

SuperSprite
by

Synetix

Copyright (c) 1983, Synetix, Inc.
15050 N.E. 95th St.
Redmond, Wa 98052

Synetix provides this manual "as is" without warranty of any
kind, either express or implied including, but not limited to the
implied merchantability and fitness for a particular purpose.
Synetix may make improvements and or changes in the product(s)
and or the program(s) described in this manual at any time and
without notice.

Apple, Apple][, Apple //e, Apple DOS, and Applesoft are regis-
tered trademarks of Apple Computer, Inc., Cupertino, Ca.

StarSprite, and Ampersprite are registered trademarks of Avant-
Garde Creations, Inc., Eugene, Or.

Echo, Echo][, Textalker, and Speakeasy are registered trademarks
of Street Electronics, Carpenteria, Ca.

Preface

This manual is organized into four sub-manuals, each covering
certain aspects of the SuperSprite or its supporting software.

The first portion of the manual is the Installation and Technical
Keference section. Please read this section carefully before and
during installation of the SuperSprite.

This portion of the manual contains:

o Precautions to observe before installing the SuperSprite
o Directions on installation of the SuperSprite.

o Directions on testing the SuperSprite.

o Troubleshooting tips.

o Advanced programming information.

The second portion of the manual describes the StarSprite I
system. You should be sitting at your computer when you read
this document. It will lead you through the Ampersprite lan—
guage, and the rest of the utilities that comprise the
StarSprite I system.

The third portion of the manual concerns the Echo][Software.
This document 1s a tutorial on making your SuperSprite speak.
The information necessary for advanced programming applications
with the speech chip is also contained in this portion of the
manual.

The last portion of the manual describes Echo Words, a vocabulary
of over 700 natural sounding words for the Echo][portion of the
SuperSprite. Both a tutorial, and technical information for the
advanced programmer are contained in this section.

THIS PAGE LEFT INTENTIONALLY BLANK

—

e e o o .
SWN = O

MMM

e o .
WD =O

LWWww

R Ol
o o o o o o o o o o .
N - O WN = O

Luunuiun; Ltk

oNOTUL P WND—O

TABLE OF CONTENTS

BEFORE YOU BEGIN

Introducing The SuperSprite

What This Manual Covers

A Quick Procedure To Get Started
Warranty Information

GETTING STARTED

What Is Included With The SuperSprite
What You Will Need

Setting Up Your Apple Computer
Handling Diskettes

Making Backup Copies

SUPERSPRITE FEATURES
Graphics Capabilities
Sound Capabilities
Speech Capabilities

INSTALLING THE SUPERSPRITE
Handling Precautions
How To Install The SuperSprite

CHECKOUT TEST
Starting The Test
The Checkout Test Menu

Test 1: Overlay Test

Test 2: Horizontal Alignment Test
Test 3: Video RAM WR/RD Verification
Test 4: 1Interrupt Test

Test 5: Sound Test

Test 6: Speech Test

HAVING TROUBLE?

TECHNICAL REFERENCE GUIDE

Slot Position

Addressing

Interrupts

Graphics Circuitry Description
Sound Circuitry Description
Speech Circuitry Description

THIS PAGE LEFT INTENTIONALLY BLANK

Before You Begin

1.0 BEFORE YOU BEGIN
1.1 Introducing The SuperSprite

Congratulations, and thank you for buying the SuperSprite. We
feel that it is the best product of its kind on the market, and
we are about to prove it to you!

The SuperSprite is a peripheral card for arcade style games,
educational applications, and many other uses. It simultaneously
synchronizes:

o conventional Apple video (for example, graphics)

o animated sprite graphics (sprites are large programmable
characters that move independently on the screen)

o sound effects

o synthesized speech (using the Echo II speech synthesis cir-
cuitry and software)

The SuperSprite comes with a new language called Ampersprite that
transforms standard Applesoft into a language that lets you
program sound effects and musical chords with simple commands.
Using Ampersprite, you can:

[design sprites of various sizes, shapes, and colors
o sequence their movement
o program sound

Installation and Technical Reference -- 1

Before You Begin

1.2 What This Manual Covers

So you know where to find information in this manual, read this
brief summary of each section:

o Section 1 introduces SuperSprite and this manual, including
warranty information and a quick "get started" procedure for
experienced Apple users.

o In Section 2, everyone should read about unpacking the
SuperSprite. For novices, the section includes an introduc-
tion to Apple basics (Sections 2.3, 2.4, and 2.5).

o Section 3 discusses SuperSprite features, including graph-
iecs, sound, and speech.

o Section 4 tells how to install the SuperSprite. Be sure to
follow the handling precautions detailed there.

o After you have installed the SuperSprite, perform the check-
out test covered in Section 5.

o In the unlikely event that you have trouble, Section 6 helps
you pinpoint the cause and correct the problem.

) Section 7 is a reference guide for those interested in the
advanced programming of the SuperSprite.

1.3 A Quick Procedure To Get Started

Whether you are a novice or a seasoned Apple user, we have made
this manual convenient for you. If you are a new Apple user, we
recommend that you work through the entire manual., However,
experienced users can follow this quick procedure to get started:
1. Unpack the SuperSprite.

2. Complete and mail the warranty card.

3. Read Section 3 to learn all the SuperSprite's features.

4., Read the installation directions in Section 4.3.

5. Run the checkout test in Section 5.

Installation and Technical Reference -- 2

Before You Begin

1.4 Warranty Information

Please fill out your warranty card and send it in immediately.
The warranty registers you for:

o software updates

o manufacturer support

o documentation updates

o additional product information

Installation and Technical Reference -- 3

Getting Started

2.0 GETTING STARTED

2.1 What Is Included With The SuperSprite

Your SuperSprite Installation Kit should include these items:

o the SuperSprite printed circuit board

o a monitor cable

o a speaker

o this_SuperSprite Installation and Technical Reference Manual

o StarSprite I Manual

o StarSprite I system disk, double-sided

o StarSprite I Demonstration disk/Checkout Software (double-
sided)

o Echo][Software/Echo][Words (double-sided)

o warranty card

Please check your installation kit carefully for all these items.
If anything is missing, please call Synetix Customer Service at
(800) 426-7412.

Installation and Technical Reference -- 4

Getting Started

2.2 What You Will Need
To use the SuperSprite you will need:

- an Apple][, Apple][Plus, or Apple //e (Revision B mother-
board) computer with 48K minimum memory. If you have an
Apple //e and do not know whether it is Revision A or B,
please contact your Apple dealer.

Note: Some of the Echo II software requires 64K of
memory to work properly.

- one or more disk drives, with controller cards set up to
read l6-sector "floppy" diskettes

- Disk Operating System (DOS) 3.3

- a 75-ohm composite video monitor and connecting cable, or an
ordinary home television set with a radio-frequency (RF)
modulator

Note: If you are using a television set, your Apple
dealer can provide you with an RF modulator and
show you how to connect 1t. Should you decide to
buy an RF modulator, experience has shown that
more expensive modulators produce a better pic-
ture.

- Applesoft in RAM or ROM

- an external amplifier, such as a stereo (this is optional)

Installation and Technical Reference -- 5

Getting Started

2.3 Setting Up Your Apple Computer

If you have just unpacked your Apple computer, here is how to set
it up to use the SuperSprite.

1. Connect one end of the computer's power cord to the power
connector at the left rear of the computer, and plug the
other end into a grounded (3-prong) power outlet.

2. Install the disk drive(s) by following the instructions in
Chapter 2 of the Apple Disk Operating System (DOS) Manual
that came with the disk drives. Or follow the instructions
provided by the manufacturer.

After completing these installation steps, you are ready to use
the SuperSprite.

Installation and Technical Reference -- 6

Getting Started

2.4 Handling Diskettes

With one or more disk drives, your Apple can store and retrieve
information on 5 1/4-inch "floppy"” diskettes made of flexible
plastic. This flexibility distinguishes them from harder "rigid"
disks. Each diskette is a mass-storage medium that can hold 143
kilobytes (143K) of information.

Diskettes are a very convenient way of storing information, but
they have to be handled with respect. Each diskette comes sealed
in its own black jacket. However, they still are sensitive to
heat, dust, smoke, scratches, fingerprints, and magnetic fields.
When handling disks, follow these precautions:

o Never take a diskette out of its jacket.

[Never bend it (much less fold, spindle, staple, or otherwise
mutilate!).

o Never touch its surface through any of the holes in the
jacket.

[Once the label is attached to the diskette, use only a felt~-
tip pen to write on the diskette label--and do not press too
Hard!

Installation and Technical Reference -- 7

Getting Started

2.5 Making Backup Copies

It is important to make backup copies of your StarSprite I system
disk, demonstration disk, and Natural Speech/Checkout Test soft-
ware disk. Be sure to copy all six sides. If you do not know
how to make backup copies, see your Apple Disk Operating System
(DOS) Manual for instructions.

Installation and Technical Reference -- 8

SuperSprite Features

3.0 SUPERSPRITE FEATURES

3.1 Graphics Capabilities

The SuperSprite uses the Texas Instruments TMS9918A Video Display
Processor (VDP), which lets you create, display, and manipulate
sprites of various sizes, shapes, and colors. You can program up
to 32 different sprites and coordinate their movement into fast
and smooth animation.

You can choose sixteen standard colors (including black and
transparent) for sprites or patterns. Additional colors may be
created by mixing two or more standard colors.

Sprites are far easler to define and manipulate than conventional
high-resolution graphics images. They move independently of the
background. With single commands, you can change these sprite
attributes:

o color

o horizontal (X) position on the screen
o vertical (Y) position on the screen

o resolution (number of pixels)

o magnification (1l:1 or 2:1)

Installation and Technical Reference -- 9

SuperSprite Features

3.2 Sound Capabilities

The SuperSprite uses the General Instruments AY-3-8912 Program-
mable Sound Generator to produce two types of sound: tones and
white noise. You can modify the sound to produce a variety of
sound effects and musical tones.

The sound generator may be programmed to activate the sound
effects with a minimal amount of processor time. This makes the
effects happen smoothly and quickly.

Furthermore, with the programmable envelope generator that is
part of the sound generator, you can change the amplitude of the
sound wave over time. This results in effects such as piano-like
tones and explosions that fade in volume.

To create and modify sounds, choose any of 16 programmable fil-
ters, which are similar to a filter on a stereo. The sound
generator has three types of filters:

o The high-pass filters eliminate tones below a given fre-
quency, producing brighter sound quality.

o The low-pass filters eliminate tones above a given fre-
quency, producing a softer tone.

o The band-pass filters eliminate tones above and below a

given frequency range, producing a pure tone centered
around the given frequency.

Installation and Technical Reference -- 10

SuperSprite Features

3.3 Speech Capabilities

On the SuperSprite, the Texas Instruments TMS5220 speech chip
uses the Echo II Speech Synthesizer to generate two basic forms
of speech:

o natural sounding, or digitized, speech (often called fixed
speech)
o robotic, or phoneme-generated, speech

Natural or fixed speech may be generated from a vocabulary of
more than 700 words, which are supplied with the SuperSprite.
This type of speech sounds almost 1like a human voice.

Custom—-encoded vocabularies may be ordered to suit your indivi-
dual needs.

Phoneme-generated speech sounds more robotic, but has the flexi-
bility of being able to say virtually anything. A text—-to-speech
program supplied with the SuperSprite converts the text printed
by an ordinary Applesoft PRINT statement to speech (you can even
list your programs out loud!).

Installation and Technical Reference -- 11

Installing The SuperSprite

4.0 INSTALLING THE SUPERSPRITE

4.1 Handling Precautions

This section tells how to install your SuperSprite. Before you
do, please read the following precautions carefully. You must
understand them before you handle the SuperSprite.

The SuperSprite is sensitive to static electricity. To ensure a
long service life, observe these precautions:

1. Before handling the SuperSprite, always ground yourself by
touching the power supply case of your Apple or a large
metal object. This is especially important in carpeted
areas.

2. When the SuperSprite is out of your computer, always wrap
it in its protective anti-static envelope..

Warning: Always turn the computer's power off before you insert
or remove your SuperSprite from your Apple. Failure to
do so voids the warranty and could severely damage your
SuperSprite, your Apple, or both.

Juastallation and Technical Reference -- 12

Installing The SuperSprite

4.2 How to Imstall the SuperSprite

Please refer to Figure 1 for the locations of the cable jacks and
adjustment controls.

Note: When connecting monitor cables to the SuperSprite,
support the circuit side of the board with the palm of
one hand. Then firmly insert the cables with a twist-
ing motion into the cable jacks. Never rock the cable
back and forth into the cable jack, or you may damage
the SuperSprite.

Before you can install the SuperSprite, you must move your tele-
vision or monitor off to one side of your Apple. Then remove the
Apple's top cover for access to the motherboard, Now you are
ready to install the SuperSprite.

1. Connect the monitor and speaker cables to the SuperSprite:

a. Connect one end of the video monitor cable to the
SuperSprite video in jack.

b. If you are using an external amplifier, such as a
stereo, connect the pre-amp output cable to the pre—amp
output connector on the SuperSprite.

[Bring the speaker cable through the rear panel, and
connect it to the SuperSprite speaker jack.

d. Connect the monitor or television to the SuperSprite:

If you are using a monitor, connect the Apple Monitor
cable to the monitor jack on the SuperSprite.

Installation and Technical Reference -- 13

Installing The SuperSprite

SuperSprite
Location of Parts

Volume Control Horizontal Alignment Color Lock
Control Control

Molex Connector

Feed Through

Video In

Video Out TMS5220

External GI AY-3-8912

Amplifier
Output

PoOoRHOOWBRIXA

Speaker Jack
Gold Edge Connector

Figure 1. SuperSprite Location of Parts

Installation and Technical Reference -- 14

Installing The SuperSprite

If you are using a television with anm RF modulator,
connect the RF modulator molex conmector to the
SuperSprite so that the black wire is closest to the
bottom (connector edge) of the board.

Warning: Make sure that the RF modulator molex connector is
properly connected with the black wire toward the BLK
marking on the SuperSprite board. Connecting the RF
modulator incorrectly may damage the board and the RF
modulator.

2. Now install the SuperSprite in your Apple:

a, Guide the monitor cables behind the SuperSprite and out
the back of the Apple.

b. Carefully insert the SuperSprite into slot 7, which is
the right-most slot on the Apple motherboard. To fully
insert the board, you may have to gently rock the board
as you press it into the slot.

Note: Be careful not to bend or break any protruding
components along the top edge of the SuperSprite.

3. Connect the monitor cables to your Apple's rear panel and
your monitor:

a. Plug the cable from the SuperSprite video out jack
into the video in jack of your monitor.

b. Plug the cable from the SuperSprite video in jack into
the video out jack of your Apple.

Note: Make sure that all the cables are securely connected in
the proper location at both ends before turning the
power on.

4, Before turning the power to your Apple on, please make
certain that you have replaced the cover, and have secured
it in position. If you should need to remove the cover from
your Apple, make absolutely certain that the power is off,
This ensures that incidental contact between the SuperSprite
and the cover of the Apple will not cause any problems.

Installation and Technical Reference -- 15

Checkout Test

5.0 CHECKOUT TEST

5.1 Starting The Test

Once you have all the necessary equipment installed and connected
properly, you are ready to start the Checkout Test. Follow this
procedure carefully. Then, if your Apple is not equipped with
the Autostart ROM feature, you will have to do a few extra steps.

To start the Checkout Test:

1. Turn on your video monitor.

2. Open the door to the main disk drive. (The main drive is
drive 1, in the highest-numbered peripheral slot containing
a disk controller card. By convention, this is slot 6.)

3. Carefully insert your Natural Speech/Checkout Test software

disk in the disk drive:

a. Hold the diskette with your thumb on the label--the
label reading CHECKOUT DISK should be facing up.

b. Push it gently into the disk drive as far as it will
g0.

4. Gently close the disk drive door.

5. Turn on your Apple computer by pressing the power switch.
This rocker switch is located on the ©back of the computer,
near the left side.

If your Apple is equipped with the Autostart ROM feature, the
computer will beep, the red light labeled IN USE on the front of
the disk drive will come on, and the disk drive will start whir-
ring and chattering. (Don't be concerned by these noises --
they are perfectly normal.) After 5 to 10 seconds, the IN USE
light will go off, and the noises will subside. You are ready to
continue to Section 5.2.

WARNING: IF THE LIGHT DOES NOT COME ON AND THE APPLE DOES NOT
BEEP, TURN OFF THE APPLE IMMEDIATELY!!

Installation and Technical Reference -- 16

Checkout Test

If youi Apple does NOT have the Autostart ROM feature, it simply
beeps, then displays an asterisk (*) near the bottom of the
screen, followed by a blinking white box called the cursor. To
finish starting up the Checkout Test, you must:

1. Press the RESET key.

2 Type the number of the peripheral slot to which the main
disk drive is connected (usually 6).

3. Type the combination keystroke, CTRL-P. (Hold down the CTRL
key while typing the letter P.)

4, Press RETURN.

The disk drive should then start up, as described above. Now you
are ready to continue to Section 5.2.

WARNING: IF THE LIGHT DOES NOT COME ON AND THE APPLE DOES NOT
BEEP, TURN OFF THE APPLE IMMEDIATELY!!

Installation and Technical Reference -- 17

Checkout Test

5.2 The Checkout Test Menu
If all has gone well, your screen should look like this:
PLEASE SELECT A TEST:

1. Overlay Test

2. Horizontal Alignment Test

3., Video RAM WR/RD Verification Test
4, Interrupt Test

5. Sound Test

6. Speech Test

7. Exit Test Program

DURING ANY TEST PRESS SPACE BAR TO CONTINUE
ENTER A NUMBER:

This is a "menu" screen from which you may select what you want
to do. The first six items on this menu are tests., The last
selection ends the test program.

Select each menu item in the order listed. To select a test,
type the number of the test you want to do, then press the RETURN
key on the Apple. When you finish a particular test, press the
space bar to continue. You'll automatically return to the menu
screen Sso you can select another test.

Note: This section mentions several adjustment controls,
which are small adjustment screws on the SuperSprite.
For the exact location of each control, please refer to
Figure 1. We recommend using a small plastic screw-
driver for all adjustments.

Installation and Technical Reference -- 18

Checkout Test

5.3 Test 1l: Overlay Test

Before beginning this test, adjust the tint and color controls on
your television or monitor to their middle positions.

This test asks you to fine-tune the color bar pattern which
appears on your screen:

Adjust the tint, color, and brightness (sometimes called black
level) controls on your television or monitor until the fourth
color bar from the left is dark green and the brightness is
comfortable for you.

If the colors are accurate and the pieture is locked, press the
space bar to continue with the test menu.

If you cannot properly adjust the color, or if the picture drifts
to the right or left across the screen, adjust the color lock
control (which is the second adjustment control from the back of
the board) until the picture stops moving and the fourth color
bar is as close to dark green as possible. '

Press the space bar to return to the test menu.

5.4 Test 2: Horizontal Alignment Test

This test asks you to adjust the horizontal alignment control
which is the control closest to the back of the board. Usually,
this will not be necessary. However, if your picture is not
centered on the screen, follow this procedure:

1, Slowly adjust the horizontal alignment control until the
screen is centered horizontally. During this test, the
picture normally will jump around slightly on the screen,
and the speaker will buzz.

2. When the picture is centered, press the space bar to return
to the test menu.

5.5 Test 3: Video RAM WR/RD Verification Test

This test checks all video RAM for integrity. After you select
Test 3:

o The display will flash blue and yellow (all video RAM is
filled with test patterns).

o Several random sprites will appear on the display.
If the screen displays the message, "ALL VIDEO RAM OK," press the

space bar to return to the test menu.

Installation and Technical Reference -- 19

Checkout Test

However, if the test detects a suspect chip on the SuperSprite,
the display will tell you to:

1. Turn off the power to the Apple.

2. Reinstall the SuperSprite.

3. Repeat this test.

4, If the problem continues, call Synetix Customer Service at

(800) 426-7412.

5.6 Test 4: Interrupt Test

The SuperSprite generates IRQ interrupts (maskable interrupt
requests) at a rate of 60 Hz. These interrupts correspond to the
end of a video frame. Many programs will not use this feature.
But if you have one that does, you can run this test to make sure
the SuperSprite is generating the interrupts as expected.

The sound tone and changes in the backdrop color are all handled
on an interrupt-driven basis. Therefore, during the test, four
sprites move rapidly on the screen as a tone sounds in succes-
sively lower pitches and the backdrop color changes.

However, if the interrupts are not functioning properly, the tone
may not sound or change or the backdrop color may remain trans-
parent. You cannot fix this problem. Instead, call Synetix
Customer Service at (800) 426-7412.

Press the space bar to return to the test menu.

5.7 Test 5: Sound Test

The Sound Test checks for proper operation of the noise and tone
generators, the 16 programmable filters, and the envelope genera-
tor. You can adjust the sound only during the tone test--all
other adjustments must be done at the factory.

1. Noise Test. During the noise test, listen for a hissing
sound.

2. Tone Test. A tone (decreasing in pitch) should sound each
time you see the words, '"Tone Generator A," "Tone Genera-
tor B," and "Tone Generator C," on the screen. As needed,

slowly adjust the volume level control, which is the
control closest to the keyboard.

Installation and Technical Reference -- 20

Checkout Test

3. Filter Test. A tone should sound each time a number appears
on the screen. If you do not hear a tone for any given
filter number, check the volume control of your television
or monitor, then try this test again.

4. Envelope Test. During this test, listen for a decaying
tone.

If any test does not perform properly, please call Synetix Cus-
tomer Service at (800) 426-7412.

Press the space bar to return to the test menu.

5.8 Test 6: Speech Test

During this test the computer will talk to you and tell you what
to do.

If you do not hear the computer's voice, check the volume level
control on your SuperSprite, and repeat this test. If this

problem persists, call Synetix Customer Service at (800) 426-
7412.

Press the space bar to return to the test menu.

5.9 End of Test

When you select choice 7 on the test menu, the "]" prompt should
appear. This prompt signals the end of the Checkout Test.

Installation and Technical Reference -- 21

Having Trouble?

6.0 HAVING TROUBLE?

If you have a problem getting the SuperSprite to work with your

Apple, use this table to figure out what to do.

persists, check your Apple.

PROBLEM

Power indicator
does not light,

Apple does not beep

when you turn on
the power.

Horizontal drift

Apple video is
not centered on
the screen

The speaker
buzzes.

Installation and Technical Reference

PROBABLE CAUSE

Molex connector
to RF modulator
upside down.

SuperSprite 1s
not locked to
Apple video.

The horizontal
alignment control
is out of adjust-
ment.

Speaker cable is
not firmly con-
nected.

If any problem

WHAT TO DO

1.

Power down
immediately!!

Check the RF
modulator con-—
nection, and
correct if needed.

Remove the Super-
Sprite, and check
the installation
instructions in
Section 4.0.

Press CTRL and
RESET at the same
time.

Adjust the color
lock control slow-
ly and carefully
until the fourth
color bar from
the left is dark
green.

Run the test
software.

Select the Hori=-
zontal Alignment
Test, and follow
the instructions
in Section 5.2.

Reconnect the
speaker cable.

- 22

PROBLEM

You hear no sound.

You see no video.

Installation and Technical Reference

PROBABLE CAUSE

The volume is too
low.

The cables are
not firmly con-
nected, or they
are connected to
the wrong cable
jack.

Having Trouble?

WHAT TO DO

Increase the vol-
ume control on
your monitor

or television.

Check the cable
connections bet-
ween the Super-
Sprite and the
Apple; correct
if needed.

Increase the
brightness and
contrast cont-
rols on your
television or
monitor.

If you still
have no video,
power down
immediately!

-- 23

Technical Reference Guide

7.0 TECHNICAL REFERENCE GUIDE
7.1 SuperSprite Slot Position

The SuperSprite can only work in the Apple motherboard's slot 7.
This is because the composite sync (pin 19) and 3.579 MHz color
reference (pin 35) appear only in slot 7 of the Apple. These two
signals are necessary for proper operation of the video circuit-
ry.

Installation and Technical Reference -- 24

7.2

Addressing

Technical Reference Guide

Please refer to the following table for addressing in slot 7.

DECIMAL

49407
49406
49405
49404

49403
49402
49401
49400

49399
49398
49397
49396
49395
49394

49393
49392

HEX

$COFF
$COFE
$COFD
$COFC

$COFB
$COFA
$COF9
$COF8

$COF7
$COF6
$COFS5
$COF4
$COF3
$COF2

$COF1
$COFO

CHIP ADDRESSED

Sound
Sound
Sound
Sound

unused
unused
unused
unused

VDP

Video
Video
Video
Video

Speech

VDP
VDP

Table

Switch
Switch
Switch
Switch

FUNCTION

REGISTER WRITE OR
DATA READ
DATA WRITE
DATA WRITE

WRITE ONLY/FRAME RESET

MIX VDP/EXTERNAL VIDEO
APPLE ONLY OUT

APPLE VIDEO IN ON
APPLE VIDEO IN OFF

DATA WRITE/STATUS READ

REGISTER WRITE
VRAM READ/WRITE

1. Slot 7 Addressing

Installation and Technical Reference -- 25

Technical Reference Guide

7.3 Interrupts

The TMS9918A (VDP) generates interrupts at a rate of 60Hz. These
interrupts correspond with the end of each video frame. The
interrupt line on the VDP is tied to the IRQ line of the Apple
bus, which allows you to take advantage of maskable interrupts in
your programs.

You should use interrupts for these reasons:

o Interrupts happen on a regular basis. This allows certain
programming events to be timed, such as musical tone genera-
tion, sprite collision checking, or keyboard polling.

o Interrupts are generated at the end of a frame. This is
also when the status register of the VDP is read. For more
information on the status register, please see the Texas
Instrument TMS9918 manual.

To enable interrupts, follow these steps:

1. Enable VDP interrupts by setting bit 5 of register 1.
For example:

ENABLEY LDA OLDREGL ;KEEP A COPY OF REGISTERS IN APPLE RAM
ORA #$20 ;SET BIT 5 IF NOT ALREADY SET
LDY #$01 ;REGISTER 1
STA VREG ; STORE DATA
STY VREG ; STORE REGISTER NUMBER
RTS

2. Allocate the interrupt in the Apple. Under DOS 3.3, this is
done by setting the interrupt vector at location $3F4.

ALLOC LDA #<IRQHAND ;LSB OF YOUR INTERRUPT HANDLER ADDRESS
STA IRQVECT ;IRQ VECTOR AT $3F4
LDA #>IRQHAND ;MSB OF YOUR INTERRUPT HANDLER ADDRESS
STA IRQVECT+1

3. Set the "emable interrupts'" flag on the 6502.

ENABLE®G CLI ;ENABLE INTERRUPTS ON 6502

To write an interrupt handler, it is important that you follow
these steps:

1. Preserve the contents of the X and Y registers.

2. Read the VDP register location (acknowledge interrupt).

3. Perform interrupt processing.

4. Restore the contents of the X and Y registers.

5. Restore the contents of the accumulator from location $45.

Installation and Technical Reference -- 26

Technical Reference Guide

6. Return.

IRQHAND TXA sPRESERVE THE X REGISTER
PHA 3sON THE STACK
TYA sPRESERVE THE Y REGISTER
PHA 3sON THE STACK
LDA VREG sREAD THE VDP REGISTER
. some user processing
PLA sRESTORE THE
TAY 3sY REGISTER FROM THE STACK
PLA sRESTORE THE
TAX ;X REGISTER FROM THE STACK
LDA $45 ;RESTORE THE ACCUMULATOR
RTI

Please observe the following precaution: Interrupts must be mask-
ed on the 6502 before any reads or writes to video RAM or VDP
registers. Otherwise, interrupts may interfere with the syn-
chronization between the 6502 and the VDP.

Note: It is unnecessary to disable interrupts on the VDP.
TALKVDP SEI sMASK INTERRUPTS

: interaction with video RAM or registers

éLI sENABLE INTERRUPTS

Installation and Technical Reference -- 27

Technical Reference Guide

7.4 Graphics Circuitry Description

The Texas Instruments TMS9918A Video Display Processor (VDP) is
one of three important chips in the SuperSprite circuitry. As a
slave central processing unit, it is capable of generating color
composite graphics independent of the host processor. It has 16K
bytes of RAM dedicated solely to video generation. The video RAM
appears to be static to the Apple since the VDP handles all
refresh operations in the video RAM.

Installation and Technical Reference ~-- 28

Technical Reference Guide

7.5 Sound Circuitry Description

Sounds are generated by the General Instruments AY-3-8912 Pro-
grammable Sound Generator (PSG), which is the second of the three
SuperSprite circuitry chips. It uses three separately address-
able tone generators, each capable of producing tones in the 15
Hz to 63 KHz range with a 12-bit tone control resolution.

The amplitude (volume) or envelope shape for each tone generator
is independently controllable., There is also a tone source. The
three tones and noise source can be selected in any combination
using the register 7 mixer., The volume of each tone channel is
software selectable, using one of 16 programmable filters. You
may also select one of ten envelopes.

To select filters, follow these steps:

1. Add 64 to the contents of register 7. This is required only
the first time.

Note: If you don't add 64, the default is filter 15
selected.

2. Store a filter number into register l4. Refer to the Table
2 for the contents of register 14,

Installation and Technical Reference -- 29

Technical Reference Guide

FILTER NUMBER FILTER TYPE CORNER FREQUENCY
0 High Pass 400 Hz
1 Low Pass 400 Hz
2 Band Pass 400 Hz
3 No Filter 400 Hz
4 High Pass 800 Hz
5 Low Pass 800 Hz
6 Band Pass 800 Hz
7 No Filter 800 Hz
8 High Pass 1600 Hz
9 Low Pass 1600 Hz

10 Band Pass 1600 Hz
11 No Filter 1600 Hz
12 High Pass 3200 Hz
13 Low Pass 3200 Hz
14 Band Pass 3200 Hz
15 No Filter 3200 Hz

Table 2. Register 14 Contents

Installation and Technical Reference -- 30

Technical Reference Guide

To program the sound gemerator, follow these steps:

1.

2.

Note:

Store the desired register number (1 through 15) in $COFF
(49407).

Store aata to that register in $COFD (49405). The data is
then automatically routed to the preselected register.

Note: This step may be repeated for continued access to
the same register.

Data is stored to these locations by using the POKE
command from Applesoft, or any of the store commands
from machine language.

For example, to produce a tone you would store one of the
following registers in $COFF (49407), and store its contents
in $COFD (49405).

REGISTER CONTENTS RESULT
0 100 Fine-tune the tone
7 62 Tone A only (no filters)
8 15 Maximum volume on Tone A

Installation and Technical Reference ~-- 31

Technical Reference Guide

The registers on the sound generator function as follows:

REGISTER FUNCTION
0 Fine tune for channel A frequency
1 Coarse tune for channel A frequency
2 Fine tune for channel B frequency
3 Coarse tune for channel B frequency
4 Fine tune for channel C frequency
5 Coarse tune for channel C frequency
6 Sound period for noise generator
7 Mixer (0-63 disables filtering)
8 Volume for channel A
9 Volume for channel B
10 Volume for channel C
11 Envelope period fine tune
12 Envelope period coarse tune
13 Envelope shape
14 Filter number

Table 3. Sound Registers

The way tone period (pitch) is specified for a given channel is
by storing data to a register pair (for example, registers 1 and
2). These registers correspond to the fine-—-tune and coarse-tune
settings for the PSG.

To calculate the proper values for a particular register to
produce a given pitch, use the formula:

Tone Period = clock frequency / 16 X desired pitch
so, on the Apple, with a clock speed of 1.023 MHz:

Tone Period = 1,022,727 / 16 X desired pitch

L}

63,920.438 / desired pitch

Installation and Technical Reference —-- 32

Technical Reference Guide

So if you want to calculate the tone period for the A above
middle C, which has a pitch of 440 Hz, you would simply perform
the calculation:

63,920.438 / 440

Tone Period

145

]

This value is less than 255, and is specified by storing it in
the fine—-tune register, and storing a zero in the coarse-tune
register. As the desire pitch becomes lower, the coarse-tumne
register will have to be utilized. The values for the two regis-
ters may be calculated with the BASIC program:

10 TEXT : HOME : INPUT "WHAT IS THE DESIRED PITCH (IN HZ)? ";P
20 TP = INT(63920.438 / P)

30 CT TP - INT(TP/255) * 255

40 FT = TP - CT #* 255

50 PRINT "THE COARSE-TUNE TO PRODUCE A PITCH OF ";P;" IS: ";CT
60 PRINT "THE FINE-TUNE IS: “;FT

70 PRINT "THE OVERALL TONE PERIOD IS: ";TP

]

80 PRINT : INPUT "CALCULATE ANOTHER SET OF VALUES (Y/N)? ";A$
90 IF A$ = "Y" OR A$ = "y" THEN 10
100 END

The mixer register (register 7) determines whether tone, noise,
or both are enabled on a given channel. In addition, the mixer
register determines whether or not filtering will be enabled. The
following table gives the tone enable/disable settings:

Register 7 Value Channel Enabled

0 A,B,C
1 B,C

2 A,C

3 C

4 A,B

5 B

6 A

7 none

Table 4. Mixer Register Settings

Installation and Technical Reference -~ 33

Technical Reference Guide

To obtain the correct value for the mixer register, determine
which channels are to produce tones, which are to produce noise,
and whether or not filtering is desired. Use the following
formula to determine the correct value for the mixer:

Mixer Value = Tone Setting + Noise Setting X 8

If you intend to use filtering, simply add 64 to the value calcu-
lated above.

So, if you wish to produce an unfiltered tone on channel A only,
the tone setting is 6 and the noise setting is 7. Plugging these
values into the above formula yields 62 (if you want filtering
enabled, use 126). '

The volume (amplitude) control registers (8 through 10) accept
values between 0 and 15 inclusive. To specify full volume, store
a 15 in the appropriate register, and to shut off a channel,
store a 0 in the appropriate register.

A value of 16 specifies that volume will be controlled by the
envelope generator.

Registers 11 and 12 are the envelope period control registers.
Like the tone period registers, the envelope period control
registers are paired. You may calculate envelope period with the
following formula:

Envelope Frequency = Clock Frequency / 256 X Envelope Period

50,

Envelope Period = 3995.0273 / Envelope Frequency

(using the 1.023 MHz clock on the Apple)

For example, if you wished to produce a tone with a 300 Hz
envelope period, you would specify an envelope period of 13.

Register 13 specifies the envelope shape. Only the least signif-

icant four bits of the register are recognized, and the following
table briefly explains the various settings.

Installation and Technical Reference -- 34

Technical Reference Guide

Decimal Value Continue Attack Alternate Hold
0 no no XX XX
4 no yes R X XX
8 yes no no no
9 yes no no yes
10 yes no yes no
11) yes no yes yes
14 yes yes yes no
15 yes yes yes yes

Table 5. Programmable Envelopes
When hold is set on, it 1limits the envelope to one cycle, holding
the last count of the envelope counter (either high or low).

When alternate is set on, the envelope counter reverses count
direction after each cycle.

When attack is set on, the envelope counter counts up, and when
it is set off it counts down.

When continue is set on, the cycle pattern is as defined by the

hold setting, otherwise the generator will reset to zero after
one cycle, and hold at that count.

Installation and Technical Reference -- 35

Technical Reference Guide

7.6 Speech Circuitry Description

The Texas Instruments TMS 5220 speech processor is the third of
the three SuperSprite circuitry chips. It uses the Echo][
circuitry, which models the human vocal tract using Linear, K Pre-
dictive Coding (LPC). Instead of storing the actual speech
signal, only those parameters needed to describe each speech
sound are stored.

Installation and Technical Reference -- 36

Bibliography

The publications listed below may be of use to advanced program-
mers who are concerned with the timing constraints and theory of
operation of the various hardware devices used on the
SuperSprite.

Applesoft Reference Manual; Apple Computer, Inc., 1982,
Cupertino, Ca.

Apple][Owner's Manual; Apple Computer, Inc., 1982,

Cupertino, Ca.

Apple //e Owner's Manual; Apple Computer, Inc., 1982,
Cupertino, Ca.

Leventhal, Lance: 6502 Assembly Language Programming;
Osborne/McGraw-Hill, 1979, Berkeley, Ca.

TMS5220A Voice Synthesis Processor Data Manual; Texas
Instruments, Inc., 1982, Houston, Tx.

TMS9918A/9928A/9929A Video Display Processors; Texas
Instruments, Inc., 1982, Houston, Tx.

Programmable Sound Generator Data Manual; Microelectronics
Division, General Instrument Corporation, 1981, Hicksville, NY

Installation and Technical Referemnce -- 37

THIS PAGE LEFT INTENTIONALLY BLANK

StarSprite I

by

Don Fudge

Manual by: Don Fudge

Copyright 1983, Avant-Garde Creations, Inc.
ISBN: 930182-41-3 (book)
ISBN: 930182-42-1 (package)

THIS PAGE LEFT INTENTIONALLY BLANK

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

StarSprite I -

Purpose and Features of StarSprite
Adjustment and Alignment Program...
Speech on the SuperSpriteccccsccccss
An Introductionecccccccoccsscccscsas
Sample GameSccccoccccscccccccsccnscss
5.1. StarSprite Arcadecccscsocsccocoe

5.2, StarSprite Mazee.eeoooososcosscs
5.3. StarSprite Aliens & Asteroids.

I

Table

seocc0o0o0e000 e

scecsccescococs

eeocsoco e

EEEEEE

oo oce e

s e o000

Paint With SpriteScccccsccccscccccccccccscss

Sprite Making and Scene InspectioDeccccccaoco

Maze CreatiONDececcecccccccsscocccccccsscscssass

Character Typingeccococcsococeoocccoccosccsscs

Ampersprite TutorialS.cccecccccccccccassccccccsse
10.1. Graphics Tutorial Using Amperspritecccs..
10.2. Sound Effects Tutorial Using Ampersprite.
10.3. Ampersprite in an Educational Application.

Ampersprite - Introductioleccccccccscsssaccccas

11.1. Sprites and Sprite Tableso:...
Patterns and Pattern TableScccccoos
Colors and Color TableSccoceoocscococsse
VDP RegisterScececocceccoccscccccocsccocs
VDP RAM - a MemoTy Mapecceocecocsssocss
Ampersprite Memory Considerations..
Initializing the SuperSpritecccccss

Using Ampersprite for Graphics.cooe
18.1. AnimationNeseeccecccacsocsocscscs

Color ChangeSececocccoccccoccocsscccsocs

Pattern Changes and Using TeXteoooo

©ceoo0o0eeocs e

secosecoe 0o

ceo0ecocece

D A A I I AR A Y

secoecscasce

Magnification and SizZeccecoccceccccsscccsssccsos

Using Ampersprite for SoundScccccscccccscsssos
22.1. Programmable Sound Generator Registers.
22.2. Sound FiltersSceocoececcesoccscsoscssssoscse

of

Contents

~Nouvn

10
12

14

22
34
37
4
44
47

50
50

55

57

StarSprite I - Table of Contents

23.

24,

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

TONEeSeeccoccccosccsscsocssccsocscoscescscsssoscocsccasccsssassscsess

Multiple ToOneSeeccecccccccccccccccscsscsccsccsnssacasacsanscs
Sound EffectsSeeeeeesecccsscsscsosssscccsssssssssscccscs

24,1,

Sound Effects and Tones Togetherc.cceccccccsccccccccccscascae
Using Ampersprite for Sound and Graphicseieeeeseeess

25.1.

Error Handlingeececececeooooocscocsccoscsccccsascscsccscscncnncoccnsse

Interrupts and the Status Register..c.cccececccccccccss

Utilities for

28.1.

Methods of Designing SpriteSceeccccccccssscccses
28.1.1, Sprite Makingeeeeooososeoesocosoossossnse
28.1.2. Block, Hplot, and Vector ShapesS..seees

28.1.3., Pictures (Binary).esecesecssss
28.1.4, Plot A Spritecesceeccccencssns

Multiple Sprite ShapeSccecececcceccccccccscsccse

Apple

29.0.1. Multiple Sprite Inspection..

Graphics Versus VDP GraphicSeecececcecoe

Sprite Animation and Path Testingeeceeooooe

31.1.
31.2.

Sprite Animation Testingeeeeeccecessecs
Sprite Path Testingeeeeceeseecscoscsos

Making/Editing Files to Be Used By Games..

32.1.
32.2.
32.3.
32.4.,
32.5.
32.6.
32.7.

Sprite Attribute Table Creationcccccccccccccccscccsce

Files
34.1.
34.2.
34.3.

Maze CreatioNecsecccecccoccsosccscnccs
Maze Direction Table Creatoreseceeeos
Random Maze Path CreatoTeceesesceccssss

.

Path Creator (For StarSprite Arcade Game).....
Sequence Limit, and Step Table CreatioN.ccesee
Step TableSeececooscoosssoscscccososescsoccaccssnsse
Sprite Table CreatioONesccececssccsccossscscssccsns

on the Included DiskSccceecceccccccoccococccccccasse
StarSprite I - Side Accececccscccsccossscncsnns
StarSprite I — Side Bevsoecosoeosccscoscoscacnscs

Demonstration Disk (StarSprite I Side)...

.
.
.
.

Table File GeneratioNeececcccscccccscscccccscsce

69

70

72

73

75

77

106

108
108
110
112

StarSprite I - Purpose and Features

1. Purpose and Features of StarSprite I

The purpose of the StarSprite system is to provide software
support for the SuperSprite board that is easy enough for com-
puter novices, yet comprehensive enough for the expert.

User-friendliness has been the keyword all the way through the
software creation project. The software has been writtenm so any-
one, from a child new to computers to a graphics expert purchas-
ing SuperSprite and StarSprite to upgrade his or her Apple graph-—
ics and sound, will be able to relate to it, use it, and enjoy it
immediately.

I sometimes refer to the entire set of StarSprite software as the
StarSprite system. It includes StarSprite I (for beginners),
StarSprite II (for intermediate programmers), and StarSprite IIIL
(for more advanced programmers).

Even though StarSprite I will work for beginners, it's also a
must for all users of the SuperSprite board, regardless of past
computer experience, since it has all the basic utilities, inter-
face software, and routines to "get you going", as well as the
Ampersprite language -- an enhancement to Applesoft that gives
Applesoft programs the capability of accessing the various as-—
pects of the SuperSprite.

You should be able to see exactly why SuperSprite and Star-
Sprite I come together as one package: they are the two essen-
tial ingredients in the just-beginning revolution in Apple sound
and graphics,

The speed, smoothness, and ease of use of sprite graphics is what
microcomputer animation is all about.

StarSprite I - 1

StarSprite I - Adjustment and Alignment Program

2. Adjustment and Alignment Program

Included in your SuperSprite package is a Checkout Disk. This
disk contains all the programs necessary to adjust your
SuperSprite properly. Complete information on this disk is con-
tained in the Installation and Technical Reference Manual.

Warning: Do not attempt to make any adjustments other than those
described in the Installation and Technical Reference
Manual.

For your convenience, there is a short alignment and adjustment
program included on the StarSprite I demonstration diskette.

To run this program, boot the StarSprite Demonstration disk, and
the Alignment/Adjustment program will immediately be loaded in.

Note: Boot is the computer term for reading in the operating
system from disk. Don't let this term intimidate you
—=- all you have to do to boot a disk is place it in
drive 1 and turn the power to the Apple on.

If your SuperSprite has not been adjusted, or if it needs some
fine tuning, proceed as follows:

o Press the space bar to signify that you want to do some
adjusting now (pressing the RETURN key indicates that you do
not want to perform any adjustments).

o Read the entire screen. Your board must be in slot 7, and
your computer must have the top off with no monitor or
drives in the way, so you can reach the SuperSprite's ad-
justments.

o If you have not yet hooked up your SuperSprite, please do
that according to the instructions in the Installation and
Technical Reference manual before proceeding.

o The remainder of the adjustment program is self-prompting,
and will lead you through a simple test procedure. If you
want to perform a more extensive test, please refer to the
instructions in the Installation and Technical Reference
manual.

StarSprite I - 2

StarSprite I - Speech on the SuperSprite

3. Speech on the SuperSprite

Echo II hardware, software, and documentation is included in this
system. The documentation is included in the Echo II manual
(contained in the SuperSprite package).

The Echo II software is on Side 2 of the Demonstration Disk, and
the Echo II Natural Speech Vocabulary is on the reverse side of
the Checkout Disk.

To try out the Echo II, simply boot the Demonstration Disk (Side
2) as described above, and listen. Many features of Echo II

speech synthesis are demonstrated.

You'll find that making your SuperSprite board talk is simple and
enjoyable, whether with Textalker, Speakeasy or Natural Speech.

StarSprite I - 3

StarSprite I - An Introduction

4. An Introduction

A demonstration of the StarSprite I system is contained on side 1
of the Demonstration Disk.

You'll see video display processor (VDP) sprite graphics and
sprite animation. You'll hear 3-tone-harmony tunes and sound
effects -- the sound will happen concurrently with the graphics
but it will not slow down the graphics a bit. You'll see a
pastoral scene painted with our Sprite Painting program and saved
as a VDP graphics scene. You'll see VDP graphics and Apple
graphics together on the same screen.

You will see animation in which the entire screen contains large
moving objects at the same time a song is being played -- and all
this will be happening in Basic with the help of the Ampersprite
language.

For further examples of this kind, run option 6 from the main
program menu of the program disk (Side A) and choose option 1l in
the submenu, which takes you to a Graphics Tutorial Using Amper-
sprite.

The demo disk also contains a game, StarSprite Arcade, which
demonstrates machine language programs using SuperSprite. The
animation is a bit more (for the speed and smoothness involved)
than Apple machine language could handle.

Increasing the step value (how far the shape moves at a time) a
bit would keep the animation perfectly smooth but get the anima-
tion moving so fast you'd see all sprites as a blur of speed.

And yet, even with huge delay loops, and consequently slow anima-
tion, the sprites move perfectly smoothly and with no flicker or
jerk.

If you've done much programming, you'll realize the significance
of all this: the SuperSprite/StarSprite combination gives you a
great deal of power, and avoids the usual flicker, jerk, and
slowness problems inherent in normal Apple graphics.

StarSprite I - 4

StarSprite I - Sample Games

5. Sample Games

Before trying any of the games in the StarSprite system, it is
important that you have either game paddles, a joystick, or some
other game I/0 device plugged into the Apple.

Several other programs in StarSprite I have this requirement, and
will be so documented.

5.1. StarSprite Arcade

From the main program disk, side A, use option 1 to play a game
and then choose (1) StarSprite Arcade from the submenu. In the
game hit 1 to play game as it is.

Read the command screen and begin playing.
Pressing game button 1 will give you double magnification.

Typing any number from 0-9 will change the color attribute of the
sprite on the video plane whose number you hit. The color number
will go increase, so if you type 3 and video plane 3's sprite is
color 5 (light blue), it will change to 6 (dark red).

Typing "3" again will change the color to 7, then 8, and so on
until 15 (white) changes to O (transparent) and you cycle through
the colors again (see color number chart on the command card).

If you would like to alter the game's characteristics, you may do
so by using option (2) alter game characteristics by answering
questions. You will be able to make the game considerably differ-
ent, and you can even save the new version with option 4 of the
game menu.

If you create your own sprite tables and path tables with some of
the utilities in the StarSprite I system, you will be able to use
them in the game with option 3. You need no programming experi-
ence to use these utilities.

StarSprite I - 5

StarSprite I - Sample Games

5.2. StarSprite Maze

Note: Before selecting StarSprite Maze, make certain game
paddles, a joystick, or some other game I/O device is
plugged into your Apple.

From the main program disk, side A, use option 1 to play a game
and then choose (2) StarSprite Maze from the submenu.

In the game type 1 to play game as it is.

Even if you select the keyboard option, you must have a game I/0
device hooked up.

If you'd prefer not to have to hit the O button to eliminate
aliens you're on top of, or if you would like to change any other
game characteristic use (2) Alter Game Characteristics by answer-
ing questions.

Pressing <Return)> accepts the default value for any modifiable
option.

If you create your own sprite and maze and direction tables using
StarSprite I utilities, you'll be able to include them in your
games using option 3. And no programming experience whatever is
necessary.

StarSprite I - 6

StarSprite I - Sample Games

5.3. StarSprite Aliens & Asteroids

From the main program disk, side A, use option 1 to play a game
and then choose (3) StarSprite Aliens & Asteroids from the sub-
menu. In the game, type 1 to play game as it is.

Read the command screen to learn how to tell the Apple what you
want.

If you'd like to change game characteristics, use (2) Alter Game
Characteristics by Answering Questions.

Press <{Return> to accept default values. The eight different
explosion shapes (sprites) referred to in the questions are the
eight-sprite explosion sequence. An "explosion" causes these
sprites to be displayed consecutively on the screen. You get to
choose the colors of each sprite in the sequence.

The reason the "calculating" message flashes on the screen for a
few seconds is that a new random number table gets created each
time you play this game, so that no two games will ever be alike.
These random numbers control the directions and starting places
of each alien or asteroid.

You can put a background scene, in normal Apple graphics, behind
the game's screen while you play, using the main game menu option
3. SCENE6502 is the name of a sample scene on the program disk.

If you create your own sprite tables or step tables (for alien/
asteroid speeds) using StarSprite I utilities, you will be able
to include them in your games using option 3. And no programming
experience whatever is required.

StarSprite I - 7

Paint With Sprites

6. Paint With Sprites

Note: You must have game paddles, a joystick, or some other
game I/0 device installed for Sprite Painting. We have
found the Koala Pad (Koala Technologies, Inc.) to work
particularly well with the Sprite Painting program.

From the main menu choose option 2 for Paint With Sprites and
when the program loads read the command page.

The color palette that fills the right side of the screen has 16
squares, each one representing a VDP (Video display processor)
color. The first two colors are invisible since 0 is transparent
and 1 is black.

Choose option 1 in the main menu to Paint With Brushes.

Position the cursor over one of the colors with paddles or joy-
stick and press button 0.

Next, move over to the sprite brushes and choose one by position-
ing the cursor over it and pressing button O.

Now press <ESC> to switch to the painting screen.

Move the paddles or joystick and press button O to paint one
brush's worth, or hold down button 0O and move paddles or joy-
stick at varying rates of speed.

You can really get effects that resemble painting if you move
slowly and carefully and use a "dot-cluster" brush.

An example of sprite painting is contained on the StarSprite I
demonstration disk in the "butterfly" demo.

Once you've finished with a brush or color, press ESC to return
to the palette and choose new colors or brushes.

You may mix colors by painting close to or overlapping previously
painted areas.

If you would like to label your picture with text, select option
5 of the program menu (which you get to by hitting Q for quit in
either the painting or the palette routine).

Read the command page, and use Return as a toggle to get you in
and out of word mode. Word mode causes each letter to be to the
right of the previous one unless you're at the far right and get
"wraparound",

Wraparound is an effect that happens when you attempt to type

past the right margin of the screen. The text wraps around to
the next line (beginning on the left).

StarSprite I - 8

Paint With Sprites

Use ESC to switch between upper and lower case. Hit button 0
when you have finished labelling the painting.

Saving or loading pictures (VDP type) and sprite saving are also
available in the sprite painting program.

StarSprite I - 9

StarSprite I - Sprite Making and Scene Inspection

7. Sprite Making and Scemne Inspection

From the main program disk, side B, choose option 3 for Sprite
Making/Editing & Scene Examination.

In the submenu choose option 2 for Single Sprite Editor.
In the program choose option 5 to Load In Sprite Generator Table.

Specify the ALIENS for the sprite table name. There's no need
for any disk switching.

When asked if you want all the sprites in the table at once, type
Y for YES.

There are only 56 sprites in the table but specify 64 for the
number anyway. It's okay to always give 64 for this, as unfilled
sprites are displayed as blank.

Notice that the first six lines of sprites are animation se-
quences. In each sequence an alien shape goes through a series of
subtle changes, finally cycling back to the first shape again.
You too can easily create such sequences -—- it takes no program-—
ming experience. Press the Space Bar.

Use option 6 to Place A Sprite From Table On Grid.

Specify O as the sprite number (the grid you saw went from O to
63 for a total of 64 sprites). Sprite 0 will be drawn on a large
grid. Next to this grid the sprite will be displayed in its
actual size as you edit it.

Remember that you can double this sprite's dimensions and quadru-
ple its area with one short Ampersprite command (&RM1) at any
time -- the sprite will then change from 16 X 16 pixels to 32 X
32.

Press the Space Bar.

Now to change the sprite. This is called sprite editing. Select
option 7 to Edit Sprite On Grid.

You will see a blinking cursor. Move it around with Apple's
editing keys: I, J, K, and M. Use the ESC key to see your

command options.

Plot on a grid square with the P key and erase a filled-in grid
square with the E key.

Notice how your changes also affect the actual-size sprite.

Press Q to quit once your editing is completed.

StarSprite I - 10

StarSprite I - Sprite Making and Scene Inspection

Choose to save current sprite in memory. Specify 63 as the sprite
number. A "calculating!" notice will appear on the screen. Your
new sprite is being saved in Apple memory at the end of your
sprite table. If you were to use 4 to Save Sprite Table To Disk,
this new sprite would be a permanent sprite 63 in your ALIENS
file. Let's not do that now.

Note: Unless you save the sprite in memory, your work will
not be saved to disk.

Select option 8 to Rotate Sprite On Grid.
Choose (3) 180 degrees.

Read the procedure reminder —-- then hit Space Bar. The alien
should now appear upside down. It can be saved in this position
too. You may to try other rotations, or you may exercise options
9 or A if you like.

Option A will give you a mirror image of your sprite. Option 9
will inverse your sprite (replace black squares with white and
white squares with black). Press ESC to Quit.

From the main menu choose (3) Sprite Making/Editing & Scene
Examination and in the submenu choose 5 for Applesoft Scene
Inspector.

The purpose of this program is to allow you to inspect any PAINT
MASTER SCENE UTILITY* scenes you may have created. There's one on
this disk called SCENE6502. When you're asked for the "combina-
tion hplot scene and color fill file's name" specify SCENE6502
and examine the scene. Hit Space Bar and then press N for No
when you're asked if you'd like to see another one.

The scene was a sample of an Apple graphics background scene on
the screen at the same time as VDP (video display processor)
patterns, sprites and text. This is called video overlaying, and
multiplies the potentials of your Apple computer tremendously.

an Avant-Garde scene-creation utility available alone, or as
part of StarSprite II.

StarSprite I - 11

StarSprite I - Maze Creation

8., Maze Creation

From the main disk menu of side A choose (4) Making/Editing Files
Used By Games

In the submenu choose (1) Maze Creation Using Game Paddles.
In the program choose (2) Load & See 0ld Maze.

Specify the maze name table NAMEM -~ the final M stands for maze
game. There's no need for disk switching.

You'll see the pattern scene (VDP being imitated by Applesoft
hplots is the method used here for display purposes) used in the
StarSprite Maze game, including an upper left cormner gap used for
scorekeeping.

Press the Space Bar and choose (1) Create Maze.

Answer no by use of the letter N when asked about putting
SCORE:00000 onto your maze.

Answer Y for yes when asked about "POKEing frame characters in".
Read command page. Press any key to begin.

Notice the blinking dot -- that's your cursor. The coordinates
are displayed at the bottom of the screen.

If you would rather be seeing a full screen with no text, press
the Space Bar.

Now move the cursor with the paddles.

Press button 0 when you have it at your first maze line's start-
ing place.

Now move the cursor again —- but this time to your line's end—-
point —-=- (the beginning and ending points must not be the same)
and press button 1.

Now move the cursor to your next maze line's starting point (this
may be the last line's endpoint).

All lines must be at least as long as the distance between two
separate dots.

Press button 0, move the cursor, and press button 1 again.

Lines must be either horizontal or vertical -- diagonals are not
allowed.

If you type S you will be able to save your maze (if you change

your mind, you may terminate the save with CTRL-C). But for this
exercise, use ESC to exit maze creation.

StarSprite I - 12

StarSprite I - Maze Creation

A full tutorial on maze creation and using the maze in the Star-
Sprite Maze game is contained in later in this manual.

StarSprite I - 13

StarSprite I - Character Typing

9. Character Typing
From the main disk menu, side B, choose (5) Typing Programs.
Choose (1) Type Using StarSprite's Text mode.

In the program study the commands. If you need to see the com-
mands again while typing, use CTRL-A for aid.

Use CTRL Q to quit and return to menu.

Use CTRL X to erase and restart.

The <Return)> key will function as a carriage return. The left
arrow will act as backspace. If you use CTRL B (background

color) and CTRL T (text color) you can change the text and back-
ground colors.

The CTRL B or T is typed first, then 0-9 or A-F. Consider the A-
F to be colors 10-15.

From the main disk menu, side B, choose (5) typing programs.
Select (2) Type Using StarSprite's Graphics Mode in the submenu.
In the program study the commands. They're the same as those of
the text mode typing program. Try out the program the same way
you did above. The only difference is that you're in graphics
mode, not text mode, and your characters fit 32 to a line, not

40.

The character speed is 5 characters per second but using Amper-—
sprite you will be able to attain far greater speeds.

The same pattern table character set is used in the graphics mode
typing program as was used in the text mode typing program.

StarSprite I - 14

StarSprite I - Ampersprite Tutorials

10. Ampersprite Tutorials
10.1. Graphics Tutorial Using Ampersprite

From the main disk menu choose option 6 for Tutorial Ampersprite
Programs.

In the submenu choose (1) Ampersprite Tutorial For Graphics.
In the program, follow all examples, reading the text and watch-

ing Ampersprite command results. At the end, hit CTRL Reset and
examine program lines to your heart's content.

StarSprite I - 15

StarSprite I - Ampersprite Tutorials

10.2. Sound Effects Tutorial Using Ampersprite

From the main disk menu choose option 6 for Tutorial Ampersprite
Programs.

In the submenu choose (2) Sound Effects Tutorial Using Amper-
sprite.

In the Program, read the two introductory text pages and when you
see the (0-19) prompt, press <Return> for a tutorial. Once
you're returned to the (0-19) prompt, try out the various sound
effects. If you would like to hit CTRL Reset and examine the
program in detail, feel free to do so.

StarSprite I - 16

StarSprite I - Ampersprite Tutorials

10.3. Ampersprite in an Educational Application

From the main disk menu choose 6 for Tutorial Ampersprite Pro-—
grams.,

In the submenu choose option 3 for an example of the use of
Ampersprite in an educational application.

In the program watch the simple, clean animation and screen full
of sprites demonstrate a simple use of Ampersprite to support
good educational graphics. Read the comments at the end and the
tutorial on Ampersprite use. Then either hit CTRL Reset and list
various program lines, or return to the main disk menu.

StarSprite I - 17

StarSprite I - The Ampersprite Language
11. Ampersprite - Introduction
11.1. Sprites and Sprite Tables

A sprite is a programmable object. Sizes vary from 8 X 8 to 32 X
32 hi-res units. The factors involved are size and magnification.
Study this table:

PIXEL SIZE 8X8 SPRITES SIZE MAGNIFICATION TOTAL SPRITE SIZE
1X1 1 SIZE O MAGNIFICATION O 8X8
1X1 4 SIZE 1 MAGNIFICATION O 16X16
2X2 1 SIZE O MAGNIFICATION 1 16X16
2X2 4 SIZE 1 MAGNIFICATION 1 32X32

When magnification 0 is used, each sprite bit is mapped onto 1 X
1 pixels on the screen. When magnification 1 is used, each
sprite bit is mapped onto 2 X 2 screen pixels.

When size 0 is used, 8 consecutive bytes are used from the sprite
table to define the sprite shape on the screen, starting at the
sprite number given. When size 1 is used, 32 consecutive bytes
are used from the sprite table to define the sprite shape on the
screen. This creates a 16 X 16 sprite at magnification 0O and a 32
X 32 sprite at magnification 1.

When you create a sprite table you're allowed up to 64 sprites
(0-63) before it's all filled up. Each of these sprites is a 16
X 16 sprite requiring 32 bytes. Each sprite of the 16 X 16 type
is a composite of four 8 X 8 sprites. Here's the way a 16 X 16
sprite gets screen mapped:

SPRITE 28 (Size 1) (16X16)

8x8 28 30 8X8

8X8 29 31 8%8

The above is what size 1 is all about: putting together four 8 X
8 sprites to form a 16 X 16 sprite. All size 1 sprites take up
four numbers in a sprite table. If the above sprite 28 was used
but you were in size 0, only the solid portion of the screen map
diagram below would be displayed on the screen:

StarSprite I - 18

StarSprite I - The Ampersprite Language

SPRITE 28 (Size 0) (8X8)

-7
8x8 28 30 | Not Displayed
|
|__1
29 | 31 : Not Displayed

SR B

Not Displayed

e

Suppose your sprite object (16 X 16) was a ball. Only one quar-
ter of a ball would show up if you used size 0 when displaying
your 16 X 16 sprite on the screen. Using magnification 1 would
simply give a 16 X 16 quarter of a ball instead of an 8 X 8
quarter of a ball. So every time you use 16 X 16 sprites be sure
size 1 is in effect. In Ampersprite here's how to deal with size
and magnification:

&RZO (gives size 0)
&RZ1 (gives size 1)
&RMO (gives magnification 0)
&RM1 (gives magnification 1)

The R stands for VDP REGISTER. What this boils down to is a
signal bit that's either on or off: hence the 1 or 0.

The reason people who know graphics want to use sprites rather
than vector shapes or block shapes is that they're much faster,
smoother, and easier to use.

You would mneed to have sets of seven preshifted shapes with
conventional Apple block shapes, but with sprites, you will need

only one sprite in memory.

" In order to move a sprite in Applesoft, you might use code that
looked 1like:

10 FOR Q=0 TO 224: &AX3,Q: NEXT

The Ampersprite command &AX simply means change the X coordinate
on a sprite.

The 3 in line 10 signals the SuperSprite to change the horizontal
location of the sprite on video plane 3.

The Q gives the current X coordinate value.
When locating a sprite, the upper left corner will appear at the
specified coordinates. This means a sprite at X = 0 will be on

the screen, but a 32 X 32 sprite with an X coordinate over 224
will be partially off the screen to the right.

StarSprite I - 19

StarSprite I - The Ampersprite Language

When moving a sprite into the display you're allowed to use -31
to 0 to effect "bleeding in" of the sprite from the top edge of
the backdrop.

Values of 207-191 allow bleed-in from the bottom of the screen.

Note: The value 208 given as a Y coordinate is a signal to
the VDP to cease sprite processing. This allows you to
blank out a whole section of sprites currently being
used.)

For horizontal bleed-in from the right edge of the screen, use
values from 255 downwards.

For left bleed-in a special bit in the color byte of the sprite
attribute table is set.

The forth byte of any sprite attribute table entry is the color
byte. The first four bits of this byte get the sprite color

number (0-15). But the most significant bit gets turned on when
you want to bleed-in a sprite from the left edge of the screen.

This means adding the number 128 to your color number. So, if
your color was 6 (red), you would specify 134 as your color
number until your sprite was fully within the normal screen
boundaries -- then you'd change your color number to 6.

The way this EC bit (early clock) works is to shift your sprite's
horizontal screen position left 32 pixels. So when you give a 0 X
coordinate with color 134 your sprite will be off the screen.
Once you get to a 32 X coordinate you must change the color to 6
and the X coordinate back to zero to be fully within the back~-
drop.

A sprite attribute table is a table of attributes up to 128 bytes
long -- 2° 1agh to give four attribute values for each of 32
sprites o -2 different sprite planes. Each sprite gets four
attributes in the following format: Y (vertical), X (horizon-
tal), sprite number, color. Here's a sample 3-sprite attribute
table:

VIDEO PLANE #0 VIDEO PLANE #1 VIDEO PLANE #2

l Y X Sprite Color IY X Sprite Color

X Sprite Color
Number Number Number
29 88 8 9 81 36 3 0 0 0 0

For this example, we are specifying 16 X 16 sprites (size 1,

magnification 0 or 1), and therefore expect sprite numbers to
include the three following 8 X 8 sprite numbers as well and

thereby be divisible by 4.

StarSprite I - 20

StarSprite I - The Ampersprite Language

When using attribute tables, you needn't do any more than use a
few Ampersprite commands to get the table in memory, if it is
short. If it's long, use the &L (load) command.

Sprite pattern tables (or sprite tables) are composed of up to
2048 bytes, which allows for 256 8 X 8 sprites or 64 16 X 16
sprites. Shorter tables are allowed (you need only have as many
sprites in the table as you intend to use).

You may have no more than four sprites on one horizontal scan

line. If you use more, the sprite of lowest priority will be
obscured on that line.

StarSprite I - 21

StarSprite I - Patterns and Pattern Tables

12. Patterns and Pattern Tables

The VDP pattern plane (often called the background plane) has a
lower display priority than sprites, but higher than the backdrop
or external video (or Apple graphics or text).

Note: Priority refers to which plane gets precedence on the
display screen—--lower numbers have higher priority.

Three tables are used to generate pattern planes on-screen: the
name table, the color table, and the pattern generator table.

There are four VDP modes that govern what is displayed on the
pattern plane:

o Graphics I

o Graphics II

o Text

o Multicolor mode (lo-res graphics)

The multicolor mode is similar to Apple lo-res except it is less
convenient to use.

See the section on the multicolor mode for more information on
it.

To get into multicolor mode from Ampersprite, use the command
&RU.

Multicolor mode uses no color table. It uses a pattern table that
defines tile colors, and a name table to point to these color-
defining pattern table entries. (To see what it looks like LOAD
Sprite Painting and change &RG2 in line 90 to &RU. Then paint a
Sprite Painting (main menu option 2), and once the screen is
fairly full quit and examine the screen.)

How do you tell the location and color of a pattern?
WHAT SHAPE (which dots on the screen are on)

WHAT COLOR (what color the dots are)
WHERE ON SCREEN IS WHAT PATTERN

Pattern table
Color table
Name table

]

A pattern is an 8 X 8 dot tile. It represents eight bytes of
data, mapped one below the next, sequentially.

Pattern tables are bit-mapped when they are displayed.

You would expect a 255 ($SFF) byte to be a dash and a 0 byte to be
nothing, thereby allowing lower priority video (backdrop or Apple
graphics) to show through. This is not the case. Bits being on
or off signify which of two possible colors will be displayed on
the screen.

StarSprite I - 22

StarSprite 1 — Patterns and Pattern Tables

In Graphics I mode, the color table corresponds to the pattern
table as follows: the color table has 32 entries, each one byte
long. Each entry defines two colors. You may have seen machine
language hexadecimal bytes before. For example, $F6. Each dig-
it, in the color table, defines a color. So each of the 32
entries defines two colors, so in the above example colors S$F
(15) and 6 are stipulated. The on bits of the corresponding
pattern table bytes would be color 15 and the off bits would be
color 6.

The first entry in a Graphics I mode color table defines the
colors for patterns 0~7. The next entry is for patterns 8-15,
etc. This goes up to the last entry in the color table (the
32nd) which defines colors for patterns 248-255. This takes care
of all pattern colors, since there can only be 256 patterns in
Graphics I mode.

The screen-mapping is done via the name. table. A name table has
768 entries, called pattern positions. Each of these 768 entries
must contain a number from O to 255, representing which of the 8-
byte patterns to display.

In other words, a pattern table is like a library of little
shapes on 8 X 8 dot tiles. When you want to display one of these
shape-tiles on the screen, you need to NAME the one you want.

Assume position number 5 has a 3 in it. Number 5 is the 6th
position since we must count number 0 as being first.

Number 0 is at the upper left hand corner of the screen. Position
5 is five tiles (8 X 8) to the right of that. If the name table
has a 3 in position 5 that means that the fourth (since pattern O
is first) set of 8 pattern bytes in the pattern table will define
what is displayed at position 5 on the screen.

The color of the pattern at position 5 is determined by the two
digits in the first color table entry, since the color table
entries each cover eight consecutive pattermns.

Again, on bits correspound to the color represented by the first
digit of the color table entry and off bits correspond to the

color represented by the second digit.

Let's look at a sample diagram and sample tables that will help
clarify all this:

StarSprite I - 23

StafSprite I - Patterns and Pattern Tables

. r— PATTERN TABLE (IN HEXADECIMAL)

PATTERN
NUMBER
70 83 98 A8 c8 88 70 00 [

20 60 20 20 20 20 70 00

70 88 08 30 40 80 F8 00

F8 08 10 30 08 88 70 00
10 30 50 90 F8 10 10 00
F8 80 FO 08 08 88 70 00

OO0

Etc. up to pattern number 255

COLOR TABLE (IN HEXADECIMAL)
—G® 98 18 16 04 8 22 16
88 34 FF 0L 00 06 66 78
9% B8 Cl D8 64 62 86 04
99 88 42 0L 11 19 47 AC

That's the complete table

NAME TABLE (IN HEXADECIMAL)

88 Bl 64 11 0o
F1 TEE2 62 19 92 87

Etc., up to entry #767

PATTERN #0 PATTERN #1 PATTERN #2
elele 70 @ 20 ele|e
[] [88 ele® 60 ® L]
® e|e 98 [20 L
e le| [e A8 ® 20 A0
ele [c8 ® 20 @
® & 88 s 20 8
elele 70 elele 70 olelelsie
00 00
PATTERN #3 PATTERN #4 PATTERN#5
[e[e]e]e]e 78 ® 10 Q0000
[08 e|e 30 ®
® 10 ® [50 eloe e
ele 30 ® [90 Ld
® 08 slelole|e F8 [
e ® 88 ° 10 o °
00 70 ® 10 elel®
00 00

StarSprite I - 24

StarSprite I - Patterns and Pattern Tables

(If you would like to understand how bit-mapped pattern bytes are
determined, study the values, in decimal and hexadecimal, for
each of the eight bit positions below:)

$80 840 $20 $10 $08 $04 $02 $01

128 64 32 16 8 4 2 1

(The first byte of pattern O gets a value determined by adding up
ON bit positions. $40 and $20 and $10 add up to $70. Or 64 and
32 and 16 add up to 112, which also translates to $70.)

You have seen that the first eight patterns use only the first
entry in the color table in Graphics I mode. That means that in
the above example not only the six patterns given but the next
two as well would use $48 as their color—determining data. So on
bits would be $4 or dark blue, and off bits would be $8 or medium
red.

Can you predict what the upper left corner of the display screen
would look like using the above tables?

(2) () () (2) 0 3 2 (?)
(?7) 2 (2) (2 () (2) () (M)

The above diagram is all the pattern predictions that could be
made. Remember that the 0, the 3, and both 2's will have blue
text on red background.

Color predictions can easily be made for any of the above ques-
tion-marked areas of the screen (meaning the pattern shape is a
yet unknown, since the pattern table given only goes up to 5).

We know not only that patterns 0~7 will use $48 for color data.
We also know that patterns 8-15 will use $98 and 16-23 will use
$18, etc., So the fourth name table entry, $11 (decimal 17), can
be predicted to have black ($1) text on a medium red ($8) back=-
ground. The rest are just as easy to predict; as I've said --

the color table is complete as shown.

Graphics II mode is a bit different. The pattern table is 6144
($1800) bytes long and so is the color table. The two of these
alone take up $3000 bytes —— 3/4 of the VDP RAM on the
SuperSprite. The card has 16K, a 6144 byte table is 6K.

Note: Sprites and backgrounds are available in either Graph-
ics mode (and multicolor mode as well).

If you create pattern tables that have 5 X 7 text characters,

these tables are usable in both graphics and text mode of your
VDP.

StarSprite I - 25

StarSprite I - Patterns and Pattern Tables

When using text mode there is room on the screen for 40 X 24
characters and characters are on 8 X 6 tiles, not 8 X 8 tiles, so
you must make sure that the least significant three bits of your
pattern bytes are zero.

Using text in graphics mode uses 8 X 8 tiles (again using 7 X 5
characters, as in text, mode) but you have the option of creating
7 X 6 or 7 X 7 characters, if you desire -- but they'll be unus-
able in text mode, and dual use pattern tables are normally the
best way to go.

The reason Graphics II mode is so memory intensive is that scenes
and detailed graphics take more space to store. In a complex
picture, the patterns in every tile position on the video display
will differ from every other tile position pattern. This means
that there will need to be 768 different patterns,.

This is not possible in Graphics I mode because the data (repre-
senting pattern numbers) which goes into each pattern position in
the name table must be 0-255.

Here is how things are set up in Graphics II mode:

In Graphics II mode the name table is partitioned into three
segments, each 256 bytes long (just like Graphics I).

The first segment (256 X 8 = 2048 long) is mapped to the top
third of the screen only. The second segment is for the middle
third of the screen and the third segment is for the bottom third
of the screen.

These three pattern tables are adjacent in memory and therefore
form one long (6144 long) pattern table, as follows:

VIDEO SCREEN
s Y
2 (0] | 31
o 256 8-byte patierns
4 (0-255) to be used only & PATTERN POSITIONS
8 by top 173 of screen
265
2 zssl
PATTERN 0 256 B-byte patterns
GENERATOR 4 (0-255) to be used only| —% PATTERN POSITIONS
TABLE 8 by middle 1/3 of screen
(6144 LONG) | 511
2 | 512
1}
256 8-byte patierns
o] (0-255) to ve used only —& PATTERN POSITIONS
by bottom 13 of screen L [%’(?’;

StarSprite I ~ 26

There i

COLOR
TABLE
(6144 LONG)

StarSprite I - Patterns and Pattern Tables

s a corresponding color table, also 6144 long:
VIDEO SCREEN
. g ™\
2 256 9-byta color-data _QJ 31
0 X
sntries that exactly
4 — PATTERN POSITIONS
8 coxrespond o the patisyns
in the pattern gsnerator tabls 255
2 256 8-byte color-data 256
g . !
ntries that exactl:
4 ° g Y — PATTERN POSITIONS
8 correspond to the patterns

£]

in the pattern gensrator table
256 8-byte color-dsta 512 ‘
entries that exactly

— PATTERN POSITIONS

correspond to the pattsrns

eeon
2

in the pattern generator table \ 767

If you understand the above diagrams, you will see that the
5777th byte of the pattern table has its colors defined by the

two dig

its of the data in the 5777th byte of the color table., If

$48 is found in the color table in the 5777th byte and the 5777ttt

pattern

table byte is $81 (129), then it means that if that

particular pattern byte is used on the screen, it will have a
blue dot on each end and a red dash in the middle.

Note:

NAME
TABLE
(768 LONG)

Only if the name table points to a pattern is it ever
displayed on the screen. Only if the name table has a
"210" in its lower 1/3 will we know that the 5777th
bytes of both color and pattern tables are being used.
Examine a name table in Graphics II mode; it, like
pattern and color tables, is divided into thirds:

VIDEO SCREEN
0 = (0] 31)

2

5 - PATTERN POSITIONS

6

m

255

PATTERN POSITIONS

511

2
5 — PATTERN POSITIONS

5

767 = L 767)

StarSprite I - 27

StarSprite I - Patterns and Pattern Tables

In this example, we are examining the use of the 5777th byte of
the pattern and color tables.

This byte is seen (along with the other seven bytes in that
pattern) only if the name table points to it.

In order to name the pattern, we perform the following calcula-
tion:

Pattern name = Byte in Pattern Table + 8
So:

5776 « 8 = 722

Pattern name

The 722nd pattern would be in the bottom third of the pattern
table so subtract 512 to get the actual pattern name of 210.

Notice that I used 5776 since the 5777th byte in the table is
byte 5776 because byte 0 is the first one. To check, notice that
if you start the top third of the pattern table with byte 0, the
middle third with byte 2048 and the bottom third with byte 4096,
then 4096 + (8 times 210 = 1680) = 5776.

So, in the actual name table, unless the pattern number 210 ($D2)
is found in the third section or page of the table, then bytes
5776-5783 (the 5777th-5784th bytes in the table), which make up
pattern 210, will not be displayed on the screen.

It is impossible for patterns from sections to be displayed on a
different third of the screen.

In actual usage, if you want a blank screen just have pattern O
be eight O0's in the first, second, and third sections of the
pattern table, and then put 256 zeros in a row for each section
of the name table -- 768 zeroes in all,

Notice that it took only 24 pattern bytes of data to define an
entire screen full of video display.

If you want the middle section to be all solid instead of blank
(black), you may have the eight bytes of the first (0) pattern of
the middle section of the pattern table all be 255 (S$FF).

There is another way, however. All the above speculations are
based upon the assumption that you've put something like 241
($F1) into the first eight color data bytes (0 patterms will
therefore correspond with them) of each of the three sections of
the color table. $Fl means white text for on bits and black
background for off bits since $F = 15 = white and 1 = black.

StarSprite I - 28

StarSprite I - Patterns and Pattern Tables

In color bytes the rule is always that the first hex digit deter-
mines the color of the on bits and the second hex digit deter-
mines the color of the off bits.

The remainder (2040 bytes) of the bytes of both pattern and color
tables can be anything at all and it will have no effect on the
video display if the name table points only to pattern O in all
pattern positions (all 256) in all three sections of the name
table. Only the color and pattern data that are being pointed to
by the name table bytes have any influence on the display.

The other way to get the top and bottom sections of the screen tc
appear black and the middle white is to leave the pattern data
bytes of pattern O alone and instead concentrate on the color
table data corresponding to pattern 0., Let's change the $Fl1 to
$FF or $0F or $1F or anything else that ends in $F ($F = 15 =
white) in the first eight bytes of the middle section of the
color table (again, this corresponds to patterm O0).

If you'd prefer a red band have the last digit be 6 or 8 or 9;
for green try 2 or 3 or 12 ($C).

Suppose I need a screen full of the digit 3. The hexadecimal
digits for a pattern that looks like a "3" are: F8 08 10 30 08 88
70 00.

To display this pattern in each tile position on the screen, the
following steps are necessary:

o Make this set of bytes pattern O in the first pattern of
each section of the pattern table.

o Use $F1 for all corresponding color table data.
o Have all 768 bytes of the name table be $0.

Or use it as pattern 3 (the fourth pattern) and put the above
data as bytes 24-31 in each of the three sections of the pattern
table, and fill the name table with three and the color table
with 241's ($F1).

The following example line of Applesoft Basic demonstrates the
use of Ampersprite to accomplish the goals discussed above.

10 POKE 7, 241: POKE 8,0: POKE 9,0: CALL 852: REM THIS ASSUMES
THAT COLOR TABLE IS AT $2000 AND IS $1800 LONG

The above line (choose your own line number, of course) will fill
all 6144 bytes of the color table with 241. If you want some
other type of data to end up in the color table, merely substi-
tute the new color data number for 241 and then POKE that into 7
above, where I've POKEd 241.

StarSprite I - 29

StarSprite I - Patterns and Patteru Tables

If you only wish to deal with byte 5776 of the pattern table, use
the following Ampersprite command:

10 &P 5776,0

The P stands for pattern, the 5776 gives the table's byte number
(or offset past starting address of table) and the 0 is the data
to insert. To *take care of the entire pattern which begins at
byte 5776 you could do this:

10 FOR A = 5776 TO 5783: &P A,0: NEXT

You will normally be using pattern numbers, not byte numbers, so
the following scheme makes more sense:

10 FOR A = 4096 + (210*8) TO 4096 + (210 + 8) + 7: &PA, 0O: NEXT
Or:
10 B = 4096 + (210%8): FOR A =B TO B + 7: &PA,0: NEXT

Since the color table has a one to one correspondence to the
pattern table in Graphics II mode, it can be handled in the sane
way:

10 B = 4096 + (210%8): FOR A = B TO B + 7: & CA,8: NEXT

In the above example, on bits get O for data and off bits get 8
(red). The C stands for color. Below we'll update the pattern
table with new pattern data for pattern 210 of the third section,
and we'll use 8 for the color data -- but we'll put these two
routines together:

10 B = 4096 + (210%8): FOR A = B TO B + 7: &PA,0: &CA,8: NEXT

The above line of Basic will only change the screen in places
where the position you are at is pointed to by a name table entry
of 210, and it must be in the third section. If you want all
three of the pattern table and color table sections to have their
pattern 210 updated, use the following algorithm:

10 FOR B = 210*%8 TO 4096 + (210%8) STEP 2048
20 FOR A = B TO B + 7: &PA,0: &CA,8: NEXT : NEXT

Often the pattern and color table data are static, while the name
table gets updated to change the screen display.

Suppose the 18th, 19th, and 20th patterns in the pattern table
(17-19) are letters A, B, and C. And suppose you need the word
"CAB" to be displayed on the screen at name table positions 260-
262. The commands are:

10 &N 260,19 : &N 261,17 : &N 262,18

StarSprite I - 30

StarSprite I - Patterns and Pattern Tables

Here is a routine for getting words, in string form, onto the
screen:

500 A$ = "STARSPRITE FOREVER!": PSN=262: GOSUB 510: GOTO 520:REM
POSITIONS 262-281 ARE USED HERE

510 L = LEN (A$): FOR A =1 TO LEN: C$=MID$ (A$,A,1): CH = ASC
(C$) -32: &N PSN + A-1, CH: NEXT : RETURN

515 REM PSN = SCREEN POSITION TO PRINT ON AND CH = CHARACTER TO
PRINT (GIVEN BY PATTERN NUMBER)

In the above example, a pattern table CHAR is used. You'll find
it on side A of the main program disk.

For an actual example of the usage of these commands, load pro-
gram called Ampersprite Basic. Examine line 0 to see how this
file is loaded and lines 2000-2199 to see how pattern tables and
name tables can be loaded into VDP RAM.

In CHAR, ASCII numbers 32-127 have been given pattern table
numbers 0-95 for convenience, which explains the minus 32 in line
510.

To put a colored background behind each character of "StarSprite
Forever!":

530 FOR A = 33 TO 58: = 2048 + A *8: FOR B

z =0 TO 7: &C Z+B,6:
NEXT : NEXT : FOR B = 2048 TO 2048 + 1%8 + 7

: &
: &C B,6 : NEXT

The pattern numbers of the 26 letters of the alphabet, in this
Graphics II mode example, are 33 to 58. Space and "!" are num-
bers 0 and 1.

Notice that we're past name table position 255 but not as high as
position 512, so the tiles we are using are located in the middle
section of the screen and tables.

Also notice that since each segment of the table is 2048 bytes
long, adding 2048 to the starting address of the color or pattern
tables locates the position of the start of pattern 0 of the
middle section.

Also notice that multiplying any pattern number by 8 gives us the
number of bytes of offset (from the start of that section of the
pattern or color table) to address the table bytes for a given
pattern (or the colors that correspond to it) in the table.

In line 530 the 2048 gives us the section offset and A*8 gives us
the pattern offset to locate the correct pattern.

Notice that the variable "A" will always represent the pattern
number we are now dealing with.

StarSprite I - 31

StarSprite I - Patterns and Pattern Tables

The FOR-NEXT loop indexed by "B" refers to the eight bytes each
pattern contains.

&C Z+B,6 puts the color red (6) into all eight bytes of each
alphabetic character pattern (#33-58).

The second FOR-NEXT loop indexed by "B" puts red (6) into pat-
terns 0 and 1, the space and "!" patterns.

All we've really done is change color table data behind all the
letters, not only of "StarSprite Forever!" but also of the alpha-
bet, space, and "!". If we had already inversed (background
added) letters available as patterns in our pattern table, all we
would have had to do is "&N" those into place with code similar
to line 510, with the minus 32 changed to whatever is appropriate
to have ASCII codes lead us to correctly corresponding pattern
table numbers.

The TMS9918A VDP also has a Text mode. The Text mode also acces-
ses pattern tables, but only uses the most significant 6 bits of
every byte, which allows a 40 column display in text mode, as
compared to 32 column display in either graphics mode.

Turn back a few pages and study the patterns that create the

numerals 0 through 5. Notice how the characters are on an 8 X 8
grid but are 7 X 5 in size. 1In graphics mode this allows three
spaces between characters horizontally and one space vertically.

In text mode, because only six horizontal bits are used, there is
only one bit space between characters in all directions.

To enter text mode, use &RT after Ampersprite is initialized.
To enter Graphics I mode, use &RGl.

To enter Graphics II mode, use &RG2.

To enter multicolor mode, use &RU.

Remember to initialize the Ampersprite. See lines 30 and 80-154
in the Ampersprite Basic program (side A) for an example.

The "&R" commands set the various VDP registers. R means regis-—
ter.

Text mode uses only 3/4 of every pattern for display.

Another difference is a 960 (0-959) position name table
(40%24=960). See programs TYPE.TX and TYPE.GR to see how graphics
and text characters differ. Ampersprite wasn't used in these
programs, to allow you to learn Basic interfacing with the
SuperSprite without Ampersprite.

StarSprite I - 32

StarSprite I - Patterns and Pattern Tables
No sprites are allowed in text mode, but you may alter text
color:
& RX 15,6

In the above example X stands for text, the 15 gives text mode
text color, the 6 gives text mode background color.

Note: The second parameter of the & RX command specifies the
backdrop color for all four modes.

The screen is not divided into three sections in text mode so
this mode is similar to Graphics I mode in pattern table require-

ments (except for the 6 of 8 bits per byte usage).

In text mode, update the name table with "&N" commands.

StarSprite I - 33

StarSprite I - Colors and Color Tables

13. Colors and Color Tables

The numbers governing the color generated by the SuperSprite are:

0 = Transparent 8 = Medium Red

1 = Black 9 = Light red

2 = Medium green 10 = Dark yellow
3 = Light green 11 = Light yellow
4 = Dark blue 12 = Dark green

5 = Light blue 13 = Magenta

6 = Dark red 14 = Grey

7 = Cyan 15 = White

The use of any color except transparent (0) in patterns will
prevent Apple video from showing through, so make sure your
backdrop, controlled by "&RX" command, specifies transparent
backdrop, for example: "&RX15,0".

If you are not mixing Apple and VDP graphics, other backdrop
colors are fine.

On sprite video planes, the entire plane is transparent except
for the part of the plane containing the sprite. A sprite can be
covered up or hidden by only one method: having a higher-priori-
ty sprite cross its path (the lower the video plane number the
higher the priority).

A normal pattern table based scene (not those created in the
Sprite Painting program) is transparent everywhere one of the
color table's bytes that corresponds to pattern table bytes has a
0 in one of its hex digits; e.g. $03 or $EO, so long as both on
and off bits appear in the pattern and the name table points to
the particular patterns in question.

A pattern not pointed to is not displayed.

Color tables, in the multicolor or text modes, do not exist. The
"&RX" command takes care of text color and text background color
in text mode. The "pattern table" takes care of color in the
multicolor mode -- this table tells the VDP not what various
patterns look like but what color tiles go where.

There are two types of color tables: Graphics I and Graphics II.
(Sprite colors use no tables —-- they are determined by the fourth
byte in sprite attribute so sprite colors are for sprites while
color tables are for patterns only.

Graphics I mode color tables contain 32 bytes. The first byte

corresponds to pattermns 0-7. The second to patterns 8-15. The
last (32nd) to patterns 248-255.

StarSprite I - 34

StarSprite I - Colors and Color Tables

Fach color byte is a number between 0~255 (inclusive). The
hexadecimal notation of this data is easier for illustrative
purposes. Each hexadecimal digit may represent a color, and all
hex numbers (8-bit) use two digits (when you see $7, $07 is
understood).

The first hex digit of a color byte corresponds to the on bits of
the pattern and the second hex digit to the off bits of the
pattern., A number like $48 means that the on bits are color 4
and the off bits are color 8.

The limitations of Graphics I mode are obvious when you try to
imagine creating a complex multicolor sceme with it =- you are
generally better off using this mode for text that is being used
in the graphics mode (32 X 24 characters/screen).

The Graphics II mode uses a different approach. In this mode
there are 6144 pattern table bytes and 6144 corresponding color
table bytes. Each byte in the pattern table has a corresponding
byte in the color table.

We have looked at &RX#,#, which controls text and backdrop
colors.

In order to control the colors that pertain to the background
patterns and sprites, several new commands are required.

First, we must specify where color table is located in VDP RAM;
The command for this is: &RC#. This command will be discussed in
the next chapter.

The &AC #,# command tells sprites what color to be.

The &C #,# allows you to place color data directly into the color
table from Applesoft.

10 B = 4096 + (210*8): FOR A = B TO B + 7: &C A,8: NEXT

The above line changes the color data to $08 for pattern 210 in
the bottom section of the pattern table.

10 POKE 7,241 : POKE 8,0: POKE 9,0: CALL 852: REM THIS ASSUMES
COLOR TABLE IS AT $2000 AND IS $1800 LONG

The above routine causes the color table (all 6144 bytes of it)
to be filled with the number POKEd into location 7, in this case,
241 ($F1l).

The Sprite Painting program makes use of the pattern and color
tables in a different manner than we have been discgssing.

Both are the inverse of what you would expect after dealing with
normal pattern and color tables.

StarSprite I - 35

StarSprite I - Colors and Color Tables

The merge routine takes the sprites (which you move around the
screen and paint with) and merges them into the current pattern
table and color table. The screen this painting program starts
out with has all zeroes in both the color and pattern tables.

Normally a one-dot addition to a black (0) byte would cause the
new value to be 1, 2, 4, 8, 16, 32, 64, or 128,

Instead a one dot addition causes the new pattern table byte to
be 254, 253, 251, 247, 239, 223, 191, or 127, (the inverse of the
screen's normal bytes -- dashes with notches in them instead of
simple dots). The same inverse situation happens to the color
table as well.

Normally, when a dot is added to the pattern table, the correspo-
nding color byte would be $FO0 (240) in the color table, which
means 15 ($SF) is for on bits (15 is white) and 0 is for off bits
(0 is transparent).

However, when the merge program is working you get the inverse of
this: S$OF is placed in the color table rather than $FO0. This
means that the on-bits will be transparent and the off bits will
be white.

Reversing the figure-ground format on either the color or the
pattern table byte would have caused an inverse result on the
screen. But reversing the format of both results in the sprites
being copied accurately into both the color and pattern tables.

StarSprite I - 36

StarSprite I - VDP Registers

14. VDP Registers

The TMS9918A video display processor has eight write—only regis-
ters and a status register.

Technical You can write to any of the registers with the "&RR#,#"

Note: command. The first number is the register number to
update, and the second number is the data to write. Do
not use this command to help load registers initially
~-— there are specific commands for that. Use it for
registers 2-7 later, if necessary, but check lines 30-
65 in the Ampersprite Basic program on the main program
disk (Side A), or see below, for the ramifications of
register manipulation.

Since Ampersprite keeps track or the contents of the
various registers, you will have to want to update a
the Ampersprite locations corresponding to the register
changed so Ampersprite commands do not get confused
about where your tables are.

The "&RR" command should be avoided unless you are only
using parts (such as the sprite attribute section of
the language) of the Ampersprite language or are handl-
ing all the above updating necessary.

There are 14 different Ampersprite commands for dealing with the
VDP registers. The order in which the various commands should
appear (near the beginning of the program) is:

1. CALL 912

2. &1

3. &RX (text color, backdrop color)
4, &RG (1 or 2)

5. &RE (0 or 1)

6. &RD (0 or 1)

7. &RZ (0 or 1)

8. &RZ (0 or 1)

9. &RS (0 or 1)

10. &RA (address or sprite attribute table)
11. &RP (address of pattern table)
12. &RC (address of color table)

13. &RN (address of name table)

14, CALL 831 (clears VDP RAM)

15. &L tables into VDP RAM

A register is a place where things are stored. The VDP registers
control the operation of the VDP and allocate where information
is stored in VDP RAM. The reason you want to write to VDP
registers is so that the VDP knows where sprite, name, pattern,
color, and attribute tables are stored in VDP RAM, and so the
various colors, sizes, modes, magnifications can be specified to
the VDP and stored until new video characteristics are desired.

StarSprite I - 37

StarSprite I - VDP Registers

At the level of this utility, you will have no reason to read the
status register (which needs to be done in machine language).

But you may need to read VDP RAM data, to see how something has
changed or to see if a table has loaded correctly.

10 POKE 31,8: POKE 30,0: POKE 249,0: POKE 251,9: POKE 252,0:
CALL 804

The above routine is the reverse of the "&L" command. It has five
parameters that are respectively Apple memory high byte, Apple
memory low byte, counter, VDP RAM high byte, VDP RAM low byte.

With "&L" you are copying bytes from Apple RAM into VDP RAM.
With the above CALL 804 routine, which is a VDP READ routine, you
are copying bytes from VDP RAM into Apple RAM,

The above example, reads from $900-$9FF in VDP RAM and copies it
into $800-$8FF of Apple memory. The above routine copies one
page ($100) of memory. If O is placed in the counter is intexr-—
preted as $100. Any other value (1-255) put into the counter will
be taken at face value.

Here are the functions of write-only registers 0-7:

Register Numﬁer

0. Enable/disable Graphics II mode

1. Specify RAM type, enable/disable display, interrupts enabled
or disabled, text mode enabled or disabled, multicolor mode

enabled or disabled, size 0 or 1 specified, magnification 0
or 1 used.

2. Name table base address stored

3. Color table base address stored

4. Pattern table base address stored

5. Sprite attribute table base address stored

6. Sprite table base address stored

7. Text color stored; text background and backdrop color stored

Here is an example of how a program might start out:

10 D$ = CHRS$(4)

20 PRINT D$; "BLOAD K2"

30 PRINT D$; "BLOAD AMPERSPRITE"

40 PRINT D$; "BLOAD I&I"

50 CALL 912: REM INSTALL AMPERSAND HOOK

60 &I : REM INITIALIZE BOARD AND AMPERSPRITE

70 &RX 15,1: REM WHITE TEXT AND BLACK BACKGROUND

80 &RG2: &REO : &RD1 : &RZ1 : &RMO : REM CHOOSE MODE, ETC.

StarSprite I - 38

StarSprite I - VDP Registers

90 &RS6144: REM SPRITE TABLE AT $1800

100 &RA 15104: REM SPRITE ATTRIBUTE TABLE AT $3BO0O

110 &RPO :REM PATTERN TABLE AT $0000

120 &RC 8192 :REM COLOR TABLE AT $2000

130 &RN 14336 :REM NAME TABLE AT $3800

140 CALL 831 :REM ERASE VDP RAM BEFORE LOADING

150 REM NOW ACTUALLY LOAD ALL TABLES FROM APPLE MEMORY TO VDP
RAM

160 REM START THE ACTION (SPRITE MOVES, ETC.)

&I zeros all VDP table base addresses stored in Apple RAM, dis-
plays VDP graphics only, and initializes the SuperSprite board.

Remember that CALL 912 must happen before the "&I" Ampersprite
command .

The "&RX 15,1" command makes all text white (15), and all text
background black (l1). The value specified for the text background
defines the backdrop as well.

Follow along on your command card as we go through these register
commands.

Note: Do not use &RX, &RG, &RE, &RD, &RZ or &RM again in your
program (without restarting with &I) if you have al-
tered locations $DB-$DF, $D4, $D5, SEB, $EC, $19, S$ED,
SEE, or $EF.

Do not use &C or &N or &P again in your program (with-
out restarting with &I) if you have altered locations
$DB, $DE, or $DF.

Do not use any sprite attribute (&A) command if you
have altered locations $DD or $DC.

The "&RG1" command simply chooses Graphics I mode and "&RG2"
chooses Graphics II mode.

The "&REO" command disables external video, (a signal from an-
other VDP), This command is a set—up command required with the
SuperSprite. Note: there is no provision on SuperSprite for
external video feed.

The "&RD1" command enables display.

The "&RDO" command blanks VDP display.

In the demonstration programs, &RD0O is sometimes used in the
subroutines at lines 9~10 to blank the VDP video and then filter
Apple video through it. Then in 22009 &RD1 lets normal VDP video
to be displayed. The point is to improve the way Apple video

looks on color monitors.

The "&RZ1" command specifies size 1.

StarSprite I - 39

StarSprite I ~ VDP Registers

The "&RZO0" command specifies size O.

Size 0 gives only eight bytes worth of sprite data per shape,
while size 1 gives 32 bytes and is therefore much more useful for
most purposes.

Size 1 + magnification 1 gives 32 X 32 sprite
Size 1 + magnification 0 gives 16 X 16 sprite
Size 0 + magnification 1 gives 16 X 16 sprite
Size 0 + magnification 0 gives 8 X 8 sprite

The "&RM1" command specifies magnification 1.
The "&RMO" command specifies magnificatiom O.

Magnification 0 specifies one-to-one relationship between sprite
data bits and screen-displayed pixels.

Magnification 1 gives a 2 X 2 pixel of screen display for each
bit of sprite data.

The size and magnification factors refer to all sprites on the
screen. Sprite size and magnification may not be done on an
individual sprite basis.

The &RS, &RA, &RP, &RC and &RN commands specify where in video
RAM you wish to locate the sprite generator table, sprite attri-
bute table, pattern generator table, color table, and name table.

There is $4000 (16K) of VDP RAM in which to store all your VDP-
related data (see next chapter's memory map). You must specify to
the VDP where you intend to store which data.

Now let's look at permissible addresses of tables:

In Graphics II mode the pattern table must start at $0000 or
$2000 (0 and 8192 decimal). The color table also must start at
$0000 or $2000, whichever was not used by the pattern table.

In Graphics I mode the pattern table must start at any address
evenly divisible by $800 from $0 to $3800 (14336). In Graphics I
mode the color table must start at any address evenly divisible
by $40 from $0 to $3FCO (16320).

In either mode the name table must start at any divisible-by-$400
number from $0 to $3C00 in steps of $400 (1024).

The sprite table is independent of the graphics mode selected,
and must start at an address evenly divisible by $800 number from

0 to $3800 (14336) in steps of $800 (2048).

In either mode the sprite attribute table must start at any
address evenly divisible by $80 from $0 to $3F80 (16256).

StarSprite I - 40

StarSprite I - VDP Registers

Overlapping is permitted but you must be careful not to overwrite
areas controlling current screen displays. For example, you may
have a sprite table at $1800 and a sprite attribute table at
$1F80, so long as you have only 60 sprites (16 X 16) in your
table rather than the maximum 64.

StarSprite I - 41

StarSprite I - VDP RAM -- a Memory Map
15. VDP RAM - a Memory Map

On the next page is the suggested allocation of VDP RAM for best
overall efficiency in the widest variety of cases.

StarSprite I - 42

(0)

Top 1/3 of screen —

Middle 1/3 of screen —

$1000

Bottom 1/3 of screen —

(6o [0

@192

Top 1/3 of screen —

$2800

Middle 1/3 of screen—

$3000

Bottom 1/3 of screen —

StarSprite I - VDP RAM -- a Memory Map

GRAPHICS II MODE VDP MEMORY MAP

—

$800 |

(14336)
(15104) | $3B00

(15360) $3C00

(16383) $3FFF

g
n
o
TN
o G
" o
5
@
w PATTERN
=t GENERATOR (Holds three sets)
A of 256 patterns
g e TABLE (P)
5
2]
o
n
"
TN
0\
R o
]
2]
SPRITE (Holds 64 size 1)
GENERATOR (sprites or 256)
TABLE (size O sprites)
N9
B0
t 0
N
®w o
Horh R
5 o
o R
(Holds color data)
A (that corresponds)
LB O
Tod 2 CZ;'OR (with the three sets)
SR TABLE (of 256 patterns)
8 s (of the pattern)
> (table)
w9
P)
(23 t O
R
©o U0 o
RO R
5 o
o R
NAME TABLE

SPRITE ATTRIBUTE TABLE

Free RAM for storing an extra name table,
attribute table, or Graphics I mode color table

(In text mode put name table at $3C00 so as
not to overflow into $3B00, since text mode
name tables are 960, not 768, long)

StarSprite I - 43

This space
will hold
~two attr.
tables (eac
128 long)

StarSprite I - Ampersprite Memory Considerations

16. Ampersprite Memory Considerations

The following zero page (Apple RAM) locations are used by the
Ampersprite language so they should not be used by your programs
while Ampersprite is in effect:

$DB-$DF, $D4, $D5, $EB, $EC, $19, $ED, $EE, $EF, $8, $9, $7, $1E,
$1F, $F9-SFF

Other addresses to avoid are $300-$3EA and $800-$DFF.

On the next page is a map of Apple memory usage for an average
Ampersprite program:

StarSprite I - 44

StarSprite

I - Ampersprite Memory Considerations

$0
Some zero page addresses used
X $300
Essential K2, the direct interface to SuperSprite card
for all $390
Ampersprite I&I, Ampersprite initial interpreter
programs $3EA
Jump Vectors and text page
$800
Ampersprite
$E00
Paint Master Scene data
$1650 Sprite Painti
. prite Painting
t
Sound routines of 6502 Apple type uses this buffer
$1700
A3, whiteline ! and other Paint Master routines area for temporary
$1800 storage of VDP
A sprite table may be stored here in Pattern Table
addition to essential $1800 storing in
P
— $2000 VDP RAM
$2600 Temporary loading
addresses for files
Hi-res _| to "&L" (load) Same as above except its
page one into VDP RAM for temp. color table
$3E00 storing
Temporary sprite Painting
$3F00 prog. use) Sprite Painting
Temporary Sprite Painting | temp. use
L. s4000 prog. use
Himem
Applesoft/Ampersprite tm Basic Program 32515 for
sprite
Himem $7F00 e — - - painting
36864 for s iiiep;aizt?n ;ro ram Main @erge program
Apple 6502 P g g Algorithm
video using $8200 Start of temp. sprite
programs painting storage
$9000 Temporary storage
Fill3:color~fill routine from Paint Master of color or pattern
$9400 tables being
Filltable:scene recreator from Paint Master juggled in the
9500 sprite Painting
9600 CTABLE: color palette for Paint Master program
Possibly speech synthesis routines
9A00
Applesoft, DOS, monitor
FFFF

StarSprite I - 45

StarSprite I - Ampersprite Memory Considerations

When using Applesoft, your Basic program starting address will
default to $800 (2048). However, when using Ampersprite you need
to start your Basic program at either $4000 (if you will be using
either no Apple hi-res page or only page 1 ($2000-$3FFF)), or
$6000 (if you will be using hi-res page 2 ($4000-$5FFF)).

To start Basic programs at $4000, you must write a short program
to alter the pointers to the beginning of the program. This
program looks as follows:

10 REM #*** LOCATE PROGRAM AT $4000 ***

20 POKE 103,1: POKE 104,64: FOR I = 16384 TO 16386: POKE I1,0:
NEXT I

30 PRINT CHR$(4); "RUN YOURPROGRAM"

or

10 REM *** LOCATE PROGRAM AT $6000 ***

20 POKE 103,1: POKE 104,96: FOR I = 24576 TO 24578: POKE I,0:
NEXT I

30 PRINT CHRS$(4); "RUN YOURPROGRAM"

These pokes must be done prior to running the program that uses
Ampersprite, or they will not worke

StarSprite I - 46

17.

StarSprite I - Initializing the SuperSprite

Initializing the SuperSprite

The following sequence of commands activates and initializes the
SuperSprite:

1.

10.

11.

BLOAD in AMPERSPRITE, I & I, K2, and any sprite, pattern,
color, name, or attribute table you will be needing. The
three titles above are essential Ampersprite files.

CALL 912 -- this will cause ampersand hooks to be put in
place, which means that the Apple will now jump to Amper-—
sprite routines (machine language) when it sees the "&"
sign.

Use the "&I" command, to initialize the SuperSprite board
and zero table address storage locations, and then display
VDP graphics only.

Use the "&RX #,#" command to establish background color for
text and screen backdrop color and text color.

Use the "&RG1" or "&RG2" or "&RT" or "&RU" command to estab-
lish Graphiecs I, Graphics II, text or multicolor mode.

Use the "&REOQ" command and the "&RD1" command. Using "&RE1"
or "&RDO" are not for normal use and go beyond the scope of
StarSprite I. (An exception is occasional &RDO use in the
example subroutines at lines 9-10 and &RD1 in the subroutine
at line 22009).

Pick a sprite size with "&RZI1" or "&RZO0". The former com-
mand (size 1) is the one normally used; the latter command
makes sprites that are too small for most applications.

Pick a sprite magnification with "&RMO" or "&RM1". the
former command (magnification 0) gives better resolution but
smaller size (16 X 16 at size 1) while the latter command
(magnification 1) gives lower resolution but larger size (32
X 32 at size 1).

Tell the VDP where your data tables are. Here are some
normally used addresses for Graphics II mode:

10 &RS 6144: REM PUT SPRITE TABLE AT $1800
20 &RA 15104: REM PUT SPRITE ATTRIBUTE TABLE AT $3B0O
30 &RP 0 : REM PUT PATTERN TABLE AT $0000
40 &RC 8192: REM PUT COLOR TABLE AT $2000
50 &RN 14336: REM PUT NAME TABLE AT $3800

CALL 831 which will clear your card's memory to all zeroes.
This prevents leftovers or random data.

Use the "&L" command to load all VDP data tables (such as

sprite attribute table) from Apple memory, to VDP RAM mem-
ory, where they can be used for VDP graphics effects.

StarSprite I = 47

StarSprite I - Initializing the SuperSprite

12. Sometimes it is desirable to load the color table from a
special CALL rather than predetermined data.

In some cases it is desirable to have the same color data in
all 6144 bytes of the color table. Rather than saving a

table full of $F1 (decimal 241), we will use the following
line from Basic:

10 POKE 7,241: POKE 8,0: POKE 9,0: CALL 852

You may now proceed with your program. The following com-
mands are the most frequently used:

&AA sprite plane,Y-coord,X-coord,sprite number,color
(update all sprite attributes)

&AX sprite plane,X-coord
(change horizontal location of sprite)

&AY sprite plane,Y-coord
(change vertical location of sprite)

&AN sprite plane,sprite number
(change priority of sprite)

&AC sprite plane,sprite color
(change color of sprite)

&C offset,color byte
(place data in color table)

&N offset,name table byte
(place data in name table)

&P offset,pattern byte
(place data in pattern table)

&L Apple High,Apple Low,Counter,VRAM High,VRAM Lo
(upload data from Apple RAM to VRAM)

&RM1 (set magnification 1)

&RMO (set magnification 0)

When switching video screen switches to select/deselect
Apple or VDP graphics, try the following subroutines con-
tained in the sample programs:

GOSUB 9 for Apple video only

GOSUB 22009 for VDP video only
GOSUB 23009 for mixed video

StarSprite I - 48

StarSprite I - Initializing the SuperSprite
GOSUB 9 works because of POKE 255,1: POKE 254,128: CALL 768:
GOSUB 230009.

GOSUB 22009 works because of POKE 49395,0: POKE 49398,0 and POKE
255,1: POKE 254,195 (or whatever goes in register 1): CALL 768;

GOSUB 23009 works because of POKE 49396,0: POKE 49398,0.

Use POKE 49396,0: POKE 49397,0 for Apple video only without VDP
blanking filter, which improves the display.

POKE's to 49395 through 49399 affect soft switches that control
the VDP, video mixing, and related functions.

The above GOSUBs can be found in many of the programs in the
StarSprite system.

Use POKE 49399,0 to Reset the VDP and center Apple video.

StarSprite I - 49

StarSprite I - Using Ampersprite for Graphics

18. Using Ampersprite for Graphics
18.1. Animation

If you have not run the Ampersprite graphics tutorial on side A
of the main program disk, please do so now. Study the program,
then read any parts of the manual you may have skipped until now.

Complex animation using Ampersprite is explained thoroughly in
the StarSprite II system. Simple animation will be explained
here.

To animate is to move. This means either changing coordinates of
existing sprites or changing sprite numbers of existing sprites,
or both.

If you change X coordinates sprites move sideways. If you change
Y coordinates sprites move up or down. If you change both X and Y
coordinates sprites move diagonally. Increasing X moves a sprite
rightwards; decreasing it moves a sprite leftwards. Increasing Y

moves a sprite downwards; decreasing Y moves a sprite upwards.

-Y
-X, =Y +X, -Y
-X +X
-X, +Y +X, +Y
+Y

A sprite's coordinates define its upper left pixel, regardless of
the sprite's color, magnification, or size.

In Ampersprite you change an X coordinate by:
& AX 3,49

In the above example, the sprite in video plane 3 had its X
coordinate changed from whatever it was to 49.

StarSprite I - 50

StarSprite I - Using Ampersprite for Graphics

The syntax of the & AX command is:
& AX video plane number, X coordinate

Changing the Y coordinate of a sprite is accomplished similarly,
The syntax of the & AY command is:

& AY video plane #, Y coordinate

Note: the "A" in all the above means sprite attribute table
change, and the "&" means Ampersprite command,

Changing an X coordinate from 10 to 210 suddenly is not good
animation. You meed to slide from one location to another to
make the animation sequence realistic. This is often done with a
FOR-NEXT loop (see your Applesoft manual). For example:

10 FOR E = 10 TO 210: & AX 3,E : NEXT

The above Basic line will move your sprite quickly and smoothly
from left to right. If this movement is too fast, use a delay
loop:

10 FOR E = 10 TO 210: &AX 3,E: FOR W = 1 TO 50: NEXT : NEXT

The same animation principles apply to Y (vertical) movement. If
you want to test your hand at using Ampersprite without having to
write the preliminary ('"get-ready") lines, simply RUN AMPERSPRITE
BASIC (the Ampersprite tutorial program on graphics) and press
CTRL-Reset.

GOSUB 22009 in immediate mode (no line number), then type in

immediate mode FOR-NEXT commands, Ampersprite commands, and delay

loopss

Note: Make sure you are in a place where a shape is moving
when you hit CTRL-Reset. Expect moving shapes to be

using a low-numbered video plane, such as #0.

You may test out Y coordinate animation if you like, using what
you have learned in the X coordinate animation section above.

Let's examine two ways of getting diagonal animation:
y g g

10 FOR E

1l

0 TO 159: & AX O0,E : & AYO,E: NEXT
OR

10 FOR E

0 TO 159: & AA0, E, E, 8, 6: NEXT

StarSprite I - 51

StarSprite I - Using Ampersprite for Graphics

In the first example we use E as X coordinate and E as Y coordi-
nate (and we operate on video plane #0, the highest priority
plane your VDP has). In the second example we do the same thing
but use a different command. In this command the two "A"s stand
for all attributes are specifieds The syntax for the & AA com-
mand is:

& AA video plane #, Y coord., X coord., sprite #, color

Notice that I specified 8 for the sprite number and 6 (red) for
the color (the last two parameters in the list). Normally, you
would not change the color or the sprite number in an animation
sequence of one sprite.

Now let's examine sequence animation. Suppose you have a sequen-
ce of eight sprites. Each sprite (0-7) is an edited version of
the previous one —-- legs change their positions only a grid-
square or two at a time. The last sprite has cycled around until
it is nearly like sprite number O. To make the figure walk in
place (no horizontal or vertical movement) we might use the
following:

10 FOR E = 0 TO 7 : & AN O, E*4: FOR W=1 TO 50: NEXT : NEXT
20 GOTO 10

Notice that the "W" FOR-NEXT loop is a delay loop -- you may need
to increase it in order to make the movement slow enough.

The sprite number, E in the example above, is multiplied by 4
because although Ampersprite is normally dealing with size 1 (16
X 16) sprites which contain 32 bytes, sprite numbers are always
based upon size 0 (8 X 8) sprites which contain eight bytes.

It is important to make a distinction between sprite numbers and
sprite table numbers. Sprite table numbers are all based on size
1 (16 X 16) sprites, so the numbers 0-7 as sprite table numbers
are correct. But the correct sprite number for a sprite table
number is obtained by multiplying it by 4.

A more efficient way to animate a sprite sequence in place is:

10 FOR E = 0 TO 28 STEP 4: & ANO,E : FOR W = 1 TO 50: NEXT
NEXT

20 GOTO 10

& AN selects a new sprite for the table and places it on the
specified video plane.

In order to make the animated sprite sequence move horizontally,
use the following code:

StarSprite I - 52

StarSprite I - Using Ampersprite for Graphics

10 H=0:6& AAO, 0, 0, 0, 6

200 FOR E = 0 TO 28 STEP 4 : & AN 0,E : & AX O0,H
30 H=H+1: IF H> 210 THEN H = 0

40 FOR W = 1 TO 50: NEXT

50 NEXT

Does the sprite need to move further per step? Change line 30 so
it adds 2 to H rather than 1.

Adjust the speed of movement by changing the 50 in line 40.

If the man is walking down hill you might want to add a line 25
that looks like this:

25 &AY 0,H

To be certain that your sprite does not disappear off the bottom
of the screen (the lowest screen coordinate for Y is 191) you
will need to change 210 in line 30 to 159.

Moving many shapes at once is a bit more involved. All you need
to do is have a variable that represents the video plane number
then use either a FOR-NEXT or an increment algorithm:

10 REM START SPRITES ON VIDEO PLANES 0-5 AT Y COORDINATES O,
32, 64, 96, 128, AND 160

20 FOR E = 0 TO 210: FOR § = 0 TO 5: &AX S,E: NEXT

30 FOR W 1 TO 50: NEXT

40 NEXT

The above code changes each sprite's X coordinate before increr-
menting the X coordinate. In order to incorporate animation
sequences you might use a program that looks like this:

5 H=0

10 REM AGAIN Y COORDINATES ARE SPREAD OUT FOR EACH SPRITE

15 REM LET'S SAY SPRITE TABLE NUMBERS 0-7 COMPOSE THE FIRST
SEQUENCE, 8-15 COMPOSE THE 2ND, 16-23 THE THIRD, 24-31 THE
4TH, 32-39 THE 5TH, 40-47 THE 6TH

20 FOR E = 0 TO 28 STEP 4: H = H+1l: FOR S=0 TO 5

30 &AXS,H :

40 &ANS, E+(32%S)

50 NEXT

60 IF H> 210 THEN H=0

70 FOR W=1 TO 50: NEXT

80 NEXT

StarSprite I - 53

StarSprite I - Using Ampersprite for Graphics

Line 20 establishes the sequence FOR-NEXT, makes sure the hori-
zontal coordinate keeps increasing, and establishes the video
plane number FOR-NEXT. Line 30 updates X coordinates for all
sprite planes since it is inside the FOR $=0 TO 5 loop preceding
it. Line 40 updates sprite sequence numbers for all planes (it
is inside the FOR S=0 TO 5 loop also). The 32 is the number of
sprites per sequence lines 4 (we are dealing with size 1 (16 X
16) sprites). This number (32%S) is added to sprite numbers to
load the correct sprite number into the attribute table for each
of the six (0-5) planes' sprite sequences.

StarSprite I - 54

StarSprite I - Color Changes

19. Color Changes
With sprites, color changes are a snap:
&AC 0,6

The above command turns the sprite on video plane 0 red (6).
With the "&AA" command color change is specified as the last
parameter:

&AA #, #, #, #, color

To update an entire 6l44-byte Graphics II mode color table to
some specific number, simply use the following algorithm, POKEing
the new color data into 7:

10 POKE 7, 241: POKE 8,0: POKE 9,0: CALL 852:REM THIS ROUTINE
ASSUMES COLOR TABLE IS AT $2000 AND IS $1800 LONG

For a sprite to cycle through all the colors at an approximate
rate of four colors per second, use a simple FOR-NEXT loop:

10 FOR B = 0 TO 15: &AC 0,B: FOR W=1 TO 200: NEXT : NEXT
20 GOTO 10

In the example above, if you do not want the sprite to be black
or transparent (colors O and 1), have the first FOR-NEXT be from
2-15. The second FOR-NEXT is a delay loop. A delay of 200 is
approximately 1/4 of a second, so you should get about four
changes per second.

If you need to deal with color table bytes, one at a time:

&C i, # (the first number is the offset past the color table
starting address; the second number is a color data
byte)

The first number specifies the actual color table byte number
that you wish to change; the second number specifies the new
data.

To update an entire 8-byte pattern's color, the following sample
is recommended: ~

10 FOR Q = 5776 TO 5783: &CQ, 241: NEXT
or
10 FOR Q = 4096 + (8*%210) TO 4096 + (8%210) + 7: & CQ,241:
NEXT

StarSprite I - 55

StarSprite I - Color Changes

The first version (above) gets the job done faster and specifies
the byte numbers of the color table (5776-5783) while the second
version points out the pattern position number being dealt with
(210) and shows that it is the third section of the screen being
dealt with (4096 means section 3, 2048 means section 2, and
nothing added means section 1.)

StarSprite I - 56

StarSprite I - Pattern Changes and Using Text

20. Pattern Changes and Using Text

The essence of the Sprite Painting program is to change pattern
tables and color tables as you paint with sprites all over the
pattern plane.

Note: Sprites have no effect on pattern plane bytes, nor do
backdrops or Apple video in the background.

The exact nature of the change in pattern and color tables in the
Sprite Painting program in particular was explained earlier.

The data stored in both color and pattern tables are inverses of
what you would expect. The CHARINV file (full of inverse charac-
ters) on Side B of the StarSprite I diskette was specifically
designed with inverse characters for Sprite Painting text label-
ing (option 5) because of this inverse situation.

Anormal pattern is a bit mapped 8X8 tile built exactly the same
as an 8X8 sprite. The bit-mapping is essentially the same as
that used with Apple graphics block shapes, except that the Apple
only displays seven bits per byte while the VDP displays all
eight bits in every byte.

A dash is $FF or 255. A dot can be any one of $1, $2, $4, $8,
$10, $20, $40, $80. See below:

Bit number 7 6 5 4 3 2 1 0
Hex value $80 $40 | $20 $10 $8 $4 $2 $1
Dec. value 128 64 32 16 8 4 2 1
Sample byte 1 0 0 0 0 1 0 1 = $85 = 133

In practice a text dash would be a shape pattern that used seven
zero bytes, and in the center of the pattern, one byte with all
bits on except for the last three. This allows space between
characters, even in the text mode, which uses only the six high—
est bits of every byte for display, which allows it to have a 40-
characters—-wide screen rather than 32 wide -- the normal 8-bit-
per-byte-using graphics mode.

Now, to explore the exact nature of a dash-shaped pattern in both
graphics and text mode, let's look here:

StarSprite I - 57

StarSprite I - Pattern Changes and Using Text

Graphics Mode Dash Text Mode Dash

As you can see, the same pattern table could be used for both
graphics mode text and text mode text. This is the situation
with the CHAR file on side B of the StarSprite I disk.

One thing is essential here: the last three (lowest significant
bits) pattern bits in each pattern byte must remain off (zero or
blank).

In using CHAR patterns, simply subtract 32 from the correct ASCII
number of a character to get its proper pattern table number.

The best way to see how this can be done is to study TYPE.GR and
TYPE.TX, two programs found on side B of the StarSprite I disk.
These programs use the CHAR program and allow for text color and
background color changes, within certain limits.

Neither of the programs use Ampersprite, to provide examples of
dealing with the VDP from Basic without Ampersprite. Now let's
look at changing data in a pattern table:

10 &P 5776,0

The above line changes one byte in a pattern table —-- byte 5776,
To change the entire pattern that begins at byte 5776:

10 FOR Q = 5776 TO 5783: &P Q,0: NEXT
OR

10 FOR Q
NEXT

]

4096 + (8*210) TO 4096 + (8%210) + 7: &P Q,0:

Both of the lines of Applesoft above function identically, how-
ever, the first one has the exact table byte precalculated while
the second one calculates the proper location in the algorithm
itself.

You add 4096 when the pattern will go onto the bottom section of
the screen, 2048 when it will go onto the middle section, and
nothing when it will go onto the top section. The 210 is the
pattern position number the pattern will occupy on the bottom
section of the screen. The 8 is because each pattern has eight
bytes.

StarSprite I - 58

StarSprite I - Pattern Changes and Using Text

In dealing with pattern and color tables, one way to avoid confu-
sion is to always use a name table that contains the data 0-255,
then 0-255 again, then 0-255 again. These 768 numbers will pro-
vide a sequential series of pointers to color and pattern table
entries.,

You will always know that byte 4087 of color and pattern tables
will be displayed lower on the screen than byte 3129 (of color
and pattern tables) if you use this convention. All Sprite
Painting files use this arrangement —-- their name table file is
called NAMEPAINT and contains the sequential name table arrange-
ment discussed above.

To see how a program like TYPE.TX works with Ampersprite, LOAD it
and DEL 60-168, add:

PRINT DS$"BLOAD I&I": ?D$"BLOAD AMPERSPRITE": CALL 912

to line 5, then transfer lines 60-151 in Sprite Painting to
TYPE.TX.

Transferring lines from one program to another is to either
capture them (see Apple DOS manual, page 76) or LOAD SPRITE
PAINTING and LIST 60-151 and then LOAD TYPE.TX and use your
editor functions to type over lines 60-151, which should still be
on the screen. As you do this please change the &RG2 in line 90
to &RT. The program is ready to RUN. But change it some more:
change line 350 to read:

350 &N PSN,CH:GOTO 310 and change line 500 to read: 500 &N
PSN+1, CH:RETURN

You have just improved the program's responsiveness and speed: a
line of letters (using the REPEAT key) takes seven seconds with-
out Ampersprite but using Ampersprite takes five seconds or
(eight characters per second).

For even greater speed, remove some of the IF statements (311~
313, 315, 318, 325, and 327).

Before going on, notice that line 500 is doing what lines 500-560
used to do -- and doing it better and easier. You can eliminate

lines 505-560 once the new line 500 is in place.

Text is best handled with the "&N #,#" command.

StarSprite I - 59

StarSprite I - Magnification and Size

21. Magnification and Size

Size 1 displays 32 bytes of consecutive sprite table data (fFor 16
X 16 sprites) but size 0 displays only eight bytes.

A sprite that was constructed in the size (16 X 16) will omnly
be partially displayed if size 0 is specified.

Size 1 is more useful for most purposes except when tiny sprites
are needed (8 X 8). When constructing tiny sprites, remember
that each of the four 8 X 8 quadrants of your 16 X 16 sprite grid
is a separate sprite. You will be creating four at once. If you
ever use size 1 with them you will see four at once. Here are the
Ampersprite commands:

&RZ0O enables size O
&RZ1 enables size 1
&RMO enables magnification O
&RM1 enables magnification 1

One thing to bear in mind when using these commands is that you
must not alter certain zero page locations in programs using
"§RZ" and "&RM" commands. Here are those addresses: $DB-$DF,
$D4~-$D5, SEB-SEF, $19, $7-%$9, $1E-$1F, and $F9-$FF. Also avoid
$300-$3EA and $800-$DFF.

Size and magnification commands affect all sprites on the screen.
To have a mixture of sprite sizes, plan to draw your sprites in
different sizes at the start. Or use multiple-sprite shapes.

One factor to consider with multiple sprite shapes is that a
magnification change requires X and/or Y coordinate adjustments.
Here is a 4-sprite (16 X 16) shape to consider:

X X+32 | X, Y v X+16, Y
¥ Y u l_] l —

— —
X X+32 X, Y+16 . F X416, Y+16
v+32 Y432 l D : ’ ~—
| | |
e
Magnification 1 Magnification 0 Magnification 0O
Correct Proximity Incorrect Proximity Correct Proximity

StarSprite I - 60

StarSprite I - Magnification and Size

Magnification makes a sprite's area increase/decrease by a factor
of 4, while its dimensions change by a factor of 2. Here is a
size and magnification table:

X, Y J—
X X+32 I——J [_I | X, Y v | X+16, Y
Y Y | -
| | |
| | __{
X X+32 X, Y+16 V. X+16, Y+16
Y+32 Y432 ' I ‘ l I —
| | |
| S F S — —
Magnification 1 Magnification O Magnification 0
Correct Proximity Incorrect Proximity Correct Proximity
Pixel size 1X1 Size 0 Magnification 0 8 bytes used 8X8
Pixel size 2X2 Size 0 Magnification 1 8 bytes used 16X16
Pixel size 1X1 Size 1 Magnification 0O 32 bytes used 16X16
Pixel size 2X2 Size 1 Magnification 1 32 bytes used 32X32

StarSprite I - 61

StarSprite I - Using Ampersprite for Sounds

22. Using Ampersprite for Sounds
22.1. Programmable Sound Generator Registers

The PSG (programmable sound generator) on your SuperSprite has 16
registers which can be either read from or written to.

To make sounds you write to them. (If you decide you need to
read from them do the following: POKE 49375, (register number)
and then PRINT PEEK (49375) to get contents of register.) Here
is what each register does:

Registers 0-5 are for tone generator control. You enter program
tone periods in them. Registers 0 and 1 are for channel A, 2 and
3 are for channel B, and 4 and 5 are for channel C.

Numbers up to 4095 may be written to any of these pairs of
registers. In each pair, the lower numbered register is the fine
tune (low byte) register and the higher one is the coarse tune
(high byte) register. For example: for channel A, register 0 is
fine tune, register 1 is coarse tune. The higher the tone period,
the lower the tone.

Register 6 is the noise generator control. You enter noise
periods into this register. Values may range from 0 to 31. Noise
frequency is regulated with this register and different types of
noises (guns, explosions, waves, hisses, steam engines, etc.) are
the result.

Mixer control and I/0 port comtrol are the functions of register
7. The register puts up to three tones together with or without
sound effects.

Each of the PSG's sound channels may have tone, noise, or both.
Any one, two, or all three of the channels may be active at once.
And since register 14 holds data used by the programmable sound
filters on the SuperSprite, register 7 always has an extra 64
added to it to enable filter control via port A, whose data is
controlled by register 14, (Register 7 is one of the two regis-
ters dealt with to use the filters, since it controls direction
of the 1/0 ports.)

Registers 8, 9, and 10 are the amplitude (volume) controls for
channels A, B, and C respectively. Volume settings may range from
0 (off) to 15 (loud). If a number greater than 15 is put into
any of registers 8-10, this signals the PSG (programmable sound
generator) to vary amplitude using a sound envelope, defined in
higher-numbered registers.

If an envelope is specified, the number placed in registers 8, 9,
or 10 (16 or greater) are flags and give no specific volume
setting. See the description of the next three registers.

Note: The SuperSprite has an adjustment for sound volume at

the top front of the board.

StarSprite I - 62

StarSprite I - Using Ampersprite for Sounds

Registers 11 and 12 are set up to hold the sound envelope period.
A number as high as 65535 may be put into this pair of registers.

Register 11 gets the fine tuning (low byte) data and register 12
gets the coarse tuning (high byte) data.

The higher the sound envelope's period, the lower the resultant
envelope frequency. An envelope is a pattern of sound variation
using amplitude control.

Tremolo is the name of a sound envelope in which sound amplitude
varies at a cyclical rate.

Register 13 is the envelope shape/cycle controller. With this
register, whose values may vary from 0-15, we get 10 different
shape/cycle configurations. (Values 0-3 are identical in func-
tion, and so are values 4-7, so that is why 16 different values
give only 10 combinations.)

On the next page are the envelope generation output (amplitude)
graphs for all viable values:

StarSprite I - 63

StarSprite I - Using Ampersprite for Sounds

Register 13 BITS

]
©

B2 Bi Be

mMCZ——~Z00
AOP AP
orox

ENVELOPE GENERATOR
OUTPUT

m->»Zom-r>

Q| X|X

1| x| x|

11 0] 0| o NNNNNNNNNNN
1{0(0] 1

BV AVAVAVAYA
1011\r

—
-

SIS
(S

1)1 1
111710
TPt

StarSprite I - 64

StarSprite I - Using Ampersprite for Sounds

Register 14 is the filter control register. This register gets
values for the programmable filters and register 7 decides which
direction these I/0 ports are going (input or output). (Register
7, if you are using Ampersprite, is always on "enable filter
port" setting.

Putting 3, 7, 11, or 15 in register 14 specifies an unfiltered
sound, and so does any number less than 64 being put into regis-
ter 7.

Register 15 is unused.

The Ampersprite sound commands allow easy programming of sound
effects from Applesoft, with no POKEs necessary.

StarSprite I - 65

StarSprite I - Sound Filters

22.2. Sound Filters

In the Ampersprite language the various sound commands automati-
cally enable register 14. Technically, this means that whatever
value gets put into the sound mixer (register 7) gets 64 added to
ite Values of 64 to 127 are to be used in register 7 -- it is
inadvisable to use 0-63 or 128-255.

Values under 64 or from 128-191 disable sound filters

There is no reason to use values over 127 or under 64 in register
7, the mixer. If you desire to disable filtering, the best way
is to put a 3, 7, 11, or 15 in register 14 and leave register 7
alone. This leaves filters enabled, and all you need to do to
filter the sound is to replace the 3, 7, 11, or 15 with any other
value between 0-15. This way, you never need to touch the mixer
in register 7 when you deal with sound filtering.

Filtering sounds is extremely easy. Simply use a "fill GI chip
register with specified contents" command: &TR, &BR, or &SR.

And make sure you give this command immediately after a tone or
noise command (&TN, &TE, &SN, &SE, &BN, or &BE).

The reason is simple: all six of the above commands zero all GI
chip registers 0-15 before inserting values related to their
specific command. This means that register 14 contains a zero.
This is a "filter on" condition. To turn off filters with a 3,
7, 11, or 15 or filter sound with some value other than 0, you
will need to put 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, or 14 in

register 13, the filter control register.

Here is how you talk to this register, bearing in mind that
"§SR", "&BR", and "&TR" are equivalent and interchangeable:

& TR 14,# :REM # is 0-15 (see table below)

For example: & TR 14, 5

The example above emphasizes low tones. See the Installation and
Technical Reference manual for a more complete description of the
functions of the various filters.

The range of frequencies with the PSG is from 15.609 Hz to 63.92
KHz. The A above middle C is 440 Hz. The tone period to put into
an Ampersprite command to get 440 Hz is 145, To work out other
period values for other notes' frequencies, use:

period value = 63,920.4 + desired frequency

You must round all decimals to the nearest integer value.

If you just want convenient values to use as tone periods, use:

StarSprite I - 66

StarSprite I - Sound Filters

fr TONE A TONE T

IDEAL PERIOD IDEAL PERIOD

NOTE OCTAVE FREQUENCY VALUE NOTE OCTAVE FREQUENCY VALUE
C 1 32.703 1955 C 5 523.248 122
C# 1 34.648 1845 C# 5 554.368 115

D 1 36.708 1742 D 5 587.328 109
D# 1 38.891 1644 D# 5 622.256 103

E 1 41.203 1552 E 5 659.248 97

F 1 43.654 1465 F 5 698.464 92
F# 1 46.249 1382 F# 5 739.984 86

G 1 48.999 1305 G 5 783.984 82
G# 1 51.913 1232 G# 5 830.608 77

A 1 55.000 1163 A 5 880.000 73
At 1 58.270 1097 A# 5 932.320 69

B 1 61.735 1036 B 5 987.760 65

[2 65.406 978 C 6 1046.496 61
C# 2 69.296 923 C# 6 1108.736 58

D 2 73.416 871 D 6 1174.656 54
D# 2 77.782 822 D# 6 1244.512 51

E 2 82.406 776 E 6 1318.496 48

F 2 87.308 732 F 6 1396.928 46
F# 2 92.498 691 F# 6 1479.968 43

G 2 97.998 652 G 6 1567.968 41
G# 2 103.826 616 G# 6 1661.216 38

A 2 110.000 581 A 6 1760.000 36
A# 2 116.540 549 A# 6 1864.640 34

B 2 123.470 518 B 6 1975.520 32

C 3 130.812 489 C 7 2092.992 31
C# 3 138.592 461 C# 7 2217.472 29

D 3 146.832 435 D 7 2349.312 27
D# 3 155.564 411 D# 7 2489.024 26

E 3 164.812 388 E 7 2636.992 24

F 3 174.616 366 F 7 2793.856 23

| F# 3 184.996 346 F# 7 2959.936 22
G 3 195.996 326 G 7 3135.936 20
G# 3 207.652 308 G# 7 3322.432 19

A 3 220.000 291 A 7 3520.000 18
A# 3 233.080 274 A# 7 3729.280 17

B 3 246.940 259 B8 7 3951.040 16

| C 4 261.624 244 C 8 4185.984 15
i C# 4 277.184 231 C# 8 4434.944 14
D 4 293.664 218 D 8 4698.624 14
D# 4 311.128 206 D# 8 4978.048 13

E 4 329.624 194 E 8 5273.984 12

F 4 349.232 183 F 8 5587.712 11
F# 4 369.992 173 F# 8 5919.872 11

= G 4 391.992 163 G 8 6271.872 10
G# 4 415.304 154 G# 8 6644.864 10

A 4 440.000 145 A 8 7040.000 9
A# 4 466.160 137 A# 8 7458.560 9
L B 4 493.880 129 Lj 8 7902.080 8

- e

StarSprite I - 67

StarSprite I - Sound Filters

The discussion of frequencies and period values above will help
you understand what to expect from the filters.

A high pass filter with a 400 Hz cutoff allows only frequencies
above 400 Hz to pass through at full volume —-- volume is reduced
on all the frequencies up to 400 Hz. So if the two A's around
middle C are 440 Hz and 220 Hz, then by hitting a couple of keys
on a piano, you will be able to see what frequencies we are
talking about. The second A above middle C is 880 Hz, the next
is 1760, the next is 3520, so this will let you see how 400, 800,
1600, and 3200 Hz cutoffs will effect PSG tomnes.,

"&TR 14,1" gives the lowest sounding harmonies and "&TR 14,12"
gives the highest, for comparable pitches. (The high pass filter
allows frequencies through that are higher than the given cutoff
frequency, the low pass filter allows frequencies through that
are lower than the given cutoff frequency, and the band pass
filter allows frequencies through that are close to and centered
upon the given center frequency.

Filters give your PSG the capability of voices. They add a whole
world of dynamics to the already-versatile GI sound chip. In
combination with tremolo and vibrato effects, well-chosen filter-
ing can give you sounds that simulate musical instruments.

For learning purposes, it is best to start with one note at a
time, as double and triple harmony are more difficult for the GI
chip to handle, more difficult to use filters with, and more
difficult to create effective vibrato and tremolo with.

StarSprite I - 68

StarSprite I - Tones

23. Tones

In the Sound Effects Tutorial Using Ampersprite there are exam-—
ples of the use of the Ampersprite language to create tones.

A good example is the European Police Car, lines 59-80. Lines 65
and 75 are simple delay loops. Line 78 stops the siremn action if
the tones have sounded over five times. The GOSUB 3 goes to a
CALL 3578 which zeroes all registers and therefore turns off all
sound. The GOSUB 59999 merely prints "European Police Car" on
the screen. Line 79 cycles back to line 60 to keep the siren
going. The other two lines are:

60 &TN 254,0,0,15,0,0
70 &TN 342,0,0,15,0,0

As you can see by looking at your command card, the "T" means
tone, the "&" means an Ampersprite command, and the N means no
sound envelope will be used.

The first three numbers specify the tone periods for channels A,
B, and C, and the last three numbers specify the amplitude values
for channels A-C.

In the above example, only channel A is being used. The higher
the period number the lower the tone frequency, since the tone
period is the inverse of the frequency.

Tones or sounds last forever if you do not turn them off, which
is why using the subroutine at line 3 to zero all registers is
necessary.

As soon as the subroutine at line 3 is executed, the tone is
turned off so it is important to observe that the delay loops are
not the delay between tones —- they are the delay during tones.
The PSG takes virtually no processor time, so to make the tone be
longer than a ‘thousandth of a second, you must let the tone be
sustained over a period of time.

How will you know what tone period numbers to put in Ampersprite
sound commands? Try consulting lines 1330-1341 in the GI (Gener-
al Instruments PSG) program. Notice that all G's are half what
higher G's are and twice what lower G's are. The same is true
for the other 11 notes.

In the program, AB means A flat -- and BB means B flat and EB
means E flat.

StarSprite I - 69

StarSprite I - Multiple Tomnes

24, HMultiple Tomnes

In the Sound Effects Tutorial Using Ampersprite, there is an
example of multiple tones in an Ampersprite program.

Both the Ocean Liner from line 999~1000 and the Train Or Fac-
tory's Noon Whistle from line 1299-1300 use two tones and one
sound effect each.

Notice that line 1300 is a bit different. After getting all
prepared for two tones by use of the "&BN" command, both the
mixer register (reg. 7) and the channel A tone period register
(reg. 0) are changed. A value of 48 in the mixer register (reg-
ister 7) specifies tones on all three channels and sound on
channel A only.

The 252 in register 0 specifies channel A's new tone period.

The difference is that we have gone from noise on channel A and
tones on Channels B and C to noise on Channel A and tones on all
three channels (trains usually have three tones or more).

The "&BN" or "&BE" commands normally have the mixer in register 7
(ignoring filter settings) set to 49 so channel A tone is disabl-
ed. "&BR" or "&SR" commands would have worked just as well in
line 1300, since they are equivalent. (The 49 setting, and all
other mixer settings, will have 64 added to them to enable fil-
tering potential),

Line 1000, shows the normal way the "&BN" command.

For three tones, two tones, or one tone, use "&TN" or "&4TE". For
any combination of sound and tone, use "&BN" or "&BE".

StarSprite I - 70

StarSprite I - Sound Effects

24,1, Sound Effects

A good sound effect is the gunshot found in line 199-200 of the
(GI) Sound Effects Tutorial Using Ampersprite. The "&SE" command
is used which means sound effects will use a sound envelope. "S"
stands for sound effect, "&" stands for Ampersprite command, and
"E" stands for envelope.

The syntax of the & SE command is as follows:

& SE Noise Period, A vol., B vol, C vol., Envelope Period,
Envelope Shape

The first number is the noise period, the next three numbers are
amplitude values for each channel; for each channel using the
sound envelope the amplitude value should exceed 15. Some values
over 15 and others less than or equal to 15 would give mixed
envelope use/disuse., All three amplitude values are 16 on line
200, just as the previous value, 9, represents the noise period
value. The last two values describe the envelope's shape/cycle.
The envelope period of 2250 precedes the shape/cycle value of O.
This last value specifies an envelope that starts loud but trails

off fast. The period value is usually a matter of experimenta-
tion.

The Explosion sound effect in lines 299~300 is the same as the
Gunshot sound except for a different sound period and a longer
envelope period.

Notice how the Bombdrop With Explosion sound in lines 499-510
creates the bombdrop first in lines 500-510 and then jumps to
line 300 for the explosion. The bombdrop is a simple tone-
lowering routine that changes the channel A tone period from 0 to
255, The tone is turned off with the "&TR 8,0" command so the
explosion will not have a tone in it. "&TR", "&BR" and "&SR"
commands can be used interchangeable ~-- they function identical-
ly.

A more complex sound effect is the Wolf Whistle in lines 699-770

where a man's whistle needs a whooshing air sound to give it
realism, accomplished with the one in the noise period register.

StarSprite I -~ 71

StarSprite I - Sound Effects and Tones Together

25. Sound Effects and Tones Together

In line 999-1000 is an Ocean Liner sound that gives both low
ocean liner tones and steam sound simultaneously, to add realism
to the sound effect.

The "&BN" or "&BE" commands are needed to get sound and noise
simultaneously. The "&" stands for Ampersprite command, the B
stands for both sound effects and noise, and the N stands for no
sound envelope. (Sound envelopes with tones will give tremolo
effects, as we will see in a minute.)

The tone periods 511 and 712
while the sound period 1 was
11 for sound and 15 for both
loop of 1800 loops tells how
continue (over two seconds).

were chosen for channels B and C,
chosen for channel A. Amplitudes of
tones were chosen also. The delay
long the sound will be allowed to

An optional way of getting the

correct length of time on a sound is to have over two seconds
worth of other types of programming occur before using CALL 3578
to shut off the noise and sound.

The following command provides an example of tremolo:

1000 &TE 64, 64, 64, 14: = 1 TO 1800:

NEXT: GOSUB 3:

12, 16,
GOTO 1

8, 300, FOR QW

Specify the period value 64 in the first three value positions in
the above "&TE" command. That is all that is required.

Tremolo wavers volume. Vibrato wavers pitch. Observe:

700 &TN O, 164, 0, 0, 15, 0

710 FOR A = 162 TO 166: &TR2,A: FOR B = 1 TO 10: NEXT: NEXT: FOR
A =165 TO0 163 STEP-1: &TR2,A: FOR B=1 TO 10: NEXT: NEXT

720 GOTO 710

In the above vibrato example, register two is pitch control for

channel B.

Vibrato is caused by varying this pitch (around 164) from 162-
166. Try "&TN 137, 164, 0, 15, 15, 0" next and you will have
harmony with only one note doing vibrato. Can you figure out how
to vibrato them both, and then add a third part to the harmony,
making a chord, and vibrato that too? You have all the informa-
tion you will need. Try it!

StarSprite I 72

StarSprite I - Using Ampersprite for Sound and Graphics

25.1. Using Ampersprite for Sound and Graphics

Boot the StarSprite I demonstration disk, and press CTRL-RESET as
soon as the sprite character creature starts pushing the star
across the screen.

Type 540 END <Return)> to change the program from exit to end.

Type RUN <Returmn>.

Note:

If you do not follow the above instructions, the prog-
ram will automatically exit before you get a chance to
list and study it.

The following is a summary of how the sound and graphics were
used together in the program you now have in memory:

Line

Function

(0-2)
(3)
(30-140)
(150)
(152)

(155-165)
(167)

(169)
(210)

(391)
(400)
(410)

(415)
(420)

(422)

(423)

(424)
(425-427)
(435)
(438)

Load files

Initialize ampersand hooks

Initialize VDP and give values and modes.

Erase screen

Put 0 (tramsparent) throughout color table for back-
ground and 15 (white) for text. ($F0 is the hex for
240; $F is 15, and $0 is 0.)

Load sprite & sprite attribute tables.

Use 208 as '"quit processing any sprites after this"
(from this video plane number on) signal to turn off
all sprites for now. Then (GOSUB 22009) display VDP
graphics only. Then (the POKE's) change the color table
to white text and black background.

Put name table into VDP memory.

Load and display Apple graphics scene behind VDP dis-
play.

Load some new attributes into Apple memory.

Load this new data into VDP at $3B0O

Get note data (which gives the makings of a C chord, an
F chord, and a C 7th chord (the TB% really means B
flat.)

Give character something to walk on.

Animate the three sprites (32 X 32, size 1, mag. 1) of
the character and the one-sprite star.

When the character reaches X=108 quit and stop all
sound (CALL 3578) and go on to next part of the prog-
ram.

Make sprite sequence continue to go through its sprite
numbers (N). Initialize CH at minus one so that line
424 works right after CH gets above 7. (CH stands for
which chord number. There are three chords but in a
special 7-chord sequence.)

Chord sequence number chooses which chord.

Play chord

Shhhhh! Quiet!

Turn off sprites -- erase walking

StarSprite I - 73

StarSprite I - Using Ampersprite for Sound and Graphics

The DANCE file contains even more elaborate sound and graphics
demonstrations.

StarSprite I ~ 74

StarSprite I - Error Handling

26. Error Handling

If you hear your Apple speaker "beeping'", and you are not in a
routine where such a signal is used as a confirmation (for exam-
ple, Sprite Painting, or Maze Drawing), your Apple most likely
just processed an error. If this happens, these are some of the
probable causes and cures:

1. You tried to load a file not on the disk in your drive. You
either spelled it wrong or the wrong disk is in the drive.

CURE: Run the program again, and spell file names cor-
rectly this time, and be sure to switch to a data disk when
prompted to do so (sometimes this CAN be the program disk).

Remember that you can catalog your disk after pressing CTRL-
RESET almost anytime. Also, remember that when pattern
tables are saved or loaded, .P is appended to their names,
and color tables get .C appended to their names, so you need
not type that part.

2. Your disk is full (it holds 496 sectors of user—addressable
data). CURE: Keep better track of data disk fill up so
that when your disk seems pretty full you can INITIALIZE a
new one (see DOS manual) and use it as a new data disk.
Sector lengths are given before file names when you do a
CATALOG.

3. I/0 error. Drive door was open, disk media was unformatted,
or damaged.

CURE: Make certain drive door is closed.

If media is unformatted, use the DOS INIT command to format
it (see the DOS 3.3 manual for more information on format-—
ting media).

If media is damaged switch to a new diskette.

4, CTRL C was hit. In many Basic utilities in the StarSprite
system this is a legitimate way to quit what you are doing
and return to the main program menu. Data will occasional-
ly be lost in memory, but disk data will be unaffected.
Even though usually legitimate, the error beeps will be
heard.

5. You ran a program from immediate mode and pointers were set
wrong.

CURE: Reboot and run the program from the disk menus.

6. Write protected. Do this to your BACK-UP COPIES only, not
the disks you use -- especially data disks.

StarSprite I - 75

StarSprite I - Error Handling

7. Bad INPUT response. CURE: If your choices are 1-5 or ESC,
hitting N (or any other letters) is incorrect and inadvis-
able and you will have to choose again.

StarSprite I - 76

StarSprite I - Interrupts and the Status Register

27. Interrupts and the Status Register

The StarSprite I demonstration disk contains three files not used
by the self-running demo. They are:

AMPERSPRITE.INT (a second version of Ampersprite)
I&I.INT (the first letter interpreter)
STATUS REGISTER USE (a BASIC program you may run)

Here is how to run the interrupt demonstration:
o Boot the StarSprite I demonstration disk.

o When the disk drive stops spinning, press CTRL-RESET to
break out of the program.

o Type: RUN STATUS REGISTER USE

The entire status register demonstration is self-explanatory.
The implications of this are not so easily understood, and bear
more discussion.

The purpose of the Status Register Use program is to allow you to
learn how to use the features of the AMPERSPRITE.INT language.

AMPERSPRITE.INT, differs from Ampersprite in one major way: it

allows you to access the status register of the VDP. The

implications of this are twofold:

1. You may detect sprite collisions (the coincidence flag in
the VDP status register).

2. You may detect any "fifth sprite problem" than may occur in
your program.

The fifth sprite problem, as it is sometimes called, is essen-
tially a limitation of the VDP. No more than 4 sprites may be
displayed on a given horizontal scan line.

If your program moves more than the allowable four sprites into a
given horizontal scan line, the portion of the lowest priority
sprite that occupies that scan line will cease to be displayed.

This problem does not affect the four sprites of higher priority.
Note: This limitation is horizontal only, not vertical.

By highest priority, we mean lowest numbered video plane. Each
sprite or portion of a multicolored sprite has to have its own
video plane. There are 32 sprite planes (0 - 31). The highest
priority plane is 0; the lowest is 31. Sprite plames O through 3
are never in danger of being obscured by the fifth sprite prob-
lem, but the rest are. You must bear this in mind when program-
ming.

StarSprite I - 77

StarSprite I - Interrupts and the Status Register

The advantage of being able to detect a fifth sprite problem is
that you can correct the direction of motion of at least one
sprite to clear up the problem well before it is visually detect-
able. '

Although 32 sprites may be on the screen at once, the four-sprite
horizontal limit must be carefully monitored. The best program-
ming practice is to move only four objects as sprites, and mani-
pulate all the rest of your objects as pattern by changing the
name table, '

Note: the pattern plane never interferes with the sprite
planes, but there is no hardware way to detect colli-
sions between areas or objects on the pattern plane and
sprites.

The way you check for a fifth sprite problem is to PEEK location
233. 1If the value is greater than 0, a fifth sprite problem is
occurring, otherwise everything is fine.

If a fifth sprite problem is occurring, location 234 contains the
location of the offending sprite.

Using the information in these two locations, you will be able to
effectively avoid the fifth sprite problem.

For examples of the use of these locations, see lines 293 through
295 of STATUS REGISTER USE. Run this program until you are
comfortable that you know what it does.

Now change line 279 so that other higher number sprite planes are
involved. For example, &AA4, 99, 96, 128, 13 could be changed to
&AA31, 99, 96, 128, 13 -- now 31 will be the "offending" sprite.
StarSprite III goes into the use of the status register from
machine language, and StarSprite II allows you to use it from
BASIC.

For collision checking, you simply PEEK location 232, If a
collision occurs the contents will be non-zero, and if no colli-
sion occurs a zero. For example:

10 ¢ = PEEK (232) : IF C <> 0 THEN some sort of collision routine

To find out which sprites collided, check backwards through the
last sequence of programmed sprite movements until you find the
culprit.

Refer to line 193 in Status Register Use. For a clearer idea of
where to use AMPERSPRITE.INT and collision detection, think of
the "shoot 'em up" games you have played. For every event of a
bullet or a laser hitting an alien or asteroid, a collision must
be detected for the game to function properly.

StarSprite I - 78

StarSprite I - Interrupts and the Status Register

Why the suffix INT? This version of Ampersprite uses the inter-
rupt facility of the VDP to time the status register checking.
These interrupts are generated when the VDP is finished "paint-
ing" a video frame. This is no coincidence as the only safe time
to read the status register is at the end of a frame.

So the suffix INT is short for interrupt-drivem. AMPERSPRITE.INT
handles the turning on (enabling) and off (masking) of interrupts
to enable you to perform these checks without having to worry
about the various machine language protocols to observe.

To enable VDP interrupts:

CALL 3826

To enable 6502 interrupts:

&D (for "do interrupts")

To disable VDP interrupts:

CALL 3838

To disable 6502 interrupts:

&Q ("quit doing interrupts")

It is essential that you enable both VDP and 6502 interrupts when
you want to perform status register checking, and that you
disable both before leaving your program. If you do not issue
the

CALL 3838 : &Q

sequence, your Apple may do unpredictable things (at unpredict-
able times), and your disk I/0 is in severe danger!

Note: The files I&I.INT and AMPERSPRITE.INT replace the files
K2, I&I, and AMPERSPRITE, so for interrupt-driven pro-
cessing, you need not load K2,

It is essential that you issue a CALL 3826 before the
normal call 912 to make this version of Ampersprite
work.

Again, and this cannot be stressed enough, you must shut off
interrupts before exiting AMPERSPRITE.INT by issuing a:

CALL 3838 : &Q
You will probably not need to use &D or &Q between your program

initialization and end because all the necessary instructions for
status register checking are built into AMPERSPRITE.INT.

StarSprite I - 79

StarSprite I - Interrupts and the Status Register

Referring to the Status Register Use program, notice that CALL
3826 was issued not only before the CALL 912 in line 3 (an
initialization step), but also in line 145 just after the ini-
tialization commands and before the CALL 831 that clears video
RAM.

If no calls to 3826 are issued, or if the &Q command is issued,
AMPERSPRITE.INT functions just like Ampersprite (normal version).
This precludes the use of the status register for collision
detection and fifth sprite checking.

To use this version of Ampersprite correctly, you must define, or
mark the last sprite in your attribute table. If you have N
sprites displayed on the screen, you must set the Y attribute of
the N+1th sprite to 208. This is done by issuing the command:

&AYN+1,208

If you fail to make this definition, collisions and fifth sprite
problems will be detected for sprites that are either off the
screen, transparent, or both —-- in any event not the sprites you
are tracking.

If you look at line 180, you will see that sprite planes 2
through 31 are shut off. This was done by issuing the command:

&AY2,208

Specifying a Y coordinate is a VDP signal to turn off all higher
numbered sprite plane processing, including the plane specified.
If you are using 7 planes (0-6), make sure to use the &AY7,208
command before your main program begins.

Progamming Hint: To speed up program execution in collision
handling, rather than a series of IF statements, try
dividing the X and Y coordinates by a constant (say,
10), and using ON X GOTO or ON Y GOTO.

StarSprite IT will contain a sample game that is totally depend-
ent upon status register checking.

StarSprite I - 80

StarSprite I - Utilities for Table File Generation

28, Utilities for Table File Gemeratiom
28.1., Methods of Designing Sprites

After booting side B of the StarSprite I disk, you will see six
options on the main menu. Option 3 is Making/Editing Files Used
By Games.

Type 3 and read the Sprite Making/Editing & Scene Examination
menv.

Option 1 is the file named Sprite Maker (the menu name is Shape-
To-Sprite-Convertor), and can be used to transform parts of the
following Apple graphics into sprites:

o block-shapes

o hplot shapes

o vector shapes

o binary pictures

It also allows creation of new sprites.

If you are going to be creating new sprites (or by editing pre-—
existing sprites), use either option (2) Single Sprite Editor or
option (3) Multiple Sprite Editor.

The Single Sprite Editor is for 16 X 16 sprites used in one-
sprite shapes, (size 0 sprites == which are 8 X 8 —-- may be
created with this utility as well).

The Multiple Sprite Editor can be used for either one-sprite
shapes or multiple-sprite shapes, whether single color or multi-
color.

One last word before moving on to an examination of Sprite Maker.
There is one more way to create a sprite that has not been
discussed: using VDP pictures as the source.

To turn portions of a picture into a sprite, you must choose the
Paint With Sprite option from the StarSprite disk's main menu
(side B), then either load in a picture or begin painting one.

Once you are satisfied with the painting, and wish to create a
sprite from a portion of it, press Q to quit and use the option
to create a sprite from part of your "painting".

28.1.1, Sprite Making

Once you have entered a sprite making program (as directed

above), place a data disk in your disk drive and type 2 for
option (2) Draw New Sprite Starting Fresh.

StarSprite I - 81

StarSprite I - Utilities for Table File Generation

Note: A data disk is an initialized, DOS 3.3 floppy disk.

You may press ESC at any time for a summary of the commands
available.

A grid will be drawn on the screen. That is your 16 X 16 sprite-—
creation grid.

Press ESC now to see the commands.
I moves the cursor up

J moves the cursor left

K moves the cursor right

M moves the cursor down

These are Apple's normal editing keys —-- to be used, in editing,
following the hitting of the ESC key.

P means plot (f£ill in a square in the grid)

E means erase (open up a previously filled in square)
ESC takes you to the menu you should now be reading

Q allows you to quit.

Use the Quit option to:

o start your shape over

o start your sprite table over

o draw another sprite

o save a sprite table to disk

o save the current sprite in memory
o load in a shape or scene

0 quit computing altogether

Press any key to return from the commands menu.

Now press K several times in a row, then M several times in a
row. Observe the movement of the flashing cursor on the grid.

Next, try the I, J, K, and M keys while holding down the REPT
key.

StarSprite I - 82

StarSprite I - Utilities for Table File Generation

Try pressing P occasionally and notice that the square on which
the cursor rests is filled in. Return to some of the white
squares and use E to erase them.

That is about all you need to know about creating sprites from
scratch.

Once your sprite satisfies you, press Q to quit, save current
sprite in memory, and use option 2 to Draw New Sprite Starting
Fresh.

Note: If you do not save the current sprite in memory, that
portion of your work will be lost forever.

When plotting sprites, a tiny square to the right of your grid is
displayed. This is the actual-size display of what you are
creating. Use it to figure out if the figure you are working on
is going to make an effective sprite shape or not.

28.1.2. Block, Hplot, and Vector Shapes

If you have no block (bit-mapped), hplot, or vector shapes (see
your Applesoft Manual, pages 91-100) you may skip this section.

A block shape is a block of bytes, in table form, that, loaded
properly onto the Apple hi-res screen, create a specific shape.

An hplot shape is a table containing X and Y coordinate data of a
group of points on the hi-res screen which will be connected up
with lines, as well as a number representing how many coordinate
sets the shape contains.

A vector shape is a vector-plotted Apple shape as described in
the Applesoft Manual on pages 91-100.

Ignore the parts about SHLOAD and instead remember to save tables
as BINARY FILES on disk. To get the address and length of a
binary file, after loading it, type

PRINT PEEK (43634) + PEEK (43635) *256, PEEK (43616) + PEEK
(43617) *256

and hit RETURN. A binary file is merely a copy of memory, saved
as binary codes but displayed, in machine language, as hex num-
bers.

Three files have been included on side B of the StarSprite I disk
to provide a sample of each of the three types of shapes men-
tioned above: T2 (HPLOT), MANC (BLOCK), and CHAR (VECTOR).

For a demonstration of saving shapes from one of the shapes
mentioned above, choose option (5) LOAD BLOCK SHAPE OR HPLOT
SHAPE OR PICTURE TO CONVERT PART OF TO SPRITE from the program
menu.

StarSprite I - 83

StarSprite I - Utilities for Table File Generation

At the "LOAD IN" menu, choose option 1 for block shape.
Choose normal (rather than inverse) saving when prompted.
You will not need to switch to a data disk for this example.
Specify MANC (BLOCK) as your shape table name.

Choose shape number 1, a VT of 20, a VB of 41, an HR of 6 and an
HL of 2. You will see a little man on the screen.

Next you will see instructions about using your game paddles to
position the four blinking dots to encircle the intended sprite
shape.

Warning: Since colors are effected in different ways by the VDP
video and the Apple video, only shapes, and not colors,
will be reflected in the created sprite. However you
are free to choose amongst 16 colors when using that
sprite.

The man is taller than the dot enclosure, so you will be saving
only 16 dots worth of the little man, (vertically).

Press the Space Bar once positioning of the enclosure is done.
You will see your sprite turn inverse as it is saved to memory.
You will save a short-legged man.

Specify 0 for sprite number (a sprite table's numbers can range
from 0 to 63). When asked if you want another one, choose N for

No.

At the program menu, select option 5 again to load in an hplot
shape.

In the "LOAD IN" menu choose 2 for hplot shape.

This time choose I for inverse saving when prompted. Again do not
switch to data disk.

Specify T2 (HPLOT) as the shape table name.

Choose shape number 1 when prompted. You will see a wing plane
from above. Next you will see the dot enclosure instructions.

Move the enclosure to the front tip of the plane and "bite off"
as much as you can.

Press the Space Bar to convert.

Specify 1 as the sprite number (you have filled up number 0
already.

StarSprite I - 84

StarSprite I - Utilities for Table File Generation

Press N —-- you do not want another one.

From the main menu press 5 to make a sprite from an Apple hi-res
vector shape.

Choose 3 for vector shape and N for normal saving.
Do not switch disks.
Choose CHAR (VECTOR) as your shape table name.

Choose 0 for ROTATION, 1 for SCALE, 3 for HCOLOR, 1 for shape
number, 99 for X coordinate, and 99 for Y coordinate.

The A in the center of the screen is shape 1. Shape 2 is a B, 3
is a C, 26 is Z, and various other shape numbers produce numbers
and symbols.

Next you will see dot enclosure instructions. If you are precise
you should be able to fully encircle the A. Specify 2 as the
sprite number.

Press N -- you do not want another one.

28.1.3. Pictures (Binary)

Before saving the sprite table (with 3 sprites) to disk, add two
more sprites: one from a binary picture and one you scratch-
build.

Choose option 5 again -- this time to load a picture from disk.

Choose option 4 in the "LOAD IN" menu to load in a 33-34 SECTOR
BINARY PICTURE.

Choose normal saving.

Specify PICTURE (BINARY PIC.) as your picture name. Do not
switch disks either before or after the picture is loaded.

Once you see the picture and enclosure instructions move the dots
until they enclose the brave knight's-sword-holding hand and
press the Space Bar.

Specify 3 as the sprite number.

Choose not to have another one.

StarSprite I - 85

StarSprite I - Utilities for Table File Generation

28.1.4. Plot A Sprite

In the program menu choose option 2 to Draw A New Sprite Starting
Fresh. Use the I, J, K, M, P, E, ESC, Q keys (as documented
above) to construct a sprite of your own.

Press Q to quit and choose to save current sprite in memory.
Save your sprite as sprite 4.

Use option 4 to save the table to disk. When asked if 5 is the
correct number of sprites in the table press Y for Yes.

Specify sprite table name of your choice (for more information on
file names, consult the DOS 3.3 manual).

Switch to an initialized data disk when prompted and switch back
to program disk when your disk drive shuts off.

In the program menu press <ESC> to quit, which will bring you
back to the main disk menu.

Choose option (3) Sprite Making/Editing and Scene Examination.

In the Sprite Making menu choose option 2 for Single Sprite
Editor.

In the program menu choose option 5 to Load In Sprite Generator
Table.

Specify the same name as you used above to save the table as
table name. Switch to your data disk when asked to.

When asked if you want to see all the sprites at once, choose Yes
by pressing Y.

Specify 5 as the number of sprites in the table.
The table of sprites you created above should be displayed on the
screen.

Notice that the second sprite (1) is black on white (inverse)
while the others are white on black. That is because we specific-
ally asked for inverse on that sprite.

Also notice that there are 64 squares on the screen grid. The
upper left corner is sprite O and the lower right corner is
sprite 63 (a total of 64 possible sprites).

Sprite tables may be up to $800 in length. $800 is 2048 in
decimal. 2048 is 32 times 64. This means each of the 64 sprites
that will fit into a sprite table contain 32 bytes.

In the program menu, choose option 6 to Place A Sprite From Table
On Grid.

StarSprite I - 86

StarSprite I - Utilities for Table File Generation
For this example, place sprite number O on the grid (notice how
sprites are called "16 X 16").

The short-legged man should appear on the grid. Notice that the
16 X 16 grid is divided into four 8 X 8 grids.

All 16 X 16 sprites are made up of four 8 X 8 sprites (although
they are regarded by the VDP as a single entity).

Size 1 sprites are 16 X 16. In Ampersprite, you must specify
this by issuing the command:

&RZ1

The following diagram shows how 16 X 16 sprites are organized:

Sprite 16 A C Sprite 18

M
U 4

D Sprite 19

Sprite 17 B

Size 0 (8X8) Size 1 (16X16)
(A 16X16 sprite of a circle) (Quarter circle) (Full circle)

The term "size" is actually a misnomer. The size parameter does
not specify how large the sprite is, but rather how many pixels
it occupies in magnification O (either 8 or 16).

In size 0, only one 8 X 8 pixel sprite is displayed, but in size
1, four 8 X 8 sprites are displayed as one (in the organization
depicted above).

Ampersprite has been written to make most efficient use of 16 X
16 sprites, as these have proven the most desirable in actual
use. Note that 8 X 8 sprites are not precluded, but they must be
specified with the &RZ0 command.

When a 16 X 16 sprite is referred to in a sprite table, its
relative sprite number is multiplied by 4 (the number of 8 X 8
sprites it takes to make one 16 X 16). For example, to tell
Ampersprite that we want to place the 16 X 16 sprite number 5 on
sprite plane 0, we must use the & AN command as follows:

&AN 0,20

Size 1 (16 X 16) sprites are numbered as follows:

0,4,8,12,16,20...

When using 8 X 8 sprites, the multiplication by 4 rule described

StarSprite I - 87

StarSprite I - Utilities for Table File Generation

above does not apply, so 8 X 8 (size 0) sprites are chosen from
the table in the following order:

1,2,3,b...

Editing

Return to the program menu and choose option 7 -- Edit Sprite On
Grid.

Move the cursor down as described earlier, and plot feet on the
man using the P command.

This will change 8 X 8 sprites 1 and 3, the bottom sprites.

Observe the changes on the tiny "actual-size" man at the right.
Is the sprite better now? If so, choose to save current
sprite in memory and specify a sprite number of 0.

Now use options 8, 9 and 10 to rotate, inverse, and mirror the
grid sprite., Any time you like what you see you may save the new
sprite just as you did above.

Note: You may save a sprite as:
1. The sprite number you are currently editing
2. A new sprite number not yet used

In doing animation all you need to do to your sprites is to save
a set of several slightly changed versions of the sprite.

Legs in several different positions can depict walking.

Waving, blinking, talking, and jumping are other animation exer-
cises you may want to trye.

If a sprite table has been constructed that changes the positions
of a man's legs three different ways and the sprite numbers for
these leg positions are 5, 6, 7, and 8, we may program a sequen-
ce, using Basic's FOR-NEXT command, to move the man's X coordi-
nate one pixel (dot) or 2 at a time, and cycle his sprite table
number from 5-8, then restart the cycle:

X coord.: 20 22 24 26 28 30 32 34 36 38 40 42 44
Sprite table #: 5 6 7 8 5 6 7 8 5 6 7 8 5
Sprite #: 20 24 28 32 20 24 28 32 20 24 28 32 20

Editing, allows saving a sequence of progressively changed sprite
shapes without having to "draw" any of them from scratch, except
for the first one.

The rotations, inverses, and mirror images are useful for making
animation sequences that are the exact reverse of a previous one.

StarSprite I - 88

StarSprite I - Utilities for Table File Generation

For example, if you have created a sequence of a man walking from
right to left, and you realize you also need him to walk from
left to right, you may simply mirror the old sequence.

Load shape 5 by using option 6 to Place A Sprite From Table On
Grid

Use option (A) Mirror Image of Sprite On Grid.

Use 3 to Save Current Sprite In Memory and specify 9 as the
sprite number.

Now mirror 6 and save as 10, mirror 7 and save as 11, mirror 8
and save as 12,

The sequence from 9-12 is the reverse of the sequence from 5-8.

Suppose you have need a tank that shoots in eight directions:
north, east, south, west, northeast, northwest, southeast, and
southwest.

You can start with one sprite, a north facing tank. The north-
facing characteristicec is appropriate only for north-facing shoot-
ing, so the entire tank must rotate 360 degrees in steps of 45
degrees.

The first thing to do is to save the north-facing tank sprite as,
let's say, sprite O.

Next select option 8 to Rotate Sprite On Grid and save a 90
degree rotation as sprite 2, a 180 degree rotation as sprite 4,
and a 270 degree rotation as sprite 6.

Next, draw a northeast-facing version of the tank (with a north-
east-facing turret) and save it as sprite 1.

Rotate this sprite 90 degrees to obtain a southeast-facing tank
and save as sprite 3, rotate 180 degrees for #5, and 270 degrees
#7. (you will only be using the 90 degree rotation option since
a 90 degree rotation of a sprite that has already been rotated 90
degrees is a 180 degree rotation).

The techniques of mirror imaging and rotation can save a great
deal of time in the creation of animation sequences.

The inverse option can be used for special effects, such as the
ZAP sequence in the StarSprite Maze game.

StarSprite I - 89

StarSprite I - Multiple Sprite Shapes

29. Multiple Sprite Shapes

It is possible to get 32 X 32 sprites with the simple Single
Sprite Editor program discussed above, but for larger shapes or
multiple colors in sprite shapes, you will need the Multiple-
Sprite Editor program.

To run the Multiple Sprite Editor, select option 3 Sprite Mak-
ing/Editing & Scene Examination from the StarSprite disk menu
(side B), then choose option 3, Multiple Sprite Editor in the
Sprite Making/Editing menu.

You will be able to create 64 X 64 sprites in this progran
(composite sprite clusters composed of four 32 X 32 sprites).

Note: There is really only one type of sprite -- 8 X 8
pixels.,

If you use size 0, this 8 X 8 pixel matrix is all that is dis-
played.

If you use size 1, a 16 X 16 sprite will be displayed (which
represents four 8 X 8 sprite numbers in a row to make up its
separate parts).

You will not get a larger version of your sprite by going from
size 0 (&RZ0) to size 1 (&RZ1)., Size 1 means only to use four
sprites in a row for your screen display, while size 0 means use
only 1.

Magnification, on the other hand, will give you a larger sprite.

An 8 X 8 sprite will turn into a 16 X 16 blocky~-looking sprite
(still using only eight bytes of data), when magnification 1 is
specified (&RM1)., Similarly, a 16 X 16 sprite will be displayed
in 32 X 32 pixels when magnification 1 is selected.

Magnification 1 takes each pixel on the screen and display it as
a square of pixels 2 pixels wide and 2 pixels high.

Magnification O gives a l-to-1 correspondence between data and
display, at the pixel level.

A pixel is the smallest unit of sprite-building material avail-
able. The 2 X 2 pixels of magnification 1 are slightly blocky but
still effective for certain displays.

To reiterate, if you use size 1 rather than size 0, four (rather
than one) sprites (8 X 8) will be displayed at once, giving 4 16
X 16 shape.

If you switch from magnification O to magnification 1 each of
these four 8 X 8 sprites will use 2 X 2 pixels to represent each
pixel of sprite table data so your 16 X 16 (four 8 X 8 sprites)
sprites will be displayed as 32 X 32 sprite shapes.

StarSprite I - 90

StarSprite I - Multiple Sprite Shapes

If you decide to have two sprites, one on top of the other, while
using size 1 and magnification 1, you will have a 32 X 64
"sprite". Or use four sprites in a cluster and end up with 64 X

64 "sprites'.

When using multiple sprites together to produce a large, complex
shape, the burden is upon you to keep all these sprites at the
correct locations to produce a single shape.

This means that

a "32 X 32 sprite" (four sprites displayed as

one) is as large as you will ever display with only one command.

Let's pretend we have a 32 (wide) X 64 (tall) man shape now,
requiring two commands to deal with his entire shape.

Actual sprite
table numbers
of each

8X8 sprite

Sprite 0

video -

plane 0

AN

In size 1, all four of these 8X8 sprites can be
|- addressed (dealt with) with only one command;
let's call this video plane #0 and sprite #0.

This will be video plane #1 and sprite #4. Notice
| that each sprite (16X16, size 1, mag. 1 or 2)
requires one video plane number for itself.

To move man horizontally both upper and lower
|- sprite must be changed.
&AX 0,40 moves this part of the man.

1

&AX 1, 40 moves this part of the man. Remember
that Y coordinates must have previously been set

[to the top one being 32 (mag. 1) or 16 (mag. 0)
less than the bottom.

r

StarSprite I - 91

StarSprite I ~ Multiple Sprite Shapes

29,0.1., Multiple Sprite Inspection

Enter the Multiple Sprite Inspecting program selecting option 3
from the StarSprite I disk menu: Sprite Making/ Editing & Scene
Examination)

Next select option 4 (Multiple Sprite Inspector).

Once in the program specify a sprite table name of SPRITE and
give 64 as the number of sprites in the table. Note: SPRITE is
on the system disk, so you do not need to switch disks.

When asked if you would like to load a sprite attribute table
press Y for Yes.

Use the name SPRITE.ATR. Again, there is no reason to switch
disks.

Specify 8 as the number of sprites in the sprite attribute table.

If all went well, you should be looking at two versions of a
dwarf.

Eight video planes will be displayed on the screen, each of which
contains one 32 X 32 sprite (magnification 1, size 1). Both top
halves and both bottom halves contain two spritess

Notice that hats and faces are different colors. So are legs and
boots.

Sprite 0 is a face that faces right. Sprite 1 is an arm that
faces right. Sprite 2 is the shirt and shoes (facing right).
Sprite 3 is the hat and collar (facing right).

Sprites 4 through 7 are the mirror images of O through 3 (so the
man can face left as well as right).

Note: The numbers 0 through 7 discussed above are the sprite
table numbers. To use these sprites in Ampersprite
commands, you must multiply the table number by 4
(these are 16 X 16 sprites).

Each sprite can be given its own color and position on the
screens, These are called attributes.

Location of a sprite is specified in terms of the location of the
upper left cormer of the sprite.

In the example on your screen, the face and hat sprites are given
the same X and Y coordinates (they go in the same place).

The leg and shoe sprites are 32 vertical units lower than the
face and hat coordinates, so they have the same X coordinate, but

StarSprite I - 92

StarSprite I - Multiple Sprite Shapes

the Y coordinate is 32 greater.

To examine why the face and hat sprites are placed at the same
coordinates, get back to the main disk menu and select option 3
(Sprite Making/Editing & Scene Examination).

From the Sprite Making menu, select option 3 (Multiple Sprite
Editor).

Select option 5 (Load in Sprite Generator Table).

When asked if you would like to see all the sprites in the table,
type Y for Yes. Say there are 64 sprites in the table.

There are fewer than 64 sprites in the table, so the empty loca-
tions in the sprite display are blank.

The reason the dwarf sprites seem not to be counsecutive in memory
is that face and hat sprites need not change during animation,
but leg and shoe sprites do change.

Follow downwards from the second, third, sixth and seventh
sprites in the top row. FEach vertical column of sprites is an
animation sequence of seven shapes.

Notice that underneath the hat and face sprites there are only
blank or unrelated sprites.

As the dwarf walks, ounly leg and shoe sprites change shape. This
is accomplished by specifying the same sprite number for the hat
and face for the entire sequence while cycling through the dif-
ferent leg and shoe sprites. Each step in the sequence changes
the X (horizontal) coordinate, as well as some of the sprite
numbers.

There is actually no such thing as a multicolor sprite; the
sprites that appear in more than one color are combinations of
several sprites, closely overlaid.

Choose option 6 (Place A Sprite From Table On Grid) and specify
table 0. You will need to erase old sprites.

Now use option C to Choose Current Sprite Color and choose color
1 (green), then use option 6 again.

Choose sprite 3 (the relative number in the table). Do not erase
old sprites.

The small square at the right shows you magnification O repre-
sentation of the sprite on which you are currently working. The
grid provides you with an expanded version of the sprite to
facilitate editing.

Notice that the sprites in the same grid quadrant can use diffe-
rent parts of the quadrant, and different colors, thereby allow-

StarSprite I - 93

StarSprite I - Multiple Sprite Shapes

ing multiple colors in what looks like one sprite (actually
several sprites overlaid).

Choose option B (Choose Grid # 1-4 For Sprite). Choose grid
number 2, and select option 6 to display a sprite.

When prompted for the sprite number to display, select sprite
number 2.

Do not erase old sprites. Now choose option C (Color Change),
and specify color 3.

Select option 6 to Put Sprite on Grid. Again, do not erase old
sprites.

As you may have noticed, there are several sprites overlaid, one

on top of another, on this grid. You can get a good picture of
how a multicolor set of sprites will look using this technique.

StarSprite I - 94

StarSprite I - Apple Graphics Versus VDP Graphics

30. Apple Graphics Versus VDP Graphics

There are several major differences between conventional Apple
graphics and the graphics generated by the VDP (TMS9918A). One
of the first differences, and one of the most important concept
involved in the generation of sprites and patterns is that of
mapping the eight bits in a data byte to the screen.

When one of the utility programs displays the message
CALCULATING, what is actually happening is that the program is
encoding these data bytes, or decoding pre-existing data bytes
for convenient display.

These utility programs function independently of the SuperSprite
because, although they design sprites for display on the
SuperSprite, they use conventional Apple graphics for the dis-
plays.

StarSprite I - 95

StarSprite I - Sprite Animation and Path Testing

31. Sprite Animation and Path Testing
31.1. Sprite Animation Testing

From the StarSprite I disk menu, choose option 3 (Sprite Mak-
ing/Editing & Scene Examination).

In the submenu choose option 6 (Sprite Animate, Sideways).
Choose option 2 (Specify Magnification Factor).

Press 1 for to get magnification 1.

Press 1 for Machine Language Animation; rightwards.

In response to the "default sprites" question, type N for No --
you do not want default sprites.

Specify ET for the sprite generator table name and 3 for the
number of sprites in the table.

Switching disks is uﬁnecessary.
Give the sequence 0, then 1, then 2, and then press <Return).

Now give a step value of 1 for horizontal moves (X coordinate
incrementing) and a delay loop high byte of 111,

Read the instructions about CTRL Reset and RUN.

The figure's feet move back and forth too much with these values.
Try a step value of 2.

The action is getting jerky.

Try Step 1 with magnification 0 (using menu option 2). A little
better but still not too good.

Here are some of the facts we might learn about sprite sequences
from these experiments:

1. Use many (8-32) shapes with small hardly-noticeable changes
rather than three shapes with large differences between
them.

2. Try to get between 12 and 24 frames per second in speed.
(Experiment with delay loop values.)

3. Increment with a step value of one if possible or two
if necessary, but no more.

4, Use appropriate orientation. The sprite's walk would prob-
ably be more effective if viewed head-on.

StarSprite I - 96

StarSprite I - Sprite Animation and Path Testing

5. Use appropriately shaped sprites. ET's feet do not wig-
gle back and forth like seal flippers -- he sort of rocks
back and forth from side to side, with small forward leg
movements., He also does not use his hand as depicted.

6. Don't be afraid to have shape's details animated as a
sequence progresses. Ears or hands or clothing might
swing or flutter, an eye might blink, etc.

You can see now what this Sprite Animation program is used for:
Simple testing of rightward animation sequences you have created
in sprite tables with the sprite creation utilities in the Star-
Sprite system. Quit with option 3 or else use RUN MENU in immed-
iate mode.

31.2. Sprite Path Testing

Select option 3 from the StarSprite menu (Sprite Making/Editing &
Scene Examination) and then choose (7) Sprite Animate, On Paths,
from the submenu.

In the program, select option 9 to RUN Animator, and press <Re-
turn> for default values for all of the questions asked.

Adjust paddle knob 0 until there are red shapes on a black back-
ground (this paddle tests background colors).

Press each paddle button.

One paddle button chooses magnification 0O, the other, magni-
fication 1.

Adjust paddle 1 so that the sprites are moving slow, fast, or in-
between. A little less than fully counterclockwise gives the
fastest speed. Clockwise gives the slowest speed (100% coun-
terclockwise works also).

causes action to pause, S is the sound toggle (turns the sound

on and off), and pressing the keys 0 through 9 turn the sprite on
the video plane corresponding to the number typed different
colors. You can also test collision checking by changing the
collision parameter in the questions you answer. Length and
volume of the collision sound are also changeable.

The sprite pauses when done going in a circle. Pauses are put
into paths by answering yes to the Do You Want A Pause? question
you encountered in the Path Creation program.

Perhaps you noticed in the program menu that there are many file
loading and file creating utilities. You could load in PATH3
(from the A side of the disk) by choosing (3) BLOAD Sprite Path
Table and using the nmame PATH3, and then use option 9 to Run
Animator.

StarSprite I - 97

StarSprite I - Sprite Animation and Path Testing

There is even a subprogram to create path tables the hard way —-—
inputing numbers from the keyboard. The Alien Path Creator Using
Paddles utility is a much easier way to go. If you prefer not to
use paddles, you would use the keyboard input utility.

Once you have made sprite sequences for animation, you should
either test them in the StarSprite Arcade game (using the option
to load in user-created game files before playing the game) or
with the Sprite Animate, On Paths utility described above.

StarSprite I - 98

StarSprite I - Making/Editing Files to Be Used By Games

32. Making/Editing Files to Be Used By Games
32.1. Maze Creation

From the main system menu, select option 4 (Making/Editing Files
Used by Games).

In the submenu, choose 1 (Maze Creation Using Game Paddles).

Note: If you have never played the StarSprite Maze game, do
so before reading on.

In the program, select option 2 (Load and See Maze).

Specify NAMEM as the maze file's name (no need for any disk
switching).

Like sprites, patterns are based upon 8-bit-per-byte hi-res
graphics display, so VDP pattern table pictures do not work on
Apple hi-res screens.

The various pattern characters that make up the maze picture are
all hplotted one at a time in this maze viewing/creating utility,
causing the maze display to be somewhat slow.

The NAMEM file is used in the StarSprite Maze game.

Now choose option 1 (Create Maze) and choose not to have
SCORE:00000 put into your maze.

Choose to have maze frame characters POKEed in (into the pattern
table).

After reading the instructions, use the paddles and keyboard to
create a maze.

Save (S) the maze file on a different disk (switch to a data disk
while the file saves).

Use option 2 to Load And See Maze. Use ESC to exit program.
32.2. Maze Direction Table Creator

From StarSprite system menu, select option 4 to get to Mak-—
ing/Editing Files Used By Games.

Next, choose option 3 to get to Maze Direction Table Creator.
In the program press {Return> to continue and give the name of
your newly-created maze table. You will need to switch to your

data disk while the file loads.

The maze will be displayed on the screen, and you will see
"WORKING!" flash on your screen.

StarSprite I - 99

StarSprite I - Making/Editing Files to Be Used By Games

When the load is complete, you will see a squadron of dots hop-
ping around on your maze.

What is happening here is that the Apple collision counter is
being used to figure out which directions are possible to move
in.

Every 32 X 32 section of the maze is tested.

The data representing whether one can move north, east, west, or
south from each section is saved in a direction table.

A 0 means the path is not available. A 1 or 2 or 3 or 4 means
you can move east, south, west, or north respectively.

You will need to have this table so that your program can know
what directions your superbug can travel in the StarSprite Maze
game, and you will also need it for the creation of a path table
for your maze, which is coming next.

When you save your direction table, give it a name that relates
to your maze's name, and switch to the same data disk your maze
is on.

32.3. Random Maze Path Creator

From the StarSprite system menu choose option 4 to get to (Mak-
ing/Editing Files Used By Games).

In the submenu choose option 2 Random Maze Path Creator.

Press the <Return> key to continue and specify the name of your
maze's direction table. You will need to switch to your data
disk.

When the program asks you to switch back to your program disk may
leave the data disk in the drive only if you go on to finish and
save this path table.

Notice that there will be 32 different paths created, each with
40 different segments. A "segment" means that an alien has moved
32 units in a given direction and is now in a different maze
segment than the one it just left.

The direction randomly chosen in any segment must be a possible
direction, so before it is recorded it is checked against the
direction table's data.

Specify a Maze Path table name that relates to the direction
table and maze table. Switch to your data disk if it is not

currently in your disk drive.

You now have the three files necessary to run your own mazes in
the StarSprite Maze game.

StarSprite I - 100

StarSprite I - Making/Editing Files to Be Used By Games

Let's test out your maze in the game now.
Note: Incidentally, make sure your data disk has room for a
34~sector file before beginning or you will get an

error and the program will start over,

From the StarSprite system disk choose option 2 (StarSprite
Maze).

Once in the game choose option 3 (Alter Game Characteristics By
Loading In Game Tables You've Made).

In the submenu, use option 6 to Load Maze Name Table.

Select option 7 (Load Direction Table), then option 3 (Bload
Sprite Path Table).

You will need to switch to your data disk but you switching back
to the program disk in between file loading is not necessary.

Use ESC to Return To Game Menu.
Select option 1 of the main game menu (Play Game As It Is).

Choose a speed, read the instructions, and play.

32.4. Path Creator (For StarSprite Arcade Game)

From the StarSprite system menu, choose option 4 (Making/Editing
Files Used By Games).

In the submenu choose option 4 (Alien Path Creator Using Pad-
dles).

Choose option 2 (Load & See 0ld Sprite Path Table).

Specify PATH3 for your path table name. No disk switching is
necessary.

Give 6 as the number of sprite paths.

The first path will be drawn on the screen, and you will hear a
beep.

Press any key and the second path will be drawn. Again, the Apple
will beep to signify that it has completed the path.

Once the sixth path has drawn, press the space bar twice to
return to the menu and choose (1) Create Sprite Path Table.

Enter 6 for number of sprite paths to make.

You will be creating paths 0-5, starting with O.

StarSprite I - 101

StarSprite I - Making/Editing Files to Be Used By Games

Read the instructions.

Use game button 0 to mark the first path's starting place. Give
a step size of 1, 2, or 3 for now.

Move the paddles and press button 0 for each segment's endpoint.
Hit Q when the path is done. Use the Space Bar to erase.

Once paths 0-5 are done you will be prompted for’a sprite path
table name. You will have to switch to a data disk to save your
paths.

If you happen to hit button 0 (to signify segment endpoint) and
then hit it again, without first moving the cursor at least five
dots (in any direction) from where it just was, you will be asked
"Do You Want A Pause Here?".

If you decide to have the animation stop and for the sprite to
pause for a bit here, answer Y for Yes, otherwise answer N for
No and your last move will be disregarded.

Keep your segments at least five dots long.

Notice that the segments of your paths are allowed to be oriented
in eight directions only: mnorth, west, east, south, northwest,
northeast, southwest, and southeast.

So when you create 30 degree, 47 degree, or any other angle where
segments intersect, it will be corrected to 45 degree, 90 degree,
135 degree, 180 degree, 225 degree, 270 degree, 315 degree or 360
~degree. If such a correction would run your segment off the
screen, you will be asked to erase it. Erasing is done with the
Space Bar.

When you have completed a path table, which must have at least
six paths in it, it is time to test it in the StarSprite Arcade

Game.

Note: The most effective paths go from one side of the screen
to the other.

From the StarSprite menu select option 1 (Play A Game), and in
the game submenu choose option 1 (StarSprite Arcade).

In the arcade game, choose option 3 (Alter Game Characteristics
By Loading In Game Tables You've Made).

In the User-Made File Loading menu choose option 3 (Bload Sprite
Path Table).

Switch disks to your data disk. Type in your file name, then
press ESC to Return To Game Menu.

Now, in the game menu, select option 1 (Play Game as it Is).

StarSprite I - 102

StarSprite I - Making/Editing Files to Be Used By Games

If you used step values of 5 through 7, your aliens will be
traveling incredibly fast and be hard to hit. Step values over 7
make your aliens (at speed 1-5) a blur of color. Try values of 1
through 3 for a reasonably paced game. Use 1 to 10 for game
speed.

32.5. Sequence, Limit and Step Table Creation

From the StarSprite menu choose option 4 (Making/Editing Files
Used By Games).

In the submenu choose option 5 (Sequence Table, Sequence Limit
Table And/Or Step Table Creation).

In this menu choose option 2 (Create Sprite Sequences Table &
Also Sprite Sequence Limit Table).

A sequence table specifies the exact sequence of sprites to be
used in animation. One sequence is done on one video plane,
using from one to eight sprite table numbers.

You will have to give the number of sprites in the sprite table
and then the number of sprites (or video planes used) in the
sprite attribute table.

The following display will appear:

FOR EACH SPRITE PLANE USED TYPE THE SEQUENCE ORDER IN WHICH THE
SPRITES WILL APPEAR:

You will be told to type the sprite table numbers of the sprites
in the sequence, followed by <Return>.

When you are finished entering your sequence, press <Return>
alone to signal the end.

If the concept of a sprite sequence is not clear, play StarSprite
Arcade and use the slowest possible delay loop so that the speed

is very slow.

Notice how each shape changes in about eight different ways and
then repeats this cycle over and over again.

Suppose you created an alien and called it shape (table) number
0, modified this shape with the sprite editor then resaved it as
sprite 1.

This would be the first two sprites in an animation sequence.

If you keep modifying and saving until sprite 7 has been "drawn"
and saved, you will have a complex sprite sequence.

StarSprite I - 103

StarSprite I - Making/Editing Files to Be Used By Games

Note: Try to remember that in sprite sequence TABLE creation
you give sprite TABLE numbers, while in Ampersprite or
machine language you give 16 X 16 sprite numbers. For
the sequence just created above that would mean that
the sprite TABLE numbers are O, 1, 2, 3, 4, 5, 6, and 7
while the sprite (16 X 16) numbers to use in Amper-—
sprite for these same sprites would be 0, 4, 8, 12, 16,
20, 24 and 28.

Once you save your sprite sequence table you will be asked for
your sprite sequence limit table name.

Once you input the name, this will cause both the sequence table
and the sequence limit table to be saved on whatever disk is in
the drive. (The sequence limit table has been created automatic-
ally during sequence table creation.)

A sequence limit table tells the arcade game program how many
shapes there are in the sprite sequence currently being used for
animation. The above sequence has eight sprites in its sequence
so the sequence limit number on this sequence would be eight.

32.6. Step Tables
Steps per move means units on the X and/or Y axis.

In the StarSprite Aliens and Asteroids game each of the aliens
and asteroids that move on the screen has its own video plane and
set of sprite attributes (X, Y, color, sprite number). Each time
an alien or asteroid sprite moves, it must move between 1 and 9
pixels per step. A table is kept in memory, and consulted, to
determine the step values for each video plane's sprite.

This utility creates a table of step values that will be applied
to the sprite moves (separate step values for each sprite video
plane's sprite) in the StarSprite Aliens & Asteroids game. Step
tables are unnecessary for the other games, because they are
already woven into the data of regular StarSprite Arcade path
tables, and StarSprite Maze game steps remain constant, even if
the speed can have wide variance.

32.7. Sprite Table Creation

This subject is covered in greater detail under Sprite Mak-
ing/Editing & Scene Examination (above).

In the Sprite Making/Editing & Scene Examination submenu choose
option 1 to make sprites from block shapes, hplot shapes, pic-—

tures, etc.

Choose option 2 to create sprites from scratch or by editing
simple one-color 16 X 16 sprites.

StarSprite I - 104

StarSprite I - Making/Editing Files to Be Used By Games

Choose option 3 for making (from scratch or by editing) multiple-
sprite shapes and/or multicolored sprites (each color requires
one separate sprite).

The way one creates sprites by editing in the sprite editing
programs is to:

1.

2.

Use option 5 to Load In Sprite Generator Table.

If you do not know the number of sprites in the sprite
table, input 64.

Use option 6 to Place A Sprite From Table On Grid.
When you are asked about erasing sprites on the screen,
hit Y for Yes the first time at least.

Press any key to continue and choose (7) Edit Sprite On
Grid. Hit ESC once into that subprogram to see the
command options.

Press Q to quit and use option 3 to Save Current Sprite
In Memory. Give a different sprite number for each
sprite you create. Sprite table numbers must be 0-63,
(the sprite numbers to use with Ampersprite or machine
language must be the sprite table number multiplied by
4, Possible sprite numbers are therefore 0, 4, 8, --
up to 252 (which would correspond to a sprite table
number of 63 since 252/4 = 63,

Once your sprite table is complete, use option 4 to
Save Sprite Table To Disk. When asked what the correct
number of sprites in the table is, simply remember the
highest sprite number you have given when saving
sprites in memory, and add one. (If your highest
sprite number was 31, you would input 32, since sprite
numbers 0 through 31 are 32 separate numbers.

The way one creates sprites from scratch is to use option 2 to
Draw New Sprite Starting Fresh and then use steps 5 and 6 above.

StarSprite I - 105

StarSprite I - Sprite Attribute Table Creation

33. Sprite Attribute Table Creation

Examples of sprite attribute tables on side B of StarSprite I are
SPRITE.ATR, PAINT.ATR and ET.ATR. The suffix ".ATR" is not
required, but is the convention adopted in the StarSprite system.

A sprite attribute table is a table from 4-128 bytes long that
gives the characteristics of the sprite on each specific video
plane. See the following table:

Attributes of the sprite Attributes of the sprite Attributes of the sprite
on sprite video plane 0 on sprite video plane 1 on sprite Yidec plane 2
|
Y X Sprite Color Y X Sprite Color Y X Sprite Color
coord. coord. number coord. coord. number coord. coord. number
43 229 44 6 98 101 0 - 15 7 199 240 4

Suppose the above 12 numbers were POKEd into memory and (&L)
loaded into VDP RAM. You would have a sprite attribute table
giving data on the three highest priority video planes, 0, 1, and
2. There can only be one sprite per plane, but all 32 (0-31)
planes may be used. (Use &RA (address) to tell the VDP where

you are putting your sprite attribute table.)

It is a good idea to add a thirteenth piece of data to that
table, in case any stray numbers happen to already be in VDP RAM
when you load in the table.

The thirteenth (one more than four times the number of planes
used) number should be 208.

This number is a signal not to put any more of the video planes'
sprites on the screen. It must be used as a Y coordinate, so in
the above example it would follow the 4 and be sprite plane
three's Y coordinate. VDP video resolution is only 256 (X) by
192 (Y), so you can see why 208 can work as a signal to the VDP
rather than being really seen as a coordinate.

The one time such signals are inappropriate is when a full 128~
byte (32 plane) table is loaded in. No more sprites are possible
beyond plane 31 (the 32nd plane because of plane 0) so a 208
signal would overflow the table.

Often it is unnecessary to create an attribute table since you
merely use Ampersprite commands to give sprite attribute informa-
tion to the VDP chip. Here is an example of loading the above
table in memory, then loading it into the VDP RAM, and finally
changing all the attributes of a video plane's sprite at once:

10 DATA 43, 229, 44, 6, 98, 101, O, 15, 7, 199, 240, 4, 208

200 FOR A = 0 TO 12: READ B: POKE 14336+A,B: NEXT: REM 14336 IS
$3800 -- YOUR ATTRIBUTE TABLE'S ADDRESS

30 &L 56, 0, 13, 56, 0: REM $38 IS 56 IN DECIMAL; CONSULT YOUR
COMMAND CARD FOR AMPERSPRITE TM INFORMATION

StarSprite I - 106

StarSprite I - Sprite Attribute Table Creation

40 &AA 2, 9, 99, 48, 8: REM SEE COMMAND CARD (AA STANDS FOR
ATTRIBUTES AND ALL)

Another way to load and use an attribute table is simply to give
Ampersprite &AA commands to begin with:

10 &AA O, 43, 229, 44, 6: & AAl, 98, 101, O, 15: &AA2, 7, 199,
240, 4: &AY 3, 208

If you want to create a sprite attribute table by inputing data,
choose option 3 (Sprite Making/Editing & Scene Examination) from
the StarSprite menu.

In the submenu choose optiomn 7 (Sprite Animation, On Paths).

In the animation program choose option 6 (Create Sprite Attribute
Table). You will be specifying Y coordinate, X coordinate,
sprite number, and color attributes for each sprite plane's
sprite.

Note: The sprite number is derived by multiplying the sprite
table number by 4.

One use for a sprite attribute table is with the multiple sprite
inspector utility.

The StarSprite I games allow you to load sprite attribute tables
‘(for the more advanced, who can figure out what to so with the
files once they are loaded).

The sprite path animation program is an important place not only

to input but also to use sprite attribute tables for testing and
experiments of all kinds.

StarSprite I - 107

Files on the Included Disks

34.

34.1,

1.

2.

10.

11.

12.

13.

14,

15.

16,

17.

18.

19.

20.

Files on the Included Disks
StarSprite I - Side A
HELLO - boot program

K2 - interface between SuperSprite board and everything else
(reads/writes VRAM/registers)

CTABLE - table containing 32 eight-byte colors for use with
Scene Recreate or Apple graphics scenes in games or educa-

tional demo

A3 - line drawing routine for scene (Apple graphics) crea-
tion

AVANTGARDE ~ compressed logo scene to BRUN in LOGO
PDL MAZE CREATE - maze creator for StarSprite Maze game
AMPERSPRITE BASIC - tutorial on using Ampersprite

EDUCATIONAL DEMO - sample educational application program
using Ampersprite

EDUCATR - sprite attribute table for use in above Education-
al Demo

CHAR - general pattern table for upper and lower case let-
ters, numbers, symbols

STARSPRITE - compressed logo scene to BRUN in LOGO

LOGO - introductory program showing Apple graphics and VDP
sprite graphics together

SQUARETB - direction table for STARSPRITE MAZE game, telling
which ways can/cannot be travelled

MENU - system menu
ARCADEINPUT -~ StarSprite Arcade game (Basic driver)
AGAINPUT - StarSprite Aliens & Asteroids game (Basic driver)

FILLTABLE - algorithm for color—-filling Apple graphics line-
drawing scenes

FILL3 -~ color-fill algorithm for color—-filling Apple graph-
ics scenes (fill on white scenes with black lines)

STEPA - step table for StarSprite Aliens & Asteroids game

MAZEL1INPUT - StarSprite Maze game (Basic driver)

StarSprite I - 108

21.

22.

23.

24,
25,
26,
27,
28.

29.

30.
31.
32.

33.

34,
35.

36.

37.
38.
39.

40.

4l.

42.

43,

Files on the Included Disks
PDL PATH CREATE ~ path creator, for aliens, to use in Star-
Sprite Arcade game
ALIENS - sprite table for StarSprite Arcade game

SCENE6502 - color-filled Apple graphics scene for use in
educational demo, scene recreate, or games

PATH3 - path table for StarSprite Arcade game

SCORE - algorithm for scorekeeping in games
ANIM5 - machine language portion of StarSprite Arcade game
SEQ3 - sequence table for StarSprite Arcade game

SEQ3L - sequence limit table for StarSprite Arcade game
CHAROBJ - sprite table with all 26 letters and all numbers,
and objects (A is for Apple) to go with each letter (16 X
16)

ABC - fastload routine

ATR - the Ampersprite Basic program's sprite attribute table
ANIM6 - machine language portion of StarSprite Maze game
CHARMAZE - general pattern table with maze line patterns
appended to it so both lines and score can be created in
StarSprite Maze game

NAMEM - name table for StarSprite Maze game

SEQM =~ sequence table for StarSprite Maze game

RND MAZE PATH CREATOR - path creator for StarSprite Maze
game (uses direction tables as data)

PATHM - path table for StarSprite Maze game
SEQML - sequence limit table for StarSprite Maze game
ALTIENSM - sprite table for StarSprite Maze game

DIR TABLE CREATE - maze direction table creator for Star-
Sprite Maze game uses maze name table as data)

ANIM7 - machine language portion of StarSprite Aliens &
Asteroids game

A&A - sprite table for StarSprite Aliens & Asteroids game

SEQA - sequence table for StarSprite Aliens & Asteroids game

StarSprite I - 109

Files on the Included Disks

44, SEQAL - sequence limit table for StarSprite Aliens & Aster—
oids game

45, NAMEA - name table for StarSprite Aliens & Asteroids game

46., NAMEO - name table for general use -- it is blank

47. SEQUENCE & STEP TABLE CREATE - creates either type of table
for games or other animation uses

48, 1I&I - Ampersprite's first letter interpretér algorithm

49, AMPERSPRITE - StarSprite system's core routines

50. SPRITE - sprite table to be used for general purposes or as
sprites for LOGO program

34,2, StarSprite I - Side B

1. HELLO - boot program

2. ABC - fastload routine

3. SQUARE - vector shape for sprite editors

4. MENU - system menu

5. TYPE.TX - VDP text mode character typing program

6. TESTTB = block shape scanning/drawing routine

7. TYPE.GR - VDP graphics mode character typing program
8. ANIM3 - algorithm for sprite path animator

9. SPRITE PATH ANIMATE - sprite animation/path tester

10, K2 - interface between the SuperSprite and all other Star-
Sprite routines (reads/writes VDP VRAM/registers)

11. ALIENS - sample sprite table for use in sprite utilities or
as StarSprite Arcade game's sprite table

12, SPRITE MAKER - creates sprites from Apple shapes, scenes,
etc.

13. TEST 0 (CALL2048) - hplot shape recreation algorithm
14, SPRITE EDITOR - single sprite editor

15, CHARINV - text pattern table, inversed, for sprite painting
program

StarSprite I - 110

16.

17.

18.

19.

20.

21.

22.

23,

24,

25.

26.

27.

28.

29.

30.

31.

32,

33.

34,

35.

36.

37.

38.

Files on the Included Disks

SPRITE - sprite table to be used for general purposes

CHAR (VECTOR) - vector shape table with letters, numbers,
and some symbols, 15 X 15 at scale 1

MANC (BLOCK) - block shape table with seven block shapes, 21
X 4

ALIENSM - sprite table sample, also used in Maze game
T2 (HPLOT) - hplot shape table with one hplot shape

A&A - sprite table sample, also used in Aliens & Asteroids
game

ET - sample sprite table for use in Sprite Animate program
ET.ATR - sample sprite attribute table for use with above

PATH]l - sample path table for use with Sprite Path Animate
program

CHAR - general text pattern table for use in typing programs
SEQl - test sequence table for use with Sprite Path Animate

SEQIL - test sequence limit table for use with Sprite Path
Animate

AMPERSPRITE - StarSprite system's core routines
I&I - Ampersprite's first letter interpreter algorithm

PICTURE (BINARY PIC.) - sample black & white 33 - sector
6502 Apple graphics binary scene picture

SPRITE.ATR - sprite attribute table for use with SPRITE
MULTISPRITE INSPECTOR - inspects multiple-sprite shapes
CHAROBJ - sprite table with all 26 letters and all number,
and objects (A is for Apple) to go with each letter (16 X
16)

LIBRARY - algorithm to display an entire sprite table at
once on a 64-sprite grid (uses Apple white graphics only)

MULTI.C.SPRITE - sprite editor for multi-color/sprite shapes
SQUARE.TEENY - vector shape square for above editor
NAMEO - blank name table for general or typing program use

ANIM - algorithm for>Sprite Animate program

StarSprite I - 111

Files on the Included Disks

39.

40,

41,

42,

43,

4,

45,

46.

47.

48.

49.

50.
51.
52,

53.

54,

34.3.

SPRITE ANIMATE - program to test moving a sprite sideways
TABLE - table containing 32 8-byte colors for use with
Scene Recreate or Apple graphics scenes in games or educa-

tional demo

A3 - line drawing routine for scene (Apple graphics) crea-
tion

WHITELINEl - algorithm that doubles all white lines (hori-
zontally) of a binary picture, BRUN it to use it

FILLTABLE - algorithm for color-filling Apple graphics
graphics line-drawing scenes

SCENE6502 - color-filled Apple graphics scene for use in
educational demo, scene recreate, or games

FILL3 - color-fill algorithm for color-filling Apple graph-
ics graphics scenes (fill on white scemes with black
lines)

SCENE RECREATE - Apple graphics color-filled scene inspector
-- NOT for compressed or normal binary pictures (33 sec-
tors) (use with Paint Master Scene Utility type data
files)

MERGE - VDP algorithm merging sprites into pattern plane--
used in the Sprite Painting program; 10 sprites per second

GI - Ampersprite sound creation tutorial, uses GI sound chip
SPRITE PAINTING - program to allow creation of VDP graphics
masterpieces, use sprites as brushes and pattern plane as
canvas

PAINT.ATR - Sprite Painting's sprite attribute table
NAMEPAINT - Sprite Painting's name table (sequential)

BRUSHES - Sprite Painting's sprite table

ZEROTABLES - Sprite Painting's algorithm for clearing out

(zeroing) temporary color and pattern tables in Apple memory

PATH2 - early test path to use in Sprite Path Animate
Demonstration Disk (StarSprite I Side)

HELLO - booting program

DANCER - sprite table for DANCE

StarSprite I - 112

10.

11.

12.

13.

14.

15,

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

Files on the Included Disks
K2 - interface between SuperSprite board and everything else
(reads/writes VRAM/registers)

DANCE - sprite table DANCER and FLYING are featured in this
sprite animation demo using Ampersprite

CHAR - Arcade game demo uses this text pattern table

ALIENS - sprite table for Arcade game demo

PATH3 - path table for Arcade game demo

SCORE - scorekeeping algorithm for Arcade game demo

ANIM5 - mach. lang. aspect of Arcade game demo

SEQ3 - sequence table for Arcade game demo

SEQ3L - sequence limit table for Arcade game demo

ABC - fastload routine

NAMEO - blank name table for animation or game demos

I&I - first letter interpreter for Ampersprite

ADJUST - demo disk's SuperSprite boards adjust/align program
DANCER.ATR - sprite .attribute table for DANCE program

FLYING - sprite table for use in DANCE

ARCADE - demo of StarSprite Arcade game's animation

NAMEOPAL - name table for Adjust program's VDP color palette
BUTTERFLY - Paint program's sprite table

NAMEPAINT - name table for PAINT.P and PAINT.C painting
PAINT - butterfly animation on top of a neat sprite painting

LOGO - introductory program showing a sprite pushing a star
and showing logos

AVANTGARDE - compressed logo picture to BRUN in LOGO
STARSPRITE - compressed logo picture to BRUN in LOGO

PAINT.P - pattern table for painting in PAINT program
PAINT.C - color table for painting in PAINT program
AMPERSPRITE.INT - Ampersprite language with collision check-

ing routine

StarSprite I - 113

Files on the Included Disks

29. STATUS REGISTER USE - A program demonstrating Amper-
sprite.INT

30. I&I.INT - First character interpreter for the Amper-—
sprite.INT

StarSprite I - 114

Glossary/Index

A
AMPERSAND HOOKS, 47

Ampersand hooks are locations that are specify where amper-
sand locations are located in Apple RAM.

ANIMATION, 4
The process of making an image appear to move.
APPEND, 75

To add to the end of something; for example, a file or a
sprite table.

ASCII, 32

American Standard Code for Information Interchange. This is
a standard method of storing character data in a computer.

ATTRIBUTE, 20

Sprites have four attributes: Y, or vertical location on the
screen; X, or horizontal location on the screen; sprite
label; color.

AMPERSPRITE, 15

A language written by Don Fudge which interfaces Applesoft
BASIC with the SuperSprite.

B
BACKDROP, 20

The VDP plane behind the pattern plane. The backdrop plane
may be transparent, or any or 15 other colors. It is higher
priority than the Apple video, but lower priority than any
other VDP images.

BINARY, 81

Binary notation is the base two notation for numbers. Com-
puters "think" in binary, and in some instances, it is
useful to represent numbers in this notation.

BIT MAPPED, 83
Bit mapping is a method of computer graphics generation. In

bit mapped graphics, each bit in memory represents a pixel
on the display.

StarSprite I - 115

Glossary/Index

BIT POSITIONS, 25

In the Apple computer, the data word length is eight bits.
The bit positions are numbered 7 through O, with 7 the most
significant, and 0 the least significant.
BITS
LEAST SIGNIFICANT, 26

The least significant bit is the bit in a data word (see bit
positions) which occupies position 0 (the 1's place).

BLANKING, 49
VDP blanking is a mode where the VDP temporarily ceases
generation of a visible signal. This technique allows you
to make the VDP display "transparent" while you use the
Apple video unimpeded. Blanking has no effect on VDP RAM,

so when blanking is disabled, the display returns immediate-
ly.

BLEED-IN, 20

Bleed-in is a technique for hiding sprites off the display-
able area of the screen.

BLOAD, 47
The BLOAD command loads a "binary" file from disk to Apple
memory. For more information on the BLOAD command, see the
DOS Manual (Apple Computer, Inc.).

BOOT, 81
The initial process of loading in the operating system from
disk. On the Apple this is done by turning the power on
with your "boot" disk in drive 1. For more information on
booting, see the DOS Manual (Apple Computer, Inc.).

BYTE, 25
A byte is an 8-bit unit of data, addressable by a processor.

HIGH, 62

The high byte refers to the most-significant byte of a
sixteen bit data element (usually an address).

LOW, 62

The low byte refers to the least significant byte of a
sixteen but data element (usually an address).

StarSprite I - 116

Glossary/Index

1]

CASE
Case refers to whether a letter is capitalized.
LOWER, 9
Not capitalized.
UPPER, 9
Capitalized.
CHANNEL, 62
Channel refers to a discretely controllable, independent
signal generator. On the SuperSprite, the PSG has three
channels.

COLOR ATTRIBUTE, 5

The color attribute defines the color of a sprite. This is
the fourth attribute you must specify for a sprite.

COLOR FILL, 11

The process of filling a high resolution graphics area with
a solid color.

COLOR

The VDP has 16 standard (hardware) colors, including black
and transparent.

TABLE, 23

A color table is a table that determines the colors of
individual pixels on the background (or pattern) plane
of the VDP. In Graphics I mode, this table is 2048
bytes in length, and in Graphics II mode, it is 6144
bytes in length.

COMPOSITE SPRITE CLUSTERS, 90
Composite Sprite Clusters are groups of more than one sprite
placed on the screen such that they form a larger, or more

complex object. One use for composite sprite clusters is to
produce the effect of multicolored sprites.

StarSprite I - 117

Glossary/Index

COORDINATE, 19

o

DATA

A coordinate is a location, either vertical or horizontal,
of an object. By convention, the X coordinate of an object
defines its horizontal position, and the Y coordinate, its
vertical position. Unlike many coordinate systems, coordi-
nate 0,0 defines the upper left corner of the screen (0,0 is
often a center or bottom left point).

DISK, 84

A data disk is a disk that may or may not contain programs,
but it must have room for data storage. Data disks are
normally working disks, and the contents of such disks
should be backed up regularly.

DEFAULT VALUE, 6

A default value is supplied for certain parameters. These
values are user-definable, but need not be set each time a
program is run since they will take on the default unless

otherwise specified.

DELAY LOOPS, 4

E

Delay loops are "do-nothing" program sequences which are
used to slow the speed of a given program. These are par-—
ticularly useful in sprite animation because sprites can
move more quickly than you might desire. A good example of
a delay is a BASIC FOR-NEXT loop with no statements in
between.

EARLY CLOCK, 20

The early clock bit is the most significant bit of the color
attribute byte in a sprite attribute table. The early clock
bit is ignored if 0O, but if it is set on (add 128 to the
color value), it shifts the sprite left by 32 pixels. This
allows the sprite to bleed in from the left edge of the
backdrop.

ENVELOPE, 63, 71

The General Instrument PSG has the facility of varying the
amplitude of a tone or noise over time. The shape of this
amplitude variance is called the envelope.

StarSprite I - 118

Glossary/Index

F
FILTER, 65, 66

There are 16 programmable filters on the SuperSprite to
allow you to achieve special effects with sound generation.
These filters block out certain portions of the full tone
spectrum producing brighter highs, or "boomier" lows.

€

GRID, 10
A matrix of lines defining a given area. Grids are used to
portray the array of pixels that define a sprite.

L

HEXADECIMAL, 25, 29
Base 16 numerical representation. Hexadecimal representa-
tion of numbers is extremely convenient shorthand for compu-
ters.

HZ, 68
Abbreviation for Hertz, which is the conventional notation
for cycles per second.

1

I/0 DEVICE, 5

Any device that performs input or output, for example a
joystick, a disk drive, or a printer.

INITIALIZE, 47

The process of setting up or perparing. For example disks
must be initialized, and the VDP must be initialized.

INTERFACING, 32
The process of making diverse elements interact with one

another. For example, the SuperSprite must be interfaced
with Applesoft in order to access it from BASIC.

StarSprite I - 119

Glossary/Index

INTERRUPT, 38, 79

An interrupt is a signal generated by an external device
that requests that current processing be stopped until dits
request has been serviced. The SuperSprite can be made to
generate interrupts.

INVERSE, 32
Inverse, when used in conjunction with video display, means

a black display on a color background, rather than the
customary color display on a black background.

L
LO-RES, 22
Short for low resolution graphics mode. This mode of graph-

ics is economical on memory, but is, as the name implies,
very low resolution.

M

MAZE, 6
The StarSprite Maze game is one of the demonstration games
supplied with the StarSprite I system. This game demon-
strates some basic sprite movement techniques, such as
sprite paths.

MEDIA
Media is normally used to refer to disks.

UNFORMATTED, 75

As was mentioned under "initialize'", disks must be
formatted, or initialized, before use.

MERGE, 36
The process of transferring a sprite from its sprite plane
into the pattern plane.

!

NOISE, 70
The General Instrument PSG has the capability of generating
white noise, which may be varied to give the effect of gun

shots, explosions, or combined with tones to produce more
exotic effects,

StarSprite I - 120

Glossary/Index

P
PARAMETER, 97
A value that controls a program function.
PATTERN, 57
A VDP pattern is an 8 by 8 pixel "tile" that makes up part
of the pattern plane. In all, there are 768 tiles on the
pattern plane.
TABLE, 23
The pattern table, or pattern generator table, is the
table maintained in the SuperSprite's RAM that governs
the various patterns displayed on the screen.
PITCH, 72
Frequency.

PIXEL, 10

A screen dot. A pixel is the smallest unit of resolution on
the video display processor.

PLANE
A layer in the video display. The VDP effectively has 34
planes—--32 sprite planes, the pattern plane, and the back-
drop plane. In addition, the Apple video may be thought of

as the lowest priority plane. Objects on different planes
do not interfere with one another.

SPRITE, 20

There are 32 sprite planes, each of which is totally
indepent of all the others.

POKE, 12
POKE statements are used for storing data to specific loca-
tions from BASIC.
POSITION
PATTERN, 26

Pattern position refers to the location in the pattern
plane pointed to by the name table.

TILE, 26
Tile position refers to the location of a given tile on

the screen.

StarSprite I - 121

Glossary/Index

PROCESSOR, 69

A processor is an electronic component capable of executing
certain instructions. The SuperSprite contains three pro-
cessors: the video display processor; the programmable sound
generator; and the speech synthesis processor.

Q
OUADRANT, 60
A quadrant is normally one fourth of a Cartesian coordinate

system. In StarSprite, a quadrant is taken to mean a sec-
tion of a grid.

R
RAM, 38
Random Access Memory
VIDEO, 25
Random Access Memory dedicated to, and only accessible
through the video display processor.
REGISTER

A storage area in a processor. The three processors on the
SuperSprite use registers primarily for receiving instruc=-
tions from the Apple.
MIXER, 70
Register 7 on the PSG--controls which channels are
enabled for tomne, which for noise, and whether or not
filtering is to take place.

STATUS, 37

The VDP register that contains the coincidence flag,
and the fifth sprite flag.

vDP, 19

The Texas Instruments TMS9918A Video Display Processor
registers.

WRITE-ONLY, 37

Registers dedicated to receipt of data--you may not
read the data from these registers.

StarSprite I - 122

Glossary/Index

RESET, 49

The process of restoring a processor, such as the VDP to its
initial state. Pressing the buttons marked CTRL and RESET
on the Apple will perform a "soft" reset on the 6502, stop-
ping whatever program is running, and resetting the
SuperSprite.

s

SCENE
APPLE GRAPHICS, 11

Apple high resolution graphics pictures make good
scenes to use as backgrounds for your sprite graphics.

PATTERN, 12

The VDP pattern plane provides an extremely vivid high
resolution display for bacgrounds.

SEQUENCE, 7

A pre-selected set of events (such as sprite display).

SHAPES
BLOCK, 19

A bit mapped shape in Apple high resolution graphics.

VECTOR, 19

A series of "draw" instructions for Apple high resolu-
tion graphics.

SIZE, 18

On the VDP you may specify sprites as size 0 or size 1.
Size 0 is for 8 by 8 sprites, and size 1, 16 by 16.

SOFT SWITCHES, 49

Locations that may be accessed from software to control the
function of the SuperSprite-—-for example: switching to VDP-
only video.

SPRITE, 1, 7, 18

A programmable object.

MULTICOLOR, 93

A combination of several sprites of different colors to
appear as one multicolor sprite.

StarSprite I - 123

Glossary/Index

NUMBER,

PLANE,

20

In Ampersprite, the sprite-table number is 0 to 63, but
you must multiply the table number by 4 when referring
to a 16 by 16 sprite.

20

There are 32 sprite planes, numbered O to 31. These
planes are allowed to contain only one sprite, so there
is never any actual collision between sprites, they
slide in front or behind one another.

PRIORITY, 21

x

TABLE

The priority of a sprite is determined by its sprite
plane number. The smaller the number, the higher the
priority. This priority scheme is used to determine
whether a sprite is displayed when more than one occu-
pies the same X and Y coordinates.

ATTRIBUTE, 51

COLOR,

A table containing attributes for a set of sprites.
23, 27

A table that defines the colors for the pattern plane.

DIRECTION, 6, 100

NAME,

A table that defines the direction of movement of a
sprite, or a series of sprites. For use in the
StarSprite Maze game.

29

A table that maps pattern and color table data into the
pattern plane.

PATTERN, 23

SPRITE,

A table of pattern definitions for the pattern plane.
5, 18

A table of sprite patterns.

StarSprite I - 124

Glossary/Index

TABLES
PATH, 5
A table that defines the path to be taken by a sprite
or a series of sprites in an animation sequence.
y
VDP, 4

Abbreviation for video display processor. -
VIDEO DISPLAY PROCESSOR, 4

A processor dedicated to controlling video images—-—-for exam-
ple the TMS9918A.

VIDEO PLANE, 5
The plane on which a graphical image is displayed
VIDEO
EXTERNAL, 22
Avideo signal not generated by the TMS9918A VDP such
as Apple video.
z
ZERO PAGE, 60
Locations $00 through $FF in Apple RAM. These locations are
special to the 6502 processor, and should only be used if

you know you are not conflicting with another running prog-
ram.

StarSprite I ~ 125

THIS PAGE LEFT INTENTIONALLY BLANK

— AMPERSPRITE™ vbP Command Card ————

(Video Display Processor Commands)

&A SPRITE Attribute commands:

&AA sprite plane number, Y coord., X coord., sprite number, sprite color
(the first A means attributes (sprite); the second A means all 4 attributes will be

given)
&AA #(<32), #(<256),#(<256),#(<256),#(<16)
&AC sprite plane number, spritecolor &AC #(<32),#(<16)
&AN sprite plane number, sprite number &AN #(<32),#(<256)
&AX sprite plane number, X coord. (example: &AX 3,25) &AXH(<32),#(<256)
&AY sprite plane number, Ycoord. &AYH(<32),#(<256)

&C number of units of offset past color table address, color data (write to color table)
.. &C #(16 bit),#(8 bit)

&I initialize StarSprite card (CALL 912 should happen just before &I command)

&L Apple high byte, Apple low byte, counter (<256), VRAM high byte, VRAM low byte
(load VRAM from Apple memory, use counter=@ for 256 byte transfer (maxi-

MUM)) et &L#(<256),#(<256),#(<256),#(<64),#(<256)
&N position, pattern number (write to name table) &N#(<768),#(<256)
&P number of units of offset past pattern table address, pattern data (write to pattern
fable). &P#(16 bit), #(8 bit)

&R VREGISTER write-to commands:

&RR VREGISTER number, data (direct register write; not to be used during start-up
... &RR#(<8),#(<256

&RA sprite attribute table address (16 bit). &RA#(< =$3F80)
&RC color table address (16 bit) &RC#(<=$2000 or <=3$3FCO)
&RD 1 or @ (to enable or disable active display) &RD1 (normal)
&RE 1 o0r 0 (toenable or disable external video) &REM (normal)
&RG 1 or 2 (toenable Graphics lor llmode) &RG2 (normal)
&RM 1 or @ (to enable sprite magnification 1or@).................... &RM1 (normal)
&RN name table address (16 bit) &RN#(< $3C00)
&RP pattern generator table address (16 bit) &RPH# <=8$20000r =$3800)

)

)

&RS sprite generator table address (16 bit) &RS#(<=$3800)
&RT (enable textmode)t &RT
&RU (enable multicolor mode) &RU
&RX text color, backdrop color and text background &RX#(<16),#(<16)
&RZ 1or@(toenablesizelor®), &RZ1 (normal)

CALL 804 read VRAM into Apple memory (Applelo=$1E;Applehi=$1F;
VRAMIo =$FC,VRAMhi =$FB;counter =$F9...use @ for 256 bytes)

CALL 831 erase StarSprite card

CALL 768 write to VREGISTER (register #=3FF;data=$FE)

CALL 780 write to VRAM (Applelo=$1E;Applehi=$1F;VRAMIo=$FC;
VRAMhi =$FB;counter =$F9...use @ for 256 bytes)

CALL 852 write to color table (color data=$7;positionlo=$8;positionhi =$9;updates
from position on in color table)

For AMPERSPRITE.INT only: &D allows 6502 interrupts, &Q disables 6502 interrupts,
CALL3826 for VDP interrupts, CALL3838 disables VDP interrupts.

dvJ ONYININOI daA , 3LIHdSHIdINY

r =N é 5
Register 13 BITS
COLOR VALUES e
[A A H
AR
0 =transparent Tlelgl® ENVELOPE GENERATOR
1=black gl OUTPUT
2=medium green E I
3=light green
4=dark blue
5=light blue Q10 X| X
6=dark red
7=cyan
8 =medium red XX
9=light red
A or 10=dark yellow 110/0|0
B or 11=light yellow
C or 12=dark green 1100
D or 13=magenta
E or 14=grey 11010
F or 15=white
L y 110111
11100 NN
1111011
101(1]0
11111
ré;'jl\NDARD BASIC VIDEO SWITCH LINES j
GOSUB 9 GOSUB 22889 GOSUB 23889
(standard for Apple 6502 video (standard for VDP video only) (standard for mixed Apple 6502
only) and VDP video)

L J

AMPERSPRITE™ 1

Gl PSG (programmable sound generator) COMMANDS: &TR or &SR or &BR (all mean fill '‘registers” with
) "‘contents’” and are all interchangeable)

CALL 3578 (to cease sound generation) &TR#(<16) (register),#(<256)(contents)

(T=tone S=soundeffects ~ B=hoth tones and sound (all commands except &TR or &SR or &BR zero all G| sound

effects) (N=NO ENVELOPE) (E=ENVELOPE IS UTILIZED) registers before performing)

_ J
L

SOUND

SOUND

&SN noise period amplitude ch. A amplitude ch. B,

&SN register 6, register 8, register 9,

&SN #(<32), #(<16), #(<16),

&SN # #, #,

&SE noise period amplitude ch. A, amplitude ch. B, envelope period,
&SE register 6, register 8, register 9, register 11, 12,
&SE #(<32), #(<32)(>15), #(<32)(>195), #(<32)(>15), #(<65536),
&SE #, # #, #, #,

envelope pattern
register 13
#(<16)

#

1(

=\
TONE
&TN tone per. ch. A tone per. ch. B, tone per. ch. C, amplitude ch. A amplitude ch. C
&TN register 9, 1 registers 2, 3, registers 4, 5, register 8, register 10
&TN #(<4096) #(<4096), #(<4096), #(<16), #(<16)
w &TN #, #, #, #, #
W &TE tone per. ch. A tone per. ch. B, tone per. ch. C, amplitude ch. A, amplitude ch. C, envelope period envelope pattern
[&TE register 0, 1 registers 2, 3, registers 4,5, register 8, register 10, register 11, 12, register 13
&TE #(<4096), #(<4096), #(<4096), #(<32)(>15), #(<32)(>15), #(<32)(>15), #(<65536), #(<16)
&TE #, # #, #, #, #, #, #
e .
—_)
m SOUND & TONE
«a &BN tone per. ch. B tone per. ch. C noise period, noise ampl. ch. A, ampl. tone ch. B, ampl. tone ch. C
w &BN register 2,3 registers 4,5, register 6, register 8, register 9, register 10
W &BN #(<4096), #(<4096), #(<32), #(<16), #(<16), #(<16)
[&BN #, #, # #, #, #
L] &BE tone per ch. B, tone per. ch. C, noise period, noise ampl. ch. A, ampl tone ch. B, ampl. tone ch. C, envelope period envelope pattern
=] &BE register 2,3, registers 4,5, register 6, register 8, register 9, register 10, register 11,12, register 13
W &BE #(<4096), #(<4096), #(<32), #(<32), #(<32), #(<32), #(<65536), #(<16)
o &BE #, # #, # #, #, #, #
Z)

FILTER USAGE: &TR 14,# (filter #) (use right after above commands)

r TONE (TONE
IDEAL PERIOD } IDEAL PERIOﬂ
NOTE OCTAVE FREQUENCY VALUE NOTE OCTAVE FREQUENCY VALUE
C 1 32.703 1955 C 5 523.248 122
C# 1 34.648 1845 C# 5 554.368 115
D 1 36.708 1742 D 5 587.328 109
D# 1 38.891 1644 D# 5 622.256 103
E 1 41.203 1552 E 5 659.248 97
F 1 43.654 1465 F 5 698.464 92
F# 1 46.249 1382 F# 5 739.984 86
G 1 48.999 1305 G 5 783.984 82
G# 1 51.913 1232 G# 5 830.608 77
A 1 55.000 1163 A 5 880.000 73
A# 1 58.270 1097 A#t 5 932.320 69
B 1 61.735 1036 B 5 987.760 65
C 2 65.406 978 C 6 1046.496 61
C# 2 69.296 923 C# 6 1108.736 58
D 2 73.416 871 D 6 1174.656 54
D# 2 77.782 822 D# 6 1244.512 51
E 2 82.406 776 E 6 1318.496 48
F 2 87.308 732 F 6 1396.928 46
F# 2 92.498 691 F# 6 1479.968 43
G 2 97.998 652 G 6 1567.968 41
G# 2 103.826 616 G# 6 1661.216 38
A 2 110.000 581 A 6 1760.000 36
A# 2 116.540 549 A# 6 1864.640 34
B 2 123.470 518 B 6 1975.520 32
C 3 130.812 489 C 7 2092.992 31
C# 3 138.592 461 C# 7 2217.472 29
D 3 146.832 435 D 7 2349.312 27
D# 3 155.564 411 D# 7 2489.024 26
E 3 164.812 388 E 7 2636.992 24
F 3 174.616 366 F 7 2793.856 23
F# 3 184.996 346 F# 7 2959.936 22
G 3 195.996 326 G 7 3135.936 20
G#t 3 207.652 308 G# 7 3322.432 19
A 3 220.000 291 A 7 3520.000 18
A# 3 233.080 274 At 7 3729.280 17
B 3 246.940 259 B 7 3951.040 16
C 4 261.624 244 C 8 4185.984 15
C# 4 277.184 231 C# 8 4434.944 14
D 4 293.664 218 D 8 4698.624 14
D# 4 311.128 206 D# 8 4978.048 13
E 4 329.624 194 E 8 5273.984 12
F 4 349.232 183 F 8 5587.712 1l
F# 4 369.992 173 F# 8 5919.872 1
G 4 391.992 163 G 8 6271.872 10
G# 4 415.304 154 G# 8 6644.864 10
A 4 440.000 145 A 8 7040.000 9
é# 4 466.160 137 {3\# g 7458.560 9
4 493.880 129 7902.080 8
N) \)

Fig. 23 EQUAL TEMPERED CHROMATIC SCALE (fgLock=1.023 MHz)

TABLE OF CHARACTER PATTERN NUMBERS

COLUMN 1 COLUMN 2 COLUMN 3 COLUMN 4
AsCII ASCII AsCIl AsCII

CHAR | CHAR- CHAR | CHAR- CHAR | CHAR- CHAR | CHAR-|
dec | hex ps‘;‘;em 1‘3{ dec | hex pﬂ:vam TAECF; dec | hex P“&'»sm ¢§§ dec | hex pa‘;em :gé
32| 20 0 |©Pce| ga | 40 | 32 | @ 96 | 60 | 64 | \ | 128| 80 | 96 |
3321 | 1 '] 65 | 41| 33 | A 97| 61 | 65 | a | 129| 81 | 97 | T
34| 22 | 2 "|e6 | 42| 34 | B 98| 62 | 66 | b | 130| <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>