& Apple Lisa Computer Information ¢ Lisa Toolkit Review

Software
“toolkits” save
programming
time

SOFTWARE
FRAMEWORKS

Gregg Williams is a senior
technical editor at BYTE.
He can be reached

at POB 372,

Hancock, NH 03449.

BY GREGG Wl'LLIAMS’

e are certainly
beginning to see
some wonderful
software—fast, use-

ful programs that .

give us color graphs,

windowed informa-

tion, and mouse-
based cursors. Unfortunately, such software
involves a tremendous amount of program-
ming. Since more time at the programmer’s
computer usually translates to more dollars
at the software store’s cash register (in a
market where software prices -are high
enough as it is), both you and the software
publisher aré part of a two-sided dilemma.
*On the publisher's side, the dilemma has to
do with choosing between producing the
more complicated software and raising its
price, or not- producing it because he
believes he will not be able to sell it profit-
ably. On the user's side, you can either buy

" the software you see or not—you have lit-

tle direct influence on what software gets
developed. Unless we can all improve our
standard of living so that we won't mind
spending $1200 for a spreadsheet, it looks
like it's up to the software publisher to come

up with an answer to this problem.
There is one sure way to keep a product’s
price from .rising—reduce manufacturing
costs. You can be sure that software pub-
lishers are looking at every phase of their
operations for places to cut costs, and since
development represents the largest per-
centage of that cost, why not start there?
The quest for lower development costs has
given us such things as new programming
languages, productivity tools, and program
generators. A promising solution being
used by several software developers is that
(continued)

DAVID T. CRAIG

.
NS

b

4

\
'\

124 BYTE « DECEMBER 1984

ILLUSTRATED BY RICHARD COWDREY \

| Source: BYTE magazine » December 1984 « Software Frameworks

Page 0001 of 0012

& Apple Lisa Computer Information ¢ Lisa Toolkit Review

A software framework
defines much of an
application’s operating
environment so that
“the programmer can
concentrate on the
application itself.

of the software framework, a program
{often enhanced by a programming

language and/or_environment) thaf

defines much of an application’s stan-
dard operating environment so that

the programmer can concentrate on
implementing the application itself. In

this article, we will [oOK at Apple Com-
puter’s Toolkit/32 as a representative
example of this type of software, Tool-
kit/32 significantly reduces the time

needed to create an application that
runs In the Lisa's desktop-metapnor
environment.

{You should not confuse my concept
of “frameworks” with the Framework
integrated-software package from

SUPPLIED
SUBROUTINE

SUPPLIED
_SUBROUTINE

SUPPLIED
***l SUBROUTINE

already-specified user interface).

Figure 1: Creating an application program using a subroutine library. When you
must make an application given a library of useful subroutines. you must write the
driver program and whatever custom subroutines (shaded) are needed to create the
application. If the application is embedded in a sophisticated user interface, you will
spend a long time “reinventing the wheel” (writing the code to implement an

SUPPLIED
DRIVER
PROGRAM

SUPPLIED
SUBROUTINE

SUPPLIED
SUBROUTINE

SUPPLIED
SUBROUTINE

f P
SUPPLIED X
SUBROUTINE

framework.

Figure 2: Creating an application program using a software framework. 1f you
have been given a software framework that implements the user interface but nothing
else. you need only write code that implements your application. In some cases, you
will write entire subroutines: in others, you will modify ones already in the software

AshtonTate, which was announced
aftgr | had finished writing this article.)

CONVENTIONAL

PROGRAM DESIGN

Software has too often been cobbled
together on an entirely custom basis—
that is, each program is created with-
out making use of any previously writ-
ten code. Sometimes, a software de-
signer who has a number of similar
programs to write will create a library
of useful subroutines that can be
copied as needed into programs. In

some cases, as with the Macintosh

Application Toolbox in which a 64K-
byte ROM (read-only memoryj of rou-
tines is built into Apple’'s Macintosh
computer, these routines can be quite
powerful and can eliminate a large
amount of needless programming. In
such cases, the programmer will write
a main program that makes heavy use

_ of their own subroutines as well as

those supplied (see figure 1).

What is wrong with this setup? No-
thing—it's just that it often isn't
enough. Much of the main program
is merely program “glue” that coor-
dinates the calling of the supplied
subroutines. When a program is so-
phisticated enough, though, even the
coordinating software is complicated.
Consider the Lisa applications, all of
which use the same user interface.
The application program must inter-
act quickly with user input (keyboard,
mouse, and mouse button) to create
complicated output in the form of
graphics, text, and windows. In addi-
tion to performing its dedicated func-
tion (e.g.. drawing graphs, maintaining
a spreadsheet), an application must
do many things that do not change
from appilication to application: up-
date the video cursor when the
mouse is moved: display a puli-down
menu when a menu title is selected
(cursor on title, mouse button pressed
and held); execute a given task when
a menu item is selected (cursor on
item, mouse button released); move
a window when it is being dragged
{cursor on window title, mouse button
pressed and held); resize a window
when its “grow box" is pulled (cursor
on box, mouse button pressed and
held); receive characters when they
come in from the keyboard; redraw
hidden parts of a window when it is

{

126 BYTE ¢ DECEMBER 1984

| Source: BYTE magazine » December 1984 « Software Frameworks

Page 0002 of 0012 |

& Apple Lisa Computer Information ¢ Lisa Toolkit Review

brought from behind several other
windows (mouse button clicked when
cursor is on some visible part of win-
dow); expand a'selected icon to a win-
dow (cursor on icon, mouse button
pressed twice quickly): and numerous
other less visible tasks. Given all this,
using a set of subroutines to develop
such a program is like asking for a ride
downtown and being shown to a
warehouse of auto parts—you don't
~want to build the car yourself, you just
want to get downtown.

In the toolkit

approach, the

supplied program is

it control and
wordinates system-
general behavior, such
as moving windows.

THE TOOLKIT APPROACH
Bruce Blumberg, |. Peter Young, and
, Larry Rosenstein of Apple's Apple 32

division have devised an alternative.
Imagine a completely functional Lisa

application that allows you to pull
down menus, create, move, scroll, and
Tearrange windows, update the Video
m

movement, and do all the other things

assoclated with the Lisa user inter-
face—only the windows and menus
are blank. Then you (as programmer
need only add or modify code to
show what's in.a window and, in

. general, specity the behavior neces-

sary to your application (as opposed

Listing 1: An example of Clascal code. This code. part of a five-page listing
hat creates the Lisa Boxer application. defines the methods that the class
TBowView responds to (ie.. the messages that objects of that type understand)
ond the code that executes when this class is created. Methods are capitalized,
vhile fields are not. See the text for more détails.

METHODS OF TBoxView; :
FUNCTION (TBoxView.)NEW((itsHeap: THeap; itsPanel; itsExtent: LRect;
itsBoxList: TList; itsPrintable: BOOLEAN): TBoxView);
BEGIN
($IFC fTrace)BP(11);,(SENDC)
SELF : = SubObiject(TView.NEW(itsHeap, itsPanel, itsExtent, itsPrintable),
'SIZEOF(SELF)); '
SELF.boxList : = itsBoxList;
($IFC fTrace)EP;(SENDC) » .
END, 7

(This returns the box containing a certain point)
FUNCTION (TBoxView.)BoxWith(LPt: LPoint): TBox);
VAR box: TBox;

s TListScanner;

BEGIN

($IFC fTRACE)BP(11),(SENDC)

boxWith = NIL;

s := SELF.boxList.Scanner;

WHILE s.Scan(box) DO

IF LPtinLrect(LPt, box.shapelRect) THEN

boxWith : = box;

($IFC fTrace)EP;($ENDC)
END;

(This draws the list of boxes)
PROCEDURE (TBoxView.)Draw;

VAR box: TBox;
s TListScanner;
BEGIN

($IFC fTrace)BP(10),($ENDC)
s = SELF boxList.Scanner;
WHILE s.Scan(box) DO
box.Draw;
($IFC fTrace)EP;($ENDC)
END;

CREATION
BEGIN

cBox ;= NewClass('Apple’, ‘TBoxView', SIZEOF(TBoxView), 1, 1);
END;

to being generic to the Lisa user in-
terface). Apple's Toolkit/32 gives you
this capability. '
€ ditference in philosophy is sig-
nificant. In the traditional approach -
{figure 1), you are responsible for or-
chestrating correctly both system-
general and application-specific be-

. havior. In the toolkit approach (figure

2), you only have to modify and add
subroutines to get your application to
work. The supplied program is in con-
trol and coordinates system-general
behavior (e.g.. moving and scrolling
windows); it calls your code when it
needs to know what application-
specific behavior you want (for exam-
ple. what to show in a certain window).

There is nothing wrong with the
toolbox (subroutine library) ap-
proach—it is certainly better than hav-
ing to write everything from scratch.
It's just that most software developers
don't want the absolute freedom to
combine library subroutines arbitrar-
ily—they just want to adapt their pro-

. gram to run correctly within the stan-

dard desktop-metaphor environment
and do it as quickly (and, therefore,
as inexpensively) as possible.

AN EXAMPLE X
Let's see how a simple application can
be written using an application frame-
work like Toolkit/32. In a few hours,
the people at Apple created a simple
application called Lisa Boxer. In it, any
window opened contains two shaded
rectangles that can be moved around.
The specific code needed to do this
was five pages of Pascal-like code—
not much at all, considering the
amount of space and comments a
structured program includes (see
listing'1 for a segment of the code).

. (continued on page 394)

NECEMBER 1984 « BYTE

Source:
\

BYTE magazine « December 1984 « Software Frameworks

Page 0003 of 0012 |

& Apple Lisa Computer Information ¢ Lisa Toolkit Review

SOFTWARE FRAMEWORKS

(continued from page 127)

We insert this code into the Toolkit/32

3A program, compile it. and link it to the

7 File/Print Edit View Disk N Lisa Office System (the software that
L ' i L : the Lisa runs to give the desktop-
metaphor environment) under the
name “Lisa Boxer”” When we boot the
Lisa Office System, the Lisa Boxer
program appears on the desktop as
a Lisa Boxer tool icon and, beneath
it, a “notepad” of Lisa Boxer “paper”
(see figure 3a). When we “tear off” a
sheet of Lisa Boxer paper and “open”
it, we get a window with two shaded
boxes in it (figure 3b).

Now we can see how Toolkit/32
greatly simplifies the software devel-
oper's job. We find that we can
change the size of the window. as
shown in figure 4a; this default be-
havior results from the predefined
Toolkit/32 code. We can also move
either of the boxes, as shown in figure
4b: this behavior results from the
code we added. If we try to do some-

. thing that neither the Toolkit/32 code

- nor our code knows how to do (like
selecting a box .and giving it the
“Gray” command from the Shades
menu), the Toolkit/32 program rec-
ognizes its inability to execute the

- command and deactivates the com
mand in the: pull-down menu (the
computer indicates this by printing
the new selection in gray instead of
black).

There are literally hundreds of
events and interactions that you
would have to orchestrate if you were
writing a driver program for an appli
cation with a sophisticated user inter-
face. Granted, it takes some effort to
correctly integrate your code into a
software framework like Toolkit/32,
“but you will still save a lot of lines of
code you don't have to design, write,
and debug.

‘

T Eile/Print’ Edit _Page Loyout Arrangel

il sheet

OBJECT-ORIENTED LANGUAGES
Before we can take a closer 100K at
Apple's implementation of a software
framework, we must first look at
object-oriented languages. If you're
familiar with the phrase, you probably
associate it with the language Smalk
talk. on which BYTE did a special lan-
guage issue in August 1981. At the

Figure 3: How a new Toolkit/32-based application appears within the desktop
environment. Once the application is linked to the Lisa Office System (figure 3a), it
becomes visible on the desktop as two icons, a tool (here, Lisa Boxer) and a notepad of
paper (Lisa Boxer Paper). When a sheet of paper is torn off (figure 3b), it becomes an
open window used to display the application. Here, Lisa Boxer is a simple program
(written in five pages of code) that puts two boxes in the window and allows you to
move them arbitrarily.

394 BYTE « DECEMBER 1984

| Source: BYTE magazine » December 1984 « Software Frameworks Page 0004 of 0012
J

& Apple Lisa Computer Information ¢ Lisa Toolkit Review

SOFTWARE FRAMEWORKS

moment, Smalltalk is the best-known
object-oriented language.

Most computer languages are oper- 4A
ator-operand languages—that is, languages .
in which operators (like "+ and “/") File/Print Edit Page Layout Rrrangement Shades A
perform predefined functions on g '

operands (usually numbers). When we
execute "5+ 3" in an operator-
operand language, the operator "+
adds the operands 5 and 3. This is an
orientation so widespread that most
of us have trouble understanding a
different one. Object-oriented languages.
on the other hand; present the pro-
gramming environment as a collection
Of objects that receive messages;
here, when we calculate "5 + 3", the
and Knows what to do with it (it add

the two numbers, returning the value
8). Each obiject has a set of messages
[called methods) it understands. When

a message 1s passed to an object, the
obiject checks the message againstits émesss
list of methods. If it finds the method.
it executes the associated code; if it
does not find the method, it returns
3 message that says, 1do not under- 4B

stmrm | T Fite/Print _Egit Poge Layout _Arrangement _Shates _ 3
with the possibility that some classes g
may be contained within others.)
When this occurs, a member of a class O
(with some exceptions) understands
not only its own methods, but also the
methods of its superclass (the class
that immediately contains it) and its
ancestor classes (any nth-genera-

Q
a

tion-removed superclass). (For more S

details, see "The Smalltalk-80 System.”’]

by members of the Xerox Learning issoxer Paper

Research Group, August 1981 BYTE,

page 36.)
The object-oriented approach is too b

involved for an environment that ma- T

nipulates numbers only, but itzs very

useful in environments that include

different _number types, windows, il 4. * _E o

“graphics, icons, lists,_controtstroe- wastepasiet pomon Clipboard Prererances FileCabinett

tures, and other jtems. The object ‘
metaphor can encompass all these
(and other) items; this simplifies the
language and, therefore, makes the
programmer's job easier. Also, by the
careful creation of classes and sub-
classes. programmers can amplify

(continued)

Figure 4: Component of a Toolkit/32-based application's behavior. Behavior may be
specified by the software framework (eg.. changing the size of a window, figure 4a) or
the application (moving one box, figure 4B). In only the second case does the
programmer have to add code to the software framework to get the desired result; see
the text for details.

DECEMBER 1984 « BYTE 395

| Source: BYTE magazine » December 1984 « Software Frameworks Page 0005 of 0012
J

& Apple Lisa Computer Information ¢ Lisa Toolkit Review

SOFTWARE FRAMEWORKS |

their programming work by defining
useful methods that can be used
automatically by objects within a sub-
class. In this and other ways, object-
oriented languages help program-
mers design and modify extremely
large projects. As Bruce Blumberg

puts it, "Object-oriented program- .

ming will be to the 1980s what struc-
tured programming was to the 1970s.’

Obiject-oriented languages differ
from operator-operand languages in
two other important ways. First, the
definition of a glven operator in an
operator-operand language is given in
the code that defines that operation
for all possible data types; to add a
new data type to such a language, the
programmer must add code to the
definition of the numerous operators
that will deal with that data type and
add error-trapping code to all the
operators that won't. In an object-
oriented language, all such code is

located in one place—the definition of
the class—and operations that mem-
bers of that class don't understand
return error messages automatically.
In addition, code that was previously
written, when compiled with the infor-
mation defining that new class, will
run as is when it sends an old mes-

sage (operator) to a new object (data .

type). ,

A second aivantage of the object-
oriented language is that it mirrors the
environments more closely than tradi-
tional operator-operand _languages.
‘Many software designers have found
that the subject-verb orientation (i.e.,
selecting an item to be worked on,
then choosing the action that will-be
performed on it) makes software
easier to understand. For example, in
Apple’s Lisa Write, Microsoft's Word,
and other word-processing programs,
you can delete a phrase of text by first

selecting it, then choosing the
“delete” operation. You can see that
the object-message orientation of an
object-oriented language closely
parallels the subject-verb orientation
of the software itself; this strong
parallelism makes the software easier
to write and, later, to maintain.

Readers interested in learning more
about Smalltalk as an example of an
object-oriented language can refer to
the August 1981 BYTE and to Small-
talk-80: The Language and lts Implemen-
tation, by Adele Goldberg and David
Robson, Reading, MA: Addison-Wes-
ley, 1983.

PAscCAL + CLASSES = CLASCAL.
The presence of Apple's Larry Tesler
in BYTE's Smalltalk issue telegraphed
Apples interest in the language (al-
though we didn't know at the time
that it was being researched in rela-
(continued)

DANA’S COMPUTER DISCOUNT

All Items In Stock

* Highest Quality - Lowest Pricesx No Waiting

FULL HEIGHT "HARD DRIVE
EMPTY PC/XT Apple Ii C & E Compatible 10 MEG (intema|)
CASES (New) Single sldfj K?K capacity ’ W/COﬂtrO"er CD
The closest thing to an $149.95 complete
IBM we've seen—you're i g ’
sure to be pleased HALF HEIGHT Thziﬁche:,ufuiﬁw, CHRISTMAS
~| Apple Il E & C Compatible Sl ine - 40 trac capaiity SALE FOR IBM
| **$99.99** oo s Do i et $795.00
$149.95 S $129.95 '
Commodore® Compatible Drive 3249.95 RAM CHIPS 64K 150 NS $42.50/set (9 pc)
Dana’s Discount Computer 130 Watt 1BM
Power Supply Color Grap. CD...149%
Buyers Club » »%. % % Add on or reptacement for mosr(r D,_"gp ______ 1390
+$12.00 ANNUAL MEMBERSHIP IBM or compat’s LMS, Joy StK...... 1980
+$10.00 CREDIT TOWARD FIRST PURCHASE
*SPECIAL MEMBERSHIP CARD $149% HARD DRIVE

*MONTHLY SPECIALS FOR MEMBERS ONLY (ID REQ)
JOIN OUR CLUB AND SAVE

with card & software

HARD DRIVE $995.¢
10 MEG (EXTERNAL)
completeicard/software

10 MEG (External)

$109590

ORDER DESK 8:00 AM. TO 5:00 PM.
PST MON. THRU FRI.
Orders normally shipped within 48 hours.

ORDERS: 1-800-262-DANA

Dana’s Computer Discount

PO. Box 15485, Santa Ana, CA 92705

In California: (714) 953-9105

Product shipped in. factory cartons
& availibility subject to change
. '

International orders accepted with a $500 surcharge for handling, plus shipping charges * We accept Visa, MasterCard, Money Orders,
and Certified checks * California residents add 6% sales tax * All prices + Shipping * Satisfaction guaranteed or full refund.

Sanyo, IBM, Apple, Apple IIE, and Commodore are all registered trademarks of Eyagle, IBM, Apple and Commodore corporations.

396 BYTE » DECEMBER 1984

| Source: BYTE magazine » December 1984 « Software Frameworks

Page 0006 of 0012 |

& Apple Lisa Computer Information ¢ Lisa Toolkit Review

SOFTWARE FRAMEWORKS

To'oLKIT/ 32

«NAMING CONVENTIONS

o understand Toolkit/32, you first

have to understand several terms
that have specific definitions (refer to
the figure below). The window is the ob-~
ject through which you manipulate
data via your application program. This
{8 the same kind of window as Is aciver-
tised in several desktop-metaphor en-
vironments; its size can be changed. it
can be moved to any location on the
video screen, and it can be “behind”
or "in front of* other windows. Under-
neath the application program, invisible
to you. is a data structure, and the pur-
pose of the application program is tQ
give you one or more views of the data.
The actual data, which is not shown, is
a collection of four ordered pairs:

(1,10.5), (2.21.0), (3. 13.8), (4. 25.1). The -

10.5
21.0
13.8
25.1

aslwn |-

the View

30

20

10

{another representation of) :
the View

top view shows the data as a spread-
sheet, and the bottom shows it as a
graph. but neither is the actual data.

A window (and the application pro-
gram it represents) can show more
than one view. To do this, the applica-
tion program dlvides the window Into
one or maore panels, Each panel shows
part of its corresponding view and can

" be scrolled independently from any

other panel to show any arbitrary
region of its view. In many cases, a :
panel can be broken into panes, each
of which can be scrolled in one dimen-
sion to show different regions of the

same view. (Below, note that the right

pane of the right panel has been
scrolled to show only the fourth bar in
the bar graph.))

Panes
within panel

Panels -

" six Lisa application programs, which

tion to the Lisa). Apple implemented
Smalltalk for the Lisa but never re-
leased it; "It's too slow.” Tesler said,
“and its syntax is too different for
most people.” However, designers at
Apple did not lose their enthuslasm
for object-oriented languages, espe-
cially after they had a taste of the
problems that came with the original

were written as standard Pascal

programs.
The reated Clasc
a superset of Pascal that contains 3
: ing so,

they created what they thought con-
tained most of the familiarity of Pascal
with most of the power of an object
oriented language. The class data
type is like tEe record data type in
Pascal. Just as a Pascal RECORD state-
ment defines the record by the fields
it has, a Clascal SUBCLASS statement
defines a class by the fields and
methods it has. Similarly, just as a
record is an instance of the record
definition, an object is an instance (or
member) of a class. Clascal defines
one class, TObject. All other classes
are subclasses of TObject. and all ot
jects have TObject as an ancestor
class. Each object can respond to the
methods of its class and those of all
its ancestor classes; the only excep
tion to this is that if two of the object’s
classes and superclasses have the
same method, the object uses the one
closest to it—this allows a subclass to
override the (perhaps inappropriate)
methods of one of its ancestor
classes.

The definition of a class consists of
stating the class's name, the class of
which it's a direct subclass, the new
fields not inherited from an ancestor
class, the functions and procedures
that constitute the class's methods,
the algorithms that implement those
methods, and (optionally) the code
that must be executed when the class
is created. A class inherits the
methods and fields of all ancestor
classes unless they are specifically re
defined within the class definition.
When an object of this class is
created, it is associated with a set of

(continued)

398 BYTE « DECEMBER 1984

| Source: BYTE magazine » December 1984 « Software Frameworks

Page 0007 of 0012 |

& Apple Lisa Computer Information ¢ Lisa Toolkit Review

SOFTWARE FRAMEWORKS

values for that class's fields; you can

think of a field as a private variable

each object gets upon its creation.
Listing 1 shows sample code from

the application that created the Lisa
Boxer application program described
earlier. This segment defines the

. methods that the objects of the TBox-

Table 1: A partial list of tasks that are taken care of automatically by the Standard
Application within Apple's Toolbox/32. Software frameworks present a prepackaged
solution to the complicated problem of creating an event-driven, window-based user
environment; as such, they decrease the programmer's work by one to two orders of
magnitude, thus allowing him or fer to create a software application much faster and

\ .
View class understand—NEW, Box-
With, and Draw— and the code (under
the heading CREATION) that executes
when the class is created. In this ex-
ample of code, methods are capital
ized and fields are not, and an object .
and its method are joined with a
period—for example, “s.Scan{box)"
sends the method Scan to the object
s with the object box as an argument;
also, braces delineate comments that

with a smaller time commitment. are included only to explain the sur-

memory inanagement rounding code.

file management

printing and other /O

communication with the desktop environment

communication with the clipboard (allows different applications to exchange data)
creation, deletion, activation, deactivation, and size and position change of windows

INTER

TO THE STANDARD

Now we can examine the Standard
‘ Apphcatlon in more detail. The Stap-

multiple panes within a panel dard ion is a collection of
multiple panels (giving differing views of the data)] th *
standard scrolling within a pane or panel < asseg 4 : < en?nc
handling of all errors not dealt with by user code chav ard Lisa applica

passing of system events {(eg., mouse movement, keypresses) that the Standard .

tion program—that is, all the actions
Application cannot handle to user code

that, because of the previously de-

MAIN/FRAME

FOR $100 BUS OR SINGLE BOARD COMPUTERS

® Low Price - Model 2210 (shown) $350°

® Low Profile - Set disptay on top, keyboard in front
e Laser/3000 - Modern affice styling - Model 3310 $§387°
¢ 5% Winchesters & Floppies - Full or Half

e 4 Card 5100 Motherboard and Connectors

® Accomodates I/O Petsonaiity Boards

o Hefty Power Supply - $100 and Drive, Controllers
® Muitifan, Push-Pull Cooling System

e Multiple EMI Filters

o Switched AC Qutlets

® INTE/National Power Supply 115/230, 50-60 Hz

‘Cali tfor quantity pricing

Wirite or call for our brochure which includes our application note;
"Making micros, better than any ol' box computer.”

—INIEGIAND

RESEARCH CORPORAIION
8620 Roosevelt Ave./Visalia, CA 93294 209/654-1203
We accept BankAmericard/Visa and MasterCard

Disk dnves & computer boards not included

400 BYTE * DECEMBER 1984 Circle 195 on inquiry card.

| Source: BYTE magazine » December 1984 « Software Frameworks Page 0008 of 0012

& Apple Lisa Computer Information ¢ Lisa Toolkit Review

SOFTWARE FRAMEWORKS

fined user interface, are the same
from program to program. Table 1 lists
some of the functions that are han-
dled automatically by the Standard
Application. This means that pro-
grammers who are modifying the
Standard Application must provide
only code that implements the be-
havior specific to their applications
(this will be referred to later as non-
generic behavior). This involves four
activities:

e supplying the Standard Application
code with the view or views of the
data when requested (for a definition
of the word “view" in this context, see
- the text box “Toolkit/32 Naming Con-
ventions” on page 398)

e creating and maintaining the data
structures that the application re-
quires

o defining and implementing the ac-
tions that can be performed by the

application

¢ adding code to modify or override
the Standard Application’s generic
behavior

To add the nongeneric behavior of
the application, the programmer
needs to concentrate on the above
four activities alone. In practice, this
means adding new subclasses to the
object classes already defined within
the Standard Application.

TooLKIT/32 UNITS

The “driver” program (I hesitate to call
it a program because of its triviality)
for the Standard Application is five
lines long; it initializes some variables,
creates an object that belongs to a
class called “process.” and sends that
object the method “Run.’ The actual
behavior of the application program
is determined by the definition of the
process class and other classes. In the

following paragraphs, I will take a look
at the major units that make up the
Standard Application. {The units |
refer to here are like Pascal units; the
units below each contain related sub-
class definitions.)

UObject: the UObject unit defines
the class TObject, the universal ances
tor class of all Clascal objects. This
unit handles memory allocation for

_objects (they are given memory when

they are created, and the memory is
reclaimed when they are deleted); it
also handles object copying and en-
ables some optional debugging facil
ities.

UList: this unit lmplements dynamic
arrays, indexed, linked, and blocked
lists, and utilities that allow the pro-
grammer to create, modify, and scan
these objects.

UDraw: this unit extends the Ou1ck-
draw graphics routines (at the heart

" {continued)

You can change tomorrow's home
entertainment and information systems. As
a vital member of RCA Lab’s professional
team you will find opportunity, challenge
and reward.

We're seeking experienced computer and
electrical engineering professionals to
create the consumer electronics products
of the future. You'll need a PhD, MS or BS
in Cemputer Science or Electrical
Engineering, or equivalent experience.
You'lt work in a challenging research
environment on projects in graphics
hardware and software, interactive video
simulation, applications software
development, microprocessor-based
hardware/software design, and VLS| design
of graphics and audio processors. You'll

RCA =0

Laboratories

use the latest development tools, including
powerful graphics and CAD/CAE systems,
and networked VAXES, Suns, and Apolios.

We offer highly competitive salaries,
comprehensive benefits and an ideal
Princeton location that combines a rural
setting with the nearby attractions of New
York City and Philadeiphia. Your role in
creating the home of the future can begin
today by sending your resume to:

B. Palmer
RCA Laboratories

‘David Sarnoff Research Cenler

P.O. Box 432
Department IW
Princeton, NJ 08540 -

Equal Opportunity Employer

- One Of A Kind.

+ DECEMBER 1984

| Source: BYTE magazine » December 1984 « Software Frameworks

Page 0009 of 0012 |

& Apple Lisa Computer Information ¢ Lisa Toolkit Review

of Lisa's,graphics capabilities) to use
32-bit coordinates instead of Quick-
draw’'s 16-bit coordinates; this elimi-
nates possible document-size prob- .
lems that could arise from using 16-bit
coordinates. UDraw is used for draw-
ing in a view.

UABC: the "ABC" stands for appli-
cation-base classes. UABC contains
most of the classes that define the
standard behavior. Because of this,
programmers will spend most of their
time creating subclasses of UABC to
implement the application's non-
generic behavior.

INsIDE UABC
We will now take a brief look at which
classes within UABC are usually mod-
ified and how those modifications
create the application program's non-
generic behavior.

The methods of the TProcess class
are those methods (or actions) that

SOFTWARE FRAMEWORKS

are specific to the application but are
called every time the application ex-
ecutes. Every Toolkit/32 application
creates only one process object,
which implements the main program
loop of the application. An applica-
tion almost always follows this loop:
get an event (eg. menu selection,
mouse movement, keypresses), pro-
cess it by giving it to an object that
understands what to do with it, and
wait for the next event. The process
object also handles error and warn-
ing messages and the procedure for
ending the application.

An application creates one object
from the ancestor class TDocManager -
for each document icon or open win-
dow that is associated with the ap-
plication. This descendant object con-
trols the interface to all disk files that
define the document, and it manages
the memory used by the document.

Objects descended from the TView

" class and gives it the message “Per-

class define any views needed by the
application—one object for each view
the application uses. The view shows
the entire representation of the appli-
cation’s data, interpreted as the view
is defined to show it. A panel object
(described below) asks a view object
for the view, but it is the panel object’s
responsibility to draw the part that is
to be visible (this is one of the things
the Standard Application code usual-
ly does automatically). Obviously, one
of the programmer's main responsi-
bilities is to create the code that im-
plements the view.

Whenever the user selects an action
to be performed (usually by choosing
a selection from a pull-down menu),
the application creates an object that
is a descendant of the TCommand

form.” which causes the object to try
to execute itself. Most actions should
(continued)

PLEr

CINTOSH

} hrofessionally-
. Mmotivated

Bnoks *lnr 1

computer user...

THE NEW ENHANCED
IBMPCjr.
Encyclopedia

Gary Phillips

Using the same format as the
Apple Macintosh Encyclope-
dia, the IBM PC jr. Encyclope-
dia incorporates the latest

¥ PHILLIPS
fn B?

Apple Macintosh
Encyclopedia
Gary Phillips and
Donald J. Scellato
This is a unique alphabetically
arranged encyclopedia with
practical entries on every func-
tion, command, problem or
application the beginner or
advanced user needs to know
to get the most from the Macin-
tosh. Written by an acclaimed
expert—and the most up-to-

~ date book on the Macintosh
available.
A Chapman & Hall, New York book

280 pp. October
0-412-00671-5 #9056
$19.95/paper

404 BYTE « DECEMBER 1984

Computer Work
Stations

The Manager’s Guide to
Office Automation and
Multi-User Systems
Herman Holtz

In this book, Herman Holtz, a
highly successful author and
consultant, answers such
basic questions as—Are work
stations right for your office?
Can they increase your com-
petitiveness? How do you

identify your needs? What sys-

tems are available?

A Chapman & Hall, New York book

280 pp. December
0-412-00711-8 #9004
$24.50/cloth

Computer Graphics

and Applications
Dennis Harris

Elementary and up-to-date,
this introduction to the princi-
ples and many exciting appli-
cations of computer graphics
covers the hardware currently
available, and describes basic
2-D and 3-D software tech-
niques. It covers a wide range
of applications with sugges-
tions for real projects and four
complete microcomputer case
studies involving games, cal-
ligraphy and computer aided *
learning. ‘

A Chapman & Hall, New York book

c.220pp. September
0-412-25090-X #9108
$19.95/paper
0-412-25080-2 #9107
$39.95/cloth

additions and modifications to
the IBM PC jr. home computer,
including the new professional
keyboard that has been called
“a stroke of genius” by an
expert, a greatly enlarged
memory and the truly impres-
sive list of peripherals that
bring junior close to the per-
formance level of its more ex-
pensive senior, IBM PC.

A Chapman & Hall, New York book
280 pp. January 1985

0-412-00681-2 #9055
$19.95/paper

Chapman&Hal

IN ASSOCIATION WITH METHUEN, INC.
733 Third Avenue, New York 10017
(212) 922-3550

Circle 395 on inquiry card.

| Source: BYTE magazine » December 1984 « Software Frameworks

Page 0010 of 0012 |

& Apple Lisa Computer Information ¢ Lisa Toolkit Review

Rp Lt - \

Fill your IBM XT or Portable’s half-size expansion slot
with the only 1200 baud internal modem designed for it:
The Ven-Tel Half Card” Under $500 from MTL

The Half Card” includes the most popular communications software,
Crosstalk XVI from Microstuf.

This same modem also works in the IBM PC, the Compaq, and the
Panasonic Senior Partner.

MTT is an authorized distributor for Ven-Tel. And we honor Visa and
MasterCard. Whether you buy, lease or rent, MTI is the one source
for all the computer and data communications equipment, applica-
tions expertise and service you’ll ever need. At great prices. Call us.

®
mti
systems

A DUCOMMUN SUBSIDIARY
Computer & Data Communications Equipment
Sales / Leasing / Service / Systems Integration

DEC, Intel, Texas Instruments, Hewlett-Packard, Dataproducts, Diablo,
Lear Siegler, Esprit, C.Itoh, Racal-Vadic, MICOM, Ven-Tel, Develcon, PCI,
U.S.Design, Digital Eng., Cipher, MicroPro, Microsoft, Polygon & Select.

New York: Ohio:
516/621-6200 216/464-6688
718/767-0677, 513/891-7050
\ 518/449-5959

California:
818/883-7633
Qutside NY.:

New Jersey:
201/227-5552
Pennsylvania:
412/931-9351

N

800/645-6530 J

New Release

' One user told us that, compared to other 8-bit C Compilers,
Eco-C's “floating point screams”. True. But, Release 3.0 has a
number of improvements in other areas, too:

New optimizers with speed improvements of up to 50
percent over earlier releases!

New Compiler-time switches for greater flexibility.
A standard library with 120 pre-written functions. '
Expanded emor checking with over 100 possible emor
messages in English including multiple, non-fatal errors.
Improved, eosy-fo—reoq user's manual.
The Eco-C Compiler supports all data types (except bit-fields) and
comes with MACRO 80 and the C Programming Guide for $250.00. An
optional, high-speed assembler and linker is available for an additional

$75.00. Eco-C requires a 280 CPU, CP/M, and 56K of free memory. To order,
call .)

I 4
6413 N. College Ave. ® Indianapolis, IN 46220 T
E$ (347) 255-8476 s;J
ECOSOF TN ING.

Eco-C (Ecosoft), CP/M (Digital Research), 280 (Zilog). MACRO 80 (Microsoft)

SOFTWARE FRAMEWORKS

|

TWindow, TPanel,
and TPane are
classes that define the
behavior of windows,
panels, and panes.

be implemented so that they first
change the view but not the underly
ing data; this allows the "Undc’
message to work in most cases. If
“Undo” is not the next message sent,
‘the program automatically executesa
method called “Commit," which
makes the changes already shownin
the view to the data itself. Each panel
of the application’ has an obiject
descended from the TSelection class;
this selection object can handle
messages and manipulate whatever
objects, if any, are associated with that
panel. When a command object ex
ecutes itself, it gives itself to the selec
tion object associated with the active
panel.

TWindow, TPanel, and TPane are
classes that define the behavior of
windows, panels, and panes. Their
behavior, already defined by the Stan-
dard Application, does not usually
need to be changed by the program:
mer; each panel will ask a view objed
for the view and will display the ap
propriate part as part of its generic
behavior.

COMMENTARY

The software framework approach is
an extremely useful one for program
mers who want to develop sophist
cated applications but who don't hawe
the resources (or patience) to write
the extremely complicated code that
will bring it up in an interactive usef
environment. The Apple Lisa group
has developed the Toolkit/32 system
described in this article. The Microsoft
“window": device under MS-DOS 20
works similarly for MS-DOS-based
software. (According to Scoll
McGregor of Microsoft, his company
has developed a "Microsoft Windows

Toolkit” for software developers tha
') (continudh

408 BYTE « DECEMBER 1984 Circle 139 on inquiry card.

| Source: BYTE magazine » December 1984 « Software Frameworks

Page 0011 of 0012 |

& Apple Lisa Computer Information ¢ Lisa Toolkit Review

is “identical in concept to Toolkit/32";
however, details of this were not avail-
able when this was written.)

Clascal shows great promise for ex-
tending programmer productivity
when used in large projects. One
question comes to mind, though: Is
the software it creates fast enough?
Bruce Blumberg of Apple Computer
said that Clascal is “about 10 times
faster than Smalltalk and only 10 per-
cent slower than Pascal”” Given that
the original Lisa applications were
written In Pascal and that the recent-
ly released enhanced packages added
some machine-language code to
speed them up, the above statement
is of little comfort. We'd all better wait
until the first Toolkit/32-based applica-
tion programs ‘can be examined
before forming a final opinion on
Clascal.

| must add to this enthusiastic de-
scription of Toolkit/32 the fact that,

SOFTWARE FRAMEWORKS

‘although it saves the programmer tre-

mendous amounts of time, the Clas-
Tarclass orientation does take some
getting_used to. Although a novice

Clascal programmer takes about a
month, according to Apple, to begin

to understand Clascal well enough t&
take advantage of it, it still saves time
in the long run to develop Toolkit/32-

Jbased application programs.
To conclude, | must make two sets

of observations. First, the software
framework orientation represents a
subtle but important change in how
we look at developing an application
program—in changing the program-
mer's task from writing a program to
writing subroutines, it clearly
delineates the program’s generic be-
havior from the nongeneric and al-
lows the programmer to concentrate

" on the latter. Second, Toolkit/32 im-

plements the software framework in
an interesting and powerful way. Clas-

cal encourages the programmer to
factor out common characteristics.
which are embodied in high-level
classes from which much code is de-
rived.. Apple has already done this
with the Toolkit/32's Standard Appli-
cation code, thus allowing the pro-
grammer to write code that inherits
a lot of structure and power from the
previously defined ancestor classes.
In any case, software frameworks may
be one answer to the problem of
Creating sophisticated programs

auic s and inexeenswe]z. n

|Editor's note: As this article was going to
press, Larry Tesler of Apple told us that the
Toolkit/32 product was being made available
to any Lisa owner (for details, write to the
Software Resource Center, Mail Stop 2-P.
Apple Computer, 20525 Mariani Ave,
Cupertino CA 95014) In addition, Apple

G ot be cotled
/’7304”7

SHARE
THE COST OF

LIVING.

GIVE TO THE AMERICAN CANCER SOCIETY.

THIS SPACE CONTRIBUTED AS A PUBLIC SERVICE.

410 BYTE ¢ DECEMBER 1984

'

| Source: BYTE magazine » December 1984 « Software Frameworks

Page 0012 of 0012 |

