

Dialog Manager

GetNewModalDialog Call ¢ 50

input: DialogTemplate:LONG pointer to a dialog template

output: theDialog:LONG pointer to dialog port, zero if error
GetNewModalDialog (like NewModalDialog) creates a modal dialog and returns a pointer to the

port of the new dialog. But, instead of getting its parameters from the stack, it gets them from a
template whose definition follows: :

DialogTemplate:
BoundsRect ;:RECT dialog bounds rectangle
Visible :WORD TRUE if dialog is to be wvisible
RefCon:LONG any value you want (application-use)
Iteml:LONG pointer to first item's template
Item2 :LONG pointer to second item's template
ItemN:LONG pointer to last item's template

Terminator:LONG ZERO item list terminated by a nil pointer.

The beginning of a dialog template contains the same values you would pass to NewModalDialog,
except that BoundsRect is the actual rectangle, not a pointer.

The iteml, item2,... itemN fields are pointers to item templates for each of the items you want to
figure in the dialog. The last pointer must be O to signal the end of the list.

CloseDialog Call % 12

input: theDialog:LONG pointer to dialog port

output: none

CleseDialog removes theDialog's window from the screen and deletes it from the window list, just

as when the Window Manager procedure CloseWindow is called. It releases the memory occupied
by the following:

» The data structures associated with the dialog window (such as the window's structure,
content, and update regions).

* All the items in the dialog (except for pictures and icons, which might be shared
resources), and any data structures associated with them. For example, it would dispose

of the region occupied by the thumb of a scroll bar, or a similar region for some other
control in the dialog.

August 13, 1986 — Jean-Charles Mourey Page 23

Dialog Manager

NewDItem Call # 13
input: theDialog:LONG pointer to dialog this item belongs to.
ItemID:WORD item identifier for all item-related
. dialog manager calls.
ItemRect : LONG pointer to the display rectangle.
ItemType : WORD Button, Check, UserCtl, StatText,

Editline,Picltem,UserItem...
ItembDescr:LONG stringptr, textptr, procptr, iconhandle
: or pichandle.
ItemValue : WORD init value, text length, max length, O,
or any other value.
optional ItemFlag:WORD includes visible/invisible flag (0 for
default £flag).
optional ItemColor:LONG pointer to item's default color table
t (0 for default).

output: none.

Adds a new item to the dialog's item list.

The possible item types are: Buttonltem, Checkltem, Radioltem, ScrollBarltem, UserCtlltem,
StatText, LongStatText, EditLine, Iconltem, Picltem, Userltem.

If you add ItemDisable to the ItemType, the dialog manager will handle the actions on this disabled
item without reporting anything to te application.

For a Button item [, Check item, Radio item], the itemDescr parameter is a pointer to the title of
the button [, check box, radio button] and the itemValue is the initial value of the control (useful for
check boxes and radio buttons).

- For a StatText item, the itemDescr parameter is a pointer to a string containing the static text and
the itemValue is not used. You can have several lines of text in the same item by inserting carriage

returns (ASCII 13=30D) inside the string. Here is an example of a typical string you would use for
a StatText item:

StaticStr de il'EndStaticStr-StaticStr-1'
de c¢'Do you want to save', h'0D’
dec c'before quitting?'

EndStaticStr anop

For a one line static text item, you can use the macro STR:

StaticStr str 'File not found'

August 13, 1986 — Jean-Charles Mourey Page 24

Dialoeg Manager

For a LongStatText item, the itemDescr parameter is a pointer to the beginning of the text ending
and the itemValue is the word length of the text (0 to 32767). Here is an example of typical
itemDescr and itemValue parameters you would use for a LongStatText item:

itemDescr is a pointer to the following text:

myLongText dec c¢'This is a really very...',h'0OD’'
de c'very... very...',h'0OD’

de c'long text, that contains',h'0D’

de c'more than 255 characters',h'QD'

dc c¢'so that I need a LongStatText',h'0D’

de c'item to print it in a single item'
EndLongText anop

and itemValue is: EndLongText-myLongText

For an EditLine item, the itemDescr parameter is a pointer to the default string containing the
defauit text that first appears in the item when the dialog comes up and itemValue is the maximum
allowed length of the editable string (0 to 255). Here is an example of typical itemDescr and
itemValue parameters you would use for an EditLine item:

itemDescr is a pointer to the following string:

EditLStr dc il'EndEditLStr-EditLStr-1' ; default string
dc c'Untitled’

EndEditLStr anop

and itemValue is: 15 (maximum length for a ProDos file name)

If you pass zero for itemDescr, the line will have no default text in it,

Ifthcitcmistheﬁ:stEdiﬂ_ineitemtobea‘eawd,itwﬂlbethccun‘cntactichditLineitcmandthe
default text (if there is any) will be selected.

For a ScrollBar item, the itemDescr is a pointer to a special action procedure that will be called
during initialization time and scrolling. This procedure will be able, for example, to change the
appearance of different items in the dialog in real-time, while the user is scrolling the scroll bar and
without reporting anything to the application. In fact, if the scrollbar item is disabled, the
application will not even know that the user clicked in it!

August 13, 1986 — Jean-Charles Mourey Page 25

-

Dialog Manager

The definition of a Dialog ScrollBar Action Procedure follows:

MyDialogSerollBaz
input: command : WORD see list of possible commands below.
dialog:LONG dialog the scroll bar is in.
ScrollBarID:WORD item ID of scroll bar.
output: result:WORD depends on command (see below) .
Command Result Comments
GetlnitView (1) init view view size at creation (called before control is allocated)
GetInitTotal (2) init total total size at creadon (called before control is allocated)

GetInitValue (3) starting valuc - value at creation (called before control is allocated)
ScrollLineUp (4) new value scroll one line up and return new scroll bar value
ScrollLineDown (5) new value scroll one line down and return new scroll bar value

ScrollPageUp (6) new value scroll one page up and return new scroll bar value
ScrollPageDown (7) new value scroll one page down and return new scroll bar value
ScrollThumb (8) new value get thumb position, scroll to that position and return new

correct value (usually the same).

For the first three calls, do not make any reference to the scroll bar control because these calls are
made before to allocate the control.

The calls from ScrollLineUp to ScrollPageDown should first call GetltemValue on ScrollBarID to

get the previous value of the scroll bar, then do some changes (like changing an icon or the text of a

fhtatTcxt item, or adding or removing items from the dialog), and finally returns the new value of
e scrollbar.

For ScrollThumb, you should first call GetltemValue on ScrollBarID. GetltemValue returns the
new thumb position. You can then do whatever changes you want to do, and then returns either the
value you got from GetltemValue or any value you find suitable,

Your Dialog ScrollBar Action procedure will be called by NewDItem just before to create a
ScrollBar item and by ModalDialog when the user clicks in a ScrollBar item.

Note that ModalDialog will set the new scrollbar value according to the result returned by your
procedure.

August 13, 1986 — Jean-Charles Mourey Page 26

ceaa

Dialog Manager

For an Icon item, itemDescr is a handle to an icon and itemValue is not used. The icon record
contains the following fields:

iconRect equ 0 ; bounds rect (width is multiple of 8)
iconImage equ iconRect+8 ; pixel image (icon bitmap)

For a Picture item, itemDescr is a picture handle *** almost defined *** and itemValue is not
used.

For a UserControl item, itemDescr is a pointer to a control definition procedure, as defined in the
Control Manager ERS, and itemValue is the initial value of the control.

For a User item, itemDescr is a pointer to an item definition procedure and itemValue is not used.
The definition of an item definition procedure follc-vs:
MyIlitem

input: theDialog:LONG pointer to the dialog's grafport
itemID:WORD ID of item to draw

output: none
The procedure for a Userltem draws the item; for example, if the item is a clock, it will draw the
clock with the current time displayed. When this procedure is called, the current port will have been
set by the Dialog Manager to the dialog window's grafPort.

TheDialog is a pointer to the dialog window; in case the procedure draws in more than one dialog,
this parameters tells it which one to draw in.

Itcmmdilsathe item ID; in case the procedure draws more than one item, this parameter tells it which
one to draw. .

August 13, 1986 — Jean-Charles Mourey Page 27

Dialog Manager

GetNewDItem Call # 51

input: theDialog:LONG pointer to dialog port
ItemTemplate:LONG pointer to an item template

output: none

GetNewDItem (like NewDItem) adds a new item to the dialog's item list. But, instead of getting its
parameters from the stack, it gets them from a template whose definition follows:

ItemTemplate:
itemID :WORD Number uniquely identifying the item
itemRect :RECT display rectangle, in local coordinates
itemType :WORD Type of item (Button, Check, Scroll...)
itemDescr:LONG Item Descriptor
itemValue : WORD Item Value
itemFlag:WORD Bit vector flag (0 for default)
itemColor:LONG Pointer to color table (0 for default)

Most of the item template fields are the same as those you would pass to NewDItem, except:
e ItemRect contains the actual display rectangle, not a pointer to it.
- The dialog that will contain the item is not specified in the template. This allows you to

. have dialog-independent items and repeat them among several dialogs (useful for OK,
o Cancel,... buttons).

Removeltem Call # 14

input: theDialog:LONG pointer to dialeog port
ItemID :WORD ID of item to be removed
output: none.

Removes the given item from the dialog and erases it from the screen.

) August 13, 1986 — Jean-Charles Mourey Page 28

TN

Dialog Manager

ModalDialog | © call # 15

input: filterProc:LONG ©pointer to a filter procedure to be
called repeatdly

output: itemHit :WORD ID of item hit.

Call ModalDialog after creating a modal dialog and bringing up its window in the frontmost plane.
If the front window is a modaldialog, ModalDialog repeatedly gets and handles events in the
dialog's window; after handling an event involving an enabled dialog item, it returns with the item
ID in itemHit. Normally you'll then do whatever is appropriate as a response to an event in that
item.

Note: If the front window is not a modal dialog (for instance, if it is a regular window or a
modeless dialog), modaldialog returns immediately with itemFit set to ™.

ModalDialog gets each event by calling the Event Manager function GetNextEvent. If the eventis a
mouse-down event outside the content region of the dialog window, ModalDialog emits sound
number 1 (which should be a single beep) and gets the next event; otherwise, it filters and handles
the event as described below.

Note: Once before getting each event, ModalDialog calls SystemTask *** not called yet ***, a
Desk Manager procedure that must be called regularly so that desk accessories will work
properly.

The filterProc parameter determines how events are filtered. If it's NIL, the standard filterProc
function is executed; this causes ModalDialog to return the ID of the default button (1 usually) in
itemHit if the Return key is pressed and supports the Apple-X/C/V commands for Cut/Copy/Paste
operations inside the dialog. If filterProc isn't NIL, ModalDialog filters events by executing the
function it points to. Your filterProc function should have three parameters and return a Boolean
value. For example, this is how it would be declared if it were named MyFilter:

MyFiltexr
input: theDialog:LONG pointer to the dialog port.
theEvent : LONG pointer to the Event.
itemHit : LONG pointer to itemHit.
output: result :WORD TRUE if must return.

A function result of FALSE tells ModalDialog to go ahead and handle the event, which either can
be sent through unchanged or can be changed to simulate a different event. A function result of
TRUE tells ModalDialog to return immediately rather than handle the event; in this case, the
filterProc function sets itemHit to the item number that ModalDialog should return.

Note: If you set the bit 31 of the filterProc parameter to 1 before passing it to ModalDialog, the
standard filter procedure will also be called after your filter procedure. It allows you to

August 13, 1986 — Jean-Charles Mourey Page 29

Dialog Manager

define a custom filter procedure and still get the benefits of the Cut/Copy/Paste feature and
the Return alternative for the default button, for consistency with the Apple User Interface
Guidelines.

You can use the filterProc function, for example, to treat a typed character in a special way (such as
ignore it, or make it have the same effect as another character or as clicking a button); in this case,
the function would test for a key event with that character. As another example, suppose the dialog
box contains. a useritem whose procedure draws a clock with the current time displayed. The
filterProc function can call that procedure and return FALSE without altering the current event.

If you want the filter procedure to handle a special event and prevent ModalDialog from handling it,
but without actnally leaving ModalDialog, change the what field of the Event Record to
nullEvent and rerurns FALSE.

ModalDialog handles the events for which the filterProc function returns FALSE as follows:

» Inresponse to an activate or update event for the dialog window, ModalDialog activates or
updates the window. ()

o If the mouse button is pressed in an EditLine item, ModalDialog responds to the mouse
activity as appropriate (displaying an insertion point or selecting text). If a key event
occurs without the Apple key held down and there's an EditLine item, text entry and
editing are handled in the standard way for such items. If the Apple key is being held
down, the typed character does not go to LineEdit except for left and right arrows. In
either case, ModalDialog returns if the EditLine item is enabled or does nothing if it's
disabled. If a key-down event occurs when there's no EditLine item, ModalDialog does
nothing,

« If the mouse button is pressed in a standard or user control, ModalDialog calls the Control
Manager function TrackControl. If the mouse button is released inside the control and the
control is enabled, ModalDialog returns; otherwise, it does nothing.

« If the mouse button is pressed in a scroll bar item, ModalDialog calls the Control Manager
function TrackControl with a special action procedure that calls your Dialog ScrollBar
Action procedure.)

o If the mouse button is pressed in any other enabled item in the dialog box, ModalDialog

returns. If the mouse button is pressed in any other disabled item or in no item, or if any
other event occurs, ModalDialog does nothing,

August 13, 1986 — Jean-Charles Mourey Page 30

Dialog Manager

IspialogEvent Call # 16 -
input: theEvent :LONG pointer to the Event Record
output: result:WORD TRUE if theEvent is a Dialog Event.

If your application includes any modeless dialogs, call IsDialogEvent after calling the Event
Manager function GetNextEvent. or the Window Manager function TaskMaster.

Warning: If your modeless dialog contains any EditLine items, you must call IsDialogEvent (and
then DialogSelect) even if GetNextEvent returns FALSE; otherwise your dialog won't
receive null events and the caret won't blink.

Pass the current event in theEvent. IsDialogEvent determines whether theEvent needs to be handled
- as part of a dialog. If theEvent is an activate or update event for a dialog window, a mouse-down
event in the content region of an active dialog window, or any other type of event when a dialog
window is active, IsDialogEvent returns TRUE; otherwise, it returns FALSE,

When FALSE is returned, just handle the event yourself like any other event that's not
dialog-related. When TRUE is returned, you'll generally end up passing the event to DialogSelect
for it to handle (as described below), but first you should do some additional checking:

-* In special cases, you may want to bypass DialogSelect or do some preprocessing before
cams%; it. If so, check for those events and respond accordingly.

For cases other than these, pass the event to DialogSelect for it to handle.

August 13, 1986 — Jean-Charles Mourey Page 31

Dialog Manager

DialogSelect Call ¢ 17

input: theEvent :LONG pointer to the Event Record
theDialog:LONG address of variable to store the dialog
pointer in it
itemHit : LONG pointer to itemHEit

output: result:WORD TRUE if event involved an enabled item

You'll normally call DialogSelect when IsDialogEvent returns TRUE, passing in theEvent an event
that needs to be handled as part of a modeless dialog. DialogSelect handles the event as described
below. If the event involves an enabled dialog item, DialogSelect returns a function result of
TRUE with the dialog pointer in theDialog and the item number in itemHit; otherwise, it returns
FALSE with theDialog and itemHit undefined. Normally when DialogSelect returns TRUE, you'll

do whatever is appropriate as a response to the event, and when it returns FALSE you'll do
nothing,.

If the event is an activate or update eveat for a dialog §vindow. DialogSelect activates or updates the
window and returns FALSE.

If Aﬁllfs event is a key-down or auto-key event and the Apple key is held down, DialogSelect returns
FALSE.

If the event is a mouse-down event in an EditLine item, DialogSelect responds as appropriate
(displaying a caret at the insertion point or selecting text). If it's a key-down or auto-key event
without the Apple key being held down and there's an EditLine item, text entry and editing are
handled in the standard way. In either case, DialogSelect returns TRUE if the EditLine item is
enabled or FALSE if it's disabled. If a key-down or auto-key event is passed when there's no
EditLine item, DialogSelect returns FALSE.

Note: To treat a typed character in a special way (such as ignore it, or make it have the same effect
as another character or as clicking a button), you need to check for a key-down event wuh
that character before calling DialogSelect.

If the event is a mouse-down event in a control, DialogSelect calls the Control Manager function
TrackControl. If the mouse button is released inside the control and the control is enabled,
DialogSelect returns TRUE; otherwise, it returns FALSE.

If the event is a mouse-down event in any other enabled item, DmlogScloct returns TRUE. Kit'sa
mzmsv.:-dc:’;wl-n‘S event in any other disabled item or in no item, or if it's any other event, DialogSelect
returns FALSE.

Note: If the event isn't one that DialogSelect specifically checks for (if it's a null event, for
example), and there's an EditLine item in the dialog, DialogSelect calls the LineEdit
procedure LEIdle to make the caret blink.

August 13, 1986 — Jean-Charles Mourey Page 32

Dialog Manager

DlgCut call # 18
input: theDialog:LONG pointer to the dialog
output: none
DlgCut checks whether theDialog has any EditLine items and, if so, applies the LineEdit procedure:

LECut to the currently selected EditLine item. You can call DigCut to handle the editing command
Cut when a modeless dialog window is active.

DlgCopy Call & 19
input: theDialog:LONG pointer to the dialog

output: none

DlgCopy is the same as DigCut except that it calls LECopy, for handling the Copy command.

DlgPaste Call # 20
input: theDialog:LONG pointer to the dialog
ocutput: none

DigPaste is the same as DigCut except that it calls LEPaste, for handling the Paste command.

Dlghelete : Call # 21
input: theDialog:LONG pointer to the dialog
output: none

DlgDelete is the same as DigCut except that it calls LEDelete, for handling the Clear command.

DrawDialog Call # 22

input: theDialog:LONG pointer to the dialog

output: none
DrawDialog draws the contents of the given dialog box. Since DialogSelect and ModalDialog
handle dialog window updating, this procedure is useful only in unusual situations. You would

call it, for example, to display a dialog box that doesn't require any response but merely tells the
user what's going on during a time-consuming process.

August 13, 1986 — Jean-Charles Mourey Page 33

~

Dialog Manager

Alaezt Call # 23
input: AlertTemplate:LONG pointer to an alert template
filterProc:LONG pointer to filter used by ModalDialog
output: itemHit :WORD ID of item Hit. ‘

This function invokes the alert defined by the alert template. It calls the current sound procedure, if
any, passing it the sound number specified in the alert template for this stage of the alert. If no alert
box 1s to be drawn at this stage, Alert returns a function result of —1; otherwise, it creates and
displays the alert window for this alert and draws the alert box.

Alert gets its parameters for an alert template. The definition of an alert template is as follows:

AlertTemplate:

BoundsRect :RECT alert bounds rectangle

AlertID:WORD number uniquely identifying the alert
stagel:BYTE first stage of alert

stage2 :BYTE second stage of alert

stage3:BYTE third stage of alert

staged :BYTE fourth stage of alert

Iteml :LONG pointer to first item's template
Item2:LONG pointer to second item's template
ItemN:LONG pointer to last item's template

Terminator:LONG ZERO item list terminated by a nil pointer.

A stage byte is a bit vector containing the fbllowing bit fields:

Bits 0-2 : Sound Number to emit at this stage (0 to 3)
Bits 3=5 : Unused

Bit 6 . ¢+ Default button ID minus 1 (only 1 or 2).

Bit 7 : Flag indicating if the alert should be drawn.

Note: Alert creates the alert window by calling NewModalDialog and GetNewDItem for each item
in the alert, and does the rest of its processing by calling ModalDialog.

Alert repeatedly gets and handles events in the alert window until an enabled item is clicked, at
which time it returns the item numbcr Normally you'll then do whatever is appropriate in response
to a click of that item.

Alert gets each event by calling the Event Manager function GetNextEvent. If the event is a
mouse-down event outside the content region of the alert window, Alert emits sound number 1

(which should be a single beep) and gets the next event; otherwise, it filters and handles the event
as described below.

August 13, 1986 — Jean-Charles Mourey Page 34

_

Dialog Manager

The filterProc parameter has the same meaning as in ModalDialog (see above). If it's NIL, the
standard filterProc function is executed, which makes the Return key have the same effect as
clicking the defauit button. If you specify your own filterProc function and want to retain this
feature, you must set the bit 31 of the filterProc parameter to 1. You can find out what the current
default button is by calling GetDefButton on the dialog pointer for the alert passed to your filter
procedure,

Alert handles the events for which the filterProc function returns FALSE as follows:

o If the mouse button is pressed in a control, Alert calls the Control Manager procedure
TrackControl. If the mouse button is released inside the control and the control is enabled,
Alert returns; otherwise, it does nothing.

o If the mouse button is pressed in any other enabled item, Alert simply returns. If it's
pressed in any other disabled item or in no item, or if any other event occurs, Alert does
nothing, .

Before returning to the application with the item number, Alert removes the alert box from the
screen. (It disposes of the alert window and its associated data structures, the item list, and the
items.)

Note: The Alert function's removal of the alert box would not be the desired result if the user
clicked a check box or radio button; however, normally alerts contain only static text, icons,
pictures, and buttons that are supposed to make the alert box go away. If your alert
contains other items besides these, consider whether it might be more appropriate as a

dialog.
StopAlext Call # 24 w#*% without icon ***
input: BAlertTemplate:LONG pointer to an alert template
filterProc:LONG pointer to filter used by ModalDialog
output: itemHit :WORD ID of item Hit.

StopAlert is the same as the Alert fu;xction (above) except that before drawing the items of the alert
in the alert box, it draws the Stop icon in the top left corner of the box (within the rectangle
(10,20)(42,52)). The Stop icon has the following ID:

stopIcon equ O

o B & E

Stop Note Caution Talk

Figure 7. Standard Alert Icons

August 13, 1986 — Jean-Charles Mourey Page 35

13

Dialog Manager

NoteAlexrt Call # 25 #%¥ without lcon *#**
input: AlertTemplate:LONG pointer to an alert template
filterProc:LONG pointer to filter used by ModalDialog
output: itemHit :WORD ID of item Hit,

NoteAlert is like StopAlert except that it draws the Note icon, which has the following ID:

noteIcon equ 1

Cautionilezt call # 26 w#% without icon ***
input: AlertTemplate:LONG pointer to an alert template
filterProc:LONG pointer to filter used by ModalDialog
output: itemHit :WORD ID of item Hit.

CantionAlert is like StopAlert except that it draws the Caution icon, which has the following ID:

cautionlcon equ 2

TalkAlert Call # 28 *** without speech (yet) ***
input: AlertTemplate:LONG pointer to an alert template
filterProc:LONG pointer to filter used by ModalDialog
output: itemHit :WORD ID of item Hit.

TalkAlert is like StopAlert except that it draws the Talk icon, which has the following ID:
talkIcon equ 3
and it then calls the Sound Tools to actually SPEAK the alert with a synthetic voice.

August 13, 1986 — Jean-Charles Mourey Page 36

———,
g N

Dialog Manager

ParamText Call ¢ 27
input: paramO:LONG pointer to string ~0 (zero=no change)
paraml : LONG pointer to string “1 (zero=no change)
param2 : LONG pointer to string "2 (zero=no change)
param3:LONG pointer to string ”~3 (zero=no change)

output: none

ParamText provides a means of substituting text in statText items: param0 through param3 will
replace the special strings 'A0' through 'A3' in all statText items in all subsequent dialog or alert
boxes. Pass empty strings for parameters not used. ,

You may pass NIL for parameters not used or for strings that are not to be changed.

For example, if the text is defined as 'Cannot open document A0’ and docName is a string variable
containing a document name that the user typed, you can call ParamText(docName,'','",').

L

GetControllitem Call # 30
input: theDialog:LONG pointer to the dialog port
itemID:WORD Unique number identifying the item.
ocutput: theControl:LONG handle to the control.

Given the ID of an item, GetControlltem returns a handle to the control for this item. You can then
make calls the Control Manager to change the behavior of this item.

Warning: Be very careful with GetControlltem, because, by using directly the Control Manager,
you bypass the Dialog Manager and could destroy some datas used by the Dialog
Manager. It is however safe to use GetControlltem on standard controls (like Buttons,
Check Boxes and Radio Buttons). It is a little bit less safe to use it with dialog scroll
bars. And it is definitely unsafe to use it with text items. Whatever you do, do not
change the CtrlRefCon field in the Control Record of any control.

Note: A list of Dialog Manager calls are provided to change the attributes of items. Whenever
possible, it is highly recommended to use these calls instead of Control Manager calls.

August 13, 1986 — Jean-Charles Mourey Page 37

(”)

Dialog Manager

GatIText Call # 31

input: theDialog:LONG pointer to the dialog
itemID:WORD ID of item in dialog
theString:LONG pointer to a string to put the text in.

output: none

Given the ID of a StatText or EditLine item in a dialog box, GetIText returns the text of the item in
the text parametex,

Note: The space for the string must be allocated (must exists) before to call GetIText.

SetIText Call # 32

input: theDialog:LONG pointer to the dialog
itemID :WORD ID of item in dialog
theString:LONG pointer to the new text string.

output: none

Given the ID of a StatText or EditLine item in a dialog box,, SetIText sets the text of the item to the
specified text and draws the item. For example, suppose the exact content of a dialog's text item

cannot be determined until the dialog is created, but the display rectangle is already defined, call
SetlText with the desired text.

SellIText Call # 33
input: theDialog:LONG pointer to the dialog
itemID :WORD ID of item in dialog
startSel :WORD start of selection
endSel : WORD end of selection

output: none .

f(_}ilwl/cn a pointer to a dialog and the item ID of an EditLine item in the dialog box, SellText does the
ollowing:

e If the item contains text, SellText sets the selection range to extend from character position
startSel up to but not including character position endSel. The selection range is inverted
unless startSel equals endSel, in which case a blinking vertical bar is displayed to indicate
an insertion point at that position.

e If the item doesn't contain text, SellText simply displays the insertion point.

For example, if the user makes an unacceptable entry in the EditLine item, the applicaton can put
up an alert box reporting the problem and then select the entire text of the item so it can be replaced

August 13, 1986 — Jean-Charles Mourey Page 38

TN

Dialog Manager

by a new entry. (Without this procedure, the user would have to select the item before making the
new entry.)

Note: You can select the entire text by specifying 0 for startSel and 32767 for endSel. For details
about selection range and character position, see the LineEdit ERS Manual

GetItemType Call # 38
input: theDialog:LONG pointer to the dialog
itemID :WORD ID of item in dialog
output: itemType :WORD type of item, including ItemDisable bit

GetltemType returns the type of the specified item (Buttonltem, Radioltem, StatText,...). If the
item is disabled (from the dialog manager point of view), the returned value is the type plus
ItemDisable.

SetItemType Call # 39
input: itemType:WORD type of item, including ItemDisable bit
theDialog:LONG pointer to the dialog
itemID :WORD ID of item in dialog

output: none

SetltemType changes the specified item to the new desired type. If you want the item to be disabled
add ItemDisable to itemType.

Note: SetltemType does not redraw the item. This allows you to change the type of several items,
and then redraws all the changes at the same time.

Wammg Changing the type of an item can be very dangerous, since the structure of two items of
different types can be very different. And what is the interest of changing the type of an
item, except to change the ItemDisable status, which can be done easily by

SetltemDisable.
GetItemBox Call # 40
input: theDialog:LONG pointer to the dialog
itemID:WORD ID of item in dialog .
itemBox: LONG pointer to space to store the rect in

output: none

GetltemBox returns the display rectangle of the specxﬁcd itern in the variable itemBox.

August 13, 1986 — Jean-Charles Mourey Page 39

/\\

Dialog Manager

SetItemBox Call # 41
input: theDialog:LONG pointer to the dialog
itemID:WORD ID of item in dialog
itemBox:LONG pointer to the new display rectangle

output: none

SetltemBox changes the display rectangle of the specified item to itemBox.

GetFizstItem Call & 42
input: theDialog:LONG pointer to the dialog
output: firstItem:WORD ID of first item in dialog, 0 if none

GetFirstltem returns the ID of the first item in the dialog. If there is no item in the dialog (just after
NewModalDialog or NewModelessDialog, for example), GetFirstltem returns zero.

Warning: Since there may be some collisions between an item of ID zero and no item at all; you
should not have any item with an ID of zero.

GatNextItem Call # 43
input: theDialog:LONG pointer to the dialog
itemID:WORD ID of item in dialog
output: nextItem:WORD ID of next item in dialog, 0 if no more

GetNextltem returns the ID of the next item in the dialog after itemID. If itemlID is the last item in
the dialog, GetNextltem returns zero. ’

Warning: Since there may be some collisions between an item of ID zero and no item at all, you
should not have any item with an ID of zero,
GetDefButton Call # 55
input: theDialog:LONG pointer to the dialog

output: DefButID:WORD ID of dialog default button, or zero

GetDefButton returns the ID of the default button item in the dialog. If the dialog does not contain
any default button, GetDefButton returns zero.

August 13, 1986 — Jean-Charles Mourey Page 40

Dialog Manager

SethefButtoen Call # 56

input: DefButID:WORD ID of new default button
theDialog:LONG pointer to the dialog

output: none
SetDefButton sets the ID of the default button to DefButID.

Warning: DefButID must be the ID of a button item. Also, if you do not call SetDefButton to
specify explicitely which button is the default button, the Dialog Manager assumes that
the item obe‘P 1 is the default button. So, be sure that either there is no item with an ID
1 oritis a button.

GetItemFlag Call # 44
input: theDialog:LONG pointer to the dialog
itemID : WORD ID of item in dialog
output: itemFlag:WORD) Bit vector Flag of item .

GetltemFlag returns the bit vector flag for the specified item. For standard controls, itemFlag is
equivalent to the CirlFlag field in the Control Structure. For the other types of items, itemFlag may
have special meanings. For example, for a picture item, a bit in the flag specifies if the picture
should be clipped or stretched to fit in the display rectangle. For an icon item, the flag tells if the
icon ;s a "Finder-type" icon or an "Alert-Type" icon (icon with a mask versus icon without a
mask).

SetltemFlag Call # 45
input: itemFlag:WORD new flag for item
. theDialog:LONG pointer to the dialog
itemID:WORD ID of item in dialog

output: none

SetltemFlag changes the bit vector flag of the specified item to the new desired flag. See
GetltemFlag for more details.

Note: SetltemFlag does not redraw the item. So, do not use SetitemFlag to change the invisibility
status. Use the HideDItem and ShowDItem procedures instead.

August 13, 1986 — Jean-Charles Mourey Page 41

.'/‘ i

-y

Dialog Manager

GetItemValue Call # 46
input: theDialog:LONG pointer to the dialog
itemID:WORD ID of item in dialog
output: itemValue:WORD Current value of item

GetltemValue returns the current value of the specified item. For standard controls, itemValue is the
current value of the control. For the other types of items, itemValue may have special meaning
#kmore details to come**#,

SetItemValue Call # 47
input: itemValue:WORD new value
theDialog:LONG pointer to the dialog
itemID:WORD ID of item in dialog

output: none

SetltemValue sets the value of the specified item to the new desired value and redraws the item. See
GetltemValue for more details.

GetItemColoxr Call # 48
input: theDialog:LONG pointer to the dialog
itemID:WORD ID of item in dialog
output: itemColor:LONG Pointer to current color table

GetltemColor returns a pointer to the current color table for the specified item ***more detmls to
comc***

SetItemColor Call # 49

input: itemColor:LONG pointer to new color table
theDialog:LONG pointer to the dialog
itemID :WORD ID of item in dialog

output: none

SetltemColor sets the color table of the specified item to the new desired color table. See
GetltemColor for more details.

August 13, 1986 — Jean-Charles Mourey Page 42

Dialog Manager

GetAlertStage Call % 52

input: none

output: alertStage:WORD current stage of the alert
GetAlertStage returns the stage of the last occurrence of an alert, as a number from 0 to 3.

ResetAlertStage Call # 53
input: none
output: none
ResetAlertStage resets the stage of the last occurrence of an alert so that the next occurrence of that

same alert will be treated as its first stage. This is useful, for example, when you've used
ParamText to change the text of an alert such that from the user's point of view it's a different alert.

bDefaultFiltexr Call # 54
input: <theDialog:LONG pointer to the dialog port
theEvent : LONG pointer to the event
itemHit : LONG pointer to itemHit
output: result:WORD TRUE if must return

DefaultFilter calls the standard default filter used by ModalDialog or Alert when no user filter
procedure is specified. Given a pointer to an event involving dialog items, DefaultFilter filters the
Apple-X, Apple-C, Apple-V keys to make them cut, copy and paste, and interprets the Return key
as a click in the default button.)

DefaultFilter returns TRUE in result if the default button has been clicked in and itemHit contains
its ID number, and if a Cut/Copy/Paste operation has been made on an enabled EditLine item.
HideDItem Call 4 34

input: theDialog:LONG pointer to the dialog port
itemID:WORD ID of item to hide

output: none

HideDItem erases from the dialog the specified item. The item is not removed from the item list. It
can be shown again by just calling ShowDItem.

If the item is already invisible, HideDItem does nothing.

August 13, 1986 — Jean-Charles Mourey Page 43

Dialog Manager

ShowDItem Call # 35

input: theDialog:LONG pointer to the dialog port
itemID:WORD ID of item to show

output: none
ShowDItem makes visible an item that has been created invisible or has been hidden by HideDItem.
If the item is already visible, ShowDItem does nothing.

FindDItem Call # 36
input: theDialog:LONG pointer to the dialog port
thePoint : LONG point in global coordinates (passed as
a long word)
output: itemHit :WORD ID of item located at thePoint, or zero

FindDItem returns the ID of the item located at the specified point in the specified dialog. If there is
no item at this location or if thePoint is outside the dialog, FindDItem returns zero.

thePoint must be in global coordinates.

UpdateDialog Call # 37

input: theDialog:LONG pointer to the dialog port
UpdateRgn : LONG handle to the region to update

output: none
UpdateDialog redraws only the part of the dialog that is in the specified update region.
If UpdatcRgn was part of a region to update in an up-coming update event for the dialog, you
should call ValidRgn to prevent the Dialog Manager to redraw this particular region twice.
DisablelItem ' Call # 57

input: theDialog:LONG pointer to the dialog port
itemID:WORD ID of item to disable

output: none

Disableltem disables the specified item (Warning: disabled is different from deactivated). If the
item is already disabled, Disableltem does nothing.

August 13, 1986 — Jean-Charles Mourey Page 44

Dialog Manager

EnablelItem Call # 58

input: theDialog:LONG pointer to the dialog port
itemID :WORD ID of item to enable

output: none

Enableltem enables the specified item (Warning: enabled is different from active). If the item is
already enabled, Enableltem does nothing.

August 13, 1986 — Jean-Charles Mourey Page 45

Dialog Manager

SUMMARY OF THE DIALOG MANAGER

Constants

*

* Booleans
*®

The size of a boolean is a WORD.

FALSE: 0 (ZERO)

TRUE: any non—zero value

*

*

*

*

* and LineEdit)
*

BadItemType equ
NewitemFailed equ
ItemNotFound equ
*

* Item Types

®

Buttonltem equ
CheckItem equ
RadioItem equ
ScrollBarltem edqu
UserCtlItem equ
StatText equ
LongStatText equ
EditLine equ
Iconitem equ
PicItem equ
UserItem equ
ItemDisable equ

*

$150a
$150B
$150C

“s e we

Its possible values are:

Errors returned by the Dialog Manager
(Note that the Dialog Manager may also return errors coming
from the Window Manager, Control Manager, Memory Manager

item is not of appropriate type
creation of item failed
item does not exist

standard button control

standard check box control

standard radio button control
special scrollbar control for dialogs
custom control

static text

long static text (up to 32767 chars)
editable line of text (dialog only)
icon

QuickDraw picture

custom item (dialog only)

add to any of above to disable

* Item IDs of standard OK and Cancel buttons

®

ok
cancel

August 13, 1986 — Jean-Charles Mourey

equ
equ

1
2

Page 46

%

* icon IDs of alert icons

*®

Dialog Manager

stopIcon equ O

notelcon equ 1

cautionIcon equ 2

talkIcon equ 3

*

* structure of an icon

*

iconRect equ 0 . ; bounds rect (multiple of 8)
iconImage equ iconRect+8 ; pixel image (icon bitmap)

*

* Dialog ScrollBar Commands

*®

GetInitView equ 1
GetInitTotal equ 2
GetInitValue equ 3
ScrollLineUp equ 4
ScrolllineDown equ 5
ScrollPageUp equ 6
ScrollPageDown equ 7
ScrollThumb equ 8
Data Types
TYPE
DialogPtr = WindowPtr;
IrtemTemplate:

itemID:WORD
itemRect :RECT
itemType : WORD
itemDescr : LONG
itemvalue : WORD
itemFlag:WORD
itemColor : LONG

view size at creation
total size at creation
value at creation

scroll one line up
scroll one line down
scroll one page up
scroll one page down
scroll to thumb position

®e We %o Wy We Wy

-a o

Number uniquely identifying the item
display rectangle, in local coordinates
Type of item (Button, Check, Scroll...)
Item Descriptor

Item Value

Bit vector flag (0 for default)

Pointer to color table (0 for default)

August 13, 1986 — Jean-Charles Mourey Page 47

e~

=

RialogTemplate:

BoundsRect :RECT
Visible : WORD
RefCon:LONG
Iteml : LONG

Item2 :LONG

ItemN: LONG
Terminator:LONG ZERO

AlertTemplate:

BoundsRect : RECT
stagel :BYTE
stage2:BYTE
stage3:BYTE

staged :BYTE
Iteml : LONG

Item2 :LONG

ItemN: LONG
Terminator :LONG ZERO

Dialog Manager

dialog bounds rectangle

TRUE if dialog is to be wvisible

any value you want (application-use)
pointer to first item's template
pointer to second item's template

pointer to last item's template
item list terminated by a nil pointer.

alert bounds rectangle

first stage of alert

second stage of alert

third stage of alert

fourth stage of alert

pointer to first item's template
pointer to second item's template

pointer to last item's template
item list terminated by a nil pointer.

Stage Bit vector:
Bits 0=-2 : Sound Number to emit at this stage (0 to 3)
Bits 3=-5 : Unused
Bit 6 : Default button ID minus 1 (only 1 or 2).
Bit 7 : Flag indicating if the alert should be drawn.

August 13, 1986 — Jean-Charles Mourey

Page 48

