& Apple Lisa Computer Information ¢ Clascal programming language review

EXOTIC LANGUAGE
OF THE MONTH CLUB

Clascal — An object-oriented Pascal

n 1983 Apple
Computer set into
motion a new ideal
in the personal computer industry. With
the introduction of the Lisa, Apple gave
the computer public its first inoculation of
user-friendly, fully integrated software.

No other personal computer has quite
matched the innovation of the Lisa. Yet
very little is known about the heart of this
computer. Besides some of the most
impressive hardware specifications for a
computer in its price category, the Lisa
has some of the most sophisticated soft-
ware ever packed into a personal
computer.

Included in this software is a very fast
and powerful graphics driver (Quick-
Draw), a standard operating system, a
hardware interface, and a development
environment called the Workshop—with
Pascal, Assembler, Linker, COBOL,
BASIC, and a command list processor.

Apple used these standard building
blocks, along with several custom utility
libraries designed to drive the windows
and folders of the desktop, to create the
Office System environment. The Office
System is a collection of integrated soft-
ware aimed at office and business
automation.

To top the package off, Apple spent a
great deal of effort to develop a system
that would allow future programs written
for the Office System to be fully inte-
grated. This system, called the Toolkit,
was built on an object-oriented language
named Clascal.

Clascal was an extension built into

S ——

PROCEDURE TStaWindow.Draw;

BEGIN

SELF.views.Each(Draw);

SELF.HiliteSel;

END;

Listing 1.

By Tim Endres

Apple’s Pascal that gave it an object-
oriented syntax. Clascal and the Toolkit
provided me, an independent developer,
with the resources to develop an applica-
tion for the Office System in approxi-
mately half the development time I would
have expected for any other PC. This
application was fully integrated into the
Office System and provided a user-
friendly interface consistent with all other
Office System applications.

o realize the sig-
nificance of the
Toolkit, one must

first appreciate Clascal. Clascal is an
extension of Pascal that makes it object
oriented, which means that the syntax of
the program is based on the idea of objects
instead of procedures and object parame-
ters instead of variables.

With regular Pascal, you program
using procedures, functions, and vari-
ables. With Clascal, you program using
objects, which have methods (procedures
and functions) and data fields
(parameters).

To illustrate the difference between
Pascal and Clascal, consider the code
written to display and control the window
in which my application executed (Figure
1). The window had three different views
in which user interaction occurred: the
status view on top, calendar view bottom
left, and appointment view bottom right.

Let’s consider writing the code that
would be responsible for merely drawing
the window. In Pascal, I would call the
procedure that draws the window:

Draw_Window;

The Draw_Window procedure would
call the procedures responsible for draw-
ing each of the views and highlighting
selections:

PROCEDURE Draw_Window;
BEGIN
Draw_Status_View;
Draw_Appointment_View;
Draw_Calendar_View;
Hilite_Selections;
END;

In Clascal, the window is an object.
Objects are referenced with symbolic
variables the same way variables are ref-
erenced in Pascal. To draw the object, you
must invoke its method, called Draw:

myWindow.Draw;

Here myWindow is a symbolic reference
to the window object. MyWindow’s Draw
method would first call each view’s Draw
method, then invoke its own highlighting
method. In Listing 1, notice how the data
field views is a reference to an object that
is a list of objects. Each object in the list is
a view of the window. The method Each
invokes the method in parenthesis for
each object in the list. Lists arc important
classes in the Toolkit.

The keyword SELF is essential to Clas-
cal. When any method in Clascal uses this
keyword, it is referencing the object that
was asked to perform the method
(myWindow in the preceding example). To

{TStaWindow is myWindow's class name}

{Causes each object in list "views")}

{to invoke its DRAW method)

{method

{Invokes the window's own HiliteSel

}

49

| Source: Computer Language magazine « May 1985

Page 0001 of 0004 |

& Apple Lisa Computer Information ¢ Clascal programming language review

understand this a little more, we must dis-
cuss classes, the foundation of Clascal.

—_— bjects are the
functional build-
ing blocks for

Clascal. Every tangible piece of the pro-
gram is represented by an object, and
every tangible action in the program is the
method of an object or a function or pro-
cedure called by a method.

Thus, when the software developer
writes code, he or she is creating objects
that represent the different pieces of the
application (for example, Window, View,
Appointment, Calendar, Day, Clock,
Folder) and causing these objects to act
upon each other by invoking their
methods.

Classes are the conceptual building
blocks of Clascal. Every object created in
a program is defined to be in a particular
class. Classes are similar in syntax to
types in Pascal but function considerably

differently. They create one of the most
powerful aspects of Clascal.

Classes describe the types of objects
used in a program in terms of the parame-
ters of each object and the methods that
each one can perform. More importantly,
each class is a subclass of some other
class. This is a required syntax and gives
the language a hierarchical structuring.

This hierarchy is one of the most pow-
erful aspects of Clascal. It accounts for a
very critical quality called extendibility.
Extendibility is the ability to take a func-
tioning block of code and extend its capa-
bilities through the mechanism of
subclassing.

For instance, again in Listing 1, [used
the object myWindow to control the win-
dow of my application. This object
belongs to the class TStaWindow , a sub-
class of TWindow , which is a class pro-
vided in the Toolkit. Any object in the
class TWindow can perform the following
methods:

B Create a new object of the class
TWindow

B Delete itself

® Clone or duplicate itself

B Draw itself

8 Perform commands and handle mouse
and keyboard events

B Open, close, suspend, resize, and
refresh itself.

Because of inheritance, every object in
the class TStaWindow can perform any of
the preceding methods. The objects of the
class TStaWindow also inherit the parame-
ters defined for objects of the class TWin-
dow. Thus, by merely coding the line that
states TStaWindow is a subclass of TWin-
dow, I can create my own windows that
do everything Apple has coded for objects
of the class TWindow .

Better still, I can add to the parameters
and methods that are defined for TWindow
objects to make my windows more func-
tional. Plus, I may redefine the methods
that are already defined for TWindow
objects to do something different. For
example, Apple’s TWindow objects, when

February
Tu|We|Th|Fr

3[4 s[6[7]8]
DEE - B
3 |19

Figure 1.

50 COMPUTER LANGUAGE B MAY 1985

]

BoOks

T ’iFebruaryk 14

8- QO,am to 9:00 am MNeeting

.

| Source: Computer Language magazine « May 1985

Page 0002 of 0004

& Apple Lisa Computer Information ¢ Clascal programming language review

If I define my own method called
HiliteSel for the TStaWindow class, and a

activated, would do some default high-

a)

lighting of selected objects. This was fine
except that the default highlighting logic
caused a glitch in my program’s display in
certain cases. To fix this problem, I sim-
ply redefined the method that activated
the window to use a different highlighting
logic. I did this by defining a method for
the class TStaWindow with the same name
as the method defined for TWindow .

Why did this override the activation
method performed by TWindow? This
brings us back to the keyword SELF .
Whenever a Clascal method uses the key-
word SELF , it is referencing the object
that was asked to perform the method.

Notice the number of occurrences of
the word *‘itself”” in the list of the pre-
vious methods. Consider, from the exam-
ple method TStaWindow.Draw , the line

TStaWindow object is asked to perform its
Draw method, then that method in turn
will invoke its own HiliteSel method. If
had not defined this method for TStaWin-
dow objects, then the Draw method would
invoke the HiliteSel method defined for
TWindow objects. This situation is illus-
trated in Figure 2.

Just as methods are inherited, so are
data fields. The methods defined for 7Sta-
Window objects can reference the same
data fields defined for TWindow objects.
The only difference is that you do not
override data fields. Inheritance is col-
lective. Classes inherit the methods and
parameters of their superclass, which in
turn inherit the methods and parameters
of their superclasses.

C LIBRARIES
C WINDOWS

Best You Can Get!
325 Fully Tested Functions
SIX C LIBRARIES

FUNCTIONS YOU DON'T HAVE BUT NEED!
All Source Code. No royalties.
57 screen handling /graphic

SELF HiliteSel . This line states that the functions $49.95
window object should perform its method he Toolkit is a S0 cqrsor/keybnard/dala
called HiliteSel . When the keyword SELF library of soft- input functions $39.95
is encountered, a search beginning with ware provided to 85 superior string

the object performing the method is con- support Office System application devel- functions $59.95
ducted for the method definition. If the opment. It accomplishes this through the 31 system status & control
method is not defined for the object’s mechanism of extendibility provided by functions $2995

class, the search continues up through the

Clascal.

72 utility/D0S/BI0S/time/

superclasses of the object’s class, until the The Toolkit is a collection of class defi- date functions $49.95
definition of the method is found. nitions that together perform all of the 42 printer contral
basic Office System functions. It defines functions $2995

Two TStaWine

Figukre 2.

windows, views, panels, scroll bars, doc-
uments, document managers, processes,

C-TO-FORTRAN/FORTRAN-TO-C
RICHLY COMMENTED
Easy tolLearn/Easy to Modify
Execute other Frograms Internally

No Matter What Eise You Have, Get These!

ANY 3 LIBRARIES $69.95
ALl 6 LIBRARIES $99.95

50 MOST NEEDED FUNCTIONS
$4995

3270 FUNCTION PACKAGE $69.95

C WINDOWS

PROFESSIONAL WINDOW MANAGEMENT

Overlays.BordersPopup Menus,Help Windows,
Status-Line.Color Highighting And More !l

C Windows: Complete Source Code.....$89.95
THE PROFILER

by DWB ASSOCIATES
The Cadillac of profilers..$125.00

COMBINATION OFFER
C WINDOWS PLUS 6 LIBRARIES
For $149.95
SIX LIBRARIES & THE PROFILER
Both For $179.95
C WINDOWS & 6 C LIBRARIES
& THE PROFILER
A $315 value All For $219.95

€ntelekon

SOF TWARE SYSTEMS

ENTELEKON 12118 KIMBERLEY
HOUSTON, TX.77024 (713)-468-4412

CIRCLE 50 ON READER SERVICE CARD

51

Source: Computer Language magazine « May 1985

Page 0003 of 0004

& Apple Lisa Computer Information ¢ Clascal programming language review

selections, clipboards, dialog boxes, text
and much more. These definitions pro-
vide the software developer with an appli-
cation skeleton, called the generic
application.

By coding no more than 100 lines, I can
develop an application that will display a
window with scroll bars, a view with my
name drawn in it, and menus. It would

allow moving and sizing of the window,
picking of commands from menus, scroll-
ing, view splitting, and document cre-
ation, saving, and deleting. Then, by
overriding defined methods and creating
my own classes, my application slowly
develops into its own unique definition.
Since Toolkit classes were provided for
cutting, pasting, printing, mouse han-
dling, and text, my application was fully
integrated with all other Office System
applications. The application also utilized

similar mechanisms for the user interface.

THE
GREENLEAF
FUNCTIONS™

LEAF
SOFTWARE

The GREENLEAF FUNCTIONS GENERAL
LIBRARY has over 200 functions in C and assembler.
Strength in DOS, video, string, printer, async, and systems
interface. All DOS 1 and 2 functions are in assembler for speed.
All video capabilities of PC supported. All printer functions. 65
string functions. Extensive time and date. Directory searches. Polled
mode async. (If you want interrupt driven, ask us about the Green-
leaf Comm Library.) Function key support. Diagnostics. Rainbow

Color Text series. Much, much more. The Greenleaf Functions. Simply
the finest C library (and the most extensive). All ready for you.

THE GREENLEAF FUNCTIONS™

The Library of C Functions that probably has just what you need . . . TODAY!

already has what youre working to re-invent

already has over 200 functions for the IBM PC, XT, AT, and compatibles
already complete . . . already tested . . . on the shelf

already has demo programs and source code

already compatible with all popular compilers

already supports all memory models, DOS 1.1, 2.0, 2.1

already optimized (parts in assembler) for speed and density

already in use by thousands of customers worldwide

already available from stock (your dealer probably has it)

a It's called the GREENLEAF FUNCTIONS.

The Library of C Functions is Waiting for You

Specify compiler when ordering. Add $7.00 for UPS second-
day air (or $5.00 for ground). Texas residents add sales tax.
Mastercard, VISA, check or P.O. In stock, shipped same day.

»« General Libraries $185
=« Comm Library $185
« C1 C86 Compiler $349
» Lattice C $395
« Mark Williams $475

For Information: 214-446-8641

Prices are subject to
change without notice.

=

GREENLEAF
SOFTWARE e

2101 HICKORY DR.
CARROLLTON, TX 75006

The amount of coding I was saved by
not having to develop Toolkit classes is
quite significant. The source code of the
Toolkit contains approximately four times
the number of lines that my application
contains. Since development took me nine
months, I figure the Toolkit saved me at
least two years. It also provided the less
exciting, low-level code and allowed me
to develop at a higher, more creative
level.

_— lascal has
J— brought object-
oriented

languages into a new arena. For the first
time, general PC programmers can
develop software with an object-oriented
language. For the first time, they might
learn what SmallTalk is. Apple has just
released a language called Object Pascal
for the Macintosh and created MAC App,
the equivalent of the Toolkit. Cross your
fingers in the hopes that more businesses
will see that object-oriented languages are
the next language in the hierarchy.

This language also provides an inherent
structuring. The different conceptual
objects of an application must belong to
classes. Each class has a set of methods,
which perform functions unique to the
class. Each class has a set of parameters.
These classes must be hierarchical and
inherit methods and parameters from par-
ent classes.

Clascal, being an object-oriented lan-
guage, reduces development time and
increases integration, due to extendibility.
Extendibility also provides a convenient
mechanism to provide generic expert sys-
tems that users can customize through
subclassing.

Clascal is truly an unsung hero. Of all
the fanfare the Lisa received, only a hand-
ful of articles even mentioned the Toolkit,
and fewer yet talked about Clascal. If
more exposure is given to this language,
perhaps this situation will change.

Tim Endres is responsible for advanced
planning and technology transfer for GM/
EDS at Buick-Oldsmobile-Cadillac in Lan-
sing, Mich. He has a B.S. in electrical
engineering from General Motors Institute
and is a licensed developer for Apple’s Lisa
and Macintosh. n

CIRCLE 44 ON READER SERVICE CARD
52 COMPUTERLANGUAGE mMAY 1985

| Source: Computer Language magazine « May 1985

Page 0004 of 0004 |

