Documentation Développeurs
Apple Computer France 1987

Document développeur numéro 1

Desecription of ©5816 flow
of control instructions,
Jump Absolute, Bloek move

type d'upgrade de ce ducument : 1

1 Documentation de premiére catégorie inchangée

2 Documentation de deuxiéme catégorie mise & jour

3 Documentation de deuxiéme catégorie inchangée

4 Mise a jour payante de la documentation de premiére catégorie
5 Mise a jour gratuite de la documentation de premiére catégorie
6 Nouveautés payantes non vitales

7 Nouveautés gratuites et vitales

Taille : 5 page(s) environ

Domaine : 816

VERSION :
DATE :5.06.85

A

g

.James Jatczynski Consuiting O MEMO
PRESFFFFFRRREEEEESAEEE A S

Description of 65816 Flow of Control Instructions
To: Columbia Software

) . :Z’»‘-g
Fram: Jim Jatczynski | _;2)

Date: 28 May 1985

The attached document describes the 658 16 flow of control instructions including oranches, jumos,
subroutine jumps and returns, and software interrupts and returns. It fills in details missing {rom
the WDC and GTE data sheets and corrects errors therein. This document is intended to be the most
correct and up to date description of these instructions. In cases where this document contradicts the

aata sheets, the data sheets are wrang.

if vou see any errors or think additional information shouid be included, please let me know as oon
as possible

P

-

James Jatczynski Consulting O MEMO

Clarification of 65816 Jump Absolute and Subroutine Jump Absolute

To: Columbia Software

From: Jim Jatczynski 5

Date: 21 May 1985

The GTE Advance Information data sheet on the G6SSC8 16 defines the absolute addressing mode as
follows: ,

With.Absolute addressing the second and third bytes of the instruction form the low-order
16 bits of the effective address. The Data Bank Register contains the high-order 8 bits of
the operand address.

This description is incorrect for the Jump Absolute (opcode $4C) end the Subroutine Jump Absolute
(opcode $20) instructions. For these instructions, the Arogram Bank Registercontains the
high-order 8 bits of the operand address.

~ This makes sense from a programming standpoint because the target of a jump or subroutine jump

will most often be a location in the same bank as the jump or subroutine jump itself.

_between MYP and MYN is required. It the destination is at a /7/;gﬁarodares.-, than the source, use !

James Jatczyneki Consulting O MEMO
“
Clarification of 65816 Biock Move instructions

To: Columbia Softwarse
Dan Hillman

From: Jim Jatczynski

Date: 5June 1985

INTRODUCTION

This mema describes the aperation of the 656 16 block mave instructions MYP f biack riu Faozitiue:
and MYN (black MaYe Negative). The memo is nesded because the data she v:— je:cr iption iz
the choice of mnemonics somewhat counterintuitive.

INSTRUCTION DESCRIPTION

The biock move instructions, MYP and MYN, move a contiguous block from 1 to 65,336 bytas inng
from a source location to a destination !c;cat!on Neither the source block nor destination bicck mav
straddie an inter bank boundary. However, the socurce and destination blocks mav cver lan.

The instructions are three bytes long. Byte | is the opcode. Define source address as ths Z4-5it
address of the first byte to be copied and destination address as the 24-3it axress of {h
iocation to be copied into. Then, byte 3 of the instruction gives the high-order 8 its of sour2e
address, and byte 2 gives the high-order 8 bits of destination address. The X Register helds the
low-order 16 bits of source address, and the Y Register holds the low-order 14 bits of destiration
address. The Accumulator (C Register) hoids 1 less than the number of bytes to move. Contents of the
€, Y, and C Registers are updated after each byte mave, 50 the mctr-'ct‘or' =r3 interruni

oy ‘oad.ng |t with the destmahon bam(numoer (mgn order 3 .;1f= of "es‘*
time is 7 cycles per byte copied.

The two instructions differ in the arder in which bytes are copied. MVP starts '*nmr«v 3 the hinnoann
{ highest address) of the source and destination Glocks and continues with sucs !

Thus, the X and ¥ registers are initialized to point to the high end of the source . «r:'

as each Dyte is copied, X and Y are decremented. MVYN starts copying at the iow end {

the source and destination blocks and continues with successively higher addrasses. T‘m_ s, the ;
registers are initiaiized to point to the low end of the source and destination biocks; as sach ovie ic
copiec, X and Y are incremented.

¥

At this point, 3 out of 10 programmers probably think |'ve reversed the descriptions of the twa
mnemonics. Au contraire. |7 the source and destination blocks are non-overlapping, the chiice
between MYP and MYN depends only on whether pointers to the beginnings or &nds of the blocks ars
mare convenientiy availabie. However, if the scurce and destination blocks overlap and the
grogrammer's intention is 1o cogy ali contents of the source to the destination, a correcs cheic

to move the biock as a whole in a pos/¢7ve direction. If the destination isat a /ow&radﬂrass ihan t‘w

5

source, choose YN to move the block as a whole in a #7873 7vedirection. The Dyie copyving order
deseribed in the last naragraph produces the correct autcome. : '

OBSERYATIONS

Spaed. Ona 2.3 MHz machine, MYP and MYN move 2ach byte in 2.5us, giving a rate of 400,000 by/3
Times reguired for typical block sicss are:

Size {Kby) Time {ms)

25 64

1.28

NN

2.50
20.43
40.96
81.62

1635.84

OO e

Oy (N —
H D

Design. These instructicns provide a gocd example of poor instruction cesign. The grablem is thar
the source and destination bank values are in the instruction itself rather “‘xan gither ': FEGISIET T OF
on the stack. This makes it impossible to write a general purpose move routine using! TWH

without using seif modifying code. The problem is a bit more difficult if the move routine
in ROM.

June 6, 19385

[}
C..
[
&

) MVN, MVYP Block Move Negative, Block Move Positive

MYN MVP

(‘ e Destiration & Iasas
T Y i i
High 5 High | |
[
' : :
| |
" [))
; Source | | Destination
i Zpuree Sajdreas
A i P ”
il
L «— Source Address A4 ;;{
Destination Source
Loy ‘ Low \ 4 If
0w le—Destination Address ‘ —

Arrows indicate order in which bytes are copied.

Destination Sourne
Bank Bank

instruction Format Opcode

instruction Setup

¥ Register — Low-order 16 bits of source address
¥ Register — Low-order 15 bits of destination address
C Register — 1 less than the number of bytes to move

Restrictions
Source block may not straddie bank boundary

Destination block may not straddie bank boundary
Maximum block size: 65,536 bytes

Time: 7 cycles per byte moved

Effect on condition codes: MNone

