
GS/OS
#13: GS/OS Reference Update 1 of 4

Apple II
Technical Notes

Developer Technical Support

®

GS/OS
#13: GS/OS Reference Update
Revised by: Matt Deatherage May 1992
Written by: Matt Deatherage & Dave Lyons November 1990

This Technical Note corrects and updates the Addison-Wesley Apple IIGS GS/OS Reference.
Previous versions from APDA labeled Volume 1 or 2 are obsolete, and should no longer be used.
Changes since December 1991: Added new information about resource_eof and
resource_blocks parameters.

Chapter 4, “Accessing GS/OS Files”

Page 72: The System File Level: How to Protect an Open File From the Application

The class 1 SetLevel and GetLevel calls have a special option that allows you to open a file at
an “internal” file level, so that it cannot be closed by an application making a Close call with
reference number zero at any application level.

GetLevel and SetLevel actually accept two parameters, not just the one parameter (level)
documented in Chapter 7. The second parameter, level_mode, is a Word that controls the
internal range of the file level.

Only two values for level_mode are supported. A value of $8000 is the same as if the
parameter wasn’t present at all—the level calls behave just as documented in GS/OS Reference. A
value of $0000 sets a special “system” or “internal” level—all files opened with an internal level
are unaffected by any non-internal level.

The steps to open a file at an internal file level are:

1. Call GetLevel with pCount=2, level_mode=$0000. Save the returned level.
2. Call SetLevel with pCount=2, level = $0080 and level_mode = $0000.
3. Open a file or files with a class 0 or 1 Open call, or with OpenResourceFile

(OpenResourceFile on System Software 5.0.4 and earlier does not try to
protect your resource files from being accidentally closed by a Close(0)).

4. Call SetLevel with pCount=2, level_mode=$0000, and level = saved
level.

You can use two parameters in all your level calls and set the second level_mode parameter to
$8000 instead of omitting it if it will make writing your program easier.

To close your protected file, simply do a Close with the reference number. There is no need to
fiddle with the file level when closing by reference number.

NDAs should close all their files at or before DeskShutDown time.

Apple II Technical Notes

GS/OS
2 of 4 #13: GS/OS Reference Update

Chapter 6, “Working with System Information”

Page 92: Using the optionList parameter

The optionList parameter resembles a GS/OS output buffer in most important respects—it
starts with a word indicating the size of the buffer, and each FST fills in the size of the actual data
placed in the buffer in the second word. If the buffer is too small to hold the data, the necessary
size is placed in the second word and the FST returns the “buffer too small” error ($004F).

Usually, GS/OS input buffers only have one length word, because if you know how large the data
is (and you do if you’re the one passing it to GS/OS), you don’t need another word telling you the
same thing. However, if you’re trying to copy something like an optionList, you can wind up
in a bit of a pickle. Just because the buffer you’ve allocated is big enough to hold file system-
specific information, that doesn’t mean the information is necessarily present.

A good example of this problem is found in the System Software 6.0 ProDOS FST. In 6.0 and
later, the ProDOS FST will take HFS Finder information (as returned by the AppleShare and HFS
FSTs) in the optionList and place that information in an extended file’s extended key block, so
the file can be copied to and from ProDOS disks with no loss of Macintosh-specific information
(such as the longer file types and creator types necessary to identify Macintosh files). The FST
returns the same information (if present) in the output optionList.

However, previous versions of the ProDOS FST returned no information in the optionList.
Suppose you archived a file and stored the optionList with the file’s information under 5.0, and
attempt to restore the file under 6.0 using a nice, large optionList buffer. The FST can’t know
whether the large buffer contains any information or not.

To remedy this problem, the second word of the optionList structure (reqSize in the figure
on page 92) is now defined on input as well as output. On input, the word must contain the actual
size of the data in the optionList; the first word continues to indicate the size of the entire
buffer. If the buffer size and the actual data size are too small to make sense, any affected FSTs
will ignore the input, knowing that it must be garbage.

Further details on how the ProDOS FST stores HFS Finder information can be found in ProDOS
8 Technical Note #25, “Non-Standard Storage Types.”

Chapter 7, “GS/OS Call Reference”

Pages 98-99: ChangePath

On page 98, the Reference states that a subdirectory may not be moved into itself or into a directory
the first subdirectory already contains. For example, you may not change /v to /v/w or /v/w to
/v/w/x. Although this is correct, the System Software 5.0.x implementations of the ProDOS
FST trash your disk if you try this with ChangePath. Do not try it on disks you want to keep.

On page 99, error $4E is described as “file not destroy-enabled.” No, ChangePath doesn’t
destroy the file. The error should read “file not rename-enabled.”

Page 120: DInfo Characteristics Word

The diagram for the characteristics word in the DInfo parameters has incorrect
descriptions for bits 14 and 13. The diagram says bit 14 is set if the device is a linked device; in

Developer Technical Support May 1992

GS/OS
#13: GS/OS Reference Update 3 of 4

fact, bit 13 is set if the device is a linked device. Bit 14 is set if the device in question has a
generated driver; the bit is clear for loaded drivers.

Page 129: The Character Device Status Word

The diagram on the top of page 129 says that if bit 5 is set, the device is in no-wait mode. This is
incorrect. To determine if a device is in no-wait mode, make the GetWaitStatus subcall
described on page 130.

Bit 5 of the character device status word is set if there are one or more characters waiting to be read
from the device. This is an assistance for developers, since generated character drivers don’t
support no-wait mode.

Page 132: GetFormatOptions Flags Word

The diagram describing the flags word of GetFormatOptions is incorrect. Bits 0 and 1 are
actually the format type, while bits 2 and 3 are the size multiplier. In other words, the two labels are
backwards.

Page 142: Flush

The Flush call, under System Software 5.0.3 and later (GS/OS version 3.3) accepts a maximum
of two parameters. If the second parameter is present, it is the flushType. The flushType
Word specifies the type of flush to be performed. A flushType of $0000 is the standard flush,
where all dirty blocks are written to disk. If flushType is $8000, however, only dirty data
blocks are written to disk. Certain dirty system blocks (blocks that don’t hold file data) may not
be flushed in this fast flush, but volume and file integrity is maintained.

Page 151: GetDirEntry
Page 156: GetFileInfo
Page 176: Open

Each of the above calls has optional resourceEOF and resourceBlocks paramters that are
listed as “undefined” if the file has no resource fork. In System Software 6.0 and later, these
fields are guaranteed to be zero if a given file has no resource fork.

Apple II Technical Notes

GS/OS
4 of 4 #13: GS/OS Reference Update

Appendix A, “GS/OS ProDOS 16 Calls”

Page 386: GetDirEntry buffer description incorrect

On page 386, nameBuffer is described as a pointer to a buffer in which GS/OS returns a Pascal
string containing the name of the file or directory entry (in GetDirEntry). This is incorrect; all
versions of GetDirEntry return GS/OS (word-length) strings for the directory entry.

Further Reference
• GS/OS Reference
• Apple IIGS Technical Note #71, DA Tips and Techniques
• ProDOS 8 Technical Note #25, Non-Standard Storage Types

