S
Cortland Memory Manager

First Draft 4/30/85
Revision 1 6/7/85

m

James Jatczynski Consulting
10204 Parkwood Drive *¥6
Cuperting, California 95014
408/446-3405

1. INTRODUCTION

In order coordinate activities within a computer system, it is customary to centralize management of
scarce resources such as RAM, timers, disk space, interrupts, etc.

This document is a functional specification of the Memary Manager, one of the ROM based capability
modules in Cortland. It is intended to serve as a model for additional capability modules.
2. REFERENCES

(1] A4 Fremework ror /mplementing ROM=- and RAIN-B8sed Capability Modules in
Cortlena, J. Jatczynski, 6/4//8S.

(2] Cortland Capatility Module /nterface, J. Jatczynski, 6/4/85S.
(3] SOS Rererence Manua/—volumes 1 & 2, Apple.

(4] Stanasrd Specification for Micraprocessor Operating Systems /nterfaces, Draft,
IEEE Task 8SS, Revision 6.0. ‘

(S] /nside Mscintosh, Chapter 18, Memory Manager, Apple Computer, Inc., 198S.

3. 60ALS
The design tries to meet the following goals:
[1] Conformity to the specifications in References [1] and {2].

(2] Transparency: The Memory Manager makes no assumptions about memory usage, and thus it
makes no automatic memory reservations.

(3] Adeptability: The Memory Manaeger determines what memory exists in the machine and manages
all of it.

(4] Appropriate festures: The Memory Manager provides features that use know ledge of the 65816
end Cortland memory structure to simplify the application program.

(S] Simplicity: The Memary Manager Provides only the most basic memory bookkeeping functions.
4. FUNCTIONAL SPECIFICATION

4.1 Overview

The Memory Manager (MM) provides a way for system and application programs to keep track of
memory usage. The MM implements calls to initialize itself, to allocate, modify, and free contiguous
blocks of memory, and to obtain information about the state of the MM. Since Cortland has no
memaory management hardware, correct memory management depends an cooperation among all
memory users.

A major goal of the Memory Manager is simplicity. Thus, in contrast to the Macintosh Memory
Manager (Ref. [S]), the Cortland Memory Manager provides only non-relocatable segments.
Consequently, it does not support such concepts as Aand/e, purging, and /ock ing, which apply
only to relocatable segments. As a result, the system places a larger burden on the user to manage

June 7, 1985 2 JJIC

memory intelligently since it does not provide automatic free space consolidation. Alsg, in the
interest of simplicity, the Memory Manager does not support Mac-1ike heap zones.

4.2 Operational Parameters
The Memory Manager's permanent capability module number is 2.
The MM allocates RAM in contiguous blocks called segments. Each segment consists of an integral

number of fixed size allocation units, each of which contains 256 bytes aligned on a 256 byte
(page) boundary. Thus, a segment is a page-aligned block of RAM containing an integral number of

pages.

There is no predefined limit on the number of allocated segments or on the amount of memory that
can be managed. The MM allocates table space for itself as needed to keep track of allccated segments
and the available memory.

4.3 Structure of Calls

MM calls conform to the structure described in References [1] and [2]. All parameters and return
values except the error codeare passed and returned in the parameter block. The error code is
returned in the A register and the C status bit. When a function returns with a non-zero error code,
all of the return parameters are undefined. The first four bytes of every parameter block contain
the flag and function identifier described in Ref. [2]; this document describes only the parameter
bytes starting at offset 4 in the parameter blocks.

4.4 Description of Calls

4.4.1 Boot Initialize

This function initializes the MM at boot time by finding all available memory and initializing the
MM’s internal tables.

FN=1.

There are no parameters beyond the function identifier at the beginning of the parameter list. This
function must be executed before calls to any other MM functions.

Errors:
$10 Initialization failed
4.4.2 Application Startup
This function performs no operation, but is required by Ref. [1].
FN=2 |
Errors:
Always returns successfully.
4.4.3 Application Shutdown

This function performs no operation, but is required by Ref. [1].

June 7, 1985 3 JJC

FN =3
Errors:

Always returns successfully.

4.4.4 Allocate Segment

This function allocates a segment of specified length and location, a segment of specified length in a
specified bank , or a segment of specified length anywhere in RAM. In the last case, the caller
indicates whether or not the segment may straddle an interbank boundary. The segment is allocated
only if free memory meeting the given constraints is available.

FN = 4.

The parameter block is as follows:

Offset Name Type

4 mode value
5-6 label value
7 bank value

8-10 length value/result
11-13 base value/result
14-1S segnum result

Mode describes the nature of the memory allocation. Legal forms are

Bits Function

76543210

00------ allocate segment of given length and given base address

O01L-==-- allocate segment of given length completely within a specified bank
10LS---- allocate segment of given length anywhere in free memory
----RRAR 4 low-order bits reserved by Apple—must be zero

Hyphens indicate bits that are not used. L and S have the following significance:

0 allocate a segment of the specified size
1 allocate the largest available segment that meets the other constraints

L
L
5=0 allocated segment must not straddle interbank boundary
S=1 allocated segment may straddle interbank boundary

The bits indicated 6y RRRR may be used in future versions of the memory manager to specify certain
attributes to be attached to the allocated segment.

Label is a value specified by the caller to encode arbitrary information about the segment. The MM

June 7, 1985 4 JJc

remembers this value but does nothing with it.

Bank is usedonly inmode O IL-~--- . It tells the MM the bank in which to allccate the segment. It
is ignored in all other modes.

As an input value, length gives the length of the segment to be allocated in bytes. The input value is
ignored when L=1. [n all other cases, the MM rounds this field up to the nearest allocation unit
boundary. In all modes, length is used as a result field that gives the length of the allocated segment
in bytes. The segment will always contain an integral number of allocation units.

As an input value, base is used only in mode 00------ to specify the address of the lowest byte in
the segment to be allocated. The MM sets enough low order bits to zero so that the segment will be
aligned on an allocation unit boundary. In all modes, base is used as a result to specify the base
address of the allocated segment.

Segnum is a result assigned by the MM to identify the segment in subsequent calls.

The default search order established at initialization is as follows: Search the banks in order from
highest bank number toward lowest bank number. Within each bank, search from higher addresses
toward lower addresses. Choose the first free block that is big enough to accommodate the request
(“first fit") and satisfies the other constraints. When the segment must be in a specific bank ,
search only that bank from high end toward low end.

Errors:

$10 Initialization failed or was never performed

g1 [nvalid mode parameter

$12 Memory unavailable

$13 Memory manager ran out of table space
4.4.5 Modify Segment
This function increases or decreases the size of an-aiready allocated segment by adding or removing
allocation units at the low end or high end of the segment. A segment can be incressed in size only if
adjacent space of the specified size is available.
FN =5,

The parameter block is as follows:

Offset Name Type

4-S segnum value
6 mode value
7-9 length value

Segnum identifies the segment to be medified.

Mode tells how the segment is to be modified:

00------ reduce size by freeing allocation units at lower addresses
01-=aa=- reduce size by freeing allocation units at higher addresses
10-S---- increase size by adding allocation units at lower addresses

June 7, 1985 5 JJC

11-5=ee- ~ increase size by adding allocation units at higher addresses

S has the following significance:

S=0 the additional storage must not straddle an interbank boundary
S=1 the additional storage may straddle an interbank boundary

Length gives the number of bytes by which the segment is to be reduceg or increased in size. The
MM rounds length upward to the nearest integral allocation unit.

Errors:
$10 Initialization failed or was never performed
$11 Invalid mode parameter
$12 Memory unavailable
$13 Memory manager ran out of table space
$14 Invalid segnum value
4.4.6 Free Segment
This function returns a currently allocated segment to the pool of available RAM.
FN = 6.
The parameter block is as follows:
Offset Nome Type

4-S - segnum value

Segnum identifies the ségment to be returned to the pool of available memory. After this call, the
value of segnum no longer refers to the freed segment.

Errors:

$10 Initialization failed or was never performed
$14 Invalid segnum value

4.4.7 Gel Segment Number
This function returns the segment number of the segment containing a specified memory address.
FN=7.
The parameter block is as follows:
Offset Name Type

4-6 address value
7-8 segnum result

Address is an arbitrary RAM or ROM address.

June 7, 1985 6 JIc

Segnum identifies the segment (if any) containing the given address..
Errors:

$10 Initialization failed or was never performed
$15 Given address not contained in any segment

4.4.8 Get Segment Information
This function returns information about a specified segment.
FN=38.
The parameter block is as follows:
Offset Name Type

segnum vaiue
label result
0 length result
13 base result

— 0 0N A
-~

|
Segnum identifies the segment whase information is to be retrieved.
Label is the label value recorded when the segment was allocated.
 Length is thé segment length in bytes.

Base is the base address of the segment.

Errors:

$10 Initialization failed or was never performed
$14 Invaelid segnum vaiue

4.4.9 6et Search Order

This function returns the number of RAM banks and a pointer to a table that lists bank numbers in
the order they are searched by the MM. The calling program may reorder the table entries as
desired. Subsequent calls to allocate segment will use the new search order. The caller should
disable interrupts while reordering the table. 7//s /s & dangsrous call that should be used
only by system sortwsre.

FN=9.

The parameter block is as follows:

Offset Name Type
4-5 numbanks result
6-8 searchtable pointer result

Numbanks gives the number of 64Kby RAM banks in the machine.

June 7, 1985 ' 7 JI¢

Searchtable points to the MM table that lists the search order of the banks. The table contains
numbanks one-byte entries, each of which gives a bank number. Yhen processing a cail to
allocate segment, the MM searches the banks for free space in the order given in this table. The
caller may reorder the table as desired.
Errors:

310 Initialization failed or was never performed

4.5 Error Summary

Whenever a function returns a non-zero error code, all result parameters in the parameter list are
undefined.

$10 Initialization failed or was never performed

If the initialization function fails or is never executed, none of the other functions
will work.

$i Invalid mode parameter

The mode parameter of either the allocate or modify function is improperly
specified.

$12 Memory unavailable
A memory segment cannot be allocated because the specified area of RAM is
either non-existent or already allocated, or there is insufficient available
memory.

$13 Memory manager ran out of table space
The memory manager cannot perform the reguested function because it has run
out of internal table spece. This will happen only when there is almost no free
memory available.

$14 Invalid segnum value
The given value of segnum does not correspond to any allocated segment.

$15 Given address not contained in any segment
The given value of address is not contained in any allecated segment.

4.6 Additional Functionality

Several other useful functions can be performed by using combinations of the existing functions.
These are not implemented directly because they are used infrequently.

For example, a program can determine the size of the alloction unit by attempting to allocate a
segment of length 1 byte. If the call is successful, the length field of the allocate segment
parameter block will return the number of bytes in the allocation unit. The program should, of
course, execute the free segment function to return the memory to the available pool.

June 7, 1985 ' 8 JIC

