HOW TO TRY OUT HI-RES SECRETS:

(A)

(B)

©)

There are 209 programs/files on the 4 disks that come with this
system, and there are hundreds of pages of information in this
manual. 1t would take a month to truly “try out” HI-RES
SECRETS. But let’s attempt to guide you in trying out this system
{a small part of it) as best we can in the space of a few pages of in-
structions. Use the experience to familiarize yourself with this
package and give yourself ideas about how you'd like to begin
utilizing it. Look through the table of contents now and also the In-
dex(?) to see some of the areas covered.)
Virtually all machine language programs/routines in this system
are completely explained, step by step, in a clear fashion that
assumes only that you know what Applesoft Basic is about, so if
any hi-res area is found to be especially intriguing at this time
{(such as the popular Color Fill-In algorithms), then turn to that sec-
tion of the manual and boot the disk that deals with that subject
(28D) and test, learn, study, draw, color, paint, design, etc., to
your heart’s content.

Now for the general try-out:

{ 1) Boot 28A, check our introduction if you haven’t seen it.

{ 2) Once you get to the menu, choose #8.

{ 3) Give QQ as shape table name, and keep watching the upper
left corner of the screen.

{ 4) You've just seen a shape being drawn from a simple text file.
Now let’s scan a regular vector shape and put it into a text file.
{ 5) Go to menu by saying you want no more shapes. Choose 7.
Choose vector shape table called MAN and shape #5. You'll
scan this shape and save it in a text file.

{ 6) Give a height of 18 and a width of 6 (bytes). You'll see the
block of memory that defines your shape now. It'll be outlined in
white. Answer yes, you want to save it, and give QB as the shape
name. ‘ o

{ 7) Go to menu and choose #8. Give QB as shape table name.
Keep your eyes on the upper left of the screen. Scanning in
reverse is drawing. Most block-shapes are stored in binary files
and BLOADed for use. Try #9 in menu with QB --- your block-
shape is upside down now. Block-shapes are always rectangular
blocks of memory. :)

{ 8) Now let's make a binary block-shape from a vector shape
(Vector Shapes are explained in your Applesoft manual on pages
91-100): Choose #4 on the menu. Hit RETURN to erase screen,
once in program, and then choose option #1.

{ 9) Give MAN as the shape table name and 32768 as the table
address. Ask for shape #1 with X coordinate (horizontal coor-
dinate) of 20 and Y coordinate (vertical) of 20. Say no more
shapes. .

(10) Hit option 7 from menu of this 4 of 28A program. This will
allow you to paddle-define a block-shape for creation of a binary
file shape table. Move paddies until you have X=11 and Y=7. Hit

paddle zero button until it beeps. Move paddles until dot is at
X=29 and Y.=30. Hit paddle button #1. Your block shape is 3 by
23. When asked if the rectangle is done okay, say Y for yes. (If
the shape isn't really clear, turn the color off on the screen so that
enly black and white show.) There will be other questions, and
the shape isn't yet saved, but there’s no room on this disk for it,
so either put in an initialized blank disk. with the same DOS or
reboot disk.

{(11) Boot 28C.

(12) Go to #5. We'll convert a block-shape to a vector shape ---
the latter is easiest to scale up or down, rotate, or draw in many
colors. You'll notice that hplot-shapes may also be converted into
vector shapes. Hit RETURN to erase. Hit N for no HPLOT-
SHAPE.

(13) Answer no to padd|e-def|n|ng what's on screen. (If you
hadn'’t erased the screen on entering program, you could turn the
walking man into a vector shape.). Ask for shape table Q3, shape
#1. Give VT=2, VB=20, HR=7, HL=2. Remember the block-

le?
shape rectangle VT
HL[] HR
VB

{Don’t use HL of 0 in this program)
{Don't switch disks.)

Well, V means vertical, T means top, H means horizontal, B
means bottom, L means left, R means right. With these numbers,
you can put a block-shape anywhere on the screen. Make sure
VB-VT=height and HR-HL=width in bytes (not dots). The flying
saucer .is 18 high and 5 wide.

{14) Move the paddies until X=12 and Y=2 and hit PDL button
#0, then move dot to X=42 and Y=20 and hit PDL button #1.
Say the rectangle’s okay, once you see it. The scanning you see
turns screen bytes into plotting vector bytes.

(15) Now hit RESET and type HCOLOR=3:HGR:SCALE=1:
ROT=16:DRAW 1 AT 200,100. Hit RETURN. If you needed a
block-shape to be at a different rotation, you could do what you
just did and either use that shape as a vector shape from now on
or go o 4 of 28A and save it (without erasing screen!) as a block-
shape again.

(16) Reboot 28C and run #4. Choose delay loop of 1. RESET to
quit. 114 bytes ioad in per shape-draw. The shape moves only 1
dot sideways per move. The hi-res screens are flipped back and
forth 87 times a second (between page one,(HGR,) and page
two, (HGR2). This means that 22272 bytes get loaded from a
block-shape table to screen addresses every second. This is at
least 20% faster than utilization of HPOSN (an Applesoft routine).
This program uses YTABLE look-up rather than HPOSN. If this is
Greek to you, don’'t worry --- it's all explained in the manual. The
shape would flicker if we didn’t flip back and forth between hi-res
screens 1 & 2. Most animation has this flipping. You'll see how it's
done in this manual. You'll really be able to understand the whole
animation process clearly --- which few or no other information
sources facilitate.

(17) Now run 2 of 28C. It's a sample game that uses NOISES,
VIOLIN, EXPLOSION (CALL 5472) and lots of other sounds, as
well as simple one-page vector animation for explosions. You may
list it out or change the program or just play it and have fun. You'll
be able to use all kinds of sounds, noises, tones and songs in
your programs very soon. They're simple to do. This system con-
tains dozens of ready-to-use sounds and shape tables and
machine language animation routines and shape sequence
creators (automatic) and automatic fill routines and paint routines
to color pictures or shapes with.

{18) Unless vou want to play with the music program on this disk,
boot 28B now and choose B which is Superfont. Read instruc-
tions and choose various styles, scales, and colors of font
characters. You may save your creations on a printer or merely
on disk --- or both. Notice the fast 64-line scrolling --- that's a
machine language routine being CALLed. Other scrolling routines
for scrolling the screen in other directions are also included and
explained.

{(19) Run 3 of 28B. Choose R for RIGHT and choose the shape
table SQSEQC, and use shape #1 and VT of @, VB of 32, HR of
6, and HL of Q. If you have a color monitor, you'll notice that the
color stays the same even though we'’re only moving 1 bit at a
time. What's happening here is the shape is being shifted twice
on one page of hi-res white the other page is displayed --- and
then we flip pages and do the opposite. The type of shifting in this
animation is called a rotation, which is merely a logical shift of all
bits in a byte either left (ROL) or right (ROR). You needn’t make
block-shape shape sequences if you do shift-animation, although
it's slower. Incidentally, the smaller the shape the faster the
animation can be. :

{20) Now boot 28D and run #4 in the menu --- this is my Palette
program. [t's really fun to play with, especially if used in conjunc-
tion with 2 of 28A or 8 of 28D. Hit RETURN to erase screen.
{21) Hit 12 (and RETURN, obviously) for fuli-screen and @ for
shape loading, and option 3 for picture and leave the disk in. The
picture name is COMPOSITE 2. Hit 1 to see screen, any key for
menu. The picture was drawn with 2 of 28A mostly --- it all could
have been done with 2 of 28A easily. I'm used to using our Super
Shape Draw and Animate package for shape drawing, so that's
what | drew the man with.

{22) Now hit 10 and adjust your TV color so that the first large
square drawn is green. Move the dot so that the third to the last
bottom square is centered on --- orange. Hit PDL button #0 and
say yes. (The palette draws only once --- after that you find it in-
stantly by choosing option 10. The disk is much too full to have
allowed me to load in the palette as a picture from a 34-sector
binary file picture.)

(23) Type 16 and return. The color byte for even addresses (for
orange) is 170. For odd addresses it's the binary complement
{not counting hi bit) of 170 --- 213. We'll be using 4 adjacent col-
or bytes stored in $6-$9 of memory. The bottom 2 bytes are
often different from the top ones --- this makes many more colors

ossible.
P L]

{24) Choose option 11 in the menu to fill. Read the instructions
and continue. Put the dot in the very center of the doorway and
press the #0 button. The program wastes little time! Fill a few
other squares and then hit button #1 to exit.

(25) Choose option 17. You now have a mystery color/pattern.
Choose 11 and fill a couple squares with it. Then hit button #1
and choose option 9 and then choose option 2 in that section.
Choose shape table: POS. Choose shape #2 and put it up in the
upper left comer using button #0, hit any key, then hit Y for
another.

(26) “Draw” him in the top half of the door. No good! Now try
saying no more shapes and changing the color using option 5 of
the menu. Choose color #4. Now choose option 9 and use op-
tion 2 of 9 and use table POS again --- choose shape #3. Center
dot on bottom half of door and hit button #0. See how shapes
look better if you don't mix hi-bit on and hi-bit off colors? Hcolor
4 is black and its byte is 128. The color bit (#7) is ON in colors
4-7 and off in colors ©0-3. Colors whose bytes are 128 decimal
($80 hex) or more have their color bit set, or ON, meaning it's a
one, not a 8. The decimal value of the 1 in the 8th bit (#7, since
the first bit is numbered 0) is 128. The reason colors with op-
posite color-bit settings don’'t mix is that for every byte, the high
bit must be either on or off.

(27) Choose 10 again and pick a color and choose 11 and fill a
few more squares or sections. Really odd shaped ones may
require more than one filling. Now hit SPACE BAR, then O for
paintbrush color. Now hold down bufton #1 and move the dot un-
til it’s at the left edge of the door. Slowly move PDL #0 clockwise.
You may erase some or all of the doorway color, the shapes in
the doorway, etc. You may build a window and/or re-color that
doorway. Use a delicate touch --- use skill. Hit SPACE BAR, P,
RETURN, 6, and 9. You'll find that blue, another hi-bit-on color,
.ooks nice with orange. It's the complement of orange, which
means trade all ones for @'s and @’s for ones (except the high bit).
(28) Hit SPACE BAR and F to fill. Hit A to abort clicks. Fill the
“window” you just made. Hit PDL button #1.

(28) Hit 0 to go to main menu. Choose 8. Hit SPACE BAR to
enter program. Choose #1 to see screen --- yep! Still there.
Choose 9 for shapes and then 2 for vector shapes and then
choose shape table name of ANIMALS, and use shape #6. Move
shape, with paddies, to a clear space on wall and hit button #1
and then move away. It got copied! Hit PDL button 0. Choose no
more shapes and choose 14 to complement every byte on the
screen.

(30) Pretty wild, right? Now choose 16 and set all color bits.
Then choose 13 and filter out various colors (best to filter orange
or blue when hi bits set and violet or green when hi bit off).
(31) Now go to 0 of menu and run 9 of 28D. This program does
an incorrect automatic fill on an hplot-shape. Hit RESET and list
out the program. 950 is the workhorse, 1000 is the FOR-NEXT
showing how many “fills” to do, 2000 has the data which 1010
reads in. The data is simply 2 coordinates (X, Y) and 4 color

bytes per fill. The incorrectness, used for demonstration, is
wrong fill locations, wrong number of fill locations, and bad mix-
ture of “hi” and “io” colors. {(For more details on 9 of 28D see
first part of Chapter 29.)

{32) Now boot 28D and run A. This is how the use of the fill
routine to create “instant scenes” is supposed to look. List out A
of 28D. Nothing very complex here. About 13 fillings per second
are happening; let this program be your:example to follow when
you create your own “instant scenes”.

vi

INTEGER IN ROM??????????

READ THiS!I!!

If you have integer in ROM and a language card, and, if
after booting your 3.3 system master and typing BRUN
BOOT13 you get the error “language not available”, then
please do the following:

1) Boot your 3.3 system master to load the language
card

2) Boot disk 28A or 28B (from HI-RES Secrets)

3) hit RESET

4) type: CALL -151 (RETURN})

5) type the following sequence, pressing RETURN
after each series of numbers/letters as indicated:

a) C081 (RETURN)
b) C081 (RETURN)
c) E000:4C (RETURN)
d) C082 (RETURN)

e) CTRLC (RETURN)
f) RUN HELLO (RETURN)

Iif you have integer in ROM and PASCAL on your
language card, then instead of f) above, do the foliowing:

fy FP (RETURN)

g) RUN INTRO28 (RETURN)

HI-RES N

* by Don Fudge *
““If you can’t Budge it, Fudge it.”’

To use with Apple* Il (or lll) Computers
with 48K and Applesoft* in ROM
(set includes disks 28A, 28B, 28C, 28D)

(Includes Instant Graphics (Block-Shapes) drawing

card and also the music codes card for
Music (Write:Record:Play))

*Apple and A it ere reg d trad ks of Apple Ci ter, Inc.

AVANT-GRARDE CREATIONS

P.O. Box 30160

Eugene, OR 97403

(503) 345-3043 (12 noon to 6 PM, 7 days a week)

Copyright © 1981 by Avant-Garde Creations.
All rights reserved.

First Printing September 1981
Second Printing November 1981
Third Printing December 1981
Fourth Printing January 1982

ISBN: 0-930182-21-9 (Book)
0-930182-22-7 (Package)

Printed in the United States of America

REQUEST FOR ACKNOWLEDGEMENT ...

Avant-Garde Creations respectfully requests that those persons using
routines from HI-RES SECRETS in their own programs include
acknowledgements of the source of these routines (i.e. “The color-fill
and animation routines are from HI-RES SECRETS by Avant-Garde
Creations.”)

No written permission or royalty is requested. However, we would very
much like to know how people are implementing the routines in their
own programs, with the added possibility that we would advertise your
game or program as one that incorporates our routines.

We thank you in advance for this courtesy.

DISCLAIMER OF WARRANTIES

No warranty, either expressed or implied, is made with respect to the
enclosed computer software package or any part thereof, its quality,
performance, merchantability, or fitness for any particular purpose.

ACKNOWLEDGEMENT

Avant-Garde Creations would like to thank the following
people for their willingness to communicate in magazines,
in writing, or by phone. Willingness to share information
about Apple® Computer programming is necessary and im-
portant for the future viability of the Apple* Il microcom-
puter. Thanks to: Bob Bishop, C.K. Mesztenyi, R.H. Good,
Loy Spurlock, Stephen R. Bergren, Steven Dompier, Val J.
Golding, Don Williams, R.M. Mottola, Ray McVay, Pat Con-
nelly, Ted Perry, and others.

* Apple is a registerad trademark of Apple Computer, inc.

This book is dedicated to everyone who wishes to, like
Avant-Garde Creations, help the world work better via the

creative application of computers.

8

e ety
e et

LILALELER

CHAPTER PAGE

(o] ~N O OMH [N =

10

11

12

13

INTRODUCTION (Gosub is not just for Trident or Polaris crews) 1
WHO 1S DON FUDGE? (And Who Cares?) (He will be remembered
asthe personnoCNeremembers.) v o i 2
HOW TO USE THIS BOOK IF YOU DIDN'T BUY THE DISKS
THATCOMEWITHIT o .. 3
DIRECTORY OF PROGRAM LISTINGS INTHISBOOK 4
DIRECTORY OF PROGRAMS ONTHESEDISKS 7
HOW TO USE THE PROGRAMS ONTHESEDISKS 17
SHAPES AND OTHER MYSTERIES (granny likes them and so
doallthekiddies) o oo i o 20
SHAPE DRAWING: HOW TO CREATE GOOD SHAPES30
8A. Vector. 30
8B. Block ‘31
8B1. TextFileBlock-shapes. 37
8C. Hplot 41
8D. Instant Graphics (Block-shapes) 42
8E. SuperShapeDraw! 47
8F. Combination Shapes {vector,block,hplot) 48
8G. ConversiontoVectorShape 50
SHAPE SEQUENCE CREATION {(getting ready for animation) . 56
QA. Vector. 56
8B. Block 57
9C. Hplot 93
SHAPE EXAMINATIONANDEDITING 110
10A. Vector 110
10B. Block. 111
10C. Hplot. 112
10D. Instant Graphics (Block-shapes) 113
10E. SuperShapeDraw! 115
10F. Monitor 115
SIMPLE ANIMATION 117
11A. Vector P 117
11B. Block. 121
11C. Hplot. 125
11D. SequenceDiagrams 126
SUPERFONT ANDUSINGFONT 133
12A. Superfont 133
12B. UsingFont 134 .
SHIFT ANIMATION (ROR or ROL) (why erase when you can shift?) 135
13A. OnePage............... 135
13B. Two Page, Shift Animation 141

13C. Colorand Double-Shifting 159

14

38
39

ANIMATION FROM APPLESOFT/ASSEMBLY/
COMBINATION
14A. Applesoft
14B. Assembly
14C. Combination
DRAW VS. XDRAW L
THE COLLISION COUNTER (why don't you watch where
youregoing?l),
HI-RES COLORS - THE PALETTEPROGRAM
WHITELINEFIXING
CIRCLES, ELLIPSES, POLAR GRAPHS, SPIROGRAPHS . . .
COUNTING, TIMING, SPEEDS, DELAY LOOPS,
TIMINGCLICKS
ASSEMBLY GAME PADDLE OR KEYBOARD READING
SCREENSCROLLING
MAKING AN INTEGER MACHINE LANGUAGE PROGRAM
WORK RIGHTFROM APPLESOFT
SOUNDS, NOISES, VIOLINS, SONGS,ETC.
24A. TuneRoutines/Songs
24B. Sound/Noise Generating Routines
24C. ViolinSounds/Songs
24D. Music (Write:Record:Play)
24E. Words--—-Speech.
24F. OurFavoriteSounds.
MEMORY ORGANIZATION
SCREEN FLIPPING (or Where Were You When The Lights
WentOut?) e e e
560-POINT RESOLUTION (and 140and280).
LIST-OUTPROGRAMS
COLORFILL-IN
COLORFILTERING
YTABLE USAGE --- A Nice Speedimprovement
BLOADENCLOSEDSHAPES
ASSEMBLERS, ASSEMBLING, LISA
6502 INSTRUCTION SET (Mnemonics)
POKES, PEEKS, AND CALLS FOR EVERY PURPOSE
USE OF LISA-EXECABLE SQURCE-CODE TEXT FILES
FOR THE INEXPERIENCED (if You Barely Know Any BASIC and
Think Machine Language Is How Cars Talk To Each Other While You're
Sleeping and You Want To Use This Package Without Having To Leamn
Much Of Anvthing, Then What In The Heck Are You Going To Do?

(Is that your problem, Bunky?) (For People Who Don’t Hardly
KnowNothing). e
SUMMARY
COMMANDS THE MANUALS NEVERTOLDYOU
APPENDIX (Extra copies of drawing cards) L
INDEX . . . e

INTRODUCTION

The purpose of this book is to help bridge the gap between novice
programmers and expert programmers, especially in the area of high-
resolution shapes, animation, sounds, fonts, assembly language, col-
ors and color fill-in. .

The people who know the most about assembly hi-res shape and
animation routines are the people who are communicating the least
{(about what they know). These people are, understandably, writing
fast-action arcade-type games and making lots of vaiuable green paper
rectangles, also known as money. They have no intention of sharing
their knowledge in a way where others would soon learn how to make
games like they do. And with all the piracy and cheating going on in the
software industry, who can blame them for being a bit cautious?

However, in spite of all the above it really is time that someone tried
to put together a book about shapes, animation, sounds, etc.

For people who want to get into Apple DOS there’s Beneath Apple
DOS, by Don Worth and Pieter Lechner (Quality Software), and for
people who want to learn machine language programming but now
know only BASIC there's Apple Machine Language by Don and Kurt in-
man {Reston Publishing Company). For people who want to get deeper
into 6502 assembly there's 6502 Assembly Language Programming
by Lance A. Leventhal {Osborne/McGraw-Hill, Inc.) or Programming
The 6592 by Rodney Zaks (Sybex). Also recommended: Apple Or-
chard, Call Apple, Nibble, Micro, and Creative Computing. Finally, |
recommend a LISA Assembler (Programma).

The reason | say it's time someone wrote a decent shape (etc.)
manual is that there’s a tremendous duplication of effort going on lately
and there’s a lot of confusion about Hi-res, Assembly, and combining
these two. Thousands of people are all concomitantly trying to figure
out Apple graphics, and for some, the deeper into it they dig, the more
confused they become. Once you're past the simple-shape-drawing
stage, there’s no longer any real source of information to support your
further development as an Apple graphics programmer. Well.. there
ought to be.

. Why should everyone have to start from scratch about all this? Why
shouldn’t there be decent reference materials handy, and understand-
able, fully-explained shape drawing and animating routines as well?

Computers are the most wonderful thing 've ever bumped into,
and the most fun, and | learned a long time ago that good fun becomes
even better when it's shared. Let's share this fun. You only live
once...let’s have a real ball with all this.... .

Perhaps Sir Isaac Newton isn't the only one who gets inspired
upon being bonked by an Apple....

WHO IS DON FUDGE?

No, Don Fudge had nothing to do with Raster Blaster --- that was
Bill Budge. Neither you nor | can make a Raster Blaster, so it follows
that my only advice can be: IF YOU CAN'T BUDGE T, FUDGE IT.

And ves, | am a sweet fellow.

But now let's look at programming intentions. I've little desire to
program like other people do, or make a 999th version of Space In-
vaders and the like. At the end of my programming career I'd like to tum
around, smile at the audience through my long grey beard, and sing I
Did It My Way.”

A computer used in its best way is an extention of both one’s ra-
tional and one’s creative mind/ability/potential. It should aliow you tc do
all those wonderful things you've always wanted to do but never had a
way to do before. It should turn your fantasies into realities. It should
manifest the truth of the following: “if you can imagine it, youcan do it.”

A computer can be a type of heaven, a Utopian friendship, and a
creative adventure all rolled up into one. It can be a way of expressing
parts of yourself you never even knew you had.

A computer is like finding a naked lady in your closet --- you don'’t
know what it's all about but you're very open to learning.

So who is Don Fudge? Don Fudge is me. Don Fudge is you. Don
Fudge is our imaginary playmate, our cuddly little micro-mirage, our
rambunctious little RAM-chip rebel, our computerized guardian angel.

When the universe quits expanding, and the apex of universal
movement is reached, and it commences what some would call its in-

" evitable contractions (universal labor) and all matter gets closer and
closer until finally it becomes an irresistible ONENESS, then the
primeval Egg will explode again, and for billions of years our universe
wiliand again --- and yet through ali this finite infinity wilt live in spirit
the essence of one irrepressible entity, an entity which will permeate all
spheres of reality and all manners of being, and will often cause the
paternal representatives of developing intelligent life to remark with
solemnity, and with an ancient twinkle in their benevolent eyes, to their
computer-foving female offspring: “Yes, Virginia, there is a Don
Fudge.”

HOW TO USE THIS BOOK IF YOU
DIDN’'T BUY THE DISKS THAT COME
WITH IT

We don't plan to sell the manual without disks as a regular thing,
but if someone is willing to pay enough we'd probably part with a
manual without disks. This isn't recommended though. You'll get a lot
of useful information and a lot of source code list-outs and a few pro-
gram list-outs, but the 4 disks that come with the manual are crammed
with humongous amounts of programs, machine language files, shape
tables, shape table creators, shape table sequence creators, source
codes, color graphics, utilities, drawing programs, sample games,
sound effects, music writing and violin programs, YTABLE
programs...and you'll get listings for only a relatively small portion of all
this if you merely get the book without disks.

The best reason to buy the book without disks is you have either
no computer or a different brand of computer. The general ideas of
what I'm doing and how should still come through to you.

DIRECTORY OF PROGRAM LISTINGS
IN THIS BOOK

(Source codes, Rpplesoft programs, binasy files, etc.)

PRINTOUT # PAGELOCATION
1 Binary Fileofan Hplot-Shape 23
2 VectorShape 30
3 Binary FileofaVectorShape 30
4 Block-Shape 31
5 Binary FileofaBlock-Shape 32
11 Scanner Program --- TESTTB --- 1sthalf 35
12 Block-Shape XDRAW --- TESTTB---2ndhalf 36
8 (7 of 28A) Scan Block-Shapes; Saved As TAXFL 37
9 {8 of 28A) View Block-Shapes; Saved AsTXFL 39
10 (Sof 28A)UpsideDownDraw 40
8 HplotShape 41
7 winary File of an Hplot-Shape A 41
13 Instant Graphics, (Block-Shapes)Menu 43
14 (4 of 28A Menu) ScanBlock-Shapes 49
999 ZXZX, 38th on the catalog and directory of disk 28C,
Convert Block-Shapesto VectorShapes 50
15 1-bitand 2-bitmovingsequences 59
16 TEST D (used in C of 28A, the One-Page Block-Shape
DemoinAssembly) 63

17 TEST E (CALL36934) (monitor disassembly) (used in
. B of 28A) 2-Page Flipping Block-Shape Demo In Assembly . . .69
18 TEST F (used in D of 28A, 2-Page Flipping Block-Shape Demo

In Assembly; Withinputs) 74
19 TEST G (used in D of 28A, 2-Page Flipping Block-Shape

Demo In Assembly; Withinpuis) 80
20 TEST H (used in 1 of 28B, Automatic Block-Shape

Sequence Creator --- Starting With Block-Shapes) 85
21 (1 of 28B) Automatic Block-Shape Sequence Creator ---

Starting With Block-Shapes (create/save sequence} 88
22 (7 of 28B) Hplot-Shape Viewing Or Animation (Applesoft

animation) 24
23 TEST O(usedin 6-8 on 28B, Hplotprograms) 96
24 TEST P (used in ¢ of 28B, Hplot-Shape Hor. or Vert.

Movement) 100
25 TEST Q (used in 9 of 28B, Hplot-Shape Hor. or Vert.

Movement) 102
26 TEST R (used in A of 288, Hplot-Shape Diagonal

Movement) 105

HOW TO USE THIS BOOK IF YOU
DIDN'T BUY THE DISKS THAT COME
WITH IT

We don’t plan to sell the manual without disks as a regular thing,
but if someone is willing to pay enough we'd probably part with a
manual without disks. This isn’t recommended though. You'll get a lot
of useful information and a lot of source code list-outs and a few pro-
gram list-outs, but the 4 disks that come with the manual are crammed
with humongous amounts of programs, machine language files, shape
tables, shape table creators, shape table sequence creators, source
codes, color graphics, utilities, drawing programs, sample games,
sound effects, music writing and violin programs, YTABLE
programs...and you'll get listings for only a relatively small portion of all
this if you merely get the book without disks.

The best reason to buy the book without disks is you have either
no computer or a different brand of computer. The general ideas of
what I'm doing and how shouid still come through to you.

DIRECTORY OF PROGRAM LISTINGS
IN THIS BOOK

(Source codes, Applesoft programs, binary files, etec.)

PRINTOUT # PAGE LOCATION
1 Binary Fileofan Hplot-Shape 23
2 VectorShape 30
3 Binary FileofaVectorShape 30
4 Block-Shape 31
5 BinaryFileofaBlock-Shape 32
11 Scanner Program --- TESTTB - 1sthalf 35
12 Block-Shape XDRAW --- TESTTB---2ndhalf 36
8 (7 of 28A) Scan Block-Shapes; Saved AsTXFL 37
9 (8 of 28A) View Block-Shapes; Saved AsTXFL 39
10 (Qof28A)UpsideDownDraw 40
6 HplotShape 41
7 winary File of an Hplot-Shape IR 41
13 Instant Graphics, (Block-Shapes)Menu 43
14 (4 of 28AMenu) ScanBlock-Shapes 49
898 ZXZX, 38th on the catalog and directory of disk 28C,
Convert Block-Shapes to VectorShapes 50
15 1-bitand 2-bitmovingsequences 59
16 TEST D (used in C of 28A, the One-Page Block-Shape
DemolinAssembly) 63

17 TEST E (CALL36934) (monitor disassembly) (used in
: B of 28A) 2-Page Flipping Block-Shape Demo in Assembly . . .69
18 TEST F (used in D of 28A, 2-Page Flipping Block-Shape Demo

In Assembly; Withlnputs) 74
19 TEST G (used in D of 28A, 2-Page Flipping Block-Shape

Demo In Assembly; Withinputs) 80
20 TEST H (used in 1 of 28B, Automatic Block-Shape

Sequence Creator --- Starting With Block-Shapes) 85
21 (1 of 28B) Automatic Block-Shape Sequence Creator ---

Starting With Block-Shapes (create/save sequence) 88
22 (7 of 28B) Hplot-Shape Viewing Or Animation (Applesoft

animation) 94
23 TEST O(usedin 6-8 on 288, Hplotprograms) 96
24 TEST P (used in @ of 28B, Hplot-Shape Hor. or Vert.

Movement) 100
25 TEST Q (used in 9 of 28B, Hplot-Shape Hor. or Vert.

Movement) 102
26 TEST R (used in A of 28B, Hplot-Shape Diagonal

Movement) 105

(A of 28B) Hplot-Shape Diagonal Movement (POKES) 108
Major Variable Value Examination 113
TEST C (used in G of 28A, 1-Page Vector Shape
DemolnAssembly) 117
TEST S (used in H of 28A, 2-Page Flipping

Vector Shape Demo In Assembly). e 118
(3 of 28A) View Shapes or Animation {animation

TOUting) 122
TEST A (usedin F of 28A, Speedy BlockShape). 122
{6 of 28A) Block-Shape AnimationDemo 127 -
Picture e 133
TEST | (used in 2 of 28B, Logical Shift Block-Shape

Moving --- Horizontaland Vertical) 138
TEST J (used in 3 of 288, Color Horizontal Shift < 2 >
2-PageFlip{(Block-Shape). 141
TEST K (used in 3 of 28B, Color Horizontal Shift < 2>

2-Page Flip (Block-Shape) 146
TEST M (used in -4 of 28B, Diagonal Color/White Shift

<2> Moving --- 2-Page Flip (Block-Shape) 150
TEST N (used in 4 of 28B, Diagonal Color/White Shift
< 2> Moving --- 2-Page Flip (Block-Shape) 153

TEST L (used in 5 of 288, Vertical Shifling --- 1-Page
(Block-Shape) 156
Sample Game With Violin and Noises (2 of 28C) (explosion
using shape table BOOM) 161
Tof28D .. 170
ColorTest 173
Whiteline (option 18 of 40f28D) 177
SpeedTest. e e L 181
Superfont (leftward scroll with wrap-around) 184
TEST 32 (used in Superfont for 64 line scroll-up) 185
TEST 41 (usedinR > 1-BT SCROLL(TEST#41) 187
TEST 43 (used in LNW < 1-BT SCROLL(TEST#43) 189
TEST 39 (usedin A 8-LNSCROLL(TEST#39) 192
Picture. 194
UPSCRL (usedin UPSCRIL.1inScrofiUp) 195
ToneRoutine 198
Chart. 200
MultipleLaser! 203
ScreenFlipDemo - Applesoft. 206
Res. 560(0n28D} 208
Picture 213
CorrectionsforColorFiliDemo 214
Chart e 216
FILL1 (usedin Palette, 40f28D) 218
(8 of 28D) Shape/Pic. (hi-bit setter or zeroer, or byte
complementerroutines) 232
(4 of 28C) YTABLE Test (Vert. Addr. Locator) and Accessor . 234
YTABLE 235
{1 of 28D) Bload Enclosed Shapes 238

v ...u... nnnnnn uw i w. i B % B T

LED, CLERR .|

- ﬁWMHTEWN mw;

] [Il'"" o T I I") 8 ol s T i B
L T L T

g o o o]

DIRECTORY OF PROGRAMS ON THESE

First, we’ll look at the menu for 28A:
1) edit block shapes
2) draw shapes (solid or outline) and save/retrieve your creations
3) view shapes or block-shape animation
4) create block-shapes starting with anything, create sequences
5) view block-shapes
6) block-shape animation demo
7) scan vector shape, save as text file block-shape
8) view text file block-shapes
9) view text file block-shapes upside down
A) create block-shape sequences automatically from one vector

B) 2-page block-shape demo
C) 1-page block-shape demo
D) 2-page block-shape demo --- with user inputs
E) collision counter demo
F) fast block-shape demo
G) 1-page vector shape demo
H) 2-page vector shape demo
I} examine vector shapes
Next we’ll look at the files on 28A:

i A B33 HELLOD
2 A @76 IG

3 T 882 LIST N

4 A 665 SCAN BLOCK-SHAPE :SAVED AS THFL
S5 A Bok ¥aA

& 6 B24 SCAMA

77B BB3 MAH

g A 293 UPSIDE DOWM DRAL

S A 682 MEHU

18 B B2 TEST D ¢(CALLZ18E)

11-5 PI6 CHAR

12 A B14 IHTROZS

i3 B o@2 DELLIST

14 T @82 QG

iS A BES DRAW BLOCK-SHAPE ;SAVED AS TRFL
15 A 822 i

i7 B 089 032

12 A 611 YCEXAM

19 A GA3 ASHELSEQ

26 B BO32 TEST F ¢ CALL36334)

71 A B3 ASHFLE T

22 B 883 TEST E (CALL3IS934)

23 A 887 ASAIMPUT

24 B oB2 05

23 B 889 G4

26 B 883 TEST G_cCALL35934)
27 A 885 COLL. CTR.
24 A a4 DRAWA
23 B gg2 TESTTE
36 B Bll MAHR
31 8 913 BLOCK-SHAPE ANIMATION DEMD
32 B 9BZ TESI A ¢(CALL2186
33 A BB3 ASMBL
34 8 B2 MANB
35 A BR7 YCFLIP
36 A ool ¥
37 B 802 TEST © (CALL2843)
32 A BBy YCDEMO
32 B @@z TEST S (CALL21SS)
45 B 082 TEST B (CALLEBAB >
41 B 888 MANC
1) Helio

2) Instant Graphics (Block Shapes)
3) text file used in listing out protected programs
4) 7 above
5) 3 above
6) 4 above
7) MAN,A2352,0L330,8 V(vector) shapes (#5 is flying saucer),
has seq., use in 7,A
8) 9 above
g9) Menu
10) A2048,1210,usein C
11) CHAR,A$8D00,L$8DO(A36096,L2256),52 V shapes, use
in intro.
12) introduction, uses CHAR
13) use in listing out protected programs
14) QQ 1 textfile shape,25HX4W,102 data in 2-dim. array
15) 8 above
18) A above
] 17) Q3,A2304,L1792 (saucer),7B(block)shapes, 184X5W,step
1,seq.,use in C,B,D or 28A or 4 of 28C
18) | above
18} C above
20) A36864,L324,usein D
21) B above
22) A36864,L288,useinB
23) D above
24) Q5,A2304,L1792,("LL"),7B shapes, 41X8 but say
21HX8W,step2,seqg.,use in D
25) Q4,A2304,L1792,(submarine),7B shapes,21HX8W, step
1,seq.,usein D
26) A36864,L342,useinD
27) E above
28) 5 above
29) A2048,L140,usein 1,3,4,5,6,and A
30) MANA,A2304,L237@,10 B shapes,21HX2W, (#5 is
15X3),step 1,seq.,use in 3,6,D,F
31) 6 above

8

32) A2048,L18%,useinF

33) F above

34) MANB,A2304,L1624, delay 7¢hi,255l0,7B
shapes,2 1HX3W,step 1,seq.,use in D

35) H above

36) 1 above (L40)

37) A2048,l85,usein G

38) G above

39) A2048,L171,useinH

40) A2048,1.77,use to replace TEST C in G of 28A,this DRAW
won’t work,needs XDRAW like TEST C ,

41) MANC,A2304,L1646,delay:70Qhi,25510,78B
shapes,2 1HX4W,step 2,seq.,use in D

Now we’ll look at the menu on 288

1) create block-shape sequences from other block-shapes
automatically

2) animation with vert. XDRAW movement or hor. shift {block-
shapes)

3) 2-page block-shape double-shift animation

4) diagonal vert. plus hor. shift (double-shift hor.) animation

8) vertical shift animation, 1-page

8) examine/edit hplot-shape

7) view or animate hplot-shape

8) draw hplot-shapes

9) hor./vert. animate, hplot-shape

A) diag. animate, hplot-shape

B) Superfont

C) Retrieve {(use with Superfont)

D) test scrolling routines in Superfont

E) list any 28B program

F) list any 28A program
Now we’ll lock at the files on 28B:

B35 HELLO
315 AAA _
gRd SCROLLING
2 HPEDTT
6 FONT PROGRAM
MEHL!

814 INTRO23

812 RETRIEVE

@34 TEST J DR K PROG.
e DIAG. -

g@d JEST L PROG.

gg2 TEST 0 FROG.

FEDRAL
HPLEMD

HPDIAG

LIST AHY PROGRAM ON A
LIST ANY PROGEAM
TEST H (CALLZ126>
MAHA

et o TE PR

=
fary
™

Ml"!.'u:l:l@l:i‘-mmu

TRDLIDIDDIDDLIDIDDIDDIDIDITD
[T ekl ?

b= RGOS T 2 L PG
EMENREN S G

PN bt bt ot sty ot ot o s et

[

Bl S0

LU LU

3]

L=
-1-1-1ﬂ+—|-n:clwmmpmmmmmmmmmmmmmmmmmmmmmm
5
ix]

Y]

21)

1 1% (5 (550 bt e 5

[y I TaTum T Do D e T fax Pce D Tan]
IL:JDJ'LI.‘!I‘UC;J (S DO TR I a D e T

SIENS SIS

B3

Hello

1 above
D above
6 above
2 above
B above
Menu

TECT I <{CAllzslss?
HHP

aA

SEURRE

ey 4

ST

TEST J £l 363354 s
BHW>1-BT SCROLL (TESTH#44 >
JEST O Al 1 28983

TEST M {CRALL3A934>
Mﬂé—BT SCROLL (TESTH#4AZD
TEST M cChHIE 36934

ME-LH SCROLE CTESTH3S

o TEST L <CRLLZ8482

FRAST 54—t M SCROLL TESTHZ22>

2 EXI-BT SCROLL {TEST#41>

SQEEGCT

3 TEST K (CALL: EHT4i

T?MJI—BT SCEOLE CTEST#A3
TEST P Rl 2143
TEST 2 (CALLZISS
TRIEHGLE

TEST R {CALL2FABI2 Y

B
3

introduction, using CHAR

C above
3 above
4 above
5 above
6 above
7 above
8 above
9 above
A above
F above
E above

A2048,1.224,usein 1 or 2

MANA,A2304,L2370,10B shapes,#5

saucer,21HX2W, 1 step,seq.,use in 2,3,4,5
A2048,1.233,use in 2

10

22)

is 15X13 flying

23) SEX,A2304,L4086,16B shapes,#1+#2:27X4,the rest
27HX5W,3-9 ¢ seq,10-16 & seq.,1 step,use in D of 28A

24) CHAR,A36096,12258,52 V shapes, use in introduction

25) AAA2304,L1792,7B shapes,16HX5W,step 1,seq.,use in
D of 28A

26) SQUARE,A4096,0L425,1V shape (white),use in A of 28A

27) 8Q,A2304,L421,color=2 for #1 and 3 for #2,2B
shapes,32HX4W,use in 2,3,4,5 and D of 28A

28) SQSEQC,A2304,L1722,7B shapes,32HXBW,2
steps,seq.,use in 2,3,4,5 and D of 28A

28) A36864,L292,usein 3

30) A$800,L$3109,useinD

31) A2048,182,usein 6,7,8

32) A36864,L333,usein 4

33) A$800,L$1@9,usein D

34) MANDG,A2304,L.280,1B shape (2 long),39HX6W, test
shape for hor. or vert. shift,use in 2,3,4,5

35) A36864,L.333,usein 4

36) A%$800,L$115,useinD

37) A2048,L230,useind4 or 5

38) A$800,L3BO,useinD

38) A%800,L$3108,useinD

40) SQSEQCL,A2304,L231,1B shape,32HX6W,2 steps

41) A36864,L300,usein 3

42) A3$800,L3109,useinD

43) T1,A2304,128 (small plane), 1H (hplot) shape, = 0,80,use
in9,10

44) A2048,L144,usein 9

45) A2048,1243,usein 9

48) TRIANGLE,A2304,L.2317,10H shapes, ~ 140,150,seqg
1-1Q,use in 7,9,10

47) T2,A2304,.28 (big plane),1H shape, ~ 255,80,use in

48) A36864,L263,usein A

49) gets Superfont set for RNW > 1-BT SCROLL (TEST#44)
50) gets Superfont set for L<1-BT SCROLL (TEST#42)

51) gets Superfont set for FASTA64-LN SCROLL (TEST#32)
52) gets Superfont set for ~ 8-LN SCROLL (TEST#39)

53) gets Superfont set for R>1-BT SCROLL (TEST#41)

54) gets Superfont set for LNW < 1-BT SCROLL (TEST#43)

Menu for 28C:
1) write, record, play, see music, done with normal tone routine
2) sample game shows use of VIOLIN, NOISES, EXPLOSION
(CALL5472), BOOM for vector shape animation
3) tone routine with Close Encounters Theme
4) YTABLE test, using TEST E (CALL36934) and TESTBL

5) Convert block-shapes to vector shapes

11

Now let’s see the files on 28C:

b
g
G
i
[y
o

CCpll2ians

CCALLZ2Igs)

ol besh

b Ju e O AP P AT
s
M
Ly

TEST B (CALL2848>
% ¢ CALL 284

TEST £ <CALLZIZS)
7 <CALL36334>

10 (S50 bt e
o
gt

L

T

G s 1515

TEST K <CALL3IES34

aEe VINLIH

ed TEST L

@24 MUSICCHRITE: RECORD: PLAY
USTHG FOHT

TEST L ¢CALLSBYS)

TEST H <CRLL 23693243

v TuvTaatos Tonlealaen]as T Ten Taous By fun)
[

)
=)

@Hmmuﬁ(

I
DT EN Tt E T T TN BN N R TR oD
AR R s I A TR Tt T L e e

{0 T G CTACKI CTACR A R L3 =} A G CT 2R T3 e o 00 0 200 0 5] e 00 e e 000 o 00 00 0 e Y 03 30 00 o 00) o 000 == G0 4 0 CF 20 e e T e e o (0]

M
TES g < CALL 36924 3
TEST 0 (CALLZB45

TOHE ROUTIHE
SAMPLE GAME LL-VYIOLIN 2 HOISES
HI_RES CHARACTER GENERATOR

TEST P

TEST P (CALLZ1G@
CHARACTER TABLE
TEST G (CALL2IDE Y
EXPLOSIONC CALLSA72 >
ECICH

TEST R N
TEST R _(CALL37RZZ

HEL ICOPTERCCALL 55480
02 BOMEDROPS CHLLZAS1 »

g2 UFD TAKE—OFFL CAL L4387)
G2 BOUMCESCCALLAS93:
Gas MOLTIPLE LASERC CALLZZSG
B2 DIVE STPAFIHGCCALL 52540
aao OUTER SPACES(CALLSISGS
AE MERL _)

AP TEST A CCALLZ1BED

s Dios Tt bios TN Tew D= s Tt

am@mm@%gmmmm@mmmmmmmm@m
S1I%H

351 (5 b=t (514

il

COLILALOI NI g i b B LI oy i

WS QN s 00 QTR I S 000

12

68 B AEZ TEST D (CALLZ2ISS: .
61 8 BE3 TEST E (CHLL 38934
6§ 2 B3 TEST F (CALL 259343
63 B 893 TEST G (CRLL38934 5
54 B B2 TESTIE
£5 A 864 TESTBL
1) Hello

2) usein F of 28A
3) A2048,1224,usein 1 or 2 of 288
4) don't use, it tries to DRAW rather than XDRAW if used in G of
28A
5) A2048,L210,use in C of 28A
8) usein 1 or 2 of 288
7) usein D of 28A
8) A2048,L233,use in 2 of 28B
9) usein 2 of 288
10) use in D of 28A
11) usein 1,3,4,5,6,A of 28A
12) introduction, uses CHAR
13) CHAR,A36096,L2256,52V shapes, use in intro.
14) don’t use, it tries to DRAW rather than XDRAW if used in G of

15) use in G of 28A

18) A2048,L85,use in G of 28A

17) usein H of 28A

18) A2048,L171,use in 3 of 28B

19) usein 3 of 28B

20) A36864,.292,use in 3 of 28B

21) YTABLE,A$1D00,L$280

22) usein 3 of 28B

23) A36864,L300,in use in 3 of 28B

24) NOISES,A5625,L114,use in 2 of 28C

25) VIOLIN,A7424,166,use in 2 of 28C

26) Q3,A2304,L1792 (saucer),7B shapes,18HX5W, step
1,seq.,40f 28C

27) usein 4 or 5 of 288

28) 1 above

29) USING FONT-test out Font routine usage

30) A2048,L.230,use in 4 or 5 of 28B

31) usein 4 of 288

32) A36864,L333,use in 4 of 28B

33) tune in a text file,used in 1 of 28C

34) usein 4 of 28B

35) A36864,L333,use in 4 of 28B

36) usein 6,7,8 of 288

37) A2048,.82,use in 6,7,8 of 28B

38) 5 above

39) tone routine

40) 2 above

41) A7168,L256,use in 2 of 28C

42) usein 9 of 28B

43) usein 9 of 28B

13

44) A2048,L144,use in 9 of 288
45) A6144,L1024,use in 2 of 28C
48) A2048,L243,use in 9 of 28B
47) A5472,L34B,use in 2 of 28B
48) BOOM,A37475,L243,5V shapes, vector shape seq. 1-5
49) use in A of 28B

50) A36864,L263,usein A of 28B
51) A$15AC,L$4C

52) A$C13,L$31

53) A$10D3,L$B0O

54) A$1381,L$A5

55) A$8B6,L$2C

56) A$14D6,L$89

57) A$1427,L$AE

58) Menu .

59) A2048,.189,use in F of 28A
60) A2048,L210,use in C of 28A
61) A36864,1288,use in B of 28A
62) A36864,0.324,use in D of 28A
63) A36864,.342,use in D of 28A
64) usein 1,3,4,5,6,Ain 28A

65) 4 above

Menu for 28D:

1) Bload Enclosed Shapes

2) Examine Vector Shapes

3) View Shapes

4) Fill with hundreds of colors, paint, fix white lines

8} Vector animation demo

8) Scan/save block-shapes

7) Demo about the 4 adjacent bytes that make up the “color
bytes” and what the color bytes are when certain colors are on the
screen.

8) Create pictures from shapes; color filtering or other manipula-
tion

8) A demo of how to do automatic filling of shapes and pictures
with colors, including a demo of how not to fill colors

A) A good demo of color fill --- list it out and see how it's done

Now let’s see what files are on 28D:

18 882 HELLD

2 8 218 YCEXAR

3 B aas MHHI

4 B 883 PO

5 R/ 82 PALETTE

- 8 #i4 INTROZSE

7 B #@ic You

2 8 822 YIEW SHRFES
9 7 285 MEMU

182 924 3 _,z_anFﬂ"ITE z
il g aig CH

iZ2 A gix HHIHE—*TI”H BEMO
13 B 88 ANIMALS

14

a@4 BEAHS
A6 SPACESHIPS

8ES DIYERS

gaZ STATIONS

@@2 MOUSE

@@z BUGCHASER

882 R

886 GO0OD FILL

@11 _BLOAD EHCLBSED SHAPES
862" TRP

@82 BOOHM
885 RACER
B2 DINGER
g2{ FILL
554 FILL1

TESTIE
884 MEDIA
B24 SCANA
BG2 HCOLOR
882 TEST O <CALLPB4S)
3 SHAPE-PIC.
8685 WHITELIME
882 WHITELINEL
gg2 FIITER

MOH
64 FILL DEMO
aug 12
Ba5 CTRCLE-FLI TPSE
BG4 SP IROGRAP
835 UPSCRL
BOEF UPSCRLL
BEZ SCROLL UP
8073 AMPERSOUND
anZ AMPERNOISE
agS TWO—PRGE AMIMATION
833 RES. 565

1) Hello
2) 2 above
3) MANC,A2304,L1646,delay hi 70.,lo0 255,7B
shapes,21HX4W,step 2,seq.,usein 2 or 6
4) POS,A2110,1.2830,126 (actually 14 done) V shapes about
yoga,use in 2,4,6,8
5) 4 above
6) introduction,uses CHAR
7) YOU,A2336,L3700,13V shapes (12 done),monsters,use
in 2,4,6,8
8) 3 above
9) Menu
10) COMPOSITE 2,34-sector picture that BLOADs in page one,
usein 4 and 8
11) CHAR,A36096,L.2256,52 vector shapes
12) 5 above
13) ANIMALS A$8FFF,L$44E,22 V shapes {last 6 gone)
14) BEANS,A$9000,L$1FF,9 V shapes
15) SPACESHIPS,A$9000,L$47RB,50 V shapes, (last 18 gone)
18) DIVERS,A$9000,L $3E5,15 V shapes
17) STATIONS,A$2000,L$93,3 V shapes

ds B B B B B s LU S LI OIS GO AN)
N R B B D N b
mmmmmmﬁmmmmﬂmmﬁmmmmmmmﬂmw@qmmwmmmwmm

15

18)
19)
20)

28D)

16

21)
22)
23)
24)
25)
26)
27)
28)
29)
30)
31)
32)
39)
34)
35)
36)
37)
38)
39)
40)
41)
42)
43)

MOUSE,A$S000,1.$B0,4 V shapes
BUGCHASER,A$9000,L$DB,3 V shapes
A ,A3936,0L49,3 V shapes (try DRAW and XDRAW in 3 of

A above

1 above)
TRP,A$925C,L$F,1 small torpedo shape,V
BOOM,A$9263,L$F3,5 V shapes,seq. 1-5
RACER,A$9095,L$1B,1 racer shape,V
DINGER,A$1450,L8E,1 small square shape,V
FILL,source for FILL1,use in 4
FILL1,A$9000,L$320,use in 4
TESTTB,A2048,L.140,use in 4,6,8
MEDIA,A$S000,L$8267,20 V shapes

6 above

7 above

TEST O (CALL2048),A2048,.82,use in 9

8 above

WHITELINE, source for WHITELINE1 ,use in 4,8,9
WHITELINE1,A2048,L.111,use in 4,8,9
FILTER,mach. lang. color filter routine
MAN,A$930,L$14B,8 V shapes

9 above

T2,A2304,.28,1 H shape,use in 9

Circle or ellipse drawing

Spirograph/polar coordinates graphics
UPSCRL,source for UPSCRL1,use in SCROLL UP

44) UPSCRL1,A$800,L%60,0ne line at a time
scroliing,binary,use in SCROLL UP

45)
48)
47)
48)
49)

SCROLL UP,Applesoft driver for UPSCRIL.1,1-line scroll-up
ampersand controlled Applesoft sound routine demo
ampersand controlled binary sound routine

2-page animation demo (fundamentals)

560-pt. resolution demo

HOW TO USE THE PROGRAMS ON
THESE DISKS

There are several types of files on these four disks. One type is a
shape table, such as: BO09 Q3

This a binary file in which a small block of memory containing one or
more Block-Shapes is found. The first byte of the address at which Q3
is stored does not contain the number of shapes in the file, as with Vec-
tor Shapes. Also, there’s no index, and no 00 to represent the end-of-
shape byte. Not all binary files contain Block-Shapes. Binary files on
these disks wili also contain:

1) Hplot-Shapes

2) Vector Shapes

3) Machine Language Graphics Programs
4) Machine Language Scrolling Routines
5) Machine Language Sound Routines

6) Hi-Res Character Generator

7) Hi-Res Character Table

8) YTABLE, for indexed vertical addresses

Another type of file is an Applesoft program such
as: AD20 HPDRAW:

This is an Applesoft program that lets you draw Hplot-Shape tables
and save them. Other Applesoft programs on these disks let you save,
draw, examine, edit, animate all types of shapes, run Superfont, sam-
ple game, music program, tone routine, choose from menus, list out
programs, create or retrieve/view text file array shapes.

Here’'s another type of file: TOO8 TEST A

This is a LISA-execable test file containing LISA source codes for
the machine language program: B002 TEST A (CALL 2186)

The way you'll use these LISA files is by doing a CTRL D EXEC (file
name) in LISA, and then hit A to assemble them. Now you may
change/append them or simply examine them.

Another test file: T002 QQ.

This file holds a shape in test file array form. It was “drawn” by pro-
gram 7 on disk 28A. It can be viewed with program 8.

Another test file: TO02 P1

This file holds the name of a scrolling program BLOADED by:

A 028 FONT PROGRAM.

If you need the address of any binary file you've just BLOADED,
then type: ? PEEK(43634) + PEEK(43635) * 2586.

If you need the length of this file, type: ? PEEK(43616) +
PEEK(438617) * 256.

(These commands are for use with the unprotected 28C or 28D
disks in immediate or deferred mode or for shapes or programs you
create on your own unprotected disks.)

17

These disks are written in either DOS 3.3 or DOS 3.2. If you have
the 3.2 version and try to muffin it, things will mess up because disks
28A and 28B are protected. Get the correct DOS version from your
des .. or from us to begin with, or for $5 exchange one DOS version
for the other (send us the old version and a note and $5). By the
way, the way you get from one protected: program disk to the other
(28A/28B) is to switch disks before you leave a program. When pro-
grams are exited they go to MENU, but MENU is on 28A and 28B, so
it’s okay to switch disks here. Now, 28C and 28D are unprotected so

" you can't go from them to 28A and 28B without rebooting, or from 28A
or 28B to 28C or 28D.

Let's look at the ways you'll be using these disks. First, of course,
you'll want to go through the manual and try all the programs on the
disk. Once you're familiar with what the various types of shapes,
sounds, and routines are all about, you may list and study programs
that represent procedures and/or shape types you'd like to learn more
about. Once you understand the program, you may use it in your own
programs like so:

1) Figure out how much of the program you'll need

2) Type and save that in your own program. {This refers to the Ap-
plesoft programs that function as drivers to machine language drawing
programs, such as ASMBLSEQ on disk 28A. A driver is a program that
runs another program or output device or sends input to it.)

3) BLOAD the correct binary graphics routine off disk 28C and
BSAVE it onto your personal disk (TEST C (CALL 2048) would go with
ASMBLSEQ, the 19th file on disk 28A). The proper addresses and
lengths are written in this manual, and can also be found with the
PEEKS above.

4) If you haven't already created a Block-Shape sequence table
for your program, either do so or BLOAD Q3 off 28C and BSAVE it on
your personal disk (if such a sequence is needed).

5) Make sure your HELLO program does POKE 103, 1:POKE
104, 64:POKE 16384,0 before it LOADS your graphics program, if -
it's a 1-page Hi-res program (using only HGR). If it's 2-page flipping
use POKE 103, 1:POKE 104, 96: POKE 24576,0. This starts your
program higher than your graphics tables and the hi-res pages.

8) Make sure your program also:

(A) BLOADS all necessary shapes

(B) Uses shapes that were saved with the correct addresses and
lengths

(C) BLOADS any character generators and tables you'll be using

(D) BLOADS any machine language graphics routines you'll be us-
ing

(E) Sets Himem to 36864 if tables or machine language programs
are BLOADED above 36864 ($9000).

(F) Correctly handles steps, coordinates, variables, colors, travel
direction

(G) POKES 234 ($EA) (NOP) into EOR ($51) and (HBASL),Y
($26) lines in machine language routines if you prefer DRAW over
XDRAW. (In BLOCK-SHAPES it's EORing that causes XDRAW instead
of DRAW, since in EOR a bit gets turned on only if it's different than the

18

one it is drawn on top of.) (Be forwarned that block shapes will not
erase if you dump the EOR line!)

(H) Uses ONERRGOTO routines

() Employs realistic lengths in delay loop variables

(J) BLOADS YTABLE at $1D0O(length is $280) if you'll be
substituting table look-up for HPOSN in finding addresses of vertical
coordinates, and also POKES in the proper YTABLE addresses at 222,
223, 206, 207, 30, 31 (dec.), and replaces JSR $F411 (HPOSN)
with JSR $320 (YTABLE vertical address locator routine) (JSR is left as
is, and POKE 32 for low byte and 3 for high). Also, POKE in proper
$320 vertical locator routine.

(K) Calls the correct graphics routine number

(L) Has delimiters/boundaries or conditions that stop action from
achieving infinite loop

(M) Uses correct 232 and 233 (dec.) POKES if shapes are vec-
tor, and specifies HCOLOR, ROT and SCALE.

(N) When you want to scan block shapes or draw block shapes in
your own programs, use TEST TB of 28C (save it onto your disks with
length 140 and Addr. 2048).

(O) To determine which mach. lang. programs you might want to
use, try out all 28A and 288 sample animation programs and use 288
(E or F) to list them. Notice which mach. lang. programs are BLOADed
in these programs.

19

SHAPES AND OTHER MYSTERIES

What is a shape? A shape is a figure of some kind seen on a CRT
(the video monitor). It may be white on black, black on white, or col-
ored. It may be hi-res or low-res, or even text. We'll be concentrating
on hi-res for now.

On the screen the figure of a shape is composed of a special con-
figuration of bits turned on (or off if you're drawing in black on a white
background). The shape may include only the figure itself, but the
bytes in the shape table that are responsible for drawing it may include
lots of invisible dots as well. The actual bytes in a shape may include as
litle as 5% visible dots. This will often occur in unfilled block-shape
figures. All dots in hplot-shapes are visible. A vector shape’s dots may
either all be visible or only part of them may be visible. Invisible dots are
included in the shape as moving vectors in which no plotting is done.

In memory, a shape may be several different things. It may be mere
#s in a BASIC DATA statement. Or it may be numbers in an array that is
either in a BASIC program or saved in a sequential text file and read into
a BASIC program with DOS commands. This system contains programs
to do the latter: #7 in disk 28A will scan a vector shape and form a text-
file from the bytes it reads (a block-shape configuration); #8 will READ
a saved text file array shape from a text file and display it, and #9 will
display it upside down.

This text file stuff is not usually practical or the best answer. It is
easy to understand, though, so this is the main reasen it was inciuded
in this system. What these text file shapes do is represent a block of
memory saved as an array in a text file. This block of memory includes
all the bytes necessary to include the entire shape (plus some exiras,
usually).

20

(each of the 7 dots in a byte is a bit)

Byte #0 Byte #1
address$2000 0 O00000®BOOO0000 address$2001
$2400 1 [e]Je]e]e] X Yo (oI T YeoYolole) $2401
$2800 2 [o]of] JeJeo]e olelel X Yolo $2801
$2C00 3 0000000000000 $2C01
33008 4 o] 1 Jeololole eleleleY I Yo $3001
$3400 5 0009090000000 000 $3401
$3800 6 [e]e]e]e]e]eX [Yoleole]ele]e) $3801
$3C00 7 0000000000000 $3C01

The above figure shows a very small flying saucer. it's the type of
shape arcade. games like to move around swiftly to provide
action/adventure. It is 2 bytes wide and 8 lines high. This makes it a
16-byte block-shape. One can load 16 bytes info memory extremely
fast, especially from a mach. lang. routine. There are plenty of such
mach. lang. routines in this graphics package.

If you were to load a shape like this from a text file array shape and
display it with program 8 of 28A, you wouldn’'t need to know any data,
you'd just do it. If you were to load such a shape from a binary block-
shape table, you'd need to know:

1) the shape # (1-23)

2) the VT (top or highest vertical coordinate)

3) the VB (bottom or lowest vertical coordinate)

4) the HR (right-most horizontal coordinate)

5) the HL (left-most horizontal coordinate)

For the shape in the figure above the coordinates are (it's OK to
add a # to VT and VB, and/or HR and HL):

VT=0

VB=7

HR=1

HL=0

And the shape # would be whatever one it had been given when it
was stored as a shape; let’s call it shape #1. Some of this will seem
unclear right now, but don’t worry, before I'm through you'll know more
about shapes than Hugh Hefner.

Look at figure #1 again. Notice that less than half the bytes in this
block-shape are “on”. The rest are merely part of the rectangular
space the flying saucer happened to be in. All 16 of the bytes that -
make up this shape are shape-bytes, but not all the bytes are
necessary parts of the shape itself. The first 2 bytes are not even part
of the shape at all --- they could just as well have been skipped.

21

That brings up a point: in block-shapes, the less excess bytes are
used, the less time it will take for a block-shape to load onto the hi-res
screen and the faster it can be animated.

Again consult the figure. It could be put there by text file array
READING and then loading the bytes from the text file into memory, or
it could be put there by moving a block of memory from a binary block-
shape table 16 bytes long into the addresses $2000, $2001, $2400,
$2401, %2800, $2801, 3$2000, $2001, $3000, $3001,
$3400, $3401, $3800, $3801, $3000, $3001.

. The reading for a block-shape would start at HR, VB (2nd byte
(byte #1) of the 8th line (line #7)), or $3001, and read the first block-
shape table byte into it. The next byte in memory (in the block-shape
table) would be read into $3000, the next $3881, then $3800, and so
on until the 16th byte in-the shape table would be read into the address
$2000 (HEX).

The difference between reading the shape from a block-shape table
and from a text-file is that the text file inputs bytes until a RETURN
signals end-of-field, and then it goes on to the next field, untit all 16 are
read in. They are placed on hi-res page one by POKES, just as they are
scanned from page one ($2000-$3FFF) and put into a text file in the
first place by PEEKS followed by OPEN, WRITE, PRINT (18 of these),
CLOSE. Also, they are read from line #0, byte #0 to line #7, byte #1,
just the opposite of block-shape scanning and drawing. (The reason |,
there are 18 PRINTS above rather than 16 is that the first 2 inputs into
the text file are width and height. This information allows the creation
of a 2-dimensional array. NUM (X,Y) would be a general element of this
array. NUM (2, 3) in the above figure would be $2801’s byte.

With a binary block-shape table, the data array is there, just asitis
in a text file block-shape array, but with binary files there is nothing
there but block-shape bytes. There are no shape table #s or height or
width data of any kind. So to use a block-shape table you need to know
what's in each shape # (from 1-23 is possible shape #) and what the
width and height is. It follows, then, that when you create shapes, you'll -
be smart to jot down this information.

There's a funny thing about these block-shapes and | may as well
tell yau now so the laughter may commence: even though you've
already learned that the above shape is an array 2 wide by 8 tall, when
you're asked for the width and height in a shape-viewing program you'd
give a width of 1 and a height of 7!

Before you get the idea that 'm off my rocker let me explain. If you
get really technical about it, when you deal with block-shapes the ques-
tion “what is the shape’s height?”” doesn’'t mean “how many lines tall is
it?”. Instead, it means “exactly how far is it from the lowest byte to the
highest byte in this shape?’. Well, from @ to 7 is 7, not 8. To check it,
subtract @ from 7. You'll get a remainder of 7. The same with the width:
1 minus 0 is 1 so we say that shape is “1 wide”’, meaning “the left byte
is only 1 away from the right byte”. This means that it would be okay to
enter coordinates of VB=119, VI=112, HR=33, HL=32. Or if ask-
ed for height and width you'd say 7 and 1. You see, from line 112 to
(and including) line 119 is 8 lines, and from line-byte 32 to (and in-
cluding) line-byte 33 is 2 bytes. So the true dimensions of 2 wd. x 8 ht.
are the end results. The secret here is that the block limits you give are

22

used inclusively. And 7 and 1, as height and width, get 1 added to
them in the course of their utilization, meaning that the program
recognizes that these numbers refer to how far parameters are from
each other, rather than actual heights and widths. Neat, huh?

You may be wondering: *‘Since most of the shape’s bits are “off”,
wouldn’'t it be better to use vector shape drawing rather than block-
shapes?” Well, it would take about 26 vector-plot bytes to draw this
figure, and it would have to be put through Applesoft DRAW or XDRAW
routines. So it would be slower and take up more memory. But if you
feel you need to DRAW and XDRAW and especially if you need to
ROTATE and SCALE, there’s a lot to be said for vector shape methods.

Block-shapes do either normal byte loading (STA) onto the hi-res
page or EOR and then STA, which means the bytes are logically
exclusive-ORed with what’'s on the hi-res page before they're loaded
onto it. The first method is comparable to DRAW, the EOR method is
comparable to XDRAW. A block-shape routine needs only one line add-
ed to get it to go from STA to EOR and STA, the XDRAWing. Hplot-
shapes are no good at XDRAWing, however.

XDRAW means leaving the background as you found it once you've
left (which is much easier to handle in black and white than in color) and
it means having 2 whites make a black, so that where shapes are
superimposed there will be blackness. Either-or means that 1 is the
result if the 2 compared bits of the 2 compared bytes are different (one
black, but one white) and @ is the result if they are the same (sc 2 “1”'s
would be 2 whites forming a black.

Hplot would not be a good shape method here since hplotting is
only economical if there are mostly long (or few) straight lines in a
shape. An hplot-shape table is in the same place (starts with shape #1
at $900, #2 at $AD0, up to #23 at $1FO0) as a block-shape table, but
is done very differently.

You needn't give coordinates --- for an hplot-shape you need give
only 1 thing (unless you wish to give a different color to its lines) and
that's its shape #. The data in an hplot-shape represent turning points
in the shape - they’re the coordinates of the points where the lines
join. Each point is defined by 3 bytes:

1) the horizontal coordinate’s low byte (0-255)

2) the horizontal coordinate’s high byte (0-1)

3) the vertical coordinate’s byte (0-191)

Here's the way a simple, but large, shape of the HPLOT type would
look in a binary file: (There are no shape bytes here, just point-
coordinates.)

PRINTOUT #1
+=IEA_SIE
g9068- 83 £l @8 25 FF 5
g9ha—- 88 6 rag a8 1o £
g2ibk—- FE 58 58 FE B8]
52ig- 55 EF &8 25

23

The first byte of an hplot-shape is different from either a vector
shape or a block-shape. It's a number that represents the # of points in
the shape. If the shape is a closed shape, like an octagon, there will be
one point that is counted twice, since the last line draws back to the
staring point (or one or 2 dots from that). There are 28 bytes in the
shape, the first being the # of points and after that are 9 groups of 3
bytes (hor. lo., hor. hi., vert.).

The shape #, which normally gets passed at $7 in most programs
in our system, is determined by what page the shape is stored at. What
is a “page”? It's 256 consecutive bytes of memory sharing a common
high-order byte in their addresses, such as page 9 which is $900 to
$9FF. What is a “high-order byte”? Well, if you were to see 00 09 in
the monitor and were sure it represented an address rather than data
or something else, it would mean $900 (dec. 2304). The low byte is
normally before the high byte, as that's the way the computer likes to
deal with it. The high byte’s # means that times 258, while the low
byte’s # means that times one. It's equivalent to the third digit in the
decimal system meaning that times 108. The first place is one's place
in either hex (base 16) or dec (base 10). The second place is times 16
in hex and times 10 in dec. The third place is times 258 (16?) in hex
and times 10@ in dec, and the fourth place is times 4096 (16°) in hex
and times 10800 in dec. Many of you know this --- some of you don't.

So the shape # is dependent upon which page the shape is stored
at. There are 23 pages from $900 to $1F0Q, so there’s room for 23
shapes. The limit is 256 bytes per shape, and unlike vector shapes, no
end 00 byte or index is required. Block or hplot-shapes may only be a
few bytes long, but still they're allotted 256 bytes. It's okay to give
them more than this --- even up to 5888 bytes, which is about 2/3 of
the hi-res screen. This last # is the distance from $900 (2304 dec.) to
$1FFF (8191 dec.). (There are many other ways to handle shape
#/mem. addr. relationships; this is merely Fudgie’s way.)

Why do both block and hplot-shapes start at $900 and why don’t
vertor shapes start there? Simple. Free memory starts at $800. But
many of our machine language graphics routines are stored from $800
to $8FFE (longer ones are from $9000 to $9150, approximately), so
we started our shape tables at $900. When using graphics programs
it's often best to POKE 103,1: POKE 104,64: POKE 16384,0 in
HELLO to start the programs above $4000 and avoid conflict with
page one graphics, or, for dual-page “flipping” programs to POKE
103,1: POKE 104,96: POKE 24576,0 to avoid conflict with both hi-
res pages by starting the program above $6000. “Page” here actually
means all the pages from $2000 to $4000 or from $4000 to $6000,
the latter representing hi-res “page” 2 and the former representing hi-
res “page” one.

Even though hplot-shapes are like block-shapes in terms of shape
assignment and placement in memory, a block-shape has no special
first byte --- all bytes are simply raw graphics bytes to be loaded into
memory according to the configuration you've jotted down somewhere
(shape #, height, width).

Now, the reason that all vector shapes don’t start at $900 is that
they start anywhere from $800 to $9600, including $900. The
reason each shape is given 256 bytes is that this makes for very fast

24

determining of where to go to get the block-shape or hplot-shape bytes
for the specified shape #. By having one shape per page, you need on-
ly deal with the high byte of the shape’s address. here’s how it’s done:

LDY #3$8 start with high byte of 9 in Y register
LDX §7 stick shape # into X
'HERE DEX subtract 1 from shape #
CPX #%00 isit O yet?
BEQ THERE if it's @ go to THERE
INY if it's O still, add 1 to Y (high byte)
JMP HERE and then loop back to HERE
THERE TYA now that Y is up to correct shape address
STA BASH high byte, put Y into base

address high byte, etc.

Shapes are usually numbered quite low, so very litile looping need
be done to determine exactly what is the correct shape base address
high byte (remember that the low byte will stay 0 so it is not dealt with
--- if you'd like to cram lots more shapes into the 5888 available bytes,
all you need to do is either build an index table similar to the ones found
in normal vector shape tables, or extend the above routine to include
manipulation of low bytes: you could add #$40 (64 dec.) 4 times within
each page and have room for 92 shapes, not 23).

To recap for a second, for an HPLOT shape you'll need to know
the name of the shape table and the # of the shape you want. This will
be drawn at a particular place in memory. But this doesn’t mean you
can’t move or animate hplot shapes. Quite the contrary --- they're easy
and fun to move/manipulate, and the lines may be of whatever color
you choose. The shape will always start in the place designated by the
point coordinates stored in memory, but after that it’s up to you. All the
routines you'll need for drawing, scanning, examining, locating, mov-
ing, coloring, editing and understanding hplot-shapes will be found on
disk 28B. The advantages of hplot-shapes are these:

1) they take up very litle memory

2) they're very easy {o use

3) they're quick and efficient

4) you may change their color easily

5) they're best for shapes composed of a series of straight lines

To recap vector shape info already discussed either here or in your
Applesoft manual: Vector shapes are best when you have to rotate
shapes and/or change their scales (larger or smaller). They aren’t as
fast as hplot-shapes or block-shapes, but are still plenty fast enough for
decent animation, as long as you don’t have too many of them running
concurrently. One needs to specify ROT (rotation of @ to 255) and
SCALE (0 to 255) and HCOLOR (0-7) and also shape table address via
dec. 232 and 233. ($8000 would be POKE 232,0: POKE 233,144.
The 144 is dec. of $80, the high byte of the shape table address,
which again is after the low byte of 00; 233 is after 232 in memory). .
When DRAWING one needs to specify DRAW or XDRAW, and you
need to give shape # and coordinates, and HGR or HGR2 or both must
have happened (init. graphics).

25

| feel vector shapes are the best way for beginners to start with
graphics shapes. To learn more consult both the Applesoft Program
Manual and our Super Shape Draw and Animate Package --- the latter
contains 2 manuals and 2 disiks that make drawing and animation a
breeze. The advantages of vector shapes are these:

1) Applesoft is already fully equipped to handle them, with its
DRAW and XDRAW routines and its SCALE, ROT, HCOLOR factors.

2) They grow and shrink and rotate and change colors easier than
other types of shapes.

3) They're the best shape type for beginners, and are the easiest
to use from BASIC.

4) There are many commercially available drawing and animation
programs which create/utilize vector shapes.

Block-shapes are faster than vector shapes. Let's see why. Each
byte in a vector shape table draws at most 2 dots. Each byte in a block-
shape table draws 7 dots {(whether visible or not). Block-shapes may
avoid the time-consuming HPOSN routine (part of DRAW or XDRAW)
by using the YTABLE option, which finds (by indexing) the hi-res page
address of the vertical coordinate in a couple of machine language
bytes of time, rather than calculating (by logical shifts and loops, etc.)
the address like HPOSN does. Vector shapes need to do most of what
haj. .-.s in HPOSN, so even when utilizing YTABLE things get slowed
down considerably. Block-shapes can be saved quickly and easily from
parts of anything that gets drawn on the screen,including combinations
of other shapes of other types. Vector shapes must be drawn adotata
time (with the exception of the program 5 of 28C, which converts
anything on the screen into a vector shape which can be rotated,

scaled, etc.) and take a very elaborate routine to create from other
shape types. So the advantages of block-shapes are:

1) ease of creation from anything on hi-res screen

2) efficiency and simplicity of storage

3) rapidity of drawing/animation

4) ease of changing back and forth from DRAW to XDRAW

5) compatible with use of YTABLE, for extra speed

8) any # of colors in each shape

Shapes of all types not only need to be used individually, they also
need to be used as sequences.

On the next page is a sequence from an animation demo on our
Super Shape Animate disk. A sequence isn’'t always in consecutive
shape # order --- also, sometimes a shape is used more than once in a
sequence. You'll be trying out sequences in program #3 of disk 28A.
These must be sequences that move a byte at a time (there are 40
horizontal bytes in Apple graphics) rather than a bit, or they may move
more than a byte at a time. This is pretty large stepping, so the pro-
grams that move only 1 or more bits at a time may prove to be more
useful. (Examples are programs A,B,C,0D,G,H on 28A and 1,2,3,
4,5,7,9,A on 28B and 4 on 28C, which uses the YTABLE).

Colored shapes need to move 2 bits at a time to avoid colgor
change, if the movement is horizontal. For vertical shapes this is irrele>
vant. The reason that colored shapes need to move an even number is
that hi-res color graphics really only has 140x192 resolution, not
280X192. (If you get really technical, like one Apple Orchard article

26

ey N it LA el

CAUVIDDDOZEFRXL=ZATNMOOIMAETD

#1 #

VOCABULARY:
increases display time

decreases
increases
decreases
increases
decreases
increases
decreases
increases
decreases
increases
decreases
increases
decreases
increases
decreases
increases
decreases
longer

EXIT

3

steps
shorter steps

1]

Fo

#

i)

first shape

second

1]

third

forth

L1

fifth

a8

sixth
0

seventh

se

etghth

ntnth
1]

=l

(13

m

<

#2

in segquence

88
(1]

(c) AVANT-GARDE CREATIONS Eugene,

g

did, black and white resolution is 560X192 and coloris 140X192 and
the reason most Apple users and programs think in 280X192 terms is
that it's easier to work with. Routines that take advantage of 560
horizontal resolution tend to be awkward and cumbersome. The
Graphics Tablet has 560-dot resolution capacity. More on this later.
We'll continue to think in 280x192 resolution terms to simplify things.
Anyway, specific colored dots show up right at even numbers only, and
others work best with odd, so if you have a blue shape that's showing
up \eit as blue and then move it over 1 bit or dot, presto --- a color
~change (depending upon the color and tint settings on the monitor)!
The disks include animation routines that take this color-change
phenomenon into account, and others that you can turn into color-
careful programs just by using the proper shape sequences in them
(drawn from probably one of the following programs: 4 on 28A, A on
28A, 1 on 28B).

If you're going to do animation, remember that you'll often be mov-
ing either 1 or 2 bits per step. This is easy to do with vector shapes
since all you do is XDRAW 1 at 40, 50:XDRAW 1 : XDRAW 1 AT 42,
50: XDRAW 1. (The first XDRAW draws, the second erases, the third
redraws at a new location), the fourth erases, etc. The reason no coor-
dinates are given for the second (erasing) XDRAW of each of the above
2 movements is that Applesoft remembers the location of the last
shape plotted and uses these coordinates again.)

By the way, a program like the above would make dim, flickery
shapes, since the screen would be blank as often as it would contain a
shape. The way the dimness is corrected is to start program locops in
which the old shape is erased and then the new shape is immediately
drawn, and after this any calculations, delay loops, keyboard or paddle
button reading, or IF—THENS are done before looping back to the
quick erase/draw commands. More on this later.

Also, in order to never show a blank screen, even for a tiny fraction
of a second from the erasing to the drawing, flipping between hi-res
pages is often used. This means your program has less memory and
must start after $6000, but the animation quality is worth the sacrifice
in many cases. Two other ways to hold down flicker are the use of
logical-shift shape-moving, which reguires no erasing (but does require
page flipping if you're using colors, as well as double-shifting), and fast
assembly drawing routines with delays during the shape-visible seg-
ment of the routine. Things happen so fast that no erasing is noticeable.

With the block-shape routines included in this sytem, necessary 1
or 2-bit movements in animation are easy enough to do, using the right
shape-table sequence tables, but if you fry it with the wrong sort of
shapes or with only 1 shape, problems may arise. One shape cannot
move only 1 bit sideways unless it goes to another shape # in a se-
quence or goes through either ROL or ROR logical rotation-shift
routines. Examine figure #1 again. You could “draw” this shape just as

" well at VT=1, VB=8, HR=2, HL=1 as you could at @, 7, 1, @. This
would be a mostly rightwards but slightly downwards move for thiss
block-shape. The width and height would still be actually 2X8, and
would still be referred to as 1X7 (for reasons already discussed). But
what about moving this shape rightwards less than one byte? How can

28

we move it over 1 bit? How do we draw this shape notat®, 7, 1, O or
0,7,2, 1butato, 7, 1 1/7, 1/7? The answer? Logical shift, or form it
into 6 other additional shapes, each moved over 1 bit, and save all
these shapes, including the first one, -as a shape table sequence.
(There are 2 automatic shape-sequence creators in this system. A on
28A starts with a vector shape and ends with 7 block-shapes, each 1
bit over from the last. 1 on 28B starts with a block-shape and ends up
the same as the above program --- it used logical shifting as its magical
problem solver.) .
The bottom line here is that a block-shape is drawn with HR and HL
from @ to 39 only --- there are only 40 possible horizontal coordinates,
since the bytes these block-shapes are composed of are a full seven
bits long. (The reason they're not 8 bits long is that the high bit (bit #7,
the 8th or left-most bit in memory) is the color bit and is not visible.)
(7X40 is 280, the hi-res resolution.) So block-shapes are always in
need of overcoming their inherent problem of movements of under one
byte. The solutions are fairly obvious and easy, but always keep in mind
that you can’t draw a block-shape at 3 4/7 HLand 4 4/7 HR. It must be
even #s. To get that shape to be at that desired screen position, think
in terms of shifting it to there or creating a sequence in which the fifth of
7 shapes is at the desired screen position. Look back at figure #1. Ob-

" viously you'll have to have a 3-byte-wide block-shape to let a moved

over version be created. (You'll be saying that it's 2 bytes wide, ob-
viously, for reasons already discussed.)

If you wanted to move it over 1 bit only then color wouldn’t work,
unless you desired a 2-cclor flicker. For a sequence (of 7) to be in col-
or you'd need the shape to be 4 bytes wide and call it 3 wide, and each
shape in the sequence would be 2 dots from the last. The option to
move shapes over more than 1 bit at a time in the 2 automatic shape-
sequence creation programs is available.

So what if you want walking, talking, running, swimming types of
animation where the figure’s movements must be represented by 7 or
more different shapes? I'd recommend using our Super Shape Draw
and Animate Package and drawing this sequence as vector shapes,
and then entering the present system and creating a block-shape
‘different-shape” sequence with program 4 on 28A. You could do it by
using 2 on 28A to draw the shapes originally as block-shapes (after
each drawn shape you'll be sent to 4 on 28A to scan and save the
shape), but this might be more awkward to accomplish --- you'd have to
be very picky about the precise coordinates of the parts of each of the
shapes. Perhaps you'll not find that much of a barrier and you will make
your walk-animation sequences this way. All f can say is that | prefer the
Super Shape Draw and Animate Package for this purpose. | spenta
long time making it the easy-to-use draw/animate package that it is, so
I'd be very silly to do walk-animation any other way. I've yet tc see an
easier-to-use vector shape drawing and animation package.

29

SHAPE DRAWING

- 8A

VECTOR SHAPES

Here is a vector shape:

PRINTOUT #2 *m’

Here is the shape table for this shape: (the shape shown goes from
$904C to $906C; it's #1)

PRINTOUT #3
QES8F
22 AR 40 88 £D o2
EE 88 ED G8 1o 4B
TR 81 22 g1 EBEC £=
ar B2 35 82 &7 ==
81 a2 ¢ a2 &S EES
54 82 &f G2 73 7
2L 832 34 237 OB »
o a3 EC F7
22 84 TB &1 83
88 83 aR B8
2E ZF 24 24
2F ZIE 2 1E
a7 3% 28
2F Z2F zh

Notice that the first byte is the number of shapes (hex) in the table.
The second byte is unused, since it would have been the high-byte of
the “# of shapes in the table” but only 255 ($FF) are allowed, so it's
nothing at all. The next byte is the low byte of the distance from the first
byte of the index to the first byte of the first shape in the table. The next
byte is the high byte of the distance from the first byte of the index to
the first byte of the first shape in the table. After that is low and high
distance to shape #2, then #3, and so on.

This means that in a regular (the table shown is NOT regular) shape
table the first shape will be at the shape table address plus 2+ (2X# of
shapes in table), unless extra room at the end of the index has been
allocated for addresses of future shapes.

30

See the programming manual (Applesoft) for more details. The way
vectors and plotting works is explained fairly well. You can move or plot
or do both in a shape byte. This means you can draw part of a shape
and then move to a new location and draw some more. A shape can
therefore be many shapes or contain many diverse elements. It must
all be the same color though, if it's a vector {or hplot) shape. Block
shapes may contain many different colors.

The best way we know of to actually draw vector shapes is with our
Super Shape Draw and Animate Package. Or do a few the “hard” way
via the Applesoft Program Manual. We've included some vector shape
tables in this system, by the way. They are on 28D, mostly.

There are several vector shape programs on 28A, such as E,G,H,|,
and parts of 3 and 4. Also, 5 of 28C is a special program that actually
converts either hplot-shapes or block-shapes into vector shapes.

A few things to remember about vector shape drawing and usage:

{1) Use correct pokes at 232 and 233 to tell the computer where
the shape table is located. An example would be POKE 232, 0: POKE
233, 144. This would be for a table that starts at $9000 (36864
dec.).

(2) If you forget a length or address, then BLOAD the table and
?PEEK (43634)+ PEEK (43635) * 256 for the address and 7PEEK
{43616) + PEEK (43617) * 256 for the length.

(3) If you forget the # of shapes in a table then ?PEEK (addr.).

(4) Remember that HIMEM: 36864 will protect your table at
$9000 --- failure to protect it will lead to bad shapes or bombed pro-
grams or errors.

(5) After every HGR or HGR2 will come ROT, SCALE, and
HCOLOR.

(8) If you want mixed-screen with HGR2, POKE-163¢1, 0.

{7) I you want full-screen with HGR, POKE-16302, 0. (Mixed
gives 4 lines of text, full gives none.)

(8) If you want to jump to all text without erasing POKE-16303,
0: POKE-16298, 0.

(®) If you want to jump back to graphics without erasing
POKE-16304, 0: POKE-16297, 0.

(Points 6-9 apply to all graphics programs)

{10) Use vector shapes for shapes to be rotated, enlarged, or
shrunk. (If you need your block-shapes to be different sizes/rotations,
use 5 of 28C and turn them into vector shapes.)

88 BLOCK-SHRPES

Here is a block shape:

(PRINTOUT #4) ﬂ“

o

31

Here is the shape table for this shape:

(PRINTOUT #5)

il

Wl

AT

e
rach
&

3=

K D BT D T Ty Tion s
LR R T R R 15

& k]
= AR
& g
; =
a

)

Tl o ofs (501
RN TR TRATIO Doy M RN T T T Do TR SN T

-
el

(S S

A
s
sl

a8

G0
£ i3 43 5 5
= 45 417 45
5 4F 24 24
B e EH =4
3=

Notice that no bytes are special and that you can't tell how many
shapes there are or anything else about the shape from examining
memory. But if you stare at the memory bytes for a bit, you'll begin to
be able to tell that the actual shape width must be 7 so it’d get called 6.
Another thing you can see is that way too much extra space around the
shape was included in the block of memory included in this shape. This
shape could have been 2X21, but the block that was scanned for this
shape was called 6X39, which means actual dimensions of 7X40.

The actual reason the shape was saved in such an extravagant
fashion is that it is a test shape built to be able to handle any amounts of
logical shifting in any direction. More on that later.

32

The way you tell that a lot of bytes were wasted is to notice all the
zeroes. This shape, whose actual dimensions are 7X40, takes up 280
bytes, which is 7 times 40. The shape in the block-shape doesn't re-
quire 7X40, but the actual block-shape itseif is a data array of 7X40.
This would be very similar to a text file biock-shape data array like NUM
(7, 40) which is a 2-dimensional array.

Let's notice that we've said that each shape is given 256 bytes (1
page) of memory. Then let's notice that this shape, called MANDG on
28B, is 280 bytes long. What gives? Simple: this shape is shape #1,
but is taking up part of shape #2's addresses, so the next shape, if
there ever is a next shape, must be shape #3 (in truth there is only 1
shape in this table). There can be NO shape #2. Notice that the bottom
3 lines in the list-out which are not part of the shape, are 281-304
bytes away from $900. You can tell at a glance where this shape
ceases. Often it's not this easy, but this time it is.

But what are the implications of being able to notice that a shape is
{(actual dimensions) 7 wide by 40 high? Simple, it means that if you
forgot the shapes’ dimensions, or never knew them, or are too lazy to
look them up in your notebook, you can tell them by examining the
memory after BLOADing the shape table. (Actually, in a one-shape-long
table, 7PEEK (43616) + PEEK (43617) * 256 would be the easiest
way to get the length.)

Perhaps you got lost when “we” determined the shape was 7
wide. Stare at the list-out. You'll notice that when the shape’s non-zero
bytes appear, they seem to be doing so every 7 bytes, and the man is
usually 2 bytes (14 dots) wide. This gives actual width, which you'll
call 6, for reasons cited in the last chapter.

Now, when you notice that there is no other shape after #1 (when
you ask to see #2 when using program 3 of 28A, you get garbage) and
that the memory has a dramatic change at $A18, you should be able to
reason out that shape #1 ends there. To get the length of the shape
without using PEEKS, vou simply add page 9 ($900-$9FF) (256 bytes
or $100) to the 3 rows of 8 bytes used on page A. (A comes after @ in
hex.) So 256+ (3X8)=280. Now divide 280 by 7 and you get 40 as
real height.

Go ahead and use 3 on 28A fo inspect MANDG on 28B. Try
VT=0, VB=39, HR=6, HL=0 and then try VT =58, VB=88, HR=27,
HL=21. The shape is fine. Notice that the width added to HL should
always give HR, and the height added to VT should always give VB.
This is as it should be. Also notice that I'm talking about the height you
say, and the width you say, not the actual width and height, which one
gets by adding one to either dimension. Keep in mind that all the pro-
grams and subroutines already automatically add one to the height and
width dimensions, in effect. So don’t YOU ever add one also, by giving
actual height and width in inputs. Okay?

Again, VB—VT=height and HR—HL=width. If the numbers you
give don't jive with these equations, give better numbers until they do
jive.

When you actually create a block-shape you'll be told the dimen-
sions to jot down. Since you'll never be told “actual” dimensions, but
always the “actual—1" dimensions that I've been convincing you to

33

utilize throughout these chapters, no confusion will arise. The only time
you'll need to remember “add one for actual” is when you examine
memory.

Where will you draw your shapes? In program 8 of 288 you can
draw and save hplot-shapes. In program 2 of 28A you can draw and
save block-shapes. In no program are vector shapes drawn, but we
have a real nice Super Shape Draw and Animate Package for that pur-
pose. (Also, you may draw vector shapes by hand via the Applesoft
Program Manual, or use the dozens of shapes supplied with this
system.} You may make all the vector shapes you want by merely
drawing shapes in 2 of 28A, saving them as block-shapes in 4 of 28A,
and then converting them to vector shapes in 5 of 28C (you'll be using
your own initialized disks to store shapes on --- the program disks are
too full).

The easiest way to make a block-shape is to scan. If you saw the
movie about Scanners this may be bad news. Well, cheer up. Not that
type of sci-fi nonsense. What scanning means is that you mark off a
certain section of the hi-res screen that has something that you'd like to
save as a block-shape, and then you save it via a scanning process.
Here’s how it works:

You could start by doing cne or more of the following: drawing pic-
tures with our Instant Graphics (Block Shapes) program (2 on 28A)
and/or using the special shape-drawing option by hitting J and using
keyboard commands, or load in one or more already-saved block-
shapes into 4 of 28A (our scanner program), or load in 1 or more vec-
tor shapes or a combination of block and vector shapes.

No matter where you are, or what program you're in, you'll go to
either 4 of 28A or 6 of 28D for general block-shape scanning and sav-
ing. There's an option at the beginning of this program that lets you
enter it without erasing the screen. This will turn out to be quite useful.

| recommend doing really far-out vector shapes with Super Shape
Draw and Animate and scanning them into block-shapes via 4 of 28A.
But 2 of 28A would be second choice, it does plenty that most shape
programs can't.

Okay so what is scanning? Simple. Define a part of the screen,
with the use of game paddles, while in 4 of 28A, and then save the
bytes as raw data in a binary file, called a block-shape table. Each table
ho: '~ up to 5888 bytes or 23 shapes.

If you know anything about the way the hi-res screen is mapped
out you'll know that the addresses on the hi-res screen are mixed up
badly. So how do we scan a mixed-up mess of addresses in a rational,
effective way? The answer --- the same way porcupines make love:
very carefully. And by the use of HPOSN. This routine is found in Ap-
plesoft at $F41 1. By putting hor. low into the X register, hor. high into
the Y register, and vert. into the accumulator and then doing a JSR
$F411, which means “jumping over to that subroutine and returning
when done” (“done” is signalled by RTS) --- we end up with the ad-
dress of any byte in either hi-res page. This subroutine is the
unscrambler of hi-res addresses. The unscrambled addresses are put
into page 0.

34

HPOSN also does other things, such as deal with color tables, bit
tables and internal/external cursor equivalence. It's not important to
define these actions further at this time, but one thing is important:
routines that scan and save or draw and animate block-shapes don’t
need any part of HPOSN except the unscrambiling part (that puts hi-res
page low-byte address into $26 and hi-res page high-byte address into
$27 for later indexed indirect addressing use).

So the remainder of HPOSN is a waste of time for block-shapes.
That's why YTABLE (my term) was invented (not by me) a couple of
years ago. What this table is is a way of getting your hi-res address
quicker than HPOSN by use of tables rather than calculations such as
those done by HPOSN. There’s a disadvantage, though. If you use one
hi-res page the tables take up 1 1/2 pages of memory, and if you use 2
hi-res pages, 2 1/4 pages get taken. If you've got the room, you’li get
at least a 20% speed increase. If not, c’est la vie. Disk storage space is
a factor here too, as is availability of zero-page addresses not being
used for anything.

Anyway, for a quick idea of what these tables are about, see page
21 of the new white Apple Reference manual. The list of addresses
from $2000 to $2320 are some of the addresses in the table. But let's
go on now --- there’'s a chapter on YTABLES later on.

So a scanner program is one that reads all the data in a previously
defined block of memory and puts this data into shape tables. In the
case of the programs on this disk, shape #1 bytes get put into $900,
shape #2 goes into $A00, and so on until shape #23 goes intc $1F00.
If you were using only hi-res page 2 there’d be room for lots more
shapes from $2000 to $3F00 --- 32 more {0 be exact. But who needs
that many shapes anyway? Not |, said the little red hen. Here’s a scan-
ner program list-out:

PRINTOUT #11
1

1 %7 FEC
2 ve 2FD
= HR £FE
4 H 3rE
5 HERSL 2L
£ HEASH 327
7 Y0 £E

2 BAS £FR
S BASH £FE
16 HPOSH £F411
i1 £59
1z 7
17 HERE ¥
14 ¥ &Em0
i= 1 THERE
4 <
i
17 HERE
15

ot ik,

35

£
i
LRI e
5,
Tt
-
B o
: I
£ HOCAR1 O #*
:::? E s 1ESR
== oY R
32 BCS L OOFEs
48 METLH GEC YO
41 LA Yo
32 CHE BEFF
43 BEL RETLIRH
42 CHE YT
4= BOS Loned
44 RETURM RETS

As you can see, the routine starts out by defining which page you'll
be storing the data on, according to which shape # it finds in $7, which
was previously entered, before this subroutine was called, by POKE 7,
shape #.

Next it takes the VB and finds the address of the coordinates 0, VB
(X=0)(Y=VB). Then it grabs all the data from the line (hor.) it's on that
is included from HL to HR on that line and stores these bytes in the
shape table, and then moves up a line and does it again. Once VT is
reached it lets that be the last data-grab. It’s fairly simple. There was a
Call Apple article about some of this not tco long ago. Unfortunately it
was for Integer and has zero-page variables that would be no good in
Applesoft. It also had no shape # reconciler at the start of the routine. It
also had no EOR therefore it wouldn’t XDRAW or erase. Anyway | tried
to use the same variable names and such to make it easy for all of you
already familiar with this type of routine. Actually, getting block-shapes
into shape tables is a piece of cake, it's what you do once you begin
drawing and animating these shapes that takes the True Grit. So here’s
what it takes to get the shape data from a table and place in onto the hi-
res page:

PRINTOUT #12

36

Remarkably similar to the scanning program, this little routine has
the XDRAW characteristic just because of the EOR (HBASL), Y line.
Leave that line out and you have a block-shape that DRAWS rather than
XDRAWing, which makes it no longer erase.

These scanning and drawing routines are enough for you to make a
start at block-shapes, but in order to really have block-shapes work
better than vector shapes for you, you'll. need quite a few routines that
facilitate efficient and easy-to-understand block-shape -manipulation
and animation. :

The scanner and drawer routines given on the last couple of pages
are available as TEST TB on disk 28Cuse it in your own programs
as is.

881 TEXT FILE BLOCK-SHAPES

On 28A there’s program 7 to scan block-shapes and save them as
text files. 8 on 28A views these shapes, and 8 on 28A views them up-
side down. Also on 28A is a text file QQ, which can be used by #8 or
#9. If you use #7 to make a text file, don’t save it on 28A --- use a data
disk. So once you've given the shape’s name, switch disks before you
hit RETURN. And switch back to 28A if you say you don't “want
another one”. Here is program #7:

PRINTOUT #8

37

38

AP g
LT R

N
ool
-
o

s
[

"
A

"
1
5
-
)
!
ity

-
=1 e)

Ffomrd
I
W

e
!

:'.":
\
i
3
V)
ot

‘o
nln

o oty s fonch
wE:Y

3

1
15
i

AL
i e st
a]
Wk
A=
T
]
!
u" ‘]
i
W
ot
|
x]

= S
i T GOTO &
3 DF = L
- HEUT
IHFLS
R
RS F &

wof forf et
s it

ZZF

HE =

gD
LSty .

W
i [T et 25

T T T o e
o}

"
[
bt
K

E
w

e LT
o

poef o]
1T e T
TH

o,

Here's what will happen in this program: You'll give a vector shape
table name. Then you'll be asked for the height and width. “How many
dots tall is it?” is the essence of the height question. But the width
question wants your answer in bytes, not bits. Remember, the screen
is only 40 bytes wide. Leave plenty of extra room, especially if your
shape’s reference point is off-center, in which case you'd be wise to
over-guess dimensions 3 times over.

Line 45 draws in the shape and line 80 begins the scanner routine.
Line 180 plots an invisible dot for the sole purpose of getting HPOSN
into action, since HPOSN is done as the first part of an HPLOT. The
result of HPOSN is to get the low and high bytes of the current hi-res
“cursor's” address into $26 and $27. Since $26 is 38 (dec.) and $27
is 39 (dec.) then this should shed light on line 100. (if you're still hazy
about hex and dec just remember to take a number like $26 and multi-
ply the 2 by 16 and then add the 6. (2X18)+6=38.)

Line 110 calculates the base address of the hi-res cursor.
Remember, the high byte is “how many 258’s” (pages) in the address,
so to be able to add it to the low byte we must first get the actual
number it represents by multiplying it by 256. Think of it like this: the
high byte tells which page ($20 through $3F or $40 through $5F) on
the hi-res screen {1 or 2) we're on, while the low byte tells how far {out
- of a possible 255, since at 256 we're on the following page) into that
page we are.

If line 110 found out that $26 held $80 and $27 held $21 then
- $2180 would be the hi-res cursor’s current address. Of course, this is
merely the address of the left-most address on the screen. You'll need
rightward displacements greater than byte @ on many if not most of the
bytes vou save. {incidentally, this program as well as the 2 that follow it
start shape blocks in the upper left at byte @ and horizontal line #0. It
makes for fewer inputs.)

Line 130 starts a FOR-NEXT that takes care of learning the data for
each byte on the line you're on, and line 140 stores these bytes in a
2-dimensicnal array.

Line 150 makes sure all bytes of all lines in the specified block get
included, line 168 draws a rectangle around the chosen block, and line
200 lets you decide if you want to save the block-shape as defined.

The remainder of the program saves the block-shape in a text file.

This is simple scanning and saving. Now let’s look at pulling the in-
formation out of the text file and redrawing the shape. This is program
#8:

4 PRINTOUT #8

LIST

7 OHERR GOTO £399&

1 HOME : YTRE 21: IHPUT "SHAPE T
i .CTHE

ARLE HAME:
Df = CHRE €43

DI IN)

FRINT D&*OEEHY ;STHE: PRINT Ds®
Erﬂﬁ"ﬂ—Tﬁf- ITHPUT WIDTH HETIS
HT= T MM WInTH HETIGHT = FOR
e i St L ol s

WIDTH: IHEOT HLMCH Y3z b
z I’ T-‘&-'T = PE T"!T l—"fi'“ _“' gg-__xE

39

L]
o By KA LS

O
[RAT kAl

LTy

i=: |
i48 SE
1553 HE =
17 H = T 4
£F BEIRHT AR H
S IF L 7
I HASD o HT
CHES (4
HOTO &
FREINT
& =
- DLEAR
GOTO &

This program is the reverse of the last, and the first few lines mere-
ly read the array in the text file. The main difference between this
program and the last is that in the last one line 140 dumped the bytes at
each address PEEKED into, into a 2-dimensional array
(NUM(X,Y)=PEEK(BASE+X)), while program #8 POKED the array
bytes of the text file into the block-shape area on the hi-res page
(POKE BASE+X, NUM(X,Y)).

The last text file program #9 does what #8 does but.turns the
shape upside down in the process:

PRINTOUT #10
3
W
L GHT
= g TO HEIGHT
1 n s DR
i BEEK £3283 + PEEE {39

T MInTH
SE 4+ M _RIMCE Y
= HAMUMCH
Yo = ¥ — 1: H

(e
[R
[T]

What this program does is to get the bytes for the highest vertical
coordinates and put them at the lowest vertical coordinates of the
shape and then work its way through the shape, effectively invert-
ing it. This program might be quite useful in creating reversed or
inverted duplicates of various vector shapes. Usual vector shape rota-
tion has no way to invert shapes --- if you rotate 32 the shapes are up-
side down and reversed. If you only want upside down or reversed,
rotation is net for you.

If you'd rewrite the scanning and text file saving program with the
option to include rotational factor as an input, you could not only (by go-
ing to 4 of 28A afterwards) save non-reversed upside down versions of

40

shapes, you could alsc put a rotational factor of 32 into the shape
before scanning it, which would mean that if you redraw it with 9 of
28A it would be turned upside down again and end up right-side up but
reversed from right to left.

To get either hplot or block-shapes into different rotations or sizes,
use 5 of 28C to convert them into vector shapes.

8C HPLOT SHAPES

Here is an hplot-shape:

PRINTOUT #8 E’/:“L?',w

Here is a shape table for that shape:

PRINTOUT #7

HIRA . 34T

g3@R— 82 84 8k 24 23 B8 37 o4
B3RS A 2B 84 a8 34 88 4B 24
BAiG- 1D @R 27 IC 82 35 8 bR
@912 4f 84 gu ZB &0 8k 28 &R
G926 bl R B0 B8 88 AR 88 8GR
25— aW 88 @8 60 88 00 92 484
HOZH- B8 BE 0F B0 DR B0 80 BE
EREE—- B0 G50 0GR B0 G0 88 fa G5
E340— B[R GR GF o8 88 a8 GF 85

Notice it has 9 points in the table but only 7 main points in the ac-
tual shape. The reason is simple: The point Hor. iow=04, Hor.
high=00, Vert.=34 is closed on once in addition to being a starting
point, and the point 04, 00, 3B is closed on once, which means that
both of these points get used twice. Where the wings meet near the
front of the jet is 2 points, not one, which is why it looks like there are
only 6 points at first. (Those 2 points are 1D, 00, 37 and 1C, 00,39.)
it's easy to arithmetically figure out that 3 bytes per point will give a
nine-point shape a length of 28, since the first byte is the point counter
and 1 +(3X8)=28. Byte 2 in a point must be 0 or 1, as it's a hor. high
byte. Since 279 is the maximum coordinate and 256 is where the high-
byte turns into one, you can see that that last byte doesn’t do too much
good for hplot demonstration packages. In actual programs that you
create you may wish to add dealing with hor. high byte in your mach.
language subroutines. (You'll get 9% more horizonal space.)

Since such little memory is used by this type of shape we mlght
point out that by leaving out the reading in of the high byte (hor.) and
leaving that high byte out of the shape tabie, even less space would
be needed.

41

It seems a shame to waste so many bytes (256 each) on shapes
that will probably vary from 10 to 37 in length. But, as we've said,
there’s nothing to stop anyone from using indexes for their hplot-
shapes that find hundreds of shapes in a table. Or a person could add
$40 (64 dec.) several times each page for each page of table space so
that table capacity quadrupled.

An hplot-shape can be turned into a block-shape in 2 ways,
although this may never be appropriate. One way is to view the shape
with 7 of 288 and then put in 28A before you leave that program. This
way when you leave the program and “MENU” is run, it will be the 28A
MENU. This is, incidentally, the way one goes between system disks
(28A and 28B) without rebooting. When you get to MENU hit 4 for our
scanner program. Use the paddles to define the shape and then save it
as a block-shape.

The second way to make a block-shape out of an hplot-shape is
weird. Get into 2 of 28A and use the “paddie-draw” option {which re-
qu- .. the game paddies). Draw your hplot shape (while in the record
mode) according to the instructions in the next chapter. When it's com-
pleted, save the shape as an Instant Graphics text file, remembering to
switch to a data disk. Now do option #4, while still in this program (2 of
28A) and see the saved drawing you just saved. All the shakiness is
now gone from your paddie-drawn hplot-shape. Now go to 4 of 28A
and save this shape as a block-shape. There’s a lot of memory waste in
either of the above 2 methods --- why not use hplot-shapes as hplot-
shapes and block-shapes as block-shapes instead?

Hplot shapes, as already noted, are easy to use, take up the least
amount of bytes, are quick, and efficient, may be done in any color
regardless of original color, and are best for shapes composed of a
series of straight lines.

An hplot (or block)-shape may be turned into a vector shape in 5 of
28C.

8D INSTANT GRAPHICS (BLOCK-SHAPES)

This is going to be a long one. (Is it my fault | decided to make this
program do a lot?) So take a deep breath and stretch a bit, and perhaps
say the magic words: ret up moc elppa. {'ll let you work on that a bit.
The first person to call us --- and only the first --- with the answer to the
above can buy any other piece of software we sell for half price!l)

This program will let you draw, quickly and easily, at the touch of a
key or 2. You can draw squares, 2 types of rectangles, circles,
ellipses, slide-walls from 8 directions, fireworks, dots, snow, triangles,
random lines, horizontal or vertical or diagonal lines, frames, dynamic
enclosures, backgrounds, and so on. You may fill shapes with any of
the hi-res colors and stop the filling at any point and go on. You may
create bushes, trees, houses, etc. You may change colors at any time.
A shape may be filled with many different bands (or donut shapes) of
color. You may monitor your coordinates. There will be a floating dot-
cursor for orientation. You may see command options at any time by
hitting space bar.

42

You may save drawings and have them retrieved and drawn back
again on the screen, step by step, as if the magic. You may use either
regressive or symmetry mode; in the former most shapes will get
smaller and smaller as you draw them further to the right, which is great
to convey depth and perspective; in the latter, shapes end up the same
size regardless of hi-res positioning. I'm referring to shapes that are (for
example) of M (medium) size will be that precise size no matter where
they are, if you're in symmetry mode, while in regressive mode M-sized
shapes are proportioned to their distance from the right edge of the
screen. There are 8 sizes to choose from, and the regressive mode ex-
pands on the number of possible sizes enormously.

You may choose to have drawing sounds accompany your draw-
ing, and also accompany your retrieved drawing *‘play-backs”.

You may paddie-draw, which will result in shaky drawings, and then .
save the resuit --- but watch what happens when you retrieve the draw-
ing: the drawing is perfectly smooth and flawless!

You may monitor the major variables you're using, and also monitor
the precise screen coordinates you're at.

You may create 34-sector machine language composite drawings
of from 1 to any amount of previously-saved drawings.

You may stop at any time and go to the scanning program to save
what you’'ve done as a block-shape --- this allows saving of any or all
parts of the screen, regardless of size.

Here is the Instant Graphics (Block-Shapes) menu:

PRINTOUT #13

[y] .
e =
=)

1F

i

OME OF THE FOLLOWIHG:

& A HEL DGERETHG

[';) §“‘! ORE TO PRESENT DRALTHG

=IH RPET xF‘s;If«éF HHAT 1701 DEEL RO
SRYED DREALIHG

T Ak lTL—&E;' PROGESM

UTT AML GG T3 BED

BLITHIG is?‘!FL;—_TL————:PUE 1T

E MRIOR YORIABLE YRLUES

‘EL QF"BE'_‘T WEELES

S H;EIH!J EOT DOH*T ERASE

S %

YBERIN RECORDIMNG BUT DOH gl """—i-E
> SCRESTE MARCH. ARG, COM
EVERYTHIMG THAT’S O THE SCR EEH
ZEFINE A BLOCK SHAFE

CTYPE 1—-133:

N
=
oA
0
....|

La TN

e Mt g 00 gt

I e Ty [Ny s en 1Y
mliyyl
M|

I, Ill“"l.“ﬂfhwl

ey
ron
I

e N T s W W W WY

Iv* N s K Ln L [T WS 4y T
[Behvt
:)

"y

||n--=L
:13

First let's look at command option #13, Define A Block-Shape.
What this command does is send you to 4 of 28A, the scanner/saver
program. No matter what types of things (or how many) you've gotten
onto the hi-res screen, you may save some or all of them in block- -
shapes of whatever size you like. (Remember that if your table is over
5888 bytes long you'll be crashing into the hi-res page that starts at
$2000.)

43

Now let's look at the cardboard drawing card. It's also in the appen-
dix at the back of this manual. Check out command J. It allows you to
draw in a way similar to the way the drawing programs in our Super
Shape Draw and Animate Package draw.

= b b}
Point- . o [1o
oint-plot movement commands T T
Only two commands: . “u <
P=plot on/off Q=aquit = T E

The above commands are for subroutine J only. They allow you to
draw delicate little shapes quickly and easily. Larger ones are fast too.
You may put transparent (cellophane?) material over any picture and
trace it, and then tape it to your monitor screen and again trace this pic-
ture ---this time you'll trace the tracing with the plot/move keyboard
commands.

Now the J subroutine utilizes an XDRAWN dot. Since XDRAWING
means draw in the color opposite what's there now, this means that if
you draw a line of white dots but then back up and go over these dots
again, they’ll be gone, right? Well, almost. But since the U-TURN dot
changed to its opposite only once, it alone gets left visible. The rest are
gone quicker than program secrets at a software pirate’s convention.

Now run the program (2 on 28A) and try it out:

1) When asked if you want sound, hit Y (and RETURN).

2) You'll hear 2 buzzes --- these mean “ready to draw”.

3) Hit J and watch the blinking dot-cursor guit blinking.

4) You're now in keyboard command plot-mode; if you were to hit P
you'd be in move-only mode.

5) Hit 5 I's and then 5 M's; see what we mean about U-turns? Try it
again: Hit Q to Quit, then SPACE BAR for command options, then 1 and
RETURN for Start Over, then J for some more keyboard plots.

8) Hit the 5 I's again but this time erase better on that U-turn: hit P, |,
and P and then a couple M's.

7} No littering on this U-turn! You're erasing old plots without a trace.
But what if you decide to go upwards again? Hit a couple I's again. Just
like with the first U-turn, the turning dot messed up.

8) Use Q, SPACE, 1, RETURN and J again. Then hit 5 I's and then P,
I, P, and then 3 M's. Now try P, M, P. A successful U-turn again. The
moral seems to be if you wish to do U-turns while erasing or redrawing,
use the P command, the last move command used, and then the P
command again before beginning to plot in the opposite direction. it
keeps that odd turnaround dot from actually being plotted a different
amount of times from the rest of the dots.

9) Let’s try direction change as erase turns back into draw. Hit Q,
SPACE, 1, RETURN, J, L L L L L N, N, N, N, N, N, N, N
10) Let's say you need a tiny triangle and the line you're on is too long.
Hit P, N, P, O, O, O until the bottom dots of the 2 sides of your triangle
are level. i
11) Hit P, O, P, and then L, L, L, L. The triangle’s finished, right?
12) Wrong! We fixed it so block-shape drawing would be quite like
vector shape drawing {with Super Shape Draw!). You have to throw in
one extra dot in the same direction you were last traveling. If you don't,
there’ll be a dot missing at the end of your shape. But don’t take my

44

word for it --- hit Q to quit, since the shape looks perfect. Now move a
game paddle a bit. See?
13} You're missing a dot. You're shape is like a Flash Gordon serial
---no ending. Here’s a cheap and dirty fix: move the dot-cursor onto the
missing dot and hit D. It's all fixed.
14) But go through the creation of the triangle one more time, com-
plete with “errors”. But this time once the figure is “closed” and all
looks perfect, remember the golden rule:

He who forgets the extra dot

Will surely someday go to pot.
15) Move that one last dot rightwards, even though it seems to erase
the last dot. Then hit Q to Quit and begin moving paddles again. Voila
---success!

if that's the only block-shape you needed your could just hit
SPACE for command options and then 13 to get to the scanner and
define/save it. But there’s nothing to stop you from trying to fill the
screen full of groovy shapes or figures before going off to Scansville.
Go for it! Try all the commands, from A to Z. You'll need a few extra
instructions on some figures. But if you study the drawing card (Appen-
dix) carefully, most things will be a snap.

If you hit G, X, N, Y, H, U, K, V you'll get slide-walls of the last
specified color. Stop these slide-walls with paddle button 0, which is
why the 2 asterisks on these figures refer you to a comment that points
at button #0 as the stopper.

If you want an unfilled circle try @ and Y and get a very short one
{Y=very short, in column 3). The drawing of the 6 figures after the
slide-walls can be done with or without filling, and the filling can be
stopped at anytime with the paddle @ button. In fact, you needn’t even
draw the figure before you fill it. Move the paddles and say you want an
ellipse (1) that is filled (F) and short (E). Hit paddle 0 button before it's
done. Now change colors by Color (C) and then Violet (V). Fill the
ellipse again but hit the button even sconer. Starting to see what all
these commands are for? Hit C for color, B for black, O for circle, F for
fill, and O for shortest. The amount and types of tricks this program has
up its sleeve is endless, and the program is faster without choosing
sounds at the beginning.

If you'd like an 88-page manual most of which is about this pro-
gram, ask us, it's available.

Other subroutines are available that stop when you hit paddie 0
button, such as S for snow, LR for random lines, and E for enclose.
Don’t forget, coior is still set to black - change it to orange or
something. If you hit B by mistake after the C and O (orange), then the
entire scene will furn orange --- as B means background.]

Tryout P, F, Q, R, D, A to abort, W, T, and M. When something
refuses to draw you're too close to an edge. The program will continue.

To try out the second column commands, you must first hit L for
line. To use gusss (G) you'd need a sequence like LGDE. The line’s
starting point will be random. For a rainstorm use LGDE and LGDS .
many times each.

For a diagonal line try LDM (example), which means line, diagonal,
medium length. (Lines are calculated as fractions {varying from 1/1 to

45

1/128) of the way to either the right or bottom edge of the screen.) Try
a short vertical line: L,V,S.

Command option #8 and #9 turn on and off major variable value
monitoring. i

A$ = draw what

P$ = what type of line

D$ = what size line or figure

J = X coordinate of ellipse center

K = Y coordinate of ellipse or circle center

H = X coordinate of circle center

D1$ = F if “fill this shape”

X = PDL X-axis coordinate

Y = PDL Y-axis coordinate

S1 = PDL button was pushed at this variable’s # value to stop first

3rd of slide-wall filling action or to stop “snow” or “enclose” or

“random lines” or PDL-drawing or figure filling

82 = second 1/3 of slide-wall had a stop at this #

S3 = third 1/3 of slide-wall had a stop OR symmetry mode is in

effect

C$ = HCOLORS (B or L=black. W or H=white. V=violet,

G=green, U=blue, O=orange) default=W.

The order in which these variables will be seen on the screen is:
A%, P$,D$,J, K, H, D18, X, Y, S1, 82, 83, C$. Strings get skipped if
they’ll null (nothing). Other variables read as @ if they're “nothing”.

Now onto paddie-draw. The idea here is to hit 3 to get into record-
mode from command options; then draw with L for line and P for PDL,
after which you simply hit POL#1 button, move paddies, hit PDL#1 but-
ton, move paddies, etc. until you're done, at which point you quit by
hitting, as usual, PDL#0. The routine draws perfectly straight lines be-
tween each point the cursor was at when button #1 was pushed (over
32 lines in a row are too many to save --- the limit of steps saved into a
text file is 32; you can check the step you're on with command M, but
not during PDL-draw):

Now you're scratching your head because the routines lines are
shaky, not straight. Well, what you see now is shaky, but the thing that
got saved was point coordinates; so when the figure gets retrieved (#4
in command options) and viewed later, the shape will be straight.

This should remind you that we’ve already mentioned that you may
draw HPLOT type shapes as block-shapes with PDL-drawing. These
are hplot shapes, and with Instant Graphics text file Drawings this pro-
gram can save (command #3 and #7) them so they come back as
straighter text file hplot shapes, but going to 4 of 28A will turn anything
into a block-shape, via scanning and saving.

To erase with instant Graphics (Block-Shapes) change the color of
part to be erased to background color by redoing it in background col-
or, usually black, or perhaps you'll need to draw a figure bigger than the
first shape or line to make sure your “black-outs” don’t miss. Black-
outs are also something you can do with slidewalls to mold one or more
large, probably-central figures.

Draw a bunch of RFE after hitting RETURN for Regressive Mode,
and then hit ESC for Symmetry Mode and do more RFE. Figure it out?

46

Remember, anything (however accidental) that gets created on the
hi-res screen is fair game to save as a block-shape in 4 of 28A. This
includes the fireworks (P) in this Instant Graphics (Block-Shapes) pro-
gram, the keyboard-plotted J-shapes, the striped and orbited ellipses,
etc.

Try lots of different coordinates with E, and stop it or try letting it
go. X=217, Y=92 and X=147, Y=185 and X=89, Y=159 and
X=48, Y=190 are all good combinations. Try them in black on a white
background.

8E SUPER SHAPE DRAW

This package has no Super Shape Draw or other vector shape
drawing programs. if you desire such a package, contact us.

There are many (over 20) vector shape tables in this graphics
package, however, such as Animals, Boom, Man, Spaceships, Media
and Char. (found on 28D). To view any of these shapes use 3 of 28A
---there’s an option to flip through the entire table. (Or there are several
28D programs that do it.)

There are several programs which involve vector shapes: the sam-
ple game on 28C uses BOOM (explosion simulator) shapes. The boot
program on each disk uses CHAR. Superfont and RETRIEVE use
CHAR also. Superfont is B of 28B and RETRIEVE is C of 28B. E of
28A uses a vector shape in MAN.

Vector shape utilities include 3 of 28A {partly), G of 28A, H of
28A, | of 28A. These are animation demos using 1 or 2-page flipping
graphics and a byte/address/placement examination program that real-
ly dissects those vector shapes.

5 of 28C will convert block or hplot shapes into vector shapes.

A shapedraw program reads the keyboard to find which key you're
hitting; the key you hit shows which of the 8 possible horizontal/ver-
tical/diagonal directions you wish to plot or move in. Once the program
knows the direction, it goes to routines that notice whether or not the
plot flag is on or off (1 or @) and assign dec. #S to the vector that's
been chosen. This must happen for each of the 3 sections that vector
bytes are divided into:

Section: C B A

—— ot r—
Bit #: 76 543 210 These 8 bits=one shape byte
Meaningg DD PDD PDD (P=plot bit; D= direction bit

Column C must be downward, left, or right vectors only and must
be non-plotting vectors, since column C has only enough room for
directional bits, but not plot bits. If either plot bitis a 1 (plot bits are #5
and #2) then that means a dot gets plotted. Obviously. the maximuny #
of plots per shape-byte is 2, since there are only 2 plot-bits per byte.-
When diagonal plotting happens, each byte is a move and a move-plot
vector, so only one plot happens. It’s the horizontal and vertical plotting
that allows 2 plots per byte.

47

Once the proper #s are figured out of the 3 columns in a shape
byte, the following line occurs:
B=C(1)+C(2)*8+C(3)*64: POKE LOC,B
This adds up the numbers in the 3 columns to get the final vector
shape byte for that address. This number is POKED into the current ad-
dress of the shape byte of the shape being drawn.
Actually, all of the above was the simpie part of the program --- it
was the editing commands that were the real doozies to program.
The Super Shape Draw disk also has programs to edit once a
- shape is done, continue later with an unfinished shape table, choose
the shape table address or have it figured out for you, BLOAD the
shape tables on the disk and view the shapes or BSAVE them onto a
separate disk, etc.
Here are the vector codes:

Vector Code

Move Only 4 000
- 001 or @1
4 D10 or 10

011 or 11

i 100
oo 101
) 110
- 111

Plot and
Move

8F. COMBINATION SHRPES
(VECTOR, BLOCK, HPLOT)

in the scanning program (4 of 28A) one may load in either vector
shapes, block-shapes, or both, and then save any combination of
shapes (created by loading them onto various sections of the screen)
as 1 or more block-shapes.

You cannot put combinations of shapes into hplot-shapes, but with
5 of 28C you can put anything into vector shapes, and 4 of 28A will put
anything into block-shapes. | could create programs to put other types
of shapes into hplot-shapes easily enough, but for what purpose? The
block-shape combinations are the most usable and convenient and
vector shapes are super for rotating and scaling.

In order to get hplot-shapes to be combined with other types of
shapes, and then turned into block-shapes, one must first use 7 of 28B
to view an hplot-shape. Once you see the shape switch to 28A and go
to -u and choose 4 on 28A, the scanner.

Here is the menu of the scanning program:

48

PRINTOUT #14

ME HU'
THIT ESC TO GiI7 OR M FOR MERL:

(B MABORT SCREEHM—START OVER

1M ORD YECTOR SHAFE TRBLE

CECHOOSE A YECTOR SHAPE COLoR
{2MHOODSE A YECTOR SHAFE SCRLE

¢4 2CHOOSE /8 YECTOR SHAFE F!JTF!TT?*H
CSMHOOSE 7/ Y. SHAPE EB:‘}*’bPN i O OR
e ORL IH A BLOCK SHRPE

CPHEFIHE B OCK SHAPE HITH PRDOLES
{2 IEW SCREEH

{9 XEAVE PRDOLE-DEFIMED BIOCK A5 FILE

Option 1 loads in vector shapes and option 6 loads in block-
shapes. If you'd started with 7 of 28B and had an hplot-shape on the
screen before entering 4 of 28A, then you'd hit SPACE BAR upon en-
try so the HGR command wouldn't end up re-initializing the hi-res
screen, which would erase the hplot-shape.

Ongce into the program you continue filling the screen with various
shapes until you've had enough. Then you go to subroutine #7 whichis
DEFINE BLOCK SHAPE WITH PADDLES. Use the paddles to move a
dot-cursor to define the upper left-hand and lower right-hand corners of
the rectangle that you want to define the perimeter of your block-
shape. (If no dot is visible, turn the paddles counter-clockwise until it
is.)

Once you've defined a shape go to option #9 to SAVE PADDLE-
DEFINED BLOCK AS FILE (meaning a binary block-shape file with
shapes whose #s are from 1 to 23, and with a length of 5888 or less
bytes, starting at address $900 (2304 dec.).

Whenever you save a shape you'll be told beforehand to jot down
the height and width that will be given on the screen (keep these #s
with the shape # and shape table name).

After paddie-defining a block-shape you'll see the rectangie (with
the HL rounded off downwards and the HR rounded off upwards so
they're both at even bytes) you've defined. You'll be asked if it's okay.
If you say it is you'll be asked if you wish to PDL-define others from the

49

vector shape table you're on as entries for the block-shape table you're
on. This allows creation of sequential block-shapes that are non-similar,
like in a walking man sequence. If all the shapes in an animation se-
quence are the same but just moved over left or right incrementally,
then use A of 28A or 1 of 28B rather than the scanner program.

Also, after scanning a shape you'll have the option to erase the
screen before loading in the next shape, which is an option you'll need
if you are saving non-similar shapes in a sequence. More on all this
later.

You'll also get asked to either give the # of shapes, and have the
program use that (times 256) to determine the shape table length to
BSAVE, or say that the last shape # given can be the last one in the
table, in which case the last shape byte address dealt with minus the
table address will be the length.

Shapes or scenes done in 2 of 28A may be combined with other
shapes by going directly from 2 of 28A to 4 of 28A.

8G. CONVERSION TO YECTOR SHAPE

The following is a print-out of the program ZXZX, 38th on the
catalog and directory of disk 28C. The menu calis the program CON-
VERT BLOCK-SHAPES TO VECTOR SHAPES, but if the truth be
known, this program will convert anything (except your Granny’s garter
belts) into vector shapes:

PRINTOUT #999

8 OHERRE GOTO &2950

1 TEXT : HOFE = YTAR 1: FPRIHT =1
F YOu DOM'T WAHT TO ERASE. H
1T SPRCE BAR WNOMEIZII®: ISl
2@bG: IF P = 1588 THEN =

S HGR o

5 TEXY z HOME = IHPUT "HPLOT SHE
PE WAHTED? <(¥-H3» CIF ¥Ou Ceiafd
T IVPE ¥ YOUTLL GET BLOCK S
HAPE DREALING REOUTIHE 3= " :H
Mf: IF LEMN {AHE> = &8 THEH S

CHRE (4% PRINT : IHPUT *
JF‘HT Th PO —DPEFIHE WHAT*S 0OH
= PEEEH Hiid HITHT LT LOoRGIHG
IH SHAPES? YoMz ™0f: IF LEH
CRFE> = A THEH =
ASC ﬁ$ o= g4

oy
o)
i

PRI DEPELGADTEST O <O
28 TF?T : HOME : YTAR S1:
SHAPE TABLE HAME: ":S
[EN (ST%> = @ THEM &8

50

X 5 89 THEM 43
PRIHNT = IHPUT °%T: *:4T: IHPUT
“YBe " 2WH: I HPUT mHRz B HE' : IMPUT
"HL: ":=HL: E 252,¥1: KE
253, ¥B: POK E 21_!4 HRz PGhE E"'

HIC
4z PRINT : FLASH : PRINT "SWITCH _
“T0 _SHAPE DISKEI®: HORMAL : GOSUE

530008
45 PRIHT D4°BLOAD® :5T$:AD = PEEK
C43634 3 + PEEﬁ 445J1; * D5
E:L = PEEK
43617 & S=é: BPRINT "ADDRES
S: ®fps PRIAT "LEMGTH: =L
46 GOSUB 2809]
47 POKE - 15282.R: POKE -— 1629
Bz HOME = vmai,F?nn=ﬂ

In
ru
I
o
: 7]
m
W
o
.p.
0‘\
A e
ke Ty
i,
+.

= THEMN ‘ '
LOWEE F’IGHT EEETF!HFLE “POIHT

HIT PRL 1 BUTTOH.": GOSUB
&3E60

42 POKE 232.258: POKE 233,.8: SCALE=
i: ROT= G4z POKE £S@.1: PORE
551 4: POKE 252.4: POKE 253,
Gz SKE 254 .7: POKE £55.8

49 PﬂKE —T 18364 .0: PORE = 1629

s@ Hﬁﬁg :P{ = PDL (13 IF Pi >

152 THEN =
51 POKE 2366.1: POKE 2381,6: POKE
2362 _.3: LOKE 2363,
S5 PB = PDL Bz JDRHM 1 AT PA.P
1:¥% = PB:T% =
68 P1 = POL (i IF B1 > 159 THEH
65 FOR 0id = 1 TO 208: NEXT : HOWE
i?FTQEIEi: PRINT *¥: "P@: PRINT
78 P@ = PDL (@>: XDRAW 1 AT 2.7
x: XDRAW 1 AT PB.P1:xx = PH:
¥ = Fi
56 BB = PEEK ¢ — i6987)>: IF Ba >
127 AND FL = 8 THEN FL = 1: GOTO
i
85 Bl = PEEK (— 162263 IF Bl >
127 AHD 56 = @ THEN S& = 1: GOTO
98 GOTO 8
iBe YT_= Pi:HL = PB: PRINT CHR$
{73 IF 5G = 1 THEHM io@
195 GOTO &8 .
116 YB_= F1:HR = PB: PRINT_CHR%
{73z IF FL = 1 THEH 128
115 GOTO &G

51

9]
\%]

128 ¥DRAW 1 AT FB.P1

iS5 HCOOLOR= 3

168 HPLOT HR.YT T0 HR.¥B T0 HL.V
B_TO HL. ?T‘T_ HR

173 =1 mhen e Turn

175 WTAB 21

128 PRINT : THPUT *IS THE RECTAH
GLE DOME O.K. 7 (¥~H>2:":A%: IF

LEM {A$> = B ?HEH i5m

185 IF RASC (A% = 72 THEH SG =
G: HCOILOR= B:FL = §:70 = iz GOSUE
ig@:i@ = G: HCOLOR= 3: GOTO

123 ZE8 = 1z HCOOLOR= §: GOSUE 168:
FEo= @

=8 = =2FL =&

248 ¥ = ¥Tz¥ = HL — 1:=:10C = 7oB4

258 K = H 4+ 1= IF ¥ >*»HR THEH B =
2 GOHIR S@808: GOTO 4856

3l HORAMW I AT ¥.¥:=8 = iz IF PLEK

_ 2245 = @8 THEH B = S

FFa ¥ = H + 1z IF ¥ > HE THEH BE =
i5: GOSUE 58@E: GOTO

28 A2DRAN 1 BT F=?'BB = 3“ EF PEEK
L2324 = 8§ THEH = 4@

MG H = X + 1= IF ¥ 3 H THEH MEB =
%g%:FL = {= ERCUB PG GOTH
bt

4R HDRAE I AT 3 =ME = @z IF PEEK
{7234 = 1§ TH@H GOSLIE 20z RGREAL
i AT ¥.%¥:z @BTE_E@@ L

418 MB = &d: GOSUR S9@6: GOTO 358

458 K = X — 1=z IF ¥ < HL THEH B =
£: GOSE 588 GOTO 258

458 H¥DREW I BT X.¥:=B = Z=: IF PEEEK
834> =0 THEH B = 7

478 ¥ = € — 1= IF € < Hi. THEM BR =
16: GOSUR SaEE: GOTO 468

488 HDREAW 1 BT_X . ¥Y:BE = 24: IF PEEK
{25343 = 8§ THEH BR = 5&

F25 ¥ = H — 1=z IF ¥ <« HL THEH ME =
i22:=FL = 1= GOSUR 2GHE: LOTO
2El

497 HORAL 1 AT ¥.¥:=ME = &: IF PEEEK .
224> = 3 THEH bﬂCHE SEH: XKDREAL

N i AT ¥.¥: GOTO 46 _ _

494 HME = 132: GOSLB QBB‘ GOTO 456

S85 ?a= ¥ 4+ 1z IF Y > ¥E THEH 185

BAS RBR = HOT R

518 RETURH

288 BY = B + BE + MB: POEE LOC . BY
20T = 100 + 1:8B = G:BE = @:
ME =

265 IFﬂFL = 1 THEH FL = #: GOSLE
=i

S3E RETURH

iaEe POEE 227 .252: POKE 2332 .8: REOT=
H: SCHEEF= §

igRSs POEE LOC. O PORE LOC + 1.8

1918 ¥DRAW 1 AT 148,79

1@i5 HOME :5G6 = @:FL = &

1628 YIAB 21: GOSUB 63600

1855 TEXT _

1636 PETINT *ADDRESS OF 1-_SHAPE I

HDEH: 2288 (DEC. > aD0
OF START OF SHAPE 2384":1H
LOC — 22R4:=1 7 = 1 OC — 583* PEIHT
®EHNGTH OF TABLE: “LT: PRIH
TLEHGTH OF SHRPE: “LH
igde GOSUE £36664: HOME = YTREB 1:
INPUT "DO_YOU WANT AHOTHER
COHVERSIONT (Y-Hls™ 'HS$ IF
LEH CASF> = 8 THENM 1844
1gSe IF ASC cASE> = 29 THEN 26
1655 PREINT = PRINT *HIT BESET AH
D THEN BSAYE A YECTOR SHAPE
IF BESIRED. ": GOSUE o38088
ie8 PRINT DFURUNMEHU™ _
zeEa IF ASC {AME:X < > B9 THEH
CHLL 2116 RETURH
c2@@As HOOLOR= 3
2 CHLL 2848. RETU
53888 PRINT PRINT =< HIT HHY KE
¥ To PGHTIHUEF.“: PRIE
PEEW € S

...»
l‘.Sl

3818 P = 1638 }: I
127 THEM PDKE - 15368 .,8: RETUFN

53026 GOTO 53515

639908 POKE 21&6.8

53951 OHERR GOTO &°

£3985 IF PEFK ceaa.
RESUME

£3995 GOTO B

Line 47-198 paddie-defines a block of memory as the shape you
want to save as a vector shape. It does this in one of 3 ways:

1) If you have pictures or shapes already on the screen on entering the
program, you may use part of the screen as your vector shape defini-
tion --- any rectangular area.

2} You may load an hplot-shape onto the screen.

3) You may l6ad a block-shape onto the screen.

Line 336-930 algorithm for changing raw screen bytes into vector
shape bytes. Here's how it works (it’s in Applesoft and takes around 10
seconds per square inch of area --- | was too lazy to figure it out in
assembly, mostly because I've never really had any need to turn any
type of shape into a vector shape):

The idea is to use the collison counter! I've never seen Paddle
Graphics work, but since it creates rotatable shapes, I'd wager that this
is the type of routine used in that package. It's about the easiest
method | know of.

So what do | do with the collision counter? Simple. | first draw a
one-dot shape (line 48 POKES in the shape table --- the 7 in dec. 254
is the dot). | notice that this puts the collision counter at 1. Then | stick
the paddles “into the game” --- and | learn that if | control the
whereabouts of the dot-shape with the paddles and ram the dot into a

53

shape, it changes from 1 to @. Then | figure out that this is because I'm
EOQRing with the shape and 2 ones make a 8 in EOR, and a dot-shape
hitting other shapes is combining 2 ones.

So | say to myself, okay, if | get such predictable results when |
walk upon other shapes with my dot-shape, why not use it as a dot by
dot indicator in examining a block of memory? Why not have the colli-
sion counter {peek(234)) be my “| found an ON'bit” flag? By knowing
which dot is at what X,Y coordinates (279 by 191) | could easily
trai. '~.e this very specific information into vector shape information. All
one needs to know is when to move and when to plot. And when a bit
(corresponding to X,Y coordinates) is off, | move, and when it's on |
plot. The only vector bytes | needed were ones made up of combina-
tions of the following binary groups, each group having a specific
decimal value as shown, and each group corresponding to either col-
umn A or B or C in the shape table chapter in the Applesoft manual
{pgs. 92-94):

Section Blinary Configuration Meaning Decimal Value
1) C 00 ignore 4]
2) A o0 i 1
3) A 010 ¢ 2
4 A 011 - 3
5) A 101 L 5
6) A 111 had 7
7) B 001 - 8
8) B 010 l i6
g) B 211 - 24

10) B 101 L 40

11) B 111 <o 56

12) C 01 - 64

13) C 10 ‘ 128

14) C 11 - 192

The 14 combinations are all it took; there was no reason for up-
moves or vertical plots. The program scans through the defined width
of the “vector-block” shape (HL to HR) at VT and reverses direction
and moves down a line and does it again, and reverses again at the end
of that line, etc., until finally the VB line is done.

Every time the collision counter is 0 (which means my dot-ONE met
a shape ONE), | use the decimal #s that signify PLOT --- otherwise |
use the MOVE ONLY #s. Once I've got 3 columns worth (sometimes

54

column C is a 0 because it's found that there are 3 or more ON bitsin a
row, and only 2 plotting vectors per byte are permitted, since plots take
3 bits) | add up the #s (see line 900) and POKE them into a shape table
} build whose index address is 2300 and whose shape address is
2304 (dec.). ~

You get to watch the dot in action; it inverses the entire shape.
Once it's through you'll see address and length (jot them down!) and
the new vector.shape will be drawn at X,Y coords. of 140, 78. If you
wish to save the shape, hit RESET when told to and BSAVE (Shape),
A2300, L (length). To use the shape, with whatever rotation you desire
and whatever scale, BLOAD it and do HGR and POKE 232, 252 and
POKE 233, 8 and do ROT and SCALE and HCOLOR and the DRAW or
XDRAW.

R=NOT R is merely a direction-changing flag, that toggles to the
opposite setting from where it's currently at every time R=NOT Ris ex-
ecuted.

The uses for this program are many:

1) Change the rotation or scale of a block-shape by saving the
original block-shape as a vector shape, and then going to 6 of 28D to
scan and save the block-shape in this new scale or rotation. You
needn’t even bother to load the shape in 6 of 28D or save it after reset-
ting in 5 of 28C. Al you need to do after resetling is
ROT=16:SCALE=2. (or whatever):XDRAW 1 AT 30, 90 (or
whatever). Then POKE-16304, @ and POKE-16297, 0 to see screen
--- if okay then insert 28D and RUN MENU (Return). Go to 6 of 28D
and hit Space Bar and paddie-define (option #7) the new shape rotation
and save it. Neat, huh? This litile utility was a full afternoon’s work. The
slightly tricky lines were lines 400 and 492. | won't say why --- there’s
a cute project for you.

2) 5 of 28C creates vector shapes that are always referenced
from their reference point of the upper left corner. Rotations are
around this point. This may come in handy.

3) You may need either hplot-shapes or block-shapes to be larger.
The way to do this so it looks good is to DRAW (not XDRAW) the
square of the scale # of shapes. If scale is 2, DRAW at 98, 98 and
98, 99 and 99, 98 and 99, 99. This will fill in the scaling-caused gaps.

4) To get a rotated hplot shape, save it as a vector shape, rotate it
and save it, and have it on-screen or hard-copy print-out when you redo
the rotated version in 8 of 28B. {Actually, it's extremely fast and easy
to draw an hplot-shape --- you needn't bother to do all this using of 5 of
28C, etc. Merely calculate or estimate rotated coordinates via 6 of
28B and draw in 8 of 28B.)

5) To put a shape saved in 5 of 28C into an existing vector table,
BLOAD it at previous shape’s last location (a 9) + 1, after saving the
2304 (not the 2300) version in 5 of 28C.

55

SHAPE SEQUENCE CREATION

9R. VECTOR SHAPE SEQUENCE

In a program in the Super Shape Draw and Animate Package, you
get to start with one vector shape and convert it into a whole sequence
of different shapes, each one different from the next in just the ways
necessary for good animation.

These shapes can be used in vector shape animation routines,
such as the Animation Demo on the Super Shape Animate disk, or they
can be converted into block-shape sequences via 4 of 28A. More on
block-shape sequences later.

Program 3 on 28A will allow you to view the vector shapes you're
going to be putting into animation sequences. Program | on 28A will
allow a detailed examination of any vector shape. Programs G and H
(on 28A) will demonstrate 1 page and 2 page vector shape animation.

This graphics system will let you create and use animation se-
quences of both block-shapes and hplot-shapes. With vector shapes
you need to create and use the sequences via our Super Shape Draw
and Animate Package or some other animation package, but you may
also use our scanner program (4 of 28A) to convert these vector
shapes into block-shapes, which animate faster than vector shapes,
when good machine language routines are used; and even faster yet
with the use of YTABLE. More on that later.

In some animation, only one shape is used --- it's drawn and erased
over and over, with or without hi-res graphics page flipping. In vector
shape animation of this kind one need only change a coordinate slightly
between erase and draw routines. In block-shape animation of this kind
a shape may not move less than 1 byte at a time unless the shape uses
logical shift animation, which you'll find on 28B.

If you make a 7-shape sequence out of the starting shape and each
one is saved only a bit or 2 away from the last, then you can turn a
block-shape into a sequence that needs no logical shift animation in
order to animate it. All that's needed are regular block-shape drawing
routines with properly done sequential drawing and erasing routines.
Even though a block-shape can't move less than one byte sideways
without logical shift; a sequence of 7 block-shapes does 1-2 bit moving
admirably. There are programs to create such sequences on both 28A
(program A) and 288 (program 1).

if you've never done any animation I'd recommend using simple
vector shape movements, using XDRAW for both draw and erase, until
you get the hang of it. Then go on to block-shapes and hplot-shapes.

56

98. BLOCK-SHAPE SEQUENCES

There are a lot of programs in this graphics system that are based -
upon good block-shape sequences. The 28A programs are 6, B, C, D.
There are only hplot or logical shift programs on 28B in the animation
area. None of these require block-shape sequences. (Don't forget,
though, that 1 of 28B is an automatic shape sequence creator that
starts with block-shapes and ends with block-shapes; while A of 28A1is
the same only it starts with vector shapes and ends with block-shapes.)

On 28C there is a block-shape sequence-animation routine using
YTABLE. It’'s #4 on the menu. it’s hard to believe that the shape is mov-
ing only 1 bit sideways per move. A shape seems to make it across the
screen in about 2.8 seconds as opposed to 3.5 second without the
use of YTABLE. (YTABLE's weakness is the amount of rcom it takes up
--- it requires either two or three %-page tables; which can take up up
to nearly 2. pages.) This is the fastest 1-bit animation in our system,
and F on 28A is our fastest 1-byte animation, which is something pro-
gram 3 of 28A allows you to try out with inputs. 28C is an unprotected
disk (it also has all the source-code files).

Now, here are the block-shape sequence tables on these disks
and what programs to try them in:

addr:,length: 28A: use w/programs: # shapes heightxwidth steps sequence
(#5 is 15x3)
A2304,L2370 MANA 3,6,D,F of 28A 10 21 2 1 1,6,2,
7.3.8,
4,9,10
A2304,L1624 MANB D of 28A 7 21 3 1 1-7
A2304,L1646 MANC D of 28A 7 21 4 2 1-7
A2304,L1792 Q3 B,C.D of 28A 7 18 5 1 1-7
A2304,L1792 Q4 D of 28A 7 21 8 1 1-7
41, but say 21
A2304,L1792 Qs D of 28A 7 21 8 2 17
28B:
A2304,L2370 MANA 3,6,D,F, of 28A 10 21 2 1 1,6,2,
7.3,8,
4,9,10
#1 & #2 are
27X4
A2304,L4096 SEX D of 28A 186 27 5 3-9,
10-186
A2304,L1792 AA D of 28A 7 18 5 1 1-7
A2304,1.1792 SQSEQC D of 2BA 7 32 6 2 1-7
28C:
A2304,L1792 Q3 4 of 28C 7 18 5 1 1-7

Here are the menu names of all block-sequence related programs
in this system, and the names of the unprotected source-code files (on
28C only) and machine language files they relate to (the mach. lang.
files are driven by these Applesoft programs):

57

Block-shape
Table (seq.): 28A:

{any) A) Automatic Block-Shape Sequence Creator
Source: TESTTB!
Mach. Lang.: TESTTB, A2048, L140

Q3 B) 2-Page Flipping Block-Shape Demo In Assembly
Source: TEST E
Mach. Lang: TEST E (CALL36934), A36864, L2838
Q3 C) 1-Page Block-Shape Demo In Assembly
Source: TEST D
’ Mach. Lang.: TEST D (CALL21886), A2048, L210
MANA D) 2-Page Flipping Block-Shape Demo In Assembly; With Inputs
MANB Source: TEST F, TEST G
MANC Mach. Lang.: TEST F (CALL36934),A36864,L324
83 TEST G (CALL36934),A36864,L.342
4 .
Qs
SEX
AA
SQSEQC
288:
(any) 1) Automatic Block-Shape Sequence Creator --- Starting With
Block-Shapes
Source: TEST H

Mach. Lang.: TEST H ({CALL2186),A2048,L224

28C: (unprotected) (has all “TEST" programs, both source and
mach. lang.)
Q3 4) YTABLE Test (Vert. Addr. Locator)
Source: TEST E
Mach. Lang.: TEST E (CALL36936),A36864,L288
YTABLE,A$1D00,L.$280

You may try other block-shape tables in some of the programs or
make tables of your own and iry them in various programs.

Chapter 8B has already supplied you with a source-code list-out
for TEST TB! All TEST TB! is is a short scanner program, for the crea-
tion of a block-shape from a previously paddie-defined area of the hi-
res screen, and a short drawing program, that retrieves block-shape
data from BLOADed binary file data arrays and puts it into a block com-
posed of some of the hi-res screen bytes ($2000-$3FFF or
$4000-$5FFF). The programs start at the lower right corner of a block
shape and insert or retrieve data bytes, one at a time, moving left until
the HL byte is done. Then the program moves up a line and gets the
next line’s data. This continues until the last line (VT) is done.

Make sure you're familiar with how this scanning and drawing hap-
pens before going on.

Program A in 28A uses vector shapes to create block-shape
sequences of 7 shapes. If you have no vector shape sequences, you
may create block-shape sequences with 1 of 288 by using other
block-shapes.

The object of a block-shape sequencs is to move block-shapes

less than one byte per move, since 7-dot moves (1 byte) are too large
to look smogth, although they are quite fast.

58

The normal step-size for block-shape sequences is either 1 bit (or
“dot”) or 2 bits.

The advantage of 1-bit moving is that it's as smooth as you can get,
especially if you use page-flipping. The disadvantage is that colors will
change like crazy as your shape traverses the screen, unless you're in
black and white only.

The advantage of 2-bit moving is that it's still quite smooth but col-
ors will stay the same in your shapes---there will be no color problem. A

" colored shape shifted one dot sideways will no longer be the same col-
or. This works to your advantage for creating certain types of effects,
but is usually a “pain in the assembler”. Some colors work at even
horizontal screen coordinates and others work at odd ones. it's an Ap-
ple fact of life. That's why resolution in color graphics on an Apple is
limited to 140x192. But this isn’t a complaint---1 love the Apple and ac-
cept its limitations without any tears or harsh words.

In using A of 28A, ask for steps of 2 bits per move, if you're using
color. You might use this for black and white also and simply forget
1-bit moving --- it's more convenient than using both methods.

Let's look at a 1-bit moving sequence and a 2-bit moving se-
quence:

PRINTOUT #15

i
¢ I
A 4
annfNRk

The first sequence is the contents of the block-shape table named
MANB and the second sequence is the contents of the block-shape
table named MANC. .

Notice that MANB shapes move 1 bit from 1 shape # to the next,
while MANC shapes move 2 bits. If you try out MANB in D of 28A you'll
see that 1-bit movement is sometimes inferior to 2-bit movement in
another way besides color irregularity: some sequences of non-similar

59

"

shapes that represent walking or running or whatéver need steps larger
than 1 bit. MANC looks much better than MANB whenrunasa 1-7 se-
quence in D of 28A with height of 21 and width of 4 (the MANC width is
4, while the MANB width is 3){(Use hi. delay of 70 and lo. delay of 255).

Let's look more closely at the above graphics print-out. The width
you give with MANB is 3 and the width you give for MANC is 4, which
means the actual width of each of these is 1 more; i.e.: MANB is ac-
tually 4 wide and MANC is actually 5 bytes wide. Remember, if you
input that you want MANC shapes to go from 25 to 29 (horizontal
bytes) then 25,26,27,28,29 is obviously 5 bytes wide, however, 29
minus 25 is 4. The discrepancy has to do with the fact that from 25-29
is in the inclusive sense as far as the actual byte width, whereas in the
width to input area 25 to 29 is referring to distance between these 2
bytes --- 4. If this is confusing, reread the previous chapters.

In the above print-outs there are 2 sets of grids: immediately above
and below the shapes are boxes each of which represent one byte
wide. They depict the width to give for each sequence. These grids do
not represent a true picture at all---the block-shapes are all 1 wider than
these grids depict. They are the grids you would imagine if you were
still confused by actual width vs width to give. However, above the top
grids are other grids which are correct. These sequences are 4 and 5
bytes wide, respectively.

You may wonder why a shape that's about 2%-3 bytes wide is be-
ing given 4 or 5 actual bytes-—isn’'t that a time-waster? Well, a
sequence needs to hold all 7 shapes, and all 7 shapes must fit within
the given block of bytes. You see, when a “sequence” is actually used
in . . animation routine using vector shapes that are all the same, then
you merely draw and erase the shape, moving it over each time an.
erasure is completed. But when a vector shape sequence is composed
of dissimilar shapes, then not only do you draw and erase and move
over, but you also must change which shape # is being drawn/erased.

Block-shapes sequences are similar to this last situation except for
the moving-over aspect. A block-shape sequence increments (or
decrements, if it's moving leftwards) its horizontal byte coordinate only
once per sequence, not once per shape. In other words, within the
block there must be room for 7 shapes that move over 1 or 2 bits per
step. This means that if a shape was 17 bits wide and took up 3 bytes
of width (3x7) then with 1-bit steps it would be 23 bits wide and take
up 4 bytes. If it used 2-bit steps it would be 29 bits wide and take up 5
bytes. These figures all represent approximately what's true for MANB
and MANC.

We round off upwards to the nearest multiple of 7, so 29 takes up
5 bytes because 4x7 =28 in which case we might lose the edge of the
shape, and 5x7 =385, which is the nearest higher multiple of 7.

Now notice how either of the above sequences would appear to
move if the shapes were to be sequentially drawn and erased. The man
in MANC would appear to move with bigger steps but at the same dura-
tion per step. (In actual fact MANB appears to be sliding on ice or walk-
ing on a treadmill because the step-sizes are considerably too small.
MANC with 2-bit steps is fairly realistic---perhaps a 2'.-bit (impossible
without extremely sophisticated use of 560x192 resolution graphics)
step size would be ideal.)

60

When trying out MANB and MANC in D of 28A, | would recommend
that when you're asked for hi byte of delay loop you choose 70, and
when asked for lo-byte of delay loop you choose 255. This will give the
most realistic performance. A delay loop such as that given means that
17,850 loopings are performed in between drawing and erasing each
shape!

I’'m aware that these 2 delay-loop inputs are not regular hi-byte and
lo-byte inputs at all. In fact, even if you choose 255 for the lo-byte,
you'll still not have a lo/high byte ratio here. A standard lo-byte is 1/256
of what the hi-byte bytes stand for. In choosing 255 for the so-called
lo-byte we get very close to a correct lo/high ratio, but no cigar.

The truth is, in our delay loops the total looping equals the “hi”
delay loop byte times the “lo” delay loop byte. Each could be ten, or
99, or 1, or 255, or they could be dissimilar. (By the way, 0@ would
have the same effect as 256 (illegal) in these delay loops since these
numbers get decremented BEFORE the BNE opcode checks to see if
it's zero yet. And a decremented @ will give you a 255 every time. In
actuality a decremented 0 gives you a binary number of 11111111,
which in two’s complement representation is -1, which is logically what
it should be since @ minus 1 equals -1. However, for our purposes let’s
look at the straight binary number 11111111 as 255. The largest
delay loop available, then, in our routines, is 256X256=65538, which
you'd get, in effect, by inputting @'s into each delay loop byte. The
shortest delay, resulting in 1 run-through and no loop-backs, in the
delay loop, would be accomplished by inputting 1’s in each delay byte.
This would not be true of Applesoft delay loops such as might be input-
ted in the animation routine in 3 of 28A. We're considering such pro-
grams as D of 28A at this time.)

So the 1st delay-loop byte is “high” only because it specifies how
many times to loop through the “low”-byte loop, a loop which may be
run through, until decrementing results in zero, anywhere from 1 to
2586 times. Think of H times L, in this usage of high and low, rather than
(H times 256) plus (L times 1). Sorry | took such devastating liberties
with convention, semantics, and the lady down the stre----ah, but that's
another story. :

Iif you've gotten this idea of block-shape sequences changing
horizontal coordinates only once per sequence (at the end), then you'll
be imagining shape #1 to #7 drawing and erasing sequentially while
the block-shape is at coordinates (example) HL=7, HR=10, VT=70,
VB=91, and then the horizontal coordinate shifts by 1 and the se-
guence is again run through at HL=8, HR=11, VT=70, VB=91. The
above would be for MANB. For MANC the same exact thing would hap-
pen except that coordinates such as HL=7, HR=ll, VT=70, VB=91
would change by HL and MR being incremented by 2 so that (for the
next sequencs) you ended up with HL=9, HR=13, VT=70, VB=91.
The reason the horizontal coordinates go up (or down if you're moving
leftwards) by 2 is that this sequence was built with a 2-bit movement
between shapes, which means that a 2X7 = 14-bit actual displacement
will have taken place in the course of one sequence run-through. So if
you moved the horizontal coordinate only 1, you'd end up with a walk-
ing mode of “2 steps forward, 1 step back”, etc., in effect. Again con-

61

sult the shape sequences illustrated to confirm this. Or try to input a
“step” of 1 for MANC. You can also see by all this the value of clearly
recording securely all such data as shape table name, # of shapes,
height, width, and step-size!

If you're wondering why it is that an Applesoft FOR-NEXT loop
enclosing no commands would be about 1 second long for every 800
loops while animation at an approximate rate of 11 frames per second
would have 17,850 loops (for delay) per shape and 196,350 per se-
cond and 124,950 per 7-shape sequence, the answer is that machine
language is the computer’s language, whereas Applesoft must undergo
the time-consuming process of getting interpreted as computer-
understandable commands before it makes things really happen.

In practice, a program would be more likely to have IF-THENS or
ON-GOTQO’s or ON-GOSUB's, in Applesoft, or BNE, BMI, BPL, BEQ,
BVC, BVS, BCC, BSC in machine language than simple delay loops.
A good hi-res game is going to spend a lot more time wondering if the
score has reached so and so, or if there's been a collision counter
change, or if hi-res coordinates of certain shapes have reached so and
so, than it will spend in do-nothing delay loops.

You see, when a delay is needed for animation or game
speed/control, a programmer sees this most often as the fortunate
creation of space and time for dynamic programming, rather than a time
for the computer to kill time. A generality that would apply in most
cases is that whenever there’s more time than is needed for what's
happening, or whenever speeds of any aspect of a game will be ex-
cessive unless slowed down, a good programmer thinks of how many
dynamic/intriguing qualities can be added to his/her game with the ex-
tra time, while a bad programmer would throw in the delay loop with no
thought for using the time to greater advantage. This doesn’t mean
there’s something wrong with my programming since I've incorporated
straight delay loops into most of the animation routines. In routines
such as are included in this graphics system, one needs straight-
forward delay-loop options. Later when actual game-creation begins, it
win be the sole responsibility of the programmer to replace (partially or
wholly) the delay loops with more dynamic programming.

Does a 2-bit shape movement always mean a 2-byte (hor.) step-
size? Yes, as long as there are to be 7 shapes per sequence. There's
not usually reason for longer sequences but our sequence-creators let
you choose sequence length. If for some reason you wanted to make a
modification to seqguence-creation programs in this system you’d have
to do it the “hard way”. (You may list programs on 28A or 28B by use
of E or F on 28B, but you may not make program changes without
retyping the programs (this refers to programs you go to from the
MENU---they're in Applesoft). You may change the source-codes for
any of the assembly routines by EXECing test-file-type LISA source-
code files and then changing, assembling, and re-writing them. You
may change the object code (the binary code cutput by an assembler
often stored in binary files that get BLOADéd) by monitor commands
(see reference manuals for the Apple) and BSAVING afterwards if you
wish to make it permanent, or by BSAVING the object codes assem-
bied in LISA right after the reassembly is complete, when you've
changed a source-code file.)

62

A 1-bit shape movement with a 7-shape sequence would require
stepping 1 byte after each sequence.

Again look at the 2 seguences in the illustration. It should now be
clear that for the “drawing” of the seven shapes in the sequence the
exact same block of bytes on the hi-res screen is dealt with. Think of it
like this:

Block drawn
imto:
Shape # draw data ls from erase data Is from HL,HR,VT,VR
1 data array $900-$957 data array $200-395717, 10, 79,91
4 by 22 4 x22

2 oo $A0B-$AS7 oo SADB-3A57
3 $B00O-$B57 oo $B00-$B57
4 $C00-$C57 oo $C00-$C57
5 $DOB-$D57 oo $D00-8D57
8 $SEOQ-$ES7 "o $E0O-$ES7
7 $FOQ-$F57 oo $FOO-$F57

It is only after all these shapes are drawn and erased that the
horizontal coordinate is altered. Exactly how are the drawing/ erasing
operations performed? Simple---the miracle of XDRAWING, which is a
logical operation called EOR (exclusive OR) in assembly, is that if you
draw a thing once, there it is, and if you repeat the procedure and draw
it again in the same place it disappears completely. Two white dots
equal a black dot, so when you draw white on a black screen, you geta
white shape (this applies to vector shapes and block-shapes but not
hplot shapes), but when you draw white again (if you're EORIing) on
that white shape, it simply erases the shape and the screen is once
again empty. So in the sequence above a shape is drawn, then redrawn
(erased), and then the next shape is drawn and redrawn (erased), and
so on. After #7 is drawn and erased the horizontal coordinates are
moved over.

It should be noted that when hi-res page flipping is invoived (using

both pages) the complexity involved in what gets drawn or erased in-
* creases considerably. But for now let's concentrate on 1-page (HGR)
animation with rightwards movement. Here is the assembly routine
{called TEST D) for C of 28A, which is the One-Page Block-Shape
Demo In Assembly.

PRINTOUT #16
I8
1 %7 EPZ %FL
o Ve EPZ 3ED
3 HR EPZ $FE
4 H EFZ 3FF
= HBRSL EPF €28
£ HERSH EPZ 307
7 vo EFZ &

o EASL P7 $ER
2 pAT EFF 3FE
10 HPOSH EolJ 3F411
11 L0V #59

i2 LLo %7
i3 HERE DOE¥
14 CPx #4006

63

LIP GO

(TRl

s rpnd epst] s s

14°]

A 1-bit shape movement with a 7-shape sequence would require
stepping 1 byte after each sequence.

Again look at the 2 sequences in the illustration. it should now be
clear that for the “drawing” of the seven shapes in the sequence the
exact same block of bytes on the hi-res screen is dealt with. Think of it
like this:

Block drawn
into:
Shape # draw data Is from erase data Is from|HL,HR,VT,VR
1 data array $900-8957 data array $900-89577, 10, 70,91
4 by 22 4 x22

2 » ” $ADD-BAS7 ” ” SA00-$A57
3 $B00-$B57 "o $B00-$B57
4 $C00-$C57 v $CO00-8C57
5 $DDO-$D57 oo $D00-$D57
8 $E00-SES7 oo $EOO-SES7
7 $F00-$F57 oo $FO00-$F57

it is only after all these shapes are drawn and erased that the
horizontal coordinate is altered. Exactly how are the drawing/ erasing
operations performed? Simple---the miracle of XBRAWING, which is a
logical operation called EOR (exclusive OR) in assembly, is that if you
draw a thing once, there it is, and if you repeat the procedure and draw
it again in the same place it disappears completely. Two white dots
equal a black dot, so when you draw white on a black screen, you geta
white shape (this applies to vector shapes and block-shapes but not
hplot shapes), but when you draw white: again (if you're EORing) on
that white shape, it simply erases the shape and the screen is once
again empty. So in the sequence above a shape is drawn, then redrawn
(erased), and then the next shape is drawn and redrawn (erased), and
so on. After #7 is drawn and erased the horizontal coordinates are
moved over.

It should be noted that when hi-res page flipping is involved (using
both pages) the complexity involved in what gets drawn or erased in-
creases considerably. But for now let's concentrate on 1-page (HGR)
animation with rightwards movement. Here is the assembly routine
{calied TEST D) for C of 28A, which is the One-Page Block-Shape
Demo In Assembly.

. PRINTOUT #18

L
1w EPZ %FL
2 VB EPZ 3FD
3 HR EPZ $FE
3 HL EFZ 3FF
S HEASL EPRZ %26
& HEREH EFZ o7
7 vo EFZ %6
& BASL ERF 3FRH
2 patH EPZ 3FE
16 HPDSH Eol $E411
11 L0y #£0
12 LLH $7
i3 HERE CEX
14 CPY @400

63

TUERT

TN YW

64

HETLHe DEC YO
Lhy Y
CHP 83FF
BER RETZ
: H;

BrS LOOPid
RETZ RIS

24 LDR 851
85 _ ':=TH $ -y

= Loe 55
a7 - §Ta FF
22 LR #355
25 STR FE
o YERT LDr #%0
2 STH ZFEC
== Ly #Fi2
a3 STA 3FD
24 JoR DR
25 PO 9
a5 ®i LIy %2
a7 ¥2 LY

Sa BHE X
2 oF 3

186 BHE =1
i:al JER DEAE
iG2 IHC %7
153 bR 37
1G4 CHPE #38
165 EEC B
1ag BHE YERT
187 B2 Lo 31
ieg 518 £7
182 IME £FE
1ig THC £FF
113 LR $FF
112 CHMPE #E24
ii3 EEGQ SIS
114 Cic

113 LDf £CRRG
i CHPE 8200
117 ECE RTRH
iis JHP YERT
119 RTRH BETS

iz2é BEE

121 BREE

izz2 EHE

Notice that the first 83 lines are merely TEST TB!, which is the
routine for scanning followed by the routine for XDRAWING. After that
comes the animation routine. Let’s go through it together: {Consult an
assembly language book where needed.)

Line 84 puts a 1 in the accumulator and line 85 transfers it from the
accumulator to the zero page address $7. We'll almost always be using
$7 to store the “current shape # being dealt with”. This means that
you'll need to POKE 7, shape # in your own programs, or in my pro-
grams F'll have to make sure $7 always has the comrect shape #.

Line 88-89 puts 0 into $FF, which we'll usually use to store HL,
and 5 into $FE, which will be HR. Lines 90-93 put 0 into $FC (for VT)
and 18 ($12) into $FD (for VB). Whenever HL moves X amount, HR

65

must also move X amount, and the same goes for VB and VT, since the
size of the block must stay the same, regardless of where the screen
location coordinates are.

Line 94 is like a BASIC GOSUB, in that it jumps you to line 47 and
takes you through line 83 where the RTS is like a BASIC RETURN com-
mand, so you return to the line after 94; i.e. 85.

Lines 95-100 is the delay loop. It works like this: $9 holds the
“hiy ' " byte and $8 holds the “low"” byte of the delay loop. The number
in $9 gets put into the X register in 85. Then the # in $8 gets put into
the Y register in line 96. In 97 the Y register is decremented by 1 and
in 98 the computer checks to see if the results of the previous line
resulted in a zero. If it didn’t then the routine branches back to line 97
and decrements Y again. This continues until Y is © and line 98 finds
that @ and therefore does NOT branch, but continues to line 99, which
decrements X. In line 100 if X is now zero the delay loop is finished and
the routine goes on to line 101 where erasing happens (by redrawing
via EOR). If X > 0 then the routine goes all the way back to line 26 and
Y is again loaded with $8 and decremented all the way down to @. Then
X is again decremented and checked to see if it's 0. Eventually X will be
0 and the delay loop is done for now. It's easy to see that the “high” #
in X controls how many times the Y register has to go through its entire
loop (from # in $8 to 0).

So after the delay (that keeps the shape from looking flickery by
keeping it on the screen for a bit) the erasing happens at 1¢1. Then in
102-103 we put the next higher shape # in $7, and we seeifit'san 8
in104. If itis then 105 tells us to go to 107, skipping 106, which takes
us back to drawing and erasing again. In 107, since we’ve found that
we’'ve incremented beyond the # of shapes in our sequences (7), we
reload $7 with a 1. We then check to see if we're getting too close to
the edge of the screen in 111 and 112, after moving over the horizon-
tal coordinates in 109 and 110. In 113 if our HR has reached 36 ($24)
then we start everything all over again at line 886. If HR < 36 then we
continue the drawing and erasing processes that begin at 90.

Lines 189-116 are the way the horizontal coordinates get increas-
ed, since HL Is in $FF and HR is in $FE (see lines 1-10, which equate
certain fabels with addresses).

How does 103-106 work? Well, 103 puts the current shape #,
learned from $7, into the accumulator. Line 104 compares the ac-
cumulator with the number 8. Line 105 says that if an 8 was found in
$7 then skip 106 and go to the line labelled BQ, which is 107. In truth,
what a CMP opcode does is subtract the data (8) from the # in the ac
cumulator. The result isn't stored but status flags get set. One of these
flags is Z. The Z flag, if set, means the resuit was 0. BEQ is an instruc-
tion that looks at the Z flag and branches to the given line if the Z flag is
set --- set means equal to 1. {One is often used to mean yes, set, on, or
true while @ often means no, not set, off, or false, in computer logic.)

In an actual binary file, there are neither line numbers nor line
labels, so the way branching is accomplished is via displacement #s
which tell the routine that if certain conditions are met, such as Z=1,
then it's time to branch forward or backward a certain # of bytes.
Displacments may be from +129 to -126.

66

The BNE in 106 means that branching happens only if the last
result of an operation was NOT zero. Whoever invented these com-
puter instruction languages was surely a real swestheart --- these neat
little 3-letter commands are so irresistibly cute that | can hardly stand it.
So if they seem formidable or nebulous at first, don't sweat it: soon you
and opcodes will be the best of friends.

Line 118 has an unconditional jump back to line 80. Line 120 and
121 will stick double zeroes in the last 2 locations of a BLOADed binary
file, to make the end of the routine easier to spot. Line 122 is simply a
LISA command saying “that’s all, folks”---if you don’t use it you get an
error in assembling.

So why have | ignored lines 114-1177 Because these commands
are not related to animation, they are simply a convenient way for you
to get out of this machine language program and get back into the Ap-
plesoft program that called it. In line 114 you clear the carry bit (setitto
©) with a CLC. The C (carry) bit is much like the Z bit. Both are flags
found in the status register that act as signals and are flip-flopped either
on (1) or off {@). But the carry bit signifies that a result wasn't contained
within the 8 bits in the accumulator so it needed a 9th bit in that it holds
the 1 that’s “carried” in an addition, or if you're subtracting, it must be
set with SEC, and it will indicate a no-borrow condition until it gets set
to @ {(cleared) by being used in a borrow.

Inline 115 you load the byte found in $CO00. This is the Keyboard
Data Input address. You're loading this byte into the accumulator so
you may test it. The way you test it is to see if the 8th bit is set or not. If
it is, then the number represented by the $C000 byte will be 128 or
greater. $80 is 128 in dec., which is why line 116 compares the byte
in $CO00 (which is now also in the accumulator) with #$80. The # in
front of $8@ means you're talking about the immediate data $80 or
128, rather than the byte found at address $80. it discriminates be-
tween “contents of address” and “data immediately used.”

The highest bit (#7) of the $C000 byte is a kind of flag that’s used
to indicate whether or not the keyboard's been hit. The flagis a 1 if
keyboard hitting has occurred and a 0 if it hasn't. So if you find out by
CMP #$80 that the keyboard’s been hit, then you get sent to line 119
where you come back from the Applesoft CALL that got you into the
machine language routine in the first place. The C of 28A program will
then allow you to try other delay loops or return to the MENU.

The 1st 7 bits in $CO00 represent the ASCIl code of the key which
was most recently pressed. A dec. representation of that code will be
the result of a PRINT PEEK (—16384). If you want to clear the flag that
says the keyboard was pressed you have to get a 0 into bit 7 of $C000
by putting a @ into the Clear Keyboard Strobe at $C010. In Applesoft,
you'd POKE—16368, 0.

So we compared the accumulator byte (gotten from $CO00) with
an immediate 128 in 116 and the result of this comparison will set
some or none or all of status register flags N, Z or C. Cis set when the
accumulator is equal to or greater than the data it's compared to. So
that's where line 117 comes in: if $C000's “keyboard-was-pressed”
bit (#7) is set then the accumulator will certainly be greater than or
equal to 128, since even if all the remaining bits in that byte were 0, the

67

value of the byte with a 1 in it's most significant (8th bit, called #7) bit
will be 128.

Line 117 says that if the keyboard flag is set then go to 119 which
will return us back to the Applesoft program which is the “driver”
(sends input to) for TEST D (CALL 21886), the machine language pro-
gram that does the animation for C of 28A. The way line 117 says this
is with the conditional branch instruction BCS (branch on clear set).
This instruction checks C and branches if it's set, which in this case
would mean that the CMP in 116 found a number >127 in the ac-
cumulator.

This should have cleared up any questions about what TEST D is
about and how it works. it simply draws the shape sequence, which in-
volves 7 draw/erase actions, and then adjusts both the shape # and
hor. coordinates, and then checks for either a keyboard hit or a limit-
reaching (hor. coord. of HR >35}, and then draws the shape sequence
again at the adjusted HR and HL and this continues until a hor. limit is
reached or a keyboard is hit. If the limit is reached, the next sequence
will be back at the leftmost HL and HR in the routine, while if the
keyboard has been hit, you'll find yourself back in the Applesoft pro-
gram being asked that age-old question: “Want to do it again?”.

| repeat: your animation programs require no such keyboard-hit
detector. Nor do they need the scanner portion of TEST D --- the draw-
ing portion will suffice. Re-assemble accordingly, if you have an
assembler. If you don’t, it's okay to assemble from the monitor or use
the routine as it is.

Now a strange phenomenon will be observed in C of 28A: depend-
ing upon the delay-loop inputs you give you'll find that shapes can
flicker, strobe, slowly disappear and reappear, etc. It all hinges on the
duration each shape is allowed to be visible, which in turn effects the
frequency of shapes draw/erase cycles. With a high byte of 2 and a
low byte of 249 the effect really becomes very pronounced. The
shape is exitremely clear and well-animated and non-flickery, even
though it's only 1-page animation; however the shape very slowly
disappears and reappears. In fact, it sometime starts invisibly (when
you first begin the routine), and it sometimes starts partly or wholly
visible. This phenomenon relates, it would seem, to certain mysterious
timing/frequency factors within the computer and how they mesh/fail to
harmonize with the physiology of the human eye, relative to scanning
frequencies or “critical flicker frequency”, a term from freshman
pychology classes. If anyone can pin down the phenomenon better
than the above, piease let me know. As the saying goes: Don Fudge is
NQT Albert Einstein! :

Now let’s look at a 2-page flipping animation program. It's B on 28A
and the binary file routine is called TEST E (CALL36934). There is no
LISA-EXECable source-code file for this binary file, so we'll do a
monitor disassembly:

68

PRINTOUT #17

L
X
15
[
[~

[eTon}
"‘.Ji %
i
el
3

]
[

L T T DT DD T D Thc b s TN RTA]
el
=
o

Dt T Tt ST T T T]
P TG T e ENENT TN
-

3
K

poxbion]
WOYEN
l

(Do DAl e ux]
AT o AT Ty
[

DT T WY R T

5

W
B,
(Ay]
it
|
-
s
7

o
b
L
LS

v}
I

L L,
.mlz“‘, KA Ta] |'5L'|=u |
11

N

L0
sl
AT]V Vs s o ot s s o 151 150

|
0 1 R D T o TS O

Fa IcR

LB,
g:éll
|
g
NNy

WOUENEEN
151
[
A]
bt b),

|
A

mgmmmv%mm¢mmm

YN [1Ax D
9 L]
=

il
|

|

15 4
“J 1%
¥

gk bk

L
ATt

]
L

2
nf,'gl
[
S

i
D P T
s

dhli b
T i 5
o 0
]
pad

gl
iy]

O,

i
1T
iy
L
" o
iy et

A b

i)
f3,

L]

P

[fin [enfind

IRV TR FT A TAA TS

mmmm?mmmw

]

i i
IORERR IR)
P

fl_A.,"l I
llll
ﬁwﬁ?mwﬂ

N

B o B

ol [T (IR 0

AT IO ST LYY DYt Y T LN w I8 0 Y L T DA

?
ﬁ%&wm
M|

u:]]

'

O e L T D g T o T T
SALRRT!

IOt |I‘| DeARN Tl Fa ETaA R o n T

alpN T Tun]l

oy}
LA

[i
ADA DU [B S

g

L D T O D G TV T D

QD DT LR T

TNV bete
]
0
[

5
Lr

o i Lo gy b
LT TN

T
i
m
tad

1.8
PN
3
i

SB4E— 5 D2 F3
SRS — S ad
SEES— S ES
Ty R] 5'3

4

= J10

o

b
N
2

e TS TR T
[T NENTLA T

. Ay b g ol
(R o s D [Ky T B

P
h

o
ual

i TRy [N

B
I

i
=
&
E
s
i I
i
E
|
E
E
I
L

o o Ll [

[l
B
{0 In

A}

b A i L

L T L SR
Doy Do [g E R 0
s &m

1

i

iy

fu

Ayt
1,2k
[[unTVn}

-
&

LI

e iy

Pl
[\

PRt
o

150

1
1,

b A o
g TIH TR 50 b T 4 "1

i [i DR [T T T A AWK

b
L
KA

A da b
4;11-"'1344&-'
e |

il

69

Efﬁf%f

- .,_T,

-y Tz .
el BT Wl

e b1

15 hotey] _.,...,_ [itlin A [y
g _.L_ (] LT e il g}

Lo bl o R L P bt 5 LS

Bt b LLTE. B L

DASADA CW TR

Lo s 00
NN RN (&

70

2GE&— E& FF INC &FF
SEES— A% a2 Loa 2560
SHER— o5 GB7 £TH %87
S3EC— 85 FF LnA $FF
SBEE- - C2 23 CHE #5232
26FR— D@ G2 BHE $36ER
SBES- RS 85 Lha #FES
SAF4— =5 FE STA 2FE
AEFE— RS OF LDR &$60
SBFS- 55 FF STA %FF
*IEFAL

SBFR— 28 &8 98 ISR $oE0o
IAFD— &8 ETS)
ABFE— 20 50 95 ISR $o660
S1mi—- A& 6% S
8183- C§ GEY

Sif4- D@ FD EHE £91G3
aige— E& 67 IHC %67
2iEe—- E& &7 IHT @7
SZiga- 20 66 93 Js $5GA7
Sigp— 15 oie

S{AE~ AD 98 CO LOA $CO8S
2111- % o@ CMP #3050
31i3- BB ai ECS #3115
G115— &m RTS

a1ii— &% o]

2117- =5 FLE

aiis- &8 RTS

aiie- o8 BRE

Run the program. Two features of its performance stand out im-
mediately: it has no flickery problems or disappearing problems at all,
and it is a bit shakier than the previous program.

The non-flickery clearness and hang-in-there-ness are due to the
fact that erasing and redrawing happens only when the opposite
screen is being displayed. Never is anything displayed that's less than
a complete shape.

The shakiness is a bit more complex. It has to do with the fact that
when you erase shape 6 and draw shape 1 or when you erase shape 7
and draw shape 2, you need to do many more operations than at any
other time in the sequence, and more operations means more time
spent doing these operations. The resuit is a distinct slow-down in the
last 2 erase/draw actions in each-sequence. Hence the shakiness. But
'l clarify this with the table on the following page.

71

Which Screen, Which Shape, Oraw and Erase Chart

HL of HL of
screen on which| screen - | shape # | shape # shape shape
to erasel/draw |displayed | erased drawn erased drawn
1 2 1 3 [} o
2 1 2 4 [} 1]
1 2 3 5 [] 0
2 1 4 6 0 0
1 2 5 7 [} 4]
. 2 1 6 1 [} 1
b 1 2 7 2 0 1
2 1 1 3 1 1
1 2 2 4 i 1
2 1 3 5 1 1
1 2 4 6 1 1
2 1 5 7 1 1
* 1 2 5] 1 1 2
i 2 1 7 2 1 2
1 2 1 3 2 2
2 1 5 7 34 34
- 1 2 6 1 34 4]
it 2 1 7 2 34 4]
1 2 1 3 0 [}

Above is a table/chart that shows what's happening in TEST E
(CALL36834) when B of 28Ais run. In column 1 is the screen (page 1
or 2) on which erase/draw operations are being performed. The next
column shows the screen currently displayed. The next column shows
the shape # of the shape that will be erased. The next column shows
the shape # of the shape that will be drawn to replace the one just eras-
ed. The next column shows the HL {(hor. left coord. byte) of the shape
to be erased, while the final column gives the HL of the shape to be
drawn.

Notice how sequences are dealt with. Before the events in the
chart ever commence, the instructions at $9046 to $9084 are carried
out. These instructions initialize both hi-res pages and draw shape #1
on page 1 and shape #2 on page 2, after giving the following coor-
dina .. for most of the first sequence: HL=0, HR=5, VB=18 ($12),
VT=0. This gets a different shape on each screen and readys the
routine for the erase/draw sequential cycle that starts at $9085.

Once the chart’s sequence begins, one screen is displayed while
the other screen erases a shape #X and then draws a shape #X+2.
Before you get confused, let's take a look at column 4. Remember,
shapes 1 and 2 already exist on screens 1 and 2, respectively. If you
follow down column 4, you'll see that the net effect of all this is that
shape 3 gets drawn on screen 1 and displayed during the next opera-
tion; then shape 4 gets drawn on screen 2 while shape 3 is being
displayed on screen 1, then shape 5 gets drawn on screen 1 while
shape 4 is being displayed on screen 2, etc. I've left out the part about
erasing, for now. So forget erasing until you can follow through both
this paragraph and the chart and know exactly what's going on.

72

If you're in this paragraph, it should be because you totally under-
stand all that's come before it. If you don’t, then BEWARE ALL YE
WHO ENTER HERE. Look at column 3. Notice how the shape #'s are
always 2 behind the next column’s shape #s. In other words, just
before shape #3 is drawn, shape #1 is erased, and just before #4 is
drawn, #2 is erased, etc. You see, what we're trying to do is flip back
and forth between the hi-res pages for each of the 7 parts of each se-
quence so that no flickeriness results from display of screens being
erased/drawn upon. Draw 1 on 1, draw 2 on 2, draw 3 on 1, draw 4 on
2, draw 5 on 1, etc. However, just drawing the correct shape is simply
not sufficient --- we must also erase the old shape on the screen just
before drawing a new one 2 shape #s ahead. That's what column 3 is
about. it's a simple enough concept: draw 1 on 1, draw 2 on 2, replace
1 with 3 on 1, replace 2 with 4 on 2, replace 3 with 5 on 1, replace 4
with 6 on 2, replace 5 with 7 on 1, replace 6 with --- cops!

Ran out of shape #s! So now we need to not only replace 6 with 1
but alsoc move HL and HR over one before drawing 1, since we'll be on
the next sequence when we draw the new shape #1.

Now, for the next shape we need to replace 7 with 2 and move HL
and HR back one for the erasing of 7, and then back to the new hor.
coords. for the drawing of #2. It would be wise to study the chart until
everything seems perfectly clear and logical. Remember, whenever
you get to the end of one sequence you must move your horizontal
coordinates HL and HR over one (increment them). And when the situa-
tion is like it is on the chart, you may have to increment, decrement,
increment, rather than just a simple increment like the way it is with
one-page animation. In the chart you'll stay with the old HL and HR until
you get to erasing 6 and drawing 1. Leave old ones for erasing 6, in-
crement before drawing 1, and then in the next erase/draw cycle
decrement before erasing 7 and increment (HL and HR) again before
drawing 2. Leave the hor. coords. alone until you reach 6 and 1 again.

As you can see, 2-page animation is a bit involved, compared to
1-page animation, especially when you start creating assembly pro-
grams to do everything that happens on the chart. The results are
worth the effort, however, as you'll see pretty quick. Don't try to
understand TEST E (CALL36934) from the disassembled list-out. At~
least not until you've studied this entire book and all the listings includ-
ed. You might be ready to try it by then. You may wish to have a few
things pointed out to you, however:

From $9085 to $909F is the main page-switching loop. From
$O000 to $9045 is the usual drawing routine. From $90A0 to the end
of the program is a subroutine gotten to by JSR $S0A® which occurs in
the main page-switching locop. This subroutine does everything except
switch pages for display and switch pages for erase/draw actions. At
$910D is the keyboard-press checking routine, which goes to the end
of the program. AT $9116 and $9117 are commands that have the net ef-
fect of a POP in BASIC: since JSR $90A0 is routine JSRed to after the
program has already CAlled 36934 to get us into the mach. lang.
routine in the first place, it stands to reason that a simple RTS will not
suffice to get us back into the BASIC program. We'll have to pull 2 ad-
dresses from the stack in our RTS --- the first one will only be telling us

73

to go back to the main page-switching loop. The remainder of the
keyboard-press routine has already been explained --- and remember,
you aren't likey 1o actually need such a routine in a game! You may
need a routine to determine keyboard input, but it isn’t terribly likely to
just send you back to a BASIC program, which is all this one does.

Other addresses of note: at $90A4 we find out if we're at shape
#6 yet (one asterisk on the chart) so that we can perform the special
functions needed at this point by going to $90A8 and erasing 6, then
incrementing hor. coords., then checking for being too close to the
right edge of the screen, then drawing 1. Another address: $90C5 ---
here we check to see if the shape # is O(when the shape # went from 6
to 1 the time before it left 1 in $7, so now since subroutine $90A0
starts with DEC $7, 1 will change to 0 just before $90C5 checks if). If
it is @ then we're at the 2nd special part (2 asterisks on the chart) of the
subroutine. Here we are sent to $90CB and put shape #7 in $7, and
then HL and HR are decremented and then we're sent to $90E1 to
erase old 7 and then HL and HR are incremented and a new #2 is
drawn at these newer coordinates. Another address is $9003, where
we load the accumulator with $FE (HR) and check to see ifit's a 4 ($FE
was just decremented 2 lines above this otherwise it'd be a 5 we’'d
check for) which would mean we’re at the 2nd to last line of the chart.
This would also mean that during the last erase/draw $FF (HL) was
found to be 35 ($23) at address $90B7, so it loaded 5 into HR and 0
into HL from $90B3-$30CO. This means that before HL equalled 35 it
was 34 and still “okay”, but when it was found to equal its limit in
$908B5-3208B8, it got sent back to the left-most hor. coords. along with
its partner, HR. All of this is merely the way a shape sequence gets its
hor. coordinates moved back to its starting coordinates once it ex-
ceeds its allowable limits. This may or may not be necessary in the
games you write.

So let’s hope you've got the basic idea of 2-page animation. Don’t
sweat the details yet --- a disassembled list-out is a poor way to learn
details, unless you're a real assembly wizard. | suggest studying the
details in the next list-out more carefully.

Now let's look at a 2-page flipping program with inputs, D of 28A.
In this program you get to choose what shape table sequence you
want, the starting shape # for the sequence (up to 17), the width and
height of your shapes, the step-size, the right boundary for the left side
of your shape if you're moving right-wards, the “high” and “low” delay
loop bytes, and which direction you wish to travel --- left or right. The
binary files that get loaded for D of 28A are either TEST F (CALL
36934), for left-to-right movement, or TEST G (CALL 36834), for
right-to-left moving. The source-code files for these programs are call-
ed TEST F and TEST G. Here is TEST F:

PRINTOUT #18
B :
| ORG F20ER
2o =FC
3 VB ZFD
4 HE EFE
S M =FF

74

If you're in this paragraph, it should be because you totally under-
stand all that's come before it. If you don’t, then BEWARE ALL YE
WHO ENTER HERE. Look at column 3. Notice how the shape #'s are
always 2 behind the next column’s shape #s. In other words, just
before shape #3 is drawn, shape #1 is erased, and just before #4 is
drawn, #2 is erased, etc. You see, what we're trying to do is flip back
and forth between the hi-res pages for each of the 7 parts of each se-
quence so that no flickeriness results from display of screens being
erased/drawn upon. Draw 1 on 1, draw 2 on 2, draw 3 on 1, draw 4 on
2, draw 5 on 1, etc. However, just drawing the correct shape is simply
not sufficient --- we must also erase the old shape on the screen just
before drawing a new one 2 shape #s ahead. That's what column 3 is
about. It’s a simple enough concept: draw 1 on 1, draw 2 on 2, replace
1 with 3 on 1, replace 2 with 4 on 2, replace 3 with 5 on 1, replace 4
with 6 on 2, replace 5 with 7 on 1, replace 6 with --- cops!

Ran out of shape #s! So now we need to not only replace 6 with 1
but also move HL and HR over one before drawing 1, since we'll be on
the next sequence when we draw the new shape #1.

Now, for the next shape we need to replace 7 with 2 and move HL
and HR back one for the erasing of 7, and then back to the new hor.
coords. for the drawing of #2. It would be wise to study the chart until
everything seems perfectly clear and logical. Remember, whenever
you get to the end of one sequence you must move your horizontal
coordinates HL and HR over one (increment them). And when the situa-
tion is like it is on the chart, you may have to increment, decrement,
increment, rather than just a simple increment like the way it is with
one-page animation. In the chart you'll stay with the old HL and HR until
you get to erasing 6 and drawing 1. Leave old ones for erasing 6, in-
crement before drawing 1, and then in the next erase/draw cycle
decrement before erasing 7 and increment (HL and HR) again before
drawing 2. Leave the hor. coords. alone until you reach 6 and 1 again.

As you can see, 2-page animation is a bit involved, compared to
1-page animation, especially when you start creating assembly pro-
grams to do everything that happens on the chart. The results are
worth the effort, however, as you'll see pretty quick. Don't try o
understand TEST E (CALL36934) from the disassembled list-out. At-
least not until you've studied this entire book and all the listings includ-
ed. You might be ready to try it by then. You may wish to have a few
things pointed out to you, however:

From $9085 to $909F is the main page-switching loop. From
$O000 to $9045 is the usual drawing routine. From $90A0 to the end
of the program is a subroutine gotten to by JSR $90A0 which occurs in
the main page-switching loop. This subroutine does everything except
switch pages for display and switch pages for erase/draw actions. At
$910D is the keyboard-press checking routine, which goes to the end
of the program. AT $9116 and $9117 are commands that have the net ef-
fect of a POP in BASIC: since JSR $90A0 is routine JSRed to after the
program has already CAllLed 36934 to get us into the mach. lang.
routine in the first place, it stands to reason that a simple RTS will not
suffice to get us back into the BASIC program. We'll have to pull 2 ad-
dresses from the stack in our RTS --- the first one will only be telling us

73

to go back to the main page-switching loop. The remainder of the
keyboard-press routine has already been explained --- and remember,
you aren’t likey to actually need such a routine in a game! You may
need a routine to determine keyboard input, but it isn't terribly likely to
just send you back to a BASIC program, which is all this one does.

Other addresses of note: at $30A4 we find out if we're at shape
#6 yet (one asterisk on the chart) so that we can perform the special
functions needed at this point by going to $90A8 and erasing 6, then
incrementing hor. coords., then checking for being too close to the
right edge of the screen, then drawing 1. Ancther address: $90C5 ---
here we check to see if the shape # is O{when the shape # went from 6
to 1 the time before it left 1 in $7, so now since subroutine $90A0
starts with DEC $7, 1 will change to 0 just before $90CS5 checks it). If
it is @ then we're at the 2nd special part (2 asterisks on the chart) of the
subroutine. Here we are sent to $90CB and put shape #7 in $7, and
then HL and HR are decremented and then we're sent to $90E1 to
erase old 7 and then HL and HR are incremented and a new #2 is
drawn at these newer coordinates. Another address is $90D3, where
we load the accumulator with $FE (HR) and check to seeifit's a 4 ($FE
was just decremented 2 lines above this otherwise it'd be a 5 we'd
check for) which would mean we're at the 2nd to last line of the chart.
This would also mean that during the last erase/draw $FF (HL) was
found to be 35 ($23) at address $90B7, so it loaded 5 into HR and @
into HL from $90B9-$20C®. This means that before HL equalled 35 it
was 34 and still “okay”, but when it was found to equal its limit in
$90B5-$90B8, it got sent back to the left-most hor. coords. along with
its partner, HR. All of this is merely the way a shape sequence gets its
hor. coordinates moved back to its starting coordinates once it ex-
ceeds its allowable limits. This may or may not be necessary in the
games you write.

So let's hope you've got the basic idea of 2-page animation. Don’t
sweat the details yet --- a disassembled list-out is a poor way to learn
details, unless you're a real assembly wizard. | suggest studying the
details in the next list-out more carefully.

Now let's look at a 2-page flipping program with inputs, D of 28A.
in this program you get to choose what shape table sequence you
want, the starting shape # for the sequence {up to 17), the width and
height of your shapes, the step-size, the right boundary for the left side
of your shape if you're moving right-wards, the “high” and “low” delay
loop bytes, and which direction you wish to travel --- left or right. The
binary files that get loaded for D of 28A are either TEST F (CALL
36934), for left-to-right movement, or TEST G (CALL 36934), for
right-to-left moving. The source-code files for these programs are call-
ed TEST F and TEST G. Here is TEST F:

PRINTOUT #18
£
i ORG FREEH
= ¥T FEZ £FC
2 VR EPE EFD
4 HE EFF EFE
5 HL EE7 EFF

74

& HBASL EPZ $£5
7 HEASH EPZ 27

2 Y0 EEZ 5

& pASL. EPF *FR

16 BAS EPZ $FE

11 HPOSH Eoil 3F411
12 pRAD LDY #39

13 _ LD¥ %7

11 HEREZ DEY
15 CPY #3006
1E EEW THERES
17 IHY

ig JMP HERES
19 THEREZ Tvm

25 STA BASH

=44 STH Y
2% LOOPil LDE #5606
=6 LDY #5085
=7 Sk HPOSH
28 LDY HR

= LD 00
Zg LO0FZ2 Lhia (BASL X
=21 EOR (HEASI
3z STH CHBARSL 3.Y
3= DEY

34 i I

=5 IHC BBS

e BHE HOCRED
37 IHC BASH
28 HOCAR2 CPY #$FF
3= BEQ HXTLHZ
4@ CPY HL

43 _ BCS LOOFPsz
42 HE¥TLHZ DEC YO

43 LDH YO

<44 CHP #FFF
45 EFG RETZ
L5 CHME YT
47 B LooPil
48 RETZ2 RIS

49 STRRT JSE $F2EZ
=& DA #F0

51 518 o852
=2 ISR FF20E
=3 LDA #5456
S STH FEL

55 LDH #%82

S STH FEATH
=7 LDH #F2

58 =Th %7

55 L DR 454

S5 STH FFF

&1 Lhg SEF

&2 ~TH FFE

53 LR #4558

o STH $FC

=5 i A FED

S ZTR £FD

&7 IS8R LREGH

By

o

RN T
e

}

5 S T i A R

1

i Ty

b L g

s L L] TV)

n

AN LY TH R T u TR x fux

Wi Y
«7
1

fod

[

y
=i

et =R
(g i i
it i

o

!
i
ol
1

,.
¥
K

el 1
A
"
ot ')

)
5
L

o
:

ol

Fohe

[}
¥

A B R

R

Al
T

n

AN

'
I

(N Tu Y

.
5

o fusde iy s furols fosde o s pucchs e)
o

s frs e e o i o e b v e b fre oo s [st e s (omehs b e i i e freede fends frocks fande by
g o
T bl

A :ﬁ
[:
RN

136 STH $FE
151 LA $1D
135 STh $FE
135 BR4 ISR DRAYW
134 [DY 3
135 DYl LD $1iF
1ZE DD1 CEY

157 EHE DD1
125 GEY

133 ENE D¥1
1346 LDY #Ei
141 Qs THC %FE
142 THC %FF
1473 CE?

144 ENE 33
145 LA #52
145 STR %7
147 oLc

148 LGA $FF
149 M 2EE
{5a ECC BES
151 LDa $EF
152 STH #FE
153 Lpa B30
154 STR 3FF
1S5 BB= JSE DRAW
=S RTS

157 BR2 JSB oAb
188 LDY 9
155 DY LD #iF
166 0D GES

151 ENE DD
{62 DEY

163 BHE DY
154 IHNC %7
185 INC 7
= JSR CRAW
157 il

155 LS $Caos
1£5 CHP %320
176 BECS HITEE
171 _ B1S

{72 HITKE PLA

173 FLF

174 RPTS

175 ERE

1 7% BRI

177 EHD
Bk}

. .Up to line 48 there’s nothing but the drawing routine. And from
lines 167 to 177 is the keyboard-hitting routine already covered. From
93-98 and from 134-139 and from 158-163 are standard “high” and
“low” delay loops where the delay is one number multiplied by the
other number, essentially. Note that the “high’ byte is stored in $9 but
the “low” byte is stored in $1F.

From lines 49-76 is the “get ready” section. Here's what happens
there:

Line 49 is the HGR command.

Line 56-51 make HGR full-screen graphics.

77

Line 52 is the HGR2 command.

Line 53-54 says do it to page 2 (draw on it).

Line 55-56 says display page 1.

Line 57-58 loads 2 into $7, the shape # holder.

Line 59-8@ loads a Qinto HL, which is $FF.

Line 81-62 loads the width from the width-holder address ($EF) in-
to HR, which is $FE.

Line 63-64 loads a @ into VT, which is $FC.

Line 65-86 loads the height from the height-holder address ($ED)
into VB, which is $FD.

Line 67 draws shape #2 on page 2.

Line 68-69 displays page 2.

Line 76-71 says draw on page 1.

Line 72-73 says store a 1 in $7, the shape # holder.

Line 74 draws shape #1 on page 1.

Line 75-76 reloads $7, the shape # holder, with a 2.

So now let's see what happens in the main page-switching loop,
from line 77 to line 87. ’

Line 77-78 says draw on page 1.

Line 79-8@ says display page 2.

Line 81 says go to drawing subroutine at line 88 but don’t forget to
return again (a JSR is like a GOSUB in BASIC).

Line 82-83 says draw on page 2.

Line 84-85 says display page 1.

Line 86 says go again to drawing routine at line 88.

Line 87 says jump, without returning, to the beginning of the main
page-switching loop again.

Now let's ook at the drawing subroutine at line 88. The line label is
ZZ, which gives us something easy to call it in lines 81 and 86. There’s
no other real significance to line labels. Make them so they help you
find where things are, if you're assembling.

Line 88 temporarily decrements $7 so you'll be erasing the correct
shape. Consuit the chart again --- the 1st line says erase 1, draw 3 and
the 2nd line says erase 2, draw 4. The 3 in the 1st line had to be
changed into the 2 in the 2nd line, so $7 was decremented temporarily
here.

Line 89-98 checks to see if you're at shape #6 yet.

Line 91 branches way down to line 1186 if you're not at shape #6
yet.

Line 82 --- your shape # is 6 if you didn’t branch so this line erases
your old shape.

Line 93-98 delay loop.

Line 88-10@ loads $7 with 1 since in erase/draw cycles where you
erase #6; you also draw #1.

Line 101 loads the step-size into the Y register; we’ll be storing the
step-size in $EC.

Line182-183 increments HL($FF) and HR{$FE) since next we'll be
starting the sequence over with shape #1.

Line 164 decrements Y, where the step-size was put.

Line 185 branches back up to line 102 if Y has not yet been reduc-
ed to 0. In effect you go through this loop of incrementing HL and HR
the number of times that is equal to the step-size.

78

Line 186 clears the carry flag because in line 109 we’'ll be branch-
ing according to the status of this flag, so it must not start out set.

Line 107-188 puts the current HL into the accumulator where it
gets compared with $EE, in which address we’ll be storing the right
boundary of HL, as decided by inputs previous to this routine.

Line 1909 if the carry is clear, which means the accumulator (with
current HL value) was less than the # in $EE (the HL right boundary)
then we move on down to line 114, draw the shape, and return.

Line 118111 if we have reached or exceeded the right boundary,
then we end up here, and load the block-shape’s width into HR, after
getting this # from $EF.

Line 112-113 if we reached or exceeded the boundary, as above
then the HL becomes @ again.

Line 114-115 is for drawing the shape you're on and returning to
the main page-switching loop from whence you came.

Line 118-117 finds out if the shape #, which couldn’t have been
less than 1 upon entering this drawing subroutine at line 88, was 1 but
quickly changed to 0 in line 88.

Line 118 sends you all the way to 157 if the # in $7 <> 0.

Line 119-120 if you're here then you're in the situation represented
by 2 asterisks on the chart. First you load a 7 into $7.

Line 121-125 is the same as line 101-105.

Line 126-127 puts HR into the accumulator and compares it to a
number equal to the width minus the step-size. Thus pre-determined
number will be stored at $EB.

Line 128 if HR isn’t equal to width minus step-size, then you'll be
sent to line 133. What's happening here relates to the 2nd to last line
on our chart. if the last erase/draw cycle reached the boundary stored
in $EE and started the shape over at HL=0 and HR=width, then HR
will now equal width minus step-size, due to lines 121-125 subtracting
the step-size from the current HR and HL.

Line 128-130 if HR is equal to width minus step-size, then vou'll
end up here getting a2 number from $1E that’s predetermined and equal
to the right boundary of HL minus the step size. This will be your new
HL. All this is to correctly calculate where the right-most shape was
when it was drawn so that you may now successfully erase it. The
“minus step-size” part of this is to make up for what will soon be hap-
pening in lines 140-144, where step-size will be added to HL and HR.

Line 131-132 is finishing the job started by lines 129-138. Your
new HR will be the same number as that in $1E, except that it will have
been stored in $1D and it will be $1E plus the width. Or think of this for-
mula for $1D: (right boundary for HL minus step-size) plus width.

Line 133 erases the shape whose #is 7.

Line 134-139 delay loop.

Line 14@-144 is the same as line 101-105.

Line 145-146 puts a 2 in $7, the shape # holder. See the 2nd to
the last line of the chart, column 3.

Line 147 clears the carry so line 150 will work right.)

Line 148-149 compares HL to the right boundary for HL, which is
stored in $EE.

Line 150 sends you to line 155 if the present HL is not as large as
the right boundary for HL, where you'll draw #2 and return.

79

Line 151-152 If you're here, then it means your situation is the 2nd
to the last line of the chart and you need to decrement HL and HR to
their lowest (left-most) values before drawing #2. Width gets stored in
HR ($FE).

Line 153-154 finishes the job started by lines 151-152
---decrements HL down to @. Only now is it okay to continue to line
155 and draw #2.

Line 155-156 draws #2 and returns.

Line 157 begins the subroutine that you end up at if you're at
neither of the types of places that got asterisks on the chart. In other
words, you weren’t ready to erase 6 and draw 1 or erase 7 and draw 2
if you made it down to here. This line erases your shape of #1 to #5.

Line 158-163 delay loop.

Line 164-185 increments $7 twice so that the shape it will replace
the one it just erased with will be 2 numbers greater than the erased
one.
Line 166 draws shape 3-7 (one of them).

Line 167 clears carry so line 170 will work right.

Line 168-169 checks keyboard-press flag in $C000.

Line 170 sends you to 172 if key was pressed.

Line 171 sends you back to main page-switching loops.

Line 172-174 POPS stacks and returns you to BASIC program due
to keyboard press.

Now let's look at TEST G, which moves you towards the left in-
stead of the right like TEST F does. We'll only be looking at ways G and
F differ. If something seems skipped-over or unexplained, that's
because it's already been explained in this chapter:

PRINTOUT #18

GRG FoE0R
ERrE EFC
e =k
EFr= &FF
EEF $FF
EFS £565
EEZ 27
EEZ &
FEF 2

PF 3
il
[y
f [k
[—.

o [

AT T
o e

f

.

02 ef 2 e

XK

iy
]

ol

Lonrid

L T L e

T

80

o o i AL L DI
0 RN B AT RN T B SO TR B e

o o o
<)

O L E N e N O O % T T T R S 1 T TN YA AT R A L LA O 1o D DT T N

WTtn 0T W [ST AN RN T TN o SN TR WO PR T T R D IS [M T A R

HOCAR2

H¥TLHZ

RETZ
STHERET

5, i’ l_!_!

1T

o e e
sebicm ehes yaboms

(P] e P T Bt

(A3 LR

L DL D i e D U 0 T

L unng(l s [Tl
W D o b e o

)

prickea 1 RE W e Pachin b

g
ALn

HE=H

81

et LU LT L .H
El; F 1._._ e

RO TR TOe ks U TN W] O T w ST B
i o sprel el o e s pont 1, |

82

158 LDY $EC
151 Ges GEC #FE
155 DEC $CF
153 DEY
155 BHE 003
155 LD #%
158 STH %7
157 LA £FF
155 CHp

153 EHE E
128 LDA #F
151 STH *
168 LA %19
153 <18 $FF
124 pE3 ISR DRAW

fm 200 N P

166 BES JSE DRAM
1E7 LDY $2
123 DY LDy $1F
1£3 OD GEX

176 EHE DD
171 DEY

172 EHE DY
173 CEC 37
173 DEC 37
175 JSE DRau
178 CLC

177 LLS $Coaa
172 CHP #E001
173 ECS HITKR
190 RTS

121 HITKE FLA

195 ™ PLP

193 RTS

184 BRE

125 EFY

126 END

The lines that differ between TEST F and TEST G are as follows:

Line 57-58 puts a 6 into $7 rather than a 2 --- we must start at/near
the end of the sequence and work backwards since the shape
movements are to be left-wards.

Line 59-80 start HL towards the right for the same reason as the
above. $19 is where this right-most coord. for HL is stored --- its for-
mula is 39 minus the width.

Line 61-82 puts a 39 into HR --- 38 is the # of the right-most possi-
ble byte on the hi-res screen.

Line 72-73 puts a 7 in $7 --- the sequence must run backwards.

Line 75-76 puts a 8 in $7 --- same reason.

Line 88 is INC $7 rather than DEC $7 as in TEST F - all
decrementing and incrementing between these 2 programs will be op-
posite of each other because they’re moving in opposite directions.

Line 90 here we're looking for shape #2 to be analogous to the
1-asterisk lines in the chart where 6 will be replaced by 1. We're look-

ing for 2 to be replaced by 7.
Line 98-109 as stated above, we want 2 to be replaced by 7.
Line 188~107 we find out if HR ($FE) has gotten to the # that is also
the width (stored in $EF) which would also mean that HL was at 0.

83

Line 168 if HR > width then you get sent to line 120.

Line 118115 if HR isn’t > width then step-size ($EC) is added to
HR and stored in $1D and step size ($EC) is added to HL and stored in
$1E. These #s will be used later.

Line 116-119 since the left-most hor. coords. have been reached,
we now must put 39 into HR and 38-width in HL in order to start the
screen-crossing again.

Line 122-123 we find out if 8 (it would be 7 except for INC $7 at
line 88) is in $7, the shape # holder. This is analogous to the 2-asterisk
situations on the chart where 7 .gets erased and 2 gets drawn in its
place.

Line 125-126 1 gets erased (and replaced by 6 later).

Line 135 carry is set, so it will be ready for subtraction at line 137
where a “carry” might be needed.

Line 136-138 subtracts step size from the # we saved there ($1D)
and stores this new # in $8 to use to compare with HR later.

Line 139-142 situation comparable to the 2-asterisk situation of the
2nd line from the bottom in the chart we've been referring to. We now
need to erase the “34” (which in our situation would be a low number
dependent upon shape width), so our version of “34” has been
calculated and put into $1D, which is now loaded into HR, and a
number stored in $1E that is one width smaller than $1D has been
calculated and is now loaded into HL.

Line 143 the 2-asterisk erasing situation now runs the drawing
subroutine and erases the shape (#1) in the previous sequence’s hor.
coord. position.

Line 155-156 shape # in $7 changed to 6 for drawing 6.

Line 157-158 determines if HR is the left-most allowable HR
previously calculated and stuck in $8. If it is, it means that this drawing
of #6 is analogous to the 2nd line from the bottom on the chart and we
need to jump our HR and HL across the screen to begin a new screen-
crossing beginning at HL=39-width and HR=39. (Notice that the
other hi-res page has already begun its screen-crossing in the 3rd to
last line of the chart where 34 has changed to @. Now we need to make
this hi-res screen follow suit.

Line 159 if a 2-asterisk (2nd line from the bottom) chart situation
was not found to be present, you're sent to line 164 to draw and
return.

Line 166-163 if a 2nd line-from-the-bottom-of-the-chart situation
was found, then 39 gets loaded into HR and 39 minus width gets load-
ed into HL to prepare for drawing #6 in the right place.

The above source-code files create mach. lang. routines TEST F
(CALL 36934) and TEST G (CALL 36934). The source-code test files
are named TEST F and TEST G. F goes rightwards and G goes left-
wards. The routines are a bit different --- there are many ways to handle
page-flipping block-shape sequences. Those were 2 ways. Disk 28C
has all binary files from TEST A (CALL21886) to TEST S (CALL2125)
and all of the source-code files with the exception of TEST E. Also in-
cluded is the TEST TB! source-code file for TEST TB, and YTABLE, for
animation speed improvement. Disk 28C and disk 28D are both unlock-
ed --- you'll have no problem using any of these files, games, sounds,
or other routines.

84

Now let's look at 1 on 28B, the Automatic Block-Shape Creator
---Starting With Block-Shapes. It utilizes a binary file called TEST H
{CALL 2186) and the related source-code file is TEST H. Here it is:

PRINTOUT #20

=
o™ fesats
o

EPZ $FC
EPZ £ED

He EPZ $FE
HL EPZ $FF
HERSL. EFT 324
HEASH EPZ $57

YO EP7 %£
BAS EFZ 3FQ
ERSH EFZ 4FE

HPDSHM ERil 2F411
LGY #39
e
HERE = DEY
CFY 560
BES THER
IHY
JHF HERE
THERE T¥A

s oo s s o
-

AT bt ok ot o)

LODP1 LD #fe0

4

e o o B T e A D A A A PP PO I

DGR TR DL YTy

HOCART CPY &

HATLH LEC YO

: $FFF
BEG RETURH

E ot

ECS LOOPL

FETURN RIS

DRAL LDY #£9
[DX 57

HERES DEY

T CP¥ #son

EEE THERES

~ IHP HEREE
THEREZ T¥H

TN D TR TR o Y 6 e T T N T § TR T T R T PN T T T T B Pl T N TR DO T L T W 1A)

LAV e L

9 10 [

BRSH
85

%

AT e
CEICT b 4 - :
ci e JT0 o B L o b

[LLICL)
{a

e

st L e e ..m.# ..r;r.

e n_u L .H, T L el ..._”.

L ...,_ 1Rl ot

.z. [N

- 0 g
] il [0
L, LL, n
Ll [} [
el el i

[l .1._..;.__,;___. TG P SO0 et 1] £ _4_._;_.._:__..{_”,..__._.._5_1.;.
A ENNA T T Y Y O Y Y S Y LY S S

o] it epesf agpes] rpor] sprch spiee s spiae] wpon) epusf sl sy e s e e agma

86

112 CHME #¥1
114 JHMF STRRT
120 LNDONE DEC YO

121 LBA YO

155 CHE #3FF
153 EE RETT
154 CHE VT
155 BCS LOOFIZ
158 RRTT RIS

157 ERE

= BRI

155 EHE:

From lines 1 to 48 is the scanner, and from lines 47 to 83 is the
drawing subroutine. Let's look at the remainder of the list-out:

Line B4-85 saves the VB in YO ($86).

Line 88-87 gets the X and Y registers ready for the HPQSN
routine, which must be entered with hor. low byte in X, hor. high byte in
Y, and vertical hi-res coordinate in the accumulator. This last operation
was performed in line 84. HP@SN calculated the left-most base ad-
dress of the vertical line represented by the # put into the accumulator
from VB, the vertical coordinate of the bottom of the block-shape.

Line 89 clears the carry since the carry flag will be central to later
branching instructions.

Line 90 loads Y with HL --- we’ll be dealing with each byte in this
shape, one at a time, starting from the lower right-hand corner and
working left until at HL, and then moving up a line (to VB-1) and doing it
again --- this repeats until the VT line has been completed.

Completed in what way? --- you may well ask. Well, this is an
automatic sequence-creator, and, unlike A of 28A it needs no vector
shapes to operate. Block-shapes are all it needs --- in fact it only needs
one. it will make the other 6 in the 7-shape sequence.

So how does it do it? --- you may well ask, since I've stated before
that a block’s hor. coords. are bytes, and a byte is 7 dots wide on the
high-resolution screen {the 8th bit, #7, is not displayed --- it's the color
bit). So you can draw a block-shape at HL=5, HR=8, VB=20, VT=1
oratHL=8, HR=9, VB=20, VT=1, but notat HL=5 1/7, HR=8 1/7,
VB=20, VT=1. Or can’'t you? There is a way! Look in your assembly

" books and check out these 6502 instructions: ROR and ROL.

At first they sound like the perfect solution to our problem. But then
you start realizing that the color bit rotating along with everything else
will tend to mess up the works royally. Upon closer inspection you also
begin to see that even though the carry bit rotates nicely into bit @ and
bit 7 rotates sweet-as-you-please into the carry bit, this doesn’'t make a
very convenient way of shifting sideways from one byte into the next,
since throwing the 0 bit of one byte sideways into the 7 bit of another
byte merely gives that 7 bit an irrelevant setting, since it's the #6 bit we
want that @ bit to hop into. Putting it into 7 is a bit silly {or a silly bit,
depending upon your outlook).

87

Let's look at a diagram:

~g—— — Block-Shape Width

actual width = 3
width to give = 2

°
°
°
°
°

bit width of shape within block = 11
bit width of biock-shape, including block (actual) = 21
extra room to the right is shifting space

E Shape Width !
6 70123 456 7i0123 456 7/0123 456 7101
64128 |1 2 4 8163264128 |1 2 4 816326412801 2 4 81632641281 2
o 0loo00o1 101 0/1100110 0/0c000 00O 0f01
HL Mid HR

If we're trying to shift all bits towards the right side of the screen,
we need to remember the foliowing: A byte’s bits go from right to left,
getting bigger. #7 bit is on the left and has a decimal vaiue of 128,
while #0 is on the right and has a value of 1. However, when the high-
resolution screen displays hi-res bytes, it does it backwards, so that
the least significant bits are to the left and the most significant bits are
to the right. This means that an ROR command will shift bits right, but
on the screen it will look like a leftwards shift; ROL shifting will appear
rightwards. Here are the parts of 1 of 28B that create and save a block-
shape sequence from one block-shape:

PRINTOUT #21

e
P

T

ey
-

LI

in
VF e

-
b o

L
W

el

IF HH > = HS THEW 286
FOR QR = 1 TO S5: CALL 2189a:
HE=T
ST = 5T + 1
GOTO 264
DE = CHRE <43
UTRE &
THFOT SFILE MAME: ":H$: IF LEH
{MES = B THEN =52 o
IHPOT *DID 90U GET IT RIGHT?
Y H¥»%:2%: IF LEH ¢2%> =
G THEH =50
384 IF ASC <282 < g% THEH =@
@7 TEXT : YTRE 1: HOME : GOSUB
SH45
IE2 LL = 256 = LS
262 PL = LS o
318 ERINT DS"BSAVE" sh$:" . RA2384.L
43 =i

The lines from 402 to 410 prompt the necessary inputs from the
user: step-size (bit-wise), # of shapes in sequence, first shape # in se-
guence. The program takes it for granted you'll know enough to load in
a block shape and thereby have at least one shape at $900, if not
more, at $A00, $B00, etc.

The lines from 204-205 tell what shape # the program is on,
although it takes less than a second to create a sequence, so lots ¢’
luck reading the #s that get displayed.

L.ine 288 puts the first shape’s # into $7 and manipulates screen
switches to graphics.

Line 2180 erases the rectangle you will have drawn around the
paddle-defined block-shape you're using for the sequence creation.

Line 215 keeps track of how many shapes get drawn.

Line 229 scans the shape you will have previously displayed and
paddie-defined in terms of its block-size.

Line 225 has the shape-sequence creation quit if all the desired
shapes are done.

Line 240 shifts the presently displayed shape one bit right for each
dot of movement required according to the step-size. A step-size of 2
would cause 2 logical shifts here.

Line 245 increments ST, the variable that will be POKEd into $7,
the shape # holder, if another shape is required.

Line 250 keeps the cycle going until an earlier line pulls the pro-
gram out of the loop and sends it to line 300.

Line 306-310 saves the block-shape sequence table.

it should be noted that a block-shape sequence creation requires
that the actual shape inside the block-shape is at least (7 times
step-size) dots from the right edge of the defined block of the block-
shape, if a block-shape sequence creation is to be successfully ac-
complished. The reason is simple: there must be shifting room! You
can't do shift operations on bytes you're not even including in your
block’s definition.

89

Now let’s return to the front end of this chapter and again look over
the printed-out view of the 2 shape tables MANB and MANC (little walk-
ing people are the shapes). Notice that this type of sequence creation
involves many different shapes to begin with, while automatic se-
quence creation involves making many shapes out of one shape and all
the shapes end up identical (except for horizontal positioning). Now im-
agine the top shape in each column being identical to each shape under
it --- only one shape type per sequence. This is what automatic se-
quences are all about. A flying saucer simply moves in some direction
(let's say rightwards, for now) without changing its shape. Much anima-
tion today is of this type, which is why | know you'll appreciate A of 28A
and 1 of 28B.

Notice again the relative jump taken by MANB and MANC shapes.
If MANB shapes were in color, they'd be in trouble, since a 1-bit shift
throws off colors. MANC shapes, on the other hand, when used in
block-shape sequence routines such as the one in D of 28A, would
have no color problems, since 2-bit displacements are in harmony with
the “even or odd” Apple color scheme.

Anyway, all you need to do to run 1 of 28B (and A of 28A is run
about the same) is to load a block-shape into the program, define it with
the paddles, and answer the inputs about shape #s, etc. Then it's just
Presto Bismo and you’ve got yourself a block-shape sequence.

Okay, now back up a couple of pages and review what lines 84-20
do in TEST H. There was no way to tell you about lines 91-129 without
first letting you have a bit of context about shifting and block-
sequences and hi-res graphics bytes. You should be about ready to
understand these lines at this point --- we'll see:

Line 91-83 “zeros” the bit 6 and bit 7 flags. I've named $8 the bit 7
flag and $CF the bit 6 flag. All | mean by flag is that | intend to save in-
formation about the 6th and 7th bit of each block-shape byte | en-
counter in this shift-subroutine. | can't save information in the bytes
themselves --- we must preserve their patterns and integrity, and
possibly even their virginity, if our end resuit is going to be to shift the
shape over 1 bit --- intact and unscarred. Notice that this shifting
subroutine only shifts shapes over 1 bit, never more. If you want a 2-bit
shift, you need to call the routine twice. (From BASIC, in programs like
1 of 288, this would be CALL 2186. In mach. lang., this would be
JSR $88A.) :

Line 94 loads the byte (from the block-shape) to be shifted into the
ac~umulator. The way it's indexed with Y is that originally Y gets loaded
witn HL (in line 20), but at the end of the routine (line 113) we deter-
mine if it's reached HR yet (Y gets incremented at 115 each cycle).

Line 85 shifts the current byte to the left in its structure, but to the
right on the screen.

Technically speaking, this is called a ROTATION. ROL means that
the 7 bit goes into the carry bit and the carry bit goes into the 0 bit. In
effect this makes it a temporary 9-bit byte rotating within itself. In
regular shift operations, a @ is input into the vacant bit {(caused by
shifting), rather than the carry bit. We call this type of animation shift
animation because rotation animation would be a very misleading term!

Line 96 puts this shifted (rotated) byte right back into the address it
found it at.

80

Line 97 branches to line 99 if bit 7 had been 1 before it was
shifted. In line 99 the “bit 7" flag ($8) is set to signify that bit 7 was a 1
before it was shifted. (Bit 7 shifts into the carry flag (C) during ROL,
therefore BCS (branch on carry set) would be the way to know about
the way the byte’s bit 7 used to be before shifting.)

Line 98 if bit 7 used to be a @ then the carry flag would also be 0,
and detectable by BCC (branch if carry clear). On clear carry the pro-
gram would go to line 100.

Line 99 sets “bit 7" flag signifying that bit 7 used to be 1.

Line 189 compares the shifted byte in the accumulator with 128
($80). Any number 128 or larger means that bit 7 is now (after shifting)
a 1, which means that bit 6 was a 1 before the shift.

Line 191 if bit 6 used to be 1 then we're sent to line 103 where we
set the “bit 68" flag.

Line 162 if bit 6 used to be Othen we're made to skip line 103 and
go to line 104 where the routine continues.

Line 103 sets “bit 8" flag ($CF) to show that before shifting bit 6
wasa 1.

Line 1€4-185 loads accumulator with the bit 7 flag and tests it --- if
it's NOT set (not equal to zero is the criterion of the BNE instruction)
then the BNE is ignored and the current byte is stuck into the ac-
cumulator and the #7 bit is changed back into the 0 it used to be before
shifting (this will happen in lines 106-108).

Lines 186-168 load current byte, logically AND this with 127
($7F), and store it back in its place. The way AND works is that when it
compares two bytes, it leaves a 1 in only those bits that were 1 for
both numbers. The result gets stored in the accumulator. The result of
ANDing with 127 is that all bits get ignored except bit 7, which gets set
to ©. Look at the binary version of 127 and you'll see why. It's
01111111, All one’s that get compared to bits @ through € will stay
ones. All zeroes will stay zeroes. (Remember to read the most signifi-
cant bit as being the one on the left.) Bit 7 of any byte, whether 1 or @,
will tumm to Owhen ANDed with bit 7 of 127 which is 0. Again, the
reason we want the high bit zeroed here is because it was 0 before the
shifting and we want to restore its previous condition in order to keep
colors intact (bit 7 is color bit).

Line 189 serids you to line 113 since bit 7 is now fully taken care
of. :

Line 116-112 where we were sent if lines 104-105 found the bit 7
flag set (meaning it was 1 before the shifting). All we do in these lines is
put the 1 back in bit 7 the way it used to be. We simply load in the cur-
rent hi-res byte, ORA it with 128 ($80), and store it back where it came
from, with a gentle pat on the assembler. The way ORA works is to fix it
so that if either one of the 2 operand’s bits are 1 then the result is equal
to 1. The binary of $80 or 128 is 100000090 --- the opposite of the
127 we used in the last logical operation. The net effect is again ignor-
ing bits @ through & but setting bit 7 to 1 no matter what. ORA is often
used to set things to 1 and AND if often used to set things to 9 and it's
probably obvious why. EOR is the third logical 6502 instruction, and
does. complementing or comparisons --- such as we've already il-
lustrated in the EOR used to XDRAW in our drawing routines.

91

Line 113-114 checks Y to see if we've shifted our way from HL to
HR yet. If we have, we're sent to line 120 to move up a line.

Line 115 increments Y so that we'll next be shifting the next byte to
the right.

Line 116 clears carry flag so line 118 will do its comparison with a
‘clean slate.

Line 117-118 compares the “bit 6" flag ($CF) with 1, which means
it sees if the bit 6 flag is set. If it is set, it means $CF was a 1 but also
that before shifting, bit 6 of the current byte was a one. The CMP in-
struction sets carry (C) if the accumulator (with the bit 6 flaginit) or
= the data it's compared to (immediate number #$1).

Line 119 starts us back at line 91 to continue on with this line, shift-
ing more bytes.

Line 120-121 moves us up a line.

Line 122-123 finds out if we're trying to go higher than line 0 (lower
lines are 0 --- lower means the downwards direction), which is a no
no; if such a no no is being attempted you're sent to line 128 where
you return from the shifting subroutine and go without supper and say 3
Hail Marys. _

Line 124 looks to see if you've gotton to the defined top of your
block-shape (VT). If you have, you return from your subroutine.

Line 125 if you haven't reached VT you’re sent back to begin the
shifting of bytes in the next higher line (higher in position, lower in vert.
coord.). .

Line 1286 returns you to the routine you came from. It should be
noted that each time you're sent back to line 91 to continue shifting
rightwards through the line you're on, you'll be arriving there with the
carry bit set or unset depending upon lines 117-118. These lines set
the carry if the bit 6 flag had been set before the shift. As it happens,
when we shift out of one byte and sideways into the next, we want bit 6
from the 1st byte to determine (1 or 0) the @ bit of the 2nd byte. This
would allow a shape to smoothly pass through all the horizontal bytes in
the computer without distortion, as long as this bit 6 procedure was -
combined with the other features of this shift program, such as the bit 7
procedure and the ANDing, ORAIng, and flagging at specific points.

The reason a set carry bit will stick a 1 into bit @ of the next byte
has to do with how ROL works. Consult your assembly book again. See
how the carry (C) goes into bit @? Well, that's the trick here. No one
ever said that the carry couldn’t get set by comparing a bit 8 flag with 1
before re-entering the ROL section again!

Later in this book we'll see how ROL or ROR can be the basis of
logical shift animation. It's slower than sequences of block shapes
and erase/draw routines, especially if YTABLE is used. But it's really
quite nice in 2 basic ways'

1) you need only 1 block-shape to move 1 or 2-bit moves during
animation

2) it's simpler to use and takes léss memory

A section on the use of YTABLE is included in Chapter 31, and a
program on this speed aid is found on disk C --- it’'s #4. There'll also be
more animation chapters in this book, reiating to not only sequences
but to shifting, Applesoft, assembly, etc.

92

9C. HPLOT SEQUENCES

Hplot-shape sequences are less difficult to program than block-
shape sequences. Hplot-shapes take up less room and are easier and
faster to draw than any other type of shape. And if an hplot-shape is
large and composed of only a few long straight lines, then hplot-shape
sequence animation may be faster than block-shape animation. For
small shapes block-shape animation would beat hplot-shape animation,
even if only a few straight lines are involved. Hplotting commands take
longer to execute than drawing and erasing block-shapes, but it
depends. on the # of bytes you need to handle in a block-shape. If
you're considering which method to go for, block-shapes are very rapid
when 60-100 bytes are involved, but get proportionately slower when
500-1000 bytes are involved.

This system deals with hplot-shapes in the following programs on
disk 288B: 6,7,8,9,A.

In 7 of 288 there is an hplot animation sequence. Try running it. It's
Applesoft run, and therefore slow. Use the hplot-shape sequence table
TRIANGLE and the inputs the program tells you to give.

It should be noted that if a shape is needed that will move without
changing shape, what you need is only one hplot shape --- no se-
quences are necessary. TRIANGLE is a shape table that is truly
sequential because the shapes are all different. Actually, each one is
simply bigger than the one before. There are 10 shapes.

An hplot shape is merely a # (representing the # of points there are
coordinates for), followed by the 3-byte point coordinates. If desirable,
one could easily get the 3 bytes per point down to 2 bytes per point,
just by eliminating the possibility of traveling past or drawing past hor.
coord. 255. If you keep the hor. coord. under 256 then no high byte is
necessary, and if you plan to make sure you'll never need any hor.
coord. greater than 255 then you could eliminate all consideration of
the hor. high byte totally and just keep it permanently at 0.

Our routines will go both ways with this idea --- nothing will be
drawn beyond 255 in the routines, but the hplot-shape tables will in-
clude low and high hor. bytes as well as vert. byte. Our hplot-shape
drawing routines are all ready to use hor. high byte, but in our animation
programs (for hplot-shapes) we don't check hor. high byte. TEST Q is
an hplot-shape animation source-code. To add high-byte checking
we’'d have to add:

58 LDA (BASL),Y
59 ADC $CF

60 ADC $CF

61 STA (BASL)Y
82 INY v

63 LDA (BASL)Y
64 BEQ GO-ON
65 DEY -

66 LDA (BASL)Y
67 CMP #$F

68 BCS RTR

69 INY

93

70GO-ON INY

71 DEC %86

72 BNE START

73 RTS

74RTR PLA

75 PLA

76 RTS
(continue with TEST Q by moving every line from the present 72 line on
up,up 5 line #s; the present 72 would be 77, the 73 would turn into
78, etc., all the way up until line 133 turned into line 138).

Don’t mess around with this hor. high byte checking uniess you're
sure you need 279 hor. units to play with rather than 255.

At present 8 of 28B draws only up to 255 horizontally. To get it up
to 273 you need to retype the program on your own disk, after listing it
out with E of 28B and jotting it down, and this time multiply the lines that
read the PDL #0 (for hor. coords.) by 1.08.

The 9% advantage of the extra 24 dots sideways may seem valuable
to some, but they also slow down the program (notice the extra lines
TEST Q, above, would need to deal with high byte checking).

Another limit in 8 of 288 is that if your PDL#1 goes above 159
{thereby going from mixed to full-screen graphics, coordinate-wise),
then it will continue reading that PDL forever until you turn the PDL
more counter-clockwise to bring down the coordinate. Mixed screen
was used here so that you could monitor your coordinate #’s.

It should be clear now that one doesn’t need more than one hplot-
shape to do animation unless the shapes are to be dissimilar.

Let's look now at the basic Applesoft animation program for hplot-
shapes, one of the subroutines to be found in 7 of 28B. This animation
subroutine uses TEST O (CALL 2048) as its simple hplot-shape-
drawing mach. lang. routine. This routine is CAlLLed to erase in line
5100. But let’s look at the program:

PRINTOUT #22

e . S 4 e
TEDE : HER : POEE — 183&5.
TRl
e
T
R E
23
21

ESEA B POKE 2255

"

et (R e e 5,
Dl

&
Tl

I
1™

1B

.
(XX

Wea | i |

7LS00R - 13z HOOLOR= @
£348: HCOLOR= HC

5191 ON BL GOSUB &38B16
5128 g = %M + 1=z IF G > M THEH

Gl ,
SizB EEEKE FL.oR{ > HCOLOR= HC: CRLL

SzoE FOR % = 1 TO Zd@d>: HEXT
5228 RETURH

Line 369€-3@95 initializing hi-res page 1 and 2.

Line 3188 gosub 5000, the hplotting routine (we're viewing and draw-
ing on page 2 because of HGR2)..

Line 3105 view page 2, draw on page 1.

Line 3118 gosub hplotting routine.

Line 3115 view page 1, draw on page 2.

Line 3132 reset keyboard stroke so line 3135 will work.

Line 3135 read keyboard.

Line 3138 if ESC was hit, exit.

L.ine 314@ cycle back to beginning of animation.

Line 5899 N is # of shapes in sequences, QW is the # of the shape now
being drawn, Q is ocne more than the next-proper shape # to erase; if
we're going to be erasing a shape and then drawing a shape whose # is
2 greater (which is how this routine operates), then when we're on #1,
it means that the proper shape # of the shape to erase is not #0, but
#N, which is the highest numbered shape in the sequence.

Line 5695 dump the new shape # of the shape you're on into the
“shape (+1) to erase” variable Q.

Line 5188 put the # of the shape to erase into $7, the shape # holder.
If QW was 1 in line 5000 and Q=N + 1 (let's say N was 10), has made
Q be 11, then SQ(Q - 1) will put sequence shape #10 into $7. The
“chart” used to help explain block-shape sequences (2-page) should
be reviewed if the juggling of shape #'s is confusing here. What's
meant by SQ(Q - 1) is this: an array has been formed that tells us the
order of the shape #'s you want in your sequence. SQ with 1 dimen-
sion was the array used, and proper DIMensioning has been done. The
shape # order may be consecutive or mixed. Note that no XDRAWiIng is
possible so HCOLOR is set to black before the routine is CALLed, and
then restored afterwards to the chosen color (default = white).

Line 5181 if flag QL = 1 then we go to 63010 where motion stops until
keyboard is hit. This flag was set earlier when the program asked you if
you wanted “stop-action” animation.

Line 5126 the shape # we're on is incremented and if we go beyond
the last shape # we start over.

Line 5138@ erasing is done so drawing must begin: put shape seq. # in
$7 as before, only this time let it be the # we're omn; draw that shape, by
hplotting.

Line 5209 runs the delay Ioop, which may be mdnvndualized for each
shape in the sequence by use of the special array previously used in
the inputting of delay-loop times for each shape in the sequence.
Line 5230 returns us from this subroutine.

The above Applesoft program gives slow animation which is not in-
tended for actual animation routines such as 9 or A of 28B. Its intention
is to allow you to test cut an hplot-shape sequence of your own easily,
with or without the valuable feature: stop-action mode.

95

Now let's look at the source-code program TEST O, the LISA-
EXECable text file that created, once assembled, the binary file TEST
O (CALL 2048):

PRINTOUT #23

) e

g

R [N LT MO

u
ot

e [T, 1001

LT

||“|_‘)| 1} e e e s s s e e sk

Jek (TR LS 0T

I

W

o

il

e

[bt e [o [e [17

NN

=

1£
=

96

In this assembly lang. program, the Apple routines to do an HPLOT
($F457) and an HLINE ($F53A) routine are used. In HPLOT you enter
with X register = hor. lo. {screen coord.) and Y register = hor. hi. and
the accumulator = vert. The routine calls HPOSN, which sets $EQ =
X, $E1 =Y, $E2 = accumulator; then it sets up the internal cursor, us-
ing $E6 (230 dec.) to tell it what page to operate on, and then it sets
$1C to the contents of $E4 (where the color code, gotten from the col-
or code masking table at $F6F6, is stored). The internal cursor is the
combination of addresses that follow: $1C, where the color masking
byte (shifted for odd addresses) is stored; $26,$27, where the left
most vertical byte’s address is stored (always hor. byte #0) with lo.
1st, hi. 2nd; $E85, the integer part of the hor. screen coord. divided by
7: $30, the bit position from the bit position table at $F5B2, which cor-
responds to the remainder of the horizontal coordinate divided by 7.

The external cursor is the $E0,3E1,$E2,3E4,3E6 all mentioned
above. These terms (internal and external cursor) were coined by one
C. K. Mesztenyi to help make hi-res graphics more understandable.
Judge them for yourseif.

After HPLOT calls HPOSN it goes to PLOT, which uses the internal
cursor data and does the following:

LDA $1C (color)
EOR ($26),Y
AND $30
EOR ($26),Y
STA ($26),Y
RTS
In this set of instructions, $26 is responsible for the plotting hap-
pening at the correct vert. coord., and when | say $26 this includes
$27, since the lo. byte is in $26 and the hi. byte is in $27. This is call-
ed post-indexed indirect addressing, and is of the form {(addr),Y, which
can be even better illustrated by (addr. +1, addr.),Y. The first of these
2 ways of addressing is really happening, so an instruction like EOR
($26),Y really means EOR ($27,$26),Y, and when commas are used
between addresses in the form $27,$26 it means that the hi. byte is
1st and the lo. byte is 2nd and the actual address is found by multiply-
ing the 1st address byte by 256 and adding it to the 2nd address byte.
The Y in the post-indexed indirect addressing above is gotten from
$ES5 which is the hor. screen coord. divided by 7, which changes the
screen coord. into the proper hi-res hor. byte (there are 40 hor. bytes
in each line on the hi-res screen --- from @ to 39; there are 280 hor.
coord. units so it's obvious that dividing by 7, since there are 7 (visible)
bits per byte, is going to give you 40.).
ANDing with $30 makes plenty of sense once you check out the
bit position table:
$F5B2: $81 which in binary form is: 10000001
$F5B3: $82 which in binary form is: 10000010
$F5B4: $84 which in binary form is: 10000100
$F5B5: $88 which in binary form is: 10001000
$F5B6: $380 which in binary form is: 10010000
$F5B7: $AQ which in binary form is: 10100000
$F5B8: $CO which in binary form is: 11000000

97

If you recall, ANDing has the following- truth table:

QANDO =10
OAND1 =0
1TANDO =0
1AND 1 =1

This means that when the accumulator (which has been loaded
with the color byte ($1C) and EORed with the hi-res byte being PLOT-
ted into) gets ANDed with the data in $30, the color byte determines
the color and the bit table # determines that one and only one bit gets
turned on, since ANDing with O always gives a @ result, and all visible
bits in the bit table # are @ except one. So AND $30 turns on the cor-
rect bit within the hi-res screen byte you're dealing with.

But why EOR ($26),Y, you ask? Because this is how one applies
the color masking table byte in $1C to the hi-res byte in question, to
make the dot be the right color (which has to do with its position on the
screen). Look at the color masking table now:

$FE6F6: $00 = black1 = binary 00000000
$FBF7: $2A = green = binary 00101010
$F6F8: $55 = violet = binary 01010101
$F6F9: $7F = white1 = binary 01111111
$F6FA: $80 = black2 = binary 10000000
$F6FB: $AA = orange = binary 10101010
$FBFC: $D5 = blue = binary 11010101
$F6FD: $FF: = white2 = binary 11111111

You can probably see why certain colors are good for even coor-
dinates (hor.} and others are good for odd coordinates, when vertical
lines or peints are plotted. Notice how every other bit is on in green,
violet, orange, or blue colors. But enough technicalities --- we don’t
really need these very much anyway --- what's needed is a good sense
of how to use the available routines in Applesoft, and the routines you
and | create to make hi-res graphics and animation faster, easier, and
more convenient.

The other routine, HLINE, is entered with the hor. lo. in the ac- -
cumulator, the hor. hi. in X, and the vert. coord. in Y. This defines the
point you hplot te. The point you're hplotting from is the last point
hplotted to OR the last point plotted on the screen. Let's see how this
works now in TEST O, which merely draws an hplot-shape. Consult the
list-out previously given.

From line 8 to line 18 we're back to the same old method of table
using where shape #1 starts at $900, #2 starts at $A00, up to #23
starts at $1FQ0. Block-shape and hplot-shape tables will basically have
the same structure then. Vector tables have their indexes (often un-
used if you're in mach. lang.) just before their shapes begin, and as
part of the tables. Block-shapes and hplot-shapes are being indexed
within the actual drawing programs themselves. For an even faster
drawing routine, POKE in start-of-table address (high byte) at $FB,
POKE 0 into $FA, and begin drawing routines with line 19.

Line 19-28 loads the # of points in the shape to $6, where we’ll be
keeping track of how many points we’ve drawn to so far --- $6 may be
called the point counter. Remember that a triangle would be con- -
sidered to have 4 points, since we're talking about a starting point plus

98

each point drawn to. Notice that the starting point in a triangle is used
twice: to start from and to end up at. in other figures we need to draw
the same line twice to get the shape completed, so points may be used
2 or more times, when needed. Both situations are illustrated below:

Cq. pD

3
% Y/
B“——= C 2
4 points, in order: A,B,C,A 5 points, in order: A,B,C,B,D

Also notice that only in an hplot-shape is the first byte in the shape
meant to represent the # of points in that shape.

Line 21-23 gets the hor. lo. for use in HPLOT and dumps it into
TEMPX. The reason it wasn’t dumped into X, where it's needed to do
HPLQOT, is that X needs to be 0 for the pre-indexed indirect addressing
we're doing with LDA (BASL X) instructions. The “indirect” in this ad-
dressing mode refers to the fact that we're not loading anything from
BASL ($FA) --- we're loading the accumulator with the contents of the
. address which Is given in $FA --- a very indirect route indeed for get-
ting a # into the accumulator. The parentheses refer to “indirectness,”
or to “the address to be found at this address.”

Line 24-26 ioads Y with the hor. hi., which is something that can be
left out if you intend to use only 255 out of the 279 possible hor.
coords. on the hi-res screen. If you did omit this, all programs would
have to put @ into Y before HPLOT routines and put 0 intc X before
each HLINE routine, and all shape tables would use 2 bytes per point,
not 3 bytes as they do now.

Line 27-28 puts the vert. coord. into the accumulator to prepare
for HPLOT. .

Line 29 pulls hor. lo. from TEMPX and puts it into X where it
belongs, now that X is no longer being used for pre-indexed indirect ad-
dressing.

Line 3@ plots the shape’s starting point.

Line 31 keeps track of the fact that one point is now used.

Line 32 jumps us to the “get ready to do HLINE” subroutine from
which we return with an RTS.

Line 33 calls the HLINE routine at $F53A.

Line 34-36 keeps track of each point we use and keeps decre-
menting the point counter down to 0. If the counter is greater than 0 we
loop back to line 32 to HPLOT another line with HLINE. Once the
points have been used up and the counter has reached 0, we leave the
drawing routine at line 36.

Line 37-52 the “get ready to do HLINE" subroutine; puts hor. lo.
into accumulator, hor. hi. into X, and vert. coord. into Y before return-
ing.

It's important to not lose sight of the fact that one enters HPLOT
and HLINE with coordinates in different registers:

HPLOT: X = hor. lo., Y = hor. hi., accum. = vert.
HLINE: accum. = hor. lo., X = hor. hi., Y = vert.

99

This TEST O (CALL 2048) routine is the basic routine for 6,7, and
8 of 28B.

In 9 of 28B are 2 other hplot-shape routines: TEST P (CALL2160)
with a source-code file TEST P, and TEST Q (CALL21886) with a
source-code file TEST Q. First let's see TEST P, which is a one-page
animation routine for hplot-shapes:

PRINTOUT #24

I Fi
2 Bl
= Erdi
4 EE=
= EE7
£ ERF
T £ERF
o 1y
& E_i-‘.!:__)

T

Oy

i
gl '}
i
5 ILE

g bt [T
ol
e

WP ENENT AR TR AT

i
)

T

[
"

THEREZ

[
Lt

]

(BN Y}

-

| e oo oo s e oy [o s s
!

e K01, 15410

%
5

W

Al

d
s

o

T

L
s lﬁ "’

il
I

=

v

T

i

gza
= =
H =
g Hel =]
=Y tE = P
T E

ot K50

)

il

e 11

'
"

i)

o e o e o P |

Ty

oo [e | et |} et [

i TEFEE
= TEHMFR

'

e Lo o

.
;
XAy

o
Wi
i

N

i
oo

100

(DT L [T B

oyTo gty TR T D DA DL)

" E?If‘l,:lrv*lﬁ

" RTR

STHERE TS
DELAYL L
FPE

LL

EAESS T e D AT R T A
[N IV o ST Y

ARENNETEV

'
o

e Te TR T SN RN L LR TN LN N LN
VLI (AP G D 00 = 1T

J
il

Up to line 49 there’s only the same hplot-shape-drawing routine
we've called TEST 0. Lel’s start examining this file in the order it gets
used:

Lire 7@ jumps to line 8 where the shape gets drawn at the coor-
dinates in the table. Line 36 returns us from this subroutine.

Line 71-78 is a standard delay loop, with the “high” byte in $FF
and the “low” byte in $FE (these aren't really standard hi./ic. bytes at
all).

Ling 77-78 puts black (@) into the color holding address ($E4).

Line 79 erases the shape.

Line 86-81 puts white into the color holding address (#3$7F is 127
or binary 01111111, which means white).

Line 82 goes to line 50 where BASL ($FA) gets restored to 0; Y
gets set to 8, the # of points gets put into $6, and $CF (the step-size
holding address) gets added to the hor. lo. and the vert. shape points
coords. If the hor. lo. is greater than or equal to 246 dec., the entire
routine is ended and we're RTSed back tc whatever called this anima-
tion routine to begin with. -

Line 83 keeps cycling back to draw and erase the incremented
shape until line 59-60 determines that the animation has reached the
limit of 2486.

101

[}
b
1]
c
9
b5
E
g
@
®
o
@
e
o
©
2
£~
Q
£
2

°
2
q
o
95
=
2
&
£
8
®
%)
Q2
e
=
@
B
©
£
0
€
3
-
<
®

’

Now let's check out TEST Q

quence for hplot-shapes

TEST Q (CALL2186):

e

WEOC

PRINTOUT #25

:
Lo

3

el v gl sl s agrsd s] s s

102

ol
edbar

DA TR

ol B e B gnda

(T i T T
m
L
]

o D N D Lo
W%
)
*

o i
v addoon

DT IR T AT R TNEY

aﬁgﬁ%mmmu.

m.n@mwwmmﬁmmﬁmm

SR | R #E0n

STR BASL
LBA €BASL 3.%
2L

START2 TIHY

&
ey
-
H
=
E]
~n
£
-
T
=
£
=
B
=
1]
e
f
=
i
=8
£
]
=
<
=
2
=%
=
=

=2
o
=
i

i
2
£
=
i
=
g

g
1
1
=
]
=
=
€.
s
S
2
&
i
el
=
-
4
t =
-
G
-
F

o
3
3
1
=
4
=
]
=
=
&

LooR

hafexDioshdinTusTio Tios [N YW TN W T8 T o DI T LA w T T w T o)

TS I L W TR T Lo et

1
(WA e e B e

g e 1| e g et

oot | et fronde frads ot [cn foadis frsch oot fomih [s funch foadds s et
e
wef B2

Pt el s s s s st |
B e ps

10 FE e a1 et
L LU .
o
X

|
o 3=

iy
o i

L

103

1 DELAYL
. PR
. LL

Lines 1-58 are the same as in TEST P.

Line 87 is where we start when the 2-page flipping routine is call-
ed.

Line 87-88 display page 1. (see line 94-95).

Line 89-9@ draw on page 2. (see line 96-97).

Line 91 draw the 1st shape.

Line 92 advances shape coordinates 2 steps.

Line 93 retreats one step, so that the 2nd shape to be drawn will
end up only 1 step ahead of the 1st shape, which is on page 2.

Line 94-95 displays page 2. This hex location is called a screen
soft switch ($C055) and is the equivalent of POKE-16299,0, which
means display page 2.

Line 96-97 draw on page 1. $E6 (230 dec.) is the address for
choosing hi-res page 1 or 2. $20 (32 dec.) chooses page 1 and $40
choose page 2.

Line 98 draws the 2nd shape 1 step from the 1st.

Line 99-186 put black in color address.

Line 161 display page 1.

Line 162-103 draw on page 2.

Line 184 back up one step so that you'll be in the correct position
to erase 1st shape.

Line 185 erase shape (1st one drawn, at original coords.).

Line 106 move up 2 steps (study the first 4 columns of the “chart”
in Chapter 9B, if this isn’t understood).

Line 107-188 put white back into color address. (This could have
other colors POKEed into it, if needed.)

Line 109 draw the new page 2 shape (it's the same shape, butata
new position).

Line 110 goes to the delay loop and returns.

Line 111-112 puts black into color address.

Line 113 displays page 2. .

Line 114-115 draws on page 1.

Line 116 backs up shape coords. 1 step.

Line 117 erases old shape.

Line 118 moves up 2 steps (on page one still).

Line 119-120 puts white back into color address.

104

Line 121 draws new page 1 shape.

Line 122 delay loop.

Line 123 loop back to line 98 and continue these erase/draw
cycles until lines 61-62 pull you out.

Line 56 get to first point coordinates.

Line 57 be ready for BCS in line 82.

Line 58-60 add 2 steps to hor. lo.

Line 61-62 leave routine if limit (248 dec.) is reached.

Line 63 store addition results in table byte.

Line 64-85 move on to next hor. lo. byte (coord.).

Line 66-68 have we incremented all hor. lo. coords. in the shape?
If not, cycle back through; if so then return.

Line 62-70 POP a couple of addresses so you get back to the pro-
gram that called this animation routine using HTS even though you've
JSRed a couple of times.

Line 72-86 this subroutine is much like the previous one except
you back up one step rather than advancing 2 in your hor. lo. coords.
Also, no limits are checked. SEC set’s the carry for subtraction in line
80 just as CLC in line 57 cleared the carry for addition in line 59-60.

The next source-code file allows diagonal shape (hplot) movement
and is called TEST R and it assembies (with a little help) TEST R
{(CALL37022):

PRINTOUT #26

EPREGG

_ ORG FO00R
HGR EG $F2ES
HPLOT EQil 35457
HLTHE EQl! $F=2A
TEMPA EPZ 9
TEHMP¥ EPZ %2

THEREZ T¥R

LI[LI T bt o o s o s ot s e ot
L PV = B L T B 0= S S 00 B L o L0 T O s
% ‘
M
m
i

STH =L

ety

a

o]

T
[T o] 41T
] g [ebmnl

ST

LA

o)
e
e]
[2y
n

osuIKy]

r-"
[t

el)
e
i

105

(0 R [T 8 TR TR TN T

!

o
x

i
-~

106

517

(AT DA DA I T BN W TR e I X 18 0

o
ot

JER 5

J5R DELAYL

JHe LDOoP
BEL AYL LD FFF
PP

L BEY

%
EHIs

As could be expected, it's much like TEST Q. Why is it at such a
high address? Well, since shape tables are always starting at $900,
any routine over one page ($100) long is put into high memory so it
doesn’t mess up any table bytes. Routines start at either $800 (2048
dec.) or $2000 (36864 dec.) and a HIMEM:36864 is in the BASIC
program if the higher addresses are used. Otherwise routines start at
$800 and end before $900.

RO 8 TV RN P T NN TR T T T SN T T = MNP Y Tt T T Rl T A RN TR L T D R o STy MR PR R TS AT T RN DR T B P NRT

Ko ot o o s s e e ot o s e s s s et i o e s ot st ot oot s e s e e s [[s s fonchs s st [s foch

0N O O N R TV Tt LW T e e ot T T e TS U R e Y e T e R e T A T

107

You may wonder how each of these programs for hplot-shape
animation (8,9,A of 28B) can move shapes in more than 1 direction.
Simple, there are POKES in the BASIC driver programs that change
ADC to SBC and SBC to ADC and CLC to SEC and SEC to CLC and
sometimes DEC to INC or INC to DEC so that shapes may move in dif-
ferent directions! If that isn't clever then my name isn't Don Fudge!
(Perhaps that wasn't the best IF-THEN I've ever used.) These BASIC
programs are listable via E and F of 28B, so check it out for yourself. If
you see dec. #'s in a BASIC program that are being POKEd with 169,
it's easier than you think to see how that would affect a binary file
(mach. lang.) routine. Use a dec./hex conversion chart to determine
that 169 is A9 or immediate addressing of an LDA (load accumulator).
Your Apple il Reference Manual and any assembly texts give the in-
struction set mnemonics and associated hexidecimal opcodes.

Also, to go from hex. to dec., type (let's say you're converting
$A197):

CALL-151 (return)
75: 97 A1 NED20G (return)
{answer will be here)

And to go from dec. to hex., type (let's say you're converting
23456):

New (return) (kills program in memory!)
23456A (return)

CALL-151 (return)

803.804 (if ? PEEK (104) gets you an 8)
OR4003.4004 (if ? PEEK (104) gets you a 64)
ORG003.6004 (if ? PEEK (104) gets you a 26)
(answer will follow)

Alsa, when you want to find what part of a binary file is being
changed when there’s a POKE 37002, 169 from BASIC, simply con-
vert 37002 to hex. as shown above or with a table and then CALL-151
and type the hex # followed by an L (monitor disassembly list-out) com-
mand. You'll begin to get the idea of why | decided to POKE what | did -
into that spot.

Now look at TEST R. We'll note only differences between this
diagonal hplot-shape animator and the horizontal hplot-shape animator
called TEST Q. Both are 2-page.

In the SUB2 subroutine we add two steps ($CF holds step-size) as
usual, but we do it for the vertical coord. as well {line 66-72) and do
limit-checking also ($B6 is 182 dec.).

In the SUB3 subroutine we subtract a step as usual, but from both
hor. lo. and vert. (vert. coord. handled from line 91-94).

That's all it took! The proper POKEs may be easily found in A of
28B to change this (originally) southeast animation to northeast,
southwest, and northwest. Look at a few lines from that program now:

108

PRINTOUT #27
X IST4E3—-427
485 %HF‘UT PSHAPE #: " 25HM: POKE

4i@ Pﬁ‘IHT : IMPUT *# OF DOTS PER
HORIZONTAL STEP:":D:T: POKE

287 .DT: INPUT "# OF DOTS PER

_VE RTICAL STEP:*:TD: PUKE 28

i
428 Pﬁ'IHT : IHPUT "LELAY LOOF HI
GH BYTE: ":DH: PRINT : INPUT
*DELAY LOOP LOW BYTE: “:DL: PRINT

485 PRINT CHR% (4>:"BLORDTEST R
- (CALLZ7R32)"
4P6 PRIMT : PRINT *LET’S CHOOSE
f DIRECTION:*: PRINT : PRIHT
e {SHE : PRIMT "C(2)Sk®: PRINT
=¢ 33E": PRINT "¢{43EE": PRIHT
THPUT *({~4):"3;DRz IF DR >
OR DR < < 1 THEM 425
DR = 1 THEN POKE 26955.5
POKE 35953 229: POKE 2598
250: PORE 35962.1@: POKE 2
554 _144: POKE 37661 24: POKE
S7ond, 181z POKE 35976.5 b: PDKE
526973.00G: POKE 3£575
29758 18: POKE 26979, i
37B16.24: POKE 378131

U‘u@U’*HJﬁ-"
(1] '1"]

‘l

4
gi

Line 488 shape # gets POKEd info $7.

Line 410 step-sizes for hor. and vert. get POKEd into $CF {207
dec.) and $CE (206 dec.) respectively.

Line 427 if NW (northwest direction is chosen, all SEC, CLC, ADC,
SBS commands and some BCS or BCC commands, and some limit #'s
such as #$B6 (186) must be reversed by POKES.

109

SHAPE EXAMINATION AND
EDITING

10A. YECTOR SHAPES

There will be no actual vector-shape editing in this system, unless
via monitor commands, which is quite simple if you understand vector
shapes. The reason this system is downplaying vector shapes should
be obvious by now: l've already written a nice vector shape drawing,
editing, examining and animating package called Super Shape Draw
and Animate with 2 disks and 2 manuals --- very reasonably priced and
easy to use. Peelings Magazine noted that it had qualities (Super
Shape Draw) that set it apart from all other packages of this type, such
as diagonal as well as horizontal and vertical plotting, any amount of
move-up commands, and especially not having the plotting cursor be
always one step out of symc. with what you’re trying to do. Our
Super Shape Draw let's you see exactly where you are at all times,
which no other package we know about can do. (How anyone can
make decent shapes with out-of-sync. drawing programs is beyond
me! Sure it was more difficult to program an in-sync. program, but the
results of the extra patience and work | feel were worth the effort 10
times over.)

Another reason 'm downplaying vector shapes in this package is
that block-shapes are faster. Another one is that there are already a lot
of vector shape programs available, but few if any decent block-shape
and hplot-shape ones, especially with assembly routines.

If you do end up editing a vector shape, then | of 28A will come in
real handy to tell you what address contains what byte and what part of
the shape each address and byte correspond to. All you need to do is
look in your vector tables and then look at your shape and decide which
bytes need amending and how. Once you determine what bytes should
replace the ones in your shape that are bummers, simply CALL- 151
and change all necessary bytes via *976:3C 3C 24 04 etc., or
whatever (and wherever) you need.

Try out | of 28A now. Notice that a byte either affects one or two
dots, never more. (it might be an all-move byte and have no visible
effects on the screen, also.) The beep you hear will be your shape
starting over in its table as it “winks out” the bytes in its shape. The first
coord. in a shape is called its reference dot or coordinates, and it may
be invisible (non-plotting) or visible.

One thing to notice is that if any dot in any shape you draw ever
plots twice, it will have the consequence of leaving a hole in your shape
when you XDRAW it, since the screen becomes its opposite (black to
white) and then does it again (white to black) at that particular point
because of how EOR works.

110

10

If you DRAW the shape, on the other hand, it won't matter how
many times any given shape-dot is plotted.

108. BLOCK-SHAPE EXRMINATION
AND EDITING

Program 1 of 28A allows you to examine and change a block-
shape, or just examine it and exit, if you like. Let's go to that program
now and run it:

Boot 28A and choose #1. Choose shape table MANA and don't
change disks when asked. Enter shape #1 and use VT= 0, VB=21,
HR=6, HL=4. Read any instructions given. If you hit Q like it says,
after editing, you'll be sent to the scan-and-save program where you'll
be able to save the repaired shapes. Notice that bytes 5 and 8 are 3,
and the rest of the bytes from 1-9 are 0. A byte of 3 means that the @
bit and the 1 bit are both on --- and the rest are off. If you’ll notice that
the byte-cursor is superimposed upon the top 2 head bytes when the 3
appears, and that only the first 2/7 of the byte touches the shape, this
should ali seem clearer.

Notice that the addresses of those first 9 byites are
8196,8197,8198,9220,8221,9222,10244,10245,138246.
Remember, lines are often 1024 (dec.) apart, address-wise. If this isn't
clear consuilt page 21 of the white Apple Reference Manual.

One of the forward arm-bytes that includes 2/3 of the chestis 11
($0B in hex. if you were in the monitor). Let’'s visualize this byte:

11010000

00 O] 1+2+8=11
e®0® ©

Remember, msb (most significant bit) is to the right, which is the
reverse of normal byte depictation.

Let’s edit the above byte. Speed up the wink-outs with PDL #0 until

you're about 5 bytes from your destination byte. Hit SPACE BAR and
turn the knob to its slowest speed. Hit SPACE BAR as you get your
pinky poised over the E key. Once the proper byte winks out, hit E
quick. You'll be asked for dot color. Choose 3 for white.
. Next you'll be moving the paddles to position the drawing dot-
cursor correctly. If no dot (blinking) is visible, turn #1
counterclockwise. Move the paddles until your dot is at: (see next
page)

111

e xO] (X=old dot-position}
200 (] 1+2+16=19($13)

Your dot is no longer at bit 3, it's at bit 4. Your data byte is now
$13, not $0B. Hit PDL button #0 to plot the dot. Answer Y on the next
question “‘Is this dot correct?” and make sure you turn the knob on pad-
die ¢ until the cursor is off the shape before you answer. Then hit
PDL#1 and maybe SPACE BAR to continue. When you get the wink-
out byte next time around, it will be 16 since there are 2 chest-dots
missing. You could have fixed both of those by using the paddies and
PDL button #0 BEFORE you ever hit PDL#1 to return. Let's do it now:

CGet to the proper wink-out byte and hit E, choose color 3, move
the paddles and plot dots (with PDL#0 button) in all 3 positions now.
Then hit PDL#1 and wink your way to that byte (8325 dec. address)
and notice the 19 (dec.) in it. See? This stuff isn't so hard.

Hit Q when the cursor is in its lowest line and input a 1 to answer
shape #, and hit RETURN. You'll be sent to the scan-and-save pro-
gram. Don’'t bother to save the shape, but do bother to hit SPACE BAR
during entry --- your shape, in its edited form, is still there, ready to
save.

10C. HPLOT-SHAPE EXAMINATION
AND EDITING

Program 6 on 28B will examine or edit your hplot-shapes. Run this
program and enter T1 for shape table name and 1 for shape #. Then
use option 4 to examine the shape.

Why do the addresses seem to go only from 2308 to 233127 We
kr.ow that the first byte of tables (for shape 1) is at 2304, but it's the
point #. But 2305-2307 should contain the first point. Why aren't
those addresses shown? Because if you'll look to the right, you'll see
that from 2308-2310 is the address for line 1 and point 2. Wink-outs
are for each line and not for each point. The points given are the end-
points for each line # given. Point 1 is not an endpoint, so is not used.

Hit SPACE --- then hit it again. The wink-outs will stop temporarily.
When the shape looks like this hit E:

\
original: ‘

Here’s the result you'll get:

=

112

As the instructions say, when the line preceding the point to move
winks out, hit £ and both the line befors the point and the line after it will
disappear. Now hit any key to continue, use the paddles to find a better
point for those 2 lines to meet at; and then hit PDL#0. Perhaps it looks

like this now: ;

Answer yes, you got it right, and no, you don’t want to do any more
editing. Its okay to re-boot once the program tries to have you save the
shape.

10D. INSTANT GRAPHICS (BLOCK-SHARES)
' SHAPE EXAMINATION OR EDITING

This program, 2 on 28A, has already been discussed in Chapter
8D. it draws all kinds of shapes, including user-drawn ones via either
PDL - draw features or the J command. The J Command uses keyboard
commands to draw by plotting peints in the direction of your choice, in-
cluding diagonals.

There are a few ways of examining and/or editing shapes or
scenes drawn with this program.

1) When you save a drawing, the variables being saved for each
part of the drawing (13 major variable values get saved for each part of
the drawing) will scroll by --- but too fast for you to see. However, if you
choose option 8 to See Major Variable Values before you choose op-
tion 7 (save), then you'll get a chance to see the variables that got
saved for each of the paris of the drawing/creation.

]

a PRINTOUT #28

B8

@

a

a.

CLOSE

15

8 @206 5000608

¥ 08 &86a 51 11 142 6

T EB@a@ 51 i1 8 0 B

E B G88 B&666HA

F EBBB 173 118308 08

0 0@ 11 221 F 251 183 6 6.0
P o@f& BAQGEG

P Q@& 278726 60

F Q@88 BB606

F G806 222720 @8

C @8N SPFFE B O8O

8 EBs@BFEarg 208 80

Above, the single character lines are the end of the last command
saved. “15” is the # of inputs (all of which are not shown). 8, etc. is
choosing command option #8 while the program is being saved

113

(“recorded,” actually, the saving comes later). After that comes X, a
slidewall; T E, a small triangle; E, an enclosure; R E, a small rectangie;
O O, a tiny circie; P at 0,0 which would be an “illegal” fireworks that
would therefore not draw due to its coordinates; P at 228,72, which
would draw; F at 0,0; F-at 228,72; color change to orange; Q E, a
small, filled, orange square. See Chapter 8D to see what each major
variable value stands for. ,

The type of “examination” one does when one looks at the major
variable values for one or all shapes in a scene is to look at coordinates,
tye ~= sizes, circle or ellipse centers, fill or not. With a set of these
values 2 of 28A can draw something and it will be the same each time it
gets drawn using these same values. It's easy to save an entire scene
in only a few sectors, using this method, and it's possible to draw a
scene back, part by part, by the way these variables/values are han-
dled. 2 of 28A will save, retrieve a creation, show major variable values
after each shape, create mach. lang. composites of the entire screen,
etc.

2) A less involved way of examining/editing shapes is the use of
the monitor command. By hitting M you will see the coordinates of the
fioating dot-cursor. We call this monitoring the coordinates. If you hap-
pen to be “recording” what you're drawing, for a later save via option
7, then M will also give you what step out of a possible 32 you're now
on.

To use monitor simply hit M to see what coordinates you're at. To
see the coordinates of an already drawn shape, move the cursor onto
the major shape points and hit M to monitor coordinates. A square
might have corners at (X,Y) 14,50; 14,90; 54,50; 54,90. This square
is 40 dots per side.

To use monitor (M) for editing, simply use the M command to find
the size of one of the sides of a figure, or to find the diameter of an
ellipse or a circle. Then erase the figure by hitting C and B to change
color to black (or to whatever background color you're using) and then
R F E to erase (or whatever}. The example R F E means a rectangle
higher than wide, F means fill it, and E means size E. How will you
determine what size if you've forgotten?

On the back of the drawing card is a size table so once you know
the size of the figure’s side you can figure out which size to hit for eras-
ing. Now the given sizes are for symmetry mode, during which T, R,
W, Q all have the cursor in their centers, as opposed to during
regressive mode when the shape’s cursors are at their upper left cor-
ner.

Now, if you're in regressive mode the size tables don’t apply,
except for O (circle) or | (ellipse). The way you find out which size is
correct for erasing (besides experimentation) is to measure a horizontal
side (width) and then notice how far you are from the right edge of the
screen. Suppose you are going to erase a W (wide rectangle). Find the
hor. coordinate of the 2 lower corners. Let's say that they are 179 and
204. This means the width is 25 and the distance from the right edge
(279) to the left side of the figure is 100. So this side is 1/4 of the way
from the X,Y of the left side of the figure to the edge of the screen
{279). On column 3 of your drawing card you'll see that this would

114

mean that your size must be “S” for “short.” This is the size o use
when erasing. Normally you can tell that the left hor. coord. and right
hor. coord. is approximately whatever it is --- you'd never believe the W
{wide rectangle) now under consideration is either as large as 1/2 way
to the edge or as small as 1/8 way to the edge, which means that if you
know it was drawn in regressive mode, it must be size S.

There's no good way to edit out stars (command S) by any other
method than drawing black dots on them. Random lines are not really
editable --- start over. Slidewalls and such just need to be redrawn in
background color --- keep your finger poised over button #0 in order to
stop the slidewall at the right point. P (fireworks) gives a different
display every time, so use properly-placed black W (wide rectangles)
to erase them.

See Chapter 8D for how to erase while in J mode, block-shape
drawing via keyboard commands.

10E. SUPER SHRPE DRAW EXAMINATION
OR EDITING

In this program, not included in this system, but found on the Super
Shape Draw and Animate package, you can throw out any vector shape
you want in a shape table and replace it with any other shape you
decide to draw, as long as the new shape is not longer than the old.

For in-depth shape examination, there’s a program (! of 28A4) in this
system, and there's an even more dynamic one in our Super Shape
Animate disk, which is included in our Super Shape Draw and Animate
package. This program not only examines every byte, address, and
corresponding hi-res dot on the shape, but also will allow you to edit
parts of the shape. The general purpose of the program, called “anima-
tion editing,” is to not only allow you to repair or change shapes, but to
construct animation sequences of shapes that will be dissimilar.

In the present system that this manual you're reading goes with are
2 programs that create automatic shape (block) sequences (A of 28A,
1 of 28B) and one program {4 of 28A) that can turn vector shape se-
quences of dissimilar shapes into block-shape sequences. Both
automatic sequence-creators deal with similar shapes only --- you
make one shape into 7 or more.

So “animation editing” allows you to knock off parts of a shape and
redraw them and resave the shape. This is extremely handy if you're
doing walking or running animation. Why completely redraw the
shapes?

10F. MONITOR EXAMINATION OR
EDITING OF SHAPES

For vector shape monitor examination, you first have to know what
goes into each of the types of bytes. In Chapter 9 of your Applesoft
Manual you'll find how bytes-are constructed on page 92, how vector
codes relate to hexadecimal bytes on page 93, how hex #s can be

115

changed into binary #s which are then changed back into 2-digit hex
bytes on page 94, how shape tables and indexes are constructed on
page 95, how table address and HIMEM are handled on page 96 (very
poor), saving a shape table (very poor since cassettes are rarely used
in shape storing any more --- disks are SO much easier) on page 97,
using a shape table and vector shape commands on pages 97-100.

If you want a shape to be different, figure out the bytes to change,
CALL-151, examine the bytes to be changed with commands like
*930.999 and change the wrong bytes with commands like *$47:3C
0B 24.

For block shape monitor examination, see Chapter 10B for how
bytes and bits can be understood easily, and how binary and hex. are
related. (In normal binary bytes, the most significant bit is to the left,
but in viewing a screen byte, the least significant bit is on the left. The
decimal values of these bits are 1,2,4,8,16,32,64,128. From this you
could see that any hex. byte $7F will have all bits on but the last, invisi-
ble one. Add up 1+2+4+8+16+32+64 and you'll see you get
127, which is $7F in hex. The dec. # you'd get if you PEEKed into that
$7F byte would be 127 . If you POKEd 127 into $900 (address), you'd
find $7F if you examined the monitor for what was in $900. Of course,
the only way you can POKE 127 into $90@ is to convert that address
to dec. and get 2304. Then you'd POKE 2304,127. Only in the
monitor could you look directly for what was in “$900.”)

To change a block-shape byte from the monitor, do the following:

1) Make a drawing of the_dots you want on:

@eooceeCe

2) Change the “on” dots to ones:
1001101

3) Add the one bits, according to position value:

14+8+16+64=89

4) Convert to hex:

89=859

5) Enter the new hex. byte from the monitor and BSAVE the
shape table if necessary.

For hplot-shape monitor examination, simply look at the first table
byte and consider it the # of points. Each group of 3 bytes after that is
the hor. lo., hor. hi., and vert. coord. of the point which is hplotted to
from the last point:

0900- 17 04 00 62 17 00 41

Above is the start of a shape with 23 points, which also means 22
lines that get drawn (the first point gets nothing drawn to it). The com-
mands above tell the shape to get drawn in a way that would be like a
BASIC statement saying to:

HPLOT 4,98 TO 23,65

This is merely the start of the shape. As you can see, it's quite easy
to examine memory and change it for such a simple shape type. Hplot-
shapes have very simple constructions.

116

1A. VECTOR SHAPES

Had | inserted lots of comments into my LISA source-code files,
there wouldn’t have been room for nearly as many on disk 28C. I'm
making up for that by making sure | cover what each source-code line is
about. | did put a few comments in TEST C and TEST S, the vector
shape animation routines. These we'll get into at this time:

TEST C is the source-code for G of 28A, and the binary file
assembled from it is TEST C (CALL2048). It does a 1-page vector

shape animation:

PRINTOUT #29

EL I HPOSH EOU $F411
JSRE HF3EZ

5 4
LOoP JS5k ZDRAL
L FFF
DELAY LY FFE
i P
L

BELAY
JE5R HDRAW

WEICE O LR B LD Pt G (P JEPV R o G b 5000 O PR LGP
W

RTT 5
¥DRAW LDE 3FA

b PP PLY PP P LD b ot s o s ot s

T landeEnd
e L
=
R
i
o

sERASE
$HOR ST
sHRE LMT

VER ST
2T LHMT

iHOR LO

sHOR HI
Y¥ERT.

117

35 LD® %7
2E LDy £33
=7 LR FF2
35 JER FFESD
29 BETS

a6 EHD

41 EFE

4£ ERK

A vector shape must have ROT, SCALE, and HCOLOR specified.
(You can XDRAW and get along without HCOLOR.)

Line 1 HPOSN is found at $F411.

Line 2 $F3E2 is HGR, page 1 initializing.

Line 3-4 put ROT of 0 into $F9, the ROT holder.

Line 5-6 put SCALE of 1 into $E7, the SCALE holder.

Line 7-8 stick white ($7F is 61111111 in binary so the color is
white since all visible bits are on) into $£4, the HCOLOR holder.

Line 9 XDRAWS the shape in the XDRAWing routine in line 35.

Line 18-14 usual delay loop.

Line 16 erase (2nd XDRAW erases 1st).

Line 17 get carry cleared so line 23 will work right.

Line 18-20 add hor. step size to $FA, hor. low hold.

Line 21-22 compare new hor. lo. with data in $EE, the address
holding the horizontal limit; if limit is reached, quit.

Line 23-26 add vert. step to vert.

Line 27-28 see if you've reached vertical limit; if so, quit.

Line 29 loop back to line 13.

Line 31-37 load hor. lo. into X, hor. hi. into Y, and vert. into
accumulator; then do HPOSN routine to calculate base address and
handle internal and external cursors and color.

Line 38 Applesoft XDRAW routine.

Obviously the BASIC program that calls this routine must have
POKEd shape lo. into $7 and shape hi. into $8, @ into $FB for hor. hi.,
hor. lo. into $FA, vert. into $FC, hor. limit into $EE, vert. limit into $EF,
hor. step into $EC, vert. step into $ED, delay “high” into $FF, delay
“low” into $FE.

If we were to POKE the hex bytes for opposite opcodes in line 23
and 29 and 26 and 32 and subtract the hor. limit from 255 to get a new
one and subtract the vert. limit from 192 to get a new one, we could
move in the opposite direction. The opposite of ADC and BCS is SBC
and BCC. We'd have to change the opcodes in lines 21 and 27 to
SEC, also, so that the SBC instructions would work. G of 28A handles
this so you get to go in all 4 directions: up, down, left, right.

TEST S is the source code that creates the binary file TEST S
(CALL2125), which is used in H of 28A, which is like G except it's
2-page flipping animation:

PRINTOUT #30
L '
HPOSH Eoly EFFR411
STSY i D R
ST 32 Hiie)
L #%1 L
STH $E7 sSDALE

DB RN

118

LDA #E7F SWHITE

=

rd STR $E4 sHCOL OR
2 RTS

2 sz cLe

ig LDA FFR

ii ahC FEC sHOR ST
iz BDC FEC

iz ST8 FFAR

~~~~~ 14 CHP FEL sHRE LHMT

is BCS RTY

i& ciLe

i7 LDAR FFC

ig ADC $ED VER ST
i9 ROC $ED

=B STH $FC
21 CHP £CF T LHMT
22 BCS RTT

23 ETS

24 RTT FLE

&5 FLA

26 FTS

T SUB32 SEC

2B LA $FFA

=29 SBC FEC

3a STR FFR

3i SEC

=2 LR FFC

=3 SBC #

34 5TH FFC

5 5=

26 =ZDRAM LDX FFR sHOR LD

,,,, 237 LDY FFB =HOR HI

35 LDR FFC IVERT.
22 J5RF HPOSH _

46 LD¥ %7 :SHAPED
41 LDY %5 =SHAFPEH
42 LDR $FF3 :ROT
43 JSRE #FeSDh 2EDRAW
G BTS _

45 5T7T1 JER STST

Ji5 LDR #5R

7 STH FCoS4

43 LR #54

49 5TH #E6

S JSR ¥DRAR

51 J5R Siip2

52 ISR SUR3

53 LOE #¥5

S =) FLOSS

=5 LER #%F2

S5& 5TR FES

57 _ JSE XDERL

=& LOoP2  LDBE #3507

59 STR FCRS4

&8 LDR #F4b

&1 SR FFe

&2 ISR SUEZ

&2 ISRk =“DRAL

=4 ISR SUEs

55 ISR =DRAW

Far ISR DELAYL

&7 =STH FOE5S

119



DELAYL L
== r
1L

END

D AR T RN TRET A Ty T LN [ ST S | g TS AT W T

o T T T Din Y Rl RN e Rt Bt A R A T T ]

Line 8-26 add not 1 step but 2 to hor. and/or vert. coords. since
this is needed for page-flipping routines, as you've seen already --- see
earlier chapters.

Line 27-35 subtracts a step from hor. and/or vert. coords. since we
need to backup before erasing.

Line 36-44 is the same XDRAW:ing routine as in lines 31-39 in
TEST C.

Line 45 loads ROT, SCALE, and HCOLOR.

Line 46-47 displays page 1.

Line 48-49 draw on page 2.

Line 5@ draw shape.

Line 51 move up 2 steps.

Line 52 back up 1 step.

Line 53-54 display page 2.

Line 55-56 draw on page 1.

Line 57 draw shape (both pages now drawn upon).

Line 58-61 display 1 while drawing on 2.

Line 62 back up 1 to erase.

Line 63 erase.

Line 64 move ahead 2 steps to draw.

Line 65 draw.

Line 86 do delay loop from lines 76-82.

Line 67-69 display 2, draw on 1 (@ needs to be in accumulator for
line 67 --- it gets it in XDRAW routine from line 36-44 when line 42 gets
0 from $F9).

Line 78 back up 1 step.

Line 71 erase.

Line 72 move up 2 steps.

Line 73 draw.

Line 74 delay loop.

Line 75 loop back up to line 58 to continue.

120




118. BLOCK-SHARES

Chapter 9B has covered the more complex block-shape animation
sequences. Chapter 13 will cover logical shift animation using ROL and
ROR.

We'll look now at the simplest type of block-shape animation
---movements up or down or 1 byte or more sideways.

We needn't dwell upon vertical moving. All one need do is erase a
shape on the screen, add to or subtract from the VB (lowest vertical
coordinate of the block: vertical bottom) and the VT (highest vertical
coordinate of the block: vertical top), always changing VT and VB
equally. You'd leave HL (hor. left-most coordinate, 0-39) alone and HR
{(hor. right-most coord., 8-39) as well. With these new coords. you'd
again draw and erase the shape, adding delay ioops and 2 page flipping
as needed.

For a test of left or right hor. movement that is 1 or more byies per
step, let’s try out both an Applesoft-run version and an all-mach. lang.
one:

Boot 28A and run 3, View Shapes or Animation. Use option 11 to
load in block-shape table MANA. Ask for shape #5 at VT=0, VB=15,
HR=3, HL=0. Then ask for option #10 and answer no, you don’t need
the “stop-action” option now. Give a height of 15 and a width of 3
(bytes). Give a starting hor. coord. of 3, a lowest vertical coord. VB of
33 (no special reason), an ending hor. coord. of 36, a step-size of 1, 1
shape in sequence, shape #5, and delay loop of @.

When the routine runs, the animation won't be worth a plugged
nickel. Too slow and jerky. You get the feeling for why people use
mach. lang. rather than Applesoft, and why step-size is often only 1 or
2 bits. .

Run it again, asking for stop-action, and this time go backwards.
Put in 15 for height, 3 for width, 36 for hor. start, 33 for VB, 3 for hor.
end, -1 for step-size, 1 for # of shapes, 5 for shape #, 0 for delay loop.
Hold down SPACE BAR and REPT but lift REPT at times. Hit ESC once
or twice to exit.

Run it again with no stop-action, 21 for height, 2 for width, 2 for
hor. start, 34 for VB, 37 for hor. end, 1 for step-size, 9 for # of shapes;
1,6,2,7,3,8,4,9,10, for shape #s, all @ for delay loops. Notice how
woefully inadequate 1-byte {or greater) animation is when it's run by
Applesoft. 1 or 2 bit animation looks a lot better. There are times when
fast assembly animation can use 1 (or greater) byte moves, but in
slower programs it's not too nice. For “walking” animation you need
2-3 bit moves at most. It would be rare to have non-similar shape se-
quences use greater than 3-bit steps. Perhaps something like
grasshopper jumps or frog tongues might be the exception here.
Depends upon desired speed and smoothness.

in Chapter 9C we looked at a list-out for an hplot-shape animation
sequence program, it was in BASIC --- it was in 7 of 28B. The above
program is in 3 of 28A and for block-shape animation sequences.
Notice the difference the lines from 3090-3140 were about the same
on both, so were shown only for 7 of 28B, and not for 3 of 28A):

121



PRINTOUT #31

T FR-IHHI=H+ L Ei
=18

o=

Hig FA=FHEHE=2+5
510 5188
1P,
A k

.V.,,
b
i)
De
W

"

Ei05 EOUT 7,500 - 1) FUE 5
T e
Sy POE SR o -

211¢

5iat ;I;r_ 4 =1 TEH HEB 88
+S FEYETENE=
H+ i IFEHTEE
S M PET ZDNT:
H F!EE dfd,i'«" PEE

T -y
1 .5.!_‘_

T ZE HXT

In 7 of 28B there’s no limit checking like there is in 3 of 28Ain line
5110. in 3 of 28A one needs to both POKE in VB,VT,HL,HR and
remember what hor. coords. were being drawn at 2 shapes ago (line
5130). X is now, X1 is last shape, X2 is two shapes ago.

w3 of 28AiIn 5010 you need to make sure that if you just got back
from the other edge of the screen you'll go all the way back there for
erasing --- that’s why you kept track of X2 (2 shapes ago hor. coord.).
Also, in 5110 you must increment the hor. coord. for the block-shape,
whereas in 7 of 28B the shapes are already defined, coordinate-wise,
so coordinates may be ignored. An hplot-shape, by its nature, tells us:
“here’s where | am,” but block-shapes and vector shapes both tell us
only: “here’s the size and shape | am” (a vector shape may be scaled
up larger very easily). F is hor. start, E is hor. end, X% is correct eras-
ing coord. HR once ST (step-size) is subtracted. QW is sequence
subscript # you're on. Q-1 is correct sequence subscript # for erasing.
QL is stop-action flag. Z{QW) is delay loop for that shape.

Enough of that --- now let's check out mach. lang. animator that
moves 1 byte per step. It's nothing fancy but it may give you ideas. The
source-code is TEST A and the binary file is TEST A (CALL2188). The
program that drives it is F of 28A. Here’s TEST A:

PRINTOUT #32

1
1 ¥T EEZ £FC
2 uB EFZ %0
I UR EFZ SFE
g HL PZ $FF
S HEASL EFZ %26
£ HBASH EPF 32

122




PUITLIPUI LU bt o s ot st s o e e

PN
&!BWEU\LH-FHL\JFUMEI'-DDJ‘JIF\LH-&-DJI’IJM@'LIDJ

21

23]
iy

=1

QPP T T T T
aTw e TR AN T

BASL

L

HPDSH

HERE

THERE

LOOP1

LooPz

HOCART

METLH

. RETURH

HEREZ

THEREZ

LOGP11

HE

#5006
CHBASL 3 .Y
{BASL ,%h

BRSL
HOCARL
BR=H
#EFFF
HATLH
Hi
LOoPz
YO

et

$SFF
0 RETURM
I‘x.l‘r

LOOP1
859
57

. HFEE
! THEREZ

HEREZ
BASH

C e
{HERSE 3 .%
CHERSL Y, %

123



o]

i ]
e

3

CARE
IHC BRESH
HOCARS CPY B3FF

3y

g

&
=

s LOOPe2

:;E:l

g

4
= _
F7 HETLHZ ELE]
=] ¥
2 #FFF
50 : RETR
=2 - . Ll
532 RFETZ2
24 #E55
25 £7
25 #53
=7 £FF
28 #H6
=59 $FE
SA YERT #4+8
a1 FFC
=y #5192
93 FED
94 F34d4
25 #5563
G HXK
=7 #5FF
22 K
99 s
@E KO
@i HE
{5 o > E0

4

=

ri

=

2

&

i

ot ot ok s s s sy st o o s e
e LA 8 Twa T i

Line 1-83 is the scanning and drawing programs.

Line 84-85 loads shape #5 into shape # address ($7).

Line 86-89 loads 3 and 5 into HL and HR.

Line 98-93 puts 10 info VT and 25 into VB.

Line 94 XDRAWS bicck-shape.

Line 95-181 delay loop (ju:st enough to keep shape bright, not dull).

Line 102 erases block-shape.

Line 183-164 increments hor. cooras:

Line 105-186 checks limits --- have we reached 367 if so start over
at line 84. ‘

Line 107 if not at 36, jump to line 94.

124




ne. HPLOT-SHAPES

We've already covered simple animation with hplot-shapes in
Chapter 9C. It didn't take too much to explore these shapes fairly ex-
tensively, since they are constructed so simply. The shape bytes not
only say what shape, they say where to put the shape on the screen.
No other shapes are like that. You don’t XDRAW with these shapes -
erasing is done by drawing with background color.

What if you wanted to rotate or invert an hplot-shape? it wouldn’t be
too difficuit. If you simply took all the Y (vertical) coords. and subtracted
them from 192, you'd get the same shape upside down. Or if the
shape had no X (horizontal) coord. beyond 255 you could take all the X
coords. and subtract them from 255. Or you could do both these
things at once. Or you could exchange the X and Y coords., if no
coord. was over 191,.and this could be done in addition to other inver-
sions like those mentioned above. Such inversion or interchange
routines would be quite simple to tack onto any of the hplot routines in
this system. Suppose we were ready to load in a hor. lo. coord. We
could JSR to a routine that did this:

SEC

LDA #$FF ;put 255 into accumulator
SBC HOR LO ;subtract hor. lo. from it
STA TEMPX ;store new hor. lo. where needed
RTS ;return from routine

When animating with hplot-shapes, it's okay to simply create a se-
quence of shapes that are to stay exactly where they are first drawn.
This. would seem to be the way certain arcade shapes are handled. If
you study the animation, you'll see that the shapes often look like
they’re only being drawn and erased 6 times. Often a good illusion of
depth/distance may be created by a simple sequence such as the
following 1/2 second (?) hplot-shape sequence, which is very simple to
draw, store, and use, and takes very few bytes:

125



1D. SEQUENCE DIAGRAMS

A3—byte wide block shape MA NA

hor. coords
I centered move HL | of block-
1st 2nd 3rd sequencey shape # | on this and HR up shape MANC
byte byte byte i # rom MAr\# hor. coordVT,VBJ] by 1? boundaries|{seq. #
1 1 35 19,40 yes 28-48 -
/ V\ 2 6 38 19.40] no 28-49 1
A 3 2 40 19,40 no 28-49 2+7
Zﬂ\ 4 7 42 [19.40] ves ass6 | 3
(b 5 3 45 19,40 no 35-56 4
> 6 8 47 19,40 no 35-56 5
4
/ > 7 4 49 19,490 yes 42-63 6
A 8 9 52 19,40 no 42-63 -
9 10 54 18,40 no 42-63 -
N

Above is a sequence diagram for the block-shape table MANA. The
shapes in this sequence were created by loading vector shapes (from
the table MAN) into the scanner program (4 of 28A) and saving them as
block-shapes.. They had to be put at very exact screen coordinates,
and PDL-defined one at a time --- there’s no automatic sequence crea-
tion for dissimilar shapes. 6 of 28A shows a nice slow BASIC-run
animation using these 9 shapes. D of 28A will try out 2 sequence
tables that were created from MANA called MANB and MANC. The lat-
ter is quite effective with delay hi. of 7@ and delay lo. of 255 - itis 4
wide and 21 tall and uses 2 for step size, because it is 2-bit moving
animation. MANB is 1-bit moving (which is too smali) and has 1 for step
size since it's a 1-bit mover --- the same delays apply here. It's 3 wide
and 21 tall. Printouts of MANB and MANC can be found near the front
of Chapter 9C.

126




One of the reasons for doing a sequence diagram is that shapes
must be saved into block-shapes at precise coordinates if they're to be
effective. Another one is that keeping decent records of what you've
done or are doing can be of enormous value. Another is that it's easier
to do good sequences if you draw sketches first.

Look now at the last column. Why didn’t 9 shapes get used when
MANB and MANC were created from MANA? Well, MANA only works
well in 6 of 28A because that program was especially designed for 3
moves per byte, or 2.33 bits per move. See how it was done:

PRINTOUT #33

12
i3]
El
I‘u
)
in)

I

iF T = THEH I
1: IF I7 8 THEH J
= 1 THEH @ = H + 1: GOTO

i
fq
%
o
L1}
]

=
il

ey
|

STITINT |
)
E '

15
b
pt
B
[t}

o
'l
'

F THEH R = X2 + 574
lJﬂTD 51

SeKg — 13 POKE 25
Bké 252 ¥B: POKE 254 %%
CITy: POKE 255 .%% — &T¢
WDz CRLL 211&

M = 1 THEH GOSUE £3818

I3z IF ¥ > E THEM
: IF 8 > M THEN

: POKE 258,97z
POKE 2541 POKE

ot T =TT
.a"-
Il

—‘Jﬁﬁ "
.#-.

(9]

3)]

%

]
E'J g
N L ]

A
frary
e
=
b
| ;‘:lgu-.

il
fete
&l
[
g
=i
T

n

s

[y

[13)

>

1]
T
+

+ N
-

Se@@  FOR Y = 1 TO ZERL3: HEXT

Line 5888 increments subscript for arrays in 5010 and 5110. To
understand this better, you should know that at line 3001 can be
found:

ST(1)=1:8T(2)=0:ST(3)=0:J=2:X1=3:X2=3

Basically, the hor. block-shape coords. HL and HR get in-
cremented every third drawing. This puts the program in sync. with the
shapes (only feet and legs are shown) in the chart above.

The program (6 of 28A) is the same as the Applesoft one in Chapter
11B, except for the way it deals with incrementing by @ two out of
three times and by one the other time. If you don't see why we should
be moving up the hor. coords. (HL and HR) every 3rd shape, then look
at the 2nd to the last column in the chart. Sequence #4-5 are one byte
ahead of #1-3 and #7-8 are 2 bytes ahead of #1-3. Notice how arrays
make the “every 3rd shape” move very easy to signal/flag. Also notice
that when shape sequences are run from Applesoft, arrays make it

127



easy to handle whether or not the shape #s are mixed or consecutive.
Assembly routines that run sequences in this graphics system are
made to use consecutive  shape #s. If you somehow have ended up
with an out-of-order sequence of 7 shapes that need reordering, simply
load the shape table into 4 of 28A and resave the right shapes into the
right numbers. Or perform monitor memory moves (see page 59 of the
white Apple Reference Manual) to interchange various shapes; Don't
forget to use a temporary saving address not within the table for the in-
terchanging, since once you've saved one shape on top of another
shape, the latter gets lost.

Let's answer the earlier question: why didn't all @ of MANA's
shapes get used in MANB and MANC? Because MANB and MANC
were created to work in our general (D of 28A) animation program
which works best with 7-shape sequences. MANA’s sequence works
well only in 6 of 28A. It's not difficult to custom-build sequences to
work in programs or custom-build programs to work with sequences,
but the former is preferable. If you've forgotien, sequences of 7 work
nice because there are 7 screen-visible bits per byte, and whether you
move hor. coords. 1 byte between sequences because you're doing
1-bit moving or 2 bytes between sequences because you're doing
2-bit moving, 7 shapes is the correct # to keep things in sync. As you
can readily imagine, 14 or 21 shapes can work fairly easily too (max.
shapes in our tables is 23 as they're constructed).

Early in 9C is a print-out of MANB and MANC. Let’s look at how
you'd create MANC from MANA, but first turn back and examine those
2 sequences. Notice again that the first sequence (MANB) is actually 4
bytes wide (top grid) but gets called 3 wide (lower grids). And MANC
gets called 4 wide but is actually 5 wide. If you tell D of 28A that MANC
is 5 wide it will scan for a 8-wide shape and goof up. Again --- I've men-
tioned this before --- think of it as the difference between inclusive and
exclusive. In arithmetic if someone asks you how far it is from 28 to 24
or 24 to 28 you say 4. But from 24 through 28 is 5, because the word
through indicates inclusively. So now if | tell you MANC is from byte 24
to 28 on the screen you'll say that it must therefore be 4 bytes wide.
Four is the correct # to input and 4 is 28 minus 24, so --- yes -—- DO
say “4 bytes wide.” But continue to know that the actual programs will,
in such circumstances, scan bytes 24,25,26,27, and 28 --- whichis 5
bytes of width. If you don’t get this yet reread it. If you still don't get it,
then all | can say is “don’t blame Desenex.”

Notice that in MANC shape 2 from MANA was used as sequence
#2 and sequence #7. This will mean that shape #2 and #7 in MANC
are identical --- confirm this visually with the print-out. This often hap-
pens in walking/running sequences.

You should alsc be aware that the MANC sequence involved 2-bit
moves only. On the next page is the sequence diagram for MANC:

128




5-byte wide block shape MA N C

hor.

shape move HL || coords.

centered and HR ot block-

1st | 2nd § 3rd 4th Sth seq.ishapel on hor. up by shape
byte || byte || byte § byte | byte # # coord.: §VT,VB 27 boundaries

3 & w N
@ ~ N

o
&

45 0.21 no 28-63

~
N

47 0,21 no 28-63

1] 8 35 1021 vyes 28-63

/ «/ 37 Jo21 no 28-63
’ 39 Jo21 no 28-63

‘ . 3 41 0.21 no 28-63
b 43 9,21 no 28-63

This shape sequence would only have needed to be 4 wide (which
you'd cail 3) but | gave it exira for various experiments | was doing at
the time. You're welcome to resave it without the extra space. It would
speed it up a bit (which it doesn't need --- it already needs delay loops
of 70 X 255=17,850 to slow it down).

If these shapes were going to be used (individually) in logical shift
animation right-wards, they’d need the exira byte of space for shifting
room, but it is only when similar shapes are needed in animation that
logical shift works. It moves a shape over without changing it's shape.
More on this later.

If you have any problem making shape sequences by loading them
into 4 of 28A and PDL-defining them and later saving them, then make
sure you actually DO the following --- we'll make a shape table (to be
saved on your initialized data disk which you'll need sooner or later
--- make sure it's the same DOS as the 28C (unlocked) disk), and we’ll
call it MAND, and it will be identical to MANC but 1 byte narrower. Here
are the steps to follow:

1) Boot 28A and run 4, Scan Block-Shapes.

2) Use option 1 to load in vector shape table MAN, during which
you can use 32768 for the address of the vector table, so that it won’t
clash with your block-shape addresses from $900 - $1FFF.

129



3) Load in shape #6, since it's the first shape in the MAND se-
quence you'll be doing. Give it X coord. of 35 and Y coord. of 12. Yes,
the hor. coord. centered upon is going to be the vector shape’s
reference point’'s coord. Consult the seqguence diagram for MANC.

4) When you're asked if you want another shape say yes ---there
are 6 to go yet. Now put #2 at X,Y of 37,34. We'll move up X two dots
per shape and move down Y twenty-two lines per shape so that they're
not too close to one another. We should be able to PDL-define just like
Jack The Giant Killer once all shapes are loaded. If | remember correct-
ly, Jack The Giant Killer was known for “7-with-one-blow.”

5) Next put #7 (see diagram) at 39,56; #3 at 41,78; #8 at
43,100; #4 at 45,122; and last but not least #2 at 47,144. Then
choose no more shapes.

8) Choose option #7 now to PDL-define the block-shapes (which
-are still vector shapes at this point). You'll be using the game paddies to
show the size of the block you desire. Read the instructions and con-
tinue. If the dot is invisible, fiddie with PDL#1 --- it's merely too low to
appear.

7) Notice that X and Y are being monitored. Now move X0 29, Y
to @ and hit PDL button #8. Any # from 28 to 34 will start your block’s
X coord. at 28 and byte #4 (divide 28 by 7 to get the 4 - there are 7
visible bits per byte). The PDL #© button will round off downwards to
the nearest byte, the PDL#1 button will round off upwards to the
nearest byte, so if you hit PDL#1 at X coord. 44, you'll have your block
end just before hitting 49, which starts byte 7. Your shape would be
49-28 or 21 bits wide, which is 3 bytes in actuality, so you'd call it a
width of 2 (see earlier in chapter).

8) Move to X=51, Y=21 and hit PDL#1. The 51 will give you an
even 56.(divisible by 7) for right hor. coord. edge, so your shape wili be
56-28=28 or 4 bytes wide (call it 3). This is the width we want. You'll
see on the screen that the width is 3 and is from byte 4 to byte 7. This
(and height of 21) you jot down along with the words MAND and “step
2" and "7 shapes,1-7.” Remember, the program will be scanning not
to byte 7 but through byte 7, all the way up to dot (hor.) 55 --- at the
“edge” of dot 56, where the next byte starts. The program will scan
bytes 4,5,8, and 7 for each vertical line in the shape --- but continue to
say width 3. ’

89) When asked if the rectangle that now appears, defining the
“block,” is okay, say yes (hit Y and RETURN), and when asked if the
program should scan this shape and PDL-define others too, say yes.

18) When asked for the block shape # of the shape you just
defined, give 1 --- it'll be first in the sequence.

11) You'll be asked if you want the screen erased. Answer N for
NO or you've wasted some work herel

12) Then you'll be asked for shape #. You already drew all the
shapes you need so just do something like #1 at 99,99. The reason
it's asking for more shapes (vector) is that normally you draw 1 shape in
the upper left corner and then scan it, and then erase it {you were ask-
ed if you wanted to erase) and draw another one in its place and scan
that --- etc. The advantage is that you may keep using the exact same Y
coords. and merely increment X coords. The way we’'re now using this

130




program you must actually add 22 to each set of Y coords. you use.
The throwaway shape at 99,99 was just to keep the program going
--you'll be “throwing away” about 5§ more of these.

13) You'll be asked if you want another shape, after doing the
throwaway. Say no. You'll then go to the menu and choose #7 again.

14) Move the paddies until you're at 29,22 (X,Y) and hit #0; then
move to 51,43 and hit #1 paddle. Say it's done okay, say you want to
scan others, give “2” for block-shape #, say no for screen-erasing
question, draw throwaway #1 at 99,99, and say no more shapes.

15) Choose option 7 in the menu and define sequence shapes
#3-#7 by putting the dot at the following locations for PDL-defining:

For Block- Hit PDL #8 when Hit PDL #1 when
Shape #: ' X,Y are at: XY are at:

3 29, 44 51, 65

4 29, 686 51, 87

5 29, 88 51, 109

5] 298, 110 51, 131

7 29, 132 51, 163

16) When you're asked if you want to scan the last shape say
yes. You'll give it block-shape #7. Don’t erase the screen. Draw the
throwaway at 99,99, or wherever --- keep it cut of the way. No more
shapes now.

17) Choose option #9 to save PDL-defined shapes. When asked
for the shape # you want all the data to go into, say #7. Give file name
of MAND.

18) Next you'll be asked if you want to give # of shapes so that
(# times 256) will be the tabie length, or if you'd rather let last shape #
given (7) be last one in table, in which case the last byte of that shape
will be the last one of the table. Choose option #2.

19) You'll see that your table took up 1624 bytes, which shouid
be (256 *(last shape #-1)) + last shape length. Let's see if it is. 256X
8 is 1536. 1624-1536=88. Each of the #’s you give when inputing
width and height for the above shapes is one short of the real width and
height the computer uses, due to the inclusivity situation already
carefully gone over. So the actual data array of this shape is 4 wide and
22 high, which gives an array-block of 4X22=88 bytes. All is well.

20) It says give shape #7 1 place in the file --- which means #7 is
no more than 256 bytes long. When you get back to the menu choose
option 6 to load in MAND and then look at various shapes. Remember,
however: MAND is already in memory. Seeing shapes now doesn’t
prove that MAND was saved correctly. To do that you need to reboot
first.

21) Now go to the 28A MENU and choose D. When you're in D,
give width 3, height 21, step size 2, right boundary 34, # of first shape
--- 1, hi. delay byte 70 and low delay byte 255. He's a pretty smooth
walker. If you desired for this animation to get even better, you'd turmn
MAND into MANE with doubling the # of shapes in the sequence to 14.

131



You'd then go for sequences of 14 with 1-bit movement that in-
crements 2 bytes every 14 shapes. Only slight adjustments to TEST F
(CALL36934) and TEST G (CALL36934) would be necessary to have
14 shapes per sequence. Remember that colors need 2-bit
movements to work right. If you had a walking man who was moved
1-bit style, he'd flick back and forth between colors. You'd be better off
with white men {oops, | sound like a Klansman). Another way to get
smoother is to make the shapes larger. A colored man with 2-bit anima-
tion would be color-safe and very smooth if he was 2-3 times larger
than our present shapes.

22) Don't be too close to the screen when viewing animation -
you're supposed to see shapes, not “dots”.

23) The reason that the arms are wiggly is that dots are either lin-
‘ed up horizontally, vertically, or at 45° angles. You must draw “wiggly”
lines if you're trying to imitate 22° angles (for example).

132




12

SUPERFONT AND USING FONT

o [ Ml L

-

WHAT ...

o WWW‘W ds

%HH ll.'iii iiill II““" Ju "‘il' ol T

12A. SUPERFONT

OPERATION:

A font is a little round device containing a full assortment of one
size and style of printing type, as you probably know.

SUPERFONT is “super’” because it contains 8 styles and 9 sizes,
as well as sector-thrifty array-saved creations which are retrievable and
which can be printed out. There is both manual and automatic scroiling,
and manual and automatic saving. You get to choose from all 8 hi-res
colors (2 whites, 2 blacks, violet, orange, green, and blue) and there's
automatic carriage return and a full set of command options at the touch
of a key. You can erase a letter, line or the entire screen. With a
typewriter you use messy “white-out”, but with a computer you hit
“ESC”, then B for black, then you backspace and type over the wrong
characters. That's it.

USES:

There are several reasons why you might wish to use the “Super-
font” program:

1) You might wish to write a program that starts out with some
nice, big, sexy ftitles.

133



2) You might wish to compose a poster or sign using our “SUPER-
FONT”, and hit CTRL P for a print-out, which you would then get Xerox-
ed at a copy shop.

3) You might invent programs that use “CHAR” in manipulating let-
ters in interesting ways, like what happens in “Spirographing Letters”
{a program found on our “Super Draw and Write” disk).

4) You can write titles to be used in graphic designing -- just cut
them out after making print-outs.

5) Label things with cut-up print-outs. (You may have to adjust the
print-out commands found in these programs --- printers vary a bit.)

8) You may wish to invent your own letters by inventing new
STYLE formulae for the Superfont program (see lines 1000-1020).

7) We just got a letter the other day that was a combination of hi-
res graphics and a font program, all combined artistically on a print-out.
Think how impressed-your friends will be if you write such letters!

There just isn’t a faster way in the world to create a nice large-text
graphic creation than to use “superfont” or other such font programs.

IMPORTANT NOTICEY!

When you want to save your screen creation, you must hit CTRL S
before you start putting what you want saved on the screen. After you
have finished your creation, hit CTRL F to complete the saving pro-
cess. If you fill the screen after hitting CTRL S, your creation will be
saved automatically.

128. USING FONT

This program was originally written for a programmer who wanted
to write a spelling program for Avant-Garde Creations. It's easy to use
and play with and change.

Al it does is prompt you fo enter a # from 1-31 and then hit
RETURN. The result is that you get a word written with our font
characters, from the font shape table CHAR. if you want to change the
color or style of the letters in the words, change line 5580 (F can be
1-7 for style).

If you want to add words or change them, then add or change the
literal strings in the data statements near the beginning of the program.
All words need to be 14 letters or less in length.

This utility program gives you a good example of how you might like
to manipulate font characters in an actual program you write.

Whatever you need to do with words or titles or characters or
numbers, you'll find it easy to do it with our font characters.

134




13

SHIFT ANIMATION

13A. ONE PAGE

We've already looked at how a shape may be shifted right, at the
end of Chapter 9B. When ROL is used, the shape goes right, even
though ROL. is a left shift {(technically, it's a rotation). The reason is that
the bits in a hi-res byte show up in reverse order. By the same token,
when ROR is used, the shape goes left. This is what happens in TEST
I, which assembles the binary file TEST | (CALL2186). Let's check it
out, remembering that if any details are unclear, a full explanation
resides in the info-packed pages near the end of Chapter 9B.

PRINTOUT #35

8L
i ORG $2ER
z GBI £285
2 YT EFZ $FC
4 W¥E EFZ FFD
5 HE EPZ &FE
& HL - EPZ FFF
7 HBRASL EPZ 326
2 HEBRSH EFZ %27
T Y0 EP: 35
i@ BAsL EFPZ FF8
ii BPASH FPZ7 3FB
iz HPOSM  EQU $F411
iz LOY #%9
i4 D 7
1S HERE DEX
15 CPH #5608
i7 B THERE
is IMNY
i9 JepP HERE
7B THERE T¥hH
21 =TH BRSH
22 LR #Fh&
=22 578 BRSL
=4 LB VB
=5 STR Y0
26 LOGPT 1 DX #3ok
2 JSR HPOSH
LDY HE
| D #3053
Lbn CHERS .Y
STH CBRSL K>
Dy
oL

135



THC BRASL
BHE HOCARL
INC ERASH
HOCAR1 CPY #3FF
BED HXTLH
¢ HL
BCS LOoP2
H2TLM DEC YO
LDA YO

HEFF
BEGC RETLIRH

T

BCS LOOP1

RETURH RTS

DREAW  LDY %39
LDy %7

HEREZ DEX
CP¥ #4080
BER THEREZR

JHP HEREZ
THEREZ T¥H

R Pms Gl
)
u

LooF1L LDy #5688

1D
[pw #3098
LOOPP2 LA ©BASL XD
{HEASL ».¥
STH CHBASL 3.¥

o8 RN S T T TR T S LT o T Pl Ty Ty T T Tl R S T SO O R S TN T T8 DA

LN T ST RN TR T TN T N T W S PN TR W T N T Al T | PN ONT B T TN T RN Tl AV T BTt DN T e T
]
[
Al

IHC BRASL
EHE HOCHARZ
BASH

NOCARZ CPY #%FF
BEL ﬁETLHE

L L
BCS LOOP2s
HATLHZ DEC YO
LOA YD
CHE #fFF
BEL RETZ

- EBCS LooPii
RETZ RIS

g g g

LIP3z LDE #58

START DA #%0

NN W TYNTY o IS Tl w TuxTus TwnTun [oaTunTentun B8

Ol B IV TR A
L)
o
a3

136



CONTL  LDA <HBASL ».Y

COMT2  LDA 28

COMTZ LDA (HBASL ».Y

COMT4 ROR
STH (HBASL .Y
. BCC COHTS
IHC $CE
COMTS  LDA #CF
> §E1
C CONTS
LEh CHEASL 3,7
ORE #3506
STA (HBASL 3,Y
COMTE CPY HL
BEQ LHDOME

L DA 20E

I =
LHOORE EEE ¥

RRTT RIS

T T Ly T o T T L T T T T e e e kT T L T Doy I hon B DA LY e YWY
T PRSP T S Pty 18 W T R T I AR g RE w1 w E L FES 1 0 EER o DY T B T T S TR o DY R T N
¢
[,

o o s s e o s o et s e s o e e s ot e (s s et e o s oot s o e

The biggest difference between TEST [, above, and TEST H,
which was handled in the end of Chapter 9B, is that we’re shifting
shapes leftwards in TEST |, but rightwards in TEST H. A “bit” different
procedure is required:

From line 1-85 are the scanning and drawing programs.

The programs start the same. Line 86-87 puts the vert. bottom
block-shape coordinate into both $6 and the accumulator.

Line 88-928 puts @ in X and Y registers, so now the HPOSN routine
has all 3 registers properly loaded so it is run. (HBASL and HBASH will
be loaded with the VB/byte #0 hi-res address. This address will be in-
dexed by Y, which gets locaded with HR in line 92).

Line 91 clear carry so line 97 works okay.

Line 92 stick Y into HR so indexing works with (HBASL),Y.

Line 93-96 zero the 3 flags:

$8 bit © flag, last cycle
$CE bit @ flag, this cycle
$CF  bit 7 flag

137



Line 97 if bit @ was a 0 after last ROR, then there’s no “dot” to
move over from that byte to this byte, so carry is clear and BCC detects
this.

Line 98 set bit O flag, last cycle; bit @ in last cycle was set, and
during ROR it set carry, so we want to stick the bit into bit 7 temporarily
in this ROR cycle, so that when ROR happens bit 7 will go down to bit
6. The net result is dumping last cycle’s @ bit into this cycle's 6 bit,
which is the (visible) 1-bit iefward shift we're after.

Line 92-182 check to see if the color bit is set; if it is, set the bit 7
flag in $CF; $80 is 128, which requires bit 7 set.

Line 183-186 check to see if bit 0 last cycle flag is set; if it is then
set flag 7 now so that ROR will put that “dot” into the first visible right-
most bit of this byte, #6. ORA #$80 means set bit 7. See last part of
Chapter 9B.

Line 167-169 if bit 0 last cycle flag was NOT set you'll need to put
a 0 into bit 7 so that bit 6 will be 0 after ROR. To refresh you on AND
#$7F, it simply sets bit 7 to 0. The way it does it is by saying that the
accumulator bit and data (#$7F) bits that get compared will result in an
ON bit only if both compared bits are 1. Since $7Fis@1111111, then
bits, 1-6 are left as is, but bit 7 is definitely going to end up a 0. Line
107 avoids lines 108-109 if bit 7 was just set to 1 purposely in lines
105-106. Line 108-109 sets bit 7 to 0.

Line 118111 performs an ROR instruction on the present byte
and stores it in the screen byte it came from. An ROR is an LSR that
puts the carry bit rather than a @ into the vacated 7 bit. An LSR is called
a logical shift operation. An ROR is called a 9-bit rotation instruction. An
ROR is a shift, but an LSR is NOT a rotation. An ROR happens to be a
shift that includes the rotational aspect of using the carry bit rather than
a @ to fill the vacated 7 bit. As we've said before, I'd have called all this
stuff rotation animation rather than shift animation except for the fact
that this would sound misleading --- like a way to get shapes to rotate,
which it isn’t.

ROR
—_—

—171615/4[3[2]1]0}—
[Cl=

Line 112 if O bit that gets rotated into carry (C) status flag then
carry is clear and BCC detects this and sends us to line 114.

" Line 113 if carry was set because the @ bit was 1 before ROR,
then increment the “0 flag this cycle” flag. We'll need to use this flag to
determine how to set the carry just before going on to the next byte.

Line 114-116 check the bit 7 flag (color bit flag) --- if it’s clear then
go on to line 120.

Line 117-119 if bit 7 flag was set, stick a 1 back into bit 7. See
Chapter 9B if confused.

Line 128-121 see if we're done with the current line; if so, go to
127 and move up a line.

138




Line 122 move left one byte before next rotation (ROR) cycle
begins.

Line 123 clear carry so that line 125 will properly set carry status,
even though it isn’t needed, since the CMP instruction conditions the
carry status flag correctly even if this line is a SEC instruction. | guess |
used this instruction to remind myself what | was doing! (Poor excuse
--- let's face it, DON, you couldn’'t Budge it, so you Fudged it!) | pro-
bably used this unnecessarily quite a few times in this package. Oh
well, it won't hurt anything. Anyway, after CMP instruction BCC detects
the ‘accumulator being less than the data, and BCS detects the ac-
cumulator being equal to or greater than the data.

Line 124-125 see if © bit was 1 before latest ROR; if so, then set
carry with the CMP instruction since accumulator is equal to the data.
Line 128 now go to line 93 to rotate the next byte leftwards.

Line 127-128 if we're here, we've skipped the conditioning of the
carry flag relative to the status of the “O bit this cycle” flag, since
there's no byte left of our present position in this block-shape to
receive the “dot” we’d be shifting left. Let’'s take a closer look at this:
Since we're not putting any more dots in bytes to the left of us, it
means it's time to move up to the next higher vertical line of bytes. We
don’t want a conditioned carry for this, but a zeroed carry, which will
in line 91 once line 132 sends us back up for more cycling on a fresh
line. If the carry was set, and we went up a line and left it set, and then
started rotating bytes at HR, then our shape’s right-most dot would stay
where it was, not shift left, in appearance.

One thing to notice here is that if we were to have a shape inside a
block-shape whose actual shape-dots were closer than 7 dots (1 byte)
from the left edge of the block-shape, then we’d be shifting dots off into
never-never-land, in effect, since the rotations must all take place
within the current boundaries of the block shape. So in a block-shape
that's going to be shifted left with ROR (the screen’s left is the direc-
tion dots move during ROR), then the entire left-most column of bytes
of that block-shape need to be blank, off, zero. The right-most column
of bytes need not be blanks.

For rightward shape-shifting with ROL the opposite is true -- define
{with PDLs} the block-shape so that the rightmost column of bytes in
the block-shape are as bare as Old Mother Hubbard's Cupboard --- not
even a bone is allowed. The leftmost byte column may have on bits. If
you'll be moving both ways via shift-animation, then leave a bare-byte
column on both sides, or you'll soon be watching shapes distort --- or
at least go on some unplanned crash diets. This is one of the tricks to
learn about shift animation. If you forget it, don't blame Desenex or Don
Fudge.

If you're still wondering why shapes would goof up if not for the
bare byte column in the direction of shift, think of it like this:

If done right, 7 shifts of a *“1-dot shape” would do the following:

139



AN
shift 1 110000000 VT

2 0000010 | 0000000

3 0000100 | 0000000

4 0001000 | 0000000

5 0010000 | 0000000

6 0100000 | 0000000

7 1000000 0000000 VB

lo— HL—e jo— HR —1

If done wrong, the exact same thing would happen, but HL would
be put where HR is and HL would be the same as HR. (If the shape was
wider then HR could be several bytes to the right, it wouldn’t matter
---the main thing here is that HL would be one byte further right than it
should be for shift-animation).

Think of HL being the byte # of the left-most column of bytes, and
think of these HL bytes as composed of all @'s, during (ROR) leftward
shape-shifting. Once 7 shifts have occured, some or all of these HL
bytes will have some turned on bits.

In the case where HL was moved to HR, the block-shape’s defini-
tion wouldn’t include the dots that got rotate-shifted beyond the HL
byte, so line 120 and 121 would see to it that we simply went up to the
next line higher once we’'d shifted HL bits into left-ward oblivion
---there’d be no place in the routine that would turn these shifted dots
into visible shape dots left of the HL byte. So they’'d simply disappear.
You may want this for an effect someday. But start out your shifts now
in ways that preserve shape integrity.

So all we do in lines 127-128 is move up to the next line by
decrementing $6, the current line holder.

Line 129-132 checks to see if we're either trying to go higher on
the screen than a Y coord. of O or of VT --- either is a no-no. If we are
attempting such silly things we're RTSed out of the routine --- the
shape has been shifted over 1 dot.

This should all but clear up any shape-shifting questions relative to
a one-dot shift. But now let’s look at why we've mentioned shifting 7
times. To some of you it's obvious. But | won't make the error that Call
Apple and Apple Orchard often make --- assuming the readers know
more than they do; those are 2 great mags., but they often need more
background, context, or additional info. about how to use the ideas or
data they print.

140




Once you've shifted 7 times, what do you suppose happens?
Reagan gives his $ to the poor? No. California falls into the sea but
jumps back out again because the water's too cold? No. Give up?

The answer is: it becomes HL-and-HR-changing time. (Not very
dramatic, but quite true.) If you're shape-shifting leftwards, you'd
decrement the hor. right byte coord. and the hor. left byte coord. every
seven shifts. You wouldn't redraw the shape. All you'd do is say:
“Okay, | acknowledge that the old grey shape she just ain’'t where she
used to be."” Physically on the screen you've got a shape that’s 7 dots
left of where it started out. If you were to keep on shifting without telling
the routine about your changed block-shape position, the routine would
begin throwing its left-most dots off the cliff of infinity and into the Black
Hole. Avoid this catastrophe. Remember to decrement or increment
HR and HL (depending-upon shift direction). You'll find that the follow-
ing routines will remember. (See next chapter.)

138. TWO-PAGE SHIFT ANIMATION

TEST J will do shift-animation to the right. it's 2-page flipping
animation and it’s colorsafe. No, | don't mean laundry detergent! | mean
it shifts twice before flipping pages. The resuit is that colors have no
problem --- we're doing the old 2-bit shift. The program that drives
TEST J (CALL36934) or TEST K (CALL36934) is 3 of 28B. Like all
other programs in the system, it's listable via E or F of 28B. TEST K is
like TEST J except it animates leftwards. But let's see TEST J first:

PRINTOUT #36
LS

i CEE £2068
= ¥ P FFC
3% EFZ £FD

4 HF Fr= $FE

5 HL EFZ &FF
& HERSI EPZ 324

¢ HBAS EFZ £27
2 ¥ EFZ #5

o BRSL ERPZ ZFR
18 EBEASH EFZ £FE
il HPOSH Ecdl 2411
iz DRAW L DY #£%
iz LE» %7

id HEREZ DEX

is CPH $F609
i& BER THEREZ
i7 INY

i= JME HEREZ
12 THEEEZ ¥
=& b
21
=1 _
25 LaoPil

141



= LDY #¥FaQ
=rd JSk HPOSH
=2 DY HE

=3 LD #EEG
S LanbP2s LbR {BASL.R?
=1 OF CHERSL .Y
iy STH CHERSL 3.%
=3 BEY 1
=4 cLe

35 IHC BOSL
[ BHE HOCRRZ
37 IHC BASH
28 MHDCRRZ CPY #3FF
35 BES HRTLHZ
45 CPY HL

41 BCS LO0OF22
42 HxTILHZ DEC YO

43 LR YO

43 CHMP #EFF
45 BFG RETZ
45 CHPE Y

47 BCS LOOP1LE
42 RETZ RIS

42 577 JSR FFZEZ
55 Lk #E8

51 STH £2 0
Se STH $FLa852
53 JER FFZD2
b LA #5481
=5 STR fE&

S5 LDR &358

57 STH £Casd
52 ISR DRl
59 ISR SHIFT
S ISR SHIFT
1 LER #50

= sTa $CaSs
= Lbr #3528
i STH $ES
£S5 IR DRAL
=5 INC #2

S7 THC £3

a3 LOOP LR #E5c8
o9 =TH ZE&

8 LR #5G

71 STH 0055
= J=R SHIFT
3 JSRE SHIFT
Fil | Dl #fe

it} THE £3

Fi= DA 32

Fil CHE #3552

2 BER SUBEi1E
3 COHT1E JS5E SHIET
Sa J5R SHIET
21 LEH #5465
g 1A S

23 Lo #%5

84 STE FCAT4
=25 JSE SHIFT
2 ISR SHIFT

142



a7 LD #F1

S8 THC 2

293 L hn 3

=G CHPE #52

21 EEQ SUBIA
2 COHT28 IS5k SHIFT
23 JSkE SHIFT
e L HE

25 CHME 83574
5 BE RTH

= BHE LO0OP
o2 BTH ETZ

32 SR8 IHC HL

166 INC HL
jR= )l INC HE

1a2 IHC HE

18z LA #F%1

i34 S5TH F3

165 CPY #%2
1G5 BEC COMTIG
187 BHE COHTRS
igl SHIFT LDbA VB

1a3 STR YO
118 LODP332 LDX 455

111 LDY #FQ
itz J5R HPOSH
1iz o

114 LEY HL

115 STRARET LDA #F8
11is 518 F2

117 STo F0F
1ig SHFT LDA (HERSL ».%
iig EOL .
i2H STE CHERSL 3.5
121 BCs SHRED
izz ECC COMTI1
122 SUBl TNC £=

iz24 COMTLI CHMPE #3826
125 BCS SETEE
126 BOLC CONTZ
127 SETS4 IMC #CF
128 CoHT2 LbA #F2

i=g BHE SLRZ
126 Dt CHERSL ».%
1=1 GHD #2577
132 STH CHBERASL »>.%
1== JHup Siiez
124 SUR= LDE (HEASL *.%
135 ORR #3208
125 _ STR CHBASL .Y
127 SUe= CPY HE

138 EEQ [ HOOHE
132 THY

143 CLe

141 LG $CF
142 CHP #£1

1432 _ JHP START
144 LHpaOME GEC Y0

145 LDE YO

14 P #3FF
147 BED RETT

143



148 CHP YT
149 ECS LOOP33
1=8 RRTT FEIS
151 ERE
iS55 BRK
153 EHD

Let’s ignore lines 1-48, since that's merely the block-shape draw-
ing routine. Let’s also ignore lines 108-153, since these are the exact
same shape-shifting lines we've -already gone carefully through in
Chapter 9B. That leaves 49-107.

Line 49 HGR.

Line 58-51 zeroes shape-counter.

Line 52 page 1 full-page graphics.

Line 53 HGR2.

Line 54-55 draw on page 2.

Line 56-57 display page 1.

Line 58 normal block-shape draw.

Line 59-6@ shift it right twice.

Line 61-62 display page 2.

Line 63-64 draw on page 1.

Line 65 normal block-shape draw.

Line 66-67 you've drawn your 1st and 2nd shapes, one on each
page, so increment the shape counter ($9).

Line 68-69 draw on page 1.

Line 7671 display page 2.

Line 72-73 double shift.

Line 74 by putting 2 into'X you signal you're in the LOOP section.

Line 75-78 increment shape counter and compare it to 8. If it's 8
go to SUB10 routine, since it's time to reset counter to 1 and incre-
ment HL and HR.

Line 79-8@ double shift.

Line 81-82 draw on page 2.

Line 83-84 display page 1.

Line 85-86 display page 2.

Line 87 by putting 1 into X you signal you're in the CONT10 sec-
tion.

Line 88-91 increment shape counter and compare itto 8. if it's 8
go to SUB10 routine, since it's time to reset counter to 1 and incre-
ment HL and HR.

Line 92-93 double shift.

Line 94-98 check HR to see if we're at 36 yet. if we are, quit entire
routine. If not, go back to LOOP.

Line 998-162 increment HL and HR twice. With 2-bit moving you
need to have a step-size of 2 for hor. coords.

Line 103-184 reset shape counter to 1.

Line 105-186 if you just came from LOOP, go to CONT10.

Line 167 if you just came from CONT10 go to CONT20.

The first thing to remember about a routine that does 7 two-bit
shifts is that 7X2=14. This means that we need two blank byte-
columns included in the block-shape’s definition, and they must be on
the right of the shape. One column of blank bytes is only good for 1-bit
shift-animation.

144




You're probably wondering about TEST J's weird construction. in
LOOP and CONT20 are 2 shifts, but in CONT10 are 4 shifts. What's it
ali about, Alfie?

Well, once we’ve double-shifted 7 times (notice you never have to
go back and erase? --- that's the best part of shift-moving) we need to
have the shape counter send us to SUB10 to reset counter and
double-increment HR and HL (step size is 2 bytes per step). But
remember that each hi-res page shifts 4 times, and this is because the
first 2 shifts bring you up to the other hi-res page’s coordinates, while
the second 2 shifts bring it 2 past the other page. Look at this (X wil
mean coord. of right-most ON shape-dot):

®
S:‘:&:,,123456712345

(rig(:ta-::)sa @ @\@ @_@ @ @ @
coord) S—— S—
2|4 26

I Lt a1 il

0 6 8 1012 14 16 18 20 2
suapnuuun P11y

HR+HL
Adg 2

HR+HL
Add 2

HL=0@ START HR=2

In lines 49-67 we get 2 shapes drawn, one at right-most X coord.
of 4 and one shifted 2 bits over and at 6. Both have HR=2 and HL=0,
the first byte column on the screen. The counter now says 2. (X will
continue to mean coord. of right-most ON shape dot.

In lines 68-80 we shift the shape at X=4 over to X=6 and check to
see if incrementing the counter gets it to 8, which means it’s time to
raise HL and HR. It's not so we continue shifting page one'’s shape to
X=8.

In lines 81-93 we switch to page 2 and shift its shape to 8, check
counter and find it's only 4 so we finish shifting it over to 10. We're
sent back to LOOP.

Back in lines 68-8@ on page one now we shift it from 8 to 10,
check counter --- it's at 5, shift from 10 to 12.

Now in lines 81-93 on page two we shift the shape from 10 to 12,
counter’s only at 6, so we shift from 12 to 14.

Next in lines 68-80 on page one we shift from 12 to 14, check
counter --- it's only 7, so we shift from 14 to 16.

Then in lines 81-93 on page two we shift from 14 to 16 and check
the counter. It's at 8! We go to SUB10 and increment HL and HR twice
and shift 16 into 18, and reset the counter at 1. When HL was 0 and
HR was 2 we were dealing with dots (hor.) of 0@ to 20. But now we're
dealing with dots 14 to 34. Notice the right-most shape-dot’s coords.
(not byte #) is again 4 dots from the left edge of the block-shape. Let's

145



say the shape dots started in X=0 and went up to X=4 before we in-
cremented HR + HL by 2 bytes. Now the shape dots start at 14 and
go to 18. Notice how after each HR and HL double-incrementation,
there are always at least 2 blank bytes to the right block-shape edge,
so that the 2 columns of blank bytes give us the 14 bits of shifting room
we require (2X7). In our case there are 2 bytes + 2 bits.

In the above example what was meant by “shifting 8 into 10" was
actually this:

The entire shape from dot @ to dot 20 was shifted within itself so
that all visible dots rotated over rightwards 2 dots. The actual visible
dots in this block-shape range from 4 to 8 (5 in arow) at this time, even
though they started out at a range of from @ to 4. We are double-
shifting all bytes in the entire shape and the visible effect will be that
the dots which are now from 4 to 8 will range, after the rotation-shift,
from 6 to 10. As you remember, the “X” referred to in the above shift-
ing description refers to the visible shape’s right-most dot’s coordinate.
Don’t forget this or I'll send a flock of drunk pigeons (who’ve just gotten
back from a heavy meal in an out-of-the-way part of Mexico) to roost on
your freshly waxed T-Bird overnight. And that ain’'t no Fudge.

Let's see what TEST K has in store for us. lis binary file is TEST K
(CALL36834) and its program is also 3 of 28B. It will move a shape
leftwards by shift animation as opposed to rightwards like TEST J.
Here’s TEST K:

PRINTOUT #37

5
ORG $3000

? EFZ 0
g EFZ 3FD
HR EFZ SFE
HI Z IFF

HEASL EPT 2
HEASH EPZ %27
i EFPZ 35
BASL EFZ %Fh
= EPZ 3FE

BASH Z
BPOSH Egil $#F411
e i LDY #3533

HERES? [DOEX

JMP HERE2

TN T T RS TR AT w T R TR T B WN TN B DY ToW EaX T T NN T T

Lo L PRI AT AT bt ot ot b s e ot s et ot

146




STH CHERSL ».%

IHC BRSL
BME HOCARE
_ IHC BASH
NOCARE CPY #3EF
BEG HRTLHZ

BCS LOOPZZ
HETLHE DEC YO

LR ¥0

CHMP #3FF

RSN TERTETA Ty T L Dl MR TR

ot i o i o AL T 02 e )

= EEQ RETE
45 CHPE YT

A BCs LODP11
48 RETZ2 RIS

49 STT J5FE FFZE2
=58 LDA #34
Si 1A %2

S STH FCBSZ
53 JER FFELE
54 Loa #5485
55 G
=& LDA ¥55
=7 1A U5
S5 JSR CREAL
59 ISR SHIFT
e ISR SHIFT
&1 LDA B30
Ho STH $CESS
B3 LA #F03
ad S18 $ES
=5 J2R DRAL
&5 IHC 2

a7 INC 9
&8 LOOP L #fcim
&3 TH ZES
e LR 3G
71 SO FCossS
= ISR SHIFT
T3 JERE SHIFT
T4 LOY #3c
= THC 9

T LA 5

i CHPE #F5

il = EBEQ ZIIBIH
72 COMTig J5R SHIET
=68 Sk SHIFT
=1 LA #F48
28 STA FE&
o3 LA #F4
&4 STH FCE54
o5 JSR SHIFT
Be I=R SHIFT
a7 Lo #F1
oo THC 92

23 LH £2

S CHPE #FS
=21 BED SLIB1®
OF COHT2G ISR SHIFTY

147



BTH =
suptls  DEC HU

=g
CPy &35
BEQ CONT1O
BHE COMT2D
SHIFT LDA %EB
STR ¥O0
LO0P33 [DX #55

#+a
J5R HPOSH

START LDbA B0

710 b ot s s bt s P ot et (50 U (VS CNET S0 o D S s 0 0 D)

~ IHC - ~
COHTI LDA (HBASL >.¥Y

CONTZ - LDA

JHP COHT4
COMT3 LR CHBASL>.Y
BE7F

COMT4 ROE
, STH ¢HERSL 3.¥

CONTS  LDA CF

ORA #5505 _
STH (HEASL >,
COMTE LCPY HL
BEGL: | HDOHE

Lbé EOFE

B51
__ JWP START
LHDOME BEC 70
LGH Y0
CHP #%FF
BEG ERTT
CHMP YT

AN A= TN s RN Tl RO NN T oW T O NN T T T T N T T N T TR TR VT T T 0 | 44 Ty BT T T e BN [ ST NS TURESE TN T KR T g RN
3
b4
T
)
15

ot e et et et s et st [t s ot s s s ot st el s sy o s B s oty s et o [ ot s s o e o s et ot et s ot

LIV ol e o o o L VLT DT G PPN P PP PN

148



154 BCS LOOP3E3
155 RRTT BTS
155 ERK
157 BRE
Rt EHE

Let's just look at the difference between this routine and TEST J.
First, its shift-rotation routine is the leftward one first seen in TEST |.
That's from line 108-158.

-The 1st difference is in line 95 --- since we're moving left the limit #
is 3, not 386.

The 2nd difference is in line 98-182 --- we must double-decrement
HR and HL every 7 shapes, not double-increment.

The 3rd and final difference is in the shape to be shifted. it ob-
viously needs 2 blank columns of bytes within its block-shape defini-
tion, column that will be the first 2 left byte columns in the shape. No
ON dots allowed. The ON dots may start anywhere after the 14th
horizontal block-shape dot.

Next we'll look at this last routine (TEST K) in action. Run 3 of 28B
and say you want to move left with shape table MANDG using shape #1
and a VT of @, a VB of 39, an HR of 39, and an HL of 33. The shape is
40 high by 7 wide in actuality, so we’ll call it 39X6. That's why we gave
it coords. such that VB-VT=39 and HR-HL=6.

Now why is the shape 28@ bytes (40X 7) when it could obviously
be smaller, even 22X3=6867? Simple, MANDG is a test shape. It has at
least 8 exira blank dots above and below it and 2 blank bytes on either
side of it (I'm speaking of the visible part of the shape now). It can move
in any direction without losing any part of its shape due to running out of
internal shifting room. So what is the smallest block-shape of the same
man shape that would work to fry out leftward shift animation in 3 of
28B7? Simple, take 22X3 and add 2 to the width and you'll then get
22X5=110 bytes in the block-shape data-array, which you'd call
21X4. See previous chapters if this sounds strange --- it's all explained.
This extra width of 2 blank bytes on the left side of the visible shape will
give shifting rcom for colorsafe 2-bit animation. Since only 40% as
many bytes will be shifted per shift cycle, the shape will be 2 1/2 times
as quick at shifting leftwards as it was when it was 280 bytes large.
This will be fortunate, since it was going a bit slow to be good animation
before. Now you should be getting some idea of the maximum size a
block-shape needs to be to be a good rotation-shift animation can-
didate.

Now let’s look at TEST M (found in 4 of 28B), which is quite like
TEST J except it shifts shapes up or down in addition to rotation-
shifting them --- the net result is diagonal animation, slower, of course
than horizontal animation. TEST M creates a binary file TEST M
(CALL36934) which moves things rightwards and either up or down:

149



PRINTOUT #38

(]
I:nzu

i ' ORG F9066
ST - TEFZ FFLC

YEB CEF

HE E

HE
HBASL  EFZ £2o&
%%HEH EPZ 27

BASL EFPZ ZFR
BASH EPS #FB
HREOSH  BEoll £FF411
DRA Ry §§§

HEREZ DE=R

THERES TYA

LOOP11 LDX #5088
LOOPRE [DE ¢ BHSL.¥>

AL
BNE HOCARS
BAsH

HOCAREZ CPY BSEF
BEQ HRXTLHP

BoS LOGP22

METLHZ GEC YO
Lba YO
CHE #FFF
BER gETE

5T
BCS LODP11
RETZ RIS
ETT JSR $F3EZR
LDE 448
STA #2
1R 3Cos2
JSE $F3DS
DA #34
SAGE 2
LA B850
STH 0654
ISR CRE
JSR SHIF

T Can PO e 0 D0 N VI B D P 5 Q20 T Kt PO b 5000 > 0 LT LT bt SR GG T R
1N
bt
e
-
]

OO DO 1 7T T T Tl T RO I 0 N O T8 OO NP [ 100 T8 TR T Tk P TRn an TR TR VTR b LR TR Ty (T T e e

DT S8 DT W R AR T TR T g L

150



&@ JSR SHIF
£1 IR 3ona
£o LDA #30
53 STH 0G5S
£4 LA #o@
55 T8 3L
£& ISR DEAL
~~~~~~ &7 IHC 29
5 INC 32
59 LOOP LDE 3526
7a TR $f&
71 LA 236
72 STE 0SS
73 JSE SHIFT
74 JEE SHIFT
75 ISR =00
7B LD¥ #%2
r IHNC $9
7a LbA 32
78 CHP #$0
Sa BEQ SUEIA
21 COMTi8 JSR SHIET
&2 JEE SHIFT
a3 JER 06m
24 LDR #3549
&5 STA $E6
8 LDA #$5
a7 STA 3054
2o JSR SHIET
59 JSR SHIFT
2a JZR Fgem
a1 LOW #%1
a5 INC 32
a3 LDhA +2
33 CHME 232
o5 BCo SUBid
3% CONT2@ JSR SHIFT
&7 JZB SHIFT
o ISR 3258
9 LDA HR
168 CHP #:P4
imi EF RFTH
iGs LGA VB
183 CHP #3PF
184 BEQ RTH
165 EHE LOOP
185 RTH RTS
187 SUB18 INC HL
165 IMC HL
1HG INC HE
{16 THC HE
111 ®¥Z iDA #%7
112 STH #CE
113 THC T
114 IHC ¥B
{15 OEC $CE
11& BHE Y2
117 LD #31
112 SGE
115 CPy #i-
126 EF0 CONTiE

151

=]
SHIFT DA ¥B
LOoOP33 E&H BER

FCF
SHFT LpA {HBASL .Y
STA (HBASL 2,Y
SUE1
BLL COMT1
SUR1 F5
CONTI CHP #3556
SET&4 IHC SCF
COMTZ2 LDA 38
BHE SUBz
[DfA CHEASL .Y
#E7F -
STR (HBRSL .Y
P SUES
SUB2 DA CHEBSL>.Y
80
STA CHBASL 3,Y

sUE3 CPY HR
BLo LHDONE

J
L MDORE EEE O

RRTT RIS

S
T LT AT R TN T D L ol Tl O O 0 R N b L LA L a3 P ! Nk
B L P I R e e i ottt ATt

Let's look at the difference from TEST J:

The drawing program from 1-48 is the same. The STT starting
routine from 49-68 is similar, but not the same. At line 61 there is a
JSR $800@. This is the vertical movement routine. More on that later.
The LOOP section is the same except for line 75 which is again
JSR $800. The CONT10 section is the same except for JSR $800 at
83 and 99. CONT20 has a JSR $800 at line 98.

Line 99-186 checks not only horizontal limits, but vertical limit of
191.

Line 167-121 is the SUB10 section, and it has a few differences.
Line 111-112 sticks a 7 into $CE, which is the vert. change counter. it

152

makes sure you move the VB and VT up 7 every time the HR and HL
get incremented. You'll see why later. The rest of SUB10 is the same,
and so is the shifting routine from 122-167.

So what is this JSR $8007? Well, it's a separate vertical shift routine
loaded in at $800, and used along with hor. shifting to create diagonal
shifts. But let's look at the differences between TEST K and TEST N
before looking at the vertical shifting. TEST N (CALL36934) is the
binary file assembied from the source code TEST N --- it does diagonal
shifting --- either southwest or northwest. Here is TEST N:

-

R aliex R DegTal TV T e FElsnThal e N e RO B X IV LN

G R AT POV LI bt ot o ot ok ot

SRR ROt (R DT Bl [MRS VTS

A GRRES SRR

-,

PRINTOUT #38

DAL
HEREZ

THEREZ

LooPit

LOOPz22

NOCARRZ

MATLHZ

W HEGH

CEASE K3

2 CHEASE 5.

CHRASL 3,

BEASL

< LOOF11

F
b
§

153

£
Ax]
!
M
]
(1
3
(e
1N

49 STT JSR $F2EZ
S6 LOA #38
51 STH 33

=2 ETR $iose
3 JSR FF3DS
=4 LA #3340
5= STH 3Es
=L LDA #3503
57 STA FC6S
=5 ISR DREAR
54 JEF SHIFT
=) ISR SHIFT
&1 JSB 35bG
52 LDA #30
£3 STR *COSS
&4 oA #50G
£5 TR 3E2
&5 ISR LRAW
&7 INC %9

22 IHC £2

£2 LOOP LDA 8320
V- STH 3E6
71 LDA %368
Fi= STR $0855
73 JSk SHIFT
74 JEE SHIET

d
A
ey
LT,

lnen
v
)

LT
=t
=
]
Nl
N

CONT18 JSR SHIET

EERRRS

mmﬁwmmawmwmm&%mw
i A
I)
d et
+ #
[ny]
& 8
()

b 1%
&

B
5
v
&

G o e G 2
10 i
ASD

LU et e

.Irmﬁmwﬁ

(St = 00

51 T Tl

o] (554

sl unles Il IRW TN (I LYo Y N YRR AN DY u Tua T Ten YT
1
e
oL
(]

LW T R T DTN WS [R i B W T R |
=
i}
il

RTH RTS
SUBiE %EE Hi

o ot e s oy s s s

T x]

154

WYT IMNC YT

SHIFT L%g o
LOOP33 LDY #38
e
J5r HPOSH

_ (BY HR

START LDA #6
G
TR 5CF

E

BCC ggnri

CONTI LA CHBASL>,Y
#5508

BCC COHTE
THC SCF
COMT2 LDA 38
BEQ COHTZ
LDA {HEASL >,Y
#1e0
_ JMP COHT4
COMTZ LDA CHBASL 3,Y
AND #37F
COMT4 ROR
T STA ¢HBASL 3.¥Y
BCC COHTS

COMTS DA #CF

Lt v i o ST (RPN T VInahuon Y s A e Y1 TSV R Totion D wln w Rl T BN TR N Dl
£
-
Y

CONTS ©DPY HL
BEQ LHDOME

LAUNCHENCRLCNE T oo o) U PPN bt

LD #CE
JEP 5
LHCORNE EEEZ Y

RRTT RIS

o LRt aY o R Ew e 1w eTuTuaTa £Tw 10, W1

o s s s o by oty e ot e e o e s e s s s s s o s s e o sy Pt e s s s st st oy i e e s ot kst s s o s b o s o s ft
[t TN e R 6 TN { T VTS o TN T Bt e T O P o TN Tt o BT R XY

b

m

)

'.'!J -,

155

The same differences exist between TEST N and K as between M
and J. After every doubleshift comes JSR $800 again.

It checks vertical as well as horizontal limits at 88-105, this time
giving a limit of 190.

It increments VT and VB by 7, as we’'d expect, if consistency is to
happen.

But what, then, is this JSR $8007 If's a routine that was the result
of old Don Fudge thinking to himself: if one can shift horizontally, then
why not vertically? Of course, there are no 6502 instructions for such a
thing, so | had to improvise. (Who ever heard of ROU and ROD instruc-
tions?)

I've named the vertical shifting routine TEST L, and the binary file
TEST L (CALL2048). So here's TEST L:

PRINTOUT #40
I 1 VT EPZ_$FLC
2 ¥B PZ FFD
3 HR EPZ
4 HL EPZ %FF
S HBRSL EFZ $26
& HBASH EPZ 357
7 EFZ
a EPZ %FA
9 BASH EPZ FB
10 HPDSN Eil $F411
11 INCRY EQU 3FS64
13 DECRY EQI 3F4DS
i3 INCR LDAR VB
14 STA Y0
i3 LP1 LDX #38
i% LDY #%a
i7 JSR HPOSH
15 LDY HR
12 Lp2 LLA CHBRSL ¥
) STh $CF
21 JSB THCRY
pore) LDA $CF
73 777 STA {HBASLY.Y
24 JSR DECRY
25 DEY
5 CLC
7 CPY #$FF
6 BEG Nl
25 CPY HL
=6 BCS LPR
21 ML DEC Y0
32 LBA YO
33 CHMP $3FF
Z4 EFQ ERRT
25 CHP YT
38 ECS LP1
37 RRRT RIS
35 GECR LDA ¥T
39 IHC VE
1 STA YO
41 LOPI LO¥ #%0
45 LDY #40

156

ot s s e

51

RS GO LTS O SO 00D O T mupo g s Ty Pl T a LR CRCRCRE AL L
&wmwmmﬁw&ﬁ&ﬂ%ﬁg%£&£&i$%£@ﬁ¥3ﬁaﬁwﬁw£wmwm&%mm#mmwﬂmﬁ&&ﬂ

Lore

fi

HxL=

ERRETZ2
CEAL

THEREZ T

LOOP11

LOOgF22
E

HOCRR:S

M=TLHZ

RETZ

HPOSH

HR
i € HEASL >,¥
A $CF

> DECRY

FOF
CHERSL .Y

2 IHCRY

#3FF
Ml 2
L

Hi
LOoFPa
¥
¥
#4BF
RRERTZ

VB
LOP1
VB

#1°
-y

08
THEREZ
HEREZ

7 BASH

F55A
BRSL

HeL
MOCARZ
BRZH

#SFF
MXTLN2

HL
BCS %RDPEE

¥
$3FF

3 RETZ
Ut
= LOoOPii

1857

Notice that in line 11-12 | define INCRY as $F504 and DECRY as
$F405. These aren't Fudgisms. They're Appleisms. These are
bonafide Applesoft subroutine entry points. JSRing to the INCRY
routine moves your Y coord. up 1 and DECRY moves your Y coord.
down 1, and either appropriately change $26 + $27 base addr.

Line 13-17 starts out the same as the shifting subroutines. Store
the VB in $6 and do the HPOSN routine at $F4 11 to get vour proper hi-
res address, before indexing, into HBASL {($26) and HBASH ($27).

Line 18 puts HR into Y, as this will be our address indexer.

Line 19-20 loads proper hi-res byte into the accumulator, and
saves it in $CF.]

Line 21 the Y coord. is incremented and the hi-res address is now
quite different, in $26 and $27.

Line 22-23 loads accumulator with the hi-res byte saved in $CF.
The INCRY routine disturbed accumulator contents. This byte is loaded
into the incremented hi-res address.

Line 24 puts the address in $26 and $27 back the way it was
before it was incremented by one Y coord. This is so we'll be at the
correct line of bytes (the VB line, in this case) all the way from HR to
HL. Think of moving down the bytes like this:

What we're doing here is: moving the block-shape’s bytes
downwards, one at a time, until a line is done. Then we move the next
line down to where VB used to be, and we keep going, until the VT line
ends up at VT + 1 and the entire shape is now “shifted” one dot
downwards.

Line 25 move left to the next byte on the VB line. This will be the
next hi-res byte we move down to the line underneath it.

Line 2€ we're making sure the carry isn't wrong.

Line 27 see if the last hi-res byte moved down was byte #0, which
would mean that DEY in line 25 has now decremented that @ down to
$FF --- yes, folks, that is what happens when 0 is decremented --- one
can interpret 11111111 (binary) as 255 or -1, the former being the
simple addition of bits according to their place value, the latter being
the complement version of minus one. See an assembly book.

Line 28 if the last byte was #0 we branch to the next higher line
(the next lower Y coord.). ;

Line 29-30 checks to see if you're at HL yet; if vou are, go on to
NXL; if not, you loop back to LP2 (line 18) and get the next byte left-
ward {towards HL) and move it downwards.

Line 31-32 here we decrement the temporary Y coord. value to
correspond with the next higher line, and then load this # into the ac-
cumulator for 2 reasons: the checking in line 33-34 and the HPOSN
routine we’ll be looping back to soon. If you'll recall, HPOSN requires Y
coord. in accumulator upon entry.

Line 33-34 checks to see if the last vert. coord. was O; if it was
you're done so exit routine. (see comment for line 27).

158

Line 35-37 checks to see if we've just performed our move-down
on the block-shape’s top line; if we have, we exit routine --- otherwise
we move up to the next line.

Line 38-64 will “shift” a block-shape down, rather than up:

Line 38-48 loads permanent VT into temporary VT {$6), and in-
crements VB so that lines 61-62 work right. You see, BCC will not
branch you unless the accumulator's less than the data. What was
needed here was an instruction that branched you if the accumulator
was less than or equal to the data. | improvised on the VB variable’s
value so that the BCC would act like equal to or less than.

Line 41-58 are the same as lines 15-32, except that the DECRY
and INCRY routines are interchanged, and YO ($6) is incremented, not
decremented, since as we move upwards we’ll be going from higher
block-shape lines to lower block-shape lines in our byte-moving opera-
tions.

Line 59-60 checks to see if you've reached the bottom of the
screen (191); if you have, then the routine is exited.

Line 61-84 checks to see if we're at the bottom line of the shape
yet; if we’re not, we're sent back to LOP1 {line 41) to move down aline
and begin moving bytes upwards again.

13C. COLOR AND DOUBLE-SHIFTING

TEST H and TEST | were merely shifting-routine programs --- they
could have their shifting (technically, the bytes are rotated but the
shapes get shifted) routines used in either one or two-page animation.

TEST J and TEST K are two-page double-shifting color-safe
routines. Shapes move 2 bits sideways, therefore color is consistent. If
you wanted 1-bit shifting merely substitute NOP for each second JSR
SHIFT line in the source code, and EA EA EA in place of the 20 (lo.
byte} (hi. byte) in the binary file (there are other lines that would need
changing too --- see below). The 20 is the opcode meaning JSR and
the low and high bytes are called operands.

The easiest way to change a routine like TEST N (CALL36834) is
to EXEC it into LISA and delete the extra JSR SHIFT lines and the extra
DEC HL and DEC HR commands in lines 107 and 109. Then hit A to
ASSEMBLE the file and then re-WRITE the source-code file (TEST N)
and resave the binary file by typing:

CTRL D BSAVE TEST N (CALL36934),A36864,L333

Remember that you'll have to stick to white shapes and you may
need to do a few other alterations of the routine, but it will get
smoother.

A good project would be to make any of these shift-animation pro-
grams do XDRAW --- any takers?

TEST M and TEST N are 2-page double shifting color-safe routines
that do triple-shifting: two horizontal shifts and one vertical “shift.”
There's so much going on they’re rather slow routines unless you use
fairly small shapes. These routines use TEST L (CALL2048) for their
vertical shifts. It loads at $800 while TEST M (CALL36934) or TEST N
(CALL36934) load at $9000 and need HIMEM:36864.

168

‘ It’s probably obvious that TEST L is not really a shift-program in the
‘strict sense, since it uses no logical shift or rotation. But it Is a shape
shifter --- it shifts shapes up or down according to needs, and by a
byte-at-a-time method that's very similar to the horizontal shifters.

The INCRY and DECRY routines of Applesoft have many. other
uses in assembly graphics, TEST L is a sampie of how to deal with it.
One could use YTABLE for the incrementing and decrementing of Y
coords., rather than HPOSN or INCRY or DECRY. Sometimes these
latter two routines are tricky to use in conjunction with animation
routines and vector, block or hplot-shapes, since only the “internal cur-
sor” is affected, which isn't always enough. See later in book for more
YTABLE information.

160

14

ANIMATION FROM APPLESOFT/

ASSEMBLY/COMBINATION

148. APPLESOFT

An all-Applesoft animation would be exemplified by the way explo-
sions happen in the SAMPLE GAME W/VIOLIN & NOISES program on
28C. BOOM is the vector shape table that gets its shapes drawn and
erased in a way that looks like an explosion. The actual explosion
sounds are machine language, but the visual effects are all Appiesoft.
Sometimes Applesoft suffices --- other times it doesn’t.

What is all-Applesoft animation like? Here's how it happens in the
above explosion:

PRINTOUT #41

4838 IF BixX 7 2.Y% < £ = 22 THEH
GOSUIE 2M@E:=5C = S0 — 188: GOSUE
Gz CALL 5d72: FOR C =1 T0O 5
z XRDRAW C AT XX &« 7 — 4. %% *
8 — 4: FOR @id = 1 TO 284: HEXET
: XDRAW C AT BX & 7 — 4,.Y% *
8 — 4= HEXRT

The 2-dimensional array B (X%/2,Y%/2) is the one representing
the “playing board" screen’s squares. A “32" means a “mine” (invisi-
ble) is on that square. GOSUB 900 is where | check to see if there
have been 5 mines landed on since the last “chance tornado” (see in-
structions). If there have, you get another one.

CALL5472 runs the explosion sound. EXPLOSION (CALL5472)is
loaded in at 5472. The GOSUB 4 previous to this is the first part of the
explosion sound, generated by a mach. lang. noise routine. Shapes
{vector) 1-5 get DRAWN and XDRAWN, with 1/4 second delay loops.

You see why it's easy to animate in Applesoft? (Not so easy,
though, is meeting speed requirements.) Simply draw and erase into
BASIC commands.

For more information on pure Applesoft animation, you may see the
SUPER SHAPE DRAW AND ANIMATE package we sell, or list out 6 of
28A and pretend each mach. lang. block-shape-drawing CALL is a vec-
tor Applesoft XDRAW command. Use E or F of 28B for doing listings.

161

148. ASSEMBLY

Most of the animation in this system is mach. lang., although to
simplify maiters I've used BASIC programs to get the animation going.
Some programs, like 5 of 28B, use a combination of BASIC and
Assembly --- the BASIC may set up a FOR-NEXT while the mach. lang.
routines merely do the drawing and/or shift-movements.

In most cases you could convert the BASIC parts to Assembly
and/or the Assembly parts to BASIC. You can also load a mach. lang.
program with memory without ever BLOADIng or even creating a mach.
lang. file. All you need to do is POKE it into memory. The easiest way to
do this, if you have many hex codes to get into memory is to convert
your mach. lang. binary file to a list of decimal numbers that you put into
a data statement. READ in the data and POKE it into memory. If you
want to put whatever is in $6 into the Y register, and this will be done in
$320, then you need an LDY $08, which is, in hex codes, $A4 and
$06. The decimal #s here are 164 and 6. Since $300 is dec 768 and
$20 is dec 32, then $320 is dec. 800. So POKE 800,164:POKE
801,6 will give you what you want. Or:

100 FOR X=800 to 801:READ Y:POKE X, Y: NEXT
110 DATA 164,86

In $322 (802 dec) could be a $60 (26 dec), which is RTS. All you
need to do now is CALL 800. (Change 801 in line 108 to 802 and add
96 to line 110.

lsn’t BASIC neat? So much can be done so easily! You just fan-
tasize something you want to happen and --- Presto! --- you can
program it in a few minutes (or hours).

Of course, the problem here is speed. When vou fantasize things
moving real fast and then you try to get BASIC to help you create these
fantasy worlds, you're in a pickle. BASIC is great for when speed is
NOT important (most of the dozens of games I've written are not
speed-centered and didn't need mach. lang. very much, except for
sounds --- most good sounds or hi-res scrolling require mach. lang.).

So most of the mach. lang. routines on these disks involve using
BASIC programs, but only to input “what shape table?”, “how many
steps per shape?”, “what are the starting coords.?”, “what are the
limits?”. After that the routines are calied and you're in pure mach. lang.
In « ..wal programs that you create, you needn't have any BASIC driver
programs. Simply put all these values into your binary file to begin with,
and if shape tables need to be loaded in, either do it from mach. lang. or
make that part of the booting program’s job.

If a source code starts out 1 VT EPZ $FC then that means that your
binary file needs to always store it's block-shape’s vertical top coor-
dinate in $FC, and when it gets its initial value for VT it shouid load it
into $FC:

LDA #$0A
STA $FC

The above instructions would stick in a 10. If you did use a BASIC

driver, POKE 252,10 would do the trick.

162

You may notice that some of my BASIC drivers POKE a con-
siderable number of numbers into memory before they begin. Two
things are happening here:

1) Addresses used in the binary file to hold things like “current
shape #" are loaded up with the proper initial shape #, which may or
may not be altered later. Example: POKE 7,2.

2) Contents of addresses right in the binary file itself containing
either opcodes or operands (both of these are object codes) are
changed if you've decided to go left in a rightward animating program,
for example. Perhaps DEC($C8) would be substituted for INC($EB)
and BCC would repiace BCS and SEC would replace CLC and SBC
would replace ADC. This is simple to do and makes 1-function pro-
grams turn into 2-4 function programs. Why make 4 mach. lang. pro-
grams if adjusting one program will do as well? (However, sometimes
you really do need separate complete routines for similar but non-
identical functions.)

{Sometimes what logically seems like a good candidate program for
changing into a 2-function program via POKES or exira LDA and STA
commands turns out not to be at all appropriate for the change. For in-
stance, TEST H and TEST | were created to shift shapes right and left,
respectively. There was an obvious tendency to want to change a few
commands, like ROL to ROR, to change TEST H's shift direction, and
then not bother to create a separate left-shift program. But it turns out
that the routine it takes for left-shift is quite different than the right shift
 routine!)

More on Assembly later in this manual.

14C. COMBINATION

Why use both Assembly and BASIC in a program? Well, suppose
you have a fast-moving space war game that has several paragraphs of
involved instructions? The really fast action will all have to be in mach.
lang., but try-writing a lot of instructions in mach. lang. --- a useless has-
sle. Do them in BASIC.

A complicated strategy game with hi-res shapes being moved fairly
slowly is far easier to do with BASIC --- if you can get a compiler like the
one ON-LINE sells to turn BASIC into Assembily in a way that’s suitable
for decent game-making, that's fine, but to actually write it in Assembly
in the first place --- a needless hassle.

{(Compilers will not turn slow BASIC hi-res games into fast arcade
games. There will be a speed improvement, but it won't be that large.
Compiled programs must be shorter than BASIC ones and they are
very memory-inefficient. They'll never replace assembly for arcade
speeds.)

One reason for a “combination” program is to render existing
programs muiti-functional. (See preceding section.) it's simple to
change object code via POKES, and it's simple to do it with LDA and
STA instructions (you don’t even have to convert hex. to dec.), but
sometimes if you're going to jump around between various mach. lang.
programs, it's easiest to CALL them from BASIC.

1863

Often the only mach. lang. routines a program needs are in the area
of scrolling (hi-res) or sounds. (Superfont is my example of the former
situation, and Sample Game W(Violin & Noises is my example of the
latter situation.)

164

15

| DRAW vs. XDRAW

The way one draws is to put something somewhere. The way one
XDRAWS is to put something somewhere IF the bits you draw on are
not like the ones you're trying to put there. XDRAW puts the comple-
ment {(opposite, such as Black vs. White or Green vs. Blue) of the color
already existing at each point plotted. If you're using a white
background and you XDRAW a shape, it'll be black the first time, but
the second time you draw it it'll be white, therefore erased and invisi-
ble. The same would happen with blue on a green background or white
on a black background. The plan is:

1) the 1st XDRAW draws the shape
2} the 2nd XDRAW erases the shape
In BASIC, XDRAW is like this (use 28C here):
HIMEM:36864:POKE 232,0:POKE 233,144:
?CHR$(4);“"BLOAD SPACESHIPS”:HGR:
POKE 16302,0:SCALE=1:ROT=64:
XDRAW7ATS9,99:FOR QW=1TO2000:NEXT:XDRAW?.

You probably didn't need the extra commands above, but in case
you needed a refresher, there they are. The HIMEM keeps the shape
table out of harm’s way. The 2 POKES say “let's have the computer
realize that my shape table starts at $9000(36864), which keeps it
away from the main program, which starts at $4000 due to POKES
you'll have done in Hello: POKE103,1:POKE104,64:POKE16384,0.
{If you started at $800, the normal program-starting place, you'd have
only 24 pages of memory available. Even if you used HGR2 and laid off
HGR (page 1) you'd have only 56 pages available (50 sectors on disk).
But if you start at $4000 and use HGR for your hi-res graphics, you'll
have from $4000-$960C or 86 pages (78 sectors on disk), unless
your HIMEM is at $2000, which will leave you with 80 pages or 72
sectors.)

The POKE 16302,0 gives you full-screen page one graphics. The
first XDRAW draws, the second XDRAW erases, after a delay loop of 2
1/2 seconds. The second XDRAW needs no coordinates since it will
use the ones already stored (X=99,Y=99). It's often a good idea to
play cautious and use coordinates even when they seem optional
---you'll usually find some reason why you'll have changed stored coor-
dinates.

Let's examine mach. lang. “drawing” of a block-shape, which is
merely a transferring of bytes from a table to hi-res address:

LDA (BASLX)
STA (HBASL),Y

The first command loads the accumulator with the data found in the
address pointed to by {(BASL,X). BASL is the address where the low
byte (followed by the high byte) of the shape table address is stored.

165

byte (followed by the high byte) of the shape table address is stored.
This is called Indirect addressing because we're going tc an address
to find the address of data rather than the data itself and it's called pre-
indexed indirect addressing because the indexing is performed before
the indirection. In other words, the X register is added to BASL to get
the final address of the table byte needed. As it happens, we could
increment either BASL or X to get other table bytes later. In these pro-
grams the former was normally chosen, because the X register was
often changed before re-using the LDA line, while BASL was un-
touched, therefore convenient. So X was kept at @ for this instruction.

The second command stores the table byte in the appropriate hi-
res byte. It's again an indirect situation because it's an address
containing an address, not data. But this time it's post-dindexed indirect
addressing because the indexing is performed after the indirection. In
other words, we go to the HBASL address to find out the address of
the proper hi-res line, but then fo get the proper byte as well, we must
move right until we're at the comrect byte. This is a forward displace-
ment accomplished by indexing with the Y register.

All these commands dgo is take from a table and give to the screen,
for viewing. The way they do it is to ignore what's already at the
destination address. They'll jump right “on top” of other shapes already
occcupying the screen bytes, wholly or partly. If this is the type of draw-
ing you want, then in source codes change all lines to NOP (no opera-
tion) that now say EOR (HBASL),Y, or in binary files, put EA EA in place
of all sets of numbers that look like this: 51 26.

What if we change the “drawing” commands above so that EOR
{HBASL),Y s included? We'll get XDRAW rather than DRAW, in effect.

With EOR, logical either-or, we get CN bits only when 2 differing
bits are compared. f we “draw” a@onaioratona®, wegetal
(ON), butif wedrawa®ona@ora 1 ona 1 (erasing), then we geta @.
Naturally this is aisc how the Applesoft XDRAW command does it's
thing.

in XDRAW (8F65D) there's both $F685 JSR $F48C and $F6A1
JSR $F48D. Etther of these will send you through $F4C4 EOR
{$26),Y and $F4C6 STA ($28),Y. And perhaps even through $F4C2
INC $EA --- see collision counter section (next).

Now fry running 3 of 28A and loading in vector shape MAN and
viewing shape #5 (the flying saucer) in both DRAW and XDRAW mode.
See the gap in XDRAW mode? That's because this section got plot vec-
tors twice, when it was created. So in XDRAW it turns on that section
but then tums it off again since we're ECRing with 2 ON (1) bits.

There’s one more important point to consider about XDRAW
—there Is a popular altemative to XDRAW which is used in many ar-
cade games.

Suppose you're in a Space Invaders type of game and those cute
litte aliens are moving across the screen in rows. The following method
would preclude the need for XDRAW:

DRAW a solid green shape of a2 monster. Then DRAW it again only
this time move it over 2 dots. The monster/alien will now be wider. Sup-
pose you're moving this “invader” ieft. Your monster will look now as

166

though s/he has gotten wider to the left, but his/her right side will re-
main unchanged. But there’s a way to deal with this problem.

Notice precisely what part of the old shape is still visible --- merely
a thin green sliver that's like a backwards “C.” (Perhaps there are a few
“legs” areas that have changed also --- this would make this alternative
animation method less viable but still possible).

What is the background color? Let's say black. If you were to draw
that C-sliver in black, then your shape would have “moved,” for all in-
tents and purposes.

So animation, using vector shapes, would be a matter of needing
no erasing or XDRAWing, but merely drawing an alien in green, and
then ancther in a shifted position, and then drawing the black C-sliver,
and then the alien --- shifted over even more, and then the black
C-sliver.

The benefits of not XDRAWiIng, in this situation, are quite obvious:
DRAWiIng a little sliver of a black shape is a faster proposition than eras-
ing and re-DRAWiIng an entire alien shape. Speed-wise you're much
further ahead to do the black C-sliver. Do it immediately after the se-
cond shape is DRAWN over the first one.

incidentally, you can do the same thing even faster by using block
shapes. Use 2-bit moving with a 7-shape sequence which has all its
components 2 bits apart, for a total of 14 bits of movement. Use 2-bit
moving rather than one-bit moving to preserve color integrity (see
Chapters 13 and 17). Use shape #s 1-7 for aliens and #s 8-14 for
black C-slivers. Make shape 9 fix the alien just after 2 is superimposed
upon 2, etc. All EOR (HBASL),Y instructions will need to be NOPed
with EA EA (no operation) in the block-shape drawing routines (or use
POKE addr.,234) so that the block shapes DRAW, not XDRAW.

Black C-slivers will be 1 byte wide and several lines high, and will
include part of the green alien.

1) (shape 1){green)

2) {shape 2 onto shape 1)}{green)

3 Mapa 9 lops off visible part of shape 1)
green black

Block-shapes are already so fast, however, that the sliver/DRAW
method is probably of little value.

) (o)

167

" THE COLLISION COUNTER
(SEE CHAPTER 8G)

The collision counter is the address $EA, which is 234 dec. Run E of
28A. List the program out, also, so you're sure you know what's mak-
ing the changes in the collision counter. A change means a collision.
This is convenient because all one needs to do is store a value
(CC=PEEK(234)) after drawing a shape and then monitor that address
at appropriate intervals to see if other shapes in the vicinity have hit
(changed) it:
900 if PEEK(234) < CC THEN GOSUB 29¢00.

The uses for such a collision detector are limited only by your own
imagination. If the collision represents colliding with an explosive mine
shape, then you can CALL EXPLOSION:GOSUB (to shape blow-up se-
quence:SCORE=SCORE-1000:COLLISION=COLLISION +1:etc.
EXPLOSION would be a machine language sound routine, and all of the
set of commands above would be at GOSUB 29000. in COLLISION (a
variable that's only actually CO in Applesoft --- the other letters don't
count) you'll have the # of collisions until now. In SCORE you'll have
the consequences (-1000) of your mishap.

There are addresses where you can see $EA being dealt with:
$F622 in DRAW and $F67E in XDRAW and $F4C2 or $F4AB, in the
end of INCRX, which HPOSN sometimes branches to because of the
BPL $F48A in $F465.

Examination of the XDRAW routine, with the branch to $F49C or
$F48D that iets you do INC $EA according to how the shape gets
drawn, gives you some hints that INC $EA would happen a different #
of times if XDRAW were happening partially on top of another shape.
But these technical details are of no consequence for the immediate
purpose: the understanding of the way to use PEEK(234) as collision
monitor.]

168

17 §

HI-RES COLORS -
THE PALETTE PROGRAM

Six colors are normally available on the hi-res screen: HCOLOR
0-7, with @ and 4 both being black and 3 and 7 both being white. 1 is
green, 2 is violet, 5 is orange, 6 is biue.

The color masking table byte for black is @’s, so it's easy to see
why this gives a black color, and why white, which has ones for its col-
or masking byte, gives white. It's a bit harder to see why the 4 colors,
which are aiternating ones and zeroes in the color masking byte, end
up being produced.

Let's look at HPLOT now. What happens in HPLOT is first a JSR
$F411, which is the HPOSN routine which finds the hi-res address to
correspond to your coordinates (and then gets $1C ready with the col-
or bytes and $30 ready with the bit position). Next LDA $1C gets the
color byte into the accumulator so that it will properly mask the point to
be plotted. Next EOR ($28),Y masks the entire byte at the hi-res ad-
dress/screen position which includes the bit/dot to be plotted --- the
resuits end up in the accumulator. Next AND $30 allows only 1 bit to
get turned on in the plotting. In the AND command, if either operand is a
0 the result is ©. And all the bits are 0 in the bit position byte that's in
$30 except bit 7 and the plotting position bit. (Bit 7 is 1 because then
ANDing at that position assures that the color bit (#7) will be let alone,
whether it's 1 or 0.) Now the accumulator contains a byte which, when
stored on the hi-res screen, will show only one visible dot, if any
(depending on whether the bit position’s byte’s ON bit got ANDed with
a 1 or a @ in the masking byte that was struck in the accumulator.

Now we EOR ($26),Y again! Why? This is to put the plotted dot in
with the hi-res byte that was already there before we ever started
HPLOT. Since the accumulator contains only 1 (or ©) “dots” in a visible
position now, EORing with the old, original, hi-res byte will have the ef-
fect of producing a byte that is the original hi-res byte plus the
results of the plotting. All that remains to be done is STA ($26),Y
which stores the amended original byte in its proper hi-res position.

Remember, EOR gives a one only if the bits compared are dif-
ferent. This means an old byte with 3 bits ON in positions that don’t
correspond to the plotting position dot would turn into a new byte with
those same 3 bits on plus the newly plotted one too.

Let’s see the routine again:

HPLOT: $F457 JSR $F411

LDA $i1C color byte
EOR ($26),Y mask
AND $30 bit position
EOR ($26),Y add plot to original byte
STA ($28),Y display plot

169

Now let’s test a program:

PRINTOUT #42

18 HGR

28 HOME

108 A$CIy = "GREEN":A$(SD = *VIOL
ET":A$¢33 = "WHITE":AzC4) =
"ol ACKTA$CS> = “ORANGE" : A%<
ﬂ ! = k-4 BLUE)i

158 v¥iAB_21

P8 FOR Z = 1 TO 6z FOR ¥ = 2 TO
&2, ?TRB 21: PEIHT ascy > —"AF

350 ﬁﬁR W o= 1 Tﬂ 61 STEP 2: HCOLOR=
Z: HFLDT R TD 60 %z HCOLOR=
V: HPIOT B.% + 1 TO 58,4 +

465 ﬂEwT : YTAB 32: PRIBT RFEEK(

S1943: » PEEK <(8134x* PEEK

¢8195%: * PEFK faljd,= PRINT
SPEERE 2218 * PEEK {9p18)3"

EEK{O219%: * PEEK (92i93;

: GET Qs HOME : HEXT : HOME

: HEXT : YTAB 21: GOTO 260

D

This program is 7 of 28D.
Perhaps you're wondering what those PEEKS are for. They show
4 bytes --- in the following places (dec.):

9218) 9219
10242 § 10243

All 4 bytes are adjacent --- notice that moving down a line raises the
address by 1024, as it does 7/8 of the time. Also notice that horizontal
addresses are consecutive.

The reason for looking at the screen bytes in these 4 addresses is
simple --- we want to monitor what types of colors are created on color
monitors when various bytes are used. Why not just one byte?
Because it takes looking into at least 4 bytes, as above, to see what's
going on with colors. But don't take my word for it --- run the program
until you've seen lots of different combinations. Make sure you tune in
your color monitor so it matches the colors you're supposed to be see-
ing --- turn the tint button so green is green, not orange --- etc.

What do you make of the fact that the colors are composed of dif-
ferent bytes? Why is orange-green a color that has 4 different bytes?
Simple encugh: the odd color bytes (#1,#3,#5, etc.) get EORed with
127 {(dec.) whichis @111 1111 in binary and $7F in hex. The result of
this EORIing is getting the complement of the desired color, or it's as if
the byte ASLed or LL.SRed --- shifted sideways so that all the zeros and
ones exchanged places. Confused? Don't worry, I'll hang in there with
you until it seems clear.

170

Run program #1 on 28D until violet-violet is displayed. If you have
no color monitor don't sweat it --- you'll still be able to learn about col-
ors.

Violet-viclet has 85 and 42 for its bytes. But the color mask for
violet formed in $FGF8 of the color masking table is only 85 --- there’s
no 42 about it.

green: $F6F7: HCOLOR=1 $2A 00101010 42 dec.(32+8+2)
violet: $F6F8: HCOLOR=2 $55 01010101 85 dec.(64+16+4+1)

The 42 and 85 are complementary binary bytes. If you think of
the hi-res screen as 280 columns that are 192 dots tall, things get
easier. On a color monitor if a dot is in an odd column, it will appear
green. If a dot’s in an even column, it will appear violet. Can you see
why 01010101 is the violet masking byte now? If we started in byte 0,
at the left edge of the screen, and loaded in that byte, it'd look violet.
The ON bytes would be at hi-res hor. coords. of 0, 2, 4, and 6 --- all
even, and since even column dots are violet, we've just made a violet
byte-line (a byte-long-line).

Okay, if you're screaming at the top of your lungs that “Fudge is
nuts! Those coords. would be 1, 3, 5, 7.” I'll remind you of what you
forgot:

1) bytes on the screen have an invisible color bit --- bit 7.

2) the screen bytes are all displayed backwards.

So the above 01010101 would show up as 1010101 on the hi-
res screen, just as old Fudge-face told you. (I'd better quit talking about
myself that way --- the insult | don’t mind, but it makes me hungry!)

(Incidentally, the way EOR #$7F gets a complement is that it com-
pares the 7 visible bits with all ones and only when bits differ will the
result be a one. So when the accumulator has a 1 bit the resultisa 0
and when the accumulator has a 0 bit the resultis a 1. So the opposite,
or complement, is the result here.)

Now 9218 and 10242 are even numbered bytes that correspond
to byte #2 on the screen, so 18010101 really would be a violet line
because its ON bits would be at 0, 2, 4, 6. This is probably clear now.
If it isn't don’t go on. Reread this chapter until the fog lifts. Your Apple
Reference Manual (white) has some of this information on page 19.
Check it out.

But what has not been clarified is this: why must the bytes in odd
byte #s be shifted or complemented with the instruction EOR #$7F?
Why can't “85” be violet at odd bytes too? Well, let's put 1010101 in
byte 1 position. The ON bytes have coordinates of 7, 9, 11, 13. This
would be green, not violet, because the ON bytes are in odd columns,
not even ones. Don't forget, now, that the visible 7 bits in byte @ were
potentially #0-6, which is a total of 7. The next available visible bit is
then #0 bit of byte 1, which will have a hor. screen coord. of 7. So
1010101 really would be ON bits at odd columns.

So the complementing done at all odd byte (#1-39) addresses is
to cure the above problem. All it would take to make 1010101 go from
green to violet is to shift the bits over 1 or, easier to deal with, get the
byte’s opposite (complement, where ones replace zeros and zeros

171

rep'ace ones). By reversing the “85” masking byte after removing its 7
bit we see what its screen byte would be like (on-screen 1010101},
and by complementing it we can see that on-screen the complement of
the 85 byte, needed at each of the 20 off-byte positions on the
screen, would be 0101010. And if 0101010 were found at the 1 byte
{hor. coord.) then we’d have the ON bits at 8, 10, and 12 --- and guess
what color that'd make these dots? Yes --- viclet! No matter what, these
dots at even columns on the color monitor (if color bit is @) will be violet.

So the bytes on each line will be 85 42 85 42 85 etc., when a
violet line is displayed. Change the bytes as the 85 and 42 bytes are
exchanged and you get a green line --- the complement. I'm talking
about horlzontal lines here.

Now, everything I've said above applies to the color bit (#7) being
off in all bytes. If it happens to be ON in all bytes then you can replace
violet and green with blue and orange, respectively. Blue is 213($D5)
and orange is 170{$AA). Bytes of 213 170 213 170 will be blue lines,
if the first byte is even, and orange, if the first byte is odd. Notice the
ON color bits:

orange: $F6FB: HCOLOR=5 $AA 10101010 170(128+32+8+2)
blue: $F6FC: HCOLOR=6 $D5 11010101 213(128+64+16+4+1)

Now, when 2 dots are side by side, the result is white. Notice that
white masking bytes are all ones and black masking bytes are all zeros
{(not including the highest bit's setting).

blackt: $F6F6: HCOLOR=0 $0C¢ 00000000 O
white1: $F6F9: HCOLOR=3 $7F 01111111 127 (64432418 +8+4+2+1)
black2: $F6FA: HCOLOR=4 $80 10000000 128 (128)
white2: $F6FD: HCOLOR=7 $FF 11111111 255

(1284 64+32+1648+4+2+1)

Perhaps it's now obvious that in plotting or drawing things on the hi-
res screen, there'd better be some way of distinguishing which byte
addresses are odd and which ones are even --- and the odd ones will
need their color masking bytes complemented with EOR #$7F
because of the fact that:

1) 2 colored dots side by side always appear white

2) dots in even columns are black, violet, or blue.

3) dots in odd columns are black, green, or orange.

Let's look at how the odd-byte problem is handled:

$F44F LSR the hor. byte coord. has been stuck in here and now
we'll see if it's odd or even. We shift the bits right, and the @ bit, which
has a value of 1 if ON, and is only ON in odd numbered bytes, gets
shifted into the carry register (C).

$F454 BCS $F47E if the carry was set, the byte address was odd
so we branch to $F47E to do the complementing.

$F47E ASL here we're shifting the color masking byte left so 2
consecutive bits, #5 and #6, can be evaluated. What we’re looking for
is 2 ones in a row in the visible (0-8) part of the masking byte, which will
mean the color white, which will cause us to exit with RTS.

172

$F47F CMP #$C0if the 6 and 7 bit {the 5 and 6 bit before the ASL)
are both one, then the value here is at least 192 or $C0, so we see if
white is the color by comparing the shifted color masking byte with
182. C,P subtracts the data from the accumulator but doesn’t store the
result --- it merely sets flags N, Zand C. it's the N flag we’ll be checking
here.

$F481 BPL $F489 if 192 subtracted from the shifted accumulator
byte would have a plus result, or a zero result, then here you'll be sent
to RTS. N flag=0 means result= 0. BPL branches if N (negativity)=0.

$F483 LDA $1C load in color masking byte if the color wasn’t
white; prepare for the complementing.

$F485 EOR #$7F complement the color masking byte.

$F487 STA $1C stick the complement in the color masking byte’s
address. $1C is the “internal” cursor's storing place --- the “external”
cursor’s place is $E4.

$F489 RTS exit

it should now make sense that the values of orange-green are:

42 | 85
170) 213

Green's mask byte is 42; 42 has a complement of 85. Orange’s
mask byte is 170; 170 has a complement of 213. Since we’re starting
each of the above at even hor. bytes, we needn’t reverse the above #s
with their complements. If we were to do this reversing, our color will
have changed to blue-violet.

Page 19 of the Reference Manual (white) tells us we may as well
forget mixing non-complementary colors. Let's see if that's true. First
off, a mixed-color (green + orange or violet + blue) byte would invoive
the high bit in both the on and off positions at the same time --- rather
difficult! Well, that kills that. But how would complementary colors be
mixed in a byte? Easy: don't alternate @ and 1 evenly. Try 10100101
or 01011010, which in decimal would be 165 and 90. The first gives
orange and blue stripes and the second gives green and violet ones, in
the following test program:

PRINTOUT #43

i6 HGR :0 = 27:a

26 POKE G.165:0 = 0 + 1824: IF &
> 15456 THEM 4@

20 G0TO 26

40 2 = D493 _

S8 POKE D,98:0 = 3 + i824: IF @ >
Sdes THEH EHD

&8 GOTO Sa

173

Then change line 40 to Q=89861. See? --- you can invent color
patterns all day.

Now let's go to the Palette Program, 4 on 28D. If you have
anywhere near as much fun drawing and painting and filling the screen
with colors and inventing new colors as | did, then get set for a really
good time. Not only was FILL 1 a really exciting assembly challenge
and fun machine language algorithm to create, but PALETTE was areal
ball as far as BASIC programming goes. Near the beginning of the pro-
gram, from 8-80, is a color permutation subroutine. Then around line
300 is a simple 21-color routine that's sort of a standard for many color
programs. Run option 10 in Palette (4 of 28D) and see what it's all
about. It takes more than a minute to draw on hi-res page 2, but from
that time on you merely flip pages and you'll see the color palette in-
stantly.

Yes, Virginia, you get to “fill” with all 181 of those colors! But you
also get to fill with mystery colors. Run option 17.

What do | mean “fill”, and what's a mystery color, right? All right
---let’s go through it, as they say in basic fraining, by the numbers.

1) To fill means to indicate a starting point within the boundaries
of a part of a picture, and then begin coloring it in with chosen colors or
patterns of colors.

2) Use option 9 now and then choose option 3 of 9 which will
allow you to load in 2 34-sector picture from disk. Ask for COMPOSITE
2 which is from our Chambers of Xencbia adventure (it was drawn
with both Instant Graphics (Block Shapes) and Super Shape Draw
---the former is on 28A and could have done the whole picture easily
---the latter is available from us).

3) Use option 12 to get full-screen graphics and suit yourself
about option 18, which will double vertical line widths so they look
whiter and better. (Incidentally, when you're in option 9, choice 1 or 2,
8 of 28D, you'll use button #1 to make shapes appear and button
(PDL)#0 to exit. In 4 of 28D use button #0 to draw.)

4) Now look at the picture with option 1. Then choose a random
mystery color with option 17, and try option 16 to remind you of your
current color bytes. You want t0 see what your mystery color looks
like? Go for option 11, the filling subroutine. If you don't like the clicks,
hit A to abort clicks.

5) Notice that there are lots of bounded segments of the picture
and you can’t get from one segment to another without crossing lines.
The fill routine is set up to fill most or all of each segment you enter with
the paddie-directed dot-cursor and hit PDL button #0. If the top and
bottom sides of the segment are horizontal and neither of the left or
right sides of the segment interfere with upward or downward travel
{from the stari-point}), then the entire segment will be filled almost in-
stantly with your latest palette or mystery color.

6) Ngtice how the filling works (there’s a whole chapter on it
later): The color fills in upwards until 2 non-@ byte {with no room for a
2-bit color pixel)’is encountered (in a straight-up direction from the
starting point). Then the unfilled portion of the segment underneath

* A pixel is the smallest visible color dot, the smallest unit of resolution currently deait
with; i.e. 2 consecutive bits for hi-res color which is 140 resolution.

174

the dot-cursor starting point gets filled until it hits a non-0 (with no room
for a 2-bit color pixel) directly underneath the starting point.

7) In small or narrow segments put the cursor at the upper right
corner of the byte and hit PDL button #0 and if necessary move your
vertical coord. (PDL #1) downwards. The algorithm is trying to deal
with finding no byte above or below the cursor that will hold a 2-bit col-
or pixel {or 2 or 3 of them), so it will balk at times.

8) The filling program is meant to fill shapes that are black (@ or 4)
inside. If you want to change the color of a shape or segment, you’ll
need to carefully erase the old color. The program tells you a bit about
this; but | shall do so also. {Incidentally, in using colors that are either
half black (® or 128 bytes) or mystery colors, you can often fill filled
segments with additional color, depending upon cursor vertical coor-
dinate when filling.)

You get to use 10 different paintbrush heights and 8 colors (hi-res
colors 8-7). The brush paints horizontally only and it paints “from where
you just were to where you now are.” If you gave a quick turn of the
paddie, the painting will continue until it's complete. If you want
horizontal lines one dot thick, ask for a height of 1. The subroutine is
not meant for vertical line drawing, but if you want to, set the height for
9 and move the vertical (#1) paddie knob slowly.

It shouldn’t take you long to figure out that erasing larger areas
takes color © and 9 or better for height. But how can you get a larger
height and why does the program say 1-9 are the height choices, when
| wrote above that 10 heights are possible? Well, if you're in the fill
routine and hit Space Bar, you get asked for HCOLOR and then go to
your painting routine with a quite large height (18).

See, the normal way of going from “fill” mode to *paintbrush”
mode is by hitting 1-9 for brush height and then hitting @-7 for color.
But Space Bar gives an even bigger height of 18.

Erasing is aided by the “lift-brush” feature: if you hold down PDL
#1 button and move the paddles, vou get to move around without
painting. | recommend holding it even upon entering the paintbrush
routine.

Once you've erased some or all of the color from a segment, hit
Space Bar and F and RETURN to fill again {or if you want a different fill
color simply hit E and RETURN after Space Bar to exit and then use op-
tion 1@ or 17 to get a new color. Either option will store 4 fresh color-
byte #s between $6 and $9 in memory. In #10 you hit PDL#0 bution
when the cursor is on the (lower screen) solid color you want, or on the
left half of the color combinations to choose from on the upper screen.
The fill colors that get put into memory will be the byte you're on and
the one either to the left or the right of the one you're on, and the 2
bytes underneath these 2 chosen ones. You'll count 40 color squares
per line, which makes 20 2-color patterns. If you hit the button while
you're at byte 33, you'll get the same 2 colors as at byte 32 --- you
can’t get 33 and 34 or 32 and 32, but just an even plus an odd {32 and
33 or 34 and 35, etc.). The upper and lower even-column (40 byte-

178

columns per line) byte will go into $6 and $8, and the odds go into $7
and $9. More on this program in a later chapter.

It should be noted that there are only 140 distinguishable pixels
per hor. line for regular color graphics on regular color monitors, but the
black and white monitor gets up to 560 point resolution, although !
don't agree with Bob Bishop on this subject. He states in the FALL
1980 Apple Orchard that “there’s really very little reason to ever con-
sider doing black and white plots in any other mode but the 560
mode.” My opinion is that 280 resolution is much simpler and the best
mode by far for all beginners; also, many applications simply don’t re-
quire the extra-fine resolution. However, it's quite true that such resolu-
tion is a plus and is of significant value in many types of applications.
More on resolution in a later chapter.

A last comment on filling with 4 of 28D, option 11:

It's probably obvicus how one goes about filling a segment shaped
like this:

But | find out occasionally that the “probably cbvious™ to some
people is the “baffling dilemma of a lifetime” to others, and this
graphics system is meant to be, above all else, informative. So:

(Remember the characteristics of how filling works? --- see points
(5)-(8) above.)

“Seed” the segment three times. The 3 starting-cursor positions
are shown. lt doesn't matter where you begin. If you start at the point
near the letter A in the A segment, sectors A and X will get filled, then
the B sector may be filled with the B dot, and finally the C sector will be
filled with the C dot. If you started with the B dot, all of A and B would
be filled, C would be filled as before, but the X sector fill would have to
originate right where the letter X is.

176

| WHITE LINE FIX

On 28D can be found 4 of 28D, Palette. Option 18 lets you widen
all the lines (vertical or diagonal, not horizontal). It does this so shapes
that are too skimpy can get more definite and emphasized, or because
one-line-thick shape-lines are seen as green and violet on the hi-res
(color monitor) screen, rather than white, while thicker lines look white.
Also, you may use the routine before doing color filtering (see 8 of
28D) so that shapes change colors without having various vertical lines
disappear. But make sure you get this stuff --- type the following:

NEW '
HGR: HCOLOR=1: HPLOT 10,0 TO 10,181

Nothing happens. Do it again with the HCOLOR of 2. A line ap-
pears! Now do it again with each color, but with hor. coords. of 11, not
10. Color 1 works well in an odd dot-column only. Viclet is color 2, and
it has 1010101 visible on the screen --- it's the even dots that are on
(#0, #2, #4, #6), while green is color 1, which has 8101010 visible
and only odd numbered dots are on (#1, #3, #5).

So now get one of the above lines on the screen again and type
BRUN WHITELINE 1. Every single dot on the screen doubled its width
{no applause, please, | biush). Now if you drew in green, draw in violet,
and if you drew in violet, draw in green, and redo the above line at the
same exact coordinates, ONLY THIS TIME DON'T USE THE HGR
COMMAND. Back to a thin line. If you draw a complement on top of a
visible line, it disappears. The complement line drawing masked out its
opposite.

Another method of getting a white line is to draw the visible line’s
complement next to it so that the @1 and the 10 pixels add up to 11.
But BRUNing the WHITELINE 1 routine is more convenient than hplot-
ting 2497063 zillion lines and points, don't you think?

Remember to use either option 17 of 28D or option 18 or 4 of 28D
before doing color filtering in 8 of 28D. You just learned why --- lines
drop out otherwise --- with thick lines before filtering, you get lines slim-
ming down but not vanishing. Now let's see WHITELINE (the source
code for binary file WHITELINE 1):

PRINTOUT #44
1y
LDA #36
STA $19
STA *FB
TAY
LOA #3F7
STR $FE

AR ETRIR T

177

r LDR #%F3F
= STR FFF

9 LooP L Fi9
1a EED CONT
11 BTS

iz CONT LDA FFF
iz CHMP #5728
id BHE COHTO
is LR $FE
is BHE COHTS
i7 THE FiT
18 CONTS LDA &30
i3 STR FFC
25 LA <HFFE3.%
=1 CHE #%86
=g BT COMTI
=3 INC FFC
24 CONTL LPR <FFE .Y
5 BEQ COMTZ2
e STH FFR
27 BHE COHT2
28 COMTZ LDx £FB
=29 BER SUB
26 ORA #%45
31 LDX #F3
32 14 $FB
33 JHPE SUB
24 CONT3 AND &%7F
35 LDx #fF5
36 STH FFD
=7 cLe
382 SE

32 BCC CORT4Y
48 IHC FFD
41 COMNT4 ORR 8
42 L% 4$FEB

= BEQ CONTS
44 ORA #r45
45 CONTS Lis $ED
45 ST# +FB
37 LDH FFC
42 BEQ COHTS
49 ORA #4393
56 COWHTS ST {FFE>.Y
51 =B GEC SFE
52 LDE $FE
= CHEe #3FF
5 BHE COMTF
=55 DEC FFF
So CONT? JHP LOOP
=T BRE

58 BRi

59 EH

Line 1-4 flags and Y index are zeroed.

Line 5-8 starts fixing at page one's highest visible byte.

Line 8-11 $19 is quit flag - if unset, continue.

Line 12-17 $FF and $FE are high and low bytes of current byte ad-
dress. We check here to see if we're at page one’s lowest byte
adc.ess yet --- if we are, set quit flag.

178

Line 18-19 zero “hi bit on” flag.
Line 20-23 load current byte, see if hi bit is set --- if it is, set $FC
flag. :

Line 24-27 reload current byte so that BEQ instruction will work, if
byte is zero go to CONTZ, if byte's not 0, store a copy of it in $FA, the
temporary byte holder, and go to CONT3.

Line 28-33 check ($FB) bit transfer flag --- if it's clear then jump to
SUB to decrement address and loop back again and widen the on bits
of the next byte. If bit transfer flag is set, it means a O bit of the next
higher address was set and needs to be widened by dumping a 1 into
the highest (right-most on screen) visible bit of the current byte (#6).
ORA #$40 sets bit 6 --- we set bit transfer flag to 0 now.

Line 34-38 zero hi bit so we don’t shift the color bit into a visible bit
with LSR. Then zero temporary bit transfer flag $FD.

Line 37-40 clear carry so BCC works, then shift right. If the O bit
was set, there’s now a set carry so we set $FD, temporary bit transfer
flag. We're using temporary $FD now rather than $FB because we
can’t tamper with $FB setting vet because we're still going to use that
setting.

Line 41-44 we add the current byte and the shifted byte ($FA and
accumulator) and get wider shape lines, by use of ORA $FA. Now we
check bit transfer flag --- if it's set we set bit 6 with ORA #$40. We've
transferred last byte’s set O bit to this byte’'s 6 bit.

Line 45-49 dump temporary bit transfer flag’s ($FD) setting into
regular {$FB) bit transfer flag, and then check hi bit flag. If set, set color
bit (7) with ORA #$80. (Hi bit was zerced unconditionally in line 34 and
must be returned to original status, as determined by line 21-23.

Line 50 stores “fixed” current byte back in its place on hi-res page
one.

Line 51-56 decrement address by one, and if low byte ($FE) goes
from @ “down” to #$FF (255), then decrement hi byte ($FF) also.
Loop back and continue fixing process.

179

CIRCLES, ELLIPSES, POLAR
GRAPHS AND SPIROGRAPHS

List the beginning of 2 of 28A by using F of 28B. From lines
20-110 is an ellipse formula with the option to fill itself as it draws. It
does this by plotting a point and then plotting to the other point in the
ellipse that's directly horizontal of it; then it moves down and does the
next line. You'll notice that these are standard formulas --- not the
world’s fastest. Also notice that to get a concise figure it was plotted
double --- 4 half-ellipses from 4 separate starting points --- this fills all
would-be gaps.

The same can be said for the circle formula in 820-886. In both
figures there are a lot of “ifs” that slow things down. Ifs that check legal
boundaries, check to see if drawing sounds were asked for, check to
see if filling is required, and check to see if PDL #0 has been pushed to
signify that filling should cease --- all these are needed in my particular
application.

Now, there’s a program not on the menu on 28D called
CIRCLE/ELLIPSE. Run this and notice that a circle is merely an ellipse
with equal horizontal and vertical radii. Again we've used standard for-
mulas.

Now, for another program not on the menu, {try running
SPIROGRAPH. In this program functions are defined and spirographs
of any of 10 types are drawn (it’'d be nice to color these later in 4 of
28D). These are standard polar coordinate equations --- but this is a
graphics package, not a math or geometry one, so [won't go into it all.
Use math books to lift any fog that has settied due to any of these pro-
grams.

180

19

20

COUNTING, TIMING, SPEEDS,
DELAY LOOPS, TIMING CLICKS

Check line 50 in 4 of 28D. It counts the permutations performed
on the color bytes. Notice that it notices when the count gets beyond
480, and exits the routine at that point. (The CALL 54915 resets the
stacks so you won't end up with an error due to the fact that the for-
next loops are incomplete --- there are hundreds more permutations
possible. Another way to prevent for-next error difficulty is to set A, B,
C, and D to 8 in place of the CALL 54915 --- this will make GLEEP, my
computer’'s name, think that all loops are completed.)

Now if you needed to monitor the counting, you could leave the
screen at mixed graphics with POKE-16301, @ and then PRINT N at
VTAB 21 as the permutations progressed. If you wanted to emphasize
the timing aspect of your programs you could put in light clicks
{(P=PEEK(-16338)) or heavier clicks (2-4 of these last PEEKS).

If you wanted clicks to get progressively faster then you could
decrement the variable in an inserted delay loop like so:

5 B=300"
10 FOR A = 1 TO 300:?7*DO SOMETHING”
20 FOR C = 1 TO B: NEXT:B=B—1:NEXT

You'll find BASIC delay loops are 1 second for every 800 loops, if
they do nothing. | use this fact in music programs to create proportional
rests. They're about the easiest thing you can do on a computer.

Another speed-related command is SPEED. It's used in our
Chambers of Xenobia adventure to adjust the rate of speed words get
printed on the screen during confrontations with monsters. It works like
this:

PRINTOUT #45

5 Z =1
g AFC12 = ®HI THEREI":=RAF(=23 = I
SHT IT =0%FC 3> = “FURNY HOLY
SA%C 4> = STHESE WORDE":A%. S 5
= “"JUST KEEP":HA$FC62 = SGETT
gﬁgg SLOWER":zRECT > = "AND SLO
28 FOR & = 132 TO @& STEP - 23: SPEED=
B: PRIHT RF(Z2X™ "2 = 2 + 1z HEXT

ISFEEL=25%

181

| arranged to have the speed decreased so you can see that
SPEED settings can cause not only slowness or fastness but changing
rates of print-speed.

Delay loops in machine language are on a very different level - a
delay loop of from 2000- 18000 between each of a shape sequence’s
erase/draw cycles wouldn’t be unusual --- and animation needs to be
around 11 frames/second! A normal mach. lang. delay loop would be:

LDY $FF “highest” byte
RESTART LDX $FE “lowest” byte
LOOP DEX

BNE LOOP

DEY

BNE RESTART

The numbers in $FF and $FE are multiplied together and can never
have a true 1/256 (hi/lo) relationship (unless X starts at @ and
decrements 256 times before it's back to @). (A hiflo 16 bit number
always means multiplying the high by 256 and adding the low to it.)

Clicking the speaker in machine language is a matter of reading or
writing to $C030. INC $C0830 or DEC $C030 are good.

Another delay mechanism is the BASIC command WAIT. it doesn’t
seem to be of much use in most programs, but if you want pauses that
go on until certain actions are performed (like hitting the keyboard),
then this can be used. See the Applesoft manual.

To have a specific delay in a machine language program, such as
one that might include the above delay loops, you'd merely poke 255
with the higher value and 254 with the lower value. $FF is 255 and
$FE is 254.

182

2]

ASSEMBLY GAME PADDLE
OR KEYBORARD RERADING

CcLC

LDA $C000

CMP #%80

BCS HITKEYBOARD

JMP CONTINUE
HITKEYBOARD RTS

The above source code will stop a routine if the keyboard’s been
hit. $CO00 will be at least 128 dec ($80, which means hi bit set) if
keyboard has been hit. $CO00 and 49152 and -16384 are all the
same address, and all mean keyboard data address. ($3C010 or
49168 or -16368 is the keyboard strobe clearing address, and
needs a @ POKED or STAed into it to work, which then allows the next
character to be read in.

0824- BIT $C061 (PDL #0 button)
0827- BPL $0824 (keep reading it if button unpushed)
0829- JMP $0803 (laser sound subroutine)

The above disassembly illustrates how to have a routine, such as
mach. lang. laser sounds, happen only when PDL #0 is being pressed
(button #1 is $COB62). The noise routine starts at address $803 and
ends at $823. By CALLING 2084 or JMP $824 (done in $800), we
can have the laser sound only if the button is pushed.

The BIT command does several things. The action we're interested
in is putting bit 7 into the N flag of the status register. A set flag in-
dicates minus, or a set high bit (which indicates negativity in two’s com-
plement binary). BPL branches if N is @ or hi bit not set, which means
no button #0 hitting, at the moment. BPL means, in this case: “noc one’s
hitting the button yet but continue to go back and keep checking.”

183

SCREEN SCROLLING

D of 28B will test various scrolling routines in my Superfont
program. A quick 64-line upwards scroll is what's normally used in
Superfont. But 5 other scrolling algorithms are available:

1) one byte leftwards, no wrap-around

2) one byte leftwards with wrap-around

3) one byte rightwards, no wrap-around

4) one byte leftwards with wrap-around

8) 8 line upward scroll

You may wish to see how these work. Let's check out the 64-byte
upwards scroll, but | wish to make a comment first. As | moved lines of
bytes from here to there, | calculated the line addresses mathemati-
cally. A beiter way to do this, if speed is the big concern (which it
wasn't at the time) is YTABLE “look up address in table” methods. V'll
create one such program once I've finished with the above scrolling ex-
planations. Let’s look now at a leftward scroll with wrap-around for use
(as an example of the slowness of BASIC) in my Font Program, also
known as Superfont:

PRINTOUT #46

12048 POKE 68.8: POKE 61.32: POKE
£2 254 PﬁHE ﬂ E2: BOKE 54,

170845 O = PE fsa 823: POKE 245
748

12658 LALL 7B o

{2555 FOR SC3 = @ TG 58 STEP 46s
FOR BL = 2192 + SC3 TO 98“8
+ 503 STEP i89: FOR LN =

IO BL_* 7163 STEP 1824 _

12658 2 = PEEK (LMY POKE LM + o

P31 _0: HEXT : MWEXT : HMER

1“@?a PﬁKE 68 B PDKE 51 64: POKE
255 PﬁKE £3 POKE && .
8e "POKE 57, ToEACE rﬁp

What does line 12040 mean? See page 59 of your white Apple
Reference Manual, aiso page 167 (FE2C-FE35), page 165 (FCB4-
FCC8) and page 155 (55-58,61-62). What we're seeing here is
memory-move algorithms. (dest) < (start). (end)M means copy from
“start” 1o “end” and put it into “dest.” In the monitor routines listed
listed above, (A1L,A1H)} is the lo/hi of the “start,” (A2L,A2H) is the
lo/hi of the “end,” and (A4L,A4H) is the lo/hi of “dest.” The addresses
for the moving are ($3C,$3D) start, ($3E,$3F) end, ($42,$43) dest.
Or start with start in 60 (lo) and 61 (hi), end in 62 (io) and 63 (hi) and
move to 66 (lo) and 67 (hi). Now look at line 12040 again.

184

22

Obviously, we move the whole hi-res page one somewhere. Lo of
0 and hi of 32 {dec) is $200@ since hex of 32 is $20. For the end byte,
63 hiand 254 lo are 2 bytes before $4000, (the last few bytes before
$4000 are not visible screen bytes). The reason we take the hi-res
screen one and put it up at hi-res screen two (minus one byte), is
because that moves everything leftwards with wrap-around.

Understand that we moved $2000-$3FFE (page 1) to $3FFF-
$5FFD, which is hi-res page 2 minus 1 byte which means that every
visible byte has shifted left on the screen.

Unfortunately, the wrap-around we just got is worth less than a Nix-
on promise in an election year. The wrap-around we get from merely
going through lines 12040-12050 is bad news --- all the bytes that
jumped to the right side of the screen also jumped up 64 lines higher.
So that's what lines 12055 to 12060 do --- bring up the correct wrap-
around bytes from page 1 and stick them in page 2. (Line 12070 mere-
ly moves everything back from page 2 to page 1).

Why CALL768($30)? Why not CALLE5S068($FE2C), which is the
address of the MOVE subroutine? Funny you should ask. Notice how
the $FE2C-$FE2E lines are indexed with Y? Well, we don’'t want in-
dexing, so we need Y to be 0 so we nullify that indexing. At 768 we've
poked in loading Y with @ and then jumping to 65068. This happens
before all moves.

If we don't want indexing, why usé (A1l),Y as an operand?
Because we need the indirectness of the addressing mode --- but not
the indexing. In other words, adding Y to the address is no good for our
application, but indirectness, signified by parenthesis, is correct. We
don’t want $3C o get LDA - A1l is $3C --- we want the address
whose lo byte is given in $3C to get LDA --- hence the need for indirec-
tion.

Now let’s lock at TEST 32, the source for the file FAST A 84-LN
SCROLL (TEST#32):

PRINTOUT #47

=
2
oo
=

LI i

mﬁ.‘l

(yweaFooea [Tyam Py

W TCA LA T Ru T TN T T REg S TR TR e -
da Wt

CaIgE)
V]

BL Enili
LH ;
TEMP1 Eaid

1M
o£La Ty
(T4
o

AT TA T

ZTA LH

P SN0 ST s LR D = d T U LT
r
e
D
[T oy W v s s b w i i wem s e Y

PLATEITL bt b ot s s e ot s s

185

186

-
Hm@%

s Qs Ju e B [T B DI TR B s i

([T Y O OO 0 8 SR 0% 128 [N TR IR AN TVA TR TEV Y
memﬁmwmm%ﬁﬁa&wwuuwwwuwwm%ﬂ

AT

e L RN T L N L i eaTu LT T DT Y

Far e GO0 SIS LI LA PO BN DN OO P L R = 5

[IR B

FR1

7 GH¥T1

GHXTZ
HEXT

JEi1

JHz

]
Juiry

neaitiai O, TR
[iysesam 50 am ™ v~
BBV B et o o
PO e L
el b

0

=

535.Y

E

Choch
i &

Ij'ilillﬁ‘xlmlj""ﬂl:r‘w-l:fwﬂ}c

LT LN M TWVENS

Hﬂ-*nu:@um@:un*um#nu@
M

Ty

Y
5
=

HEXT
CLMH XY

Lk
#Ligod
IH
P R+E]

> <B1d2g

LH+%1
FRZ

BL
- #II1CD
a2 BL

BL+%1

a3 JHP FRI
a4 BRI
2 EHD

Line 1-13 move the hi-res screen to page 2, only this time all bytes
are made to be 40 bytes less than they were on page one. The idea
behind this can become clearer if you study page 21 of the white Apple
reference manual. Notice lines 8182,8232, and 8272. You see, the
hi-res screen is mapped so that if you add 40 to all the addresses in the
top 1/3 of the screen the bytes will move down and become what's in
the middle 1/3 of the screen. The same for the other 2/3 of the screen
--- add or subtract 40 (dec.) from all addresses and you get a 64-line
shift down or up, respectively.

Remember that JSR $300 merely zeroes Y and jumps to the
65068 move routine.

Line 14-32 and 7-83 merely turn off the bytes in the lowest 1/3 of
the screen, which is what we require for Superfont. It's a can of worms
not worth dwelling on, but 'l mention line 62 gets a 39 (dec. is
signified by !) so byte columns 38-0 can all get zeroed. Line 70 gets a
1024 because most lines on the screen are 1024 (address #) away
from the lines above and below themselves. Line 78 gets 128 because
every 8th line is only 128 more than the line 8 lines above or below it
{except that every 84th line is merely 40 more than the lines 64 lines
from themselves). But why dwell on this nonsense?

Line 33-45 moves page 2 to page 1 once the bottom 1/3 of the
screen is erased.

Let’'s check out TEST 41, the source for R > 1-BT SCROLL
(TEST#41):

PRINTOUT #48

1 LDA 413
2 STA o0
5 CDH #1532
% STA 141
5 IpA &1
F4 STh 165
> [DA Big2
5 STR 1o
3 [pa 8171
15 STA fis
11 [CA #1e4
2 STA iap
i3 ISR io0@
14 ion #im
i5 =Ta | eome
1&g TEMP3 EPZ 3FE
{8 =3 Eall +1200
i3 Fol 1o
Sh EFz 37
51 TEMP1 Eol fizes
55 TEMPZ Eal $ioos

187

=3 LD #Ig
24 STH Fiz86
=% LD #258231
iy STH Fi882
27 LR #I9
=2 5T #1361
=9 LR 23231
=58 STH £i2363
31 FORLF LDH SC32
== CHP #1551
33 EDE SC3+%1
=24 SBC 2121
25 ELT FORLPO
35 JSR FFIFZ2
37 LA #I5
=8 STH E4a4
29 LDE BIgd
4@ 5TH 2ai
41 LDR #1255
4= ETH iI52
43 L #i25
g STH I£3
45 LDE #5G
45 STH E&n
47 LD #3727
48 STH iIsY
4G JEFE 388
55, RTS
=1 FORIFO CLC
52 LA SC3
53 AL #2122
=4 =18 TEMRP1
25 LDbH SC3+%1
anC ~82i28
=13 STH TEMPiI+F1
Se L0R SC3
5o ALC #i8231
&0 STA BL
&1 LBa SCoiFl
B REC ~¥3231
&2 STH BL+#F1
&4 FR2LP LOA BL
=5 CHPE TEMFPL
vy LA BL+E
A7 CEC TEMPI+F1
&5 BLT FRZLPO
&2 JHPE FRZXEIT
A FR2ZLPO CLE
71 LDE BL
= 5T LH
Pac] LA Bl +£1
74 CTe LH+$F1
= LA BL
T Bhs #EIF1E9
P =T TEMPZ
75 1 oA B +$1
79 AT SEFIAD
28 _ STH TEMPZ+#1
21 FRILP LDE LH
8 CHPE TEMPZ
=53 PR LH+$1

188

o4 SBC TEMP2+31
o5 BLT FRILPO
35 _ JFP FR3¥IT
27 FR3LPO CLLC

on (DY #18

23 Lba LH

i ADC #I2153
=51 STA TEMP2
a2 Lpa LH+$1
93 ApC S15153
54 STA TEMP33$1
g5 DA (LH>.Y
3 STA < TEMP23.Y
a7 Tic

ag LDHA LH

35 ADC #!1@24
188 STA LH

131 LDE LH+$1
{82 ADC - 1654
i@3 STA LH+$1
iad IMP FRILP
{85 FR3XIT CLC

i85 LDA BL

ia7 ADC #1289
162 STA BL

iga LDA BL+¥$1
116 abC <FiZ
111 <Th BL+%1
112 IMP FRELP
113 FREXIT CLC _

114 LOA SC3
115 ADC BidE
118 =78 SC=
117 LoAa S5C3+%1
1ig AhC <14l
1is STA SC2+%1
= THP FORLP
i51 BRI

152 BRE

123 EHD

From lines 1-13 we move page 1 to page 2 plus 1, which moves
everything right 7 dots (one byte) and lines 37-49 put page 2 back in
page 1, but only after page one gets erased, with JSR $F3F2, which is
like CALL62450. This program has wrap-around.

The rest of the program merely goes through a can of worms get-
ting page one’s last bytes and bringing them up to page 2's zero byte
column so that wrap-around is effected.

Now let's see TEST #4383, which is the source for LNW < 1-BT
SCROLL (TEST#43):

PRINTQUT 248

I 1 LDR #i@
2 STA La@
3 LDA #1237
g STA 14l
5 LDA #i254
& STH 162
7 LOA #1563

189

8 STR 162
3 oA #1255
16 GRS
11 fpA #1563
12 STA 167
13 JSR iZ0m
14 LDA %2FFF
15 STR $5FFE
iZ TEMP2 EPZ £
i7 CLD
i2 5C3 Eqll 1963
19 BL EQU 152
28 LH EPZ 37
51 TEMP1 Eol 31205
25 TEMPZ EDU $iS63
23 Lpa #'o
24 T8 $ioee
5 Lpa Bigize
28 STH #1962
=] GEH:
8 STA %1891
29 [pa ~igigs
36 STH $1863
21 FORLP LDA SC=
25 CHP Bio1
23 D SCRvél
24 SBC -i51
35 BLT FORLPD
35 JSR $F3Fs .
37 LbA 818
35 SGRE- T
= oA #1664
et STA 61
41 [oA #1255
45 SGREE
3 Cpa #1595
44 STH 163
45 Loa #516
4% STA 65
47 [bR #i22
48 STA 5567
49 JSR $368
58 BTS
£1 FORLPO CLC
E5 LGA SC3
53 ADC EI9G93
=4 STA TEMPI
g5 (D SCat$l
S& ADC {og25
E7 STA TEMPI+$1
£5 (oA SC3
59 ADC BIB192
& STR BL
&1 DA SC3+%1
&2 AbC 18198
53 STA BL+%$1
&4 FRELP [DA BL
&5 CHP TERPL
&5 La L+l
&7 SBC TEWPI+$1
&5 BLT FReLFO
£9 JHP FREXIT

190

78 FRELFO CL
rid LA BL
Fi- STh LH
73 [DR BL+51
Fd STR LH+#1

I P
STH TEMP2+#1
FRILP LDE LH
CHMPE TEMPZ
oH LM+F]1
SBC TEMPZ+E1
BLT FRIL PO
JMP FR3XIT
FrR3ILPO CLLC
LDY #I@
LEH LH
aps #0231
STH TEHMP3
LA 1 H+§]
AbC <Igpai
STH TEMP3I+$F1
S

STA ¢ TEMP2 3, Y

S TS 0w wiad w1 RS TR VRSt on Y a T ul TeA T
r
bt
T

o
FRIXIT CLLC

Do TnTicr i fun o [T DYRTY YRRV S TN IS E T wuunTenTun I nIadEunlux AN T AN ke IV N At

D QG B D e CENCEY S T L G P Y e
-~
2
D
-
s
&
"
farte

JH
FR2ZXIT CLC

ot st o s st i s e s o o s s (o e ok ot o s o e o

FUITIIFID 1 b s ot o s s s st (551150
PETa S eded T el y B Pu T B A T W B

-

e

Wy

Line 1-15 puts page 1 into page 2 minus one byte, which shifts
everything left.

Line 36-49 erases page 1 and puts page 2 back in page 1. This
program has no wrap-around.

191

The rest of the program zeroes the goofy wrap-around that has oc-
cured, turning ail such bytes to zero since they're 64 lines toc high.
See earlier scroll-program discussions.

Now let's see TEST #39, which is the source for N 8-LN
SCROLL (TEST#SQ):Y

192

r

ot s B B B o L L L Lo A Y G LA LA PP PLIF LI TUI P PRI PP bt bt ot b o ot ot ot
et [T Mgy Ty} Ui iny]

W]

LA
L f U B0

o DDA (B S |R R S (YTow RN T AT BTN Ty Tl s Yo T AN Ty T REXVE TRV

Fr e DO T LI DI =R)

PRINTOUT #50
LD

i

LH
LHPL

LP1

Mz

*mm
::
(]
w

s& [Tynm

(Ll VI

u.\éam

N

¥ them Ty e e Tyam Ty

L)
5
LY

zum:z::nm
ot ot
oo
[TW I VY
(L Y
5

GO S TR ™, f’%ﬁﬁ%m%“#mﬁﬁ“%“
LIS

bz
)

WO
M

BEZ

A1a54
LHPL +%1
ELH3.Y
CCHPL 3. Y

[
CEH>.Y
CLHPL > Y

CHMP #I23235685
Lo [M+g]
SBC L 235685

S
JHFP B4LP3
H=3 LY #2379

LDE LH
BDC #EISo4

M DA CLN3.¥
STH (LHPL .Y
[hA %I@

BaLP3 [D¥ #2392

=18
H=S LA CLH3.Y

ALC SEoiadn
STH LHPL+%1

RN TS 3 B T ok g Tt D 1 RN M S Tyt DTV RN T N T TN To RN o NN TR TS 1Y s BN o L AV B BT TR Tl F Y

»H»wwmumm@@mmmmmmmwmgmwwmwmmmﬁmmmmmuwuwwwmwﬂwmmmmmmmmmmmmmwmm

e b i o s bt o e ety s e s fch

193

-

&
o
r
&2
X
Y
L

™~
e
Tl
[
b
L]
u"

"

L]

Z
DHM
&

il

|
Sy i o
[e 5w T amn e
L@

s B
P 0
o 4 T

LA

[';l LWL
l",,i)
-

z
iy
=]
a3}
o 4
i~
-'ﬂ.‘%
o Bh
¢ M
W]

i
WP s (TS
[| N

oA 0]
!

CH

TSI Do R T T S TV Tt YL Rt O B (TS Ty Tv LN To TR
3
r
-

=

el

e
Hyne s emBkim e g m g,
T A T ar
&= PG
LI b

ot b o s s s s o [t e s e s e s i o s s o [s i o s o
L
najel
Al
kD

%4:J;M;a?t-Gf:a&wtugr.aL'...:u'.cur.m'.-::wwr.-;arummmmmmmmmwwwww

Lines 8 apart are 128 off, address-wise, so line 1-13 puts page 1
into page 2, only all bytes are made to be 128 less than they were,
which moves them up 8 lines.

Line 131-142 moves page 2 to page 1.

The rest of the program gets a juggling problem. See the picture
below:

A A4 A A A 4L Al AL
PE22222222
233233883

e T e s T T S A
SEEES5555S
BEEEEEBEEE

e g g g g A 0 i i A R i
EEBE888888888
888888g8888sg

194

Notice that adding 128 to the 8 lines from 9088 to 3088+7168
and from 9128 to 912847168 does an unwanted juggling act. This
program is a bit long because it's unjuggling. Notice the tops of the
ones are in the broken fours and the tops of the fours are in the
demolished sevens and the rest of the sevens are where a black
screen ought to be. (This picture is of page 2 after that first move hap-
pened; | hope you see that all numbers were in perfect shape in page
1, and the picture illustrates the move’s effects.)

Now we'll see how a table look-up scroli, 1 line upwards, would be.
Here’s UPSCRL and this is the source for UPSCRL1:

PRINTOUT #52
L
1 Lbf 627 Py 419
2 STH &7 % £Th (826,17
3 (4 #0 2 0 %
i <TA 44 B 6L 47
g 10g #1E 1 {f &
£ SR 4T B 0 4T
7 SR 4T B BE LIP
3 (5 &5 % [0 &7
g °T4 45 S oTA §7
18 0% 408 % (A %
il STR 41 £ BED FTH
U DY % B IEC %
i3 (g {35B3,¥ 5 Wi
{ £T8 2% M A HE
15 ig (5m,Y 4 STA 427
15 ST £7 2 [oY 27
17 i 37 i3 (A §6
1 108 (526),¢ 44 L00PR STA (32637
i3 5T $19 5 by
% o % % £ 81T
2 0735 & BE L0
i} LA 735).¥) A
il ST 6 4 574
% (08 C(4D3,¥ B . B
5 STH 427 | B
5% oy 37

You'll find this program on 28D. Make sure POKES 103,1 and
104,64 and 16384,0 are in before RUNning the BASIC driver program
for UPSCRL1, called SCROLL UP. You'll have to stop after a few
seconds and load in disk 28C, as SCROLL UP needs to BLOAD
YTABLE, the “look-up” program (more on YTABLE later in the manual):

Line 1-4 puts 39 in $7, the hor. byte holder; and 190 in $6, the
vert. coord. # holder. We're starting at the lower right-hand corner.

Line 5-11 loads the YTABLE addresses into the proper addresses.
$EB, $EC hold low/hi for the low byte of YTABLE's vert. addresses
---this table section is at address $1EQ0 and gets indexed with
displacements up tc 191, which takes it up to $1EBF. $ED, $EF hoid
lo/hi for the high byte of YTABLE’s vert. addresses --- this table section
is at address $1ECO and is indexed similarly so it extends 191
displacements up to $1F7F.

185

Line 12-14 puts 190 into Y and finds the address of the vert. low
byte of line 190 and puts it in $286.

Line 15-16 does the same for the high byte of the address of line
180 --- finds it in the table and puts it in $27.

Line 17-19 puts 39 in Y, the hor. byte indexer (temporarily), and
then loads the screen byte (from the 39th and last byte of line 190) into
$19.

Line 28-25 here you'll see why we didn't start at line 191, the bot-
tom line; we increment $6 from 190 to 121 and get the table address
of that line and put it in $28, $27 (lo/hi). We'll be moving line 190 bytes
onio line 181 bytes. If we wanted any wrap-around we'd store the line
191 bytes first and load them at the top at the end of the subroutine
rather than loading @’s, in lines 40-48.

Line 26-28 iocads line 190's last byte onto line 191’s last byte,
thereby replacing it.

Line 29 decrements vert. coord. holder back to 190.

Line 30-33 moves indexer one byte left to byte #38, and then sees
if our last byte was #0; if it was, then the decrementing at line 30 will
have turned $7 into $FF, two's complement for -1. If the last byte hit
the screen’s left edge, we go on to line 34, otherwise we continue
moving bytes down by going back to line 12.

Line 34-35 if a line is all moved we put 39 back into our indexer
holder.

Line 36-39 we check here to see if we're at line 0 --- if we're not we
go to line 38-39 and move up a line and loop back to line 12 again.

Line 48-43 here we put $20 into our high byte of our vert. address
holder, putting us at line 0, since our low byte will already have reached
0 (see page 21 of the reference manual again). Then we put 39 into
the Y indexer ($7 is unneeded now) and @ into the accumulator --- we'll
be turning bytes to black.

Line 44-48 we stick 0 in the right-most byte and then decrement
the index register, see if our last displacement was 0, and continue
zei. 7 bytes until completed.

Notice how the entire screen stretches a bit, not in height, but in
size of any smaller part, as ripples of byte moving wash up the screen
--- it almost looks like water! To avoid this use screen flipping --- see
other chapters.

Notice also that if all that was on the screen was an 1/8-screen
block-shape, the algorithms in 5 or 2 of 28B will move the block-shape
as if it were scrolling, without need to scroll the entire screen.

196

FROM APPLESOFT

MAKING AN INTEGER MACHINE
LANGURGE PROGRAM WORK RIGHT

What is meant by an “integer machine language program’? It's one
that will run in Integer BASIC but not Applesoft.

Why won’t machine language programs work in conjunction with
either language? Many will work fine --- but others goof. Why? Because
the zero page addresses used will be in harmony with Integer Basic but
not Applesoft. See page 74-75 of your white reference manual. Here
is a list of pretty decent zero page addresses to use when the driver
program for a machine language routine is in Applesoft (all are in hex):
($)6,7,8,9,19, 1A, 1B, 1D, 1E, 1F, CE, CF, D7, E3, EB, EC, ED,
EE, EF, FA, FB, FC, FD, FE, FF, and sometimes the last few $D0 line
ones, DC-DF.

If you've a problem with a mach. lang. program, look at the zero
page address usage. If you see LDA $1, STA $5, or other no-no’s,
then you might substitute from the above “O.K. list”. Make real sure
you change all $1’s to $6’s or you'll really goof. Also make sure that if
bytes have been used sequentially for a reason that you do the same. If
someone is using index displacements within page 0, you'll need to
move things from $0-$5 up to $FA-$FF. If longer indexing is used,
you'll have to use addresses such as $300-$3CF (don’t use $3D0 on
up!).

Notice that {$26), Y actually addresses both $26(lo) and $27(hi)
so consecutive usage of such zero page address utilization is quite
essential.

The above advice will cure most Integer/Applesoft clashes in
machine lang. addresses.

197

SOUNDS, NOISES, VIOLINS,
SONGS, ETC.

24R. TONE ROUTINES/SONGS

* Run 28C, program 3 --- Tone Routine. After hearing the Close En-
counters Theme, reset and list the program on your monitor. GOSUB
61000 loads the tone routine. After that, all you need do is give
D, (duration) of 1-255 and P (pitch) of 1-255 and then GOSUB 60000
and your notes will be played as you want them to be. Line 60000
merely POKES your duration and pitch values into the routine, for use.
A more memory-thrifty way to do a tune is with data statements:

400 for Q=1 to 5:READ D,P: GOSUB 60000:
NEXT

S5Q0DATA 140, 114, 140, 102,140, 128, 140, 255, 255, 172

vvnat is a tone routine about? Here:

PRINTOUT #53

8205 g0 28 .o LA FCE3E
A2E5— 23 LEY _
g285— D& 85 BNE TR0
B2An—~ CE &1 @2 BEC Fa20]1
B3FE— Fa @2 BEQ @315
G200~ R EX

8268E - DE Fo : EHE FRZAS
g316— HE 88 83 L0 FA3EE
B213~ 4C G- 82 JHP £83652
E3is— &3 BTS

Addressing the speaker address ($C030) toggles the speaker.
The pitch, P, is POKED into $300 and the duration, D, is POKED into
$301. in $308-%$30C the duration # gets decremented and the routine
RTS’s if we've reached @, so you can see why a small # here will geta
quick note. In $30D-$30F the pitch # gets decremented and at
$310-3315 it gets loaded back in and you get sent back to the
speaker toggling, so if this # is small, the speaker will get toggled often
and you'll get a high note --- a larger # will get a lower note, since pitch
depends on frequency and frequency of speaker toggling depends
upon how often X is brought down from pitch # to 0.

248. SOUND/NOISE GENERATING
ROUTINES

Okay, RE-BOOT the disk 28D and reset RUN AMPERSOUND after
the disk stops spinning. Then go through and look at the way sounds
are done. The variables in the FOR-NEXT loops tend to relate to the

198

Ampersand variables. In line 20 we're looping with | and K, and TK and
Tt are the Ampersand variables. That's important --- sounds will be quite
different if you don’t follow this format for at least parts of loops or
some loops.

There isn't space to go into all the Ampersand potentials here. |
suggest Volume 1 of the Nibble Express, pgs. 123-134, or Nibble,
Volume 2, No. 4, pgs. 25-27, if you like this Ampersand stuff. (Or try
pgs. 26-30 of Jan. 1981, CALL APPLE.)

In brief, Ampersands jump you to $3F5 (when Applesoft finds one
in a BASIC program). Here you put a JMP command, perhaps to start at
$300 running a2 mach. lang. routine. POKE1013,76:POKE1014,
0:POKE1015,3 will do this JMP $300 insertion at the $3F5 Amper-
sand address. The characters after an Ampersand are interpreted by
the routine in $300+ and various mach. lang. routines may be jumped
to as a result.

A mach. lang. program, BLOADed at $300 with a length of $42,
and called AMPERNOISE will be loaded into memory to supply the
Amper-interpreting routine.

Another sound routine is called NOISES, and is found at A
5625,L114.

Run 2 of 28C and let the disk spin until it finally gives an input that
stays forever. Now type GOSUB1 and RETURN. Go from 1 to 41. Allit
took to get these GOSUBS io where they function is to BLOAD
NOISES. Lines 6@-66 must be in the program. The variables in these
lines are LE for length, Fi for filter, DE for change, P! for pitch. You may
change them to your heart's content to create new sounds of your
own.

The gosubs from 1 to 21 are noise routines, using gosubs
60,64,66 --- and gosubs 22-41 are tone routines and use gosub 62.
The noise routines use a different part of the NOISES file than the tone
routines. The noise routines don’t have pitches (P), they use filter (Fl)
--- the filtered sounds are white noises, not tones.

it's easy to make the sounds of a steam locomotive by gosubing a
long hiss and then using the short hisses with smaller and smaller delay
loops and then once the “train” is at full steam, at about 6 hisses per
second, keep the delays constant.

If you find a sound that’s right for you but is too long or short, mere-
ly vary the LE (length).

24C. VIOLIN SOUNDS/SONGS

Run 2 of 28C until you get to the part where the violin song occurs.
The song was made possible by 3 things:

1) line 41000 read the DATA statements containing the pitches
and durations for the song; I=pitch and A=duration.

2) line 42 calculated the correct values to POKE into addresses
to be used by VIOLIN, and it did the POKING.

3) VIOLIN was BLOADed into memory at A7424,L66.

This is all you need to make violin tunes. Pitiches from 200-2586
sound best. The effect used in the sample game was to play a note,

199

and then using the same duration, cut the pitch in half and play it again
--- that's where the I/2 came in, in line 41000. A musical methodology
you might try is to keep the duration (A) at 1 and perform mathematical
tricks to get arpeggios, which are chords played one note at a time, up
the scale. Here’s a chart to help you with vour creations:

PRINTOUT #54
PITCH TABLE (tones) DURATION (#ones)
G=255 G'=128 LEWY: whole note = 240
Ab=243 Ab'=121 Ab"=60 . hall note = 7120
A=231 A'=114 A"=56 quanten = 60
Bb=217 Bb*=108 Bb"=53 eighth = 30
B=203 B'=102 B"=50 sixteenth = 15
£=192. C*'=96 c*=47 32nd =8
C#=182 C#'=90 C$"=45 Glth =4
D=172 D'=85 pU=42 . 128th =2
Eb=162 Eb'=80 Eb"=40 B
E=154 E'=76 En=37 RESTS (tones)
F=146 F'=72 u=35 .
F#=137 F§'=67 F§"=33 the fonmula Lse:
{Line#) for J =
G“'=31’ Gllll=15 1 ’to 5w; neJCt
AL#1=20 AbW=14 whole nest = 500
A"'=;8 Aun=13 hall rest = 250
, . -
Bo®1=26 BbM*=12 guaeer = 25
na_ - -
By sixteenth = 31
C#II_I=22 - 32nd = 16
P _ 641h =8
Ephie20 - 1282 =4
Eni=18 Eun=q9
Fus=q7 Fur=4Q
F#9i=146 F#ur=9
VIOLIN PITCH (lowest note = *) (1=}
F#*=256 F#°=129 Flu=63 F#n1=319 FHu=15
6=245 §'=122 6"=59 G*5=29 6""=14
Ab=233 Ab'=116 Ab"=54 Ab" =27 Ab""=13
A=219 A'=110 A"=53 A%I=25 -
Bb=206 Bb®=103 Bb"=50 Bb* =29 -
B=194 B'=96 . :B"=47 B¥ =23 -
C=182 C'=90 w=45 Crr=22 -
CH#=172 Ci#'=85 C#"=42 c#ee=20 -
D=162 B¢=81 D"=40 n*t=19 -
Eb=153 Ebt=76 Eb®*=37 Eb®i=18 -
E=144 Ef=71 E*=35 E"t=17 -
F=136 Ft=67 w=33 Frit=14 -

VIOLIN'DURATIONS (A=) whele=40; half=18;
quarter=8; sixth=4; eighth=2; tweluth=1

200

Notice that if you divide a pitch in half, the result is a note an octave
higher with the same name --- this 8th, as you might call it, sounds
pleasing, and it's what I/2 created.

Also notice that only one note can be played at one time without
either using a speaker attached to the cassette output or more hard-
ware.

Now, the chart shows tone routine values (the top 60% of the
chart) and violin values. Notice that the durations of notes and rests
change in a linear fashion for the tone routine (the one from Chapter
24A) but the violin durations have a rather more logrithmic relationship.

If you don’t understand music (| am also a musician} you may have
trouble writing songs and figuring out notes --- but don’'t worry: almost
everyone has musically-inclined friends who will at least show you how
to figure out what note is what on sheet music, so you can find the
notes’ corresponding pitch values on my charts. The notes were
figured according to how the pitches they create correspond to my
guitar --- an easy method.

Well, this manual isn’t about music so I'll let enough be enough and
go on --- but | may as well give a couple of hints about arpeggios first.

Playing a 1st, 3rd, 5th, and 8th makes a chord if simultaneous and
a rudimentary arpeggio if sequential. Notice in the tone routine pitch
table that G is 255, Bis 203, Dis 172, and G’ (the ’ is read “prime”
and means an octave higher) is 128. The G’s are a 2/1 ration, but what
about the 3rd (B) and 5th (D)?

if you used § values of I, (1*.798), (I*.6745), (1*.5), vou'd get your
chord/arpeggio. A 4th, in case you know what that is, is (I*.75). lf each
successive duration was multiplied by .75 you'd get an arpeggio of
4ths, which would sound like something from the Blood, Sweat, and
Tears band. i=(1*.75) and then I=(1*.75) again --- etc.

24D. MUSIC
CWRITE:RECORD:PLAY)

In this program, 1 of 28C, you'll get to write music, play it back,
record songs for posterity, or drive your pet hound crazy as a looney
bird. You'll see your notes correctly named and positioned on clefs on
the screen. All the instructions you'll need will be on the card that
comes with this manual and/or in the program itself. Flow charts are
available, and included in the Creativity Life Dynamic manual, which
comes in our Creativity Tool Box --- whatever.

Try saying yes when asked if you'd like to hear a stored tune. Yes,
old Fudgie made that one up --- no applause --- just throw RAM chips.

Tunes are stored in text files - to store more than one use
separate disks. The sounds you hear are from the general tone routine.
All you do is play the keyboard like a pianc to get notes --- “black’ keys
are included. You might wish to list the program and see how it's done.
Notice that since things like commas don't store very nicely into text
files, all notes were converted into ASCI value numbers before the text
file was written.

Also notice that several notes have been set aside as duration
choosing keys. These notes are in positions where there would not be
any keys on a piano configuration.

201

24E. WORDS --- SPEECH

As this is written there are probably 2 dozen voice/speech
packages under development. It was intriguing when AppletalkerTM and
Apple Listener™ came out (by Bob Bishop and Bill Depew and put out
of SOFTAPE), but the amount of memory required per word was enor-
mous --- 20 words per disk seemed a bit uneconomical! But someone
had to be 1st and the programs are good deals for the price.

In Appletalker™ voice is accepted through the casette input part of
the Apple. it digitizes and stores the information in tables, which can be
played back later.

Another package like Appletalker is The Voice, by Muse Software,
which doesn’t seem to be much improvement over Appletalker --- it just
costs more.

Finally, there’s ECHO I, which includes speaker, card, and soft-
ware. The firmware card includes an upgraded version of the Texas In-
struments TMS 5200 speech synthesizer chip. This chip reconstructs
human speech when supplied with the basic human speech phonemes.
You get lots better sound and lots more words, and a more dynamic
word/phrase composition methodology. The weakness here is that it
costs more and you need hardware, so you won't write programs that
share your “heavy sounds” with the worid.

24F. OUR FAVORITE SOUNDS

Each of the foliowing are individually assembled mach. lang. sound
routines that will be found on 28C:

1) Helicopter(Call5548,A$15AC,L$4C

2) Bombdrop(Call3091),A$C13,L$31

3} UFO Take-off(Cali4307),A$10D3,L$BO

4) Bounce2(Call4993),A$1381,LSAS

5) Muiltiple Laser(Call2230),A$8B6,L$2C

8) Dive Strafing(Cali5334),A%$14D6,L.$89

7) Outer Space2(CALL5159),A$1427 LSAE

8) Explosion(CALL 5472),A$1560,L$4B

8) Foghorn(CALL 2571),A$A0B,L$78

To hear them, simply type BRUN and then type the title including
the parentheses and CALLS.

To save them onto your own disks type BSAVE and then all the in-
fo given above for each program.

To use them in your programs, BLOAD them in deferred mode ear-
ly in your program and simply CALL the # in parentheses later. Make
sure your program and sound routines don't reside in the same parts of
memory. POKE103,1:POKE104,64:POKE16384,0 will keep them
apart --- it must be done in your Hello or Menu program, not in the ac-
tual game.

Let’s look at a sample sound source code. This one, MULTIPLE
LASER!, is available on our Action Sounds and Hi-Res Scrolling disk,
and creates the binary file MULTIPLE LASER(CALL2230):

202

PRINTOUT #55

it
t I pEp 28 U T
2 ¥R 1P G K
3 12 pep i Mo
Lppp 105 518 EEE UL
5 T8 4T i BED PRR
g {4 1255 7 T 47
7 oTA $FE i3 P
ien (08B 9 BR BT
WFF L 1 i 27
i T 5 2 FD

Line 1-3 make the entire routine happen 3 times before the 4th and
final time.

Line 4-5 put a @ into $FF.

Line 6-7 put 255 into $FE.

Line 8-11 toggle the speaker a few times.

Line 12-14 decrement X, which is @ now, all the way down to 0
again (256 loops). Remember that 0 decremented gives $FF, which is
255, or if you'd like to think in terms of two’s complement, -1.

Line 15-18 decrement 1FE, the counter address that will see to it
that 255 loops from AAA to line 18 are completed.

Line 17 is the real key to the algorithm. X got decremented down to
0 after being loaded with @ above and decremented back to @, but $FF
was never affected. Here we change $FF from @ to 1. This will mean
that the next X decrementation will be over without looping at all. So a
very high tone with few instructions between speaker toggles will
result. But not for long: each time line 17 is used, the value in $FF in-
creases, and the X decrementation loop gets longer and longer. So the
sound quickly goes from a high tone to a low one --- the stereotype of
“laser fire” in many games or movies.

Line 18-19 keeps you looping back to AAA until $FE reaches 0@
---then line 16 sends us to RTS in line 18.

For customizing, the various ways you might change this routine is
to change the #s stored in lines 4 and 6, add or subtract more JSR PPP
from the start of the program, add more delay loops between lines 11
and 12, using the Y register, or getting fancy and starting out this entire
routine with a BASIC GOSUB4 (make sure NOISES is BLOADed and
line 4 (from SAMPLE GAME) and line 60-66 are around) just before
you CALL 2230 which activates the MULTIPLE LASER routine. | won't
tell you what will happen. See for yourself.

203

MEMORY ORGANIZATION

The career of every beginning programmer is punctuated profusely
with episodes of hair-pulling with respects to memory organization
chacs. Programs bump into mach. lang. programs, variables and
shapes tangle up, string storage or arrays eat up routines, routines
bomb programs due to zero page or DOS conflicts, and hi-res pictures
and animations get “totally unexplainable” white lines appearing in
them.

“It must be a power surge”, “bad chip”, “a bug in DOS”, and other
such nonsense is offered in explanation, but in our heart of hearts
we know that we've simply not yet figured out how all the things we do
interact with each other.

There are 256 pages of memory in an Apple Il Plus with 48K, and
each page has 256 distinct memory locations. This means there are
256*256=65,536 bytes that can be referenced --- $0000 to $FFFF.
“Page 27" starts at $2700 and ends at $27FF.

The locations from @ to $BFFF are the 48K RAM (49,152 bytes).
From $CO00 to $CFFF are input/output locations such as keyboard,
game paddies, etc. From $DOOO to $FFFF is normal ROM, in which
Applesoft and monitor locations are found. The monitor goes from
$F800 to $FFFF. See Chapter 4 in your white reference manual.

Your zero page is used by the monitor, by Applesoft, and by DOS.
There are still about 25 locations free for user mach. lang. programs,
however. This is fortunate, because good fast mach. lang. programs
NEED zero page adddresses!

Page 1 is the “stack”.

Page 2 is the GETLN subroutine, used for getting INPUT lines.

Page 3 is free to the user, except for $3D0 to $3FF, which get
special jump instructions.

Page 4-7 are the 4 text and/or lo-res graphics pages. Also
peripheral firmware cards get 64 locations for temporary data storage
in this range of memory.

Page 8-11 are secondary text and lo-res graphics pages, not often
used or needed. Page 8-11 are free to the user, if the secondary page
is "t desired.

Page 12-31 {($6C-$1F) is free RAM.

Page 32-63 ($20-$3F) is free RAM unless you are using hi-res
page 1 (HGR).

Page 64-95 ($40-$5F) is free unless you are using hi-res page 2
{(HGR2).

Page 96-191 ($60-$BF) is free RAM, the top locations of which will
often be used for Applesoft string storage, unless HIMEM has been
reset.

204

| 25

Perhaps you can see that in most hi-res programs using only 1
screen (page one), it makes sense to POKE1@3,
1:POKE104,64:POKE16384,0 in Hello so your program will start at
$4000 and have clear memory all the way to $9600. If you're using
2-page flipping animation, POKE 103, 1:POKE104,96:POKE24576,0
in Hello so you'll start your program (that gets loaded in after Hello) at
$6000. There are exceptions to this memory. usage, of course, but
these generalities will set you up right for 90% of hi-res using pro-
grams.

You need to be aware that if vou don't change the start-of-program
pointers in decimal 103 and 104, you'll always get your programs load-
ed in at $800. To reset your pointers to this starting point,
POKE103,1:POKE10,8:POKE2048,0. You can still use the hi-res
screen when your program loads here, but you're asking for trouble
many times, since $800 to $1FFF is not much room, and variables and
arrays get stored right above your program and it's easy for these to
accumulate and begin eating graphics for breakfast. One way to
preciude serious garbage collections is to have X=FRE(0) in your pro-
gram in strategic locations.

Himem is something you need when you want to store tables or
routines or shapes safely in high memory. High memory goes up to
$9600 (unless you don't mind dumping DOS) and if you have shapes
or whatever from $9000 to $95FF vyour correct HIMEM is
HIMEM:36864, which is equal to $9000.

It's a good rule to keep Himem and tables and things as high in
memory as you can, so you don’t end up with an “out of memory” er-
ror.

Lomem is something to forget, in Applesoft, except in very unusual
circumstances, since it's automatically set anyway. It sets the address
to the end of the program where the variables normally begin. If you
wish to move it elsewhere make sure you know what you're doing. It's
the “start variables here” pointer.

These days 48K is almost a must, more is nice but less really limits
your Apple’s potential. ’

205

SCREEN FLIPPING | 26

bt 5t
A n

[N

Lt
i
o

Y]
d
o]

206

PRINTOUT #56
g REM FPREPARATION FOR AHIMATION

HER : POKE — 16382 .8:0 = A: HGRP
: REM :zIMNITIRLIZE éDTH PAGES
TO FULl SCREEH
HCOLOR= 3z EEN WHITE -
POEE 236 5d4:= POKE 16200, A:
REM QEHM BH S: DISPLAY i
HPLOT G.58 Tn .1%1: REM DRAW

LIHE OH 2
E 220,.32: POKE — 1FEQ955-
EEH Dﬁﬂu HH'I- DISFLAY
HPLOT o 0 @ + 1,191 REM

gggg i STEﬁ AN DRAW BPAGE 1
gEﬁ PREPARATION OVER: LOOF

POKE - 14300 ,06
A OH 23 DISPLAY 1
fichliR= @2 BEM ° BLACK FOP

- IHG
HE%QT 2.8 T @.191: REHM

HCOLOR= 3: REM WHITE B
@ =0 + 2: REM MOVE & STEPS.
OHE STER GETS YUl OFF FREASE
POSITION & DNTO OPPOSITE
PRGE ‘S DREPWN LIHE. ZHD STEFR
GETS ¥ou 10 HEYT CREWTHG
FOSITIOH
HPLOT G.@ 7O 2,.1%i: REM
DRAW LIHE O =
PORE 236 .92 POKE — 16
: FEM DRAW OH 1: DISPLAS
HCOLOR= G: REM = BLACK FOR
ERASTHG _
HPLOT @ — 1.8 T0 @ — 1.191: REM
ERASE OME BEHIND OPPOSITE
jE AHERD

TI
E

]
[4]
"l
Ie
o
_J B

fy
[¥¥}

e

=
PRGE 'S LIHE & DREAL O
0 ﬁrP“:ITE PAGE S LINE
HCOl OR= 3= REM WHITE
HFLOT 2 + 1.8 T0 2 + 1.191:=: REM
DPnM_ﬁME HHEHD OF OPPOSITE
PRGE " LI
IF 2 r_d?ﬁ THEHW EHD> = RENM
Dgg;gbbﬂ OFF THE EDGE OF THE
GOTR 2i1G: REH LooF BRck 2
CORTIME ERASE-TRA CYCOLES

(Hit Reset and RUN TWO-PAGE ANIMATION on 28D)

Here is a blow-by-blow account of a 2-page BASIC animation. It's
slow, and it's about as simple as 2-page flipping can get --- notice that
most of the lines are me blabbing a lot, with a little Applesauce throw in
to make something happen. The idea was to give a complete account
of every move so ambiguity would be nil.

Think of a line being drawn at @ (totally filling all Y coords. with that
"X coord. of 0) and then at 1 and then at 2 --- etc. You see the drawing
taking place, and the old lines would stay visible. So 2 things are
necessary if a moving line is to be shown:

1) lines must be erased once new ones have been drawn.

2) you must make erasing and drawing something that happens
out of sight, if you're going to create the illusion of one line moving
rather than a lot of lines being drawn and erased.

Number one above is accomplished by erasing old lines before
drawing new ones.

Number two is accomplished by switching hi-res pages so that all
drawing and erasing takes place on undisplayed pages only.

The sequence of action will be:

draw 0 on 2 but display 1 } preparation

draw 1 on 1 but display 2

erase @/draw 2 on 2 but display 1

erase 1/draw 3 on 1 but display 2

erase 2/draw 4 on 2 but display 1

erase 3/draw 5 on 1 but display 2

ad infinitum ---

207

S6D-POINT RESOLUTION

If the screen is 280 by 192, how can you plot 560 dots horizontal-
ly? We can't really plot half a dot, can we? What gives?

First off, convenient and easy 560-point resolution is not yet here.
There’s too much messing around to call it easy --- however I've a feel-
ing that 560-point resolution may be everywhere in the near future. But
if it isn't that's okay --- there are many applications that honestly require
no more than 280 (black and white) points.

The maximum color resolution is 140 pixels, with each pixel being
composed of a set of bits that can be 11,00,10 or 81, and the high bit
on can change the colors here by fooling the TV into thinking there’s
another couple of colors by changing the frequency.

What happens in 56@-point resolution is that we take advantage of
the fact that white 2, which is HCOLOR #7, plots 1/2 dot to the right of
where white 1, which is HCOLOR #3, would plot.

You see, whenever the high bit (the color bit) is on the dots in the
byte shift 1/2 dot right. If you have a violet dot in location $2010 and
the byte is a 1 now (000G0D1), and then you turn on the high bit by
POKE 8208,129, the result is a slight rightwards shift of the dot, and
on a color monitor we've gone from violet to blue. (8208 is $2010
because $2000 is 8192 and $10is 16 and 8192+16=8208. O bit
ONis 1 or $1 and 7 bit ON is 128 or $88. If color bit (7) and @ bit are
both ON then we have 1+128=129 or $1+$80=$81. To have only
the O bit on, as was the status at the beginning of this paragraph, we
need only to POKE8208,1 or CALL-151 and do a *2010:01).

We don't really notice half-dot shifting when we use hi-res screens,
whether black or color. The only time we really notice lack of resolution
is when very small shapes look funky or when diagonal lines are
HPLOTTED.

So how are we going to take advantage of this 1/2 dot shift when
the color bit is on? Well, in color work, we aren't, really --- our resolution
is still 14@, horizontal. But in B&W we can do something --- though it's a
bit of a hassle: (Hit Reset and RUN RES.560 on 28D)

PRINTOUT #57

@ GOTO i@

1 OH @ GOTO 3.4.5

2 HCQLOR= 2:7G0TO 5: REM 8§ WAS
o

3 HOOLOR= &: GOTD 2: REM @ WAS
4

4 HCOLOR= 1: GOTO 2: REM & WAS

5 HCOLOR= S: GOTO S: REM & WAS

208

27

& HPLOT MM ~ 2,¥X
5 GOTO S@
18 HGE 3 _HCOLOR= 3: HELOT 788 Tr

20 FOR ¥ = 8 TO 159

S RWE = PR — ¥ -~ BeivR o= Y

A HTz = BR% o 4@ = Wi - (4 % ¥

%a: GOTO 1

=8 HEXT

&8 REM _AHOTHER WAY:

TR OR = 19S:%¥ = 159 - 2@

BB FOR ¥ = @ TO 159 STER XX

20 HOOLOR= 4

163 HPLOT % + 1,¥y TO % + 1,¥ + ¢
¥ — 1>

118 HCOLOR= 7)

126 HPLOT ®,.Y TO X.¥ + (#¥ — 12

125 HCOLOR="3

133 LS —_ :_.':: —_ :(- <, e l‘l

i3a 0T %+ 1,y TO ¥ + 1,¥ + ¥

H
#z HEXT

Line 10 draws a 280 pt. res. crummy line.

Line 28-58 and 1-8 draws in 560 pt. res. and is Bob Bishop’s way.
Line 78-140 draws in 560 pt. res. and is R.H. Good’s way, as you Or-
chard readers may remember. {To do the opposite slant, change line
100 so you're adding 3 to X both times, not 1; and change line 130 so
you're incrementing X, not decrementing it, and change line 140 by
knocking off the two “+1"'s after the “X”s.)

Let's forget the Bishop method --- too slow and crude.

The Good method alternately plots the line segments of a diagonal
line in HCOLOR3 and HCOLOR7 which you know (by now) will shift the
white dots 1/2 dot over so that if HCOLOR3 drew a segment on the
vertical line column with the X ccord. of 102, then drawing the same
line in HCOLORY7 at X coord. 10 will draw it at 102 1/2, which may just
be an easier way to think of it than 205 out of 560 points. {(Incidentally,
the HCOLOR4 black line segments get the segments uniform and
clean --- that's what lines 90-100 are doing there.)

There are times when this degree of resolution would be ap-
propriate. But don’t worry about it for most applications.

208

On disks 28C and 28D there are many programs you may wish to
list out. The disks are not protected so you may do so. The binary files
and their source codes for the animation routines of disks 28A and 28B
are all found on 28C.

Programs on 28A and 28B are listable even though protected! Use
programs E and F of 28B to list out anything in Applesoft on disks 28A
and 28B. EXECing and such was used to make the programs listable
but still protected. | won't go into the details because this is a graphics
package basically. ’

210

There are reasons why people design algorithms that fill in all
bounded spaces completely, and there are reasons why people design
algorithms that fill in (completely the first time):; shapes like circles,
squares, ellipses, rectangles, and some triangles and irregular shapes,
but need 2 or more fill-initiations for certain types of irregular shapes or
spaces.

An Edu-Paint has in mind the instantaneous (almost) filling of any
space, even if already colored. It's very applications-minded and it exe-
cutes beautifully.

However, it isn't as fast as my Palette program because it can do
so much. My color-filler fills only black spaces (black 1 or 2) and it
stops when it's found either its first all-ones byte or its first “no room for
color’ byte either directly above or below the original starting place.
Non-0 bytes to either side of the seed-byte don’t stop it.

Because | ask less of Palette, it's much speedier. I'm told that On-
Line Adventures (this isn't confirmed, but it is logical) use a Palette-like
program to fill their multitudinous hi-res drawings with color. Many
shapes fill completely, while others need several strategic points within
the shape to be “seeded,” which means you JSR to or CALL the fill
routine beginning at given coords.

When ! decided which type of algorithm to go for | had to choose
between speed and completeness. | chose speed for these reasons:

1) the algorithm would be much simpler to explain, and this is a
learning package above all, and I've no desire tc get so complex | lose
everyone except the experts.

2) | felt people would appreciate being able to use the algorithm to
do the very quick picture-coloring that On-Line and others are doing (|
believe they may be using their new compiler to speed up these pro-
grams). In fact, P've got fellows writing adventures for Avant-Garde
Creations right now (August, 1981) who need such an algorithm, and
speed would be much more appropriate than completeness. | intend to
give this FILL1 algorithm {(on 28D) to all who buy this package, so that
the block-shapes and hplot-shapes they create (or the vector shapes
they've already created with packages likes SUPER SHAPE DRAW
AND ANIMATE) can be quickly and easily colored. You'll be amazed
how much fun it is to color and paint with the Palette program!

3) it would take up a lot less room in memory

4) it would take less time to develop

Let's look at the differences between Edu-Paint and Palette. Edu-
Paint thinks in terms of 2-bit color pixels, 140 per line. It goes along
memorizing addresses of irregular bytes above and/or below its pre-
sent address and it pushes them on the stack. Every 3 1/2 pixels it has

211

to deal with both the last bit of one byte and the first bit of the next byte
{m talking visible bits). Once it's done a line, if it's found holes to climb
through or shape nodules to go fill, it gets the starting addresses of
these from the stack and goes there. In the nodule may be other
nodules or off-shoots, so it may collect up lots of addresses.

As you can imagine, there's a lot involved in reading the status of all
the bytes around you as you go along filling. Things can get complex.
As a matter of fact, just the simple algorithm FILL1 that doesn’t store
addresses and fill everything required a flow-chart; the first time l've
every actually needed a flow-chart in assembling. The source was 405
lines long and took only 5 days to figure out and perfect and assemble
{Fudgie’s 5-day Figure-Filling Fantasticon), and yet it would have taken
twice that with no flow chart and up to 5 times that (?) to go for the
“complete” method. | say this to encourage all of you who have heard
“he took 6 months to do so and so and 2 years to do so and so” about
Assembly. | too heard that stuff. There are programs that require such
fime requirements, | suppose, but in general all the rumors are pure
unadulterated you know what --- these rumors are spread to scare peo-
ple away so that certain people corner the market. My only advice
about this is simple: don’t buy it --- | didn’t --- such beliefs are merely
hindrances and creative barriers. Find out for yourself “how long
things take.”

The added dynamic of filling even over colored areas added to the
complexity of Edu-Paint considerably, that's for sure. How do you
decide if you're at a shape boundary if all the bytes vou've just been
traversing were already full of on and off bits rather than all off? | guess
you “fix” the shapes (before they get colored) by making the lines
double-thick (my WHITELINE1 program which runs from option 18 in
Palette, which is 4 on 28D) and then hunt for 2 bits on in a row {(not
counting the color bit). At least, that's how a Fudge would do it. How
would you?

Okay, we're going to go through FILL (the source for FILL1) very
carefully, but first let’'s make sure we understand color filling with my
FILL1 program. We've already run through it in Chapter 17, but now
let's go through the Color Fill Demo, 9 of 28D, so that we can see how
fun, fascinating, and easy it is to do On-Line type color filling (you may
take that as a compliment, On-Line, your pioneering in the hi-res col-
ored picture area was good for the Apple software industry). So
choose 9 on 28D from the MENU and when you've run it and it says
“THAT'S ALL FOLKS!”, hit Reset and POKE-16304,0 and
POKE-16297,0 and look at the picture:

212

PRINTOUT #58

Z

Now list the program out. You'll see that TEST O (CALL2048) was
needed to draw the Hplot-shape, and T2 was the hplot-shape table that
was therefore loaded, and FILL1 is the filler program that was loaded
and WHITELINE1 was the optional line fixer program --- did you notice
the lines getting fixed? If not do it over. (Reset and RUN).

In line 60 is green getting put into the color byte addresses. See
the HCOLOR chapter if this isn’t clear. In line 45 we put the hplot
shape # into $7, the shape # holder.

in line 10681010 we read the “seeding” coords. (at which the fill is
to start) and then the color bytes’ #’s. Then we GOSUB 850 for each
seeding desired and do the filling. Notice that {'ve marked off the
seeding points (with dots) on the T2 picture. They show that the
seeding was done wrong inside the shape (outside the shape it was
done okay). Here are the required line changes to make the seeding
happen right:

213

PRINTQUT #59

SBEE DATA 45.49,42,85.42:85,2
64117, 42 as 4?,- 57,11
.gﬂ_; ,4 9% &la r{,_; =
43 85 .4 43 A n§ 45T @5

f 42,-.:-_ 13 1:.» _‘,r_"3 -i_l
42 éu,iE? 127

Notice that I've marked off the correct seeding points with arrows.
The middie section should have been seeded much further right,
because the lines above and below it are diagonals going up and to the
right. The wings should have been double-seeded at least (perhaps
with added touches at wing-tips), which is why 2 more seedings were
added to both the FOR-NEXT at 1000 and the DATA at 2000.

Another thing to watch for is mixing white 7 (hi bit on) shape lines
with hi bit off colors like violet or green, or white 3 lines (hi bit off) with
orange or blue {ON), or orange and green or blue and violet colors
horizontally next to each other, even if separated by a line. A byte’s hi
bit must be either on or off!

All you need to write programs that draw pictures and color them is
o use 6 DATA statements (X,Y,A,B,C,D) per seeding and the GOSUB
850, which works only if FILL1 has been BLOADED into memory. (The
WHITELINE1 is up to you and seems even more valuable for color
filtering (next chapter) than fill-in work.)) Of course, you need to load
shapes or scenes in first so there's something to color!

Incidentally, you may use binary file hex tables in which each 4 ad-
dresses (consecutive) contain a set of color bytes. By indexing to the
starting color byte of a set of 4, you can have 3 #'s per seeding rather
than 6; the 2 coords. and the table index displacement.

You need only figure out the coords. of the proper seed points and
the color byte numbers for each color desired and you're in business.
To get coords. while in 4 of 28D, just hit C for coords. after each fill
--- you'll even be given the color byte #'s --- jot all this down each time
and you'll be all ready for automatic fill-in at some later date! Simple
enough, right?

Now let’s go to A of 28D. Run it. This is the way things look when
you correctly make an “instant scene” program. Color Fill Demo (9) il-
lustrates errors in the use of color-fill routines. Bad choice of color,
wrong “seeding” locations, wrong number of seeding locations, and
bad mixture of high-bit-on (#4-7) and high-bit-off (#0-3) colors are
shown. (Any color byte of 128 or more has high bit on. Less than 128
means high bit off.)

Good Color Fill Demo (A) illustrates a good color fill scene --- you
may probably come up with better color choices, but the seeding coor-
dinates don’t have much room for improvement. Run A of 28D now and
notice that in 6.7 seconds there are 89 seedings, which is over 13 per
second. Notice how fast each area seeds, even large ones. This is
what | had in mind when | made FILL1 do less than such do-everything
routines as the one found in Edu-Paint, which is the best fill algorithm

214

program on the market --- it not only can fill mazes and crawl! through
tiny holes to fill other sections --- it also can fill on top of any color.

List out A of 28D after it’s done filling. (You'll have to hit Reset right
as soon as the filling quits or the program will return to the menu.) In
line 1t and 12 we BLOAD 1st the picture to color and 2nd the fill
routine. Data statements go from line 28-38. This data is coordinates
and color bytes. Line 56 has us GOSUB 1, where we read 2 coords.
(hor. is X, vert. is Y) and 4 color bytes (A goes in $6, Bin $7,C in $8,
D in $9). This GOSUB is used only when a new color is being used in
filling. When you use the same color for many fills in a row, you need
only change the seeding coords. The color bytes will stay the same.

Line 6@ is how we handie many seedings in a row with the same
color (other lines up to 100 also illustrate this). We read the 2 coords.
from the data and go to 950 and fill and then return for the next 2
coords. --- and so on.

Line 950 does the work. To speed up routines even a bit more you
could have a line 150 that omits POKES for $6-$7, and was used
everywhere except in line 1. Line 1 needs these POKES since it's
dealing with new color bytes. Compilers could help the BASIC part of
this fill program speed up --- but not very much: most all the action is
done via machine language via FILL1.

To create this program was child’s play. All | did was use 4 of 28D
and color the picture | call COMPOSITE 2, and after each fill | hit C and
got coord. info. which | immediately jotted down. And whenever |
changed colors | jotted down all 4 color bytes immediately after the 2
coord. #'s. My jottings looked like this:

1) 37,110,128,128,42,85
2) 25,102

3) 30,886

(etc.)

When | got to a new color | again used 6 #'s rather than 2 #'s. In
putting together lines like line 60, | merely counted all the 2-number
data lines between the previous and next 6-number line.

Using option 9 (part 1 or 2) in 4 or 8 of 28D, and 2 of 28A, you can
create original pictures and/or shapes to color. Part 2 of option 9 of 4
or 8 of 28D will let you add shapes in any color to existing pictures,
which may be re-SAVED.

On the next page is my FILL flowchart. | put color bytes A-D into
$6-$9, the internal cursor’s bit table byte from $30 into $ED, Q (hor.
byte coord. #) into $FF and $EF, and the hi and lo of the vert. seed ad-
dress into $FE and $FD respectively.

Then | check to see if the seed byte is all 1’s, part @’s or all @'s. On
all 1's we quit; on all 0's we load A or B (depending upon whether the
seed address is odd or even --- $6 and $8 are for even addresses only
and $7 and $9 are for odd only), and on part @'s we load part of a color
byte into the screen byte. My routine calculates how much of the color
byte goes into the screen byte.

If part of the byte was 0’s, then we also calculate which side of the
first 1 bit our cursor was on --- this tells us whether to begin moving left
or right after the part-fill.

215

PRINTOUT #60

$6-49 are A-D,

the color bytes; $30 +s in $ED; Q 1is

1load A or B

in $FF and $EF; seed adde. is in $F7 and $FE
a1l 1's all G's part Q's
quit load A or 8 load partial A or B
cursar cursop
rt. af 1 1f. of 1
' move current byte addr. rt. Y=39
all O's all 1's part 0's I

load partlal A or B

1 v

LJ_—J

move cba 1f, | move cba 1f. of seed addr. Y=0
all 0's all 1's part O's
load A or B load ptl. A or B

/‘L

LL we’'ve even

v
been Zo CBAOW, go there now:

move cba up with

seed _agdr, 9

addr. > $1FFF

addr. € $2000

all 0's \\Xnut all 0'

1load A or B\\\

N

Y

move cba down with seed addr. Y

adde. < $4000

addr. > $3FFF -

all 0's \\\POt all 0's

-

load A or B\\\\

I

216

Next we move the current byte address to seed address plus one,
or right-wards, in simpler terms. If we're already at byte #39 for that
line, we go down to the leftwards moving routines, since the first thing
the move cba right routine does is increment to the next higher byte. If
the byte is all 0's, we load A or B, depending upon odd or even ad-
dress, and then go looping back to do the move right routine again
{The hi color bit is not counted when we're looking for “all 0’s.)

If the byte was all ones we go to move cbha left of seed addr. If the
byvte was mixed we load partial A or B and then go to move cba (cur-
rent byte addr.) left of seed addr. Y (which was stored in $FF).

In move cba left of seed addr. Y if Y is @, we go on to move cbha
up since our first move in this routine will be to decrement Y. If the byte
is ali @’s we load A or B, depending upon odd or even addr., and then
go to move cba left. This latter routine is the same as the one next to it
on the chart except we don’t use the seed addr. Y at all but continue
moving left across the screen.

If the byte’s all 1’s we go to move cba up. (If the color bit is @ it still
counts as all 1's in any of these routines.) If the byte’s part 0's we load
part of A or B and go to move cba up.

In move cba up we always use the same Y or hor. screen byte
coord. as our seed address had. That's why the routine only goes up-
ward until the first non-@ byte which has no room for color is found, and
the same can be said for moving down. If the new address is less than
$2000 we've got to move cba down because we're above the screen.
If the byte is all @'s we load A or B if we loaded in C and D on the line
below, or we load C or B if we loaded A and B on the line below, and
we leave these 2 new color bytes in our temporary color byte ad-
dresses ($1E and $1F). if the byte’s not all @’s then we go to move
cba down.

" If the byte’s all © then our next move after filling it is to go back up
to move cba right.

In move cbha down we use the seed addr. Y again {the Y is the hor.
byte coord. at which we began filling, if it's specifically the seed addr.
Y) for hor. byte coord. If the addr. is greater than $3FFF or if the byte is
not all @’'s we quit. if it is all @’s we load in A or B if our last line above
was C and D, or C and D if our last line above got A and B. {f this is our
first time coming to move cba down, we use C($8) and D($9) for sure.
After A or B, or C or D, are loaded we go all the way back up to move
cba right, which means now that we're on a new line we fill right as far
as possible, then left as far as possible, but we skip CBAUP and come
back to move cba down. Once we've done CBADWN we never use
CBAUP again.

Always after getting to either move cba up or move cha down and
finding a @'s byte, we fill both ways (right, then left) on the line before
doing any more vertical traveling.

You can see why you need to hold down the button on PDL#0
while turning vert. coord. paddie knob #1 when you're in a small space:
you're hunting for open pixels.

Now that you get the idea of how it works, let's look at the FILL
source file, which assembles the binary FILL1:

217

55 DO RN T T B ANV TSR TS w D QN LR T BRI B

Lt T B L Lo PUPL PP PL P bobde foepep re pcss
LB LA A=

Lt ol L 01,
o L P (S L0)

._&‘P.‘.’h’.
iy

[l wiaN Enb T RS | AR TE AT W Tuala a1l |

(AT DUy Ty A DO T T S

PRINTOQUT #61

ORG FIR58

oBJ £2aE
DECRY EBLI FF4D5
INCRY Eoll £#F5&84

LDA #F0

ST FLE
LhA CE250.Y
#57F

BHE COHT1

E
CORTI CHP #3FF
BHE COHTZ2

COMNTZ LDH $EF

BOC EVEN
apD THE $FC

EEMLIR L] o L [t (51

J
e] %BH ¥

- CBHRG
MINED LDR (F263.%

RIGHT ISR
CRIGHT gﬁﬁ

% e
51 LOOP IHC $FE2
B et I
[he BCC L O0OF
&4 LDE $ER
&5 CHP #3552
S BCS SHLSFT
=r IHC $CF
((((£2 RIS
529 SMLSFT LDA $FC
78 EHE OLD2
71 EVEMI LDR F1
= JHPE COHT4
= Ooh2 LR $1F
74 COHTS STH %19
z CEC FER
il BEQ BFTH
¢ LOH #F7
It SEC
7 SBC £ER
STo #
STH FEC
LDE £192
CHMFP #2035
BCC LDOP1
IHC %FB
LO0FPT LSRR
DEC %EE
BHE LOOP1
1 o0P2 ASL
DEC $EC

BHE LOOP2
518 19
LDR CF250.%

G 1 P EEVLI 00 S TR B D P e (S0 D 0P LR P (B i ~ BTN

o GRS LS, S S S0 G0 0 e 3 =

OpA £19
LD %FB8
BEG GO1
ORA #5500
G001 STH C$263,Y
(22 RTH IHC $1A
i@l CLEFT LDA #3%@
1 STH 3FB
1 STh 3EE
12 TR $CF
165 LDA <E260,Y
i8s LOOPS IHC #EB
167 LSE =
152 ECC LOOP3
189 LDA FER
116G CHP #32
111 ECS SHLSHT
{17 INC FC
113 _ RIS
$14 SMLSHT LDA $FC
115 EHE (003
115 E¥EMZ LDO FiE
117 IMF COHTS
115 oph3 Loa $1F
113 CONTS STR $19
156 GEC $ER
121 BED RTHI1

219

LOonP4 ASL

LooPs LER

GOs STH L455).%
RTHI RIS
COHTE LDA

LFT LDA #58

CBARGT %ﬁﬂ,&$@

FEF
LDA CEL6Y,Y
CHP #37F
BME CONTS
BEG LET
CONTS CPP $#3FF
BHE CONT?

L
OHT? LDA #39
STH 3FC
[0A $EF
BLC EVEHT
ODD4 THE $FC
EYENZ LDR ©$263,Y

BHE MIXED]

g
|

onLSs LA

Riuediie

[e =1
"T‘ll T
=]

MIXELR1 TSR
CBALET LR

IR ™ = = g ST T T T LT VT i Ly AT A IO LT MATTT

oo [t e oy st e [(s ot [ty s s e s e s fh s s e s e oot s ot s s e s o fty st et s e s o e st ey s e fch o e o el s e s e s i
CVTRRT0 s T ST [NPT T e T o R [O S T B TR A T R o T NN TR TR N T VRN T T B VR T VIR TN T SR TR S I O TV T T RN T TR AV
I
ot
v
Ay
Jry
o

220

AR I R R I TART RS TEh R R AT RA R VIRR Rk Rk R Ty

o T D P T W LN DS 18 I [¥ DY u TS W Te InnTun [X]nn]
BB O e g E

LIV LI PU 1N b st et st s e s s s b ot o

o
EIE
X

Qe

b s [s e o . s o st (50 150 R 500

[parn

)
k|

i
A
D MNP g Tos s T s RN T RN T b L LY

ATys)
[y
h

N
A]

MORS TR TRRTRS TRU O TRV TR VR TR h 1

(PN g g Ty TRl KU NIRRT T AT AW RRTART AR QTN TN
1 LD b ISP s LT e (BT (0 =)

o o

T

CBAL

COMTS

COHT2

COMT1iE

Ghhn
EVER4

0007

MIXKED?
cBROF

I
Ll

SINSEY L
:

COMTI4 T

= EYEHG
- FFC
CHEPEI,Y

HINEDZ
£/
DT
F1E
FEED Y

LFT

i
T

Wi
T

i

=

Celadtd

Mgy e

pod bl (Th =TT e
11
M
e

The

]

=t s,

Mmoo ﬁ
<

Tt 1 |

S G A TR R A 5 T S i B L A LT S 8 I 0 g
DLLT] I T et e T
ST MR
il weof
-, et
oL

F3F

s CORTi

221

246 LDA 526
=47 CHFP &£FD&
=48 BCC COMHTIE
o453 ISR IHCEY
258 JFP CBADWH
ool COMTI1 LDA (F250.Y
=25 cEe &7
oo BHE COHTIZ
=254 . BEG CEADLIN
255 CONTiZ ChPe #%5F
o0 BHE COHT1Z
2S¢ BC CEBADBIM
o=2 CONTIZ LDR #3504
=59 STH FFC
Pt TYH

261 LSE i
Do BCC EVEMD
2632 0DD8 INC SFC_
ond EYEMHS LDR (F2253.Y
255 b=

265 BEQ 7o

257 LGA 3EE
265 ENE 21 __
o2 Lo\ (FCol.Y
2ra TR %19
Zel LDa FEL
Cre D #5°F
273 CHP $£19
2rd BCS RS

o] i

== LDR #1i3
=57 LSE

] BCS HG

o LA #F2
228 STH FEE
=y JHE 2

=22 Rg LDE #F1
o2a3 STR #EE
o84 21 L FEE
225 CHP #%2
286 BEGQ Lo

287 JSR CRIGHT
253 LDR $CF
oo3 BHE CERDHMN
=36 IMC FEZ
=21 JME CERRGT
292 La Sk CLEFT
293 Ly FCF
=34 BHE CEODRH
=295 LDR #32
236 SiR 3FR
= JHP CBRLFT
252 7@ ipa 3FC
259 BHE OhD3
360 LDA F1E
351 STR fFo63.Y
I8 JEP CEARGT
Zg3 OLDI LD FIF
Zaq STH SF26 3.0
265 _ Imp CEaRGT
Zos TBADWH IHC £1iB

222

BCC EYEHMS
obig IHC FFC
YEHE LDH {($263.%

ZE7F LbR #1B
388 CHPE #%c
262 BECS BEMHRE
218 LR 2

Z1i STH #$1E
212 LDn 39

=213 T8 #1F
314 LR #FD
215 =3 o6
14 LA 3FE
217 STH %27
218 CJMP COMTLS
212 BENHRE LD& F1E
228 CHMP %$&

21 BHE SIXSV1
222 LDR #1F
222 chiP %7

sod BHE SIASV1
iC o LA 38

226 =Ta #1E
227 LDR 5
228 STH #1F
39 _ JHP COMT1S
728 SIKSY1 LR %6

331 518 #1E
32 LoR %7
3233 5T #1F
234 COHTIS JSE IHCRY
235 LEY FFF
235 5TY FEF
227 LoR 27
324 CHP #32
239 BCS CONTIS
348 LR #26
241 CHP #3528
342 ECS COMT1E
242 BT RTS

244 COHTIs LBA {$£263.%
245 CHMP #37F
245 BHE CONTI7
347 BEQ RBTT
248 CONTLY CHP #2FF
249 BME COMTiZ
348 BEG RTT

2ol COMTIE LDHE #$6
232 518 FFC
253 Tya

254 LSR

2

2

3

%h%ﬂmmmmu

AROTN TN Tl

PR TR RTiR T
D TR TR N TEET L
I
b
I |

DOUAN RN TR IVN TR IR TEN TS

T
Y
i

ek,
W
)
T}

223

358 BCE RF1

259 cic

76 LeH %19
371 LSE

272 BCS Bi1

373 [D= #%2
274 108 =CE
37 JEP ZZ2
3rse Ri LA #F1
377 STh FCE
372 Z& LbE £CE
372 CHP #%2
R BEL LI

321 JSR CRIGHT
a2 LER FCF
353 BHE ZZZ2
384 IHC $E2
385 JHP CEBREGT
2o L1 IS CLEFT
257 Lo $CF
358 BHE ZZ22
233 LDA #52
396 510 $FA
291 N JeFE CEBRLFT
ZOg. FEF BETS.

FIZ CONTLI® LR $FC
394 BHE D11
395 L3 $1E
36 STH {$28r.%Y
ey INC FiD
293 : JrP CBRRGT
292 O0Di1 LDR $1iF
46 STH <$F28 2%
461 INE 1D
432 JHP CBRRGT
4E3 BRI

44 BREK

455 EHD

Line 1 and 2 say assemble it at $80@ but have it work right at
$3000, so vyou'll have to save it at $800 while in LISA but BLOAD it at
$9000 later and save it there for use. .

Line 3-16 give Applesoft DECRY and INCRY addresses because
you'll need to increment/decrement vert. addr.; also, flags get zeroed.

Line 17-20 record base addr. in permanent locations so we may
use it when we need to find “one line below where we started” in the
CBADWN routine at line 306. The “base address” is the address of the
screen coordinate minus the horizontal displacement which gets done
by indexing. The hor. displacement is also recorded --- in $EF and $FF;
we'll monitor our displacements with $EF, but leave $FF as an impar-
tant # to remember. :

Line 23-29 loads current byte and if it's all white (white1 would be
$7F and white2 would be $FF) we quit.

Line 30-33 we see if our hor. displacement is even or odd. This will
tell us if our addr. is even or odd, since all base addresses stored in
$26 and $27 are even (since each line goes up 1024,40, or 128 over
the previous one).

224

The way we tell odd is by shifting the @ bit into the carry. Since all
bytes with @ in their O bits are even, we need only find out the @ bit
status to know “odd or even” for the entire byte (the bit values are
128,64,32,16,8,4,2, and 1, so the O bit, with 1 value, is oddness
bit).

Line 34-3€ now we load and shift (left) the current byte to discard
the color bit (because a 0 byte or an $80 byte would be equally black
and invisiblie). If the byte that's left isn’t 0, we have a mixed byte, which
means containing both 1’s and @’s, so we go to the MIXED routine,
which deals with loading pan of the color byte (can be $6-$9) into the
0 bit part of the current hi-res byte.

Line 37-38 now we check out the odd/even flag ($3FC) which we
just got through conditioning, which means setting to 0 or 1 according
to' conditions. If it's set, we go to line 42 because we're at odd addr.

Line 39-41 since the address is even, we load the even ($6) color
byte in and store it on the screen and then jump all the way to CRBARGT
at line 151. This is the current byte address moving right routine
---consult flowchart. Remember, our screen byte was 0 or we'd have
gone to MIXED by now. As long as bytes are 0, we just keep sailing
along in the direction we're going {(we start with right). Only when an
edge-byte (not all @’s) is encountered do we need to go to special
routines or fill in ancther direction.

Line 42-44 loads the odd color byte onto the screen byte address
and then jumps to CBARGT.

Line 45-46 stores screen byte temporarily in $19.

Line 47-58@ loads last internal cursor bit position byte, which was
loaded into 237 ($ED) in the BASIC driver program Palette. ANDing
with $7F zeroes hi bit which will get in the way of comparisons coming
up next. CMP$19 compares your cursor’s position (the screen dot at
the seed-point) with the hi-res byte. If the cursor is greater than the
screen byte then it's to the (visible) right of the screen byte 1’s, and
we're sent to RIGHT which sends us to CRIGHT, which means
“cursor’s to the right of any hi-res on bits so let’s move right next.” Cur-
sor being “greater than” on screen byte’s means it’s in a bit of greater
value; and visible bits on the screen have these values:

binary bits: 1111 1 1 1
values: 124816 32 64
bit #: 0123 4 5 6

Line 51 if the cursor wasn't right of the hi-res on bits it was left, so
we'll go there next. CLEFT means “cursor’s left of on bytes, move left
next.”

Line 52-54 once either CRIGHT or CLEFT are finished we'll be go-
ing to CONTS3 where we'll figure out where to move current byte ad-
dress, and whether we're filling to the left or right next.

Line 55-58 zero the "hi bit set” and shift counter flags ($FB,$EB)
and then zero the “no room for color” flag ($3CF).

Line 59-63 load screen byte, shift out hi bit, then shift until an ON
bit is found, using $EB as shift counter and branch if carry clear (BCC)
to determine that no ON bits have been discovered by getting shifted
into the carry bit.

225

Line 64-68 we load the shift counter into the accumulator and com-
pare it to 2. If it's 2 or better we continue with CRIGHT since the
required 2 open bits are present. We set the “no room for color” flag in
line 67 if there was less than 2 shifts recorded on the counter, and then
quit the routine --- there’s no room for part of any color byte to be add-
ed.

Line 68-72 load and check even/odd flag and load in color byte $6
or $8 if even and $7 or $9 if odd. Odd/even was determined, for the
seed byte, at line 26-29. $6 will go in even seed byte, but when we've
moved up or down a few lines we’ll use $8 sometimes for even and $9
sometimes for odd. The temporary color bytes $1E and $1F hold
either $6 and $7 or $8 and $9.

Line 73-76 here we store color byte temporarily in $19 and then
decrement counter and check if it’'s down to @ --- if it is we exit routine,
because we need at least 2 @'s before we'll add color to the byte.

Line 77-81 we subtract counter from 7 and store the result in
counter address ($EB) and in countersaver address $EC. This new #
represents the shifts required before we can put color byte and screen
byte together. Remember, we're shifting the color byte from perhaps
01010101 to perhaps 01010000 and then back again to the original
positions minus the excess 1’s, so we end up with 00000101 for color
bytes (the hi-res byte would have been 00110000 or 0001 0008). The
nature of ASL and LSR is that the 1’s shifted out are gone for good, so
a 7-dot-wide color byte can soon turn into a 2-6-dot wide color byte.

Line 82-85 here we see if color byte uses ON color bit. If it does
we set the “hi bit set” flag ($FB).

Line 88-88 here the first half of the shifting of the color byte oc-
curs, exhausting counter $EB.

Line 89-91 we shift the color byte bits back like it was, only MINUS
the unwanted ON bits. We use up counter $EC in the process.

Line 92-94 puts the “fixed” color byte into $19 and puts the
screen byte in the accumulator and ORAs the 2 operands. This adds
them up --- & one in either operand gets a one in the accumulator-
stored results.

Line 95-97 if the color byte’s hi bit was on before we monkeyed
with it, we turn it back on.

Line 98-108 accumulator is put into screen memory with its screen
byte/color byte combination and $1A is incremented to tell us, once
we get to CONTS3, that we've just come back from CRIGHT so send me
next to CBARGT --- we're moving right. We then exit the routine and
find ourselves in CONT3.

Line 101-144 is the same as 55-100 with the following exceptions:

a) we're calling it CLEFT because we were sent here if the cursor
is left of the ON screen bits.

by it doesn't set $1A flag, since that's only to tell us that we've
returned from CRIGHT.

¢} the color byte we end up with after shifting is done is on the left
{visible) side of the byte, and all shifts are done in opposite order (by in-
terchanging LSR and ASL).

Line 145-146 here we are at CONT3 where either CRIGHT or
CLEFT end up if we're still on the seed byts. if the “back from
CRIGHT” flag is up and waving we go to CBARGT.

226

Line 147-150 if that flag’s off, we 0 the ““left”’ flag (SFA) and go
to CBALFT. This will be explained later. See flow-chart for a hint.

Line 151-155 we're in CBARGT; we zero the “left” flag and see if
we're at 39; if so we jump to CBALFT because our first endeavor in
CBARGT will be incrementing our hor. displacement byte $EF, and on-
ly up to 39 is allowed.

Line 156-164 we increment Y and $EF (the former is our indexing
register, which uses hor. displacement values sometimes pulled from
$EF), then load the screen byte and find out if it’s all 1's (discounting
high bit again). If it is we go to CBALFT.

Line 165-178 we zero the odd/even flag ($FC) and load the hor.
displacement and use our shift-and-test-carry test for odd/evenness,
and set the flag if it's odd.

Line 171-173 now we test the screen byte to see if it's 0, after
discarding the hi bit by use of ASL. We go to MIXED1 if it's not @, which
sends us to CLEFT --- we can go no further right.

Line 174-182 test for odd/even and load color bytes accordingly,
as always and then jump back to CBARGT --- since we're only here if
the screen byte was 0, there’s no ON-bits yet found (to indicate shape
edge) which would give us reason to cease filling to the right.

Line 183-221 is CBALFT, which is like CBARGT, except:

a) we fill and move leftwards, not rightwards.

b) we testto see if we've just done CBALFT; if so, we decrement
the hor. displacement by 1 and continue filling. The way we see if
we've just done CBALFT is by checking the “left” flag ($FA). If it's
greater than 1 we just did this routine. Other routines zero this flag
before sending us. here, but CBALFT doesn't so the INC $FA in Line
199 will add up to 2 or more if we've “been here before.” Lines
191-193 catches “2 or greater” for this flag and sends us to line 195
without loading Y with $FF flrst. The importance of this is that if we
always loaded $FF into Y we'd never move more than 1 byte left.
Remember that $FF stores the seed addresses hor. displacement per-
manently, so decrementing $FF gives us just what we want for jumping
from “done with CBARGT due to non-0 byte” to “going to $FF minus
one to start filling left.” However, as the flowchart shows, once we're
doing 2 or more CBALFT routines in a row, we must simply DEY
without loading $FF, so we can move as far left on the screen as
necessary without problem.

c) we also test to see if we're at hor. byte 0 in line 188-189 and
get sent to CBAUP if we're at 0 --- see flowchart.

d) if we're at a mixed byte we get sent to partially fill the current
address with the color byte at routine CRIGHT (we can go no farther
leftwards) after which we're sent to CBAUP. This differs from our
CBARGT routine which sends us to CBALFT afterwards --- keep follow-
ing along with the flow chart and all will remain clear.

@) at the beginning of CBALFT we check flag $E3, the flag that
stops you from doing CBALFT after CBARGT if you've just come from
line 291 or 385 --- from these places we want only to fill rightwards,
not leftwards.

Line 222-230 this is CBAUP, and we need to remember that color
byvtes of $6 and $7 or $8 and $9 are unchanged as long as you make

227

only horizontal moves. But this is a vertical (up) mover, so we load cur-
rent color byte addresses $1E and then $1F and see if they're $6 and
$7: if not, we go to line 236. (We also checked the “already doing
CBADWN flag which is $1D. See flow chart. Once we've hit an
obstacle in CBAUP, we go to CBADWIN, and although we continue we
to go through CBALFT and CBARGT, we never again touch CBAUP,
since we now know there's a “non-0-byte-barrier” so it's no use. We
go right, left, up, right, left, up until obstacle, then we go right, left,
down, right, left down until quit --- there is no return to CBAUP --- which
is the message of $1D.)

Line 231-235 if our latest color bytes were $6 and $7 we now put
$8 and $9 in their place --- every other horizontal line going up gets $8
and $9 --- the rest get $6 and $7.

Line 236-239 if we were using $8 and $9, we now switch our tem-
porary color bytes ($1E and $1F) to $6 and $7.

Line 248-242 we move our base {not seed) address (which means
which vertical line address is the 0 byte of the line at) up a line (decre-
me_i. ¢ coord. which has nothing whatever to do with the Y register),
load in see addr. hor. byte displacement, store that in temporary hor.
displacement.

Line 243-250 we check to see if we've decremented so high it
wrapped around to the bottom of the screen (like when vector shapes’
tops are on the bottom of the screen because they were drawn too
high); if it has, we increment and go to CBADWN.

Line 251-257 we check to see if the byte is all ones --- if it is we go
to CBADWN.

Line 258-263 we zero odd/even flag, do an LSR and check for
odd/evenness and set ($FC) odd/even flag accordingly.

Line 264-266 load byte, shift out 7 bit, and go to line 267 ifit's a
non-zere byte. Remember, going horizontally we do partial color byte
filing but going vertically we continue only as long as part-@ fillable
bytes continue above or below seed byte.

Line 267-268 checks the $EE flag, which does 2 things: tells us if
we've been in CBAUP before when we had partial @'s at our CBA {cur-
rent byte addr.), and it also specifies whether the cursor is left or right
of the ON bits in the CBA (2 means left, 1 mean right).

Line 269-283 loads CBA byte, storesitin $19, loads bit table byte
of cursor, zeros high bit, compares cursor’'s position with ON bits in
CBA byte, if cursor's left of ON bit, flag $EE gets a 2, if right, $EE gets
ait.

Line 284-288 checks flag --- if it says “left” then we're sent to line
282, otherwise if it's “right” then we continue at line 287.

Line 287-297 we're sent to part-fill CBA with color byte, then we
check “no room for color” flag (3CF) --- if it’'s set we're at a byte with no
room for adding color pixel(s) so we abandon CBAUP for good and
head for CBADWN. If we used CRIGHT we ignore $FA flag, but if we
just returned from CLEFT and the $CF flag is OFF, then we head for
CBALFT after putting a 2 into flag $FA, the flag that says we've just
been to CBALFT and need to do it again without going to the # in $FF
minus one. Qur procedure is merely a double-safeguard to make sure
we merely move leftwards one byte.

228

In lines 290-291 we set the $E3 flag since we don't want to go to
CBALFT after going to CBARGT --- we want to fill rightwards only,
since in line 287 we went for a CRIGHT partial-fill. The shape boundary
is in that CRIGHT byte, so moving hor. displacement left in CBALFT
would start filling out of the section we were filling.

Line 298-385 byte is 0, load color byte according to odd/even flag
($FC) and then go right to fill as far as possible (followed by left, up,
right, left, etc.)

Line 366-388 check the “been down before” flag --- if it's 2 or more
then go to BENHRE where you'll simply insert into the temporary color
byte locations the opposite bytes than were there; $6 goes to $8 and
$7 goes to $9 or vice versa. You see, once you start doing downward
filling, there’s nothing to do but swtich back and forth with these color
bytes ($6 and $8 are for even hor. displ. and $7 and $9 are for odd
hor. displ.). But the very first time you enter this subroutine, the $1B
flag (“been down before”) will get incremented to 1 only, so you'll get
$8 and $9 as color bytes and $FD as $26 and $FE as $27. The $8
and $9 are because you're one line under the seed byte which for
sure started with bytes $6 and $7, and the only way you can get the
correct color is to have all 4 bytes in proper alternating relationship to
each other and at proper odd/even addresses. The $26 and $27 are
the base address bytes affected by INCRY and DECRY or by loading in
the original vertical base address of the seed address stored in $FD
and $FE in lines 18 and 20.

Line 388-318 you haven't been here, so in go $8 and $9 and $FD
and $FE, then we jump to line 28.

Line 319-333 if we're here, we have been here before so we put
in the opposite color bytes from those presently there.

Line 334-336 we increment the base address so we
are one line lower, then we get the seed address’ hor. displ. and stick it
into the temporary hor. displ. location ($EF).

Line 337-343 we check {o see if we've gone so low we’re wrapped
around to the top, in which case we’d have a base address whose hi
byte would be $20 and whose low byte would be 0. We quit if there’'s
wrap-around evidence.

Line 344-356 first we check for all ones. We quit if byte is all ones.
Then we zero the odd/even flag ($FC) and check for odd/even by LSR
and BCC again. We set the odd/even flag accordingly.

Line 357-358 we load the screen byte and if it's ® we go to
CONT19.

Line 366-392 same as line 267-297 except INC $1Dinline 336 is
the setting of the “once we've been down, never go back up” flag.
Also, if the “no room for color” flag ($CF) is found to be set, the whole
fill routine terminates, rather than being sent to CBADWN, which is
what happens in lines 289 and 294 of CBAUP. The comments for
290-291 apply also to 384-385.

Line 393-402 ioad in the appropriate color byte, if the screen byte
is 0, then jump back to CBARGT to fill right, left, and then down again
until a non-@ byte is hit. We also increment the “been down before” flag
($1D) so the next time we're in CBADWN we'll simply load the op-
posite 2 color bytes rather than setting the color bytes to $8 and $9,

229

thinking we're only one line beneath the seed byte. Either wrap-around
or non-@ screen byte which has no room for color will get us to exit fill-
ing, in this subroutine.

| hope you have a great time using this routine in Palette or your
own programs. | never went to kindergarten so I'm making up for lost
time on this one --- coloring is fun! Don't be afraid to complement your
coloring and painting endeavors in palette with the filtering, com-
plementing, line-fixing, color-bit setting, and color-bit zeroing options in
8 of 28D. Some really wild combinations are possible.

Also, learn as soon as you can how to do what happens in © of
28D, the Color Fill Demo (only do it better! --- mistakes are what 9 of
28D is meant to illustrate --- as well as methodology).

Once you get an “instant scene” running smoothly, it will act like,
and probably be constructed like, A of 28D, the Good Color Fill Demo.
If you haven't yet run that, do it now. It feels nice to know you can slap
together various shapes and load them into a quick composite picture
that you can seed-fill automatically in a couple seconds with scores of
nice colors and patterns.

230

30|

COLOR FILTERING

In 8 of 28D you’'ll discover several interesting options besides 8,
where you move vector or block-shapes around and press button #1 to
copy the shape or #0 to exit. Now load in COMPOSITE 2.

RBun 8 of 28 now and choose option 17 --- fix all white lines. Watch
the vertical lines widen. Now choose option 9 and go for choice 2
---vector shape. Load in POS which is a stretching exercise table from
our Physical Life Dynamic disk. Ask for shape 1-14 (just one of these)
and position him in the doorway and hit button #1 and then move away
---the shape should be there. Now exit with button #0.

Run option 14 and the screen will inverse. Then run option 13 to
filter out blue. The filtering blue or orange affects only bytes with the
high bit on, which isn't many. Now do it again with violet. Things get
green since “white one” is green and violet and both of these are hi-bit-
OFF colors. Now run 16 to zero entire screen’s color bit. The few
places that may have been splotchy from having hi bits on as a result of
complementing and white line fixing have now joined the rest of the
screen and turned green. Now run 15 to turn all color bits on the
screen to 1. If you'll notice in the color bit table in the hi-res color
chapter, the only difference between green and orange is a set high bit
for orange. Your screen is now orange if it's tuned correctly. A part of
your yoga person's body may have dropped out by now, which lets you
see why the fix white line option could have considerable value.

Run option 14 to complement the screen --- black lines on an
orange background will change to white lines on a blue background.
Check the color byte tables again and you’'ll see that if you shift over
orange one bit you'll have blue. The complement (opposite of a black
(00) pixel is a white (11) one and vice versa, and the complement of a
biue (@1) pixel is an orange (10) one, with hi bit set for each. Now run
#17 and notice that if every other bit on the screen is on and then you
double the width of every “1” part of the screen, the screen turns to all
ones --- white.

The color “filter” is merely a mach. lang. masking program that
masks out all the screen bits that make up whatever color you choose
of the 4 colors green, violet, orange or blue. It sees white 1 as green
and violet and white 2 as orange and biue. The former are all hi-bit-off
colors, the latter are hi-bit-on colors. So if you run color filters on white,
then the result is that half of what makes up the white will filter out. To
leave white alone have it be opposite in hi-bit setting from the colors
you filter. A little mach. lang. program called filter is the masker here.

But let’s look at how | performed the hi bit setter, zercer, and the
complementer routines:

231

PRINTOUT #62

17148 PIRE 7090.73: PORE 2993,12
7+ EOTD 1088
7158 PIKE 20523 POKE 263,128
s SOTD 160
17168 PRE %032 41: PGE 292,12
i 5T 159
1950 PIUT 7R3 145 PEE 2095.2
Si: PIRE 28%, (bt POHE 337,
7: PET zf«az B CHL 2RéB: AR
£2ain: GOT0 22

For complementing, see line 17140 above. 73 is 49 hex and 127
is 7F hex. If you look up the opcode and operand #s you get EOR
#8$7F. To complement a byte and leave the hi bit alone, we EOR with
$7F (the # simply means immediate addressing so the value 127 is us-
ed rather than the contents of address $7F). One resuit when any 2
bits are different in the operands.

For setting all hi bits, we ORA #$80 which makes the
accumulator’s hi bit get set no matter what it now is, because ORA gets
a 1 unless both bits compared are @. Notice that line 17150 puts 9
(hex 8) and 128 (hex $80) into 2 sequential locations. Looking up 9
you'll find ORA.

In line 17160 you'll find 41 (hex 29) and 127 (hex 7F). $29 is
AND so AND #$7F is the instruction. This zeros all hi bits because only
if both operands’ bits are 1 do you get a 1 in ANDing.

So how did | make all 8192 screen locations do the above things?
(Actually 192 times 40 is only 7680 --- there are 84 sets of 8(=512)
invisible screen locations --- study the reference manual’s hi-res map.)

Well --- | cheated! { BLOADed good old WHITELINE 1 and then
POKEd in the necessary changes and CAllLed the program at 2048,
its usual CALLing address. Now go back to Chapter 18 and check out
WHITELINE, the source code. The lines from 24-45 would be of no
use for a program that did complement, hi bit set, and hi bit zero. These
are conditional lines that have to do with test and branch. The 3 func-
tions we're interested in are unconditionai complementing and bit zero-
ing or setting. So all we need after line 23 is to EOR, AND, or ORA, and
then STA ($FE), Y and decrement address by usé of SUB --- lines
46-54.

So the EOR #$7F of line 17140 POKES in at line 24 and then line
18000 POKES in STA ($FE), Y ($91 $FE, or 145 254) and then
jumps to SUB which is at $861, and JMP SUB would then be $4C $61
$08 (76 97 8). So line 18000 CALLs the amended WHITELINE 1
routine once the POKESs are in and the hi-res addresses get operated
on by Physician Fudge’s Fixer.

If you ever want to determine # of bytes on screen that have their
color bytes set, type NEW and then:

10 POKE—16304,0:POKE—-16297,0

20 FOR Q=8192 TO 16383:P=PEEK({Q): IF P > 127 THEN
PP=PEEK{—16336);Z=Z+1;POKEQ,255

30 NEXT: TEXT:?“# BYTES:"Z

232

But perhaps you're curious as to the applications of all this hi-res color
manipulation. It's “fairly obvious” --- but those are often famous last
words.

1) You're not stuck with hi-res “paintings” as they are --- you can
change colors to other colors, inverse the screen, and then filter one of
white’s colors out after inversing. The result will be your entire picture
is filled with a color --- which would be a great effect as is, or would be
convenient if you were going to do some 2 color printing and were go-
ing to photograph the screen image. You can manipulate colors with all
these routines until you have somewhat the equivalent of color separa-
tions.

2) If you filled a whole picture this way you could hit 9 or Space
Bar while in option 11 of 4 of 28D (Palette) and @ for color and erase
certain areas which you could re-color in Palette (remember that 8 of
28D does the filtering and complementing and 4 of 28D does the filling
and painting --- both do the white line fix) --- this would be especially
viable when you needed most of the screen one color.

3) Notice the eerie effects of going to Palette and loading in Com-
posite 2 and fixing the white lines, then going to 8 of 28D (use Space
Bar upon entry so you don't lost the picture), then setting the hi bit
{notice the % bit shift of the picture --- hi bit colors really are positioned
Y2 bit over from low bit colors), and then filtering out orange. The biue
" screen is rather a formidable mood for a scene.

4) Do abstract art with the paint ‘brushes and use fill in black
holes or around what you do, and then use filtering/complementing/etc.
for effect.

233

YTQBEE

A NICE SPEED IMPROVEMENT | 31

Run 4 of 28C

It takes about 2.75 seconds for the flying saucer to get across the
screen, and it's moving only one bit per move. There are about 114
bytes that load in per shape-draw, and all have to be XDRAWN over for
erasure. The shape moves about 240 times in its journey, or 87 times
a second. This means that 22272 bytes get loaded from a block-shape
table to screen addresses every second, which is 20% (at least) faster
than the HPOSN routine can do. (There are animation schemes where
HPOSN gets run much more often, so the advantage of YTABLE over
HPOSN is increased much more.)

Here’s the program that you find in 4 of 28C, and here’s the mach.
lang. YTABLE accesser that gets POKEd into the memory at $320 us-
ing the line 25 FOR-NEXT and line 63996 DATA statements, and
here’s the YTABLE list-out:

PRINTOUT #63
5 HIMEM: 36364
ia OF = CHRE ¢4
iS5 PRINT Di“ELGHD?TﬂBLE“
28 PE&QT DE"RL OADTEST E (CALLIES
25 PDKE 282.8: POKE 223.29: POKE
=85 Az PﬂhE gg?,Su; FOKE 28,
i929: POEE 21 .30: FOR 0 = S69
] BCJ, EEHﬁ : POKE 2,5: HEXT

28 PRIHNT D$"BLOADRZ®
TEXT 3 THPUT “DELAY LOOP FOR

B < 1 0ORA > 255 THEH =25
5 POKE 9.0
<o CALL 35934
42 HOME

4% TEHET = IHPUT "o Y0l WANT TO
SEE IT SOME MORE? CY- M= " é_Q:E

45 I
FHP$ RS EUHF‘EEH% i"

53 GOTg 3%

&3995 DATR 164, &5.177.29
£.132,30 165,220,281 &4 205,
7L177 PPe 133,39,.96,054 234,
177,38,133,53.96

234

G378~ g Os Lby FOL
8322—- Bi CE DA {$CE3,Y
§x54— 95 56 STa 42£
B~ HS E& LR 2
G328~ C3 49 CAP #%dm
G3ZR— D@ Bf BHE #3332
625C— Bi DE DA {30E %%
A320 25 &7 =18 27
BZoR— £8 RTS
H@a=1- EfR HOP
§2332— ER NOE o
B2323— Bl iE LDA CFIE 3.%
5335~ 25 =27 5T F27
8357 & RTS

PRINTOUT #64

+=1DEA. 1EFF

1DEP— 48 44 45 40 SB S4 S8 SC
iDES— 46 44 43 4C 5@ 54 55 5C
ibla— 41 45 43 40 51 55 5% 50
ibi5— 41 45 4% 4B 51 55 55 5p
ID2G— 42 46 4A 4E 52 56 SA S

ibF3— 42 45 48 4E 52 56 50 SE
iD35— 43 47 4B 4F 53 57 5B S

iD38- 43 47 4B 4F 52 57 5B 5

ibdB— 4B 44 45 4C 5B 54 52 5O
ib48— 48 44 4% 40 58 54 55 50
i@~ 41 45 42 4D 51 55 55 5o
ib55— 41 45 42 4b 51 55 55 5p
ibaa— 42 45 48 4E 52 55 54 S5E
ibe8— 42 44 4\ 4E 52 52 58 5E
iD78— 43 47 4B 4F 53 57 5B SF
ibre— 43 47 4B 4F 53 57 5B 5

ibog— 48 44 45 4C 5@ 54 55 5C
ibZa— 4@ 44 48 4€ 56 54 52 5C
ib9G— 41 45 49 40 51 55 53 50
1095 41 45 43 46 51 55 53 S0
ibAG— 42 45 4R 4E 52 55 5@ 5E
iDAS- 42 4& 4R 4E 52 56 58 5B
iDER— 43 47 4B 4F 53 57 5B 5

ibBR- 43 47 4B 4F 52 57 5B 5F
1LCB- FF FE GF 9@ FF EF oo @
ibiz—- FE FF 88 98 FF FF 88 &a
ibCB—- FF FE @B 68 FF FF 58 &6
ibba— FF FE B9 G& FE FF 58 &2
ibEG— FF FF @8 88 FF FF 88 G6A
iGES— FF FF 88 a2 FF FE 09 &g
iDFa— FF FF B@ 96 FF FF 08 oA
ibF3— FF FF @3 88 EF FE b8 &8
1EBG— 0B OB oo £0 BE bA 6@ 58
1IEGS— 20 20 &5 20 50 2@ 20 56
IE1G- B3 50 &0 80 bR b8 o9 0o
{E13— 20 &6 o0 0B 56 50 28 b
1E20— 06 b5 B 86 08 OO B8 oo
1E2S— o0 o6 S0 26 20 Ba 58 o
{EZ0— R o0 G0 68 08 0B OB 56
iE25— 20 o0 00 28 2R 26 o9 29
iE43— 22 52 25 28 22 22 22 28
iE42~ A% A= A2 A= A= AR B2 B2

235

{ES@— 28 25 23 28 23 29 25 25
iES8- A2 A2 62 AS A2 A2 AS 69
iEe@— 22 28 22 22 22 22 25 22
iEGS— A2 AE AS A2 AS A NS A8
iE7B— 25 25 2% 25 28 o8 28 o
iEF2— A5 AS A2 B2 AS AS 62 AS
1ESG- S8 5@ S8 5@ 50 S8 5@ 59
iE22— DO 0 DB DB 0B DB DB 0O
{E90— S 5@ S@ 5@ 56 S8 S8 50
iE95- Do DG DB DG DB DO DB Do
iEAB— SA S8 S8 58 58 58 S S0
iERS- D@ DG Do Do Do DA OB DB
iIEES- 58 S0 S 5@ S5 58 S0 5
— DB DB Dba DB DR DO Lo D&
1ECG— 20 24 28 2C 28 24 35 3C
iECe- o8 24 28 2C 38 34 35 3C
iEDE— 21 25 22 20 31 25 32 30
iEDe— 21 25 29 20 31 35 3% 3o
iEER— £2 56 2A 2E 32 26 28 3
{EEQ— 52 56 oA OF 22 36 38 3E
iEFB— 23 o7 &B oF 33 37 2B oF
1EF8- 23 2r 28 5F 33 37 3B IF
Af— 24 28 2C 36 34 32 3C
IF@5— 26 24 28 2C 28 24 28 30
iFig— 21 25 29 50 31 25 29 30
iFig— 21 25 29 5D 31 35 33 3D
iF2@— 22 26 2R SE 32 3& 3h 3E
iFP8~ 52 26 2A ZE 32 3& 3R 3F
1IF36— 23 27 2B 5F 33 37 % &
IF38- 23 27 2B oF 32 37 3B 3F
iF46— P2 54 22 2C 2B 24 32 o0
iF48— 2w 24 28 oC 38 24 38 30
IFSB— 21 75 29 20 31 55 392 3D
IF52— 21 25 52 20 21 35 533 3p
iIFSe- 52 26 20 °8 32 36 2A 3
IFE8— 22 76 2A oF 322 236 2A =
iFFo— 23 27 2B oF 33 37 3B 3
iFF5- 23 o7 5F 33 27 3B 3F

in case you haven't gleaned this already from earlier chapters,
YTABLE is a method of avoiding base addr. calculations. Go back to
chapter 22 and check out the difference between a scroller (TEST47)
that uses base calculations and one (UPSCRL) that uses YTABLE.

In the routine above at $320, we load the temporary vertical coord.
($8) into Y and index LDA ($CE), Y with this value and then store it in
$28, where we're storing screen addr. io byte. Also we check in $326
to see if we're drawing on screen 1 or 2 ($E6 is always $20 if we're on
screen 1 and $40 if we're on screen 2). If we're on one, we get our hi
byte at the table that starts at $1EC®, an address which is stored in
$1E and $1F. You can see how it got loaded there --- see line 25
where we POKE 36,192 and POKE31,30.

If we're on page 2 we get our hi byte at $DE and $DF, which is
POKEd in line 25 with $1D00. The lo bytes for either page are the
same and are found in $1EQOQ, which addresses are given to us from
$CE and $CF --- the POKES for this were also done in line 25.

The reason for POKE36893,32 and POKE36894,3 in line 25 are
to replace $901D and $901E in TEST E (CALL36934) with $3208 so

236

line $901C changes from $901C JSR $F411 (HPOSN routine) to JSR
$0320 where the YTABLE accessing routine is located after being
POKEd in, in line 25. This is the only change in that animation program
necessary to convert from HPOSN usage to YTABLE usage.

To clarify table usage, notice that the 3 different sections of
YTABLE are 24 lines of 8 bytes each or 192 bytes long --- 3/4 of a
page. it makes sense then that we can index, like with LDA ($DE}, Y, to
a displacement of 191 past the first byte in that table section. The Y
can be @-191 (dec.). We will get the appropriate vert. coord’s. screen
address for the byte 0 column with looking up both the lo and hi ad-
dress bytes, putting them respectively into $26 and $27, and then
referencing screen locations on this line with LDA ($28), Y in the
animation program. This is post-indexed indirect addressing. it means
the indirection comes before the indexing and the indexing comes after
the indirection. We get the address (16 bit) from $26 and $27 and go
there and then add a displacement to the address, so if the $26 and
$27 bytes point to $2000 and Y is $9, we will be loading into the ac-
cumulator the byte of data in address $2009.

Now look at the reference manual’s hi-res map on page 21. $2080,
is the base address of the 9th line down at coordinate {vert.) of 8 (don't
forget the first line is fine). The 9th byte in the page 1 hi byte section
of YTABLE ($1ECO-$1F7F) is $20 and the 9th lo byte address byte
($1EQ0-$1EBF) is $80. That's all the “base calculation” it took, once
we knew our Y register indexer was going to be 8. Remember a 0 in-
dexer displacement will give us the first table byte and an 8 indexer
displacement will give us the Sth table byte --- the one we want; so you
can see how a Y coord. (vert.} of 8 will give us both the 9th line down
and the 9th table addr. byte.

It's a relatively simple concept. If you don’t believe it do a monitor
list (L) of HPOSN at $F411 and continuing for many screens of garble.
I'd rather deal with YTABLE than decipher those “runes”, right? (Ac-
tually, one needn’'t understand HPOSN to use it --- just JSR $F411
and don’t sweat it.}

Look through the base addresses at the left edge of the hi-res map
in the reference manual. Now browse through YTABLE. Do you see
that YTABLE has merely table-ized all this address data? It saves time
--- but not space - unless you kick DOS out of your disk and have ex-
tra room anyway.

One thing for sure --- if you ever access HPOSN a lot in a program
requiring speed, YTABLE is the best way to go --- because when you
boil it all down, one fact stands out: the HPOSN routine is long,
cumbersome, and slow compared to table look-up.

237

BLORD ENCLOSED SHARPES

There is an easy way to BSAVE any of 15 vector shape tables
onto your own disk. You'll also be given BSAVE address and length in-
fo, which you won't need at the time, but jot it down for future
reference.

Always keep in mind that after a BLOAD you can find length with
?PEEK(43616)+PEEK(43617)*256 and address with
?PEEK(43634)+PEEK(43635)* 256 and your hex addresses can be
translated into dec by:

(type) CALL-151
(type) *75:(lo) (hi) NED20G (Return)

And your dec can turn into hex with use of:
(if ?PEEK (104) gives 8)

NEW

(type) (dec#)A {Return)

(type) CALL-151 (Return)

{type) *803.804 (Return)

If 7PEEK(104) is 64 make your last line *4003.4004 and if
?PEEK(104) is 26 make your last line *6003.6004.

The BLOAD Enclosed Shapes program can be RUN manually or
simply gotten to by menu; it's 1 of 28D.

Here’'s what you'll see:

PRINTOUT #65

IF you'ts LIKE TO BLORD AHY OR ALl OF THE
EHCLQ’ED SHAPE TARBLES ONMTO AMOTHER DISK.
HOW "= GHP CHAMCE =

CHIT SPACE BAR 2 RETURM TO EXIT>:

CHOOSE THE # OF THE SHAPE TABLE YOU WISH
TO BLOAD:

£1 XHAR
{ = ‘HH IE"iFiL

¢ 12 YBOOM

{13 3D IHGER
14 JRACER
1S 5TRP

TYPE 1-1% OR SPACE BAR:=7

You'll get disk-switch commands and length and address data. Use
these shapes to create scenes with the other programs on 28D, like
option 9 in 4 of 28D or similar !'outines in 8 of 28D. Have fun!

239

ASSEMBLERS, ASSEMBLY, LISA

| tend to find LISA extremely useful and fun to use, and 'm used to
“her”, so | haven't “played the field” too much. If you want revues on
which assemblers are best for what applications, | suggest you consult
Peelings, the best software review magazine around.

My LISA gets ornery if | try to make printer print-outs of source
codes that are less than full-file, so | have to resort to screen print-outs
rather than LISA-controlled listings. But a full source-code list-out
usually comes off okay. My LISA doesn’t always boot unless another
disk gets booted first. Neither of these idiosyncracies have led to any
misery on my part --- the cures are infinitely simple.

The usual problem with assemblers is either operator error or
documentation ambiguities.

The one big error that most of us make a lot, at least at first, is
assembling our code in places that clash with our assembler’s own
“personal” addresses. The result is bombed assembilers that must be
rebooted, and programs that must be redone. (Watch your language!)

For instance, FILL (source for FILL1) starts with ORG $3000 and
OBJ $800. If | leave out the OBJ $800 and start assembling, I'll scon
bomb LISA (once ! try “A” to assembile, it’s all over) if my program isn't
short. I'm supposed to assemble between $800 and $1800. OBJ
$800 tells LISA to assemble at the normal $800 address but ORG
$S000 tells her that I'li be using the program at $3000. So once I'm
done writing the program, what do | do?

1) Assemble? No, WRITE FILL onto a separate disk. This will save
the source code.

2) Now A for Assemble and cure any errors that manifest.

3) Now BRK once or twice, as LISA commands, and list {monitor
L) to find the length of the binary file created -- jot it down.

4) Now *7003G to warm start LISA without messing up any
code.

5) Now CTRL D BSAVE FILL1, A$800, L$320, S6 and you've
saved your binary file (separate disk!)

8) Now CTRL D PR#1 for printer turn on.

7) Now L to list the program on the printer.

sy Now boot your binary file disk and BLOAD FILL1, $A%8680 and
BSAVE FILL1, A$9000, L$320 to get the program where | want to run
it. It was at $800 before. What good did ORG $9000 do when | was
doing the assembly? it made the operand codes (the addresses upon
which to perform the opcode instructions) be relative to $9000, not to
$800. This means the program won't work at $800 (uniess it’s port-
able) and will work at $9000. A line that was JMP LOOP in source
code would have been JMP $822 or something in a binary file

240

33

disassembly if ORG $9000 was omitted. This is absolute, not relative
addressing and is non-portable, so the program wouldn’t have run at
$9000 until you went in and changed these types of lines. With the
ORG $9000 in there the JMP LOOP would have disassembled (from
binary file) as JMP $38022.

9) To fix errors in a source file and its binary “accomplice”, CTRL
D EXEC FILL, S6 and go ahead. Then re-SAVE it and the binary file
result.

There are a couple of tricks | use at times: | put 2 BRKs before the
compuisory END line so that when | search with monitor L. commands
for the end of the assembied object code, | find it fast --- there are 2
double zeros as markers. Also, | don't put comments right into the
source-files, | write them on the printer print-outs in ways that are much
easier to see what the program is all about than space-eating source-
code comments which are much harder to adjust or change than pencil-
ed words.

I generally write the source codes out on paper before assembling
if the programs are complex. | run mentally through what is supposed to
be happening as each command is encountered. If everything clicks |
start up LISA.

When there are similar subroutines | try to make one dual-purpose
subroutine suffice. If it won't, [usually don’t need to retype the routine.
| list the similar routine and go through it with edit commands after first
hitting 1 (INSERT) and the right line number.

I use file names that work well for me and are useful to others. To
make the file EXPLOSION (CALL547 2) make its noises, all one does is
BRUN the file or BLOAD it and CALL5472.

| make source name and binary file name unmistakably similar, like
FILL, FILL1, or maybe TEST32, FAST A 64-LN SCROLL (TEST#32).

The reason one assembles is that it's the easiest and fastest way
to create good mach. lang. programs.

241

(NOTE: Commands | haven't found relevant for graphics or sounds
have been omitted.)

ADC Before you add something in mach. lang. clear the carry first
(CLC). This instruction adds the data + the accumulator + the carry
and stores the result in the accumulator. It may be used in either
decimal {SED) or binary mode.

AND | use it to 0 bits, usually. AND #$7F zeros hit bit. The output
bits are 1 only if both input bits are 1.

ASL Shift all 8 bits in a byte left 1, which means hi bit drops off (and
lands in the carry). The O bit gets a @ put info it. Screen bytes are
backwards so an on-screen shift left will be right on the CRT.

BCC Branch if carry clear; detects accumulator less than the data
after CMP, CPX, CPY.

BCS Branch if carry set; detects accumulator greater than or equal
to data after CMP, CPX, CPY.

BEQ Branch if equal to @ means “if Z (zero) flag is set.” Use to
detect accumulator=data, after CMP, CPX, CPY.

BIT Performs AND between accumulator and memory conditioning
overflow flag, negative {sign) bit, and Z (@) bit. Result not stored. BIT
$C061 reads button #0, and BPL afterwards finds out if the button was
pushed by seeing if bit 7 was @ (7 automatically stores in N, which is
tested by BPL).

BPL Branch if negativity fiag (N) is 0. See above.

CLC Clear carry, before ADC or sometimes before shift is done to
test bits.

CMP Subtract data from accumulator but don't store results. Con-
dition carry, neg. flag (sign), and zero flag. Use before BCC, BCS,
BEQ, BNE, etc. Find out equal to, less than, or equal o or greater than.

CPX Like CMP but it's data and X register, not data and ac-
cumulator.

CPY Like CMP only it's data and Y register, not data and
accumulator.

DEC Decrement memory by 1.

DEX Decrement X by 1. Great for loops and counters.

DEY Decrement Y by 1. Great for loops and counters.

ECR Exclusive-OR; | use it to XDRAW or to complement screen
bytes (EOR #$7F). Result stored in accumulator. Output bit is 1 only if
input bits are different.

INC Increase memory by 1.

INX Increase X by 1.

INY Increase Y by 1.

JMP Jump to specified address.

242

JSR Jump to subroutine (mach. lang. version of GOSUB). An RTS
is like a RETURN and will bring you back.

LDA Load accumulator with data.

LDX Load X register with data.

LDY Load Y register with data.

LSR Shift all 8 bits in a byte left (on video this will appear right ---the
bytes are backwards). The one bit drops into carry, the 7 bit getsa 0
put into it.

NOP No operation, allows you to dump commands without re-doing
a file; just put $EA in place of byte.

ORA Logical OR; l use it mostly to set bits. Output bit @ only if both
input bits 0. ORA #3$80 sets hi bit.

PLA Pop top word of stack into accumulator (stack point is in-
cremented), can be part of a POP (in BASIC terms) instruction, or can
store data in the stack ($100-$1FF).

PLP Pop top word of stack into status register and stack pointer is
incremented. Status register has all the flags like N, V, B, DB, |, Zand C
{carry).

ROL Rotate left one bit, 7 goes in carry and carry goes in bit ©. Use
for shift-animation.

ROR Rotate right one bit, @ goes in carry and carry goes in 7 bit.
Use for shift-animation.

RTS Return from subroutine, like BASIC's RETURN.

SBC Subtract with carry, so SEC (set carry) first. The result is left
in accumulator. Data subtracted from accumulator, with carry. Binary or
decimal mode.

SEC Set carry; use before SBC.

STA Store accumulator in memory. Accumulator unchanged.

8TX Store X in memory; X unchanged.

STY Store Y in memory; Y unchanged.

TAX Transfer accumulator into X.

TAY Transfer accumulator into Y.

TXA Transfer X into accumulator.

TYA Transfer Y into accumulator.

Here are some memory addressing modes (for LDA):

LDA addr. zero page direct
LDA addr.,X zero page indexed
LDA (addr.,X) pre-indexed indirect

*LDA (addr.+1,add.),Y post-indexed indirect
LDA addr. 16 absolute

LDA addr. 16, Xor Y absolute indexed

* (Whatever zero page address ($286) is between parenthesis is lo
byte, and the next zero page address after it is hi byte --- of the indirect
address being referred to; the above form is hi, low.)(The addr.+1,
addr. and is standard way of showing 16 bit address.)(An example
would be if $26 was 00 and $27 contained $9, then LDA ($28),Y
would mean load accumulator from $300 plus whatever Y was. If Y
register contained $8 then the final address here would be $908.)

243

POKES, PEEKS AND
CALLS FOR EVERY PURPOSE [| 35

CALLS (and JSRs and JMPs)

1) 62923 ($F5CB), then PEEK into 224, 225, and 226. This is
HFIND and it's used after DRAWing to find out where you’ve been left
(hor. lo, hor. hi, vert. found with PEEKS)

2) 630689 ($F65D) XDRAW

3) 62977 (3F601) DRAW

4) JSR $F308 HGR2

5) JRS $F3E2 HGR

6) 62454 Clears page (in $E6) to last hplotted color ($F3F4)

7) 62458 Clears page (the one specified in $E6 page 1 is $20,
page 2 is $40) to black. ($F3FQ)

8) —868 Clears current line from cursor to right margin.

9) 62481 ($F411) HPOSN

16) 62551 ($F457) HPLOT

11) 62554 ($F45A) PLOT

12) 62778 ($F53A) HLINE

13) JSR $F465 INTX increments /decrements hor. screen coord.
by 1; N-flag decides which . ‘

14) JSR $F467 DECRX decr. hor. coord. by 1. . /

15) JSR $F48A INCRX incr. hor. coord. by 1

16) JSR $F4D3 INTY incr./decr. hor. coord. by 1 according to
N-flag setting. BPL is branch instr.

17) JSR $F4D5 DECRY decr. vert. coord. by 1.

18) JSR $F504 INCRY incr. vert. coord. by 1.

19) JSR $F5CB IPOSN makes external cursor at $EQ, $E1, and
$E2 equal to internal cursor data at $26, $27, $30, $E5

20) JSR $FBDD BELL1 beep speaker.

21) JSR $FB1E PREAD reads game controller (pass which one,
0—3, in X register); Y register gets the resuit.

22) JMP $3D0G use scan RTS when resetting after a mach. lang.
prog. that RTS doesn’t return you from

23} 54915 Clears stacks so no FOR-NEXT end RETURN errors
will accumulate.

24) 65068 Monitor memory move CALL. Zero Y and store start
lo/hi in 60/61 (dec.), and ho/hi in 62/63 and destination low/hi in 66
{dec) and 67 (dec).

25) 1002 Re-enable DOS commands

PEEKS (#s in {) get PEEKed at)
1) (—16384) Byte > 127 if keyboard hit (clear this with
POKE-16368,0).
’ 2) (38)+(39)*256 Latest hi-res base address ($26 and $27)

244

3) (—16336) Clicks speaker.

4) (—16287) Reads PDL button @, is > 127 if pushed.

5) (—16286) Reads PDL buiton 1, is > 127 if pushed.

6) (104) Hi byte of start of program pointer, is 8 for normal or no
graphics, is often 64 or 96 for starting program at $4000 or $6000.
{(103) would be 1.

7) (222) Error code (0-255).

8) (218)+(219)* 256 Line # of error.

9) (230) ($ES5) Draw on page one is 32 ($20), draw on page two
is 64 ($40).

18) (232)+(233)* 256 Address of shape table.

11) (43634)+(43635)* 256 Address of BLOADed file

12) (43616)+(43617)* 256 Length of BLOADed file

13) (228) Current color byte (mask). ($E4)

14} (224) Current hor. lo. ($EQ)

15) (225) Current hor. hi. ($E1)

18} (226) Current vert. coord. ($E2)

17) (249) Rotation ($F9)

18) (229) ($ES5) Integer part of hor. screen byte.

18} (48) ($30) Bit position table byte.

20) (28) ($1C) Color masking byte shifted for odd address
21) (214) ($D6) All commands=RUN if > 127; normalis < 128.
22) (231) ($E7) Scale.

23) (234) ($EA) Collision counter (change means collision).

POKES
1) 214,214 Al commands=RUN (2nd # must merely be >
127).
2) 230,32 Draw on page one.
3) 230,64 Draw on page two.
4) 1010,10
1011,0 } Reset == Reboot
1012,0
5) —16368,0 Reset keyboard strobe so we can read keyboard
again. . -
6) 33,33 Display (video monitor's) window width to set before
editting --- you'll see why when you use use ESC keys and arrows to
go through BASIC lines. (33, 40 is normal setting; Reset will get 33,
40)
7) 33,306 Window setting during Capture in DOS manual.
8) —16304,0 Display graphics.
—16303,0 Display text.
—16302,0 Display full-screen text or graphics.
—16301,0 Mix text and graphics.
—16300,0 Display page 1
—16299,0 Display page 2
—16298,0 Display text of same page as graphics were.
—16297,0 Display graphics of same page as text was.
9) 216,0 Reset error flag so normal error messages will happen.

245

10) 1010,152

1011,216 } Reset=Continue
1012,125

i1) 1010,242
1011,3 } Reset=Freeze
1012,166

246

36

USE OF LISA-EXECABLE
SOURCE-CODE TEXT FILES

This system contains lots of source files for scrolling, white line fix-
ing, filling with color, and especially for a whole collection of different
hi-res drawing and animation routines for hplot-shapes, block-shapes,
and vector shapes. The source code for scanning sections of screen
to be defined as block shapes is also included. Listings of a sample
sound source-code called MULTIPLE LASER! are included as well.

The way to use these is to boot LISA or any other compatible
assembler and once you see the exclamation point that says LISA’s
ready, type CTRL D EXEC (file name of source-code test file)(Return)

Now hit L to list, M to modify, D to delete, | to insert, A to assembile,
WRITE (file name) to re-WRITE, CTRL D BSAVE (file name slightly
changed), A$addr., L$length (Return) to save binary file, CTRL D
PR#1 (Return) and L to print-out listing, BRK to get into monitor,
*7003G for warm start and *7000G for program-erasing cold-start.

Study the source-codes using the line-by-line explanations given in
this manual. These files don’t teach you to suddenly make Raster
Blaster --- what they do is teach you most of the basics you need to
know in order to take it from there on your own. You know how to
create various shape types, various animation types, various coloring
schemes, scrolling schemes, YTABLE usage schemes, sequence
sounds & noise & violin & music schemes. These programs are a

springboard to use so that you may go unaided in any graphics direc-
tion you desire --- begin getting good resuits soon with no more fumbl-
ing or frustration.

247

FOR THE INEXPERIENCED | 37

(For People Who Don’t Hardly Know Nothing)

I still remember when | knew very little about all this --- | remember
asking people, stores, Apple Hot Line, etc. questions which they often
couldn't answer. | remember searching in vain through Apple-centered
magazines and often finding out very little.

| remember old Don Fudge being Howard Peale and saying “I'm
mad as hell and I'm not going to take it any more”, about the sorry state
of information dispersal in the entire microcomputer industry. It's not
only Apple.

But, in spite of all, I'm still in love with the Apple Computer and my
feeling is that | want this computer to really make it and to also be the
one microcomputer that remains a permanently viable fixture of the
small computer industry.

I'd like, therefore, to take a more right-brain-wholistic view of the
whole Apple scene. It's not that uniikely that IBM and some of the other
competitors are all ready to take great strides in micro development
and hire 1000 programmers to back up their hardware with software.
Rumor has it that IBM's already planning to unveil 3 small Apple com-
petitors this year or next year.(Another rumor has it that the small IBM
micros will run Apple software, which would be great for Apple soft-
ware producers, but bad news for Apple!) And anyone who'se been
watching the micro markets has noticed that a whole swarm of com-
peting viable micros are in the process of converging upon the industry
from both Japan and local hardware companies, so we can't afford to
goof all this up.

In an immediate-profit context, it makes great sense for all the soft-
ware manufacturers and programmers to jealously guard each and
every piece of information they come up with, and lock all new pro-
grams, utilities, ideas and POKES and CALLS in an H-Bomb proof safe.
It's good business to hide in the closet with information, asking large
sums of money for each tiny bit of data you're so kind as to dole out.
Profit is what business is all about, and | have no problem with that.

The problem comes when these short-range profit motives are not
tempered with a more wholistic, realistic view of the situation. In other
words, along with good business practices there needs to also be good

‘foresight. Scrambling for bucks is a very poor long-range strategy, if
Apple is to remain viable.

| suggest instead a sharing, cooperative attitude that causes Apple
software fo develop and improve too fast for any megacorporations to
swamp.

People who have written helpful articles in the software magazines
{(Apple Orchard, Call Apple, Softalk, Micro, Nibble, Applesauce) are to

248

be commended. This manual is my contribution to Apple information.

The reason | wanted “inexperienced” people to read the above is
that | believe that the context in which programmers hoid all this
“micro-mania” is quite important. Capitalism is a fair economic system,
but buck-obsession is another matter altogether. Each and every
graphics programmer so far has had to re-invent the wheel and start
almost from scratch. This is not a healthy situation --- no matter who
says what. Our society and national progress are based on sharing and
cooperation as well as competition. That's the angle that seems to be
most often forgotten in the scramble for bucks --- a symptom of an
economy in trouble.

In the short run one of the experts doing the fanciest shoot-em-up
yet will make a few exira bucks with keeping everything he does
secret. On the other hand, in the long run the publication of not only ap-
plications software (like 3-D graphics packages) but programming
method information and other data (like new programming discoveries)
will not only benefit himself and other programmers, but the Apple soft-
ware industry, and ultimately the viability of Apple as a computer is
increased. And isn’t this the long-range goal we all share?

| admit this is an easy consideration to lose track of in the hustle
and bustle of an average workday, but | can’t help but feel that if too
many of us “forget” too often, we'll find ourselves someday in the un-
comfortable position of being on the outside looking in.

Enough said.

If you know little about programming and wish to make extensive
use of this manual, do yourself a favor and study BASIC for a bit until
you feel comfortable with it --- it's easy and doesn’t take long. Then try
to use one of the assembly books to give you a basic idea of what
6502 instructions are all about --- look at the sample programs and
figure out what's going on. And read Chapter 34 of this manual. By do-
ing the above you'li be in the best position to profit from the contents of
this manual.

This manual was written for the amateur programmer, or the open-
minded beginner who’s willing to study the Apple manuals and
familiarize him/herself with BASIC before proceeding, or the profes-
sional who knows all about BASIC, other languages, DOS, hardware,
circuitry, and whatever else, but just never got around to graphics
before.

This manual was written in a way that hopefully doesn’t assume too
much knowledge on the part of the reader. By far the biggest single
problem of the somewhat useful, somewhat informative programs or
mach. lang. routines in most micro magazines is the tendency of
authors to act as though their audience were at the same level of
knowledge as they. This is seldom the case. People reading those ar-
ticles are usually attempting to attain such knowledge, but do not
already possess it.

I tried to write in a way that takes not too much for granted. When |
hear in my head “why tell them those last 6 lines are a delay loop --- any
dork can see that --- it's a waste of time!”, | just remember back to
when | didn’'t know a delay loop from a tube of Preparation H. So- more
experienced people will find more explanations than they need, while

249

amateur graphics people may find that my soup is seasoned about
right. A rank beginner, no matter what manuals they read, will feel in
the dark until BASIC and a couple of rounded teaspoon-fulls of
assembly are swallowed and digested.

So what should you do if you “don’t hardly know nothing” and you
don't know BASIC or anything and you stilf want to make use of this
package? Well, if you're open 1o learning, then go through the manual
reading, running programs, drawing shapes and scenes and coloring
them with Palette, run sounds files and Superfont and scrolling pro-
grams and Instant Graphics (Block Shapes), play the sample game a
lot, and list out programs and see if you can figure anything out once in
a while. Perhaps you'll get intrigued with some aspect of all this and go
back and learn BASIC someday and continue using this package, but
now more as the learning tool it was meant to be. If not, that's okay,
there are plenty of interesting things to keep you busy playing, draw-
ing, creating.

But just how much of an “applications” package is this? Is it as
useful as it is informative? Yes, very much so.

Not only do you get the tools for creating shapes, sounds, color-
filled pictures, etc., you also get the tools for creating hplot-shape
sequences, block-shape sequences, shift-animation and 2-page flip-
pin1 sequences, font styles (if you know BASIC) and font creations,
anu shapes of ali types and colors and sizes.

But I'll give an example: In the November 1979 MICRO, Bob
Bishop was kind enough to give people a hi-res compression program
that allowed full-screen pictures to be compressed so that they'd store
in a fraction of the space when on disk or tape. A 34-sector binary file
was now only 10 sectors or less, many times. The idea was to get
more pictures stored on a disk.

Since then Bishop and others have helped people learn about hi-
res colors and the result has been an abandonment of the limitation of 6
hi-res colors. My Palette program has hundreds of possible color pat-
terns and Edu-Paint claims billions of colors.

But the evolution of shape drawing and handling methods and the
advent of color-fill algorithms has changed things. Bishop got 33 pic-
tures on his famous Super Slide Show. But recent adventure games are
getting 100 or more pictures per disk. Compression methods may be
at the heart of some of these multi-scene adventure games, | couldn’t
say. | neither buy many adventures nor ever attempt to “bust” pro-
tected programs - | find the idea very distasteful --- creation is about
1,000.009 times as much fun as sneaking into someone else’s pro-
grams and having illicit looks around. Try each yourself --- and then see
if I'm right.

But “compression” doesn’'t seem to be indicated in the newer
methodologies. Combinations of hplot, block and vector shapes would
probably be the most dynamic as far as quality of picture produced, and
hplot shapes would be best if big shapes with lots of straight lines are
involved. In any case, fill routines such as the one in this system
(FILL1, from Palette) are used to color an entire scene once the scene
is drawn. At 6 (or even 2!....see A of 28D) bytes per “seeding” it
wouldn’t take much memory to color an entire screen). (One could

250

even limit most seedings to 2 bytes, X and Y coords., if the same col-
ors were used a lot --- merely a double FOR-NEXT needed here.)

One of the most economical things about scenes built of shapes is
that you can create an enormous variety of scenes with a few dozen
shapes. You needn’t turn the shapes into permanently stored scenes
--- all you need to do is just draw the shapes in various positions {and
for vector shapes, various scales and rotations) on the screen. A shape
table 3000 bytes iong would go a long way here. Hplot shapes for long
straight room lines or perspective wall and corner lines, and block or
vector shapes for more intricate figures would fill the bill nicely, without
filing the memory or disk too quickly.

Two to six-byte fill-seeding would finish the job and the resuit
would be a heck of a lot of possible colorful scenes on one disk. From
10 sector B&W in 1979 to hundreds of scenes full of intricate shapes
and wild colors in 1981, that’s the way Apple software is progressing.

However, if you want to be all ready to do this new color-filled
shape-scene type of thing, how do you begin? What do you do? Who
do you ask? What you do read?

Perhaps you can now see the purpose of this package. The short-
range purpose is to give all would-be graphics programmers the infor-
mation that they’'ve been searching and wishing for so that they needn’t
all waste time re-inventing the wheel.

But the second one is one based upon the foresight context, men-
tioned earlier. More than any other reason, this package was created to
help make the Apple microcomputer a permanent viable entity. How
could ! be in love with this computer and do any less?

251

It is my hope that this system will contain adequate knowledge, tips,
programs, examples, routines, explanations, source-codes, applica-
tions programs, food for thought, and so on; adequate to allow the
serious graphics studier to be able to use the package to do whatever it
is s/he desires in the graphics arena. The only subjecis | find noticeably
absent are 3-D graphics (there are plenty of such packages around)
and vector shape drawing. Apple’'s Applesoft Manual already explains
the subject of vector shapes and | have already developed a package
for the drawing and animation of vector shapes called Super Shape
Draw and Animate, which | recommend for anyone who desires ap-
plication/information/utility programs in that area. There are vector
shape examining, animating, 2-page flipping animation for vector
shapes, and other vector programs in this present system, mostly on
28A (3, G, H, 1), but not drawing or editing programs. As you read more
and more in the manual you'll become increasingly aware of why | con-
centrate on block-shapes and hplot-shapes so much. if you need more
vector shape drawing information, either get the above package or
read the Applesoft manual about vector shapes. {However, 5 of 28C
will convert anything to a vector shape with great ease!)

If you'd like more sound programs, or source codes for the sound
or scrolling programs in this system, we have an “Action Sounds and
Hi-Res Scroliing” disk available. If you liked where | was coming from
with the “sample game”, we have dozens more games with that type of
slant, most of which are hi-res and action-filled, or at least strategy
filled, which is often more enjoyable. Avant-Garde Creations has
business, educational, utility, games, informational software available.

‘People have been telling us what type of software they’d like to
see --- we've been absorbing the jist of these desires and recommen-
dations for over a year. One of the most-often cited needs was for a
decent graphics/informational/applications package that was truly infor-
mative and allowed programmers getting into graphics to circumvent
re-inventing the wheel, which every graphics programmer until now
has had to do.

We've tried to provide that which has been solicited in a form that's
as convenient, cheap, easy to use and understand as possible. If there
are suggestions for improvements or future packages, additions, bugs,
etc., let us know --- we're open to suggestions and new ideas at any
time.

If you know BASIC, you should now have the tools to create all
kinds of fine games/graphics utilities/etc.; and if you know assembly,
and can use the many mach. lang. routines in this system in dynamic

252

and strategically and visually stimulating ways, you should be well on
your way to the creation of some really wild stuff.

If you're merely artistic and wish only to create colorful scenes
(perhaps with added sounds or music --- such as violin sounds), and
shapes that you or others will scroll, animate, or use as adventure
scenes for hi-res adventures, fine and good. Whatever your graphics
application, this can be your foundation.

Have a great time with this system!

—Don Fudge

253

COMMANDS THE MANUALS
NEVER TOLD YOU

1) GOFLUB When you know darn well that the routine vou're
being sent fo is not going to do what you want it to.

2) DELI You CALL this routine when you run out of refrigerator
goodies in the midst of a heavy programming session.

3) EITHER/OR This BASIC COMMAND Is one you can expect
from the spouse if you program toco much and pay attention to him/her
too little --- either you wise up or s/he splits.

4) VAL: A CALL you make to CALL APPLE is likely to end you up
with this particular variable.

5) PDL You jump to this routine if you find out who spilled the
kool-aid on your Apple.

8) FLASH This routine keeps all the females in the neighborhood
on their toes and screaming.

7) WAIT This one is automatic, you needn’'t CALL it, just sort
1000 names alphabetically and like magic you'll be put into the WAIT
mode till the cows come home.

8) CLEARHOME You'll be CAllLed on this periodically if you
allow enough computer magazines, print-outs, books, and other junk to
accumulate.

9) NORMAL This routine you'll probably never see again if you
let computer fever take you over as much as many chip-jockeys do.

18) STORE You'll tend to use this routine a lot, but only if it’'s a
computer store --- for any other kind you'll bribe others to go and get
the goodies --- you're “right in the middle of a far-out program that's
gonna set the world on fire ----".

11) GOHELL After a CALL to the software house that sold you
the program that bombed in 3 seconds you'li find yourself giving all
sorts of crazy commands.

12) NOTRACE The variable that describes that routine you know
was in either Micro or Nibble, but you've looked through every issue 47
times and ---

13) HIMEM This routine is only used when you see your friend
Meme.

14) LOMEM Occasionally you substitute this routine for the
previous one when you're in such a hurry that first syllables are nearly
silent.

15) ONAIRGOTO The way you get around after you successfully
completed 12 months of work on a terrifically difficult program - it
works, it works!

18) XDRAW This is the routine you use to sign your big software
contract if you're computer literate only, and don’t hardly know from the
3 R’s.

254

17) STEP ON The perfect routine for a disk you're mad at.

18) ROT This route is automatic, and will happen to you if you
don't get out and get some exercise as well as doing programming.

19) END$ This variable describes your wallet if you can't live
without every new adventure that comes out.

28) RECALL This routine is generally what Apple owners feel is
the correct one for TRS-80s.

21) LOG The variable describes the way chairs feel after the 12th
consecutive hour of programming.

22) DIM The way things look after the 413th reassembling of a
mach. lang. program fails to make it work right.

23) SIN This variable describes the feeling as you pirate a copy of
a program.

24) PLOT If this is what you think that everyone is doing against
vou, you know you've finally programmed one too many lines --- you've
POPped your chips.

25) TAN One thing you'll never get, at your Apple all day.

26) ONERR GONUTS This one runs automatically if you've spent
months.on error trapping on a program and.you sit down with a friend to
show him the program; guess what happens when you run it?

27) GOBED The best routine for when you start seeing double.

255

APP

e
y 4
A=,
2%

=draw what
=what type of line .
=what size line or figure|
=X coordinate of ellipse | = = -~ :
center | Lo
=Y coordinate of ellipse |
or circle center
=X coordinate of circle
center
=F if filled with color’
=PDL(@) X-axis coordinate
or 'J' insert .
=PDL(1) Y-axis coordinate|
or !J' insert v
=PDL (@) button stops 1lst |
1/3 of wall action, |
also stops S,E,L,P,R,F
action
=PDL(@) button, stops
2nd 1/3 of wall action
=PDL(@) button, stops
3rd 1/3 of wall action,
or signals Symmetry
Hode in use |
=HCOLORS B,G,V,%,L,0,U,H,
default=W,i=abort ,

o o
O~ L © © o2 RSl
O NN N ~. o, %* [=]
O W © < H * = O
o~y fes] — oy
02 [a\ o P
© Qal = .]
@ - O 0 ~ o] 4t o~
DN N N S~ = ~ O
© 00 oo %) B4 /M M “
=4 < m - O mah
L se o3 o ee v es
MO N A P
4V e m § T
— — < @z A
— o Ex 28
et
QA [R &) wtg
Hgm=3QEHOH < o
= o v @
< ~. [
Y H = v O
<o o o]
0] (O] o o,
< H H WA
& o8
(o} oo
s 2
~
o
o~
00
S
~.
(o}
N

EXACT SIZES (height/width)
48/48 36/36 24/24 12/12

48/48 36/35 24/24 12/12

IZE TABLE

S
72/144 48/96 36/72 24/48 12/24

60/120 30/60 16/30 12/24

M
144/72
72/72
72/72

92/92

92/92
184/184 144/144 96/96 72/72 48/48 24/24 16/16 12/12

92/184
120/240

184/92

DRAW—CODE
R*
W
Q#*
T
0
I

(wide) Rectangle

Rectangle (tall)
Square

Triangle

Circle

Ellipse
*Symmetry Mode only

NAME

256

INSTANT ZRAPHICS (BLOCK SHAPES)
Col.#1 Col.#2 Col.#3
(Draw & Color) (Line) (Size)
A abort A abort A abort
C“(:géz'i‘on al) G random F fill shape*®
~ o placement (opticnal)
B,3,V,H= of H,V,D,U
1 AL LA
L,0,U,H (optional) L large,
B8 background (From x,y
ackq D diagonal \ to r. edge)
O dot * U diagonal M medium,
i *k
G disgonalsx f 1, horizontal g/ f "éé’ge)
. e - ’
X diagonal l:] V vertical S short
] e P ?
N ‘diagonal ‘ P paddles (174 x,y)
. e 3 -
Y diagonal - R random E short,
H horizontal®* [(1/8 %,y)
. 8 NOTE:
u honzontal** —— X shorter yet,
. D,U,H,V (1716 x,yY
*% ? ? K E] ,y
K vertical r. D reguine size, T even shomte
i 1.%% to column 3 orter,
V vertical D 30 (1732 x,y)
i %
0 ecircle @ Y very short,
T ellipse* (1/64 x,v)
Q squarex m 0 shortest, °
R rectangle* n (1128 x,y)
W rectangle*ﬂ
T trianglex &
P pyrotechnict
S stars/snow**:-_ -

*You must go to column 3 where you 4Y enter
£ encloge®* a fi1l1 (F) option, and you /ST enter a size.
F frame **Use PDL(@) dutton to stop scrollinngr filling.
L line (goto lcolors are: B=black V=violet Leblack? J=blue

column 2) G=green W=whitel O=orange H=whiteZ!
J block-shape Press C, then one of the 8 color letters.
drawing 2after ending the program you may direct your
M monitor x,y printer to print out your creation.
coordinates 3choose your MODE:
7 2 a) draw: simply type commands.
Z end . - 13 1 v
b) record: hit space bar, type '3' or "1l. Then
v it bar
SPACE Command after you've drawn hit space bar,
3 type 7 to 4gave.
Ovtieons : .
- - c)play: hit space bar, type '4' or '10'.
Z3C Symmetrical o X ik e
fode d)regressive: {.f qou haven’t hit ESC, you're
IETURN Regressive) 'm”J.::. If you have, type RETURMN.
ode 2)symmetry: ait ESC.

257

MUSIC CODES

KEYBOARD CODES:

(F#) (G#) (A%) (C#) (D#) (F#) (G#) (A#)

1 2 3 5 6 8 9 @
ESC Q W E R T Y U I o0 P - [
(F) (&) (&) (B) () (D) (E) (F) (6) (&) (B) (C)f

(c#) (o#) (F#)(GH#) (A#) (C#) (D#

s D @ H J L
z X ¢ v B N M , . /
() (D) (E) (F) (&) (a) (B) (c) (D) (E)

| NOTE DURATION CODES

K=o =240 duration (whole)
7-d. =180 duration (dotted half)
=120 duration (half)
4. =90 duratioh ' (dotted gquarter)
=60 duration (quarter)
=30 duration (eighth)
=15 duration (sixteenth)

; F=buzz, for sound effect or cymbals"
| SPACE —-to record all notes that follow

258

e

SAMPLE GAME WITH VIOLIN & NOISES

THE MINE FIELDS OF NORMALCY

@=quit

E=gsge example, below

P=pickup the symbol you're on

O=drop the symbol you®re carrying

move=with game paddles

score: 4000 points Tor 1 correct line
3000 points for 2 ad{zcent correct ltines
BO0O points (and game over) for 211 3

carrect lines
-50 points for dropping 3 symbol on 3another
ong and losing the 2nd one

-100 points for hitting . a mine
“chance tornados™ happen automatically for
every 5 mines you step on .

CICIRIE|Q & LIZ [
ClO[RlE|R & o P e
CHUREI & L2

INSTANT GRAPHICS (BLOCK SHAPES)

-

3lock-Shape - [1] O
Drawing Commands (J) .;]

d K ¥
o quit
P plot on/off switch N M <,
U northwest ‘ ’ " ’

I north
0 northeast
K or L east
, southeast
& south
N southwest
J west

259

INDEX

28A 7-9

28B 9-11

28C 11-14

28D 14-16

Alternative to XDRAW 166-167
Ampersand Sounds 198-199
Animation 30-164, 206-207
Animation Demo 27

Applesoft 42-47, 161

Applesoft Explosion Animation 161
Assembly/Assemblers 162, 183, 197, 240, 242, 247
Automatic Block-Shape Creator 85-93

Base Calculations 234-237

BASIC 252

Binary Files 23, 30, 32, 41

BLOAD 20

Bload Enclosed Shapes 238-239
Block-Sequence 57-92

Block-Sequence Animation (2-page) chart 72
Block-Shape 31-36, 57-92, 111, 121-124
Block-Shape Sequence Diagram 126, 129
Block-Shape Drawing 42-47

Books to Read 1

BOOM 161

BSAVE 20

CALLS 244-246

Chambers of Xenobia 174
Circles 180

Complement 170-173
Collision Counter 53-55, 168
Color Fill-ln 211-230

Color Filtering 231-233

Color Masking Bytes 171-172
Colorsafe 141 :
Combination:Shapes 48-50 =
Convert to Vector Shapes 50-55
Counting 181-182

Data array 37-40

Decimal/Hexidecimal Conversion 108

Delay Loops 181-182

Directories 4-16

Dissimilar Shape Sequences 115

Don Fudge 2

Double-shifting 2-page Flipping Block-Shape
Sequence Diagram 145

260

Draw 166
Drawing Cards 256
Duration Table 200

Edu-Paint 211
Ellipses 180
EOR 20, 165-167
Erasing 207
‘‘‘‘‘ External Cursor 97
Favorite Sounds 202-203
Fillt 208
Filtering 231-233
Five Hundred and Sixty Point Resolution 208-209
Flipping pages 141-158, 206-207
Flow-Chart for Fill1 216

Game Paddie Reading 183

Hexadecimal 24
Hexadecimal/Decimal Conversion 108
HIMEM 20

Hi-Res Colors 169-176

HL 21

How To Try Out Hi-Res Secrets i
Hplot-Shape 41, 93-109, 112, 125
Hplot Inversion/interchange 125
HPOSN 34

HR 21

Inclusive/Exclusive Width/Length to SAY 128
Instant Graphics (Block-Shapes) 42, 113-114
Instruction Set For 6582 242

Integer BASIC 197

internal Cursor 97

introduction 1

J Command 44-45
Keyboard Reading 183

Laser 203
LiSA 241
LISA-Execable Source Code Files 247
Length/Width toc SAY 128
List Out Programs 210
¥ Logical Shift Animation 135-160

Machine Language Assembly Files Binary and Text File Source
Codes (disk 28C)

Major Variable Values 112-115

Memory Organization 204-205

261

Monitor 115

Monitor Disassembly 69
Multiple Laser 203

Music (write:record:play) 201

Noises 198
NMOP 166

Object Codes 163
One Page Animation 135-140

Palette Program 169-176

PEEKS 244-246

Pitch Table 200

POKES 244-248

Polar Graphs 180

Post-Indexed Indirect Addressing 97, 243, 166
Pre-Indexed Indirect Addressing 166

Program Listing Directory 4

Program-Starting POKES 24

RAM 204
Regressive Mode 43
Reset Vectors 246
ROR 138

Rotation 55

Sample Game W/Violin and Nolses 161 (disk 28C)
Scale 55

Scanning 35

Screen Flip Demo 206

Scrolling 184-196

Sequences 56-109, 126-132

Shapes 20-29

Shift Animation 135-160

Six Five Zero Two (6502) Instruction Set 242-243
Sounds 198

Source Codes (disk 28C)

Speed 181-182

Spirographs 180

Stack 204

Summary 252

Superfont 133

Super Shape Draw and Animate 47, 115
Symmetry Mode 43

Text File Block-Shapes 37-40

Timing Clicks 181-182

Tunes 198

Two-Dimensional Array 33

Two Page Flipping 141-158, 206-207

262

-

Two Step Block-Shape Sequence (MANC) Especially For Hi-Res

Secrets’ Animation Routines 129
Using Font 134

VB 21

+. Vector Plotting Codes 48, 54

Vector Shape 30, 56, 110, 117-120
Vector Shape Tables (disk 28D)
Violin 199-200

YT 21

White Line Fixing 177-179
Words — Spesch 202

XDRAW 165-167
XDRAW Alternative 166-167

YTABLE 195, 234-237

Zero Page 204

263

	Part 1
	Part 2
	Part 3
	Part 4
	Part 5
	Part 6
	Part 7
	Part 8
	Part 9
	Part 10
	Part 11
	Part 12
	Part 13
	Part 14
	Part 15

