
ProDOS 8
#25: Non-Standard Storage Types 1 of 4

Apple II
Technical Notes

Developer Technical Support

®

ProDOS 8
#25: Non-Standard Storage Types

Revised by: Matt Deatherage December 1991
Written by: Matt Deatherage July 1989

This Technical Note discusses storage types for ProDOS files which are not documented in the
ProDOS 8 Technical Reference Manual.

Warning: The information provided in this Note is for the use of disk utility
programs which occasionally must manipulate non-standard files in
unusual situations. ProDOS 8 programs should not create or otherwise
manipulate files with non-standard storage types.

Changes since July 1989: Included new information on storing HFS Finder information in
extended files’ extended key blocks.

Introduction

One of the features of the ProDOS file system is its ability to let ProDOS 8 know when someone
has put a file on the disk that ProDOS 8 can’t access. A file not created by ProDOS 8 can be
identified by the storage_type field. ProDOS 8 creates four different storage types:
seedling files ($1), sapling files ($2), tree files ($3), and directory files ($D). ProDOS 8 also
stores subdirectory headers as storage type $E and volume directory headers as storage type $F.
These are all described in the ProDOS 8 Technical Reference Manual.

Other files may be placed on the disk, and ProDOS 8 can catalog them, rename them, and return
file information about them. However, since it does not know how the information in the files is
stored on the disk, it cannot perform normal file operations on these files, and it returns the
Unsupported Storage Type error instead.

Apple reserves the right to define additional storage types for the extension of the ProDOS file
system in the future. To date, two additional storage types have been defined. Storage type $4
indicates a Pascal area on a ProFile hard disk, and storage type $5 indicates a GS/OS extended
file (data fork and resource fork) as created by the ProDOS FST.

Apple II Technical Notes

ProDOS 8
2 of 4 #25: Non-Standard Storage Types

Storage Type $4

Storage type $4 is used for Apple II Pascal areas on Profile hard disk drives. These files are
created by the Apple Pascal ProFile Manager. Other programs should not create these files, as
Apple II Pascal could freak out.

The Pascal Profile Manager (PPM) creates files which are internally divided into pseudo-
volumes by Apple II Pascal. The files have the name PASCAL.AREA (name length of 10), with
file type $EF. The key_pointer field of the directory entry points to the first block used by
the file, which is the second to last block on the disk. As ProDOS stores files non-contiguously
up from the bottom, PPM creates pseudo-volumes contiguously down from the end of the
ProFile. Blocks_used is 2, and header_pointer is also 2. All other fields in the
directory are set to 0. PPM looks for this entry (starting with the name PASCAL.AREA) to
determine if a ProFile has been initialized for Pascal use.

The file entry for the Pascal area increments the number of files in the ProDOS directory and the
key_pointer for the file points to TOTAL_BLOCKS - 2, or the second to last block on the
disk. When PPM expands or contracts the Pascal area, blocks_used and key_pointer are
updated accordingly. With any access to this entry (such as adding or deleting pseudo-volumes
within PPM), the backup bit is not set (PPM provides a utility to back up the Pascal area).

The Pascal volume directory contains two separate contiguous data structures that specify the
contents of the Pascal area on the Profile. The volume directory occupies two blocks to support
31 pseudo-volumes. It is found at the physical block specified in the ProDOS volume directory
as the value of key_pointer (i.e., it occupies the first block in the area pointed to by this
value).

The first portion of the volume directory is the actual directory for the pseudo-volumes. It is an
array with the following Apple II Pascal declaration:

TYPE RTYPE = (HEADER, REGULAR)

VAR VDIR: ARRAY [0..31] OF
PACKED RECORD

CASE RTYPE OF
HEADER: (PSEUDO_DEVICE_LENGTH:INTEGER;

CUR_NUM_VOLS:INTEGER;
PPM_NAME:STRING[3]);

REGULAR: (START:INTEGER;
DEFAULT_UNIT:0.255
FILLER:0..127
WP:BOOLEAN
OLDDRIVERADDR:INTEGER

END;

The HEADER specifies information about the Pascal area. It specifies the size in blocks in
PSEUDO_DEVICE_LENGTH, the number of currently allocated volumes in CUR_NUM_VOLS,
and a special validity check in PPM_NAME, which is the three-character string PPM. The header
information is accessed via a reference to VDIR[0]. The REGULAR entry specifies information
for each pseudo-volume. START is the starting block address for the pseudo-volume, and
LENGTH is the length of the pseudo-volume in blocks. DEFAULT_UNIT specifies the default

Developer Technical Support December 1991

ProDOS 8
#25: Non-Standard Storage Types 3 of 4

Pascal unit number that this pseudo-volume should be assigned to upon booting the system. This
value is set through the Volume Manager by either the user or an application program, and it
remains valid if it is not released.

If the system is shut down, the pseudo-volume remains assigned and will be active once the
system is rebooted. WP is a Boolean that specifies if the pseudo-volume is write-protected.
OLDDRIVERADDR holds the address of this unit’s (if assigned) previous driver address. It is
used when normal floppy unit numbers are assigned to pseudo-volumes, so when released, the
floppies can be reactivated. Each REGULAR entry is accessed via an index from 1 to 31. This
index value is thus associated with a pseudo-volume. All references to pseudo-volumes in the
Volume Manager are made with these indexes.

Immediately following the VDIR array is an array of description fields for each pseudo-volume:

VDESC: ARRAY [0..31] OF STRING[15]

The description field is used to differentiate pseudo-volumes with the same name. It is set when
the pseudo-volume is created. This array is accessed with the same index as VDIR.

The volume directory does not maintain the names of the pseudo-volumes. These are found in
the directories in each pseudo-volume. When the Volume Manager is activated, it reads each
pseudo-volume directory to construct an array of the pseudo-volume names:

VNAMES: ARRAY [0..31] OF STRING[7]

Each pseudo-volume name is stored here so the Volume Manager can use it in its display of
pseudo-volumes. The name is set when the pseudo-volume is created and can be changed by the
Pascal Filer. The names in this array are accessed via the same index as VDIR. This array is set
up when the Volume Manager is initialized and after there is a delete of a pseudo-volume.
Creating a pseudo-volume will add to the array at the end.

Pascal Pseudo-Volume Format

Each Pascal pseudo-volume is a standard UCSD formatted volume. Blocks 0 and 1 are reserved
for bootstrap loaders (which are irrelevant for pseudo-volumes). The directory for the volume is
in blocks 2 through 5 of the pseudo-volume. When a pseudo-volume is created, the directory for
that pseudo-volume is initialized with the following values:

dfirstblock = 0 first logical block of the volume
dlastblock = 6 first available block after the directory
dvid = name of the volume used in create
deovblk = size of volume specified in create
dnumfiles = 0 no files yet
dloadtime = set to current system date
dlastboot = 0

The Apple II Pascal 1.3 Manual contains the format for the UCSD directory. Files within this
subdirectory are allocated via the standard Pascal I/O routines in a contiguous manner.

Apple II Technical Notes

ProDOS 8
4 of 4 #25: Non-Standard Storage Types

Developer Technical Support December 1991

ProDOS 8
#25: Non-Standard Storage Types 5 of 4

Storage Type $5

Storage type $5 is used by the ProDOS FST in GS/OS to store extended files. The key block of
the file points to an extended key block entry. The extended key block entry contains mini-
directory entries for both the data fork and resource fork of the file. The mini-entry for the data
fork is at offset +000 of the extended key block, and the mini-entry for the resource fork is at
offset +$100 (+256 decimal).

The format for mini-entries is as follows:

storage_type (+000) Byte The standard ProDOS storage type for this fork of the
file. Note that for regular directory entries, the
storage type is the high nibble of a byte that contains
the length of the filename as the low nibble. In mini-
entries, the high nibble is reserved and must be zero,
and the storage type is contained in the low nibble.

key_block (+001) Word The block number of the key block of this fork. This
value and the value of storage_type combine to
determine how to find the data in the file, as
documented in the ProDOS 8 Technical Reference
Manual.

blocks_used (+003) Word The number of blocks used by this fork of the file.
EOF (+005) 3 Bytes Three-byte value (least significant byte stored first)

representing the end-of-file value for this fork of the
file.

Immediately following the mini-entry for the data fork may be up to two eighteen-byte entries,
each with part of the HFS Finder information for this file. The first entry stores the first 16 bytes
of the Finder information, and the second entry stores the second 16 bytes. The format is as
follows:

entry_size (+008) Byte Size of this entry; must be 18 ($12).
entry_type (+009) Byte Type of this entry—1 for FInfo (first 16 bytes of

Finder information), 2 for xFInfo (second 16 bytes).
FInfo (+010) 16 Bytes First sixteen bytes of Finder Info.
entry_size (+026) Byte Size of this entry; must be 18 ($12).
entry_type (+027) Byte Type of this entry—1 for FInfo (first 16 bytes of

Finder information), 2 for xFInfo (second 16 bytes).
xFInfo (+028) 16 Bytes Second sixteen bytes of Finder Info.

Note: Although the ProDOS FST under GS/OS will only create both of the mini-entries,
as described above, the ProDOS File System Manager (ProDOS FSM) for the
Macintosh, which is part of the Apple IIe Card v2.0 software, may create only
one of the entries, so you may find an entry_type of 2 at offset +009 in the
block. If one of the entries is missing, it should be considered to be all zeroes.

All remaining bytes in the extended key block are reserved and must be zero.

Further Reference
• Apple II Pascal ProFile Manager Manual

Apple II Technical Notes

ProDOS 8
6 of 4 #25: Non-Standard Storage Types

• GS/OS Reference
• ProDOS 8 Technical Reference Manual

