
L.P.C.B.

Peersoft v1.5
An Applesoft extension

Benoît GILON

03/02/2015

16/03/2015 Page 1



An introduction to Peersoft
Peersoft is an Applesoft BASIC extension which aims to provide to the Applesoft programmer features in 

addition to those offered by plain vanilla Applesoft interpreter alone. Currently, in its present incarnation, 

Peersoft runs on DOS 3.3 only but a ProDOS version could see the day in months to come if demand level is 

high enough.

However, three versions of Peersoft exist depending on the CPU detected within the Apple 2 host (either 

6502, 65C02 or 65802/16) with relevant code optimizations for the two latter CPUs.

The focus has been put on performance aspects while authoring this software. Here are the main features 

delivered with this release of Peersoft:

 New instructions for defining a default variable type per name’s first character: 

Tableau 1: New statements for specifying a variable’s default type

New 
statement

Type of variable Magnitude
Suffix 

character

DEFINT 16bits integer From -32768 to 32767 %

DEFSNG Floating point (5 bytes) !

DEFSTR String Length from 0 to 255 $

Therefore the program text can be smaller in size by using default typed variables.

Using new integer types can make array variables use less memory than plain 16bits integer or FP 

arrays. The support for new integer types means that:

o New subroutines are provided for direct arithmetic operations implied by the four +=, -=, *= 

and /= operators (see below for introduction to those new statements);
 A new syntax scheme for setting variable values based upon the result from an arithmetic 

operation.

LET <variableName> += <value> or

LET <variableName> /= <value> or

LET <variableName> -= <value> or

LET <variableName> *= <value>
If specified variable is of type integer, then used arithmetic is of type integer too, also the += syntax 

scheme can be applied to string variables as well. The main benefit, beyond using integer arithmetic 

when adequate, is to minimize the number of variables references compared to  a syntax as in the 

statement LET <variableName> = <variableName> <operator> <value> 

particularly when variableName is a multi-dimensional array with index values equals. 

16/03/2015 Page 2

Peersoft is an Applesoft extension which focuses mainly on performance issues rather than features. 
Currently, it is to be considered as a complement to the Bananasoft utility already released attempting, 
among other features, to enrich the Applesoft interpreter by adding new keywords found in other flavors 
of Microsoft Basic. 



 Before the release of Peersoft v1.5, an array element from array named A could only be referred to 

by using the expression A(<expression>, <expression>) presuming that the array A was 

defined as having two dimensions (with a DIM statement), this is the common way of using array 

variables from within the program text. 

But now with Peersoft v1.5, the same element could be referred to by using only one dimension 

specification. The two code extracts below:

10 DIM A(4,5):…:S = 0: FOR I = 0 TO 4: FOR J = 0 TO 5:S += A(I,J): 
NEXT J,I
10 DIM A(4,5):…:S = 0: FOR I = 0 TO 29:S += A(I): NEXT I
Will both compute the sum of every element value into the S variable. This new way of authoring 

code will simplify some computations upon arrays and thus enhance performance of such 

computations.

Also within the original Applesoft interpreter, there was a limitation that an expression value for 

giving a dimension must be less than 32768. At the time Applesoft was authored this was sensible 

as the smallest size element type was integer and takes 2 bytes for storage, given the hardware 

limitation of 64K for 8bits architectures: now this limitation was increased to 65535 thus addressing 

up to 65536 1 byte elements (such as bytes) within 64Kb (this will be useful once the BYTE sub 

integer type be implemented within Peersoft).

 A new pseudo variable (“@”) , usable in arithmetic expressions and which replicates the value 

currently stored in the Applesoft floating point accumulator. For instance, the statement:

S = 0
FOR I = 0 TO 9: FOR J = 0 TO 9:S += A(I,J) *  @
NEXT J,I
will compute the sum of squared elements from matrix A. You will notice that the code only refer to 

every element of matrix A just once and that the * operator between a value and itself is known to 

be (and actually is) faster than the concurrent expression A(I,J) ^ 2.

 A new function statement IIF() is provided in order to evaluate one among two expressions 

based on the value returned by a Boolean expression.  Here is a sample:

MA = IIF (A > MA,A,MA): REM will compute the MAX(A,MA) and store it into the MA 
variable 

 Integer variables now allowed as loop variables of FOR/NEXT loops, also arithmetic 

operations/comparisons when running a NEXT statements is of integer type whenever the loop 

variable is of type integer itself.

 Fixes to some of the Applesoft instructions processing (ONERR, RETURN and POP): if you get a 

look at the Applesoft disassembly listing generated by S-C Documentor and commented by Bob 

Sander-Cederlof ( http://www.txbobsc.com/scsc/scdocumentor/), then you’ll find out that 

Applesoft has many bugs buried in its code.
 Utility routines provided to optimize access to Applesoft variables. For either simple or array 

variable kinds, time spent to get a reference to a variable is proportional to the number of variables 

of same kind (i.e. simple or array) that have been defined (i.e. referred to from BASIC program text 

for simple variables) before the time the current variable (looked up for) has been created. The 

order of definition of variables within the program flow seldom follows an order with which most 

used referred to variables or arrays are created first. We tend to define some “constant variables” 

such as D$ =  CHR$( 4)at the very beginning albeit the fact that such variable will be much 

less frequently used than, for instance a loop variable from an inner loop. The goal of the provided 

16/03/2015 Page 3



utility routines is to optimize variable access after variables have been created and thus their 

memory storage address defined. Two alternative approaches have been supplied: 

o Physical re-organization of array/simple variables areas where actual variable slot are 

actually moved within the area;

o Cache based variable referencing: here the variables storage slots are kept at the same 

original place within memory. Instead, Peersoft manages a small memory area to keep 

some variable names and addresses in a safe place. Such variables are looked up for at first 

place when a reference to some variable need to be returned and thus lookups for such 

variables are the fastest.
 Availability of co-routines within an Applesoft program: this is a new paradigm for every Applesoft 

program author. Now he is able to design his programs as if they run under a multi tasking 

environment. The application could be considered as an assembly of phases where the kernel is 

active (co-routines active and running concurrently) and where kernel is inactive (the kernel is 

inactive: only one flow is processed by the Applesoft interpreter). Beyond what follows, an 

subsequent entire chapter has been dedicated to describe its configuration and operation within 

this document. 

o Because the switch between co-routines will occur at known and arbitrary locations within 

the interpreter loop, then the context can be kept rather small compared to true multi 

tasking monitors.

o Unlike true multi tasking monitors, no hardware generated external signal (IRQ) is used and 

thus Peersoft co-routines run equally well on the whole Apple 2 range (from the Apple II 

standard with Autostart ROM to Apple //gs and every emulator environment I currently 

know of). 
 Time oriented optimization by precomputing GOTO/GOSUB target addresses within program text.
 Processing of hardware interrupts from Applesoft subprograms now allowed (with support for 

mouse and timer VBL interrupts already included).

Peersoft roadmap
The features described in the previous section are actually implemented in the Peersoft current release. 

However, not all the features envisioned from the start have already been implemented. Some are yet to be 

developed from scratch in order to meet the author’s original requirements.

The table below provides some hints about what additional features will be developed and candidate 

release dates. However, as this project is founded upon the time left only as I am “idle” on both the other 

(i.e. family and professional/business) aspects of my life,  I would suggest to not hold your breath.

Version Feature(s) implemented Estimated delivery date

1.7
Generalized user defined functions (DEF FN): more args 
allowed and arg. Variables of any type, not just FP) 

08/09/2015

1.7 New integer subtypes like BYTE, LNG24 and LNG32 08/09/2015

1.5
New array dimension max value set to 65535 (useful for byte 
arrays:  was 32767 originally)

01/01/2015

1.6
Benefitting from extra memory (thanks to Apple and A.E.) 
and options for defining arrays on such memory card.

31/05/2015

1.5
Support for remaining utility routines to reorganize the 
Applesoft variables areas (both simple and array)

01/01/2015

16/03/2015 Page 4



Version Feature(s) implemented Estimated delivery date

1.7

Merge with Bananasoft utility (using similar technology but 
focusing on features rather than performance); the name of 
resulting software could be “fruit salad” but still quite unsure 
about this ;-)

08/09/2015

1.5
Support for handling of mouse and timer interrupts by 
Applesoft routines

01/01/2015

1.5 Precomputed GOTO/GOSUB within program text 01/01/2015

1.8

Generalized integer arithmetic for expression evaluation (i.e. 
the sub expression A% + 1 will be evaluated using integer 
arithmetic first and only reverting to FP operation in case an 
overflow occurs 

31/12/2015

1.8

Compilation of Applesoft user defined functions to convert 

them to machine code callable with USR<n>(…) functions 
(provided by Bananasoft, n from 0 to 9).

31/12/2015

Peersoft physical package description
Peersoft consists of a zip archive (Peersoftv1.5.zip) containing:

 One disk image with the .do suffix (DOS 3.3 sector order) containing a complete Merlin 8 DOS 3.3 

development environment (v2.48 release).
 One disk image with the .do suffix providing a complete set of Peersoft source files to build Peersoft 

(main binary and extra companion utilities) on any CPU variant (6502 plain vanilla, 65C02 or 

65816). 

16/03/2015 Page 5



Filename(s) on disk Purpose

PEERSOFTV15.S Main source file for building Peersoft using Merlin

T.PEERINSTALL Peersoft PUT file inclusing Peersoft installation stuff.

T.PEERLIST Peersoft PUT file handling the LIST Applesoft instruction.

T.PEERINTEGARITH Peersoft PUT file handling the integer arithmetic routines 

(handling the +=, -=, *= and /= for integer variables) as well as 
the loop variable increment whenever that loop variable is 

integer (NEXT statement)

T.PEERAROMBA Peersoft PUT for all extensions to ROM FRMEVL original 
subroutine.

T.PEERMTK Handling of coroutines within Peersoft

T.PEERGOTO Precomputed GOTO/GOSUB within Peersoft

T.PEERMOUSTIME Handling of Mouse and Timer events within Peersoft

T.PEERMOTIDATA Data segment for the handling of the mouse and timer.

T.PEERGLOBALPAGE Data segment for the Global page Peersoft partition

T.PEERUTILR Miscellaneous utility functions within Peersoft

T.PEERGDATA Data segment for the precomputed GOTO/GOSUB

CRECON.S Assembly source file for handling CPU recognition upon Peersoft 
boot (see HELLO Applesoft program from other disk): object 
installs as a $0300 subroutine and thus helping launching the 
proper Peersoft executable file.

TCPRECON.S Assembly source file for detecting a thunder clock peripheral 
card or a //gs clock chip: both can be used to measure time 
spent by Applesoft subroutines within the TF Applesoft 
program. Object file is loaded as a $0300 subroutine from TF 
BASIC program.

SMTRECON.S Assembly source file for detecting a NoSlotClock device within 
an Apple ][, //e or //c and making use of it.

TUTMC.S Assembly source file for monitoring context switches as used by 
the TUTORIAL Applesoft program which serves as a demo for 
the co-routines features). Here, only a speaker toggle is applied 
thus routines are rather short.

 One disk image with the .do suffix providing a bootable DOS 3.3 with the binary exe files from 

Peersoft (either machine code or Apple soft sample files).

File name on disk Purpose

HELLO Boot program displaying a menu and prompting the user to select a 
valid Perrsoft program version to load according to CPU detected

CRECON Object file loaded by HELLO program and which purpose is to detect 
host CPU flavour

PEERSOFTV15_6502, 
PEERSOFTV15_65C02, 
PEERSOFTV15_65802

One binary executable file per CPU, each file results from assembly 
from PEEROFTV14.S source files with different setting for the KOPT 
and KOPT16 macros

TF Applesoft sample program trying to illustrate the features currently 
included within Peersoft.

TCPRECON Object file loaded by TF program which deals with peripheral 
clock/chip detection and time elapsed measurements (Thunder 
clock and //gs internal battery/clock chip).

SMTRECON Object file loaded by TF program which deals with peripheral 
clock/chip detection and time elapsed measurements (NoSlotClock 
device chip).

TUTORIAL2 Applesoft program file playing with the Peersoft mechanism of co-
routines in some unusual ways.

16/03/2015 Page 6



TUTMC Auxiliary machine code routines (loaded at address $0300). 
Currently only serves to toggle the speaker as a coroutine is swaped-
in/swaped-out. 

 Peersoft documentation in the form of a PDF file you are currently reading

How to transfer the two disk archives to real 5’1/4 disks on an Apple // 
hardware
In order to transfer the content of both disks to a native hardware Apple // computer. We will use the 

components below:

 A pre-formatted disk image (with ProDOS2.0.3 and NuFX Shrink/Unshrink system files); this disk 

image will grab the DOS 3.3 disk images and put them into a ProDOS 8 archive file. In case you do 

cannot put your hand on such disk image, you can get the one from my site (URL is 

http://bgilon.free.fr/apple2/ShrinkIt.2mg).
 An emulator for running the NuFX Shrinkit program on your modern computer. To illustrate this, I 

am using the AppleWin 1.22 Win32 emulator.
 The CiderPress Win32 program in order to put the NuFX archive files onto a CFFA compact 

memory.
 The CFFA Compact Flash memory disk drive for Apple //e or //gs (mine is CFFA 2.0, but a newer 

version has since been released with the ability to directly read .po and .do disk images).

Other paths are available for performing the same tasks (dealing with serial communication interfaces 

between a “modern” computer and the Apple //).

Configuration of Apple Win 1.22
After having downloaded the disk image containing a bootable ProDOS 8 and the ShrinkIt system file, open 

the Configuration window by pressing the F8 function key.

16/03/2015 Page 7

http://bgilon.free.fr/apple2/ShrinkIt.2mg


Check the option box labeled “Enable hard disk controller in slot 7” and click on the Select HDD 1 action 

button. A “choose file” dialog box would open. Navigate to your download directory and select the file. 

Click OK. A message box could then pop up advising you that AppleWin will reboot due to change in 

connected bootable devices configuration.

Operation of the Shrinking procedure
Once the emulator has restarted, then the screen below should pop up.

16/03/2015 Page 8



Select the SHRINKIT option, press Return and the screen below should pop up.

Drag and drop the D33Merlin – Peersoftv15.do disk image icon on the drive 1 box with the panel at the 

right side of the window.  And select the Shrink option.

Select the Shrink “Disk” option

16/03/2015 Page 9



Select the “Shrink Disk on S6, D1 140k Drive” option..

Enter the label for this backup within the archive. Here “SOURCES.D33”.

Now enter the name of the ProDOS file which will contain the backup you are about to initiate.

16/03/2015 Page 10



Here I have entered the filename PEERSOFTV15.SHK. Once the RETURN key has been pressed, the 

progression bar for the shrinking advises you of the… progress so far.

The next step would be to reiterate the procedure above for the D34Peersoftv14.do disk image. Checking 

that everything is OK at the end of this step can be done by listing the content of the archive which is an 

option available from the main menu.

16/03/2015 Page 11



Peersoft user manual
Peersoft executable files come within the D34Peersoft15 (.do archive or real 5’1/4 disk depending on 

whether you have an emulator or a real hardware on hand.

The relevant disk image is DOS 3.3 bootable, insert it in drive 6 slot 1 and reboot your emulator/computer. 

The screen appearing should be similar to the one below.

Depending upon the CPU detected on your host environment, more or less choices could be available. At 

this prompt, you can opt to bypass the Peersoft installation by using the usual <CTRL><C> keystroke.  But 

for the time being, suppose that you selected option 2 to install the Peersoft version which can benefit from 

the richer instruction set of the 65C02 CPU.

The mention that Peersoft has been installed pops up.

There is an Applesoft named TF which allowed the user to check that the latest build Peersoft showed no 

regression. In addition, it shows up every implemented feature to interested parties (either programmers 

themselves or end users).

16/03/2015 Page 12



Just issue the RUN TF command from the “]” prompt. This leads to screen below. The TF program can 

make use of the Apple //gs clock chip, a Thunderclock peripheral card (as supported by the Virtual ]

[ emulator under Mac OS X), or a SMT NSC chip (as supported by both emulators I used to debug Peersoft) 

to measure time elapsed.

Just press any key on your keyboard to proceed…

This screen shows some new features available by using Peersoft as

 A new way to concatenate strings;
 Default typing for Applesoft variables (using the DEFSTR, DEFINT and DEFSNG statements);
 Some new syntax schemes for altering values of variables.

Just press any key on your keyboard to proceed…

16/03/2015 Page 13



The features that are showed within this screen are:

 Use of a utility routine to physically reorganize the simple variables memory area so that the 

variables “J”, “SS” and “I” are looked up first from then on;

 Use of the “@” pseudo variable in order to avoid additional references (lookups) to simple variables 

“I”, “J” and to array “A!” and relevant computations.

Just press any key to go to next screen.

The screen above shows the benefit of adopting pure loop variable of integer type.

Here is a minimalist segment of code to illustrate the use of co routines within Peersoft (an innovative 

feature indeed). The first few lines listed set up the environment. And the latter lines form the body of the 

co routines and subroutines called from within the co routines.

16/03/2015 Page 14



To show what is displayed on the screen resulting from running the activation, just press a key as usual.

Every co routine is entered and completed and the allocation of CPU to each thread follows a round robin 

model till all subroutines complete, thus triggering the end of program. The co routine feature is thoroughly 

described in a subsequent chapter. For the time being, just press a key as prompted by the program; after a 

while, the screen below is displayed.

16/03/2015 Page 15



This illustrates a new feature from the 1.5 release, which precomputes the addresses of target lines of 

GOTO and GOSUB Applesoft instructions, thus optimizing the handling of such instructions when located in 

loops (i.e. being run on many occurrences). The reference manual below gives details upon the related 

utility functions to setup the program behavior (i.e. whether or not performing automatic 

precomputations). On a medium size program (# of lines between 3 and 200), we see that times for 

handling of GOTO/GOSUB instructions are more than halved but could be made even smaller with 

programs of greater size or greater complexity (i.e. more explicit line references). The next two screen 

dumps illustrate another new feature from this Peersoft release.

The codlet shown above uses the MOUSE statement to initialize the mouse, some general utility function to 

setup mouse clamping limits and setting the original mouse position, and the MOUSE function to read both 

the mouse coordinates (X and Y) and the mouse button status. And as the code above is run…

The mouse cursor position is updated as you move the mouse within the clamp “window” (excluding first 

and last screen lines). Pressing the mouse button will resume normal operation as indicated. A similar 

screen can be obtained but this time based on a mouse interrupt mode. You must have an enhanced 

Apple //e (hardware or emulation) or a //c or //GS Apple model in order to see this step (otherwise it is 

skipped to the program end). Here you’ll see that both MOUSE and TIMER will work asynchronously 

related to the main program flow (handling by subroutines starting at lines 2800 and 2900 respectively).

16/03/2015 Page 16



The “SECONDS ELAPSED” display screen line is managed by the subroutine registered with the ON TIMER 

GOSUB instruction; Note that as the TIMER factor being set to 60 (on a North American Hardware Apple), 

the Applesoft routine is only called once every second on a north American Apple 2 hardware at least.

The FOREGROUND COUNTER VALUE display screen line illustrates the foreground processing activity. Well 

nothing spectacular here… The Applesoft subroutine starting at line 2800 is in charge of updating the cursor 

character on the display screen within the clamp window limits.

Peersoft reference manual

Variable default typing
DEFINT A, I-N,Z

To specify the scope of variables involved by every DEF<type> instruction, you just have to list first 

characters either alone or as part of a range. In the sample above, every variable (simple or array), which 

first character is “A”,”I”,”J”,”K”,”L”,”M”,”N” or “Z” will have a default type of integer (16bits).

The involved statements are DEFINT, DEFSNG and DEFSTR.

16/03/2015 Page 17



DEF<type> statements can appear anywhere within a program text and be run at anytime within the 

program flow. 

At program start or when a RUN/CLEAR Applesoft statement is run within the program flow, then all 

variables inherit the Floating point type default.

However, an explicit type specifier (“%”, “$” or the new “!” used for floating point) as a variable name’s 

suffix overrides its default type currently defined.

Thus the statement sequence CLEAR : DEFINT I:I = 1: PRINT I! will print 0 on screen.

New syntax scheme for altering variables values
A += 3

Peersoft will simplify variable value alterations by providing a new syntax scheme. The new A += 3 being 

a shortcut for A = A + 3.

All four basic operations can be part of the new syntax scheme.

For instance A -= 3 is a shortcut for A = A – 3 and B /= 4 is a shortcut for B = B / 4

The new syntax scheme can be included in every context where a variable has its value set within program 

text. This includes the FOR/NEXT loop construct.

FOR I += 5 TO 10 is a shortcut for FOR I = I + 5 TO 10

Whenever the variable type is integer, then arithmetic operation applied is of the integer kind too.  Also the 

+= syntax scheme is also valid for string concatenation whenever the variable is a character string.

S$ = “BONJOUR”: S$ += “ HELLO”: PRINT S$ will print BONJOUR HELLO onto the output 

display.

@ Pseudo variable
Having written quite a number of applications myself and studied the code from other authors as well, I’ve 

found out that one pattern that emerge quite often is the use of the same sub expression/variable multiple 

times within an expression. Sometimes, there is a cost in term of performance to lookup some sub 

expression/variable (particularly when dealing with multi dimensions array variables). So the idea of 

implementing the @ pseudo variable was born.

Anytime an expression is evaluated, then the Applesoft interpreter will use some constant locations within 

page zero as main and auxiliary accumulators, large enough to contain an integer, a floating point value, or a 

string descriptor. The @ pseudo variable is the simplest in its processing code. All it does is a RTS (actually 

it’s a bit more than that but only by a small amount: cf. source code for further details ;-), this would imply 

that the returned value will come unchanged from what it was during the last “factor” evaluation.

Beyond the sample code showing up in the previous section :  ””, the @ could also refer to any content of 

any type.

16/03/2015 Page 18



PRINT  RIGHT$( A$, LEN(  @ ) – 4) will print the “A$” current value with its first 4 characters 

removed.

Use of the @ pseudo variable as the first term evaluated within an expression thus possibly referencing the 

result from a previous statement expression is not recommended, especially from within a co routine.

IIF() function statement
Likely at many occurrences every Applesoft application author has wished to be able to return one among 

two values depending on a Boolean criterion. Up to now, he has three methods to code this mechanism:

 Using the Applesoft codlet below:

10  ON booleanExpr GOTO 20: LET returnVariable = returnValueIfFalse: GOTO 30
20  LET returnVariable = returnValueIfTrue
30  REM Flow of the program  continues from here
Pro: Can apply to return string or numeric expressions
Pro: BooleanExpr only evaluated once
Pro: Only one of the two expression returnValueIfTrue, returnValueIfFalse is 
evaluated
Con: Cannot be summarized within a user defined function definition (DEF FN)

 Using the Applesoft sub expression below:

booleanExpr * returnValueIfTrue + (NOT booleanExpr) * returnValueIfFalse
Pro: Can be further processed as a subexpression
Con: Boolean expression is evaluated twice
Con: Both returnValueExpression are evaluated even when one will be discarded 
(because of being weighted with a zero value).
Con: Work only for numeric return values

 Using a prefilled one dimension array (containing two elements)

10  DIM VR(1):VR(0) = returnValueIfFalse:VR(1) = returnValueIfTrue
20  REM Then you can use the VR(booleanExpr) as the subexpression.
Pro: can be further processed as a subexpression
Pro: booleanExpr evaluated only once
Pro: VR can be any type (i.e. numeric or string) and so the return value
Con: Only works for constant value returning (the returned expression are not 
evaluated each time the VR(booleanExpr) is referred to within an expression.

You see that very method described above have its pros and cons. With the new syntax scheme below, I 

only can perceive Pros to its adoption:

 Just use the IIF( booleanExpr,returnValueIfTrue,returnValueIdfFalse)

Pro: can be further processed as a subexpression
Pro: booleanExpression evaluated only once
Pro: Just one of the two return value candidate expressions is evaluated (the 
other being only scanned for a terminator character)
Pro: the selected expression is actually evaluated at the time of the IIF function 
call is processed.
Pro: Can cope with any expression type (either numeric or string).

So the IIF can be a time saver both for the Applesoft developer and the end user running his programs.

Integer variables as loop variables within FOR/NEXT loops
I was worried that Integer variables be banned from being used as loop variables within FOR/NEXT loop 

constructs.

16/03/2015 Page 19



If you try the statement below under plain vanilla Applesoft interpreter, all that is returned is a “?SYNTAX 

ERROR” message.

FOR I% = 1 TO 10: PRINT I%: NEXT I%

I believed that the use of integer arithmetic for processing the increment and test for final value as part of 

the NEXT statement processing would greatly offer benefits in performance terms.

Hélas (in French in the text), by  the time the loop variable appears in the loop body, then all benefits 

disappear because handling of integer variables is much more costly than of floating point variables just by 

the fact that the retrieved integer value needs to be  converted to floating point whatever the context.

OK now, with Peersoft installed, you can have integer variables as loop variables, but I wouldn’t tell you 

more about it… until September this year (cf. section “” for further details on future developments).

Ah yes, be advised that Applesoft is bugged in its integer variable handling too. Have you ever tried to issue 

a A% = - 32768 only to get bounced with a ?ILLEGAL QUANTITY ERROR message?

Users curious about this state of things could study the excellent Web resource already mentioned in this 

document (http://www.txbobsc.com/scsc/scdocumentor/). Suffice to say that

A% = - 32767.5 works well and provides the same expected result.

Another limitation to warn the reader about is that the final value of such loop (using integer variables) 

cannot be 32767 (which is the algebraic highest possible value a 16bits integer variable can be bound to). 

This is because, as the last iteration (the loop variable being equal to the final value) completes, the first 

operation the NEXT statement does is to increment the loop variable’s value (here 32767) with the STEP 

value (default 1), this add operation causes an overflow within the 6502 and thus the overflow exception is 

raised to the Applesoft environment, itself raising an “?OVERFLOW ERROR” for the Applesoft program.

To complete this section on an optimistic side, here is my advice regarding placement of loop variables 

within FOR/NEXT loops. The point to keep in mind is that:

 It is useless to keep a loop variable at the top of simple variable table, unless either you use it 

extensively in the loop body or, for whatever reason you have, you still want to use the NEXT 

<variableName> syntax scheme for iterating within a loop. The loop variable placement plays 

no role in performance aspects when processing a NEXT statement with no trailing variable 

reference as all data upon which the NEXT statement works lies within the stack (including a direct 

pointer to variable’s value within Simple Variable Table); the frame being built as the interpreter 

enters the loop, just once during processing of the FOR statement.

Some Applesoft statements processing bugfixes
Every bug fix provided here is an obvious code update to bugs raised, update to be considered  as a part of 

the Web resource already mentioned (http://www.txbobsc.com/scsc/scdocumentor/).

ONERR statement
The current Applesoft implementation for the ONERR statement processing erroneously skip the whole 

physical line after processing instead of just up to next “end of instruction” marker.

16/03/2015 Page 20

http://www.txbobsc.com/scsc/scdocumentor/
http://www.txbobsc.com/scsc/scdocumentor/


This is fixed within this Peersoft release.

RETURN and POP statements

16/03/2015 Page 21



Mouse and Timer handling within Peersoft
The support for mouse and timer (i.e. vertical blanking) within Peersoft is based on:

 The MOUSE and TIMER new instructions to activate and deactivate the MOUSE and TIMER 

interfaces, either in transparent or interrupt modes;

 The ON  MOUSE  GOSUB as well as ON  TIMER  GOSUB instructions to setup the Applesoft 

subroutines called upon interrupts;

 The MOUSE function to return status from the mouse Interface (whatever the running mode, i.e. 

transparent or interrupt based).

 Similarly the TIMER function is used to return some useful parameters related to timer event 

processing. 

Please note that only mouse transparent mode is allowed on those hardware configurations:  Apple 2, 2+ or 

//e with unenhanced ROM;  No TIMER feature is supported on those old configurations. This has to do with 

how the interrupt system is built in those systems and the way some critical zero page locations are used 

within DOS 3.3. I strongly advise owners of unenhanced ROM Apple //e to switch to a //c compatible ROM.

ON MOUSE GOSUB lineNumber
This syntax scheme of an already existing syntax construct will setup an Applesoft subroutine to handle 

mouse interrupts (either movement or button presses). The running of a program (RUN Applesoft 

statement or RUN/LOAD <filename> DOS commands) will reinitialize such setting. This command should 

have been met before a “MOUSE ON,mode” statement is parsed from the program text.

MOUSE OFF
This statement will shut down the mouse dedicated activity from the mouse interface. The mouse is shut 

down as a program starts running (either with the Applesoft RUN statement or the DOS RUN command). As 

the mouse interface also supports the TIMER activity then the mouse interface is itself shutdown as soon as 

both the MOUSE OFF and TIMER OFF have been issued either explicitly or not.

MOUSE STOP
This statement is used to temporarily stop calling the Applesoft handling subroutine on every mouse 

related interrupt occurrence so that a interrupt handling Applesoft subroutine could complete before the 

next event be taken into account within Peersoft. A MOUSE STOP is implicitly performed as the Applesoft 

mouse event handling routine is entered and the status is reverted back to “ON” as the subroutine exists. 

Note that interrupts are still processed within Peersoft but the calling of Applesoft routine is temporarily 

deactivated. 

MOUSE ON[, mode]
This statement initializes the mouse interface related to mouse activity. Allowed values are given in the 

table below:

Value Meaning

1 Transparent mode: no mouse related (i.e. movement or button press) interrupt is further considered within 
Applesoft evaluation  loop

3 Interrupt mode: only mouse movements are notified to foreground Applesoft program

5 Interrupt mode: only button presses are notified to foreground Applesoft program

7 Interrupt mode: both mouse movements and button presses  are notified to foreground Applesoft program

16/03/2015 Page 22



MOUSE function
This function will take a single argument and return either the X coordinate of the mouse cursor, the Y 

coordinate of the mouse cursor or the current mouse button status.

Arg. Value Meaning

0 X coordinate (16bits 
signed value)

1 Y coordinate (16bits 
signed value)

2 Button status (8bit 
unsigned value)

Utility functions for handling other aspects of mouse management within Peersoft
From the study of the mouse interface API from any Apple model reference manual, you will discover that 

more API are offered than those described above. In order to support them from Peersoft a new reason 

code (10) was set up to cope with those needs as shown within this codlet.

10 RE = PEEK (40160) + 256 * PEEK (40161)
20  MOUSE   ON ,1: REM Mouse in transparent mode
30  CALL RE,10,5,1,40,2,23: REM Clamp limits set from (1,2) to (40,23)
40 X = 1:Y = 2: CALL RE,10,4,X,Y: REM Position the mouse cursor to (1,2)
50  FOR T = 0 TO 1 STEP 0:S =  MOUSE (2): ON S < 32 GOTO 90:X =  MOUSE 
(0):Y =  MOUSE (1)
60  VTAB 1: HTAB 1: CALL – 868: PRINT “X:”X,”Y:”Y,”S:”S;: ON S < 128 GOTO 
90:T = 1
90  NEXT : MOUSE OFF : END

The table below gives the complete list of API calls supported by the generic utility function.

Reason subcode Arguments Meaning

2 Xm variable, Ym variable, 
Sm variable

Populates the three 
variables with the mouse 
coordinates as read from 
the mouse interface. Xm, 
Ym and Sm must be integer 
variables.

3 None Clears the mouse to zero 
position, used for delta 
mode position 
determination.

4 X expression, Y expression Positions the mouse cursor 
at the location defined by 
the X and Y expressions. 

5 Xmin expression, Xmax 
expression, Ymin expression, 
Ymax expression

Sets mouse bounds in a 
window (Xmin, Ymin) to 
(Xmax, Ymax)

6 None Reinitializes mouse cursor 
position to upper left corner 
of the clamp window.

ON TIMER GOSUB lineNumber
This syntax scheme of an already existing syntax construct will setup an Applesoft subroutine to handle VBL 

interrupts. The running of a program (RUN Applesoft statement or RUN/LOAD <filename> DOS commands) 

will reinitialize such setting. This command should have been met before a “TIMER ON,factor” statement 

is parsed from the program text.

16/03/2015 Page 23



TIMER OFF
This statement will shut down the VBL dedicated activity from the mouse interface. The VBL interrupt is 

implicitly deactivated as a program begins running (either with the Applesoft RUN statement or the DOS 

RUN command).

TIMER STOP
This statement is used to temporarily stop calling the Applesoft handling subroutine on every VBL related 

interrupt occurrence so that a interrupt handling Applesoft subroutine could complete before the next 

event be taken into account within Peersoft. A TIMER STOP is implicitly performed as the Applesoft VBL 

event handling routine is entered and the status is reverted back to “ON” as the subroutine exists. Note that 

interrupts are still processed within Peersoft but the calling of Applesoft routine is temporarily deactivated. 

TIMER ON[, factor]
This statement alters the mouse interface by enabling user interrupts when a VBL event occurs. The 

optional factor argument value allows to only fire the Applesoft handling when factor VBL interrupts has 

occurred thus allowing to fire such routine only every second (in case factor value is set to 60) instead of 

every 1/60 sec (according to the native VBL interrupt frequency). This is so by implementing an internal two 

bytes counter which is incremented from zero upon every VBL interrupt till it reaches the factor specified 

value. If no factor is specified, then 1 is the default value which means that the Applesoft routine will be 

called every 1/60th sec.

TIMER function
Two possible values for the argument the TIMER function can be called at any time during program flow 

(on eligible host configuration indeed).

 TIMER(0) will return the factor value as specified in the TIMER ON statement.

 TIMER(1) will return the current value from the 16bits internal counter.

Codlet using the TIMER related instructions
This codlet displays a Chrono on the display screen as your program perform some computations in the 

foreground.

10  CLEAR : ON  TIMER  GOSUB 100: REM SETS UP THE HANDLING ROUTINE
20 S%= 0: TIMER  ON  ,60: REM ONLY CALLS THE ROUTINE EVERY SECOND.
30  FOR …. : REM MAIN PROCESSING (SPENDING SOME *USER* TIME)
40 VTAB 2: HTAB 1:CALL – 868: PRINT ”THE MAIN PROCESSING TOOK ”S%” 
SECONDS TO COMPLETE”
100 S% += 1: VTAB  1: HTAB 1:CALL – 868: PRINT ”SECONDS ELAPSED:”S%;: 
RETURN

New error messages related to Mouse/VBL handling
Here are the new error messages, such message are catchable as the original Applesoft/DOS 3.3 error 

handler (cf. ONERR statement).

Error # Message Description

32 MOUSE HARDWARE NOT DETECTED When no mouse interface was detected 
upon Peersoft boot, any use of the API 
described above leads to such error 
message.

33 UNSUPPORTED HARDWARE CONFIGURATION When using an Apple 2, 2+ or 

16/03/2015 Page 24



Error # Message Description

unenhanced //e and trying to use an 
interrupt based feature from Peersoft.

34 UNKNOWN APPLESOFT MOUSE EVENT HANDLER When a MOUSE ON with a mode involving 
interrupts is issued as the ON MOUSE 
GOSUB was not already processed.

35 UNKNOWN APPLESOFT TIMER EVENT HANDLER When a TIMER ON statement is met as the 
ON TIMER GOSUB was not alaready 
processed.

36 ILLEGAL MOUSE MODE An invalid value was submitted 

37 ILLEGAL MOUSE OPERATION The Apple mouse firmware answered with a 
carry set (this does not include the 
SERVEMOUSE API called from the Peersoft 
interrupt handling routine). 

Note to Assembly language authors
Whenever Peersoft processes a MOUSE ON or a TIMER ON instruction which increase the mouse mode 

value from a non interrupt mouse mode (value < 2) to an interrupt mode (value > 1), then Peersoft claims 

the IRQV vector in page 3 ($03FE-$03FF) and stores the original content in a safe place ($9A64). Whenever 

Peersoft handles some interrupt that it cannot handle itself, then it passes on the control to the original 

IRQV vector claimant.

On the other end, the original IRQV content is restored back to its original content whenever the mouse 

mode reaches (usually by a program ending, starting or a TIMER OFF/MOUSE OFF statement processing) 

the values 0 or 1 from a greater original value.

As a reminder, the Peersoft interrupt system is only in place on suitable host configurations (Applemouse // 

interface present with enhanced //e or //c, //c+ or //GS).

Note to Applesoft applications authors
Some Applesoft statements might take an indeterminate amount of time before releasing control to the 

foreground interpreter loop. I foresee three cases in particular:

 The WAIT statement which indefinitely waits for some memory cell to conform to a predefined 

configuration usually set by an external device like the keyboard or a joystick, an interface card 

memory address cell ($C0nx range) or a memory byte within the 64K when set by a proper 

interrupt routine;

 The GET statement when the current input flow comes from the keyboard;

 The INPUT statement when the current input flow comes from the keyboard;

Peersoft in its current incarnation provides a patched version of the WAIT statement handling routine so 

that whenever an interrupt occurs and the related interrupt mode dictates an immediate attention from 

Peersoft, then:

 The WAIT context is saved;

 The registered Applesoft subroutine is immediately run;

 As the Applesoft routine returns then, instead of returning to NEWSTT, it returns to a location 

where the WAIT context is restored and a branch within the loop is run. The loop can then proceed.

16/03/2015 Page 25



The design of similar patches for the other two usage cases would imply to dig into the many layers of input 

processing (firmware and monitor) (as I did for a previous utility I wrote named Bananasoft for 

implementing a software only keyboard buffer w/o the help from interrupts).

Co routines within Peersoft
A word of advice: this section describes the working of co routines features within the 1.4 release of 

Peersoft. Future releases might expose other API to the external entities, in case this interface evolves or 

others appear, then this section will be updated accordingly within the document you are currently reading.

From now on, an Applesoft program should be considered as a sequence of consecutives phases: some with 

active co routines (flows of control running in // and on different parts of the program text) and inactive co 

routines (when a unique flow of control exists and determines the program behavior).

Except when you previously installed another “multi-tasking” environment in your Apple 2, then every 

Applesoft application has to be considered as a purely sequential unit of flow on time before the adoption 

of Peersoft in its current incarnation.

Peersoft provides two ways of doing for both transitions (one for from ”purely sequential” to “active co 

routines” and the other for the other way round).

Activating the co routines (simplistic sample)
For activating the MT (short for “multi threading” kernel) and the co routines which come along, then a 

unique way of doing this is given below (minimal sample):

5 DIM I0%(127),I1%(127), I2%(127)
10 RE! = PEEK( 40160) + 256 * PEEK( 40161)
20  PRINT “ACTIVE CO ROUTINES PHASE ABOUT TO BEGIN ON LINES 1000, 2000 
AND 3000”
30  CALL RE!,4,IT%,I0%,0,0,0,1000,I1%,0,0,0,2000,I2%,0,0,0,3000
40  PRINT “ACTIVE CO ROUTINES PHASE ENDED”: END
1000  GOSUB 5000: FOR J0% = 1 TO 2: PRINT J0%;”/”;IT%: NEXT
1010  GOSUB 5010: RETURN
2000  GOSUB 5000: FOR J1% = 1 TO 4: PRINT J1%;”/”;IT%: NEXT
2001  GOSUB 5010: RETURN
3000  GOSUB 5000: FOR J2% = 1 TO 6: PRINT J2%;”/”;IT%: NEXT
3001  GOSUB 5010: RETURN
5000  PRINT “CO ROUTINE #”;IT%;” ENTERED”: RETURN
5010  PRINT “CO ROUTINE #”;IT%;” ABOUT TO QUIT”: RETURN

Address 40160 contains a pointer to the general utility routine within Peersoft. 

The arguments are described in the table below:

Table 2: Arguments for activating the MT kernel

Argument Description

4
Reason code meaning: I would like to activate the MT kernel with co routines 
defined by following parm values.

IT%
It is the name of the Applesoft variable (must be simple integer type variable) 
which will hold the current thread index value from 0 to NumCoRoutines – 1. 
Peersoft updates this value upon every context switch.

16/03/2015 Page 26



Argument Description

1st co routine

I0%
Name of the integer type array which will contain the context storage for the 1 st 
co routine, structure of this array is given in a section below. 

0

This parameter defines whether the co routine has a private error handling 
routine of its own. This parameter should be considered as a bit string here 
where, for our purpose only the two lsb interest use. Three values are possible 
here:
0: implies that no error handling at all while the co routine is the one run by 
CPU. That means that no segment exists in the context dealing specifically with 
the error handling, making its size smaller and its store and retrieval faster. 
Whenever the context is restored, a zero is stored in the ERRFLG flag page zero 
location.
1: Private error handling which instructs Peersoft to cater for dedicated error 
handling segment within stored context for this co routine. The co routine 
should however, execute an ONERR GOTO nnn instruction in its own flow of 
control. 
2: The co routine relies on the status of the “global environment” (ie error 
handling status as the CALL RE!, 4,… is run), a context segment for dealing with 
error handling is created iif the ERRFLG (page zero location $D8 meaning an 
ONERR handler is active) is set upon the CALL RE!,4,… is processed by Peersoft. 
The role of other bits (b2b7 from the value are described in a subsequent 
section).

0

This parameter is the address of a machine language subroutine (ending with a 
RTS instruction) called whenever the co routine is about to be active (gain the 
6502 CPU). The sub routine must not change any register value (cf. Push and 
Pull 6502 instructions)

0

This parameter is the address of a machine language subroutine (ending with a 
RTS instruction) called whenever the co routine is about to release control and 
the corresponding context be stored in the context storage area (see array I0% 
description above). The sub routine must not change any register value (cf. Push  
and Pull 6502 instructions)

1000
This is the co routine starting Applesoft BASIC line number. Consider that, 
internally, the CALL RE!, 4… does a GOSUB to this line number upon co routine 
activation.

Arguments descriptions for 2nd and 3rd co routines are similar in their description as the ones for the 1st co 

routine’s arguments. Up to 8 co routines can be active at the same time.

Activating the co routines (Not so simplistic approach)
Now suppose that a particular co routine needs to have a dedicated environment for text cursor 

positioning.

The context segment representative of text cursor positioning could be summarized within the table below:

WNDLFT, WNDWDTH, WNDTOP, WNDHGHT for text window setting on the display screen and

CH, CV, BASL, BASL+1 for cursor location within the window.

Deactivating the co routines
Beyond the natural and normal way of returning to a single flow for the Applesoft application (let every co 

routine return to the statement following the CALL RE!,4,… instruction (by using a combination of 

RETURN/POP statements themselves).

The fastest way is based upon a new reason code for the Peersoft general utility: CALL RE!,5 is the 

instruction to insert within the code of a co routine (including its error handling procedure, dedicated or 

shared). Such statement must be run as the MTK is active.

16/03/2015 Page 27



Peersoft data structures and hints for performing usual tasks from Applesoft programs relating 
to co routines
For reference by assembly language programmers, here is the structure of the Peersoft global page and of 

every integer type array variable used by Peersoft for context storage purposes.

Table 3 : Peersoft global page

Address
(decimal)

Address
(hexadecimal)

Description

40159 $9CDF A call to this address will branch to the Peersoft “general 
utility” routine already described in a previous section. An 
alternate way is to get the vector stored at (40159+1, 
40159+2) and calling it directly (cf. sample Applesoft above)

40158 $9CDE Peersoft version byte: currently a $15 value is stored at this 
location (meaning 1.5)

40157 $9CDD Number of instructions between two context switches 
(default to 10, setup whenever Peersoft is loaded from disk).

40156 $9CDC Bit 7 set iif the MT kernel is active. A call to CALL RE!,4,… 
will set  it up. This flag is reset whenever the MT kernel is 
terminated, usually as the last co routine returns to the 
global environment.

40155 $9CDB Number of ticks that the currently running co routine will 
last before next context switch. At every context switch, 
Peersoft copies the $9CDD slot into this slot, upon running 
an Applesoft instruction, the context switch occurs only if 
the value from this slot, decremented by one, reaches zero.

40154 $9CDA Bit 7 set if context switch temporarily inhibited while a 
critical section of code is run by the current co routine.

What happens when the co routines are established?
A GOSUB stack frame is created in the stack segment of every co routine’s context. This GOSUB frame 

indicates that the return points to just after the CALL RE!,4,…  Applesoft statement. Obviously, the 

stack pointer for every established co routine is decremented by the frame size (5 bytes including the 

GOSUB token).

Peersoft marks a co routine as being completed when, as this co routine is being run by the CPU, the 

current stack pointer reaches the original stack pointer value taken as the CALL RE!, 4.. Applesoft statement 

was parsed.

Hints and tips

How to release control to other threads from the current co routine?
Just use the POKE statement POKE 40155,1 just before the location where you want to release control. 

While parsing the next statement, Peersoft will decrement this value to 0 and thus a context switch will be 

triggered (saving the current context, and restoring the next active co routine declared within  the kernel. 

Be advised that this could be the same co routine as the current one in case no other is still active.

How to temporarily disable the context switch?
While a critical section of Applesoft code is being run within the current co routine, no context switch 

should occur in order to let this section of code appear as being atomic. A simple way to fit this requirement 

16/03/2015 Page 28



is to insert a POKE 40154, 128 statement at the beginning of your critical section code. In order to 

reinstate switches for giving a chance for other co routine to flow normally, then use the POKE 40154, 0 

statement at the conclusion of this section.

Also, as the decrement operation is not processed while the switching is inhibited, it is a good idea to insert 

a POKE 40155, low_value  just in the vicinity of the former POKE statement (as I did in my tutorial 

example Applesoft programs).

Having private variable sets (no collision between co routines)
The current solution I propose is to get arrays of variables with at least one dimension indexed by the 

context index value. In the tutorials from the disk, I used two arrays (XH() and XV() ) to store cursor data 

(line and column where cursor lies in two dedicated integer arrays) and all PRINT statements or cursor 

position setting statements being run in critical sections of code.

Committing suicide or assassination (of other threads)
Beyond the usual way to mark a thread as completed (i.e. using RETURN or POP instructions in order for 

the stack pointer to reach its initial value), an alternate and more intrusive way would be to force a specific 

byte from Peersoft memory to $FF value, thus Peersoft will consider the relevant co routine as completed. 

Here is the code segment which performs just that action.

AD =  PEEK( 40152) + 256 * PEEK( 40153): POKE AD + 8 + IT%,255

Where IT% being the current context index implies suicide and IT% being unequal to current context index 

(but still between 0 and 7) meaning assassination.

16/03/2015 Page 29



Structure of the context storage
Every context is stored within a dedicated integer type array variable (one dimension) which layout is 

described in the table below

16/03/2015 Page 30



Table 4 : Context Storage layout

Offset Page zero Description

Header for housekeeping by Applesoft

0 and 1

N/A

Name of the array (two bytes)

2 and 3
Offset from the beginning of this array to next array variable 
or to end of memory area

4 Number of dimensions (must be 1 for Peersoft usage).

5 and 6 Value of first (and last) dimension

Constant segment (general use)

7 N/A Offset to stack segment (always populated)

8 N/A

Operation mode for context.
B0b1 provides an indication whether the local error handling 
is in use or not. In case local error handling is in use, whether 
the global environment is used for such context or not;
B2b7 provides options for additional context switch 
operations. The one being shown within the tutorial is the 
display cursor backup/restore operations.

Constant segment for monitoring context switches

9 and 10 N/A

Address of machine language routine to be called whenever 
the co routine is paged in. This routine must not alter register  
values from the calling environment (unless pushed on stack) 
and must return with a RTS (after possible Pull from stack 
instructions). High byte is $FF if no routine registered.

11 and 12 N/A

Address of machine language routine to be called whenever 
the co routine is paged out. This routine must not alter 
register values from the calling environment (unless pushed 
on stack) and must return with a RTS (after possible Pull from  
stack instructions). High byte is $FF if no routine registered.

Core segment (always populated)

13
REMSTK ($D8) Current stack pointer for this pointer (only byte at offset 8 is 

meaningful)

14 and 15 CURLIN, CURLIN+1 Current Applesoft line # for the co routine 

16 and 17 TXTPTR ($B8), TXTPTR+1 Current text pointer within program text  for the co routine

18 and 19
OLDTEXT, OLDTEXT+1 Text pointer of last instruction parsed by interpreter exec 

loop

Local Error handling segment (optional: see value at offset 8)

20 and 21
TXTPSV ($F4), TXTPSV+1 Points to the first character of line # as ONERR GOTO 

statement is parsed.

22 and 23 CURLSV ($F6), CURLSV+1 Line # where the ONERR GOTO is located

24 ERRNUM ($DE) Error # when an error occurs

25
ERRSTK Stack pointer as the error occurs (so that RESUME could 

branch back to the faulty statement)

26 and 27
ERRLIN ($DA), ERRLIN+1 Applesoft line # where the error occurred (so that  RESUME 

could branch back to the faulty statement)

28 and 29 ERRPOS ($DC), ERRPOS+1 TXTPTR pointer of the statement raising the error. 

30 ERRFLG ($D8) Only bit 7 is meaningful here.

Stack segment (variable size)

<ValueAt 
Offset 7> 
and above

N/A in page zero: within 
hardware page 1

From private stack pointer to global environment 
stack pointer value, bytes extracted  from 
hardware stack (page 1) from offset given by 
REMSTK value at offset 8 from this structure) to 

the REMSTK known as the CALL RE!, 4, … 
was parsed.

16/03/2015 Page 31



Peersoft co routines tutorial
Within the Applesoft program listing below,

 The arrays I0, I1 and I2 serve as context storage areas useful for switching between co routines;

 The arrays XH and XV serve as memory place where to store screen cursor locations (horizontal for 

XH and vertical for XV) for every co routine implemented here (the number of them being 3).

  Variable XC serve as an indicator that the user issued a Ctrl-C keystroke while the program was 

running. Therefore it is set to a non zero value at line 2901 (part of the shared general error 

handling routine beginning at line 4000 (see ONERR statement at line 2 and part also of the 

dedicated (i.e. private) error handling for co routine #1 beginning at line 2900);
 RE holds the address where to call the Peersoft general utility routine with appropriate parameters.

1 CLEAR : DEFINT I-N,X: DIM I0(127),I1(127),I2(127),XH(2),XV(2)
2 PRINT CHR$ (4)"PR#0": TEXT : HOME :XC = 0: ONERR GOTO 4000
3 PRINT CHR$ (4)"BLOAD TUTMC": VTAB 1: HTAB 15: PRINT "TUTORIAL 2"
4 XH(0) = 1:XV(0) = 2:XH(1) = 1:XV(1) = 21:XH(2) = 1:XV(2) = 6: DEF FN DR(A) = PEEK (A) + 
256 * PEEK (A + 1): DEF FN AR(CX) = INT (CX * 100) * .01
5 RE = FN DR(40160): POKE 40157,4: REM # OF APPLESOFT INSTRUCTIONS RUN BETWEEN TWO 
SWITCHES
6 CALL RE,4,IT,I0,2,0,0,1000,I1,1,768,774,2000,I2,2,774,768,3000
7 VTAB 1: HTAB 1: PRINT "PROGRAM ENDED, PRESS ANY KEY";: GET A$: HOME : END
999 REM FIRST COROUTINE: MONITOR EVERY CONTEXT INCLUDING ITSELF
1000 AD = FN DR(40152):OF = 0:NT = 0:SO = PEEK (AD + 17):SL = 0:LX = - 1: GOSUB 5010: 
PRINT " RUNNING TASKS STATUS (";SO"/";: GOSUB 5000:XH = XH(IT):XV = XV(IT)
1002 FOR JT = 0 TO 7: ON PEEK (AD + 8 + JT) < 255 GOTO 1003:NT = JT - 1:JT = 7
1003 NEXT JT: FOR J0 = 0 TO 1 STEP 0: GOSUB 1100:JF = 1
1004 FOR JT = 0 TO NT: GOSUB 1200: NEXT JT
1005 J0 = JF: NEXT J0: RETURN
1099 REM
1100 ON PEEK (40157) = LX GOTO 1102: POKE 40154,128: HTAB XH: VTAB XV:LX = PEEK (40157)
1101 PRINT LX;")";: CALL - 868: POKE 40155,1: POKE 40154,0
1102 RETURN
1199 REM PRINT A CONTEXT CONTENT (JT)
1200 IF PEEK (AD + JT + 8) < 255 AND JT < > IT THEN JF = 0
1201 OF = PEEK (AD + JT + 8) * 256 + PEEK (AD + JT):XV(IT) = 3 + JT:XH(IT) = 1: GOSUB 
5010: CALL 777,OF,JT: GOSUB 5000
1202 RETURN
1999 REM SECOND CONTEXT: PROCESS SOME KEYBOARD INPUT FROM USER
2000 BS$ = CHR$ (8):CU$ = CHR$ (127) + BS$: POKE 49168,0: ONERR GOTO 2900
2001 GOSUB 5010: PRINT SPC( 6);"DIVISION EXEMPLE": GOSUB 5000:LY = XV(IT): FOR J1 = 0 TO 
1 STEP 0
2002 XH(IT) = 1:XV(IT) = LY: GOSUB 5010: CALL - 958: PRINT "ENTER NUMERATOR: "CU$;: GOSUB 
2801: ON M$ = "" GOTO 2004:VN = VAL (M$)
2003 GOSUB 5010: PRINT "ENTER DIVISOR: "CU$;: GOSUB 2801: ON M$ < > "" GOTO 2005
2004 J1 = 1
2005 ON J1 = 1 GOTO 2007:VD = VAL (M$):VR = FN AR(VN / VD): GOSUB 5010: PRINT "RESULT: 
";VR;" <RET> TO PROCEED"CU$;: GOSUB 2851: ON XC = 1 OR ES% = 1 GOTO 2004: GOTO 2007
2006 POKE 40154,128: VTAB 24: HTAB 1: PRINT MO$;
2007 NEXT : RETURN
2800 REM INPUT SUBROUTINE
2801 GOSUB 5000:M$ = "":LM = 0:ES% = 0: FOR JS = 0 TO 1 STEP 0
2802 GOSUB 2861: ON ES% = 0 AND XC = 0 GOTO 2803:M$ = "":LM = 0: GOTO 2809
2803 ON JS = 1 GOTO 2809: ON A < > 8 OR LM = 0 GOTO 2804:LM -= 1:M$ = LEFT$( M$,LM + (LM 
= 0)): PRINT " "A$A$;CU$;: ON LM > 0 GOTO 2804:M$ = ""

16/03/2015 Page 32



2804 ON A < 31 GOTO 2809:LM += 1:M$ += A$: PRINT A$;CU$;
2809 GOSUB 5000: NEXT
2810 GOSUB 5010: CALL - 868: PRINT : GOSUB 5000: RETURN
2850 REM GET RETURN SUBROUTINE
2851 GOSUB 5000:ES% = 0: FOR JS = 0 TO 1 STEP 0
2852 GOSUB 2861:JS = (ES% = 1) OR (XC = 1) OR (A = 13): GOSUB 5000: NEXT : GOSUB 5010: 
CALL - 868: GOSUB 5000: RETURN
2860 REM GET KEYBOARD ENTRY
2861 ON PEEK (49152) > 127 OR XC = 1 GOTO 2862: POKE 40155,1: GOTO 2861
2862 GOSUB 5010: IF XC = 0 THEN GET A$:A = ASC (A$)
2863 ON XC = 0 GOTO 2864: PRINT "#ABORTED#!";:JS = 1
2864 ON A < > 27 GOTO 2865: PRINT "<ESCAPED>";:JS = 1:ES% = 1
2865 ON A < > 13 GOTO 2866:JS = 1
2866 RETURN
2900 ON PEEK (222) < > 255 GOTO 2902
2901 XC = 1:A$ = CHR$ (3):A = 3: PRINT CHR$ (7);: RESUME
2902 ON PEEK (222) < > 133 GOTO 2903:EL = FN DR(218): ON EL < > 2005 GOTO 2903:MO$ = 
"DIVIDE BY ZERO ERROR":J1 = 1: CALL - 3288: GOTO 2006
2903 PRINT CHR$ (7);: GOTO 4003
2998 REM 3RD CONTEXT MAIN ROUTINE, JUST PRINT SOME STAR CHARACTERS
2999 REM AS A BACKGROUND ACTIVITY
3000 FOR J2 = 0 TO 1 STEP 0:J2 = J1: GOSUB 3008
3001 PRINT "*";: GOSUB 5000: NEXT
3002 FOR J2 = 1 TO 4: GOSUB 3008: PRINT MID$ ("OVER",J2,1);: GOSUB 5000: NEXT : RETURN
3008 XV(IT) = INT ( RND (1) * 15) + 6:XH(IT) = INT ( RND (1) * 40) + 1: GOSUB 5010: 
RETURN
4000 IF PEEK (40156) < 128 THEN VTAB 23: HTAB 1: CALL 771: END
4001 ON PEEK (222) = 255 GOTO 2901
4003 XH(IT) = 1:XV(IT) = 23: GOSUB 5010: CALL 771: GOSUB 5000: CALL RE,5
4998 REM STORE CURSOR POSITION INTO CONTEXT AND RELEASE CONTROL TO MT
4999 REM EXPECTS TO BE CALLED WHILE CONTEXT SWITCHES INHIBITED
5000 XH(IT) = PEEK (36) + 1:XV(IT) = PEEK (37) + 1: POKE 40155,1: POKE 40154,0: RETURN
5009 REM INHIBIT CONTEXT SWITCH AND RESTORE CURSOR POSITION FROM STORED CONTEXT
5010 POKE 40154,128: VTAB XV(IT): HTAB XH(IT): RETURN

16/03/2015 Page 33



Table of content
An introduction to Peersoft.............................................................................................................................. 2

Peersoft roadmap......................................................................................................................................... 4

Peersoft physical package description.............................................................................................................. 5

How to transfer the two disk archives to real 5’1/4 disks on an Apple // hardware.....................................7

Configuration of Apple Win 1.22.............................................................................................................. 7

Operation of the Shrinking procedure...................................................................................................... 8

Peersoft user manual...................................................................................................................................... 12

Peersoft reference manual............................................................................................................................. 17

Variable default typing................................................................................................................................17

New syntax scheme for altering variables values........................................................................................18

@ Pseudo variable...................................................................................................................................... 18

IIF() function statement.............................................................................................................................. 19

Integer variables as loop variables within FOR/NEXT loops....................................................................... 19

Some Applesoft statements processing bugfixes........................................................................................20

ONERR statement...................................................................................................................................20

RETURN and POP statements................................................................................................................ 21

Mouse and Timer handling within Peersoft............................................................................................... 22

ON MOUSE GOSUB lineNumber........................................................................................................... 22

MOUSE OFF........................................................................................................................................... 22

MOUSE STOP......................................................................................................................................... 22

MOUSE ON[, mode]............................................................................................................................... 22

MOUSE function.....................................................................................................................................23

Utility functions for handling other aspects of mouse management within Peersoft.............................23

ON TIMER GOSUB lineNumber............................................................................................................. 24

TIMER OFF............................................................................................................................................. 24

TIMER STOP........................................................................................................................................... 24

TIMER ON[, factor]................................................................................................................................. 24

TIMER function...................................................................................................................................... 24

Codlet using the TIMER related instructions.......................................................................................... 24

New error messages related to Mouse/VBL handling............................................................................ 25

Note to Assembly language authors....................................................................................................... 25

Note to Applesoft applications authors.................................................................................................. 25

16/03/2015 Page 34



Co routines within Peersoft........................................................................................................................ 26

Activating the co routines (simplistic sample).........................................................................................26

Activating the co routines (Not so simplistic approach)..........................................................................28

Deactivating the co routines................................................................................................................... 28

Peersoft data structures and hints for performing usual tasks from Applesoft programs relating to co 

routines...................................................................................................................................................28

Peersoft co routines tutorial....................................................................................................................... 33

16/03/2015 Page 35


	An introduction to Peersoft
	Peersoft roadmap

	Peersoft physical package description
	How to transfer the two disk archives to real 5’1/4 disks on an Apple // hardware
	Configuration of Apple Win 1.22
	Operation of the Shrinking procedure


	Peersoft user manual
	Peersoft reference manual
	Variable default typing
	New syntax scheme for altering variables values
	@ Pseudo variable
	IIF() function statement
	Integer variables as loop variables within FOR/NEXT loops
	Some Applesoft statements processing bugfixes
	ONERR statement
	RETURN and POP statements

	Mouse and Timer handling within Peersoft
	ON MOUSE GOSUB lineNumber
	MOUSE OFF
	MOUSE STOP
	MOUSE ON[, mode]
	MOUSE function
	Utility functions for handling other aspects of mouse management within Peersoft
	ON TIMER GOSUB lineNumber
	TIMER OFF
	TIMER STOP
	TIMER ON[, factor]
	TIMER function
	Codlet using the TIMER related instructions
	New error messages related to Mouse/VBL handling
	Note to Assembly language authors
	Note to Applesoft applications authors

	Co routines within Peersoft
	Activating the co routines (simplistic sample)
	Activating the co routines (Not so simplistic approach)
	Deactivating the co routines
	Peersoft data structures and hints for performing usual tasks from Applesoft programs relating to co routines
	What happens when the co routines are established?
	Hints and tips
	How to release control to other threads from the current co routine?
	How to temporarily disable the context switch?
	Having private variable sets (no collision between co routines)
	Committing suicide or assassination (of other threads)

	Structure of the context storage


	Peersoft co routines tutorial

	Table of content

