Date: Aug 18, 1986
Author: Bill Mauchly
Subject: Note Synthesizer ERS

Document Version Number: 00:50

visi i

June 30: Rev 0.2

The nole synthesizer.i§ now its own tool set, not an extghsion of the SoMools, (#8).
| have/nominally piﬁked system tool number #32 ($20). | found no documentation on’
'usef’toolsets anghow to call them, - s/ /

/ /"
THe note syntbi/s not very compatible with the {rée-form synth rightiow. The f 2e-form
ynth should be started, howeyer, before starting the note synth. /The noéiﬂnth /

installs a m ster sound IRO//egtor. | couldpt get the user vectar to actuahty vector,
Gen 14 is’used for a timer. ‘SetSoundIRQRate does nothing 16 the note $ynth right
now.

Startup is the only one of the first eight functions which is implemented.

The priority scheme was changed slightly to get around a flaw in the original logic.
Semitone and Volume arguments are now words, not bytes.

The order of the data in the Instrument have been changed.

July 27, 1986: Rev 0.3

A problem with the Control Panel was eliminated by adding a new argument to the
startup call: the user update routine. The problem was, the Note Synth re-enabled
interrupts from within the interrupt handler and so did the Control Panel. Now, if the
user wants interrupts enabled, he/she can do it inside this user update routine. The
real reason for this new routine is to give sequencer programs a timer. To this end, a
second parameter, the update rate, is also included in startup.

Uses SetUserVector of Sound Tools.

Implements all mandatory functions.

The interrupt timer runs all the time.

August 18, 1986: Rev 0.5

Changed structure of Instrument to save space and eliminate extra level of indirection.
NoteOn can be called from backround or Interrupt.

Note Synthesizer ERS 00;3 Apple Confidential
Bill Mauchly August 18, 1986

Reset does Shutdown.
DeAlloc turns DOC off.

Note Synthesizer ERS 00:30 Apple Confidential
Bill Mauchly August 18, 1986

GENERAL

The Note Synthesizer is a ram-based tool set, number (decimal) 25. It provides a way
of makin%complex musical sounds on the Cortland when it is equipped with the
ENSONIQ Digital Oscillator Chip (DOC).

An application program will use the note synthesizer by making tool calls at the
beginning and at the end of each note to be played. The first call is to allocate one of
the sound generators. Then the specified DOC generator will be set up to produce
sound with a NoteOn call. During the course of the note the DOC registers for that
generator will be automatically updated on a regular basis to create the shape of the
sound. This happens from a timer interrupt routine which is part of the note
synthesizer. The end of a note, called the release, starts when a NoteOff call is made.
Sometime later, when the note has died away to zero, the generator will be
automatically deallocated.

Generators and GCB's

There are 32 oscillators in the DOC. Of these, 2 are reserved for use by Apple in the
future. The remaining 30 are grouped into pairs, called generators. When the Note
Synth starts up it grabs one generator to use as a timer. The remaining 14 generators
are allocated on a priority basis as needed.

‘One page of bank zero memory must be assigned to the Sound Manager Tool Set
when it is started up. This area is divided into 15 blocks of 16 bytes each, which are
called Generator Control Blocks (GCB). The first byte of a GCB indicates which
synthesizer is using that generator (if any). The definition of the other 15 bytes
depends on which synthesizer is using it.

The GCB is used as a mailbox by the note synthesizer. It contains the current values of
three "knobs™ or controllers which may be changed by the application program. These
are for pitchbend, vibrato depth, and volume. All three controls have a range of 0 to
127. After a call to NoteOn, the GCB will be set up as follows:

GCB: SynthID byte = note synthID = 2
GenNum byte =[0..14]
Semitone byte as specified in call
Volume byte as specified in call
Pitchbend byte 64 = no bend
VibratoDepth byte as specified in instrument

Note Synth internal variables: 10 bytes

Priority Allocation

Generators may be shared among various sound producing tools. Because the note
synthesizer will, by far, use the most generators, and allocate them more often, the
generator allocation is one of the note synthesizer functions. It is not uncommon for
music to ‘accidentally' request a new note when all the available generators are busy.
The allocation scheme will allow the note synthesizer o steal generators from itself, but

Note Synthesizer ERS 00:30 Apple Confidential
Bill Mauchly August 18, 1986

not from other types of synthesizers.

A generator's priority may range from 0 to 128. When priority is zero, that means that
that generator is not being used, and therefore free to be used. When it is 128, then
that generator is locked and may not be stolen. Priorities between 0 and 127 are used
by the note synthesizer to control the stealing of notes.

When a generator is allocated to be used by one of the synthesizers, the generator is’
given a new priority. The generator allocation function will return with the lowest priority
generator.When the note synthesizer uses a generator, it automatically lowers its
priority when the envelope hits the sustain portion, and again when it hits the release
portion. When the note stops, it returns the generator to zero priority. Other
synthesizers in the system (the free-form synth) should always get a generator with a
priority of 128.

Interrupt Timer

The note synthesizer will use one oscillator as a free running timer to provide the
update rate for the envelopes. This timer can also be accessed by an application
program by using the hook provided in the Startup call. The update rate is usually
between 60 and 200 Hz. The timer runs all the time, until a reset or a shutdown call is
made.

Generators used for sound(groduction by the note synthesizer should have their
interrupts disabled in the DOC control register defined in the instrument. The Note
Synth will treat all interrupts from its oscillators as timer interrupts.

An application which uses incoming MIDI will have a hard time on the Cortland if it

uses tools. Most tools disable interrupts for long periods of time. The Note Synthesizer
normally runs an interrupt service routine with interrupts disabled, and this routine may
take several milliseconds when many notes are playing. Since MIDI can generate
interrupts as often as every 333 usec, there is a problem. The application can force the
note synth interrupt service routine to run with interrupts ENABLED. This is
accomplished by installing a user timer routine. It will get called in the interrupt,
immediately before the note synth service routine. If the user subroutine returns with
irgs enabled, that state will remain throughout the note synth interrupt service routine.
This should prevent loss of incoming MIDI data. '

DOC Memory

It is up to the application to get the needed waveforms into DOC MEM, using the
WriteRamBlock function. At no time should a zero be placed in the first 256 bytes of
DOC memory. That would cause the timer oscillator to halt.

Note Synthesizer ERS 00:30 Apple Confidential
Bill Mauchly August 18, 1986

Bootini

Function Number: $01

Input: none
Output: : none
Errors: - none

Should be called only by Tool Loader.

Note Synthesizer ERS 00:30

Apple Confidential
Bill Mauchly

August 18, 1986

tart

Function Number: $02

Input: Update Rate WORD
input: User Update Rtn LONG
Errors: Alreadylnit = $1901

SoundNotinit = $1902

The Sound Tools (Tool #8) should be started first or this startup will fail. The note
synth shares a page of bank zero with the sound tools. NSStartup is necessary
before using the other functions.

The Update Rate is the rate at which the envelopes and LFOs will be generated,
and the rate at which the User Update Routine will get called. The rate value is in
units of .4 Hertz. Some typical rates would be:

Rate: 60 Hz use 60/.4 = 150

Rate: 100 Hz use 100/.4 = 250

Rate: 200 Hz use 200/.4 = 500 default

Use low rates for low overhead. Use a higher rate for smoother sounding
envelopes and better sequencer timing resolution.

The User Update Routine is the address of a routine which will be called on every
timer interrupt. It is intended to be used by a sequencer program. There are
various ways that a sequencer can create various tempos from a fixed clock. The
routine will be called will a jsl from native mode, with index and memory long, and
should return with an rtl. If Interrupts have been re-enabled by the user update
routine, they will remain that way throughout the note synthesizer update routine. lf
the user chooses to enable interrupts inside this routine, then it should be
reentrant. |f this argument is zero, then no routine will be called.

EXAMPLE

pushword #150 ; 60 Hz update rate
pushlong #MyRoutine
_NSStartup

* (2
MyRoutine }da >MyTimeCount

deca
sta >MyTimeCount

Note Synthesizer ERS 00:30 Apple Confidential
Bill Mauchly August 18, 1986

i

Note Synthesizer ERS 00:30 Apple Confidential
Bill Mauchly ' August 18, 1986

NSShutdown

Function Number: $03

Input: none
Output: none
Errors: Notlnit = $1923

Shutdown turns off all generators used by the note synth and clears their priority.
It replaces the sound IRQ vector with the one which was present before startup.

Note Synthesizer ERS 00:30 Apple Confidential
Bill Mauchly August 18, 1986

NSVersion

Function Number:
input:

Output:

Errors:

Note Synthesizer ERS 00:30
Bill Mauchly

$04

none

Version Number
None

WORD

Apple Confidential
August 18, 1986

NSReset

Function Number: $05

input: none
Output: none
Errors: none

This performs the same function as Shutdown.

Note Synthesizer ERS 00:30 Apple Confidential

Bill Mauchly August 18, 1986
10

NSStatus

Function Number: $06

Input: none
Output: StartStatus word
Errors: none

This function returns 0 or $FFFF depending on whether the Note Synth was stared:
yet. :

Note Synthesizer ERS 00:30 Apple Confidential

Bill Mauchly August 18, 1986
11

AllocGen

Function Number: $09

Input: RequestPriority WORD
Output: GenNum WORD
Errors: NoneAvailable = $1921

AllocGen is a request for a sound generator. If successful, it returns a generator
number, from 0 to 13. Which generator is returned is determined by the current
priorities of the 14 generators. If one of the generators is free, that is, it has a priority
of zero, then the first free one is returned. If none are free, then it looks for one to
'steal’. It finds the lowest priority generator. If that generator's priority is lower than,
or equal to, the RequestPriority, then that generator is ‘stolen’. If all generators are
already of a higher priority, then the request fails. There is one exception; a
generator with a priority of 128 is never stolen.

A fail is indicated by carry set on return. When successiul, the generator is
assigned a priority equal to RequestPriority.

Note Synthesizer ERS 00:30 Apple Confidential
Bill Mauchly August 18, 1986
12 '

DeallocGen
Function Number: $0A

Input: GenNum WORD
Output: none
Errors: BadGenNum = $1922

This function sets the named generator's priority to zero. It also makes sure that the:
oscillators are halted.

AllocGen and DeallocGen can be used to gain control of generators in the DOC for
any of the synthesizer functions in the Cortland Tools, or even a user defined
synthesizer function. The programmer can guarantee success in this allocation by
always requesting the same priority. This means that there will never be a situation
where a note will not sound because all the generators are busy. That is the
simplest way to use the dynamic allocation. A more advanced use of priority would
be to put higher priorities on bass notes and melody lines.

Note that this call is not necessary for generators that have played notes. The note
synth automatically deallocates generators when their envelopes have dropped to
zero.

An Error code is returned if the Generator number is greater that 13.

Note Synthesizer ERS 00:30 Apple Confidential

Bill Mauchly August 18, 1986
13

NoteOn

Function Number: $0B

Input: GenNum WORD
Semitone
WORD
Volume WORD
InstrumentPtr LONG
Output: None
Errors: AlreadyOn = 24

This function initiates the sounding of a note on the specified instrument.

GenNum is a generator number from 0 to 14. The GenNum used in the call should
usually be obtained immediately prior to the call from a call to AllocGen.

The Semitone is specified in MIDI standard format: a value from 0 to 127, where
middle C is 60.

The Volume parameter is also in the range of 0 to 127, and can be treated like MIDI
velocity. This volume parameter is copied into the GCB. #isused-es-atnear
scaler-olthe-amphitude enveiope:

The InstrumentPtr is a pointer to an Instrument structure, which is defined below,
on page 15.

EXAMPLE :
pushword #0 :space for the GenNum
pushword #64 ; Priority of this note: average
_AllocGen
pla
sta GenNum

pushword GenNum

pushword Semitone

pushword #127 ; max volume

pushlong #instrument ; LONG ptr to inst definition
_NoteOn

... wait a while

pushword GengrararNumber
pushword Semitone
_NoteOff

Note Synthesizer ERS 00:30 Apple Confidential
Bill Mauchly August 18, 1986
14

NoteOff

Function Number; $0C

Input: GenNum _ WORD
"~ Semitone
WORD
Output: None
Errors: None

This function causes the envelope generator of the given note to go to the release
stage. The release usually causes the volume to drop to zero in a short time.
When the envelope reaches zero, the note will no longer be heard and the note is
considered off. The generator's priority will then be set to zero, indicating that it is.
free.

The GenNum and Semitone should be the same ones that were specified in the
corresponding NoteOn call. There are cases where the note is no longer
sounding; for example, if the envelope had already dropped to zero or if the
generator had been stolen to play another note. NoteOff checks to make sure that
the named generator is indeed playing the named semitone.

Note Synthesizer ERS 00:30 Apple Confidential
Bill Mauchly August 18, 1986
15

AllNotesOff

Function Number: $0D

Input: none
Output: none
Errors: _none

This function turns off all the notes that the note synthesizer is playing and returns
them to zero priority. It will not shut down other generators, such as those used by
the free-form synthesizer. '

Note Synthesizer ERS 00:30 Apple Confidential
Bill Mauchly August 18, 1986
16

INSTRUMENT DEFINITION

An Instrument is a data structure which resides somewhere in Cortland memory. A
NoteOn call must pass a pointer to an instrument.

Instrument:

Q_SE.I Eield Name size
Envelope 24 BYTES

24 ReleaseSegment BYTE

25 Prioritylncrement BYTE

26 PitchBendRange BYTE

27 VibratoDepth BYTE

28 VibratoSpeed BYTE

29 Spare BYTE

30 AWaveCount BYTE

31 BWaveCount BYTE

32 AWavelist: AWaveCount * 6 BYTES

X BWavelist: BWaveCount * 6 BYTES
(X =32+ AWaveCount * 6)

The Envelope is composed of up to eight linear segments. Each segmentis
described by a breakpoint and an increment. During each segment, the volume of
the note will ramp from its current value to the breakpoint value. The slope, and
thus the time of the ramp, is determined by the increment.

The breakpoint should be a byte between 0 and 127. It represents sound level in a
logarithmic scale: each 16 steps change the amplitude by 6 Db.

The slope is described by an increment which will be added or subtracted from the
current level at the update rate (100 times a second). The increment is a two byte
fixed point number, that is, the lower 8 bits represent a fraction. Thus when the
increment is 1 it represents 1/256. In this case, the increment would have to be
added 256 times (2.56 seconds) to cause the envelope level to go up by 1.

The envelope is a list of breakpoints and increments:

stage 1: breakpoint increment
stage 2: breakpoint increment
Note Synthesizer ERS 00:30 Apple Confidential
Bill Mauchly August 18, 1986

17

stage 3: breakpoint increment
stage 4. breakpoint increment
stage 5: breakpoint increment
stage 6: breakpoint increment
stage 7: breakpoint increment
stage 8: breakpoint increment

Increment 1 is used to go from the initial level of 0 up to the leve! of breakpoint 1.
Increment 2 is used to go from breakpoint 1 to breakpoint 2, and so on. The sustain
level of the envelope, if there is one, is created by setting the increment to 0,
causing the envelope 1o get "stuck™ on that level. The release segment of the
envelope is specified by the ReleaseSegment parameter, which must be a number
from 0to 7. The release may take several segments to get to zero. The last
breakpoint should always be zero.

To compute the time of a segment:
time = | last breakpoint - new breakpoint | * 256
increment * update rate

For example, to ramp from 30 to 40, with an increment of 25, and an update rate of
100 Hz: ~ '

“time=]30-40 |* 256 =2560=1.02 seconds
25* 100 Hz 2500

Prioritylncrement is a number which will be subtacted form the generator priority
when the envelope reaches the sustain segment. Whe it reaches the release
segment the priority will be cut in half. The proirity of each generator will also be
decremented by one each time a new generator is allocated. This causes 'older’
notes of to be preferred for stealing.

PitchbendRange is the number of semitones that the pitch will be raised when the
‘pitchwheel' reaches 127 (the center value is 64). The valid values for
PitchbendRange are 1, 2, and 4. ‘

VibratoDepth is the (initial) fixed depth of vibrato, ranging from 0 to 127. Vibrato is
a triangle shaped LFO modulating the pitch of both oscillators in a generator, A
vibrato depth of zero will turn the vibrato mechanism OFF, which saves some CPU
time.

VibratoSpeed controls the rate of the vibrato LFO. It can be any byte value. The
actual frequency will depend of the update rate set during Startup.

Note Synthesizer ERS 00:30
Bill Mauchly

Apple Confidential
August 18, 1986
18

AWaveCount and BWavecount tell the note synth how many waves there are in
the following wavelists. There can be up to 255 waves in each list.

The Wavelist structure is a variable length array where each entry is 6 bytes long.
Each entry represents a Waveform. The information is particular to the DOC; the
user should refer to the DOC specification when creating instruments. Each 6 byte
entry represents a waveform and contains information about the allowable pitch
range of the waveform. This means that the waves can be "multi-sampled" across
(an imaginary) keyboard. When a note is played, the Wavelist A and B will be
examined and ONE waveform will be picked out and assigned to each oscillator.

Each Waveform in a Wavelist has the following 6 byte format:

TopKey byte
WaveAddress byte
WaveSize byte
DOCMode byte
RelPitch word

TopKey is the highest MIDI semitone that will be played by this waveform. The
synth will examine the topkey field of each waveform until it finds one greater than
or equal to the note it is trying to play. The items in the Wavelist should be in order
of increasing TopKey values. The last wave in a Wavelist should have a TopKey of
127. The TopKey value is, then, the split point between waveforms.

The next three bytes will be picked up and stuffed directly into the DOC registers.
The WaveAddress is the high byte of the waveform address. The WaveSize sets
both the size of the wavetable and the frequency resolution. The DOC mode goes
into the mode register. The interrupt enable bit will be ignored.

Briefly, some of the ways that DOCMode may be used:

Synthesizer: both oscillators, A and B, in free run mode. ($00)

Sampled, no loop: Osc A in single cycle and trigger peer mode ($06);
Osc B in single cycle and halt mode, with halt set ($03). Osc A will complete and
start Osc B, which will play to the end and stop.

Sampled, with loop: Osc A in single cycle and trigger peer mode ($06);
Osc B in free run mode, with halt set ($01). Osc A will complete and starnt Osc B,
which will play continuously until the note ends.

RelPitch is a two-byte word which is used to tune the waveform. This will
compensate for different sample rates and waveform sizes. The high byte isin
semitones, but can be a signed number. The low byte is in 1/256 semitone
increments. Note that the low byte is first in memory on the 65816. A setting of

Note Synthesizer ERS 00:30 Apple Confidential

Bill Mauchly August 18, 1986
20

zero is the default for sounds that have one cycle per page of waveform memory.

The wavelist structure is designed to give great flexibility in creating realistic
instrument timbres. It allows 'multi'sampling’ with different samples of sounds on
different ranges of pitch. It allows mixing of various size waveforms, with different
tuning on each one. One special application might be to use a different
Waveform entry on each semitone, to allow seperate tuning of each note. This
would be a way to duplicate special tuning systems, like just temperment. The
wave pointers need not be different in this case, just the RelPitch fields.

Tuning is accurate to 1/128 of a semitone in the note synth software, subject to the
resolution setting of the DOC. For accurate tuning on lower notes it may be
necessary to use higher settings in the DOC resolution register.

Note Synthesizer ERS 00:30 Apple Confidential

Bill Mauchly Augus! 18, 1986
21

