Cortland Unitied Disk 1.0 Flrmwara
Contrel Gall Bxtensions

Rev. 1.0

Developed by:
Gus Andrade ext. 6254
02-24-86

Introduction. ‘

Six new control calls have been defined for the Unified drive;
sethook, resethook, setmark, resetmark, setsides and set interleave. Each
of these calls are designed to let an application customize the firmware
without having to rewrite it.

Each call is invoked through the control call parameter passing
conventions set up by the "Protocol Converter" and "Extensions to the
Protocol Converter" documentation.

The SetHook call lets an application program point the entry address
into several low level routines into user provided code.

The ResetHook call restores specific hooks to the firmware entry
points.

The SetMark call lets an application program change the Mark tables
used by the firmware to values defined by the application program

The ResetMark call restores mark table values to their default values
defined in the firmware.

The SetSides call lets an application change the number of sides for a
disk accessed by the unified disk drive firmware.

The Setinterleave call sets the sector interleave on a track of disk
used in a unified disk drive.

The control call number are as follows:
Sethook = $05
Resethook = $06
SetMark = $07
ResetMark = $08
SetSides = $09
Setinterleave = $0A

Before making any of these calls, a status call should be made to insure
that the device ID we are talking to is a Unified disk drive.

New Dsony Calls Page 2 March 10, 1986

THOOK =

The Sethook call will allow an application to change the entry point
address for several firmware routines used by the Unified 3.5" drive
driver firmware. The list of hooks for the firmware routines are; Read
address, Read data, Write data, Seek, Format, Write track, Verify, and
Vector hook.

The read address routine will read bytes from the disk until it finds
the address marks and a sector number specified by the caller.

The read data routine will read a 524 byte block of data from the disk
which corresponds to the block number the caller specified. If the block
read call is for Apple //e block read, the first twelve bytes will be
discarded. If the block read call is for a Macintosh block read then all 524
bytes will be return to the caller in the buffer specified.

Write data will write 524 bytes of data to the disk in a disk position
corresponding to the block number the user specified. If the call is an
Apple //e block write call, the firmware will write twelve bytes of
zeroes to the disk before writing the data provided by the user. If the call
is a Macintosh block write call, all 524 data bytes written to the disk are
provided by the caller.

The seek routine is called when the read/write head must bg moved to
another cylinder on the disk. The cylinder numbers range in value between

zero and seventy nine. The following picture represents one side of a 3.5"
disk.

The format call is made when a disk is to be initialized with new

New Dsony Calls ‘ Page 3 March 10, 1986

address marks, data marks, zeroed data blocks and trailer marks. This call
writes information to the disk which lets the read and writes routines
find any block of data on the disk. The following pictorial diagram shows
a simplified reprentation of a disk block.

ADDRESS| ADDRESS FIELD GAP DATA DATA FIELD EOB
MARKS MARKS MAR WS
-
x =
Slolalel3 lafa] s - 10 & 5
DS|AA96|= 1B | S| Z|x |2 |2 ayres [PS|AA|AD| &| 342 DATA BYTES |x |DEJAAIFF
2191 o]« o= Q =
o SYNC b 3)

The write track routine is called by the formatter to write out one
track of empty blocks. The number of blocks on a track will vary
depending on which cylinder the read write head is positioned on.

The verify routine is called by the foramtter to verify that the data
written by the write track routine was writtern correctly.

The vector routine is a high level piece of code which validates the
format of protocol converter calls parameters and dispatches to the code
which corresponds to each of the protocol converter calls. Please refer to
the "Protocol converter specification” and the "Extensions to the protocol
converter" documents for detailed descriptions of each call.

Each of the routines mentioned above are assigned a hook number.
This hook number will be used by the firmware to change the specific
- entry point address when a call is made to set a hook or reset a hook. The
Sethook call will set the entry address field corresponding to a hook
number, to a specific value defined by the caller. Once the callers code is
in control it must save the state of the processor. The first thing the
code which has been hooked into the firmware is to save the state of the
emulation bit, the state of the M and the X bits and the whether interrupts
are enabled or disabled. Upon exiting from a hooked routine the state of
the e, m, x and interrupt bit must be restored, the carry bit must be
cleared and the accumulator must be zero. |f hooked code must pass

New Dsony Calls Page 4 March 10, 1986

status information back to the application, it is the responsibility of teh
routine to store status information in an area of memory the application
knows about. This will be followed by a RTL instruction. This RTL wilvl
return cotrol back to the firmware which will in turn return back to higher
levels or continue running the firmware routines corresponding to this
call. When a set hook call is made and the high order bit of the hook
number is zero, the firmware routine corresponding to the hook number
will be executed upon returning from the users code. If the high bit is set,
the firmware will not be executed after returning from the users code and
control will be passed back to higher levels of the firmware. Any routines
the user may have hooked into the fimware will not be able to make other
protocol converter or extended protocol converter calls. The parameter
list is defined as follows:

Sethook parameter list format:
$OOXXYYZZ | Count low| = $04
Count high| = $00
Hook # | With high bit set or cleared
Addr low

Addr high
Bank no.

* 9% 1 XXXXXXX for a hook which will NOT
execute the default firmware
routine when it returns from
the caller.

%0XXXXXXX for a hook which WILL execute
firmware code after returning
from the caller's code.

The list of hook numbers is defined as follows:
Hook #1 = Read address
Hook #2 = Read data
Hook #3 = Write data
Hook #4 = Seek

Hook #5 = Format disk
New Dsony Calls Page S March 10, 1986

Hook #6 = Write track
Hook #7 = Verify track
Hook #8 = Vector

rror .
Invalid parameter count = $22
Bad hook # = $30

Hook numbers other than the ones defined, will return an error status
when a call is made to set hook or reset hook. Also, the parameter count
in the first two bytes has to be as defined or the hook address will not be
modified and a control parameter list error will be returned to the caller.

New Dsony Calls Page 6 March 10, 1986

2. Resethook = $06

The Resethook call will restore the default entry address defined in
the firmware for a specific hook. The format of the parameter list for the
Reset hook call is as follows:

ResetHook parameter list:

$0QXXYYZZ | Count low| = $01
Count high| = $00
Hook # | = Hook #

The list of hook numbers is defined as follows:
Hook #0 = Restore ALL hooks to firmware defaults.
Hook #1 = Read address
Hook #2 = Read data
Hook #3 = Write data
Hook #4 = Seek
Hook #5 = Format disk
Hook #6 = Write track
Hook #7 = Verify track
Hook #8 = Vector
Error codes:
Invalid parameter count = $22
Bad hook # = $30

New Dsony Calls Page 7 March 10, 1986

. Setmark = $07
The Setmark call lets an application program change individual bytes
in the mark tables to values of their choice. The parameters are stored in
the table in reverse order. Bounds checking will be performed to make
sure the byte count from a specific start position will not go past the end

of the Mark table. The Marks table is defined as follows:
Marktab u *

afdmtab df $FF ; byte 0 (Sector number)
dfb $AD ; byte 1
b 235 ibhea
ve)) e
synctab amo §5FF ;g%r?cdfb te table
u : e
Y g?b C b))/lte 5 Y
dfb $F3 ,byte 6
I B bes
g : by
’ dfb $FF ;byte 9
bsmarks qu: * : bYt ~sli1p marks table
df ; byte 10
dfb AA byte 11
adrguts df% * ’ %%teer-?wgader gap
g SFF ‘ byte 13
® E e
g : byte
dfb $FF byy/te 16
dfb $FF ; byte 17
adrmarks dfu) % ; Address marks
dfb AA
dfb D5
dfb :

Parameter list for SetMark call:
$0OXXYYZZ | Count low| Number of bytes to set in the Mark table+1
Count high| = $00
Start byte
Data

Data
Data

Error code:
Invalid parameter count = $22

New Dsony Calls Page 8 March 10, 1986

4, Resetmark = $08

The Resetmark call will change the individual bytes in the Mark table
to their default values defined in the firmware. The parameters are stored
in the table in reverse order. Bounds checking will be performed to make
sure the byte count from a specific start position will not go pas the end

of the Mark table. The Marks table is defined as follows:
Marktab u *

a
afdmtab df $FF ;byte O
dfb $AD ; byte 1
dfb $AA | byte 2
kP el
$; byte
synctab qu) ;Sysl/nc byte table
df $FC ;byte 5
dfb $F3 .byte 6
dfb 0 byte 7
N < |
bsmarks equ : bt sli1p marks table
df ; byte 10
M PE Bl
, Dyle
adrguts u * ; inter-header ga
9 gﬂ) $FF ; byte 13 gap
W& s
S ; byte
9 &F byte 18
dfb $FF ; byte 17
adrmarks g%l) %6 ; Address marks
dfb AA
dfb DS ;
dfb :

Parameter list for ResetMark call:

$00XXYYZZ | Count low| Number of bytes to set in the Mark table+1
Count high| = $00

Start byte

Error code:
Invalid parameter count = $22

New Dsony Calls Page 9 March 10, 1986

5, Setsides = $09

This call lets an application program change the number of sides
defined on a specific disk drive. The only call affected by the SetSides
call is the format call. Read an write calls use the number of sides
encoded in the block header on the disk. The SetSides call can be made
before a format call in order to format single sided disks. The high order
bit will define the number of sides for ény unified disk drives in the chain.
A zero defines single sided and a one defines double sided. The firmware
defaults this value to double sided. This call will not do any checking to
see if any unified drives are connected. The parameter list is defined as
follows:

meter list r tSi 1:
$0OXXYYZZ | Count low
Count high| = $00

Sides byte| =%1X000OXX double sided
= Y% OXOOXKXXX single sided

rror

New Dsony Calls Page 10 March 10, 1986

t Interleave = $0A

This call lets an application program set the block interleve on a disk
to a value between one an twelve inclusive. The value set will apply to all
unified drives connected in the chain. An error status will be returned to
the ceiller if an invalid interleave or an invalid parameter count is passed
to the firmware. This call applies only to format calls. The sector number
set down on each data block of a disk during a format call is calculated
from the interleave value. The parameter list for a Set interleave call is
as follows:

Parameters list for Setinterleve:
$0OXXYYZZ | Count low

Count high| = $00

MNnterleave | = $01 to $0C (Interleave value)

Error codes:
Invalid parameter count = $22
Invalid Interleave = $32

New Dsony Calls Page 11 March 10, 1986

