
Ha..dco..e COMPUTIST's

Book 01 Soltkevs
VolulDe I

SoltKey Publishing

Welcome to the Book Of Softkeys, a
publication devoted to the serious user of
Apple][and Apple][compatible
computers. The articles published in this
volume detail the removal of copy
protection schemes from commercial disks
or contain information on copy protection
and backup methods in general.

Our editorial policy is that we do NOT
condone software piracy, but we do believe
that honest users are entitled to backup
commercial disks they have purchased. In
addition to the security of a backup disk,
the removal of copy protection gives the
user the option of modifying application
programs to meet his or her needs.

Entire contents copyright © 1985 by SoftKey Publishing. All rights reserved. Copying
done for other than personal or internal reference (without express written pennission from
the publisher) is prohibited. Any opinions expressed by the authors are not necessarily those
of Hardcore COMPUTIST or SoftKey Publishing.

Apple usually refers to the Apple II series computer, and is a trademark of Apple Computers, Inc.

General Information:

Applesoft Disks (Softkey To) " 9
Some general pointers on how to find Applesoft
programs loaded by non-standard DOS disks.

Boot Code Tracing. .. 22
There's no protecting against this method of disk
cracking.

Boot Code Tracing Revisited " 27
Take another look at how to trace a program as it
loads into memory.

Demuffins. .. 41
Make this handy disk cracking tool from a program
supplied by Apple.

Diskedit. .. 43
Read, Write and Edit sectors on any DOS 3.3 disk.
It's easy with this program.

Diskview. .. 84
A mini-nibbler that reads raw nibbilized data from
any disk, regardless of format.

Getting On The Right Track. .. 99
Here's how to tell what track your read/write head is
positioned over. A real help on those difficult copies.

Hidden Locations Revealed. 106
Take a peek at these favorite locations used by
protected software.

(A Fix For) RANA Drive Owners. .. 130
A way to boot code trace on a Rana drive.

Tricks & Bombs , 139

Contents

152

155

156

141
147

149

151

Sammy Lightfoot .
Screenwriter IT .

Sneakers .
Spy's Demise .

Starcross .
Suspended (see Zork I)
Ultima][.

Ultima][(2) .
VisifIle .

Visiplot/Visitrend .
Witness (see Zork I)
Wizardry .

Wizardry (2) .

Zork I, Zork IT, Zork 1lI "'\ .

)

Softkeys

Akalabeth. .. 1

Ampermagic. .. 4
Apple Galaxian (see Boot Code Tracing)
Aztec , , 12
Bag Of Tricks. .. 13

Bill Budge's Trilogy. .. 19
Buzzard Bait... 35
Cannonball Blitz. .. 37

Casino '" " 38
Data Reporter.. 39

Deadline (see Zork I)
Disk Organizer IT (see Hidden Locations Revealed)
Egbert IT Communications Disk. .. 89
Hard Hat Mack 101

Home Accountant.. .. 110
Homeword , 112

Lancaster. .. 113
Magic Window IT. .. 115

Multi-Disk Catalog (see Boot Code Tracing Revisited)
Multiplan. .. 119

Pest Patrol. .. 120
Prisoner IT.. .. 129

131

133
135

136

137

~Akalabeth

California Pacific Computers

Requirements:
Apple][48K
One blank disk
MUFFIN (from DOS 3.3 master disk)

By Bobby

Akalabeth is a hi-res adventure/maze/treasure hunt game
distributed by California Pacific Computers. It has a few bugs
that need correcting. Here is a method of "down-loading"
Akalabeth from its protected diskette so that you can make the
FIXes described in Softfix and additions.

1) Boot from the DOS 3.3 master disk

PR#6

2) Remove the master disk, insert the blank disk and enter the
hello program

10 PRINT CHR$(4) "RUNAI*******************
*******1" :REM THERE ARE 26 ASTERISKS

3) Initialize the blank disk with the new hello program

INIT HELLO

4) Remove the initialized disk, insert the master disk and load
MUFFIN

BLOAD MUFFIN

5) Make the following changes to allow MUFFIN to read the
protected disk

POKE 4257,6
POKE 6664,222
POKE 6685,181
POKE 6742,217
POKE 6774,222
POKE 6795,173
POKE 6834,217

6) Now start MUFFIN and follow the prompts to copy
Akalabeth. Use the initialized disk for the destination disk.

CALL 2051

6) To play the game, simply run the hello program.

1 Book of Softkeys Vol. I

SoftrlX & Additions

One of the reasons for removing programs and files from
copy-protected disks is that you can now fix them, alter them,
and even make additions to them. In other words, you can now
customize them to fit your particular needs.

Since you have already "freed" Akalabeth from its
"protected" disk, you can now fix its annoying scrolling
problem and add a new magical command.

PROBLEM: The "hit points" of the foes you are fighting
often flash (scroll) by so fast that you can't see what they were
and therefore cannot make a valid combat decision.

FIX: Put in a pause after it prints the hit points. There are
other minor fixes that modify screen format, greetings and
farewells (Quit has been changed to eXit).

SPECIAL MAGICAL ADDITION: TELEPORTATION
To help the brave Magi descend into, and ascend out of, the
forbidden depths of this World of Doom, we have added a
special teleportation option. (Use only if you have I or more
magic amulets because this option "bums up" amulets just as if
you had used the Magic Ladder-Up or Ladder-Down commands.)

When you choose the 5th option: TELEPORT, you'll get:
I-UP 2-DOWN. Take your choice. If you choose UP you will
continue upward until either you surface or you run out of
amulets and get an: OUT OF MAGIC message. Choose DOWN
and you'll be asked: HOW MANY LEVELS? It is a GET
statement, so choose a number from I to 9 and don't bother to
hit "return". If you run out of magic now, you're really in a
World of Doom!

Here's how to add the teleport command to your deprotected
akalabeth disk.

1) Load the file "MAIN PROGRAM"

LOAD MAIN PROGRAM

2) Enter the BASIC program on the next page.
3) Save the changed program back to the disk

SAVE MAIN PROGRAM

That's all there is to it. If you know of another fix or addition
to Akalabeth or for any prepackaged programs on the market,
(whether they are on protected disks or normal format disks),
drop a note to SoftKey Publishing and we'll let other apple-users
know about it.

Book of Softkeys Vol. I 2

BASIC program to add teleport option

1664 PRINTM$(MN) "'S'HIT'POINTS=" MZ%(MN ,1) : FOR QS =1TO 500: NEXT
1682 PRINT "1-Upu 2-DNu 3-KI LLu 4-mu 5-TELEPORT" : GET Q$:Q =VAL (Q$) :

PR INT Q: IF Q<1 OR Q>5THEN 1682
1685 ON QGOTO 1686 11690 11691 11692 ,1800
1800VTAB21: CALL-958: PRINT "1-Upu 2-DOWN'''; : GETQ$:00= VAL (Q$) :

PRINT 00 : IF 00 <1OR 00 >2THEN 1800
1810 ON 00 GOTO 1820 11840
1820 IN = IN -1 : PRINT CHR$ (7) : IF IN =1THEN 1581
1822 IF PW(5) <1THEN PRINT "OUT'OF'MAGIC" : GOTO 1090
1824 IF RND (l) > .75 THtN PW(5) =PW(5) - 1
1826 GOTO 1820
1840 PR INT "HOW'MANY'LEVELS?'" ; : GET Q$:00 =VAL (Q$) : PR INT 00 : FOR QS

=1TO 00 : IN= IN +1 : IFRND (1) > .8THEN PW (5) =PI'/ (5) - 1
1844 IF PW(5) <1THEN QS =00 : PR INT "OUT'OF'MAG IC"
1846 NEXT: GOTO 1090
60020 DATA "HIT'POINTS .. " I "STRENGTH " I "DEXTERITY ... " I

"STAMINA " I "WiSDOM " I "GOLD "
60081 VTAB 11 : HTAB 18: PRINT "X-EXIT"
60210 PR INT "WH ICH' ITEM'SHALT'THOU'BUY'" ; : GET Q$: IF Q$ ="X" THEN PR INT

: PRINT "GOOD'LUCK" : FOR Z=1TO 1000: NEXT: TEXT: HOME: RETURN
60237 VTAB 10 : HTAB 13 : PRINT C(5) "u"

3 Book of Softkeys Vol. I

~Amper-Magic

Anthro-Digital

Requirements:
48K Apple or an Apple lie
Amper-Magic
One blank disk
Apple's COPYA program
Text file editor (AppleWriter II, Apple's EDASM, etc.)
A Disk Edit utility (THE INSPECTOR or WATSON.)
FIXCAT from "Bag of Tricks" and FlO are also useful.

By Bob Bragner

Amper-Magic is a disk library of machine-language routines
that can be easily attached to Applesoft programs thus providing
extensions to BASIC such as PRINT USING, SWAP, DELETE
ARRAY, INPUT ANYTHING and many, many more. The
routines are connected to Applesoft through the ampersand "&"
and it is easy to pass parameters. There is also a second disk of
routines available dealing largely with screen formatting.

If you do any serious programming in Applesoft and find the
language too slow for some applications but the thought of
writing your own machine language routines to speed things up
makes your head hurt, then Amper-Magic is for you.

This program is super-friendly and comes with a well thought
out loose-leaf manual. The price is a little steep, however. I paid
$67 for my master and another $15 to be a "Registered
Commercial Owner." Such registration entitles you to automatic
notification in case the manufacturers add any corrections or
improvements and also authorizes you to use the Amper-Magic
routines in any commercial applications you may write. Having
paid this one-time fee, your only other obligation is to mention
Anthro-Digital's name in the documentation of any program
using their routines. Fair enough. More than fair: generous.

However, I did balk at the $7 price tag on the backup disk.
That's about $4 more than I'm willing to pay for such a
necessity. But I like lots of backups, so I set about making them.

To my dismay I discovered that not only is Amper-Magic
protected, it is protected in a very ingenious, and potentially
dangerous, way. Actually, it is mentioned nowhere that the disk
is protected and you are nowhere warned not to write anything
onto the master disk. This is not friendly.

Amper-Magic has several levels of protection. You can copy
the disk with Apple's COPYA without a hitch, but the result
won't work. When you attempt to EXEC th~main control
textfile as directed, the disk drive turns on anq stays on.

Book of Softkeys Vol. I 4

Hitting reset will lock up your machine. The only w~:y~ out are
control/open Apple/reset or tum-the-machine-off-then-on.'

An examination of the controlling text fIle called Amper-Magic
showed, among other things, the following:

FF$ = "A" : FOR I = 1 TO 29 : FF$ = FF$ + CHR$(8)
: NEXT I
PRINT CHR$(4); "BRUN"FF$
DEL 1,0
RUN

For you newcomers, CHR$(8) is the backspace on your
keyboard (ElH). It's been so long since anyone used control
characters to conceal fIlenames in catalogs that it never even
occurred to me to look for them. This particular trick causes the
fIlename to be written over by the next one in the catalog, thus
rendering it invisible. Cute.

Changing the fIle's name to something more respectable (on
the copy, of course), I proceeded to examine the binary fIle now
simply called "A".

This is a 288-byte file that lives at $25B. The code is not
difficult to disassemble, but it was doing some strange things. It
appeared to look for 14 bytes in track 0, sector 0, and to
compare them with a table in memory. If they matched, and if a
number of other conditions were met, then another program
called "AMPER.MAGIC PROGRAM" was loaded. Otherwise,
program "A" hung up. Since program "A" did a jump to the
standard DOS LOAD command, AMPER.MAGIC PROGRAM
had to be somewhere in the catalog track (track $11) and it had
to be in the VTOC. But it wasn't.

Call up WATSON or THE INSPECTOR and do a sector-use
map of your Amper-Magic disk. Now look at sector $F of track
$11 and backstep through the catalog. In sector $C you will see
the "A" fIle whose name contains 29 inverse "H"s (it's at track
$21, sector $08.

In sectors $B and $A you will see some deleted Applesoft fIles
with odd names like NILO and NILl which seem to have been
used to overwrite other deleted binary files with names like
"REPEET" and "RWTS.O." They contain (meaningless?) data
statements. When you get to sector $9, you will see that the link
to the next catalog sector (8) is missing! Hmm... To DOS this
means that this is the end of the catalog.

Backstep once more and all at once the words
"AMPER.MAGIC PROGRAM" are staring at you from sector
$8. This program appears to start at track $OF, sector $F. Check
it out; it does.

Backstep some more. Notice that the link in sector $2 is
missing. Now look at sector 1 and you will find yourself looking
at what must be a VTOC! "But VTOC's are supposed to be in

5 Book of Softkeys Vol. I

sector 0," I hear someone say. I don't? Well, anyhow, there is a
byte in DOS called READ/WRITE VTOC BUFFER. It is
located at $BOOD (45069) and it normally contains a O.

Just for fun, try poking the value 1 there and type
"CATALOG" with an ordinary disk in the drive. (For a lot of
fun, poke in a number greater than 15!) Unless the disk has had
a great many file names on it at one time, this track will usually
be empty and your catalog will have disappeared. If any file
names have been stored in this sector, CATALOG will display
some quaint garbage since DOS will attempt to interpret what it
finds there as a VTOC. Place your AMPER.MAGIC master in
the drive, do a POKE 45069,1, then CATALOG and you will
see the hidden file.

Returning to a more careful examination of the disassembled
code of ••A", it turns out that this program does indeed store a
1 at $BOOD before it attempts to load the AMPER.MAGIC
PROGRAM. The latter program, for its part, pokes a 0 back
into that location so it can get at the routines stored on the disk.
The reason this method of copy-protection is dangerous, aside
from the fact that you don't know it is there, is that the normal
VTOC at sector 0 may not know anything of AMPER.MAGIC
PROGRAM. If it thinks the sectors it occupies are unused, and
if you try to save something on the disk, DOS will cheerfully
write allover the hidden program. Moral: Never write anything
to a master disk, even if the manufacturer doesn't tell you not to.

Additional examination of "A" reveals that the whole routine
can be bypassed. The program checks to see whether or not it is
running on an original disk and whether or not an EXEC file is
in operation. Finally, it doctors the VTOC and loads the hidden
program. A quick examination of AMPER.MAGIC PROGRAM
shows that it makes no attempt to protect itself once it is
running.

Here is a step-by-step procedure to crack AMPER-MAGIC
(the commands to type in are given in bold):

1) Copy the master disk using normal COPYA procedures

RUN COPYA

2) Point DOS to the VTOC on sector 1

POKE 45069,1

3) Catalog the disk

CATALOG

4) Load the AMPER.MAGIC PROGRAM file

LOAD AMPER.MAGIC PROGRAM

Book of Softkeys Vol. I 6

5) Unlock the AMPER.MAGIC PROGRAM file

UNLOCK AMPER.MAGIC PROGRAM

6) Delete the AMPER.MAGIC PROGRAM file

DELETE AMPER.MAGIC PROGRAM

7) Point DOS to the VTOC on sector 0

POKE 45069,0

8) Catalog the disk again

CATALOG

9) Save the AMPER.MAGIC PROGRAM file

SAVE AMPER.MAGIC PROGRAM

10) Unlock the EXEC text file AMPER.MAGIC

UNLOCK AMPER-MAGIC

II) Bring up a text file editor such as AppleWriter lIe, Apple
EDASM, etc.
12) Load AMPER-MAGIC into the editor.
13) Insert the word "REM" at the beginning of the line that
reads PRINTCHR$(4);"BRUN"FF$.
14) Insert the following:

CHR$(4)"LOAD AMPER.MAGIC PROGRAM"

before the last line in the file (the one that says "RUN").
15) Save this as a text file under the name AMPER-MAGIC

SAVE AMPER-MAGIC

16) Exit the editor.

You now have a de-protected copy of Amper-Magic from
which you can make all the working backups you want using
normal copy procedures.

You're not quite done yet, though, because the disk's catalog
is still a bit messed up. To manually restore the missing links
you can use WATSON/THE INSPECTOR (and zero out the
extra VTOC at track $11, sector 1) or you can run the FIXCAT
utility in "Bag of Tricks" and let it do the work for you.

You really should repair the catalog if you intend to use FlO
to move files off of, or onto, the deprotected disk. If you use
FIXCAT you should ignore the temptation to restore the deleted
files since most of them have been written over.

There is, however, a strange little Applesoft program not
located at track $10, sector $E (its track/sector list is in sector
$F). Restore this program and call it "WEIRD HELLO", then
run it for an odd message.

7 Book of Softkeys Vol. I

By the way, Volume 2 of Amper-Magic is unprotected and can
be copied without any fooling around. I like to FID all its binary
flIes over to the deprotected master since both disks are mostly
empty space anyhow.

Do you want to add more routines to the library? Move
everything to a hard disk or a Ram Pseuodisk? Eliminate the
annoying beeps in the main program? With your unprotected
version of Amper-Magic you are now free to make any
modifications you wish.

Book of Softkeys Vol. I 8

~Softkey To Applesoft Disks

By Bobby

If the program you have is working to your satisfaction, there
is really no reason to go through the trouble of "unlocking" the
copy-protection. I recommend that everyone obtain a bit-copy
program and use it to backup their software. The methods
described here are for programs that you feel need FIXing. In
order to FIX them, you have to be able to list them.

Another reason for putting programs on normal DOS is to
conserve disk space by placing more than one program on a
disk. If you just make a bit-for-bit backup of ten disks, you now
have 20 disks. However, by "downloading" the protected
program to normal DOS, you can probably put all ten on two or
three one-sided disks.

The Open-Heart Surgery Method

Requirements:
Apple][+ 48K
Applesoft in ROM
Integer card
Tape recorder
One blank initialized disk (3.2 or 3.3 as appropriate)

This method is not for beginners. It requires some knowledge
of programming and involves a number of monitor commands.
An understanding of Zero Page locations is helpful.

No matter what has been altered, this method will work
because the computer must know the program location in order
to RUN it. The following locations apply to Applesoft in ROM
and 48K DOS. They are used by the computer to tell it where
the program is located and what to do with it. Multibyte
addresses are given in standard format (e.g. hex lo-byte,
hi-byte).

$D6 is the RUN flag. Any time this byte has the high bit set, the
program in memory will auto-run.

$3F2, $3F3 is the reset vector. (See page 37 of your Apple][+
Reference Manual (A][RM.)

$3F4 is the power up byte (EOR of $A5 and the value at $3F3.
See page 37, A][RM.)

$67, $68 is the start-of-program pointer. See page 140 of the
Applesoft BASIC Programming Manual(AB-PRM).

$AF, $BO is the end-of-program pointer. See page 141,
AB-PRM.

9 Book of Softkeys Vol. I

$9DBF (CALL-25153) reconnects DOS. See page 144 of your
DOS 3.3 Manual (DOSM).

$AS51 (CALL-22446) reconnects the input hooks. (Bypasses
$9DBF and any time-bombs that may have been planted
there.)

$AA60, $AA61 is the length of the last loaded program. See
page 144, DOSM.

$AA72, $AA73 is the start of the last BLOADED program. See
page 144, DOSM.

The following steps were written for an Apple][+ 48K with
Applesoft in ROM and an Integer card. If you have Integer in
ROM and an Applesoft card, be sure to reverse the appropriate
steps (i.e. when it says to flip the switch UP on your Integer
card, flip the switch DOWN on your Applesoft card). Hitting
RETURN after commands is implied and will only be referenced
in certain lines for clarity.

1) Boot the backup copy of your program disk (never use the
original).
2) Flip the Integer card switch UP and press RESET to enter the
monitor.
3) Check the start of program pointer. If the number is not
$801, then write it down for later reference.

67.68

4) Reset the run flag.

06:0

5) Change the reset vector to jump into the current language.

3F2:03 EO 45

6) Flip the Integer card switch DOWN, press RESET and type

LIST

If the program does not list, you may be trying to list a binary
file. Check $AA72,AA73 to see if this is true.
7) Save your program to tape.
8) Take a good look at your listing. Write down the names of
any files that are LOADed or RUN and the start address of any
binary file, if given. List all POKEs and CALLs.
9) On some protected disks the command parser in DOS is
changed. This tends to wipe out some of the common commands
(e.g. LOAD, SAVE, CATALOG). Another popular trick is to
change DOS so it does not allow any direct commands. In order
to load and save the files that make up your program, select the
first line entry that LOADs or BLOADs a file. DELETE all line
entries above and below the selected line (e.g. you want line 5,

Book of Softkeys Vol. I 10

so DELETE lines 0 through 4, and 6 through 63999).
10) Now

CALL -25153

If it bombs, restart. Repeat all steps up to 10 and now

CALL -22446

This reconnects the DOS. Then type

RUN

This will load your selected file.
11) Save the file to tape and repeat these steps until all files are
SAVEd.
12) Boot normal DOS. LOAD the files one at a time from tape
and SAVE to your disk.
13) Examine all the Applesoft listings to make certain that all the
files have been transferred.

Now that all the files are on normal DOS, examine them for
hidden bombs. Bombs are program lines that serve no purpose
other than to garbage the program. See "Tricks and Bombs".

For Integer Programs

The zero page pointers for Integer programs are:

Start of program
End of program

HEX

$CA, $CB
$4C, $4D

DEC

202,203
76,77

These pointers tell your computer where the program is in
memory. The hex address is in normal lo-byte, hi-byte format.

Hope these tips will help you find your program. Good luck!

11 Book of Softkeys Vol. I

~Aztec

Datamost

Requirements:
Apple][48K
One blank disk
CopyA from DOS master disk
Disk edit program

By Marco Hunter

Here is a quick softkey.

1) Use the modified COpyA from Zork softkey.
2) Edit track 00, sector 03, change byte 42 from 38 to 18.

That's it.

Book of Softkeys Vol. I 12

~Bag Of Tricks
Quality Software

Requirements:
Apple][,][+, IIe or compatible
Blank disk initialized with 48K slave DOS
Bag of Tricks disk

By Neil Taylor, Earl Taylor and Ray Darrah

Have you ever booted the Bag of Tricks disk and received an
irritating message to use the original, when it's already in the
drive? Have you ever wanted to avoid the menu and skip right to
the needed program? Perhaps you are afraid of crashing the
original and can't get a good copy. Here is an easy (albeit
somewhat long) way to get an unprotected version.

Basic Procedure

To unprotect the programs on the original disk, each one will
have to be loaded by its DOS and then saved by a normal DOS.

The programs loaded by the Bag of Tricks DOS are located at
$800 in memory which normally is overwritten during the boot
process. Before they can be saved, they must be moved to a safe
area of memory. The programs can then be run by normal DOS.

Loading and Saving

The following procedure for loading and saving TRAX is used
in a slightly different form for each of the remaining Bag of
Tricks programs: INIT, ZAP, and FIXCAT.

TRAX

I) Boot the 3.3 master, insert the blank disk and type

FP
INIT HELLO

2) Boot the Bag of Tricks disk (the menu will be displayed).
3) After the light goes off open the drive door.
4) Press reset once, wait a couple of seconds and press it again.
5) To enter the monitor

CALL -151

6) Then type

9489:4C 59 FF

13 Book of Softkeys Vol. I

7) Close the drive door.
8) Type

9400G

9) To load TRAX, type

T

10) Then type

3800<800.2AFFM

11) For Trax only, type

6700<8700.93FFM

12) Place the blank disk into the drive and boot it with

C600G

13) Now

BSAVE TRAX,A$3800,L$2300

14) And for TRAX and INIT only

BSAVE TRAX.SUP,A$6700,L$DOO

The same format can be used for INIT, ZAP, and FIXCAT
with changes in Steps 9, 10, 13, and 14. Step 11 is not
necessary. Complete Steps 2 through 8 for each of the remaining
programs, then follow the special steps listed under the program
title.

Complete INIT first:

INIT

9) To load INIT type

I

10) Then type

3800<800.325EM

11) And

BSAVE INIT,A$3800,L$2BOO

12) Place the blank disk into the drive and boot it with

C600G

14) Then

BSAVE SUPPLEMENT,A$7600,L$AOO

Book of Softkeys Vol. I 14

ZAP

The supplement is the same for INIT, ZAP and FIXCAT, so
Step 14 can be eliminated.

9) To load ZAP type

Z

10) Then type

5000<800.4CFFl\1

12) Place the blank disk in the drive and boot it with

C600G

13) Then

BSAVE ZAP,A$5000,L$4500

FIXCAT

9) To load FIXCAT type

F

10) Then type

4800<800.1FFFM

12) Place the blank disk in the drive and boot it with

C600G

13) And

BSAVE FIXCAT,A$4800,L$lCOO

To get the picture, complete Steps 2 through 4. Then boot the
backup. When the Applesoft cursor is displayed (]), type

BSAVE PICTURE,A$2000,L$2000

FIXPRG3

The last step is a fix for the SUPPLEMENT program.

15) Once again boot the original Bag of Tricks disk.
16) When the menu appears, open the drive door, press reset,
wait a second and press reset again.
17) Enter the monitor and move the patch to a safer location.

CALL - 151
5400<9400.96FFM

15 Book of Softkeys Vol. I

18) Change the program so that it will work at this new location

5485:55
5517:55
5530:55
5542:56
554A:56

19) Insert the blank disk and boot it

C600G

20) Save this patch program

BSAVE FIXPRG3,AS5400,LS300

21) Change the HELLO program to the following and you're
done!

Hello Program

10 TEXT : HOME: HIMEM: 25600
20 IF PEEK (104) =96 THEN 50
30 POKE 103 ,1: POKE 104 ,96: POKE 24576 ,0
40 PRINT CHR$ (4) "RUWHELLO"
50 A=PEEK (- 16384) - 128 : IFA =70 OR A=73 OR A=84 OR A=90 OR A=69

THEN 100
60 POKE - 16368 ,0
70HTAB 10: VTAB 10 : PRINT "LOAOING'MENU","
80 PRINT CHR$ (4) "BLOAO'PICTURE,A$4000" : POKE -16299 ,0 : POKE -16297

,0 : POKE -16302 ,0: POKE - 16304 ,0
90 IFPEEK (- 16384) <128 THEN 90
100 A=0 :A$ =CHR$ (PEEK (- 16384) - 128) : POKE - 16368 ,0
110 IF A$ ="T" THEN A$ ="TRAX" :A=1: GOTO 170
120 IF A$ ="Z" THEN A$ ="ZAP" : GOTO 170
130 IF A$ ="I" THEN A$ ="INIT" : GOTO 170
140 IF A$ ="F" THEN A$ ="FIXCAT" : GOTO 170
150 IF A$ ="E" OR A$ =CHR$ (27) THEN TEXT: HOME: END
160 GOT090
170 TEXT: HOME: VTAB 11 : HTAB (13 +LEN (A$) } /2 : PRINT "LOADING'" A$

n II

1800$ =CHR$ (4)
190 IF A=1THEN PRINT 0$ "BLOAO'TRAX,SUP,A$8700" : GOTO 210
200 PRINT 0$ "BLOAO'SUPPLEMENT,A$7600"
210 PRINT 0$ "BLOAO'" A$ ",A$800"
220 PRINT 0$ "BLOAD'FIXPRG3,A$5400"
230 POKE 47016 , PEEK (43) : POKE 38079 ,A: CALL 21635

Getting Into The Program

An alternate method would be to boot code trace the DOS.

Book of Softkeys Vol. I 16

The boot process of Bag of Tricks is relatively simple but
tedious, especially since it would have to be done five times
(once for each program and once for the picture).

That problem can be bypassed by taking advantage of an
oversight by the authors. When reset is pressed the Apple tries
to boot because the power-up byte is not set correctly. This is
the byte that tells the Apple when it has been turned on. (See
page 37 of the Apple][+ Reference Manual). When the power
up byte is set improperly the Apple will try to boot regardless of
the address pointed to by the reset vector. When reset is hit from
the menu the Apple acts like it has just been turned on and tries
to boot. When reset is pressed the second time the Apple is put
into Applesoft.

Loading The Programs

In the sixth step of the save/load procedure the three bytes 4C
59 FF represent the machine language opcodes which tell the
computer to jump to the routine that causes it to stop and enter
the monitor (acting like a stop from Applesoft). Now after the
DOS has loaded any of the programs, control will be given to
the user, not to the program.

Saving To Normal Disk

The program is now in memory and the Apple is under control
with the modified Bag of Tricks DOS in the machine.
Unfortunately, it is far from normal and has no convenient
SAVE or BSAVE. What now? Save it to tape? Perish the
thought; a normal DOS can be rebooted.

Since the booting process uses page 8 ($800-$8FF) in memory,
which is exactly where the program starts, a special routine in
the Apple's monitor is used for moving memory out of the way.
It simply transfers the part of memory which the program resides
in byte by byte from one place in memory to another. By
moving the programs higher in memory they are put in a safe
area not used by the boot. That is what Steps 9 and 10 are for.
Once the program is moved, the backup disk can be safely
booted.

Backup Files

There should be nine files on the backup now: TRAX,
TRAX.SUP, INIT; SUPPLEMENT, ZAP, FIXCAT, PICTURE,
FIXPRG3 and HELLO. The HELLO program is simply a menu
that allows the backup to imitate the original disk. The picture is
the same as the one on the original disk.

17 Book of Softkeys Vol. I

The other seven files make up the four major Bag of Tricks
programs (the other files are routines). Each program is in two
parts, a main section and a supplement, but the supplements for
INIT, ZAP and FIXCAT are the same. To run any of these
programs, the accompanying supplement must also be loaded. To
use TRAX, TRAX.SUP must be loaded first. For the other three
programs, SUPPLEMENT must be loaded first.

How To Run The Programs

Because the programs were moved before they were saved,
they will be loaded into the wrong spot if just BRUN or
BLOADed. To make sure everything is in the right place, DOS
has to be told where to place the program. FOR EXAMPLE: To
run TRAX, first load in the supplement with BLOAD
TRAX.SUP,A$8700. This loads the supplement into the correct
place in memory. Then the TRAX program can be run with
BRUN TRAX,A$800.

Similarly, the supplement for INIT, ZAP and FIXCAT would
be BLOAD SUPPLEMENT,A$7600. To run the program:
BRUN INIT,A$800 (ZAP or FIXCAT can be substituted for the
title INIT).

Final Analysis

All four Bag of Tricks programs are extremely useful. ZAP is
an excellent disk editor with convenient help pages. It also has
definable commands (a nice touch). INIT is the program that you
needed to convert all your disks to DOS 3.3. It allows
reinitialization without loss of data. FIXCAT is great for doing
all of those tedious chores related to recovering crashed disks.

There is only doubt about TRAX. Its sole use seems to be
looking at the protection schemes on disks (it gives a great
output for users of lOB). However, TRAX will not analyze the
Bag of Tricks disk. If the authors couldn't figure out how to
analyze their own protection schemes, TRAX can't be all that
good. On the other hand, maybe it was deliberate. Maybe the
authors are trying to say, "Break and copy other disks, but not
ours!"

Book of Softkeys Vol. I 18

~Bill Budge's Trilogy Of Games
California Pacific

Requirements:
48K Apple][Plus
BOOTl3 (from DOS master disk)
Trilogy of Games
A blank diskette

By Michael Decker

One of Bill Budge's earliest offerings was his Trilogy of
Games: Driver, a rudimentary driving-skills game; Pinball, a
rudimentary you-guessed-it; and Space Wars, a (I won't say it)
two-player space battle.

This old, DOS 3.2 disk still sells, and Space Wars remains
one of the most entertaining arcade-style games in which two
players can directly battle each other. Most people often prefer it
to newer, much more sophisticated games in which one battles
the computer. 1 was motivated to de-protect the game by a slight
bug (one player's ship is more affected by gravity than the other
ship) and by my annoyance with the game's DOS 3.2 format.

Inside Budge

1 first tried cracking the disk. Protection was simple: changes
in the prologues/epilogues. However, it looked like direct disk
addressing was used. Ugh.

So, I booted with an Inspector/BASICS disk, then booted
Trilogy. At the menu I reset out, then looked memory over:
picture at $4000; program at $6000. Hmm.

I then booted DOS and saved picture and program. Next, I
restarted the program (6000G) and, in tum, loaded each game. I
found the entry points and saved the games. Next, I examined
the main program and identified the transition between the menu
and the disk access routines. Finally, I wrote an Applesoft
program to handle the game switching. Presto! The Transparent
Budge!

Doing It

1) Boot the DOS 3.3 System Master.

PR#6

2) Prepare to boot 13-sector DOS

BRUN BOOT13

19 Book of Softkeys Vol. I

3) Insert the Trilogy disk and press RETURN.
4) Hit ESC to get to menu.
5) Remove the disk and press RESET.
6) Press RESET again.
7) Boot the 48K slave disk.

PR#6

8) Save the picture first

BSAVE PICTURE, A$4000,L$2000

9) Enter the monitor

CALL -151

10) Make this modification

67B7:4C D2 D7

11) Save the first 8 pages of this modified program

BSAVE ATTRACT, A$6000,L$800

12) Restore the original program

67B7:20 00 6D

13) Insert Trilogy disk and re-start the game.

6000G

14) Hit ESC to get to menu.
15) Type 1 to select Driver, the first game in Trilogy.
16) When the title and/or instructions come up, hit RESET.
17) Swap disks and save the just loaded program

BSAVE DRIVER,A$800,L$1801

18) Enter the monitor again

CALL -151

19) Repeat Steps 13-18 for PINBALL and SPACE WARS using
the same BSAVE parameters.
20) Coldstart BASIC and DOS

FP

21) Type in the following BASIC menu "HELLO" program.

10 ON PEEK (104) =112 GOTO 20 : POKE 103 ,1 : POKE 104 ,112 : POKE 28672 ,0
: PR INT CHR$ (4) "RUNBUOGE. HELLO"

20 PRINT CHR$ (4) "BLOAO'ATTRACT"
30 PRINT CHR$ (4) "BLOAO'PICTURE"
40 POKE 10 ,76 : POKE 11 ,0 : POKE 12 ,96 : PR INT USR (0) : CALL - 10621
500$ =CHR$ (13) +CHR$ (4) : VTAB 1 : ON PEEK (67) - 3GOTO 60,70,80
60 PR INT 0$ "BLOAO'OR IVER" : CALL 3523 : RUN 40

Book of Softkeys Vol. I 20

70 PRINT 0$ "BLOAO'PINBALL" : CALL 2048 : RUN 40
80 PRINT 0$ "BLOAO'SPACE'WAR" : CALL 6015 : RUN 40

22) Save it

SAVE BUDGE.HELLO

I would sometimes get an ?OUT OF MEMORY ERROR. If
you should encounter this, just type RUN 20 and you'll be fine.

Now, would someone tell me how to make both spaceships
feel the same gravity?

21 Book of Softkeys Vol. I

~Boot Code Tracing
By Bobby

Requirements:
Apple II
One disk drive with Apple controller
Apple Galaxian
Empty 48K slave disk
Knowledge of machine code/assembly language

Boot code tracing is the most difficult of all the sofikeys
presented. It is also the most effective method of transferring
single load binary programs, those which load into the Apple at
Boot and do not access the disk again. Therefore, be warned that
this softkey is definitely not for beginners. You must have some
knowledge of machine code or assembly language.

The initial Boot or Boot 0 is determined by a program on the
disk controller card. This program is stored in ROM (Read Only
Memory) and cannot be changed by the program on a disk. A
non-standard format may be used on a disk to prevent copying,
but that disk will not Boot on your Apple unless track 0, sector
o is readable by the disk controller card. This means that you
can also read it and, by controlling the boot process, you can
determine where the program is and save it to disk.

In order to demonstrate this process, the Boot of the binary
program Apple Galaxian will be traced. This is a familiar game
and almost everyone owns a copy.

The Boot 0 code is at $C6oo. If your controller card is not in
slot 6, then change the number after the $OC to correspond to
the appropriate slot (i.e. Slot 5 would be $C5OO). First the code
will be moved down into RAM (Random Access Memory) where
a portion of it can be modified. Tum on your Apple, press
RESET to halt the boot, then enter the monitor

CALL -151

And type

9600<C600.C6FFM

This will move the Boot code to page $96 ($9600), where the
changes will be made. -

NOTE: Commands will be on a separate line and printed
exactly as you should enter them. Press return after each line
entry. If a command has already been listed, it will be referred
to but not listed again.

Be sure you move the code to a page boundary that
corresponds to the slot that your controller card is in (i.e. for
slot 6 - $9600, $8600 etc. or for slot 5 - $9500, $8500 etc.).

Book of Softkeys Vol. I 22

The reason for this is that the Boot 0 code contains a routine
that finds which slot the controller card is in. It does this by
calling a return code in the F8 ROM and extracting the return
address to locate the page boundary. The code itself is
relocatable (will run anywhere in memory).

The purpose of Boot 0 is to transfer the code stored on disk at
track 0, sector 0 into memory and to execute it. Then the disk
code (Boot 1) will take over the Boot process. Here is where the
first change will be made.

Examine the code at the end of page $96. At $96F8 you will
find a IMP to $801. This is the next Boot stage (Boot 1). Boot 0
needs to load and not run the Boot 1 code at page $08, so the
code at $96F8 will be changed to IMP to the monitor after
turning off the drive motor. In order to save having to reenter
the same code, put the routine at $9500.

96FA:95 N 9501:AD E8 CO 4C 59 FF

The base address $C088 is used to tum the drive motor off.
You must add the slot number of your controller card to this
address in the form $sO where "s" is the slot (i.e. slot 5 would
be $C088 + $50 = $COD8). If you're not used to hexadecimal
numbers, there is a table on page 82 of the Apple][+ reference
manual with the base addresses and conversions for each slot.

After making the changes and checking that they are correct,
you are ready to begin. Run the code at $9600 (Boot 0).

$96OOG

When the drive stops, Boot 1 will be in memory at page $08.
If you examine the code at $800 you will see that it is written to
run at page $02. The first part of the code is a move routine that
transfers the code from page $08 to page $02, then IMPs to
page $02.

Boot I should be moved to page $98 so you can make
changes. The code must be moved or else the next time you run
Boot 0, it will be overwritten.

9800<800.8FFM

Now the modified Boot 0 can be linked at $9600 to the Boot 1
code at $9800. The move routine should then be changed so it
will work at its new address, and the IMP to the next Boot stage
should be changed to the routine at $9500.

96FA:98 N 9805:98 N 9843:95

The "N" is used as a null command to separate changes. It is
the monitor command to set normal mode and does nothing,
since you are already in normal mode.

After you have made the changes and checked that they are
correct, run the code at $9600 again. When the drive stops, Boot

23 Book of Softkeys Vol. I

2 will be in memory at page $03. Move the code at $300 to
$9300.

9300<300.3FFM

The exit from Boot 2 is via an indirect JMP at $9343. This
JMP normally points into itself. Rather than write any additional
code to check when this JMP is changed, allow the code at $300
to be called as a subroutine and change the indirect JMP at
$9343 to point to $9501. This works because the JMP at $9343
is not seen until Boot 3 is completely loaded.

Link Boot I to Boot 2 and run Boot 0 again.

9343:4C 01 95 N 9843:93 N 9600G

Boot 3 is now in memory. Location $93CC holds the page
minus I of the start of Boot 3. You should find a $B6 there.
That means that Boot 3 starts at page $B7 or $B7oo in memory.
This is the final Boot. This stage will load the main program.

Boot 3 is large and would be cumbersome to modify if moved.
It can remain right where it is and the Boot 2 code can be
changed so that next time it will load in a different location. The
page number that Boot 2 uses when it loads Boot 3 from page
$B6 to page $D6 will be changed.

9313:A9 D6 EA

This will cause Boot 2 to try to load the Boot 3 code into the
space occupied by the monitor. Since the monitor is in ROM
(Read Only Memory), nothing will change and the Boot 3 code
at $B7oo is protected.

At $B749 is a routine that garbages the Boot 3 code after it
loads in the program. At $B759 is a JMP to $600. This is the
actual start of the program. Since $600 is in the text page, the
boot with the code can't just be stopped at $9501. If this were
done, the code on the text page would scroll or be over-written.
The code needs to be moved up to some safe place in memory.
Also, the end of the program is at $AOOO (my guess), which is
the same place that DOS resides on a normal disk.

The Galaxian Logo is on HIRES page 1 ($2000-3FFF). It is
reasonable to assume that this is a safe place and that no code
exists there. The logo will be lost, but the memory is needed.

The following code is a routine that compresses memory by
moving page $00 thru page $08 up to page $20, and moving
page $40 thru page $9F down to page $29.

BOOO:A2 00 BD 00 40 9D 00 29
B008:E8 DO F7 EE 04 BO EE 07
BOI0:BO AD 04 BO C9 AO 90 EA
BOI8:A2 00 BD 00 00 9D 00 20
B020:E8 DO F7 EE lC BO EE IF

Book of Softkeys Vol. I 24

B028:BO AD lC BO C9 09 90 EA
B030:4C 59 FF
Booo.B032

After entering the code, link Boot 3 to it and link Boot 2 to
Boot 3.

B749:4C 00 BO N 9343:4C 00 B7

Check to see that all the changes are correct, then run Boot O.
When the drive stops you should see a lot of inverse and flashing
characters on the screen. This is the portion of the program that
is loaded into the text screen area. An image of this code is
safely stored at $2000.

Remove the backup copy of Apple Galaxian and insert the 48K
slave disk in the drive. Boot the disk and enter the monitor.
There are a few more changes to make before the file can be
BSAVEd.

The binary program that you are going to save is 132 sectors
long. DOS will not normally allow you to save a file this long,
so change the range limitation in DOS from 32K to 64K.

A964:FF

When the slave DOS was Booted, it over-wrote the code on
page $08. An image of the page $08 code was saved at $2800.
Move this code down to page $08.

800<2800.28FFM

Now all that is left is to enter the routine that will move the
program back to where it will run. This routine also disconnects
DOS and selects the hi-res screen before it IMPs to $600.

2800:A2 00 BO 00 88 90 00 9F
2808:E8 DO F7 CE 04 28 CE 07
2810:28 AD 04 28 C9 29 BO EA
2818:BO 00 20 95 00 BO 00 21
2820:90 00 01 BO 00 22 90 00
2828:02 BO 00 23 90 00 03 BO
2830:00 24 90 00 04 BO 00 25
2838:90 00 05 BO 00 26 90 00
2840:06 BO 00 27 90 00 07 E8
2848:00 CE 20 89 FE 20 93 FE
2850:AD 50 CO AO 57 CO AD 52
2858:CO 4C 00 06

Add a IMP at $7FD to the move routine, and you are ready to
BSAVE the file.

7FD:4C 00 28
BSAVE GALAXIAN, A$7FD, L$8103

25 Book of Softkeys Vol. I

Now that it is safely stored on the disk, you can run it and
discover how much of the memory that was saved is really used.
More often than not, all of memory is not used. A large part of
what was saved is not required by the program. BLOADing the
file and erasing pages before you run the program is the simplest
way to determine what sectors are necessary. You could
determine if there is sufficient memory that is not used and
retrace the Boot code in order to save the HIRES picture. This is
a fine point that is not required and is left up to the reader.

Book of Softkeys Vol. I 26

• Boot Code Tracing: Revisited
By Mycroft

Requirements:
Knowledge of machine language
48K Apple][with Integer Card
Multi-Disk Catalog by Sensible Software
One blank initialized disk

If you have a little knowledge of machine language
programming, and a good measure of perseverance, this article
will help you to defeat the locking scheme used in a large group
of programs (those that boot up and run without subsequent disk
access) and let you capture them on standard DOS. Most games
and many utility and business programs fall into this category.

The Theory

The basis for this approach is: No matter what protection
scheme is used, the program must boot on a standard Apple in
order to run. If we could somehow step through the boot
process, get everything loaded, and then stop just prior to going
to the start of the program, we would be able to save the whole
thing and run it under standard DOS.

The APPLE Boot process starts with Boot 0 in the Disk
Controller ROM. This short machine language program
BLOADS track 0, sector 0 (containing Boot 1 of the disk being
booted) at locations $800 thru $8FF, and then jumps to $801 to
execute Boot 1. Boot 1 reads Boot 2, and the process continues
through successive Boot stages until finally the main program is
loaded and run.

Assuming your disk Controller card is in slot 6, the code for
Boot 0 starts at $C600 and extends through $C6FA. If you
power up your APPLE, enter the monitor and do a "C600L" ,
the beginning of the disassembly listing of Boot 0 can be seen. If
you type a few more L's you will be able to see the jump to
Boot 1 at $C6F8.

What we would like to do is execute Boot 0, but stop before
jumping to Boot 1. But, how is this done?

Reset

The RESET routine is at $FF59 in the monitor ROM. It
performs a function similar to pushing the RESET button. If
called, a RESET cycle is performed and any executing program
will be stopped. If we could get Boot 0 to jump to $FF59 instead
of $801, we will have accomplished our first objective.

27 Book of Softkeys Vol. I

Modifying Boot 0

Since Boot 0 is in ROM, it cannot be directly modified. The
solution is to move it to RAM using the monitor's memory move
routine so we can change it to suit our needs. The new location
should be somewhere in RAM where it will not be overwritten
in successive Boot stages. Memory that is just below DOS is
usually safe to use, since many locked programs use only slightly
modified versions of normal DOS.

Because of the routine in Boot 0 that finds the slot the Disk
Controller is in, the second digit of the address we move Boot 0
to must be the same as the slot number. So let's use
$9600-$96FF.

The First Step

From the monitor, type

9600<C600.C6FFM

to move Boot 0 and, instead of jumping to $801 at the end, have
it jump to RESET by entering

96F8:4C 59 FF

Now put a program disk in drive 1 and execute the modified
Boot 0 by typing

9600G

The drive will start, and in a second or two you should hear a
beep and see the monitor prompt on the screen. Tum off the
drive by typing

COES

Now you can have a look at Boot 1 by listing from $801 to
see what it does

SOIL

This process can be repeated for each successive stage in the
Boot process. Whenever there is a jump out to a new code
section, put in good old 4C 59 FF (IMP to RESET). You can
examine this code at your leisure. Don't worry about the code at
this point. Look mainly for IMP's out.

A Practical Example

To illustrate the procedure, I will use the program "Multi-Disk
Catalog III", by Sensible Software. This program is an excellent
and very useful utility (which I would recommend you purchase
and add to your library.) Because I have examined dozens of

Book of Softkeys Vol. I 28

other programs which use a virtually identical Boot sequence, I
am sure they can be unlocked using this same technique with
only a few changes (try one of your own once-load programs if
you don't have Multi-Disk Catalog). You'll need an initialized
slave diskette and make sure there is a write-protect tab on the
disk you are trying to unlock.

Unlocking Multi-Disk Catalog HI

BOOT 0

Tum on your APPLE with the disk drive empty and push
RESET to stop the drive. This will keep the APPLE's memory
clear. Insert the locked disk and type

CALL -151

Type

96OO<C600.C6FFM

to move Boot O. Then fix the jump out by typing

96FA:98

This changes the jump out to $9801 where, in the next step,
we will be moving Boot 1. At $9801 type

9801:4C 59 FF

so we can stop the Boot. Now type

9600G

After the beep, type

COE8

to tum off the drive.

BOOT 1

Look at Boot 1 by typing

801L

This code relocates itself to memory page two, loads Boot 2,
and jumps out to $301 at $841. Move this code so it can be
modified, by typing

9800<800.8FFM

Fix the jump out to go to $9301 by typing

9843:93

29 Book of Softkeys Vol. I

and stop it at that point with

9301:4C 59 FF

One other byte in Boot 1 must be changed so that our
modified code is executed properly. Type

9805:98

Now do a

9600G

once again, and type

COES

to stop the drive.

BOOT 2

The next stage of the Boot normally starts at $301. Move this
code by typing

9300<300.3FFM

Take a look at the disassembled listing of the code beginning
at $9301. The JMP out of this stage can be seen at $9343, but it
is disguised by being an in direct JMP through page 0 location
$3E.

If you examine the code in this Boot stage beginning at $931F,
you will find that this indirect jump is used repeatedly to go to
$250, but ultimately, the indirect jump address is changed to go
to the next Boot stage. This change occurs at $933A-$9341.

The final jump is determined by the byte stored in memory
location $3CC, which the program increments by 1 before
executing the final indirect jump. If you look at byte $3CC

$3CC

you will find that it contains value $36 (other programs
commonly use $B6 here). This is the high byte of the jump-to
address (the low byte has value $oo).The program increments
this value by 1, so the final JMP address is to $3700.

What we want to do is let the Boot do all the jumps when it is
going to $250, but stop it before it makes the final jump out to
$3700.

Handling The Indirect Jump

Because zero page location $3E contains the value $50 for all
the indirect jumps except the final one, we can put in a
subroutine which checks to see if this value changes and, if so,
stops the boot.

Book of Softkeys Vol. I 30

Enter

9OOO:A9 5D C5 3E DO 03 4C 5D
9008:02 4C 59 4C 59 FF

The source code for this routine would look like

9000-A950
9002-C53E
9004-0003
9006-4C 50 02
9009-4C 59 FF

LOA #$50
CMP $3E
BNE $9009
JMP $0250
JMP $FF59

Load va Iue.
Same?
No, go RESET
Yes, go on.
Jump RESET.

Change the Boot code to jump to this subroutine by typing

9343:4C 00 90

and do another

9600G

BOOT 3

At the beep, you can stop the drive (COE8) and examine the
code beginning at $3700 looking for the next jump out. It is at
$3747, and is a jump to $lB03. So, as before, change this jump
by typing

374 7:4C 59 FF

Writing To The ROM

The code we moved to memory page $93 ($9300) was
responsible for reading in this portion of the Boot. But since we
just made a change at $3747, we don't want it to be over-written
when we start the Boot over again. What we do is change byte
$93CC so that a dummy write is done by letting it "write" to
the ROM!

93CC:DO

and also changing bytes $9315 and $933E to reference this
location instead of $3CC. Type

9315:93
933E:93

The "write" of the next Boot stage; therefore, begins at
$Dooo, and is ineffectual except to keep the drive running and in
the proper read mode. Change the subroutine we put in at $9000
to go to the modified next stage by typing

9009:4C 00 37

31 Book of Softkeys Vol. I

Now type

9600G

one last time. This time when you hear the beep, the drive will
stop by itself.

Start listing the program at $IB03, looking for the next major
jump out. You should fmd it at $IC25, and it is a jump to
$lE54. Type

lC25:4C 59 FF
IB03G

Now list beginning at $lE54. There is an immediate jump to
$9D84. List from $9D84.

Language Card?

At $9DE4 and $9DE7 are two indirect jumps, through $9D5E
and $9D5C, respectively. Examine the code carefully, beginning
at $9D84, and you will find that the first indirect jump is taken
by systems equipped with language cards (RAM cards), and the
second for those without. No matter; the second indirect address
will ultimately be jumped to whichever system you have. To find
out what it is, type

9DE7:4C 59 FF
9D84G

When you hear the beep, type

9D5C.9DSD

and the screen will display (low byte first) the address indirectly
jumped to as $33D5. Begin listing from $33D5 and you should
find the next JMP way down at $34BC; it goes to $OOFD.
Once again, type

34BC:4C 59 FF
33D5G

The disk drive will start and the last segment of the program
will be loaded in. If everything worked correctly you should hear
a beep, the drive will stop, and the screen will display garbage.

Where The Program Starts

Normally, the program would next jump via the page zero
location we just changed at $34BC to the start of the multi-disk
catalog main program. Type

OOFDL

to see where the start is.

Book of Softkeys Vol. I 32

The software protectors have put one last obstacle in our path.
$OOFD takes an indirect jump through page zero locations $4E
and $4F to the start of the program. We can't examine these
locations to find out where the jump goes because they get
changed when a RESET cycle is executed. Not to worry,
though, because if you type

348FL

you can see that locations $4E and $4F are set from $33CO and
$33C1, respectively. Typing

33CO.33Cl..
will thus divulge (low byte first) the starting address of the main
program as $1294.

The program occupies memory from $800-$18FF,
$5000-$5CFF, and $9DOO-$BFFF. You find this out by scrolling
through memory to try and identify program statements and data,
often a trial and error process. If you get too much, no real
harm is done, but too little and the program will not run.

Ail that remains to be done is to capture the program under
normal DOS.

Moving The Memory

Warm Booting a slave diskette will over-write memory
locations $800-$8FF and $9600-$BFFF, but everything from
$900-$95FF will be unaffected. To move the "lower" part of
the program ($800-$1800) up and out of the way of the Boot,
and adjacent to the "middle" part, type

3FOO<800.18FFM

Similarly, move the "top" part of the program down by
typing

5DOO<800.BFFFM

Type the following relocation routine, when the program is
BRUN, everything will return to its proper place:

3EDO:00 00 A9 5D 85 3D A9 7F
3ED8:85 3F A9 9D 85 43 20 F3
3EEO:3E A9 3F 85 3D A9 4F 85
3EE8:3F A9 08 85 43 20 F3 3E
3EFO:4C 94 12 AO FF 84 3E C8
3EF8:84 3C 84 42 20 2C FE 60

33 Book of Softkeys Vol. I

The source code for this routine looks like:

3E02- A9 50 LOA #$50 SETUP
3E04- 85 30 STA $30 AOORESS OATA
3E06- A9 7F LOA #$7F FOR MEMORY
3E08- 85 3F STA $3F MOVE ROUT INE
3EOA- A9 90 LOA #$90 FOR TOP OF
3EDC- 85 43 STA $43 PROGRAM.
3EOE- 20 F3 3E JSR $3EF3 'MOVE'SUBR
3EE1- A9 3F LOA #$3F DO IT AGAIN
3EE3- 85 30 STA $30 FOR 'BODOM'
3EE5- A9 4F LOA #$4F PART OF PROG
3EE7- 85 3F STA $3F
3EE9- A9 08 LOA #$08
3EEB- 85 43 STA $43
3EEO- 20 F3 3E JSR $3EF3
3EFO- 4C 94 12 JMP $1294 PROG START
3EF3- AO FF LOY #$FF
3EF5- 84 3E STY $3E
3EF7- C8 INY
3EF8- 84 3C STY $3C
3EFA- 84 42 STY $42
3EFC- 20 2C FE JSR $FE2C MONITOR MEM
3EFF- 60 RTS MOVE

The Final Test

Now remove the protected disk from the drive, replace it with
a normal DOS (slave) disk and type

~p

(Hold the 8 key down and press "P", then release the 8 key
and press RETURN). When the Boot is complete, type

BSAVE MDC,A$3ED2,L$412E

Your unlocked program will now BRUN normally and can be
customized as you see fit.

Try this procedure with your other "one-shot" load programs.
You will probably be surprised at how often it works.

Page zero locations changed by RESET:

$20-$2B
$31
$33-$3F
$40-$49
$4E-$4F

Book of Softkeys Vol. I 34

~Buzzard Bait
Sirius Software Inc.

Requirements:
48K Apple, with old F8 monitor ROM
One disk drive with DOS 3.3
Initialized 48K Slave DOS 3.3 disk
Buzzard Bait

By Clay Harrell

Sirius Software always provides us with games that are
challenging both in play and protection. Buzzard Bait is no
exception. If you try copying the disk with your favorite nibble
copier, you will find that the people at Sirius have done their
homework in discovering ways to defeat you (but we have come
to expect that from this fun-loving bunch).

Not being one who enjoys watching the bytes go by for hours
with a copier, I tend to think there is a better way. Although the
Sirius people have gone to great lengths to protect their disk
from the bit bunch, they failed to protect the memory to any
great extent. (A Note for Replay-Wildcard owners: Sirius hasn't
forgotten you either! Just enough disk access has been put in to
discourage any easy copies).

Once the game is done with its load and the little red light
goes out, RESET should be the next key pressed and the monitor
prompt should appear.

Snooping through memory and checking all the "standard"
starting locations reveals that an 8000G will start the game up
just as if nothing happened! Further examination of memory
reveals that Buzzard Bait lives from $800 to $9800.

Now all we must do is move the portions of memory that get
destroyed in a Slave disk, boot to a safe location and save the
game as a BLOADABLE file. Hi-res page one is a perfect
candidate for this since it gets re-drawn upon starting the game
and, therefore, does not need to be saved.

We must also defeat the disk access that occurs between all
levels. This access does not load any data, but just checks to see
if the disk is present.

In cookbook fashion, here is what we must do:

I) Boot Buzzard Bait.
2) Reset into monitor after the drive stops.
3) Move the code from $800 through $1000 up to $2000

2000<800.1000M

35 Book of Softkeys Vol. I

4) Move the code from $9600 through $9800 down to $3000

3000<9600.9800M

5) Boot a 48K normal DOS 3.3 Slave disk

63P

6) Reduce the number of DOS buffers to one

MAXFILESI

7) Enter the monitor

CALL -151

8) Move the code at $2000 through $2800 back down to $800

800<2000.2800M

9) Move the code at $3000 through $3200 back up to $9600

9600<3000.3200M

10) Save the first chunk of code

BSAVE BAIT2,A$4000,LS5800

11) Make two patches that bypass the disk access between levels

7F0:4C 00 20
2000:A9 18 80 B5 B7 A9 60 80
2008:B6 B7 4C 00 80

12) Save the second chunk of code

BSAVE BAITl,AS7FD,LSI811

13) Enter the following Applesoft program:

1 HIMEM:16284
2 OS = CHRS(4)
3 PRINT OS "MAXFILESl"
4 PRINT OS "BLOAO BAIT2"
5 PRINT OS "BRUN BAITI"

14) Save the Applesoft program

SAVE BUZZARD BAIT

This softkeyed version of Buzzard Bait you have created is not
an exact copy of the original because the backup does not have
any sound effects. To me this is an acceptable tradeoff for the
security of not having to wear out my original game disk.
Perhaps with the information I have provided, someone out there
can produce a softkey procedure that retains those annoying
sound effects we have all come to love.

Book of Softkeys Vol. I 36

~Cannonball Blitz
Sierra On-Line, Inc.

Requirements:
Apple][+ or equivalent
COPYA
A sector editor
Cannonball Blitz
One blank disk

By Staff

Here is a short APT for Cannonball Blitz which will reduce
the hazards encountered on the second level of play. After
finishing Level 1, just press the space bar and the repeat key
simultaneously (or press the space bar continuously if you have
automatic repeat) until the screen changes to the next level.
When play begins at the second level, the number of cannons
will have been reduced to only two.

And a Quick Softkey. . .

To copy the entire disk, use COPYA. Then, using a sector
edit program such as DiskEdit, read Track 17, Sector OE, and
change address CD from 49 to 60. Finally, write the sector back
to the disk. This backup copy can be copied using any of the
numerous copy programs on the market. To run the program,
simply boot the disk.

37 Book of Softkeys Vol. I

~Casino

By Leonard Nadel, DDS

To unlock the disk Casino so it can be accessed and backed-up
with COPYA, use the same method as for Zork. (See table of
contents.) No changes in the sector mode are necessary!

Book of Softkeys Vol. I 38

~Data Reporter
Synergistic Software

Requirements:
48K Apple][+
COPYA
Data Reporter
One blank disk

By Don Halley

The Data Reporter, from Synergistic Software is advertised as
Version 2 of the popular modifiable database system. It is
basically a data storage and retrieval system with graph plotting
capabilities, a text editor, and many data management features.

Documentation for Data Reporter is fairly complete, although
it suffers from the same unimaginative approach to organization
as does the documentation for its competitors. There is no index
and the table of contents offers no help beyond one or two-word
references to program features. A tutorial section would be
appreciated by the uninitiated user, and a reference table
containing pointers to key sections would help.

Normal Copy

The documentation suggests that a copy of the original disk be
made for general use in order to prolong the original's life. The
COPYA program on the DOS System Master may be used, but
it will encounter a read error on the last track. This track has
been written with a modified DOS and its contents are read into
memory via a short machine language program appended to the
last line of the HELLO program. This means that you must
always boot from the original, then swap to your application disk
for processing.

Unprotected Copy

A little PEEKing around will reveal that the protected sectors
are from $00 to $06 on track $22, and that the information
contained there is loaded into memory from $9400 to $9AFF.
Examination of the HELLO program shows that it does not
touch this area upon exit. This means that both a way of reading
the protected portion of the disk into the proper memory
locations (HELLO) and a clean exit have been provided.

Here's the step-by-step procedure:

1) Make a copy using COPYA. (Ignore the read error.)

39 Book of Softkeys Vol. I

2) RUN the HELLO program on the original disk.
3) Choose the QUIT option from the primary menu.
4) Replace the original disk with your copy.
5) Type these commands:

BSAVE HELLO.OBJ, A$9400, L$06FF
LOCK HELLO.OBJ
UNLOCK HELLO
63999 PRINT D$ "BLOAD HELLO.OBJ" : RETURN
SAVE HELLO
LOCK HELLO
PR#6

You now have a fully operational backup for only the cost of,
the disk itself. Of course, you may make as many additional
backups as you like from this disk.

Book of Softkeys Vol. I 40

~Demumn

By Bobby

Requirements
Apple n, n+, IIe with 48K
One disk drive
Blank initialized disk
DOS 3.3 Master disk with MUFFIN
Programmers Aid ROM

Muffin is a program on the 3.3 DOS Master disk. It is used
to transfer l3-sector ftles to l6-sector disks. To accomplish this,
it contains an image of 13-sector RWTS (Read or Write a Track
and Sector). It uses this internal RWTS to read the ftle and then
writes to your diskette using the external or resident DOS.

DemutTm is created by changing the jumps in the program so
that it uses the resident DOS to read and the internal RWTS
image to write. Also, the internal RWTS is changed from a 13
sector image to a 16 sector image.

1) Boot the DOS 3.3 Master disk

PR#6

2) Switch to Integer and load MUFFIN

INT
BLOAD MUFFIN

3) Enter the monitor and initialize the Programers Aid Code
Relocation feature

CALL -151
D4D5G

4) Tell the relocate routine what we're moving and where it goes

1900<B800.BFFF8Y*
5) Move the first Code segment down to $1900

1900<B8oo.BA1(EJY

6) Move the data segment

.BC57M

7) Move the last code segment

.BFFF8Y

8) Make the following patches

1155:00 IE

41 Book of Softkeys Vol. I

115B:D903
1197:AO 20
15AO:AO D2 C5 D3 C9 C4 C5 CE
15A8:D4 AO C4 AE CF AE D3 AE
15F7:C4 C5
20AO:A9 IE 8D B9 B7 20 FD AA
20A8:48 A9 BD 8D B9 B7 68 60

9) Save the new DEMUFFIN program.

BSAVE DEMUFFIN,A$803,L$I900

Directions & Explanations

Demuffin directions are identical to Muffm's. You want to
convert the files, so you have to select the disk slot and drive
and the file name you want to convert. It is helpful to type =
for the file name so that all the available file names will be
displayed when you answer yes to the question: "Do you want
prompting?". Now you can choose which files to convert
(transfer).

If a file doesn't transfer and you get an I/O ERROR, you'll be
returned to the menu. Just repeat all the steps but don't bother
converting the files you have already converted, and bypass the
problem file (it probably isn't needed by the program anyway).
Continue to convert as many files as you can.

Book of Softkeys Vol. I 42

~DiskEdit

By Charles Haight

Certain tools are required to understand DOS and to
manipulate disk meso The first is a nibbler or bit editor. The
second and most important of these is a sector editor.

DiskEdit is one such utility.
DiskEdit is a user oriented direct disk access program. Simply

stated, DiskEdit allows the user to read or write any sector on a
disk. This means that the user can:

Directly edit fdes on disk.
Change text in binary meso
Insert illegal characters in REMs.
Directly alter data base meso

Move sectors (even between disks).
Repair crashed disks.

Format catalog names.
Remove illegal codes in me names.
Write flashing and inverse titles.
Repair the VTOC.
UnDELETE deleted meso
Hide me names.

DiskEdit will display an entire sector as hexadecimal and
ASCn.

The keyword in DiskEdit is simplicity. The commands are
single key entry (you don't have to keep hitting return). With
DiskEdit you can directly enter control, inverse, flashing and
lower case characters. Input and display information can be in
hex or decimal. The shimmering cursor is easy to identify even
with a screen full of inverse and flashing characters. You can
jump the cursor to any absolute position within a sector. The
NEXT and LAST commands allow you to single-step through
track/sectors. And DiskEdit has a simple escape. If you change
your mind, pressing the escape key will set the defaults and
return you to the command mode.

Disk Overview

Before we begin entering DiskEdit, let's take a closer look at
DOS and a normal disk.

The flexible (or floppy) diskette can be thought of as a disc
shaped piece of recording tape, and essentially that's all it is. A
flat disk shape is used, instead of a flat strip (as in a tape), in
order to maximize the rate of data transfer. For instance, to
transfer data to and from a tape, the computer would have to
READ all of the tape preceding the area where the data was
stored before it could transfer the required data. This method of

43 Book of Softkeys Vol. I

information retrieval is known as "sequential access" and is
about the same as scanning a cassette tape for a favorite song.

The disk, on the other hand, is set up in such a way that the
computer can go directly to a piece of data or program by
scanning the disk laterally. This method of information retrieval
is known as "random access" and is similiar to selecting a
particular song on a record.

Before a disk can be used, it must be formatted. The INIT
command is used for this purpose.

When a disk is initialized, the Disk Operating System (DOS)
writes 35 concentric tracks. Each track is divided into 16 blocks
called "sectors". (DOS version 3.2 writes only 13 "sectors".)
Each sector contains an address mark and a data mark. These
marks start and end with a unique pattern of bytes.

The address mark tells the DOS what track/sector it is
currently reading. It contains the volume, track, sector and
checksum information. The data mark contains the actual data. It
tells the DOS where the data begins and ends and includes a
checksum that is used to verify the accuracy of the data.

If you have ever tried to load a program and the disk drive
started making a slight chatter, chances are that the DOS could
not read one of these markers. It then recalibrates the read/write
head by moving it back to track zero and stepping (counting each
track that it passes over) back out to where it was supposed to
be.

The tracks are numbered from $00 (0) to $22 (34) and the
sectors from $00 (0) to $OF (15). Tracks $00 through track $02
(a total of three tracks; zero, one and two) contain the DOS
program.

The DOS gives the Apple the ability to manipulate data on a
diskette. In this program are all of the commands related to
controlling the disk drive (i.e. CATALOG, INIT,
LOAD...) and a set of ERROR messages which, unless you
either are a magician or don't use the Disk II, you have probably
seen before.

The disk controller card that connects the Disk II to the Apple
also has a small program on it. When you boot a disk, this
program tells the Disk II to read track $00 (0), sector $00 (0)
(remember, we start counting at zero instead of one) into
memory.

The program on track $00, sector $00 contains the information
required to read in sectors $00 through $09 on track $00. The
program on sectors $00-$09 reads in the remaining information
on track $00-$02. When this process is completed, the entire
operating system (DOS) will be in memory.

At this point, DOS takes over and runs the "HELLO"
program. The program that was used to initialize a disk is
usually refered to as the hello or greeting program.

Book of Softkeys Vol. I 44

In order to find your "HELLO" program, DOS goes to the
Volume Table of Contents (VTOC) and Directory located on
track $11 (17). The VTOC and Directory are used by DOS
whenever you read or write to the disk. The VTOC or "bit
map" shows which sectors are in use and which are free. The
second and third byte of the VTOC point to where the directory
starts.

The Directory begins on sector $OF OS) and continues down
to sector $01 (1). The second and third byte of each directory
sector point to the next available sector. If these two bytes are
zero, then there are no more sectors. The Directory contains a
list of all the files on the disk. Each entry contains a pointer to
the track/sector list, a file status (locked/unlocked) code, a file
type code o letter), the file name (30 characters) and the file
size. The track/sector list is a list of track/sector pairs that are
used to store that program. This is why saving a blank file
always takes two sectors. One for the blank file and one for the
track/sector list.

DOS will read the VTOC which will point to the directory.
DOS then fmds the program name in the directory and finds
where the track/sector list is. DOS then loads all of the
track/sector pairs into the proper memory locations. Finally,
DOS transfers control to the resident BASIC (Applesoft?) which
will run the program.

Entering the Program

Enter the machine code portion of DiskEdit first. Save it to
disk as ED.OBJ.,

BSAVE ED.OBJ, A$800, L$A21

Enter the BASIC listing and save it to disk as ED.BAS.

SAVE ED.BAS

Bload the binary file.

BLOAD ED.OBJ

Type "RUN" and press return. After the "?UNDEF'D
STATEMENT ERROR" message, run ED.BAS.

RUN ED.BAS

This will combine the two programs to form DiskEdit.
Type 'X' to exit to BASIC. Now, insert a blank disk in the

drive and type 'INIT DISK EDIT'. Use this back up copy for
the following examples and ALL other uses.

Getting Familiar

This exercise will aid you in understanding how to use the
commands by taking you on a tour of a normal DOS diskette.

45 Book of Softkeys Vol. I

Please read each paragraph before pressing any keys and
follow the directions carefully.

Insert the DiskEdit back-up disk in Drive 1. Tum on your
computer. DiskEdit will prompt you when it is ready.

Press any key to start.

What is your status?

On the bottom of the screen are the status indicators and
prompts. They tell you the slot (SL), drive (DR), track (T),
sector (S), volume (V), byte position (B), filter (F) and data
entry mode currently selected.

Reading

Press the 'R' key. This tells DiskEdit that you want to READ
a sector from the disk. A flashing prompt will appear next to the
track (T) indicator. DiskEdit is asking you what track to read.

Type '01'. This tells DiskEdit that you wish to read track $01
(1). The flashing prompt will move over to the sector (S)
indicator. Respond to this prompt by typing '8'.

The disk drive should whirr for about two seconds, and then
stop. The screen should be full of numbers and letters. You are
now looking at the contents of track $01 (1), sector $08 (8) in
what is known as hex or hexadecimal format on the left side of
your screen and ASCII on the right side.

Hex a what?

Hexadecimal is a base sixteen numbering system. It gets its
name from the fact that it contains all of the numbers found in
normal base 10 (decimal 0-9) plus six alphabetic characters (A
thm F).

Say 'AS-KEY'

ASCII stands for "American Standard Code for Information
Interchange." This is the alphanumeric equivalent of all of those
hex symbols on the right.

Error messages

The sector you are now viewing ($08) contains the DOS error
messages (they are continued on sector $09).

Press the 'N' key. This will increment the sector count and
cause Diskedit to read the next sector. If the sector count had
been at $OF (15), the track count would have been incremented
by one and the sector count reset to $00 (0).

The "Boot" Program

You are now viewing the sector where the "Boot" program
name is stored. In the center of the screen is the file name
'DISK EDIT'. This is the name of the program that the DOS

Book of Softkeys Vol. I 46

will automatically 'RUN' when this disk is booted. (If you
decide later to change the boot program name on this disk, this
is where you should come.)

Let's follow how DOS located the fIle "DISK EDIT" when
you booted this disk.

Press 'R' to read. Type' 11' for the track and '0' for the
sector.

You are looking at the VTOC or bit map. The second and
third byte point to the first directory (catalog) sector. These bytes
should be '11 OF'.

Press 'R' and type '11' for the track and 'F' for the sector.
The sector you are viewing is the first part of the directory,

which extends downward to sector $01 (1). Press the zero key.
This is a special function key designed to make viewing catalog
sectors more meaningful. The screen will return to normal when
you press any other key.

Moving the cursor

The I, J, K and M keys are the cursor movement keys. The
cursor has a wrap around feature. If you go off the screen on
one side, you will come back on the opposite side.

Press the '0' key. The flashing prompt will appear next to the
byte position (B) indicator.

This command allows us to move the cursor to a specific
location on the screen. Move the cursor to the beginning of the
fIle name by typing 'OE'. The cursor should now be in front of
the 'D' of "DISK EDIT".

Move the cursor back one character by pressing 'J'. Look at
the hex portion of your screen. The '02' is used by DOS to tell
what type of program DiskEdit is and whether it is locked or
unlocked. The '0' means that the fIle is unlocked. The '2' means
the fIle is Applesoft.

Editing

Press the 'E' key. This tells DiskEdit that you wish to edit the
sector.

Type '82'. Press 'ESC' to exit the EDIT mode. Press the '0'
key. Type '2C'. The byte you are looking at and the '00'
following it are the hex equivalent of the sector use count for the
fIle. Press the 'E' key. Type '00'. Press 'ESC' to exit the EDIT
mode.

Press the zero key.
The program HELLO is shown with an asterisk. Changing the

'02' into a '82' locked the fIle. Entering the '00' will change the
sector count for the fIle to zero.

47 Book of Softkeys Vol. I

Writing

WARNING: Read the following paragraph completely before
you press any keys.

Up to this point, you have only been editing the disk
information that is in the computer's memory. In order to make
the changes permanent you need to WRITE this information back
to the disk.

The command to do this is 'W' for WRITE. Press the 'W'
key. Press 'RETURN' for the track (T) and sector (S).

When the RETURN key is pressed in response to a prompt the
program will act as if the default values were entered. The
default values for the track and sector are the last track/sector
that was read or written.

The program will beep and a warning will be printed. This is
your last chance to change your mind. You must press RETURN
to have DiskEdit write to your disk. Any other key will abort
this operation.

Press RETURN. The buffer contents are now written to the
disk. Press the 'C' key to see the catalog. The first file will be
locked (indicated by the asterisk' *' next to the file type) and the
sector count will be '000'. Press any key to continue.

This completes the exercise. Experiment with DiskEdit using
this same scratch diskette.

Summary of Commands

ESC This is the "I changed my mind" key. Press this key
to reset defaults and exit back to the command mode.

RTN The RETURN key, when used to answer an input
prompt, will accept the current default and continue. (Example:
When prompted for the track and sector during a read command,
pressing RETURN twice will cause the current track and sector
to be read.)

> Track skip command. Increments the track number and
performs a READ. Does not increment the sector.

< Track skip command. Decrements the track number and
performs a READ. Does not decrement the sector number.

A Sets character entry mode to ASCII
B Disassemble buffer command. Calls the monitor to

disassemble buffer contents starting at the cursor location. Use
the space bar to continue disassembly one line at a time or press
RETURN to disassemble 20 additional lines. Press 'P' to print
the screen display. (Press ESC to exit.)

C Displays the disk catalog using the current slot and drive.
Prints the number of free sectors on the disk.

D Flips the active drive from 1 to 2 or from 2 to 1 on each
keypress.

Book of Softkeys Vol. I 48

E A continuous-edit mode, this mode allows you to type
changes just like on a typewriter. Pure cursor movement is
supported using control keys. If you are in hexadecimal format,
only valid hex digits are accepted as input. In ASCII format all
keys are valid except the control keys listed below. (Press ESC
to exit.)

Ctrl Key

F
I
N
Q
z

Function

set FLASH mode
set INVERSE mode
set NORMAL mode
move cursor up
move cursor down
move cursor right
move cursor left

+ This edit submode is entered using the plus (+) key. The
'»EDIT«' prompt is changed to '++EDIT++'. It is
identical to the normal edit mode except that it does not support
control functions. All keys are valid except ESC. Control
characters may be directly entered. The plus (+) key or the
semi-colon (;) may be used to enter this submode.

F This is the filter format command it allows you to change
the filter values so that you can configure your own filters.

G Turns the sound on or off each time you press the 'G'
key. (Default at BOOT is on.)

H Sets character entry mode to Hexadecimal
I Moves cursor up.
J Moves cursor left.
K Moves cursor right.
M Moves cursor down.
L Reads last sector.
N Reads next sector.
o Allows cursor to be jumped to any absolute position in

the displayed sector.
P Sends the buffer contents to your printer. A header is

printed first which shows the track, sector, and volume. When
first used, the program will ask which slot your printer is using
and whether you wish to use 40 or 80 columns.

R Prompts you for the track and sector to read. Use the
RETURN key to accept default values.

S Prompts you for a new slot. Valid entries are from 1 to 7.
U Toggles the status indicators between hex and decimal and

updates the display information. Only the track, sector, and
cursor are affected by this key. (Default at BOOT is hex.)

W Prompts you for the track and sector to write to. Use the
RETURN key to accept default values. After entering the track

49 Book of Softkeys Vol. I

and sector, DiskEdit will beep and pause. This is your last
chance to change your mind. Press RETURN to WRITE, or any
other key to escape.

X Clears the screen and exits to BASIC.

ASCn Filters

The number following the filter (F) indicator is the filter
currently selected.

There are 9 filters. Each affects the format of the displayed
screen contents. They do not change the actual buffer contents in
any way. They may be selected by pressing the corresponding
number (1-9) key.

RoBing your own

The filters can be modified from the keyboard. Select a filter
(1-9) by pressing the appropriate number key. Press the 'F' key.

The 256 screen characters are divided into 8 blocks. The
prompt under 'BLOCK' indicates the original group of characters
while the prompt under 'CHG:' indicates what characters will be
displayed on the screen.

The first prompt is 'INYl' for inverse letters. Press '7'. This
causes all inverse characters in block 1 to display as normal.
Block 7 is normal letters. The 'INVl' prompt under 'CHG:' will
change to 'NOR2'. By pressing a number from 1 to 8, each of
the original blocks can be changed to display as any other block.
Pressing 'RETURN' will skip a block.

Next to 'CHG:' is 'FN#'. The "FN#' is short for function
number. There are 3 functions.

1. Print block, delete one character
2. Delete block, print one character
3. Delete entire block

Customizing the Program

DiskEdit is an Applesoft program with packed machine code.
This means that the machine code portion of the program is
hidden in such a way that DOS thinks it is part of the Applesoft
program.

The machine code is hidden behind the REM in line 0 rather
than at the end of the BASIC program. This was done in order
to allow program modification while keeping the program size as
small as possible.

If you load the program and list it, you will see a single
BASIC line:

oCALL 2167 : GOTO 10 : REM

Book of Softkeys Vol. I 50

In order to make changes you will need to follow these steps:

1. RUN the program.
2. When the copyright notice is on the screen, press RESET to

exit the program.
3. LIST the program and make changes.
4. After making any changes, RUN the program and exit using

the "X" key. This will change the zero page pointers so that
DOS can save the machine code along with the modified
program.

5. SAVE the modified program to disk.

DiskEdit BASIC program

10 TEXT: HOME: GOSUB 2150: GOTO 750
20 REM CLEAR TEXT VI INDOW
30 POKE 35 ,2I: HOME: RETURN
40 REM GET CHARACTER VI ITH PROMPT
50 POKE - 16368,0
60 GET N$: KY =ASC (N$) +128: IF KY <>155 THEN RETURN
70 REM RESET ALL DEFAULTS
80 POKE TR, TS: POKE SC, SS: POKECM, RD: TK =TS: SE =SS: CALL IT: CALL MV
90 REM CLEAR STACK, GOTO CMD PARSER
100 CALL - 10621: GOTO 750
I 10 REM MAKE NOISE AND RETURN
120 PR INT GG; : RETURN
130 REM FIND BINARY START
140 IF PEEK (1024) =164 THEN 190
150 REM FOR DECIMAL NUMBER
160 Al =PEEK (1024) - 176:A2 =PEEK (1025) -176: IF A2 >- I THEN GOSUB

400: AI =KY: A2 =PEEK (1026) - 176: IFA2 >- I THEN GOSUB 400: RETURN
170 KY =AI: RETURN
180 REM FOR HEX NUMBER
190 KY =PEEK (1025): GOSUB 280:Al =KY:KY =PEEK (1026): GOSUB 280:A2 =

KY:KY=Al *16+A2: RETURN
200 REM GET KEY VI ITHOUT PROMPT
210 KY =PEEK (- 16384): IF KY <128 THEN 210
220 POKE -16368,0: RETURN
230 REM HANDLE AN ERROR
240 Al =PEEK (EF): GOSUB 30: VTABI2: HTAB 12: IF Al =16 THEN PRINT

"UNABLE'TO'WRITE": GOT0260
250 PRINT "DISK'DRIVE'ERROR"
260 PRINT GSG$; : FOR X=1TO 1000: NEXT: POKE EF ,0: POKE 35,24: CALL MV:

GOT080
270 REM PROCESS HEX/DEC INPUT
280 KY =KY -176: IF KY <0OR KY >22 THEN KY =128: RETURN
290 IFKY> 9THENKY =KY -7: IFKY <10 ORKY> 15 THEN KY =128
300 RETURN
310 REM GET HEX OR DEC ONLY

51 Book of Softkeys Vol. I

320 GOSUB 50
330 IF KY =141 THEN RETURN
340 GOSUB 280
350 IF KY =128 THEN GOSUB 120: GOTO 320
360 IFPEEK (HF) AND KY >9THEN GOSUB 120: GOTO 320
370 RETURN
380 REM CALCULATE HEX/DEC NO.
390 IFNOT PEEK (HF) THEN KY =Al * 16 +A2: RETURN
400 KY =A1 * 10 +A2: RETURN
410 REM GET TRACK VALUE
420 VTAB 22: HTAB 14 - PEEK (HF): GOSUB 320: IF KY >15 THEN KY =TK: GOTO

480
430 IFNOT PEEK (HF) AND KY >2 THEN 480
440 IF KY >3THEN 480
450 A1 =KY: PRINT N$; : GOSUB 320: IF KY >15 THEN KY =A1: GOT0480
460 A2 =KY: GOSUB 390
470 REM CHECK FOR VAL IDTRACK#
480 IF KY <0OR KY >34 THEN PRINT G$; : GOTO 420
490 REM SAVE OLD TRK#, POKE NEW
500 TS =TK:TK =KY: POKE TR, TK: CALLTT
510 REM GET SECTOR VALUE
520 VTAB 22: HTAB 21 - (PEEK (HF)) * 2: GOSUB 320: IF KY >15 THEN KY =SE:

GOTO 620
530 REM CHECK FOR HEX I/O
540 IFNOT PEEK (HF) THEN 620
550 REM SAVE KEY
560 IFKY >1THEN 620
570 REM GET ANOTHER KEY
580 Al =KY: PR INT N$; : GOSUB 320: IF KY >15 THEN KY =Al : GOTO 620
590 REM CHECK FOR VAL IDSECTOR#
600 A2 =KY: GOSUB 390: IF KY <0OR KY >15 THEN PR INT G$; : GOTO 520
610 REM SAVE OLD SCT#, POKE NEW
620 SS =SE:SE =KY: POKE SC,SE: CALLTT
630 REM IFWR ITE THEN LAST CHANCE
640 IF PEEK (CM) =WRTHEN VTAB24: HTAB 2: PRINT "PRESS'RETURWTO'->";:

FLASH: PRINT "WRITE";: NORMAL: PRINT "<-,'ESC'TO'EXIT"G$;: NORMAL:
POKE -16368,0: GOSUB 210: IF KY <>141 THEN 80

650 GOTO 710
660 REM PRINT 40 "=" 'S
670 FOR X=1TO 40: PRINT "="; : NEXT: RETURN
680 REM PR INT SCREEN PROMPTS
690 CALL TT
700 REM READ OR WR ITE ASECTOR
710 CALL 10
720 REM PR INT BUFFER TO SCREEN
730 CALL MV: RETURN
740 REM COMMAND PARSER
750 POKE 216,0: CALL TT: VTAB 23: HTAB 1: CALL - 958: IF PEEK(EF) >0THEN

Book of Softkeys Vol. I 52

GOSUB 240
760 REM SAVE CURRENT TRACK/SECTOR
770 TS =PEEK (TR):SS =PEEK (SC) :TK =TS:SE =SS
780 CALL XC:KY =PEEK (225) - 192
790 IF KY =- 5OR KY =- 21 THEN1380
800 IFKY <0OR KY >26 THEN 750
810 ON KY GOSUB 100,1870,1830,100,1400,840,1450,100,100,100,100,100,

100,100,1590,1480,100,420,1680,100,100,100,1720 ,1740 ,100,100:
GOTO 750

820 PR INT G$; : GOTO 750
830 REM *** DEFINE FILTER ***
840 TEXT: HOME: VTAB 22: HTAB7: PRINT "CONF IGURAT IOWFOR'F ILTER'#" PEEK

(FL)
850 VTAB 2: PRI NT G$"#·BLOCK·....#·CHG: ..·FN#·CHR$·STATUS"
860 PRINT
870 DL =PEEK(231) +PEEK(232) *256 - 1:CG =PEEK(233) +PEEK(234) *256-1
880 FI =PEEK (FL)
890 REM PRINT CURRENT VALUES
900FORX=1 T08: PRINT X" !"F$(X)"'->''';
910 F=PEEK (CG +X)
920 F1 = INT (F / 32) +X: IF Fl >8THEN Fl =F1 - 8
930 F2 =F- (INT (F / 32) *32)
940 F3 =PEEK (DL +X)
950 F4 =PEEK (NO +FI)
960 F1 (X) =Fl: F2(X) =F2: F3(X) =F3 + (F(Fl) * (F2 <> 0)) +(F(X) * (f2 =0))
970PRINTF1"!"F$(F1);: HTAB23: PRINTF2;: HTAB27: POKE2091,F3: CALL

HP: CALL AP: IFX<>1THEN 1000
980 HTAB 36: IF F4 =1THEN PRINT"OW";
990 IF F4 =0THEN PRINT "OFF";
1000 PRINT: PRINT: NEXT
1010 REM EDIT CURRENT VALUES
1020 FOR X=1TO 8: VTAB X*2+2: HTAB 12
1030 REM GET BLOCK #
1040 GOSUB 50:A =KY -176: IF N$ =CHR$ (13) THEN A=F1(X) :N$ =""
1050 IF A<lOR A>8THEN PRINTG$;: GOTO 1040
1060 PRINT N$;': HTAB 15: PRINT F$(A);: HTAB 23
1070 C=F2 (X)
1080 REM CALCULATE OFFSET
1090 IFA> =XTHEN F=A- X
1100 IFA <XTHEN F=(8 - X) +A
1110 POKE CG +X,F * 32 +C
1120 REM GET FUNCT ION #
1130 GOSUB 50:C:: KY -176: IF N$ =CHR$ (13) THEN C=F2(X) :N$ = ""
1140 IFC<0OR C>3THEN PR INTG$; : GOTO 1130
1150 PRINT N$;
1160 REM CHANGE FILTER VALUE
·1170 POKE CG +X,F *32 +C

53 Book of Softkeys Vol. I

1180 KY =F3 (X): IF C=0THEN KY =0
1190 IF C<lOR C=3THEN 1270
1200 VTAB 20: HTAB 1: PR INT "ENTER CHARACTER: ,,, ; : GOSUB 50: IFKY =141 THEN

KY =F3(X)
1210 IF KY <160 OR KY >223 THEN PR INT G$; : GOTO 1200
1220 IF KY <192 THEN KY =KY +(2 +A) *32: GOTO 1240
1230 IF KY> 191 THEN KY =KY + (l +A) * 32
1240 KY =KY - 256: HTAB 1: CALL - 868: VTAB X*2+2
1250 POKE DL +X, KY
1260 HTAB 27: POKE 2091 ,KY: CALLHP: CALL AP
1270 NEXT
1280 REM GET FILTER STATUS
1290 PRINT: PRINT: PRINT "LEAVE'FILTER'ON'DURING'EDIT?'(Y/";: INVERSE:

PR INT "N"; : NORMAL: PR INT ") :"'G$; : GOSUB 50
1300 HTAB 1: CALL - 868: VTAB4: HTAB 36: IF N$ = "Y" THENA =1: PRINT

"ON''' ; : GOTO 1320
1310 PRINT "OFF"; :A =0
1320 POKE NO +FI ,A
1330 REM RESTORE SCREEN, EXIT
1340 FOR X=1TO 500: NEXT
1350 GOTO 730
1360 REM +tEDIT+t MODE ENTRY PO INT
1370 IFFI =0THEN RETURN
1380 VTAB 24: HTAB 2: INVERSE: PRI NT"+tEDIT+t"; : POKE NC,O: GOT01410
1390 REM EDIT MODE ENTRY POINT
1400 VTAB 24: HTAB 2: INVERSE: PR INT"»EDIT«" ;: POKE NC, 1
1410 NORMAL: HTAB 12: PR INT "MODE" ; :
1420 PRINT "AUPRESS'<ESC>'TO'EXIT";
1430 CALL ED: VTAB 23: HTAB 1: CALL - 958: GOTO 80
1440 REM TURN SOUND ON/OFF
1450 PR INT G$;: IF G$ =CHR$ (7) THEN G$ ="": RETURN
1460 G$ =CHR$ (7): RETURN
1470 REM *** PRINT HARDCOPY ***
1480 IFNOT PR THEN GOSUB 1760
1490 GOSUB 30
1500 Al =PEEK (BF) *256 - 1
1510 PR# PR: PRINT
1520 PR INT "TRACK: All ; : POKE NM, TK: CALL HX: PR INT '''SECTOR: "; : POKE NM, SE:

CALL HX: PRINT"'VOLUME:'" PEEK (VO)
1530 FOR X=0TO 255 STEP 16 Ill: POKE NM,X: CALL HX: HTAB5: PRINT "-";
1540 FOR A=1TO 16 I LI : POKE2091, PEEK (AI +X+A) : CALLHP: NEXT
1550 FOR A=1TO 16 I LI: POKE2091, PEEK (AI +X+A) : CALLAP: NEXT
1560 PRINT: NEXT
1570 PR# 0: GOTO 80
1580 REM ** * JUMP CURSOR ***
1590 VTAB 22: HTAB 32 - PEEK (HF): GOSUB 320: IF KY >15 THEN CALL TT:

RETURN
1600 Al =KY: PR INT N$; : GOSUB 320: IF KY >15 THEN KY =AI: GOT01660

Book of Softkeys Vol. I 54

1610 A2 =KY: PRINT N$;: GOSUB 390: IF NOT PEEK (HF) THEN 1660
1620 IF KY >25 THEN 1660
1630 Al =KY: GOSUB 320: IF KY >15 THEN KY =AI: GOTO 1660
1640 A2 =KY: PR INT N$; : GOSUB 390: IF KY <0OR KY> 255 THEN CALL TT: GOTO

1590
1650 REM CALCULATE NEW CURSOR POSN
1660 POKE CS,KY: CALL MV: CALL TT: RETURN
1670 REM CHANGE SLOT NO.
1680 VTAB 22: HTAB 4: GOSUB 320: IF KY >15 THEN CALL TT: RETURN
1690 IFKY <1OR KY >7THEN 1680
1700 POKE SL, KY * 16: CALL TT: RETURN
1710 REM WR ITE ATRACK/SECTOR
1720 POKE CM, WR: GOSUB 420: POKECM, RD: CALL TT: RETURN
1730 REM CLEAR SCREEN, RECONNECT DOS AND EX ITTO BAS IC
1740 TEXT: HOME: POKE 103,1: POKEI04, 8: CALL 1002: END
1750 REM FIND PRINTER SLOT
1760 GOSUB 30: VTAB 12: PRINT "WH ICWSLOT'I S'YOUR'PR INTER'USING?'I-r" ;:

GOSUB 320: IFKY >15 THEN RETURN
1770 IF KY >7THEN GOSUB 120: GOT01760
1780 IFNOT KY THEN RETURN
1790 PR =KY: LI =2
1800 PR INT : PRI NT : PRINTTAB(6) "PR INT'US ING'80'COLUMNS'(Y/";: INVERSE:

PRINT "N";: NORMAL: PRINT ") :";: GOSUB 50: IFN$ ="Y" THEN LI =1
1810 RETURN
1820 REM CALL FOR CATALOG
1830 CALL 1002: ONERR GOTO 1850
1840 GOSUB 30: PRINT: PRINT CHR$(4) "CATALOG,D" PEEK (DR)",S" PEEK (SL) /

16: PRINT: CALLFR: POKE 35,24: VTAB 24: HTAB7: PRINT
"PRESS'ANY'KEY'TO'CONT INUE4l

' ; : GOSUB 210: GOT0730
1850 POKE 216,0: GOTO 240
1860 REM DISASSEMBLE THE BUFFER
1870 GOSUB 30: VTAB 21: PRINT: PRINT:KY =PEEK (CS)
1880 REM START AT CURSOR
1890 POKE 58, KY: POKE 59, PEEK (BF)
1900 Al =0:A2 =21
1910 REM START AT LAST BYTE
1920 FOR X=1TO A2: IF PEEK (59) >PEEK (BF) THEN :Al =1: IF PEEK (1152) <

>160 THEN PRINT: GOTO 2090
1930 IFAl THEN PR INT : NEXT : GOT02090
1940 CALL BI
1950 NEXT
1960 REM <ESC> KEY? =EXIT
1970 GOSUB 210: IF KY =155 THEN2130
1980 REM <RTN> KEY? =20 LI NES
1990 IF KY =141 THEN 1900
2000 REM <SPACE> KEY? =1LINE
2010 IF KY =160 THEN A2 =1: GOT01920
2020 IF KY =213 THEN GOSUB 140: GOSUB 1550: VTAB 1: GOTO 1890

55 Book of Softkeys Vol. I

2030 IF KY <>208 THEN 1970
2040 REM PR INT SCREEN
2050 GOSUB 140: L=KY
2060 IFNOT PR THEN GOSUB 1760
2070 HOME: KY =L: PR# PR: GOT01890
2080 REM PR INT EX ITMESSAGE
2090 PR INT "ENO'OF'BUFFER'PRESS'RETURWTO'CONT INUE" ; : GOSUB210
2100 REM LAST CHANCE TO PR INT
2110 IF KY =208 THEN 2050
2120 REM EXIT BINARY ROUTINE
2130 PR INT : POKE 35 I 24: PR# 0: GOT0730
2140 REM OEFINE VARIABLES
2150 RD =1:WR =2: LI =2
2160 SL =2071 :OR =2072:VO =2084:TR =2074:SC =2075:CM =2082
2170 NM =2091 :FL =2101 :EF =2094:HF =2095:CS =2100:BF =2103
2180 NC =2099
2190 FI =PEEK (FL)
2200 NO =PEEK (2106) +PEEK (2107) *256
221010= 2111:MV= 2114:HX= 2117:EO= 2120:B' =2123:FR=2126:IT=

2129:XC =2135
2220 HP =2141 :AP =2144
2230 F$(l) = "INV1":F$(2) ="INV2":F$(3) ="FLS1":F$(4) ="FLS2":F$(5) =

"CTRL":F$(6) ="NOR1":F$(7) ="NOR2":F$(8) ="L/C'"
2240 F(l) =192:F(2) =128:F(3) =128:F(4) =64:F(5) =64:F(6) =O:F(7) =

0:F(8) =-64
2250 G$ =CHR$ (7)
2260 VTAB 8: PRINT "O·'·S·K·E·O·I·T....V·E·R·S·'·0·N...4· "0": PRINT

"'COPYR IGHT'1981' (C) 'HARDCORE'COMPUT 1ST": PR INT
2270HTAB5: FORX=l T032: PRINT"-";: NEXT: PRINT: HTAB6: PRINT

"A'O ISK'EO ITING'UT ILITY'PROGRAM"
2280 HTAB 5: FOR X=1TO 32: PRINT"-";: NEXT: PRINT: PRINT
2290 VTAB 22: PRI NT "I NSERT'OISK'--'PRESS'ANY'KEY'TO'CONTINUE"; : GOSUB

210: VTAB 22: CALL - 958: GOTO 730

Diskedit source code

0010
0015 * OISKEOIT II - VERSION 4.1
0020 * COPYRIGHT 1981 SOFTKEY
0025 * LAST UPOATEO MAR 24 84
0030
0035 .OR $800
0040 .TF EDO
0045

0022- 0050 WNOTOP .EQ $22
0023- 0055 WNOBTM .EQ $23
0024- 0060 CH .EQ $24
0025- 0065 CV .EQ $25
0026- 0070 BASE2 .EQ $26,27

Book of Softkeys Vol. I 56

0028- 0075 BASEl .EQ $28,29
003A- 0080 PCL .EQ $3A, 3B
0048- 0085 10BPL .EQ $48
0067- 0090 PRGSTR .EQ $67
OOEO- 0095 LOC .EQ $EO
OOEl- 0100 NUM .EQ $E1
00E4- 0105 BUFFER. PO INTER .EQ $E4
00E7- 0110 DCHR .EQ $E7, E8
00E9- 0115 CFLT .EQ $E9,EA
0309- 0120 RWTS .EQ $309
03E3- 0125 GET! OB .EQ $3E3
COOO- 0130 KEY .EQ $COOO
C010- 0135 STROBE .EQ $C010
B3F2- 0140 VTOC .EQ $B3F2
E024- 0145 L1NPRT .EQ $E024
F88C- 0150 INSOS .EQ $F88C
F803- 0155 INSTDS .EQ $F803
F94A- 0160 PRBLANK .EQ $F94A
F953- 0165 PCAOJ .EQ $F953
FC58- 0170 HOME .EQ $FC58
FC62- 0175 CR. LF .EQ $FC62
FOOA- 0180 PRHEX .EQ $FOOA
FOEO- 0185 COUT .EQ $FOEO

0190 * -------------------------------CHARACTER CODES
0080- 0195 CTRL.AT .EQ $80
0081- 0200 CTRL.A .EQ $81
0082- 0205 CTRL. B .EQ $82
0084- 0210 CTRL. 0 .EQ $84
0086- 0215 CTRL. F .EQ $86
0088- 0220 CTRL.H .EQ $88
0089- 0225 CTRL. I .EQ $89
008C- 0230 CTRL.L .EQ $8C
0080- 0235 RETURN .EQ $80
008E- 0240 CTRL.N .EQ $8E
0091- 0245 CTRL.Q .EQ $91
0095- 0250 CTRL. U .EQ $95
009A- 0255 CTRL. Z .EQ $9A
009B- 0260 ESCAPE .EQ $9B
OOAO- 0265 SPACE .EQ $AO
OOAA- 0270 STAR .EQ $AA
OOAE- 0275 PER I00 .EQ $AE
00B5- 0280 FIVE .EQ $B5
00C9- 0285 LTR. I .EQ $C9
OOCA- 0290 LTR.J .EQ $CA
OOCB- 0295 LTR. K .EQ $CB
OOCO- 0300 LTR. M .EQ $CO

0305

57 Book of Softkeys Vol. I

TYPE CODE
PHASES/TRK
TIME COUNT

COMMAND
ERROR CODE
VOLUME #
PREVo SLOT
PREVo DRIVE

SLOT * 16
DRIVE #
REQ. VOLUME
TRACK #
SECTOR #

.HS 36373AAB31303AB2

.HS 000000
JMP INITDOS

.HS 00

.HS 01

.HS EFD8

.HS 01

.HS 60

.HS 01

.HS 00

.HS 00

.HS 00

.DA OCT

.DA BUFFER

.HS 0000

.HS 01

.HS 00

.HS 00

.HS 60

.HS 01

0310 * ---------------------IST LINE OF BASIC PROGRAM
0315

0800- 00 11 08
0803- 00 00 8C
0806- 32 30 0320 START .HS 00110800008C3230
0808- 36 37 3A
080B- AB 31 30 .
080E- 3A B2 0325
0810- 00 00 00 0330
0813- 4C 73 08 0335

0340
0345 * ---------------------------- INPUT/OUTPUT BLOCK
0350
0355 10BIND
0360 SLOT
0365 DRIVE
0370 EXPVOL
0375 TRACK
0380 SECTOR
0385
0390
0395
0400 CMND
0405 ERCODE
0410 VOLUME
0415 OLDSLOT
0420 OLDRIVE
0425

0827- 00 0430 OCT
0828- 01 0435 PHASES
0829- EF D8 0440

0445
0450 * -------------------------------BASIC variables
0455
0460 BYTE .HS 00 NM
0465 OLDTRK .HS 00 OT
0470 OLDSCT .HS 00 OS
0475 ERRFLG .HS 00 EF
0480 HEX.OR.DEC.FLG .HS 00 HF
0485 ON.OFF .HS 01 ST
0490 CFLG .HS 01 PF
0495 .HS 00
0500 USE.CTRL.CHARS .HS 00 TH
0505 CRSVAL .HS 00 CS
0510 FLTNUM .HS 01 FL
0515 .HS 00
0520 .DA /BUFFER BF
0525 .HS 0000

0816- 01
0817- 60
0818- 01
0819- 00
081A- 00
081B- 00
081C- 27 08
081E- 00 09
0820- 00 00
0822- 01
0823- 00
0824- 00
0825- 60
0826- 01

082B- 00
082C- 00
082D- 00
082E- 00
082F- 00
0830- 01
0831- 01
0832- 00
0833- 00
0834- 00
0835- 01
0836- 00
0837- 09
0838- 00 00

Book of Softkeys Vol. I 58

NO

JMP CALLIO 10
JMP PRINT.SCREEN.DATA
JMP HXBYTE
JMP EDIT ED
JMP BINARY BI
JMP CALC.FREE.SECTORS FR
JMP PROMPT TT
JMP PROMPTO T1
JMP PARSE XC
JMP FILTERO HC
JMP HEXPRINT HP
JMP ASCPRINT AP
JMP RIGHT UNUSED
.HS 606060 UNUSED

.DA FSTAT

.HS 000000

0869- 00
086A- FF
086B- 01
086C- 00
0860- 00
086E- 00
086F- 01
0870- 10
0871- 23
0872- 00

0887- A9 IF
0889- 85 67
088B- A9 12

083A- 8B OC 0530
083C- 00 00 00 0535

0540
0545 * ------------------------------ BAS ICCa II tab Ie
0550

083F- 4C 90 08 0555
0842- 4C 29 OA 0560
0845- 4C OE 12 0565
0848- 4C 7E OF 0570
084B- 4C 00 OA 0575
084E- 4C 6B OB 0580
0851- 4C C9 OC 0585
0854- 4C BD OC 0590
0857- 4C 50 OE 0595
085A- 4C AE OB 0600
0850- 4C 03 12 0605
0860- 4C DA 11 0610
0863- 4C OA OE 0615
0866- 60 60 60 0620

0625
0630 * ---------------------------- INTERNAL VARIABLES
0635
0640 OFFSET .HS 00
0645 FIRST .HS FF
0650 EDFLG .HS 01
0655 HCOUNT .HS 00
0660 SPACES .HS 00
0665 EDIT.MODE.FLAG .HS 00
0670 KEYFLG .HS 01
0675 MAXSCT .HS 10
0680 MAXTRK .HS 23
0685 SPECIAL.FUNCTION .HS 00
0690
0695 * ------------------------------Get DOS pointers
0700

0873- 20 E3 03 0705 INITDOS JSR GET lOB
0876- 84 48 0710 STY IOBPL
0878- 85 49 0715 STA IOBPLtl
087A- AO 01 0720 LOY #1
087C- B1 48 0725 LOA (I OBPL) ,Y
087E- 80 17 08 0730 STA SLOT
0881- C8 0735 INY
0882- B1 48 0740 LOA (IOBPL),Y
0884- 80 18 08 0745 STA DRIVE

0750 * -------------------------Reset program pointer
0755 LOA #STOP
0760 STA PRGSTR
0765 LOA /STOP

59 Book of Softkeys Vol. I

PRINT <CR>

GET ERROR #

Print dash
and a
space.
Oisassem
current
inst r.
&update
prg cntr.

lOA FlTNUM
ASl
ASl
TAX
lOY #0
lOA FlT.lOC,X

lOA /IOBINO
lOY #IOBINO
JSR RWTS
BCC .1
lOA ERCOOE
STA ERRFlG
RTS

lOA #RETURN
JSR COUT
lOA PCl
STA BYTE
JSR HXBYTE
lOA #4
STA CH
lOA #$AO
JSR COUT
lOX #1
JSR PRBlANK
JSR INSOS
JSR INSTDS
JSR PCAOJ
STA PCl
STY PCltl
RTS

STA PRGSTRtl
RTS

08AO
0900-

0880- 85 68 0770
088F- 60 0775

0780
0785 * ------------------Call Read/Write Track Sector
0790

0890- A9 08 0795 CAlllO
0892- AO 16 0800
0894- 20 09 03 0805
0897- 90 06 0810
0899- AD 23 08 0815
089C- 80 2E 08 0820
089F- 60 0825 .1

0830
0835 * ------------------------------- Put buffer here
0840
0845 .BS $900- *
0850 BUFFER .BS $100 256 bytes
0855
0860 * --------------------Oisassemble an instruction
0865

OAOO- A9 80 0870 BINARY
OA02- 20 ED FO 0875
OA05- A5 3A 0880
OA07- 80 2B 08 0885
OAOA- 20 OE 12 0890
OAOO- A9 04 0895 STEP
OAOF- 85 24 0900
OA11- A9 AD 0905
OA13- 20 ED FO 0910
OA16- A2 01 0915
OA18- 20 4A F9 0920
OA1B- 20 8C F8 0925
OA1E- 20 03 F8 0930
OA21- 20 53 F9 0935
OA24- 85 3A 0940
OA26- 84 3B 0945
OA28- 60 0950

0955
0960 * -------------------------------Select a fi Iter
0965
0970 PRINT.SCREEN.OATA
0975

OA29- AD 35 08 0980
OA2C- OA 0985
OA20- OA 0990
OA2E- AA 0995
OA2F- AO 00 1000
OA31- BO 95 OC 1005 .1

Book of Softkeys Vol. I 60

Line 1

Last line?
No!

STA DCHR,Y
INX
INY
CPY #4
BCC .1

LDA #0
STA BUFFER. POINTER
STA CV
JSR PRINT.OLD.LINE
INC CV
LDA CV
CMP #20
BNE .2
LDA CV
JSR FIND.BASE.ADDR
LDY #39
LDA #SPACE
STA (BASE1),Y
DEY
BPL .3
JMP PROMPT

.DA $400

.DA $480
.DA $500
.DA $580
.DA $600
.DA $680
.DA $700
.DA $780
.DA $428
.DA $4A8
.DA $528
.DA $5A8
.DA $628
.DA $6A8
.DA $728
.DA $7A8
.DA $450
.DA $4DO
.DA $550

OA34- 99 E7 00 1010
OA37- E8 1015
OA38- C8 1020
OA39- CO 04 1025
OA3B- 90 F4 1030

1035
1040 * ------------------- Pr int buffer data to screen
1045

OA3D- A9 00 1050
OA3F- 85 E4 1055
OA41- 85 25 1060
OA43- 20 CF OA 1065 .2
OA46- E6 25 1070
OA48- A5 25 1075
OA4A- C9 14 1080
OA4C- DO F5 1085
OA4E- A5 25 1090
OA50- 20 8F OA 1095
OA53- AO 27 1100
OA55- A9 AO 1105
OA57- 91 28 1110.3
OA59- 88 1115
OA5A- 10 FB 1120
OA5C- 4C C9 OC 1125

1130
1135 * ----------------Memory locations for text scrn
1140
1145 TEXT.SCREEN.BYTE
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245

OA5F- 00 04
OA61- 80 04
OA63- 00 05
OA65- 80 05
OA67- 00 06
OA69- 80 06
OA6B- 00 07
OA6D- 80 07
OA6F- 28 04
OA71- A8 04
OA73- 28 05
OA75- A8 05
OA77- 28 06
OA79- A8 06
OA7B- 28 07
OA7D- A8 07
OA7F- 50 04
OA81- DO 04
OA83- 50 05

61 Book of Softkeys Vol. I

Line 24

LOX #20
DEX
LOA FIRST.CHAR.POSN,X
CMP CRSVAL
BCC .2
BEQ .2
JMP .i
STX CV
STA BUFFER. POINTER
RTS

ASL
TAX
LOA TEXT.SCREEN.BYTE,X
STA BASEl
CLC
ADC #27
STA BASE2
LOA TEXT. SCREEN. BYTE+1 ,X
STA BASE1+1
STA BASE2+1
RTS

.HS 5B6875828F9CA9

.HS B6C3DODDEAF7

.HS 00001A2734414E

.OA $500

.OA $650

.OA $600

.OA $750

.OA $700

1250
1255
1260
1265
1270
1275
1280
1285 * ----------------------Enter with Iine# in ACC.
1290
1295 FINO.BASE.ADOR
1300

OA8F- OA 1305
OA90- AA 1310
OA91- BO SF OA 1315
OA94- 85 28 1320
OA96- 18 1325
OA97- 69 1B 1330
OA99- 85 26 1335
OA9B- BO 60 OA 1340
OA9E- 85 29 1345
OAAO- 85 27 1350
OAA2- 60 1355

1360
1365 * ----------------------- Convert CRSVAL to Ii ne#
1370
1375 FINO.CURRENT.LINE
1380

OAA3- A2 14 1385
OAA5- CA 1390 .1
OAA6- BO B8 OA 1395
OAA9- CO 34 08 1400
OAAC- 90 05 1405
OAAE- FO 03 1410
OABO- 4CA50A 1415
OAB3- 86 25 1420.2
OAB5- 85 E4 1425
OAB7- 60 1430

1435
1440 FIRST.CHAR.POSN
1445

OAB8- 00 00 1A
OABB- 27 34 41
OABE- 4E 1450
OABF- 5B 68 75
OAC2- 82 8F 9C
OAC5- A9 1455
OAC6- B6 C3 00
OAC9- DO EA F7 1460

OA85- 00 05
0A87- 50 06
OA89- 00 06
OA8B- 50 07
OA80- 00 07

Book of Softkeys Vol. I 62

JSR FIND.CURRENT.lINE

lOA CV
JSR FIND.BASE.ADDR
lOA #13
STA HCOUNT
lOX BUFFER. POINTER
lOA BUFFER,X
PHA
CPX CRSVAl
BNE .3
lOX KEVFlG
BZR .4
JSR FilTER
lDV #0
STA (BASE2),V
INC BASE2
PlA
lOX KEVFlG
BZR .9
PHA
lSR
lSR
lSR
lSR
lOX BUFFER. POINTER
CPX CRSVAl
BNE .5
ORA #$30
CUP #$3A
BCC .6
SBC #$39
JUP .6
ORA #$BO
CUP #$BA
BCC .6
ADC #$06
STA (BASE1),V
INC BASEl
PLA
AND #$OF
lOX BUFFER. POINTER
CPX CRSVAl

1465
1470 PRINT.NEW.lINE
1475

OACC- 20 A3 OA 1480
1485
1490 PRINT.OlD.lINE
1495

OACF- A5 25 1500
OAD1- 20 8F OA 1505
0AD4- A9 00 1510
OAD6- 80 6C 08 1515
OAD9- A6 E4 1520
OADB- BD 00 09 1525 .2
OADE- 48 1530
OADF- EC 34 08 1535
OAE2- DO 05 1540
OAE4- AE 6F 08 1545
OAE7- FO 03 1550
OAE9- 20 BlOB 1555 .3
OAEC- AO 00 1560.4
OAEE- 91 26 1565
OAFO- E6 26 1570
OAF2- 68 1575
OAF3- AE 6F 08 1580
OAF6- FO 44 1585
OAF8- 48 1590
OAF9- 4A 1595
OAFA- 4A 1600
OAFB- 4A 1605
OAFC- 4A 1610
OAFD- A6 E4 1615
OAFF- EC 34 08 1620
OB02- DO OB 1625
OB04- 09 30 1630
OB06- C9 3A 1635
OB08- 90 00 1640
OBOA- E9 39 1645
OBOC- 4C 17 OS 1650
OBOF- 09 BO 1655.5
OB11- C9 BA 1660
OB13- 90 02 1665
OB15- 69 06 1670
OB17- 91 28 1675.6
OB19- E6 28 1680
OB1B- 68 1685
OB1C- 29 OF 1690
OB1E- A6 E4 1695
OB20- EC 34 08 1700

63 Book of Softkeys Vol. I

LOA #$00
STA NUM
STA NUM+1
LOY #$C8
LOA VTOC,Y
BEQ .2
ASL
BCC NXTBIT

BNE .7
ORA #$30
CUP #$3A
BCC .8
SBC #$39
JUP .8
ORA #$BO
CUP #$BA
BCC .8
ADC #$06
STA (BASE1),Y
INC BASEl
INC BUFFER.POINTER
LOX BUFFER.POINTER
BZR .10
DEC HCOUNT
LOA HCOUNT
BNE .2
LOX KEYFLG
BZR .12
LOA #$AO
STA (BASE1),Y
LOX CV
CPX #19
BNE .12
LOA #SPACE
STA (BASE2), Y
STA (BASE1),Y
INC BASEl
STA (BASE1),Y
INY
CPY #4
BNE .11
STA (BASE1),Y
RTS

OB23- DO OB 1705
OB25- 09 30 1710
OB27- C9 3A 1715
OB29- 90 00 1720
OB2B- E9 39 1725
OB20- 4C 38 OB 1730
OB30- 09 BO 1735.7
OB32- C9 BA 1740
OB34- 90 02 1745
OB36- 69 06 1750
OB38- 91 28 1755.8
OB3A- E6 28 1760
OB3C- E6 E4 1765.9
OB3E- A6 E4 1770
OB40- FO 08 1775
OB42- CE 6C 08 1780
OB45- AD 6C 08 1785
OB48- DO 91 1790
OB4A- AE 6F 08 1795 .10
OB40- FO 1B 1800
OB4F- A9 AO 1805
OB51- 91 28 1810
OB53- A6 25 1815
OB55- EO 13 1820
OB57- DO 11 1825
OB59- A9 AO 1830
OB5B- 91 26 1835 .11
OB50- 91 28 1840
OB5F- E6 28 1845
OB61- 91 28 1850
OB63- C8 1855
OB64- CO 04 1860
OB66- DO F3 1865
OB68- 91 28 1870
OB6A- 60 1875 .12

1880
1885 * --
1890
1895 CALC.FREE.SECTORS
1900

OB6B- A9 00 1905
OB60- 85 E1 1910
OB6F- 85 E2 1915
OB71- AO C8 1920
OB73- B9 F2 B3 1925 NXTBYTE
OB76- FO OB 1930 NXTBIT
OB78- OA 1935 .1
OB79- 90 FB 1940

Book of Softkeys Vol. I 64

LOA BYTE
STA LOC
LSR
LSR
LSR
LSR
LSR
TAY
LOA (CFLT),Y
TAX
AND #$FO
CLC
ADC LOC
STA LOC
TXA
AND #$OF
BNE .2
LOA LOC
RTS

INC NUM
BNE .1
INC NUM+1
BNE .1
DEY
BNE NXTBYTE
LOX #15
LOA FSTEXT-1,X
JSR COUT
OEX
BNE .3
LOX NUM
LOA NUM+1
JSR L1NPRT
LOA #RETURN
JSR COOT
RTS

OB7B- E6 E1 1945
OB7D- DO F9 1950
OB7F- E6 E2 1955
0881- DO F5 1960
0883- 88 1965 .2
0884- DO ED 1970
OB86- A2 OF 1975
0888- BO 90 OB 1980 .3
088B- 20 ED FO 1985
OB8E- CA J990
088F- DO F7 1995
OB91- A6 E1 2000
OB93- AS E2 2005
OB95- 20 24 ED 2010
OB98- A9 80 2015
OB9A- 20 ED FO 2020
OB90- 60 2025
OB9E- AO BO AO
OBA1- C5 C5 02
OBA4- C6 AO 03
OBA7- 02 CF D4
OBAA- C3 C5 03
OBAD- AO 2030 FSTEXT .AS _" = EERF SROTCES II

2035
2040 * -----------------------Screen character fi Iter
2045

OBAE- AD 2B 08 2050 FILTERO
OBB1- 85 EO 2055 FILTER
OBB3- 4A 2060
OB84- 4A 2065
OBB5- 4A 2070
OBB6- 4A 2075
OBB7- 4A 2080
OBB8- A8 2085
OBB9- B1 E9 2090
OBBB- AA 2095
OBBC- 29 FO 2100
OBBE- 18 2105
OBBF- 65 EO 2110
OBC1- 85 EO 2115
OBC3- 8A 2120
0BC4- 29 OF 2125
OBC6- DO 03 2130
OBC8- AS EO 2135.1
OBCA- 60 2140

2145
2150 * -------------------------------Select function
2155

65 Book of Softkeys Vol. I

Function 11

Function 31

Function 21

CUP #1
BNE .4
LOA (DCHR),V
CUP LOC
BNE .1
LOA #SPACE
RTS
CUP #2
BHE .5
LOA (DCHR) ,V
CUP LOC
BEQ .1
BHE .3
CUP #3
BEQ .3
JMP .1

.HS C0808040800000EO

.BS 8

.BS 8

OC3B
OC43
OC4B-

OBCB- C9 01 2160.2
0BeD- DO 09 2165
OBCF- B1 E7 2170
OB01- C5 EO 2175
0803- DO F3 2180
OB05- A9 AO 2185.3
OB07- 60 2190
OB08- C9 02 2195.4
OBOA- DO 08 2200
OBDC- B1 E7 2205
OBDE- C5 EO 2210
OBEO- FO E6 2215
OBE2- DO F1 2220
OBE4- C9 03 2225.5
OBE6- FO ED 2230
OBE8- 4C C8 OB 2235

2240
2245
2250 * -------------------------Filter parameter data
2255

OBEB- 2260 CHGO .BS 8
OBF3- 2265 CHG1 .BS 8
OBFB- CO 80 80
OBFE- 40 80 00
OC01- 00 EO 2270 CHG2 .HS C0808040800000EO
OC03- C1 81 81
OC06- 41 81 01
OC09- 01 E1 2275 CHG3 .HS C1818141810101E1
OCOB- CO 80 80
OCOE- 40 01 00
OC11- 00 EO 2280 CHG4 .HS C0808040010000EO
OC13- 02 02 02
OC16- 02 CO 00
OC19- 40 EO 2285 CHG5 .HS 02020202CO0040EO
OC1B- 00 00 00
OC1E- 00 00 00
OC21- 00 00 2290 CHG6 .HS 0000000000000000
OC23- CO 80 80
OC26- 40 80 00
OC29- 00 EO 2295 CHG7
OC2B- 2300 CHG8
OC33- 2305 CHG9

2310
2315 * --
2320
2325 OELO .BS 8
2330 DELI .BS 8
2335 DEL2 .BS 8

Book of Softkeys Vol. I 66

FILTER #0

LOA OLDTRK
STA TRACK
LOA OLDSCT
STA SECTOR
LOA #21
JSR FINO.BASE.ADDR

.DA DELO
,OA CHGO
.DA DEll
.DA CHGI
.DA DEL2
,DA CHG2
.DA OEL3
.OA CHG3
.DA DEL4
,DA CHG4
,DA DEL5
.DA CHG5
.DA DEL6
.DA CHG6
,DA DEL7
.DA CHG7
.DA DEL8
.DA CHG8
.DA DEL9
.OA CHG9

.HS 000000000100000000

.HS COAOCOAOOOAOCOCO

.BS 8

.BS 8

.BS 8

.BS 8

.BS 8
,BS 8

OC95- 3B OC
OC97- EB OB
OC99- 43 OC
OC9B- F3 OB
OC9D- 4B OC
OC9F- FB OB
OCAl- 53 OC
OCA3- 03 OC
OCA5- 5B OC
OCA7- OB OC
OCA9- 63 OC
OCAB- 13 OC
OCAD- 6B OC
OCAF- IB OC
OCBl- 73 OC
OCB3- 23 OC
OCB5- 7B OC
OCB7- 2B OC
OCB9- 83 OC
OCBB- 33 OC

OC53- CO AO co
OC56- AO 00 AO
OC59- CO CO 2340 DEL3
OC5B- 2345 DEL4
OC63- 2350 DEL5
OC6B- 2355 DEL6
OC73- 2360 DEL7
OC7B- 2365 DEL8
OC83- 2370 DEL9

2375 ".
2380 * ----------------------------FILTER STATUS I=ON
2385

OC8B- 00 2390 FSTAT .HS 00
OC8C- 00 00 00
OC8F- 00 01 00
OC92- 00 00 00 2395

2400
2405 * -------------------------FILTER PARM LOCATIONS
2410
2415 FLT.LOC
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520 * -~------------------------Print screen prompts
2525

OCBD- AD 2C 08 2530 PROMPTO
OCCO- 80 lA 08 2535
OCC3- AD 20 08 2540
OCC6- 80 IB 08 2545
OCC9- A9 15 2550 PROMPT
OCCB- 20 8F OA 2555

67 Book of Softkeys Vol. I

OCCE- AO 00 2560
0000- B9 72 002565 .1
OCD3- 91 28 2570
OCD5- C8 2575
OCD6- CO 03 2580
OCD8- 90 F6 2585
OCOA- AD 17 08 2590
OCDD- 4A 2595
OCDE- 4A 2600
OCOF- 4A 2605
OCEO- 4A 2610
OCE1- 09 BO 2615
OCE3- 91 28 2620
OCE5- C8 2625
OCE6- B9 72 00 2630 .2
OCE9- 91 28 2635
OCEB- C8 2640
OCEC- CO 08 2645
OCEE- 90 F6 2650
OCFO- AD 18 08 2655
OCF3- 09 BO 2660
OCF5- 91 28 2665
OCF7- C8 2670
OCF8- B9 72 00 2675 .3
OCFB- 91 28 2680
OCFD- C8 2685
OCFE- CO OC 2690
0000- 90 F6 2695
0002- AD 1A 08 2700
0005- 20 01 10 2705
0008- B9 72 00 2710 .4
OooB- 91 28 2715
0000- C8 2720
OooE- CO 12 2725
0010- 90 F6 2730
0012- AD 1B 08 2735
0015- 20 01 10 2740
0018- B9 72 00 2745 .5
001B- 91 28 2750
001D- C8 2755
001E- CO 18 2760
0020- 90 F6 2765
0022- AD 24 08 2770
0025- 20 01 10 2775
0028- B9 72 00 2780 .6
002B- 91 28 2785
0020- C8 2790
002E- CO IE 2795

LOY #0
LOA PROMPTl,Y
STA (BASE1),Y
INY

CPY #3
BeC .1
LOA SLOT
LSR
LSR
LSR
LSR
ORA #$BO
STA (BASE1),Y
INY
LOA PROMPTl, Y
STA (BASE1),Y
INY

CPY #8
Bce .2
LOA DRIVE
ORA #$BO
STA (BASEl), Y
INY
LOA PROMPTl, Y
STA (BASE1),Y
INY
CPY #12
BCC .3
LOA TRACK
JSR PRINT.HEX.OR.OECIMAL
LOA PROMPTl, Y
STA (BASE1),Y
INY
CPY #18
Bce .4
LOA SECTOR
JSR PRINT.HEX.OR.OECIMAL
LOA PROMPTl, Y
STA (BASE1),Y
INY
CPY #24
BCC .5
LOA VOLUME
JSR PRINT.HEX.OR.OECIMAL
LOA PROMPTl, Y
STA (BASE1),Y
INY
CPY #30

Book of Softkeys Vol. I 68

0030- 90 F6 2800 BeC .6
0032- AD 34 08 2805 LOA CRSVAL
0035- 20 D1 10 2810 JSR PRINT.HEX.OR.DECIMAL
0038- B9 72 00 2815 .7 LOA PROMPTl, Y
003B- 91 28 2820 STA (BASE1),Y
003D- C8 2825 INY
OD3E- CO 23 2830 CPY #35
0040- 90 F6 2835 BCC .7
0042- AD 35 08 2840 LOA FLTNUM
0045- 09 BO 2845 ORA #$80
0047- 91 28 2850 STA (BASEl), Y
0049- C8 2855 INY
004A- B9 72 00 2860 .8 LOA PROMPT1, Y
OD4D- 91 28 2865 STA (BASEl), Y
004F- C8 2870 INY
0050- CO 25 2875 CPY #37
0052- 90 F6 2880 BeC .8
0054- AE 6E 08 2885 LOX EoIT.MODE.FLAG
0057- Bo 63 00 2890 .9 LOA EoIT.MODE.TEXT,X
005A- 91 28 2895 STA (BASE1),Y
005C- C8 2900 INY
005D- E8 2905 INX
005E- CO 28 2910 CPY #40
0060- 90 F5 2915 BeC .9
0062- 60 2920 RTS

2925 * --
2930 EoIT.MODE.TEXT
2935

0063- 08 05 18
0066- 01 13 03
0069- 09 OE 2940 .HS 080518011303090E
006B- 16 06 DC
006E- 13 OC 2F
0071- 03 2945 .HS 16060C13OC2F03

2950
2955 PROMPTl
2960

0072- 13 OC BA
0075- AO AO 2965 .HS 130CBAAOAO SL
0077- 04 12 BA
007A- AO AO 2970 .HS 0412BAAOAO DR
007C- 14 BA AO
007F- AO AO AO 2975 .HS 14BAAOAOAOAO " T
0082- 13 BA AO
0085- AO AO AO 2980 .HS 13BAAOAOAOAO ..S
0088- 16 BA AO
008B- AO AO AO 2985 .HS 16BAAOAOAOAO ..V
008E- 02 BA AO

69 Book of Softkeys Vol. I

0091- AO AO AO 2990 .HS 028AAOAOAOAO .. 8
0094- 06 AO AO
0097- AO AO AO 2995 .HS 06AOAOAOAOAO ..F

3000
3005 * --
3010
3015 SET.HEX.OR.DEC
3020

009A- A2 01 3025 LOX #1
009C- EC 2F 08 3030 CPX HEX.OR.OEC.FLG
009F- DO 01 3035 8NE .1
OOAl- CA 3040 OEX
00A2- 8E 2F 08 3045 .1 STX HEX.OR.OEC.FLG
00A5- 4C C9 OC 3050 JMP PROMPT

3055 * --
00A8- A2 01 3060 SWT.DRV LOX #1
OOAA- EC 18 08 3065 CPX DRIVE
OOAO- DO 01 3070 8NE .1
OOAF- E8 3075 INX
0080- 8E 1808 3080 .1 STX DRIVE
0083- 4C C9 OC 3085 JMP PROMPT

3090 * --
0086- AS El 3095 FSET LOA LOC+l
0088- 38 3100 SEC
0089- E9 80 3105 sac #$80
0088- 80 35 08 3110 STA FLTNUM
008E- 4C 29 OA 3115 JMP PR INT. SCREEN. DATA

3120 * --
ODCl- CE 18 08 3125 OEC.SCT DEC SECTOR
ODC4- 10 13 3130 8PL 10JMP
ODC6- AE 70 08 3135 LOX MAXSCT
ODC9- CA 3140 OEX
ODCA- 8E 18 08 3145 STX SECTOR

3150*---~-------------~----------------------------

ODC~ CE lA 08 3155 DEC. TRK DEC TRACK
0000- 10 07 3160 8PL 10JMP
0002- AE 71 08 3165 LOX MAXTRK
0005- CA 3170 OEX
0006- 8E lA 08 3175 STX TRACK
0009- 20 90 08 3180 10JMP JSR CALLIO
ODDC- 4C 29 OA 3185 JMP PRINT.SCREEN.OATA

3190 * --
OooF- EE 18 08 3195 INC.SCT INC SECTOR
00E2- AE 18 08 3200 LOX SECTOR
00E5- EC 70 08 3205 CPX MAXSCT
ODE8- 90 EF 3210 acc 10JMP
ODEA- A2 00 3215 LOX #0
ODEC- 8E 18 08 3220 STX SECTOR

Book of Softkeys Vol. I 70

3225 * --
OIIF- EE 1A 08 3230 INC.TRK INC TRACK
OOF2- AE 1A 08 3235 LOX TRACK
ODF5- EC 71 08 3240 CPX MAXTRK
ODF8- 90 OF 3245 BCC 10JMP
ODFA- A2 00 3250 LOX #0
OOFC- 8E 1A 08 3255 STX TRACK
OOFF- FO OS 3260 BEQ 10JMP ... ALWAYS

3265
3270 * -----------------------CURSOR MOVEMENT ROUTINE
3275

0E01- 20 A3 OA 3280 LEFT JSR FIND.CURRENT.LINE
OEM- CE 34 08 3285 DEC CRSVAL
0E07- 4C 29 OE 3290 JMP CRSl

3295 * --
OEOA- 20 A3 OA 3300 RIGHT JSR FIND.CURRENT.LINE
OEOD- EE 34 08 3305 INC CRSVAL
OE10- 4C 29 OE 3310 JMP CRS1

3315 * --
OEI3- 20 A3 OA 3320 UP JSR FINO.CURRENT.lINE
OEI6- AD 34 08 3325 lOA CRSVAl
OEl9- 38 3330 SEC
OEIA- E9 00 3335 SBC #13
OEIC- BO 08 3340 BCS .2
OEIE- C9 FC 3345 CMP #$FC
OE20- 90 02 3350 BCC .1
OE22- E9 OE 3355 SBC #14
OE24- 69 04 3360.1 ADC #4
OE26- 80 34 08 3365 .2 STA CRSVAl
OE29- 20 CF OA 3370 CRSI JSR PRINT.OlO.lINE
OE2C- 20 CC OA 3375 JSR PRINT.NEW.lINE
OE2F- 20 83 10 3380 JSR PRTCRS
OE32- AE 68 08 3385 lOX EOFlG
OE35- 00 32 3390 BNE PARSE2
OE37- 60 3395 RTS

3400
3405 * --

OE38- 20 A3 OA 3410 DOWN JSR FINO.CURRENT.lINE
OE3B- AD 34 08 3415 lOA CRSVAl
OE3E- 18 3420 ClC
OE3F- 69 00 3425 ADC #13
OE41- 90 08 3430 BCC .2
OE43- C9 04 3435 CMP #4
OE45- BO 02 3440 8CS .1
OE47- 69 OE 3445 ADC #14
OE49- 69 FB 3450.1 ADC #$FB
OE48- 80 34 08 3455 .2 - STA CRSVAl
OE4E- 4C 29 OE 3460 JMP CRSI

71 Book of Softkeys Vol. I

J

Bad Comnand

LOA #3
BNE SETMODE ...Always

3465
3470 SET.HEX.EOIT
3475

OE51- A9 00 3480 LOA #0
OE53- 80 6E 08 3485 SETMODE STA EOIT.MODE.FLAG
OE56- 4C C9 OC 3490 JMP PROMPT

3495
3500 SET.ASCI I.EOIT
3505

OE59- A9 03 3510
OE5B- DO F6 3515

3520
3525
3530 * --

OE50- AD lA 08 3535 PARSE LOA TRACK
OE60- 80 2C 08 3540 STA OLOTRK
OE63- AD IB 08 3545 LOA SECTOR
OE66- 80 20 08 3550 STA OLOSCT
OE69- AE 72 08 3555 PARSE2 LOX SPECIAL. FUNCTION
OE6C- FO OC 3560 BEQ .2
OE6E- CA 3565 OEX
OE6F- 8E 72 08 3570 STX SPECIAL.FUNCTION
OE72- AD 00 CO 3575 .1 LOA KEY
OE75- 10 FB 3580 BPL .1
OE77- 20 29 OA 3585 JSR PRINT.SCREEN.OATA
OE7A- 20 83 10 3590 .2 JSR INKEY
OE70- A2 FO 3595 LOX #$FO
OE7F- E8 3600 .3 INX
OE80- E8 3605 INX
OE81- E8 3610 INX
OE82- BO 95 OE 3615 LOA VALIO.CMNO.TABLE,X
OE85- FO 00 3620 BEQ .4
OE87- C5 EO 3625 CMP LOC
OE89- DO F4 3630 BNE .3
OE8B- E8 3635 INX
OE8C- BO 96 OE 3640 LOA VALIO.CMNO.TABLE+l,X
OE8F- 48 3645 PHA
OE90- BO 95 OE 3650 LOA VALIO.CMNO.TABLE,X
OE93- 48 3655 PHA
OE94- 60 3660 .4 RTS

3665
3670 * --
3675
3680 VALIO.CMNO.TABLE
3685 .HS C9
3690 .OA UP-l
3695 .HS CA
3700 .OA LEFT-l

OE95- C9
OE96- 12 OE
OE98- CA
OE99- 00 OE

Book of Softkeys Vol. I 72

OE9B- CB 3705 .HS CB K
OE9C- 09 OE 3710 .OA RIGHT-1
OE9E- CO 3715 .HS CD M
OE9F- 37 OE 3720 .OA DOWN-1
OEA1- 88 3725 .HS 88 <-
0EA2- 00 OE 3730 .OA LEFT-1
OEA4- 95 3735 .HS 95 ->
OEA5- 09 OE 3740 .OA RIGHT-1
OEA7- AC 3745 .HS AC
0EA8- CC 00 3750 .OA DEC.TRK-1
OEAA- AE 3755 .HS AE
OEAB- EE 00 3760 .OA INC.TRK-1
OEAD- B1 3765 .HS B1 1
OEAE- B5 00 3770 .OA FSET-1
OEBO- B2 3775 .HS B2 2
OEB1- B5 00 3780 .OA FSET-1
OEB3- B3 3785 .HS B3 3
OEB4- B5 00 3790 .OA FSET-1
OEB6- B4 3795 .HS B4 4
OEB7- B5 00 3800 .OA FSET-1
OEB9- B5 3805 .HS B5 5
OEBA- B5 00 3810 .OA FSET-1
OEBe- B6 3815 .HS B6 6
OEBO- B5 00 3820 .OA FSET-1
OEBF- B7 3825 .HS B7 7
OECO- B5 00 3830 .OA FSET-1
OEC2- B8 3835 .HS B8 8
OEC3- B5 00 3840 .OA FSET-1
OEC5- B9 3845 .HS B9 9
OEC6- B5 00 3850 .OA FSET-1
OEC8- BC 3855 .HS Be <
OEC9- CC 00 3860 .OA DEC.TRK-1
OECB- BE 3865 .HS BE >
OECC- EE 00 3870 .OA INC.TRK-1
OECE- C1 3875 .HS C1 A
OECF- 58 OE 3880 .OA SET.ASCII.EOIT-1
OE01- C4 3885 .HS C4 0
OE02- A7 00 3890 .OA SWT.DRV-1
OED4- C8 3895 .HS C8 H
OED5- 50 OE 3900 .OA SET.HEX.EOIT-1
OE07- CC 3905 .HS CC L
OED8- CO 00 3910 .OA DEC.SCT-1
OEOA- CE 3915 .HS CE N
OEDB- DE 00 3920 .OA INC.SCT-1
OEDD- 05 3925 .HS 05 U
OEDE- 99 00 3930 .OA SET.HEX.OR.DEC-1
OEEO- 50 3935 .HS BO 0
OEE1- 3F 11 3940 .M FILES-1

73 Book of Softkeys Vol. I

OEE3- 00 3945 .HS 00 EOT
3950 * --

OEE4- AE 6E 08 3955 CTRLMV LOX EOIT.MODE.FLAG
OEE7- FO 38 3960
OEE9- C9 89 3965
OEEB- DO OA 3970
OEEO- A9 40 3975
OEEF- 80 69 08 3980
OEF2- A9 06 3985
OEF4- 4C 53 OE 3990
OEF7- C9 86 3995.1
OEF9- DO OA 4000
OEFB- A9 80 4005
OEFD- 80 69 08 4010
OFOO- A9 09 4015
OF02- 4C 53 OE 4020
OF05- C9 8E 4025.2
OF07- DO OA 4030
OF09- A9 00 4035
OFOB- 80 69 08 4040
OFOE- A9 03 4045
OF10- 4C 53 OE 4050
OF13- C9 8C 4055.3
OF15- DO OA 4060
OF17- A9 20 4065
OF19- 80 69 08 4070
OF1C- A9 OC 4075
OF1E- 4C 53 OE 4080
OF21- C9 80 4085.4
OF23- DO 03 4090
OF25- 4C OA OE 4095
OF28- C9 95 4100.5
OF2A- DO 03 4105
OF2C- 4C OA OE 4110
OF2F- C9 88 4115.6
OF31- DO 03 4120
OF33- 4C 01 OE 4125
OF36- C9 91 4130.7
OF38- DO 03 4135
OF3A- 4C 13 OE 4140
OF3D- C9 9A 4145.8
OF3F- DO 03 4150
OF41- 4C 38 OE 4155
OF44- AE 6A 08 4160 .9
OF47- DO 01 4165
OF49- 60 4170
OF4A- C9 84 4175 .10
OF4C- DO OF 4180

BZR .4 HEX EDIT.
CMP #CTRL.I
BNE .1
LOA #$40
STA OFFSET
LOA #6 INVERSE
JMP SETMOOE
CMP #CTRL.F
BNE .2
LOA #$80
STA OFFSET
LOA #9 FLASH ING
JMP SETMOOE
CMP #CTRL.N
BNE .3
LOA #0
STA OFFSET
LOA #3 NORMAL
JMP SETMODE
CMP #CTRL.L
BNE .4
LOA #$20
STA OFFSET
LOA #12 Lower Case
JMP SETMODE
CMP #RETURN
BNE .5
JMP RIGHT
CMP #CTRL.U
BNE .6
JMP RIGHT
CMP #CTRL.H
BNE .7
JMP LEFT
CMP #CTRL.Q
BNE .8
JMP UP
CMP #CTRL.Z
BNE .9
JMP IXMN
LOX FIRST
BNE .10
RTS
CMP #CTRL.O
BNE .12

Book of Softkeys Vol. I 74

LOX ON.OFF
STX FLTNUM
LDX #1
STX EDFLG EDIT OFF
LDA EDIT. MODE. FLAG
BZR .4
LDA #3
STA EDIT.MaDE.FLAG
RTS

LOX #$FF
STX FIRST
INX
STX EDFLG 0 =EDIT ON
LDX FLTNUM
STX ON.OFF
LDA FSTAT,X
BNE .1
STA FLTNUM
JSR PRINT.SCREEN.DATA
JSR PRINT.NEW.LINE
JSR PRTCRS
JSR INKEY
CMP #ESCAPE
BNE .5

LOX CRSVAL
LDA BUFFERt1,X
STA BUFFER,X
INX
BNE .11
JMP PRINT.SCREEN.DATA
CMP #CTRL.A
BNE .14
LOX #$FE
DEC CRSVAL
LOA BUFFER,X
STA BUFFERtl,X
DEX
CPX CRSVAL
BNE .13
INC CRSVAL
JMP PRINT.SCREEN.DATA
LOX #1
STX EDFLG
RTS

OF4E- AE 34 08 4185
OF51- BD 01 09 4190 .11
OF54- 90 00 09 4195
OF57- E8 4200
OF58- DO F7 4205
OF5A- 4C 29 OA 4210
OF5D- C9 81 4215 .12
OF5F- DO 17 4220
OF61- A2 FE 4225
OF63- CE 34 08 4230
OF66- BD 00 09 4235 .13
OF69- 90 01 09 4240
OF6C- CA 4245
OF6D- EC 34 08 4250
OF70- DO F4 4255
OF72- EE 34 08 4260
OF75- 4C 29 OA 4265
OF78- A2 01 4270 .14
OF7A- 8E 6B 08 4275
OF7D- 60 4280

4285
4290 * --
4295

OF7E- A2 FF 4300 EDIT
OF80- 8E 6A 08 4305
OF83- E8 4310
OF84- 8E 6B 08 4315
OF87- AE 35 08 4320
OF8A- 8E 30 08 4325
OF8D- BD 8B OC 4330
OF90- DO 03 4335
OF92- 80 35 08 4340
OF95- 20 29 OA 4345 .1
OF98- 20 CC OA 4350 .2
OF9B- 20 B3 10 4355 .3
OF9E- 20 83 10 4360
OFAl- C9 9B 4365
OFA3- DO 16 4370

4375
OFA5- AE 30 08 4380
OFA8- 8E 35 08 4385
OFAB- A2 01 4390
OFAD- 8E 6B 08 4395
OFBO- AD 6E 08 4400
OFB3- FO 05 4405
OFB5- A9 03 4410
OFB7- 80 6E 08 4415
OFBA- 60 4420 .4

75 Book of Softkeys Vol. I

4425
4430 * CHECK FOR HEX OR ASC II ED IT
4435

OFBB- AE 6E 08 4440 .5 LOX ED IT. MODE .FLAG
OFBE- DO 4A 4445 BNE .8

4450
4455 * HEX EDIT ROUTINE
4460

OFCO- C9 AO 4465 CMP #SPACE
OFC2- BO OF 4470 BCS .6
OFC4- 20 E4 OE 4475 JSR CTRlMV
OFC7- A2 FF 4480 lDX #$FF
OFC9- 8E 6A 08 4485 STX FIRST
OFCC- E8 4490 INX
OFCD- 8E 6B 08 4495 STX EDFlG
OFDO- 4C 98 OF 4500 JMP .2
OFD3- 20 54 10 4505 .6 JSR CKHEX
OFD6- C9 10 4510 CMP #16
OFD8- BO Cl 4515 BCS .3
OFDA- EE 6A 08 4520 INC FIRST
OFDD- DO 09 4525 BNE .7
OFDF- AE 3408 4530 lDX CRSVAl
OFE2- 9D 00 09 4535 STA BUFFER,X
OFE5- 4C 98 OF 4540 JMP .2
OFE8- 85 EO 4545 .7 STA lOC
OFEA- AE 34 08 4550 lDX CRSVAl
OFED- BD 00 09 4555 lOA BUFFER,X
OFFO- OA 4560 ASl
OFFl- OA 4565 ASl
OFF2- OA 4570 ASl
OFF3- OA 4575 ASl
OFF4- 05 EO 4580 ORAlOC
OFF6- 9D 00 09 4585 STA BUFFER,X
OFF9- 20 A3 OA 4590 JSR FIND.CURRENT.lINE
OFFC- EE 34 08 4595 INC CRSVAl
OFFF- 20 CF OA 4600 JSR PRINT.OlD.lINE
1002- A9 FF 4605 lDA #$FF
1004- 8D 6A 08 4610 STA FIRST
1007- 4C 98 OF 4615 JMP .2

4620
4625 * ASCII EDIT ROUTINE
4630

100A- C9 AO 4635 .8 CMP #$AO
100C- BO 18 4640 BCS .10
100E- AE 33 08 4645 lDX USE.CTRl.CHARS
1011- FO 2F 4650 BZR .14
1013- 20 E4 OE 4655 JSR CTRlMV
1016- A2 00 4660 lDX #0

Book of Softkeys Vol. I 76

>= "A"

110"
< "0"

> "F"

> ="@"

< "A"

< "10"

>or="["
... always

CMP #$80
acc .3
CMP #$C7
acs .3
CMP #$8A
ace .2
CMP#$C1
acc .3
S8C #7
AND #$OF
RTS

lOX CRSVAl
lOA 8UFFER,X
PHA
lOA #$20
JSR WAIT.FOR,KEY
lOA #SPACE
JSR WAIT.FOR.KEY

CPX EOFlG
8NE .9
JMP .2
STX EOFLG
JMP .14
lOX OFFSET
CPX #$20 LOWER CASE?
BNE .11
CMP #$C1
ace .14
CMP #$08
acs .14
acc .13
CMP #$CO
acs .12
ADC OFFSET
CLC
ADC OFFSET
lOX CRSVAl
STA BUFFER,X
JSR FINO.CURRENT.lINE
INC CRSVAL
JSR PRINT.OlO.LINE
JMP .2

1054- C9 80
1056- 90 10
1058- C9 C7
105A- 80 OC
105C- C9 8A
105E- 90 06
1060-C9 C1
1062- 90 04
1064- E9 07
1066- 29 OF
1068- 60

1018- EC 68 08 4665
1018- DO 03 4670
101D- 4C 98 OF 4675
1020- 8E 68 08 4680 .9
1023- 4C 42 10 4685
1026- AE 69 08 4690 .10
1029- EO 20 4695
1028- DO OA 4700
102D- C9 C1 4705
102F- 90 11 4710
1031- C9 DB 4715
1033- 80 00 4720
1035- 90 08 4725
1037- C9 CO 4730 ,11
1039- 80 03 4735
1038- 60 69 08 4740
103E- 18 4745 .12
103F- 60 69 08 4750 .13
1042- AE 34 08 4755 .14
1045- 90 00 09 4760
1048- 20 A3 OA 4765
1048- EE 34 08 4770
104E- 20 CF OA 4775
1051- 4C 98 OF 4780

4785
4790 * --
4795
4800 CKHEX
4805
4810
4815
4820
4825
4830
4835
4840
4845 .2
4850 .3
4855
4860 * -----------------------Flashing cursor routine
4865

1069- AE 34 08 4870 NOPRESS
106C- 80 00 09 4875
106F- 48 4880
1070- A9 20 4885
1072- 20 9A 10 4890
1075- A9 AO 4895
1077- 20 9A 10 4900

77 Book of Softkeys Vol. I

LOX CRSVAL
STA BUFFER,X
JSR PRINT.NEW.LINE
LOA #60
TAX
LOY KEY
BMI .3
OEX
BNE .2
SBC #1
BNE .1
RTS

LOX #1
STX KEYFLG
PLA
JSR WAIT.FOR.KEY
LOX #0
STX KEYFLG
LOA KEY
BPL NOPRESS
STA STROBE
STA LOC
STA LOC+1
LOX #1
STX KEYFLG
RTS

LOA #21
JSR FINO.BASE.AOOR
LOY #30
LOA CRSVAL
JSR PRINT.HEX.OR.OECIMAL
LOX SPACES
BEQ .7
LOA #SPACE
STA (BASEl),Y
INY
OEX
BNE .6
RTS

107A- A2 01 4905
107C- 8E 6F 08 4910
107F- 68 4915
1080- 20 9A 10 4920
1083- A2 00 4925 INKEY
1085- 8E 6F 08 4930
1088- AO 00 CO 4935 OUTKEY
108B- 10 DC 4940
1080- 80 10 CO 4945
1090- 85 EO 4950
1092- 85 E1 4955
1094- A2 01 4960
1096- 8E 6F 08 4965
1099- 60 4970

4975
4980 * --
4985
4990 WAIT.FOR.KEY
4995

109A- AE 34 08 5000
1090- 90 00 09 5005
10AO- 20 CC OA 5010
10A3- A9 3C 5015
10A5- AA 5020 .1
10A6- AC 00 CO 5025 .2
10A9- 30 07 5030
10AB- CA 5035
10AC- 00 F8 5040
10AE- E9 01 5045
10BO- DO F3 5050
10B2- 60 5055 .3

5060
5065 * --
5070

10B3- A9 15 5075 PRTCRS
10B5- 20 8F OA 5080
10B8- AO IE 5085
10BA- AO 34 08 5090
10BO- 20 01 10 5095
10CO- AE 60 08 5100
10C3- FO 08 5105
10C5- A9 AO 5110.6
10C7- 91 28 5115
10C9- C8 5120
10CA- CA 5125
10CB- 00 F8 5130
10CO- 60 5135 .7

5140

Book of Softkeys Vol. I 78

LDA BYTE

LDX #2
STX SPACES

PHA
LDX HEX.OR.DEC.FLG
BNE PRINT.DECIMAL
STX SPACES

10DA- A9 A4
10DC- 91 28
10DE- C8
10DF- 68
10EO- 48
10E1- 4A
10E2- 4A
10E3- 4A
10E4- 4A
10E5- 09 BO
10E7- C9 BA
10E9- 90 02
10EB- 69 06
lOED- 91 28
10EF- C8
10FO- 68
10F1- 29 OF
10F3- 09 BO
10F5- C9 BA
10F7- 90 02
10F9- 69 06
10FB- 91 28
10FD- C8
10FE- 84 24
1100- 60

5145 * --
5150
5155 PRINT.HEX.DEC
5160

10CE- AD 2B 08 5165
5170
5175 PRINT.HEX.OR.DECIMAL
5180

10D1- 48 5185
10D2- AE 2F 08 5190
10D5- DO 2A 5195
10D7- 8E 6D 08 5200

5205
5210 * --
5215
5220 PRINT.HEX.BYTE
5225
5230 LDA #$A4
5235 STA (BASEl) I Y
5240 INY
5245 PLA
5250 PHA
5255 LSR
5260 LSR
5265 LSR
5270 LSR
5275 ORA #$BO
5280 CMP #$BA
5285 BCC .1
5290 ADC #$06
5295 .1 STA (BASE1),Y
5300 INY
5305 PLA
5310 AND #$OF
5315 ORA #$80
5320 CMP #$BA
5325 BCC .2
5330 ADC #$06
5335 .2 STA (BASE1),Y
5340 INY
5345 STY CH
5350 RTS
5355 * --
5360
5365 PRINT.DECIMAL
5370

1101- A2 02 5375
1103- 8E 6D 08 5380

79 Book of Softkeys Vol. I

LOX #21
STX WNDBTM
LOX #0
STX SPACES
INX
STX SPECIAL. FUNCTION
JSR HOME
INX
JSR PRBLANK
LOA BUFFERtl
JSR HEX2

LOX #$BO
PLA
CMP #100
BCC .2
INX
SBC #100
CMP #100
BCS .1
DEC SPACES
PHA
TXA
STA (BASEl), Y
INY
LOX #$BO
PLA
CMP #10
BCC .4
INX
SBC #10
CMP #10
BCS .3
DEC SPACES
PHA
LOA SPACES
CMP #2
BEQ .5
TXA
STA (BASEl),Y
INY
PLA
ORA #$BO
STA (BASEl), Y
INY
RTS

1106- A2 BO 5385
1108- 68 5390
1109- C9 64 5395
110B- 90 12 5400
1100- E8 5405 .1
110E- E9 64 5410
1110- C9 64 5415
1112- BO F9 5420
1114- CE 60 08 5425
1117- 48 5430
1118- 8A 5435
1119- 91 28 5440
I11B- C8 5445
l11C- A2 BO 5450
l11E- 68 5455
I11F- C9 OA 5460.2
1121- 90 OA 5465
1123- E8 5470 .3
1124- E9 OA 5475
1126- C9 OA 5480
1128- BO F9 5485
112A- CE 60 08 5490
1120- 48 5495 .4
112E- AD 60 08 5500
1131- C9 02 5505
1133- FO 04 5510
1135- 8A 5515
1136- 91 28 5520
1138- C8 5525
1139- 68 5530 .5
113A- 09 BO 5535
113C- 91 28 5540
113E- C8 5545
113F- 60 5550

5555
5560 * --
5565

1140- A2 15 5570 FILES
1142- 86 23 5575
1144- A2 00 5580
1146- 8E 60 08 5585
1149- E8 5590
114A- 8E 72 08 5595
1140- 20 58 FC 5600
1150- E8 5605
1151- 20 4A F9 5610
1154- AD 01 09 5615
1157- 20 06 12 5620

Book of Softkeys Vol. I 80

115A- AD 02 09 5625
1150- 20 06 12 5630
1160- 20 62 FC 5635
1163- 20 62 FC 5640
1166- A2 OB 5645
1168- AO 02 5650.1
116A- 20 62 FC 5655
1160- 20 09 12 5660
1170- BO 00 09 5665 .2
1173- 20 06 12 5670
1176- E8 5675
1177- 88 5680
1178- DO F6 5685
117A- BO 00 09 5690
1170- E8 5695
117E- 2A 5700
117F- 48 5705
1180- 90 08 5710
1182- A9 AA 5715
1184- 20 ED FO 5720
1187- 4C 80 11 5725
118A- 20 09 12 5730 .3
1180- AO 00 5735.4
118F- 68 5740
1190- 4A 5745
1191- FO 04 5750
1193- C8 5755 .5
1194- 4A 5760
1195- 90 FC 5765
1197- B9 02 11 5770 .6
119A- 20 ED FO 5775
1190- 20 09 12 5780
lIAO- AO IE 5785
l1A2- 8C 6C 08 5790
l1A5- BO 0009 5795 .7
l1A8- 85 EO 5800
l1AA- 4A 5805
lIAB- 4A 5810
lIAC- 4A 5815
lIAO- 4A 5820
lIAE- 4A 5825
lIAF- A8 5830
IIBO- Bl E9 5835
IIB2- 29 FO 5840
IIB4- 18 5845
IIB5- 65 EO 5850
IIB7- C9 80 5855
IIB9- 30 06 5860

LOA BUFFER+2
JSR HEX2
JSR CR.LF
JSR CR.LF
LOX #$OB
LOY #2
JSR CR.LF
JSR SPCOUT
LOA BUFFER,X
JSR HEX2
INX
DEY
BNE .2
LOA BUFFER,X
INX
ROL
PHA
BCC .3
LOA #STAR
JSR COUT
JMP .4
JSR SPCOUT
LOY #0
PLA
LSR
BEQ .6
INY
LSR
BCC .5
LOA TYPE,Y
JSR COUT
JSR SPCOUT
LOY #30
STY HCOUNT
LOA BUFFER,X
STA LOC
LSR
LSR
LSR
LSR
LSR
TAY
LOA (CFLT),Y
AND #$FO
CLC
ADC LOC
CMP #CTRL.AT change
BMI .8 control

81 Book of Softkeys Vol. I

.AS -"T1ABSRAB"

characters
to a
per iod.

CUP #SPACE
BPL .8
LOA #PERIOO
JSR COOT
INX
DEC HCOUNT
BNE .7
INX
INX
BNE .1
DEX
STX BUFFER.POINTER
RTS

1188- C9 AO 5865
11BD- 10 02 5870
11BF- A9 AE 5875
11C1- 20 ED FO 5880 .8
11C4- E8 5885
11C5- CE 6C 08 5890
11CS- DO DB 5895
11CA- E8 5900
11CB- E8 5905
11CC- DO 9A 5910
11CE- CA 5915
11CF- 86 E4 5920
1101- 60 5925
1102- D4 C9 C1
1105- C2 03 02
1108- C1 C2 5930 TYPE

5935
5940 * --------------------------Fi Iter used by BASIC
5945

110A- AD 2B 08 5950 ASCPRINT LOA BYTE
1100- C9 FF 5955 CMP #$FF
110F- DO 05 5960 BNE .1
11E1- A9 AO 5965 LOA #$AO
llE3- 80 2B 08 5970 STA BYTE
llE6- 4A 5975 .1 LSR
llE7- 4A 5980 LSR
llE8- 4A 5985 LSR
llE9- 4A 5990 LSR
11EA- 4A 5995 LSR
llEB- A8 6000 TAY
llEC- B9 F6 11 6005 LOA ASCFO I Y
llEF- 18 6010 CLC
llFO- 60 2B 08 6015 ADC BYTE
11F3- 4C ED FO 6020 JMP COUT
llF6- CO 80 80
llF9- 40 40 00
11FC- 00 CO 6025 ASCFO .HS C0808040400000CO

6030
llFE- A9 A4 6035 HEXO LOA #$A4 "$"
1200- 20 ED FO 6040 JSR COUT
1203- AD 2B 08 6045 HEXPRINT LOA BYTE
1206- 20 OA FO 6050 HEX2 JSR PRHEX
1209- A9 AO 6055 SPCOUT LOA #SPACE
120B- 4C ED FO 6060 JMP COUT

6065
6070 * -------------------------- Prj nt Hex 0r Dec irna I
6075

120E- AE 2F 08 6080 HXBYTE LOX HEX.OR.OEC.FLG

Book of Softkeys Vol. I 82

o= HEXBEQ HEXO
LOX BYTE
LOA #0
JSR L1NPRT
JMP SPCOUT

1211- FO EB 6085
1213- AE 2B 08 6090
1216- A9 00 6095
1218- 20 24 EO 6100
121B- 4C 09 12 6105

6110
6115 * --
6120

121E- 00 6125 .HS 00
121F- 00 00 6130 STOP .HS 0000

6135
6140 * --

83 Book of Softkeys Vol. I

~DiskView

By Charles Haight

This program is called DiskView. DiskView is a mini
"nibbler. " It will read the raw nibbilized data from a disk
without regard to disk format.

This means data can be viewed on a nonstandard format disk
(copy-protected) as easily as from a normal DOS formatted disk.
With DiskView, a nonstandard disk can be examined to see what
was changed. Often these changes are minor and a similar
change can be made to your DOS. This would allow use of
DiskEdit to read that disk.

To understand these changes lets examine the data pattern on a
normal DOS 16 disk.

DOS formats a track by first writing a unique byte called a
"sync byte." This byte (normally $FF) allows the Disk IT
hardware to synchronize with the data on the disk. DOS then
writes an address field, some more sync bytes and the data field.
At this time the data field is full of $OOs. DOS goes on to write
sixteen sets of address and data fields on each track. These sets
of address and data fields are called sectors.

The following is a normal address field for 3.3 DOS:

D5AA96FFFEAABBAEAAFBEFDEAAEB

It can be broken down into:

Start of address
Volume number

Track
Sector

Checksum
End of address

D5 AA 96
FF FE
AABB
AEAA
FB EF
DE AA EB

The volume, track, sector and checksum are in a 4+4 coded
format. This means that 4 bits in each byte are actual data. The
first byte is rotated left and logically ANDed with the second
byte to recover the data.

The data field consists of:

Start of data
Encoded data

Checksum
End of data

D5 AAAD
(341 bytes)
(1 byte)
DE AA EB

The data field is encoded in a 2 +6 format. Six bits of each
byte are valid data.

The basic structure of 3.2 DOS is similar to 3.3 DOS with
these notable exceptions:

1. When initializing a disk, DOS 3.2 does not write a blank

Book of Softkeys Vol. I 84

data sector. Instead it just writes enough $FFs to fill the space a
data sector would use. Trying to read a track/sector that has
never been written to will always generate I/O errors.

2. The data is encoded in a 3+5 format which requires 410
bytes to encode 256 data bytes. This is one reason why there are
only 13 sectors.

About the program

The format of DiskView is similar to DiskEdit. A full screen
of hexadecimal bytes is displayed with the status prompts at the
bottom of the screen. The buffer extends from $2000 to $4000
hex which is large enough to ensure reading in an entire track.
The slot, drive and track are selectable. Half-tracks can be
accessed by appending a ".5" to the track number. The
commands are:

D - change the drive
L - read last track (steps by half tracks)
N - read next track (steps by half tracks)
P - print screen contents
R - read the current track
S - change the slot
T - select a track or half track
X - exit to basic
-+ - increment buffer
+- - decrement buffer

Type in the program and save it to disk. Be especially careful
with the data statements. When those values are poked into
memory they become a machine language subroutine that is the
heart of the program. Run the program. When the COMMAND
prompt flashes, press the R key. The screen will fill with hex
bytes that show the data stored on the disk.

CAUTION: Utility Nibbler is DOS dependent. It calls directly
into DOS to step the drive motor. DOS 3.3 and 48K of memory
are needed. This program can be used to read 13 or 16-sector
disks or any other Apple disk, but it will only run on a 48K
Apple][(+) with 3.3 DOS.

The program

10 TEXT: HOME: IN# 0: PR# 0: LOMEM: 16384: POKE 1144,90: GOTO 90
20 KY% =PEEK (- 16384): IF KY% <128 THEN 20
30 POKE -16368,0: RETURN
40 FOR X=1TO 40: PR INT"- "; : NEXT : RETURN
50 GOSUB 60: POKE 781,0: POKE 1144,90: POKETR%,O: CALL 10%: POKE 781,255:

POKE TR%,TK%: CALL 10%: RETURN
60 VTAB 23: HTAB 2: INVERSE: PRI NT "SLOT"; : HTAB 10: PRI NT "DRIVE"; : HTAB

19: PR INT"TRACK" ; : NORMAL

85 Book of Softkeys Vol. I

70 VTAB 23: HTAB 7: PRINT PEEK (S1%) / 16;: HTAB 16: PRINT PEEK (DR~) - PEEK
(S1%);: HTAB 25: PRINT •...."BB BB PEEK (TR~) /2

80 RETURN
90 GOSUB 540
100 IN~=PEEK (cn): VTAB21: HTAB32: PRINT "PAGEA"IN~-31: GOSUB60:

VTAB23: HTAB30: CALL-868: FLASH: PRINT ">COMMAND<": NORMAL:
GOSUB 20

110 IF KY% =210 THEN GOSUB 480
120 IFKY% =2ll THEN GOSUB 390
130 IF KY% =216 THEN GOSUB 410
140 IF KY% =212 THEN GOSUB 420
150 IF KY% =199 THEN GOSUB 270
160 IF KY% =196 THEN GOSUB 230
170 IF KY% =208 THEN GOSUB 290
180 IF KY% =136 THEN GOSUB 250
190 IF KY% =149 THEN GOSUB 370
200 IF KY% =204 THEN GOSUB 490
210 IF KY% =206 THEN GOSUB 510
220 GOTO 100
230 VTAB 23: HTAB 30: INVERSE: PR INT G$"SETADR IVE" ; : HTAB 10: FLASH:

PR INT "DR IVE" ; : NORMAL: HTAB 16: PR INT "A" CHR$ (8) ; : GET A$: DR =VAL
(A$): IFDR <1 OR DR >2THEN 230

240 POKE DR%, PEEK (SI%) t DR: GOTO 50
250 IN% = IN% - 1: IF IN% <32 THEN IN% =32
260 POKE cn, IN%: CALL MV%: RETURN
270 PR INT G$: IF G$ =CHR$ (7) THEN G$ ="": RETURN
280 IF G$ ="" THEN G$ =CHR$ (7): RETURN
290VTAB23: HTAB30: FLASH: PRINTG$">PRINTER<";: NORMAL
300 PR# 1
310 BUFFER% =PEEK (cn) *256
320 PRINT: PRINT "TRACKA"TK%
330 FOR X=0TO 255 STEP 13: FOR Y=0TO 12: POKE NM%, PEEK (BUFFER% tXt

Y) : CALL HX%: PR INT "A" ; : NEXTY: PR INT
340 IFPEEK (- 16384) =155 THEN 360
350 NEXT X
360 PR# 0: POKE - 16368,0: RETURN
370 IN% = IN% t 1: IFIN% >63 THEN IN% =63
380 POKE cn, IN%: CALL MV%: RETURN
390 VTAB 23: HTAB 30: INVERSE: PR INT G$ "NEWASLOT?" ; : HTAB 2: FLASH: PR INT

"SLOT" ; : NORMAL: HTAB 7: PR INT "A" CHR$ (8) ; : GET A$: KY% =VAL (A$) :
IF KY% < lOR KY% >7THEN 390

400 POKE S1% I KY% * 16: POKE S2% I KY% * 16: GOTO 240
410 TEXT: HOME: POKE 33,33: CALL 1002: END
420 C$ ="": VTAB 23: HTAB 30: INVERSE: PRINT "SETATRACK";: HTAB 19: FLASH

: PRINT G$"TRACK"; : NORMAL: PR INT "...." CHR$ (8) CHR$ (8) CHR$ (8) ; :
GETA$:C$=CtA: PRINTA$;: GETA$:C$=C$tA$: IFA$=CHR$ (13)
THEN 460

430 PRINT A$;

Book of Softkeys Vol. I 86

440 GET A$:C$ =C$ +A$: PRI NTA$;
450 IF A$ =. ," THEN GETA$:C$ =C$ +A$: PRINT AS;
460 KY =VAL (C$): IF KY <0OR KY >35 THEN 420
470 TKI =KY *2
480 POKE Cn,32: VTAB 23: HTAB 30: FLASH: PRINT "»>READ<<<"G$;: NORMAL:

PR INT ...,; : POKE TR%, TK%: GOSUB 70: CALL 10%: GOTO 60
490 TKI =TK% - 1: IF TK% <0THEN TK% =71
500 GOTO 480
510 TK% =TK% +1: IF TK% >71 THEN TK% =0
520 GOTO 480
530 STOP
540 FOR X=768 TO 894: READ X%: POKE X, X%: NEXT X
550DATA162,97,189,137,192,162, 96,189,137,192,160,5,169,255,32,168,

252,136,16,248,169,0,32,160,185,189,142,192,169,0,133,30,169,32
,133,31,162,96,160,0,189,140,192,16,251,145,30,230,30,
208,245,230,31,165,31,201,64,144,237

560 DATA189,136,192,169,1,133, 37,32,34,252,169,0,133,36,133,30,169,
13,133,31,162,1,32,74,249,166,30,189,
0,32,32,218,253,162,1,32,74,249,230,30,240,7,198,31,208,235,76,
75,3,32,156,252,230,37,32,34,252,169,22

570 DATA 133,34,96,169,172,32,218,253,96
580 S1% =774:S2% =805 :DR% =769 :TR% =789 :MV% =830 :cn =856: B$ =CHR$

(8) :G$ =CHR$ (7): 10% =768:NM% =890:HX% =889:DR =1
590 GOSUB 40: VTAB 8: HTAB 10: PRI NT "COPYRIGHT'1981'(C)": PRJ NT : HTAB

10: PRINT "ALL'RIGHTS'RESERVED": PRINT: HTAB 10: PRINT
"HARDCORE'COMPUTI NG": PR INT : HTAB 10: PR INT "P,0.'BOX·110846 ":
PRINT: HTAB 10: PRINT "TACOMA,'WA'98411"

600 VTAB 22: GOSUB 40: GOTO 60

87 Book of Softkeys Vol. I

4 plus 4 Conversion Chart
AA+AA=OO
AA+BA=lO
AA+EA=40
AA+FA=50
AB +AA =02
AB+BA=12
AB+EA=42
AB+FA=52
AE+AA=08
AE+BA=18
AE+EA=48
AE+FA=58
AF+AA=OA
AF+BA=lA
AF+EA=4A
AF+FA=5A
BA+AA=20
BA+BA=30
BA+EA=60
BA+FA=70
BB+AA=22
BB+BA=32
BB+EA=62
BB+FA=72
BE+AA=28
BE+BA=38
BE+EA=68
BE+FA=78
BF+AA=2A
BF+BA=3A
BF+EA=6A
BF+FA=7A
EA+AA=80
EA+BA=90
EA+EA=CO
EA+FA=DO
EB+AA=82
EB+BA=92
EB+EA=C2
EB+FA=D2
EE+BA=98
EE+EA=C8
EE+FA=D8
EF+BA=9A
EF+EA=CA
EF+FA=DA
FA+EA=EO
FA+FA=FO
FB+EA=E2
FB+FA=F2
FE+EA=E8
FE+FA=F8
FF+EA=EA
FF+FA=FA

AA+AB=Ol
AA+BB=l1
AA+EB=41
AA+FB=51
AB+AB=03
AB+BB=13
AB+EB=43
AB+FB=53
AE+AB=09
AE+BB=19
AE+EB=49
AE+FB=59
AF+AB=OB
AF+BB=lB
AF+EB=4B
AF+FB=5B
BA+AB=21
BA+BB=31
BA+EB=61
BA+FB=71
BB+AB=23
BB+BB=33
BB+EB=63
BB+FB=73
BE+AB=29
BE+BB=39
BE+EB=69
BE+FB=79
BF+AB=2B
BF+BB=3B
BF+EB=6B
BF+FB=7B
EA+AB=81
EA+BB=91
EA+EB=Cl
EA+FB=Dl
EB+AB=83
EB+BB=93
EB+EB=C3
EB+FB=D3
EE+BB=99
EE+EB=C9
EE+FB=D9
EF+BB=9B
EF+EB=CB
EF+FB=DB
FA+EB=El
FA+FB=Fl
FB+EB=E3
FB+FB=F3
FE+EB=E9
FE+FB=F9
FF+EB=EB
FF+FB=FB

AA+AE=04
AA+BE=14
AA+EE=44
AA+FE=54
AB+AE=06
AB+BE=16
AB+EE=46
AB+FE=56
AE+AE=OC
AE+BE=lC
AE+EE=4C
AE+FE=5C
AF+AE=OE
AF+BE=lE
AF+EE=4E
AF+FE=5E
BA+AE=24
BA+BE=34
BA+EE=64
BA+FE=74
BB+AE=26
BB+BE=36
BB+EE=66
BB+FE=76
BE+AE=2C
BE+BE=3C
BE+EE=6C
BE+FE=7C
BF+AE=2E
BF+BE=3E
BF+EE=6E
BF+FE=7E
EA+AE=84
EA+BE=94
EA+EE=C4
EA+FE=D4
EB+AE=86
EB+BE=96
EB+EE=C6
EB+FE=D6
EE+BE=9C
EE+EE=CC
EE+FE=DC
EF+BE=9E
EF+EE=CE
EF+FE=DE
FA+EE=E4
FA+FE=F4
FB+EE=E6
FB+FE=DE
FE+EE=EC
FE+FE=FC
FF+EE=EE
FF+FE=FE

AA+AF=05
AA+BF=15
AA+EF=45
AA+FF=55
AB+AF=07
AB+BF=17
AB+EF=47
AB+FF=57
AE+AF=OD
AE+BF=lD
AE+EF=4D
AE+FF=5D
AF+AF=OF
AF+BF=lF
AF+EF=4F
AF+FF=5F
BA+AF=25
BA+BF=35
BA+EF=65
BA+FF=75
BB+AF=27
BB+BF=37
BB+EF=67
BB+FF=77
BE+AF=2D
BE+BF=3D
BE+EF=6D
BE+FF=7D
BF+AF=2F
BF+BF=3F
BF+EF=6F
BF+FF=7F
EA+AF=85
EA+BF=95
EA+EF=C5
EA+FF=D5
EB+AF=87
EB+BF=97
EB+EF=C7
EB+FF=D7
EE+BF=9D
EE+EF=CD
EE+FF=DD
EF+BF=9F
EF+EF=CF
EF+FF=DF
FA+EF=E5
FA+FF=F5
FB+EF=E7
FB+FF=DF
FE+EF=ED
FE+FF=FD
FF+EF=EF
FF+FF=FF

Book of Softkeys Vol. I 88

~Egbert IT Communications Disk
(RTIYICWITRANSFER)
Egbert Software
W.H. Nail Co.

Requirements:
Apple][Plus, lie, or compatible
DOS 3.3 Master Disk
Egbert II Communications Disk
DEMUFFIN program (see Muffins)
Blank disk

By Keith S. Goldstein, MD

Since I haven't read anything about the Egbert II disk, other
than the ad marketing it, I'll assume that not too many people
are aware of the ingenious ideas that are packed into this system
disk. But before I show you how to crack and modify the disk,
I'll describe and explain the system a bit. This is only a very
brief overview and isn't meant to be comprehensive. The disk is
chock full of pleasant surprises.

The Egbert II Communications disk contains three very
powerful main programs. The RTIY (Radio Teletype) program
receives and transmits radio teletype signals. It generates RTTY
tones on transmit and decodes the RTTY tones on receive. Some
other goodies it has are a "Mailbox" option and an audio
frequency counter option.

The CW (Continuous Waves) program does the same for
Morse Code, while the Transfer program allows you to send and
receive Applesoft, Integer and Binary programs over the
telephone or radio. The special attraction is that all of the tone
generation and decoding is done from within the program, so
there is NO HARDWARE INTERFACE REQUIRED!

The cassette I/O plugs are used from the rear of the computer.
Simply plug the cassette input into the speakerlearphone jack of
any communications receiver (or telephone amplifier for the
Transfer program) and plug the cassette output into the
microphone jack of the transceiver. That's all you need to
sendlreceive RTTY or CW.

For the non-amateur radio operator, you can use the RTTY
program to receive foreign and domestic wire news services and
telegrams such as those supplied by UP!.

The CW (Morse Code) program will decode or send Morse
Code at rates from three to 125 words per minute. It is a great
teacher for those interested in learning Morse Code or those who
simply want to eavesdrop on radio hams.

89 Book of Softkeys Vol. I

Both the RTTY and CW programs use the on-board speaker
to-monitor arrangement. The Transfer program will work just as
well with any transceiver, or you can transfer programs over the
telephone without a modem! All you need is a cheap amplifier
(like the Radio Shack 277-1008 which costs $11.(0) and a
telephone pick-up coil (also available at the 'Shack for about
$2.(0). It sure beats the price of a modem!

Now that your mouth is watering at the possibilities of getting
the news and listening in on private and government teletype
communications without messing around with any extra
hardware, order one! I heartily recommend this disk. It's worth
every penny.

Unfortunately, once you have the disk you will find some
unfriendly little annoyances programmed-in there. Haven't you
ever wished that you could go from receive to transmit RTTY
without that darn CW (Morse Code) identifier breaking your
concentration? Doesn't having your name and serial number
flashed at you constantly annoy you? Wouldn't you just love to
have the programs load super fast by using a speedy DOS?
Wouldn't you like to be able to modify the programs to your
heart's content? Wouldn't you just like to have a backup copy
and don't have a nibble-eopier? You can find out how to do
these things and more below.

The Lock

The Egbert II Communications Disk uses several simple and
yet very effective tricks to prevent the user from discovering its
secrets. The major copy-protection scheme it incorporates i~ its
DOS and the way the disk is initialized. It won't allow any
standard copy programs or nibble-copiers (without changing
parameters) to duplicate it.

To unprotect the programs on the original disk, each one must
be loaded by the Egbert DOS and saved by a normal DOS onto
a standard disk. After you have transferred the programs they
will all, eventually, bomb into the monitor because the author
included some checking routines to be sure that you are using his
custom DOS. We will defeat those routines, too.

The author was quite thorough in his protection scheme. It is
impossible to stop the computer by using reset or any normal
method. Egbert DOS is a standard 3.2 with many modifications
and patches and the author patched over the INIT command with
his own routines. Among other things, this patch will set the
Run Flag ($06) to FF and disable the CATALOG, INT, and FP
commands at every disk access (pretty shrewd, eh?) Also, since
the programs must access normal DOS disks, Egbert has the
normal DOS routines loaded and moved into place immediately
after any of the programs have been loaded. This makes it

Book of Softkeys Vol. I 90

impossible to use the resident DOS to access the Egbert disk for
the purpose of transferring the programs once any of them starts
running.

These problems can be solved by using a modification of the
DOS 3.3 Master Disk program called MUFFIN. The modified
MUFFIN is called DEMUFFIN PLUS.

As you recall, MUFFIN is a machine-language program which
will transfer programs or files from DOS 3.2 to DOS 3.3. In
general, it reads from one disk format and writes to a different
disk format. The modification to MUFFIN allows it to use
whatever DOS is present in the machine to read from the locked
disk and to write the file out onto a standard DOS 3.3 disk. This
gem is just what is needed to transfer the Egbert files to a DOS
3.3 disk.

The Softkey

Here are the steps to follow in order to transfer the Egbert
files to a standard DOS 3.3 disk:

1) Boot the system master and format a blank disk

INIT HELLO

2) Delete the HELLO program

DELETE HELLO

3) Load DEMUFFIN PLUS in a safe place where the boot won't
mess it up

BLOAD DEMUFFIN PLUS, A$6000

The Egbert DOS will "lock you out" of the machine once it is
loaded so we will have to allow the Egbert DOS to load in and
then we will have to stop it before it initializes itself (i.e: takes
over). This can best be done by a technique called Boot-Tracing.
The process takes a little time but the satisfaction and knowledge
gained is well worth the effort.

In general, this technique involves loading a chunk or stage of
the boot into memory, examining it, moving it to a safe place in
RAM, modifying it to work at the new location and stopping the
boot (after loading each new stage) so that we will always be in
control of the computer. In this way, the Egbert DOS can be
allowed to fully load itself and then be forced to halt.
4) Put the Egbert disk in Drive 1, Slot 6 and enter the monitor

CALL -151

5) Move the bootcode in the controller card to RAM

8600<C600.C6FFM

91 Book of Softkeys Vol. I

6) Make the moved bootcode JuMP into the monitor after
loading track 0, sector 0

*86F8:4C 59 FF N 8600G

The Drive will stay on for the remainder of this process.
7) Move the first boot stage to a new location

8OOO<800.9FFM

8) Now we must change a few locations so it will work at this
new location

8003:BD 00 80

9) Make this new stage JuMP into the monitor when finished

8049:4C 59 FF

10) Now we have to tell the first stage where our new second
stage has been moved to

86F8:4C 01 80

11) Load the third stage of the boot

8600G

12) Since the last stage ended with a JuMP to location $301, we
know where this third stage of the boot was just loaded. To be
certain that it won't be over-written by the next stage, we will
move it to a safe place

8300<300.3FFM

13) Again we have to change a few locations so that this stage
will function properly at this new location in memory

8313:AD CC 83
833C:AD CC 83

14) The jump out of the fourth stage is not immediate, but only
after many jumps to a certain subroutine does it continue on to
the next stage of the boot. Therefore, we'll place a short
program for this stage to jump to. We will also check it to see if
it is going to the subroutine again (and if so, let the program
continue) or if not, then stop and JuMP into the monitor. We
will place our little program at $8400 but we need to intercept
the program to JuMP to our little routine.

8343:4C 00 84

15) Enter this little routine

8400:A5 3E C9 D5 DO 03 6C 3E
8408:00 4C 59 FF

Book of Softkeys Vol. I 92

16) Now we mustn't forget to let our stage three know where
this stage four was moved to so that it will be able to continue to
load another chunk of the DOS for us

8049:4C 01 83

17) At this point we will let the computer use all of our routines
to load in stage four of the boot

8600G

18) Now we've got almost all of the DOS loaded. Let's see
where the final stage has been loaded

83CC

(The number you should see is $B6. Add 1 to it ($B6+ 1)
$B700; therefore, our next JuMP will be to $B700.)
19) Since we know where this last portion has been loaded, we
are ready to complete the boot and have it stop just before it
begins to start up the DOS. Let's move this fourth stage out of
the way.

5700<B700.BFFFM

20) Now, we see the familiar DOS initialization routine JuMP
near the beginning of all this stuff we have just moved. Once it
has finished loading itself into the machine, let's have it JuMP
into the monitor instead of starting the EGBERT DOS

5747:4C 59 FF

21) We also must not forget to let the previous third stage boot
know where we have moved this final stage to

8409:4C 00 57

22) We are now ready to allow the entire EGBERT DOS to be
read into the machine and it will stop just before it can take
control, which is exactly what we want!

8600G

(The disk will stop spinning now since the boot has finished.)
23) Since we stopped the EGBERT DOS from being able to
initialize itself, it wasn't able to .fill-in its page-3 vector table. In
order for our previously entered DEMUFFIN PLUS to function,
it needs these vectors intact. This can be easily accomplished
since the page-3 vector table image already exists within the
Egbert DOS image. Just move it to page-3

3DO<9E51.9E7EM

93 Book of Softkeys Vol. I

24) Move the DEMUFFIN PLUS program back to $803 and
start it running

803<6000.8000M
803G

25) Select Convert Files from the menu. For "File Name?"
enter" =" (The equals sign is the Wildcard character). Transfer
all files from the original disk to the standard initialized DOS 3.3
disk.

(Do not attempt to transfer the first seven of those files shown in
INVERSE as they are DUMMY FILES and will cause errors if
you try to copy them.)

Fixing the Files

Now that you have all of the programs on a standard DOS 3.3
disk, you are ready to remove the checks for the non-standard
DOS so they will function correctly. Most of the changes that
will be made will remove a POKE 214,255 that sets the Run
Flag.

26) Boot your DOS 3.3 Master Disk. Remove it and insert your
new Egbert DOS 3.3 disk
27) Load and modify the HELLO program

LOAD HELLO
2 INVERSE: FOR I = 1 TO 40: PRINT "@" ; : NEXT:

VTAB 15 : FOR I = 1 TO 40 : PRINT "@" ; : NEXT
: FOR I = 2 TO 14 : VTAB I : HTAB 1 : PRINT
"@" ; : HTAB 40: PRINT "@" ; : NEXT: NORMAL
: VTAB 3 : HTAB 7 : PRINT

"EGBERT"COMMUNICATIONS"'DISK" : PRINT
SAVE HELLO

28) Modify the MAIN program

LOADMAIN
8010 VTAB 3 : HTAB 7 : PRINT

"EGBERT"COMMUNICATIONS"DISK" : VTAB 5:
HTAB 16 : PRINT "MAIN"MENU" : RETURN

SAVE MAIN

Book of Softkeys Vol. I 94

29) Modify the RTTY program

LOAD RTTY
3 B$ = CHR$ (4) : GOSUB 91 : VTAB 16 : HTAB 11 :

FLASH: PRINT "LOADING"'PROGRAMS" :
NORMAL :D$ = CHR$ (219) :E$ = CHR$ (221) :
PRINT B$; "BLOAD"'COMBO"'I"'8"'83, Dl" : PRINT
B$; "BLOAD"'SPL, Dl"

79 TEXT: HOME: PRINT "BYE!" : PRINT CHR$ (7) :
END

85 ONERR GOTO 73
SAVE RTTY

30) Modify the ECW program

LOADECW
30 POKE 115 ,0 : POKE 116 ,147 : POKE 111 ,0 : POKE

112 ,147
110 REM
120 REM
200 REM
SAVE ECW

31) Modify the XFER program

LOAD XFER
135 REM
137 REM
SAVE XFER

32) Modify the TRANSFER] program

LOAD TRANSFER]
675 REM
1035 REM
2011 REM
2020 REM
2030 REM
2040 REM
2050 REM
2060 REM
2070 REM
2080 REM
SAVE TRANSFER]

33) Modify the BUFFER/MESSAGE program

LOAD BUFFER/MESSAGE
145 REM
150 REM
220 VTAB 23: PRINT "TillS WILL TAKE ABOUT 30

SECONDS" : VTAB 17

95 Book of Softkeys Vol. I

225 REM
SAVE BUFFER/MESSAGE

34) Modify the COMBO 1-8-83 program

BLOAD COMBO 1-8-83

This program checks for the non-standard patch to the
CATALOG command on the locked disk. It checks for a $60 in
the DOS. If it is there, the program continues. If it isn't there,
the RTTY program bombs. The normal DOS 3.3 value is a $20.
To enable it to work perfectly with DOS 3.3, one change is
required which makes the check routine look for the normal
DOS 3.3 value of $20 instead of the $60. (Incidentally, the $60
of the non-standard DOS disables the CATALOG command; it
causes the command CATALOG to be ignored). The change is
as follows:

CALL -151
54BC:20
BSAVE COMBO 1-8-83, A$5000, L$OAD5

35) Fix the same CATALOG patch in the RCV program

BLOADRCV
4302:20
BSAVE RCV, A$4000, L$58B

36) Fix the CATALOG patch in the XMT program

BLOADXMT
52C2:20
BSAVE XMT, A$5000, L$3E8

37) Delete the image of DOS 3.3 on the disk

DELETE DOS 3.3

38) Delete the DOS mover from the disk

DELETE DOS MOVE 3.3

You now have a fully functional DOS 3.3 version of the entire
EGBERT RTTY/CW/TRANSFER system to customize at your
discretion.

For starters, here is how to obliterate the serial number of the
diskette.

LOAD RTTY

Book of Softkeys Vol. I 96

91 HOME: INVERSE: FOR I = 1 TO 40 : VTAB 1 :
PRINT "@" CRR$ (8); : VTAB 7 : PRINT "@" ; :
NEXT: FOR I = 2 TO 6 : VTAB I : HTAB 1 :
PRINT "@" ; : HTAB 40: PRINT "@" : NEXT:
NORMAL: VTAB 3 : HTAB 9 : PRINT
"EGBERT"n"RTTY"PROGRAM" : HTAB 9: PRINT
"WRITTEN"By"G.W."EGBERT" : HTAB 14: POKE
34 ,7 : RETURN

The following are immediate execution commands.

F2 = PEEK (175) + PEEK (176) * 256 - 8
FOR A = 1 TO 4: POKE F2+A, 0: NEXT
SAVE RTIY

Again in immediate execution mode type

LOADECW
260 REM
370 REM
F2 = PEEK (175) + PEEK (176) * 256 - 8
FOR A = 1 TO 4 : POKE F2 + A, 0 : NEXT
SAVEECW

Then continue into the monitor

CALL -151
BLOAD COMBO 1-8-83
50D2:FF
50D3<50D2.50ESM
BSAVE COMBO 1-8-83, A$5000, L$AD5

And the next

BLOADRCV
414E:OO
414F<414E.415BM
415C:FF FF
BSAVE RCV,A$4000,L$58B

And that's all there is to it.

To aid you in you customizing, here is a list of programs with
brief descriptions. Have fun!

HELLO: Boot-up title.
MAIN: Main menu. Uses PRINT SET, BUFFER/MESSAGE,
MESSAGE.OBJ, CODE, RTTY, ECW, XFER flIes
RTTY: RTTY program body, uses COMBO 1-8-83, SPL flIes.
COMBO 1-8-83: RTTY machine language portion
SPL: Printer spooler machine language portion.
PRINT SET: Printer set-up program. Uses SPL.

97 Book of Softkeys Vol. I

ECW: CW program body. Uses XMT, RCV, SPL, GP files.
XMT: CW transmit machine language portion.
RCV: CW receive machine language portion.
GP: CW game paddle overlay in machine language.
CODE: Contains the number of programs on the disk.
XFER: Transfer title and set-up program.
TRANSFER: TRANSFER program body. Uses XFER 3800.
XFER 3800: TRANSFER machine language portion.
BUFFER/MESSAGE: Buffer/message program. Creates
messages, prints the buffer; uses MESSAGES, MESSAGE.OBI
files.
MESSAGE: Message program. Not copy-protected on original
disk. Uses MESSAGE.OBI file.
MESSAGE.OBJ: Contains the canned messages and saved files.
Not locked on the original disk.
DOS 3.3: Overlay of standard DOS 3.3
DOS MOVE 3.3: Relocates DOS 3.3 and overwrites the Egbert
DOS with standard DOS 3.3

Book of Softkeys Vol. I 98

~Getting On The Right Track
By Robert Linden

Requirements:
Apple][+ or compatible
Apple type disk drive
Bit copier, sector editor or other program that seeks specific
tracks on demand
STABILa fine-point pen, or other similar marker

When makin~ backups of copy-protected programs, there will
be times when the backup will not boot. It might keep rebooting
continuously, spin with no head movement, stop, or do
something else it shouldn't. Often this is the result of just a few
tracks being incorrectly backed-up. Finding these tracks quickly
will speed up your task greatly. Here's how:

Tum off your computer. Remove the screws holding the cover
on your disk drive (Warning: This will void your warranty) and
slide the cover to the rear and off the drive.

Tum on your computer and boot a program that seeks specific
tracks on demand. Now you will need to find both the frame that
holds the read/write head and the cam that drives this frame (See
Figure 1).

Have the drive seek track 0, then track 22 (hex) while you are
viewing the interior of the drive from one side. The object
moving rapidly over (and under) the disk is the frame that holds
the read/write head. Below this frame you will see a three-to
four-inch round object which turns only when the frame moves.
This is the cam that drives the frame holding the read/write
head.

A common method of indicating tracks for future use is to
place a reference mark on the read/write frame and then, as the
drive is stepped through the tracks by the track-seeking program,
to mark each track on a nearby, motionless part of the drive.

The problem with this method is that the marks are as close
together as the tracks on the disk. To greatly increase the
distance between the track marks I prefer marking the cam
instead.

If your cam is made of shiny plastic you will need a fiber-tip
pen intended for writing on plastic, such as a STABILO fine
point. If your cam is made of rough plastic, similar to Bakelite,
you could use paint for greater visibility. In this case, use a
water-based, model paint to avoid any risk of the paint dissolving
part of the cam. Use a fine-tipped brush and, if you like, several
different colors for ease in identifying the tracks. Whichever
method you use, make a test mark on the cam to be sure the
marks will adhere.

99 Book of Softkeys Vol. I

We have recently become aware of a figure
omission in paragrapl. 3 of 'Getting On TI.e Rigl.l
Track' by Robert Linden (page 99).

Figure 1

lit" (diIOli,r1\I{(lr(/(S'~/i"'TI'I/I>Iilltillg II'Ol/ld /il,/' 1,1 /II"lId ol/r {(1",login, W" ,li//I'ITclr

rl'gn'l {(HI' i//(II//I','lIit'II('(' IIIis O/lli,I,lillll /I/In' !I{(I'I' 1'I111,\('d rill/.

First, place a reference mark on the most easily visible spot
that is directly next to the cam.

Then have the drive seek track 0 and place a mark on the
vertical edge of the cam. Make sure this mark lines up with the
reference mark.

If you feel uneasy about touching the interior of the drive
while it's on, or if you're not sure about what you can and can't
touch, you should tum off the computer after seeking a track and
then tum it on again after you have finished the marking for that
track.

Next, have the drive seek track 18 (hex). On my drive this
will tum the cam one complete revolution to the mark made for
track O. If your drive is different, fmd the track that does line up
to the mark for track O. On top of the cam above the mark write
a small 0/18. Do NOT place any marks in the spiral groove that
is engraved on top of the cam. This groove is used by the cam
to move the read/write head, so take care not to gum it up.

Note where the read/write frame is in relation to the center of
the cam. Now have the drive seek track 0 again. You will notice
that the read/write frame has moved much closer to the edge of
the cam. This is how you can tell if the drive is on track 0 or
track 18.

Now work your way around the cam, seeking each track,
marking it and labeling it, until you get to track 22. I label each
track in hex (Le. base 16) instead of base 10 since most
references to the tracks are in hex. Note that the marks for
tracks 18-22 (hex) will overlap with the marks for tracks 0-10
(hex). In the case where two tracks use the same marks you
must take note of the read/write head frame in relation to the
cam in order to distinguish which track is being accessed.

Boot the disk to be backed-up while you watch the cam to see
if the drive seeks any If2 tracks or anything past track 22. Using·
this information, try to make a backup. If the backup will not
boot properly, watch the tracks over which the drive goes before
the backup fails. These are the tracks which have one or more
bad sectors on them. If the drive stops or spins continuously on
one track, re-do that one track. If the drive seeks the same
tracks over and over again, when it did not do that on the
original disk, then re-do those tracks. Good luck!

Book of Softkeys Vol. I 100

~Hard Hat Mack
Electronic Arts

Requirements:
Apple][Plus or compatible
Hard Hat Mack disk
Blank initialized disk with no "HELLO" program
Some knowledge of boot code tracing or machine language

By Rich Lyon

Hard Hat Mack is an addictive construction-site game with
three different levels. I was first introduced to it at the local
computer store and couldn't stop playing it. While there, I took
some time to examine the boot code on the game disk and found
it to have a very strange boot code, one like I had never seen
before. About a month later I decided to buy the disk for,
mainly, two reasons: I liked the game, and I wanted to face the
challenge of breaking the copy-protection scheme.

For those of you who are not familiar with the boot process,
here is a general explanation. When any disk is booted on the
Apple, control is transferred to the boot program which is at
$C600. If your disk controller card is in slot 5, the program will
be found at $C500. It will be assumed that the card is in slot 6
to keep things simple. When executed, this program will read in
track 0, sector 0 from the disk and put it in at $800. It will,
then, jump to $801.

Depending on the disk, from this point another boot stage will
be loaded in and, eventually, the main program will be read into
memory and executed.

When it comes to copy-protected disks, almost every disk is
different. The unique thing about Hard Hat Mack is that the first
boot stage loaded in takes 16 pages of memory. In most cases,
boot 1 only occupies one page of memory. The advantage of this
lengthy boot stage is that this is the only boot stage. From here
on, the game is loaded right in.

Blue-Collar Boot Code Tracing

Here are the steps used to boot code trace Hard Hat Mack:

1) Enter the Apple's monitor

CALL -151

101 Book of Softkeys Vol. I

2) Memory move the boot program down to a page in RAM so
it can be modified to load in the next boot stage

96OO<C6(H).C6FFM
3) Change the JMP $801 to a JMP $B047

96F9:47 BO

Why jump to $B047? After tracing the code for the first time, I
ended up jumping there upon exiting the first boot stage. From
there on I jumped to $B047 immediately.
4) Put a short routine at $B047 to shut off the drive motor and
return to the monitor. A JMP $FF59 will jump to the monitor

B047:8D E8 CO 4C 59 FF

5) Insert the original Hard Hat Mack disk and type

9600G

This will execute the first boot stage to load the next boot stage
into $800. This will take about five seconds because it has to
load in 16 pages of memory. Usually, this boot stage occupies
only one page of memory but, if you check the value at $800,
you will find a $10 (16 decimal) where normally you would find
a $1. This number tells the first boot stage how many sectors to
read in.
6) Memory move pages $8 through $18 to $BOOO.

BOOO<800.1800M

If you list through the boot stage at $800 (801L) you will find
that all it does is the memory move and then jumps to $B047.

Now, rather than modify the code at page $8, it is easier to
put it where it belongs and jump directly there from boot number
1. The next step is fmding the jump to the start of the program.
In other words, a JMP instruction to somewhere other than
within the boot stage.

The only jumps I found were two indirect ones to $42. At first
I thought these were used (at least one of them) to jump to the
start of the program. I traced them and found that they were not
used to exit the boot. That left me knowing that I was faced with
a problem.

Somewhere within this lengthy boot stage is a hidden or a
coded jump. Rather than trace through everything that lpoked
suspicious, I decided to try for a one-in-a-million shot.

I had traced the boot code about ten times prior to this and
remembered one place where I had halted the boot code and
most of the program had been loaded in. I went over it again
and stopped in that place. Then I paged through memory and
looked for something that might be the start of the game. It
didn't take much looking because I found something interesting

Book of Softkeys Vol. I 102

right at $800. Without even testing it, I assumed that it was the
start of the program.

Now, my next step was to boot code trace the disk again and
balt it in the same place. But instead of coming to a complete
stop, I would have to call a short routine to cover up the first
three bytes at $800 with a 4C 59 FF. That way, if the boot code
jmnped to $800, the start of the program would cause a jump
into the monitor.

Once everything was set, I executed the boot and waited with
high hopes. Just as the game was about to start, I heard a beep
and the cursor appeared. Indeed, $800 was the start of the game.
The place I interrupted the boot stage was at $BBC4 and at that
location was a JMP $BBD4. What I did there was to set $BBC4
to jump to $Bl00 and at $BlOO I put the routine to cover up the
start of the program with a JMP $FF59. $Bl00 is a safe place to
put data because it is only the data for the Electronic Arts logo.

7) Set a jump to $B100 at $BBC4

BBC4:4C 00 Bl

8) Enter the routine to cover up the start of the program

Bl00:A9 4C 8D 00 08 A9 59 8D
BI08:01 08 A9 FF 8D 02 08 4C
B110:1>4 BB

9) Reboot the disk

9600G

This will load in the entire game and return control to you.
When the prompt appears you are ready for the last step before
saving the game. Right now we want to restore what was
originally at $800 before the routine at $Bl00 covered it up. It
was a JSR $2204.
10) Restore the code that was at $800

800:200422

Next, we will reboot DOS. First, we must move page $8 to a
safe place or it will be overwritten when we reboot. The
question is where to put it.

Paging through memory, I found an area that looked like it
contained "garbage." Actually, I concluded that all memory
from $3400 to $3FFF was unused because the game did nothing
with it before clearing the hi-res page. .
11) Memory move page $8 to page $34

34OO<800.8FFM

103 Book of Softkeys Vol. I

12) Put in a blank slave disk with no "HELLO" program and
type

~p

13) Now, after booting OOS, enter the monitor again

CALL -151
14) Next, we will move page $8 back to its proper place from
page $34

800<3400.34FFM

The game could be saved now but it would not work.
When the space bar is pressed to begin the game, a check is

done to the disk to make sure that the Hard Hat Mack disk is
present. The only problem is in finding where the disk is
accessed. nowing that this happens when the space bar is
pressed, when you do that, look for a read from the keyboard
and a check. I found this in the subroutine at $BC8. There was
also an LDA $COOO and, further on, a CMP #$AO. When the
space bar is pressed, this subroutine sets a flag byte and returns.

The next step is to find out where the subroutine at $BC8 is
called from. I found this at $84E. After calling the subroutine it
checks the flag and, if it is set, continues.

At $864 is a JSR $4D34. This is part of the game beginning
sequence. The subroutine at $4D34 does a lot of playing with the
stack. By tracing the PLAs and PHAs, I found that it leaves two
extra values on the stack and then does an RTS. This is a
disguised jump. Confused? When an RTS is executed, the two
top values are taken off the stack and the computer jumps to the
address of those two values, plus one. When I checked the two
values left on the stack, I found $FF and $04. Adding one to
$04FF you get $0500 and that's where it was going.

The next text page is $0500 and there was nothing there upon
exiting the boot. At $803 there is a JSR $3300 and if you list
through $3300 you will see that it moves $3000 through $32FF
down to $500 so when you list through $3000 you are actually
seeing what will be at $0500.

Looking at $3000 there are disk access commands in the
assembly. Therefore, you can assume that this is where the disk
is checked. All that we have to do to remove this disk check is
to change the subroutine at $4D34 so it does not push two extra
values on the stack. Simply change the PHA at $4D53 to a PLA
so that instead of pushing on the second value it would pull off
the first, hence, leaving the stack the same.
15) Change the operation at $4D34 from PHA to PLA

4D53:68

Book of Softkeys Vol. I 104

All we have to do now is save the game to disk. Since DOS
does not allow us to save a fIle longer than $7FFF bytes and we
need to save $8000, we have to change a byte in DOS.
16) Patch DOS so that we can save this long a fIle

A964:FF

17) Finally save the BRUNable version of Hard Hat Mack

BSAVE HARD HAT MACK,A$800,L$8DOO
This will save all memory from $800 to $94FF. Actually, the
game loads in past $9500 but, after testing the game, I found it
to work fme. All the memory above $9500 is just "garbage"
memory.

Finally, if you wish to compress the fIle remember that pages
$34 to $3F are free. This will save you 12 sectors on your disk.
I often shorten game fIles as much as possible.

105 Book of Softkeys Vol. I

(Warning: This article is intended for advanced users who are
familiar with the internal hardware of the Apple. SoftKey
Publishing is not responsible for any damage done to the
computer while following the outlined procedure.)

~Hidden Locations Revealed
By Enrique Gamez

Requirements:
Apple][or][+ only (will not work with the lie)
Disk Organizer n by Sensible Software
Small-gauge insulated wire (no. 24)
16-pin DIP socket

We've been taking for granted that it's possible to break into
any program by just switching to the old monitor F8 ROM and
hitting reset. However, with Disk Organizer n, this causes a
carriage return and the text page to scroll, thus losing any
information placed on the first line of text page 1. This
information is vital when trying to perform a softkey.

To solve the scrolling problem I discovered a previously
inaccessible set of locations for the first line on the text page.
My technique involves gaining control over the screen soft
switches that display text page 1. Preventing it from scrolling
and allowing recovery of the needed information from the first
line. I'm sure this technique is used by many other programs, so
read on even if you don't own Disk Organizer n.

ffidden Addresses

I first noticed some indirect references in the assembly code to
locations $400-426. The makers of Disk Organizer n tried to
conceal jump addresses by storing them in the plowable first line
of the text page. These crucial entry points are for the routines
which perform the delete, rename, exhume, move, purge and
change boot tasks.

In following this procedure you'll force the Apple to display
the text page, no matter what the program in memory would like
to do. You'll learn a little about soft switches on the way and,
most importantly, how to gain control over them.

Technical Background

Having a memory-mapped screen is very convenient; writing
to any position on any screen becomes as simple as POKEing a
value or STAing a specific byte. However, not so convenient is
the experience of having some locations self-modify as you're

Book of Softkeys Vol. I 106

trying to read them. Have you ever done a hexdump of the $400
to $7FF area while viewing the text page? Total nonsense.

The screen soft switches are what allow you a "window" into
the Apple. By flipping a switch here and there you can literally
browse through memory (without changing anything there).

Screen Switching Demo

Type the following "Screen Switching Demo" and watch what
happens. If you goof up, just tum off the computer, reboot, and
start over. Though you may lose sight of what you're typing,
keep going. You'll just need to be a more careful typist.

Typethis Explanation Viewwindow

CALL-151
C054:0
C053:0
C05l:0
C050:0
C052:0
C05l:0
C055:0
C050:0
C053:0
C052:0
C057:0
C054:0
C053:0
C055:0

Enter mon i tor
Se Iect page 1. Noth ing happens.
Select mixed screen. Nothing happens.
Select text screen.
Select Lo-res graphics, mixed.
Select full screen graphics.
Back to text.
Se Iect text page 2. What amess.
Select Lo-res graphics page 2.
Se Iect mi xed text and graph ics page 2
Se Iect full sc reen
Select Hi-res page 2.
Select Hi-res page 1
Select mixed text and graphics page 1
Select mixed text and graphics page 2

$400-7FF

$800-BFF

$4000-5FFF
$2000-2FFF

$2000-2FFF, $400-7FF
$4000-5FFF, $800-BFF

a
u
T
P
U
T
S

4
5
6
7
9

10
11
12

A2 ZO
Al Zl
AO Z2

Z3
CLR Z4

D Z5
Z6

E Z7

Switch 3
select 2
inputs 1

What controls and decodes these little switches you've just
been throwing is the IC F14 chip (labeled SN74259N). Each
switch controls a different aspect of what is placed on the screen.
That's why a certain byte can show up as a flashing character if
in the text mode, as colored blocks if the lo-res graphics switch
has been thrown, or even as a series of dots if $C057 is
accessed.

To the right is a diagram
of the chip in question.

The integrated circuit (lC)
gets its power through the
two pins not shown; 8 and
16. By convention, in a
16-pin package the +5V
(Vcc) connection goes to
pin 16 ("HI"). Pin 8 is OV,
or ground ("La").

107 Book of Softkeys

SN74LS259 (F14)

Vol. I

8
7
6
5
4
3
2
I

Figure 2

9
10
11
12
13
14
15
16

Notice the half-moon notch in Figure 2. It should point toward
the keyboard.

One nice thing about working with logic circuits at such low
voltages (0-5 volts) is that you can force certain lines low or
high without any damage to the ICs, if you're careful.

NOTE: VERY IMPORTANT. Don't connect pin 8 to pin 16.
That would short out the power supply.

As you may have noticed from following the screen-switching
demo, you need to throw two or three switches to get to a
certain point. With the chip disconnected, there's no circuitry to
hold the switches "in position" so to speak, so you'll have to
physically wire some pins HI and some LO. Needless to say, it
could get rather hairy.

Because of this, I've figured
out the correct combination for
this application and soldered a
jumper-socket (see figure 2)
that I can quickly plug in to
check if a particular program
tries to use this protection
technique. Disk Organizer IT
does.

This chart shows the results of the author's own experiments
with the switch outputs.

(+)=HI (-) = LO (0) = OPEN, no connection

4 5 6 7 9 10 11 12 Effect

+ 0 - 0 0 0 0 0 Text page 1
+ 0 0 0 0 0 0 0 Text page 2
0 - - - 0 0 0 0 Lo-res page 1
0 - 0 - 0 0 0 0 Lo-res page 2
0 0 - - 0 0 0 0 Mixed text & Lo-res page 1
0 0 0 - 0 0 0 0 Mixed text & Lo-res page 2
0 - - 0 0 0 0 0 Hi-res page 1
0 - 0 0 0 0 0 0 Hi-res page 2
0 0 - 0 0 0 0 0 Mixed text & Hi-res page 1
0 0 0 0 0 0 0 0 Mixed text & Hi-res page 2

Book of Softkeys Vol. I 108

Controlling The Soft Switches

1) Tum off the computer.

2) Carefully remove IC F14. (Remember: Without this decoder
chip, any page flipping signals sent by the program (or ROM) to
pins 1, 2, and 3 have no physical connection with the output pins
4-7 and 9-12. Therefore, you are free to throw your own.)

3) You may now tum on the computer and carefully experiment
with pins 4-7 and 9-12, connecting some HI (to pin 16) or LO
(to pin 8). Watch the results on your screen. When you want to
continue, plug in an IC socket that has been wired as shown in
Figure 2. Be sure it is oriented via the tab cutout toward the
keyboard.

4) Once installed, boot the program in the usual way. Now
convert the various screen characters back into hex code using a
chart like the one in Hardcore Computing Update 2.1 (old series)
or most Apple manuals. These jumpers will show you the hidden
information you've been missing.

Epilogue

Just when you think you've got it beat, you always bump into
another scheme, and this one has me stumped. Disk Organizer II
has also cleverly hidden an important byte at $200. This is the
first location in the input buffer, which is snuffed as soon as a
key is typed. Any ideas?

Bibliography

Apple Computer, Inc. Reference Manual, part #A2LOOOlA, pp.
12-14, 79, 98-99 and schematic.

Lancaster, Don, Enhancing Your Apple][, Indiana: Howard W.
Sams & Co., Inc., 1982, p. 83.

Luebbert, William F., What's Where in the Apple,
Massachusetts: Microlnk, Inc., 1981.

Signetics Corp., Signetics Logic Ie Data Manual.

109 Book of Softkeys Vol. I

~Home Accountant
Continental Software

Requirements:
Home Accountant disk
One initialized disk
Apple's FlO program

By Barry May

For many months the Home Accountant has consistently
ranked #1 on Softalk's Home Top 10 list. This popular
checkbook/home budget program has some very nice features,
but it has some very annoying ones as well. Its three biggest
faults are:

1) You cannot go back to a previous month to make an addition
or correction;

2) You must wait an inordinately long time for the copyright
notice and logo display to run through before you are
presented with the opening menu, and

3) The program is constantly loading new modules and re
reading the data files resulting in very long waits between
tasks.

Removing the copy protection allows at least two of the
problems to be solved easily. The opening can be eliminated
with a couple of simple changes (as shown below) and a fast
DOS will speed up the disk I/O.

The protection on the Home Accountant is very simple. The
address epilog has been changed from DE AA EB to DF AA
EB. All that needs to be done is to change the read address
routine to ignore the first byte of the epilog. This is done by
changing byte $B993 (47507 in decimal) from an $AE to a $00.
Now, instead of branching to the "Bad Read" routine, the
computer merely branches to the next instruction, the one it
would normally execute if everything was OK.

All that is left to do is to get the programs off the protected
disk and onto one of yours. The easiest way to do this is to run
a program that copies files using the DOS in the computer, like
FlO. Just copy the programs on the disk like you would if you
were backing up programs from a normal disk.

1) Boot a System Master disk.
2) Change the branch

POKE 47507,0

Book of Softkeys Vol. I 110

3) Run the copy program

BRUN FID

Copy all the programs from the Home Accountant to an
initialized disk. (Use a disk initialized with a fast DOS, if you
want) and that's it!

After releasing the program from its protection, deleting lines
200 through 1110 from "Hello" and using Beagle Brothers'
Pronto DOS, the time from start to menu drops from 37.7
seconds to 13.7 seconds. A fast DOS which speeds up textfiles
(Diversi-DOS does this) will help even more.

Now it's up to someone else to write a routine for correcting
previous months on the program.

III Book of Softkeys Vol. I

~Homeworld

Sierra On-Line, Inc.

Requirements:
Apple][48K
One blank: disk
CopyA from DOS master disk
Disk edit program

By Marco Hunter

Here is a quick softkey.

1) Copy with COPYA.
2) Edit track 10, sector OA and change byte 09 from 49 to EA
and byte OA from C9 to 60.

That's it.

Book of Softkeys Vol. I 112

~Lancaster

Silicon Valley Systems

Requirements:
48K Apple, with Applesoft
One disk drive and DOS 3.3
DOS 3.3 System Master
Lancaster
One blank disk

By Clay Harrell

Lancaster caught my eye as having unusually smooth animation
and graphics. Being intrigued by the animation and playability of
the game, I bought it with the intention of discovering the
author's methods of animation. But, in order to snoop through
the code, it meant that I had to unprotect it first for disassembly.

The first thing to notice upon booting the game is that an
Applesoft cursor appears at the bottom left of the screen. This
means that the protection involves somewhat of a normal DOS
and disk structure. Some protectors have begun to bypass the
routine which outputs the prompt, but you can still guess that
there's a modified DOS present if the boot sounds like a normal
DOS boot, but the disk won't copy with COPYA.

To confirm my hunch that Lancaster was using a modified
DOS, I booted one of my normal DOS 3.3 disks and put
Lancaster in the drive and typed CATALOG. The disk drive
recalibrated and made other obnoxious noises and returned the
message I/O ERROR. Not that I was expecting any miracles, but
why not try?

I still believed there was a somewhat normal DOS present on
the disk, however, more snooping had to be done. Let's think
about what causes an I/O error, for a moment.

Whenever anything goes wrong during disk access, RWTS
branchescJo a routine at $B942 to set the carry bit and return.
The other routines in RWTS monitor the carry bit and check to
see if there was a bad data read, a bad address read or some
other no-no.

At $B942 there are simply two instructions: SET THE
CARRY and RETURN. If we wish to defeat the DOS error
checking (which we do in this case), we can change the SET
THE CARRY to CLEAR THE CARRY. By making this change,
you are telling RWTS not to check for any errors, assume
everything is alright and go on.

Obviously, this is not good general practice since you are
defeating the purpose of all the careful error checking that DOS
does. But it is great for examining a modified DOS. It will

113 Book of Softkeys Vol. I

handle any changes to the epilog bytes or intentional errors in
the checksum of either field, but not in the header bytes (header
changes must be done by modifying the appropriate code in the
subroutine) .

With this in mind, we enter the monitor with CALL -151 and
type B942: 18 to disable the DOS error checking. Now type
CATALOG and, gosh! Indeed, there is a catalog!

Now all the fIles are loadable (or BLOADABLE) for further
snooping. But this is not the end of the protection.

Examining the HELLO program revealed an unusual fIle
named SVS and some curious CALLs and POKEs. Upon further
inspection, I came to the conclusion that the fIle SVS was a
secondary protection involved in Lancaster. Simply preventing
the loading of this fIle and disabling the calls to its routines was
all that was really needed in the deprotection of Lancaster.

The following steps recap the procedures necessary in the
deprotection of Lancaster:

1) Boot a normal DOS 3.3 disk and initialize a blank disk with
the command

INIT HELLO

2) Type

CALL -151

to enter the monitor and then

B942:18

to disable the DOS error checking routine.
3) Insert your DOS 3.3 System Master in a drive and run the
program FID with the command

BRUN FID

4) Copy all the fIles from the Lancaster disk to the blank
initialized disk you just prepared.
5) Boot your DOS 3.3 System Master and put your newly
created Lancaster disk in a drive.
6) Delete the Hello program from your Lancaster clone disk

DELETE HELLO

7) Unlock the fIle Lancaster with the command

UNLOCK LANCASTER

8) Rename the fIle Lancaster to Hello with the command

RENAME LANCASTER,HELLO

Lancaster is now unprotected and all the code can be examined
for educational and modification purposes.

Book of Softkeys Vol. I 114

~Magic Window II
ARTSCI, Inc.

Requirements:
Apple][with 48K
One disk drive
One initialized blank disk

By Bobby

Magic Window II is an updated version of the old Magic
Window word processor. Many new features have been added
including paragraph gluing and search and replace functions.
Unfortunately, a few bugs have also crept into the program and,
in an effort to fix these bugs, I had to unlock the disk. Although
the original program disk can be catalogued and files can be
loaded and saved to it, the actual word processor is protected
and does not appear on the disk catalog.

I discovered that there are four separate Magic Window
programs stored as consecutive sectors of data. The four versions
are:

1) 40/80 (columns) without a RAM card
2) 40/80 with a RAM card
3) 40/70/80 without a RAM card
4) 40/70/80 with a RAM card

After examining the file "BRUN MW II" I was able to
determine which sectors each of the four versions were on. The
boot program (BRUN MW II) first checks to see if a RAM card
is present, and then loads the proper version of the program
(40/80 or 40/70/80 columns). Writing a BASIC program to
duplicate this function was easily done, but I still needed the
actual programs from the disk so that the BASIC program could
load them.

The easiest way to do this was to use the same program that
Magic Wlhdow II uses to read in each of the four files (BRUN
MW II). What follows is a step-by-step procedure for getting the
proper routine into the computer.

The Hello Program

1) Boot the DOS 3.3 System Master

PR#6

2) Remove the Master disk and insert a blank diskette.
3) Clear the program in memory.

FP

115 Book of Softkeys Vol. I

4) Enter the Applesoft Hello program in Listing 1.
5) Initialize the disk with the program HELLO

INIT HELLO

6) Remove this disk. This will be your new Magic Window
diskette.

Now we are going to load each of the four versions of Magic
Window from the old Magic Window disk and save them onto
the new disk. Place a write-protect tab on the original so you
don't accidentally alter the disk.

Copying The Disk

7) Boot the original Magic Window II disk. When the prompt
appears (asking which version to load), press RESET. This
bypasses all of the protection on the disk and loads in the main
controller routine intact.
8) Now enter the monitor

CALL -151

(If you get a "OUT OF MEMORY" error, repeat step 8.)
Since there are four versions of the program on disk, each of

these must be loaded and saved separately.
9) Type

18:04 00 3A OA
80F6G

This information tells the subroutine on which track and sector to
start, the number of pages to read, and where to place the data.
10) After the disk stops spinning, place the blank disk in the
drive and save the file (remember to do this from the monitor)

BSAVE MW II 1, AAOO, L3AOO

The other three files should be saved in the same manner.
Don't forget to put the blank disk back in the drive before saving
each file.
11) Insert original disk and load the next file

18:12 00 5A OA
80F6G

12) Insert backup disk and save

BSAVE MW II 2, AAOO, L5AOO

13) Insert original disk

18:08 00 3B 09
80F6G

14) Insert backup disk

Book of Softkeys Vol. I 116

BSAVE MW II lIWITH RAM, A$900, L$3Boo

15) Insert original disk

18:OC 00 3B 09
SOF6G

16) Insert backup disk

BSAVE MW II 2/W1TH RAM, A$900, L$3Boo

17) The file SYS.OPTIONS can now be loaded from the Magic
Window disk and placed on the backup. First, insert the original
disk and

BLOAD SYS.OPTIONS

18) Next, insert the backup disk

BSAVE SYS.OPTIONS, AABD, LD

The other Magic Window disk can be copied with COPYA
from the System Master onto a blank disk.

Modifications To The Hello Program

The HELLO program allows you to select which version of
Magic Window you wish to use. The program first POKEs a
small machine language routine into page 3 of memory. This
routine checks for a RAM card and sets certain flags depending
on whether or not one was found. After this is completed you
will be presented with two choices exactly like those you saw on
the Magic Window II disk. The BASIC program operates in a
manner similar to the original machine language program that
was found on that disk.

Since each of the four files can stand alone, the HELLO
program can be bypassed and the correct version of Magic
Window can be BRUN directly. A program allowing you to
ignore the first question and immediately skip to the proper
version Jould consist of only one line:

10 PRINT CHR$(4) "BRUN version of Magic Window"

The following chart will allow you to choose the proper
version to run:

With RAM
Without RAM

117

40/80

MW2 l/WITH RAM
MW21

Book of Softkeys Vol. I

40170/80

MW2 21W ITH RAM
MW22

The Technique

The unlocking technique for Magic Window IT can be used
with some other software on the market. ARTSCI only protected
two of the sectors on the Magic Window IT disk which contained
part of the loader required to load the main Magic Window
menu. I simply traced the file BRUN MW IT to see what it did
and what other sectors it loaded into memory. The four Magic
Window files could then be loaded by calling a routine that
started on a given track/sector and loaded the proper number of
sectors into memory, placing them at a given location. By
following the previous set of directions, you told the Magic
Window menu where each file was by changing locations 18, 19,
IA and IB:

18: First track of data
19: First sector of data (always (0)
IA: Number of sectors to load
IB: The high byte of the buffer (low byte is always (0)

HELLO program listing

10 D$ =CHR$ (4)
20 NORMAL : TEXT : HOME
30 PRINT "MAG IC'WINDOW'II"
40 PRINT: PRINT
50 PR INT "PLEASE'SELECT'VERS ION: "
60 PRINT
70 PR INT "1'-'40/80'COLUMW (MORE'FREE'SPACE) "
80 PRINT
90 PR INT "2'-'40170/80'COLUMS'(LESS'FREE'SPACE)"
100 PRINT: PRINT
110 PRINT "YOUR'SELECTION?'" ; : GETA$
120PRINTA$
130 A=VAL (A$) : IFA <1 OR A> 2THEN PR INT CHR$ (7) : VTAB 11 : GOTO 110
140 A$ ="" : GOSUB 180 : CALL 768 : IFPEEK (0) THEN A$ ="/WITWRAM"
150 HOME: VTAB 12 : HTAB 10
160 PRINT "LOAD ING'MW'I I'" A;A$
170 PRINT D$ "BRUWMW'II'" A;A$: END
180 FOR X=°TO 29 : READ B: POKE 768 +X,B : NEXT
190 RETURN
200 DATA 160,0,132,0,173,131,192,173,131,192,152,141,

0,208,205,0,208,208,7,200,208,244,169,1,133,0,173,129,192,96

Book of Softkeys Vol. I 118

~Multiplan

Microsoft Corp.

Requirements:
Apple][48K
DOS 3.3 Master disk
COpyA (from Master disk)
A disk edit program

By Bobby

Multiplan is an excellent spreadsheet program by Microsoft. It
includes an unusually complete manual with a reference guide,
and an auto-help mode from within the program. Multiplan
allows one and only one backup to be made, which I found to be
an insufficient guarantee of non-loss of data (three is my
minimum backup policy for commercial software).

The Protection

The program is only protected on tracks zero through four.
The protection scheme is to change the end of address mark on
those tracks from $DE to a strange value. To allow the
Multiplan DOS to read the unprotected disk, a modification must
be done to track $00, sector $OA. Byte $OD must be changed to
hold the value of $DE.

The Deprotection

1) Boot from the DOS Master disk.

PR#6

2) Fix the check for $DE in DOS.

POQ: 47507,0

3) Run COPYA and follow the prompts to copy the Multiplan
disk.

RUNCOPYA

4) Use your disk edit program to change byte $OD on track $00,
sector $OA from whatever it is to $DE.

The copy of Multiplan can now be duplicated with COPYA, or
any number of other copy programs. Enjoy!

NOTE: The copy disk option (1) on the utility menu will mnke
copies of this disk.

119 Book of Softkeys Vol. I

~Pest Patrol
Sierra On-Line Inc.

Requirements:
Apple][with 48K
Pest Patrol disk
One initialized slave disk with HELLO program deleted
One disk drive
Some knowledge of machine language

By Ray Darrah

Pest Patrol is an outerspace shooting gallery with many diverse
levels, each employing its own enemy attack patterns. Built-in
options help configure the game to the player's machine and
ability level. For example, Pest Patrol may be played with the
keyboard, paddles, rheostatic joystick, or Atari joystick.
Although each game is somewhat different, they are all fun.

Unfortunately, the protection scheme used on Pest Patrol is
such that it will continually reboot on a computer with a
language card. That just about washes out all the Apple IIe and
Franklin Ace users.

Never fear, for Hardcore COMPUTIST has a solution to both
the backup problem and the language card problem: convert Pest
Patrol into a normal binary file. This will omit the booting
sequence where the check for the language card resides (and the
reboot subroutine). Once this is done, Pest Patrol will work on
an Apple IIe or Franklin Ace just as if the computer was an
Apple][without a language card.

Where To Begin?

The first step I took in breaking Pest Patrol was to check for
simple prologue or epilogue alterations. If these alterations were
the problem, I easily could have made a softkey to do the job of
backup and my problem would have been solved (although the
program still wouldn't run on a computer with a language card).
But there were no alterations.

I noticed that the data on this disk was unlike normal data
stored by DOS, so I decided to boot code trace the program.

Boot Code Tracing: The Concept

To boot a disk, the computer must be able to load track 0,
sector O. This is where the first in a sequence of programs
responsible for loading the main program into memory is
written.

Book of Softkeys Vol. I 120

The boot code trace disk-breaking method depends on the fact
that track 0, sector 0 must always be loaded for any disk to
boot. It works by tracing the steps which the computer follows
during the entire process of booting a disk. First a small
program in the disk controller card loads a 256-byte program
stored on the disk's track 0, sector O. This program is loaded
into memory beginning at $0800 and is responsible for loading
the next program in the boot process. There may be several of
these boot programs (each usually longer than the one before it)
leading up to the actual loading of the main program stored on
the disk. While tracing, this process is halted to examine each
program before executing.

The second short program (on track 0, sector 0 of the Pest
Patrol disk) immediately loads a third, larger program into
memory. This third program checks for a language card and, if
none is present, loads the main part of the game program. If a
language card is discovered, the computer is instructed to reboot
endlessly.

How To Boot Code Trace

This article is an account of how I boot code traced Pest
Patrol. Since the text follows the order of my actions, a complete
list of steps for copying the disk is not found until near the
conclusion. This organization will help those trying to learn boot
code tracing.

Refer to the procedure listed under "The Whole Thing" for a
complete set of instructions for copying Pest Patrol.

Beginning A Boot-Code Trace

I started with the usual boot tracing preliminary steps:

1) Tum on your Apple (or Apple-compatible).
2) Press RESET before the computer has a chance to boot.
3) Enterthe monitor

CALL -151

4) Put zeroes in all memory locations from $0800 to $BFFF,
inclusive

800:00 N 861<800.BFFFM

Placing zeroes in all RAM higher than $07FF makes it easier to
discover the location in memory at which the programs load.
Look for locations where the zeroes have been replaced by other
code; a program has been loaded there.

121 Book of Softkeys Vol. I

5) Move the boot code from $C6OO (slot 6) to $9600

96OO<C6CN).C6F7M

Only the part of the boot code responsible for loading track 0,
sector 0 into $0800 is transferred. The move command is halted
just before the IMP to $0801 (contained in the controller card)
by indicating location $C6F7, instead of the normal $C6FF,
which would have included the IMP command. Since the
memory has been zeroed, the boot process is halted by a BRK
instead of a IMP at location $CF68 which occurs right after
loading the sector. This results in the partial boot of Step 7.
6) Insert the Pest Patrol disk.
7) Execute the partial boot

9600G

After completing this last step of the beginning boot procedure,
the computer will beep and display the message:

96FA-A=01 X=60 Y=OO P=31 S=FO

The disk drive will keep spinning. That is to be expected
because the program has been halted at an early stage due to the
partial boot. You must let it continue to spin while performing
the boot code trace, but opening the drive door will prevent wear
on the disk.

At this point, the boot process has been halted just before
executing location $0801 in memory where the short boot
program on track 0, sector 0 always is loaded.

Now begins the dirty work: examining the machine language
code starting at $0801 ($0800 holds the total number of
consecutive sectors to be read) to locate where the next stage of
the boot process resides.

Searching The Machine Code

At first glance, the Pest Patrol machine code looked like a
valid program. However, upon closer examination, I found many
things that didn't look right. For example, statements such as
these:

0809- 90 78
080B- 00 01
0800- AO 20 9C
0810- 08
0811- AO 3F

BCC $0883
BNE $080E
LOA $9C20
PHP
LOY #$3F

Book of Softkeys Vol. I 122

Hidden Commands

I noticed the LDA $9C20 followed by a PHP and thought,
"Why would anyone care what was in location $9C20?" This is
what I call an irrational command. Then I saw the preceding
BNE which branched to the middle of the LDA command (20)
rather than to the beginning (AD). This tipped me that the BNE
might always be taken (skipping the first byte in this manner).
Sure enough, when the code was disassembled and the confusing
byte at $080D excluded, a hidden rational command was
revealed at $080E.

0809- 90 78
080B- DO 01
080E- 20 9C 08
0811- AO 3F

BCC $0883
BNE $080E
JSR $089C
LOY #$3F

This made me dread looking at more code. What if I missed a
hidden command? How long would it take to find them all?
Well, it wasn't too long before I stumbled across this wondrous
piece of machine language.

085E- 8C OB AA
0861-1001
0863- 4C 20 08
0866- B6 AD
0868- 08
0869- 03
086A- FO 03
086C- 00 15

STY $AAOB
BPL $0864
JMP $0820
LOX $AO, Y
PHP
???
BEQ $086F
BNE $0883

The first thing I noticed was the ??? Whenever I see a ???
surrounded by what appears to be irrational code, I immediately
think it could be a data table of some kind. But this one looked
like it was right in the middle of rational code. Stepping
backward, I saw JMP $D820. This and the two following
statem~ts certainly looked fishy. Then I found it: a "branch on
result plus" (BPL) to the second byte in the jump instruction
(20). This is what it looks like when the byte at $0863 is
eliminated.

085E- 8C OB AA STY $AAOB
0861- 1001 BPL $0864

0864- 20 08 B6 JSR $B608
0867- AD 08 03 LOA $0308
086A- FO 03 BEQ $086F
086C- 00 15 BNE $0883

Once again a hidden rational command was revealed, this one
at $0864. Finding these wasn't easy, but it was worth the effort.

123 Book of Softkeys Vol. I

The other byte inserted to confuse the issue Was at $086E
(right after the preceding example). The best way to find these
hidden commands is to look at the branches and other flow
related commands in the program. Spotting these only becomes
easier with practice.

There are also two II-byte data tables starting at $0881 and
$089A. Data tables are much easier to find because they are
usually referenced by another part of the program. The only
tricky part is trying to determine their lengths (but this isn't as
tricky as you might think).

Five Subroutines

After spending quite some time scrutinizing this mad program,
I concluded that it was comprised of five subroutines. The
backbone of the program is the subroutine starting at $089C
which loads three sectors into memory starting at $B500. Other
subroutines include a translate-table builder at $0817, a routine
to get one byte of data from the disk starting at $0872, and a
reboot subroutine starting at $0883. This second program has a
somewhat obvious exit to $B800 at $086F. The next step was to
alter the program to stop just short of exiting.

Stopping Before The Exit

To make the sector safe to execute, I typed

86F:OO

I shut the drive door, crossed my fingers, and typed

801G

(It was very hard to type this with my fingers crossed.) The disk
made a strange noise, and the computer responded with a beep
and the message:

0871-A=OO X=OB Y=FF P=33 S=EE

The boot process again was halted. I then had a very large
program in memory (many of the higher addresses no longer
contained zeroes) with an entry point of $B800.

This was the third boot program, which contained the language
card check. The disk was still spinning, so I once again opened
the drive door to prevent unnecessary wear and tear on my
expensive Pest Patrol disk. Yes, more code tracing was ahead!

I knew I was getting closer to having the entire Pest Patrol
program in memory because the number of hidden commands
steadily increased. There were too many to list here but, if
you're interested, you'll be able to find them.

Book of Softkeys Vol. I 124

Careful tracing of the program starting at $B800 revealed that
it decodes a lot of memory and moves it into its proper location.
It then exits at $B8A4 if you have a language card or $B8A7 if
everything is okay (it also clears the text screen). From $B8A7,
the program was supposed to go to $B2EO, so I placed two more
breaks by typing

BSA4:00
B8A7:00

I then executed the modified program with

BSOOG

The screen cleared and so did my mind. I didn't feel like
tracing the code starting at $B2EO, so I listed it until I found an
exit. After a few screens, I found this:

8375- A9 84
8377- 48
8378- A9 80
837A- 48
8378- 4C 7A 84

LOA #$84
PHA
LOA #$80
PHA
JMP $847A

It looked like the programmer who wrote Pest Patrol wished to
execute a subroutine at $B47A and then intended program
execution to continue at location $B4BE.

My hunch was correct. When I shut the drive door and typed
the following (after some funny disk noises followed by a beep)
the disk drive stopped. This is what I typed

B375:00
B2EOG

(wait for drive to stop)

B47AG

This was it. I knew that one of two things had happened. Either
I had tQe entire Pest Patrol program in memory or things were
messed up pretty badly.

I then remembered the code starting at location $B4BE. Some
quick listings revealed (among the hidden statements and other
sneaky stuff) that this program did a large amount of memory
manipulation. After making this discovery, I found the equivalent
of a JMP to location $0800 at $B466. Trace this one for
yourself. It's a nightmare!

Luckily, I found no access to the disk in this subroutine which
was a load off my mind. You only live once, was my only
thought as I typed

B466:00
B4BEG

125 Book of Softkeys Vol. I

Once again the monitor awaited my next command. This was
the big moment. Was there going to be valid code at $0800 or
was there an error in my painful tracing? I typed

800L

I was amazed at the absence of hidden commands. Instead, I
found a little routine to set all the vectors at the end of page 3 to
$4000. This was followed by a number of STAs to consecutive
locations starting at $0000. The program then JSRs to that
location. This is followed by the usual strange stuff (messing
around with pointers and the like).

Finally, after breaking the program in several places and
examining various locations, I surmised that the main part of this
program moves $0900-$8700 into $4OOO-$BEOO. Then it jumps
to location $4003. If you wish to find this out for yourself, it is
best to NOP both of the STA $03FO,Y commands. Otherwise,
the BRK vector, as well
as the reset vector, will be overwritten.

I observed that an 8000 at this stage would start Pest Patrol.
Unfortunately, once executed, I couldn't escape from it. I
decided to follow my notes from the beginning to the point
where I typed 800G.

The Whole Thing

Assuming the disk controller is in slot 6, the following is a
brief overview of my procedure.

1) Tum on your Apple (or Apple-compatible) without a disk in
the drive.
2) Hit RESET.
3) Enter the monitor

CALL -151

4) Put zeroes in all memory locations from $0800 to $BFFF,
inclusive

800:00 N 801<800.BFFFM

5) Move the bootcode from $C600 (slot 6) to $9600

9600<C600.C6F7M

6) Insert the Pest Patrol disk in the drive.
7) Execute the partial boot

9600G

Don't press RESET to stop the spinning of the drive; let it
tum as you complete the remainder of the procedure.

Book of Softkeys Vol. I 126

8) Type the following

86F:OO
801G
B8A4:00
BSA7:00
B800G
B375:00
B2EOG
B47AG
B466:00
B4BEG

After reviewing the preceding steps, I made two modifications.
9) Type

885:A9 00 8D
808:F2 03 A9 EO 8D F3 03 49
810:A5 8D F4 03 DO OD
8DC:4C 00 40

These modifications enable reset to stop the program (you will
be without DOS). They also relieve the program of its boring
title page, which lasts about 20 seconds too long. In addition,
they eliminate a little routine which performed some memory
verification, printing "CHECKSUM ERROR" and making an
awful noise if something was wrong.

All that was left was to save this modified version. A few
seconds of thought and I had it. I decided to boot with a 48K
slave disk (saving page $8 first, of course) and then restore page
$8 and BSAVE the me.
10) Save page $8 on page $96

9600<800.8FFM

11) Insert a 48K slave disk WITH NO HELLO PROGRAM.
Make sure this is a slave disk (using a master will wipe out the
code.
12) .root the disk

C600G

13) Return to the monitor (if it doesn't work the first time, try
again)

CALL -151

14) Move page 8 from page 96 back to its original location

8OO<9600.96FFM

15) Insert the initialized diskette on which you wish to have the
Pest Patrol backup (the game uses 131 sectors, so it should be a
relatively empty one).

127 Book of Softkeys Vol. I

16) BSAVE the entire program (it takes about 42 seconds)

BSAVE PEST PATROL, $800, L$7FFF

17) You now can BRUN Pest Patrol after booting normal DOS.

A Confession

To be honest with you, this was my first attempt at breaking a
copy-protected disk. I found it to be much easier than I had
anticipated. The entire job took me only about 15 hours. I am
sure the process will take less time as I become more
experienced. Well, have fun with your backup of Pest Patrol. I
suggest storing the original Pest Patrol game and all of your
other original disks in a dark, cool place.

Book of Softkeys Vol. I 128

~Prisoner II
Eduware

Requirements:
Apple][48K
DOS master disk
COPYA program
One blank disk

By David Kirsch

Prisoner II uses standard DOS for tracks $00-$34. The game
also uses track $35, which contains special copy protection data,
none of which is needed to run the program.

Here's how to get rid of the track $35 access.

Making A Copy

1) Boot from the DOS Master disk and use COPYA to copy the
disk.

PR#6
RUNCOPYA

2) Get rid of the track $35 check.

UNLOCK IF.SHAPE
BLOAD IF•SHAPE
CALL-lSI
S7B4:BD 8C
BSAVE IF.SHAPE
LOCK IF.SHAPE
3DOG

That's it. You now have an unprotected backup copy.

129 Book of Softkeys Vol. I

~A Fix For RANA Drive Owners
By Joseph W. Leathlean

I have a solution for all Rana drive controller owners who
wish to do Boot Code Tracing.

While the Rana controller's ROM code is incompatible with
the standard ROM and controller, the I/O addresses are supposed
to be compatible since they will work with DOS 3.3. So, all
Rana owners have to do is to borrow some time on a computer
with a standard controller and do the following:

I) Boot a diskette with normal DOS 3.3

PR#6

2) Save the code from the Apple controller card to a disk.

BSAVE CONTROL ROM, ASC600,LSl00

3) When they want to do the boot code trace, instead of moving
the controller ROM routine to $x600, just BLOAD the file
CONTROL ROM at the address needed. They should be able to
follow the boot code tracing procedures with no problem.

Book of Softkeys Vol. I 130

~Sammy Lightfoot
Sierra On-Line, Inc.

Requirements:
Apple][with 48K
One disk drive
One blank disk
Sammy Lightfoot Diskette
DOS 3.3 System Master with COPYA
Any disk editor (such as DiskEdit)

By Eric Kinney

Sammy Lightfoot is a running/jumping/climbing type of game
which is fun to play, has high quality graphics, and is easy to
backup as you will soon see.

The game has three "scenes" with six levels of difficulty for
each scene. Sammy, the hero of the game, is trying out for a
circus act in which he bounces on trampolines, dodges giant
circus balls and uses ropes to swing over flames and certain
death below.

The copy-protection used seems to be a check of track 0 prior
to each new scene. Several things were done to hide the code in
memory. With effort, however, it can be traced and tested at
various points to find where it actually checks for
copy-protection.

My first thought was that it was checking for a nibble-count,
but since copying track 0 with Locksmith's nibble counter didn't
copy it, I suspect that it checks for something else. By tracing
the machine language code and disabling various subroutines
until I homed in on the right one, I discovered a place where the
copy-protection could be circumvented. This was at location
$989B where it does a JSR to $9Eoo. In assembly code, that's
2000 9E.

I changed the bytes to EA, which is assembly code for NOP,
or "No OPeration". Since the bytes I changed were 20 00 9E, it
was not too difficult to scan the disk with DiskEdit until I found
these three bytes, and changed them permanently. Making a
backup of Sammy Lightfoot is very simple:
1) Boot up with DOS 3.3 System Master

RUN COPYA

2) Copy Sammy Lightfoot with COpyA.
3) Boot up a Disk Editor, such as DiskEdit.
4) Use your sector editor to make the following changes to the
copy of Sammy Lightfoot.

131 Book of Softkeys Vol. I

Trk Sect Byte From To

00 00 9B 20 EA
00 00 9C 00 EA
00 00 90 9E EA

You now have a working backup copy.

Unlimited Sammys

1) Using a sector editor, make the following changes to the disk
and write the sectors back out:

Trk Sect Byte From To

OC 03 69 CE EA
OC 03 6A 4F EA
OC 03 6B 73 EA
OC 03 73 CE EA
OC 03 74 4E EA
OC 03 75 73 EA

10 OB 81 CF EA
10 OB 82 4F EA
10 OB 83 73 EA
10 OB 8B CE EA
10 OB 8C 4E EA
10 OB 80 73 EA

APT For Old Monitor ROM

When the game has begun play, hit RESET to get into the
monitor. If you want to alter the playing level and/or the scene,
use the following procedure once you are in the monitor:

1) Enter the level of play (O-B) at location $36B.
2) Enter the scene (0-3) at location $94E3.
3) Restart the game by typing

96C8G

Book of Softkeys Vol. I 132

~Screenwriter II
Sierra-On-Line, Inc.

Requirements:
Apple][+, IIe, 48K
One disk drive
Screenwriter II master diskette
One blank diskette
FIn or COPYA

By Daniel Pric~

The Screenwriter II word processor is a powerful writing tool,
combining many advanced features with ease of use. The only
problem is that you can't back it up. I found this particularly
upsetting because the program is stored as a series of binary ftles
on an almost standard DOS 3.3 diskette. This means that the
diskette can be copied with FIn or COpyA but the data that
tells the copy protection routine that the diskette is an original is
lost (the information is coded into the formatting of the diskette)
and the program won't run. Fortunately, the technique to unlock
this disk is very simple.

What we will do in this procedure is remove a machine
language JSR (Jump to SubRoutine) instruction and bypass a
particularly nasty subroutine which checks the disk to see if it is
an original. If this routine found that the disk was a copy, it
would clear the memory and reboot.

Step One: Make a backup of the diskette with either FIn or
COPYA and hide the original! I can't stress the importance of
this enough. It is too easy to make a fatal mistake and have your
only copy destroyed.

IF YOU USE FIn: Boot the original disk. When the main
menu appears, press BC to enter BASIC. Remove your master
diskette and insert your backup. Type the following

NEW
INIT START
DELETE START

Now use FID to copy all the programs which are on the
master diskette onto the backup.

IF YOU USE COPYA: Just boot any DOS 3.3 diskette

RUN COPYA

and follow its directions.

133 Book of Softkeys Vol. I

Step Two: We will now make the actual changes to the
program. These changes consist of a three-byte patch to two mes
on the diskette. Check to make sure your master diskette is
hidden (just remember how much this program cost!) Now, with
the backup in the drive, do the following

1) Enter the monitor

CALL -151

2) Load the first me

BLOAD RPART1

3) Make the first patch

1F90:EA EA EA

4) Save the changes

BSAVE RPART1,ACOO,L1400

5) Load the second me

BLOAD EDITORPARTl.OBJO

6) Make the second patch

1F49:EA EA EA

7) Save these changes

BSAVE EDITORPARTl.OBJO, ACOO, Ll400

The Screenwriter II is now unlocked and can be backed-up
with COPYA or FID as many times as you like without needing
any further changes.

If you use a different DOS, you must arrange to BRUN the
me named START upon booting. This may be accomplished by
creating a HELLO me to do it or by patching DOS directly.

The procedure to patch DOS 3.3 to BRUN a binary me upon
booting is:
1) Boot a DOS 3.3 diskette.
2) Then type

POKE 40514,52

Any diskette INITed with this DOS will BRUN whatever me
you specified in the INIT command.

A note to those who own Quality Software's "Bag of Tricks":
The INIT program's reskew function can be used to greatly
increase the Screenwriter II's efficiency in loading, saving and
packing meso Reskew the Screenwriter II program diskette (your
backup!) tracks 3-22 to 9 DESCENDING and the TARGET and
TEXT diskettes tracks 0-22 to 6 DESCENDING.

Book of Softkeys Vol. I 134

~Sneakers

Sirius Software

Requirements:
48K Apple with Applesoft in ROM
One disk drive
Snapshot Card
One blank disk

By David E. Rentzel

I used Snapshot to make a non-protected file of Sneakers. The
problem is that during portions of the running game, the disk is
accessed via copy-protected data to verify the original disk's
presence.

This can be defeated by making two simple monitor changes:

4FEl:60
94D3:60

The program can now be saved and run without further disk
access.

135 Book of Softkeys Vol. I

~Spy's Demise
Penguin Software

Requirements:
48K Apple](Plus or equivalent
Locksmith v4.1 & Nibbles Away II
Spy's Demise

By Peter M. Anker

I recently tried to backup a copy of Spy's Demise by Penguin
Software according to the instructions given under the Copy n+
parameter list. For the disk I have, these parameters would not
work properly. I would get only the title picture, but no game.

After some experimentation with other programs, I found that
the disk would copy easily by using Locksmith 4.1 for tracks 0
to 12 (error 2 on track 12 is OK) and Nibbles Away II on tracks
1, 5 and 7. Locksmith was apparently not able to copy those
tracks. No parameter changes were required for either copy
program and it was not necessary to copy any other tracks.

Book of Softkeys Vol. I 136

~Starcross

Infocom, Inc.

Requirements:
Apple][48K
DOS master disk
COpyA program
Sector Editing program
One blank disk

By Jeff Rivett

Having just completed Starcross, I can say with certainty that
it is one of the finest text adventures I have ever played. The
puzzles are very logical and, although some are quite difficult,
they can still be mastered by pure reasoning. In other words,
you don't have to rely on luck to win the game.

You don't have to rely on luck to make a successful copy,
either. The entire game program uses only tracks $00 through
$18 (0-24) and track $00 is not protected. The protection scheme
on the remainder of the disk is to change the start-of-data marks,
normally D5 AA AD, to D5 AA BC.

Making A Copy Of Starcross

1) Boot from the DOS Master disk.

PR#6

2) Fix the check for $AD in DOS.

POKE 47358,0

3) Run COpyA and follow the prompts to copy the Starcross
disk.

RUN COPYA

4) Use your disk edit program to change the following bytes;

Trk

o
o

Sct

2
2

Byte

FC
5D

From

BC
BC

To

AD
AD

The first modification allows the program to read the copied
disk and the second allows the save game routine to write to a
normal 3.3 disk.

137 Book of Softkeys Vol. I

You have deprotected Starcross. This copied version of
Starcross can now be booted from slot 6.

Adding Your Own Text

Infocom programs don't use normal text fIles for program text.
Instead, binary information is read directly off the disk into
memory where some strange and wonderful alterations are
performed to make it look like text to you and me. When a
sector editing program is used to look at the copy disk, only the
error message and the SAVE and RESTORE prompts are visible.
If the text were decoded, it would be possible to add your own
messages and personalize your copy.

Unfortunately, this isn't easy. After experimenting with my
Starcross lOB copy for a while, I realized that the coding is
probably not just a straight byte-for-ASCII-byte mapping. In fact,
some values may represent whole words. I also suspect that a
checksum is used on all text data because even the slightest
change can cause the program to bomb. Although you may find
that decoding the text in Starcross is quite a challenge, you now
have the peace of mind of a backup copy on which to practice.

Book of Softkeys Vol. I 138

~Tricks & Bombs

No List Programs

If you use DOS and would like to baffle your friends or
protect your program listings from casual prying, then type the
following line exactly as it is written into one of your programs.
When you get to the ! type in a 8D. (The 8D is entered by
holding the 8 key down and pressing the D key. The D should
not print.)

The line on your screen should look like this:

oREM IT'S NO FAIR IF YOU PEEK!FP

Save the program before you list it. When you LIST the
program it should look like this:

o REM IT'S NO FAIR IF YOU PEEK!

And that is all you will get. If you try to LIST the line again,
it's not there.

If you count the characters from the 0 to the ! you'll get 33.
Applesoft tries to LIST programs using 33 columns instead of
the full 40. The 34th character is folded over and printed on the
next line (There are exceptions). DOS gets control at the 34th
character when fold over occurs and normally passes control
back to Applesoft. However, if the 34th character is a 8D, then
DOS thinks that it has been given a command and will process
the remainder of the line accordingly. The FP at the end of the
remark tells DOS to reset the Applesoft program pointers and
has a similiar effect as the NEW command in Applesoft. You
can replace the FP with any other DOS command. How about
CATALOG?

Hidden Lines

Hiding a line or changing the visible portion is another neat
trick. To do this, type in the following steps exactly as shown
(press return after each step):

NEW
lREMI2345672 REM HELLO!
5 A = PEEK(l03) + PEEK (104) * 256 + 5
10 FOR X = 0 TO 6: POKE A + X, 8: NEXT
LIST
RUN
LIST

Notice anything different?

139 Book of Softkeys Vol. I

SPEED = 1
LIST

The REMark in line #1 has been overwritten by the second
half of the REMark making it appear to be line #2. Line #5
PEEKs the start of program pointer and adds an offset to it. Line
#10 changes the numbers 1 through 7 in the REMark into
backspaces. The result is the apparently changed REMark. A line
could be completely buried using this technique. Important
GOSUBs and GOTOs could be disguised as REMarks. A second
Copyright notice could be hidden this way. The list is endless.
(Be sure to reset SPEED to 255, afterwards).

A Bomb

Zero page location 214 ($D6) is the run flag for Applesoft. If
the number stored here is greater than 127 ($80) then the
program in memory will AUTO-RUN each time you try to issue
a command. In order to LIST the program or change a program
line, the number in location 214 would have to be changed to a
value smaller than 128. If you were to insert the following lines
into your program it would be difficult for the uninformed to
tamper with or change the program:

2 POKE214t255
3 IF PEEK(214) < > 255 THEN NEW

Line #3 should be inserted in the program in several different
places (with appropriate line numbers).

Locking Your Program Into The Run Mode

This technique is often used to prevent unauthorized
tampering. It's a neat trick to play on a friend and can be done
by inserting the following line into the beginning of a program:

oPOKE 216tO: POKE 214t l28: POKEI0I0t 102:
POKEI011 t213: POKEI012t 1l2: ONERR GOTO 0

Line #0 sets the RUN flag, changes the RESET vector to point
to the RUN command in Applesoft and locks out the BC. Now
the program will restart each time you hit RESET or BC.

NOTE: This will only work on an Apple with the autostart
ROM.

Book of Softkeys Vol. I 140

~Ultima][
Sierra On-Line

Requirements:
48K Apple n Plus or IIe
One disk drive with DOS 3.3
Ultima][: Program Master, Player Master, and Galactic disk

COPYA or similar disk copy program
Three blank disks

By Brian Bums & Dan Rosenberg

Owners of Ultima nmay know how hard it is to backup. The

copy-protection is tough to break because the data is stored

differently than on normal DOS disks. Unlocking disks like

Ultima is frustrating, mostly because it is often nearly

impossible. Fortunately, there are shortcuts.
Because Sierra On-Line left a big hole in the copy protection

of this adventure game, the disks are COpyAable with only

slight modification to DOS. Programs like Locksmith and

Nibbles Away usually have a hard time copying Ultima n. But

they will do the job if you prevent DOS from reading the

VTOC's from the disks. The VTOC is a sector on every normal

DOS disk that tells on which track and sector the catalog starts

(the catalog contains all the file names on the disk), and which

version of DOS is on disk (3.2 or 3.3). It also contains a table

that tells which sectors are being used to store programs and

which are empty.
The VTOC's on the Ultima n disks have been filled with hex

$FF's, which is why DOS gives an I/O error (it thinks the

catalog starts at track $FF, sector $FF). You do know, of

course, that track $FF, sector $FF doesn't exist, don't you?

Ultima n doesn't get errors when it is reading from its own

disks because its Disk Operating System is modified and doesn't

need the VTOC to load programs.
Following the softkey, there is an Advanced Playing Technique

for Ultima n which allows you to change a character's strength,

wisdom, armor, weapons, race, hit points, etc. in the middle of

the game. First complete the Softkey, because it modifies the

program so it can be used with the APT.

How to Copy

1) Boot your system master or any regular DOS 3.3 disk.

2) Enter the monitor

CALL -151

141 Book of Softkeys Vol. I

3) Type

AFF7G

This allows the reading of the VTOC from the normal DOS 3.3
disk into memory.
4) After the drive stops, enter

AFF7:60
AFFD:60

This keeps DOS from writing or reading the altered VTOC from
the Ultima][disks and thus prevents errors when copying the
disks.
5) Run COpy or COpyA. Copy all three Ultima][disks as you
would normally (yes, copy the Player Master disk this way, even
though it is normally COPYAable). If you have a character disk
you want to keep, also copy it.
6) Boot your System Master or any regular disk and enter the
monitor again by typing

CALL -151

7) Enter the following short program

300:20 F7 AF 20 OC FD 20 FD AF 60

This program will copy the normal VTOC from the System
Master to the copied Ultima][disks.
Put in the System Master and type

300G

DOS then will read the normal VTOC into memory. When a
cursor appears, insert a copied Ultima][disk and push a key. If
the Apple beeps or nothing happens, start over from Step 6.
When you push a key, the drive should whir and write the
normal VTOC in memory to the copied Ultima][disk. Repeat
the procedure by putting in another of the copied disks and
typing

303G

Also do this for the last Ultima][disk. If you also have a copied
character disk, insert it and type

303G

It will put a normal VTOC on that disk, as well.
8) Now insert your copied Ultima][Program Master and type

BLOADHELLO

Book of Softkeys Vol. I 142

(yes, you can do this from the monitor.) Make the following

changes:

72EO: A9 4C 8D F8 03 A9 79 8D
72E8: F9 03 A9 SO 8D FA 03 60

Now type

UNLOCK HELLO
BSAVE HELLO,A$60000,L$1420
LOCKHELW

This modification keeps Ultima][from testing the disk to see

if it is a copy (if it is, Ultima will crash), prevents it from

booting the disk when reset is pushed, and sets up a BY jump

back into the program for use when you alter your character in

the following APT.
Your Ultima][is now copied and ready to be played.

Ultima APT

Now that you can push reset in the middle of the game without

booting the disk, you can edit your character to your heart's

content. For example, if you have only one unit of food and you

are stranded in the middle of nowhere, miles and years away

from a town, push reset. (If you are on a horse or frigate do not

push reset or you will lose whatever transportation you are

using. You first should get off whatever it is by pushing X for

Exit and then reset. When you come back to the game, just hit B

for Board.)
Hitting reset should leave you in Applesoft. Enter the monitor

with

CALL -151

Now you can change your character's food, hit points, or

whatever else you need by just entering the appropriate address

from the Address Chart (page 00), a colon (:) and the value you

wish to have in decimal (00-99). You should only enter values in

hexadecimal where noted in the list of addresses. If you ever

need to know a value, type in the address and hit return. For

example, to gauge your strength, enter

4E15

You should see "4E15- 16" or whatever your strength may be.

You do not necessarily have to be in the middle of a game to

edit your character. Simply insert the character disk, type

BLOAD PLAYER
CALL -151

and you are ready to change your character. Since your character

143 Book of Softkeys Vol. I

is stored in memory $4EOO to $4EFF, when you are done you
should enter

BSAVE PLAYER, A$4EOO, L$l00

NOTE: If the address is two bytes, as food and hit points are,
put the first two digits (in decimal), a space, and then the last
two digits (in decimal, also). Say, for example, you wanted to
change your food to 487. You would push reset, CALL -151,
and 4E1D:04 87. To get back into the game, enter ElY.

It is important never to save a new fIle onto one of the copied
Ultima)[disks, since this may write over the other programs on
the disk. A new program means one which is not already on the
disk. It is all right to save your character (fIle name PLAYER)
to your character disk, since that file has always been there.
Accidentally saving a new fIle on the disk may necessitate
making a new copy from scratch.

The address list contains all the addresses we have found. The
addresses followed by question marks are unknown, but their
purposes may be revealed by further experimentation. You can
do this by changing the unknown value and seeing how it affects
your location and/or status. Some of the effects are strange, and
it would be advisable to turn off the computer if it gets bizarre
to avoid accidentally storing jumbled data on your disk.

Book of Softkeys Vol. I 144

Location

$4EOO-$4EOF
$4E10
$4Ell

$4E12

$4E13-$4E14
$4E15
$4E16
$4E17
$4E18
$4E19
$4E1A
$4E1B-$4E1C
$4E1D-$4ElE
$4E1F
$4E20-$4E21

$4E22-$4E23
$4E24-$4E25

$4E26-$4E2A
$4E2B

$4E2C

$4E2D

$4E2E
$4E2F
$4E30
$4E31-$4E40

Item or Characteristic

Name (up to 15 letters)
Sex (M for male, F for female)
Class of character: O=fighter, 1= cleric,
2=wizard, 3=thief
Race of character: O=human, 1=elf, 2=dwarf,
3= hobbit
Time Zone/Surface Flag
Strength
Agility
Stamina
Charisma
Wisdom
Intelligence
Hit points
Food
??
Experience points. Location $4E20 is also the
level of your character.
Gold pieces
Location of player on map. This is an X, Y
value. For example, change these bytes when
you are stuck on an island to move to the
nearest land mass. (Use hex values for X and
Y)
??
Weapon in hand. This is the weapon you are
using. You don't have to own the weapon to
use it. For instance, you may change this to
"phaser" without having a phaser in your
possession or even being able to wield it.
O=Hands, 1= Dagger, 2=Mace, 3=Axe,
4=Bow, 5=Sword, 6=Great sword, 7=Light
sword, 8= Phaser, 9 = Quick sword
Type of armour that you are wearing. The same
applies to armour as to weapons. O=Skin,
1= Cloth, 2=Leather, 3=Chain, 4=Plate,
5 = Reflect, 6 = Power
Spell. This is the spell you are ready to cast.
Unfortunately, you must own the spell in order
to cast it, but you can change that! O=None,
1= Light, 2=Ladder Down, 3=Ladder up,
4 = Passwall, 5 = Surface, 6 = Prayer, 7 = Magic
missile, 8= Blink 9=KilI
Torches
Keys
Tools
??

145 Book of Softkeys Vol. I

Each byte of this section represents how many of each item
you have (Le. a $15 at location $4E41 means you have 15
daggers, a $78 at location $4E43 means 78 axes, etc. See
$4E2B).

Location Item Location Item

~WEAPONS

$4E41 dagger $4E42 mace
$4E43 axe $4E44 bow
$4E45 sword $4E46 great sword
$4E47 light saber $4E48 phaser
$4E49 quick sword

~ARMOUR

$4E61 cloth $4E62 leather
$4E63 chain $4E64 plate
$4E65 reflecting $4E66 power

~SPELL

$4E81 light $4E82 ladder down
$4E83 ladder up $4E84 passwall
$4E85 surface $4E86 prayer
$4E87 magic missile $4E88 blink
$4E89 kill

~MISC.

$4EAO ring $4EA1 wand
$4EA2 staff $4EA3 boots
$4EA4 cloak $4EA5 helm
$4EA6 gem $4EA7 ankh
$4EA8 red gem $4EA9 skull key
$4EAA green gem $4EAB brass button
$4EAC blue tassle $4EAD strange coin
$4EAE green idol $4EAF tri-lithium

Book of Softkeys Vol. I 146

~Ultima][
Sierra On-Line, Inc.

Requirements:
Ultima n, 3 disks
One disk drive
COpyA (On 3.3 System Master)
Sector editing program, such as DiskEdit
3 blank disl\s

By Pat Tilsworth

Ultima n from Sierra On-Line is the second of the three great
fantasy adventures written by Lord British. Faster play, less disk
flipping and greater length make this game a tremendous
improvement over the ftrst Ultima.

When trying to backup Ultima n, I noticed that the Program
Master seemed to copy easily with COpyA. When booting the
duplicate, however, I found that the HELLO program seemed to
be checking for a nibble count. This protection scheme relies on
the slight difference in speed between the original copying drive
and any other drive (i.e. yours). The unique number of nibbles
copied at the original drive speed is stored on the Ultima n disk
and accessed by the HELLO program when Ultima n is booted.
When the HELLO program compares nibble counts, the count of
the duplicate will always differ from the count the program
requires to run, because the duplicate was copied at another
speed.

Copying Ultima][

I wasn't about to nibble-count every track of the Player Master
with a nibble copier so I set off to unprotect it. The modiftcation
needed would have to prevent the HELLO program from
checking for the nibble count. This softkey also allows each
Ultima n disk to be catalogued, enabling them to be used with
the Ultima n Character Generator (Published in Hardcore
COMPUTIST No.4).

1) Boot the 3.3 system master disk.

PR#6

2) Run the COpyA program.

RUN COPYA

3) Copy all three disks of Ultima n with COpyA.
4) When ftnished, boot your disk editor. It will be used to

147 Book of Softkeys Vol. I

modify each Ultima][disk.
5) Insert the copy of the Ultima][Program Master into your
disk drive.
6) Read track $11 (17 decimal), sector $00.
7) Modify the bytes found at the following locations (Don't
forget, the first byte of the sector is location 00.)

Byte From To

$01
$02

$FF
SFF

$11
$OF

This modification allows the disk to be catalogued by pointing
to track $11, sector $OF.
8) Write the sector back to the disk.
9) Perform Steps 6-8 on the copies of the Player Master and.
Galactic disks.
10) Place the copy of the Program Master into your drive.
11) Read track 3, sector C.
12) Modify the following values:

Byte From To

$84
$85
$86

$20
$EO
$72

$EA
$EA
SEA

This final modification prevents the HELLO program from
performing the nibble-count check routine at $72EO. (Location
$84 was a JSR to the nibble-count check.)
13) Write the sector back to the disk.

You now possess an unprotected version of Ultima][, and the
Player Master can be catalogued for use with the Ultima][
Character Generator. Files created under normal DOS 3.3 should
not be saved to these disks since DOS 3.3 does not know where
the real Ultima VTOC exists. However, a program such as FID
can be used to copy all the Ultima fIles onto normal 3.3 disks.

In addition, since the nibble count has been bypassed, the three
unprotected Ultima disks will now boot when duplicated with any
program which copies an entire disk.

Book of Softkeys Vol. I 148

~Visirde

VisiCorp

Requirements:
48K Apple or an Apple lie
VisifIle
Two blank disks
Apple's COPYA program
A disk edit program
(An Applesoft Program Line Editor, such as Konzen's GPLE, is

useful but not essential)

By Bob Bragner

VisifIle is a medium-powered, somewhat overpriced data base

manager. My first (original) copy got zapped when the Turkish

Electric Company hiccuped during a configuration fIle write on

the master disk. Since I didn't have a backup and I knew that the

disks were protected, I packed both of them off to VisiCorp

along with a check for $30 for a replacement.

After nearly two months, the disks finally made their way back

across the Atlantic and Mediterranean with the enchanting

message: "Undeliverable at this Address" stamped on the

package! VisiCorp had apparently moved and not notified the

Post Office.
By this time I had, of course, found their new address (no

thanks to them) and once again shipped the disks off with a

somewhat caustic letter. This time the disks were returned

updated and with a backup to boot (sorry for the pun) in about

three weeks. Nevertheless, having been burned once, I decided I

had to have my own copyable VisifIle.
Locksmith will copy VisifIle, but requires a lot of annoying

parameter changes, and the copy will remain protected. What I

really wanted was a "cracked" version and backups squirrelled

allover the place.
Pirate's Harbor published a crack for Visifile. It consisted of

copying the disk with COpyA, then changing one byte in one of

the sectors on the disk using a disk zap utility like Watson.

However, COpyA refused to copy my disk. Every time I tried

it, I got an "****** UNABLE TO WRITE ******" error
when the program tried to format the blank disk. Using Watson,

I was able to determine that there were no protected sectors on

the original disk. FlO could move all the fIles (except for the

dummy serial number) over to another disk, but if you try to

boot the result, the screen fills up with inverse "A's".

After using the FIXCAT utility from Bag of Tricks on the

original, it was clear that there were some peculiar things in the

149 Book of Softkeys Vol. I

catalog track. For one thing, the volume number appeared to be
255 ($FF: an invalid volume number!) even though it showed up
as 254 when you looked at the catalog. If you examine line 250
of the COPYA program you will see:

250 PRINT "INITXXX,5";55; "0";50; ",V";PEEK(714) :FT=l

Checking the value at location 714 after COPYA crashes
reveals that there is indeed a 255 there. So if you changed line
250 by adding a "- 1" after the "PEEK (714)" then COpyA
would make a perfect copy of both Visiftle disks. These copies
can be copied as much as you like by a normal, unaltered
COPYA. However, if you try to boot Disk I, you still get a
screenful of reversed "A's."

After a bit more snooping, it was easy to determine that the
blowup occurred when the ftle VJSIFILE.BIN on Disk 1 was
BRUN. A quick disassembly of this ftle didn't reveal anything
significant (although there is a section where there are a bunch
of reversed "A's") but then I remembered the Pirate's Harbor
crack: byte $2D of track $22, sector $04, was supposed to
change from $OA to $OF and this sector was part of the
VISIFILE.BIN file!

After making this change with Watson, I booted the resulting
disk and all was well.

Here is a step-by-step procedure to crack Visiftle:

1) First load COPYA.

LOAD COPYA

2) Edit line 250 by inserting "-l"after the PEEK(714).

250 PRINT 'INITXXX,S' SS 'D' SD ',V' PEEK (714) • 1
:Ff = 1

3) If GPLE is lurking around, remove it before you attempt to
make a copy.
4) Run the program and follow normal copy procedures.

RUN

(Repeat Step 4 for Visiftle Disk 1 and Disk 2.)
5) Enter your favorite disk zapper and read track $22, sector $04
of the copy of disk 1. Change byte $2D from $OA to $OF. Write
this change to the copied disk.

You now have a cracked copy of Visiftle from which you can
make all the backups you want, using normal copy procedures.
Do you want a faster sort routine? Hard disk capability? With
your cracked Visiftle, you are now free to modify to your
heart's content.

Book of Softkeys Vol. I 150

~Visiplot/Visitrend
VisiCorp

Requirements:
48K Apple with Applesoft in ROM
One disk drive
VisiplotlVisitrend
One blank disk

By Anthony L. Barnett

A government department for which I work recently purchased
VisiplotlVisitrend. Naturally, a backup disk was desired.
However, the only "legal" way of obtaining one appeared to be
by making an overseas order directly to VisiCorp.

This is by no means an easy procedure. So, a letter was sent
to VisiCorp at the address in the manual. This was promptly
returned by the US Post Office as "undeliverable at this
address". Recent magazines were perused to fmd VisiCorp's
current address and the letter posted again.

VisiCorp was asked whether the order for a backup could be
placed through an Australian agent. Eventually, the terse reply of
"no" was received scribbled over a standard form which
advised, among other things, that our request could not be met
as we had not sent our disk backup order form!

Not knowing the Locksmith parameters, I began to examine
this curious disk for other means to back it up. All the programs
are quite listable and FIDable but a disk check causes a
spectacular crash if the original disk is not used.

I determined that the disk check occurs in the main storage
program and, after studying the listing for about an hour, I
determined that six bytes needed to be altered to get the backup
to run.

In line 4 the "& A" should be replaced with two colons and,
in line 2300, the "CALL 960" should be replaced with four
colons.

As the disk check is now eliminated, the backup works slightly
faster when switching to and from main storage. It is also
possible to use Speed-DOS from Hardcore Computing Update
3.2 (old series). The switching between programs is then quite
fast and tolerable.

It is my view that no program should be protected. Failing
this, at least two copies of a business program should be
provided. This can be done in the package or as a free backup
on receipt of registration. Another less satisfactory means is to
provide a special user copy program (usually "once only" like
Multiplan).

151 Book of Softkeys Vol. I

~Wizardry

Sir-Tech

Requirements:
48K Apple with Applesoft in ROM
Locksmith 4.1
One blank initialized disk
At least one disk drive
One small Phillips screwdriver
One small standard screwdriver (see Step 7, option C)

By John Samborski

According to the authors of Wizardry, their program uses
"state-of-the-art copy-protection." This label fits very well, as it
is truly a state-of-the-art program. Robert Woodhead and Andrew
Greenberg anticipated the popularity of Wizardry when they
designed their protection scheme. Unfortunately, it's the hardest
disk backup chore I've ever faced.

For all who want the security of a backup of Wizardry, this
article provides a complete set of instructions for making a copy.
The boot side, then the scenario side, will be duplicated using
Locksmith 4.1.

Copying The Boot Side

1) Boot Locksmith 4.1.
2) If using one drive, remove Locksmith and insert the Wizardry
disk. If two drives are available, insert the Wizardry disk in
drive 2.
3) Use the "Automatic Error Retry" option on all tracks listed.
4) Copy tracks 0-22 unsynchronized.
5) If all is well (it should be), set parmameter 36 to 01.
6) Copy tracks OA-OE synchronized.

Step 7: Adjusting The Drive Speed

The Wizardry program checks for "preservation of nibble
count. " Unfortunately, when this kind of protection scheme is
used the drive speed must be absolutely perfect to make a
successful copy. Locksmith will do the normal analysis, but
when it reaches the point of writing and verifying, some strange
digits will be printed on the screen such as >0010 or <OOOA.
These figures indicate the speed difference between the original
recording drive and the drive you are using. If the sign is ">",
the drive is running slow. If "<" appears, it's running fast. At
this point, there are three options available. Read each before

Book of Softkeys Vol. I 152

deciding which is appropriate:

A) Do nothing. The Apple will try to compensate the speed.
Judging by the difference in drive speed, this can take anywhere
from three minutes to three weeks. This is recommended only
for perfectly adjusted drives.

B) Use the "<" and ">" keys to correct the drive speed. To
do this, look at the sign in front of the digits and hit that key.
For example, if >OOIA appears on screen, hit the ">" (shifting
is unnecessary). When this key is hit, the bell will ring. Press
the space bar to continue. The longer you let the bell ring, the
more the speed will be adjusted. Repeat this as needed. When
the speed is adjusted to within 0006 (>0006 - <0006), leave it
alone and let the drive try to compensate the remainder by itself.

NOTE: For option C, use a blank disk.
C) If the drive speed is substantially off, step B is impractical.

The speed will have to be compensated by adjusting a screw
inside the drive with a small Phillips screwdriver and a small
standard screwdriver. Follow this procedure

Tum the Apple off.
Unscrew the four Phillips-head screws which hold the drive

cover in place.
Slide the cover to the rear and off of the drive so that the tiny

screw which controls drive speed can be located. (It's not on the
circuit board - leave all screws on the circuit board alone.) It is
by the rear cover, mounted horizontally with its head to the right
side of the drive. This screw will be used later to correct the
drive speed.

Tum the Apple on and boot Locksmith 4.1.
Set parameter 36 to 01.
Copy tracks OA-OE synchronized.
When the digits appear on screen showing how far off the

drive speed is, use the standard screwdriver to tum the small
screw which controls speed. Tum the screw in the direction that
was indicated by the ">" or "<": right increases the speed, left
slows it down.

When the speed comes within 0009 (>0009-<0009), use the
" <" and ">" keys for fine adjustment.

Replace the drive cover.

Back To The Original Procedure

8) When the digits indicate >0000, the track has been copied.
The user will be prompted to insert the source disk (one drive)
or, if two drives are being used, jump to the source drive.

153 Book of Softkeys Vol. I

Assure that >0000 is printed on screen before reading the next
track. Sometimes the program "gets tired" of trying to
synchronize the drive speed (some drives only). If >0000 isn't
printed, the copy probably didn't work.
9) Finish copying the boot side, then put a write-protect tab on
the copied disk.
10) Place the copy in the drive and boot it.

If you see that pretty picture and the menu, congratulations!
You're now half done.

If the copy wasn't successful, repeat the ten steps. It works
about three times out of five for me. The protection scheme is a
tough one.

Copying The Scenario Side

The scenario side of Wizardry can be copied using the same
basic procedure that was used for the boot side. Repeat Steps
1-10, but leave out Step 9 since the program writes to the disk
as it goes along.

Don't be discouraged if it doesn't work the first time. This
side is even tougher to copy than the boot side. On my attempts
it worked about two out of nine times.

Enjoy the added peace of mind you have with a backup copy
of Wizardry. I only use my backup; the original sits in a dark,
dry place, safe from magnetic fields.

Book of Softkeys Vol. I 154

~Wizardry

Sir-Tech

Requirements:
COPYA (optional)
Locksmith
Wizardry

By Greg Burns

Looking through your last Hardcore issues, I saw on the
parameter exchange how to backup Wizardry by Sir Tech. While
the program uses state-of-the-art copy protection, there is a much
simpler way of making backups and it works every time, not just
3 out of 5 times.

First, copy tracks 0-22 unsync with auto retry. Or if, like me,
you hate using Locksmith because it is so slow, you can use
COPYA to copy the disk. After copying the disk with Locksmith
or COPYA, go back to Locksmith and copy track OA-OE SYNC
and change these to parameters 46=96, 21 =02.

That's it, and have fun.

155 Book of Softkeys Vol. I

~Zork I
Infocom, Inc.

Requirements:
Apple][
At least one disk drive
A copy of Zork
COPYA
A disk editing program such as DiskEdit

By Bobby

This copy method works on Zork versions I, II, and III. It also
works for Deadline and Witness.

Zork is a challenging game and although it lacks a hi-res
picture (it is all text), is one of the best adventure games I have
ever attempted.

While trying to solve some of the puzzles, I started to do a
little APT and found that Zork was on a protected disk. I set it
aside until I had the time to examine the program but then a
reader called to explain a method to unprotect Zork. Believe it
or not, the COPYA program on the system master disk can be
used.

How To Copy Zork

1) Insert the DOS master disk and run COPYA.

RUN COPYA

2) Once loaded, stop the program

BC

3) Delete line 70 so the machine language subroutine will not
reload.

DEL 70

4) Enter the Monitor and make the following changes:

CALL -151 Enter monitor
B925:18 60 Ignore end of data marks
B988:1860 Ignore end of address marks
BE48:18 Ignore errors
B8FE:OO Ignore 3rd byte of start of data mark
3DOG Exit to basic

5) Restart the copy program

RUN

Book of Softkeys Vol. I 156

6) Follow the prompts to make a copy.
7) After the disk is copied, use a disk editing program to read
track 0, sector 2 and make these changes:

Byte From To

5D
.FE

Be
E7

AD
00

You now have an unprotected disk that can be copied with
various copy programs, including COpyA.

The disk cannot be catalogued, nor may separate files be run;
it must be booted to play the game. But Zork is now open to
inspection by those wishing to participate in the rapidly growing
hobby of APT.

157 Book of Softkeys Vol. I

	01-cover.tif
	02-editorial.tif
	03-TOC 1.tif
	04-TOC 2.tif
	page-001.tif
	page-002.tif
	page-003.tif
	page-004.tif
	page-005.tif
	page-006.tif
	page-007.tif
	page-008.tif
	page-009.tif
	page-010.tif
	page-011.tif
	page-012.tif
	page-013.tif
	page-014.tif
	page-015.tif
	page-016.tif
	page-017.tif
	page-018.tif
	page-019.tif
	page-020.tif
	page-021.tif
	page-022.tif
	page-023.tif
	page-024.tif
	page-025.tif
	page-026.tif
	page-027.tif
	page-028.tif
	page-029.tif
	page-030.tif
	page-031.tif
	page-032.tif
	page-033.tif
	page-034.tif
	page-035.tif
	page-036.tif
	page-037.tif
	page-038.tif
	page-039.tif
	page-040.tif
	page-041.tif
	page-042.tif
	page-043.tif
	page-044.tif
	page-045.tif
	page-046.tif
	page-047.tif
	page-048.tif
	page-049.tif
	page-050.tif
	page-051.tif
	page-052.tif
	page-053.tif
	page-054.tif
	page-055.tif
	page-056.tif
	page-057.tif
	page-058.tif
	page-059.tif
	page-060.tif
	page-061.tif
	page-062.tif
	page-063.tif
	page-064.tif
	page-065.tif
	page-066.tif
	page-067.tif
	page-068.tif
	page-069.tif
	page-070.tif
	page-071.tif
	page-072.tif
	page-073.tif
	page-074.tif
	page-075.tif
	page-076.tif
	page-077.tif
	page-078.tif
	page-079.tif
	page-080.tif
	page-081.tif
	page-082.tif
	page-083.tif
	page-084.tif
	page-085.tif
	page-086.tif
	page-087.tif
	page-088.tif
	page-089.tif
	page-090.tif
	page-091.tif
	page-092.tif
	page-093.tif
	page-094.tif
	page-095.tif
	page-096.tif
	page-097.tif
	page-098.tif
	page-099.tif
	page-099-errara.tif
	page-100.tif
	page-101.tif
	page-102.tif
	page-103.tif
	page-104.tif
	page-105.tif
	page-106.tif
	page-107.tif
	page-108.tif
	page-109.tif
	page-110.tif
	page-111.tif
	page-112.tif
	page-113.tif
	page-114.tif
	page-115.tif
	page-116.tif
	page-117.tif
	page-118.tif
	page-119.tif
	page-120.tif
	page-121.tif
	page-122.tif
	page-123.tif
	page-124.tif
	page-125.tif
	page-126.tif
	page-127.tif
	page-128.tif
	page-129.tif
	page-130.tif
	page-131.tif
	page-132.tif
	page-133.tif
	page-134.tif
	page-135.tif
	page-136.tif
	page-137.tif
	page-138.tif
	page-139.tif
	page-140.tif
	page-141.tif
	page-142.tif
	page-143.tif
	page-144.tif
	page-145.tif
	page-146.tif
	page-147.tif
	page-148.tif
	page-149.tif
	page-150.tif
	page-151.tif
	page-152.tif
	page-153.tif
	page-154.tif
	page-155.tif
	page-156.tif
	page-157.tif

