
(

({The SourcerorsJ'Lpprentice
The Assembly Language Journal of Merlin Programmers Vol. 1 NO.5 May, 1989

About

Packing up the Ariel igloo

Ado
~ - ,~. ~ ", '

,.\...../

Views, and Much
Editing

I'll sure be glad when Ross's Great Cross
Country Moving Adventure gets finished.
What a pain in the circuitry. Let's see, I'd best
remind you that we have a new address:

Ariel Publishing
P.O. Box 398
Pateros. WA 98846

News,
8..bit Text

(509) 624-3161

I'll be unavailable from May 28th - June
10th. too. I apologize in advance to those who
find that an inconvenience.

am proud to bring it to y'all in its entirety
this month.

AGSUpdate

Furthermore. I promIse that we'll get caught
up on back ordered stuff (mostly back issues)
ASAP. I'll have an authentic. flesh and
blood. full. tin1e secretary beginning June
10th, so wesh6Uld really start to resemble a
professional operation soon (knock on
wood). Don't fret too much about us losing
your orders or correspondence. They're all
tucked away in my overstuffed briefcase.
Isn't that reassuring?

If it sounds like we're busy here at the Ariel
igloo, that's 'cuz we are. Things are really
going pretty well. Though our progress is
modest by most standards, our overhead is
low, too, so things are moving steadily
forward.

I've received a jillion suggestions about
topics to cover in The Apprentice, all of
them good. We've got article fodder for the
next few years. I think. Feel free to
contribute a suggestion or two - I read 'em all.
This month's coverage of text editing
routines is brought to you courtesy of intense
popular demand (and Prof. Robert Moore.
who had no idea how timely his submission
was!) You saved my skin again. Bob. and
provided a truly outstanding set of routines
for the readership. I've never seen anything
this comprehensive published anywhere. I

This is really old news. but... I've been knO\vn
to wax preachy regarding the Apple lIGS
Toolbox References. They're pretty close to
indispensable for GS work. At present there
are two volumes. but Apple recently released
the Toolbox Reference Update. The Update.
too. is finding its way onto my "can't do
without" list.

First, it corrects outright errors in the
References. Although there really aren't
that many. some of the existing errors can
drive you nuts. The QUickDraw chapter, for
example, says that calls such as _LineTo
and _MoveTo take global coordinates. It
probably didn't take many of you GS types
too long to figure out that they don't.

The Update also lists several new calls
added to the toolboxes since the manuals
went to press. We've already examined one of
these within our pages, AlertWindow.
Another useful new routine is called
_RealFreeMem, and it's worth a qUick "once
over" here.

As you've probably already discovered, the
Memory Manager function _FreeMem only
returns the amount of memory not
currently in use. This is sensible, of course.
except when we need to know how much

%e Sourceror's .f2Lpprentice Vol. 1 No.5 Page 2

more memory would be available if
purgable blocks were evicted from the joint.

Thence cometh _RealFreeMem. This new call
will dutifully report the amount of memory
available after purgeable blocks are
removed. As the Update suggests, it gives a
much more accurate picture of the state of
the silicon. Note that it does not actually
execute a purge, it just reports what wou"ld
things would be like if one happened.

The following snippet shows how to use the
call:

* _RealFreeMem call

PushLong #0 ;result space
_RealFreeMem
PullLong FreeBytes

* to convert to kilobytes

ida FreeBytes+l
lsr
lsr
sta FreeKilobytes

The conversion to kilobytes code looks odd
at first blush. but stop and consider that
converting from bytes to kilobytes entails a
division by 1024. If you're thinking in terms
of binary shifts to the right. each of which is
a division by two, dividing by 1024 means
ten shifts to the right (LSRs). The lowest
byte. then. is lost completely. It would be
shifted into nothingness.

By leaving the lowest byte out of the process
altogether and starting to work on
FreeBytes+l. we save a few bytes. a few
instructions. and a few cycles. This is never
a bad idea when possible. even on the
memory rich GS.

Note. too. that the high byte of the four byte
variable FreeBytes is ignored. this because
it must always be equal to zero on the GS (at
least when we're talking about the range of
memory locations).

By the way. if you want to add a macro for
this call to your MEM.MACS library on the
Merlin disk, make it look like this:

-RealFreeMem MAC
PHS 2

_RealFreeMem MAC
Tool $2F02
«<

(ThiS macro. is already in later version of
Merlin 8/16 and in the new Merlin 16+. I've
been asked to remember those who don't
have the "latest and greatest" versions of
Merlin. The above macro is in their honor.)

Back at the ranch. I've only scratched the
surface. The entire Update is packed with
goodies that make 16 bit life easier. It is
available for $30 from APDA (800/282­
2732). Yes. $30 is a bit much for looseleaf
material. But that is a debate for another
day (a day that is coming all too qUickly. it
appears).

Another product I recommend is
RavenWare's DesignMaster. Author Chris
Haun has put together a neat code generating
utility which lets you literally draw your
windows. dialogs. menus. etc. Priced at $30,
the package is a genuine d-e-a-l. You draw it,
and DesignMaster produces the code and
definition data in either APW or Merlin
format (for assembly language junkies), or C
or Forth for you high level types.
(RavenWare, 23930 Ocean Avenue. #201.
Torrance. CA 90505).

AppleFest attendees were also wowed by
another code generating product due out in
September. GENESYS supposedly does
everything except press keys for you. It had
better. with a price tag of $125. Seriously.
though. my 'Fest spies say it looks very
impressive.

The GS marketplace is warming. That alone
is neat. but Apple's literal "pre­
announcement" of System Disk 5.0 at
AppleFest bodes well for the II. too. The
Apple II is never going to get the support I
think it merits. but I'll devour any bones I'm
thrown (and continue yapping for more).

Enough news and views. On with Professor
Moore's show... I think you'll like it. And
there are no commercial interruptions!

&Input, &Print, and &Get
or
More Bang for Your Text Bytes

Vol. 1 NO.5 Page 3 %e Sourceror s.9Lpprentice

by Robert C. Moore
1204 Marton Street
Laurel. MD 20707

Editor: These routines put advanced and
poweiful text editing routines right at your
jingertips. It's the best and most
comprehensive program oj its kind that I've
ever seen..

Bob chose to connect his program to
Applesojt, but it is possible to take . the
ampersand and variable passing routines
out if you want to .operatein .a "pure"
assembly environment. It would be. a .tad
trickier. though., if you wanted to switch out
the Applesoft ~OMs altogether.

f hope you enjoy Bob's code as much as I
have.

ThiS. article documents an Applesoft
extension.· program which I have called
INPUf.PRINT.GET. The program adds three
ampersand commands to Applesoft:

&INPUT x$,
&PRINT x$, and
&GETx$.

The commands behave much as the similar
commands in AppleWorks' SU2.OBJ do.

The source code is in a format that is
compatible with most 6502 assemblers.
including Merlin: it needs very few
modifications to be used with most other
popular assemblers. The source code is very
heavily commented. This is to facilitate
custornization by readers of The Sourceror's
Apprentice who choose to modify the
program for their own special uses.

The comments in the source code carefully
document the program's use. They also
should help you to understand how various
portions of the program work. Specifically.
the source code illustrates how to install
machine language routines above HIMEM in

both DOS3.3 and ProDOS 8. how to chain
into the ampersand hook. how to read the
value of an Applesoft real variable from
machine language. how to set the value of an
Applesoft string or real variable from
machine language. and how to use software
"switches" and "Signatures" to obtain
multiple functions using a single module of
code.

The three ampersand commands are­
installed simply by BRUNning
INPUf.PRINT.GET prior to assigning any
string variables. (Under ProDOS 8 and
BZSIC.SYSTEM you may use the smart run
[dash) command.) Once installed. the object
code uses only 1024 bytes ot memory.
During installation, locations $2096 ­
$24FF are used temporarily. The source code
explains how this temporary workspace
may be relocated, if the location I have
chosen conflicts with any of your previously
installed programs.

Zero-page locations $3C through $47 are
used temporarily by INPUT.PRINT.GET.
Their original contents are destroyed. (This
should not be a problem, because these are
scratchpad locations for ProDOS 8 and the
system monitor.) All other zero-page
locations that are normally available to
assembly language programs remain
accessible.

I have attempted to make this program easy
to use and as compatible as possible with
other enhancements to Applesoft. The
program has been tested on an Apple / / c, a
"regular" lIe. an enhanced lIe. and a IIGS. It
assumes you have Applesoft in ROM, and
that you are uSing text page 1 in either 40- or
80-column mode.

&INPUTx$

&INPUf x$ prints the current (default) value
of the specified string variable x$ to the
current text screen Window (40- or 80­
column display) and then permits you to edit
the string from the keyboard.

rrhe Sourceror s.9Lpprentice Vol. 1 NO.5 Page 4

The powerful string editing features of the
"&INPUT x$" command are particularly
useful:

ARROW KEYS move the blinking underscore
"insert" cursor. If the edit string occupies
more than one line in the text window then
the up- and down-arrow keys will work.
This gives you full-screen editing of the
string.

DELETE deletes the character to the left of
the cursor and closes up the resulting gap in
the edit string.

CTRL-D deletes the character under the
cursor and closes up the resulting gap in the
edit string.

CTRL-X ("cross out") erases the entire edit
string.

CTRL-Y erases from the cursor to the end of
the edit string.

CTRL-B moves the cursor to the beginning of
the edit string.

CTRL-N moves the cursor to the end of the
edit string.

CTRL-C toggles the case of the character
under the cursor, if it is a letter (alphabetic
character), then advances the cursor to the
right. Upper case letters are converted to
lower case; lower case letters are converted
to upper case.

RETURN accepts the current edit string,
strips off any trailing spaces, and assigns
the resulting string as the new value for the
specified string variable. x$.

ESCape aborts the &INPUT x$. The value of
the specified string variable. x$, remains at
the default. The Applesoft real variable ES
is set to 1. (If ESCape is not used to
abort an &INPUT x$, the value of variable
ES will be set to 0.) The abort may be
detected follOWing &INPl.Jf x$ by using ON
ESOOIO.

OPEN-APPLE (when used to modify another
key) aborts &INPUT x$ and sets the
Applesoft variable OA to 128 plus the ASCII
value for the key that was pressed (Le., high­
ASCII). (If OPEN-APPLE-key is not used to
abort &INPUT x$. the value of variable OA

will be set to zero.) For example, OPEN­
APPLE-A will abort &INPUT x$ (the value of
x$ will remain at the default) and set the
value of variable OA to 193. Use of the
OPEN-APPLE key to abort &INPUT x$ may
be detected by using IF OA Gam.

SOLID-APPLE (when used to modify another
key) aborts &INPUT x$ and sets the
Applesoft variable SA to 128 plus the ASCII
value for the key that was pressed (Le., high­
ASCII). (If SOLID-APPLE-key is not used to
abort &INPUT x$. the value of variable SA
will be set to zero.) If both the OPEN-APPLE
and the SOLID-APPLE keys are used to
modify another key. then both OA and SA
will be assigned the high-ASCII value of the
key that was pressed.

Another Applesoft variable, FL, may be used
to set the maximum field length; that is. the
value of FL will determine the maximum
length for the edit string. For example, if
you are using &INPUT x$ to input a filename
under ProDOS, you would want to set FL = 15
because that is the maximum length of a
ProDOS filename. If. during editing. you
attempt to increase the length of the edit
string beyond the value of FL, you will be
bleeped. If you execute &INPUT x$ with a
default value for x$ that is greater in length
than the value of FL. you will generate an
Applesoft STRING TOO LONG error. You will
get the same error (STRING TOO LONG) if
your default string is so long that the top line
scrolls off the top of the text screen window
as the string is printed. If FL = O. the
maximum field length will be 255
characters.

&GET x$ works as the &INPUT x$ command
does, except that the string is limited to
exactly one character, no default string is
displayed on screen. and ESCape may not be
used to abort. The Applesoft variables OA
and SA work as with &INPUT x$. Following
&GET x$. the high-ASCII value of the key
that was pressed may be retrieved from
address $3C =60 using PEEK(60). The new
value of x$ will be the Single character that
was typed at the keyboard.

&GET x$ may be used to get any encoded
keypress except CTRL-RESET or OPEN­
APPLE-CTRL-RESET. To determine if

Vol. 1 No.5 Page 5 'The Sourceror s.9Lpprentice

ESCape was pressed dUring &GET x$. use ON
(PEEK(60) =155) G01D.

As with &INPUT x$. use of the OPEN-APPLE
or SOLID-APPLE keys may be detected using
IF OA G01D and/or IF SA G01D.

While &INPUT x$ and &GET x$ are waiting
for keystrokes, they advance a 16-bit
unsigned integer in locations $4E.$4F (78.
79) to a new "random" value. (This value
may be used to "seed" a pseudorandom
number generator.) The "random" value may
be obtained using PEEK(78) + 256 • PEEK(
79).

&PRINTx$

&PRINT x$ prints the current value of the
specified string variable. x$. to the text
window with word-wrapping. Lines are
broken at spaces. if possible. &PRINT x$
leaves the text screen cursor immediately to
the right of the last character that was
printed.

I believe this program will be of great
interest to readers of The Sourceror's
Apprentice, most of whom are intermediate­
level Apple II programmers who delight in
finding new ways by which the power of
Apple II assembly language may be released
in their own programs.

;String term for STRLT2
;String term for STRLT2
;Dimension flag in PTRGET
;Numeric: 0; String: $FF

This routine adds three ampersand
commands to Applesoft. The first,
&INPUT x$, is a "defaulted input
almost anything" command that
inputs up to 255 characters to any
string variable x$. The maximum
number of characters in the edit
string is set by the value of the
variable FL. The current value of
x$ is the default. The default
string may be edited, then accepted
by pressing <RETURN>. The INPUT may
be aborted by pressing <ESC>, which
will set the value of variable ES to
one. The &INPUT also may be aborted
by pressing one of the apple keys in
conjunction with another key, in
which case variable OA or SA will be
assigned the value of the key that
was pressed. The second command,
&GET x$, inputs a single keystroke.
Control codes may be entered using
&GET x$, and OA and SA work as
with &INPUT x$. The third command,
&PRINT x$, prints x$ with word-wrap.
Both 40- and 80-column text screens
are supported, and the boundaries
of the text window are observed.

SOD
$OE
$10
$11

EQU
EQU
EQU
EQU

CHARAC
ENDCHR
DIMFLG
VALTYP

1 *****************
2 *****************

3 ** **
4 ** DEFAULTED **
5 ** INPUT **
6 ** **
7 ** WORD-WRAP **
8 ** PRINT **
9 ** **
10 ** GOOD GET$ **
11 ** **
12 *****************
13 *****************
14 *
15 *PUBLIC DOMAIN
16 *APPLE II UTILITY
17 * written for
18 * "Reboot" and
19 * The Sourceror's
20 * Apprentice
21 * by
22 *Robert C. Moore
23 *1204 Marton St.
24 *Laurel, MD 20707
25 *
26 *Most recent code
27 *update was done:
28 *March 29, 1989
29
30 *Assembled using 6502 opcodes only
31
32 *Compatible with all Apple II computers
33
34 *Compatible with ProDOS 8
35
36 *Compatib1e with DOS 3.3
37
38 *Zero-page usage
39
40
41
42
43

=OOOD
=OOOE
=0010
=0011

*Notice that because this program uses the input
*buffer as a workspace in which to form the edit
*string, calls to this program from immediate mode
*will almost always end in a ?SYNTAX ERROR. This
*program was designed for use in deferred mode only.

erne sourcerorSJ4.pprentice Page 6Vol. 1 NO.5

Ampersand hook

BASIC.SYSTEM entry points

Screen hole usage

ProDOS entry point

Buffer for edit string

lOA, SA or GET keycode
;Bottom display CV
;Bottom display CH
;Old vertical cursor
;Old horizontal cursor
;Maximum field length
;Dest. address for move
;String length
;V cursor for top
; Open-apple flag
;H cursor for top
;Solid-apple flag
; Software switch
;Escape flag
IX-reg temporary store
;Y-reg temporary store
;Random number
;Bottom of string storage
;Top of free memory
;Variable name
;Variable pointer
;Destination string addr
;String pointer #1

;Buffer for edit string

;Ampersand hook

;80-col horizontal cursor

;$80 if integer, else $00
;Text window left
;Text window width
;Text window top
;Text window bottom + 1
;40-col horizontal cursor
;40-col vertical cursor
;Text base address
;Source address for move

;ProDOS M.L. Interface

;BASIC error handler
;Get buffer space

$200

$3C
$3D
$3E
$3F
$40
$41
$42
$42
$43
$43
$44
$44
$45
$46
$46
$47
$4E
$6F
$73
$81
$83
$85
$AB

$57B

$12
$20
$21
$22
$23
$24
$25
$28
$3C

$3F5

$BE09
$BEF5

$BFOO

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU

EQU

EQU

EDBUF

INTFLG
WNDLFT
WNDWID
WNDTOP
WNDBOT
CH
CV
TBASE
SOURCE

AMPERH

KEY COD
BOTCV
BOTCH
OLDCV
OLDCH
FLDLEN
DEST
STRLEN
TOPCV
OAF LAG
TOPCH
SAFLAG
SWITCH
ESCFLG
TEMPX
TEMPY
RANDOM
FRETOP
HIMEM
VARNAM
VARPNT
FORPNT
STRNG1

CH80

ERROUT EQU
GETBUFR EQU

PROMLI

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

=0012
=0020
=0021
=0022
=0023
=0024
=0025
=0028
=003C

=0200

=003C
=003D
=003E
=003F
=0040
=0041
=0042
=0042
=0043
=0043
=0044
=0044
=0045
=0046
=0046
=0047
=004E
=006F
=0073
=0081
=0083
=0085
=OOAB

=03F5

=057B

=BFOO

=BE09
=BEF5

Vol. 1 No.5 Page 7 rrhe Sourceror So .9Lpprentice

111 ; Hardware page usage
112

=COOO 113 KEYBO EQU $COOO ;Keyboard data & strobe
=C001 114 STORE80 EQU $C001 ;PAGE2 switches 1 and 1X
=C010 115 STROBE EQU $C010 ;Clear keyboard strobe
=C01F 116 R080COL EQU $C01F ;Read 80-col switch
=C054 117 PAGEl EQU $C054 ;Select page 1
=C055 118 PAGE2 EQU $C055 ;Se1ect page 2 (or 1X)
=C061 119 REAOOA EQU $C061 ;Read'open-apple key
=C062 120 REAOSA EQU $C062 ;Read solid-apple key

121
122
123 Applesoft entry points
124

=00B1 125 CHRGET EQU $00B1 ;Get next character
=00B7 126 CHRGOT EQU $00B7 ;Get current character
=0412 127 ERROR EQU $0412 ;Process error code in X
=0539 128 GDBUFS EQU $D539 ;Form string in EDBUF
=EB27 129 STORE EQU $EB27 ; (FAC) to real variable

130 ;at address FORPNT
=DA7B 131 PERMST EQU $OA7B ;Make temp str permanent
=006C 132 CHKSTR EQU $006C ;Check for string var
=DEC9 133 SYNERR EQU $OEC9 ; Report syntax error
=DFE3 134 PTRGET EQU $DFE3 ;Get pointer to variable
=E04F 135 VARLOC EQU $E04F ;Locate real variable
=E301 136 SNGFLT EQU $E301 ;Float unsigned int (Y)

=E3ED 137 STRLT2 EQU $E3ED ;Build string descriptor
=E6FB 138 CONINT EQU $E6FB ;Convert (FAC) to byte
=EAF9 139 MOVFM EQU $EAF9 ;Move (Y,A) into FAC

140
141
142 App1esoft keywofd tokens
143

=0084 144 INPTKN EQU $84 ;Token for "INPUT"
=OOBA 145 PRNTKN EQU $BA ;Token for "PRINT" or 1I?1I

=OOBE 146 GETTKN EQU $BE ;Token for "GET"
147
148
149 Monitor entry points
150

=FBOO 151 BEEP EQU $FBOO ;Beep speaker
=FC22 152 VTAB EQU $FC22 ;Vertical tab
=FOED 153 COUT EQU $FDED ;Output a character

154
155
156 Initial load address for main program
157

=2100 158 INITAO EQU $2100 ;Initial load address
159 ;for main program must
160 ;be on a page boundary
161 : <i.e., $xxOO) •
162
163
164 ; Length of installation code
165

=006A 166 INSTAL EQU $6A ; Installer length
167
168
169 ORG INITAD-INSTAL ;Initial load address
170 for object code
171
172
173 *Ouring installation the installation code and the
174 *main program are BLOAOed into INITAO-INSTAL. The
175 *memory from that location through INITAO+$3FF is
176 *used temporarily. The value of INITAO should be
177 *chosen so that the installation process doesn't
178 *clobber anything important. As an example, if

----------~---~

INSTALLATION CODE

*Accumulator now holds high byte of buffer addr.

*INITAD=$2100, memory from $2096 through $24FF will
*be used as a temporary buffer during installation.

Page 8

;It's DOS3.3, so
flower HIMEM by $400.

;Are we under ProDOS?
;JMP op-code if ProDOS

;Force low byte to zero
Ito simplify relocation.

;Request 4 256-byte pages
fusing GETBUFR.

;Always taken

;FRETOP too!

;Continue if no error,
;else exit thru ERROUT.

;Fix JMP instructions

;Chain into the
;ampersand hook.

Vol. 1 No.5

410
HIMEM
FRETOP
LO

HIMEMt1
iI4
HIMEMt1
FRETOPt1

PROMLI
il$4C
PRODOS

LO
ERROUT

414
GETBUFR

AMPERH
OLDHOOK
AMPERHt1
OLDHOOKt1
AMPERHt2
OLDHOOKt2
JMPl+2

LOA
CMP
BEQ

LDY
STY
STY
BEQ

LOA

JSR

SEC
LDA
SBC
STA
STA

BCC
JMP

LDY
STY
LDY
STY
LDY
STY
STA

LO

PRODOS

*To install the program, simply execute the following
*(this assumes the object file is INPUT.PRINT.GET):
*DOS3.3 command: PRINT CHR$(4);"BRUN INPUT.PRINT.GET"
*or with ProDOS: PRINT CHR$(4);"-INPUT.PRINT.GET".

*Notice that, under DOS3.3, the pointer to the bottom
*(of string storage (FRETOP) will be set equal to the
*pointer to the top of string storage (HIMEM). This
*assumes that no strings have been created at the
*time the installation code is executed. Make sure
*that the BRUN INPUT.PRINT.GET command is executed
*before any strings have been created.

*The installer lowers HIMEM by $400 (DOS3.3) or re­
*quests a 4-page buffer (ProDOS BASIC.SYSTEM). The
*main program then is relocated above HIMEM, and the
*Applesoft ampersand hook is vectored to it. (The
*&-hook is chained to whatever ampersand routines
*were installed previously.) The main program re­
*duces the amount of free memory by 1024 bytes.
*Under ProDOS, a call to FREEBUFR ($BEFB) will re­
*move this program from memory without resetting
*the ampersand hook at $3F5; so if you "disinstall"
*by calling FREEBUFR (CALL 4BBBB), be very careful
*to reset the ampersand hook! No peace-loving
*human being ever calls FREEBUFR, unless it is to
*disinstall a block of code he himself recently
*installed. A word to the wise is sUfficient.

*(Assumes no string assignments have been made.)
*Accumulator now holds high byte of buffer addr.

179
1BO
1B1
1B2
1B3
1B4
185
1B6
1B7
1BB
1B9
190
191
192
193
194
195
196
197
19B
199
200
201
202
203
204
205
206
207
20B
209
210
211
212
213
214
215
216
217
21B
219
220
221
222
223
224
225
226
227
22B
229
230
231
232
233
234
235
236
237
23B
239
240
241
242
243
244
245
246

002096: AD 00 BF
002099: C9 4C
00209B: FO 11 =20AE

0020AE: A9 04
0020BO: 20 F5 BE

002 OA6: AO 00
0020A8: 84 73
002 OAA: 84 6F
0020AC: FO OA =20B8

00209D: 38
00209E: AS 74
0020AO: E9 04
0020A2: 85 74
0020M: 85 70

0020B3: 90 03 =20B8
0020B5: 4C 09 BE

0020B8: AC F5 03
0020BB: 8C 14 21
0020BE: AC F6 03
0020C1: BC 15 21
0020C4: AC F7 03
0020C7: BC 16 21
0020CA: 8D C1 23

erne SourcerorsJ2Lpprentice

0020CO: 80 C6 23

002000: 80 F7 03
002003: 18
002004: 69 01
002006: 80 A2 23

002009: 69 02
00200B: 85 43
00200D: A9 24
00200F: 85 3D
0020E1: AO 00
0020E3: 84 42
0020E5: 84 3C
0020E7: 8C F6 03
0020EA: A9 4C
0020EC: 80 F5 03
0020EF: A2 04
002 OFl : B1 3C
0020F3: 91 42
0020F5: C8
0020F6: 00 F9 =20F1
0020F8: C6 30
0020FA: C6 43
0020FC: CA
0020FO: DO F2 =20Fl
0020FF: 60

MAIN PROGRAM

;JMP op-code
; (Just to be certain!)
;Move 4 256-byte pages
;Get a byte
;Relocate it

;Decrement page counter
;Back if not done
;Installation complete!

;Back until page is done
;Step to next page

;Initialize index

;Fix ampersand hook.

;Step to 2nd page of main
;Fix JMP instructions

MOVE

~2 ;Step to 3rd page of main
OEST+1 ;OEST=BUFFER+$300
~>INITAO+$300 ;SOURCE=INITAO+$300
SOURCE+1
~O

DEST
SOURCE
AMPERH+1
~$4C

AMPERH
~4

(SOURCE), Y
(OEST),Y

MOVE
SOURCE+1
OEST+1

AMPERH+2

H
JMP3+2

ADC
STA
LOA
STA
LOY
STY
STY
STY
LOA
STA
LOX
LDA
STA
INY
BNE
OEC
OEC
DEX
BNE
RTS

STA
CLC
ADC
STA

MOVE

'The Sourcerors .!7Lpprentice

*The main program parses the text that follows the
*ampersand and responds accordingly. If an INPUT,
*GET, or a PRINT token is not found, control is
*passed to any previously installed ampersand routine.
*With &GET x$, the current value of x$ is not printed.
*With &INPUT x$ and &PRINT x$, the current value of
*x$ is printed to the text screen window beginning
*at the current cursor location, with (&PRINT) or
*without (&INPUT) word-wrapping. With &INPUT, this
*default string then may be edited using the blinking
*underscore "insert" cursor and the following keys:

*ARROW keys move the blinking underscore cursor.
*If the string occupies more than one line,
*the up- and down-arrow keys will work.
*DELETE deletes character to left of cursor.
*CTRL-D deletes character under the cursor.
*CTRL-X erases the edit string.
*CTRL-Y clears from cursor to end of edit string.
*CTRL-B moves cursor to beginning of edit string,
*CTRL-N moves cursor to end of edit string.
*CTRL-C toggles the case of the character under

*JMP3 is the only instruction in
*the main program that references
*an address in the second page of
*the main program. The high-order
*byte of this address needs to be
*adjusted.

STA JMP2+2

* JMP1 and JMP2 are the only
* instructions in the main program
*that reference addresses in the
*first page of the main program.
*The high-order bytes of these
*addresses need to be adjusted.

247
248
249
250
251
252

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313

Page 9Vol. 1 No.5

%e Sourcerors .9Ipprentice Vol. 1 No.5 Page 10

*the cursor; if it is a letter:
*upper case letters are converted to lower;

*lower case letters are converted to upper.
*RETURN accepts the current edit string and
*assigns it to the variable, x$.
*ESC aborts with a variable lES) set to "1".
*OPEN-APPLE lin conjunction with another key)
*aborts with a variable, lOA) set to
*the code tor the key that was pressed.
*SOLID-APPLE (in conjunction with another key)
*aborts with a variable (SA) set to
*the code for the key that was pressed.

*It the specified string, x$, has a length that ex­
*ceeds the specified maximum field_length, FL, then a
*STRING TOO LONG error will be generated. The same
*error will be generated if the edit string ever
*grows so long that its top line scrolls out of the
*text window. The text window must be at least two
*characters wide. If &INPUT is aborted by pressing
*<ESC>, this may be detected using an ON ESCAPE GOTO
*statement. An apple-key combination may be detected
*using an IF OA GOTO or IF SA GOTO statement. When
*nonzero, the value of OA or SA is the hi-ASCII
*keycode. All three ampersand routines leave the
*text screen cursor just beyond the end of the
*printed string. A blinking underscore cursor is
*used during &GET and &INPUT editing. When control
*returns to Applesoft, the text cursor always will
*be restored to whatever cursor was in use at the
*time the ampersand routine was invoked. If no .
*FL variable was defined prior to &INPUT, or if
*the value of FL had been set equal to zero, the
*field length defaults to 255 characters. Zero-page
*locations $3C through $47 are used temporarily by
*this program; their original contents are destroyed.
*If the variables FL, ES, OA, and SA do not exist
*prior to invoking &INPUT, &GET, or &PRINT, they
*will be created for you, and FL will default to
*zero (which indicates field_length = 255). When
*terminated by <RETURN>, &INPUT strips trailing
*spaces from the edit string before making a new x$.
*Following &GET, PEEK(60) will yield the Hi-ASCII
*code for the character in x$; PEEK(60)-128 will
*give the Lo-ASCII code. &GET always clears the
*variable ES to zero, even if the key that was
*"gotten" was <ESC>. OA and SA behave exactly the
*same with &GET as they do with &INPUT, except that
*the GET is not aborted. If you &GET an apple key
*combination, x$ receives the character, location
*60 receives the Hi-ASCII code, and OA and/or SA
*also receive(s) the Hi-ASCII code. To determine
*if <ESC> was pressed during an &GET, use
*ON lPEEK(60)=155) GOTO instead of ON ESCAPE GOTO.
*&INPUT will respond to all ASCII codes except
*control codes and DELETE.

002100:
002103:
002105:
002107:
002109:
002101\:
00210C:
00210E:

20 B7 00
A2 FF
C9 84
FO OE =2117
E8
C9 BA
FO 09 =2117
A2 FE

314
315

316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

JSR
LDX
CMP
BEQ
INX
CMP
BEQ
LDX

CHRGOT
~$FF

UNPTKN
L1

#PRNTKN
L1
HFE

;Get character after "&"
;Flag value for &INPUT
;Compare to INPUT token
;If &INPUT, SWITCH=$FF
;Flag for &PRINT ($00)
;Compare to PRINT token
;If &PRINT, SWITCH=$OO
;Flag for &GET ($FE)

Vol. 1 No.5 Page 11 erne sourcerorS.9Lpprentice

002110: C9 BE 379 CMP tGETTKN ;Compare to GET token
002112 : FO 03 =2117 380 BEQ L1 ;If &GET, SWITCH=$FE
002114 : 4C C9 DE 381 OLDHOOK JMP SYNERR ;Old &-hook stored here

382
002117 : 86 45 383 L1 STX SWITCH ;Set switch

384
385 *SWITCH $00 for &PRINT
386 *SWITCH $FE for &GET
387 *SWITCH $FF for &INPUT
388

002119: AO 00 389 LOY to ; Default STRLEN to 0
00211B: 84 42 390 STY STRLEN

391
002110 : 84 10 392 STY OIMFLG ;Initialize flags
00211F: 84 11 393 STY VALTYP ;Numeric, not string
002121: 84 12 394 STY INTFLG ;Real, not integer

395
396 ***Find value of variable FL***

002123: A9 46 397 LOA *$46 ; La-ASCII 'F'
002125: 85 81 398 STA VARNAM
002127: A9 4C 399 LOA t$4C ; Lo-ASCII 'L'
002129: 85 82 400 STA VARNAM+1
00212B: 20 4F EO 401 JSR VARLOC ; Locate the variable FL
00212E: 20 F9 EA 402 JSR MOVFM ;Move (Y,A) to FAC
002131: 20 FB E6 403 JSR CONINT ; Integer in X reg
002134: 8A 404 TXA ;Examine value of FL
002135: DO 01 =2138 405 BNE STORFL
002137 : CA 406 OEX ;Oefault to 255
002138: 86 41 407 STORFL STX FLOLEN ; Store field_length

408
409 ***Locate string variable***

00213A: 20 B1 00 410 JSR CHRGET ; Advance TXTPTR
002130: 20 E3 OF 411 JSR PTRGET ;Get ptr to str descript
002140: 85 85 412 STA FORPNT ;Save pointer in FORPNT
002142 : 84 86 413 STY FORPNT+1 ;for later use by PERMST.
002144 : 20 6C DO 414 JSR CHKSTR ;Check for string var
002147 : 20 B7 00 415 JSR CHRGOT ;Examine next character
00214A: FO 03 =214F 416 BEQ SYNTOK ;Branch if : or EOL
00214C: 4C C9 DE 417 JMP SYNERR ;Error if not : or EOL

418
00214F: A5 24 419 SYNTOK LOA CH ;Update text cursor
002151: FO 03 =2156 420 BEQ L2 ;Update CH80 only if
002153: 80 7B 05 421 STA CH80 ;CH > O.
002156: A4 25 422 L2 LOY CV
002158: 2C 1F CO 423 BIT R080COL ;80-column display?
00215B: 10 03 =2160 424 BPL SAVCUR
002150: AD 7B 05 425 LOA CH80
002160: 84 43 426 SAVCUR STY TOPCV ;Cursor values for
002162: 85 44 427 STA TOPCH ;start of string

428
002164: AD 00 429 REDO LOY to ;Initialize index
002166: 84 47 430 STY TEMPY
002168: A6 45 431 LOX SWITCH
00216A: EO FE 432 CPX t$FE ;Is this &GET?
00216C: FO 04 =2172 433 BEQ GETPNT ;If so, use default.
00216E: B1 83 434 LOA (VARPNT) ,Y ;Get length of string
002170: 85 42 435 STA STRLEN ;Store in string_length
002172 : C8 436 GETPNT INY ;Step to next character
002173: B1 83 437 LDA (VARPNT),Y ;LOB of pointer
002175: 85 AB 438 STA STRNG1 ;STRNG1 points to x$
002177: C8 439 INY ;Step to next character
002178: B1 83 440 LOA (VARPNT),Y ;HOB of pointer
00217A: 85 AC 441 STA STRNG1+1

%e Sourcerors .9l.pprentice Vol. 1 No.5 Page 12

00217C: AO 00 442 LDY to ;Reset index
00217E: AS 45 443 LOA SWITCH ; Test switch
002180: DO 4C =21CE 444 BNE PRNWRD ;INPUT or GET: go print
002182: 84 47 445 L3 STY TEMPY ;Else word-wrap
002184: A2 01 446 LDX U ;Initialize char count
002186: CO 00 447 CPY fO ;No leading space at
002188: DO 01 =218B 448 BNE L4 ; start of string.
00218A: CA 449 DEX
00218B: C4 42 450 L4 CPY STRLEN ;Reached end of string?
00218D: BO 09 =2198 451 BCS CHKWRD ;Branch if yes
00218F: C8 452 INY
002190: E8 453 INX ; Increment word length
002191: Bl AB 454 LDA (STRNGl),Y
002193: C9 20 455 CMP 1$20 ; Lo-ASCII space?
002195: DO F4 =218B 456 BNE L4 ;No. Keep going.
002197: 38 457 SEC ;Yes, prepare to SBC.
002198: AS 21 458 CHKWRD LDA WNDWID ;Get window width
00219A: 2C IF CO 459 BIT RD80COL ;80-column display?
00219D: 10 04 =21A3 460 BPL L5
00219F: ED 7B 05 461 SBC CH80 ;Compute dist to R edge
002lA2: 2C 462 DFB $2C ;Skip next instruction
0021A3: E5 24 463 L5 SBC CH
0021A5: 86 46 464 STX TEMPX
0021A7: AA 465 TAX ;Save distance to go
0021A8: C5 46 466 CMP TEMP X ;Will it fit?
0021AA: BO 08 =21B4 467 BCS L7 ;Yes. Go print it.

468
0021AC: A9 AO 469 L6 LDA 4I$AO ; (Hi-ASCII space)
0021AE: 20 ED FD 470 JSR COUT ;Pad with spaces
0021B1: GA 471 DEX Ito end of line.
0021B2: DO F8 =21AC 472 BNE L6

473
0021B4: M 47 474 L7 LDY TEMPY ;Restore index
0021B6: FO 16 =21CE 475 BEQ PRNWRD ;No space if 1st char
0021BB: AS 24 476 LOA CH
0021BA: 2C IF CO 477 BIT RDBOCOL ; BO-column display?
0021BD: 10 03 =21C2 47B BPL LB
0021BF: AD 7B 05 479 LDA CHBO ;Get horiz cursor,
0021C2: C9 00 4BO LB CMP fO ; At Ledge?
0021C4: FO OB =21CE 4Bl BEQ PRNWRD ;Yes. Don't print space.
0021C6: A9 AO 4B2 LDA 4I$AO ; Hi-ASCII space
0021CB: 99 FF 01 4B3 STA EDBUF-l,Y ;Put copy in EDBUF
0021CB: 20 ED FD 4B4 JSR COUT ;Print a space

4B5
0021CE: C4 42 4B6 PRNWRD CPY STRLEN ;At end of string?
0021DO: BO 3D =220F 4B7 BCS ENDPRT ;Yes. Finished.
0021D2: Bl AB 48B LDA (STRNGl) ,Y ;Get next character
0021D4: 09 BO 4B9 ORA 4I$BO ;Convert to hi-ASCII
0021D6: CB 490 INY ;Increment string index
0021D7: A6 45 491 LDX SWITCH ;Test switch
0021D9: DO 04 =21DF 492 BNE L9 ;No wrap if &INPUT
0021DB: C9 AO 493 CMP f$AO ; Hi-ASCII space
0021DD: FO A3 =2182 494 BEQ L3 ;Go see if next word fits
0021DF: 99 FF 01 495 L9 STA EDBUF-1,Y ;Put copy in EDBUF
0021E2: A6 25 496 LDX CV
0021E4: 20 ED FD 497 JSR COUT ;Print the character
0021E7: E8 498 INX
0021E8: E4 23 499 CPX WNDBOT ;Were we on bottom line?
0021EA: DO E2 =21CE 500 BNE PRNWRD iNo, no scroll was done.

501
0021EC: A6 24 502 LDX CH ;Get horizontal cursor
0021EE: 2C IF CO 503 BIT RDBOCOL ;80-column display?
0021Fl: 10 03 =21F6 504 BPL LIO

Vol. 1 NO.5 Page 13 erne Sourcerors JZLpprentice

* We don't care if top line scrolls out of
* the text window during &PRINT, but we
* must flag it as an error during &INPUT.

*SWITCH $00 indicates &PRINT.
*SWITCH $FF indicates initial &INPUT entry.
*SWITCH $FE indicates &GET.
*SWITCH $40 indicates return from <CTRL-R>.
*SWITCH $80 indicates return from <CTRL-X>,
*<CTRL-Y>, <CTRL-D>, or INSERT.

TESTSW BIT SWITCH

;Index to beginning

;Store CV in BOTCV

;Clear escape flag to "0"

;Return from <CTRL-Y>,
;<CTRL-D>, or INSERT.

;FLOLEN < STRLEN?

;Test switch

;Return from <CTRL-R>
;&PRINT is done!

;Aim STRNGl at EDBUF

;Yes. STRING TOO LONG.

;Cursor to top

;Store CH in BOTCH
;80-column display?

;Code for STRING TOO LONG
;Exit thru error process

;Did top scroll off?
;No. Keep going.

;If scroll due to INSERT
;Modify start cursor
;Error if negative

;Get previous CV
;Store in current CV

;Use CH80 instead
;Are we at Ledge?
;No, no scroll was done.
; If &PRINT,
;keep printing.

RESTORE

f<EDBUF
STRNG1
i>EDBUF
STRNG1+1

BVC

BMI L12
BVS CTRLR
RTS

LDA FLDLEN
CMP STRLEN
BCC L11

LDA TOPCH
STA OLDCH
LDA TOPCV
STA OLOCV
LDY fO
STY TEMPY
STY ESCFLG

LOA OLOCV
STA CV

DEC OLDCV
DEC TOPCV
BMI L11
LDX TOPCV
CPX WNDTOP
BCS PRNWRD

LDX CH80
CPX iO
BNE PRNWRD
LDX SWITCH
BEQ PRNWRD

L12

L11 LDX i$BO
JMP ERROR

RESTORE LOY
STY
LDA
STA

CTRLR

ENDPRT LDA CH
BIT RD80COL
BPL STRCH
LDA CH80

STRCH STA BOTCH
LDA CV
STA BOTCV

Ll0
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567

002226: 50 14 =223C

00222E: AS 44
002230: 85 40
002232: AS 43
002234: 85 3F
002236: AO 00
002238: 84 47
00223A: 84 46

002221: 30 03 =2226
002223: 70 09 =222E
002225: 60

002228: AS 41
00222A: C5 42
00222C: 90 DC =220A

00220A: A2 BO
00220C: 4C 12 D4

00221F: 24 45

00220F: A5 24
002211: 2C iF CO
002214: 10 03 =2219
002216: AD 7B 05
002219: 85 3E
00221B: A5 25
00221D: 85 3D

00223C: AO 00
00223E: 84 AB
002240: A9 02
002242: 85 AC

0021FE: C6 3F
002200: C6 43
002202: 30 06 =220A
002204: A6 43
002206: E4 22
002208: BO C4 =21CE

002244: AS 3F
002246: 85 25

0021F3: AE 7B 05
0021F6: EO 00
0021F8: DO D4 =21CE
0021FA: A6 45
0021FC: FO DO =21CE

rrhe Sourcerors .9Lpprentice Vol. 1 No.5 Page 14 (
~

002248: AS 40 568 LDA OLDCH ;Get previous CH
00224A: 85 24 569 STA CH ;Store in current CH
00224C: 8D 7B 05 570 STA CH80

571
00224F: 20 22 FC 572 GETCHR JSR VTAB ; Update TBASE
002252: A4 24 573 LDY CH ;Get CH
002254: 8C 7B 05 574 STY CH80 ;Update CH80
002257: 2C 1F co 575 BIT RD80COL ;80-column display?
00225A: 10 10 =226C 576 BPL GETCH2
00225C: 8D 01 co 577 STA STORE80 ;PAGE2 switches 1 and 1X
00225F: 98 578 TYA
002260: 45 20 579 EOR WNDLFT ; LSB=l if char in main
002262: 4A 580 LSR ;Carry clear if aux
002263: BO 04 =2269 581 BCS GETCH1
002265: 8D 55 CO 582 STA PAGE2 ;Select AUX memory
002268: C8 583 INY ;If WNDLFT odd
002269: 98 584 GETCH1 TYA
00226A: 4A 585 LSR ;Compute index
00226B: AS 586 TAY
00226C: B1 28 587 GETCH2 LDA (TBASE),Y ;Get the character
00226E: 48 588 PHA ;Save original character
00226F: 49 DF 589 EOR il$DF I (Hi-ASCII underscore)
002271: DO 02 =2275 590 BNE NOZMSK IIf screen char is " " ,-
002273: A9 7F 591 LDA il$7F ;treat as if space.
002275: 48 592 NOZMSK PHA ; Mask onto stack
002276: 68 593 GETCH3 PLA ;Retrieve mask
002277: 48 594 PHA ;Toggle between
002278: 51 28 595 EOR (TBASE),Y ;original character
00227A: 91 28 596 STA (TBASE) ,Y land underscore.
00227C: 2C 00 CO 597 GETCH4 BIT KEYBD ;See if key pressed
00227F: 30 12 =2293 598 BMI GOTKEY
002281: E6 4E 599 INC RANDOM ;Use random # as a
002283: DO F7 =227C 600 BNE GETCH4 ;flashing cursor timer.
002285 : AS 4F 601 LDA RANDOM+1
002287: E6 4F 602 INC RANDOM+l
002289: 45 4F 603 EOR RANDOM+l I Leaves 1 if bit changed
00228B: 29 40 604 AND #%01000000 ;Did bit six change?
00228D: FO ED =227C 605 BEQ GETCH4
00228F: DO E5 =2276 606 BNE GETCH3 ;Always taken

607
002291: FO 9B =222E 608 CTRLBO BEQ CTRLR ;Bounce-back point

609
002293: 68 610 GOT KEY PLA ;Remove mask from stack
002294: 68 611 PLA ;Retrieve original char
002295: 91 28 612 STA (TBASE) , Y ;Put it back
002297: AD 00 CO 613 LDA KEYBD ;Get key code
00229A: 85 3C 614 STA KEYCOD ;Save it for later

615
00229C: A2 FF 616 LDX #$FF
00229E: 2C 61 CO 617 BIT READOA ;Check open-apple key
0022Al: 10 04 =22A7 618 BPL CHKSA
0022A3: 86 43 619 STX OAFLAG ;Set open-apple flag
0022A5: A9 8D 620 LDA #$8D ;Fake a <RETURN>

621
0022A7: 2C 62 CO 622 CHKSA BIT READSA ;Check solid-apple key
0022AA: 10 04 =22BO 623 BPL CHKGET
0022AC: 86 44 624 STX SAFLAG ;Set solid-apple flag
0022AE: A9 8D 625 LOA #$8D ;Fake a <RETURN>

626
0022BO: A6 45 627 CHKGET LDX SWITCH
0022B2: EO FE 628 CPX #$FE ;Is this an &GET?
0022B4: DO OD =22C3 629 BNE CHKCAS
0022B6: A6 3C 630 LDX KEYCOD ;Get keycode
0022B8: 8E 00 02 631 STX EDBUF ;Put it in buffer

Vol. 1 NO.5 Page 15 %e SourcerorS.!Jlpprentice

0022BB: E6 42 632 INC STRLEN ;Set string_length 1
0022BD: A9 8D 633 LDA *$8D ;Fake a <RETURN>
0022BF: DO 29 =22EA 634 BNE CONTN1 ;Always taken

635
0022C1: 90 8C =224F 636 GETO BCC GETCHR ;Bounce-back point

637
0022C3: C9 83 638 CHKCAS CMP *$83 ;Check for CTRL-C
0022C5: DO 1F =22E6 639 BNE CONTIN
0022C7: A6 47 640 LDX TEMPY ;Process CTRL-C
0022C9: E4 42 641 CPX STRLEN ;Must be char in string
0022CB: BO 17 =22E4 642 BCS NOALPH ;Else skip it
0022CD: B1 28 643 LDA (TBASE),Y ;Get the character
0022CF: 09 20 644 ORA *$20 ;Force lower case
0022D1: C9 FB 645 CMP *$FB ; Hi-ASCII U{H

0022D3: BO OF =22E4 646 BCS NOALPH ;Not an alpha
0022D5: C9 E1 647 CMP HE1 ; Hi-ASCII l1 a "

0022D7: 90 OB =22E4 648 BCC NOALPH ;Not an alpha
0022D9: B1 28 649 LDA (TBASE) ,Y ;Retrieve character
0022DB: 49 20 650 EOR *$20 ;Toggle its case
0022DD: 91 28 651 STA (TBASE),Y ;Put it back
0022DF: A4 47 652 LDY TEMPY
0022E1 99 00 02 653 STA EDBUF,Y ;Make change in string
0022E4: A9 95 654 NOALPH LDA *$95 ; Hi-ASCII R-ARROW

655
0022E6: A2 80 656 CONTIN LDX *$80
0022E8: 86 45 657 STX SWITCH ;Default SWITCH to $80
0022EA: 8D 54 CO 658 CONTN1 STA PAGEl ; Back to pg1 if needed

659
660 *We default to text page 1 because it is
661 *assumed that text page 2 was not in use
662 *at the time this program was called', If
663 *you wish to work with text page 2 you
664 *will have to modify the program,
665

0022ED: 8D 10 CO 666 STA STROBE ;Clear keyboard strobe
667

0022FO: C9 82 668 CMP *$82 ;Check for CTRL-B
0022F2: DO 02 =22F6 669 BNE CHKDEL
0022F4: FO 9B =2291 670 BEQ CTRLBO ;Always taken

671
0022F6: C9 FF 672 CHKDEL CMP HFF ;Check for <DELETE>
0022F8: DO 1C =2316 673 BNE L13

674
675 ***PROCESS <DELETE>***

0022FA: AA 676 TAX ; Leave signature ($FF)
677
678 ***MOVE CURSOR LEFT***
679 *A "signature" in the X register indicates which
680 *key processor transferred to CURLFT:
681 *X=$88 indicates <L-ARROW>
682 *X=$FF indicates <DELETE>

0022FB: A4 47 683 CURLFT LDY TEMPY ;Get string index
0022FD: FO 2B =232A 684 BEQ REJECT ; If at Lend, no go,
0022FF: C6 47 685 DEC TEMPY ;Decrement string index
002301: A4 24 686 LDY CH ;Get CH
002303: DO 06 =230B 687 BNE CURL
002305: C6 25 688 DEC CV ;Step up one line
002307: C6 3F 689 DEC OLDCV ;Update old CV
002309: A4 21 690 LDY WNDWID ;Step to R edge
00230B: 88 691 CURL DEY ;Move left 1 character
00230C: 84 24 692 STY CH ;Update CH
00230E: 84 40 693 STY OLDCH ;Update old CH
002310: 8A 694 TXA ;Check signature

rrhe Sourcerors.f1Lpprentice Vol. 1 No.5 Page 16

002311 : 4A 695 LSR ;Exarnine LSB
002312: BO 58 =236C 696 BCS CTRLD ;Process ctrl-D
002314: 90 AB =22C1 697 GET1 BCC GETO ;Always taken

698
002316: C9 88 699 L13 CMP !S88 ;Check <L-ARROW>
002318: DO 03 =231D 700 BNE CHAR

701
702 ***PROCESS <L-ARROW>***'

00231A: AA 703 TAX ; Leave signature ($88)
00231B: DO DE =22FB 704 BNE CURLFT ;Always taken

705
002310: C9 AO 706 CHAR CMP !SAO ;Character to insert?
00231F: 90 40 =2361 707 BCC CONTRL iControl character

708
709 ***PROCESS INSERT***

002321: A4 42 710 LDY STRLEN
002323: FO 16 =233B 711 BEQ L16
002325: AA 712 TAX ;Save char for later
002326: C4 41 713 CPY FLDLEN ;STRLEN < FLDLEN?
002328: 90 OC =2336 714 BCC L15 ;Yes. Continue.

715
00232A: 20 DD FB 716 REJECT JSR BEEP ;Beep speaker
00232D: FO 2F =235E 717 BEQ GETCLC ;Always taken

718
00232F: 88 719 L14 DEY
002330: B9 00 02 720 LDA EDBUF,Y ;Open up a hole for
002333: 99 01 02 721 STA EDBUFt1,Y ;the insertion.
002336: C4 47 722 L15 CPY TEMPY
002338: DO F5 =232F 723 BNE L14
00233A: 8A 724 TXA ;Retrieve the char
00233B: 99 00 02 725 L16 STA EDBUF,Y ; Insert it
00233E: E6 42 726 INC STRLEN
002340: A2 00 727 LDX *0 iLeave signature ($00)

728
729 ***MOVE CURSOR RIGHT***
730 *A "signature" in the X register indicates which
731 *key processor transferred to CURRT:
732 *X=$OO indicates INSERT
733 *X=$95 indicates <R-ARROW>

002342: A4 47 734 CURRT LDY TEMPY ;Get string index
002344: C4 42 735 CPY STRLEN ;Is TEMPY < STRLEN?
002346: BO E2 =232A 736 BCS REJECT ;No. Bad news.
002348: E6 47 737 INC TEMPY
00234A: A4 24 738 LDY CH ;Get CH
00234C: C8 739 INY
00234D: C4 21 740 CPY WNDWID ;CH < WIDTH?
00234F: 90 06 =2357 741 BCC L17 ;Yes. Go store it.
002351: AO 00 742 LDY *0 ;No. Move to next line.
002353: E6 25 743 INC CV
002355: E6 3F 744 INC OLDCV
002357: 84 24 745 L17 STY CH ;Replace CH
002359: 84 40 746 STY OLDCH ;Update old CH
00235B: 8A 747 TXA iRetrieve signature
00235C: FO 4F =23AD 748 BEQ REPRNT iIf called by INSERT
00235E: 18 749 GETCLC CLC ;Force branch
00235F: 90 B3 =2314 750 GET2 BCC GET1 iAlways taken

751
002361: C9 95 752 CONTRL CMP *$95 ;Check R-arrow
002363: DO 03 =2368 753 BNE L18

754
755 ***PROCESS <R-ARROW>***

002365: AA 756 TAX ;Leave signature ($95)
002366: DO DA =2342 757 BNE CURRT ;Always taken

Vol. 1 No.5 Page 17 %e Sourcerors 5tpprentice

758
002368: C9 84 759 L18 CMP *$84 ;Check <CTRL-O>
00236A: 00 5B =23C7 760 BNE L19

761
762 ***PROCESS <CTRL-O>***

00236C: A4 47 763 CTRLD LOY TEMPY ;Get string index
00236E: C4 42 764 CPY STRLEN ;Is TEMPY < STRLEN?
002370: BO B8 =232A 765 REJ1 BCS REJECT ;No. Bad news.
002372: B9 01 02 766 CTRL01 LOA EOBUF+1,Y ;Get character to right
002375: 99 00 02 767 STA EOBUF,Y ;Store it here
002378: C8 768 INY ;Step to next character
002379: C4 42 769 CPY STRLEN ;Reached end of string?
00237B: 00 F5 =2372 770 BNE CTRL01
002370: A2 00 771 LOX *0 ; Leave signature ($00)

772
773 ***ERASE STRING***
774 *A "signature" in the X register indicates which
775 *key processor transferred to ERASE:
776 *X=$OO indicates <OELETE> or <CRTL-O>
777 *X=$40 indicates <CTRL-R>
778 *X=$99 indicates <CTRL-Y> or <CTRL-X>

00237F: AS 44 779 ERASE LOA TOPCH ;Get top CH
002381: 85 24 780 STA CH ;Put in CH
002383: 80 7B 05 781 STA CH80
002386: AS 43 782 LOA TOPCV ;Get top CV
002388: 85 25 783 STA CV ;Put in CV
00238A: 20 22 FC 784 JSR VTAB ;Update TBASE
002380: A4 42 785 LOY STRLEN
00238F: FO 08 =2399 786 BEQ CHKSIG ;Nothing to erase!
002391: A9 AO 787 ERASE1 LOA *$AO ;Hi-ASCII space
002393: 20 ED FO 788 JSR COUT ;Print it .
002396: 88 789 DEY
002397: DO F8 =2391 790 BNE ERASE1
002399: 8A 791 CHKSIG TXA ;Check signature
00239A: DO 07 =23A3 792 BNE ERASE2
00239C: C6 42 793 OEC STRLEN ;<OELETE> or <CTRL-O>
00239E: 00 00 =23AO 794 BNE REPRNT
0023AO : 4C 1F 22 795 JMP3 JMP TESTSW

796
0023A3: 30 04 =23A9 797 ERASE2 BMI ERASE3
0023A5: 85 45 798 STA SWITCH ; <CTRL-R>: $40 to SWITCH
0023A7: 00 04 =23AO 799 BNE REPRNT ;Always taken

800
0023A9: A4 47 801 ERASE3 LOY TEMPY ; <CTRL-Y>
0023AB: 84 42 802 STY STRLEN ;Chop from cursor to end

803
804 ***REPRINT STRING***
805 *A "signature" in the X register indicates which
806 *key processor transferred to REPRNT (via ERASE) :
807 *X=$OO indicates INSERT (via CURRT),
808 *<CTRL-O>, or <DELETE>
809 *X=$40 indicates <CTRL-R>
810 *X=$99 indicates <CTRL-Y> or <CTRL-X>

0023AO: AS 44 811 REPRNT LOA TOPCH ;Get top CH
0023AF: 85 24 812 STA CH ;Put in CH
0023B1: 80 7B 05 813 STA CH80
0023B4: AS 43 814 LOA TOPCV ;Get top CV
0023B6: 85 25 815 STA CV ;Put in CV
0023B8: 20 22 FC 816 JSR VTAB
0023BB: EO 40 817 CPX *$40 ;Check signature
0023BO: 00 03 =23C2 818 BNE REPRN1
0023BF: 4C 64 21 819 JMP1 JMP REDO ; <CTRL-R>
0023C2: AO 00 820 REPRN1 LOY *0

---~"...

%e SourcerorsJ2Lpprentice Vol. 1 No.5 Page 18

I
0023C4: 4C CE 21 821 JMP2 JMP PRNWRD ; INSERT, <CTRL-D>,

822 ; <DELETE>, or <CTRL-Y>
823

0023C7: C9 99 824 L19 CMP 1$99 ;Check <CTRL-Y>
0023C9: DO 03 =23CE 825 BNE L20

826
827 ***PROCESS <CTRL-Y>***

0023CB: AA 828 TAX ;Leave signature ($99)
0023CC: DO B1 =237F 829 CTRLYl BNE ERASE ;Always taken

830
0023CE: C9 92 831 L20 CMP *$92 ; Check <CTRL-R>
0023DO: DO 06 =23D8 832 BNE L21

833
834 ***PROCESS <CTRL-R>***

0023D2: A2 40 835 LDX 1$40 ;Leave signature ($40)
0023D4: DO A9 =237F 836 BNE ERASE ;Always taken

837
0023D6: 90 87 =235F 838 GET3 BCC GET2 ;Bounce-back point

839
0023D8: C9 8A 840 L21 CMP t$8A ;Check <D-ARROW>
0023DA: DO 2A =2406 841 BNE CHKUPA

842
843 ***PROCESS <D-ARROW>***

0023DC: A5 25 844 LDA CV ;CV < BOTCV?
0023DE: C5 3D 845 CMP BOTCV
0023EO: 90 02 =23E4 846 BCC DOWN1
0023E2: BO 8C =2370 847 REJ2 BCS REJ1 ;No. Bad news.
0023E4: E6 25 848 DOWN1 INC CV ;Step down 1 line
0023E6 : 18 849 CLC ;Prepare to add

II0023E7: A5 47 850 LOA TEMPY ;WNDWID to
0023E9: 6'5 21 851 ADC WNDWID ;TEMPY
0023EB: 85 47 852 STA TEMPY
0023ED: A5 25 853 LDA CV ;CV < BOTCV?
0023EF: 85 3F 854 STA OLDCV
0023F1: C5 3D 855 CMP BOTCV
0023F3: 90 OF =2404 856 BCC DOWN 3
0023F5: A5 3E 857 LDA BOTCH ;No. Beyond end?
0023F7 : C5 24 858 CMP CH
0023F9: BO 08 =2403 859 BCS DOWN2
0023FB: 85 24 860 STA CH ;Yes. Go back
0023FD: 85 40 861 STA OLDCH Ito bottom.
0023FF: A5 42 862 LDA STRLEN
002401: 85 47 863 STA TEMPY
002403: 18 864 DOWN2 CLC
002404: 90 DO =23D6 865 DOWN3 BCC GET3 ;Always taken

866
002406: C9 8B 867 CHKUPA CMP *$8B ;Check <U-ARROW>
002408: DO 2D =2437 868 BNE CHKCTX

869
870 ***PROCESS <U-ARROW>***

00240A: AS 43 871 LDA TOPCV ; TOPCV < CV?
00240C: C5 25 872 CMP CV
00240E: 90 02 =2412 873 BCC UPARR1
002410: BO DO =23E2 874 REJ3 BCS REJ2 ;No. Bad news.
002412: C6 25 875 UPARR1 DEC CV ; Step up 1 line
002414: A5 25 876 LDA CV
002416: 85 3F 877 STA OLDCV
002418: 38 878 SEC
002419: A5 47 879 LDA TEMPY
00241B: E5 21 880 SBC WNDWID
00241D: 85 47 881 STA TEMPY
00241F: AS 43 882 LOA TOPCV
002421: C5 25 883 CMP CV ;TOPCV < CV?

Vol. 1 No.5 Page 19 %e Sourceror 's J2Lpprentice

002423: 90 OF =2404 884 BCC OOWN3
002425: A5 24 885 LOA CH ;No. Left of top?
002427: C5 44 886 CMP TOPCH
002429: BO 08 =2403 887 BCS OOWN2
00242B: A5 44 888 LOA TOPCH ;Yes. Go to top.
002420: 85 24 889 STA CH
00242F: 85 40 890 STA OLOCH
002431: A9 00 891 LOA i/O
002433: 85 47 892 STA TEMPY
002435: FO CC =2403 893 BEQ OOWN2 ; Always taken

894
002437: C9 98 895 CHKCTX CMP #$98 ;Check <CTRL-X>
002439: 00 10 =244B 896 BNE CHKESC

897
898 ***PROCESS <CTRL-X>***

00243B: AA 899 TAX
00243C: A9 00 900 LOA i/O ;Go to the top
002431£: 85 47 901 STA TEMPY
002440: A5 44 902 LOA TOPCH
002442: 85 40 903 STA OLOCH
002444: A5 43 904 LOA TOPCV
002446: 85 3F 905 STA OLOCV
002448: 1£8 906 INX ;$99 to X register
002449: 00 81 =23CC 907 BNE CTRLY1 ;Always taken

908
00244B: 909 CHKESC i/$9B ;Check <ESC>
00244D: 453 910 BNE CHKCTN

911
912 ***PROCESS <ESC>***

00244F: 1£6 46 913 INC ESCFLG ; Escape flag to "1"
002451: 00 48 =249B 914 BNE ESCENT ;Always taken

915
002453: C9 81£ 916 CHKCTN CMP i/$8E ;Check <CTRL-N>
002455: 00 13 =246A 917 BNE CHKRTN

918
919 ***PROCESS <CTRL-N>***

002457: 114 42 920 LOY STRLEN ;Go to bottom
002459: 84 47 921 STY TEMPY ;of string.
00245B: A5 30 922 LOA BOTCV
002450: 85 25 923 STA CV
00245F: 85 3F 924 STA OLDCV
002461: A5 31£ 925 LOA BOTCH
002463: 85 24 926 STA CH
002465: 85 40 927 STA OLOCH
002467: 18 928 CLC
002468: 90 9A =2404 929 BCC OOWN3 ;Always taken

930
00246A: C9 80 931 CHKRTN CMP f$80 ;Check <RETURN>
00246C: FO 03 =2471 932 BEQ RETURN
002461£: 38 933 SEC
00246F: BO 9F =2410 934 BCS REJ3 ;Always taken

935
936 ***PROCESS <RETURN>***

002471: A5 45 937 RETURN LOA SWITCH ;Check &GET
002473: C9 FE 938 CMP f$FE
002475: FO 08 =247F 939 BEQ FORMST ; If &GET, form string
002477: 24 43 940 BIT OAFLAG ;Else check for
002479: 30 20 =249B 941 BMI ESCENT ;open-apple or
00247B: 24 44 942 BIT SAFLAG ; solid-apple
002470: 30 lC =249B 943 BMI ESCENT ;abort of &INPUT.

944
00247F: A6 42 945 FORMST LOX STRLEN ;Get string_length
002481: FO OA =2480 946 BEQ RTN2 ;Length = zero?

'The SourcerorsJ2l.pprentice Vol. 1 No.5 Page 20

002483: A9 AD 947 LOA 4$ AD ;Oelete trailing spaces
002485: 00 FF 01 948 RTNl CMP EOBUF-l,X ;Is character a space?
002488: 00 03 =2480 949 BNE RTN2 ;No. Go create string.
00248A: CA 950 OEX ;Yes. Strip it off.
00248B: 00 F8 =2485 951 BNE RTNl ;Go back if more chars

952
002480: 20 39 05 953 RTN2 JSR GOBUFS ,:Form string in EOBUF

954
955 *GOBUFS puts a null ($00) at the
956 *end of the string in EOBUF and
957 *masks off the MSB of all bytes.
958 *GOBUFS expects string_length in X
959 *GOBUFS returns with (A)=O, (Y)=l
960

002490: C8 961 INY ; (Y,A) set to $200
002491: 85 00 962 STA CHARAC ;No other terminator
002493: 85 OE 963 STA ENOCHR ; except a null byte.
002495: 20 EO E3 964 JSR STRLT2 ;Form temporary string

965
966 *STRLT2 expects Y,A to point to
967 *a literal low-ASCII string. A
968 *temporary string is formed in
969 *memory space that is requested
970 *below FRETOP. In addition to
971 *the null ($00) terminator, the
972 *values in CHARAC and ENOCHR
973 *are used as string terminators.
974

002498: 20 7B OA 975 JSR PERMST ;Make it permanent
976

00249B: A9 00 977 ESCENT LOA i/O ;<ESC> enters here
002490: 85 10 978 STA OIMFLG ;Initialize flags
00249F: 85 11 979 STA VALTYP
0024Al: 85 12 980 STA INTFLG
0024A3: A9 4F 981 LOA 4$4F ; Lo-ASCII '0'
0024A5: 85 81 982 STA VARNAM
0024A7: A9 41 983 LOA i/$41 ; Lo-ASCII 'A'
0024A9: 85 82 984 STA VARNAM+l
0024AB: 20 4F EO 985 JSR VARLOC ;Locate the variable OA
0024AE: 85 85 986 STA FORPNT ;Aim FORPNT at the
0024BO: 84 86 987 STY FORPNT+l ;variable value.
0024B2: AD 00 988 LOY i/O ;Oefault OA to zero
0024B4: 24 43 989 BIT OAFLAG
0024B6: 10 02 =24BA 990 BPL FLTOA
0024B8: A4 3C 991 LOY KEYCOO ;If flag, use KEYCOOe
0024BA: 20 01 E3 992 FLTOA JSR SNGFLT ;Float new OA value
0024BO: 20 27 EB 993 JSR STORE ;Store it in OA

994
0024CO: A9 53 995 LOA 4$53 ; Lo-ASCII 'S'
0024C2: 85 81 996 STA VARNAM

997
998 ; (VARNAM+l still holds 'A')
999

0024C4: 20 4F EO 1000 JSR VARLOC ;Locate the variable SA
0024C7: 85 85 1001 STA FORPNT ;Aim FORPNT at the
0024C9: 84 86 1002 STY FORPNT+l ;variable value.
0024CB: AD 00 1003 LOY i/O ;Oefault SA to zero
0024CO: 24 44 1004 BIT SAFLAG
0024CF: 10 02 =2403 1005 BPL FLTSA
002401: A4 3C 1006 LOY KEYCOO ; If flag, use KEYCOOe
002403: 20 01 E3 1007 FLTSA JSR SNGFLT ;Float new SA value
002406: 20 27 EB 1008 JSR STORE ;Store it in SA

1009

Vol. 1 NO.5 Page 21 rrhe Sourcerors YLpprentice

002409: A9 45 1010 LOA 1$45 ;Lo-ASCII 'E'
00240B: 85 81 1011 STA VARNAM
002400: A9 53 1012 LOA 1$53 ; Lo-ASCII 'S'
00240F: 85 82 1013 STA VARNAM+1
0024E1: 20 4F EO 1014 JSR VARLOC ;Locate the variable ES
0024E4: 85 85 1015 STA FORPNT ;Airn FORPNT at the
0024E6: 84 86 1016 STY FORPNT+1 ;variable value.
0024E8: A4 46 1017 LOY ESCFLG ; "1" if <ESC>, else 110 11

0024EA: 20 01 E3 1018 JSR SNGFLT ;Float new ES value
0024EO: 20 27 EB 1019 JSR STORE ;Store it in ES

1020
0024FO: AS 30 1021 LOA BOTCV ;Move cursor to
0024F2: 85 25 1022 STA CV ;bottorn of display
0024F4: 20 22 FC 1023 JSR VTAB ; (one character position
0024F7: AS 3E 1024 LOA BOTCH ;beyond last char in
0024F9: 85 24 1025 STA CH ;string, including
0024FB: 80 7B 05 1026 STA CH80 ;trailing spaces),
0024FE: 60 1027 RTS land exit.

The Gentleman's GS: A Polite
I ntroduction to the 16-bit II

Part II

by Ross W. Lambert

Last month we eased into a few definitions and a cUrsory examination of the tool startup order.
I finished bysuggesting that we'll "revisit" that demonic (for me) piece of code I called Generic
Start.

Let me preface that visitation by saying that the GS can be a time bomb. It really pays to learn
how to do things right the first time because erroneous code might not produce problems right
away (believe me. I know from experience, positively embarrassing experience at that, as y'all
know). Your program might actually crash in a section of code far removed from the point of
the error. Some programs might not crash at all . right away. They save their explosions for
an opportune time (opportune being defined as that moment in which a crash will cause the
most distressing mischief).

This has always been the case with assembly code (aw heck. it's true in any programming
environment), but it is. particularly pervasive in my assembly language GS· programs. The
reason? I mentioned it briefly last month: the method Apple chose for passing parameters to
and from the toolbox is to place them on top of the stack. This is not a bad thing. really. but if
you don't watch your pushes and pulls (PHAS and PLAS or PushWords and PullWords. etc.), you
can get them out of balance. Since many of the tool calls require multiple parameters of
various sizes, it is easier to screw them up than you might think. If you return from a
subroutine with an extraneous parameter squatting astride the stack. for example, your
program will try to return to the wrong address. It is more than likely that you will be
teleported into oblivion.

That Said. we can attack the startup procedure again. Let's take it one step at a time.

%e Sourcerors .!JLpprentice

A quick stroll down memory lane

Vol. 1 No.5 Page 22 (

First. a fact: the OS memory is organized into 64K banks. Like the main mem and aux mem
switching from days of old. you can have a program running in one bank that reads and writes
data in another. For the purposes of startup, however. your program will usually want to read
data from and write data to the same bank in which it lives.

Unlike the good 01' 8-bitdays (?) when you read a softswitch or two. the 65816 CPU has a few
new appendages which determine where the processor looks for instructions and data. These
new limbs are called the program bank register and the data bank register.

Oetting the program bank and the data bank to be one and the same can be accomplished by
grabbing the value of the program bank register and pushing it onto the stack. Then. in a not so
subtle manipulation. yank the bugger back off the stack and stuff it into the data bank register.

This effectively makes the data bank equal to the program bank. It is a maneuver you'll see
often in OS code. and looks like this:

Start phk
plb

ipush program bank register.
ipull back into data bank register.

You might be wondering why you cannot set the data bank directly. akin to switching between
main and auxiliary memory on a lIe or 128K lIe. The reason is that OS programs don't really
need to know where they live. at least not very often. The Memory Manager takes care of that.
Programs are therefore relocatable and have to set things like data banks indirectly (like the
method used above).

An aside - before I started working with the OS (last fall - yes, I am new at this. but I think I'm
living, breathing proof that a rank beginner can really have good time with the machine), I
thought that writing relocatable code for the OS meant jumping through all of the same hoops
that it did for the 8 bit Apples. I thought I could never reference labels within my own program,
for example. But 10 and behold. Apple created a beast called the OMF (Object Module Format).
This object code format includes a relocating dictionary which helps the OS (the system loader.
actually) relocate your code on its own! Instead of writing your own relocator module or
forcing your code to be absolutely and purely relocatable ala' the 8-bit world. the system
worries about it for you.

You can write fixed position code for the OS if you really want to since the design team built in
all kinds of flexibility into the memory manager. But since relocation worries are pretty much
behind us. it is almost pointless.

Notice I said "almost". There are times and instances, I can imagine. wherein carefully crafted,
fixed position code could blow the socks off standard OMF performance. But the instances are
few and the disadvantages outweigh the advantages for all of the applications I'm inclined to
write. (InCidentally and FYI - although I don't reccommend the idea. Micol Systems of Canada
has created their own proprietary "fastload" object code format which greatly speeds up the
rate at which a program is plopped into memory. There is. as they say. more than one way to
skin a cat.)

Back to our subject. The next step in the startup process is to start the Tool Locator. This is
always the first tool started because it is the bus that all the others ride. We're dead in the
water without it. if you'll excuse mixed metaphors.

Vol. 1 No.5 Page 23 'IFte Sourceror s!lLpprentice

The code looks like this:

_TLStartUp ;start tool locator

Roger is different...

If you own Roger Wagner's Apple IIGS Assembly Language Programming for Beginners, you'll
notice that the Tool Locator startup looks like this instead:

LOX #0201
JSL $E10000

;Tool Locator StartUp call number
;tool call entry point

This~aIl1plels taken from p. 321, if you care to look it up. The reason for the apparent
discrepancy is that my _TLStartup is a macro name. The macro creates Roger's expanded
code immediately above this paragraph. Roger discussed creating your own tool macros in the
book, the reason being that the text must've been written before the Merlin disk included all of
the Tool.Macros macro libraries. I'm certainly glad they are there now!

Needless to say, it is much easier to work with the macro names than to do tool calls "by hand".
Remembering the tool call numbers is next to Impossible. But now you know that the macros at
least include code to load the X register with the tool number and do a long jump (Le. between
64K banks) to the subroutine that handles toolbox calls.

A tilde for "Hilda...

There's yet another class of macros on the recent Merlin disks, these by Dave Klimas (for you
APW folks. there is a set of identical macros available from PunkWare, P.O. Box 874043,
Wasilla. AK 99687-4073. Send $15 and ask for "PW Macros"). Called tilde macros because
they're prescripted with the tilde character H, they combine all of the "pushes" for parameter
passing into one~~ep.<"We'lllookat these in more detail later in this series. Some programmers
swear by them. but I thiIlk beginners like me need to grow into them. I find myself forgetting
whether I'm working with single bytes. words (two bytes). or long words (four bytes). The tilde
macros can make debugging a little more complicated for me because I cannot readily see the
size of the parameter I pushed on the stack. Once you've got a given tool call down pat, though,
you may grow weary of typing all of the PHAs, PushWords or PushLongs. That being the case.
you're ready for Dave's macros.

The Tool Locator toolset is a permanent resident of your GS - it's in ROM. In this respect it is
different than most of the other toolsets. But we'll get to that next month.

Until then, then.

rrhe Sourcerors f2lpprentice
Copyright (C) 1989 by Ross W. Lambert and Ariel Publishing

All programs in The Apprentice are in the public domain and may be freely copied and distributed, but
NOT sold. Apple User Groups and other important folks may reprint articles upon request. Just gimme a
call at 509/923-2025 or drop me a line at P.O. Box 398, Pateros,WA 98846.

American prices in US Dollars... 1 year $28, 2 years $52

Canadian and Mexican subscribers add $5 per year, all other non-North American subscribers add $15
per year for first class postage.

Editor and Publisher....... Ross W. Lambert
Technical Editors (and moral support) Eric Mueller, Jay Jennings, Robert Moore
Subscription Services........Tamara Lambert, Cindy Eckels
Stamp Licking Rebecca Lambert

WARRANTY and LIMITATION of LIABILITY

I warrant that the information in The Apprentice is correct and useful to somebody somewhere. Any
subscriber may ask for a full refund of their last subscription payment at any time. My LIABILITY FOR
ERRORS AND OMISSIONS IS LIMITED TO THIS PUBLICATION'S PURCHASE PRICE. In no case shall I
or my contributors be liable for any incidental or consequential damages, or for ANY damages in excess of
the fees paid by a subscriber.

rrJie Sourceror's ftpprentice is a product of the United States of America.

Apple, Apple II, Apple IIGS, ProDOS, and BASIC.SYSTEM are registered trademarks of Apple
Computers, Inc.

Ariel Publishing
Box 398
Pateros, WA 98846

	thesourcerorsapprentice_v1n5.pdf
	thesourcerorsapprentice_v1n5 part 2

