

Dialog Manager

Call • 11

input: dBoundsRect:LONG pointer to window bounds rectangle.
dTitle:LONG pointer to string for dialog's title,

zero if no title.
dBehind:LONG pointer to window the dialog should be

behind.
dFlag:WORD Bit vector describing the dialog's

frame.
dRefCon:LONG any value you'd like to associate with

the dialog's window.
dFullSize:LONG pointer to RECT to be used as content's

zoomed size.

output: theDialog:LONG pointer to dialog port, zero if error.

--.../
\
.k..--

Uke NewModalDialog (above), NcwModelessDialog creates a dialog as specified by its parameters
and returns a pointer to the new dialog. Instead of making a modal dialog, NewModelessDialog
creates a modelcss dialog, as described under "Dialog and Alert Wmdows".

The dBoundsRect. dVlSible and dRcfCon parameters have the same value as in NcwModalDialog.

dTItle is the title of the modeless dialog box.

The dBehind parameter specifies the window behind which the dialog window is to be placed on
the desktop. Pass -1 ($FFFFFFFF) to bring up the dialog window in front of all other windows.

dFlag allows you to describe the window's frame of the dialog (close box, ...) .

dFullSize is a pointer to a rectangle describing the size and location of the dialog after the dialog is
zoomed in.

August 13, 1986 - Jean-Charles Mourey Page 22

Dialog Manager

Call • 50

input: DialogTemplate:LONG pointer to a dialog template

output: theDialog:LONG pointer to dialog port, zero if error

GetNewModalDialog (like NewModalDialog) creates a modal dialog and returns a pointer to the
port of the new dialog. But, instead of getting its parameters from the stack, it gets them from a
template whose definition follows:

pi'alggTemplate:

BoundsRect:RECT
Visible:WORD
RefCon:LONG
Iteml:LONG
Item2:LONG

ItemN:LONG
Terminator:LONG ZERO

dialog bounds rectangle
TRUE if dialog is to be visible
any value you want (application-use)
pointer to first item's template
pointer to second item's template

pointer to last item's template
item list terminated by a nil pointer.

(......... -

The beginning of a dialog template contains the same values you would pass to NewModalDialog,
except that BoundsRect is the actual rectangle, not a pointer.

The iteml, item2,... itemN fields are pointers to item templates for each of the items you want to
figure in the dialog. The last pointer must be 0 to signal the end of the list.

C.loseDia.loq

input: theDialog:LONG

output: none

Call • 12

pointer to dialog port

CoseDialog removes theDialog's window from the screen and deletes it from the window list, just
as when the Wmdow Manager procedure CoseWindow is called. It releases the memory occupied
by the following:

• The data structures associated with the dialog window (such as the window's structure,
content, and update regions).

• All the items in the dialog (except for pictures and icons, which might be shared
resources), and any data structures associated with them. For example, it would dispose
of the region occupied by the thumb of a scroll bar, or a similar region for some other
control in the dialog.

,
"

\
, :
,/ August 13, 1986 - Jean-Charles Mourey Page 23

..

Dialog Manager

Creatina- and remQyina- items;

input: theDialoq:LONG
ItemID:WORD

ItemRect:LONG
ItemType : WORD

ItemDescr:LONG

ItemValue:WORD

optional ItemFlaq : WORD

opti01lal ItemColor: LONG
I.,

Call • 13

pointer to dialoq this item belonqs to.
item identifier for all item-related
dialoq manaqer calls.
pointer to the display rectanqle.
Button, Check, UserCtl, StatText,
EditLine,PicItem,UserItem...
strinqptr, textptr, procptr, iconhandle
or pichandle.
init.value, text lenqth, max lenqth, 0,
or any other value.
includes visible/invisible flaq (0 for
default flaq).
pointer to item's default color table
(0 for default) .

(
' ..,/.

output: none.

Adds a new item to the dialog's item list.

The possible item types are: ButtonItem, CheckItem, RadioItem, ScrollBarItem, UserCtlItem,
StatText, LongStatText, EditLine, IconItem, Picltem, Userltem.

Ifyou add ltemDisable to the ltemType, the dialog manager will handle the actions on this disabled.
item without reporting anything to te application.

For a Button item [, Check item, Radio item], the itemDescr parameter is a pointer to the title of
the button [, check box, radio button] and the itemValue is the initial value of the control (useful for
check boxes and radio buttons)•

. For a StatText item, the itemDescr parameter is a pointer to a string containing the static text and
the itemValue is not used. You can have several lines of text in the same item by inserting carriage
returns (AScn 13=$OD) inside the string. Here is an example of a typical string you would use for
aStatText item:

StaticStr dc i1 'EndStaticStr-StaticStr-l'
dc c'Do you want to save',h'OD'
dc c'before quittinq?'

EndStaticStr anop

For a one line static text item, you can use the macro STR:

StaticStr str 'File not found'

August 13, 1986 -- Jean-Charles Mourer Page 24

Dialog Manager

For a LongStatTm item, the itemDescr parameter is a pointer to the beginning of the text ending
and the itemValue is the word length of the text (0 to 32767). Here is an example of typical
itemDescr and itemValuc parameters you would use for a LongSwText item:

itemDucr is apointer to thefollowing text:

myLonqText de e 'This is a really very •.. ', h ' OD '
de e'very ... very ... ' ,h'OD'

de e'lonq text, that eontains',h'OD'
de e'more than 255 eharaeters',h'OD'
de e'so that I need a LonqStatText',h'OD'
de e'item to print it in a single item'

EndLonqText anop

and itemVaJue is: EndLonqText-myLonqText

(
".~.

For an EditLine item. the itemDescr parameter is a pointer to the default string containing the
default text that first appears in the item when the dialog comes up and itemValue is the maximum
allowed length of the editable string (0 to 255). Here is an example of typical itemDescr and
itemValue parameters you would use for an EditLine item:

itemDucr is apointer to the following string:

EditLStr de i1'EndEditLStr-EditLStr-1' ; default string
de e 'Untitled ,

EndEditLStr anop

and itemValue is: 15 (maximum length for a FroDos file name)

Ifyou pass zero for itemDescr, the line will have 00 default text in it.

If the item is the first EditLine item to be created., it will be the Cl.m"ent active EditLine item and the
default text (if there is any) will be selected.

For a ScrollBar item, the itemDescr is a pointer to a special action procedure that will be called
during initialization time and scrolling. This procedure will be able, for example, to change the
appearance of different items in the dialog in real-time, while the user is scrolling the scroll bar and
without reporting anything to the application. In fact, if the scrollbar item is disabled, the
application will not even know that the user clicked in it!

August 13, 1986 - Jean-Charles Mourey Page 2S

'"

Dialog Manager

The definition of a Dialog ScrollBar Action Procedure follows:

MyDia~oqSc:o~~Ba:

input: command: WORD
dialoq:LONG
ScrollBarID:WORD

output: result:WORD

see list of possible commands below.
dialoq the scroll bar is in.
item ID of scroll bar.

depends on command (see below) .

Command Result Comments

GetInitView (1) initview view size at creation (called before control is allocated)

GetInitTotal (2) init total total size at creation (called before control is allocated)

GetInitValue (3) starting valur- value at creation (called before control is allocated)
r .'

ScrollLineUp (4) new value scroll one line up and retmn new scroll bar value

ScrollLineDown (5) new value scroll one line down and return new scroll bar value

.' ScrollPageUp (6) new value scroll one page up and return new scroll bar value
(---\

....,/
,;'>"'" ScrollPageDown (7) new value scroll one page down and return new scroll bar value

ScrollThumb (8) new value get thumb position, scroll to that position and return new
correct value (usually the same).

For the first three calls. do not make any reference to the scroll bar control because these calls are
made before to allocate the controL

The calls from ScrollLineUp to ScrollPageDown should first call GetItemValue on ScrollBarID to
get the previous value of the scroll bar. then do some changes (like changing an icon or the text of a
StatText item. or adding or removing items from the dialog). and finally returns the new value of
the scrollbar.

For ScrollThumb. you should first call GetItemValue on ScrollBarID. GetItemValue returns the
new thumb position. You can then do whatever changes you want to do. and then returns either the
value you got from GetItemValue or any value you find suitable.

Your Dialog ScrollBar Action procedure will be called by NewDltem just before to create a
ScrollBar item and by ModalDialog when the user clicks in a ScrollBar item.

Note that ModalDialog will set the new scrollbar value according to the result returned by your
procedure.

August 13, 1986 - Jean-Charles Mourey Page 26

""-,
!

Dialog Manager

For an Icon item, itemDescr is a handle to an icon and itemValue is not used. The icon record
contains the following fields:

ioonReot
ioon1maqe

equ 0
equ ioonReot+8

; bounds reot (width is multiple of 8)
pixel imaqe (ioon bitmap)

For a Picture item, itemDescr is a picture handle almost defined and itemValue is not
used.

For a UserControl item, itemDescr is a pointer to a control definition procedure, as defined in the
Control Manager ERS, and itemValue is the initial value of the control

For a User item, itemDescr is a pointer to an item definition procedure and itemValue is not used.
The definition of an item definition procedure folkt-vs:

MyI1: lUll

The procedure for a Userltem draws the item; for example, if the item is a clock, it will draw the
clock with the current time displayed. When this procedure is called, the current port will have been
set by the Dialog Manager to the dialog window's grafPort.

TheDialog is a pointer to the dialog window; in case the procedure draws in more than one dialog,
this parameters tells it which one to draw in.

ltemID is the item 10; in case the procedure draws more than one item, this parameter tells it which
on~todraw.

(
:.......

input:

output:

theOialoq:LONG
item10:WORD

none

pointer to the dialoq I s qrafport
10 of item to draw

August 13, 1986 - Jean-Charles Mourey Page 27

Dialog Manager

input: theOialog:LONG
ItemTemplate:LONG

Call • 51

pointer to dialog port
pointer to an item template

output: none

GetNewDltem (like NewDltem) adds a new item to the dialog's item list. But, instead of getting its
parameters from the stack, it gets them from a template whose definition follows:

ItemTemplate:

itemIO:WORD
itemRect:RECT
itemType : WORD
itemDescr:LONG
itemValue:WORD
itemFlag:WORD
itemColor:LONG

Number uniquely identifying the item
display rectangle, in local coordinates
Type of item (Button, Check, . Scroll ...)
Item Descriptor
Item Value
Bit vector flag 1(0 for default)
Pointer to color table (0 for default)

(
~../. '.

!
,.........

Most of the item template fields are the same as those you would pass to NewDltem, except:

• ItcmRect contains the actual display IeCtangle, not a pointer to it.

• The dialog that will contain the item is not specified in the template. This allows you to
have dialog-independent items and repeat them among several dialogs (useful for OK,
Cancel•••• buttons).

input: theoialog:LONG
ItemIO:WORD

.output: none.

Call t 14

pointer to dialog port
10 of item to be removed

\.

Removes the given item from the dialog and erases it from the screen.

August 13, 1986 - Jean-Charles Mourey Page 28

(
Dialog Manager

Handling Dialog Eyents

Call • 15

input: filterProc:LONG pointer to a filter procedure to be
called repeatdly

output: itemHit:WORD ID of item hit.

(
\

,......
. (

Call ModalDialog after creating a modal dialog and bringing up its window in the frontmost plane.
If the front window is a modaldialog, ModalDialog repeatedly gets and handles events in the
dialog's window; after handling an event involving an enabled dialog item, it returns with the item
10 in itemHit. Normally you'll then do whatever is appropriate as a response to an event in that
item.

Note: If the front window is not a modal dialog (for instance, if it is a regular window or a
modeless dialog), modaldialog :retums immediately with itemHit set to r~

ModalDialog gets each event by calling the Event Manager function GetNextEvent. If the event is a
mouse-down event outside the content :region of the dialog window, ModalDialog emits sound
number 1 (which should be a single beep) and gets the next event; otherwise, it filters and handles
the event as described below.

Note: Once before getting each event, ModalDialog calls SystemTask ."'''' not called yet, a
Desk Manager procedure that must be called :regularly so that desk accessories will work
properly.

The filterProc parameter determines how events are filtered. If it's NIL, the standard filterProc
function is executed; this causes ModalDialog to return the ID of the default button (1 usually) in
itemffit if the Return key is pressed ands~ the Apple-XlCIV commands for Cut/Copy!l?aste
operations inside the dialog. If filterProc Isn't NIL, ModalDialog filters events by executing the
function it points to. Your filterProc function should have three parameters and :return a Boolean
value. For example, this is how it would be declared if it were named MyFtlter:

MYl'i;U~.u:

input: theDialog:LONG
theEvent:LONG
itemHit:LONG

output: result:WORD

pointer to the dialog port.
pointer to the Event.
pointer to itemHit.

TRUE if must return.

A function result of FALSE tells ModalDialog to go ahead and handle the event, which either can
be sent through unchanged or can be changed to simulate a different event. A function result of
TRUE tells ModalDialog to :return immediately rather than handle the event; in this case, the
filterProc function sets itemHit to the item number that ModalDialog should :return.

Note: If you set the bit 31 of the filterProc parameter to 1 before passing it to ModalDialog, the
standard filter procedure will also be called after your filter procedure. It allows you to

\. August 13, 1986 - Jean-Charles Mourey Page 29

(

..,

/

Dialog Manager

define a custom filter procedure and still get the benefits of the Cut/Copy/Paste feature and
the Return alternative for the default button, for consistency with the Apple User Interface
Guidelines. .

You can use the filterProc function, for example, to treat a typed character in a special way (such as
ignore it, or make it have the same effect as another character or as clicking a button); in this case,
the function would test for a key event with that character. As another example, suppose the dialog
box contains, a userltem whose procedure draws a clock with the cummt time displayed. The
filterProc function can call that procedure and return FALSE without altering the CUl'I'eIlt event

Ifyou want the filter procedure to handle a special event and prevent Moda1Dialog from handling it,
but without actually leaving ModalDialog, change the what field of the Event Record to
nuIlEvent and returnS FALSE.

ModalDialog handles the events for which the filterProc function returns FALSE as follows:

• In response to an activate or update event for the dialog window, ModalDialog activates or
updates the window.

• If the mouse button is pressed in an EditLine item, ModalDialog responds to the mouse
activity as appropriate (displaying an insertion point or selecting text). If a key event
occurs without the Apple key held down and there's an EditLine item, text entry and
editing are handled in the standard way for such items. If the Apple key is being held
down, the typed character does not go to LineEdit except for left and right arrows. In
either case, ModalDialog returns if the EditLine item is enabled or does nothing if it's
disabled. If a key-down event occurs when there's no EditLine item, ModalDialog does
nothing.

• If the mouse button is pressed in a standard or user control, ModalDialog calls the Control
Manager function TrackControl. If the mouse button is released inside the control and the
control is enabled., ModalDialog returns; otherwise, it does nothing.

• If the mouse button is pressed in a scroll bar item, ModalDialog calls the Control Manager
function TrackControl with a special action procedure that calls your Dialog ScrollBar
Action procedure.

• If the mouse button is pressed in any other enabled item in the dialog bOx, ModalDialog
returnS. If the mouse button is pressed in any other disabled item or in no item, or if any
other event occurs, ModalDialog does nothing.

August 13, 1986 - Jean-Charles Mourey Page 30

;

i
\,

''.
!

IsDiaJ.ogEvlIIiIn't

input: theEvent:LONG

output: result:WORD

Dialog Manager

Call t 16

pointer to the Event Record

TRUE if theEvent is a Dialog Event.

If your application includes any modeless dialogs, call IsDialogEvent after calling the Event
Manager function GetNextEvent. or the Wmdow Manager function TaskMaster.

Warning: Ifyour modeless dialog contains any EditLine items, you must call IsDialogEvent (and
then DialogSelect) even ifGetNextEvent ~tums FALSE; otherwise your dialog won't
receive null events and the caret won't blink.

Pass the cmrent event in theEvent. IsDialogEvent determines whether theEvent needs to be handled
as part of a dialog. If theEvent is an activate or update event for a dialog window, a mouse-down
event in the content region of an active dialog window, or any other type of event when a dialog
window is active, IsDialogEvent retums TRUE; otherwise, it returns FALSE.

When FALSE is returned, just handle the event yourself like any other event that's not
dialog-related. When TRUE is returned, you'll generally end up passing the event to DialogSelect
for it to handle (as described below), but :fitst you should do some additional checking:

. • In ~cial cases, you may want to bypass DialogSelect or do some preprocessing before
calling it. If so, check for those events and respond accordingly.

For cases other than these, pass the event to DialogSelect for it to handle.

.. / August 13, 1986 - Jean-Charles Mourey Page 31

(..~.

D:La.logSe.lec:t.

input: theEvent : LONG
theDialoq:LONG

itemHit:LONG

output: result:WORD

Dialog Manager

Call t 17

pointer to the Event Record
address of variable to store the dialog
pointer in it
pointer to itemHit

TRUE if event involved an enabled item

(
\

You'll nonnally call DialogSelect when IsDialogEventreturns TRUE. passing in theEvent an event
that needs to be handled as part of a modeless dialog. DialogSelect handles the event as described
below. If the event involves an enabled dialog item, DialogSelect returns a function result of
TRUE with the dialog pointer in theDialog and the item number in itemHit; otherwise, it returns
FALSE with theDialog and itemHit undefined. Nonnally when DialogSelect returns TRUE, you'll
do whatever is appropriate as a response to the event, and when it returns FALSE you'll do
nothing.

If the event is an activate or update event for a dialog window, DialogSelect activates or updates the
window and returns FALSE.

If the event is a key-down or auto-key event and the Apple key is held down, DialogSelect returns
FALSE.

If the event is a mouse-down event in an EditLine item, DialogSelect responds as appropriate
(displaying a caret at the insertion point or selecting text). If it's a key-down or auto-key event
without the Apple key being held down and there's an EditLine item, text entry and editing are
handled in the standard way. In either case, DialogSelect returns TRUE if the EditLine item is
enabled or FALSE if it's disabled. If a key-down or auto-key event is passed when there's no
EditLine item, DialogSelectreturns FALSE.

Note: To treat a typed character in a special way (such as ignore it, or make it have the same effect
as another character or as clicking a button), you need to check for a key-down event with
that cha.ractcf before calling DialogSeleet. .

If the event is a mouse-down event in a control, DialogSelect calls the Control Manager function
TrackControl. If the mouse button is released inside the control and the control is enabled,
DialogSelect returns TRUE; otherwise, it returns FALSE.

If the event is a mouse-down event in any other enabled item, DialogSelect returns TRUE. If it's a
mouse-down event in any other disabled item or in no item, or if it's any other event, DialogSelect
returns FALSE. .

Note: If the event isn't one that DialogSelect specifically checks for (if it's a null event, for
example), and there's an EditLine item in the dialog, DialogSelect calls the LineEdit
procedure LEIdle to make the caret blink.

\
..J August 13, 1986 - Jean-Charles Mourey Page 32

D.lqCUt.

input: theDialog': LONG

output: none

Dialog Manager

Call t 18

pointer to the dialog'

DlgCut checks whether theDialog has any EditLine items and, if so, applies the LineEdit procedure'
LECut.to the CUJ:'.rendy selected EditLine item. You can call DlgCut to handle the editing command
Cut when a modeless dialog window is active.

input: theDialog':LONG

output: none

Call • 19

pointer to the dialog'

DlgCopy is the same as DIgCut except that it calls LECopy, for handling the Copy command.

/
\

D.lqPllst.e

input: theDialog':LONG

output: none

Call t 20

pointer to the dialog'

.'--
DlgPaste is the same as DIgCut except that it calls LEPaste, for handling the Paste command.

D.lqDe.let.e

input: theDialog':LONG

output: none

Call t 21

pointer to the dialog

DlgDelete is the same as DIgCut except that it calls LEDelet.e, for handling the Oear command.

DrllwDill.loq

input: theDialog:LONG

output: none

Call t 22

pointer to the dialog

DrawDialog draws the contents of the given dialog box. Since DialogSelect and ModalDialog
handle dialog window updating, this procedure is useful only in unusual situations. You would
call it, for example, to display a dialog box that doesn't require any response but merely tells the
user what's going on during a time-consuming process.

August 13, 1986 - Jean-Charles Mourey Page 33

/
\

Dialog Manager

Inyoking Alerts

Call t 23

input: AlertTemplate:LONG pointer to an alert template
filterProc:LONG pointer to filter used by ModalDialog

output: itemHit:WORD ID of item Hit.

This function invokes the alert defined by the alert template. It calls the current sound procedure. if
any. passing it the sound number specified in the alert template for this stage of the alert. If no alert
box is to be drawn at this stage, Alert returns a function result of -1; otherwise, it creates and
displays the alert window for this alert and draws the alert box.

Alert gets its parameters for an alert template. The definition ofan alert template is as follows:

AlertTemplate:

(
.....

BoundsRect:RECT
AlertID: WORD
stagel:BYTE
stage2:BYTE
stage3:BYTE
stage4:BYTE
Iteml:LONG
Item2:LONG

alert bounds rectangle
number uniquely identifying the alert
first stage of alert
second stage of alert
third stage of alert
fourth stage of alert
pointer to first item's template
pointer to second item's template

ItemN:LONG pointer to last item's template
Terminator:LONG ZERO item list terminated by a nil pointer.

A stage byte is a bit vector containing the following bit fields:

Bits 0-2
Bits 3-5
Bit 6
Bit 7

Sound Number to emit at this stage (0 to 3)
Unused
Default button ID minus 1 (only 1 or 2) .
Flag indicating if the alert should be drawn.

Note: Alert creates the alert window by calling NewModalDialog and GetNewDItem for each item
in the alert, and does the rest of its processing by calling ModalDialog.

Alert repeatedly gets and handles events in the alert window until an enabled item is clicked, at
which time it returns the item number. Normally you'll then do whatever is appropriate in response
to a click of that item. .

Alert gets each event by calling the Event Manager function GetNextEvent. If the event is a
mouse-down event outside the content region of the alert window. Alert emits sound number I
(which should be a single beep) and gets the next event; otherwise, it fllters and handles the event
as described below.

,,
............

August 13, 1986 - Jean-Charles Mourey Page 34

/
\

('
"

Dialog Manager

The filterProc parameter has the same meaning as in ModalDialog (see above). If it's Nll..., the
standard filterProc function is executed, which makes the Return key have the same effect as
clicking the default button. If you specify your own filterProc function and want to retain this
feature, you must set the bit 31 of the filterProc parameter to 1. You can find out what the cmrent
default button is by calling GetDefButton on the dialog pointer for the alert passed to your filter
procedure.

Alert handles the events for which the filterProc function returns FALSE as follows:

• If the mouse button is pressed in a control, Alert calls the Control Manager procedure
TrackControl. If the mouse button is released inside the control and the control is enabled,
Alert returns; otherwise, it does nothing.

• If the mouse button is pressed in any other enabled item, Alert simply returns. If it's
pressed in any other disabled item or in no item, or if any other event occurs, Alert does
nothing.

Before returning to the application with the item number, Alert removes the alert box from the
screen. (It disposes of the alert window and its associated data structures, the item list, and the
items.)

Note: The Alert function's removal of the alert box would not be the desired result if the user
clicked a check box or radio button; however, nonnally alerts contain only static text, icons,
pictures, and buttons that are supposed to make the alert box go away. If your alert
contains other items besides these, consider whether it might be more appropriate as a
dialog.

St.opAle:t. Call t 24 *** without icon ***

input: AlertTemplate:LONG pointer to an alert template
filterProc:LONG pointer to filter used by ModalDialog

.output: itemRit:WORD ID of item Hit.

StopAlert is the same as the Alert function (above) except that before drawing the items of the alert
in the alert box, it draws the Stop icon in the top left comer of the box (within the rectangle
(10,20)(42,52». The Stop icon has the following ID:

stoplcon equ 0

Stop Note Caution

• aLII!
ILII!
al

Talk

\

Figure 7. Standard Alert Icons

August 13, 1986 - Jean-Charles Mourey Page 35

..

"

. '~.!

Dialog Manager

Call t 25 *** witbout icon ***

input: AlertTemplate : LONG pointer to an alert template
filterProc:LONG pointer to filter used by ModalDialog

output: itemHit:WORD ID of item Hit.

NoteAle:rt is like StopAlert except that it draws the Note icon, which has the following ID:

note Icon equ 1

Caut.ionAlerl Call t 26 *** witbout icon ***

input: AlertTemplate:LONG pointer to an alert template
filterProc:LONG pointer to filter used by ModalDialog

output: itemHit:WORD ID of item Hit.

CautionAlert is like StopAlert except that it draws the Caution icon, which has the following ID:

cautionIcon equ 2'

(
-','
'" Call • 28 *** witbout .speech (yet) u*

input: AlertTemplate:LONG
filterProc:LONG

pointer to an alert template
pointer to filter used by ModalDialog

output: itemHit:WORD ID of item Hit.

TalkAlert is like StopAlert except that it draws the Talk icon, which has the following ID:

talklcon equ 3

,
""\

,j...'

and it then calls the Sound Tools to actually SPEAK the alert with a synthetic voice.

August 13, 1986 - Jean-Charles Mourey Page 36

(
\

Dialog Manager

ManipuJatim: Items in DiaJo2s and Alerts

Pa:amTex-e Call t 27

input: paramO:LONG pointer to string "0 (zero-no change)
param1:LONG pointer to string "1 (zero-no change)
param2:LONG pointer to string "2 (zero-no change)
para.m3:LONG pointer to string "3 (zero-no change)

output: none

ParamText provides a means of substituting text in statText items: paramO through param3 will
replace the Special strings 'I\()' through '''3' in all statText items in all subsequent dialog or alert
boxes. Pass empty strings for parameters not used.

You may pass NIL for parameters not used or for strings that are not to be changed.

For example, if the text is defined as 'Cannot open document I\()' and docName is a string variable
containing a document name that the user typed, you can call ParamText(docName,' ',' ',' ').

(
input: theDialog:LONG

itemID:WORD

output: theControl:LONG

Call t 30

pointer to the dialog port
Unique number identifying the item.

handle to the control.

Given the ID of an item. GetControlItem returns a handle to the control for this item. You can then
make calls the Control Manager to change the behavior of this item.

Warning: Be very careful with GetControlItem, because, by using directly the Control Manager,
you bypass the Dialog Manager and could destroy some datas used by the Dialog
Manager. It is however safe to use GetControlItem on standard controls (like Buttons,
Check Boxes and Radio Buttons). It is a little bit less safe to use it with dialog scroll
bars. And it is definitely unsafe to use it with text items. Whatever you do, do not
change the CtrlRefCon field in the Control Record of any controL

Note: A list of Dialog Manager calls are provided to change the attributes of items. Whenever
possible, it is highly recommended to use these calls instead of Control Manager calls.

\ August 13, 1986 - Jean-Charles Mourey Page 37

Dialog Manager

"\
\ }

input: theDialog:LONG
itemID:WORD
theString:LONG

Call • 31

pointer to the dialog
ID of item in dialog
pointer to a string to put the text in.

output: none

Given the ID of a StatText or EditLine item in a dialog box, GetIText returns the text of the item in
the text parameter.

Note: The space for the string must be allocated (must exists) before to call GetIText.

input: theDialog: LONG
itemID:WORD
theString:LONG

output: none

Call t 32

pointer to the dialog
ID of item in dialog
pointer to the new text string.

(
,-

Given the ID of a StatText or EditLine item in a dialog box" SetIText sets the text of the item to the
specified text and draws the item. For example, suppose the exact content of a dialog's text item
cannot be determined until the dialog is created, but the display rectangle is already defmed, call
SetIText with the desired text.

input: theDialog:LONG
i temID : WORD
startSel:WORD
endSel:WORD

output: none

Call • 33

pointer to the dialog
ID of item. in dialog
start of selection
end of selection

Given a pointer to a dialog and the item ID of an EditLine item in the dialog box, SelIText does the
following:

• If the item contains text, SelIText sets the selection range to extend from character position
stanSel up to but not including character position endSel. The selection range is inverted
unless stanSel equalsendSel, in which case a blinking vertical bar is displayed to indicate
an insertion point at that position.

• If the item doesn't contain text, SelIText simply displays the insertion point.

For example, if the user makes an unacceptable entry in the EditLine item, the application can put
up an aIen box reporting the problem and then select the entire text of the item so it can be replaced

August 13, 1986 - Jean-Charles Mourey Page 38

(
\

I

Dialog Manager

by a new entry. (Without this procedure, the user would have to select the item before making the
new entry.)

Note: You can select the entire text by specifying 0 for stanSel and 32767 for endSel. For details
about selection range and charactl:r position, see the LineEdit ERS Manual.

Get:. It:.emType

input: theDialog:LONG
itemID:WORD

output: itemType:WORD

Call t 38

pointer to the dialog
ID of item in dialog

type of item, including ItemDisable bit

GetItemType retmns the type of the specified item (ButtonItem, RadioItem, StatText,...), If the
item is disabled (from the dialog manager point of view), the returned value is the type plus
ItcmDisa.ble.

(

Set:. It:.emType

input: itemType : WORD
theDialog:LONG
itemID:WORD

output: none

CaJ:l t 39

type of item, including ItemDisable bit
pointer to the dialog
ID of item in dialog

SetItemType changes the specified item to the new desired type. If you want the item to be disabled
add ItemDisable to itemType.

Note: SetItemType does not redraw the item. This a.llows you to change the type of several items,
and then redraws all the changes at the same time.

Warning: Changing the type of an item can be very dangerous, since the structure of two items of
, different typeS can be very different. And what is the interest of changing the type of an

item, except to change the ItemDisable status, which can be done easily by
SetItemDisa.ble.

Get:. It:.emBoz

input: theDialog:LONG
itemID:WORD
itemBox:LONG

output: none

Call t 40

pointer to the dialog
ID of item in dialog
pointer to space to store the rect in

GetItemBox returns the display rectangle of the specified item in the variable itemBox.

August 13, 1986 - Jean-Charles Mourey Page 39

(
Dialog Manager

input: theDialog: LONG
itemID:WORD
itemBox:LONG

output: none

Call. 41

pointer to the dialog
ID of item in dialog
pointer to the new display rectangle

SetItemBox changes the display rectangle of the specified item to itemBox.

input: theDialog:LONG

output: firstItem:WORD

Call • 42

pointer to the dialog

ID of first item in dialog, 0 if none

GetF'lI'StItem returns the ID of the first item in the dialog. If there is no item in the dialog (just after
NewModalDialog or NewModelessDialog. for example), GetF'lI'StItem returns zero.

Warning: Since there may be some collisions between an item of ID zero and no item at all, you
should not have any item with an ID of zero.

(
input: theDialog:LONG

itemID:WORD

output: nextItem:WORD

Call • 43

pointer to the dialog
ID of item in dialog

ID of next item in dialog, 0 if no more

GetNextitem returns the ID of the next item in the dialog after itemID. If itemID is the last item in
the dialog, GetNextItem returns zero. .

Warning: Since there may be some collisions between an item of ID zero and no item at all, you
should not have any item with an ID of zero.

Ge'tDefBu't'tOD

input: theDialog:LONG

output: DefButID:WORD

Call • 55

pointer to the dialog

ID of dialog default button, or zero

GetDefButton returns the In of the default button item in the dialog. If the dialog does not contain
any default button, GetDefButton returns zero.

i
\ August 13, 1986 - Jean-Charles Mourey Page 40

\.

Dialog Manager

input: DefButID : WORD
theDialog:LONG

output: none

Call • 56

ID of new default button
pointer to the dialog

SetDefButton sets the ID of the default button to DefButID.

Warning: DefButID must be the ID of a button item. Also, if you do not call SetDefButton to
specify explicitely which button is the default button, the Dialog Manager assumes that
the item of ID 1 is the default button. So, be sure that either there is no item with an ID
1or it is a button.

G.~:t~.mlI'laq

input: theDialog:LONG
itemID:WORD

output: itemFlag:WORD

Call • 44

pointer to the dialog
ID of item in dialog

Bit vector Flag of item,

(-i
\ \

GetitemFlag returns the bit vector flag for the specified item. For standard controls, itemFlag is
equivalent to the CtrlFlag field in the Control Structure. For the other types of items, itemFlag may
have special meanings. For example, for a picture item, a bit in the flag specifies if the picture
should be clipped or stretched to fit in the display rectangle. For an icon item, the flag tells if the
icon is a "Finder-type" icon or an "Alert_Type" icon (icon with a mask versus icon without a
mask).

S.t:ttemJl'laq

input: itemFlag:WORD
theDialog:LONG
itemID:WORD

Call t 45

new flag for item
pointer to the dialog
ID of item in dialog

output: none

SetItemFlag changes the bit vector flag of the specified item to the new desired flag. See
GetItemFlag for more details.

Note: SetItemFlag does not redraw the item. So, do not use SetItemFlag to change the invisibility
status. Use the HideDItem and ShowDItem procedures instead.

August 13, 1986 - Jean-Charles Mourey Page 41

"

Dialog Manager

input: theDialoq:LONG
itemID:WORD

output: itemValue:WORD

Call t 46

pointer to the dialoq
IO of item in dialog

Current value of item

GetltemValue returns the cum:nt value of the specified item. For standard controls, itemValue is the
cmrent value of the control. For the other types of items, itemValue may have special meaning
···more details to come*.......

Set:I t:emVaJ.ue

input: itemValue:WORD
theDialoq:LONG
itemIO:WORD

output: none

Call t 47

new value
pointer to the dialoq
ID of item in dialoq

SetltemValue sets the value of the specified item to the new desired value and redraws the item. See
GetltemValue for more details.

(Get:It:emCoJ.02:

input: theDialoq:LONG
itemID:WORD

output: itemColor:LONG

Call t 48

pointer to the dialog
IO of item in dialoq

Pointer to current color table

GetitemColor returns a pointer to the CUITent color table for the specified item ***more details to
come··....

input: itemColor:LONG
theDialoq:LONG
itemIO:WORD

output: none

Call t 49

pointer to new color table
pointer to the dialoq
ID of item in dialoq

SetItemColor sets the color table of the specified item to the new desired color table, See
GetItemColor for more details.

,

\. ..
August 13, 1986 - Jean-Charles Mourey Page 42

(
\

Dialog Manager

Call t 52·

input: none

output: alertStage:WORD current stage of the alert

GetAlertStage tetums the stage of the last occummce of an alert, as a number from 0 to 3.

Call t 53

input: none

output: none

ResetAlertStage resets the stage of the last occurrence of an alert so that the next occur.rence of that
same alert will be t:reated as its IlI'St stage. This is useful, for example, when you've used
ParamText to change the text of an alert such that from the user's point of view it's a different alert.

Default:ri.lt:er Call • 54

input: theDialog:LONG pointer to the dialog port

(theEvent:LONG pointer to the event
\'" itemHit:LONG pointer to itemHit

output: result:WORD TRUE if must return

DefaultFilter calls the standard default filter used by ModalDialog or Alert when no user fllter
procedUte is specified. Given a pointer to an event involving dialog items, DefaultFilter filters the
Apple-X, Apple-C, Apple-V keys to make them cut, copy and paste, and intCl'ptets the Return key
as a click in the default button.

DefaultF'l1ter tetums TRUE in teSult if the default button has been clicked in and itemHit contains
its ID number, and ifa Cut/Copy/Paste operation has been made on an enabled EditLine item.

ltid.eDIt:em

input: theDialog:LONG
itemID:WORD

output: none

Call • 34

pointer to the dialog port
ID of item to hide

.....

HideDltem erases from the dialog the specified item. The item is not removed from the item list. It
can be shown again by just calling ShowDltem.

If the item. is already invisible, HideDltem. does nothing.

August 13, 1986 - Jean-Charles Mourey Page 43

(

SbovDItem

input: theDialog:LONG
itemID:WORD

Dialog Manager

Call * 35

pointer to the dialog port
ID of item to show

output: none

ShowDltem makes visible anitem that has been created invisible or has been hidden by HideDItem

If the item is already visible, ShowDltem does nothing.

FmdDltem returns the ID of the item located at the specified point in the specified dialog. If there is
no item at this location or if thePoint is outside the dialog. FmdDltem returns zero.

thePoint must be in global coordinates.
(-t\,

,--

input: theDialog:LONG
thel?oint:LONG

output: itemHit:WORD

O'pdateDialo.CJ

input: theDialog:LONG
UpdateRgn:LONG

output: none

Call t 36

pointer to the dialog port
point in global coordinates (passed as
a long word)

ID of item located at thel?oint, or zero

Call * 37

pointer to the dialog port
handle to the region to update

UpdateDialog redraws only the part of the dialog that is in the specified update region.

If UpdateRgn was pan of a region to update in an up-coming update event for the dialog. you
should call ValidRgn to prevent the Dialog Manager to redraw this particular region twice.

DisableItem

input: theDialog:LONG
itemID:WORD

output: none

Call t 57

pointer to the dialog port
ID of item to disable

DisableItem disables the specified item (Warning: disabled is different from deactivated). If the
item is already disabled, DisableIt.em does nothing.

\ August 13, 1986 - Jean-Charles Mourey Page 44

Dialog Manager

input: theDialog:LONG
itemID:WORD

Call t 58

pointer to the dialog port
ID of item to enable

(

output: none

Enableltem enables the specified item (Warning: enabled is different from active). If the item is
already enabled, Enableltem does nothing.

August 13, 1986 - Jean-Charles Mourey Page 45

Dialog Manager

MARY MANAGER

Constants

** Booleans
*
The size of a boolean is a WORD. Its possible values are:

FALSE: 0 (ZERO)
TRUE: any non-zero value

** Errors returned by the Dialog Manager
* (Note that the Dialog Manager may also return errors coming
* from the Window Manager, Control Manager, Memory Manager
* and LineEdit)
*
BadItemType
NewItemFailed
ItemNotFound

equ $150A
equ $150B
equ $150C

; item is not of appropriate type
; creation of item failed
; item does not exist

(

......

** Item Types
*
ButtonItem
Checkltem
Radioltem
ScrollBarItem
UserCtlltem
StatText
LongStatText
EditLine
Iconltem
Picltem
Userltem
ItemDisable

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

10
11
12
13
14
15
16
17
18
19
20
$8000

standard button control
; standard check box control

standard radio button control
; special scrollbar control for dialogs
; custom control
; static text
; long static text (up to 32767 chars)
; editable line of text (dialog only)
; icon
; QuickDraw picture
; custom item (dialog only)

add to any of above to disable

** Item IDs of standard OK and Cancel buttons
*

,- -".

ok
cancel

equ 1
equ 2

August 13, 1986 - Jean-Charles Mourey Page 48

Dialog Manager

".

". icon IDs of alert icons
'*
stoplcon equ 0
noteIcon equ 1
cautionIcon equ 2
talklcon equ 3

; bounds rect (multiple of 8)
; pixel imaqe (icon bitmap)

o
iconRect+8

equ
equ

'*'* structure of an icon
'*
iconRect
iconImaqe

'*
'* Dialog ScrollBar Commands
'*
GetInitView equ 1 ; view size at creation
GetlnitTotal equ 2 · total size at creation,
GetInitValue equ 3 · value at creation,
ScrollLineUp equ 4 · scroll one line up.,
ScrollLineDown equ 5 ; scroll one line down
ScrollPageUp equ 6 ; scroll one page up
ScrollPageDown equ 7 ; scroll one page down

(.... l~ ScrollThumb equ 8 ; scroll to thumb position

Data Types

TYPE
DialogPtr - WindowPtr;

ItemTemplate:

itemID:WORD
itemRect:RECT
itemType:WORD
itemDescr:LONG
itemValue:WORD
itemFlag:WORD
itemColor:LONG

Number uniquely identifying the item
display rectanqle, in local coordinates
Type of item (Button, Check, Scroll ...)
Item Descriptor
Item Value
Bit vector flag (0 for default)
Pointer to color table (0 for default)

..
'-"

August 13, 1986 - Jean-Charles Mourey Page 47

Dialog Manager

pialogTemplate:

BoundsRect:RECT
Visible:WORD
RefCon:LONG
Iteml:LONG
Item2:LONG

ItemN:LONG
Terminator:LONG ZERO

AlertTemplate:

BoundsRect:RECT
staqel:BYTE
staqe2:BYTE
staqe3:BYTE
staqe4:BYTE
Iteml:LONG
Item2 : LONG .

dialoq bounds rectanqle
TRUE if dialoq is to be visible
any value you want (application-use)
pointer to first item's template
pointer to second item's template

pointer to last item's template
item list terminated by a nil pointer.

alert bounds rectanqle
first staqe of alert
second staqe of alert
third staqe of alert
fourth staqe of alert
pointer to first item's template
pointer to second item's template

(ItemN:LONG pointer to last item's template
Terminator:LONG ZERO item list terminated by a nil pointer.

Stage Bit vector:

""~"

Bits 0-2
Bits 3-5
Bit 6
Bit 7

Sound Number to emit at this staqe (0 to 3)
Unused
Default button ID minus 1 (only 1 or 2) .
Flaq indicatinq if the alert should be drawn.

\ .. August 13, 1986 - Jean-Ch~rles Mourey Page 48

