
To: Cortland Software Group
Software ERS binder

From: Rich Williams

Subject: Memory Manägers are a girt's best friend

or

lf Napoleon had a memory manager we would
all be speaking French today

Revision history

Rev 1 Nov.5, 1985

Rev 2 Nov. 27, 1985

Rev3 Feb.10,1986

Rev 4 Mar. 1 0,1 986

First pass

PurgeAll, Lockall, etc. added
Properties of blocks added.

Copy commands added.
Call numbers added.
The order of parameters changed.
Enor codes added.
TotalMem call added

Standard calls added.
Parameters added to Applnit and
AppQuit.
SetPurgeAll parameters switched.

1.0

Table of Contents

2.0

lntroduction

Design Philosophy

Differences from the Mac memory manager

Properties of memory blocks

Allocation attributes

Modifiable attributes

Memory manager calls

- Data types

3.0

4.0

4.1

4.2

5.0

5.1

5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6

5.3
5.3.1
5.3.2

5.4
5.4.1
5.4.2

Standard Calls
MMBootlnit
MMApplnit
MMAppAuit
MMGetVersion
MMReset
MMStatus

Allocating memory
NewHandle
ReallocHandle

Freeing memory
DisposHandle
DisposAll

2(= Memory Manager ERS Rev 4

r^,

5.5 lnformation on blocks and memory
5.5.1 GetHandleSize
5.5.2 SetHandleSize
5.5.3 FindHandle
5.5.4 FreeMem
5.5.5 MaxBlock
5.5.6 TotalMem

5.4.3
5.4.4

5.6
5.6.1
5.6.2
5.6.3
5.6.4
5.6.5
5.6.6

5.7
5.7.1
5.7.2
5.7.3
5.7.4

PurgeHandle
PurgeAll

Other properties of blocks
HLock
HLockAll
HUnlock
HUnlockAll
SetPurge
SetPurgeAll

Moving data
PtrtoHand
HandtoPtr
HandtoHand
BlockMove

t-, 6.0 Enor Codes

3
U

Memory Manager ERS Rev 4

(

:

1.0 lntroduction

The memory manager is responsible for allocating blocks of memory
.to programs. lt does the overall bookkeeping of what memory is being used
ands keeps track of who owns various blocks of memory.

2.0 Design Philosophy

Up until now, memory manager discussions have been about a SOS-like
memory manager that allocates memory blocks in pages and does not
perform relocation or compaction of memory.

The SOS memory manager allocates memory in pages. This works
well with a program that has a single large data area that grows. An
example of this might be a word processor that has a document that grows
as the user types it in. Maintaining a single large data block will be
difficult on a 256K machine because of the fragmentation of free memory
by video screens, t/o space, etc. The SoS memory manager also does not
relocate memory blocks. Consequently, you can only grow a block if the
adjacent space is free. This forces programs to allocate more space than
they need to insure that they can grow if they need to. lf a program wants
to have more than one block that grows, it must carefully allocate the
blocks far apart from each other. ln short, the programs end up doing
almost all of their own memory management!

Both AppleWorks and Catalyst are programs that wrote their own
Maclike memory managers. Since these are the types applications that we
are most interested in supporting, we should give them the memory tools
they require.

There are disadvantages to this scheme. lt will take longer to write.
It will take a lot more room in the rom. And, in making a more powerful
memory manager, it could become too complicated or slow for people to
use.

4Memory Manager ERS Hev 4

3.0 Differences from the Mac memory manager

There are many differences between this memory manager and the
Macintosh's. Some of the most notable are:

Fewer calls. lf you want others, ask for them
Blocks now have an owner lD
There is now a purging priority level for the block
Therê are only handles and no pointers

4.0 Properties of memory blocks

Memory blocks have attributes that determine how they are allocated
and maintained. Some attributes are defined at allocation time and can't
be changed. Others can be modified after allocation.

4.1 Allocation attributes

The memory in the Apple ll and the architecture of the 65816 force
many restrictions on how blocks can be allocated. Blocks, for example,
may have to be page aligned or they may have to be in a certain bank. When
allocating a block, an attributes word is specified that determines how
the block is allocated. These attributes can only be set when the block is
allocated. The attributes are:

D14
Br
D3
D2
D1

DO

Fixed
May not cross bank boundary
May not use special memory
Page Aligned
Fixed Address
Fixed Bank

Dn = bit in attributes word. D15 = msb D0 = lsb

Fixed:
lf a block is fixed, it cannot be moved when compacting memory. Code

blocks will usually be fixed, but data blocks should usually not be.

5Memory Manager EHS Rev 4

May not cross a bank boundary:
This specifies that a block must not cross banks. Code blocks, for

example, may never cross banks.

May not use special memory:
This specifies that the block may not be allocated in special memory.

This is memory that is used in the Apple //e and includes banks 0, 1 and
the video screens.

Page aligned:
For timing reasons, code or data may need to be page aligned

Fixed Address:
This is used to specify that the block must be at a specified address

when allocated. An example is allocating the graphics screen.

Fixed Bank:
This specifies that the block must start in a specified bank. An

example is allocating a block to be used as a zero page or stack.

4.2 Modifiable attributes

The memory manager can move or purge a block while making room for
a new block. There are attributes that determine whether a block can be
moved or purged. These attributes can be changed by the user after a block
is created. The attributes are:

D15
D9.8

Locked
PurgeLevel

Locked:
When a block is locked, it is unmovable and unpurgeable irregardless

of what Movable or PurgeLevel is set to. This feature is to allow a block
to be temporily locked down while it is being executed or referenced.

Pu rge Level:-This
is a two bit number defining the purging priority of a block. O is

unpurgable and level 3 is the first purged.

6Memory Manager ERS Rev 4

5.0 Memory Manager Calls

Calls to the memory manager fall into the following catagories:
' = câll not implemented in alpha 2.0 rom

t

t

Standard calls
$Ol MMBootlnit
$OZ MMApplnit
$OS MMAppQuit
$O¿ MMGetVersion
$05 MMReset
$06 MMStatus

Allocating memory
$09 NewHandle
$0A ReallocHandle

Freeing memory
$l O DisposHandle
$l I DisposAll
$l e PurgeHandle
$13 PurgeAll

Boot time initialization
Application initialization
Application quit call
Gets version number
Called by system reset
Active status

Creates a new block and handle
Uses an existing handle

Deallocates a handle
Deallocates all of an owner's memory
Purges the contents of a block
Purges all of an owner's purgable
blocks

lnformation on blocks and memory
$18 GetHandleSize Gets the size of a block
$19 SetHandleSize Grows or shrinks a block
$14 FindHandle Finds the handre of a brock containing

an address
$18 FreeMem Gets total amount of free space
$1C MaxBlock Gets size of largest free biock
$1D TotalMem Gets size of all memory

Other properties of blocks
$ZO HLock Locks a block
$21 HlockAll Locks all of an owners btocks
822 HUnlock Untocks a btock
$2s HunlockAll unlocks all of an owner's blocks
$Zq SetPurge Sets the purge level of a block
$25 SetPurgeAll Sets the purge level of all of an

owner's blocks

7Memory Manager ERS Rev 4

t

t

t

Copying Data
$ee' Þtrtoxano
$29 HandtoPtr
$Zn HandtoHand
$28 BlockMove

Copies from an address to a handle
Copies from a handle to an address
Copies from one handle to another
Copies from one address to another

5.1 Data types

These are the data types used in the calls:

Pointer
Handle
UserlD
Address
Size
PurgeLevel

= ^Byte
= ^Pointer

-
Word
Long
Long
0..3

{ldentifies the owner of a segemnt}
int {4 byte address}
int {4 byte size of a block}

{Priority to purge a block}

5.2 Standard calls

These are standard calls defined for every tool. Note that the Applnit
call is different from other tool sets.

5.2.1 MMBootlnit

This call initializes the memory manager at boot time. An application
must never make this call since it will destroy all currently allocated
blocks including the caller. Never, ever, ever make this call. Don't even
try to use it as part of a protection scheme.

5.2.2 MMApplnit

inputs: none

output: Oryner: UserlD

This call is made by an apptication when it starts up. lf the call is
not made from a valid segment, a lDErr is returned. lf this happens, the
program should call the lD Manager for a lD number and then call the
memmory manager to allocate its program segments. This should only
happen when running under the current operating systems.

IMemory Manager ERS Rev 4

(

5.2.3 MMAppQuit

inputs: Orner: UserlD

output: none

This call is given to the memory manager by the application when it
is finished and is about to exit.

5.2.4 MMGetVersion

inputs: none

output: Version: word

This returns the version number of the memory manager.

5.2.5 MMReset

This is an internal call used by the system at reset time. An
application should never make this call.

5.2.6 MMStatus

inputs: none

outputs: Status: Boolean (always true)

Status is used to test if the tool is active. The memory manager is
always active.

5.3 Allocating memory

These commands are used to create'memory blocks.

(

9Memory Manager ERS Rev 4

5.3.1 NewHandle

inputs:

1

outputs: Handle

NewHandle is used to create a new block. BlockSize is the size of the
block to create. The attributes are described in section 4. lf a block of
size 0 is created, the handle will be set to NlL.

5.3.2 ReallocHandle

inputs:

BlockSize:
O,vner:
Attribu tes:
Location:

TheHandle:
BlockSize:
O¡vner:
Attrib u tes :

Location:

Size
UserlD
Word
Address

Handle
Size
UserlD
Word
Address

output: none

ReallocHandle is used to reallocate a block that has been purged.
BlockSize is the size of the block to create. The attributes are descriOeo
in section 4 Any information that was in the purged block has been lost.

5.4 Freeing memory

These commands are used to free blocks and pointers. Once a block or
handle is freed, its contents cannot be recovered.

5.4.1 DisposHandle

inputs: , theHandle: Har¡dle

output: none

DisposHandle purges the block specified by theHandle and deallocates
the handle. The block is purged irregardless of its purge tevel but it must

Memory Manager ERS Rev 4 10

i

be unlocked.

5.4.2 DisposAll

. inputs: Orner: UserlD

output: none

DisposAll disposes all of the handtes owned by Owner.

5.4.3 PurgeHandle

inputs: theHandle: Handle

output: none

EmptyHandle purges the block specified by theHandle. The btock is
purged irregardless of its purge level but it must be unlocked. The handte
itself remains allocated but is pointed to NlL.

5.4.4 PurgeAll

inputs: O¡rner: UserlD

output: none

PurgeAll purges all of the purgable blocks owned by owner

5.5 lnformation on Btocks

These commands are used to grow or shrink memory brocks

5.5.1 GetHandleSize

inputs: theHandle: Handle

output: Size

GetHandleSize returns the size of a block specified by theHandle

Memory Manager ERS Rev 4 11

5.5.2 SetHandleSize

inputs: newSize:
theHandle

Size
Handle

output: none

SetHandleSize changes the size of the block specified by theHandle.
The block can be made larger or smaller. lf necessary to lengthen a block,
memory may be compacted or blocks may be purged. The handle should be
unlocked since it may have to move to change size. lf the size is set to 0,
the handle will be set to NlL.

5.5.3 FindHandle

inputs: Location: Address

output: theHandle: Handle

FindHandle returns the handle to the block containg the address
specified by location. Note that if the block is not locked, it may move. lf
the address is not in any handle, then NIL (0) is returned.

5.5.4 . FreeMem

inputs: none

output: Size

FreeMem returns the total number of free bytes in memory. lt does
not count memory that could be freed by purging. Because of memory
fragmentation, it may not be possible to allocate a block this large.
FreeMem does a compaction of the memory space.

5.5.5 MaxBlock

inputs: none

output: size

MaxBlock returns the size of the largest free block in memory. lt

Memory Manager ERS Rev 4 12

(

does not count memory that could be freed by purging or compacting.

5.5.6 TotalMem

Inputs: none

output: size

TotalMem returns the size off all of the memory in the machine. This
includes the main 256K,

5.6 Other properties of blocks

These commands change the other properties of memory blocks.

5.6.1 HLock

inputs: heHandle: Handle

output: none

Hlock locks a block specified by theHandle. A locked block cannot be
relocated or purged during memory compaction.

5.6.2 HLockAll

inputs: Oryner: UserlD

output: none

HLockAll locks all of the blocks owned by Owner.

5.6.3 HUnlock

inputs: theHandle: Handle

output: none

HUnlock unlocks a block specified by theHandle. A unlocked block can
be relocated during memory compaction.

Memory Manager ERS Rev 4 13

5.6.4 HUnlockAll

inputs: O'vner: UserlD

output: none

HUnloclrAll unlocks all of the blocks owned by Owner

5.6.5 SetPurge

inputs: PurgeLevel
Handle

newPlevel:
heHandle:

j

output: rìone

SetPurge sets the PurgeLevel of the block specified by theHandle to
newPlevel.

5.6.6 SetPurgeAll

inputs: PurgeLevel
UserlD

newPlevel:
Oruner:

output: none

SetPurgeAll sets the purge level of all of the blocks owned by Owner.

5.7 Copying Data

These commands are used to copy data from one place to another in
the machine.

5.7,1 PtrtoHand

5.7.2 HandtoPtr

5.7.3 HandtoHand

Comming soon to a memory manager near you.

Memory Manager ERS Rev 4 14

5.7,4 BlockMove

inputs Source:
Dest:
Count:

Pointer
Pointer
Size

output: none

BlockMove copies Count bytes from Source to Dest. BlockMove works
correctly even if the source and destination blocks overlap or cross bank
boundaries. Beware that no address validation is done and BlockMove will
cheerfully write over anything when told to do so.

6.0 Error Codes

These are the error codes returned by the memory manager

Code Tyoe of error

$0000 No error

$0201 MFullErr Memory full error

$0202 NilErr lllegal operation on a Nil handle

$0203 NotNilErr A Nil handle was expected for this operation

$0204 LockErr lllegal operation on a locked or immovable block

$0205 PurgeEn Attempt to purge an unpurgable block

$0206 HandleEn An invalid handle was given

$0207 lDErr An invalid owner lD was given

Memory Manager ERS Rev 4 15

