- Washington Apple Pi π

Volume 2 september 1980 number 9 Highlights

THE SHELL GAMES
 ${ }^{\text {EP }}$
 A REVTEW BY Tom Lucas

In This Issue

```
EVENT QUEUE
```

EVENT QUEUE
SIGNEWS
DOS 3.3 BUGS - VAL GOLDING
EDITORIAL
MINUTES
CLASSIFIEDS
SCROLL DOWN - DANA J. SCHWARTZ
ENCHANCED PAPER TIGER GRAPHICS: A REVIEW - MARK CROSBY
FFT SUBROUTINE FOR THE 6502 - BRUCE F. FIELD 3
GREENAPPLES - ANDY ROSE 12
THE SHELL GAMES: A REVIEW - TOM LUCAS 13
DOS 3.3 AND THE LANGUAGE SYSTEM - HOWARD LEFKOWITZ
14

```

\section*{Computerland and apple II}

\section*{For the best in personal computing}

\section*{SOFTAPE 奉" \(\quad\) Personal Software \({ }^{T m}\)}

\section*{D. C. Hayes Associates, Inc.} MICROCOMPUTER-PRODUGTS

\section*{드TRMMIS}


Mountain Hardware, Inc.

\section*{houston instrument}


\section*{Meuristics}

\section*{A Automated Simulations}

\section*{Computerland}

\section*{OFFICEDS}
\begin{tabular}{|c|c|c|}
\hline Pr & - & 8 \\
\hline Vice President & -Rich Wasserstrom & 703 893-9147 \\
\hline Treasurer & -Bob Peck & 301 468-2305 \\
\hline Secretary & -Dana Schwartz & (301) 725-6281 \\
\hline Members-at-Larg & -Mark Crosby & (202 488-1980 \\
\hline & -Sandy Greenfarb & (301) 674-5982 \\
\hline & -Hersch Pilloff & (301) 292-3100 \\
\hline Editor & - Bernard Urban & (above) \\
\hline Associate Edit & -Rich Wassers & (above) \\
\hline Librarian & -Genevie Urban & 301) 229 -3458 \\
\hline
\end{tabular}

Washington Apple Pi
P. O. Box 34511

Washington D.C. 20034
(301) 468-2305

Membership dues for Washington Apple Pi are \(\$ 12.00\) per calendar year. If you are interested in joining our club, call our number and leave your name and address. An application form will be mailed to you. Or if you prefer, write us at the above PO Box.

\section*{EVENT QUEUE}

Washington Apple Pi meets on the 4th Saturday of each month at 9:30 AM at George Washington University School of Engineering, 23rd and H Streets, NW. Call the Club telephone during the week of the meeting for exact location and agenda.
NOVAPPLE meets on the 2nd Wednesday at 7:30 P:I at Computers Plus in Franconia, and on the 4th Thursday at 7:30 PM at Computerland of Tysons Corner.

\section*{SIG-NEWS}

The special interest group on games, SIGAMES, will hold its meeting at a location to be announced and immediately following the Washington Apple Pi monthly meeting. Sheldon Kramer will give a talk this month on shape tables.

DOS 3.3 BUGS
By Val Golding, CALL A.P.P.L.E.
We have heard from a couple of reliable sources that DOS 3.3 has been withdrawn to repair a couple of bugs, one of which could be major.

DOS 3.3 will run only on a 48 K machine. There may be a problem in writing to random access files. Under certain conditions, it is said, DOS will blow the diskette. The card will be wiped out on in the Language Card will be wiped out on a reboot. The latter problem can be patched by writing directly to disk with an edit utility and changing byte CC of track 0 sector 9 to a 10. Thanks to Dave Holle of "Harvest" (Northwest Suburban Apple Group, Chicago) for this one.

We have no word on when it will be re-released. Apple, Inc. plans to make the correction available to early purchasers through its service centers.

\section*{EDITORIAL}

We're back. Summer has come and gone too soon - oh, too soon... Thanks Rich, Bob, Dave and the rest for an excellent job. Sorry for the problems of changes in meeting places, poor or no air conditioning, etc. Hope this is all past us now....
Many changes are in the wind, some good and some not so good. First the bad. We will have to raise the dues. How much, I don't know yet. The good - strong talk of some sort of merger with maybe three other user groups. This could lead to more frequent and better organized sessions, more and better documented software. We are getting closer to offering a variety of courses. Our SIGs are taking hold.
And our newsletter should improve with more articles and columns, fewer typos and, hopefully, checked-out software listings. Please note the changes in this issue. Thanks to Mark Crosby we will be able to use computer techniques to produce our headings, table of contents, etc. (See his article elsewhere in this issue). While I'm at it, anyone who has ideas on how the newsletter can be improved should see me at the meeting, call or drop a line, please. We should be coming out soon with the Best of Washington Apple Pi for the benefit of our newcomers who don't have all the back issues.
Say, folks, you have no excuse now. You may'have missed the Apple Faire at N. Y. U. last August, but you can make amends by attending the Mid-Atlantic Computer Show. We'll be there! Come see us at Booth 452 and help "person" the table. (If you can spare the time and are willing to commit a time slot, please call me prior to September 18.) We will have the APPLE, some handouts, the cassettes of Woz and Jobs, and the latest issue of the Apple Orchard. We'll take new memberships and orders for disks and the Orchard.

\section*{MINUTES}

\section*{EXECUTIVE BOARD MEETING}

The Executive Board meeting of August 13, 1980, was held at Westat, Inc. in Rockville, and was called to order at 7:30 PM by the 'President.
Washington Apple Pi will be represented at the New York Computer Fair on August 16 by the President. Descriptive material promoting the club was shown in draft form. (In addition to the fair, this material will also be used in our own new member recruitment.) It was moved, seconded and passed that the Club partially reimburse the President for his trip to New York with \(\$ 60\).
It was moved, seconded and passed that the club hire an instructor to teach a Beginning Basic course, charge members a nominal fee, and have the Club make up the difference, if any. The Membership

Chairman was instructed to design a Membership Card for the purpose of discounts at participating local stores. The Treasurer announced he would no longer be able to coordinate group sales for the Club, and the Board will be actively seeking a replacement.

The Board discussed "at great length the question of forming "Chapter" groups which would use the club services and pay dues to our parent organization, but operate independently. This would require amendment of the Club's Constitution and By-Laws. Negotiations will continue this month with officers of NOVAPPLE to determine the proper reimbursement for the Washington Apple Pi services which they currently receive at no charge. The Board is soliciting proposals from interested individuals on these and related matters.

The Board will recommend to the membership that dues be increased in 1981 to \(\$ 18\) per year to cover rapidly rising operational costs.

The meeting was adjourned at 9:45 PM.

\section*{GENERAL MONTHLY MEETING}

The Washington Apple Pi meeting of August 23, 1980 was called to order at \(9: 35\) AM by the Treasurer, with approximately 85 persons in attendance. It was announced that the Club would be sponsoring a class in Beginning Basic, and sufficient interest was shown by the members present.

John Moon unveiled his Apple Bulletin Board System (ABBS) and discussed its usage. The system will be available for WAP members exclusively. Volunteers were requested for the initial testing period.

Some of the membership expressed a desire for more information about Club operations. Motions were passed to republish the Constitution and By-Laws in the newsletter and to have a verbal Treasurer's report at each monthly meeting. Membership Chairman Tom Jones acknowledged that a proposal for the membership list to be distributed to Club members will be published in a forthcoming newsletter.

The meeting was then turned over to Sandy Greenfarb for a review of his recent experiences with the new DOS 3.3.

\section*{Dana J. Schwartz, Secretary}

\section*{CLASSIFIEDS}

For Sale: 48 K APPLE II with AS Card; DOS 3.2 and DOS 3.3; DC Hayes Modem; valuable software (including APPLE WRITER); plus publications and manuals ; \(9^{\prime \prime} B \& W^{\prime} T V\) if needed. Hardware value \(\$ 2694.80\), asking \(\$ 2200\), or make offer. Scooter Conrad, ( 2200 , \(725-6251\) make offer 4 .

The APPLE's Monitor makes it easy for the programmer to add text lines at the bottom of the screen and scroll up the rest of the screen. However, if you want to do the opposite, i.e. add a line at the top of the screen and scroll down the rest, you face a difficult problem.

Recently I have seen Assembly Language subroutines which will scroll downwards, but I have found it inconvenient to develop, and difficult to maintain, a Basic program which contains them (or any Machine Language, for that matter). The subroutine shown below (lines 1000-1040) performs the scroll down function is written entirely in Integer Basic, and is only slightly slower that an Assembler version.

The detailed operation is left as an exercise for the interested student, but note that a 1024-byte buffer must be supplied (low and high address bytes in BL and BH , respectively). In line 10 this buffer is placed just below the program.
It should also be noted that some of the Peripheral Slot Scratchpad RAM locations (see pages 82-83 of the new Reference Manual) are altered by this subroutine.

\section*{SLIST}
iv HL=virit= ?tER (203)-4: \(\mathrm{I}=0\)
© GUSUS 1000: REM GCFOLL DOWN
30 TAB 20-1 MOL 20 : FRINT "*"
: TAE 20+I MOI 20: PRINT "*"
: FEN NEW TOF LINE
\(40 \mathrm{I}=\mathrm{I}+1\) : IF PEEK ( -16384\()<128\)
THEN 20: FEIG REFEAT UNTIL KEYIN
50 POKE -1536590: UTAE 24: ENTI

910 REM *
*
920 REM * SCROLL DOWN *
930 REM * \(*\)
940 REM * BY IIANA J. SCHWAFTZ *
950 REM * *
960 REM * 7/23/30 *
970 REM * \$

1000 FOKE 60,0: FOKE 61:4: FOKE 62.207: POKE 63.7: FOKNE 66, BL: POKE 37 y BH : CALL -468
1010 POKE 60y \(\mathrm{BL}:\) FOKE 61, BH: FOKE 62, \(\mathrm{BL}+119\) : FOKE 33 , \(\mathrm{HH}+3\) : FOKE 66.128: FOKE 67,4: CALL -46S

1020 FOKE 60, BL +128: POKE 61g \(\mathrm{BH}+\) 3: FOKE 62, BL +2O7: FOKE 63. BHT3: FOKE 66940: FOKE 6794 : CALL -468
1030 UTAE 1: TAE 1: CALL -8S8
1040 RETUFN
 Washington/Baltimore area is ready to take place. Make sure you take it in.

Over \(\$ 50\) million worth of software and hardware for business, government, home and personal use will be featured at the new Mid-Atlantic Computer Show in September. Computers from \(\$ 150\) to \(\$ 250,000\), mini and micro computers, dataand word-processing equipment, telecommunications, office machines, peripheral equipment and services will all be on display and for sale right on the spot. All the major names like IBM, Xerox, Radio Shack and Apple will be there. There will be conferences on business uses of small to medium sized computers, and how to make purchasing evaluations.
Plus, robots, computerized video games, computer art and computer music will entertain and educate kids, spouses and people who don't know a program from a memory disk. It's going to be a great show for everyone. Admission for adults is only \(\$ 5\). The public is invited, and no pre-registration is necessary.
Don't miss the coming of the computers. Show up for the show.

\author{
WASHINGTON, D.C. \\ D.C. ARMORY/STARPLEX, THURSDAY-SUNDAY, SEPTEMBER 18-21 \\ 11 A.M. TO 9 P.M. THURS.-SAT., 11 A.M. TO 5 P.M. SUN.
}

\section*{}

\title{
ENHANCED PAPED TIGED GDAPHIOS SOFTWADE
}

A REUTEW BY Mark L, Crosby
If you own an IDS 440 "Paper Tiger" printer and you have a need to dump high-resolution pages 1 or 2 to paper, this is for you!

The original version of this newer, and much more versatile utility, was somewhat difficult to deal with. It requires a machine-language subroutine located at an inconvenient place (just below hi-res page 2). The Basic code required to activate it is also complex and difficult to interface with other Basic programs.

Computer Station of Illinois has really come through by announcing an excellent, and apparently bug-free, nroduct. Here are the particulars:

Usable with all the following interface cards - APPLE Parallel, APPLE Centronics, APPLE Serial, APPLE Communications, California Computers Systems Parallel, California Computers Systems Asynchronous Serial
Two versions of code provide flexibility in program design (either located hi or lo in memory)

A print menu offers various options:
Dump page 1 or page 2
Normal \(\left(43 / 8^{\prime \prime} x^{x} 2^{\prime \prime} 3 / 4^{\prime \prime}\right)\) or expanded ( \(6^{1 / 2 "} \times 53 / 8^{\prime \prime}\) ) print-out dimensions Vertical interleaved dots (or not) to provide solid print-outs in expanded mode
Plot or picture mode (black on white or white on black)
Positioning at left, center, or right of paper
BRUN feature allows dumping without losing current hi-res display or your program

I have successfully interfaced the new software to Applesoft Basic programs in such a way as to bypass the internal pokes set up the desired options and a single call executes the print subroutines directly. When finished, it returns control to the program. All this was done without any modification to their software.

If you purchased the older version, you may now update it for only \(\$ 10.00\). It can be purchased for \(\$ 44.95\) at most local stores or by adding \(\$ 2.00\) shipping and handling and ordering from:

Enhanced Paper Tiger Graphics Software \(\$ 44.95\)
非7541 Applesoft
\#7505 Pascal
COMPUTER STATION
12 CROSSROADS PLAZA
GRANITE CITY, IL 62040
(618) 452-1860

\section*{FFI SURDOUTINE FOD \\ THE 6502 \\ BY Bruce F. Field}

The recent revolution in digital electronics has lead to a switch from analog circuitry to digital circuitry for many signal processing applications. Music and speech analysis are two areas that can now be reasonably pursued by the home experimenter. The basis for the analysis of sampled data is often the determination of the frequency response samples by use of the discrete Fourier transform (DFT). Performing calculations in the frequency domain often allows considerable insight into a problem; as well as permitting discrete-time convolution and hence digital filtering. The DFT became a practical tool in 1965 when Cooley and Tukey published a paper presenting an algorithm for computing the DFT with substantially fewer calculations than were previously required [1]. This algorithm, the fast Fourier transform (FFT), is now an important and popular tool in digital signal processing.

The 6502 machine language program presented here uses the FFT algorithm to compute the discrete Fourier coefficients of a 256 point input series. A discussion of the mechanics of the algorithm, or of Fourier series in general, is beyond the scope of this article. For more information I suggest you consult the references at the end of the article.

This subroutine is more or less a translated version of a program for the 6800 by R. H. Lord [2]. I have used his labels and variable names where possible and have made a few improvements for increased speed, notably in the input data set-up, the pre-transform bit swap, and the multiply routine. I urge you to get a copy of Lord's article for more detailed information.

The input data for the subroutine is a 256 byte block of 8 bit two's complement data which is stored at meniory locations \(\$ 4000\) to \(\$ 40 \mathrm{FF}\) ( \(\$\) indicates a hexadecimal number). After transformation the cosine (or real) coefficients are stored in the table "REAL" from \(\$ 4100\) to \(\$ 41 F F\) and the sine (or imaginary) coefficients are stored in the table "IMAG" from \(\$ 4200\) to \(\$ 42 F F\). The coefficients are stored in straight numerical order, symmetrically reflected
about the center of the table. The first entry in each array represents the dc component of the input. The second entry represents a sine wave with a period equal to the duration of the 256 input samples. Each remaining element represents a multiple of this frequency with the 129th element corresponding to the 128th harmonic. The remainder of the array is symmetric about the 129th element with the 130th element corresponding to the 127 th harmonic, etc. The dc component would be the 257th element and therefore does not reappear and the sign of the imaginary data is reversed in the second half of the array.

All calculations are done in fixed point for greater speed and the data is scaled (divided by 2) as necessary to prevent overflow during the calculations. The number of scaling operations performed is stored in "SCLFCT" (memory location \$B).

I have also included a short Applesoft program to demonstrate how the FFT subroutine works. The program generates an input waveform which is a combination of 3 rd , 5th and 25th order harmonics, and plots the waveform. The FFT subroutine is called and then the magnitude of the transformed data is plotted in bar graph form. The leftmost bar is the dc component, followed by the fundamental, and harmonics up to the 128th. Everything is straightfoward except for line 340 which converts the value of ' \(A\) ' to an 8 bit two's complement number, and lines 530 and 540 which convert ' \(A\) ' and ' \(B\) ' from two's complement to signed magnitude for plotting. After running the program you will notice some small values for other harmonics that should be equal to zero. Since the input components are all exact multiples of the sampling frequency (i.e. 256 samples equal an integral number of signal periods), the residuals are due to roundoff errors. If these errors are not tolerable the only solution is to re-write the subroutine with higher precision numbers (more than 8 bits) and settle for slower operation.

A word of warning, the transform results are correct only when the 256 samples span an exact multiple of the input frequency. If this is not possible, the more periods included in the 256 samples the greater the accuracy will be, but at the expense of restricting the number of harmonics that can be analyzed. The problems of leakage (sampling over a non-integral number of
periods) and aliasing (not sampling at more than twice the highest input frequency) can create serious inaccuracies in the results. Several of the referenced texts deal with these problems rather thoroughly.

Execution time for the FFT subroutine is approximately 1.3 seconds which unfortunately is not fast enough for any real time data processing, but it is at least faster than the 2 or 3 minutes BASIC would take.

I have submitted this program to the club library so hopefully no one will have to type it in, but if you do, note that there is a table of cosine values at \(\$ 4300\) to \(\$ 43 F F\) that must be included. In order to increase the speed of the program these values are stored as signed magnitude binary with the eighth (sign) bit set for negative values.

\section*{REFERENCES}
1. J. W. Cooley and J. W. Tukey, "An algorithm for the machine calculation of complex Fourier series", Math. Comput., vol. 19, pp.297-301, Apr. 1965.
2. R. H. Lord, "Fast Fourier for the 6800", Byte, vol. 4, pp. 108-118, Feb. 1979.
3. S. D. Stearns, Digital Signal Analysis, Hayden Book Co. Inc., Rochell Park. NJ, 1975.
4. L. R. Rabiner and B. Gold, Theory and Applications of Digital Signal Processing, Prentice-Hall, Inc., Englewood NJ, 1975.
5. B. Gold and C. M. Rader, Digital Processing of Signals, McGraw-Hill, New York NY, 1969.
6. G. D. Bergland, "A Guided Tour of the Fast Fourier Transform", IEEE Spectrum, vol. 6, pp. 41-52, July 1969.
7. W. T. Cochran et al., "What is the fast Fourier transform?", IEEE Trans. Audio and Electroacoustics, vol. AU-15, pp. 45-55; June 1967.
8. R. Bracewell, The Fourier Transform and Its Applications, McGraw-Hill, New York NY, 1965.
```

]LOAD FFT TEST
] LIST
100 REM COMPUTES A COMBINATION
llO REM OF 3 SINUSOIDS, 3RD,
120 REM 5TH, AND 25TH HARMONICS
130 REM
140 REM THE PROGRAM THEN
150 REM CALCULATES THE FFT AND
160 REM PLOTS THE MAGNITUDE
170 REM OF THE COEFFICIENTS
175 REM B.F. FIELD MAY }8
180 REM
190 PRINT CHR\$ (4);"BLOAD FFT,A\$4300"
200 HOME
210 W = 3.14l59265 / 128
220 HGR : HCOLOR= 3
230 REM FRAME PLOTTING AREA
240 HPLOT 0,144 TO 255,144 TO 255,16 TO 0,16 TO 0,144
250 HPLOT 0,80 TO 255,80
255 REM WAVEFORM GENERATION
260 DC = 0:A0 = 30:Al = 60:A2 = 15
270 VTAB 24: PRINT "INPUT WAVEFORM"
280 HPLOT 0,80 - DC / 2
290 REM COMPUTE SIGNAL AND PLOT
300 FOR I = O TO 255
310 WI = W * I
320 A = DC + AO * SIN (3 * WI) + Al * SIN (5 * WI) + A2 * SIN
(25 * WI)
330 HPLOT TO I,80 - A / 2
340 IF A < O THEN A = 256 + A
345 REM STORE DATA IN INPUT ARRAY
350 POKE l6384 + I, INT (A + .5)
360 NEXT I
370 REM CALL FFT SUBROUTINE
380 PRINT : PRINT : PRINT "CALCULATING FFT"
390 CALL 17408
400 PRINT : PRINT : PRINT " FREQUENCY SPECTRUM - MAGNITUDE"
410 REM PLOT MAGNITUDE OF
4 2 0 ~ R E M ~ C O E F F I C I E N T S ~
430 HGR
440 HPLOT 9,130 TO 267,130 TO 267,2 TO 9,2 TO 9,130
450 FOR I = 130 TO 10 STEP - 10
460 HPLOT 3,I TO 7,I: NEXT
470 FOR I = 0 TO 128
480 M = I + l6896: REM IMAG
490 REM GET REAL AND IMAG PART
500 REM CONVERT 2'S COMPLEMENT
510 REM TO SIGNED MAGNITUDE
520 A = PEEK (M):B = PEEK (M - 256)
530 IF B > 127 THEN B = B - 256
540 IF A > 127 THEN A = A - 256
550 A = SQR (A * A + B * B)
560 K = I * 2 + 10
570 HPLOT K,130 TO K,130 - A
5 8 0 ~ N E X T
590 END

```

LOAD FFT.SRC

\section*{: ASM}





STA PAIRCT
CLC
LDA PTRM
ADC CELDIS COMPUTE PTRN
STA PTRN
LDX SINPT
LDA SINE,X
STA COSA
LDA SINE+64,X
STA SINA
LDX PTRN
STA MCD ,. SAVE SIN FOR MPY
LDA REAL,X GET RN
JSR MPY
STA TIMAG
LDA COSA
STA MCD
LDA REAL,X
JSR MPY
STA TREAL
LDA SINA
STA MCD
LDA IMAG,X
JSR MPY
CLC
RN*SIN(A)
SAVE IT
GET COS
SAVE FOR MPY
GET RN
RN* \(\operatorname{COS}(A)\)

GET SIN
SAVE IT
GET IN
IN*SIN(A)
contd.



\begin{tabular}{llllll} 
INPUT & 4000 & REAL & 4100 & IMAG & 4200 \\
SINE & 4300 & MCD & 0006 & MPR & 0008 \\
RES & 0009 & SCLFCT & 000 B & CELNUM & 000 C \\
DELTA & 000 D & PAIRNM & 000 E & PAIRCT & 000 F \\
CELDIS & 0010 & CELCT & 0011 & PTRM & 0012 \\
PTRN & 0013 & SINPT & 0014 & SINA & 0015 \\
COSA & 0016 & TREAL & 0017 & TIMAG & 0018 \\
TM & 0019 & BITREV & 4404 & BRV1 & 4408 \\
BRV2 & 4429 & PASS1 & 4431 & NPASS & 4459 \\
NCELL & 4466 & NC1 & \(446 E\) & NXTCEL & \(44 F 7\) \\
NP1 & 4505 & DONE & 4512 & SCALE & 4515 \\
SCL1 & 4517 & SCL11 & 4522 & SCL12 & 4526 \\
SCL13 & 4531 & SCL14 & 4535 & SCL2 & 4539 \\
SCL3 & \(453 D\) & SCL4 & 4544 & SCL5 & \(454 F\) \\
MPY & 4557 & NEXT & 4575 & SHIFT & 4586 \\
PLUS & \(459 A\) & & & &
\end{tabular}
:

Bill Budge's Space Album
This disk is one of the best that I have ever seen. It contains four programs, all of which are top notch. a) Asteroids

This program is based on the Asteroids game in the arcades. It has a triangular ship in the center that shoots passing asteroids. To fire you press the Paddle 0 button and to aim you turn Paddle 0. The game keeps a high-score, and has four levels of play.
b) Death Star

In this game the object is to fly through a trench, blasting T.I.E. fighters and laser turrets, and drop a bomb down the reactor vent. This game is very challenging and takes a long time to master. While you are flying down the trench, you must dodge enemy fire, avoid hitting the trench walls, and shoot at other ships, or you will be destroyed.
This game has only one level of play (hard) and keeps a high-score.

\section*{c) Tailgunner}

\section*{GDEENAPPLES Ey Andy Rose}

AND SOFTWARE THAT MAKES YOU SMILE
Software Reviews
Hilderness Campaign
from Synergystic Sof tware
This program is an adventure game situated on a hi-res board. The board has mountains, swamps, deserts, jungles, plains and badlands. The location of these terrains are set. The board also contains randomly placed temples, tombs, castles, towns and ruins. The primary object of the game is to build up an army of 50 to 70 men who are fully equipped, and to take over the evil Necromancer's castle. The secondary objective is to get rich and become well equipped. You do this by fighting monsters, getting gold and buying armor and weapons. You can also gain magical items (one powerful item is needed to attack the Necromancer's castle). You can also get caught in avalanches, sandstorms, pit traps, poison vapor, etc. You need certain things to survive and travel, i.e., food, torches, \(15^{\prime}\) planks, canteens, machetes, etc. Everything in this games is based around gold quadroons-1 quadroon to 100 coppers, 1 gold to 10 silvers.

The only flaw that I found in the whole game is that the number of mules and men you can have to carry weight is limited by line 50 in the program. (Line 50 states that men can carry 200 and mules can carry 1000 lbs. If this number of men and mules goes over 32767, then an error occurs.) One especially nice, thing about the program is that if you press 'reset \({ }^{\text { }}\) instead of 'return' you can restart the program by a GOTO 10 without losing your place in the game. Overall, I think that this game is top of the line and you won't become bored (unless you cheat!).

You are a tailgunner in the back of a cargoship trying to make its galactic run without being destroyed by space pirates. You have to destroy the hostile crafts before they pass you or else you have to jump into hyperspace. You better shoot good, because the ship can only stand ten jumps! This game has the best graphics of all tour games, has two levels of play, and keeps a high-score. d) Solar Shootout

In this two person game, you fly around the sun trying to blow the other person to the cosmos. You go faster or slower by going closer to or farther from the sun. This game involves strategy and action all in one.
All of these games use paddles, have sound, and are top quality. WARNING! If you play these games for a while, you'll notice that your finger starts to hurt. Wear protective clothing!

PROGRAMMER OF THE MONTH (A new column)

Did you just buy some software that you really liked and would like to recognize the author. Now you can!!. Just write down your first, second and third choices for Programmer of the Month on a postcard or letter and send to:
\[
\begin{aligned}
& \text { P.0.T.M. M. } \\
& 5455 \text { Wingsborne Ct. } \\
& \text { Columbia, MD } 21045
\end{aligned}
\]

If the program that you like doesn't have an author, then write the name of the company.

\section*{THE SHELL GAMES} BY Eruce Tognazzini A REUTEW BY Tom Lucs.s

Why is the peanut not a nut? When did the first nuclear reaction go critical? Who is Lamont Cranston? What do you call a group of apes? The answers to these questions and more can be found in THE SHELL GAMES.

THE SHELL GAMES turn your APPLE into a teaching machine. When you buy this program, you get a user manual and six programs on a disk, arranged to call one another in the following manner:


When the disk is booted, the HELLO program automatically runs THE ANIMATED APPLE. This is a Lo-Res cartoon which shows an apple tree bud, blossom, and grow an apple. The apple ripens into the APPLE logo, and fails to the ground, welcoming you to THE SHELL GAMES.
The INDEX program is run next. It is a menu to the three educational programs on this disk: THE MATCH MACHINE (a matching quiz), PROFESSOR TRUE (a true/false quiz), and MR. MULTIPLE (a multiple choice quiz).
The three educational programs take the form of problem shells in which the user can easily enter his own data. Each program shares the same anatomy which includes a PROBLEM ENTRY EDITOR. This is used to add, delete, or edit problems. All of the scoring, rewards, editing and other mechanics of presenting the problems are programmed around the problem shells.

\section*{THE SHELL GAMES}

THE MATCH MACHINE comes with 15 separate match problems. Each problem lists a column of one to ten words and scrambles a list of match words. The quiz allows for multiple right answers and words that have no match. Some of the matching quizzes that are included are Sports Superstars, The Inventors, and Animal Groups.

PROFESSOR TRUE comes as a series of true/false problems on American History. After each problem there is an explanation of the answer and a little more background information. PROFESSOR TRUE is designed for very young players. There are lots of lights, sounds and rewards for making a
correct selection. By the very nature of
a rrue/raise quiz snere are only two
possible answers, so the very young student can easily play PROFESSOR TRUE.
MR. MULTIPLE comes as a series of multiple choice problems on little known facts and folklore. Like PROFESSOR TRUE, after you select the correct answer, there is an explanation and more background information. After playing MR. MULTIPLE you'il know what the fastest animal in the world is and the name of the longest running TV series.

\section*{DESIGN PHILOSOPHY}

Although THE SHELL GAMES are structured as a series of problems, they are not really meant to quiz but to teach. The "backward" structure of question then information is designed to first spark your interest in the topic, and then teach you about the subject. There is no penalty for missing questions, only rewards for a correct response. At the end of the game you are encouraged to go back and retake missed questions.
THE PROBLEM ENTRY EDITOR
The PROBLEM ENTRY EDITOR is used to build new quizzes. By LOADing one of the shell games and typing "RUN2" you will enter the PROBLEM ENTRY EDITOR. From here, you can easily change all or part of any problem or add new problems. The editor was designed so that anyone with about ten hours experience with the APPLE computer can use it. The teacher or the student can use the PROBLEM ENTRY EDITOR. A very sophicticated lesson does not require a sophisticated programmer. If the student constructs his own lesson, he will save time for the teacher, learn about computers, and automatically learn the quiz material.
Another feature of each shell game is a series of switches. By setting or unsetting these switches, the user can customize the shell game to his own particular need. For example, you can adjust the amount of encouragement or amount of reward by changing the value of two switches. You can also force the student to retake all missed questions by setting one switch. The program will check these switches and even change the instructions to coincide with the setting of the switches.

\section*{CONCLUSION}

THE SHELL GAMES are a very good way to put your APPLE to work as a teaching machine. I found the instruction manual very complete and the programs very easy to use. Designing a well thought-out quiz is a difficult job, but with the shell games programs, it is easy to enter and edit your quizzes.

\title{
DOS 3. 3 AND THE LANGUAGE SYSTEM * Howard Lefkowitz
}

After several phone calls to Apple, Inc., I believe I have resolved the question raised in the August 1980 Apple Pi NEWSIG Notes column about the compatability of DOS 3.3 with the PASCAL System.
1. PASCAL uses 16 sector disks and the Language System provides the P5A and the P6A PROMS needed. These PROMS are identical to those provided with a DOS 3.3 package.
2. The disk named "BASICS" provided with the Language System is used to boot DOS 3.2.1 and also boot the Basic language which is not in ROM in your computer (Integer or Applesoft).
3. The disk named "BASICS" which you receive with the DOS 3.3 package is identical to the one in the Language System.
4. If you do not have the Language System the "BASICS" disk simply boots DOS 3.2 .1 and allows you to run disks of this type.
5. The DOS 3.3 disk, supplied with this package, provides the 3.3 system. If you have a Language System this disk boots 3 and ALSO boots the Basic language nich is not in ROM into your language card.

To summarize - If you have a Language System:

> For DOS 3.2 .1 Boot the "BASICS" disk. For DOS 3.3 Boot the "DOS 3.3 disk. disk. For PASCAL Follow the instructions

\section*{Reprinted from the Apple Cart}

I know that there are a lot of you out there who, like me, have the Pascal Language System and who, like me, would like to use lower case. Well, here is one solution provided free courtesy of Peripherals Unlimited:
(* Plogram to modify the Bios Modules \({ }^{+}\))
(* Fo work with Dan Paymar's lower case adapter*)
(* Developed and tested by Craig Vaughan*)
(* Copyright waived*)

\section*{PROGRAM LC UPDATE; \\ VAR}

BLK: PACKED ARRAY \(10 \ldots 511\) ] OF \(0 . .255\); (* BLOCK TO HOLD BIOS CODE*)
BLT. (" \(\#\) OF BLKS TRANSFERRED*)
BLN: INTEGER; (*BLOCK \(\#\) TO READ < \(4>\) *)
S: FILE; (* FILE ID*)
SRC : STRING; (* FILENAME*)

\section*{BEGIN}

SRC : = ‘SVSTEM.APPLE'; (* FILE CONTAINING BIOS ")
RESET (S,SRC): (* OPEN IT*)
BLN: = 4; (*READ BLOCK H4*)
BLT : = BLOCKREAD(S,BLK, 1,BLN); (*READ IT*)
BLK [232]: = 234; (* NOP CASE CONVERSION*)
BLK [233] : = 234; (*"""")
BLK (235) : = 127; (* CHANGE CHARACTER MASK*)
BLT: = BLOCKWRITE (S,BLK,] ,BLN); (*WRITE IT BACK OUT*)
CLOSE (S.LOCK): (*CLOSE AND LOCK IT*)


Preamble: We the members of Washington Apple Pi do organize for mutual learning and education.

\section*{CONSTITUTION:}

Article I. Name.
Section 1. We shall be known as Washington Apple Pi.
Article II. Officers; Duties of Officers.
Section 1. The Executive Board of Washington Apple Pi shall consist of a President, Vice-president, Secretary, Treasurer and three at-large members.
Section 2. President shall:
a. Preside at meetings.
b. Appoint an Editor and/or Librarian.
c. Call extra meetings, appoint committees not otherwise provided for, and fill committee and protem vacancies with the consent of the Executive Board
d. Oversee the efforts of the appointments.
e. Perform such other duties as the office may require.
f. Perform the duties of the Vice-president in the latter's absence.

Section 3. Vice-president shall:
a. Perform the duties of the President in the absence of that officer.
b. Perform the function of Administrative Assistant.
c. Oversee and coordinate the efforts of all committees.

Section 4. Secretary shall:
a. Keep the minutes of all business meetings.
b. Maintain an up-to-date roster of members.
c. Maintain the correspondence.

Section 5. Treasurer shall:
a. Keep an accurate account of all financial transactions of the organization.
b. Be responsible for all funds of the organization, receive and disburse all money, subject to the will of the other elected officers.
c. Disbursements over \(\$ 25\) shall be made only by check. Disbursements over \(\$ 5\) shall be supported by voucher or receipt. At such time that the funds of the organization exceed \(\$ 5\), a checking account shall be set up and no check shall be honored by the bank unless signed by the Treasurer, such signature to be countersigned by the President or one other elected officer of the organization.
d. Prepare and present an annual budget report and forecast. This shall be at the June meeting or as otherwise specified or directed by the President. Article III. Meetings.

Section 1. Regular meetings shall be scheduled as set and approved by vote of the membership.
Section 2. Special meetings may be called at any time as provided for in Article II, Section 2, paragraph c, with at least one week's notice.
Article IV. Amendments.
Section 1. This constitution and by-laws may be amended by the submission in writing of a proposed amendment at any regular or special meeting of the organization; the proposal shall be received and acted upon at the next succeeding regular meeting of the organization at which there shall be a quorum present, providing Article IV, Section 3, shall not be violated.

Section 2. Amendments may be acted upon at the announced meeting or by mail ballot at the choice of the President. A two-thirds majority of the members present at the meeting or responding by mail ballot shall be required to adopt or reject the amendment.
Section 3. Written notice of the meeting containing the proposed amendment shall be given two weeks prior to the meeting at which the amendment is voted upon.
BY-LAWS:
Article I. Membership.
Section 1. Membership shall be open to all without regard to race, creed, color, sex, age, national origin, or sexual preference.
Section 2. Dues shall be set and approved by vote of the membership. Membership in this organization by one member of a household may include all members of that household as one member.
Section 3. The dues year shall run from June 1 to May 31. Dues paid after March 1 shall be for the following year.
Article II. Quorum.
Section 1. A quorum exists in the presence of the lesser of 15 members or 50 percent of the roster of members.
Article III. Election of Officers.
Section 1. The offices of the Executive Board shall be filled by election at the first regular meeting in May. They shall take office on June 1.
Section 2. Nominations for officers of the organization shall be submitted at the first regular meeting in April. The nominations will be received from the floor, or by mail prior to the April meeting.
Section 3. No member is eligible to hold more than one elective office within this organization at one time.
Section 4. All elections shall be by secret ballot; a simple majority of the votes cast is required for election.
Section 5. Special elections in the event of office vacancies may be held at any time by acclamation from the members present.
Article IV. General Provisions.
Section 1. Property or equipment purchased by this organization with the organizations's funds shall not be considered the property of any individual member or group of members, but shall be known as Club property.
a. In the event of Washington Apple Pi disbanding, Club property and funds shall be disbursed in a manner agreeable to twothirds of the remaining members.
Section 2. Acquistion of any property, real, personal or interest therein, in excess of \(\$ 100\) valuation shall receive prior approval by the membership.
Section 3. The fiscal year shall be from June 1 to May 31. All budgeting and financial accounting shall be rendered on this basis.
Article V. Activation of the Constitution and By-Laws.
Section 1. This constitution and by-laws shall be made to become in effect upon the endorsement of at least 10 charter members.
Section 2. Upon activation, offices shall be filled under provisions of By-Laws Article III, Section 5.

(line copy only - no half-tones or colors)

Washington Apple Pi now has a program library, and disks are available for purchase by anyone. The price to members is \(\$ 5.00\) per disk and \(\$ 8.00\) to non-members. These disks are chock full of exceptional programs - the utilities are especially useful. The games are some of the best - not just simple and uninteresting ones. You may pick them up at any meeting or have them mailed for \(\$ 2.00\) per disk additional. They will come in a protective foam diskette mailer.

Also available for purchase by members at a discount price is the new APPLE II REFERENCE MANUAL (replaces the Red Reference Manual). The price of this manual is \(\$ 17.00\). You may pick it up at a meeting or have it mailed to you at no extra charge.
1. New APPLE II REFERENCE MANUAL - \(\$ 17.00\) each
2. PROGRAM DISKETTES

Members: \(\quad \$ 5.00\) picked up at meeting \(\$ 7.00\) mailed to you...

Non-members: \(\$ 8.00\) per disk picked up at meeting \(\$ 10.00\) mailed to you...
\begin{tabular}{|c|c|c|}
\hline Volume & 1 & Utilities I \\
\hline Volume & 2 & Utilities II \\
\hline Volume & 3 & Games I \\
\hline Volume & 4 & Games II \\
\hline Volume & 5 & Games III \\
\hline Volume & 6 & Games IV \\
\hline Volume & 7 & Games V \\
\hline Volume & 8 & Utilities III \\
\hline Volume & 9 & Educational I \\
\hline Volume & 10 & Math/Science \\
\hline Volume & 11 & Graphics I \\
\hline Volume & 12 & Games VI \\
\hline Volume & 13 & Games \\
\hline Volume & 14 & IAC Utilities IV \\
\hline Volume & 15 & Games VII \\
\hline Volume & 16 & Utilities V \\
\hline Volume & 17 & Graphics II \\
\hline Volume & 18 & Educational II \\
\hline Volume & 19 & Commumications \\
\hline Volume Volume & \[
\begin{aligned}
& 20 \\
& 21
\end{aligned}
\] & Music Apple Orc \\
\hline
\end{tabular}


Vol. 181 required with these disks.```

