
[Apple logo]

ProDOS 8 Technical
Reference Manual

[Apple logo]

[AW logo]
Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts Meno Park, California Don Mills, Ontario
Wokingham, England Amsterdam Bonn Sydney Singapore Tokyo
Madrid Bogotá Santiago San Juan

ProDOS 8 Technical
Reference Manual

copyright page

[Apple logo]

ProDOS 8 Technical
Reference Manual

Figures and Tables xiii

Preface xv
About ProDOS xv
About This Manual xvi
What These Mean xvii
About the Apple IIc xvii

Chapter 1 � Introduction 1
1.1 What Is ProDOS? 2

1.1.1 Use of Disk Drives ... 3
1.1.2 Volume and File Characteristics ... 5
1.1.3 Use of Memory ... 5
1.1.4 Use of Interrupt Driven Devices ... 6
1.1.5 Use of Other Devices ... 6

1.2 Summary ... 7

Chapter 2 File Use 9
2.1 Using Files ... 10

2.1.1 Pathnames ... 10
2.1.2 Creating Files ... 13
2.1.3 Opening Files ... 13
2.1.4 The EOF and MARK ... 14
2.1.5 Reading and Writing Files ... 15
2.1.6 Closing and Flushing Files ... 16
2.1.7 File Levels ... 17

Page vi

Contents

2.2 File Organization ... 17
2.2.1 Directory Files and Standard Files ... 17
2.2.2 File Structure ... 18
2.2.3 Sparse Files ... 20

Chapter 3 Memory Use ... 21
3.1 Loading Sequence ... 22
3.2 Volume Search Order ... 23
3.3 Memory Map ... 23

3.3.1 Zero Page ... 25
3.3.2 The System Global Page ... 25
3.3.3 The System Bit Map ... 25

Chapter 4 Calls to the MLI ... 27
4.1 The Machine Language Interface ... 28
4.2 Issuing a Call to the MLI ... 29

4.2.1 Parameter Lists ... 31
4.2.2 The ProDOS Machine Language Exerciser ... 31

4.3 The MLI Calls ... 32
4.3.1 Housekeeping Calls ... 32
4.3.2 Filing Calls ... 33
4.3.3 System Calls ... 35

Page vii

4.4 Housekeeping Calls ... 36
4.4.1 CREATE ($C0) ... 36
4.4.2 DESTROY ($C1) ... 40
4.4.3 RENAME ($C2) ... 42
4.4.4 SET_FILE_INFO ($C3) ... 43
4.4.5 GET_FILE_INFO ($C4) ... 47
4.4.6 ON_LINE ($C5) ... 51
4.4.7 SET_PREFIX ($C6) ... 54
4.4.8 GET_PREFIX ($C7) ... 55

4.5 Filing Calls ... 56
4.5.1 OPEN ($C8) ... 56
4.5.2 NEWLINE ($C9) ... 58
4.5.3 READ ($CA) ... 59
4.5.4 WRITE ($CB) ... 61
4.5.5 CLOSE ($CC) ... 63
4.5.6 FLUSH ($CD) ... 64
4.5.7 SET_MARK ($CE) ... 65
4.5.8 GET_MARK ($CF) ... 66
4.5.9 SET_EOF ($D0) ... 67
4.5.10 GET_EOF ($D1) ... 68
4.5.11 SET_BUF ($D2) ... 69
4.5.12 GET_BUF ($D3) ... 70

4.6 System Calls ... 71
4.6.1 GET_TIME ($82) ... 71
4.6.2 ALLOC_INTERRUPT ($40) ... 72
4.6.3 DEALLOC_INTERRUPT ($41) ... 73

4.7 Direct Disk Access Commands ... 73
4.7.1 READ_BLOCK ($80) ... 74
4.7.2 WRITE_BLOCK ($81) ... 75

4.8 MLI Error Codes ... 77
Page viii

Chapter 5 Writing a ProDOS System Program 81
5.1 System Program Requirements ... 82

5.1.1 Placement in Memory ... 82
5.1.2 Relocating the Code ... 84
5.1.3 Updating the System Global Page ... 84
5.1.4 The System Bit Map ... 84

5.1.4.1 Using the Bit Map ... 85
5.1.5 Switching System Programs ... 86

5.1.5.1 Starting System Programs ... 86
5.1.5.2 Quitting System Programs ... 87

5.2 Managing System Resources ... 89
5.2.1 Using the Stack ... 89
5.2.2 Using the Alternate 64K RAM Bank ... 89

5.2.2.1 Protecting Auxiliary Bank Hi-Res Graphics Pages ... 89
5.2.2.2 Disconnecting /RAM ... 90
5.2.2.3 How to Treat RAM Disks With More Than 64K ... 91
5.2.2.4 Reinstalling /RAM ... 92

5.2.3 The System Global Page ... 94
5.2.4 Rules for Using the System Global Page ... 94
5.3 General Techniques ... 98
5.3.1 Determining Machine Configuration ... 98

5.3.1.1 Machine Type ... 98
5.3.1.2 Memory Size ... 98
5.3.1.3 80-Column Text Card ... 99

5.3.2 Using the Date ... 99
5.3.3 System Program Defaults ... 100
5.3.4 Finding a Volume ... 100
5.3.5 Using the RESET Vector ... 101

5.4 ProDOS System Program Conventions ... 101
Page ix

Chapter 6 Adding Routines to ProDOS ... 103
6.1 Clock/Calendar Routines ... 104
6.1.1 Other Clock/Calendars ... 106
6.2 Interrupt Handling Routines ... 106

6.2.1 Interrupts During MLI Calls ... 108
6.2.2 Sample Interrupt Routine ... 109

6.3 Disk Driver Routines ... 112
6.3.1 ROM Code Conventions ... 112

6.3.2 Call Parameters ... 114

Appendix A The ProDOS BASIC System Program ... 117
A.1 Memory Map ... 118
A.2 HIMEM ... 120

A.2.1 Buffer Management ... 121
A.3 The BASIC Global Page ... 123

A.3.1 BASIC.SYSTEM Commands From Assembly Language ... 131
A.3.2 Adding Commands to the BASIC System Program ... 134

A.3.2.1 BEEP Example ... 136
A.3.3.2 BEEPSLOT Example ... 138

A.3.3 Command String Parsing ... 140
A.4 Zero Page ... 142
A.5 The Extended 80-Column Text Card ... 143

Page x

Appendix B File Organization ... 145
B.1 Format of Information on a Volume ... 146
B.2 Format of Directory Files ... 147

B.2.1 Pointer Fields ... 148
B.2.2 Volume Directory Headers ... 148
B.2.3 Subdirectory Headers ... 151
B.2.4 File Entries ... 154
B.2.5 Reading a Directory File ... 157

B.3 Format of Standard Files ... 159
B.3.1 Growing a Tree File ... 159
B.3.2 Seedling Files ... 161
B.3.3 Sapling Files ... 162
B.3.4 Tree Files ... 163
B.3.5 Using Standard Files ... 163
B.3.6 Sparse Files ... 164
B.3.7 Locating a Byte in a File ... 166

B.4 Disk Organization ... 167
B.4.1 Standard Files ... 169
B.4.2 Header and Entry Fields ... 170

B.4.2.1 The storage_type Attribute ... 171
B.4.2.2 The creation and last_mod Fields ... 171
B.4.2.3 The access Attribute ... 172
B.4.2.3 The file_type Attribute ... 172

B.5 DOS 3.3 Disk Organization ... 174
Page xi

Appendix C ProDOS, the Apple III, and SOS ... 175
C.1 ProDOS, the Apple III, and SOS ... 176
C.2 File Compatibility ... 176
C.3 Operating System Compatibility ... 177

C.3.1 Comparison of Input/Output ... 177
C.3.2 Comparison of Filing Calls ... 177
C.3.3 Memory Handling Techniques ... 178
C.3.4 Comparison of Interrupts ... 178

Appendix D The ProDOS Machine Language Exerciser ...
179
D.1 How to Use It ... 180
D.2 Modify Buffer ... 181

Index ... 183

Tell Apple Card

Quick Reference Card
Page xii

Figures and Tables

Chapter 1 Introduction ... 1
Figure 1-1 A Simplified Diagram of ProDOS ... 2
Figure 1-2 A Typical ProDOS Directory Structure ... 4
Figure 1-3 The Levels of ProDOS ... 8

Chapter 2 File Use ... 9
Figure 2-1 A Typical ProDOS Directory Structure ... 12
Figure 2-2 Automatic Movement of EOF and MARK ... 15
Figure 2-3 Directory File Structure ... 18
Figure 2-4 Block Organization of a Directory File ... 19
Figure 2-5 Block Organization of a Standard File ... 19

Chapter 3 Memory Use ... 21
Figure 3-1 Memory Map ... 24

Chapter 5 Writing a ProDOS System Program ... 81
Figure 5-1 Memory Map ... 83
Figure 5-2 Memory Representation in the System Bit Map ... 84
Figure 5-3 Page Number to Bit-Map Bit Conversion ... 85

Chapter 6 Adding Routines to ProDOS ... 103
Figure 6-1 ProDOS Date and Time Locations ... 104

Page xiii

Appendix A The ProDOS BASIC System Program ... 117
Figure A-1 Memory Map ... 119
Table A-1 HIMEM and Program Workspace ... 120
Figure A-2 The Movement of HIMEM ... 121
Figure A-3 Zero Page Memory Map ... 142

Appendix B File Organization ... 145
Figure B-1 Blocks on a Volume ... 147
Figure B-2 Directory File Format ... 148
Figure B-3 The Volume Directory Header ... 149
Figure B-4 The Subdirectory Header ... 152
Figure B-5 The File Entry ... 155
Figure B-6 Structure of a Seedling File ... 162
Figure B-7 Structure of a Sapling File ... 162
Figure B-8 Structure of a Tree File ... 163
Figure B-9 A Sparse File ... 165
Figure B-10 Disk Organization ... 168
Figure B-11 Standard Files ... 169
Figure B-12 Header and Entry Fields ... 170
Figure B-13 Date and Time Format ... 171
Figure B-14 The access Attribute Field ... 172
Table B-1 The ProDOS File_Types ... 173
Figure B-15 Tracks and Sectors to Blocks ... 174

Page xiv

Preface

The ProDOS Technical Reference Manual is the last of three manuals
that describe ProDOS(TM), the most powerful disk operating system
available for the Apple II.
 The ProDOS User's Manual tells how to copy, rename, and remove

ProDOS files using the ProDOS Filer program, and how to move
files from DOS disks to ProDOS disks using the DOS-ProDOS
Conversion program.

 BASIC Programming With ProDOS describes ProDOS to a user of
the BASIC system program. It explains how to store information on
ProDOS disks and to retrieve information from ProDOS disks using
Applesoft BASIC.

 This manual, the ProDOS Technical Reference Manual, explains
how to use the machine-language routines upon which the Filer
program, the DOS-ProDOS Conversion program, and the BASIC
system program are based. Appendix A reveals a more technical side
of the BASIC system program.

About ProDOS

The set of machine-language routines described in this manual provides
a consistent and interruptible interface to any of the disk devices
manufactured by Apple Computer, Inc. for the Apple II. They are
designed to be used in programs written in the 6502 machine language.

Page xv

This manual
 describes the files that these routines create and access
 tells how each of the routines is used
 explains how to combine the routines into an application program
 tells how to write and install routines to be used when an interrupt is

detected
 tells how to write a routine that automatically reads the date from a

clock/calendar card when a file is created or modified
 explains how to attach other devices to ProDOS.

Some advantages of programs written using these ProDOS machine-
language routines are:
 They store information on disks using a hierarchical directory

structure.
 They are able to access all disk devices manufactured by Apple

Computer, Inc. for the Apple II.
 They can read data from a Disk II drive at a rate of approximately

eight kilobytes per second (compared to one kilobyte per second for
DOS).

 They are interruptible.
 They have the same disk and directory format as Apple III SOS

disks.
 Calls to ProDOS are very similar to calls to SOS; programs can be

readily developed for both the Apple II and the Apple III. Appendix
C explains the similarities and differences between ProDOS and
SOS.

About This Manual

Apple II
In this manual the name Apple II implies the Apple II Plus, the Apple
IIe, and the Apple IIc, as well as the Apple II, unless it specifically states
otherwise.

This manual is written to serve as a learning tool and a reference tool. It
assumes that you have had some experience with the 6502 assembly
language, and that you are familiar with the Apple II’s internal
structure.

Page xvi

If you have read BASIC Programming With ProDOS and you want to
find out more about how the BASIC system program works, refer first
to Appendix A. If you still want more details, Chapters 1 through 3 tell
what ProDOS is and how it works. If you plan to write machine-
language programs that use ProDOS, you will also need to read
Chapters 4 and 5. Chapter 6 shows techniques for adding various
devices to the ProDOS system.

This manual does not explain 6502 assembly language. If you plan to
read beyond Chapter 3, you should be familiar with the 6502 assembly
language and with the ProDOS Editor/Assembler.

What These Mean

By the Way: Text set off in this manner presents sidelights or
interesting points of information.

Important! Text set off in this manner -- and with a tag in the margin –
presents important information.

Warning Warnings like this indicate potential problems or disasters.

About the Apple IIc

Although the Apple IIc has no slots for peripheral cards, it is configured
as if it were an Apple IIe with
 128 Kbytes of RAM
 serial I/O cards in slots 1 and 2
 an 80-column text card in slot 3
 a mouse (or joystick) card in slot 4
 a disk controller (for two disk drives) in slot 6.

Page xvii

Page xviii

Chapter 1 Introduction

About the Apple IIc 1

This chapter contains an overview of ProDOS and of the material
explained in the rest of this manual. It presents a conceptual picture of
the organization and capabilities of ProDOS. It also tells you where in
the manual each aspect of ProDOS is explained.

1.1 What Is ProDOS?

ProDOS is an operating system that allows you to manage many of the
resources available to an Apple II. It functions primarily as a disk
operating system, but it also handles interrupts and provides a simple
means for memory management. ProDOS marks files with the current
date and time, taken from a clock/calendar card if you have one.

All ProDOS startup disks have two files in common: PRODOS and
XXX.SYSTEM (Chapter 2 explains the possible values for XXX). The
file PRODOS contains the ProDOS operating system; it performs most
of the communication between a system program and the computer’s
hardware. The file XXX.SYSTEM contains a system program, the
program that usually communicates between the user and the operating
system. Figure 1-1 shows a simplified block diagram of the ProDOS
system.

2 1.1 What Is ProDOS?

User

System Program

Operating System

Hardware

From File
xxx.SYSTEM

From File
PRODOS

Disk Drives,
Memory,
and Slots

ProDOS is primarily a disk operating
system, but handles interrupts and memory
management also.

A ProDOS system program – such as the BASIC system program (file
BASIC.SYSTEM on the ProDOS BASIC Programming Examples
disk), the ProDOS Filer (file FILER on the ProDOS User’s Disk), or
the DOS-ProDOS Conversion program (file CONVERT on the
ProDOS User’s Disk) – is an assembly-language program that accepts
commands from a user, makes sure they are valid, and then takes the
appropriate action. One course of action is to make a call to the
Machine Language Interface (MLI), the portion of the operating
system that receives, validates, and issues operating system commands.

Calls to the MLI give you control over various aspects of the hardware.
MLI calls can be divided into housekeeping calls, filing calls, memory
calls, and interrupt handling calls. The way that the MLI communicates
with disk drives, memory, and interrupt driven devices is described in
the following sections.

About System Programs: If you have dealt with system programs
before, you may be a bit confused about the term as used in this
manual. True system programs are neither application programs (such
as a word processor) nor operating systems: they provide an easy means
of making operating system calls from application programs.

As used in this manual, system program refers to a program that is
written in assembly language, makes calls to the Machine Language
Interface, and adheres to a set of conventions, making it relatively easy
to switch from one system program to another. System programs can
be identified by their file type.

In short, it is the structure of a program, not its function, that makes a
program a ProDOS system program.

1.1.1 Use of Disk Drives

Although ProDOS is able to communicate with several different types
of disk drives, the type of disk drive and the slot location of the drive
need not be known by the system program: the MLI takes care of such
details. Instead disks—or, more accurately, volumes of information—
are identified by their volume names.

The information on a volume is divided into files. A file is an ordered
collection of bytes, having a name, a type, and several other properties.
One important type of file is the directory file: a directory file contains
the names and location on the volume of other files. When a disk is
formatted using the Format a Volume option of the ProDOS Filer
program, a main directory file for the volume is automatically

1.1 What Is ProDOS? 3

The rules for organizing system
programs are given in Chapter 5.

Calls to the MLI: see Chapter 4.

A system program communicates between
the user and the operating system.

A directory file contains the names and
locations of other files on the volume.

placed on the disk. It is called the disk’s volume directory file, and it has
the same name as the volume itself. Although it is initially empty, a
volume directory file has a maximum capacity of 51 files.

Any file in the volume directory may itself be a directory file (called a
subdirectory), and any file within a subdirectory can also be a
subdirectory. Using directory files, you can arrange your files so that
they can be most easily accessed and manipulated. This is especially
useful when you are working with large capacity disk drives such as the
ProFile. A sample directory structure is shown in Figure 1-2.

Figure 1-2. A Typical ProDOS Directory Structure

 +---------------+
 +-----------------+ +-->| VIDEOBALL |
 +---->| PROGRAMS/ | | +---------------+
 | |-----------------| |
 | | VIDEOBALL |--+ +---------------+
 | | DISKWARS |----->| DISKWARS |
 | | | +---------------+
 | +-----------------+
 +-----------------+ |
 | /PROFILE/ | |
 |-----------------| | +---------------+
 | PROGRAMS/ |--+ +-----------------+ +-->| MOM |
 | LETTERS/ |------->| LETTERS/ | | +---------------+
 | SYSTEMPROGRAMS/ |----+ |-----------------| |
 | JUNK/ |--+ | | MOM |--+ +---------------+
 +-----------------+ | | | DAD |----->| DAD |
 | | | SPOT |--+ +---------------+
 | | +-----------------+ |
 | | | +---------------+
 | | +-->| SPOT |
 | | +---------------+
 | |
 | |
 | | +---------------+
 | | +-----------------+ +-->| BASIC.SYSTEM |
 | +-->| SYSTEMPROGRAMS/ | | +---------------+
 | |-----------------| |
 | | BASIC.SYSTEM |--+ +---------------+
 | | FILER |----->| FILER |
 | | CONVERT |--+ +---------------+
 | +-----------------+ |
 | | +---------------+
 | +-->| CONVERT |
 | +---------------+
 |
 | +-----------------+
 +---->| JUNK |
 +-----------------+

The filing calls, described in Chapter 4, provide all functions necessary
for the access and manipulation of files.

4 1.1 What Is ProDOS?

Directory structures are described in
Chapter 2.

1.1.2 Volume and File Characteristics

Programs that make filing calls to the ProDOS Machine Language
Interface can take advantage of the following features:
 Access to all ProDOS formatted disks; maximum capacity 32

megabytes on a volume.
 Files can be stored in up to 64 levels of readable directory and

subdirectory files.
 A volume directory holds up to 51 entries.
 Subdirectories can hold as many files as needed; they become larger

as files are added to them.
 There are over 60 distinct file identification codes; some are

predefined, others can be defined by the system program. For
compatibility, existing file types should be used.

 Up to eight files can be open for access simultaneously.
 A file can hold up to 16 megabytes of data.
 Disks can be accessed by block number as well as by file.
 If the data in a file is not sequential, the logical size of the file can be

bigger than the amount of disk space used.

1.1.3 - Use of Memory

ProDOS treats memory as a sequence of 256-byte pages. It represents
the status of each page, used or unused, as a single bit in a portion of
memory called the system bit map.

When ProDOS initializes itself, it marks all the pages in memory it
needs to protect. Once running, it sets the corresponding bit in the bit
map for each new page it uses; when it releases the page, it clears the
bit.

If your program allows the user to read information into specific areas
of memory, you can use the bit map to prevent ProDOS from
overwriting the program.

1.1 What Is ProDOS? 5

The use of files is described in
Chapter 2; their format is given in
Appendix B.

The arrangement of ProDOS in memory is
described in Chapter 3.

1.1.4 - Use of Interrupt Driven Devices

Certain devices generate interrupts, signals that tell the controlling
computer (in this case an Apple II), that the device needs attention.

ProDOS is able to handle up to four interrupting devices at a time. To
add an interrupt driven device to your system:

1. Place an interrupt handling routine into memory.

2. Mark the block of memory as used.

3. Use the MLI call that adds interrupt routines to the system.

4. Enable the device.

This causes the routine to be called each time an interrupt occurs. If you
install more than one routine, the routines will be called in the order in
which they were installed.

To remove an interrupt handling routine:

1. Disable the device.

2. Unmark its block in memory

3. Use the MLI call that removes interrupt routines from the system.

Failure to follow these procedures in sequence may cause system error.

1.1.5 - Use of Other Devices

Other than disks, ProDOS communicates only with clock/calendar
cards. If your system has a clock/calendar card that follows ProDOS
protocols (see Chapter 6), ProDOS automatically sets up a routine so
that it can read from the clock before marking files with the time. If you
have some other type of clock, you must write your own routine, place
it in memory, and tell ProDOS where the routine is located.

6 1.1 What Is ProDOS?

The use of interrupt driven devices is
described in Chapter 6.

Warning▴

1.2 - Summary

Figure 1-3 illustrates the entire mechanism used by ProDOS and shows
the interaction between the levels of ProDOS. A complete ProDOS
system consists of the Machine Language Interface, a system program,
and some external routines. If you wish your system to operate with
interrupt driven devices, a clock/calendar card, or other external devices,
you must supply routines that communicate with these devices.

The system program takes commands from the user and issues them to
the Command Dispatcher portion of the Machine Language Interface
or to independently controlled devices. The Command Dispatcher
validates each command before passing it to the Block File Manager
(which also manages memory) or to the Interrupt Receiver/Dispatcher.
The Block File Manager calls a disk driver routine and the
clock/calendar routine if necessary; the Interrupt Receiver/Dispatcher
calls the interrupt handling routines.

1.2- Summary 7

Figure 1-3. The Levels of ProDOS

USER (User) IMA.USER

 ^
 - | -
 v
 +----------------+
USER INTERFACE | System Program | xxx.SYSTEM
 +----------------+
 ^ ^
 | \
 v \
 +------------+ \
 - | Command | - \ -
 | Dispatcher | \
 +------------+ \
 ^ ^ +-------------------+
 | | |
 +-----------------+ | |
 | | |
 v v |
 +------------+ +---------------------+ | PRODOS
 | Block File | | Interrupt | |
OPERATING | Manager | | Receiver/Dispatcher | |
 SYSTEM +------------+ +---------------------+ |
 ^ ^ ^ |
 | | +- - - - | - - - - - - - - - - - | - - - - - - - -
 v v | v v
 +-------------+ +----------------+ | +------------+ +-----------------+
 | Disk Driver | | Clock/Calendar | | | Interrupt | | Other Device | User
 | Routines | | Routine | | | Routine(s) | | Driver Routines | Installed
 +-------------+ +----------------+ | +------------+ +-----------------+
 ^ ^ | ^ ^
 - - - - - - - -|- - - - - - - - - | - - - - - -+- - - - | - - - - - - - - - | - - - - - - - - - -
 v v v v
 +---------+ +----------------+ +----------------+ +---------------+
HARDWARE | Disk II | | Clock/Calendar | | Interrupt | | Other Devices |
 | ProFile | | Card | | Driven Devices | | |
 +-----+ | +--------+ | +--------+ | +--------+ |
 | | | | | | | |
 +---+ +-------+ +-------+ +------+

The following chapters describe the implementation of this mechanism.
After reading through Chapter 5, you will be ready to start writing your
own system programs. After reading through Chapter 6, you will be
able to write your own external routines.

8 1.2- Summary

Chapter 2 File Use

1.2- Summary 9

Chapter 1 introduced you to the concepts of volumes and files. This
chapter explains how files are named, how they are created and used
and a little about how they are organized on disks. When you have
finished reading this chapter you will be nearly ready to start using the
ProDOS Machine Language Interface filing calls.

The technical details of file organization are given in Appendix B.

2.1 Using Files

A ProDOS filename or volume name is up to 15 characters long. It
may contain capital letters (A-Z), digits (0-9), and periods (.), and it
must begin with a letter. Lowercase letters are automatically converted
to uppercase. A filename must be unique within its directory. Some
examples are
LETTERS
JUNK1
BASIC.SYSTEM

By the Way: On the Apple II, an ASCII character is read from the
keyboard and printed to the screen with its high bit set. ProDOS clears
this high bit.

2.1.1 - Pathnames

A ProDOS pathname is a series of filenames, each preceded by a slash
(/). The first filename in a pathname is the name of a volume directory.
Successive filenames indicate the path, from the volume directory to the
file, that ProDOS must follow to find a particular file.

The maximum length for a pathname is 64 characters, including slashes.
Examples are
/PROFILE/GAMES/DISKWARS
/PROFILE/JUNK1
/PROFILE/SYSTEMPROGRAMS/FILER

All calls that require you to name a file will accept either a pathname or
a partial pathname. A partial pathname is a portion of a pathname that
doesn’t begin with a slash or a volume name. The maximum length for
a partial pathname is 64 characters, including slashes. These partial
pathnames are all derived from the sample pathnames above.

10 2.1 Using Files

The partial pathnames are
DISKWARS
JUNK1
SYSTEMPROGRAMS/FILER
FILER

ProDOS automatically adds the prefix to the front of partial pathnames
to form full pathnames. The prefix is a pathname that indicates a
directory; it is internally stored by ProDOS. To locate a file by its
pathname, ProDOS must look through each file in the path. If you
specify a partial pathname, however, ProDOS jumps straight to the
prefix directory and starts searching from there. Thus disk accesses are
faster when you set the prefix and use partial pathnames.

For the partial pathnames listed above to indicate valid files, the prefix
should be set to /PROFILE/GAMES/, /PROFILE/, /PROFILE/,
and /PROFILE/SYSTEMPROGRAMS/, respectively. The slashes at the
end of these prefixes are optional; however, they are convenient
reminders that prefixes indicate directory files.

The maximum length for a prefix is 64 characters. The minimum length
for a prefix is zero characters, known as a null prefix. You set and read
the prefix using the MLI calls, SET_PREFIX and GET_PREFIX,
respectively. The 64 character limits for the prefix and partial pathname
combine to create a maximum pathname of 128 characters.

Figure 2-1 illustrates a typical directory structure; it contains all the files
mentioned above.

2.1 Using Files 11

Figure 2-1. A Typical ProDOS Directory Structure

 +---------------+
 +-----------------+ +-->| VIDEOBALL |
 +---->| PROGRAMS/ | | +---------------+
 | |-----------------| |
 | | VIDEOBALL -|--+ +---------------+
 | | DISKWARS -|----->| DISKWARS |
 | | | +---------------+
 | +-----------------+
 +-----------------+ |
 | /PROFILE/ | |
 |-----------------| | +---------------+
 | PROGRAMS/ |--+ +-----------------+ +-->| MOM |
 | LETTERS/ |------->| LETTERS/ | | +---------------+
 | SYSTEMPROGRAMS/ |----+ |-----------------| |
 | JUNK/ |--+ | | MOM -|--+ +---------------+
 +-----------------+ | | | DAD -|----->| DAD |
 | | | SPOT -|--+ +---------------+
 | | +-----------------+ |
 | | | +---------------+
 | | +-->| SPOT |
 | | +---------------+
 | |
 | |
 | | +---------------+
 | | +-----------------+ +-->| BASIC.SYSTEM |
 | +-->| SYSTEMPROGRAMS/ | | +---------------+
 | |-----------------| |
 | | BASIC.SYSTEM -|--+ +---------------+
 | | FILER -|----->| FILER |
 | | CONVERT -|--+ +---------------+
 | +-----------------+ |
 | | +---------------+
 | +-->| CONVERT |
 | +---------------+
 |
 | +-----------------+
 +---->| JUNK |
 +-----------------+

12 2.1 Using Files

2.1.2 Creating Files

A file is placed on a disk by the CREATE call. When you create a file,
you assign it the following properties:
 A pathname. This pathname is a unique path by which the file can be

identified and accessed. This pathname must place the file within an
existing directory.

 An access byte. The value of this byte determines whether or not the
file can be written to, read from, destroyed, or renamed.

 A file_type. This byte indicates to other system programs the type of
information to be stored in the file. It does not affect, in any way, the
contents of the file.

 A storage_type. This byte determines the physical format of the file
on the disk. There are only two different formats: one is used for
directory files, the other for non-directory files.

 A creation_date and a creation_time.

When you create a file, these properties are placed on the disk. The file’s
name can be changed using the RENAME call; other properties can be
altered using the SET_FILE_INFO call. The disk storage format of
these properties is given in Appendix B.

Once a file has been created, it remains on the disk until it is destroyed
(using the DESTROY call).

2.1.3 - Opening Files

Before you can read information from or write information to a file you
must use the OPEN call to open the file for access. When you open a
file you specify:
 A pathname. This pathname must indicate a previously created file

that is on a disk mounted in a disk drive.
 The starting address in memory of an I/O buffer. Each open file

requires its own 1024-byte buffer for the transfer of information to
and from the file.

The OPEN call returns a reference number (ref_num). All subsequent
references to the open file must use this reference number. The file
remains open until you use the CLOSE call.

2.1 Using Files 13

Each open file’s I/O buffer is used by the system the entire time the file
is open. Thus it is wise to keep as few files open as possible. A
maximum of eight files can be open at a time.

When you open a file, some of the file’s characteristics are placed into a
region of memory called a file control block. Several of these
characteristics – the location in memory of the file’s buffer, a pointer to
the end of the file (the EOF), and a pointer to the current position in
the file (the file’s MARK) – are accessible to system programs via MLI
calls, and may be changed while the file is open.

It is important to be aware of the differences between a file on the disk
and an open file in memory. Although some of the file’s characteristics
and some of its data may be in memory at any given time, the file itself
still resides on the disk. This allows ProDOS to manipulate files that are
much larger than the computer’s memory capacity. As a system
program writes to the file and changes its characteristics, new data and
characteristics are written to the disk.

Warning It is crucial that you close all files before turning off the
computer or pressing [CONTROL]-[RESET]. This is the only way
than you can ensure that all written data has been placed on the disk.
See also the FLUSH call.

2.1.4 - The EOF and MARK

To aid the tasks of reading from and writing to files, each open file has
one pointer indicating the end of the file, the EOF, and another
defining the current position in the file, the MARK. Both are moved
automatically by ProDOS, but can also be independently moved by the
system program.

The EOF is the number of readable bytes in the file. Since the first byte
in a file has number 0, the EOF, when treated as a pointer, points one
position past the last character in the file.

When a file is opened, the MARK is set to indicate the first byte in the
file. In is automatically moved forward one byte for each byte written
to or read from the file. The MARK, then, always indicates the next
byte to be read from the file, or the next byte position in which to write
new data. It cannot exceed the EOF.

14 2.1 Using Files

If during a write operation the MARK meets the EOF both the MARK
and the EOF are moved forward one position for every additional byte
written to the file. Thus, adding bytes to the end of the file
automatically advances the EOF to accommodate the new information.
Figure 2-2 illustrates the relationship between the MARK and the
EOF.

Figure 2-2. Automatic Movement of EOF and MARK

 EOF EOF Old EOF EOF
 | | \ |
 v v v v
 +---------+ + +---------+ + +------------ +
 | | | | | | | | | | | | | | | | | | | | | |
 +---------+ + +---------+ + +------------ +
 ^ ^ ^ ^ ^
 | | | | |
 MARK Old MARK MARK Old MARK MARK

 Beginning Position After Reading Two Bytes After Writing Two Bytes

A system program can place the EOF anywhere, from the current
MARK position to the maximum possible byte position. The MARK
can be placed anywhere from the first byte in the file to the EOF. These
two functions can be accomplished using the SET_EOF and
SET_MARK calls. The current values of the EOF and the MARK can
be determined using the GET_EOF and GET_MARK calls.

2.1.5 Reading and Writing Files

READ and WRITE calls to the MLI transfer data between memory
and a file. For both calls, the system program must specify three things:
 The reference number of the file (assigned when the file was

opened).
 The location in memory of a buffer (data_buffer) that contains, or is

to contain, the transferred data. Note that this cannot be the same
buffer that was specified when the file was opened.

 The number of bytes to be transferred.

When the request has been carried out, the MLI passes back to the
system program the number of bytes that it actually transferred.

2.1 Using Files 15

A read or write request starts at the current MARK, and continues until
the requested number of bytes has been transferred (or, on a read, until
the end of file has been reached). Read requests can also terminate
when a specified character is read. You turn on this feature and set the
character(s) on which reads will terminate using the NEWLINE call. It
is typically used for reading lines of text that are terminated by carriage
returns.

By the Way: Neither a READ nor a WRITE call necessarily causes a
disk access. It is only when a read or write crosses a 512-byte (block)
boundary that a disk access occurs.

2.1.6 Closing and Flushing Files

When you finish reading from or writing to a file, you must use the
CLOSE call to close the file. When you use this call, you specify
 the reference number of the file (assigned when the file was opened).

CLOSE writes any unwritten data to the file, and it updates the file’s
size in the directory, if necessary. Then it frees the 1024-byte io_buffer
for other uses and releases the file’s reference number.

Information in the file’s directory, such as the file’s size, is normally
updated only when the file is closed. If you were to press
[CONTROL]-[RESET] (typically halting the current program) while a
file is open, data written to the file since it was opened could be lost and
the integrity of the disk could be damaged. This can be prevented by
using the FLUSH call. To use FLUSH you specify
 the reference number of the file (assigned when the file was opened).

If you press [CONTROL]-[RESET] while an open but flushed file is
in memory, there is no loss of data and no damage to the disk.

Both the CLOSE and FLUSH calls, when used with a reference
number of 0, normally cause all open files to be closed or flushed.
Specific groups of files can be closed or flushed using the system level.

16 2.1 Using Files

2.1.7 File Levels

When a file is opened, it is assigned a level, according to the value of a
specific byte in memory (the system level). If the system level is never
changed, the CLOSE and FLUSH calls, when used with a reference
number of 0, cause all open files to be closed or flushed. But if the level
has been changed since the first file was opened, only the files having a
file level greater than or equal to the current system level are closed or
flushed.

The system level feature is used, for example, by the BASIC system
program to implement the EXEC command. An EXEC file is opened
with a level of 0, then the level is set to 7. A BASIC CLOSE command
(intended to close all files opened within the EXEC program) closes all
files at or above level 7, but the EXEC file itself remains open.

2.2 File Organization

This portion of the chapter describes in general terms the organization
of files on a disk. It does not attempt to teach you everything about file
organization: its purpose is to familiarize you with the terms and
concepts required by the filing calls.

Appendix B elaborates on the subject of file organization.

2.2.1 Directory Files and Standard Files

Every ProDOS file is a named, ordered sequence of bytes that can be
read from, and to which the rules of MARK and EOF apply. However,
there are two types of files: directory files and standard files. Directory
files are special files that describe and point to other files on the disk.
They may be read from, but not written to (except by ProDOS). All
nondirectory files are standard files. They may be read from and written
to.

A directory file contains a number of similar elements, called entries.
The first entry in a directory file is the header entry: it holds the name
and other properties (such as the number of files stored in that
directory) of the directory file. Each subsequent entry in the file
describes and points to some other file on the disk. Figure 2-3
represents the structure of a directory file.

2.2 File Organization 17

Figure 2-3. Directory File Structure

 Directory File Other Files

 +--------------+ +--------------+
 | | +---->| File |
 | Header Entry | | +--------------+
 | | |
 |--------------| | +--------------+
 | | | +-->| File |
 | Entry -|--+ | +--------------+
 | | |
 |--------------| |
 | -|----+
 | -|--->
 | More Entries-|-->
 | -|---> +--------------+
 | -|------->| File |
 |--------------| +--------------+
 | |
 | Entry -|---+ +--------------+
 | | +--->| File |
 |--------------| +--------------+
 | |
 | Entry -|---+ +--------------+
 | | +--->| File |
 +--------------+ +--------------+

The files described and pointed to by the entries in a directory file can
be standard files or other directory files.

A system program does not need to know the details of directory
structure to access files with known names. Only operations on
unknown files (such as listing the files in a directory) require the system
program to examine a directory’s entries. For such tasks, refer to
Appendix B.

Standard files have no such predefined internal structure: the format of
the data depends on the specific file type.

2.2.2 File Structure

Because directory files are generally smaller than standard files, and
because they are sequentially accessed, ProDOS uses a simpler form of
storage for directory files. Both types of files are stored as a set of 512-
byte blocks, but the way in which the blocks are arranged on the disk
differs.

A directory file is a linked list of blocks: each block in a directory file
contains a pointer to the next block in the directory file as well as a
pointer to the previous block in the directory. Figure 2-4 illustrates this
structure.

18 2.2 File Organization

Figure 2-4. Block Organization of a Directory File

 +------------+ +------------+ +------------+
 | Key Block |<------| |<-...<-| Last Block |
 | |------>| |->...->| |
 | | | | | |
 | | | | | |
 | | | | | |
 +------------+ +------------+ +------------+

Data files, on the other hand, are often quite large, and their contents
may be randomly accessed. It would be very slow to access such large
files if they were organized sequentially. Instead ProDOS stores
standard files using a tree structure. The largest possible standard file
has a master index block that points to 128 index blocks. Each index
block points to 256 data blocks and each data block can hold 512 bytes
of data. The block organization of the largest possible standard file is
shown in Figure 2-5.

Figure 2-5. Block Organization of a Standard File

 +---------------------+
 | Master Index |
 | Block |
 +---------------------+
 | | | | | | | | | | |
 | v v v v | v v v v |
 +----------+ | +----------+
 | | |
 v v v
 +-------------+ +-------------+ +-------------+
 | Index | | Index | | Index |
 | Block 0 | | Block n | | Block 127 |
 +-------------+ +-------------+ +-------------+
 | | | | | | | | | | | | | | | | | |
 | v v v v | | v v v v | | v v v v |
 | | | | | |
 v v v v v v
 +-------+ +-------+ +-------+ +-------+ +-------+ +-------+
 | Data | | Data | | Data | | Data | | Data | | Data |
 | Block | | Block | | Block | | Block | | Block | | Block |
 | 0 | | 255 | | 0 | | 255 | | 0 | | 255 |
 +-------+ +-------+ +-------+ +-------+ +-------+ +-------+

Most standard files do not have this exact organization. ProDOS only
writes a subset of this structure to the file, depending on the amount of
data written to the file. This technique produces three distinct forms of
standard file: seedling, sapling, and tree files.

2.2 File Organization 19

Appendix B describes the three forms of
standard file.

2.2.3 Sparse Files

In most instances a program writes data sequentially into a file. By
writing data, moving the EOF and MARK, and then writing more
data, a program can also write nonsequential data to a file. For example,
a program can open a file, write ten characters of data, and then move
the EOF and MARK (thereby making the file bigger) to $3FE0 before
writing ten more bytes of data. The file produced takes up only three
blocks on the disk (a total of 1536 bytes), yet over 16,000 bytes can be
read from the file. Such files are known as sparse files.

Important!

The fact that more data can be read from the file than actually resides
on the disk can cause a problem. Suppose that you were trying to copy
a sparse file from one disk to another. If you were to read data from
one file and write it to another, the new file would be much larger than
the original because data that is not actually on the disk can be read
from the file. Thus if your system program is going to transfer sparse
files, you must use the information in Appendix B to determine which
data segments should be copied, and which should not.

The ProDOS Filer automatically preserves the structure of sparse files
on a copy.

20 2.2 File Organization

Chapter 3 Memory Use

21

This chapter explains the way the Machine Language Interface uses
memory. It tells how much memory system programs have available to
them, how system programs should manage this free memory, and it
discusses the contents of important areas of memory while ProDOS is
inn use.

3.1 Loading Sequence

When you start up your Apple II from a ProDOS startup disk—one
that contains both the MLI (ProDOS) and a system program
(XXX.SYSTEM)—a complex loading sequence is initiated.

A preliminary loading program is stored in the read-only memory (boot
ROM) on a disk drive’s controller card; the main part of the loader
program, as it is called, resides in blocks 0 and 1 of every ProDOS-
formatted disk.

When you turn on your computer, or use a PR# or IN# command to
reference a disk drive from Applesoft, or otherwise transfer control to
the ROM on the disk-drive controller card when a ProDOS startup disk
is in the drive, this is what happens:
1. The program in the ROM reads the loader program from blocks 0

and 1 of the disk, places it into memory starting at location $800,
and then executes it.

2. This loader program looks for the file with the name PRODOS and
type $FF (containing the MLI) in the volume directory of the
startup disk, loads it into memory starting at location $2000, and
executes it.

3. The MLI ascertains the computer’s memory size and moves itself to
its final location, as shown in Figure 3-1. Next it determines what
devices are in what slots and it sets up the system global page,
described in the section “The System Global Page,” for this system
configuration.

4. The MLI then searches the volume directory of the boot disk for the
first file with the name XXX.SYSTEM and type $FF, loads it into
memory starting at $2000, and executes it.

If PRODOS cannot be found, the loader reports to the user that it is
unable to load ProDOS. If no XXX.SYSTEM program is found,
ProDOS displays the message UNABLE TO FIND A SYSTEM
FILE.

22 3.1 Loading Sequence

The rules for system programs are described
in Chapter 5.

The MLI is entirely memory resident. Once it is in memory, it neither
moves, nor does it require any additional disk accesses (although the
system program might). The memory configuration that results from
this loading process is described in the section “Memory Map.”

3.2 Volume Search Order

When a program or user requests access to a volume that ProDOS has
not yet accessed, it must search through the volumes that are currently
online for the requested volume. The order in which it searches the
devices is determined during step 3 above.

The first volume checked is /RAM, if present, then the startup volume
(generally slot 6, drive 1). The search then checks slots in descending
slot order, starting with slot 7. In any slot, drive 1 is searched before
drive 2.

For example, if there are two Disk II drives in slot 6, two Disk II drives
in slot 5, and a ProFile in slot 7, the search order is:

/RAM

Slot 6, drive 1

Slot 6, drive 2

Slot 7

Slot 5, drive 1

Slot 5, drive 2

The startup volume is the volume in the highest numbered slot that can
be identified by the system as a startup volume. This sequence is kept in
the device list in the ProDOS global page and can be altered.

Note: If the startup volume is a hard disk, the search order is from slot
7 to slot 1.

3.3 - Memory Map

ProDOS requires at least 64 kilobytes of memory. Figure 3-1 is the
ProDOS memory map.

3.3- Memory Map 23

Figure 3-1. Memory Map
 Main Memory Auxiliary Memory
 (IIc or 128K IIe only)

 $FFFF+---------+$FFFF+---------+ $FFFF+---------+
 |.Monitor.| |#########| |.........|
 $F800|---------| |#########| |.........|
 |.........| |#########| |.........|
 |.........| |#########| |.........|
 |.........| |#########| |.........|
 |.........| |#########| |.........|
 |.........| |#########| |.........|
 |.........| |#ProDOS##| |.........|
 |Applesoft| |#########|$DFFF+---------+$E000|---------|$DFFF+---------+
 |.........| |#########| |.........| | | |.........|
 |.........| |#########| |.........| | | |.........|
 |.........| |#########|$D400|---------| | | |.........|
 |.........| |#########| |#########| | | |.........|
 |.........| |#########|$D100|---------| | |$D100|---------|
 |.........| |#########| | | | | | |
 $D000|---------| +---------+ +---------+$D000+---------+ +---------+
 |..Other..|
 $C100+---------+
 ^ $BFFF+---------+ $BFFF+---------+
 | |#########| |.........|
 This ROM area| $BF00|---------| $BF00|---------|
 on IIc and IIe |\\\\\\\\\| | |
 only! |\\\\\\\\\| | | +---------+
 |\\\\\\\\\| | | |#########|
 |\\\\\\\\\| | | +---------+
 |\\\\\\\\\| | | Used by ProDOS
 |\BASIC.\\| | |
 |\SYSTEM\\| | |
 |\\\\\\\\\| | | +---------+
 |\\\\\\\\\| | | |\\\\\\\\\|
 |\\\\\\\\\| | | +---------+
 |\\\\\\\\\| | | Used by
 |\\\\\\\\\| | | BASIC.SYSTEM
 $9600|---------| | |
 | | | |
 | | | | +---------+
 | | | | |.........|
 | | | | +---------+
 | | | | Other used or
 | | | | reserved areas
 | | | |
 | | | |
 | | | | +---------+
 | | | | | |
 | | | | +---------+
 | | | | Free Space
 | | | |
 /\/\/\/\/\/ /\/\/\/\/\/

 /\/\/\/\/\/ /\/\/\/\/\/
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 $800|---------| $800|---------|
 |.........| |.........|
 |.........| |.........|
 |.........| |.........|
 |.........| $400|---------|
 |.........| |#########|
 $300|---------| |#########|
 | | |#########|
 $300|---------| |#########|
 |.........| $200|---------|
 |.........| | |
 $100|---------| $100|---------|
 | | |#########|
 | | $80|---------|
 $4F|---------| | |
 |#Shared/#| | |
 |####safe#| | |
 $3A|---------| | |
 | | | |
 +---------+ +---------+
 $00

24 3.3- Memory Map

A system program as large as $8F00 (36608) bytes can be loaded into a
64K system. The total amount of space available to a system program
running on a 64K system is $B700 (46848) bytes.

3.3.1 Zero Page

The ProDOS Machine Language Interface uses zero-page locations
$40-$4E, but it restores them before it completes a call. The disk-driver
routines, called by the MLI, use locations $3A through $3F. These
locations are not restored. See Chapter 4 for details.

3.3.2 The System Global Page

The $BF-page of memory, addresses $BF00 through $BFFF, contains
the system’s global variables. This section of memory is special because
no matter what system ProDOS is booted on, the global page is always
in the same location. Because of this it serves as the communication link
between system programs and the operating system. The MLI places all
information that might be useful to a system program in these
locations. These locations are defined and described in Chapter 5.

3.3.3 The System Bit Map

ProDOS uses a simple form of memory management that allows it to
protect itself and the user’s data from being overwritten by ProDOS
buffer allocation. It represents the lower 48K of the Apple II’s random-
access memory using twenty-four bytes of the system global page: one
bit for each 256-byte page of RAM in the lower 48K of the Apple II.
These twenty-four bytes are called the system bit map.

When ProDOS is started up, it protects the zero page, the stack, and
the global page, by setting the bits that correspond to the used pages.

If at all possible, a system program should not use pages of memory
that are already used. If this is not possible, the system program must
close all files and clear the bit map, leaving pages 0, 1, 4 through 7, and
BF (zero page, stack, text, and ProDOS global page) protected. If an
error occurs on the close, the program should ask the user to restart the
system. See Chapter 5 for details.

3.3- Memory Map 25

While a system program is using the MLI, there are only three calls that
affect the setting of the bit map: OPEN, CLOSE, and SET_BUF.

When the system program opens a file, it must specify the starting
address of a 1024-byte file buffer. As long as the file is open, this buffer
is a part of the system, and is marked off in the bit map. When the file
is closed, the buffer is released, and its bits are cleared.

In general, a system program requires the used pages of memory to be
contiguous, or touching. This leaves the maximum possible unbroken
memory space for the reading and manipulation of data. Suppose a
system program opens several files and then closes the one that was
opened first. In most cases, this causes a vacant 1K area to appear.

The GET_BUF and SET_BUF calls can be used to find this vacant area,
and to move another file’s buffer into this space.

26 3.3- Memory Map

Refer to Chapter 5 for a specific example of
using the system bit map.

Chapter 4 Calls to the MLI

27

This chapter is about the ProDOS Machine Language Interface (MLI),
which provides a simple way to use disk files from machine-language
programs. This chapter describes
 the organization of the MLI on a functional basis
 how to make calls to the MLI from machine-language programs
 the MLI calls themselves
 the MLI error codes.

4.1 The Machine Language Interface

The ProDOS MLI is a complete, consistent, and interruptible interface
between the machine-language programmer and files on disks. It is
entirely independent of the ProDOS BASIC system program; thus, it
serves as a base upon which other system programs can be written. Its
filename is PRODOS. It consists of:
 the Command Dispatcher, which accepts and dispatches calls from a

machine-language program. It validates each call’s parameters,
updates the system global page, and then jumps to the appropriate
routine of the Block File Manager.

 the Block File Manager, which carries out all valid calls to the MLI.
The Block File Manager keeps track of all mounted disks, manages
the condition of all opened files, and does some simple memory
mangagement. It performs all disk access (reads and writes) via calls
to disk-driver routines.

 Disk Driver Routines, which perform the reading and writing of
data.

 the Interrupt Handler, which allows up to four interrupt handling
routines to be attached to ProDOS. The Interrupt Handler keeps
four vectors to interrupt routines. When an interrupt occurs, these
routines are called, in sequence, until one of them claims the
interrupt.

28 4.1 The Machine Language Interface

4.2 Issuing a Call to the MLI

A program sends a call to the Machine Language Interface by executing
a JSR (jump to subroutine) to address $BF00 (referred to below as
MLI). The call number and a two-byte pointer (low byte first) to the
call’s parameter list must immediately follow the call. Here is an
example of a call to the MLI:

SYSCALL JSR MLI ;Call Command Dispatcher
 DB CMDNUM ;This determines which call is being made
 DW CMDLIST ;A two-byte pointer to the parameter list
 BNE ERROR ;Error if nonzero

Upon completion of the call, the MLI returns to the address of the JSR
plus 3 (in the above example, the BNE statement); the call number and
parameter list pointer are skipped. If the call is successful, the C-flag is
cleared and the Accumulator is set to zero. If the call is unsuccessful, the
C-flag is set and the Accumulator is set to the error code. The register
status upon call completion is summarized below. Note that the value
of the N-flag is determined by the Accumulator and that the value of
the V-flag is undefined.

 N Z C D V Acc PC X Y SP
Successful call: 0 1 0 0 x 0 JSR+3 unchanged
Unsuccessful call: x 0 1 0 x error JSR+3 unchanged
 code

4.1 The Machine Language Interface 29

Here is an example of a small program that issues calls to the MLI. It
tries to create a text file named NEWFILE on a volume named
TESTMLI. If an error occurs, the Apple II beeps and prints the error
code on the screen. Both the source and the object are given so you can
enter it from the Monitor if you wish (remember to use a formatted
disk named /TESTMLI).

 --
 SOURCE FILE #01 =>TESTCMD
 ----- NEXT OBJECT FILE NAME IS TESTCMD.0
 2000: 2000 1 ORG $2000
 2000: 2000 1 ORG $2000
 2000: 2 *
 2000: FF3A 3 BELL EQU $FF3A ;Monitor BELL routine
 2000: FD8E 4 CROUT EQU $FD8E ;Monitor CROUT routine
 2000: FDDA 5 PRBYTE EQU $FDDA ;Monitor PRBYTE routine
 2000: BF00 6 MLI EQU $BF00 ;ProDOS system call
 2000: 00C0 7 CRECMD EQU $C0 ;CREATE command number
 2000: 8 *
 2000:20 06 20 9 MAIN JSR CREATE ;CREATE "/TESTMLI/NEWFILE"
 2003:D0 08 200D 10 BNE ERROR ;If error, display it
 2005:60 11 RTS ;Otherwise done
 2006: 12 *
 2006:20 00 BF 13 CREATE JSR MLI ;Perform call
 2009:C0 14 DFB CRECMD ;CREATE command number
 200A:17 20 15 DW CRELIST ;Pointer to parameter list
 200C:60 16 RTS
 200D: 17 *
 200D:20 DA FD 18 ERROR JSR PRBYTE ;Print error code
 2010:20 3A FF 19 JSR BELL ;Ring the bell
 2013:20 8E FD 20 JSR CROUT ;Print a carriage return
 2016:60 21 RTS
 2017: 22 *
 2017:07 23 CRELIST DFB 7 ;Seven parameters
 2018:23 20 24 DW FILENAME ;Pointer to filename
 201A:C3 25 DFB $C3 ;Normal file access permitted
 201B:04 26 DFB $04 ;Make it a text file
 201C:00 00 27 DFB $00,$00 ;AUX_TYPE, not used
 201E:01 28 DFB $01 ;Standard file
 201F:00 00 29 DFB $00,$00 ;Creation date (unused)
 2021:00 00 30 DFB $00,$00 ;Creation time (unused)
 2023: 31 *
 2023:10 32 FILENAME DFB ENDNAME-NAME ;Length of name
 2024:2F 54 45 53 33 NAME ASC "/TESTMLI/NEWFILE" ;followed by the name
 2034: 2034 34 ENDNAME EQU *
 --

The parameters used in TESTCMD are explained in the following
sections. The MLI error codes are summarized in Section 4.7.

30 4.1 The Machine Language Interface

4.2.1 Parameter Lists

As defined above, each MLI call has a two-byte pointer to a parameter
list. A parameter list contains information to be used by the call and
space for information to be returned by the call. There are three types
of elements used in parameter lists: values, results, and pointers.

A value is a one or more byte quantity that is passed to the Block File
Manager (BFM). Values help determine the action taken by the BFM.

A result is a one or more byte space in the parameter list into which the
Block File Manager will place a value. From results, programs can get
information about the status of a volume, file, or interrupt, or about the
success of the call just completed.

A pointer is a two-byte memory address that indicates the location of
data, code, or a space in which the Block File Manager can place or
receive data. All pointers are arranged low byte first, high byte second.

The first element in every parameter list is the parameter count, a one-
byte value that indicates the number of parameters used by the call (not
including the parameter count). This byte is used to verify that the call
was not accidental.

4.2.2 The ProDOS Machine Language Exerciser

To help you learn to use the ProDOS Machine Language Interface,
there is a useful little program called the ProDOS Machine Language
Exerciser. It allows you to execute MLI calls from a menu; it has a
hexadecimal memory editor for reviewing and altering the contents of
buffers; and it has a catalog command.

When you use it to make an MLI call, you request the call by its call
number, then you specify its parameter list, just as if you were coding
the call in a program. When you press [RETURN], the call is executed.
Using the Exerciser, you can try out sequences of MLI calls before
actually coding them.

4.1 The Machine Language Interface 31

Instructions for using the Machine
Language Exerciser program are in
Appendix D.

4.3 The MLI Calls

The MLI calls can be divided into three groups: housekeeping calls,
filing calls, and system calls.

4.3.1 Housekeeping Calls

The housekeeping calls perform operations such as creating, deleting,
and renaming, which cannot be used on open files. They are used to
change a file’s status, but not the information that is in the file. They
refer to files by their pathnames, and each requires a temporary buffer,
which is used during execution of the call. The housekeeping calls are:
CREATE Creates either a standard file or a

directory file. An entry for the file is
placed in the proper directory on the
disk, and one block of disk space is
allocated to the file.

DESTROY Removes a standard file or directory file.
The entry for the file is removed from
the directory and all the file’s disk space
is released. If a directory is to be
destroyed, it must be empty. A volume
directory cannot be destroyed except by
reformatting the volume.

RENAME Changes the name of a file. The new
name must be in the same directory as
the old name. This call changes the name
in the entry that describes that file, and if
it is a directory file, also the name in its
header entry.

SET_FILE_INFO Sets the file's type, the way it may be
accessed, and/or its modification date
and time.

GET_FILE_INFO Returns the file's type, the way it may be
accessed, the way it is stored on the disk,
its size in blocks, and the date and time
at which it was created and last modified.

ON_LINE Returns the slot number, drive number,
and volume name of one or all mounted
volumes. This information is placed In a
user-supplied buffer.

32 4.3 The MLI Calls

SET_PREFIX Sets the pathname that is used by the
operating system as a prefix. The prefix
must indicate an existing directory on a
mounted volume.

GET_PREFIX Returns the value of the current system
prefix.

4.3.2 Filing Calls

The filing calls cause the transfer of data to or from files. The first filing
call, OPEN, must be used before any of the others can be used. The
OPEN call specifies a file by its pathname; the other filing calls refer to
files by the reference number returned by the OPEN call. In addition,
an input/output buffer (io_buffer), is allocated to the open file;
subsequent data transfers go through this buffer. The reference number
remains assigned and the buffer remains allocated until the file is closed.
The filing calls are:

OPEN Prepares a file to be accessed. This call
causes a file control block (FCB) to be
allocated to the file, and a reference
number to be returned (A reference
number is really a file control block
number). In addition, an input/output
buffer is allocated for data transfers to
and from the file.

NEWLINE Sets conditions for reading from the
file. This call turns on and turns off
the capability of read requests to
terminate when a particular character
(such as a carriage return) is read.

READ Causes the transfer of a requested
number of characters from a file to a
specified memory buffer, and updates
the current position (MARK) in the file.
Characters are read according to the
rules set by the NEWLINE call.

WRITE Causes the transfer of a requested
number of characters from a specified
buffer to a file, and updates the
current position (MARK) in the file and
the end of file (EOF), if necessary.

CLOSE Transfers any unwritten data from a file's
input/output buffer to the file, releases
the file's io_buffer and file control block,
and updates the file's directory entry, if

4.3 The MLI Calls 33

necessary. The file's
reference number is released for use by
subsequently opened files.

FLUSH Transfers any unwritten data from a file's
input/output buffer to the file, and
updates the file's directory entry, if
necessary.

SET_MARK Changes the current position in the file.
The current position is the absolute
position in the file of the next character
to be read or written.

GET_MARK Returns the current position in the file.
The current position is the absolute
position in the file of the next character
to be read or written.

SET_EOF Changes the logical size of the file (the
end of file).

GET_EOF Returns the logical size of the file.
SET_BUF Assigns a new location for the

input/output buffer of an open file.
GET_BUF Returns the current location of the

input/output buffer of an open file.

34 4.3 The MLI Calls

4.3.3 System Calls

System calls are those calls that are neither housekeeping nor filing calls.
They are used for getting the current date and time, for installing and
removing interrupt routines, and for reading and writing specific blocks
of a disk. The system calls are:
GET_TIME If your system has a clock/calendar card,

and if a routine that can read from the
clock is installed, then it places the
current date and time in the system date
and time locations.

ALLOC_INTERRUPT Places a pointer to an interrupt-handling
routine into the system interrupt vector
table.

DEALLOC_INTERRUPT Removes a pointer to an interrupt
handling routine from the system
interrupt vector table.

READ_BLOCK Reads one specific block (512 bytes) of
information from a disk into a user
specified data buffer. This call is file
independent.

WRITE_BLOCK Writes a block of information from a
user specified data buffer to a specific
block of a disk. This call is file
independent.

4.3 The MLI Calls 35

4.4 Housekeeping Calls

Each of the following sections contains a description of a housekeeping
call, including its parameters and the possible errors that may be
returned.

4.4.1 CREATE ($C0)

 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 7 |
 +---+---+---+---+---+---+---+---+
 1 | (low) |
 + pathname (2-byte pointer)+
 2 | (high)|
 +---+---+---+---+---+---+---+---+
 3 | access (1-byte value)|
 +---+---+---+---+---+---+---+---+
 4 | file_type (1-byte value)|
 +---+---+---+---+---+---+---+---+
 5 | (low) |
 + aux_type (2-byte value)+
 6 | (high)|
 +---+---+---+---+---+---+---+---+
 7 | storage_type (1-byte value)|
 +---+---+---+---+---+---+---+---+
 8 | (byte 0)|
 + create_date (2-byte value)+
 9 | (byte 1)|
 +---+---+---+---+---+---+---+---+
 A | (byte 0)|
 + create_time (2-byte value)+
 B | (byte 1)|
 +---+---+---+---+---+---+---+---+

Every disk file except the volume directory file must be created using
this call. There are two organizationally distinct types of file storage:
tree structure (storage_type = $1), used for standard files; and linked
list (storage_type = $D), used for directory files.

Pathname specifies the name of the file to be created and the directory
in which to insert an entry for the new file. One block (512 bytes) of
disk space is allocated, and the entry’s key_pointer field is set to indicate
that block. Access, in most cases, should be set to $E3 (full access
permitted). File_type and aux_type may be anything, but it is strongly
recommended that conventions be followed (see below).

36 4.4 Housekeeping Calls

Parameters
param_count
(1-byte value)

Parameter count: 7 for this call.

pathname
(2-byte pointer)

Pathname pointer: A two-byte address (low byte
first) that points to an ASCII string. The string
consists of a count byte, followed by the
pathname (up to 64 characters). If the pathname
begins with a slash (/), it is treated as a full
pathname. If not, it is treated as a partial
pathname and the prefix is attached to the front
to make a full pathname. The pathname string is
not changed.

access
(1-byte value)

Access permitted: This byte defines how the file
will be accessible. Its format is:
 7 6 5 4 3 2 1 0
 +--+--+--+--+--+--+--+--+
 |D |RN|B |Reserved|W |R |
 +--+--+--+--+--+--+--+--+

D: Destroy enable bit
RN: Rename enable bit
B: Backup needed bit
W: Write enable bit
R: Read enable bit
For all bits, 1 = enabled, 0 = disabled. Bits 2
through 4 are reserved for future definition and
must always be disabled. Usually access should
be set to $C3.
If the file is destroy, rename, and write enabled,
it is unlocked. If all three are disabled, it is
locked. Any other combination of access bits is
called restricted access.
The backup bit (B) is always set by this call.

file_type
(1-byte value)

File type: This byte describes the contents of the
file. The currently defined file types are listed
below.

4.4 Housekeeping Calls 37

File Type Preferred Use
$00 Typeless file (SOS and ProDOS)
$01 Bad block file
$02 † Pascal code file
$03 † Pascal text file
$04 ASCII text file (SOS and ProDOS)
$05 † Pascal data file
$06 General binary file (SOS and

ProDOS)
$07 † Font file
$08 Graphics screen file
$09 † Business BASIC program file
$0A † Business BASIC data file
$0B † Word Processor file
$0C † SOS system file
$0D,$0E † SOS reserved
$0F Directory file (SOS and ProDOS)
$10 † RPS data file
$11 † RPS index file
$12 † AppleFile discard file
$13 † AppleFile model file
$14 † AppleFile report format file
$15 † Screen library file
$16-$18 † SOS reserved
$19 AppleWorks Data Base file
$1A AppleWorks Word Processor file
$1B AppleWorks Spreadsheet file
$1C-$EE Reserved
$EF Pascal area
$F0 ProDOS added command file
$F1-$F8 ProDOS user defined files 1-8
$F9 ProDOS reserved
$FA Integer BASIC program file
$FB Integer BASIC variable file
$FC Applesoft program file
$FD Applesoft variables file
$FE Relocatable code file (EDASM)
$FF ProDOS system file

Note: The file types marked with a † in the above list apply to Apple III
SOS only; they are not used by ProDOS. For the file_types used by
Apple III SOS only, refer to the SOS Reference Manual.

38 4.4 Housekeeping Calls

aux_type
(2-byte value)

Auxiliary type: This two-byte field is used by the
system program. The BASIC system program uses
it (low byte first) to store text-file record size or
binary-file load address, depending on the
file_type.

storage_type
(1-byte value)

File kind: This byte describes the physical
organization of the file. storage_type = $0D is a
linked directory file; storage_type = $01 is a
standard file.

create_date
(2-byte value)

This 2-byte field may contain the date on which
the file was created. Its format is:
 byte 1 byte 0

 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 | Year | Month | Day |
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

create_time
(2-byte value)

This 2-byte field may contain the time at which
the file was created. Its format is:
 byte 1 byte 0

 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 |0 0 0| Hour | |0 0| Minute |
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

4.4 Housekeeping Calls 39

See Chapter 6 for information about the
use of ProDOS with a clock/calendar
card.

Possible Errors
$27 I/O error
$2B Disk write protected
$40 Invalid pathname syntax
$44 Path not found
$45 Volume directory not found
$46 File not found
$47 Duplicate filename
$48 Overrun error: not enough disk space
$49 Directory full

ProDOS can have no more than 51 files in a volume directory.
$4B Unsupported storage_type
$53 Invalid parameter
$5A Bit map disk address is impossible

4.4.2 DESTROY ($C1)

 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 1 |
 +---+---+---+---+---+---+---+---+
 1 | (low) |
 + pathname (2-byte pointer)+
 2 | (high)|
 +---+---+---+---+---+---+---+---+

Deletes the file specified by pathname by removing its entry from the
directory that owns it, and by returning its blocks to the volume bit
map. Volume directory files and open files cannot be destroyed.
Subdirectory files must be empty before they can be destroyed.

40 4.4 Housekeeping Calls

Parameters
param_count
(1-byte value)

Parameter count: 1 for this call.

pathname
(2-byte pointer)

Pathname pointer: A two-byte address (low byte
first) that points to an ASCII string. The string
consists of a count byte, followed by the
pathname (up to 64 characters). If the pathname
begins with a slash (/), it is treated as a full
pathname. If not, it is treated as a partial
pathname and the prefix is attached to the front
to make a full pathname.

Possible Errors
$27 I/O error
$2B Disk write protected
$40 Invalid pathname syntax
$44 Path not found
$45 Volume directory not found
$46 File not found
$4A Incompatible file format
$4B Unsupported storage_type
$4E Access error: destroy not enabled
$50 File is open: request denied
$5A Bit map disk address is impossible

4.4 Housekeeping Calls 41

4.4.3 RENAME ($C2)

 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 2 |
 +---+---+---+---+---+---+---+---+
 1 | pathname (low) |
 2 | (2-byte pointer) (high) |
 +---+---+---+---+---+---+---+---+
 3 | new_pathname (low) |
 4 | (2-byte pointer) (high) |
 +---+---+---+---+---+---+---+---+

Changes the name of the file specified by pathname to that specified by
new_pathname. Both pathname and new_pathname must be identical
except for the rightmost filename (they must indicate files in the same
directory). For example, the path /EGG/ROLL can be
renamed /EGG/PLANT, but not /JELLY/ROLL
or /EGG/DRUM/ROLL.

Parameters
param_count
(1-byte value)

Parameter count: 2 for this call.

pathname
(2-byte pointer)

Pathname pointer: A two-byte address (low byte
first) that points to an ASCII string. The string
consists of a count byte, followed by the
pathname (up to 64 characters). If the pathname
begins with a slash (/), it is treated as a full
pathname. If not, it is treated as a partial
pathname and the prefix is attached to the front
to make a full pathname.

new_pathname
(2-byte pointer)

New pathname pointer: This two-byte pointer
(low byte first) indicates the location of the new
pathname. It has the same syntax as pathname.

Possible Errors
$27 I/O error
$2B Disk write protected
$40 Invalid pathname syntax
$44 Path not found
$45 Volume directory not found
$46 File not found
$47 Duplicate filename
$4A Incompatible file format
$4B Unsupported storage_type

42 4.4 Housekeeping Calls

$4E Access error: rename not enabled
$50 File is open: request denied
$57 Duplicate volume

4.4.4 SET_FILE_INFO ($C3)

 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 7 |
 +---+---+---+---+---+---+---+---+
 1 | pathname (low) |
 2 | (2-byte pointer) (high) |
 +---+---+---+---+---+---+---+---+
 3 | access (1-byte value) |
 +---+---+---+---+---+---+---+---+
 4 | file_type (1-byte value) |
 +---+---+---+---+---+---+---+---+
 5 | aux_type (low) |
 6 | (2-byte value) (high) |
 +---+---+---+---+---+---+---+---+
 7 | |
 8 | null_field (3 bytes) |
 9 | |
 +---+---+---+---+---+---+---+---+
 A | mod_date (byte 0) |
 B | (2-byte value) (byte 1) |
 +---+---+---+---+---+---+---+---+
 C | mod_time (byte 0) |
 D | (2-byte value) (byte 1) |
 +---+---+---+---+---+---+---+---+

Modifies information in the specified file’s entry field. This call can be
performed when the file is either open or closed. However, new access
attributes are not used by an open file until the next time the file is
opened (that is, this call doesn’t modify existing file control blocks).

You should use the GET_FILE_INFO call to read a file’s attributes into
a parameter list, modify them as needed, and then use the same
parameter list for the SET_FILE_INFO call.

4.4 Housekeeping Calls 43

Parameters
param_count
(1-byte value)

Parameter count: 7 for this call.

pathname
(2-byte pointer)

Pathname pointer: A two-byte address (low byte
first) that points to an ASCII string. The string
consists of a count byte, followed by the
pathname (up to 64 characters). If the pathname
begins with a slash (/), it is treated as a full
pathname. If not, it is treated as a partial
pathname and the prefix is attached to the front
to make a full pathname.

access
(1-byte value)

Access permitted: This byte defines how the file
will be accessible. Its format is:
 7 6 5 4 3 2 1 0
 +--+--+--+--+--+--+--+--+
 |D |RN|B |Reserved|W |R |
 +--+--+--+--+--+--+--+--+

D: Destroy enable bit
RN: Rename enable bit
B: Backup needed bit
W: Write enable bit
R: Read enable bit
For all bits, 1 = enabled, 0 = disabled. Bits 2
through 4 are reserved for future definition and
must always be disabled. Usually access should
be set to $C3.
If the file is destroy, rename, and write enabled,
it is unlocked. If all three are disabled, it is
locked. Any other combination of access bits is
called restricted access.
The backup bit (B) is set by this call.

file_type
(1-byte value)

File type: This byte describes the contents of a
file. The currently defined file types are listed
below.

44 4.4 Housekeeping Calls

File Type Preferred Use
$00 Typeless file (SOS and ProDOS)
$01 Bad block file
$02 † Pascal code file
$03 † Pascal text file
$04 ASCII text file (SOS and ProDOS)
$05 † Pascal data file
$06 General binary file (SOS and

ProDOS)
$07 † Font file
$08 Graphics screen file
$09 † Business BASIC program file
$0A † Business BASIC data file
$0B † Word Processor file
$0C † SOS system file
$0D,$0E † SOS reserved
$0F Directory file (SOS and ProDOS)
$10 † RPS data file
$11 † RPS index file
$12 † AppleFile discard file
$13 † AppleFile model file
$14 † AppleFile report format file
$15 † Screen library file
$16-$18 † SOS reserved
$19 AppleWorks Data Base file
$1A AppleWorks Word Processor file
$1B AppleWorks Spreadsheet file
$1C-$EE Reserved
$EF Pascal area
$F0 ProDOS added command file
$F1-$F8 ProDOS user defined files 1-8
$F9 ProDOS reserved
$FA Integer BASIC program file
$FB Integer BASIC variable file
$FC Applesoft program file
$FD Applesoft variables file
$FE Relocatable code file (EDASM)
$FF ProDOS system file

Note: The file types marked with a † in the above list apply to Apple III
SOS only; they are not used by ProDOS. For the file_types used by
Apple III SOS only, refer to the SOS Reference Manual.

4.4 Housekeeping Calls 45

aux_type
(2-byte value)

Auxiliary type: This two-byte field is used by the
system program. The BASIC system program uses
it (low byte first) to store text-file record size or
binary-file load address, depending on the
file_type.

Null field
(3 bytes)

Null field: These three bytes preserve symmetry
between this and the GET_FILE_INFO call.

mod_date
(2-byte value)

This 2-byte field should contain the current date.
It has this format:
 byte 1 byte 0

 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 | Year | Month | Day |
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

mod_time
(2-byte value)

This 2-byte field should contain the current time.
It has this format:
 byte 1 byte 0

 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 |0 0 0| Hour | |0 0| Minute |
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

Possible Errors
$27 I/O error
$2B Disk write protected
$40 Invalid pathname syntax
$44 Path not found
$45 Volume directory not found
$46 File not found
$4A Incompatible file format
$4B Unsupported storage_type
$4E Access error: rename not enabled
$53 Invalid value in parameter list
$5A Bit map disk address is impossible

46 4.4 Housekeeping Calls

See Chapter 6 for information about the
use of ProDOS with a clock/calendar
card.

4.4.5 GET_FILE_INFO ($C4)

 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = $A |
 +---+---+---+---+---+---+---+---+
 1 | (low) |
 + pathname (2-byte pointer)+
 2 | (high)|
 +---+---+---+---+---+---+---+---+
 3 | access (1-byte result)|
 +---+---+---+---+---+---+---+---+
 4 | file_type (1-byte result)|
 +---+---+---+---+---+---+---+---+
 5 | (low) |
 + aux_type (2-byte result)+ †
 6 | (high)|
 +---+---+---+---+---+---+---+---+
 7 | storage_type (1-byte result)|
 +---+---+---+---+---+---+---+---+
 8 | (low) |
 + blocks used (2-byte result)| †
 9 | (high)|
 +---+---+---+---+---+---+---+---+
 A | (byte 0)|
 + mod_date (2-byte result)|
 B | (byte 1)|
 +---+---+---+---+---+---+---+---+
 C | (byte 0)|
 + mod_time (2-byte result)|
 D | (byte 1)|
 +---+---+---+---+---+---+---+---+
 E | (byte 0)|
 + create_date (2-byte result)|
 F | (byte 1)|
 +---+---+---+---+---+---+---+---+
 10 | (byte 0)|
 + create_time (2-byte result)|
 11 | (byte 1)|
 +---+---+---+---+---+---+---+---+

† When file information about a volume directory is requested, the
total number of blocks on the volume is returned in the aux_type field
and the total blocks for all files is returned in blocks_used.

GET_FILE_INFO returns the information that is stored in the
specified file’s entry field. This call can be performed whether the file is
open or closed. If the SET_FILE_INFO call is used to change the
access while the file is open, the change does not take effect until the file
has been closed and reopened.

4.4 Housekeeping Calls 47

Parameters
param_count
(1-byte value)

Parameter count: $A for this call.

pathname
(2-byte pointer)

Pathname pointer: A two-byte address (low byte
first) that points to an ASCII string. The string
consists of a count byte, followed by the
pathname (up to 64 characters). If the pathname
begins with a slash (/), it is treated as a full
pathname. If not, it is treated as a partial
pathname and the prefix is attached to the front
to make a full pathname.

access
(1-byte value)

Access permitted: This byte defines how the file
will be accessible. Its format is:
 7 6 5 4 3 2 1 0
 +--+--+--+--+--+--+--+--+
 |D |RN|B |Reserved|W |R |
 +--+--+--+--+--+--+--+--+

D: Destroy enable bit
RN: Rename enable bit
B: Backup needed bit
W: Write enable bit
R: Read enable bit
For all bits, 1 = enabled, 0 = disabled. Bits 2
through 4 are reserved for future definition and
must always be disabled. Usually access should
be set to $C3.
If the file is destroy, rename, and write enabled,
it is unlocked. If all three are disabled, it is
locked. Any other combination of access bits is
called restricted access.
The backup bit (B) is set by this call.

file_type
(1-byte value)

File type: This byte describes the contents of a
file. The currently defined file types are listed
below.

48 4.4 Housekeeping Calls

File Type Preferred Use
$00 Typeless file (SOS and ProDOS)
$01 Bad block file
$02 † Pascal code file
$03 † Pascal text file
$04 ASCII text file (SOS and ProDOS)
$05 † Pascal data file
$06 General binary file (SOS and

ProDOS)
$07 † Font file
$08 Graphics screen file
$09 † Business BASIC program file
$0A † Business BASIC data file
$0B † Word Processor file
$0C † SOS system file
$0D,$0E † SOS reserved
$0F Directory file (SOS and ProDOS)
$10 † RPS data file
$11 † RPS index file
$12 † AppleFile discard file
$13 † AppleFile model file
$14 † AppleFile report format file
$15 † Screen library file
$16-$18 † SOS reserved
$19 AppleWorks Data Base file
$1A AppleWorks Word Processor file
$1B AppleWorks Spreadsheet file
$1C-$EE Reserved
$EF Pascal area
$F0 ProDOS added command file
$F1-$F8 ProDOS user defined files 1-8
$F9 ProDOS reserved
$FA Integer BASIC program file
$FB Integer BASIC variable file
$FC Applesoft program file
$FD Applesoft variables file
$FE Relocatable code file (EDASM)
$FF ProDOS system file

Note: The file types marked with a † in the above list apply to Apple III
SOS only; they are not used by ProDOS. For the file_types used by
Apple III SOS only, refer to the SOS Reference Manual.

4.4 Housekeeping Calls 49

aux_type
(2-byte value)

Auxiliary type: This two-byte field is used by the
system program. The BASIC system program uses
it (low byte first) to store text-file record size or
binary-file load address, depending on the
file_type.

storage_type
(3 bytes)

File kind: This byte describes the physical
organization of the file. storage_type = $0F is a
volume directory file; storage_type = $0D is a
directory file; storage_type = $01, $02, and $03
are seedling, sapling, and tree files, respectively
(see Appendix B). All other values are reserved for
future use.

blocks_used
(2-byte result)

Blocks used by the file: These two bytes contain
the total number of blocks used by the file, as
stored in the blocks_used parameter of the file's
entry. If this call is used on a volume directory file
blocks_used contains the total number of blocks
used by all the files on the volume.

mod_date
(2-byte value)

This 2-byte field returns the date on which the file
was last modified. It has this format:
 byte 1 byte 0

 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 | Year | Month | Day |
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

mod_time
(2-byte value)

This 2-byte field returns the time at which the file
was last modified. It has this format:
 byte 1 byte 0

 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 |0 0 0| Hour | |0 0| Minute |
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

50 4.4 Housekeeping Calls

create_date
(2-byte value)

This 2-byte field returns the date on which the file
was created. It has this format:
 byte 1 byte 0

 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 | Year | Month | Day |
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

create_time
(2-byte value)

This 2-byte field returns the time at which the file
was created. It has this format:
 byte 1 byte 0

 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 |0 0 0| Hour | |0 0| Minute |
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

Possible Errors
$27 I/O error
$40 Invalid pathname syntax
$44 Path not found
$45 Volume directory not found
$46 File not found
$4A Incompatible file format
$4B Unsupported storage_type
$53 Invalid value in parameter list
$5A Bit map address is impossible

4.4.6 ON_LINE ($C5)

 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 2 |
 +---+---+---+---+---+---+---+---+
 1 | unit_num (1-byte value) |
 +---+---+---+---+---+---+---+---+
 2 | (low) |
 + data_buffer (2-byte pointer)+
 3 | (high)|
 +---+---+---+---+---+---+---+---+

This command can be used to determine the names of all ProDOS (or
SOS) volumes that are currently mounted (such as disks in disk drives),
or it can be used to determine the name of a disk in a specified slot and
drive.

4.4 Housekeeping Calls 51

See Chapter 6 for information about the
use of ProDOS with a clock/calendar
card.

When unit_num is 0, this command places a list of the volume names,
slot numbers, and drive numbers of all mounted disks into the 256 byte
buffer pointed to by data_buffer. When a specific unit_num is
requested, only 16 bytes need be set aside for the buffer. The format of
the returned information is described below.

The volume names are placed in the list in volume search order, as
described in section 3.2.

Parameters
param_count
(1-byte value)

Parameter count: Must be 2 for this call.

unit_num
(1-byte value)

Device slot and drive number: This one-byte
value specifies the hardware slot location of a
disk device. The format is:
 7 6 5 4 3 2 1 0
 +--+--+--+--+--+--+--+--+
 |Dr| Slot| Unused |
 +--+--+--+--+--+--+--+--+

For drive 1, Dr = 0; for drive 2, Dr = 1. Slot specifies
the device's slot number (1-7). If unit_num is 0, all
mounted disks are scanned.
Here are possible values for unit_num:
 Slot: 7 6 5 4 3 2 1
 Drive 1: 70 60 50 40 30 20 10
 Drive 2: F0 E0 D0 C0 B0 A0 90

data_buffer
(2-byte pointer)

Data address pointer: This two-byte address (low byte
first) points to a buffer for returned data, which is
organized into 16 byte records. If unit_num is 0, the
buffer should be 256 bytes long, otherwise 16 bytes is
enough.

52 4.4 Housekeeping Calls

The first byte of a record identifies the device and the
length of its volume name:
 7 6 5 4 3 2 1 0
 +--+--+--+--+--+--+--+--+
 |dr| slot | name_len |
 +--+--+--+--+--+--+--+--+

Bit 7 specifies drive 1 (Dr = 0) or drive 2 (Dr = 1).
Bits 6-4 specify the slot number (1 through 7). Bits 3-0
specify a valid name_length if nonzero.
The next 15 bytes of the record are for a volume name.
If name_length = 0, then an error was detected in the
specified slot and drive. The error code is present in the
second byte of the record. If error $57 (duplicate
volume) is encountered, the third byte contains the
unit number of the duplicate. When multiple records
are returned, the last valid record is followed by one
that has unit_num and name_length set to 0.

Remember: ON_LINE returns volume names that are not preceded by
slashes. Remember to put a slash in front of the name before you use it
in a pathname.

Possible Errors
$27 I/O error
$28 Device not connected
$2E Disk switched: File still open on other disk
$45 Volume directory not found
$52 Not a ProDOS disk
$55 Volume Control Block full
$56 Bad buffer address
$57 Duplicate volume

When an error pertains to a specific drive, the error code is returned in
the second byte of the record corresponding to that drive, as described
above. In such cases, the call completes with the accumulator set to 0,
and the carry flag clear. Only errors $55 and $56 are not drive specific.

4.4 Housekeeping Calls 53

4.4.7 SET_PREFIX ($C6)

 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 1 |
 +---+---+---+---+---+---+---+---+
 1 | (low) |
 + pathname (2-byte pointer)+
 2 | (high)|
 +---+---+---+---+---+---+---+---+

Sets the system prefix to the indicated directory. The pathname may be
a full pathname or a partial pathname. The system prefix can be set to
null by indicating a pathname with a count of zero. The prefix must be
no longer than 64 characters. When ProDOS is started up, the system
prefix is set to the name of the volume in the startup drive.

The MLI verifies that the requested prefix directory is on an on-line
volume before accepting it.

Parameters
param_count
(1-byte value)

Parameter count: 1 for this call.

pathname
(2-byte pointer)

Pathname pointer: A two-byte address (low byte
first) that points to an ASCII string. The string
consists of a count byte, followed by the
pathname (up to 64 characters). If the pathname
begins with a slash (/), it is treated as a full
pathname. If not, it is treated as a partial
pathname and the current prefix is attached to
the front to make a full pathname. A slash at the
end of the pathname is optional.

Possible Errors
$27 I/O error
$40 Invalid pathname syntax
$44 Path not found
$45 Volume directory not found
$46 File not found
$4A Incompatible file format
$4B Unsupported storage_type
$5A Bit map disk address is impossible

54 4.4 Housekeeping Calls

4.4.8 GET_PREFIX ($C7)

 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 1 |
 +---+---+---+---+---+---+---+---+
 1 | data_buffer (low) |
 2 | (2-byte pointer) (high) |
 +---+---+---+---+---+---+---+---+

Returns the current system prefix. If the system prefix is set to null (no
prefix), then a count of 0 is returned. Otherwise the returned prefix is
preceded by a length byte and bracketed by slashes. Examples are
$7/APPLE/ and $D/APPLE/BYTES/. Each character in the prefix is
returned with its high bit cleared.

The buffer pointed to by data_buffer is assumed to be 64 bytes long.

Parameters
param_count
(1-byte value)

Parameter count: Must be 1 for this call.

data_buffer
(2-byte pointer)

Data address pointer: This two-byte address (low byte
first) points to the buffer into which the
prefix should be placed. It should be at least
64 bytes long.

Possible Error
$56 Bad buffer address

4.4 Housekeeping Calls 55

4.5 Filing Calls

Each of the following sections contains a description of a filing
command, including its parameters and the possible errors that may be
returned.

4.5.1 OPEN ($C8)

 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 3 |
 +---+---+---+---+---+---+---+---+
 1 | pathname (low) |
 2 | (2-byte pointer) (high) |
 +---+---+---+---+---+---+---+---+
 3 | io_buffer (low) |
 4 | (2-byte pointer) (high) |
 +---+---+---+---+---+---+---+---+
 5 | ref_num (1-byte result) |
 +---+---+---+---+---+---+---+---+

OPEN prepares a file to be read or written. It creates a file control
block that keeps track of the current (open) characteristics of the file
specified by pathname, it sets the current position in the file to zero,
and it returns a reference number by which the other commands in this
section must refer to the file.

The I/O buffer is used by the system for the entire time the file is open.
It contains information about the file’s structure on the disk, and it
contains the current 512-byte block being read or written. It is used
until the file is closed, and therefore should not be modified directly by
the user. A maximum of eight files can be open at a time.

When a file is opened it is assigned a level, from 0 to $F, depending on
the current value of the LEVEL location ($BF94) in the system global
page. When the CLOSE command is issued with a ref_num of 0, all
files at or above the current level are closed. Thus, a CLOSE with a
ref_num of 0 and a level of 0 will close all open files.

Once a file has been opened, that file’s disk must not be removed from
its drive and replaced by another. The system does not check the
identity of a volume before writing on it. A system program should
check a volume’s identity before writing to it.

56 4.5 Filing Calls

Warning

Refer to Section 2.1.7, “File Levels,”
for an example of the use of level.

Parameters
param_count
(1-byte value)

Parameter count: 3 for this call.

pathname
(2-byte pointer)

Pathname pointer: A two-byte address (low byte
first) that points to an ASCII string. The string
consists of a count byte, followed by the
pathname (up to 64 characters). If the pathname
begins with a slash (/), it is treated as a full
pathname. If not, it is treated as a partial
pathname and the prefix is attached to the front
to make a full pathname.

io_buffer
(2-byte pointer)

Buffer address pointer: This two byte-address
(low byte first) indicates the starting address of a
1024-byte input/output buffer. The buffer must
start on a page boundary (a multiple of $100)
that is not already used by the system.
If a standard file is being accessed, the first
512 bytes of io_buffer contain the current block
of data being read or written; the second
512 bytes contain the current index block, if
there is one. If a directory file is being accessed,
the first 512 bytes contain the current directory
file block; the rest are unused.

ref_num
(2-byte result)

Reference number: When a file is opened, the
filing system assigns this one-byte value. All
subsequent commands to the open file use this
reference number.

Possible Errors
$27 I/O error
$40 Invalid pathname syntax
$42 File Control Block table full
$44 Path not found
$45 Volume directory not found
$46 File not found
$4B Unsupported storage_type
$50 File is open
$53 Invalid value in parameter list
$56 Bad buffer address
$5A Bit map disk address is impossible

4.5 Filing Calls 57

Refer to Appendix B for more
information on directory file blocks,
index blocks, and data blocks.

4.5.2 NEWLINE ($C9)

 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 3 |
 +---+---+---+---+---+---+---+---+
 1 | ref_num (1-byte value) |
 +---+---+---+---+---+---+---+---+
 2 | enable_mask (1-byte value) |
 +---+---+---+---+---+---+---+---+
 3 | newline_char (1-byte value) |
 +---+---+---+---+---+---+---+---+

This call allows you to enable or disable newline read mode for any
open file. When newline is disabled, a read request terminates when the
requested number of characters has been read, or when the end of file is
encountered. When newline is enabled, a read request will also
terminate if the newline character (newline_char) is read.

Each character read is first transferred to the user’s data buffer. Next it
is ANDed with the enable_mask and compared to the newline_char.

If there is a match, the read is terminated. For example, if enable_mask
is $7F and newline_char is $0D (ASCII CR), either a $0D or $8D
matches and terminates input. This process does not change the
character.

Parameters
param_count
(1-byte value)

Parameter count: 3 for this call.

ref_num
(1-byte value)

Reference number: This is the filing reference
number that was assigned to the file when it was
opened.

enable_mask
(1-byte value)

Newline enable and mask: A value of $00
disables newline mode; a nonzero value enables
it. When the mode is enabled, each incoming byte
is ANDed with this byte before it is compared to
newline_char (below). A match causes the read
request to terminate. A value of $FF makes all
bits significant, a value of $7F causes only bits 0
through 6 to be tested, etc.

newline_char
(1-byte value)

Newline character: When newline is enabled, a
read request terminates if the input character,
having been ANDed with the enable_mask
equals this value.

Possible Error
$43 Invalid reference number

58 4.5 Filing Calls

4.5.3 READ ($CA)

 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 4 |
 +---+---+---+---+---+---+---+---+
 1 | ref_num (1-byte value) |
 +---+---+---+---+---+---+---+---+
 2 | data_buffer (low) |
 3 | (2-byte pointer) (high) |
 +---+---+---+---+---+---+---+---+
 4 | request_count (low) |
 5 | (2-byte value) (high) |
 +---+---+---+---+---+---+---+---+
 6 | trans_count (low) |
 7 | (2-byte result) (high) |
 +---+---+---+---+---+---+---+---+

Tries to transfer the requested number of bytes (request_count),
starting at the current position (MARK) of the file specified by
ref_num to the buffer pointed to by data_buffer. The number of bytes
actually transferred is returned in trans_count.

If newline read mode is enabled and a newline character is encountered
before request_count bytes have been read, then the trans_count
parameter is set to the number of bytes transferred, including the
newline byte.

If the end of file is encountered before request_count bytes have been
read, then trans_count is set to the number of bytes transferred. The
end of file error ($4C) is returned if and only if zero bytes were
transferred (trans_count = 0).

4.5 Filing Calls 59

Parameters
param_count Parameter count: 4 for this call.
ref_num
(1-byte value)

Reference number: This is the filing reference
number that was assigned to the file when it was
opened.

data_buffer
(2-byte pointer)

Data address pointer: This two-byte address (low
byte first) points to the destination for the data to
be read from the file.

request_count
(2-byte value)

Transfer request count: This two-byte value (low
byte first) specifies the maximum number of
bytes to be transferred to the data buffer pointed
to by data_buffer. The maximum value is limited
to the number of bytes between the start of
data_buffer and the nearest used page of
memory.

trans_count
(2-byte result)

Transferred: This two-byte value (low byte first)
indicates the number of bytes actually read. It
will be less than request_count only if EOF was
encountered, if the newline character was read
while newline mode was enabled, or if some
other error occurred during the request.

Possible Errors
$27 I/O error
$43 Invalid reference number
$4C End of file has been encountered
$4E Access error: file not read enabled
$56 Bad buffer address
$5A Bit map address is impossible

60 4.5 Filing Calls

4.5.4 WRITE ($CB)

 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 4 |
 +---+---+---+---+---+---+---+---+
 1 | ref_num (1-byte value) |
 +---+---+---+---+---+---+---+---+
 2 | data_buffer (low) |
 3 | (2-byte pointer) (high) |
 +---+---+---+---+---+---+---+---+
 4 | request_count (low) |
 5 | (2-byte value) (high) |
 +---+---+---+---+---+---+---+---+
 6 | trans_count (low) |
 7 | (2-byte result) (high) |
 +---+---+---+---+---+---+---+---+

Tries to transfer a specified number of bytes (request_count) from the
buffer pointed to by data_buffer to the file specified by ref_num starting
at the current position (MARK) in the file. The actual number of bytes
transferred is returned in trans_count.

The file position is updated to position + trans_count. If necessary,
additional data and index blocks are allocated to the file, and EOF is
extended.

4.5 Filing Calls 61

See Appendix B for an explanation of data
and index blocks.

Parameters
param_count
(1-byte value)

Parameter count: 4 for this call.

ref_num
(1-byte value)

Reference number: This is the filing reference
number that was assigned when the file was
opened.

data_buffer
(2-byte pointer)

Data address pointer: This two-byte address (low
byte first) points to the beginning of the data to
be transferred to the file.

request_count
(2-byte value)

Transfer request count: This two-byte value (low
byte first) specifies the maximum number of
bytes to be transferred from the buffer pointed to
by data_buffer to the file.

trans_count
(2-byte result)

Bytes transferred: This two-byte value (low byte
first), indicates the number of bytes actually
transferred. If no error occurs, this value should
always be equal to request_count.

Possible Errors
$27 I/O error
$2B Disk write protected
$43 Invalid reference number
$48 Overrun error: not enough disk space
$4E Access error: file not write enabled
$56 Bad buffer address
$5A Bit map disk address is impossible

62 4.5 Filing Calls

4.5.5 CLOSE ($CC)

 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 1 |
 +---+---+---+---+---+---+---+---+
 1 | ref_num (1-byte value) |
 +---+---+---+---+---+---+---+---+

This call is used to release all resources used by an open file. The file
control block is released. If necessary, the file’s buffer (io_buffer) is
emptied to the file and the directory entry for the file is updated. Until
that ref_num is assigned to another open file, subsequent filing calls
using that ref_num will fail.

If ref_num equals zero ($0), all open files at or above the current level
are closed. For example, if you open files at levels 0, 1, and 2, set the
level to 1, and then use CLOSE with ref_num set to 0, the files at level
1 and 2 are closed, but the ones at level 0 are not.

The level is a value from 0 to $F that is stored in the LEVEL location
($BFD8) of the system global page. It is only changed by system
programs, and it is used by OPEN and CLOSE.

This call causes the backup bit to be set.

Parameters
param_count
(1-byte value)

Parameter count: 1 for this call.

ref_num
(1-byte value)

Reference number: The filing reference number
that was assigned to the file when it was opened.
CLOSE releases this reference number. If
ref_num = 0, all open files at or above the
current level are closed.

Possible Errors
$27 I/O error
$2B Disk write protected
$43 Invalid reference number
$5A Bit map disk address is impossible

4.5 Filing Calls 63

4.5.6 FLUSH ($CD)

 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 1 |
 +---+---+---+---+---+---+---+---+
 1 | ref_num (1-byte value) |
 +---+---+---+---+---+---+---+---+

The file’s write buffer (io_buffer) is emptied to the file, and the file’s
directory is updated. If ref_num equals zero ($0), then all open files at
or above the current level are flushed.

The backup bit is set by this call.

Parameters
param_count
(1-byte value)

Parameter count: 1 for this call.

ref_num
(1-byte value)

Reference number: This is the filing reference
number that was assigned to the file when it was
opened. If ref_num = 0 all open files at or
above the current level are flushed.

Possible Errors
$27 I/O error
$2B Disk write protected
$43 Invalid reference number
$5A Bit map disk address is impossible

64 4.5 Filing Calls

FLUSH is further explained in Chapter 2,
section "Closing and Flushing Files."

4.5.7 SET_MARK ($CE)

 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 2 |
 +---+---+---+---+---+---+---+---+
 1 | ref_num (1-byte value) |
 +---+---+---+---+---+---+---+---+
 2 | (low) |
 3 | position (3-byte value) |
 4 | (high) |
 +---+---+---+---+---+---+---+---+

Changes the current position (MARK) in the file to that specified by
the position parameter. Position may not exceed the end of file (EOF)
value.

Parameters
param_count
(1-byte value)

Parameter count: 2 for this call.

ref_num
(1-byte value)

Reference number: The filing reference number
that was assigned to the file when it was opened.

position
(3-byte value)

File position: This three-byte value (low bytes
first) specifies to the File Manager the absolute
position in the file at which the next read or
write should begin (the MARK). The file position
cannot exceed the file's EOF.

Possible Errors
$27 I/O error
$43 Invalid reference number
$4D Position out of range
$5A Bit map disk address is impossible

4.5 Filing Calls 65

See the example of SET_MARK in Chapter
2, section “The EOF and MARK.”

4.5.8 GET_MARK ($CF)

 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 2 |
 +---+---+---+---+---+---+---+---+
 1 | ref_num (1-byte value)|
 +---+---+---+---+---+---+---+---+
 2 | (low) |
 + +
 3 | position (3-byte result)|
 + +
 4 | (high)|
 +---+---+---+---+---+---+---+---+

Returns the current position (MARK) in an open file.

Parameters
param_count
(1-byte value)

Parameter count: 2 for this call.

ref_num
(1-byte value)

Reference number: The filing reference number
that was assigned to the file when it was opened.

position
(3-byte result)

File position: This three-byte value (low bytes
first) is the absolute position in the file at which
the next read or write will begin, unless it is
changed by a subsequent SET_MARK call.

Possible Error
$43 Invalid reference number

66 4.5 Filing Calls

4.5.9 SET_EOF ($D0)

 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 2 |
 +---+---+---+---+---+---+---+---+
 1 | ref_num (1-byte value) |
 +---+---+---+---+---+---+---+---+
 2 | (low) |
 + +
 3 | EOF (3-byte result)|
 + +
 4 | (high)|
 +---+---+---+---+---+---+---+---+

Sets the logical size of the file specified by ref_num to EOF. If the new
EOF is less than the current EOF, then blocks past the new EOF are
released to the system. If the new EOF is greater than or equal to the
current EOF, no blocks are allocated. If the new EOF is less than the
current position, the value of the position is set to the EOF. The EOF
cannot be changed unless the file is write enabled.

Parameters
param_count
(1-byte value)

Parameter count: 2 for this call.

ref_num
(1-byte value)

Reference number: The filing reference number
that was assigned to the file when it was opened.

EOF
(3-byte value)

End Of File: This three-byte value (low bytes
first) represents the logical end of a file. It can
be greater or less than the current value of EOF.
If it is less, blocks past the new EOF are released
to the system.

Possible Errors
$27 I/O error
$43 Invalid reference number
$4D Position out of range
$4E Access error: File not write enabled
$5A Bit map disk address is impossible

4.5 Filing Calls 67

The logical size of a file is the number of
bytes that can be read from it.

4.5.10 GET_EOF ($D1)

 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 2 |
 +---+---+---+---+---+---+---+---+
 1 | ref_num (1-byte value) |
 +---+---+---+---+---+---+---+---+
 2 | (low) |
 3 | EOF (3-byte result) |
 4 | (high) |
 +---+---+---+---+---+---+---+---+

Returns the number of bytes that can be read from the open file.

Parameters
param_count
(1-byte value)

Parameter count: 2 for this call.

ref_num
(1-byte value)

Reference number: The filing reference number
that was assigned to the file when it was opened.

EOF
(3-byte result)

End Of File: This three-byte result (low bytes
first) contains the value of the logical end of file.
This value is the maximum number of bytes that
can be read from the file.

Possible Error
$43 Invalid reference number

68 4.5 Filing Calls

4.5.11 SET_BUF ($D2)

 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 2 |
 +---+---+---+---+---+---+---+---+
 1 | ref_num (1-byte value) |
 +---+---+---+---+---+---+---+---+
 2 | io_buffer (low) |
 3 | (2-byte pointer) (high) |
 +---+---+---+---+---+---+---+---+

This call allows you to reassign the address of the input/output buffer
that is used by the file specified by ref_num (assigned when the file was
opened). The MLI checks to see that the specified buffer is not already
used by the system, then it moves the contents of the old buffer into the
new buffer.

Parameters
param_count
(1-byte value)

Parameter count: 2 for this call.

ref_num
(1-byte value)

Reference number: The filing reference number
that was assigned to the file when it was opened.

io_buffer
(2-byte pointer)

Buffer address pointer: This two-byte address
(low byte first) indicates the starting address of a
1024 byte I/O buffer. The buffer must start on a
page boundary (multiple of $100) and it must not
already be used by the system.

Possible Errors
$43 Invalid reference number
$56 Bad buffer address

4.5 Filing Calls 69

4.5.12 GET_BUF ($D3)

 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 2 |
 +---+---+---+---+---+---+---+---+
 1 | ref_num (1-byte value) |
 +---+---+---+---+---+---+---+---+
 2 | io_buffer (low) |
 3 | (2-byte result) (high) |
 +---+---+---+---+---+---+---+---+

Returns the address of the input/output buffer currently being used by
the file specified by ref_num.

Parameters
param_count Parameter count: 2 for this call.
ref_num
(1-byte value)

Reference number: The filing reference number
that was assigned to the file when it was opened.

io_buffer
(2-byte result)

Buffer address pointer: This two-byte address
(low byte first) indicates the starting address of a
1024 byte I/O buffer. The buffer starts on a page
boundary (multiple of $100).

Possible Error
$43 Invalid reference number

70 4.5 Filing Calls

4.6 System Calls

Each of the following sections describes a system command, including
any parameters and possible errors.

4.6.1 GET_TIME ($82)

This call has no parameter list, and it cannot generate an error. It calls a
clock/calendar routine, if there is one, which returns the current date
and time to the system date and time locations ($BF90-BF93). If there
is no clock/calendar routine, the system date and time locations are left
unchanged.

Here is the layout of the four bytes that make up the system date and
time.
 49041 ($BF91) 49040 ($BF90)

 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 DATE: | year | month | day |
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 TIME: | hour | | minute |
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

 49043 ($BF93) 49042 ($BF92)

When ProDOS starts up, it looks for a clock/calendar card in one of the
Apple II’s slots. If it recognizes one, ProDOS installs a routine that can
read the date and time from the card and place them in the system date
and time locations. Otherwise, no routine is installed.

Note that the GET_TIME call number for ProDOS is different from
the GET_TIME call number for SOS.

4.6 System Calls 71

Chapter 5 explains the use of the date
and time locations by the system.
Chapter 6 explains the installation of
clock/calendar routines.

4.6.2 ALLOC_INTERRUPT ($40)

 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 2 |
 +---+---+---+---+---+---+---+---+
 1 | int_num (1-byte result) |
 +---+---+---+---+---+---+---+---+
 2 | int_code (low) |
 3 | (2-byte pointer) (high) |
 +---+---+---+---+---+---+---+---+

This call places the address of an interrupt receiving routine int_code
into the interrupt vector table. It should be made before you enable the
hardware that could cause this interrupt. It is your responsibility to
make sure that the routine is installed at the proper location and that it
follows interrupt conventions.

The int_num that is returned gives an indication of what priority the
interrupt is given (1, 2, 3, or 4). Routines that are installed first are
given the highest priority. You must use this number when you remove
the routine from the system.

Parameters
param_count
(1-byte value)

Parameter count: 2 for this call.

int_num
(1-byte result)

Interrupt vector number: This value, from 1 to 4
is assigned by the MLI to int_num when this call
is made. This number must be retained by the
calling routine and used when removing an
interrupt routine.

int_code
(2-byte pointer)

Interrupt handler code entry address: This is a
pointer (low byte first) to the first byte of a
routine that is to be called when the system is
polling in response to an interrupt.

Possible Errors
$25 Interrupt vector table full
$53 Invalid parameter

72 4.6 System Calls

Interrupt receiving routines are described
in Chapter 6.

4.6.3 DEALLOC_INTERRUPT ($41)

 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 1 |
 +---+---+---+---+---+---+---+---+
 1 | int_num (1-byte value) |
 +---+---+---+---+---+---+---+---+

This call clears the entry for int_num from the interrupt vector table.
You must disable interrupt hardware before you make this call. If you
don't, and the hardware interrupts after the vector table has been
updated, a SYSTEM FAILURE will occur (see Section 4.8.1).

Parameters
param_count
(1-byte value)

Parameter count: 1 for this call.

int_num
(1-byte value)

Interrupt vector number: A value from 1 to 4 that
was assigned by the MLI to int_num when
ALLOC_INTERRUPT was called.

Possible Error
$53 Invalid parameter

4.7 Direct Disk Access Calls

The direct disk access commands READ_BLOCK and
WRITE_BLOCK, allow you to read from or write to any logical block
on a disk. They are intended to be used by utility (such as copying) and
diagnostic programs.

Application programs should not use these commands: they can very
easily damage the data integrity of the ProDOS file structure. All
necessary functions can be performed without these calls.

These calls will also read and write blocks (not tracks and sectors) from
DOS 3.3 disks. A mapping of tracks and sectors on a DOS 3.3 disk to
blocks read or written by ProDOS is given in Section B.5. ProDOS
BLOCK_READ and BL0CK_WRITE calls can access DOS 3.3 disks:
see Appendix B, Section "DOS 3.3 Disk Organization."

4.7 Direct Disk Access Calls 73

Warning

Interrupt receiving routines are described in
Chapter 6.

4.7.1 READ_BLOCK ($80)

 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 3 |
 +---+---+---+---+---+---+---+---+
 1 | unit_num (1-byte value) |
 +---+---+---+---+---+---+---+---+
 2 | data_buffer (low) |
 3 | (2-byte pointer) (high) |
 +---+---+---+---+---+---+---+---+
 4 | block_num (low) |
 5 | (2-byte value) (high) |
 +---+---+---+---+---+---+---+---+

This call reads one block from the disk device specified by unit_num
into memory starting at the address indicated by data_buffer. The
buffer must be 512 or more bytes in length.

Parameters
param_count
(1-byte value)

Parameter count: 3 for this call.

unit_num
(1-byte value)

Device slot and drive number: This one-byte
value specifies the hardware slot location of a
disk device. The format is:
 7 6 5 4 3 2 1 0
 +--+--+--+--+--+--+--+--+
 |Dr| Slot| Unused |
 +--+--+--+--+--+--+--+--+

The Dr bit specifies either drive 1 (Dr = 0) or
drive 2 (Dr = 1). Slot must contain a slot number
between 1 and 7, inclusive.

data_buffer
(2-byte pointer)

Data address pointer: This two-byte address (low
byte first) points to the destination for data. The
buffer must be at least 512 bytes long.

74 4.7 Direct Disk Access Calls

block_num
(2-byte value)

Logical block number: This two-byte value (low
byte first) specifies the logical address of a block
of data to be read. Disk II's, for example, have
block addresses ranging from $0 to $117. There is
no general connection between block numbers
and the layout of tracks and sectors on the disk.
The translation from logical to physical block is
done by the device driver.

Possible Errors
$27 I/O error
$28 No device connected

4.7.2 WRITE_BLOCK ($81)

 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 3 |
 +---+---+---+---+---+---+---+---+
 1 | unit_num (1-byte value) |
 +---+---+---+---+---+---+---+---+
 2 | data_buffer (low) |
 3 | (2-byte pointer) (high) |
 +---+---+---+---+---+---+---+---+
 4 | block_num (low) |
 5 | (2-byte value) (high) |
 +---+---+---+---+---+---+---+---+

This call transfers one block of data from the memory buffer indicated
by data_buffer to the disk device specified by unit_num. The block of
data is placed in the logical block specified by block_num. It is assumed
that the data buffer is at least 512 bytes long.

4.7 Direct Disk Access Calls 75

Parameters
param_count
(1-byte value)

Parameter count: 3 for this call.

unit_num
(1-byte value)

Device slot and drive number: This one-byte
value specifies the hardware slot location of a
disk device. The format is:
 7 6 5 4 3 2 1 0
 +--+--+--+--+--+--+--+--+
 |Dr| Slot| Unused |
 +--+--+--+--+--+--+--+--+

The Dr bit specifies either drive 1 (Dr = 0) or
drive 2 (Dr = 1). Slot must contain a slot number
between 1 and 7, inclusive.

data_buffer
(2-byte pointer)

Data address pointer: This two-byte address (low
byte first) points to the source of data to be
transferred. It is assumed that the data buffer is
at least 512 bytes in length.

block_num
(2-byte value)

Logical block number: This two-byte value (low
byte first) specifies the logical address on a disk
of the block to be written. Disk II's, for example,
have block addresses ranging from $0 to $117.
There is no general connection between block
numbers and the layout of tracks and sectors on
the disk. The translation from logical to physical
block is done by the device driver.
An out-of-range block_num returns an I/O error.
The number of blocks on a volume is returned in
the aux_type field of the GET_FILE_INFO call
of a volume directory file.

Possible Errors
$27 I/O error
$28 No device connected
$2B Disk write protected

76 4.7 Direct Disk Access Calls

4.8 MLI Error Codes

This is a summary of the ProDOS error codes. If there is no error, the
C-flag is clear, and the Accumulator contains $00. If there is an error,
the C-flag is set, and the Accumulator contains the error code.
$00 No error.
$01 Bad system call number. A non-existent command

was issued.
$04 Bad system call parameter count. This error will

occur only if the call parameter list is not properly
constructed.

$25 Interrupt vector table full. Only four routines can
be activated for interrupt processing at a time. One
must be deactivated before another one may be
enabled.

$27 I/O error. This catch-all error is reported when
some hardware failure prevents proper transfer of
data to/from the disk device.

$28 No device detected/connected. Will occur if, for
example, drive 2 is specified for Disk II when only
one drive is connected.

$2B Disk write protected. Hardware write-inhibit is
enabled, write request cannot be processed.

$2E Disk switched: A WRITE, FLUSH, or CLOSE
operation cannot be accomplished because a disk
containing an open file has been removed from its
drive.

$40 Invalid pathname syntax. The pathname contains
illegal characters.

$42 File Control Block table full. The FCB can contain a
maximum of eight entries. Thus, a maximum of
eight files can be open concurrently.

$43 Invalid reference number. The value parameter
given as a reference number does not match the
reference number of any currently open file.

$44 Path not found. A filename in the specified
pathname (which refers to a subdirectory) does not
exist. The pathname’s syntax is legal.

$45 Volume directory not found. The volume name in
the specified pathname does not exist. The
pathname’s syntax is otherwise legal.

4.8 MLI Error Codes 77

$46 File not found. The last filename of the pathname
does not exist. The syntax of the pathname is legal.

$47 Duplicate filename. An attempt was made to create
a file that already exists or to rename a file with an
already used name.

$48 Overrun error. An attempt to allocate blocks on a
block device during a CREATE or WRITE
operation failed due to lack of space on the device.
This error also is returned on an invalid EOF
parameter. Data is written until the disk is full, but
you will always be able to close the file.

$49 Volume directory full. No more entries are left in
the volume directory. In ProDOS 1.0, a volume
directory can hold no more than 51 entries. No
more files can be added (using CREATE) in this
directory until others are destroyed.

$4A Incompatible file format. The file is not backward
compatible with this version of ProDOS.
Storage_type is recognized, but the File Manager
may not support that storage_type in a fully
compatible fashion. This error is likely to occur
when data written by a future version of the BFM is
read back using an earlier version of the BFM.

$4B Unsupported storage_type. File is of an
organization unknown to the executing File
Manager. This error may be reported if the directory
is tampered with by the user. This error is also
returned if you attempt to set the prefix to a
nondirectory file.

$4C End of file has been encountered. This error is
returned after a READ call when the file position is
equal to EOF and no data can be read.

$4D Position out of range. Returned when the position
parameter is greater than current EOF.

$4E Access error. The file’s access attribute forbids the
RENAME, DESTROY, READ or WRITE
operation that was attempted.

$50 File is open. An attempt was made to OPEN,
RENAME or DESTROY an open file.

$51 Directory count error: The number of entries
indicated in the directory header does not match the
number of entries actually found in the file.

78 4.8 MLI Error Codes

$52 Not a ProDOS disk. The specified disk does not
contain a ProDOS (or SOS) directory format.

$53 Invalid parameter. The value of one or more
parameters in the parameter list is out of range.

$55 Volume Control Block table full. More than eight
volumes on line. The VCB table can contain a
maximum of eight entries. This error occurs only if
eight files, on eight volumes, are open and the
ON_LINE command is requested for a device
having no open files.

$56 Bad buffer address. The data_buffer or io_buffer
specified conflicts with memory currently in use by
the MLI.

$57 Duplicate volume. This is a warning that two or
more volume directory names are the same.

$5A Bit map disk address is impossible. The volume bit
map indicates that the volume contains blocks
beyond the block count for that volume.

Note: System failure errors should never occur. They indicate that the
system has encountered a situation that should not have happened, and
it has no available means of recovery.

Possible causes include
 bad RAM
 disk failure
 operating system bug
 unclaimed interrupt.

4.8 MLI Error Codes 79

80 4.8 MLI Error Codes

Chapter 5 Writing a ProDOS System Program

4.8 MLI Error Codes 81

This chapter is about writing system programs that use the ProDOS
MLI. It first explains the things that a program must do to qualify as a
system program. Next it discusses some of the things that a system
program must be aware of, particularly how it should use memory. The
end of the chapter contains several programming hints.

5.1 System Program Requirements

A ProDOS system program is any program that makes calls to the
ProDOS MLI and that adheres to a set of standard system program
rules. Each system program must have
 code to move the program from its load position to its final

execution location, if necessary
 a version number in the system global page
 the ability to switch to another system program.

All other aspects of the system program are up to you.

5.1.1 Placement in Memory

System programs are always loaded into memory starting at location
$2000. When the system is first started up, the system program used is
the first file on the startup disk with the name XXX.SYSTEM, and the
$FF filetype. When one system program switches to another, it can
load any file of type $FF.

Figure 5-1 shows the portions of memory that are available to system
programs. If BASIC is not being used, the area assigned to
BASIC.SYSTEM (the BASIC command interpreter) is also available.

A system program as large as $8F00 (36608) bytes can be loaded. The
total space available to a system program is $B700 (46848) bytes.

82 5.1 System Program Requirements

Figure 5-1. Memory Map
 Main Memory Auxiliary Memory
 (IIc or 128K IIe only)

 $FFFF+---------+$FFFF+---------+ $FFFF+---------+
 |.Monitor.| |#########| |.........|
 $F800|---------| |#########| |.........|
 |.........| |#########| |.........|
 |.........| |#########| |.........|
 |.........| |#########| |.........|
 |.........| |#########| |.........|
 |.........| |#########| |.........|
 |.........| |#ProDOS##| |.........|
 |Applesoft| |#########|$DFFF+---------+$E000|---------|$DFFF+---------+
 |.........| |#########| |.........| | | |.........|
 |.........| |#########| |.........| | | |.........|
 |.........| |#########|$D400|---------| | | |.........|
 |.........| |#########| |#########| | | |.........|
 |.........| |#########|$D100|---------| | |$D100|---------|
 |.........| |#########| | | | | | |
 $D000|---------| +---------+ +---------+$D000+---------+ +---------+
 |..Other..|
 $C100+---------+
 ^ $BFFF+---------+ $BFFF+---------+
 | |#########| |.........|
 This ROM area| $BF00|---------| $BF00|---------|
 on IIc and IIe |\\\\\\\\\| | |
 only! |\\\\\\\\\| | | +---------+
 |\\\\\\\\\| | | |#########|
 |\\\\\\\\\| | | +---------+
 |\\\\\\\\\| | | Used by ProDOS
 |\BASIC.\\| | |
 |\SYSTEM\\| | |
 |\\\\\\\\\| | | +---------+
 |\\\\\\\\\| | | |\\\\\\\\\|
 |\\\\\\\\\| | | +---------+
 |\\\\\\\\\| | | Used by
 |\\\\\\\\\| | | BASIC.SYSTEM
 $9600|---------| | |
 | | | |
 | | | | +---------+
 | | | | |.........|
 | | | | +---------+
 | | | | Other used or
 | | | | reserved areas
 | | | |
 | | | |
 | | | | +---------+
 | | | | | |
 | | | | +---------+
 | | | | Free Space
 | | | |
 /\/\/\/\/\/ /\/\/\/\/\/

 /\/\/\/\/\/ /\/\/\/\/\/
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 $800|---------| $800|---------|
 |.........| |.........|
 |.........| |.........|
 |.........| |.........|
 |.........| $400|---------|
 |.........| |#########|
 $300|---------| |#########|
 | | |#########|
 $300|---------| |#########|
 |.........| $200|---------|
 |.........| | |
 $100|---------| $100|---------|
 | | |#########|
 | | $80|---------|
 $4F|---------| | |
 |#Shared/#| | |
 |####safe#| | |
 $3A|---------| | |
 | | | |
 +---------+ +---------+
 $00

5.1 System Program Requirements 83

5.1.2 Relocating the Code

The final execution location(s) to which you can relocate your code
depends on your system configuration. The memory locations $0800
through $BEFF are available to system programs.

5.1.3 Updating the System Global Page

The MLI global page resides in locations $BF00 through $BFFF. These
are the locations whose values you must set:
$BF58-$BF6F The system bit map.
$BFFD The version number of your system program.
In addition, there is other information in the global page that your
program might find useful. These values are documented in the section
"The System Global Page."

5.1.4 The System Bit Map

The system bit map occupies bytes $BF58 through $BF6F in the
system global page and it represents the status of each 256-byte page of
memory from $0000 through $BFFF, as shown in Figure 5-2.

Figure 5-2. Memory Representation in the System Bit Map

 Bit Map Address Pages
Represented

 $BF58-$BF5F |_|_|_|_|_|_|_| $00-$3F
 $BF60-$BF67 |_|_|_|_|_|_|_| $40-$7F
 $BF68-$BF6F |_|_|_|_|_|_|_| $80-$BF

Within each byte, the bits are used in reverse order. Thus, bit 7 of byte
$BF58 represents the first 256 bytes of memory, and bit 0 of byte
$BF6F represents the last page before $C000.

You may have noticed that neither the Language Card area of memory
nor the extended memory of an Apple IIe or Apple IIc is included in
this map. This is because these regions of memory cannot be directly
accessed by the MLI. You cannot read data into or out of these areas,
and you cannot execute MLI calls from them. More information is
given in this chapter in the sections "Using the Language Card" and
"Using the Alternate 64K RAM Bank."

84 5.1 System Program Requirements

5.1.4.1 Using the Bit Map

There are twenty-four bytes in the bit map: the high five bits of an
address select which of these bytes contains a given page. Each byte
represents eight 256-byte pages; the next three bits of an address form
the complement of the bit number within that byte. Thus for page $00
in memory, the high five bits are zero: byte 0 of the bit map contains
that page. The next three bits are zero, the complement of 000 (binary)
is 111 (binary): bit 7 within byte zero contains that page. Figure 5-3
shows this relationship.

Figure 5-3. Page Number to Bit-Map Bit Conversion

 BIT 7 6 5 4 3 2 1 0
 +---+
 | Byte in Bit Map | Complement |
 PAGE # | (only 0 through 23 valid) | of Bit in Byte |
 +---+

Here is a short routine that accepts the high byte of an address in the
Accumulator. It returns with the carry clear if the memory page is free;
the carry is set if the page is already used (or if the page is in the
Language Card). It destroys the values in the A, X, and Y registers.

 SOURCE FILE #01 =>PFREE
 0000: BF58 1 BITMAP EQU $BF58 ;the system bit map
 0000: 2 *
 0000: 0000 3 PFREE EQU *
 0000:C9 C0 4 CMP #$C0 ;in language card?
 0002:B0 17 001B 5 BCS NOTFREE ;yes, it's protected
 0004:AA 6 TAX ;save page for bit in page
 0005:4A 7 LSR A ;move byte number to right
 0006:4A 8 LSR A
 0007:4A 9 LSR A
 0008:A8 10 TAY ;save byte number
 0009:8A 11 TXA ;get bit in byte
 000A:29 07 12 AND #$7 ;mask off byte number
 000C:AA 13 TAX ;and save bit in byte
 000D:A9 80 14 LDA #$80 ;bit 7 set for bit 0 in byte
 000F:CA 15 LOOP DEX ;done shifting?
 0010:30 04 0016 16 BMI CHKBIT ;yes, check bit value
 0012:4A 17 LSR A ;else shift again
 0013:4C 0F 00 18 JMP LOOP ;and continue
 0016:39 58 BF 19 CHKBIT AND BITMAP,Y ;is selected bit set?
 0019:F0 02 001D 20 BEQ ISFREE ;nope, page is free
 001B:38 21 NOTFREE SEC ;flag page not free
 001C:60 22 RTS
 001D:18 23 ISFREE CLC ;page is free
 001E:60 24 RTS

5.1 System Program Requirements 85

5.1.5 Switching System Programs

All system programs must use a standard way of starting and quitting.

5.1.5.1 Starting System Programs

System programs are started in one of two ways:
 The disk containing ProDOS and the system program is started up;

ProDOS loads and runs the first XXX.SYSTEM file of type
SYS($FF). The order of search is determined by the file entries in the
startup volume directory.

 The program is loaded by another program (such as the ProDOS
FILER or the BASIC.SYSTEM) or by a program dispatcher or
selector.

The system program is loaded and jumped to at $2000. The complete
or partial pathname of the system program is stored at $280, starting
with a length byte. The string is a full pathname if it starts with a slash.
It is a partial pathname if it starts with a letter.

This pathname allows a system program to determine the directory
where other needed files may reside. The program should never assume
that the files are in a specific directory or subdirectory.

There is a way to pass a second pathname to interpreters—for example,
to language interpreters—that like to run startup programs. The
ProDOS dispatcher does not support this mechanism but other more
sophisticated program selectors may. It requires that the interpreter
start a certain way:

$2000 is a jump instruction. $2003 and $2004 are $EE.

If the interpreter starts this way, byte $2005 is assumed to indicate the
length of a buffer that starts at $2006 and holds the pathname (starting
with a length byte) of the startup file.

Interpreters that support this mechanism should supply their own
default string, which should be a standard choice for a startup program
or a flag not to run a startup program.

Once gaining control, the system program sets the reset vector and fixes
the power-up byte. Never assume the state of the machine to be
anything that is not clearly documented.

86 5.1 System Program Requirements

If your interpreter uses any location in the range $D100-$DFFF (the
dispatcher/selector area) in the second 4K bank of RAM, be sure that
the area is initially saved and then restored on exit.

5.1.5.2 Quitting System Programs

Here is how to quit system programs:
1. Do normal housekeeping. Close files, reinstall /RAM if you have

disconnected it, and so on.
2. Invalidate the power-up byte at $3F4. The simplest way is either to

increment or to decrement it, which will always make it an invalid
check of the $3F2 vector.

3. Execute a ProDOS system call number $65 as follows:

 EXIT JSR PRODOS ;Call the MLI ($BF00)
 DFB $65 ;CALL TYPE = QUIT
 DW PARMTABLE ;Pointer to parameter table
 PARMTABLE DFB 4 ;Number of parameters is 4
 DFB 0 ;0 is the only quit type
 DW 0000 ;Pointer reserved for future use
 DFB 0 ;Byte reserved for future use
 DW 0000 ;Pointer reserved for future use

Even though most of the parameter table is reserved for future use it
must all be present. It must consist of seven bytes: $04 followed by six
nulls ($00).

ProDOS MLI call $65, the QUIT call, moves addresses $D100
through $D3FF from the second 4K bank of RAM of the language
card to $1000, and executes a JMP to $1000. What initially resides in
that area is Apple's dispatcher code.

The dispatcher, once executed, does the following:
1. Allows the user to enter the prefix and filename of the system

program (interpreter) to be executed.
2. Stores the system program name at $280, starting with a length

byte. Once the system program executes, it can find from where it
was starred, and locate any files it needs for processing.

3. Closes any open files.
4. Clears the bit map, and protects the zero, stack, text, and ProDOS

global pages.
5. Reads in the system file at $2000, and executes a JMP to $2000.

5.1 System Program Requirements 87

Important!

To install your own QUIT code that loads your own selector program,
you must, at some point, store the system program name at $280, close
open files, clear the bit map, and protect the zero, stack, text, and
ProDOS global pages, as described above. In addition, the $D100 byte
must be a CLD ($D8) instruction, so that programs can tell whether
selector code or the ProDOS dispatcher code is resident.

In addition to just leaving the pathname at $280 for the interpreter’s
use, a method to enable a selector program to specify an accompanying
startup program has been defined. Once active, an interpreter can
immediately run that program. This involves reserving an area in the
system file, which a selector program overwrites with the startup
program’s name. The interpreter then loads and executes that specified
program.

Here is how the procedure works: the selector program looks at the
first byte of the interpreter at $2000. If it is a JMP ($4C) instruction,
and bytes $2003 and $2004 are both $EE, then byte $2005 is
interpreted as a buffer size indicator with the buffer starting at $2006.
The string at $2006 would be the normal ProDOS pathname or partial
pathname, starting with a length byte.

 Byte Content
 $2000-$2002 JMP CONT
 $2003 $EE
 $2004 $EE
 $2005 $41
 $2006 $07
 $2007-$200D Startup Code
 .
 .
 .
 $2047 CONT
 .
 .
 .

The two $EEs let the selector program know that this particular
interpreter can run a startup program. The interpreters that support this
feature will supply their own default string, which may be a startup
program or a flag of your choice.

88 5.1 System Program Requirements

5.2 Managing System Resources

This section describes the interaction between ProDOS and the various
parts of memory.

5.2.1 Using the Stack

In the Apple II, the stack is stored in page $01 of memory, from the
high byte of the page going down. When an interrupt occurs, the
interrupt handler saves the low 16 bytes of the stack, but only if the
stack is more than 3/4 full. For maximum interrupt efficiency, a system
program should not use more than the upper 3/4 of the stack.

System programs should set the stack pointer to $FF at the warm-start
entry point.

5.2.2 Using the Alternate 64K RAM Bank

When ProDOS is started up, it checks its environment. If it finds 128K
of memory (Apple IIe with Extended 80-column Text card, or Apple
IIc), the auxiliary 64K bank of memory is configured as a RAM disk
named /RAM. Because the memory on the 80-column card is in slot
3, /RAM appears as slot 3 drive 2. Its unit number, as entered inthe
ProDOS global page's device list, is $BF.

Before using the auxiliary memory for any other purpose, you must
protect your code from /RAM. The routines described here are
examples only.

Note: These routines are examples; they are not being specified as
suitable for any particular purpose.

5.2.2.1 Protecting Auxiliary Bank Hi-Res Graphics
Pages

If your use involves hi-res graphics, you may protect those areas of
auxiliary memory. If you save a dummy 8K file as the first entry
in /RAM, it will always be saved at $2000 to $3FFF. If you then
immediately save a second dummy 8K file to /RAM, it will be saved at
$4000 to $5FFF. This protects the hi-res pages in auxiliary memory
while maintaining /RAM as an online storage device.

5.2 Managing System Resources 89

There is no formula for determining where the blocks of /RAM
physically reside in memory. Further, the logical blocks are not
physically contiguous. There is no guaranteed way to protect any other
fixed portions of auxiliary memory by the dummy file method.

5.2.2.2 Disconnecting /RAM

To protect all of the auxiliary memory that has not been reserved for
use by Apple, you must disconnect /RAM. Note these three areas of the
system global page:
 $BF10-$BF2F contains the disk device driver addresses.
 $BF31 contains the number of devices minus one.
 $BF32-$BF3F contains the list of disk device numbers.

Here is how to disconnect /RAM. It is suggested that you read block
two on /RAM and check the FILE_COUNT field in the directory. If
there are any files on /RAM, prompt the user either to continue with
the disconnect or to cancel the process.

Check the MACHID byte at $BF96 to see if you have 128K. If not,
there will be no /RAM to disconnect.

The slot 0 drive 1 disk-driver vector ($BF10) will point to the “No
Device Connected” routine. The slot 0 vectors $BF10 and $BF20 are
reserved for Apple’s use: you cannot use these vectors if this convention
is to work. If the slot 3 drive 2 vector also points to the same address,
then /RAM is already disconnected.

If /RAM is on line, you are ready to remove it. (Note that the following
steps can be adapted to disconnecting any device.)
1. Retrieve the slot 3 drive 2 device number you find in DEVLST, and

save it.
2. Move any remaining device numbers forward in the DEVLST.
3. Retrieve the slot 3 drive 2 driver vector, and save it for later

reinstallation.
4. Replicate the “No Device Connected” vector in slot 0 drive 1 into

slot 3 drive 2.
5. Decrement the device count (DEVCNT).

/RAM is now disconnected. You are free to use the unreserved areas of
auxiliary memory.

Note: If ProDOS has just been started up, /RAM is the last disk device
installed. However, if the user has manually installed another device(s),
the device number for /RAM will not be the last entry in the device list
(DEVLST).

90 5.2 Managing System Resources

5.2.2.3 How to Treat RAM Disks With More Than 64K

If there is a device in slot 3 drive 2 that is not /RAM, or is a RAM disk
with a capacity of more than 64K, the following routine prevents it
from being disconnected.
 ORG $1000
 DEVCNT EQU $BF31 ; GLOBAL PAGE DEVICE COUNT
 DEVLST EQU $BF32 ; GLOBAL PAGE DEVICE LIST
 MACHID EQU $BF98 ; GLOBAL PAGE MACHINE ID BYTE
 RAMSLOT EQU $BF26 ; SLOT 3, DRIVE 2 IS /RAM'S DRIVER VECTOR
 *
 * NODEV IS THE GLOBAL PAGE SLOT ZERO, DRIVE 1 DISK DRIVE VECTOR.
 * IT IS RESERVED FOR USE AS THE "NO DEVICE CONNECTED" VECTOR.
 *
 NODEV EQU $BF10
 *
 *
 RAMOUT PHP ; SAVE STATUS AND
 SEI ; MAKE SURE INTERRUPTS ARE OFF!
 *
 * FIRST THING TO DO IS TO SEE IF THERE IS A /RAM TO DISCONNECT!
 *
 LDA MACHID ; LOAD THE MACHINE ID BYTE
 AND #$30 ; TO CHECK FOR A 128k SYSTEM
 CMP #$30 ; IS IT 128k?
 BNE DONE ; IF NOT THEN BRANCH SINCE NO /RAM!
 *
 LDA RAMSLOT ; IT IS 128K; IS A DEVICE THERE?
 CMP NODEV ; COMPARE WITH LOW BYTE OF NODEV
 BNE CONT ; BRANCH IF NOT EQUAL, DEVICE IS CONNECTED
 LDA RAMSLOT+1 ; CHECK HI BYTE FOR MATCH
 CMP NODEV+1 ; ARE WE CONNECTED?
 BEQ DONE ; BRANCH, NO WORK TO DO; DEVICE NOT THERE
 *
 * AT THIS POINT /RAM (OR SOME OTHER DEVICE) IS CONNECTED IN
 * THE SLOT 3, DRIVE 2 VECTOR. NOW WE MUST GO THRU THE DEVICE
 * LIST AND FIND THE SLOT 3, DRIVE 2 UNIT NUMBER OF /RAM ($BF).
 * THE ACTUAL UNIT NUMBERS, (THAT IS TO SAY 'DEVICES') THAT WILL
 * BE REMOVED WILL BE $BF, $BB, $B7, $B3. /RAM'S DEVICE NUMBER
 * IS $BF. THUS THIS CONVENTION WILL ALLOW OTHER DEVICES THAT
 * DO NOT NECESSARILY RESEMBLE (OR IN FACT, ARE COMPLETELY DIFFERENT
 * FROM) /RAM TO REMAIN INTACT IN THE SYSTEM.
 *
 *
 CONT LDY DEVCNT ; GET THE NUMBER OF DEVICES ONLINE
 LOOP LDA DEVLST,Y ; START LOOKING FOR /RAM OR FACSIMILE
 AND #$F3 ; LOOKING FOR $BF, $BB, $B7, $B3
 CMP #$B3 ; IS DEVICE NUMBER IN {$BF,$BB,$B7,$B3}?
 BEQ FOUND ; BRANCH IF FOUND..
 DEY ; OTHERWISE CHECK OUT THE NEXT UNIT #.
 BPL LOOP ; BRANCH UNLESS YOU'VE RUN OUT OF UNITS.
 BMI DONE ; SINCE YOU HAVE RUN OUT OF UNITS TO
 FOUND LDA DEVLST,Y ; GET THE ORIGINAL UNIT NUMBER BACK
 STA RAMUNITID ; AND SAVE IT OFF FOR LATER RESTORATION.
 *
 * NOW WE MUST REMOVE THE UNIT FROM THE DEVICE LIST BY BUBBLING
 * UP THE TRAILING UNITS.
 *
 GETLOOP LDA DEVLST+1,Y ; GET THE NEXT UNIT NUMBER
 STA DEVLST,Y ; AND MOVE IT UP.
 BEQ EXIT ; BRANCH WHEN DONE(ZEROS TRAIL THE DEVLST)
 INY ; CONTINUE TO THE NEXT UNIT NUMBER...
 BNE GETLOOP ; BRANCH ALWAYS.
 *
 EXIT LDA RAMSLOT ; SAVE SLOT 3, DRIVE 2 DEVICE ADDRESS.
 STA ADDRESS ; SAVE OFF LOW BYTE OF /RAM DRIVER ADDRESS
 LDA RAMSLOT+1 ; SAVE OFF HI BYTE
 STA ADDRESS+1 ;
 *
 LDA NODEV ; FINALLY COPY THE 'NO DEVICE CONNECTED'
 STA RAMSLOT ; INTO THE SLOT 3, DRIVE 2 VECTOR AND
 LDA NODEV+1 ;
 STA RAMSLOT+1 ;
 DEC DEVCNT ; DECREMENT THE DEVICE COUNT.
 *
 DONE PLP ; RESTORE STATUS
 *
 RTS ; AND RETURN
 *
 ADDRESS DW $0000 ; STORE THE DEVICE DRIVER ADDRESS HERE
 RAMUNITID DFB $00 ; STORE THE DEVICE'S UNIT NUMBER HERE
 *

5.2 Managing System Resources 91

5.2.2.4 Reinstalling /RAM

Part of your exit procedure should include code to reinstall /RAM,
making it available to the next application. Be sure /RAM has been
disconnected before you reinstall it. Applications should not begin by
reinstalling /RAM, because this would preclude passing files from one
application to the next in /RAM.

Here is how to reinstall /RAM (or any general device):
1. Reinstall the device driver address you retrieved and saved as the slot

3 drive 2 vector.
2. Increment the device count (DEVCNT).
3. Reinstall the device number in the device list (DEVLST). It may be

best to reinstall the device number as the first entry in the list. If the
user has manually installed a disk driver, he may assume that because
it was the last thing installed that it is still the last one in the list. It is
recommended that you move all the entries in the list down one,
and reinstall the /RAM device number as the first entry.

4. Set up the parameters for a format request and JSR to the device
driver address you have reinstalled. The /RAM driver will set up a
new directory and bit map.

92 5.2 Managing System Resources

The following is an example of what the reinstallation code might look
like. These routines deal specifically with /RAM but can easily be
adapted to any disk driver routines.
 *
 * THIS IS THE EXAMPLE /RAM INSTALL ROUTINE
 *
 RAMIN PHP ; SAVE STATUS
 SEI ; AND MAKE SURE INTERRUPTS ARE OFF!
 *
 LDY DEVCNT ; GET THE NUMBER OF DEVICES 1.
 LOOP1 LDA DEVLST,Y ; LOAD THE UNIT NUMBER
 AND #$F0 ; CHECK FOR SLOT 3, DRIVE 2 UNIT.
 CMP #$B0 ; IS IT THE SLOT 3, DRIVE 2 UNIT?
 BEQ DONE1 ; IF SO BRANCH.
 DEY ; OTHERWISE SEARCH ON...
 BPL LOOP1 ; LOOP UNTIL DEVLST SEARCH IS COMPLETED
 LDA ADDRESS ; RESTORE THE DEVICE DRIVER ADDRESS
 STA RAMSLOT ; LOW BYTE..
 LDA ADDRESS+1 ; NOW THE
 STA RAMSLOT+1 ; HI BYTE.
 INC DEVCNT ; AFTER INSTALLING DEVICE, INC DEVICE COUNT
 LDY DEVCNT ; USE Y FOR LOOP COUNTER..
 LOOP2 LDA DEVLST1,Y ; BUBBLE DOWN THE ENTRIES IN DEVICE LIST
 STA DEVLST,Y ;
 DEY ; NEXT
 BNE LOOP2 ; LOOP UNTIL ALL ENTRIES MOVED DOWN.
 *
 * NOW SET UP A /RAM FORMAT REQUEST
 *
 LDA #3 ; LOAD ACC WITH FORMAT REQUEST NUMBER.
 STA $42 ; STORE REQUEST NUMBER IN PROPER PLACE.
 *
 LDA RAMUNITID ; RESTORE THE DEVICE
 STA DEVLST ; UNIT NUMBER IN THE DEVICE LIST
 AND #$F0 ; STRIP THE DEVICE ID (ZERO LOW NIBBLE)
 STA $43 ; AND STORE THE UNIT NUMBER IN $43.
 *
 LDA #$00 ; LOAD LOW BYTE OF BUFFER POINTER
 STA $44 ; AND STORE IT.
 LDA #$20 ; LOAD HI BYTE OF BUFFER POINTER
 STA $45 ; AND STORE IT.
 *
 LDA $C08B ; READ & WRITE ENABLE
 LDA $C08B ; THE LANGUAGE CARD WITH BANK 1 ON.
 *
 * NOTE HOW THE DRIVER IS CALLED. YOU JSR TO AN INDIRECT JMP SO
 * CONTROL IS RETURNED BY THE DRIVER TO THE INSTRUCTION AFTER THE JSR.
 *
 JSR DRIVER ; NOW LET DRIVER CARRY OUT CALL.
 BIT $C082 ; NOW PUT ROM BACK ON LINE.
 *
 BCC DONE1 ; IF THE CARRY IS CLEAR > NO ERROR
 JSR ERROR ; GO PROCESS THE ERROR
 *
 DONE1 PLP ; RESTORE STATUS
 RTS ; THAT'S ALL
 *
 DRIVER JMP (RAMSLOT) ; CALL THE /RAM DRIVER
 *
 ERROR BRK ; YOUR ERROR HANDLER CODE WOULD GO HERE
 RTS ;

5.2 Managing System Resources 93

5.2.3 The System Global Page

The $BF page of memory, addresses $BF00 through $BFFF, contains
the system’s global variables. Some of them, such as the system bit map
and the date and time locations, can be set and used by system
programs. Others, such as the machine identification byte, are
informational but are not to be changed. Still others are for internal use
of the system only. Follow the rules described below.

The DFB assembler directive assigns a value to the current memory
location. The DW directive assigns a two-byte address, low byte first, to
the current location.

5.2.4 Rules for Using the System Global Page

MLI entry point. This is the only address in the global page that you
should ever call:
 BF00: BF00 2 ORG GLOBALS
 BF00: 3 *
 BF00:4C 4B BF 4 ENTRY JMP MLIENT1 ;MLI CALL ENTRY POINT
Other entry points. Do not use these:
 BF03:4C F6 BF 5 JSPARE JMP SYS.RTS ;Jump Vector to cold
 ;start, selector program,
 ;etc.
 BF06:60 42 D7 6 DATETIME DFB $60,$42,$D7 ;CLOCK CALENDAR ROUTINE.
 BF09:4C F8 DF 7 SYSERR JMP SYSERR1 ;ERROR REPORTING HOOK.
 BF0C:4C 04 E0 8 SYSDEATH JMP SYSDEATH1 ;SYSTEM FAILURE HOOK.
 BF0F:00 9 SERR DFB $00 ;ERR CODE, 0=NO ERROR.
Disk device driver vectors:
 BF10: 11 *
 BF10: 12 * DEVICE DRIVER VECTORS.
 BF10: 13 *
 BF10:AB DE 14 DEVADR01 DW GNODEV ;SLOT ZERO RESERVED
 BF12:AB DE 15 DW GNODEV ;SLOT 1, DRIVE 1
 BF14:AB DE 16 DW GNODEV ;SLOT 2, DRIVE 1
 BF16:AB DE 17 DW GNODEV ;SLOT 3, DRIVE 1
 BF18:AB DE 18 DW GNODEV ;SLOT 4, DRIVE 1
 BF1A:AB DE 19 DW GNODEV ;SLOT 5, DRIVE 1
 BF1C:AB DE 20 DW GNODEV ;SLOT 6, DRIVE 1
 BF1E:AB DE 21 DW GNODEV ;SLOT 7, DRIVE 1
 BF20:AB DE 22 DW GNODEV ;SLOT ZERO RESERVED
 BF22:AB DE 23 DW GNODEV ;SLOT 1, DRIVE 2
 BF24:AB DE 24 DW GNODEV ;SLOT 2, DRIVE 2
 BF26:AB DE 25 DW GNODEV ;SLOT 3, DRIVE 2
 BF28:AB DE 26 DW GNODEV ;SLOT 4, DRIVE 2
 BF2A:AB DE 27 DW GNODEV ;SLOT 5, DRIVE 2
 BF2C:AB DE 28 DW GNODEV ;SLOT 6, DRIVE 2
 BF2E:AB DE 29 DW GNODEV ;SLOT 7, DRIVE 2

94 5.2 Managing System Resources

List of all active disk devices by unit number. When access to an
unrecognized volume is requested, devices are searched from the end of
the list to the beginning. See also Sections 3.1, 3.2, and 4.4.6. The
lower half of each byte in DEVLST is a device identification: 0 = Disk
II, 4 = ProFile, $F = /RAM.
 BF30: 31 *
 BF30: 32 * CONFIGURED DEVICE LIST BY DEVICE NUMBER
 BF30: 33 * ACCESS ORDER IS LAST IN LIST FIRST.
 BF30: 34 *
 BF30:00 35 DEVNUM DFB $00 ;MOST RECENT ACCESSED
 ;DEVICE.
 BF31:FF 36 DEVCNT DFB $FF ;NUMBER OF ONLINE DEVICES
 ;(MINUS 1).
 BF32:00 00 00 00 37 DEVLST DFB $0,0,0,0 ;UP TO 14 UNITS MAY BE
 ;ACTIVE.
 BF36:00 00 00 00 38 DFB 0,0,0,0,0
 BF3B:00 00 00 00 39 DFB 0,0,0,0,0

 BF40:28 43 29 41 41 ASC "(C)APPLE'83"

Routines reserved for MLI and subject to change.
 BF4B:08 42 MLIENT1 PHP
 BF4C:78 43 SEI
 BF4D:4C B7 BF 44 JMP MLICONT
 BF50:8D 8B C0 45 AFTIRQ STA RAMIN
 BF53:4C D8 FF 46 JMP FIX45 ;Restore $45 after
 ;Interrupt in Lang Card
 BF56:00 47 OLD45 DFB 0
 BF57:00 48 AFBANK DFB 0

Memory map of the lower 48K. Each bit represents one page (256
bytes) of memory. Protected areas are marked with a 1, uprotected with
a 0. ProDOS disallows reading into or io_buffer allocation in protected
areas. See Section 5.1.
 BF58:C0 00 00 00 56 MEMTABL DFB $C0,$00,$00,$00,$00,$00,$00,$00
 BF60:00 00 00 00 57 DFB $00,$00,$00,$00,$00,$00,$00,$00
 BF68:00 00 00 00 58 DFB $00,$00,$00,$00,$00,$00,$00,$01

The addresses in this table are buffer addresses for open files.These are
informational only; they should not be changed except using the MLI
call SET_BUF.
 BF70:00 00 66 GL.BUFF DW $0000 ;FILE NUMBER 1
 BF72:00 00 67 DW $0000 ;FILE NUMBER 2
 BF74:00 00 68 DW $0000 ;FILE NUMBER 3
 BF76:00 00 69 DW $0000 ;FILE NUMBER 4
 BF78:00 00 70 DW $0000 ;FILE NUMBER 5
 BF7A:00 00 71 DW $0000 ;FILE NUMBER 6
 BF7C:00 00 72 DW $0000 ;FILE NUMBER 7
 BF7E:00 00 73 DW $0000 ;FILE NUMBER 8

5.2 Managing System Resources 95

Interrupt vectors are stored here. Again, these are informational and
should be changed only by a call to the MLI using
ALLOC_INTERRUPT. Values of the A, X, Y, stack, and status
registers at the time of the most recent interrupt are also stored here. In
addition, the address interrupted is preserved. These may be used for
performance studies and debugging, but should not be changed by the
user. The routines are polled in ascending order. See Section 6.2.
 BF80:00 00 85 INTRUPT1 DW $0000 ;INTERRUPT ROUTINE 1
 BF82:00 00 86 INTRUPT2 DW $0000 ;INTERRUPT ROUTINE 2
 BF84:00 00 87 INTRUPT3 DW $0000 ;INTERRUPT ROUTINE 3
 BF86:00 00 88 INTRUPT4 DW $0000 ;INTERRUPT ROUTINE 4
 BF88:00 89 INTAREG DFB $00 ;AREGISTER
 BF89:00 90 INTXREG DFB $00 ;XREGISTER
 BF8A:00 91 INTYREG DFB $00 ;YREGISTER
 BF8B:00 92 INTSREG DFB $00 ;STACK REGISTER
 BF8C:00 93 INTPREG DFB $00 ;STATUS REGISTER
 BF8D:01 94 INTBANKID DFB $01 ;ROM, RAM1, OR RAM2 ($D000 IN LC)
 BF8E:00 00 95 INTADDR DW $0000 ;PROGRAM COUNTER RETN ADDR

The following options can be changed before calls to the MLI:
 BF90:00 00 101 DATELO DW $0000 ;BITS 159=YR, 85=MO, 40=DAY
 BF92:00 00 102 TIMELO DW $0000 ;BITS 128=HR, 50=MIN; LOWHI FORMAT.
 BF94:00 103 LEVEL DFB $00 ;FILE LEVEL: USED IN OPEN, FLUSH, CLOSE.
 BF95:00 104 BUBIT DFB $00 ;BACKUP BIT DISABLE, SETFILEINFO ONLY.
 BF96:00 00 105 SPARE1 DFB $00,$00 ;RESERVED FOR MLI USE

The definition of MACHID at $BF98 is:
 BF98: 107 *
 BF98: 108 * The following are informational only. MACHID
 BF98: 109 * identifies the System Attributes:
 BF98: 110 * (Bit 3 off) BITS 7,6 00=II 01=II+ 10=IIe 11=/// EMULATION
 BF98: 111 * (Bit 3 on) BITS 7,6 00=NA 01=NA 10=//c 11=NA
 BF98: 112 * BITS 5,4 00=NA 01=48K 10=64K 11=128K
 BF98: 113 * BIT 3 Modifier for MACHID Bits 7,6.
 BF98: 114 * BIT 2 RESERVED FOR FUTURE DEFINITION.
 BF98: 115 * BIT 1=1 80 Column card
 BF98: 116 * BIT 0=1 Recognizable Clock Card
 BF98: 117 *
 BF98: 118 * SLTBYT indicates which slots are determined to have
 BF98: 119 * ROMS. PFIXPTR indicates an active PREFIX if it is
 BF98: 120 * nonzero. MLIACTV indicates an MLI call in progress
 BF98: 121 * if it is nonzero. CMDADR is the address of the last
 BF98: 122 * MLI call's parameter list. SAVX and SAVY are the
 BF98: 123 * values of X and Y when the MLI was last called.
 BF98: 124 *
 BF98:00 125 MACHID DFB $00 ;MACHINE IDENTIFICATION.
 BF99:00 126 SLTBYT DFB $00 ;'1' BITS INDICATE ROM IN SLOT(BIT#)
 BF9A:00 127 PFIXPTR DFB $00 ;IF = 0, NO PREFIX ACTIVE..
 BF9B:00 128 MLIACTV DFB $00 ;IF <> 0, MLI call in progress
 BF9C:00 00 129 CMDADR DW $0000 ;RETURN ADDRESS OF LAST CALL TO MLI.
 BF9E:00 130 SAVEX DFB $00 ;XREG ON ENTRY TO MLI
 BF9F:00 131 SAVEY DFB $00 ;YREG ON ENTRY TO MLI

96 5.2 Managing System Resources

The following space is reserved for Language Card bank-switching
routines. All routines and addresses are subject to change at any time
without notice and will, in fact, vary with system configuration. The
routines presented here are for 64K systems only:
 BFA0:4D 00 E0 141 EXIT EOR $E000 ;TEST FOR ROM ENABLE.
 BFA3:F0 05 BFAA 142 BEQ EXIT1 ;BRANCH IF RAM ENABLED.
 BFA5:8D 82 C0 143 STA ROMIN ;ELSE ENABLE ROM & RETURN.
 BFA8:D0 0B BFB5 144 BNE EXIT2 ;BRANCH ALWAYS
 BFAA: 145 **
 BFAA:AD F5 BF 146 EXIT1 LDA BNKBYT2 ;FOR ALT RAM (MOD BY MLIENT1)
 BFAD:4D 00 D0 147 EOR $D000 ;ENABLE.
 BFB0:F0 03 BFB5 148 BEQ EXIT2 ;BRANCH IF NOT ALT RAM.
 BFB2:AD 83 C0 149 LDA ALTRAM ;ELSE ENABLE ALT $D000
 BFB5:68 150 EXIT2 PLA ;RESTORE RETURN CODE.
 BFB6:40 151 RTI ;REENABLE INTERRUPTS & RETURN
 BFB7: 152 **
 BFB7:38 153 MLICONT SEC
 BFB8:6E 9B BF 154 ROR MLIACTV ;INDICATE TO INTERRUPT ROUTINES MLI ACTIVE.
 BFBB:AD 00 E0 155 LDA $E000 ;PRESERVE LANGUAGE CARD / ROM
 BFBE:8D F4 BF 156 STA BNKBYT1 ; ORIENTATION FOR PROPER
 BFC1:AD 00 D0 157 LDA $D000 ; RESTORATION WHEN MLI EXITS...
 BFC4:8D F5 BF 158 STA BNKBYT2
 BFC7:AD 8B C0 159 LDA RAMIN ;NOW FORCE RAM CARD ON
 BFCA:AD 8B C0 160 LDA RAMIN ; WITH RAM WRITE ALLOWED.
 BFCD:4C 00 DE 161 JMP ENTRYMLI

Interrupt exit and entry routines:
 BFD0: 163 *
 BFD0: 164 * INTERRUPT EXIT/ENTRY ROUTINES
 BFD0: 165 *

 BFD0:AD 8D BF 167 IRQXIT LDA INTBANKID ;DETERMINE STATE OF RAM CARD
 BFD3:F0 0D BFE2 168 IRQXIT0 BEQ IRQXIT2 ; IF ANY. BRANCH IF ENABLED.
 BFD5:30 08 BFDF 169 BMI IRQXIT1 ;BRANCH IF ALTERNATE $D000 ENABLED.
 BFD7:4A 170 LSR A ;DETERMINE IF NO RAM CARD PRESENT.
 BFD8:90 0D BFE7 171 BCC ROMXIT ;BRANCH IF ROM ONLY SYSTEM.
 BFDA:AD 81 C0 172 LDA ROMIN1 ;ELSE ENABLE ROM FIRST.
 BFDD:B0 08 BFE7 173 BCS ROMXIT ;BRANCH ALWAYS TAKEN...
 BFDF:AD 83 C0 174 IRQXIT1 LDA ALTRAM ;ENABLE ALTERNATE $D000.
 BFE2:A9 01 175 IRQXIT2 LDA #1 ;PRESET BANKID FOR ROM.
 BFE4:8D 8D BF 176 STA INTBANKID ;(RESET IF RAM CARD INTERRUPT)
 BFE7:AD 88 BF 177 ROMXIT LDA INTAREG ;RESTORE ACCUMULATOR...
 BFEA:40 178 RTI ; AND EXIT!

 BFEB:2C 8B C0 180 IRQENT BIT RAMIN ;THIS ENTRY ONLY USED WHEN ROM
 BFEE:2C 8B C0 181 BIT RAMIN ; WAS ENABLED AT TIME OF INTERRUT.
 BFF1:4C 4D DF 182 JMP IRQRECEV ; AREG IS STORED AT $45 IN ZPAGE.
 BFF4:00 183 BNKBYT1 DFB $00
 BFF5:00 184 BNKBYT2 DFB $00
 BFF6: 185 **
 BFF6:2C 8B C0 186 SYS.RTS BIT RAMIN ;Make certain Language card is switched in
 BFF9:4C 02 E0 187 JMP SYS.END ;Or anywhere else we need to go

Each system program should set IVERSION to its own current version
number. ProDOS sets KVERSION to its current version number.
 BFFC:00 188 IBAKVER DFB $00 ;UNDEFINED: Reserved for future use
 BFFD:00 189 IVERSION DFB $00 ;Version # of currently running Interpreter
 BFFE:00 191 KBAKVER DFB $00 ;UNDEFINED: Reserved for future use
 BFFF:02 192 KVERSION DFB $2 ;VERSION NO. (RELEASE ID)

5.2 Managing System Resources 97

5.3 General Techniques

The first part of this chapter discusses the things that a system program
must do. This section of the manual describes some of the things that
system programs commonly do, and it gives some techniques for
implementing them.

5.3.1 Determining Machine Configuration

It is often useful for a system program to know what type of Apple II it
is running on. The MACHID byte in the system global page identifies
the machine type, the amount of memory, and whether an 80-column
text card or clock/calendar card was detected.

5.3.1.1 Machine Type

Two bits distinguish an Apple II, an Apple II Plus, an Apple IIe, an
Apple IIc, or an Apple III in Apple II emulation mode. This distinction
is most useful for two reasons:
1. The Apple IIe and IIc always have lowercase available. Screen

messages can be coded using uppercase and lowercase, and then
made all uppercase if the machine is not an Apple IIe or IIc (or if it
is a Apple II without an 80-column text card).

2. The Apple IIe and IIc have keys that are not available on earlier
versions of the Apple II (most notably [UP], [DOWN], [OA],
[SA], and [DELETE]). Software should be coded to use the keys
most convenient for the system it is running on, and the screen
messages should be adjusted accordingly.

5.3.1.2 Memory Size

The possible memory sizes are 64K and 128K. A system program can
use these values when deciding where to relocate itself. Recall that the
alternate 64K bank cannot contain code that makes calls to the MLI
and it cannot be used for system buffers.

98 5.3 General Techniques

MACHID byte: see Section 5.2.3.

5.3.1.3 80-Column Text Card

This bit is always set in the Apple IIc. It is set in an Apple IIe if an 80-
column text card that follows the defined protocol is in slot 3 or in the
auxiliary slot. This protocol guarantees that the features of the card can
be turned on by a JSR to $C300, the beginning of the ROM on the
card (note that this disconnects BASIC.SYSTEM).

80-column text cards – and other Apple IIe features – can be turned off
using the following sequence of instructions:

LDA #$15 ;Character that turns off video firmware
JSR $C300 ;Print it to the video firmware

5.3.2 Using the Date

A system program often has reason to use the current date: to mark
files with a modification date, to use as identification on a listing, or
just for display on the screen. Whatever the use, it is usually desirable to
obtain the most current setting.

Save the system date and time locations ($BF90-BF93) for possible
future use, and then clear them. Next use the GET_TIME call. If there
is a clock/calendar card with an installed clock routine, then the system
date and time locations will become nonzero. This is the date and time
you should use. If the GET_TIME call has no effect, then you should
either use the values that were previously in the date and time locations,
or prompt the user for the current date and time. Since the date and
time locations are set to 0 when the system is started (unless ProDOS
recognizes a clock/calendar card), it is reasonable to use nonzero values
of the date and time locations as a default date and time.

If there is no system time, and the call to GET_TIME returns nothing
an alternative is to use the GET_FILE_INFO call and to use the last
modified date and time as a default. If the user updates the time, and
you place these values in the system date and time locations, a
SET_FILE_INFO call will update the time for the next
GET_FILE_INFO.

The system updates the date and time at every CREATE, DESTROY,
RENAME SET_FILE_INFO CLOSE, and FLUSH operation.

5.3 General Techniques 99

Refer to the GET_TIME call in Chapter 4,
and to the description of clock/calender
routines in Chapter 6 for more details.

5.3.3 System Program Defaults

Each file entry in a directory has a two-byte aux_type field. This field
contains information such as load address for BASIC programs or
binary files, and record length for text files; for system files it is unused.
If your system program has a small amount of default information that
you would like to preserve from one execution of the program to the
next, this field is a good place to store it.

To alter the contents of this field, use the GET_FILE_INFO call to
read the current contents of the file’s entry, change the values in the
aux_id field, then use the SET_FILE_INFO call with the same
parameter list to save the modified values in the file’s entry.

5.3.4 Finding a Volume

Since one does not always know the names of all the online volumes, it
is sometimes necessary to allow users to specify volumes by slot and
drive instead of by volume name. Before the slot and drive information
can be used to access ProDOS files, it must be converted to a volume
name. To convert slot and drive numbers to volume names, you can use
the following steps:
1. Make the slot and drive numbers into a unit_num. This number is

used to specify the desired device to the ON_LINE call. The format
of a unit_num is given in Section 4.4.6.

2. Use the unit_num in the ON_LINE call. This call will return a
count byte followed by the volume name. This volume name is not
preceded by a slash. You must increase the count by one and insert a
slash preceding the volume name before using this name in other
ProDOS calls.

100 5.3 General Techniques

5.3.5 Using the RESET Vector

In the Apple II, pressing [CONTROL]-[RESET] causes an
unconditional jump to the RESET vector (at $3F2 in memory).
Because the user can press [CONTROL]-[RESET] at any time –
including while files are open – ProDOS cannot take responsibility for
disk integrity after [RESET] has been pressed: the system program
must do it.

Your program should place in the RESET vector the address of a
routine that displays a message advising that it will be closing any open
files, and then close the files. Once this is done, the program may take
any action required by the application. It is preferable either to jump
back to the beginning of the program or to jump directly to the quit
routine.

5.4 ProDOS System Program Conventions

For the sake of consistency from one piece of software to the next
follow the conventions used in this manual:
 Use the same terminology whenever possible. If your application

implements any of the functions used by the BASIC system
program, the Filer, the Convert program, or the Editor/Assembler,
try to use the same wording.

 Use the same catalog format in all software that displays a list of files.
It is not necessary to implement both the 40- and 80-column formats
(see the CAT and CATALOG commands of the BASIC system
program).

If you choose to implement your own version of this command,
recognize the file types and display the three-letter abbreviations that
are shown in the quick reference card of this manual.

 The standard Apple II “Air-raid” bell has been replaced with a
gentler tone. Use it to give users some aural feedback that they are
using a ProDOS program. The code for it follows.

5.4 ProDOS System Program Conventions 101

 SPKR EQU $C030 ;this clicks the speaker
 *
 LENGTH DS 1 ;duration of tone
 *
 * This is the wait routine from the Monitor ROM.
 *
 WAIT SEC
 WAIT2 PHA
 WAIT3 SBC #1
 BNE WAIT3
 PLA
 SBC #1
 BNE WAIT2
 RTS
 *
 * Generate a nice little tone
 * Exits with Z-flag set (BEQ) for branching
 * Destroys the contents of the accumulator
 *
 BELL LDA #$20 ;duration of tone
 STA LENGTH
 BELL1 LDA #$2 ;short delay...click
 JSR WAIT
 STA SPKR
 LDA #$20 ;long delay...click
 JSR WAIT
 STA SPKR
 DEC LENGTH
 BNE BELL1 ;repeat LENGTH times
 RTS

102 5.4 ProDOS System Program Conventions

Chapter 6 Adding Routines to ProDOS

5.4 ProDOS System Program Conventions 103

This chapter explains device-handling routines that can be used with the
ProDOS MLI. Because such routines are connected to and interact with
the MLI, they are essentially invisible to the BASIC system program
described in Appendix A of this manual and in BASIC Programming
With ProDOS. Appendix A explains the rules for installing routines
when the BASIC system program is active.

The types of routines described in this chapter are:
 clock/calendar routines
 interrupt handling routines
 disk driver routines.

Note: These routines must all begin with a CLD instruction and end
with an RTS.

6.1 Clock/Calendar Routines

ProDOS has a built-in clock driver that queries a clock/calendar card for
the date and time. After the routine stores that information in the
ProDOS Global Page ($BF90-$BF93), either ProDOS or your own
application programs can use it. See Figure 6-1.

Figure 6-1. ProDOS Date and Time Locations

 49041 ($BF91) 49040 ($BF90)

 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 DATE: | year | month | day |
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 TIME: | hour | | minute |
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

 49043 ($BF93) 49042 ($BF92)

You can cause ProDOS to call the clock driver and to update the date
and time by issuing a GET_TIME call (see Section 4.6.1).

ProDOS calls the clock driver routine for every call that might need the
date and time: CREATE, DESTROY, RENAME SET_FILE_INFO
CLOSE, and FLUSH.

104 6.1 Clock/Calendar Routines

The ProDOS clock driver expects the clock card’s firmware to return
information in a certain way. The ROM on the clock card must also
follow Apple’s identification convention if it is to be recognized by
ProDOS at startup.

The ProDOS clock driver expects the clock card to send an ASCII
string to the GETLN input buffer ($200). This string must have the
following format (including the commas):

mo,da,dt,hr,mn

where

mo is the month (01 = January...12 = December)
da is the day of the week (00 = Sunday...06 = Saturday)
dt is the date (00 through 31)
hr is the hour (00 through 23)
mn is the minute (00 through 59)

For example:

07,04,14,22,46

would represent Thursday, July 14, 10:46 p.m. The year is looked up in
a table in the clock driver.

When the ProDOS system file is executed, it installs the address of the
clock routine at $BF07, $BF08—whether there is a recognized clock
card or not.

ProDOS recognizes a clock card if the following bytes are present in the
Cn00 ROM:

$Cn00 = $08
$Cn02 = $28
$Cn04 = $58
$Cn06 = $70

The address is preceded by a $4C (JMP) if a clock card is recognized, or
by a $60 (RTS) if not.

The ProDOS clock driver uses the following addresses for its I/O to the
clock:

Cn08 – READ entry point
Cn0B – WRITE entry point

The accumulator is loaded with an #A3 before the JSR to the WRITE
entry point. This value could be used to let the clock card’s firmware
know in what format to leave the time.

The ProDOS driver takes the ASCII values sent by the clock, converts
them to binary, and stores them in the ProDOS Global Page.

6.1 Clock/Calendar Routines 105

The driver uses zero page locations $3A through $3E. It also saves and
restores the peripheral RAM card location $F8+n, where n is the slot
where the card resides.

6.1.1 Other Clock/Calendars

To support clock cards that do not follow the ProDOS protocol defined
above, you can locate your code in a number of places. The cleanest
solution is to replace the ProDOS routines with your own, if they fit.

If you look at $BF07,$BF08, you will find the location to put your
code. There is room for 125 bytes.

To install your code, simply write-enable the language card area, and
move your code. Your relocation code must justify the absolute
addresses as part of the relocation procedure. Finally, restore any soft
switches you have changed. (There is no guarantee as to the absolute
location of the clock-driver code on future revisions of ProDOS, only
that its location can be found by examining the global page.) All that
your code needs to do is get the time from the clock card, convert it to
the ProDOS format, and store it in the date and time locations in the
global page.

Your installation routine can be called either from an application
program, or as part of the STARTUP program.

6.2 Interrupt Handling Routines

To aid the development of software that can handle interrupts, the MLI
provides a convention for interfacing interrupt driven devices.

To use interrupts, you must install from one to four interrupt receiving
routines somewhere in memory. It is up to you to check and update the
system bit map to be sure that the routines do not conflict with
ProDOS or other concurrently executing programs.

Once a routine is installed, you must use the ALLOC_INTERRUPT
call to inform the MLI of the starting address of the receiving routine.
After this call has been successfully completed, you may enable the
hardware for interrupts.

106 6.2 Interrupt Handling Routines

When an interrupt occurs, the MLI’s interrupt handler preserves the
6502’s registers, zero page locations $FA thru $ff, and, if the stack is
more than ¾ full, 16 bytes of the stack. Then it calls each receiving
routine (via JSR), one by one, in the order in which they were installed.
Each installed routine must begin with a CLD instruction.

When the routine that can process the interrupt is called, it should carry
out its task, clear the interrupt on the hardware, and return (via an
RTS) with the carry flag clear. When a routine that cannot process the
interrupt is called, it should return (via an RTS) with the carry flag set
so that the MLI knows to call the next routine in the list.

As mentioned above, all 6502 registers, locations $FA thru $FF and if
the stack is more than ¾ full, 16 bytes of the stack, are preserved.

The interrupt routine may use these resources freely for temporary data
storage.

Note: There is no general way for an interrupt routine to identify
whether or not its device was the source of the interrupt. This task
depends on the specific characteristics of the device; in fact, some
devices provide no mechanism for interrupt verification. It is necessary
to service such a device after all others have been polled.

If no installed and allocated routine claims a pending interrupt, a
SYSTEM FAILURE message will be displayed and program execution
will be halted.

When finished with a interrupt driven device, a
DEALLOC_INTERRUPT call should be made, but only after the
device itself is disabled.

This warning does not apply to the Apple IIc nor to Apple IIe’s with
enhanced ROMs. Because the Apple II Monitor program relies on a
zero-page location ($45) that is overwritten when an interrupt occurs,
you should disable interrupts while you are using the Monitor program.
The system also uses location $7F8 to store the I/O slot location that
was in use before an interrupt occurred; do not use this location.

6.2 Interrupt Handling Routines 107

Warning

6.2.1 Interrupts During MLI Calls

The preceding section does not discuss what a program should do if an
interrupt were to occur during the execution of an MLI call and your
interrupt handling routine itself makes calls to the MLI.

The interrupt routine must allow the MLI to complete its current call
before initiating a new call to the MLI. The mechanism for doing this
consists of changing the globals so that the MLI completes its call and
returns to your routine rather than to the the routine that originally
called it. Then your routine can use the MLI as needed. When it is
finished, it must restore the 6502 registers to the state they would have
been in at completion of the MLI call had the interrupt not occurred,
and then jump back to the proper address in the original routine.

To do this, the interrupt handling routine should first check the status
of the MLI. If the flag MLIACTV ($BF9B) has the high bit set, then the
MLI was in the middle of a call. Your routine should then:
1. Save the return address of the original caller (CMDADR, $BF9C),

replacing it with the address to which the MLI should return on
completion of the current call.

2. Claim the interrupt by disabling interrupts on the hardware, and
clearing the carry flag.

3. RTS

The MLI’s interrupt handler believes that the interrupt has been
processed, so it completes the current MLI call and returns to the
address in CMDADR, which is actually in your routine. Your routine
should now do this:
4. Save the A, X, Y, and P registers as the return state for the routine

whose call just completed.
5. Use the MLI as needed.
6. Restore the A, X, Y, and P registers.
7. Jump to the original CMDADR.

The original program sees only that its MLI call was successfully
completed, and it continues execution.

108 6.2 Interrupt Handling Routines

6.2.2 Sample Interrupt Routine

Here is a sample interrupt routine that reads the date from a
clock/calender card, and displays it in the upper-right corner of the
screen once per second. It assumes the card is in slot 2.
 SOURCE FILE #01 =>SHOWTIME
 NEXT OBJECT FILE NAME IS SHOWTIME.0
 0300: 0300 1 ORG $300
 0300: C20B 2 WTTCP EQU $C20B ;CLOCK WRITE ENTRY PT (SLOT 2)
 0300: C208 3 RDTCP EQU $C208 ;CLOCK READ ENTRY PT (SLOT 2)
 0300; C080 4 TCICR EQU $C080 ;INTERRUPT CONTROL REG (SLOT 2)
 0300: C088 5 TCMR EQU $C088 ;MYSTERY REGISTER (SLOT 2)
 0300: 6 *
 0300: 0200 7 IN EQU $200 ;WHERE CLOCK LEAVES THE TIME
 0300: 8 *
 0300: 0412 9 UPRIGHT EQU $412 ;THE UPPER RIGHT OF THE SCREEN
 0300: 047A 10 INTONI EQU $47A ;LEAVE INTERRUPTS ON (SLOT 2)
 0300: 07FA 11 INTON2 EQU $7FA ;LEAVE INTERRUPTS ON (SLOT 2)
 0300: 12 *
 0300: BF00 13 MLI EQU $BF00 ;ENTRY POINT TO THE PRODOS MLI
 0300: 14 *
 0300: 15 * CALLING INTERRUPTS, CALLING INTERRUPTS
 0300: 16 *
 0300:20 7E 03 17 JSR ALLOC.INT ;HAVE MLI INSTALL INT ROUTINE
 0303:60 18 RTS ;THAT'S ALL FOLKS
 0304: 19 *
 0304: 20 *
 0304: 0304 21 SHOWTIME EQU *
 0304:D8 22 CLD
 0305:08 23 PHP
 0306:78 24 SEI ;DISABLE INTERRUPTS
 0307:A0 20 25 LDY #$20 ; FOR SLOT 2
 O3O9;B9 80 C0 26 LDA TCICR,Y ;GET VAL OF INT CONTROL REG
 03OC:29 20 27 AND #$20 ;CHK BIT 5 IS INT FROM CLK?
 030E:F0 3C 034C 28 BEQ NOTCLK ;IF BIT 5 OFF, INT NOT FROM CLK
 0310:B9 88 C0 29 LDA TCMR,Y ;CLEAR MYSTERY REGISTER
 0313:B9 80 C0 30 LDA TCICR,Y ;CLEAR INTERRUPT ON HARDWARE
 0316:CE 4F 03 31 DEC COUNTER ;ONLY PRINT TIME EVERY SECOND
 0319:D0 2E 0349 32 BNE EXITCLK ; NOT TIME TO PRINT YET
 031B: 33 *
 031B:A2 27 34 LDX #39 ;SAVE THE INPUT BUFFER
 031D:BD 00 02 35 DOIN LDA IN,X ; SINCE THE CLOCK WRITES OVER
 0320:9D 56 03 36 STA INBUF,X ; IT WHEN IT IS CALLED
 0323:CA 37 DEX ;
 0324:10 F7 031D 38 BPL DOIN ;
 0326: 39
 0326:A9 A5 40 LDA #$A5 ;SET APPLESOFT STRING INPUT
 0328:20 0B C2 41 JSR WTTCP ; MODE & SEND IT TO THE CARD
 032B:20 08 C2 42 JSR RDTCP ;READ TIME INTO INPUT BUFFER
 032E: 43
 032E:A2 15 44 LDX #21
 0330:BD 01 02 45 GETNEXT LDA IN+1,X ;PRINT TIME TO SCREEN
 0333:9D 12 04 46 STA UPRIGHT,X ;CHARS 022 OF INPUT BUFFER
 0336:CA 47 DEX ;
 0337:10 F7 0330 48 BPL GETNEXT ;
 0339: 49
 0339:A9 40 50 SETCNTR LDA #64 ;SET UP COUNTER FOR NEXT TIME

6.2 Interrupt Handling Routines 109

 033B:8D 4F 03 51 STA COUNTER ;
 033E: 52
 033E:A2 27 53 LDX #39 ;RESTORE THE INPUT BUFFER
 0340:BD 56 03 54 DOIN2 LDA INBUF,X ;
 0343:9D 00 02 55 STA IN,X ;
 0346:CA 56 DEX ;
 0347:10 F7 0340 57 BPI DOIN2 ;
 0349: 58 *
 0349:28 59 EXITCLK PLP
 034A:18 60 CLC ;TELL MLI INT WAS PROCESSED
 034B:60 61 RTS
 034C:28 62 NOTCLK PLP
 034D:38 63 SEC ;TELL MLI IT ISN'T OURS
 034E:60 64 RTS
 034F: 65 *
 034F: 0001 66 COUNTER DS 1,0 ;
 0350; 67 *
 0350:02 00 68 AIPARMS DFB 2,0 ;PUT ALLOCATE AND DEALLOCATE
 0352:04 03 69 DW SHOWTIME ; INTERRUPT PARAMETERS HERE,
 0354: 70 *
 0354:01 00 71 DIPARMS DFB 1,0 ; SO BOTH ROUTINES CAN USE THEM
 0356: 72 *
 0356: 0028 73 INBUF DS 40,0 ;SAVE 40 BYTES IN HERE
 037E: 74 * ; FOR INPUT BUFFER SAVE/RESTORE

Note the important features of this routine:
1. The routine begins with a CLD instruction (line 22).
2. The routine checks to see if the IRQ interrupt is being caused by the

clock/calendar card (lines 25-28). If not, it returns with the carry set
(lines 62-64).

3. If the interrupt belongs to the clock/calendar card, it clears the inter-
rupt hardware (lines 29-30).

4. When it is done with the interrupt task, it returns with carry clear
(lines 59-61).

110 6.2 Interrupt Handling Routines

The following routine adds the interrupt routine to ProDOS using the
ALLOC_INTERRUPT call. Having done this, it then activates
interrupts on the clock/calendar card. Then a CLI instruction is
executed to allow the 6502 to process interrupts.
 03A0:A9 00 94 DEALLOC.INT LDA #0 ;DISABLE INTERRUPTS
 03A2:8D 7A 04 95 STA INTON1 ; IN THE THUNDERCLOCK
 03A5:8D FA 07 96 STA INTON2
 03A8:Ao 20 97 LDY #$20
 03AA;99 80 C0 98 STA TCICR,Y
 03AD: 99 *
 03AD:AD 51 03 100 LDA AIPARMS+1 ;GET INT_NUM
 03B0:8D 55 03 101 STA DIPARMS+1 ; FOR DEALLOCATION
 03B3:20 00 BF 102 JSR MLI ;CALL THE MLI TO
 03B6:41 103 DFB $41 ; DEALLOCATE INT ROUTINE
 03B7:54 03 104 DW DIPARMS
 03B9:D0 01 03BC 105 BNE OOPS2 ;BREAK ON ERROR
 03BB:60 106 RTS ;DONE
 03BC: 107 *
 03BC:00 108 OOPS2 BRK ;BREAK ON ERROR

The next routine disables interrupts on the clock/calendar card before
removing the interrupt routine from ProDOS with a
DEALLOC_INTERRUPT call.
 037E: 75
 037E:20 00 BF 76 ALLOC.INT JSR MLI ;CALL THE MLI TO
 0381:40 77 DFB $40 ; ALLOCATE THE INTERRUPT
 0382:50 03 78 DW AIPARMS ;
 0384:D0 19 039F 79 BNE OOPS ;BREAK ON ERROR
 0386: 80 *
 0386:A0 20 81 LDY #$20
 0388:A9 AC 82 LDA #$AC ;SET 64HZ INTERRUPT RATE
 038A:20 0B C2 83 JSR WTTCP ; BY WRITING A ',' To CLOCK
 038D:A9 40 84 LDA #$40 ;NOW ENABLE THE SOFTWARE
 038F:8D 7A 04 85 STA INTON1 ; AND TELL IT NOT TO DISABLE
 0392:8D FA 07 86 STA INTON2 ; INTERRUPTS AFTER READS
 0395:99 80 C0 87 STA TCICR,Y
 0398:A9 01 88 LDA #1 ;PRINT TIME IMMEDIATELY
 039A:8D 4F 03 89 STA COUNTER ; ONCE PER SECOND LATER
 039D:58 90 CLI ;ALLOW THE 6502 TO SEE THE
 039E:60 91 RTS ; INTERRUPTS
 039F: 92 *
 039F:00 93 OOPS BRK ;BREAK ON ERROR

6.2 Interrupt Handling Routines 111

6.3 Disk Driver Routines

If a disk drive supplied by another manufacturer is to work with
ProDOS, it must look and act just like a disk drive supplied by Apple
Computer, Inc. Its boot ROM must have certain things in certain
locations, and its driver routine must use certain zero-page locations for
its call parameters.

6.3.1 ROM Code Conventions

During startup, ProDOS searches for block storage devices. If it finds
the following three bytes in the ROM of a particular slot, ProDOS
assumes it has found a disk drive (n represents slot number):

$Cn01 = $20
$Cn03 = $00
$Cn05 = $03

If $CnFF = $00, ProDOS assumes it has found a Disk II with 16-
sector ROMs and marks the device driver table in the ProDOS global
page with the address of the Disk II driver routines. The Disk II driver
routines support any drive that emulates Apple’s 16-sector Disk II (280
blocks, single volume, and so on).

If $CnFF = $FF, ProDOS assumes it has found a Disk II with 13-
sector ROMs, which ProDOS does not support.

If ProDOS finds a value other than $00 or $FF at $CnFF, it assumes it
has found an intelligent disk controller. If the STATUS byte at $CnFE
indicates that the device supports READ and STATUS requests,
ProDOS marks the global page with a device-driver address whose
high-byte is equal to $Cn and whose low-byte is equal to the value
found at $CnFF.

112 6.3 Disk Driver Routines

The only calls to the disk driver are STATUS, READ, WRITE, and
FORMAT. The STATUS call should perform a check to verify that the
device is ready for a READ or WRITE. If it is not, the carry should be
set and the appropriate error code returned in the accumulator. If the
device is ready for a READ or WRITE, then the driver should clear the
carry, place a zero in the accumulator, and return the number of blocks
on the device in the X-register (low-byte) and Y-register (high-byte).

If you wish to interface a disk controller card with more than two drives
(or a device with more than two volumes), additional device driver
vectors for disk controllers plugged into slot 5 or 6 may be installed in
slot 1 or 2 locations. There will be no conflict with character devices
physically present in these slots.

Device numbers for four drives in slot 5 or 6 are listed below.

Physical Slot Five:

S5,D1 = $50
S5,D2 = $D0
S1,D1 = $10
S1,D2 = $90

Physical Slot Six:

S6,D1 = $60
S6,D2 = $E0
S2,D1 = $20
S2,D2 = $A0

6.3 Disk Driver Routines 113

The special locations in the ROM code are:
$CnFC -
$CnFD

The total number of blocks on the device. Used for
writing the disk’s bit map and directory header after
formatting. (If this location is $0000, it indicates that
the number of blocks must be obtained by making a
STATUS request.)

$CnFE The status byte (bits 0 and 1 must be set for ProDOS to
install the driver vector.)
bit 7 Medium is removable.
bit 6 Device is interruptable.
bit 5-4 Number of volumes on the device (0-3).
bit 3 The device supports formatting.
bit 2 The device can be written to.
bit 1 The device can be read from (must be on).
bit 0 The device’s status can be read

(must be on).
$CnFF The low-byte of entry to the driver routines. ProDOS

will place $Cn + this byte in the global page.

6.3.2 - Call Parameters

parameters are passed to the driver are:

$42 Command: 0 = STATUS request
1 = READ request
2 = WRITE request
3 = FORMAT request

Note: The FORMAT code in the driver need only lay down address
marks if required. The calling routine should write the virgin directory
and bit map.

114 6.3 Disk Driver Routines

$43 Unit
Number:

 7 6 5 4 3 2 1 0
+--+--+--+--+--+--+--+--+
|DR| SLOT | NOT USED |
+--+--+--+--+--+--+--+--+

Note: The UNIT_NUMBER that appears in the device list (DEVLST)
in the system globals will include the high nibble of the status byte
($CnFE) as an ID in its low nibble.
$44-$45 Buffer

Pointer:
Indicates the start of a 512-byte memory
buffer for data transfer.

$46-$47 Block
Number:

Indicates the block on the disk for data
transfer.

The device driver should report errors by setting the carry flag and
loading the error code into the accumulator. The error codes that
should be implemented are:
$27 I/O error
$28 No device connected
$2B Write protected

6.3 Disk Driver Routines 115

116 6.3 Disk Driver Routines

Appendix A The ProDOS BASIC System Program

6.3 Disk Driver Routines 117

This appendix explains aspects of the BASIC system program
(BASIC.SYSTEM) that are beyond the scope of the manual BASIC
Programming With ProDOS. The primary subjects discussed in this
appendix are
 how the BASIC system program uses memory
 how a machine-language program can make calls to the BASIC

system program
 useful locations in the BASIC system program
 how you can add commands to the BASIC system program.

A.1 – Memory Map

The arrangement of ProDOS in memory is decided when the system is
started up, and it depends on your particular system configuration.
Figure A-1 shows the memory organization for an Apple IIe (64K or
128K) or Apple IIc (128K).

118 A.1 – Memory Map

Figure A-1. Memory Map
 Main Memory Auxiliary Memory
 (IIc or 128K IIe only)

 $FFFF+---------+$FFFF+---------+ $FFFF+---------+
 |.Monitor.| |#########| |.........|
 $F800|---------| |#########| |.........|
 |.........| |#########| |.........|
 |.........| |#########| |.........|
 |.........| |#########| |.........|
 |.........| |#########| |.........|
 |.........| |#########| |.........|
 |.........| |#ProDOS##| |.........|
 |Applesoft| |#########|$DFFF+---------+$E000|---------|$DFFF+---------+
 |.........| |#########| |.........| | | |.........|
 |.........| |#########| |.........| | | |.........|
 |.........| |#########|$D400|---------| | | |.........|
 |.........| |#########| |#########| | | |.........|
 |.........| |#########|$D100|---------| | |$D100|---------|
 |.........| |#########| | | | | | |
 $D000|---------| +---------+ +---------+$D000+---------+ +---------+
 |..Other..|
 $C100+---------+
 ^ $BFFF+---------+ $BFFF+---------+
 | |#########| |.........|
 This ROM area| $BF00|---------| $BF00|---------|
 on IIc and IIe |\\\\\\\\\| | |
 only! |\\\\\\\\\| | | +---------+
 |\\\\\\\\\| | | |#########|
 |\\\\\\\\\| | | +---------+
 |\\\\\\\\\| | | Used by ProDOS
 |\BASIC.\\| | |
 |\SYSTEM\\| | |
 |\\\\\\\\\| | | +---------+
 |\\\\\\\\\| | | |\\\\\\\\\|
 |\\\\\\\\\| | | +---------+
 |\\\\\\\\\| | | Used by
 |\\\\\\\\\| | | BASIC.SYSTEM
 $9600|---------| | |
 | | | |
 | | | | +---------+
 | | | | |.........|
 | | | | +---------+
 | | | | Other used or
 | | | | reserved areas
 | | | |
 | | | |
 | | | | +---------+
 | | | | | |
 | | | | +---------+
 | | | | Free Space
 | | | |
 /\/\/\/\/\/ /\/\/\/\/\/

 /\/\/\/\/\/ /\/\/\/\/\/
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 $800|---------| $800|---------|
 |.........| |.........|
 |.........| |.........|
 |.........| |.........|
 |.........| $400|---------|
 |.........| |#########|
 $300|---------| |#########|
 | | |#########|
 $300|---------| |#########|
 |.........| $200|---------|
 |.........| | |
 $100|---------| $100|---------|
 | | |#########|
 | | $80|---------|
 $4F|---------| | |
 |#Shared/#| | |
 |####safe#| | |
 $3A|---------| | |
 | | | |
 +---------+ +---------+
 $00

A.1 – Memory Map 119

A.2 HIMEM

When ProDOS starts up the BASIC system program, it loads all the
necessary programs and data into memory as shown in Figure A-1,
leaves a 1K buffer on the highest available 1K boundary, and then sets
HIMEM right below this buffer. This buffer is used as the file buffer
for commands, such as CATALOG, that only need a temporary buffer.

Table A-1 shows the possible settings of HIMEM, and the maximum
number of bytes available to a program running under such a system
configuration.

Table A-1. HIMEM and Program Workspace

System
Configuration HIMEM

Bytes Available
to Programs

64K
Applesoft in ROM

38400 ($9600) 36352 ($8E00)

These settings are in effect immediately after you boot the BASIC
system program. While a program is running, however, these figures
may change. Each time a file is opened, ProDOS lowers HIMEM by
1K ($400), keeping the 1K temporary command buffer immediately
above it, and places a buffer for the file where the old temporary buffer
was. When a file is closed, ProDOS releases the file’s buffer, and raises
HIMEM by 1K. Figure A-2 illustrates this process.

120 A.2 HIMEM

Figure A-2. The Movement of HIMEM

 _______ _______ _______ _______ _______ _______
 | | | | | | | | | | | |
 | | | | | | | | | | | |
 | | | | | | | | | | | |
 | | | | | | | | | | | |
 |_______| |_______| |_______| |_______| |_______| |_______|
 | | |///////| | | | | | | | |
 | Free | 1K |/CAT's/| 1K | Free | 1K | DOG's | 1K | DOG's | 1K | Free | 1K
 |_______| |_______| |_______| |_______| |_______| |_______|
 | | | | | | | | | | | |
 | HIMEM | | HIMEM | | HIMEM | | Free | 1K | CAT's | 1K | HIMEM |
 | | | | | | |_______| |_______| | |
 | | | | | | | | | | | |
 | | | | | | | HIMEM | | HIMEM | | |
 | | | | | | | | | | | |
 | | | | | | | | | | | |
 | | | | | | | | | | | |
 | | | | | | | | | | | |
 | | | | | | | | | | | |
 |_______| |_______| |_______| |_______| |_______| |_______|

 No Files During CAT After CAT Open "DOG" During CAT Close "DOG"
 Open

A.2.1 Buffer Management

There are many times when you might want machine-language routines
to coexist with ProDOS; for example, when using interrupt-driven
devices, when using input/output devices that have no ROM, or when
using commands that you have added to ProDOS.

BASIC.SYSTEM provides buffer management for file I/O. Those
facilities can also be utilized from machine-language modules operating
in the ProDOS/Applesoft environment to provide protected areas for
code, data, and so on.

BASIC.SYSTEM resides from $9A00 upward, with a general-purpose
buffer from $9600 (HIMEM) to $99FF. When a file is opened,
BASIC.SYSTEM does garbage collection if needed, moves the general-
purpose buffer down to $9200, and installs a file I/O buffer at $9600.
When a second file is opened, the general-purpose buffer is moved
down to $8E00 and a second file I/O buffer is installed at $9200. If an
EXEC file is opened, it is always installed as the highest file I/O buffer
at $9600, and all the other buffers are moved down. Additional regular
file I/O buffers are installed by moving the general-purpose buffer
down and installing it below the lowest file I/O buffer. All file I/O
buffers, including the general-purpose buffer, are 1K (1024 bytes) and
begin on a page boundary.

A.2 HIMEM 121

BASIC.SYSTEM may be called from machine language to allocate any
number of pages (256 bytes) as a buffer, located above HIMEM and
protected from Applesoft BASIC programs. The ProDOS bit map is
not altered, so that files can be loaded into the area without an error
from the ProDOS Kernel. If you subsequently alter the bit map to
protect the area, you must mark the area as free when you are finished –
BASIC.SYSTEM will not do it for you.

To allocate a buffer, simply place the number of desired pages in the
accumulator and use JSR GETBUFR ($BEF5). If the carry flag returns
clear, the allocation was successful and the accumulator will return the
high byte of the buffer address. If the carry flag returns set, an error has
occurred and the accumulator will return the error code.

Note that the X and Y registers are not preserved.

The first buffer is installed as the highest buffer, just below
BASIC.SYSTEM from $99FF downward, regardless of the number and
type of file I/O buffers that are open. If a second allocation is requested,
it is installed immediately below the first. Thus, it is possible to
assemble code to run at known addresses-relocatable modules are not
needed.

To de-allocate the buffers created by the above call and move the file
buffers back up, just use JSR FREEBUFR ($BEF8). Although more
than one buffer may be allocated by this call, they may not be selectively
de-allocated.

All routines that are to be called by BASIC.SYSTEM should begin with
the CLD instruction. This includes I/O routines accessed by PR# and
IN# and clock/calendar routines. This allows ProDOS to spot
accidental calls.

For tips on raising LOMEM to provide more memory for assembly-
language routines, and protecting high-res graphics pages, see the
Applesoft BASIC Programmer’s Reference Manual.

122 A.2 HIMEM

Important!

A.3 The BASIC Global Page

The BASIC system program has a specific area of memory, its global
page, in which it keeps its current status. This page lies in the address
range $BE00 through $BEFF (48640-48895). When BASIC.SYSTEM
is active, its fields are defined as follows:

BE00: CI.ENTRY JMP WARMDOS ;Reenter ProDOS/Applesoft
BE03: DOSCMD JMP SYNTAX ;External entry for command string
BE06: EXTRNCMD JMP XRETURN ;Called for added CMD syntaxing
BE09: ERROUT JMP ERROR ;Handles ONERR or prints error
BE0C: PRINTERR JMP PRTERR ;Prints error message
 ;Number is in accumulator
BE0F: ERRCODE DFB 0 ;ProDOS error code stored here
 ;and $DE for Applesoft

A.3 The BASIC Global Page 123

Default I/O vectors. These may be changed by the user to remap slots
for nondisk devices. When the system is booted, all slots not containing
a ROM are considered not connected and the default vector is left to
point at the appropriate error handling routine.

BE10: OUTVECT0 DW COUT1 ;Monitor video output routine
BE12: OUTVECT1 DW NODEVERR ;Default $C100 when ROM present
BE14: OUTVECT2 DW NODEVERR ;Default $C200 when ROM present
BE16: OUTVECT3 DW NODEVERR ;Default $C300 when ROM present
BE18: OUTVECT4 DW NODEVERR ;Default $C400 when ROM present
BE1A: OUTVECT5 DW NODEVERR ;Default $C500 when ROM present
BE1C: OUTVECT6 DW NODEVERR ;Default $C600 when ROM present
BE1E: OUTVECT7 DW NODEVERR ;Default $C700 when ROM present
BE20: INVECT0 DW CHIN1 ;Monitor keyboard input routine
BE22: INVECT1 DW NODEVERR ;Default $C100 when ROM present
BE24: INVECT2 DW NODEVERR ;Default $C200 when ROM present
BE26: INVECT3 DW NODEVERR ;Default $C300 when ROM present
BE28: INVECT4 DW NODEVERR ;Default $C400 when ROM present
BE2A: INVECT5 DW NODEVERR ;Default $C500 when ROM present
BE2C: INVECT6 DW NODEVERR ;Default $C600 when ROM present
BE2E: INVECT7 DW NODEVERR ;Default $C700 when ROM present
BE30: VECTOUT DW COUT1 ;Current character output routine
BE32: VECTIN DW CHIN1 ;Current character input routine
BE34: VDOSIO DW DOSOUT ;ProDOS char out intercept routine

124 A.3 The BASIC Global Page

BE36: DW DOSINP ;ProDOS char in intercept routine
BE38: VSYSIO DW 0,0 ;Internal redirection of I/O
BE3C: DEFSLT DFB $06 ;Default slot, set by 'S' parm
BE3D: DEFDRV DFB $01 ;Default drive, set by 'D' parm
BE3E: PREGA DFB 0 ;Register save area
BE3F: PREGX DFB 0
BE40: PREGY DFB 0
BE41: DTRACE DFB 0 ;Applesoft trace enable
BE42: STATE DFB 0 ;0=Imm, >0=Def modes
BE43: EXACTV DFB 0 ;EXEC file active if bit 7 on
BE44: IFILACTV DFB 0 ;Input file active if bit 7 on
BE45: OFILACTV DFB 0 ;Output file active if bit 7 on
BE46: PFXACTV DFB 0 ;Prefix input active if bit 7 on
BE47: DIRFLG DFB 0 ;File being accessed is directory
BE48: EDIRFLG DFB 0 ;End of directory encountered
BE49: STRINGS DFB 0 ;Counter for free string space
BE4A: TBUFPTR DFB 0 ;Temporory buffered char count (WRITE)
BE4B: INPTR DFB 0 ;Input char count during kbd input
BE4C: CHRLAST DFB 0 ;Last character output (for error detect)
BE4D: OPENCNT DFB $00 ;Number of open file (except EXEC file)
BE4E: EXFILE DFB $00 ;Flag to indicate EXEC file being closed
BE4F: CATFLAG DFB $00 ;File being input is (translated) dir
BE50: XTRNADDR DW 0 ;Execution address of external cmd (0)
BE52: XLEN DFB 0 ;Length of command string-1, ('HELP'=3)
BE53: XCNUM DFB 0 ;BASIC cmd number (external cmd if =0)

A.3 The BASIC Global Page 125

Command parameter PBITS/FBITS bit definitions:

BE54: PFIX EQU $80 ;Prefix needs fetching, pathname optional
BE54: SLOT EQU $40 ;No parameters to be processed
BE54: RRUN EQU $20 ;Command only valid during program
BE54: FNOPT EQU $10 ;Filename is optional
BE54: CRFLG EQU $08 ;CREATE allowed
BE54: T EQU $04 ;File type
BE54: FN2 EQU $02 ;Filename '2' for RENAME
BE54: FN1 EQU $01 ;Filename expected

And for PBITS+1/FBITS+1 definitions:

BE54: AD EQU $80 ;Address
BE54: B EQU $40 ;Byte
BE54: E EQU $20 ;End address
BE54: L EQU $10 ;Length
BE54: LINE EQU $08 ;'@' line number
BE54: SD EQU $04 ;Slot and drive numbers
BE54: F EQU $02 ;Field
BE54: R EQU $01 ;Record
BE54: V EQU $00 ;Volume number ignored

When the BASIC system program recognizes one of its commands, it
sets up PBITS to indicate which parameters (#S, #D, and so on) may
be used with that command. Then it parses the command string,
marking the found parameters in FBITS, and placing their values in
locations $BE58-$BE6B. The meanings of the bit within PBITS and
FBITS are discussed in the section “Adding Commands to the BASIC
System Program.”

BE54: PBITS DW 0 ;Allowed parameter bits
BE56: FBITS DW 0 ;Found parameter bits

126 A.3 The BASIC Global Page

The following locations hold the values of the parameters for the
BASIC commands. As the BASIC system program parses command
options, it sets the value of the corresponding command parameters.
Previously set parameters do not change.

BE58: PVALS EQU *
BE58: VADDR DW 0 ;Parameter value for 'A' parm
BE5A: VBYTE DFB 0,0,0 ;Parameter value for 'B' parm
BE5D: VENDA DW 0 ;Parameter value for 'E' parm
BE5F: VLNTH DW 0 ;Parameter value for 'L' parm
BE61: VSLOT DFB 0 ;Parameter value for 'S' parm
BE62: VDRIV DFB 0 ;Parameter value for 'D' parm
BE63: VFELD DW 0 ;Parameter value for 'F' parm
BE65: VRECD DW 0 ;Parameter value for 'R' parm
BE67: VVOLM DFB 0 ;Parameter value for 'V' parm
BE68: VLINE DW 0 ;Parameter value for '@' parm
BE6A: PTYPE EQU *-PVALS
BE6A: VTYPE DFB 0 ;Parameter value for 'T' parm
BE6B: PIOSLT EQU *-PVALS
BE6B: VIOSLT DFB 0 ;Parameter value for IN# or PR#
BE6C: VPATH1 DW TXBUF-1 ;Pathname 1 buffer
BE6E: VPATH2 DW TXBUF2 ;Pathname 2 buffer (RENAME)

A.3 The BASIC Global Page 127

GOSYSTEM is used to make all MLI calls since errors must be translated
before returning to the calling routine. On entry the Accumulator
should contain the call number. The address of the parameter table is
looked up and set based on the call number. Only file management calls
can be made using this routine: $C0-$D3. The original implementation
of this BASIC system program contains only these calls.

BE70: GOSYSTEM STA SYSCALL ;Save call number
BE73: STX CALLX ;Preserve X register
BE76: AND #$1F ;Strip high bits of call number
BE78: TAX ; and use as lookup index
BE79: LDA SYSCTBL,X ;Get low address of parm table
BE7C: STA SYSPARM
BE7F: LDX CALLX ;Restore X before calling
BE82: JSR MLIENTRY ;Call ProDOS MLI to execute request
BE85: SYSCALL DFB 0
BE86: SYSPARM DW * ;(High address should be same
 ; as parameter tables)
BE88: BCS BADCALL ;Branch if error encountered
BE8A: RTS

BADCALL converts MLI errors into BASIC system program error
equivalents. Routines should be entered with error number in the
Accumulator. The BADCALL routine should be used whenever a
ProDOS MLI call returns an error and BASIC.SYSTEM will be used to
print the error message. Returns BASIC system program error number
in Accumulator. All unrecognized errors are mapped to I/O error.
X register is restored to its value before the call is made. Carry is set.

BE8B: BADCALL LDA #12 ;19 errors are mapped to
BE8D: MLIERR1 CMP MLIERTBL,X ; other than I/O error
BE90: BEQ MLIERR2
BE92: DEX
BE93: BPL MLIERR1
BE95: LDX #$13 ;If not recognized, make it I/O error
BE97: MLIERR2 LDA BIERRTBL,X ;return error in Accumulator
BE9A: LDX CALLX ;Restore X register
BE9D: SEC ;Set Carry to indicate error
BE9E: XRETURN RTS
BE9F: CISPARE1 DFB $00

128 A.3 The BASIC Global Page

The following are the system-call parameter tables. These tables must
reside within the same page of memory. Only those parameters that are
subject to alterations have been labeled. SYSCTBL below contains the
low-order addresses of each parameter table. SYSCTBL is used by
GOSYSTEM to set up the address of the parameter table for each call.
(See GOSYSTEM.)

BEA0: SCREATE DFB $07
BEA1: DW TXBUF-1 ;Pointer to pathname
BEA3: CRACESS DFB $C3 ;$C1 if directory create
BEA4: CRFILID DFB $00
BEA5: CRAUXID DW $0000
BEA7: CRFKIND DFB 0
BEA8: DW 0 ;No predetermined date/time
BEAA: DW 0
BEAC: SSGPRFX EQU *
BEAC: SDSTROY DFB $01
BEAD: DW TXBUF-1 ;This call requires no modifications
BEAF: SRECNAME DFB $02
BEB0: DW TXBUF-1 ;No modifications needed
BEB2: DW TXBUF2
BEB4: SSGINFO DFB $00 ;P.CNT=7 if SET_FILE_INFO
 ;P.CNT=A if GET_FILE_INFO
BEB5: DW TXBUF-1
BEB7: FIACESS DFB $00 ;Access used by lock/unlock
BEB8: FIFILID DFB $00 ;FILE ID is type specifier
BEB9: FIAUXID DW $0000 ;Aux_id is used for load addr
 ; and record length
BEBB: FIFKIND DFB $00 ;Identifies trees vs. directories
BEBC: FIBLOKS DW $0000 ;Used by CAT commands for root dir
BEBE: FIMDATE DW $0000 ;Modification date & time
BEC0: DW $0000 ;should always be zeroed before call
BEC2: DW $0000 ;Create date and time ignored
BEC4: DW $0000

A.3 The BASIC Global Page 129

BEC6: SONLINE EQU *
BEC6: SSETMRK EQU *
BEC6: SGETMRK EQU *
BEC6: SSETEOF EQU *
BEC6: SGETEOF EQU *
BEC6: SSETBUF EQU *
BEC6: SGETBUF EQU *
BEC6: DFB $02 ;Parameter count
BEC7: SBUFREF EQU *
BEC7: SREFNUM EQU *
BEC7: SUNITNUM EQU *
BEC7: DFB 0 ;Unit or reference number
BEC8: SDATPTR EQU *
BEC8: SMARK EQU *
BEC8: SEOF EQU *
BEC8: SBUFADR EQU *
BEC8: DFB 0,0,0 ;Some calls only use 2 bytes
 ;MRK & EOF use 3 bytes
BECB: SOPEN DFB $03
BECC: DW TXBUF-1
BECE: OSYSBUF DW $0000
BED0: OREFNUM DFB 0
BED1: SNEWLIN DFB $03
BED2: NEWLREF DFB $00 ;Reference number
BED3: NLINEBL DFB $7F ;Newline character is always CR
BED4: DFB $0D ; both $0D and $8D are recognized
BED5: SREAD EQU *
BED5: SWRITE EQU *
BED5: DFB $04
BED6: RWREFNUM DFB $00
BED7: RWDATA DW $0000 ;Pointer to data to be read/written
BED9: RWCOUNT DW $0000 ;Number of bytes to be read/written
BEDB: RWTRANS DW $0000 ;returned # of bytes read/written

130 A.3 The BASIC Global Page

BEDD: SCLOSE EQU *
BEDD: SFLUSH EQU *
BEDD: DFB $01
BEDE: CFREFNUM DFB $00
BEDF: CCCSPARE DFB $00
BEE0: ASC 'COPYRIGHT APPLE, 1983'
BEF5: GETBUFR JMP GETPAGES
BEF8: FREBUFR JMP FREPAGES
BEF8: RSHIMEM DFB 0, 0, 0, 0, 0

A.3.1 BASIC.SYSTEM Commands From Assembly
Language

There are times when a routine wants to perform functions that are
already implemented by the BASIC system program – deleting and
renaming files, displaying a directory, and so on. The DOSCMD vector
serves just this function.

First a routine should place the desired BASIC command in the input
buffer ($200). It should be an ASCII string with the high bits set,
followed by a carriage return ($8D), exactly as the Monitor GETLN
routine would leave a string. Next the routine should do a JSR to the
DOSCMD entry point ($BE03).

BASIC.SYSTEM will parse the command, set up all the parameters, (as
explained in Section A.3.3), and then execute the command. If there is
an error, it will return the error code in the accumulator with the carry
set. If it is 0, there was no error. Otherwise it contains a BASIC system
program error number.

Note: The JSR DOSCMD must be executed in deferred mode (from a
BASIC program), rather than in immediate mode. This applies also to
the Monitor program: from the Monitor, you can’t do a $xxxxG to
execute the code that contains the JSR DOSCMD. This is because
BASIC.SYSTEM checks certain state flags, which are set correctly only
while in deferred mode.

There are certain commands that do not work as expected when
initiated via DOSCMD: RUN -(dash command), LOAD, CHAIN,
READ, WRITE, APPEND, and EXEC. Use them this way at your
own risk.

A.3 The BASIC Global Page 131

The commands that do work correctly are: CATALOG, CAT,
PREFIX, CREATE, RENAME, DELETE, LOCK, UNLOCK, SAVE,
STORE, RESTORE, PR#, IN#, FRE, OPEN, CLOSE, FLUSH,
POSITION, BRUN, BLOAD, and BSAVE.

The following are:
1. An example of a BASIC program that uses the BLOAD command

to load an assembly-language routine that exercises the DOSCMD
routine.

2. A listing of that assembly-language routine.

You should review them before writing your own routine.
 10 REM YOU MUST CALL THE ROUTINE FROM INSIDE A BASIC PROGRAM
 11 REM
 12 REM
 20 PRINT CHR$(4)"BLOAD/P/PROGRAMS/CMD.0"
 30 CALL 4096
 40 PRINT "BACK TO THE WONDERFUL WORLD OF BASIC!"
 50 END

132 A.3 The BASIC Global Page

1000: 1000 1 ORG $1000
1000: FD6F 2 GETLN1 EQU $FD6F ; MONITORS INPUT ROUTINE
1000: BE03 3 DOSCMD EQU $BE03 ; BASIC.SYSTEM GLBL PG DOS CMD ENTRY
1000: FDED 4 COUT EQU $FDED ; MONITORS CHAR OUT ROUTINE
1000: BE0C 5 PRERR EQU $BE0C ; PRINT THE ERROR
1000: 6 *
1000: 7 *
1000: 8 *
1000:A2 00 9 START LDX #0 ; DISPLAY PROMPT...
1002:BD 1F 10 10 L1 LDA PROMPT,X ;
1005:F0 06 100D 11 BEQ CONT ; BRANCH IF END OF STRING
1007:20 ED FD 12 JSR COUT ;
100A:E8 13 INX ;
100B:D0 F5 1002 14 BNE L1 ; LOOP UNTIL NULL TERMINATOR HIT
100D: 15 *
100D:20 6F FD 16 CONT JSR GETLN1 ; ACCEPT COMMAND FROM KB
1010:20 03 BE 17 JSR DOSCMD ; AND EXECUTE COMMAND
1013:2C 10 C0 18 BIT $C010 ; CLEAR STROBE
1016:B0 02 101A 19 BCS ERROR ; BRANCH IF ERROR DETECTED
1018:90 E6 1000 20 BCC START ; OTHERWISE RESTART
101A: 21 *
101A: 22 *
101A: 23 * NOTE: AFTER HANDLING YOUR ERROR YOU MUST CLEAR THE CARRY
101A: 24 * BEFORE RETURNING TO BASIC OR BASIC WILL DO
101A: 25 * STRANGE TO YOU.
101A: 26 *
101A:20 0C BE 27 ERROR JSR PRERR ; PRINT 'ERR'
101D:18 28 CLC ;
101E:60 29 RTS ; RETURN TO BASIC
101F: 30 *
101F: 31 MSB ON
101F: 32 *
101F:8D 33 PROMPT DB $8D ; OUTPUT A RETURN FIRST
1020:C5 CE D4 C5 34 ASC 'ENTER BASIC.SYSTEM COMMAND > '
103F:00 35 DB 0

A.3 The BASIC Global Page 133

DOSCMD is merely a way to perform some BASIC.SYSTEM commands
from assembly language, and is not a substitute for performing the
commands in BASIC. Keep in mind the consequences of the command
you are executing. For example, when doing a BRUN or BLOAD,
make sure the code is loaded at proper addresses.

After you call DOSCMD, the carry bit will be set if an error has occurred.
The accumulator will have the error number.

There are three ways to handle DOSCMD errors:
 Do a JSR ERROUT ($BE09). This returns control to your BASIC
ONERR routine, where you can handle the error.

 Do a JSR PRINTERR ($BE0C). This prints Out the error and
returns control to the point just after the JSR.

 Handle the error yourself. Be sure to clear the carry (CLC) before
returning control to BASIC.SYSTEM. If you don’t, an error will be
assumed, and the results are unpredictable.

A.3.2 Adding Commands to the BASIC System Program

The EXTRNCMD location in the global page allows you to add your own
commands to the ProDOS command set. Once you attach a command,
it is treated as if it were one of the BASIC.SYSTEM commands, except
that the original commands have preference. To execute your command
in immediate mode, just enter it. To execute it in deferred mode,
preface it with PRINT CHR$(4).

Whenever BASIC.SYSTEM receives a command, it first checks its
command list for a match. If the command is not recognized,
BASIC.SYSTEM sends the command to the external command
handlers, if any are connected. If no external command handler claims
the command, BASIC.SYSTEM passes control to Applesoft, which
returns an error if the command is not recognized.

If you have frequent need for special commands, you can write your
own command handler and attach it to BASIC.SYSTEM through the
EXTRNCMD jump vector. First, save the current EXTRNCMD vector
(to JMP to if the command is not yours), and install the address of your
routine in EXTRNCMD+1 and +2 (low byte first). Your routine must
do three things:

134 A.3 The BASIC Global Page

 It must check for the presence of your command(s) by inpecting the
GETLN input buffer. If the command is not yours, you must set the
carry (SEC) and JMP to the initial EXTRNCMD vector you saved
to continue the search.

 If the command is yours, you must zero XCNUM ($BE53) to
indicate an external command, and set XLEN ($BE52) equal to the
length of your command string minus one.

If there are no associated parameters (such as slot, drive, A$, and so
on) to parse, or if you’re going to parse them yourself, you must set
all 16 parameter bits in PBITS ($BE54,$BE55) to zero. And, if
you’re going to handle everything yourself before returning control
to BASIC.SYSTEM, you must point XTRNADDR ($BE50,$BE51)
at an RTS instruction. XRETURN ($BE9E) is a good location.
Now, just fall through to your execution routines.

If there are parameters to parse, it is easiest to let BASIC.SYSTEM
parse them for you (unless you want to use some undefined
parameters). By setting up the bits in PBITS ($BE54,$BE55), and
setting XTRNADDR ($BE50,$BE51) equal to the location where
execution of your command begins, you can return control to
BASIC.SYSTEM, with an RTS, and let it parse and verify the
parameters and return them to you in the global page.

 It must execute the instructions expected of the command, and it
should RTS with the carry cleared.

Note: Having BASIC.SYSTEM parse your external command
parameters was initially intended only for its own use. As it happens,
not all parameters can be parsed separately. The low byte of PBITS
($BE54) must have a nonzero value to have BASIC.SYSTEM parse
parameters. This means that regardless of the parameters you need
parsed, you must also elect to parse some parameter specified by the
low byte of PBITS. For example, set PBITS to $10, filename optional
(this parameter need not be known by the user).

The following are two sample routines, BEEP and BEEPSLOT. They
can reside together as external commands. BEEP handles everything
itself, while BEEPSLOT lets you pass a slot and drive parameter
(,S#,D#) where the drive is ignored.

A.3 The BASIC Global Page 135

A.3.2.1 BEEP Example

**
* *
* BRUN BEEP.0 TO INSTALL THE ROUTINE'S ADDRESS IN EXTRNCMD. *
* THEN TYPE BEEP AS AN IMMEDIATE COMMAND OR USE PRINT *
* CHR$(4);"BEEP" IN A PROGRAM. *
* *
**
*
*
 ORG $300
INBUF EQU $200 ;GETLN input buffer.
WAIT EQU $FCA8 ;Monitor wait routine.
BELL EQU $FF3A ;Monitor bell routine.
EXTRNCMD EQU $BE06 ;External cmd JMP vector.
XTRNADDR EQU $BE50 ;Ext cmd implementation addr.
XLEN EQU $BE52 ;length of command string-1.
XCNUM EQU $BE53 ;CI cmd no. (ext cmd - 0).
PBITS EQU $BE54 ;Command parameter bits.
XRETURN EQU $BE9E ;Known RTS instruction.
 MSB ON ;Set high bit on ASCII
*
* FIRST SAVE THE EXTERNAL COMMAND ADDRESS SO YOU WON'T
* DISCONNECT ANY PREVIOUSLY CONNECTED COMMAND.
*
 LDA EXTRNCMD+1
 STA NXTCMD
 LDA EXTRNCMD+2
 STA NXTCMD+1
*
 LDA #>BEEP ;Install the address of our
 STA EXTRNCMD+1 ; command handler in the
 LDA #<BEEP ; external command JMP
 STA EXTRNCMD+2 ; vector.
 RTS
*
BEEP LDX #0 ;Check for our command.
NXTCHR LDA INBUF,X ;Get first character.
 CMP CMD,X ;Does it match?
 BNE NOTOURS ;No, back to CI.
 INX ;Next character
 CPX #CMDLEN ;All characters yet?
 BNE NXTCHR ;No, read next one.
*
 LDA #CMDLEN-1 ;Our cmd! Put cmd length-1
 STA XLEN ; in CI global XLEN.
 LDA #>XRETURN ;Point XTRNADDR to a known
 STA XTRNADDR ; RTS since we'll handle
 LDA #<XRETURN ; at the time we intercept

136 A.3 The BASIC Global Page

 STA XTRNADDR+1 ; our command.
 LDA #0 ;Mark the cmd number as
 STA XCNUM ; zero (external).
 STA PBITS ;And indicate no parameters
 STA PBITS+1 ; to be parsed.
*
 LDX #5 ;Number of desired beeps.
NXTBEEP JSR BELL ;Else, beep once.
 LDA #$80 ;Set up the delay
 JSR WAIT ; and wait.
 DEX ;Decrement index and
 BNE NXTBEEP ; repeat until X = 0.
*
 CLC ;All done successfully.
 RTS ; RETURN WITH THE CARRY CLEAR.
*
NOTOURS SEC ; ALWAYS SET CARRY IF NOT YOUR
 JMP (NXTCMD) ; CMD AND LET NEXT COMMAND TRY
* ; TO CLAIM IT.
CMD ASC "BEEP" ;Our command
CMDLEN EQU *-CMD ;Our command length
*
NXTCMD DW 0 ; STORE THE NEXT EXT CMD'S
 ; ADDRESS HERE.

A.3 The BASIC Global Page 137

A.3.2.2 BEEPSLOT Example

* *
* BRUN BEEPSLOT.0 TO INSTALL THE ROUTINE'S ADDRESS IN *
* EXTRNCMD. THEN ENTER BEEPSLOT,S(n),D(n). ONLY A LEGAL *
* SLOT AND DRIVE NUMBERS ARE ACCEPTABLE. IF NO SLOT NUMBER *
* IT WILL USE THE DEFAULT SLOT NUMBER. ANY DRIVE NUMBER IS *
* SIMPLY IGNORED. THE COMMAND MAY ALSO BE USED IN A *
* PROGRAM PRINT CHR$(4) STATEMENT. *
* *

*
*
 ORG $2000
INBUF EQU $200 ;GETLN input buffer.
WAIT EQU $FCA8 ;Monitor wait routine.
BELL EQU $FF3A ;Monitor bell routine
EXTRNCMD EQU $BE06 ;External cmd JMP vector.
XTRNADDR EQU $BE50 ;Ext cmd implementation addr.
XLEN EQU $BE52 ;Length of command string-1.
XCNUM EQU $BE53 ;CI cmd no. (ext cmd = 0).
PBITS EQU $BE54 ;Command parameter bits.
VSLOT EQU $BE61 ;Verified slot parameter.
 MSB ON ;Set high bit on ASCII.
*
* REMEMBER TO SAVE THE PREVIOUS COMMAND ADDRESS.
*
 LDA EXTRNCMD+1
 STA NXTCMD
 LDA EXTRNCMD+2
 STA NXTCMD+1
*
 LDA #>BEEPSLOT ;Install the address of our
 STA EXTRNCMD+1 ; command handler in the
 LDA #<BEEPSLOT ; external command JMP
 STA EXTRNCMD+2 ; vector.
 RTS
*
BEEPSLOT LDX #0 ;Check for our command.
NXTCHR LDA INBUF,X ;Get first character.
 CMP CMD,X ;Does it match?
 BNE NOTOURS ;NO, SO CONTINUE WITH NEXT CMD.
 INX ;Next character
 CPX #CMDLEN ;All characters yet?
 BNE NXTCHR ;No, read next one.
*
 LDA #CMDLEN-1 ;Our cmd! Put cmd length-1
 STA XLEN ; in CI global XLEN.
 LDA #>EXECUTE ;Point XTRNADDR to our

138 A.3 The BASIC Global Page

 STA XTRNADDR ; command execution
 LDA #<EXECUTE ; routine
 STA XTRNADDR+1
 LDA #0 ;Mark the cmd number as
 STA XCNUM ; zero (external).
*
 LDA #%00010000 ;Set at least one bit
 STA PBITS ; in PBITS low byte!
*
 LDA #%00000100 ;And mark PBITS high byte
 STA PBITS+1 ; that slot & drive are legal.
 CLC ;Everything is OK.
 RTS ;Return to BASIC.SYSTEM
*
EXECUTE LDA VSLOT ;Get slot parameter.
 TAX ;Transfer to index reg.
NXTBEEP JSR BELL ;Else, beep once.
 LDA #$80 ;Set up the delay
 JSR WAIT ; and wait.
 DEX ;decrement index and
 BNE NXTBEEP ; repeat until x = 0.
 CLC ;All done successfully.
 RTS ;Back to BASIC.SYSTEM.
*
* IT'S NOT OUR COMMAND SO MAKE SURE YOU LET BASIC
* CHECK WHETER OR NOT IT'S THE NEXT COMMAND.
*
NOTOURS SEC ;SET CARRY AND LET
 JMP (NXTCMD) ; NEXT EXT CMD GO FOR IT.
*
CMD ASC "BEEPSLOT" ;Our command
CMDLEN EQU *-CMD ;Our command length
NXTCMD DW 0 ; STORE THE NEXT COMMAND'S
 ; ADDRESS HERE.

A.3 The BASIC Global Page 139

A.3.3 Command String Parsing

First, the external command must tell the BASIC system program
which parameters are allowed for the command. It does this by
assigning the appropriate values to the two PBITS bytes, which have
the following meanings:

Address: $BE54 $BE55
 _______________________ _______________________
 | | | | | | | | | | | | | | | | | |
PBITS: | | | | | | | | | | | | | | | | | |
 |__|__|__|__|__|__|__|__| |__|__|__|__|__|__|__|__|
Bit #: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit # Meaning
15 Prefix needs fetching. Pathname is optional
14 No parameters to be processed
13 Command only valid during program execution
12 Filename is optional
11 Create allowed if file doesn't exist
10 File type (Ttype) optional
9 A second filename expected
8 A first filename expected
7 Address (A#) allowed
6 Byte (B#) allowed
5 End address (E#) allowed
4 Length (L#) allowed
3 Line number (@#) allowed
2 Slot and Drive (S# and D#) allowed
1 Field (F#) allowed
0 Record (R#) allowed
Having done this, the routine should place the length of the recognized
command word minus one into XLEN ($BE52). It should also place a
$00 into XCNUM ($BE53), indicating that an external command was
found, and it should place the address within the routine at which
further processing of the parsed command will take place into
XTRNADDR ($BE50). Then it should RTS back to the BASIC system
program.

140 A.3 The BASIC Global Page

The BASIC system program will see that the command was recognized,
and it will parse the string according to PBITS. For each parameter
that was used in the command, it will set the corresponding bit in
FBITS ($BE56) and update the value of that parameter in the global
page. Finally, it will do a JSR to the location indicated in XTRNADDR
($BE50).

The routine can now process the command. All parameters are stored in
the global page except the filenames which are stored in the locations
indicated by VPATH1 and VPATH2.

The HELP command is such a routine. When you type -HELP, the
help command is loaded into memory at $2000, it moves HIMEM
down and places itself above HIMEM, then it marks itself in the bit
map. Finally it places the start address of the routine in the EXTRNCMD
vector. The BASIC system program now recognizes a series of HELP
commands as well as the NOHELP command.

The NOHELP command removes the help routine’s address from the
EXTRNCMD vector, unmarks the routine from the bit map, and moves
HIMEM back up.

A.3 The BASIC Global Page 141

A.4 Zero Page

Figure A-3 is a memory map that shows the locations used by the
Monitor, Applesoft, the Device Drivers, and the ProDOS MLI. The
owner of each location is shown by a letter: M, A, D, or P.

Figure A-3. Zero Page Memory Map

Use by the Monitor (M), Applesoft (A), Disk Drivers (D), and
ProDOS MLI (P) is shown.
Decimal---0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
, Hex---$0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $A $B $C $D $E $F
0 $00 DA DA A A A A A A A A A A
16 $10 A A A A A A A A A A
32 $20 M M M M M M M M M M M M M M M M
48 $30 M M M M M M M M M M PMD PMD PMD PMD PMD DM
64 $40 PMD PMD PMD PMD PMD PMD PMD PM PM PM P P P P PM M
80 $50 MA MA MA MA MA MA A A A A A A A A A A
96 $60 A A A A A A A A A A A A A A A A
112 $70 A A A A A A A A A A A A A A A A
128 $80 A A A A A A A A A A A A A A A A
144 $90 A A A A A A A A A A A A A A A A
160 $A0 A A A A A A A A A A A A A A A A
176 $B0 A A A A A A A A A A A A A A A A
192 $C0 A A A A A A A A A A A A A A
208 $D0 A A A A A A A A A A A A A A
224 $E0 A A A A A A A A A A
240 $F0 A A A A A A A A A A

If you need many zero-page locations for your routines, choose a region
of already-used locations, save them at the beginning of the routine,
and then restore them at the end.

142 A.4 Zero Page

A.5 The Extended 80-Column Text Card

The Apple IIe computer can optionally contain an Extended 80-
Column Text Card, giving the computer access to an additional 64K of
RAM.

(The Apple IIc has the equivalent of such a card built in.) ProDOS uses
this extra RAM as a volume, just like a small disk volume. This volume
is initially given the name /RAM, but it can be renamed.

The 64K of RAM on the card is logically partitioned into 127 512-byte
blocks of information. The contents of these blocks are:
Blocks 00-01 Unavailable
Block 02 Volume directory
Block 03 Volume bit map
Blocks 04-07 Unavailable
Blocks 08-126 Directories and files
A detailed description of the way these blocks are used on a disk volume
is in Appendix B. The major differences between a disk volume
and /RAM are:
 On a disk volume, blocks 0 and 1 are used for the loader program.

Since /RAM is not a bootable volume, these blocks are not used.
 On a disk volume, there are usually four blocks reserved for the

volume directory, with a maximum capacity of 51 files in the volume
directory. On /RAM, there is only one block of volume directory: it
can hold 12 files (any or all of them can be subdirectory files).

 Normal disk devices are associated with a given slot and
drive. /RAM is placed in the device list as slot 3, drive 2.

This arrangement gives you a total of 119 blocks of file storage.

A.5 The Extended 80-Column Text Card 143

144 A.5 The Extended 80-Column Text Card

Appendix B File Organization

A.5 The Extended 80-Column Text Card 145

This appendix contains a detailed description of the way that ProDOS
stores files on disks. For most system program applications, the MLI
insulates you from this level of detail. However, you must use this
information if you want
 to list the files in a directory
 to copy a sparse file without increasing the file’s size
 to compare two sparse files.

This appendix first explains the organization of information on
volumes. Next, it shows the storage of volume directories, directories,
and the various stages of standard files. Finally it presents a set of
diagrams that summarize all the material in this appendix. You can refer
to these diagrams as you read the appendix. They will become your
most valuable tool for working with file organization.

B.1 Format of Information on a Volume

When a volume is formatted for use with ProDOS, its surface is
partitioned into an array of tracks and sectors. In accessing a volume,
ProDOS requests not a track and sector, but a logical block from the
device corresponding to that volume. That device’s driver translates the
requested block number into the proper track and sector number; the
physical location of information on a volume is unimportant to
ProDOS and to a system program that uses ProDOS. This appendix
discusses the organization of information on a volume in terms of
logical blocks, numbered starting with zero, not tracks and sectors.

When the volume is formatted, information needed by ProDOS is
placed in specific logical blocks. A loader program is placed in blocks 0
and 1 of the volume. This program enables ProDOS to be booted from
the volume. Block 2 of the volume is the key block (the first block) of
the volume directory file; it contains descriptions of (and pointers to)
all the files in the volume directory. The volume directory occupies a
number of consecutive blocks, typically four, and is immediately
followed by the volume bit map, which records whether each block on
the volume is used or unused. The volume bit map occupies consecutive
blocks, one for every 4,096 blocks, or fraction thereof, on the volume.
The rest of the blocks on the disk contain subdirectory file information,
standard file information, or are empty. The first blocks of a volume
look something like Figure B-1.

146 B.1 Format of Information on a Volume

Figure B-1. Blocks on a Volume

 +----------------------------------- ---------------------------------- -------------------
 | | | Block 2 | | Block n | Block n + 1 | | Block p |
 | Block 0 | Block 1 | Volume | ... | Volume | Volume | ... | Volume | Other
 | Loader | Loader | Directory | | Directory | Bit Map | | Bit Map | Files
 | | | (Key Block) | | (Last Block) | (First Block) | | (Last Block) |
 +----------------------------------- ---------------------------------- -------------------

The precise format of the volume directory, volume bit map,
subdirectory files and standard files are explained in the following
sections.

B.2 Format of Directory Files

The format of the information contained in volume directory and
subdirectory files is quite similar. Each consists of a key block followed
by zero or more blocks of additional directory information. The fields
in a directory’s key block are: a pointer to the next block in the
drectory; a header entry that describes the directory; a number of file
entries describing, and pointing to, the files in that directory; and zero
or more unused bytes. The fields in subsequent (non-key) blocks in a
directory are: a number of entries describing, and pointing to, the files
in that directory; and zero or more unused bytes. The format of a
directory file is represented in Figure B-2.

B.2 Format of Directory Files 147

Figure B-2. Directory File Format

 Key Block Any Block Last Block
 / +-------+ +-------+ +-------+
 | | 0 |<---|Pointer|<--...<--|Pointer| Blocks of a directory:
 | |-------| |-------| |-------| Not necessarily contiguous,
 | |Pointer|--->|Pointer|-->...-->| 0 | linked by pointers.
 | |-------| |-------| |-------|
 | |Header | | Entry | ... | Entry |
 | |-------| |-------| |-------| Header describes the
 | | Entry | | Entry | ... | Entry | directory file and its
 | |-------| |-------| |-------| contents.
 One / / More / / More / / More /
 Block \ /Entries/ /Entries/ /Entries/
 | |-------| |-------| |-------| Entry describes
 | | Entry | | Entry | ... | Entry | and points to a file
 | |-------| |-------| |-------| (subdirectory or
 | | Entry | | Entry | ... | Entry | standard) in that
 | |-------| |-------| |-------| directory.
 | |Unused | |Unused | ... |Unused |
 \ +-------+ +-------+ +-------+

The header entry is the same length as all other entries. The only
organizational difference between a volume directory file and a
subdirectory file is in the header.

B.2.1 Pointer Fields

The first four bytes of each block used by a directory file contain
pointers to the preceding and succeeding blocks in the directory file,
respectively. Each pointer is a two-byte logical block number, low byte
first, high byte second. The key block of a directory file has no
preceding block: its first pointer is zero. Likewise, the last block in a
directory file has no successor: its second pointer is zero.

By the Way: All block pointers used by ProDOS have the same format:
low byte first, high byte second.

B.2.2 Volume Directory Headers

Block 2 of a volume is the key block of that volume’s directory file.
The volume directory header is at byte position $0004 of the key block,
immediately following the block’s two pointers. Thirteen fields are
currently defined to be in a volume directory header: they contain all
the vital information about that volume. Figure B-3 illustrates the
structure of a volume directory header. Following Figure B-3 is a
description of each of its fields.

148 B.2 Format of Directory Files

See the sections “Volume Directory
Headers” and “Subdirectory Headers.”

Figure B-3. The Volume Directory Header

 Field Byte of
 Length Block
 +----------------------------+
 1 byte | storage_type | name_length | $04
 |----------------------------|
 | | $05
 / /
 15 bytes / file_name /
 | | $13
 |----------------------------|
 | | $14
 / /
 8 bytes / reserved /
 | | $1B
 |----------------------------|
 | | $1C
 | creation | $1D
 4 bytes | date & time | $1D
 | | $1F
 |----------------------------|
 1 byte | version | $20
 |----------------------------|
 1 byte | min_version | $21
 |----------------------------|
 1 byte | access | $22
 |----------------------------|
 1 byte | entry_length | $23
 |----------------------------|
 1 byte | entries_per_block | $24
 |----------------------------|
 | | $25
 2 bytes | file_count | $26
 |----------------------------|
 | | $27
 2 bytes | bit_map_pointer | $28
 |----------------------------|
 | | $29
 2 bytes | total_blocks | $2A
 +----------------------------+

B.2 Format of Directory Files 149

storage_type and name_length (1 byte): Two four-bit fields are packed
into this byte. A value of $F in the high four bits (the storage_type)
identifies the current block as the key block of a volume directory file.
The low four bits contain the length of the volume’s name (see the
file_name field, below). The name_length can be changed by a
RENAME call.

file_name (15 bytes): The first n bytes of this field, where n is specified
by name_length, contain the volume’s name. This name must conform
to the filename (volume name) syntax explained in Chapter 2. The
name does not begin with the slash that usually precedes volume names.
This field can be changed by the RENAME call.

reserved (8 bytes): Reserved for future expansion of the file system.

creation (4 bytes): The date and time at which this volume was
initialized. The format of these bytes is described in Section B.4.2.2.

version (1 byte): The version number of ProDOS under which this
volume was initialized. This byte allows newer versions of ProDOS to
determine the format of the volume, and adjust their directory
interpretation to conform to older volume formats. In ProDOS 1.0,
version = 0.

min_version: Reserved for future use. In ProDOS 1.0, it is 0.

access (1 byte): Determines whether this volume directory can be read
written, destroyed, and renamed. The format of this field is described in
Section B.4.2.3.

entry_length (1 byte): The length in bytes of each entry in this
directory. The volume directory header itself is of this length.
entry_length = $27.

entries_per_block (1 byte): The number of entries that are stored in
each block of the directory file. entries_per_block = $0D.

file_count (2 bytes): The number of active file entries in this directory
file. An active file is one whose storage_type is not 0. See Section B.2.4
for a description of file entries.

bit_map_pointer (2 bytes): The block address of the first block of the
volume’s bit map. The bit map occupies consecutive blocks, one for
every 4,096 blocks (or fraction thereof) on the volume. You can
calculate the number of blocks in the bit map using the total_blocks
field, described below.

150 B.2 Format of Directory Files

The bit map has one bit for each block on the volume: a value of 1
means the block is free; 0 means it is in use. If the number of blocks
used by all files on the volume is not the same as the number recorded
in the bit map, the directory structure of the volume has been damaged.

total_blocks (2 bytes): The total number of blocks on the volume.

B.2.3 Subdirectory Headers

The key block of every subdirectory file is pointed to by an entry in a
parent directory; for example, by an entry in a volume directory
(explained in Section B.2). A subdirectory’s header begins at byte
position $0004 of the key block of that subdirectory file, immediately
following the two pointers.

Its internal structure is quite similar to that of a volume directory
header. Fourteen fields are currently defined to be in a subdirectory.
Figure B-4 illustrates the structure of a subdirectory header. A
description of all the fields in a subdirectory header follows Figure B-4.

B.2 Format of Directory Files 151

Figure B-4. The Subdirectory Header

 Field Byte of
 Length Block
 +----------------------------+
 1 byte | storage_type | name_length | $04
 |----------------------------|
 | | $05
 / /
 15 bytes / file_name /
 | | $13
 |----------------------------|
 | | $14
 / /
 8 bytes / reserved /
 | | $1B
 |----------------------------|
 | | $1C
 | creation | $1D
 4 bytes | date & time | $1D
 | | $1F
 |----------------------------|
 1 byte | version | $20
 |----------------------------|
 1 byte | min_version | $21
 |----------------------------|
 1 byte | access | $22
 |----------------------------|
 1 byte | entry_length | $23
 |----------------------------|
 1 byte | entries_per_block | $24
 |----------------------------|
 | | $25
 2 bytes | file_count | $26
 |----------------------------|
 | | $27
 2 bytes | parent_pointer | $28
 |----------------------------|
 1 byte | parent_entry_number | $29
 |----------------------------|
 1 byte | parent_entry_length | $2A
 +----------------------------+

152 B.2 Format of Directory Files

storage_type and name_length (1 byte): Two four-bit fields are packed
into this byte. A value of $E in the high four bits (the storage_type)
identifies the current block as the key block of a subdirectory file. The
low four bits contain the length of the subdirectory’s name (see the
file_name field, below). The name_length can be changed by a
RENAME call.

file_name (15 bytes): The first name_length bytes of this field contain
the subdirectory’s name. This name must conform to the filename
syntax explained in Chapter 2. This field can be changed by the
RENAME call.

reserved (8 bytes): Reserved for future expansion of the file system.

creation (4 bytes): The date and time at which this subdirectory was
created. The format of these bytes is described in Section B.4.2.2.

version (1 byte): The version number of ProDOS under which this
subdirectory was created. This byte allows newer versions of ProDOS
to determine the format of the subdirectory, and to adjust their
directory interpretations accordingly. ProDOS 1.0: version = 0.

min_version (1 byte): The minimum version number of ProDOS that
can access the information in this subdirectory. This byte allows older
versions of ProDOS to determine whether they can access newer
subdirectories. min_version = 0.

access (1 byte): Determines whether this subdirectory can be read,
written, destroyed, and renamed, and whether the file needs to be
backed up. The format of this field is described in Section B.4.2.3. A
subdirectory’s access byte can be changed by the SET_FILE_INFO call.

entry_length (1 byte): The length in bytes of each entry in this
subdirectory. The subdirectory header itself is of this length.
entry_length = $27.

entries_per_block (1 byte): The number of entries that are stored in
each block of the directory file. entries_per_block = $0D.

file_count (2 bytes): The number of active file entries in this
subdirectory file. An active file is one whose storage_type is not 0. See
Section “File Entries” for more information about file entries.

parent_pointer (2 bytes): The block address of the directory file block
that contains the entry for this subdirectory. This two-byte pointer is
stored low byte first, high byte second.

B.2 Format of Directory Files 153

parent_entry_number (1 byte): The entry number for this subdirectory
within the block indicated by parent_pointer.

parent_entry_length (1 byte): The entry_length for the directory that
owns this subdirectory file. Note that with these last three fields you can
calculate the precise position on a volume of this subdirectory’s file
entry. parent_entry_length = $27.

B.2.4 File Entries

Immediately following the pointers in any block of a directory file are a
number of entries. The first entry in the key block of a directory file is a
header; all other entries are file entries. Each entry has the length
specified by that directory’s entry_length field, and each file entry
contains information that describes, and points to, a single subdirectory
file or standard file.

An entry in a directory file may be active or inactive; that is, it may or
may not describe a file currently in the directory. If it is inactive, the
first byte of the entry (storage_type and name_length) has the value
zero.

The maximum number of entries, including the header, in a block of a
directory is recorded in the entries_per_block field of that directory’s
header. The total number of active file entries, not including the header,
is recorded in the file_count field of that directory’s header.

Figure B-5 describes the format of a file entry.

154 B.2 Format of Directory Files

Figure B-5. The File Entry

 Field Entry
 Length Offset
 +----------------------------+
 1 byte | storage_type | name_length | $00
 |----------------------------|
 | | $01
 / /
 15 bytes / file_name /
 | | $0F
 |----------------------------|
 1 byte | file_type | $10
 |----------------------------|
 | | $11
 2 bytes | key_pointer | $12
 |----------------------------|
 | | $13
 2 bytes | blocks_used | $14
 |----------------------------|
 | | $15
 3 bytes | EOF |
 | | $17
 |----------------------------|
 | | $18
 | creation |
 4 bytes | date & time |
 | | $1B
 |----------------------------|
 1 byte | version | $1C
 |----------------------------|
 1 byte | min_version | $1D
 |----------------------------|
 1 byte | access | $1E
 |----------------------------|
 | | $1F
 2 bytes | aux_type | $20
 |----------------------------|
 | | $21
 | |
 4 bytes | last mod |
 | | $24
 |----------------------------|
 | | $25
 2 bytes | header_pointer | $26
 +----------------------------+

B.2 Format of Directory Files 155

storage_type and name_length (1 byte): Two four-bit fields are packed
into this byte. The value in the high-order four bits (the storage_type)
specifies the type of file pointed to by this file entry:
$1 = Seeding file
$2 = Sapling file
$3 = Tree file
$4 = Pascal area
$D = Subdirectory
Seedling, sapling, and tree files, the three forms of a standard file, are
described in Section B.3. The low four bits contain the length of the
file’s name (see the file_name field, below). The name_length can be
changed by a RENAME call.

file_name (15 bytes): The first name_length bytes of this field contain
the file’s name. This name must conform to the filename syntax
explained in Chapter 2. This field can be changed by the RENAME
call.

file_type (1 byte): A descriptor of the internal structure of the file.
Section B.4.2.4 contains a list of the currently defined values of this
byte.

key_pointer (2 bytes): The block address of the master index block if a
tree file, of the index block if a sapling file, and of the block if a seedling
file.

blocks_used (2 bytes): The total number of blocks actually used by the
file. For a subdirectory file, this includes the blocks containing
subdirectory information, but not the blocks in the files pointed to. For
a standard file, this includes both informational blocks (index blocks)
and data blocks. Refer to Section B.3 for more information on standard
files.

EOF (3 bytes): A three-byte integer, lowest bytes first, that represents
the total number of bytes readable from the file. Note that in the case of
sparse files, described in Section B.3.6, EOF may be greater than the
number of bytes actually allocated on the disk.

creation (4 bytes): The date and time at which the file pointed to by
this entry was created. The format of these bytes is described in Section
B.4.2.2.

version (1 byte): The version number of ProDOS under which the file
pointed to by this entry was created. This byte allows newer versions of
ProDOS to determine the format of the file, and adjust their
interpretation processes accordingly. In ProDOS 1.0, version = 0.

156 B.2 Format of Directory Files

min_version (1 byte): The minimum version number of ProDOS that
can access the information in this file. This byte allows older versions of
ProDOS to determine whether they can access newer files. In ProDOS
1.0, min_version = 0.

access (1 byte): Determines whether this file can be read, written,
destroyed, and renamed, and whether the file needs to be backed up.
The format of this field is described in Section B.4.2.3. The value of
this field can be changed by the SET_FILE_INFO call. You cannot
delete a subdirectory that contains any files.

aux_type (2 bytes): A general-purpose field in which a system program
can store additional information about the internal format of a file. For
example, the ProDOS BASIC system program uses this field to record
the load address of a BASIC program or binary file, or the record
length of a text file.

last_mod (4 bytes): The date and time that the last CLOSE operation
after a WRITE was performed on this file. The format of these bytes is
described in Section B.4.2.2. This field can be changed by the
SET_FILE_INFO call.

header_pointer (2 bytes): This field is the block address of the key block
of the directory that owns this file entry. This two-byte pointer is stored
low byte first, high byte second.

B.2.5 Reading a Directory File

This section deals with the techniques of reading from directory files,
not with the specifics. The ProDOS calls with which these techniques
can be implemented are explained in Chapter 4.

Before you can read from a directory, you must know the directory’s
pathname. With the directory’s pathname, you can open the directory
file, and obtain a reference number (RefNum) for that open file. Before
you can process the entries in the directory, you must read three values
from the directory header:
 the length of each entry in the directory (entry_length)
 the number of entries in each block of the directory

(entries_per_block)
 the total number of files in the directory (file_count).

B.2 Format of Directory Files 157

Using the reference number to identify the file, read the first 512 bytes
from the file, and into a buffer (ThisBlock). The buffer contains two
two-byte pointers, followed by the entries; the first entry is the
directory header. The three values are at positions $1F through $22 in
the header (positions $23 through $26 in the buffer). In the example
below, these values are assigned to the variables EntryLength,
EntriesPerBlock, and FileCount.

 Open(DirPathname, Refnum); {Get reference number }
 ThisBlock := Read512Bytes(RefNum); {Read a block into buffer}
 EntryLength := ThisBlock[$23]; {Get directory info }
 EntriesPerBlock := ThisBlock[$24];
 FileCount := ThisBlock[$25] + (256 * ThisBlock[$26]);

Once these values are known, a system program can scan through the
entries in the buffer, using a pointer to the beginning of the current
entry EntryPointer, a counter BlockEntries that indicates the number of
entries that have been examined in the current block, and a second
counter ActiveEntries that indicates the number of active entries that
have been processed.

An entry is active and is processed only if its first byte, the storage_type
and name_length, is nonzero. All entries have been processed when
ActiveEntries is equal to FileCount. If all the entries in the buffer have
been processed, and ActiveEntries doesn’t equal FileCount, then the
next block of the directory is read into the buffer.

 EntryPoint := EntryLength + $04; {Skip header entry}
 BlockEntries := $02; {Prepare to process entry two}
 ActiveEntries := $00; {No active entries found yet }

 while ActiveEntries < FileCount do begin
 if ThisBlock[EntryPointer] <> $00 then begin {Active entry}
 ProcessEntry(ThisBlock[EntryPointer]);
 ActiveEntries := ActiveEntries + $01
 end;
 if ActiveEntries < FileCount then {More entries to process}
 if BlockEntries = EntriesPerBlock
 then begin {ThisBlock done. Do next one}
 ThisBlock := Read512Bytes(RefNum);
 BlockEntries := $01;
 EntryPointer := $04
 end
 else begin {Do next entry in ThisBlock }
 EntryPointer := EntryPointer + EntryLength;
 BlockEntries := BlockEntries + $01
 end
 end;
 Close(RefNum);

158 B.2 Format of Directory Files

This algorithm processes entries until all expected active entries have
been found. If the directory structure is damaged, and the end of the
directory file is reached before the proper number of active entries has
been found, the algorithm fails.

B.3 Format of Standard Files

Each active entry in a directory file points to the key block (the first
block) of a file. As shown below, the key block of a standard file may
have several types of information in it. The storage_type field in that
file’s entry must be used to determine the contents of the key block.
This section explains the structure of the three stages of standard file:
seedling, sapling, and tree. These are the files in which all programs and
data are stored.

B.3.1 – Growing a Tree File

The following scenario demonstrates the growth of a tree file on a
volume. This scenario is based on the block allocation scheme used by
ProDOS 1.0 on a 280-block flexible disk that contains four blocks of
volume directory, and one block of volume bit map. Larger capacity
volumes might have more blocks in the volume bit map, but the
process would be identical.

A formatted, but otherwise empty, ProDOS volume is used like this:

 Blocks 0-1 Loader
Blocks 2-5 Volume directory
Block 6 Volume bit map
Blocks 7-279 Unused

B.3 Format of Standard Files 159

If you open a new file of a nondirectory type, one data block is
immediately allocated to that file. An entry is placed in the volume
directory, and it points to block 7, the new data block, as the key block
for the file. The key block is indicated below by an arrow.

The volume now looks like this:

 Data Block 0
 Blocks 0-1 Loader
 Blocks 2-5 Volume directory
 Block 6 Volume bit map
 --> Block 7 Data block 0
 Blocks 8-279 Unused

This is a seedling file: its key block contains up to 512 bytes of data.

If you write more than 512 bytes of data to the file, the file grows into
a sapling file. As soon as a second block of data becomes necessary, an
index block is allocated, and it becomes the file’s key block: this index
block can point to up to 256 data blocks (two-byte pointers). A second
data block (for the data that won’t fit in the first data block) is also
allocated. The volume now looks like this:

 Index Block 0
 Data Block 0
 Data Block 1
 Blocks 0-1 Loader
 Blocks 2-5 Volume directory
 Block 6 Volume bit map
 Block 7 Data block 0
 --> Block 8 Index block 0
 Block 9 Data block 1
 Blocks 10-279 Unused

This sapling file can hold up to 256 data blocks: 128K of data. If the
file becomes any bigger than this, the file grows again, this time into a
tree file. A master index block is allocated, and it becomes the file’s key
block: the master index block can point to up to 128 index blocks and
each of these can point to up to 256 data blocks. Index block G
becomes the first index block pointed to by the master index block. In
addition, a new index block is allocated, and a new data block to which
it points.

160 B.3 Format of Standard Files

Here's a new picture of the volume:

 Master Index Block
 Index Block 0
 Index Block 1
 Data Block 0
 Data Block 255
 Data Block 256
 Blocks 0-1 Loader
 Blocks 2-5 Volume directory
 Block 6 Volume bit map
 Block 7 Data block 0
 Block 8 Index block 0
 Blocks 9-263 Data blocks 1-255
 --> Block 264 Master index block
 Block 265 Index block 1
 Block 266 Data block 256
 Blocks 267-279 Unused

As data is written to this file, additional data blocks and index blocks are
allocated as needed, up to a maximum of 129 index blocks (one a
master index block), and 32,768 data blocks, for a maximum capacity
of 16,777,215 bytes of data in a file. If you did the multiplication, you
probably noticed that a byte was lost somewhere. The last byte of the
last block of the largest possible file cannot be used because EOF
cannot exceed 16,777,216. If you are wondering how such a large file
might fit on a small volume such as a flexible disk, refer to Section B.
3.6 on sparse files.

This scenario shows the growth of a single file on an otherwise empty
volume. The process is a bit more confusing when several files are
growing – or being deleted – simultaneously. However, the block
allocation scheme is always the same: when a new block is needed
ProDOS always allocates the first unused block in the volume bit map.

B.3.2 Seedling Files

A seedling file is a standard file that contains no more than 512 data
bytes ($0 <= EOF <= $200). This file is stored as one block on the
volume, and this data block is the file’s key block.

The structure of such a seedling file appears in Figure B-6.

B.3 Format of Standard Files 161

Figure B-6. Structure of a Seedling File

 key_pointer ----> +-------+
 | Data | Data Block
 | Block | 512 bytes long
 $0 <= EOF <= $200 +-------+

The file is called a seedling file because, if more than 512 data bytes are
written to it, it grows into a sapling file, and thence into a tree file.

The storage_type field of an entry that points to a seedling file has the
value $1.

B.3.3 Sapling Files

A sapling file is a standard file that contains more than 512 and no
more than 128K bytes ($200 < EOF <= $20000). A sapling file
comprises an index block and 1 to 256 data blocks. The index block
contains the block addresses of the data blocks. See Figure B-7.

Figure B-7. Structure of a Sapling File

 key_pointer ------> +-------------------+
 | | | | | | Index Block:
 |$00 $01 $FE $FF| Up to 256 2-Byte
 |- Index Block -| Pointers to Data Blocks
 $0 <= EOF <= $20000 | | | | | |
 +-------------------+
 | | | |
 +---------------+ | | +-------------------+
 | | | |
 | +---+ +-------+ |
 | | | |
 v v v v
 +-----------+ +-----------+ +-----------+ +-----------+
 | Data | | Data | | Data | | Data |
 | Block $00 | | Block $01 | | Block $FE | | Block $FF |
 +-----------+ +-----------+ +-----------+ +-----------+

The key block of a sapling file is its index block. ProDOS retrieves data
blocks in the file by first retrieving their addresses in the index block.

The storage_type field of an entry that points to a sapling file has the
value $2.

162 B.3 Format of Standard Files

B.3.4 Tree Files

A tree file contains more than 128K bytes, and less than 16M bytes
($20000 < EOF < $1000000). A tree file consists of a master index
block, 1 to 128 index blocks, and 1 to 32,768 data blocks. The master
index block contains the addresses of the index blocks, and each index
block contains the addresses of up to 256 data blocks. The structure of
a tree file is shown in Figure B-8.

Figure B-8. The Structure of a Tree File

 key_pointer ------> +----------------------+
 | | | | | | Master Index Block:
 |- Master Index Block -| Up to 128 2-Byte Pointers
 $20000 < EOF < $10000000 | | | | | | to Index Blocks
 +----------------------+
 | |
 +------------+ +-+
 | |
 v v
 +-------------------+ +-------------------+
 | | | | | | | | | | | |
 |- Index Block $00 -| |- Index Block $7F -|
 | | | | | | | | | | | |
 +-------------------+ +-------------------+
 | | | |
 +---------+ +------+ ++ ++
 | | | |
 v v v v
 +-----------+ +-----------+ +-----------+ +-----------+
 | Data | | Data | | Data | ... | Data |
 | Block $00 | | Block $FF | | Block $00 | | Block $FF |
 +-----------+ +-----------+ +-----------+ +-----------+

The key block of a tree file is the master index block. By looking at the
master index block, ProDOS can find the addresses of all the index
blocks; by looking at those blocks, it can find the addresses of all the
data blocks.

The storage_type field of an entry that points to a tree file has the value
$3.

B.3.5 Using Standard Files

A system program or application program operates the same on all
three types of standard files, although the storage_type in the file’s entry
can be used to distinguish between the three. A program rarely reads
index blocks or allocates blocks on a volume: ProDOS does that.

The program need only be concerned with the data stored in the file,
not with how they are stored.

All types of standard files are read as a sequence of bytes, numbered
from 0 to EOF-1, as explained in Chapter 4.

B.3 Format of Standard Files 163

B.3.6 Sparse Files

A sparse file is a sapling or tree file in which the number of data bytes
that can be read from the file exceeds the number of bytes physically
stored in the data blocks allocated to the file. ProDOS implements
sparse files by allocating only those data blocks that have had data
written to them, as well as the index blocks needed to point to them.

For example, you can define a file whose EOF is 16K, that uses only
three blocks on the volume, and that has only four bytes of data written
to it. If you create a file with an EOF of $0, ProDOS allocates only the
key block (a data block) for a seedling file, and fills it with null
characters (ASCII $00).

If you then set the EOF and MARK to position $0565, and write four
bytes, ProDOS calculates that position $0565 is byte $0165 ($0564-
($0200*2)) of the third block (block $2) of the file. It then allocates an
index block, stores the address of the current data block in position 0 of
the index block, allocates another data block, stores the address of that
data block in position 2 of the index block, and stores the data in bytes
$0165 through $0168 of that data block. The EOF is $0569.

If you now set the EOF to $4000 and close the file, you have a 16K file
that takes up three blocks of space on the volume: two data blocks and
an index block. You can read 16384 bytes of data from the file, but all
the bytes before $0565 and after $0568 are nulls.

Figure B-9 shows how the file is organized.

164 B.3 Format of Standard Files

Figure B-9. A Sparse File

 0 1 2
 key_pointer --> +--------------+
 Key_Block | | | | |
 +--------------+
 | |
 +---------+ +-------+ EOF = $4000
 | | |
 v Block $0 Block $1 v Block $2 Block $3 Block $1F v
 Data +---+ +-----------+
 Blocks | | | | | | | | |
 +---+ +-----------+
 $0 $1FF $400 ^ $5FF
 |
 Bytes $565..$568

Thus ProDOS allocates volume space only for those blocks in a file that
actually contain data. For tree files, the situation is similar: if none of
the 256 data blocks assigned to an index block in a tree file have been
allocated, the index block itself is not allocated.

On the other hand, if you CREATE a file with an EOF of $4000
(making it 16K bytes, or 32 blocks, long), ProDOS allocates an index
block and 32 data blocks for a sapling file, and fills the data blocks with
nulls.

By the Way: The first data block of a standard file, be it a seedling,
sapling, or tree file, is always allocated. Thus there is always a data block
to be read in when the file is opened.

B.3 Format of Standard Files 165

B.3.7 Locating a Byte in a File

The algorithm for finding a specific byte within a standard file is given
below.

The MARK is a three-byte value that indicates an absolute byte
position within a file.
 Byte # Byte 2 Byte 1 Byte 0

 bit # 7 0 7 0 7 0
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 MARK |Index Number |Data Block Number| Byte of Block |
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 Used by: Tree only Tree and sapling All three

If the file is a tree file, then the high seven bits of the MARK determine
the number (0 to 127) of the index block that points to the byte. The
value of the seven bits indicate the location of the low byte of the index
block address within the master index block. The location of the high
byte of the index block address is indicated by the value of these seven
bits plus 256.

166 B.3 Format of Standard Files

If the file is a tree file or a sapling file, then the next eight bits of the
MARK determine the number (0-255) of the data block pointed to by
the indicated index block. This 8-bit value indicates the location of the
low byte of the data block address within the index block. The high
byte of the index block address is found at this offset plus 256.

For tree, sapling, and seedling files, the low nine bits of the MARK are
the absolute position of the byte within the selected data block.

B.4 Disk Organization

Figure B-10 presents an overall view of block organization on a
volume.

Figure B-11 shows the complete structures of the three standard files
types. Figure B-12 is a summary of header and entry field information.

B.4 Disk Organization 167

Figure B-10. Disk Organization

 +--------------------+
 | BLOCKS ON A VOLUME |
 | Figure B-1 |
 +--------------------+
 || ||
 || ||
 || ||
 vv vv
 +----------------------------------+
 | BLOCKS OF A DIRECTORY FILE |
 |=================| VOLUME DIRECTORY OR SUBDIRECTORY |
 || | Figure B-2 |
 || +----------------------------------+
 || || ||
 |============================| ||
 || || ||
 vv vv vv
 +----------------------+ +----------------------+ +------------------------------------+
 | HEADER | | HEADER | | FILE ENTRY |
 | VOLUME DIRECTORY | | SUBDIRECTORY | | SUBDIRECTORY OR |
 | Found in key block | | Found in key block | | STANDARD FILE |===>>to
Figure B-11
 | of volume directory. | | of subdirectory. | | Found in any directory file block. |
 | Figure B-3 | | Figure B-4 | | Figure B-5 |
 +----------------------+ +----------------------+ +------------------------------------+

Page 168

168 B.4 Disk Organization

B.4.1 Standard Files

Figure B-11. Standard Files

 +---------------+
 |===>>| KEY BLOCK |
 || | Standard File |
 || +---------------+
 ||
 || +----------------------------------+
 |===>>| SEEDLING FILE: storage_type = $1 |
 || | Figure B-6 |
 || +----------------------------------+
 ||
 || +----------------------------------+
 |===>>| SAPLING FILE: storage_type = $2 |
 || | Figure B-7 |
 || +----------------------------------+
 ||
 || +----------------------------------+
 |===>>| TREE FILE: storage_type = $3 |
 || | Figure B-8 |
 || +----------------------------------+
 ||
 ======|
 from Figure B-10

B.4 Disk Organization 169

B.4.2 Header and Entry Fields

Figure B-12. Header and Entry Fields

 +-------------+
 | CREATE_DATE | Byte 1 Byte 0
 | |
 | MOD_DATE | 7 6 5 4 3 2 1 0 | 7 6 5 4 3 2 1 0
 +-------------+ ----> +---+
 | | | | | | | | | | | | | | | | |
 | Year | Month | Day |
 | | | | | | | | | | | | | | | | |
 +---+
 +-------------+
 | CREATE_TIME |
 | |
 | MOD_TIME |
 +-------------+ ----> +---+
 | | | | | | | | | | | | | | | | |
 | 0 0 0 | Hour | 0 0 | Minute |
 | | | | | | | | | | | | | | | | |
 +---+
 Byte 1 Byte 0

 +-------- Write-Enable
 | +---- Read-Enable
 | |
 +--------------+ +----------+ +-------------------------------+
 | storage_type | | access | = | D | RN | B | Reserved | W | R |
 | (4 bits) | | (1 byte) | +-------------------------------+
 +--------------+ +----------+ | | |
 | | +----------------------- Backup
 $0 = inactive file entry | +---------------------------- Rename-Enable
 $1 = seedling file entry +-------------------------------- Destroy-Enable
 $2 = sapling file entry
 $3 = tree file entry
 $D = subdirectory file entry name_length = length of file_name ($1-$F)
 $E = subdirectory header file_name = $1-$F ASCII characters: first = letters
 $F = volume directory header rest are letters, digits, periods.
 key_pointer = block address of file's key block
 +-----------+ blocks_used = total blocks for file
 | file_type | EOF = byte number for end of file ($0-$FFFFFF)
 | (1 byte) | version, min_version = 0 for ProDOS 1.0
 +-----------+ entry_length = $27 for ProDOS 1.0
 entries_per_block = $0D for ProDOS 1.0
 See section B.4.2.4 aux_type = defined by system program
 file_count = total files in directory
 bit_map_pointer = block address of bit map
 total_blocks = total blocks on volume
 parent_pointer = block address containing entry
 parent_entry_number = number in that block
 parent_entry_length = $27 for ProDOS 1.0
 header pointer = block address of key block
 of entry's directory

170 B.4 Disk Organization

B.4.2.1 The storage_type Attribute

The storage_type, the high-order four bits of the first byte of an entry,
defines the type of header (if the entry is a header) or the type of file
described by the entry.

$0 indicates an inactive file entry
$1 indicates a seedling file entry (EOF <= 256 bytes)
$2 indicates a sapling file entry (256 < EOF <= 128K bytes)
$3 indicates a tree file entry (128K < EOF < 16M bytes)
$4 indicates Pascal area
$D indicates a subdirectory file entry
$E indicates a subdirectory header
$F indicates a volume directory header

The name_length, the low-order four bits of the first byte, specifies the
number of characters in the file_name field.

ProDOS automatically changes a seedling file to a sapling file and a
sapling file to a tree file when the file’s EOF grows into the range for a
larger type. If a file’s EOF shrinks into the range for a smaller type,
ProDOS changes a tree file to a sapling file and a sapling file to a
seedling file.

B.4.2.2 The creation and last_mod Fields

The date and time of the creation and last modification of each file and
directory is stored as two four-byte values, as shown in Figure B-13.

Figure B-13. Date and Time Format

 Byte 1 Byte 0

 7 6 5 4 3 2 1 0 | 7 6 5 4 3 2 1 0
 +---+
 | | | | | | | | | | | | | | | | |
 | Year | Month | Day |
 | | | | | | | | | | | | | | | | |
 +---+

 +---+
 | | | | | | | | | | | | | | | | |
 | 0 0 0 | Hour | 0 0 | Minute |
 | | | | | | | | | | | | | | | | |
 +---+
 Byte 1 Byte 0

The values for the year, month, day, hour, and minute are stored as
binary integers, and may be unpacked for analysis.

B.4 Disk Organization 171

B.4.2.3 The access Attribute

The access attribute field (Figure B-14) determines whether the file can
be read from, written to, deleted, or renamed. It also contains a bit that
can be used to indicate whether a backup copy of the file has been made
since the file’s last modification.

Figure B-14. The access Attribute Field

 +-------- Write-Enable
 | +---- Read-Enable
 | |
 +-------------------------------+
 | D | RN | B | Reserved | W | R |
 +-------------------------------+
 | | |
 | | +----------------------- Backup
 | +---------------------------- Rename-Enable
 +-------------------------------- Destroy-Enable

A bit set to 1 indicates that the operation is enabled; a bit cleared to 0
indicates that the operation is disabled. The reserved bits are always 0.

ProDOS sets bit 5, the backup bit, of the access field to 1 whenever the
file is changed (that is, after a CREATE, RENAME, CLOSE after
WRITE, or SET_FILE_INFO operation). This bit should be reset to 0
whenever the file is duplicated by a backup program.

Note: Only ProDOS may change bits 2-4; only backup programs
should clear bit 5, using SET_FILE_INFO.

B.4.2.4 The file_type Attribute

The file_type attribute within an entry field identifies the type of file
described by that entry. This field should be used by system programs
to guarantee file compatibility from one system program to the next.

The values of this byte are shown in Table B-1.

172 B.4 Disk Organization

Table B-1. The ProDOS File_Types

The file types marked with a * apply to Apple III only; they are not
ProDOS compatible. For the file types used by Apple III SOS only,
refer to the SOS Reference Manual.

File Type Preferred Use
$00 Typeless file (SOS and ProDOS)
$01 Bad block file
$02 * Pascal code file
$03 * Pascal text file
$04 ASCII text file (SOS and ProDOS)
$05 * Pascal data file
$06 General binary file (SOS and ProDOS)
$07 * Font file
$08 Graphics screen file
$09 * Business BASIC program file
$0A * Business BASIC data file
$0B * Word Processor file
$0C * SOS system file
$0D,$0E * SOS reserved
$0F Directory file (SOS and ProDOS)
$10 * RPS data file
$11 * RPS index file
$12 * AppleFile discard file
$13 * AppleFile model file
$14 * AppleFile report format file
$15 * Screen Library file
$16-$18 * SOS reserved
$19 AppleWorks Data Base file
$1A AppleWorks Word Processor file
$1B AppleWorks Spreadsheet file
$1C-$EE Reserved
$EF Pascal area
$F0 ProDOS CI added command file
$F1-$F8 ProDOS user defined files 1-8
$F9 ProDOS reserved
$FA Integer BASIC program file
$FB Integer BASIC variable file
$FC Applesoft program file
$FD Applesoft variables file
$FE Relocatable code file (EDASM)
$FF ProDOS system file

B.4 Disk Organization 173

B.5 DOS 3.3 Disk Organization

Both DOS 3.3 and ProDOS 140K flexible disks are formatted using
the same 16-sector layout. As a consequence, the ProDOS
READ_BLOCK and WRITE_BLOCK calls are able to access DOS 3.3
disks too. These calls know nothing about the organization of files on
either type of disk.

When using READ_BLOCK and WRITE_BLOCK, you specify a 512-
byte block on the disk. When using RWTS (the DOS 3.3 counterpart
to READ_BLOCK and WRITE_BLOCK), you specify the track and
sector of a 256-byte chunk of data, as explained in the DOS
Programmer’s Manual. You use READ_BLOCK and WRITE_BLOCK
to access DOS 3.3 disks, you must know what 512-byte block
corresponds to the track and sector you want.

Figure B-15 shows how to determine a block number from a given
track and sector. First multiply the track number by 8, then add the
Sector Offset that corresponds to the sector number. The half of the
block in which the sector resides is determined by the Half-of-Block line
(1 is the first half; 2 is the second).

Figure B-15. Tracks and Sectors to Blocks

Block = (8 * Track) + Sector Offset

Sector : 0 1 2 3 4 5 6 7 8 9 A B C D E F
Sector Offset : 0 7 6 6 5 5 4 4 3 3 2 2 1 1 0 7
Half of Block: 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2

Refer to the DOS Programmer’s Manual for a description of the file
organization of DOS 3.3 disks.

174 B.5 DOS 3.3 Disk Organization

Appendix C ProDOS, the Apple III, and SOS

B.5 DOS 3.3 Disk Organization 175

This appendix explains the relationships between ProDOS, the Apple
III, and SOS. It should be helpful to those already familiar with SOS
and to those thinking about developing assembly-language programs
concurrently for SOS and ProDOS.

C.1 ProDOS, the Apple III, and SOS

As explained earlier in the manual, blocks 0 and 1 of a ProDOS-
formatted disk contain the boot code – the code that reads the
operating system from the disk and runs it. Not explained was that this
boot code runs on either an Apple II or an Apple III.

When you start up either an Apple II or an Apple III system with a
ProDOS disk, the boot code is loaded at $800, and executed. The first
thing it does is look to see whether it is running on an Apple II or
Apple III. If it is running on an Apple II, it tries to load in the file
PRODOS. If it is running on an Apple III, it tries to load in the file
SOS.KERNEL. In either case, if the proper file is not found, it displays
the appropriate error message.

This means that two versions of an application could be written, one for
the Apple II, the other for the Apple III, and packaged together on the
same disk. This single disk could be sold to both Apple II and Apple III
owners.

C.2 File Compatibility

SOS and ProDOS use the same directory structure: no exceptions.

Every file on a ProDOS disk can be read by a SOS program and vice
versa.

The file types that are used by both systems are directory files, text files,
and binary files. These three types are adequate for the sharing of data
between SOS and ProDOS versions of the same program.

File types that are intended for one system, but encountered on the
other (as when you CATALOG a ProDOS disk using Business BASIC)
are not inherently different from recognized file types; they just might
cause a number to be displayed as their type instead of a name. The
ProDOS BASIC system program, Filer, Conversion program, and
Editor/Assembler all recognize and display names for all currently
defined SOS file types. The abbreviations displayed when Apple III file
types are encountered using ProDOS are shown in the quick reference
section of this manual.

176 C.2 File Compatibility

C.3 Operating System Compatibility

Because of the larger amount of memory available to SOS, it is a much
more complete operating system than is ProDOS. SOS has a complete
and well defined file manager, device manager, memory manager, and
interrupt and event handler. ProDOS has a file manager and simplified
interrupt and memory calls.

C.3.1 Comparison of Input/Output

SOS communicates with all devices – the console, printers, disk drives,
and so on – by making open, read, write, and close calls to the
appropriate device; writing to one device is essentially the same as
writing to another. ProDOS can perform these operations on files only.

Apple II peripherals generally have their driver code in ROM on the
peripheral card. There is no consistent method for communicating with
them. Thus the protocol for using any particular device must be known
by the system program that is currently running.

C.3.2 Comparison of Filing Calls

The set of calls to the ProDOS operating system is essentially a subset
of the calls to SOS. All filing calls shared by the two systems have the
same call number and nearly identical sets of parameters. Some
differences are:
 With ProDOS you don’t specify the file size when you create a file.
 Files are automatically extended when necessary.
 With SOS the GET_FILE_INFO call returns the size of the file in

bytes (the EOF). In ProDOS you must OPEN the file and then use
the GET_EOF call.

C.3 Operating System Compatibility 177

The SOS VOLUME command corresponds to the ProDOS ON_LINE
command. When given a device name, VOLUME returns the volume
name for that device. When given a unit number (derived from the slot
and drive), ON_LINE returns the volume name.

For SOS, SET_MARK and SET_EOF can use a displacement from the
current position. ProDOS uses only an absolute position in the file.

C.3.3 Memory Handling Techniques

SOS has a fairly sophisticated memory manager: a system program
requests memory from SOS, either by location or by amount needed. If
the request can be satisfied, SOS grants it. That portion of memory is
then the sole responsibility of the requestor until it is released.

A ProDOS system program is responsible for its own memory
management. It must find free memory, and then allocate it by marking
it off in a memory bit map. If a page of memory is marked in the bit
map, ProDOS will not write data into that page. ProDOS can thus
prevent users from destroying protected areas of memory (presumably
all data is brought into memory using the ProDOS READ call).

C.3.4 Comparison of Interrupts

In SOS, any device capable of generating an interrupt must have a
device driver capable of handling the interrupt; the device driver and
the interrupt handler are inseparable. ProDOS does not have device
drivers; thus, interrupt handling routines are installed separately using
the ALLOC_INTERRUPT call. Also, whereas SOS has a distinct
interrupt priority for each device in the system, ProDOS must poll the
routines one by one until someone claims the interrupt.

178 C.3 Operating System Compatibility

Appendix D The ProDOS Machine Language Exerciser

C.3 Operating System Compatibility 179

The ProDOS Exerciser program is a menu-driven program that allows
you to practice calls to the ProDOS Machine Language Interface
without writing a system program. It is useful for learning how the
various ProDOS MLI calls work. Using it, you can test the behavior of
a ProDOS-based program before writing any code.

D.1 How to Use It

To start up the Exerciser program from BASIC, type
 -/EXERCISER/EXER.SYSTEM

and press [RETURN].

This causes the Exerciser (which is a machine-language program, but
not a system program) to be loaded at $2000, and then relocated to the
highest available spot in memory. On a 64K system, it occupies
memory from $7400 on.

The Exerciser main menu displays all the MLI calls and their call
numbers, as well as a few other commands. To select an MLI call,
simply type the call number followed by [RETURN]. To select one of
the other commands, type the displayed letter followed by [RETURN].

When you select either a call or a command, a list of parameters for that
call is displayed. The parameters for each MLI call are displayed almost
exactly as they would have to be coded in a ProDOS-based application.
The only difference is that a true parameter list would contain a two-
byte pointer to a pathname, whereas the Exerciser displays the
pathname itself. The meanings of the parameters for each ProDOS call
are described in Chapter 4 in the section describing that call.

The default values for each of the parameters are displayed. The cursor
pauses at each of the parameters that requires a value to be entered. You
may accept the default value by pressing [RETURN] or change the
value by typing the new value followed by [RETURN]. All values are
displayed and entered in hexadecimal.

When you have entered values for all required parameters, press
[RETURN]. The call is executed, values returned by the call are
displayed, and an error message is displayed. If error $00 is indicated
the call was successful. If the call was unsuccessful, the Apple II beeps as
it displays the error message.

Errors are discussed at the end of Chapter 4.

180 D.1 How to Use It

D.2 Modify Buffer

The Modify Buffer command can be used to examine or edit the
Contents of memory. It asks you for a data buffer address; this is the
address at which you wish to start editing. You can then page forward
or backward through memory using [>] and [<], respectively.

Each screen displays the values of 256 consecutive bytes, arranged in 16
rows of eight bytes each. The ASCII characters associated with these
bytes are displayed at the right of the screen (as printed with the high
bits set). On a standard Apple II, lowercase ASCII codes are converted
to the corresponding uppercase codes. Each row is preceded by the
address of the first byte in that row (just like the LIST command in the
Apple II Monitor).

To move the cursor to a different byte on the screen, use [I], [J], [K],
and [M], or the arrow keys. To change a byte of memory, simply type
the new value right over the old one. The value is updated in memory
as well as on the screen. The Modify Buffer command remembers the
original values of the last 16 bytes you changed. To restore up to
sixteen changed bytes, press U (for Undo) once for each value to be
restored.

If a memory page is marked in the system bit map as used by the
system, the editor displays the message MEMORY PAGE
PROTECTED and it does not allow you to change a value in that page.

screen shot from front cover

 +---+
 | * |
 | * PRODOS * |
 | * MACHINE LANGUAGE INTERFACE * |
 | * SYSTEM CALL EXERCISER * |
 | * |
 | |
 | $C0-CREATE $CB-WRITE |
 | $C1-DESTROY $CC-CLOSE |
 | $C2-RENAME $CD-FLUSH |
 | $C3-SET FILE INFO $CE-SET MARK |
 | $C4-GET FILE INFO $CF-GET MARK |
 | $C5-ON LINE $D0-SET EOF |
 | $C6-SET PREFIX $D1-GET EOF |
 | $C7-GET PREFIX $D2-SET BUF |
 | $C8-OPEN $D3-GET BUF |
 | $C9-NEWLINE $80-READ BLOCK |
 | $CA-READ $81-WRITE BLOCK |
 | _______________________________________ |
 | |
 | L - LIST DIRECTORY Q - QUIT |
 | M - MODIFY BUFFER |
 | |
 | SELECT COMMAND: $C0_ |
 +---+

D.2 Modify Buffer 181

182 D.2 Modify Buffer

Index

A
A register 96
access 150, 153, 157

byte 13
accumulator 29, 77, 85
Active Entries 158
ALLOC_INTERRUPT call 35, 170,

111, 178
alternate 64K RAM bank 89
APPEND command 131
Apple II xvi, 98
Apple II Plus 98
Apple II SOS 176
Apple IIc 98, 143
Apple IIe 98, 143

with extended 80-column text card
89

Apple III 98
file types 176
Applesoft 121, 134, 142
assembly language 131
aux_type 39, 46, 50, 100, 157
auxiliary bank hi-res graphics pages 89

B
backup bit 63, 64, 172
BADCALL 128
bank-switching routines 97
BASIC.SYSTEM xv, 82, 121, 124,

176
BEEP example 136
BEEPSLOT example 138
binary files 176
bit map 84, 150
BLOAD command 132
Block Entries 158
Block File Manager (BFM) 7, 28, 31

block number 115, 146
blocks 18
blocks_used 50, 156
boot code 176
boot ROM 22

disk drives 112
booting 22
BRUN command 132
BSAVE command 132
buffer 15

allocation 25
pointer 115

byte, locating a specific 166

C
C-flag 29, 77
calender card See clock/calender card
calls

filing 33, 56
housekeeping 32
system 35

carry flag 122
CAT command 132
CATALOG command 132
catalog format 101
CHAIN command 131
clock/calender card 2,6,71,99
CLOSE call 13, 16, 17, 26, 34, 99,

104, 132
CMDADR address 108
Command Dispatcher 7,28
command list 134
commands, adding 134
CONVERT.program 3, 176
CREATE call 13, 32, 99, 104, 132
create_date 39, 51
create_time 39, 51

creation 150, 153, 156
date 171
time 171

creation_date 13
creation_time 13

D
dash (-) command 131
data blocks 19
data_buffer 15, 52, 55
data files 18
date and time, system 71
DEALLOC INTERRUPT call 35,

107, 112
defaults (system program) 100
DELETE call 132
DESTROY call 13, 32, 99, 104
device drivers 142
directory files 3,17,18,176

reading 157
structure 18

disconnecting /RAM 90
disk

access 16
controller card 113
device driver vectors 94
devices 95
driver routines 28
operating system xv, 2
RAM 91
volume 143

Disk II driver 113
disk-drive controller card 22
dispatcher code 87
DOS 3.3 174

disks 73
DOS ProDOS Conversion program

xv, 3
DOSCMD vector 131, 134

E
80-column text card 99
emulation mode 98
enable_mask 58
endtry_length 154
entries (directory file) 17
Entries Per Block 150, 153, 154, 158
entry field 43, 47
Entry Length variable 158
Entry Pointer variable 158
entry_length 150, 153
entry points 94
EOF 15, 20, 67, 156, 164, 171 See

also individual calls
error codes (ProDOS) 77
EXEC file 17, 131
EXERCISER program 31, 180
EXTRNCMD location 134

F
FBITS 126, 141
fields, pointer 148
file(s)

binary 176
buffer 26
closing 14, 16
control block 14, 56
creating 13
data 19
directory 18, 176
flushing 16
logical size 67
naming 10
opening 13

file_count 150, 153, 154 158
file_name 150, 150, 153, 156
file_type 13
filename 10
Filer, ProDOS 176
Filer Program xv
filing calls 3, 5

ProDOS vs. SOS 177
FLUSH 16, 17, 34, 99, 104, 132
FORMAT call 113
FRE call 132

G
GET_BUF call 26, 34
GET_EOF call 15, 34, 177
GET_FILE_INFO call 32, 43, 99,

100, 177
GET_MARK call 15, 34
GET_PREFIX call 11,33
GET_TIME call 35, 99, 104
GETLN input buffer 105, 135
global page 84, 104, 141
global variables 25
GOSYSTEM 127, 129

H
header entry 147
header_pointer 157
headers (subdirectory) 151
HELP command 141
hi-res graphics 89
HIMEM command 141
housekeeping calls 3, 32, 36-54

I
I/O buffer 14, 69
I/O vectors 123
IN# command 22, 132
index blocks 19, 160, 162, 163
input/output

buffer 14, 69
vectors 123
ProDOS vs. SOS 177

int_num 72, 73
interrupt(s) 2, 72

routines 97
exit routines 97
handler 28
handling calls 3
Receiver/Dispatcher 7
vector(s) 96

table 72
interrupt-driven devices 121
io_buffer 16, 33 See also individual

calls
IVERSION 97

J
jump to subroutine (JSR) 29

K
key block 146, 147, 151, 159, 162,

164
key_pointer 156
key_pointer field 36
KVERSION 97

Page 184

L
language card area 106
last_mod 157
level 56
linked list 36
LOAD command 131
loader program 22, 146
LOCK command 132
logical block 146
LOMEM command 122

M
MACHID byte 96, 98
machine configuration 98
Machine Language Interface (MLI) 3
machine language routines xv, 121
MARK 14, 15, 20, 65, 66, 164, 166
master index block 19, 160, 163
memory 98

calls 3
handling (ProDOS vs. SOS) 178
management 2
map 24, 95
page 181

min_version 150, 153, 157
MLI (Machine Language Interface) 3,

5, 15, 22, 23, 25, 108, 180
entry point 94
issuing calls to 29

MLIATV flag 108
mod_date 46
mod_time 46, 50
Modify Buffer command 181
monitor 142

N
name_length 150, 153, 154, 156, 158

new_pathname 42
NEWLINE call 15, 33
newline_char 58
NOHELP command 141
null prefix 11
null_field 46

O
ON_LINE command 33, 178
OPEN call 26, 31, 33, 132, 177

P
pages 5
param_count See individual calls
parameter count 31
parent_entry_length 154
parent_entry_number 154
parent_pointer 153
parsing command 140
partial pathnames 10, 11
Pascal area 156
pathname 10, 11, 13
PBITS 126, 135, 141
peripheral cards xvii
pointer 18, 31
POSITION command 132
PR# command 22, 132
prefix 11, 132
ProDOS BASIC Programming

Examples disk 3
ProDOS xv

Editor/Assembler 176
error codes 77
Filer 3, 20
Machine Language Interface 5, 142,

180

PRODOS program 22
ProDOS User's Disk 3
ProFile 4
program selectors 86

Q
QUIT call 87

R
/RAM 23, 89, 143

alternate 64K RAM bank 89
disconnecting 90
reinstalling 92

RAM disks 91
READ call 15, 33, 113, 131
READ_BLOCK call 35, 73, 174
ref_num 13
reference number 15, 16
register, stack 96
RENAME call 13, 32, 99, 104, 132,

150, 153, 156
request_count 62 See also individual

calls
RESET vector 101
RESTORE command 132
result command 31
RUN command 131
RWTS (DOS 3.3) 174

S
sapling file 19, 156, 160, 164, 171
SAVE command 132
search order, volume 23
sectors 146
seedling file 19, 156, 160, 161
SET_BUF call 26
SET_EOF call 15, 34, 178

Page 185

SET_FILE_INFO call 13, 32, 47, 99,
100, 104, 157, 172

SET_MARK call 15, 34, 66, 178
SET_PREFIX call 11, 33
SHOWTIME program 109-112
16-sector ROMs 113
6502 machine language xv, xvi
6502 registers 107, 108
slot(s) xvii

and drive 100
5 113
6 113

soft switches 106
SOS file 177
SOS KERNEL file 176
SOS volume command 178
sparse files 161
stack 25, 89, 107
register 96
standard files 17, 19, 159-166
starting up 22
startup disk 22
startup volume 23
STATUS call 113
status register 96
storage_type 13, 36, 39, 50, 150, 153,

154, 156, 158, 159, 162, 163
STORE command 132
strings 140
subdirectory 4

files 147
SYSCTBL 129
system

bit map 5
date and time 71, 99
failure 79
global page 22
level 16
prefix 55
programs 2,3,25,82
quitting 87
starting 86

T
13-sector ROMs 113

tone, warning 101
total_blocks 151
tracks 146
trans_count 62 See also individual

calls
tree files 19, 156, 159, 160, 164, 171
tree structure 19, 36

U
unit_num 52
UNLOCK command 132

V
value 31
variables (global) 25
version 150, 153, 156
volume(s) 146

bit map 146
directory 4, 147
directory file 146
finding 100
names 10, 51
search order 23

VPATH1 141
VPATH2 141

W
WRITE command 15, 34, 113, 131
write buffer 64
WRITE_BLOCK call 35, 73, 174

X
X register 96, 122
XCNUM 135, 141
XLEN 135, 141
XRETURN 135
XTRNADDR 135, 141
XXX.SYSTEM 22, 82

Y
Y register 96, 122

Z
zero page 107

Page 186

Tell Apple
Apple uses comments and suggestions from Apple computer
owners like you to improve existing products and develop new
and better products. Now that you've used this product, we
want to know your thoughts and suggestions about your
experience. Please use this form to tell Apple what you think.
Rest of card omitted

ProDOS Technical Reference Manual
Quick Reference Card
ASCII Tables

Binary
Dec ASCII Hex 76543210

0 NUL 00 00000000
1 SOH 01 00000001
2 STX 02 00000010
3 ETX 03 00000011
4 EOT 04 00000100
5 ENQ 05 00000101
6 ACK 06 00000110
7 BEL 07 00000111
8 BS 08 00001000
9 HT 09 00001001

10 LF 0A 00001010
11 VT 0B 00001011
12 FF 0C 00001100
13 CR 0D 00001101
14 50 0E 00001110
15 SI 0F 00001111

16 DLE 10 00010000
17 DC1 11 00010001
18 DC2 12 00010010
19 003 13 00010011
20 004 14 00010100
21 NAK 15 00010101
22 SYN 16 00010110
23 ETB 17 00010111
24 CAN 18 00011000
25 EM 19 00011001
26 SUB 1A 00011010
27 ESC 1B 00011011
28 FS 1C 00011100
29 GS 1D 00011101
30 RS 1E 00011110
31 US 1F 00011111

Binary
Dec ASCII Hex 76543210
32 SP 20 00100000
33 ! 21 00100001
34 " 22 00100010
35 # 23 00100011
36 $ 24 00100100
37 % 25 00100101
38 & 26 00100110
39 ' 27 00100111
40 (28 00101000
41) 29 00101001
42 * 2A 00101010
43 + 2B 00101011
44 , 2C 00101100
45 - 2D 00101101
46 . 2E 00101110
47 / 2F 00101111

48 0 30 00110000
49 1 31 00110001
50 2 32 00110010
51 3 33 00110011
52 4 34 00110100
53 5 35 00110101
54 6 36 00110110
55 7 37 00110111
56 8 38 00111000
57 9 39 00111001
58 . 3A 00111010
59 ; 3B 00111011
60 < 3C 00111100
61 = 3D 00111101
62 > 3E 00111110
63 ? 3F 00111111

Binary
Dec ASCII Hex 76543210
64 @ 40 01000000
65 A 41 01000001
66 B 42 01000010
67 C 43 01000011
68 D 44 01000100
69 E 45 01000101
70 F 46 01000110
71 G 47 01000111
72 H 48 01001000
73 I 49 01001001
74 J 4A 01001010
75 K 4B 01001011
76 L 4C 01001100
77 M 4D 01001101
78 N 4E 01001110
79 0 4F 01001111

80 P 50 01010000
81 Q 51 01010001
82 R 52 01010010
83 S 53 01010011
84 T 54 01010100
85 U 55 01010101
86 V 56 01010110
87 W 57 01010111
88 X 58 01011000
89 Y 59 01011001
90 Z 5A 01011010
91 [5B 01011011
92 / 5C 01011100
93] 5D 01011101
94 ^ 5E 01011110
95 _ 5F 01011111

Binary
Dec ASCII Hex 76543210
96 ` 60 01100000
97 a 61 01100001
98 b 62 01100010
99 C 63 01100011

100 d 64 01100100
101 e 65 01100101
102 f 66 01100110
103 g 67 01100111
104 h 68 01101000
105 i 69 01101001
106 j 6A 01101010
107 k 6B 01101011
108 I 6C 01101100
109 m 6D 01101101
110 n 6E 01101110
111 a 6F 01101111

112 p 70 01110000
113 q 71 01110001
114 r 72 01110010
115 s 73 01110011
116 t 74 01110100
117 u 75 01110101
118 v 76 01110110
119 w 77 01110111
120 x 78 01111000
121 y 79 01111001
122 z 7A 01111010
123 { 7B 01111011
124 | 7C 01111100
125 } 7D 01111101
126 7E 01111110
127 DEL 7F 01111111

File Types
file_type Preferred Use

$00 Typeless file (SOS and ProDOS)
$01 Bad block file
$02 † Pascal code file
$03 † Pascal text file
$04 ASCII text file (SOS and ProDOS)
$05 † Pascal data file
$06 General binary file (SOS and ProDOS)
$07 † Font file
$08 Graphics screen file
$09 † Business BASIC program file
$0A † Business BASIC data file
$0B † Word Processor file

$0C † SOS system file

$0D,$0E † SOS reserved
$0F Directory file (SOS and ProDOS)
$10 † RPS data file
$11 † RPS index file

$12 † AppleFile discard file

$13 † AppleFile model file

$14 † AppleFile report format file

$15 † Screen library file
$16-$18 † SOS reserved
$19 AppleWorks Data Base file
$1A AppleWorks Word Processor file
$1B AppleWorks Spreadsheet file
$1C-$EE Reserved
$EF Pascal area
$F0 ProDOS added command file
$F1-$F8 ProDOS user defined files 1-8
$F9 ProDOS reserved
$FA Integer BASIC program file
$FB Integer BASIC variable file
$FC Applesoft program file
$FD Applesoft variables file
$FE Relocatable code file (EDASM)
$FF ProDOS system file

† Apple III SOS only; not used by ProDOS.

For the file_types used by Apple III SOS only, refer to the SOS
Reference Manual.

MLI Error Codes

$00: No error
$01: Bad system call number
$04: Bad system call parameter

count
$25: Interrupt table full
$27: I/O error
$28: No device connected
$2B: Disk write protected
$2E: Disk switched
$40: Invalid pathname
$42: Maximum number of files

open
$43: Invalid reference number
$44: Directory not found
$45: Volume not found
$46: File not found
$47: Duplicate filename
$48: Volume full
$49: Volume directory full
$4A: Incompatible file format,

also a ProDOS directory
$4B: Unsupported storage_type
$4C: End of file encountered
$4D: Position out of range
$4E: File access error, also file

locked
$50: File is open
$51: Directory structure

damaged
$52: Not a ProDOS volume
$53: Invalid system call

parameter
$55: Volume Control Block table

full
$56: Bad buffer address
$57: Duplicate volume
$5A: File structure damaged

Refer to Section 4.8 for a more
detailed description of these
error codes.

ProDOS MLI Calls

 4.4.1 CREATE ($C0)
 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 7 |
 +---+---+---+---+---+---+---+---+
 1 | (low) |
 + pathname (2-byte pointer)+
 2 | (high)|
 +---+---+---+---+---+---+---+---+
 3 | access (1-byte value)|
 +---+---+---+---+---+---+---+---+
 4 | file_type (1-byte value)|
 +---+---+---+---+---+---+---+---+
 5 | (low) |
 + aux_type (2-byte value)+
 6 | (high)|
 +---+---+---+---+---+---+---+---+
 7 | storage_type (1-byte value)|
 +---+---+---+---+---+---+---+---+
 8 | (byte 0)|
 + create_date (2-byte value)+
 9 | (byte 1)|
 +---+---+---+---+---+---+---+---+
 A | (byte 0)|
 + create_time (2-byte value)+
 B | (byte 1)|
 +---+---+---+---+---+---+---+---+

 4.4.2 DESTROY ($C1)
 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 1 |
 +---+---+---+---+---+---+---+---+
 1 | (low) |
 + pathname (2-byte pointer)+
 2 | (high)|
 +---+---+---+---+---+---+---+---+

 4.4.3 RENAME ($C2)
 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 2 |
 +---+---+---+---+---+---+---+---+
 1 | (low) |
 + pathname (2-byte pointer)+
 2 | (high)|
 +---+---+---+---+---+---+---+---+
 3 | (low) |
 + new_pathname(2-byte pointer)+
 4 | (high)|
 +---+---+---+---+---+---+---+---+

 4.4.4 SET_FILE_INFO ($C3)
 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 7 |
 +---+---+---+---+---+---+---+---+
 1 | (low) |
 + pathname (2-byte pointer)+
 2 | (high)|
 +---+---+---+---+---+---+---+---+
 3 | access (1-byte value)|
 +---+---+---+---+---+---+---+---+
 4 | file_type (1-byte value)|
 +---+---+---+---+---+---+---+---+
 5 | (low) |
 + aux_type (2-byte value)+
 6 | (high)|
 +---+---+---+---+---+---+---+---+
 7 | |
 + +
 8 | null_field (3 bytes)|
 + +
 9 | |
 +---+---+---+---+---+---+---+---+
 A | (byte 0)|
 + mod_date (2-byte value)+
 B | (byte 1)|
 +---+---+---+---+---+---+---+---+
 C | (byte 0)|
 + mod_time (2-byte value)+
 D | (byte 1)|
 +---+---+---+---+---+---+---+---+

 4.4.5 GET_FILE_INFO ($C4)
 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = $A |
 +---+---+---+---+---+---+---+---+
 1 | (low) |
 + pathname (2-byte pointer)+
 2 | (high)|
 +---+---+---+---+---+---+---+---+
 3 | access (1-byte result)|
 +---+---+---+---+---+---+---+---+
 4 | file_type (1-byte result)|
 +---+---+---+---+---+---+---+---+
 5 | (low) | †
 + aux_type (2-byte result)+
 6 | (high)|
 +---+---+---+---+---+---+---+---+
 7 | storage_type (1-byte result)|
 +---+---+---+---+---+---+---+---+
 8 | (low) | †
 + blocks used (2-byte result)+
 9 | (high)|
 +---+---+---+---+---+---+---+---+
 A | (byte 0)|
 + mod_date (2-byte result)+
 B | (byte 1)|
 +---+---+---+---+---+---+---+---+
 C | (byte 0)|
 + mod_time (2-byte result)+
 D | (byte 1)|
 +---+---+---+---+---+---+---+---+
 E | (byte 0)|
 + create_date (2-byte result)+
 F | (byte 1)|
 +---+---+---+---+---+---+---+---+
 10 | (byte 0)|
 + create_time (2-byte result)+
 11 | (byte 1)|
 +---+---+---+---+---+---+---+---+

† When file information about a
volume directory is requested,
the total number of blocks on
the volume is returned in the
aux_type field and the total
blocks for all files is returned
in blocks_used.

4.4.6 ON_LINE ($C5)
 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 2 |
 +---+---+---+---+---+---+---+---+
 1 | unit_num (1-byte value)|
 +---+---+---+---+---+---+---+---+
 2 | (low) |
 + data_buffer (2-byte pointer)+
 3 | (high)|
 +---+---+---+---+---+---+---+---+

 4.4.7 SET_PREFIX ($C6)
 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 1 |
 +---+---+---+---+---+---+---+---+
 1 | (low) |
 + pathname (2-byte pointer)+
 2 | (high)|
 +---+---+---+---+---+---+---+---+

 4.4.8 GET_PREFIX ($C7)
 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 1 |
 +---+---+---+---+---+---+---+---+
 1 | (low) |
 + data_buffer (2-byte pointer)+
 2 | (high)|
 +---+---+---+---+---+---+---+---+

 4.5.1 OPEN ($C8)
 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 3 |
 +---+---+---+---+---+---+---+---+
 1 | (low) |
 + pathname (2-byte pointer)
 2 | (high)|
 +---+---+---+---+---+---+---+---+
 3 | (low) |
 + io_buffer (2-byte pointer)+
 4 | (high)|
 +---+---+---+---+---+---+---+---+
 5 | ref_num (1-byte result)|
 +---+---+---+---+---+---+---+---+

 4.5.2 NEWLINE ($C9)
 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 3 |
 +---+---+---+---+---+---+---+---+
 1 | ref_num (1-byte value)|
 +---+---+---+---+---+---+---+---+
 2 | enable_mask (1-byte value)|
 +---+---+---+---+---+---+---+---+
 3 | newline_char (1-byte value)|
 +---+---+---+---+---+---+---+---+

 4.5.3 READ ($CA)
 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 4 |
 +---+---+---+---+---+---+---+---+
 1 | ref_num (1-byte value)|
 +---+---+---+---+---+---+---+---+
 2 | (low) |
 + data_buffer (2-byte pointer)+
 3 | (high)|
 +---+---+---+---+---+---+---+---+
 4 | (low) |
 + request_count (2-byte value)+
 5 | (high)|
 +---+---+---+---+---+---+---+---+
 6 | (low) |
 + trans_count (2-byte result)+
 7 | (high)|
 +---+---+---+---+---+---+---+---+

 4.5.4 WRITE ($CB)
 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 4 |
 +---+---+---+---+---+---+---+---+
 1 | ref_num (1-byte value)|
 +---+---+---+---+---+---+---+---+
 2 | (low) |
 + data_buffer (2-byte pointer)+
 3 | (high)|
 +---+---+---+---+---+---+---+---+
 4 | (low) |
 + request_count (2-byte value)+
 5 | (high)|
 +---+---+---+---+---+---+---+---+
 6 | (low) |
 + trans_count (2-byte result)+
 7 | (high)|
 +---+---+---+---+---+---+---+---+

 4.5.5 CLOSE ($CC)
 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 1 |
 +---+---+---+---+---+---+---+---+
 1 | ref_num (1-byte value)|
 +---+---+---+---+---+---+---+---+

 4.5.6 FLUSH ($CD)
 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 1 |
 +---+---+---+---+---+---+---+---+
 1 | ref_num (1-byte value)|
 +---+---+---+---+---+---+---+---+

 4.5.7 SET_MARK ($CE)
 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 2 |
 +---+---+---+---+---+---+---+---+
 1 | ref_num (1-byte value)|
 +---+---+---+---+---+---+---+---+
 2 | (low) |
 + +
 3 | position (3-byte value)|
 + +
 4 | (high)|
 +---+---+---+---+---+---+---+---+

 4.5.8 GET_MARK ($CF)
 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 2 |
 +---+---+---+---+---+---+---+---+
 1 | ref_um (1-byte value)|
 +---+---+---+---+---+---+---+---+
 2 | (low) |
 + +
 3 | position (3-byte result)|
 + +
 4 | (high)|
 +---+---+---+---+---+---+---+---+

 4.5.9 SET_EOF ($D0)
 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 2 |
 +---+---+---+---+---+---+---+---+
 1 | ref_num (1-byte value)|
 +---+---+---+---+---+---+---+---+
 2 | (low) |
 + +
 3 | EOF (3-byte value)|
 + +
 4 | (high)|
 +---+---+---+---+---+---+---+---+

 4.5.10 GET_EOF ($D1)
 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 2 |
 +---+---+---+---+---+---+---+---+
 1 | ref_num (1-byte value)|
 +---+---+---+---+---+---+---+---+
 2 | (low) |
 + +
 3 | EOF (3-byte result)|
 + +
 4 | (high)|
 +---+---+---+---+---+---+---+---+

 4.5.11 SET_BUF ($D2)
 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 2 |
 +---+---+---+---+---+---+---+---+
 1 | ref_num (1-byte value)|
 +---+---+---+---+---+---+---+---+
 2 | (low) |
 + io_buffer (2-byte pointer)+
 3 | (high)|
 +---+---+---+---+---+---+---+---+

 4.5.12 GET_BUF ($D3)
 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 2 |
 +---+---+---+---+---+---+---+---+
 1 | ref_num (1-byte value)|
 +---+---+---+---+---+---+---+---+
 2 | (low) |
 + io_buffer (2-byte pointer)+
 3 | (high)|
 +---+---+---+---+---+---+---+---+

 4.6.2 ALLOC_INTERRUPT
($40)
 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 2 |
 +---+---+---+---+---+---+---+---+
 1 | int_num (1-byte result)|
 +---+---+---+---+---+---+---+---+
 2 | (low) |
 + int_code (2-byte pointer)+
 3 | (high)|
 +---+---+---+---+---+---+---+---+

 4.6.3
DEALLOC_INTERRUPT ($41)
 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 1 |
 +---+---+---+---+---+---+---+---+
 1 | int_num (1-byte value)|
 +---+---+---+---+---+---+---+---+

 4.7.1 READ_BLOCK ($80)
 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 3 |
 +---+---+---+---+---+---+---+---+
 1 | unit_num (1-byte value)|
 +---+---+---+---+---+---+---+---+
 2 | (low) |
 + data_buffer (2-byte pointer)+
 3 | (high)|
 +---+---+---+---+---+---+---+---+
 4 | (low) |
 + block_num (2-byte value)+
 5 | (high)|
 +---+---+---+---+---+---+---+---+

 4.7.2 WRITE_BLOCK ($81)
 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 0 | param_count = 3 |
 +---+---+---+---+---+---+---+---+
 1 | unit_num (1-byte value)|
 +---+---+---+---+---+---+---+---+
 2 | (low) |
 + data_buffer (2-byte pointer)+
 3 | (high)|
 +---+---+---+---+---+---+---+---+
 4 | (low) |
 + block_num (2-byte value)+
 5 | (high)|
 +---+---+---+---+---+---+---+---+

Errors in this manual
The following errors were noted in
this manual and faithfully reproduced:
page xi: two consecutive sections labeled B.4.2.3
page 2: the caption for Figure 1-1 is missing
page 24: memory map lists $300 twice
page 28: "management" misspelled as "mangagement"
page 60: param_count is missing "(1-byte value)"
page 70: param_count is missing "(1-byte value)"
page 83: memory map lists $300 twice
page 95: "unprotected" misspelled as "uprotected"
page 99: "calendar" misspelled as "calender"
page 108: "the the" instead of "the"
page 109: "calendar" misspelled as "calender"
page 111: the two routines are in each other's position
page 114: "interruptible" misspelled as "interruptable"
page 114: some text appears to be missing after 6.3.2
page 119: memory map lists $300 twice
page 125: "Temporary" misspelled as "Temporory"
page 131: address of RSHIMEM is BEF8 and should be BEFB
page 135: "inspecting" misspelled as "inpecting"
page 147: "directory" misspelled as "drectory"
page 183: "calendar" misspelled as "calender" three times
page 184: both "endtry_length" and "entry_length" with different page numbers

Quick Reference Card: tilde (~) missing from ASCII table
If you discover other errors in this manual, either in the paper version or
in this online version, then please post that information on USENET in the
comp.sys.apple2.programmer newsgroup.

	About ProDOS
	About This Manual
	What These Mean
	About the Apple IIc
	1.1 What Is ProDOS?
	1.1.1 Use of Disk Drives
	1.1.2 Volume and File Characteristics
	1.1.3	- Use of Memory
	1.1.4	- Use of Interrupt Driven Devices
	1.1.5	- Use of Other Devices

	1.2	- Summary
	2.1 Using Files
	2.1.1	- Pathnames
	2.1.2 Creating Files
	2.1.3	- Opening Files
	2.1.4	- The EOF and MARK
	2.1.5 Reading and Writing Files
	2.1.6 Closing and Flushing Files
	2.1.7 File Levels

	2.2 File Organization
	2.2.1 Directory Files and Standard Files
	2.2.2 File Structure
	2.2.3 Sparse Files

	3.1 Loading Sequence
	3.2 Volume Search Order
	3.3	- Memory Map
	3.3.1 Zero Page
	3.3.2 The System Global Page
	3.3.3 The System Bit Map

	4.1 The Machine Language Interface
	4.2 Issuing a Call to the MLI
	4.2.1 Parameter Lists
	4.2.2 The ProDOS Machine Language Exerciser

	4.3 The MLI Calls
	4.3.1 Housekeeping Calls
	4.3.2 Filing Calls
	4.3.3 System Calls

	4.4 Housekeeping Calls
	4.4.1 CREATE ($C0)
	4.4.2 DESTROY ($C1)
	4.4.3 RENAME ($C2)
	4.4.4 SET_FILE_INFO ($C3)
	4.4.5 GET_FILE_INFO ($C4)
	4.4.6 ON_LINE ($C5)
	4.4.7 SET_PREFIX ($C6)
	4.4.8 GET_PREFIX ($C7)

	4.5 Filing Calls
	4.5.1 OPEN ($C8)
	4.5.2 NEWLINE ($C9)
	4.5.3 READ ($CA)
	4.5.4 WRITE ($CB)
	4.5.5 CLOSE ($CC)
	4.5.6 FLUSH ($CD)
	4.5.7 SET_MARK ($CE)
	4.5.8 GET_MARK ($CF)
	4.5.9 SET_EOF ($D0)
	4.5.10 GET_EOF ($D1)
	4.5.11 SET_BUF ($D2)
	4.5.12 GET_BUF ($D3)

	4.6 System Calls
	4.6.1 GET_TIME ($82)
	4.6.2 ALLOC_INTERRUPT ($40)
	4.6.3 DEALLOC_INTERRUPT ($41)

	4.7 Direct Disk Access Calls
	4.7.1 READ_BLOCK ($80)
	4.7.2 WRITE_BLOCK ($81)

	4.8 MLI Error Codes
	5.1 System Program Requirements
	5.1.1 Placement in Memory
	5.1.2 Relocating the Code
	5.1.3 Updating the System Global Page
	5.1.4 The System Bit Map
	5.1.4.1 Using the Bit Map

	5.1.5 Switching System Programs
	5.1.5.1 Starting System Programs
	5.1.5.2 Quitting System Programs

	5.2 Managing System Resources
	5.2.1 Using the Stack
	5.2.2 Using the Alternate 64K RAM Bank
	5.2.2.1 Protecting Auxiliary Bank Hi-Res Graphics Pages
	5.2.2.2 Disconnecting /RAM
	5.2.2.3 How to Treat RAM Disks With More Than 64K
	5.2.2.4 Reinstalling /RAM

	5.2.3 The System Global Page
	5.2.4 Rules for Using the System Global Page

	5.3 General Techniques
	5.3.1 Determining Machine Configuration
	5.3.1.1 Machine Type
	5.3.1.2 Memory Size
	5.3.1.3 80-Column Text Card

	5.3.2 Using the Date
	5.3.3 System Program Defaults
	5.3.4 Finding a Volume
	5.3.5 Using the RESET Vector

	5.4 ProDOS System Program Conventions
	6.1 Clock/Calendar Routines
	6.1.1 Other Clock/Calendars

	6.2 Interrupt Handling Routines
	6.2.1 Interrupts During MLI Calls
	6.2.2 Sample Interrupt Routine

	6.3 Disk Driver Routines
	6.3.1 ROM Code Conventions
	6.3.2	- Call Parameters

	A.1 – Memory Map
	A.2 HIMEM
	A.2.1 Buffer Management

	A.3 The BASIC Global Page
	A.3.1 BASIC.SYSTEM Commands From Assembly Language
	A.3.2 Adding Commands to the BASIC System Program
	A.3.2.1 BEEP Example
	A.3.2.2 BEEPSLOT Example

	A.3.3 Command String Parsing

	A.4 Zero Page
	A.5 The Extended 80-Column Text Card
	B.1 Format of Information on a Volume
	B.2 Format of Directory Files
	B.2.1 Pointer Fields
	B.2.2 Volume Directory Headers
	B.2.3 Subdirectory Headers
	B.2.4 File Entries
	B.2.5 Reading a Directory File

	B.3 Format of Standard Files
	B.3.1 – Growing a Tree File
	B.3.2 Seedling Files
	B.3.3 Sapling Files
	B.3.4 Tree Files
	B.3.5 Using Standard Files
	B.3.6 Sparse Files
	B.3.7 Locating a Byte in a File

	B.4 Disk Organization
	B.4.1 Standard Files
	B.4.2 Header and Entry Fields
	B.4.2.1 The storage_type Attribute
	B.4.2.2 The creation and last_mod Fields
	B.4.2.3 The access Attribute
	B.4.2.4 The file_type Attribute

	B.5 DOS 3.3 Disk Organization
	C.1 ProDOS, the Apple III, and SOS
	C.2 File Compatibility
	C.3 Operating System Compatibility
	C.3.1 Comparison of Input/Output
	C.3.2 Comparison of Filing Calls
	C.3.3 Memory Handling Techniques
	C.3.4 Comparison of Interrupts

	D.1 How to Use It
	D.2 Modify Buffer

