Apple Computer Inc. Patent 4 916_556
United States Patent 9 (1] Patent Number: 4,916,556
Sander et al. 451 Date of Patent: Apr. 10, 1990

[54] DISK DRIVE CONTROLLER
[75] Inventors: Wendell Sander; Brian Sander, both
of Campbell, Calif.
(73] Assignee: Apple Computer, Inc., Cupertino,
Calif.
[21] Appl. No.: 280,665
[22] Filed: Dec. 6, 1988
Related U.S. Application Data
[62] Division of Ser. No. 55,443, May 28, 1987.
{51] Int. CL* G11B 5/09
[52] U.S. €L oo 360/45
[58] Field of Searchc.ccovvvrrivinnns 360/45, 51, 40
(56} References Cited

U.S. PATENT DOCUMENTS

4.081,756 371978 Price et al. oo, 360/45
4,281,356 7/1981 Sousa
4,327,383 4/1982 Hoit

4,344,093 8/1982 Huber 360/45

Primary Examiner—Vincent P. Canney
Attorney, Agent, or Firm—Blakely, Sokoloff, Taylor &
Zafman

[57] ABSTRACT

The invented controller uses a programmable parame-
ter scheme which makes it possible to read and write 33
inch variable and fixed speed drives, as well as standard
5% inch drives. Additionally, the present invention uses
a plus/minus rate multiplier to correct for symmetry
and frequency errors. Also provided is a form of read
post compensation which corrects for peak shift effects
on disks with insufficient precompensation. Other ad-
vanced features of the present invention include the use
of half clock circuits to provide half clock resolution in
the signal being written to and read from the disk and
the capability of operating at continuously variable
clock speeds and data rates dynamically programmable
by the computer.

2 Claims, 13 Drawing Sheets

TERCOUNT
mn 77 83
“re 1 _I__/ ’__4 —_—
e -] T 781 f
3 | ‘———g\'(~EN
. ar s ‘ -
e SEUNTER. $ CoMPaRaiO? 3T I
3 ‘ 3 D a— '
3 ‘ ' -— JTATA
]
" S PE I i
~t B T— /WPRESETR
B .
. 773
| 775 779
1 | eamyae —
. Lo Mux . : !
; !
% : —_——_g REGISTER
i i NORMAL MUx o
5 i i ; ;
~a 1 ; | |
— 787 s ! ;
—_— ; 3 ot
; 759 NRORLTET
)
ans-Toace acral 3 5; e
el _ SoRM
psz‘srgn‘_{_T‘ 1ORM

Page 0001 of 0022

Apple Computer Inc. Patent : 4 916 556

US. Patent Apr. 10, 1990 Sheet10f13 4,916,556

0
Q————4———.

l¢—— 3 ——»

Page 0002 of 0022 |

4 916 _556

Apple Computer Inc. Patent

Apr. 10, 1990 Sheet20f13 4,916,556

U.S. Patent

13SA3H S . ‘
€ ISVHd~-]
vHI-] TJOHINOD]
1S3nN03Y4 J1IYM/= uo&wwwz_ e] §
2379VYN3/- SNIVIS .
ER L E
3ISN3S —~
o
_ RISV
VIVG ¥3LIWVEVd— J§
£ m //,
a“ﬂ WYY 431LINVHYI 8 7 £d
174 P
P—_ss3Maav muEs_ﬁ__&\\\\c.E og -
J0HLNOD
VIVQUM=- 21907 ILIuM SAIVIS 0a
\\ g — - ..
12 MO01D vIva PES———)
vivad (8) viva o
2900
MHYW 8 D40 0414 JO91INOD
vz’ 905 o~ SNIVLS syalsloMlL .y,
viva JOHINOD
vivagy 219017 avay SNIVIS ‘
7 T h
le Y104 .
1 . N0 595
: SIS ¥

S

Page 0003 of 0022

4 916 _556

Apple Computer Inc. Patent

Apr. 10, 1990 Sheet 30f13 4,916,556

U.S. Patent

Y31$193Y

PIVHSONVH S
ol

YISO
viva
01

o4y

€ "Old

LEINISEL]

o’

N0
NOUYWHOJSNY YL

viva

LiHS
G\

o7

vivQd 3DVdS-SNvL

21901
NV
> INIHOVYN
J VIS
9 NOILDIH¥OD
21901
oud VIVO WIN 8\

VIvQ ¥3LINVHYd
21901
21901
14HS aviy fe———
NOIYSNIINOD VM vivaay
}
ADNvHL
INO 31vy 21901
NOUDINYOD
. ¥OUY3
Yiva ¥31INvEYd

J

Page 0004 of 0022

4 916 _556

Apple Computer Inc. Patent :

Apr. 10, 1990 Sheet4of13 4,916,556

U.S. Patent

ey

Ol

<
svig
NIDND ©/ NIAD o/
H-a #4-Q | &.DA #H-a XD/
<4—]o a &) a)
1MVISN 5 1] d £lad = d
o/ |] 2/
o/ A o/ o/ 101
#H-a H-a #H-Q #-a A. &.QA &-oA.
<4 © a a a
® a a
¥ONvuL ©1o1 01)l MOl -III LY vivaay

J

Page 0005 of 0022

Apple Computer Inc. Patent : 4 916 556

US. Patent Apr. 10,1990 Sheet Sof13 4,916,556

_i]_jlglf'"lili[g’liliL!_Ii‘

RODATA—i T~

RM
/RT2
TCK
PRT3
RT3
BIAS
TCK1
TCK2
TCK3
TRANCK
NSTART
SHIFT

ﬁ

. .
.
m
\
.

.
.
. .

.
1 }
. aeTeasasanas
. [.
. .
I l \
.
* ﬁ
. .
* h
)
. .
. . * »
TUADV ALV ATATTRALTARTRTTRSTRET NN RN,

\\\‘\‘\'\\\‘\Q\\\\\\\\“‘-\\Q\\‘]

] i |

.
\“‘““‘\“‘

FIG. 4b

Page 0006 of 0022 |

Apple Computer Inc. Patent : 4 916 556

US. Patent Apr. 10, 19% Sheet6of13 4,916,556

— 1

— L SHIFT—$»

o S : e e | | — COMPARETO
S IF NO SHIFT

PO S NN COMPARE TO -2
TTTITTITIRTTIN I maneas s s e |FSHIFT

scT: Lo .soboo +— SCTS
. —— . CAMCELLED
BY TRANCK

SHIFT .

e R
CLocxl_ll:l|||||'||"'||"[|‘"| 1 |

— ,fgfi;:thOSHlFT
] 1 NO SHIFT

——] i 'INO SHIFT
' SHIFT

b{ NO SHIFT
T

=5 | sHiF

5. 4. 3. 2. 1. 0 ¢

>a/ b

rerbrvaas

=0

NSTART = | TF . ' .
(¥4)
T
T

NSTART

FIG. 4c

Page 0007 of 0022 |

© 4_916_556

Apple Computer Inc. Patent

Apr. 10, 1990 Sheet 7of13 4,916,556

U.S. Patent

SSy

A

¢ 9Old

VIVQ 3DVdS-SNvel <

LSt

S

Page 0008 of 0022

mmv/
65t
AN <
1spai s Jav 4o
hh h % N0 buop
e Kqal
= ¢
oo € ADNVHL
i
."
f HIHS
-
Bpbargys 1ay .QEDM—UU an:» 1INO3LvY
7 1l
‘|
Yiva ¥313Wvavd
/7

LS

: 4_916_556

Apple Computer Inc. Patent

Apr. 10, 1990 Sheet80f13 4,916,556

U.S. Patent

9 "OId

e

INIHOYW 31YIS NOILDINHOD

(" nowy [

b=

QITYA 440D
.

AUYW LON ILAG 8L

N30 TENI MIND
Niw AU A0oH

2_2

S

Page 0009 of 0022

© 4_916_556

Apple Computer Inc. Patent

4,916,556

Sheet 9 of 13

Apr. 10, 1990

U.S. Patent

no ooy

LSS

L "Old

108w
apl

£SS

6537

S

Page 0010 of 0022

N N
¢ e
ndl erdynw
JONOD o1 g
e
‘.I-l'l
1SN0 |4 Brdunw
e a1
o=
N XONVL
5537 195”7
augobw ¢—————
eppuopauo) |,
G5~ vIva ¥313IWVYVd

© 4_916_556

Apple Computer Inc. Patent

4,916,556

Sheet 10 of 13

Apr. 10, 1990

U.S. Patent

4—
Vivaum

8 OId

Viva H3I1IWvHYd

J1AE HHVYN

IS
G/ 1 \ |
/ \ W
¢
2907 2001 <
NOIL NOHLYN vivd HASIDIH u Odid
-VSN3d -HO4SNVHL 14IHS
-NOD3Hd ViVQ 0TS (g >
V4
. V4
t\ t v $ 7
AHVYN oHD
<
19 66

JHD 3LHM

viva
NOH4

S

Page 0011 of 0022

Apple Computer Inc. Patent : 4 916 556

US. Patent Apr. 10, 1990 Sheet 110f13 4,916,556

O
I
1))
g
§.
p— ™ =
\ BN Z s
9]
s b 8 LE @
w
=0 Z- .
L G
A
LL
~
=
N i
50
[~ N d
A
g
o
¢

Page 0012 of 0022 |

4 916 _556

Apple Computer Inc. Patent

4,916,556

Sheet 12 of 13

Apr. 10, 1990

U.S. Patent

1]

Ol

_Emmzn_zgw

vO

W2ON
N [78)
6S¢

SeL

~> S
: TVNUION
¥31SI93Y Xnw
IVI/A NIV
61” s’
1’
$135T8UdM/
. 3d
UOIVAVIWNOD ¥3IINNOD
- na¢
Nile]
dWOD V./L
182 r o1
_ w” e’

INNODY3L

NEIMISEN
~1 HHHS |=
1X0) :mIn opp aoods-suoyy
w”
« 78]
S
XN JIvi
ANYI
% rO
S
XNWN 0 ouM
L sun|

S

Page 0013 of 0022

Apple Computer Inc. Patent : 4 916 556

US. Patent Apr. 10, 1990 Sheet 130f13 4,916,556

AW] 794Q
/LONG—)
795

COMP = 04) o:"; + WRDATA
A] 794D
Bw“
794c
TERCOUNT /STRCH |
| /WPRESET |
O-FF :
ce—p l_.
D-#F ;3
CLx— STRCH ;

HLFBIT ‘ LONG 1
Cik—hy O-FF ;
HLFRIT — J— STRCH

N

FIG. 11

Page 0014 of 0022

Apple Computer Inc. Patent : 4 916 556

1
DISK DRIVE CONTROLLER

This is a division of application Ser. No. 055,443, filed
May 28, 1987.

SUMMARY OF THE INVENTION

An integrated disk controller chip is disclosed which
is designed to read and write Manchester (“MFM”) and
Group Code Recording (“GCR”) formatted disks and
other formats under program control.

The invented controller uses a programmable param-
eter scheme which makes it possible to read and write
34 inch variable and fixed speed drives, as weil as stan-
dard 5% inch drives.

Thus, with the present invention, it is possible to read
and write both MFM formatted disks, such as used by
IBM personal computers and GCR formatted disks,
such as used by Apple personal computers on the same
disk drive. It is also possible to write MFM format on a
34 inch variable speed drive in such a way that it can be
read back on fixed speed 3} inch drives.

The invented controller provides the ability to per-
form write precompensation to correct for peak shift
effects which occur in magnetically stored media.

Also provided is a form of read post compensation
which corrects for peak shift effects on disks with insuf-
ficient precompensation. A two byte read and write
FIFO is used to provide software flexibility.

The invented controiler allows the phase lines to be
programmed as either inputs or outputs which makes it
possible to interface with a wide variety of drives. Ad-
ditionally, rather than using a fixed rate multiplier, as
frequently employed in prior art controllers, the present
invention uses a plus/minus rate multiplier to correct
for symmetry and frequency errors. Other advanced
features of the present invention include the use of half
clock circuits to provide half clock resolution in the
signal being written to disk and the capability of operat-
ing at continuously variable clock speeds and data rates
dynamically programmable by the computer.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a particular pattern of 1’s and O’s in
MFM format.

FIG. 2 is an overview block diagram of the invented
controller.

FIG. 3 is an overview block diagram of read logic 21.

FIG. 4a is logic diagram showing a portion of half ;5

read logic 41.

FIG. 4b is a graphical representation of the signals
generated by half read logic 41.

FIG. 4c is a graphical representation illustrating par-
ticular examples of when the signal SHIFT is gener-
ated.

FIG. 5 is a detailed block diagram of post compensa-
tion logic 45.

FIG. 6 is a state machine diagram of correction state
machine 55. .

FIG. 7 is a detailed block diagram of error correction
logic 56.

FIG. 8 is an overview block diagram of write logic
27.

FIG. 9 is a block diagram of write data transtorma-
tion logic 75.

FIG. 10 is a detailed block diagram of precompensa-
tion logic 77.

4,916,556

25

45

55

60

2

FIG. 11is a detailed block diagram of half write logic
79.

DETAILED DESCRIPTION OF THE
INVENTION

Although the present invention uses various codes
for reading from and writing data to disks, it will be
described with reference to the most frequently utilized
coding scheme, namely Manchester or MFM code. The
MFM code follows two basic rules: first, a transition
occurs any time that a one is encountered in the data
pattern; and second, a transition occurs between any
two adjacent zeroes. As shown in FIG. 1, MFM code
produces a series of 2, 3 and 4 unit distances (cells)
between transitions which, based on the these distances,
when read back, can be resolved into the actual data
represented. Details regarding the reading and writing
of GCR formatted disks may be found in U.S. Pat. No.
4,210,959 and copending application Ser. No. 943,839.

In the following description, numerous specific de-
tails are set forth such as specific word or byte lengths,
etc., to provide a thorough understanding of the present
invention. However, it will be obvious to one skilled in
the art that the present invention may be practiced
without such specific details. In other instances, well
known circuits have been shown in block diagram form
in order not to obscure the present invention in unneces-
sary detail.

MFM Sector Format

The concept of writing 2, 3 and 4 unit ceils provides
the mechanism by which the data is translated and writ-
ten on the disk. But there must be some method for
organizing the data so that a specific group of data can
be easily located. This is done by writing the data in a
sector format. A sector consists of (1) information
which allows a controller to find the start of the sector,
(2) details about which sector is being read, (3) which
side of the disk is being read, (4) which track is being
read (a track is a group of sectors), (5) the length of the
sector, and (6) cyclical redundancy check (CRC) error
detection information. Table 1 shows the organization
of an MFM sector.

TABLE 1
NO. OF BYTES DATA WRITTEN

*30 4E
*12 00

TRACK ID *3 C2 (Mark Bvte)

*1 FC (Index Mark)

*50 4E
12 00

Al (Mark Byte)

FE (ID Address Mark}
TRACK NUMBER
SIDE NUMBER
SECTOR NUMBER
SECTOR LENGTH
CRC INFORMATION
4E

00

Al (Mark Byte)

FB (Data Address Mark)
DATA

CRC INFORMATION
1E

{E

SECTOR D

19 13 13 o= ;e e e Ua

[——

DATA FIELD

I
[Py

*
* L LS

SThese DyIes are oniy cvriten at the Aeginmng -t 1 iracs
*These buies are by wriien at the @nd o o rack

Note: The sector 1D and fata ficid avies are mepeied “or cacit sent 1oL

The beginning of a track or sector consists ot 4 num-
ber of bytes of 4E’s (hexidecimal) which serve as a

Page 0015 of 0022 |

Apple Computer Inc. Patent

4_916_556

4,916,556

3 .

buffer zone between regions of meaningful information.
The next bytes in the pattern that are written are twelve
bytes of zeroes (2 unit cells), known as the “bytes of
zeroes”. These bytes are used to locate the beginning of
either a track, a sector ID or a sector data field. Follow-
ing the bytes of zeroes are three mark bytes. A mark
byte is a special byte containing a pattern which violates
the basic rules of MFM (i.e., has a missing transition).
This illegal pattern can be recognized, and provides two
very important functions: first, since it is always in the
byte that follows the bytes of zeroes, it serves as verifi-
cation that the zeroes are indeed the beginning of a
track, sector ID or sector data field and not data (1’s and
0’s) in a data field and second, the mark byte provides a
reference point or synchronization from which the
MFM rules may be applied to decode the data. (With-
out synchronizing on a known pattern, it is impossible
to tell the difference between a string of 1’s and a string
of 0’s.) After the mark byte, the next byte encountered
in the format pattern is the information byte. This byte
is used to determine whether the region being read is
the track information, the sector ID, or the sector data
field. The next four bytes in the sector ID contain the
track number, side number, sector number and sector
length.

The next bytes are the cyclical redundancy checks or
CRC bytes which are used to detect errors according to
well-known techniques.

With the basic concepts of the MFM pattern and
MFM sectors in mind, the functions and structure of the
invented controller will now be set forth, namely how it
handles the problems of reading, writing and interfacing
with a processor.

An overview block level diagram of the invented
controller is shown in FIG. 2. Controller 11 comprises
register block 15 which serves as an interface between
the processor and the controller logic; interface logic 16
which serves as an interface between the controller and
one or more disk drives; clock logic 17, which generates
a signal TCLK used by the controller from the signal
FCLK generated by the processor; read logic 21;
FIFO, CRC and mark logic 24; write logic 27; and
parameter RAM 31. The device select signal DEV must
be asserted by the processor in order for the controller
to utilize the signals on address lines A0-A3 and data
lines DO-D7. The controller is reset whenever the pro-
cessor asserts RESET.

Register Block 15

Register block 15 comprises registers which may be
accessed by the processor and by the controller logic.
Some of the registers are read only, some are write only
and some are read/write. In this connection, from a
software point of view, there are a total of sixteen eight
bit registers as follows: data register (read/write); mark

register (read/write); error register (read); write CRC 5

register (write); parameter data register (read/write);
phase register (read/write); setup register (read/write);
handshake register (read); mode register zeroes (write);
mode register ones (write); and read status register
(read).

Data Register

The data register is the location where data is read
from or written to a FIFO in FIFO. CRC and mark
logic 24. If a mark byte is read from this location, an
error will occur. A read from this location when Action
(data bit 3 in the mode register) is not set. will provide
two bytes of error correction information. The register
is set up to toggle between the two bytes on successive

25

40

4
reads, thus providing both bytes of information. If there
is still valid data to be read when Action is not set, it can
be read by reading the mark register.

Mark Register

This location is used for reading and writing mark
bytes. Writing to this location will cause the missing
transition between two zeroes to occur. Reading from
this location will allow a mark byte to be read without
causing an error.

Error Register

This location provides information on the type of
error that has occurred. If any of its bits are set, an error
flag will be set in the handshake register as described
below. Once any error bit has been set, no other error
bit can be set until the register is cleared. Reading the
error register will cause the register to clear. This regis-
ter must be cleared prior to beginning a read or write
operation. The possible error conditions are as follows.

In write mode, when bit 0=1, the FIFO is being
underrun by the processor. In other words, the FIFO is
empty and the processor has not acknowledged the
handshake by writing another byte. In read mode, when
bit 0=1, the FIFO has two bytes to be read, but the
processor is not reading them fast enough.

When bit 1=1, a byte which was read from the data
register was a mark byte.

In write mode, when bit 2=1, the processor is writ-
ing faster than the FIFO is requesting bytes. In read
mode, when bit 2=1, the processor is reading bytes
faster than they are available.

When bit 3=1, the correction number obtained in the
correction state machine (described in conjunction with

* FIG. 5 hereinbelow) is so large that the error cannot be

corrected.

When bit 4=1, the transition occurred before the first
short counter (SCT) pulse (described in conjunction
with FIG. 4 below) which indicates that the cell was
too narrow to be a legal cell.

When bit 5=1, the fourth SCT pulse occurred before
the transition which implies that the transition was too
wide to be a valid cell.

When bit 6=1, there were three marginal transitions
in a row which implies that the transitions cannot be
resolved.

Bit 7 of the error register is not used.

Write CRC Register

A write to the CRC register will set a status bit in the
FIFO which will cause the CRC bytes to be written on
the disk.

Since the status bit moves through the FIFO, the
CRC bytes will shift out after the last bit of data is
written.

Parameter Data Register

The parameter data register is where sixteen bytes of
parameter data from parameter RAM 31 are written
and read. This register comprises a counter which in-
crements the address parameter RAM 31 each ume a
write or read to the register occurs. The sixteen bytes of
data can be written or read by successively writing to or
reading from this register. Thus, the four bit address
placed on parameter address line 30 accesses sixteen
locations in RAM 31 and the data from the accessed
location is placed on the eight bit parameter data bus 32.
The increment counter presets the addresses to zero
each time a write to the mode register zeros occurs. The
data is stored in RAM 31 in the following sequence (the
meanings of the various parameters will be set forth
below):

Page 0016 of 0022 |

Apple Computer Inc. Patent 4 916_556
4,916,556
5 6
The setup register is used to set the controller into its
various modes. This register will reset to all zeroes
RAM Address Parameter when a reset occurs. The function of each of the eight
0000 MIN CELL TIME (MIN) bits in the register is as follows:
0001 ﬁ%‘}_{}fgg”g(mmm 5 Bit 0=1 will cause HEDSEL to be output
0010 SSL Bit 1=0 3.5 inch drive not selected
0011 Sss Bit 1=1 3.5 inch drive selected
0100 SLL Bit 2=0 normal operation.
g}% %,Sr Bit 2=1 sets the controller into GCR mode.
0111 CSLS 10 Bit 3=0 normal operation.
1000 LSL Bit 3=1 causes the internal clock frequency to be
1001 Lss divided by two.
:g}? ths_ Bit 4=0 disables the correction state machine.
1100 EARLY/NORM Bit 4=1 enables the correction state machine.
1101 TIMEO 15 Bit 5=0 sets up the read and write signals for Apple
1110 LATE/NORM type drives.
i TIME! Bit 5=1 sets up the read and write signals for IBM
type drives.
The MIN parameter is the minimum number of Bit 6=0 normal operation.
clocks needed to determine a valid transition. 20 Bit 6=1 causes the read and write data transtorma-
The MULT(K) parameter is a weighting factor for tion logic (described below) to be bypassed. This
normalizing drive speed to an ideal speed. The SSL, bit must be set whenever the GCR or 3.5 inch drive
SLL, SLS, RPT, CSLS, LSL, LSS, LLL and LLS modes are set.
parameters are eight bit fields used during post compen- Bit 7=0 will produce no timeout when turning off
sation. The EARLY/NORM and LATE/NORM pa- 25 Motoron (mode register, bit 7).
rameters are eight bit fields used during precompensa- Bit 7=1 causes the Motoron bit to stay on for } sec-
tion (four bits for each of EARLY, LATE and ond (at 16 Mhz) after the drive is disabled.
NORM.) TIME! is an eight bit field containing the time Handshake Register
delay associated with a transition sent to the drive. The handshake register performs the following func-
TIMEQ is an eight bit field containing the additional 30 tions.
rime delay associated without sending a transition to the When bit 0=1 the next byvte to be read from the
drive. TIME1 and TIMEO are 7 bits long. The low FIFO is a mark byte.
order bit of each (HLFBIT) is used by the half write When bit 1=0, the CRC register became ail zeroes
logic, to lengthen WRDATA by one-half clock when when the second CRC byte passed through the register.
desired. 35 This bit is valid when the second CRC byte is the next
Each of the foregoing parameters is dynamically to be read from the FIFO.
programmable by the computer. In this manner, the Bit 2 is used to read the read data signal from the
controller can be programmed to run at a clock speed drive.
and data rate determined by the computer. Such pro- Bit 3 is used to read the SENSE input from the drive.
grammable parameters enable the controller to inter- 30 Bit 4 is used to read the status of Motoron (Mode
changeably read and write constant angular velocity Register bit 7.
drives and constant linear velocity drives. Bit 5=1, indicates one of the bits in the error register
Phase Register has been set to a one. This bit is cleared by reading the
The phase register is used to read and write the four error register.
phase lines (phase 0, phase 1, phase 2 and phase 3) which 45 When bit 6=1, in write mode, there are two bytes of
are used to control or read status from the disk drive. available space in the FIFO. In read mode, when bit
The four phase lines can be independently programmed 6=1, there are two bytes to be read from the FIFO.
as either inputs or outputs depending on the state of the When bit 7=1, in write mode, there is one byte of
other four bits in the register. The phase lines default to available space in the FIFO. In read mode, when bit
low outputs on reset. The function of each of the eight 50 7=1, there is one byte to be read from the FIFO.
bits in the phase register is as follows: Mode Register (Write Zeroes and Write Ones)
Bit 0 is used to set the polarity of the phase 0 line The mode register is used to set the various status bits
when programmed as an output. of the controller. A bit can be set to zero by writing to
Bit 1 is used to set the polarity of the phase 1 line the Write Zeroes location with the corresponding bit
when programmed as an output. 55 set to a one. A bit can be set to a one by writing to the
Bit 2 is used to set the polarity of the phase 2 line Write Ones location with the corresponding bit set to a
when programmed as an output. one. This scheme is used in order to make it possible to
Bit 3 is used to set the polarity of the phase 3 line modify a particular bit without having to rewrite the
when programmed as an output. : entire register. The register is cleared to zeroes when a
Bit 4=0 indicates that the phase 0 line is an input. 60 reset occurs. The Action bit (bit 3) will be cleared any-
Bit 4=1 indicates that the phase 0 line is an output. time there is any error while writing.
Bit 5=0 indicates that the phase 1 line is an input. Bit 0 is used to clear the FIFO. This bit must be set
Bit 5=1 indicates that the phase 1 line is an output. and then cleared on successive operations. Read or
Bit 6=0 indicates that the phase 2 line is an input. Write mode (bit 4) must be established prior to setting
Bit 6=1 indicates that the phase 2 line is an output. 65 bit 0 since the FIFO will clear to opposite states de-

Bit 7=0 indicates that the phase 3 line is an input.
Bit 7=1 indicates that the phase 3 line is an output.
Setup Register

pending upon whether a write or read operation s
about to take place.
When bit 1=0, drive 1 is not enabled.

Page 0017 of 0022 |

Apple Computer Inc. Patent : 4 916 556

4,916,556

vl

When bit 1=1, drive 1 is enabled.

When bit 2=0, drive 2 is not enabled.

When bit 2=1, drive 2 is enabled.

When bit 3=0, Action is not set.

When bit 3=1, Action is set.

Bit 3 is used to start the read and write operation.
This bit should only be set after everything else has
been setup. When writing, two bytes of data should
be written into the FIFO prior to setting this bit in
order for the FIFO to start shifting immediately.

When bit 4=0, the controller is placed into Read
mode.

When bit 4=1, the controller is placed into Write
mode. -

When bit 5=0, the side 0 head is selected (HEDSEL
is reset.)

When bit 5=1, the side 1 head is selected (HEDSEL
is set.)

Bit 6 is not used and always reads back as set.

When bit 7=0, Motoron is disabled.

When bit 7=1, Enablel and Enable2 signals are as-
serted, for enabling drive 1 and drive 2. This bit
must not be cleared until after the Action bit is
cleared.

Read Status Register

This register is used to read back the status of the
mode register.

The registers in register block 15 communicate with
the other blocks in controller 11 by signals on the vari-
ous STATUS (for inputs) and CONTROL lines (for
outputs), as will be set forth in detail below.

Interface Logic 16

The registers in register block 15 communicate with
the drive by signals on the STATUS lines (for inputs)
and CONTROL lines (for outputs) using conventional
and well known techniques.

Clock Logic Block 17)

The inputs to clock logic block 17 are the system
clock signal FCLK from the processor which typically
is a 7-24 Mhz clock and a signal from register block 15
which causes the ciock to run at its full speed or half
speed (bit 3 of the Setup Register). Clock logic block 17
outputs the clock signal TCLK which is used by the
invented controller. Thus, TCLK is either FCLK or
one-half of FCLK. -

Read Logic Block 21

FIG. 3 is an overview block diagram of read logic 21,
including the applicable portions of FIFO, CRC and
mark logic block 24 which are shared with write logic
block 27.

Data is read from a disk by means of a signal called
RDDATA generated by the drive as the read head
passes over the magnetic media. This signal consists of
pulses which are spaced at 2, 3 and 4 units apart, which
of course is the data in its MFM translated form. If all
conditions were ideal, to convert the MFM formatted
data into its actual data, it would be a relatively simple
matter to determine whether a cell is 2, 3, or 4 units
long, then decode the data, and transfer the data
through a serial to parallel shift register for use by the
processor. However, conditions are rarely, if ever,
ideal. A first problem is known as peak shift which
occurs due to the non-ideal nature of the properties of
magnetic media. Specifically, it is known that a 2 unit
ceil on a disk 1s crowded together more thana 3 ora 4
unit cell, in a relative sense. The etfect of this crowding
's that 2 unit cells will tend to push out their transitions
into the region of a 3 or 4 unit cell. when a 2 unit cell is

—

0

—

5

20

25

40

45

60

63

8

adjacent to a 3 or 4 unit cell. This pushing out causes
such a 2 unit cell to be longer than it should be, and a 3
or 4 unit cell to be shorter than it should be when the
data is read back.

When the data is written, it is known in the art to use
a technique known as precompensation to correct for
this problem, wherein a transition is caused to occur
earlier or later when writing. That is, precompensation
makes 4 and 3 unit cells longer and 2 unit cells shorter
when they are next to each other during disk writes.

However, if the disk that is being read was not writ-
ten by a controller which uses precompensation, or the
precompensation used was not enough, errors may
occur reading back the data due to effects of peak shift.
This problem is solved in the present invention by using
post compensation which will be described in detail
below. Other problems that can occur are that the speed
of the disk drive or the frequency of the clock can be
off, or there can be some other form of systematic error
in the data. Such errors can also make it very difficult to
read back the data reliably. Such errors are corrected in
the present invention by use of a correction state ma-
chine. The discussion of the read logic will set forth
how the post compensation and correction state ma-
chine work, along with a description of how the begin-
ning of a track or sector is located, how the mark byte
is detected, and what starts the process of transferring
data into the FIFO.

Read logic block 21 comprises half read logic 41. post
compensation logic 45, data transformation state ma-
chine 49, shift register 51, correction state machine 35
and error correction logic 56. Also shown in FIG. 3 are
FIFO 57, CRC logic 59 and mark logic 61. which ale-
ments are from FIFO, CRC and mark logic block 24, as
shown in FIG. 2.

Half Read Logic 41

Half read logic 41 causes 2 unit cell, 3 unit cell and ¢4
unit cell input signal RDDATA which is asynchronous
with respect to the internal clock TCLK to become
synchronous with TCLK and transformed so that each
RDDATA pulse is precisely one TCLK wide. The
synchronized and transformed output is referred to
herein as TRANCK.

In particular, half read logic 41 detects whether a
RDDATA pulse occurred in the first or second half of
the clock cycle thereby providing half clock resolution
of the input pulse. Depending on the combination of
which half of the clock cycle the current RDDATA
pulse occurred in, and in which haif the previous
RDDATA pulse occurred in, there might have been an
error in resolving RDDATA into TRANCK. Thus. the
half read logic will stretch the bounds which are deter-
mining the cell time by one clock. This will effectively
shorten the distance between TRANCK pulses by one

5 clock, thereby correcting for the error in the one clock

sample time.

If the cell times of the data coming from drive are
very accurate, there is no problem resolving the data
because the parameters can be set to fit in the middle of
each region and there is sufficient margin between the
SCT and LCT puises generated by SCT and LCT
counters (described below with the description of FIG.
3) and TRANCK pulses. However, in reality due to
drive and noise error there can be some error in the
values of the cell umes. This can cause the SCT and
LCT pulses and the TRANCK pulses to fall very close
to each other making it ditficult to tell the ditference
between two different cell times.

Page 0018 of 0022 |

Apple Computer Inc. Patent : 4 916 556

4,916,556

9

Without halfclock resolution, what is intended to be 2
3 4 pattern can be transformed into a 3 3 3 pattern. Such
error can occur since data can only be sampled on the
rising edge of the clock. Thus, if a first RDDATA pulse
occurs just after the rising edge of the clock and a sec-
ond RDDATA pulse occurs just prior to the rising edge
of the clock, almost one full clock of error has been
introduced in the iength of the cell. This problem can be
reduced by determining which haif of the clock cycle
the RDDATA pulse occurred in and shifting the SCT
and LCT pulses (as described below) by one count to
compensate. Shifting the SCT and LCT pulses will
effectively change the distance between TRANCK
pulses. The overall effect is that the distance between
RDDATA puises can be resolved to within one half
clock of the actual distance instead of one clock. The
effective half clock shift of SCT and LCT can take
place in two manners. First to compensate for the prob-
lem just mentioned and second to allow for better reso-
lution in calculating the parameters for the SCT and
LCT counters. FIGS. 46 and 4c show a schematical
representation of how a shift signal used by the counters
is generated.

Specifically, FIGS. 4b and 4¢ shows that the
TRANCK signal is formed such that it is delayed for
four clocks. This pipelining is necessary to be able to
know when the TRANCK is going to occur four clocks
before it occurs. The RDDATA signal is synchronized
to the nearest half clock and then delayed by one clock
to generate the signal RT3 as shown in FIG. 4¢, which
shows a particular implementation of half read logic 41.
When the TCK signal becomes valid, RT3 is sampled.

-If RDDATA occurred in the first half of the clock
cycle, RT3 would be a one. If RDDATA occurred in
the second half of the clock cycle, RT3 would be zero.
This information is then latched in as signal called
BIAS. The signal BIAS is set to a zero if RDDATA
occurred in the first half of the clock cycle, and is set to
a one if it occurred in the second half of the clock cycle.
The signal NSTART is used to latch BIAS when
TRANCK occurs. This is used on the next RDDATA
to determine what has just occurred since the BIAS
signal will change on the next TCK. As mentioned
above, to avoid introducing errors resulting from the
asynchronous nature of the clock signal and
RDDATA, it must be known, in advance, whether
SCT and LCT should or should not be shifted near a
TRANCK. This can now be resolved using the infor-
mation generated. Since it is known when the
TRANCK is going to occur four clocks prior to it
actually occurring, and it is known which half of the
clock cycle the RDDATA pulse that generated the
TRANCK occurred in, and the same information about

the previous RDDATA pulse is known, a signal called s

SHIFT can be generated which will cause the compari-
son point in the SCT and LCT counters 451 and 453 to
be altered by one count thereby correcting to the near-
est half clock. The equation for generating SHIFT is
FRACTION *NSTART*BIAS+FRACTION *
NSTART*BIAS. SHIFT is set with TCK1 and reset
with TRANCK. FRACTION is the low order bit of
the parameter loaded in each of SCT counter 451 and
LCT counter 453.

Post Compensation Logic 45

Post compensation logic 45 corrects errors caused by
the effects of peak shifting. A detailed block diagram of
post compensation logic 45 1s shown in FIG. 3.

—

0

5

60

65

10

Post compensation logic comprises two 7-bit count-
ers 451 (SCT) and 453 (LCT), a bound detector 455 and
two 4-bit shift registers 457 and 459. The counters are
used to place pulses at certain time intervals between
transitions. The presets of these counters are the param-
eters SSL, SSS, SLL, SLS, RPT, CSLS, LSL, LSS,
LLL and LLS which are programmed by the software
and enable the controller to handle various cell times.
The SCT counter 451 loads parameters which are cal-
culated to represent a cell which has a short ceil (i.e. 2
unit) following it. The LCT counter 453 loads parame-
ters which are calculated to represent a cell time which
has a long cell (i.e. 3 or 4 unit) following it. Addition-
ally, the parameters loaded depend on the previous cell
time. In this connection, the counter parameters SSS,
LSS, SLS and LLS are used by the SCT counter and
the SSL, LSL, SLL and LLL parameters are used by
the LCT counter. (The letters represent Long or Short
previous/current/next cell times; e.g., the SSL parame-
ter is used when the previous, and current cell times are
short and next cell time is long.) RPT is the maximum
number of clocks which may occur before a valid tran-
sition. CSLS is an addition correction used by the post-
compensation logic under certain conditions. The fol-
lowing describes how the parameters are calculated.

The parameters are calculated based on the clock
frequency and cell times. Therefore it is required to
know both of these factors before calculating parame-
ters. For calculating post compensation parameters. it Is
required to know the amount of peak shift. This factor
can be expressed as a percentage of the minimum ceil
time MIN. The first step in calculating the parameters is
to determine the number of clocks (Nclks) for each of
the three cell times. This is done as follows:

Nclks=length of cell (in s) * clock frequency (in
Mhz).

The three different cell times will be defined as
Nclk1, Nclk2 and Ncik3. The MIN parameter is defined
to be the minimum value that a cell must be. This value
is arbitrarily placed at the midpoint between between
zero and the first transition time. Therefore.

MIN=Nclk1/2

The rest of the parameters are calculated in a similar
fashion such that the bounds will be placed at the mid-
point between two cell times. The only difference is that
there is a different amount of peak shift for different
combinations of cell times next to each other making it
necessary to compensate differently for each. The
amount of peak shift per edge can be calculated as fol-
lows:

peak shift = PS = % peak >hift tper mimimum cell ume)
*Nclk!

This number represents the number of clocks that an
edge is affected if a 2 unit cell is next to a 3 or 4 unit ceil
or vice versa. With this in mind. the remaining parame-
ters can be calculated as follows:

SSS = Nc¢lki - Nclk2y 2 — INTOMINY - PS
SSL = (Ncikl = Nelk2y 2 — INTOMIND

LSS = (Nclkl = Ncik2) 2 — INT:MIN,

LSL = «Nolki = Neik2)» 2 — INTIMING - PS
SLS = :Nclkl - 2 — INT#SSSy - 2*b8
SLL = «NclkI - 2 - INTesSLy - P8

LLS = «Ncik2 -~ I - INT(LSLy = PS

LLL = ¢Nclk2 - ;2 = INTWLSL

Page 0019 of 0022 |

Apple Computer Inc. Patent : 4 916 556

4,916,556

11

-continued

CSLS = SLL — INT(LSL)

The RPT parameter is simply a maximum bound
check. Therefore, its value is not constrained to a par-
ticular value, but it must meet the following require-
ment:

RPT = >(Nclk3—-Ncik2)+2*PS

These values must be converted to hexidecimal (Hex)
since they represent presets to binary counters. This is
done by rounding each value to the nearest half and
converting the integer portion into its Hex equivalent
value. This value is mapped into the upper 7 bits of the
corresponding 8 bit parameter. The low order bit
(FRACTION) is set to a one if the fractional part of the
number is one-half, otherwise it is set to a zero.

The use of the parameters will now be described with

reference to a particular example.
Assume:
Fclk=16 Mhz.
Cell times are 4, 6 and 8 s.
Post Comp=3% of 4 s cell time.
This implies:
NCLK1=4 * 16=64 Clocks
NCLK2=6 * 16=96 Clocks
NCLK3=38 * 16=128 Clocks
PS=13% * 64 Clocks=1.92 Clocks
Therefore the parameters are:

MIN = o4/2 = 32.00 Clocks
SSS = (64 ~ 96)/2 — 32 - 192 = 46.08 Clocks
SSL = (64 + 96)/2 — 32 = 48.00 Clocks
LSS = (64 + 96)/2 — 32 = 48.00 Clocks
LSL = (64 + 96)/2 — 32 + 192 = 49.92 Clocks
SLS = (96 + 128)/2 — 462*1.92 = 62.16 Clocks
SLL = (96 +~ 128)/2 — 48 — 192 = 62.08 Clocks
LLS = (96 - 128)/2 — 48 - 192 = 62.08 Clocks
LLL = (96 - 128)/2 — 49 = 63.00 Clocks
RPT = 128 — 96 ~ 2*192 = 35.84 Clocks

Converting these parameters to Hex yields the fol-
lowing:

MIN =340

SSS=85C

SSL =360

LSS=360

LSL =564

SLS=87C

SLL=3%7C

LLS=3%7C

LLL=S%7E

RPT =548

The other dynamically programmable parameters are
calculated as follows:

MULT (K) = (256*256)/132*Nclkl)
TIME! = Nclkl

TIMEO = Nclkl 72

NORM = Arbitrary

LATE = NORM —~ Pre Comp * Ncikl
EARLY = NORM — Pre Comp *® Ncikl!

Pre Comp is selectable by the software as a percent-
age of the MIN cell time.

Bound detector 455 counts the number of puises
which occur between TRANCK transitions. If one

5

25

30

35

45

w
v

60

12
pulse occurs between transitions, then the cell must be a
two unit cell, if two pulses occur between transitions
then the cell must be a three unit cell, and if three pulses
occur between transitions then it must be a four unit
cell.

The reason for having two counters is that depending
on whether the next cell is long (a 3 or 4 unit cell) or
short (a 2 unit ceil) the pulses may occur in different
positions because, for example, a 3 unit cell will be
shorter when next to a 2 unit cell than when next to a 3
or 4 unit cell. If both counters generate the same num-
ber of pulses between transitions, then bound detector
455 simply generates a space (a 0) for each pulse and a
transition (a 1) at the end of the transition time. Such
output is referred to herein as the trans-space data pat-
tern. If the two counters generate a different number of
pulses between transitions, then the length of the cur-
rent cell cannot be determined until the next transition
time is determined.

Two 4-bit shift registers 457 and 459 keep track of
what has happened until the next cell has been deter-
mined, thus making it possible to determine the length
of the uncertain cell.

Correction State Machine 55

Correction state machine 535 corrects systematic er-
rors such as those caused by a drive that runs too fast or
too slow or by an inaccurate clock. A state machine
diagram of correction state machine 55 is shown in
FIG. 6.

In MFM format. the beginning of a sector or track
can be located by finding the 12 bytes of zeros followed
by the mark byte. In the present invention, correction
state machine 55 is used to sync-up on the bytes of
zeroes followed by the mark byte.

Specifically, the state machine looks for a string of
minimum cells by looking at the number of SCT pulses
that occur between TRANCK pulses. If the state ma-
chine sees 64 cells which have only one SCT pulse
between transitions, then it knows that it has found a
region of minimum cells. The machine then looks to see
if the first non-minimum cell is part of a mark byte. If
this is the case then the rest of the bits start shifting into
the shift register 51 and FIFO 57 will begin functioning.
Otherwise the state machine will go back into the state
which looks for a string of minimum cells.

The state diagram of FIG. 6 shows how correction
state machine 55 works. It starts out in the 000 state and
stays there until it gets a transition. At this point it goes
into the 001 state where it stays until it encounters 32
minimum cells. If 32 pairs of minimum cells are then
counted, the machine proceeds on to the 010 state. oth-
erwise it goes back to look for another transition. Once
it has encountered the 32 pairs, it waits for the first
non-minimum transition to occur in state 011. If this
non-minimum cell is part of a mark byte, then it pro-
ceeds on to the 111 state where it remains until the
processor is finished reading bytes. If the non-minimum
cell is not part of a mark byte, the state machine goes
back to state 000.

Error Correction Logic 56

Referring now to FIG. 7, during the sync-up period.
rate multiplier 551 and 553 count the number of clocks
for 32 MIN CELL TIMESs. Upper counter 335 counts
the even cells and lower counter 557 counts the odd
cells. This make it possible to correct for asymmetry as
well as frequency errors. The amount by which the
3-bit counters vary from 256 counts represents the
amount of error over the sample. This error number is

Page 0020 of 0022 |

Apple Computer Inc. Patent : 4 916 556

4,916,556

13

then applied to post compensation logic SCT counter
451 and LCT counter 453 by stretching or shortening
the counts using the output of rate multiplier 559
RATEOUT.

Data Transformation State Machine 49

Data output from post compensation logic 45 is input
to read data transformation state machine 49 which
converts the data into actual MFM data. Table 2 shows
the results of the operation of data transformation state
machine 49 for all combinations of trans-space and pre-
vious data.

TABLE 2
CURRENT
PREVIOUS DATA TRANS-SPACE RESULT
1 m 1
1 01 0
1 (001) 01
0 m 0
0 (o) 01
0 (001 00

The actual data (i.e., after transformation by data
transformation state machine 49) is input to serial-to-
parallel shift register 51 which shifts out CRC bytes,
mark bytes and data bytes as parallel data. The eight bit
actual data, is transferred to FIFO §7 which is a two
byte FIFO comprising two 10 bit registers. CRC logic
59 is implemented as the CRC polynomial
X0+ X124 X5+ 1. Mark logic 61 is implemented as a
state machine which generates a logic 1 when a mark
byte is detected.

Write Logic Block 27

FIG. 8 is an overview block diagram of write logic
27, including the applicable portions of FIFO, CRC and
mark logic block 24.

The following will describe how data from the pro-
cessor is translated into 2, 3 and 4 unit cells for writing
to the disk.

The write process begins when a processor writes a
byte into the data register and sets the Action bit in the
mode register. The byte which is written in the data
register is loaded into FIFO 57. FIFO 57 is a two byte
FIFO consisting of three ten bit registers. The first ten
bit register is used to grab the data from the data register
and the other two are used as FIFO registers. The ten
bit FIFO consists of eight bits of data, a bit which indi-
cates whether the data is a2 mark byte and a bit which
tells the controller to write the CRC bytes.

As shown in FIG. 8, write logic 27 includes FIFO 57,

shift register 51, CRC logic 59, and mark logic 61. 5

While each of the foregoing components can be sepa-
rately implemented, in the preferred embodiment of the

—_

0

35

40

45

subject invention, such elements are shared between

read logic 21 and write logic 27 as part of FIFO, CRC

and mark logic block 24. Of course, in performing a 5

write, shift register 51 is a parallel to serial shift register
rather than a serial to parallel shift register as is the case
when doing a read. Similarly, during a write, CRC logic
59 calculates a CRC byte to be written rather than
calculating a CRC byte to compare with one which has
been read. Similarly, mark logic 61, when in write mode
causes a mark byte to be written.
+ Select Data 71

The serial data output from shift register 51 is input to
select data block 71 which, in effect., multipiexes be-
tween the actual data and the CRC byte produced by
CRC logic 59. outputting the data or CRC byte to data
transtformation logic 73.

60

h3

14

Write Data Transformation Logic 75

Write data transformation logic 75 translates the data
stream into a form in which a 1 represents a transition
and a O represents a space which is the form suitable for
writing on a magnetic disk.

A block diagram of write data transformation logic
75 is provided in FIG. 9. As shown in FIG. 9, the front
end of data transformation logic 75 is a four bit shift
register 751 which makes it possible to know what the
last two bits were, the current bit is, and the next bit will
be. Most of the time, the only information needed is
what the current bit is and what the next bit will be. The
exception is when writing the mark byte. In this in-
stance, more information is needed because it must be
determined when to leave out the transition. As noted
above, the only time a transition needs to be skipped is
when there is a 1 0 0 O pattern. Thus, all four bits of
information are needed. Table 3 shows the desired
transformation of the data performed by transformation

logic 753.
TABLE 3
TRANSFORMED
CURRENT BIT NEXT BIT DATA MARK
0 0 1 00

0 0 B}

0 1 01 01
1
1 1 i i

Precompensation Logic 77

Precompensation logic 77 compensates for the prob-
lems created by peak shifts as described above with
respect to read logic 21. Precompensation logic 77 per-
forms the analog of post compensation logic 45 for
write operations. A detail block diagram of precompen-
sation logic 77 is'shown in FIG. 10.

Precompensation logic 37 comprises muitiplexors
771, 773 and 775, 7-bit counter 777, latch register 779.
AND gate 781, comparator 783, AND gate 785, shift
register 787 and XOR gate 789.

The 7-bit counter 777 shown in FIG. 10 is used for
counting out the desired cell times. The counter is pre-
set to either TIME! if a transition is occurring, or
TIMEQ if a space is occurring. When the counter
reaches the value of the comparison number. then the
transition is fed to the half-write logic 79 if the high bit
of the shift register 787 is a 1 (indicating a transition). By
changing the comparison point, it is possible to stretch
or shorten a cell time thereby performing precompensa-
tion. The decision whether the transition should be
early or late is decided by whether a transition is about
to take place. The decision whether the transition
should be placed at its nominal value or at a corrected
value is made by looking at what the next cell is going
to be, thus knowing whether the next cell is a similar
type cell. Shift register 787 provides the ability to look
at what is coming next in order to determine what to do
with the current transition. The outputs of shift register
787 are O4 (current data), O3 (next data), and O2 (next.
next data).

Inasmuch as the length of cells to be written are not
exact multiples of the clock frequency, additional errors
may be introduced. For example. in a four microsecond
cell, when a 7.16 Mhz clock is used. the number of
clocks in the cell is 28.64. While the output from pre-
compensation logic 77 can be used to write to the disk.
it is necessary to round the cell length to an integrai
number of clocks. This round off forces the cell times 0

Page 0021 of 0022 |

Apple Computer Inc. Patent : 4 916 556

4,916,556

15

vary from the desired values. Depending upon the
clock used, it is possibie for significant errors to result.
In order to reduce this round off effect, the present
invention utilizes half write logic 79 which works on
both edges of the clock and creates the effect of having
haif clock resolution. Writing using half clocks can be
very difficult because of the high effective clock speeds
generated. For this reason, half write logic 79 is per-
formed just prior to writing the data to the disk.

Half Write Logic 79

A detailed block diagram of half write logic 79 is
shown in FIG. 11.

Once a comparison point has been reached and the
trans-space data is a 1, then a transition is generated by
toggling the WRDATA line to the drive. This is done
by toggling T-counter 791. This toggle is subsequently
delayed by one half clock using D-flip-flop 792. The
resulting WRDATA signal is then generated by select-
ing either the half clock signal BW or non-half clock
signal AW thus producing half clock resolution in the
WRDATA signal according to the logic performed by
and gates 794a, 794b and 794¢ and NOR gate 795. The
HLFBIT signal is what determines whether to cause

half clock shifts or not. In particular, logic circuit 796 ,

will cause the LONG signal to toggle on each transition
only allowing half-shifts on alternate edges.

What is claimed is:

1. In an improved disk drive controller for control-
ling the transfer of data between a computer and a disk
drive, said computer including a clock for generating
clocking signals, an address bus and a data bus, said
controller including read logic means for converting
data received from a signal generated by the drive to
data for placement on the data bus, and write logic
means for converting data on the data bus to a signal for
recording on magnetic media by the drive, the improve-
ment wherein said read logic means includes means for
processing the signal received from the drive to com-
pensate for the effects of peak shift and wherein said
peak shift compensation means comprises:

10

15

35

40

60

n3

16

(a) first counter means and second counter means for
placing pulses at predetermined time intervals be-
tween transitions in said signal from said drive, said
predetermined time intervals being determined by
setting said first and second counter means with
values generated by said computer as a function of
the time between previous transitions in said signal
from said drive, wherein said first counter means is
set with a value corresponding to the shortest ex-
pected time between the next two transitions and
the second counter means is set to a value greater
than the shortest expected time between the next
two transitions and less than the maximum ex-
pected time between the next two transitions;

(b) bound detector means coupled to said first and
second counter means for counting the number of
pulses generated by said first and second counter
means between transitions in said signal from said
drive; and

(c) first and second shift registers coupled to said
bound detector means for storing the number of
pulses generated by said first and second counters
respectively to enable said bound detector means
to generate peak shift compensated pulses from
said signal from said drive.

2. A method for performing symmetry and frequency
correction on a signal from a disk drive. said disk drive
for coupling to a controller. said controlier for coupling
to a computer, said signal having transitions which are
converted by the controller into data usable by the
computer, said method comprising the steps of:

(a) summing the distances between the leading edges

of alternate pairs of said transitions:

(b) normalizing said summed distances:

(c) subtracting said normalized distances from prede-
termined values to produce a correction magnitude
and direction;

(d) using said correction magnitude and direction to
generate a pulse to correct the symmetry and fre-

quency of said signal from said disk drive.
* * * - *

Page 0022 of 0022 |

