instructions, which displace the contents of an operand to the left or right.
These instructions, along with the rest of the 65816’s instructions, will be
covered in the next chapter.

Final Thoughts on Addressing Modes

If you are an old hand at Apple II assembly language, you probably breezed
through the new 65816 modes. After all, except for the two stack relative
modes (which hardly anyone would use) and the block move mode (which
only applies to two instructions), the new modes simply provide for “long”
operations — those involving inter-bank operations.

To assembly language newcomers, the addressing modes are a different
story entirely. There are a lot of them, they often look alike (e.g., LDA
Loc,X and LDA Loc,Y), and their names are sometimes baffling (e.g.,
direct indirect indexed long). In all, if you’re just beginning in assembly lan-
guage, your head may be spinning as you read this. That’s natural, and you
shouldn’t worry about it.

In reality, you will probably use only these eight modes frequently:

Accumulator

Immediate

Implied

Absolute

Absolute indexed with X
Absolute indexed indirect
Relative

Stack

What’s more, you will generally use a mode without knowing it. That’s
because in writing a program, you select the instructions that do what you
want. Good programmers don’t think in terms of choosing an addressing
mode, but rather in terms of (A) which instruction and (B) which form of
that instruction does what they want.

For example, to add one to the contents of the accumulator, or “incre-
ment” it, a programmer would use an INC A instruction, to which the

65816 ADDRESSING MODES 89

assembler applies the accumulator mode. Similarly, incrementing a memory
location (say, Count) involves using an INC Count instruction, to which the
assembler applies the absolute mode. Did the programmer consciously
chose a mode? No. He or she simply selected an instruction, and left it up
to the assembler to translate that instruction using the correct mode.

Just as my hypothetical programmer thinks in terms of instructions, so
should you. Concentrate on finding an instruction that does the job, and let
the assembler select the mode.

CHAPTER 4

65816 Instruction Set

In earlier chapters you became acquainted with LDA and some other
simple instructions. In this chapter, I’ll describe the 65816’s entire instruc-
tion set. The 816 uses the same instructions as the earlier 6502 and 65C02,
but it also has a few new ones. For the benefit of readers who have prog-
rammed on an Apple /e or some other 6502-based computer, I will note the
differences.

In some books authors cover the instructions individually, discuss-
ing them in alphabetical order. This is suitable for reference manuals,
but it tends to leave readers bored and bewildered after the fifth or sixth
instruction. In this book, I group instructions by function, describing
similar instructions together. For example, 1 group add instructions with
subtract instructions, shifts with rotates, and so on. This should help you
understand the instruction set and appreciate how individual instructions
relate to each other, so you don’t learn them as just a lot of disjointed
entities.

Later, after running a few programs, you will only need to refer to this
chapter occasionally, to look up details of specific instructions. Generally,
you should be able to resolve most questions by referring to Appendix C,
where the instructions are summarized alphabetically.

65816 INSTRUCTION SET 91

Instruction Types

As mentioned earlier, the 65816 has 91 different types of instructions. Table
4-1 shows their assembler mnemonics and tells what each stands for.

Alternate Maemonics

The assembler also provides alternate mnemonics for certain instructions, as
listed in Table 4-2. The most useful alternates are BLT (Branch if Less Than)
and BGE (Branch if Greater Than or Equal) — branch instructions that test
the result of a preceding compare operation. Certainly, people more often
want to test whether an operand is “less than” or “greater than or equal to”
another operand than whether the carry flag is O (clear) or 1 (set).

Table 4-1
Mnemonic Meaning
ADC Add to Accumulator with Carry
AND AND Memory with Accumulator
ASL Arithmetic Shift Left
BCC Branch on Carry Clear (C=0)
BCS Branch on Carry Set (C=1)
BEQ Branch if Equal (Z=1)
BIT Bit Test
BMI Branch if Minus (N=1)
BNE Branch if Not Equal (Z =0)
BPL Branch if Plus (N =0)
BRA Branch Always'
BRK Force Break
BRL Branch Always Long?
BVC Branch on Overflow Clear (V =0)
BVS Branch on Overflow Set (V=1)
CLC Clear Carry Flag
CLD Clear Decimal Mode
CLI Clear Interrupt Disable Bit
CLV Clear Overflow Flag
CMP Compare Memory and Accumulator
COP Coprocessor”
CPX Compare Memory and X Register

CPY Compare Memory and Y Register

92 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Table 4-1 (cont.)

Mnemonic Meaning

EOR Exclusive-OR Memory with Accumulator
INC Increment Memory or Accumulator

INX Increment X Register

INY Increment Y Register

JML Jump Long?

IMP Jump

JSL Jump to Subroutine Long*UP*2

JSR Jump to Subroutine

LDA Load Accumulator

LDX Load X Register

LDY Load Y Register

LSR Logical Shift Right

MVN Block Move Negative (to a lower-numbered address)?
MVP Block Move Positive (to a higher-numbered address)®
NOP No Operation

ORA OR Memory with Accumulator

PEA Push Effective Address onto Stack®

PEI Push Effective Indirect Address onto Stack?
PER Push Effective Program Counter Relative Address onto Stack?
PHA Push Accumulator onto Stack

PHB Push Data Bank Register onto Stack®

PHD Push Direct Register onto Stack?

PHK Push Program Bank Register onto Stack?
PHP Push Processor Status Register onto Stack
PHX Push X Register onto Stack '

PHY Push Y Register onto Stack'

PLA Pull Accumulator from Stack

PLB Pull Data Bank Register from Stack?

PLD Pull Direct Register from Stack?

PLP Pull Processor Status Register from Stack
PLX Pull X Register from Stack'

PLY Pull Y Register from Stack'

REP Reset Processor Status Bits?

ROL Rotate Left

ROR Rotate Right

RTI Return from Interrupt

RTL Return from Subroutine Long?

RTS Return from Subroutine

SBC Subtract Memory from Accumulator with Borrow
SEC Set Carry Flag

SED Set Decimal Mode

SEI Set Interrupt Disable Bit

SEP Set Processor Status Bits?

65816 INSTRUCTION SET

Table 4-1 (cont.)

93

Mnemonic Meaning

STA Store Accumulator

STP Stop thz Clock?

STX Store X Register

STY Store Y Register

STZ Store Zero'

TAX Transfer Accumulator to X Register

TAY Transfer Accumulator to Y Register

TCD Transfer C Accumulator to Direct Register”
TCS Transfer C Accumulator to Stack Pointer”
TDC Transfer Direct Register to C Accumulator?
TRB Test and Reset Bit'

TSB Test and Set Bit'

TSC Transfer Stack Pointer to C Accumulator?
TSX Transfer Stack Pointer to X Register

TXA Transfer X Register to Accumulator

TXS Transfer X Register to Stack Pointer

XY Transfer X Register to Y Register

TYA Transfer Y Register to Accumulator

TYX Transfer Y Register to X Register

WAI Wait for Interrupt’

WDM Reserved for Future Use (No operation)2
XBA Exchange B and A Bytes of Accumulator”
XCE Exchange Carry and Emulation Bits (Switch modes)?

! Available only on the 65C02 and 65816, not on the 6502.
ZAvailable only on the 65816, not on the 6502 nor 65C02.

Table 4-2
Standard Alias Meaning
BCC BLT Branch if Less Than
BCS BGE Branch if Greater Than or Equal
CMP CMA Compare Memory and Accumulator
DEC A DEA Decrement Accumulator
INC A INA Increment Accumulator
TCD TAD Accumulator to Direct Register
TCS TAS Transfer C Accumulator to Stack Pointer
TDC TDA Transfer Direct Register to C Accumulator
TSC TSA Transfer Stack Pointer to C Accumulator

XBA SWA Swap Accumulator Bytes

94 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Functional Groups

The instructions are divided into ten functional groups:

1.

Data transfer instructions move information between registers,
memory locations, and I/O devices.

. Arithmetic instructions perform add and subtract operations on

binary or binary-coded decimal (BCD) numbers.

. Control transfer instructions can change the sequence in which a

program executes; they include jumps and branches.

. Subroutine instructions perform transfers to and from subroutines.

5. Stack instructions transfer data between registers and the stack, a

10.

data structure in memory.

. Bit manipulation instructions perform logical operations on memory

locations and registers.

. Shift and rotate instructions displace the contents of a register or

memory location.

. The mode control instruction switches the processor between

native and emulation mode.

. Interrupt-related instructions include those that regulate requests

for service from external devices.

Miscellaneous instructions are ones that don’t fit in any other group.

Data Transfer Instructions

Data transfer instructions move information between registers, memory
locations, and I/O devices. Table 4-3 summarizes these instructions in three
groups: load and store, register transfer, and block move. Remember, in
emulation mode, the processor transfers bytes; in native mode, it can
transfer bytes or words. (Block moves always transfer blocks of bytes.)

Load and Store

The load and store instructions are the assembly language counterparts of
PEEK and POKE in BASIC. A load operation reads or copies a memory
value or immediate value into a register (either A, X, or Y).

65816 INSTRUCTION SET 95

Table 4-3
Flags

Mnemonic Assembler Format v N v M X DI Z C
Load and Store
LDA LDA source *
LDX LDX source *
LDY LDY source *
STA STA destination
STX STX destination
STY STY destination
STZ STZ destination
Register Transfer
TAX TAX * *
TAY TAY * *
TCD TCD * *
TCS TCS .
TDC TDC * *
TSC TSC * ¥
TSX TSX * *
TXA TXA * *
TXS TXS .
XY TXY * *
TYA TYA * *
TYX TYX * *
XBA XBA * *
Block Move
MVN MVN ss,dd
MvVP MVP ss,dd

Notes: (1) * means changed and . means unchanged.
(2) Shaded instructions are new with the 65816.
(3) ss and dd are the bank numbers for the source and destination repectively.

Two flags in the processor status register provide information about the
value that has been loaded. The negative (N) flag is 1 if the value is negative
and O if it is zero or positive. (Of course, N is only meaningful if you’re
working with signed numbers; you don’t care about it for unsigned num-
bers.) The zero (Z) flag indicates whether the loaded value is zero (Z=1) or
something else (Z=0).

For example, the following instruction loads the contents of memory
location ThisLoc into the accumulator:

96 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

LDA ThisLoc

Again, N and Z reflect the sign of the loaded value and whether it is 0.
The store instructions copy the contents of the A, X, or Y register into
a specified memory location. Unlike the load instructions, the stores do not
affect the processor status register.
There is also STZ, which stores O in a location. The simplest way to
store a value other than zero in memory is by using a load and store com-
bination, such as:

LDA #$FFFE
STA ThatLoc

Since I'm discussing numbers in memory, it’s worthwhile to mention
that the 65816 stores 16-bit numbers in low-byte/high-byte order — that is,
with the least-significant byte at the lower address. For example, when
storing $ABCD at a location called NUM, it puts $CD at NUM and $AB at
the next location, NUM + 1. Keep this storage scheme in mind when you
display the contents of memory. Just remember “low data, low address; high
data, high address.”

Register Transfer

These instructions let you copy between two registers, in the combinations
shown in Figure 4-1. Of them, only XBA (Exchange B and A Bytes of
Accumulator) affects the contents of the source register.

Note that most of these transfers involve the accumulator (called A to
be consistent with 6502 terminology or C to reflect its new 16-bit length in
the 65816). That’s because the accumulator is the only register on which the
processor can perform arithmetic and logical operations. Hence, there are
instructions that copy a value into the accumulator prior to an operation
(e.g., TXA and TYA) and copy the result from the accumulator after it
(TAX and TAY).

A note about the XBA instruction: The N and Z flags it returns reflect
the state of the new A (low) byte.

Block Move

The block move instructions copy a block of bytes from one place in
memory to another, working either forward (MVN) or backward (MVP)
through the block.

65816 INSTRUCTION SET 97

Stack Pointer (S) XS X Register (X) Txy Y Register(Y)

TSX TYX !

TSC/TSA* |TCS/TAS* XBA TAY TYA

{BIAP'—“‘

L i

Accumulator
(A/C)

TCD/TAD* TDC/TDA*
1

L]

Direct Register (D)

*These instructions always
transfer 16 bits, regardless
of the accumulator size.

Figure 4-1

They have the general format:

MVN srcbk, destbk
MVP srcbk, destbk

where srcbk is the number of the bank that contains the original block (the
source) and destbk is the number of the bank where the copy belongs (the
destination). These numbers are the same if you’re copying within a bank.
Fortunately, you don’t actually have to specify the bank numbers — simply
enter the names of the blocks (e.g., OldBlock and NewBlock) and the
assembler will calculate their bank numbers.

You must also supply the details of the operation in three registers.
Specifically:

* The X register must contain the offset of the first byte to be copied.

» The Y register must contain the offset of the first copied byte.

* The accumulator must contain the number of bytes to be copied less 1.
Note that for MVN, X and Y must point to the beginning of the source and

destination blocks, whereas for MVP, X and Y must point to the ends of
those blocks.

98 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

If the source and destination blocks do not overlap, or if you’re copying
between banks, you can use either instruction. Make it easy on yourself. If
the start addresses are easy to obtain, use MVN; if the end addresses are
more convenient, use MVP. For example, to copy 100 bytes from location
Here to location There, use:

LDX #Here ;Put sourceoffset inX,
LDY #There ; destinationoffset iny,
LDA #99 ; andcount—1inA

MVN Here, There ;Move the block

Note the use of the immediate mode to obtain the block offsets.

If the blocks overlap, it’s critical to choose the correct block move
instruction. For example, if you want to move a block forward one byte
position in memory (to the next higher numbered address), and start at the
beginning of the block, the first byte to be moved will overwrite the second
byte. Instead, you must start moving from the end of the block, using MVP.

Similarly, if you move a block backward one byte position (to the next
lower-numbered address), and start at the end of the block, the first byte
moved will overwrite the preceding byte. In this case, you must start moving
from the beginning of the block, using MVN. In summary:

* To move a block backward (to a lower address), put the start addresses
of the source and destination in X and Y, then execute an MVN
instruction.

* To move a block forward (to a higher address), put the end addresses
of the source and destination in X and Y, then execute an MVP
instruction.

Of course, in either case A must contain the byte count minus 1.

Figure 4-2 illustrates how the block move instructions operate when the
source and destination blocks overlap. Here, the arrows inside the blocks
indicate the sequence in which bytes are copied — from beginning to end
for MVN, from end to beginning for MVP.

With MVN, the processor increments the X and Y registers each time
it copies a byte; with MVP, it decrements X and Y each time; for both, it
decrements the count in A. Hence, at the end of a block move operation, X
and Y point to the byte that lies just beyond the last byte copied and A con-
tains — 1 (hex FFFF). Moreover, the 65816 assumes that since you copied

65816 INSTRUCTION SET 99

Low Destination | ow
«—address Source
Source
«—address Destination
Destination «— Source
address
Source <— Destination
address
High
MVN MVP
Figure 4-2

something to the destination bank, that’s the bank you want to work with,
so it makes the data bank register (DBR) point to that bank.

Because the block move instructions assume that X, Y, and A are 16-
bit registers, you should only use them in the 65816’s full native mode.

Arithmetic Instructions

The 65816 can operate in two different arithmetic modes, binary and deci-
mal. When operating in binary mode (as it is when you switch the computer
on), it treats operands as binary values; in decimal mode, it treats them as
binary-coded decimal (BCD) numbers.

As Table 4-4 shows, there are instructions that add, subtract, incre-
ment, and decrement operands. There are also instructions that manipulate
flags in the processor status register; these are used in various ways during
arithmetic operations. Finally, there are compare instructions; these actually
do a subtraction, but they report the results only in the status flags. Before
discussing these instructions, I think it best to spend some time describing
the formats of binary and decimal numbers.

Data Formats

As mentioned in chapter 0, binary numbers may be 8 or 16 bits long —
depending on whether the 65816 is operating in emulation mode or native
mode — and may be either unsigned or signed. In an unsigned number, all
bits represent data. Therefore, unsigned numbers can range from 0 to 255 (8

100 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Table 4-4

Flags
Mnemonic Assembler Format N v M X D1 Z C
Flag Manipulation
CLC CLC0
CLD CLD0
CLV CLV .0
SEC SEC 1
SED SED 1
Add and Subtract
ADC ADC source * Ok * X
SBC SBC source * ok * ok
Increment
INC INC destination *
INX INX *
INY INY *
Decrement
DEC DEC destination *
DEX DEX *
DEY DEY *
Compare
CMP CMP source * . . . R . *
CPX CPX source * *
CPY CPY source * *

Note: * means changed and . means unchanged.

bits) or 65,535 (16 bits). In a signed number, the high-order bit (7 or 15)
specifies the sign of the number; the rest hold data. Therefore, signed numbers
can range from 127 to — 128 (bits) or from 32,767 to — 32,768 (16 bits).

The 65816 can operate on decimal numbers that have been stored as a
series of “packed” bytes. By packed, I mean that each byte holds two
binary-coded decimal (BCD) digits, with the most-significant digit in the
upper 4 bits. Therefore, a BCD byte can hold values from 00 to 99, while
a BCD word can hold values from 0000 to 9999.

Addition

Most microprocessors have two add instructions: one that simply adds two
operands and another that includes a carry in the addition. The intent here is
that one would use the “add without carry” form to add single-byte or single-
word operands or to add the low-order bytes or words of multiprecision

65816 INSTRUCTION SET 101

operands. On the other hand, one would use the “add with carry” form to
add higher-order bytes of multiprecision operands.

Like the 6502, the 65816 has only one add instruction: ADC (Add to
Accumulator with Carry). Here, “Carry” is the carry (C) flag of the pro-
cessor status register. ADC adds a source operand (an immediate value or
the contents of a memory Icoation) and the carry flag to the accumulator,
and puts the result in the accumulator. In equation form, this is:

A = A + source + C

Since carry is always included, you must explicitly clear it to O before
adding single-unit numbers or the low-order units of multiprecision num-
bers. The instruction that clears the carry flag is CLC (Clear Carry Flag).
For example, to add 15 to the accumulator, enter:

CLC ;Clear the carry flag,
ADC #15 ; then add 15

ADC affects four flags in the processor status register:

* The negative (N) flag is 1 if the result is negative (the high-order bit
is 1); otherwise, N is 0.

* The overflow (V) flag is 1 if adding two positive or negative numbers
produces a result that exceeds the two’s-complement capacity of the
accumulator, which changes the sign; otherwise, V is 0.

» The zero (Z) flag is 1 if the result is zero; otherwise, Z is 0.

* The carry (C) flag is 1 if the result cannot be contained in the accum-
ulator; otherwise, C is 0.

N and V are only pertinent when you add signed numbers.

The 65816 has instructions that test flags and base an execution “deci-
sion” on the outcome. For example, a negative result (N = 1) may make it
execute one set of instructions, while a zero or positive result (N =0) makes
it execute a different set. These decision-making instructions are discussed
later in this chapter.

To add multiprecision numbers, clear the carry flag, add the low-order
units, and store the result in memory. Then, to add the higher-order units,
perform a series of LDA (load), ADC (add), and STA (store) instructions,
one for each remaining unit. You can use the same procedure to add multi-
precision decimal (BCD) numbers; simply precede the addition with an SED
(Set Decimal Mode) instruction.

102 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

How the 65816 Subtracts

Like other general-purpose microprocessors, the 65816 has an internal addi-
tion unit, but no subtraction unit. Still, it can subtract numbers — by adding
them! Strange as this may seem, the concept is “elementary,” as Sherlock
Holmes might say.

To see how to subtract numbers by adding them, consider how you sub-
tract, say, 7 from 10. In elementary school, you learned to write this as:

10 - 7

However, later (in Algebra 101, perhaps) you learned that another way to
write it is:

10 + (=7)

The first form — the straight subtraction — can be performed by a
processor that has a subtraction unit. Since the 816 has no such unit, it sub-
tracts in two steps. First, it changes the sign of, or complements, the second
number (the subtrahend). Then it adds the complemented subtrahend to the
minuend (the first number) to produce the result. Because the 816 works
with base 2 (binary) numbers, the complement is a rwo’s-complement. To
obtain the two’s-complement of a binary number, take its positive form and
reverse each bit — change each 1 to 0 and each O to 1 — then add 1 to the
result.

Applying this to the “10 — 7” example, the 8-bit binary representation
of 10 and 7 are 00001010 and 00000111, respectively. Take the two’s-com-
plement of 7 as follows:

1111 1000 (Reverse all bits)
+ 1 (Add1l)
1111 1001 (Two's complement of 7, or —7)

Now the subtraction operation becomes:

0000 1010 (= 10)
+11111001 (= —-7)
0000 0011 (= 3)

Eureka! That’s the right answer!

65816 INSTRUCTION SET 103

Subtraction

As in the case of addition, the 65816 has only one subtract instruction, SBC
(Subtract from Accumulator with Borrow), in which the carry (C) flag con-
tributes the “borrow.” SBC subtracts a source operand (an immediate value
or the contents of a memory location) and the inverse, or complement, of the
carry flag from the accumulator, and puts the result in the accumulator. In
equation form, this is:

A=A - source + C

Since carry is always included, you must explicitly set it to 1 before
subtracting single-unit numbers or the low-order units of multiprecision
numbers. The instruction that sets the carry flag is SEC (Set Carry Flag).
For example, to subtract 15 from the accumulator, enter:

SEC ;Set thecarry flag
SBC #15 ; thensubtract 15

SBC affects four flags in the processor status register:

* The negative (N) flag is 1 if the result is negative (the high-order bit
is 1); otherwise, N is 0.

* The overflow (V) flag is 1 if you subtract a positive number from a
negative, or vice versa, and the result exceeds the two’s-complement
capacity of the accumulator, which changes the sign; otherwise, V
is 0.

* The zero (Z) flag is 1 if the result is zero; otherwise, Z is 0.

* The carry (C) flag is 1 if the result is positive or zero; C is O if the
result is negative, indicating a borrow.

N and V are only pertinent when you add signed numbers.

To subtract multiprecision numbers, set the carry flag, subtract the low-
order units, and store the result in memory. Then, to subtract the higher-
order units, perform a series of LDA (load), SBC (subtract), and STA (store)
instructions, one for each remaining unit. You can use the same procedure
to subtract multiprecision decimal (BCD) numbers; simply precede it with
an SED (Set Decimal Mode) instruction.

104 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Signed Arithmetic

I haven’t yet mentioned how adding and subtracting differs between signed
and unsigned numbers. That was not an oversight; I didn’t mention it
because you use the same instructions, ADC and SBC, regardless of
whether the operands are signed or unsigned. However, for signed numbers,
you must pay attention to the states of the negative (N) and overflow (V)
flags.

The N flag simply reflects the sign of the result (positive if N=0, nega-
tive if N=1), but the V flag indicates whether the result in the accumulator
is valid (V =0) or invalid (V =1). Recall that V is 1 if adding two numbers
having the same sign or subtracting two numbers having different signs pro-
duces a result that exceeds the capacity of the accumulator.

Generally, your program should check for overflow after each signed
add or subtract operation, and run some kind of error routine (display a mes-
sage, perhaps) if V is 1. I'll describe instructions that test for overflow later
in this chapter. Once set, the overflow flag stays that way until you either
begin another ADC or SBC operation or execute a CLV (Clear Overflow
Flag) instruction, which resets V to 0.

Increment and Decrement

The 65816 has a group of instructions that increment or decrement an
operand — that is, add 1 to it or subtract 1 from it. The INC and DEC
instructions require an operand, either A (for accumulator) or one of the
memory addressing modes.

INX, INY, DEX, and DEY have no operand; the X or Y register is
implied in the instruction. These are convenient for increasing or decreasing
loop counters when you’re doing a repetitive operation (e.g., adding a table
of numbers in memory). The X and Y forms are particularly useful for
increasing or decreasing the index register when you are accessing consecu-
tive locations in memory.

Example 4-1 illustrates both of these uses; it is a short program that fills
a 100-element table (ZTable) with zeros. Here, X serves as the element
pointer and Y holds the count. The final instruction, BNE, is one I haven’t
described yet, but all it does is make the processor continue looping back to
NextEel until Y has been decremented to 0. Note also that I have used STZ
(Store Zero), an instruction introduced with the 65C02, to store the zeros.
With a 6502, this would require two instructions: an LDA #0 preceding
NextEl and a STA ZTable,X at NextElL

The increment and decrement instructions are specialized adds and

65816 INSTRUCTION SET 105

Example 4-1
s Fill a 100-element table called ZTable with zeros.
LDX #0 ;Index points to first element
LDY #100 ;Operate on 100 elements
NextEl STZ 1ITable,X ;Store zero in next element
INX ; and increase the pointer
DEY ;Decrease the count
BNE NextEl ;jLoop until count is zero

subtracts that affect only the negative (N) and zero (Z) flags; they leave the
overflow (V) and carry (C) flags alone. This is important because it lets you,
for example, use a loop to add multiprecision numbers, yet preserve the
carry between operations.

Compare

A%

Most programs don’t execute instructions in the order they are stored in
memory. Instead, they usually include jumps, loops, and subroutine calls
that make the 816 transfer to a different part of a program. The instructions
that actually produce these transfers will be discussed in the next section,
“Control Transfer Instructions.” But I will now discuss the compare instruc-
tions, which help the control transfer instructions make their transfer/no-
transfer “decisions.”

The CMP, CPX, and CPY instructions do a “trial” subtraction. That is,
they subtract a source operand (an immediate value or the contents of a
memory location) from a destination operand (A, X, or Y), but do not save
the result. That is, they don’t alter the destination. Instead, they only set or
clear the flags based on the result (see Table 4-5). Further, unlike SBC, the
compares do not include the carry flag in the subtraction.

Table 4-5
Condition N* Y/ C
A, X, orY < Memory 1 0 0
A, X,orY = Memory 0 1 1
A, X, or Y > Memory 0 0 1

*Meaningful only for operations on signed numbers.

106 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Control Transfer Instructions

The control transfer instructions can make the 65816 transfer from one part
of a program to another. All but the simplest programs include jumps and
subroutine calls that alter the execution path the microprocessor takes. Sub-
routine instructions are discussed in the next section; this section covers
jumps and branches. Table 4-6 divides the control transfer instructions into
two groups: unconditional transfer and conditional transfer. Note that none
of these instructions affect the flags.

Unconditional Transfer

There are two kinds of unconditional transfer instructions, jumps and
branches. The JMP instruction is the assembly language equivalent of
GOTO in BASIC; it makes the 65816 take its next instruction from some
place other than the next consecutive memory location. JMP has the general
form

JMP target
Table 4-6
Flags

Mnemonic Assembler Format N VM XD I Z C
Unconditional Transfer
IMP JMP target
ML ML (aaaa)
BRA BRA target
BRL BRL long target
Conditional Transfer
BCC BCC target
BCS BCS target
BEQ BEQ target
BMI BMI target
BNE BNE target
BPL BPL target
BVC BVC target
BVS BVS target

Notes: (1) . means unchanged.
(2) Shaded instructions are new with the 65816.

65816 INSTRUCTION SET 107

where farget is a location (usually a label) in the active program bank. JMP
is often used to bypass a group of instructions that are executed from some
other part of the program. For example, you may use it in this context:

LDA DATA1l

CLC
ADC DATAZ2
JMP THERE
HERE
THERE

You can also jump to a location indirectly, by obtaining its two-byte
address from a pointer in memory. For example,

JMP (MEMPTR)

jumps to the location whose address is in MEMPTR.

To transfer to an instruction in a different bank, you must use JML
(Jump Long). JML uses only absolute indirect address, but unlike JMP,
obtains a 3-byte address — the program bank register (PBR) and the pro-
gram counter (PC) — from a memory pointer. JMP is either a 3- or 4-byte
instruction, depending on whether the target is in the same bank or a dif-
ferent one. JML is always a 3-byte instruction.

If the target address is no more than 127 bytes away, you can use a
faster version of JMP: BRA (Branch Always). Similarly, if the target is no
further than 32,767 bytes, you can use BRL (Branch Always Long).

Conditional Transfer

There are eight branch instructions that let the 65816 make an execution
“decision” based on some prescribed condition, such as a register containing
0 or the carry (C) flag being set to 1. If the condition is satisfied, the 816
makes the transfer; otherwise, it continues to the next instruction. Table 4-7
summarizes the branch instructions and the flags they test.

As you can see from Table 4-7, the branch instructions base their
transfer decisions on the contents of four flags in the processor status regis-
ter: carry (C), zero (Z), negative (N), and overflow (V). In general:

108 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Table 4-7

Instruction Description Branchif . . .

BCC/BLT Branch on Carry Clear/if Less Than Carry (C) = 0

BCS/BGE Branch on Carry Sev/if Greater Than or Equal to Carry (C) = 1
BEQ Branch if Equal Zero(Z) = 1
BNE Branch if Not Equal Zero(Z) =0
BMI Branch if Minus Negative (N) = 1
BPL Branch if Plus Negative (N) = 0
BVC Branch on Overflow Clear Overflow (V) = 0
BVS Branch on Overflow Set Overflow (V) = 1

* The carry flag reflects conditions where the result cannot be con-
‘tained in the result register or memory location. It is affected indirectly
by the arithmetic, shift, and compare instructions, and directly by
SEC and CLC.

* The zero and negative flags are set by conditions in which the result
is O or has the most-significant bit equal to 1. These flags can be
affected by about half of the 65816 instructions.

* The overflow flag is affected by the arithmetic instructions (ADC
and SBC) and by the BIT and CLV instructions.

The branch instructions use only program counter relative addressing.
The relative displacement is a signed byte contained in the instruction, so
the branch can span up to 127 bytes forward or 128 bytes backward from the
instruction that follows the branch. This is not as restricting as you might
think, because you can always combine a branch instruction with a JMP or
JML to transfer anywhere in memory. For example, here is how a program
might branch on the carry-set condition to an instruction (at CSET) that is
beyond the normal + 127/— 128 branch range:

BCC CCLEAR ;Go to CCLEARoncarry =0
JMP CSET ;GotoCSEToncarry =1
CCLEAR

The conditional branch instructions each occupy 2 bytes in memory:
opcode followed by the relative displacement. The 65816 takes 2 cycles to
execute a branch if the condition is not met and 3 cycles if the condition is

65816 INSTRUCTION SET 109

met (4 cycles if the 816 crosses a page boundary). Because of the time dif-
ference, construct your programs so that whenever possible, the expected
case executes if the branch is not taken.

Here are some examples of branch instructions:

1. The following sequence branches to TOOBIG if the addition
produces a carry.

ADC MEMLOC
BCS TOOBIG

2. This sequence branches to TOOSML if the subtraction produces
a borrow.

SBC MEMLOC
BCC TOOSML

3. These instruction will branch to ZERO if A and MEMLOC hold the
same value.

CMP MEMLOC
BEQ ZERO

4. The following sequence will loop to LOOP until the X register has
been decremented to 0. This sort of sequence is common in pro-
grams that use the X or Y register as a counter.

LOOP
DEX
BNE LOOP

Using Branch Instructions with Compares

You can precede conditional branch instructions with any instruction that
alters the flags, but they are often preceded with a compare instruction
(CMP, CPX, or CPY). Table 4-5 earlier in this chapter shows how the com-
pares affect the flags for various register/memory combinations.

Now, with the variety of conditional branch instructions, it is worth-
while to look at a more practical table — one that shows which conditional
branch to use for all possible register/data combinations. Table 4-8 is the one

110 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Table 4-8
Follow compare with

To branchif . . . For unsigned numbers For signed numbers
Register is less than data BLT THERE BMI THERE
Register is equal to data BEQ THERE BEQ THERE
Register is greater than data BEQ HERE BEQ HERE

BCS THERE BPL THERE
Register is less than or equal to data BLT THERE BMI THERE

BEQ THERE BEQ THERE
Register is greater than or equal to data BGE THERE BPL THERE

you need. In this table, THERE represents the label of the instruction the
65816 executes if the branch test succeeds, while HERE is the label of the
instruction the 816 executes if the test fails.

To illustrate a typical application for a compare/branch combination,
Example 4-2 shows a program that arranges two unsigned numbers in
memory in increasing order, with the larger number in the higher-numbered
location.

You can also combine a compare instruction with two branch instruc-
tions to test the “less than,” “equal to,” and “greater than” cases separately.
Example 4-3 shows a sequence that executes any of three groups of instruc-
tions, based on whether the value in A is below, equal to, or above 10. Since
the branch instructions do not affect the status flags, BNE GT10 can base its
branch decision on the same flag that the BGE GTEQ10 based its decision on.

Example 4-2
; This sequence arranges two unsigned 16-bit numbers in memory
; in order of magnitude, with the larger value at the higher
; address.

LDA MEMLOC+2 ;Get second value

CMP lEILOC ;Compare the numbers

BGE DONE ;Done if second is greater than
; or equal to the first

LDX MEMNLOC ;Otherwise, swap them

STA MENMLOC
STX MEMLOC+2
DONE .o

65816 INSTRUCTION SET 111

Example 4-3

; This sequence executes one of three different groups of
; instructions, based on whether the unsigned nuiber in A
;7 is below, equal to, or above 10.

CMP #10 ;Compare accunulator to 10
BGE GTEQ10
.o sAccunulator is less than 10
BRA DONE

GTEQ10 BNE GT10
.o ;Accumulator is equal to 10
BRA DONE

GT10 .o ;Accunulator is greater than 10

DONE

Subroutine Instructions

Sometimes you want to perform a specific operation (say, display a mes-
sage) at more than one place in your program. One way to do that is to dupli-
cate the entire set of instructions everywhere you need it. However, dup-
licating instructions is both frustrating and time-consuming. It also makes
programs longer than they would be if you could avoid this duplication. As
a matter of fact, you can eliminate needless duplication by defining a recur-
ring instruction sequence as a subroutine. Table 4-9 lists the 65816’s sub-
routine instructions.

As in BASIC, a subroutine is a set of instructions that you write just
once, but which you can execute as needed at any place in a program. The

Table 4-9
Flags
Mnemonic Assembler Format N vV M X D1 Z C
JSR JSR target
RTS RTS
JSL JSL long-target VU S T e
RTL RTL S e e e e

Notes: (1) means unchanged.
(2) Shaded instructions are new with the 65816.

112 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

process of transferring control from the main program to a subroutine is
defined as calling. When you call a subroutine, the 65816 executes the
instructions in it, then returns to the place from which the call was made.
This invites two questions: “How does one call a subroutine?” and
“How does the 816 return to the proper place in the program?” The answers
involve two subroutine-related instructions: JSR and RTS.
Instructions that execute subroutines must perform three tasks:

1. They must somehow save the contents of the program counter (PC).
Once the subroutine has been executed, the 816 uses this address to
return to the calling point. Hence, we refer to the saved address as
the return address.

2. They must make the microprocessor begin executing the subroutine.

3. Upon completion of the subroutine, they must use the stored value
of the PC to return to the main program and continue executing at
that point.

These three tasks are performed by two instructions: JSR (Jump to Sub-
routine) and RTS (Return from Subroutine). Essentially, JSR and RTS are
the assembly language equivalents of GOSUB and RETURN in BASIC.

JSR performs tasks 1 and 2; it stores the return address and begins
executing. Specifically, it stores the return address (the address of the
instruction that follows it) on the stack. JSR has the format

JSR target

where target is the name of the subroutine being called.

RTS undoes the work of JSR; that is, it makes the 816 leave the sub-
routine and return to the calling program by pulling the return address off
the stack. RTS must always be the last subroutine instruction the processor
executes. (This doesn’t mean that RTS must be the last instruction in the
subroutine — although it usually is — just the last one the 816 executes.)

For example, to call a subroutine named MYSUB, your program might
execute this sequence (offsets are also listed):

04F0 JSR MYSUB ;Call the subroutine
04F3 NEXT TXA ;Return hereafter the subroutine

65816 INSTRUCTION SET 113

0600 MYSUB LDA #6 ;First instructionof the

subroutine
061E RTS ;Returntocalling program

When the 65816 executes JSR MYSUB, it pushes the offset of NEXT
onto the stack, then loads the offset of MYSUB into the program counter (PC)
— and that’s where the 816 begins executing. Eventually, when the 816
encounters the RTS instruction, it pulls the return address off the stack and
puts it into the PC. This makes it resume at the instruction labeled NEXT,
a TXA in this case. Figure 4-3 shows the stack, the stack pointer (S), and
the program counter (PC) before and after the JSR, and after the RTS.

The 65816 also provides two instructions, JSL (Jump to Subroutine
Long) and RTL (Return from Subroutine Long), for subroutines that are in a
different bank than the JSL instruction. JSL pushes 3 bytes (program bank
register and program counter) onto the stack, as opposed to 2 bytes (PC) for
JSR.

A subroutine may itself call other subroutines. For example, a sub-
routine that reads a user’s menu response from the keyboard may well
decode the response character and then call one of several other subroutines
based on the result. Calling one subroutine from within another is referred
to as nesting. Figure 4-4 shows the JSR and RTS instructions for a program
in which SUBRI1 calls SUBR2 (i.e., SUBR2 is nested within SUBR1).

Programmers usually describe nesting in terms of levels. An applica-
tion like the one in Figure 4-4, where the nesting extends only to the JSR to
SUBR?2 (SUBR?2 does not call another subroutine) is said to have one level
of nesting. However, SUBR2 might well have called a third subroutine —
say, SUBR3 — with SUBR3 calling SUBR4, and so on.

Stack Instructions

As mentioned in the preceding section, the stack holds return addresses
while the 65816 is executing subroutines. The JSR (or JSL) instruction puts
the address onto the stack and an RTS (or RTL) instruction retrieves it at the
conclusion of the subroutine. In both cases, the processor uses the stack
automatically; you don’t have to tell it to do so.

114 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

s\

PC $04F0

(A) Before executing JSR MYSUB.

$01FC
$01FD
$01FE
$01FF

$01FC
s — $01FD
$F3 | $O1FE
P soe00] 504 soree
(B) After executing JSR MYSUB.
$01FC
s[_sowr] 5010
\ $F3 | $O1FE
po[_soars] 504 s01FF
(C) After executing RTS.
Figure 4-3
.o SUBR1e e —> SUBR2 ¢ ¢
LN] eoe o0
JSR SUBR1 JSR SUBR2 RTS
e ¢ 0 ~%
L X]
——RTS

Figure 4-4

65816 INSTRUCTION SET 115

The stack is also a convenient place to deposit data from your program
temporarily. For example, you might want to save the contents of the
accumulator while you put it to some other use.

Overview of the Stack

Earlier, I mentioned that the stack is a “last-in/first-out” type of data struc-
ture in page 1 of memory. That is, the last item to be entered (or pushed)
onto the stack is the first item to be extracted (or pulled) from it. Conversely,
the first item pushed onto the stack is the last item to be pulled off it. In
short, stack data is retrieved in the opposite order from which it was stored,
just like plates in a kitchen cabinet.

Stack information is accessed by a dedicated stack address register
called the stack pointer (S), which always points to the next available loca-
tion on the stack. The 65816 decrements the stack pointer whenever a byte
is pushed onto the stack, and increments it whenever a byte is pulled from
the stack. Hence, the stack “builds” downward in memory, in the direction
of location 0. When you switch the computer on, the stack pointer points to
location $O1FF, the end of page 1.

Among the data transfer instructions discussed earlier in this chapter, 1
described several that are used to copy between the stack pointer and another
register: TCS, TSB, TSC, TSX, and TXS. You wouldn’t normally use these
instructions, however, because for most applications, you simply let the
65816 take care of regulating the stack pointer.

Table 4-10 shows the more important stack instructions, the ones you
use to push information onto the stack and pull information off it. These
instructions are divided into two groups: push and pull registers and push
immediate data or effective address.

Push and Pull Registers

As Table 4-10 shows, the 65816 provides instructions that push and pull the
contents of the accumulator (PHA and PLA), data bank register (PHB and
PLB), direct register (PHD and PLD), processor status register (PHP and
PLP), and the X (PHX and PLX) and Y (PHY and PLY) registers. It also has
a PHK instruction that pushes the contents of the program bank register.
Aside from the fact that they operate on different registers, the push
instructions work identically. In each case, the 816 pushes the contents of
the register onto the stack at the location to which the stack pointer is point-
ing. Then it decrements the stack pointer by 1 (in emulation mode) or 2 (in
native mode), making it point to the next lower location. Push instructions

116 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Table 4-10
Flags

Mnemonic Assembler Format N vVMX DI zZ C
Push and Pull Registers
PHA PHA
PHB PHB
PHD PHD
PHK PHK
PHP PHP
PHX PHX
PHY PHY
PLA PLA * *
PLB PLB * *
PLD PLD * . * .
PLX PLX * *
PLY PLY * *
Push Immediate Data or Effective Address
PEA PEA Loc
PEI PEI (DLoc)
PER PER #Num
Notes: (1) * means changed and . means unchanged.

(2) Shaded instructions are new with the 65816.

do not alter the contents of the source register, nor do they affect the status
flags.

Figure 4-5 shows how a PHA instruction in 16-bit native mode affects
the stack. Here, the stack pointer (S) is pointing to the top of the stack, loca-
tion $01FF, and the accumulator contains $0304. After PHA executes, the
stack pointer has been decremented to $01FD and the contents of the
accumulator have been stored on the stack.

If the PHA was followed by a PLA instruction, the 65816 would do the
reverse; it would increment S, copy the contents of location $01FE into the
low byte of the accumulator, increment S again, and copy the contents of
location $01FF into the high byte of the accumulator. (Note that while $0304
is still stored in the same location in memory, it is no longer considered as
being “on the stack.” In fact, nothing is on the stack, because the stack
pointer is pointing at the top of the stack, location $01FF.)

With seven push and six pull instructions at your disposal, you can save

65816 INSTRUCTION SET 117

$01FC
s[_sowr | $01FD
\ $01FE
Al soaoi] S01FF
(A) Before PHA
$01FC
s — $01FD
$04 $01FE
A $03 | $01FF
(B) After PHA
Figure 4-5

all the registers if you want to. That is, you can save the entire “context” in
which your program is working. Example 4-4 shows the instructions you
would use to save and restore all the general registers and the status. These
are the kinds of instructions you should put at the beginning and end of any
subroutine that is to save the caller’s context.

Note that I have entered the pull instructions in the opposite order from
the push instructions. This reflects the “last-in/first-out” nature of the stack.
Having mentioned that, I must state the cardinal rule for working with the
stack:

Example 4-4

; Use these instructions to preserve the accumulator, X, Y,
; and status.

PHP ;Save processor status register,
PHA ; accumulator,

PHX ; X register,

PHY ; and Y register

PLY ;Restore the Y register,

PLX ; X register,

PLA ; accumulator,

PLP : and status

118 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

You must always pull data in the reverse order you pushed it.

Note also that I pushed the processor status register first. This lets me pull
it last, to cancel the effects of the other pull instructions on the N and Z flags
(see Table 4-10).

While I'm giving rules, there’s another one you should remember:

Every push must have a corresponding pull later in the program.

By keeping these two rules in mind, you shouldn’t have any problems with
stack operations.

Later in this book, you will encounter programs that start with the
instruction combination:

PHK ;Copy the contents of the program bank register
PLB ; into the data bank register

This is necessary because the system loader makes the PBR point to the bank
that contains your program, but it does nothing to the DBR. The PHK/PLB
combination tells the microprocessor that data within the program resides in
the same bank as the program itself. You might assume that the loader would
do this for you, but it does not; at least not in the current version of the
software.

Push Immediate Data or Effective Address

The designers of the 65816 included an instruction called PEA, which is
short for Push Effective Address onto Stack. However, it should really be
described as “Push Immediate Word onto Stack” (and named, perhaps,
PIW), because that’s what it does; it pushes a 16-bit constant onto the stack.
For example,

PEA #15

pushes decimal 15 onto the stack. Of course, there’s no “Pull Immediate
Data” instruction, so you have to pull it into a register.

Another misnamed instruction is PEI, short for Push Effective Indirect
Address onto Stack. PEI should be described as “Push Direct Page Word
onto Stack” (and named, say, PDW), because that’s what it does. It takes a

65816 INSTRUCTION SET 119

byte operand from the instruction and uses it as an offset into the direct page.
PEI forms the effective address by adding the offset to the direct register
(D), then pushes the word at that location onto the stack. For example,

PEI #4

pushes the word that starts at byte 4 of the direct page onto the stack.

The final instruction of this group, PER (Push Effective Program
Counter Relative Address onto Stack, takes a 16-bit offset from the instruc-
tion and adds it to the value of the program counter, then pushes the result
onto the stack. PER does not change the program counter or the program
bank register.

Bit Manipulation Instructions

These instructions manipulate bit patterns in the accumulator or a memory
location. Table 4-11 divides them into three groups: logical, bit testing, and
processor status bits.

Logical

Logical instructions are so named because they operate according to the rules
of formal logic, rather than those of mathematics. For example, the rule of
logic that states, “If A is true and B is true, then C is true” has a 65816 coun-
terpart in the AND (AND Memory with Accumulator) instruction. AND
applies this rule to corresponding bits in two operands; one operand is the
accumulator, the other can be an immediate value or the contents of a
memory location.

Specifically, for each bit position where both operands are 1 (true), AND
sets the bit in the accumulator to 1. Conversely, for any bit position where
the two operands have any other combination — both are 0 or one is 0 and
the other is 1 — AND sets the accumulator bit to O (see Table 4-12).

In essence, AND masks out (zeros) certain bits so you can do some
kind of processing on the remaining bits. Note that any bit ANDed with 0
becomes 0, and any bit ANDed with I retains its original value. For exam-
ple, this instruction zeros the high byte of the accumulator:

AND #$00FF (or simply AND #$FF)

120 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Table 4-11
Flags

Mnemonic Assembler Format vV M X D I Z C
Logical
AND AND source *
EOR EOR source * .
ORA ORA source * . *
Bit Testing
BIT BIT source-byte M, M *
BIT BIT source-word Mg Mg b s
BIT BIT #Num ; . ; ; ; . *
TRB TRB destination
TSB TSB destination
Processor Status Bits
REP REP #dd * * * * * ¥ *
SEP SEP #dd * * * * * * * *

Notes: (1) * means changed and . means unchanged.
(2) Shaded instructions are new with the 65816.

Table 4-12
Result
Source Destination AND ORA EOR
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

As in this example, you generally use hexadecimal numbering for an
immediate operand. Since the 816 can operate on either bytes or words, you
normally deal with either 2 or 4 hexadecimal digits. To help you construct
the correct “mask” value for a logical operation, Table 4-13 shows the
hexadecimal representation of a 1 in 16 different bit positions. For example,
to operate on bit 2, the correct mask value is 4; to operate on bits 2 and 3,
the mask is $C ($4 + $8); and so on.

AND is also useful for converting digits that an operator types at the
keyboard into binary numbers that your program can process. Typed digits

65816 INSTRUCTION SET 121

Table 4-13
Bit Number Hex. Value Bit Number Hex. Value
0 0001 8 0100
1 0002 9 0200
2 0004 10 0400
3 0008 11 0800
4 0010 12 1000
5 0020 13 2000
6 0040 14 4000
7 0080 15 8000

— or characters, for that matter — enter the computer in a form called
ASCII (short for American Standard Code for Information Interchange). As
the ASCII summary in Appendix B shows, the digits O through 9 have the
ASCII codes $30 through $39, respectively. To convert the code to its binary
value, simply chop off the 3. With the code in the low byte of the
accumulator, this requires:

AND #$000F (or simply AND #§F)

The ORA (OR Memory with Accumulator) instruction produces a 1 in the
accumulator for each bit position in which either or both operands contain 1
(see Table 4-12). ORA is generally used to set specific bits to 1. For example,

ORA #$C000

sets the accumulator’s two high-order bits (14 and 15) to 1 and leaves all
other bits unchanged.

The EOR (Exclusive-OR Memory with Accumulator) can be used to
determine which bits differ between two operands or to reverse the setting
of selected bits. EOR puts a 1 in the accumulator for every bit position in
which the operands differ — that is, where one operand has 0 and the other
has 1. If both operands’ bits are the same (0 or 1), EOR clears the
accumulator bit to 0. For example,

EOR #$C000

reverses the state of the accumulator’s two high-order bits (14 and 15) and
leaves all other bits as they are.

122 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

As Table 4-12 shows clearly, EOR is the same as ORA, except that two
I’s produce a O rather than a 1. EOR excludes the two 1’s from the combi-
nations that produce a 1 result — that’s why it’s called Exclusive-OR.

Bit Testing

The BIT (Bit Test) instruction ANDs a memory or immediate operand with
the value in the accumulator, but affects only the flags, not the accumulator.
With an immediate operand, BIT reports the result of the AND operation
only in the zero (Z) flag. With a memory operand, BIT affects three status
flags, as follows:

* The negative (N) flag receives the initial (un-ANDed) value of bit 7
(byte) or bit 15 (word) of the memory location.

* The overflow (V) flag receives the initial value of bit 6 (byte) or bit
14 (word) of the memory location.

* The zero (Z) flag is 1 if the AND operation produces a zero result;
otherwise, Z is 0.

Note that only the Z flag reflects the result of the AND operation; N and V
simply report the state of the operand’s two high-order bits. If you follow
BIT with a BNE (Branch if Not Equal) instruction, the 816 makes the branch
if there are any corresponding 1 bits in both operands.

TRB (Test and Reset Bits) and TSB (Test and Set Bits) let you set or reset
selected bits in a memory location. (In reality, “Test” is a misnomer. These
instructions don’t test the operand; they set or reset bits unconditionally.)
TRB and TSB are useful for manipulating locations that act as indicators,
where individual bits are meaningful.

The TRB instruction ANDs the memory operand with the complement
of the accumulator (that is, with the accumulator’s inverse). Thus, each 1
bit in A resets the corresponding memory bit to 0 and each 0 bit leaves its
memory counterpart as it is. For example, if the accumulator contains 9,

TRB MEMFLAG

clears bits 0 and 3 of MEMFLAG.

The TSB instruction ORs the memory operand with the accumulator.
Thus, each 1 bit in the accumulator sets the corresponding memory bit to 1
and each 0 bit leaves its memory counterpart as it is. For example, if the
accumulator contains $40,

65816 INSTRUCTION SET 123

TSB MEMFLAG
sets bit 6 of MEMFLAG.

Processor Status Bits

Under “Arithmetic Instructions,” I described instructions that clear the over-
flow flag (CLV) and set or clear the carry and decimal mode bits (CLC,
CLD, SEC, and SED). There are also instructions that manipulate the IRQ
disable bit, and I’ll discuss them later. Now I will describe two instructions
that let you manipulate the entire processor status register, rather than just
individual bits. They are similar to TRB and TSB, except they operate on
the status register rather than on a memory location.

The REP (Reset Processor Status Bits) instruction ANDs the status
register with the complement (i.e., the inverse) of an immediate byte. Thus,
each 1 bit in the byte resets the corresponding status bit to 0 and each O bit
leaves its status counterpart as it is. For example,

REP #%110000

clears the M and X bits, thereby making the accumulator and index registers
16 bits long. (You should follow this particular REP with the directives
LONGA ON and LONGI ON, to make the assembler assemble for the long
registers.)

The SEP (Set Processor Status Bits) instruction ORs the status register
with an immediate byte. Thus, each 1 bit in the byte sets the corresponding
status bit to 1 and each O bit leaves its status counterpart as it is. For
example,

SEP #%110000

sets the M and X bits, thereby making the accumulator and index registers
8 bits long. (Follow this SEP with LONGA OFF and LONGI OFF, to
assemble for the short registers.) You will see these M- and X-changing
instructions later, when the mode control instruction, XCE, is discussed.

You can also use SEP to set the overflow (V) flag — say, to use it as
a 1-bit indicator in a program. The 65816 has no other instruction that sets
V directly. The form you would use is:

SEP #%1000000

124 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Shift and Rotate Instructions

The 65816 has four instructions that displace the contents of the accumulator
or a memory location one bit position to the left or right (see Table 4-14).
Two of these instructions shift the operand, the other two rotate it.

For all four instructions, the carry (C) flag acts as a “9th bit” or “17th
bit” extension of the operand. That is, C receives the value of the bit that has
been displaced out of the operand. A right shift or rotate puts the value of bit
0 into C; a left shift or rotate puts the value of bit 7 (byte) or bit 15 (word)
into it. Figure 4-6 shows how these instructions operate.

Shifts

ASL (Arithmetic Shift Left) shifts the operand one bit position to the left and
puts a 0 in the vacated bit O position. Similarly, LSR (Logical Shift Right)
shifts the operand one bit position to the right and puts a 0 in the vacated
high-order bit position (bit 7 in a byte, bit 15 in a word). Besides carry, ASL
and LSR update the negative and zero flags.

To see how the shift instructions work, assume the processor is in 8-bit
mode and the accumulator contains $B4, or binary 10110100. Here is how
the shift instructions affect A and C:

After ASL A: (A) = 01101000 C = 1
After LSR A: (A) = 01011010 C= 0

The shift instructions can also serve as multiply-by-2 or divide-by-2

Table 4.14
Flags

Mnemonic Assembler Format N VM X D1 Z C
Shifts
ASL ASL destination * *
LSR LSR destination *
Rotates
ROL ROL destination
ROR ROR destination * *o*

Note: * means changed and . means unchanged.

65816 INSTRUCTION SET 125

LSR o

1

ROR

__;,

H S P

Figure 4-6

instructions, because shifting an operand one bit position to the left doubles
its value and shifting it one bit position to the right halves its value. Of
course, this assumes that the bit you shift out is a O rather than a 1.

Rotates

Like the shifts, the rotate instructions, ROL (Rotate Left) and ROR (Rotate
Right), enter displaced bits into the carry (C) flag. However, the rotates first
enter the prerotate value of C into the vacated bit position at the opposite end
of the operand. Like the shifts, the rotates also report the result in the nega-
tive and zero flags.

To see how the rotate instructions work, consider the operand that
was used for the shift examples, $B4 or binary 10110100, and assume that
C is 1 initially. Here is how the two rotate instructions affect the accumulator
and C:

After ROL A: (A) = 01101001 C = 1
After ROR A: (A) 11011010 C =0

126 APPLE HIGS ASSEMBLY LANGUAGE PROGRAMMING

Shifting Signed Numbers

Despite the fact that ASL stands for “Arithmetic Shift Left,” the four shift
and rotate instructions perform what are known as logical shifts; that is, they
treat the operand strictly as a bit pattern, without regard to sign. Con-
sequently, if a signed number is shifted right, the sign bit is displaced one
bit position to the right (like every other bit) and its value is replaced with
a 0. If a signed number is shifted left, its sign bit is displaced into the carry
flag and its value is replaced by the value of bit 6 (byte) or bit 14 (word).
Clearly, your program must deal with this problem somehow.

What should happen for a true arithmetic shift left is that the processor
should perform the regular logical shift left (which is what ASL does), but
set a flag if the sign bit changes. Overflow (V) is the most appropriate flag
here, so in your program, enter an instruction sequence similar to the one
shown in Example 4-5 (assuming you’re shifting the accumulator).

An arithmetic shift right should preserve the sign of the operand by
replicating the sign in the vacated high-bit position. Example 4-6 shows an
instruction sequence that does this.

Example 4-5

; This routine shifts the accumulator left one bit position
; and sets the overflow (V) flag if the sign bit has changed.

CLV ;Clear overflow flag to start
ASL A s Shift the accumulator left
BCC POSITIVE
BPL OVERFLOW ;C =1, If N = 0, set overflow
BMI DONE
POSITIVE BPL OVERFLOW ;C = 0. If N = 1, set overflow
OVERFLOW SEP #$40 ;Set the overflow flag
DONE BVS ERROR ;Print an error message if V is 1

Example 4-6

i This routine shifts the accumulator rignt one bit position
; and preserves the sign,

CitP #0 ;Read sign of operand
BPL POSITIVE
LSR A ;Operand is negative. Shift it,
AND #$8000 ; then set the sign bit
BRA DONE
POSITIVE LSR A ;Operand is positive. Shift it

DONE .o

65816 INSTRUCTION SET 127

Mode Control Instruction

XCE (Exchange Carry and Emulation Bits) is used to switch the 65816
between native mode and emulation mode. XCE takes no operand, but it
uses the state of the carry flag to determine which mode to switch to. Spec-
ifically, C=1 makes it switch to emulation mode, because E is 1 after the
exchange; C=0 makes it switch to native mode, because E is O after the
exchange. Hence, switching to emulation mode requires

SEC
XCE

while switching to native mode requires:

CLC
XCE

XCE affects only the carry flag. And because it affects only C,
switching to native mode causes the M and X bits to retain whatever settings
bits 4 and 5 had in emulation mode. Recall that in emulation mode, bit 4 is
the Break (B) bit and bit 5 is an unused bit that’s always 1. Therefore, the
CLC/XCE combination makes the accumulator 8 bits long (because bit 5 is
1) and the index registers either 8 or 16 bits long, depending on whether B
was 1 or 0. Clearly, you can’t leave all this to chance; you must set the M
and X bits for the register lengths you want.

To switch to full native mode — i.e., with all registers 16 bits long —

you must follow the XCE with a REP (Reset Processor Status Bits) instruc-

tion that clears M and X to 0. You must also tell the assembler to assume
16-bit memory and registers, using LONGA ON and LONGI ON directives.
Therefore, the statements that switch the 65816 to full native mode are:

CLC ;Switch tonative mode

XCE

REP #%110000 ;Make registers 16 bits long
LONGA ON ; andnotify the assembler
LONGI ON

When switching to emulation mode, you needn’t set the register length,
because registers are always 8 bits long. However, you must still tell the
assembler what length you’re using. The statements that switch the 65816
to emulation mode are:

128 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

SEC ;Switch toemulation mode

XCE

LONGA OFF ;Tell the assembler that registersare
LONGI OFF ; 8bitslong

Interrupt-Related Instructions

Like a subroutine call, an interrupt from an external device makes the 65816
save return information on the stack, then transfer to an instruction sequence
elsewhere in memory. However, a subroutine call makes the 816 execute a
subroutine, while an interrupt makes it execute an interrupt service routine.

While the operands for the subroutine call instructions, JSR and JSL,
can only be an absolute, absolute indexed indirect, or absolute long address,
an interrupt always makes the 816 obtain the address of the service routine
indirectly. That is, the 816 obtains the address from an interrupt vector, a
2-byte location at the end of bank 0.

The 65816 provides for 14 interrupt vectors, of which it uses 10 (see
Table 4-15). Note that some interrupts are activated by signal lines on the
microprocessor chip, while others are activated by the COP and BRK
instructions.

There is yet another difference between subroutine calls and interrupts:
a subroutine call saves only a return address on the stack, while an interrupt

Table 4-15
Location Interrupt Mode
O0FFE4,5 COP instruction Native
00FFE6,7 BRK instruction Native
OOFFES,9 ABORT line Native
00FFEA,B NMI line Native
O00OFFEC,D - -
00FFEE,F IRQ line Native
00FFFO0,1 - -
00FFF2,3 - -
00FFF4,5 COP instruction Emulation
00FFF6,7 - -
00OFFF8,9 ABORT line Emulation
00FFFA,B NMI line Emulation
00FFFC,D RESET line Emulation and native

OOFFFE,F BRK installation and IRQ line Emulation

65816 INSTRUCTION SET 129

saves the status flags as well. Specifically, when the 816 performs an inter-
rupt, it does the following:

1. In native mode, pushes the program bank register (PBR) onto the
stack.

2. Pushes the program counter’s high byte, then its low byte, onto the
stack.

3. Pushes the processor status register (P) onto the stack.
4. Sets the decimal mode (D) bit to 0, to specify binary mode.

5. Sets the IRQ disable (I) bit to 1, to lock out other interrupts while
this one is being serviced.

6. Reads the contents of the interrupt vector into the program counter.

In summary, the PBR (in native mode), PC, and P registers are on the stack;
DisOandIis 1, and the PC is pointing to the first instruction in the interrupt.
That’s where the 816 begins executing.

The 65816 has six interrupt-related instructions. Table 4-16 divides
them into four groups: interrupt control, return from interrupt, software
interrupts, and wait for interrupt.

Interrupt Control

These two instructions determine whether the 65816 accepts interrupt
requests from external devices. CLI (Clear Interrupt Disable Bit) sets the
IRQ disable bit (I) to 0, which lets the 816 respond to interrupt requests. SEI
(Set Interrupt Disable Bit) sets the I bit to 1, which makes the 816 ignore
requests. You generally disable interrupts when you’re doing some time-crit-
ical or high-priority task that cannot be interrupted.

Return from Interrupt

RTI (Return from Interrupt) is to interrupts what RTS is to subroutines. That
is, it undoes the work of the original operation and makes the 816 return to
the main program. For this reason, RTI must be the last instruction the 816
executes in an interrupt service routine.

In emulation mode, RTI pulls the processor status register and the pro-
gram counter off the stack. In native mode, it pulls P, PC, and the program
bank register.

130 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Table 4-16
Flags

Mnemonic Assembler Format N VMX DI Z C
Interrupt Control
CLI CLI0
SEI SEI 1
Return from Interrupt
RTI RTI * ok ok k% & k%
Software Interrupts
BRK BRK or BRK dd01
COP cop0 1

Wait for Interrupt
WAI WAI

Notes: (1) * means changed and . means unchanged.
(2) Shaded instructions are new eith the 65816.

Software Interrupts

BRK (Force Break) makes the 65816 act as it does when it responds to an
external interrupt, except BRK also sets the program bank register to 0. As
Table 4-15 shows, BRK has two interrupt vectors, one for each mode. In
native mode, the 816 loads the contents of locations $00FFE6 and $00FFE7
into the PC’s low and high bytes, respectively. In emulation mode, it loads
the contents of $00FFFE and $00FFFF into the PC. In either case, executing
a BRK instruction sends the Apple IIGS into its Monitor.

Although BRK is a 1-byte instruction, it makes the 816 increment the
program counter by 2, thereby allowing you to insert a 1-byte identifier that
indicates what condition caused the break; that is, BRK has two formats:
BRK and BRK nn.

COP (Coprocessor) is similar to BRK, except that the 816 loads the PC
from locations $O0FFE4 and 5 (native mode) or $00FFF4 and S (emulation
mode). Unlike BRK, COP is a true 2-byte instruction; the identifier operand
is required. If you omit it, the assembler generates a “Missing Operand” error.

Wait for Interrupt

The final interrupt instruction, WAI (Wait for Interrupt), does what its name
says: it puts the processor into an idle state in which it halts and waits for an

65816 INSTRUCTION SET 131

interrupt or a hardware reset. (I suppose we all enter an idle state occasion-
ally.) Making the 816 wait with WAI rather than with an endless loop has
two advantages: (1) the idle state reduces power consumption and (2) it
results in the quickest response to an interrupt.

Miscellaneous Instructions

Table 4-17 shows two instructions that don’t fit in any other category. NOP
(No Operation) is the simplest, because it does nothing whatsoever. That is,
it affects no flags, registers (other than the program counter), or memory
locations.

Surprisingly, NOP has a variety of uses. For example, it is convenient
when you’re developing programs. Suppose you have completed a portion
of the program that includes a jump or branch to as yet unwritten code; NOP
makes a handy target for the jump. You can also use NOP’s opcode ($EA)
to “patch” an object code file when you want to delete an instruction without
reassembling the program.

The final instruction is (appropriately) STP (Stop the Clock). STP stops
the processor and its clock, to reduce power consumption. The 816 does not
restart until it receives a hardware reset.

There is also a noninstruction, the reserved mnemonic WDM. WDM
will become an instruction when Western Design Center introduces its 32-bit
microprocessor, the 65C832. Rumor has it that WDM stands for William D.
Mensch, Jr., the 65816’s designer!

Table 4-17
Flags
Mnemonic Assembler Format N vV M X D I Z C
NOP NOP
STP STP

Notes: (1) . means changed.
(2) Shaded instruction is new with the 65816.

CHAPTER 5

Macros

A macro is a subroutinelike “miniprogram” that you can insert in a source
program by mentioning its name. This chapter tells how to create macros
and use them in programs. Developing a macro can be either a simple or
complex task, depending on what you want the macro to do. Still, it’s quite
possible that you will never find it necessary to develop macros of your own,
because the Apple IIGS Programmer’s Workshop (APW) disk already con-
tains a wide variety of them.

Most of these macros are actually “tool calls” — calls to subroutines
in the Apple IIGS Toolbox (described in the next chapter). However, the
APW disk also has a variety of macros that can be handy for doing general-
purpose programming jobs. This chapter summarizes the most useful ones
and describes how to use them in your programs.

Introduction to Macros

As just mentioned, a macro is a sequence of assembler statements (instruc-
tions and directives) that may appear several times in a program. Like sub-
routines, macros have names. Once you have defined a macro, you can enter
its name in a source program anywhere you would normally enter the
instruction sequence.

MACROS 133

Macros Vs. Subroutines

Although macros and subroutines both provide a shorthand reference to a
frequently used instruction sequence, they are not the same. The statements
in a subroutine appear once in a program, and the processor transfers to them
(or calls the subroutine) as needed. By contrast, the statements in a macro
may occur many times within a program; the assembler replaces each men-
tion of a macro name with the statements that name represents. (In computer
terminology, the assembler “expands” the macro.) Therefore, when you
execute the program, the processor executes the macro instructions “in-
line”; it does not transfer elsewhere in memory, as it does with a subroutine.
Hence, a macro name is a user-defined assembler directive; it issues com-
mands to the assembler, rather than to the microprocessor.
Macros have two advantages over subroutines:

1. Macros are dynamic. You can easily change the way a macro
operates (not merely what it operates on) each time, by changing its
input parameters. By contrast, you can only vary the data that gets
passed to a subroutine, making subroutines much more inflexible.

2. Macros make for faster-executing programs, because the processor
is not delayed by call (JSR) and return (RTS) instructions, and the
stack operations they employ, as it is with subroutines.

Nothing comes for free, however. Since a macro gets expanded every
time it is used, it tends to make machine-language programs longer by filling
memory with repeated instruction sequences. This is a drawback that sub-
routines do not have.

Macros Speed Up Programming

Like subroutines, macros can speed up your programming and debugging
work, as well as any program updating you might do in the future. They
speed up programming in that you create a macro just once, then use it wher-
ever you want it in a program. Instead of entering a long sequence of instruc-
tions, you enter only the macro name that represents the sequence.

Macros can speed up debugging because you create and debug each
macro individually. Once a macro is working properly, you never need to
worry about whether that portion of your program is correct. You can con-
centrate on finding errors elsewhere.

Moreover, programs that include macros are generally easier to read
and understand. Consequently, they are also easier to update and change.

134 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Change the macro definition and the assembler automatically uses the new
version everywhere it previously used the old one.

To see how macros can ease your workload, consider the instructions
you need to display a character on the screen. (These instructions are for ear-
lier Apple IlIs. I will discuss their equivalents for the IIGS later.) Displaying
a character involves loading it into the accumulator, then calling the
Monitor’s COUT (Character Output) subroutine. To display a D, for exam-
ple, requires:

LDA #'D' ;Select D fordisplay
JSR ($36) ;Displayitbycalling COUT

Suppose you have a program that displays different letters from time to
time. What does this involve on your part? It involves entering (and remem-
bering) those same two instructions each time. Although there are only two
instructions here, it’s annoying to have to reenter them every time you need
them. However, if you have defined the sequence as a macro called Cout,
you can enter one of the following instead:

Cout D ;Display D
Cout E ;Display E
Cout y ;Display y

Contents of Macros

Every macro definition has four parts:

1. A MACRO directive in the mnemonic (op code) field. This marks
the beginning of a macro definition.

2. The macro definition statement, which has the following general form:
[&LAB] macro—name [&parml[,&parm2[, . . .]]]

Note that in the definition only the macro name (in the mnemonic
field) is required. The label specifier, &L AB is always optional.
However, you should include it in every macro definition, to allow
programs to jump or branch to that line.

The operand field lists any input parameters for the macro.
These are the parameters you can change each time you call the
macro. Each parameter name must begin with an ampersand (&)

MACROS 135

symbol. Parameter names are separated with commas. For exam-
ple, the macro definition statement for a macro that adds two values
and stores the result in memory might look like this:

&LAB ADD &TERMI1, &TERMZ2, &SUM

3. The body of the macro; the sequence of statements (instructions and
directives) that define what the macro does.

4. An MEND directive in the mnemonic field, to mark the end of the
macro definition.

For example, the following is a simple macro that adds two word-size
values:

MACRO
&LAB ADDW &TERM1, &TERM2, &SUM
LONGA ON
&LAB CLC
LDA &TERM1
ADC &TERM2
STA &SUM
MEND

The assembler doesn’t care whether you specify memory locations or
immediate values for the operands (you can’t use an immediate value for the
sum, of course). As long as the final form is legal, the assembler makes the
substitutions without complaining.

For example, at one place in the program you could add two memory
locations by entering:

ADDW PRICE, TAX, COST

This makes the assembler insert the following instructions in the program:

CLC
LDA PRICE
ADC TAX

STA COST

136 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Somewhere else, you could add an immediate value to a memory location
by entering:

LB1 ADDW MEMLOC, #4,MEMLOC

This time, the assembler would insert

LBl CLC
LDA MEMLOC
ADC #4

STA MEMLOC

Note that this macro call is labeled LB1. Because the macro definition has
a symbolic label, &LAB, on the CLC instruction, the assembler places the
label you specify on the CLC instruction when it expands the macro.

These examples demonstrate how much easier it is to pass parameters
to macros than to subroutines. With a macro, you enter the parameters on
the same line as the macro’s name; with a subroutine, you must put them in
registers or memory locations.

Macro Directives

Table 5-1 summarizes the macro directives provided by the Apple IIGS
Programmer’s Workshop. They are divided into five groups: macro lan-
guage, library, symbolic parameter, branching, and listing. (You can use the
branching directives in source programs as well as macro definitions, but
they are most useful in macros.)

Macro Language Directives

The MACRO and MEND directives have already been discussed; they
simply mark the beginning and end of a macro definition. The MEXIT direc-
tive makes the assembler stop expanding the macro early. In effect, MEXIT
does the same thing as MEND, except it ends the expansion somewhere
within the macro definition, rather than at the end. You need MEXIT if
your expansion can take several different paths, depending on the value of
a variable. Path “decision” are controlled by the AIF conditional branch
directive, which is described under “Branching Directives” later in this
chapter.

Directive

MACROS 137

Table 5-1

Function

MACRO

MEND

MEXIT

Macro Language

Format: MACRO
MACRO marks the beginning of a macro definition.

Format: MEND
MEND marks the end of a macro definition.

Format: MEXIT
MEXIT terminates a macro expansion, usually as the result of a
branching directive.

MCOPY

MDROP

MLOAD

Library

Format: MCOPY filename
MCOPY enters the specified filename in the list of available macro
libraries. Once a file is in this list, the source program can use any
macro in it. Up to four macro libraries can be active at any given time.

Format: MDROP filename
MDROP removes the specified filename from the list of available
macro libraries.

Format: MLOAD filename
MLOAD enters the specified filename in the list of available macro
libraries, if it is not already there.

LCLA

LCLB

LCLC

GBLA

GBLB

GBLC

Symbolic Parameter

Format: LCLA sparm
LCLA (Local Arithmetic) declares an arithmetic type symbolic para-
meter local to the current macro.

Format: LCLB sparm
LCLB (Local Boolean) declares a boolean type symbolic parameter
local to the current macro.

Format: LCLC sparm
LCLC (Local Character) declares a character type symbolic parameter
local to the current macro.

Format: GBLA sparm
GBLA (Global Arithmetic) declares an arithmetic type symbolic
parameter global for the entire subroutine.

Format: GBLB sparm
GBLB (Global Boolean) declares a boolean type symbolic parameter
global for the entire subroutine.

Format: GBLC sparm
GBLC (Global Character) declares a character type symbolic para-
meter global for the entire subroutine.

138 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Directive

Table 5-1 (cont.)

Function

SETA

SETB

SETC

AMID

ASEARCH

Symbolic Parameter (cont.)

Format: sparm SETA aexp
SETA (Set Arithmetic) resolves the arithmetic expression in the
operand field to a four-byte signed hexadecimal number and assigns
it to the symbolic parameter in the label field.

Format: sparm SETB bexp
SETB (Set Boolean) evaluates the boolean expression in the operand
field as either true or false, and assigns either 1 or O (respectively) to
the symbolic parameter in the label field.

Format: sparm SETC cexp
SETC (Set Character) evaluates the expression in the operand field as
a character string and assigns it to the symbolic parameter in the
label field.

Format: sparm AMID string start-pos,#-chars
AMID extracts a substring from a specified string and assigns it to the
symbolic parameter in the label field. The substring begins at the
character position numbered start-pos (the first character in the
string is at position 1) and is #-chars characters long. Note that AMID
does the same thing as the MID$ function in BASIC.

Format: sparm ASEARCH target$,search$,start-pos
ASEARCH searches the string rarget$, starting at character position
start-pos, for the first occurrence of the search$ substring. If the
substring is found, its starting position is assigned to the symbolic
parameter in the label field; otherwise, the parameter is set to zero.

AGO

AIF

Branching

Format: AGO ssym
AGO makes processing continue with the statement that follows the
specified sequence symbol (see “Branching Directives”).

Format: AIF bexp,ssym
AIF evaluates the Boolean expression bexp. If the expression is true,
processing continues with the statement that follows the specified
sequence symbol (see “Branching Directives”); if false, processing
continues with the statement that follows the AIF directive.

GEN

TRACE

Listing
Format: GEN ON/OFF
GEN ON causes all lines generated by macro expansions to be included

on the assembler’s output listing. GEN OFF lists only macro defini-
tions on the output listing.

Format: TRACE ON/OFF
The assembly normally omits conditional assembly directives from its
output listing. TRACE ON makes it list these lines.

MACROS 139

Library Directives

The MCOPY directive enters the name of a macro library file into a list of
available macro libraries. This makes the macros in the library available to
the source program. For example,

MCOPY NEW.MACROS

activates the macro library file called NEW.MACROS.

Up to four macro library files can be active at any given time. Thus,
your source program may include up to four MCOPY directives. A more
detailed discussion of macro libraries is upcoming, in the “Creating Macro
Libraries” section.

The MDROP directive removes a specified file from the list of avail-
able macro libraries. You only need MDROP if you are juggling more than
four libraries.

MLOAD is similar to MCOPY, except MLOAD enters a file name
into the list of available macro libraries only if the name is not already in the
list.

Symbolic Parameter Directives

These directives operate on symbolic parameters — variables within a
macro definition.

The first three directives — LCLA, LCLB, and LCLC — tell the assem-
bler that a symbolic parameter is internal, or “local,” to a particular macro
expansion; it is unknown throughout the rest of the program. The directives
GBLA, GBLB, and GBLC tell the assembler that a symbolic parameter is
“global”; its name can be referred to anywhere within the program.

The SETA, SETB, and SETC directives assign the value of an expres-
sion to a symbolic parameter. Thus, these directives do for symbolic
parameters what the EQU (Equate) directive does for regular symbols.

The AMID directive extracts a substring from a string and assigns the
substring to a symbolic parameter. (Think of AMID as the assembler coun-
terpart of BASIC’s MIDS$ function.) AMID takes three operands: the string,
the character position where the substring begins (position 1 is the first
character), and the length of the substring. For example,

&SUBS AMID ‘THE STRING',5,3

assigns the substring STR to &SUBS.

140 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Finally, ASEARCH searches a string for a specified substring. If the
substring is found, the symbolic parameter receives the position of its first
character; otherwise, the parameter is set to 0.

Branching Directives

The assembler provides two branching directives, one conditional (A/F) and
the other unconditional (AGO). AIF is the assembler’s counterpart of the
microprocessor’s conditional branch instructions (BEQ, BMI, and so on),
while AGO is the assembler’s BRA. Just as the microprocessor’s branch
instructions can make the microprocessor continue executing at an instruc-
tion label elsewhere in memory, the branching directives can make the
assembler continue processing at a sequence symbol elsewhere in a macro
definition. A sequence symbol is a label that begins with a period (.) and is
on a line by itself.
AIF has the general form

AIF bexp, ssym

where bexp is a boolean (logical) expression and ssym is the target sequence
symbol. If bexp is true, the assembler continues processing at ssym; other-
wise, if bexp is false, the assembler continues processing with the statement
that follows AIF.

AGO makes the assembler continue processing a specified sequence
symbol unconditionally. It’s generally used to skip past a block of state-
ments to which a preceding “true” AIF branches.

To see how AIF and AGO might be used, consider the ADDW addition
macro described earlier. ADDW takes three parameters, the two terms to be
added and the sum. Its macro definition line is:

&LLAB ADDW &TERM1, &TERMZ2, &SUM

Now suppose we want to make the &SUM term optional. In this case, the
sum is stored in &SUM if the user supplies it; otherwise, if he or she omits
&SUM, the sum is stored in &TERM1. To make this happen, the macro def-
inition would contain the following kinds of statements:

ATF C:&SUM>0, .D ;Is&SUMan empty string?

MACROS 141

LCLC &SUM ; Yes. Declare it local
&SUM SETC &TERM1 ; andset it to &TERM1
AGO .E ; Skip .Dand continue
;at \E

;Process these instruc—
;tions if the user
; enteredan&SUM term

;Do theaddition

Listing Directives

The assembler normally shows only macro call statements in its output list-
ing; it does not “expand” macros to show their contents. You can, however,
make it list expansions by entering a GEN ON directive. A subsequent GEN
OFF will turn off the expansion listing.

Similarly, the assembler normally omits conditional assembly direc-
tives from the output listing. You can make it include them by entering a
TRACE ON directive.

Creating Macro Libraries

As mentioned earlier, a macro library is a text file that contains one or more
macro definitions. To use the macros in a library, your source program must
make the library active by reading it with an MCOPY directive.

There are two ways to create a macro library:

1. If all the macros are new, you can enter their definitions using the
editor, then save the file with the name you want to use in your
MCOPY directive.

To keep things simple, you should give the library the same
name as the program that will use it, and end the name with
.MACROS; for example, SORT.MACROS is a reasonable name
for a file that contains macros used by a program called SORT.

2. To use macros that are contained in one or more existing library
files, you can use the MACGEN utility contained on the Program-
mer’s Workshop disk.

142 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Here’s a description of method 2. The MACGEN (Macro Library
Generator) utility scans an assembler source file for macro names. To start
it, enter a command of the form:

MACGEN [+C/-C] source~rfile out—rfile macro—-1ibl
[macro-1ib2. . .]

MACGEN’s parameters are as follows:

* +C (the default) removes all excess blanks from macro definitions;
specify -C if you have used GEN ON or TRACE ON in your source
file.

* source-file is the name of your source file.

* out-file is the name of the macro library file you want to generate —
the file name that appears in the program’s MCOPY directive.

* macro-libl, macro-1ib2, and so on, are the files to be searched for
the macro names that appear in source-file. Note that the filenames
are separated by spaces.

This command makes MACGEN scan source-file, and any files named in its
COPY and APPEND directives, for macro names mentioned in the pro-
gram. It then opens a temporary file called SYSMAC on the active disk and
reads the macro definitions from the macro-lib files into it. When MACGEN
has resolved all macros, it changes the name of SYSMAC to out-file — the
filename in your program’s MCOPY directive. For example,

MACGEN MYPROG . SRC MYPROG.MACROS FILEL.MACROS
FILEZ.MACROS

searches FILE1.MACROS, then FILE2.MACROS, for macro definitions
whose names are mentioned in MYPROG.SRC, and copies those definitions
into a new file called MYPROG.MACROS.

You can also use MACGEN to update a macro library file if you add
new macro calls to your program. Simply specify the file that contains the
new macro definitions as macro-libl and the existing library file as macro-
lib2 and . For example,

MACGEN MYPROG . SRC MYPROG.MACROS FILE3.MACROS
MYPROG.MACROS

MACROS 143

scans MYPROG.SRC and updates MYPROG.MACROS by adding macro
definitions contained in FILE3.MACROS.

You may be tempted to bypass MACGEN, and MCOPY the relevant
libraries into your source file directly. There are two reasons why you should
resist that temptation:

1. The assembler reads library files very slowly, so copying large
libraries or multiple libraries takes much longer than copying a
smaller file that MACGEN has tailored to your source program.

2. Some macros call other macros. MACGEN will seek out every
needed macro definition and put it in your output file. You may
overlook some of these internally called macros, and wind up with
assembly errors.

Macros on the Programmer’s Workshop Disk

The Apple IIGS Programmer’s Workshop (APW) disk has a subdirectory
called LIBRARIES/AINCLUDE that contains macro files for each tool set
in the IIGS Toolbox (described in Chapter 6). However, it also has two files
that are unrelated to the Toolbox. M16.PRODOS contains macros that let
your programs perform ProDOS 16 commands, while M16. UTILITY pro-
vides general-purpose macros for performing both 8- and 16-bit operations.

ProDOS 16 Macros

The ProDOS 16 macros, listed in Table 5-2, are macro versions of the func-
tion calls in ProDOS’s Machine Language Interface (MLI). Using them
saves you from having to remember the numeric “opcode” for each call
(shown in italics in the table); each macro supplies it automatically.

Note that each macro name is preceded by an underscore character (__).
The Programmer’s Workshop uses the underscore prefix to identify macros
that employ system calls of any kind.

Utility Macros

The macros in file /APW/LIBRARIES/AINCLUDE/M16.UTILITY per-
form a variety of fundamental operations that are useful for developing

144 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

assembly language programs. As Table 5-3 shows, these macros fall into
nine groups: push and pull, load and store, add and subtract, define, move,
shift, mode, write, and check error. Except for native, all utility macros
assume the processor is operating in full (16-bit) native mode.

These macros are generally self-explanatory, so I don’t provide a
formal description. However, if a macro requires one or more operands, 1
give examples of its various forms. The examples should illustrate clearly
what the macro does.

Pay special attention to the pushword and pushlong macros. Most calls
to tools in the Apple IIGS Toolbox require input values or pointers to those
values to be on the stack. Hence, you will usually precede a tool call with
one or more pushword (for 2-byte inputs) or pushlong (for 4-byte inputs)
calls.

The str (string) macro is also useful for defining messages to be dis-
played on the screen.

Push and Pull Macros
pushl [opr] Push 1 byte onto the stack
pushl Loc ;Pushbyte at Loc
pushl Loc,x ;Pushbyteat Loc, x
pushl #n ;Push constant n
pushl ;Pushbyte fromA
pushword [opr] Push 2 bytes onto the stack
push2 Loc ;Pushbytes at Loc
push? Loc,x ;Pushbytesat Loc,x
push2 #n ;Push constant n
push2 ;Pushbytes fromA
push3 opr[,reg] Push 3 bytes onto the stack
push3 Loc ;Pushbytesat Loc
push3 Loc,x ;Pushbytesat Loc,x
push3 #n ; Push constant n
pushlong addr[,offset] Push 4 bytes onto the stack

pushlong Loc ;Pushbytesat Loc

MACROS 145

Table 5-2
Format Description
__ALLOCINTERRUPT DCB Install an interrupt handler $40
__CHANGEPATH DCB Change a file’s pathname $04
_ CLEARBACKUPBIT DCB Clear the backup bit in the file’s access byte $0B
__CLOSEDCB End access to file $CC
__CREATE DCB Create file or directory $CO
__DEALLOCINTERRUPT DCB Remove an interrupt handler $41
__DESTROY DCB Delete file or directory $C1
__FORMAT DCB Format a disk $24
__FLUSHDCB Empty file’s I/O buffer $CD
__GETBOOTVOL DCB Get name of volume from which PRODOS file was last
executed $28
__GETDEVNUM DCB Get device number $20
__GETEOF DCB Get size of file in bytes $DJ
__GETFILEINFO DCB Get file information $C4
__GETLASTDEV DCB Get number of the last device accessed $21
__GETLEVEL DCB Get system file level $1B
__GETMARK DCB Get current position in file $CF
__GETVERSION DCB Get ProDOS 16 version number $2A
__GETPATHNAME DCB Get the current application’s pathname $27
__GETPREFIX DCB Get current path name prefix $C7
__NEWLINE DCB Enable new line read mode $C9
__OPENDCB Prepare file for access $C8
__QUITDCB Terminate the current application $29
__READDCB Read bytes from file $CA
__READBLOCK DCB Read 512 bytes from file $80
__SETEOF DCB Set size of file $DO
__SETFILEINFO DCB Set file information $C3
__SETLEVEL DCB Set system file level $1A
__SETMARK DCB Set new position in file $CE
__SETPREFIX DCB Set pathname prefix $C6
__VOLUME DCB Get the disk’s name, its size in blocks, the number of
free (unallocated) blocks, and the file system
identification number $08
__WRITEDCB Write bytes to file $CB
__WRITEBLOCK DCB Write 512 bytes to file $87
pushlong #Loc ; Push address of Loc
pushlong Loc,x ;Pushbytesat Loc, x
pushlong #n ;Push constant n
pushlong [zeropg],offset ;Pushusing indirect
; addressing
pushxy Push 4 bytes onto the stack from X and Y

146 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Format

Table 5-3

Description

pushl [opr]
pushword [opr]

push3 addr[,reg]
pushlong addr[,offset]
pushxy

pushay

pulll [opr]

pullword {opr]

pull3 addr

pulllong [addr1[,addr2]]
pullxy [addr]

pullay

pullx [addr]

Push and Pull Macros

Push 1 byte onto the stack

Push 2 bytes onto the stack
Push 3 bytes onto the stack
Push 4 bytes onto the stack

Push 4 bytes onto the stack from X and Y
Push 4 bytes onto the stack from A and Y

Pull 1 byte from the stack

Pull 2 bytes from the stack
Pull 3 bytes from the stack
Pull 4 bytes from the stack

Pull 4 bytes from the stack using X and Y
Pull 4 bytes from the stack into A and Y

Pull 2 bytes from the stack using X

lday addr[,offset]
stay addr[,offset]
zero bytes,addr

Load and Store Macros

Load A and Y (4 bytes)
Store A and Y (4 bytes)
Zero a block

add [term1],term?2[,result]
add4 [term1],term?2[,result]
sub [term1],term2[,result]
sub4 [term1],term2[,result]

Add and Subtract Macros

Add 2-byte integers
Add 4-byte integers
Subtract 2-byte integers
Subtract 4-byte integers

str ’string’
dp pointer

Define Macros

Define string
Define pointer

movel from,to[,t02]
moveword from,to[,t02]
move3 from,to,[to2]
movelong from,to[,to2]

Move Macros

Move 1 byte

Move 2 bytes
Move 3 bytes
Move 4 bytes

asl4 addr[,count]
Isrd4 addr[,count]

Shift Macros

Left-shift 4 bytes
Right-shift 4 bytes

native [long/short]
emulation

long

longm

Mode Macros

Turn on native mode

Turn on emulation mode

Set memory, A, X, and Y to 16 bits
Set memory and A register to 16 bits

MACROS

Table 5-3 (cont.)

147

Format Description

Mode Macros (cont.)
longx Set X and Y registers to 16 bits
short Set memory and registers to 8 bits
shortm Set memory and A register to 8 bits
shortx Set X and Y registers to 8 bits

writech {opr]
writestr [opr]
writeln [opr]

Write Macros

Write a character
Write a string
Write a line (string + CR)

Check__Error error__subr

Check Error Macro

Call error subroutine if carry is 1

pushay

pulll [opr]
pulll Loc
pulll Loc,x
pulll

pullword [opr]
pull?2 Loc
pull2 Loc,x
pull?

pull3 addr
pull3 Loc

Push 4 bytes onto the stack from A and Y

Pull 1 byte from the stack

;Pushbyte and store
; itatLoc
;Pushbyte and store
; itatLoc,x
;Pushbyte into A

Pull 2 bytes from the stack

;Pull bytesandstore
; themat Loc

;Pull bytesand store
; themat Loc,x
;Pull bytes into A

Pull 3 bytes from the stack

;Pull bytesandstore
; themat Loc

148 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

pulllong [addrl[,addr2]]
pulllong Loc

pushlong Locl,Loc2

pulllong

pulllong
pullxy [addr]

pullxy

pullxy Loc
pullay
pullx [addr]

pullx
pullx Loc

Load and Store Macros

lday addr{,offset]
lday Loc
lday #n
lday [zeropg],offset

lday Zp, X

[zeropg],offset

Pull 4 bytes from the stack

;Pull bytes and store
themat Loc

;Pull bytesandstore

; themat bothLocl

; andLoc?2

;Pull bytesandstore
themusing indirect

; addressing

;Pull 4bytes. Discard

; first 3, store
second2 inA

Pull 4 bytes from the stack using X and Y

;Pull intoXandyY
;Pull intoXandy,
; storeat Loc

Pull 4 bytes from the stack into A and Y

Pull 2 bytes from the stack using X

;Pull into X
;Pull into X, store
; alsoatLoc

Load A and Y (4 bytes)

;Load A fromLoc, Y
intoLoc+

;LoadAandYwith

; constantn

;LoadAandyY
indirectly

;Load A fromzp,x, Y

; fromzp+2,x

MACROS 149

stay addr[,offset] Store A and Y (4 bytes)
stay Loc ;StoreAintolLoc, Y
; intoLoc+2
stay [zeropg],offset ;StoreAandyY
; indirectly
stay Zp, X ;StoreAintozp,x, Y

; intozp+2,x

zero Dbytes,addr Zero a block
ZEero #n,block ;Clear the firstn
; bytesofblock
zZero #n, [Loc] ;Clear the firstn

; bytesof theblock
; whose addressisin
; Loc

ZEero num, block ;Obtain the byte count
; frommemory

Add and Subtract Macros

add [terml1],term2[,result] Add 2-byte integers
add Locl,Loc?,Loc3 ;AddLocl toLoc2 and
; storethesumin
; Loc3
add Locl,Loc? ;Add Locl toLoc2 and
; returnthesuminA
add ,Loc2,Loc3 ;Add Loc2 to Aand
; storethesumin
; Loc3
add #4,Loc2 ;Add4 toLoc?2and

; returnthesuminA

add4 [terml],term2(,result] Add 4-byte integers
See add for examples.

sub [term1],term2{,result] Subtract 2-byte integers

150 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

sub Locl,Loc2,Loc3 ;Subtract Loc2 from
; Loclandstore the
; result inloc3

sub Locl,Loc?2 ;Subtract Loc2 from
; Loclandreturn the
; resultinA

sub ,Loc2,Loc3 ;Subtract Loc2 fromA
; andstore the
; resultinloc3

sub Locl, #4 ;Subtract 4 fromLocl
; andreturn the
; resultinA

sub4 [term1],term2{,result] Subtract 4-byte integers
See sub for examples.

Define Macros
str ’string’ Define string
Generates a Pascal-type string — that is, a 1-byte character count fol-
lowed by the string. For example,
ThisString str 'This ismy string'
produces the statement:
ThisString dc il1'l7',c'This is my string'
dp pointer Define pointer
Calculates the 4-byte address of the operand and puts it in a DC state-
ment of the form:

dc i4'pointer'

Move Macros
movel from,to[,to2] Move 1 byte
movel Here, There ;Copy the byte at Here

into There
movel Here,There, There2 ;Copy the byte at Here

movel #n,There

moveword from,to[,to2]
moveword Here, There

moveword Here,There, There?2

moveword #n, There

moveword [zeropg],offset,

move3 from,to[,to2]
move3 Here,There

move3 Here,There,There2
move3 #n,There

movelong from,to[,to2]
movelong Here,There

movelong Here, There, There?2

movelong #n,There

movelong [zeropg],offset,

>

>

MACROS 151

intoboth There
and There2

;Copy the constant n

»

’
>
3
’
s
»
»
B
’

i

il

’

>
>
»

»

’
,

»

’
»
’
»

’

into There
Move 2 bytes

Copy the bytes at
Here into There

Copy the bytesat
Here intoboth
There and There?

Copy the constantn
into There

Copy 2 bytes to There
using There in-
direct addressing

Move 3 bytes

Copy the 3bytesat
Here into There

;Copy the 3bytesat
Here into both
There and There?2

Copy the constant n
into There

Move 4 bytes

Copy the bytesat
Here into There
Copy the bytes at
Here into both
There and There2
Copy the constantn
into There
Copy 4 bytes to There
using There in-
direct addressing

152 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

movelong Here,x,There ;Copy the bytesat

' ; Hereplus index X
; into There

movelong Here,y, There ; Copy the bytes at
; HereplusindexY
; into There

Important: For the last two formats, x and y must be in lowercase.

Shift Macros
asl4 addr[,count] Left-shift 4 bytes
asl4 Loc, #3 ;Left—shift contents
; of Locby3bit
; positions
asl4 Loc, CountLoc ;Left-shift contents

; of Loc by count

; storedin CountLoc
asl4 Loc ;Left—shift contents

; of Loc by count

; storedinX

; register
Isr4 addr[,count] Right-shift 4 bytes
lsr4 Loc, #3 ;Right—-shift contentsof
; Locby3bit positions
lsr4 Loc, CountLoc ;Right-shift contentsof
; Locbycount stored in
; CountLoc
lsr4 Loc ;Right-shift contentsof
; Locbycount storedinX
; register
Mode Macros
native [long/short] Turn on native mode
native long ;Nativemode with 16-bit registers
native ;Same as preceding

native short ;Nativemodewith 8-bit registers

MACROS 153

emulation Turn on emulation mode
long Set memory, A, X, and Y to 16 bits
longm Set memory and A register to 16 bits
longx Set X and Y registers to 16 bits
short Set memory, A, X, and Y to 8 bits
shortm Set memory and A register to 8 bits
shortx Set X and Y registers to 8 bits
Write Macros
writech [opr] Write a character

writech ;Write character inA

; register
writech #'A' ;Writean "A"
writech Loc,x ;Write character

; addressedbyloc,x

writestr [opr] Write a string
writestr ;AandYpoint tostring
writestr #'Pressakey' ;Write "Press akey"
writestr Loc ;Writestringstart-
ingat Loc
writeln {opr] Write a line (string + CR)
writeln ;Write Carriage Return
; only
writeln #'Pressakey’ ;Write “"Pressakey",
; thenreturn
writeln Loc ;Write line starting
; atLoc
Check Error Macro
Check__Error error__subr Call error subroutine if carry is 1

The user-defined subroutine error__subr can be anywhere in the cur-
rent program bank.

154 APPLE IIGS ASSEMBLY LANGUAGE PROGRAMMING

Using Predefined Macros

The APW disk’s LIBRARIES/AINCLUDE subdirectory contains more than
20 macro library files. To use a macro in your program, you must copy its
definition into your program’s macro file using MACGEN.

Eventually, you will know instinctively where specific macros are
located. Until then, however, the easiest way to copy the definitions your
program needs is to make MACGEN search the entire directory, by giving
it the equal sign (=) wildcard. Hence, your MACGEN command would be
of the form:

macgen myprog.src myprog.macros /apw/libraries/
ainclude/ml6. =

