
L.P.C.B.

Peersoft v1.5.5
An Applesoft extension

Benoît GILON

03/08/2015

Peersoft is an Applesoft extension which focuses mainly on performance issues rather than
features. Currently, it is to be considered as a complement to the Bananasoft utility already
released attempting, among other features, to enrich the Applesoft interpreter by adding new
keywords found in other flavors of Microsoft Basic.

An introduction to Peersoft
Peersoft is an Applesoft BASIC extension which aims to provide to the Applesoft programmer

features in addition to those offered by plain vanilla Applesoft interpreter alone. Currently, in its

present incarnation, Peersoft runs on DOS 3.3 only but a ProDOS version could see the day in months

to come if demand level is high enough.

However, three versions of Peersoft exist depending on the CPU detected within the Apple 2 host

(either 6502, 65C02 or 65802/16) with relevant code optimizations for the two latter CPUs.

The focus has been put on performance aspects while authoring this software. Here are the main

features delivered with this release of Peersoft:

 New instructions for defining a default variable type per name’s first character:

Tableau 1: New statements for specifying a variable’s default type

New
statement

Type of variable Magnitude
Suffix

character

DEFINT 16bits integer From -32768 to 32767 %

DEFSNG Floating point (5 bytes) !

DEFSTR String Length from 0 to 255 $

Therefore the program text can be smaller in size by using default typed variables.

 A new syntax scheme for setting variable values based upon the result from an arithmetic

operation.

LET <variableName> += <value> or

LET <variableName> /= <value> or

LET <variableName> -= <value> or

LET <variableName> *= <value>
If specified variable is of type integer, then used arithmetic is of type integer too, also the +=

syntax scheme can be applied to string variables as well. The main benefit, beyond using

integer arithmetic when adequate, is to minimize the number of variables references

compared to a syntax as in the statement LET <variableName> =

<variableName> <operator> <value> particularly when variableName is a multi-

dimensional array with index values equals.

 Before the release of Peersoft v1.5, an array element from array named A could only be

referred to by using the expression A(<expression>, <expression>) presuming

that the array A was defined as having two dimensions (with a DIM statement), this is the

common way of using array variables from within the program text.

But now with Peersoft v1.5, the same element could be referred to by using only one

dimension specification. The two code extracts below:

10 DIM A(4,5):…:S = 0: FOR I = 0 TO 4: FOR J = 0 TO 5:S +=
A(I,J): NEXT J,I
10 DIM A(4,5):…:S = 0: FOR I = 0 TO 29:S += A(I): NEXT I
Will both compute the sum of every element value into the S variable. This new way of

Friday, August 14, 2015 Page 2

authoring code will simplify some computations upon arrays and thus enhance performance

of such computations.

Also within the original Applesoft interpreter, there was a limitation that an expression value

for giving a dimension must be less than 32768. At the time Applesoft was authored this was

sensible as the smallest size element type was integer and takes 2 bytes for storage, given the

hardware limitation of 64K for 8bits architectures: now this limitation was increased to 65535

thus addressing up to 65536 1 byte elements (such as bytes) within 64Kb (this will be useful

once the BYTE sub integer type be added within Peersoft).

 A new pseudo variable (“@”) , usable in arithmetic expressions and which replicates the value

currently stored in the Applesoft floating point accumulator. For instance, the statement:

S = 0
FOR I = 0 TO 9: FOR J = 0 TO 9:S += A(I,J) * @
NEXT J,I
will compute the sum of squared elements from matrix A. You will notice that the code only

refer to every element of matrix A just once and that the * operator between a value and

itself is known to be (and actually is) faster than the concurrent expression A(I,J) ^ 2.

 A new function statement IIF() is provided in order to evaluate one among two

expressions based on the value returned by a Boolean expression. Here is a sample:

MA = IIF (A > MA,A,MA): REM will compute the MAX(A,MA) and store it into the

MA variable . This function is gonna to become a favorite time saver for author and end

users alike. Unlike the version in VBA (Visual BASIC for Applications by Microsoft), this

function only evaluates two of the three specified sub expressions, the unused one is skipped

over by looking for either a level matching close parenthesis or comma, depending of the 1st

expression result.
 Integer variables now allowed as loop variables of FOR/NEXT loops, also arithmetic

operations/comparisons when running a NEXT statements is of integer type whenever the

loop variable is of type integer itself.

 Fixes to some of the Applesoft instructions processing (ONERR, RETURN and POP): if

you get a look at the Applesoft disassembly listing generated by S-C Documentor and

commented by Bob Sander-Cederlof (http://www.txbobsc.com/scsc/scdocumentor/), then

you’ll find out that Applesoft has many bugs buried in its code.
 Utility routines provided to optimize access to Applesoft variables. For either simple or array

variable kinds, time spent to get a reference to a variable is proportional to the number of

variables of same kind (i.e. simple or array) that have been defined (i.e. referred to from

BASIC program text for simple variables) before the time the current variable (looked up for)

has been created. The order of definition of variables within the program flow seldom follows

an order with which most used referred to variables or arrays are created first. We tend to

define some “constant variables” such as D$ = CHR$(4)at the very beginning albeit the

fact that such variable will be much less frequently used than, for instance a loop variable

from an inner loop. The goal of the provided utility routines is to optimize variable access

after variables have been created and thus their memory storage address defined. Two

alternative approaches have been supplied:

o Physical re-organization of array/simple variables areas where actual variable slots

are actually moved within the area;

o Cache based variable referencing: here the variables storage slots are kept at the

same original place within memory. Instead, Peersoft manages a small memory area

Friday, August 14, 2015 Page 3

http://www.txbobsc.com/scsc/scdocumentor/

to keep some variable names and addresses in a safe place. Such variables are looked

up for at first place when a reference to some variable need to be returned and thus

lookups for such variables are the fastest.
 Availability of co-routines within an Applesoft program: this is a new paradigm for every

Applesoft program author. Now he is able to design his programs as if they run under a multi

tasking environment. The application could be considered as an assembly of phases where

the kernel is active (co-routines active and running concurrently) and where kernel is inactive

(the kernel is inactive: only one flow is processed by the Applesoft interpreter). Beyond what

follows, an subsequent entire chapter has been dedicated to describe its configuration and

operation within this document.

o Because the switch between co-routines will occur at known and arbitrary locations

within the interpreter loop, then the context can be kept rather small compared to

true multi tasking monitors.

o Unlike true multi tasking monitors, no hardware generated external signal (IRQ) is

used and thus Peersoft co-routines run equally well on the whole Apple 2 range

(from the Apple II standard with Autostart ROM to Apple //gs and every emulator

environment I currently know of).
 Time oriented optimization by precomputing GOTO/GOSUB target addresses within program

text.
 Processing of hardware interrupts from Applesoft subprograms now allowed (with support

for mouse and timer VBL interrupts already included).
 Now up to eleven user functions could be defined (compared to just one in plain vanilla

Applesoft). Also:

o Each user defined function can support up to two arguments (compared to just one

in plain vanilla Applesoft) (with provided samples as Factorial, LCM, GCD, HSCRN,

IDIV and arithmetic binary logic functions);

o There's support for the definition of user defined function bodies in Applesoft

language (which are called “Procedural functions” within this document), thus

permitting Applesoft extentions by authors w/o any prior extensive knowledge of

6502 assembly language.

Peersoft roadmap
The features described in the previous section are actually implemented in the Peersoft current

release. However, not all the features envisioned from the start have already been implemented.

Some are yet to be developed from scratch in order to meet the author’s original requirements.

The table below provides some hints about what additional features will be developed and candidate

release dates. However, as this project is founded upon the time left only as I am “idle” on both the

other (i.e. family and professional/business) aspects of my life, I would suggest to not hold your

breath.

Version Feature(s) implemented Estim. delivery date

1.7
Generalized user defined functions (DEF FN): more args
allowed and arg. Variables of any type, not just FP)

30/11/2015

1.7 New integer subtypes like BYTE, LNG24 and LNG32 30/11/2015

1.5
New array dimension max value set to 65535 (useful for
byte arrays: was 32767 originally)

01/01/2015

Friday, August 14, 2015 Page 4

Version Feature(s) implemented Estim. delivery date

1.6
Benefitting from extra memory (thanks to Apple and A.E.)
and options for defining arrays on such memory card.

08/09/2015

1.5
Support for remaining utility routines to reorganize the
Applesoft variables areas (both simple and array)

01/01/2015

1.7

Merge with Bananasoft utility (using similar technology
but focusing on features rather than performance); the
name of resulting software could be “fruit salad” but still
quite unsure about this ;-)

08/09/2015

1.5
Support for handling of mouse and timer interrupts by
Applesoft routines

01/01/2015

1.5 Precomputed GOTO/GOSUB within program text 01/01/2015

1.8

Generalized integer arithmetic for expression evaluation
(i.e. the sub expression A% + 1 will be evaluated using
integer arithmetic first and only reverting to FP operation
in case an overflow occurs

31/12/2015

1.8

Compilation of Applesoft user defined functions to

convert them to machine code callable with USR<n>(…)
functions (provided by Bananasoft, n from 0 to 9).

31/12/2015

Peersoft physical package description
Peersoft consists of a zip archive (Peersoftv1.5.5.zip) containing:

 One disk image with the .do suffix (DOS 3.3 sector order) containing a complete Merlin 8

DOS 3.3 development environment (v2.48 release).
 One disk image with the .do suffix providing a complete set of Peersoft source files to build

Peersoft (main binary and extra companion utilities) on any CPU variant (6502 plain vanilla,

65C02 or 65816).

Friday, August 14, 2015 Page 5

Filename on disk Purpose

PEERSOFTV155.S Main source file for building Peersoft using Merlin

T.PEERINSTALL Peersoft PUT file inclusing Peersoft installation stuff.

T.PEERLIST Peersoft PUT file handling the LIST Applesoft instruction.

T.PEERINTEGARITH Peersoft PUT file handling the integer arithmetic routines

(handling the +=, -=, *= and /= for integer variables) as
well as the loop variable increment whenever that loop

variable is integer (NEXT statement)

T.PEERAROMBA Peersoft PUT for all extensions to ROM FRMEVL original
subroutine.

T.PEERMTK Handling of coroutines within Peersoft

T.PEERGOTO Precomputed GOTO/GOSUB within Peersoft

T.PEERMOUSTIME Handling of Mouse and Timer events within Peersoft

T.PEERMOTIDATA Data segment for the handling of the mouse and timer.

T.PEERGLOBALPAGE Data segment for the Global page Peersoft partition

T.PEERUTILR Miscellaneous utility functions within Peersoft

T.PEERGDATA Data segment for the precomputed GOTO/GOSUB

CRECON.S Assembly source file for handling CPU recognition upon
Peersoft boot (see HELLO Applesoft program from other
disk): object installs as a $0300 subroutine and thus
helping launching the proper Peersoft executable file.

TCPRECON.S Assembly source file for detecting a thunder clock
peripheral card or a //gs clock chip: both can be used to
measure time spent by Applesoft subroutines within the
TF Applesoft program. Object file is loaded as a $0300
subroutine from TF BASIC program.

SMTRECON.S Assembly source file for detecting a NoSlotClock device
within an Apple][, //e or //c and making use of it.

TUTMC.S Assembly source file for monitoring context switches as
used by the TUTORIAL Applesoft program which serves as
a demo for the co-routines features). Here, only a speaker
toggle is applied thus routines are rather short.

 One disk image with the .do suffix providing a bootable DOS 3.3 with the binary exe files

from Peersoft (either machine code or Apple soft sample files).

Filename on disk Purpose

HELLO Boot program displaying a menu and prompting the
user to select a valid Perrsoft program version to load
according to CPU detected

CRECON Object file loaded by HELLO program and which
purpose is to detect host CPU flavour

PEERSOFTV155_6502,
PEERSOFTV155_65C02,
PEERSOFTV155_65802

One binary executable file per CPU, each file results
from assembly from PEEROFTV14.S source files with
different setting for the KOPT and KOPT16 macros

TF Applesoft sample program trying to illustrate the
features currently included within Peersoft.

TCPRECON Object file loaded by TF program which deals with
peripheral clock/chip detection and time elapsed
measurements (Thunder clock and //gs internal

Friday, August 14, 2015 Page 6

battery/clock chip).

SMTRECON Object file loaded by TF program which deals with
peripheral clock/chip detection and time elapsed
measurements (NoSlotClock device chip).

TUTORIAL2 Applesoft program file playing with the Peersoft
mechanism of co-routines in some unusual ways.

TUTMC Auxiliary machine code routines (loaded at address
$0300). Currently only serves to toggle the speaker as
a coroutine is swaped-in/swaped-out.

 Peersoft documentation in the form of a PDF file you are currently reading

How to transfer the two disk archives to real 5’1/4 disks on an Apple //
hardware
In order to transfer the content of both disks to a native hardware Apple // computer. We will use the

components below:

 A pre-formatted disk image (with ProDOS2.0.3 and NuFX Shrink/Unshrink system files); this

disk image will grab the DOS 3.3 disk images and put them into a ProDOS 8 archive file. In

case you do cannot put your hand on such disk image, you can get the one from my site (URL

is http://bgilon.free.fr/apple2/ShrinkIt.2mg).
 An emulator for running the NuFX Shrinkit program on your modern computer. To illustrate

this, I am using the AppleWin 1.22 Win32 emulator.
 The CiderPress Win32 program in order to put the NuFX archive files onto a CFFA compact

memory.
 The CFFA Compact Flash memory disk drive for Apple //e or //gs (mine is CFFA 2.0, but a

newer version has since been released with the ability to directly read .po and .do disk

images).

Other paths are available for performing the same tasks (dealing with serial communication

interfaces between a “modern” computer and the Apple //).

Configuration of Apple Win 1.22
After having downloaded the disk image containing a bootable ProDOS 8 and the ShrinkIt system file,

open the Configuration window by pressing the F8 function key.

Friday, August 14, 2015 Page 7

http://bgilon.free.fr/apple2/ShrinkIt.2mg

Check the option box labeled “Enable hard disk controller in slot 7” and click on the Select HDD 1

action button. A “choose file” dialog box would open. Navigate to your download directory and select

the file. Click OK. A message box could then pop up advising you that AppleWin will reboot due to

change in connected bootable devices configuration.

Operation of the Shrinking procedure
Once the emulator has restarted, then the screen below should pop up.

Friday, August 14, 2015 Page 8

Select the SHRINKIT option, press Return and the screen below should pop up.

Drag and drop the D33Merlin – Peersoftv15.do disk image icon on the drive 1 box with the panel at

the right side of the window. And select the Shrink option.

Select the Shrink “Disk” option

Friday, August 14, 2015 Page 9

Select the “Shrink Disk on S6, D1 140k Drive” option..

Enter the label for this backup within the archive. Here “SOURCES.D33”.

Now enter the name of the ProDOS file which will contain the backup you are about to initiate.

Friday, August 14, 2015 Page 10

Here I have entered the filename PEERSOFTV15.SHK. Once the RETURN key has been pressed, the

progression bar for the shrinking advises you of the… progress so far.

The next step would be to reiterate the procedure above for the D34Peersoftv14.do disk image.

Checking that everything is OK at the end of this step can be done by listing the content of the

archive which is an option available from the main menu.

Friday, August 14, 2015 Page 11

Peersoft user manual
Peersoft executable files come within the D34Peersoft155 (.do archive or real 5’1/4 disk depending

on whether you have an emulator or a real hardware on hand.

The relevant disk image is DOS 3.3 bootable, insert it in drive 6 slot 1 and reboot your

emulator/computer. The screen appearing should be similar to the one below.

Depending upon the CPU detected on your host environment, more or less choices could be

available. At this prompt, you can opt to bypass the Peersoft installation by using the usual

<CTRL><C> keystroke. But for the time being, suppose that you selected option 2 to install the

Peersoft version which can benefit from the richer instruction set of the 65C02 CPU.

The mention that Peersoft has been installed pops up.

There is an Applesoft named TF which allowed the user to check that the latest build Peersoft

showed no regression. In addition, it shows up every implemented feature to interested parties

(either programmers themselves or end users).

Friday, August 14, 2015 Page 12

Just issue the RUN TF command from the “]” prompt. This leads to screen below. The TF program

can make use of the Apple //gs clock chip, a Thunderclock peripheral card (as supported by the

Virtual][emulator under Mac OS X), or a SMT NSC chip (as supported by both emulators I used to

debug Peersoft) to measure time elapsed.

Just press any key on your keyboard to proceed…

This screen shows some new features available by using Peersoft as

 A new way to concatenate strings;
 Default typing for Applesoft variables (using the DEFSTR, DEFINT and DEFSNG statements);
 Some new syntax schemes for altering values of variables.

Just press any key on your keyboard to proceed…

Friday, August 14, 2015 Page 13

The features that are showed within this screen are:

 Use of a utility routine to physically reorganize the simple variables memory area so that the

variables “J”, “SS” and “I” are looked up first from then on;

 Use of the “@” pseudo variable in order to avoid additional references (lookups) to simple

variables “I”, “J” and to array “A!” and relevant computations.

Just press any key to go to next screen.

The screen above shows the benefit of adopting pure loop variable of integer type.

Here is a minimalist segment of code to illustrate the use of co routines within Peersoft (an

innovative feature indeed). The first few lines listed set up the environment. And the latter lines form

the body of the co routines and subroutines called from within the co routines.

Friday, August 14, 2015 Page 14

To show what is displayed on the screen resulting from running the activation, just press a key as

usual.

Every co routine is entered and completed and the allocation of CPU to each thread follows a round

robin model till all subroutines complete, thus triggering the end of program. The co routine feature

is thoroughly described in a subsequent chapter. For the time being, just press a key as prompted by

the program; after a while, the screen below is displayed.

Friday, August 14, 2015 Page 15

This illustrates a new feature from the 1.5 release, which precomputes the addresses of target lines

of GOTO and GOSUB Applesoft instructions, thus optimizing the handling of such instructions when

located in loops (i.e. being run on many occurrences). The reference manual below gives details upon

the related utility functions to setup the program behavior (i.e. whether or not performing automatic

precomputations). On a medium size program (# of lines < 200), we see that times for handling of

GOTO/GOSUB instructions are more than halved but could be made even smaller with programs of

greater size. The next two screen dumps illustrate another new feature from this Peersoft release.

The codlet shown above uses the MOUSE instruction to initialize the mouse, some general utility

function to setup mouse clamping limits and setting the original mouse position, and the MOUSE

function to read both the mouse coordinates (X and Y) and the mouse button status. And as the code

above is run…

Friday, August 14, 2015 Page 16

The mouse cursor position is updated as you move the mouse within the clamp “window” (excluding

first and last screen lines). Pressing the mouse button will resume normal operation as indicated. A

similar screen can be obtained but this time based on a mouse interrupt mode. You must have an

enhanced Apple //e (hardware or emulation) or a // c or //GS Apple model in order to see this step

(otherwise it is skipped to the program end). Here you’ll see that both MOUSE and TIMER will work

asynchronously related to the main program flow (handling by subroutines starting at lines 2800 and

2900 respectively).

Friday, August 14, 2015 Page 17

The “SECONDS ELAPSED” display screen line is managed by the subroutine registered with the ON

TIMER GOSUB instruction; Note that as the TIMER factor being set to 60 (on a North American

Hardware Apple), the Applesoft routine is only called once every second on a north American Apple

2 hardware at least.

The FOREGROUND COUNTER VALUE display screen line illustrates the foreground processing

activity. Well nothing spectacular here… The Applesoft subroutine starting at line 2800 is in charge of

updating the cursor character on the display screen within the clamp window limits.

Friday, August 14, 2015 Page 18

From the 1.5.5 version ownwards, Peersoft allows the definitions of up to 11 user defined functions

in 6502 Assembly language (only one in original Applesoft), and allows up to two input arguments

per user function (just one in original Applesoft), what is shown in the two screen snapshots above.

A sample ML routines library is available and provides the functions below:

• GCD and LCM if two integers (each one can take the form of FP expressions which include

32bits integers);

• Factorial of integers (hélas, submitting input arguments which value is greater than 33 leads

to an overflow error);

• Three functions to handle 16bits binary wide operations AND, OR and EOR;

• A function WPEEK for retrieving a 16bits quantity within Apple memory;

• Two functions for counting the MIN and MAX of two FP expressions.

The true innovative feature comes from the fact that such user defined function can now be defined

in Applesoft (such UDF being then called “Procedural Functions” within this document). Imagine that

you have to design a function which, given an input parameter of integer N, will return the sum of

integers from 1 to N.

1. A construct, implied by a DEFFN Instruction, will not allow counting and control structures

within their definitions (even when the appearance of function such as IIF might help in

some cases), moreover, the type and number of arguments is restricted here;

2. Coding such function is 6502 assembly can be done but this will require some skills from

author that non every Applesoft Application author masters; the new function could then be

called as part of a larger expressions just like the ML sample functions referred to from above

sectin;

3. One can sacrifice the transparency of calling such functions within more global expressions

and use some classic Applesoft constructs as;

 P1= <InputExpression1>:P2=<inputExpression2>
GOSUB <LineNumber>
REM Use of result expression from here by using the R variable.

But this cannot be used as a sub expression or be part of a DEFFN expression.

4. What is allowed with « Procedural functions » (PF for short) is the merge of approaches 2

and 3 above. Allowing the definition of functions in Applesoft BASIC including such

constructs as loops and tests and the call semantics identical to the option 2.

Briefly stated, one might consider PF as an alternative to multi lines user defined functions (as

supported by more sophisticated versions of BASIC). The two screen snapshots below illustrate the

use of PF in a simplistic way:

Friday, August 14, 2015 Page 19

In this sample, we are using:

• a private memory segment to optimize the variable lookups while exscuting the function bory

(hence the value 129 instead of 128 for the DEFUSR instruction);

• a cache built from variables S0 and N0% contents to avoid restarting the calculation for index

1 within the loop on every occurrence.

Further details can be found in the relevant reference section.

Peersoft reference manual

Variable default typing
DEFINT A, I-N,Z

Friday, August 14, 2015 Page 20

To specify the scope of variables involved by every DEF<type> instruction, you just have to list first

characters either alone or as part of a range. In the sample above, every variable (simple or array),

which first character is “A”,”I”,”J”,”K”,”L”,”M”,”N” or “Z” will have a default type of integer (16bits).

The involved statements are DEFINT, DEFSNG and DEFSTR.

DEF<type> statements can appear anywhere within a program text and be run at anytime within the

program flow.

At program start or when a RUN/CLEAR Applesoft statement is run within the program flow, then all

variables inherit the Floating point type default.

However, an explicit type specifier (“%”, “$” or the new “!” used for floating point) as a variable

name’s suffix overrides its default type currently defined.

Thus the statement sequence CLEAR : DEFINT I:I = 1: PRINT I! will print 0 on screen.

New syntax scheme for altering variables values
A += 3

Peersoft will simplify variable value alterations by providing a new syntax scheme. The new A += 3

being a shortcut for A = A + 3.

All four basic operations can be part of the new syntax scheme.

For instance A -= 3 is a shortcut for A = A – 3 and B /= 4 is a shortcut for B = B / 4

The new syntax scheme can be included in every context where a variable has its value set within

program text. This includes the FOR/NEXT loop construct.

FOR I += 5 TO 10 is a shortcut for FOR I = I + 5 TO 10

Whenever the variable type is integer, then arithmetic operation applied is of the integer kind too.

Also the += syntax scheme is also valid for string concatenation whenever the variable is a character

string.

S$ = “BONJOUR”: S$ += “ HELLO”: PRINT S$ will print BONJOUR HELLO onto the

output display.

@ Pseudo variable
Having written quite a number of applications myself and studied the code from other authors as

well, I’ve found out that one pattern that emerge quite often is the use of the same sub

expression/variable multiple times within an expression. Sometimes, there is a cost in term of

performance to lookup some sub expression/variable (particularly when dealing with multi

dimensions array variables). So the idea of implementing the @ pseudo variable was born.

Anytime an expression is evaluated, then the Applesoft interpreter will use some constant locations

within page zero as main and auxiliary accumulators, large enough to contain an integer, a floating

point value, or a string descriptor. The @ pseudo variable is the simplest in its processing code. All it

Friday, August 14, 2015 Page 21

does is a RTS (actually it’s a bit more than that but only by a small amount: cf. source code for further

details ;-), this would imply that the returned value will come unchanged from what it was during the

last “factor” evaluation.

Beyond the sample code showing up in the previous section : ”Peersoft user manual”, the @ could

also refer to any content of any type.

PRINT RIGHT$(A$, LEN(@) – 4) will print the “A$” current value with its first 4

characters removed.

Use of the @ pseudo variable as the first term evaluated within an expression thus possibly

referencing the result from a previous statement expression is not recommended, especially from

within a co routine.

IIF() function statement
Likely at many occurrences every Applesoft application author has wished to be able to return one

among two values depending on a Boolean criterion. Up to now, he has three methods to code this

mechanism:

 Using the Applesoft codlet below:

10 ON booleanExpr GOTO 20: LET returnVariable = returnValueIfFalse: GOTO 30
20 LET returnVariable = returnValueIfTrue
30 REM Flow of the program continues from here
Pro: Can apply to return string or numeric expressions
Pro: BooleanExpr only evaluated once
Pro: Only one of the two expression returnValueIfTrue, returnValueIfFalse is
evaluated
Con: Cannot be summarized within a user defined function definition (DEF FN)

 Using the Applesoft sub expression below:

booleanExpr * returnValueIfTrue + (NOT booleanExpr) * returnValueIfFalse
Pro: Can be further processed as a subexpression
Con: Boolean expression is evaluated twice
Con: Both returnValueExpression are evaluated even when one will be discarded
(because of being weighted with a zero value).
Con: Work only for numeric return values

 Using a prefilled one dimension array (containing two elements)

10 DIM VR(1):VR(0) = returnValueIfFalse:VR(1) = returnValueIfTrue
20 REM Then you can use the VR(booleanExpr) as the subexpression.
Pro: can be further processed as a subexpression
Pro: booleanExpr evaluated only once
Pro: VR can be any type (i.e. numeric or string) and so the return value
Con: Only works for constant value returning (the returned expression are not
evaluated each time the VR(booleanExpr) is referred to within an expression.

You see that very method described above have its pros and cons. With the new syntax scheme

below, I only can perceive Pros to its adoption:

 Just use the IIF(booleanExpr,returnValueIfTrue,returnValueIdfFalse)

Pro: can be further processed as a subexpression
Pro: booleanExpression evaluated only once
Pro: Just one of the two return value candidate expressions is evaluated (the
other being only scanned for a terminator character)
Pro: the selected expression is actually evaluated at the time of the IIF

Friday, August 14, 2015 Page 22

function call is processed.
Pro: Can cope with any expression type (either numeric or string).

So the IIF can be a time saver both for the Applesoft developer and the end user running his

programs.

Integer variables as loop variables within FOR/NEXT loops
I was worried that Integer variables be banned from being used as loop variables within FOR/NEXT

loop constructs.

If you try the statement below under plain vanilla Applesoft interpreter, all that is returned is a “?

SYNTAX ERROR” message.

FOR I% = 1 TO 10: PRINT I%: NEXT I%

I believed that the use of integer arithmetic for processing the increment and test for final value as

part of the NEXT statement processing would greatly offer benefits in performance terms.

Hélas (in French in the text), by the time the loop variable appears in the loop body, then all benefits

disappear because handling of integer variables is much more costly than of floating point variables

just by the fact that the retrieved integer value needs to be converted to floating point whatever the

context.

OK now, with Peersoft installed, you can have integer variables as loop variables, but I wouldn’t tell

you more about it… until September this year (cf. section “Peersoft roadmap” for further details on

future developments).

Ah yes, be advised that Applesoft is bugged in its integer variable handling too. Have you ever tried to

issue a A% = - 32768 only to get bounced with a ?ILLEGAL QUANTITY ERROR message?

Users curious about this state of things could study the excellent Web resource already mentioned in

this document (http://www.txbobsc.com/scsc/scdocumentor/). Suffice to say that

A% = - 32767.5 works well and provides the same expected result.

Another limitation to warn the reader about is that the final value of such loop (using integer

variables) cannot be 32767 (which is the algebraic highest possible value a 16bits integer variable can

be bound to). This is because, as the last iteration (the loop variable being equal to the final value)

completes, the first operation the NEXT statement does is to increment the loop variable’s value

(here 32767) with the STEP value (default 1), this add operation causes an overflow within the 6502

and thus the overflow exception is raised to the Applesoft environment, itself raising an “?

OVERFLOW ERROR” for the Applesoft program.

To complete this section on an optimistic side, here is my advice regarding placement of loop

variables within FOR/NEXT loops. The point to keep in mind is that:

 It is useless to keep a loop variable at the top of simple variable table, unless either you use it

extensively in the loop body or, for whatever reason you have, you still want to use the NEXT

<variableName> syntax scheme for iterating within a loop. The loop variable placement

plays no role in performance aspects when processing a NEXT statement with no trailing

Friday, August 14, 2015 Page 23

http://www.txbobsc.com/scsc/scdocumentor/

variable reference as all data upon which the NEXT statement works lies within the stack

(including a direct pointer to variable’s value within Simple Variable Table); the frame being

built as the interpreter enters the loop, just once during processing of the FOR statement.

Some Applesoft statements processing bugfixes
Every bug fix provided here is an obvious code update to bugs raised, update to be considered as a

part of the Web resource already mentioned (http://www.txbobsc.com/scsc/scdocumentor/).

ONERR statement
The current Applesoft implementation for the ONERR statement processing erroneously skip the

whole physical line after processing instead of just up to next “end of instruction” marker.

This is fixed within this Peersoft release.

RETURN and POP statements

Friday, August 14, 2015 Page 24

http://www.txbobsc.com/scsc/scdocumentor/

Mouse and Timer handling within Peersoft
The support for mouse and timer (i.e. vertical blanking) within Peersoft is based on:

 The MOUSE and TIMER new instructions to activate and deactivate the MOUSE and TIMER

interfaces, either in transparent or interrupt modes;

 The ON MOUSE GOSUB as well as ON TIMER GOSUB instructions to setup the

Applesoft subroutines called upon interrupts;

 The MOUSE function to return status from the mouse Interface (whatever the running mode,

i.e. transparent or interrupt based).

 Similarly the TIMER function is used to return some useful parameters related to timer event

processing.

Please note that only mouse transparent mode is allowed on those hardware configurations: Apple

2, 2+ or //e with unenhanced ROM; No TIMER feature is supported on those old configurations.

This has to do with how the interrupt system is built in those systems and the way some critical zero

page locations are used within DOS 3.3. I strongly advise owners of unenhanced ROM Apple //e to

switch to a //c compatible ROM.

ON MOUSE GOSUB lineNumber
This syntax scheme of an already existing syntax construct will setup an Applesoft subroutine to

handle mouse interrupts (either movement or button presses). The running of a program (RUN

Applesoft statement or RUN/LOAD <filename> DOS commands) will reinitialize such setting. This

command should have been met before a “MOUSE ON,mode” statement is parsed from the

program text.

MOUSE OFF
This statement will shut down the mouse dedicated activity from the mouse interface. The mouse is

shut down as a program starts running (either with the Applesoft RUN statement or the DOS RUN

command). As the mouse interface also supports the TIMER activity then the mouse interface is itself

shutdown as soon as both the MOUSE OFF and TIMER OFF have been issued either explicitly or not.

MOUSE STOP
This statement is used to temporarily stop calling the Applesoft handling subroutine on every mouse

related interrupt occurrence so that a interrupt handling Applesoft subroutine could complete before

the next event be taken into account within Peersoft. A MOUSE STOP is implicitly performed as the

Applesoft mouse event handling routine is entered and the status is reverted back to “ON” as the

subroutine exists. Note that interrupts are still processed within Peersoft but the calling of Applesoft

routine is temporarily deactivated.

MOUSE ON[, mode]
This statement initializes the mouse interface related to mouse activity. Allowed values are given in

the table below:

Value Meaning

1 Transparent mode: no mouse related (i.e. movement or button press) interrupt is further
considered within Applesoft evaluation loop

Friday, August 14, 2015 Page 25

3 Interrupt mode: only mouse movements are notified to foreground Applesoft program

5 Interrupt mode: only button presses are notified to foreground Applesoft program

7 Interrupt mode: both mouse movements and button presses are notified to foreground
Applesoft program

MOUSE function
This function will take a single argument and return either the X coordinate of the mouse cursor, the

Y coordinate of the mouse cursor or the current mouse button status.

Arg. Value Meaning

0 X coordinate (16bits
signed value)

1 Y coordinate (16bits
signed value)

2 Button status (8bit
unsigned value)

Utility functions for handling other aspects of mouse management within Peersoft
From the study of the mouse interface API from any Apple model reference manual, you will discover

that more API are offered than those described above. In order to support them from Peersoft a new

reason code (10) was set up to cope with those needs as shown within this codlet.

10 RE = PEEK (40160) + 256 * PEEK (40161)
20 MOUSE ON ,1: REM Mouse in transparent mode
30 CALL RE,10,5,1,40,2,23: REM Clamp limits set from (1,2) to
(40,23)
40 X = 1:Y = 2: CALL RE,10,4,X,Y: REM Position the mouse cursor to
(1,2)
50 FOR T = 0 TO 1 STEP 0:S = MOUSE (2): ON S < 32 GOTO 90:X =
MOUSE (0):Y = MOUSE (1)
60 VTAB 1: HTAB 1: CALL – 868: PRINT “X:”X,”Y:”Y,”S:”S;: ON S < 128
GOTO 90:T = 1
90 NEXT : MOUSE OFF : END

The table below gives the complete list of API calls supported by the generic utility function.

Reason subcode Arguments Meaning

2 Xm variable, Ym
variable, Sm variable

Populates the three
variables with the
mouse coordinates as
read from the mouse
interface. Xm, Ym and
Sm must be integer
variables.

3 None Clears the mouse to
zero position, used for
delta mode position
determination.

4 X expression, Y
expression

Positions the mouse
cursor at the location
defined by the X and Y

Friday, August 14, 2015 Page 26

expressions.

5 Xmin expression, Xmax
expression, Ymin
expression, Ymax
expression

Sets mouse bounds in
a window (Xmin, Ymin)
to (Xmax, Ymax)

6 None Reinitializes mouse
cursor position to
upper left corner of
the clamp window.

ON TIMER GOSUB lineNumber
This syntax scheme of an already existing syntax construct will setup an Applesoft subroutine to

handle VBL interrupts. The running of a program (RUN Applesoft statement or RUN/LOAD

<filename> DOS commands) will reinitialize such setting. This command should have been met

before a “TIMER ON,factor” statement is parsed from the program text.

TIMER OFF
This statement will shut down the VBL dedicated activity from the mouse interface. The VBL

interrupt is implicitly deactivated as a program begins running (either with the Applesoft RUN

statement or the DOS RUN command).

TIMER STOP
This statement is used to temporarily stop calling the Applesoft handling subroutine on every VBL

related interrupt occurrence so that a interrupt handling Applesoft subroutine could complete before

the next event be taken into account within Peersoft. A TIMER STOP is implicitly performed as the

Applesoft VBL event handling routine is entered and the status is reverted back to “ON” as the

subroutine exists. Note that interrupts are still processed within Peersoft but the calling of Applesoft

routine is temporarily deactivated.

TIMER ON[, factor]
This statement alters the mouse interface by enabling user interrupts when a VBL event occurs. The

optional factor argument value allows to only fire the Applesoft handling when factor VBL interrupts

has occurred thus allowing to fire such routine only every second (in case factor value is set to 60)

instead of every 1/60 sec (according to the native VBL interrupt frequency). This is so by

implementing an internal two bytes counter which is incremented from zero upon every VBL

interrupt till it reaches the factor specified value. If no factor is specified, then 1 is the default value

which means that the Applesoft routine will be called every 1/60th sec.

TIMER function
Two possible values for the argument the TIMER function can be called at any time during program

flow (on eligible host configuration indeed).

 TIMER(0) will return the factor value as specified in the TIMER ON statement.

 TIMER(1) will return the current value from the 16bits
 internal counter.

Friday, August 14, 2015 Page 27

Codlet using the TIMER related instructions
This codlet displays a Chrono on the display screen as your program perform some computations in

the foreground.

10 CLEAR : ON TIMER GOSUB 100: REM SETS UP THE HANDLING ROUTINE
20 S%= 0: TIMER ON ,60: REM ONLY CALLS THE ROUTINE EVERY SECOND.
30 FOR …. : REM MAIN PROCESSING (SPENDING SOME *USER* TIME)
40 VTAB 2: HTAB 1:CALL – 868: PRINT ”THE MAIN PROCESSING TOOK ”S%”
SECONDS TO COMPLETE”
100 S% += 1: VTAB 1: HTAB 1:CALL – 868: PRINT ”SECONDS ELAPSED:”S
%;: RETURN

New error messages related to Mouse/VBL handling
Here are the new error messages, such message are catchable as the original Applesoft/DOS 3.3

error handler (cf. ONERR statement).

Error # Message Description

32 MOUSE HARDWARE NOT DETECTED When no mouse interface was
detected upon Peersoft boot, any
use of the API described above
leads to such error message.

33 UNSUPPORTED HARDWARE CONFIGURATION When using an Apple 2, 2+ or
unenhanced //e and trying to use
an interrupt based feature from
Peersoft.

34 UNKNOWN APPLESOFT MOUSE EVENT
HANDLER

When a MOUSE ON with a mode
involving interrupts is issued as the
ON MOUSE GOSUB was not
already processed.

35 UNKNOWN APPLESOFT TIMER EVENT
HANDLER

When a TIMER ON statement is
met as the ON TIMER GOSUB was
not alaready processed.

36 ILLEGAL MOUSE MODE An invalid value was submitted

37 ILLEGAL MOUSE OPERATION The Apple mouse firmware
answered with a carry set (this does
not include the SERVEMOUSE API
called from the Peersoft interrupt
handling routine).

Note to Assembly language authors
Whenever Peersoft processes a MOUSE ON or a TIMER ON instruction which increase the mouse

mode value from a non interrupt mouse mode (value < 2) to an interrupt mode (value > 1), then

Peersoft claims the IRQV vector in page 3 ($03FE-$03FF) and stores the original content in a safe

place ($9A64). Whenever Peersoft handles some interrupt that it cannot handle itself, then it passes

on the control to the original IRQV vector claimant.

On the other end, the original IRQV content is restored back to its original content whenever the

mouse mode reaches (usually by a program ending, starting or a TIMER OFF/MOUSE OFF

statement processing) the values 0 or 1 from a greater original value.

Friday, August 14, 2015 Page 28

As a reminder, the Peersoft interrupt system is only in place on suitable host configurations

(Applemouse // interface present with enhanced //e or //c, //c+ or //GS).

Note to Applesoft applications authors
Some Applesoft statements might take an indeterminate amount of time before releasing control to

the foreground interpreter loop. I foresee three cases in particular:

 The WAIT statement which indefinitely waits for some memory cell to conform to a

predefined configuration usually set by an external device like the keyboard or a joystick, an

interface card memory address cell ($C0nx range) or a memory byte within the 64K when set

by a proper interrupt routine;

 The GET statement when the current input flow comes from the keyboard;

 The INPUT statement when the current input flow comes from the keyboard;

Peersoft in its current incarnation provides a patched version of the WAIT statement handling

routine so that whenever an interrupt occurs and the related interrupt mode dictates an immediate

attention from Peersoft, then:

 The WAIT context is saved;

 The registered Applesoft subroutine is immediately run;

 As the Applesoft routine returns then, instead of returning to NEWSTT, it returns to a

location where the WAIT context is restored and a branch within the loop is run. The loop

can then proceed.

Refer to the TIMRWAIT Applesoft short sample demo program for an illustration of the applied

patch.

The design of similar patches for the other two usage cases would imply to dig into the many layers of

input processing (firmware and monitor) (as I did for a previous utility I wrote named Bananasoft for

implementing a software only keyboard buffer w/o the help from interrupts).

Co routines within Peersoft
A word of advice: this section describes the working of co routines features within the 1.4 release of

Peersoft. Future releases might expose other API to the external entities, in case this interface evolves

or others appear, then this section will be updated accordingly within the document you are currently

reading.

From now on, an Applesoft program should be considered as a sequence of consecutives phases:

some with active co routines (flows of control running in // and on different parts of the program

text) and inactive co routines (when a unique flow of control exists and determines the program

behavior).

Except when you previously installed another “multi-tasking” environment in your Apple 2, then

every Applesoft application has to be considered as a purely sequential unit of flow on time before

the adoption of Peersoft in its current incarnation.

Friday, August 14, 2015 Page 29

Peersoft provides two ways of doing for both transitions (one for from ”purely sequential” to “active

co routines” and the other for the other way round).

Activating the co routines (simplistic sample)
For activating the MT (short for “multi threading” kernel) and the co routines which come along, then

a unique way of doing this is given below (minimal sample):

5 DIM I0%(127),I1%(127), I2%(127)
10 RE! = PEEK(40160) + 256 * PEEK(40161)
20 PRINT “ACTIVE CO ROUTINES PHASE ABOUT TO BEGIN ON LINES 1000,
2000 AND 3000”
30 CALL RE!,4,IT%,I0%,0,0,0,1000,I1%,0,0,0,2000,I2%,0,0,0,3000
40 PRINT “ACTIVE CO ROUTINES PHASE ENDED”: END
1000 GOSUB 5000: FOR J0% = 1 TO 2: PRINT J0%;”/”;IT%: NEXT
1010 GOSUB 5010: RETURN
2000 GOSUB 5000: FOR J1% = 1 TO 4: PRINT J1%;”/”;IT%: NEXT
2001 GOSUB 5010: RETURN
3000 GOSUB 5000: FOR J2% = 1 TO 6: PRINT J2%;”/”;IT%: NEXT
3001 GOSUB 5010: RETURN
5000 PRINT “CO ROUTINE #”;IT%;” ENTERED”: RETURN
5010 PRINT “CO ROUTINE #”;IT%;” ABOUT TO QUIT”: RETURN

Address 40160 contains a pointer to the general utility routine within Peersoft.

The arguments are described in the table below:

Table 2: Arguments for activating the MT kernel

Argument Description

4
Reason code meaning: I would like to activate the MT kernel with
co routines defined by following parm values.

IT%

It is the name of the Applesoft variable (must be simple integer
type variable) which will hold the current thread index value from 0
to NumCoRoutines – 1. Peersoft updates this value upon every
context switch.

1st co routine
I0%

Name of the integer type array which will contain the context
storage for the 1st co routine, structure of this array is given in a
section below.

0 This parameter defines whether the co routine has a private error
handling routine of its own. This parameter should be considered
as a bit string here where, for our purpose only the two lsb interest
use. Three values are possible here:
0: implies that no error handling at all while the co routine is the
one run by CPU. That means that no segment exists in the context
dealing specifically with the error handling, making its size smaller
and its store and retrieval faster. Whenever the context is restored,
a zero is stored in the ERRFLG flag page zero location.
1: Private error handling which instructs Peersoft to cater for
dedicated error handling segment within stored context for this co
routine. The co routine should however, execute an ONERR GOTO
nnn instruction in its own flow of control.

Friday, August 14, 2015 Page 30

Argument Description

2: The co routine relies on the status of the “global environment”
(ie error handling status as the CALL RE!, 4,… is run), a context
segment for dealing with error handling is created iif the ERRFLG
(page zero location $D8 meaning an ONERR handler is active) is set
upon the CALL RE!,4,… is processed by Peersoft. The role of other
bits (b2b7 from the value are described in a subsequent section).

0

This parameter is the address of a machine language subroutine
(ending with a RTS instruction) called whenever the co routine is
about to be active (gain the 6502 CPU). The sub routine must not
change any register value (cf. Push and Pull 6502 instructions)

0

This parameter is the address of a machine language subroutine
(ending with a RTS instruction) called whenever the co routine is
about to release control and the corresponding context be stored
in the context storage area (see array I0% description above). The
sub routine must not change any register value (cf. Push and Pull
6502 instructions)

1000
This is the co routine starting Applesoft BASIC line number.
Consider that, internally, the CALL RE!, 4… does a GOSUB to this
line number upon co routine activation.

Arguments descriptions for 2nd and 3rd co routines are similar in their description as the ones for the

1st co routine’s arguments. Up to 8 co routines can be active at the same time.

Activating the co routines (Not so simplistic approach)
Now suppose that a particular co routine needs to have a dedicated environment for text cursor

positioning.

The context segment representative of text cursor positioning could be summarized within the table

below:

WNDLFT, WNDWDTH, WNDTOP, WNDHGHT for text window setting on the display screen and

CH, CV, BASL, BASL+1 for cursor location within the window.

Deactivating the co routines
Beyond the natural and normal way of returning to a single flow for the Applesoft application (let

every co routine return to the statement following the CALL RE!,4,… instruction (by using a

combination of RETURN/POP statements themselves).

The fastest way is based upon a new reason code for the Peersoft general utility: CALL RE!,5 is

the instruction to insert within the code of a co routine (including its error handling procedure,

dedicated or shared). Such statement must be run as the MTK is active.

Peersoft data structures and hints for performing usual tasks from Applesoft programs
relating to co routines
For reference by assembly language programmers, here is the structure of the Peersoft global page

and of every integer type array variable used by Peersoft for context storage purposes.

Friday, August 14, 2015 Page 31

Table 3 : Peersoft global page

Address
(decimal)

Address
(hexadecimal)

Description

40159 $9CDF A call to this address will branch to the Peersoft “general
utility” routine already described in a previous section. An
alternate way is to get the vector stored at (40159+1,
40159+2) and calling it directly (cf. sample Applesoft above)

40158 $9CDE Peersoft version byte: currently a $15 value is stored at this
location (meaning 1.5)

40157 $9CDD Number of instructions between two context switches
(default to 10, setup whenever Peersoft is loaded from disk).

40156 $9CDC Bit 7 set iif the MT kernel is active. A call to CALL RE!,4,…
will set it up. This flag is reset whenever the MT kernel is
terminated, usually as the last co routine returns to the
global environment.

40155 $9CDB Number of ticks that the currently running co routine will
last before next context switch. At every context switch,
Peersoft copies the $9CDD slot into this slot, upon running
an Applesoft instruction, the context switch occurs only if
the value from this slot, decremented by one, reaches zero.

40154 $9CDA Bit 7 set if context switch temporarily inhibited while a
critical section of code is run by the current co routine.

What happens when the co routines are established?
A GOSUB stack frame is created in the stack segment of every co routine’s context. This GOSUB

frame indicates that the return points to just after the CALL RE!,4,… Applesoft statement.

Obviously, the stack pointer for every established co routine is decremented by the frame size (5

bytes including the GOSUB token).

Peersoft marks a co routine as being completed when, as this co routine is being run by the CPU, the

current stack pointer reaches the original stack pointer value taken as the CALL RE!, 4.. Applesoft

statement was parsed.

Hints and tips

How to release control to other threads from the current co routine?
Just use the POKE statement POKE 40155,1 just before the location where you want to release

control. While parsing the next statement, Peersoft will decrement this value to 0 and thus a context

switch will be triggered (saving the current context, and restoring the next active co routine declared

within the kernel. Be advised that this could be the same co routine as the current one in case no

other is still active.

How to temporarily disable the context switch?
While a critical section of Applesoft code is being run within the current co routine, no context switch

should occur in order to let this section of code appear as being atomic. A simple way to fit this

requirement is to insert a POKE 40154,128 statement at the beginning of your critical section

code. In order to reinstate switches for giving a chance for other co routine to flow normally, then use

the POKE 40154,0 statement at the conclusion of this section.

Friday, August 14, 2015 Page 32

Also, as the decrement operation is not processed while the switching is inhibited, it is a good idea to

insert a POKE 40155,low_value just in the vicinity of the former POKE statement (as I did in

my tutorial example Applesoft programs).

Having private variable sets (no collision between co routines)
The current solution I propose is to get arrays of variables with at least one dimension indexed by the

context index value. In the tutorials from the disk, I used two arrays (XH() and XV()) to store

cursor data (line and column where cursor lies in two dedicated integer arrays) and all PRINT

statements or cursor position setting statements being run in critical sections of code.

Committing suicide or assassination (of other threads)
Beyond the usual way to mark a thread as completed (i.e. using RETURN or POP instructions in order

for the stack pointer to reach its initial value), an alternate and more intrusive way would be to force

a specific byte from Peersoft memory to $FF value, thus Peersoft will consider the relevant co routine

as completed. Here is the code segment which performs just that action.

AD = PEEK (40152) + 256 * PEEK (40153): POKE AD + 8 + IT%,255

Where IT% being the current context index implies suicide and IT% being unequal to current context

index (but still between 0 and 7) meaning assassination.

Structure of the context storage
Every context is stored within a dedicated integer type array variable (one dimension) which layout is

described in the table below

Friday, August 14, 2015 Page 33

Table 4 : Context Storage layout

Offset Page zero Description

Header for housekeeping by Applesoft
0 and 1

N/A

Name of the array (two bytes)

2 and 3
Offset from the beginning of this array to next array variable
or to end of memory area

4 Number of dimensions (must be 1 for Peersoft usage).

5 and 6 Value of first (and last) dimension

Constant segment (general use)

7 N/A Offset to stack segment (always populated)

8 N/A

Operation mode for context.
B0b1 provides an indication whether the local error handling
is in use or not. In case local error handling is in use, whether
the global environment is used for such context or not;
B2b7 provides options for additional context switch
operations. The one being shown within the tutorial is the
display cursor backup/restore operations.

Constant segment for monitoring context switches

9 and 10 N/A

Address of machine language routine to be called whenever
the co routine is paged in. This routine must not alter register
values from the calling environment (unless pushed on stack)
and must return with a RTS (after possible Pull from stack
instructions). High byte is $FF if no routine registered.

11 and 12 N/A

Address of machine language routine to be called whenever
the co routine is paged out. This routine must not alter
register values from the calling environment (unless pushed
on stack) and must return with a RTS (after possible Pull
from stack instructions). High byte is $FF if no routine
registered.

Core segment (always populated)

13
REMSTK ($D8) Current stack pointer for this pointer (only byte at offset 8 is

meaningful)

14 and 15 CURLIN, CURLIN+1 Current Applesoft line # for the co routine

16 and 17 TXTPTR ($B8), TXTPTR+1 Current text pointer within program text for the co routine

18 and 19
OLDTEXT, OLDTEXT+1 Text pointer of last instruction parsed by interpreter exec

loop

Local Error handling segment (optional: see value at offset 8)

20 and 21
TXTPSV ($F4), TXTPSV+1 Points to the first character of line # as ONERR GOTO

statement is parsed.

22 and 23 CURLSV ($F6), CURLSV+1 Line # where the ONERR GOTO is located

24 ERRNUM ($DE) Error # when an error occurs

25
ERRSTK Stack pointer as the error occurs (so that RESUME could

branch back to the faulty statement)

26 and 27
ERRLIN ($DA), ERRLIN+1 Applesoft line # where the error occurred (so that RESUME

could branch back to the faulty statement)

28 and 29 ERRPOS ($DC), ERRPOS+1 TXTPTR pointer of the statement raising the error.

30 ERRFLG ($D8) Only bit 7 is meaningful here.

Stack segment (variable size)

<ValueAt
Offset 7>
and above

N/A in page zero: within hardware
page 1

From private stack pointer to global environment stack
pointer value, bytes extracted from hardware stack (page 1)
from offset given by REMSTK value at offset 8 from this

structure) to the REMSTK known as the CALL RE!, 4, …
was parsed.

Friday, August 14, 2015 Page 34

Peersoft co routines tutorial
Within the Applesoft program listing below,

 The arrays I0, I1 and I2 serve as context storage areas useful for switching between co

routines;

 The arrays XH and XV serve as memory place where to store screen cursor locations

(horizontal for XH and vertical for XV) for every co routine implemented here (the number of

them being 3).

 Variable XC serve as an indicator that the user issued a Ctrl-C keystroke while the program

was running. Therefore it is set to a non zero value at line 2901 (part of the shared general

error handling routine beginning at line 4000 (see ONERR statement at line 2 and part also

of the dedicated (i.e. private) error handling for co routine #1 beginning at line 2900);
 RE holds the address where to call the Peersoft general utility routine with appropriate

parameters.

1 CLEAR : DEFINT I-N,X: DIM I0(127),I1(127),I2(127),XH(2),XV(2)
2 PRINT CHR$ (4)"PR#0": TEXT : HOME :XC = 0: ONERR GOTO 4000
3 PRINT CHR$ (4)"BLOAD TUTMC": VTAB 1: HTAB 15: PRINT "TUTORIAL 2"
4 XH(0) = 1:XV(0) = 2:XH(1) = 1:XV(1) = 21:XH(2) = 1:XV(2) = 6: DEF FN DR(A) = PEEK
(A) + 256 * PEEK (A + 1): DEF FN AR(CX) = INT (CX * 100) * .01
5 RE = FN DR(40160): POKE 40157,4: REM # OF APPLESOFT INSTRUCTIONS RUN BETWEEN TWO
SWITCHES
6 CALL RE,4,IT,I0,2,0,0,1000,I1,1,768,774,2000,I2,2,774,768,3000
7 VTAB 1: HTAB 1: PRINT "PROGRAM ENDED, PRESS ANY KEY";: GET A$: HOME : END
999 REM FIRST COROUTINE: MONITOR EVERY CONTEXT INCLUDING ITSELF
1000 AD = FN DR(40152):OF = 0:NT = 0:SO = PEEK (AD + 17):SL = 0:LX = - 1: GOSUB
5010: PRINT " RUNNING TASKS STATUS (";SO"/";: GOSUB 5000:XH = XH(IT):XV = XV(IT)
1002 FOR JT = 0 TO 7: ON PEEK (AD + 8 + JT) < 255 GOTO 1003:NT = JT - 1:JT = 7
1003 NEXT JT: FOR J0 = 0 TO 1 STEP 0: GOSUB 1100:JF = 1
1004 FOR JT = 0 TO NT: GOSUB 1200: NEXT JT
1005 J0 = JF: NEXT J0: RETURN
1099 REM
1100 ON PEEK (40157) = LX GOTO 1102: POKE 40154,128: HTAB XH: VTAB XV:LX = PEEK
(40157)
1101 PRINT LX;")";: CALL - 868: POKE 40155,1: POKE 40154,0
1102 RETURN
1199 REM PRINT A CONTEXT CONTENT (JT)
1200 IF PEEK (AD + JT + 8) < 255 AND JT < > IT THEN JF = 0
1201 OF = PEEK (AD + JT + 8) * 256 + PEEK (AD + JT):XV(IT) = 3 + JT:XH(IT) = 1:
GOSUB 5010: CALL 777,OF,JT: GOSUB 5000
1202 RETURN
1999 REM SECOND CONTEXT: PROCESS SOME KEYBOARD INPUT FROM USER
2000 BS$ = CHR$ (8):CU$ = CHR$ (127) + BS$: POKE 49168,0: ONERR GOTO 2900
2001 GOSUB 5010: PRINT SPC(6);"DIVISION EXEMPLE": GOSUB 5000:LY = XV(IT): FOR J1 =
0 TO 1 STEP 0
2002 XH(IT) = 1:XV(IT) = LY: GOSUB 5010: CALL - 958: PRINT "ENTER NUMERATOR: "CU$;:
GOSUB 2801: ON M$ = "" GOTO 2004:VN = VAL (M$)
2003 GOSUB 5010: PRINT "ENTER DIVISOR: "CU$;: GOSUB 2801: ON M$ < > "" GOTO 2005
2004 J1 = 1
2005 ON J1 = 1 GOTO 2007:VD = VAL (M$):VR = FN AR(VN / VD): GOSUB 5010: PRINT
"RESULT: ";VR;" <RET> TO PROCEED"CU$;: GOSUB 2851: ON XC = 1 OR ES% = 1 GOTO 2004:
GOTO 2007
2006 POKE 40154,128: VTAB 24: HTAB 1: PRINT MO$;

Friday, August 14, 2015 Page 35

2007 NEXT : RETURN
2800 REM INPUT SUBROUTINE
2801 GOSUB 5000:M$ = "":LM = 0:ES% = 0: FOR JS = 0 TO 1 STEP 0
2802 GOSUB 2861: ON ES% = 0 AND XC = 0 GOTO 2803:M$ = "":LM = 0: GOTO 2809
2803 ON JS = 1 GOTO 2809: ON A < > 8 OR LM = 0 GOTO 2804:LM -= 1:M$ = LEFT$(M$,LM
+ (LM = 0)): PRINT " "AA;CU$;: ON LM > 0 GOTO 2804:M$ = ""
2804 ON A < 31 GOTO 2809:LM += 1:M$ += A$: PRINT A$;CU$;
2809 GOSUB 5000: NEXT
2810 GOSUB 5010: CALL - 868: PRINT : GOSUB 5000: RETURN
2850 REM GET RETURN SUBROUTINE
2851 GOSUB 5000:ES% = 0: FOR JS = 0 TO 1 STEP 0
2852 GOSUB 2861:JS = (ES% = 1) OR (XC = 1) OR (A = 13): GOSUB 5000: NEXT : GOSUB
5010: CALL - 868: GOSUB 5000: RETURN
2860 REM GET KEYBOARD ENTRY
2861 ON PEEK (49152) > 127 OR XC = 1 GOTO 2862: POKE 40155,1: GOTO 2861
2862 GOSUB 5010: IF XC = 0 THEN GET A$:A = ASC (A$)
2863 ON XC = 0 GOTO 2864: PRINT "#ABORTED#!";:JS = 1
2864 ON A < > 27 GOTO 2865: PRINT "<ESCAPED>";:JS = 1:ES% = 1
2865 ON A < > 13 GOTO 2866:JS = 1
2866 RETURN
2900 ON PEEK (222) < > 255 GOTO 2902
2901 XC = 1:A$ = CHR$ (3):A = 3: PRINT CHR$ (7);: RESUME
2902 ON PEEK (222) < > 133 GOTO 2903:EL = FN DR(218): ON EL < > 2005 GOTO 2903:MO$
= "DIVIDE BY ZERO ERROR":J1 = 1: CALL - 3288: GOTO 2006
2903 PRINT CHR$ (7);: GOTO 4003
2998 REM 3RD CONTEXT MAIN ROUTINE, JUST PRINT SOME STAR CHARACTERS
2999 REM AS A BACKGROUND ACTIVITY
3000 FOR J2 = 0 TO 1 STEP 0:J2 = J1: GOSUB 3008
3001 PRINT "*";: GOSUB 5000: NEXT
3002 FOR J2 = 1 TO 4: GOSUB 3008: PRINT MID$ ("OVER",J2,1);: GOSUB 5000: NEXT :
RETURN
3008 XV(IT) = INT (RND (1) * 15) + 6:XH(IT) = INT (RND (1) * 40) + 1: GOSUB 5010:
RETURN
4000 IF PEEK (40156) < 128 THEN VTAB 23: HTAB 1: CALL 771: END
4001 ON PEEK (222) = 255 GOTO 2901
4003 XH(IT) = 1:XV(IT) = 23: GOSUB 5010: CALL 771: GOSUB 5000: CALL RE,5
4998 REM STORE CURSOR POSITION INTO CONTEXT AND RELEASE CONTROL TO MT
4999 REM EXPECTS TO BE CALLED WHILE CONTEXT SWITCHES INHIBITED
5000 XH(IT) = PEEK (36) + 1:XV(IT) = PEEK (37) + 1: POKE 40155,1: POKE 40154,0:
RETURN
5009 REM INHIBIT CONTEXT SWITCH AND RESTORE CURSOR POSITION FROM STORED CONTEXT
5010 POKE 40154,128: VTAB XV(IT): HTAB XH(IT): RETURN

Friday, August 14, 2015 Page 36

New way to declare up to 11 user defined functions
Eleven DEFUSR[n] instructions and ten USR<n> functions, n from 0 to 9 have been added to

implement this feature.

Simple syntax scheme for usual classic ML routines
You can define such entries for those routines by using the simple syntax below :

DEFUSR[n] = <parm1>

n being optional here, if n is omitted, then the preexisting user function vector is considered. The

parm1 value is known to be the entry point of such routine within 6502 memory. That value must be

> 255.

As a USR[n] is processed within an expression,

• Only argument's value is left in FAC (zero page slot) ready for the ML routine to retrieve

(unmodified behaviour from classic Applesoft) ;

• Only argument's type is left in VALTYP (zero page slot) ready for the ML routine to make use

of (unmodified behaviour from classic Applesoft).

More elaborate syntax scheme for ML routines dealing with two arguments
As soon as the ML routine has to deal with two input arguments (instead of just one), then an

alternative syntax form must be used for its declaration.

DEFUSR[n] = <parm1>,<parm2>

Where parm1 is a running mode for such function whose value here should be 64 (further details in

table below) and parm2 is the entry point ML routine address.

As the USR[n](arg1,arg2) is processed,

• arg1 value is available within the ARG (second/auxiliary Applesoft FP accumulator) ;

• arg1 type (value of VALTYP) is kept in the page zero cell at address $BE ;

• arg2 value is left in FAC ;

• arg2 type is left in VALTYP ;

I would suggest that you take a look at the TCUSRFNDEMO.S source code within the archive for

samples of how such user defined functions can be built and used from Applesoft.

Elaborate syntax scheme for declaring Procedural functions
According to the number of input arguments such functions can deal with (either 1 or 2), declaring

such functions can take either one of the syntax schemes below:

Friday, August 14, 2015 Page 37

• DEFUSR[n] = <parm1>,<OutputVariableName>,<InputVariableName>,<beginLineNumber>

iif the function only deals with one input argument, parm1 value being either 128 or 129 (see

table below).

• DEFUSR[n] =

<parm1>,<OutputVariableName>,<InputVariable1Name>,<InputVariable2Name>,<beginLineNumbe
r>

iif the function deals with two input arguments, parm1 value being either 192 or 193 (see

table below).

Within this release of Peersoft, the variables being used as bridges between the calling and called

environment must be numeric (either integer or FP). This might evolve in future releases.

To discriminate between PF declarations and machine language routines entry point declarations,

one should play on the parm1 value, first argument to the DEFUSR instruction.

If parm1 value is > 255, then the DEFUSR declares a classic ML UDF entry point, otherwise the table

below applies:

Bit # Meaning when set to 1 Meaning when set to 0

7 Implies a PF declaration Implies a ML routine declaration

6 Two arguments are expected Only one argument is expected

1

When declaring a PF, implies that a separate data

segment be used when evaluating (function body

running). This is called a “dynamic PF” in the

document.

When declaring a PF, implies that the

data segment will be the same between

the caller and callee environments.

Such PF are called static.

Some rules should be obeyed in the pF management and more precisely when the PF could or could

not be called.

• You cannot call a PF from within a PF;

• When co routines are actives, it is safer to call PF from a uniq co routines;

• You should avoid calling dynamic Pfs from interrupt processing Applesoft subroutines.

Some of the above constraints might be obsolete in future releases of Peersoft.

New error messages related to PF management

Error # Message Description

38
EMBEDDED PF NOT SPPORTED IN THIS RELEASE

Returned as soon as a PF is called from
within the body of a PF.

39 ILLEGAL OP WHILE PF IS ACTIVE

Friday, August 14, 2015 Page 38

Sommaire
An introduction to Peersoft.. 2

Peersoft roadmap... 4

Peersoft physical package description.. 5

How to transfer the two disk archives to real 5’1/4 disks on an Apple // hardware...........................7

Configuration of Apple Win 1.22.. 7

Operation of the Shrinking procedure.. 8

Peersoft user manual..12

Peersoft reference manual... 20

Variable default typing... 20

New syntax scheme for altering variables values... 21

@ Pseudo variable.. 21

IIF() function statement..22

Integer variables as loop variables within FOR/NEXT loops...23

Some Applesoft statements processing bugfixes..24

ONERR statement.. 24

RETURN and POP statements.. 24

Mouse and Timer handling within Peersoft... 25

ON MOUSE GOSUB lineNumber... 25

MOUSE OFF... 25

MOUSE STOP... 25

MOUSE ON[, mode]... 25

MOUSE function.. 26

Utility functions for handling other aspects of mouse management within Peersoft..................26

ON TIMER GOSUB lineNumber... 27

TIMER OFF... 27

TIMER STOP... 27

TIMER ON[, factor]...27

TIMER function.. 27

Codlet using the TIMER related instructions.. 28

New error messages related to Mouse/VBL handling.. 28

Note to Assembly language authors... 28

Note to Applesoft applications authors.. 29

Co routines within Peersoft.. 29

Activating the co routines (simplistic sample).. 30

Activating the co routines (Not so simplistic approach)... 31

Deactivating the co routines... 31

Peersoft data structures and hints for performing usual tasks from Applesoft programs relating

to co routines.. 31

Peersoft co routines tutorial... 35

New way to declare up to 11 user defined functions... 37

Simple syntax scheme for usual classic ML routines...37

More elaborate syntax scheme for ML routines dealing with two arguments.............................37

Elaborate syntax scheme for declaring Procedural functions... 37

Friday, August 14, 2015 Page 40

	An introduction to Peersoft
	Peersoft roadmap

	Peersoft physical package description
	How to transfer the two disk archives to real 5’1/4 disks on an Apple // hardware
	Configuration of Apple Win 1.22
	Operation of the Shrinking procedure

	Peersoft user manual
	Peersoft reference manual
	Variable default typing
	New syntax scheme for altering variables values
	@ Pseudo variable
	IIF() function statement
	Integer variables as loop variables within FOR/NEXT loops
	Some Applesoft statements processing bugfixes
	ONERR statement
	RETURN and POP statements

	Mouse and Timer handling within Peersoft
	ON MOUSE GOSUB lineNumber
	MOUSE OFF
	MOUSE STOP
	MOUSE ON[, mode]
	MOUSE function
	Utility functions for handling other aspects of mouse management within Peersoft
	ON TIMER GOSUB lineNumber
	TIMER OFF
	TIMER STOP
	TIMER ON[, factor]
	TIMER function
	Codlet using the TIMER related instructions
	New error messages related to Mouse/VBL handling
	Note to Assembly language authors
	Note to Applesoft applications authors

	Co routines within Peersoft
	Activating the co routines (simplistic sample)
	Activating the co routines (Not so simplistic approach)
	Deactivating the co routines
	Peersoft data structures and hints for performing usual tasks from Applesoft programs relating to co routines
	What happens when the co routines are established?
	Hints and tips
	How to release control to other threads from the current co routine?
	How to temporarily disable the context switch?
	Having private variable sets (no collision between co routines)
	Committing suicide or assassination (of other threads)

	Structure of the context storage

	Peersoft co routines tutorial
	New way to declare up to 11 user defined functions
	Simple syntax scheme for usual classic ML routines
	More elaborate syntax scheme for ML routines dealing with two arguments
	Elaborate syntax scheme for declaring Procedural functions
	New error messages related to PF management

