

Apple IIgs®

GS/OS® Internals

(c) 1983-1993, Apple, Inc.

(c) 2010, Brutal Deluxe Software
http://www.brutal-deluxe.fr/

2 GS/OS® Internals

Contents

Preface .. 5

About this book .. 5

Copyright information ... 5

Important note .. 5

References ... 5

Online resources .. 5

Memory usage ... 6

GS/OS memory map .. 7

GS/OS vector space .. 8

GS/OS bank E1 globals ... 9

GS/OS bank 00 globals .. 10

GS/OS event codes ... 11

GS/OS error codes... 11

GS/OS Buffers ... 13

GS/OS system buffers ... 13

GS/OS direct page map ... 13

System service calls .. 16

About .. 16

System Service Dispatch Table ... 16

Making a System service call from an application .. 18

System service calls description .. 19

GS/OS Records ... 78

Virtual Pointers ... 78

Volume Control Record .. 78

File Control Record .. 79

Interrupt Control Record ... 80

Interrupt Identification Table ... 80

VRN to VI Translation Table ... 80

Vector Table ... 81

Vector Dispatch Table .. 82

File System Translators ... 83

Header ... 83

Present and future FSTs .. 84

Calls handled by FSTs ... 85

FST system entry routine ... 86

3 GS/OS® Internals

Appendix – GS/OS technotes .. 87

GS/OS #1 Contents of System Software Distribution Disks .. 88

GS/OS #2 GS/OS and the 80-Column Firmware ... 105

GS/OS #3 Pointers on Caching ... 107

GS/OS #4 A GS/OS State of Mind .. 109

GS/OS #5 Resource Fork Formats .. 112

GS/OS #6 Drivers and GS/OS Direct Page ... 113

GS/OS #7 Behavior of SET_DISKSW ... 114

GS/OS #8 Filenames With More Than CAPS and Numerals 115

GS/OS #9 Interrupt Handling Anomalies ... 117

GS/OS #10 How Applications Find Their Files .. 119

GS/OS #11 About EraseDisk and Format ... 120

GS/OS #12 All About Notify Procs ... 122

GS/OS #13 GS/OS Reference Update .. 124

GS/OS #14 The Console Driver Technical Note .. 128

4 GS/OS® Internals

This book is dedicated to the memory of Joe Kohn (1947-2010)
Joe was the reseller of Convert 3200, our graphic converter software

5 GS/OS® Internals

Preface

About this book
This book is for advanced Apple IIgs programmers and curious people. It is an unofficial publication from Brutal
Deluxe Software and all the information given herein are related to the Apple IIgs System 6.0.1 version. This book is
the result of a 3-years understanding of the inners of GS/OS which was done in order to build a File System
Translator for the system.

This book must be seen as the GS/OS reference volume 2. It contains information described in the first volume,
gathers data from external reference specifications and technotes.

Copyright information
The contents of this book is © Apple, Inc. even though several parts are written by Brutal Deluxe Software.

Important note
The values and offsets in this book are given in hexadecimal format. A value of ’12’ must be understood as a
decimal value of 18.

References
GS/OS reference volume 1 APDA-56
 The official guide to developing software using the GS/OS operating system.

GS/OS device driver reference APDA-27
 This reference describes the GS/OS application interface to device drivers.

Online resources
A2-Central http://www.a2central.com/
 Your total source for Apple II computing.

Apple Archives http://www.applearchives.com/
 The most complete and current Apple II related directory on the internet.

Brutal Deluxe Software http://www.brutal-deluxe.fr/
 Website of a French group of IIgs programmers.

Syndicomm http://www.syndicomm.com/
 The online resource to purchase the official Apple II documentation and software.

6 GS/OS® Internals

Memory usage

Apple IIGS memory map

The figure describes the memory map of the Apple IIgs that is used by GS/OS. The X-axis represents the bank
numbers and the Y-axis represents the addresses within a bank.

 $00 $01 $02

…

$E0 $E1
$FFFF

$D000 $D000
$C000 $C000

 $BC00

$9A00

 GS/OS and System Loader
 Other reserved memory
 Memory available through the Memory Manager

7 GS/OS® Internals

GS/OS memory map

Module name Version Memory location (length)
System Loader 4.02 $01/A600 ($1525)

System Loader, Pt 2 4.00 $01/D000 ($2B49)

SCM entry code 4.02 $00/9A00 ($087B)

SCM misc code 4.00 $00/B300 ($06EC)

SCM main body 4.00 $00/D000 ($2FFA)

System Dispatch Table 4.00 $01/FC00 ($0100)

SCM Bank E1 Code 4.00 $E1/D980 ($067E)

Bank0 Disp. 4.00 $00/A000 ($07E0)

Dispatcher 4.00 $E0/E000 ($1F39)

Caching Manager 3.00 $00/A280 ($0764)

Init Manager part 1 4.00 $00/B200 ($00E4)

Init Manager part 2 4.02 $00/D400* ($0B6F)

Init Manager part 3 4.01 $01/D000* ($0FC3)

Init Manager part 4 4.01 $E0/D400* ($03E1)

* alternate bank

8 GS/OS® Internals

GS/OS vector space

Name Address Length Description
OS_Entry $E1/00A8 4 GSOS

Entry vector for in-line GS/OS system calls

OS_Switch $E1/00AC 4 Reserved for internal use

OS_StackEntry $E1/00B0 4 GSOS2

Entry vector for stack-based GS/OS system calls

OS_Internal $E1/00B4 4 OS_P8_SWITCH

9 GS/OS® Internals

GS/OS bank E1 globals

Name Address Length Description
OS_Public_Flags $E1/00B8 2 Bit 15: 0 = Standard boot

 15: 1 = Inits/DAs have not been loaded

zero_word $E1/00BA 2 Two null bytes (guaranteed to be zeros)

OS_Kind $E1/00BC 1 OS_KIND

Indicates currently running operating system, as follows:
- $00 = ProDOS 8
- $01 = GS/OS
- $FF = none - operating system is being
loaded or switched

OS_Boot $E1/00BD 1 OS_BOOT

Indicates the operating system that was initially booted, as
follows:
- $00 = ProDOS 8
- $01 = GS/OS

OS_Flag $E1/00BE 2 GSOSBusy

Indicates the status of GS/OS, as follows:
Bit 15: 0 = GS/OS is not busy
 15: 1 = GS/OS is busy
Bit 3: PatchedOnceBit if set to 1
Bit 2: PatchLoadedBit if set to 1
Bit 1: BadOSBit if set to 1
Bit 0: SpecialBit if set to 1

 $E1/00FF 2 Deals with INTMGRV - $0000

warm_cold_flag $E1/01D0 2 Bit 0: 0 = cold startup/shutdown
 0: 1 = warm startup/shutdown

10 GS/OS® Internals

GS/OS bank 00 globals

Name Address Length Description
dev_start_flag $00/B9F0 2 Set to non-zero during device dispatcher startup

fst_tbl_ptr $00/B9F2 4 Set by SCM to point to FST table

sys_prefs $00/B9F6 2 Bit 15: 0 = mount procedure will not

display mount dialog. It will respond as
if user had selected Cancel in mount
dialog.
 15: 1 = mount procedure will display
mount dialog and return user response.

Bit 14: 0 = mount dialog will have cancel
button.
 14: 1 = mount dialog will not have
cancel button.

Bit 13: 0 = error dialogs (dialogs with
only one button) will not be suppressed.
 13: 1 = error dialogs will be
suppressed.

Bits 12 to 0 = reserved for Apple.

char_dev_flag $00/B9F8 2 Non-zero if get_dnum finds character devices

post_index $00/B9FA 2 Number of remaining drivers to install

current_speed $00/B9FC 2

session_stat $00/B9FE 2 $0000 : no session in progress
$0001 : session in progress

11 GS/OS® Internals

GS/OS event codes

GS/OS can post the following OS events in the IIgs queue:

Name Value (long) Description
switch_to_p8 $00000002 Switch from GS/OS to P8

switch_to_gsos $00000004 Switch from P8 to GS/OS

disk_insert $00000008 Disk inserted

disk_eject $00000010 Disk ejected

gsos_shutdown $00000020 OS shutdown

volume_change $00000040 Volume changed

GS/OS error codes

Name Value Description
no_error $00 no error has occured
bad_system_call $01 bad system call number
fst_load_fail $02 couldn't load FST
invalid_pcount $04 invalid parameter count
gsos_active $07 gsos already active
dev_not_found $10 device not found
invalid_dev_num $11 invalid device number
drvr_bad_req $20 bad request or command
drvr_bad_code $21 bad control or status code
drvr_bad_parm $22 bad call parameter
drvr_not_open $23 character device not open
drvr_prior_open $24 character device already open
irq_table_full $25 interrupt table full
drvr_no_resrc $26 resources not available
drvr_io_error $27 I/O error
drvr_no_dev $28 device not connected
drvr_busy $29 driver is busy & not available
drvr_wr_prot $2B device is write protected
drvr_bad_count $2C invalid byte count
drvr_bad_block $2D invalid block number
drvr_disk_sw $2E disk has been switched
drvr_off_line $2F device off line / no media present
bad_path_syntax $40 invalid pathname syntax
invalid_ref_num $43 invalid reference number
path_not_found $44 subdirectory does not exist
vol_not_found $45 volume not found
file_not_found $46

12 GS/OS® Internals

dup_pathname $47 create or rename with existing name
volume_full $48
vol_dir_full $49 volume directory full
version_error $4A
bad_store_type $4B bad storage type
end_of_file $4C
out_of_range $4D position out of range
invalid_access $4E access not allowed
buff_too_small $4F buffer too small
softerrorlow $50 errors from $50 to $6f are soft errors
file_busy $50 file is already open
dir_error $51 directory error
unknown_vol $52 unknown volume type
parm_range_err $53 parameter out of range
out_of_mem $54 out of memory
dup_volume $57 duplicate volume name
not_block_dev $58 not a block device
invalid_level $59 specified level outside legal range
damaged_bitmap $5A block number too large
bad_path_names $5B invalid pathnames for change_path
not_system_file $5C not an executable file
os_unsupported $5D operating system not supported
stack_overflow $5F too many applications on stack
data_unavail $60 data unavailable
end_of_dir $61 end of directory has been reached
invalid_class $62 invalid FST call class
res_not_found $63 file does not contain req. resource
invalid_fst_id $64 specified FST is not present in system
invalid_fst_op $65 FST does not handle this type of call
fst_caution $66 FST handled call, but result is weird
dup_device $67 used internally only!!!
dev_list_full $68 device list is full
sup_list_full $69 supervisor list is full
fst_error $6A generic FST error
softerrorhigh $6F maximum soft error number allowed
resource_exist $70 cannot expand file, resource already exist
res_add_err $71 cannot add resource fork to this type file
network_error $88 generic network error

13 GS/OS® Internals

GS/OS Buffers

GS/OS system buffers

FST global buffer : $00/9A00..$00/9DFF
System buffer : $00/AA00..$00/AC0C
GQuit stack space : $00/BB00..$00/BCFF
Direct page : $00/BD00..$00/BDFF
GS/OS stack space : $00/BE00..$00/BFFF

 GS/OS direct page map

Name Offset Length Comments

Driver equates

drvr_dev_num +00 2 deviceNum

Device number
drvr_call_num +02 2 callNum

Call number
drvr_buf_ptr

+04 4 bufferPtr
Buffer pointer

drvr_slist_ptr

+04 4 (or) bufferPtr
Pointer to SIB

drvr_clist_ptr +04 4 (or) bufferPtr
Pointer to control list

boot_slot_equ +04 2 Boot slot for dispatcher only
dev_id_ref +04 2 Indirect device ID
dev_char_config +06 2 BASIC/Pascal 1.1 configuration
dev_pro_config +08 2 ProDOS configuration

drvr_req_cnt +08 4 requestCount

Request count
drvr_tran_cnt +0C 4 transferCount

Transfer count
drvr_blk_num +10 4 blockNum

Block number
drvr_blk_size +14 2 blockSize

Block size
drvr_fst_num

+16 2 FSTNum
Bit 15: 1 = Force device to read block

drvr_stat_code +16 2 (or) statusCode
Status code for status call

drvr_ctrl_code +16 2 (or) controlCode
Control code for control call

drvr_vol_id +18 2 volumeID
Volume ID

14 GS/OS® Internals

drvr_cache +1A 2 cachePriority
Cache priority

drvr_cach_ptr +1C 4 cachePointer
Pointer to cached block

drvr_dib_ptr +20 4 dibPointer
Pointer to active DIB

drvr_dev_ptr +24 4 Pointer to device list
gen_drvr_ptr +28 4 Pointer to generated driver list
fw_addr +28 4 (or) Pointer to current slot

Device dispatcher file list structure

file_list_ptr +2C 4 Pointer to GS/OS file name list

GS/OS equates

call_number +30 2 FST call number
param_blk_ptr +32 4 Pointer to user’s parameter block
dev_num +36 2 Device number from parameter block
dev1_num +36 2 Alias name for dev_num
dev2_num +38 2 Second device number
path1_ptr +3A 4 Pointer to 1st partial/entire pathname
fcr_ptr +3A 4 Pointer to file control record
path2_ptr +3E 4 Pointer to 2nd partial/entire pathname
vcr_ptr +3E 4 Pointer to volume control record
path_flag +42 2 Flag for path information

Bit 14: 0 = pathname1 is null
 14: 1 = pathname1 is non-null
Bit 06: 0 = pathname2 is null
 06: 1 = pathname2 is non-null

span1 +44 2 Largest distance between path1 terms
span2 +46 2 Max distance between separators for path2

 SCM equates

segment_table +4C 4 Pointer to segment table
size +50 2 Size of segment table

Device dispatcher file list structure

file_entry_ptr +56 4 Pointer to file list entry

 Cache Manager direct page

cache_cur_ptr +5A 4 Pointer to current cache cell
cache_nxt_ptr +5E 4 Pointer to next cache cell
cache_pre_ptr +62 4 Pointer to previous cache cell
cache_bkt_ptr +66 4 Pointer to bucket list

Supervisory driver direct page

post_drvr_tbl +6C 4 Used for dynamic driver installation
sup_drvr_ptr +70 4 Pointer to supervisory driver list

15 GS/OS® Internals

sib_ptr +74 4 Pointer to SIB
sup_parm_ptr +78 4 Pointer to supervisory parameters

FST direct page

FST space +$80..$D3 54

SCM temporary direct page usage

Ptr +E8 4
M_temp +EC 4
Seg +F0 4
Vp +F4 4
Vcr +F8 4
Hand +FC 4
Pb_ptr +FC 4

16 GS/OS® Internals

System service calls

About

Access to several system service routines has been provided for File System Translators and Device Drivers by
GS/OS. Access to these routines is through a System Service Dispatch Table located in bank $01 from $FC00 to
$FCFF.

System Service Dispatch Table

System Service name Address Location
DEV_DISPATCHER $02/15EF $01/FC00
CACHE_FIND_BLK $00/A3B1 $01/FC04
CACHE_ADD_BLK $00/A32E $01/FC08
CACHE_INIT $00/A2D6 $01/FC0C
CACHE_SHUTDN $00/A652 $01/FC10
CACHE_DEL_BLK $00/A422 $01/FC14
CACHE_DEL_VOL $00/A51F $01/FC18
ALLOC_SEG $00/FCE8 $01/FC1C
RELEASE_SEG $00/FD15 $01/FC20
ALLOC_VCR $00/F59F $01/FC24
RELEASE_VCR $00/F6ED $01/FC28
ALLOC_FCR $00/F5A2 $01/FC2C
RELEASE_FCR $00/F72B $01/FC30
SWAP_OUT $00/F997 $01/FC34
DEREF $00/FE09 $01/FC38
GET_SYS_GBUF $00/E26C $01/FC3C
SYS_EXIT $00/B7C7 $01/FC40
SYS_DEATH $00/EF02 $01/FC44
FIND_VCR $00/F863 $01/FC48
FIND_FCR $00/F872 $01/FC4C
SET_SYS_SPEED $02/1D5E $01/FC50
CACHE_FLSH_DEF $00/A5FE $01/FC54
RENAME_VCR $00/F763 $01/FC58
RENAME_FCR $00/F766 $01/FC5C
GET_VCR $00/F93C $01/FC60
GET_FCR $00/F944 $01/FC64
LOCK_MEM $00/FE35 $01/FC68
UNLOCK_MEM $00/FE25 $01/FC6C
MOVE_INFO $00/A05B $01/FC70
CVT_0TO1 $00/E49A $01/FC74
CVT_1TO0 $00/E4D0 $01/FC78
REPLACE_80 $00/E50B $01/FC7C
TO_B0_CORE $E0/FC5A $01/FC80
GEN_DISPATCH $E0/F258 $01/FC84
SIGNAL $00/ECFE $01/FC88
GET_B0_BUFF $E0/FCC8 $01/FC8C
SET_DISKSW $02/1825 $01/FC90

17 GS/OS® Internals

REPORT_ERROR $00/EFD8 $01/FC94
MOUNT_MESSAGE $E1/DF11 $01/FC98
FULL_ERROR $00/F04C $01/FC9C
REPORT_FATAL $00/EF8E $01/FCA0
SUP_DRVR_DISP $E0/FCCD $01/FCA4
INSTALL_DRIVER $E0/FE5B $01/FCA8
GET_BOOT_PFX $00/E466 $01/FCAC
SET_BOOT_PFX $00/E471 $01/FCB0
ALLOC_CACHE_SEG $00/FB7C $01/FCB4
GET_STKED_ID $E1/D27B $01/FCB8
DYN_SLOT_ARBITER $02/1D09 $01/FCBC
PARSE_PATHNAME $00/B6BE $01/FCC0
POST_OS_EVENT $00/B300 $01/FCC4
DYNAMIC_INSTALL $E0/FD48 $01/FCC8
DEV_MGR_SVC $02/18DA $01/FCCC
OLD_DEV_DISP $E0/E1FD $01/FCD0
INIT_PARSE_PATH $00/B6AF $01/FCD4
UNBIND_INT_VECT $00/EB37 $01/FCD8
DO_INSERT_SCAN $E1/DE64 $01/FCDC
TOOLBOX_MSG $00/F03B $01/FCE0
not used $01/FCE4
not used $01/FCE8
not used $01/FCEC
not used $01/FCF0
not used $01/FCF4
not used $01/FCF8
RTL $01/FCFC

18 GS/OS® Internals

Making a System service call from an application
You can call system service calls from an application if the right settings have been applied either to the direct page
or to the registers (e.g. AXY):

Entry LDAL GSOSBusy

BMI Exit
ORA #$8000
STAL GSOSBusy

PHD
LDA #$BD00
TCD
SEP #$20
LDAL $E0C068
PHA
LDAL $E0C08B
LDAL $E0C08B
REP #$20

...set GS/OS direct page parameters
...call your system service call

SEP #$20
PLA
STAL $E0C068
REP #$20
PLD

LDAL GSOSBusy
ASL
LSR
STAL GSOSBusy

Exit RTS

19 GS/OS® Internals

System service calls description

 ALLOC_CACHE_SEG ($01/FCB4)

Description This routine allocates a block of memory and returns a virtual pointer to it.

Parameters Input:

A register: requested size

Return:
A register: error code if carry set
X register: low address to allocated virtual pointer
Y register: high address to allocated virtual pointer

Notes The maximum memory block size that can be requested is $1B00-byte long.

Errors If c=0: successful call
If c=1: out of memory or bad parameter (requested size)

20 GS/OS® Internals

ALLOC_FCR ($01/FC2C)

Description This routine returns a virtual pointer to a File Control Record of the requested size.

Parameters Input:

A register: requested memory block size (number of bytes)
X register: pointer (low byte) to class 1 input string of file name
Y register: pointer (high byte) to class 1 input string of file name

Return:
X register: virtual pointer (low byte) to newly allocated block
Y register: virtual pointer (high byte) to newly allocated block

Notes None.

Errors If c=0: no error; memory was allocated.
If c=1: error; memory could not be allocated.

21 GS/OS® Internals

ALLOC_SEG ($01/FC1F)

Description This routine returns a virtual pointer to a segment of the requested size.

Parameters Input:

A register: requested memory block size (number of bytes)

Return:
X register: virtual pointer (low byte) to newly allocated block
Y register: virtual pointer (high byte) to newly allocated block

Notes None.

Errors If c=0: no error; memory was allocated.
If c=1: error; memory could not be allocated.

22 GS/OS® Internals

ALLOC_VCR ($01/FC24)

Description This routine returns a virtual pointer to a Volume Control Record of the requested size.

Parameters Input:

A register: requested memory block size (number of bytes)
X register: pointer (low byte) to class 1 input string of volume name
Y register: pointer (high byte) to class 1 input string of volume name

Return:
X register: virtual pointer (low byte) to newly allocated block
Y register: virtual pointer (high byte) to newly allocated block

Notes None.

Errors If c=0: no error; memory was allocated.
If c=1: error; memory could not be allocated.

23 GS/OS® Internals

CACHE_ADD_BLK ($01/FC08)

Description This routine attemps to add the requested block to the cache. The block is added at the start of

the LRU chain (that is, at those most recently used). If there is not enough room in the cache,
the block(s) at the end of the chain (that is, at those least recently used) are purged until there is
enough room for the requested block.

Parameters Input:
GS/OS direct page:
 blockSize

blockNum
deviceNum
volumeID
cachePriority

Return:
GS/OS direct page:
 cachePointer Pointer to start of block in cache

Notes Full native mode is always assumed.

When drivers make this call, the block is cached by the device number.

Errors If c=0: no error; block was added to the cache.
If c=1: error; block was not added to the cache.

24 GS/OS® Internals

CACHE_DEL_BLK ($01/FC14)

Description This routine attemps to delete the specified block from cache memory.

Parameters Input:

GS/OS direct page:
 blockSize

blockNum
deviceNum
volumeID
cachePriority

Return:
None

Notes Input and output are always passed by GS/OS direct-page locations in this routine. Full native
mode is used.

Errors If c=0: no error; block was deleted from cache.
If c=1: error; block was not deleted from cache.

25 GS/OS® Internals

CACHE_DEL_VOL ($01/FC18)

Description This routine will try to delete all blocks belonging to the requested device number from the

cache.

If the device number = 0 then all blocks of all device numbers of the specified FST will be
deleted. If both device number and FST number are zero then all blocks that are not deferred
will be deleted.

Parameters Input:
GS/OS direct page:
 deviceNum
 FSTNum

Return:
None

Notes None.

Errors If c=0, no error; the volume's block(s) are deleted.
If c=1, an error occurred; the blocks may still be cached.

26 GS/OS® Internals

CACHE_FIND_BLK ($01/FC04)

Description This routine attemps to find the requested block in the cache. If the block is found, it is moved

to the start of the LRU chain, and a 4-byte pointer to its start is returned to the caller. One of
two possible searches may be specified for this call: a search by device number (used by
drivers) or a search by volume ID (used by FSTs when a deferred-write session is in progress).
A routine making this system service call must specify the type of search desired by setting the
carry flag appropriately.

Parameters Input:
GS/OS direct page:

blockNum
deviceNum
volumeID

Carry flag : 0 = search by device number
 1 = search by volume ID

Return:
GS/OS direct page:
 cachePointer Pointer to start of block in cache

Notes Full native mode is always assumed.
Drivers making this call should request a search by device number (c=0).

Errors If c=0: no error; block is in cache.
If c=1: error; block is not in cache.

27 GS/OS® Internals

CACHE_INIT ($01/FC0C)

Description This routine will try to initialize the cache. Memory as needed by the cache is obtained from

the Memory Manager.

Parameters Input:
None

Return:
None

Notes The size of the cache is determined by looking at battery ram. Once this is read, changing the
value in battery ram will not change the size of the cache. The cache size cannot be changed
on the fly.

Errors If c=0, no error.
If c=1, an error occurred.

28 GS/OS® Internals

CACHE_FLSH_DEF ($01/FC54)

Description This routine will try to write to disk the deferred cache blocks belonging to a specific volume

id. After being written to disk, these deferred cache blocks will be downgraded to regular cache
blocks.

Parameters Input:
None

Return:
None

Notes Input and output is passed to this routine by GS/OS direct page and full native mode is always
assumed.

Errors If c=0, no error; the volume ids deferred blocks have been written to disk.
If c=1, an error occurred; couldn't write to disk all deferred blocks of the given volume id.

29 GS/OS® Internals

CACHE_SHUTDN ($01/FC10)

Description This routine will try to shutdown the cache by deleting each entry one at a time. The LRU list

will be used for deletion, the bucket lists will not be used nor updated. The state of the cache is
unknown if there's an error.

Parameters Input:
 None

Return:
None

Notes None.

Errors If c=0: no error; the cache has been shutdown.
If c=1: error; the cache is unreliable now.

30 GS/OS® Internals

CVT_0TO1 ($01/FC74)

Description This routine converts a class 0 string into a class 1 string.

Parameters Input:

Parameters on stack:
 Longword pointer pointer to source string
 Longword pointer pointer to destination string

Return:
Class 0 source string converted to class 1 destination string

Notes Source and destination pointers may be identical.

Errors None.

31 GS/OS® Internals

CVT_1TO0 ($01/FC78)

Description This routine converts a class 1 string into a class 0 string.

Parameters Input:

Parameters on stack:
 Longword pointer pointer to source string
 Longword pointer pointer to destination string

Return:
Class 1 source string converted to class 0 destination string

Notes Source and destination pointers may be identical.

Errors If c=0: successful call.
If c=1: source string length > 255.

32 GS/OS® Internals

DEREF ($01/FC38)

Description This routine dereferences a virtual pointer and returns a pointer corresponding to the current

location of the block referenced by the virtual pointer. This is the only way you should
dereference virtual pointers.

Parameters Input:
X register: virtual pointer (low byte)
Y register: virtual pointer (high byte)

Return:
X register: pointer (low byte) to dereferenced block
Y register: pointer (high byte) to dereferenced block

Notes The 32-bit pointer return in the X and Y registers points to the first byte in the block.

Errors None.

33 GS/OS® Internals

DEV_DISPATCHER ($01/FC00)

Description This routine passes control to a device to execute a command.

Parameters Input:

GS/OS direct page:
 deviceNum
 callNum
 bufferPtr
 requestCount
 transferCount
 blockNum
 blockSize
 fstNum
 volumeID
 cachePriority
 cachePointer
 dibPointer

Return:
A register: error code

Notes Input and output are always passed by GS/OS direct-page locations in this routine.

Full native mode is used.

Errors If c=0: no error; the command has been executed.
If c=1: error; the command has not been executed.

34 GS/OS® Internals

DEV_MGR_SVC ($01/FCCC)

Description This is the main entry point for the device manager. It is responsible for parsing the command

and dispatching to the appropriate function.

Parameters Input:
None

Return:
None

Notes The following calls are handled:
 $002C = Class 0 D_INFO
 $202C = Class 1 D_INFO
 $202D = Class 1 D_STATUS
 $202E = Class 1 D_CONTROL
 $202F = Class 1 D_READ
 $2030 = Class 1 D_WRITE
 $2036 = Class 1 D_RENAME

Errors If c=0, no error.
If c=1, an error occurred.

35 GS/OS® Internals

DO_INSERT_SCAN ($01/FCDC)

Description System Service Vector handler which allows a module external to the OS to perform a device

scan looking for a disk insertion.

This procedure saves the callers DBR and DP registers, sets these registers to those needed by
the OS routines, and then performs the device scan.

Parameters Input:
None

Return:
A register: device number of the first device that had a disk inserted, if the carry is clear

Notes On entry, it is assumed that the language card memory is banked in properly (otherwise, it
won't ever get here), and that the processor is in full native mode.

Errors If c=0: disk inserted.
If c=1: no insertion was seen.

36 GS/OS® Internals

DYN_SLOT_ARBITER ($01/FCBC)

Description This call might provide support for dynamic switching between devices on internal and

external slots in the future. At the time of publication, the call indicates whether the slot is
available.

Parameters Input:
A register: requested slot

Return:
X register: byte-encoded slot configuration
Carry flag: cleared if requested slot was granted
 Set if requested slot was denied

Requested slot: word input value: specifies the slot to be requested. The requested-slot
parameter has this format:

High byte Low byte
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 = external slot
0 = internal slot

Slot number (0-7)

Reserved: must be 0

Notes None.

Errors Carry flag set if request denied.

37 GS/OS® Internals

DYNAMIC_INSTALL ($01/FCC8)

Description This system service routine installs into the device list the driver whose DIB address is passed

in the X and Y registers. Then a startup call is issued to the new device.

Parameters Input:
X register: DIB address (low word)
Y register: DIB address (high word)

Return:
None

Notes If the device returns an error it will be purged from the device list.

DYNAMIC_INSTALL uses a pointer to a DIB when INSTALL_DRIVER uses a pointer to a
list of DIBs.

Errors None.

38 GS/OS® Internals

FIND_FCR ($01/FC4C)

Description This routine attempts to find the requested File Control Record.

Parameters Input:

A register: reference number or $0000
X register: pointer (low byte) to class 1 input string of file name (if Acc = $0000)
Y register: pointer (high byte) to class 1 input string of file name (if Acc = $0000)

Return:
X register: virtual pointer (low byte) to File Control Record
Y register: virtual pointer (high byte) to File Control Record

Notes That call is case insensitive.

Errors If c=0: no error; the File Control Record has been found.
If c=1: error; the File Control Record has not been found.

39 GS/OS® Internals

FIND_VCR ($01/FC48)

Description This routine attempts to find the requested Volume Control Record.

Parameters Input:

A register: volume ID or $0000
X register: pointer (low byte) to class 1 input string of volume name (if Acc = $0000)
Y register: pointer (high byte) to class 1 input string of volume name (if Acc = $0000)

Return:
X register: virtual pointer (low byte) to Volume Control Record
Y register: virtual pointer (high byte) to Volume Control Record

Notes That call is case insensitive.

Errors If c=0: no error; the Volume Control Record has been found.
If c=1: error; the Volume Control Record has not been found.

40 GS/OS® Internals

FULL_ERROR ($01/FC9C)

Description This routine displays an internationalized error message and returns the pressed button.

Parameters Input:

Parameters on stack:
 Word value error message number
 Longword pointer table of pointers to substitution strings

Return:
A register: result code indicating which button was pressed

Notes None.

Errors If c=0; no error.
If c=1; an error has occurred.

41 GS/OS® Internals

GEN_DISPATCH ($01/FC84)

Description This routine is the central dispatcher for generated driver calls. This routine parses the

command number and dispatches control to the device driver via the proper generated driver
core routine. The driver block number and buffer address are preserved throughout the driver
call by the driver dispatcher.

Parameters Input:
A register: call number

Return:
A register: error code if carry set

Notes None.

Errors If c=0: no error.
If c=1: an error occurred.

42 GS/OS® Internals

GET_B0_BUFF ($01/FC8C)

Description This routine returns the address of the bank 0 system buffer.

Parameters Input:

None

Return:
X register: address of bank 0 system buffer

Notes None.

Errors None.

43 GS/OS® Internals

GET_BOOT_PFX ($01/FCAC)

Description This routine returns the boot prefix, known as prefix #32 or “*”.

Parameters Input:

None

Return:
X register: low pointer to class 1 boot prefix
Y register: high pointer to class 1 boot prefix

Notes None.

Errors If c=0: successful call.
If c=1: the prefix length is null.

44 GS/OS® Internals

GET_FCR ($01/FC64)

Description This routine returns the requested File Control Record that was allocated with the

ALLOC_FCR call. The accumulator value refers to a record’s relative position in the FCR list
rather than an FCR value.

Parameters Input:
A register: record index (or $0000 for next record)

Return:
X register: virtual pointer (low byte) to File Control Record
Y register: virtual pointer (high byte) to File Control Record

Notes None.

Errors If c=0: no error; the File Control Record has been found.
If c=1: error; the File Control Record has not been found.

45 GS/OS® Internals

GET_STKED_ID ($01/FCB8)

Description This routine returns the ID of the next item on the ID stack.

Parameters Input:

None

Return:
A register: ID of next item on stack, 0 if stack empty

Notes The 64-byte long stack ID contains the ID of programs to return to.

Errors None.

46 GS/OS® Internals

GET_SYS_GBUF ($01/FC3C)

Description This routine returns a pointer to the GS/OS global buffer for FST use.

Parameters Input:

None

Return:
X register: pointer (low byte) to GS/OS global buffer for FST use
Y register: pointer (high byte) to GS/OS global buffer for FST use

Notes Full native mode is used. The carry is always cleared.

At that time, gbuf is located at $00/9A00 and is $400 bytes long.

Errors None.

47 GS/OS® Internals

GET_VCR ($01/FC60)

Description This routine returns the requested Volume Control Record that was allocated with the

ALLOC_VCR call. The accumulator value refers to a record’s relative position in the VCR list
rather than an VCR value.

Parameters Input:
A register: record index (or $0000 for next record)

Return:
X register: virtual pointer (low byte) to Volume Control Record
Y register: virtual pointer (high byte) to Volume Control Record

Notes None.

Errors If c=0: no error; the Volume Control Record has been found.
If c=1: error; the Volume Control Record has not been found.

48 GS/OS® Internals

INIT_PARSE_PATH ($01/FCD4)

Description This routine clears internal variables for parse_path call.

Parameters Input:

Carry flag: = 0: do initialization
 = 1: call release_vptrs

Return:
None

Notes The release_vptrs routine releases space occupied by strings pointed to by virtual pointers
v_ptr1 and v_ptr2.

Errors None.

49 GS/OS® Internals

INSTALL_DRIVER ($01/FCA8)

Description Because GS/OS supports removable, partitionable media on block devices, it must be able to

install devices dynamically in its device list as new partitions come on line.
INSTALL_DRIVER has been provided for that purpose.

Important: The existence of this call implies that the GS/OS device list can grow during
execution. Drivers and applications cannot count on a fixed device list. See “Scanning the
Device list,” in Chapter 11, “System Service Calls”, of GS/OS Driver reference.

Parameters Input:
X register: DIB list address (low word)
Y: register: DIB list address (high word)

Return:
A register: error code

DIB list address: longword input pointer: specifies the address of a list of device information
blocks to be installed into the device list. The first field in the list is a longword that specifies
the number of device information blocks to be installed; it is followed by a series of longword
pointers, one to each DIB to be installed.

Notes This system service routine posts a DIB address for future driver installation. Installation will
occur following the current or next return from the device dispatcher.

This call informs the device dispatcher that adriver or set of drivers is to be dynamically
installed into the device list at the end of the next time the driver returns to the device
dispatcher. When installing the driver, the device dispatcher inserts the device into the device
list and then issues a startup call to the device. If space cannot be allocated in the device list for
the new device, or if the device returns an error as a result of the startup call, the n the device
will not be installed into the device list.

Scanning the
device list

There is no indication to an application that the device list has changed size as a result of this
call. An application (such as the Finder) that scans block devices should always begin by
issuing a DInfo call to device $0001 and should continue up the device list until error $11
(invalid device number) occurs. The DInfo call should have a parameter count of $0003 to give
the application each device’s device-characteristics word. If the new device is a block device
with removable media, the application should make a status call to the device. If applications
scan devices in this manner, dynamically installed devices will always be included in the scan
operation.

Errors Error checking is critical when using this call. Two possible errors may be returned. If error
$54 (out of memory) occurs, it is not possible to install any drivers; if error $29 (device busy)
occurs, it means that an INSTALL_DRIVER is already pending. In case the latter current
driver installation cannot be accepted, the device driver must wait until it is accessed once
more before it can install additional devices.

50 GS/OS® Internals

LOCK_MEM ($01/FC68)

Description This routine locks all memory segments that were allocated with the ALLOC_SEG call. Use

UNLOCK_MEM when you no longer need these segments; otherwise, the system could run of
available memory.

Parameters Input:
None

Result:
None

Notes This routine always locks the segments. It counts the number of times that a call is made so that
Unlock_mem will only unlock the segments when an equal number of locks and unlocks are
done. This allows nested lock/unlocks to work.

Errors None.

51 GS/OS® Internals

MOUNT_MESSAGE ($01/FC98)

Description This routine displays an internationalized mount volume message and returns the pressed

button.

Parameters Input:
A register: display message type

Parameters on stack:
 Long word pointer Pointer to volume name

Return:
A register: result code indicating which button was pressed.

Notes The mount message is displayed only under certain conditions depending on the Acc value:
 $0000: the appearance of the box is dictated by the App preference word (msb) which
is set or reset by the Set_Sys_Prefs call.
 $0001: the FST can mandate the appearance of the message

Errors If c=0: no error.
If c=1: an error has occurred.

52 GS/OS® Internals

MOVE_INFO ($01/FC70)

Description This call transfers a block of data from a source buffer to a destination buffer. MOVE_INFO

can be used by device drivers to transfer data from a single I/O location to a buffer or from a
buffer to a single I/O location.

Parameters The source buffer pointer, destination buffer pointer, and number of bytes to transfer are passed
as input parameters to this routine via the stack. Source and destination buffers may be in the
same or different memory banks, and either may straddle a bank boundary.

Input:
This is how the stack looks on entry to the call (before execution of the JSL instruction):

Parameters on stack Size and type Description
 <- stack pointer
previousContents
sourcePtr Longword pointer Pointer to source buffer
destinationPtr Longword pointer Pointer to destination buffer
transferCount Longword value Number of bytes to transfer
commandWord Word value Flags (see description below)

The high bytes of sourcePtr, destinationPtr, and transferCount must be 0.

Return:
Data Bank register: unchanged
Direct register: unchanged
Accumulator: error code
X register: undefined
Y register: undefined

53 GS/OS® Internals

Command word The command word tells MOVE_INFO what kind of transfer to make and how to increment

the destination and source address (useful, for example, for inverting the order of data as it is
copied or for filling memory with a single value). The command format is this:

High byte Low byte
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 Move mode

Destination incrementer
Source incrementer

Reserved: must be 0

Where move mode can have these values and meanings:
 000 (Reserved)
 001 Block move
 010-111 (Reserved)
and destination incrementer can have these values and meanings:
 00 Constant destination
 01 Increment destination by 1
 10 Decrement destination by 1
 11 (Reserved)
and source incrementer can have these values and meanings :
 00 Constant source
 01 Increment source by 1
 10 Decrement source by 1
 11 (Reserved)
Presently, only block moves are defined.

Source incrementer and destination incrementer define in what order successive bytes are
transferred from the source buffer and in what order they are placed in the destination buffer.
The following recommended predefined constant values for the MOVE_INFO command word
cover most typical situations:

Move mode:
moveblkcmd equ $0800
 (a block move)
Most common command:
move_sinc_dinc equ $05+moveblkcmd
 (source and destination both increment)
Less common commands:
move_sinc_dinc equ $0+moveblkcmd
 (source increments, destination decrements)
move_sdec_dinc equ $0+moveblkcmd
 (source decrements, destination increments)
move_sdec_ddec equ $0+moveblkcmd
 (source decrements, destination decrements)
move_scon_dcon equ $0+moveblkcmd
 (source constant, destination constant)
move_sinc_dcon equ $0+moveblkcmd
 (source increments, destination constant)
move_sdec_dcon equ $0+moveblkcmd
 (source decrements, destination constant)
move_scon_dinc equ $0+moveblkcmd
 (source constant, destination increments)
move_scon_ddec equ $0+moveblkcmd

54 GS/OS® Internals

 (source constant, destination decrements)

With these various combinations, buffers can be emptied or filled from the bottom up or from
the top down, and single values can be placed in a buffer from the bottom up or from the top
down. Some of the values are particularly helpful for moving data from one buffer into another
buffer that overlaps the first.

Calling sequence From assembly language, you set up and invoke MOVE_INFO like this:
1. Place machine in full native mode (e=0, m=0, x=0).
2. Push parameters onto stack as shown under “Parameter,” earlier in this section.
3. Execute this instruction:
 jsl Move_Info

Sample code Here is an assembly-language example of a call to MOVE_INFO:

rep #$30
pea source_pointer|-16 ; source pointer
pea source_pointer
pea dest_pointer|-16 ; destination pointer
pea dest_pointer
pea count_length|-16 ; count length
pea count_length
pea move_sinc_dinc ; command word
jsl move_info

Errors If c=0: no error.
If c=1: error.

55 GS/OS® Internals

OLD_DEV_DISP ($01/FCD0)

Description This is the main entry point for the device dispatcher.

Parameters Input:

None

Return:
A register: error code if carry set

Notes Calls to device zero specify calls to the dispatcher and not to a particular device. Non-zero
device numbers will be passed on to that specific device.

Errors If c=0: no error.
If c=1: an error occurred.

56 GS/OS® Internals

PARSE_PATHNAME ($01/FCC0)

Description This routine translates pathname into canonical format for FST_Specific call.

Parameters Input:

A register: offset to pathname pointer in parameter list
X register: FST attribute flags word from FST header
Y register: $0000 to select pathname1
 $0001 to select pathname2.

Return:
A register: error code if error

GS/OS direct page
 path_flag: indicates which pathname active.
 dev1_num: device number if present and path1 active.
 dev2_num: device number if present and path2 active.
 span1: maximum name length if path1 active.
 span2: maximum name length if path2 active.
 path1_ptr: pointer to pathname if path1 active.
 path2_ptr: pointer to pathname if path2 active.

Notes Must call system service call init_parse_path once before calling this routine.

Errors If c=0: no error.
If c=1: an error has occurred.

57 GS/OS® Internals

POST_OS_EVENT ($01/FCC4)

Description This routine posts an OS event in the event queue.

Parameters Input:

A register: low word of event code
X register: high word of event code

Parameters on stack:
 Word values Two words are pushed

Return:
None

Notes None.

Errors If c=0: no error; the event has been posted.
If c=1: error; the event has not been posted.

58 GS/OS® Internals

RELEASE_FCR ($01/FC30)

Description This routine releases a memory File Control Record that was allocated with the ALLOC_FCR

call.

Parameters Input:
A register: File Control Record reference number

Return:
None

Notes None.

Errors If c=0: no error; memory was freed.
If c=1: error; memory was not freed.

59 GS/OS® Internals

RELEASE_SEG ($01/FC20)

Description Releases a memory segment that was allocated with the ALLOC_SEG call.

Parameters Input:

X register: virtual pointer (low byte) to target block
Y register: virtual pointer (high byte) to target block

Return:
None

Notes None.

Errors If c=0: no error; memory was freed.
If c=1: error; memory was not freed.

60 GS/OS® Internals

RELEASE_VCR ($01/FC28)

Description This routine releases a memory Volume Control Record that was allocated with the

ALLOC_VCR call.

Parameters Input:
A register: Volume Control Record reference number

Return:
None

Notes None.

Errors If c=0: no error; memory was freed.
If c=1: error; memory was not freed.

61 GS/OS® Internals

RENAME_FCR ($01/FC58)

Description This routine renames a File Control Record.

Parameters Input:

A register: reference number
X register: low pointer to new file name
Y register: high pointer to new file name

Return:
None

Notes None.

Errors If c=0: no error.
If c=1: error; an out of memory error occurred.

62 GS/OS® Internals

RENAME_VCR ($01/FC5C)

Description This routine renames a Volume Control Record.

Parameters Input:

A register: volume ID
X register: low pointer to new volume name
Y register: high pointer to new volume name

Return:
None

Notes None.

Errors If c=0: no error.
If c=1: error; an out of memory error occurred.

63 GS/OS® Internals

REPLACE80 ($01/FC7C)

Description This routine replaces each occurrence of sep (ASCII value $80) in the input string with a

character (repl_char) specified by the caller. However, if there are any occurrences of repl_char
in the input string, this routine leaves the input string unchanged and returns an error.

Parameters Input:
Parameters on stack:
 Longword pointer Pointer to a class 1 string
 Word value Word containing replacement character in low byte

Return:
Input string with seps converted to repl_char (or unchanged if input string already contained
occurrences of repl_char)

Notes None.

Errors If c=0: successful call.
If c=1: error, replacement character already appeared in input string.

64 GS/OS® Internals

REPORT_ERROR ($01/FC94)

Description This routine displays an internationalized error message with two substitution strings and

returns the pressed button.

Parameters Input:
Parameters on stack:
 Word value Error number
 Long word pointer Pointer to 1st substitution string
 Longword pointer Pointer to 2nd substitution string

Return:
A register: result code indicating which button was pressed.

Notes None.

Errors If c=0: no error.
If c=1: an error has occurred.

65 GS/OS® Internals

REPORT_FATAL ($01/FCA0)

Description This routine writes out the internationalized fatal error message and returns the pressed button.

Parameters Input:

Parameters on stack:
 Word value Fatal error number to be printed in message as substitution
 string 2
 Word value Message number in error message file
 Longword pointer Pointer to substitution string 1 (may be null)

Return:
A register: result code indicating which button was pressed.

Notes None.

Errors If c=0: no error.
If c=1: an error has occurred.

66 GS/OS® Internals

SET_BOOT_PFX ($01/FCB0)

Description This routine sets the boot prefix, known as prefix #32 or “*”.

Parameters Input:

X register: low pointer to class 1 boot prefix
Y register: high pointer to class 1 boot prefix

Return:
None

Notes None.

Errors None.

67 GS/OS® Internals

SET_DISKSW ($01/FC90)

Description Some device drivers detect volume-off-line or disk-switched conditions through device-

specific status calls rather than through returned errors. Such a condition would then not be
detected by the device dispatcher on exit from the driver call. In fact, by GS/OS convention,
off-line and disk-switched conditions should never be returned as errors from a status call;
errors are reserved for conditions in which a call fails, not for passing status information.

With the call SET_DISKSW, drivers can specifically request that the disk-switched status
(maintained internally by the device dispatcher) be set in this situation. SET_DISKSW, if
necessary, removes the device’s blocks from the cache and places its volumes off line (if the
device dispatcher-maintained disk-switched flag has not already been set). All GS/OS drivers
are expected to call SET_DISKSW if they detect a disk-switched or off-line condition as a
result of a status call.

Parameters Input:
GS/OS direct page:
 deviceNum: device number of disk-switched device

Return:
None

Notes Full native mode is assumed. Register contents are unspecified on entry and return, except that
the Data Bank register and Direct register are unchanged by the call.

Errors None.

68 GS/OS® Internals

SET_SYS_SPEED ($01/FC50)

Description This call allows hardware accelerators to stay compatible with device drivers that may have

speed-dependent software implementations.

Whenever it dispatches to a driver, the device dispatcher obtains the device driver’s speed class
from the DIB and issues this system service call to set the system speed. When the driver
completes the call, the device dispatcher restores the system speed to what it was before the
call.

An accelerator card may intercept this vector and replace the system service call with its own
routine, thus maintaining compatibility with GS/OS device drivers.

Parameters Input:
The A register contains one of these speed settings:
 $0000 Apple IIGS normal speed
 $0001 Apple IIGS fast speed
 $0002 Accelerated speed
 $0003 Not speed dependent

Settings from $0004 to $FFFF are not valid.

Return:
The accumulator contains the speed setting that was in effect prior to issuing this system
service call.

Notes None.

Errors None.

69 GS/OS® Internals

SIGNAL ($01/FC88)

Description This call announces the occurrence of a specific signal to GS/OS and provides GS/OS with the

information needed to execute the proper signal handler (previously installed with the
ArmSignal subcall of the Driver_Control call). GS/OS queues this information and uses it
when it dispatches to the signal handler.

For more information on GS/OS signals and signal handlers, see Chapter 9, “Handling
Interrupts and Signals,” of GS/OS reference.

Parameters Input:
A register: signal priority
X register: low word of signal-handler address
Y register: high word of signal-handler address

Return:
A register: undefined
X register: undefined
Y register: undefined

Signal priority: priority ranking of the signal, with $0000 being the lowest priority and $FFFF
being the highest.

Signal-handler address: address of the signal-handler entry point.

Notes A signal source that makes this call as the result of an interrupt should announce no more than
one signal per interrupt to avoid the possibility of overflowing the signal queue.

Errors None.

70 GS/OS® Internals

SUP_DRVR_DISP ($01/FCA4)

Description This call is the main entry point to the supervisor dispatcher. It dispatches calls among

supervisory drivers. Supervisory drivers provide an interface that gives higher-level device
drivers access to hardware.

Supervisory-driver calls can be classified into two groups. Calls with a supervisor number of
zero are handled by the supervisor dispatcher; calls with a nonzero supervisor number are
passed on to a supervisory driver.

The following calls are handled by the supervisor dispatcher and are not passed on to a
supervisory driver:

Call no. Sup. No. Function
$0000 $0000 GetSupervisorNumber
$0001 $0000 Set_SIB_Pointer
$0002-$FFFF $0000 (Reserved)

The following calls are dispatched by the supervisor dispatcher to a supervisory driver:

Call no. Sup. No. Function
$0000 (Nonzero) Supervisor_Startup
$0000 (Nonzero) Supervisor_Startup
$0000 (Nonzero) Supervisor_Startup

These subcalls and other supervisory-driver calls are described in detail in Chapter 10, “GS/OS
Driver Call Reference.”

Notes None.

Errors $28 Device not connected.

71 GS/OS® Internals

SWAP_OUT ($01/FC34)

Description This routine moves offline any volume in the device specified (a volume is offline if its media

is not currently in a device). (Actually, all volumes with the passed device number are marked
offline; there should never be more than one volume corresponding to a device number.) A
volume associated with the specific device that has no open files is deleted from the system.

Parameters Input:
A register: device number

Return:
None

Notes This routine walks the list of active VCRs and marks as swapped out any and all VCRs with
open files having the correct dev number. Note that in every legitimate case there will be only
one swapped in VCR with the device number passed this routine swaps out any and all
volumes corresponding to the passed device number. If a VCR with the correct device number
is found with no open files, a release_vcr call is done on that VCR.

Errors None.

72 GS/OS® Internals

SYS_DEATH ($01/FC44)

Description This routine writes out a system death message.

Parameters Input:

A register: error code in low byte

Return:
None

Notes Does not return to the caller.

Errors None.

73 GS/OS® Internals

SYS_EXIT ($01/FC40)

Description This routine returns from the GS/OS environment. It returns to the calling program.

Parameters Input:

A register: error code

Return:
None

Notes The previous direct-page address and the stack pointer are restored.

Errors None.

74 GS/OS® Internals

TO_B0_CORE ($01/FC80)

Description This routine is used to set up the bank 0 core routine for a dispatch. This routine assumes a

GDIB is located contiguous to the DIB for the device being accessed.

Parameters Input:
X register: pointer to dispatcher list
B register: dispatcher list bank

GS/OS direct page:
 dibPointer pointer to DIB containing slot & class

Return:
A register: error code if carry set

Notes This call can only be called from within a device driver. Note that bank 0 of the language card
must be banked in.

Errors If c=0: no error.
If c=1: error.

75 GS/OS® Internals

TOOLBOX_MSG ($01/FCE0)

Description This routine displays an alert message and returns the pressed button.

Parameters Input:

A register: error message number
X register: low pointer to table of error messages (like Error.msg)
Y register: high pointer to table of error messages (like Error.msg)

Return:
A register: result code indicating which button was pressed

Notes None.

Errors If c=0: no error.
If c=1: an error has occurred.

76 GS/OS® Internals

UNBIND_INT_VECT ($01/FCD8)

Description This call allows the caller to perform an UnbindInt call when GS/OS is busy (typically during

shutdown). There is no system service call to bind an interrupt source. To bind an interrupt, use
the BindInt GS/OS call.

Parameters Input:
A register: intNum (from the BindInt GS/OS call)

Return:
None

Notes None.

Errors None.

77 GS/OS® Internals

UNLOCK_MEM ($01/FC6C)

Description This routine releases all locked segments that were created with the ALLOC_SEG call.

Parameters Input:

None

Return:
None

Notes This routine unlocks memory segments when an equal number of locks and unlocks are done.
This allows nested lock/unlocks to work.

Errors None.

78 GS/OS® Internals

GS/OS Records

GS/OS communicates with FSTs through the use of File Control Records and Volume Control Records which keep
track of all open files and mounted volumes. FCRs and VCRs are both GS/OS virtual pointers.

Virtual Pointers
Virtual pointer is a 32-bit address where X and Y have a special meaning in the Global Info Manager (GIM) system.

Y is an index in the segment table address
 X is an offset within the selected segment table
There are three segment tables.
 Y=0, points to the VCR table
 Y=1, points to the FCR table
 Y=2, points to the ICR table

DEREF is an interesting call to understand the behavior of virtual pointers.

Volume Control Record
A Volume Control Record is a virtual pointer to the GS memory which is allocated through the ALLOC_VCR call.
It is an extension of a Memory Manager handle. At that time, a VCR is currently $12 bytes in length.

Name Offset Length Description
vcr_id +00 2 ID of the VCR set by the ALLOC_VCR call

vcr_name +02 4 Virtual pointer to the volume name

vcr_status +06 2 Volume status

vcr_open_cnt +08 2 Number of open files on volume

vcr_fst_id +0A 2 Owner ID number

vcr_dev +0C 2 Last device ID to where volume was last seen

vcr_fst_ptr +0E 4 Pointer to parent FST

The current status equates are:
Name Value Description
vcr_swapped $4000 Volume is swapped out (1 = true)
vcr_swapped_in $BFFF Volume is swapped in
vcr_wr_enable $2000 Volume has been seen write enabled
vcr_wr_unknown $DFFF Volume has not been seen write enabled

79 GS/OS® Internals

File Control Record
A File Control Record is a virtual pointer to the GS memory which is allocated through the ALLOC_FCR call. It is
an extension of a Memory Manager handle.

The following table describes the minimum parameters that must be defined in a FCR. It is currently $16 bytes in
length.

Name Offset Length Description
fcr_ref_num +00 2 File reference number, set by the ALLOC_FCR call

fcr_path_name +02 4 Virtual pointer to file’s pathname

fcr_fst_id +06 2 FST ID of owning FST

fcr_vol_id +08 2 Volume ID of owning VCR

fcr_level +0A 2 Level that file was opened with

fcr_newline +0C 4 Virtual pointer to list of newline characters

fcr_newline_len +10 2 Length of newline list

fcr_mask +12 2 New line mask

fcr_access +14 2 Access used to open file

80 GS/OS® Internals

Interrupt Control Record
An interrupt control record contains all the information needed to execute an interrupt handler.

Interrupt Identification Table
This data structure is a dynamic list in which each entry contains a virtual pointer to an interrupt control record. The
entry's index is the interrupt id number corresponding to a specific binding between an interrupt source and its
interrupt handler.

There are two ways to get to interrupt control records:

1) each interrupt identification table entry points directly to a single ICR and
2) each ICR is on a linked list of ICRs corresponding to the same firmware interrupt vector.

The format of an ICR is as follows:

Name Offset Length Description
next_avail_vrn +00 4 VP to next ICR corresponding to specific VRN

past_avail_vrn +04 4 VP to previous ICR corresponding to specific VRN

vect_disp_base +08 4 Interrupt Handler Memory Address

vect_ref_num +0A 2 VRN

Normally, only offsets to handler and vrn fields are needed.

VRN to VI Translation Table
This table holds the information needed to translate a vector reference number (VRN) into an index (not byte offset)
to the Vector Table entry corresponding to the VRN.
The table consists of 3-word entries. The first two words of each entry represent a range of legal VRN values. If the
input VRN falls between the two values, the output index is the input VRN value minus the value of the third word.
Value of $00 in the first word of an entry indicates the current end of table.

vrn_to_index

 DC.W $08,$17,$07 ;map VRNs $8-$17 into indexes $01-$10
loc_1 DC.W $00,$00,$00 ;reserved for future expansion
 DC.W $00,$00,$00 ;reserved for future expansion
 DC.W $00,$00,$00 ;reserved for future expansion
loc_2 DC.W $00

81 GS/OS® Internals

Vector Table
This is a table of headers to linked lists of ICRs. The table is indexed by Vector Index (VI), which is an arbitrary
index assigned to each firmware interrupt vector. The Vector to Index Translation Table provides the translation
from VRNs to VIs. Each linked list consists of the ICRs for interrupt handlers bound to the particular firmware
interrupt vector. This table is actually allocated in the memory controlled by the GIM.

VI Offset in GIM

tables
Corresponding vector P16 interrupt handlers

$00 +0 icr_list
$01 +4 irq.aptalk
$02 +8 irq.serial
$03 +12 irq.scan
$04 +16 irq.sound
$05 +20 irq.vbl
$06 +24 irq.mouse
$07 +28 irq.qtr
$08 +32 irq.kbd
$09 +36 irq.response
$0A +40 irq.srq
$0B +44 irq.dskacc
$0C +48 irq.flush
$0D +52 irq.micro
$0E +56 irq.1sec
$0F +60 irq.ext
$10 +64 irq.other
$11 +68 reserved for expansion
$12 +72 reserved for expansion
$13 +76 reserved for expansion
$14 +80 reserved for expansion
$15 +84 reserved for expansion
$16 +88 reserved for expansion
$17 +92 reserved for expansion
$18 +96 reserved for expansion

82 GS/OS® Internals

Vector Dispatch Table
This is a table that must be located in memory below the language card. GS/OS patches the firmware interrupt
vectors to point to entries in this table. Each entry is an instruction sequence of the form:

ldx #vi
bra common

vi is the vector index corresponding to the interrupt vector and common is the label on common processing code that
appears after the other table entries.

The interrupt system initialize constructs the table in managed memory. It puts the address of the table into
vect_disp_base and the handle to the table in vect_disp_hand.

vect_disp_base DC.L 00000000 ; base address of Vect or Dispatch Table
vect_disp_hand DC.L 00000000 ; handle of the Vector Dispatch Table

;
; Data used by alloc_interrupt and bind_int
;

vect_ref_num DC.W 0000 ; vector reference number from bind_int
 ; ...call ($0000 for alloc_interrupt)
int_hand_addr DC.L 00000000 ; handler address from alloc_interrupt
 ; ...or bind_int
handled DC.W 0000 ; when polling interrupt handle rs tied
 ; ...to a specific VRN, tells whether or
 ; ...not the interrupt has been handled
 ; $0000 = not yet handled
 ; $8000 = already handled

83 GS/OS® Internals

File System Translators

Header

Name Offset Length Description
Signature +00 4 ‘FST ‘

app_entry +04 4 Pointer to the application entry routine

sys_entry +08 4 Pointer to the system entry routine

id +0C 2 File system ID, refer to next page

s_flags +0E 2 Attributes (see GS/OS reference)

version +10 2 Version of the FST

BlockSize +12 2 Size of a block in bytes

MaxVolSize +14 4 Maximum volume sizes in blocks

reserved +18 4

MaxFileSize +1C 4 Maximum file size in bytes

reserved +20 4

FSTName +24 var FST name displayed in the Finder

StartupName +24+var 18 FST name that appears during a text boot

84 GS/OS® Internals

Present and future FSTs

Name File system ID Description
 $0000 Reserved

proDOSFSID $0001 ProDOS/SOS

dos33FSID $0002 DOS 3.3

dos32FSID $0003 DOS 3.2

dos31FSID $0003 DOS 3.1

appleIIpascalFSID $0004 Apple II Pascal

mfsFSID $0005 Macintosh (MFS)

hfsFSID $0006 Macintosh (HFS)

lisaFSID $0007 Lisa

appleCPMFSID $0008 Apple CP/M

charFSID $0009 Character

msDOSFSID $000A MS/DOS

highSierraFSID $000B High Sierra

iso9660FSID $000C ISO 9660

appleShareFSID $000D AppleShare

rdos33FSID $000E rDOS 3.3

rdos32FSID $000F rDOS 3.2

 $0010-$FFFF Reserved

85 GS/OS® Internals

Calls handled by FSTs
GS/OS calls can be classified by the part of the operating system that handles them. File calls are handled by FSTs,
device calls are handled by the Device Manager, and other calls are handled by the GS/OS Call Manager itself.

Call no. Call name
$2001 Create
$2002 Destroy
$2004 ChangePath
$2005 SetFileInfo
$2006 GetFileInfo
$2007 JudgeName
$2008 Volume
$200B ClearBackupBit
$2010 Open
$2012 Read
$2013 Write
$2014 Close
$2015 Flush
$2016 SetMark
$2017 GetMark
$2018 SetEOF
$2019 GetEOF
$201C GetDirEntry
$2020 GetDevNumber
$2024 Format
$2025 EraseDisk
$2033 FSTSpecific

Note that the ProDOS FST implements the two following class 0 calls:
- READ_BLOCK
- WRITE_BLOCK

86 GS/OS® Internals

FST system entry routine
GS/OS and FSTs communicate in native mode through an internal entry point in the FST header. GS/OS calls the
FST system routines with the following values in the registers:

A register : undefined
X register : call number * 2
Y register : class number * 2

Name Call number FST call description
startup $0001

(X = $0002)
GS/OS calls each FST upon warm or cold start. The FST can
request for memory or get GS/OS direct page address.

shutdown $0002
(X = $0004)

When the system is shutdown, GS/OS calls each FST’s shutdown
routine. The FST can deallocate memory.

sys_remove_vol $0003
(X = $0006)

That call allows a FST to remove a volume control record.

deferred_flush $0004
(X = $0008)

Allows the FST to write the cached blocks to disk. That call can
be called by the SWAP_OUT system service call or when the
stop session call is issued.

87 GS/OS® Internals

Appendix – GS/OS technotes

This and all of the other Apple II Technical Notes have been converted to HTML by Aaron Heiss as a public service
to the Apple II community, with permission by Apple Computer, Inc. Any and all trademarks, registered and
otherwise, are properties of their owners.

88 GS/OS® Internals

GS/OS #1

Contents of System Software Distribution Disks

Revised by Matt Deatherage (June 1992)

Written by Matt Deatherage (November 1988)

This Technical Note describes the contents of the disks System.Disk and System.Tools and the
minimum files necessary to boot GS/OS starting with System Software 5.0.

Changes since January 1991: Now describes System Software 6.0. Changed the title to not reflect
disk names.

This Note gives a description of each of the files in the Apple IIgs System Software 6.0 package.
This package includes six disks: Install, SystemTools1, SystemTools2, Fonts, synthLAB and
System.Disk. System Software 6.0 requires at least 1 MB of memory, one 3.5" drive and another
storage device (either a second 3.5" drive or a larger capacity device). 2 MB of memory and a
hard disk are highly recommended.

System.Disk is a pre-configured boot disk for floppy-based users. Because all the files on
System.Disk appear on other disks in the 6.0 set, they are only listed and not described a second
time.

Contents of Install

ProDOS Every file system boo ts differently; the boot
 blocks for ProDOS dis ks look for a file name
 ProDOS. This is that file. It is the GS/OS
 file system stub nece ssary to start the boot
 process.

System The directory contain ing most of the GS/OS
 files.

 CDevs The directory contain ing all Apple IIgs Control
 Panel Devices (CDevs) required for installing
 6.0.

 General Allows setting of gen eral system parameters.

 RAM Controls the size of the RAM disk and the GS/OS
 Disk Cache.

 SetStart Lets you choose which application to boot into.

 Desk.Accs The directory contain ing all the classic and
 new desk accessory fi les to be loaded at boot
 time.

 ControlPanel The New Desk Accessor y which allows users to

89 GS/OS® Internals

 control almost all sy stem parameters and choose
 printers and file ser vers.

 Drivers The directory contain ing all device drivers
 needed by GS/OS and t he Toolbox (including the
 Print Manager and MID I Tools).

 AppleDisk3.5 The Apple 3.5 Drive d evice driver for GS/OS.
 Also drives SuperDriv es connected to the Apple
 II SuperDrive interfa ce card.

 AppleDisk5.25 The driver for Apple 5.25" disk drives,
 including Disk II dri ves and Apple UniDisk 5.25
 drives. This driver is required for GS/OS to
 recognize 5.25" disk drives. In 6.0, it is up
 to 300% faster than i n earlier versions of
 system software.

 Console.Driver The text screen and k eyboard device driver for
 GS/OS.

 SCSI.Manager The GS/OS SCSI Manage r, the supervisory driver
 that arbitrates hardw are-level usage of Apple's
 Apple II SCSI cards.

 SCSIHD.Driver The GS/OS driver for SCSI hard disks. This
 driver is required fo r GS/OS to recognize SCSI
 hard disks.

 UniDisk3.5 The GS/OS driver for UniDisk 3.5 drives. This
 driver is required fo r proper operation of
 UniDisk 3.5 drives. Using the UniDisk with
 GS/OS without this dr iver eventually corrupts
 media.

 Error.Msg A compiled file conta ining all error messages
 required by GS/OS. T his file is separate from
 the GS.OS file to pro vide easier support for
 localization.

 Fonts The directory contain ing all system fonts to be
 used.

 FastFont This makes Shaston 8 text drawing much faster.

 FSTs The directory contain ing the file system
 translators to be loa ded at boot time.

 Char.FST The character device FST.

 Pro.FST The ProDOS FST.

 GS.OS The remainder of GS/O S.

 GS.OS.Dev The GS/OS Device Mana ger and associated core
 routines. Separate f rom GS.OS for speed
 reasons.

90 GS/OS® Internals

 P8 The ProDOS 8 operatin g system.

 SetStart.data An invisible file cre ated by the SetStart
 Control Panel, indica ting which application the
 system should boot in to. On this disk, this
 points to the Install er.

 Start The boot program. If this file exists, GS/OS
 always launches it up on booting. Under 6.0,
 this program usually reads the SetStart.data
 file and launches the indicated application.

 Start.GS.OS The file containing t he GLoader and GQuit
 routines. It loads t he files GS.OS and
 GS.OS.Dev, which cont ain the rest of the
 operating system.

 System.Setup The directory contain ing all the
 initialization files to be executed at boot
 time.

 Resource.Mgr The Resource Manager. This is an
 initialization file; the design of the Resource
 Manager requires it t o be present even when an
 application has not s pecifically loaded it.
 The system does not b oot if this file is not
 present.

 Sys.Resources A file containing sys tem resources, available
 to the system softwar e and to applications.

 Tool.Setup A required file that loads files which contain
 all the patches to to ols in ROM for ROM levels
 01 (TS2) and 03 (TS3) . Tool.Setup would attempt
 to load TS1 if execut ed on a machine with ROM
 level 00, but GS/OS d oes not boot on such a
 machine, therefore, T S1 is not included.
 Tool.Setup also conta ins patches common to both
 ROM 1 and ROM 3.

 TS2 Patches to ROM tools for ROM 1.

 TS3 Patches to ROM tools for ROM 3.

 Tools The directory contain ing tool files for all
 tools not in ROM.

 Tool014 Window Manager.

 Tool015 Menu Manager.

 Tool016 Control Manager.

 Tool018 QuickDraw Auxiliary.

 Tool019 Print Manager.

91 GS/OS® Internals

 Tool020 LineEdit.

 Tool021 Dialog Manager.

 Tool022 Scrap Manager.

 Tool023 Standard File.

 Tool027 Font Manager.

 Tool028 List Manager.

 Tool034 TextEdit.

Icons The directory contain ing all the Finder's
 old-style icon files as well as new Desktop
 database files and fi le type descriptors.

 FType.Apple The file type names u sed by the Finder (on all
 systems).

Installer The Apple IIgs Instal ler program. This program
 makes use of scripts found in the Scripts
 directory on this dis k to install parts of the
 system, as well as th ird-party applications,
 without the user need ing to copy individual
 files.

Scripts This directory contai ns all the scripts for the
 Installer. On launch , the Installer looks in
 its parent directory for the Scripts directory
 and the scripts it co ntains. It also reads
 MessageCenter message #1.

 A2.RAMCard Script to install the driver for the Apple II
 Memory Expansion Card (the slot-based, or
 "slinky" card).

 Adv.Disk.Util Script to install the Advanced Disk Utility
 program.

 Apple.Bowl Script to install the Apple Bowl game.

 Apple.MIDI Script to install the Apple MIDI Interface
 driver and tool set.

 AppleDisk5.25 Script to install the 5.25" disk driver for
 GS/OS.

 AppleShare Script to install App leShare.

 AppleShare3.5 Script that creates a n 800K or 1440K GS/OS
 startup disk which co ntains AppleShare.

 Archiver Script to install Arc hiver, the new GS/OS-based
 backup program.

92 GS/OS® Internals

 Aristotle.Patch Script to install a c hange to Aristotle for
 easier class transiti on.

 ATImageWriter Script to install the ImageWriter printer
 driver for the Print Manager, as well as the
 files necessary to wo rk with AppleTalk.

 ATImageWriterLQ Script to install the ImageWriter LQ printer
 driver for the Print Manager, as well as the
 files necessary to wo rk with AppleTalk.

 Calculator Script to install the Calculator new desk
 accessory.

 Card6850.MIDI Script to install the 6850-based MIDI Interface
 card driver.

 CDROM Script to install the High Sierra FST as well
 as the SCSI Manager a nd SCSI CD-ROM driver for
 GS/OS.

 CloseView Script to install the CloseView NDA, which
 makes the screen more legible to some
 visually-impaired use rs.

 DCImageWriter Script to install the ImageWriter printer
 driver for the Print Manager, as well as the
 files necessary to co nnect it to a serial port.

 DCImageWriterLQ Script to install the ImageWriter LQ printer
 driver for the Print Manager, as well as the
 files necessary to co nnect it to a serial port.

 DOS3.3.FST Script to install the read-only DOS 3.3 file
 system translator.

 Easy.Access Script to install the EasyAccess init, which
 provides sticky keys and keyboard mouse to ROM
 1 users.

 Epson Script to install the Epson printer driver for
 the Print Manager, as well as the parallel card
 driver.

 Fonts Script to install the minimum suggested font
 set.

 Fonts.Max Script to install all fonts provided with
 System 6.0.

 Fonts.Std Script to install the standard font set.

 HFS.FST Script to install the Hierarchical File System
 (HFS, used on the Mac intosh) file system
 translator.

93 GS/OS® Internals

 Inst.Sys.Min Script to install a m inimal GS/OS system on an
 800K volume. Note th at this is different than
 5.0.x's "Inst.Sys.Min " script, the 6.0 version
 of which is in the fi le named "AppleShare3.5".

 Inst.SysF.NoFin Script to install a m inimal GS/OS
 system,without the Fi nder, on a given
 destination volume.

 Instal.Sys.File Script to install a c omplete System Software
 6.0 configuration, in cluding new features, on a
 given destination vol ume.

 LaserWriter Script to install the LaserWriter printer
 driver for the Print Manager, as well as the
 files necessary to wo rk with AppleTalk.

 Local.Net.Boot Script to create a 3. 5" floppy disk with
 minimal system softwa re that boots into a
 server selection prog ram (the network "Start"
 program from SystemTo ols2).

 MediaControl Script to install the Media Control toolset and
 all Media Control dri vers supplied with System
 6.0.

 MediaCtrl.CDSC Script to install the Media Control toolset and
 the drivers to work w ith the Apple CD SC drive.

 MediaCtrl.P2000 Script to install the Media Control toolset and
 the drivers to work w ith the Pioneer 2000
 series laserdisc play ers.

 MediaCtrl.P4000 Script to install the Media Control toolset and
 the drivers to work w ith the Pioneer 4000
 series laserdisc play ers.

 Namer Script to install the printer Namer Control
 Panel. Namer II (a P roDOS 8 application) is
 not included with Sys tem 6.0.

 Pascal.FST Script to install the read-only Apple II Pascal
 file system translato r.

 Quick.Logoff Script to add a quick logoff feature to
 AppleShare.

 SCSI.Hard.Disk Script to install the SCSI Manager and SCSI
 hard disk driver for GS/OS.

 SCSI.Scanner Script to install the SCSI Manager and SCSI
 scanner driver for GS /OS.

 SCSI.Tape Script to install the SCSI Manager and SCSI
 tape driver for GS/OS .

 Server.Sys.File Script to install Sys tem Software 6.0 on an

94 GS/OS® Internals

 AppleShare File Serve r.

 Sounds.All Script to install all sounds provided with
 System Software 6.0 i nto the "System:Sounds"
 folder of the designa ted volume.

 StyleWriter Script to install the StyleWriter printer
 driver for the Print Manager, as well as the
 files necessary to co nnect it to a serial port.

 Teach Script to install the application Teach, which
 displays and edits Te ach files, text files,
 AppleWorks files, Mac Write files and Installer
 scripts.

 UniDisk3.5 cript to install the UniDisk 3.5 driver for
 GS/OS.

 VideoKeyboard Script to install the Video Keyboard new desk
 accessory, which allo ws users to type by using
 the pointing device i nstead of the keyboard.

 VideoMix Script to install the latest versions of the
 Apple II VideoMix sof tware and tools.

Contents of SystemTools1

Icons Additional icons for the Finder. This
 folder is currently e mpty.

System A directory containin g additional parts of the
 system software.

 Finder The Apple IIgs Finder , version 6.0.

 CDevs Directory with additi onal Control Panel
 Devices.

 DirectConnect Allows selection of d irect-connected printers.

 Keyboard Sets keyboard paramet ers.

 Modem Controls modem port s ettings.

 Monitor Sets 40-column or 80- column mode, monochrome or
 color mode, and the c olor of text, text
 background, and borde rs.

 Printer Controls printer port settings.

 Slots Allows selection of s lot settings and startup
 slot.

 Sound Sets user preference for sound pitch and
 volume. Also allows the user to assign

95 GS/OS® Internals

 digitized sounds to e vents that happen while
 using the computer.

 Time Sets the internal clo ck's time and display
 format and optionally tracks Daylight Savings
 Time.

 Desk.Accs Directory with additi onal desk accessories.

 CDRemote An updated version of the CD Remote new desk
 accessory which ships with the AppleCD SC.

 FindFile A new desk accessory that finds files on
 volumes GS/OS can rea d.

 Calculator A calculator new desk accessory.

 Drivers Directory with additi onal device drivers for
 GS/OS and the Toolbox .

 A2.RAMCard The GS/OS driver for slot-based memory
 expansion cards. Thi s driver is not required
 to use these cards wi th GS/OS, but it does
 provide a substantial speed improvement.

 Apple.MIDI The Apple MIDI Interf ace driver for the MIDI
 Tools.

 Card6850.MIDI The driver for 6850-b ased MIDI interface cards
 for the MIDI Tools.

 Epson The Epson(R) printer driver for the Print
 Manager.

 ImageWriter The ImageWriter drive r for the Print Manager.

 ImageWriter.LQ The ImageWriter LQ dr iver for the Print
 Manager. Starting wit h System Software 5.0.3,
 this driver uses all the capabilities of the
 ImageWriter LQ.

 Modem The modem port driver for the Print Manager.

 Parallel.Card A driver for some par allel printer interface
 cards for the Print M anager. This driver works
 with the Apple Parall el Interface Card, as well
 as several other para llel interface cards.

 Printer The printer port driv er for the Print Manager.

 SCSI.Manager The GS/OS SCSI Manage r, the supervisory driver
 that arbitrates hardw are-level usage of Apple's
 Apple II SCSI cards.

 SCSICD.Driver The GS/OS driver for the AppleCD SC drive.
 This driver is requir ed for GS/OS to recognize
 CD-ROM drives.

96 GS/OS® Internals

 SCSIScan.Driver The GS/OS driver for the Apple Scanner or
 OneScanner. This dri ver is required for GS/OS
 to recognize Apple's scanners.

 SCSITape.Driver The GS/OS driver for the Apple Tape Backup
 40SC. This driver is required for GS/OS to
 recognize Apple's now -discontinued Tape Backup
 40 SC.

 StyleWriter The StyleWriter drive r for the Print Manager.

 Fonts Directory with additi onal fonts

 Courier.09 9-point Courier font.
 Courier.10 10-point Courier font .
 Courier.12 12-point Courier font .
 Courier.14 14-point Courier font .
 Courier.18 18-point Courier font .
 Courier.20 20-point Courier font .
 Courier.24 24-point Courier font .
 Geneva.10 10-point Geneva font.
 Geneva.12 12-point Geneva font.
 Geneva.14 14-point Geneva font.
 Geneva.16 16-point Geneva font.
 Geneva.18 18-point Geneva font.
 Geneva.20 20-point Geneva font.
 Geneva.24 24-point Geneva font.
 Helvetica.9 9-point Helvetica fon t.
 Helvetica.10 10-point Helvetica fo nt.
 Helvetica.12 12-point Helvetica fo nt.
 Helvetica.14 14-point Helvetica fo nt.
 Helvetica.18 18-point Helvetica fo nt.
 Helvetica.20 20-point Helvetica fo nt.
 Helvetica.24 24-point Helvetica fo nt.
 Shaston.16 16-point Shaston font .
 Times.09 9-point Times font.
 Times.10 10-point Times font.
 Times.12 12-point Times font.
 Times.14 14-point Times font.
 Times.18 18-point Times font.
 Times.20 20-point Times font.
 Times.24 24-point Times font.
 Venice.12 12-point Venice font.
 Venice.14 14-point Venice font.
 Venice.24 24-point Venice font.

 FSTs Directory with additi onal File System
 Translators.

 DOS.3.3.FST The DOS 3.3 FST, whic h allows GS/OS to access
 5.25" disks formatted in DOS 3.3 format. This
 FST is read-only; it only performs read
 operations.

 HS.FST The High Sierra FST, which allows GS/OS to
 access CD-ROM discs f ormatted in the

97 GS/OS® Internals

 international standar d High Sierra or ISO 9660
 formats. This FST is read-only; it only
 performs read operati ons.

 HFS.FST The HFS FST, which al lows GS/OS to read and
 write any disk in the Macintosh's HFS format.

 Pascal.FST The Apple II Pascal F ST, which allows GS/OS to
 access any disk forma tted in Apple II Pascal
 format. This FST is read-only; it only
 performs read operati ons.

 Tools Directory with additi onal tools.

 Tool025 Note Synthesizer.

 Tool026 Note Sequencer.

 Tool029 ACE Tools.

 Tool032 MIDI Tools.

Adv.Disk.Util The Advanced Disk Uti lity program which allows
 for partitioning of S CSI hard disks, as well as
 erasing, initializing , and zeroing volumes or
 partitions.

BASIC.System The ProDOS 8 BASIC co mmand interpreter.

Contents of SystemTools2

Icons Additional icons for the Finder. This
 folder is currently e mpty.

AppleTalk This directory contai ns additional AppleTalk
 files and utilities f or AppleShare and
 AppleTalk.

 Boot.Driver A driver for AppleSha re that GS/OS loads before
 the other drivers are loaded and which remains
 resident in memory af ter the boot process is
 finished. Installed on servers by the
 Installer script Serv er.Sys.File.

 Display.0 An update to the Aris totle program installed by
 the "Aristotle.Patch" script.

 QuickLogoff An initialization fil e used to add a quick
 logoff feature to App leShare.

 Start The AppleShare startu p program which is
 installed instead of the standard Start program
 on AppleShare volumes . It allows the user to
 log on and then launc hes the server startup
 program for the user' s machine.

98 GS/OS® Internals

System A directory containin g additional parts of the
 system software.

 CDevs Directory with additi onal Control Panel
 Devices.

 AppleShare Allows users to choos e and log onto AppleShare
 file servers.

 FolderPriv Allows users to set d efault folder privileges
 on AppleShare file se rver volumes.

 MediaControl Allows users to set u p the Media Control tool
 set and the drivers t hey wish to use.

 Namer Allows users to renam e AppleTalk-based
 ImageWriter, ImageWri ter LQ and LaserWriter
 printers.

 NetPrinter Allows users to choos e AppleTalk-based
 ImageWriter, ImageWri ter LQ and LaserWriter
 printers.

 Desk.Accs Directory with additi onal desk accessories.

 MediaControl A new desk accessory that's like a "super"
 remote control for al l devices the Media
 Control toolset can c ontrol.

 VideoKeyboard A new desk accessory that allows users to type
 with the pointing dev ice instead of with the
 keyboard.

 VideoMix An updated version of the VideoMix new desk
 accessory which ships with the Apple II Video
 Overlay Card.

 Drivers Directory with additi onal device drivers for
 GS/OS and the Toolbox .

 AppleTalk The AppleTalk port dr iver for the Print
 Manager. It works wit h either serial port when
 configured for AppleT alk.

 ATalk The main AppleTalk GS /OS driver.

 ATP1.ATROM AppleTalk protocols t o patch the IIgs ROM.

 ATP2.ATRAM AppleTalk protocols n ot in ROM.

 IWEM PostScript(R) program which allows a
 LaserWriter emulate a n ImageWriter. A user can
 load it into the Lase rWriter with the
 LaserWriter Control P anel, and it is
 automatically invoked when printing through the
 slot associated with AppleTalk.

99 GS/OS® Internals

 LaserWriter The LaserWriter drive r for the Print Manager.
 This driver works wit h any LaserWriter with
 PostScript. It does not work with the
 LaserWriter IIsc or P ersonal LaserWriter LS.
 This driver doesn't a lways print color patterns
 correctly to PostScri pt Level 2 printers, such
 as the LaserWriter II f, LaserWriter IIg or
 Personal LaserWriter NTR.

 Media.Control Drivers for the Media Control toolset

 AppleCDSC Media Control driver for the Apple CD SC drive.

 Pioneer2000 Media Control driver for the Pioneer 2000
 series of laserdisc p layers.

 Pioneer4000 Media Control driver for the Pioneer 4000
 series of laserdisc p layers.

 SCC.Manager The GS/OS supervisory driver that arbitrates
 hardware-level usage of the serial
 communications contro ller in the Apple IIgs.

 Fonts Directory with additi onal fonts.
 Currently, this direc tory on this disk is
 empty.

 FSTs Directory with additi onal file system
 translators.

 AppleShare.FST The AppleShare FST wh ich allows GS/OS to access
 AppleShare file serve rs.

 Sounds A folder with sounds provided for the new Sound
 Control Panel. The f ile names are fairly
 self-explanatory; the sounds are not described
 here.
 Ahh
 Doorbell
 Droplet
 Eastern
 Frog
 PipeOrgan
 Quack
 SimpleBeep
 Sosumi
 Swish
 Trumpets
 Whoosh

 System.Setup Directory with additi onal initialization
 files.

 AppleIIVOC.INIT An initialization fil e used by the Apple IIgs
 Video Overlay Card to ol set.

100 GS/OS® Internals

 ATInit The AppleTalk initial ization file.

 ATResponder The AppleTalk Respond er, used for AppleTalk
 network management.

 CloseView A new desk accessory (installed by an init)
 that magnifies the sc reen to make it more
 visible to some users with visual impairments.

 EasyAccess An initialization fil e that brings Sticky Keys
 and Keyboard Mouse to ROM 1 users.

 EasyMount An initialization fil e that creates file server
 aliases in the Finder .

 Tools Directory with additi onal tools.

 Tool033 VideoMix toolset (for the Video Overlay Card).

 Tool038 Media Control toolset .

Archiver A GS/OS based backup and restore program.

Teach A simple editor that uses TextEdit to display
 and edit text files, Teach files, Installer
 scripts and AppleWork s and MacWrite documents.

Read.Me Last-minute news and information about the
 System Software. Rea d with Teach.

Shortcuts A Teach file with tim e-saving system tips and
 information.

Contents of Fonts

Goodies A directory with file s that are only related to
 system software in th e vaguest sense.

 Apple.Bowl A GS/OS conversion of an old Apple II bowling
 game.

 Read.Me Documentation on Appl e Bowl.

Icons Additional icons for the Finder.

 AppleBowl.Icon The icon for the Appl e Bowl game.

System A directory containin g additional parts of the
 system software.

 Fonts Additional fonts.

 Courier.27 27-point Courier font .
 Courier.28 28-point Courier font .
 Courier.30 30-point Courier font .

101 GS/OS® Internals

 Courier.36 36-point Courier font .
 Courier.42 42-point Courier font .
 Helvetica.27 27-point Helvetica fo nt.
 Helvetica.28 28-point Helvetica fo nt.
 Helvetica.30 30-point Helvetica fo nt.
 Helvetica.36 36-point Helvetica fo nt.
 Helvetica.42 42-point Helvetica fo nt.
 Helvetica.48 48-point Helvetica fo nt.
 Helvetica.60 60-point Helvetica fo nt.
 Helvetica.72 72-point Helvetica fo nt.
 Helvetica.96 96-point Helvetica fo nt.
 Times.27 27-point Times font.
 Times.28 28-point Times font.
 Times.30 30-point Times font.
 Times.36 36-point Times font.
 Times.42 42-point Times font.
 Times.48 48-point Times font.
 Times.60 60-point Times font.
 Times.72 72-point Times font.
 Times.96 96-point Times font.

Contents of synthLAB

synthLAB The synthLAB applicat ion, a demonstration
 sequencer for the MID I Synth toolset.

Tool035 MIDI Synth toolset.

MIDI The MIDI Control Pane l. Lets you choose a MIDI
 driver.

Seq.and.Instr A directory containin g demonstration sequences
 (files that end in ". seq"), wave forms (files
 that end in ".wav") a nd sound banks (files that
 end in ".bnk") for us e with synthLAB and MIDI
 Synth. The files are only listed; their sound
 is not described here .
 Synth.bnk
 Synth.seq
 Synth.wav
 Bee.seq
 Capri.seq
 Combo.bnk
 Combo.wav
 Demo.bnk
 Demo.wav
 Fugue.seq
 Midsummer.seq
 Orch.bnk
 Orch.wav
 Piano.bnk
 Piano.wav
 Rhythm.seq
 Sonata.seq

102 GS/OS® Internals

Reference A Teach document with the electronic manual for
 synthLAB.

Contents of System.Disk

Files are only listed here; they are described earlier in this Note where they first appeared.

ProDOS

System
 Start.GS.OS
 GS.OS
 Error.Msg
 GS.OS.Dev
 FSTs
 Pro.FST
 Char.FST
 Drivers
 AppleDisk3.5
 AppleDisk5.25
 Console.Driver
 System.Setup
 Tool.Setup
 TS2
 TS3
 Resource.Mgr
 Sys.Resources
 Desk.Accs
 ControlPanel
 CDevs
 Printer
 Time
 Start This is the Finder, n ot the SetStart program
 or the AppleShare pro gram.
 Tools
 Tool014
 Tool015
 Tool016
 Tool018
 Tool019
 Tool020
 Tool021
 Tool022
 Tool023
 Tool025
 Tool027
 Tool028
 Tool034
 Fonts
 P8

Icons
 Ftype.Apple

BASIC.System

103 GS/OS® Internals

Minimum GS/OS System Disk Requirements

The following files are required for GS/OS to boot from a local disk. This list does not address
files needed by the Finder or the IIgs Toolbox. Those files only required in certain circumstances
are noted as such. Those files that may be excluded only when disk space or memory limitations
make it absolutely necessary are marked with asterisks (*).

ProDOS

System
 Start.GS.OS
 GS.OS
 GS.OS.Dev
 Error.Msg
 FSTs
 Pro.FST
 *HS.FST Required for High Sie rra or ISO 9660 discs.
 Char.FST
 *AppleShare.FST Required to use Apple Share file servers
 *DOS3.3.FST Required to use DOS 3 .3 disks
 *Pascal.FST Required to use Apple II Pascal disks
 *HFS.FST Required to use HFS d isks
 Drivers
 *AppleDisk3.5 Required for Apple 3. 5 Drives or SuperDrives.
 *AppleDisk5.25 Required for 5.25" dr ives.
 *UniDisk3.5 Required for UniDisk 3.5 drives.
 *SCSI.Manager Required for SCSI dev ices.
 *SCSIHD.Driver Required for SCSI har d disks.
 *SCSICD.Driver Required for AppleCD SC drives.
 *SCSIScan.Driver Required for Apple sc anners.
 *SCSITape.Driver Required for Apple Ta pe backup.
 Console.Driver
 *ATalk Required for AppleTal k (including AppleShare).
 *ATP1.ATROM Required for AppleTal k (including AppleShare).
 *ATP2.ATRAM Required for AppleTal k (including AppleShare).
 *SCC.Manager Required for AppleTal k (including AppleShare).
 System.Setup
 Tool.Setup
 TS2
 TS3
 Resource.Mgr
 Sys.Resources
 CDevs
 *AppleShare Required for selectin g AppleShare file servers.
 *NetPrinter Required for choosing printers.
 *DirectConnect Required for choosing printers.
 *General

 *RAM Should always be incl uded if space allows.
 Provides the only way to set the size of the
 GS/OS Disk Cache.

 Desk.Accs Required for desk acc essories; any desk

104 GS/OS® Internals

 accessories should be installed in this
 directory.

 *ControlPanel Required if you ship any Control Panels (CDevs).

 *Start Must be present for G S/OS to boot or some
 other file that GS/OS can boot into must be
 present in its place.

 Tools Required for any of t he RAM-based tools; any
 RAM-based tools shoul d be installed in this
 directory.

 Fonts Required for the Font Manager.

 *FastFont This makes Shaston 8 text drawing much faster
 and should be include d unless absolutely
 impossible.

 *P8 Required for ProDOS 8 .

*BASIC.System Required for AppleSof t BASIC.

Further Reference

• GS/OS Reference

• Apple IIgs Technical Note #100, VersionVille

105 GS/OS® Internals

GS/OS #2

GS/OS and the 80-Column Firmware

Written by Matt Deatherage (November 1988)

This Technical Note discusses the changes in handling the 80-column firmware between GS/OS
and ProDOS 16.

For compatibility with the Apple IIe, the Apple IIGS does not treat slot 3 like it treats other slots.
Instead of using a bit in the Slot Register ($C02D) to control the mapping of ROM in slot 3
between the built-in 80-column firmware and any peripheral card physically in slot 3, the soft
switches SETINTC3ROM ($C00A) and SETSLOTC3ROM ($C00B) are used instead. On the
Apple IIe, these soft switches (referred to by the single label SLOTC3ROM) respectively map the
ROM at $C300 to the internal 80-column firmware (which works with the auxiliary-slot 80-
column card in most IIe computers) or to a peripheral card in slot 3. Note that writing to
SETSLOTC3ROM on a IIe or IIGS with no card in slot 3 results in floating bus addresses in the
$C300 space.

ProDOS 8 will not allow an Apple IIe or later model computer to have a card other than an 80-
column card in slot 3. ProDOS 8 needs the 80-column firmware on a 128K machine for use in the
/RAM driver, and the enhanced Apple IIe has some of the interrupt firmware in the $C300 space.
When ProDOS 8 is loaded in an Apple IIe or later, it writes to SETSLOTC3ROM and looks at
five identification bytes. If all five of these bytes do not match, ProDOS 8 will write to
SETINTC3ROM to use the internal firmware. If all five bytes match, the external slot 3 ROM is
left mapped in.

ProDOS 16 fell victim to a bug in ProDOS 8 versions 1.2 through 1.6 which always switched in
the internal 80-column firmware, regardless of the user's Control Panel setting. GS/OS does not
have this bug; a card in slot 3 of a IIGS other than an 80-column card will not be mapped out by
GS/OS.

Application programmers who require the 80-column firmware should be familiar of the
following points:

• If your program contains a routine to insure that the 80-column firmware is indeed
available, it could be buggy. Since ProDOS 16 always made the 80-column
firmware available, your routine to check that condition may never have been
executed.

• If your program requires the 80-column firmware and it is not available, your
program should display a message on the screen informing the user that he must
set Slot 3 in the Control Panel to Built-in Text Display for your program to
execute, then gracefully exit. Switching the $C300 ROM space, even with the
user's permission, is not recommended. Slot 3 could contain an operating GS/OS
device, perhaps even the one your program was launched from. Remember, it is
possible to boot GS/OS from slot 3.

106 GS/OS® Internals

Do not try to be clever in a situation like this. For example, do not go looking at ID bytes in slot 3
to try to determine the type of device present so that you can switch it out if you identify it as a
non-disk device. Slot 3 could contain an active device being operated by a loaded GS/OS driver.

Your program should not ask the user's permission to switch ROM space between ports and slots
(or in this case, the internal firmware versus the external card). That is why there is a Control
Panel. Simply display a message informing the user that he must set Slot 3 in the Control Panel to
Built-in Text Display for your program to execute. You may offer to change the battery RAM
parameter for the user and restart the system (using the OSShutdown call), but under no
circumstances should you hit the soft switch yourself, even with the user's permission.

Further Reference

• GS/OS Reference, Volume 1

• ProDOS 8 Technical Note #15, How ProDOS 8 Treats Slot 3

107 GS/OS® Internals

GS/OS #3

Pointers on Caching

Written by Matt Deatherage (November 1988)

This Technical Note discusses effective use of the GS/OS cache.

Introduction

GS/OS is the first Apple II operating system to offer a sophisticated caching mechanism.
However, using the cache and using it wisely are two different things. This Note presents some
concepts which should lead to higher performance for your application if it uses the cache.

What's Cached Automatically?

All blocks on a GS/OS readable disk could be classified into one of two categories. "Application
blocks" are all blocks on the disk contained in any file (except a directory file), while "system
blocks" are other blocks on the disk. System blocks belong to the file system and include
directory blocks, bitmap blocks, and other housekeeping blocks specific to the file system.

GS/OS always maintains at least a 16K cache, even if the user has set the disk cache size to 0K
with the Disk Cache new desk accessory. When the system (usually an FST) goes to read a
system block, the block is identified as a candidate for caching and is cached if possible.
Applications define blocks as candidates for caching by using the cachePriority field of many
class 1 GS/OS calls. Note that class 0 calls do not have this field, thus applications using
exclusively class 0 calls will not be able to cache any application blocks.

Although this difference may seem like a limitation, it in fact improves performance. On the
Macintosh, most applications that work with files (like database managers) leave the file with
which they are working open while they need it; the file is only closed when the window
containing it is closed. Apple II programs historically are quite different -- they usually read an
entire file at the beginning, modify it in memory, and write it when the save function is selected.
A moment's thought will show that if GS/OS arbitrarily cached most or all application blocks,
system blocks that would be used again (such as directory blocks) will be kicked out to make
room for them. We will see that this is probably a bad thing to do.

How to Cache Effectively

The first tendency of many programmers is to attempt to completely cache any given file, but this
usually leads to a degradation in performance, not an improvement. In small caches such
strategies can slow the system to a crawl, and large caches offer no significant improvement.
Remember that until the cache memory is needed, it is available to the system. The cache size for
GS/OS as set by the user is the maximum to be allotted, not the minimum.

108 GS/OS® Internals

Suppose you are attempting to cache a 40K file (80 512-byte blocks). If the cache is set to less
than 40K, the entire cache will be written through, kicking out all system blocks currently
cached. A cache of this size slows system performance for little gain, since the entire file could
not be cached anyway. Even if the cache is large enough to hold the entire file, you are needlessly
taking twice the amount of memory with the same file (by reading it into memory you have
obtained from the Memory Manager and by asking GS/OS to keep a copy in the cache).

It is evident that the system makes the best use of the cache automatically, freeing your
application from the duty of caching system blocks, but there are certain instances where caching
application data can improve system performance.

An application which does not limit document size to available memory will often only keep a
portion of the document in memory at any given time. Suppose that the beginning of such an
application's document file contains a header which to various parts of the document file. (These
parts could be chapters for a word processor, report formats for a database manager, or individual
pictures for an animation program.) This document header is probably not very long, but the
application will likely need to read it quite often to quickly access various portions of the
document file.

This header is a prime candidate for caching since it is a part of the file which will definitely be
read many times during the life of the application. Contrast this with arbitrarily caching the entire
file, which needlessly wastes both cache space and available memory to keep a duplicate copy of
something that may or may not be read from disk again.

Although caching provides enormous benefits to GS/OS, indiscriminate use of the cache will
waste memory and degrade overall system performance. Be prudent and limit your use of the
cache to those portions of your document files which will be read from disk many times.

Further Reference

• GS/OS Reference, Volume 1

109 GS/OS® Internals

GS/OS #4

A GS/OS State of Mind

Revised by Matt Deatherage (March 1991)

Written by Matt Deatherage (January 1989)

This Technical Note discusses GS/OS concepts and practices.

Changes singe July 1989: Includes more information about thinking for non-ProDOS file
systems.

Although GS/OS bears many similarities to ProDOS, GS/OS is a much wider-reaching operating
system, working not only with multiple file systems but also with character devices. Some things
which work under ProDOS cause problems under GS/OS, and application programmers need to
be aware of the differences, particularly those developing text-based programs.

GS/OS Hints

Be aware of character devices. A legal GS/OS pathname, perhaps entered by a user in response to
a prompt, could map to a character device, with potentially disastrous results. Error $58, Not a
Block Device, can protect you against this on many calls, including Create, but you must still
take precaution. DInfo tells you if a device is a character device or block device; bit seven of the
characteristics word is set if the device is a block device.

Don't preprocess pathnames. A user input routine which prevents users from entering pathnames
that don't follow ProDOS syntax may help prevent Illegal Pathname Syntax errors, but it also
keeps users from creating files on non-ProDOS disks with anything but ProDOS pathname
syntax, and it could keep them from accessing files on non-ProDOS disks which they created
with another GS/OS application. Since the only FST which allowed you to write to a device
under System Software 4.0 was ProDOS, you didn't see this problem right away. However,
System Software 5.0 includes an AppleShare FST which, compared to ProDOS, is fast and loose
with pathnames. "How about an anti-ProDOS name?" is a legal AppleShare filename. To allow
compatibility with present and future non-ProDOS FSTs, Apple suggests you pass user-entered
pathnames directly to GS/OS, with no application preprocessing.

Remember that under GS/OS both colons and slashes are valid separators, and colons can only be
separators. In addition, all eight bits of each byte of a pathname are significant. Refer to GS/OS
Reference, Volume 1 for more information on GS/OS pathname syntax. Using all eight bits of
each byte may be particularly difficult for text-based applications, which have no way to force
the standard Apple II character set to display characters such as sigma or the copyright symbol;
they can fiddle to get characters like the sterling pound sign and an Apple. Some programs may
wish to adopt special typographical conventions for these special characters while others may
choose not to create files with such characters in their names. These programs could present the
user with a list of existing filenames (with some substitution for the characters which are

110 GS/OS® Internals

unavailable), while providing a method of choosing one, to retrieve such files. Any way around
this problem for a text-based program will be less than optimal.

Avoid the Text Tools and all slot dependencies. Preliminary GS/OS documentation points to a
System Service call named DYN_SLOT_ARBITER. This mechanism, which is not fully
implemented in System Software 5.0, eventually will allow the operating system to use internal
ports and external slots for the same "slot" in the same session, instead of requiring the user to
reboot the system to safely change between ports and slots. Applications which have hard-coded
slot dependencies (as the Text Tools unfortunately require) make this transition very difficult,
both for GS/OS and for the applications and users. We recommend that applications use the
GS/OS loaded and generated character device drivers for text output. A DInfo call will tell you
what slot or port a driver controls, and whether or not it is a character device.

Avoid other file system dependencies. Many of the things ProDOS programmers are used to as
facts of life just are not true any longer. For example, filenames don't have to be 15 characters or
less under GS/OS. When making class one calls, GS/OS will tell you if you don't have enough
room for the pathname by returning a Buffer Too Small error ($4F). Avoiding file system
dependencies means handling this error intelligently: if you receive it, allocate more space for the
buffer and try the call again. GS/OS will tell you how much space is needed. If you absolutely
must hard code pathnames, suchas volume names, be sure to use the colon as the separator,
because if you donot, filenames with slashes will cause problems. Similarly, don't assume any of
the following:

• There can only be 51 files in the volume directory

• All devices are named ".Dn," where n is the device number

• All blocks are 512 bytes long

• All devices are block devices

• Any other ProDOS-specific characteristics

Your application may have hidden file system assumptions as well. For example, while a
directory behaves like a directory under all GS/OS filesystem translators, reading from a
directory is not always as fast as it isfor ProDOS disks. ProDOS directories are fairly linear and
can be searched quickly; but other file systems may have more complicated directory structures
(HFS and AppleShare, for example, have B-trees that store directory entries in alphabetical
order). To get optimal speed, try to do as many GetDirEntry calls as you can in succession
without other GS/OS calls intervening this allows Apple to optimize file system translators for
fast directory reading.

Also remember that other file systems may not support the concept of orderable directories, so
don't depend on directory order in your application.

Don't hog all of the memory. While this is never a good idea on the IIgs, it's even worse under
GS/OS. To process things like pathnames, GS/OS allocates memory through the Memory
Manager. If you've allocated all of available memory (i.e., for a disk copy procedure), GS/OS
will be forced to return an Out of Memory error ($54). If the condition is so severe that GS/OS

111 GS/OS® Internals

can no longer function, it will return a fatal GS/OS error with an ID = 2, and the user will be
asked to restart the system.

(A common cause of fatal GS/OS error 2 during development is using a length byte instead of a
length word on a class one string. Doing so almost always causes the first word to be greater than
8K, which is the maximum length of pathnames under GS/OS. GS/OS then dies for your
enjoyment, as it is unableto allocate the memory for the pathname because it's too big, even if
more than 8K is available.)

Hard code as little as possible. Even seemingly static things like device names should not be hard
coded, since a new loaded driver could change the name of the same device at any time. Also, it
may be possible in the future for users to rename devices.

Only ask for the access you need. If you're just going to read a file, make a call to Open the file
with read permission only. In file systems where access privileges mean more than they
traditionally have in ProDOS (where things are usually "Locked" or "Unlocked"), this could save
some trouble. For example, AppleShare allows the same file to be opened multiple times as long
as each open is with read-only access. If your program is only going to read a file, opening it with
read and write access needlessly denies others on the server access to the file.

Copy all GS/OS information with files. Applications that copy files need todo more than copy the
data fork of the file. If the file is extended, the resource fork of the file should be copied as well.
In addition, when requested, each FST returns an option_list that contains information specific to
the host file system that GS/OS does not use (i.e., AppleShare's option_list includes Finder
information and access privileges). Calls to GetFileInfo and Open can return the option_list,
while a call to SetFileInfo can set it. An FST will not set parameters in the option_list which
should not be altered (just as SetFileInfo skips the EOF fields in GetFileInfo records). To ensure
that the duplicate has as much host file system information from the original as can reasonably be
transferred, always copy the option_list.

However, if you want to change something in an existing file's GetFileInfo list, do not use an
option_list. The option_list could override the other parameters to SetFileInfo without your
knowledge.

Further Reference

• GS/OS Reference, Volumes 1 and 2

112 GS/OS® Internals

GS/OS #5

Resource Fork Formats

Revised by Matt Deatherage (July 1989)

Written by Matt Deatherage (January 1989)

This Technical Note discusses the resource fork format of GS/OS extended files.

Changes since January 1989: Documented the location of resource fork format information.

Due to an omission in GS/OS Reference, Volume 1, some developers are not aware that the
format of the resource fork of any file is reserved by Apple Computer, Inc. With the release of
System Software 5.0 for the Apple IIGS, a Resource Manager is available to manipulate discrete
chunks of data stored in the resource forks of files. To prevent corruption of media, information
should only be stored in any resource fork in this format.

The Resource Manager should always be used to manipulate the data in resource forks. Some
utilities may find this impossible and will require direct manipulation of resources without the
Resource Manager. Information on the format of the resource forks is included with the Resource
Manager documentation in the System Software 5.0 documentation.

Further Reference

• GS/OS Reference, Volume 1

• System Software 5.0 documentation (APDA)

113 GS/OS® Internals

GS/OS #6

Drivers and GS/OS Direct Page

Revised by Matt Deatherage (January 1991)

Written by Matt Deatherage (March 1989)

This Technical Note corrects an error in the preliminary GS/OS documentation and provides an
alternate suggestion for developers who are writing GS/OS drivers.

Changes since September 1990: Updated the list of calls which do not require the GS/OS direct
page and updated the documentation references.

Preliminary GS/OS documentation, including the beta draft of GS/OS Reference, Volume 2,
incorrectly states that locations $5A through $5F are available for device drivers, and that
locations $66 through $6B are shared by device drivers and supervisory drivers (and may be
corrupted by either a driver or supervisory driver call).

This is not correct. The locations in question are used by GS/OS; destroying these locations can
cause system failure and media corruption.

Drivers which require direct page space of their own should request it from the Memory Manager
when they are started. Upon receiving a call, a driver can save the value of the D register
(containing the GS/OS direct page) and switch to its own direct page. The driver may keep the
value of its direct page inside the driver itself; no space on GS/OS direct page is available for this
purpose. The driver must restore the D register to point to the GS/OS direct page before returning
from the call, and it should also dispose of its direct page space when it shuts down.

The driver must also set the D register to point to the GS/OS direct page before making any
system service call other than SET_SPEED, DYN_SLOT_ARBITER, MOVE_INFO, SIGNAL,
and INSTALL_DRIVER.

Note: The location of the GS/OS direct page is guaranteed to remain the same between
Driver_StartUp and Driver_ShutDown calls.

Further Reference

• GS/OS Device Driver Reference

114 GS/OS® Internals

GS/OS #7

Behavior of SET_DISKSW

Written by Matt Deatherage (July 1989)

This Technical Note discusses changes to the documented behavior of SET_DISKSW in System
Software 5.0. This Note is primarily of interest to device driver authors.

GS/OS Reference, Volume 2, states that the system service call SET_DISKSW ($01FC90) will
remove a device's blocks from the cache and place its volumes off line.

With System Software 5.0, this behavior is slightly changed. SET_DISKSW also posts insertion
and ejection notices to the GS/OS Notify Procedure queue, so that notification procedures may be
called. This requires SET_DISKSW to check the current status of the device to know if the disk
switched condition indicates an insertion or an ejection (by comparing the current device status
against the device-dispatcher maintained status).

A GS/OS driver may have an interrupt handler present to handle interrupts generated by its
device on insertion or ejection (if the hardware is capable of generating such interrupts). Such an
interrupt handler will probably want to call SET_DISKSW when an insertion or ejection is
detected to make the rest of the operating system aware of it. However, SET_DISKSW obtains
the device's status based on the deviceNum and callNum on the GS/OS direct page.

Any driver or interrupt handler calling SET_DISKSW must first save the values for deviceNum
and callNum on the GS/OS direct page, replacing callNum with the number of a driver call that
accesses media (Apple suggests Driver_Read, $0002) and replacing deviceNum with the number
of the device for which SET_DISKSW is being called. The caller must restore the original values
after SET_DISKSW returns.

Although SET_DISKSW saves and restores the GS/OS direct page, the caller must know where
the GS/OS direct page is located so it can place the proper parameters there. The value used for
the GS/OS direct page should be the value of the D register when the driver receives its
Driver_StartUp call. The GS/OS direct page is now guaranteed to remain constant between
Driver_StartUp and Driver_ShutDown calls.

Further Reference

• GS/OS Reference, Volume 2

115 GS/OS® Internals

GS/OS #8

Filenames With More Than CAPS and Numerals

Written by Matt Deatherage (July 1989)

This Technical Note discusses the problems some applications may have when dealing with
filenames containing lowercase letters for the first time.

With System Software 5.0, lowercase filenames enter GS/OS en masse for the first time.
Lowercase filenames are inherent to the AppleShare filing system and have been added to the
ProDOS filing system through the ProDOS FST. However, since Apple II filing systems never
had lowercase characters in filenames before, this change undoubtedly causes problems for some
applications. This Note gives general guidelines to help developers avoid such problems.

How the ProDOS FST Does It

"Wait," you say (not for any particular reason, other than a general fondness for monosyllables).
"If you put lowercase characters in the ProDOS directory entry, it's going to cause all kinds of
problems. What's gonna' happen on][+ machines?"

Two previously unused bytes in each file's directory entry are now used to indicate the case of a
filename. The bytes are at relative locations +$1C and +$1D in each directory entry, and were
previously labeled version and min_version. Since ProDOS 8 never actually used these bytes for
version checking (except in one case, discussed below), they are now used to store lowercase
information. (In the Volume header, bytes +$1A and +$1B are used instead.)

If version is read as a word value, bit 7 of min_version would be the highest bit (bit 15) of the
word. If that bit is set, the remaining 15 bits of the word are interpreted as flags that indicate
whether the corresponding character in the filename is uppercase or lowercase, with set
indicating lowercase. For example, the filename Desk.Accs has a value in this word of $B9C0, or
binary 1011 1001 1100 0000. The following illustration shows the relationship between the bits
and the filename:

 Bits in WORD: 101110011100 0000
 Filename: Desk.Accs
 Uppercase or Lowercase: ULLLUULLL

Note that the period (.) is considered an uppercase character.

What it Means

Because no lowercase ASCII characters are actually stored in the filename fields of the directory
entries, all ProDOS 8 software should continue to work correctly with disks containing files with
lowercase characters in the filenames. Neither ProDOS 8 nor the ProDOS FST are case sensitive
when searching for filenames: ProDOS is the same file as PRODOS is the same file as prodos.

116 GS/OS® Internals

The main trouble applications have is when a filename has been "processed" by the application
before passing it to GS/OS. For example, if a command shell automatically converts filenames to
all uppercase characters before passing them to ProDOS 16, the chosen uppercase and lowercase
combination for the filename will never be seen by the user without any apparent reason. Some
developers have considered it okay to ignore lowercase considerations, thinking that they would
only apply to file systems other than ProDOS (and file systems which would not be available on
the Apple II for a long time, if ever). These developers were mistaken.

A more pressing problem is that of an application that is looking for a specific file, perhaps a data
file or a configuration file. If the application simply passes a pathname to GS/OS and asks for
that file to be opened, it will be opened if it exists. The case of the filename is irrelevant since file
systems are not case sensitive. However, if the application makes GetDirEntry calls on a specific
directory, looking for the filename in question, there could be trouble: the application won't find
the file unless its string comparison routine is not case sensitive. If the user has renamed the file
MyApp.Config, and the string comparison is looking for MYAPP.CONFIG, then the application
will report that the file does not exist.

It is repeated here that when dealing with normal OS considerations, it's almost always better to
ask for something and respond intelligently if it's not there than it is to go looking for it yourself.
The OS already has a lot of code to look for things (or expand pathnames, or examine access
privileges, etc.), and reinventing the wheel is not only tedious, it can be detrimental to future
compatibility.

The One Exception

In the past, ProDOS 8 did look at the version bytes when opening a subdirectory. The code to do
this has been removed from ProDOS 8 V1.8. Please be aware that earlier versions of ProDOS 8
will be unable to scan subdirectories with lowercase characters in the directory name, even to
find files in those directories.

Conclusion

Most user-input routines (including the Standard File tool set) return filenames or pathnames that
can be passed directly to GS/OS without preprocessing. Doing so may return "pathname syntax
errors" more often than not doing so, but it also enables applications to take advantage of future
versions of the System Software that loosen the restrictions on syntax (or new file systems that
never had such restrictions). Under GS/OS, even ProDOS disks aren't what they used to be.

Further Reference

• GS/OS Reference

117 GS/OS® Internals

GS/OS #9

Interrupt Handling Anomalies

Revised by Matt Deatherage (May 1992)

Written by Dave Lyons (January 1990)

This Technical Note discusses anomalies in the way GS/OS handles interrupts.

Changes since May 1990: Added discussions about changes to GS/OS interrupt handling since
System Software 5.0.2.

Problems Installing Interrypt Handlers

If your application calls ALLOC_INT to install an interrupt handler for an external interrupt
source, it works fine unless the SCSI Manager (GS/OS file SCSI.Manager) is installed, in which
case the system eventually grinds to a halt with a message about 65536 unclaimed interrupts.

The Problems

If any interrupt handlers are bound (using BindInt) to reference number $17 (IRQ.OTHER), the
unclaimed interrupt count gets incremented if none of the BindInt routines claims the interrupt,
even though any handlers installed with ALLOC_INT routines still need a chance to claim it. The
5.0.2 SCSI.Manager triggers this problem because it calls BindInt with vector reference number
$17.

In addition, if one or more interrupt handlers are bound to the IRQ.OTHER vector (VRN $17),
the interrupt is passed to the ALLOC_INT handler even if it was already claimed by a BindInt
routine. If no ALLOC_INT routine claims the interrupt, the unclaimed-interrupt count is
incremented. As documented in Apple IIgs Technical Note #18, Do-It-Yourself SCC Interrupts,
you cannot successfully call BindInt with vector reference number $0009.

The Solution

An application may install both a BindInt routine and an ALLOC_INT routine. If they both claim
the external interrupt, the unclaimed count does not get incremented. The solution is compatible
with future System Software releases, since it does not depend upon the ALLOC_INT routine
ever getting called.

Your application's BindInt routine sees the interrupt before your ALLOC_INT routine does, so
the BindInt routine should figure out whether the interrupt was caused by your external device,
and claim it if so. Your ALLOC_INT routine should claim an interrupt it sees if and only if your
BindInt routine claimed the last interrupt it saw.

Starting with GS/OS version 3.2 (released with the Apple II High-Speed SCSI Card), the system
no longer treats too many unclaimed interrupts as a fatal error. However, before version 6.0, it

118 GS/OS® Internals

still counts the unclaimed interrupts so it can do something like display a dialog asking you to
restart even though choosing "restart" returns you to the application unharmed (GS/OS version
3.2), or sometimes display a dialog box sending you to your dealer and sometimes not (version
3.3), or do nothing about it at all (version 4.0 and later). This is obviously as confusing to most of
us as it was to the system itself, so fortunately GS/OS now ignores unclaimed interrupts and
doesn't even bother counting them.

Problems Removing Interrupts Handlers

The GS/OS Reference suite says that device drivers may make BindInt and UnbindInt calls,
noting this as an exception to the general rule that drivers may not make GS/OS system calls.
What the references fail to note is that these calls may fail for an incredibly annoying reason --
the OS may be busy.

GS/OS takes special pains to avoid this while starting and while switching to ProDOS 8, but it
does not avoid this condition during an OSShutDown -- a real shutdown of the OS, not a switch
to ProDOS 8.

Driver authors can work around this problem by using a new system service call provided in
GS/OS version 3.2 and later. The call, named UNBIND_INT_VECTOR, provides the
functionality of UnbindInt to FSTs and drivers only to avoid the OS reentrancy issue. The vector
is at $01/FCD8 and takes an interrupt identification number (as returned from BindInt) in the
accumulator.

Further Reference

• GS/OS Reference

• Apple IIgs Technical Note #18, Do-It-Yourself SCC Interrupts

119 GS/OS® Internals

GS/OS #10

How Applications Find Their Files

Revised by Matt Deatherage (May 1992)

Written by Dave Lyons (January 1990)

This Technical Note explains how applications should find configuration and other application-
related files.

Changes since September 1990: Lists new ways to access the @ prefix under System Software
6.0 and later.

When an application is launched, GS/OS sets prefix 9 to the application's parent directory. It also
sets prefix 1 to the same directory if the length of the pathname is within a 64-character limit. It
does not set prefix 0 to any special value.

If your application uses a partial pathname and depends upon prefix 0 to find files at the same
directory level, it may be working by accident (prefix 0 is accidently set to the right directory),
and sooner or later it won't work.

If your application needs to load a file named TitleScreen, the best way is to use the pathname
9:TitleScreen. If you just use TitleScreen, you are using prefix 0, and you may or may not be
looking in the right directory.

Files storing user-specific data should be stored in the at sign (@) prefix -- this is just like prefix
9, except that it is set to the user's user folder on an AppleShare server if the application was
launched from a server. Use @:MySettings rather than 9:MySettings or MySettings. (If you want
to retrieve the value of the @ prefix, you can call ExpandPath on the pathname "@:".) Note that
the @ prefix was introduced in System Software 5.0.

The @ prefix is useful only for applications, not for Desk Accessories, CDevs, initialization files,
or anything else; this type of code can get the path of the user's folder by using the AppleShare
FST's FST-Specific call GetUserPath.

Starting with System Software 6.0, you can also retrieve the value of the @ prefix by passing
$FFFF (-1) to GetPrefix. You may also set the value of the @ prefix by passing $FFFF to
SetPrefix, but only applications or system-wide utilities should ever change the @ prefix.
Specifically, any DAs, CDevs, initialization files or others should not mess with the @ prefix to
make their own file handling simpler.

Further Reference

• GS/OS Reference

• AppleTalk Technical Note #8, Using the @ Prefix

120 GS/OS® Internals

GS/OS #11

About EraseDisk and Format

Revised by Matt Deatherage (November 1990)

Written by Dave Lyons & Matt Deatherage (July 1990)

This Technical Note explains how an application can tell when a user chooses Cancel from an
EraseDisk or Format dialog box and explains why thefile_sys_ID field is ignored in class-zero
calls.

Changes since July 1990: Noted that System Software 5.0.3 fixes some of these anomalies.

Detecting a Canceled Erase or Format Dialog Box

GS/OS Reference says that EraseDisk and Format return with the carry flag set and A equal to
zero when the user cancels the operation. This is great, except that the calls actually return with
the carry clear, making a Cancel hard to distinguish from a successful EraseDisk or Format
operation. This happens in System Software 5.0.2 and earlier; it works as documented in GS/OS
Reference in System Software 5.0.3 and later.

If you must use 5.0.2 or earlier versions of the system software, this Note presents a safe way
around the problem, which works with all versions of the System Software:

1. In the parameter block for class-one EraseDisk or Format, set the fileSysID field
to 0. (See note below.)

2. Make the call.

3. If the error code is non-zero, there was an error. Handle it.

4. Otherwise, the error code is zero. Check the fileSysID field in the parameter
block. If it is still zero, the user chose to cancel the operation.

Note that this method only works for class-one calls. For the class-zero ERASE_DISK and
FORMAT calls, the file_sys_ID word is only an input parameter and always remains unchanged.

About the Class-Zero file_sys_ID Parameter

Even though fileSysID is an input parameter for the class-zero calls ERASE_DISK and
FORMAT, all versions of the system software ignore thesupplied value and always give the user
a dialog for selecting a file system. This means no functionality is lost by putting a zero there.

The reasons for this decision are historical. Although the Apple IIgs ProDOS 16 Reference
indicates that the input parameter file_sys_ID would be used in future versions to choose
destination file systems, ProDOS 16 always returned an error if the file system specified was not
$0001 (ProDOS).

121 GS/OS® Internals

Since this effectively means no ERASE_DISK or FORMAT call can be made under ProDOS 16
with any file_Sys_ID other than $0001, the GS/OS team chose to ignore the parameter and
always give users the choice when using class zero calls. Otherwise, no program that existed
when GS/OS was released would ever allow users to choose interleaves or file systems (they
would always format for ProDOS, file system $0001). (Note that the class-one Format
andEraseDisk calls have a new reqFileSysID parameter; if this field is present, the dialog box is
bypassed.)

Further Reference

• GS/OS Reference

• Apple IIgs ProDOS 16 Reference

122 GS/OS® Internals

GS/OS #12

All About Notify Procs

Written by Matt Deatherage (September 1990)

This Technical Note discusses the GS/OS notification procedure new to System Software 5.0 and
enhances the discussion of these procedures in the Addison-Wesley GS/OS Reference.

Why Do I Want To Be Notified?

GS/OS notification procedures (or "notify procs") are handy ways to let the operating system tell
you when interesting things are happening. As documented in GS/OS Reference, they can tell
you when you're switching to ProDOS 8 (and back), when disks are inserted or ejected, when
GS/OS is shut down, and even when a change occurs to a volume.

However, getting these notifications is not as simple as installing a procedure. Some behaviors
are due to the way device drivers are designed and some are due to the design of GS/OS or device
hardware. This Note discusses a few slightly unusual situations you can encounter when dealing
with notification procedures.

I Get "Parameter out of range," and There's Only One Parameter

It seems incongruous to get error $0053 ("Parameter out of range") when there's only one
parameter, a pointer to the notification procedure. However, GS/OS checks the procedure header
to ensure consistency. In particular, the flags field must not have any of the reserved bits set.
Having any bits other than one through six set results in error $53; it ensures you do not get
strange behavior or are not passed values you cannot comprehend.

I'm Not Getting Notified

You've written your notification procedure correctly and tested it, but when you run your
application you can eject and insert disks until your arm falls off and your code is never called.

This is a side effect of the design of most Apple II peripherals -- no hardware interrupt is
generated when you eject a disk. Without an interrupt to grab the CPU's attention, the drive just
sits there until someone actually asks the drive if a disk is present.

Well-designed GS/OS drivers look to see if a disk has been switched every time they get control
and call the System Service routine SET_DISKSW, which in turn causes the notification
procedures to be told the disk has been switched. However, the driver cannot set this chain in
motion until it gets control.

The easiest way to do this is to loop through all on-line devices, issuing a device call to each in
turn. When the driver gets control, it starts the ball rolling. Note that you must make a device call
that actually causes driver code to be executed. This includes all the application level device calls

123 GS/OS® Internals

with less than two parameters, except DRename and DInfo (the third parameter is a block count,
which causes a Driver_Status call to the driver). These calls are handled entirely by the Device
Manager without actually transferring control to any driver code. DStatus with a transferCount =
2 is a good choice.

I Get Notified About Insertion at Weird Times

When coming back to GS/OS from ProDOS 8, you get "insertion" notification even though no
disks have actually been inserted. This is done for you by most drivers, which pretend that any
media in the device has just come online at driver startup time -- which is true as far as any
application is concerned.

General Truths

Be careful when installing notification procedures from an application. Applications either go
away or are made purgeable when they quit, and that means your notification procedure can get
disposed. GS/OS tries to call the address anyway, and this is generally a bad idea. Make sure you
remove all notification procedures before their code goes away.

Even though you have to poll to ensure you get disk insertion and ejection events, it's still useful
to install notification procedures. The notification queue allows everyone who's interested in
GS/OS events to be notified about them. Check the "disk has been switched" bit of the status
word is not suitable, because this bit is only set once. If a desk accessory makes a status call to a
switched device, it sees the "disk has been switched" bit and your application does not, so use the
notification queue.

Operating system calls (i.e., Write) can generate volume changed events during execution;
therefore, GS/OS could be busy when it calls your notification procedure. Volume changed
events are not necessarily generated immediately. The AppleShare FST checks for volume
changes approximately every 10 seconds, but it only generates these events for a given volume if
it contains an open folder.

GS/OS can call your notification procedure from inside an interrupt, so make it short and sweet.
One approach is setting a flag which you can check periodically from your main code; when the
flag is set, you can process the event and clear the flag.

Further Reference

• GS/OS Reference

124 GS/OS® Internals

GS/OS #13

GS/OS Reference Update

Revised by Matt Deatherage (May 1992)

Written by Matt Deatherage & Dave Lyons (November 1990)

This Technical Note corrects and updates the Addison-Wesley Apple IIgs GS/OS Reference.
Previous versions from APDA labeled Volume 1 or 2 are obsolete, and should no longer be used.

Changes since December 1991: Added new information about resource_eof and resource_blocks
parameters.

Chapter 4, "Accessing GS/OS Files"

Page 72: The System File Level: How to Protect an Open File from the

Application

The class 1 SetLevel and GetLevel calls have a special option that allows you to open a file at an
"internal" file level, so that it cannot be closed by an application making a Close call with
reference number zero at any application level.

GetLevel and SetLevel actually accept two parameters, not just the one parameter (level)
documented in Chapter 7. The second parameter, level_mode, is a Word that controls the internal
range of the file level.

Only two values for level_mode are supported. A value of $8000 is the same as if the parameter
wasn't present at all -- the level calls behave just as documented in GS/OS Reference. A value of
$0000 sets a special "system" or "internal" level -- all files opened with an internal level are
unaffected by any non-internal level.

The steps to open a file at an internal file level are:

1. Call GetLevel with pCount=2, level_mode=$0000. Save the returned level.

2. Call SetLevel with pCount=2, level = $0080 and level_mode = $0000.

3. Open a file or files with a class 0 or 1 Open call, or with OpenResourceFile
(OpenResourceFile on System Software 5.0.4 and earlier does not try to protect
your resource files from being accidentally closed by a Close(0)).

4. Call SetLevel with pCount=2, level_mode=$0000, and level = saved level.

You can use two parameters in all your level calls and set the second level_mode parameter to
$8000 instead of omitting it if it will make writing your program easier.

125 GS/OS® Internals

To close your protected file, simply do a Close with the reference number. There is no need to
fiddle with the file level when closing by reference number.

NDAs should close all their files at or before DeskShutDown time.

Chapter 6, "Working with System Information"

Page 92: Using the optionList Parameter

The optionList parameter resembles a GS/OS output buffer in most important respects -- it starts
with a word indicating the size of the buffer, and each FST fills in the size of the actual data
placed in the buffer in the second word. If the buffer is too small to hold the data, the necessary
size is placed in the second word and the FST returns the "buffer too small" error ($004F).

Usually, GS/OS input buffers only have one length word, because if you know how large the data
is (and you do if you're the one passing it to GS/OS), you don't need another word telling you the
same thing. However, if you're trying to copy something like an optionList, you can wind up in a
bit of a pickle. Just because the buffer you've allocated is big enough to hold file system-specific
information, that doesn't mean the information is necessarily present.

A good example of this problem is found in the System Software 6.0 ProDOS FST. In 6.0 and
later, the ProDOS FST will take HFS Finder information (as returned by the AppleShare and
HFS FSTs) in the optionList and place that information in an extended file's extended key block,
so the file can be copied to and from ProDOS disks with no loss of Macintosh-specific
information (such as the longer file types and creator types necessary to identify Macintosh files).
The FST returns the same information (if present) in the output optionList.

However, previous versions of the ProDOS FST returned no information in the optionList.
Suppose you archived a file and stored the optionList with the file's information under 5.0, and
attempt to restore the file under 6.0 using a nice, large optionList buffer. The FST can't know
whether the large buffer contains any information or not.

To remedy this problem, the second word of the optionList structure (reqSize in the figure on
page 92) is now defined on input as well as output. On input, the word must contain the actual
size of the data in the optionList; the first word continues to indicate the size of the entire buffer.
If the buffer size and the actual data size are too small to make sense, any affected FSTs will
ignore the input, knowing that it must be garbage.

Further details on how the ProDOS FST stores HFS Finder information can be found in ProDOS
8 Technical Note #25, "Non-Standard Storage Types."

Chapter 7, "GS/OS Call Reference"

Pages 98-99: ChangePath

On page 98, the Reference states that a subdirectory may not be moved into itself or into a
directory the first subdirectory already contains. For example, you may not change /v to /v/w or
/v/w to /v/w/x. Although this is correct, the System Software 5.0.x implementations of the

126 GS/OS® Internals

ProDOS FST trash your disk if you try this with ChangePath. Do not try it on disks you want to
keep.

On page 99, error $4E is described as "file not destroy-enabled." No, ChangePath doesn't destroy
the file. The error should read "file not rename-enabled."

Page 120: DInfo Characteristics Word

The diagram for the characteristics word in the DInfo parameters has incorrect descriptions for
bits 14 and 13. The diagram says bit 14 is set if the device is a linked device; in fact, bit 13 is set
if the device is a linked device. Bit 14 is set if the device in question has a generated driver; the
bit is clear for loaded drivers.

Page 129: The Character Device Status Word

The diagram on the top of page 129 says that if bit 5 is set, the device is in no-wait mode. This is
incorrect. To determine if a device is in no-wait mode, make the GetWaitStatus subcall described
on page 130.

Bit 5 of the character device status word is set if there are one or more characters waiting to be
read from the device. This is an assistance for developers, since generated character drivers don't
support no-wait mode.

Page 132: GetFormatOptions Flags Word

The diagram describing the flags word of GetFormatOptions is incorrect. Bits 0 and 1 are
actually the format type, while bits 2 and 3 are the size multiplier. In other words, the two labels
are backwards.

Page 142: Flush

The Flush call, under System Software 5.0.3 and later (GS/OS version 3.3) accepts a maximum
of two parameters. If the second parameter is present, it is the flushType. The flushType Word
specifies the type of flush to be performed. A flushType of $0000 is the standard flush, where all
dirty blocks are written to disk. If flushType is $8000, however, only dirty data blocks are written
to disk. Certain dirty system blocks (blocks that don't hold file data) may not be flushed in this
fast flush, but volume and file integrity is maintained.

Page 151: GetDirEntry

Page 156: GetFileInfo

Page 176: Open

Each of the above calls has optional resourceEOF and resourceBlocks paramters that are listed as
"undefined" if the file has no resource fork. In System Software 6.0 and later, these fields are
guaranteed to be zero if a given file has no resource fork.

127 GS/OS® Internals

Appendix A, "GS/OS ProDOS 16 Calls"

Page 386: GetDirEntry Buffer Description Incorrect

On page 386, nameBuffer is described as a pointer to a buffer in which GS/OS returns a Pascal
string containing the name of the file or directory entry (in GetDirEntry). This is incorrect; all
versions of GetDirEntry return GS/OS (word-length) strings for the directory entry.

Further Reference

• GS/OS Reference

• Apple IIgs Technical Note #71, DA Tips and Techniques

• ProDOS 8 Technical Note #25, Non-Standard Storage Types

128 GS/OS® Internals

GS/OS #14

The Console Driver Technical Note

Written by Matt Deatherage (May 1992)

This Technical Note discusses the GS/OS Console Driver and related issues.

New 6.0 Character Features Don't Work in Version 3.2

The System Software 6.0 documentation (as of this writing, the GS/OS ERS) refers to a new
Console Driver feature. The Console Driver now has the capability to return direct character-in
and character-out vectors for improved throughput (gained by bypassing most of GS/OS's
overhead). The vectors are obtained through new DStatus device-specific call $8007, GetVectors.

Unfortunately, in version 3.2 of the Console Driver (which ships with System Software 6.0), this
call returns addresses which are almost the correct ones (in other words, they're wrong). If DInfo
says the Console Driver is version 3.2 or earlier, don't try to use the GetVectors feature.

No-Wait Mode and User Input Mode Conflict

When you read from a GS/OS driver in no-wait mode, the driver is supposed to return as quickly
as possible, reading as much information as possible and returning as soon as the request is filled
or no more information is instantly available. This is the opposite of wait mode, where the driver
waits until the read can be finished even if it takes forever.

This philosophy directly conflicts with the Console Driver's user input routine (UIR) mode,
where standard human interface editing functions are available. For example, if you want to read
seven characters from the Console Driver in UIR mode, the user should be able to type four
characters and hit three backspaces and not worry that the read request will end since he pressed
seven keys. The entire concept of UIR mode is that the user can take his time and edit his input
until he's happy with it, then press a terminator key to end editing.

This is how the Console Driver works, in fact, even in no-wait mode. If you ask for even one
character in UIR mode and no-wait mode, the Console Driver will let the user edit the one
character until he presses a terminator.

If you want instant feedback, you must use raw input mode.

Further Reference

• GS/OS Reference

• System 6.0 Documentation for GS/OS

