This document was kindly scanned by :
Gordon Beckmann - Technical Director
gbheckmann@elitesoftware.co.uk

Elite Software Company

Thank to him for his permission to share it.

WILDCARD PLUS TECHNICAL NOTES

This documentation is copyright material and unauthorised reproduction
in any form is strictly prohibited.

The information provided here is designed for machine code programmers
who fully understand the operation of both the Apple // range of
computers and the 6502 microprocessor. It is useful for those people
who wish to know more about the operation of Wildcard Plus and who are
particularly interested in writing their own machine code utilities for
this card. Supplied with this documentation should be an assembler
listing of the Wildcard Plus ROM and a DOS 3.3 floppy disc containing
files to aid in the preduction of utilities.

Copyright 1984 : Elite Software Company

WILDCARD PLUS - HARDWARE DESCRIPTION

Wildcard Plus contains its own 6502 microprocessor, and acts as a
co-resident processor card. When the button is pressed on the
Wildcard Plus it pulls the DMA line on the Apple low, thus stoepping
the Apple's 6502. The microprocessor is halted during the entire
operation of Wildcard Plus, until the Resume command is selected.

The memory map of Wildcard Plus is as follows.

$0000 - S@TFF Wildcard plus RAM includes zero page, stack.
While the Wildcard is running (i.e. Apple is paused)
$0409 - $OTFF contains the Apple text screen image.

$0800 - SOSFF A store anywhere in this block sets the 256 byte page
available to WINDOW.

$0909 - SO9FF WINDOW. This is a window into the Apple. It allows
load and store access into a 256 byte area of the Apple
address map (all 64K can be used). The high byte of the
address is set by $800 (as above). Therefore to read a
byte from $C@00 in the Apple from the Wildcard Plus,
LDA #$C0 STA $0800 LDA $0900

Other hardware locations are not described as they should only be used
via the subroutines in the Wildcard Plus ROM for reasons connected with
the timing of the card.

$1000 - S1FFF Wildcard Plus ROM. See the separate infermation on
subroutines available. It is intended that the entry
points to these subroutines will not change.

An additional 2K of RAM is available for utilities. This is in the
Apple address space, not the Wildcard Plus memory map. Normally it is
transparent to the Apple, i.e. it appears to all software as if no card
is in the slot. The RAM can be enabled using the SLOT.ONN and SLOT.OFF
subroutines. When enabled the bottom 256 bytes of the RAM appears in
the slot area S$SCN@@ - SCNFF. Once the RAM has been enabled the whole 2K
can be mapped into the 2K common area ($C80@ - SCFFF) by reading
SC@80+NP in the Apple address map, and the RAM can be removed from this
area by reading $C@81+N@. N is the slot number. The hardware of
Wildcard Plus does not stop a memory conflict with any other card in the
common area. It is up to utility software to switch out any other
interface card. The files provided handle all this automatically as
described in later sections.

Note that this mapping means that the RAM in areas S$CNg@gg - S$CNFF and
SC89@P - SC8FF is the same.

See the separate note on loading and using utility seoftware.

RAM LOCATIONS

A Study of the listing of the Wildcard Plus ROM will reveal that many
locations used in the Wildcard memory map are well described by their
name. A list of some of the more useful locations follows.

WC.RAM
WC.ARROW
WC.LC
WC.89COL
WC. 64K
WC.A

WC.TEMP.ZP

WC.PTR

UTILITY

$00,%01
$92

$94

$05

$96

$20

$3B
$50,51

$55

$100-S1FF

$0200-$Q7FF

Power on checksum. Do not use.

Can be used by utilities.

Contains zero if no 16K card.

Not zero if //e 88 col card installed.

Not zero if card is extended.

Apple 6502 accumulator value at time of
Wildcard Plus being activated.

Other registers follow.

Can be used by utilities, but may be used
by any subroutine in the ROM at will.
General purpose pointer. May be used by
ROM subroutines. Check the listing.
Contains slot number of Wildcard Plus enly
if a utility is installed, otherwise zero.
If a utility sets this to zero it effectively
destroys itself. '

Stack. Exit code resides here if using the
supplied utility files. Utilities may call
subroutines with impunity, but otherwise do
not use page 1.

This RAM area is completely unused by the

ROM subroutines (except the disc access

ones, but if you want to use these please try
and work out the listing), and can be used by
utilities for code, buffers etc.

Other areas and locations may be safe to use, or they may noet. Check in
the listing any subroutines that you call, and if it works, it's right.

WILDCARD PLUS - ROM SUBROUTINES

MENU.WILDCARD $157A

This is the main options menu of the Wildcard Plus.

CLEAR $17FE

Clear all of text screen 1 except the top two lines. This preserves
the WILDCARD PLUS header. The copy of the text screen made in the
Wildcard Plus RAM is not altered; thus the interrupted program still
resumes correctly. This routine is used to clear the screen for
Wildcard Plus display.

PAGE.C@ $1700

Point WINDOW ($0900) at page $C@ in the Apple memory map. This is
useful to access the keyboard, soft switches etc..

BASCALC $1885

If the accumulator contains the number of a valid line on the text

screen, this routine sets WINDOW to point to the high part of the

address and stores in WC.TEMP.ZP ($3B) the low part of the address of

the start of the line. The low part is alse returned in the

accumulator., Thus to plot an A at the fourth position in line 8,
LDA #$08 JSR BASCALC CLC ADC #$P#4 TAY LDA #'A' STA WINDOW,Y

GET.KEY S189E

Get a key from the keyboard in the accumulator. Letters are forced to
be upper case. The key is returned with the top bit set.

FORCE, UC $18A9

If the accumulator contains a lower case letter make it upper case.

SLOT.OFF S1ADB

Disable the utility RAM area. Use this routine; do not access the
hardware switches directly. After calling this routine the 2K utility
RAM area can not be accessed by the Apple.

SLOT.ONN S1BE4

Enable the utility RAM area. Use this routine; do not access the
hardware switches directly. After calling this routine 256 bytes of the
utility RAM is mapped into slot space, with the option of accessing all
2K in the C80@ common area.

CREATING UTILITY SOFTWARE

There are three separate problems in creating utility software for
Wildcard Plus. They are: loading the software inte the Wildcard,
starting the software running and ensuring that it runs correctly when
it has started. These will be discussed individually.

LOADING THE UTILITY SOFTWARE

Utility code is loaded into the Wildcard Plus from the Wildcard menu by
selecting the U option. This checks the contents of a zero page
location in the Wildcard map called UTILITY ($55) and, if that location
contains zero takes the code in page 3 ($300 - $3FF) in the Apple
memory, transfers it to page 3 in the Wildcard and executes it. It is
the task of this code to perform the move of the utility inte the
Wildcard utility RAM. It must also set UTILITY to contain the slot
number of the Wildcard so that next time the U option is selected the
Wildcard does not attempt to load more utility software.

Fortunately all the hard work is dene for you. Provided with this
package is a disc ceontaining various files. One of these is a binary
file called UL. This can be appended to any utility and performs all
the loading functions. It occupies none of the 2K utility space; after
the utility is loaded this loading code disappears. How to merge it
with your utilities is described later.

RUNNING A UTILITY

We recommend that a utility is run by transferring the code from the
utility RAM into the main Wildcard Plus RAM, where it can be executed in
Wildcard space. This is not the only way to run a utility. If yeou
decide to adopt a different approach good luck!

If you choose the recommended method the disc supplied contains more
routines to aid you. They are all source files supplied in S-C Macro
Assembler format.

The only file you should ever assemble is A.U. It is the main
controlling file, and will load up other source files (including the
utilities you write) and merge them. The other files mentioned below
are all used by A.U.

U.CONSTANTS contains all the locations used in the Wildcard memory
space, and all locations used by the other routines supplied. Because
this file is included you do not need to worry about declaring any ROM
subroutines or Wildcard Plus RAM locations you use.

U.CN@@ is a file which will eccupy 256 bytes of the utility space. It
is responsible for loading the rest of the utility code into the
Wildcard and it preserves the Wildcard's copy of the Apple text screen
by storing it where the utility code used to be.

U.EXIT contains the code which replaces the screen in the Wildcard RAM
and returns to the Wildcard menu. It also occupies 256 bytes and is
included automatically by A.U. The correct way to exit a utility is
described in the next section.

RUNNING UTILITY SOFTWARE

Now for the fun bit. 1It's time to acually produce a working utility.
Your utility code resides in normal Wildcard plus RAM in the area $0200
-~ SP7FF. To exit a utility all you need do is JMP EXIT.UTILITY . This
will correctly restore the Wildcard copy of the text screen and return
to the menu with everything intact.

When you have written your utility coede save the source file on a COPY
of the supplied disc, and alter A.U by adding at line 1245

1245 «IN YOUR.FILE

where YOUR.FILE is the name of your source file. Assemble A.U and it
will create a binary called U. To produce a final utility type

BLOAD U,AS$2800
BLOAD UL
BSAVE YOUR.NAME,A$2500,L$Bgg

where YOUR.NAME is the name of the utility you want. We suggest that

you call all the utilities UTILITY.######88#% (444444444 is the name of
your choice) so that they can be recognised.

EXAMPLES

The easiest way to demonstrate how to write a utility is with an
example. By pure coincidence there just happen to be two example
utilities on the disc supplied. Neither of then do anything useful, but
they show the principles involved. They are called U.DEMOl1l and U.DEMO2.

U.DEMOl1l displays a message on the screen and returns to the Wildcard
menu only when ESC is pressed.

U.DEMO2 takes the contents of high res screen one and copies it to high
res screen two.

Start by listing out both demonstrations source files. If they are
commented as well as we believe their operation should be obvious.
Try assembling them by including them in A.U and combining the binary
with UL as described above. They should work correctly. From now on
you are on your own.

One final warning; eonce a utility is in the Wildcard it is there for
good unless the utility itself sets the location UTILITY to zero. Until
this happens pressing U from the Wildcard menu will run the utility and
not load it. Happy programming.

SUPPORT

You are not completely on your own. We will try and help if we can with
any problems. Please remember that for most non-trivial problems all we
can do is look through the ROM listing for the answer, which you can try
just as well. Just because we produced the product doesn't mean we
understand how it works.

It you do telephone with a problem you will not receive an immediate
answer. The programmers live two thousand light years from the nearest
telephone and all communication with them has to take place via
hyper-spacial warp. It is better if you write describing the help you
need exactly and enclosing any relevant source listings. We will reply,
even if all we say is that we cannot help. Any reply you receive should
contain information on our entire product range. Please read it. If
there is anything there that you want we need the business.

THOUGHT FOR THE DAY

Real programmers don't comment their code.
If it was hard to write it should be hard to understand.

