
-.. -

.. - ~ ;::--~- -""'"":"'-~ ... :_ .. .~ --:.._. ·1;:.-.~ .• · ,·.-, \ ._; .••

WASHINGTON

Dear APPLE Enthusiast,

APPLE PI

Vol. I No. 3
April, 1979

Our thanks again to John Moon for a job well done on the Constitution ·and By
Laws. The review session at the last meeting was long, but necessary, and we
now have a constitution (and are all the better for it). To save postage costs,
the revised version will not be sent with this newsletter but will be available as
a handcut at our next meeting. Those of you who won 1t be able to make the next
meeting can get a copy by sending me a self-addressed stamped envelope.

It was gratifying to me to see the turnout of 38 people at our last meeting. We
must be doing something right. Word that we exist is indeed spreading, and that
we are evolving into a professional, useful and fun group with something of interest
for all APPLE users, inclt:ai:ik-. -i;:\:fi"\;.r ·g::-een apples.

I have both good news and nbair1 news for you. First the good:

1. Tom Bottegal of GWU says that he and his crew are willing to operate an
APPLE II HOTLINE (676-6 853) and to attempt to answer questions on what you
do after you hit reset--or whatever. If they or others in the group can't field
the questions, we can .;hen pass them on to APFLL. A free newsletter to the
first person who stumps the HOTLINERS !

2. Tom also agrees to allow group members access to the GWU library and
its collection of many of the personal computer magazines. Xeroxing is also
available at 5~ per page. ·

3. The eight APPLES at GWU are _available for show and tell, program ex
change, etc. after we J·inish our formal meeting If you feel the need to 'bring
your own computer because you don't like to pu[out your Superchip or whatever,
you can do that i:OO,

Now the "ha :1.11
:

I. Not all of you are doing what you ought;·.--we need your inputs to this
newsletter. Co:ne on, send them in whether or net they are written in pearly
prose. We'll fix the language, if necessary. T.hfr is your newsletter--and this
includes all you young people too! Rick Hodder needs items for his Green Apples
column.

2. This next item may prove to be unpopular, but I think it requires airing
and some thought by ail members. I believe that a(if not the} major benefit that

·-- /··-----~--- -----

-2-

accrues to the membership is the sharing of programs written by them or obtained
from others who are also willing to share. However, I believe that the group
should not sanction the free and extensive exchange of programs that have been pre
pared and marketed or copyrighted by others. I believe that this exchange will
continue to occur but I recommend that the group curtail this practice during our
meetings at GWU. I will bring this up at our next session to hear your views.

Bernard Urban
Look out PLAT.0 - Here comes the APPLE!

PLATO, the multi-million dollar program funded by NSF an~ used by the Uni
versity of Illinois, University of Delaware and elsewhere for computer assisted
instruction in the classroom, now has a cornpetitor--our own APPLE. Ron
Thorkildsen at the Exceptional Child Center of the University of Utah has
interfaced a video disc and touch panel to the APPLE. He will be giving a paper
on May 17. at the Pentagon Motel in Arlington about its use to tutor learning dis -
abled children.

Minutes of the 3/31/79 Meeting

The major portion of the meeting was devoted to review, modification and
adoption of the Constitution and By-Laws, with John Moon presiding.

Hal Weinstock described what is available and what can be arranged in the way
of courses for a fee, for the APPLE II. While not turning off these possibilities,
the members once again stated that there is probably sufficient expertise within
our group to provide ir..struction on !BASIC, Monitor, Sweet Sixteen, HIRES, DOS,
APPLESOFT II, etc. Classes m~y be held at GWU aftec the regular meetings or
perhaps weekly.

Bernie Urban was voted in as President.until the·May elections. He designated
John Moon as Vice-President, Mark Crosby as Program Chairman, John Ditman
as Treasurer, and Gen ~vie Urban as Secretary.

No definitive action was taken on establishin~ a dues structure. Attendees
were requested to cont::ibute $1. 00 to offset the oxisting deficit and to provide
postage for this iss .ie. The group agreed that Bernie should pursue the possi
bilities for incorporati•Jn of all local APPLE users' groups into one in-order to
gain not-for-profit status and 3rd class mail privileges. Local chapte~·s or divi
sions would still e::xist · vith their own officers and C·perations, but the rt: would be
one newsletter witr co1.1.tributions from all. Thi:; could result in a high quality,
useful publication.

--From the "Green Apples"--

Congratulations to Andy Rose on his game "SHOOTOUT" (a fine LORES game
written by two 11-year olds), which has been accepted by APPLE 's Software Bank.
As a result of thjs he received copies of Software Bank's Volumes III, IV and V,
which he is willfog to share with our group. The programs will be on diskettes for
copying at Computers, Etc. and at our next meeting.

-3-

SOFTWARE REVIEW by Mark Crosby

Many of you bought the APPLE II because of its graphic capabilities. After
running the hi-resolution demonstration several hundred times and after trying
to write your own, you might have given up and purchased Starwars or Lunar
Lander or perhaps you have gone on to arcade-quality games like Bomber.

Well-, I have just purchased a simulation 11 shoot-em-up 11 based on Starwars
but it bears no resemblance to the version you probably have seen and tried.

SUPER STARWARS by Progranuna.International, Inc., is a real-time simulation of
the battle scenes in the movie Starwars. Let me describe how it works:
After giving you instructions and offering three modes of play 1) Auto-Fire
with joystick, 2) ·Manual Fire with joystick, 3) Remote controlled torpedoes
with joystick (yes, remote controlled!), and setting the level (0-9), the
game commences with a beautiful simulation of the moment the good guys come
out of hyperspace travel (light speed). All the stars just sort of stretch
in a Z-0-0-0-0-0-M pattern complete with terrific sound effects.

Then the stars solidify.and, from the central area of the screen, appear
small craft (the "enemy") which _get .. tJ.191]er and bigger and head slight off
center toward your ship. You are in your ship and see the view-screen and
a cross-hair for aiming your laser weapon. You control both the velocity
and the direction of movement of the cross-hair using a joystick. When you
hit the "enemy", there is a sound and an explosion at the exact point at
which you hit the "enemy" ship. The explosion g~ts larger as it dissipates
and the ship vanishes. In the remote-controlled mode, you release a torpedo,
send it away from you and it curves off in the direction the joystick is
pointing.

The "enemy" wi 11 fire 1 asers at you -as they approach and this becomes more
frequent as they get closer to you. The screen flashes white with each blast
and you lose some power. During moments of rest (micro-seconds, really), your
power puilds back up. When you have lost enough power, it's "curtains" for
you and your screen flashes and rolls with a nasty sound. Conect your APPLE
to an external speaker fo~ this one!

There is also overlap - s.nnetimes there are several "enemy" ships appearing
depending on the skill le1el you have chosen and th2 mode. When you hit
one of them, the others k~ep right on coming during the explosion of the
first (there is no 11 lock-:ip 11 of the joystick movements). If "enemy" ships
are near to each o~her anj the same apparent distance from you, an explosion on
one can trigger an exp·ros ion on the other.

Make no mistake - ~hi~ is not a run-of-the mill prcgr1m. The simulation is
most complete, three-dimensional, full of good sourds, real-time and a real
challenge to even ~he most seasoned gamester. By the way, there is no grading
of your score - you ei.ther make it to fight another d iY or you get wiped out!

SUPER STARWARS - loads from $800-$6000 (24K) $15.95)

from: Programma International, Inc.
3400 Wilshire Blvd.
Los Angeles, CA 90010
(213) 384-0579/1116/1117

t·

10

20

JO

40

.50

60

70
80
90
100
110
120

125
1)0
1)5
140
150
160
170
200
205
210
220
2JO
2J.5
240
500
sos
510
.51.S
520
.52.S
.SJO
53.S
.540
2000

••• A REAL BALL-BOUNCER!*** by Howie Mitcnell

·(Inspired by Mark Crosby 1 s Lissajous program I)

Basic Program outline: (Applesoft II 11 up•)

TEXT : HOME : VTAB J : HTAB 5 : PRINT •••• A RBAL
BALL-BOUNCER I *** n: PRINT
HTAB 9: PRINT "BY: HOWIE MITCHELL": PRINT : HTAB 9
PRINT 11 APRIL 1, 1979 11

: PRINT
FOR BOUNCE = 1 TO 10; FOR BEEP = 0 TO 1000 - 80• BOUNCE:
NEXT BEEP: PRINT " ctrl .G 11 : NEXT BOUNCE
VTAB 10: PRINT tt THIS PROGRk~ WILL PLOT THE TRAJECTORY
OF A BALL t DROFPED (on THROWN I) INTO A LARGB ROOM.": PRINT
PRINT rt THE BALL ENTERS THROUGH THE CEILING, TRAVALS
STRAIGHT DOWN, ~"JD BOUNCES OFF A BOARD (WHOSE k~GLE OF TILT

'MAY BE" .
PRINT 1 SPECIFIED). THE BALL 1 S INITIAL SPEED, AND ITS
'BOUNCINESS' MAY ALSO BE ENTERED. THE RESULT IS Ai.~ ENDLESS
VARIETY OF BOUNCE PATHWAYS 1 11

GOSUB 2000
INPUT "BALL'S SPEED OF ENTRY? 8 ;VV: PRINT
INPUT "BOARD'S ANGLE OF TILT ? 1t ;.BA: PRINT
INPUT 11 BALL'S BOUNCINESS ? (USE DECIMAL FROM 0 TO 1) ·n; BR
HGR (or:HGR2) : HCOLOR= J; S= -16JJ6
FOR X = 10 TO 270: HPLOT X,O: NEXT X: FOR Y = 0 TO 180:
HPLOT 270,Y: NEXT Y: FOR X = 270 TO 0 STEP -1: HPLOT X,180:
NEXT X: FOR Y = 180 TO 0 STEP -1: HPLOT O,Y: NEXT Y
:PRINT t1ctrl.G 11

HPLOT 0, 170 -:-·o lO, 180
.Y = 0
DT = .075: VV = VV +)2*~T
Y = Y + VV * DT
IF Y > 180 THEN GOTO 200
HPLOT 5,Y: GOTO 140
ANGLE= BA*2/57: VH = vv• SIN(ANGLB): vv = -VV• COS(ANGLE)
FOR Z = 0 TO 10: SOUND= PEEK(S)+PEEK(S)+PEEK(S): NEXT Z
x :;: .S: y = 175 .
X = X + VH • DT:IV = VV +)2 * DT: Y :: Y + VV * DT
IF X) 270 OR X: (> THEN GO SUB .500
IF Y) 180 OR Y (J TH&'i GOSUB .520
HPLOT X,Y: GOTO 220
IF X) 270 "rHl~'i X c: 270
IF X < 0 THiiN X. = 0
VH = - VH * S·~R {BR)
FOR SOUND :.-: 1 TO 5: B= PEEK(S) + PEEK'.. SJ: NEXT SOUND: RE'rURN
IF Y > 180 ~:HEN' Y = 180
IF Y (0 THEN Y = 0
VV = - VV ~ SQR (BR)
IF Y = 180 AND ABS (VV) (1. S THEN HPLOT X, 160 TO X, 17.5 : . STOP
SOUND= PEEK (S) +PEEK (5) +PEEK (S): RETURN
VTAB 2J: INPUT " (PRESS 1 RETURN 1 TO CONTINUE.) 11

; HOLD$:
PRIYT : PRINT : RETURN

----~--........,_-·. ·'--" •' •· , "·' • .. ••·•• r-~ '' ••• •• • •-•·-~•··--- ... ·--··-•- ••• -~, ______ _

-s-
So me notes on the Ball-bounce Program:

LINB #)O: I discovered by accident that the bell sound may be
included in a program by simply· making the ctrl.G
function part of a print statement. It is NOT vis
ible in the program printout (one sees PRINT '"),
nor does it copy by running the cursor over it via
the right-moving arrow key.

LINE #100: Here, a bounciness of greater than 1 may be used,
with a most surprising result I

LINE #150: This is a variation on the freefall equation
Y = V

0
T + ! gT2 , showing a slight influence of

the Calculus. Y = Y + VV*DT runs much faster.

LINE 1200: Converts bounce angle (BA) into radians, and pro
duces horizontal and vertical speed components for
a bounce from the tilted board.

LINB #510: Here, using the square root of BR is for some reason
necessa~y for causing the "ball" to bounce back to
BR • its previous bounce height (e.g. If BR a .9, then
each new bounc-e ·height is .about 9/10 of the previous
height.). Th.e handsome 11 envelope 11 of the bounces can
be seen nicely by using &,TRY SPEED ~ 0, TILT ANGLE ::: .75,
and BOUNCINESS ::: .91 ..

CHR$ for Integer Basic bv Jim Rose

For some mystifying reason the WOZ built the string-to
lnteger function ASC into Integer Basic but omitted the com
panion function CHR$ which translates an integer back into
the string representation of the byte. There are some expen
sive solutions to this problem: use Applesoft which indeed
does ha,,e this function (and either gobbles a substantial
part of my 1:ore, or my budget for the card); or do without,
program aro1 nd, and otherwise get fru:;trated.

A less expensive solution to thi ; problem ls also quite
simple, and substantially expands the string processing cap
abilities of Integer basic. Try this:

0 DIM V$(1)
10 FOR l• 160 TO 223
20 POKE 2053,I
30 PRINT I; ''- "; V$,
40 NEXT I: END

In effuct, by dimensioning the c:haracter string V$ first
(in llne 0) ._ I lmow the memory byte locntlon of the character
(2053). I have thus set up the recursive relationship:

V$~ POKE 2053, ASC(V$)

which is exllctly parallel to the functional recursion:

V$• CHR$(ASC(V$))

that I'm trying to emulate.

There are three restrictions on the use of this little
trick. The string variable (V$) must be a single letter
variable (A$ through Z$). Otherwise the byte location (2053)
must be changed.* This resident string variable must be
dimensioned first, or again the byte location is changed.
And the third constraint is that the value which you POKE
must be less than 256, and in normal use should range from
160 to 223. · .

My search for a CHR$ function is actually part of my
need for dimensioned string arrays. Again I could use Apple
soft, but with only l6K my capabilities then to do anything
are seveEly restricted. With this Integer Basic patch I am
off and running with all my memory available for use.

The following program will give you a simple idea of
how this works. Line 0 dimensions my CHR$, and sets up my
string array with 100 records of 40 characters each. Lines
100-130 allow me to input records (N positive), or display
records already stored (N negative). Lines 1000-1040 fill
my storage array, and lines 2000-2060 retrieve the data.

0 DIM V$(1), A$(40), D(4000)
100 INPUT N
110 IF N a 999 THEN 9000
120 GOSUB 1010 + 1000 * (NI ABS(N))
130 GO TO 100

1000 REM SUBROUTINE PUT
1001 REM THIS STOkES THE N'TH RECORD IN D
1010 N • 40 * N : INPUT A$
1020 FOR I • 1 TO LEN(A$)
1030 D(I + N) • ASC(A$(I,I))
1040 MEXT I : RETURN

2000 RE~ SUBROUTINE GET
. 2001 RE"1 THIS RETRIEVES THE N 'TH RECORD FROM D

2010 ·~ • -40 * N : A$ m ._..,,

2020 i'QR I • 1 TO 40
2025 IF D(I+N) > 223 OR D(J+N) < 160 THEN 2060
2030 POKE 2053, D(l+N)
2040 A$(I) • V$
2050 :IEXT I
2060 ~,RINT A$: RETURN

9000 ENJ
*Actually the byte location • 2052 + (the number of characters

In the string name)
One more note. ln this simple program I am actually using

twice as much storage as I need. The array D(40J0) ls 4001 words
long, or 8002 bytesl Since each string character takes only one
byte, I can pack two t::haracters for every word oe D, and thus
double the storage capacity. 1 1 11 leave this patch as an exercise
for the read~r.

r

..,,~.-

'· !
1

.....
- i

i
l

A CALL/PEEK/POKE LISTING (PARl'IAL)

DESCRIPTION IN BASIC, USE
Enter Basic (-8192)
Ring Bell CALL-198
RING BELL & PRINT ERR CALL-211
CASSETTE ~UT TOGGLE TIME POKE-16352,0
CLEAR KEYBOARD STROBE POKE-16368,0
CLEAR SCREEN,HOME CURSOR CALL-936
CLEAR SCREEN,CURSOR TOEOP CALL-958
CLEAR SCREEN,CURSOR TOEOL CALL-868

·CLR(CLEAR VARIABLES) CALL-6729
SET COLOR COLOR= XX
INCREMENT COLOR BY (3) CALL-1953
INCREMENT COLOR BY {l) SEE COMMENTS
CON(CONTINUE) CALL-3318
READ CURSOR (HORIZ) X=PEEK{36)
SET CURSOR (HORIZ) POKE36,X
READ CURSOR(VERTICAL) X=PEEK(37)
SET CURSOR (VERTICAL) PO~E37,X
SET FLAG(NORMAL) POKE50,255
SET FLAG(INVERSE) POKE50,63
SET FLAG(FLASHING) POKE50,127
GAME 1/0 SET {AN0) POKE-16295,0
GAME 1/0 SET (ANl) POKE-16293,0
GAME 1/0 SET (AN2) POKE-16291,0
GAME 1/0 SET (AN3) POKE-16289,0
GAME 1/0 CLEAR (AN0) POKE-16296,0
GAME 1/0 CLEAR (ANl) POKE-16294,~
GAME I/0 CLEAR (AN2) POKE-16292,0
GAME 1/0 CLEAR (AN3) POKE-162~0,0
GR,SET GRAPHICS MODE CALL-1216
GR,SET GRAPHICS MODE POKE-16304,0
IN GR MODE (CLEAR SCREEN) CALL-1998
CLEAR TO TEXT POKE-16303,0
CLEAR TO TEXT CALL-1223
SET MIXED GR/TEXT POKE-16301,0
CLEAR MIX~D MODE(ALL GR) POKE-16302,0
SET HI-RES MODE POKE-16297,0
CLF~R HI-RES MODE POKE-16298,0
SET PAGE 2 POKE-16299,0
SET PAGE 1 POKE-16300,0
HEX,PRINT (1 DIGIT #) CALL-541
HEX,PRINT (2 DIGIT #) CALL550
HEX,PRINT (4 DIGIT #) C-1728)

HLIN HLIN A,B, ~T C

(-2023)
INPUT(OH.ECT,) CALL-528
INPUT (Fl LL LINE) TO RET CALL-662
INPUT (GET CHAR FROM KBD) CALL-715
INPUT (READ KBD STROBE) X=PEEK{-16384)
INPUT (CLEAR KBD STROBE) POKE-16368,0
LINE FEEil CALL-922
LIS1 COW'LETE PROGRAM CALL-8117
LIS~ LIN.# TO LINE# LIST 10,50

USE LOC 'lF LINE# NOT LINE#(-8133)
LOAD (BASIC PROG) CALL 3873
MAN CALL-4524
MOVE {MEM TO MEM)

NEW
NO TRACE

CALL-6739
CALL-3722

-7-

IN MACHINE LANG.
JMP $E000
JSR $FF3A
JSR $FF2D
STA $C020
STA $C010
JSR $FC58
JSR $FC42
JSR $FC9C
JSR $E5B7
JSR $F864,LDA #COLOR
JSR $F85F
INC $30
JMP $F30A
LOA $24
STA $24
LOA $25
STA $25
LOA #FF STA $32
LOA #3F STA $32
LOA #CF STA $32
STA $C059
STA $C05B
STA $C050
STA $C05F
STA $C058
STA $C05A ·
STA $C05C
STA $C05E
JSR $FB40
STA $C050
JSR $F832
STA $C051
JSR $FB39
STA $C053
STA $C052
STA $C057
STJ' $C056
STA $C055
STA $C054
LOA #XX, JSR $FDE3
LOA #XX, JSR $FDDA
LOY #lST 2-DIGITS
LOX #2NO 2-0IGITS
LOA #B
STA $2C
LOA IC
STA §AC
LOY #A
JSR $F819
JSR $FDF0
JSR $FD6A
JSR $FD35
LOA $C000
STA $C010
JSR $FC66
JSR $E04B
LOA #LOL,LOL=LO BYTE
STA $E2
LOP. #HIL ,HIL=HI BYTE
STA $E3
LOA #LOF,LOF=LO BYTE
STP $E6
LOA #HIF,HIF=HI BYTE
STA $E7
JSR $E03B
JSR $F0DF
JSR $EE54 OR EE54G 0

COMMENTS
*E000G
CNTRL-G IN II II

ACC,Y

Acc;y
ACC,Y
ACC,Y

(-1948)

POKE 48,PEEK(48)+1
f 30AG

CALL-384 m ~IC

ACC,Y

ACC

EITHER LOW ·aR HI-RES
OR TEXT

B

c
$PC OR ACC
A

1 CHAR

ACC,Y

LAST. MEM LOC

OF LOC

OF LAST LOC

OF LOF

*(NEW START) (OLD START).(OLO END)M
*1000<800.SADM FROM MONITOR
JSR$E5AD
JSR $F176

DESCRIPTION
OUTPUT (ROUTINE)
PDL(READ)
POL (SWITCH (0) READ)
POL (SWITCH (1) READ)
PDL (SWITCH (2) READ)
PLOT

IN BASIC, USE
CALL-739
X=PDL(#)
X=PEEK(-16287)
X=PEEK(-16286)
X=PEEK(-16285)
PLOT X,Y

CALL-2048
PRINT (DUMMY) PRINT,CALL6115
REGlSTERS USE.PAGE-0 LOCN CALl-1321
REGISTERS (OPEN) CALL-1312
REGISTERS (OPEN)
REGISTERS (OPEN)
REGISTERS (RESTORE)
REGISTERS (SAVE)
RESET TO MONITOR
ENTER WITHOUT BELL
ENTER (SOFT}
RND (FUNCTION}

RUN (CLR VARIABLES)
RUN (SAVE VARIABLES)
RUN USING CTRL-Y

AT I!n1. $.f13F8 msTALL A
SAVE
SCRN

CALL-193
CALL-182
CALL-167
CALL-155
CALL-151
X=RND(#)

CALL-4271
CALL-4116
CALL-6~9~

CALL-6~86
JSR $Ux:N
CALL-3774

ACC RETURNS WITH SCRN AT X,Y CALL-1935
SCROLL(! SPACE) CALL-912
SPEAKER (TOGGLE) POKE-16336,0
SWEET 16 CALL-3959
TEYI (SfT WINDOW TO WIDESTPOK£-163¢3,0
TEXT,(Of~N WINDOW TO WIDSTTEXT
TEXT,(SET TEXT MODE) TEXT
TRACE CALL-3727
VLIN VLIN A,B AT C
VTAB VTAB #

WAIT
WINDOW (SET LEFT)

WINDOW (~ET WIDTH)

WINDOW (~ET TOP)

WINDOW (~ET BOTTOM)

WRITE (TC. TAPE)

$FE80: SETS INVERSE VIDEO
$FE84: srTs NORMAL VIDEO

CALL-856 .
POKE32,LEFT

POKE33,WIDTH

POKE34,TOP

POKE35,BOTTOM

$FEE.9: SI TS KEYBOARD AS AN INPUT DEVI CE
$FE~3: SETS CRT AS GUTPUT DEVICE

-8-

1 N M10tINE !ANG.
LOA #ASCII,ASCII=
~DX #PDL,PDL=PDL#~-3
LOA $C061
LOA $C062
LOA $C063
LOX IX
LOY #Y
JSR $F800
JSR $E81D
JSR $FA07,SCROLLS-1
JSR $FAE0,NO SCROLL
JSR $FADE

JSR $FF3F
JSR $FF4A
JSR $FF59
JSR $FF65
JSR $FF69 ·
LOA #LO,LO=LO BYTE OF
STA $CE
LOA #HI,HI=HI BYTE OF
STA $CF
LOX #2~
JSR $Ef51
JMP $EFEC

. JMP $E836
LOA #LO,LO=LO BYTE OF
LOY #HI,HI=HI BYTE OF
JMP $E83A
'10 RUN .M/L Plro
JSR $Fl42
LOY #X,X=X COORDINATE
LOA:#Y,Y=Y COORDINATE

COMMENTS
DESIRED CHAR
ACC,Y

LDC $46 FOR X REG .
LOC $47 FOR Y REG
LOC $48 FOR STATUS RI
LOC $49 FOR STACK PO

PRESERVES DOS,ETC
HIGHEST II DESIRED

HIGHEST # DESIRED

LOCN,NOT LINE #
LOCN ,NOT LINE #

JSR $FC70 ACC,Y
STA $C~30
$F689
ST!. SC051
JSI< $FB2F
JSR $3B39
JSR $F171
INFO NOT AVAIL AT THIS TIME
LOA #ROW ACC
JSR $FC22 (-99;)
JSR $FCA8
LOA #LEFT
STA $2~
LOA IWIDTH
:;rA $21
·.DA #TOP
:;TA $22
:..DA #BOTTOM
STA $23
NOT AVAIL AT THIS TIME

$FEfB: SHS AN INPUT DEVICE TO SLOT SPECIFlED BY ACC
$FE95: SETS OUTPUT DEVICE TO SLOT SPECIFIEJ B"· ACC
$CC ,CD POINTS TO START OF PROGRAM, $CA,CB romrs '10 END OF VARI.ABLES TABLE
$4C,4D IS HIMEM

GATHERED AND RESEARCHED BY ED AVALAR TAKEN FROM ABACUS
FEBRUARY 1979 VOLUME #1 ISS0E 42 AND EDITED BY MARK
CROSBY OF WASHINGTON APPLE Pi WITH PERMISSION.

-9-

BASIC TO MACHINE LANGUAGE ROUTINE INTERFACING by John L. Moon

The other day I needed to print out a formatted dump of a data area. I was
working on a P-code interpreter and wanted a hexadecitnal dump as part of my
debug package. Also, I wanted a way to use machine language routines in the
Monitor that required values to be passed in registers. The following BASIC to
machine language routines are what resulted from these efforts.

In the APPLE Monitor at lacation F940 is a 6502 routine that takes the con
tents of the Y and X registers and prints them out as a four-digit hexadecimal
number. Unfortunately, the CALL interface to machine language from BASIC
has no capability to load any of the processor registers. However, there are
several machine language instructions that can load or store the 6502 registers.
Therefore, a machine language routine can be written that when called from
BASIC can load the registers with the desired values. In this case, the routine
could look like this:

LDY #byte 1
LDX #byte 2
JSR $F940
RTS

Load Y register with byte 1
Load X register with byte 2
Call the hex print routine
Return to BASIC

For convenience, the routine can be loaded into locations starting at machine
address 0 by the following lines of BASIC code (I've hand assembled the program
and converted it to decimal for the POKES):

10 POKE 0, 160: POKE 2, 162: POKE 4, 32: POKE 5, 64: POKE 6, 249:
POKE 7, 96

In order to use the routine from BASIC the following BASIC subroutine should be
used to put the data into the instructions so that it will be loaded into the proper
registers:

1000 REM HB IS HIGH BYTE, LB IS LOWBYTE
1001 POKE 1, HB: POKE 3, LB: CALL O:RETURN

An example of a calling sequence could be:
100 INPUT "WHICH ADDRESS", ADDR
110 HB = PEEK(ADDR): LB= PEEK(ADDR+l): GOSUB 1000: GOTO 100

This program works by POKEing into the 6502 LDY and LDX instructions the data
byte that is to be loaded into the appropriate register.

With a little extension to the machine language interface routine, a general
purpose BASIC to machine language interface can be created that is capable of
loading or returning values in any of the 6502 registers and is capable of calling
any machine language routine. The machine language portion of this routtne is:

Location Mnemonic Operand Comments
0 LDA #aregbyte Loads the A register
2 LDX #xre gbyte Loads the X re gis te r
4 LDY #yregbyte Loads the Y register
6 JSR $machineaddr Calls the 6502 routine
9 STA $01 Stores A register at loc 1
11 STX $03 Stores X register at loc 3
13 STY $05 Stores Y register at loc 5
15 RTS Returns to BASIC

-10-

This routine can be loaded into memory from BASIC with the following POKEs.
(note: This works for INTEGER BASIC, the addresses throughout this article
will have to be changed for APPLESOFT BASIC so as to locate the routine at
some unused area such as 300 hex = 768 decimal):

10 POKE 0, 169: POKE 2, 162: POKE 4, 160: POKE 6, 32: POKE 9, 133:
POKE 10, 1: POKE 11, 134: POKE 12, 3: POKE 13, 132: POKE 14, 5:
POKE 15, 96

To make the BASIC interface routine general purpose, four reserved vari
ables will be used: A, X, Y and PC$. Internally, the routine also uses Z and Z$.
On entry to the BASIC subroutine that is defined below, the four variables will
define the values to be used for the A, X and Y registers; PC$ will contain the
ASCII characters representing a 4-digit hexadecimal address of the 6502 routine
that is to be called. In the program initialization along with the POKEs that
store the machine language program above, PC$ has to be initialized ••••
20 DIM PC$(4). The BASIC subroutine that sets up the values for the machine
language program looks like:

1000 REM BASIC- 6502 INTERFACE CALLED WITH A,X, Y & PC$
1001 Z$:: PC$(4, 4): GOSUB 1010: POKE 7, Z:. Z$ = PC$(3, 3): GOSUB

1010: POKE 7, PEEK(?)+ Z*l6
1002 Z$ = PC$(2, 2): GOSUB 1010: POKE 8, Z: Z$ = PC$(1, 1): GOSUB

1010: POKE 8, PEEK(8)+ Z*l6
1003 POKE 1,A: POKE 3,X: POKE 5, Y
1004 CALL 0
1005 A= PEEK(!): X = PEEK(3): Y = PEEK(5):RETURN
1010 Z = ASC(Z$) - 176: IF Z > 9 THEN Z =A - 7:RETURN

A typical call would be:
100 A = value to put in A register: X = x value: Y = y value: PC$ = "four

hex digits": GOSUB 1001
If the same machine language routine is to be called over and over, the JSR
address can be left alone unchanged (at a savings in execution time) by calling
the routine at OOSUB 1003 after having called it once at 1001 to set up the initial
JSR address. Upon return from the subroutine, A, X and Y will contain the
values that came back from the machine language that was called. A short·
BASIC routine can be written to explore and experiment with Monitor routines
as simply as the following:

150 INPUT "ROUTINE ENTRY POINT (4 HEX DIGITS) ?", PC$
160 INPUT "INITIAL REGISTER CONTENTS (A, X, Y)", A, X, Y
170 GOSUB 1001
180 PRINT "ENTRY "; PC$:" RETURNED A=";A;" X=";X;" Y=";Y:

GOTO 150
This routine can be used to try out many of the routines to see which registers
are destroyed during a call and also.to verify what the routine does. In some
routines more than just the registers needs to be set up, and for those this
would have to be expanded. As examples, the following BASIC statements show
the usage of some Monitor routines using the calling sequence. As you can see,
it is not necessary to set up variables for input registers that are not used for

.. .,

-11-

a particular routine. If you have any questions, catch me at the next Club
meeting.

200 PC$ = 11FF3A": GOSUB 1001: REM BEEP!
210 PC$= "FC58": GOSUB 1001: REM HOME AND CLEAR= CALL -936
220 A = IO:PC$ = "FB5B": GOSUB 1001: REM VTAB TO LINE 11
230 DIM MSG$(80): MSG$= "THIS SHOWS CHARACTER OUTPUT"
240 FOR I= 1 TO LEN(MSG$): A= ASC(MSG$(1,I)): PC$ = "FDED":

GOSUB 1001: NEXT I
etc.

Next month I hope to have completely worked out an upgraded version of
Don Willi ams 1 Integer BASIC to Monitor Floating Point routines. They are
covered in the PEEKING AT CALL APPLE, but I hope to make the interface·
easier and put the square root routine into machine language. Until next
month, Pax.

TO GET THE "MOD" FUNCTION WHILE USING APPLESOFT, by Mark Crosby

Use the Function Statement: DEF FN MD(X) = X - INT (X/256) * 256 (MOD 256)
Then you can use the function - for example: POKE A, FN MD(X) (you must, of
course, set X = to a number).
Or to get X =A MOD B: DEF FN MD (A)= A - INT (X/B) * B (MOD B)
then type X=FN MD(A).

An example:

] 10 DEF FN (MD(A) =A - INT (A/256) * 256
20 X = 4()96: A=286: REM (FOR RAM, USE X=8192 OR HIGHER)
30 POKE X, FN MD(A)
40 POKE X+l, A/256
50 REM NOW READ BACK THE POKED NUMBER

100 PRINT PEEK(X)+PEEK(X+l) * 256
110 REM THIS SHOULD PRINT "286"
120 END

EXCHANGINGING NEWSLETTERS, by Bernie Urban

The following groups have agreed to exchange newsletters with us. A
thanks to them for their cooperation •

Chesapeake Microcomputer Club - M. Alexander
AMRAD - P. Rinaldi
Association of Personal Computer Users - D. Schor
ABACUS (Assn. of Bay Area Computer Users) - Ed Avilar

Copies of their newsletters will be available in the GWU Library.

, . . . "" -12-

TRAINING & DEVELOPMENT SESSIONS

At our next meeting, Washington Apple Pi will inaugurate a Training &
Development session dealing with topics you want us to cover. We hope you will
make a special effort to attend. We hope to cover a different topic each meeting.
You are encouraged to participate in a dialogue with the person chairing the se s -
sion so that you can- share your own ideas and hear ideas that others have regard
ing the topic being discussed. An important part of the session will be feedback
from you as to why you like it or not. Please be sure to attend and fill out the
forms provided. The first of these sessions (on Saturday, April ZS) will be:

"PROGRAMMING IN 6502 MACHINE LANGUAGE" - chaired by John Moon
For those of you who want to learn another language, here is your oppor
tunity to learn the "art" of machine language programming for the APPLE.
Machine language programs can run many times faster than BASIC programs.
If you have a limited amount of memory available, this will surely be a help.

CALENDAR OF EVENTS

Date

April 23

April 26

May 9

May 17
& 18

May 25

Events/Meetings

Chesapeake Microcomputer Club
7:30 PM, White Oak Library
NOV APPLE
7:30 PM, St. Stephens United Meth. Church
Assn. of Personal Computer Users
7:30 PM, Chevy Chase Library
Con£. on Microcomputers in Education &
Training, Pentagon Quality Inn, Arlington, Va.
Computerland APPLE Users Group
7:30 PM, Computerland (New location)

For Further Info. Call

Mani Alexander
Off. 452-5232

Jim Nielsen
Off. 693-7530

Daphne Schor
Off. 544-8530

Ray Fox
Off. ·(703) 347-0055

Kim Brennan
Off. 948-7676

* *
*
*
*
*
*

NEXT MEETING OF WASHINGTON APPLE PI
Saturday, April 28, 9:30 AM

GEORGE WASHINGTON UNIVERSITY
Thompkins Hall - School of Engineering, Room 206

23rd & H Streets, NW

*
*
*
*
*
* * Parking roulette, or in students' parking lot, if chains are down. *

* Convenient to Metro *

AGENDA

9:30 - 10:15

10:15 - ll:l5
11:15 -

Business Meeting - * Constitution and By-Laws * Progress on
Incorporation *Solicitation of Ads for the Newsletter * Exchanging
Newsletters *Copyright Issue *Discussion of Nomination of
Officers * New Business
Training & Development Session: 6502 Machine Language
Show & Tell; Exchanging of Programs

