
Apple IIe
#4: RDY Line 1 of 6

Apple II
Technical Notes

Developer Technical Support
Apple IIe
#4: RDY Line

Revised by: Glenn A. Baxter November 1988
Written by: Peter Baum July 1984

This Technical Note describes an input signal to the 6502 microprocessor called the RDY line.

Using the RDY Line on the Apple IIe and Apple][+

Though the 6502 was one of the first commercially successful microprocessors sold, the
designers had foresight to include some very useful functions. Because many early peripherals
products were very slow devices, a microprocessor could not read from the device directly. To
connect these slow devices onto the Apple peripheral bus so the 6502 can read data from them
requires either buffering the device or slowing down the processor. Though most people would
try to buffer the device, sometimes it is not feasible. When buffering is not possible, a peripheral
device can pull the RDY line to slow down the processor long enough to read a byte. This
technique can be used by slow devices to communicate with the 6502.

The RDY line allows a peripheral card to halt the microprocessor during read operations
(opcode, operand, or data fetches—reads) with the output address lines reflecting the current
address being fetched. If a peripheral device cannot get data on the bus fast enough to meet the
setup time of the 6502, then the peripheral card can pull the RDY line low and tell the 6502 to
wait. This cannot be done during a 6502 write cycle because the 6502 does not wait during
writes.

For the 6502 to read a valid data byte from a peripheral card, the card has about 800 ns from the
time the addresses are valid to put the data on the bus. The data must be setup on the bus within
approximately 400 ns from the time that the I/O STROBE, I/O SELECT, or DEVICE SELECT
signal on the peripheral slot goes true. If a device pulls the RDY line low for one clock cycle,
the device will have approximately 1.4 µs, instead of the 400 ns, to put out valid data. The RDY
line can be pulled low for more than one cycle—in fact, there is no limit. A device that takes
100 µs to send data can just hold the RDY line low for 100 cycles. Hence, this technique will
allow any slower device to get on the bus and send data to the 6502.

This is a bit different than DMA on the Apple IIs. DMA actually prevents the CPU from
receiving a clock signal, whereas the RDY line is actually a function of the processor. In Apple
II DMA, the 6502 CPU will die after approximately 15 clocks because it depends on the clock to
refresh its internal registers. (The 6502 is dynamic, whereas the 65C02 is static, and therefore

Apple II Technical Notes

2 of 6 Developer Technical Support

not affected by the absence of clock information). In the case of the RDY line, the CPU is
internally told to just not complete its bus cycle until RDY is de-asserted. This is a similar
concept to DTACK on the Motorola 68000 series CPUs.

The RDY line is typically pulled low during PH1, but the specification sheets for the 6502 show
that it can be pulled anytime before the last 200 ns of PH2. The PH2 line is not used by the
Apple II and is an unused output from the 6502. It is basically the same as the PH0 line with a
little delay. Before I explain when to use (or not use, in some cases) the RDY line, let us first
look at some timing diagrams of the Apple system.

Figure 1 shows the relationship between the 6502 and Apple IIe and Apple][+. The timing
specifications have been adjusted to reflect the signals as they are seen from the peripheral slots.
For example the 6502 (1 MHz) specification guarantees that the address bus will be valid within
225 ns from PH2 out. But the peripheral slots do not see these address lines directly. Instead,
the address lines go through a buffer and then out to the peripheral slots. This routing adds a
maximum delay of 13 ns in the Apple][and 18 ns in the Apple IIe. The timing diagrams will
show, in the case of an Apple][, that the address bus will be valid to the peripheral slots within
238 ns (225+13) of the PH2 falling edge.

The major differences in timing between the Apple][+ and the Apple IIe are due to the
processor. The Apple][uses a 1 MHz 6502, while the Apple IIe uses a 6502A, which is a 2
MHz part. This does not mean that the system clock in the Apple IIe runs any faster, only that
the 6502A is capable of running faster. This difference results in better timing margins. For
example, the address and data buses are set up faster in the Apple IIe by the 6502A than the 6502
sets them up in the Apple][. (This was done because the custom chips in the Apple IIe are
slower than the discrete logic in the Apple][, and the 6502A was needed to compensate).

A peripheral card which uses the RDY line can only be used under certain circumstances.
Because pulling the RDY line low halts the processor, any program with a software timing loop
may not work properly. These programs assume that each instruction will take a fixed amount of
time, which is not true when the processor stops in the middle of an instruction. An Apple II
Disk is an example of a peripheral which requires timing loops and may not run properly if the
RDY line is used.

Apple][1 MHz 6502 Apple IIe 2 MHz 6502A
Symbol Minimum Maximum Minimum Maximum
T02- * 15 50+20 (LS08) 15 50+5 (S02)
T02+ * 30 80+15 (LS08) 30 80+5 (S02)
Tads 225+13 (8T97) 140+18 (LS244)
Trwh 30 30
Tdevsel– 96 (3 x LS138) 65 (LS154+LS138)
Tiosel– 64 (2 x LS138) 38 (LS138)
Tiostb– 32 (LS138) 15 (LS10)
Tdevsel+ 18 (LS138) 30 (LS154)
Tiosel+ 36 (2 x LS138) 18 (LS138)
Tiostb+ 18 (LS138) 15 (LS10)
Tdsu 100+17 (8T28)** 50+12 (LS245)

November 1988

Apple IIe
#4: RDY Line 3 of 6

Thr 10 10
Trs *** 200 200

(All times are given in nanoseconds (ns).)
* load = 100 pf.
** The RFI versions of the Apple][+, revisions A through D motherboards, use an 8304

instead an 8T28.
*** The RDY line must never change states within Trs to end of 02.

Table 1–Timing Specifications for Figure 1

Apple II Technical Notes

4 of 6 Developer Technical Support

R/W & ADDR
as seen from slots

* – 02 is an output signal from the 6502 which is not used by the Apple. It is a delayed 0o.

Apple 0o

Apple 01

Q3

02 out of 6502 *

CPU phase

Video phase

T02– T02+ T02–

Tads Trwh

valid addresses

DEVICE SELECT
as seen from slots

Tdevsel– Tdevsel+

I/O SELECT
as seen from slots

I/O STROBE
as seen from slots

Tiosel–

Tiostb–

Tiosel+

Tiostb+

DATA
from slots

valid

Tdsu Thr

Trs

don’t change stateRDY

Figure 1–Timing Signals As Seen From the Peripheral Slots

November 1988

Apple IIe
#4: RDY Line 5 of 6

Table 1 lists three different type of numbers. If a number is by itself, then it is just the
corresponding 6502 or 6502A specification. If a number is followed by parenthesis, then it
represents the delay, produced by TTL gates, between the 6502 and the peripheral slots. The
characters in the parenthesis denote the part number(s) of the part(s) which generated the delay.
These parts are typically 74’ series TTL except for the 8T28 and 8T97. If there are two numbers
in a column with a plus sign (+) then the first number signifies the 6502 specification and the
second the TTL delay, with the corresponding part number. Most of the TTL delay times are
from the Texas Instrument data books. The 6502 specifications are from the Synertek 6502 data
sheet and from Synertek application note AN2 - SY6500.

When the RDY Line Can be Changed and When It Cannot

As can be seen from these figures, the RDY line should not be gated with the PH0 trailing edge
since this happens around the same time as the falling edge of PH2. This would violate the TRS
specification and probably force the 6502 to perform erratically. Gating the RDY line with the
trailing edge of Q3 during PH0 might work, but this could leave as little as 25 ns for the signal to
be valid. In other words, Q3 must enable the RDY line low within 25 ns of Q3 changing states.
If this output cannot be guaranteed stable, then the RDY line might violate the TRS specification.

The safest time to pull the RDY line is using the PH0 rising edge, but this edge occurs before I/O
SELECT, I/O STROBE, or DEVICE SELECT are enabled. Therefore, this scheme will not
work if any of these three enables is used by the peripheral card. For example, many peripheral
cards use memory mapped I/O to transfer data with the cards registers designed to reside in the
DEVICE SELECT memory space. Location $C0n0 (where n = 8 + slot number of peripheral
card) might hold the status of the card, and location $C0n1 might be used to read a device such
as a disk or an A/D converter. The card uses the DEVICE SELECT signal, pin 41 on the slot,
and the four low-order address lines to determine if the 6502 wants to read the status register or
read from the A/D converter. Typically, the status register can put its data on the bus within 200
ns, easily meeting the setup requirements of the 6502. But the A/D converter might take at least
100 µs before it can respond with data. The RDY line must be pulled low to allow time for the
A/D converter to set up the data bus. Notice that the peripheral card does not know that it should
pull the RDY line low until after the DEVICE SELECT signal has gone low. This signal does
not go low until after PH0 goes high, so the PH0 rising edge cannot be used to enable the RDY
line for this peripheral card.

There are a few ways around this problem. One solution would be to decode the $C0n0 address
on the peripheral card and not use DEVICE SELECT. This solution also requires either putting
user-selectable switches on the card for setting the slot number, or making the card slot
dependent. Another solution is to pull the RDY line low using one of the first three edges,
trailing or leading, of the 7 M clock. These edges occur at 70, 140, and 210 ns into PH0 and are
trailing, leading, then trailing edges, respectively. The best solution is to use the DEVICE
SELECT signal to enable the RDY line. Figure 2 should help.

Apple II Technical Notes

6 of 6 Developer Technical Support

7 M

0o

Q3

DEVICE
SELECT

validADDRESS
R/W*

write cycle
don’t pull RDY

6502 halts with addresses &
R/W* line valid here

RDY

Do NOT change RDY line at these times.

Figure 2–Timing Diagram

Do Not Pull RDY During Write Cycles

Because there is no acknowledge response from the 6502, the peripheral card must do some of
its own housekeeping and check if a write cycle is taking place. On write cycles, the 6502 will
not halt, but continue running until the next read cycle. After a slow peripheral pulls the RDY
line and before it tries to get on the bus, it must make sure the 6502 is not in the middle of a write
cycle. Otherwise there will be a bus crash, as both the peripheral card and 6502 try to drive the
bus. One simple way to prevent this bus crash from occurring is to make sure the peripheral card
does not pull the RDY line low during a write cycle. You can guarantee this will not happen by
checking the R/W line when PH0 goes high or DEVICE SELECT goes low. The R/W line is
guaranteed to be stable by this time.

November 1988

Apple IIe
#4: RDY Line 7 of 6

Releasing the RDY Line

When the RDY line is released, the 6502 will continue the cycle that was originally halted and
allow the 6502 to read the data bus. Data will be read on the next trailing edge of PH2 by the
6502, as long as RDY does not change within TRS of the end of PH2. When the peripheral
device has set the data bus up with the correct data, it can release the RDY line to complete the
read cycle. Releasing the RDY line has exactly the same constraints as pulling the line; do not
change RDY within 200 ns of the end of PH2.

The RDY line can be released before data has been set up, if the data will be valid within
specification. This means that RDY can be released in the middle of PH1 if the data bus will be
valid 117 ns before PH2 trailing edge, for the Apple][(62 ns for the Apple IIe).

Slow Writes

Since the 6502 cannot be halted during write cycles, if a device requires longer than one cycle to
receive data then the data must be buffered. Here is an example of how to accomplish this:

7
4
L
S
3
7
4

Data bus to slow peripheral

INXFER

DEVICE SELECT
or
I/O SELECT
or
I/O STROBE

Figure 3–Buffering Data

Note: It is very easy to overrun the slow peripheral using this scheme, since it only
buffers one byte at a time. Do not send data twice to the buffer within the
maximum allowed time between slow peripheral reads.

Further Reference
• Apple IIe Technical Reference Manual

