
APPLE IIe

Programmer’s Reference Guide

APPLE IIE

PROGRAMMER’S

REFERENCE

GUIDE

by

David L. Heiserman

Howard W. Sams & Co., Inc.

4300 WEST 62ND ST. INDIANAPOLIS, INDIANA 462688

Preface

The Apple IIe is a wonderfully dynamic microcomputer that fits into a lot of different
environments. It is a home computer-a personal computer-that is easy to set up and
operate. Yet it fits equally well into the more demanding environments of business,
education, and engineering.

It would be unrealistic to suppose that any single book could venture into all of the
features of the Apple Ile system in great detail. There is simply too much to learn
about and use. A more realistic approach-the one used in this book-is to introduce the
main features, describe some important variations, and suggest some techniques for
exploring the finer details at your own leisure.

A beginner can benefit from the discussions of the system's main features: how to
set up a system (Chapter 1), some general rules and procedures for using Applesoft
and Integer BASIC (Chapter 2), and a survey of the BASIC statements, commands and
functions (Chapter 3).

Readers who already have some experience with BASIC programming can learn
about some of the finer points of text formatting (Chapter 4), color graphics (Chapters
5 and 6), and more advanced disk operations (Chapter 7).

Programmers who are prepared to deal with the Apple IIe in more subtle ways can
benefit from descriptions of the memory maps (Chapter 8) and 6502
machine-language programming techniques (Chapter 9).

The foregoing description suggests that the material in this book is organized
according to the level of know-how and skill required of the reader. That is indeed the
case. But the main topics are organized and titled in such a fashion that should make
it relatively easy to locate a topic of special interest; there is no need to read the book
from the first page to the last in order to find what you want to know.

I would like to acknowledge the invaluable assistance offered by my personal
secretary, Robin M. Yates. She prepared many of the tables and drawings, proofread
the drafts of the manuscript, double-checked the operation of the sample programs,
and assembled the finished manuscript.

DAVID L. HEISERMAN

Contents

CHAPTER 1

GENERAL START-UP AND OPERATING PROCEDURES ……………………………………………………….11

Starting Up the System-Getting Familiar With the Keyboard Assembly- Cursor Movement and
Editing Features-Saving and Loading Pro-grams From Cassette Tape-Saving and Loading
Programs From a Disk

CHAPTER 2

APPLE BASIC NOTATION, RULES, AND LIMITATIONS …………………………………………………….35

Numeric and String Constants-Applesoft BASIC Variables and Variable Names-Subscripted
Variables-Variable Arrays-Operations and Operators

CHAPTER 3

THE BASIC PROGRAMMING LANGUAGE ……………………………………………………………………….57

A Summary of Statements, Commands, and Functions-A Summary of Applesoft Commands,
Statements, and Functions-Some Notes on Using Integer BASIC

CHAPTER 4

THE TEXT SCREENS ……………………………………………………………………………………………………107

Text Screen Formats-Cursor Control Operations-Working With the Character Sets-POKEing
Characters to Video Memory-Working With the Secondary Text Page

CHAPTER 5

LOW-RESOLUTION GRAPHICS …………………………………………………………………………………….141

The Elementary Principles-Applesoft Low-Resolution Graphics Techniques-Alternative
Low-Resolution Screen Formats-POKEing Colors to the Low-Resolution Screens-Working With the
Secondary Page ofLow-Resolution Graphics

CHAPTER 6

HIGH-RESOLUTION GRAPHICS ………………………………………………………………..173

Setting Up High-Resolution Graphics Screens-Plotting to the High-Resolution Screens-Creating
and Using Shape Tables-Loading Data Directly to The High-Resolution Screen

CHAPTER 7

MORE DOS OPERATIONS ………………………………………………………………………205

Initializing Disks, Saving and Loading BASIC Programs-Saving and Loading Machine-Coded
Programs and Data-Some Additional Disk Directory Operations-Copying Disk Programs and
Files-Executing DOS Commands Within a Program-Working With Sequential Text Files-DOS
Error Messages

CHAPTER 8

APPLE IIe MEMORY MAPS …………………………………………………………………….225

Lower RAM Addresses-S0000 THROUGH SOBFF-Upper RAM Addresses-SOC00 THROUGH
SBFFF-I/0 Addresses-SC000 THROUGH SCFFF-System ROM: $DODO THROUGH SFFFF

CHAPTER 9

MACHINE-LANGUAGE PROGRAMMING FOR THE APPLE IIe ……………………………..265

Loading and Executing From BASIC-Working With the Apple IIe Monitor-The 6502 Instruction Set

APPENDIX A

NUMBER-SYSTEM BASE CONVERSIONS …………………………………………………..303

APPENDIX B

APPLE IIe CHARACTER AND KEY CODES ………………………………………………….317

APPENDIX C

TEXT AND GRAPHICS RAM ALLOCATION ……………………………………………………327

APPENDIX D

LOW-RESOLUTION COLOR DATA ……….……………………………………………………327

INDEX ……………………………….. ……….……………………………………………………361

CHAPTER 1
General Start-Up and
Operating Procedures

The fundamental Apple IIe system consists of the Apple IIe console, a tv set or
monitor that serves as a display screen, and some mechanism for saving and loading
programs from magnetic tape or disk. Beyond that are dozens of optional features and
variations.

The discussions and examples cited in this book assume that the reader has at least a
minimum system: the Apple IIe console, a suitable display system (preferably a color
display), and either a cassette recorder/player or a single disk drive. Details regarding
the optional features are included in the manuals that accompany them.

STARTING UP THE SYSTEM

Applesoft BASIC is permanently built into the Apple IIe system, so it is rather easy to
get the system started and running in BASIC. The exact start-up procedure that the
microcomputer operator is required to use depends on whether or not a disk drive is
connected to the Apple IIe system; but even then, the difference is almost trivial.

Starting Up an Apple IIe With No Disk Drives

If there are no disk drives connected to the system, simply turn on the tv receiver or
monitor, and switch on the Apple IIe POWER switch located on the back of the unit,
near the left-hand side. You will immediately hear a single beep from the console loud
speaker, and then you will see the BASIC prompt symbol-a right bracket (])-and the
blinking, checkerboard cursor symbol. That particular prompt symbol indicates that the
system is indeed running in BASIC, and the blinking cursor symbol indicates where the
next-typed keyboard character will appear on the screen.

Starting Up an Apple IIe With One or More Disk Drives

If there is one or more disk-drive units connected to the system, you must insert a
properly formatted diskette into drive 1 before turning on the power. So turn on the tv
set or monitor, insert a formatted disk into drive 1 (one of the system disks that are
supplied with the Apple IIe does the job quite nicely), and then turn on the POWER
switch.

You will hear a single beep from the console loudspeaker and notice the disk drive
going to work-the red IN USE lamp goes on and the drive mechanism makes some
buzzing and clicking sounds. During that time, the system is loading and booting the
Disk Operating System (DOS) programming.

What happens after that depends on the kind of programming that is included on the
disk. If you are using a newly formatted disk (a procedure described later in this
chapter) or the DOS 3.3 System Master disk, the start-up sequence soon concludes by
showing Applesoft's prompt and cursor symbols-symbols that indicate that the system
is ready to run under BASIC.

Incidentally, should you fail to insert a disk into drive 1 prior to turning on the POWER
switch, the drive unit will run endlessly. The best procedure in that case is to turn off
the POWER switch on the console, insert a properly formatted disk, and turn the
POWER on again.

In those instances where you do not want DOS booted up in the system, make sure
there is no disk in the disk-drive unit, turn on the power and then strike the RESET key
while holding down the CONTROL key. The disk drive will run for a few seconds; and
after

that, you can work with the system without the DOS programming in memory.

Optional Self-Diagnosis

If instructed to do so, the Apple IIe will carry out a series of internal hardware tests,
Once the system is powered up, whether you are using DOS or not, you can invoke
this 20-second internal testing procedure by holding down the OPEN-APPLE key
(located at the left side of the SPACE BAR), depressing the CONTROL key, and striking
the RESET key.

That keyboard operation begins the testing procedure. As long as the Apple is passing
its tests, you will see patterns of highresolution light moving on the screen and a
closing message, KERNAL OK. Any other message or response indicates an internal
hardware program.' You can then start programming after holding down the CONTROL
key while striking the RESET key.

GETTING FAMILIAR WITH IIE KEYBOARD ASSEMBLY

After the Apple IIe is properly started, or initialized, you will see the right-bracket
prompt symbol and the blinking, checkerboard cursor symbol on the screen. In
essence, that means that the system is ready to accept BASIC commands from the
keyboard.

Much of the material that remains in this book deals with the nature of those
commands. The computer is virtually useless without some commands; and unless
those commands are loaded in the form of prescribed programs from cassette tape or
disk, they must come directly from your work at the keyboard.

Most of the keys on the Apple IIe keyboard are identical to those of a conventional
typewriter; and, indeed, they can serve the same general purpose. However, there are
some additional keys that would be irrelevant for ordinary typing operations, but are
quite important for operating a computer.

The RETURN key is perhaps the most-used control key. You must strike that key
whenever you want the computer to execute a command that you have given it in a
typewritten form. When you are ready to execute a BASIC program, for example, you
should type RUN on the keyboard and then strike the RETURN key to get the computer
to read and execute that program.

Of course the keyboard includes 26 keys for the letters of the alphabet. As in the case
of a normal typewriter, you at least have the option of typing them to the screen as
upper- or lower-case characters. Applesoft BASIC, however, accepts commands and
program statements only in the upper-case format. The lowercase letters are reserved
for literal messages that are to be printed to the screen.

The two SHIFT keys serve much the same function as the shift keys on an ordinary
typewriter. If the CAPS LOCK key is locked in its down position, the letters of the
alphabet always appear in an upper-case form, whether you are holding down one of
the SHIFT keys or not. It is the typing mode that is most useful for entering BASIC
commands and programs, because those characters must be entered as upper-case
characters.

HINT: Make a habit of locking down the CAPS LOCK key every time you start up the APPLE IIe system.

Unlock the CAPS LOCK key, however, and the letters will be printed in an upper- or
lower-case form, depending on whether or not you are holding down one of the SHIFT
keys. That mode is the one that most closely resembles the operation of an ordinary
typewriter keyboard: hold down one of the SHIFT keys to print upper-case letters, and
release the SHIFT keys to print lower-case letters.

That CAPS LOCK feature appIIes only to the letters of the alphabet. No matter what
CAPS LOCK mode you are using, you can print the symbols located on the numeric
keys only by holding down one of the SHIFT keys. Striking the #/3 key for example,
prints a 3 if you are not holding down a SHIFT key at the same time. And striking the
#/3 key while holding down one of the SHIFT keys always prints a # to the screen. It
makes no difference whether the CAPS LOCK key is locked down or up.

The ESC and CONTROL keys, in effect, multiply the number of key functions that are
available. Striking the A key without using it in conjunction with the ESC or CONTROL
key simply prints that character onto the screen. That same keystroke takes on
different meanings when it is used with either an ESC or CONTROL function.

Normally, an ESC (spoken as "escape") function is performed

by first striking the ESC key and then striking another key-the A key, for instance.
Throughout this book, an escape sequence is shown as:

ESC/key

where key is some other keystroke. For example, ESC/A literally means: strike the ESC
key, release it, and then strike the A key.

By way of a working example, you can clear the screen and home the cursor by doing
an ESC/@ sequence.

A CONTROL function is performed differently. Instead of using a sequence of
keystrokes, a CONTROL function is enabled by holding down the CONTROL key while
striking some other key. That sort of function is shown in this book as:

CONTROL-key where key is some other designated keystroke. An operation that is
described as CONTROL-A literally means: hold down the CONTROL key while striking
the A key.

Test your understanding of CONTROL operations by doing a CONTROL-G-that beeps
the loudspeaker that is built into the console unit.

NOTE: Some text and programmers prefer the following notation for CONTROL-key operations:

^key

The carat (^) means the same as CONTROL. So the equivalent of a CONTROL-A operation is ^A

The TAB key serves the same function as the corresponding key on a typewriter.
Striking that key jumps the cursor to the next tab stop-stops that are normally set at
intervals of eight columns.

There are four arrow keys located in the lower right-hand corner of the keyboard. The
purpose of these keys is to allow you to move the cursor in their designated directions
on the screen. You will find, however, that the UP-ARROW key does not move the
cursor upward unless it is preceded by an ESC keystroke. The arrow keys have special
significance for on-screen editing as described later in this chapter.

The Apple IIe features two highly unique keys that are marked

with images of an apple. The one at the left side of the SPACE BAR is not shaded, and
it is often called the OPEN-APPLE key. The second apple key, located at the right side
of the SPACE BAR is colored white, and is known as the SOLID-APPLE key.

Depressing the apple keys alone has the same effect as depressing the pushbuttons on
the game paddles. The OPENAPPLE key simulates the pushbutton on game-paddle #0,
and the SOLID-APPLE key simulates the pushbutton on game-paddle #1. The apple
keys serve a different function, however, when they are used in conjunction with a
CONTROL-RESET operation.

Holding down the OPEN-APPLE and CONTROL keys while striking the RESET key
restarts the entire Apple IIe system. The overall action is identical to starting up the
system from scratch by turning on the POWER switch. If a disk drive is installed and a
properly formatted disk is inserted into it, doing the OPEN-APPLE-CONTROL-RESET
operation reboots DOS (and consequently wipes out any BASIC programming that
might be stored in memory at the time).

A SOLID-APPLE-CONTROL-RESET operation invokes the Apple's self-testing sequence
as described earIIer in this chapter. When the KERNEL OK message appears
(hopefully), executing a CONTROL-RESET usually restarts the system for you. If that
fails, perhaps because of the nature of the initialization program on the current disk,
execute the OPEN -APPLE-CONTROL-R ES ET operation.

In spite of the fact that the DELETE key carries a name that seems to be
self-explanatory, it serves no real purpose outside programs that are specifically
written to use it.

CURSOR MOVEMENT AND EDITING FEATURES

Cursor motion and program editing go hand-in-hand. One is virtually useless without
the other. The following discussions first describe some ways to move the cursor to
any desired place on the screen. The discussion then deals with actual editing
procedures.

Moving the Cursor

There are three different ways to go about moving the cursor on the display screen of
an Apple IIe. Two are carryovers from the

earlier Apple II and Apple II+ systems, and the other is new to the Apple IIe. In any
event, all are ESCape functions. That is, an ESC keystroke must precede some other
keystrokes in some fashion.

The A-B-C-D Method - With the Apple in its command mode (prompt and cursor
symbols showing), do an ESC/A keyboard operation: strike the ESC key, immediately
followed by striking the A key. That moves the cursor one column location to the right.
By the same token, ESC/B, ESC/C and ESC/D operations move the cursor one position
to the left, down and up, respectively.

ESC/A moves the cursor one column to the right. ESC/B moves the cursor one column
to the left. ESC/C moves the cursor one line downward. ESC/D moves the cursor one
line upward.

The scheme is handy for moving the cursor just a couple of locations, but it is terribly
awkward for moving the cursor much farther than that.

The I-J-K-M Method - The I-J-K-M method is easier to use in two respects. First, you
only have to strike the ESC key one time in order to enter the cursor-motion mode.
Getting out of that cursor-motion mode is a simple matter of striking the SPACE BAR
one time.

The second advantage is that these cursor-motion keys are selected so that their
physical locations on the keyboard match the direction of motion. Look at the 1, J, K,
and M keys on the keyboard, and you will see that the I key is at the top of the group,
the J key is at the bottom, the K key is to the right of the others, and the J key is to
the left. There is a direct correspondence between these relative locations and the
direction of cursor motion.

After striking the ESC key:

K moves the cursor to the right.
J moves the cursor to the left.
M moves the cursor downward.
I moves the cursor upward.

The auto-repeat feature of the Apple IIe comes in handy here. Strike the ESC key to
initiate this cursor-motion mode, then hold

down one cursor-motion key or the other until the cursor increments to the desired
screen position.

Remember to strike the SPACE BAR to end this operating mode and allow I-J-K-M keys
to print their respective characters once again.

The Arrow-Key Method - Moving the cursor by operating the four arrow keys is
technically identical to the I-J-K-M method, but it is easier to use-the arrows point to
the direction of cursor movement.

You can actually move the cursor to the left, right and downward by striking or holding
down the corresponding arrow key at any time. But if you want to apply the
UP-ARROW key in this fashion, you must first strike the ESC key. Technically, moving
the cursor by working the four arrow keys is regarded as an ESCape operation.

Editing Entire Lines of Programming

The Apple IIe uses some BASIC-programming editing features that are common to
virtually all personal computers: re-entering a whole line of existing programming,
adding a whole new line of programming, and deleting an entire line of programming.

Re-entering a Whole Line of Programming - Suppose that you have already
entered a program that looks like this:

10 FOR N=O TO 9

20 PRINT "GOOD MORNING, MR. PHELPS”

30 NEXT N

But you now decide that you want the message in line 20 to be extensively revised to
read: GOOD AFTERNOON, MY DEAR. Because the revision involves most of the
characters in the line, there is little point in attempting to use live-screen editing
techniques. It is much easier, and equally effective, in this instance to retype the entire
line.

Either execute a HOME command to clear the screen, LIST the program or use the
cursor-motion keys to locate the cursor at a clear place on the screen, and simply
retype the line:

20 PRINT "GOOD AFTERNOON, MY DEAR"

That sort of operation, in effect, tells the computer to type over anything listed as
program line 20. If you want to confirm that the change has indeed taken place, LIST
the program again. You should now see this version:

10 FOR N=O TO 9
20 PRINT “GOOD AFTERNOON, MY DEAR”
30 NEXT N

Retyping any given line of BASIC programming replaces the older version with the new
version.

Adding New Lines of Programming - Adding a new line of BASIC programming is a
matter of typing in the new line, using a line number that will ultimately fix it into the
desired place in the programming. The successful application of this technique
assumes, of course, that your original program was written such that there are line
numbers available between successive lines of programming.

Suppose that a portion of an existing program looks like this:

100 INPUT “ENTER TWO NUMBERS: “;X,Y
110 PRINT X+Y

After testing the routine, however, you decide that it is important to insert an
additional PRINT statement between lines 100 and 110 that offers a somewhat more
meaningful presentation of the results. Perhaps you want the program to look like this:

100 INPUT “ENTER TWO NUMBERS: “; X,Y
102 HOME
104 PRINT “THE SUM OF "X" AND "Y" IS: “;
110 PRINT X+Y

Inserting line 102 and 104 is a simple matter of entering them as new lines of
programming.

If you happen to be in the midst of entering a new line and you change your mind,
doing a CONTROL-X key operation aborts the revision. Alternatively, you can use the
left-arrow key to move the cursor to the first digit in the line number, and then strike
the RETURN key. Or simply strike the RETURN key in the midst of the entry, and then
type the line number and strike the RETURN key.

Deleting an Entire Line - Deleting an entire line of BASIC programming is the
simplest editing procedure of all: just type the line number and strike the RETURN key.

In instances where you might want to delete two or more lines in succession, BASIC's
DEL command can be quite helpful. The general syntax of that command is:

DEL startno, lastno

where startno is the first line number in the group to be deleted, and lastno is the last
line in that group. Thus a command such as:

DEL 120,300

deletes all BASIC programming between lines 120 and 300, inclusively. The two
arguments, startno and lastno, must be line numbers that actually exist in the current
program.

Editing Characters Before Striking RETURN

Most programmers make typing errors or other kinds of entry errors while entering a
line of programming. Correcting such errors before committing the line to RAM by
striking the RETURN key is a rather straightforward procedure.

Suppose that you are in the process of entering a new line of BASIC programming and,
before striking the RETURN key, you find that you've typed one character incorrectly.
All you have to do in that instance is use the arrow keys to position the cursor over the
character that is to be changed, and then overstrike it with the correct character.

You can change any number of characters in that fashion; but when you are done, it is
absolutely necessary that you move the cursor one column beyond the end of the
program line before striking the RETURN key. Otherwise, all text to the right of the
cursor will be lost.

Unfortunately, it is not possible to insert or delete text within a line of programming
prior to striking the RETURN key. Such operations must be handled after the
line-errors and all-has been committed to the system's memory.

Whenever a new line requires extensive insertions or deletions, it is usually simpler to
re-enter it from scratch. The Apple

IIe, however, allows you to make after-the-fact insertions and deletions by using the
ESC-editing features.

ESCape-Editing Techniques

Striking the ESC (ESCape) key allows you to use the arrow keys to position the cursor
without copying any text to program memory. For the purposes of the present
discussion, I am calling this situation the no-copy mode. Once you have moved the
cursor under the no-copy mode, you can return to the normal copy mode by striking
the SPACE BAR. Thus the ESC key, the four arrow keys, and the SPACE BAR can work
together to perform some powerful editing tasks for program lines that have already
been entered into memory.

Although the following instructions might seem rather complicated at first, just bear in
mind that they are all based on the principles just cited. If you understand the
principles, you don't have to memorize the procedures: enter the no-copy mode by
striking the ESC key, and return to the normal copy mode by striking the SPACE BAR.
And as long as the system is in the copy mode, characters falling under the cursor are
copied to the program memory; and in the no-copy mode, characters passing under
the cursor are ignored.

Incidentally, one good way to determine whether or not you are operating in the
no-copy mode is by striking the UP-ARROW key; the cursor responds by moving
upward only when the system is in the no-copy mode.

The general procedure is to LIST the line that is to be edited, enter the no-copy mode
to position the cursor at the beginning of the line (over the first digit in the line
number), then use the copy and no-copy modes to change single characters, insert
new programming, delete some programming, and even copy entire lines of
programming with different line numbers.

Changing Characters - Changing characters within a program line is a rather
straightforward procedure if no insertions or deletions are involved.

• LIST the line to be edited.

• Strike ESC to enter the no-copy mode, and use the arrow keys to position the cursor
over the first digit in the line number.

• Strike the SPACE BAR to return to the normal copy mode.

A. Use the RIGHT-ARROW key to move the cursor to the right and copy text to
memory as it goes along. (If the program line happens to be so long that it wraps
around to the beginning of another line on the screen, you must use the no-copy
mode again as described later.)

B. Position the cursor over the character to be changed, and overstrike it with the
desired character.

C. Use the RIGHT-ARROW key to run the cursor just past the end of the program
line (to make sure it is all copied into memory).

• Strike the RETURN key to mark the end of the line and, indeed, the editing
operation.

You can use steps A and B for overstriking any number of characters in a program line,
moving the cursor to the left or right as necessary. Just remember to run the cursor all
the way past the end of the line before striking RETURN.

If it happens that a program line is so long that it is continued on a lower line on the
screen, you must enter the no-copy mode before moving the cursor to the beginning
of the next screen line. Failing to do that, the spaces that the Apple IIe inserts
between the end of one line and the beginning of the next are copied quite literally
into the edited version of the line.

So when you are editing in the copy mode and reach the end of a screen line, move
one space past the last character, strike the ESC key to enter the no-copy mode, hold
down the RIGHTARROW key until the cursor is positioned over the beginning of that
next screen line, and then return to the normal copy mode by striking the SPACE BAR.

Deleting Segments of a Line - Being able to switch between the copy and the
no-copy modes makes it rather easy to delete sections of a given line of BASIC
programming. The general idea is to use the copy mode and arrow keys to save
sections of the line, and go into the no-copy mode while moving the cursor through
segments that are to be deleted.

• LIST the line to be edited.

• Strike ESC to enter the no-copy mode, and use the arrow keys to position the cursor
over the first digit in the line number.

• Strike the SPACE BAR to return to the normal copy mode.
A. Use the RIGHT-ARROW key to move the cursor to the right and copy text to
memory as it goes along. Be sure to do an ESC/SPACE BAR sequence when you
must drop from the end of one screen line to the beginning of the next.

B. Position the cursor over the first character to be deleted.
• Strike the ESC key to get into the no-copy mode, and use the RIGHT-ARROW key

to move over the text to be deleted; stop when the cursor is one column past the
text to be deleted.

• Strike the SPACE BAR to return to the copy mode, and use the RIGHT-ARROW key
to move and copy the remainder of the line. Again, be sure to enter the no-copy
mode whenever it is necessary to move to the beginning of a lower line on the
screen.

• Strike the RETURN key to mark the end of the program line and the editing
operation for it.

Inserting New Text into a Line - Bearing in mind that you have access to copy and
no-copy modes, the procedure for inserting new characters into a line of BASIC
programming can be mastered with a bit of practice.

• LIST the line to be edited.

• Strike ESC to enter the no-copy mode, and use the arrow keys to position the
cursor over the first digit in the line number.

• Strike the SPACE BAR to return to the normal copy mode.

A. Use the RIGHT-ARROW key to move the cursor to the right and copy text to
memory as it goes along. (Use an ESC/SPACE BAR sequence whenever it is
necessary to drop from the end of one screen line to the beginning of the next.
B. Position the cursor over the place where the insertion is to begin.

• Strike the ESC key to get into the no-copy mode, and use the arrow keys to
position the cursor at a clean section of the screen, or to the beginning of some
text that is to be inserted.

• Strike the SPACE BAR to return to the copy mode, and type the text to be inserted,
or use the RIGHT-ARROW key to move and copy text that might already be printed
on the screen.

• Strike the ESC key to get into the no-copy mode, and use the arrow keys to return
the cursor to the place where the material is to be inserted.

• Strike the SPACE BAR to return to the copy mode, and use the
RIGHT-ARROW key to move and copy the remainder of the line. And as usual, be
sure to enter the no-copy mode whenever it is necessary to move to the beginning of
a lower line on the screen.

• Strike the RETURN key to mark the end of the program line and the editing operation
for it.

Copying Entire Lines of Programming - The ability to copy text material is not
limited to the actual content of BASIC program lines; it applies to the program line
numbers as well. Here is an example of a programming routine that does not have to
be entered in a tedious, character-by-character fashion.

Listing 1-1

10 HOME:PRINT
20 PRINT "SELECT ONE:"
30 PRINT TAB(5) “1 -- START FROM THE BEGINNING
40 PRINT TAB(5) “2 -- START FROM NEAR THE BEGINNING
50 PRINT TAB(5) “3 -- START FROM THE MIDDLE
60 PRINT TAB(5) “4 -- START FROM NEAR THE END
70 PRINT TAB(5) “5 -- FORGET THE WHOLE THING
80 PRINT:INTPUT X

With the help of the copy and no-copy editing feature, you can save a lot of typing for
lines 30 through 70.

As far as this example is concerned, begin by entering line 30. Then strike the ESC key
to get into the no-copy mode, and use the arrow keys to place the cursor over the 3 in
the line number. Strike the SPACE BAR to get into the copy mode, and overstrike the 3
with a 4. Then copy material to the right, overstriking the characters that are to be
changed in order to compose line 40 of the program. Strike the RETURN key when you
reach the end of the line, and then try doing a LIST to prove that lines 30 and 40 both
appear in the program. Repeat that general procedure for the remaining lines that
have that same PRINT format.

You can multiply similar lines of BASIC programming rather quickly with that
technique.

SAVING AND LOADING PROGRAMS FROM CASSETTE
TAPE

An ordinary cassette tape recorder/player that is equipped with a tape-counter
mechanism offers the most economical means for saving and loading BASIC programs
and other kinds of computer information. When saving programs or data by means of
a cassette tape recorder, the Apple IIe converts the information into audio tones that
can be easily recorded on magnetic tape; specifically on the narrow tape in common
audio tape cassettes. And when loading previously saved information, the tape player
reproduces the audio tones, and the computer converts them back into meaningful
computer data for the system's RAM (Random Access Memory).

It is possible, and certainly economically attractive, to save more than one program on
a single cassette. The only problem is being able to find the segment of tape that
contains the desired program. That is the reason for specifying a cassette tape
recorder/player that has a tape-counter on it.

Connecting the Cassette Recorder/Player to the Apple

Two conductor-and-plug assemblies are required to interconnect the Apple IIe with a
standard cassette recorder/player. On the rear, right-hand side of the console are two
subminiature jacks that are labeled with little white arrows. The upwardpointing arrow
indicates the CASSETTE-OUT connection-a connection that is to go to the RECORD IN
jack on the cassette recorder. The downward-pointing arrow indicates the
CASSETTE-IN connection, and it should be connected through a cable to the
EARPHONE jack on the recorder.

If the appropriate cable-and-plug assembly is not supplied with your cassette machine,
equivalent versions are available through most electronics hobby and audio stores.

Adjusting the Cassette Volume Level

Because there are so many different makes and models of cassette recorder/player
machines, it is impossible to specify exactly what volume level is appropriate for
recording and, especially, loading programs from cassette tape. The adjustment has

to be made by trial-and-error, and the best place to start is with a commercially
prepared Apple program tape.

Obtain a commercially prepared Apple program tape (tapes made for the Apple 11 and
Apple II+ work quite well, too), insert it into the tape player and make sure that it is
rewound to the beginning. Set the tape counter to zero, temporarily remove the plug
to the EARPHONE jack, and PLAY the tape until you hear the beginning of a steady
whistling sound. Stop the tape immediately, make a note of the tape-counter reading
for future reference, and re-insert the plug into the EARPHONE jack.

Set the volume control on the cassette machine to a rather low reading, type LOAD at
the keyboard, begin PLAYing the tape and then strike the computer's RETURN key.

If things are going well, you will hear two beeps from the console loudspeaker. The
first indicates that data is being loaded into the computer, and the second signals the
end of the loading procedure. That is the time to turn off the cassette machine. If,
indeed, things happen that way, it means that you have found the correct volume-level
setting. Make a note of that level for future reference.

Changes are quite good, however, that you won't select the correct volume level the
first time. In that case, you might not hear one or either of the beep tones, or perhaps
you will see an error message printed on the screen. If it appears that nothing is
happening after a reasonable length of time, turn off the cassette machine and reset
the Apple by executing a CTRL-RESET operation, followed by a CTRL-B and RETURN.

Set the volume control a bit higher, rewind the tape to the beginning of the program
(as indicated by your earIIer notation of the tape-counter reading), and try the LOAD
command again.

Repeat that procedure, setting the volume control a bit higher each time, until you
either get a successful load as described earIIer or this sort of message:

///SYNTAX ERR(OR)

That message indicates that the computer is receiving data from the tape, but that it is
garbled. In that case, make sure that you are actually starting the tape from the
beginning of the program's leader tone.

Once you can load programs successfully from cassette tape, you can be confident that
the volume level is correct for recording programs.

Saving Programs on Cassette Tape

Saving your own BASIC programs for future use is a vital function for any serious
programmer. And if the storage medium happens to be cassette tape, the procedure is
quite simple (assuming that the volume level on the cassette recorder/player is
properly adjusted as described in the previous discussion). The BASIC command for
saving programs on tape is SAVE.

First, find the end of the last-recorded program on the cassette tape. If you have been
making a note of the tape-counter readings, you should have no difficulty finding that
place. Confirm your selection by temporarily removing the plug from the EARPHONE
jack and listening directly to the tape. If you hear tones, whistles and chirps, you are
not yet at the end of a previously recorded program. A faint hissing sound marks the
blank area.

Assuming that a BASIC program is present in the Apple's memory, note the
tape-counter reading, type SAVE at the keyboard, start the cassette in its record mode,
and then strike the RETURN key to execute the SAVE command.

About 15 seconds later, you should hear a single beep tone from the console
loudspeaker that is followed by an interval of time that is required for loading the
programming, itself. A second beep indicates that the recording task is done. Turn off
the recorder and write down the tape-counter reading for future reference-so that you
will know where to begin recording the next program you want to save.

Loading Programs From Cassette Tape

Assuming that you have already adjusted the cassette recorder/player volume level as
described earIIer, the BASIC command for loading a program from tape is LOAD. In
fact, the recommended procedure for adjusting the volume level incorporates the
program-loading operations.

First, find the beginning of the leader tone for the program you want to load into the
Apple IIe. That is done by consulting your written records of tape-counter readings
and confirming the mat-

ter by temporarily removing the plug from the EARPHONE jack and listening for the
beginning of the steady leader tone.

Once you've found the beginning of the leader tone, reinsert the EARPHONE jack, type
LOAD at the keyboard, start the cassette machine in its playback mode, and then strike
the RETURN key. The first beep from the console loudspeaker signals that the loading
operation is beginning. After some time--when the loading operation is done-you will
hear a second beep tone and see BASIC's prompt and cursor symbols reappear on the
screen. That is the time to turn off the tape recorder and execute a RUN command to
begin running the program.

SAVING AND LOADING PROGRAMS FROM A DISK

The disk operating system is far easier to use than a cassettemachine system. Not only
do the saving and loading operations take place faster, but it is much easier to access
and keep track of the programs,

Formatting a Disk

As mentioned several times earlier in this chapter, the Disk Operating System (DOS)
cannot operate at all without access to a properly formatted disk. The DOS 3.3 diskette
supplied with the Apple IIe product is properly formatted, and it represents the only
means for getting DOS booted and working in instances where a user has no
previously formatted disks available. The purpose of this section is to describe how to
format your own disks for the sake of saving and loading custom programs.

With DOS properly booted, insert a new diskette into disk drive #1. Execute a NEW
command to make sure that no other BASIC programming is in memory, and then
enter this short BASIC program:

10 HOME
20 PRINT " MY DISK #1"
30 PRINT:PRINT "(MAKE CERTAIN THAT CAPS LOCK IS DOWN)"

The exact nature of the program isn't relevant. The only

requirements are that it be written in BASIC and include at least one valid line of
programming.

The next step is the important one. Enter this command from the keyboard:

INIT HELLO

The moment you strike the RETURN key, the disk drive begins running; and it runs for
quite some time. DOS is copying itself to the new disk and setting up the proper sector
and directory format. When the task is completed, BASIC's prompt and cursor symbols
reappear on the screen.

The important command is INIT; the HELLO is simply a name for the DOS-initialization
program that is used almost universally by Apple users. You can name it anything you
wish, however.

Saving Programs on Disk

After you have typed a BASIC program into the Apple IIe, you can save that program
on disk for future use by executing this general command:

SAVE filename

where filename is some name that you've chosen to give the program.

Filenames can be up to 30 characters long. They must begin with a letter of the
alphabet, however, and they must not include commas. It is a good practice to make
up filenames that have some meaning as far as the purpose of the program is
concerned, yet it is wise to keep those names as short as possible. Here are some valid
filenames:

GOODSTUFF V. 1

GAME 41

BETAGEN 10/26/84

So if you want to save a program under the filename such as XODD-1, then the
appropriate command is:

SAVE XODD-1

Saving a program under a filename that already exists on the

disk will cause the new version to write over the old one. There is no warning from the
computer, so make sure that you do not use duplicate filenames; (unless, of course,
you really do want to replace the old version with the new one).

Viewing the Disk Files

Any disk that is properly formatted will contain at least one BASIC program-the
initialization program that Apple users normally name HELLO. Whenever you want to
see that filename and any others that happen to represent programs saved on a disk,
type this simple command:

CATALOG

Having done that, the computer will respond by printing out all of the filenames on the
disk.

Here is a sample of a typical disk CATALOG printout:

DISK VOLUME 254

 A 002 HELLO
 A 006 FUNSTUFF
*A 014 SLICK.1
 I 024 SETUP
 B 004 PRINTIT
 T 024 NAMES 8-8-63

That example shows that there are six different programs, or files, on the current disk.
A single letter, possibly an asterisk, and a 3-digit number precedes each of the file
names. The computer inserts that information; it is not part of the filename.

The letters at the beginning of each catalog listing indicate the type of program or file:

A - Applesoft BASIC program

I - Apple Integer BASIC program

B - Binary, or machine-language, program

T - Data file

An asterisk preceding any of those file-type letters indicates that the file has been
locked so that it cannot be accidentally

erased or changed in any manner. Chapter 7 describes how to lock and unlock files.

The 3-digit numbers indicate the number of disk sectors that are devoted to the
program or file; and, generally speaking, summing those numbers can lead to a figure
that represents the amount of room remaining on the disk. The maximum number of
sectors is 496, so subtracting the sum of the number of sectors for the program from
496 leads to the number of unused sectors.

NOTE: The maximum capacity of a disk is 496 sectors.

There is one catch to this notion of calculating the amount of space remaining on a
disk, however: whenever the number of sectors for a program or file exceeds 255, the
numbering starts over from 0. A very long program or file, then, might show a sector
figure of 10; when, in reality, it occupies 265 sectors.

In any event, the system prevents you from overfilling a disk. Whenever you attempt
to save a new program and there is insufficient disk space, the computer displays a
DISK FULL error message. In that case, you have the option of deleting some files or
programs that you no longer need, or inserting another disk that has sufficient space
remaining on it.

The DISK VOLUME message at the beginning of a CATALOG listing is the volume
number of that particular diskette. Unless you specify otherwise when initializing the
disk, the volume number takes on the largest-allowable value-254.

If you wish to assign a different volume number to a disk, it must be done when that
disk is initialized. The general procedure in that case is to execute a command of this
form:

INIT filename,Vvol

where filename is the name of the initialization program usually HELLO-and vol is the
desired disk-volume number. So executing the following command will initialize a disk
with HELLO, and give it a volume number of 1:

INIT HELLO,V1

Executing the CATALOG command then shows this sort of display:

DISK VOLUME 001
A 002 HELLO

Loading Programs From Disk

Loading a BASIC program into the computer from a disk is a simple matter of
executing this command:

LOAD filename

where filename is the name of a program, either Applesoft or Integer BASIC, that
exists on the current disk. Assuming that the file is found, the computer loads the
program and replaces any other programming that might have been in the system at
the time.

Alternatively, it is sometimes convenient to load programs with this command:

RUN filename

That command not only loads a program called filename, but begins executing it as
well.

If the specified filename is not on the current disk, the computer responds by printing
a FILE NOT FOUND message. And if the program was originally written and saved in
Integer BASIC, and you have not loaded Integer BASIC into the computer, the system
responds by printing LANGUAGE NOT AVAILABLE.

Deleting Disk Files

Erasing a program or file that already exists on a disk is a matter of executing this
command:

DELETE filename

where filename is the name of the program or file to be erased.

If you have previously locked the file, the computer cannot erase the file; instead, it
shows a FILE LOCKED message. The file must be unlocked (Chapter 7) before it can
be deleted.

Summary of Disk Error Messages

Automatically generated disk error messages can be annoying at times, but they exist
to protect the user from taking some potentially devastating mistakes. The following
summary of disk error messages deals only with those that are relevant to the
discussions in this chapter. Chapter 7 extends the list to include errors that can occur
when working with DOS at a more sophisticated level.

LANGUAGE NOT AVAILABLE - This error message appears whenever you attempt
to load a disk program when its language is not available. Applesoft BASIC is always
available, because it is built into the Apple IIe system. Integer BASIC, on the other
hand, must be loaded into the system as a program, itself. So this error does not occur
when loading programs that were originally written and saved in Applesoft BASIC.

Integer BASIC, on the other hand, must be loaded into the system before it can be
used. And the LANGUAGE NOT AVAILABLE error occurs when attempting to load an
Integer BASIC program without having first loaded that language into the system.

WRITE PROTECTED - That error message appears on the screen whenever you
attempt to initialize, write on, delete or otherwise alter the content of a disk that is
mechanically writeprotected.

Most diskettes have a small rectangular slot cut into the righthand side. If that slot
does not exist, or if it is covered with an adhesive tab, the disk is mechanically wr ite-
protected. Removing the tab to expose the slot lets you carry out normal writing
operations.

FILE NOT FOUND - This error occurs when you attempt to load or delete a file and
your specified filename is not found on the disk.

I/0 ERROR - Seeing this error message tells you that the system cannot work with
the current disk at all. Typically, it occurs when the disk-drive door is not properly
closed, and when the current disk is not properly initialized.

SYD_ADMIN_MISC/0093449.01

DISK FULL - This error message appears on the screen whenever you
attempt to save a program or file, and there is insufficient space
remaining on the disk. The options are to make room by deleting some
unnecessary files or to insert a different disk that does have sufficient
space remaining.

FILE LOCKED - This error condition is similar to the WRITE PROTECTED
error, but it applies to selected files rather than the entire disk. A
CATALOG listing of the disk's contents will show an asterisk for files that
are locked in this fashion. See Chapter 7 for further information about
locking and unlocking disk files.

FILE TYPE MISMATCH - The basic Apple IIe system works with four
kinds of files: Applesoft programs (A), Integer BASIC programs (1),
machine-language programs (B), and text/data files (T). A file-type
mismatch occurs when you attempt to load a machinelanguage program
or text/data file as though it were a BASIC program. Or, conversely, the
error occurs when attempting to read a BASIC program as though it were
machine-lan

