 MICROCOMPUTERS
MICROCOMPUTERS

MICROCOMPUTERS

PROGRAMMING MANUAL

Publication Number 6500-50A

MCS6500

MICROCOMPUTER FAMILY

PROGRAMMING MANUAL

. JANUARY 1976

The information in this manual has been reviewed and is believed to be entirely reliable. However,
no responsibility is assumed for inaccuracies. The material in this manual is for informational
purposes only and is subject to change without notice.

Second Edition
©MOS TECHNOLOGY, INC. 1976
“All Rights Reserved”’

MOS TECHNOLOGY, INC.
950 Rittenhouse Road
Norristown, PA 19401

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTORY REMARKS

1.0 Manual Introduction. .
1.1 Microprocessor Archltecture

CHAPTER 2 THE DATA BUS, ACCUMULATOR AND ARITHMETIC UNIT

2.0 The Data Bus .

2.1 The Accumulator. .

2.1.1 LDA--Load Accumulator w1th Memory

2,1.2 STA--Store Accumulator in Memory .

2.2 The Arithmetic Unit. .

2.2.1 ADC--Add Memory with Carry to Accumulator

2.2.1.0 Multiple Precision Addition.

2.2.1.1 Signed Arithmetic.

2.2.1.2 Decimal Addition .

2,2.1.3 Add Summary. . .
2.2,2 SBC-~-Subtract Memory from Accumulator w1th Borrow.
2.2.2.0 Multiple Precision Subtraction .

2.2.2.1 Signed Arithmetic.

2.2.2.2 Decimal Subtract . . .

2.2.3 Carry and Overflow During Arlthmetlc Operatlons
2.2.4 Logical Operands . . .

2.2.4.1 AND--"AND" Memory w1th Accumulator .

2.2.4.2 ORA--"OR" Memory with Accumulator.

2.2.4.3 EOR--"Exclusive OR" Memory with Accumulator

CHAPTER 3 CONCEPTS OF FLAGS AND STATUS REGISTER

Carry Flag (C)
.1 SEC--Set Carry Flag.
.2 CLC--Clear Carry Flag.
Zero Flag (Z). .
Interrupt Disable (I).
.1 SEI--Set Interrupt Disable .
.2 CLI--Clear Interrupt Disable .

WWwWwwwww
e e o o s o o
NMNNNNMNEHEOOO

ii

’_l
N~ wWw

13
14
14
16
18
19
20
20
20
21
21

24
24
25
25
25
26
26

B e g |

WWwWWwwwwwwww

o~ NN W W

Decimal Mode Flag (D).
SED--Set Decimal Mode.
CLD--Clear Decimal Mode.

Break Command (B).

Expansion Bit.

Overflow (V) . e . .
CLV--Clear Overflow Flag .
Determination of Overflow.

Negative Flag (N).

Flag Summary .

CHAPTER 4 TEST, BRANCH AND JUMP INSTRUCTIONS

abakababababababababababalalal ol ol
N e el el el

FHRHMRHREOOO

1
.2
2.

Concepts of Program Sequence . o« s
.1 Use of Program Counter to Fetch an Instructlon .
.2 JMP--Jump to New Location.
Branching. . .
.1 Basic Concept of Relatlve Addre551ng .
.2 Branch Instructions. .
2.1 BMI--Branch on Result Mlnus
2.2 BPL--Branch on Result Plus .
2.3 BCC--Branch on Carry Clear .
2.4 BCS~-Branch on Carry Set .
2.5 BEQ--Branch on Result Zero . e e e e
2.6 BNE--Branch on Result Not Zero
2.7 BVS—--Branch on Overflow Set. . . .
2.8 BVC~-Branch on Overflow Clear.
.3 Branch Summary . o .
.4 Solution to Branch Out of Range ..

Test Instructions. . . . o o
CMP--Compare Memory and Accumulator
Bit Testing. . .

1 BIT--Test Bits in Memory w1th Accumulator. .

CHAPTER 5 NON-INDEXING ADDRESSING TECHNIQUES

Luuumuuuuuunwn

~NouvpwNrNNDEO

N =

Addressing Techniques.
Concepts of Pipelining and Program Sequence. .
Memory Utilization . e e e e e e e e e e e
I/O Controle « v v & v v ¢ o & o o o & o s o »
Memory Allocation. . . « + ¢ ¢ ¢ ¢« ¢ ¢« o ¢ o .
Implied Addressing + « ¢ ¢« ¢« v ¢ ¢ . .
Immediate Addressing . . . « + ¢« ¢« ¢ « ¢ ¢« o .
Absolute Addressing.+ ¢« « ¢ . ¢ 0 . 0 . .
Zero Page Addressing . . . « « . . o 0 0 .0
Relative Addressing. . « « &« ¢« ¢« « ¢ ¢ ¢ o o &

iii

. 26
. 26
. 27
. 27
. 27
. 27
. 28
. 28
. 29
. 30

. 31
. 33
. 36
. 37
. 38
. 40
. 40
. 40
. 40
. 40
. 41
. 41
. 41
. 41
. 42
. 42
. 45
. 45
. 47

47

. 50
. 52
. 56
. 56
. 57

57

. 59

59
61
63

CHAPTER 6 INDEX REGISTERS AND INDEX ADDRESSING CONCEPTS

General Concept of Indexing.
Absolute Indexed .

Zero Page Indexed.

Indirect Addressing.
Indexed Indirect Addressing.

Indirect Indexed Addressing.

Indirect Absolute.

Application of Indexes

ooonononovnOvOoN ON
~Novor B w N+ O

CHAPTER 7 INDEX REGISTER INSTRUCTIONS

LDX--Load Index Register X from Memory .

LDY--Load Index FRegister Y from Memory .

STX--Store Index Register X in Memory. . .

STY-~-Store Index Register Y in Memory. . .
INX--Increment Index Register X by One . .
INY--Increment Index Register Y by One . .
DEX~-Decrement Index Register X by One .
DEY--Decrement Index Register Y by One . .
CPX--Compare Index Register X to Memory. .

.9 CPY--Compare Index Register Y to Memory. .
.10 Transfers Between the Index Registers and Accumulator
.11 TAX--Transfer Accumulatcr to Index X .

.12 TXA--Transfer Index X to Accumulator . . .

.13 TAY--Transfer Accumulator to Index Y . . .

.14 TYA--Transfer Index Y to Accumulator .

.15 Summary of Index Register Applications and ManlpulatLons

o~V WO

N I N B B B N B N N N

CHAPTER 8 STACK PROCESSING

Introduction to Stack and to Push Down Stack Concept
JSR-~Jump to Subroutine.
RTS-~Return from Subroutine. .
Implementation of Stack in MCS6501 Through MCS6505
Summary of Stack Implementation.
Use of the Stack by the Programmer
PHA--Push Accumulator on Stack

00 00 00 00 00 0O 00 CO OO
~N oo e WwWLwbhdEHEO
-

PLA--Pull Accumulator from Stack
Use of Pushes and Pulls to Communicate Varlables Between
Subroutine Operations e e e e e e

8.8 TXS--Transfer Index X to Stack Pointer e e e e e e
8.9 TSX--Transfer Stack Pointer to Index X .
8.10 Saving of the Processor Status mR W/l .
8.11 PHP--Push Processor Status on Stack.
8.12 PLP--Pull Processor Status from Stack.
8.13 Summary on the Stack . « « + ¢« ¢« ¢« ¢ 4 & ¢ ¢ o« o o 0

iv

. 100
. 100
. 100
. 101
. 101
. 102

69
79
81
83
85
87
92
92

96
96
97
97
97
97
98
98
99
99

. 103
. 104
. 108
. 112
. 115
. 116
. 117

118

. 119
. 120
. 122

122

. 122
. 123

123

CHAPTER 9 RESET AND INTERRUPT CONSIDERATIONS

9.0 Vectors. . . . e vt
9.1 Reset or Restart P Vs
9.2 Start Function e .. 126
9.3 Programmer Cons1deratlons for In1tia11zatlon Sequences . . 127
9.4 Restart. T VA
9.5 Interrupt Considerations P
9.6 RTI--Return from Interrupt e K
9.7 Software Polling for Interrupt Causes e e e e e e s .o 137
9.8 Fully Vectored InterruptsS. . . « « « « « o« + « o« « + o o« « 140
9.8.1 JMP Indirect + &+ & 4 &+ & & o & 4 o + & o w o« o« . . 141
9.9 Interrupt SUMMATY. « « . « « & o & « o « o o « o o « « « . 142
9.10 Non-Maskable Interrupt . . . « . .« « + = « &+ « « « « « o« o 142
9.11 BRK-—-Break Command + . « & ¢ & « « + &« « « « « . 144
9.12 MemoTy Map . « + +v o « 4 « o o 4 « 4 o 4 o o o o+ 4 . . . 146

CHAPTER 10 SHIFT AND MEMORY MODIFY INSTRUCTIONS

10.0 Definition of Shift and Rotate « v « ¢« « « « o . . 147
10.1 LSR--Logical Shift Right «« . . 148
10.2 ASL--Arithmetic Shift Left 149
i 10.3 ROL--Rotate Left v ¢ ¢ & ¢ ¢ &« ¢« v o o & o« « « « « 149
% 10.4 ROR--Rotate Right. e e+ s 4 e e e e e+ 4w . . 150
| 10.5 Accumulator Mode Address1ng O 1)
‘ 10.6 Read/Modify/Write Instructions « . « « . . . 151
}' 10.7 INC--Increment Memory by One « ¢« ¢« « ¢ ¢« « « + « o« 154
10.8 DEC--Decrement Memory by One . . . « o« o« . . 155
10.9 General Note on Read/Modify/Write Instructlons e <« « < . 155

CHAPTER 11 PERIPHERAL PROGRAMMING

11.0 Review of MCS6520 for I/0 Operations 156
11.1 MCS6520 Interrupt Control. . . . 158
11.2 Implementation Tricks for Use of the MCS6520 Perlpheral
Interface Devices . . .+ « v v v ¢ 4 ¢ ¢« « « « + » +« . . 161
11.2.1 Shortcut Polling Sequences . . . + ¢« « « ¢« ¢« « + » « . . 161
11.2.2 Bit Organization on MCS6520s« . 162
11.2.,3 Use of READ/MODIFY/WRITE Instructlon for Keyboard
Encoding. . . + ¢ ¢« & ¢« ¢ ¢ ¢« ¢ ¢ 4 4« e o o o+ « . . 163
11.3 MCS6530 Programming. e e e s s s e s <« w e < . 166
11.3.1 Reading of the Counter Reglster e e e s e s e « a2 s . . 166
11.4 How to Organize to Implement Coding. 166
11.4.1 TLabel Standards. . . + ¢« ¢« ¢« « & &+ &+ « « o« ¢ « « + « - . 168
11.5 Comprehensive I/O Program. . « . « « &+ « &« o« « o « « + « » 170

APPENDICES

Instruction List, Alphabetic by Mnemonic, Definition
of Instruction Groups. .

MCS6501 - MCS6505 Microprocessor Instruction Set--—

Alphabetic Sequence. ¢ . .0 00 4.
A.l Introduction. . . e e e e e
A.2 Group One Instructlons e e e e e e e e e e e e
A.3 Group Two Instructions.
ALb Group Three Instructions.

Instruction List, Alphabetic by Mnemonic, with OP CODEs,
Execution Cycles and Memory Requirements.

Instruction Addressing Modes and Related Execution Times.

Operation Code Instruction Listing Hexidecimal Sequence
Summary of Addressing Modes

Implied Addressing. . .

Immediate Addressing.

Absolute Addressing

Zero Page Addressing.

Relative Addressing

Absolute Indexed Addre331ng

Zero Page Indexed Addressing.

Indexed Indirect Addressing

Indirect Indexed Addressing

(oo I o Il o Bl e I 2 B o Bl <o i
(VolNo BN I WU, N oS OURY

MCS650X Programming Model
Discussion--Indirect Addressing

Review of Binary and Binary Coded Decimal Arithmetic.

vi

mmmmrrjmmmm
o~ bW

1

[{

i
=

7
=

i
=

s

ot

CHAPTER 2 THE DATA BUS, ACCUMULATOR AND ARITHMETIC UNIT

3%
-

NN NDNDNMNDNNDNDN
o

HEWo~Nouwm Wb

)]
'_l
N

2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21

LIST OF EXAMPLES

Add 2 Numbers with Carry; No Carry Generation.

Add 2 Numbers with Carry; Carry Generation .

Adding Two 16-Bit Numbers.

Add Two 16-Bit Numbers, No Carry from Low Order Add

Add Two 16-Bit Numbers, with Carry from Low Order Add.

Add 2 Positive Numbers with No Overflow.
Add 2 Positive Numbers with Overflow .

Add Positive and Negative Number with P031t1ve Result.
Add Positive and Negative Number with Negative Result.

Add 2 Negative Numbers without Overflow.
Add 2 Negative Numbers with Overflow .

-Decimal Addition e

Subtract 2 Numbers with Borrow Posltlve Result
Subtract 2 Numbers with Borrow; Negative Result.
Subtracting Two 16-Bit Numbers e e e e e e
Subtract in Double Precision Format; Positive Result
Subtract in Double Precision Format; Negative Result
Decimal Subtraction.

Clearing a Bit with "AND”

Setting a Bit with ''OR". .

Complementing a Byte with "EOR”

CHAPTER 4 TEST, BRANCH AND JUMP INSTRUCTIONS

Ea I S I S S S S
o~V BN

Accessing Instructions with the P-Counter Value.
Accessing Data Addressing with P-Counter Value .
Use of JMP Instruction .

Illustration of "Branch on Carry Set

Sequencing Two Branch Instructions

Use of JMP to Branch Out of Range.

Using the CMP Instruction.

Sample Program Using the BIT Test.

vii

. 12

. 18
. 19
.21

. 34

. 39
. 43
. 46
. 48

O 0~

10
11
12
12

12
13
13
15
16
16
17

21

33

36
38

CHAPTER 5 NON-INDEXING ADDRESSING TECHNIQUES

5.1 Using Absolute Addressing. . . - 1
5.2 Demonstration of "Pipelining" Effect S T
5.3 Illustration of Implied Addressing 58
5.4 Illustration of Immediate Addressing 59
5.5 Illustration of Absolute Addressing. 60
5.6 Illustration of Zero Page Addressing 62
5.7 Illustration of Relative Addressing; Branch Not Taken . . 63
5.8 Illustration of Relative Addressing; Branch Positive

Taken, No Crossing of Page Boundaries 64
5.9 Illustration of Relative Addressing; Branch Negatlve

Taken, Crossing of Page Boundaries. 65

CHAPTER 6 INDEX REGISTERS AND INDEX ADDRESSING CONCEPTS

: 6.1 Moving Five Bytes of Data with Straight Line Code. 70
: 6.2 Moving Five Bytes of Data with Loop. 72
6.3 Coded Detail of Moving Fields with Loop. 73
6.4 Moving Five Bytes of Data with Index Register. 76

6.5 Moving Five Bytes of Data by Decrementing the Index
Register. . . . B Y
6.6 Absolute Indexed; w1th No Page Cr0351ng Y A
: 6.7 Absolute Indexed; with Page Crossing 80
§~ 6.8 Illustration of Zero Page Indexing 82
; 6.9 Demonstrating the Wrap-Around. e+ e e« o« . 83
6.10 TIllustration of Indexed Indirect Addre331ng . - . . .« . . 86
6.11 Indirect Indexed Addressing (No Page Crossing) 88
6.12 Indirect Indexed Addressing (with Page Crossing) 89
6.13 Absolute Indexed Add--Sample Program 90
6.14 Indexed Indirect Add--Sample Program 90
6.15 Move N Bytes (N < 256) & v v v v v v 4 v o o v v o s v o« o 94
6.16 Move N Bytes (N > 256) . . . + + v v v v v v v o o o v o+ 95

CHAPTER 8 STACK PROCESSING

8.1 Basic Stack Map for 3-Deep JMP to Subroutine 104
8.2 Basic Stack Operation. . . e L0
8.3 Illustration of JSR Instructlon e e e e e e e e e e .. . 106
8.4 Illustration of RTS Imstruction. 109
8.5 Memory Map for RTS Instruction « . « 111
8.6 Expansion of RTS Memory Map. A . 111
8.7 Call-a-Move Subroutine Using Preassigned Memory Locatlons. 116
8.8 Operation of PHA, Assuming Stack at O1FF 118
8.9 Operation of PLA Stack from Example 8.8. 119
8.10 Call-a-Move Subroutine Using the Stack to Communlcate . . 119
8.11 Jump to Subroutine (JSR) Followed by Parameters. 121

viii

! Ei%

il

CHAPTER 9 RESET AND INTERRUPT CONSIDERATIONS

9.1 Illustration of Start Cycle. « . « « « « « « . . 127
9.2 Interrupt Sequence . . « « « & o « « « + + & ¢ &« 131
9.3 Return from Interrupt.« .+ < . . 133
, 9.4 Illustration of Save and Restore for Interrupts e+ . . . 133
9.5 Interrupt Polling. . . S R Y
9.6 Illustration of JMP Indlrect e KN §
9.7 Break-Interrupt Processing . . S K755
9.8 Patching with a Break UtlllZlng PROMs e e e e e e e ... 146

' CHAPTER 10 SHIFT AND MEMORY MODIFY INSTRUCTIONS

10.1 General Shift and Rotate ¢« v ¢« v « « « « « « . 147
10.2 Rotate Accumulator Left. ¢ ¢ ¢ ¢« « « « . . . 150
10.3 Rotate Memory Left Absolute,X. 151
10.4 Move a New BCD Number into Field 154

CHAPTER 11 PERIPHERAL PROGRAMMING

: 11.1 The MCS6520 Register Map « « + <« ¢« « « « « . . 156
: 11.2 General PIA Initialization « « 157
: 11.3 Interrupt Mode Setup . + « « « « « o & « « « « o « « . . . 159
L 11.4 CA2; CB2 Qutput Control. . . . « 159
: 11.5 Routine to Change CBl or CB2 Us1ng Blt 3 Control .« . . . 160
! 11.6 Polling the MCS6520. . . . R £ |
. 11.7 Coding for Strobing an 8 x 8 Keyboard e Y 14
) 11.8 Polling for Active Signal. « v « v « « v « . . 172

LIST OF FIGURES

CHAPTER 2 THE DATA BUS, ACCUMULATOR AND ARITHMETIC UNIT

2.1 Partial Block Diagram of MCS650X. .

2.2 Partial Block Diagram Includlng Arlthmetlc Ioglc Un1t
of MCS650X . e

2.3 Byte Orientation with Slgn P031t10n .

CHAPTER 3 CONCEPTS OF FLAGS AND STATUS REGISTER
3.1 Partial Block Diagram of MCS650X Including P-Register .
3.2 Processor Status Register, "P".

CHAPTER 4 TEST, BRANCH AND JUMP INSTRUCTIONS

4.1 Partial Block Diagram of MCS650X Including Program
Counter and Internal Address Bus .

4.2 Use of Conditional Test .

CHAPTER 5 NON-INDEXING ADDRESSING TECHNIQUES
5.1 Address Bus and Relation to Memory Field.
5.2 Example of Timing--MCS650X Family .

CHAPTER 6 INDEX REGISTERS AND INDEX ADDRESSING CONCEPTS
Moving Five Bytes of Data with Loop .

Moving Five Bytes of Data with Counter.

Partial Block Diagram of MCS650X Including Index Reglster
Indirect Addressing--Pictorial Drawing.

Indexed Indirect Addressing .

Indirect Indexed Addressing .

HAPTER 8 STACK PROCESSING

.1 Partial Block Diagram of MCS650X Including Stack
Pointer, S .

CHAPTER 10 SHIFT AND MEMORY MODIFY INSTRUCTIONS

10.1 Flow Chart for Moving in a New BCD Number .

CHAPTER 11 PERIPHERAL PROGRAMMING

11.1 Keyboard Encoding Matrix Program.

11.2 Keyboard Strobe Sequence. .

11.3 Program Flow-Polling for Active Slgnal

oo(j SANCANENC AN
oUW

. 23
. 24

. 31
. 37

. 54
. 55

. 712
. 15

78

. 84
. 85
. 87

113

153

163
165
171

CHAPTER 1

INTRODUCTORY REMARKS

1.0 MANUAL INTRODUCTION

Welcome to the MCS650X product family. This manual is designed to
work in conjunction with the Hardware Manual which describes the basic
hardware considerations when using the MOS Technology, Inc. microcomputer
family.

Before reading this manual, it is suggested that the reader acquaint
himself with the Hardware Manual in order to understand the components
available in this system, how these components are interconnected, and
their basic architecture. Developed in this manual is the concept of
microprocessor internal architecture and how it is used, with attention
given to input/output considerations. Familiarity with the hardware will
facilitate easier understanding of these important concepts.

In order to best serve the total customer base, this manual is written
in two levels. The first is a very basic introduction to the MCS650X fam-
ily, and the second level is for the user who has to refer to the manual
on more than an occasional basis and who wants to rapidly scan and find
specific sections. For the user who is quite familiar with programming
and the MCS650X instruction set, the appendices are the best reference in
the sense that all the data which is discussed in detail in the manual is
summarized in a series of tables for convenience.

It is recommended that the user who is an experienced programmer and
familiar with microprocessors still take the time to read through the
manual in detail. Some of the architectural concepts are different from
those found in second generation machines and this manual instructs the
user how to optimize the utilization of the microprocessor while providing

an introduction of its basic concepts.

Criticism of this manual is welcomed at all times. Of particular
interest are cases where one could not, by use of the index and appendix,
rapidly find the answer to a question which developed in the course of
designing a microprocessor system. Welcomed are any comments which will
enhance the content and format of this manual in future editions or adden-

dums.

1.1 MICROPROCESSOR ARCHITECTURE

The MCS6501, MCS6502, MCS6503, MCS6504, and MCS6505 are all 8-bit
microprocessors. That means that 8 bits of data are transferred or oper-
ated upon during each instruction cycle or operation cycle.

All devices in the MCS650X family operate on data 8 bits at a time,
although some of the operations will look like serial or 16-bit wide oper-
ations. In a future section, discussed will be the use of sequential
operations on an 8-bit basis and how one can accomplish 16-bit effective
operands and addressing.

The computer industry, for some time, has been treating 8-bit combina-
tions of data by a term known as a "byte." In many large computers which
operate simultaneously on multiple bytes of data, the number of bytes which
are transferred and operated on by the machine in parallel are called a
"word.'" Because these microprocessors are 8-bit microprocessors, the words
and bytes are of equal length. Therefore, for convenience through the dis-
cussion of the basic 8-bit processors, '"byte" and "word" will be used
synonymously although in some of the expanded versions there will exist a

1l6-bit word composed of two 8-bit bytes.

CHAPTER 2

THE DATA BUS, ACCUMULATOR AND ARITHMETIC UNIT

2.0 THE DATA BUS

Although most of the following discussion will consider how one
operates with a general purpose register called the accumulator, it must
be understood that data has to transfer between the accumulator and out-
side sources by means of passing through the microprocessor to 8 lines
called the data bus. The outside sources include the program which con-
trols the microprocessor, the memory which will be used as interim stor-
age for internal registers when they are to be used in a current opera-
tion, and the actual communications to the world through input/output
ports. Later in this document performance of transfers to and from each
of these devices will be discussed. However, at present, discussion

will center on the microprocessor itself.

[DATA BUS (8 BIT PARALLEL) |
ACCUMULATOR MEMORY
A M

Partial Block Diagram of MCS650X
FIGURE 2.1

The only operation of the data bus is to transfer data between mem-
ory and the processor's internal registers such as the accumulator. Fig-
ure 2.1 displays the basic communication between the accumulator, A, and
the memory, M, through the use of 8 bi-directional data lines called the

data bus.

2.1 THE ACCUMULATOR

The accumulator is a register in which data is kept on which opera-
tions are performed. All operations between memory lbcations must be
communicated through the accumulator or one of the auxiliary index reg-
isters. The accumulator is used as a temporary storage in moving data
from one memory location to another. Therefore, the first use for the
accumulator (A) is just in transferring data from memory to the accumu-
lator or from the accumulator to memory. One can bring data into the
accumulator, perform operations such as AND/OR on it, test the results
of those operations, set new bits into it, or tramnsfer it back out to
the outside world. It serves as an interim storage for a series of oper-
ations such as adding 2 values together; where one of them is loaded into
the accumulator, the second one added to it, and the results stored in
the accumulator. The accumulator really acts as two functions: 1) It
is one of the primary storage points for the machine; 2) It is the point

at which intermediate results are normally stored.

2.1.1 LDA--Load Accumulator with Memory

When instruction LDA is executed by the microprocessor, data
is transferred from memory to the accumulator and stored in the
accumulator.

Rather than continuing to give a word picture of the opera-
tion, introduced will be the symbolic representation M -+ A, where

the arrow means "transfer to." Therefore the LDA instruction sym-

bolic representation is read, ''memory transferred to the accumulator.

LDA affects the contents of the accumulator, does not affect
the carry or overflow flags; sets the zero flag if the accumulator
is zero as a result of the LDA, otherwise resets the zero flag,;
sets the negative flag if bit 7 of the accumulator is a 1, other-
wise resets the negative flag.

Although yet to be developed is the concept of addressing
modes, for reference purpose, LDA is a "Group One' instruction and
has all of the major addressing modes of the machine available to
it as stated in Appendix A. These addressing modes include Immed-
iate; Absolute; Zero Page; Absolute,X; Absolute,Y; Zero Page,X;

Indexed Indirect; and Indirect Indexed.

4

2.1.2 STA--Store Accumulator in Memory

This instruction transfers the contents of the accumulator to
memory.

The symbolic representation for this instruction is A > M.

This instruction affects none of the flags in the processor
status register and does not affect the accumulator.

It is a "Group One" instruction and has the following address-
ing modes available to it: Absolute; Zero Page; Absolute,X; Abso-

lute,Y; Zero Page,X; Indexed Indirect; and Indirect Indexed.

2.2 THE ARITHMETIC UNIT

One of the functions to be expected from any computer is the ability
i to compute or perform arithmetic operations. Even in a simple control
problem, one often finds it useful to add 2 numbers in order to determine

that a value has been reached, or subtract 2 numbers to calculate a new

value which must be obtained. In addition, many problems involve some
rudimentary form of decimal or binary arithmetic; certainly many applica-
tions of the microprocessor will involve both. The MCS650X has an 8-bit

arithmetic unit which interfaces to the accumulator as shown in Figure 2.2.

| DATA BUS |
ARITHMETIC
LOGIC : N ACCUMULATOR MEMORY
UNIT A M
ALU

Partial Block Diagram including Arithmetic Logic Unit of MCS650X
FIGURE 2.2

The arithmetic unit is composed of several major parts. The most
important of these is the circuitry necessary to perform a two's comple-
ment add of 8-bit parallel values and generate an 8 parallel bit binary
result plus a carry. A review of binary and binary coded decimal (BCD)
arithmetic is presented in Appendix H. However, a quick review of the
concept of "carry" is in order. The largest range than can be repre-
sented in an 8-bit number is 256 with values ranging between 0 and 255.
| If we add any 2 numbers which result in a sum which is greater tham 255,
| we represent the result with a ninth bit plus the 8 bits of the excess

over 255. The ninth bit is called "carry.”

2.2.1 ADC--Add Memory to Accumulator with Carry

This instruction adds the value of memory and carry from the
previous operation to the value of the accumulator and stores the
result in the accumulator.

The symbolic representation for this instruction is
A+ M+ C > A,

This instruction affects the accumulator; sets the carry flag
when the sum of a binary add exceeds 255 or when the sum of a decimal
add exceeds 99, otherwise carry is reset. The overflow flag is set
when the sign or bit 7 is changed due to the result exceeding +127
or -128, otherwise overflow is reset. The negative flag is set if
the accumulator result contains bit 7 on, otherwise the negative
flag is reset. The zero flag is set if the accumulator result is O,
otherwise the zero flag is reset.

It is a "Group One'" instruction and has the following address-
ing modes: Immediate; Absolute; Zero Page; Absolute,X; Absolute,Y;
Zero Page,X; Indexed Indirect; and Indirect Indexed.

The ninth bit of the result is stored in the carry flag and
the remaining 8 bits reside in the accumulator. The carry flag can
be thought of as a flag bit which is remote from the accumulator it-
self but which is directly affected by accumulator operations as
though it were a ninth bit in the accumulator. The primary reason
for not viewing the carry bit as merely a ninth bit in the accumu-
lator is that one has program control over its state by being able
to set (to "1") or clear (to "0'") the bit and, of course, it is not
part of the 8-bit accumulator in data transfer operations. Examples

employing the Add with Carry operation follow.

Example 2.1: Add 2 numbers with carry; no carry generation

0000 1101 13 = (A)*
1101 0011 211 = (M)*
1 1 = CARRY
: Carry = /0o/ 1110 0001 225 = (A)

*(A) and (M) refer to the "contents'" of the accumulator and
"contents" of memory respectively.

i R DR IO T
~J

Example 2.2: Add 2 numbers with carry; carry generation

1111 1110 254 = (A)

0000 0110 6 = (M)
| . 1 1 = CARRY
L Carry = /1 0000 0101 5= (4)

While the accumulator contains "5," the carry flag signals
the user that the result exceeded 255 and, therefore, the result can

be properly interpreted as 256 + 5 = 261.

2.2.1.0 Multiple Precision Addition

To perform the addition of 2 numbers, one issues to the
microprocessor an ADC instruction which adds the memory and the accu-
mulator and stores the results in the accumulator with the carry bit
going set if the results exceeded 255.

To add numbers which had significantly higher value than
255, it would be necessary to represent these numbers by a series of
serial 8-bit numbers. With the 16 bits in 2 serial 8-bit numbers,
it is possible to represent binary numbers of greater than 65,000 in
value. In order to add two 16-bit numbers together and thus accomplish
double precision addition, one first loads the lowest byte of one
number into the accumulator, clears the carry flag and then adds the
second number to the first number in the accumulator using the ADC
command. One would then store this result into another memory loca~
tion using the STA command. The carry flag would now represent the .
carry from the lowest byte to the highest byte. One could then load
the high order byte of the first number, add with carry again to the
high value of the second number, and store the result in the high
order byte of the result. Thus, it can be seen that the carry allows
us to perform as much precision afithmetic as is necessary. The
example listing below displays the commands used to execute the addi-

tion of two 16-bit numbers.

Example 2.3: Adding two 16-bit numbers

High Order Byte Low Order Byte

First Number Hl Ll

Second Number H2 L2

Result of Addition H3 L3

LDA Ll Load low order byte, first number

CLC Clear carry flag (carry = 0)

ADC L2 Add L1 to low order byte, second num-

T ber

STA L3 Store result in memory, carry flag is
still set if set in ADC operation

LDA Hl Load high order byte, first number

ADC H2 Add Hl and carry value from first ADC
operation to high order byte, second
number

STA H3 Store result in memory

In this example it was necessary to clear the carry flag
before starting the add instruction. This, of course, means that
commands exist that set and clear the carry flag allowing for addi-
tion without values generated from the prior operation. One could
also, at the end of the program, check to see if the result exceeded
16 bits by testing the carry flag. Exactly how one alters and tests
flags will be discussed in the Flag and Branches Section. The
examples below display the concept of carry from the addition of the

low order bytes.

Example 2.4: Add two 16-bit numbers, no carry from low
order add

0000 0001 0000 0010 258
0001 0000 0001 0000 4112

Add low order bytes: (clear carry)

0000 0010 (&)
0001 0000 (M)

Carry = /0/ 0001 0010 (A)
Add high order bytes (carry = 0):
0000 0001 (A)
0001 0000 (M)
. 0 CARRY
Carry = /0/ 0001 0001 (A)

Result = 0001 0001 0001 0010 = 4370

e

Example 2.5:

Add two 16-bit numbers, with carry from low

order add
0000 0001 1000 0000 384
0000 0000 1000 0000 128
Add low order bytes: (clear carry)
1000 0000 (A)
. 1000 0000 (M)
Carry = /1/ 0000 0000 (A)
Add high order bytes: (carry = 1)
0000 0001 (A)
0000 0000 W)
. 1 CARRY
Carry = /0/ 0000 0010 (A)
Result = 0000 0010 0000 0000 = 512

2.2.1.1

Signed Arithmetic

It is possible to look at

data is represented in memory in a different way.

the add operation and the way

If, in the 16-bit

problem (Examplés 2.4 and 2.5), one were working with 15 bits of pre-

cision (in other words, 15 bits of valid data) plus 1 bit of sign (0

for positive and 1 for negative), it would be possible to perform

signed binary arithmetic without changing the adder, but by merely

changing the way the results are interpreted.

In order to facili-

tate this concept, the microprocessor has the ability to represent

positive or negative numbers by means of a sign flag which will be

discussed at length in Section 3.7.

the sign position bit.

series of bytes should have the sign in the eighth position.

In the MCS650X family, bit 7 is
This means that the highest order byte in a
1f,

for simplicity, one talks about signed 8-bit numbers, it would mean

that one was allowed only 128 combinations of each sign because that

is the most that can be represented in 7 bits, with the eighth bit or

the highest bit reserved for the sign position.

10

7 6 5 4 3 2 1 0 < BIT POSITION

L‘l k2l -
L SIGN POSITION

“0” = POSITIVE

\f

NEGATIVE

Byte Orientation with Sign Position
FIGURE 2.3

In the following examples of signed arithmetic it should be
noted that operations are occurring on a 7-bit field of numbers and
that any carry generated out of that field will reside in the eighth
bit--not in the carry flag discussed during the add operations. The
generation of a carry out of the field is the same as when adding
two 8-bit numbers, except for the fact that the normal carry flag
does not correctly represent the fact that the field has been ex-
ceeded. This is because the true carry from adding the two 7-bit
numbers resides in the sign bit position. Therefore, the carry flag

has no real meaning. Instead, there is a separate flag, the over-

flow flag, used to indicate when a carry from 7 bits has occurred
and allows the user to write correction programs.

In each example, the negative numbers are in two's comple-
ment form. Also included in each result will be the status of the
carry and overflow flags. The overflow flag is set whenever the

sign bit (bit 7) is changed as a result of the operation.

Example 2.6: Add 2 positive numbers with no overflow

0000 0101 +5 (A)
0000 0111 47 ()
Carry = /0/ 0000 1100 +12 (A)

Overflow = /0 "0" in bit 7 indicates positive result.
Note that both the carry and overflow
flag remain cleared.

11

Example 2.7: Add 2 positive numbers with overflow

| 0111 1111 +127 (A)
; 0000 0010 + 2 (M)
| Carry = /0/ 1000 0001 '=127" (A)

i Overflow = /1/ "1" in bit 7 indicates negative result and

; the two's complement of the result is 127;
however, the overflow flag is set indicat-
ing the allowable range was exceeded in the
addition.

Therefore, examination of the overflow indicated that the result was
in fact not negative but that the bit 7 position represented an over-
flow beyond the value of 127. Hence the user is flagged of an incor-
rect result and a correction routine (program) must follow.

Example 2.8: Add positive and negative number with posi-
tive result

0000 0101 +5 (A)
1111 1101 -3 (M)
Carry = /1/ 0000 0010 +2 (A)

Overflow = /0/ "0" in bit 7 indicates positive result.
(Recall that though the carry flag is set,
it has no meaning in signed operations.)

Example 2.9: Add positive and negative number with negative
result

0000 0101 +5 (A)
1111 1001 -7 (M)
Carry = /0/ 1111 1110 -2 (A)

Overflow = /0/ "1" in bit 7 indicates negative result.

Example 2.10: Add 2 negative numbers without overflow

1111 1011 -5 (A)
1111 1001 -7 (M)
Carry = /I/ 1111 0100 -12 (A)

Overflow = /0/ "1" in bit 7 indicates negative result.

12

ﬁ‘mmwmnvmlﬂ

Example 2.11: Add 2 negative numbers with overflow

1011 1110 -66 (A)
1011 1111 -65 (M)
Carry = /1 0111 1101 "+125" (A)

Overflow = /1 "0" indicates positive result, but the
overflow flag is set indicating that the
allowable range was exceeded in the opera-
tion. Without the overflow indication, the
result would be interpreted as +125. The
overflow, however, indicated that the result
was negative and exceeded the value -128.
Hence the user is flagged of an incorrect
result, indicating the need for a correc-
tion routine.

2.2.1.2 Decimal Addition

There is a way for the user to organize data for decimal
operations. The MOS Technology, Inc. MCS650X microprocessors have
a modified adder which allows the user to represent his numbers as
two 4-bit binary coded decimals (BCD) numbers packed into a single
byte. This is a unique feature of the MCS650X family in that the

operation in the following example can be performed.

Example 2.12: Decimal addition

CLC Clear Carry Flag

SED Set Decimal Mode

LbA 0111 1001 79

ADC 0001 0100 +14

STA 1001 0011 93

The microprocessor adder has the unique capability of per-
forming real time correction to the normal expected binary result
without any direct interference from the programmer. Other popular
microprocessors require a separate instruction (Decimal Adjust)
which corrects the direct binary result of the arithmetic unit to
obtain the same final results as are available on this microprocessor
directly.

In order to make the same arithmetic unit perform either as

a binary adder or as a decimal adder, the user chooses the mode in

which he is going to operate (either decimal or binary) by setting

13

another flip-flop in the microprocessor called the decimal flag. As
shown in this example, one not only initializes the adder by clearing
the carry flag, but also puts the precessor into decimal mode with
the SED instruction. Even though this also requires 1 instruction,
it is possible to put the machine in decimal mode once and perform
many long strings of decimal numbers without further user interven-
tion. The '"Decimal Adjust" feature on other microprocessors requires

programming subsequent to each binary operation.

2.2.1.3 Add Summary

In summary, the basic arithmetic unit is a binary adder
which, under control of the ADC command, performs binary arithmetic
on the accumulator and data, storing the result in the accumulator.
Depending on the way the user looks at the data which is presented to
the adder and the results which are obtained from it, the user can
determine whether or not the result exceeds 255 binary or 99 decimal;
he can perform precision arithmetic by use of the ninth bit or carry
flag; he can control whether or not the microprocessor is a decimal
adder by setting the decimal mode; and he can represent his numbers
as signed binary numbers by analyzing other flags that are set in the

machine.

2.2.2 SBC Subtract Memory from Accumulator with Borrow

This instruction subtracts the value of memory and borrow from
the value of the accumulator, using two's complement arithmetic, and
stores the result in the accumulator. Borrow is defined as the carry
flag complemented; therefore, a resultant carry flag indicates that a
borrow has not occurred.

The symbolic representation for this instruction is
A-M-C A,

This instruction affects the accumulator. The carry flag is
set if the result is greater than or equal tc 0. The carry flag is
reset when the result is less than 0, indicating a borrow. The over-

flow flag is set when the result exceeds +127 or -127, otherwise it

14

]

i
4

L

is reset. The negative flag is set if the result in the accumulator
has bit 7 on, otherwise it is reset. The Z flag is set if the result
in the accumulator is 0, otherwise it is reset.

It is a "Group One'" instruction. It has addressing modes
Immediate; Absolute; Zero Page; Absolute,X; Absolute,Y; Zero Page,X;
Indexed Indirect; and Indirect Indexed.

In a binary machine, the classical way to perform arithmetic
is by using two's complement notation. In using two's complement
notation, any subtraction operation becomes a sequence of bit comple-
mentations and additions. This reduces the complexity of the circuits
required to perform a subtraction.

When the SBC instruction is used in single precision subtrac-
tion, there will normally be no borrow; therefore, the programmer
must set the carry flag, by using the SEC (Set carry to 1) instruc-
tion, before using the SBC instruction. The microprocessor adds the
carry flag to the complemented memory data, resulting in a true twc's

complement form of the memory value with its sign inverted.

Example 2.13: Subtract 2 numbers with borrow; positive result

Assume a single precision subtraction where A contains 5 and M con-
tains 3. The carry flag must be set to a 1 using the SEC instruc-

tion, thereby representing the no-borrow condition.

The adder changes the sign of M by taking the two's complement

of M. 'This involves complementing M and adding the carry bit.

M=3 0000 Q011
Complemented M 1111 1100
Add C =1 1

-M = -3 1111 1101

The adder adds A and the two's complement -M together. This
operation occurs simultaneously with the complement operation.

A=5 0000 0101

Add -M = -3 1111 1101
Carry = /1/ 0000 0010 = +2

The presence of the carry flag after this operation indicates

that No Borrow was required, therefore the result is +2.

15

Example 2.14: Subtract 2 numbers with borrow; negative result

Assume a single precision subtraction where A contains 5 and M con-

tains 6. Set the carry flag to a 1 with SEC to indicate No Borrow.

M=26 0000 0110 (
Complemented M 1111 1001 (s tomr
Add Cc =1 1 ,
-M = -6 1111 1010 2§ Cap.~

A =5 0000 0101
Add -M = -6 1111 1010
Carry = /0/ 1111 1111 = -1
The absence of the carry flag after this operation indicates
that a borrow was required, therefore the result is a -1 in two's
complement form. The absolute (unsigned) result in straight binary

could be obtained by taking the two's complement of this number.

2.2.2.0 Multiple Precision Subtraction

Double precision subtraction is implemented in a fashion
similar tec addition. An example for subtracting a 16-bit number and

storing the result follows:

Example 2.15: Subtracting two 16-bit numbers

High Order Byte Low Order Byte

First Number H1 Ll
Second Number H2 L2
Result of Subtraction H3 L3
SEC Set Carry

LDA L1 Load Low Order Byte, First Number

SBC L2 Subtract with Borrow, Low Order Byte of Second
Number from L1

STA L3 Store Result in Memory
LDA H1 Load High Order Byte, First Number

SBC H2 Subtract with Borrow, High Order Byte of Second
Number from H1

STA H3 Store Result in Memory

16

Example 2.16: Subtract in double precision format; positive

result

Assume a double precision subtraction where 255 is to be

subtracted from 512 for an example. Since there has been no borrow

coming into this subtraction operation, the carry flag must be set.

Following are the 2 numbers in binary form:

High Order Byte Low Order Byte

A field = 512 0000 0010 0000 0000
M field = 255 0000 0000 1111 1111

Since the adder can only operate on single byte numbers, the

programmer must operate on the low order bytes first.

M= 1111 1111
Complemented M = 0000 0000
' Add C =1 1

-M 0000 0001

A = 0000 0000
Add -M = 0000 0001
Carry = /0/ 0000 0001

The carry is brought over to the subtract operation on the

i T

‘high order bytes.

M = 0000 0000
Complemented M = 1111 1111
Add C =0 0

-M 1111 1111

A = 0000 0010
Add -M = 1111 1111
Carry = /1/ 0000 0001

The result in binary form follows:

Carry = /1 0000 0001 0000 0001 = +257

: The presence of the carry flag after the highest order byte
subtraction indicates that the entire number required No Borrow,

therefore it is a positive number in straight binary form.

Rt 2

17

Example 2.17: Subtract in double precision format; negative
result
Now assume a double precision subtraction where 512 is to be

subtracted fr
into this sub

Foll

A fi
M fi

Oper

The
The

tract operati

The
Carr
Carr
the number is

2.2.2.1 Sign

om 255. Again, since there has been no borrow coming

traction operation, the carry flag must be set.

owing are the two numbers in binary form:

High Order Byte Low Order Byte
e1d = 255 0000 0000 1111 1111
eld = 512 0000 0010 0000 0000
ating on the low order byte:

M = 0000 0000

M = 1111 1111
Add ¢ = 1 1
Carry = /1/ 0000 0000 = -M

A =1111 1111
dd -M = /1/ 0000 0000
Carry = /1/ 1111 1111

presence of the carry 1 indicates no borrow.

carry is now brought over to the high order byte sub-

on: _
M = 0000 0010

M= 1111 1101

Add C =1 1
1111 1110

A =0000 0000

M+ C = 1111 1110
Carry = /0/ 1111 1110

result in binary form is:
/0/ 1111 1110 1111
107

negative and is in two's complement form.

1111 = =257

¥y
Yy

indicates the presence of a borrow, therefore

ed Arithmetic

Sign
just as easil
numbers from

to the wvalue

ed numbers can be subtracted, using the SBC instruction,
v as they can be added. The microprocessor converts the
memory to its two's complemented form and then adds it

of the accumulator just as it does in an unsigned

18

e Ay

S P

subtract described in Section 2.2.2. The addition operation is
identical to that described, and to the examples given in Section
2.2.1.1

It should be remembered that before using the SBC instruc-
tion, either signed or unsigned, the carry flag must be set to a 1 in
order to indicate a no borrow condition. The resultant carry flag

has no meaning after a signed arithmetic operation.

2.2.2.2 Decimal Subtract

As indicated in the Section 2.2.1.2, it is possible to repre-
sent numbers as packed 4-bit BCD numbers. 1In this case, which is
again unique to this microprocessor, it is possible to make the adder
act as though it is a decimal adder. 1In this case, the function of
the machine is one of correcting for the subtraction of positive num-
bers by complementing the number, setting the carry and performing
binary arithmetic with an automatic correction at the time the result
is stored in the accumulator. The unique capabilities of this adder

give the results as shown in the next example.

Example 2.18: Decimal Subtraction

SED Set Decimal Mode

SEC Set Carry Flag

LDA 0100 0100 44

SBC 0010 1001 29

STA 0001 0101 15
By setting the decimal mode and setting the carry flag, one can sub-
tract number 29 from number 44 with the results in the accumulator
automatically being 15.

As has been indicated, one can perform both addition and
subtraction when the machine is set in decimal mode, treating the
bytes to be added as unsigned, positive, binary coded digits. The
carry flag in addition represents the case when the result in the

number exceeded 99 and in subtraction the absence of the carry flag

represents a true borrow situationm.

19

b
ki
(i
I
:
i
!
i
{
i
i
f

}
{
i
|
i
|
i

2.2.3 Carry and Overflow During Arithmetic Operations

It is necessary to set or reset the carry flag prior to the
beginning of any arithmetic instruction. Because the carry flag is
set or reset as a result of the arithmetic operation at the end of
the loop, one can test the flag to determine whether or not a carry
or a borrow occurred in the operation. v proper use of the overflow
flag one can treat the high order bit of any set of bytes as a sign
bit as long as the results of the negative numbers are carried in
two's complement form. The microprocessor also sets the overflow
flip-flop to indicate when a result larger than can be stored in a
7-bit field has occurred and when the resultant sign is incorrect.
In binary arithmetic the carry flag set indicates results in excess
of 256, and in decimal arithmetic indicates results in excess of 99.
Although the input carry is very important to these operations, a

simple rule is: set the carry flag prior to subtract; clear the

carry flag prior to add.

2.2.4 Logical Operands

In implementing a parallel binary adder there are several use-
ful logic functions which are subsets of a binary add operation. 1In
the MCS650X family, these subsets are used to implement the logical
operands "AND," '"OR," and "EOR" (Exclusive Or). These operations are

used to test and control bit manipulations.

2.2.4.1 AND--Memory with Accumulator
14

The AND instructions transfer the accumulator and memory to

the adder which performs a bit-by-bit AND operation and stores the
result back in the accumulator.

This instruction affects the accumulator; sets the zero flag
if the result in the accumulator is 0, otherwise resets the zero flag;
sets the negative flag if the result in the accumulator has bit 7 om,
otherwise resets the negative flag.

This is symbolically represented by A A M ~> A,

20

AND is a "Group Ome" instruction having addressing modes of
Immediate; Absolute; Zero Page; Absolute,X; Absolute,Y; Zero Page,X;
Indexed Indirect; and Indirect Indexed.

One of the uses for the AND operation is that of resetting a

bit in memory. 1In the example below,

Example 2.19: Clearing a bit with AND

LDA 1100 X111, where X is 0 or 1
AND 1111 0111
STA 1100 0111

a byte is loaded into the accumulator and the AND instruction resets
the accumulator bit 3 to 0. The accumulator is then stored back into
memory, thereby resetting the bit.

2.2.4.2 ORA "OR" Memory with Accumulator

The ORA instruction transfers the méﬁory and the accumulator
to the adder which performs a binary "OR" on a bit-by-bit basis and
stores the result in the accumulator.

This is indicated symbolically by AV M > A,

This instruction affects the accumulator; sets the zero flag
if the result in the accumulator is 0, otherwise resets the zero flag;
sets the negative flag if the result in the accumulator has bit 7 on,
otherwise resets the negative flag. ORA is a "Group One' instruction.
It has the addressing modes Immediate; Absolute; Zero Page; Absolute,X;
Absolute,Y; Zero Page,X; Indexed Indirect; and Indirect Indexed.

To set a bit, the OR instruction is used as shown below:

Example 2.20: Setting a bit with OR

LDA 1110 X111, where X is 0 or 1
ORA 0000 1000
STA 1110 1111

2.2.4.3 EOR--"Exclusive OR" Memory with Accumulator

The EOR instruction transfers the memory and the accumulator
to the adder which performs a binary "EXCLUSIVE OR" on a bit-by-bit

basis and stores the result in the accumulator.

21

This is indicated symbolically by AWM - A.
This instruction affects the accumulator; sets the zero flag

if the result in the accumulator is 0, otherwise resets the zero flag;

s sets the negative flag if the result in the accumulator has bit 7 on,
otherwise resets the negative flag.

EOR is a "Group One'" instruction having addressing modes of

Immediate; Absolute; Zero Page; Absolute,X; Absolute,Y; Zero Page,X;
Indexed Indirect; and Indirect Indexed.

One of the uses of the EOR instruction is in complementing
bytes. This is accomplished below by exclusive ORA-ing the byte with
all 1's.

Example 2.21: Complementing a byte with EOR

LDA 1010 1111
- EOR 1111 1111
STA 0101 0000

22

CHAPTER 3

CONCEPTS OF FLAGS AND STATUS REGISTER

One can view each of the individual flags or status bits in the
machine as individual flip—flops. The carry flag can be considered the
ninth bit of an arithmetic operation. The decimal mode flag is set and
cleared by the user and used by the microprocessor to select either binary
or decimal mode. For programming convenience the microprocessor treats
all of the flags or status bits as component bits of a single 8-bit reg-
ister. In Figure 3.1 the processor status register (or "P" register) is

added to the block diagram.

| | DATA BUS]
PROCESSOR
ACCUMULATOR STATUS MEMORY
A KN, REGISTER M
P

Partial Block Diagram of MCS650X including P Register
FIGURE 3.1

23

Each of the individual flags or bits has its own particular meaning in the

microprocessor as defined in Figure 3.2.

|
i N Vv B D 1 z C PROCESSOR STATUS REGISTER

CARRY

ZERO RESULT

INTERRUPT DISABLE

DECIMAL MODE

BREAK COMMAND

EXPANSION

OVERFLOW

NEGATIVE RESULT

Processor Status Register
FIGURE 32

3.0 CARRY FLAG (C)

The carry bit which isimodified as a result. of specific:arithmetic
operations or by a set or clear carry command has been discussed previously.
In the case of shift and rotate instruction, the carry bit is used as a
ninth bit as it is in the arithmetic operation. The carry flag can be set
or resé; p& ;hé_pgogrémgér.' A SECUihét%uétion will set and a CLC instruc-
tion will‘reset the carry ﬁiag.. Ope;afions théh affectAEhé éaéfy ére ADC,

.ASL,' CLC, CMP, CPX, CPY, Ljsﬁ,v?LP,' ROL, '‘RTI, SBC, SEC. T

| SN 9

st : ; e
i i .

''3.0.1 SEC:Set Carry Fiig
s r-

- H L s .

S

This instruction initializes—the carry flag t&'a'k;-'This‘op—
eration should normally precede a SBC loop. It is also useful when
used with a ROL instruction to initialize a bit in memory to a 1.

This instruction affects no registers in the microprocessor
; and no flags ‘other than the carry flag which is set.

SEC is a single-byte instruction and its addressing mode is

Implied.

24

20 RS AR

3.0.2 CLC--Clear Carry Flag

This instruction initializes the carry flag to a 0. This op-
eration should normally precede an ADC loop. It is also useful when
used with a ROL instruction to clear a bit in memory.

This instruction atfects no registers in the microprocessor
and no flags other than the carry flag which is reset.

CLC is a single-byte instruction and its addressing mode is

Implied.

3.1 ZERO FLAG (Z)

This flag is automatically set by the microprocessor during any data
movement or calculation operation when the 8 bits of results of the opera-
tion are 0. Therefore, the bit is on ("1") when the results are 0, and
off ("0") when the results are not equal to 0. The feature of the machine
is similar to that of the PDPll in the sense that operations which are
decrementing index registers or memory locations have a built-in test for
0 as a result of decrementing to the 0 condition., Tt is also possible to
test for O condition immediately following load and other logical opera-
tions, as opposed to processors which have to do a test and branch instruc-
tion. The Z flag is not directly settable or resettable by an instruction
but is affected by the following instructions: ADC, AND, ASL, BIT, CMP,
CPY, CPX, DEC, DEX, DEY, EOR, INC, INX, INY, LDA, LDX, LDY, LSR, ORA, PLA,
PLP, ROL, RTI, SBC, TAX, TAY, TXA, TYA.

3.2 INTERRUPT DISABLE (I)

The interrupt disable is a flip-flop made use of by the programmer
and by the microprocessor to control the operations of the interrupt re-
quest pin. A more detailed discussion of the effects of the interrupt
disable are given in the discussion under interrupt control. However, the
purpose of the interrupt disable is to disable the effects of the interrupt
request pin. The interrupt disable, I, is set by the microprocessor dur-
ing reset and interrupt commands. The I bit is reset by the CLI instruc-
tion or the PLP-instruction, or at a return'from interrupt in which the
interrupt disable was resét prior to the interrupt. The interrupt flag

may be set by the programmer using a SEI instruction and is cleared by the

25

programmer by using a CLI instruction. Instructions which affect the

interrupt disable are BRK, CLI, PLP, RTI and SEI.

3.2.1 SEI--Set Interrupt Disable

This instruction initializes the interrupt disable to a 1. It
is used to mask interrupt requests during system reset operations and
during interrupt commands.

It affects no registers in the microprocessor and no flags
other than the interrupt disable which is set.

SEI is a single—-byte instruction and its addressing mode is

Implied.

3.2.2 CLI--Clear Interrupt Disable

This instruction initializes the interrupt disable to a O.
This allows the microprocessor to receive interrupts.

It affects no registers in the microprocessor and no flags
other than the interrupt disable which is cleared.

CLT is a single-byte instruction and its addressing mecde is

Implied.

3.3 DECIMAL MODE FLAG (D)

As discussed, the use of the decimal mode flag is to control whether
or not the adder operates as a straight binary adder for add and subtract
instructions or as a decimal adder for add and subtract instructions. The
SED instruction sets the flag and the CLD instruction resets it. The only

instructions which affect the decimal mode flag are CLD, PLP, RTI and SED.

3.3.1 SED--Set Decimal Mode

This instruction sets the decimal mode flag D to a 1. This
makes ail subsequent ADC and SBC instructions operate as a decimal
arithmetic operation.

SED affects no registers in the microprocessor and no flags

other than the decimal mode which is set to a 1.

26

S i

3.3.2 CLD--Clear Decimal Mode

This instruction sets the decimal mode flag to a 0. This
causes all subsequent ADC and SBC instructions to operate as simple
binary operations.

CLD affects no registers in the microprocessor and no flags

other than the decimal mode flag which is set to a O.

3.4 BREAK COMMAND (B)

The break command flag is set only by the microprocessor and is used
to determine during an interrupt service sequence whether or not the inter-
rupt was caused by BRK cdmmand or by a real interrupt. A more detailed
discussion of BRK is in the interrupt section. This bit should be con-
sidered to have meaning only during an analysis of a normal interrupt se-

quence. There are no instructions which can set or which reset this bit.

3.5 EXPANSION BIT

The next bit in the flag register is an unused bit. It is most likely
that this bit will appear to be on when one is analyzing the bit pattern
in the processor status register; however, no guarantee as to its state is

made as this bit will be used in expanded versions of the microprocessor.

3.6 OVERFLOW/(V)

As discussed in the section on arithmetic operations, if one is to
look at the binary arithmetic operations as signed binary operations, there
needs to be some indication of the fact the result of the arithmetic opera-
tion has a greater value than could be contained in the 7 bits of the re-
sult. This bit is the overflow bit and during ADC and SBC instructions
represents a status of an overflow into the sign position. The user
who is not using signed arithmetic can totally ignore this flag during
his programming; however, this flag has the same meaning as the carry to
the user who is using signed binary numbers. . It indicates that a sign
correction routine must be used if this bit is on after an add or subtract

using signed numbers.

27

In addition to its use to monitor the validity of the sign bit in ADC
and SBC instructions, the overflow flag in the MCS650X products is dramat-
ically changed from PDP1l and the MC6800. In those systems the overflow
flag was very carefully controlled so as to allow certain signed branches
for analysis of signed numbers. These branches have been deleted from the
MCS6500 series because of confusioq and difficulty often associated with
using them, and so therefore, the overflow flag is applicable only to the
operation of ADC and SBC, and then only when using signed numbers.

However, in order to maximize the effectiveness of this testable flag
the BIT instruction which may be used to sample interface devices, allows
the overflow flag to reflect the condition of bit 6 in the sampled field.
During a BIT instruction the overflow flag is set equal to the content of
the bit 6 on the data tested with BIT instruction. When used in this mode,
the overflow has nothing to do with signed arithmetic but is just another
sense bit for the microprocessor. Instructions which affect the V flag are
ADC, BIT, CLV, PLP, RTI and SBC. On certain versions of the microproces-

sor the V bit will also be available for stimulus from the outside world.

3.6.1 CLV--Clear Overflow Flag

This instruction clears the overflow flag to a 0. This com-
mand is used in conjunction with the set overflow pin which can change
the state of the overflow flag with an external signal.

CLV affects no registers in the microprocessor and no flags

other than the overflow flag which is set to a 0.

3.6.2 Determination of Overflow

To briefly recap the concept of overflow detection, one must
understand that the machine signals an overflow based on the data
entered to the operation and the final result. Since, with signed
arithmetic, the range of numbers that be represented is +127 to -128,
the overflow flag will never set when numbers of oppgéite sign are
added, since their result will never exceed that range. The machine
deals with this by recognizing that for any 2 positive numbers, the
"bit 7" of each is a "0" and that for any arithmetic operation

28

yielding a result less than or equal to +127, the resultant "bit 7"
must be a "0." If it is a 1, the overflow flag is set.

Similarly, when two negative numbers are added, the "bit 7" of
each is a "1" and for any result yielding a value less than or equal
to -128, the resultant "bit" must be a "1." If it is a 0, the over-
flow flag is set.

Therefore, the machine recognizes by knowledge of the '"bit 7"
of each of the numbers to be added what the resultant "bit 7" must be
in a non-overflow situation. If these conditions are not met, the

overflow flag goes set,

3.7 NEGATIVE FLAG (N)

As already discussed, one of the uses of the microprocessor is to per-
form arithmetic operations on signed numbers. To allow the user to readily
sample the status of the sign bit (bit 7), the N flag is set equal to bit 7
of the resulting value in all data movement and data arithmetic. This
means, for instance, after a signed add one can determine the sign of the
result by sampling the N flag directly rather than finding a way to iso-
late bit 7. Although signs were the primary purpose for which the N flag
was intended, its usefulness far exceeds that of strictly a sign bit.
Because of every operation including simple moves and add operations the N
bit is equal to the status of bit 7 as a result of the operation; its pri-
mary use becomes that of an easily testable bit. Almost all single-bit in-
structions, all interrupts and all I/0 status flags use bit 7 as a sense bit.
This allows the user to perform some type of memory access operation such
as Load A followed by immediate conditional branch based on the status of
bit 7 as reflected in the N flag. Like the Z bit, this flag is not settable
or controllable by the programmer and represents the status of the last data
movement operation. Instructions which affect the negative flag are ADC,
AND, ASL, BIT, CMP, CPY, CPX, DEC, DEX, DEY, EOR, INC, INX, INY, LDA, LDX,
LDY, LSR, ORA, PLA, PLP, ROL, BIT, SBC, TAX, TAY, TSX, TXA and TYA.

29

3.8 FLAG SUMMARY

To summarize, the microprocessor treats a series of flags or status

' register.

bits as a single register called the "P" or "Program Status'
Some of these flags are controllable only by the programmer (such as the D
flag); others are controllable by both the user program and microprocessor
(such as the interrupt disable flag). Some of them are set and reset by
almost every processor operation, such as the N and Z flags. Each of these
flags has its own meaning to the programmer at a particular point in time.
When combined with the concept of conditional branches, they represent a
powerful test and jump capability not normally found in a machine of this
magnitude. Other than perhaps the carry flag which is used as part of the
arithmetic instructions, the flags by themselves have relatively little

meaning unless one has the ability to test them. For this purpose there

is a series of conditional branch instructions designed into the machine.

30

CHAPTER 4

TEST, BRANCH AND JUMP INSTRUCTIONS

4.0 CONCEPTS OF PROGRAM SEQUENCE

In all the discussions up until now, there has been little discus-
sion about how the microprocessor understands the instructions used to
perform various arithmetic and accumulator manipulations. However, it
is appropriate that the concept of a program and how the microprocessor
determines each instruction be developed. More registers are required

in the machine as shown in the figure below.

| DATA BUS |

i £ o 8% $
A K A PCL PCH P

& U

[INTERNAL ADL |

INTERNAL ADH

%

—

ABL

[ABH |
&

MEMORY

Partial Block Diagram of MCS650X Including Program
Counter and Internal Address Bus
FIGURE 4.1

31

Although two 8 bit registers have been added, they are the only
registers in the machine that act as though they are one 16 bit reg-
ister. They implement a concept known as program count or program
sequence and subsequently their value will be referred to as PC or
program count. In certain operations it may be convenient to talk
about how one affects the program count low (PCL) which will be the
lower 8 bit register or the program count high (PCH) which will be the
higher 8 bit register. The reason for this register being 16 bits in
length is that if it had only 8 bits it would only be able to reference
256 locations. Since it is through the address bus that one accesses
memory, the program counter which defines the addressable location,
should be as wide a word as possible.

The accessing of a memory location is called "addressing'". It is
the selection of a particular eight-bit data word (byte) out of the
65,536 possibilities feor memory data locations. This selection is trans-
mitted to the memory through the 16 address lines (ADH, ADL) of the micro-
processor. .

For a more detailed discussion of how an individual memory byte is
selected by the address lines, the reader is referred to Chapter 1 of
the Hardware Manual.

If the program counter was only 1 byte and if the bit pattern which
allows the microprocessor to choose which instruction it wants to act on
next, such as "LDA" -as opposed to an "AND", was contained in one byte of
data we could only have 256 program steps. Although the machine of this
length might make an interesting toy, it would have no real practical
value. Therefore, almost all of the competitive 8 bit microprocessors
have chosen to go to a double length program counter. Even though some
of the microprocessors of the MCS650X family do not have all of the out-
put address lines necessary to allow the user to address 65K bytes cf
program (due to package pinout constraints),-in all cases the program
counter is capable of addressing a full 65K by virtue of it's 16 bit

length.

32

edw

4.0.1 Use of Program Counter to Fetch an Instruction

The microprocessor contains an internal timing and state con-
trol counter. This counter, along with a decode matrix, governs the
operation of the microprocessor on each clock cycle. When the state
of the microprocessor indicates that a new instruction is needed,
the program counter (program address pointer) is used to choose
(address) the next memory location and the value which the memory
sends back is decoded in order to determine what operation the
MCS650X is going to perform next.

To use the program counter to perférm this operation cor-
rectly, it must always be addressing the operation the user wants
to perform next. This operation may be an instruction or may be
data on which the instruction will operate.

In the MCS650X family, the program counter is set with the
value of the address of an instruction. The microprocessor then
puts the value of the program counter onto the address bus, trans-
ferring the 8 bits of data at that memory address into the instruc-
tion decode. The program counter then automatically increments by
one and the microprocessor fetches further data for address operation

necessary to complete the instruction. In the simple example below,

Example 4.1: Accessing Instructions with the P Counter Value

P Counter¥* Location Contents

0100%* ~ LDA *Program Counter
0101 ADC **Hexadecimal
0102 STA Notation

one can see how the program counter is used to access the instruc-
tion sequence load A, add with carry, and store the result. In this
example, the program counter would start out containing 0100. The
microprocessor would read location 0100 by using the program counter
to access memory and would then interpret and implement the LDA in-
struction as previously described. The program counter will auto-
matically increment by one on each instruction fetch, stepping to

0101. After performing the LDA, the microprocessor would fetch the

33

next instruction addressing memory with the program counter. This
would pick up the ADC instruction, the add would then be performed,
the program counter which has been incremented to 0102 would be used
to address the next instruction, STA. The P counter incrementing
once with each instruction is an oversimplified view of what actu-
ally transpires within the microprocessor.

The MCS650X processors usually require more than one byte to
correctly interpret an instruction. The first byte of an instruction
is called the OP CODE and is coded to contain the basic operation
such as LDA (load accumulator with memory) and aiso the data neces-
sary to allow the microprocessor to interpret the address of the data
on which the operation will occur. 1In most cases, this address will
appear in memory right after the OP CODE byte. This allows the micro-
processor to use the program counter to access the address as well as
the OP CODE.

The following example shows how the program counter picks up

the instruction and the address of data located at address 5155.

Example 4.2: Accessing Data Address With P Counter Value

P Counter Location Contents
0100 LDA
0101 55
0102 51
0103 Next Instruction

The OP CODE appears in. Location Address 0100. The code for the 55
would appear next in Location Address 0101 and the 51 would appear

in Location Address 0102, and the OP CODE for the next instruction
appears in Location Address 0103. 1In this example, we see that the
program counter is used not only to pick up the operation code, LDA,
but is also used to pick up the address of the memory location from
which the LDA is going to obtain its data. 1In this case, the program
counter automatically is incremented three times to pick up the full
instruction with the microprocessor interpreting each of the indivi-

dual fetches as the appropriate data. In other words, the first

34

fetch is used to pick up the OP CODE, LDA, the second fetch is used to
pick up the low order address byte of the data and the third fetch is
used to pick up the high order address byte of the data. This is the
form in which many of the microprocessor instructions will appear as
it is the most simple form of addressing in the machine and allows
referencing to any memory location.

Assuming that the microprocessor has the ability to start the
program counter at a known instruction, it should be fairly obvious
that the program counter would then continue to advance from that
location up to the maximum memory location, roll over to the least
memory location and continue incrementing through the memory, fetch-
ing instructions and addresses as it went. This would give us an
interesting sequential program but one which lacked one tremendously
powerful concept. The program would have no ability to perform tests
or implement various options based on the results of those tests.

In the previous section, the concept of flags which are set as
a result of the microprocessor operations was developed.

To use these flags, the program should be able to test them
- and. then change the sequence of operations which are being performed
depending on the result of the test. The program counter is going
to continually put out an address, the microprocessor is going to
fetch the instruction stored at that address and perform operations
based on that instruction. In order to change a sequence of perform-
ed instructions by the microprocessor, the programmer must change the
value in the program counter. Therefore, test instructions are in-
corporated which may result in a change of program count sequence as
a result of performing one of the tests. The simplest way to change
program sequence is to substitute a new value into the program counter
location. In the MCS650X microprocessors the simplest way to change

the program count sequence is with a JMP instruction.

35

4.0.2 JMP--Jump to New Location

In this instruction, the data from the memory location

located in the program sequence after the OP CODE is loaded into the

low order byte of the program counter (PCL) and the data from the

next memory location after that is loaded into the high order byte

of the program counter (PCH).

The symbolic notation for jump is (PC + 1)-»PCL, (PC + 2)-PCH.
As stated earlier, the "()" means 'contents of" a memory location.
PC indicates the contents of the program counter at the time the
OP CODE is fetched. Therefore (PC + 2)-PCH reads, '"the contents of
the program counter two locations beyond the OP CODE fetch location
are transferred to the new PC high order byte."

The addressing modes are Absolute and Absolute Indirect.

The JMP instruction affects no flags and only PCL and PCH.

The JMP instruction allows use of the program counter to access

the new program counter value as illustrated by the following example:

Example 4.3: Use of JMP Instruction (Absolute Addressing Mode)

Address Data Comments
0100 JMP Jump to Location 3625
0101 25 (New PCL byte)
0102 36 (New PCH byte)
3625 OP CODE Next Instruction

The program counter in the example starts out at location 100. The

microprocessor loads a jump instruction. The program counter auto-
matically increments to 101 where the microprocessor picks up and
temporarily stores the 25. The program counter automatically in-
crements to 102 where the microprocessor picks up the 36.

The 3625 is substituted into the program counter and is used
to address the next instruction. Therefore, the JMP instruction

contains within its address the new program counter location.

Although the jump allows the change of program sequence, it
does so without performing any test. So it is a JMP instruction that
is employed when it is desired to change the program counter no matter

what conditions have occurred.

36

Another JMP addressing Mode in the Indirect Addressing Mode.
Before this technique can be understood, the basis of indirect addressing
found in Chapter 6 must be reviewed. The JMP Indirect instruction is

detailed in Chapter 9, page 141.

4.1 BRANCHING

To allow for conditional program sequence change, there are a series

of branch instructions which test and perform optional changes of the pro-

gram counter based on the status of the flags. To perform a conditional
change of sequence, the microprocessor must interpret the instruction,
test the value of a flag, and then change the P counter if the value
agrees with the instruction. If the condition is not met, the program
counter continues to increment in its normal fashion. Figure 4.2

illustrates how a conditional test might be used.

LOAD VALUE;

'

ADD VALUE,

TEST

BRANCH TO NEW CARRY STATE
PROGRAM COUNTER IS CARRY
LOCATION SET (=1)

?

CONTINUE IN
PROGRAM SEQUENCE

Use of Conditional Test
FIGURE 4.2

37

In this example, it is seen that generation of a carry from the add

operation will allow an out-of-sequence branch to a new location.

4.1.1 Basic Concept of Relative Addressing

If one considers that the instruction JMP required three
bytes, one for OP CODE, one for new program counter low (PCL) and
one for new program counter high (PCH) it is seen that jump on carry
set would also require three bytes. Because most programs for con-
trol require many continual jumps or branches, the MCS650X uses
"relative'" addressing for all conditional test instructions. To
perform any branch, the program counter must be changed. In rela-
tive addressing, however, we add the value in the memory location
following the OP CODE to the program counter. This allows us to
specify a new program counter location with only two bytes, one
for the OP CODE and one for the value to be added.

To illustrate this, in the following example, the branch on
carry set (BCS) illustration is followed by a wvalue of 50. If the
carry is set, the new program location would be 108 + 50 = 158; in

other words, it will take the branch.

Example 4.4: Illustration of '"Branch on Carry Set”

Address Data Comments

0100 LDA Load First Value

0101 ADL1 First Number, low byte

0102 ADH1 First Number, high byte

0103 ADC Add Second Value

0104 ADLZ Second Number, low byte

0105 ADH2 Second Number, high byte

0106 BCS Test for Carry Set. If
yes, branch to 0158

0107 +50

0108 STA If not, store results
of add

0109 ADL3 Result, low byte

010A ADH3 Result, high byte

0158 OP CODE New Instruction

38

VR

The 0108 represents the value of the program counter after
reading the offset value. The program counter automatically incre-
ments so it can reference the next memory location on the next cycle.
The add of the offset is a signed binary add as discussed in the arith-
metic section. A positive branch is indicated by a 0 in bit 7 of the
relative value, and a minus branch is in two's complement form and is
indicated by a 1 in bit 7. The inherent capabilities of this type of
notation system allow branch conditionally forward 127 bytes from
the next instruction and back 128 bytes from that instruction. All
branches in the MCS650X series are conditional relative branches
and all have the form shown above. The advantage of relative ad-

dressing is best shown in the following example:

Example 4.5: Sequencing Two Branch Instructions

Address Data Comments

0100 LDA Load First Value

0101 ADL1

0102 ADH1

0103 ADC Add Second Value

0104 ADL2

0105 ADH2

0106 BCS Test for Carry Set. If
yes,branch to 0158

0107 +50

0108 BMI Test for Minus Number.
If yes, branch to 0095

0109 -75

010A STA If not, Store

010B ADL3

010C ADH3

In this example, the previous single-branch example was modi-
fied to also test the resulting number to see if it is negative. In
sequencing two-branch instructions, this loop is 2 bytes shorter by

use of relative branches rather than 3 byte branches.

39

4.1.2 Branch Instructions

4.1.2.1 BMI - Branch on Result Minus

This instruction takes the conditional branch if the N bit

is set.

BMI does not affect any of the flags or any other part of
the machine other than the program counter and then only if the
N bit is on.

The mode of addressing for BMI is Relative.

4.1.2.2 BPL - Branch on Result Plus

This instruction is the complementary branch to branch on
result minus. It is a conditional branch which takes the branch when
the N bit is reset (0). BPL is used to test if the previous result
bit 7 was off (0) and branch on result minus is used to determine if

the previous result was minus or bit 7 was on (1).

The instruction affects no flags or other registers other

than the P counter and only affects the P counter when the N bit is
reset.

The addressing mode is Relative.

4.,1.2.3 BCC - Branch on Carry Clear

This instruction tests the state of the carry bit and takes
a conditional branch if the carry bit is reset.

It affects no flags or registers other than the program
counter and then only if the C flag is not on.

The addressing mode is Relative.

4.1.2.4 BCS ~ Branch on Carry Set

This instruction takes the conditional branch if the carry
flag is on.

BCS does not affect any of the flags or registers except for

the program counter and only then if the carry flag is on.

The addressing mode is Relative.

40

