SylvaWare

NBASIC Version 1.5.2

User Manual

NBASIC User Manual

November 2007

This document describes the features and operation of NBASIC. It includes a detailed
description of NBASIC statements and functions, as well as information about NBASIC
program development.

Revision/Update Information: This manual supersedes the NBASIC User Manual,
Versions 1.1, 1.2,1.2.1,1.3,1.4,1.5and 1.5.1.

Software Version: NBASIC Version 1.5.2 (Shareware)
NBASIC Version 1.5.2

SylvaWare
Evans, Georgia

Copyright © 2004, 2005, 2006, 2007 SylvaWare
NBASIC and the NBASIC logo are copyrights of SylvaWare.
All other product names mentioned herein may be trademarks of their respective companies.

SylvaWare shall not be liable for technical or editorial errors or omissions contained herein. The
information in this document is provided “as is” without warranty of any kind and is subject to
change without notice. The warranties for SylvaWare products are set forth in the express limited
warranty statements accompanying such products. Nothing herein should be construed as
constituting an additional warranty.

Contents

L070] 0] £=T o | K= TP R UOTPI iii
[=] = (o TP PP TUT TP XV
T B BT AN (@R @ T=1 1§ o o P 17
L OV EIVIBW 1oteiieiiteee ettt ettt ettt ettt e e ettt e e ekttt e e e ehb et e e e ek ket e e e ek be e e e e ek bt e e e e abbe e e e e abbeeeeeabbeeeenanbeeeenan 19
000 I L1 oo [ox 1T o TSSO P ST STR 19
A V=T 1T LSS 19
L3 WHNAE'S INBW ..ottt st sttt sttt et b e st b e s e et b e e et et e s et e b e st e st e st enesbetne 19
R 111 (o] Y SRRSO 20
A CT= A1 o IS - U A= o [T UURPP TR 27
2.1 SEArtiNG NBASIC ..ottt sttt et te st et e te st e e e tesae e etesbeseesesbeseesesteenseseanens 27
2.2 ENErING COMMEANTUS ...ttt sttt st sh et se e s et sbesbe s st eae e e e e e sbesbesbesaesaeeneanseneanbeseesaens 27
2.3 EditiNg StAtEMENTSottt bt bttt b e b e s eesbe s aeeae e e e s e seeneesbennen 28
A Y g1 (g Lo T o o To | =T 41U 28
2.5 SAVING PrOGIAMS....cuiiiiiiiitiite ettt ettt sttt aesbe s e eae e e e sbesbesbesbesaeeae e e e s abesbesbesaesaesaeansessansesbesaens 29
P22 G o= Lo T a o [md (0T [r= 12 1= SRS 29
2.7 RUNNING PTrOQIAIMSccuiiiiiisie st sesee e eese s e st te s sse s e eseeaesessessessesseeseesensessessessessessesnsensessensessessens 29
2.8 EXIING NBASIC ...ttt ettt ettt b e st b ettt b ettt st e et e st et ebe st e e ebeneenea 30
I B = - T PR PP T 31
0 I 1] (] 1 S 31
G2 o] 1 =T SRR 31
A USEI INTEITACE .ottt ettt e e sttt e e s n b bt e e e sttt e e e nbb e e e e nbbe e e e annees 33
R 0] a1 1= B /[T o 1 TP PPV PR RSP PP PP 33
A Lo [T 1= ST - 1 oY S 33
4.3 Add Dialog (WOIUMES) ...ttt bbbt e e b b e b e et sae e e e e e seesee b es 35
4.4 PropertieS Dialog (VOIUMES)oiiiiiiiieieieeiese sttt sb e s sbe e e e e e e e 36
SN @110 g S BIT-1 (oo USSP 37
4.6 STALUS Blottt h e h e h e b e e ee e e s e e s ae e sae e Re e b e e b e eabeeheeeheenbe e beereeneeanas 39
5 Programming GUI B ...ttt ettt e e e e e e et e e e e e e e e anbbbbe e e e e e e e e aannreneeas 41
LT Y £ 7>\ T TSP SURTURUPRUPROTN 41
LT 1 = 1o Tod o1 o Vo USRS P PR 41
LR O g T =Tt (=T =T £ TR 42
L DT | - TSP P USSP 42
LTI = = T I8/ 1= USSR 43
LN G B L= (3= g o I I 0 = TR 44
LA 1= o T8 o o 1o PSS 44
LR I =l £ (0] £ TSP R TR TURUPRUUROTN 44
oIS N o (=TT (0] 1SS 45
L0 0 I 1= TSRS 45
L0 I B W od T 1 USSP 47
LT 2 €] = T o] 1SS PPR 48
L0 BN =1/ o o - o S 48

LT T I 4 1 £ TSSO T TPV P PSSP SRR 48

LT ST I To To |1 T PSR UR U RUS 49
LT K3 o o] oL SO P PP RTURURTRO 49
L0 0 01 11 T 50
L0t c I oo > o PR 50
LT R S Tol 1= o O TSSO PP PP 51
L2 0 IS To 0 o Lo TSP STRR 52
5.21 STATEMENTS ...ttt ettt e e bbbt ae bt e e e e e e R e e bt s Rt e R e e e e e e neeeR e b e Rt en e e enn s 52
5.22 SUBFOULINES ...t bbb bt b e a e e he et et e s e e sbeebesbeebe e e eneees 52
LT B 41T €SOO 52
5.24 User defined fUNCLIONS ..ot et se e s s 53
5,25 VAKTADIES ...ttt bbb e bRttt e e e R b saeeh e e e e e 54
B HOW T0 e 55
6.1 ACCESS ThE CONIEXE IMEBNU ...ttt et se et e bbb e st e e e e eneas 55
6.2 Create A VOIUMIE ...ttt ettt h e et e e e eb e besbeeb e e aeeae e se e besbesbesbesaeeneennannan 55
LTS T T B o = 'o JS 55
L I = (o AN = (0o - 1o 55
LRSI 110N = o T | = o 56
oI RS- 1YL AN o 0T | = T o 56
Part 1l NBASIC REFEIENCEeiiiiiiiie ettt sttt e e st e e s sbb e e e s sbbeeeesarreeeean 57
LS = 1= 10 1=T o] R TP TP PP PPPPR RO 59
7.1 $COLOR Statement (Meta-ComMMAN).........ccurireirireiririeeseseeese et saeseses 59
7.2 BPRINT SEALEIMENT ..ottt ettt e et e e et sb e st e e beseenenbeneeneean 59
FR T R = S] r= 1= 01T o | SRR 59
A S =1 (T 1 4[] o | ST SP PP PR PR USORTN 60
7.5 ABOUT STAIEMENT......oiiiiiieitie ittt ettt et be e e st esae e sbeebeeabeeabeeaeesaeesbeeabeennesnnesais 60
7.6 APPEND Statement (standard Version ONlY) ... 60
7.7 APPEND Statement, editing (standard version only).........cccnneieneene e 61
7.8 ARC Statement (Standard VErsion ONIY) ..o e 62
7.9 ASAVE Statement (Version 1.4 OF Tatr) ..ot e 63
7.10 ASSERT Statement (standard VErsion ONY)......cccccoeveeereererene e seseeeeseesese e see e neenees 63
T. L1 AT SEALEIMENT ...ttt r bbb e e e s e b e s Rt eb e e bt eseene e b e s beereebesreene e e ennes 64
7.12 ATTACH Statement (Version 1.5 OF [ater)cccvveieienirecerese s sees e 64
7. 13 ATTRIB SEAIEIMENT.....cuiitiiieeieeeeierie sttt b e e r et sr e bt se e s e nn e s b sr e b e e aeene e e ennas 65
7.14 AUTO Statement (standard VErsion ONIY)ccccvveieeinieererisese e seseeeeseeseese e sse e eseenesnees 66
7.15 BACKURP SEAEIMENT. .. .coiuiiitieitieiteeie ettt ettt sttt et e e s ae e sbe e bt b e saseebeesseesbeesbeseeennesas 66
7.16 BEEP SETAEIMENT ...ttt st e bbbt et e eae e sae e be e sbe e e e s anesas 67
7.17 BKOFF Statement (Version 1.4 OF QeI ..ot s 67
7.18 BKON Statement (Version 1.4 OF [Ater) ...t e 68
7.19 BOX Statement (standard VErsion ONIY) ...t e 68
7.20 BREAK SEAEIMENT...c.eiitiitieieeieeeee sttt r et st sb et e e r e b sreebesaeene e e ennas 69
7.21 BREAK Statement, debugging (standard version only)cccocvevveveeeieereniene e e 69
7.22 BSAVE Statement (Version 1.4 OF IAter) ...ccccvvveieiicirece e ee s 70
T.23 BYE STAIEMENT ..ottt e e b b et b st se e se e r e s b sresbenaeene e e ennas 71
7.24 CALL CLEAR Statement (Version 1.4 OF [ater)cccceceeeeieresesie s seseeeesees e e e 71
7.25 CALL SCREEN Statement (Version 1.4 OF [ater)cccooeeiiiene e 71
7.26 CALL VCHAR Statement (Version 1.4 OF [ater)cccocereierinene e 72
7.27 CATALOG Statement (Version 1.1 OF [Ater)cceieiiririeeiere e e 72
7.28 CHAIN SEAIEIMENT.eieiieiiitie ettt sttt e e e e s ae e sbeebeeabeeaseeaeesaeesbeesbeenesanesas 73
7.29 CHKIO STALEMENT ...ttt ettt ettt sttt et e e e e e sae e ebeebeeabeeaseeb e e saeesbeesbesnneennesais 73
7.30 CHKSW Statement (standard VErsion ONIY) ... s 74
7.31 CHKSYN Statement (standard VErsion ONlY)cccceeeeeeeeieresese e seseeeeseesese e e neeees 75
7.32 CHKUL Statement (standard VErsion ONIY)ccccvvevieiieeierese e seeee e e e s esneas 75

7.33 CHORD Statement (standard Version ONIY) ... 76

7.34 CIRCLE Statement (standard Version ONIY) ... 77
7.35 CLEAR SEAIEMENT ...ttt ettt ettt s he bttt e ab e s ae e sb e e st e et e e abe e e e sanesaeesneanneenns 78
7.36 CLOSE SEAEIMENT ...ttt bttt e s n e s r b bt sne e e e s e e e nnenrenne s 78
7.37 CLOSE PRINTER Statement (Version 1.1 or later, standard version only)..........cccccecvvenene 79
7.38 CLR STAIEMENT ... ettt e e bbb st s e e e s et e sr e nbesheebe e e e s e nnennenrenneas 79
7.39 CLS SEAEIMENTottt sttt b e sh e b e st s e e e e e et e sreebesheebe e e e s e nnennenrenneas 80
7.40 CMD Statement (Version 1.5 OF [Ater)ccvveeeeeeereres e se e sne 81
7. 41 COLOR STAEIMENT. .. .eiiiiiiieieteete ettt sttt st st sae e s bt e bt e abesaeeabeesbeebeeabeenesanesaeesneanseenns 8l
7.42 COLOR Statement, graphics (Version 1.4 or later, standard version only)cccccecevenene 82
7.43 CONCAT Statement (Version 1.5 or later, standard version only).........ccccoceeoreeienenenennne 82
7.44 CONFIRM SEAEMENTccviieeiiteeeiesiesiete sttt st sa et st sestestesaesesbeseesesteseesesteeesesteseesestesensessanens 83
7. 45 CONT SEAIEIMENT ...ttt ettt st sae e s bt e sbe e bt e abesaeeebeesbe e beeabeaeesanesaeasneaneanns 83
7.46 CONTINUE Statement (Version 1.4 OF IAter) ... 84
T.A7 COPY STALEIMENT ...ttt h bt e s e b e s et b bt ene e e e s e nnennenrenne s 84
7.48 COPY Statement, editing (standard VErsion ONlYy)ccccvoevivieeeriesese s 85
7.49 CREATE STAEIMENT......eiiie ittt r e e bt s snennenrenne s 86
7.50 CURSOR SEAIEIMENT ..ottt sr et se s a e s r bbb e e e snesnennenne s 86
7.51 DATA STALEMENT ...ttt e e bt b st s e e e s et e sr e b e s bt ene e e e s e nnennenrenneas 87
7.52 DEBUG Statement (standard Version ONIY) ... 87
7.53 DEC Statement (standard VErsion ONIY)coooeooiiinie e sne 88
7.54 DEF FIN SEAIEMIENT ...ttt et b e et b e et e s b e et e et e e b e s ne s e e saeesneaneenns 88
7.55 DEL SEAIEIMENL ..ottt sttt b e e bt bt e s b e eae e sb e et e e sbeeabesatesanesaeesneanneenns 89
7.56 DELETE SEAIEMENTciiiiiieete ettt sttt b e et ab e sae e sbe e st e et e e b e s s e saeesaeesneanneenns 89
7.57 DETACH Statement (Version 1.5 OF [ater)cccueveiereresieieseeeeeeseesese e see e e 20
7.58 DIM SEAEMIENT ...ttt sttt e s bbbt s e he e e et et e sr e sbesheebe e e e s e e e nnenrenneas 90
7.59 DIR SEALEMENT......eiuieiteeetete sttt ettt st s bbbt s e s e e e e s e be s b e sbesheebe e e e s e nnennenrennea 91
7.60 DIRR SEAEIMENTciiieiiiite ettt b bt e e s e e e s e e b e bt eb e e e e s e nnesnennenne s 91
7.61 DISPLAY Statement (Version 1.5 OF [ater).......ccueeeierererie e seesese s snens 92
7.62 DLOAD Statement (Version 1.4 OF Tater)cuceioeieee e sa 92
7.63 DRAW Statement (Standard VErsion ONIY) ..o 93
7.64 DSAVE Statement (Version 1.4 OF [Ater)coeceieieieee et 94
7.65 DUMP SETAEEIMENTeiieiii ettt b e s bttt e b e saeeeb e et e et e e abeseesanesaeesneaneenns 95
7.66 EDIT SEAEIMENT......eiiiiiii ettt ettt ettt be e bt e bt e abesae e et e e sbe e abeeabesaeesanesaeesneanseenns 95
7.67 END SEAEMIENT ...ttt bt bt e e e s e e e s bt sb e s bt ene e e e s e nnennenrenne s 96
7.68 ERASE STAEIMENT ...ttt r e st e e e snennenne s 96
7.69 ERROR STAEMENT ..ottt h sttt sn s a e s r b b ene e e e e nnennennenne s 97
7.70 EXEC SEAEIMENT ...ttt b bt e s e s e s r e b bt ene e e e s e e e nnenrenne s 97
T.TL EXIT SEAIEMENTttt ettt sh e b st s e ae e s e te s b e bt s bt ene e e e s e nnennenrenne s 97
7. 72 FIELD STALEIMENT ...ttt bt e s a e s r bt bt e ne e s e nnennenrenne s 98
7. T3 FILES SEAIEMENL....c..eiii ettt ettt b e et b e et e s b e e st e et e e sbe e e e sanesaeesneaneenns 98
7.74 FILL Statement (Standard VErsion ONIY) ..ot s se 99
7.75 FIND Statement (Version 1.1 or later, standard version only)ccccoevenenienieieneseneenn 100
7.76 FONT Statement (standard Version ONlY) ... 100
T.77 FOR SEAEEIMENT ...ttt sttt ettt e et sae e sae e sbe e bt eaeeeatesaeesbeesbeesbeeeesanesanas 101
7.78 FORMAT Statement (Version 1.4 or later, standard version only).........ccccceeveveeveererennnennn. 102
7.7 FRAME STALEMENT.....oiiiieie ettt bbb sr bt e e nennennenr e 102
7.80 FRE STAIEMENTottt bbb sr e bt e n e e e snennenn e 103
7.8L GET SEAEIMENL ...ttt r b et bt e e s e besr e eb e eaeese e e e nennennenre e 103
7.82 GET Statement, graphics (standard version only)ccccveevereeevernnie s 104
7.83 GOSUB SETAEMENT ...ttt b e s e s ae e s ae e sbeebe e et eabeeae e st e e sbeesbeensesnnesnnas 104
7.84 GOTO SEALEIMENTeiiiieie ettt et e e e st e sae e saeesbe e bt e bt eabesaeesbeesbeesbeeneesnnesnnas 105
7.85 GOTO TIMER STAtEMENT.....c.ciiiiiiiiieieiesieeee ettt sttt se st sae et st sestesae e stesaenensenaens 105
7.86 GR Statement (Version 1.4 or later, standard version only).........c.cccccvnninnncnenescnenn 106
7.87 GRAPH Statement (standard Version ONIY) ... e 106
7.88 HCIRCLE Statement (Version 1.5 or later, standard version only)ccccceevevveveererennnennn 106

Vi

7.89 HCLS Statement (Version 1.5 or later, standard version only)cccccccevenenenenienieiennens 108

7.90 HCOLOR Statement (Version 1.4 or later, standard version only).........cccocvoevenenieniennns 108
7.91 HDRAW Statement (Version 1.5 or later, standard version only).........cccccooiinninicnnns 109
7.92 HELP SEAEIMENL.......oiiieiiiieeecieireeete s r e e r e s r e e en e r e enenreneene s 110
7.93 HGET Statement (Version 1.5 or later, standard version only)........cccceecevevienievesesieeiennens 110
7.94 HGR Statement (Version 1.4 or later, standard version only)ccccceceeevevieninnesienieesennens 111
7.95 HGR2 Statement (Version 1.4 or later, standard version only)........cccccccevevvienievesesieesennnns 112
7.96 HLIN Statement (Version 1.4 or later, standard version only)........c.ccccceeevevieninvesenieesennnns 112
7.97 HLINE Statement (Version 1.5 or later, standard version only)ccccvevnninininiennns 113
7.98 HOME STALEIMENTeiiiieiiicieestie ettt sttt ettt et b et b et e b e e e sae e s aeeraeebeenbeennesseesbeennens 114
7.99 HPAINT Statement (Version 1.5 or later, standard version only)cccocoovoeinenieniennens 114
7.100 HPLOT Statement (Version 1.4 or later, standard version only)c.cccooveienininienens 115
7.101 HPUT Statement (Version 1.5 or later, standard version only)..........ccccoevenenenienieninnnns 116
7.102 HRESET Statement (Version 1.5 or later, standard version only)ccccoovennieninnnns 117
7.103 HSCROLL Statement (standard VErsion ONlY)........ccccceveierenienieseseeseesesese e seseseeneens 117
7.104 HSET Statement (Version 1.5 or later, standard version only)cccccveevievivvenieneecennnns 118
7.105 HTAB Statement (Version 1.4 OF JQter)ccccvcvvieveieeerieesese e se st seesee e see e e sseseeneeneens 119
7.106 IF STALEMENT ...ttt r e e r e e e r e s r e e n e re e enenre e ere s 119
7.107 INC Statement (standard VErsion ONIY)cccocevereiieceeieese s e neens 120
7. 108 INIT STAEIMENT ...ttt ettt et ae e bt e b e e be e e e s e e sae e saeesbeebeenbeennesaeesbeabeas 121
7.209 INPUT SEAEMENT...ccuiiieiiiteieieiteieiesieseeteste e steseetesteseetesteessesseseesesteseesessesensessesensessessesessesensens 121
7.110 INSERT SEAEMENT ...euvcviiieietiiteieiesiesieteste st ste st stesestesteseetestesaesesteseesessesensesseensessesensessesensens 122
7.111 INVERSE SEAEMENToiuiiciiiieieie sttt st st te sttt stesaesesbe e etesteneesesseseesessenensens 122
7.112 INVERT SEALEMENT ...euvcviiteietiiteieiesiesieteste s s et stesesteste e testesaesesteseesesaeseesessesensessessnsessesensens 123
7.113 KILL SEAEMENL ..ottt er e e seer e nr e r e sreseenesne e erenreneenenn 123
7.114 KILL # Statement (Version 1.1 OF [ater) ...ccvcvvvrereieeeeieesese et ee e ee e e sre e eneeneens 124
7.115 LEFT$ Statement (standard VErsion ONIY) ... s sesnens 124
7.126 LET STAIEMENTcceiieecieeee st n e sr e n e enenre e ene e 125
7.117 LINE Statement (standard VErsion ONlY)ccccoceeeveeieieeienesie s seesseeseeseesee e e sreseeneeneens 126
7.118 LINE EDIT Statement (Version 1.2 OF later)........coccoererieieieieneeeeeeee e 127
7.119 LINE INPUT SEaEMENL....ciciiiiiieiiiiesietesiesieiese st siesestestesessesaeseesesteseesessesassessessssessensesessessesens 127
7.120 LINES STAtEMENT ...eiviieiiiieieieitesieieste ettt te et ste e testeaesestesaesesteseesesaeeesessesesessessnsessenensens 128
7. 120 LIST SEAIEIMENT ...ttt sttt ettt et b e e b e be e b e s e e sae e saeebeebeenbeennesseesbeaeeas 128
7.122 LLIST Statement (Version 1.1 or later, standard version only)ccccoeveneienininiennns 129
7.123 LOAD STAEMENLoeeciiieeecreireeete et r e r e e en e e se s e nneneenenreneenenn 129
7.124 LOADC SEAEEMENTc.ecviieeererieeere et r e e r e e seer e sre e s ne e enennennenenn 130
7.125 LOADR SEAEEMENTc.ecuiiieeeririeeete et s er e e r e e e r e e e s sre e enenrennenenn 130
7.126 LOCATE SEAtEMENT.......oiieecrieieeere et sre e n e s re e enenreneene 131
7.127 LOCK STAEMENLoeeciiieeereireeere st s s r e r e e e nesreseenesneseeresreneenens 131
7.128 LOG Statement (standard VErsion ONIY)cccccvvveeieeeeieeseresesesessesseeseeseesee e seesseseeseseens 132
7.129 LPRINT Statement (Version 1.1 or later, standard version only)ccccocvveveninieniennns 132
7.130 LPRINT USING Statement (Version 1.1 or later, standard version only).........ccceceeeueee 133
7. 131 LSET SEAIEMENT......eiiiiiiieieitie ettt sttt ettt a e b e be s be e b e s e e sae e saeerbeebeenbeeanesseesbeanbeas 134
7.132 MERGE STAtEMENT ..c.ecviiiiietiiteieie st sttt ste e tesae e testesaesesteseesesseseesesseensessesensessesensens 135
7.133 MIDS SEALEMENTouevcviitceiecietes ettt b et a et se st b et be e b be e aebenesaesens 135
7.134 MOVE SEAtEMENT ..ot r e e re e erenreneenenn 136
7.135 MOVE Statement, editing (standard VErsion ONly)........cccccvovverierenesieereseseseseseseeseeneens 137
7.136 NAME SEATEMENToeeiiiieeeercrieeete e r e e r e sr e re e enenreneene 137
7.137 NEW SEAEMENL......oiieiiiiieeeririereee et r e nr e r e srese s nre e erenreneenenn 138
7.138 NEXT SEAEMENTeeieciiieeeeririeeere et r e e r e sreseen e reneenenrennenenn 138
7.139 NOBREAK Statement (standard version Only) ... 139
7.140 NOINVERSE Statement (Version 1.5 OF later) ... 140
7.141 NOREVERSE Statement (Version 1.5 OF later).......cocooiiiiiineeceeeeesesese e 140
7.142 NORMAL Statement (Version 1.4 OF [Ater)......cccuueieririeierere e 140
7.143 NOTRACE Statement (Version 1.4 OF [ater)coeieririeieierese e 140
7.144 NUMBER Statement (Version 1.4 or later, standard version only)c.ccccocvvevvivvceeiennnnns 141

A A O I B IS = 1 (=] 4 1 =] o SR 141

7.146 ON BREAK SEAtEMENT......ciiiiieiiiieieie ettt st st sttt s ae et st nestenans 142
7.147 ON ERROR STAtEMENTcuiiviiciiiieieie sttt sttt st et sae et sae e stesae e stesaesestesaesessensns 143
7.148 ON GOSUB STAIEMENToviiiiiieeiieeeiese sttt sb e sne e snesnenne e 143
7.149 ON GOTO STALEIMENT ..ottt st seesr e b sr b ae b e e e e nesrennenre e 144
7.150 ON TIMER SEAIEMENTc.uiiiiiiiieeieeeeere e st en e e nnenre e 145
7.151 OPEN STAEIMENTeiiiieie ettt neesn et sr b bt se e e e nenrennenre e 145
7.152 OPEN PRINTER Statement (Version 1.1 or later, standard version only)..........ccccceueue... 146
7.153 OPTION BASE Statement (Version 1.2 OF [ater)coeieiererieieie e 147
7.154 OPTION EXPLICIT Statement (Version 1.2 Or later)coeeoeierenene e 147
7.155 PAINT Statement (standard VErsion ONIY) ... 148
7.156 PAUSE STAEIMENLccuiiiiiciiiieice ettt sttt st se ettt b et st se st ste e etesaenensenans 148
7.157 PCLR Statement (standard VErsion ONIY) ... 149
7.158 PCLS Statement (standard Version ONlY)..........ccceieienenieeereese e 150
7.159 PCOLOR Statement (standard Version ONly)ccccevverenineeeresese s ssesseeseesee e 150
7.160 PCP Statement (Version 1.2 or later, standard version only)cccceevveevieeerieeresnseseens 151
7.161 PFONT Statement (standard version ONlY).........ccccovviieieninieesesese s s 151
7.162 PIE Statement (standard Version ONIY).......cccveeerenenin s 151
7.163 PLOT Statement (Version 1.4 or later, standard version only)cccocvevveeeveeveerernseneenns 152
7.164 POKE SEAIEMIEBNT ..ottt sttt ettt st s ae e saeesbe e be e b e easesaeesbeesbeesbeenresnnesnnas 153
7.165 POP SEAIEIMENT ..ottt e et st e s ae e sbe e bt e bt eaeesheesbeesbeesbeennesnnesanas 153
7.166 PPRINT Statement (standard Version ONly) ... 154
7.167 PPRINT USING Statement (standard version only).........ccococeeneiinenenenenesseese e 155
7.168 PRESET Statement (standard version ONlY) ... 156
7.169 PRINT SEAIEIMENL.......ciiitiitiieieieie ettt e sb et seesn et sr e b saeese e e e nenrennenre e 157
7.170 PRINT USING SEAtEMENT......ciieiieieieiieieeie ettt sttt st st sttt s st 158
7.171 PRINTER Statement (Version 1.1 or later, standard version only)c.ccoceveveeverenenennn. 159
7.172 PRINTER? Statement (Version 1.1 or later, standard version only).......ccccceceveverenennne 159
7.173 PRINTERS Statement (Version 1.2 or later, standard version only)c.cccceeeverereennne. 160
7.174 PROFILE Statement (standard VErsion ONIY) ... 160
7.175 PROMPT Statement (standard VErsion ONIY) ... e 161
7.176 PSET Statement (standard VErsion ONIY) ..o 161
T.177 PUSH SEAIEMENT ..ottt ettt st e s ae e b e e bt e ae e e aeeeaeesseesbeesbeeneeennesnnas 162
7. 178 PUT SEAIEIMENT. .. ettt sttt ettt s e e s ae e saeasb e e bt e st eaeesaeesbeesbeesbeeeesnnesanas 162
7.179 PUT Statement, graphics (standard Version ONly)ccccoeeeeeeeeererenin s sesseesesee e 163
7.180 QUIT STAEIMENT......ii e e e e e e s re e et e e s teesabeesteesabeesateessreesteesnseesseesnsensns 164
7.181 RANDOMIZE StAtEIMENL.....ccueiiiirieieieiieeete ettt sttt sttt sttt st st st se et naene 164
7.182 READ STAEMIENT ..ottt et se st sr e ebesneese e e e e nnennenr e 164
7.183 REDIM SETALEIMENT. ..ottt et n e sr e bt ese e e e e srennenn e 165
7.184 REM SEAEMENT.....coiiiiiiiieitieteee ettt b e st sb et e st sr e eb et ese e e e nenrennenne e 165
7.185 REMARK Statement (standard VErsion ONIY) ... 166
7.186 RENAME SEAtEIMENT.....c.ciiciiieieieiieese ettt sttt et st st tesae e tesae et sae e stesee e esesaesessenaens 166
7.187 RENUM SEAtEMENTcuiiiiieiiiieieie st se e ste et te et e te st et sae e tesae e stesaesestesaeneesesaenensensens 167
7.188 RENUMBER Statement (Version 1.4 OF later) ... 168
7.189 REOPEN STAtEMENT.....cuiiiiiiieieieiieieiesieseeeste st ste st e st e steste e sesae e tesae e stesaesestessenessessenessensns 169
7.190 RESEQUENCE Statement (Version 1.4 Or [ater)cccccvveeerieerereerese s sseeseesee e 169
7.191 RESET SEAEMENT ..ottt b e st seesn et sr e sb e ae s e e nenrennenre e 170
7.192 RESTORE STAEMENToviitiitiieeieeeeee sttt sr bt en e nnennenne e 170
7.193 RESUME SEAEMENT....ceiitiiiiitiiieiieeeiesie sttt s seesn e sr bt sn e e e e snennenne e 171
7.194 RETURN SEALEMENT ..ottt s se e n e sr e eb et sn e e nennennenne e 172
7.195 REVERSE Statement (Version 1.5 OF [ater) ..o 172
7.196 REWIND STAtEMENTeiveieiiiieieie st sttt st e st e stesae e teste e tesae e stesaesestesaeneesesaesensensens 173
7.197 RIGHT$ Statement (standard version ONlY) ... 173
7.198 RSET SEAIEIMENL ... oottt ettt e e e s ae e s aeesbe e be e b e eaeesbeesbeesbeesbeeneesnnesanas 174
7.199 RUN STALEIMENT....cotieiieie ittt ettt ettt e e s e e s ae e s aeesbe e bt eabeeaeesaeesbeesbeesbeeneesnnesanas 174
7.200 RUNR SEAEMENT ..ottt e se st sr bt ese e e e e nnenn e nre e 175

Vi

O N RSy AN VA S t= 1 (=] 1 1 1= £ | O 175

7.202 SAVEC STALEIMENT ...viuiciiiiiietisieieie ettt sttt se st st saesesteseetesbeseetesteeesesbeseesessesensens 176
7.203 SCREEN BACKUP Statement (Version 1.4 or later)........cocoeieienenieiesese e 177
7.204 SCREEN RESTORE Statement (Version 1.4 or later)cccocvvevereeeeereresese e seseeeeneens 177
7.205 SECURE STAIEMENT ...cviiiiieieiese sttt st s e r b sne b e e 178
7.206 SELECT Statement (Version 1.3 OF Iater)ccvovveieeeeieeiere e e eseesee e see e seesreseeneeseens 179
7.207 SOUND STALEMENTviitiiieiieeeitesie sttt sttt s r b st ebe s e e e et e sresbesnesbesaeennenens 179
7.208 SPLITNAME Statement (standard VErsion ONlY)ccccceverereniereseeresesese e e seseeeeseens 180
7.209 STEP Statement, debugging (standard version Only) ... 181
7.210 STOP STAEIMENT ... i ittt ettt ettt be e s b e sbe et e s eesaeesaeasbeebeenbesnnesseeseeaseeas 181
7.211 SWAP Statement (standard VErsion ONIY) ... 182
7.212 SWAP Statement, editing (standard Version ONly).........ccccooieinenieenenesese e 182
7.213 SYSTEM Statement (Version 1.5 OF [aer) ... 183
7.214 TEXT Statement (Version 1.4 or later, standard version only)ccccoevninenniniennns 183
7.215 TIMER SEAEEIMENT ..ottt b et b e e n e b snesbe e ennennen 183
7.216 TRACE SEAIEIMENTeiieiiieieeee st b et eb e e r b sresbe e e e enens 184
7.217 TROFF SEAEMENT....ccuiiiiieieeeiteie sttt sttt b e bt eb e e e e e e ssesbesnesbe s e eneennens 184
7.218 TRON SEALEIMENT. ...ttt r b et b e e e e s e s resbesnesbesaeennenens 185
7.219 TRUNCATE SEAEMENT ...ttt s e n b s sr e e ennennen 185
7.220 TYPE Statement (standard VErsion ONlY)ccoccoeierrieienenene e 185
7.221 UNBREAK Statement (Version 1.4 or later, standard version only)ccccoeeenininnens 186
7.222 UNLOAD STAEIMEBNE ...ccviiveietiiteieiesiesiete st see e steseetesteseetestesaesesseseesestesessessessnsessessnsessessnsessessnsens 187
7.223 UNLOCK STALEIMENE ...ecviiviiceiiieieiesiesietesteseeestesestestesessestesessessesessessesessessessnsessessnsessessesessessesens 187
7.224 UNNUM Statement (Version 1.5 OF Tater) ..o 188
7.225 UNREMARK Statement (standard version only).........ccccocevvveneneeeesesenesese e seseeeeneens 188
7.226 UNTRACE Statement (Version 1.4 Or Jater)ccccveeeeieereresese e seeeeeseeseesee e seeseeseeeeneens 188
7.227 VER SEAIEIMENL.ottt b et eb et e b b sn e b naeeneenens 189
7.228 VLIN Statement (Version 1.4 or later, standard version only)........ccccecceveeviesievesnnieesennens 189
7.229 VOLINI STAEEMENT......eiitiiieiieeeiteste sttt sttt s r b et eb e e e e s e s s e sbesresbe s e eneenens 190
7.230 VOLUME SEAEMENT .. .cuiiiiietiitiieiesiesietesteseeesteseesesaesessesaesessessessssessessssessessssessessnsessessesessessnsens 190
7.231 VOLUMES SEAEMENT ...ccviiceiiieieiesiesietestesee e ste st steseete e sassesaessesessesaesessesessessessnsessensesessessnsens 191
7.232 VSCROLL Statement (standard Version ONly) ... 191
7.233 VTAB Statement (Version 1.4 OF [ater) ..ot 192
7. 234 WAIT STALEMIENT......eiiieeiieee ettt ettt e e b e e b e sbe e b e s e e sae e saeebeebeenbeennesseesbeaneens 192
7.235 WRITE SEAIEIMENTeiuiitiieeieeie ettt b et eb e e e sn bt snesr e aeennennens 193
S U] o] Ao 1= TP UR PSP 195
S Y =TS U] od o o [T 195
8.2 ACCESS FUNCLIONcitiiitiitiieicste ettt ettt b et b et b et b et nbe st e nnas 195
RS X O @ 131 ¥ {1 i o o PP 196
8.4 ADJUST FUNCLION.citiiitirtirietirieseete sttt sttt b ettt b et b et s b et enesbe st e s e naentenennan 196
8.5 AFTERS$ Function (standard VErsion ONIY) ... 197
8.6 ALNUM FUNCLION ...ttt sttt b ettt sttt nbe st enennas 197
8.7 ALPHA FUNCHON ...ttt ettt e et s b e bt ae e e e besbesbesbesaeene e e eneas 197
8.8 ASC FUNCHION ...ttt e b ettt et bbb e s ae e ae e e e eesbesbesbesaeeneeneaneas 198
8.9 ASIN FUNCLION ..ttt ettt bbbt b e ae e ae e e e eesbesbesbesaesneeneeneas 198
S TR0 VU o 1o o TSRS 199
8.11 ATTRIBS FUNCLON......coiteiiiictiiitetiee ettt ettt sttt se st e s s s bt e s bene e enns 199
8.12 BEFORES$ Function (standard VErsion ONly) ... 199
8.13 BEGINSWITH Function (Version 1.2 or later, standard version only).........c.ccccceevveveereenen. 200
8.14 BINS FUNCHON ..ottt ettt nb et nas 200
8.15 BREAK Function (standard VErsion ONlY)ccccuvierenieenresie e seseeeeseesesee e sseseesesseenees 201
8.16 BUFSIZ Function (Version 1.5 OF Iater)ccccccerieieie s ee e 201
S TR A @3 =] o U Tox 1o o USSR 201
8.18 CBRT FUNCHION ...ttt ettt e et bbb e bt e ae e e e besbesbesbeeaeene e e aneas 202
8.19 CDN FUNCHON ...ttt e b et e et b beeb e bt e he e e e besbesbesbeeneeneeneeneas 202

viii

oI O O | I U (o1 T0] OO R 203

8.21 CENTERS$ Function (standard VErsion 0ONlYy)........cc.cccinnneienineneseeeessese s es 203
8.22 CHANGES Function (standard Version ONly) ..o 203
8.23 CHARSS$ Function (standard VErsion ONIY) ... 204
8.24 CHN FUNCHION ...ttt sttt ettt bbbt e st e e et e see e ebenee e 204
8.25 CHOOSE Function (standard VErsion ONlY)ccccccererierinieneseeseeseseseseseseeseseessessessessens 204
8.26 CHOOSES$ Function (standard Version ONIY) ... neas 205
8.27 CHRS FUNCHIONeitiietiiieete ettt sttt e b ettt sttt st et e sa e et et e e ebesbe e ebeneenea 205
8.28 CHRS$ Function (Version 1.4 OF JALEI)cccciuriirieeirnee et 206
8.29 CLEANS$ Function (standard VErsion ONIY) ... es 206
8.30 CNTRL FUNCHION ..ttt sttt sttt e st s b e bt e be st e s e b e sb e s besaeebeeneanse e e neeneesnens 206
8.31 COLOR FUNCLION ...ttt sttt b e s b st he et e e e b e seesbesaesbeeneensensensesbesnens 207
8.32 COLUMN FUNCHION 1.ttt sttt sttt sttt ste e te st sae s sbesessesteseetessesansesbesensestesensessnnens 207
8.33 COMB FUNCLION ...ttt ettt st b e ae b e et e e e b e se e b e saesbeeneense e e neanbeseens 208
8.34 COMP Function (Version 1.4 OF IAter)cccccveiieeieeieererese s e e e seesee e srese e e seesaesse e 208
8.35 COMPI Function (Version 1.5.2 OF [Qter)cciveeieeieerere e s eeesee e seesie e se e e see e snesnens 209
8.36 COMPRESSS FUNCHION ...ttt sttt sttt st st st se et b e et st ebesbeneebesaenea 209
8.37 COPYRIGHTS FUNCLION ...ttt sttt sttt st st sttt sttt sbe e nenbe e 209
8.38 COPYSIGN FUNCHON.....iiitiiiiietesteseete ettt sttt sttt sa et s ee e ebesbeneebesaenea 210
8.39 COS FUNCHON ...ttt sttt s b e bt e b e et e e e e e ee e s besaesbeeneenee s e neenbeseen 210
8.40 COSH FUNCLION ...ttt sttt ettt et b e b e bt e be et e e e e e se e b e saesbeeneanse s enbenbeseens 210
S O I U1 T (o T o SO PRUTSO PR 211
8.42 COUNT FUNCLION ..ttt sttt st s b e he et e s e b e s b e besaesbeeneanseneeneesbeseens 211
oI S OS] O U o 1o o F TSP RTSOPURN 211
8.44 CSPAN Function (standard VErsion ONIY)cccceeeieienienisieseceeseeesese s se e seesee e snens 212
8.45 CSRLIN FUNCHON ...ttt sttt st sttt bt se e bt ne et e nbe e ebenee e 212
8.46 CTIMES FUNCHON ..ottt sttt sttt st sttt sttt s a e b et ne b e st e e ebenee e 212
8.47 CTRLS$ Function (Version 1.2 OF IAter)ccvcirirrireree ettt 213
8.48 CUBE FUNCLON. ..ottt sttt st sttt st b e bt sb e e be st e e ebesbe e ebesaenea 213
oL @AY A\ U o Tox 1o o S PRUTTSO PR 213
8.50 DATE FUNCHON ...ttt sttt st sttt et e et ae b e b e st e be et e st e e e seesbesaeebeeneensensensanbeseans 214
8.51 DATES FUNCLONc.eititiisietee sttt ettt ettt ettt a et s b b sesa et e se s et e et sene s s be e s etenens 214
8.52 DAY FUNCLION ...ttt b ettt sttt s b e bt e h e et e s e e e eeesbesaesbeeneense s e neenbeseen 214
8.53 DAYNAMES FUNCHIONcviiiiiietiiteiieie ettt ste sttt stesee s sbe e etestesaetesaeeesestesensessenens 214
8.54 DEBUG Function (standard VErsion ONIY)cccccecuererierienesieneeesseeseseseeseseesresesssessessessessens 215
8.55 DEC FUNCLION ...ttt sttt st sttt sttt bt sb et et e e et e st e e ebeseenea 215
8.56 DEFAULT FUNCHON ..ottt sttt sttt sttt sa et e e besbe e b sae e 216
8.57 DEG FUNCHION ...ttt sttt st sttt sttt bbb et et e et e sbe e ebenee e 216
8.58 DELETES$ Function (standard VErsion ONIY) ... s sesseseenens 216
8.59 DIGIT FUNCLIOMN ...ttt sttt sttt st b ettt b et et sb e e be st e e et e sbe e ebeneenea 217
8.60 DOLLARS Function (standard VErsion ONlY)cc.ccoenineieninene e es 217
8.61 DTR FUNCLION ...ttt sttt b et h et e e e b e sb e s be s bt sbeeneens e e e neesbesnen 218
8.62 EDIT$ Function (standard VErsion ONIY) ... ses 218
8.63 EMPTY Function (Version 1.4 OF [Ater)........cccoiiiiirieiee et 219
8.64 ENCLOSES$ Function (Version 1.4 Or [Aer) ..o 219
8.65 ENDSWITH Function (Version 1.2 or later, standard version only)ccccceeveveeevencernnnnns 220
8.66 EOF FUNCHION ...ttt sttt sttt sttt st b et ettt st et et e s b e se et e st e e ebesbe e ebeneenea 220
8.67 ERL FUNCHION ...ttt sttt sttt sttt sb et e st e et e sbe e ebeneenea 220
8.68 ERLIN Function (Version 1.5 OF [ater)........ccccvviiieirieerere s eeee e eseese e es e see e e snens 221
8.69 ERN FUNCLION ...ttt sttt sttt sttt sttt bbb ne et e st e e ebenee e 221
8.70 ERNO Function (Version 1.5 OF IAter) ...ttt 221
o T T] U T 1o T o OO PURUTSOPRR 221
8.72 ERRE FUNCHON ...ttt ettt ettt st st e sttt e e s bene e 222
8.73 ESCS FUNCHON ...ttt sttt et a bbb et e se st et e st e nssn b e e s eteneen 222
8.74 EVAL Function (standard Version ONIY) ... 222
8.75 EVEN Function (standard VErsion ONlY)ccccceeeerierieninnisieseceeseeeseessese e sseseessessessessnssens 222

8.76 EXISTS FUNCHON ...ttt n et n et 223

877 EXP FUNCHON ...ttt ettt ettt e e bbbt b e ae e he e e e besbesbesbesaesneeneaneas 223
8.78 EXP2 FUNCHION ..ottt ettt e sttt ne bbbt b e bt e he e e e besbesbesbesaeeaeeneaneas 224
8.79 EXPLO FUNCHON ...ttt ettt b et b et s bbbt e s bt e nnas 224
8.80 EXTRACTS Function (standard VErsion ONIY)coccuireirineenineineseese s seeennes 224
8.81 FACT Function (standard VErsion ONIY)cccccevieiieiininieeiesese e seseseeseesee e e sse e esesseenens 225
8.82 FALSE FUNCLION ...ttt sttt bbbt nb et nas 225
8.83 FILES FUNCLIONcuiitiieiirteeteiee ettt ettt nb et nas 225
8.84 FILEINFOS$ Function (standard VErsion 0Nly) ... 226
8.85 FILEMODE FUNCHON......ciiiieiiitiiieistisiee e sieeste sttt sse s besae s sessesessessesessessasensessenensan 226
8.86 FILEMODES FUNCLION ..ottt sttt aese et nsensenennas 227
8.87 FILENAMES FUNCLON ..ottt ettt s sese st stesensessenennes 227
8.88 FIND Function (standard VErsion ONIY)cooioiiiiinineneese e s 227
8.89 FINDONEOF Function (standard VErsion ONIY)ccccoceeiinine e 228
L0 D 0 Tox 1T PP 228
8.91 FLOOR FUNCLION ...ttt sttt b ettt nbe st nas 229
8.92 FIN FUNCLION.citiiitiitiieti ettt b et b et bt s bt e et et ne b et e nenas 229
T I ©]NV U Tox 1T ISP 230
o e 0 oo 17 o TR 230
IS Lo = U Tox 1 o] o TSP STSR 230
8.96 FREE FUNCHON ..ottt ettt sttt e et bt b e st e he e e e b e sbesbesbesaesne e e eneas 231
8.97 FREEFILE FUNCLION ...ttt sttt st ssesessa s enessesaenensessenennas 231
8.98 FULLNAMES FUNCHION ...uiiiiiitiiciiitisietiseseee sttt sttt ssese s stanassessenennas 231
8.99 GETS FUNCHON ..cviuiicviicieie ettt ettt s sttt s et be st s et et e e bene e etns 231
8.100 GETALNUMS Function (standard Version oNly) ... 232
8.101 GETALPHAS$ Function (standard VErsion ONIY) ... 232
8.102 GETDIGIT$ Function (standard version Only) ... 232
8.103 GETYNS$ Function (standard VErsion oNly)coccviriineninenneneeesesesesese s 233
07 | =) 0 Tox 1T TP 233
8.105 HEXS FUNCLION ...ttt ettt sttt ettt e et ne e enns 233
8.106 HOUR FUNCHON ..ottt ettt sttt s b e bt e ae e e e e s besbesbesneene e e aneas 234
8.107 HPOINT Function (Version 1.5 or later, standard version only)ccccccvovnenienieenennn. 234
8.108 HYPOT FUNCLON ...tetetiitiieiistisietestesteieste st sttt sae e st s esessesaesessessesessessesessesseseesessesessessenssen 234
8.109 IIF Function (standard VErsion ONIY).........cccoiiiiiiieneee e 235
8.110 IIF$ Function (standard VErsion ONIY) ... 235
S0 I R LN S U T o o PRI 236
8.112 INPUTS FUNCLON.....ciitiitiietiitiiee ettt sttt ettt nbe st nnas 236
8.113 INSERTS$ Function (standard version Only) ..o 236
S I A LN S I U od T o TSRS 237
8.115 INSTRREV FUNCHON.....c.eiiitiitiietiitiieirte sttt sttt e sae st nas 237
S TR G | U T od T o PR STSR 238
o T A | LY U Vo £ o] o PO STSRR 238
8.118 INYNS$ Function (standard VErsion ONlY)cccorrinnieensieenesiee s 238
8119 IP FUNCHION ..ttt ettt e e e e b s bt b e s ae e ae e e e e e s besbesbesneeneeneaneas 239
8.120 IS0 Function (Version 1.1 OF TAEI) ..ot 239
8.121 ISEMPTY$ Function (Version 1.1 OF [aer)cccocureiririiiineeneneeseseesie e 240
8.122 ISNEG Function (Version 1.2 OF IAter)cccverereiesereeeesees e e et esee e s eeeneas 240
8.123 ISPOS Function (Version 1.2 OF [Ater)cccvereie i 241
8.124 LBOUND Function (Version 1.2 OF [ateI)cccccvvieierereeieieese et esees e see st seeneeeeneas 241
8.125 LCASESD FUNCLION ..ottt sttt ettt sbe st nnas 242
8.126 LEAPYEAR FUNCLON ..ottt ettt st st s s sese e stesensessenennas 242
8.127 LEFTS FUNCHON ..ottt sttt ettt sttt bbb ne et et e et ne e nns 242
8.128 LEN FUNCLION ...ttt ettt et e b et e ae e e e be b sbesbesaeene e e eneas 243
o T2 I @ L @ ¥ o T 1o o PR URSTSR 243
8.130 LOF FUNCLION ...ttt ettt ettt e st eese et e b sb e b e bt e ae e e e besbesbesbesaesneeneaneas 243

TR 3 @ L N T Yo 1 o 244

8.132 LOGS$ Function (standard VErsion ONIY)ccceoceierneneniseesisese s e s sessese s 244

8.133 LOG2Z FUNCHON ...ttt sttt st sttt e e e b b st e be et e s e b e se e besaesbeeneansensenbenbeseens 244
8.134 LOGLO FUNCHION....ceetiitiietisteietestestetesteseetesteseetestesestesaeseesessesaesessasensessessesessesensessesensessessesessenens 245
8.135 LOWER FUNCHON ...ttt sttt st st st sttt sttt sttt e besbe e ebenee e 245
8.136 LOWERS FUNCLION.cciiiiiiiieieitereete sttt sttt sttt sttt st et s e e ebesbe e ebesbe e 245
8.137 LPADS$ Function (standard Version ONlY) ... 246
8.138 LPOS Function (Version 1.1 or later, standard version only).........cccocvvevvererieesenesnnnneens 246
8.139 LSET$ Function (Version 1.4 or later, standard version only)ccccocevevvenninnneicnenens 246
8.140 LTRIMS FUNCLONvetiiicteiieteeee ettt ettt et st st s et s b e s b e st b e e s ebenens 247
8.141 MAKENAMES FUNCLONoitiieiiitiieti ettt sttt st et sbe e etestesaetestenaetesaesaesessenens 248
8.142 MAPPED FUNCLION.ciiiiiieieiestestee ettt sttt ste e tesaesae s sbeseesesbesaetestesaesesseseesestesensessnnens 248
8.143 MATCH Function (Version 1.5 OF Jater) ... 249
8.144 IMAX FUNCHION ...ttt sttt b ettt e e b e s be bt e he et e e et e sb e besaeebeeneanse s enbenbeseen 249
8.145 MAXLEN FUNCHION ...ueitiieiiiteieti sttt sttt sttt ste s tesaesae s sbesaesesbeseesessesaetessesensessesensessnnens 250
8.146 MAXNUM FUNCHONcitiiitiitiiete sttt sttt sttt sttt sttt et s e se b sbeneebesaenea 250
8.147 MAXSIZE Function (Version 1.2 OF [Ater)......ccccucvueiereriesesiesieeeeseeseseessese s sresesseessessessesnens 250
8.148 MEM FUNCHON ..ottt sttt sttt ettt sb et e sa e b et e et e sbe e ebenaenea 251
8.149 MIDSP FUNCLIONetiiitiiteieie et st sttt sttt sttt see s bbb e st e et st et et e seeseebesbeneebenbe e ebeneenea 251
8.150 MIN FUNCLION ...ttt sttt ettt sttt stk e b et et e e besbe e ebeneenea 251
8.151 MINNUM FUNCHION ...cveitiietiiteiete sttt sttt see st ste e tesaesaesesbesaesestesassesseassessesensessessnsessenens 252
8.152 MINUTE FUNCHIONcviitiieiisieieie sttt sttt sttt sae e tesbesaesesbeseesesbesansesseansestesensessesensessenens 252
8.153 MKKEYS FUNCLONooiiiiiiictie ettt sttt sttt netene e 252
8.154 MKINS FUNCLONcueveiiiiicteestetee ettt ettt s a bbb e st e et b e e snetenees 253
8.155 MKTIME FUNCHIONcutitiietiiieiete sttt sttt sttt st ste et sbeseesesbeseetesaeaetestesensestesensesaenens 253
8.156 MOD FUNCHON ...ttt sttt sttt sttt st ettt b et et s b et st e saese b e st e e ebenbe e ebeneenea 254
8.157 MONTH FUNCHON ...ttt sttt sttt sttt et st et sbe e benee e 254
8.158 MONTHNAMES FUNCLON ...ttt sttt sttt et s sre e 255
8.159 NOW FUNCHION ...ttt sttt sttt sttt e st sttt sb et et eseeseebenbeneebenbe e ebeneenea 255
8.160 NULSP FUNCHON ..ttt sttt sttt sttt sttt st sttt st et et e sa e e e b e s beneebesbeneebeneenea 255
8.161 OCTP FUNCLONceivetiiieteeeiteteie et s ettt se et e s et se st b e e sa et ese s s e b e e s s esens st senesnetenens 256
8.162 ODD Function (standard VErsion ONIY) ..o 256
8.163 OPEN FUNCHON ...ttt ettt h e et e st b e b e s aesbe et ens e e e neesbesren 256
8.164 ORD FUNCLION. ...ttt sttt sttt sttt ae et e s ee b e s besaeehe e e ense s e asesbesaeebeeneensensensaneeseen 257
8.165 PCOL Function (Version 1.5.2 or later, standard version only)ccccooeneriinenenennens 257
8.166 PEEK FUNCHION ..ottt sttt st sttt st se e bt e e ebesbe e ebenee e 257
8.167 PERM FUNCLION ..ottt sttt sttt ettt st st e bt e et sbe e ebenae e 258
8.168 PFONT Function (standard VErsion ONIY)cccceiererienisieneeeeseeseseesseseseesresesseessessessessens 258
8.169 Pl FUNCLION......eeitiitiietiiteiete ettt sttt st b e s b et e e b st et et st et e b e sbeneebe st e e ebesbe e ebeneeneas 258
8.170 POINT Function (standard vVersion ONlY)ccccerererieninieneeeeseeesesese s srese e see e seesnens 258
8.171 POS FUNCLION ...ttt sttt sttt sttt st b e sttt b st et st ese e e b e st e e ebenbe e ebenaenea 259
8.172 PPOINT Function (standard Version ONlY) ... 259
8.173 PRINT FUNCLON ..tiietiitiieiisteieie sttt st st sttt sae et sbesaesesbesaetesbesentesaesaesestesensestesensessnnens 260
8.174 PRINTERS Function (Version 1.1 or later, standard version only).........ccoceeeevneneneneene 260
8.175 PROMPTS Function (standard VErsion ONlY) ... sesieees 261
8.176 PROPERS$ Function (standard VErsion ONIY) ... 261
8.177 PROW Function (standard VErsion ONIY)........cceoererierienisieneeeeseeseseseseseseesesssessessessessens 261
8.178 PSCRH Function (standard VErsion ONlY)ccccoererieninieneeeeseeseseseseseseeseseeseeseeseesnens 261
8.179 PSCRW Function (standard VErsion ONIY)cccccvererieninieneceeseesesesese e seeseeeeseeseesee e 262
8.180 QUOTES FUNCLIONccuteieiese et eeeee et e et e s ae s s e e es e sestestesaesreeneenseneensnnsesnnns 262
8.181 RAD FUNCLION ...ttt sttt sttt sttt sttt st b et et ne et st e e et e seeneebe st e e ebesbe e ebeneenea 262
8.182 RCP FUNCHON ...ttt sttt sttt ettt s b e bt e b e et e s e e e sb e b e saeebeeneens e s eneesbeseen 263
8.183 READONLY FUNCHON......ciitiietiitesieie ettt see sttt ste st sae et steseesestesessestesessessenensestesansessenens 263
8.184 REC FUNCHON ...ttt sttt sttt e et e b b st e b e et e e e b e seesbesaesbesneanse s enseneesnen 263
8.185 REMAINS Function (standard Version ONlY)c..cocoeireieneneneeessese s seeneees 264
8.186 REMAINDER FUNCHION......ciiiiieiitisieiisieseeiesie st st seetestesessestesassestesessestesessessesansessessnsessesensessenens 264
8.187 REMOVES Function (standard Version ONly) ... seesesseseenens 264

Xi

Xii

8.188 REPEATSE FUNCHONiicviiee et eeeet ettt e eee s eesee st essteseteseeseeseeesseessesasssasesraesreestessresssessssnesans 265

8.189 REPLACES Function (standard VErsion ONlY)cccoeenieenneieneseeseseeesesisse s 265
8.190 RETS FUNCHION ...ttt ettt ettt sttt b et bee st s e e b e b e s aene s etns 266
8.191 REVERSES FUNCHION ...uiiiiiiiiieiinieee sttt sttt 266
8.192 RFIND Function (standard version ONlY)cccccvieiireeennese e eeeeese e s 266
8.193 RIGHTS FUNCLION ..ottt eb et 267
8.194 RND FUNCHION ...ttt ettt b ettt st ettt e s nbe st e nas 267
8.195 ROUND FUNCLION ...ttt sttt sbe st nnas 267
8.196 ROW FUNCHON ...ttt ettt e et be bt b e bt e st e e e besbesbesbesaeeneeneenean 268
8.197 RPADS$ Function (standard VErsion ONIY)cccoririnirinnisenesee s 268
8.198 RSETS$ Function (Version 1.4 or later, standard version only).......c..cccoveeenneiennecenennns 269
8.199 RTD FUNCLION ...ttt ettt re et bbb e bt e ae e e e besbesbesbesaeeneeneeneas 269
8.200 RTRIMS FUNCHONceivetiiicteistetie ettt sttt se sttt se et e s s s e bete s bene e enns 270
8.201 SADD Function (Version 1.5 OF [Ater) ... s 270
8.202 SCREEN Function (Version 1.4 OF [ateI)cccccvvvierereeeeieene et ee e e s se e seenees 271
8.203 SCRH FUNCHION ..ottt sttt bttt ettt nbe st e nennas 271
8.204 SCRN Function (Version 1.4 or later, standard version only)c.ccccceveeereveninseeereeseeens 272
8.205 SCRW FUNCLION.......tititirtiietirtireeteste sttt b sttt b et b et s e b s b eneebenaenenaestenennas 272
8.206 SEC FUNCHON ...ttt ettt bbbt b et e s nbe st nennas 272
8.207 SECOND FUNCHIONcutitiiieiistisieistisiee st sttt sae e ssesaese s ssesessessesessessesessessesessessesensessensnsen 273
8.208 SEGS FUNCLON ...ttt sttt ettt s e sttt s et be et se et eb e s bene e enns 273
8.209 SELECT Function (Version 1.3 OF [ater) ..ot 274
8.210 SETS FUNCHONccuitiiictie ettt ettt sttt s ettt s e et ebe e bese e etns 274
S T B ST € VI U o4 1T o PR TSTSR 275
8.212 SHIFTS$ Function (Version 1.2 OF [Ater)........ccccvirriiinereniesesee s 275
8.213 SIN FUNCHON ..ttt ettt b ettt bbbt n b et e nennas 275
8.214 SINH FUNCLION ...ttt ettt b ettt sttt n b et nnas 276
8.215 SIZE Function (Version 1.2 OF [ater)........cccevererieiesereeeseese e sese e see et sse s sneeeenees 276
8.216 SPACESD FUNCLION ...ttt sttt nb et 276
8.217 SPAN Function (standard VErsion ONlY) ... 277
8.218 SPLITNAMES Function (Version 1.1 Or later)......ccoocirrinreenrieesesiseseses e 277
S T2 R ST T S 1T 1 IR 278
S T 0 ST T = I U] o 1o] o R 278
8.221 SQUEEZES Function (Version 1.4 OF [ater)ccccoririeinerieenesiee s 278
8.222 STREP FUNCHION ...ttt st b ettt bbbt n bt e nas 279
8.223 STRINGS FUNCLION ...cvetiiciiiieeree ettt ettt ae e 279
8.224 SWITCH Function (standard VErsion ONlY).......ccccceoeeereeeeerenienieseseseeeeseesesee e seeseeseenes 280
8.225 SWITCHS$ Function (standard Version only) ... 280
8.226 TAN FUNCLION ...ttt sttt b e b et b et s bt e st bt e s naeneenennas 281
I A I \\ L B] od T o PP 281
8.228 TEMPNAMES FUNCHIONovtitiiciiitiiieie ettt st sese s saesassessnnsnnas 281
8.229 TIME FUNCHON ...ttt ettt et et b et e e et e b s bt e b e s bt e ae e e e besbesbesbesnesneeneaneas 282
8.230 TIMES FUNCHONocviiietiiiteteis ettt sttt ettt sttt se st bee st s st be st e se et et e s bese e etns 282
e 3 R I 1Y 1 0 o 1T TP 282
8.232 TRIMS FUNCHON ...ttt sttt ettt sttt et s e et et e et ne s enns 282
8.233 TRUE FUNCHON ...ttt sttt bbbt b et nas 283
8.234 TRUNGCATE FUNCHION ...ttt sttt st 283
8.235 TWOPHT FUNCHON....utiitiitiietirieete ettt sttt ettt nbe st nas 284
8.236 UBOUND Function (Version 1.2 OF later) ..o iererieeeereere e eeeseesee e s see e eseeeenees 284
8.237 UCASESD FUNCHONccuiitiietiitieett sttt sttt be bbb e nas 284
8.238 UPPER FUNCLONuititiitiieiisiesieie sttt sttt besae s s e ste s sessesessasseneesesaesensessenesn 285
8.239 UPPERS FUNCHON ..ottt sttt sttt e sttt a s st et e st ne e enns 285
8.240 USINGS FUNCHONceiieviiieteisieteee ettt sttt s s bbb se st be s s s e s bebe s bene e nnns 285
oI Y N I W od 1T o U S 286
8.242 VARPTR Function (Version 1.4 OF Tater) ... 287
8.243 VARPTRS$ Function (Version 1.4 OF IAter) ..o 287

B.244 VERS FUNCHON 1.ttt ettt ettt st e st e ettt e et e saee st e e seeesteseessesaeesaeensessssatesssesseesreessesasesanes 288

8.245 VERIFY FUNCHON ...ttt st h et e bbb et saesme e s et e neesbesnen 288
8.246 VOLINFO$ Function (standard Version ONlY) ... sesieees 288
8.247 VOLUMES FUNCHON ..ottt 289
8.248 VOLUMES FUNCHONcvviiitciseeree st enene s 289
8.249 WAITKEY$ Function (standard VErsion ONly) ... nens 289
8.250 WEEKDAY FUNCHON.ccvitiiirriirrereesesrese s s s s snsneeseenesenes 290
8.251 YEAR FUNCHON....cciiiitiiseeteeree ettt 290

O OPIBIALONS e 291
(S T (o =T o= T ol @ 0 1= = (] SRS 291

LS IR N R @ o =T = (o] ST U U UU PR UTPR 291

L I A @ T =T =1 (o] ST U P UR PP PR 291

LS I R I @] o1 = (o TP U TR PR PP 291

LS TR O A @] o 1T - (o] STV 292

LS IR R N @] 01T -1 (o] SOV 292

LS TR ST O o= = | (o] P 292

LS TR A 1 AV o= = 1 (o P 293

LS TR0 1Y@] I @ 7= > (o] P 293

9.2 COMPArative OPEIALOISccueiveiieiteetereeeereestesteste st seesee e e sestessestesseeseesessessessessessessessesnsessessessessens 293

LS T R O T = > (o] P 293

LS T ©] 1= - (o) P 294

L IR Rl @] o 1= - (o] TP U TR PR URPR 294
I e @l o =T =1 (o] TP U R PR UTPP 295

L IR Ie @l o= =1 (o] TSP U PR PR UTPR 296
I Il O] 01T - (o] ST PR UTPR 296

9.3 CONCALENALION OPEIALOIS....ctiitireieterteeeieete sttt sttt see sttt saeeae et e teseesbesbesaesbesaesneeseesbeseesaens 297

LS TR Tt 3 @ o = (o] P 297

LS TR T @ T = > (o] P 297

(oI oo [o= @] o 1T = (o] = RPS 297

LS TR R N[0 I 01T = 1 P 297

LS TR L@ Y 01T - 1 P 298
O0.4.3 IIMP OPBIALON ...ttt ettt sttt b e eae e sb e e st e e s be e et e e ee s e e sae e sae e bt eareenbeemeesaeesbeebeensesnnas 298
LR N (@ O] o1=] = (o] TR U U PR URTPR 299
O0.4.5 OR OPEBIALON ...ccuiitieiiietie ettt ettt sttt ettt eae e sbe e st e e sbe e abeese s e e saeesae e bt eareanbeeaeesaeasbeenbesnsesnnas 299
O0.4.6 XOR OPEIALONeutieueieuieeteeiteesieete ettt e st e bt beeaeesaeesbe e beeabeaasesaeesaeesae e st easeaaseeanesaeesbeesbeensesnnas 300

(S TR o (T ot <To [T o To =P P RSSO 300
10 Control and EditiNg KEYSooiiiiiiieiie et 301
O R o] g1 1 (o] N) = TSRS 301
IO B2 o 1 1T T N =) VSO 301
I I o] O 0T =PTSRS 303
L LT L ES =0 T T o 1R 305
SYSTEM REQUITEIMENTS ...ttt e ettt e e e e e e e ab bt e e e e e e s anbbnbeeeaaaeeeannnreneeas 306
Installing/UNinsStalling NBASIC ... et e e e eeaaaeeas 307
ST o 0o] o 308
T Lo 1= PR RT TR 309

xiii

Preface

Intended Audience

This manual is intended for all users of NBASIC.

Document Structure
This manual is divided into two parts, each of which is subdivided into several chapters.
Part | describes the operation of NBASIC.
e Chapter 1 provides an overview of NBASIC.
e Chapter 2 describes getting started with NBASIC.

e Chapter 3 describes the following details of NBASIC:
- File System
- Printers

e Chapter 4 describes the user interface of NBASIC.

e Chapter 5 introduces programming with NBASIC.

e Chapter 6 provides how-to information on NBASIC.
Part Il provides a reference for NBASIC.

e Chapter 7 describes the statements in NBASIC.

e Chapter 8 describes the functions in NBASIC.

e Chapter 9 describes the operators in NBASIC.

e Chapter 10 describes the control and editing keys in NBASIC.

e Chapter 11 describes the error codes in NBASIC.

Related Documents

The following documents are relevant to NBASIC:

e NBASIC Setup Guide

e NBASIC Statement Reference

e NBASIC Function Reference

For additional information about NBASIC, access the following World Wide Web address:
http://syl vawar e. hone. m ndspri ng. com
Reader’'s Comments

SylvaWare welcomes your comments on this manual. Please send comments to the
following address:

Internet: sylvaware@mindspring.com

XV

Conventions

XVi

The following conventions are used in this manual:

Ctrl+x

ENTER

{}

bold text

italic text

Monospace text

numbers

A sequence such as Ctrl+x indicates that you must hold down
the key labeled Ctrl while you press another key.

In examples; a key name enclosed in a box indicates a key on
the keyboard.

In statement and function descriptions, brackets indicate optional
choices. You can choose the item or not. Do not type the
brackets as part of the statement or function.

In statement and function descriptions, vertical bars separate
choices within braces; at least one choice is required. Do not
type the vertical bars as part of the statement or function.

In statement and function descriptions, braces indicate required
choices; you must choose one of the items listed. Do not type
the braces as part of the statement or function.

This typeface represents a statement or function.

Italic text indicates arguments or parameters to statements or
functions. It also indicates a variable name or user-defined
function.

Monospace type indicates code examples and screen displays.

All numbers in text are assumed to be decimal unless otherwise
noted. Non-decimal radixes-binary, octal, or hexadecimal-are
explicitly indicated.

Part |

NBASIC Operation

Part | provides an overview of the features and operation of NBASIC. It includes an
introduction to using NBASIC and a user interface guide. Part | also contains an
introduction to programming with NBASIC.

17

1

Overview

1.1 Introduction

NBASIC is a BASIC interpreter designed to mimic the operation of 8/16bit
microcomputers of the early 1980’s like the Tandy Color Computer®, Apple][e®,
Commodore 64®, Texas Instruments TI-99/4A®, and others. The operating system that
also included the BASIC interpreter was usually stored in ROM and started immediately
upon boot up.

NBASIC works much the same way and is essentially a small operating system that
handles memory management, input/output, file management, and command processing.
The interface to the operating system is through the BASIC interpreter. To control
NBASIC you enter commands in the form of BASIC statements. NBASIC interprets the
command and performs the requested operation.

1.2 Versions
NBASIC is available in two versions, shareware and standard. The shareware version is
free and does not include some of the features found in the standard version such as
graphics, printing, advanced editing, debugging, and configuration options.
All programs written with the shareware version of NBASIC will run on the standard

version. Programs written with the standard version of NBASIC will run on the shareware
version if statements and functions found only in the standard version are not used.

1.3 What's New

Multi-line edit capability
The EDIT statement has been updated to allow multiple lines to be edited.

Direct file input and output
Load and save strings directly to and from files.

File and volume information
Get detailed information about any file or volume.

Find text in program
Search for text in a program.

Decision functions
There are several new functions to perform conditional data selection.

String functions
There are several new functions to manipulate string data.

Additional statements and functions
Many new statements and functions have been added and documented.

New PEEKs and POKEs
Many new peeks and pokes have been added and documented.

19

1.4 History

20

Version 1.5.2 (Release 10)

ARC statement.
DLOAD and DSAVE statements.
FIND statement.

BEGINSWITH and ENDSWITH functions.
BREAK function.

CDN and CHN functions.

CHOOSE and CHOOSES$ functions.
COMP and COMPI functions.

EMPTY function.

ENCLOSES function.

EVAL function.

EXTRACTS$ and REMAINS functions.
FILEINFO$ and VOLINFO$ functions.
FINDONEOF function.

FLOOR function.

HYPOT function.

IIF and IIF$ functions.

MATCH function.

MOD function.

PCOL and PROW functions.

SPAN and CSPAN functions.
SQUEEZES$ function.

SWITCH and SWITCHS$ functions.

Updated
EDIT statement.
RENAME statement.
UNLOAD statement.

CHRS$ function.
LTRIM$, RTRIM$ and TRIM$ functions.
MAX and MIN functions.

Fixed a bug to correctly initialize runtime to enable the CREATE statement.

Version 1.5.1 (Release 9)

CREATE statement.
FONT statement.
FORMAT statement.
FRAME statement.

FRE statement.

LINES statement.
LOADC and SAVEC statements.
OLD statement.

PUSH statement.
RUNR statement.
SPLITNAME statement.

COMPRESSS$ function.
COPYSIGN function.
DOLLARS function.

DTR function.

FONT function.

INYNS$ function.
MAKENAMES$ function.
PROMPT$ function.
QUOTES$ function

RTD function.

SELECT function.
SETS$ function.

Shortcuts
CREATE statement (CR.).

Fixed a bug to correctly parse file name extensions.
Fixed a bug to correctly output text to print zones.

Version 1.5 (Release 8)
APPEND statement.
ATTACH and DETACH statements.
NOINVERSE statement.
NOREVERSE statement.
RENUMBER statement.
REVERSE statement.
UNNUM statement.

BUFSIZ function.
VARPTR and VARPTRS$ functions.

Wildcards
APPEND statement.
ATTRIB statement.
COPY statement.
KILL statement.
MOVE statement.
RENAME statement.

Shortcuts
APPEND statement (A.).
ATTRIB statement (AT.).
BACKUP statement (B.).
COPY statement (C.).
KILL statement (K.).
HELP statement (H.).
LOAD statement (L.).
MOVE statement (M.).
MERGE statement (ME.).
RENAME statement (R.).
SAVE statement (S.).
VOLUME statement (V.).

Tandy/Radio Shack Color Computer 3 compatibility
HCIRCLE statement.
HCLS statement.
HCOLOR statement.
HDRAW statement.
HGET and HPUT statements.

22

HLINE statement.
HPAINT statement.
HSET and HRESET statements.

ERLIN function.
ERNO function.

NBASIC includes Tandy/Radio Shack Color Computer 3 graphics commands
that are compatible with Super Extended Color BASIC in syntax only and are
provided for ease of porting Color Computer 3 programs to NBASIC. The
commands are implemented using the NBASIC graphics system and DO NOT
provide hardware compatibility with the Tandy/Radio Shack Color Computer 3.

Commodore 64 compatibility
CLR statement.
CMD statement.
CONCAT statement.

Texas Instruments TI-99/4a compatibility
DISPLAY statement.

BASICA compatibility
RETURN statement.
SYSTEM statement.

SADD function.
The DRAW statement has been updated with additional commands.
The LOG statement has been changed to buffer output to the log file.
The interpreter now recognizes 2 double quotes in a string as a single double quote.
Added a PEEK to check if a file is attached to screen output.
Added a POKE to flush the log file.
Added a POKE to enable/disable the renumbering of only numbered lines.
Fixed a bug to correctly get the name of the default printer on startup.
Fixed a bug in the CHKUL statement to correctly check partially numbered programs.
Fixed a bug in the DIR statement to correctly use wildcards.

Fixed a bug in file and log output to write partial buffer if buffer causes file to exceed
maximum size.

Version 1.4 (Release 7)

ASAVE and BSAVE statements.

AT statement.

BKOFF and BKON statements.

DIRR statement.

LOCK and UNLOCK statements.

POP statement.

QUIT statement.

SCREEN BACKUP and SCREEN RESTORE statements.
SELECT statement.

COLOR function.
COPYRIGHT$ function.

CSRLIN function.

LOWER$ and UPPERS$ functions.
LSET$ and RSET$ functions.
PPOINT function.

RCP function.

SCREEN function.

SPLITNAMES function.

Apple][e compatibility
CATALOG statement.
COLOR statement.

GR statement.

HCOLOR statement.

HGR statement.

HGR2 statement.

HLIN and VLIN statements.
HPLOT statement.

HTAB and VTAB statements.
INVERSE statement.
NORMAL statement.
NOTRACE statement.
PLOT statement.

TEXT statement.

SCRN function.
NBASIC includes Apple][e graphics commands that are compatible with

AppleSoft BASIC in syntax only and are provided for ease of porting Apple
programs to NBASIC. The commands are implemented using the NBASIC

graphics system and DO NOT provide hardware compatibility with the Apple][e.

The AppleSoft commands GR, HGR and HGR2 have the same graphics
resolution (as provided by NBASIC) and internally call the NBASIC statement
GRAPH ON. The AppleSoft commands HLIN, VLIN, PLOT, HPLOT, COLOR
and HCOLOR are available regardless if GR, HGR or HGR2 are used and use
the NBASIC graphics extents.

Texas Instruments TI-99/4a compatibility
BYE statement.
CALL CLEAR, CALL SCREEN and CALL VCHAR statements.
CON statement.
CONTINUE statement.
DELETE statement.
NUMBER statement.
RESEQUENCE statement.
TRACE statement.
UNBREAK statement.
UNTRACE statement.

CHRS$ function.
SEGS$ function.

The LOG statement has been changed to use "log" as the default extension.
The LSET and RSET statements have been changed to use string array variables.

Improved the REMARK statement to detect which case to use when inserting the
REM statement.

23

Changed the RND function so that RND(1) returns a number between 0 and 1.

Fixed a bug in the AUTO ON statement to correctly find the next line number.

Fixed a bug in the BREAK and NOBREAK statements to correctly use labels.

Fixed a bug in the CHAIN statement to correctly back up the program and to use
labels.

Fixed a bug in the CHAIN, LOAD and RUN statements to correctly report an error if
the program cannot be loaded or run.

Fixed a bug in the DUMP and LOAD statements to check the log file size.

Fixed a bug in the LOG statement to write the file buffer up to the maximum file size.
Fixed a bug in the STEP debugging statement to correctly step over
IF/THEN/ELSE/END IF statements.

Version 1.3 (Release 6)
REMARK and UNREMARK statements.
SWAP statement.
TYPE statement.

Added a POKE to restore a program erased by NEW.
Fixed a bug in the LOAD and LOADR statements to confirm load only once.
Supports Windows XP control styles.
Version 1.2.1 (Release 5)
USINGS$ function.
ISNEG and ISPOS functions.
Version 1.2 (Release 4)
LINE EDIT statement.
OPTION BASE and OPTION EXPLICIT statements.
PCP and PRINTERS statements.

KILL # statement.
PAUSE statement.

$PRINT and $XREF statements.

LBOUND, UBOUND, SIZE and MAXSIZE functions.
CTRL$ and SHIFT$ functions.

ISO and ISEMPTY$ functions.

MAX and MIN functions.
MAXLEN function.

The LET statement has been updated to allow multiple variables in assignments and
multiple assignments.

The DEL, LIST, CHKIO, CHKSW, CHKSYN, CHKUL, PROFILE, BREAK and
NOBREAK statements have been extended to support multiple line sequences.

The LOAD and CHAIN statements have been improved when executing in program
mode to check if the current program is modified before loading another program.

Always Confirm New option in Editor tab (Options dialog box).

OEM and international character sets supported.
Added a PEEK that returns the zone width.

Fixed a bug in the LOG statement to check the log file size.

Fixed a bug in the ROUND function to correctly round numbers with fractions ending
in 5.

Fixed a bug in the parser to correctly reset references when a syntax error is found.
Fixed a bug in the screen and printer drivers to correctly display text with fonts that
have variable width characters.

Version 1.1 (Release 3)
LLIST statement.
OPEN PRINTER statement.
CLOSE PRINTER statement.
LPRINT and LPRINT USING statements.
PRINTER and PRINTER? statements.

LPOS function.
PRINTERS function.

PRINT, PRINT USING, and WRITE statements updated to use printer file number (-
2).

APPEND, COPY, and MOVE editing statements
FILES statement.

HOME statement.

NAME statement.

REOPEN statement.

REWIND statement.

TRUNCATE statement.

UNLOAD statement.

ACCESS function.

ATTRIB$ function.

ESC$ and NUL$ functions.

FILEMODE, FILEMODES, and FILENAMES$ functions.

FRE function.

GETALNUMS, GETALPHAS$, GETDIGITS$, and GETYNS$ functions.
MAXNUM and MINNUM functions.

OPEN function.

POS function.

TWOPI function.

Added a PEEK that returns the number of printer columns.
Added a PEEK that indicates if a printer is open.

Added a PEEK that indicates if a printer is available.

Added a POKE to perform a formfeed or linefeed on the printer.

Fixed a bug to return to text mode when a program error occurs while in graphics
mode.

Fixed a bug in the LOF function to correctly return the number of records in a file
opened for random access.

Fixed a bug that does not report a log not open error when logging is off.

25

26

Version 1.0.1 (Release 2)
Added a PEEK that indicates a program is being run as the startup program specified
in the startup options dialog.
Added a POKE that tells the KILL statement to use the recycle bin.

Fixed a bug in the parser to correctly parse the COLOR function when used in a
PRINT statement.

Fixed a bug in the EXEC &HDA83 call to correctly change the case of compiled data
statements.

Version 1.0 (Release 1)
Initial release.

2

Getting Started

2.1 Starting NBASIC

To begin using NBASIC, click on the Windows taskbar Start button, select Programs and
then select NBASIC.

The NBASIC application window is divided into several elements. The frame allows you
to resize the main window. The status bar provides information about the state of
NBASIC. Inside the main window is the BASIC screen and may have a border if the
main window is larger.

When you start NBASIC, you should see something similar to the following:

NBASI C Version 1.5.2
Copyright (C) 1998-2007 Syl vaWare
Al rights reserved

Ready

This displays information about what version of NBASIC you are using. Ready is a
prompt that NBASIC uses to tell you that it is ready to accept input. A blinking square
cursor indicates where the next character typed will be inserted.

2.2 Entering Commands

Statements are run in one of two modes, immediate or program. Immediate mode refers
to statements entered when NBASIC is at the Ready prompt. In immediate mode
anything you type followed by pressing the key will be executed by NBASIC.
Program mode refers to statements that are entered with a preceding line number and
added as part of a program. These statements are executed when the RUN statement is
used to run the program.

You can enter NBASIC statements in immediate mode and they will be executed
immediately. Enter the NBASIC statement CLS and press the key. It does not
matter if you use upper or lower case, NBASIC is not case sensitive. The BASIC screen
is cleared and the Ready prompt displayed at the top of the screen. The CLS statement
clears the screen. If you make a mistake entering the command, ?Synt ax err or will
be displayed followed by what caused the error. NBASIC is telling you that it did not
understand what you typed. Retype the command and press .

Enter the statement PRI NT 2+2 and press the key. NBASIC displays 4
followed by the Ready prompt on the next line. The PRINT statement prints information
to the screen. In this example, the information given to PRINT is two numbers with a +
between them. NBASIC adds the two numbers together and gives the result (4) to
PRINT, which displays it on the screen. You can use NBASIC as a calculator using +, -,
* (multiplication) and / (division).

Enter the statement PRI NT “2+2" including the quotation marks and press the ENTER

key. NBASIC displays 2+2 and then the Ready Prompt. Anything in quotation marks is
considered a string and is printed literally.

27

2.3 Editing Statements

Use the EDIT statement to edit lines in a program. Type EDI T followed by the line
number of the line to edit and press the ENTER| key. Use the editing keys to make
changes to the line. Press the ENTER| key to save changes or the key to
discard changes.

2.4 Writing Programs

28

To begin writing a program, delete any program currently in memory. Type NEWand
press the ENTER| key (if you want to keep any program currently in memory, be sure to
save it before typing NEW).

In this example, the program will prompt for a name and then print a greeting based on
the time of day. Use the input statement to prompt for a name and to read the name
entered from the keyboard.

Enter the following program line at the Ready prompt and press the ENTER| key:
10 I NPUT " Nane"; N$

Line 10 uses the INPUT statement to print a prompt ("Name") followed by a question
mark (?) and to read the name into the string variable N$. The name will be used in
printing the greeting.

Enter the next line:
20 LET H=HOUR(NOW

Line 20 gets the current time using the NOW function, then the hour of the time returned
by the NOW function using the HOUR function, and assigns the hour value to the
numeric variable H. The hour will be used to determine what time of day it is and the
appropriate greeting to print.

Enter the following lines:

30 | F H<12 THEN PRI NT "Good morning "; N$
40 | F H>=12 AND H<18 THEN PRI NT " Good afternoon "; N$
50 | F H>=18 THEN PRI NT "Good evening ";N$

Line 30 checks the hour in the variable H if it is before noon and if so prints the greeting
"Good morning" followed by the name in the variable N$ entered in line 10. Line 40
checks if the hour is after noon and before 6PM (time uses 24hour clock) and if so prints
the greeting "Good afternoon” followed by the name. Line 50 checks if the hour as after
6PM and if so prints the greeting "Good evening" followed by the name.

Enter the next line:
60 END
Line 60 ends the program.

To run the program, use the RUN statement. Type RUN and press the ENTER| key. The
program will run beginning with line 10 which will display "Name?" followed by a blinking

cursor. Enter your name and press the ENTER| key. One of the three greetings in lines
30 through 50 will be displayed. The program will then end and the Ready prompt
displayed.

If any syntax errors occur in the program, they will need to be corrected. To correct a
line, use the EDIT statement. Type EDI T followed by the line containing the error and
press the ENTER| key. Use the editing keys to make changes in the line and press the
ENTER| key to save the changes.

Notice in the status bar that MOD is displayed, this indicates the current program has
been modified and has not been saved.

2.5 Saving Programs

Saving a program stores the program on disk so that it is not lost when you exit NBASIC
and allows you to retrieve the program later.

To save a program, use the SAVE statement. A name must be given to each program,
which is used to identify the program on the volume where it is saved. Type SAVE

" GREETI NG' and press the ENTER| key. This will save the program as
"GREETING.NBA" on the default volume in binary format. If no extension is specified in
the file name, ".NBA" is used. To save the program on a volume other than the default
volume include the volume as part of the file name (e.g. "HOME:GREETING"). You can
also specify any extension. By convention ".NBA" is used for programs saved in
NBASIC's binary format and is used as the default extension by other statements. A
program can also be saved in ASCII format, which is a standard text file that can be
edited by other programs. To save a program in ASCII format append ,A to the end of
the SAVE statement after the file name. Type SAVE " GREETI NG TXT", Aand press
the key. This will save the program as "GREETING.TXT" on the default volume
in ASCII format. Once the program has been saved the modified indicator (MOD) on the
status bar is cleared indicating that the current program has not been modified.

Use the DIR statement to get a list of files on the volume. Type DI Rand press the
ENTER| key. If you saved the program in the example you should see the program listed.

2.6 Loading Programs
Loading a program retrieves a program that was previously saved from disk.

To load a program, use the LOAD statement. A name must be included to identify which
program to load. Type LOAD " GREETI NG' and press the key. This will load the
program "GREETING.NBA" from the default volume. If no extension is specified in the
file name, ".NBA" is used. To load the program from a volume other than the default
volume include the volume as part of the file name (e.g. "HOME:GREETING"). You do
not need to tell the LOAD statement what format the program is saved in as it can load
programs in binary or ASCII format, which it determines from the file itself. The LOAD
statement replaces any program in memory with the one from disk so make sure you
save any program you are working on before loading another.

2.7 Running Programs

Running a program executes the statements in the program.

29

To run a program, use the RUN statement. Type RUN and press the key. The
current program will begin executing at the lowest numbered line. The CMD indicator on
the status bar will change to PRG indicating a program is running. To stop a program
that is running press the key (Ctrl+Break). If the key has been disabled
in the program by the BREAK statement, you can stop the program by selecting Reset
from the context menu. You can also stop a program from running by using the STOP
statement. Insert the STOP statement anywhere in the program where you wish it to
stop. You can continue running the program using the CONT statement if the program
was stopped by the key or a STOP statement. Execution of the program will
continue with the statement where the program was stopped. If an END statement is

executed in a program the program will end. A program will also end if there are no more
lines in the program to be executed.

2.8 Exiting NBASIC

30

You can exit NBASIC in a number of ways. In immediate mode use the EXIT statement.
Type EXI T and press the ENTER| key. You can also use the standard Windows controls
for closing NBASIC.

If the current program in NBASIC has been modified and has not been saved, NBASIC
will prompt you with the following message:

NBASIC E|

& Do you want ta zave the changes vou made ta the BASIC prograrm?

Mo | Cancel |

To save the program, select Yes and you will be prompted to save the program. If you
do not want to save the program select No and NBASIC closes without saving the
program. To return to NBASIC without closing, select Cancel.

If you try to close NBASIC while a program is running, NBASIC will prompt you with the
following message:

NBASIC =

YWindows cannot ghut down thiz program autormatically. [t is recommended that you exit the program
with itz quit or exit command.

Do you wizgh to terminate thiz program now and loze any unsaved information in the program ?
] we |

To continue closing NBASIC, select Yes. If the program is modified and has not been
saved, you will lose the changes you have made to the program. Select No to cancel
closing and to return to NBASIC.

3

Details

3.1 File System

NBASIC's file system also mimics the file systems of early microcomputers, which usually
had one or two floppy disk drives. Each floppy disk contained files that were referenced
by the disk drive number. There was no hierarchical arrangement of files meaning that
there were no directories or folders. NBASIC references its files by using volumes, which
are mapped to directories or folders on the host computer’s file system. Volumes are
managed through the Volumes dialog box.

A file has three components in its file name: a volume, the name, and an extension and
has the format volume:name.ext. The volume is separated from the file name using a
colon. The extension follows a period.

The volume specifies in which NBASIC volume the file is stored. If the volume is not
specified in the file name the default volume is used.

The name of the file can be any valid Windows file name.

The extension is used to indicate what type of information may be in the file. Some
common extensions are "dat" for data and "txt" for text. NBASIC programs saved in
binary format typically use the extension "nba" while programs saved in ascii format use
"bas". The extension may be omitted in many NBASIC statements that operate on files.
For example, the LOAD statement, which is used to load programs, uses the extension
"nba" if it is not specified in the file name. To load a program with another extension, you
must specify the extension in the name of the program file you wish to load.

To get a list of files stored in a volume use the DIR statement. Type DI Rwith no
argument to list all of the files on the default volume. To list the files on another volume
type DI R "vol une: " where volume is the name of the volume (note the colon). You
can also use wildcards. Type DI R "*. nba" to list all the files with the extension "nba".

To get a list of volumes use the VOLUMES statement.

To change the default volume, use the VOLUME statement. Type VOLUME "vol une"
to change the default volume to vol une. The default volume is displayed in the NBASIC
status bar.

3.2 Printers

NBASIC can use any printer installed on the host operating system and provides a line
printer interface independent of the type of printer being used.

When a printer is opened, NBASIC creates a print job and all output to the printer is sent
to the Windows print spooler. Then, when the printer is closed, NBASIC ends the print
job and the Windows print spooler begins printing the document. NBASIC will report out
of memory or disk space errors returned by the print spooler during spooling, however,
once the printer is closed in NBASIC, the print spooler will report any errors encountered
printing the document.

31

32

When the print spooler begins to print the document, the main NBASIC window will
momentarily lose the input focus.

The LLIST and OPEN PRINTER statements use the most recent printer set by the
PRINTER or PRINTER? statements or if not set, the current printer specified in the Print
Setup... or Print... dialogs.

To set the current printer, use the PRINTER statement and specify the name of the
printer (as it appears in the Windows printer list). Use PRI NTER="" to use the current
printer specified in the Print Setup... or Print... dialogs.

To print the printer currently being used, use the PCP statement. To list the currently
available printers, use the PRINTERS statement.

Print jobs created by the OPEN PRINTER statement are listed in the print manager with
the document name "NBASIC". Print jobs created by the LLIST statement appear in the
print manager with the document name "LLIST" followed by the line numbers if specified.

NBASIC will print to a printer even if it is turned off, as the print spooler manages the
actual printing and will report the errors.

4

4.1 Context Menu

User Interface

The context menu provides access to the NBASIC application menu. To access the
context menu right click with the mouse anywhere within the NBASIC client window.

If NBASIC is at the command prompt, the following context menu is displayed:

Print Setup. ..
Print. ..

Yolumes. ..
Font...

Resize

Reset

Help Topics

about, .,

Otherwise, if NBASIC is executing a program or immediate statement the following

context menu is displayed:

Resize
Resek

Help Topics

Context menu options:

Print Setup...
Print...
Volumes...
Font...
Resize
Reset

Help Topics
About...

4.2 Volumes Dialog

Changes the printer and printing options.

Prints the current program.

Manages NBASIC volumes.

Changes the NBASIC font size.

Resizes the window to fit the BASIC screen.

Resets NBASIC.

Lists Help topics.

Displays program information, version number, and copyright.

Use this dialog box to add, remove, and edit NBASIC volumes. To access the Volumes
dialog right click with the mouse anywhere within the NBASIC client window, then select
Volumes... from the context menu.

33

34

Yolumes !

Y olurme | Folder |

ExAMPLES C:%Program Files wfarehMB azichE wamples
S HOME C:%Program FileshSpkeaisfare\HB azictHome

Add... Remove Make Default Properties | Cloze I Help

NBASIC uses volumes to store program files and data. Each volume is mapped to a
Windows folder. You can create as many volumes as you need to organize your files. A
volume can consist of up to sixteen alphanumeric characters. Volumes cannot be
nested; they are not hierarchical like Windows folders. NBASIC maintains a default
volume and is displayed on the status bar. When specifying a file with no volume, the
default volume is used. Volumes can also be read-only. NBASIC cannot create, modify,
or remove files on read-only volumes. Volumes can be mapped to the same Windows
folder; any changes to one volume are reflected in other volumes mapped to the same
Windows folder.

The NBASIC volumes and the mapped Windows folders are shown in the list. An open
folder icon indicates the default volume. A folder icon with a red circle and line through it
indicates a read-only volume. A red folder icon indicates that the mapped Windows
folder does not exist. Click on Properties to change the volume's folder.

It is recommended that you create volumes that map to folders in the same folder where
you installed NBASIC and that you give the volume the same name as the folder you are

mapping.

If you rename or move a folder that is mapped to a volume, remember to update the
volume's properties.

The Volumes dialog has the following options:

Add...
Adds a new volume and maps a Windows folder to it.

Remove
Removes the selected volume and deletes the mapping to the Windows folder.
NBASIC will no longer have access to the files in the Windows folder mapped to this
volume.

Make Default
Makes the selected volume the default volume.

Properties...
Edits the properties of the selected volume including the volume name, the mapped
Windows folder, the default and read-only attributes.

Close
Closes the Volumes dialog box.

Help
Displays help for the Volumes dialog box.

4.3 Add Dialog (Volumes)
Use this dialog to add a new volume and map a Windows folder to it.

To display this dialog, click Add... in the Volumes dialog.

Add i
W alurme: I|
Eolder Cancel |

I Help |
Browse. .. I

[Default
[Read Only

The Add dialog has the following options:

Volume:
Enter the name of the volume to create. Volume names are limited to sixteen
alphanumeric characters.

Folder
Enter the Windows folder to map to the volume.

Browse...
Browses for and selects a Windows folder to map to the volume.

Default
Specifies if the volume is to be the default volume. If checked the volume will be the
default volume.

Read Only
Specifies if the volume is to be read-only. If checked the volume will be read-only.
Files in read-only volumes cannot be modified or deleted and new files cannot be
created.

OK

Closes the dialog box and creates the volume and maps the Windows folder to the
volume.

35

Close
Closes the dialog box without creating the volume.

Help
Displays help for the Add dialog box.

4.4 Properties Dialog (Volumes)

Use this dialog to change an existing volume’s properties.

To display this dialog, click Properties... in the Volumes dialog.

Poperies B

Folder
IE:"\F'ru:ugram FilezhSylvaw are'\MB azic\Haome

Browze. .. I

v Defaul
" Bead Only

The Properties dialog has the following options:

Volume:
Edit the name of the volume.

Folder
Change the Windows folder to map to the volume.

Browse...
Browses for and selects a Windows folder to map to the volume.

Default
Specifies if the volume is to be the default volume. If checked the volume will be the
default volume.

Read Only
Specifies if the volume is to be read-only. If checked the volume will be read-only.
Files in read-only volumes cannot be modified or deleted and new files cannot be
created.

OK
Closes the dialog box and saves the volume’s new properties.

Close
Closes the dialog box without changing the volume’s properties.

Help
Displays help for the Properties dialog box.

36

4.5 Options Dialog
Use this dialog box to configure NBASIC environment options. To access the Options
dialog right click with the mouse anywhere within the NBASIC client window, then select
Options... from the context menu.

There are three tabs available:

Font
Use this tab to change the text font and size.

Options _________________________EH

Font lEditn:nr i Startup!

Courier [ew Size: [12 =

Eaont:

Sample

2aBbCoHaYyv iz

[Besize Windaow

] 4 I Cancel Help

The Font tab has the following options:

Font:
Lists the available fonts. Select the font from the drop-down list.

Size:
Lists the available font sizes. Type the font size in the box or select it from the
drop down list.

Sample
Displays an example of the selected font options.

Resize Window
Specifies if the window is to be resized to fit the NBASIC screen. If checked the
NBASIC application window will be resized so that the NBASIC screen fits
exactly within the window.

Editor
Use this tab to change the prompt displayed in the editor.

37

38

Options |

Font Editar | Startup I

Prompt; Beszet |

[Alwaps Confirm Hew

| k. I Cancel Help

The Editor tab has the following options:

Prompt:
Enter the prompt to be displayed by NBASIC.

Reset
Resets the prompt to the original default prompt.

Always Confirm New
Specifies if the NEW statement is always confirmed. If checked a prompt is
displayed to confirm the execution of the NEW statement. Clicking Yes at the
prompt executes the NEW statement erasing the current program; clicking No
does not execute the NEW statement. This option can be used to prevent the
accidental deletion of the current program.

Startup

Use this tab to change the startup text foreground and background colors, message,
and program.

Options ’

Fant IEditu:ur Startupl

Colars
|7E0regrnund: I- *I Eackground: II:I TI

Meszage: I

Program: I J
ak. I Cancel | Help |

Foreground:

Specifies the default startup foreground color. Select the color from the drop-
down list.

Note: This does not change the current foreground color.

Background:
Specifies the default startup background color. Select the color from the drop-
down list.
Note: this does not change the current background color.

Message:
Specifies a message to be displayed after startup. Enter a message up to eighty
characters.

Program:
Specifies a NBASIC program to run after startup. Enter a NBASIC program or
click ... to select one.

Tip: Always include the volume name because the default volume may change.

Selects a NBASIC program.

4.6 Status Bar

The status bar displays information about the current state of the NBASIC environment.

WOLUME |CMD [INS [MOD [PAUSE [BRK [TRC [CHFRM [SECURE LOG PROF DBG [aUTO | [CAP [MUM [SCRL
Status Bar indicators:

VOLUME Displays the default volume.

CMD Displays CMD if NBASIC is at the command prompt,
EDT if executing the EDIT statement,
PRG if executing a program or
IMM if executing an immediate statement.

INS Displays INS if in insert mode or OVR if in overstrike mode.
MOD Displays MOD if the current program has been modified.
PAUSE Displays PAUSE if the key is pressed.

BRK Displays BRK if BREAK key trapping is on (BREAK).
TRC Displays TRC if tracing is on (TRACE).

CNFRM Displays CNFRM if confirmation is on (CONFIRM).
SECURE Displays SECURE if secure mode is on (SECURE).

LOG Displays LOG if logging is on (LOG).

PROF Displays PROF if profiling is on (PROFILE).

DBG Displays DBG if debugging is on (DEBUG).

AUTO Displays AUTO if automatic line numbering is on (AUTO).
CAP Displays CAP if |Caps Lock] is on.

NUM Displays NUM if Num Lock] is on.

SCRL Displays SCRL if |Scroll Lock is on.

39

S}

Programming Guide

5.1 Arrays
Arrays are variables that contain more than one value.

Array names can be up to thirty-one (31) characters, may contain letters or digits but
must begin with a letter and are case insensitive. Array names ending with a dollar sign
(%) are string arrays and arrays that do not end in a dollar sign are numeric. Array hames
cannot begin with the names of statements or built-in functions.

Arrays are created when they are first used but must be specified with less then three (3)
dimensions and ten (10) elements per dimension. To create arrays with larger numbers
of elements and dimensions, use the DIM or REDIM statements. If the OPTION
EXPLICIT statement has been specified in a program, arrays are not automatically
created and must be created with the DIM statement.

When arrays are created, the first element of the array is at index 0. To change the base
of the array to 1, use the OPTION BASE statement.

Numeric arrays are initialized to zero (0) while string arrays are initialized to an empty
string.

To access the elements of an array, specify the index or indices of the element in
parentheses.

To clear an array to its default values for each element, use the CLEAR statement. To
delete an array variable, use the ERASE statement.

5.2 Branching

Execution of a program usually proceeds sequentially from line to line. To branch to
another line, use the GOTO statement. To conditionally execute statements or branch to
another line, use the IF statement.

The following example program prompts for a number between 1 and 10 and then prints
whether or not the number is odd or even:

10 INPUT "Enter a nunber between 1 and 10 or O to quit"; N
20 | F N=0 THEN 80

30 |F N<1 OR N>10 THEN 10

40 I|F N MOD 2=0 THEN 70

50 PRINT N;" is odd"

60 GOTO 80

70 PRINT N;" is even"

80 END

In line 20, if the value in the variable N (input in line 10) is 0, the program branches to line

80, which ends the program. In line 30, if the value in N is less than 1 or greater than 10
then the program branches to line 10 to reenter a number. In line 40, if the modulus of

41

the value in N and 2 is 0 then the number is even and the program branches to line 70
otherwise the program continues with line 50 before branching to line 80 skipping line 70.

5.3 Character Sets

Text in other languages can be displayed by using different character sets. To select a
character set, poke one of the following values into location 29538:

0 ANSI (default)
161 Greek

162 Turkish

177 Hebrew

178 Arabic

186 Baltic

204 Russian

238 East Europe
255 OEM

To make sure the character set was successfully changed, compare the value returned
by PEEK(29538) to the character set specified in the POKE statement.

On startup, the character set is set to ANSI (0).

The following example program displays the Russian word for hello:

10 POKE 29538, 204

20 | F PEEK(29538) <>204 THEN PRI NT "204 Not Available": END
30 PRI NT

CHR$(239) ; CHR$(240) ; CHR$(232) ; CHR$(226) ; CHR$(229) ; CHR$(242)
40 POKE 29538, 0

50 END

Line 10 selects the Russian character set. Line 20 checks if the character set was
successfully changed. Line 30 prints the Russian word for hello. Line 40 selects the
default ANSI character set.

To select a character set on the printer, poke one of the above values into location 46966
(Note: the printer must be opened before the character set can be changed).

5.4 Data

42

Information can be added to a program using DATA statements. A DATA statement
contains numeric or string values separated by commas that are read using the READ
statement. The READ statement reads the values in the DATA statements into
variables. When all of the data in the DATA statements has been read by the READ
statement, a subsequent READ statement will cause an "Out of data" error. To read the
data again, use the RESTORE statement. The RESTORE statement resets the location
where the READ statement begins reading data.

The following example program uses data statements, which contain the months of the
year and the number of days in each month (Note: February has 29 days in a leap year).
The program reads the data and prints out the list.

10 DATA "January", 31, "February", 28, "March", 31
20 DATA "April",30,"My", 31, "June", 30
30 DATA "July", 31, "August", 31, " Sept enber ", 30

40 DATA "Cctober”, 31, "Novenber", 30, "Decenber ", 31
50 FOR I =1 TO 12

60 READ M$, D

70 PRINT Mp; " has";D;" days"

80 NEXT |

90 END

The data values are contained in lines 10 through 40. The FOR loop in line 50 specifies
the number of times to read data (twelve (12) in this case). Line 60 reads two (2) data
values placing the first value, a string, in the string variable M$ and the second value, a
number, in the numeric variable D. Line 70 prints the values. Line 80 increments the
loop variable | and repeats the loop if it has not reached the end value specified in the
FOR statement in line 50 or ends the loop and continues with the next statement if it has.
Line 90 ends the program.

Several methods can be used to determine when all the data has been read. The
number of data values may be specified in the program as in the above example. A
terminal value can be used in the DATA statements such as -1 for numeric values or an
empty string (") for string values. Also, the number of data elements can be specified in
the DATA statement.

5.5 Data Types

Data can be of two types, numeric or string. A numeric data type represents a number in
the range 1.7E-307 to 1.7E+308 with 15 digits of precision. A string represents a set of
characters with a maximum length of 65,535.

Numbers are specified in decimal format and can optionally contain an exponent. A
leading + or - sign can be included (+ is optional for positive numbers). Exponents can
also be positive or negative.

Examples of number:
10

121.654

1.765E2

0.4

-48.5

Numbers can also be specified in hexadecimal, octal and binary formats. These
numbers are whole numbers (integers) in the range 0 to 4,294,967,295. Hexadecimal
numbers begin with &H and may contain up to eight hexadecimal digits (0-9,A-F). Octal
numbers begin with &0 and may contain up to eleven octal digits (0-7). Binary numbers
begin with &B and may contain up to thirty-two binary digits (0 or 1).

Examples:

&H1F (31)

&037 (31)

&B11111 (31)

Strings are specified using double quotes. The string "™
characters).

is an empty string (contains no

Examples of strings:
“Hello"

"ABC"

"100"

43

ng"

5.6 Date and Time

To get the current date and time use the NOW function. The NOW function returns a
number that represents the date and time when the function was called. This number is
used with other functions that provide date and time information.

To change the time value, use the ADJUST function. The ADJUST function can adjust
the time by any number of seconds. Use a positive number to adjust the time forward or
a negative number to adjust the time backwards.

To create a time value, use the MKTIME function. Specify the year, month and day and
optionally the hour, minute and second and the MKTIME function returns a time value
representing this date and time.

To get the date as "MM-DD-YYYY" or the time as "HH:MM:SS", use the DATES$ or TIMES$
functions.

To get the year, month or day from the time value use the YEAR, MONTH, or DAY
functions and to get the hour, minute and second use the HOUR, MINUTE, or SECOND
functions.

5.7 Debugging

Removing problems in a program is called debugging. There are several statements to
help in debugging. Use the TRACE statement to print the lines of a program as it
executes. To stop at a specific line in a program, edit the line where the program should
stop and insert a STOP statement. The STOP statement causes the program to exit but
all of the program's information is kept. To continue the program, use the CONT
statement. The CONT statement restarts the program where it was stopped. If any
changes are made to the program, the program will have to be restarted using the RUN
statement.

More advanced debugging statements allow the program to be executed one statement
at a time, which makes program execution easier to follow than with the TRACE
statement. Use the STEP statement to execute the next statement. After the statement
is executed the line containing the next statement to be executed is printed with the
statement in brackets. Breakpoints can be set in the program using the BREAK
statement so that when execution reaches the line containing the breakpoint, the
program will stop as if a STOP statement were executed. To continue from the
breakpoint use the CONT or STEP statements. To clear a breakpoint, use the
NOBREAK statement. The ASSERT statement can be used to check conditions in a
program if the condition is not true the program will stop. In order for breakpoints and
assertions to be active use the DEBUG statement. Debug mode can be turned on or off
and is useful to run the program without stopping at breakpoints or assertions.

5.8 Errors

Errors that occur in a program will stop execution of the current program if not handled.
Use the ON ERROR statement to trap errors. When an error occurs in a program

execution is transferred to the line specified in the ON ERROR statement. The number
of the error that occurred can be obtained using the ERN function or the line where the

error occurred using the ERL function. Use the ERR$ function to get a description of the
error. To return to the program from the error handler use the RESUME statement. The
RESUME statement can retry the statement that caused the error, resume execution
after the statement that caused the error or resume execution to a specific line. The ON
ERROR statement can be used to disable error trapping by specifying 0 as the line
number.

The following example program sets an error handler before writing a file:

10 ON ERROR GOTO 80

20 OPEN "TEST. DAT" FOR OUTPUT AS #1
30 FOR N=1 TO 10

40 PRINT #1,N

50 NEXT N
60 CLOSE #1
70 END

80 PRINT "Error: ";ERR$(ERN);" in line"; ERL: RESUME NEXT

Line 10 sets the error handler to line 80. Lines 20 through 60 open a file, write the
numbers 1 through 10 to the file and then close the file. If any errors occur in these lines,
execution is transferred to line 80, which prints a description of the error and the line
where the error occurred before resuming the program with the next statement after the
statement that caused the error. If no errors occur, the programs ends in line 70.

5.9 Expressions

An expression is a sequence of operators and operands that are used to compute a
value. The result of an expression is either a numeric or string value.

Expressions are evaluated according to the precedence and grouping of the operators in
the expression.

For example, in the expression 4+2*3, multiplication (*) has a higher precedence than
addition (+) and is evaluated first. So the result of this expression is 10. Grouping uses
parentheses to specify how operators are evaluated. For example, in the expression
(4+2)*3, (4+2) is evaluated first because of grouping. So the result of this expression is
18.

An operand can be a numeric or string literal, constant, variable, function, user defined
function or another expression.

A type mismatch error occurs if the wrong data type is used with an operator, statement
or function.

5.10 Files

A file is the basic unit of storage and is kept on a storage medium such as disk or tape.
Files are organized in groups called volumes.

To access the contents of a file, the file must be open. To open a file, use the OPEN
statement. A file can be opened for sequential input or output, or for random access.
When a file is opened for output, a new file is created or if the file already exists, it is
truncated. Data written to the file is appended to the end of the file. A file opened for
input must already exist. Data is read from the file starting at the beginning of the file. To
write data to a file, use the PRINT, PRINT USING, or WRITE statements. To read data
from a file, use the INPUT or LINE INPUT statements or the INPUT$ function. To check

45

46

when the end of file has been reached, use the EOF function. When finished using a file,
it should be closed. To close a file, use the CLOSE statement.

Data is read from and written to the file's buffer. The file buffer is used to temporarily hold
the data to minimize disk access and therefore increases the speed of file input and
output. When writing to a file and the buffer becomes full, the buffer is written to disk and
emptied. When reading from a file and the buffer is empty, data is read from disk into the
buffer. The buffer size may be specified in the OPEN statement.

When a file is opened for random access, data can be both read from and written to the
file in the form of records. The size of the record is specified in the OPEN statement as
the buffer size. A record can have one (1) or more fields. To define a record's fields
within the file, use the FIELD statement. The record (buffer) size of the file must be at
least the size of all the fields defined in the FIELD statement. A field is a string of a
specified size that contains either string or numeric data. A numeric field must always be
defined with a size of eight (8). To write to a field, use the LSET or RSET statements
then use the PUT statement to write the record to disk. To read from a field, use the GET
statement to read a record from disk and then use the name of the field to access the
field's data. Use the MKN$ and CVN functions to convert numeric data to and from a
binary string for use in fields.

The following example program demonstrates sequential input and output. The program
writes numbers to a file, then reads the numbers from the file and prints them.

10 OPEN "TEST. DAT" FOR QUTPUT AS #1
20 FOR 1=1 TO 10

30 PRI NT #1, 1

40 NEXT |

50 CLOSE #1

60 OPEN "TEST. DAT" FOR I NPUT AS #1
70 I NPUT #1, 1

80 PRI NT |

90 I F NOT EOF(1) THEN 70

100 CLCSE #1

110 END

Line 10 opens the file "TEST.DAT" in the default volume for output as file number 1.
Lines 20 and 40 contain a FOR loop which counts from 1 to 10 using the numeric
variable I. Line 30 prints the number in the variable | to the file (file number 1). Line 50
closes the file. Line 60 opens the file for input. Line 70 inputs a single numeric value
from the file and assigns it to the numeric variable I. Line 80 prints the number in the
variable I. Line 90 checks if the end of file has been reached and if not goes to line 70 to
input another value. If the end of file has been reached program execution continues
with line 100. Line 100 closes the file. Line 110 ends the program.

The following example demonstrates a random mode file. The program writes
information to a file, reads the file and formats the information in a table.

10 DATA "A-Sciences Corp.", 234.59

20 DATA "Data Enterprises", 1088. 21

30 DATA "NBA Systens", 298. 44

40 DATA "TRR Inc.",541. 65

50 DATA "",0

60 OPEN "1 NVO CES. DAT" FOR RANDOM AS #1 LEN=28
70 FIELD #1,20 AS AA%, 8 AS BB$

80 R=1

90 READ A%, B

100 | F A$="" THEN 140

110 LSET AA$=A$: LSET BB$=MKN$(B)

120 PUT #1,R

130 R=R+1: GOTO 90

140 PRI NT "Account" TAB(21) "Bal ance"

150 PRI NT STRING$("-",20);:" "; STRINGS("-", 10)
160 R=1

170 GET #1, R |F EOF(1) THEN 200

180 PRI NT USI NG "\ \ SSH##E, . ##" AAS, CVN(BBS$)
190 R=R+1: GOTO 170

200 CLOSE #1

210 END

Lines 10 through 50 contain the data to be written to the file. Line 60 opens the file
"INVOICES.DAT" as a random mode file with a record length of 28. Line 70 divides the
file buffer into fields. The first field (AA$) will contain the account name and up to twenty
(20) characters. The second field (BB$) will contain the account balance and is 8
characters in length (all numeric fields must be 8 characters in length). The record length
of the file in the OPEN statement must be at least the size of all the field lengths
combined. Line 80 sets the numeric variable R to 1, which is used for the record number
(record numbers begin at 1). Line 90 reads the account name into the string variable A$
and the balance into the numeric variable B. Line 100 checks if all the data has been
read using the special marker in line 50, an empty string. Line 110 copies the data in the
variables to the file buffer. The LSET statement left justifies the string in the string
variable A$ into the field variable AA$. Numeric values have to be converted to binary
strings before copying to a field variable because all field variables are strings (of fixed
size). Afield that is to contain a numeric value must be 8 characters in length. To
convert a numeric value to a binary string, use the MKN$ function. Line 120 writes the
file buffer to the record number contained in the numeric variable R. Line 130 increments
the record number in the variable R and goes to line 90 to read the next account
information.

Line 100 branches to line 140 if the end of data marker is read. Lines 140 and 150 print
column headers for the account information. Line 160 sets the record number to 1, the
record number of the first record in the file. Line 170 gets the record from the file into the
field variables (AA$ and BB$). If the end of file has been reached the program branches
to line 200. Line 180 prints the formatted account information. Line 190 increments the
record number and goes to line 170 to get the next record. Line 200 closes the file. Line
210 ends the program.

To list the files in a volume, use the DIR statement. To delete a file, use the KILL
statement.

To copy a file, use the COPY statement. To move a file, use the MOVE statement. To
rename a file, use the RENAME statement.

5.11 Functions

Functions can be used where an expression is allowed. To call a function, specify the
function's name and any arguments the function requires. Functions always return a
value unless an error occurs. Function names are case insensitive.

Function names that end with a dollar sign ($) return a string and functions that do not

end with a dollar sign return a number. If a function does not accept any arguments do
not include the opening and closing parentheses in the function call.

47

5.12 Graphics

The graphics screen size varies due to the display resolution and the current font
selected. Graphics programs should determine the screen size and adjust the display of
graphics output accordingly. To get the screen width and height in pixels, use the
PSCRW and PSCRH functions. The pixels are numbered 0 to the maximum size minus
1. Therefore, if the PSCRW function returned 800 as the width of the graphics screen in
pixels, the pixels are numbered 0 to 799.

Before graphics can be drawn, graphics must be turned on and initialized. To begin
drawing graphics, use the GRAPH statement. Text and graphics can be mixed on the
same screen.

To set a pixel with a specific color, use the PSET or PRESET statements. To clear the
graphics screen, use the PCLS statement. To set the graphics foreground and
background colors, use the PCOLOR statement. To draw lines, rectangles, and circles,
use the LINE and CIRCLE statements. To print text anywhere on the graphics screen,
use the PPRINT statement.

The following example program displays a circle, 100 pixels in diameter, in the center of
the screen:

10 GRAPH ON
20 PCLS

30 CI RCLE (PSCRW 2, PSCRH 2) , 50
40 WAI T 2000

50 GRAPH OFF

60 END

The program first turns graphics on (line 10) then clears the graphics screen (line 20),
draws the circle (line 30), waits for two (2) seconds (line 40), turns graphics off (line 50)
and ends (line 60).

5.13 Keyboard

The keyboard is used for user input. Use the INPUT statement to prompt for input and to
read the data into variables. Use the INPUT$ function to read a specific number of
characters. Use the LINE INPUT statement to read a single line of data.

5.14 Limits
Numeric range: 1.7E-307 to 1.7E+308
Maximum string length: 65535 characters
Maximum variable name length: 31 characters
Maximum user defined function name length: 31 characters
Maximum label name length: 31 characters
Maximum constant name length: 31 characters
Maximum array dimensions: 10
Maximum array dimensions if unspecified: 3

48

Maximum array size per dimension: 65536

Maximum array size all dimensions: 16777216
Minimum user defined function arguments: 0
Maximum user defined function arguments: 10
Maximum number of lines in a program: 65535
Maximum number of variables in a program: Available memory
Maximum number of user defined functions in a Available memory
program:
Maximum number of labels in a program: 1 per line
Maximum number of constants in a program: Available memory
Maximum number of nested FOR loops: Available memory
Maximum number of GOSUB calls: Available memory
Maximum volume name length: 15 characters
Maximum number of volumes: Available memory and disk space
Maximum size of sequential or random access file: 2GB
Maximum number of open files: 255
Maximum file buffer length: 32768
Maximum number of fields in a random access file 128
buffer:
Maximum size of a log file: 2GB
Maximum number of files in a volume: Available disk space
Maximum NBASIC line length: 255

5.15 Logging

Logging is useful in recording the output of a program or an NBASIC session to a file.
Everything that is output to the screen or input from the keyboard is written to the log file.

To open a log file, use the LOG statement. Once the log file is open, recording to the log
file begins. You can stop recording using LOG OFF, to begin recording again use LOG
ON. To close the log file use LOG STOP.

5.16 Loops

Repeating one or more of statements is called a loop. One way to repeat a group of
statements is to use the GOTO statement to branch to the beginning of the statement
group. An IF statement can be used to determine when the loop terminates and then
branch to a line outside the loop.

To repeat a group of statements a specific number of times, use the FOR and NEXT
statements. A FOR loop initializes a numeric variable to a beginning value, and either
increments or decrements the variable until an ending value is reached (note: a FOR loop
is always executed at least once).

49

The following example program waits for a key to be pressed before printing the numbers
1 through 10:

10 PRINT "Press a key to continue"
20 LET K$=I NKEY$: |F K$="" THEN 20
30 FOR N=1 TO 10

40 PRINT N

50 NEXT N

60 END

Line 20 contains a loop then checks for a key press and if no key has been pressed loops
back to line 20 to check again. The loop is repeated until a key is pressed.

Lines 30 through 50 contain a FOR loop. Line 30 begins the loop, setting the numeric
variable N to 1. Line 40 prints the value of the variable N. Line 50 increments the
variable N by 1 and tests if it is above the end value specified in line 30. If the value in N
is not above the end value of the loop, the NEXT statement repeats the statements after
the FOR statement in line 30 otherwise execution continues with the statement after the
NEXT statement.

5.17 Printing

Programs can print text to a printer.

In order to send output to a printer, the printer must be opened. To open a printer, use
the OPEN PRINTER statement. The OPEN PRINTER statement opens the printer set by
the PRINTER statement or if no printer has been set, the current printer specified in the
Print Setup or Print dialogs. The PRINTER? statement can be used to set the printer by
allowing the printer to be selected from a list of installed printers. To send output to the
printer, use the LPRINT or LPRINT USING statements. Output can also be sent to the
printer using other print statements by using the file number -2. To get the current print
position (column), use the LPOS function. To close the printer and finish printing, use the
CLOSE PRINTER statement.

The following example program prints a simple message on the printer:

10 PRINT "Printing version information..."
20 PRI NTER?: REM sel ect a printer

30 COPEN PRI NTER

40 LPRINT "Version information: ";VERS;

50 LPRINT ", Release "; STR$(PEEK(36))

60 CLOSE PRI NTER

70 END

Line 20 displays a dialog to select the printer to use as the current printer. Line 30 opens
the printer. Lines 40 and 50 send output to the printer. Line 60 closes the printer,
finishes printing and ends the print job.

5.18 Programs

50

NBASIC programs consist of lines identified by line numbers. Each program line may
contain one (1) or more statements. Line numbers start at 1 and may continue up to
65535. Typically, line numbers in a program begin with 10 with each succeeding line
incremented by 10 (20,30,40...). This convention makes it easy to add lines to a program
without renumbering.

A program line is referenced by its line number (e.g. GOTO 50, EDI T 80) and may also
include a label. A label is a unique name with an asterisk (*) preceding it and can be
used instead of a line number in the program.

When a program is run, execution of the program begins with the lowest numbered line
and proceeds sequentially to higher numbered lines or to lines specified by the program
using a branch statement (IF, GOTO, etc).

To delete the current program from memory, use the NEW statement. Note that once the
program has been deleted it cannot be recovered unless it has been saved to disk.

To save a program to disk, use the SAVE statement. A program can be saved as a
binary or ASCII file. An ASCII file contains only the source code of the program while a
binary file contains the compiled version of the program. To load a program from disk
use the LOAD statement.

To renumber a program, use the RENUM statement. To view a program, use the LIST
statement. To edit a line, use the EDIT statement. To delete a line or lines, use the DEL
statement or type the line number at the ready prompt and press enter.

A running program can be interrupted using the BREAK| key or paused using the PAUSE
key.

5.19 Screen

The standard NBASIC text screen is 80 columns wide numbered 0 through 79 and 25
rows high numbered 0 through 24. NBASIC can display sixteen colors numbered 0
through 15.

The cursor can be turned on or off using the CURSOR statement. Input statements
always display the cursor. The position of the cursor also indicates where output will be
printed. To set the cursor or print location, use the LOCATE statement. To clear the
entire screen, use the CLS statement. To get the current position of the cursor, use the
ROW and COLUMN functions.

To change the foreground and background colors, use the COLOR statement.
To print to the screen, use the PRINT or PRINT USING statements.

Output is wrapped to the next line if it extends beyond the right edge of the screen and is
scrolled if it extends beyond the last line.

NBASIC Colors
Black

Dark Red
Dark Green
Dark Yellow
Dark Blue
Dark Magenta
Dark Cyan
Light Gray
Medium Gray
Red

© 0 ~NO Ul WNPFP O

51

Green 10

Yellow 11

Blue 12

Magenta 13

Cyan 14

White 15
5.20 Sound

Programs may use sound in several ways. The BEEP statement plays the standard
beep on the computer's speakers. The SOUND statement can play a sound with a
frequency in the range of 37Hz to 32,767Hz for the specified number of milliseconds.

5.21 Statements

Statements can be entered in immediate mode or as part of a program. To enter a
statement type the statement’s name and any parameters the statement requires. Each
statement has syntax rules specifying how the statement can be entered and what
parameters are allowed. If a statement is entered incorrectly a syntax error occurs
indicating that the statement was entered incorrectly. The statement must be corrected
before it can be executed. Statement names are case insensitive. Multiple statements
can be entered in a single line if a colon separates them.

5.22 Subroutines

Subroutines are groups of statements that perform a useful task that needs to be
repeated. Subroutines are called using the GOSUB statement. To return from a
subroutine use the RETURN statement.

For example, the subroutine in the following program is called using GOSUB 100 in line
20. The subroutine prints a string and then returns to the calling program by RETURN in
line 110.

10 FOR 1=1 to 10
20 GOSUB 100

30 NEXT |

40 END

100 PRINT STR$(1)+ ":"+STRINGS("*", 1)
110 RETURN

A subroutine can contain any number of lines within the limits of the program and must
contain at least one RETURN statement.

Subroutines can use the variables already defined in a program. There is no parameter
passing mechanism with this type of subroutine.

5.23 Timers

52

NBASIC provides several types of timers that can be used in your programs.

The most common use for a timer is to pause execution of a program for a specified
amount of time. The WAIT statement can be used for this purpose. The WAIT
statement pauses until the specified amount of time elapses. For example, the statement
WAI T 2000 pauses until 2000 milliseconds (2 seconds) have elapsed before continuing.

Another common use for a timer is to time an event. The TIMER function returns the
current value of the timer in milliseconds. The following example program determines the
time (milliseconds) required to count from 1 to 100:

10 S=TI MER

20 FOR 1=1 TO 100: NEXT I

30 E=TI MER

40 PRINT "TIME: "; E-S;" M LLI SECONDS"
50 END

The program first gets the starting timer value, counts from 1 to 100 in a loop, and then
gets the ending timer value. The difference in the start and end timer values is displayed.

The timer is set to 0 when NBASIC starts. To reset the timer use the TIMER statement.
For example, the statement TI MER=0 resets the timer to 0.

A timer can also interrupt a program at a specified interval, transferring control to a timer
handler. The ON TIMER statement is used to setup a timer. Specify the timer interval in
milliseconds and the line number or label of the timer handler. In the timer handler, use
the RESUME statement to return control to the program.

5.24 User defined functions

You can define your own functions in NBASIC using the DEF FN statement. A user-
defined function must be defined and the program line containing the definition must be
executed before it can be used. User-defined functions must be given a name. The
name must start with a letter and can be up to thirty-one (31) characters in length and is
case insensitive. User-defined functions can accept up to ten (10) arguments and return
a single numeric result.

The following user-defined function defines a function named DOUBLE accepting a
single numeric argument named X which will compute the expression X*2:

10 DEF FNDOUBLE(X) =X*2

The arguments in a function definition must be valid variable names. In this example, X
is used as the argument name. If there is a variable X defined elsewhere in the program
it cannot be accessed within the function definition. X is used in the function definition to
refer to the argument of the function not the global variable X. Other variable names can
be used in the function definition as long as there is no argument defined in the function
with the same name.

To call the function, use the FN function. The following example calls the function
DOUBLE:

20 LET A=FNDQUBLE(5)

The user-defined function DOUBLE is called with an argument of 5. NBASIC looks up
the function name and substitutes 5 for the argument X. The result of X*2, in this case 10
(5*2), is returned as the result and assigned to the variable A. Any numeric expression
can be passed as the argument. If a string value is passed as the argument, a Type
mismatch error occurs.

A user-defined function can be defined without any parameters. For example,

53

10 DEF FNHALFPI =1. 5707963267949

defines a function that returns a constant value (Pi/2).
Functions can be defined with multiple arguments, for example,
10 DEF FNAVQ X, Y) =(X+Y)/2

defines a function that accepts two numeric arguments X and Y. The function computes
the average of the two numbers.

User defined functions can also accept string parameters. For example,

10 DEF FNCNTRSTR(S$, W =(W LEN(S$))/ 2

defines a function that accepts a string argument S$ and a numeric argument W.

User defined functions can include other user-defined functions in the definition provided

that they have already been defined. User defined functions cannot be called recursively,
which means they cannot reference themselves in their own definition.

5.25 Variables

54

Variables contain the data a program is using and can be either numeric or string.

Variable names can be up to thirty-one (31) characters, may contain letters or digits but
must begin with a letter and are case insensitive. Variables names ending with a dollar
sign ($) are string variables and variables that do not end in a dollar sign are numeric.
Variable names cannot begin with the names of statements or built-in functions.

Variables are created when they are first used. Numeric variables are initialized to zero
(0) while string variables are initialized to an empty string.

The single letter numeric variables named A-Z are statically allocated by the system and
are always available and faster then normally allocated variables.

To delete all variables, use the INIT statement.

How To

6.1 Access The Context Menu

To access the context menu, close any dialogs that may be open in NBASIC. Right click
the mouse anywhere within the NBASIC window client area. The context menu will be
displayed where you clicked the mouse. Use the mouse or keyboard to select options
from the menu.

6.2 Create A Volume

To create a new volume, you map a Windows folder to a NBASIC volume name. Right-
click the mouse anywhere within the NBASIC client window to display the context menu
(in command mode). Select Volumes... in the menu to display the Volumes dialog. Click
on the Add.. button to display the Add dialog. Enter the name of the volume up to fifteen
characters (only letters and numbers are allowed). Enter the name of the Windows folder
to map to the volume or click Browse.. to browse for a Windows folder. If you want the
volume to be the default volume select the Default check box. If you want the volume to
be read-only select the Read Only check box. Read only volumes do not allow files to be
created, modified, renamed or deleted. Click on OK to create the new volume. The new
volume will be displayed in the list. Click on Close to close the Volumes dialog box.

6.3 Get Help
There are a number of ways to get help while using NBASIC.

You can press the F1 key at anytime to display a list of help topics from which to choose
from.

Or you can right-click anywhere within the NBASIC client window to display the context
menu and select Help Topics to display the help table of contents or index.

All of the dialogs used in NBASIC have context help by clicking on the question mark (?)
at the top right corner of the dialog, which can be used to display help about each control
in the dialog. You can also get an overview of the entire dialog by clicking the Help
button.

You can also use the HELP statement. Type HELP and press the key to get a
list of help topics or type HELP followed by a topic you wish to get help on in quotes. For
example, typing HELP "cl s" and pressing the key displays all help topics that
match “cls". Select the help topic you want help on from the list.

6.4 Load A Program
To load an existing program, use the LOAD statement.
In immediate mode, type LOAD followed by the name of the program to load enclosed in

double quotes and press the ENTER| key. If the program is located in a volume that is
not the default volume, include the volume name as part of the file name.

55

For example, LOAD "HELLO.BAS" loads the program HELLO.BAS from the default
volume. LOAD "GAMES:CARD.BAS" loads the program CARD.BAS from the volume
GAMES.

To run the program immediately use ,R after the file name (e.g. LOAD "HELLO. BAS", R).

6.5 Print A Program

To print the current program, right click the mouse in the NBASIC client window to display
the context menu. Select Print... from the context menu. Select the printer and print
options and click OK.

To print specific lines in the current program, use the LLIST statement.

6.6 Save A Program

56

To save the current program, use the SAVE statement.

In immediate mode, type SAVE followed by the name of the program to load enclosed in
double quotes and press the key. If the program is to be saved on a volume that
is not the default volume, include the volume name as part of the file name. The SAVE
statement will overwrite an existing file with the same name.

For example, SAVE " HELLO. BAS" saves the program HELLO.BAS on the default
volume. SAVE " GAMES: CARD. BAS" saves the program CARD.BAS on the volume
GAMES.

To save the file as ASCII use ,A after the file name (e.g. SAVE "HELLO. BAS", A).

Part Il

NBASIC Reference

Part Il provides a reference for the statements and functions available in NBASIC. It
includes a list of error codes that may be encountered in using NBASIC. Part Il also
contains a reference for control and editing keys used in NBASIC.

57

7

Statements

7.1 $COLOR Statement (meta-command)

Restores the default foreground and background colors when a program ends.

| $COLOR

Remarks

If the $COLOR statement is placed in a program, when the program ends (or stops),
the default foreground and background colors are restored.

The $COLOR statement can be specified anywhere in the program.

Mode

Program only
7.2 $PRINT Statement

Prints the current program.

[$PRINT

Remarks

The $PRINT statement performs the same function as selecting Print... from the
context menu.

Mode

Immediate only

See Also
LLIST

7.3 $XREF Statement

Cross-references the current program.

| $XREF

Remarks

The $XREF statement lists each line that is referenced in the program and the lines
containing the reference.

Mode

Immediate only

59

7.4 * Statement

Defines a label.

| *label

Parameters

label
Name of label.

Remarks

Labels can be used anywhere a line number is used.

The label definition must be the first statement in the line and only one label definition
is permitted. Label names can be up to 31 characters and must begin with a letter.

Examples
10 *BEG N. CLS

Mode

Immediate, Program

See Also
GOTO, GOSUB

7.5 ABOUT Statement

Displays program information, version number, and copyright.

| ABOUT

Mode

Immediate, Program

See Also

VER

7.6 APPEND Statement (standard version only)

Appends a file to another file.

| APPEND filespecl TO filespec2

_or-

| A. filespecl TO filespec2 (Version 1.5 or later)

Parameters

filespecl
Name of existing file.

60

filespec2
Name of new or existing file.

Remarks

The APPEND statement can be used to append an existing file to another file.

The filespec and filespec2 parameters may contain the wildcard characters * and ?.
(Version 1.5 or later)

Examples

APPEND " TEST. DAT" TO " CONFI G DAT"

APPEND " PROGRAMS: TEST. DAT" TO " DATA: TEST. DAT"
APPEND "*.LOG' TO "HI STORY. TXT"

APPEND "*. TXT" TO "*.DCC

Mode

Immediate, Program

See Also

COPY, MOVE, RENAME

7.7 APPEND Statement, editing (standard version only)

Appends a line in the current program to another line.

| APPEND line1 TO line2[{E | D | ED}]

_or-

| A.linel TO line2[,{E | D | ED}] (Version 1.5 or later)

Parameters

linel
Line number of line to append.

line2
Line number of destination line.

Remarks

The APPEND statement appends an existing line in the current program to another
existing line.

Use ,E to edit the destination line and/or ,D to delete the line being appended.

Examples

APPEND 80 TO 70
APPEND 150 TO 140, E
APPEND 150 TO 140, ED
APPEND 205 TO 200, D

Mode

61

Immediate only

See Also

COPY, MOVE, SWAP

7.8 ARC Statement (standard version only)

Draws an arc.

| ARC (x,y),radius],[color][,[start][,[end][,[aspect][,F]]]]]

Parameters

X
X coordinate of center of circle.

y
Y coordinate of center of circle.

radius
Radius of arc.

color
Color of arc.

start
Starting angle of arc in radians.

end
Ending angle of arc in radians.

aspect
Ratio of length of y-axis to length of x-axis used to draw ellipses.

Remarks

The ARC statement can be used to draw circles, ellipses, and arcs. To draw a circle
aspect must be 1 or omitted. To draw ellipses aspect can be less than 1 for ellipses
stretched on the x-axis or greater than 1 for ellipses stretched on the y-axis. To draw
arcs specify the start and end angles.

Use ,F to fill in a circle.

If color is omitted the default is the current graphics foreground color. If start is
omitted the default is 0. If end is omitted the default is 0. if aspect is omitted the
default is 1.

Graphics must be turned on to draw circles.

The ARC statement is equivalent to the CIRCLE statement and is provided for
compatibility.
Examples

ARC (100, 100), 50
ARC (200, 200), 10,5, ,,, F
ARC (150, 150), 100, , , , 2

62

ARC (150, 150), 100, ,,,.5
ARC (50, 50), 25, , . 785, 3. 142

Mode

Program only

See Also

CIRCLE

7.9 ASAVE Statement (Version 1.4 or later)

Saves a program.

| ASAVE filespec

Parameters

filespec
File name of program to save.

Remarks

The ASAVE statement can be used to save the current program. The program is
saved in ASCII format. By convention, programs in ASCII format have an extension
of "bas".

The default extension for the ASAVE statement if not specified in the filespec is
"nba".

Examples

ASAVE " ANALYZE"
ASAVE " PROGRAMS: COUNT. BAS"

Mode

Immediate, Program

See Also

BSAVE, LOAD, SAVE

7.10 ASSERT Statement (standard version only)

Conditionally stops the current program.

| ASSERT condition[,message]

Parameters

condition
Expression that evaluates to true or false.

message
String to display if condition is false.

63

Remarks

The ASSERT statement can be used to verify conditions in a program being tested.
If condition is false, the program is stopped and message is displayed.

Debugging must be turned on for asserts to stop execution.

Examples

ASSERT | TEM5>100
ASSERT | NDEX<>0, "I NDEX | S ZERO "

Mode

Immediate, Program

See Also
DEBUG

7.11 AT Statement

Moves the cursor to a specified position on the screen.

| AT row,column

Parameters

row
Row where cursor is to be moved.

column
Column where cursor is to be moved.

Remarks

The screen has 25 rows numbered 0 through 24 and 80 columns numbered 0O
through 79.

The AT statement is equivalent to the LOCATE statement and is provided for
compatibility.

Examples
AT 10,0

Mode

Immediate, Program

See Also
LOCATE

7.12 ATTACH Statement (Version 1.5 or later)

Attaches screen output to a file.

| ATTACH {#file | LPRINT}

64

Parameters

file
File number of open file or printer (-2) to attach.

Remarks

The ATTACH statement causes screen output to be copied to a file or printer.
Only one file can be attached at a time.

Examples

ATTACH #1
ATTACH LPRI NT

Mode

Immediate, Program

See Also

DETACH, OPEN
7.13 ATTRIB Statement

Displays or changes the read-only attribute of a file.

| ATTRIB filespec

_or-

| AT. filespec (Version 1.5 or later)

_or-

| ATTRIB {+ | -JR filespec

_Or-

| AT. {+ | -IR filespec (Version 1.5 or later)

Parameters

filespec
File name of file whose read-only attribute will be displayed or changed.

Remarks

The ATTRIB statement can be used to display the read-only attribute of a file. If +R
or -R is specified the read-only attribute is either added or removed.

The default extension for the ATTRIB statement if not specified in the filespec is
"nba".

The filespec parameters may contain the wildcard characters * and ?. (Version 1.5 or
later)

Examples

65

ATTRI B " TEST. DAT"
ATTRI B +R " TEST. DAT"
ATTRI B -R "TEST. DAT"
ATTRI B "*. DAT"
ATTRIB +R "*. TXT"

Mode

Immediate only (first form), Immediate or Program (second form)

See Also

ATTRIB$

7.14 AUTO Statement (standard version only)

Turns automatic line numbering on or off.

| AUTO ON[,increment]

_or-

| AUTO OFF

Parameters

increment
Increment for each new line number.

Remarks

The AUTO statement can be used to automatically generate line numbers when
entering a program. After each line is entered, the line number is incremented by
increment and is automatically entered as part of the next line. If a line already exists
with this line number, a new line number is not automatically generated.

If increment is omitted the default is 10.

Examples

AUTO ON
AUTO ON, 10
AUTO OFF

Mode

Immediate only
7.15 BACKUP Statement

Copies files in a volume to another volume.

| BACKUP volumel TO volume2

_Or-

| B. volumel TO volume2 (Version 1.5 or later)

66

Parameters

volumel
Volume to copy files from.

volume2
Volume to copy files to.

Remarks

The BACKUP statement can be used to backup all the files in a volume to another
volume.

Example
BACKUP " DATA" TO "ARCH VE"

Mode

Immediate, Program
7.16 BEEP Statement

Generates a beep sound from the computer’s speakers.

| BEEP

Remarks

The sound generated depends on the host operating system's sound settings.

Mode

Immediate, Program

See Also
SOUND

7.17 BKOFF Statement (Version 1.4 or later)
Turns trapping of the key off.

| BKOFF

Remarks

Pressing the BREAK| key will stop the current program or statement. If trapping is
BREA

turned off, the key is ignored.

Mode

Immediate, Program

See Also

BKON, ON BREAK

67

7.18 BKON Statement (Version 1.4 or later)
Turns trapping of the key on.

| BKON

Remarks

Pressing the BREAK| key will stop the current program or statement. If trapping is
turned off, the BREAK|key is ignored.

Mode

Immediate, Program

See Also

BKOFF, ON BREAK

7.19 BOX Statement (standard version only)

Draws a box.

| BOX (x1,y1)-(x2,y2)[,[color][,FI]

Parameters

x1
X coordinate of corner of box.

yl
Y coordinate of corner of box.

X2
X coordinate of opposite corner of box.

y2
Y coordinate of opposite corner of box.

color
Color of box.

Remarks

The BOX statement can be used to draw boxes. A box is a rectangle specified by
the corner coordinates (x1,y1) and the opposite corner coordinates (x2,y2).

Use ,F to fill in the box.
If color is omitted the default is the current graphics foreground color.
Graphics must be turned on to draw boxes.

Examples

BOX (10, 10) - (100, 100)
BOX (20, 20) - (40, 40), 5
BOX (25, 25)-(30,30), 8, F

68

Mode

Program only

See Also
CHORD, CIRCLE, DRAW, GRAPH, LINE, PAINT, PCOLOR, PIE

7.20 BREAK Statement

Turns trapping of the BREAK| key on or off.

| BREAK {ON | OFF}

Remarks

Pressing the BREAK| key will stop the current program or statement. If trapping is
turned off, the BREAK|key is ignored.

Examples

BREAK ON
BREAK COFF

Mode

Immediate, Program

See Also

BKOFF, BKON, ON BREAK

7.21 BREAK Statement, debugging (standard version only)

Lists or sets breakpoints.

| BREAK

_Or-

| BREAK line[line]...

_Or-

| BREAK [line][-[line]][,[line][-[line]]]... (Version 1.2 or later)

Parameters
line
Line number or label where breakpoint is to be set.

Remarks

The BREAK statement can be used to set breakpoints in a program being tested.
When a line that has a breakpoint set is executed, the program stops at that line and
control is returned to immediate mode.

BREAK with no parameters lists all breakpoints.

69

The CONT statement can be used to continue execution after a breakpoint stops a
program.

Debugging must be turned on for breakpoints to stop execution.

Examples

BREAK
BREAK 100, 150
BREAK 200, * REDO
BREAK - 10, 20, 50- 100, 900-
Mode
Program only (first form), Immediate or Program (second form)

See Also
DEBUG, NOBREAK

7.22 BSAVE Statement (Version 1.4 or later)

Saves a program.

| BSAVE filespec

Parameters

filespec
File name of program to save.

Remarks

The BSAVE statement can be used to save the current program. The program is
saved in NBASIC binary format. By convention, programs in binary format have an
extension of "nba".

The default extension for the BSAVE statement if not specified in the filespec is
"nba”.

Examples

BSAVE " ANALYZE"
BSAVE " PROGRAMS: COUNT. NBA"

Mode

Immediate, Program

See Also

ASAVE, LOAD, SAVE

70

7.23 BYE Statement

Exits NBASIC.

| BYE

Remarks

The BYE statement exits NBASIC and prompts to save the current program if
modified.

The BYE statement is equivalent to the EXIT statement and is provided for
compatibility.

Mode

Immediate only

See Also

EXIT

7.24 CALL CLEAR Statement (Version 1.4 or later)

Clears the screen.

| CALL CLEAR

Remarks

The CALL CLEAR statement clears the screen using the current background color
and sets the cursor position to 0,0.

The CALL CLEAR statement is equivalent to the CLS statement and is provided for
compatibility.

Mode

Immediate, Program

See Also

CALL SCREEN, CLS

7.25 CALL SCREEN Statement (Version 1.4 or later)

Sets the screen display color.

| CALL SCREEN(color)

Parameters

color
Background text color.

Remarks

71

The CALL SCREEN statement sets the background text color, clears the screen and
sets the cursor position to 0,0.

Mode

Immediate, Program

See Also

CALL CLEAR, CALL VCHAR

7.26 CALL VCHAR Statement (Version 1.4 or later)

Displays a character

| CALL VCHAR(row,column,characer|,repeat])

Parameters

row
Starting row.

column
Starting column.

character
Character to display

repeat
Number of characters to display.

Remarks

The CALL VCHAR statement displays a character in one or more rows.
If repeat is omitted the default is 1.

Examples

CALL VCHAR(O, 0, "*")
CALL VCHAR(O, 0, "#", 25)

Mode

Immediate, Program

See Also

CALL CLEAR, CALL SCREEN

7.27 CATALOG Statement (Version 1.1 or later)

Lists files on a volume.

| CAT[ALOG]

Remarks

The CATALOG statement lists the files on a volume and information about each file.

72

Examples

CATALOG
CAT

Mode

Immediate only

See Also
DIR

7.28 CHAIN Statement

Transfers control from the current program to another program.

| CHAIN filespec

_Or-

CHAIN filespec,line

Parameters

filespec
File name of program to transfer control to.

line
Line number or label where execution is to start.

Remarks

The CHAIN statement transfers control to the specified program without initializing
variables or closing open files.

The default extension for the CHAIN statement if not specified in the filespec is "nba".

Examples

CHAI N " ANALYZE"
CHAI' N " CAPTURE. BAS", 100
CHAI' N " PROGRAMS: SCRT. BAS", * START

Mode

Immediate, Program

See Also
RUN

7.29 CHKIO Statement

Checks for lines in the current program that contain file input/output statements.

| CHKIO [line][-[line]]

73

_Or-

CHKIO [line][-[line]][,[line][-[line]]]... (Version 1.2 or later)

Parameters
line
Line number of line to check.
Remarks

The CHKIO statement is useful to check programs downloaded from the Internet for
statements that may delete or overwrite files.

If line is omitted all lines are checked.

Examples

CHKI O

CHKI O 100

CHKI O 10-

CHKI O 10- 100

CHKI O - 100

CHKI O - 10, 20, 50-100, 900-

Mode

Immediate only

7.30 CHKSW Statement (standard version only)

Checks for lines in the current program that contain non-shareware statements or
functions.

| CHKSW [line][-[line]]

_Or-

| CHKSW [line][-[line]][,[line][-[line]]]... (Version 1.2 or later)

Parameters
line
Line number of line to check.
Remarks

The CHKSW statement is useful to check if programs can run on the shareware
release of NBASIC since some statements and functions (e.g. graphics) are only
available in the standard release.

If line is omitted all lines are checked.

Examples

CHKSW

CHKSW 100
CHKSW 10-
CHKSW 10- 100

74

CHKSW - 100
CHKSW - 10, 20, 50- 100, 900-

Mode

Immediate only
7.31 CHKSYN Statement (standard version only)

Checks for lines in the current program that contain syntax errors.

| CHKSYN [line][-[line]]

_or-

| CHKSYN [line][-[line]][,[line][-[line]]]... (Version 1.2 or later)

Parameters

line
Line number of line to check.

Remarks

The CHKSYN statement is useful to check programs for syntax errors that may not

be found by running the program.
If line is omitted all lines are checked.

Examples

CHKSYN

CHKSYN 100

CHKSYN 10-

CHKSYN 10- 100

CHKSYN -100

CHKSYN - 10, 20, 50- 100, 900-

Mode

Immediate only

7.32 CHKUL Statement (standard version only)

Checks for lines in the current program that contain undefined line numbers.

| CHKUL [line][-[line]]

_Or-

| CHKUL [line][-[line]][,[line][-[line]]]... (Version 1.2 or later)

Parameters

line
Line number of line to check.

Remarks

75

The CHKUL statement is useful to check programs for undefined line numbers that
may not be found by running the program.

If line is omitted all lines are checked.

Examples

CHKUL

CHKUL 100

CHKUL 10-

CHKUL 10-100

CHKUL - 100

CHKUL - 10, 20, 50- 100, 900-

Mode

Immediate only

7.33 CHORD Statement (standard version only)

Draws a chord.

| CHORD (x,y),radius[,[color][,[start][,[end][,[aspect][,F]]]]]

Parameters

X
X coordinate of center of chord.

y
Y coordinate of center of chord.

radius
Radius of chord.

color
Color of chord.

start
Starting angle of chord in radians.

end
Ending angle of chord in radians.

aspect
Ratio of length of y-axis to length of x-axis used to draw elliptical chords.

Remarks

The CHORD statement can be used to draw a chord of a circle or ellipse. A chord is
an arc specified by the start and end angles with the endpoints connected.

Use ,F to fill in the chord.

If color is omitted the default is the current graphics foreground color. If start is
omitted the default is 0. If end is omitted the default is 0. if aspect is omitted the
default is 1.

76

Graphics must be turned on to draw chords.

Examples

CHORD (50, 50), 25, ,.785, 3. 142
CHORD (100, 100), 50, 5,, 2. 356, , F

Mode

Program only

See Also

BOX, CIRCLE, DRAW, GRAPH, LINE, PAINT, PCOLOR, PIE

7.34 CIRCLE Statement (standard version only)

Draws a circle.

| CIRCLE (x,y),radius][,[color][,[start][,[end][,[aspect][,F]]]]]

Parameters

X
X coordinate of center of circle.

y
Y coordinate of center of circle.

radius
Radius of circle.

color
Color of circle.

start
Starting angle of arc in radians.

end
Ending angle of arc in radians.

aspect
Ratio of length of y-axis to length of x-axis used to draw ellipses.

Remarks

The CIRCLE statement can be used to draw circles, ellipses, and arcs. To draw a
circle aspect must be 1 or omitted. To draw ellipses aspect can be less than 1 for
ellipses stretched on the x-axis or greater than 1 for ellipses stretched on the y-axis.
To draw arcs specify the start and end angles.

Use ,F to fill in the circle.

If color is omitted the default is the current graphics foreground color. If start is
omitted the default is 0. If end is omitted the default is 0. if aspect is omitted the
default is 1.

Graphics must be turned on to draw circles.

77

Examples

Cl RCLE (100, 100), 50

Cl RCLE (200, 200), 10,5, ,,, F

Cl RCLE (150, 150), 100, , , , 2

Cl RCLE (150, 150), 100, , ,,.5

Cl RCLE (50, 50), 25, , . 785, 3. 142

Mode

Program only

See Also

BOX, CHORD, DRAW, GRAPH, LINE, PAINT, PCOLOR, PIE
7.35 CLEAR Statement

Clears one or more array variables.

| CLEAR

_or-

CLEAR variable[,variable]...

Parameters

variable
Array variable to clear.

Remarks

The CLEAR statement resets all elements of numeric array variables to 0 and string

array variables to "
CLEAR with no parameters clears all array variables.

Examples

CLEAR
CLEAR ENTRI ES, USERS$

Mode

Immediate, Program

See Also

ERASE
7.36 CLOSE Statement

Closes one or more open files or the printer.

| CLOSE

_or-

78

CLOSE #file[,#file]...

Parameters

file
File number of open file or printer (-2) to close.

Remarks

The CLOSE statement writes any remaining data in the file buffer to the file and
closes the file.

CLOSE with no parameters closes all open files.
CLOSE #-2 ends the print job and closes the printer.

Examples

CLGSE
CLOSE #1

Mode

Immediate, Program

See Also

OPEN, RESET, UNLOAD

7.37 CLOSE PRINTER Statement (Version 1.1 or later, standard version only)

Closes the printer.

| CLOSE PRINTER

Remarks

The CLOSE PRINTER statement ends the print job and closes the printer.

Mode

Program only

See Also

OPEN PRINTER

7.38 CLR Statement

Clears a row or clears variables.

| CLR row[,[column][,[columns][,rows]]]

_or-

| CLR (Version 1.5 or later)

Parameters

79

row
Starting row.

column
Starting column.

columns
Number of columns to clear.

rows
Number of rows to clear.

Remarks

The CLR statement clears a number of rows and columns using the current
background color and sets the cursor position to row,column.

If column is omitted the default is 0. if columns is omitted the default is the last
column. If rows is omitted the default is 1.

CLR with no parameters resets numeric variables to 0, string variables to " and
deletes numeric and string array variables.

Examples

CLR 5

CLR 1,0,5,2
CLR 0,, 10
CLR

Mode

Immediate, Program

See Also

CLS

7.39 CLS Statement

Clears the screen.

| cLs

Remarks

The CLS statement clears the screen using the current background color and sets
the cursor position to 0,0.

Mode

Immediate, Program

See Also

CLR

80

7.40 CMD Statement (Version 1.5 or later)
Copies screen output to a file.

| CMD file[,expression]

Parameters
file
File number of open file or printer (-2) to copy output to.

expression
Data to copy to file.

Remarks

The CMD statement causes screen output to be copied to a file or printer and prints
the value of expression to the file or printer specified.

Use PRINT #file to stop screen output from being copied.

The CMD statement is similar to the ATTACH statement and is provided for

compatibility.
Examples
C\vD 1
C\VMD 1, "Test Data"
PRI NT #1
Mode

Immediate, Program
See Also

ATTACH, OPEN, PRINT

7.41 COLOR Statement

Sets the screen display colors.

| COLOR foreground[,background]

Parameters

foreground
Foreground text color.

background
Background text color.

Remarks

The COLOR statement can be used to set the foreground and background text
colors.

If background is omitted the background color is not changed.

81

Examples

COLCR 12
COLOR 0, 10

Mode

Immediate, Program

See Also
INVERSE, COLOR

7.42 COLOR Statement, graphics (Version 1.4 or later, standard version only)

Sets the graphics foreground color.

| COLOR=foreground

Parameters

foreground
Foreground graphics color.

Remarks

The COLOR statement can be used to set the foreground graphics colors.
Graphics must be turned on to set the graphics colors.

The COLOR statement is similar to the PCOLOR statement and is provided for
compatibility.

Examples
COLOR=4

Mode

Program only

See Also

HCOLOR, PCOLOR

7.43 CONCAT Statement (Version 1.5 or later, standard version only)

Appends a file to another file.

| CONCAT filespecl TO filespec2

Parameters

filespecl
Name of existing file.

filespec2
Name of new or existing file.

82

Remarks

The CONCAT statement can be used to append an existing file to another file.

The CONCAT statement is equivalent to the APPEND statement and is provided for
compatibility.

Examples

CONCAT " TEST. DAT" TO " CONFI G. DAT"
CONCAT " PROGRAMS: TEST. DAT" TO " DATA: TEST. DAT"

Mode

Immediate, Program

See Also
APPEND

7.44 CONFIRM Statement

Turns confirmation of statements that may erase data on or off.

| CONFIRM {ON | OFF}

Remarks

If confirmation is turned on, statements that may erase or overwrite data display a
prompt allowing the operation to continue or be cancelled.

Only statements that are executed in immediate mode will display a prompt.

Mode

Immediate only

Examples

CONFI RM ON
CONFI RM OFF

See Also
SECURE

7.45 CONT Statement

Continues execution of the current program after a break.

| CONT

Remarks

The CONT statement can be used to continue a program that has been stopped with
the BREAK key, a STOP statement or a breakpoint (standard version only).

83

If any changes are made to the program after a break, the CONT statement cannot
continue execution. The program will have to be restarted using the RUN statement.

Mode

Immediate only

See Also

RUN, STOP
7.46 CONTINUE Statement (Version 1.4 or later)

Continues execution of the current program after a break.

| CON[TINUE]

Remarks

The CONTINUE statement can be used to continue a program that has been stopped
with the BREAK key, a STOP statement or a breakpoint (standard version only).

If any changes are made to the program after a break, the CONTINUE statement

cannot continue execution. The program will have to be restarted using the RUN
statement.

The CONTINUE statement is equivalent to the CONT statement and is provided for
compatibility.

Mode

Immediate only

Examples

CONTI NUE
CON

See Also
CONT

7.47 COPY Statement

Copies a file to another file.

| COPY filespecl TO filespec2

_Or-

| C. filespecl TO filespec2 (Version 1.5 or later)

Parameters

filespecl
Name of existing file.

filespec2

84

Name of new file.

Remarks

The COPY statement can be used to copy an existing file to another file or volume.

The filespec and filespec2 parameters may contain the wildcard characters * and ?.
(Version 1.5 or later)

Examples

COPY "TEST. DAT" TO " CONFI G. DAT"

COPY " PROGRAMS: TEST. DAT" TO " DATA: TEST. DAT"
COPY "*.DOC' TO "TEMP: "

COPY "*. TXT" TO "*.DCC

COPY "*.LOG' TO "HI STORY. TXT"

Mode

Immediate, Program

See Also

APPEND, MOVE, RENAME

7.48 COPY Statement, editing (standard version only)

Copies a line in the current program to another line.

| COPY linel TO line2[E]

_Or-

| C. linel TO line2[,E] (Version 1.5 or later)

Parameters

linel
Line number of line to copy.

line2
Line number of destination line.

Remarks

The COPY statement copies an existing line in the current program to another line.
The destination line is overwritten if it already exists. Line numbers in the destination
line that refer to the line being copied are automatically changed to the destination
line number.

Use ,E to edit the destination line.

Examples

COPY 10 TO 50
COPY 20 TO 100, E

Mode

85

Immediate only

See Also

APPEND, MOVE, SWAP

7.49 CREATE Statement

Creates a file.

| CREATE filespec

_Or-

| CR. filespec (Version 1.5 or later)

Parameters

filespec
Name of file to create.

Remarks

The CREATE statement creates an empty file. If the file exists it is truncated to 0
length.

The default extension for the CREATE statement if not specified in the filespec is
"dat".

Examples

CREATE " TEST. DAT"

Mode

Immediate, Program

7.50 CURSOR Statement

Turns the cursor on or off.

| CURSOR {ON | OFF}

Examples

CURSOR ON
CURSOR OFF

Mode

Immediate, Program

See Also
LOCATE

86

7.51 DATA Statement

Specifies values to be read by subsequent READ statements.

| DATA value[,value]...

Parameters

value
A numeric or string constant.

Remarks

String constants that contain commas (,), colons (:), leading or trailing spaces should

be enclosed in quotation marks (").

DATA statements can be placed anywhere within a program except after a REM
statement.

Examples

DATA 1,2,3,A/ B, C

DATA "Hello, world!", 1000
DATA &H1F, &0377, &B1001
DATA -1.2345E10, 9. 876E-12

Mode

Program only

See Also

READ, RESTORE

7.52 DEBUG Statement (standard version only)

Turns debugging on or off.

| DEBUG {ON | OFF}

Remarks

The DEBUG statement can be used to enable or disable debugging when a program

is run. After setting breakpoints turn debugging on. When the program reaches a
breakpoint, it will stop. To run the program without stopping at breakpoints turn
debugging off rather than clearing breakpoints.

Examples

DEBUG ON
DEBUG COFF

Mode

Immediate, Program

See Also
ASSERT, BREAK, STEP

87

7.53 DEC Statement (standard version only)

Decrements one or more numeric variables by 1.

| DEC variable[,variable]...

Parameters

variable
Numeric variable to decrement.

Examples

DEC A
DEC | TEM5, USERS

Mode

Immediate, Program

See Also
INC

7.54 DEF FN Statement

Defines a function.

| DEF FN function[(parameterlist)]=expression

Parameters

function
Name of function.

parameterlist
One or more arguments.

expression
Return value of function.

Remarks

The DEF FN statement can be used to create a user-defined numeric function. The
user-defined function can have up to ten parameters in the parameter list. The
parameters can be numeric or string.

The expression must evaluate to a numeric value. If expression contains other user-
defined functions, they must be defined prior to the DEF FN statement that calls
them.

Examples

DEF FN DOUBLE(X) =X* 2

DEF FN E=2. 718281828459

DEF FN CENTER(A$) =(80- LEN(A$))/ 2
DEF FN AVE(X, Y) =(X+Y)/ 2

88

Mode

Program only

See Also
FN

7.55 DEL Statement

Deletes lines from the current program.

| DEL {line[-line] | -line}

_Or-

| DEL {line[-line] | -line}[{line[-line] | -line}]... (Version 1.2 or later)

Parameters
line
Line number of line to delete.
Examples

DEL 100

DEL 10-90

DEL -200

DEL -10, 20, 50- 100, 900-

Mode

Immediate only
7.56 DELETE Statement

Deletes a record from a file.

| DELETE #ile,record

Parameters

file
File number of open random access file.

record
Record number of record to delete.

Remarks

The DELETE statement deletes a record from a random access file, moves
subsequent records down, and truncates the file.

Example
DELETE #1, 5

Mode

89

Immediate, Program

See Also
INSERT, OPEN

7.57 DETACH Statement (Version 1.5 or later)

Detaches screen output to a file.

| DETACH {#file | LPRINT}

Parameters

file
File number of open file or printer (-2) to detach.

Remarks

The DETACH statement stops screen output from being copied to a file or a printer.

Examples

DETACH #1
DETACH LPRI NT

Mode

Immediate, Program

See Also

ATTACH, OPEN
7.58 DIM Statement

Declares an array.

| DIM array(subscripts)[,array(subscripts)]...

Parameters

array
Name of array.

subscripts
Dimensions of array.

Remarks

An array may have up to ten dimensions and 65536 elements per dimension
(including element 0). However, the maximum size of the array including all
dimensions cannot exceed 16777216 elements. The maximum size of the array is
also constrained by available memory.

Elements of numeric arrays are initialized to 0 and elements of string arrays are

initialized to "".

90

If OPTION BASE 1 is specified, array elements begin at index 1 not 0.

Examples

DI M A(20, 20)
DI M B$(100) , C(5, 20)

Mode

Immediate, Program

See Also
ERASE, OPTION BASE, OPTION EXPLICIT, REDIM

7.59 DIR Statement

Lists files on a volume.

| DIR [filespec]

Parameters

filespec
Files to list.

Remarks

The DIR statement lists the files on a volume and information about each file.

The filespec parameter may contain the wildcard characters * and ?. If the filespec

contains only a volume name the colon () must be included. If the filespec does not

include a volume name, the default volume is used.
If filespec is omitted, files on the default volume are listed.

Examples

DR

DR "TEST. *"
DR "*. DAT"

DI R " EXAVPLES: "

Mode

Immediate only

See Also
VOLUME, VOLUMES

7.60 DIRR Statement

Lists built-in programs.

| DIRR

Mode

91

Immediate only

See Also

LOADR, RUNR

7.61 DISPLAY Statement (Version 1.5 or later)

Writes output to the screen.

| DISPLAY [expression] [{, | ; | SPC(spaces) | TAB(column)} [expression]]...

Parameters

expression
Data to print.

spaces
Number of spaces to output.

column
Column where output is to start.

Remarks

A, (comma) starts printing at the next print zone. Print zones are 10 characters
wide. A ; starts printing immediately after the last value printed. SPC prints a
specified number of spaces. TAB starts printing at the specified column.

If any delimiters (, | ; | SPC | TAB) are not specified as the last item in the print
statement a carriage return is printed erasing the rest of the line and moving the print
position to the beginning of the next line.

The DISPLAY statement is similar to the PRINT statement and is provided for
compatibility.
Examples

DI SPLAY

DI SPLAY "HELLO'

DI SPLAY " ABC', "123"

DI SPLAY 100;" APPLES"

DI SPLAY "TOTAL:" SPC(5) T
DI SPLAY #1, "ITEMs:"; |

Mode

Immediate, Program

See Also
PRINT

7.62 DLOAD Statement (Version 1.4 or later)

Loads a string from a file.

| DLOAD filespec,variable

92

Parameters

filespec
Name of file to load string from.

variable
Variable to load file into.

Remarks

The DLOAD statement can be used to load the contents of a file into a string
variable.

The maximum file size that can be loaded is limited to the maximum string length
which is 65535 characters.

The default extension for the DLOAD statement if not specified in the filespec is
"dat".

Examples
DLOAD " NAMES. TXT", N$

Mode

Immediate, Program

See Also
DSAVE

7.63 DRAW Statement (standard version only)

Draws objects.

| DRAW command

Parameters

command
String containing draw commands.

Remarks

Draw commands:

D[n] Moves graphics cursor down n pixels.

E[n] Moves graphics cursor up and right n pixels.

F[n] Moves graphics cursor down and right n pixels.

G[n] Moves graphics cursor down and left n pixels.

H[n] Moves graphics cursor up and left n pixels.

L[n] Moves graphics cursor left n pixels.

M[{+ | -}Ix,y Moves graphics cursor to point x,y. If x is preceded by + or -,
moves relative to the current graphics point.

R[n] Moves graphics cursor right n pixels.

U[n] Moves graphics cursor up n pixels.

[B] Optional prefix that moves graphics cursor without drawing.

93

[N] Optional prefix that draws and returns graphics cursor to
original position.

An Sets the drawing angle (0-3) (Version 1.4 or later).

Cn Sets the drawing color (0-15).

Sn Sets the drawing scale (1-255) (Version 1.4 or later).

Pf,b Paints a graphics area using color f. Painting stops at border
color b.

Xv$ Draws a substring (Version 1.4 or later).

{; | space} Separates drawing commands.

The drawing angle rotates the object in increments of 90 degrees.

To draw a substring use the VARPTRS$ function to get the address of the string
variable containing the substring draw.

Graphics must be turned on to draw objects.

Examples

DRAW " M200, 200; D50; R50; U50; L50; BM225, 225; P10, 0"
A$="D50; R50; U50; L50; "
DRAW " M200, 200; X" +VARPTR$(A$) +" BM225, 225; P10, 0"

Mode

Program only

See Also

BOX, CHORD, CIRCLE, GRAPH, LINE, PAINT, PCOLOR, PIE, VARPTR$
7.64 DSAVE Statement (Version 1.4 or later)

Saves a string to a file.

| DSAVE filespec,string

Parameters

filespec
Name of file to save string to.

string
String to save.

Remarks

The DSAVE statement can be used to save a string to a file.

The longest string that can be saved is limited by the maximum string length which is
65535 characters.

The default extension for the DSAVE statement if not specified in the filespec is "dat".

Examples
DSAVE " NAMES. TXT", N$

94

Mode

Immediate, Program

See Also
DLOAD

7.65 DUMP Statement

Displays the contents of a file.

| DUMP filespec|,format]

Parameters

filespec
Name of file to dump.

format
Format of display.

Remarks

The format parameter may be A (ascii), O (octal) or D (decimal).
If format is omitted, the default is hexadecimal.

Examples

DUMP " TEST. DAT"
DUWVP " TEST. DAT", A

Mode

Immediate only

See Also

TYPE

7.66 EDIT Statement

Edits a line in the current program.

| EDIT line

_Or-

| EDIT {line[-line] | -line}[{line[-line] | -line}]... (Version 1.4 or later)

Parameters
line
Line number of line to edit.
Example
EDI T 100

EDI T 10-90
EDI T -200
EDI T -10, 20, 50- 100, 900-

Mode

Immediate only
7.67 END Statement

Ends a program.

| END

Remarks

The END statement ends the currently executing program or immediate mode command
line, closes all open files and closes the printer.

Mode

Immediate, Program

See Also
STOP

7.68 ERASE Statement

Deletes one or more array variables.

| ERASE

_Or-

| ERASE variable[,variable]...

Parameters

variable
Array variable to erase.

Remarks

The ERASE statement deletes an array variable and all of its elements. The array
variable can subsequently be used in a DIM statement.

ERASE with no parameters deletes all array variables.

Examples

ERASE
ERASE ENTRI ES, USERS$

Mode

Immediate, Program

See Also

96

CLEAR, DIM
7.69 ERROR Statement

Simulates an occurrence of an error.

| ERROR error

Parameters

error
Error number.

Remarks

The ERROR statement can be used to test error handling within a program or to
issue user defined errors. User defined errors are in the range of 128 to 255.

Examples

ERROR 24
ERROR 128

Mode

Immediate, Program

See Also
ERL, ERR, ERR$, ON ERROR

7.70 EXEC Statement

Executes an internal routine.

| EXEC address

Parameters

address
Address of internal routine.

Examples
EXEC &HI9305

Mode

Immediate, Program

See Also

PEEK, POKE
7.71 EXIT Statement

Exits NBASIC.

EXIT

Remarks

The EXIT statement exits NBASIC and prompts to save the current program if
modified.

Mode

Immediate only

7.72 FIELD Statement

Allocates space for variables in a random access file buffer.

| FIELD #file,width AS variable[,width AS variable]...

Parameters

file
File number of open random access file.

width
Number of characters in field.

variable
String variable that identifies the field and contains field data.

Remarks

If multiple random access files are open at the same time, specify different field
variables for each file. Do not use field variables in other assignment statements
other than LSET and RSET, the variable will no longer identify the field.

If numeric values will be stored in a field in binary format, the field must be allocated
with a width of 8. Use the MKN$ function to convert a number to a binary string
before storing the data in a field.

Example
FI ELD #1,8 AS | D$, 32 AS USERS$, 12 AS PHONE$

Mode

Immediate, Program

See Also
GET, LSET, OPEN, PUT, RSET, CVN, MKN$

7.73 FILES Statement

Lists files on a volume.

| FILES [filespec]

Parameters

98

filespec
Files to list.

Remarks

The FILES statement lists the files on a volume and information about each file.
The filespec parameter may contain the wildcard characters * and ?. If the filespec
contains only a volume name the colon () must be included. If the filespec does not
include a volume name, the default volume is used.

If filespec is omitted, files on the default volume are listed.

The FILES statement is equivalent to the DIR statement and is provided for

compatibility.
Examples

FI LES

FI LES "TEST. *"

FI LES "*. DAT"

FI LES "EXAVPLES: "

Mode

Immediate only

See Also
DIR

7.74 FILL Statement (standard version only)

Fills a row with a character.

| FILL char,row[,[column][,[columns][,rows]]]

Parameters

char
Character to fill row with.

row
Starting row.

column
Starting column.

columns
Number of columns to fill.

rows
Number of rows to fill.

Remarks

The FILL statement fills a number of rows and columns with the specified character
using the current foreground and background colors.

99

If column is omitted the default is 0. if columns is omitted the default is the last
column. If rows is omitted the default is 1.

Examples

FILL "*",5

FILL"@,1,0,5,2

FILL "+",0,,10

FILL ">",10,5,1,8
Mode

Immediate, Program

7.75 FIND Statement (Version 1.1 or later, standard version only)

Finds a string in the current program.

| FIND {line[-lin€] | -line}

_Or-

| FIND {line[-line] | -line}[,{line[-line] | -line}]... (Version 1.2 or later)

Parameters

string
String to find.

line
Line number of line to search in.

Remarks

The FIND statement searches for string in the current program. If a match is found,
the line containing the string is displayed with each occurrence highlighted.

The search is not case sensitive.
If line is omitted the entire current program is searched.

Example

FI' ND "1 NPUT"
FI ND " PRI NT", 100- 200
FI ND " A=", -100, 1000- 2000

Mode

Immediate only

7.76 FONT Statement (standard version only)

Changes the font size.

| FONT size[,R]

Parameters

100

size
Size of font (in points).

Remarks

The FONT statement changes the size of the screen font to the size specified and
clears the screen.

Use ,R to resize the NBASIC window.

Examples

FONT 10
FONT 12, R

Mode

Immediate only
7.77 FOR Statement

Repeats a block of statements a specified number of times.

| FOR counter=start TO end [STEP increment]

Parameters

counter
Numeric variable used as loop counter.

start
Initial value of counter.

end
Final value of counter.

increment
Amount counter is changed each time through the loop.

Remarks

Each FOR statement must have a matching NEXT statement.

If STEP increment is omitted the default is 1. To decrement a counter specify a
negative increment.

NOTE: A FOR loop is always executed at least once regardless of the end and
increment values.

Examples

FOR I=1 TO 10
FOR J=2 TO 100 STEP 2
FOR K=10 TO 1 STEP -1

Mode

Immediate, Program

101

See Also

NEXT

7.78 FORMAT Statement (Version 1.4 or later, standard version only)

Formats the current program.

| FORMAT {[NOJCAP | [NOJLET}

Remarks

The FORMAT statement changes a program to upper (CAP) or lower (NOCAP) case
or the LET statement to show (LET) or hide (NOLET) the LET keyword.

Examples

FORVAT CAP
FORMAT NOCAP
FORMAT LET
FORMAT NOLET

Mode

Immediate only

See Also
LET

7.79 FRAME Statement

Draws a frame.

| FRAME row,column,columns,rows|,[style][,color]]

Parameters

row
Starting row.

column
Starting column.

columns
Number of columns.

rows
Number of rows.

style
Style of frame.

color
Color of frame.

Remarks

102

The FRAME statement draws a frame columns wide and rows high beginning at
row,column. The style of the frame can be either block (0) or line (1). The interior of
the frame is cleared using the current background text color.

If style is omitted the default is 0. If color is omitted the default is the current
foreground text color.

Examples
FRAME 1, 2, 76, 10
FRAME 1, 2, 76, 10, 1
FRAME 1, 2, 76, 10, 1, 12
FRAME 1, 2, 76, 10, , 12
Mode
Immediate, Program

7.80 FRE Statement

Initializes the run-time environment.

| FRE

Remarks

The FRE statement is equivalent to the INIT statement and is provided for
compatibility.

Mode

Immediate, Program

See Also
INIT

7.81 GET Statement

Reads a record from a random access file into a file buffer.

| GET #file,record

Parameters

file
File number of open random access file.

record
Record number of record to get.

Example
GET #1,1

Mode

Immediate, Program

103

See Also

FIELD, LSET, OPEN, PUT, RSET

7.82 GET Statement, graphics (standard version only)

Captures a graphics screen image.

| GET (x1,y1)-(x2,y2),variable

Parameters

x1
X coordinate of corner of graphics image.

yl
Y coordinate of corner of graphics image.

X2
X coordinate of opposite corner of graphics image.

y2
Y coordinate of opposite corner of graphics image.

variable
Array variable where image is stored.

Remarks

Each pixel in the image requires one element of array storage. The size of the array
can be found by using the equation (x2-x1+1) * (y2-y1+1), where (x1,y1) is the upper
left corner of the image and (x2,y2) is the lower right corner.

Graphics must be turned on to capture images.

Examples
GET (10, 10)-(20, 20), | MAGE1

Mode

Program only

See Also
GRAPH, PUT

7.83 GOSUB Statement

Transfers control of the current program to a subroutine.

| GOSUB line

Parameters

line
Line number or label of subroutine.

104

Remarks

The GOSUB statement transfers control to the specified subroutine. Use the
RETURN statement to return from the subroutine.

Examples

GOsuB 100
GOSUB * START

Mode

Immediate, Program

See Also

GOTO, ON GOSUB, POP, PUSH, RETURN
7.84 GOTO Statement

Transfers control of the current program to a specified line.

| GOTO line

Parameters

line
Line number or label of line.

Examples

GOTO 100
GOTO * START

Mode

Immediate, Program

See Also

GOSUB, ON GOTO
7.85 GOTO TIMER Statement

Transfers control of the current program to the timer event handling routine.

| GOTO TIMER

Remarks

The GOTO TIMER statement transfers control to the timer handler just as if an actual
timer event had occurred. The timer handler must be set using the ON TIMER
statement. Control will be returned to the current program as specified by the
RESUME statement in the timer handler.

Example

Q010 Tl MER

105

Mode

Program

See Also
ON TIMER, RESUME

7.86 GR Statement (Version 1.4 or later, standard version only)

Turns graphics on.

| GR

Remarks

In order to draw graphics on the screen graphics must be enabled.

The GR statement is equivalent to the GRAPH ON statement and is provided for
compatibility.

Mode

Program only

See Also

GRAPH, HGR, HGR2, TEXT

7.87 GRAPH Statement (standard version only)

Turns graphics on or off.

| GRAPH {[ON] | OFF}

Remarks

In order to draw graphics on the screen graphics must be enabled.

Examples

GRAPH
GRAPH ON
GRAPH OFF

Mode

Program only

See Also

BOX, CHORD, CIRCLE, DRAW, GET, LINE, PAINT, PCLR, PCLS, PCOLOR,
PFONT, PIE, POINT, PPRINT, PRESET, PSET, PUT

7.88 HCIRCLE Statement (Version 1.5 or later, standard version only)

Draws a circle.

106

HCIRCLE (x,y),radius[,[color][,[start][,[end][,[aspect][,F]]I]]

Parameters

X
X coordinate of center of circle.

y
Y coordinate of center of circle.

radius
Radius of circle.

color
Color of circle.

start
Starting angle of arc in radians.

end
Ending angle of arc in radians.

aspect
Ratio of length of y-axis to length of x-axis used to draw ellipses.

Remarks

The HCIRCLE statement can be used to draw circles, ellipses, and arcs. To draw a
circle aspect must be 1 or omitted. To draw ellipses aspect can be less than 1 for
ellipses stretched on the x-axis or greater than 1 for ellipses stretched on the y-axis.
To draw arcs specify the start and end angles.

Use ,F to fill in the circle.

If color is omitted the default is the current graphics foreground color. If start is
omitted the default is 0. If end is omitted the default is 0. if aspect is omitted the
default is 1.

Graphics must be turned on to draw circles.

The HCIRCLE statement is equivalent to the CIRCLE statement and is provided for
compatibility.
Examples

HCI RCLE (100, 100), 50

HClI RCLE (200, 200), 10,5, ,,,F
HCl RCLE (150, 150), 100, , , , 2

HClI RCLE (150, 150), 100, ,,,.5
HCI RCLE (50, 50), 25, , . 785, 3. 142

Mode

Program only

See Also

CIRCLE, GRAPH, HCLS, HCOLOR, HDRAW, HLINE, HPAINT

107

7.89 HCLS Statement (Version 1.5 or later, standard version only)

Clears the graphics screen.

| HCLS [color]

Parameters

color
Color to clear screen with.

Remarks

The HCLS statement clears the graphics screen with color and sets the graphics
background color to color.

If color is omitted the default is the current graphics background color.
Graphics must be turned on to clear the graphics screen.

The HCLS statement is equivalent to the PCLS statement and is provided for
compatibility.

Examples

HCLS
HCLS 7

Mode

Program only

See Also

HCOLOR, PCLS

7.90 HCOLOR Statement (Version 1.4 or later, standard version only)

Sets the graphics foreground color.

| HCOL OR=foreground

_or-

| HCOLOR foreground[,background] (Version 1.5 or later, standard version only)

Parameters

foreground
Foreground graphics color.

background
Background graphics color.

Remarks

The HCOLOR statement can be used to set the foreground graphics colors.

108

Graphics must be turned on to set the graphics colors.

The HCOLOR statement is similar to the PCOLOR statement and is provided for
compatibility.

Examples

HCOLOR=4
HCOLOR 4
HCOLCR 7, 10

Mode

Program only

See Also

COLOR, PCOLOR
7.91 HDRAW Statement (Version 1.5 or later, standard version only)

Draws objects.

| HDRAW command

Parameters

command
String containing draw commands.

Remarks
Draw commands:

D[n] Moves graphics cursor down n pixels.
E[n] Moves graphics cursor up and right n pixels.
F[n] Moves graphics cursor down and right n pixels.
G[n] Moves graphics cursor down and left n pixels.
H[n] Moves graphics cursor up and left n pixels.
L[n] Moves graphics cursor left n pixels.

M[{+ | -}Ix,y Moves graphics cursor to point x,y. If x is preceded by + or -,
moves relative to the current graphics point.

R[n] Moves graphics cursor right n pixels.

U[n] Moves graphics cursor up n pixels.

[B] Optional prefix that moves graphics cursor without drawing.

[N] Optional prefix that draws and returns graphics cursor to
original position.

An Sets the drawing angle (0-3).

Cn Sets the drawing color (0-15).

Sn Sets the drawing scale (1-255).

Pf.b Paints a graphics area using color f. Painting stops at border

color b.

Xv$ Draws a substring.

{; | space} Separates drawing commands.

The drawing angle rotates the object in increments of 90 degrees.

109

To draw a substring use the VARPTRS$ function to get the address of the string
variable containing the substring draw.

Graphics must be turned on to draw objects.

The HDRAW statement is equivalent to the DRAW statement and is provided for
compatibility.

Examples

HDRAW " M200, 200; D50; R50; U50; L50; BMR25, 225; P10, 0"
A$="D50; R50; U50; L50; "
HDRAW " M200, 200; X" +VARPTRS$(A$) +" BM225, 225; P10, 0"

Mode

Program only

See Also

DRAW, VARPTR$

7.92 HELP Statement

Displays help.

| HELP [topic]

_or-

| H. [topic] (Version 1.5 or later)

Parameters

topic
Topic to display help for.

Remarks

If topic exists in the help file, it is displayed. If more than one match is found then the
help index is displayed.

If topic is omitted the default help topic is displayed.

Examples

HELP
HELP " RUN'

Mode

Immediate only

7.93 HGET Statement (Version 1.5 or later, standard version only)

Captures a graphics screen image.

| HGET (x1,y1)-(x2,y2),variable

110

Parameters

x1
X coordinate of corner of graphics image.

yl
Y coordinate of corner of graphics image.

X2
X coordinate of opposite corner of graphics image.

y2
Y coordinate of opposite corner of graphics image.

variable
Array variable where image is stored.

Remarks

Each pixel in the image requires one element of array storage. The size of the array
can be found by using the equation (x2-x1+1) * (y2-y1+1), where (x1,y1) is the upper
left corner of the image and (x2,y2) is the lower right corner.

Graphics must be turned on to capture images.

The HGET statement is equivalent to the GET statement and is provided for
compatibility.

Examples
HGET (10, 10) - (20, 20), | MAGE1

Mode

Program only

See Also

GRAPH, GET, HPUT
7.94 HGR Statement (Version 1.4 or later, standard version only)

Turns graphics on.

| HGR

Remarks

In order to draw graphics on the screen graphics must be enabled.

The HGR statement is equivalent to the GRAPH ON statement and is provided for
compatibility.

Mode

Program only

See Also

111

GR, GRAPH, HGR2, TEXT

7.95 HGR2 Statement (Version 1.4 or later, standard version only)

Turns graphics on.

| HGR2

Remarks

In order to draw graphics on the screen graphics must be enabled.

The HGR2 statement is equivalent to the GRAPH ON statement and is provided for
compatibility.

Mode

Program only

See Also

GR, GRAPH, HGR, TEXT

7.96 HLIN Statement (Version 1.4 or later, standard version only)

Draws a horizontal line.

| HLIN x1,x2 AT y

Parameters

x1
X coordinate of start of line.

x1
X coordinate of end of line.

y
Y coordinate of line.

Remarks

The HLIN statement draws a line from the point (x1,y) to the point (x2,y) using the
current graphics foreground color.

The HLIN statement is similar to the LINE statement and is provided for compatibility.
Graphics must be turned on to draw lines.

Examples
HLI N 10, 100 AT 100

Mode

Program only

See Also

112

COLOR, GR, LINE, VLIN

7.97 HLINE Statement (Version 1.5 or later, standard version only)

Draws a line.

| HLINE (x1,y1)-(x2,y2)[,[color][,B[FI]]

_Or-

| HLINE -(x2,y2)[,[color][,B[F]l]

Parameters

x1
X coordinate of starting point of line.

yl
Y coordinate of starting point of line.

X2
X coordinate of end point of line.

y2
Y coordinate of end point of line.

color
Color of line.

Remarks

The LINE statement can be used to draw lines or boxes. Form 1 draws a line from
the point (x1,y1) to the point (x2,y2). Form 2 draws a line from the current graphics
point to the point (x2,y2).

Use ,B to draw a box. Use F to fill in the box.
If color is omitted the default is the current graphics foreground color.
Graphics must be turned on to draw lines.

The HLINE statement is equivalent to the LINE statement and is provided for
compatibility.

Examples

HLI NE (10, 10) - (100, 100)

HLI NE (20, 20) - (50, 50), 10

HLI NE (200, 200) - (250, 250), , B
HLI NE (220, 220) - (230, 230) , 12, BF
HLI NE - (300, 300)

HLI NE - (100, 100), 5

HLI NE - (80, 80), 2, BF

Mode

Program only

113

See Also

GRAPH, LINE
7.98 HOME Statement

Clears the screen.

| HOME

Remarks

The HOME statement clears the screen using the current background color and sets
the cursor position to 0,0.

The HOME statement is equivalent to the CLS statement and is provided for
compatibility.

Mode

Immediate, Program

See Also
CLS

7.99 HPAINT Statement (Version 1.5 or later, standard version only)

Fills a graphics area with a color.

| HPAINT (x,y)[,[color][,border]]

Parameters

X
X coordinate where painting begins.

y
Y coordinate where painting begins.

color
Color to paint.

border
Color of border where painting stops.

Remarks

If color is omitted the default is the current graphics foreground color. If border is
omitted the default is the current graphics background color.

Graphics must be turned on to paint a graphics area.

The HPAINT statement is equivalent to the PAINT statement and is provided for
compatibility.

Examples

114

HPAI NT (100, 100)
HPAI NT (50, 50), 7
HPAI NT (200, 50), 5, 7

Mode

Program only

See Also
GRAPH, PAINT

7.100 HPLOT Statement (Version 1.4 or later, standard version only)

Draws a point or one or more lines.

| HPLOT x,y

_Or-

| HPLOT x1,y1 [TO x2,y2]...

_Or-

[HPLOT TO x1,y1 [TO x2,y2]...

Parameters

X
X coordinate of point.

y
Y coordinate of point.

x1
X coordinate of starting point of line.

yl
Y coordinate of starting point of line.
X2

X coordinate of end point or line.

y2
Y coordinate of end point of line.

Remarks

The HPLOT statement draws a point or one or more lines at the specified
coordinates using the current graphics foreground color.

If no starting point is specified the line is drawn from the current graphics point.

The HPLOT statement is similar to the PSET and LINE statements and is provided
for compatibility.

Graphics must be turned on to draw points.

Examples
HPLOT 50, 50

115

HPLOT 50, 50 TO 100, 100

HPLOT 50,50 TO 100, 100 TO 10, 10
HPLOT TO 50, 50

HPLOT TO 50,50 TO 100,100 TO 10, 10

Mode

Program only

See Also

COLOR, GR, LINE, PLOT, PSET

7.101 HPUT Statement (Version 1.5 or later, standard version only)

Displays a graphics screen image.

| HPUT (x1,y1)-(x2,y2) variable[{AND | OR | PSET | PRESET | XORY}]

Parameters

x1
X coordinate of corner of graphics image.

yl
Y coordinate of corner of graphics image.

X2
X coordinate of opposite corner of graphics image.

y2
Y coordinate of opposite corner of graphics image.

variable
Array variable where image is stored.

Remarks

Each pixel in the image requires one element of array storage. The size of the array
can be found by using the equation (x2-x1+1) * (y2-y1+1), where (x1,y1) is the upper
left corner of the image and (x2,y2) is the lower right corner.

AND mergers the stored image with the graphics screen.

OR superimposes the stored image on the graphics screen.

PSET draws stored image erasing the graphics screen.

PRESET draws stored image in reverse colors erasing the graphics screen.

XOR draws a stored image or erases a previously drawn image while preserving the
background.

Graphics must be turned on to display images.

The HPUT statement is equivalent to the PUT statement and is provided for
compatibility.

Examples

HPUT (110, 110) - (120, 120), | MAGEL
HPUT (210, 210) - (220, 220) , | MAGEL, PSET

116

Mode

Program only

See Also
HGET, GRAPH, PUT

7.102 HRESET Statement (Version 1.5 or later, standard version only)

Draws a point.

| HRESET (x,y)[,color]

Parameters

X
X coordinate of point.

y
Y coordinate of point.

color
Color of point.

Remarks

If color is omitted the default is the current graphics background color.
Graphics must be turned on to draw points.

The HRESET statement is equivalent to the PRESET statement and is provided for
compatibility.

Examples

HRESET (50, 50)
HRESET (100, 100), 5

Mode

Program only

See Also
GRAPH, HSET, PRESET

7.103 HSCROLL Statement (standard version only)

Scrolls columns left or right.

| HSCROLL row,column,columns,rows[,horizontal]

Parameters

row
Starting row.

117

column
Starting column.

columns
Number of columns to scroll.

rows
Number of rows to scroll.

horizontal
Number of columns by which to scroll.

Remarks

The HSCROLL statement scrolls text within a rectangular region length columns by
height rows starting at row,column, horizontal columns. If horizontal is positive the
region is scrolled to the right, if negative to the left. The text is scrolled within the
rectangle with columns to the right or left overwritten and new columns filled with
spaces.

If horizontal is omitted the default is 1.

Examples

HSCROLL 0, 0, 80, 25
HSCROLL O, 0, 80, 25, -1

Mode

Immediate, Program

See Also
VSCROLL

7.104 HSET Statement (Version 1.5 or later, standard version only)

Draws a point.

| HSET (x,y)[,color]

Parameters

X
X coordinate of point.

y
Y coordinate of point.

color
Color of point.

Remarks

If color is omitted the default is the current graphics foreground color.

Graphics must be turned on to draw points.

118

The HSET statement is equivalent to the PSET statement and is provided for

compatibility.
Examples
HSET (50, 50)

HSET (100, 100),5

Mode

Program only

See Also

GRAPH, HRESET, PSET

7.105 HTAB Statement (Version 1.4 or later)

Moves the cursor to a specified position on the screen.

| HTAB column

Parameters

column
Column where cursor is to be moved.

Remarks

The HTAB statement only changes the column position of the cursor.
The screen has 80 columns numbered 0 through 79.

The HTAB statement is similar to the LOCATE statement and is provided for
compatibility.

Examples
HTAB 10

Mode

Immediate, Program

See Also

LOCATE, VTAB
7.106 IF Statement

Executes one or more statements depending on specified conditions.

IF condition THEN {line | statement[:statement]...} [ELSE {line | statement[:statement]...}]
[END IF]

_Or-

| IF condition GOTO line [ELSE {line | statement[:statement]...}] [END IF]

119

_or-

IF condition GOSUB line [ELSE {line | statement[:statement]...}] [END IF]

Parameters

condition
Expression that evaluates to true or false.

line
Line number or label of line.

statement
NBASIC statement.
Remarks
If condition is true, execution continues with the THEN, GOTO, or GOSUB clauses
otherwise execution continues with the ELSE clause if specified.

The END IF clause ends the IF statement otherwise execution continues with
statements following the THEN or ELSE clauses. It is useful when multiple
statements are on the same line.

Examples

F A<>0 THEN 100

N$="" THEN 50 ELSE 80

I/2>10 THEN I =1 +1 ELSE 1=0: GOTO 50 END | F
C>=100 GOTO 200

|
|
|
|
IF B(1)=0 GOSUB 100

F
F
F
F

Mode

Immediate, Program

See Also

ON GOTO, ON GOSuUB

7.107 INC Statement (standard version only)

Increments one or more numeric variables by 1.

| INC variable[,variable]...

Parameters

variable
Numeric variable to increment.

Examples

INC A
I NC | TEMS, USERS

Mode

Immediate, Program

120

See Also

DEC
7.108 INIT Statement

Initializes the run-time environment.

L INIT

Remarks

The INIT statement deletes keystrokes in the type ahead buffer, deletes all variables,
sets static variables to 0, and resets the FILE$ and VOLUMES functions.

Mode

Immediate, Program

See Also

NEW
7.109 INPUT Statement

Reads input from the keyboard or a file.

| INPUT [;] [prompt{; | ,}] variable[,variable]...

_Or-

| INPUT #file,variable[,variable]...

Parameters

prompt
String displayed before data is entered. A semicolon after prompt appends a
question mark (?) to the prompt string.

variable
Variable in which data read from keyboard or file is stored.

file
File number of open file.

Remarks

For keyboard input, a semicolon (;) immediately after INPUT keeps the cursor on the
same line after the ENTER| key is pressed.

Examples
I NPUT C, N
| NPUT "NAME"; N$
I NPUT "NAME: ", N$

INPUT ; "TOTAL"; T
I NPUT #1, N, A$

121

Mode

Program only

See Also
INPUTS$, LINE INPUT, OPEN

7.110 INSERT Statement

Inserts a record in a file.

| INSERT #file,record

Parameters

file
File number of open random access file.

record
Record number of record to insert.

Remarks

The INSERT statement extends a random access file, moves records up, and inserts
a new record.

Example
| NSERT #1,5

Mode

Immediate, Program

See Also

DELETE, OPEN
7.111 INVERSE Statement

Turns inverse on or off.

| INVERSE {ON | OFF}

_Or-

| INVERSE (Version 1.4 or later)

Remarks

The INVERSE statement reverses the foreground and background colors.

Examples

| NVERSE ON
I N\VERSE OFF

Mode

122

Immediate, Program

See Also

COLOR

7.112 INVERT Statement

Inverts a row.

| INVERT rowl[,[column][,[columns][,rows]]]

Parameters

row
Starting row.

column
Starting column.

columns
Number of columns to invert.

rows
Number of rows to invert.

Remarks

The INVERT statement inverts a number of rows and columns using the current

foreground and background colors.

If column is omitted the default is 0. if columns is omitted the default is the last
column. If rows is omitted the default is 1.

Examples
| NVERT 5
I NVERT 1,0,5, 2
I NVERT O, , 10
Mode

Immediate, Program
7.113 KILL Statement

Deletes a file.

| KILL filespec

_Or-

| K. filespec (Version 1.5 or later)

Parameters

filespec
Name of file to delete.

123

Remarks

The KILL statement permanently deletes a file from a volume.
The default extension for the KILL statement if not specified in the filespec is "nba".

The filespec parameters may contain the wildcard characters * and ?. (Version 1.5 or
later)

Examples

KILL " TEST. DAT"
KI LL " DATA: NAMES. | DX"
KILL "*. TXT"

Mode

Immediate, Program
7.114 KILL # Statement (Version 1.1 or later)

Closes and deletes an open file.

| KILL #file

Parameters

file
File number of open file or printer (-2) to Kill.

Remarks

The KILL # statement writes any remaining data in the file buffer to the file, closes
the file and deletes it.

KILL #-2 stops the print job and closes the printer.

Examples
KILL #1

Mode

Immediate, Program

See Also

OPEN, RESET, UNLOAD

7.115 LEFT$ Statement (standard version only)

Assigns part of a string variable to another string.

| LEFT$(variable[,length])=expression

Parameters

variable
String variable to assign string to.

124

length
Length of substring.

expression
String to assign.

Remarks

The LEFT$ statement replaces the left length characters in variable with characters
from expression.

If length is omitted the default is 1.

Examples

LEFT$(A$, 4) =" TEST"
LEFTS$(B$) =" 0"

Mode

Immediate, Program

See Also

MID$, RIGHT$
7.116 LET Statement

Assigns the value of an expression to a variable.

| [LET] variable=expression

_or-

[LET] variable[,variable]...=expression[,variable[,variable]...=expression]... (Version 1.2 or
later)

Parameters

variable
Variable to assign value to.

expression
Value to assign to variable.
Examples

A=A+1

LET B=SQR(10)
LET N$="TEST"
A, B=1

LET A=1, B=2

Mode

Immediate, Program

125

7.117 LINE Statement (standard version only)

Draws a line.

| LINE (x1,y1)-(x2,y2)[,[color][,B[F]]]

_Or-

| LINE -(x2,y2)[,[color][,B[F]]]

Parameters

x1
X coordinate of starting point of line.

yl
Y coordinate of starting point of line.

X2
X coordinate of end point of line.

y2
Y coordinate of end point of line.

color
Color of line.

Remarks

The LINE statement can be used to draw lines or boxes. Form 1 draws a line from
the point (x1,y1) to the point (x2,y2). Form 2 draws a line from the current graphics
point to the point (x2,y2).

Use ,B to draw a box. Use F to fill in the box.
If color is omitted the default is the current graphics foreground color.
Graphics must be turned on to draw lines.

Examples

LI NE (10, 10) - (100, 100)

LI NE (20, 20) - (50, 50), 10

LI NE (200, 200) - (250, 250) , , B

LI NE (220, 220) - (230, 230), 12, BF
LI NE - (300, 300)

LI NE - (100, 100), 5

LI NE - (80, 80), 2, BF

Mode

Program only

See Also

BOX, CHORD, CIRCLE, DRAW, GRAPH, PAINT, PCOLOR, PIE

126

7.118 LINE EDIT Statement (Version 1.2 or later)

Edits a string.

| LINE EDIT[(string)] [prompt{; | ,}] variable

Parameters

string
String to be edited.

prompt
String displayed before data is entered. A semicolon after prompt appends a
question mark (?) to the prompt string.

variable
Variable in which the data read from keyboard or file is stored.

Remarks

The LINE EDIT statement reads all characters up to a carriage return.

If string is omitted the default is an empty string.

Examples
LINE EDIT "Greeting"; A$
LINE EDI T(N$) "Narme: ", N$
Mode

Program only

See Also

INPUT, LINE INPUT
7.119 LINE INPUT Statement

Reads input from the keyboard or a file.

| LINE INPUT [prompt{; | ,}] variable

_or-

| LINE INPUT #file variable

Parameters

prompt
String displayed before data is entered. A semicolon after prompt appends a
guestion mark (?) to the prompt string.

variable
Variable in which the data read from keyboard or file is stored.

file
File number of open file.

127

Remarks

The LINE INPUT statement reads all characters up to a carriage return.

Examples

LI NE | NPUT A$

LI NE | NPUT "NAME"; N$
LINE | NPUT "NAME: ", N$
LI NE | NPUT #1, A$

Mode

Program only

See Also
INPUT, OPEN

7.120 LINES Statement

Displays the number of lines in the current program.

| LINES

Mode

Immediate only
7.121 LIST Statement

Displays lines in the current program.

| LIST [line][-[line]]

_Or-

| LIST [line][-[line]][,[line][-[line]]]... (Version 1.2 or later)

Parameters
line
Line number of line to display.
Remarks

If line is omitted all lines are displayed.

Examples

LI ST

LI ST 100

LI ST 10-

LI ST 10-100

LI ST -100

LI ST -10, 20, 50- 100, 900-

Mode

128

Immediate only

7.122 LLIST Statement (Version 1.1 or later, standard version only)

Prints lines in the current program to the printer.

| LLIST [line][-[line]]

Parameters
line
Line number of line to printed.

Remarks

If line is omitted all lines are printed.

Examples
LLI ST
LLI ST 100
LLI ST 10-
LLI ST 10-100
LLI ST -100
Mode

Immediate only

7.123 LOAD Statement

Loads a program.

| LOAD filespec|,R]

_Or-

| L. filespec[,R] (Version 1.5 or later)

Parameters

filespec
File name of program to load.

Remarks

The LOAD statement can be used to load a BASIC program. The new program

replaces the current program. The program can be in NBASIC binary or ASCII
format.

Programs in ASCII format that do not have line numbers may also be loaded. The
lines are appended to the program as they occur in the file. If lines include line
numbers, they are inserted in order and subsequent lines replace any duplicates.

Use ,R to run the program immediately.

The default extension for the LOAD statement if not specified in the filespec is "nba".

129

Examples

LOAD " ANALYZE. BAS"'
LOAD " PROGRAMS: COUNT. NBA", R

Mode

Immediate, Program

See Also
ASAVE, BSAVE, SAVE

7.124 LOADC Statement

Loads a program from the Windows clipboard.

| LOADC[R]

Remarks

The LOADC statement can be used to load a BASIC program from the Windows
clipboard. The new program replaces the current program. The program on the
clipboard must be ASCII text.

Programs in ASCII format that do not have line numbers may also be loaded. The
lines are appended to the program as they occur in the file. If lines include line
numbers, they are inserted in order and subsequent lines replace any duplicates.

Use ,R to run the program immediately.

Examples

LOADC
LOADC, R

Mode

Immediate only

See Also
SAVEC

7.125 LOADR Statement

Loads a built-in program.

| LOADR program[,R]

Parameters

program
Name of program to load.

Remarks

Use ,R to run the program immediately.

130

Examples

LOADR " VELCOVE"
LOADR "WELCOVE", R

Mode

Immediate only

See Also
DIRR, RUNR

7.126 LOCATE Statement

Moves the cursor to a specified position on the screen.

| LOCATE row,column

Parameters

row
Row where cursor is to be moved.

column
Column where cursor is to be moved.

Remarks

The screen has 25 rows humbered 0 through 24 and 80 columns numbered O
through 79.

Examples
LOCATE 10,0

Mode

Immediate, Program
7.127 LOCK Statement

Locks the screen.

| LOCK #0

Remarks

The LOCK statement locks the screen and does not display changes to the screen
immediately. Use the UNLOCK statement to unlock the screen and display the
changes.

Mode

Program only

See Also

UNLOCK

131

7.128 LOG Statement (standard version only)

Opens a file and begins logging screen output to the log file or turns logging on or off or
stops logging and closes the log file.

| LOG [TO] filespec[,A]

_or-

| LOG {ON | OFF | STOP}

Parameters

filespec
Name of log file.

Remarks

The LOG statement can be used record output from a program to a file. Form 1
opens the log file and turns logging on. Logging can be turned off and on at any
time. When logging is stopped, the log file is closed and must be opened again.

The default extension for the LOG statement if not specified in the filespec is "log".
Use ,A to append to the log file.

Examples

LOG TO "OQUTPUT. TXT"
LOG "QUTPUT. TXT", A
LOG ON

LOG OFF

LOG STOP

Mode

Immediate, Program

See Also
LOG$

7.129 LPRINT Statement (Version 1.1 or later, standard version only)

Writes output to the printer.

| LPRINT [expression] [{, | ; | SPC(spaces) | TAB(column)} [expression]]...

Parameters

expression
Data to print.

spaces
Number of spaces to output.

column

132

Column where output is to start.

Remarks

A, (comma) starts printing at the next print zone. Print zones are 10 characters
wide. A ; starts printing immediately after the last value printed. SPC prints a
specified number of spaces. TAB starts printing at the specified column.

If any delimiters (, | ; | SPC | TAB) are not specified as the last item in the print
statement a carriage return is printed moving the print position to the beginning of the
next line.

Examples

LPRI NT

LPRI NT "HELLCO'

LPRI NT "ABC', "123"

LPRI NT 100;" APPLES"

LPRI NT "TOTAL:" SPC(5) T
LPRI NT "I TEMS: "; |

Mode

Program only

See Also

LPRINT USING, OPEN PRINTER, LPOS

7.130 LPRINT USING Statement (Version 1.1 or later, standard version only)

Writes output to the printer.

| LPRINT USING format; expression[,expression]...[;]

Parameters

format
Format string.

expression
Data to print.

Remarks

The format string consists of characters that specify how numbers and strings are
formatted.

Numeric format characters:
Digit position.
. Decimal point position.
, Placed left of the decimal point, prints a comma in every third position.
+ Sign position.
- Placed after digit, prints trailing sign for negative numbers.
AN Prints in scientific notation (exponential) format.
$$ Prints leading $.
** Fills leading spaces with *.
**$ Fills leading spaces with * and prints leading $.

133

String format characters:
& Prints entire string.

! Prints only the first character of a string.

VA
between the slashes + 2.

Other format characters:

Prints first n characters of a string where n is the number of spaces

Prints the following character as a literal.

If ; is not specified as the last item in the print statement a carriage return is printed
moving the print position to the beginning of the next line.

Examples
LPRI NT USI NG "TOTAL: #####"; 1000
LPRI NT USI NG " #####, . ##"; 1000. 21
LPRI NT USI NG "####-"; -123
LPRI NT USI NG " $$###. ##"; 121.95
LPRI NT USI NG "**###. ##"; 121. 95
LPRI NT USI NG "**$##. ##";, 121.95
LPRI NT USI NG "**$####, . ##-"; -1021.95
LPRI NT USING "&"; "TEST STRI NG'
LPRINT USING "\ \"; "TEST STRI NG'
LPRINT USING "!'"; "TEST STRI NG'
LPRI NT USI NG "_###"; 5

Mode

Program only

See Also

LPRINT, OPEN PRINTER, LPOS

7.131 LSET Statement

Left justifies data in the field variable and moves the data into the file buffer or in a string

variable.

LSET variable=expression

Parameters

variable
String variable to assign value to.

expression
Value to assign to variable.

Examples

LSET B$=S$
LSET N$="TEST"

Mode

Immediate, Program

134

See Also

FIELD, RSET
7.132 MERGE Statement

Merges a program with the current program.

| MERGE filespec[,new][,increment]]

_or-

| ME. filespec[,new][,increment]] (Version 1.5 or later)

Parameters

filespec
File name of program to merge.

new

Starting line number where program should be merged and renumbered.

increment

Increment for renumbering merged program.

Remarks

The MERGE statement can be used to merge a BASIC program with the current
program. The program can be in NBASIC binary or ASCII format.

A line in the merged program replaces a line in the current program having the same

line number.

The default extension for the MERGE statement if not specified in the filespec is

"nba".

Examples

VERCE " HEADER'
VERCE " PROGRAMS: SUBS. BAS", 1000
MERGE " DATA. BAS", 5000, 5

Mode

Immediate only

7.133 MID$ Statement

Assigns part of a string variable to another string.

| MID$(variable,start[,length])=expression

Parameters

variable
String variable to assign string to.

start

135

Starting index.

length
Length of substring.

expression
String to assign.

Remarks

The MID$ statement replaces length characters in variable beginning at index start
with characters from expression.

If length is omitted the default is 1.

Examples

M D$(A$, 5, 4) =" TEST"
M D$(BS$, 1) ="0"

Mode

Immediate, Program

See Also

LEFTS, RIGHT$

7.134 MOVE Statement

Moves a file to another file or volume.

| MOVE filespecl TO filespec2

_Or-

| M. filespecl TO filespec2 (Version 1.5 or later)

Parameters

filespecl
Name of existing file.

filespec2
Name of new file.

Remarks

The MOVE statement can be used to move an existing file to another file or volume.

The filespec and filespec2 parameters may contain the wildcard characters * and ?.
(Version 1.5 or later)

Examples

MOVE " TEST. DAT" TO " CONFI G DAT"

MOVE " PROGRAMS: TEST. DAT" TO " DATA: TEST. DAT"
MOVE "*.DOC' TO "TEMP: "

MOVE "*. TXT" TO "*. DOC'

136

MOVE "*.LOG' TO "HI STORY. TXT"

Mode

Immediate, Program

See Also

APPEND, COPY, RENAME
7.135 MOVE Statement, editing (standard version only)

Moves a line in the current program to another line.

| MOVE line1 TO line2[E]

_Or-

| M. linel TO line2[,E] (Version 1.5 or later)

Parameters

linel

Line number of line to move.

line2

Line number of destination line.

Remarks

The MOVE statement moves an existing line in the current program to another line.

The destination line is overwritten if it already exists. Line numbers in the current
program that refer to the line being moved are automatically changed to the

destination line number.

Use ,E to edit the destination line.

Examples

MOVE 10 TO 50
MOVE 20 TO 100, E

Mode

Immediate only

See Also
APPEND, COPY, SWAP

7.136 NAME Statement

Renames a file.

| NAME filespecl AS filespec2

Parameters

filespecl

137

Name of existing file.

filespec2
New name of file.

Remarks

The NAME statement cannot change the volume where the file is stored, only the
name and extension of the file can be changed.

The NAME statement is equivalent to the RENAME statement and is provided for
compatibility.

Examples

NAME " TEST. DAT" AS " CONFI G DAT"
NAME " PROGRAMS: TEST. DAT" AS " PROGRAMS: | NDEX. DAT"

Mode

Immediate, Program

See Also
RENAME

7.137 NEW Statement

Erases the current program.

| NEW

Mode

Immediate, Program

See Also

INIT

7.138 NEXT Statement

Increments and tests the variable in a FOR loop.

| NEXT [counter[,counter]...]

Parameters

counter
Numeric variable used as loop counter.

Remarks

The NEXT statement is used to increment and test the variable in a FOR loop and
exit the loop if the counter has reached the end value.

138

If counter is omitted the counter in the most recent FOR loop is incremented. If
multiple counters are specified place the counter of the most recent FOR loop first
followed by the next most recent.

Examples

FOR I =1 TO 10: NEXT

FOR I =1 TO 10: NEXT I

FOR 1=1 TO 10: FOR J=I TO 10: NEXT J,| 'Equivalent to NEXT J:
NEXT |

Mode

Immediate, Program

See Also
FOR

7.139 NOBREAK Statement (standard version only)

Clears breakpoints.

| NOBREAK

_Or-

| NOBREAK line[line]...

_or-

NOBREAK [line][-[line]][,[line][-[line]]]... (Version 1.2 or later)

Parameters
line
Line number or label where breakpoint is to be cleared.
Remarks

The NOBREAK statement can be used to clear breakpoints set by BREAK.
NOBREAK with no parameters clears all breakpoints.

Examples

NCBREAK

NOBREAK 100, 150

NOBREAK 200, * REDO

NOBREAK - 10, 20, 50- 100, 900-

Mode

Immediate, Program

See Also

BREAK

139

7.140 NOINVERSE Statement (Version 1.5 or later)

Turns inverse off.

| NOINVERSE

Mode

Immediate, Program

See Also

INVERSE

7.141 NOREVERSE Statement (Version 1.5 or later)

Turns inverse off.

| NOREVERSE

Mode

Immediate, Program

See Also
INVERSE

7.142 NORMAL Statement (Version 1.4 or later)

Turns inverse off.

| NORMAL

Mode

Immediate, Program

See Also

INVERSE

7.143 NOTRACE Statement (Version 1.4 or later)

Disables tracing of program.

| NOTRACE

Mode

Immediate, Program

Remarks

The NOTRACE statement is equivalent to the TROFF statement and is provided for
compatibility.

140

See Also
TRACE, TROFF

7.144 NUMBER Statement (Version 1.4 or later, standard version only)

Turns automatic line numbering on.

| NUM[BER] [initial[increment]]...

Parameters
initial
Starting line number.

increment
Increment for each new line number.

Remarks

The NUMBER statement can be used to automatically generate line numbers when
entering a program. After each line is entered, the line number is incremented by
increment and is automatically entered as part of the next line. If a line already exists
with this line number, a new line number is not automatically generated.

If initial is omitted the default is 100. If increment is omitted the default is 10.

The NUMBER statement is similar to the AUTO statement and is provided for
compatibility.
Examples

NUMBER
NUMBER 1000
NUMBER 10, 5
NUM

NUM 1000
NUM 10, 5

Mode

Immediate only

See Also
AUTO

7.145 OLD Statement

Loads a program or restores a program.

| OLD filespec

_Or-

| OLD (Version 1.3 or later)

Parameters

141

filespec
File name of program to load.

Remarks

The OLD statement can be used to load a BASIC program. The new program
replaces the current program. The program can be in NBASIC binary or ASCII
format.

Programs in ASCII format that do not have line numbers may also be loaded. The
lines are appended to the program as they occur in the file. If lines include line
numbers, they are inserted in order and subsequent lines replace any duplicates.

The default extension for the OLD statement if not specified in the filespec is "nba".

The OLD statement can also be used to restore a program erased by the NEW
statement. A program cannot be restored if the current program has been modified.

Examples

OLD " ANALYZE. BAS"
OLD " PROGRAMS: COUNT. NBA"
oD

Mode

Immediate, Program

See Also

LOAD, NEW

7.146 ON BREAK Statement

Enables BREAK] key trapping and when the BREAK| key is pressed transfers control to a
BREAK

BREAK key handling routine or suspends BREAK| key trapping.

| ON BREAK GOTO line

_Or-

| ON BREAK GOTO 0

Parameters

line
Line number or label of first line of handling routine.

Remarks

If BREAK| key trapping is enabled, the ON BREAK statement branches to a
subroutine whenever the BREAK| key is pressed.

Use the RESUME statement to return from the subroutine.

Examples
ON BREAK GOTO 1000

142

ON BREAK GOTO *HANDLER
ON BREAK GOTO 0

Mode

Program only

See Also

BREAK, RESUME
7.147 ON ERROR Statement

Enables error handling and when a run-time error occurs transfers control to an error
handling routine or resumes execution or suspends error handling.

| ON ERROR GOTO line

_Or-

| ON ERROR RESUME NEXT

_Or-

ON ERROR GOTO 0

Parameters
line
Line number or label of first line of handling routine.
Remarks

The ON ERROR RESUME NEXT statement does not branch to a handling
subroutine, it resumes execution with the next statement following the statement that
caused the error.

Use the RESUME statement to return from the subroutine.

Examples

ON ERROR GOTO 1000

ON ERROR GOTO *HANDLER
ON ERROR RESUME NEXT
ON BREAK GOTO 0

Mode

Program only

See Also

ERL, ERR, ERR$, RESUME
7.148 ON GOSUB Statement

Transfers control of the current program to one of several subroutines based on the value
of an expression.

143

ON expression GOSUB line[,line]...

Parameters

expression
Expression that evaluates to a number in the range 0 to 255.

line
Line number or label of subroutine.

Remarks

If the value of expression is 1, the program branches to the first line specified; if
expression is 2, it branches to the second line, and so on.

Use the RETURN statement to return from the subroutine.

Examples
ON | NDEX GOsUB 100, 200

Mode

Immediate, Program

See Also
IF, GOSUB, ON GOTO, RETURN

7.149 ON GOTO Statement

Transfers control of the current program to one of several lines based on the value of an
expression.

ON expression GOTO line][,line]...

Parameters

expression
Expression that evaluates to a number in the range 0 to 255.

line
Line number or label of line.

Remarks

If the value of expression is 1, the program branches to the first line specified; if
expression is 2, it branches to the second line, and so on.

Examples
ON | NDEX GOTO 100, 200

Mode

Immediate, Program

See Also
IF, GOTO, ON GOSUB

144

7.150 ON TIMER Statement

Enables timer event trapping and when a timer event occurs transfers control to a timer
event handling routine or suspends timer event trapping.

ON TIMER](interval)] GOTO line

_or-

ON TIMER GOTO 0

Parameters

interval
Timer event interval in milliseconds.

line
Line number or label of first line of handling routine.

Remarks

If timer event trapping is enabled, the ON TIMER statement branches to a subroutine
whenever the specified number of milliseconds has elapsed.

Use the RESUME statement to return from the subroutine.
If interval is omitted the default is 1000 milliseconds (1 second).

Examples

ON TI MER GOTO 1000
ON Tl MER(5000) GOTO *HANDLER
ON TI MER GOTO 0

Mode

Program only

See Also
GOTO TIMER, RESUME, TIMER

7.151 OPEN Statement

Opens afile.

| OPEN filespec FOR {APPEND | INPUT | OUTPUT | RANDOM} AS #file [LEN=length]

_Or-

| OPEN mode,#file,filespec],length]

Parameters

filespec
Name of file to open.

file

145

File number that identifies open file.

length
For random access files, record length; for sequential files, characters buffered.

mode
File mode.

Remarks

APPEND opens the file for sequential output and positions the file pointer to the end
of the file. Output to the file extends (appends to) the file.

INPUT opens the file for sequential input.
OUTPUT opens the file for sequential output.
RANDOM opens the file for random access.

If length is omitted the default is 128 for random access files and 512 for sequential
files.

The default extension for the OPEN statement if not specified in the filespec is "dat".

The file mode is a string specifying the file open mode; "A" for append, "I" for input,

"O" for output, or "R" for random.

Examples

OPEN "CONFI G. DAT" FOR | NPUT AS #1

OPEN "TEST. DAT" FOR OQUTPUT AS #2 LEN=100
OPEN "I ", #1, " CONFI G DAT"

OPEN " O', #2, " TEST. DAT", 100

Mode

Immediate, Program

See Also

CLOSE, DELETE, FIELD, GET, INPUT, INSERT, LINE INPUT, PUT, REOPEN,
RESET, REWIND, TRUNCATE, UNLOAD, WRITE

7.152 OPEN PRINTER Statement (Version 1.1 or later, standard version only)

Opens a printer.

| OPEN PRINTER

Remarks

The OPEN PRINTER statement opens the most recent printer set by using the
PRINTER or PRINTER? statements or if not set, the current printer as specified in
the Print Setup or Print dialogs and starts a print job.

Mode

Program only

146

See Also

CLOSE PRINTER, LPRINT, LPRINT USING, PRINTER, PRINTER?, LPOS
7.153 OPTION BASE Statement (Version 1.2 or later)

Specifies the base index of arrays.

| OPEN BASE {0] 1}

Remarks

If OPTION BASE 1 is specified in a program, the first element in an array dimension
is in location 1. If no base is set or OPTION BASE 0 is specified, the first element in
an array dimension is in location 0.

The OPTION BASE statement must be specified before any arrays are created in a
program.

Examples

OPTI ON BASE 0
OPTI ON BASE 1

Mode

Program only

See Also

DIM, OPTION EXPLICIT, REDIM, LBOUND, MAXSIZE, SIZE, UBOUND

7.154 OPTION EXPLICIT Statement (Version 1.2 or later)

Specifies that arrays must be explicitly created.

| OPEN EXPLICIT

Remarks

If OPTION EXPLICIT is specified in a program, all arrays must be explicitly created
using the DIM or REDIM statements.

The OPTION EXPLICIT statement must be specified before any arrays are created in
a program.

Mode

Program only

See Also

DIM, OPTION BASE, REDIM

147

7.155 PAINT Statement (standard version only)

Fills a graphics area with a color.

| PAINT (x,y)L,[color][,border]]

Parameters

X
X coordinate where painting begins.

y
Y coordinate where painting begins.

color
Color to paint.

border
Color of border where painting stops.

Remarks

If color is omitted the default is the current graphics foreground color. If border is
omitted the default is the current graphics background color.

Graphics must be turned on to paint a graphics area.

Examples

PAI NT (100, 100)
PAI NT (50, 50), 7
PAI NT (200, 50), 5, 7

Mode

Program only

See Also
BOX, CHORD, CIRCLE, DRAW, GRAPH, LINE, PIE, PCOLOR

7.156 PAUSE Statement

Pauses a program.

| PAUSE [duration]

Parameters

duration
Number of milliseconds to pause.

Remarks

The PAUSE statement pauses a program for the duration specified or until a key is
pressed.

If duration is omitted the default is 1000 milliseconds.

148

Examples

PAUSE
PAUSE 2000

Mode

Immediate, Program

See Also
WAIT

7.157 PCLR Statement (standard version only)

Clears a rectangular area of the graphics screen.

| PCLR (x1,y1)-(x2,y2)[,color]

Parameters

x1
X coordinate of corner of rectangle.

yl
Y coordinate of corner of rectangle.

X2
X coordinate of opposite corner of rectangle.

y2
Y coordinate of opposite corner of rectangle.

color
Color to clear rectangle with.

Remarks

The PCLR statement clears a rectangular area of the graphics screen with color and
sets the graphics background color to color.

If color is omitted the default is the current graphics background color.
Graphics must be turned on to clear the graphics screen.

Examples

PCLR (100, 100) - (200, 200)
PCLR (100, 100) - (200, 200) , 1

Mode

Program only

See Also
PCLS, PCOLOR

149

7.158 PCLS Statement (standard version only)

Clears the graphics screen.

| PCLS [color]

Parameters

color
Color to clear screen with.

Remarks

The PCLS statement clears the graphics screen with color and sets the graphics
background color to color.

If color is omitted the default is the current graphics background color.
Graphics must be turned on to clear the graphics screen.

Examples

PCLS
PCLS 7

Mode

Program only

See Also
PCLR, PCOLOR

7.159 PCOLOR Statement (standard version only)

Sets the graphics colors.

| PCOLOR foreground[,background]

Parameters

foreground
Foreground graphics color.

background
Background graphics color.

Remarks

The PCOLOR statement can be used to set the foreground and background graphics
colors.

If background is omitted the default is the current graphics background color.
Graphics must be turned on to set the graphics colors.

Examples

150

PCOLOR 4
PCOLOR 7, 10

Mode

Program only

See Also

PCLR, PCLS

7.160 PCP Statement (Version 1.2 or later, standard version only)

Displays the current printer.

| PCP

Mode

Immediate only

See Also
PRINTER

7.161 PFONT Statement (standard version only)

Changes the graphics font size.

| PFONT size

Parameters

size
Size of graphics font.

Remarks

Graphics must be turned on to set the graphics font size.

Examples
PFONT 8

Mode

Program only

See Also
PPRINT

7.162 PIE Statement (standard version only)

Draws a pie.

| PIE (x,y),radius[,[color][,[start][,[end][,[aspect][,F]I]]]

151

Parameters

X
X coordinate of center of pie.

y
Y coordinate of center of pie.

radius
Radius of pie.

color
Color of pie.

start
Starting angle of pie in radians.

end
Ending angle of pie in radians.

aspect
Ratio of length of y-axis to length of x-axis used to draw elliptical pies.

Remarks

The PIE statement can be used to draw a pie of a circle or ellipse. A pie is an arc
specified by the start and end angles with the endpoints connected to the center
point.

Use ,F to fill in the pie.

If color is omitted the default is the current graphics foreground color. If start is
omitted the default is 0. If end is omitted the default is 0. if aspect is omitted the
default is 1.

Graphics must be turned on to draw pies.

Examples

PIE (50, 50), 25, , . 785, 3. 142
PI E (100, 100), 50, 5, , 2. 356, , F

Mode

Program only

See Also

BOX, CHORD, CIRCLE, DRAW, GRAPH, LINE, PAINT, PCOLOR

7.163 PLOT Statement (Version 1.4 or later, standard version only)

Draws a point.

| PLOT xy

Parameters

X

152

X coordinate of point.

y
Y coordinate of point.

Remarks

The PLOT statement draws a point at the specified coordinates using the current
graphics foreground color.

The PLOT statement is similar to the PSET statement and is provided for
compatibility.

Graphics must be turned on to draw points.

Examples
PLOT 50, 50

Mode

Program only

See Also

COLOR, GR, HPLOT, PSET
7.164 POKE Statement

Writes a byte value to a memory location.

| POKE address,value

Parameters

address
Address of memory location.

value
Value to write to memory location.

Examples

PCKE 1994, 5
PCKE 1994, 255

Mode

Immediate, Program

See Also
EXEC, PEEK

7.165 POP Statement

Removes a return address from the call stack.

| POP

153

Remarks

The POP statement removes the most recent return address placed on the call stack
by a GOSUB statement.

Mode

Immediate, Program

See Also

GOSUB, PUSH, RETURN

7.166 PPRINT Statement (standard version only)

Writes output to the graphics screen.

PPRINT (x,y)[,[color][,[mode][,[angle][,[horizontal][,vertical]]]]]; [expression] [{, | ; |
SPC(spaces)} [expression]]...

Parameters

X
X coordinate where output is to begin.

y
Y coordinate where output is to begin.

color
Text color.

mode
Background mode, O for opaque or 1 for transparent.

angle
Text angle, O - 0 degrees, 1 - 90 degrees, 2 - 180 degrees, 3 - 270 degrees.

horizontal
Horizontal alignment, O - left, 1 - center, 2 - right.

vertical
Vertical alignment, O - top, 1 - center, 2 - bottom.

expression
Data to print.

spaces
Number of spaces to output.

Remarks

A, (comma) or a ; starts printing immediately after the last value printed. SPC prints
a specified number of spaces.

If color is omitted the default is the current graphics foreground color. If mode is
omitted the default is 0 (opaque). If angle is omitted the default is 0. If horizontal is
omitted the default is 0 (left). If vertical is omitted the default is O (top).

154

PPRINT does not print a carriage return.
Graphics must be turned on to print to the graphics screen.

Examples

PPRI NT (10, 10),5; "COUNT"
PPRI NT (10, 25),5,,3; "ITEM

Mode

Program only

See Also

PPRINT USING

7.167 PPRINT USING Statement (standard version only)

Writes output to the graphics screen.

PPRINT (x,y)[,[color][,[mode][,[angle][,[horizontal][,vertical]]]]]; USING format;
expression[,expression]...

Parameters

X
X coordinate where output is to begin.

y
Y coordinate where output is to begin.

color
Text color.

mode
Background mode, 0 for opaque or 1 for transparent.

angle
Text angle, O - 0 degrees, 1 - 90 degrees, 2 - 180 degrees, 3 - 270 degrees.

horizontal
Horizontal alignment, O - left, 1 - center, 2 - right.

vertical
Vertical alignment, O - top, 1 - center,