Warhington Apple Pi 3

Volume 2 november 1980 number 11 Highlights

CORNER
HARDWARE CORNER
a sound generator for the APPLE II
IDS-460 Impact PrinterApple FORTRANComputerized GardenPlanner
In This Issue
Page
MEMBERSHIP INFORMATION, EVENT QUEUE, EDITORIAL 1
MINUTES, SIG-NEWS, CLASSIFIEDS 2
WASHINGTON APPLE DIGESTDOS 3.3 AND THE LANGUAGE SYSTEM - HOWARD LEFKOWITZNYBBLESQUESTIONS, QUESTIONS, QUESTIONS - MARK L. CROSBY3
4
MEMORY MAP IN APPLESOFT - MARK L. CROSBY 5
GREENAPPLES: A REVIEW OF LIBRARY DISK 30 - ERIC AND GREG URBAN 7
HARDWARE CORNER: A SOUND GENERATOR FOR THE APPLE II - SUSAN ZAKAR 8
IDS-460 IMPACT PRINTER: A REVIEW - MARK L. CROSBY 12
PRETTYLISTING - PAUL A. SAND 13
SIG FOR EDUCATION - CHARLES C. PHILIPP 15
APPLE FORTRAN: A REVIEW - PAUL A. SAND 16
COMPUTERIZED GARDEN PLANNER - FRED P. SHARP 19
WISHING WELL CODER - HOWIE MITCHELL 23
AIDS TO FORMATTING REM STATEMENTS - HOWIE MITCHELL 25
THE DISAPPEARING ACT - JOSE M. SANCHEZ 28
INTELLIGENT 8O-COLUMN VIDEO INTERFACE (SMARTERM)-HOWARD LEFKOWITZ 28
LETTER TO THE EDITOR - STEPHEN BACH 29
REPLY TO LETTER TO THE EDITOR - SANDY GREENFARB 29
INTERFACE WITH YOUR OWN LITTLE COMPUTER: A REPRINT
30
30
FLAVORS: LITTLE TIDBITS - BURTON S. CHAMBERS, III 32
TO B** OR NOT TO B**(TESTING THE 6502 COMPARE INSTRUCTIONS) - SANDY GREENFARB33

Compulerland

We know small computers.

ComputerLand/Tysons Corner
8411 Old Courthouse Road at Rt. 123

EDITORIAL

OFFICERS \& STAFF

	-	$(301) 2$
ce Presid	-Rich Wasserstrom	(703)
Treasurer	-Bob Peck	(301)
Secretary	-Dana Sc	(301) 6
		(202) 48
	-Sandy Greenfarb	(301) 674-5982
	-Hersch Pilloff	(301) 292-3100
ditar	- Bernard Urban	(above
sociate	Rich Wasserstr	above)
	d	
ibr	-David M	1) 972-4

> Washington Apple Pi
> P. O. Box 34511
> Washington D. 20034
> $(301) 468-2305$

ABBS (301) 983-9317
Membership dues for Washington Apple Pi will be changing for the calendar year beginning January 1981. The Executive Board plans to recommend an increase, but this is subject to approval by the membership. Renewal information will be included in the December Newsletter. It is suggested that new applicants start their membership with the new year. A revised membership form will be included in the December Newsletter. You may also request a membership form by calling our club phone and leaving a message with your name and address or by writing us at the above address.

EVENT QUEUE

Washington Apple Pi meets on the 4 th Saturday of each month at $9: 30$ AM at George Washington University, usually in Building C, on G Street at 23 rd, NW. (To be sure cail the club phone during meeting week.) The November meeting will be on the 22nd, and the program will be given by Steve Milner and Chuck Philipp on educational applications.
Looking ahead, the December meeting will feature a program on the 280 Card, given by Dave Neumann. Since the 4 th Saturday of December falls within the holidays, the date of the meeting will be December 20 (the 3rd Saturday.)
Looking even further ahead, the plans for the January meeting include a program by Tom Woteki (Dr. Wo).

The Executive Board meets on the 2nd Wednesday evening of each month. All members are welcome to attend. Call the President (229-3458) for specifics.
NOVAPPLE meets on the 2nd Saturday of the month at 1:00 PM at Kings Park Library on Burke Lake Road in Fairfaix County. The December meeting will be on December 13.

Folks, please think on this. We have reached a point where some hard choices need to be made. I am using the editorial column to convey these matters to our entire membership and I shall be requesting membership approval at our November or December meeting.

1. I have long felt it desirable to have one Apple Users Club for the greater Washington D.C. and Baltimore areas (or affiliated chapters of a Ma's Apple Pi).
However, I have come to the conclusion that this has been and continues to be too difficult to accomplish and that such an organization would be faced with too many logistical, political and administrative problems. Therefore, I am proposing that beginning in January Washington Apple Pi would be an Apple Users Group whose members are individuals, families and corporate entities with. currently paid up membership dues. These members would be entitled to fuil benefits, present and future. As such I propose that all other organizations or individuals be treated as non-members for purposes of purchasing the newsletters, software or documentation, or gaining equal access to such services as computer courses or group purchases. This does not preclude possibilities for our co-sponsoring workshops, conferences, or ABBS systems with other groups in the area or elsewhere. Nor does this preclude atttendance by non-members at our monthly meetings at GWU. We would cooperate to the fullest extent with the principals of each Users Group to establish equitable exchange procedures and reciprocal agreements.
2. It is my understanding that many of our members currently own modems. I therefore propose that we purchase an APPLE II with appropriate peripherals, including an originate and answer modem, for installation in a current member's home together with a dedicated phone line for use as WAP's official ABBS. Whereas John Moon has assumed this responsibility to date, I propose that he be appointed to run this service as prescribed by rules to be established by the Board.
3. I propose that the Constitution and By-laws be changed to clarify and refine those portions which pertain to certain of the financial dealings of the group, e.g. purchase vs acquisition. Further, I propose that we include a section which prohibits the President of WAP from serving more than two consecutive terms.
4. Pursuant to the consensus of the members at the October 25 meeting, the Board has established a finance and organization committee. This committee will develop recommendations on the appropriate legal form of club organization, revised Constitution and By-laws provisions, and a proposed 1981 budget. This budget will enable careful board review of the dues increase that has been discussed at previous general meetings. All of these matters will be presented to the membership at the November or December meeting for approval or revision.

In addition to the foregoing, I propose that you consider the following items:
a. A Greenapples SIG for our youngsters.
b. An official and active WAP hotline to augment the ABBS.
c. An orientation workshop for newcomers to WAP (to be given to 10 or more new members at a time).
d. A library of exchange newsletters, magazines, APnotes, information on hardware and software, etc.
e. Creation of other SIGs as interest becomes apparent, e.g. EDSIG, MEDSIG.
f. Courses on the APPLE II, both through self-instruction software rented to members for use in the home and at the University of Maryland and elsewhere.
g. Better software documentation!
h. The Best of Washington Apple Pi.

I have asked the finance committee to propose budgets on these activities. What do you think?

MINUTES

Executive Board Meeting
The Executive Board meeting of October 8, 1980 was held at the home of the President, and was called to order at 7:10 PM. The President announced the formation of a Finance Committee to draw up the 1981 budget and to oversee the Club's financial policies. Hersch Pilloff was directed to draw up a Constitutional Amendment to be presented to the membership which will clarify the Club's financial reporting obligations.

It was decided not to pursue at this meeting the concept of an area-wide integration of the local users groups. Some time was spent in reviewing proposals for the future direction and priorities of the Club.

A motion was passed to allocate $\$ 15$ per month for printer services (repairs and maintenance) for the newsletter Editor.

The meeting was adjourned at 10:25 PM.

Monthly Membership Meeting

The Washington Apple Pi meeting of October 25, 1980 was called to order at 9:35 AM by the President, with approximately 95 members in attendance.

After some discussion of the Club's past and future policies, and after further discussion of the Club's financial practices, a motion was passed referring the matter to the Executive Board. The Treasurer's report was presented, followed by an exchange of ideas on disk drive problems and fixes.

The Pascal SIG announced that their meetings will be held on the third Thursday of each month. The Membership Chairman exhibited samples of the proposed membership directory and requested comments.

The meeting was then turned over to Dr .
Lipson of the Apple Education Foundation, associated with the National Science Foundation, for a talk on obtaining grants
for microcomputer research. He may be contacted at:

SEDR W-638
NSF
Washington, DC 20550
Following a question and answer session, the meeting was adjourned to SIG meetings and viewing a video tape of Steve Wozniak and Steve Jobs. Dana J. Schwartz, Secretary

SIG-NEWS

SIGAMES is a group of people sharing a mutual interest in developing and using games for the APPLE and what they contribute to the learning process. The general meeting of this group is held at a location announced at and following the Washington Apple Pi monthly meeting.

The November meeting will cover two areas. One, organizing a group interested in developing peripherals (e.g. joy sticks, switch closures, or game I/O port expander) for the APPLE II. Two, software product reviews will be given by John Epperson on SARGON; Thomas Steck on North Atlantic Raider; and Jim Eatherly on Bill Budge's Space Games.

CLASSIFIEDS

FOR SALE: Applesoft Card w/Autostart ROM, \$135. D.C. Hayes Micromodem, \$300. NEED: 80 -column board and second disk drive. Call Steve Sondag (703) 281-5392.

FOR SALE: IDS 440G. Bought about Feb 1980; perfect condition; $\$ 750$. Sherman Bloom (301) 229-7514 after 6:00PM.

HELP WANTED:
Apple Pi member to put together documentation/articles/software on cassetteoriented systems.

Organization/member(s) to duplicate disks under contract to WAP.

Volunteer (s) to maintain supply of back issues of WAP and APnotes.
$\operatorname{Volunteer}(\mathrm{s})$ to be responsible for delivery of newsletters to computer store(s).

Volunteer(s) to test contributed software prior to publication.

Volunteer to put together hints on running WAP Software on differently configured APPLES.

With the return of "static electricity" weather, members are reminded to discharge the electricity before touching computer equipment. We have had reports of some damage caused by static electricity.

Washington Apple Digest

CREATIVE COMPUTING, September 1980

This issue is almost entirely devoted to the subject of Computers in Education and Computer-Assisted Instruction. Whille there are a number of articles that could be of interest to Apple Computer users, they are not reviewed in this column because the reviewer has not read them well enough to give a summary and evaluation.
Heapsort, Pl36. Description of the method and an algorithm to do it.

CREATIVE COMPUTING, October 1980
Music system for the Apple, P26. A review of six systems for creating music. Informative for the uninitiated, and technical enough for the serious comparative shopper.

Tuesday Night Football, P32. A reviw of this game software. it's a strategic game as opposed to a paddle-controlled screenaction game. The reviewer likes it a lot. \$14 tape or \$18 disk.

A Stellar Trek, P32. Same reviewer, same enthusiasm. High resolution display, full color, and animation. 22 pages of instructions. Price not given.
Easywriter, P34. A review of this word processing package. After telling us his philosophy on high technology and cheap hotel rooms, the author describes some of the useful and some of the clumsy features of the package. $\$ 100$.
WP6502, P54. A review of a word processing package for the Ohio Scientific line, but coming out in versions for the Apple, Pet, and Atari. It runs in 8 K of RAM, costs $\$ 75$, and sacrifices many standard word processing features for simplicity of operation.
Educational software, P56. Part II of a review of software packages for the Apple and others. Biology, math, test creation, grammar, physics.
Actor languages, P61. A symposium on the subject. People who are trying to master the BASIC language should skip this one. I didn't understand any parts of any of the articles, but byte-niks and philosophers might.

Sort methods, P88. Continuation of a series of articles on various sort methods. Linked lists and merge sorting. Technical discussion.

INFOWORLD, August 18, 1980
High Technology sues Apple: High Technology, a former distributor of Apple computer products, has filed a $\$ 70$ million breach-of-contract and antitrust suit against Apple Computer, Inc., (alleging) that Apple terminated its distributorship after illegally attempting to restrict its marketing activities to a six-state area. Apple, Inc. was not available for comment on the story.
Apple III on time. Apple III's are being shipped to dealers now, and should be completed by the end of September.

Stock-Market Strategy Machine. Software review intermediate level discussion. ANAl, by Galaxy, and Stock Market Systems, by RTR Software, Inc. are reviewed in detail, as aids to investors. They are both graphically interesting and they each have a substantial data structure. The reviewer likes each for what it does, but neither does everything one might like. \$100 each.

Word processing software. Elementary

review. A one-page check-list of features for five packages is presented: Word Processing. System (Programma), Super-Text (Muse), Write-on II (Rainbow), Apple Writer (Apple), and Easy Writer (Information Unilmited). The Pascal editor was also included for reference. A useful survey.

Apple Sues IT\&T: Apple Computer, Inc. has filed suit against IT\&T Consumer Products (UK) Itd. claiming that the U.K. subsidiary of IT\&T has copied, without permission, Apple's Disk II analog board, controller board, system firmware and software, and the user's manual of the Apple II floppy disk subsystem. IT\&T has European rights to distribute some Apple products, but apparently there is disagreement as to just what.

INFOWORLD, September 1, 1980
Paddle-Graphics. Software review, elementary level. In addition to the utilities necessary for loading and saving highresolution images on the disk, PaddleGraphics provides four different methods of creating graphics images. The package has programs to plot text in several sizes on the high-resolution screen. Four separate drawing modes permit users to outline images on the screen by manipulating the paddles. Users can fill outlined figures with any of 21 different colors. Finally the package contains tools for defining and manipulating images stored as shape tables. The author seems to like the package, and it is a fair review. Worth noting if you
contd.
need hi-res graphics.
INFOWORLD, September 15, 1980
Bell \& Howell to service Apples. Having over 600 service representatives with local parts inventories, the company will do warranty work as normal service on Apple computers.

Elementary Math. Software review of this Muse product. A good package for educators who want to present drill-and-practice material in a more enlightened manner. This program by Muse Software is a precursor of the innovative way that microcomputer technology can be brought into the home and classroom. It is easy to use, hard to improperly bomb, and clever in its use of graphics, color, and sound:
Business BASIC. Intermediate software
review. A floating-point BASIC designed for business applications, it has three chief improvements over other BASIC's. The internal data format has a 10-decimal-digit mantissa so you can work with nine-or ten-digit figures, the print formatter (using PRINT USING) can print numbers and strings in fixed fields as are found in most business reports, and $I / 0$ commands are part of the language. For the experienced programmer who can deal with the documentation and who wants to write business software: The review is good, but a bit picky at times. I would be even more enthusiastic about the product than the reviewer is.

Data desk. Product announcement: A company is selling a desk that is designed to hold an Apple computer, a monitor, 2 disks (cooled area) and various miscellany. For \$400 it seems expensive, but the concept is useful.

INFO WORLD, September 29, 1980
Apple goes public. Apple, Inc. will become a publicly held corporation in future. A
preliminary prospectus is due in 30 days.
To copy or not to copy. Copying copyrighted programs is not a clearcut issue of good or bad. Most of the time it ought not be done, since it violates a condition of purchase of the software and, more importantly, discourages software developers. On the other hand, software developers and distributors who overburden the user with restrictions and poor documentation are just letting themselves in for trouble. The author's preferred solution is for everybody to act as reasonably as possible, for users to stick to their guns and not permit copying of copyrighted programs, and for manufacturers to eliminate unenforceable contract conditions, provide better documentation and other features that will let the user feel that value was received for value given, and finally to educate the user about the need for honesty and fair dealing.
Super-Text product review. A word processing package that runs on a 48 K Apple II using Applesoft. The reviewer says it is good, but because it is a complex processor, learning all its features will take time, and the special functions could cause problems for the non-programmers. The evaluation is good. People who have used dedicated word processors could probably get into Super-Text more easily than could others.

Editor's Note

Thanks to Dave Efron and Mike Leavitt for these abstracts.
We've had some positive feedback on the usefulness of these abstracts. We would like to expand our coverage of literature. Please call Dave Efron at 251-0225 if you would like to become a contributing editor.

NYBBLES

We have received a complimentary copy of PEELINGS II, a new magazine which reviews APPLE software. The issue which we received is VOL 1 NUMBER 3, Sep-Oct 1980. Reviews are presented by category, e.g. games, utilities, simulations/educational, languages, technical, and in this issue a special data base management section. The reviews appear to be well-written and thorough. The magazine is attractively presented. We will have this copy available at the November meeting for your viewing. Subscription rates are $\$ 15.00$ per year (6 issues). Back issues are $\$ 4.00$ each postpaid. Subscriptions will be mailed first class if started before January 1, 1981. After that they will be mailed sécond class unless extra postage is paid by the subscriber. The address is:

PEELINGS II
945 Brook Circle
Las Cruces, New Mexico 88001

Questions，Questions Questions edited by hark L．Crosby

This new column will be very reader－dependent．please pass on any questions and answers that come up in SIC＇s or from other sources so we can publish them for all to see．Call the club telephone（301）468－2305 or if you have a modem you may leave questions on the club ABBS（301）983－9317 addressed to me．In either case，be sure to leave four name，complete telephone number and clearly state gour question．Messages will be retrieved Mon－Fri during the day． Answers will either be telephoned to individuals or left on the ABBS depending on the source．Long distance voice calls will be returned collect．

Q．I have Applesoft ROM and I want to be able to clear the HI－RES screen to a color fast！ls there a machine language program available to do this？

A．Applesoft already has this built in－ in machine language of course．First egecute an HGR or HGR2．Then POKE 28，C and CALL 62454．C can be ang number from 0－255．Representative colors are as follows：BLACK＝0 or 128，GREEN＝42，VIOLET＝85，WHITE＝127 OR 255，ORANGE＝170，BLUEェ213．Colors may vary depending on four television or monitor．
a．After using a＂CET＂statement in Applesoft，disk commands don＇t always work．What＇s wrong？

A．All dist commands must begin by printing the CONTROL－D in column of any particular line．Disk commands are just like other print statements except for the CONTROL－D．The Disk Operating system（D．O．S．）looks for CONTROL－D＇s only in column li（HTAB 1）．This is done to save time． Otherwise D．O．S．would have to look at each and every character of every print statement！

EXAMPLES：
100 PRINT＂HELLO＂；
200 PRINT CHRS（4）＂CATALOG＂
100 GET AS
200 PRINT CHRS（4）＂CATALOG＂
In both of the earmples above the disk commands will not function．In the first eample the CHRs（4）（a CONTROL－D）is printed in the next position following the HELLO or column（because of the semicolon）．In the second eample it is printed in column because the GET leaves you＂hanging＂after column flat ＂gets＂the string．

The solution to both problems is to insert one line：
$\begin{array}{ll}150 & \text { PRINT－OI－} \\ 150 & \text { HTAB } 1\end{array}$
Q．I need to transfer some binary files from disk to disk but don＇t know where they start or how long they are．Can you tell me how to do this？

A．Using D．O．S．3．2 with 48 k ，first ＂BLOAD＂the file then in Applesoft type：

PRINT PEEK（43684）＋PEEK（43655）＊256
〈CR〉
PRINT PEEK（43616）＋PEEK（43617）＊256 （CR）

The firgt number is the starting address and the second the length．Save your file using the standard format：

BSAVE（NAME），A（STARTING ADDRESS）， L（LENGTH），D（DRIVE ）

Q．How can I defeat the stop list at full page for the CATALOG command？

A．In a 48 K system with D．O．S．3．2 you can change d．O．S．by typing：

$$
\begin{array}{lll}
\text { POKE } & 44601,234 \\
\text { POKE } & 44602,234 \\
\text { POKE } & 44603,234
\end{array}
$$

Q．frequently use POKE $-16300,0$ and POKE－ 16299,0 to switch from HI－RES page 1 to page 2．When 1 try to draw or plot，howerer，the plotting goes to the page that was initialised（HGR OR HGR2）．How can direct the ploting to the other page without using HGR or HGR2？

A．In APPLESOFT，Plotting or drawing is directed to the appropriate page by the following poke：

POKE $230, n$（ROM）or
POKE $806, n$（RAM）
Where＂n＂is 32 for page 1 and 64 for page 2．In this manner you may display one page while ploting on another．

Q．How can l convert integer programs to APPLESOFT？

A．You will need your disk drive active and D．O．S．booted．Then Load your Integer program and add line 0 as follows：

0 DS $="(C T R L-D) ": \quad$ PRINT DS；＂OPEN TEXT＂：PRINT DS；＂WRITETEXT＂：POKE 33．33：LIST 1，32767：PRINT
D\＆；＂CLOSE＂：END
Then type＂RUN＂〈CR〉．A text itle with the name＂TEXT＂will be created on your diskette containing a copy of gour program．

Now switch to APPLESOFT and type：
NEW 〈CR〉
EXEC TEXT（CR）
You now have your program in memory in APPLESOFT．you will probably have to go through this version to make syntax changes before it will operateproperly－ particularly with regard to the handing of strings and arrays．

After changes are made just save the
program as usual. The text file need not be retained except as a backup.
0. How can i find out how large my APPLESOFT programs are? Also where they, start, where the free space is
A. Eirst, load gour program and RUN it until you arecertainall strings have been assigned and all ariays dimmensioned and filled, eto. Then execute a CONTROL-C to stop or hit RESET on an APPLE II PLUS. You need not run the program if you are interested only in program length.
Then PRINT the following PEEKS:

```
PROGRAM START = PEEK (103) & PEEK
    (104) * 256
PROGRAM END = PEEK (175) + PEEK
    (176) * 256
(Subtract START from END for program
    length)
LOMEM: = PEEK (105) + PEEK
    (106) * 256
START OF SIMPLE
    VARIABLES = PEEK (105) + PEEK
    (106) * 256
```

START OF NUMERIC AND
STRING POINTER
ARRAYS
$(108) * 256=$ FEEK (107) + PEEK
START OF FREE
SPACE = PEEK (109) + PEEK
(110) * 256
START OF STRINGS
(Actually the bot-
tom of string space
which starts at
HIMEM: and works
(0 OW) $=$ PEEK (111) + PEEK
(112) * 256
JLIST
REM MEMMR Y MAP BY MARK L, CROSBY
REM PRODUCES ATEXT FILE WHEN RUN
REM TYPE EXEC MEM TO PRODUCE THE MAP
DS : CHRS (4)
PRINT DS"OPEN MEM"
PRINT DS"WRITE MEM"
PRINT "TEXT:HOME"
PRINT "VTABI: ?" CHRs (34)"PROGRAM START
PRINT "VTAB2: ?" CHRS (34)"PROGRAM END
70 PRINT "VTAB3: $\mathfrak{?}$ " CHRs (34)"PROGRAM LENGTH
K(103) +PEEX(104)*256):
80 PRINT "VTAB4: ?" CHRs (34)"SIMPLE VARIABLES STARTE" CHRs (34)"PEEK(105)+PEEK(106)*256"
90 PRINT "VTAB5: ?" CHRS (34)"SIMPLE VARIABLES SPACE=" CHRS (34)" (PEEK(107)+PEEK(108)*256)-(PEE
K(105) +PEEK(106)*256)"
100 PRINT "VTAB6: ?" CKRS (34)"ARRAY VARIABLES START =" CHRS (34)"PEEK (107) +PEEK (108)*256"
110 PRINT "VTAB7: ${ }^{\prime \prime \prime}$ CHRS (34)"ARRAY VARIABLES END $="$ CHRS (34)"PEER(109) +PEEK(110)*256"
120 PRINT "VTABE: ?" CHRS (34)"ARRAY VARIABLES SPACE =" CHRS (34)"(PEEK(109)+PEEK(110)*256)-(PE
EK(107) +PEEK(10日) ※256)"
130 PRINT "VTAB9: ?" CHRs (34)"EREE SPACE START \quad " CHRS (34)"PEEK(109)+PEEK(110)*256"
140 PRINT "VTAB10:9" CHRS (34)"EREE SPACE END $3 "$ CHRs (34)"PEEK(111)+PEEK(112)*256"
150 PRINT "VTABII:?" CHRS (34)"FREE SPACE TOTAL \quad " CHRS (34)"(PEEX(111)+PEEK(112)*256)-(PE
EX(109) + PEEX(110)*256)"
160 PRINT "VTAB12:?" CHRs (34)"BOTTOM OF STRINGS
170 PRINT "VTAB13: 3 " CHRS (34)"TOP OF STRINGS
180 PRINT "VTABI4:?" CHRs (34)"STRING SPACE TOTAL
EK(111)+PEEK(112)*256) "
190 PRINT "VTABI5:?" CHRS (34)"HIMEM:
200 PRINT DS"CLOSE"

GREENAPPLES

A REVIEW OF LIBRARY DISK 30 (GAMES)

Library disk 30 is a collection of games from the Baked Apple Users Group in Japan, and was donated to the club by IAC. On the whole, the games on the disk are above average, but are probably of more interest to young people than to adults. Some of the words are misspelled, but this is because the authors do not speak native English. This has no effect on the games. As in previous reviews, we are using the rating scale as follows:

```
***** Superb
***** Better than average
*** Good
** OK
* Forget it.
```

ALIVADERS - Try to hit the spaceships above you with missiles without being destroyed by them. The graphics in this game are good. It is similar to Space Invaders, but different in many ways. Rating:

LUNAR-LANDER - Try to land on the moon by using the fire button to control thrust. This game is very good, with graphics that are average. It uses two paddles, but only one controls most of the action. Rating: ****

DEATH STAR - Try to hit the invading death stars with lasers before they crash into your force field. This game has good graphics, but does not hold your interest because it is almost impossible to hit the invading death star. Rating:

HI-RES DRAGON MAZE - Same idea as lo-res Dragon Maze, but has a demonstration and is in hi-res. The graphics are excellent. You may encounter an error in the very beginning before graphics start. If so, type RUN and it will work OK. Rating:

AIR FORCE BOMBER - Control an airplane from the air while looking down over the plane and try to drop bombs on the tanks below. This game will not hold your interest very long because the action is slow. Rating:

AIR ATTACK! - Try to drop a bomb on a ground base while it in turn fires at you. You control the plane with a paddle. This is ${ }_{* * *}$ fun game with high interest. Rating:

SUBMARINE - Try to drop depth charges on the submarines below. This game is similar to U-BOAT but is in hi-res. Rating: **

SPACE-WAR V - Try to hit the guy on the other side of the wall by blowing holes through the wall. This is a two-player game. It is not so much fun and soon gets boring. Rating: **

CARRYING BALLOON - Try to manuever your balloon through the obstacles. Paddles or joystick can be used. This is a superb game, with excellent graphics and sounds. Rating:

by Eric \& Gres Urban

NEW FLY-KILLER - Try to spray the fly. This game is based on the original Fly Killer. The graphics are great. Rating:

NOTES ON PROGRAMS - This is a note from IAC describing the origin of this disk.

STOCK MARKET UTILITIES

4 Stock market programs on disk

Four programs provide a complete programming system for entry and storage of stock data, data correction, autoscaling Hi-Res graphical display of performance, and building historical data files electronically (program to downioad data not included)
STK. 1 (39 Sectors) provides complete utilities for manual entry of stock data Features: names stored alphabetically by exchange, easy addition and deletion of names, automatic prompting and extensive error trapping for data entry (date volume, price), numerous entry points for data correction all data displayed prior to updating stock files with further option for data correction input historical data to a single data file, dispiay contents of individual stock files from disk. option to reduce files to last 260 entries for high-res graphics All data files are fully accessible.
DATA CORRECTOR (31 Sectors) used to correct and rewrite stock data fites Features: option for general data correction-correct any entry option tor stock splits - all prices and volumes prior to split scaled by split ratio (transaction dollars constant) to provide continuous momentum and price curves, also correct for incomplete updating due. for example. to a power outage
EVAL (22 Sectors) provides comparative evaluation of stock petformance Features: synchronizes NYSE index ave with first stock entry option to evaluate all stocks automatically or just one, simultaneous high-res display of momentum, price, and price relative to NYSE index, auto scaling grahics. numerical figure of merit for performance relative to NYSE index ave
MICROO (12 Sectors) is used to build histonical data files electronically by converting downloaded stock price data obtained from Compuserve's MicroQuote financial data base to data files compatible with these programs

Programs written by H. S PILLOFF
Requires Apple II,* ROM Applesoft,* 48 K and Disk
Introductory Price $\mathbf{\$ 3 9 . 9 5}$ thru December, 1980
Thereatter, $\$ 5995$
MD residents add 5° 。

H\&H SCIENTIFIC

$\% \%$

HARDWARE CORNER a soumd geterator for the APPIE II by Susam Zakar

We are includins in this bulletin, a schematic for construction of a sound senerator for the AFFLE II, alons with some comments on the desisn and the software needed to drive it. The board was desisned by Joe Zakar and has been built and is runnins in his (and mine-his wife) AFFLE II at home. The hardware can be completer in an evenins or two. Cost runs about $\$ 20$ flus the prototype board (also about $\$ 20$), for a 3 -voice + noise-senerator confisuration.

Only 5 chifs are required for this device: An AY3-8910 prosramanale Sound Generator, a ruad 2 infut NOF-sate, and 3 auad bistable latches. The sound senerator chif is a very powerful LSI desisn chif which can be used to create a great variety of sounds, from race cars to concerts. Music is of fair quality, sufficient for most froseam needs. All sound is produced under software control, but in contrast to the AFFLE II's own cafability to produce sound, the AY3-8910 can be set to continue producing a given waveform while the AFF'LE II continues with another part of the prosram.

Software controls the tone feriod for each of 3 tone senerators, the noise feriod for noise, the amplitude for each of the 3 tone channels, and sets the envelofe feriod, shafe and cycle. All the prosrammins is done by addressins internal resisters and storins affrofriate values in them. Each tone period, and the envelofe feriod have a six-bit resolution. A four bit value may te used to effect a coarse tune. If all of this sounds rather complicated, it is. It is a VEFY sood idea to order the 60-fase prosrammins manual for this chif (Cosi: about $\$ 3$).

One of the assumbtions in the manual is that the chif will be provided with a clock rate of 1.78977 Mh . Since the desisn here uses the AFFLE II's 1,023 ithz clock from fin 38 of the AFFLE II fort, values must be recalculated for the examples in the manual. All the necessary formulas are provided, so it is not difficult to do. Outline examples are siven in the manual for race cars, sirens, lasers, bombs, etc., alons with a chart of musical frequencies for 5 octaves.

Ferhars the most assrevatins factor in desisnins a boars for the AFFLE II was that the AY3-8910 is a rather slow chif, requirins interface bus sisnals to be held for 250 to 500 ns . or more, As a result, the AF'FLE II's own bus sisnals cannot be userd directly, (they are far too fast), and latches must be used to hold the data stable Lons enoush for the sound senerator chis to grab it. This sad fact also means extra instructions in the driver routine, but can be handled pretty straishtforwardly by the use of the two subroutines provided below.

This desisn can easily be expanded to accommodate two AY3-8910 chifs, thus providins six voices and 2 channels of noise (in stereop if you want). The outrut can be directed to an oudio amflifier or the infut jack of a tafe recorder (We even used the mike infut on a tare recorder and flussed a speaker into the monitor jack, with fair results). This is a sood project for a besinnerg since it onily has
five chifs. It also can be a vers educational experiment, teachins a lot about how a device uses internal resisters, and how they must be addressed under adverse circumstances, like the incompatible timins requirements, between the chif and the AFFLE II.

Hofefully, those readers who do build this board will let tine AFFLE FI know, so we can exchanse software listinss and hints with one another.

U1 AY3-8910 PROGRAMMABLE SOUND GENERATOR.
U2 74LS02 QUAD 2-INPUT NOR GATE
U3-U4-U5 74LS75 QUAD BISTABLE LATCH
contd.

: ASM			'ExPLOSTOW'		
				1	*THE FOLLOWING PROGRAM IS AN *
				2	*EXAMPLE OF HOW TO USE THE *
				3	* AY3-8910 EOARI FOR THE AFFLE *
				4	* THE PROGRAM IS BASED ON AN *
				5	* EXAMPLE CONTAINED IN THE BOOK*
				6	* AY3-8910/8912 FROGRAMMARLE *
				7	* SOUND GENEFATOR DATA MANUAL'**
				8	* THE PROGRAMI WAS WRITTEN EY
				9	* joe zakar with alimitional
				10	* COMMENTS EY SUSAN ZAK゙AR *
				11	********************************
				12	*
				13	* THE FOLLOWING IS a Genekial *
				14	* ROUTINE (LA: LATCH AIDFESS \& *
				15	* UD: WRITE DATA. HC: HOLI *
				16	* COMMANI IS USED AS THE TAIL *
				17	* TO BOTH ROUTINES. WHEN LA IS*
				18	* Callen, the chif is set uf ton
				19	* FECEIVE THE ADIIFESS (NUMBEF) *
				20	* OF ONE OF ITS INTEFNAL FEGIS-*
				21	* TERS. < IN reality la futs then
				22	* REGISTEF NUMEEF INTO CHIFS US*
				23	* \& U6, AND INSTRUCTIONS AT HC *
				24	* RAISE AND LOWER THE CONTEOL *
				25	* LINES ON THE AY3-8910 TO LOAI**
				26	* THE SOUND GENEFATDF CHIF.) *
				27	********************************
				28	*
				29	ORG \$800
				30	OBJ $\$ 7000$
				31	SLOT EQU \$COB2
				32	SLOT1 EQU \$COB1
				33	*
				34	*LA IS ENTERED WITH THE FEEGISTEF
				35	*
				36	* ADIRESS IN THE ACCUMULATOR.
				37	* holn register contents in
				38	* INTERMEIIIATE STORAGE AND SET
				39	* 'LATCH ADIRESS COMMANI'
				40	*
0800:	81	B2	Co	41	LA STA SLOT
0803:	A9	03		42	LIA **03
0805:	D0	05		43	BNE HC
				44	*
				45	* HOLD REGISTEF CONTENTS IT
				46	* INTERMEDIATE STORAGE ANII
				47	* SET 'WRITE DATA' COMMANLI.
				48	*
0807:	8 D	B2	CO	49	WD STA SLOT
080A:	A9	01		50	LDA $\$ \$ 01$
				51	*
				52	* holn commani in intermeirate
				53	* STORAGE, THEN LOWEF CONTFOL
				54	* BUS LINES TO 0 TO COMFLETE.
				55	*
080C:	8D	B1	CO	56	HC STA SLOT1
080F:	A9	00		57	LDA $\ddagger \$ 00$
0811:	80	B1	CO	58	STA SLOT1
0814:	60			59	RTS
				60	*

contd.

--- END ASSEMBLY ---
TOTAL ERFORS: O
97 BYTES GENERATED THIS ASSEMELY @

Classified ads accepted from members 5 Whords or less at no oharge provided the meterial is obviousiy non-commercial
 jn adranoe sttention CLAESTFTEL ADC. BOX 34511, Washington, D.C. 20034

IDS-460 Impact Primter a revieu by Hark L. Crosby

460, you should know that 1 have worked

Before l begin with a review of the with the IDS-440 for over a year now. The problems esperienced with the 440 in a production environment are mang. Two print heads have broken their pins, changing spools of inked ribbon and their inked rollers has rendered two pairs of pants permanentiy smudged with black ink, ribbon tension and paths cause foldover and jams, paper feed is not alwags positive and the unit is just not designed to operate in 16.5 CPI because tolerances are too loose.

Lest you get the mistaken opinion that dislike the 440 let me correct you now. Eor home use the 440 will stand up nicely and 1 plan to continue using it for certain types of work.

The 460 , however, is almost different kind of "animal" than the 440 . Here is an overview of its special features:

```
** * EATPURES***
* mICROPROCESSOR CONTROLLED
* FULL ASCII CHARACTER SET
    WITH TRUE DESCENDERS
* 24 - DOT MATRIX WITH OVERLAP
* 10, 12, 16.8 CPI AND ENHANCED
* CARTRIDGE RIBBON MOBIUS LOOP
    WITH BIASED ROUTINC
* BALIISTIC-TYPE PRINT HEAD
* OPTIONAL HI-RES GRAPHICS WITH
    84 & }84\mathrm{ DOTS PER INCH
* PROGRAMMABLE CONTROL FUNCTIONS:
    - LINE FEED
    - FORM FEED
    - Vertical tab
    - HORIZONTAL TAB
    - CARRIAGE RETURN
    - ENHANCED/NORMAL PRINT
    - GRAPHICS/TEXT
    - CHARACTER DENSITY
    - AUTO-JUSTIFICATION
    - PROPORTIONAL SPAEINC
    - ALTERNATE CHARACTER SETS
* 300, 1200, 2400, 9600 BAUD
* AUTO PERFORATION SKIP
```

and the ligt goes on from there!
The most notable difference is the print style. Characters are formed under software control with overlapping dots using a \quad-wire staggered print head. This produces characters that closely resemble those of a normal typewriter. The dots are visible if gou look closely but one is not conscious of them while reading. The new ballistio type print head runs cool even at mazimum throughput. Its rugged construction should give it a much longer life. Another departure trom the 440 is the print height. To permit true lower case descenders, the height of capital letters has been reduced to. 09 inch. While this ls very noticable when printing in the enhanced mode, l quickly got used to the ghorter characters. The folks at IDS also dropped the 8.3 CPI mode and
moved tolerances toward the 16.8 CPI mode. This is no loss at all since 8.3 CPI is very difficult to read anyway. The new cartridge ribbon is eagy to change and will last longer. It has biased (sianted) routing and is a mobius loop. This permits printing evenly over the entire surface top to botton and both sides of the ribbon. (Aotually, being a mobius it has only one surface!).

There is a new "TOP-OF-FORM" switch that permits setting the form teed top withouthaving to turn off the power. In this mode the paper may be moved either up OR dowr to the desired point.

If gou need proportional spacing (between each character) a single ASCII code will call that feature. Also programmable under software control are line feed increment sire, both right and left margins, vertical and horizontal tabs, forms length and perforation skip sise, absolute vertical position in lines or inches, and intercharacter spacing. With the appropriate word-processing software or under your program control, the 460 is quite easily capable of printing like the pros do it. Open any teatbook and you'll see what 1 mean. (p.s. Because of intrinsic differences between Easy Writer and the 460's teat justification, this paragraph could not be right- and left-justified while printing proportionally).

I have not get received a software package designed to dump APPLE hi-res graphics to the 460 . When lo you will be the first to see the results. Since the inter-dot spacing is much smaller, we should be able to get practically dot-legs graphics.

Because the 460 is essentially built around the 440 but seemingly lacking all of the latter's mechanical problems I will not go into any detail on the remaining, standard features of the 460 .

Are there any problems? To be fair, ges there seems to be one. The PROM software sometimes permits dropping a single character in a print line. This happens about once every 5000 characters and randomly. There is a oure for this coming from IDS in the form of new PROMS. Be sure you have proms labeled RELEASE 5.1 or higher and you should have no problems. The local distributor from which I purchased the 460 will receive and distribute them to purchasers at no charge.
laan heartily recommend this ercellent printer to anyone and l
congratulate idg for doing a fine job of correcting past mistares.

INTEGRAL DATA SYSTEM, INC.
MILFORD, NH 03035
IDS 460 PAPER TIGER $\$ 1295$
WIGRAPHICS 1384

MESA，INC． OFFERS EXCLUSIUE OEM DISCOUNT PRICING TO APPLE PI MEMBERS！

BECAUSE $\square F$ YロUR QUALIFIED MEMBERSHIP IN APPLE PI，YロU CAN OBTAIN SIGNIFICANT DISCDUNTS ON THE PURCHASE DF：

INTEGRAL DATA SYSTEM＇S ＂PAPER TIGER＂printers

＊MESA，INC．IS AN AUTHORIZED DISTRIBUTOR FOR IDS
＊SERUICE－AUTHORIZED DEPDT SERUICE CENTER－SPARE PARTS \＆ FACTURY TRAINED STAFF

米米T PLACE AN ORDER，SIMPLY CALL MS．LESLIE HARE AT 3D1／948－435D WITH APPRDPRIATE PRDOF DF MEMBERSHIP

Integral Data Systems，Inc．

Prettylisting
 by Paul A. Sand

A program listing in any language should be "pretty" - it should encourage people to read and understand it. Although prettiness is a subjective quality, there are a number of formatting guidelines which most agree will make a program more readable. I will only be discussing a couple of purely cosmetic techniques here; anyone who is interested in the subject should read "The Elements of Programing Style" by Brian Kernighan and P. J. Plauger, an excellent book covering all aspects of good programming practice.

One way to make a program easier to understand is to use indentation to set aside program statements that form a logical block, such as the bodies of FOR - NEXT loops and statements controlled by an IF - THEN. The indentation should clearly show which statements are to be executed together and the controlling statement for the block. This allows the person reading the program to immediately get a general idea of the control structure of the program by just looking at the listing, rather than painfully tracing the logic step by step. Unfortunately, the standard listing of a Basic program on the Apple doesn't allow such indentation directly.

Another good formatting technique is to use only one statement per program line. Again, this is suggested strictly for readability; a long skinny program is easier to decipher than a short, fat one. Applesoft programmers soon find out, however, that multiple-statement lines are almost irresistible. A program that uses them can take up considerably less memory than one limited to one statement per line. And IF - THEN statements can often be most conveniently written with multiple statements after the THEN.

For these reasons, a Basic program can often resemble a inpenetrable mass of code which can discourage even the program's original author from attempting to understand it, let alone anyone else. But this unreadability is due to our reliance on Applesoft's LIST command. LIST simply calls a machine language routine that translates the bytes in memory into a printed source text. There's nothing sacred about LIST.

The program presented here, Prettylister, is an alternative to the LIST command. It does indentation of program blocks as described above and prints only one Basic statement per line. It is written in Applesoft and must be appended to whatever Applesoft program is to be listed. (This can be done either with Apple's Renumber/Append program or by saving Prettylister on disk as a text file and EXECing it into memory.)

Prettylister is executed by the command "RUN 63000". It will list on the current output device all program lines with line numbers less than 63000. It first loads a string array with the Applesoft tokens pulled from RON. A token is a language element such as "FOR", "DIM", or "HGR2". Instead of being stored character by character, tokens are represented by
a single byte each; a list of Applesoft tokens and their byte representations is given in Appendix F in the Applesoft Reference Manual.

After the array is filled (which takes about 8 seconds) the program lines are scanned and listed. Applesoft programs are stored starting at the location pointed at by addresses \$67 and $\$ 68$. For ROM Applesoft, this is usually $\$ 801$. Each line has the following format: the first two bytes contain the address of the beginning of the next line in memory. Two zero bytes here indicate the end of the program. The next two bytes contain the line number. The text of the line follows, a series of bytes representing either tokens or ASCII characters. If a byte is less than 128 then it's a character, otherwise it's a token. Finally, a zero byte indicates the line's end. (Obviously, this information could be used to write other useful utility programs.)

Here is the Prettylister routine:

```
63000 nt = 196: dim tk$(nt): ad = 53456: sp$ = chr$(32): for i
= l to 5: b5$ = b5$ + sp$: next i: for i = 0 to nt
63010 c = peek(ad): if c < l28 then tk$(i) = tk$(i) + chr$(c):
ad = ad + l: goto 63010
63020 tk$(i) = tk$(i) + chr$(c - l28): ad = ad + l: next i: na
= peek(l03) + 256 * peek(l04)
63030 nl = peek(na) + 256 * peek(na + l): if nl = 0 then end
63040 ln = peek(na + 2) + 256 * peek(na + 3): if ln >= 63000
then end
63050 i = 4
63060 c = peek(na + i): if c = 0 then ni = 0: gosub 63160: na =
nl: goto 63030
63070 if c < 128 then cd$ = cd$ + chr$(c): goto 63100
63080 if cd$ <> "" and right$(cd$,1) <> sp$ then cd$ = cd$ +
sp$
63090 cd$ = cd$ + tk$(c - 128) + sp$
6 3 1 0 0 ~ i f ~ c = ~ 3 4 ~ t h e n ~ i q ~ = ~ n o t ( i q ) : ~ g o t o ~ 6 3 1 5 0
63110 if (c = 58 and not iq) or c = 196 then gosub 63160: goto
6 3 1 5 0
63120 if c = l73 then ni = ni + l: goto 63150
63130 if c = 129 then nf = nf + l: goto 63150
63140 if c = l30 then ns=l: nf = nf - l
63150 i = i + l: goto 63060
63160 if ln < | then print b5$;: goto 63180
63170 print right$(b5$ + str$(ln),5);: ln = -1
63180 if ns then in = in - 3: ns = 0
63190 for j = l to in: print sp$;: next j: in = l + 3 * (nf +
ni): print cd$: cd$ = "": return
```

Here is a listing of a program fragment generated by the LIST command:

```
200 DT = l: FOR K = l TO N: IF A(K,K) < > \emptyset THEN GOTO 250
210 J = K + l
220 IF J > N THEN DT = 0: GOTO 27@
230 IF A(K,J) = Ø THEN J = J + l: GOTO 220
240 FOR I = K TO N:SV = A(I,J):A(I,J) = A(I,K):A(I,K)=SV:
NEXT I:DT = - DT
250 DT = DT * A(K,K): IF K < N THEN FOR I = K + l TO N: FOR J
= K + l TO N:A(I,J) = A(I,J) - A(I,K) * A(K,J) / A(K,K): NEXT
J: NEXT I
260 NEXT K
270 RETURN

Here is the listing of the same program generated by Prettylister:
```

200 DT = 1:
FOR K = l TO N:
IF A(K,K) < > D THEN
GOTO 250
210 J = K + l
220 IF J > N THEN
DT = 0:
GOTO 270
230 IF A(K,J) = 0 THEN
J = J + l:
GOTO 22ø
FOR I = K TO N:
SV = A(I,J):
A(I,J)=A(I,K):
A(I,K) = SV:
NEXT I:
DT = - DT
DT = DT * A(K,K):
IF K < N THEN
FOR I = K + I TO N:
FOR J = K + 1 TO N:
A(I,J) = A(I,J) - A(I,K) * A(K,J) / A(K,K):
NEXT J:
NEXT I
260 NEXT K
270 RETURN

```

Prettylister was inspired by an article in the Dallas user group's newletter (AppleGram) of June 21, 1980. The article contained a nicely-formatted program listing, but not the formatting program itself. The idea of such a program was so appealing to me that I decided to write my own version. (In the computer field, this practice is widely referred to as "reinventing the wheel.")

\section*{SIG For Education}

Washington Apple Pi is rapidly becoming a major community resource for helping people learn about computing. Our membership is now well over 300 and includes a growing number of educators. I believe that now is the time to consider forming a special interest group (SIG) for educators and other persons interested in sharing ideas and developing ways to promote learning
microcomputers.
For the last year, Washington Apple Pi has focused mostly on the technical aspects of using the APPLE. There have been helpful discussions about how to use hardware and software. Different members have shared their knowledge of programming languages and have helped others analyze and evaluate software. This kind of dialogue ought to continue. In fact, it would be a required resource for the success of a SIG for education.

\section*{by Charles C. Philipp}

In addition to the above, Washington Apple Pi has a rapidly expanding library. The library is more than a collection of programs; it is a cost-effective way of sharing information. It is also a required resource for education.

I believe that a SIG for education should place high priority on designing ways to teach young children about computing. Washington Apple Pi has the resources to develop and disseminate models that demonstrate the unique learning opportunities provided by this new technology. The focus should be on teaching children how to use and control microcomputers for various purposes. I believe that the APPLE is ideally suited for this task.

For this SIG to be a success, we need a group of members who have more than a casual interest in this topic and who like to work with children. We also need the commitment of occasional help from our hardware and software experts. If you wish to explore this idea further, contact me at the November meeting of WAP or write to EDSIG, Washington Apple Pi, P.O. Box 34511, Washington, DC 20034.

\section*{by Paul \(A\). Sand}

Fortran is one of the oldest and most popular computer languges. It was developed in the 1950 's to allow easier programming of seientific and engineering rumber-crunching programs that computers are so good at, although it has been used in just about every application you could think of. For example, text processors, compilers for other languages, and even an early version of "Adventure" have been written in Fortran. Just about every compliter has a Fortran compiler available for it. Microcomputers are no exception - Microsoft has provided a compiler for 8080 and \(Z-80\) based computers for a few years. (I'll be referring to this compiler as "Microsoft Fortiari" ir the following; note that it is available to Apple users who have Microsoft's Z-80 Softcard.) Now, thanks to the good folks in Copertino, the Apple is now also programmable in Fortran.

The hardware requirements for Apple Fortran are:
- Apple II or II flus with 48K ram
- Apple Disk II
- Apple Lariguage System

The recommended list price for Fortran is \(\$ 200\).
One disk drive is a minimum for running Fortran. For serious work, two drives are strongly recomnended, Otherwise, the user will spend more time removing and inserting diskettes tiari he will programming.

Apple Fortran essentially adds on the Fortran language to the UCSD Fascal Operatirig System. Onily three different files exist on the diskettes supplied with the package. These are SYSTEM.COMFILEE, SYSTEM.LIERAFYY, and FORTLIE,CODE.

SYSTEM. COMFILEF is the Fortrar compiler. It accepts as input a Fortran source file and translates it to F-code. For those unfamiliar with that term, F-code is a machine-like code developed at UCSD for a (ther) mythical processor. The purpose of generating F-wcode instead of native machine code is to increase the portability of the UCSD software between computers using different processors. Since the UCSD fascal compiler also generates F--code, the user can, within limitations, call Fortran subroutines from Fascal programs, and vice-versa. In comparison, Microsoft's compiler generates 8080 machine code.

SYSTEM. COMFTLER is copy-protected - it cannot be copied using the Filer program, the normal method for backing up diskettes. Apple supplies a backup diskette with the system. If one or both copies of the compiler become damaged within the 90-day warranty period, your friendly Level 1 Servae Center will provide you with a new diskette. After the warranty expires this service will cost \(\$ 15.00\).
contd.

SYSTEM. LIEFAFAY contairis routiries riecessary to gerierate a rurimable program that aren't produced by the compiler. As in Fascal, it iricludes routines to do high-resolution graphics, calculate transceriderital furictioris, access the game \(I / 0\) port, and so ori. Unlike Fiascal, it contains a ruri-time urit contairing routires specific to Fortran programs. This is a sizeable hurik of code, and it must be added on to even the smallest Fortrari program. As a result, the ruririable code files produced after lirikirig the compiled program to the library are relatively large, especially wher compared to the equivalent Fascal program.

FOFTLIE: CODE is the program necessary to put independently compiled program urits irito a Fortrarimompatible library file. LIEFAFY, CODE, the equivalent program provided with the Fascal system worit work because the formats of Fascal arid Fortrari libraries are slightly differerit.

The other utilities necessary to write and run programs are supplied from the Fascal system. The UCSD Editor, Filer, Limker, Assembler, and the other programs operate identically whether sou're usimg Fortran or Fascal.

The documentation included with the package is up to the usual high Apple standard. The Marmal includes a complete Fortran reference guide, iristructions on setting up tine system ori either a ore-disk or milti-disk system, how to mix fortran, Fascal, and Assembly Language code, how to do overlays - in short, everythirig needed to allow the user to write, compile, aris run Fortran programs. Instead of duplicatiris the documeritation for the part of the operatiris system shared by Fortran and Fascal, the user is referred to the appropriate section int the Fascal Feference Manual. I wouldrit recommend the marinal as a sole reference to the computer novice wishing to learri Fortran; it isn't meant to be a tutorial. Eut it is complete and well-writter, and the user who knows his way around computers will have little or ro problems with the marnal. Assuming he reads it.

The version of Fortran supported on the Apple is the ANSI Standard Subset of Fortran 77. (ANSI Standard X3.9-1978) "Subset" mearis that some features of the full language are not supported. Fortran 77 itself, however, is a new version of Fortrari supersedirig the earlier standard. The earlier version, generally known as Fortran IU (ANSI Standard X3.9-1966), is the one offered by Microsoft. Compared to Fortran IV, Fortran 77 has a rumber of additional features that make tine programmer's life easier. (If you aren't acquainted with aris fortran past or present, you may skip over this section.)

First the bad news: double precision is rot sopported in Apple Fortran. This is regrettable, iri my opirion. Although many Fortran users terid to overestimate their need for precision in their calculations arn use double precision variables where single precision would be more than adequate, there is a valid reed for extended precision calculations in many Fortran applications. Most Fortran implementations (including Microsoft's) have dowble precision.
contd.

The good riews is the extensions to Fortran IU present in Fortrari 77 and Apple Fortrari. The greatest boon to Fortran programmers is the structured if-theri-else construet. Fortran IV programmers have to code an if-then-else usirig two labels arid two GOTO statemerits:
if (hours.le. 40.0 ) goto 100
regpas \(=40.0\) * rate
outpas \(=1.5\) * rate \(*\) (hours - 40.0)
goto 110
100 regpay \(=\) rate * hours
outpas \(=0.0\)
110 contirue
In Fortran 77, it can be done more maturally:
```

if (hours.gt.40.0) then
regpay = 40.0 * rate
ovtpay = 1.5 * rate * (holurs - 40.0)
else
regpay = rate * hours
ovtpas = 0.0
ends if

```

The ELSE IF statement is supplied to emable the choice of exactis one of a rumber of alternatives:
```

if (sales.1t.50.00) then
cOMM = 0.00
else if (sales+1t.100.00) timerm
comm =: 0.02 * sales
else
comm = 0.03 * 5ales
encs if

```

These constructs mas be nested to an arbitrary depth.
Fortran 77 a 1.50 supports a CHARACTEF data tope, which Makes ron-rumerical data processirig much easier tinan it was with Fortran IU. The declaration statement:
```

character*10 stririg(5)

```
defines an array of five strings of 10 characters maximum lerigth each. Character data mas be assigred values, compared with each other, printed out, and so on, much like Easic.
- Do sou rieed Fortran? That depends very much on sour previous experience with computer larigages and your currerit applications. Irı its promotional literature, Apple stresses that it does not recommend Fortran for the begirirer. Most smaller applications cari be more easily accomplished using Easic, simply because of the ease of usiris an irteractive system for enteririg, debugging, and ruriring a program. Basic is also by far the easiest lariguage for the beginning programmer to learr. However, as a program increases in size, Easic's disadvantages (lack of good control structures, lime rimber bookteepping, awkwardmess iri passirig parameters to subroutiries, and relative sluggishness to name four. ) begin to show up. Eoth Fiascal aris Fortrari have numerous advantages over Easic. Fascal, however, is usually corisidered to be a "better"
language than fortran because of its more flexible control and data structures.

Why then should anyorie consider Fortran? If Fortran is orie of the languages you already kriow and you don't have any desire to learn Fascal, then Fortran may be an excellent choice. The primary advantage of Fortran is its wide use in maris envirionmerits, which makes it the riearest thing there is to a uriversal computer lariguage. It is relatively easy to write Fortran programs that will run without modification on just about any computer. So the Apple can be used to rum many existing Fortran programs developed on other systems, arid programs developed on tine Apple can be run on other systems.

Iri summary, Apple Fortrari is another high-quality software package from Apple. If you like Fortran (and can live with copy-protected software) then it is ari excellent buy.

\section*{Computerized Garden Planner by Fred P. Sharp}

The program described below will be available on one of Washington Apple Pi's library disks. It is written in Applesoft II for a 32 K memory, with printer optional.

\section*{BACKGROUND}

Anyone comparing price tags on a packet of seeds and a basket of vegetables can understand why home gardening is becoming the "in" thing. The mild-mannered expert on tomatoes and planting dates is suddenly the center of attention at social gatherings. Conversation nowadays often dwells on such things as zucchini yields and the pH factor. Actually, gardening is much simpler than the experts would like to admit. With a little work and normal luck, anyone can coax an abundance of good eating from a fairly small plot of ground. The advantages of gardening are threefold. One, the vegetables are fresher and taste better. Two, not only are the vegetables cheaper, but one does not have to pay taxes on the value of the vegetables grown. Also, along those lines, one's real income increases by the amount of what you would have spent for vegetables had you not had a garden. Third, the combination of fresh air and exercise makes the home gardener healthier.

\section*{PROBLEM}

The 138 annual inflation rate coupled with a 68 annual average salary increase and six growing appetites to satisfy compelled me to make the most of my home garden. With this increased interest in vegetable gardening, and food in general, I realized I would have to establish detailed records of crop varieties, ideal planting dates, harvest dates, depth to plant seeds, distance between plants, distance between rows, expense items, plus a myriad of other details. This all seemed too complicated to even imagine. But, if the home garden was to produce at its peak, it would have to be done.

\section*{SOLUTION}

Eureka! this was an example of a marriage made in heaven - my home garden and my APPLE II home computer. The APPLE II could act as a repository of information. It could store, sort, compare, evaluate and report on this information in any format I desired.

PROGRAM OUTLINE
The Computerized Garden Planner consists of a group of low-overhead programs, each satisfying a specific requirement.
1. Title Page - This program provides a visual animated display depicting gardening on the TV screen while an audio musical representation of "Old McDonald Had a Farm" comes from the APPLE's speaker. ( T his element can be selected or by-passed depending on one's mood.)
2. Garden Planner - This program provides a means to store and retrieve vital gardening information. The following information is stored in text files for each crop: planting dates, harvest dates, feet of row per person, seeds or plants per 100 feet, distance between rows, and distance between plants. When it's time to plant, the APPLE II provides a listing by planting date of what to plant, how to plant and how much to plant for the
3. Garden Accounting - This program provides a means to keep track of twelve diferent gardening expenses and up to thirty different crops. For each crop the unit of issue, unit value, and total harvest value is recorded in text files. Several reports are provided to include an Expense Listing, a Crop Listing, and a Financial Summary.

GARDEN PLANNER MENUS:

Initial Menu:
YOU HAVE FOUR INITIAL OPTIONS:
1. READ DATA FROM DISK
2. MAKE INPUT
3. READ OUTPUT
4. RETURN TO MENU

WHAT IS YOUR PLEASURE?

Menu of Reports:
COMPUTERIZED GARDEN PLANNER
 PRINTER IS OFF
1. CROP LISTING
2. GARDEN PLANTING INFORMATION
3. GARDEN HARVEST COMPARISON REPORT
4. CRT GARDEN PLANTING \& HARVEST REPORT
5. CRT SPRING PLANTING REPORT
6. CRT HARVEST REPORT
7. PLANTING REQ. FOR FAMILY SIZE
8. TURN PRINTER ON
9. TURN PRINTER OFF
10. RETURN TO MAIN MENU

WHAT IS YOUR PLEASURE?
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CROP NAME} & \multicolumn{7}{|c|}{< GARDEN PLANTING REPORT > ==ニ=======================} \\
\hline & PLANTING & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { DATES } \\
& \text { FALD }
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
PLANTING \\
BETWEEN \\
ROW
\end{tabular}} & DISTANCE & \multirow[t]{2}{*}{DEPTH
TO PLANT} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { SEEDS } \\
& \text { REQ. }
\end{aligned}
\]}} \\
\hline & \[
\begin{aligned}
& \text { SPRING } \\
& \text { MO DA }
\end{aligned}
\] & & & \[
\begin{aligned}
& \text { IN } \\
& \text { ROW }
\end{aligned}
\] & & & \\
\hline BEET DETROIT & 0401 & 0615 & 15 & 2 & . 5 & 1 & 02 \\
\hline BROCCOLI DECIDO & 0401 & 0501 & 24 & 12 & . 5 & 30 & TP \\
\hline CARROT NANTES & 0401 & 0501 & 15 & 2 & . 25 & . 25 & 02 \\
\hline LETTUCE LEAF & 0401 & 0715 & 12 & 4 & . 25 & .25 & PK \\
\hline LETTUCE HEAD & 0401 & 0801 & 18 & 4 & . 25 & 12 & TP \\
\hline ONION RED/YEL & 0401 & 0000 & 15 & 3 & 1 & . 48 & LB \\
\hline STRAWBERRIES & 0415 & 0000 & 30 & 12 & 5 & 15 & TP \\
\hline HONEY & 0401 & 0000 & 30 & 30 & 2 & . 04 & HI \\
\hline
\end{tabular}


COMPUTERIZED GARDEN ACCOUNTANT

YOU HAVE FIVE INITIAL OPTIONS:
1. READ DATA FROM DISK
2. MAKE INPUT
3. READ OUTPUT
4. SAVE DATA TO DISK
5. RETURN TO MENU

WHAT IS YOUR PLEASURE?

Menu of Reports:
```

 COMPUTERIZED GARDEN ACCOUNTANT
 ==
OUTPUT MENU

```
1. CROP LISTING
2. EXPENSE LISTING
3. FINANCIAL SUMMARY

WHAT IS YOUR PLEASURE?
1. Crop listing:


\section*{2. Expense List:}

COMPUTERIZED GARDEN ACCOUNTANT
 \(=\) EXPENSE ITEM
SLEEDS
LIME
FERTILIZER
CHEMICALS
grand total
\(====\overline{=}\)
50.67

\section*{3. Financial Summary:}


GOSUB
\(W=15\)
\(10 \mathrm{~W}=150\)
\(15 \mathrm{H}=120\)
\(15 \mathrm{H}=120\)
\(20 \mathrm{Q}=100\)
\(25 \mathrm{E}=50\)
GOTO 4000
FOR I \(=1\) TO 2
GOSUB 1000: GOSUB 10000
103 GOSUB 1010: GOSUB 10000
\(\begin{array}{lll}104 & \text { GOSUB 1010: GOSUB } 10000 \\ 105 & \text { GOSUB 2015: GOSUB } 10000 \\ 106 & \text { GOSUB } 1025: \text { GOSUB } 10000\end{array}\)
106 GOSUB 1025: GOSUB 1000
\(\begin{array}{llll}108 & \text { GOSUB } & 1030 \\ 109 & \text { GOSUB } & 1030 \text { GOSUB } & 10000 \\ \text { GOSUB } & 10000\end{array}\)
109 GOSUB 1030: GOSUB 10000
\(115 \mathrm{FOR}^{2}=1\) TO 200
\(\begin{array}{ll}116 \\ 118 & \text { NEXT N }\end{array}\)
120 GOSUB
12
122
123
124
125

126 GOS
\(\begin{array}{ll}127 & \text { FOR } \\ 128 & \text { GO } \\ 129 & \text { GO }\end{array}\)
128 GO
130 F

132 G
FOR I = 1 TO 200: NEXT
GOSUB 1000: GOSUB 10000
137
138



\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& 2005 \\
& 2006
\end{aligned}
\] & \[
\begin{aligned}
& P_{\text {RETURN }}=103: D=W \\
&
\end{aligned}
\] \\
\hline 2010 & \(P=115: D=W\) \\
\hline 2011 & RETURN \\
\hline 201 & \(\mathrm{P}=129: \mathrm{D}=\mathrm{W}\) \\
\hline 2016 & RETURN \\
\hline 2020 & \(P=145: D=W\) \\
\hline 2021 & RETURN \\
\hline 2025 & \(P=153: D=W\) \\
\hline 2030 & \(P=172: D=\) \\
\hline 2031 & RETURN \\
\hline 2035 & \(P=193: D=W\) \\
\hline 2036 & RETURN \\
\hline 2040 & \(\mathrm{P}=206: \mathrm{D}=\mathrm{W}\) \\
\hline 2041 & RETURN \\
\hline 3000 & REM MENU \\
\hline 3010 & HOME \\
\hline 3015 & VTAB 4 \\
\hline 3020 & PRINT TAB (16)"M EN U" \\
\hline 3025 & PRINT TAB (16)" \(== \pm==={ }^{\prime \prime}\) \\
\hline 3030 & PRINT : PRINT"1. MUSICAL \\
\hline & ANIMATED INTRODUCTION" \\
\hline 3040 & PRINT: PRINT "2. GARDEN P \\
\hline 3050 & PRINT : PRINT "3. GARDEN A \\
\hline & CCOUNTING" \\
\hline 3055 & PRINT : PRINT "4. TERMINAT \\
\hline 3060 & EWORK"' PRINT : INPUT "WHIC \\
\hline & H? H ; N ( \({ }^{\text {a }}\) \\
\hline 3070 & IF \(N<1\) GOTO 3060 \\
\hline 3075 & IF N > 4 GOTO 3060 \\
\hline 3090 & ON N GOTO 200, 500,600,999 \\
\hline 4000 & REM TITLE PAGE \\
\hline 4010 & HOME \\
\hline 4015 & VTAB \({ }^{8}\). PRINT TAB 8 8) \({ }^{\text {P }}\) \\
\hline 4020 & PRINT : PRINT TAB ( 8) 'GARD \\
\hline & EN MANAGEMENT SYSTEM" \\
\hline 4030 & PRINT : PRINT : PRINT TAB \\
\hline 4040 & 18)"BY" PRINT: PRINT : PRINT TABC \\
\hline 4040 & 13) "FRED P S SHARP" \({ }^{\text {PRINT }}\) TAB( \\
\hline 4050 & FOR I \(=1\) TO 2500 \\
\hline 4060 & NEXT I \({ }^{\text {a }}\) \\
\hline 4070 & GOTO 3000 \\
\hline \[
10000
\] & POKE 768, P: POKE 769, D: CALL 770: RETURN \\
\hline 32000 & POKE 770,173: POKE 771,48: \\
\hline 32010 & \begin{tabular}{l}
POKE 772,192 \\
POKE 773, 136• POKE 774, 208
\end{tabular} \\
\hline & \[
\begin{aligned}
& \text { P POKE 773,136: POKE 774,208 } \\
& =\text { POKE } 775.5
\end{aligned}
\]
\[
\text { : POKE } 775
\] \\
\hline 32020 & 778 \({ }^{\text {POKE }} 776,206\) : POKE 777, \(1: ~ P O K E ~\) \\
\hline 32030 & POKE 779, 240: POKE 780,9: POKE \\
\hline & 781,202 \\
\hline 32040 : & \begin{tabular}{l}
POKE 782,208: POKE 783,245 \\
: POKE 784, 174
\end{tabular} \\
\hline 32050 & - POKE 785, 0: POKE 786, 3: POKE \\
\hline & 787,76 788 \\
\hline \[
32060
\] & POKE 788,2: POKE 789, 3: POKE 790, 96: RETURN \\
\hline ] & \[
\text { Listing } \text { incomplete- Ed. }
\] \\
\hline
\end{tabular}


\section*{Wishing Well Coder}

\section*{by Howie Hitchell}

COUNT THE NUMBER OF LETTERS IN YOUR FIRST NAME. IF 6 OR MORE, SUBTRACT 4. IF 5 DR LESS: AIID 3. THIS WILL GIVE YOU A CODE NUMBER. CIRCLE ALL. THE LETTERS AF'FEARING UNIER YOUR CODE NUMBER FOR A MESSAGE FOR YOU !

NOTE: WHEN YOU REACH A PERCENT MARK (\%) THAT'S THE ENII OF YOUR MESSAGE !
(THIS FFOGRAM DESIGNED AFTER THE IIELIGHTFUL WISHING WELL GAME IN THE RICHMOND TIMES MISPATCH.)

UISHING WELL
35287356276556572573 UOGMEINSIALE AMSRAYR 53642334775562547275 NTNTLUOH T TISEEO L \(\begin{array}{llllllllllllllll}5 & 8 & 3 & 8 & 3 & 7 & 3 & 5 & 7 & 6 & 2 & 2 & 2 & 5 & 6 & 6\end{array}\) LAUNSFSUEMATRNGE \begin{tabular}{lllllllllllllllllll}
8 & 8 & 3 & 3 & 3 & 2 & 8 & 6 & 6 & 5 & 3 & 6 & 3 & 8 & 7 & 2 & 8 & 5 & 7 \\
\hline
\end{tabular} MUN YRSCAAENATYB Y 56276548422243438437 LN OOI ELTO IRTS T W \(\begin{array}{llllllllllllllllllll}3 & 2 & 4 & 5 & 5 & 4 & 7 & 5 & 7 & 6 & 6 & 4 & 6 & 3 & 3 & 5 & 3 & 7 & 8 & 5\end{array}\) SPLE-END TITIDLHSZ 26475425724674253687 LELIEEENLAASLRSSLTH53433577285782256245 NNDUMUEAICR PLRAEL 78645226468834844445 HPOD REY ENTMEANIR
 S UDEA N NSPTOSPE A 72355233328257224588 U-ET WNOUINIIFOWET M 48874553762848773386 FANFU AGIHS LLNGH-ID \(\begin{array}{llllllllllllllllllll}3 & 2 & 4 & 5 & 8 & 2 & 4 & 2 & 6 & 3 & 3 & 5 & 8 & 8 & 4 & 7 & 2 & 7 & 4 & 6 \\ E & - & 5 & K & T & W & O & N & V & I & & E & & H & & T & A & E\end{array}\) 426667533247777785373 TPSTOTL L. RUNKHOUN
```

8447834772 6 347752 8 3 6 3
NUPIES.%E E%%EAFDMA
48423272888457442877384
ETSYE% DH %ETN%
422 3 325 5 6 3 7 8774666377 5
GHETONTRAO%S%RN- % %U
564284323486443542737
TWESTAMEUTOH CHBL%H%
5262772722 B 3 36 7 7 6 7 7 6
.VEE%%S%.%N AN%% %% T
32766636722748777586662 3
L%%HER % % % E % % % . FL%E
868422526777826326787
%0%[%%%% 0%% % % DA % % % %
6574 8 577. 32 8 6 6 3 3 2 247 8
R % % % % % % II % % E C Y . % % B % %
57662 35 3 2 8 64485 3 2 5 5 3 5 5
% E% % % % % % \L% % % % % % % % %
82854388342338355532
% % % % 0 % % % % С % % % % % % % % % %
38 3 6 6 2 2448888855584468858
%%%ESS%%K%%%%% % % H % % %
85556558866468855666664488
%% T % % % HEE%%% R OCA%%
llllllllllllllllllllllll
444444
% % % % % %

```

ILIST
5 REM 3 ************************* * WISHING HELL CODER. *
****************************

10 TEXT : HOME
20 HTAB 2
30 FRINT "*** 'WISHING WELL' MES SAGE CODER ***
```

40 PRINT " THIS PROGRAM WILL AC
CEPT (AND WILL RE-QUIRE) EXA
CTLY SEUEN DIFFERENT MESSAGE
S."
50 PRINT " IT WILL THEN PRINT 0
UT THE MESSAGES INCODED FORM
, AS IN THE 'WISHING WELL'
GAME SEEN IN THE RICHMOND
TIMES DIS- PATCH."
FRINT : PRINT " DO YOU HANT
TO FREPARE MESSAGES FOR PA
RTICULAR FEOPLE (Y/N) ? ";: GET
ANS$: PRINT ANS$: IF ANS\$ <
) "Y" THEN PRINT : GOTO 12
O
70
80 FOR SFECIAL = 1 TO 10: PRINT
"NAME \#";SPECIAL;: INPUT " ?
";NAME$:L = LEN (NA$):L =
L - 7*(L) 7):NAMES(L) = N
AME$(L) + "," + NAMES: IF NA
 ME$ = """ THEN 100
90 NEXT SPECIAL
100 FOR N = 1 TO 10: IF NA$(N) <
) "" THEN NA$(N) = R(IGHT\$
(NAME$(N), LEN (NAME$(N)) -
1)
110 NEXT N
120 FOR N = 1 TO 7: PRINT : PRINT
"MESSAGE \#";N;
130 IF NA$(N) < > "" THEN PRINT
 ":(";NA$(N);")";
140 PRINT
150 INPUT MESSAGE$(N): IF BIG <
 LEN (MESSAGE$(N)) THEN BIG =
LEN (MESS$(N))
160 NEXT N
170 PRINT : PRINT " THE MESSAGE
 S I HAVE ARE AS FOLLOMS:": PRINT
180 FOR N = 1 TO 7: PRINT N;": "
 ;MESS$(N): NEXT
PRINT : PRINT " ARE THEY AL
L O.K. ? ";: GET ANS$: PRINT
 ANS$: PRINT
200 IF ANS\$ < > "N" THEN }22
210 INPUT "TYPE IN MESSAGE \#, CO
MMA, AND CORRECT MESSAGE:
"N,MESSAGE$(N): HOME : GOTO
 170
220 HOME
230 PRINT : PRINT " - ONE MOME
 NT, PLEASE -": PRINT
240 Y = PEEK (37) + 1
250 FOR N = 1 T0 7:L = LEN (MES
 S$(N)): IF (L < BIG AND L)
0) THEN FOR ADD = L TO BIG -
1:MESS$(N) = MESS$(N) + "%":
NEXT ADD
NEXT N

```

FOR N = 1 TO 7:SUM = SUM + LEN (MESSAGE\$(N)): NEXT N: REM : FINI TOTAL LENGTH OF ALL 7 MESSAGES.
\(280 \mathrm{~L}=\) SUM
290 IF L \(=0\) THEN FRINT CHR\$ 1 7): PRINT "HECK. THERE AREN' T ANY MESSAGES.": PRINT : PRINT "(PROGRAM ENDED.)": END
300 FDR N \(=1\) TO SUM:A \(=\) RND ( 1 ): NEXT N
310 DIM IN SUM),OUT( SUM)
320 SELECT \(=\) INT ( RND (SUM +5 ) * 7 + 1): REM : GET A RANDO M NUMBER FOR SELECTING A LET TER FROM MESSAGE (SELECT).
330 UTAR Y: FRINT "COUNTDOWN: "; SUM;" "
340 IF SUM > O THEN GOSUB 550: GOTO 320
350 PR\# 1: PRINT CHR\$ (31); CHR\$ (14):A\$ = "WISHING WELL": HTAB (32-LEN (A\$)) / 2: PRINT A\$: PKINT CHR\$ (15); CHR\$ ( 30)

360 FOR \(N=1\) TO L STEP 20
370 FOR S = 0 TO 19: IF \((S+N)\) ( \((L+1)\) THEN PRINT IN(S \(+N\) );" ";
380 NEXT S: PRINT
390 FOR \(S=0\) TO 19: IF (S + N) < ( \(L+1\) ) THEN PRINT CHR\$ ( 0 UT(S + N));" ";
400 NEXT S: PRINT
410 PRINT : NEXT N: PRINT : PRINT
420 PRINT " COUNT THE NUMBER OF LETTERS IN YOUR FIRST NAM E. IF 6 OR MDRE, SUBTRACT 4.

IF 5 OR LESS, ADD 3. THI 5 WILL GIVE YOUA CODE NUMBER - CIRCLE ALL THE LETTERS A FFFEARING UNDER YOUR CODE NUM RER FOR A MESSAGE FOR YOU ! "
430 PRINT : PRINT "NOTE: UHEN YO U REACH A PERCENT MARK \((\%), T\) hat's the end of your messag E!"
440 IF SPECIAL \(=0\) THEN 470
450 PRINT : FRINT "MESSAGES FOR: ": PRINT : FOR \(N=1\) TO 7: IF NAME \(\$(N)\) ( > "" THEN PRINT NAME\$(N)
460 NEXT N
\(470 \mathrm{~B}=\) CHR\$ (14):Ls = CHR\$ ( 1 5): REM : CONTROL CHARACTERS FOR BIG AND LITTLE LETTERS FROM THE PRINTER.
contd.
480 W\＄＝B\＄＋＂W＂＋L\＄：R\＄＝B +
    "R" \(+\mathrm{L} \$: T \$=\mathrm{B} \$+\mathrm{T}\) " \(+\mathrm{L} \$:\)
    \(\mathrm{D} \$=\mathrm{B} \$+\mathrm{D}\) " \(+\mathrm{L} \$\)
490 PRINT : PRINT "《THIS PROGRAM
        DESIGNED AFTER THE"
500 FRINT "DELIGHTFUL ";W\$;"ISHI
    NG ";ws;"ELL GAME"
510 PRINT "IN THE ";R末;"ICHMOND
    ";T\$;"IMES ";D\$;"ISFATCH.)"
520 PR\# 0
530 PRINT : FRINT "DIO YOU HANT A
    NOTHER COPY ? ";: GET ANS\$: PRINT
    : IF ANS\$ = "Y" THEN 350
540 ENII
550 FEM **************************
    * *
    * build uf Strings of num-*
    * bers and corresponding *
    * MESSAGE LETTERS, RAND-
    * DOMLY SELECTED.
    * *
    ******************************
560 COUNT(SELECT) \(=\) COUNT(SELECT)
        \(+1\)
570 CODE \(=\) SELECT +3 * (SELECT \(=\)
        ( 5) - 4* (SELECT = ) 6)
580 IF MID\$ (MESSAGE\$(SEL) PCOUN
    \(\mathrm{T}(\mathrm{SEL}), 1)\) < > "" THEN \(\mathrm{X}=\mathrm{X}\)
        \(+1: \operatorname{IN}(X)=\operatorname{CODE}: \operatorname{OUT}(X)=\operatorname{ASC}\)
    ( MILI\& (MESSAGE\$( SEL) )COUNT(
    SEL),1)):SUM = SUM - 1
590 FETTURN
26000 REM **********************
    * *
    * HOWIE mitchell * *
    * 408 JACKSON AUE. *
    * LEXINGTON, UA. 24450 *
    * OCTOEER, 1980 *
    * *
    ******************************


Aidsto Formatting REM Statements by Howie Hitchell

This is a short note on the subject of Dlocumentation－not how to Do it，but rather a courle \({ }_{a}^{\circ}\) fideas as to how to make KEM comments neatly，efficiently，and in a Fleasing manner．

IN INTEGER BASICE

1．SET THE RIGHT－HAND TEXT HINDOH （POKE 33）TO A VALUE WHICH IS \(33+\) THE NUMBER OF DIGITS IN THE LINE NUM－ BER OF THE COMMENT．
2．USE THE AUTO COMMAND．
3．TYPE IN THE COMMENT LINE，ENDING BEFORE THE CURSOR＇DROPS＇TO THE NEXT LINE．

EXAMPLE：
If the comments are， 5 ay，on lines \＃100－\＃999，then use poke 33，36．

INFP BASIC＝

Here，the DESCRIPTION is a bit com－ plicated，but the actual IIOING of it is easy as apple pie．

1．SET TEXT WINDOW TO FOKE \(33,28\).
2．TYFE IN THE LINE NUMEER，THE WORI ＇REM＇，AND THEN SFACE OUER 1 SPACE USING ESCAPE A－
3．EEGINNING AT THE＇M＇IN＇REM＇，COUNT OVER TO THE LEFT A NUMBER OF SPACES EQUAL TO THE NUMBER OF DIGITS IN THE LINE NUMBER．

THIS WILL GET YOU TO THE LOCATION OF THE LEFT EDGE OF THE REM COMmENT UHEN YOU＇VE RETURNED TO THE TEXT MOLE（WINDOW NOW AT POKE 33,28 ）．

This will sive a rather curious wraf－ around afpearance as shown in fis． 1 below．

FIG． 1 （at FOKE 33,28 ）
1250 REM＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ ＊＊＊＊＊＊
＊＊here is what an ff ba
SIC＊＊REM COMMENT LOOKS LIK
E＊＊AT POKE 33,28 OR NORM
AL．＊＊
＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
＊＊＊＊＊

FIG． 2 （back to TEXT mode）
250 REM＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ ＊
＊here is hhat an fP basic＊
＊REM COMMENT LOOKS LIKE＊
＊AT POKE 33,28 OR NORMAL．＊ ＊
＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊

THIS FROCRAM FORMATS NEAT REM-COMMMENT TEXT FILES, WHICH CAN BE EXEC'D INTO YOUR FROGRAMS - QUICK-AS-A-FLASH !

JREM: HERE IS AN EXAMFLE OF THE USE OF THE PERM- REM PROGRAM:

JRUN
*** 'PERMANENT' REM-CREDIT WRITER ***

IIO YOU KNOW HOW THIS FROGRAM UORKS ? N
YOU ENTER YOUR NAME, ADDRESS, CITY-STATE-ZIF IATA IN 'DATA' STATEMENTS.

EXAMPLE:

J500 IAATA HOWIE MITCHELL, 7823 SW. 55TH P LACE,"GAINESUILLE, FLA. 32601"
(note: use quotes to enclose data CONTAINING , OR : !)

ENTER EXACTLY THREE SETS OF RATA PER CREIIIT LINE! -----

USE LINE NUMEERS \#500-\#600.
(FRESS ANY KEY.)
499 REM \(* * * * * * * * * * * * * * * * * * * * * * * * * ~\)
\begin{tabular}{lll}
\(*\) & & \(*\) \\
\(*\) & USE LINES \#500-\#600 & \(*\) \\
\(*\) & FOR DATA STATEMENTS. & \(*\) \\
\(*\) & ENCLDSE FHRASES CON-- & \(*\) \\
* TAINING : OR , IN "'S \\
*
\end{tabular}
*****************************
601 DATA (END OF DATA.)

ENTER YOUR IATA NOW, THEN
RUN THE PROGRAM AGAIN.
]500Datahillory gillock, 123 PELEYE avenu E,"LORTON, KANSAS 22367"

JRUN
*** 'PERMANENT' REM-CREDIT WRITER ***

DO YOU KNOW HOW THIS PROGRAM WORKS ? Y I HAVE IATA FOR THE FOLLOUING:
\#1: HILLORY GILLOCK
\#2: (END OF DATA.)
WHICH ARE YOU ? 1
O.K., NOW WHAT IS THE DATE ? "SEPTEMBER , 1980"
-ANI WHAT LINE NUMBER FOR THE CREDIT
LINE ? 5555
5555REM**********************
***
** HILLORY GILLOCK
** 123 FELEYE AVENUE
** LORTON, KANSAS 22367
** SEFTEMBEF, 1980
**
****************************
**
IS THE AEDVE DAATA CORRECT ? Y NOW, I WILL MAKE AN EXEC FILE FOR YOU, WHILE YOU WATCH.

OFEN CR:HILLORY GILLOCK:SEF '80
DELETE CF:HILLORY GILLOCK:SEP '80
OFEN CR:HILLORY GILLOCK:SEF '80
WRITE CR:HILLORY GILLOCK:SEF' '80
5555REM************************
** HILLIORY GILLOCK
** 123 feleye auenue ** Lor
TON: KANSAS 22367 ** SEPTEMEER, 1980
**
***
****************************
CLOSE CR:HILLORY GILLOCK:SEP '80
save ferm-rim
NOW, ALL YOU NEED TO IO IS LOADI YOUR FROGRAM, AND TYFE THE FOLLOWING:

EXEC CR:HILLORY GILLOCK:SEP '80
RESULT:
THE CREDIT REM LINE WILL BE INSERTEI INTO YOUF PROGRAM !
] EXEC CR:HILLORY GILLOCK:SEP '80
J5555REM*************************
** HILLORY GILLOCK
** 123 PELEYE AUENUE ** LO
RTON, KANSAS 22367 ** SEPTEMBER, 198
0 ** **
****************************
JLIST
5555 REM ***********************
*
* hillory gillock *
* 123 feleye auenue *
* LORTON, KANSAS 22367 *
* SEPTEMBER, 1980 *
**************************

5 TEXT ：HOM藻

10 PRINT＂站＇PERNAMENT＇REY－CREDIT URITER 辝
15 PRINT ：PRINT＂DO YOU KMOH HAN THIS PROGRAM MDRXS ？＂；EET
AUSS
16 PRIIT
20 IF ANSS（）叫 THEL 100
25 PRINT ：PRINT＂YOU ENTER YOUR HARE，ADDRESS，CITY－ST ATE－ZIP DATA IM＇DATA＇STATEMENTS．＂

I5 PRINT＂J500 DATA HOUIE MITCHELL，7823 SN．55TH PLACE，＂；OS； ＂GAIHESUILLE，FLA． \(32601^{19}\) ；ig
37 PRINT ：PRIHT＂（ MOTE：LSEE RLOTES TO EMCLOSE DATA COHTAINING，OR：！＂ \(\mathrm{C}:\) PRINT
38 PFINT＂ENTEE EXACTLY THREE SETS OF DATA PER CREDIT L INE！－－－－－＂

 9－601
45 PRINT ：PRINT＂ENTER YOUR DATA MRI，THEN RUB THE PKOGRAH AGAIN．＂：END
100 HOME ：PRINT＂I HANE DATA FCR THE FOLCOIIMG：＂：PRIAT
103 RESTORE
105 FOR \(N=1\) TO 10
110 REAB NAKES（N）

115 IF NAS（H）＝＂（ENT OF DATA．）＂THEN 150
120 READ STS（N）CIS（N）
130 HEXT
150 PRINT ：PRINT＂MHICH ARE YOU ？＂：PRINT ：GET L
155 IF L＝N THEN 45
157 IF L＞N THEH 100
160 NAS \(=\) HAS（L）：STS \(=\) STE（L）：CIS \(=\) CIS（L）
165 PRINT ：INPUT＂O．K．s NON HHAT IS THE DATE ？＂；DAS
170 PRINT ：IMPUT＂－AND WHAT LINE NUTEER FOR THE CREDIT L INE？＂：LINEs
175 CFILES＝＂CR：＂+ LEFTS（NAMES（L） 18 ）+ ＂：＂+ LEFTS（DAY

180 RIK \(=\)＂REM
185 RLAMK＝＂

！90 LFT＝＂＂
195 RTE \(=\)＝
\(t^{n}\)

\section*{\(197 \mathrm{FEM} * * * * * * * * * * * * * * * * * * * * * * * *\)} ＊
＊
＊FIM\＄HAS 36 STARS＊
＊ELANK\＄\＆BOTTM\＄： 28 CHAR．＊
＊LF\＄\＆RT\＄： 3 \＆27，RESP．＊
＊＊
＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
200 FIRSTS \(=\) LIMES + LEFTS（RIMs 30 - LEX（LINES）\()\)
205 NAMES＝LFTS＋NAS + RIEHTS（RTE 25 －LEN（MAS））
210 IF STS（ ）＂un THEN STS＝LTTS＋STS＋RIGTIS（RTES，25－ LEN（STS））
220 IF CIS（ ）＂n THEN CIS \(=\) LFTI + CIS + RIETTS（RTES，25－ LEN（CIS））
 LEN（（ a月 \(^{2}\) ））
240 CREDITS＝FIRSTS＋RLANK + HATIS + STREETS + CITY + MAY TES＋BLAMK＋BOTMK
245 H0椟
250 POXE 33,28
375 PRIAT CREDITS
360 TEXT ：UTAB 15：PRIHT \({ }^{n}\) IS TIE ABRNE BATA COBRECT ？＂；：ETT
ANSS
270 PRINT：IF ANSS＝EMP THEN RMA
280 H0低
 여 UATCH．＂：PRIMT
300 DS \(=\) CHES（4）
310 PRINT DS＂Kaid 0，I， \(\mathrm{C}^{\mathrm{n}}\)
320 PRINT DS＂OPEM＂GCFILES

340 PRINT DS＂OPEN＂GCFILES
350 PRINT OS＂ERITE＂；CFILES
360 PRINT CREDITS
370 PRIMT DECLOSE BCFILE
372 PRINT ：PRIMT DS＂SANE PERH－REY＂
380 PRINT ：PRIKT ：MROH，ALL YOU NEED TO TE IS LOAD YORS PREGRAM，AHD TYPE THE FOLOUIMG：＂：PRINT
390 PRINT＂EXEC UGCFILE
395 PRIRT
400 PRINT：RESIRT：＂：PRIKT
410 PRINT＂THE CREDII REH LIIE UILL BE INSERTED IMTO YO隹 PRGGRAK！＂
420 NE



601 IATA（ERD OF DATA．）

－HOUIE MITCHELL 7823 SU．55IH PLACE
1 ＊GAINESVILLEs FLA． 32601 烊 KAY， 1980 ＊


\section*{Lee Meador＇s}

VCOPY
－Make backup copies of your VISICALC disk．
－Uses a single disk drive．
－For either 48K Apple ］［ or Apple ］［ Plus．
－NOT ASSOCIATED WITH PERSONAL SOFTWARE OR SOFTWARE ARTS OF WHOM VISICALC IS COPYRIGHTED PROPERTY．
－Price：\(\$ 20.00\)
－Contact：Lee Meador
Box 3261
Arlington，TX 76010
（817）469－6019

\section*{The Disappearing Act}

\section*{by Jose h. Sanchez}

Quite frequently a user unfamiliar with a particular set of program files will not realize that individual units constitute portions of a large program which need to be chained together in order to function properly. In cases such as these it would be better to hide the names of certain files in a disk's directory. One of the easiest ways of accomplishing this would be to imbed a string of ctrl-H's (backspaces) in the filename. However, APPLE's Monitor prevents us from doing this.

When the APPLE encounters a ctrl-H from the keyboard, it interprets the ASCII character as a direct command and proceeds to 'POP' the last character from the input buffer. However a ctrl-H will be interpreted by DOS as a normal character and therefore may be used as part of a filename. Normally, DOS marks the end of the filename with a special character and then proceeds to write on the following line when displaying the catalog. If a filename includes enough backspaces, the invisible cursor will be moved to just after the 'end of filename' mark. DOS will then print out any subsequent filename on the following line, thereby overwriting the original file's name.

This then would prove an excellent means of hiding program names except that the Monitor does not allow you to enter the backspace into the program name. The solution to this problem is to concatenate the ctrl-H into a character string which contains the actual program name. To do so from within a program, enter the following line:
```

60000 FOR I=1 TO LEN(A$)+19:A$ = A \$+ CHR\$ (8) : NEXT I:RETURN
(Where $A \$=$ "programname")

```

By assigning the program's name to the variable A\$ and then executing a GOSUB to line 60000, the resulting string variable will contain backspaces. The statement ' \(F O R \quad I=1\) TO \(\operatorname{LEN}(A \$)+19\) ' produces one backspace for every character in the program's name and then adds nineteen more. These additional backspaces move the cursor to just after the end of the last printed filename.
If you wish to open an 'invisible' file, use the following steps:

100 A\$="FILE":GOSUB 60000
110 PRINT CHR\$(4);"OPEN";A\$
120 PRINT CHR \(\$(4)\) "WRITE \({ }^{\prime}\); A\$
130 REM : \(\because\) \#\# TO FILE GO HERE
800 PRINT CHR\$(4);"CLOSE ";A\$ etc.
Note that the above will work with DOS commands: RUN, READ, WRITE, OPEN, CLOSE, BRUN, BLOAD, LOAD, RENAME, AND DELETE. There are, however, a couple of restictions, when using this trick. The first restriction is that the filename must not be longer than 10 characters in length since you are appending at least 19 additional backspaces plus one for each letter in the name. The second point to
remember is to be sure that the filename will never be the last or the first to appear in the catalog, for obvious reasons.
(Editor's Note: With a printer on line the full catalog will be printed including the 'invisible files', and the backspace will be performed by those printers equipped to do so.)

\section*{Intelligent 80-Column Video Interface (SMARTERM \({ }^{\top T}\) )}

\section*{by Houard Lefkouitz}

SMARTERM is a new interface card from Advanced Logic Systems, Inc. being distributed by Apple, Inc. A partial list of features include:
- Plugs directly into APPLE slot (\#3 if you have Pascal).
- Standard video output is connected to the card which allows software switching between 80 columns, 24 lines or the standard APPLE II video output. (Both outputs can be used simultaneously with two monitors.) No other connections or alterations are required.
- Upper and lower case compatible with both Basic's and Pascal (no reprogramming required).
o Provides three graphics modes:
```

 1. APPLE II standard lo-res (40\times40)
 2. APPLE II standard hi-res (280x192)
 3. SMARTERM medium-res (160x72)
    ```
- Provides a complete set of primitives for plotting points, lines, or any of 64 different graphic characters.
- Supports all Basic tab commands (TAB, VTAB, HTAB)
- For Pascal, provides eight software selectable cursor control definitions, GOTOXY absolute cursor addressing rapid horizontal cursor movement (\% columns) and rapid vertical cursor movement ( 4 rows).
- Lots of other features.
- Package (Order No. D2B0010) includes SMARTERM card, video connector cable.
SMARTERM should be available in late November. Thanks are due to Computerland of Tysons Corner for providing information. This is one I have been waiting for. See you on the big screen.

Dear Editor,
First, compliments on the new "shape" of the Washington Apple Pi Newsletter, specifically the cover. A great improvement. Much easier to use. Keep up the good work.

I am writing mainly in response to DOS 3.3 and Sandy Greenfarb's article on it in the October 1980 WAP. Perhaps I should say I am rambling, since that is what these thoughts are.

My initial response to hearing that Apple was releasing another version of DOS was one of great interest and excitement.
"What goodies does Apple have in store for us now?" I was eager to obtain it and would have, had it not been for the 'no mail orders' on the WAP group purchase. (Since I live 125 miles southwest of \(D . C\). I cannot attend meetings.) Well, then comes the September 1980 WAP, with the note on Page 1 about bugs in DOS 3.3. Whew! Relief that I didn't purchase DOS 3.3 after all.

On reading Sandy Greenfarb's article I ask myself, "Why buy DOS 3.3?" The only solid reason is that it enables \(23 \%\) more space on disks. At least, that is the only reason that I see. Sandy says that the File Developer program is almost itself worth the price of DOS 3.32 but from his description of the program 1 believe that most of the features it offers presently exist in already available public domain or at least club domain - software. Further he does not mention the bugs in DOS 3.3!

So I have to say to Apple Computer, "What is it that you are presenting us with?" What are the claims for DOS 3.3? And although it is not uncommon for such software to be released with bugs in it, the fact that it took so little time for the bugs to be discovered forces one to the conclusion that had Apple released it later, thereby giving themselves more time in which to test it, everyone would have been happier. So to Apple Computer I say, "Shame, shame. How can you release such a shabby product? Where is the excellence and dependability brandished in Softalk and in your ads?"

I think we users will get such products if we put up with them. I hope the notes about the bugs in DOS 3.3 in WAP, in CALL-A.P.P.L.E. and elsewhere, will deter people from buying DOS 3.3. We will get good systems software only when we refuse to buy shabby products.

Meanwhile, and sadly, those who have already purchased DOS 3.3 are paying Apple to do its own field testing.

Sincerely,
Stephen Bach

REPLY TO LETTER TO THE EDITOR
Dear Stephen,
To use a phrase of my teenage sons, "I see where you are coming from." In honesty, I cannot argue with your view. FID the utility I extolled so highly as a DOS 3.3 feature, works equally well under 3.2. I've put what I consider a lot of unnecessary effort into converting to 3.3, including the conversion of some "uncopyable" diskettes. While I still begrudge this essentially non-productive effort of conversion, I still adhere to my pro-conversion attitude.
When Apple went to Pascal, they were forced to come up with the 16-sector format for the general Pascal standard. As some firmware change was required, I feel that the rest was inevitable. What could be more natural than having a system where all diskettes would boot under the same PROMs? In my personal opinion, 3.2 was doomed to obsolescence while Pascal was in the planning stages.

As to the bugs, I am very prejudiced. I have been programming for over twenty years. Not only have I learned to program, but how not to program. Over the years I' have learned the myriad traps and pitfalls that lead to occasional error. When I deliver a finished product to a user, I am personally certain that it has been'tested in every possible way and that this program or series of programs will work to perfection. However, Murphy's Law generally prevails. My empathy is for Apple's programming staff and no amount of argument could convince me that programming professionals would deliberately allow a product such as 3.3 to be released without equally thorough testing. If anything, comparing product releases of Apple with IBM would show that Apple is doing very well indeed. In fairness to the big guy however, Apple's products are a lot smaller and a lot less complicated. Before I get a law suit, let me add that this example is only for the purpose of showing that noone is perfect.

To reiterate what I said in my article, I feel the major benefit of 3.3 is that it is the current state-of-the-art. I've recently noticed that some software ads request a choice of 3.2 or 3.3 diskette and I have already seen two ads that say 3.3 only. Over a period of time, I would reasonably expect 3.2 products to disappear from the market. DOS 3.2 will go the way of the 78 RPM records.

At the October meeting I noted to the group that there are two releases of 3.3 on the market, one which boots up with an April 1980 date on the screen and one which boots with an August 1980 date. I used the April release for two months with no problem. Upon learning of the August version, I went to my dealer who allowed me to update my master. I would expect that all dealers will do the same.

In order to get a quick reply to meet the WAP newsletter deadline, your letter was read to me over the phone. I hope that I have covered all your points.

\title{
Interface with your own little computer
}

\author{
By Jeffrey K．Finn
}

It was during a late night work session a little over two years ago that I realized that personal comput－ ers would change the way we ap－ proach the planning process．There on my living room television screen was a color map of Seattle＇s 121 cen－ sus tracts．The map had just been
generated by my personal computer． The colors represented the average selling price of the homes in each tract．I looked at the pattern for a while and then typed out a new set of breakpoints for the data．In sec－ onds，my computer had a new dis－ play for me．

The author at work．


Since that night，I have become convinced that personal computers will make it possible for one－and two－person planning offices to de－ velop alternative solutions to even the most complex planning prob－ lems．By using standard computer programs，modified to reflect a particular situation，planners can take advantage of the world＇s best thinking and the most advanced ana－ lytical techniques．

To give you an idea of its power， I＇ve listed the uses I have made of my personal computer．（See box．） The last use－making a remote ter－ minal map display of census tract data－is possible because anyone who wants Seattle census data and has an 80 －column terminal can call my personal computer via regular telephone lines and generate an 80 － column map with that information． Other uses are just now becoming feasible，as new accessories are de－ veloped．These accessories include digitizer tablets，light pens，and electrical circuit controllers（which can be programmed up to a year in advance）．Other possibilities are automatic timekeeping and two－way spoken communications．

\section*{How much？}

A computer system that can do most of this costs less than \(\$ 5,000\) ． The computer on which I do my cen－ sus tract mapping cost me about \(\$ 1,200\) ，because I use my own color receives a computer more powerful than those that cost \(\$ 1.5\) million
about 15 years ago. Although the current generation of microcomputers does not have the capacity of the large time-sharers, tiny personal computers now on the drawing boards will give users the capacity to deal with all but the largest data bases and the most complex scientific problems. However, it may not be economically feasible for a small office to own or develop the programs and data bases needed for all its jobs.

It's likely that small planning offices will take a hybrid approach, combining in-house capability with time-sharing on a large computer system-an approach known in the computer field as distributed data processing. The typical small planning office will complete many of the day-to-day activities on its own computer. When a specialized data base or data analysis is needed, the office computer will be connected by telephone to a larger computer that has the special capabilities required for that portion of the job. The information generated in this way will be displayed on the firm's own computer in a manner reflecting the special character and approach of that firm.

\section*{Free advice}

If what I've presented so far has aroused your interest, let me caution you not to rush out to buy your own computer. It's not yet an easy task, since microcomputer systems and programs have not yet been geared specifically to the unique needs of planners. But, if you're eager to get started, here are some pointers to guide you along the uncharted path of a new technology:
- As with any project, determine the goals and objectives you expect to accomplish by using the computer. Given the relatively low price of personal computers, a valid objec-tive-particularly for those with no previous computer experiencewould be simply to learn about them and have fun playing around with them. I know of several professional offices that have acquired personal computers for the sole purpose of having their employees become familiar with the general principles of data processing.

\section*{What the hardware can do}

Geographic-based data display
- Demographic data by census tract
- County assessor's property tax valuation data by half-acre tracts
- Land uses by half-acre tracts
- Satellite land coverage classifications by 1.2 -acre tracts

\section*{Planning data analysis}
- Real estate economic feasibility analysis
- Financing costs
- Interactive statistical analysisfrequencies, histograms, correlation, means, linear regression, multiple regression, data transformations
- Critical path method (CPM)
- Animated times series, variable relationship graphs
- Perspective study drawings

\section*{Office operations}
- Word processing
- Accounting
- Mailing lists, labels
- Resource directories

Telecommunications
- Data bank retrieval
- Electronic community bulletin board
- Remote terminal map display of census tract data
- Spend some time reviewing the various brands and models available. Buying a personal computer system is a little like buying components for a hi-fi system. All the parts must work together. Unfortu-
nately, there are fewer interface standards for computers than for hi-fi equipment. Make sure the computer you buy has an RS 232C serial interface, which-used with special phone equipment-allows your

\section*{. . . with the right software}

At the heart of any microcomputer system are the programs-the sets of instructions that tell the computer what to do. The right programs are so important that computer experts now recommend finding the programs first and then looking for the computer systems on which they can operate.
While there are hundreds of companies selling general-purpose business and statistical programs, very little is advertised in the way of planning-oriented graphic display programs. The shortage of these valuable planning tools is due to: 1) the relatively small market for them; 2) the fact that even general-purpose map display programs require some custom programming to make them applicable to a specific geographic area; and 3) the difficulty of modifying mapping programs designed for large
computers to run on the micros. However, there are professionals who are now in the process of making useful planning programs available commercially. Also, some of the general-purpose programs are easily applied to planning office work.

Be cautious when you buy an existing program. If possible, operate it before you buy it. A program written with the user in mind will feel comfortable to you. Finally, look for understandable and complete instructions on its use.

A good source of more information on the general subject of microcomputers is An Introduction to Personal and Business Computing by Rodnay Zaks. (Sybex, Inc., 2020 Milvia St., Berkeley, CA 94704; 1978; \$6.95). It is available in many of the retail stores that sell microcomputers.


FLAVORS: little tidbits
by BURTON S. CHAMBERS, III
(The flavors chosen for each tidbit are not necessarily an indication of conitent.)

LEMON: Apple Fortran
Elsewhere in this issue, Paul Sand briefly introduces Apple Fortran to Washinston Apfle Pi members. I have used it and recommend it to the membershiag althoush if your choice is betweer Fortran and Fascal, I recommend the latter. Unforturiately, a serious compiler error exists in the current version of Asple Fortran. IIATA statements are suppose to be non-executable statements, which provide a useful way of initializing variables, The error in the current version is that the variables are 'initialized each tine the subroutine; containiris the IIATA statement, is invoked. Alas, this suostantially reduces the utility of IIATA statements, Furthermore, more care must be exercised when modifyins existins Fortran routines tinat run on other machines. Apsle Comsuter, Inc. has been informed of this, arid I'm sure we will be hearins from them in the riear fistare.

GRAFE: IIatacomm by II, C. Hayes:
Eleven moniths aso, I heard that the sood folks that brins you the Micromodemi II for the Aprle ][ were developins a set of routines, written in Fascal, that would allow quite Fowerful applications for those forturiate enoush to have the Arfle Lansuase System. This set of routiries is now available (reference Faul Sand), and I believe comes. with the source, I have used these routines, and recommend them to those with Fascal and the Micromodem II.

\section*{APFLE: Fascal File Names:}

Almost one year aso, I decised to besin the task of learrins Fascal. Now I am slad I did, however there were times when I doubted I would ever become comfortable with the lansusse, Ilurins this past year I have learned some thiriss that Aprle hasn't bothered to pass alons about file riames. I am suspicious that thes either want to kees us out of troubleg or that they realize it is somewhat of a sane peorle play, i, f, fisurins out low it works. In ary event, Try the followins file names (You can make them easily in the FILER with the Make commarid. The riane SOMETHING: can be replaced with whatever yous like):

SOMETHING.BACK
SOMETHING. CODE
SOMETHING. IAATA SOMETHING, FOTO SOMETHING.GRAF SOMETHING . INFO SOMETHING.TEXT

I have included the faniliar ones is well.

\section*{PEAR: Apple Pascal Directories}

If you want to directory (if \({ }^{0 r}\) it the source code).
know how to access the Fascal diskettes; bus indeed is offered with

BANANA: Usins Serial Card with IIatacomm
You can use a printer hansins off of an Apple Serial card IF you can orive your printer fast enoush. The serial is too slow to allow the Dataconm prasram to both receive characters at 300 baud witi your Micromodem II and kees the priniter fed. However if your printer can accept characters at 9600 baud, it will work. If one of the members needs to know how much one could back off of this reauirement and still work, I would be willins to experiment.

ORANGE: The followins is a smaller version of Bruce Field's neat Double Graphics for the Apple silentype. It is small enoush to be laaded in without interferrins with AFple Flot, for those of you that use Apple Flot. A portion of Bruce's codins has been liaje a subroutine. Also I took out the check on the left marsin, so BEWARE!!! (Flease review Bruce's fine article in the October edition of WAF.


TO B** OR NOT TO B** (TESTING THE 6502 COMPARE INSTRUCTIONS)

\section*{Sandy Greenfarb}

The 6502 provides three compare instructions: CMP (compare Accumulator and memory), CPX (compare Index X and memory) and CPY (compare Index Y and memory), In technical terms, a compare operation tests the result of subtracting the operand from the specified register and sets the negative, zero, and carry flags accordingly. Assuming that the novice machine language programmer has not reached the stage of understanding the mechanics of the operation, this article attempts to explain, in simple terms, how to evaluate the results of a compare.
In order to compare two values on the 6502 , one value must be in the specified register ( \(A, X\) or \(Y\) ) and the other must be in memory or immediate mode (part of the compare instruction). The results of a compare (with some explanation to follow) are summarized in the following table:


Keep in mind that the above chart is merely a guide as to how to interpret the results of a compare, and not an explanation as to how the flags are set.

Unsigned values are simply those actual values as represented by one byte (0-255). Signed values are those in which the high order bit is considered to be a sign bit. These range from -128 to +127 . In general, when testing unsigned values, use the \(C\) and 2 tests; when testing signed values, use the 2 and \(N\) tests. For these tests, 6502 provides six instructions:
\begin{tabular}{ll} 
BCC - Branch on Carry Clear (Carry reset) & BNE - Branch on Result Not Zero (Zero reset) \\
BCS - Branch on Carry Set \\
BEQ - Branch on Result Zero (Zero set) & BMI - Branch on Result Minus (Negative set)
\end{tabular}

This article is simply to get a new programmer "over the hump". For more detail, read a 6502 text or software manual or read Randall Hyde's article "Converting Integer Basic Programs to Assembly Language" in APPLE ORCHARD No. 1. ©

PERSONAL COMPUTING SEMINAR - RECORD KEEPING, PROBLEM SOLVING \& INCOME TAX
WHERE: Talbot Shopping Center (1000 block) Rockville Pike, Rockville, MD
WHEN: 9 AM - 4:30 PM, Friday, Dec. 19 (or) Monday, December 22, 1980

AGENDA:
COMPUTERS
Applications and users
Sizes \& user impact
Costs and key factors
Hardware, firmware \& software
PROGRAMMING
Purchase costs and types
Programming languages
'How to' \& trade offs

APPLICATIONS (with demonstrations) Financial Planning Records/data mgm Text Processing Accounting \& control Income Tax
'HANDS ON' experience
Financial Planning
Records/data mgm
Text Processing
Accounting \& control
Income Tax

COST: \(\$ 25\) including lunch and handouts. For maximum participation each seminar is limited to 18 people.
TO REGISTER: Mail the following form, with with payment to:
Charles H. Reinbrecht, Jr., 8400 Fox Run, Potomac, MD 20854
Please enroll me in the PERSONAL
COMPUTING SEMINAR for (check one):


Friday, December 19, 1980 Monday, December 22, 1980

Name: \(\qquad\) Telephone:
Address:
ZIP:
If date requested is full, I will be contacted. payment will be refunded if no alternate is suitable, or if cancellation is received by 12/12/80.

Signed:
Date:

Washington Apple Pi now has a program library, and disks are available for purchase by anyone. The price to members is \(\$ 5.00\) per disk and \(\$ 8.00\) to non-members. These disks are chock full of exceptional programs - the utilities are especially useful. The games are some of the best - not just simple and uninteresting ones. You may pick them up at any meeting or have them mailed for \(\$ 2.00\) per disk additional. They will come in a protective foam diskette mailer.

PROGRAM DISKETTES
Members:
\(\$ 7.00\) picked up at meeting
\(\$ 7.00\) mailed to you...
Non-members: \(\$ 8.00\) per disk picked up at meeting \(\$ 10.00\) mailed to you...
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Volume & 1 & Utilities & & Volume & & Utilities VI & \\
\hline Volume & 2 & Utilities II & & Volume & & Games VIII & \\
\hline Volume & & Games I & & Volume & & Games IX & \\
\hline Volume & 4 & Games II & & Volume & & Utilities & \\
\hline Volume & 5 & Games III & & Volume & & Stocks/Investments & \\
\hline Volume & 6 & Games IV & & Volume & & Math & \\
\hline Volume & 7 & Games V & & volume & & Planetfinder & \\
\hline Volume & 8 & Utilities III & & Volume & 29 & Utilities & \\
\hline Volume & & Educational I & & Volume & & & \\
\hline Volume & 10 & Math/Science & ( & Volume & & Plot Utilities
Dungeon Designer & \\
\hline Volume & 12 & Games VI & & Volume & & Beginner's Cave & \\
\hline Volume & 13 & Games & & * Volume & & Lair of Minotaur & \\
\hline Volume & 14 & IAC Utilities IV & & \#Volume & & Cave of the Mind & \\
\hline Volume & 15 & Games VII & & *Volume & & Zyphur Riverventure & \\
\hline Volume & 16 & Utilities V & & *Volume & & Castle of Doom & \\
\hline Volume & 17 & Graphics II & & * Volume & & Death Star & \\
\hline Volume & 18 & Educational II & & *Volume & & Devil's Tomb & \\
\hline \begin{tabular}{l}
Volume \\
Volume
\end{tabular} & 19 & Commumications Music & & \[
\begin{aligned}
& \text { \#Vol. } \\
& \text { disks }
\end{aligned}
\] & & reUired with these & \\
\hline Volume & 21 & Apple Orchard & ( ) & & & & \\
\hline
\end{tabular}

TOTAL ORDER \(=\$\)
Check here if you want these shipped--

NAME
ADDRESS
\(\qquad\)


CITY, STATE, ZIP
TELEPHONE
Membership No.(1st three digits after WAP on mailing label)
Make checks payable to "Washington Apple Pi"
Send order to:
Washington Apple Pi- ATTN: Librarian
PO Box 34511
Washington, DC 20034

\title{
DID YOU KNOW THERE IS AN APPLE STORE IN WHEATON MARYLAND? \\ \\ COMPUTER CRAFTERS OF WHEATON
} \\ \\ COMPUTER CRAFTERS OF WHEATON
}
- APPLE Computers are our specialty
- Most desirable items always in stock
- We represent over 40 manufacturers of Apple and Apple related products.
-Large Assortment of Books and Magazines
- Friendly, Knowlegdeable Atmosphere
-Family Run Business
Stop in and say hello to Gary, Ken or Betty
\begin{tabular}{ll} 
M-W & 11:00 to 6:00 PM \\
TH-F & 11:00 to 9:00 PM \\
Sat & \(11: 00\) to 6:00 PM
\end{tabular}

\title{
Washington Apple Pi \\ P.O. Box 34511 \\ Washington, D.C. 20034
}

First Class```

