METACRAFTS METACRAFTS FORTH

FORTHN
\\"W

FOR
APPLE Il

COPYRIGHT NOTICE

This software product is copyrighted and- all rights are

reserved. The distribution and sale of this product are
intended for the use of the original purchaser only. Lawful

users of this product are hereby licensed only to read the
program from the floppy disc provided, or a backup copy of
it, into the memory of the computer solely for the purpose
of executing the program.

This manual is copyrighted and all rights are reserved. This
manual may not, in whole or part, be copied, photocopied,
revroduced, translated or reduced to any electronic medium or
machine readable form without prior consent, in writing,
from Metacrafts Limited.

€ - 1983 Metacrafts Limited
144 Crewe Road, Shavington, Crewe CW2 5AJ, England

Printed by Johnsons of Nantwich Limited

11

ACKNOWLEDGEMENTS

We would like to acknowledge the work of the Forth
Inte?est Group, P.0.Box 1105, San Carlos CA 94070., in
particular the fig-FORTH model by William Ragsdale,

ind the FORTH-79 standard document by the standards
eam.

The transportable control structure primitives and the

idea for OUTLINFE are due to Kim Harris of Laxen &
Harris Inc.

The macro assembler came from an article by William
Ragsdale in FORTH Dimensions vol. IIT no.5.

The ARGUMENTS and RESULTS words are due to an article

by Marc Perkel which appeared in FORTH Dimensions vol.
IIT no.6.

11

CONTENTS

ACKNOWLEDGEMENTS

CONTENTS

INTRODUCTION

PART I

NN -

4.1

PART II

g -

.2
3
4

4 Sc

ARADR B VUVWWEOND DO VN DY -

r
1
2
3
4
5

INSTALLATION GUIDE

HARDWARF CONFIGURATION °

LOADING & RUNNING FORTH

MAKING BACKUP COPIES OF THE SYSTEM DISC
PERIPHERAL CONFIGURATION

Execution Vectors

Input-Output Execution Vectors
Operator Terminal

Printer Output

Mass Storage

DEVELOPMENT TOOLS

Activating COPY

Running COPY

Duplicating Blocks using Two Drives
Duplicating Rlocks using a Single Drive

OCUMENT

Activating DOCUMENT

Printer Output

Generating Source Listings
Generating Source Screen Outlines
Producing a Screen Index

Application Generated Printer Output

ODE AND DUMP

Activating DECODE
DECODE Output
Activating DUMP
DUMP Output

een Editor

Activating the Editor

Working with a 40 Column Display
Command Format

Cursor Moving Commands

Changing Screens

Ve R R IO I Y N NI

—_

PART

vy

A

Editing Modes

OVERWRITE Mode

INSERT Mode

DELETE Mode

Search and Replace Feature
Generating the Index Line
Trial Load

Termination and Recovery

« o & o s o
[0 s Be Y
GUinN = O

I o
PO == = 2O
o

Activating DEBUG

Loading the Application
Starting the Test
Performing the Test

5.4.1 Single Word Stepping
5.4.2 Data Validation

5.4.3 EMIT and KEY

5.4.5 Examining non-Stack Data
5.4.6 Debugger Skip Function
5 Errors

6 Defining Words

« o

.

RIS RS R w B b il i

5.
5.
I11 SYSTEM DESCRIPTION

WORD SETS
INTERNAL DETAILS
2.1 Direct Threaded Code
2 The Interpreter Pointer
3 Stacks
Dictionary Header
5 Defining Words
1
2

.4
6 Memory Map
CABULARY MECHANISM
Context stack and FIND
Current Definitions Stack & CREATE
3 Vocabulary Tree
3.4 Compatibility with the 79-Standard
3.5 Internal Organisation
EXECUTION VECTORS
OVERLAYS
5.1 Creating Overlays
5.2 Loading Overlays
5.3 System Use of Overlays
5.4 Building a Turnkey Disc
BUFFER AND HEAP MANAGEMENT
LANGUAGE CARD

WoOul <N PN DN
.

27
28
28
29
30
32
32
34
36
36
36
37
37
38
38
40
41

41

42
42

44
44.1
44.1
45
46
46
48
48
50
50
50
51
52
52
54
55
55
56
57
58
59
60

10

LOCAL VARIARLES

6502 ASSFMBLER

9.1 The Assembly Process
Run-time and Assembly-time
Security
Op-codes
Stack Addressing
Return Stack
FORTH Registers
CPU Registers
Setup and ¥

0 Control Flow

1

1

.
= = 20D ~-JON PN

Looping

Conditional Execution

.12 Nested Control Structures

9.1% Returning Control

9.14 Reset and BRK

STRINGS, GRAPHICS & GAME CONTROLLERS

O OoOOLOVOOVWL OO OO
.

PART IV GLOSSARY

OV ~IA A~ NN =

DEFINITION OF TERMS
GLOSSARY NOTATION

STACK MANIPULATION

NUMBER COMPARISON
ARITHMETIC & LOGICAL
MEMORY

CONTROL STRUCTURES
TERMINAL INPUT-OUTPUT
NUMERIC CONVERSION

MASS STORAGF INPUT-OUTPUT
DFFINING WORDS
VOCABULARIES

COMPILER

MISCELLANEOUS

STRINGS

HEAP MANAGER

LOCAL VARIABLES

GRAPHICS AND GAME CONTROLLERS
ASSFMBLER

APPENDIX 1 FERROR MESSAGES

APPENDIX 2 ERROR RFEPORTS

APPENDIX 3 FURTHER READING

75
84
87
90
92
96
99
107
114
118
124
130
133
138
143
147
148
149
154

162
165
166

INTRODUCTION

Metacrafts FORTH is a high performance implementation
of the FORTH language and operating system for use
with Apple II/IIe computers. It is fully compatible

with the 1979 definition of the language as documented
by the FORTH standards team.

This manual is your guide to the installation and use
of the system. It will not teach you how to write
programs in FORTH. If you require a tutorial text then
you should consult the reading list in the appendix,
where you will find a comprehensive selection of
titles suitable for novices.

The user guide is split into four parts. The first part
covers all the information you need to install
Metacrafts FORTH on your configuration. Part II tells
you how to use the set of program development tools
stored on the system disc. In Part III you will find a
description of the system's internal structure and
principle extensions. Finally, Part IV contains a
glossary of the word sets supported by the system.

While every endeavour has been made to present the
information contained in this manual in as clear a
fashion as possible, there will no doubt be some
ambiguities and errors of omission. Please contact us
and tell us about these, or any other suggestions you
feel might improve either the User's Guide or indeed
the software itself.

PART 1 INSTALLATION GUIDE

You should read this part of the manual before
attempting to use Metacrafts FORTH. In it you will
find details of the hardware configuration required
and instructions which tell you how to modify/enhance
the operating system to deal with alternative
configurations. You will also find instructions
telling you how to load and run the system, and how to
backup the system disc.

Metacrafts FORTH User's Guide -- Part I

1. HARDWARF CONFIGURATION

To be able to use Metacrafts FORTH you will need the
following equipment:

- An Apple II with Autostart ROM and 48K RAM, or an
Apple ITe.

- At least one 16-sector Disk II disc drive.
- A black and white television receiver.

To obtain the best results, however, we strongly
recommend the use of:

At least two disc drives.

A green phosphorous monitor to reduce eyestrain.

An 80 Column Video Card.

Colour display capability if colour graphics are
to be used.

A printer.

Metacrafts FORTH User's Guide -~ Part I

2. IOADING AND RUNRING FORTH

The floppy disc that you purchased together with this
manual contains all the software that you require to
be able to load the system. Simply insert the disc in
the boot drive (see your DOS 3.3 Manual if you don't
know what a 'boot drive' is), ensure that the display
terminal is set up for displaying 40 columns (if you
have a hard-switching 80 column card), and switch on
the Apple II.

Approximately twelve seconds later you should hear a
series of beeps from the speaker indicating that the
load has been successful. The display screen at this
point will be showing details of the system version,
the disc serial number and the message "SYSTEM READY"
followed by 0K, signifying that FORTH is ready to
accept input from the keyboard.

If, after making several attempts, you can't get the
system to load as just described, try loading some

other disc - for example, the DOS 3.3 disc you were
given when you purchased the Disk II.

If that won't load either, then check all connections
and the power supply. If you still have no success,
contact your dealer. If, on the other hand, the
problem seems to be confined to the FORTH disc, then
contact your supplier who will check the disc and
replace it, free of caarge, if it turns out to be
faulty.

Once you've achieved SYSTIM READY you can start typing
FORTH text directly on the keyboard. The system will
make no attempt to execute the code that you type until
you press the key marked "RETURN", which we refer to as
{return> in the rest of the manual. The FORTH keyboard
input routine allows you to type up to 80 characters
before pressing <return>. If you try and exceed this
limit, the Apple speaker will beep. You can cancel
everything you've typed by pressing the CTRL and X
keys together, instead of pressing <return>.
Alternatively, by pressing the backspace key you can
reposition the cursor at any of the characters you've
typed, retype it and any following characters, and

4

Metacrafts FORTH User's Guide -- Part I

reposition the cursor back at the end of the line

using the forward space key (->) before pressing
{return>.

When FORTH has finished executing the text you typed,
it responds with the message "OK" and waits for more
input. Actually, the word that outputs the OK response
has been implemented as sn execution vector (see Part
III chapter 4) called .0K. This means that you can
substitute vour own version to output the stack
contents for example, before the OK message.

(Note: the brackets { and J, and
the underscore character can be
obtained by typing CTRL-Y,

shift -M and CTRL-0 respectively.)

Metacrafts FORTH User's Guide -- Part I

3. MAKING BACKUP COPIES OF THE SYSTEM DISC

The FORTH system disc is write-protected to prevent
you from inadvertently destroying its contents.
Nevertheless, it is good programming practice to make
copies of all important discs, and your FORTH disc is
no exception. For this reason we allow you to make
copies of it for backup purposes, and no other. We
respectfully ask you to help keep down the cost of
high quality software by not abusing this privilege.

Before proceeding therefore, please read chapter 1 in
part II of this guide which tells you how to make
complete or partial copies of your floppy discs.

Metacrafts FORTH User's Guide -- Part I

4. PERIPHERAL CONFIGURATION

Metacrafts FORTH is configured to use the Apple
keyboard and 40 column display, a centronics printer
and two Disk II drives. The purpose of this chapter is
to tell you how alter the configuration, either to
replace one or more of these devices, or attach
additional ones. For example, you may want to send
output to an 80 column display instead of the standard
40 column one, or perhaps you want to connect a
graphics tablet. If so, you should read the rest of
this chapter and also Part III chapter 5 which talks
about the overlay system.

4.1 Execution Vectors

Because we have implemented the principle input-output
words as execution vectors, it is really quite easy to
modify the configuration once you know what you want
to do. Execution vectors are discussed in detail in
Part III chapter 4. Very briefly, they are like user
variables in that they are used to store a value. The
value of an execution vector is the compilation
address of some word. Whereas the run-time action of a
user varisble causes the address of the user variable
to be left on stack, the run-time action of an
execution vector causes control to be passed to the
compilation address assigned to the vector.

4.2 Input-Output Execution Vectors

All input-output activity ultimately passes through
the one or other of the execution vectors below.

EMIT -- output a character.
KEY -- input a character.
PAGF -- continue output on a new page.
@CURSOR -- leave cursor position on stack.

'CURSOR -- set cursor position to value on stack.

CLREOL - clear from cursor position to end of line.

7

Metacrafts FORTH User's Guide -- Part I

CLRFOP -- clear from cursor position to end of page.

R W -

read/write a mass storage block.
FORMAT -- format a mass storage volume.

Fach of these words is fully documented in the
glossary in Part IV of this guide.

4.3 Operator Terminal

Terminal output is transmitted to the display screen
via EMIT, keyboard input is accepted via KEY. EMIT is
initialised to invoke (FMIT) which, in turn, calls the
Apple monitor COUT routine. XEY is initialised to
invoke (KRY) which calls the Apple monitor RDKEY
routine.

COUT is itself a form of vector, because it passes
control to the routine whose address is stored at CSW.
Similarly, RDKEY passes control to the routine whose
address is stored at KSW. During system
initialisation, and following a reset, CSW and KSW are
set up to point at monitor routines which handle 40
column output and Apple kevboard input.

It is possible to direct character input/output to an
alternative device by storing the address of the
device's driver code in CSW or KSW as appropriate.

Usually the driver code will be the device controller
firmware.

You can, of course, write your own character
input/output routines and use IS to assign its entry
point to FEMIT/KEY.

In addition to FMIT and KEY, there are five other
vectors which perform video display functions. @CURSOR
and !CURSOR are used to manipulate the cursor and are
initialised to call (@CURSOR) and (!CURSOR)
respectively. PAGE is set to call (PAGE) and is used
to clear the screen and position the cursor in the top
left-hand corner. CLREOL and CLREOP, initialised to
call (CLRFOL) and (CLREOP) , are used to clear the

&

Metacrafts FORTH User's Guide -- Part I

display from the cursor position to the end of line
and end of page respectively. Each of these five
functions is carried out by an Apple monitor routine.

Screens 56 and 140 on the system disc contain an
example of words set up to drive a VIDEX VIDEOTERM
compatible 80 column video card. If such a card exists
in slot 3, it can be activated by invoking the word
80-COLS. Be warned, however, that if you press reset
with such a card active, it will be deactivated by the
Apple monitor. It should be reactivated by typing
80-COLS again.

4.4 Printer Output

All character output can be directed, via EMIT, to a
printer by storing the address of the printer driver
routine in CSW. If pre-processing of the character
output stream is required, the compilation address of
a FORTH pre-processor word should also be assigned to
EMIT using IS.

Screens 106-~110 on the system disc contain a
pre-processor for output to a Centronics printer. This
is used by the words in the DOCUMENT overlay described

in Part IT chapter 2. You can use this pre-processor
in your own applications by making a copy of it on
your application disc.

If your printer/paper is incompatible with the printer
parameters in screen 106, then you should amend them
using the editor, and remake the DOCUMENT overlay.

The preprocessor has the following capabilities:

Automatic Pagination

-- a form-feed is performed after L/P lines have been
printed on a page.

Optional Page Headings and Numbering

—- turned on by the word TITLE" and off by the word
NO-TITLE. The starting page number can be set by the
word PAGE-NUMBER.

Metacrafts FORTH User's Guide —— Part I

Linefeed Switch

-- controlled by the constant HAS-LF on screen 106. If
HAS-LF is set to 1 the printer is assumed to output an
automatic LF character after every CR character that
is sent to it. If HAS-LF is set to O the pre-processor
will send a LF character after every CR character that
it receives.

Formfeed Switch

-~ controlled by the constant HAS-FF on screen 106. If
HAS-FF is set to 1 the printer is assumed to respond
correctly if it is sent a form-feed character (ASCII 12
decimal). If HAS-FF is set to O the pre-processor will
simulate the effect of a form-feed character by
sending the appropriate number of LF characters to the
printer. You can use PAGE to cause a form-feed if you
use the printer pre-processor, because this reassigns
PAGE to emit a form-feed character when the printer
is selected by PRINTER-ON.

Page Width

-- controlled by the constant PW on screen 106.
PRINTER-ON resets the value of C/T to the value of PW.

Sheet Size

-- controlled by the constant L/S on screen 106. This
constant determines the physical size of a sheet of
paper in terms of the maximum number of lines ‘that
will fit on it.

Page Size

-- controlled by the constant L/P on screen 106. This
constant determines the maximum number of lines,
inclusive of heading, that will be sent to the printer
before a form-feed is automatically emitted by the
pre-processor.

Printer Slot

10

Metacrafts FORTH User's Guide -~ Part I

-- controlled by the constant 'PRINTER on screen 106.
this constant determines the number of the peripheral
slot containing the printer interface card.

Setup String

-- controlled by the string SETUP on screen 106. This
is the string which initialises the Centronics
printer. It is initialised to Ctrl-I80ON which switches
off the display output and allows 80 character lines
to be sent to the printer. The string is typed in
hexadecimal, and the first number is the string length.

4.5 Mass Storage

Metacrafts FORTH is designed to drive up to 6 Disk II
drives, each with a disc storage capacity of 140
blocks of 1024 bytes. The controllers for these drives
must be inserted into contiguous peripheral slots,
with the boot drive connected to the controller in the
highest numbered slot. Drives are referenced by a
number in the range 1-6, where 1 is the boot drive.
The current drive for disc transfers is taken to be
the value of the user variable DR. The number of drives

connected to the system must be stored in the user
variable #DRIVES. The value of #DRIVES is used by

COPY, described in Part II chapter 1, to determine
whether single drive disc-to-disc copying is necessary.

Disc transfers take place to and from the FORTH block
buffers in 1024 byte units. Transfer requests are
serviced by the execution vector R/W which is set to
invoke the Disk II driver (R/W). If (R/W) detects a
device/media error it calls ABORT" DISK II ERROR",
vhich terminates execution of the current program.

Floppy disc formatting is carried out by the execution
vector FORMAT which is set up to call the Disk II
formatter (FORMAT), which formats the disc in the
current drive (determined by DR).

For performance reasons Metacrafts FORTH does not use
either the DOS 3.3 or UCSD Pascal sector interleaving
sequence. This means that discs produced on these
systems cannot be read by Metacrafts FORTH unless the

11

Metacrafts FORTH User's Guide -~ Part I

sector interleaving table at locati’on hexadecimal BFBR8
is altered to correspond to the interleaving on the
disc to be read.

It is possible to mix mass storage device types, but
to do so it is necessary to define words to carry out
the read, write and format actions required by FORTH.
The rest of this section explains how to go about
doing this.

If you look at the definition of R/VW in the glossary
in Part IV of this guide, you will see that it expects
to find the internal address of the block buffer
involved in the transfer on stack. The external
address, which is the one returned by BLOCK and
BUFFER, is obtained by adding 5 to the internal
address. Given the internal address, the following
word will return the block and drive numbers
associated with the buffer:

: XFER-INFO (addr --- block drive)
2+ DUP @ 7FFF AND (block number)
SWAP 2+ C@ (drive number) ;

In other words, if you write your own R/W driver, you
can obtain details of the transfer from the internal
address as just described.

The only information required to be able to format a
disc is the drive number, and this is contained in DR.

Once you've written driver words for your mass storage
device you need to know how to link them into FORTH.
Because you need at least one DNisk II drive to be able
to boot the system it is not sufficient to merely
reassign R/W and FORMAT +to point at your drivers
because this would have the effect of isolating the
Disk II. The solution is to write intermediate words
that sort out which driver to call based on the drive
number. The intermediate words are then assigned to
R/W and FORMAT using IS.

For example, if you had a single Disk II drive as
drive 1, and a 64K RAM card to simulate mass storage
as drive 2, then the words defined below would be

12

Metacrafts FORTH User's Guide -- Part I

sufficient to ensure that all activity is routed to
the correct driver.

: <R/W> (addr opcode ---)
OVER 4 + C@ (get drive number)
1 = IF (R/W) ELSE RAM-DISC THEN ;

: <FORMAT>
TR @1 = IF (FORMAT) ELSFE FORMAT-RAM THEN ;

FiIND <R/W> IS R/W

FIND <FORMAT> IS FORMAT

13

PART IT DEVELOPMENT TOOLS

This part of the manual describes the purpose and
operation of the software tools that have been
supplied to help you develop FORTH applications more
easily. Chief among these are the sophisticated screen
editor and source level debugger.

14

Metacrafts FORTH User's Guide —- Part II

1. COPY

COPY is used to copy mass storage blocks from one
place to another, either across volumes, or within the
same volume, using multiple drives, or a single drive.

1.1 Activating COPY

COPY is stored as a pre-compiled overlay on the system
disc in block 30. Its source code is stored in blocks
94-98. To activate COPY simply type the word COPY and
press <return>. If the overlay is already in store it
will be entered. If it isn't the operating system will
load it from the system disc which should be in drive
1. If some other disc is in drive 1 you will be
requested to replace it with the system disc and press
any key to start loading. When loading is complete you
will be asked to reinsert your own disc if drive 1 was
the current or only drive.

1.2 Running COPY

COPY asks the user for information about what is to be
copied to where. The precise dialogue depends on
whether or not you have a single drive system. COPY
checks the value of #DRIVES, and if this has the value
1 it assumes you have a single drive system. If you
have a single drive system you will need to set
#DRIVES to 1 because Metacrafts FORTH is issued with
#DRIVES set to 2. The following sequence of words will
reset #DRIVES to the value 1:

1 #DRIVES !

You can avoid typing this every time you load FORTH by
using the editor to update block 13, which is
automatically loaded every time you boot the system
(see Part III chapter 5.%).

If you happen to have a single Disk II drive and a
single 8" drive, then you should also set #DRIVES to 1
if you want to duplicate either a Disk II disc or an
8" disc. If you want to transfer blocks from one type
to the other, then you need to set #DRIVES to 2. From
this you will probabdbly have inferred that COPY will

15

Metacrafts FORTH User's Guide -- Part II

work with any mass storage type provided that you have
set up R/W to handle the different types (see Part I
chapter 4).

1.3 Duplicating Blocks Using Two Drives

Suppose you want to copy all or part of one disc onto
another disc (throughout the rest of this chapter we
use the term disc to mean any mass storage medium
which your system supports). If the destination disc
is blank, you must format it using FORMAT before you
activate COPY. When you have done this, activate COPY
and answer the questions as they appear. If you
mistype a value you can use the backspace key to
reposition and retype it. COPY expects you to press
<return> at the end of each reply before it asks the
next question.

The final question asks you either to press return
when you are ready for copying to commence, or to
press the escape key if you want to quit the COPY
program. At this point you should insert the discs
into the appropriate drives and then press <returnd.
If, for any reason, you decide not to go ahead with
the copy, you should press the FSC key. This will get
you out of the COPY program and return you to FORTH.

Copving will start as soon as you press <return> (COPY
typically takes about one minute to duplicate the 140
blocks of a Disk II disc). When copying is complete a
message to this effect will appear on the screen
followed by a 'continue or quit' prompt. If you want
to make further copies you should press <return> at

this point, otherwise press the FESC key to be returned
tc FORTH.

Below is an example of a dialogue which would
duplicate the disc in drive 1 on the disc in drive 2.

SOURCE DRIVE ? 1
FIRST BLOCK ? 1

LAST BLOCK ? 140
DESTINATION DRIVE ? 2
DESTINATION BLOCK ? 1

16

Metacrafts FORTH User's Guide -- Part II

PRESS RETURN TO CONTINUE, ESC TO QUIT
COPY COMPLETE
PRESS RETURN TO CONTINUE, ESC TO QUIT

If you want to move a set of blocks from one part of a
disc. to another part of the same disc, simply set the
destination drive to be the same as the source drive.
COPY is intelligent enough to handle overlapped
copying. For example, if you move blocks 1-10 to
blocks 3-12 then, after copying, blocks 3-12 will
contain the original contents of blocks 1-10 (which is
what you would expect!).

1.4 Duplicating Blocks Using a Single Drive

Single drive copying can involve a certain amount of
media swapping. COPY asks whether or not you want to
be prompted to swap discs. If you respond in the
negative to this prompt, copying will take place
within the same disc. In other words, blocks will be
moved from one part of the disc to another. If you
respond positively to the prompt, COPY will ask you to
swap source and destination discs as and when
necessary. The number of disc swaps is a function of
the number of blocks to be copied and the number of
buffers available for COPY's use (usually about 27).

Below is a sample single disc COPY dialogue:
START RLOCK ? 10

LAST BLOCK ? 20

DESTINATION BLOCK ? 60

TYPE RETURN IF SWAPPING DISCS

PRESS RETURN TO CONTINUE, ESC TO QUIT
SWAP DISCS AND PRESS ANY KEY TO CONTINUE

COPY COMPLETE

PRESS RETURN TO CONTINE, ESC TO QUIT

17

Metacrafts FORTH User's Guide -- Part II

2. DOCUMENT

DOCUMENT, as the name implies, helps with
documentstion of your applications. It can be used to
produce paginated listings of source screens on your
printer as well as summary and index listings either
on the terminal or printer.

2.1 Activating DOCUMENT

DOCUMENT is stored as a pre-compiled overlay on the
system disc in blocks 31-32. Its source code is stored
in blocks 106-111 and 100-101. To activate DOCUMENT
simply type the word DOCUMENT and press <returnd. If
the overlay isn't in store the operating system will
load it from the system disc which should be in drive
1. If some other disc is in drive 1 you will be
requested to replace it with the system disc and press
any key to start loading. When loading is complete you
will be asked to reinsert your own disc if drive 1 was
the current or only drive. FORTH responds OK when
DOCUMENT is ready for use.

2.2 Printer Output

If you have a Centronics compatible printer you can
use the facilities provided by DOCUMENT to produce
paginated printer output. If your printer is not
Centronics compatible, or if your paper size is not 66
lines to the page, then please read Part I chapter 4.4
which explains how to adapt the system to deal with
your printer.

2.3 Generating Source Listings

With DOCUMENT loaded you can use either PRINT to
produce a printed listing of a sequence of screens, or
PRIFT1 to produce a listing of a single screen. You
can also, if you wish, specify a title to be printed
at the top of each page together with the page number.
The word TITLE" can be used to specify the text to
appear in the title and PAGE-NUMBER to specify the
number of the first page (the default is 1). If TITLE"
has been invoked, then titles will be printed on all
output until the feature is turned off by NO-TITLE.

18

Metacrafts FORTH User's Guide -~ Part II

Refer to the glossary in Part IV of this guide to find
out how to call these words.

2.4 Generating Source Screen Outlines

With DOCUMENT loaded you can use OUTLINE to produce a
summary of a sequence of source screens, and 10UTLINE
to produce a summary of a single screen. A screen
summary consists of those screen lines that have one
of '(',':' or 'C' as first character. In other words,
provided you adopt the convention of starting all
comment, colon and code definitions in column one, you
can use these words to produce listings summarising
the contents of your code.

Below is an example of OUTLINE's output of part of the
system disc.

SCREEN #133

(GRAPHICS & GAMES 03-JAN-83 XGL)
CODE HLINE (XY -—-) (DRAW LINE TO X Y)
CODE DRAW (ADDR U ---) (DRAW SHAPE AT ADIR)

(ROTATED BY FACTOR U)
SCREEN #134

(GRAPHICS & GAMES 06-JAN-83 KGI,)
: 0180 (DEGREES --- COSINE*10000 COSINE 0-180)

A printed listing of screen outlines can be generated
by prefixing a sequence of QUTLINE/10UTLINE calls with
PRINTER-ON, and postfixing them with PRINTER-OFF. The
above example, for instance, was produced by the
following set of words:

PRINTER-ON 133 134 OUTLINE PRINTER-OFF

The printed output will be paginated with titles if
these have been switched on.

If you press any key while OUTLINF is sending output to
either a printer or the terminal, output will stop
until you press another key. This feature is useful if
you are trying to read output sent to the terminal.

19

Metacrafts FORTH User's Guide -- Part II

Refer to the glossary in Part IV of this manual for
details of how to call OUTLINE and 1OUTLINE.

2.5 Producing a Screen Index

Another useful feature of DOCUMENT is the word INDEX.
This is used to produce a terminal or printer listing
of the first lines of a given range of screens subject
to the condition that the lines consist of comment. If
a screen is found whose first line does not comsist of
comment, a question mark is output. If the index is
sent to a printer it will be paginated with titles if
these have been switched on.

Below is a sample listing of INDEX's output of part of
the system disc:

32 ?

3%(SYSTFM OVERLAY GENERATOR 23-FEB-83 KGL)
34(MISCLELLANEOUS GLORALS 14-DFC-82 KGL)
35(VOCABULARY WORDS 14-DEC-82 KGL)

As with OUTLINE, pressing any key temporarily stops and
starts the output from INDEX.

2.6 Application Generated Printer Output

You can use the words PRINTER-ON and PRINTER-OFF in an
application in order to direct the character output
stream to the printer. The resultant output will be
paginated automatically, although you can menually
force a form-feed by means of PAGE. In addition, your
applications can use TITLE", PAGE-NUMBER and NO-TITLE
to further control the form of the printed output. Be
warned, however, that the cursor control words @CURSOR
and !CURSOR will have no effect on the printer.

The printer control words can be made available at
compile time in one of two ways. First, you can simply
insert a call to DOCUMENT at the start of your
application, before any words have been added to the
dictionary. Alternatively, you can compile the
relevant source screens along with your application

20

Metacrafts FORTH User's Guide -- Part II

(see Part I chapter 4.4).

If you choose the first method and want to generate an
overlay containing your application, don't forget to
include the printer words in the overlay (either that,
or remember to load DOCUMENT before loading your
application).

21

Metacrafts FORTH User's Guide -- Part II

3. DECODE AND DUMP

It is sometimes useful to be able to examine the code
that the FORTH compiler has generated for a colon
definition, particularly if you are developing new
compiler words. DECODFE will generate a symbolic
terminal or printer listing of any colon definition.
Similarly, during program testing, you might want to
examine the contents of an area of store - the
contents of a block buffer for instance. DUMP lets you
display, on the terminal or printer, the contents of
selected areas of store.

3.1 Activating DECODE

DFCODE is loaded in source form from blocks 102-105. To
activate it simply type the word DECODE followed by
the name of the word you want to examine, and press
(return>. If the overlay is already in store it will
be entéred. If it isn't the operating system will load
it from the system disc which should be in drive t. If
some other disc is in drive 1 you will be requested to
replace it with the system disc and press any key to
start loading. When loading is complete you will be
asked to reinsert your own disc if drive 1 was the
current or only drive.

3.2 DECODE Output

If the word you want to examine is not a colon
definition or simply not in a vocabulary on the
context stack, you will be notified accordingly and
returned to FORTH. Output from DECODE is sent to the
terminal, and can be temporarily stopped and restarted
by pressing any key on the keyboard. To obtain a
paginated, titled printer listing of the output, load
DOCUMENT before you start working on your application
development, and use the printer words to reroute the
output to the printer.

Below is a sample listing of a request to DFCODE the

word .

22

Netacrafts FORTH User's Guide -- Part II

DEFINITION OF " (IMMEDIATE)

3534 P LIT OOTF 127
3538 P CLIT 22 34 "
3538 P: FENCLOSE

353D P: ?NULL

353F P STATE

3541 P @

3543 P OBRANCH 0012 18
3547 P: COMPILE 3516 13590
354B P: D>HERE

354D P C@

354F P 1+

3551 P: ALLOT

3553 P BRANCH 0004 4
3557 U: >PAD

The first line of the output identifies the decoded
word, in this case ", and indicates if it is an
IMMEDIATE word. Each of the subsequent lines begins
with the hexadecimal address of a cell in the
dictionary which belongs to the definition being
decoded. Each such cell contains the compilation
address of the word whose name appears on the line
containing the cell's address. The characters which
follow the cell address consist of a P if the word is
in the protected dictionary, or U if it is unprotected
(a protected definition can't be forgotten by FORGET).
This is followed by a : if the word is a colon
definition. If any in-line data belonging to the word
follows the cell address, then this is output after
the word's name. In many cases the data is output in a
variety of forms. The following list gives the form
used for each of the words known to have in-line data:

Word name In-1line data format
LIT hex decimal
CLIT hex decimal ASCII
BRANCH hex decimal
OBRANCH hex decimal
gLOOP) hex decimal

+LOOP) hex decimal

(oF) hex decimal
COMPILE hex decimal

(.") string

23

Metacrafts FORTH User's Guide -- Part II

(") string
(ARORT") string

DECODE is capable of decoding all of the colon
definitions produced by the compiler words in the
released system. If you develop a compiler word which
generates in-line data, then you should modify the
definition of DECODE on screen 105. If you don't,
DFCODE will behave unpredictably if you ask it to
decode a definition containing the new word.

3.3 Activating DUMP

DUMP is loaded in source form from blocks 98-99 of the
system disc. To activate DUMP simply type the address
of the first byte to be dumped followed by the address
of the last byte and then the word DUMP and press
{return>. If the overlay is already in store it will

be entered. If it isn't the operating system will load
it from the system disc which should be in drive 1. If
some other disc is in drive 1 you will be requested to
replace it with the system disc and press any key to
start loading. When loading is complete you will be
asked to reinsert your own disc if drive 1 was the

current or only drive.
3.4 DUMP Output

Each line consists of 16 bytes of store displayed
first in hexadecimal, and then in character format.
Non-printing characters are shown as an underscore
character. The address of the first byte displayed on
each line appears in hexadecimal at the beginning of
the line followed by a / character.

If you use DUMP with a 40 column display, then 8 bytes
will be output on each line instead of 16.

As with DFCODE, the store dumper can be used in

conjunction with DOCUMENT to send output to the
printer.

24

Metacrafts FORTH User's Guide -- Part IT

4. Screen Editor

The editor lets you create and modify FORTH blocks
containing source code and text data. The unit of
display is the FORTH screen. Cursor movement and text
manipulation is allowed anywhere within a screen.
Movement of the display 'window' between screens and
across mass storage devices is permitted.

4.1 Activating the Editor

The editor is stored as a pre-compiled overlay on the
system disc in blocks 21-26. Its source code is stored
in blocks 78-93. To activate the editor, type the
number of the screen you want to look at (having first
selected the appropriate mass storage device),
followed by the word LOOK, and press <return>. If
the overlay is already in store it will be entered. If
it isn't the operating system will load it from the
system disc which should be in drive 1. If some other
disc is in drive 1 you will be requested to replace it
with the system disc and press any key to start
loading. When loading is complete you will be asked to
reinsert your own disc if drive 1 was the current or
only drive.

Eventually, the screen you specified will be displayed
with the flashing cursor positioned over the first
character of line 0. This is called the 'start'
position.

If the screen you select for editing has never before
been written to by the editor (a newly formatted disc
for example), then the screen contents will consist
solely of the character '@'. If, on the other hand,
the block containing the screen has previously been
used to store non-textual data, then the display will
contain a totally random collection of characters. In
either case the block must be prepared for editing by
means of the delete mode 'S' command (see 4.9).

4.2 VWorking with a 40 Column Display

If you are working with the standard Apple 40 column
display, then only the leftmost 37 characters of each

25

Metacrafts FORTH User's Guide -- Part II

of the 16 x 64 character lines will be displayed.
However, the cursor control facilities described below
enable you to scroll the screen to the left and to the
right, thus affording you access to the complete FORTH
screen.

We suggest that you use the leftmost 37 characters of
each line for program code, and the remaining
characters for comment. If you confine yourself to
using this approach, you will find editing and program
testing with the debugger is much simpler,
particularly if you don't have a printer.

Of course, if you have an 80 column card, you will be
able to see the whole screen without any problem.

4.3 Command Format

Fditing actions are invoked by the user typing editor
commands. Fach command consists of a single character,
usually a control character which is typed by
simultaneously pressing the CTRL key and one other
key. In the rest of this chapter control characters
are shown typed in brackets. For example, (C) denotes

CTRL-C and it is typed by pressing the CTRL and C keys
simultaneously.

4.4 Cursor Moving Commands

There are nine cursor moving commands. They are:

Command Action

-> move cursor one position to the right

<~ move cursor one position to the left

(0) move cursor vertically to the line above

(z) move cursor vertically to the line below

(s) move cursor to the start position

(T) move cursor 5 positions right (tab)

(B) position on first non-blank character of
the line

(E) position after last non-blank character of
the line

<{return> position on first non-blank character of
the next line

26

Metacrafts FORTH User's Guide -- Part II
If you have an Apple Ile you can use the vertical tadb
characters instead of (0) and (Z).

The <return> command has additional mode dependant
side-effects which are described later in this chapter.

Any attempt to move the cursor outside the 16 x 64
character screen display will be met by a beep from

the speaker.

4.5 Changing Screen

The following commands let you move to another screen:

Command Action
(P) move to previous screen
(N) move to next screen
(6) g0 to a user specified screen

The first two of these commands should require no
further explanation. When you type (G), however, the
display will clear and the message

GO TO WHICH SCRFEN?

will appear. If the screen you want to select is on
the same disc, simply type its number and press
<return>. If the screen is on another disc, and you
have a single disc system, you should first insert the
correct disc before carrying out the above
instructions. If, however, you have two or more
drives, you should insert the reauired disc in a free
drive and postfix the new screen number with a
fullstop followed by the drive number, and then press
<return>. For example, suppose you are looking at
screen 35 from the disc in drive t and you want to
change to screen 60 from the disc in drive 2. To do
this simply type 60.2 and press <return> in response to
the above request.

4.6 Bditing Modes
When the editor is first entered it is operating in
OVERWRITE mode. You will see a message to this effect

below line 15 of the screen on display. If you press

27

Metacrafts FORTH User's Guide —- Part II

the FSC key the editor switches to DFLETE mode and the
message below line 15 changes accordingly. Press the
ESC key again, and you will find vourself in INSERT
mode. To return to OVERWRITF mode simply press ESC one
more time. In other words, repeatedly pressing the ESC
key causes the editor to cycle through the three edit
modes. The cursor and screen changing commands may be
used in all three modes.

4.7 OVERWRITE mode

Overwrite mode is the normal mode for entering new
program source into a screen. Simply type the required
characters and they will appear on the display just as
if you were using a normal typewriter. When you reach
the end of a line the Apple will beep. To carry on on
the next line, press <return> and carry on typing.

In common with normal typewriters the editor has a tab
function which is activated by the (T) command. The tab
positions are fixed and occur every five character
positions. The other cursor moving commands can be
used to position the cursor anywhere on the 16 screen
lines.

Any characters typed in overwrite mode will replace the
characters at the cursor position. One way of editing
existing text is, therefore, to position the cursor on

the first character to be changed and start typing
replacement text.

4.8 INSERT mode

Often you will want to insert words between other
words. You can do this by selecting INSERT mode,
positioning the cursor on the character that is to
follow the insertion, and typing the text to be
inserted at that point. As you type you will find that
the new characters appear at the cursor position and
the original characters are displaced to the right to
make room for them. As non-blank characters reach the
end of the line they are lost.

The (T) and <return> commands have additional side
effects when used in INSERT mode. The (T) command

28

Metacrafts FORTH User's Guide -- Part II

displaces all the text from the current cursor
position to the right to the next tab position,
leaving blanks in their place. The <return> command
moves all the text between the cursor position and the
end of the line down to the line below, justified to
the far left of the screen. All the lines below the
original line are displaced down a line to make room
for the new line, and line 15 is lost.

If you position the cursor at the first character

position of & line (other than line 15) and press
<return>, the complete line will be moved to the line

below leaving a blank line in its place.
4.9 DELETE mode

This mode is most often selected prior to inserting
some replacement text. There are eight commands for
use in delete mode. These are listed in the following
table.

Command Action
C delete the character at the cursor position
w delete all the characters from the current
position up to, but excluding, the next blank.
L delete the current line and move all following

lines up to replace it. A blank line moves
into 1line 15.

S delete all the text in the current screen.

M delete the current line, as in L, and push it
onto the copy stack (see below).

D push a duplicate copy of the current line onto

the copy stack and move cursor to line below.

R pop the line on top of the copy stack and
place it on the line at the cursor position,
displacing the line currently there, and all

following lines, down one place.

The S command is normally used to prepare screens for
editing. Before the screen is cleared you will be
asked to confirm the request, the Apple will beep, and
the message REALLY? will appear in place of the mode
status message. If you really want to clear the entire
screen, press <return>. If not, press any other key
and the request will be cancelled.

29

Metacrafts FORTH User's Guide —- Part IT

The copy stack mentioned above is used to either
move

or duplicate lines of text within or between screens.
The stack holds at most 16 lines of text. The push
commands M and D can be interspersed with any other
editor command (including R) apart from the (X)
command described in 4.13.

The copy stack functions like any other stack: the
last line pushed onto it by M or D will be the first
line popped by R. The Apple speaker will beep if you
attempt to overfill the stack or use R with an empty
stack.

The <return> command also has side effects in DELETE
mode. Pressing <return> causes the text between the
curgsor position and the end of the line to be deleted
and the cursor to move to the first non-blank
character on the following line.

4.10 Search and Replace Feature

The (F) command, applicable in any mode, turns on the
search and replace feature with which you can get the
editor to find, and optionally replace, a specified
character string wherever it occurs in a given set of
screens.

Typing (F) clears the screen and the prompt

FIND?

appears. You should respond by typing the character
string to be found. You may type any sequence of
characters up to a maximum of 63, excluding the
character ". Mistakes can be corrected by backspacing
and retyping. Press <return> when you are ready.

Once you have specified the search string you will be
requested to type a replacement string. This is the
character string with which you want to replace
instances of the search string. If you only want to
find instances of the search string without making any
alterations, you should press the ESC key followed by

30

Metacrafts FORTH User's Guide —- Part II

the <return)> key. Otherwise type the replacement
string in the same way as you typed the search string.
It too may be up to 63 characters long.

Finally, you will be asked to say where you want the
search to terminate. The search always starts with the
current screen, and you can choose which screen is to
be the last one searched. You are allowed to choose a
screen with a lower number than the current screen.

Press <return> to start the search.

Up to this point the screen will contain something
like the following:

FIND? SOME SORT OF STRING
REPLACE WITH? ANOTHER SORT OF STRING
STOP AT SCRFEN? 76

When an instance of the search string is found, the
screen containing it is displayed with the cursor
positioned on the first character of the instance. If
you want to mske a replacement, press {return> and you
will see the instance disappear to be replaced by your
replacement string.

If replacing the instance would cause non-blank
characters to be lost at the end of the line, as
might be the case if the replacement string is longer
than the search string, then the speaker will beep
and no replacement will be made.

If you choose not to replace the instance found, press
any .key other than <{return> or ESC, and searching will
continue to the next instance.

If you never specified a replacement string, then any
key other than ESC causes gsearching to continue.

If you press the FSC key when an instance of the search
string is found, the search terminates at that point.

When the terminating screen is reached the Apple beeps
and the screen is displayed with the cursor at the

31

Metacrafts FORTH User's Guide -- Part II

start position.
4.11 Generating the Index Line

The index line is the first line of the screen, and is
normally reserved for storing a comment. The DOCUMENT
INDEX feature can be used to generate an index of a
given set of screens consisting of the index lines.

The (I) command is intended to help you generate the
index line quickly and easily.

The first time you use (I) after booting FORTH you
will be asked to supply identification information to
be inserted in the index line by this and every
subsequent use of (I). The way this happens is that
the mode status line disappears to be replaced by 13
dots with the cursor positioned over the first. You
should now type up to 13 characters of identifying
information. Mistakes can be corrected by using
backspace and retyping. When you have typed the
string, press <{return>. The editor will write an index
line consisting of the comment symbols and your
identifier positioned right justified on the line. The
cursor is left positioned after the open comment
symbol so that you can type in screen specific
information.

The next time you want to generate an index line just
type (I) and the editor will generate one using your
identifier and then wait for you to add the screen
specific data.

We suggest that you adopt the FORTH practice of using
the 13 character identifier to record the date and
initials of the author of the screen. The format used
on the system disc is typical in this respect.

4.12 Trial Load

Quite often, the first time you load a screen, FORTH
will find something wrong with it. Usually it is
something trivial such as a missing THEN, or an
undefined word. To help you find and correct such
mistakes quickly and easily the editor has its own

32

Metacrafts FORTH User's Guide -- Part II

load command.

Suppose you've just finished typing in a sequence of
source screens, and you want to use the editor's
loader to find out if they are OK. Invoke the loader
with the (L) command and the screen will clear to be
replaced by the prompt

LOAD WHICH SCREEN?

to which you should respond with number of the first
screen to be loaded. If the screen is not on the
current drive, you can append the drive number to the
screen number separated from it by a fullstop (as with
the (G) command described in 4.5). Mistakes can be
corrected by backspacing and retyping the number.

Press <return> when you've typed the screen number and
loading will begin. If no errors are found the editor
will respond with a message and return you to FORTH.
Up to this point the screen will look something like:

LOAD WHICH SCRFFN? 35.2
LOADING COMPLETEok

If, on the other hand the compiler finds an error, then
loading stops and an error message is output. A typical
example of this is:

LOAD WHICH SCREEN? 35.2
THEN STRUCTURE?
PRESS ANY KEY TO CONTINUE

The first part of the message is a standard compiler
error indicating the word that is wrong and the
reason. When you obey the continue prompt the editor
overlay is reloaded (which may involve swapping discs)
and the screen containing the error is displayed with
the cursor positioned just before the word which
follows the incorrect word. You can now correct the
error and try again. There is no need to worry about
FORGETting anything already loaded during the previous
attempt: the editor does that automatically.

33

Metacrafts FORTH User's Guide -- Part II Netacrafts FORTH User's Guide -- Part II

4.13 Termination and Recovery followed by <returnd.

When you complete an editing session you can leave the
editor by using the (C) command. You don't have to
worry about saving your work on mass storage: the
editor uses the standard FORTH block buffers and
UPDATE's all modified blocks as editing proceeds. The
(C) command calls SAVE-BUFFERS to tidy up at the end
of the session.

If, while you are editing, you make a mistake
involving more than a couple of characters, you can
use (X) in any mode to cancel the most recent actions.
The (X) command returns the screen to the state it was
in at the time of the last screen change, mode change
or <return> command, whichever occurred last.

You cannot use (X) to recover text replaced by the (F)
command .

(X) clears the copy stack, leaves the mode unchanged
and positions the cursor at the first non-blank
character of the line it was on when (X) was invoked.

You can return the current screen to the state it was
in at the time you selected it by means of the (R)
command, which is available in all modes. (R) requests
confirmation of your request by beeping the speaker
and displaying the message REALLY? on the mode line.
Respond by pressing <return> if you want to recover
the screen, otherwise press some other key if you want
to cancel the request.

Finally, you can abandon what you are doing completely
by simultanously pressing CTRL-SHIFT-P. You will be
asked to confirm the request in the same way as the
(R) command above, and you should respond accordingly.
If you press <return>, then the editor calls
EMPTY-BUFFERS and returns you to FORTH.

Note: if you press RESET while under control of the
editor, the prompt "PRESS ANY KEY TO CONTINUE" will
appear on the 40 column display. You should obey the
prompt to get back to FORTH. If you are connected to
an 80 column card, press <return> and then 80-COLS

34 35

Metacrafts FORTH User's Guide -- Part II

5.0 DEBUG

The debugger is used to test selected word definitions
at the source code rather than the object or compiled
code level. You can maintain tight control of program
execution at all times, and work with both 40 and 80
column displays. The current version of the debugger
cannot be used in conjunction with the graphics
facilities unless you are fortunate enough to have two
display units -- one connected to the Apple video
output socket, and the other to an 80 column display
card.

5.1 Activating DEBUG

The debugger is stored as a pre-compiled overlay on the
system disc in blocks 27-29. Its source code is stored
in blocks 78-79 and 112-120. Before the application to
be tested can be loaded, DEBUG must be loaded. To do
this you should type DFBUG and press <return>. If
the overlay isn't already in store the operating
system will load it from the system disc which should
be in drive 1. If some other disc is in drive 1 you
will be requested to replace it with the system disc
and press any key to start loading. When loading is
complete you will be asked to reinsert your own disc
if drive 1 was the current or only drive. FORTH
returns with the OK response when DEBUG is ready.

5.2 Loading the Application

The debugger has its own loader also called LOAD. This
loader differs from FORTH's LOAD in the way that it
compiles code into the dictionary.

Often, not all the words belonging to an application
require testing in a given session -- some of them may
already have been tested in an earlier session. These
words should be loaded before the words to be tested
(called the test set) using FORTH's own loader. Once
this has been done, add the debugger vocabulary to the
context by typing DEBUGGER and pressing <returnd>, and
then load the test set using the version of LOAD in
the debugger vocabulary.

36

Metacrafts FORTH User's Guide —- Part II

For example, suppose screens 35-40 contain words that
have already been tested, and that the test set is
contained in screens 41-45. The complete load sequence
would be:

DEBUG

35 LOAD
DEBUGGER
41 LOAD

This example assumes that screen 35 loads 36-40, and
that screen 41 loads 42-45 either by using LOAD or -->.

5.3 Starting the Test

Before you start the test you must ensure that the disc
containing the application screens is in the currently
selected drive (the test set should always be
contained on a single disc).

The debugger vocabulary contains the word TEST. A call
to TEST should be inserted into the sequence of words
used to call the application, immediately preceding
the name of the word which starts the application. For
example, suppose the test set loaded in the example in
5.2 is started by the word MIXER. Suppose also that
MIXER expects to find the address of some data, CEMENT
say, on the stack. Then, instead of typing

CEMFNT MIXER
as normal, you should type

CEMENT TEST MIXER
and press <return> when you are ready to start testing.
As soon as execution of MIXER reaches a word which
belongs to the test set, the screen containing its
definition is displayed with the cursor positioned at
the last character of the first word in the definition.
5.4 Performing the Test

The programmer should be on the lookout for two things

37

Metacrafts FORTH User's Guide —- Part IT

during a test session. First that the flow of control
through the application is correct, which is another
way of saying that the words in the application are
obeyed in the intended sequence. The second thing to
be checked is that the data belonging to the program
are initialised and updated as and when expected.
There are several ways of using the debugger to do
check these things.

5.4.1 Single Word Stepping

You can use the debugger to step through the component

words of a definition, one word at a time. For
example, suppose the definition of MIXER is:

: MIXER
INGREDIENTS GET BEGIN MIX READY UNTIL POUR ;

Suppose also that MIXER belongs to the test set, so
that the debugger will stop and display the screen
containing the above definition when it is called as
in 5.3. The cursor will be positioned at the S of
INGREDIFNTS.

Pressing <return> at this point will cause one of two
things to happen. If the definition of INGREDIENTS had
been loaded as part of the test set, the debugger will
move the cursor to the first word of its definition,
changing the screen displayed if necessary. If it was
not part of the test set, the cursor will be moved to
the T of GET.

By repeatedly pressing <return> in this way you can
step through the definitions of the words in the test
set, and thereby validate the flow of control through
the application. Eventually you will end up at the
semicolon terminating the definition of the last word
called in the test set, and from there pressing
{return> would cause the debugger to return you to
FORTH after first removing DEBUGGER from the context
stack.

5.4.2 Data Validation
Clearly, just stepping through the code like this is
38

Metacrafts FORTH User's Guide -- Part II

not too meaningful by itself. Ideally, the programmer
needs to be able to see the values of his data
changing as the cursor steps through the word
definitions. The debugger partially achieves this
ideal by displaying the data stack at the bottom of
the display.

There are, in fact, two stack display lines: one bears
the name STACK(H), and the other the name STACK(D).
Both denote the values stored in the data stack:
STACK(D) shows the value of each stack cell in
decimal, and STACK(H) shows the same values in
hexadecimal. As the cursor steps through the code, the
debugger updates the stack display lines.

Above the STACK(H) line is a line headed DEPTH. This is
followed by the decimal count of the number of 16 bit
items currently stored on the data stack (the value
returned by the word DEPTH in fact). The count may
occasionally indicate that there are more items on the
stack than are being displayed on the screen. This is
due to the limited line length of the display
terminal. In 40 column mode at most the top 5 cells
and in 80 column mode at most the top 11 cells will
be displayed. The cell on the top of stack is the
rightmost value shown, and the word EMPTY appears when
the stack is empty.

Underneath the stack display lines is a line bearing
the legend

LOOP INDEXES J I: 35 4

The two numbers after the colon are the current values
of the loop index words J and I. The I value is only
meaningful if the program is currently executing an
iterative DO loop, and the J value is only meaningful
if the DO loop nesting is two or more and the cursor
is not in the outermost loop.

Below the index line is a line headed #WORDS. this is
followed by a count of the number of words that the
cursor has stepped over. It is useful for measuring
performance.

39

Metacrafts FORTH User's Guide -- Part II

5.4.3 EMIT and KEY

Because the debugger requires exclusive use of the
display, there is a potential conflict if you want to
test words that use FMIT or KEY, either directly or
indirectly. To circumvent the problem the debugger
intercepts all EMIT and KFY calls, and reroutes them
to a special part of the display.

Whenever a word FMIT™'s a character the debugger will
display it on the line of the display which begins
with the word FMIT. As successive characters are
output they are displayed one after another on this
line until the end of the line is reached. At this
point the debugger clears the line and the next
character is output at the start of the EMIT display.
A1l non-printing characters are displayed as the carat
) character.

If a word requests input directly from KEY, the
debugger will position the cursor on the first blank
of the line which begins with the text "KEY:". As soon
as you press a key its ASCII value will appear on the
stack, and its external representation will be
displayed at the cursor position. If KEY is called
indirectly, from QUERY for example, the cursor will
appear to remain motionless on the KEY line as you type
successive characters up to the <return>. The
characters themselves will be displayed on the EMIT
line as they are typed.

5.4.5 Examining Non-stack Data

Most applications contain variable and array
declarations, as well as other application specific
data structures. You can examine the value of such
data, and even modify it, at any time during the
course of a testing session.

If you press the FSC key, the debugger clears the
display, outputs the word ESCAPE and calls the text
interpreter. In other words, you can now do anything
you could do outside the debugger, apart from load an
overlay. Typically you will want to use ? to examine
the values of variables and array elements, and

40

Metacrafts FORTH User's Guide -- Part II

possibly even modify some of them.

When you have finished, and you are ready to continue
with the test, simply type the word OK and press
{return>. The screen you left will reappear with the
cursor positioned where it was when you pressed ESC.

5.4.5 Debugger Skip Function

It is sometimes useful to be able to tell the debugger
that you are not interested in stepping through the
sequence of words which follow. Consider the following
definition:

: FXAMPLF
START DO SOMETHING LOOP ;

Suppose you have been once round the loop, have
stepped all the way through SOMETHING, and are
satisfied that is working alright. Instead of stepping
through SOMFTHING on every subsequent iteration of the
loop, you can use the skip feature to suppress
stepping of, in this case, the body of SOMETHING.

The skip command is invoked by pressing S instead of
<return>, and is normally used in conjunction with the
editor commands ->, <-, (0), (2), (N) and (P) which
are available when you use the debugger.

Suppose that the cursor is positioned on the G of
SOMETHING, and you want use S to skip on to the call
of LOOP. Simply use -> to position the cursor at the P
of LOOP, and press S. The debugger will allow
execution of the application to continue unimpeded
until the word at the cursor position, LOOP in this
case, is reached. While the intermediate words are
being executed the display lines below line 15 of the
screen will be updated after every 100 words executed.
When execution reaches the word at the cursor the
debugger stops the program and waits for you to do
something. If you press S, execution restarts and
continues until the word is once more encountered.
Alternatively you could choose to return to step mode
by pressing <return>, or examine data by pressing ESC.

41

Metacrafts FORTH User's Guide -- Part II

If vou press a key while execution is proceeding in
skip mode, the debugger will stop the program
immediately and display the screen containing the next
word to be executed with the cursor positioned on its
last character. You can then continue in step mode or
select another word to skip to.

There are no constraints placed on where in the
application you are allowed to position the cursor
other than that it must be on the last character of
the name of a word in a definition belonging to the
test set, and that the definition will be executed at
least once more. If any of these conditions is not
satisfied, the debugger won't be able to stop the
program.

5.5 Errors

The debugger is a tool for tracing through code at the
source level. Total control is given to you, the
programmer. Be warned, however, that the debugger

makes no attempt to prevent your application from
corrupting itself, or the system.

If you lose control of the system, pressing RESET
should enable you to regain control, although you
will also have to call 80-COLS as well if you have an
80 column card.

If your application calls QUIT, ABORT or ABORT",
execution will stop, the Apple will beep and you will
be returned to FORTH.
5.6 Defining Words

If you load any defining words as part of a test set,
then be prepared to have them traced if they are
invoked during loading of the test set.

42

PART III SYSTEM DESCRIPTION

This part of the manual describes the principle
structural features and extensions of the system. The
information will be useful to those who require a
deeper knowledge of the internal features of the
implementation.

43

Metacrafts FORTH User's Guide -- Part IIT

1. WORD SETS

Metacrafts FORTH supports the 79 Standard word set as
defined in the October 1980 document published by the
FORTH standards team. The only deviations from the
standard concern the word +LO0OP, and the vocabulary
mechanism. The +LOOP deviation is described in the
Glossary in Part IV. The vocabulary mechanism that we
have implemented is described in chapter 3 of this
part of the manual.

In addition to the required word set Metacrafts FORTH

supports the two standard extensions, namely the Double
Number and Assembler word sets.

A1l of the words in the standard word sets are defined
in the glossary, suitably annotated to distinguish
them from non-standard words.

Besides the standard words the system contains many
non-standard definitions. Some of these have been
taken from the Reference set defined in the 79
Standard document, and some are out of the fig-FORTH
model. The remainder are either our own homebrewed
words, or have been taken from one or other of the
many FORTH publications that are available.

The function and use of those word sets that are
either our own, or whose description is not readily
available in one or other of the books on FORTH, are
described in the following chapters.

It is important to remember that FORTH is essentially a
toolkit for applications development, and that
different implementations usually support their own
word sets for such things as string handling, editing
and so on. If you want to write an application which
must run on different implementations of the language,
you must make sure that all your words derive from the
words in the 79-standard, and take care to avoid words
which deviate from the standard definition.

44

Metacrafts FORTH User's Guide -- Part III

2. INTERNAL DETAILS

This chapter looks at some of the principle internal
details of the system. The information contained here
will be of value to anyone thinking of using the
Assembler, and also to anyone who intends producing
new dictionary structures. The chapter assumes that
the reader is familiar with the underlying principles
of FORTH.

2.1 Direct Threaded Code

Unlike most implementations of FORTH which are based
on the concept of Indirect Threaded Code (ITC),
Metacrafts FORTH is based on Direct Threaded Code
(DTC). Although there are some ardent FORTH
enthusiasts who argue that ITC is a fundamental
property of the language, we are of the opinion that
ITC, DIC etc., are only implementation techniques in
just the same way that p-code is one way of
implementing Pascal. This view is supported by the
fact that the 79 Standard document does not require
the implementer to use any particular technique.

In DTC compilers the compilation address that is
compiled for each word in a definition is the address
of the machine code which is called when the word is
interpreted by the address interpreter. In ITC
compilers the compilation address is the address of a
cell containing the address of the machine code which

is called. The diagram below shows the difference
quite clearly.

DIRECT THREADED CODE

DTC thread

441

Metacrafts FORTH User's Guide -- Part III

INDIRECT THREADED CODE

ITC thread

I
|
|
|
1
I
|m——————————
|
I
i
|
I
1
|

In the DTC implementation of a machine code definition
the machine code itself is stored at the compilation
address, while at the compilation address in an ITC
implementation you will find a pointer to that code
(usually the address of the next cell as in the
diagram).

In the DPTC implementation of a high-level definition
the compilation address contains a JSR call to the
machine code routine responsible for the type of
definition. The ITC implementation of this would store
the address of the responsible code at the compilation
address.

2.2 The Interpreter Pointer

The principle register in the FORTH machine is the
Interpreter Pointer (IP for short). It is stored in
page zero. The IP always contains the address of the
dictionary cell containing the compilation address of
the word that is currently executing. This is shown in
the following diagram.

DTC thread Fommmm e +
1P | | | header |
Fommmm——— + Ve ! | i
! ——— >i comp.addri -------- >i M/C code |
Fommmmeee + |mmss————— t |
] [| |
| I I |

i]

jmm—=——=—== I

I]

' I

45

Metacrafts FORTH User's Guide -- Part IIT

A consequence of this arrangement is that if the word
currently executing is a high level word of some sort,
then the top of the return stack will contain IP's
value at the time the word was called. In other words,
it contains the compilation address of the caller. ITC
systems generally increment the value of IP before a
call is made.

Be warned that any code you write which depends on the
value stored on the return stack may not function
correctly on some implementations of the language.

2.3 Stacks

The FORTH return stack is held in the 6502 hardware
stack in page one of main memory.

The data stack is stored in page zero of main memory.
The bottom of the stack is at the high address end of
the page, and the stack itself grows towards low
memory. The low byte address of the top of stack cell
is held in the 6502's X-register. The user variable SO
contains the address of the bottom of stack. SO is the
first user variable in the user variable area, which
is memory page two.

2.4 Dictionary Header
In Metacrafts FORTH the dictionary header format
differs slightly from the one usually found in systems

based on the fig-FORTH model. The format used for high
level words is:

46

Metacrafts FORTH User's Guide -- Part IIT

Header Format

o e e e e o +

Link field address =------- >I| link field i

| m=————mom e I

Name field address ------- >1 name field i

—— |

Code field address ----—-- >a code field ;
e

Parameter field address —->i parameter %

|

1

I field
I
I

The standard word FIND returns the cfa (code field
address) of a word, and ' (tick) returns the pfa
(parameter field address) of a word. The non-standard
words CFA, PFA, NFA and LFA can be used to move about
the dictionary header in the manner shown below:

pfa {---PFA--- cfa ---LFA---> lfa ~=<NFA---> nfa
|

Be warned that these words are not the same as their
namesakes in the fig-FORTH model in which the pfa
plays a greater role than it does in the 79-Standard.
It is also important to realise that the pfa has no
meaningful interpretation for the header of a machine
code definition. This is a consequence of the use of
DTC where the code is located at the cfa, whereas it
is at the pfa in ITC based implementations.

The structure of the name field is the same as the one
used in the fig-FORTH model. Namely:

47

Metacrafts FORTH User's Guide -- Part III

The count byte and last name byte always have the high
order bit set equal to one. The precedence bit P is
set to one for IMMEDIATF words, and the smudge bit S
is set to one during the compilation of the
definition. The five bit count is the actual number of
bytes that were in the name, and the maximum number of
name bytes stored is determined by the user variable
WIDTH.

2.5 Defining Words

If the run-time code of a defining word is written in
FORTH (i.e. because it follows DOES>), then on entry

to the run-time code the top of the data stack will
contain the pfa of the defined word.

If, however, the run-time code is written in machine
code (i.e. because it follows sCODE), then the
run-time code can compute the pfa of the defined word
by popping the value on top of the 6502 hardware stack
(return stack) and adding one to it. If the run-time
code isn't interested in the pfa, it should, in any
case, pop the return stack and discard the value.

2.6 Memory Map

The diagram below depicts the system’'s use of main
memory.

48

Metacrafts FORTH User's Guide -- Part TII

—

——

——

——

49

Metacrafts FORTH User's Guide -- Part III

3. VOCABULARY MECHANISM

Due to the restrictions of the 79-Standard vocabulary
mechanism we have developed an alternative system for
Metacrafts FORTH which, we believe, is more flexible.

3.1 Context Stack and FIND

When a vocabulary name is executed, the 1fa of the

latest word in the vocabulary is placed on top of a
stack known as the "context stack". The top item on
the stack can be accessed via CONTEXT.

The 79-Standard word FIND, which is called by the text
interpreter, is used to search the context stack,
starting with the top vocabulary.

The non-standard word PRUNE, if it finds the address of
CONTEXT on stack, drops the top of the context stack.

During system load the context stack is initialised

with the FORTH vocabulary, and it can be reinitialised
by calling TRUNK.

3.2 Current Definitions Stack and CREATE

The 79-Standard word DEFINITIONS copies the top of the
context stack onto the top of the "current stack". The
top item on the top of the stack can be accessed via
CURRENT.

New definitions are placed at the front of the
vocabulary on top of the current stack by CRFATE.
CREATE uses ?UNIQUE to test if the name of the new
word already exists in the vocabulary on top of the
current stack. If it does, then the message:

<name> NOT UNIQUE
is output.

A1l vocabularies are 'sealed', which means that no
vocabularies chain to any other vocabulary. In
practical terms, the 1fa of the oldest definition in a
vocabulary contains zero.

50

Metacrafts FORTH User's Guide -- Part III

New vocabulary words created by VOCABULARY are added
to the vocabulary on top of the current stack.

PRUNE, if it finds the address of CURRENT on stack,
drops the top vocabulary off the current stack.

Turing system load the current stack is initialised
with the FORTH vocabulary, and can be reinitialised by
calling TRUNRK.

The word DEFINED will drop the top item on both
vocabulary stacks. It is intended to complement
DEFINITIONS.

3«3 Vocabulary Tree
A useful way of viewing the structure of a set of

vocabularies is as a tree with FORTH forming the trunk.
Consider the following tree:

+-—a-——+

tomm

e b ——

+ +
| 1 !
! I i
D E H
The definitions of the vocabularies A,B and C are part

of FORTH. D and F are part of A. F is part of B. G and
H are part of C.

Acceas to the contents of the vocabularies in such a
tree is controlled by the context stack. For example,
before a word in D can be executed, D must be on the
context stack. But D itself cannot be executed until A
is on the context stack, and so on. Furthermore, no
new word can be added to & vocabulary until that
vocabulary has been put on top of the current stack,
and then it must first of all have been added to the
context.

51

Metacrafts FORTH User's Guide -- Part III

The context stack can, thus, be thought of as a way of
dynamically controlling the search paths through the
tree.

3.4 Compatibility with the 79-Standard

Provided that only one vocabulary, other than FORTH,
is held on the context stack at any one time, the

search order used by FIND is compatible with the
79-Standard.

If DEFINITIONS is always used to add the vocabulary on
the top of the context stack to the current stack,
then creation of new words is also comaptible with the
79-Standard.

Furthermore, if these rules are adhered to, the values
of CURRFNT and CONTEXT are Standard-compatible.

3.5 Internal Organisation

Both vocabulary stacks are actually implemented as
linked lists which chain through the parameter fields
of the vocabularies on stack. CONTEXT points at the
pfa of the vocabulary on top of the context stack, and
CURRENT points at the pfa of the vocabulary on top of
the current stack.

Four items of data are maintained at the pfa of each
vocabulary, as shown in the following diagram:

Metacrafts FORTH User's Guide -- Part III

If the vocabulary in the diagram is in the context
stack, then the 'context stack pointer' will contain
the pfa of the vocabulary below it on the stack, or
zero if it is at the bottom of the stack. Similarly,
if it is also on the current stack, then 'current
stack pointer' will contain the pfa of the vocabulary
below it on the stack, or zero if it is at the bottom
of the stack. The 'lfa of first word in voc' is the
head of the chain of definitions in the vocabulary. It
is zero if the vocabulary is empty, otherwise it
points at the latest definition. Finally, the
'vocabulary' is the address of the corresponding word
in the vocabulary definition defined before it, or
zero if FORTH.

One consequence of the implementation of the stacks as
linked lists is that no vocabulary can appear more than
once on the same stack. If you try and break this rule,
the system will loop the first time it tries to search
through all the vocabularies in the stack.

53

Metacrafts FORTH User's Guide -- Part III

4. EXECUTION VECTORS

Fxecution vectors are a special form of user variable

whose values are always the cfa of some word in the
dictionary. Executing the name of an execution vector

caused the word at the cfa assigned to it to be
executed.

Several execution vectors have been used in Metacrafts
FORTH, primarily %to allow users to reconfigure the
input/output words built into the system. See Part I
chapter 4 for further details of these.

You can define your own execution vectors with the word

EXECUTE:, and you can assign the cfa of a word to a
vector by means of IS. Remember that IS always expects

a cfa on the stack, so when it is used in a colon
definition you need to write something like the

following:
: AWORD [FIND <name>] LITFRAL IS AVECTOR .. 3

The word WAS leaves the current value of an execution
vector on stack.

54

Metacrafts FORTH User's Guide -~ Part III

5. OVERLAYS

Metacrafts FORTH supports a simple dictionary overlay
mechanism. This is an effective way of reducing the
time taken to load applications by making a copy on
disc of part of the dictionary. The editor and
debugger are examples of the use of overlays by the
system itself

5.1 Creating Overlays

Suppose you have written a large application which you
want to save on disc as a dictionary overlay. First
you must ensure that the first dictionary definition
in the overlay, called the load point, is a double
number variable. The first word in the editor, for
example, is:

2VARIABLE OVFRLAY

Next estimate how many mass storage blocks will be

required to hold the overlay. The following word
definition computes this value:

: OVLSIZE { +++ #BLOCKS)
HERE FIND LFA - (#BYTES IN OVERLAY)
B/BUF /MOD (COMPUTE #BLOCKS + OVERFLOW)

SWAP DUP >R SAVE OVERFLOW)
960 / ?ROOM FOR VOC DATA)
R> 0> IS OVERFLOW > ZERO)

(
(
(
IF 1+ THEN (BLOCK FOR OVERFLOW)
+ (BLOCKS REQUIRED)

SPACE . (PRINT IN OUT) ;

If you type OVLSIZE followed by the load point name,
the number of blocks required will be displayed. The
strange value 960 is necessary because the last block
in the overlay contains (6 x N + 4) bytes of
additional data, where N is the number of vocabulary
words in the dictionary. If more than 10 vocabularies
have been declared you should reduce the constant 960
by 6 for each additional one. ;

Once you have worked out how many blocks are required,
find a contiguous set of spare blocks on the disc

55

Metacrafts FORTH User's Guide -- Part IIIX

which is large enough to hold the overlay.

Suppose your load point is called TASK and that
OVLSIZE has computed that you need 10 blocks. Suppose
further that block 35 of the selected disc is the
first of a sequence of at least 10 free blocks. Then,

if you type:
35 SAVE TASK

FORTH will save your application on disc starting at

block 35 (your disc must be in the currently selected
drive). When it has finished it will output the
message:

45 IS THFE LAST BLOCKok

to confirm that 10 blocks were necessary.

SAVE always saves the part of the dictionary that
exists between the load point and the value returned
by FERE. In addition, it saves the value of DP and
information from the pfa of each vocabulary in the
total dictionary.

5.2 Loading Overlays

The word RESTORE is used to load overlays from mass
storage. Suppose you want to load the application
which was SAVE'd in section 5.1. RESTORE expects to
find the start and end block numbers of the overlay on
stack, and so the call would look like:

35 45 RESTORFE

The call will place the overlay back at the same
location from which it was SAVE'd. It will also
restore the value of DP, and the information saved
for each vocabulary. Finally, it resets the vocabulary
stacks by calling TRUNK.

It is important to ensure that the contents of the
dictionary preceding the load point at RESTORE time
are the same as they were at SAVE time, otherwise
dictionary corruption will ensue, and the results will

56

Metacrafts FORTH User's Guide -- Part III

be unpredictable.
5.3 System use of Overlays

When you boot Metacrafts FORTH, the nucleus of the
system is loaded from the first 3 tracks of the system
disc. This contains the Disk II driver routines and a
precompiled dictionary containing enough words to
support compilation of the rest of the system.

Once it has been loaded the nucleus is entered and,
after performing some initialisation, it executes a
LOAD command for block 13. If you examine block 13 you
will see that it contains a RESTORF request. This
loads the BOOT3 overlay which contains the rest of the
dictionary. You will find the code belonging to BOOT3
in blocks 34-77 and 138-139 of the system disc.

Blocks 138 and 139 contain the definitions of the
words which load the development tools described in
Part II.

You can, of course, modify or otherwise enhance any of
the code on the system disc (other than the nucleus),
and generate new overlays. You will have to do this,
for example, if you change any of the printer
constants in block 106.

Refore making any changes it is vitally important that
vou make backup copies of the system disc, and observe
the following rules:

1. If you increase/decrease the number of blocks

required for a system overlay, then you will have to
modify the overlay loader definition and remake the
system overlays.

2. If you modify the code in BOOT3 such as to
increase/decrease its dictionary requirement, then you
will have to remake both the system and your own
overlays.

The code in block 33 will automatically remake the
gystem if it is loaded as follows:

57

Metacrafts FORTH User's Guide -- Part III

O FENCE ! FORGET BOOT3 33 LOAD
5.4 Building a Turnkey Disc

Vhen your application is working you can generate what
is known as a turnkey disc for it. This is a disc
which boots FORTH and the application, and enters it
automatically. The key to this lies in the fact that
the nucleus doesn't care what is in block 13, it
simply loads it.

This means that you can produce, using COPY, a disc
which contains blocks 1-12 of the system disc and an
overlay containing your application stored somewhere
beyond block 13. In addition you you must provide code
in block 13 which will load and enter the application.

Suppose you have saved your application in blocks
14-60, and the entry point is called WORD-PROCESSOR.

The following code is sufficient to load and enter it:

14 60 RESTORE

FIND WORD-PROCESSOR
EXECUTE

A1l applications should re-vector QUIT so that any
errors are dealt with by the application. If this is
not done, someone using the application may find him
or herself suddenly talking to FORTH!.

58

Metacrafts FORTH User's Guide -~ Part III

6. BUFFER & HEAP MANAGEMENT

There are two special word sets provided for performing
memory management tasks. The buffer manager is part of
BOOT3 and exists in code form in blocks 53 and 54. It
is used by COPY. The heap manager is stored in source
form in blocks 121-124. It is not used by any part of
the system.

The system normally runs with two block buffers which
are located in high memory, just below the Disk II
drivers. Some applications (COPY is an example) may
operate more efficiently using more than two buffers.
The buffer manager words have, therefore, been
providedto enable applications to control the number
of block buffers in the system.

The heap manager provides an alternative form of
dynamic memory management. It provides functions
similar to the NEW and DISPOSF functions found in
Pascal. The programmer uses ALLOT-HEAP to allocate a
block of memory for use as a heap. The word -HEAP is
used to obtain space on the heap, and +HEAP is used to
return space to the heap. A 'first-fit' algorithm is
used to manage the heap, and a garbage collection
algorithm collects and recombines unused space if no
block of the requested size can be found. The heap
manager aborts with the message HEAP FULL if it is
unable to satisfy a request for store.

It is important to make sure that you allocate enough
space to the heap, otherwise frequent calls to the
garbage collector will have an adverse effect on
performance. One way of being able to tell if the heap
is large enough is to place a call to BFLL before the
call to COMPACT on line 11 of screen 123%. Fvery time
the garbage collector is called the Apple speaker will
beep. :

59

Metacrafts FORTH User's Guide -- Part ITI

7. LANGUAGE CARD

If your system has a memory extension that is
compatible with the Apple Language Card, then you can
use the extra memory space for storing the heap, or as
a mass storage device, or for any other purpose you
discover. The system will not use the space
automatically for dictionary storage. You can use it
for this purpose if necessary, by arranging to reset
DP to point at an address beyond CFFF, and TOP to an
address below FFFA.

If you write assembler routines which call the Apple
monitor, then you must precede the monitor call by a
call to LCOFF, and follow it by a call to LCON (see
the Assembler vocabulary). This is necessary because
the system runs with the language card permanently
selected if it is present. In the current version of
thedsystem LCON always selects bank 2 of the language
card.

60

Metacrafts FORTH User's Guide -- Part IIIY

8. LOCAL VARIABLES

Occasionally, when writing a definition, the amount of
jueggling of the data stack can become complex and
unwieldy. The ARGUMENTS and RESULTS words were
developed for this purpose.

Suppose you want to write a word which computes the
volume, surface area and edge length of a box given
the length, width and height. Without using local
variables, this can be quite a tricky problem. The
solution using local variables is shown below.

The phrase "3 ARGUMENTS" assigns the names of local
variables S1 to 89 to the top nine stack positions,
with S1-S3 returning the values of the 3 stack values
that were there on entry to BOX. S4-39 are zero-filled
and the stack pointer is set to S9.

S1 to S9 act as local variables returning their
contents, not their addresses. To write to one you
precede its name with the word TO. For example, 5 TO
S4 stores a 5 in S4. The word +TO is used to increment
the value of a local variable. For example, 5 +T0 54
will add 5 to the value of S54.

After all the calculating is done, the phrase "3
RESULTS" leaves 3 results on the stack relative to the
stack position when ARGUMENTS was called. All
intermediate stack values are lost.

: BOX 3 ARGUMENTS (height S1, length S2, width S3)
S1 82 s% * # 10 84 (volume)
S1 S2 % 2% Sp 53 % 2% g1 8% ¥ 2%+ + T0 S5 (area)
S1 4% S24* S34% ++ 7053 (edge)
S5 70 2
sS4 TO S1
3 RESULTS (volume S1, area S2, edge length S3) ;

61

Metacrafts FORTH User's Guide -- Part III

9. 6502 ASSEMBLER

Metacrafts FORTH is provided with a machine language
assembler to create execution procedures that would be
time inefficient if written as colon definitions. It
ig intended that structured code be written for
clarity of expression. Functions may be written first
in FORTH, tested, and then rewritten in machine code,
using the assembler, with the minimum of restructuring.

9.1 The Assembly Process

Code assembly just consists of interpreting with the
ASSEMBLER vocabulary on top of the context stack.
During assembly of CODE definitions, FORTH continues
interpretation of each word found in the input stream.
Assembly does not takes place in compile mode as in
colon definitions. During assembly, the word being
assembled is "smudged" until END-CODE which only
"unsmudges" it if the data stack integrity has not
been destroyed.

9.2 Run-time & Assembly-time

One must be careful to understand at what time a
particular word definition executes. During assembly,
cach assembler word {such as # or JMP,) in the input
stream is executed. Its function at that time is
called "assembling” or "assembly-time". This function
typically involves such things as op-code generationm,
address calculation, mode selection etc.

The later execution of the generated code is called
"run-time". This distinction is particularly important
with the conditional words. At assembly-time each such
word (i.e. IF, BEGIN, etc.) itself runs to produce
machine code which will later execute at what is
labelled "run-time" when its named code definition is
executed.

9.3 Security

Numerous checks for user errors are made within the
assembler:

62

Metacrafts FORTH User's Cuide —- Part III

-- All items placed on the stack during assembly must
be removed before END-CODE.

-- Control structures must be properly nested and
paired.

-- Address modes and operands must be allowable for the
op-code.

If an error occurs during assembly, END-CODE
never gets executed, which means that the word remains
smudged to prevent its use in later definitions.

9.4 Op-codes

The bulk of the assembler vocabulary consists of
dictionary entries for the op-codes. The following
op-codes have no operands:

Metacrafts FORTH User's Guide -- Part III

) indirect
none memory

absolute only
zero page or absolute

Here are some examples of FORTH versus conventional
assembler. Note that the operand comes first, followed
by any mode modifier, and then the op-code mnemonic
(note: the comma is also part of the mnemonic). This
arrangement makes the best use of the stack at
assembly time. Also each FORTH word is set off from
its neighbour by blanks, as is required for all FORTH
source text.

.A ROL, ROL A
1 # LDY, LDY #
DATA ,X STA, STA DATA,X
DATA ,Y CMP, CMP DATA,Y
6 X) ADC, ADC (06,X)
POINT)Y STA, STA (POINT),Y

BRK, CLC, CLD, CLI, CLV, DEX, DEY,

INX, INY, NOP, PHA, PHP, PLA, PLP,

RTI, RTS, SFC, SED, SEI, TAX, TAY,

TSX, TXS, TXA, TYA,

When any of these are executed, the corresponding 6502

op-code byte is assembled into the dictionary.

The following op-codes usually take an operand:

ADC, AND, CMP, ©FOR, 1LDA, 'ORA, SBC,
STA, ASL, DEC, INC, LSR, PROL, ROR,
STX, CPX, CPY, 1ILDX, LDY, STY, JSR,
JMP, BIT,

If an operand is specified it must already be on the
stack. An address mode may also be specified. If none

is given,

the op-code uses page zero or absolute

addressing. The address modes are determined by:

Symbol Mode Operand
A accumulator none
* immediate 8 bits only
' X indexed X page zero or absolute
, Y indexed Y page zero or absolute
X) indexed indirect X page zero only
)Y indirect indexed Y page zero only

63

VECTOR) J¥P, JMP (VECTOR)

The words DATA and VECTOR specify machine addresses.
In the case of "6 X) ADC," the operand memory address
$0006 was given directly. This is occasionally done if
the usage of a value doesn't justify devoting the
dictionary space to a symbolic value.

9.5 Stack Addressing

The data stack is located in page zero, and is usually
addressed by "z-page,X". The stack starts near the end
of the page and grows towards low memory. On entry to
a code definition the data stack pointer will be in
the ¥ index register, and the definition is
responsible for maintaining its integrity.
Incrementing X by two removes an item on the stack,
while decrementing X by two makes room for another
item on the stack.

Sixteen-bit values are placed on the stack according
to the 6502 convention of storing the low byte at the
low address, and the high byte at the high address.
This technique allows the indexed indirect X address
mode to be used with an address held on the stack.

Because the last and last-but-one items placed on the

64

Metacrafts FORTH User's Guide —- Part III

stack are the most frequently accessed, the support
words BOT for Bottom and SEC for Second are provided.
Using
BOT LDA, assembles LDA (0,X) and
SEC ADC, assembles ADC (2,X)

Here is a pictorial example of the data stack in page
Zero.

BOT low |<-- X offset above O

The following code or's together four bytes on the
gstack:

ROT LPA, BOT 1+ ORA, SEC ORA, SEC 1+ ORA,

To obtain the 14th. byte on the stack, use BOT 13 +
LDA,

9.6 Return Stack

The return stack is located in the 6502 hardware stack
in page 1. It starts at $01FE and grows towards $0100.
No lower bound is checked as page 1 has sufficient
capacity for the majority of applications.

The 6502 S register points to the next free byte below
the last item stored on the return stack. The byte
order is the same as on the data stack.

The PHA, and PLA, op-codes can be used to store and
retrieve bytes on the return stack. To operate on an
arbitrary byte, the method to be used is:

65

Metacrafts FORTH User's Guide -- Part III

1) Save X in XSAVE.
2) Execute TSX, to get the S register in X.

3) Use RP) to address the low byte of the last item
stored on the stack. Offset this to address older
items on the stack.

4) Restore X from XSAVE.

The following example non-destructively tests that the
second item on the return stack is zero.

CODE IS-IT (ZFRO?)
XSAVE STX, ™SX, (steps 1,2)
RP) 2+ LDA, RP) 3 + ORA, (or 2nd item's bytes)
O= IF, INY, THEN, (bump Y to 1 if item zero)
TYA, PHA, (save boolean)
XSAVE LDX, (restore X, step 4)
PUSH JMP, (exit to push boolean on data stack)
END-CODF

9.7 FORTH Registers

Several FORTH registers are available only at the
assembly level and have been given names that return
their memory addresses. These are:

IP -- address of the Interpreter Pointer which
contains the address of the cell being interpreted by
the address interpreter.

IR -- address of the indirect register which is

sometimes used to hold addresses for the indirect jump
instruction.

XSAVE -- address of the register for temporary storage
of the X register.

UP -- address of the register which contains the
address of the first byte of the user area.

N -- address of a utility area in zero page from N-1
to N+7.

66

Metacrafts FORTH User's Guide -~ Part III

9.8 CPU Registers

When the address interpreter passes control to a CODE
definition certain conventions must be maintained:

1) The Y register is zero, and may be freely used.

2) The X register contains the data stack offset, and
must not be corrupted. CODE definitions can add/remove
data stack items if they modify X accordingly.

3) The S register contains the return stack pointer.

4. The accumulator may be freely used. Its value on
entry is undefined.

5. The processor is in binary mode and must be
returned in that mode.

9.9 SETUP & N

¥hen absolute memory registers are required, use the
N-area in page zero. These registers may be used as
pointers for indexed/indirect addressing, or for
temporary values. It is very important to note that
many FORTH words use the N-area, in particular the

arithmetic routines involving multiplication and
division.

It is often necessary to move stack values to the
N-area. CMOVE and <CMOVE are typical examples of this.
The routine SETUP has been provided for this purpose.
Upon entering SETUP the accumulator specifies the
number of 16-bit stack values to be moved to the
N-area. At most 4 items may be moved. The call to move
3 items is:

3 # LDA, SETUP JSR,

The effect on the stack and on N of this call is:

67

Metacrafts FORTH User's Guide -- Part III

Stack before N after Stack after

H H
G BOT--> G
F F
E E
D D

SEC~--> C C
B B

BOT--> A A {-=-N

9.10 Control Flow

PORTH discards the usual convention of instruction
labels in preference to using structured programming
techniques.

First, each FORTH word name is permanently included in
the dictionary. This allows procedures to be located
and executed by name at any time, as well as be
compiled within other definitions. Be warned, however,
that if you assemble the address of a colon definition
within a CODE definition, the run-time effect is
undefined.

Secondly, within a code definition, branching is
performed using control structures similar to the ones
used in colon definitions. The major difference
concerns the run-time control of branching in a code
definition. In a colon definition flow of control is
determined by flags stored on the data stack. In
assembler definitions control flow is determined by
the processor status bits. The programmer must
indicate which bit to test just before a conditional
branching word.

The conditional specifiers are:

68

Metacrafts FORTH User's Guide -- Part ITI

specifier meaning processor status
Cs test carry set Cc=1
024 test byte less than zero N=1
0= equal to zero Z=1
CS NOT test carry clear C=0
0>= test positive N=0
0= NOT test not equal to zero z=0

The overflow status bit is so rarely used that it has
not been included. If it is required, add 50 CONSTANT
VS to screen 62. This tests for overflow being set.

9.11 Looping

A conditional loop is formed by placing the

instructions to be repeated between BEGIN, and UNTIL,.
Consider:

6 # LDA, N STA,

BEGIN, PORT DEC,
N DEC,

0= UNTIL,

An unconditional loop is formed by placing the

instructions to be executed between BEGIN, and
AGATIW, .

Consider:

6 # LPA, N STA,

BEGIN,
N TFC, 0= IF, NEXT JMP, THEN,
PORT DEC,

AGAIN,

In this example, the counter is decremented before
PORT is decremented, which means that the branch to
NFXT will be made after 5, and not 6, decrements of
PORT. ACAIN, unconditionally passes control to BEGIN,.
Because there are no local labels, the only way of
leaving an unconditional loop is to branch to an
external address such as NEXT.

9.11 Conditional Execution

69

Metacrafts FORTH User's Guide -- Part III

Paths of execution may be chosen in CODE definitions
in the same way as in colon definitions. In this case,
however, the branch decision is based on the value of
a bit in the processor status register.

PORT LDA, O=
IF, (CODE IF PORT=0) THEN,(continue) ...

In this example, the accumulator is loaded from PORT.
The zero flag is tested and, if it is a 1, the code
following IF, is executed. Otherwise the code
following THEN, is executed.

The ELSE, word allows the programmer to specify a false
branch in a conditional structure.

PORT LDA, O= IF, (TRUE BRANCH) FLSE, (FALSE BRANCH)
THEN,

In this example, the value of PORT will cause one of
the two branches to be selected, before continuing
execution after THEN,.

9.12 Nested Control Structures

Control structures may be nested according to the usual
conventions of structured programming. That is, each
control structure begun must be terminated before a
preceding control structure which has not already been
terminated. An FLSE, must pair with the immediately
preceding IF,.

9.13 Returning Control to the Address Interpreter

There are a variety of ways of returning to the address
interpreter, depending on the stack action to be
performed first. These functions are already in the
nucleus, and they all pass control to the address
interpreter at NEXT when they have finished:

POP remove one 16-bit stack value

POP2 remove two 16-bit stack values

PUSH add a 16-bit value to the stack
70

Metacrafts FORTH User's Guide -- Part III

PUT write a 16-bit value over the value at BOT

PUSHYA add a 16-bit value to the stack, with Y as
the high byte, and the accumulator as the low byte.

The convention for PUSH and PUT is:

1. push the low byte onto the machine stack
2. leave the high byte in the accumulator
3. jump to PUSH/PUT.

A branch to NEXT should be made if no juggling of the
stack is necessary.

9.14 Reset and BRK

The monitor reset and BRK vectors are set up to cause
FORTH to perform a warm start. This means that the
gystem is restarted from ABORT without reinitialising
system data. An assembler routine can alter these
vectors, which are in page 3, as and when necessary.
If the monitor is called, care must be taken to
remember to turn off a language card if one is present.

4l

Metacrafts FORTH User's Guide -- Part ITI

10. STRINGS, GRAPHICS & GAME CONTROLLERS

Metacrafts FORTH provides a powerful set of words for
processing character strings. Some of these are based
on the UCSD extensions to Pascal. In our system a
character string consists of a byte containing the
length of the string (excluding the length byte),
followed by the characters forming the string.

Strings are ordered according to the following rules. A
string sO is said to precede a string st if:

1) string sO is shorter than s1 and each character in
s0 is equal to the corresponding character in s1, or

2) string s0 is shorter than si1, and the first
character in sO that does not match the corresponding
character in s! precedes it in the ordering of ASCII
characters.

The longest string consists of 255 characters, and the
shortest consists of zero characters. The first
character in a string has index 1, the second 2, and
so on.

The string word set is contained in BOOT3, and its
source code is contained in screens 65-73 on the system
disc.

In addition to the string extensions, words are
provided for handling low and high resolution
graphics, and the Apple game controllers. The low
resolution graphics routines use the primary screen.
The secondary screen is occupied by the bottom of the
dictionary. The high resolution routines select the
secondary screen. The primary screen is occupied by the
top of the nucleus. You have a choice of using the
Apple BASIC high resolution graphics routines
including the same shape table facilities (the
structure of shape tables is the same as that
described in the Applesoft manual). There are also a
set of turtle graphics routines if you feel like using
turtle coordinates.

If you choose to use Cartesian coordinates, you can

72

Metacrafts FORTH User's Guide —- Part III

select your own coordinate scale to map onto pixel
coordinates. Remember that pixel coordinate 0,0 is in
the top left-hand corner, and that coordinate 279,191
is in the bottom right corner. Suppose you want to set
the origin (0,0) in the bottom left corner and
(100,100) in the top right corner. To do this call
DISPLAY-SCALE as follows:

0 100 100 O DISPLAY-SCALE

This informs the graphics system that x-pixel 0 is
your x value O, that x-pixel 279 is your x value 100,
that y-pixel O is your y value 100, and that y-pixel
191 is your y value O.

In your program you work in terms of your coordinate

system, and use XY-DISPLAY and DISPLAY-XY to convert -

to and from the pixel coordinates, whichare expected
by the graphics routines.

You can store the low/high resolution screens on disc

by moving their contents to block buffers obtained from
BUFFER, and which you then UPDATE.

The graphics word set is stored in source form in
screens 125-137 on the system disc. The first word on
screen 125, called GRAPHICS, is provided to help you

make an overlay from the definitions. Note that the
dictionary pointer has been moved to prevent code being

compiled into the hires screen.

A1l the words supporting strings and graphics are
fully described in the glossary.

3

PART IV GLOSSARY

This part of the manual consists largely of the
glossary of words in the Metacrafts FORTH system
organised according to function. There is also a
dictionary of FORTH terms to help remove any
misunderstandings about the terminology used in the

manual.

74

Metacrafts FORTH User's Guide -- Part IV

1. DEFINITION OF TERMS

Numerous technical terms are used in the definition of
FORTH. Those terms that are peculiar to FORTH itself
are defined in this list.

address, byte

An unsigned number that locates an 8-bit byte in a
standard FORTH address space over (0..65,535). It is a
native machine address. Address arithmetic is modulo
65,536 without overflow.

address,compilation

The numerical value equivalent to a FORTH word
definition, which is compiled for that definition. The
address interpreter uses this value to locate the
machine code corresponding to each definition.

address,code field
See compilation address.
address,link field

The address of the field of a word definition used to
store the internal vocabulary pointer.

address,name field

The address of the first byte of a word's name in the
dictionary.

address,native machine

The natural address representation of the host
computer.

address,parameter field
The address of the first byte of memory associated
with a word definition for the storage of compilation

addresses in a colon definition and data in

75

Metacrafts FORTH User's Guide -- Part IV

variable/constant definitions. Machine code word
definitions do not have a parameter field address.

arithmetic,integer

All arithmetic operations are performed using signed

16 or 32 bit two's complement integer arithmetic,
unless otherwise stated.

bPlock

The unit of data from mass storage, referenced by block

number. A block contains 1024 bytes of data. The
mapping from block number to physical storage address

is device and implementation dependent.

block buffer

A memory area where a mass storage block is maintained.
Metacrafts FORTH lets the user control the number of
block buffers used.

byte

An assembly of 8 bits. In reference to memory it is the
storage capacity of 8 bits.

cell

A 16-bit memory location. The n-th cell contains the

2n-th and (2n+1)-th bytes of the FORTH address space.
The order of bytes (byte sex) is unspecified.

character

A 7-bit number which represents an external character.
The ASCII character set is considered standard and is
used by this implementation. When used in a field of
more than 7 bits, the higher order bits are zero.

compilation

The action of accepting text words from an input
stream and placing corresponding compilation addresses
in a new dictionary entry.

76

Metacrafts FORTH User's Guide ~- Part IV

defining word

A word that, when executed, creates a new dictionary
entry. The new word name is taken from the input
stream. If the input stream is exhausted before the
new name is available, an error condition exists.
Common defining words are:

CONSTANT VARIABLE CREATE
definition
See 'word definition’.
dictionary
A structure of word definitions in computer memory. The
dictionary entries are organized into vocabularies,
and are locatable by name. The dictionary is
extensible, growing toward high memory.

equivalent execution

For the execution of a standard program (a program
written using only words taken from a 79-Standard
standard word set), a set of non time-dependent inputs
will produce the same non time-dependent outputs on
any 79-Standard FORTH system with sufficient resources
to execute the program. Only standard source code is
transportable.

error condition
An exceptional condition which requires action by the
system other than the expected function. A complete

list of the error conditions detected by Metacrafts
FORTH appears elsewhere in this reference manual.

false
A zero number representing the false condition flag.

flag

77

Metacrafts FORTH User's Guide —-- Part IV

A number that may have two logical states, zero and
non-zero. These are named 'true' = non-zero, and
‘false' = zero. Standard word definitions leave 1 for
true and O for false.

glossary

A set of word definitions given in natural language
describing the action of the computer when it executes
the word.

immediate word

A word defined to automatically execute when
encountered during compilation. Typical immediate
words are IF, DO, DOES>.

input stream

A sequence of characters available to the system, for
processing by the text interpreter. The input stream is
usually either the computer terminal or mass storage.
>IN and BLK specify the input stream. Words using or
altering >IN and BLK are responsible for maintaining
and restoring control of the input stream.

interpreter, address

The set of word definitions which interprets sequences
of FORTH compilation addresses by executing the word
definition for each one.

interpreter,text

The set of word definitions that repeatedly accepts a
word name from the input stream, locates the
corresponding dictionary entry, and starts the address
interpreter to execute it. Text in the input stream
interpreted as a number leaves the corresponding value
on the data stack. When in the compile mode, the
addresses of FORTH words are compiled into the
dictionary for later interpretation by the address
interpreter. In this case, numbers are compiled, to be
placed on the data stack when later interpreted.
Numbers are accepted unsigned or negatively signed,

78

Metacrafts FORTH User's Guide -- Part IV

according to the current number base specified by BASE.

load

The acceptance of text from a mass storage device, and
execution of the dictionary definitions of the words
encountered. This is the general method for
compilation of new word definitions into the
dictionary.

mass storage

Data is read from mass storage in the form of 1024 byte
blocks. This data is held in block buffers. When
indicated as UPDATEA (modified), data will be
ultimately written to mass storage.

number

When stored in memory the byte order of a number is
unspecified. When represented on the data stack, the
higher 16 bits, with sign, of a double number are most
accessible. When in memory, the higher 16-bits are at
the lower address and storage extends over four bytes
toward high memory. The byte order within each 16-bit
field is unspecified.

The following number types and ranges may be specified:

type range minimum field
bit 0..1 1
character 0..127 7
byte 0..255 8
number -32768..32767 16
positive number 0..32767 16
unsigned number 0..65535 16
double number -214748%648. .
2147483647 32
positive double no. 0..2147483%647 32
unsigned double no. 0..4294967295 32

output,pictured
The use of numeric output primitives, which convert

79

Metacrafts FORTH User's Guide -- Part IV

numerical values into text strings. The operators are
used in a sequence which resembles a symbolic picture
of the desired text format. Conversion proceeds low
digit to high, from high memory to low.

return

The means of terminating text from the input stream.
Conventionally 2 null (ASCII O0) characters indicate
end of text in the input stream. These characters are
left in response to the actuation of the <return> key
of the operator's terminal, and upon termination of a
block transfer from mass storage.

screen

Textual data arranged for editing. By convention a
screen consists of 16 lines (numbered O to 15) of 64
characters each. Screens usually contain program
source text, but may be used to view/modify mass
storage data. The first character of a screen occupies
the first byte of a mass storage block, and is the
beginning point for text interpretation. The screen
editor is normally used to create and maintain screens
of source code. A left-right scrolling technique makes
it possible for all 64 characters of each line to be
viewed at terminals with a screen width of less than
67 characters.

source definition

The text consisting of word names suitable for
execution by the text interpreter. Such text is

usually arranged in screens and maintained on a mass
storage device.

stack,data

A last in, first out list consisting of 16-bit binary
values. The stack is primarily used to hold
intermediate values during execution of word
definitions. Stack values may represent numbers,
characters, addresses, boolean values, etc.

When the term 'stack' is used, it implies the data

80

Metacrafts FORTH User's Guide -- Part IV

stack.
stack, return

A last in, first out list which contains the machine
addresses of word definitions whose execution has not
been completed by the address interpreter. As a word
definition passes control to another definition, the
caller's compilation address is placed on the return
stack enabling the address interpreter to resume
execution of the 'calling' word when the called word
‘returns' to its caller.

The return stack may be used with great caution within
a definition for the temporary storage of data.

string

A sequence of bytes containing ASCII characters,
located in memory either by an initial byte address
and a character count, or the address of a byte

containing the character count, followed by the
characters themselves.

transportability

This term indicates that equivalent execution results
when a program is executed on other than the system on
which it was created. See 'equivalent execution'.
true

A non-zero value represents the true value flag. Any
non-zero value will be accepted by a standard word as
true. All words in Metacrafts FORTH return 1 when

leaving a true flag.

user area

An area in memory which is used for the storage of user
variables and execution vectors.

user variables
These are a set of variables containing system

81

Metacrafts FORTH User's Guide -- Part IV

information. The user can add his own variables to
this set. If the dictionary is held in ROM memory then
system variables must be held elsewhere. This
'elsewhere' is the user area in RAM memory. The
dictionary entry for a user variable consists of a
constant index to the variable's value in the user
area.

vocabulary

A list of word definitions ordered according to time of
definition. The latest definition appears at the end
of the list. Vocabularies may be used to reduce
dictionary search time and to separate logically
different word sets from each other.

word

A sequence of characters terminated by at least one

blank or return. Words are usually obtained from the

input stream.

word definition

A named FORTH execution procedure compiled or
assembled into the dictionary. Its execution may be
defined in terms of machine code generated by the
assembler, or as a sequence of compilation addresses
generated by the compiler.

word name

The name of a word definition. Names are distinguished
by their length and up to a maximum of 31 characters.
A name may not contain an ASCII null, blank or return
character.

word set

A group of word definitions related by common
characteristics and frequently maintained in a
separate vocabulary.

The set of word definitions forming the 79-Standard is
known as the "required word set”. The assembler and

82

Metacrafts FORTH User's Guide -- Part IV

double number words are "extension word sets", and the
"reference word set" contains formerly standardized

words, and words that are candidates for
standardization.

83

Metacrafts FORTH User's Guide -- Part IV

2. GLOSSARY ROTATIOR

This section introduces the notation used to define
words in the gloassaries.

Stack Notation

The first line of each definition describes, in
brackets, the effect that execution of the definition
has upon the stack. The notation used is one of:

(before --- after)

(before +++ after)

In this notation 'before' denotes a list of stack
values denoting the arguments before execution, and

‘after' denotes the list of results left after
execution. In all cases the top of stack (most
accessible entry) is shown to the right.

The second notation is identical in meaning to the
first: however, the +++ is used to indicate the fact

that the word reads information from the input stream
(VARIABLE is an example of such a word).

Attributes

Capitalized symbols following the stack specification
indicate attributes of the word being defined:

S The word belongs to the 79-Standard required word

set
E The word belongs to a standard extension word set.
R The word belongs to the reference set.
C The word may only be used in a colon definition.

I The word is IMMEDIATE.

U The word is a user variable.

\ The word is an execution vector.

84

Metacrafts FORTH User's Guide -- Part IV

Capitalization

Word names are written in capital letters. The text
interpreter will interpret lower-case word names as
upper-case. Thus 'dup’ will be interpreted as 'DUP’.

Note that a word may be given a name containing
lower-case letters, but the address interpreter will

still treat these as upper-case during disctionary
searches.

Pronunciation

The natural language pronunciation of FORTH word names
appears as part of the glossary when the correct
pronunciation is not intuitively obvious.

Stack Parameters

Unless otherwise stated, all references to numbers
apply to 16-bit signed integers.

The following abbreviations are used to denote stack
values:

addr

A value denoting the address of a byte within the FORTH
memory space.

by te

A value representing an 8-bit byte. It occupies a
16-bit stack cell.

char

A value representing a 7-bit ASCII character. It
occupies a 16-bit stack cell.

d

A 32-bit signed double number occupying 2 16-<bit stack
cells. The most significant 16-bits, with sign, is most
accessible on stack.

85

Metacrafts FORTH User's Guide -- Part IV

ud

An unsigned double number as in d.

flag

A numerical value interpreted as having one of 2
igiical (boolean) states. Flags occupy a single stack

n

A 16-bit signed integer. It is often used to denote a
stack cell of any type. This is particularly true of
the stack manipulating words.

u
A 16-bit unsigned number.
s

The address of a character string containing the string
length in its first byte.

Other abbreviations are used as and when necessary. The

meaning of such abbreviations should be clear from the
context, and may be assumed to denote a 16-bit stack

cell unless otherwise specified.

86

Metacrafts FORTH User's Guide -- Part IV

3. STACK MANIPULATION

DROP (n -) S
Remove and discard the top stack cell.
MDROP (nm ... 1 m ===)

Remove and discard the m stack cells below the top
cell.

DUP (n---nn) S
Tuplicate the top stack cell.

SWAP (nt n0 --- n0 n1) S
Exchange the top two stack cells.

OVER (n1 n0 --- n? nO n1)

w0

Duplicate the second stack cell.
ROT { n2 n1 n0 —-- n1 n0 n2) S

Rotate the top 3 stack cells. In other words, move the
third stack element to the top of stack. "rote"

-ROT (n2 n1 n0 === n0 n2 n1)

This is the same as ROT, but in the opposite

direction. In other words, move the top stack element
to the third position. "minus-rote"

PICK (om ... n1m === nm ... n1 nm) S

Leave a copy of the m-th stack cell in place of the
value m. The value of m must be greater than O. If m
is less than or equal to zero, or exceeds the depth of
the stack the outcome is undefined.

ROLL (nm +o. 1 m --- nm+1 ... nl nm) S

Move the m-th stack cell to top of stack in place of
87

Metacrafts FORTH User's Guide —- Part IV

m. The value of m must be greater than O. If m is less
than or equal to zero, or exceeds the depth of the
stack the outcome is undefined.

?DUP (n--—-n (n)) S

Duplicate the top stack cell only if it is non zero.
"query-dup”

DEPTH (=== u) S

Leave the number of cells in the data stack before
DEPTH was executed.

>R (n--=) s,C

Transfer the top stack cell to the return stack. Note
that every >R must be balanced by a R> in the same
control structure nesting level of a colon definition.
>R must be used in compile mode only, otherwise its
effect is undefined. "to-r"

R> (=== n) s,C
Transfer the cell on the top of the return stack to
the data stack. R> must only be used in compile mode
otherwise its effect is undefined. "r-from"

R@ (==-n) s,C
Copy the cell on the top of the return stack to the
top of the data stack. R@ must only be used in compile
mode otherwise its effect is undefined. "r-fetch"”

2DUP (d-—--4d4a) E
Duplicate the double number on the top of stack.

2DROP (dqd---) E

Remove and discard the double number on the top of
stack.

2SWAP (d1 d0 --- @0 41) E

88

Metacrafts FORTH User's Guide -- Part IV

Exchange the two double numbers on the top of stack.
20VER { 41 d0 -=- 41 40 d1) 3

Leave a copy of the second double number on the top of
stack.

2ROT (d2 d1 40 —-- d1 40 42) F
Rotate the 3 double numbers on the top of stack. In

other words, move the third double number to the top
of stack.

89

Metacrafts FORTH User's Guide —-- Part IV

4. NUMBFR COMPARISON

Flag

Flag

Flag

0«

Flag

Flag
0>
Flag
n<
Flag
IIRS

Flag

Flag

Flag

<

true

true

true

true

true

true

true

true

true

true

if

if

if

if

if

if

if

if

if

if

{ n1 n0 --- flag)
nt less than n0O. "less-than”
(n1 n0 --- flag)
n1 equals nO. "equals”
(n1 n0 —-- flag)
n1 greater than nO. "greater-than"
(n --- flag)
n less than zero. "zero-less"
(n--- flag)
n equals zero. "zero-equals”
(n --—- flag)
n greater than zero. "zero-greater"
(a1 40 --- flag)
d1 less than d0. "d-less-than”
(ud! wd0 --- flag)
ud! less than udO. "d-u-less"
(41 40 --- flag)
41 equals 40. "d-equal”
(3 --- flag)
d less than zero. "d-zero-equals”

{ ul w0 --- flag)

30

Metacrafts FORTH User's Guide -- Part IV

Flag true if u! less than u0. "u-less-than"
wom (flagl --- flag?) S

Tnvert the logical value of flagl to give flag?. This
is identical to O=.

<O { n1 nO --- flag) R

Flag true if n1 not equal to nO.
>= { n1 n0 -—- flag)

Flag true if n1 pgreater than or equal to nO.
"ereater-or-equal”

<= (nt n0 --- flag)

Flapg true if nt1 less thenm or equal to nO.
"equal-or-less”

0<K= (n --- flag)

Flag true if n less than or egual to zero.
"equal-or-less-than-zero"

0>= {(n--- flag)

Flag true if n greater then or equal to zero.
"greater-or-equal-to-zero”

0> { n --- flag)

Flag true if n non zero. "non-zero"

91

Metacrafts FORTH User's Guide -- Part IV

5. ARITHPMETIC AND LOGICAL

+ (nt n0 =-- n2
L.eave n?, the arithmetic sum
D+ (a1 40 --- a2
Tleave d2, the arithmetic sum

- { nt n0 =-- n2

) S
of n1 and nO. "plus”

) S
of d1 and d42. "d-plus”

) S

Subtract n0 from n! and leave the difference n2.

" "
minus

1+ (n---n+1)

Increment n by one. "one-plus"

1- (n-=--n-1)

S

Decrement n by one. "one-minus"”

2+ {(n --—=n+2)

0

Increment n by two. "two-plus”

2- (n---mn-2)

Pecrement n by two. "two-minus”

2% (n--- 2%)

Multiply n by two (3 times faster than n 2 *),

"two-times"

2/ (n---n/2)

R

Divide n by two (6 times faster than n 2 /).

"two-divide"

64% (n -——— 64%n)

Multiply n by 64 (using shifts). "sixtyfour-times"

92

Metacrafts FORTH User's Guide -~ Part IV

* (1 n0 --- n2) s
Leave n2, the arithmetic product of n0 and n1. "times"

/ (n1 n0 === n2) 3

Divide n1 by n0O and leave the ouvotient n2. n2 is
rounded toward zero. "divide"

MOD (a1 n0 -——- n2) s

Divide n!1 by nO leaving the remainder n? which has the
gsame sign as n1. "mod"

/MOD { nt n0 ——-= n3 n2) Q

Divide n1 bv n0O and leave the remainder n3 and
aquotient n?. n3 has the same sign as ni. "divide-mod"

* /MOD { n2 n1 n0 -——- nd n3) S

Multiply n2 by ni1, divide the result by nO and leave
the remainder n4 snd quotient n3. The product of ni
and n? is maintained as an intermediate 32-bit value
for greater precision than the otherwise equivalent
sequence

n2 n1 ¥ n0 /

The remainder has the same sign as the intermediate
product of n1 and n2. "times-divide-mod”

*/ { n2 n1 n0 --- n3) S

Multiply n2 by n?1, divide the result by nO and leave
the quotient n3. An intermediate %2-bit product is
used as for */MOD. "times-divide"

N

* { ul u0 ==~ ud2)

Perform an unsiened multinlication of u® and ul,
leaving the unsigned double number product ud?.
"u-times"

a3

Metacrafts FORTH User's Guide —-- Part IV

U /MOD (wdl u0 =-- u3 u2) S
Perform the unsigned division of double number udl by
u0, leaving the remainder u3 and auotient u2.
"u-divide~mod"

MAX (nl n0 --- n2) S
Leave the greater of the two numbers nO and nl. "max
MIN (n1 n0 --- n2) S
Leave the lesser of the two numbers nO and nl. "min
ARS (n1 --- n2) S
Leave n2, the absolute value of nl. "absolute"”
NEGATF (n--——-n) g
Leave the 2's complement of a number.

DNEGATE (3@ -—- -a) g
Leave the 2's complement of a double number.

AND (n1 nO === n2) S
Leave the bitwise logical 'and' of nl and nO.

OR (n1 n0 ——- n2) S
Leave the bitwise logical 'or' of nl and nO.

XOR (n1 n0 --- n2) S
Leave the bitwise 'exclusive-or’ of n! and n2.

M /MOD (ud? u0® --- ud ud3)

A mixed magnitude operator which leaves a double length
quotient ud3 and single length remainder u4, from a

double length dividend ud1 and single length divisor
u0. "m-divide-mod"

94

Metacrafts FORTH User's Guide -- Part IV

M/ (d n0 === n2nt)

A mixed magnitude operator which leaves the remainder
n2 and quotient n1 from a double number dividend 4,
and single length divisor nO. "m-divide"

M* (n1 n0 ——— 4)

A mixed magnitude operator which leaves the double
number signed product of n1 and nO. "m-times”

1/ { ud u0 --- ut)

Leave the unsigned quotient ul from the double length
dividend ud and single length divisor u0. "u-divide"
DABRS (d0 --- a1) F

Leave the ahsolute value of the double number 40.
"d—abs"

™™IN (dt d0 --- d2) E

Leave the larger of the two double numbers 40 and d1.
"d-min"

PMAX (@1 d0 —--- 42) F

Leave the lesser of the two double numbers 40 and d4t.
"d _max_ll

- (41 30 --- d2) F

Subtract 40 from d1 and leave the difference d2.
"d-minus”

95

Metacrafts FORTH User's Guide -- Part IV

6. MFMORY

@ (addr --- n) S

TL.eave on the stack the number contained at addr.
"fetch"

! (n addr ---) S
Store the number n at addr. "store"

2@ (addr --- 4) E
lLeave on the stack, as a double number, the contents
of the four consecutive bytes beginning at addr.
"two-fetch"

2! (@ addr -—-) F

Store 4, as a double number, in four consecutive bytes
beginning at addr. "two-store”

ce (addr --- byte) S
TLeave on stack the contents of the byte at addr (with
higher bits zero, in a 16-bit field). "c-fetch"

c! (n addr ---) S

Store the least significant byte of n at addr.
"c-store"

+1 (n addr ---) S

Add n to the 16-bit value at addr using the same
convention as +. "plus-store”

+C! (n addr ---)

Add the least significant byte of n to"the byte Valge
at addr using the same convention as +. "plus-c-store

1+ (addr ---) R
Increment the 16-bit value at addr by one.

96

Metacrafts FORTH User's Guide -~ Part IV

"one-plus-store"
1-1 { addr ---) R

Tecrement the 16-bit value at addr by one.
"one-minus-store"

? (addr ---) S

Display the number at addr in the same format as dot.
"guestion-mark”

MOVF (addr! addr2 n ———) S

Move the specified guantity n of 16-bit cells

beginning at addrl to memory beginning at addr2. The
cell at addr! is moved first. If n is negative or zero
nothing is moved.

CMOVE (addr! addr2 n -——-) S

Move n hvtes beginning at addr? to addr2. The contents
of addr! is moved first proceeding to high memory. If
n is negative or zero nothing is moved. "c-move"

LOMOYP (addrl addr2 n -—-) R

Identical to CMOVF but beginning with the byvte at high
memory, and proceeding toward the byte at addri.
"reverse-c-move"

FILL (addr n byte ---) S
Fill memory beginning at addr with a sequence of n
copies of byte. If n is negative or zero nothing
hanpens.

FRASE (addr n --—-) R

’Fill memory bepinning at addr with a sequence of n zero
valued bvtes. If n is negative or zero nothing happens.

BLANKS (addr n -=-) R

P11l memory beginning at addr with a sequence of n

a7

Metacrafts FORTH User's Guide -- Part IV

ASCII blank (decimal 32) characters. If n is negative
or zero nothing happens.

98

Metacrafts FORTH User's Guide -- Part IV

7. CONTROL STRUCTURFS
o (n! n® ---) S,I,C

Ise in a colon definition in the form:

M . . . LOOP or
D0 . . . +LOOP

Regin a loop which will terminate based on control
parameters. The loop index begins at n0O, and
terminates based on the limit ni1. At LOOP or +L0OOP,

the index is modified by a positive or negative value.
Loops beginning with IO may be nested up to a level
determined by the space left in the return stack.
Under normal circumstances this should be more than
adequate.

The limit n1 and initisl value of the index n0O are
signed numbers in the range (-32768..3%2767).

See the definitions of LOO® and +LOOP.
LOOP s,I,C

Increment the D0 loop index by one, terminating the
loop if the new index is eaual to or greater than the
limit. Otherwise return control to the corresponding
Do.

+LOOP (n---) S,I,C

Add the signed increment n to the loop index using the
convention for +, and compare the result to the limit.
Return control to the corresponding IC until the new

index is greater than or equal to the limit (n>0), or
until it is less than or equal to the limit (n<0).

(Note: Metacrafts FORTH differs from the standard at
this point. The standard requires that +LOOP be
terminated when the index is strictly less than the
limit when n<0.)

I (== n) s,C

a9

Metacrafts FORTH User's Guide -- Part IV

Copy the current value of the index of the immediately
enclosing DO loop onto the data stack. Although this
word mav only be used within a lcop (and thus, by
default, only within a colon definition), no compile
time check is made that this is the case. The effect
of using the word under invalid conditions is
undefined.

J (=== n) s,C

Copv the current valuve of the index of the DO loop
enclosing the immediately enclosing loop onto the data
stack. The conditions applyving to the use of J are the
same as for I, with the additional proviso that the
result is undefined if the loop nesting is less than
two.

FXIT 5,C

Merminates execution of the current colon definition.
FEXIT™ mav not be used within & DO loop. The effect of
using FXIT under invalid conditions is undefined.

L.FAVE 5,C

Force termination of a PO loop at the next LOOP or
+I,NOP by setting the loop limit equal to the current
value of the loop index. The index itself remains
unchanged, and execution proceeds normally until the
loop terminating word is reached. The effect of using
IFAVF outside a loop is undefined.

IF (flag ---) s,I,C
"sed in a colon definition in the one of the forms:-

IF « . . FLSF . . . THEN or
IF . . . THFN

If flag is true, the words hetween IF and FLST (first
case) or IF and TVFEN (second case) are executed.
Thereafter evecution continues with the words
following THFN.

If flag is false, the words between IF and FLSP (first

100

Metacrafts FORTH User's Guide -- Part IV

case) or IF and TH®N (second case) are skipped, and
execution continues with the words following FLSFE
(first case) or THEN (second case).

IF control structures can be nested
FLSF s,I,C

Fxecutes at the end of the sequence of words executed
after a true IF. It causes execution to continue with
the words following the corresponding THEN.

THREN s,I,C

Marks the end of a conditional sequence of words
controlled by an IF word. It is the point at which
execution continues after execution of the conditional
sequence.

REGIN S,I,C
Used in a colon definition in one of the forms:

REGIM . . . UNTIL or
BFGIN . . . WHILF . . . REPFAT or
REGIM . . . AGAIW

REGINM marks the start of a word sequence for
conditional repetitive execution. A BEGIN-UNTIL loop
will be repeated until the flag expected by UNTIL is
true. A BREGIN-WHILE-REPEAT loop will be executed until
the flag expected by WHILF is false, and then
execution continues with the word following REPFAT.

Conditional loops can be nested.

UNTIL (flag ---) 3,I,C
Marks the end of a BEGIN-UWTIL loop which is
terminated by UNTIL if flag is true, otherwise control
returns to the first word following the corresponding

BEGIN.

WHILE (flag ---) s,0,I

101

Metacrafts FORTH User's Guide -- Part IV

Marks the conditional control point in a
BEGIN-WHILE-REPEAT loop. If flag is true the body of
the loop between WHILE and RFEPEAT is executed,

otherwise the loop terminates and control passes to
the word following the corresponding RFPEAT.

REPFAT 5,C,1I

Marks the end of a BFGIN-WHILF-REPEAT loop. It is
executed as the last word in the body of the loop and
it always passes control to the word following the
corresponding BEGIN.

AGATIWV R,I,C

Marks the end of a BFGIN-AGAIWV loop. It always passes
control to the word following the corresponding BFEGIN.
The only way to exit from a REGIN-AGAIN loop is by
executing one of EXIT, QUIT, ABORT or ARORT". Wote
that leaving a BEGIV-AGAIN loop also means leaving the
current colon definition!

CASF (n-=-n) I,C

Used in a colon definition in the form:
CASF...0F...ENDOF...OF...ENDOF...DEFAULT. . .ENT-CASF

CASE marks the beginning of a multiple choice control
structure. The value n is used within the CASE control

structure to determine which, if any, of the
alternative word sequences to execute.

CASF structures can be nested within one another.
OF (n1 n0 -—= (n1)) 1,0

Marks the start of one of the alternative choices in a
CASF structure. The value n1 is assumed to be the
value on stack on entry to the CASF structure. OF
compares it with the value nO and, if the two are
equal it removes both values and passes control to the

next word. If n0O is not equal to n?, n0 is removed
from the stack and control passes to the word

following the corresponding ENDOF.

102

Metacrafts FORTH User's Guide -~ Part IV

ENTOF 1,0

Marks the end of one of the alternative choices in a
CASE structure. It is executed as the last word of
such an alternative and it vasses control to the word
following the corresponding END-CASE.

DREFAULT (n---mn) 1,6

It is possible to arrange that the last alternative in
a CASF structure is alwavs executed if non of its
predecessors has been selected for execution. DFFAULT
marks the start of this so-called default case, and
END-CASF marks the end of it. The value n is the value
that was on stack at the start of the CASE structure.
On completion of the default action control passes to
the word following the corresponding END-CASE.

DEFAULT can be omitted if no default action is
reguired.

END-CASR ((n) ---) 1,C

Marks the end of a CASF control structure. In the
absence of DEFAULT it is the word to be executed when,
during run time, non of the CASE alternatives has been
selected for execution. In that case, the value n on
stack when the case construct was entered is removed
and discarded.

FXRCUTF (addr ---) s

Fxecute the word whose compilation address is on the
stack.

<BRANCH I,C

Unconditional backward branch. At compile time it
leaves the compilation address of the word BRANCH in
the definition being compiled. At execution time an
unconditional branch is made to the relative branch
address left by <RFSOLVE. Must be used in conjunction
with <MARK and <RESOLVE.

103

Metacrafts FORTH User's Guide -~ Part IV

<MARK (-=- addr) c

Leaves the destination address of a backward branch on

stack. Must be used at compile time in conjunction
with <RFSOLVF and one of <BRANCH or ?<BRANCH.

<RFSOLVE (addr ---) c

Used at compile time at the source of a backward
branch after either <BRANCH or ?<BRANCH. It expects to
find the destination address of the branch operation
on stack after being left there by a previous <MARK.
It plants a relative branch address in the definition
currently being compiled.

?<RRANCH (flag ---) 1,C

Conditional ©backward branch. At compile time it
leaves the compilation address of the word OBRANCH in
the definition being compiled. At execution time a
flag on stack is examined to see if a branch should be
taken or not. If the flag is true, control passes to
the relative branch address left by <RFSOLVE,
otherwise execution continues at the point following
the branch.

>RRANCH I,C

Unconditional forward branch. Action same as for
<BRANCH. Must be used in conjunction with >MARK and
>RESOIVE.

SMARK (——= addr) o

Marks the source of a forward branch. Used either after
>BRANCHF or ?>BRANCH. It compiles a hole into the
dictionary for the relative branch address which is
subsequently placed there by >RESOLVE. It leaves the
address ofthe hole on stack.

>RFSOLVE (agdr ---) o

Used at compile time at the destination of a forward
branch. It computes a relative branch address to the
current point in the definition and places this in the

104

Metacrafts FORTH User's Guide —- Part IV

hole whose address has heen left on stack by >MARK.
?>RRANCH (flag ~~-) 1,C

Conditional forward hranch. At compile time it leaves
the compilation address of the word ORRANCH in the
definition being compiled. At execution time a flag on
stack is examined to see if a branch should be taken
or not. If the flag is true control passes to the
relative branch address left by >RFESOLVE, otherwise
execution continues at the point following the branch.

?PAIRS (nt n0 ——=)
Issues the error message STRUCTURE? if nO does not

equal n1, and aborts execution. It is used to test for
matching control construct words.

(0F) (n1 n0 —--)
This word is the run-time handler for OF in a CASFE

construct. It compares the case value nt with an
alternative n0O and takes appropriate action. See OF.

(10) (n1 n0 ---)
This word is the run-time handler for DO. It

initialises the loop control parameters using n1 and
n0. See NO.

(+1.00P) (n---)

™his word is the run-time handler for +LOOP. It
increments th loop index by n and tests for
termination. See +L0OOP.

(1.00P)

T™his word is the run-time handler for LOOP. It
increments the loop index by one and tests for
termination. See TOOP.

RRANCH

This word is the run-time handler for performing

105

Metacrafts FORTH User's Guide ~- Part IV

unconditional branches. The 16-tit value following it
in the dictionary (the relative branch address) is
added to the current interpreter pointer to arrive at
a new value for the interpreter pointer. Execution
continues at the new position.

OBRANCH (flag ---)

This word is the run-time handler for performing
conditional branches. If flag is true then the 16-bit
value following it in the dictionary (the relative
branch address) is added to the current interpreter
pointer to arrive at a new execution address. If flag
is false then the interpreter pointer is advanced over
the relative branch address.

106

Metacrafts FORTH User's Guide -- Part IV

8. TFRMINAL INPUT-OUTPUT
CR S

Cause a carriage-return and line-feed to occur at the
current output device. "ec-r"

?CR {n--—-)

Cause a carriage-return and line-feed to occur at the
terminal if less than n+2 character positions remain
on the current line, otherwise output a blank

character. "query-c-r"

Note that this word will not function correctly if the
terminal does not support cursor addressing.

FMI™ (char --—-) 5,V

An execution vector which transmits char to the current
output device. The system initialises FMIT to use
(EMTIT) as output handler.

(EMI™) (char ---)

Transmit char to the terminal device. "bracket-emit”
SPACE

Transmit an ASCII blank to the current output device.

SPACFS (n---) 5

Transmit n blanks to the current output device. Nothing
happens if n is less than or equal to zero.

TYPF (addr n ---) S
Transmit n characters beginning at addr to the current
output device. Nothing happens if n is less than or
equal to zero.

COUNT (addr --- addr+! n) S

l.eave the address addr+! and the character count of a

107

Metacrafts FORTH User's Guide -- Part IV

text string beginning at addr. The first byte at addr
must contain the string length n, which must be in the
range (0..255).

-TRAILIVG (addr n1 --- addr n2) S

Adjust the character count nl of text at addr to
exclude trailing blanks, i.e., the characters at
addr+n2 to addr+ni-1 are blanks. If n! is zero or
negative, nothing happens. "dash-trailing”

XFY { ——- char) S,V

An execution vector which leaves the ASCII value of
the next available character from the current input
device. The system initialises XKEY to use the input
handler (KFY).

(¥rY) (--- char)

Accepts the next available char from the terminal
device. "bracket-key"

EXPRCT (addr n ---) S

Transfer characters from the input device to memory
beginning at addr, upward, until a "return” character
or n characters has been read. Nothing happens if n is
less than or eaual to zero. Two null characters are
appended to the input text, so that an input buffer of
n+2 characters must be available at addr.

OURRY S

Accept input of up to R0 characters, or until s
"return” character, from the input device into the
terminal input buffer whose address is stored in TIB.
Roth WORD and ENCLOSFE can be used to accept text from
this buffer by setting >IN and BLK to zero.

YORD (char --- addr) S
Receive characters from the input stream according to
the delimiter char and place the characters in a

string beginning at addr+1. The character count is

108

Metacrafts FORTH User's Guide -- Part IV

placed in the byte position at addr. An arror
condition results if char is ASCII null or if the
count exceeds 255. Initial occurrences of char in the
input stream are ignored. If char appears in the input
stream as a terminating character, it is appended to
the string but not included in the count. If the input
stream is exhausted before char is encountered as a
terminating character, the terminating character null
is appended instead of char. A zero length will result
if the input stream is exhausted when WORD is called.

Metacrafts implementation of WORD always leaves the
input string at HFRF.

FNOLOSF (charl char? --- addr len)

Scan the input stream from the character position
specified by >IN. Skip instances of char! and leave
addr, the address of the first character not equal to
chari, on stack. Continue scanning and begin counting
characters scanned until either an instance of char?
is found or input is exhausted. L,eave len, the count
of scanned characters on stack. This is the length of
the FNCLOSE'd string. An error condition results if
the length of the ENCLOSF'3d string exceeds 255
characters. If end of input is detected before the
scan of leading delimiters (char!) is complete, len is
set to zero. The length of the ENCLOSE'd string will
be zero if end of input or a trailing delimiter
(char?) is found immediately following the leading
delimiter scan. >IN is advanced to point to the first
character following the last character scanned unless
an error is detected.

CHARS (char n ---)

Transmit n copies of char to the output device. Nothing
happens if n is less than or equal to zero.

c/m { —== addr) U

leave the address of a cell that contains the 1%ne
length of the operator's terminal device. "c-slash-t

TIR (-—- addr) u

109

Metacrafts FORTH User's Guide -- Part IV

Leave the address of a cell that contains the address
of the first byte of the terminal input buffer.

>IN (--- addr) U

Leave the address of a cell that contains the current
character offset within the input stream. When BLK
contains zero, the input stream is taken from the
terminal input buffer. "to-in"

RFELL R

Transmit & bell character (ASCII 7) to the current
output device.

PAGE R,V

An execution vector that causes the terminal screen to
be cleared and the cursor to be moved to the first
character position on the top line. If the output
device is a printer, output is moved to top of form.
The system initialises PAGE to use (PAGE) to carry out
its function.

(PAGE)

Causes the 40-column Apple display to be cleared and
the cursor to be moved to the first character position
on the top line.

<PAGE>

Causes an 80)-column VIDEOTERM controlled display to bhe
cleared and the cursor to be moved to the first
character position on the top line.

@CURSOR (——- row col) v

An execution vector that leaves the current cursor
position on stack. The system initialises @CURSOR to
use (@CURSOR) to get the cursor row and column
positions.

(@CURSOR) (--- row col)

110

Metacrafts FORTH User's Guide —- Part IV

Reads the current cursor position when a 40-column
Apple display is being used.

<@CURSOR> (-——- row col)

Reads the current cursor position when an 80-column
VIDEOTERM display controller is being used.

'CURSOR (row col —---) v

An execution vector that resets the cursor position to
the new row and col positions on stack. The system
initialises !'CURSOR to use (!CURSOR) to reposition the
cursor. No check is made to ensure that the new
position is valid.

(1CURSOR) (row col ---)

Repositions the cursor on a 40-column Apple display to
row and col.

<1CURSOR> (row col --=)

Repositions the cursor on an 80-column VIDEOTFRM
controlled display to row and col.

.0K v
An execution vector that the text interpreter invokes

when it has finished processing the terminal input
buffer contents. The system initialises .0K to use

(.0K).
(.0K)
Output the string OK on a 40-column Apple display.
<.0K>

Output the string ok on an 80-column VIDEOTFRM
controlled display.

FLASH
Select flashing character mode for the Apple display.

"M

Metacrafts FORTH User's Guide -~- Part IV

IMVFRSE

Select inverse character mode for the Apple display.
NORMAL

Select normal character mode for the Apple display.
?TFRMINAL (--- flag)

Leave a true flag if a key on the terminal keyboard
has been pressed, otherwise leave false. Note that
this word does not read the character from the
keyboard.

PAUSF

Halt execution until a key on the keyboard is pressed.

PWAIT

Check if a key on the keyboard has been pressed. If so
PAUSE, otherwise do nothing.

80-COLS

Switch on a VIDROTFRM display controller in slot 3, and
reset the terminal execution vectors PAGE, @CURSOR,
'CURSOR and .0OK.

CLREOY, v

An execution vector that clears the current display
line from the cursor position.

(CLREOL)
Initial value of CLRFOL. Use with a 40 column display.
<CLRFOL>

Assign to CLRFOL when using an 80-column videoterm
card.

12

Metacrafts FORTH User's Guide -- Part IV

CLRFOP '

An execution vector that clears the display screen
from the cursor position.

(CLRROP)
Initial value of CLRFOP. Use with a 40 column display.
<CLREOP>

Assign to CLRFOP when using an 80-column videoterm
card.

Metacrafts FORTH User's Guide -- Part IV
9. NUMERIC CONVFRSION
BASP (-—- addr) s,U

Leave the address of a cell containing the current

input-output numeric conversion base. The value must
be in the range (2..70).

DECIMAL S
Set the input-output numeric conversion base to ten.
HFX R

Set the input-output numeric conversion base to
sixteen.

. (n---) S

Display n converted according to BASE in a free-field
format with one trailing blank. Leading zeros are
suppressed and a minus sign appears before a negative
number. "dot"

U. (u---) S

Display u converted according to BASF as an unsigned
number in a free-field format with one trailing blank.

"u-dot"
.R (n1 n0 —-—-) R

Display n!1 right aligned and converted according to
RASF in a field of nO characters. Leading zeros are
suppressed, and a minus sign appears before a negative
number. If n0O is less than one or less than the
minimum field width necessary to display the complete
number, the number will be displayed with no leading
blanks. "dot-r"

D. —
Display a signed double number converted according to
RBASE in a free-field format with one trailing blank.

Leading zeros are suppressed, and a minus sign appears
before a negative number. "d-dot"

114

Metacrafts FORTH User's Guide -- Part IV

D.R (dn---)

Display a double number right aligned and converted
according to BASE in a field of n characters. Leading
zeros are suppressed, and a minus sign appears before
a negative number. If nO is less than one or less than
the minimum field width necessary to display the
complete number, the number will be displayed with no
leading blanks. "d-dot-r"

<# S
Initialize pictured numeric output. The words:
<# # #S HOLD SIGN #>

can be used to specify the conversion of a
double-precision number into an ASCII character string
converted according to BASF. "less-sharp”

{ ud1 --—- ud2) S

Generate from an unsigned double number udi, the next
significant digit as an ASCII character which is
placed in an output string. Successive invokations of
generate digits of the number moving from low to
high significance. The result ud2 is the quotient
after division by BASE. # must only be used between <H#
and #>. The effect of using it elsewhere is undefined.
"sharp"

#5 (ud -=-=- 00) S

Convert all digits of an unsigned double number ud
according to the convention for # until the quotient
left by # is zero. A single zero is added to the

output string if the number was initially zero. As
with #, #S must only be used between <# and #>.

"sharp-s"
(ud =-- addr n) s

Fnd pictured numeric output conversion. Drop ud,
leaving the text address and character count of the
outoput string suitable for output by TYPE.

115

Metacrafts FORTH User's Guide -- Part IV

"sharp-greater"
SIGN (n---) S

Insert a minus sign (ASCITI -) into the pictured
numeric output string if n is negative.

HOLD (char ---) S

Insert char into the pictured numeric output string.
As with #, it must only be used between <# and #>.

LD (——= addr) U

Leave the address of a cell that contains the address
of the last character added to the pictured numeric
output string.

Tts value is only meaningful between calls of <# and
#>. "h-1-d4"

NUMRER { addr --- 4) R,V

An execution vector which performs numeric input
conversion. The system initialises it to use (NUMBER)
to perform the conversion. See (FUMBER) for further
details.

(NUMBER) (addr --- d)

Convert the text string at addr to a signed 32-bit
integer using the current value of BASR. If conversion
is not possible an error condition exists. If a
decimal point is encountered in the text, its position
is left in DPL.

DPL (--- addr) U,R
Leave the address of a cell which contains the number
of digits encountered to the right of a decimal point
during conversion of the last number input. If no
decimal point was encountered its value is -1. "d-p-1"
DIGIT { char n0 --- (n1) flag)

Convert the ASCII character char to its binary

116

Metacrafts FORTH User's Guide -- Part IV

eauivalent n! using base nO. If the conversion using
base nO is possible leave a true flag, otherwise
leave only a false flag.

CONVER™ (81 addr! --- 42 addr2) S

Convert to the equivalent stack number the text
beginning at addr? with regard to BASE. The new value

is accumulated into double number d1, being left as d2.

addr?2 is the address of the first non-convertible
character.

S->D {(n--—-4)

Convert the 16-bit number n into its signed double
length equivalent.

17

Metacrafts FORTH User's Guide -- Part IV

10. MASS STORAGE INPUT/OUTPUT

LIS™ (n---) S

List the ASCIT symbolic contents of block n on the
current output device, setting SCR to n. The value of
n is assumed to be a valid block number on the
currently selected mass storage device. The contents
of the block are displayed as 16 rows of 64
characters. Line truncation takes place if the current
output device is the 40-column Apple display. The
display is cleared before the screen ig listed.

?LOADING

Abort if the current input stream is the terminal.
RLK (--- addr) U

Leave the address of a variable containing the number
of the block currently being interpreted. Zero means
that input is being accepted from the terminal input
buffer.

LOAD (n---) s

Begin interpretation of block n by making it the
current input stream after first preserving the values
of >IN and RLK for the current input stream. If
interpretation is not terminated explicitly, it will
be terminated when the input stream is exhausted.
Control then returns to the input stream containing
LOAD, determined by the preserved values of >IN and
BIX.

SCR { —-- addr) s,U

Leave the address of a cell containiqg the number of
the screen most recently listed. "s-c-r

BLOCK (n -—- addr) S

Leave the address of the first byte of a buffer
containing block n. If the block is not already in a

118

Metacrafts FORTH User's Guide -- Part IV

memory buffer, it is transferred from the currently
selected mass storage device into whichever memory
buffer has been least recently accessed. If the block
occupying that buffer has been UPDATE'd, it is
rewritten onto the correct mass storage device before
block n is read into the buffer. If correct mass
storage read/write is not possible, an error condition
exists. Subsequent calls of BLOCK¥ with different
values of n will eventually re-use the block buffer at

addr. For this reason, any later access to block n
should be via another call of BLOCK.

UPDATFE, S

Mark the block most recently referenced through BUFFFR
or BLOCK as modified. The block will subsequently be
automatically transferred to mass storage should its
memory buffer be needed for storage of a different
block, or upon execution of SAVE-RUFFERS.

RUFFFR (n --- addr) S

Leave the address of the first byte of the least
recently accessed block buffer, and mark this buffer
as allocated to block n on the currently selected mass
storage device without actually transferring the block
from the device. If the previous contents of the buffer
have been marked as modified, it is written to mass
storage. If correct writing to mass storage is not
possible, an error condition exists. No check is made
to see if one of the other buffers already contains

block n.

SAVE-BUFFERS 3
Write all blocks that have been UPPATE'd to mass
storage. An error condition exists if successful
writing of all modified blocks is not possible.

EMPTY-BUFFERS S

Mark all block buffers as empty and do not write
UPDATE'd blocks to mass storage.

-=> R,I

Metacrafts FORTH User's Guide -- Part IV

Continue interpretation of the next block in sequence.
It can be used within a colon definition that crosses
a block boundary.

SAVE (n +++)

Read the next word name from the input stream, locate
its definition in the dictionary and save it and all
following definitions on the currently selected mass
storage device starting at block n. Use as many
contiguous blocks as it takes to store the
definitions. Display the number of the last block
allocated.

RPSTORF, (O n1 —=)

Transfer the word definitions saved by a single SAVE
command in blocks nO to n1 back to the point in the
dictionary from which they originate. All definitions
currently in the dictionary before this point must be
identical to those there at the time the restored
definitions were saved. All definitions following this
point are overwritten. All vocabularies are restored
to the state they were in at the time the dictionary
was saved, and the vocabulary stacks are reset by
TRUNK. nO is the number of the first block used to

save the definitions, and n1 is the number of the last
block reported by SAVE.
FORMAT v

An execution vector that formats mass storage media. It
is set up to call (FORMAT).

(FORMAT)

Format the diskette in the currently selected Disk II
drive. This word should be used with great care to
avoid destroving the contents of important diskettes.

R/W (addr n ---) v

An execution vector that either reads (n=1) or writes

120

Metacrafts FORTH User's Guide -- Part IV

(n=2) a block to mass storage. 'addr' points at the
system control information of the block buffer to be
used in the transfer. The system initialises R/W to
use (R/W) as handler for mass storage devices.

(R/W) (addr n ---)

Read {n=1) a mass storage block or write (n=2) a mass
storage block using the block buffer at addr+5, and
buffer control information at addr. If a transfer is
unsuccessful an error condition exists.

+RUFFERS (n--=)

Increase the number of block buffers by n. An error

condition exists if insufficient memory is available
for the huffers. If n is zero or negative the effect
is undefined.

-RUFFFRS (n---)

Reduce the number of block dbuffers by n. An error
condition exists if the number of remaining buffers is
less than or equal to two. The contents of the
released buffers is lost. If n is zero or negative the

outcome is undefined.

+1BUFFFR

Increase the number of block buffers by one. No check
is made to ensure that sufficient memory is availahle.
See °?RIFFER,

-1 RURFFR

Decrease the number of block buffers by one. An error
condition exists if the number of remaining buffers is
less than or equal to two.

2RUFFFR (—== flag)

Leave a true flag if sufficient store is available for
increasing the number of block buffers by one.

USsE (--- addr) U

121

Metacrafts FORTH User's Guide —- Part IV

Leave the address of a cell containing the address of
the control information of the next block buffer to be
allocated by BUFFER.

PRRV (--- addr) U

Leave the address of a cell containing the address of

the control information of the last block buffer
allocated by BUFFEFR.

C/BUF (=-==n)

A constant whose value is the number of bytes in a
block buffer.

C/L (~~=n)

A constant whose value is the number of characters in a
standard screen line.

#DRIVES (=== addr) U
Leave the address of a cell containing the number of

mass storage devices connected to the system. The
default value is two.

DR (=== addr) U
Leave the address of a cell containing the internal
device number of the currently selected mass storage
device.

DR1

Select mass storage drive 1.

DR2

Select mass storage device 2.

LINF (n1 n0 —=)

Transmit line nt of screen nO to the current output
device after removing trailing blanks. The line is
truncated to the width of the output device if

122

Metacrafts FORTH User's Guide -- Part IV

necessary. The effect is undefined if n1 is not a
valid line number in the range (0..15).

(LINR) (n1 n0 --- addr n2)

Leave the byte address of the first character of line
nl of screen n0O, together with the maximum number n2
of characters that can be sent to the current output
device without the line overflowing.

(LIST) (n---)

Identical to LIST with the exception that it does not
issue a PAGFE request.

123

Metacrafts FORTH User's Guide —-- Part IV

11. DEFINING WORDS

A defining word used in the form:
<name> . « . 3

Create a dictionary entry for <name> in the vocabulary
on top of the CURRENT vocabulary stack, and switch on
compile mode. Any word thus defined is known as a
"colon definition". The compilation addresses of
subsequent words from the input stream which are not
immediate words are stored in the dictionary as part
of the definition of <name>, to be executed whenever
<name> is executed. Immediate words are executed as
encountered. Compilation of <name> is terminated by ; .

If a word used in the definition of <name> is not
found after searching all the vocabularies in the
CONTFXT stack, beginning with the vocabulary on the

top of the stack, conversion and compilation of a
literal is attempted with regard to the current number

base. If that fails, an error condition exists.

If <name> already exists in the vocabulary on top of
the CURRENT stack, then the warning message:

<name> NOT UNIQUE

is output to the operator's display. "colon"
5 s,I,C

Terminate a colon-definition and stop compilation. If
compiling from mass storage and the input stream is
exhausted before encountering ;, an error condition
exists. If the data stack does not have the same depth

that it had when compilation of the definition began,
an error condition exists. (See also -->) "semi-colon"
VARTABLFE S

A defining word executed in the form:

124

Metacrafts FORTH User's Guide —-- Part IV

VARIABLE <name>

to create a dictionary entry for <name> and allot two
bytes of storage in the parameter field. The
application is responsible for initializing the stored
value of the variable. When <name> is later executed
it will leave the address of the first of the two
bytes on the stack.

OVARIABLE E

A defining word executed in the form:

2VARTABLE <name>

to create a dictionary entry for <name> and allot 4
bytes of storage in the parameter field. The
application is responsible for initializing the stored
value of the variable. When <name> is later executed
it will leave the address of the first of the four
bytes on the stack. "two-variable"

VARTARLFS (n +++)

A defining word executed in the form:
n VARIABLES$ <name>

to create a dictionary entry for <name> and allot

storagefor a string of up to n characters in the
parameter field. The application is responsible for
initializing the stored value of the variable. When
<{name> is later executed it will leave the address of
the string on the stack. "vyariable-dollar"

CONSTANT ((n +++) s
A defining word executed in the form:
n CONSTANT <name>
to create a dictionary entry for <name>, leaving n in

its parameter field. When <name> is later executed n
will be left on the data stack.

125

Metacrafts FORTH User's Guide -- Part IV

2CONSTANT (a +++) F

A defining word executed in the form:

d 2CONSTANT <name>

to create a dictionary entry for <name>, leaving 4 in
its parameter field. When <name> is later executed d
will be left on the data stack. "two-constant”

CONSTANTS (addr +++)
A defining word executed in the form:

addr CONSTANTS$ <name>
to create a dictionary entry for <name>, leaving the
string located at addr in its parameter field. When
<name> is later executed the string will be moved to
PAD, and the address of PAD left on the stack.

"constant-dollar”

ARRAY (n0 n1 +++)
A defining word executed in the form:

nO n1 ARRAY <name>
to create a dictionarvy entry for <name>, and allot
sufficient storage for an array of (n1-n0O+1) cells in
the parameter field. The application is respongible for
initializing the elements of the array.
<{name> is executed in the form:

n <name>

to leave the address of the array element with index n
on the stack. No array bound checking is performed.

126

Metacrafts FORTH User®s Guide —-- Part IV

CARRAY (n0 n1 +++)
A defining word executed in the form:

n0 n1 CARRAY <name>

to create a dictionary entry for <name>, and allot
storage for an array of (nt-nO+1) bytes in the
parameter field. The application is responsible for
initializing the elements of the array.

<{name> is executed in the form:

n <name>

to leave the address of the array element with index n
on the stack. No array bound checking is performed.

ARRAYS { n0O nt n2 +++)
A defining word executed in the form:

n0 n! n2 ARRAY$ <name>

to create a dictionary entry for <mame>, and allot
storage for an array of n1-nO+1 strings of n2
characters each in the parameter field. The
application is responsible for initialising the
elements of the array. <name> is executed in the form:

n <name>

to leave the address of the array element with index n
on the stack. No array bound checking is performed.
"array-dollar"

EXFCUTF: ((n +++)
A defining word executed in the form:

n EXFCUTE: <name>

to create a dictionarv entry for an execution vector
with the name <name> and leave n in its parameter
field. When <name> is later executed the effect is to

127

Metacrafts FORTH User's Guide -- Part IV

execute the word whose compilation address is stored
in cell number n in the user area. See also IS, WAS
and USFR. "execute-colon"

USER (n +++) R

A defining word used in the form:

n USFR <name>

which érgates a user variable <name>. The value n is
the cell offset within the user area where the value
for <name> is stored. Execution of <name)> leaves the
address of the cell allocated in the user area. The
value of n must be in the range (0..127). Note that
cells (0..37) have already been allocated a purpose
within Metacrafts FORTH, and that cells (38..63) are
reserved for future expansion.

CREATF S,V
An execution vector and defining word used in the form:
CREATE <name>

to create a dictionary entry for <name>, without
allocating any space for a parameter field. ?STORE is
invoked to ensure that at least 512 bytes of
dictionary space are available. The new definition is
attached to the front of the list of words belonging
to the vocabulary on top ¢f the CURRENT vocabulary
stack. The warning message:

<name> NO™ UNIQUE
is sent to the operator's terminal if <name> already
belongs to this vocabulary. In this case, the new
definition supersedes all previous definitions.
When <name> is subsequently executed, the address of
the first byte of <named>'s eventual parameter field is

left on stack.

(CREATE)

128

Metacrafts FORTH User's Guide —- Part IV

A defining word used to initislize the execution vector
CREATF. See CREATE for further details.
"bracket-create"

DOES> s,I,C

Define the run-time action of a word created by a
high-level defining word. Used in the form:

<name> . . . CRFATE . . . DOES> . . . ;

marks the termination of the defining part of the
defining word <name> and the beginning of the run-time
action of words later defined by <name>. On execution
of a word <namex> defined by <name>, the sequence of
words between DOES> and ; will be executed, with the
address of <namex>'s parameter field on the stack.
"does"

VOCARULARY S
A defining word executed in the form:
VOCARULARY <name>

to create, in the vocabulary on top of the CURRENT
vocabulary stack, a dictionary entry for <name> which
specifies a new ordered list of word definitions.
Subsequent execution of <name> will cause the
vocabulary which <name> denotes to he pushed onto the
top of the CONTEXT vocabulary stack.

Note that if the CONTEXT stack only contains FORTH at
the bottom, and some other application vocabulary on
top of it, then Metacrafts' vocabulary structure is
functionally equivalent to the requirements of the
79-Standard.

129

Netacrafts FORTH User's Guide -- Part IV

12. VOCABULARIES
(FIND) (addr! addr0 --- addr)

Search the vocabulary chain beginning with the word
whose 1fa is addr0 until the word whose name is at
addri is found. Leave the 1fa of the definition whose
name is the same as the one given. If no match is
found, leave zero. A match exists if the lengths of
the two names are the same and the characters stored
in the definition are the same as the characters

beginning the given name. Lower case characters are
treated as upper case. "bracket-find"

-FIND (addr --- (addr) flag)

Search the vocabulary on top of the context stack

until the definition whose name matches the name at
addr is found. If a match is found, then leave the cfa

of the matching word and a false flag, otherwise just
leave a true flag. "minus-find"

?PUNIQUE (+++ addr)

Search the vocabulary on the top of the current stack
until a definition is found whose name appears next in
the input stream. If a match is found, leave the cfa
of the definition on the stack, otherwise leave a zero.
"query-unique"

CONTEXT (--- addr) S,U

Leave the address of a variable specifying the
vocabulary on top of the context stack. This is the
starting point for dictionary searches during
interpretation of the input stream.

.CURRENT (=== @ddr) 5,0

Leave the address of & variable specifying the

vocabulary on top of the current stack. New
definitions will be added to this vocabulary.

DRFINITIONS S
130

Metacrafts FORTH User's Guide -- Part IV

Add the vocabulary referenced by CONTFXT to the top of
the current stack and change CURRENT to reference it.
Subsequent definitions will be created in the
vocabulary that is on top of the current stack.

DEFINED

Remove the top vocabulary from the context and current
stacks, and reset CONTEXT and CURRENT to reference
the new top of stack vocabularies.

FIND (+++ addr) S

Leave the cfa of the word whose name follows in the

input stream. If the name cannot be found after a
search of all the vocabularies in the context stack,

beginning with the one referenced by CONTEXT, then
leave zero.

FORGET S

Delete from the dictionary the definition of the word
whose name follows in the input stream, together with
any words defined since this word was added. If any
vocabulary words are forgotten as a result of
forgetting the word, then reset the current and

context stacks using TRUNK. An error condition exists
if the word is either not in a vocabulary on the

context stack, or is located in the protected
dictionary below FFNCE.

Note: the 79-Standard requires that the word to be
forgotten must belong to the current vocabulary.
Metacrafts FORTH does not check this.

FORTH s,I
The name of the primary vocabulary. It is used to
initialise the current and context vocabulary stacks
- during startup, and whenever ABORT or TRUNK are called.
PRUNF. (addr ---)

Remove the vocabulary at the top of the stack

131

Metacrafts FORTH User's Guide -- Part IV

referenced by the contents of addr, and reset addr to

reference the hew top of stack. addr should be either
CONTEXT or CURRENT.

TRUNK

Clear both vocabulary stacks and reset them to contain
FORTH. Reset CONTEXT and CURRENT to reference the new
tops of the stacks.

VLIST R

Display the names of the words contained in the
vocabulary on top of the context stack.

VOC-LINK (addr ---) U

Leave the address of a variable containing the address
of a field in the most recent vocabulary definition.
A1l vocabulary definitions are linked by these fields
to enable FORGFT, SAVE and RESTORE to function
correctly.

(+++ addr) s,I

Used in the form

<name>

If executing, leave the pfa of the next word accepted
from the input stream. If compiling, compile this
address as a literal. Later execution will place the
value on the stack. An error condition exists if
{name> is not found in a vocabulary on the context
stack. "tick"

132

Metacrafts FORTH User's Guide -- Part IV

13. COMPILER
'1CSP

Save the stack position in CSP. Used as part of the
compiler's error checking mechanism. "store-c-s-p"

?C3SP

Abort with the message DEFINITION INCOMPLETF if the
value of CSP is not the same as the stack position.
"query-c-s-p"

CsSP (-——- addr) U

Leave the address of a variable used as a temporary
store for the stack position during compilation.

, (n---) S

Allot two bytes in the dictionary and store n there.
"comma"

-TRAVERSFE (addr0 --- addrl)

Scan towards low memory beginning with the byte at
addr0-1 and stop when a byte is found with its high
order bit set to 1. Leave the address of this byte on
stack. "minus-traverse"

TRAVERSF (addr0 --- addrl)

Scan towards high memory beginning with the byte at
addr0+1 and stop when a byte is found with its high
order bit set to 1. Leave the address of this byte on
stack.

s R
This is the run time word compiled for ; at the end of
s colon definition. It can also be used to stop

interpretation of a screen. "semi-s"

?COMP

133

Metacrafts FORTH User's Guide -- Part IV

Abort compilation with the message COMPILATION ONLY if
not in compile mode. "query-comp”

?EXEC

Abort compilation with the message FXECUTION ONLY if in
compile mode. "query-exec"

ALLOT (n---) S
Add n bytes to the parameter field of the most recently
defined word. Can also be used to allocate n bytes of
dictionary space at HFRE.
ASCII c,I,R
Use in the form:

ASCIT <char>
Get the next word <char> from the input stream and compile it
as a character literal in the current definition. Abort with
the message NOT ASCIT CHAR if <char> consists of more than a
gsingle character. Leave the character on stack at run-time.

c, (char ---) R

Allot a single byte in the dictionary and store char there.
"c-comma"

CFA (1fa --- cfa)

Convert a word's 1fa into its cfa. "e-f-a”"
LFA (cfa --- 1fa)

Convert a word's cfa into its 1fa. "1-f-a"
NFA (1fa --- nfa)

Convert a word's 1fa into its nfa.

PFA (cfa --- pfa)

Convert a word's cfa into its®pfa. Does not apply to CODF

134

Metacrafts FORTH User's Guide -- Part IV

definitions. "p-f-a"
cLIm (——- char)

Load the literal byte at IP+2 onto the stack and increment IP
so that interpretation continues beyond the literal. "c-1it"

CLITERAL (char ---) I

If compiling, then compile the stack value char as a
character literal to be left on the stack at run-time by
CLI™.

DLITERAL (a ---) I

If compiling, then compile the stack value d as a double
number literal which will be loaded onto the stack at
run-time.

DP (-—- addr) U

Leave the address of a variable which contains the address of
the next free memory byte above the dictionary. "d-p"

FFNCE (——- addr) U

Leave the address of a variable which contains a dictionsry
address below which words cannot be removed by FORGET. FENCF
is initialised by the code in block 13.

HFRE (=== addr) S

Leave the address of the next available byte in the
dictionary.

ID. (nfa ---)

Display the name at nfa. Note that it is incorrect to use
COUNT and TYPE to display the contents of the name field
because of the effect of width and the presence of non-count
bits in the length byte. "id-dot"

IMMEDIATE S

Mark the most recently defined word as one which will be

135

Metacrafts FORTH User's Guide -- Part IV

executed when encountered in a definition at compile time
rather than compiled.

LATEST (~=- 1fa)

Leave the 1fa of the most recently defined word.

LIm (=== n)

Load the 16-bits at IP+2 onto the stack and increment IP so
that interpretation can continue beyond the literal. The byte
at IP+2 becomes the low-byte on stack.

LITPRAL (n---) s,I

If compiling, then compile the stack value n as a 16-bit
literal which will be loaded onto the stack at run-time by
LIm.

RFCURSE C,I

Compile the cfa of the definition which contains the call.
Use for compiling recursive procedure calls.

SMUDGE

Toggle the smudge bit in the name field of the latest
definition. When the smudge bit is set, the word will be
ignored during dictionary searches.

STATF, (-—- addr) U

Leave the address of a variable which contains the current
compilation state: zero means the compiler is switched off,
hexadecimal CO means it is switched on.

TOGCLF (addr bvte ---)

Complement the byte at addr with the byte on stack.

mOP (—=- addr) U

Leave the address of a variable which contains the address of

the top of the memory space available for dictionary use.

136

Metacrafts FORTH User's Guide -- Part IV

WIDTH (--- addr) U

Leave the address of a variable containing the maximum number
of characters to be saved in the name field of new
definitions. It must have a value in the range 1-31. The
default value set up by the system is 31.

[1,s

Switch off the compiler and start executing text in the input
stream. "left-bracket”

[comPILE] s,I,C
Used in a colon definition in the form

[coMPILF] <name>

Force compilation of the following word called <name>. This
allows compilation of an IMMEDIATE word which would otherwise
have been executed. "bracket-compile”

] s

Switch on the compiler and start compiling the text in the
input stream. "right-bracket”

137

Metacrafts FORTH User's Guide -- Part IV

14. MISCELLANEOQOUS
(s,I
Used in the form

(this is a comment)

Accept and ignore comment characters from the input
stream, until the next right parenthesis. The left
parenthesis is a FORTH word, and so must be followed
by at least one space. It may be freely used while
executing or compiling text. If more than 255
characters are read, or the input stream is exhausted
before a right parenthesis is reached, an error
condition exists. Note that the right paranthesis is
not a FORTH word, it is simply a delimiter. "paren”

(ARORT") (flag ---)
Output the string at IP+2 and call ARORT if flag is

true, otherwise advance IP past the string.
"bracket-abort-quote”

(18) (addrl addr0 ---)

Store addr!, which must be a cfa, in the execution
vector indexed by the contents of addrO. "bracket-is"

(ouiT)

Clear the return stack, switch off the compiler,
select the terminal as input stream and pass control
to the text interpreter. "bracket-quit"”

(WAS) (addr ---)

Leave on stack the cfa which is the value of the
execution vector whose index is held in addr.
"bracket-was"

79~STANDARD S

Do nothing.

138

Metacrafts FORTH User's Guide —- Part IV

<SYSVOL (=—— n flag)

Leave the number n of the currently selected drive on
stack, and select the boot drive. Check to see if the
system disc is in the boot drive and leave a false
flag if it is. If not, ask the operator to load it,
PAUSF, and leave a true flag on stack.

?CONTINUE (--- flag)

Ask the operator to press return is he wants to the
application to continue, or to press ESC if he wants

to quit. Wait for one of the two keys to be pressed,
and leave a true flag if he presses return, false

otherwise. "query-return”
?STACK

Abort with the message STACK FULL if the stack pointer
lies beyond its bottom limit (hex 44), and abort with
the message STACK EMPTY if the stack pointer 1lies
beyond its upper limit (hex FC) or if the cell at FC
is found to be non-zero. Called by INTFRPRET after

each interpreted word. "query-stack”

?STORE

Abort with the message DICTIONARY FULL if the distance
between the contents of PP and TOP is less than 512

bytes. The reason that the gap is so large is that

incoming words are stored at HFRE, and can be up to
256 bytes long (including count byte), and also PAD is

256 bytes beyvond HFRE and must be large enough to
sccomodate the longest string. "query-store"

ABORT S
Clear the data and return stacks, set the number base
to 10, reset video mode to normal, call TRUNK and pass
control to QUIT.

ARORT" (flag +++) c,R,I

Use in a colon definition in the form

130

Metacrafts FORTH User's Guide -- Part IV

ARORT" this is an error message"

Compile the text up to the terminating " as a string
literal in the current definition. At run-time use

(ABORT") to output the message if the flag is true.
"abort-quote”

BL (--- char) R

Leave the ASCII code for blank space on stack. "blank"
ROQT

Cold start the system by reloading from the boot drive.

ROOT3

A double number variable used to mark the start of the

main system overlay. Its value is of no significance
once the overlay has been loaded.

Csw (-—- addr)

Leave the address of the monitor's character output
vector. "c-s-w"

FALSF { === flag)

Leave the value which denotes logical false.

INTERPRET R
Begin interpretation at the character indexed by >IN
relative to the block whose number is contained in
RLKX, continuing until the input stream is exhausted.
If BLK contains zero, interpret characters from the
terminal input buffer. The end of the input stream is
marked by two bytes containing zero.

1S (addr +++) I

Use in the form

IS <name>

140

Metacrafts FORTH User's Guide —-- Part IV

If compiling, compile the pfa of <name> as a literal
followed by a call to (IS), otherwise put the pfa of
<{name> on stack and call (IS). Use to assign a value
to the execution vector called <name>.

KSW (-=- gddr)

Leave the address of the monitor's character input
vector. "k-s-w"

PAD (--- addr) S

Leave the address of a scratch area used to hold
character strings for intermediate processing. It is
located above the end of the dictionary. If less than
256 bytes are available between PAD and the top of the

dictionarv, abort with the message DICTIONARY FULL.
OUIT ' s,V

An execution vector which is initialised with the
address of (OUIT).

RP!
Tnitialise the return stack pointer. "r-p-store"”
SO (——- addr) u

Leave the address of a variable which contgins the
address of the base of the data stack. "s-zero

SFRIAL# (===n)

Leave the serial number of the system disc. "serial
number"

P!

Initialise the data stack pointer with the value of S0.
"s-p-store”

SFe (-—-n) R
Leave the value of the data stack pointer. "s-p-fetch

141

Metacrafts FORTH User's Guide -- Part IV

SYSVOL> (n flag ---)
Use after a call of <SYSVOL. Select drive n and ask the
operator to reinsert his disc if flag is true and the
boot drive is currently selected.
TRUE (--- flag)
Leave the numerical value of a true flag.
Uo (--- addr)
Leave the address of the user area. "u-zero"
WAS (+++ addr) I
Use in the form
WAS <name>
If compiling, compile the pfa of <name> followed by a
call to (WAS), otherwise load the pfa on the stack and

call (WAS) directly. Use WAS to leave the current
value of the execution vector <name> on stack.

142

Metacrafts FORTH User's Guide -- Part IV

15.STRINGS

'3 (s addr ---)

Store string s at addr. "store-dollar"

![]3 (char s n ---)

Overwrite the nth character of s with n.
"store-bracket-dollar"

Use in the form

this is a string"

If compiling, compile a string literal to be loaded at
HERE when the definition is executed. If executing,
copy the string to PAD. Abort if the string exceeds
255 characters, or if the input stream is exhausted

before the terminator " is reached. "quote"

$+C (s char --- st)

Append the character char on the end of s. The length
of s is not checked. "dollar-plus-c"

$->C (s -—- char)
Leave the first character of s. Use to convert single

character strings to a character on stack.
"dollar-to-c"

") (---s)

Copy the string at IP+2 to memory at HERE and advance
IP past the string. "bracket-quote”

."

Output the string at IP+2 and advance IP past the
string. "bracket-dot-quote”

143

Metacrafts FORTH User's Guide -- Part IV

+8& (81 80 === s1)

Append s0 to the end of s!. No check made on the
resultant string length. "plus-dollar

I I
Use in the form

"

." this is a message”

If compiling, compile a string literal which will be
output by (.") when the definition is executed. If
executing, output the string directly. Abort if the
string is more than 255 characters long, or if-the
input stream is exhausted before the terminating " is
reached. "dot-quote”

<& (81 80 ——- flag)

leave a true flag if s! precedes 80, otherwise leave a
false flag. "less-dollar"

(=% (81 80 ——- flag)

Leave a true flag if g1 precedes, or equalﬁf s0,
otherwise leave a false flag. "less-equals-dollar

=8 (s1 80 --- flag)

Leave a true flag if s1 eguals 80, otherwise leave a
false flag. "equals-dollar

>& (81 80 --- flag)

Leave a true flag if sO precedes s1, otherwise leave a
false flag. "greater-dollar”

SHERFE (addr count --- 8)

Leave a string of count characters at HFRE copied from
addr. Don't check the value of count. "to-here

>PAD (addr count --- s)
Leave a string of count characters at PAD copied from

144

Metacrafts FORTH User's Guide -- Part IV

addr. DPon't check the value of count. "to-pad”

@® (addr --- g)

Fetch the string at addr to PAD. Leave the value of
PAD. "fetch-dollar”

e[1s (s n ---char)
TLeave the nth character of s. "fetch-bracket-dollar"
C=>¢ (char --- s)

Convert char to a single character string and leave it
at PAD. "c-to-dollar”

c? (addr n char --- addr! nl or 0)

Scan the n characters heginning at addr until a match
with char is found. Leave the address of the matching
character and the count of characters not scanned,

inclusive of the matching one. Leave zero if no match
was found or n is zero. "c-guery”

DELETES (s nt n0 ——= 8)

Telete nO characters from s beginning with the n1-th.
"delete-dollar”

ING (char! char2 --- s)

Call ENCLOSF with char! and char?2 as delimiters and
leave the enclosed characters at HFRE. "in-dollar"”

INSFRTS& (81 n 80 ~—= 81)

Insert s0 in s1 immediately preceding the nth
character. If the value of n is one greater than the
length of s, append sO on the end of s1. Don't check
the length of the resultant string. "insert-dollar”

TFMe (s -—-n)

T.eave the length of s. "len-dollar”

145

Metacrafts FORTH User's Guide -- Part IV

MATCHS (addr! addrO n --- n)

Compare the n characters at addr! and addr0. Leave a
negative value if the n characters at addri precede
those at addr2, zero if they are equal, and a positive
non-zero value if those at addrO precede the ones at
addr!. "match-dollar"

NEXTS$ { s1 80 === s1 sOn or O)

Search s1 beginning with the character after the last
point reached by a previous call of NEXT$ or SCANS.
Stop at the first instance of the string sO and leave
the index of the first matching character of s1 as
well as the original strings. If no match is found,
just leave a zero. "next-dollar”

SUB$ (s nt n0 = s)

Reduce the string s to the nO characters beginning
with the n1-th. "sub-dollar”

TYPES (8 ---)

Output the string s. "type-dollar"

SCANS (81 80 ——= s1 sOn or O)

Search s! beginning with the first character and stop
at the first instance of s0. Leave the index of the
first matching character of s1 as well as the original

strings. If no match is found, just leave zero.
"scan-dollar"

146

Metacrafts FORTH User's Guide ~- Part IV

16. HEAP MANAGER

—HFAP (n--- addr)

TLeave the address of an area of at least n bytes of
heap space. "Minus-~heap”

+HEAP (addr --—-)

Give back the area of heap at addr to the heap. The
value of addr must have been obtained from a prior
call of -HEAP. "plus-heap"

SHFAP (addr len --- s)

Leave the len characters at addr on the heap at s in
string form. "to-heap”

ALLOT-HFAP (addr n ---)
Create a heap of n bytes at addr.
CLEAR-HEAP

Re-initialise the heap losing anything currently held
on it.

147

Metacrafts PORTH User's Cuide -- Part IV

17. LOCAL VARIABLES
+T0

Arrange that the next time a local variable is
executed the number on stack is added to it. “plus-to"

ARGUMFENTS (n--—-)

Create space on stack for 9 local variables assigning
the first n to the n items already on stack.

RFSULTS (n =)

Drop 9-n stack items to leave the first n local
variables as results.

31 to 89

If the local variable call precedes a call of +T0 or

T0, leave the value of the local variable. If it is
the first call after TO, then store the number on

stack in the local variable. If it is the first call
after +T0, add the number on stack to the local
variable.

TO

Arrange that the next call of a local variable causes
the number on stack to be stored at the variable.

148

Metacrafts FORTH User's Guide -- Part IV

18. GRAPHICS & GAME CONTROLLERS

ASPFCT-RATIO (nO ~-- nt1)

Multiply n0O by the ratio width/height measured in
pixels. Use to provide square aspect ratios for
critical graphics figures.

BKGND (n---)

Clear the hires page to colour n.

RUTTON (n--- flag)

L.eave a true flag if bButton n is being pressed,
otherwise leave false.

CHOOSF { n0 —== n1)
Leave a random number between 1 and nO-1. Assume that

the random number seed has been set by a call to
RANDOMISF.

CLRTOP

Clear the top 40 rows of the lores screen.

COLOUR (n---)

Select lores colour n.

ros (n ---n1)

Leave the cosine of angle n correct to 4 decimal
places and scaled by 10000. The angle is measured in
degrees and can be positive or negative.

SIN (n---nt)

Leave the sine of angle n correct to 4 decimal places
and scaled by 10000. The angle is measured in degrees
and can be positive or negative.

PISPLAY-SCALR (xmin xmax ymin ymax ---)

Select the minimum and maximum values for the x and y

149

Metacrafts FORTH User's Guide —- Part IV

coordinates. Avoids the need to work in terms of
pixels.

DISPLAY-XY (x vy -==x131)
Convert the pixel coordinates x,y to external
coordinates using the display scale set up by

DISPLAY-SCALE.

DRAW (addr u ---)

Draw a shape on the hires screen using the shape table
at addr. Rotate the shape by u.

GRAPHICS

A double word variable placed at the start of the
graphics screens. It can be used as the load point if
an overlay is created from the graphics code.

HCLR

Clear the hires screen to black.

HCOLOR (n--—-)

Select hires colour n.

HEADING (-=--n)

Leave the turtle's current heading.

HFIND (-==xy)

Leave the current hires pixel coordinates.

HIRES

Select the hires screen, leave the pen up, and select
HWHITE1 as the pen color.

HLIN (y x1 xr ===)

Draw a horizontal line on row y of the lores screen,
from x1 on the left to xr on the right.

150

Metacrafts FORTH User's Guide -- Part IV

HLINFE (x5 —==)

Praw a line from the current pixel location to
coordinates x,y on the hires screen.

HPLOT (xy ---)

Plot a point at x,y on the hires screen.
HPOSN (xy --—-)

Set the current hires pixel position to x,y.
HSCALF (n---)

Set the scaling factor for DRAW to n.

LORFS

Select mixed text & lores graphics. Clear the top 40
rows and set the colour to white.

MOVERY (n---)

Move the turtle forward by n pixels on the current
heading. Draw the turtle's path if the pen is down.

MOVETO (xvy -——)

Move the turtle to coordinates x,y. Draw the turtle's
path if the pen is down. Don't alter the turtle's
heading.

NOTE (n1 n0 ---)

Sound the Apple's speaker with frequency nt for
duration nO.

PADDLF (n0 --- n1)
Leave the current value of paddle nO.

PEFK (addr -==n)

151

Metacrafts FORTH User's Guide —-- Part IV

Leave the value of the byte at addr.
POKE (addr ---)

Write a 1 to the byte at addr.
PRN-UP

Lift the turtle's pen.

PEN-DOWN

Lower the turtle's pen.

PLOT (xy --—-)

Plot a block on the lores screen at x,y.
RANDOMISE

Initialise the random number seed.
SCRN (xy --—-n)

Leave the colour of the block at x,y on the lores
screen.

TFXT
Select the text screen.
TURN (n-=-)

Turn the turtle by n degrees. If n is negative turn
clockwise. If n is positive,turn anti-clockwise.

TURNTO (n--=)

Set the turtle's heading to n.

VLIN (x ybyt ---)

Draw a vertical line in column x on the lores screen,

from yb at the Jbottom to yt at the top.

152

Metacrafts FORTH User's Guide -- Part IV

YDRAW (addr u ---)

Delete the shape at the current coordinates using the
shape table at addr and rotation u.

XY-DISPLAY (xy --—x1y1)
Convert the external coordinates x,y to pixel

coordinates using the display scale set up by
DISPLAY-SCALF.

153

Metacrafts FORTH User's Guide -- Part IV

19. ASSEMBLER
(%) (--- addr)

Leave the address of the nucleus routine that is
called by U*. Call with a JSR instruction with the
stack set up for U*. "bracket-u-star"

(*/M0D) (--- addr)

Leave the address of the nucleus routine that is
called by */MOD. Call with a JSR instruction with the
stack set up for a call to */MOD.
"bracket-star-slash-mod”

(;CODF)

Compiled by ;CODE.

(ARS) (--- addr)

J.eave the address of the nucleus routine called by
ABS. Enter with a JSR instruction and the stack set up
for a call to ABS. "bracket-abs"

(DABS) (--- addr)

Leave the address of the nucleus routine called by
DABS. Enter with a JSR instruction and the stack set
up for a call to DABS. "bracket-d-abs"

(DNEGATE) (--- addr)

Leave the address of the nucleus routine called by
DNEGATF. Fnter with a JSR instruction and the stack
set up for a call to DNEGATR. "bracket-d-negate"

(M*) (--- addr)

Leave the address of the nucleus routine called by M*.

Fnter with a JSR instruction and the stack set up for
a call to M*. "bracket-m-star"

(M/) (-—- addr)

154

Metacrafts FORTH User's Guide -- Part IV

Leave the address of the nucleus routine called by M/.
Enter with a JSR instruction and the stack set up for
a call to M/. "bracket-m-slash"

(NEGATE) (--- addr)

Leave the address of the nucleus routine called by
NEGATE. Enter with a JSR instruction and the stack set
up for a call to NEGATE. "bracket-negate"

(s->D) (--- addr)

Leave the address of a routine that converts the top
two numbers as follows:

(n1 nO --- d1 n0)

In other words, it converts the second stack number to
a double number. Enter with a JSR instruction and the
stack set up as just described. "bracket-s-to-4"

(u/Mon) (--- addr)

Leave the address of the nucleus routine called by
U/MOD. Enter with a JSP instruction and the stack set
up for a call to U/MON. "bracket-u-slash-mod"

)

Specify indirect absolute addressing mode for the next
op-code generated. Only applies to the JMP,
instruction.

#
Specify immediate addressing mode for the next op-code
generated.

)Y

Specify indirect-indexed addressing mode for the next
op-code generated.

,X

155

Metacrafts FORTH User's Guide -- Part IV

Specify indexed-X addressing mode for the next op-code
generated.

Y

Specify indexed-Y addressing mode for the next op-code
generated.

<A

Specify accumulator addressing mode for the next
op-code generated.

0<

Specify that the op-code generated for the following
conditional will cause a branch if processor status
N=0.

0=

Specify that the op-code generated for the following
conditional will cause a branch if processor status
Z=0.

0>=

Specify that the op-code generated for the following
conditional will cause a branch if processor status
N=1.

;CODE E

Used to conclude a colon definition in the form:

<name> CRFATE ... ;CODE assembly code FND-CODR

Stop compilation of the defining word <name> and start
assembling the code between ;CODE and END-CODE.

WVhen <name> later executes in the form
<{name> <namex>

the definition <namex> will be created with its
execution procedure given by the machine code

156

Metacrafts FORTH User's Guide -- Part IV

following ;CODF. That is, when <namex> is executed,
the address interpreter jumps to the code follwing
sCODE in <name>. When this happens the address on the
top of the hardware stack will point to the byte
preceding <namex>'s parameter field.

AGATN,
Use in a COIF definition in the form:
BRGIN, ... AGAIN,

At run-time it marks the end of an unconditional loop.
Control is returned to BEGIN,

ASSFMBLER E

Add the assembler vocabulary to the top of the context
stack.

BFGIN,

Use in a CODF definition in one of the forms:
BEGIN, AGAIN,

BRGIN, UNTIL,

At run-time it marks the beginning of a repeated
sequence of instructions. At the end of the 1loop,
control returns to the point marked by RFGIN,. No code
is assembled for it.

ROT

Addresses the bottom of the data stack by selecting
the ,X addressing mode and leaving a zero on stack
which can be modified if required to another byte
offset in the data stack. For example, BOT 1+ LDA,
loads the high byte from the bottom of stack cell.

CODF : E

A defining word used in the form

157

Metacrafts FORTH User's Guide -- Part IV

CODE <name> FND-CODF

Add the assembler vocabulary to the top of the context
stack and create a dictionary entry for <name>. When
<name> is later executed the machine code assembled
beginning at the cfa will be entered.

(O]

Specify that the op-code generated for the following
conditional will cause a branch to be taken if the
processor status C=0.

FLSE,

Use in a CODP definition in the form

cc IF, true part FLSE, false part THFN,

At run-time if the condition code is false, branch to
the false part following ELSF,.

END-CODE F

Check that no garbage has been left on the stack and
unsmudge the latest word in the dictionary if it is
ok. Remove ASSEMBLER from the context stack.

IF,

Use in a code definition in the form

cc IF, true part ELSE, false part THEN,
or

cec IF, true part THEN,

At run-time the true part is selected if the condition
code is true, otherwise the other branch is taken.

IP (--- addr)

Leave the address of the interpreter pointer for
assembly into the next instruction.

158

Metacrafts FORTH User's Guide —- Part IV

IR (--- addr)

Leave the address of the indirect register for
assembly into the next instruction.

LCOFF (--- aadr)

Leave the address of a routine which will switch off
the language card. Enter with a JSR instruction.

LCON (--- addr)

Leave the address of a routine which will switch on the
language card with bank 2 selected. Enter with a JSR
instruction.

N (--- addr)

Leave the address of the W-area for assembly into the
next instruction.

NOT

Reverse the condition code that will be used to
generate the next branch instruction.

NEXT (--- addr)

Leave the address of the FORTH address interpreter.
All CODF definitions must exit directly to NFXT, or
indirectly via routines such as POP.

POP (--< addr)

Leave the address of the nucleus routine that removes
the top stack item before going to NEXT.

POP2 (—== addr)

Leave the address of the nucleus routine that removes
the top 2 stack items before going to NEXT.

PUSH (==~ addr)
Leave the address of the nucleus routine that adds the

159

Metacrafts FORTH User's Guide -- Part IV

accumulator as high-byte and the bottom machine stack

byte as low-byte to the data stack before going to
NFXT.

PUT (--- addr)

Leave the address of the nucleus routine that writes
the accumulator as high-byte and the bottom gf the
machine stack byte as low byte over the existing
bottom of data stack item.

RP)

A shorthand way of addressing the bottom byte of the

return stack. It selects the ,X addressing mode and
leaves $101 as offset. This can be modified if other

bytes are to be accessed. Before operating on the
return stack the ¥ register must be saved in XSAVE.

SEC
Identical to BOT, except that 2 is left on the stack
so that the second stack item will be accessed at
run-time.
SFTUP (-—- addr)
Leave the address of the nucleus routine that loads the
N-Area with addresses from the data stack. See the
assembler description in Part II.
THEN,
Use in a CODE definition in the form

cc IF, true part THEN,
or

cc IF, true part ELSE, false part THEN,

It marks the point from which execution should
continue after completion of the conditional code.

UNTIL,

160

Metacrafts FORTH User's Guide -- Part IV

Use in a CODE definition in the form
REGIN, ... cc UNTIL,

At run-time a branch back to BFGIN, will take place
unless the condition code is true.

UP (--- addr)

Leave the address of the location containing the
address of the user area for assembly into the next
instruction.

X)

Specify indexed indirect X addressing mode for the next
op-code generated.

XSAVE (--- addr)

l.eave the address of & location to be used for saving
the X register for assembly into the next instruction.

161

Metacrafts FORTH User's Guide -- Part IV

APPENDIX 1 ERROR MESSAGES

STACK EMPTY

The program has taken too many items off the stack.
Usually caused by doing too many DROPs. Use ?STACK in

words to find this problem, and remove it after
testing.
STACK FULL

The program has put too many items on the stack.
Usually happens when a word in a loop leaves an item
on the stack. Use ?STACK in loops to find this
problem, and remove it after testing.

FXECUTION ONLY

The word is not allowed in colon definitions.
COMPILATION ONLY

The word is only allowed in colon definitions.
DEFINITION INCOMPLETE

The stack depth has changed during compilation of a
colon definition, indicating some form of
incompleteness.

DISC II ERROR

Usually the result of trying to access a block out of
range. Could be a corrupt disc.

LOADING ONLY

The word is only allowed in a mass storage block. -->
is the only instance of this in the system.

?

The word can't be found in any vocabulary on the
context stack.

162

Metacrafts FORTH User's Guide -- Part IV

NAME MISSING

Create has not found the name of the new word before
the end of the input stream.

NO TERMINATOR

Means that the end of the input stream has been
reached before a terminating character was found.

STR > 255 CHARS

A string of more than 255 characters has been found in
the input stream.

NULL DELIM

The parameter to WORD is a null character, and that
isn't allowed by the 79 Standard.

DICTIONARY FULL

This means that there are less than 512 bytes left, so
vou'd better FORGET something!

STRUCTURE

Means that pairing of control structures is incorrect.
e.g. too many IFs.

NOT ASCII CHARACTER

ASCII penerates this if you don't follow it with a
single character.

2 BUFFERS MINIMUM

The system requires a minimum of 2 block buffers. This
message is produced by the buffer words if you trv and
free too manv buffers.

NOT FROUGH STORE

You've tried to create more block buffers than the
system can support.

163

Metacrafts FORTH User's Guide -~ Part IV

HAS INCORRECT ADDRESS MODE
This means you've used an assembler op-code illegally.
IS A PROTFCTED DEFINITION

You've tried to FORGET a word that is in the protected
part of the dictionary.

STRING TOO LONG

You've specified a search/replacement string of more
than 63 characters.

HEAP FULL

T™he heap manager can't find enough space to satisfy

your request. Check your program isn't looping, or use
a higger heap.

164

Metacrafts FORTH User's Guide -- Part IV

APPENDIX 2 ERROR REPORTS

When you've purchased your Metacrafts FORTF system,
complete and return the registration card. This
entitles vou to use our error reporting service.

If vou encounter a problem, and are unable to find a
satisfactory solution, then send us an error report. We
will endeavour to find a solution for you and let you
know how to proceed.

Please make sure vou let us have the following details
when yvou send in an error report:

1. Serial number of yvour disc.

2. Fardware configuration.

%. A complete listing of your program, or a disc
containing the source screens.

4. A complete description of the problem indicating
what happens, when it happens, and where it
happrens.

5. Your name, address and a telephone number.

Send error réports to us at the address in the manual,
and label them "FRROR REPORT".

165

Metacrafts FORTH User's Guide -- Part IV

APPFNDIX 3 FURTHER READINRG

Starting FORTH by Leo Brodie.
published by Prentice Hall.

This is definitely the best introduction to FORTH that
is available. Full of examples and exercises (with
answers) . Uses the FORTH Inc. dialect of FORTH which

differs slightly from the standard. Differences are
marked.

FORTH PROGRAMMING by Leo J. Scanlon.
published by Howard W. Sams & Co., Inc.

Also an introduction to FORTH, but more formal than
Starting FORTH. No exercises, but still worth reading.

FORTH Dimensions bi-monthly journal.

This is the official journal of the FORTH Interest

Group. It is full of useful news and information about
FORTH. You can reach them by writing to:

FORTH Interest Group

P.0.Box 1105
San Carlos
CA 94070
USA

The British chapter of FIG produces a bi-monthly
newsletter. For further details send a s.a.e. to:

The Honorary Secretary
FIG UK

15 St. Albans Mansions
Kensington Court Palace
London W8 5QH

166

Metacrafts FORTH comprises:

— complete implementation of the 1979 definition of FORTH with
many extensions.

— 32 bit arithmetic capability

— powerful set of string and array handling functions

— low resolution graphics

— high resotution cartesian and turtle graphics

— full-screen editor with ‘undo’ and syntax check feature

— powerful macro assembler with structured programming
constructs

— sophisticated debugger which allows you to test code at the
source level.

— block copy utility
— source code documentation utility
— compiled-program decoder and memory dumper

— support for paginated printer output with optional headings and
page numbers

— support for 80 column and extended memory cards
— on-stack local variables

— program overlay mechanism

— block buffer and heap store management

— completely reconfigurable input/output system

— source code provided for upper levels of the system

A comprehensive 170 page User’'s Guide contains all the infor-
mation you need to be able to install and use Metacrafts FORTH.
The Guide assumes that you can already write programs in
FORTH. If you can't, don't despair - FORTH is easy to learn from
one of the excellent tutorial texts recommended in the Guide.

The system is contained on a mini-floppy disc and requires an
Apple ll/lle with at least 48K RAM and one 16 sector DISK Il Drive.

To order your copy of Metacrafts FORTH, send a cheque for £68.70
(+ VAT) to Metacrafts Ltd., 144 Crewe Road, Shavington, Crewe
CW2 5AJ. Please allow 14 days for delivery.

Most people think that FORTH is just another programming
language, and a pretty weird one at that! They’ve probably been
told that it’s difficult to learn, and completely unreadable.

The thousands of programmers using FORTH know differently.
They know that their application packages execute up to 20 times
faster than the equivalent BASIC versions, that they take a fraction
of the time to develop, and that, because FORTH lets them use
names of up to 32 characters (any, not just letters and numbers),
the end product is more readable and, therefore easier to maintain.
In fact, they've found out that FORTH brings them real financial
savings.

How can FORTH be so much better than BASIC?

To understand the answer to this question, you must understand
the reason for BASIC's popularity.

in the early 60’s, programmers had to use memory sparingly, and
languages were designed to reflect this concern, even at the
expense of being unwieldy. The concern for conserving memory
permeated not only the language, but the whole computer system.

The languages of the early 60’s, in particular BASIC, were resur-
rectedin the mid-70’s when personal computers came on the scene,
which, although they were cheap, still didn’t have much memory.
Unfortunately, the explosive growth of the personal computer
market has led to the widespread, but misguided, belief that a
language that is simple to implement on a computer, is also simple
for people to use.

FORTH was created in the early 70’s by professional programmers
who were dissatisfied with traditional approaches to developing
software. They believed that ways must exist to significantly improve
programmer productivity, and FORTH is their answer.

The heart of every FORTH system is a sophisticated interactive
programming language, embedded in an extremely friendly pro-
gram development environment. Taken together these constitute

a programming system of incredible power and flexibility, and it is
this total system that is called FORTH.

If you've grown tired of BASIC's line numbers, obscure variable
names, GOTO and the rest of the features of the language that
one distinguished computer scientist considers to be mentally
mutilating, then FORTH is for you. Never mind the pundits who tell
you that BASIC is best, that COBOL is the only business language,
and that Pascal is the language for writing structured programs.
Their vision of the future has been clouded by years of mainframe
programming tradition.

Face the facts: programming always was, and still is, a difficult
and costly business, and non of the traditional approaches have
succeeded in reducing costs much on large mainframes, so ask
yourself why applying them to micros should be any more suc-
cessful.

FORTH, on the other hand, has demonstrated its success in the
small computer field over more than ten years of applications
development, ranging from observatory automation to fault-tolerant
real-time commercial systems.

Now you too can escape from BASIC’s mind crippling limitations
and experience the full power of Metacrafts FORTH on your Apple |l.
Watch your productivity treble as you become familiar with the
system, and treble again when you become an expert.

Not only will you be able to produce more, you will be astonished
at how fast your Apple executes what you produce. For example,
the January '83 edition of Byte magazine published benchmark
figures for the Apple Il which show that not only is Metacrafts
FORTH 17 times faster than Applesoft BASIC and 3 times faster
than Apple Pascal, but that it is also 14% faster than the fastest
FORTH reviewed.

If you're still not convinced, examine the list of features supported
by Metacrafts FORTH and ask yourself what other software system
for Apple Il provides as much for the same price.

FLOG
FEXP
FSIN
FCOS
FTAN
FATAN
FENTIER

Memory

Fa
Fl

Defining words

FCONSTANT
where {name>

FVARIABLE
where (hame)

FARRAY

where r <name)

Compiler
F,
FLITERAL

Error handling
?FERROR

FERROR

{FERROR>

n=1
n=2
n=3

Miscellaneous
2pP!

INT

FP

DEGREES

FIX

f=123456789.0
f=12345678.9
f=1234567890

D

D>F

(f-—log(f))
(f - exp(f))
(f---sin(f))
(f--- cos(f))
(f-—-tan(f))
(f --- atan(f))

(f - entier(f))

(addr - f)
(f addr —--)

(f+44)
(—1)

(+4 +)

(--- addr)
(N0 nl+++)

(n--addr)

(t-)
(f-)

()
(—)
(n-—)

OVERFLOW
ZERO DIVIDE

INVALID ARGUMENT

(— 2Xpi)
(=)
()
(f—1)
(f—dn)

n=0
n=-—1
n=1
(f--d)

(d-1)

©Copyright 1983 Metacrafts Ltd.

Leave the natural log of f.
Leave e to the power of f.
Leave the sine of f radians.
Leave the cosine of f radians.
Leave the tangent of f radians.
Leave the inverse tangent of f.

Leave the greatest integer, greater than or equal to
f, as a floating point number.

Fetch the number f from memory.
Store f in memory at addr.

Define constant <hame) value f,
returns f at run time.

Define variable <hame>
leaves the variable's addr.

Define array <name> with lower bound n0, upper
bound nt,

leaves the addr of the n-th element.

Compile f into the dictionary.
Compile f into current definition.

Call FERROR if an arithmetic error occured in the
last operation.

An execution vector called by ?FERROR if an error
occurs.

Default definition called by FERROR. Aborts with a
message as follows:

Result too big.

Zero dividend for F/.

zero/-ve arg for FLOG or -ve arg
for FSQR or F**.

Leave the value of 2xpi.

Assign (NUMBER) to NUMBER.
Assign <(NUMBER) to NUMBER.
Converts f degrees to radians.

Converts f to a double number d and exponent n.
The value of d is in the range

99999999.9 (d(1000000000, and n determines
the position of the point as follows:
d=123456789

d=123456789

d=123456789

Converts f to a double number after applying the
entier function.

Convert d to fioating point form.

FLOATING POINT WORD SET

Introduction

Metacrafts FORTH Floating Point Word Set is intended for users of Metacrafts
FORTH who wish to write programs with computational limits that lie beyond
the numeric range of the standard fixed point operators. Although floating
point calculators impose a severe performance overhead, the resultant
applications should nevertheless execute faster than the equivalents written in
other high level languages.

Installation

Before doing anything else, you should make a working copy of the floating
point master disc using the COPY utility described in Part Il chapter | of the
Metacrafts FORTH User’s Guide. When you have done that, store the master
disc in a safe place.

The floating point word definitions are stored on the disc in both source screen
and overlay format. The source screens are held in blocks 1-56, and should be
loaded as part of an application in the normal way.

For convenience, two identical overlays have been created from the source
screens for you. The first overlay, held in blocks 60-65, restores to the end of
the BOOT3 overlay. The second overlay, held in blocks 70-75, restores to the
end of the editor overlay, and so you should first ensure that the editor is
loaded before using this one.

You can create your own floating point overlay by SAVEing the dictionary from
the load point REALS.

All of the words that appear in the glossary are loaded into the FORTH
vocabulary. There are many word definitions, however, that belong to a
vocabulary called FINTERNAL. These are internal subroutines used by the
floating point word set, they don't appear in the glossary, and should be
ignored.

Input Number Format

The floating point word set extends the set of valid input number formats to
include floating point numbers. This feature must be switched on, after loading
the word set, by executing the word FP. Before FORGETting, or otherwise
removing, the word set from the dictionary, the feature must be switched off by
executing the word INT (the system will crash if you forget).

All floating point numbers entered ininterpret/compile mode must be prefixed
by a $ (dollar) character to distinguish them from standard FORTH integers,
and should conform to the Applesoft number syntax and numeric range
defined on pages 4,31 of the Applesoft Reference Manual.

Foating point numbers may be read directly by an application, and the
character string converted to internal floating point form by FNUMBER. Such
numbers should not be prefixed by $.

Glossary
The stack notation used in the glossary is the same as in the User’s Guide. The
only addition is the letter f which is used to denote a floating point number. Itis
also useful to note that each floating point number occupies 6 bytes of
memory.

Number input-output

(NUMBER> (addr —-d)
E. (f-)

E.R (fnOn1~)
F. (f-)

F.R (fnOnt -)
F.PT (- addr)
FNUMBER (addr - f)
FTRAILER (--- addr)

Stack manipulation

PR (f-—)

FDROP (f-)

FDUP (f—ff)
FOVER (fO f1 - fO f1 fO)
FSWAP (fO f1 -—f1 fO)
FR> (-1

FROT (fO f1 f2 - f1 2 f0)
Comparison

FO((f --- flag)

FO= (f - flag)

FO> (F - flag)

F< (fO f1 - flag)
F= (fO 1 —flag)

24 (fo f1 --- flag)
Arithmetic

F+ (fO f1 - f0+f1)
F— (fO f1 --- f0—f1)
F* (fO f1 --- f0*f1)
F/ (fO f1 --- f0/f1)
FABS (f - abs(f))
FNEGATE (f--—--f)

F** (fO f1 - fO* *f1)
FSQR (f - sqrt(f)

Assigned to NUMBER by FP, it converts the string
at addr into either an integer or floating point
number.

Output f in exponent form with trailing zeroes sup-
pressed, and followed by a space.

Output f in exponent form, right justified in a field
of n1 characters with nO digits after the point.

Output f in fixed point form if its value lies in the
range 0.099999999 (f<1000000000, else in ex-
ponent form. Suppress trailing zeroes and append
a space.

Output fin fixed point form, right justified in a field
of n1 characters, and nO digits after the point. Fill
field with ? if f too big.

Variable containing the character to be used as
decimal point. Set to full stop.

Convert the string at addr to a floating point
number.

Variable containing the character to be output by
E.R and F.R as trailing zero. Set to ASCII 0.

Transfer f to return stack.
Remove f from the stack.
Leave a duplicate copy of f.
Duplicate second item on top.
Reverse top two items.
Transfer f from return stack.
Move third item to top of stack.

Leave true flag if f<0.
Leave true fiag if f=0.
Leave true flag if £ 0.
Leave true flag if fO <f1.
Leave true flag if f0="11.
Leave true flag if fO> f1.

Leave sum of fO, 1.

Leave difference of fO,’f1‘
Leave product of f0, f1.
Leave quotient of fO, f1.
Leave the absolute value of f.
Leave the negation of f.
Leave fO to the power of f1.
Leave the square root of f.

SCREEN #138

@ Locreen #14¢ on the system dizc contains code for a VIDEX

I compatible 30 col. card., IY¥ vou have an APPLE Ile and an

2 APPLE 8@ col card vou should replace screen RIi4¢ on the

3 system disc with the code In the screen #1379 liszsting below.

4 To activate the APPLE 8@ col card use the word 8@-C0LE as

% deszcribed In the user guide.

&

7

8 ITNPORTANT =
¢ — It ks not possible to switch back to 48 column mode using
i1 the current version of the zvitem.
13 —— It ix not possible to select a graphics mode with the 8¢ col
14 card active. Any attempt to do zo will result in corruption
1% of the dictionary when TEXT mode s rezelected.

SCREEN #139
@ ¢ APPLE TIE 80 COL CARD
I HEX ASSENBLER HWEN ¢

PATCH TO MAKE CR

&~ JUN-83 KGL)

R AUTO~LF)

2@ IS@A ¢/ (0351 i5DB 7/ HERE 380 DP o/

3 7F # AND, PHA, (357 JER, PLA, D # CHP,

4 @= IF, A # LDA, C357 J8R, THEN, RTEH,

5 ¢ END OF PATCH)

& DR/ CONTEXT PRUNE G C/T 7

7OCODE S@INIT LCOFF JE8R, XSAVE 5TX, C34B JER,

g XSAVE LDX, LCON JER, NEXT JHP, END-CODE

9 QBINIT FORGET SGINIT 380 CSW 7/ C351 KSH /

1 FIND </CURBORY 15 /CURSOR FIND CPAGES 15 PAGE

11 FIND <.0K> IS 0K FIND SCLREOL> IS CLREOL

12 FIND <CLREOPY IS CLREOP FIND <QCURSORY IS BCUREOR DECIMAL
13 CR PAGE . METACRAETS FORTH-79 V1.2 (C) 19837 CR CR
i4 .7 SERIAL NUMBER “ SERIAL® S5-2D <# # # # # #> TYPE

15 CR CR .* READY ”

SCREEN #140
3 Some users

I overlay to handle their printer.
2 the manual. The

3 1) edit the printer overlay
=] 2) dispose of the editor by
] 3} load the printer overlay
save the printer overlav
A few DOCUMENT waords are miIissing

& 4
7
8 TITLE" ¢
9

have experienced Jdi¥fficulty updating the printer

correct procedure I3

Thixz iz due to an ommizsion In
typing FORGET OVERLAY

by tvping ide LOAD

by tvyping 31 SAVE QVERLAY.
from the glossary. These are:

Foft) Used as TITLEY TEXT FOR FAGE HEADING”
¥ PAGE-NUHNBER (n ———) Set page number to n
I@¢ NO-TITLE { ——=— 2 Turn off page headings and nunbering.
11 INDEX (nl nd ——2) Qutput an Index of screensz nil to ni.
12 OUTLINE ¢ ni nd ——) Qutput an outline of screens nil to nd
13 PRINT (nil nd ——) Print screens ni to ni.
I PRINTI { n ——— 3 Frint screen n.
15 IQUTLINE ¢ n) Produce an outline of szcreen n.

