
I
I
I
I
I
I

ceI dvaI
I
I
I
I

Structured Compiled
I Language System
I for

the Apple IIGSI
I Version 4.0

I
I
I

TM

I
I
I
I
I icol
I

I
 vance
I
I TM

I
I

I
 Structured Com.piled
I Language System

. for
I

the Apple IIGS
I

Version 4.0I

I

I
 Micol Systems Inc., 9 Lynch Road, Willowdale, Ontario, Canada M2J 2V6

I

I
I
I
I
II

Introduction

Limit OfLiability

While every precaution has been taken to ensure the correctness of the software and
its accompanying manual, Micol Systems Inc. cannot assume any responsibility or
liability for any damage or loss caused by our software. It is the responsibility of the
user to make the necessary backups for the data and programs.

Apple Computer, Inc. makes no warranties, either express or implied,
regarding the enclosed computer software package, its merchantability or its
fitness for each particular purpose. The exclusion of implied warranties is not
permitted by some states. The above exclusion may not apply to you. This
warranty provides you with specific legal rights. There:may be other rights
that you may have which vary from state to state.

GS/OS is a copyrighted program of Apple Computer, Inc. licensed to Micol
Systems Inc. to distribute for use only in combination with Micol Advanced
BASIC (GS version). Apple software shall not be copied onto another diskette
(except for archival purposes) or into memory unless as part of the execution
of Micol Advanced BASIC. When Micol Advanced BASIC (GS version) has
completed execution, Apple software shall not be used in any other program.

Product Revision

Micol Systems Inc. reserves the right to make improvements to this software and
manual at any time without notice.

The text file INFO.DOC on the IMAB.SUPPORT disk contains the latest
information about this product which could not be included in the manual at the time of
publication. Be sure to read this file into the editor for up-to-date information.

Copyright Notice

This technical manual and the related software contained on the diskettes are
copyrighted materials. All rights reserved.

Duplication of any of the above described materials for other than personal use of the
purchaser, without express written permission ofMicol Systems Inc., is a violation of the
copyright laws of the United States and Canada, and is subject to both civil and criminal
prosecution.

Apple, the Apple logo, Apple HGS, AppleShare, ImageWriter, LaserWriter, Apple 3.5,
Finder, GS/OS, QuickDraw and UniDisk are trademarks of Apple Computer, Inc.

Micol BASIC, Micol Advanced BASIC, Micol Advanced Utilities and Micol MACRO
are trademarks of Micol Systems Inc. Micol BASIC, Micol Advanced BASIC, the Micol
Advanced Utilities and Micol MACRO are copyrighted programs of Micol Systems Inc.
Micol Systems Inc. is an independent software developer.

I

ii Introduction I

I

Copyright ©1988-92 by Mica} Systems Canada and Micol Systems Inc.

I
Published in Canada.

ISBN 0-921270-04-6 I

Software: Micol Systems Inc., Willowdale, Ontario I

Documentation: Micol Systems Inc., Willowdale, Ontario and Redaction Electronique
Enr., St-Hyacinthe, Quebec I

FIRST EDITION, July 1988. I

SECOND EDITION, revised, corrected, and enlarged.
First printing, February, 1992 I

Third printing, June, 1992

I

I

I

I

I

I

I

I

I

I

I

I Table of Contents iii

I Table of Contents

I
I Introduction

Limit OfLiability .i
Product Revision j

I Copyright Notice , i
Table of Contents iii

I Part One: Overview of the Language
Chapter One: General Review 1

I
I Comments on the Second Edition 1

Overview 1
Some Advantages of the Language 1
The Components of the Language System 2

1. The Command Shell _ 2
2. The Source Code Editor 2

I 3. The Full-featured Compiler and Linker 3
4. Full~featured Structured BASIC Language 3

How this Manual is Organized .4

I The Micol Advanced BASIC System Disks 5

I
What You Need to Know 6
Hardware Requirements 6

I
Suggested Additional Hardware 7
Run Time Memory Needs ofStand Alone Applications 7

Setting up Micol Advanced BASIC on a Hard Drive 7
Using Micol Advanced BASIC with the Finder 8
Using Micol Advanced BASIC With a RAM Disk 8

I Using Micol Advanced BASIC With Your Printer 8

I
Confip' lring Your Printer Using the Control Panel 9

IfYou Need Assistance 9

I
Compatibility Overview 10

Applesoft BASIC 10
Micol Advanced BASIC for the Apple IIeI1Ic l0
Earlier Versions ofMAB for the Apple JIGS 11

Syntactic 8ynlbols Used in this Manual l1

I Chap'ter Two: Getting Sta.r'ted 12

I
I

A Briefffistory of BASIC 12
Writing Your First Program in Micol Advanced BASIC 12
Entering Program Examples 14
Suggested Manuals 15
Acknowledgments 15

I Introduction

iv Table of Contents I

Part Two: The Programming Environment I

Chapter One: The Com.mand Shell
Overview
Line Editing Commands

Up and Down Arrow Keys (iJ.)
Left and Right Arrow Keys (-H-)

The Return key
The Delete key
<Control>C (Break)
<Control>R (Repeat)
<Control>S (Space/Stop/Start)
<Control>X (Cancel)

Built·in Shell Commands
BATCH Pathname

AutoExec FIle
CATALOG (Pathnamel .,
COMPILE Pathname [, Pathname]
COFYPathnamel TO Pathname2
CREATE Pathname
DELETE Pathname
EDIT [PathnameJ
FORMAT Volume_Name
}{ELP
HOME

LIST Pathname

LOCK Pathname

ONLIN'E .,

PREFIX. [Directory_Name]

P:R.EFIX < [<]

PRIN"TER
QUIT [Pathnamel
RENAME Pathname1 TO Pathname2
ROO [Pathnamel
UNWCK Pathname

Adding Your Own Commands to the ShelL
How to Write a Shell Utility

Passing Parameters to the Utility
Chapter Two: The SOllrCe Code Editor

Overview
Entering and Quitting the Editor

Entering the Editor (EDIT [Pathname])

,. 16

16

16

I

16

I
16

16

16 I
17

17

17
 I
17

17

I
17

18

,.." 18

19
 I

19

19 I
19

20

20

21 I

21

I
21

21

21 I
22

22

23
 I
: 23

24

I
24

24

24 I
25

25

26 I
26

26

I
26

Quitting the Source Code Editor «Apple>Q) 26

Description of the Editor's Display 26
 I

Introduction I

I Table of Contents v

I The Command Line 26
The Reference Ruler 27

I The Editing Display Area 27

I
The Data Lin.e ' 27
The Sound Indicator 27

Basic Editor Commands 27

I
Control Command Keys 27·

<ControbB Erase to start of line 28

I
<ControbX Erase current line 28
<Control>Y Erase to end ofline 28

The Apple and Option keys 28
Escape key (Esc) 28
Return key 28

I Deletion Mode «Apple>Delete) 28

I
I

Delete Key 29
Help screen «Apple>H or <Apple>?) 29
Enter/Overstrike Mode «Apple>E) 29
UpperlLowerCase Mode «Apple>X) 29

Moving in the File 30

I
Cursor Control (i,k...-=;) 30
Move Down one screen «Apple>J.) 30
Move Up one screen «Apple>t) 30
Move To Beginning of Line «Apple>~) 30
Move To End of Line «Apple>-=;) 30

I Move to Previous Word «Option>~) 31

I
Move to Next Word «Option>-=;) 31
Relative Motion within the File 31

I
(<Apple>1 through <Apple>9) 31
Go to Program Line «Apple>G) 31

Setting Tab Stops (<Apple>Tab) 31
Tabbing (Tab key) 32

Text Block Editing Commands 32

I Copy Text Block from Buffer (<Apple>C) 32

I
I

Delete Text Block from Code (<Apple>D) 32
Move Text Block to Buffer «Apple>M) 33

FindlReplace Commands 33
Backward FindlReplace C<Apple>B) 33
Forward FindlReplace (<Apple>F) 33

Filing Commands 34
New Source Code File «Apple>N) 34

I Insert Source File from Disk «Apple>!) 34
Save, Kompile and Execute File «Apple>K) 35
Load Source Code File (<Apple>L) 35I Save File as TXT type file (bit 7 on) «Apple>S) : 36

I Introduction

vi Table of Contents I
Save File as SRC Type File (bit 7 off) (<Apple>T) 36 I

Printing Commands 36

Print Source Code (<Apple>P) 36

Text Window Printout «Apple>W) 37
 I

Miscellaneous Commands 37

Convert Decimal to Hex (<Apple>#) 37
 IConvert Hex to Decimal (<Apple>#) 37
Version Information «Apple>V) 37

Chapter Th.I-ee: The Compiler 38 I111

Overview 38

Invoking the Compiler 38

Compiler Commands 39
 I

Aborting a CompilatIon 39

Compiled Listings to the Screen 40
 ICompiled Listings to the Printer 40

Dealing with Syntax Errors 40

Code Generation " 41
 I

Chap"'ter FOllr: The Link.er ••••••••••••••••••••••.•....•.•.........•..••.•..•.•u.III 42

Overview 42

How the Linker Works 42
 I
How to Use the Linker 42
Linking Errors 43

Chapter Fi.ve: The Run Ti.m.e Library 44 I
4lI ••••• ~••••••••••••••• 1II ••••••••• ~

Reference Section 44

The Micol Systems Licensing Agreement 44
 I
Educational and Industrial Site Licenses .45

Part Three: The Advanced BASIC Language
 I
Chapter One: Compiler Rules and Directives•.•...............•.•. 46

Overview : 46

General Information 46
 I

Multiple StatemeL.;8 per Line .46

Line Numbers 46
 IProgram Line Continuation Character (\) .47

Commenting Your Programs 47

Comment Statement (Old Method) .48
 I
Comment Delimiter Characters [{}] (Preferred Method) .48

Program Order ., 49

Program Name 49
 I
Compiler Directives 50

Compiler Options 50
 IB~NO = IntegecLiteral 50
CODE ~ 50
ERROR : 51 I

Introduction I

http:�.�...............�.�

vii I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Table of Contents

EXTEND 52

LIST 52

LONGINT 52

NOGOTO 53

NOT_C 53

O.P1'ThIIZ 54

PRIN'rER : 54

VAR2 54

Compiler Aliases 55

ALIAS "User statement" ="'BASIC Expression" 55

-User Statement 55

VariabIe Type Declarations 56

INT(letterl-Ietter2) : STR(letter3-letter4) 56

Compiled Listing 58

Program Lines 58

Symbol Table Information 58

Statistical Information 59

Chapter Two: Basic Elements of the Language _.60

Overview 60

Basic Symbols 60

Digits (0 - 9) 60

Letters (A - Z, a - z) 60

Special Characters 60

Separators 60

Colon 60

Comma 60

Parentheses 61

Space 61

Variable Names 61

Variable Data Types 61

Simple Data Types 61

Booleans 62

Integers 62

Short Integers 63

I..ong Integers 63

Real (Floating Point) 63

Single Precision 63

Extended Precision 64

Scientific Notation 64

Strings 64

Static Storage 64

Dynamic String Storage : 65

Structured Data Types: The Array 65

Introduction

viii

Declaring Arrays
Multi-dimensional Arrays

Array Memory Usage
Array Nesting

Operators
Arithmetic Operators
Relational Operators
Logical Operators

Overview
General Purpose Functions

ABS (Aexpr)
EXP (Aexpr)
INT (Aexpr)
LOG (Aexpr)
MOD
ROlJN1) (Aexpr)
SGN (Aexpr)
SQR (Aexpr)

Trigonometric Functions
Am (Aexpr)
COS (Aexpr)
SIN' (Aexpr)
TAN (Aexpr)
RadianlDegree Conversion Functions

Chap'ter Four: Strings
Overview
String Function Notes
The ASCII Character Set
String Comparisons
String Concatenation
Conversion Functions

ASC (Sexpr)
Clffi$ (Aexpr)

Introduction

I

65 I
Table of Contents

65

I66

67

67 I67

67

68 IEvaluation of an Expression: Precedence Rules 68

Hexadecimal literals 68

Mixed Arithmetic Expressions 68
 IExpressions with Simple Variables 69

Expressions with Arrays 69

Simple Variable Declaration 69
 I

DECLARE Boolean!. Integer%. Real&, String$ 70

Variable Assignments 70

lnitializing the Data Space 71
 I

CLEAR 71
Chapter Three: Mathematical Functions•..............•..... 72 I72

72

I72

72

72 I73

73

73 I74
74
74
74 I
75

I75

75

75 I76
76

76

76 I
77

I77

77

, 77 I78

I

http:�..............�

ix I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Table of Contents

LEN (Sexpr) 78

S'rR$ (Aexpr) 78

VAL (Sexpr) 78

String Searches 79

INDEX (SubString$, String$. [Aexpr]) 79

String Manipulation 80

mSERT$ (Stringl$, String2$, Pas_Number) 80

LEF'I'$ (Svar, Aexpr) 80

LOWER$ (Svar) : 80

MID$ (Svar, Aexprl [,Aexpr2]) 81

RIGHT$ (Svar, Aexpr) 81

"UPPER$ (Svar) 81

System String Functions 82

DATE$ 82

PREFIX$ 82

TIl\1E$ 82

String Garbage Collection 82

FRE (0) 83

Chapter Five: Making Decisions ~ 84

Overview 84

Program In.dentation 84

Single Choice Decisions 84 ..

The IF Statement 84

Simple IF 84

Block IF..TlIEN..ELSE 85

Multi-Choice Decisions 86

The CASE_OF Statement 87

Chapter Six: Basic Input'Output of Information•.89

Overview 89

Data Input 89

Internal Data Entry 89

DATA Vax [{,Var}] 89

READ Vax [{,Vax}] 90

RESTORE 91

Keyboard Entry 91

GETSvar 91

INlffiY Svar 92

INPUT ["Prompt string";] Var [{, Var }] 92

String Input Rules 93

Numeric Input Rules

Entry from Other Devices 94

mSLOT (SloeNumber) 94

Data Output : 94

Introduction

94

http:Input'OutputofInformation...................�

x

Screen Display Control
DElAY = Aexpr
HOME
rnvERSE
MS_TEXT
NORMAL
SPEED =Aexpr

Unformatted Text Output
PRINT [ExprJ [;l [,l [ExprJ

Form.atted Text Output

Table of Contents I

I
95

95
95
95

I
96

I96
96
96 I96

97

PRINT USING Mask$; (Expr] [;] [,] [ExprJ 97
Cursor Positioning

POS (Aexpr)
SPC (Aexpr)
TAB (Aexpr)
HTAB (Aexpr)
VTAB (Aexpr)

Output to Other Devices
OUTSLOT (Slot_Number)
PRTON
TEX'r

Chapter Seven: Disk Filing '111'111

Overview
File Management

CAT$
COpy Svar1 TO Svar2
CREATE Svar
DE:LETE Svar
FLUSH :
FORMAT Svar
LOCK Svar
ONLmE$
PREFI)(Svar
RENAl\1E Svar1 TO Svar2
UNLOCK Svar :

Direct Access to the Operating System

I99
99
99
99

I
100 I100

101

101 I101

102

103 I

_ 103
103 I103

104

105 I105
105
105
106

I
106

I106

107

107 I107

GS_OS (Operation_Code, PatbName$, Integer_Array% () 107
General File Access

File Access Number
APPEND (File Access Number)
CLOSE (File Access Number)
FILE (Svar)
GET (File Access Number) Svar
INPUT (File Access Number) Var [{,Var}1

Introduction

109 I109
109

I109
110

, 110
111 I

I

I Table of Contents xi

I
I

OPEN (File Access Number) Svar 112
PRINT (File Access Number) [USING Mask$;J Var{{,Var}] 112
ROPEN (File Access Number) Svar 113

I
WOPEN (File Access Number) Svar 113

Sequential File Access 113

I
EOF (File Access Number) 113

Random Access Files 114
SEEK (File Access Number) Record Number, Record Size 114

C'hapter Eight: Control of Flow ,. ~1I.1IIII 116
Overview 116

I Program Term.ination 116

I
External Flow 116

ROO Pathname 116

I
Flow Interruption 116

END 116
STOP 117
BYE 117

Branching 118

I The Routine Declaration 118

I
ROUTINE Id 118

Unconditional Branching 118
Th.e Dreaded GOTO 119

Selective Branching 119
The ON..GOTO Statement 119I Loops 120

Finite Loops 120

I FOR .. NEXT !A>ops 120
NEXT I..oop Counter 121
FOR .. UNTIL I.oops 122

I Conditional Loops 123
REPEAT Loops ~ 124
WHII..E Loops 124 I Chapter Nin.e: Modularization 125III ••••• II

Overview 125

I Advantages ofModularity 125
Module Types 125
Module Identification 126

I Program Order with Modules 126

I
Routines 127
Functions and Procedures 127

I
General Rules 128
Global and Local Variables 128

Global Variables : 128
:Local Variables 128

I
Introduction

xii

The Optional Parameter List

Ways ofPassing Parameters

Passing by Value

Passing by Address

Function Definition

Procedure Definition

Explicit Variable Declarations

Passing Control to a Subroutine

FN Identifier [Parm-l, Pa.rn:L-n]

GOSUB Identifier [Parm-l, Parm-n]

POP

PERFORM Routine_Id UNTIL Relop
Computed Routine Selection

ON Aexpr GOSUB Routine_Idl [{,Routine_Id(n)}]
Module Library Usage

Creation of a Library of Modules
IN'CLUDE Pathname

Recursion
Chapter Ten: Graphics ,.. l1li •••••l1li ,.. II1II •••••••• l1li

Overview
Ww Resolution Graphics

GR
COLOR = Color_Number
HLIN X-Coordl, X-Coord2 AT Y-Coord
PLOT X-Coord, Y-Coord
SCRN (X-Coord, Y-Coord)
TEXT
VLIN Y-Coordl, Y-Coord2 AT X-Coord

Super High Resolution Grapmcs

HGR and HGR2

BKCOLOR =ColocNumber

HCOLOR =Color_Number

DRAWS'I'R (Svar)

IIPLOT X-Coord, Y-Coord

fIPLOT TO X-eoord, Y-coord

Super High Resolution Shapes

Joystick and Paddle Controls

PDL (Paddle_Number)

Paddle and Joystick Buttons

Chapter Eleven: The Sound of Music

Overview

Audio Output

BELL

Introduction

Table of Contents I
129
 I

130

130 I
:	 130

131

I
132

0 133

133 I
133

133

134 I
134

135

135

135

I

"	 135

136
 I

136

II
 139	 I
139

139

I
139

139

140 I
141

141

141 I
142

142

143

143

I

144 I
145

145

145 I
146

148

148

148

I

149 I
149

149

: 149
 I

I

I Table of Contents xiii

I

I
I

Sound 149
Waveforms 150

The Default Waveform 150
Creating your own Waveform 150

WA-vE =Wave_Numbers 150

Making the Sound 151
NOISE (Generator, Pitch, Volume) 151

I Music 152
Instruments 152

Default Instru.ment 152I Creating Other Instruments 152
mS'fR.UM =Aexpr 152

I Making the Music 156

I

MUSIC (Generator, Pitch, Volume) 156
Stopping Sounds 157

I QUIET (Generator) 157
Turn Them All Off 157

SII...ENCE 157I Chapter Twelve: Creating The Human Element 158
Overview 158
Pseudo Random Numbers 158

Integer Pseudo Random Numbers 158
Integer% = RND (Aexpr) 158

I Real Pseudo Random Numbers 159

I

Real& =RND (Aexpr) 159
ControlledUncertaintyTM 159I Setting the Uncertain Condition 159

Chapter Thirteen: Direct Memory Access 162
Overview 162

I

Examining and Changing Memory 162
PEEK (Aexpr) 162

I POIffi Aexprl, Aexpr2 162
Finding the Address of a Variable or Array 163

ADDR (Variable [(]) 163I Memory Images and Files 164
BLOAD Svar, Start_Address, Bytes_to_Load 164
BSAVE Svar, Start_Address, Bytes_to_Save 165

Memory Management 165
The User ill Number 165

I GET_MEM (Handle&, Location&) 165
FREE:N.lEM (Handle&) 167

I
 MOV_MEM Start_Addr, Num_oCBytes AT Dest , 167

I

Introduction

xiv Table of Contents I

Chapter Fourteen: Run Time Error Handling 168 I

Overview 168

Handling the EITor 168
 I
ONERR GOTO Module_Id 169

RESUME 170

Part Four: Creating the Apple llGS Desktop I

Chapter One: Desktop Programming

Overview

The Desktop Environment

Desktop Commands

Monitoring the Desktop

MOUSE (Integer_Array ()

Chapter Two: Menus IlII

Overview
Menu Specifics
Defining a Menu

Menu Definition Syntax
Menu Title and Item Identification Numbers

N - Number
H - Hexadecimal

Menu Attribute Characters
* . Keyboard Equivalent
Specifying Defaults

D - Disable and Dim a Menu TitlelItem

C - Item Selection Indicator

Separating Groups ofMenu Items
V - Underline

- (Dash) - Dividing Line :

Font Style Menu Item Characters
B - Boldface.. .

I - Italics

o -Outlme
S - Shadow

U - Underlme

X - Restore Menu or Item Color(s)
Apple Menu Items

The About Program_Narne Item
The Help Item

Defining the Menu
MENU (EventRecord.% (,DesktopAITay$ ()

How to Use the Menu Control Numbers

Introduction

171

I
171

171

172 I
172

172

174 I
174

174

I
,. ..174

174

175 I
176

176

176 I
177

178

178
 I

178

179 I
179

179

180
 I

180

180 I
180

180

I
180

180

181

181 I

181

I
182

182

183 I

I

I Table of Contents

I
I

Remove a Menu List (0) 183

Create tb.e Menu (1) 183

Reserved for Future Expansion (2) 184

Reserved for Future Expansion (3) 184

I Enable a Disabled Menu List or Item (4) 184

Disable a Menu Title or Item (5) 184 '

I Remove a Menu Item from a Menu List (6) 184

Add New Desk Accessories (7) 185

I Unhighlight a Menu Title
Monitoring the Menu

MOUSE (IntegerAlTay ()

I Chapter Three: Windows
Overview
What are Windows

I Managing Windows

185
185

: 185

,. ,. 188
188
188
188

I
I

WINDOW (Integer_Array (, String_Array$ () 188
Creating the Window 189
Creating The Window 191

Setting Wframebits 191

Closing a Window 194
Using A Specific Window 195
Obtaining the Pointer of a Window 195

I Obtaining tb.e Number ofa Window 195

I
I

Monitoring Windows 196
MOUSE (Integer_Array () 196

Window Watching Information 197
Handling Window Updates 198

Drawing in a Window 200
Note to Advanced Programmers 201

Chapter Fo'Ur: Dialog Poxes 202

I Overview 202

I
I

Dialog Box Definition 202
Controls and I..abels 202

The Push Button 203
The Check Box 204
The Radio Button 204
The Scroll Bar 204
The Static Line 205

I The Edit Line 205
Defining the Dialog Box 206

DIALOG (IntegerArray CStringArray () 206I Dialog Control Numbers 206

I
Introduction

xvi

Close the Dialog Box (0)

Create the Dialog Box (1)

Add a Part to a Dialog Box (2)

Remove a Part from a Dialog Box (3)

Enable a Part in a Dialog Box (4)

Disable a Part in a Dialog Box (5)

Monitoring the Dialog Box
MOUSE (Integer_Array ()

Table of Contents I
I206

207

209, I
209

209

210 I
210

I210

Part Five: The Apple IIGS Tooffiox

Chapter One: Direct Toolbox Access
Overview
Defining the ToolBox
The Universal TOOLBOX Command

212 I
212
212 I212

TOOLBOX (ToolNum, FuncNum [:Push List] [;Pull List]) 212
Determining the Tool and Function Numbers 213 IThe Push List
The Pull List
Error Checking
TOOLBOX and Long Integers

Future ToolBox Additions
Allocating ToolBox Buffers

Chapter Two: Tool Set Tables.~

213
214

I214
214
215 I215

III 217

Part Six: Program Management I

Chapter One: Progr-am Debugging

Overview

Debugging Statements

BELL

PRIN'T
STOP
TRACE
STRACE
NOTRACE

Chapter Two: Program Optimization
Overview
Saving Memory

Working within the Editor's Workspace
Saving Space in a Program

Speeding Up Your Programs
Chapter Three: Program Segmentation

Overview
Chaining Source Code Files

intrOduction

221
221
221 I
222

I222
222
222 I223
224

'IIIoiII 225
225 I
225

I225
225
226 I227
227

: 227 I

I

xvii I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Table of Contents

Segmenting the Source Code Files 227
CIlAlN String_Literal 227
How to Debug a Chained Program 228

Segmenting Executable Code Files 228
How to Segment a Program 229

SEGMENT [Identifier] 229
. Using a Segmented Program 229

CALL Segment_Number 230

LRETURN" 231

Chapter Four: I.inking Assembly Language Programs 232
Overview 232
Linking in the Assembly Language Program 232

LINK PathName 232
Getting a Direct Page 233

How to Use this Direct Page 233

Chapter Five: Creating Independent Programs....•.•...••......•..•. 234
Overview 234

Creating a Startup Disk for Launchable Programs 234
Hard Disks and Launchable Programs 234
Stand Alone Micel Advanced BASIC Programs 235

How Micol Advanced BASIC Boots 235
Creating a TurnKey System 236
Creating GS/OS Applications 236
Creating Classic Desk Accessories 238

Chapter Six: Converting Applesoft Programs 239
Overview 239
Source File Conversion 239
General Conversion Rules 240

DIM Statements 240
DATA Statements 240
Strings ~ .- 240
Slot Input/Output 240
Turning the Printer On and Off 241
PRIN'Ting 241
FIASH Command : 241
Cursor Positioning 241
Control ofFlow 241
High Resolution Graphics 241
PEEKs and POKEs 242
Functions 242
Disk Filing 242

Go for It 243

Introduction

http:CreatingIndependentPrograms....�.�...��......�..�

xviii

Appendices

Appendix A: Memory Usage oiIIllfloiIII ••••••••• IIII

Appendix B: Screen Outpn t

Appendix C: Run Tim.e Error Codes

Appendix. D: GS/OS Error Codes ,.•.•. IIfI

Appendix E: Compiler Reserved Words

Appendix F: ASCII Character Codes
 III

Glossary oiIII ••••••••••••••••••• olII II1II

In.dex

Introduction

Table of Contents I
I

,..'IIIoiIII 244

;••. 247 I
248

251 I

IIIII

253

255 I
257

,.••....•.•....• 261 I
I
I
I
I
I
I
I
I
I
I
I
I
I

I Chapter One: General Review 1

I Part One: Overview of the Language

I Chapter One

I
General Review

I Comments on the Second Edition

I We are proud to present the Second Edition of the Micol Advanced BASIC for the
Apple IIGS reference manual. This manual has been completely reorganized to make it
easier for everyone, especially the novice, to use.

I
I Ifyou are one of those who owns a First Edition copy of the manual, take the time to

carefully look at the table of contents and the index to see where the changes were made.
The table of contents and the index have been greatly expanded to make it easier for you
to find the information you are looking for.

I
Take the time to read the manual through. You will find many programming tips

written by people who have discovered and are already enjoying the power of the Micol
Advanced BASIC Structured Language.

This reference manual has program examples throughout the entire manual. We

I recommend you study these program examples very carefully. You may also wish to
compile and execute some of the more important ones. This way the explanations will
become clearer to you and you will get practice in programming.

I Send us your suggestions, comments and criticisms. We read all the letters we
receive, even if we cannot reply to all of them. We will answer you if you include a
self-addressed envelope with your letter.

I
Overview

I
The purpose of Part' One is to give an overall look at Micol Advanced BASIC so you

will get a general idea of what this language system has to offer.

I
I Micol Advanced BASIC is a full-featured, compiled language system. Its purpose is

to let you develop structured BASIC language programs for your Apple IIGS.

The BASIC program is created using the full·screen editor. Communication with the

I
GSlOS operating system is done by means of the Command Shell. The Compiler and
Linker translate BASIC source code into binary instructions which the microprocessor
can directly execute.

Some Advantages of the LanguageI
I

Micol Advanced BASIC needs only 768K of random-access memory to function, and
yet all its components (the Command Shell, the Editor, the CompilerlLinker, and the

I Part One: Overview of the Language

2	 Chapter One: General Review
 I
Run-Time Library) remain in memory during development. While developing your
 I
programs, no long delay will occur for one of the components to be loaded from disk.

The executable load files created by Mical Advanced BASIC use a special fast load
format and may only be loaded by the loading software supplied with this product. I

Micol Advanced BASIC may be used to produce Classic Desk Accessory files just by
using a utility program provided. Stand-alone Micol Advanced BASIC programs use a Icommon library located in a specific folder on the stand-alone disk.

A Stand~alone Micol Advanced BASIC program may also be executed on an Apple

IIGS connected to an AppleShare network. Micol Advanced BASIC can also produce
 I816 (Ol\1F) files that may be launched with the GS Finder.

Souree code files created with the He/IIe version ofMicol Advanced BASIC are highly

compatible with those created with the GS version; only a few changes are needed to use
 I
the full power of the lIGS version.

Micol Advanced BASIC can use all the memory available to your Apple IIGS and is

written in assembly language, the fastest code possible on your computer. Little time is I

spent compiling or linking, giving you more time do to what you can do best... program.

I
The Components of the Language System

1. The Command Shell	 I

The Command Shell (or Shell, for short) allows the user to

the language system. Through the Shell, for example, it is poss
interface with the rest of
 Iible to see the contents of

a disk, invoke the text editor, compile a program, etc.

The Shell also has the capability of accepting commands from a file on disk. Utilities
 I
written by the user may also be added to the Shell. Because of these utilities, the

possibilities of tasks the Shell can perform are almost unlimited.. The Shell has the

following features:
 I

Easy to remember commands

•	 Full complement offiling commands
 I
Test of compi1 d programs

•	 Commands executed in a Shell Batch program

AutoExec batch file
 I

•	 Uses commands written in BASIC
•	 Easy-to-read help screen.
 I

2. The Source Code Editor
 I
The Source Code Editor lets you create, and modify BASIC source code files. The

editor has word·processor·li.ke features to ease the maintenance and revision of the
 I
source code files. The editor can read standard TXT ($04) or SRC ($BO) type files. The
editor has the following features;

I

Part One: Overview of the Language	 I

I Chapter One: General Review	 3

I 80-column, full-screen editor
•	 128 kilobyte buffer (large enough for.a file with about 4000 lines ofcode)

II	 • Word-processor-like commands
•	 Fast. and easy copy/movement of text

II	 • Saves sour:ce code files in normal ASell format
•	 Decimal to heJ[(and back) converter
•	 Easy-to-read help screen

II
3. The Full-featured Compiler and Linker

I The Compiler reads the source code created using the source code Editor and
generates an object code file which the Linker will convert to a maclrine usable format.

I The Compiler has the following features:

• Rapidly generates 65816 code

I	 • Uses FastLoad to bring programs into memory fast
•	 Easy-to-remember Compiler Directives
•	 Ultra fast screen displays

Support of source code libraries

Link. to assembly language programs

•	 Easy creation of large programs
•	 Easy creation of startup disk

I	 • Utility to create Classic Desk Accessories

4. Full-featured Structured BASIC Language
I
I

With Micol Advanced BASIC, you can write programs that are more understandable
than almost any other BASIC language. The use of meaningful variable names,
indentation, structured loop control, improved da~a me handling, and many other

I
features will make the creation of your programs a breeze. Now you can write those
GOTOless programs that were impossible to do under Applesoft BASIC.

I
Micol Advanced BASIC can produce graphics and sounds that could never have been

done before on an Apple II using Applesoft BASIC. Both Super High Resolution graphic
modes (320 X 200 and 640 X 200) are supported with graphic text, capability. Micol

I
Advanced BASIC can also play back. digitized noise, music or speech.

Micol Advanced BASIC gives you the ability to easily create applications that exploit
multiple Windows and pull down Menus made famous with the Apple Macintosh1M

computer. The Micol Advanced BASIC language systems offers the following features:

I	 • Upward compatible with the Applesoft BASIC language
• Optional line numbers

Dynamic character strings up to 1023 characters

I Simple variables and arrays of type boolean

I	 Part One: Overview of the Language

4	 Chapter One: General Review I
IUltra fast and sophisticated string manipulation

True integer calculations (no conversion to real and back)
•	 Calculations of extended values: both integer and real I

MouseText character display
•	 INKEY$ input and PRINT USING output IIF..THEN..ELSE, CASE_OF conditional statements

REPEAT..UNTIL, WHUE..WEND conditional loops
•	 Pascal language-like Functions and Procedures I
•	 Support of recursive calls

Low and Super High Resolution graphics
Mixed text and graphics I

•	 Great sound capabilities
•	 Complete and easy-to-use GSiOS file handling I
•	 SuperTrace™ debugging command
Q Easy Desktop program definition IComplete and easy use of the Apple IIGS Toolbox

Exclusive Controlled UncertaintyTM

I
How this Manual is Organized

IThis manual is divided into eight distinct parts:

First is the Copyright pages and Table of Contents. We have taken pains to
make this Table of Contents as useful as possible. We hope you agree. I

•	 Part One (this part) gives you a general overview ofMicolAdvanced BASIC
(MAE), and how to use Micol Advanced BASIC with the usual equipment. There
is a brief tutorial in Chapter Two all beginners should try. I
Part Two discusses the Programming Environment: what is needed to write and

. use a Micol Advanced BASIC program: Shell, Editor, CompilerlLinker, Library.
 I
•	 .Part Three is the most important section and describes the MicolAdvanced

BASIC language itself.
•	 Part Four describes the Desktop commands and some guidelines on how to write I

a Desktop-based program. This section should be ignored by beginning
programmers as it is quiet involved. I•	 Part Five discusses the Apple IIGS ToolBox and how to access it from Micol
Advanced BASIC. This section should be ignored by beginning programmers.

•	 Part Six discusses program management. Management includes debugging Itechniques, code segmentation, code optimization, and using assembly language
routines with your MicolAdvanced BASIC programs.

•	 Last come the Appendices, Glossary of words and Index. The Index is very Icomplete, so ifyou have trouble finding something, feel free to consult it.

I

I

I Chapter One: General Review 5

I Special Note

I

I

I

Special paragraphs marked "Programmers", "NOTE",
"IMPORTANT', and "WARNING" will be contained
within a paragraph such as this one. These paragraphs
describe tricks of the trade, indicate some special things
to watch out for or alert you to a potentia] dangerous
situation. "Progra.mroers" denotes advanced topics that

I novices may ignore.

The Micol Advanced BASIC System Disks
I

You have received with this product:

I • The Micol Advanced BASIC as Reference Manual, Second: Edition
• One system disk labeled Master Disk.

I • One system support disk labeled IMAB.SUPPORT
• A product registration card

Information about the Micol Advanced BASIC Users Group (MABug)

I Other Product information

I
The first disk labeled Master Disk contains the Micol Advanced BASIC language

system itself. The second disk labeled Jl\o1AB.SUPPORT holds folders containing
example programs, utilities, tool sets, fonts, devices drivers, etc. normally unused with
Micol Advanced BASIC.

I
I

IMPORTANT
Please make backup copies of both system disks before
starting your program development. Use the copied
disks for your work and store the original disks
somewhere safe.

I

, I
I The Micol Advanced BASIC language system consists essentially of four files

(contained in folder MICOL.ADV.BASIC on the disk labeled Master Disk) and the
Utilities folder: COMPILERSHELL, EDITOR, LIBRARY, MICOL.ADV.BASIC and
UTILITY/ folder. cOMPILERSHELL is the integrated Compiler, Shell and Linker.
EDITOR is the source code Editor. LIBRARY is the run time Library and
MICOL.ADV.BASIC is the Micol Loader, necessary to load stand-alone Micol Advanced

I
 BASIC programs.

I
The UTILITY folder will contain the external Shell commands you may write later

to add more functionality to the Command Shell. The file AutoExec will tell you about
any updates to the Language System or the Reference Manual.

The MAE.SUPPORT disk contains the following folders/files:

I folder Demo.Files

I Part One: Overview of the Language

6 Chapter One: General Review I
Ifolder MAB.TO.S16 (see Part Six, Chapter Five)

folder MAB.TO.CDA (see Part Six, Chapter Five)
• folder SYSTEM (contains GS/OS files not needed in Micol Advanced BASIC) I
• an optional text file named INFO.DOC

IIMPORTANT
The Demo.Files folder contains the source code of
numerous example programs that could be very helpful in
your understanding of this language. It is very important I
you look at these files in some detail. The fractal
mountain generator is in the FractalSamples folder
under the name Mt.Fractal. There is also a very nice I
demonstration game written in Micol Advanced BASIC in
the folder MABug.DEMO (read the READ.ME file). I

File INFO.DOC contains the latest product information which is not contained in Ithis manual. If this file is absent, the manual is complete.
Micol Advanced BASIC also uses the Apple lIGS 'Thols in the proper folder. The

other files or folders are used by the GS/OS operating system which Micol Advanced I
BASIC uses to communicate with your hardware.

IWhat You Need to Know

Before you continue reading this manual, you should know: I
How to set up and use your Apple IIGS system (see the manuals that came with

your computer)
 I
Some knowledge and understanding of the ProDOS file structure and use of

Pathnames to access these files

How to use GS/OS to manipulate disk files (see the Apple IIGS System Software
 I
User's Guide)

• Some knowledge of Applesoft BASIC or any other dialect of BASIC I• Advanced programmers should know about the Toolbox of the Apple IIGS.

Hardware Requirements I
To use Micol Advanced BASIC for the Apple lIGS, you need one of the following Icomputer systems:

An Apple IIGS with ROM 01 (or later) and a minimum of 768K of RAM

An Apple IIe with GS Upgrade and ROM 01 and a minimum of 768K of RAM
 I

With:

I
IPart One: Overview of the Language

I Chapter One: General Review	 7

I
II
I
II
I
I
I
,I
I
I
[I

I

II

I
I
I
I
I

..	 One 3.5 inch disk drive

A monochrome monitor capable of displaying 80 columns

GS/OS, the DOS required by MicolAdvanced BASIC, is supplied on disk.

Suggested Additiona!Hardware

A printer
..	 More memory on the e~ansion card (see below)

A second or more disk drives

A hard disk drive

..	 A color monitor

Run Time Memory Needs of Stand Alone Applications

.. Text only application:	 512 kilobytes
• Text and picture files:n ~ n	 768 kilobytes Ut.t	 u

• Text and animated graphics , ~ u 768 kilobytes
.. Text, pictures, and sound files 768 kilobytes

Graphic text and picture files 768 kilobytes
.. Graphic text and animated graphics 2048 kilobytes
•	 Graphic text, animate·d graphics, and sound files 2048 kilobytes u

Simple Desktop programs (i5-35K without Library) 768 kilobytes

Regular size Desktop programs (36-50K without Library) 1024 kilobytes

The amount of memory may vary depending on the ·size of the program, the numbers
of arrays, picture files, sound files, etc.

Setting up Micol Advanced BASIC on a Hard Drive

1.	 Boot a OO/OS System Disk which brings you into the GS Finder. The Finder has
the facilities for this task.

2.	 Create a subdirectory called Micol.Adv.BASIC under the volume directory of your
hard disk (choose New Folder under the File Menu or press <Apple>N).

3.	 Copy the Micol Advanced BASIC system files:

a) Copy the rues MICOL.ADV.BASIC, COMPILER.SHELL, EDITOR, LIBRARY,
and the UTILITY folder from the Master Disk (folder Micol.Adv.BASIC) to the
subdirectory Micol.Adv.BASIC you just created on your hard disk. Lock these
file.s.

b)	 Copy the.file Micol.Icons .from the Master Disk to the ICONS folder ofyour hard
drive.

4.	 Put the original Micol Advanced BASIC disks away in your. archive box.

Part One: Overview of the Language

8	 Chapter One: General Review I

I

Using MicolAdvancedBASIC with the Finder I

1.	 Open the Micol.Adv.BASIC folder by clicking on it twice or by clicking once and

pressing Apple-O to open the folder.
 I

2.	 Drag the Micol.Adv.BASIC icon onto the Desktop. Close the folder and Wmdow.

Dragging the icon onto the Desktop allows easier access to MAE.
 I

3.	 Start the MicolAdvanced BASIC language system by quickly clicking twice on the

Micol.Adv.BASIC icon or by clicking once and pressing App]e-O to open the

program.
 I

Using Micol Advanced BASIC With a RAM Disk I

Micol Advanced BASIC recognizes the RAM card created by the RAM Disk option of

the Control Panel. I

If Micol Advanced BASIC for the Apple IIGS detects a RAM disk with at least 192K

of free space, it will use this RAM disk for its scratch work for compiling and linking. If
there is no such RAM disk, the scratch work will be performed ~here the final linked I

program is ,created.

I
WARNING
IfMtcolAdvanced BASIC detects a RAM disk with a free
space greater than 192K, it will use this RAM disk for its
scratch files. These files are normally deleted at the end I

of compilation and/or lin.lQ.ng. However, if an operating
system en-or should happen during compilation or
linking, these files win not be deleted. You should then I

delete these files yourself m.anually from the Shell, I

otherwise this RAM disk may not be used again.
 I

Use	 of a RAM disk is highly recommended as it greatly speeds up the program I

development cycle: edit, compile/link, (execute), correct.

I
Using Micol Advanced BASIC With Your Printer

Micol Advanced BASIC allows you complete access to the Control Panel of the Apple I

IIGS. If you used the Control Panel's Printer or Modem Port controls to configure your
printer, the printer should function properly because Micol Advanced BASIC uses the
settings of the Control Panel. Refer to your Apple IIGS Owner's Manual to see how to I

change the settings.

I

I Chapter One: General Review	 9

I	 Configuring Your Printer Using the Control Panel

I You may use the Control Panel while working with Micol Advanced BASIC to alter
the panels parameters. These parameters work with the built·in serial port or with a
printer interface in the proper slot with the slot setting to "Your Card".

I
I Because of the nature of laser printers, Micol Advanced BASIC will not work with

them. If you are using the Network Version of Micol Advanced BASIC, the program
output may be printed using the network spooler.

I
WARNING

Some third party printers may need a device driver in the
directory Drivers!; otherwise the printer may not function
correctly. See your printer's manual ifyou are uncertain.

I
IfYou Need Assistance

I
Four good rules to follow are:

I 1. Don't panic. Take a deep breath and relax for a minute.

I
2. Go through the following checklist to delimit the problem

a) See if you computer meets the minimum hardware requirements (see Hardware

I
Requirements)

b) Make certain that your hardware and peripherals are connected correctly and
that all connections are secure. If a particular peripheral needs a device
driver, make sure that it is installed on the boot disk

c) Get your reference manual and consult

I the Table of Contents and/or Index

I
find and read carefully the sections pertinent to your problem. More than
sixty percent of all calls for technical support can be answered simply by
reading the manual.

3. Ask a friend who has a computer to come and help you. YoUr friend may have

I enough experience to explain what you do not understand
4.	 Contact us at Mical Systems. You can communicate with us by mail or by phone.

We provide free technical support to our registered customers:

I
I a) By mail, write to Micol Systems Inc. 9 Lynch Road, Willowdale, Ontario

CANADA M2J 2V6. We will answer your letter by mail if you include a
self-addressed envelope

Please include: a description ofyour hardware (computer brand and model,
size of memory on expansion card), and the list of the peripherals in the

I	 computer

a complete listing (preferably on disk) of the program causing the problem.
Determine where the problem is and clearly mark its location. If this is

I not done, we cannot help you.

I	 Part One: Overview of the Language

10	 Chapter One: General Review I
Ib)	 By phone, call our office at (416) 495-6864. You can reach us during normal

business hours Monday to Friday, 9:00 AM to 5:00 PM Eastern Time. There
is no fee to pay except for the long distance call, if applicable. Sorry, we
cannot accept collect calls. I

Compatibility Overview	 I
Applesoft BASIC I

Mical Advanced BASIC is not a simple compiler of Applesoft BASIC programs and
should not be thought of as such; it is much more than that. However, since Micol IAdvanced BASIC is a language system based upon Applesoft BASIC, you may convert
your Applesoft BASIC programs to Mical Advanced BASIC progrw;ns with very little
effort. Most programs written under Applesoft BASIC will run under Mical Advanced IBASIC with modest changes. Please see Chapter Six, Part Six for more information.

You will have to modify the portions of code using:

I•	 Disk filing

•	 Graphics
•	 Machine language routines I
•	 Special memory locations (PEEKs and POKEs)

Error handling
 IProgram segmentation

By making additional changes, you may take advantage of additional memory for
programs or data, create better graphics and sounds, etc. I

Micol Advanced BASIC for the Apple IIe/lIc I
Mical Advanced BASIC for the Apple lIe and Apple !Ic source code files are highly

compatible with Mical Advanced BASIC for the Apple IIGS. You may use the same I
source files. Since you have a much greater programming space, you should be able j

add the features you want in your programs.

You will have to modify the portions of code using: I
•	 Graphics and Sound
•	 Machine language routines I

Special memory locations (PEEKs and POKEs)
•	 Error handling I

Program segmentation

NOTE I
Programs developed under the Apple IIe/c version must
be recompiled under the Apple IIGS version.

I
Part One: Overview of the Language I

I Chapter One: General Review 11

I Earlier V,ersions of MAB for the Apple IIGS

II Most programs developed with Micol Advanced BASIC GS v2.0 to vS..7.2 are
compatible with Micol Advanced BASIC v4.0. You may use the same source code. Of
course, all programs developed with an earlier version of Micol Advanced BASIC for the

I Apple UGS must be recompiled to execute under Version 4.0 of Micol Aduanced BASIC.
Please note that there has been a major change to the WINDOW command. Check
Chapter Three, Part Four for details.

I
Syntactic Symbols Used in this Manual

I'
Within this manual we will follow certain syntactic rules which you must know

before reading this manual. The rules are:

I Brackets [] are used when something is optional.

NOTE: Brackets are used in the syntax of some statements.

I Braces {}are used to indicate that something is optional and may be repeated.

NOTE: Braces are also used to delimit comments.

Bold capital letters are used whenever a reserved word is denoted.I Aexpr is used to denote an arithmetic expression either integer or real An Aexpr
may simply consist of an integer or real! variable.II Alop is used to denote an arithmetic operator. An arithmetic operator may be a + ~ *
I" MOD.

Relop means a relational! operator. A Relop is a: <, >, <>, >=, <=, = and may alsoI include the logical operators: AND, OR, NOT

Sexpr is used to denote a string expression. An Sexpr may simply be a string
variable. .I E~r is iUsed to denote any expression, integer, string or real. In short, an Expr is an
Aexpr or Sexpr.

I
II Identifier is used to denote a Function, Routine, Procedure, Program or variable

name. An identifier is made of letters, digits, unders('re, ampersand, dollar sign,
percent sign to a maximum of 62 characters.

Letters are either uppercase or lowercase and are case insensitive (no distinction is
made between A and a).

I Unop is a unary logical operator. It may be a plus sign, minus sign and NOT
operator.

I Filename is a string of alpha-numeric characters no longer than 15 characters in
length.

11
Volume name is a string of alpha-numeric characters no longer than 15 characters

in length. A slash (f) precedes the actual name.

Patlmame is a string made ofa volume name, directories (liany) and a file name. It
may be no longer than 64 characters in length including slashes.

I
Part One: Overview of the Language

I Chapter Two: Getting Started 12

I Chapter Two

I Getting Started

I A Brief History of BASIC

I The original BASIC was written in 1964 under the direction of John Kenemy and
Thomas Kurtz at Dartmouth College, New Hampshire, United States ofAmerica.

BASIC is the acronym for Beginners All-purpose Symbolic Instruction Code. It was

I intended to be relatively easy to learn and inexpensive to implement. The original
BASIC was an interactive language, so that the programmer would get instant results.
BASIC was originally intended as a teaching tool, so its capabilities were very limited.

I
I Originally, a program line in a typical BASIC program had to begin with a line

number. Subsequent implementations of the BASIC programing language required no
line numbers and featured structured programming statements like REPEAT..UNTIL
and WHILE..WEND.

I
Applesoft BASIC was installed in the Apple II+ computer in 1979 as the successor to

the primitive Integer BASIC. Apple hadn't yet developed a disk operating system, so
Applesoft had no built-in DOS commands, among many other limitations.

Micol BASIC was released in 1985 by Mieol Systems as a structured and compiled
BASIC language system based on Applesoft BASIC. Micol BASIC was designed to runI on an Apple II+, IIe (64K) and lIe. Although Micol BASIC was much more powerful than
Applesoft BASIC, it still was designed for a computer with limited abilities.

I Micol Systems entirely rewrote Micol BASIC for the Apple IIGS and added numerous

enhancements and improvements which became Micol Advanced BASIC, version 1.0, for

the Apple IIGS in 1988. The next year, a special version for the Apple lIe (128K), lIe,

I and Laser 128 computers was released which took advantage of the better graphics and

auxiliary memory in these computers and has most of the features found on the GS

version.

I
Writing Your First Frogram in Micol Advanced BASIC

I
Okay, let's write a simple. program in Micoi Advanced BASIC. This program won't do

much, but it'll be a start. Just follow these simple steps:

I 1. Insert a copy of the Micol Advanced BASIC system disk marked Master Disk into a
3.5 inch drive. 'fum on the monitor and the computer.

I a) The GS/OS operating system (the program that tells the computer how to use
the devices connected to the computer) will load and execute

b) The Micol Advanced BASIC Language System will load and execute. TheI Command Shell prompt 0) will be displayed with the Command Shell waiting
for a response from the user.

I 2. Enter HELP<CR> «CR> means press the key marked Return). This command

I Part One: Overview of the Language

13	 Chapter Two: Getting Started I
Ilists all the commands known to the Shell. Take the time to read the commands

that are available. Enter HOME<CR> to remove the Shell's Help display.

3.	 Insert a work disk into a drive: I
a)	 Ifyou haV"e a second disk drive, insert an already formatted disk with little or

no information on it and go to step 4

b)	 Remove the Micol Advanced BASIC (Master Disk) disk and insert an already I
formatted disk with little or no information on it. (The disk containing the
sytem will not be needed for program development).

4.	 Enter PREFIX lName.of.Disk<CR>. Replace Name.of.Disk.by the name you gave I
the disk when it was formatted. PREFIX tells the Shell to use the disk
Name.or.Disk as th.e default disk. The Command Shell does not care where the
disk is, as long as GS/OS can find it; otherwise the message "Volume not found'" I
will be displayed. Unless otherwise instructed, the sYSJtem always uses the
"prefixed" disk. To see which default directory the system is using, enter
PREFIX<CR> without a disk name. To see the names of all of the volumes I
available in the system, enter ONLINE<CR>.

5.	 Enter EDIT<CR>. This Shell command will bring you into the Micol Advanced IBASIC Source Code Editor.
6.	 Press <Apple>H (hold down the key with the white apple on it and the H key at the

same time). This command shows the commands known to the Micol Adv.anced I
BASIC Source Code Editor. Press any key to make this screen disappear.

7.	 Enter the following program; be certain to press Return after each line. Press
Delete to erase a character. Press the Arrow keys to move the cursor. Press Tab I
to make an indentation in a program line.

IPROGRAM First_Program

HOME

IINPUT "Hello, I'm your Apple IIGS, what's your name? "; Name$

PRINT "Nice to meet you "; NameS

PRINT "Watch me count from one to ten" I
PRINT "But first, press any key so I can start"

GET	 Any_Key$ IFOR	 Count% = 1 TO 10

PRINT Count%

NEXT Count% I
PRINT "Good-bye "; Name$; ", I hope we meet again"

END I
Take the time to check and revise what you entered.

8.	 Press <Apple>S to save the program to disk. The Editor prompts for a program
name. Enter any name (letters only) of no more than eleven characters and I
press Return. The program will be saved to disk.

9.	 Press <Apple>Q to quit the Editor and return to the Shell. I
Part One: Overview of the Language	 I

I	 Chapter Two: Getting Started 14

I 10. Enter CATALOG<CR>. The contents of the disk directory will be displayed on
the screen. Notice the name of the file you just saved.

I 11. To compile your program, enter the word COMPILE followed by a space, followed
by the name you gave the program in step 8, followed by a Return. The
Compiler will display "Compiling...<Program name>". If you have entered the

I program correctly, your program will be transformed into a format that can be
executed. If there is an error in the program, the message "Continue
compilation, Edit program, or use Shell (ClEfS)?" will be displayed on the screen.

I Press "E" to return to the Micol Advanced BASIC Source Code Editor and
correct the mistake. Continue with Step 8.

12. After the program has compiled without any errors, you will receive the message

I "Execute the program (Y/N)?". Press"Y" to cause the program to load and
execute.

I 13. The program will ask you for your name. Enter your name followed by the Return
key. Notice the action on the screen. That was all caused by the program you
just wrote.

I
 When the program has finished execution, control will be returned to the Shell.

Congrat~ations! You have written and executed your first Micol Advanced BASIC
program.

I
Entering Program Examples

I Some program examples within this manual cannot fit in the manual's page the
same way they would appear on the screen. If you see the Program Line Continuation
character, the backslash (\), this indicates that the remainder of the line is continued onI	 the next line (you may also enter the program lines exactly as they appear in the text if
you wish, the Compiler can handle this syntax).

I	 Example:

PROGRAM Example

I	 HOME

INPUT nEnter name: ";Name$

INPUT "Enter age: ";Age%

I	 INPUT "Enter any floating-point value: ": \

Nurnber&

I END

I
Enter the line(s) containing a back.slash as if the line(s) were continuous (do not

enter the backslash, in this case). If the line has more than 80 characters, the Editor
will follow you by scrolling the display from left to right. The Editor will reposition the
display to its usual place when you press the Return key.

I

I

I	 Part One: Overview of the Language

15	 Chapter Two: Getting Started I

Suggested Manuals	 I

Apple Computer Inc., Apple 1IGS 'Ibolbox Reference Volume I, Reading, Mass.:
 I

Addison-Wesley Publishing Co., 1988. 776 p.
Apple Computer Inc., Apple HOS Toolbox Reference Volume II, Reading, Mass.:

Addison-Wesley Publishing Co., 1988. 700 p.' I

Apple Computer Inc., Apple 11GB Toolbox Reference Volume In, Reading, Mass.:

Addison-Wesley Publishing Co., 1988. 1100 p.
Apple Computer mc., Human Interface Guidelines, Reading, Mass.: Addison-Wesley I

Publishing Co., 1987. 160 p. (This is the book needed to write software that conforms to

Apples guidelines.)
 IApple Computer Inc., Standard Apple Numerics Environment (SANE) Manual. 2nd

ed., Reading, Mass.: Addison-Wesley Publishing Co., 1988.320 p. (This manual contains

the details of other SANE functions that can be implemented in Micol Advanced
 IBASIC.)

Apple Computer Inc., GS/OS Reference Manual Vol. 1, Reading, Mass.:

Addison-Wesley Publishing Co., 1990. 528 p. (This manual contains the details of other I

GS/OS calls that can be implemented in Micol Advanced BASIC.)

Little, Gary B., Exploring the Apple IIGS, Reading, Mass.: Addison-Wesley, 1987.552
p. (The examples in this book are written using APW macros.)	 I

Little, Gary B., Exploring Apple GS/OS and ProDOS 8, Reading, Mass.:

Addison-Wesley Publishing Co.. 1988. 369P (we frequently use this book for reference).
 IGookin, Dan and Davis, Morgan, Mastering the Apple HGS Toolbox, Greensboro,

North Carolina,: Compute! Publications, Inc., 1987. 642 p. (outdated, but excellent for

learning the Apple HGS 'Ibolbox. This book appears to be out of print, but if you should
 Ifind a store that still has one in stock, we recommend you buy it.)

Acknowledgments	 I

Micol Systems Inc. wishes to thank. the following people for their generous
 I

assistance:

•	 All our beta testers, especially Peter Cameron.
•	 A special thanks to Michael Yost for his assistance and advice on Windows and I

his support software as well as help with this manual.

•	 Walter Torres·Hurt for his selfless dedication over the years. We also wish to
 I

thank him for the Mical Advanced BASIC Users Group (MABug).
•	 CodeSmith Software Inc. for its assistan€e in improving the 640 mode graphics.
•	 Michael Crawford for his generous support and assistance. I

Benoit Bernard ofProgrammation Sur Mesure Inc. for his help.

Ann Hendersen, Eddie Drueding, and Bernard Claing for their time and effort.
 I

•	 And all of those who took the time to write or phone to provide us with their

comments, suggestions and constructive criticism.

I

Part One: Overview of the Language	 I

I Chapter One: The Command Shell 16

I Part Two: The Programming Environment

I Chapter One

I The Command Shell

I Overview

I The Command Shell is the control program. Through the Shell, you can do basic disk
filing, enter the Source Code Editor or compile, link and execute a program. The
Command Shell performs a similar function to the ProDOS 8 command interpreter, file

I BASIC.SYSTEM, performs under Applesoft BASIC.
The Right Brace character j" is the prompt character of the Shell.

I Line Editing Commands

I These commands allow you to edit the commands entered from the keyboard.

Up and Down Arrow Keys (iJ,)I
I The Up and Down Arrow Keys are not used in the Shell.

Left and Right Arrow Keys (-H-)

I
The Left and Right arrow keys will work only within the range of an input field.

I The Return key

I The key marked Return terminates a command and may be pressed anywhere in an
input field without loss of characters.

I
The Delete key

I
I The Shell recognizes two deletion modes" true delete and destructive backspace. By

default, the Delete key performs a destructive backspace. To toggle between the two
deletion modes, press <Apple>Delete.

II
The destructive backspace mode erases the character to the left of the cursor. The

true delete mode erases the character under the cursor. All characters on the right ofthe
cursor are moved to the left. The shape of the cursor is not changed.

,II
 Part Two: The Programming Environment

17 Chapter One: The Command Shell I
The delete mode will remain until it is modified by another <Apple>Delete or until I

the system is restarted.

I
<Contro1>C (Break)

Pressing <ControbC will terminate a listing of a text file started with the LIST I
command.

<Contro1>C may also be used to interrupt the execution of a program while it is
running. I

<Control>R (Repeat) I
Pressing <ControbR displays the last command executed. The command is not Iexecuted, but is displayed so it may be modified if necessary. Press Return to execute

the command again.

The Shell "remembers" the previous command, even after using the Editor. I
<Contro1>S (Space/Stop/Start) I

Pressing <ControbS inserts a space character at the current cursor position, moving
every character after the cursor one position to the right. I

This command may also be used to stop and start a file listing or program execution.

I<Control>X (Cancel)

Pressing <ControbX cancels the command being entered. A baekslash character (\) I
appears as the last character on the line to indicate that the previous command has been
cancelled. I

Built-in Shelll;ommands
I

These commands allow you to perform the basic tasks of the Command Shell.
Additional Shell commands may be written using Micol Advanced BASIC. I

BATCH Pathname
I

The BATCH command allows Shell commands to be read from a text file on disk and
executed as though the commands were entered from the keyboard. The Pathname is
the name of a text file in a directory currently online. I

The Batch file is usually created by the SoW'ce Code Editor, and is simply a text file
containing the Shell commands described here which are to be· executed by the I

Part Two: The Programming Environment I

I Chapter One: The Command Shell 18

I Command Shell. The commands are displayed as they are executed.
Any shell command except another BATCH command is a legitimate entry into a

I batch file. An EDIT or COMPILE command will execute, but will end the batch

I
stream.

Any line in the Batch file beginning with a semicolon (;) will be considered a
comment.

I
<Control>C will cancel the execution of a Batch file.
BATCH is particularly helpful to users who are doing their program development on

a RAM disk and wish to set up their sys,tern to their own needs.

I AutoEx~ File

When Micol Advanced BASIC is first booted, the system checks for a Batch file under

I the Micol Advanced BASIC folder called! AutoExec. If this file is present, the Batc_h
stream contained within AutoExec is executed, otherwise the system simply enters the
Shell

I The system disk marked Master Disk has an AutoExec file on it, so you may wish 00
examine this :file to better understand AutoExec files.

I Example:
LIST INFO.DOC

I :Erase or rename the AUTOEXEC fi~e to stop

:INFO.DOC from appearing again.

I
 The batch file AutoExec lists the INFO.DOC file on the screen.

CATALOG [p'athname]
I
I

CATALOG and its abbreviation CAT are used to display the contents of a volume or
any of its directories. The directory information indicates if a file is locked or not, lists
its name, type, si~e of the file in blocks, its date and time of creation, its date and time of
modification and tl··~ size of the file in bytes. The quantity ofblocks used and unused are
listed after the list of the contents.

I
I If a Pathname is stipulated, the directory will be read from the stipulated volume. If

the Pathname does not begin with a slash (I), the default prefix will be used with the
stipulated! directory name. If a Pathname is not stipulated, the directory of the default

I
prefix will be displayed

Example:

CAT /RAM6

I
CATALOG SUBDIR/

CAT

I
I Part Two: The Programming Environment

19 Chapter One: The Command Shell I

COMPILE Pathname [, Pathnamel I

This command invokes the Compiler. The first Pathname is the source code I
Pathname of the file you wish to compile. If the source code Pathname cannot be found,
an error will occur and the Shell prompt will return.

If the Pathname is followed by a comma and another Pathname, then the object code I

file will have this stipulated pathname with the appropriate extension added. After the
compilation is completed, the filename containing the compiled program will end with a
".LNK" extension. I

If a syntu error is detected, the BASIC source code line will be displayed in inverse
video. You will be prompted "Do you want to Continue, Edit or retu.rn to the Sheil
(CIE/S)? To continue the compilation, press "C". The Compiler will continue the I

program's compilation. 'Ib edit the error, press "E". The Editor will place the cursor on
the line and approximate char.acter where the compilation error occurred. To return to
the Shell, press "S". The prompt of the Shell will appear. I

COPY Pathnamel TO Pathname2 I

COpy duplicates the contents of the file Pathnamel by creating a new .file and

giving it the name Pathname2. If the original file and the duplicate file are in the same I

directory, Pathnamel must be different from Pathname2.

Example:
COpy /Disk/Old.File TO /RAMS/New. Fil,e I

The file Old.File in volume /Disk will be copied to volume /RAM5 with the name
New.File. I

CREATE Pathname I

CREATE generates a new directory file (folder) under the main or a subdirectory

with the name stipulated by Pathname. The directory created is lacked. I

Examples:

CREATE /RAM6/DIRECT.l
 I
CREATE /Library/Math/Trig

In the first example, the subdirectory Direct.! will be created on volume 1RAM6. In

the second example, the subdirectory Trig will be created on volume !Library in the I

subdirectory Math!.

I
DELETE Pathname

DELETE erases a file from a directory. A subdirectory file must be empty before it I

can be deleted. The disk must not be write protected and the file must be unlocked.

I

Part Two: The programming Environment I

I Chapter One: The Command Shell 20

I Example: .

DELETE /RAM6/Filename

I
EDIT [PathnameJ

I
The EDIT command summons the Source Code Editor. The stipulated file must be

of type TXT ($04) or SRC ($BO) to be edited.

I If the command EDIT is entered without a Pathname and no file is being edited, the

I
Editor will appear. No file name appears on the Data Line as there is currently no file
being edited.

I
If EDIT is entered without a Pathname and a file is being edited, the Editor' will

appear to let you continue the editing process. The cursor will appear in the identical
line and position as when you last left the Editor. The Pathname of the file is displayed

I
on the Data Line.

If the EDIT command is followed by a Pathname and no file is being edited, or the
file being edited has not been moodified since the last save, the stipulated file will be
loaded from disk into the Editor's workspace. The file's Patbname will appear on the
Data Line.

I If EDIT is followed by a Pathname and the file currently being edited has been
modified without being saved, the Command Line of the Editor will prompt "Save
current file before loading new one (YIN)?". If T is pressed, the file currently in the

I Editor will be saved to disk, the workspace will be emptied and the specified file will be
brought into the editor. If "N" is pressed, the file currently in the Editor will be erased
from the editor's workspace and the specified file will be brought into the editor.

I Example:

EDIT/RAM6/TXT.FILE

I
FORMAT Volume_Name

I To initialize a storage device, use the FORMAT command. The initialized device will

have the name stipulated as Volume_Name.

I When this command is invoked, the Shell displays the location and the names of all

devices connected to the computer. Select the appropriate device with the Up and Down

Arrow keys and press Return to display the GS/OS Formatting Dialog Box.

I Set the controIs of the Dialog Box to "ProDOS" for the operating system (if necessary)

I

and "800K 2:1" for the interleave. Press Return to start formatting the device.

For optimum performance with the white UniDisk 3.5 drive only, use 800K 4:1

interleave.

I WARNING
Be very careful with the FORMAT command.. Once
FORMAT is executed, any valuable information

I contained within the medium will be lost.

I
 Part Two: The Programming Environment

21 Chapter One: The Command Shell I
IExample:

FORMAT Work.Disk

I
HELP

HELP lists the built-in Shell commands available with a brief description. I
User-written Shell commands are not listed.

Example: I
HELP

HOME
I

HOME is simply used to erase the contents of the screen and place the cursor at the I
upper left corner.

Example: I
HOME

ILIST Pathname

LJST displays the specified source file on the screen, so you may preview it without I
entering the source code editor. Only files of type TXT ($04) will be displayed.

Pressing <ControbC ends the listing; pressing <ControbS pauses the listing.
Pressing any key after that will restart the scrolling of the listing. I

Example:

LIST IRAM6/INFO.DOC
 I
LOCK Pathname I

LOCK protects a file from being deleted or modified. When a file is locked, an
asterisk (*) precedes the file name when a directory is displayed. I

Example:

LOCK IRAM6/FILE
 I
ONLINE I

ONLINE displays the nartles of all the block devices such as floppies, hard drives,
RAM drives and CD-ROM drives connected to the computer. ONLINE displays the I
names of the devices and the names of the volumes.

I

•

I Chapter One: The Command Shell 22

I Example:

ONLINE

I
PREFIX [Directory_Name]

I The command PREFIX indicates the path used! by the system or sets a different
default prefix. The default prefix contains part of the path leading to a specific file.

I The default prefix is the prefix that is used un.I.ess another path is specified. If the
Master Disk is. booted, at startup, the (default) prefix is set to
IMicoLAdv.BASIClMicol.Adv.BASIC/.

I The names of the volumes or directory files must be from online volumes. Ifnot, the

I

previous prefix will remain in use. The error message "Volume not found" will be
displayed if the volume is not online.

I IfDirectory_Name is preceded by a slash character (/), the prefix will be changed to
this new volume name.

If Directory~Nameis not preceded by a slash character, the current prefix will be
used with the Directory_Name appended to form the path leading to the directory.

I
Examples:

PREFIX {Displays the current prefix}

{Adds System/Desk.Accs! to the current prefix}

I PREFIX System/Desk.Accs/

{Prefix becomes !Micol.Adv.BASIC/Systern!}

I PREFIX /Micol.Adv.BASIC!System

I PREFIX < [<]

This PREFIX command lets you move back one or more levels within a path by
adding one or more less than symbols «) with no separating spaces. One less thanI symbol «) equals one directory level.

Use PREFIX with a Pathname to go "outside" an.>' subdirectory.

I Example 1:

PREFIX < {Go back one level)

I PREFIX {Display the current prefix)

I
PREFIX « {Go back two levels}

Example 2:

If the current default prefix is NOLUMEIFIRST/SECONDITHIRDIFOURTHI, the
command PREFIX« will-set the new default prefIx to NOLUMEIFIRST/SECOND/.

I

I

I Part Two: The Programming Environment

23 Chapter One: The Command Shell I

I
PRINTER

PRINTER sets the port or slot number through which the printer output of the IEditor and Compiler will be sent. The slot number entered must be a digit in the range
one through seven.

The default output is set to slot/port one. I
Example:

PRINTER
 I
Send output through which slot? (1-7)?

IQUIT [Pathnamel

Use QUIT to leave the Micol Advanced BASIC language system. If QUIT is not I
followed by a Pathname, you will be prompted: "'Are you certain you want to quit (YIN)?".
If"N" is entered, this command will be ignored and the Command Shell prompt will
return. If"Y'" is pressed, control will be returned to the operating system. Once you I
have entered "Y", you will leave Micol Advanced BASIC.

If QUIT is used with a Pathname, that GSIOS application will load and execute. No
prompt requesting you to confirm your choice will appear, 80 make sure that the disk I
containing the program launcher is online; otherwise, you will receive an error.

Example: I
QUIT

Axe you certain you want to quit (YIN)? I
WARNING

Some program selectors (the Finder included) require
that the startup disk be online before the GS/OS I
application can successfully execute. Do not attempt to
execute these files unless the startup disk is online, Iotherwise. the system will crash!!

I
If Micol Advanced BASIC was already started using a program launcher, use QUIT

without specifying an application name. IIf you have only a single drive system, you may copy the Finder from the
/MAE.SUPPORT disk to a RAM disk and access the Finder from the RAM disk with the
MicolAdvanced BASIC system disk in the drive. I

Example:

QUIT lMAB.SOPPORT!SYSTEM!FINDER
 IIf the second system disk, as well as the startup disk, is currently online, the Finder
will load and execute.

I
IPart Two: The Programming Environment

I Chapter One: The Command Shell 24

I RENAME Pathnamel TO Pathname2

I RENAME changes the name of a file, directory or volume. If the paths are on the
same volume, this command may even be used to move a file to another directory. 'Ib
rename, Pathnamel must be unlocked and Pathname2 must not already exist.

I Example:

RENAME /RAM6/FILE TO /RAM6/NEWFILE

I
RUN [Pathnamel

I RUN [Pathnamel loads and executes the compiled and linked program specified in
Pathname. The Patbname is usually the name of the source file of the program (the

I ".LNK" extension is added by RUN).

I
The RUN command may be entered without the Pathname to reexecute the previous

program.

I
Whenever a program. is RUN, the values of all booleans arc set to false, numeric

variables are set to 0 and all string variables to empty before executing the first line of
the program.

Examples:

RUN /MICOL.ADV.BASIC/MT.FRACTAL

I
UNLOCK Pathname

I
UNLOCK removes the protection on a file, so it may be modified, deleted or

renamed. A space rather than an asterisk will precede the filename when the proper

I directory is displayed.

Example:

I UNLOCK /RAM6/FILE

I Adding Your Own Commands to the Shell

When the Command Shell receives a command it does not understand, it assumes

I the command is the name of a Utility, a compiled Micol Advanced BASIC program., in
the folder UTILITY directly under the Micol Advanced BASIC folder, and attempts to
load and execute it.

I If there is no such program name in the Utility folder, the Shell will display the

I
message "Illegal command line". This filename is treated as equivalent to a built-in
Shell command.

I

I Part Two: The Programming Environment

25 Chapter One: The Command Shell I
How to Write a Shell Utility I

The first step in writing a Shell Utility is simply to write a Micol Advanced BASIC I
program, compile and link it.

Mer your Shell utility program is thoroughly debugged, take the compiled code and
use the RENAME command to give the utility a meaningful name (no extension is I
necessary). Copy the completed program into the folder UTILITY:

To access this utility from the Shell,just enter the name of the command exactly as it
appears in folder UTIUTY. I

Passing Parameters to the Utility I
Micol Advanced BASIC Utilities may accept parameters. This parameter is a string

entered by the user after the Utility name when the Utility is invoked. This parameter Imay not contain any spaces because a space is also a delimiter within the Shell (there
must be a space between the Utility name and the parameter on the command line).

Example (from Shell command line): I
Get_Help Help.File

IThe optional parameter, a simple ASCII string ended by a carriage return, will be
placed into a buffer terminated by a zero (without the <CR». The address of this buffer
will be placed into locations 212 - 214 in the usual LSB, MSB, Bank format. To access Ithis string, concatenate the values starting at the address contained in locations 212,
213 and 214 using the CHR$ function until a zero is detected..

Example: I
PROGRAM My_Utility

Param$ <= " I
Address& <= PEEK (212) + 256 * PEEK(213) + 65536 * PEEK(214)

REPEAT
 INumber& = PEEK (Address&)

IF Number& <> 0 THEN BEGIN

Param$ ~ Param$ + CHR$(Nurnber&) I
ENDIF

Adress& = Adress& + 1 I
UNTIL Number& - 0 {Your utility code follows}

The parameter may then be used within your Utility program for any purpose you
require. I

See the INDENTER program on the IMAB.SUPPORT disk for a realistic example of
a Utility. This program also is included as a Shell Utility on the disk labeled Master IDisk. If you enter INDENTER<CR> from the Shell, this Utility will execute; you will
then be able to get instructions on INDENTER's usage.

I
•

I Chapter Two: The Source Code Editor 26

I
Chapter Two

I
The Source Code Editor

I Overview

I This full-screen Editor has word processor like features plus easy Compiler access

I
and debugging assistance. The Editor has easy-to-remember, two-keystroke commands
that ease the entry and revision of the source code.

The Editor retains the current file even while using the Command Shell, compiling
or executing the program.

I
Entering and Quitting the Editor

I Entering the Editor (EDIT [PathnameD

I To summon the Editor, enter EDIT or EDIT Pathname at the Command Shell level.
The Editor may also be entered by pressing"E" from the Compiler if an error is detected,
or from a program if a run time error occurs while executing a program.

I
Quitting the Source Code Editor (<Apple>Q)

I To leave the Editor and return to the Shell, press <Apple>Q. If the file being edited
has been modified since the last save, the Editor will beep when <Apple>Q is pressed. If

I you hear this beep, you may wish to reenter the Editor (simply enter EDIT<CR» to save
the file before continuing.

I Description of the Editor's Display

I The screen display of the Editor consists of24 lines. The Command Line is at the top
of the screen. A reference ruler appears on the second line. Directly under the Reference
Ruler is the Editing Display Area where your program will appear. At the bottom of the

I screen on line 24 is the Data Line.

I The Command Line.

The Command Line displays prompts and messages when the Editor needs to get or

I return information.

I
The Editor's Command Line uses the following keys to edit the input to a command:

Left Arrow, Right Arrow, Delete, <Control.>S, and <Contro1>X.

I Part Two: The Programming Environment

27	 Chapter Two: The Source Code Editor I
IThe Reference Ruler

The second line displays a ruler. This line may be used to align text within the I
screen.

The Editing Display Area	 I
The Editing Display Area is a window that uses 21 lines of the screen to show the I

text being edited. When necessary, this window moves up and down and from side to
side to show text that cannot be entirely displayed within one screen.

I
The Data Line

I
This inverse video line gives information about the text file being edited:

•	 Line Counter

This number represents the cursor's current line position in the text buffer.
 I
It is affected by up and down cursor movements and the Goto Line function

(<Apple>G).

Column Counter
 I
- Entering characters or moving the cursor left or right causes the column

counter to increase or decrease between 1 and 254. I• Line Length
- The Line Length counter shows the total number of characters in the

current line.

Pathname Indicator
 I

This area has a Pathname in it only after an existing file is loaded or after
a new file is saved to disk. The Pathname will be truncated to fit the
display liit is too long. This Pathname display remains until a new file is I
loaded or the text buffer is emptied.

Calendar/Clock Display

The date and time will be displayed on the lower right side of the screen.
 I
When a file is saved, the date and time are automal ;ally stamped on the
file's directory entry. I

The Sound Indicator I
The editor will beep when the wrong command key is pressed.

I
Basic Editor Commands

Control Command Keys	 I
These Control key commands allow editing on a single line of source code. I

I

I Chapter Two: The Source Code Editor 28

I <Control>B Erase to start of line

I <ControbB deletes the portion of the line from the cursor position to the beginning of
the line.

I <Control>X Erase current line

I <Control>X deletes the line where the cursor is.

<Control>Y Erase to end of line

I <Control>Y deletes the portion of the line from the cursor position to the end of the
line.

I
The Apple and Option keys

I The Apple key and the Option key are used in combination with another key to give
commands to the Editor. Either the Apple or Option key plus the other key must be

I pressed at the same time for a command to be executed.

I
NOTE

The Apple key is also called Command or Open-Apple.
The Option key is also called Closed-Apple. On the Apple
IIGS Upgrade, the Option key is called Closed-Apple. In

I this manual, <Apple> will refer to the White Apple key
and <Option> will refer to the Black Apple key.

I
Escape key (Esc)

I The Esc key may be used to cancel most commands at any time.

I Return key

I When the Return key is pressed, the cursor moves down to the beginning of the next

I
line and the file is shifted down one line. If the cursor is in the middle of the line, the
part to the right and under the cursor will be moved to the next line. The left side of the
line will remain as it was.

Deletion Mode (<Apple>Delete)I
The Editor recognizes two deletion modes: true delete and destructive backspace. To

I change the deletion mode, press <Apple>Delete. <Apple>Delete toggles from destructive

I Part Two: The Programming Environment

29 Chapter Two: The Source Code Editor I
backspace to true delete. By default, the Delete key performs a destru.ctive backspace. I

The destructive backspace mode erases the character to the left of the cursor. The
true delete mode erases the character under the cursor. All characters on the right of the
cursor are moved to the left. The shape of the cursor is not changed. Destructive I
Backspace mode is shown by a Caret symbol (1\) on the command line. True Delete m.ode
is indicated by a Less Than symbol «) on the command line. The Deletion mode
character is displayed at the left of the Copyright notice on the Command Line. I

The delete mode will remain until it is modified by another <Apple>Delete or until
the system is restarted. I

Delete Key I
To delete a character, press the Delete key. The character will be erased and the line

will move to fill the blank. If the cursor is over a line with no characters, this line will be I
erased and the following lines will move up one line. If the cursor is at the end of a line
in the True Delete mode, or at the beginning of a line in Destru.ctive Backspace mode,
the previous and the current line will be merged and that section of the file will move up Ione line.

Help screen (<Apple>H or <Apple>?) I
To see a summary of the commands available to you, press <.Apple>Shift~/ or I

<Apple>H. The contents of the Editing Display Area will be replaced by the list of Editor
commands. To remove the help screen and resume editing, press a key.

The key Help is supported on any ADE compatible extended keyboard. I
Enter/Overstrike Mode (<Apple>E) I

To alter the edit mode, press <Apple>E. Pressing these keys changes from Enter to
Overstrike mode. Overstrike writes over existing characters without inserting other I
characters; Ent - :' mode automatically inserts the character. The default setting is Enter.
Enter mode is indicated by a flashing inverse space. Overstrike mode is shown by a
flashing underscore. I

UpperlLowerCase Mode (<Apple>X) I
<Apple>X allows the user to enter uppercase characters without having to press the

Shift key even when the Caps Lock key is in the Up position. I
To activate this feature, press <Apple>X; the "C" in the copyright symbol on the

command line will change to a lower case "c". The upper/lowercase entry will be
reversed from what it was. To enter lowercase characters while using this feature, press
the Shift key. To deactivate this feature, press <Apple>X again.

I

•

I
I
I
I
I
I
I
I
I
I
II

I

I
I
I
I
I
II
I
I

30Chapter Two: The Source Code Editor

Moving in the File

Cursor Control (i.1~-4)

All arrow keys are functional. For any line greater than 80 characters, any attempt
to move the cursor past the right edge of the screen will cause the display to shift to the
left. If the screen has been shifted left, any attempt to move the cursor past the left most
position of the screen will cause the display to shift right. Upward and downward
motions work in the regular manner.

Think. of the display as being an 80 column, 21 line window to the text file, with the
cursor keyS allowing you to move anywhere you want within the file.

When the cursor is moved up or down, you will eventually reach either the top or
bottom of the screen display. When the cursor reaches the bottom, the file scrolls up.
When the cursor reaches the top, the file scrolls down.

Move Down one screen (<Apple>J..)

Move Up one screen (<Apple>i)

<Apple>Down-Arrow (,J...) will move the cursor to the bottom. of the screen, or if the
cursor is already at the bottom of the screen, it will scroll the display one screen page (20
lines) up.

<Apple>Up-Arrow (i) will move the cursor to the top of the screen, or if the cursor is
already at the top of the screen, it will scroll the display one screen page (20 lines) down.

NOTE

The screen scrolling commands may also be used while

selecting a block. of souroe code that will be moved, copied

or deleted using the <Apple>C, <Apple>D or <Apple>M

commands.

The keys Page Up and Page Down are supported on any ADB compatible extended
keyboard.

Move To Beginning of Line (<Apple>+-)

Move T'o End orLine (<Apple>~)

<Apple>Left-Arrow (+-) will move the cursor to the first character of the current line,
scrolling the display to the right if necessary. <Apple>Right-Arrow (-?) will move the
cursor one character past the end of the line, moving the display t<? the left if needed.

Part Two: The Programming Environment

31 Chapter Two: The Source Code Editor I
Move to Previous Word «Option>f-) I
Move to Next Word «Option>~)

I
<Option>Left-Arrow (~) moves the cursor to the first character of the previous word

on the line, scrolling the display to the right ifnecessary. I
<Option>Ri.ght-Arrow(~)moves the cursor to the first character of the next word on

the current line, moving the display to the left ifneeded. I
NOTE

Pressing the <Apple> key instead of the <Option> key Iwill not enable this command.

I
Relative Motion within the File

I(<Apple>1 through <Apple:>9)

Because a program source code file grows larger with every line you enter, the Editor I"separates" the file into 9 parts. Each part is recalculated as you add lines to your file.
Pressing <Apple> and a digit key will bring this "relative" portion of the file to the
display window. ITo move to the beginning of the file, press <Apple>!. To move to the middle of the
file, press <Apple>5. To go to the end of the file, press <Apple>9.

The keys Home and End are supported on any ADB compatible extended keyboard. I
Go to Program Line (<Apple>G) I
'Ib move quickly to a specific sequential program line, use <Apple>G: the Gote Line

command. The command line prompts for an input. Give a line n~ber and press
Return. The line will be displayed on the first line of the display. This command helps I
locate the e... rors signaled by the Compiler.

I
WARNING

Do not confuse the sequential program line numbers with
the optional BASIC source code line numbers. The Isequential program line numbers are created by the
Editor and the Compiler and are in no way related to any
line numbers the user may create. I

Setting Tab Stops (<Apple>Tab) I
'Ib set tabulation positions, press <Apple>Tab. The current tabUlation marks are I

Part Two: The Programming Environment I

32 1 Chapter Two: The Source Code Editor

I indicated by diamonds on the Command Line. The default tab settings are placed one
every fifth position. Tab stops may be set only for the first 80 columns.

1 To set or delete tab stops, move to the desired position using the Right-arrow key
(Left-arrow will move back to position one) and press the Tab key. The first Tab pressed
will set the first position, the second pressed, the second tab position, and so on up to the

1 80th celumn. Press Return to confirm the new tab settings.

Tabbing (Tab key)1
DBe the Tab key to indent your source code. To tab to the next tabulation position,

1 press the Tab key. The default tab settings are every fifth position and may be altered as
desired by <.Apple>Tab. If the cursor is past the current end of line, pressing Tab will
expand the current line to one character less the required Tab position, then the cursor

I will move to the required position.

1 NOTE
If the next Tab stop is currently occupied by text, pressing
the Tab key will simply reposition the cursor without
indenting.

I
1 Text Block Editing Commands

Copy Text Block from Buffer (<Apple>C)1
I

This command is designed to copy a block of text from the copy buffer to the text
area. You must have first moved the required lines to the copy buffer using the Move

II
Block command «Apple>M) described below, otherwise you will receive an error. Move
the cursor to the line just after the position where you want to place the lines, then press
<.Apple>C. The lines will be copied from the copy buffer. You may copy a maximum of
32,767 characters (32K).

I Delete T'ext Block from Code (<.Apple>D)

II To delete a block of text, press <Apple>D. Then press the Down arrow key to "mark"

I
the lines to delete. The Up arrow key will unmark the lines. To confirm the deletion
command, press the Return key. The marked text will be deleted. '

This command operates on whole lines only: the Delete Block command cannot be
used to remove a portion of a line.

I

I

I: Part Two: The Programming Enviromttent

I 33 Ch.apterT'wo: The Source Code Editor

IWARNING
The Editor cannot recover deleted text once this
command is executed. Use the Move Thxt Block command
(<Apple>M) instead if you wish a pOf\sible recovery later. I

IMove Text Block to Buffer (<Apple>M)

To move a block of text to the copy buffer for later copying, and optionally, to delete a I
block of text, press <Apple>M. To mark the lines to be moved, press the Down-arrow
key. To unmark the lines, press the Up-arrow key. Press the Return key to move the
marked text ~ the copy buffer. You will then be prompted if you wish to delete the I
marked text. Accepted input is "Y" for yes and "N" for no. A copy of the moved text will
remain in the copy buffer until this command is used again or you leave the Text Editor.

The keys F2, F3 and F4 are supported on any ADB compatible extended keyboard. I
FindlReplace Commands I

Backward FindJReplace (<Apple>B) IForward FindJReplace (<Apple>F)

I
The Backward Search and Forward Search commands are used to quickly move the

cursor to a specific word or to search for and replace that word. A search always begins
at the current ctrrSor position. I

These commands can search for a specific word or phrase (from ! to 64 characters in
length). IIf the occurrence(s) of the word you want to search for is near the beginning of the
file, use <Apple>F (Forward Search and Replace). Use <Apple>! to start from the
beginning of the file, if necessary. If the oceurrence(s) of the word you want to search for Iis.near the end of the file, use <Apple>B (Backward Search and Replace). lTse <Apple>9
to start from the end of the file, ifnecessary.

We will use Forward Search (<Apple>F) in the examples (backward search works the I
same way). The Editor prompts: "Forward search: Find which string?". Enter the word(s)
to find, then press Return. The text must appear exactly as it appears in the source code.

"Case sensitive search (YIN)?". Press "N' to find all occurrences regardless of the I
case. Press? to find only occurrences having the sam~ upper and lowercase pattern as
the one entered for the search string. A case sensitive search will look for word(s) with
the exact combination of upper and lowercase letters that match the character string you I
are looking for.

The prompt "Replace with" asks for the string that will replace the word(s) you are
looking for. If you are looking for a word, not replacing it, press Return without entering I
anything; otherwise, enter the replacement string.

Do an "Automatic replacement (YIN)?" IfT is entered, all match~s will be replaced I
I

I Chapter Two: The Source Code Editor 34

I without user intervention. If "N" is entered, the user will be prompted to confirm the
replacement of each occurrence as it is found.

I If the Editor finds the word(s) you are looking for. it will show the occurrence in the
center of the editing area displayed in inverse video. The editor will prompt ifyou want
to "Continue the search (BIF/Q)?". 'Ib continue the search forward, press "F". 'Ib

I continue the search backward, press "B". To quit the search, press uQ".

I
Example:

{Looking for a function}

Forward search: Find which string? FUNe

I
 {Any case pattern}

Case sensitive search(Y!N)? N

{No replacement}

I Replace with (Press Return)

{Prompt for every occurrence?}

I Automatic replacement(Y/N)? N

I
WARNING

Because this command may make extensive changes to

I
your file, we recommend you save your file before using
the automatic replacement feature, Until you are
familiar with this feature, it is easy to make mistakes.
Just reload the file to "undo" all the changes, if it did not
do what you wanted.

I
Filing CommandsI

New Source Code File (<.Apple>N)

I
'Ib clear the text buffer and start anew press <Apple>N. You are prompted for

confirmation. !fyou respond "Y", you will be C1.S uyou had just entered the Editor.

I
I

WARNING
Once this command is executed, the text cannot be
recovered unless it has been previously saved to disk.

I Insert Source File from Disk (<Apple>I)

I To insert or merge another text file into an already existing text file, move the cursor

I
to the line preceding the insertion/merge position, then press <Apple>I. You will be
prompted for a Pathname. Enter the Pathname and press Return. If the file does not
exist, you will be notified. The text will be read from the disk one line at a time. Each

I
 Part Two: The Programming Environment

35 Chapter Two: The Source Code Editor I
Itime a line is entered, the screen displays this new line. The cursor will remain on the

line it was on before the command was given.

IWARNING
Never use <Apple>I to insert a file at the last line of the
current file as Insert cannot be used to Append text. ICreate a dummy line as the last line and Insert to just
before this line.

I
Save, Kompile and Execute File (<Apple>K) I

This command will perform a Save «Apple>S), compile, link and execute the file
being edited without the operator's intervention as long as no compilation or linking
elTOr occurs. I

If a compilation error occurs, the process is stopped, and the Compiler prompts:
"'Continue Compilation, Edit file or Shell (ClEfS) ?". An"E" entered here will return the
user to the Editor at the position where the error occurred. A "e" will continue the I
compilation, and an "'S" will take the user to the Shell. '

If a run time error occurs during execution of the program, you will be prompted I
whether or not you wish to reenter the Editor to fix the problem. A "Y" will place the
cursor at the line containing the error. An"N" returns control to the Shell.

I
IMPORTANT

Regular use of this command is highly recommended as it
greatly simplifies program development. I

ILoad Source Code File (<Apple>L)

To load a text file into the Editor, press <Apple>L. This will bring up the command I
prompt line allowing a r·1 character Pathname. Enter the Pathname and press Return
to load the file. Loading a file into memory removes the previous file in the text buffer.
After the file has been loaded, the Editor will display the first 21 lines starting from line I
one. The line and column counters will display one. The Pathname is shown on the data
line before the clock display.

If you want to load a new file after having made changes to the current file, the I
Editor will prompt you to save the current file before loading the new file.

Ifyou try to load a file larger than the text buffer can hold, the part which will not fit Iin the buffer will be cut.

I

I

IPart Two: The Programming Environment

36 I Chapter Two: The Source Code Editor

I IMPORTANT

I

II

The <.Apple>L command does not erase the text contained
within the copy buffer. Use this command to copy text
from one file to another, ifnecessary.

I Save File as TXT type file (bit 7 on) (<Apple>S)

I
I To save to disk the program you are currently editing, enter <Apple>S. This is the

usual file save command. If you save to an already existing file, this file will be deleted
first, then the new file will be saved in its place.

I
The Save command "remembers" the last Pathname entered. To reuse this previous

Pathname, simply press"Y" to the prompt.' The file saved with <Apple>S is of type TXT
($04).

II WARNING
The Compiler generates the object file from the file on the
disk. not from the Editor buffer, so be certain to save your
file before you call up the Compiler.

I
I Save File as SRC Type File (bit 7 off) (<Apple>T)

<Apple>T saves the source code text file as an ASCII file. The file saved with

I <Apple>T is of type SRC ($BO). The text file created can be read by most
word-processors. This command works the same way as <Apple>S.

I Printing Commands

I Print Source Code (<Apple>P)

I
I To output a program listing to your printer, press <.Apple>P. The command line will

prompt you for the line number to start printing. Enter any positive number. Simply
pressing Return is a line one. The command line will prompt you again for the line
number to stop printing. Enter the second line number, or simply press Return as this is

I
an implied last line. The printing of the listing will start immediately. To print the
entire file. press the Return key twice. The Esc key may be used to cancel a print in
progess.

I
Example:

First Line: lOO<CR>

Last Line: 701<CR>

I

I
 Part Two: The Programming Environment

37 Chapter Two: The Source Code Editor I

I
Text Window Printout (<.Apple>W)

To print the text appearing in the text window, press <.Apple>W. This command is I

most useful when you want a quick printout of the Editing Display Area.

The key F13 (Print Screen) is supported on any ADB compatible extended keyboard.

To cancel the printout in progress, press the Esc key. I

Miscellaneous Conunands I

Convert Decimal to Hex (<Apple>#) I

To convert a decimal number to hexadecimal, press <.Apple># (<Apple>Shift.~3). The

command line will prompt you for input. Epter the decimal number to be converted to I

hexadecimal and press the Return key. Only valid. numeric (0-9) characters will be
converted properly as no error checking is doneo Press any key to restore the command
display. I

Convert Hex to Decimal (<Apple>#) I

To convert a base 16 number to base 10, press <Apple># (<.Apple>Shift~3). The

command line will prompt you for input. Enter a dollar sign ($) as the first digit to I

indicate that a base 16 number will 'be cGnverted, then the base 16 number followed by
the Return key. Only valid alphanumeric (0·9, A~F) characters will be converted
properly. Press any key to restore the command display. I

Version Information (<Apple>V) I

By pressing <Apple>V, the Editor's Editing Display Area will clear and something

like the following display will appear: I

GS/OS Version 3.3

Micol Advanced BASIC GS version 4.0 I

Last Modification Date 1 March, 1992

Bytes free in editor 23453
 I
Bytes available in copy buffer 10009

Lines available for editing 2000

I

The Editors' maximum buffer size is almost 128 kilobytes: enough for about 3800 to

4000 lines of code. You may copy a maximum of 32,768 characters (32K) to the Editor's
copy buffer. I

I

I

I Chapter Three: The Compiler 38

I Chapter Three

I
The Compiler

I Overview

I The Micol Advanced BASIC Compiler is a one pass compiler.; it reads the source
code only once while generating the object code. The Compiler translates the ASCII file
containing your BASIC program into an intermediate code which can be linked, then

I executed.

This chapter is short, but don't assume any lack of importance to the Compiler
because of this chapter's short length. This chapter is simply a brief overview. The

I
I Compiler is the heart of the language system. Part Three, the longest Part, is a

description of the language the Compiler can accept and in many ways is a description of
the Compiler.

Invoking the Compiler
I
I

You may invoke the Compiler by using the Shell command COMPILE or by
<Apple>K (Kompile) in the Text Editor (please see the appropriate section for details). If
you do not use <Apple>K from the Editor, be certain to save your file before exiting the
Editor as the Compiler works on the disk file, not the file in memory.

I Example One:
{Default prefix is /Micol.Adv.BASIC/}

I COMPILE DISK.UTIL

The file DISK-UTn. will be compiled onto the volume Micol.Adv.BASIC as file
DISK.UTll...LNK.

I Example Two:

COMPILE DISK.UTIL,/RAM5/FILER

I The file DISK.UTIL will be compiled as file FlLER.LNK (a .LNK IS always
automatically appended) on volume RAM5.

I
I WARNING

Never forget that four characters are always appended to
the object filename during compilation. If the total

I
number of characters in the object filename results in
more than 15 characters, you will receive an, error at
compilation time. 1b avoid this minor problem, always
specify a source code filename of 11 characters or less.

I

I Part Two: The Programming Environment

39 Chapter Three: The Compiler I
IDuriil.g compilation, the Compiler generates three scratch files for its work. These

scratch files are:

• <Filename.COD> the object code file I
<FileName.LIT> the file where literal constants are stored

• <FileName.LN> the file where forward references are stored. I
The above three scratch files are then used by the Linker to create the executable

load module, <FileName>.LNK

I
WARNING

As soon as the compilation and linking processes are
completed, the three scratch files are deleted. If however, I
during compilation, you should receive a disk full
message, it is because there is not enough storage for
these scratch files as well as the other files on the disk. I
In this case, you will have to delete some files or direct
compilation to another volume.

I
NOTE

Before the Compiler begins the compilation process, it I
checks for the existance of a RAM device with 192K ~

space or more. If such a device is detected, three scratch
files are created: A.COD, A.LIT and A.LN on this RAM I
disk instead of the three scratch files described above.
Compilation is IDJJ.cil quicker if the scratch work can be
done to a RAM device instead of a permanent storage I
device. If you have the available memory (more than one
megabyte), it is recommended you configure the Control
Panel RAM Disk to at least 192K. I

I

Compiler Commands

The Micol Advanced BASIC Compiler has three Control key commands that may be I
used while a program is being compiled.

I
Aborting a Compilation

Pressing <ControbC stops the compilation in progress; control is returned to the I
Command Shell. If you use this command, you will probably notice several error
messages generated by the Compiler. Simply ignore these messages as the compilation
was not completed. I

I

IPart Two: The Programming Environment

I Chapter Three: The Compiler 40

I Compiled Listings to the Screen

I If you press the letter "L" during compilation, the Compiler will send a compiled

I
listing to the screen. This listing may be turned off by pressing the letter "L" again and
may be paused by pressing <ControbS. Pressing any other letter will continue the
compilation. This compiled listing is the same as that generated by the compiler option
LIST described later in this manual.

I Compiled Listings to the Printer

I If you press the letter "P" during compilation, the compiled listing will be directed to
your printer. This listing is the same as that sent to the screen described above.

I
I WARNING

The printer must be online at the time of compilation. By
default, the printer must be connected to slot one or the
system may hang. This slot number may be altered by
the Shell command PRINTER.

I
Dealing with Syntax Errors

I
I

Unlike the Applesoft BASIC interpreter, Micol Advanced BASIC has dozens of

different error messages, only one of which is the dreaded "Syntax Error". When the

Compiler cannot make sense of a particular statement, it will send to the screen, in

I

inverse video, the source code line as far as it could "understand" it, and relate what the

Compiler "thinks" is the problem. The Compiler is sometimes wrong, but it is more often

correct. In any case, you easily should be able to determine the real cause of the problem

I

by taking time to read the error message and the line of code carefully.

You may be tempted to ask, when the Compiler gives you a message like u., ('

I
expected in line <line number>", that if the Compiler knows what to expect, then
why doesn't it simply insert tT I character and continue?

Do not attribute any intelligence to the Compiler. It is little more than a very
sophisticated pattern matcher and code generator. Some compilers do insert the
character they "think" is missing, usually with very bad results.

I The problem is that the Compiler often does not know what is really expected. With
the information the Compiler has at the time, it is usually correct about what is needed.
But maybe the cause of this error happened earlier.

I
I For example, the programmer may have mistakenly entered a reserved word and

used it as a variable name. The Compiler might expect a left parenthesis when what it
actually found was an equal sign. If the Compiler had replaced the equal sign with a left
parenthesis, the situation would be worse, not better.

I

I Part Two: The Programming Environment

Chapter Three: The Compiler

. Code Generation

As you probably know, the BASIC program you write is really only a representation
of the actual code that is executed by the computer. This is true whether your program
is compiled as under Micol Aduanced BASIC, or interpreted as under Applesoft BASIC.

If you believe that Applesoft code you entered is what is actually executed, try this
little experiment. Write a small program in Applesoft, then do a CALL -151 to get into
the machine language monitor. Begin looking at the code starting at location $801 (2049
decimal). You will not recognize much; it is a special tokenized code.

The MicolAdvanced BASIC Compiler scans your code and writes assembly language
code as it goes. This is true ofmost (but not all) compilers.

With most language systems, code generation is regarded as a sort of black box. All
you need to know is that a particular program will generate the necessary machine code
to performs its task. You seldom get to see the code that is generated; you have to look
upon it as a sort of magic.

Micol Systems takes a different approach. We believe that if you can see the code
generated, you will better be able to understand what is going on and therefore write
more efficient programs.

In order to speed compilation and save disk space, the Compiler writes an
abbreviated assembly language code to disk. If you were to look at the file
<FileName>.COD file generated by the Compiler, you would not recognize very much,
even ifyou knew 65816 assembly language. However, ifyou specify the CODE compiler
option at the top of your program, the Compiler will display this code in an assembly
language format (see Part Three, Chapter One for additional information).

You will need a basic understanding of 65816 assembly language to understand this
code, but as most of the detailed work of the compiled program. is done by the run time
Library routines, you won't need very much.

Most of the generated code is either setting encoded addresses and calling Library
routines to perform the task, or generating code to control the flow of the program.
Because of CPU limitations, most of the work performed by your programs must be
performed by the Library routines.

Man" Library routines used by the compiled program fall into one of three
catagones: integer, real or string. The Compiler generates subroutine calls according to
the following criteria: if the Compiler recognizes an operation to be integer, it appends
an "I" to the function name stem. If it recognizes real arithmetic, it appends an "R", and
it appends an "8" for string routines. If the Library routine R+ is being called, for
example, real addition is being performed. Some important Library routines are:

LNOUT Saves the line number information

MVARY Used with array manipUlations

FASS Places FOR loop counter values onto its stack

FOR FOR loop controls

NEXT Decrements the FOR variable stack pointer

LDAC Gets the boolean result from the stack

Part Two: The Programming Environment

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I Chapter Four: The Linker 42

I Chapter Four

I
The Linker

I Overview

I The Micol Advanced BASIC Linker will be summoned automatically if no error is
detected during compilation. Because of this, the task of the Linker is mostly
transparent to the user.

I
I After the source code file has been compiled, the program is still not yet ready for

execution. Three intermediate code files were created by the Compiler. These files
contain all the information the Linker needs to generate the executable module.

The Linker will read files created by the Compiler from the volume where these files
were written and create the file FileName.LNK in the appropriate folder.

I
How the Linker Works

I First, the Linker reads the jump table (FileName.LN) that contains the names and
relative addresses of all Functions, Procedures, Routines and other possible forward

I references in the source code.

Second, the Linker creates the binary load module FileName.LNK by reading the
FileName.COD file. The Linker replaces the references to all the names of the

I Functions, Procedures, Routines and internally generated labels with their addresses,
and generates the necessary code as it goes. The Linker sends a period to the screen for
every 250 lines of code it has processed.

I Third, after the generation of the executable code, the Linker converts the literal
values written in the file FileName.LIT into binary and places this code at the top of the
executable code module. These values will be loaded into their proper locations at

I initialization time (when the program is first executed).

I
After the)jnking process, the Linker will then try to delete the three scratch files

generated by the compiler and used by the Linker, as they are no longer needed.

How to Use the LinkerI
As was already mentioned, the Linker is invoked automatically by the Compiler. The

Linker does, however, require some user input after its task is finished.

I
I If the Linker was summoned via the Shell using the COMPILE command, and the

link is successful, you will receive the prompt, "Execute the file (YIN)?". Ifyou enter?,
the program will load and execute. If you enter "N", you will be taken to the Shell.

If the Linker was called via the Editor with the Kompile «Apple>K) command, the
Linker will automatically load and ron the executable object file after a successful link

I process.

I Part Two: The Programming Environment

43 Chapter Four: The Linker I
Linking Errors I

When the Linker detects an error, usually a non-existent Function, Procedure or IRoutine call (FN Module.ld or GOSUB Module. Id), the Linker displays "Undefined
subroutine dD>" in inverse video. <ill> refers to the name used to define the Function,
Procedure or Routine in the program. I

You are prompted to:fix the error in the editor, "Edit the linker error (Y!N)?". A"Y"
response to the prompt will bring the Editor to the screen with your file waiting to be
edited. Ifyou enter"N", you will be taken to the Shell. I

Because the Linker does not know at which line the error occurred, the cursor is
placed at the beginning of the source code file. Use the Forward FindlReplace command
(<Apple>F) to locate the module call with the "undefined" subroutine <ID>. I

I
I
I
I
I
I
I
I
I
I
I
I

Part Two: The Programming Environment I

I Chapter Five: The Run Time Library	 44

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Chapter Five

The Run Time Library

Reference Section

The run time Library, file LIBRARY on the system disk, is the workhorse of the
compiled program.. The Library contains all the routines needed by the compiled code to
accomplish its tasks. The functions performed by the run time Library may be anything
from doing integer multiplication to string garbage collection. The Library uses the
floating point math routines of the Standard Apple Numerics Environment (SANE)
contained in the Apple IIGS Toolbox as well as the Toolbox's graphics and sound
capabilities, etc.

The run time Library is brought into memory when Micol Advanced BASIC is booted
and remains in memory until you leave the language system. As is the case with the
Compiler, the Editor and the executable load modules you will create under Micol
Advanced BASIC, the Library is relocatable. This means the Library is loaded where
the GS Memory Manager tells the Micol Loader memory is available. The Library is
then referenced within a program by a jump location that is set at a fixed address in
memory ($EIOOFO).

The Library consists of scores of run time routines and buffer memory. It comprises
about sixty-four thousand bytes of code. Because most of the work the Library performs
is done by internal routines, the speed of these routines is greatly increased.

The Micol Systems Licensing Agreement

The purchaser ofMicol Advanced BASIC bas the right to make backup copies of the
Micol Advanced BASIC software for his/her one personal use. This software may not be
given to another party except with express written permission ofMicol Systems.

The purchaser ofMicol Advanced BASIC has the right to make and distribute copies
of the Micol Advanced BASIC Program Loader, the Micol ~.:ons, and the Run Time
Library to execute a program developed by the legal owner of the MicolAdvancedBASIC
Language System if one of the two specifications below is followed. The Micol icons, the
run time Library and the Mical System Loader (files MicoUcons, LIBRARY and
MicoLAdv.BASIC) consist ofcopyrighted code belonging to Mical Systems Inc.

That person or commercial entity owning a legal (non-pirated) copy of Micol
Advanced BASIC is hereby granted a license to distribute free of charge compiled Micol
Advanced BASIC programs provided one of the two conditions below is followed:

1.	 The Micol Systems Copyright notice is displayed while Micol Advanced BASIC is
booting.

2.	 A negotiable, one time fee is paid to us before the release of the product on the
commercial market. Once this fee is paid to us, you will receive a copy of a
"Commercial Distribution License" from us to use the Run Time Library, the

Part Two: The Programming Environment

45 Chapter Five: The Run Time Library I

Micol Icons, as well as the Mical Systems Loader which does not display the I

Micol Advanced BASIC Copyright notice, to be used with a specific product.

I
IMPORTANT
You do not have the right to use the Micol icons, the Micol
Advanced BASIC Run Time Library or the Micol
Advanced BASIC System Loader with a program I

intended for commercial purposes unless you have met
one of these two conditions. I

Educational and Industrial Site Licenses I

Micol Systems Inc. offers to companies and school districts and boards the possibility

ofmaking unlimited copies ofMicolAdvanced BASIC by purchasing a site license. I

The site license package consists of:

• The MicolAdvanced BASIC disks: Master Disk and IMAB.SUPPORT. These I

disks contain special, fully networkable versions ofMicol Advanced BASIC, not

otherwise obtainable

Two copies of the Micol Advanced BASIC reference manual
 I

A site licensing agreement which allows you legally tD make unlimited copies of

the system disks and manuals for use with the specified site
 I
A product registration card

• The right to purchase additional manuals at a reasonable cost.

I

District and Board licenses are also available. For further details, contact the Micol

Systems office during regular business hours. I

I

I

I

I

I

I

Part Two: The Programming Environment I

I Chapter One: Compiler Rules and Directives 46

I Part Three: The Advanced BASIC Language

I
Chapter One

I
Compiler Rules and Directives

I Overview

I This chapter describes the general rules for writing Micol Advanced BASIC
programs. You must pay special attention to this section as there is nothing in Applesoft
of a similar nature. This Chapter also describes special features of the language that canI greatly aid you in your program development.

I General Information

The programs you create with the Micol Advanced BASIC cannot be as free form as

I
I those created with Applesoft BASIC. You must follow certain rules regarding the

sequential order of certain statements. This is something inherent to compiled
languages.

I
A Micol Advanced BASIC program consists of a series of program lines. Each

program line consists of one or more program statements. A program line may have a
maximum of250 characters and must end with a carriage return.

Multiple Statements per LineI
A colon may be used to separate two or more program statements on the same line.

I- Try to avoid this usage as it hinders program clarity.

I
Example:

TEXT:HOME

Line Numbers

I
I

If you wish, you may precede each program line with a line number as under
Applesoft BASIC. Line numbers may range between 1 and 65535.

I

I

I Part Three: The Advanced BASIC Language

47

IMPORTANT

IMPORTANT

Chapter One: Compiler Rules and Directives

Line numbers are NOT required by Micol Advanced
BASIC and their use is NOT recommended. Line
numbers are no longer useful, and were retained solely
for compatibility with Applesoft BASIC. Unless line
numbers are referenced within a program, they will be
ignored. Use of line numbers within a program is entirely
up to the programmer.

When the Compiler or nm time routine refers to a line in
your program, it is referring to sequential line numbers
given to the source code by MicolAdvanced BASIC, not to
any line numbers you have specified in your program.

Program Line Continuation Character (\)

The Editor and Compiler accept source code lines up to 250 characters long. The
Editor's display will scroll from left to right when a source line of more than 80
characters is entered. 'lb keep the program line within one screen, you may divide a
source code line into two or more parts by terminating the line with a backslash (\).
Enter the remaining source code line anywhere on the next line.

The backslash (\) must be the last character on the line and may appear only where
extra spaces could appear. It may not be used to break reserved words or identifiers.
The backslash may not be repeated on the same line, or you will receive an error.

Example:

PROGRAM Math

HOME

Number% = (1 * 6) + \

(2 * 5)

PRINT Number%

END

CommentingYour Programs

Mical Advanced BASIC provides two ways to help you document a program:
comment statements and comment delimiters.

Use annotations to better understand what the program does in order to make
changes, corrections, or add new features to the program at a later time.

Part Three: The Advanced BASIC Language

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I Chapter One: Compiler Rules and Directives 48

I NOTE
Unlike Applesoft BASIC, Mieol Advanced BASIC does not

I generate any code for the comments in a program (except
perhaps for line number information). Write whatever
comments which aid in the understanding of the

I program.

I
 Comment Statement (Old Method)

I The REM (for remark) keyword instructs the Compiler to ignore all characters until
the beginning of the next line. REM provides compatibility for programs originally
written in Applesoft BASIC.

I Example:
REM You may write comments like this as in Applesoft,

I REM but the method described next is much better.

Comment Delimiter Characters [{ }] (Preferred Method)I
I

Comments may also be enclosed within brace brackets [{ }], which may be placed
anywhere in a program where extra spaces could be written. These comments may cover
multiple lines ifyou wish.

I NOTE
Comment delimiter characters may be nested. An
annotated section of code may be "commented out"

I without having to worry about the comments already
written. "Commented out" code is treated like any other
comment.

I
I WARNING

The right brace bracket (}) closes the comment and is
extremely important. Do not forget to terminate the
comment with a right brace bracket [}]; otherwise, the

I rest of the program. will be considered a comment.

I

I

Examples:

PROGRAM ShOW_Comments

{This is a comment

covering a couple of lines}

I HOME

I
 Part Three: The Advanced BASIC Language

49 Chapter One: Compiler Rules and Directives I
I{{This FOR loop will not be in the program}

FOR Counter% {Comment here too} = 1 TO 100

PRINT Counter%
 I
NEXT Counter%}

END (Show_Comments}
 I
Program Order I

A Micol Advanced BASIC program. must begin with a program name. Compiler
options are the next statements to be included, if needed. ALIASes', then DATA
statements are declared thereafter. The optional identifier's type, declaration follows I
next. Array declaration statements round up the program declarations.

Except for the program name, the lines just mentioned are optional, but if compiler I
directives, DATA statements or array declarations are used, they must not appear out of
the order mentioned above, otherwise Compiler errors will arise.

Example: I
PROGRAM Definition {Program Identifier}

{Compiler Options} I
@ LIST, EXTEND

ALIAS "UNTIL 1 - 0" - " FOREVER"
 IDATA 1, 1.0, "1" {DATA statements}

{Identifier's Type Declaration}

INT (I - N): STR (5 - Z)
 I
DIM Alpha% (2), Beta (3), Coma$ (4) {Array declarations}

{Actual Program Start}
 I
END

IProgram N arne

The first line of each program must begin with the reserved word PROGRAM I
followed by a program identifier. The name of the program must begin with a letter and
may only consist of letters (A-Z), digits (0-9) and underscores U, and may not be a
reserved word. I

This line is not optional. Hit is left out, the Compiler will return an error.

Note that a period (.) is not allowed in a program identifier.
 I
Examples:

PROGRAM First_Program
 IPROGRAM Test.file {Not Allowed}

I

I

I Chapter One: Compiler Rules and Directives 50

I Compiler Directives

I Compiler directives are special commands given to the Compiler to tell it to do a

I
special task, such as sending a listing to the printer. Compiler directives consist of both
compiler options such as LIST, and other instructions to the Compiler such as ALIAS.

The fact that the Compiler must see all the code before any program can be executed
allows it to do certain things an interpreter is incapable of doing, such as giving more
precise syntactic error messages. A thorough knowledge of these directives will help toI get the most out of the compiled language and make programming more enjoyable.

I Compiler Options

I To use one or more compiler options, the line must begin with an "at sign (@) followed
by one or more options separated by commas (,). The compiler options may appear on
separate lines, but the lines must be consecutive.

I Example:

PROGRAM Example

I @ LIST, CODE

<Program Code>

I
I This option is used to increase the memory allocated at run time for the string buffer

and will probably only be necessary ifyou have very large string arrays.

The memory is reserved in memory banks of 64K. By default, a program has one
bank for its string storage. Under most circumstances, one bank should be sufficient.

I
I BANK_NO accepts integer values between 1 and 15. This means that as little as

one bank. (64K), or as much as 15 banks Gust over a megabyte) may be allocated for
string storage. If the computer <lees not have enough memory for the number of banks
specified, there will be an error when the program begins to execute, not when it is
compiled.

I At the end of compilation, the Compiler indicates how many banks of memory for
string buffer storage will be allocated for the program.

I Example:

PROGRAM Example

@ BANK NO = 4

I In the example above, the program will allocate four banks (256K) of RAM for string
buffer storage.

I
CODE

I This option lets you see how assembly language code is generated by the Compiler as

I Part Three: The Advanced BASIC Language

51	 Chapter One: Compiler Rules and Directives I
it processes the program. Assembly language programmers will be able to see the code I
generated, and may be able to write better programs. CODE is included for the benefit
of those who have an interest in learning more about how a compiler generates code.

To see the code generation displayed to the output device, use the CODE option. The I
Compiler writes the object code to disk in a compact assembly language-like format.
With this option, the code will be expanded on the current output device to look like true Iassembly language.

Example:

PROGRAM Example I
LIST, CODE

HOME
 I
END

The Compiler produces this code for this simple program:
 I
2 [0) a $0000	 HOME

JSL LIBRARY
 I
BYT INIT

BYT 00

WOR 0000 I
BYT 00

WOR 0000 I
JSL LIBRARY

BYT HOME I3 [0) 100 SOO10	 END

JSL LIBRARY

BYT LNOUT
 I
BYT 00

WOR 0003 I
JSL LIBRARY

BYT END I
ERROR

I
Ifa RESUME is used in a program which causes it to continue execution at the same

line where a run time error occurred, the ERROR compiler option must have been
specified to make the program function properly. I

This option causes the Compiler to generate six (6) extra bytes of code for each line or
loop. Ifyou are short ofmemory, don't use it. I

I

Part Three: The Advanced BASIC Language	 I

I Chapter One: Compiler Rules and Directives 52

I NOTE

I
ONERR GOTO branches will work without this compiler
option, but the program will not be able to RESUME
execution.

I
See also the RESUME command in Part Three, Chapter Fourteen.

I Example:

PROGRAM Example

I @ ERROR

<Program Code>

I EXTEND

Use this compiler option to increase the range and accuracy of all real simple

I variables and arrays from 7 or 8 places to 19 or 20 places. This is especially useful in
scientific or technical programs in fields such as microbiology, engineering, and
astronomy.

I
I Normally, four bytes of memory are allocated for each real simple variable or real

array element, but if the EXTEND compiler option is used, ten bytes of memory will be
allocated for each real variable or array element. Each real value will have an accuracy
to 19 or 20 places, with a range of ±lo±4096. Because floating point calculations are

I
always carried out using extended arithmetic, there will be little difference in execution
speed if this option is used.

Example:

PROGRAM Example

I @ Extend

<Program Code>

I LIST

I The UST compiler option instructs the Compiler to generate a source code listing as

I

the program is being compiled.

A compiled source code line consists of the sequential line number, the nesting level,

the relative (not actual) address expressed in decimal notation where the first byte of
this line will reside, this address expressed in hexadecimal notation, and the source code

I line. A symbol table dump of the variables followed by the memory usage information is
displayed after the program lines. See "Compiled Listing" later in this chapter for
additional information.

I LONGINT

I Use this compiler option to increase the range of all integer ·variables and integer

I
 Part Three: The Advanced BASIC Language

53 Chapter One: Compiler Rules and Directives I
Iarrays from five to ten places. Ifyou are not using extended real numbers, the accuracy

(but not range) of long integers is actually greater than that of real numbers, but their
execution is much faster. This may be an important consideration for yOll. ITwo bytes ofmemory are normally reserved for each integer variable or. integer array
element. When the LONGINT compiler option is used. four bytes of memory are
allocated for each integer variable or array element. Each integer value will have a Irange of±2,147,483,647.

NOTE I
Because integer arithmetic is very fast, there will
probably be little difference in execution speed if this
option is used. However, twice as much memory is Irequired for integer storage. This is only a factor if you
have limited memory and very large integer arrays.

I
Example: IPROGRAM Example

@ LONGINT, CODE

I
NOGOTO

IThis compiler option is intended for teachers who wish to restrict their students to
structured programming without using GOTOs or POPs. By specifying this option,
GOTO and POP statements will become illegal and cause a compiler error if used. The Ireserved words GOTO and POP may then be used as variable names.

The ONERR GOTO statement is not affected by the NOGOTO compiler option.

Example I
PROGRAM Example

@ NOGOTO I

I

This compiler option turns off the <Contro1>C interrupt command ability during
program execution. Pressing <Contro1>C from the keyboard during a program's
execution will have no effect on programs if this option is used. I

Example:

PROGRAM Example
 I
@ NOT_C

IIMPORTANr
Do not use tbis compiler option until the program 18

thoroughly debugged. I
I

I Chapter One: Compiler Rules and Directives 54

I OPTIMIZ

I The compiler normally generates line information to let the programmer know where

I
a ron time error has occurred in the program.

This compiler option turns off the consecutive line information usually generated by
the Compiler. This gives programs a small, but noticeable increase in execution speed.
Use it to speed up the program. once it is completely debugged.

I
I IMPORTANT

The most important function of OPTIMIZ is to conserve
memory. A program using OPI'Il\1IZ is about one-third
smaller than one without it.

I PRINTER

I This option functions the same way as the compiler option liST, except output is
directed to the printer instead of the screen. Output is directed through slot one unless
changed by the Shell PRINTER command. The listing is printed according to values set

I in the Control Panel.

I
Example:

PROGRAM Example

@ PRINTER

I VAR2

I This option restricts to two (or three if an exclamation mark (!), a dollar sign ($), an
ampersand (&) or a percent sign (%) is at the end of the variable name) the number of
significant characters in a variable name, as in Applesoft BASIC.

I
I

NOTE
Use this compiler option only if you are compiling source
code files converted from Applesoft BASIC programs and
do not wish to modify the variable names.

I
I

Example:

PROGRAM

@ VAR2

Example

I
I
I Part Three: The Advanced BASIC Language

55 Chapter One: Compiler Rules and Directives

Compiler Aliases

ALIAS "User statement" = "BASIC Expression"
-User Statement

The ALIAS compiler directive lets the programmer change a Micol Advanced BASIC
statement or expression to another statement or expression ofhis/her choosing.

ALIAS definitions are placed after the compiler options and before the variable type
declarations.

The purpose of Aliases is to give more meaning to your programs. For example, if
you have a loop which you wish to execute as long as the computer is on, you may
substitute Forever for the Micol Advanced BASIC code that actually creates this
condition.

An Alias is defined by using the keyword ALIAS followed by the replacement
statement, followed by an equal sign, followed by the statement that the Compiler will
substitute. Both strings on either side of the equal sign must be. enclosed in quotation
marks ('ttl).

'Ib make the replacement within a program, use the tilde (-) character followed by
the user replacement string (without the quotation marks). When the Compiler detects
the tilde, it will search the ALIAS list (created at the top of the program) for a match
and make the replacement during compilation.

An Alias substitution may not be the first executable line or the Compiler will issue
an error.

IMPORTANr
All string literals used with Aliases are case sensitive; the
Alias definition and user statements must exactly match,
or no change will OCCU!I'. No error will. be flagged, but as
no substitution will occur, an error condition will
undoubtably arise when the line is compiled.

I
I
I
I
I
I
I
I
I
I
I
I
I

Example: I
PROGRAM Example

ALIAS ~Pi" - ~3.l4l59"
 I
ALIAS ~Forever" = "UNTIL 1 = 2"

ALIAS "Clear Screen" = "HOME"
 IINT (A - Z)

{Start of executable code 'follows}

Trig_Const = -Pi
 I
-Clear Screen

REPEAT
 I
I

I Chapter One: Compiler Rules and Directives 56

I
PRINT ~Trig_Const

I -Forever

END

I NOTE

I
If two Alias declarations beginning with the same letters
are declared, the, wrong match may be made. This
problem may be avoided by declaring the longer Alias
declaration first.

I
I

Example:
PROGRAM Example

@ List

{Note the order here, it's important,

I if ~eversed, only first Alias matched}

ALIAS ~Pi_Long" .. "3.14159"

I ALIAS ~Pi" = "3.14"

ALIAS ~Circumference" = "20.0"

{Note! Order here is unimportant}I Diamete~

I
I

Diameter

NOTE

-

I

-Ci~cumference / -pi

-Circumference / -Pi_Long

When the Compiler generates a compiled listing, the Alias
substitution made during compilation will be displayed.
~f you are gettin~ error me~sage.s t~at don't make sense to
you, try generating a complIed hstmg.

I

Variable Type DeclarationsI
INT(letterl-letter2) : STR(letter3-letter4)

I
The variable type declaration allows the programmer to write the integer and string

I identifier's of simple and structured data types (simple variables and arrays) without the
percent (%) or string ($) character required by Applesoft BASIC. These statements are

I
optional and are placed before the arrays are declared.

'Ib declare a range of variables, specify the data type (INT for integer or STR for
string) followed by a range of letters in parentheses. Separate the variable type
declarations by a colon (:).

I The range of letters used for integer variables must be different from the range used
for string variables. If the declarations between the integer and string data types should

I Part Three: The Advanced BASIC Language

57 Chapter One: Compiler Rules and Directives I
overlap, the Compiler will indicate that an error occurred. I

Any possible implied declaration with the following characters, a "%" for integer "&"
for real, "$" for string and "t" for boolean after the variable name, will override the Ideclaration types mentioned above. These characters are still significant. Note that
there is no implicit declaration for booleans.

I
NOTE

A one letter range may be declared by specifying the same
letter twice in the declaration. I

IExample:

PROGRAM Example!

INT (K-K): STR (S-S) I
Variables beginning with the letter K and having no special character at the end will

be integer variables, while variables beginning with the letter S and having no special Icharacter at the end will be string variables.

Example:

INT (I-R): STR (S-Z)
 I
First$,. '(\11

Second = '(\fI I
SecondS ,\IF:0

Second% - 0 IThird '(\fI

Forth = 0.0

Ninth = 0 I
Ninth& = 0.0

First$ is a string variable I
Secone' s a string variable

Second$ is a string variable different from Second
 ISecond% is an integer variable

Third is a string variable

Forth is a real variable
 I
Ninth is an integer variable

Ninth& is a real variable
 I
In the above example, all variables which begin with letters A through H will be real

variables (unless followed by the character 1, % or $). All variables which begin with
letters I through R will be integers (unless followed by the character &, ! or $), and all I
variables which begin with letters S through Z will be string variables (unless followed
by the character &, % or !). Second and Second$, although string variables in the above I

•

I Chapter One: Compiler Rules and Directives 58

I example, are different variables.

I Compiled Listing

I Whenever you use the LIST or PRINTER compiler options, you generate what is
called a compiled listing. This compiled listing contains much information that may be
of use to you during your program development.

I Here is an example of a compiled listing:

PROGRAM Example

I Compiled listing of Example

3 [0] 0 $00 00 HOME

I 4 [0] 16 $0010 FOR Counter = 1 TO 10

5 [1] 56 $0038 PRINT "Counter ";Counter

6 [1] 84 $0054 NEXT Counter

I 7 [0] 100 $0064 END

No errors in compilation

I
SYMBOL TABLE DUMP

I
 1 R0205 10 R0209 Counter R0201

530 bytes required for variable storage

I 1 bank required for string storage

118 bytes code generated

I
Program Lines

I The first position in the program line is occupied by the sequential line number.
This is the number that is used whenever a line is referenced.

The second position in the program line is occupied by a number in square brackets

I
I ([D. This number is the level of nesting in which the program line appears. For

example, this number tells you how many FOR loops or IF statements are currently
active at the beginning ofilie line. This can be very valuable debugging information.

The third value displayed is the relative address in decimal, followed by the relative
address in hexadecimal, followed by the actual program line itself.

I
Symbol Table Information

I
After the program lines, the Compiler displays the list of all types of simple and

structured variables used in the program..

I The Symbol Table contains the relative hexadecimal addresses of all simple boolean,

I Part Three: The Advanced BASIC Language

59 Chapter One: Compiler Rules and Directives I

I
integer. real and string variables, numeric constants (literals), and arrays.

The capital letter in the address indicates the type of the variable. B indicates the
address of a boolean, I indicates the address of an integer, R indicates the address of a Ireal, and S indicates the address of a string

The local simple variables (accessible only to Functions or Procedures) are the first
variables listed in alphabetical order. The values assigned to simple and structured data I
types are listed second, also in alphabetical order. The simple and structured data types
are listed third, also in alphabetical order.

During compilation, the names of all variables have been converted into uppercase I
letters and so appear in the Symbol Table. The name of a local simple variable is
preceded by a number sign (#). An array name is followed by a left parenthesis [(]. I

Statistical Information I
After the Symbol Table has been displayed, there appear a few lines which give a bit

of helpful information. These lines are: I
530 bytes required for variable storage

1 bank required for string storage

118 bytes code generated
 I
The first line indicates how many bytes of memory were used by the boolean. integer,

floating point, and string variables and arrays, and all literals. The second line shows I
how many banks ofmemory are allocated for the string buffer. The third line shows how
many bytes of program code were generated by the Compiler.

I
NOTE

The program will actually occupy a bit more memory than
is specified by the last statistical information line. This is I
because some memory will be occupied by code generated
by the Linker to store initialization information. The first
line of statisical information (bytes required for variable I
storage) will give you a rough idea of how much more.

I
I
I
I
I
IPart Three: The Advanced BASIC Language

I Chapter Two: Basic Elements of the Language 60

I
Chapter Two

I
Basic Elements of the Language

I Overview

I
I In order to understand any computer language, you first have to learn the basic

elements comprising the language. This chapter will deal with these basic elements that
you will need to build upon to create Micol Advanced BASIC programs.

Basic Symbols
I
I

Micol Advanced BASIC uses letters of the alphabet, digits, and special characters to
form the symbols of the language.

Digits (0·9)
I

Digits are used to form. numbers, keywords, identifiers, and character strings.

I Letters (A • Z, a • z)

I These characters are used to make keywords, identifiers and character strings.

I Special Characters

These characters (!, @, $, %, &, _ , - (,) {, }) may be used to give a specific meaningI to identifiers, declare an array, specify a comment, etc.

I Separators

I Colon

The colon <:) separates two statements on a line.

I Comma

I The comma (,) separates two or more constants or variables on a line.

I
I

61 Chapter Two: Basic Elements of the Language I
IParentheses

The parentheses [()] separate complex string and math expressions as well as array
element designators. I

Space I
A space specifies where one symbol ends and another symbol begins.

I
Variable Names

I
A variable name consists of letters. digits and the underscore character. A variable

name may have up to 62 characters, but it is wise to limit its length to about 20
characters or less. Unless the VAR2 compiler option is used. all chwacters are I
significant.

The variable name must begin with a letter of the alphabet. Characters may be
either in upper or lowercase, but lowercase letters will be converted to uppercase during I
compilation.

A variable name may not be a reserved word and should be meaningful. By
convention, Variable names are easily destinquished from reserved words in that I
reserved words are entered in uppercase letters while variable names are in lowercase
with only the first character in uppercase. IUnlike Applesoft, a variable name under Micol Advanced BASIC may contain a
reserved word within it. For example Go_Home and For_Ctr are legal variable names.

Examples: I
Factorial, General_Ledger, Tax, Price

instead ofvariables like I
Z13, XYZ, A123

which are not meaningful. I
These variables are not legal:

General. Ledger, lO%_Tax, Horne I
Variable Data Types I

The data type defines the interpretation of values that simple variables, arrays, and
expressions may have. Micol Advanced BASIC has four simple data types and four I
structured data types, one for each simple data type.

ISimple Data Types

Micol Advanced BASIC supports boolean, integer, real and string variables as simple I
I

I Chapter Two: Basic Elements of the Language 62

I data types.

I Booleans

I A boolean variable is assigned either a value of TRUE or FALSE. The function of a
boolean variable is to be set to one state or the other, so that necessary action(s) may be

I
taken later (this is often called a flag or switch). A boolean occupies only one byte of
memory. The initial value ofa boolean variable is FALSE.

The normal convention for variable names applies, but an exclamation mark (!) must
be added at the end of the variable name to force the Compiler to type the variable as
boolean.I Boolean variables may also hold an indefinite value if necessary. See Controlled

Uncertainty in Chapter Twelve of this Part for details.

I Examples:

Flag! = FALSE {Init flag for test}

I Number = 10

IF Number> 6 THEN Flag! ~ TRUE

I IF Flag! THEN BEGIN

PRINT "Number is greater than SixH

I
I

NOTE

ENDIF

I
I

Example:
PRINT 1

I Integers

The keyword TRUE or FALSE is displayed to the current
output device when a boolean variable or relational
expression is evaluated within a PRINT statement.

<> 2 {Will print TRUE}

An integer value represents a numeric value that has no fractional part and has a
limited range. The initial value of an integer variable is O.I The normal convention for naming variables applies, but a percent sign (%) must be
added at the end of the identifier to force the Compiler to type the variable as integer

I unless an !NT variable type declaration is in force.

I
Example:

Dividend% - 1

Divisor% = 3

PRINT Dividend% / Divisor% {Result is OJ

I Micol Advanced BASIC for the Apple IIGS has two ranges for integer values: Sho~

I Part Three: The Advanced BASIC Language

63 Chapter Two: Basic Elements of the Language I

Integer and Long Integer. I
Short Integers I

Micol Advanced BASIC can represent short integer values in the range ±32767.
Negative values are represented as two's complement numbers. A short integer occupies Itwo bytes ofmemory.

Example: IShort_Integer% = 32000

Long Integers I
Micol Advanced BASIC can represent long integer values in the range

±2,l47,483,647. Negative values are represented as two's complement numbers. A long
integer occupies four bytes of memory. I

Long integer arithmetic is activated with the compiler option LONGINT. See also
Chapter One in this Part under Compiler Options. I

Example:

Long_Integer% = 2146493697
 I
Real <Floating Point) I
A real number represents a value that can represent a large range ofvalues and may

have a fractional part. The default number of significant digits that may accurately be
represented is seven digits. The initial value of a floating point variable is 0.0. I

The normal convention for naming variables applies, but an ampersand (&) may be
added at the end of the identifier to force the Compiler to type the variable as a real to
override an INT or STR variable type declaration. I

Examples:.
Dividend& = 1 I
Divisor& = 3

PRINT Dividend& / Divisor& I
{Result is D.3333333}

Micol Advanced BASIC IIGS has two ranges of precision for floating-point numbers:
Single and Extended. I
Single Precision I

Single precision reals can represent values in the range ±3A X loB8. Seven digits
are significant in calculations. A single precision real variable uses four (4) bytes of Istorage.

Examples: IPRINT EXP(l.O) {Prints 2.718282}

IPart Three: The Advanced BASIC Language

I Chapter Two: Basic Elements of the Language 64

I PRINT EXP(2.0) {Prints 7.389056}

I Extended Precision

Extended precision reals can represent values in the range ±1.0 X lo±4096. Nineteen

I digits are significant in calculations. A real variable occupies 10 bytes of storage in
memory.

I Extended precision arithmetic is activated with the compiler option EXTEND. See
also Chapter One in this Part: Compiler Options.

Examples:

I PRINT EXP (1.0) {Prints 2.71828182845904522}

PRINT EXP(2.0) {Prints 7.38905609893065022}

I Scientific Notation

I Large real values that are too large to be represented in decimal format (more than
seven digits using single precision) may be represented using scientific notation.

I
Scientific notation representation uses a multiple of 10 raised to a power of 10. Values
may either be set or displayed using scientific notation.

Example:
Real& 4E6 {Equivalent to 4,000,000 or 4 x 10 6

}

I Real& - 4E-6

I Strings

I

A string is a sequence of characters including letters, digits, special characters, the I space character and control characters.

The normal convention for naming identifier applies, but a doUar sign ($) must be
added after the variable name to force the Compiler to type the variable as string. The
dollar sign may be omitted if the STR Variable Type Declaration applies to the variable

identifier in question.

I The length of a string is equal to the number of characters inside it. Each string

variable occupies three (3) bytes in data memory plus four (4) bytes of system

information in addition to the characters in a separate string buffer. The maximum size

I a string can grow is 1023 characters. However, a string literal can only have 251

I

characters.

Micol Advanced BASIC uses two types of string storage: static and dynamic storage.

Static Storage
I
I

Static strings are used when a string of characters is encased in double quotation
marks ("") within a program.

•

65 Chapter Two: Basic Elements of the Language I

I
Example:

Name$ = "Steve"

I
Dynamic String Storage

I
Dynamic string storage is used in all other cases. A dynamic string variable holds

the address where the actual string is in memory, but the actual string is stored in a
special buffer area reserved for this purpose (see the compiler option BANK_NO for ,I
additional information).

Structured Data Types: The Array. I
Micol Advanced BASIC has four kinds of structured data types: Arrays of boolean, Iinteger, real and string.

Declaring Arrays I
DIM Array_Name [!,%,&,$] (Size) \ I
[I, Array_Name [!,%,&'$] (Size) }]

Arrays are always declared and dimensioned at the beginning of the program after I
the optional compiler options, the ALIAS declarations, and DATA statements.

An array is a set of data of the same type. Each piece of information is called an Ielement. Access to each element is made via a subscript (an index number to the array).

The DIM statement will allocate to the array the number of elements plus one,
element 0 being the first array element. I
NOTE

Unlike Applesoft, all arrays, no matter how small, must I
be declared before they are used. If an array needs mor""
memory than is available to the computer, an "Out of
memory" error message will be displayed when the I
execution of the program begins. DIM sizes may only be
numeric constants, not variables. I

To declare an array, use the reserved word DIM, give the array any legal variable I name followed by its size between parentheses.

To declare more than one array, separate each array name and size by a comma.

I
Multi-dimensional Arrays

I

•

DIM Name [I, %, &, $] (Size [I , Size} J) \

I Chapter Two: Basic Elements of the Language	 66

.1 [, Name [I, %, ~ $] (Size [{, Size}])]

I A multi-dimensional array is an array having two or more dimensions. A different
size may be used for each dimension.

I
To add another dimension to an array, enter a comma followed by another size value

after the first size dimension. To declare more than one array, separate each array name
and size declaration by a comma

Example:

I PROGRAM Month_Temp

I
DATA 23, 34, 32, 12, 11, 22, 20

DATA 18, 14, 17, 15, 16, 13, 12

I
DATA 11, 10, 7, 3, 0, -3, -6, -14'

DATA -17, -19, -15, -12, -10, -8

DIM February (3, 6)

I	
HOME

Temp_Total& = 0

FOR Week = 0 TO 3

I
 FOR Day - 0 TO 6

I

READ Temperature% {Must read integer data}

February (Week, Day) - Temperature%

Temp_Total & Temp_Tota1& + February (Week, Day)

NEXT Day

I NEXT Week

I
Aver_Temp = Temp_Total& I 28

PRINT ~The average temperature for February is: ";Aver_Temp

END

I Although it is possible to have an array with more than three dimensions, it is rare
that one has to use such arrays. Review the logic of the program if such a large array is
required

I Array Memory Usage

I	 A boolean array uses one byte to hold the number of dimensions, two bytes per

I
dimension size plus one byte times the number of elements plus one.

An integer array uses one byte to hold the number of dimensions, two bytes per
dimension size plus twice the number of elements plus two bytes (four times the number
of elements plus four bytes, if the LONGINT option is used).

I A real array uses one byte to hold the number of dimensions, two bytes per
dimension size plus four times the number of elements plus four bytes (ten times the
number of elements plus ten bytes if the EXTEND option is used).

I A string array allocates one byte to hold the number of dimensions, two bytes per

I	 Part Three: The Advanced BASIC Language

67	 Chapter Two: Basic Elements of the Language I
Idimension size plus three times the number ofelement8 plus three bytes.

Array Nesting I
Under most circumstances, integer index variables should be used with boolean,

integer and string arrays; real index variables should be used with real variables to I
reduce array access time.

WARNING
 I
If arrays are nested, that is, an array element is used as
an array counter, you must nest arrays of the same type Ior an ~rror will result. This means you may only nest
real arrays within real arrays and integer arrays within
string, integer and boolean arrays. I

Operators I
Micol Advanced BASIC has three types of operators: arithmetic, logical and

relational I
Arithmetic Operators I

Arithmetic operators are used with either integer or real variables. The arithmetic
operators are addition (+), subtraction (-), multiplication (*), division (/), exponentiation I
(1\) and modulo (MOD). Here are some general rules to note:

1.	 An overflow error will be indicated when the result ofany calculation is over the I
allowed range for that variable type.

2.	 Exponentiation works only with positive numbers; negative numbers will result in

an error. Zero raised to any power is zero. Any positive number'raised to the
 I
power of zero equals .le.

3.	 The asterisk (*) is used in many programming languages as the operator for Imultiplication to avoid confusion with the capital letter X

4.	 The unary minus sign (-) indicates the change of sign when it is used with one

operand. Unary plus (+) is redundant and is ignored by the Compiler.
 I
Relational Operators I

A relational operator tests relationships between two conditions and produces a
boolean result (TRUE or FALSE). It is this operation, more than anything else, that I
allows your programs to "think".

The relational operators are: less than «), less than or equal to «=), equal to (=), not
equal to «», greater than or equal to (>=) and greater than (». I

I

I Chapter Two: Basic Elements of the Language 68

I Logical Operators

I Logical operators operate on relational expressions to produce a boolean result of

I
TRUE or FALSE.

The logical operators are: NOT. AND, OR.

I

Example:

IF (Real < 5.3) AND (NOT (Integer% > 20») THEN \

Flag! = TRUE

I Evaluation of an Expression: Precedence Rules

I The evaluation of an expression is done following a priority list established by math
conventions. If the priority of the expressions is equal, the evaluation is done from left to
right. The established math priorities are as follows:

I 1. Expressions between parentheses

2. Unary operators

I 3. Exponentiation operator

4. Multiplication, Division, and MOD operators

5. Addition and Subtraction operators

I 6. Relational operators

7. AND logical operator

I 8. OR logical operator

9. NOT logical operator

()

• , +
A.

*/MOD

>,>=,<=,<.<>,=

AND

OR
NOT

I You may wish to use parentheses to make certain an expression is evaluated in the
intended order. An expression may contain any number of parentheses.

I Hexadecimal Literals

I A hexadecimal number may be assigned to any integer or real variable. A
hexadecimal number is a base 16 number and is always preceded by a dollar sign ($) and
consists of the digits 0 through 9 and the letters A through F.

I Example:

Hex_Number% = $12FF

I Real = $FFFFFF

Mixed Arithmetic ExpressionsI
What dictates how the Compiler evaluates a line of code? Basically, the Compiler

I determines the type of calculation to perform by the first data type (real or integer) it

•

69 Chapter Two: Basic Elements of the Language I
Iencounters in a statement.

MicolAdvanced BASIC handles mixed arithmetic very well, but extra code will need
to be generated which requires extra time to execute. If possible, it is best to be I
consistent with your variable types when coding.

Expressions with Simple Variables I
Example: I

Real Var& = Integer% * 3 + Real&

Because this assignment is mad~ to a real variable, the above formula will be treated
as a real formula. The integer value in variable Integer% will be converted to real. I

Example:

Integer% ... Reall& * Rea12& / Rea13& + Rea14& I
In this example, each real value must be converted to its integer equivalent before

the expression can be evaluated. It would be better to assign the formula to a real I
variable, then reassign the real variable to an integer variable in another statement.

Example:

Real& - Reall& * Rea12& / Rea13& + Rea14& I
Integer% = Real&

I
Expressions with Arrays

I
As with simple variables, the Compiler determines the type of calculation by the first

variable type it encounters. What is different with arrays is that the array counter is
also effected. It is best to maintain the same type of array and array counter. Integer I
arrays should have integer counters, and real arrays should have real counters. String
and boolean arrays should use integer counters.

IExample:

Array& (Real&)
 - 3

IArray% (Int%) ... Integer%

ArrayS (Int%) ,. "String"

Array! (Int%) - TRUE I
Any other choices from the above examples will force a

conversion to the other type before the correct array element can
be accessed. I

Simple Variable Declaration I
.

In Micol Advanced BASIC, simple variables may be declared in one of two ways:
implicitly and explicitly. Implicit declarations are done simply by using the variable. I

Part Three: The Advanced BASIC Language I

I Chapter Two: Basic Elements of the Language 70

I The Compiler determines whether a variable has not been used before and automatically
allocates space for it ifneed be. This is the method used by Applesoft BASIC.

I Micol Advanced BASIC also offers the option of explicitly declaring a simple variable,
similar to the way arrays are explicitly declared. This means, you must state within
your program, that you are using this particular variable. This is similar to the system

I used in Pascal and C. This method almost completely eliminates the possibility that you
will later enter this variable incorrectly.

Explicit variable declarations are also a very good idea for documentation purposes,

I as you can easily determine all variables used within the program. You may wish to

I
include comments to better explain the variable's usage.

Although the explicit declaration adds some complexity to the language, it is
probably preferable to use implicit declarations as program maintainance is made easier.

I DECLARE Boolean!, Integer%, Real&, String$

To explicitly declare 'a variable, enter the reserved word DECLARE followed by a list I of simple variables separated by commas. A program may have as many DECLARE
statements as needed, but they must be the first and only statement on a program line.

I Il.\IPORTANT

I

I

I

I Example:

I
PROGRAM

DECLARE

Real& =0

I Integer%

StringS

If no DECLARE statement is encountered in the
program., all simple variables will be placed automatically
into the Symbol Table. Once a DECLARE statement is
detected in the program, all subsequent variables, not
already defined, must be declared by a DECLARE
statement; otherwise, the Compiler will signal an error.
If you attempt to DECLARE a variable a second time,
you will receive an error at compile time.

Declaration

Real, Integer%, String$

5.0

'5 25

= ~This variable has been declared"

Any_Thing% - 23 {Error here, not in DECLARE

I
Variable Assignments

I
I

[LET] Avar = Aexpr
[LET] Svar = Sexpr

I

list}

Part Three: The Advanced BASIC Language

71 Chapter Two: Basic Elements of the Language

The assignment instruction is the equal sign (=) and is used to assign an expression
to a variable. The equal sign also implicitly declares this variable ifit has not been used
before (if DECLARE is not being used). The expression is always located on the right
side of the equal sign. The result is stored in the variable to the left of the equal sign.

The reserved word LET may be used to specify an assignment. LET was retained
solely for compatibility with Applesoft BASIC and is ignored by the Compiler. Use LET
only ifyou wish to stay within the original definition of Dartmouth BASIC.

Examples:
Number& 35.1

Number% 10 * 2 / 5

StringS "This is a small message"

Boolean! = TRUE

Initializing the Data Space

CLEAR

CLEAR ~ reinitialize all simple and structured variables. All numeric variables
will be set to zero, all strings will be set to empty and booleans will be set to FALSE as
was the case when the program was first executed.

Example:

Variable = 10

PRINT Variable {Value is IO}

CLEAR

PRINT Variable {Value is O}

WARNING
An implicit initialization is done at ~he first line of
executable code. Branching to this line of code will reset
all variables to zero or null as if the program restarted.
Do not use CLEAR from any segment other then
segment zero or you will crash the computer.

Part Three: The Advanced BASIC Language

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I Chapter Three: Mathematical Functions 72

I
Chapter Three

I
Mathematical Functions

I Overview

I The mathematical functions under Micol Advanced BASIC have been classified into
two categories: general purpose functions and trigonometric functions. All use integer or
real arguments and yield integer or real results.I All calculations are made using single precision arithmetic unless the EXTEND
and/or LONGINT compiler options are used (all examples use single precision).

I
General Purpose Functions

I ABS (Aexpr)

I ABS (Absolute) returns the absolute (positve) value of the argument. The argument
may be negative, zero or positive.

I Example:
Number% = ABS (-10)

PRINT Number% {Will print IO}

I
EXP (Aexpr)

I
II

EXP (Exponent) yields the value of the constant e (2.718281828) raised to the power
of the argument. An argument smaller than zero always returns zero. An argument of
zero returns one.

Example:

I Exponent = EXP(IO)

PRINT Exponent

I INT(Aexpr)

I !NT (for integer) returns the whole number portion of the argument, discarding the
fractional part, ifany.

I

I

I
 Part Three: The Advanced BASIC Language

73

NOTE

Chapter Three: Mathematical Functions

!NT does not convert a real argument to an integer as the
function name implies, but simply truncates the value. A
real value remains a real value after !NT has performed
its work. In Micol Advanced BASIC there are no
functions to convert values from real to integer and
integer to real, but rather this conversion is done
automatically and need not concern the user.

Examples:

Real Num& = INT (95.9)

LOG (Aexpr)

LOG (for logarithm) yields the natural logarithm base e (e =2.718282) of the positive
argument passed to it. If an argument equal to zero or negative is passed, a nul time
error will occur.

Example:

Logarithm ~ LOG (lO)

MOD

MOD (for modulo) returns the remainder of the real or integer division of the
nominator by the denominator.

Example:
Nominator% = 25

Denominator% "'" 4

Remainder% ~ Nominator% MOD Denominator%

PRIN~ Remainder% {Writes a I}

ROUND (Aexpr)

ROUND returns the rounded value of the argument. For a positive value, ifAexpr is
between x.5 to x.9, the result is rounded upward. If the value is between x.O to x.4, the
number is rounded downward.

For a negative value, if Aexpr is between -x.5 to -x.9, the number is rounded
downward. If the value is between -x.O to -x.4, the value is rounded upward.

If the number to be rounded is assigned to an integer result, the value will be
returned unchanged.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

74 I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1

Chapter Three: Mathematical Functions

Example:

Kappa& 1.8

Delta& = ROUND (Kappa&) {Delta& will - 2}

Kappa& 1.4

Delta& = ROUND (Kappa&) {Delta& will 1}

SGN(Aexpr)

SGN returns the sign of the argument. A negative argument returns a negative one.
If the argument equals zero, SGN returns a zero. A positive argument returns a one.

Example:
Result SGN (0) {Equals zero}

Result SGN (-123) {Equals negative one}

Result - SGN (123) {Equals positive one}

SQR (Aexpr)

SQR returns the square root of the argument. The argument must be a positive, real
or integer expression, otherwise a run time error will occur.

If the value returned by SQR is multiplied by itself, the result may be less than the
initial value. The loss of precision occurs because of truncation.

Example:
FOR Count% = 1 TO 10

Product% = Count% * Count%

PRINT Count%, Product%, SQR (Count%)

NEXT Count%

Trigonometric Functions

Micol Advanced BASIC has four trigonometric functions. All arguments or results
are expressed in radians (not degrees).

ATN(Aexpr)

ATN yields the arc tangent (inverse tangent) of the parameter. The value returned
represents an angle expressed in radians in the range ±rc /2.

Example:

Tangent& = TAN (Radians)

Inv Tan& = ATN (Tangent&)

Part Three: The Advanced BASIC Language

75 Chapter Three: Mathematical Functions I
I

COS (Aexpr)

COS returns the cosine of the argument. The cosine is the ratio of the length of the I
adjacent side to the length of the hypotenuse (in a right-angled triangle). The argument
is the angle as expressed in Radians. IExample:

Cosine& - COS (30 * Pi& / 180)
 I
SIN (Aexpr)

I
SIN yields the sine of the argument. The sine is the ratio of the length of the

opposite side to the length of the hypotenuse (in a right angled triangle). The argument
is the angle as expressed in Radians. I

Example:

Sine& = SIN (60 * Pi& / 180)
 I
PRINT Sine&

ITAN (Aexpr)

TAN returns the tangent of the argument, (a number between 0 and the accuracy I
limit of the data type used). The tangent of90 degrees is infinity.

Example: I
Tangent& ~ TAN (Radians&)

RadianlDegree Conversion Functions I
Most of you are used to working with degrees instead of radians. You may find the I

following conversion Functions useful to use within your programs.

{Take Degree as input}

FUNC DegreeToRadian [Degree&]

Pi& - 3.14159265

Radian& = Degree& * (Pi& / 180)

ENDFUNC [Radian&l {Return Radian as

{Take Radian as input}

FUNe RadianToDegree [Radian&]

Pi& -= 3.14159265

Degree& = Radian& * (180 / Pi&)

ENDFUNC [Degree&] {Return Degree as

I

I

output}

I

I

output} I

I

Part Three: The Advanced BASIC Language

I Chapter Four: Strings 76

I
Chapter Four

I
Strings

I,
Overview

I: A string may be thought of as text. Each word or sentence of this manual may be
thought of as a string. All data sent to the screen or the printer are sent as strings.

Under Micol Advanced BASIC, strings are dynamically stored. This means thatI string lengths do not have to be declared in advance.

Tms section deals with strings and string manipulation functions at your disposal

I under Micol Advanced BASIC. You must pay special attention to this chapter as soroe of
the string functions operate somewhat differently than under Applesoft. Also, there are
several additional string functions that give the string handling abilities of Micol

I Advanced BASIC much greaterpower than any other language you have probably seen.

I
String garbage collection, a topic not well understood by many users, is also

discussed in this chapter.

String Function Notes
I

Here are some thmgs to pay special attention to:

1. No string shaping function .such as LEFr$ may be used until the string argumentI has been explicitly given a value.

2. String shaping functions assume integer arithmetic and will make the conversions

I from real to integer as needed. The sole exception is STR$ which assumes a real
value as its parameter and will make the conversion from integer to real as
needed. Therefore, any real number within string function.s, except STR$. will

I be converted to integer before the manipulation is done. Since the type
conversion delays the programs a bit, we integer values whenever practical.

3. Strings may grow to a maximum. length of 1023 characters. ...-!owever, static strings I such as "This is a string" roay only have a maximum length of251 characters.

I The ASCII Character Set

I Each character has a numeric value. and this numeric value is used in order to
evaluate strings.

"A" < '1)" and "B" > "A" are true. If you look at the ASell chart (Appendix F), you
will see that "A" has the numeric value 65 and "+" has the numeric value 43. TheseI numbers are used to evaluate string expressions.

I

I

Part Three: The Advanced BASIC Language

77 Chapter Four: Strings I
I

String Comparisons

Strings are compared using relational operators to determine if. for example, one I
string is the same or is different from another string. Comparisons are made using the
ASCII numeric value of each character in both strings.

Examples:
~Ronald" =

~Ronald" <>

~Ronald" <

"Walter" >

I
~Ronald"

"RONALD" I
~Steve"

"Steve" I
By comparing one string with another. strings may be sorted in alphabetical order or

inverse alphabetical order. See also the ASC and CHR$ conversion functions. I
String Concatenation

"I
Concatenation is the act of merging two or more strings into one. The concatenation

operator is the plus sign (+). The maximum length a string can grow under
concatenation is 1023 characters. Any attempt to create a string greater than 1023 I
characters will result in an error during program execution.

Examples: I
StringS = ~This is " + "one big " + ~stringff

Stringl$ = Stringl$ + String2$ I
Conversion Functions I

The following functions are used to return numeric results for string arguments or
string results for numeric arguments. I

ASC (Sexpr) I
ASC returns the ASCII value of the first character of the string argument. If the

string is empty (has no characters in it), a value of zero will be returned.

The value returned is always between 0 and 127. Most characters, however, are I
actually stored internally with a value greater than 127. To know the true value of the
character, PEEK at location 202 (True_Value) in direct page immediately after using
the ASC function. (See Appendix F: the ASCII chart.) I

Example:

Letter$ = "A" I
ASCII = ASC (Letter$) {Prints 65}

I

I

II
Chapter Four: Strings 78

I
CHR$ (Aexpr)

I
I CRR.$ takes the numeric argument and returns the character corresponding to its

ASCII value. The argument must be between 0 and 255 or a run time error will occur.
Values greater than 128 will repeat the text mode character set. (See Appendix F: the
ASell chart.)

Example:

I Letter$ - CHR$ (65)

PRINT CharS {Prints the letter A}

·1 LEN (Sexpr)

I LEN (Length) returns the number of characters within a string or string variable. If

I
no character appears within Sexpr, LEN will retwn a zero. All strings have a length of
zero initially. You may need to use LEN to check the length of a string when using a
string shaping function, as a possible error condition may arise.

Example:

I StringS = ~Micol Systems Inc."

PRINT ~Number of string characters is:"; LEN (String$)

I
 LEN returns a value of 18.

I
 STR$ (Aexpr)

STR$ converts the numeric argument into its string equivalent.

I Example:

Strinql$ STR$(12.34)

I
I

NOTE
The string "12.34" and the real number 12.34 will appear
the same when they are displayed; however, inside the
computer's memory, they are stored quite differently.

I
VAL (Sexpr)

I
I The VAL function converts the contents of the string argument into its numeric

equivalent. VAL removes any leading spaces from the string argument before doing the
evaluation.

If VAL evaluates an argument with non-numeric characters, VAL will convert and
return all the digits appearing before the non-numeric character or space. If the first

I character in the argument is non-numeric, VAL yields a zero.

I Part Three: The Advanced BASIC Language

79 Chapter Four: Strings I
IExample:

StringS = ~12.34"

Real& = VAL (String$)
 I
String Searches I

The following function is very useful and has no equivalent in Applesoft. Its purpose
is in searching for sub-strings within a string, but this has very many applications Iseemingly unrelated to string searches. Examples throughout this manual will
demonstrate some of these uses.

I
INDEX (SubString$, String$, [Aexpr])

INDEX will return the position number of the first character where SubString$ I
occurs in String$ from one to the length of String$. If SubString$ does not appear
within String$, a zero will be returned. I

An optional occurrence value ranging from 1 to 255 may also be specified. The match
will not be made unless the stated instance ofSubString$ exists.

IExample 1:

StringS = ~This is a string"

PRINT INDEX (" is ~, StringS)
 I
The PRINT statement will display 5. The first space character is the fifth character

of the string. I
Example 2:

Alpha$ = ~abcdebxyz"
 IBeta$ = "b"

PRINT INDEX (Beta$, Alpha$, 1)

PRINT INDEX (Beta$, Alpha$, 2)
 I
The first PRINT will show that the first occurrence of"b" is at the 2nd position and

the second occurrence will show the second "b" at the 6th position in the string. I
Example 3:

Allowed$ = "AEIOUaeiou"
 IREPEAT

GET CharS

UNTIL INDEX (Char$, Allowed$) > 0
 I
PRINT CharS

This code will allow only a vowel to be entered.. I
I

Part Three: The Advanced BASIC Language I

I Chapter Four: Strings 80

I String Manipulation

I
I The following functions will allow you to manipulate strings in any manner required

by your program. This string shaping ability is one advantage BASIC has over almost
any other language and Micol Advanced BASIC has more than most BASICs.

INSERT$ (Stringl$, String2$, Pos_Numbe:r>
I
I

'Th write over a portion of a string using the contents of another string, use
INSERT$. Both string arguments must be string variables. The contents of Stringl$
will be used to write over the characters of String2$ starting at the specified position.
Each character will be copied over String2$ until all characters are copied or the end of
either string is reached.

I Example:
Stringl$ = ~Italy"

I String2$ ="The rain in Spain falls mainly on the plain."

INSERT$ (Stringl$, String2$, 13)

I PRINT StringS

This code will print "The rain in Italy falls mainly on the plain,"

I LEFT$ (Svar, Aexpr)

I LEFT$ yields the number of characters specified by Aexpr starting from the left side
of Svar. If the number of characters requested is greater than the string length, a run
time error will occur. If in doubt, check the string length with the LEN function before

I executing this function.

Example:

I StringS = "Micel Systems Inc."

PRINT LEFT$ (String$, 5)

I The word "Mico!" will be printed.

I LOWER$ (Svar)

I
LOWER$ changes all the uppercase characters of a string into lowercase characters.

All other letters in the string variable are left unaltered. A string variable is the only
argument accepted.

I Example:

StringS ~ "ABCDEFGHIJ"

Low$ = LOWER$ (String$)

I PRINT Low$ {Will print abcdefghij}

I Part Three: The Advanced BASIC Language

81 Chapter Four: Strings

MID$ (Svar,Aexprl [,Aexpr2])

MID$ returns a substring of Svar starting at Aexprl. IfAexpr2 is not present, the
entire string is returned from Aexprl to the end of Svar, otherwise MID$ returns the
number of characters specified. If the starting character position is beyond the last
character ofSvar, a run time error will occur.

Example:

StringS ~ ~Micol Systems Inc."

PRINT MID$ (String$, 7, 7)

The word "Systems" will be printed.

RIGHT$ (Svar, Aexpr)

RIGHT$ returns the characters specified by Aexpr starting from the right side of
Sexpr. If the number of characters requested is greater than the length of Svar, a run
time error will occur. If in doubt, check the string length with the LEN fun(.-tion before
executing this function.

Example:

StringS = ~Micol Systems Inc."

PRINT RIGHT$ (String$, 12)

The words "Systems Inc." will be printed.

UPPER$ (Svar)

UPPER$ will change all lowercase characters of a string into uppercase characters.
All other characters in Svar are left unaltered. A string variable is the only parameter
accepted.

Example:

StringS - ~abcdefghij"

UPS - UPPERS (String$)

PRINT UpS {Will print ABCDEFGHIJ}

WARNING

Avoid writing string manipulation functions on both sides
of a comparison operator, where both sides return a string
result. A problem arises because a single string
manipulation buffer is maintained for all string
manipulation functions which allows only one function to
be performed at a time. This greatly increases the speed
of the operations as string transfers are minimized.

Part Three: The Advanced BASIC Language

I
I
I
I
I
I
I
I
,I
I
I
I
I'

I
I
I
I
I
I

I Chapter Four: Strings 82

I
System String Functions

I These functions let you use some system functions by converting the information into
a character string. You may manipulate these string data as any other string.

I
DATE$

I DATE$ returns the date in the format stipulated by the Control Panel settings.

Example:

I Day$ = DATE$

PRINT Day$

I Something like 251Feb/92 will be displayed.

I
 PREFIX$

PREFIX$ returns a string with the name of the current default prefix.

I Example:

Volume_nameS = PREFIX$

I PRINT Volume_NameS

TIME$I
TIME$ returns the time from the AppleIIGS clock in the fannat set by the control

I panel, for example HH:MM:SS.

I
Example:

ClockS = TIME$

PRINT ClockS

I The time is displayed like this: 10:24:23

I String Garbage Collection

I
Garbage is memory which was once used for a purpose, but is now unused and lost to

the system.

When a string is reassigned another value, the new string must be built in another
area of memory. The pointer (or address) to the old string is changed to point to the new

I string, and the area in memory to which the string variable originally pointed becomes
lost, or garbage. Eventually> most of the string memory will become garbage and need to
be reclaimed. This reclaiming is done using a process called "String Garbage Collection".

I
I Part Three: The Advanced BASIC Language

I83 Chapter Four: Strings

I
FRE (0)

FRE (for Free) forces a collection of all unused character strings and returns the I
number ofbytes available to the system for building further character strings.

The argument may be any legal mathematical expression, but a value of zero is used
by convention. The parameter has no effect on the result, but is required by the I
Compiler, otherwise an error will occur.

Ifyou assign FRE (0) to a real variable, the entire number of bytes remaining will be Ireturned. Ifyou assign FRE (0) to an integer variable, the number of banks available to
the program will be stored in Direct Page location True_Value (202) and the rest of the
address will be returned in the assigned variable (in two's complement notation~. If you Iare using the integer FRE (0), then retrieve the bank. number immediately after
executing FRE (0) as location 202 is alBo used for other purposes.

If FRE (0) returns an unacceptably small number of bytes, use the BANK_NO I
compiler option. described in Part Three, Chapter One, to allocate more memory for
string storage, if possible. By default. a program is allocated one bank (64K) for string
storage. I

Example:

Free_Bytes% - FRE (0)
 I
Free Banks% = PEEK (202)

Total_Bytes& ~ Free_Bytes% + 65536 * Free Banks% Ior

Total_Bytes& = FRE (O) {Same result} IMicol Advanced BASIC uses an efficient. double-linked garbage collection algorithm
that seldom produces, ifever, any noticable delay.

Programmers
I

Toolbox Note: Do not confuse the results ofFRE (0) with
the functions of the Tool Memory Manager which returns I
the amou....t offree memory in the computer.

I
I
I
I
I
IPart Three: The Advanced BASIC Language

I Chapter Five: Making Decisions 84

I
Chapter Five

I
Making Decisions

I Overview

I We all have to make a large number of decisions in our daily lives. The vast majority

I
of programs also have to make decisions, and actions have to be taken based on these
decisions.

I
We have discussed relational operations earlier in this manual. In this chapter you

will learn to use these relational operations and have your programs take action based
on the results of these relational operations.

I
Decision making is probably the most important aspect of computer programming. It

is important you have a complete understanding of this topic if your programs are to
function as intended.

I Program Indentation

I
It is important that your program source code reflect the logic within your programs.

The logic within your programs can best be represented by line indentation. Once a

I
statement falls under a particular control structure, this statement should be indented
one Tab. Once this control structure is resolved, the Tab should be removed. There
should be one Tab for each active control structure.

Ifyou are confused, simply look to the examples within this manual. Each example
reflects the standard indentation.

I
~ingle Choice Decisions

I As we have stated earlier in this manual, a relational operation yields a result of
T__UE or FALSE. Based on this result, we may wish to have a certain set of actions

I taken. In addition, we may also wish that an alternate set of actions will be taken in the
event the first set of actions is not taken. That is, we have a choice to make, one set of
actions or another. It is in this circumstance that we will wish to make use of the most

I important statement in computer programming, the IF statement.

I The IF Statement

Simple IF

I
I

IF Relop THEN Statement [{: Statement}] \

[ELSE Statement [{: Statement }]]

I Part Three: The Advanced BASIC Language

85	 Chapter Five: Making Decisions I

I
Relop is evaluated and produces a boolean result (TRUE or FALSE). If the result is

TRUE, the statement(s) following the keyword THEN until the end of the line or

optional ELSE keyword are executed. If the ELSE statement is present and Relop is

FAIBE, the statements following the ELSE until the end of the line will be executed.. In I

both cases, when the instructions have been executed, the flow of execution continues on

the next line of instructions.
 I

The 1F..THEN.oELSE statement is designed to provide an ELSE option to the

Applesoft IF..THEN structure. This statement works correctly when the statements to

be executed after the THEN or the ELSE are on a single line of code. More than one I

statement may be written after the THEN or the ElSE by preceding the second and

following statements by a colon (:).

IExample:

Op$ "" "-"

IF Op$ = "+" THEN Num = 2 ELSE Num = 3
 I
Block IF••THEN••ELSE I

IF Relop THEN BEGIN

Statement
 I[{: Statement}]

[ELSEBEGlN

Statement
 I

[{: Statement }] 1

IENDIF

Relop is evaluated and produces a boolean result (TRUE or FALSE). lfthe result is

TRUE, the statements following the keywords THEN BEGIN until the ELSE (if

present) or ENDIF are executed. If an ELSE BEGIN block is present and Relop is I

FALSE, the statements following the ELSE BEGIN until the ENDIF will be executed.

In either case, when the instructions have been executed, the flow of execution continues

after the ENDIF.
 I

To allow more than one line of code for either the IF or ELSE statement, add the

BEGIN keyword. The BEGIN keyword encloses other Micol Advanced BASIC
 Istatements within the IF..THEN..ELSE..ENDIF block structure.

ENDIF is used to close an IF BEGIN or ELSE BEGIN (if present). ELSE or ELSE

BEGIN also close an IF BEGIN. If no BEGIN is present, the end of line will terminate I

the conditional statement. Ifconfused, just study the examples that follow.

PRINT ~This line will never be executed"

Example:
 IIF	 1 = 2 THEN BEGIN

PRINT "Neither will this line" I

ELSE BEGIN

PRINT ~This line will be executed"
 I

I

I Chapter Five: Making Decisions 86

I
I

PRINT "And so will this one"

ENDIF

I
END

The IF..THEN also accepts a boolean variable as part of the expression.

Example:

Flag! = TRUE

I I~ Flag! THEN Num Of Truck% = 10

I
or

IF Flag! - TRUE THEN Num Of Truck% - 10

It is preferable, however, to use the first method because if the boolean has been set
to an uncertain value, the expression may never evaluate to TRUE.

I An IF block may contain one or more IF blocks within it. There may be as many as·
20 IF blocks nested within another.

Example:I IF Outer_Flag! THEN BEGIN

IF Middle_Flag! THEN BEGIN

I IF Inner_Flag! THEN BEGIN

I
PRINT "All conditions met"

ELSE BEGIN

I
PRINT ~Inner_Flag! not true"

ENDIF
ELSE BEGIN

PRINT "Middle_Flag! not true"

I END IF

I
ELSE BEGIN

PRINT "Outer_Flag! not true"

ENDIF

I Consider using the multi-choice construct CASE_OF if more than "NO

IF..THEN..ELSE structures are nested.

Multi-Choice DecisionsI

I
I Multi-choice decisions occur whenever there are several possible actions that may be

taken based on a particular situation. Suppose, for example, an office manager has to
base the 'bonus situation of the salespeople in his office on the number of products sold
by each salesperson in a month. If there are several categories of bonuses, determining
the correct bonus can get very difficult using IF statements. One solution is a

I
CASE_OF statement that functions in many ways as an IF statement, but allows for
many possible choices.

I

87 Chapter Five: Making Decisions I
I

The CASE_OF Statement

CASE_OF Aexpr I
DO Labell, Labe12

Statement(s)
 I
ENDDO

[(DO Labe13~ Label4

Statement(s) I
ENDDO}]
[ELSE_DO I

Statement(s)]

ENDCASE
 I
CASE_OF allows the user to choose one option among many without having to make

use ofmultiple single conditional statements.

The CASE_OF statement evaluates Aexpr and selects one DO..ENDDO block: from I
the other DO..ENDDO blocks using the result of the evaluation. IfAexpr yields a real
result, only the whole number portion is used. IA CASE_OF statement must have at least one DO..ENDDO block of statements,
and may have as many DO..ENDDO blocks of statements as is necessary.

The DO..ENDDO structure is made of a list of CASE labels followed with a block of I
statements to be executed on the lines of code below. When a label within a
DO..ENDDO block matches the result of the arithmetic expression, the statement(s) in
the DO...ENDDO block of statements will be executed. I

The DO list may have from one to twenty labels separated by commas. The label is
always an integer constant ranging from ±32767. A label may be preceded by a lesser
than «) or greater than (» symbol to make a range of labels. No label should be I
repeated as only the £int match is used.

If a match is not made and an ELSE_DO appears after the last DO..ENDDO block,
the statement<s) follQwing the ELSE_DO until the ENDCASE will be executed. The I
ELSE_DO must be the only statement on the line of code. ,. ~e control of flow will
continue at the line of code after the ENDCASE. It is always a good practice to have an
ELSE_DO block to handle the unexpected conditions. I

Example:

Nurnber% - -100 I
REPEAT

CASE OF Number% I
DO 1, 2 , 3 , 4 , 5 , 6, 7, 8 , 9 , 10 , > 8a

PRINT Nurnber%;" is positive"

END DO
 I
DO -1, - 2 , - 3 , - 4 , - 5 , - 6 , - 7, - 8 , - 9 , < - 79

PRINT Nurnber%;" is negative "; I

I

I
Chapter Five: Making Decisions 88

I
I

PRINT ~isn't it?"

ENDDO

ELSE DO

PRINT Number%;" is not in range"

I ENDCASE

Number = Number + 1

I UNTIL Number% > 100

I
If a match is not made and an ELSE_DO does not appear after the last

DO..ENDDO block, control of flow continues at the line of code after the ENDCASE
statement.

I NOTE

I
A static string'may also be used as a label within a DO
line. Only the first character of the string will be used,
and is the same as if the label had been entered as the
ASCII value of the first character instead.

I
Example:

I StringS = ~Aardvark"

Ascii% = ASC (StringS)

CASE_OF Ascii%

I DO ~A","a"

PRINT ~Letter was upper or lower case A"

I ENDDO

ENDCASE

I CASE_OF statements may be nested within other CASE_OF statements. The
maximum level of nesting allowed is 8 levels deep. The nested CASE statement is
'placed in a DO..ENDDO structure.

I
I
I
I
I
I

Part Three: The Advanced BASIC Language

I
Chaper Six: Basic Input/Output of Information 89

I
Chapter Six

I
Basic Input/Output of Information

I
Overvi,ew

I VIrtually all pro.grams accept information from some source, process this
information, and send this processed information to a storage or display device.

I Principal sources for input are through the cornputer keyboard and a storage device
such as a disk drive. Less often, the input ofinformation is from the program itself. The
output from the progr.am is usually sent to a display device such as a monitor o.r the

I printer or.to a long term storage device such as a disk drive.

Data InputI
Input is anything that can be entered into the computer using an input device,

I usuall'y the keyboard, or read from a storage device such as a disk drive.

Internal Data EntryI
DATA Var H,Var}]

I DATA statements are used to place specific values into memory that may later be
retrieved during execution of the program.

I DATA statements are placed at the beginning of the program afler the optional
compiler directives. The DATA statement must be placed in the correct position in the
program in order to be compiled. Please see the Program Order section in Chapter OneI of Part Three'.

I
Only iri.tnger, real and' string literals are accepted as datum for a DATA statement.

Each datUD.&. is separated from the next by 8, comma. The length of a DATA statement is
limited only by the length of the program line. The number of DATA statements is
limited only by the memory available.

Real literals must be distinguished from integer literals by having the terminating

I
I fraction written in decimal form (Le 13.0). Integer literals greater than 65535 will be

considered real. String literals must be enclosed between double quotes. Booleans may
not be used in a DATA statement.

I
Example:

PROGRAM Data_Example

DATA I, 1.0, 1.OE25, ~One"

I DATA statements may not be empty (have a non-definite v~ue) as in an Applesoft
BASIC program or be followed by any other statements on the same line. A DATA line

I

Part Three: The Advanced BASIC Language

90 Chaper Six: Basic Input/Output of Information I
Imust have a literal between each comma otherwise the Compiler will signal an error.

Example:

{Missing values are illegal and will
 I
cause errors during compilation}

DATA "TEXT"""MORE TEXTn"O,O"O
 I
READVar [[,Var}] I
The function of the DATA statement is to give a method to store constant

information that may be used each time the program is executed. These data are
accessed within a program by means of a READ statement. A DATA statement only has I
meaning when used in conjunction with a READ statement.

To READ data, a loop of some kind is usually used. The DATA values are read one
by one, starting from the first line of DATA The DATA pointer cannot turn back or skip I
any values, but may be moved back to the beginning using the RESTORE command.

If the program tries to read more values than are available, an error will occur. ILeaving values unread does not produce an error.

If the data types in the DATA and READ statements do not match, an error will
occur when the program tries to read in the datum. I

Example 1:

PROGRAM Read Data
 IDNrA 1, 1.0, "One"

{Main Program}

READ Integer% {Read integer datum}
 I
READ Real& {Read real datum}

READ StringS {Read string datum}
 I
END

Example 2: I
PROGRAM Read Numbers

DATA 1, 2, 3, 4
 I
DATA 5.0, 6.0, 7.0, 8.0

DIM Number% (3), Number (3)
 I{Main Program}

FOR Counter% - 0 TO 3 {Read first DATA line}

READ Number% (Counter%)
 I
PRINT Number% (Counter%)

NEXT Counter%
 I
FOR Counter - 0 TO 3 {Read second DATA line }

READ Number (Counter)
 I

•

91
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Chaper Six: Basic Input/Output of Information

PRINT Number (Counter)

NEXT Counter

END

RESTORE

RESTORE places the DATA pointer back to its starting position. This means the
values in the DATA statements may be reread.

Example:
PROGRAM Read Numbers

DATA 1, 2, 3, 4

DATA 5, 6, 7, 8

DIM Number%" (7)

{Main Program}

HOME

{Read values in DATA statements}

FOR Counter%" - 0 TO 7

READ Number%" (Counter%)

PRINT Number%" (Counter%")

NEXT Counter%"

RESTORE {Bring DATA pointer to position one}

{Reread values in DATA statements}

FOR Counter%" = 0 TO 7

READ Number% (Counter%)

PRINT Number%" (Counter%")

NEXT Counter%

END

Keyboard Entry

GETSvar

GET is used to read one character from the keyboard and place it into a string
variable. The character entered is not echoed on the screen.

The program continues execution with the next statement without waiting for a
press of the Return key. The cursor is displayed until a character is entered.

GET accepts only a string variable as its argument. The Compiler will issue an error
ifa numeric variable is used. Use the VAL function to convert the digit if required.

Part Three: The Advanced BASIC Language

92 Cbaper Six; Basic Input/Output of Information I
INOTE

<Contro1>C will not interrupt the execution of GET. All
Control characters may be read from the keyboard with
GET. I

I
See also the next chapter for another use of GET.

Example: I
REPEAT

GET VowelS

IF INDEX (Vowel$, "AEIOUaeiou") > 0 THEN PRINT VowelS I
UNTIL INDEX (VowelS, "AEIOUaeiou") > 0

I
INKEYSvar

INKEY scans the keyboard to determine if a key has been pressed. INKEY is I
similar to GET except INKEY does not wait for a key press and does not display a
cursor.

If no key has been pressed., an empty string is returned in Svar. If a key has been I
pressed, a one byte string representing the key pressed is created in Svar.

NOTE ITo be effective, INKEY must be used within a loop. I I
I

Example:

REPEAT
 I
INKEY CharacterS

IF CharacterS <> ~" THEN PRINT CharacterS I
UNTIL CharacterS <> ""

INPUT ["Prompt string";] Var [(, Var)] I
INPUT accepts data from the current input device (usually the keyboard). An Ioptional message, enclosed in quotation marks, may be displayed prompting the user for

the necessary input.

The prompt must appear after the keyword INPUT, and be followed by a semi-colon I
(;), and the list of variables. If no prompt is specified, INPUT automatically displays a
question mark (?) as the prompt.

I

I

•

I
Chaper Six: Basic Input/Output of Information 93

I
NOTE

I No question mark is displayed when the prompt string is
present but empty; use this to hinder any prompt.

I
I

INPUT may have any number ofvariables, each separated by a comma.

INPUT accepts simple variables and arrays of type integer, real and string. Boolean
variables are not accepted.

I
The INPUT statement will ask for the second, and any subsequent input on a

separate line by displaying a question mark (?) for each missing input.

I
WARNING

Pressing the Return key for each piece of information is

I
the only way to accept data from an INPUT with
multiple variables. The comma (,) and semi-colon (;) are
not accepted as delimiters as under Applesoft BASIC.

I In order to make programs easier to understand, use one INPUT statement for each

I
piece of information.

INPUT accepts <Contro1>S to insert a space. An input may be terminated by
pressing <Control>C only if the NOT_C compiler option is not used. The Delete key
erases a character during response to an input (the delete mode may be altered during

I
 execution, see Appendix A).

I
NOTE

I

Memory locations 4 and 5 in the Library's Direct Page
control the maximum number of characters that may be
entered using INPUT; 255 is the default. This value is
stored as a hexadecimal number in least significant byte,

I
most significant byte order. Do not POKE a value
greater than a 3 into location' 5 or an error will occur
when the next INPUT 15 encountered.

I The bell will ring if the maximum number of characters allowed in an INPUT line
has almost been reached.

I String Input Rules

I
 Characters with ASCII codes from 32 to 127 may be entered from the keyboard.

Control characters will be ignored.

I

I

Part Three: The Advanced BASIC Language

94 Chaper Six: Basic Input/Output of Information I
I

Numeric Input Rules

If, during a numeric input. the user enters something other than a numeric value, Ithe message "?Reenter" will be displayed. A question mark prompt will appear on the
next line and the computer will wait for the appropriate input. For a real input, all
non-numeric characters except a capital "E", a period (.), a comma (,), a plus sign (+), and Ia minus sign (-) will be rejected. For integer input, only digits. a comma (,) and the plus
and minus signs are allowed input. The commas are for user convenience and are
ignored. I

A numeric expression, such as "3 *4/6", is not accepted as numeric input.

Examples: IINPUT nEnter name: "; Name$

INPUT ~Enter age: "; Age%

INPUT ~Enter any real value: "; Number& I
See also the next chapter for other uses of INPUT.

I
Entry from Other Devices

IINSLOT (Slot_Number)

INSLOT is used to get characters from the device connected to the slot or port I
number specified. The argument may be any integer literal between 0 and 7; a 0 is used
to return input to the keyboard. Any negative value or a value greater than 7 will return
an error. I
IMPORTANT

INSLOT is best used in conjunction with a GET. I
INPUT may be used after an INSLOT, but because
INPUT expects a carriage return to terminate an entry.
INPUT is only suitable in limited situations. I

IExample:
INSLOT (2) {Input from slot 2}

GET Char$ {Reads character from port 2} I
INSLOT (0) {New input from keyboard}

I
Data Output

IOutput is information that can be sent from the computer, usually to a screen display
or printer, or to a disk device for long term storage.

I

I

I
Chaper Six: Basic Input/Output of Information 95

I
Screen Display Control

I The following commands control the manner in which text is output to the screen.

I, DELAY = Aexpr

I DELAY pauses the program the stipulated time. One increment equals about 0.01
seconds for a normal Apple IIGS. Ifyou have an accelerator card installed, the delay will

I
be that much quicker.

Example:

DELAY = 100 {Pause about one second}

I HOME

I HOME erases the contents of the text window and places the cursor at the top left
corner of the screen.

Example:

I FOR Line% = 1 TO 23

I

PRINT "This fills part of the screen"

NEXT Line%

I

aOME

PRINT "Now the screen is almost clear"

I
NOTE

To move the cursor to the top left corner of the screen
without erasing the screen, use WAH (1): HTAB (1).

I INVERSE

I INVERSE causes the subequent character(s) sent to the screen to be displayed in
inverse video (reversing the black and white of a character block).

INVERSE will stay in effect until a NORMAL command is encountered.

I Example:

INVERSE

I PRINT "This is an inverse display"

I
NORMAL

PRINT ~This is a normal display"

I

I

Part Three: The Advanced BASIC Language

96 Cooper Six: Basic Input/Output of Information

MS_TEXT (for MouseText) allows the ability to send MouseText characters to the
screen.

MouseText characters are a set of graphical characters designed specifically for the
Apple II computer. This character set has the ABen range 64 ($40) through 95 ($5F).

Example:
{Display keycap symbols}

MS_TEXT {Turn on MouseText}

PRINT n@ H U J K M"

MS TEXT {Turn off MouseText}

IMPORTANT
A second MS_TEXT turo.s off the effect of the previous
MS_TEX"f.

NORMAL

NORMAL restores the display to the standard text characters. NORMAL turns off
the previous INVERSE. NORMAL character display is the default mode.

See the example for INVERSE.

SPEED =Aexpr

SPEED controls the rate at which the characters appear on the screen. Aexpr must
be between 1 and 255; the minimum speed being 1 and the maximum speed being 255.
The default display rate is set to 255~ the maximum speed A speed of zero is equal to a
speed of 255.

Example:

SPEED - 100

PRINT nThis l~ne will print slowly"

SPEED = 255

PRINT nNow printing at normal speed"

Unformatted Text Output

PRINT [Expr] [;] [,] £Expr]

PRINT is used to display all data types including boolean.
Any legal math or string expression, literal or v.ariable may appear inside a PRINT

statement. Each expression will be evaluated when it is executed. Ifa logical expression

Part Three: The Advanced BASIC Language

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I Chaper Six: Basic Input/Output of Information 97

I
I

is in a PRINT statement, the result of the comparison (TRUE or FALSE) is printed.

When a semi~olon (;) is placed at the end of a statement, the semi-colon prevents a
Carriage Return (ASCn #13), needed to move the cursor to the next line. Any

I
subsequent output following the semi-eolon is printed on the same line. The cursor
remains to the right of the last character printed. The next item to be printed will
appear at the current cursor position.

II
A comma (,) at the end of a statement places the cursor at the next tab column (1, 16,

32, 40, 48, 56, 64, 72 or 80). The contents of the next PRINT is displayed starting at

,I
that position.

Anything other than a semi-eolon (;) and a comma (,) as the last character in a
PRINT statement will generate a carriage return (ASCII #13) as the last character
output and place the cursor at column 1 of the next line. If the cursor is already on a
new line, an empty blank line will be displayed or printed. The screen will scroll if
necessary.I TAB and SPC may also be used within a PRINT to format the display.

I NOTE
A question mark (?) may not be used as a shorthand
notation for PRINT as under Applesoft BASIC.

I
:1 Examples:

PRINT ~Your name is ": Name$;" your age is ~; Age%

I PRINT {Only sends a <CR>}

PRINT ~1 + 2 + 3 - ": 1 + 2 + 3

PRINT 1, 2, 3, 4, 5

I PRINT 1.5 > 9.3 {Will print FALSE}

See also the next chapter for other uses ofPRINT.

I See also Part Six, Chapter One for debugging uses ofPRINT.

Formatted Text OutputI
PRINT USING Mask$; [Expr] [;] [,] [Expr]

I

I

PRINT USING is used to display real values to the current output device using a
particular format. Formatting is made to both sides of the period of the real value.

I Except for the real value formatting ability, 'PRINT USING functions just like
PRINT. TAB or SPC statements may be used within PRINT USING ifneeded.

A mask is used to define the format of the output. The mask may be a string literal
or string variable. Rules for the mask are as follows:

I
1. Only dollar signs ($), number signs (#), commas (,) and a single period (.) are

allowed within a mask.

I Part Three: The Advanced BASIC Language

98	 Chaper Six: Basic Input/Output of Information I
I2.	 Commas may appear only to the left of the period. Ii digits are to be output,

commas will appear in the printed output in the same position they appear in
the mask. I

3.	 Number signs may appear on either side of the period. Every occurrence of the
number sign will be replaced with digits or padded with spaces on the left of the
period and by digits or padded with zeros (0) on the right of the period. I

4.	 Dollar signs are allowed only on the left side of the period. Each occurrence ofa
dollar sign will be replaced with a space until just before a digit would appear,
then a single dollar sign will be printed. Additional dollar signs will be replaced I
by the appropriate digits.

5.	 A fraction will be truncated, not rounded. I6.	 If the number should require more places on either side of the period than are
specified in the mask, the digits will not be displayed. Make sure to allow
enough room in the mask for all possible values. I

NOTE
The character value of the comma and period may be I
changed to conform to the non-English speaking world.
The comma and period may be changed to other
characters by modifying the appropriate memory I
locations listed in Appendix A

I
To print monetary values, use a mask similar to this: Mask$ ="$,$$$,$$$.W.

To print numeric values, use a mask similar to this: Mask$ = "#,###,###.##"
 I
Example:

Number& = 1234.567
 I
PRINT USING "$$$,$$$,$$$.##"i "The value is": Number&

The line above will print: The value is $1,234.56 (with five leading spaces). I
Example:

Mask$ = "###,###,i##.#"
 INumber& = 123456.78

PRINT USING Mask$;"The value is ~; Nurnber&

The line will indicate The value is 123,456.7 (with four leading spaces). I
NOTE

To format the output of an integer value, then simply I
assign this integer value to a dummy real variable, and
use	 the dummy real variable in the PRINT USING
statement. I

•

I

I Chaper Six: Basic Input/Output of Information 99

I
Cursor Positioning

I
I The following commands affect the movement of the screen cursor, and sometimes

the printer head. Cursor positioning is affected by the borders of the screen which may
be altered during execution of the program making it possible to create text windows.
Please see Appendix B for specific information.

I POS (Aexpr)

POS (for Position) returns the current horizontal position of the cursor at the

I moment POS is executed. The value returned is from one to 80. One is the left-most

I
side and 80 is the right-most side of the screen.

The argument is ignored, and has no effect on the result of the evaluation of POS,
but must be present, otherwise an error will occur during compilation.

Example:

I HOME

PRINT "position: ";POS (0)

I
 This statement returns the number 11 for the position of the cursor.

SPC (Aexpr)

I
I

SPC (for space) prints the specified number of spaces to the current output device
and may only be used inside a PRINT statement.

Aexpr may be any valid arithmetic expression. SPC must be in the range oue to 255
otherwise an error occurs at run time. IfAexpr is real, its value will be truncated.

SPC moves the cursor or print head the number of spaces specified starting from the I current cursor position. If the cursor is moved past the right margin, it continues
spacing on the line below.

I
IMPORTANT

Semi-C' JUS must be used after each SPC, otherwise a

I carriage return will be generated destroying the effect of
SPC.

I
Example 1:

I PRINT SPC(15);"The total is:";Total$

TAB (Aexpr)
I
I

TAB (for Tabulation) is used to position the cursor to the specified position on either
the screen or printer and may only be used inside a PRINT statement. The position
values range from 1 to 80. The first horizontal position (1) being on the left margin and

I
 Part Three: The Advanced BASIC Language

100 Chaper Six: Basic Input/Output of Information I
Ithe last one (80) on the right margin.

Aexpr may range from one to 255. Values from 81 to 255 will tab on lower lines of
the screen. I

IfAexpr is real, only the whole number portion will be used.
If a PRTON statement is in effect, TAB will move the print head at the position

specified, in a forward direction only. I
IMPORTANT ISemi-colons must he used after each TAB statement,

otherwise a carriage return will be generated, destroying
the, effect of the TAB. I

Example 1: I
PRINT TAB (15);Total$

IHTAB (Aexpr)

HTAB (for horizontal tab) moves the cursor to the horizontal position specified by IAexpr. The cursor may be moved from left to right or right to left.

Aexpr may range from one to 80. Any values outside this range will result in a run
time error. IfAexpr is real, only the whole number portion will be used.. I

Example:

PROGRAM Demo HTAB
 I
HOME

HTAB (36)
 IPRINT "is the";

DELAY .. 50

HTAB (31) I
PINT "This";

DELAY = 50
 I
HTAB (43)

PRINT "proper order." IEND

VTAB (Aexpr) I
VTAH (for Vertical tab) moves the cursor vertically to a specific line on the screen.

The argument may be any valid arithmetic expression with a result ranging from one I
to 24. Any values outside this range will result in an error at run time. IfAexpr is real,
only the whole number portion will be used. I

Part Three: The Advanced BASIC Language I

I Chaper Six: Basic Input'Output of Information 101

I
The cursor may move in either vertical direction.

I
 Example:

PROGRAM Demo VTAB

I
HOME

VTAB (4)

PRINT "On line four"

I END

Output to Other DevicesI
OUTSLOT (Slot_Number)

I OUTSLOT is used to send subsequent output through a device connected to the
specified slot number. The argument must be a digit between 0 and 7; any negative

I value or value greater than seven will cause an error.

IMPORTANTI IA 3 is used to return output to the screen. I

I
I NOTE

None of the screen formation statements such as TAB
will work when used in conjunction with OUTSLOT.

I Example:

OUTSLOT (2) {Output through slot 2}

I
 PRINT StringS {Sends character(s) to port 2}

OUTSLOT(3) {Sends output to the screen}

I PRTON

I PRTON (Printer On) turns on the communication link to the printer and redirects
all output to it. PRTON assumes the printer is connected to slot one (printer port) of

I
the computer. If this is not the case, use OUTSLOT.

PRTON does not interrupt the execution of the program if the computer is connected
to a serial printer even if the printer is turned off. However, the program may hang if a
parallel printer is turned off.

I E~ple:

PRTON

I
 PRINT "This line is written on the printer"

I
 Part Three: The Advanced BASIC Language

102 Chaper Six: Basic Input/Output of Information I

I
TEXT

PRINT ~This line is written on the screen"

I

TEXT

TEXT turns off the communication link to the printer and restores the screen as the I

current output device.

Example: I
PRTON

PRINT "This line is sent to the printer."

TEXT I

PRINT ~This line is sent to the screen. H

I

NOTE

TEXT may only be used to turn the printer off and the
screen display back on if the printer was originally turned I
 on with a PRTON.

I

I

I

I

I

I

I

I

I

I

Part Three: The Advanced BASIC Language I

I Chapter Seven: Disk Filing 103

I
Chapter Seven

I
Disk Filing

I
Overview

I
I It is often the case that data generated by a program must be stored in some long

term device for later usage. Also, data stored from some outside source often must be
read in from a long term storage device for immediate usage. Such data are usually
stored as disk files.

I
A typical example of such file usage is in a word processor. Once the text is

generated within the word processort it must be save~ or all the work would be wasted

I
once the computer is turned off. Conversely, this text may have to be read back into the
word processor at a later time for further modifications.

Disk filing commands are necessary to maintain and access these files. Access and
maintenance of disk files is the topic of this chapter.

I File Management

I
 These commands allow you to manage the disk files on your system.

I CAT$

I
CAT$ is designed to get file information from a directory. Each use of CAT$ returns

a string containing a file directory entry from the default directory, just as it is displayed
using the CATALOG command under the Shell (minus the heading).

The volume information is returned on the last line, concatenated with the last file

I name and information, separated by a carriage return (ASCII 13).

CAT$ must be contained in a loop. If more directory j·uormation can be read,

True_Value (memory location 202) will contain a zero. If the last line has been read,
I True_Value will be non-zero. Remember that True_Value is used for other purposes

and should be tested immediately after each use of CAT$.

I Example:

PROGRAM ShOW_Directory

I {Display directory header}

HOME

PRINT nFilename"; TAB(21); nType"; TAB(27); \

I llBlocks"; TAB(36); nCreated"; TAB(43); \

I
"Time"; TAB(55); nModified"; TAB(64);"Time"; \

TAB(74);lEOF"

I Part Three: The Advanced BASIC Language

Chapter Seven: Disk Filing104

PRINT

{Get directory listing}

REPEAT

StringS = CAT$

IF PEEK(202} <> 0 THEN BEGIN

PRINT StringS

END IF

UNTIL PEEK(202) <> 0

END

IMPORTANT

NOTE

The entire directory file must be read at one time,
otherwise the directory file will remain open
unnecessarily, which will probably cause problems at a
later time. You may have to read the directory entries
into a string array_

If you wish the contents of a directory other than the
default directory, you will have to change the default
prefix with the PREFIX. command. You may first have to
save the current directory with use of the PREFIX.$
command, then reinstate the original directory after the
directory has been read.

I
I
I
I
I
I
I
I
I
I
I

COpy Svarl TO Svar2 I
COPY duplicates the file defined in Svarl into a file with name Svar2. Svar is the IPatbname of the files and may be either a p"ring variable or a string literal.

IfSvar2 is assigned an empty string, the file specified in Svarl will only be read. If
an eITor occurs during the read, True_Value (location 202) will contain a non-zero I
value. This allows you to verify a file without generating an error.

Example: IFilel$ = "/RAM5/File U

File2$ = "/RAM6/New.File"

COPY Filel$, "" {First Verify Filel$}
 I
IF PEEK (202) - 0 THEN COpy Filel$ TO File2$

I

I

Part Three: The Advanced BASIC Language I

I Chapter Seven: Disk Filing 105

I
CREATESvar

I
I CREATE will generate a directory file (type DIR). Svar is the Pathname of the new

directory and may be either a string variable or a string literal. Svar must not already
exist or an error will be generated.

CREATE locks the newly created directory.

I
 Example:

CREATE "/Micol.Adv.BASIC/New.Dir"

I DELETE Svar

I DELETE will erase the file specified from the appropriate directory. Svar is the

I
Pathname of the file to be deleted and may be either a string variable or a string literal.

A file may not be deleted ifit is open or locked. A directory file may only be deleted if
it is empty. Use this command when a specific file is no longer needed.

I
Example:

DELETE ~/RAM6/FILE"

FLUSH
I
I

FLUSH will empty all open file buffers to their respective files.

The main function of FLUSH is in file security. If any program runs a significant

I
time with open files and the program malfunctions, without periodic use of FLUSH, the
information in the buffer(s) may be lost. This command ensures that all data inside the
file buffer(s) will be transferred to their respective disk files.

A program using the command FLUSH will be slightly slower because of the time
needed to copy the information to disk, but you will be certain to have all the

I information saved should a power surge or interruption occur.

I
Example:

FLUSH

I FORMATSvar

I
FORMAT is designed to initialize a disk device such as a floppy or a RAM disk. Svar

is the volume name the disk will have once formatted and may be either a string
variable or a string literal.

The FORMAT command displays the location and the names of all devices connected

I to the computer. The user will select the appropriate device with the Up and Down

I
Arrow keys and press Return to display the GS/OS Formatting Dialog Box.

The user should set the controls of the Dialog Box to ProPOS for the operating
system and BOOK 2:1 for the interleave, if necessary then presses Return to start

I Part Three: The Advanced BASIC Language

I

I

106 Chapter Seven: Disk Filing

formatting.

Example:

FORMAT "/Work.Disk" {The disk will be named Work.Disk}
 I
WARNING IThe user must be certain helshe wishes to format the

specified device as once the final Return is pressed, all
information on the device will be erased. It is Irecommended a warning message be displayed. and
possible exit allowed. before FORMAT is executed.

I
LOCKSvar I

LOCK is used to protect a file from being deleted or modified. Svar is the Pathname
of the file to be locked and may be either a string variable or a string Iitera!.

When a file is locked, an asterisk (*) precedes the filename when a directory is I
displayed to show that the file is protected.

Example: I
LOCK "/RAM6/FILE"

I
ONLINE$

IONLINE$ returns a string which contains all the current online volume names.

Each volume name is separated by a Return character (ASCII 13). This Return
character may be used to isolate each online volume name within your program. I

Example:

OnLine_NameS = ONLlNE$
 IPRINT OnLine_NameS

IPREFIXSvar

PREFIX uses Svar to set the default prefix. Svar is the Pathname to a directory and Imay be either a string variable or a string literal.

If Svar contains an empty string (tilt), the system will only display the default prefix
to the screen. If Svar is not empty, the default prefix will be set to Svar. The volume I
must be online when this command is executed; otherwise, an error will occur.

Example: IPREFIX "/RAM6/Directory"

I

I

I Chapter Seven: Disk Filing 107

I
RENAME Svarl TO Svar2

I RENAME will change the name of a tile, directory or volume. Svarl and Svar2 may

be either string variables or string literals.

I Svarl is the Pathname to the original file and Svar2 is the Pathname the file will

have. IfSvarl and Svar2 are on the same volume, but in different directories, 8varl will

be moved to the directory stipulated in Svar2.

I Svarl must be unlocked., and Svar2 must not already exist.

I
Example:

RENAME "/RAM6/File" TO "/RAM6/Newfile"

I UNLOCKSvar

UNLOC.K removes the protection on a file so that it may be erased, modified or

I renamed. Svar is the Pathname of the file and may be either a string variable or a
string literal.

A space rather than an asterisk indicating that the file is unprotected will precede

I the filename when the appropriate directory is displayed.

I
Example:

UNLOCK /RAM6/FILE

Direct Access to the Operating SystemI
GS_OS (Operation_Code, PathName$, Integer_ArraY% ()

I
The GS_OS command makes it possible to communicate directly with the operating

system of the Apple IIGS, GS/OS.

I
I GS_OS is designed to call individual ope~ations within the operating system. These

calls can perform a whole assortment of things such as getting volume information, or
erasing a volume directory, etc; whatever GS/OS is capable of. All of the disk access

I
commands executed by MicolAdvanced BASIC are done by such calls to GS/OS.

To make use of this command, you will need a GS/OS reference manual. The one by
Gary Little mentioned in Suggested Manuals in Part One is quiet suitable.

GS_OS requires three parameters: a GS/OS call number, a string variable whose
contents mayor may not be required, and an integer array which will contain the

I parameter list required by the GS/OS call. The three parameters are:

I
1. The call number is the value required by GS/OS to determine which operating

system command is needed. This value is an integer literal (either decimal or
hexadecimal) and must be a value greater than $2000 hexadecimal as the
GS_OS command only supports GSlOS class one calls.

I 2. APathname is not required by all 08/08 calls, but PathName$ must appear in the
GS_OS command. If an Integer_Array% element contains a negative one (-1),

I Part Three: The Advanced BASIC Language

I

I

108	 Chapter Seven: Disk Filing

the string contained within PathName$ will be used for this call. PathName$

may be any legal Micol Advanced BASIC string which is also a legal GS/OS

Pathname, according to the call.
 I

3.	 The list ofparameters required by the call is provided to GS/OS using

Integer_Arrayro starting with element zero. One integer array element is equal

to ·one word. The size of the integer array must be at least as large as the
 I
maximum number of words sent or returned by the call and must be so
dimensioned. The left parenthesis is required in the syntax of this command.

4.	 If an error occurs as a result of the call. the GS/OS error value will be returned in I
location 202 (True _Value). A zero indicates that the call was made correctly.

Any other value signals that an error occurred (or that the call was made

improperly). Please see Appendix D for GS/OS error codes.
 I

IMPORTANT
When long integers are used, the most significant bytes of I
each array element are ignored, and the array is
compressed into short integers before the contents of the
array are passed to GSI0S. The array is decompressed I
after the results are returned.

I
Example:

PROGRAM OS_Example
 I
@ LIST

INT (A - Z) I
DIM Array (40) {Large enough for any purpose}

Array (0) 12 {12 class one parameters}

Array (1) = -1 {Pathname in element 1}
 I
PathName$ - ~/RAM5/File"

{Make the call to GS/OS} I
{$2006 GetFileInfo}

GS_OS ($2006, PathName$, Array () IIF PEEK (202} = 0 THEN BEGIN {No error}

FOR Ctr - 1 TO 20 {Display the result returned}

PRINT Array (Ctr)
 I
NEXT Ctr

ELSE BEGIN
 I
PRINT ~GS/OS error" :FEEK (202)

ENDIF
 IEND

I
I

I Chapter Seven: Disk Filing 109

I
NOTE

The GS_OS command can easily handle GS/OS calls with

I one string. If the GS/OS call you wish to make requires
two or more strings, you will have to create the GS/OS
class one strings yourself in some buffer area, and pass I

I these addresses within the GS_OS call. But don't worry,
very few calls require more than one string.

I
General File Access

I File Access Number

I

-I The commands within this section require a File Access Number. This is simply a

digit (no variables allowed), from one to eight, that you give the file when it is opened.

This value, rather then the Pat.bname, is used to access the file for further operations.

APPEND (File Access Number)
I
I

APPEND moves the file pointer to the end of the open file. Any future reads or

writes to the file will be from this position. The File Access Number must be the same

one that was used under the OPEN, ROPEN or WOPEN command.

Example:

I ROPEN (1) "File" {Open an existing file)

APPEND (1) (Write after end of file"

I
 PRINT (1) "After old end of file"

CLOSE(l)

I CLOSE (File Access Number)

I CLOSE will close the file specified by the File Access Number. The File Access
Number must be the same one that was used when the file was opened with an OPEN,
ROPEN or WOPEN command.

I All files must be closed after having been used. The closure of the files ensures that
all data have been transferred from memory buffers to their disk files. An END or
STOP will also close all files currently opened.

I Example:

WOPEN (I) "FILE"

I CLOSE (1)

I

I
 Part Three: The Advanced BASIC Language

110 Chapter Seven: Disk Filing I

FILE (Svar) I
FILE verifies that a file with the corresponding Pathname exists. Svar is the I

Pathname of the file, and may be either a string variable or a string literal.

Fll..E is a boolean function which retwns TRUE if the file exists or FAlSE if there is
no such file. The Fll...E state may also be assigned to a boolean variable: Flag! = FILE I
(File$).

Example: I
IF FILE (rr/RAM6/HELLO") THEN BEGIN

ROPEN (1) "/RAM6/HELLO"

ELSE BEGIN
 I
WOPEN (1) "/RAM6/HELLO"

END IF
 I
The type of file may be detennined by PEEKing into memory location 1'rue_Value

(202) right after using the FILE command. This value is a number representing the file I
type.

In addition, ifFILE is TRUE, the file size, in blocks of 512 bytes, will be returned in
locations 204 and 205 in LSB, MSB order; in location 212 and location 213 is stored the I
Auxiliary file type.

Example: I
File Exists! = FILE (InputFile$)

IF File_Exists! THEN BEGIN
 IFileType% = PEEK (202)

IF FileType% = 4 THEN BEGIN

PRINT "The file "; InputFile$; " is of type TXT u I
ELSE BEGIN

IF FileType% = 176 THEN BEGIN I
PRINT ~The file" ; InputFile$; " is of type SRC"

ENDIF

ENDIF I
ELSE BEGIN

PRINT InputFile$;rr does not exist rr
 I
END IF

I
GET (File Access Number) Svar

GET will read characters, one at a time, from disk and place the character into Svar. I
The File Access Number must be the same one that was used when the fIle was opened.

If the end-of-file marker is encountered during a GET, the variable waiting for a I
Part Three: The Advanced BASIC Language I

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

111Chapter Seven: Disk Filing

value will be undetermined, whereas the end-of-file flag will be set to TRUE.

Example:
IF FILE ("File") THEN BEGIN

ROPEN (1) "File"

REPEAT

GET (1) CharS

IF NOT EOF (1) THEN PRINT CharS;

UNTIL BOF (1)

CLOSE (1)

ENDIF

INPUT (File Access Number) Var [{,Var}]

INPUT functions like the keyboard. based INPUT statement except it accepts. data
coming from a file instead of the keyboard.

The File Access Number must be the same number that was used when the file was
opened. Var may be any simple or array variable type except boolean.

As with the keyboard. INPUT command, the data read from the deviee must
colTespond to the type required by the variable in the variable list.

WARNING
INPUT is only suitable for reading text files. Note that
the only delimiter for a string input is the carriage return
(ASCII 13). Commas (,) and semicolons (;) are regarded
as data for this purpose. If more than 1023 characters
are read before a carriage return is encountered, an error
win be generated.

Example:

IF FILE ("/RAM6/File") THEN BEGIN

ROPEN (1) "/RAM6/File"

REPEAT {Read from disk}

INPUT (1) StringS

INPUT (1) Real

INPUT (1) Integer%

PRINT StringS, Real, Integer%

UNTIL EOF (I)

CLOSE (1)

ENDIF

Part Three: The Advanced BASIC Language

Chapter Seven: Disk Filing112

OPEN (File Access Number) Svar

OPEN establishes a link between the file specified in Svar and future commands
directed at the file. Svar may be either a string variable or a string literal.

OPEN will check for the existence of the file stipulated in Svar. If the file exists, it
will simply open the file (perform. an ROPEN). If the file doesn't exist, OPEN will
create a new file with the stipulated name, then open it (perform a WOPEN). In both
cases, the file pointer will be pointing to the beginning of the file.

Example:
OPEN (1) "/RAM6/FILE"

PRINT (1) "String"

CLOSE (1)

PRINT (File Access Number) [USING Mask$;] Var[(,Var}]

PRINT and PRINT USING function exactly like their screen-based counterparts
except they send their data to the disk instead of the screen or printer.

The File Access Number must be the same number that was used when the file was
opened. Var may be an integer, real or string variable or array.

NOTE

WARNING

ITABs will not produce spaces in a text file. I
If the data created with a PRINT are to be read by an
INPUT statement, then be certain not to suppress the
carriage return by using a comma(,) or a semi-colon(;)
after each variable list. It is best to have one variable per
PRINT statement.

I
I
I
I
I
I
I
I
I
I
I
I
I
I

Example:

WOPEN (1) "FILE"

PRINT (1) "Output to file"
 I
FOR Loop_Ctr% - 1 TO 10 IIPRINT (1) Loop_Ctr%

NEXT Loop_Ctr%

CLOSE (1)
 I
The end-of-file marker is pushed forward as each variable's contents are written to

disk. I
I

I Chapter Seven: Disk Filing 113

I
ROPEN (File Access Number) Svar

I
I The ROPEN command will open an already existing file and will position the file

pointer to the beginning of the file. The File Access Number used with the ROPEN
command must be used with all the commands referencing the file being accessed later.

Svar is the Pathname of the file and may be either a string variable or a string
literal. The Pathname of the file being read must exist on the disk being accessed. Any

I attempt to ROPEN a non-existent file will cause a run time error.
ROPEN establishes a relationship between the File Access Number and the

Pathname. Without this relationship established, the system cannot know which File

I Access Nw::nber belongs to which file.

I IMPORTANT
File Access Number 8 will provide :r;nuch faster access to

I
sequential files than File Access Numbers 1 thorough 7.
However, because File Access Number 8 maximizes file
access by reading several file bl~ into internal memory

I
from which the file information is then accessed, it is
unsuitable for random access files.

I Example: (See GET)

WOPEN (File Access Number) SvarI
I

WOPEN will erase any existing file with the same Pathname stipulated by Svar, and
create an empty file with the specified Pathname. If the file already exists, and that file
is locked, aneITOr will be generated. Svar may be either a string variable or a string
literal.

I The File Access Number used with the WOPEN command must be used with all the

I

commands referencing the file being accessed.

WOPEN establishes a relationship between the File Access Number and t....~

Pathname. Without this relationship established, the system cannot know which File
Access Number belongs to which file,

I Example: (See PRINT)

Sequential File AccessI
EOF (File Access Number)

I
EOF is used to detect the end-of-fl1e marker when a sequential file is being read.

The File Access Number must be a digit between 1 and 8 and mu,st be the same value

I used when the file was opened.

I

Part Three: The Advanced BASIC Language

I

I

114 Chapter Seven: Disk Filing

EOF is a boolean function and may be assigned to a boolean variable as: Flag! =
EOF (1). This boolean variable may then be tested like any boolean variable.

If the end-of-file is encountered while reading a variable's value, the value of the I
variable is undetermined, but the EOF flag will be set to TRUE.

Ifyou try to test the end-or-file on a file which has not been opened, you will receive a
nm time error. I

Example:

ROPEN(8} "/RAM6/FILE" {Get fast access with 8}
 I
REPEAT

INPUT (8) StringS IIF NOT EOF (8) THEN PRINT StringS

UNTIL EOF(8)

CLOSE (8) I
Random Access Files I

SEEK (File Access Number) Record Number, Record Size I
SEEK is used to move the file pointer within a random access file. SEEK will move

the end-or-file marker if the position is past the current end-of-file. You may then read Ior write to this file location as you require.

The SEEK command must be used before any read or write operation to a random
access file, otherwise the next read or write operation will be done right after the I
previous read or write. Be certain not to leave out this command ifa random access file
is used.

You must decide what record size you wish; the record may be any size. Once the I
record size is specified, any record may be accessed within the file; even sub-records
within the file may be accessed by specifying the correct record size.

1b access a specific field within a certain record, you may skip the previous fields I
using dummy INPUTs. To do so, each field must end with a c .Tiage return. If the
Return characters at the end of each field have been suppressed, then the INPUT
statement(s) will not be able to read the data since INPUT expects the Return character I
as the end-of-field delimiter.

INOTE
The use of a File Access Number 8, reserved for use with
sequential file access, will result in an error during Icompilation.

I
When calculating the record size, remember that the Return character also requires

one byte. I
I

I Chapter Seven: Disk Filing 115

I
NOTE

I

I

PROGRAM

I HOME

I
WOPEN (1) "/Volurne2/File"

INPUT "Enter record size" ;Size

REPEAT

INPUT "Enter record number" ; Record

I INPUT "Enter any number" ; Number

I
SEEK (1) Record, Size

PRINT (1) Number

UNTIL Number = 100

CLOSE (1)

I HOME

II
 ROPEN (1) "/Vo1ume2/Fi1e"

I

PRINT "The values entered were:"

REPEAT

INPUT "Enter record number ";Record

SEEK (1) Record, Size

INPUT (1) Number

I PRINT Number

UNTIL Number = 100

CLOSE (1)I END

I NOTE

I
I
I
I
I

SEEK may function the same way as the POSITION
statement of the Applesoft BASIC interpreter by
specifying a record size of1.

Random Access

From the programmer's standpoint, the only difference
between a sequential file and a random-access file is the
use of the SEEK command.

Part Three: The Advanced BASIC Language

I Chapter Eight: Control of Flow 116

I
Chapter Eight

I
Control of Flow

I Overview

I Unless special action is taken, each program statement will execute after the

I
preceding statement has finished execution. Very few programs would have any real
worth if this linear program flow could not be altered.

It is the purpose of this chapter to discuss the methods available under Micol
Advanced BASIC to direct progrcim flow in an appropriate manner. In this regard, Micol

I Advanced BASIC is one of the most powerful languages for any computer. Use these
commands wisely and your programs will be something to be proud of.

I Program Termination

I The termination statements are designed to end the execution of a program; control
passes out of the program.

External FlowI
I RUN Pathname

I
To execute another Micol Advanced BASIC program or a GS/OS application, use the

RUN command. Pathname must be the Pathname, including the ".LNK" extension, if
any, of the program. Pathname may be a string literal or string variable. The file must
be online at execution time or an error will be issued.

I Examples:

RUN ""'lAB. LNK"

I Path_NameS - "FINDER"

RUN Path~Name$

I Flow Interruption

I END

END terminates the program's execution, and returns control to the Command Shell

I (if the program was entered from the programming environment).

I
END may be placed anywhere in a program. END closes all open files, frees all

memory, and sets the screen to text mode.

I Part Three: The Advanced BASIC Language

I

I

117 Chapter Eight: Control ofFlow

NOTE
Although the Compiler automatically generates an END
at the end of the program code, it is recommended to
conclude all programs with END for documentation I
purposes.

I
IMPORTANr

In any program that was launched with the Finder, END Ireturns control to the Finder. If the program was started
as a 'furnKey system, a System Death will be performed.

Example:
PROGRAM EXAMPLE

PRINT nThis is a
END

STOP

I

I

sample program"

I

I

STOP is identical to END except it prints the line number where the program
halted. STOP's primary function is in debugging. I

Example:

PROGRAM Example
 IPRINT nThis is a simple program"

STOP

I

BYE

IBYE terminates the execution of the program and returns control to the program
launcher (even if the program was started from the Command Shell). BYE performs
what is called a ProDGS QUIT. I
NOTE

When a TurnKey system terminates, it is usually to a
System Death, and the computer will have to be rebooted I
to continue running. If you are creating a TurnKey
system, and a BYE should execute, the booting program
will re-execute instead of a System Death. I

I

Example:

PROGRAM Hello
 I

I

I Chapter Eight: Control ofFlow 118

I
HOME

I PRINT "Hello"

BYE {Return to the Program Launcher}

I Branching

I Branching consists of unconditional and selective branching. With unconditional

I
branching, the flow will be altered exactly as specified by the control structure. With
selective branching, the branch will be based upon a condition previously determined.
With selective branching. if the conditions are not right, the flow will not be altered at

I
all.

With branching, control is directed to another area of the program. Careless use of
this construct may cause havoc in your programs. For this reason, it is recommended
you avoid branching as much as possible. Ideally. branching should only be done in error
handling.

I
The Routine Declaration

I ROUTINEId

I Before we can discuss branching, it is necessary to discuss a little about Routine
declarations. This topic will be covered again in the next chapter in more detail

Whenever you wish to branch to another line with the use of GOTOs, it is possible to

I branch to a mnemonic name instead of a line number. In order to do this, you must first
declare the area of code you wish to branch to with a ROUTINE name. The syntax. is
simply the keyword ROUTINE followed by a unique identifier. This identifier has the

I exact same syntax as a simple variable and may be an existing variable name.

I
During compilation, the Compiler checks for the existance of duplicate ROUTINE

names. Ifa second ROUTINE name is detected, an error will. be issued.

I
WARNING

If you are segmenting your program, then you may not
give any ROUTINE name that has already been declared
within a previous segment. The Compiler has no way to

I distinguish between identical ROUTINE names in
different segments.

I
Unconditiona! Branching

I
I Unconditional branching takes the program flow to the statement indicated. The

abusive use of unconditional branching may considerably reduce the legibility of a
program, so its use should be avoided whenever possible.

I
 Part Three: The Advanced BASIC Language

119 Chapter Eight: Control ofFlow I
IThe Dreaded GOTO

GOTO Identifier I
GOTO Line_Number

IGOTO forces the program flow to the line indicated. If the reference line does not
exist, the linker displays the message "Undefined line or subroutine". When a GOTO
makes a reference to a line number (not recommended), the line number is treated as a
ROUTINE identifier. I
NOTE IThe use of GOTOs is recommended only in recovery from

an error. To disable GOTO, use the NOGOTO compiler
option. I

Example: I
IF Number = 5 THEN GOTO Routine Name

END
 I
ROUTINE Routine Name

END I
Selective Branching I

Selective branching may be used when three or more selections are needed. The use
of this option is not recommended as it can lead to problems in determining the program
flow, if errors arise. The multi-decision CASE_OF is probably a more appropriate I
structure, and its use is recommended.

IThe ON.•GOTO Statement

ON Aexpr GOTO Identifier [{,Identifier}] I
ON Aexpr GOTO Line_Number [{, Line_Number}]

ION..GOTO branches to a specific statement or line depending on the value ofAexpr
between the worda ON..GOTO. IfAexpr is real, the value is truncated before the branch
is taken. I

Aexpr is evaluated. If the value is less than one or greater than the number of
identifiers or line numbers, the program flow will continue with the statement following
the ON..GOTO. Otherwise, the flow will be directed to the sequential label or line I
determined by the result.

I

I

•

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

120Chapter Eight: Control of Flow

Example:

PROGRAM Example

HOME

REPEAT

PRINT nEnter a number from 1 to 3 ";

GET Digit$

PRINT Digit$

UNTIL INDEX (Digit$, "123 n
} > 0

Digit% = VAL (Digit$}

ON Digit% GOTO One, Two, Three

{Exit point for program}

ROUTINE Finish

END {End of Program Execution}

{Selection is handled below}

ROUTINE One

PRINT "One chicken soup"

GOTO Finish

ROUTINE Two

PRINT nTwo Fetucinni entrees"

GOTO Finish

ROUTINE Three

PRINT "Three turkey breasts"

GOTO Finish

Loops

Repetitive statements are used to repeat an action until a condition is met. Micol
Advanced BASIC has four repetitive control statements: FOR..NEXT, FOR.UNTIL,
REPEAT..UNTll.., and WHII.E..WEND.

Finite Loops

The statements in this section are useful for loops that have a predetermined
number of iterations or repeat execution until another condition arises.

FOR •• NEXT Loops

FOR Loop Counter =Initial TO Terminal [STEP Increment]

This statement begins with the keyword FOR followed by an integer or real variable

Part Three: The Advanced BASIC Language

121	 Chapter Eight: Control ofFlow I
I

as the Loop Counter. The Loop Counter is assigned the value in Initial and then verified
to see if its value is greater than Terminal. If Loop Counter's value is greater than
Terminal's, the statements within the loop will not be executed and control will continue I
to the statement after the following NEXT. If Loop Counter's value is smaller than or
equal to Thrminal's value, the statements within the FOR loop will be executed. .

When all the statements in the loop have been executed, Loop Counter will either be I
incremented or decremented and the FOR statement will continue until Terminal's
value is exceeded.

When there is a STEP Increment, if the result of Increment is positive, the value of I
Increment is added to the Loop Counter. If the result of Increment is negative. the
positive value of Increment is subtracted from Loop Counter. If STEP is not specified,
the increment is always a positive 1. I

NEXT Loop Counter I
NEXT followed by a Loop Counter signals the end of a FOR loop. The Loop Counter

must match the one used in the previous FOR statement. I
1£, during compilation, a FOR statement is without its matching NEXT, the

Compiler will issue an appropriate error message at the end of compilation.

Example: I
FOR Loop_A% = 1 to 10

FOR	 Loop_B% - 1 TO 10 I
PRINT ~Loop_B "; Loop_B%

PRINT "Loop_A - ": Loop_A% I
NEXT Loop_B%

NEXT Loop.A%

Please note the following rules for FOR..NEXT loop construction:	 I
1.	 The loop will not be entered if the loop counter's value is already satisfied.

Example: I
FOR Loop_Count r :% '"' 10 TO 9

PRINT Loop_Counter%' I
NEXT Loop_Counter%

2.	 The NEXT statement must contain the same variable used as the loop counter in
the previous FOR statement, otherwise an error will occur during compilation. I

3.	 A loop cannot be "exited" by changing the value of the loop counter. The value of
the loop counter cannot be changed since the actual loop counter's value is
maintained elsewhere. Ifany attempt is made to reassign the loop counter I
within the FOR..NEXT loop, the loop counter will be reassigned the value it
otherwise would have at the top of the next iteration of the loop. I

4.	 There may be only one NEXT for each FOR. A line of code like IF Value =10

THEN NEXT Ctr is not allowed in Micol Advanced BASIC.

5.	 The terminal expression is calculated each time at the top of the loop. The FOR I

I Chapter Eight: Control ofFlow 122

I
I

loop may end prematurely if a variable is used for the Terminal value and this
variable is being reassigned inside the loop. Watch out for an unintentional
reassignment. Also, if the terminal expression is somewhat complicated. it may
eat up valuable execution time. It is preferable to assign that expression to a
dummy variable just outside the loop, and Use this dummy variable as theI terminal value within the FOR.NEXT loop.

Example:

I FOR Ctrl% = 3 TO 32000 STEP 2

Durnmy% = SQR (Ctrl%)

I FOR Ctr2% = Ctrl% TO Durnmy% STEP 2

IF Ctr% MOD Ctr2% = 0 THEN BEGIN

Dummy% = 1 {Stop the inner loop}

I END IF

NEXT Ctr2%

I
 IF Dummy% > 1 THEN PRINT Ctr2%

NEXT Ctrl%

Be certain the variable (Dummy%) is not unintentionally changed within the activeI FOR..NEXT loop as the loop may not act as desired.

I
6. Never use a GOTO to exit a FOR..NEXT loop, otherwise the pointers necessary for

the functioning of FOR..NEXT statements will not be reset correctly. The
program may malfunction ifthia loop is used again. Ira FOR..NEXT loop must
be left prematurely, use the FOR..UNTIL loop structure instead.

I 7. The use of integer loop counters is recommended, where practical, as they execute
much faster than their real counterparts.

I FOR •• UNTIL Loops

I FOR Loop Counter =Initial TO Terminal UNTIL Relop

The FOR..UNTIL structure repeats one or more statements a precise number of

I times or until the specific condition is TRUE.

This statement begins with the keyword FOR followed by a Loop Counter. The Loop
Counter is assigned the value in InitiaL The Loop Counter is then verified to see if its

I value is greater than the Terminal value.

I
lfthe Loop Counter's value is greater than the terminal value. the statements in the

loop will not be executed and control will be directed to the statement following the next

I
NEXT. lfthe Loop Counter's value is smaller than or equal to the Terminal value, a test
is made to see if the UNTll.. condition is TRUE or FALSE. If the condition evaluates to
TRUE. control is passed to the statement after the NEXT statement. If the UNTIL

I
condition is FALSE, the loop is entered.

When all the statements in the loop have been executed, Loop Counter will have one
added to its current value and the FOR statement will continue until the value of Loop
Counter is greater than Terminal or until Relop become TRUE. Loop Counter is always

I Part Three: The Advanced BASIC Language

123 Chapter Eight: Control ofFlow	 I
I

incremented by one.
As with the FOR..NEXT loop construct, this statement must also be closed by a

NEXT statement with a matching Loop Counter. The pertinent rules described above I
for FOR loops also apply here.

Example: I
FOR'Loop_Ctr% - 1 TO 10 UNTIL Animal$ = "cat"

INPUT "Enter any animal's name ";Animal$

PRINT "The ";Animal$;" is a fine animal"
 I
Animal$ - LOWER$ (Animal$) {Need lowercase for test}

NEXT Loop_Ctr%
 I
FOR..NEXT and FOR..UNTIL loops may be nested. The maximum nesting is 20

levels deep. I
Examples: {Notice the nesting order}

FOR Out_loop_Ctr% - 1 TO 10

FOR In_loop_Ctr% - 1 TO 10
 I
PRINT "In_loop_Ctr - ";In_loop_Ctr%

PRINT "Out_loop_Ctr - ";Out_loop_Ctr%
 I
NEXT In_loop_Ctr%

NEXT Out_loop_Ctr%
 I
This second example will show an alternate way of writing nested FOR..NEXT

loops, but the logic is also more difficult to follow.

FOR Out_loop% - 1 to 10: FOR Inloop% - 1 TO 10 I
PRINT "Inloop - ";Inloop%:PRINT "Out_loop - ";Out_loop%

NEXT Inloop%: NEXT Out_loop% I
Examples of what NOT to do are:

FOR i ~ 1 TO 50 FOR j = 1 TO 10
 I
PRINT i,j NEXT i

NEXT j {Misplaced loop variables}
 I
Conditional Loops I

Conditional loop structures will execute the statements inside the structure until a
particular condition does or does not arise. I

I

I

I

I Chapter Eight: Control of Flow 124

I
REPEAT Loops

I REPEAT

I
Statement

[{: Statement}]

I
UNTIL Relop

The REPEAT..UNTll. structure executes the statement(s) enclosed between these
keywords until Relop is TRUE. The statement(s) in the loop will always be executed at
least once. The program flow continues after the UNTll. statement.

I Example:

I
REPEAT

INPUT ~Enter any animal's name: ";Animal$

Animal$ = LOWER$ (Animal$)

IF Animal$ <> ~cat" THEN BEGIN

I PRINT "The ";Animal$;" is a fine animal"

I
END IF

UNTIL Animal$ = "cat"

WHILE Loops

I
WHIT.E Relop

StatementI [{: Statement}]

I
WEND

.1
The WHII.E..WEND structure executes the statement(s) enclosed between these

keywords as long as Relop is TRUE. The s~tement(s)in this loop will not be executed if
the expression is not initially TRUE. The program flow continues after the keyword
WEND (for WbileEND).

Example:

I Animal$ - "" {Make certain loop is entered}

I

WHILE Animal$ <> "cat"

INPUT ~Type any animal's name";Animal$

I

Animal$ - LOWER$ (Animal$)

IF Animal$ <> "cat" THEN BEGIN

PRINT "The ";Animal$;" is a fine animal"

ENDIF

I WEND

I
The REPEAT..UNTIL and WIDLE..WEND structures may be nested to a

maximum of 20 levels each.

I Part Three: The Advanced BASIC Language

I Chapter Nine: Modularization	 125

I
Chapter Nine

I
Modularization

I
Overview

I When a project becomes a large programming task, it becomes necessary to break.
this task into smaller portions, making this project easier to conceive. This method
applies the old maxim; "Divide and Conquer."

I
I A large program may be divided into modules. A module is like a small program that

may be executed whenever needed. Each module performs a specific task. Breaking a
program into small, easy-to-maintain portions is called modularization.

Not only does modularization simplify the programming task, it also has the
advantage of creating routines that may be re-used by other programs.

I A module is a very important construct to the concept of structured programming.
Once control is passed to a module. unless an unforeseen circumstance occurs, control
will return to a known location.

I
Advantages of Modularity

I
I

1. Ease of conception. It is easier to create an ensemble of short and simple

modules than a long and linear program. Each module will perform a certain,

well-defined task.

2.	 Maintainance. Because each module performs a single well~definedtask, it is
relatively easy to debug and modify this module as the need arises.

I
I 3. Portability. The modules written may be as independent as possible from other

modules. Thus a module may then be used in another program with no or very
few changes.

4. May be written by different programmers. Once the task to be done is well
defined, the modules may be written by more f ill one person. After the

I modules are written, they also may be individually tested.

Module TypesI
Micol Advanced BASIC has three different types of modules: the Routine, the

I Function and the ProcedW'e.

A Routine is probably what you are already familiar with. A Routine is the typical

I BASIC "subroutine". All variables are global <available to the entire program), and
parameters are not passed to it. Control is passed to the Routine with a GOSUB or
PERFORM statement and control is returned through a RETURN statement placed
ideally at the end of the Routine. Unlike most BASICs, a Routine in Micol Advanced I BASIC may be given a name with which the Routine may be later" referenced.

I Part Three: The Advanced BASIC Language

126 Chapter Nine: Modularization I
IA Function is a module which returns a numeric result. The Function may have both

local and global simple variables, accepts one or more parameters and always returns a
single numeric value. A Function is given a name and is implicitly called within an FN Istatement. Control is not returned until the end of the Function is encountered.

A Procedure. like a Function. has both local and global simple variables and accepts
parameters. Control is passed to a Procedure by means of a GOSUB. and control is I
returned following the Procedure call. Values that need to be shared between a
Procedure and the main body of the program are shared by means of parameters passed
by address or by global variables declared earlier in the main program body. I

Module Identification I
As described under ROUTINE names in the previous chapter, all Routines.

Procedures and Functions may have distinct identifiers. I
The Compiler saves the module names declared after a FUNC, PROC or ROUTINE

reserved word during compilation. If duplicate module identifiers are found, the
Compiler will report an error. I

If you attempt to reference a Function. Procedure or Routine within your program
which you have not defined. during the linking phase, you will receive the message,
"Undefined Line or Subroutine" error. Since the Linker has no way of knowing at which I
line this error occurred, you will need to use the Source Code Editor to locate the
undefined Routine. I

Program Order with Modules I
PROGRAM Identification

ALIAS "UNTIL 1 - 2" "" "FOREVER" I
INT (I-N): STR (S-Z)

DATA statements IDIM statements

DECLARE Boolean!. Int~ger%, Real&, StringS

Function Declarations I
Procedure Declarations

Main Program Body I
Routine Declarations

END IThe above list of declaration statements should be followed to ensure a structured
program.

I

I

I

I Chapter Nine: Modularization 127

I
Routines

I ROUTINE Identifier

I
[{ Statement(s)}]

RETURN

I
A Routine is declared by using the reserved word ROUTINE followed by an

identifier.

The body of the Routine may contain any legal executable statements: DIM, DATA
and compiler directives are not executable statements.

I RETURN marks the end of the Routine, and tells the program to return to the
statement following the GOSUB which caused the branch to this Routine. Only one
RETURN should appear in a Routine.

I RETURN must never be used to end a Procedure or Function as the Compiler will

I
return an error ifso attempted.

A Routine module is called by means of a GOSUB statement followed by the
identifier of the Routine.

I
If the retum stack is empty when the RETURN is executed, the message "RETURN

without GOSUB error" is displayed when the error occurs at run time.

All variables included in a Routine are global and may be used by other Routines.

I WARNING
If the nOrtJ:lal program flow reaches a Routine, the
Routine will execute. This must be avoided. For this

I reason, Routines should be placed after the main program
body, so they will not be executed without being explicitly
called. There should be an END statement at the end of

I the main program body to stop the program flow.

I Example:

GOSUB Box

I END

ROUTINE Box

I PRINT ~In subroutine"

RETURN

I Functions and Procedures

I As in the Pascal and C languages, Micol Advanced BASIC has the concept of
Procedures and Functions that are separate from the main body of the program and that
may receive values as parameters.

I
•

128 Chapter Nine: Modularization I
IGeneral Rules

A program may have a maximum of 127 Functions or Procedures. The Functions I
and Procedures may reside anywhere in the program. but it is best to declare them all at
the top of the program.

Unlike a Routine, a Procedure or Function will not execute by simply letting the I
normal program flow reach the Procedure or Function: it must be called. Also, unlike a
Routine, a Function or Procedure may have both local and global variables and accept
values as parameters. I

~stingmProceduresand~cti~~n~allo~d.

I
Global and Local Variables

IGlobal Variables

A global variable ~ a variable that may be used and modified by any part of the
program. Any variable declared at the top of the program outside a Procedure or I
Function ~ always globaL Arrays are always global. This means the entire program is
able to access any array element. IIt is sometimes necessary for the entire program, including Procedures and
Functions, to be able to "see" certain variables. Whenever a variable is declared outside
of a Procedure or Function, but before this Function or Procedure, any subsequent code, Iincluding Functions and Procedures. will have access to this variable. The variable is
declared simply by being used; initialjzing the variable(s), or placing it in a DECLARE
statement is all that's necessary. I

E.xample:
PROGRAM Global Test

{Variable Global& may

Global& - 567.89

PROe Example [Real&,

PRINT Real&

PRINT Integer%

PRINT Global&

ENDPROC

GOSUB Example [100.1,

END

Local Variables

Ibe used by the Procedure}

Integer%] I

I

I
123]

I

I
Any variable declared within a Procedure or Function is local to that Procedure or

Function only if that variable has not been declared globally before this Procedure or
Function. I

Part Three: The Advanced BASIC Language I

I Chapter Nine: Modularization 129

I
By local, we mean that only the Function or Procedure in which the variable is used

will have access to it. Neither the main body of the program, nor another Function or

I Procedure can see the variable. Two variables within two Functions or Procedures may

I
look the same, but in reality these variables are different.

Using local variables has the great advantaie that the value of a variable with the
same name outside the Function or Procedure is not accidentally changed by the

I

program.

Values may be shared outside the Function or Procedure only if a parameter isI passed by address or a variable has been declared earlier as global.

IIthe UST or PRINTER compiler option is in effect, a number sign (#) will precede
the names oflocal variables in the Symbol Table listing (displayed after the compilation).

I
Example:

PROGRAM Global Test

PROe Example [Number%l

PRINT Number%

I ENDPROC

Number% = 567

I GO$UB Example [123]

PRINT Number%

I In this example, the local variable Number% within the Procedure will have a value
of 123, and the global variable Number% outside the Procedure will have a value of 567.

I The Optional Parameter List

I Values may be passed to a Function or Procedure by means of parameters.

I
Parameters are variables within a Function or Procedure that will contain a value
passed to it after it has been called. A parameter list is the series of values sent to the
Function or Procedure when the Function or Procedure is being called. Both parameters
and parameter lists are enclosed in brackets.

The rules for the declaration of the parameters are the same as those for any other

I variable. For all practical purposes, the number of parameters that may be passed is
unlimited.

Each parameter will have a corresponding value passed to it when the Function or

I Procedure is being called. A strict one to one correspondence exists between the type of

I
value passed and the receiving parameter; they must be of the same data type.

Parameters may be simple variables of boolean, integer, real, or string. Parameter

I
lists may be arithmetic expressions or variables, string variables and literals or booleans
which may also be the reserved words TRUE and FALSE.

A real literal, if passed in the parameter list, must have its fractional part explicitly
written, so that the Compiler knows whether a real or an integer literal is intended. If
the real value has no fractional portion, you must specify a .0 as in 123.0.

I Ifa mismatch occurs between the parameter type and the passed value type, an error

I
 Part Three: The Advanced BASIC Language

130 Chapter Nine: Modularization I
I

will occur during execution. For example, if a real expression is passed as the first value
to a Function, the first corresponding parameter must be a real variable; the same
applies to integer, string or boolean parameters. I

Ways ofPassingParameters I
Each parameter that is passed to either a Procedure or Function may be passed in

one of two ways: pass by address or pass by value.

It is important to understand the difference, as this can affect the program's logic. I
People familiar with either the Pascal or C languages should already have a good
understanding of these concepts. I
Passing by Value

I'Ib declare explicitly that a parameter is passed by value, use the reserved word
VALUE before the parameter declarations. Passing a parameter by value is the default.
Every parameter encountered up to an ADDRESS reserved word or the end of the
parameter declarations will be passed by value. I

If a parameter is passed by value, only the value in the passing variable is given to
the Procedure or Function. This means, that under no circumstance will the passing I
variable have its value changed within the receiving subroutine.

Example: IPROGRAM Example

{Passing by Value is default}

PRoe Add [VALUE Gamma] I
Gamma = Gamma + 1

ENDPROC I
Upsilon = 10

Gamma ... 25 IGOSUB Add [Upsilon]

PRINT Upsilon, Gamma

The values printed are 10 and 25. Thus, the value of the parameter passed was not I
modified by the Procedure. When the Procedure Add was called, the variable Gamma
was created and the value of the parameter (25) was assigned to it. The incrementation
Gamma =Gamma + 1 was done with this new variable and not to the variable Upsilon I
where the value was unchanged. The value of Gamma is 25 outside the Procedure
because the one is added to the local variable Gamma, not the global (but declared after
the Procedure) variable Gamma. I
Passing by Address I

When a parameter is passed by address, the address of the passing variable is also
passed to the Procedure or Function so that the passing variable will be modified if the
parameter is altered within the called Procedure or Function. I

Part Three: The Advanced BASIC Language I

I 131Chapter Nine: Modularization

I WARNING

I
When an integer or real literal is passed by address, that
value is made vulnerable to change within the program.
For this reason, never pass a literal as a parameter when

I
it is passed by address as the literal's value in memory
may also change.

I
I To pass a parameter by address, use the reserved word ADDRESS followed by the

parameters to be passed by address. All parameters up to the end of the parameter
declaration or the reserved word VALUE will be passed by address.

I
Example 1:

PROGRAM Example

PROe Add [ADDRESS Gamma]

Gamma ~ Gamma + 1

I ENDPROe

Upsilon "" 10

I Gamma =- 25

GOSUB Add [Upsilon]

PRINT Upsilon, Gamma

I END

I
The values printed are 11 and 25 respectively. The value of the passed parameter

Upsilon was modified by the Procedure.

Note that the local Gamma and the global Gamma still have different values.

I Function Definition

I FUNC Identifier [Parameter list]
Statement(s)

I ENDFUNC [Variable]

To define a Function, use the reserved word FUNC followed by any unique, legal
identifier. The Function identifier may be followed by an optional list of parameters

I encased in brackets ([]).

I
The body of the Function may contain any legal executable statements, the same as a

Routine.

I
A Function is terminated with an ENDFUNC. Following the reserved word

ENDFUNC must appear brackets enclosing a simple variable which contains the value
which needs to be returned by the Function. The variable must be of the same type,
either integer or real, as the calling formula with the FN statement; otherwise, an error
will occur at run time.

I A Function is implicitly called within a formula by preceding the Function identifier

I Part Three: The Advanced BASIC Language

Chapter Nine: Modularization

and an optional parameter list by the reserved word FN.

132

WARNING

Do not attempt to access a Function with a GOSUB. If
you do, you cannot access the value returned by the
Function. Also, do not use a parameter variable as the
variable used to return the Function value as the result
may become corrupted.

If the Function which you try to access does not exist. you will be informed during
the linking phase.

Example:
FUNC Square [Param]

Variable - Param * Param

ENDFONC [Variable] {Square}

INPUT ~Calculate the square of what number?"; Digits

{Function call follows}

Number - 2 * FN Square [Digits] + 1

Ifyou enter 5, for example, the Function Square will return 25,

Procedure Definition

PROC Identifier [Parameter list]

Statement(s)

ENDPROC

1b declare a Procedure, use the reserved word PROC foUowed by a Procedure
identifier. The Procedure identifier may be followed by an optional parameter list
encased in square' :'3.ckets ([D.

The body of the Procedure may contain any legal executable statements: DIM, DATA
statements and compiler directives are not executable statements.

The Procedure must be terminated by an ENDPROC, which ends the Procedure and
generates an automatic return to the statement following the Procedure call. The
Compiler will inform you ifan ENDPROC has been omitted at the end of compilation.

NOTE
If you attempt to use a RErURN in a Procedure, the
Compiler will issue an error.

A Procedure may be called only with a GOSUB followed by the Procedure identifier

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I Chapter Nine: Modularization	 133

I
and the optional parameter list. The GOSUB must not branch to a line within the
Procedure as unexpected results will occur. If the Procedure does not exist, a message

I will be displayed during the linking phase.

Explicit Variable DeclarationsI
If a DECLARE is used in a program containing Functions and Procedures, every

I subsequent Procedure and Function which contain local variables will need a
DECLARE. Include the DECLARE following the Procedure or Function definition.
There is an implicit DECLARE within the parameter declarations, so no DECLARE is

I required there.

I
Example:

PROGRAM Declare Test

PROC Example [ParmI, Parm2%]

DECLARE Real&, Integer%

I Real& - Parml

Integer% = Parrn2%

I ENDPROC

GOSUB Example [100.1, 123]

I Passing Control to a Subroutine

I	 FN Identifier [parm-I, Parm-n]

I

A Function cannot be called explicitly as a Routine is called, but must be calledI implicitly within a mathematical formula.
In order to call a Function and have it return a value, within the formula where the

value is required, insert the keyword FN followed by the Function name followed by the
optional parameter list. In effect, the Function is treated as a sort of variable.

Example:

II Number = 100 + 32 * FN Square [Parm] / 22

I	 GOSUB Identifier [Parm-I, Parm-n]
GOSUB Line_Number [I, Line_Number}]

I
GOSUB is used to pass control to either a Routine or Procedure. If control is given

to a Routine, control is returned with a RETURN statement. If control is given to aI Procedure, control is only returned at the end of the Procedure by an ENDPROC. In
both cases, the execution will continue after the statement following the calling GOSUB.

I
I	 Part Three: The Advanced BASIC Language

134 Chapter Nine: Modularization	 I
IExample:

GOSUB Label

PRINT "Program will resume here"
 I
END

ROUTINE Label
 I
PRINT "Now in subroutine"

RETURN I
POP	 I

pop is the enemy of structured programming. POP removes the latest GOSUB
address from the stack. This can be very dangerous making it difficult to determine
where an error occurred. I

Although some use for POP can be found, the use of POP is not encouraged as it
may lead to chaos in your programs. POP was ret.ained solely for compatibility with
Applesoft BASIC. I

The NOGOTO compiler option may be used to disallow the use of POP.

I
PERFORM Routine_Id UNTIL Relop

A PERFORM executes a Routine continuously until the Routine sets the Relop I
following the UNTIL to TRUE.

As with a GOSUB, a RETURN is expected at the end of the called Routine to cause Ia return to the PERFORM statement.

Example:

PERFORM Animals UNTIL AnimalS - "cat" I
END {This statement is necessary}

ROUTINE Animals
 I
HOME {No offense to cat lovers}

INPUT "Type in any animal's name ";Animal$
 IAnimal$ = LOWER$ (Animal$)

IF Animal$ <> "cat" THEN BEGIN

PRINT "The ";Animal$;" is a fine animal"
 I
END IF

RETURN I
I
I
I,

Part Three: The Advanced BASIC Language

I Chapter Nine: ModuIarization 135

I
Computed Routine Selection

I ON Aexpr GOSUB Routine_Idl [(,Routine_Id(n)}]

I

The ON..GOSUB structure works in a similar manner to the ON.•GOTO structure.I ON..GOSUB also allows you to use named Routines. Based upon the result of Aexpr,
the proper module identifier will be used.

If the result of the expression is one, the first label in the list will be used. If
expression is two, the second label in the list will be used, etc.

If the value is none of the above possibilities, the first sequential statement following

I ON..GOSUB will be takep.. As with any GOSUB to a Routine, when the system
encounters a RETURN, the next statement following the computed GOSUB will be
executed.

I Example:
INPUT "Enter a value between 1 and 3

I ON Integer% GOSOB One, Two, Three

Ii

END

ROUTINE One

PRINT "One"

RETURN

I ROUTINE Two

PRINT "Two"

I RETURN

I
ROUTlNE Three

PRINT "Three"

RETURN

";Integer%

I Module Library Usage,

,I

A library of modules is a collection of often used Functions and Procedures that mayI be used in several programs.

Why create a library of modules? Because you don't want to keep reinventing the
wheel. Using a library of modules in your programs give them consistency and makes
your programs easier to develop and maintain because the modules are already written
and debugged.

I
Creation of a Library of Modules

I First, you must decide what Procedures or Functions you require for future use. Be
certain each subroutine is completely reliable and thoroughly commented.

Create a subdirectory on a suitable volume and save the source code of the

Part Three: The Advanced BASIC Language

I

I

136 Chapter Nine: Modularization

subroutines to a suitable filename under this directory.

When you wish to use a Function or Procedure from this library, make use of the
INCLUDE statement described below. I
INCLUDE Pathname I

To include a module in a program, add the line INCLUDE Pathname in the source
code file. Pathname indicates the path to a source code file (of type TXT or SRC).
Pathname may only be a string literal. I

The INCLUDE statement may appear anywhere in a program after the compiler
directives. An INCLUDE file may have DATA and array declaration statements but the
DATA and DIM statements must still appear in their established order. I

The file being read in must be available (online) at compilation time. When the
Compiler detects an INCLUDE statement, it looks for a file with the specified IPathname and starts reading it as though it were included inside the program itself.
The Compiler displays the message "INCLUDING pathname" each time it detects an
INCLUDE statement. IUsing the INCLUDE statement also has the advantage of having only the necessary
prograI:J::l, code in the Editor, saving the Editor's work space for the code specific to your
application.

IMPORTANT

Example:

INCLUDE

I
Make sure your module has been thoroughly debugged I
before you include it in your program as the sequential

line number information is frozen at the line of the

INCLUDE statement and resumes only after the module
 I
has been read. Run time errors may be difficult to detect.

I
"/Micol.Adv.BASIC/Library/Math.Routines" I

Recursion I
Recursion is an important topic in computer science. Those of you who have studied

computer science at the college or university level are already well aware of this fact. IThose of you who are planning to study computer science will soon be finding this out for
yourselves. What is recursion, and why is it so important?

Recursion is the act of stipulating something in terms of itself. We have all heard it I
said, "a rose is a rose is a rose". This, in a way, is a recursive definition of a rose. The
rose is defined in terms of itself.

The concept of recursion is not something we deal very often with in our daily lives as I
the previous definition of a rose proves. Not many things around us can be defined in
terms of themselves. I

IPart Three: The Advanced BASIC Language

• Chapter Nine: Modularization 137

I
Mathematics has some use for recursion though. The most common exampIe of a use

for recursion in mathematics is the definition for the factorial of a number: N! =N * (N

I 1)!

I
This formula translated is: the factorial of a number N is equal to the number N

times the factorial of the number N minus one. Ai?, you can see, the factorial of a number
is defined in terms of lower orders of itself. Ifwe add to this the definition that when N
reaches its lowest allowed value of one,- that N! is equal to 1. we have a complete
recursive definition for factorial. I There is much in computer science that can be defined in terms of itself. This
programming language. Micol Advanced BASIC, was designed with a parse table that
has many features defined in terms of themselves.I As with the definition of factorial above. the definition must be complete, or our
recursive definition is worthless. If factorial had been left undefined for its smallest
value of one. we could not have made use of it. One minus one is zero, and anythingI multiplied by zero is zero.

Because much of what is defined in. computer science is defined recursively, it is only

I natural that computer scientists would like programming languages that allow them to

express the solution in the manner in which they have laid out the problem in question.

This is the principal reason recursion in programming languages is so stressed in

I computer science.

But, recursion in programming languages suffers some severe problems which we

will now demonstrate. Let us take the definition for factorial just given and program it

I in Micol Advanced BASIC making use of recursion. You will soon see why recursion
might be desirable, and also why it is often not the best way to solve a problem.

I Example:
PROGRAM Recursion

FONC Factorial [N]

I IF N <= 1 THEN BEGI~

Factorial = 1

I ELSE BEGIN

I
Factorial - N * FN Factorial [N - 1]

END IF

ENDFQNC [Factorial]

{Start of Program}

I HOME INPUT ~Take the factorial of what number? ";Number

Factor - FN Factorial (Number]

I
I PRINT ~The factorial of ";Number; ~ is ";Factor

END

Ai?, you can see, the function Factorial looks very much like the mathematical

I
definition for factorial. This function will continue to call itself until N is less than or
equal to one, at which time it will simply unwind the stack, successively returning
another value for Factorial [N - 1].

I Part Three: The Advanced BASIC Language

138 Chapter Nine: Modularization I
I

One problem has to do with implementation of recursion under the programming
language being used. How is the parameter N treated by the language? If the
programming language does not reinstate the previous value of N as the return stack Iunwinds, as Micol Advanced BASIC does, the recursive function 'will not act as desired.

Another problem is that we are only looking at the theory and not at the real world of
programming. In the real world, there is much that goes on behind the scenes in the I
execution of the programming language to maintain these calls. For example, each time
the FN statement is executed, a run time stack must be saved and then reinstalled after
the return from the call. There is also a certain overhead with the passing of each I
parameter, etc. Factorial could be programmed more effectively using a simple loop
instead ofrecursion.

A question once asked on a final exam in a computer science class was: "True or faIse, I
anything that can be programmed in a loop can be programmed using recursion?".

The author of this question was looking too much at the theory of recursion. and not
enough at the reality. Recursion is, itself, simply a type of controlled looping, so that the I
question had little real meaning. Use recursion when it is practical, but do not lose sight
ofreaIity. I

I
I
I
I
I
I
I
I
I
I
•

I Chapter Ten: Graphics 139

I
Chapter Ten

I
Graphics

I
Overview

I Micol Advanced BASIC has commands for making great graphics using the 32K
Super High Resolution graphics screen built into your Apple JIGS.

Micol Advanced BASIC supports Low Resolution graphics with four lines of text (40

I
I x 40 blocks) similar to Applesoft BASICs. Micol Advanced BASIC's Super High

Resolution commands control both of the Apple JIGS's Super High Resolution graphics
modes: 320 X 200) and 640 X 200.

Low Resolution GraphicsI
I

The Low Resolution graphics mode with text (40 x 40 blocks in 16 colors) is supported
in Micol Advanced BASIC.

I
I GR

GR sets a Low Resolution screen of 40 blocks x 40 blocks. GR must be executed
before any other Low Resolution commands are executed; otherwise further Low
Resolution graphics commands will have no effect.

When GR executes, the Low Resolution screen is established and cleared to black.

II The text cursor is moved to the twenty-fourth text line.
The point of origin of the coordinate system starts at the upper left corner of the

screen: 0,0 is the upper left corner 39,39 is the lower right cornerI Four lines of text at the bottom of the screen may be displayed.
Example: see under HLIN.

I
COLOR = Color_Number

I
I Sixteen colors may be displayed in Low Resolution graphics. Color_Number ranges

from black (0) to white (15). If no color is specified, color 0, black, is used by default.
This means that if the Low Resolution color is not set, your graphics will be invisible.

I

I

I

140 Chapter Ten: Graphics I
I

Table 3.10.1 - Low Resolution Colors

Value Color

0 black
1 magenta
2 dark blue

3 violet
4 dark green,

5 gray!
6 medium blue
7 light blue

Example: see under HLIN.

HLIN X-Coordl, X·Coord2 AT V-Coord

HLIN stands for Horizontal LINe. HLIN draws a Low Resolution horizontal line Iusing the most recently defined color from point X-Coordl, Y-Coord! to X-Coord2,
Y-Coord. The X co-ordinates may not be negative or greater than 39. The Y co-ordinate
may not be negative or greater than 47. If these coordinate values are exceeded, an I error will occur during execution. Any of the values above may be either integer or real
expressions.

Example: I
PROGRAM Show HLIN

INT (A-Z)
 I
GR

FOR Loop! ~ 0 TO 39
 IFOR Loop2 ~ 0 TO 39

Y_Coord = RND (47)

X_Coordl = RND (39)
 I
X_Coord2 - RND (39)

COLOR = RND (14) + 1
 I
HLIN X_Coordl, X Coord2 AT Y Coord

NEXT Loop2

NEXT Loopl
 I
END

I

I

I

Value Color I
8 brown

9 orange
 I
10 gray2

11 pink I12 green

13 yellow

14 aqua I
15 white

I

II

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

141Chapter Ten: Graphics

PLOT X.Coord, Y·Coord

PLOT places a Low Resolution block at the location specified. The X coordinate may
not be negative or greater than 39 under Low Resolution. The Y coordinate may not be
negative or greater than 47; if they are, an error'will occur during execution.

Example:

PROGRAM Show Blocks

TNT (A-Z)

GR

FOR Down - 0 TO 47

FOR Across = 0

COLOR = RND

PLOT Across,

NEXT Across

NEXT Down

END

TO 39

(15)

Down

SCRN (X·Coord, Y..Coord)

SCRN stands for screen. It returns the color number of the block specified at the
location X-Coord, Y-Coord. X-Coord and Y-Coord must be within the limits specified
under PLOT.

Example:
PROGRAM Show Pas

GR

COLOR = 13

PLOT 10, 20

Color Num% = SCRN (10, 20)

VTAB(24)

PRINT "Colour Number = ":Color Num%

GET Wait$

END

TEXT

TEXT turns off the Low Resolution graphics mode and turns on the 80 column text
screen. Follow TEXT with a HOME to remove any garbage text characters left over
from the Low Resolution screen.

Part Three: The Advanced BASIC Language

142 Chapter Ten: Graphics	 I
I

VLIN V-Coord!, Y..Coord2 AT X-Coord

VLIN stands for Vertical LINe. VLIN draws a vertical line using the most recently I
defined color from point Y-Coordl, X-eoord to Y-coord2, X-eoord. The X coordinate may
not be negative or greater than 39 in Low Resolution mode. The Y coordinates may not
be negative or greater than 47 otherwise an error will occur during execution. Any of the I
values above may be either integer or real expressions.

Example: I
PROGRAM Show VLIN

1NT (A-Z) IGR

FOR Loopl = 0 TO 39

FOR Loop2 - 0 TO 39
 I
X_Coord - RND (39)

Y_Coord1 = RND (47)
 IY_Coord2 - RND (47)

COLOR - RND (14) {Don't want black} + 1

VLIN Y_Coordl, Y Coord2 AT X Coord
 I
NEXT Loop2

NEXT Loop1
 I
DELAY""" 1000

TEXT: HOME
 IEND

Super High Resolution Graphics	 I
The usual Applesoft BASIC High Resolution graphics commands have been Iimplemented in Mical Advanced BASIC using the much improved Super High

Resolution (SHR) graphics modes of whe Apple IIGS. While Applesoft's High Resolution
graphics had a maximum High Resolution of 260 X 192, Mical Advanced BASIC has a Imaximum Super High Resolution of 640 X 200. In addition, the colors under Mical
Advanced BASIC are vastly improved over their Applesoft counterparts.

Please note these important differences between Super High Resolution graphics I
under Mical Advanced BASIC GS and High Resolution graphics under Applesoft BASIC:

•	 SHRhas:

only one display area
 I
a much greater resolution display

a greater number ofcolors
 I
a greatly improved color quality

a choice ofbackground colors
 I

I

I Chapter Ten: Graphics 143

II
I

an easy mix of text and graphics
the ability to use the Apple nos ToolBox for drawing

no bit-mapped shape tables

I HGRand HGR2

I HGR must be used to set the 320 X 200 Super High Resolution graphic mode. The

I
pixels (picture elements) are numbered from 0 to 319 horizontally, and from 0 to 199
vertically. A maximum of 16 different colors may be displayed at one time. HGR must
appear in the program for the 320 X 200 graphic mode to be tUI'lled on.

I
HGR2 must be used to set the 640 X 200 Super High Resolution graphic mode. The

pixels (picture elements) are numbered from 0 to 639 horizontally, and from 0 to 199
vertically. A maximum of 16 different colors may also be displayed at one time. HGR2
must appear in the program for the '640 X 200 graphic mode to be turned on.

With both graphic modes, the graphics color as well as the background color is set to

I black. Use BKCOLOR and BCOLOR to change the shade of the background and
graphics colors respectively.

I
The point of origin of the co-ordmate system starts at the upper left comer of the

screen: Q,O is the upper left corner for both graphics modes. 319, 199 is the lower right
corner for 320 (HGR) mode and 639. 199 is the lower right corner for 640 (HGR2) mode.
Initially, the position is set to 0.0 in both modes.

I
I Images appearing in 320 mode are twice as large as the 640 mode, but with half the

resolution. For example, a box that appears square in 320 mode will appear as a vertical
rectangle in 640 mode.

Example: (See example under HPLOT TO.)

I BKCOLOR = Color_Number

I This command allows you to change the background color to any color currently
available (please see table 3.10.2). The commands (HGR or HGR2) that start up the
Super H' ,h Resolution graphic modes also set the background color to 0 (black).

I
NOTE IThe effect ofBKCOLOR is not immediate. I

I
I BKCOLOR also changes the background color of the characters displayed using

DRAWSTR.

Example: (See example under HPLOT TO.)

I

I

I Part Three: The Advanced BASIC Language

By a skillful use of the Apple IIGS Toomox, using Tool
number 4 (QuickDraw), it is possible to have as many as
4096 colors in 320 mode (16 with each pixel). This is not
possible in 640 mode as special action had to be taken to
give you 16 colors (4 is the usual number of colors in 640
mode). Please see Part Five on 'lboillox usage for further
information.

144 Chapter Ten: Graphics I
IHCOLOR = Color_Number

BCOLOR sets the current Super High Resolution color according to Table 3.10.2. I
The default color when an HGR or HGR2 is issued is black, which under most
circumstances means invisible. You will probably wish to set another color using
HCOLOR before you actually begin to draw. I

In both graphics modes, you have a maximum of 16 colors. We have tried to keep the
colors in both modes as close to each other as possible. I
Programmers

I

I

I

Table 3.10.2 SHR Colors I
Number HGR HGR2

I0 Black. Black
1 Dark Gray Dark Gray
2 Brown Light Yellow I
3 Purple Purple
4 Blue Blue I
5 Dark Green Dark Green

6 Orange Orange
 I7 Red Red

8 Beige _Pink

9 Yellow Yellow I
10 Green Green

11 Light Blue Light Blue
 I12 Lilac Lilac

13 Periwinkle Light Purple

14 Light Gray Light Gray
 I
15 White White

I

I

I

I
Chapter Ten: Graphics 145

I
DRAWSTR (Svar)

I
I To add text to the SHR graphics, use DRAWSTR. Svar may be a string literal or a

string variable. The string stipulated in Svar will be displayed starting at the current
graphics position. You may wish to use HPLOT to move to the position you desire.

I

The text will be colored using the latest HCOLOR set. BKCOLOR may be used to
set the background color of the text.

I IT SHR is active, LEN may be used to find the graphics length of the string. PEEK
True_Value (locations 202 and 203) after taking the LEN to find the size in pixels.

Example: (See example under BPLOT TO.)

HPLOT X-Coord, V-Coord

I
I
I

HPLOT moves the high resolution pointer to the X coordinate and Y coordinate
stipulated and plots a single point in the latest HCOLOR. The maximum X-Coord and
Y_Coord values are those discussed under the HGR and HGR2 commands. Values too
large will plot off the screen and no error will be generated.

Example: (See example under HPLOT TO.)

HPLOT TO X-coord, V-coordI
HPLOT TO will draw a straight line from the last graphics position to the position

stipulated using the latest HCOLOR. No errors are generated by this command; values I greater than the screen will display to the limits of the screen. You may wish to use
HPLOT to change the graphics position.

I Example:
PROGRAM Draw Box

I HGR2 {set

HCOLOR ~

BKCOLOR =I HPLOT

HPLOT

I SPLOT

I
HPLOT

HPLOT

HPLOT

HPLOT

I HPLOT

10,

TO

TO

640 mode}

4 {Blue}

15 {White}

10 {Draw box starting here}

600, 10

600, 190

TO 10, 190

TO 10, 10

TO 600, 190

6,00, 10

TO 10, 190

{Write message on box}

I HPLOT 190, 50 {Start the message here}

I

Part Three: The Advanced BASIC Language

146 Chapter Ten: Graphics I
·1DRAWSTR ("This is a big box")

DELAY 1000

TEXT
 I
END

IThis will plot a blue box crossed with an X for about 10 seconds.

Super High Resolution Shapes I
Once the Super High Resolution mode is set with either the HGR or HGR2

command and the colors set using the HCOLOR and BKCOLOR commands, it is then I
very easy to draw most figures using the TOOLBOX command.

The four types of shapes you can create are: rectangle, oval, are, and rounded Irectangle.

The three different modes of drawing are: paint (draws solid figure), frame (draws
the outline of the figure only), and erase (draws a figure using the current background I
color),

For example, to draw a circle, first select the proper graphic mode using HGR or
HGR2, set the desired color(s), then use the TOOLBOX command to draw the circle. I

When using four basic shapes (Rectangle, Oval, RRect and Arc), the shapes are
drawn by Tool number 4, QuickDraw II, in an invisible rectangle to determine their size
and shape. QuickDraw II gets the dimensions of the rectangle through the following I
parameters:

• Min_X (the X value of the left side) I
Min_Y (the Y value of the top)

Max_X (the X value of the right side)
 I• MmcY (the Yvalue of the bottom).

The Procedures Draw_Rect and Draw.-Arc below may be used to draw four
different types of shapes in three different modes in any size. Draw_Rect is used to I
draw the rectangle and the oval while Draw_Arc ·draws the aIV and the rounded
rectangle.

When using the Procedure Draw_Arc to do arcs, Start_Angle is the angle in I
degrees which the arc starts, with 0 degree being a vertical line , and Angle_Length is
the length of the arc in degrees. ITo create all this variety with the code presented below, select the correct Procedure
and change the first parameter passed to the desired value based upon the table on the
next page. I

Many, many more figures are possible using very similar techniques detailed in the
manual Programming the Apple nGS Toolbox listed in Part One. '

I

I

Part Three: The Advanced BASIC Language I

I Chapter Ten: Graphics 147

I
Table 3.10.3 Pre-Defined Shape Drawing FUnctions

I Rectangle Oval RRect Arc

Frame 83 88 93 98

I Paint 84 89 94 99
Erase 85 90 95 100

I
I

Example:

PROGRAM Shape_Examples

INT (A - Z)

DIM Buffer (10)

I FROe Draw_Rect (FunC_Nurn, Min_X, Min_Y, Max_X, Max_Y)

I

LSB - ADDR (Buffer () {Address of buffer}

MSB = PEEK (202) .{Bank of Buffer}

I

TOOLBOX (4, 74: MSB, LSB, Min_X, Min_Y, Max_X, Max_Y)

TOOLBOX(4, Func Num: MSB, LSB }

ENDPROe

I PRoe Draw Arc [FunC_Num, Min_X, Min_Y, Max_X,\

I

Max_Y, Start_Angle, Angle_Length]

LSB = ADDR (Buffer () {Address of buffer}

MSB .. PEEK (202) {Bank of buffer}

TOOLBOX (4, 74: MSB, LSB, Min_X, Min_Y, Max_X, Max_Y)

TOOLBOX (4, Func Num: MSB, LSB, Start Angle, Angle Length)
I - -
ENDPROC

I
I

{Example prog~am begins here}

HGR {Start 320 Graphics Moae}

BCOLOR - 15 {White}

GOSUB Draw_Rect (88, 5, 5, 250, 190J

I DELAY .. 1000

I

TOOLBOX ($04, $15: $0) {Clear SHR screen for 2nd drawing}

BCOLOR = 2 {Brown}

I

GO$UB Draw Arc (98, 5, 5, 250, 190, 50, 180]

DELAY .. 1000

END

I
I Part Three: The Advanced BASIC Language

148 Chapter Ten: Graphics I
IJoystick and Paddle Controls

Since joystick or paddle controls are very often used with graphics, this topic is best I
covered in this section.

IPDL (Paddle Number)

A paddle is a game controller having only one axis, either X or Y. Ajoystick combines I
two paddles to control both axis simultaneously.

PDL returns a value (either integer or real) which is generated by the paddle
number specified. Paddle~umber must be a value from 0 to 3 inclusive, otherwise a I
nm time error will occur.

A paddle uses a paddle number from 0 to 3. Ajoystick uses paddle numbers 0 and 1 Ior 2 and 3. The value returned varies from 0 to 255.

To do consecutive readings on the hand control(s), use real variables with PDL to
ensure accurate readings. This delay can insure a more accurate reading. I

Paddle and Joystick Buttons I
The button(s) on a game controller may be read by PEEKing the appropriate

locations. Buttons on game controllers return a value> 127 if the button is pushed, and I< 127 if the button is not pushed.,

PEEK (49249) for game controller 0 (this is also the Open Apple key). PEEK
(49250) for game controller 1 (also the Closed Apple key). PEEK (49251) for game I
controller 2.

E~ample: I
PROGRAM Joystick_Check

HOME IREPEAT

VTAB (1,; HTAB (1)

PRINT ~X - ": PDL (0.0), I
PRINT ~y - ": PDL (1),

UNTIL PEEK (49249) > 127 OR PEEK (49250) > 127 IIF PEEK(49249) > 127 THEN BEGIN

PRINT "Button 1 was pressed"

ELSE BEGIN
 I

PRINT ~Button 2 was pressed"
END IF I

This program will execute until one of the buttons is pushed.

I
Part Three: The Advanced BASIC Language I

I Chapter Eleven: The Sound ofMu.sic 149

I
Chapter Eleven

I
The Sound of'Music

I
Overview

I The Apple IIGS has perhaps the best sound capabilities of any microcomputer on the
market today and Micol Aduanced BASIC allows you to create some very delightful
sounds. Music may also be created quite easily by using just a few simple commands. I This is the topic of this chapter.

I Audio Output

I BELL

I
Use BELL to provide an aural feedback to the user when the program is being used

improperly or as a warning to a possibly dangerous situation.
BELL will produce a beep sound through the speaker of your Apple. You may control

the volume of the beep through the Control Panel of your computer.

I Example:
BELL: BELL {Ring bell twice}

I
Sound

I Each sound comes from a specific sound wave. For example, the sound wave of a
saxophone is different from the sound wave of a piano.

I A sound is made by the compression and expansion of the air around us. This
invisible movement is the vibration of the air. When the vibrations reach our eardrums,
our eardrums vibrate which become iInpmses our brain interprets as sound.

I The number of times a vibration occurs per unit time is called a frequency. The note
Middle C played on a piano, for example, generates a sound with a frequency of 246 Hz.

A sound is represented graphically by a waveform. A wave starts with increasingI positive values up to a limit specified and then decreases to negative values with the
same limit, increases again up to positive values and so on.

The vertical axis represents the amplitude or the loudness of the sound. The

I
I horizontal axis represents the time. A waveform has a minimum and maximum

frequency ,and amplitude. One up and down wave motion is called a cycle. A note is
measured by the number ofcycles per second.

The sound produced with Micol Advanced BASIC is digitized; that is, numbers are
fed to the computer and the computer then uses those numbers to make sounds.

I
I Part Three: The Advanced BASIC Language

150 Chapter Eleven: The Sound ofMusic I
I

Waveforms

IThe Apple lIGS generates sounds using three kinds of waves: square waves, triangle
waves, and sine waves. Square waves create buzzing sounds, triangle waves produce
another type of buzzing effect. A sine wave makes a pure, clear sound. Micol Aduanced
BASIC uses a sine wave as the default waveform. I

The Default Waveform I
The default waveform is established when Micol Advanced BASIC is booted. This

waveform is used by the sound making commands of Micol Advanced BASIC and is a Ifull wave made of 255 parts numbered from 1 to 255.'

The default waveform is based on a sine function times 255 from zero to 360 degrees.
This default waveform produces a pleasant sound and will be suitable for most purposes. I

Creating your own Waveform I
Ifyou decide that the default waveform is not suitable for your purposes, then it may

be replaced with another waveform using the WAVE command. I
WAVE =Wave_Numbers

IWAVE places a new waveform into the waveform buffer. This buffer is used by the
system to store the waveform needed for the NOISE and MUSIC commands described
later. I

The Waveform buffer is 256 bytes long and each value in the waveform may range
from 1 to 255. A value of zero will be changed to one because a value of zero turns off the
internal sound generators. I

WAVE must be placed within a loop in order to set the entire Wave buffer. Initialize
the Waveform Counter by assigning location 42 to zero, then keep assigning values to
WAVE until location 42 is zero again; Le. the Wave buffer is full. I

WAVE may be used at any time within the program, but the new waveform will not
be used until the next NOISE or MUSIC command is executed. I

Example:

PROGRAM Make Waveform

INT (A - Z) I
Number = 0

Flag! - TRUE I
POKE 42,0 {Init buffer counter}

REPEAT {Make the wave form table} IIF Flag! THEN BEGIN

Number = Number + 4

IF Number> 250 THEN Flag! FALSE I

•

I Chapter Eleven: The Sound ofMusic 151

I
ELSE BEGIN

Number - Number - 4
I IF Number < 5 THEN Flag! - TRUE

END IF

I WAVE ... Number

UNTIL PEEK (42) = 0 {Until buffer is full}

I Be careful when using WAVE, as in the following example:

WAVE - SIN (Radians%) * 100

I will almost always place a zero into the waveform buffer as the integer sine is almost

I
always zero. Here is an example on how to work around this:

WAVE = 100.0 * SIN (Radians%)

The first thing seen by the Compiler after the equal sign is a real number, hence real
arithmetic will be performed.

I Experiment with different values to find the sound you are looking for.
Unfortunately, some values are unsuitable for the system causing it to crash, so do not
be surprised if the system should happen to do just that. Try different functions such asI cosine multiplied by a factor to get an integer value between 0 and 255.

'I Making the Sound

I
 NOISE (Generator, Pitch, Volume)

I
NOISE is used to generate a simple sound. It should be suitable for most sound

effects.

Generator is an integer value from 1 to 15 and is the actual generator number used
internally by the computer.

I Pitch and Volume are integer values that may vary from 1 to 255. Each parameter
may be either an integer literal or an integer variable. A real parameter will be rejected
by the Compiler.

I The pitch is the starting frequency used. The volume is the loudness of that sound.

I

If a NOISE statement with an active generator is given new pitch and volume
values, that generator will be turned offand restarted using the new pitch and volume.I NOISE may be stopped with the QUIET or SILENCE command described later.

Example:
Generator% .. 1

Pitch% = 80

I Volume% = 100

NOISE (Generator%, Pitch%, Volume%)

I
I Part Three: The Advanced BASIC Language

I

I

152 Chapter Eleven: The Sound of Music

Music

Micol Advanced BASIC not only allows you to make simple sounds, as just described, I
you can also create rather delightful music.

As you might guess, music requires more knowledge and preparation than just
making simple sounds. I

Instruments I
All music is performed by musical instruments. These musical instruments may be

violins, flutes, or even human voices. Each instrument has its own unique sound quality. I
In order to make music under Micol Advanced BASIC, a musical instrument must be

defined. 'This instrument may be almost anything you would see in a band or orchestra. I
Default Instrument

I
A default instrument has already been defined into Micol Advanced BASIC and

should be adequate for most purposes. You will have to experiment to determine u this
instrument is suitable for you. I

Creating Other Instruments I
If the default instrument isn't suitable for your purposes, you may create an

instrument of your own. Micol Advanced BASIC is capable of storing the envelope
definition of any instrument using the INSTRUM command. I

The instrument buffer is 44 bytes long. This means that 44 values must be read
before the new instrument may be used. The proper values for an instrwnent range Ifrom 0 to 127.

Unfortunately, it is not a simple task to understand the data that needs to go into the
Instrwnent Buffer. Study Table 3.11.1 to understand the-values that are needed. I
INSfRUM =Aexpr I

The INSTRUM command is used to pEace a new instrument into the Instrument
Buffer with the different values needed to duplicate the sound produced by any musical
instrument. This Instrument Buffer is used by the system whenever you execute the I
MUSIC command

WARNING

Be certain of the values you are assigning INSTRUM..
INSTRUM does no error checking, and if any value is
inappropriate, the system may crash when the next
MUSIC command is executed.

I

I

I

I

I Chapter Eleven: The Sound ofMusic 153

I 'lb fill the Instrument Buffer, set memory location 42 to zero. Then, within a loop,
keep assigning INSTRUM a value until location 42 is zero again.

I (See the example after Table 3.11.1)

Table 3.11.1. Instrument Data Structure

Envelope

I
An envelope represents what the sound would look like if it were drawn on paper. It

may have up to eight segments numbered 0 to 7, each having a breakpoint and an

I increment value pair.

I
The breakpoint value is a byte with a value from 0 to 127. It specifies the volume

level. The volume should not be set to zero before the end of the segmen,t or the sound is
considered done. The last breakpoint is always zero. A difference of 16 in the breakpoint

I
value represents a change of6 decibels (db) in amplitude.

The increment value is a measure of time indicating the time needed to get to the
breakpoint volume that uses two bytes. Both bytes range from 0 to 127. The value of 1
in the low-byte represents a 1I256th in value. An increment value of0 is equivalent to a
sustained note. The note will play until no generator can play it and the originalI generator producing the note is allocated another note.

I Release Segment

This integer number from 0 to 7 indicates at which breakpoint the note will start to

I fade away. The release may occupy several segments, but the last breakpoint is always
zero.

I Priority Increment

This value from 0 to 127 indicates at which moment a generator will drop the oldestI note it is currently playing before playing the new one.

I Pitchbend Range

I This number indicates the number of semitones a note may be raised. The accepted
values are 1, 2 and 4 semitones.

I Vibrato Depth

I
This number from 0 to 127 indicates the vibrato effect for a note. No vibrato effect

occurs with a value ofzero. The vibrato should always be set to zero.

Vibrato SpeedI
I Part Three: The Advanced BASIC Language

154	 Chapter Eleven: The Sound ofMusic I
IThis number from 0 to 127 controls the rate ofvibrato. Higher values produce faster

vibrato. Set it to zero when vibrato Depth is zero.

I
Spare

This byte is not documented and it may be reserved for future use. Set it to zero. I
aWaveCount and bWaveCount I

A Micol Advanced BASIC instrument has only one wave list per oscillator. Wave A
and Wave B should always be set to one. I

The default wave count could change in a future version of the language.

IaWaveList and bWaveList

A wavelist is an array structure of 6 bytes. Since a Mical Advanced BASIC waveform Ihas only one wave in each list, set the topKey value to 127.

WaveList Array Structure	 I
•	 topkey

The Note Synthesizer always plays the note with a topKey value equal or higher I
than the preceding one. The waveform. should be stored in increasing topKey
value. The value ranges from 0 to 127. The last waveform should have a
topKey value of 127. I

•	 WaveAddress

This is the high byte of the waves address in the Digital Oscillator Chip (DOC)

RAM.
 I

Wave Size
Wave Size is set to 256 bytes. Set the number to zero.

• DOCMode I
This number represents the size of the sound wave measured in bytes. One wave
is used per instruments defined with Micol Advanced BASIC. The mode of
the DOC chip should always be set to O. Do not modify. I

•	 relPitch

This value is used to tune the waveform. The high byte value represents whole

semitones, the low byte represents fractions ofsemitones. A value of 1 in the
 I
low byte equals 1/256th of a semitone.

I

I

I

•

I Chapter Eleven: The Sound ofMusic 155

I
II

Example

PROGRAM New Instrum

INT (A-Z)

{Instrument Definition}

I	 {Envelope}

{Noise}

II DATA 127

DATA 0,127

DATA 120

I DATA 20,1

DATA 120

I DATA 0,0

{Segment}

I DATA

DATA

I	
DATA

DATA

DATA

DATA

I
I

DATA

DATA

a
60,120

0,0,0

0,0,0

0,0,0

0,0,0

3

32

{Breakpoint O}

{Increment value O}

{13reakpoint 1}

{Increment value 1}

{Sustain at 120}

{Zer,o increment is sustain}

{Release to 0 volume}

{Slowly}

{Pad with extra b~eakpoint}

{Increment pairs until the}

{total is eight}

{End of envelope definition}

{Release starts at 3rd segment}

{Priority increment}

{Pbrange, vibdep, vibf, spare, A, a}

DATA 2,80,90, 0,1,1

I {topkey, addr, size, ctrl, pitch}

I
DATA 127,7,2,6,0,12 {Halt b, to be swapped in by a}

DATA l2?,7,2,1,0,12

{End of instrument definition}

POKE 42,0 {Init Instrument Buffer}

I {Initialize the loop}

REPEAT

I READ Number

I

INSTRUM = Number {Fill one buffer entry}

UNTIL PEEK (42) = a {zero when done}

{Program continues}

I

I

I	 Part Three: The Advanced BASIC Language

156
 Chapter Eleven: The Sound ofMusic I

I
NOTE

The INSTRUM command is an integer command This
means, that unless the value directly after the equal sign
is explicitly a real variable or a real number, integer math I

will be used.

I

Making the Music I

Now we come to the section where you actually generate the music. Once suitarble
waveforms and instruments have been defined by you; the actual music is generated. by
the MUSIC command I

MUSIC (Generator, Pitch, Volume> I

MUSIC is used to generate musical sounds. By a proper use of the WAVE and

INSTRUM commands, virtually any instrument may be simulated. In addition. because I
there are 15 generators available, you may have several instruments going at once.

Generator is a number from 1 to 14. This number is a relative generator number
established by the system, and not the actual generator as in the NOISE command. I

Pitch and Volume may vary from 1 to 127. Each parameter may be either an integer
literal or an integer variable. .

The pitch is the starting frequency based upon the values you placed into the wave I

table. The volume is, ofcourse, how loud the music will be made.

If you do not wish the default waveform with the MUSIC command, then be certain I
to set the new waveform buffer using the WAVE command.

If another MUSIC command is issued using the same generator, the new sound will
replace the old one. I

NOTE

The NOISE command cannot be used silnultaneously I

with MUSIC. IfMUSIC is active, NOISE will be ignored,

and if NOISE is active, MUSIC will be ignored. I

I
 I

Example: I

MUSIC (1, 40, 80)

This example uses logical generator 1 with a pitch of 40 and a volume of 80. I

I

I

IPart Three: The Advanced BASIC Language

I 157Chapter Eleven: The Sound ofMusic

I
IMPORTANT

I
I
I
I

The MUSIC command requires the use of an Apple IIGS
Tool located on the ,system disk. Be aware that when the
MUSIC command: is first executed. the booting disk must
be online so that the approriate Thol may be loaded. If
this disk is not online. you will receive a request to insert
it. The Micol Advanced BASIC system disk marked
Master Disk comes with this Tool installed.

Stopping Sounds

I
It is not enough to simply create sound or music, you must also be able to turn these

sounds of[Very few programs would be suitable with sound running all. the time.

I
 QUIE,T (Generator)

QUIET is used to tum off'the specilled generator and may be used to create pauses

I in noise or musical sequences. Generator is the generator that was used when the

NOISE or MUSIC command was executed..

I
 Example:

MUSIC (1, 40, 80) {Start generator one}

DELAY = 1000

I QUIET (1) {Silence generator one}

I Turn Them All Off

SILENCE

I
I

The SILENCE commaric;l. tUI'Il3 off all sound generators currently playing. This
command has no parameters.

The END and STOP commands also produce the same effect as SILENCE.

Example:

I MUSIC (1, 40, 80) {Start generator one}

DELAY "" 1000

I SILENCE {Shutdown generators and tools}

I
I
I Part Three: The Advanced BASIC Language

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I

II

158Chapter Twelve: Creating the Human Element

Chapter Twelve

Creating The Human Element

Overview

Unlike computers, human beings are not regulated by On and Off. What makes
humans special is the ability to see the different shades of gray, to make a decision based
on related information or on a hunch. Programming languages try to imitate this
randomness using pseudo-random numbers. Micol Advanced BASIC takes this one step
further by introducing Controlled UncertaintyTM.

Pseudo Random Numbers

Pseudo random numbers are not really random, but only appear to be. The only
random number in the sequence is the first, or the seed as it is called. After that, the
generator goes through a complex set ofcalculations to get what appears to be a random
result.

Micol Advanced BASIC has two pseudo random number generators: one for integers,
one for reals, both activated by the RND function.

Be cautious with the use of RND. It is easy to call the real pseudo random number
generator by mistake when you want to use the integer generator or vice versa Be
careful not to call the wrong ODe since they behave differently.

Integer Pseudo Random Numbers

Integer% =BND (Aexpr)

.. The integer pseudo random number generator is invoked when the assignment is
made to an integer variable. The i......eger RND function yields a pseudo random number
between 0 and Aexpr inclusive. Thirty~two thousand (32,000) is the largest argument
that may be passed to RND.

If an INKEY$, INPUT or GET is executed within a program, the integer random
number generator will be reseeded. This reseeded value is an actual random number.

To use the integer random generator, do something like this:

FOR Ctr% - 1 TO 6

Dice% = RND (5) + 1 {Random values between 1 and 6}

PRINT "Throw # ": Ctr%; " of the dice is a ": Dice%

NEXT Ctr%

Part Three: The Advanced BASIC Language

159 Chapter Twelve: Creating the Human Element I
IReal Pseudo Random Numbers

Real& = RND (Aexpr) I
The real RND function yields a floating point pseudo random number between zero

and one inclusive. The argument is ignored but must be included, otherwise an error I
will occur during compilation.

To use the real random generator, do something like this: I
FOR Ctr% = 1 TO 100

Real_Random& = INT (RND (1) * 100)

PRINT uPass t ": Ctr%;", is "; Real Random& I
NEXT Ctr%

I
ControlledUncertaintyTM

IProgramming languages usually deal in absolutes of logic. Something is either true
or false, and actions are always taken depending on this condition.

Mieol Advanced BASIC goes one step further and gives the programmer the I
possibility to set conditions that mayor may not take a certain action based on this
condition. We feel this is a feature that has many possibilities ifintelligently used.

We call this feature Controlled Uncertainty. It is uncertain because there is the I
possibility an alternate decision will be made. It is controlled because the decision is
being made within one of the structured constructs ofMicol Advanced BASIC.

When could Controlled Uncertainty be useful? Anytime you wish to program human I
uncertainty within a program. Many things in life are based on assumptions, not facts.
Any condition that is not absolutely true or false may use this feature. I

Setting the Uncertain Condition I
Controllec: Uncertainty may be set using certain settings of boolean variables.

Usually a boolean variable is set to TRUE or FALSE. Under MicolAdvanced BASIC, a
boolean variable may also be set to DUNNO, DOUBT or BELIEVE. BELIEVE is used I
if the condition is probably true, but there is a chance it is false. DOUBT is used if the
condition is probably untrue, but there is a possibility it is true. There also exists
DUNNO. DUNNO is the logical equivalent to a random number generator and will I
randomly select one of the 2the1: four possibilities.

If a boolean variable is set to BELIEVE and then tested, there is about an eighty Ipercent chance the condition will be TRUE, about twenty percent chance the condition
will be FALSE. If a boolean variable is set to DOUBT and then tested, there is about a
twenty percent chance the condition will be TRUE, and about eighty percent chance the Icondition will be FALSE.

In addition, booleans set to an uncertain condition may be ANPed or ORed with
other booleans which will often make one of the other altematives. We have collected all I

•

I Chapter Twelve: Creating the Human Element 160

I the possibilities into an uncertainty table which we display here.

I Table 3.12.1. Uncertainty Table

I
AND

False Doubt Believe True

I
 False False False False False

I
Doubt False Doubt Doubt Doubt

Believe False Doubt Believe Believe

True False Doubt Believe True

I OR
False Doubt Believe True

I False False Doubt Believe True

Doubt Doubt Doubt Believe True

I Believe Believe Believe Believe True

True True True True True

I Example:

PROGRAM Human_Computer

I HOME

I
PRINT

PRINT

PRINT

PRINT

I INPUT

Mood!

~Hello, I'm your Apple computer, ";

~I've been turned off for a while."

"I do remember the time and the date, ";

"but not your name."

"What is it again? "; Name$

.. BELIEVE

I IF Mood! THEN BEGIN

I
PRINT "1m feeling well today, and "i

Health! = DOUBT

IF Health! THEN BEGIN

PRINT "hope you're feeling fine too."

I ELSE BEGIN

I
PRINT "certainly hope you're not feeling poorly."

ENDIF

ELSE BEGIN

PRINT "I'm sorry, I'm not well today, can't talk anymore."

I Polite! = DUNNO

I Part Three: The Advanced BASIC Language

161 Chapter Twelve: Creating the Human Element

IF Polite! THEN BEGIN

PRINT "Have a nice day": Name$

ELSE BEGIN

PRINT ~Get lost "; Name$; " and don't call again!!"

ENDIF

ENDIF

END

WARNING

The statements IF Flag! THEN and IF Flag! = TRUE
THEN do not have the same effect when Controlled
Uncertainty values such as DOUBT or BELIEVE are
UBed. If the variable Flag! is assigned to DOUBT and
Flag! is tested as IF Flag! =: TRUE THEN, the variable
Flag! will never be true, while if the variable Flag! is
tested as IF Flag! THEN. the variable Flag! will be true
about 20 percent of the time.

I
I
I
I
I
I
I
I

NOTE
The condition at which a boolean variable is currently set
may be determined by using the PRlNT <Boolean!>
statement to print the boolean value ofFALSE, DOUBT,
BELIEVE or TRUE.

I
I
I
I
I
I
I
I
I
I
•

il Chapter Thirteen: Direct Memory Access 162

II
Chapter Thirteen

I
Direct Memory Access

I
Overview

I This chapter discusses how to look at and change the contents of specific memory
locations, and manage blocks of meIDory within a Micol Advanced BASIC program.

I
Examining and Changing Memory

II PEEK (Aexpr)

I To see the value of a particular memory location, use the PEEK command where
Aexpr is the address to be referenced.

Your computer has memory addresses at least in the hundreds of thousands,

I probably over a million. Unfortunately, if you are using (default) short integers, the
maximum value an integer can have is 65535. This means that integer PE.EKs may
only be used within bank zero, which usually is to locations in direct page. Ifyou wish to

I access memory locations in higher memory locations, be certain to assign PEEK to a real
variable.

I NOTE

I

"1

Example:

I

The Direct Page area used by the nm time Library (not
by the computer firmware) will be accessed if the value
passed to PEEK is less than 256. Zero page used by
Applesoft BASIC and Direct Page are not the same.

Intege~% = PEEK (Location%) {Can only access Dank zero}

Real& - PEEK (Location&) {Can access any' memory}

I PRINT PEEK (Location&) {Can access any memory}

I POKE Aexprl, Aexpr2

II POKE may be used to change the contents of the memory location specified. Aexprl
is the address in memory. Ae~pr2 is the value to be stored in the memory location and
cannot be greater than 255, otherwise, an .eITOr will occur at run time.

If a negative integer address is' used, POKE will convert the address into a two's

I complem.ent address.

I
 Part Three: The Advanced BASIC Language

Chapter Thirteen: Direct Memory Access163

If the address passed to POKE is less than 256. the direct page area used by the
run time Library (not the zero page area used by the computer) will be accessed.

IMPORTANT
POKE cannot change memory locations 224 to 255 that

are reserved in the Direct Page for system usage. If a
POKE is IIlade to any of these addresses, an error will
occur during program execution.

Example:

POKE Location%, Number% {Addresses in bank zero only}

POKE Location~, Number {Can access almost the entire memory}

Finding the Address of a Variable or Array

ADDR (Variable [(])

The ADDR (Variable) command returns the address of any variable. If the variable
is an array, the left parenthesis must be included to inform the Compiler that an array is
being referenced.

The address returned is the actual address obtained during execution of the
program, NOT the relative address displayed by the Symbol Table Dump at the end of
compilation (if the UST or PRINTER optiOn is used).

NOO'E
ADDR, when assigned to an integer variable, will only
return addresses between ±32767 ($OOOO-$FFFF) unless
the LONGINT _compiler option is used. If you are
assigning the result of ADDR to a short integer variable,
you may fetch the bank. 't"tumber of the address of the
variable by PEEKing True_Value (location 202) of the
direct page immediatelY after executing ADDR. The
actual address in the bank, ifgreater than +32767, will be
represented as a negative number. Add 65535 to a real
variable get the positive value.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
IHyou are using real values with ADDR, you will get the full address of the specified

variable.

ADDR is often used to find the address of a buffer used by a particular 'Ibol (See IAllocating Tholbox buffers in Part Five.)

I

I
Part Three: The Advanced BASIC Language

I Chapter Thirteen: Direct Memory Access 164

I Example

This Address& = ADDR (Variable)

I This Address% = ADDR (Variable)

Bank Number - PEEK (202)

I Array_Address& - ADDR (Array ()

I Memory Images and Files

I
Sometimes it is necessary, within a program, to be able to bring information from a

disk file directly into memory. Also, the opposite may be true, memory locations must be
saved to disk to be used sometime later, perhaps even by another program.

Micol Advanced BASIC has two commands to accomplish these tasks. You must

I however be very careful, as there is no protection, any part ofmemory may be accessed.

I

BLOAD stands for Binary LOAD. Use BLOAD to bring binary data (a

I non-compressed picture or sound information file) into memory. Because there is no
checking on the file type, any uncompressed file may be loaded with BLOAD.

Svar is the Pathname of the file. Svar may be either a string variable or a string

I literal. Start.fi,ddress is the address of the first memory location to which the file will be
loaded.. Bytes_to_Load represents the size of the file in bytes. Start_Address and
Bytes_'Ib_wad may be either a variable or literal of type integer or real.

I
I All parameters must be present to be accepted by the Compiler. The disk which

contains the file must be online upon execution of the statement, otherwise a run time
error will be generated.

BLOAD will load the file in the specified memory area. IfStart_Address is zero, the
file will be loaded to the address specified by the file information on disk, otherwise the
file will be loaded to the address specified. IfBytes_to_wad is zero, the entire file willI be loaded, otherwise only the specified number ofbytes will be loaded.

Example: (using an U!D.compressed picture file):

I BSAVE "PICTURE", 14753792, 32768

BLDAD ~PICTURE", $E12000, $8000

I 32,768 bytes of memory holding a Super High Resolution picture will be saved and
then loaded with these commands. Note that the addresses in both lines are identical

I This example saves then loads the entire Super High Resolution screen
(14753792-14786560 \ $E1200D-$EI9FFF) without any decompression.

If your paint program can save the picture in binary format, you will be able to loadI this picture into memory with Micol Advanced BASIC using the following code:

I {Change to HGR2 for pictures drawn in 640 x 200 mode}

I Part Three: The Advanced BASIC Language

165 Chapter Thirteen: Direct Memory Access I
IPROGRAM Load Picture 320

HOME

IINPUT ~Enter full pathnarne of picture "; PictureS

HGR

BLOAD PictureS, $E12000. $8000 I
GET A$

Picture files will not load correctly if they were saved in a compressed format. I

I

BSAVE stands for Binary SAVE. Use BSAVE to save any information from memory
into a binary file on disk. The file will be saved as type BIN ($06). I

Svar is the Pathname of the file. Svar may be either a string variable or a string
literal. StarLAddress is the address of the memory location whose memory image will
be saved. Bytes_to_Save represents the size of the file in bytes. Start_Address and I
Bytes_'Ib_Save may be either of type integer or real in a variable or literal.

All parameters must be present to be accepted by the Compiler. BSAVE will save
the Bytes_to~avenumber ofbytes from Start~ddress. I

Example: (See BLOAD)

I
Memory Management

I
Micol Advanced BASIC has commands that allow you to allocate and deallocate

memory as your program requires. The memory may contain anything. Some memory
may contain a graphics picture~ data for the program, etc. I

The User ill Number I
All memory within your Apple IIGS is managed by a Tool called the Memory

Manager. When Micol Advanced BASIC is started up, the Memory Manager assigns an I
identification number to be used for all calls to it. This application ill number is active
until you quit Micol Advanced BASIC.

This ill number is stored in memory locations 232 and 233 in the direct page and I
may be retrieved at any time using PEEK.

IGET_MEM (Handle&, Location&)

This statement is used to request a block of memory from the Memory Manager. The I
memory may be u...sed to allocate a Direct Page area or to allocate other memory for just
about any purpose. Once allocated. you have exclusive use of this memory. I

Part Three: The Advanced BASIC Language I

II Chapter Thirteen: Direct Memory Access	 166

I
,I

Handle& is a 4-byte memory location which will contain information necessary to

free the memory when you are finished with it. Location& is the actual address of the

allocated memory block. Both parameters must be real variables.

II

GET=MEM allocates a block of memory that is in a fixed memory bank with a fixed,

page-aligned address that does not use Special memory (graphics memory, etc). The

block is fixed, and .locked.

Before you can call GET_MEM, there are certain values you must establish:

I	 1. Memory location 202 (True_Value) indicates to GE.'T~M where the memory

I
will be allocated. A value of zero tells GET_MEM to get the block from
anywhere in memory. A non·zero value indicate that the block will be allocated
from a specific bank.

2.	 The variable Location& must indicate from which bank number the memory should
be allocated.

I	 3. The value assigned to variable Handle& Dlust indicate the amount of memory

I

needed in bytes.

Mter the call to GET~M is finished, the variable Handle& will contain theI handle of the memory block allocated by the Me:rnory Manager. The actual address of
the block will be in Location&.

If the' memory is allocated successfully, TrutLValue (location 202) will contain a
zero, otherwise True...Value will contain the error number returned by the Memory
Manager.

I
 Handle& is required by FREEMEM to deallocate the memory block.

I

Example:

POKE, 202,1 {Get memory from a specific bank}

Location& • 0 {Get

Handle& = 256 {Get

I GET_MEM (Handle&,

IF PEEK (202) <> 0

I	 PRINT nError in memory allocation#

ELSE BEGIN

PRINT "The address of the block is: #;Location&I	 ENDIF

I WARNING

I

II

I

I

memory from bank zero}

256 bytes (one page)}

Location&)

THEN BEGIN

If a memory block is allocated directly by using the
TOOLBOX command instead of GET_MEM, the block of
memory must be deallocated using the proper Memory
Manager call

Part Three: The Advanced BASIC Language

167 Chapter Thirteen: Direct Memory Access I
IFREEMEM (Handle&)

To deallocate a block ofmemory, use the FREEMEM command. The argument is the I
handle of the block obtained with GE'l'_MEM. Handle& must be a real variable.

The memory may also be deallocated by letting the program finish. All memory will
be released automatically. I

. Example:

FREEMEM (Handle&)
 I

I

To move memory from one location to another, use the MOV_MEM command. The

m:'guments may be either of type real or integer. I
Start=Addr is the address of the first byte that needs to be moved. Num_oCBytes is

the total number ofbytes to be moved, and Dest is the address to where these bytes need
to be moved. The maximum number of bytes that may be moved at one time is 65535 I
bytes (one bank). The locations may not overlap, or the memory may copy over itself.

One practical use ofMOV_MEM is to save a part of the current text screen display,
for example. MOV_MEM may be used to move 1024 bytes starting at 1024 to a safe I
location, and 1024 bytes starting at 66560 to another safe location. When returning the
screen to its original display, move the memory back to the screen. I

Example:

DIM Array% (1026) {Allocate a buffer}

Array_Addr = ADDR (Array%() + 3 I
Screen_BankO = $400

Screen_Bank1 - $10400 I
MOV_MEM Screen_SankO, 1024 AT Array_Addr

MOV_MEM Screen_Bankl, 1024 AT Array_Addr + 1025

HOME I
{To restore screen just saved}

MOV_MEM Array_Addr, 1024 AT Screen_BankO I
MOV_MEM Array_Addr + 1025, 1024 AT Screen Bankl

I
I
I
I

Part Three: The Advanced BASIC Language I

I Chapter Fourteen: Run Time Error Handling 168

I
Chapter Fourteen

I
Run Time Error Handling

I Overview

I
I Error handling, or error trapping as it is also called, is the art of dealing with

unexpected situations. These situations may be, for example, bad user input, an empty
disk drive, improper data, or even an intentional user response which causes an error
condition, such as pressing <Control.>C.

I
When an error occurs, control is usually passed to an error handling routine. An

error handling routine; for example, may allow the user to recover from the error by
giving precise instructions on how to correct the situation. Mter the error has been
corrected, the program usually resumes execution at a suitable point.

I IMPORTANT

I
Do not confuse error trapping with debugging. Error
handling is a normal operation of almost every properly

I
functioning program and is simply dealing with
unexpected situations. Neyer use any of the commands
described in this chapter until your program. is properly
debugged (unless, of course, you are debugging the error
trap itself).

I
Handling the Error

I
I

During the program development phase, whenever an error condition arose, a
message was displayed on" the screen describing the error and the line where the error

I
occurred. You more than likely went to the Text Editor to fix the problem. This situation
was carefully devised to help you debug your prograr '

Now, you have gone beyond this phase so that your program operates as it should, or

I
at least as close as possible. Unfortunately, unforseen conditions may arise during the
execution of the program and the system sending a message to the screen isntt adequate
anymore.

Now, the program error must be dealt with internally, and usually the program must
continue on with its work. That is, the error must be handled.

I The Micol Advanced BASIC commands described in this section are all you should
need to take care of these unexpected situations. However, this is a topic where
creativity is required, so actually designing what happens in your error handling routine

I is largely up to you.

I

I - Part Three: The Advanced BASIC Language

169 Chapter Fourteen: Run Time Error Handling I
ONERR GOTO Module_Id I

If an error occurs during program execution, ONERR GOTO deactivates the normal Idebugging capability of Micol Advanced BASIC and transfers control to an error
handling routine. ONERR GOTO also passes information to the program to help
determine what the problem is and where it happened. I

When an error occurs during the execution of a program, the error number is placed
into one of two memory locations (location 154 or 155).

Location 154 holds the error number returned by the run time routine. Location 155 I
holds the error number returned by the operating system. Under no circumstance can
both error conditions arise at the same time. The list of the error codes from the run
time routines is in Appendix C. The list of the error codes from the operating system is I
in Appendix D.

Place the ONERR GOTO at a location prior to where you believe the error is likely
to happen; in practice, this is often at the beginning of the program. I

To deactivate an ONERR GOTO, place zeroes into the direct page locations 191 and
192 using a POKE. This will enable the normal debugging capability of Micol Advanced IBASIC.

It is often very useful to know on which sequential line number the error happened.
The sequential line number where the error occurred is stored as a binary value in I
locations 204 and 205 in LSB, MSB order. The following program line will determine at
which sequential line the error occurred:

Line-"Error& =PEEK (204) + 256 *PEEK (205) I
It may be desirable to place the error handling routine as the last portion of code

before the final END statement. This will help avoid confusion with the normal Iprogram code.

To avoid an infinite error loop, you may want to deactivate the ONERR GOTO if
execution errors should occur within the error handling routine. Don't forget to I
reactivate the ONERR GOTO by placing another ONERR GOTO as the last line of the
error handling routine, ifnecessary.

IExample:

PROGRAM Error_Example

ONERR GOTO Error_Trap I
{<Program code>}

END IROUTINE Error_Trap

POKE 191,0 IPOKE 192,0 {Turn off future ONERR GOTOs}

IF PEEK (154) > 0 THEN BEGIN

PRINT ~Language error * ";PEEK (154): I
ELSE BEGIN

PRINT "GS/OS error * ";PEEK (155); I
Part Three: The Advanced BASIC Language I

I
I
I
I
I
I

I I

I
I
I
I
I
I
I
I
I
I
I

II

170Chapter Fourteen: Run Time Error Handling

END IF

PRINT" in line "; PEEK (204) + 256 * PEEK (205)

END

RESUME

RESUME instructs the program to continue execution at the same line or structured
statement in which the error was encountered.

RESUME restores the previous FOR loop stack pointer as well as the stack pointer
used for Procedures, Functions and Routines. Ifyou intend to use a RESUME, then the
error handling routine should contain neither FOR loops nor calls to subroutines
(GOSUBs) as the values on the stack(s) may become COITupted.

IfRESUME is used in a program, the ERROR compiler option must be specified in
the program. If ERROR is not specified, an eITOr will occur at run time when
RESUME is encountered.

Example:

PROGRAM Example

@ ERROR {Required for RESUME}

ONERR GOTO Error_Trap

HOME

Divisor = 0

Dividend ... 100

Quotient = Dividend / Divisor

PRINT "Quotient is: ";Quotient

END {END needed to terminate program before error trap}

ROUTINE Error_Trap

HOME

PRINT "In Error Trap"

Divisor = 10 {Stop another division by zero error}

PRINT "Press Return to resume program"

GET WaitS

RESUME {Will execute the error line again}

Part Three: The Advanced BASIC Language

I Chapter One: Desktop Programming 171

I
Part Four: Creating the Apple IIGS Desktop

I
Chapter One

I
Desktop Programming

I Overview

I This chapter explains the Desktop metaphor created by Apple and shows what is
needed in a Desktop program written under Micol Aduanced BASIC.

I The Desktop Environment

I What is the Apple IIGS Desktop? The Desktop is a metaphor used by Apple to help

I
individuals use computers without having to learn hard-to--remember and often
difficul~to-use commands. This metaphor uses objects used in everyday life to
conceptualize computer operations.

I
I

It is not necessary to remember commands when a Desktop program is used; the
operations appear on the screen in a manner the user is already familiar with. The user
only has to make a selection to perform the action. If you wish to learn more about the
Desktop metaphor, get a copy of the Human Interface Guidelines from Apple Computer,
Inc..

I
Desktop programming is somewhat difficult. It requires a lot of planning and

attention to details. A Desktop application does a lot of little things in the background
that take little time to write into code.

The Desktop commands used in Micol Advanced BASIC will control the vast majority
of the functions needed by a Desktop program written by the average Micol Advanced

I BASIC programmer.

Essentially, there are three types of displays on the Apple IIGS Desktop: Menus,
Wmdows and Dialog Boxes. We will explain what each of these is in detail in its

I respective chapter. For now, it is sufficient to mow that they exist.

I
I

In general, information is passed to the appropriate Desktop command using two
arrays: an integer array and a string array. The arrays must be large enough to hold the
elements of the largest Dialog Box, Menu, or Window. The arrays are used to define the
Dialog Boxes, Menus, and Wmdows but may be used for other purposes if memory is
short. In addition, it is not necessary to have a different set of integer and string arrays

I
for each Menu, Dialog Box or Wmdow; they may be reused from call to call.

The Desktop uses the Super High Resolution graphics screen, either in 320 mode or
640 mode. Before any of the Desktop commands may be used, an HGR or HGR2
command must have been previously given to start the proper graphics mode. A TEXT
command is used if you wish to erase the Desktop and return to normal text input.

I Define the Menus, Dialog Boxes and Wmdows by filling in the appropriate arrays

I Part Four: Creating the Apple nGS Desktop

172 Chapter One: Desktop Programming I
I

and use the appropriate Desktop command to display (and activate) the Menus. Dialog
Boxes and Wmdows.

The values returned by the movements of the Mouse and clicking in the Menu bar, I
Dialog Boxes. and Wmdows are caught in a loop. called the Event loop, that handles all
the commands and the choices the program's user makes while using the program. The
actions performed by the user are often handled outside the loop in a sub·section of the I
program. A CASE_OF statement does this job nicely.

IDesktop Commands

Micol Advanced BASIC understands four commands to let you write applications I
that use the desktop. The MENU command controls the Menu bar. The WINDOW
command directs how Wmdows open and close. The DIALOG command manages all
aspects of Dialog Boxes. The MOUSE- command controls the actions performed by the I
program's user (the Event).

A Desktop program must have the MOUSE command and at least one of the other
three Desktop commands (DIALOG, MENU or WINDOW) to function properly; I
otherwise the program will not be able to respond to the user.

Desktop capability under Micol Advanced BASIC is adequate for IDost of the Iapplications written with Micol Advanced BASIC. The Tholbox may also be called
directly using the TOOLBOX command ifyou require a more advanced Desktop.

I
Monitoring the Desktop

IMOUSE (Integer_Array ()

The three types of Desktop displays: Menus, Wmdows, and Dialog Boxes, are all I
monitored by the MOUSE command

First, you have to create one of the Desktop displays using the MENU, WINDOW or
DIALOG command. Once the display is as you wish, you must use MOUSE to allow the I
user to respond to the display.

The only parameter required by MOUSE is an integer array dimensioned to at least I20 elements. This array may have any value before MOUSE is executed, but will
contain the value(s) needed to respond when control is returned to your program.

You may have to place MOUSE in a looping situation, and access the values Idescribed in subsequent chapters. If you are accessing a Dialog Box, MOUSE need not
be in any looping structure, as no response is returned until the user has responded to
the Dialog Box. However, both MENU and WINDOW require MOUSE to be contained Iwithin a loop with repeated checks for the necessary values returned by the particular
command.

The individual aspects of the MOUSE command will be explained in more detail in I
the three chapters that follow.

I

I
Part Four: Creating the Apple nGS Desktop

I Chapter One: Desktop Programming 173

I
I

Example:

PROGRAM Desktop_Demo

DIM EventRecord% (59)

DIM DeskTopArray$ (42)

I {Dialog Boxes, Menus, and Windows are defined here}

{Program Start}

I HGR {Set 320 x 200 mode for Desktop, required}

GOSUB MenuBar {Define Menu Structure}

GOSUB EventLoop {Handle the Users Actions}

I END {Desktop_Demo}

{eof}

I The example programs on the disk IMAB.SUPPORT. in the subdirectory
Demo.FileslDesktop.Samplesi demonstrate the use of these commands.

I
Programmers.

A Desktop application written in Micol Advanced BASIC

I uses the following tool sets: QuickDraw II, Event
Manager, Wmdow Manager. Control Manager, Menu
Manager. LineEdit, Dialog Manager and Scrap Manager.

I These tools will be loaded and started automatically when
one of the Desktop commands is executed by the program.
They will be shut down when the Desktop is erased from

I the screen or the program finishes execution.

I
I
I
I
I
I
I
I Part Four: Creating the Apple nGS Desktop

I Chapter Two: Menus 174

I
Chapter Two

I
Menus

I
Overview

I This chapter describes the commands needed to create and monitor Menus.

I Menu Specifics

I

Pull-down Menus allow a user to make a single selection from a list of selections (aI Menu List)) among a set of lists (the Menu Bar), and perform a task based on this
selection.

Menu Lists may be easily created, enabled (made selectable). disabled (made I non-selectable), and removed. Each selection within a Menu List is called an Item.
Items within a Menu List may be enabled, disabled, and removed just as easily.

A distinction must be made between the Menu Bar, Menu List) and Menu Item. A

I
Menu Bar, the white rectangle that appears on the top of the Menu display, contains the
Menu Lists. When a List in the Menu Bar is selected, a pull-down List of Items is
displayed.. The pull-down List is the entire collection of Menu Items for this Menu List.
A Menu Item is a command.

I Defining a Menu

The Menu Lists are defined in the reverse order in which they are displayed: the

I
I Menu List appearing on the right must be created first; the Menu appearing on the left

must be defined last. This means) that the first defined Menu List (with the smallest
element number) will be the right most Menu List displayed, and the last defined Menu
List (with the highest element number) will be the left most appearing Menu List.

The Items in a pull-down List sr.._J1d be listed with the most often used Item at the

I top and the least often used one at the bottom.

I
Do not forget to define the Super High Resolution graphics screen with either an

HGR (320 mode) or HGR2 (640 mode) before creating your Menus.

Menu Definition Syntax
I

{[MenuArray$ (Subscript) ="» Menu List \ [Attr_Char] N Menu_ID',]}"
{[MenuArray$ (Subscript) ="~.MenuItem\ [Attr_Char] N Menu_ill',]} I {[MenuArray$ (Subscript) ="."]}
{ [MenuArray$ (Subscript) =""]}

I The definition ofa Menu Bar is assigned to a string array which will be passed to the

I Part Four: Creating the Apple fiGS Desktop

175 Chapter Two: Menus I
command which actually makes the Menu. The Menu Lists and Items are assigned to I
the individual elements of the string array. One string array element holds one Menu
List or Item definition. The string array must be dimensioned to a little more than the
total number of Items in the Menu definition.. I

Be sure to number the string array elements exactly. If the subscript number of the
Menu array is repeated, the contents (Menu Item) of these elements will not be Idisplayed.

A Menu List definition begins with any two title characters, which indicate the start
of a Menu List, followed by the actual Menu List title between spaces. These List I
characters may be any visible characters, but the greater than symbol (» is suitable, so
we will use it exclusively in our examples. The Menu List Title is simply a text string
which describes the list of Items to follow. Two spaces should appear before and after the I
Menu titles in 320 mode (HGR), and one space in 640 mode (HGR2); otherwise, the
Menu List Titles will appear stuck one against the other when they are displayed.

A Menu Item definition begins with any two item characters (different from those I
used in the List, we will use a colon (:) in our examples) which indicates a Menu Item.
Spaces before and after the Menu Items are not necessary: they will be done
automatically. Following these two characters must appear the Menu Item Name, which I
is the text which will appear on the screen informing the user what the selection is.

Following the Menu List Title or Menu Item Name is a backslash character (\) which
indicates that the Menu List ill or Menu Item ill follows, followed, perhaps, by special I
attribute definitions.

I
Menu Title and Item Identification Numbers

IA unique number must be assigned to each Menu List and Menu Item; otherwise, the
program will not be able to determine which List or Item was chosen by the user. Menu
List and Item ill numbers should be listed in ascending order. The identification
numbers must be allocated as shown in Table 4.2.1. I

Table 4.2.1 In Number Allocation Table I
Menu List ill K Description

o Internal use to indicate first Menu List I
1-255 Preferred ill numbers for Menu Lists

256-65534 May be used by user's application
 I
65535 Internal use to indicate last Menu

If the Apple Menu is included, it must have an ill number of one (1). I

I

I

Part Four: Creating the Apple IIGS Desktop I

I Chapter Two: Menus

I Menu Item In #

I o
1-249

I 250-254

I

250

I
251
252
253
254
255

256-65534

I 65535

176

Description

Internal use to indicate first Menu Item

Used by Desk Accessories

Reserved for the Edit Menu Items

Undo

Cut

Copy

Paste

Clear
Reserved for Close command (in File Menu)

U sed by program's Menu Items

Internal use to indicate last Menu Item.

I The Menu List ID or Menu Item ill is defined by using one of the unique numbers
above preceded by one of the following letters:

I N -Number

I The letter N is followed by a unsigned decimal (ASCII) number. This number defines
the unique Menu List ill or Menu Item ID in decimal. This characteristic will probably
appear in every Menu List or Menu Item definition.

I
I H . Hexadecimal

This letter is used to specify the Menu List ill or Menu Item ill as a hexadecimal
value. You will probably wish to use N instead of H.

I

Example:

Menu$ (1)

Menu$ (2)

I Menu$ (3) =

I
Menu$ (4)

Menu$ (5) =

{Other Menus

"» Title \N3" {Menu title defined}

"::Item 1\N301 ft {Menu item defined}

"::Item 2\N302 ft

": : Item 3\N303 11

" " {End of Menu list definition}

would be defined here}

Menu$ (99) = "'" {End of Menu bar definition}

I
Menu Attribute Characters

I
These characters (-, *, B, C, D, I, 0, S, U, V, X) may be included with the Menu List

ID or Menu Item ID and are used to give one or more specific features to a Menu List or

I Item such as: .

I Part Four: Creating the Apple IIGS Desktop

177	 Chapter Two: Menus I
I

• Give a keyboard equivalent to a Menu Item
• Indicate a default setting to a Menu List or Item ISeparate Menu Items

• Give a specific style to a text Item
• Restore the colors ofa Menu List or Item I
The attribute characters may be entered in upper or lowercase, by convention,

uppercase characters are used. I
*. Keyboard Equivalent I
The asterisk tells:MENU to display an Apple logo and a character to the right of the

Menu Item to indicate that a keyboard equivalent is available. Menu Lists may not have
a keyboard equivalent. I

Some keyboard equivalents should be used for specific Menu Items (see Table 4.2.2).

When using a letter as a key equivalent, be certain to define both an uppercase and
 Ilowercase character. When a special character (?, #, etc.) is used (especially where the
Shift key must be pressed) as key equivalent, be sure to enter both characters in the
definition; otherwise, the user may think that the key equivalent does not function Iproperly.

The key equivalent is automatically trapped by the MOUSE command.

IExample 1:

Menu$ (11) = ": :New*NnN259"

This definition allows you to use Apple-N (Apple~Shift-n) or Apple-n as key I
equivalents.

Example 2: I
Menu$ (32) = "::Help ... \V*?/N257"

This definition allows you to use Apple-? (Apple-ShUt-I) or Apple-! (Apple-I) as key
equivalents. I

Table 4.2.2 Reserved Keyboard Equivalents I
Apple Menu	 File Edit

Help ?	 New N Undo Z I
Open 0 Cut X

Close W Copy C I
Save S Paste V

Quit Q I
We strongly recommend you program some keyboard equivalents to offer an

alternative to using the Mouse. Not everyone loves the Mouse. I

Part Four: Creating the Apple nGS Desktop	 I

I Chapter Two: Menus 178

I
Specifying Defaults

I Attribute characters C and D are used to show a specific setting at the creation of the
Menu. Attribute C is used with Menu Items only. Attribute D may be used on Menu
Lists and Items.

I
D • Disable and Dim a Menu Titlelltem

I The letter D prevents the user from employing a Menu List or Item until a speci:fi.c

I
event occurs; the name of the Menu Title or Item appears in grey. In the case of a Menu
List, the entire Menu List is deactivated.

I
Use this attribute to disable a Menu List or Item in a Menu definition before

displaying the Menu bar. To activate a disabled Menu List or Item, use the appropriate
Menu Control Number and MENU command described later in this chapter.

I
NOTE

Never disable the Apple Menu; otherwise, New Desk
Accessories will not be available to the user.

I
I

Example 1:

{Water Menu is disabled}

Menu$ (30) - ~» Water \DN3"

Menu$ (31) = ~::Sa1t\N301"

I Menu$ (32) ~::Fresh\VN302"

I
Menu$ (33) - ~::Poisonous\N303"

Menu$ (34) ~"

Menu$ (35) "" "I'

I Example 2:

I

{Items 301 and 303 are disabled}

MenuS (30) = "» Water \N3"

MenuS (31) = "::Sa1t\DN301"

MenuS (32) "" ~: :Fresh\VN302"

I Menu$ (33) - ": :Poisonous\DN303"

I
Menu$ (34) - \\ "

MenuS (35) = ~"

c . Item Selection Indicator

I This attribute places the character following the C before the Menu Item Name. Use
this character to indicate that a Menu Item has a default or current setting.

I The Check mark (character code 18) or the Diamond (character code 19) are the

I Part Four: Creating the Apple IIGS De..-;ktop

179 Chapter Two: Menus	 I
Iusual characters indicating a default or current setting.

Example 1:

Menu$ (22) - ": :Hot Pepper\C" +CHRS (18) + "N451" I
A check mark will appear in front of the word Hot Pepper. I
Separating Groups ofMenu Items

I
The attribute characters V and • (Dash) draw a line in a Menu List to separate

groups of Items. Use these characters to group Items that are independent ofother sets,
but related to the Menu under which they appear. They may not be used for Menu Lists. I
v . Underline I

This letter is used to place an underline between two Menu Items.

Example:
 I
Menu$ (21) - "» File \N2"

Menu$ (22) - "::New*NnN2001"

MenuS (23) - ": : Open ... \ *OoN2002" I

=0Menu$ (24) "::Close\V*WwN25S"

MenuS (2S) ~ "::Save*SsN2003"
 I
Menu$ (26) ~::Save As ... \N2004"

Menu$ (27) ": :Revert to Saved\VN2005"
 I
MenuS (28) - "::Print Setup ... \N2006"

Menu$ (29) - "::Print ... \V*PpN2007"

Menu$ (30) "::Quit*QqN2008"
 I
MenuS (31) - \\ "

I . (Dash) - Dividing Line

This character provides a dividing line that makes more space between Items. The
dash character must have its own Item Definition and Number. The dividing line should I
always be displayed in grey (dimmed). This attribute separates Item Names with
descenders to have a better looking Menu List. I

Example:

Menu$ (06) = "» Edit \DNZ"
 IMenu$ (07) - "::Undo*ZzNZ50"

MenuS (08) - ": :-\DN9999"

Menu$ (09) ": : Cut \ *XxN251 1t
 I
MenuS (10) - "::Copy*CcN252"

MenuS (11) "::Paste*VvN253"
 I
Part Four: Creating the Apple IIGS Desktop	 I

I Chapter Two: Menus 180

I
Menu$ (12) = "::-\DN9999"

I Menu$ (13) " : : C1ear\N2 S4"

Menu$ (14) "::-\DN9999"

Menu$ (15) "::Show Clipboard\N260"

I Menu$ (16) "." {End of Menu List}

I Font Style Menu Item Characters

I
The following attribute characters usually appear in the Font Style or Size Menu

List. As with the INVERSE command, use these characters only to attract the attention

I
of the user.

The font used must be capable of representing the desired character style; otherwise,
the text will appear in normal text.

B -Boldface

I
I This letter makes the Menu Item appear in boldface characters. This attribute is

often used in the Size Menu List to indicate that a true font size is available by
displaying the point size in bold face.

I. Italics

I This letter makes the Menu Item appear in italic characters. This style is available
only when the QuickDraw II Auxiliary Tool set is active.

I
0- Outline

I This letter draws an outline of the Menu Item string. This style is available only
when the QuickDraw II Auxiliary tool set is active.

I S - Shadow

I This letter adds a Qhadow to the name of the Menu Item. This style is available only
when the QuickDraw II Auxiliary Thol set is active.

I U - Underline

I
This letter underlines the name of the Menu Item.

The Shaston font, 8 points, (the current system font at the time of publication), does
not support Underline.

I x-Restore Menu or Item Color(s)

This attribute restores the color of a Menu Title or Item Name if it is displayed in a

I color other then black or white. The character X is used especially to restore the color of

I Part Four: Creating the Apple fiGS Desktop

181 Chapter Two: Menus	 I

I

the Apple logo; otherwise, the logo will turn green when the Apple Menu is selected..

Example:

Menu$ (40) - ~»@\XNl"

I

The color table for menus is set to the default colors (black and white). To alter the
 I

default colors, use the TOOLBOX command..

Apple Menu Items	 I

The About Program_Name Item	 I

This Menu Item must be the first item in the Apple Menu List. It is used to display a

Dialog Box containing the name of the program., version number, copyright information
 I
as well 88 any information the application programmer wants to display. The name of
the program follows the word U About".

Example: (see below)	 I

The Help... Item
 I
This optional Menu Item, ifpresent, must be one of the top Items in the Apple Menu

List. It is used to display a Dialog Box containing helpful information (hints,

suggestions, etc) about the program being used.. I

Example:

MenuS (40) = "»@\XNl"
 I

MenuS (41) ": :About Examplel \N257"

MenuS (42) ": :Help... *?/N258"
 I
Menu$ (43) = "::-"

Menu$ (44) ~ ~ "
 I

Example of a typical Menu definition: I

ROUTINE DefineMenuBar

Array (0) ~ 1 {1 - Create Menus}

Menu$ (01) =- "» Water \N3" I

Menu$ (02) = ": :Salt\N301"

Menu$ (03) - ": :Fresh\VN302" {A dividing line will appear
 I
between Fresh and Poisonous}

Menu$ (04) - "::Poisonous\N303"

Menu$ (05) _ n " I

Menu$ (06) "» Edit \DN2"

Menu$ (07) = "::Undo*ZzN250"
 I

I
Part Four: Creating the Apple IIGS Desktop

I 182 Chapter Two: Menus

I
I

Menu$

Menu$

Menu$

Menu$

I Menu$

I
Menu$

Menu$

Menu$

I
Menu$

Menu$

Menu$

I Menu$

I
Menu$

Menu$

Menu$

Menu$

I Menu$

I
Menu$

Menu$

(08)

(09) ""

(10) =
(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18) ""

(19) =
(20)
(21) _

(22)

(23) ""

(24)

(25)

(26)

{End of Menu

I

"::-\DN9999".

": :Cut*XxN251"

"::Copy*CcN252"

": :Paste*VvN253"

"::-\DN9999"

"::Clear\N254"

"::-\DN9999"

": :Show Cl~pboard\N260"

" "

"» File \DN2"

"::Open ... *OoNxxx"

"::Close\V*WwNxxx"

"::Quit*QqNxxx"

" H

"»@\XN1"

"::About Example1\N257"

"::Help ... \V*?/N258"

"H

,,,,

Bar definition}

Defining the Menu

I MENU (EventRecord% (,DesktopArray$ ()

I The MENU command handles the Menu definition. Its required parameters are an

I
integer array and a string array. The left parentheses of the array designators may not
be left off the MENU definition, otherwise the Compiler will issue an error. The string
array was described above and must be set before this command is executed.

Element zero of the integer array must contain the Menu Control Number which
instructs MENU the command usage. Other integer array element uses will be defined

I below.

Be certain the arrays are large enough to hold the entire Menu Definition; otherwise,
an error will occur during execution.

I Example:

{Define Menu Bar and its Menu It~ms}

I EventRecord% (0) = 1 {Menu Control Number, Create}

{Menu defined in array DesktopArray$}

I MENU (EventRecord% (, DesktopArray$()

I Part Four: Creating the Apple IIGS Desktop

183 Chapter Two: Menus I
IHow to Use the Menu Control Numbers

The Menu Control Numbers determine which actions will be performed by the IMENU command. A Menu Control Number of one is used to create the Menu. The
appearance of this Menu may be changed using other Menu Control Numbers. Menu
Lists and Items may be deactivated and reactivated or completely removed from the IMenu Bar.

The actions are performed according to the following values passed to element 0 of
the integer array passed to MENU: I

Table 4.2.3 Menu Control Numbers I
Code Action

o Remove a Menu List from the Menu bar I
1 Create the Menu
2 Reserved for Future Expansion

3 Reserved for Future Expansion I
4 Enable a disabled Menu Item or List
5 Disable a Menu Item I
6 Remove a Menu Item from a Menu List

7 Add New Desk Accessories I
Remove a Menu List (0)

I
Menu Control Number of zero closes the specified Menu List. The Menu List will

disappear from the screen, and be removed from memory.

I
NOTE

The entire Menu Bar must be recreated to disp]ay the
removed Menu List again. I

I
To remove a Menu List, assign a zero to element zero of the integer array passed to

MENU and pass the Menu Identification Number (assigned by you) of the Menu List to
be removed to element one of the integer array. I

Example: <Program fragment>

EventRecord% (0) - 0
 I
EventRecord% (1) - Menu List ID

MENU (EventRecord% (, DesktopArray$ () I
Create the Menu (1)

This Menu Control Number sets up and displays the Menu as it was defined in the I
Part Four: Creating the Apple nGS Desktop I

I Chapter Two: Menus 184

I
I

string array passed to MENU.
To create the Menu Bar and its Menu Lists, assign a one to element zero of the

integer array. The string array defining the entire Menu must be assigned as described
in the previous section.

I Example:

I

{DeskTopArray$ previously defined}

EventRecord% (0) - 1 {Create Menus}

MENU (EventRecord% (, DesktopArray$ ()

I
 Reserved for Future Expansion (2)

Reserved for Future Expansion (3)

I Enable a Disabled Menu List or Item (4)

I A Menu Control Number of four reactivates a disabled Menu List or Item that was

I
disabled by Menu Control Number five.

Th reactivate a Menu Listiitem, assign a four to element zero of the integer array,
and assign the number of the ListlItem to be reactivated to element one of the integer

I
array.

Example: <Program fragment>

EventRecord% (0) - 4

EventRecord% (l) = ItemNumber

I MENU (EventRecord% (, DesktopArray$ ()

I

Disable a Menu Title or Item (5)

A Menu List or Item is disabled by using a Menu Control Number of five. The
attribute character D is used only to disable a Menu Item when it is first displayed.

I
I To deactivate a Menu List or Item., assign a five to element zero of the integer array

passed to MENU, and pass the List or Item ill to bf> disabled to element one of this
integer array.

I
Example: <.Program fragment>

EventRecord% (0) = 5

EventRecord% (1) = Menultern

MENU (EventRecord% (, DesktopArray$ ()

I Remove a Menu Item from a Menu List (6)

I Menu Control Number of six removes a Menu Item from the specified Menu List.
The Menu Bar must be recreated to display that Menu Item again.

To remove a Menu Item, assign a six to element zero of the integer array passed to

I MENU, and assign the Item ID to be removed to element one oftliis integer array.

I
 Part Four: Creating the Apple fiGS Desktop

185

Example: <Program fragment>
EventRecord% (0) - 6

EventRecord% (l) = Menultem

MENU (EventRecord% (, DesktopArray$

Add New Desk Accessories (7)

Chapter Two: Menus	 I
I
I

()	

I
If you have any New Desk Accessories within the DESK.ACCS folder on the boot

volume, the operating system will load these NDAs into memory at boot time. By using I
a Menu Control Number of seven, you may cause all NDAs to be contained within the
Menu List. IThe restrictions are that you must have an Apple Menu (the Menu defined by @) and
this Menu List must have a Menu ill of one.

To have these NDAs appear in your Menu List, assign a seven to element zero of the I
integer array passed to MENU and invoke the MENU command. That's all there is to
it. IExample: <Program fragment>

EventRecord% (0) - 7

{Add Desk Accessories}
 I
MENU (EventRecord% (, DesktopArray$ ()

Unhighlight a Menu Title	 I
Each time a Menu Item has finished its task, the Menu List under which it appears I may be returned to its original state to indicate that the operation is now finished.
To unhighlight the Menu List of the selected Item, use Toolbox call 44 to the Menu

Manager. Place this line at the end of the Event Loop. I
Example: <Program fragment

TOOLBOX -(15,44: 0, MenuNurnber) {Unhighlight it}
 I
Monitoring the Menu I

MOUSE (IntegerArray ()
I

It is not enough just to define a Menu; you must also monitor the user's response and
take actions based upon this response.

'Ib monitor a Menu, you must make use of the MOUSE command. The only I
parameter to MOUSE is an integer array dimensioned to at least 20 elements. This
integer array may contain any values when MOUSE is executed, but MOUSE will
return the values with which you may analyze the user's response when control is I
returned to you.

You must monitor the user's response to the MENU command from within a loop I
I

I Chapter Two: Menus 186

I
called the Event Loop. This Event Loop is best defined within a subroutine to facilitate
changes and maintenance.

I When monitoring the Menu bar for a selection using the MOUSE command, look for

I
a seventeen (17) returned in element zero of the integer array passed to MOUSE.
Element zero of the passed integer array contains the Event code, and 17 is the Menu
code. Once a 17 is received, immediately access elements 9 and 10 of the integer array.

Elements 9 and 10 of the passed integer array will contain the Menu Item ill
number, and the Menu List ill number respectively. These values are needed to

I
I determine which Menu Item has been chosen. Elements 1 through 10 of this integer

array will contain the Task Record which contains additional information about the
user's response (see table 4.2.4).

I
Once a ~sponse is received? the program must direct the execution to a module that

will handle the action indicated by the Menu Item. For example, if Quit is selected, the
program should exit the Event Loop and invoke the ShutDown routine.

Example:
{Menus previously defined}I Quit! = FALSE

WHILE NOT Quit! {Top of Event Loop}

I MenuID = 0

MOUSE (Array% ()

I TaskValue - Array% (0)

IF TaskValue - 17 THEN BEGIN {a Menu was chosen}

MenuID = Array% (9) {Menu Item}I MenuTitle = Array% (10) {Menu Number}

{Direct execution to proper module}

I CASE OF MenuID

DO 261 {New}

II GOSUB NewGame {Open a Window}

ENDDO

DO 262 {Quit)

I Quit! = TRUE {Quit program}

END DO

I ELSE DO

I
BELL {Error condition}

BELL

ENDCASE {MenuID}

TOOLBOX (15,44: 0 {False}, MenuList) {Unhighlight it}

I ENDIF

WEND {Event Loop}

I { ... ShutDown Code ... }

I Part Four: Creating the Apple fiGS Desktop

187 Chapter Two: Menus I

I

<Program continues>

Table 4.2.4. Menu Codes Returned by MOUSE I

Event Code Element Number Description

I
o Task value
17 =Mouse on Menu Item

1 What field of Task Record
 I

1 = Mouse Down Event

2&3 Message field of Task Record
 I

4&5 When field ofTask Record

6&7 Where field of Task Record

(Mouse location)
 I

8 Modifiers field of Task record

9& 10 Task Data
 I

For more information on defining standard Menu applications, refer to Apple's

Human Interface Guidelines: The Apple Desktop Interface. I

The MENU program in the Desktop.Samples! folder on the MAE.SUPPORT disk

demonstrates how to use the Menu Control Numbers. I

I

I

I

I

I

I

I

I

Part Four: Creating the Apple nGS Desktop I

I Chapter Three: Windows 188

I
Chapter Three

I
Windows

I Overview

I This chapter shows how to do Wmdows and provides guidelines on how to create,
manage and draw in Windows. Th use special Wmdows, consult the Apple IIGS Toolbox
Reference Manuals ot some other comprehensive documentation of the Apple IIGS

I Toolbox.

Examples of the techniques described in this chapter are included in the program
WINDOW in the Desktop.Samples folder of the MAE.SUPPORT Disk. Please refer toI the WINDOW program as you study this chapter.

I What are Windows

I A Wmdow is a structure in which information. such as a document or a picture, is

I
presented to the user by the application program. Any text or graphics image that may
be drawn with the Super High Resolution commands may be presented in a Window.

A Window consists ofa frame that surrounds the image and a content area inside the

I
frame in which the image is presented. Although a WIndow frame may be any size or
shape, two standard styles of Window frames are supported: the document WIndow
frame and the alert Wmdow frame.

The document-style frame supports optional controls that may be used to change the
size of the WIndow and the position of the docwnent within the Wmdow. The alert frame

I is mainly used to create alert dialogs. This style of frame, however,> may also be used for
aWmdow.

The controls in a docum.ent frame are optional, and may be used in any combination.

I They include the title bar, close box, zoom box, vertical scroll bar, horizontal scroll bar,
size box and information bar.

I Managing Windows

I
I The WINDOW command supports the creation and closure ofWmdows, and provides

a method to convert Wmdow pointers to Wmdow numbers and vice versa.

WINDOW requires two parameters: an integer array and a string array. These

I arrays will contain the information required to create and/or modify the Window. Be
certain these arrays are dimensioned large enough to contain all the information
required by this command.

I Element 0 of the integer array holds the Wmdow Control Number that specifies

I Part Four: Creating the Apple IIGS Desktop

Chapter Three: Windows

which function is to be performed by the WINDOW command in accordance with the

189

following table:

Code

o
1-10

11

12

Table 4.8.1 Window Control Numbers

Action

Close an application Wmdow

Create the specified Wmdow

Find the pointer ofa specific Wmdow

Find the Wmdow number of a specific pointer.

Creating the Window

To create a Wmdow, assign the values from the table below to the integer array
passed to the WINDOW command.

Programmers
The variable names from the Toolbox manual are
included in the table below to aid in identifying the
associated NewWmdow parameters in the Toolbox
manual

Table 4.3.2 Create Window Parameters

Element Variable Value

o
1

Window Number to Create (l ~. 10)
wFrameBits

2

Framebits. See Table 4.3.3.

wTitle

3

String array element ofW.mdow title.

wDataH

4

Height ofWmdow data area. Used to compute the right scroll bar.

Set to 0 ifthe Wmdow has no right scroll bar.
wDataW

5

Width ofWmdow data area. Used to compute the bottom scroll bar.

Set to 0 if the Wmdow has no bottom scroll bar.
wMaxH
Max content height allowed when using the size box. If set to 0, will

I
I
I
I
I
I
I
I
I
I
I
I
I
I
~

I

I

I

•

I Chapter Three: Windows 190

I
Element Variable Value

I default to take up the height of the desktop. Set to 0 if the Window has

I
no size box.

6 wMaxW

Max content width allowed when using the size box. Ifset to 0, will

default to take up the width of the Desktop. Set to zero if the Wmdow

I has no size box.

I
7 wScrollVer

Number ofpixels to scroll the content region when the up or down

arrows are selected in the right scroll bar. Set to 0 if the Wmdow

has no right scroll bar.

I S wScrollHor
Number of pixels to scroll the content region when the right or left

I arrows are selected in the bottom scroll bar. Set to 0 if the Wmdow

I
has no bottom scroll bar.

9 wPageVer

Number ofpixels to scroll the content region when the up or down

page regions are selected in the right scroll bar. Set to aif the Wmdow

I has no right scroll bar.

10 wPagellor

I Number of pixels to scroll the content region when the right or left

I
page regions are selected in the bottom scroll bar. Set to 0 if the Wmdow

has no bottom scroll bar.

11-14 wPosition

Rectangle data structure that uses elements 11 through 14 of the array

I to define the initial position of the Wmdow on the screen.

I
11 ¥ minimum value

Thp edge ofWmdow.

I
12 ¥maximum value

Bottom edge ofWmdow.

13 X mjnimum value

Left edge ofWmdow.

I 14 X maximum value

Right edge of Wmdow.

I

I

I Part Four: Creating the Apple IIGS Desktop

191

Programmers

Chapter Three: Windows

All other NewWindow parameters are set to default
values when WINDOW makes the NewWmdow call to
create the Wmdow. This should be satisfactory for most
Wmdows. If other values are needed, then you must
either use Tool calls to change the desired values after t.he
Window has been created, or you must call NewWmdow
directly. The latter requires much more manipulation of
data structures and precludes using the Micol Advaneed
BASIC WINDOW command.

Ifthe Wmdow has a title bar, pass the Wmdow title string in the appropriate element
of the string array, as specified in element 2 of the integer array.

Creating The Window

Assign a Wmdow number into element 1 of the integer array. The Wmdow number is
an arbitrary identifier for the window in the application program. Valid Window
numbers are in the range 1 ~ 10. This means that a Micol Advanced BASIC Desktop
program may have a maximum of 10 Windows open at one time. The Wmdow number is
used by the Close function of the WINDOW command to determine which Wmdow to
close.

Programmers
When creating a Window, the WINDOW command will
return a pointer (address) to the Wmdow's Grafport. This
pointer is a four-byte long integer. The low word of the
pointer will be returned in element 0, and the high word
in element 1 of the integer array. This pointer may be
needed to make calls to the Wmdow Manager. The
pointers may either be saved in temporary variables as
each Window is created; (j~ a Wmdow Control Number
may be used to look up the pointers whenever they are
needed. The use of the WINDOW command to look up
pointers to open Wmdows is discussed later in this
chapter.

SettingWframebits

This section is a description of wFrameBits (described in Table 4.3.2); the value
assigned to element one of the integer array passed to the WINDOW command.

WFrameBits is a bitflag (a binary number that is treated by Micol Advanced BASIC
as an integer value) that determines the type of Wmdow frame and which optional
controls will be available to the application Wmdow. It also specifies other optional
behaviors of the Wmdow frame.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
•

I Chapter Three: Windows	 192

I
I 'Th calculate the integer value of wFrameBits, start with zero, then add the values

from the table below to select the features that you want. If you specify a value of 0 for
wFrameBits, the 0 will be replaced with a default value that will create a Wmdow with
all of the standard Wmdow features.

I Table 4.3.3 Window FrameBits

Bit Label Value Feature On (1) / Off (0)

I

I 0 fHilited DS Highlighted/Not Higblited
1 !Zoomed 2 Display Size:

I Zoomed / Not zoomed
2 fAllocated DB Window Record:

Allocated I Not Allocated
3 fCtlTie DS	 Wmdow Controls:

Inactive / Active I 4 fInfo 16 Info bar / No Info bar
5 fVIS 32 Visible / Invisible

I 6 fQContent DB Mouse Activates Wmdow
7 £Move 128 Movable / Non-movable
8 fZoom 256 Zoom Box / No Zoom box I 9 fFlex 512 Maintain origin / Change origin
10 fGrow 1024 Grow Box / No Grow box

I 11 fBScroll 2048 Horizontal Scroll Bar / No bar
12 fRScroll 4096 Vertical Scroll Bar / No bar

I 13 fAlert 8192 Window Frame:

Document / Alert
14 fClose 16384 Close box / No Close box I 15 fTitle" 32768 Title bar / No Title bar

I DS = Default Setting.	 The values you set are ignored.

I Bit 0 fHilited

Used internally. The value you set does not matter.

I
Bit 1 t'Zoomed (value =2)

I	 Zooms the Wmdow to the size of the entire Desktop when this bit is set to 1.

I
I	 Part Four: Creating the Apple IIGS Desktop

I

I

193 Chapter Three: Windows

Bit 2 fAllocated

Used internally to free the memory area used by a Wmdow. The value you set does Inot matter.

Bit 3 fCtrlTie I
Used internally. The value you set does not matter. I

Bit 4 fInfo (WARNING: Set to zero)

This bit is used to add an infonnation bar to the Wmdow. Info bars may be I
supported only by an assembly language routine linked in. If this bit is set to I, the
program will crash. I
Bit 5 fVis (value = 32)

I
This bit determines if the Window is visible when it is created. If this bit is cle~

the Wmdow will be invisible when created. If this bit is set, the Window will be visible.

Programmers
I

After creation, Wmdows may be made visible or invisible
using the ShowWmdow and HideWmdow Tool calls. I
According to the Toolbox documentation, this bit is used
internally by the Wmdow Manager and the value you set
does not matter. However, contrary to Apple's Toolbox I
documentation, for System v5.04 (GS/OS v3.3) and
earlier, we have found this information to be inCOITect. I

Bit 6 fQContent (value = 64) I
Used internally. The value you set does not matter.

I
Bit 7 fMove (value = 128)

Permits the Wmdow to be dragged by the title bar when this bit is set to 1. I
Bit 8 £loom (value = 256) I

The title bar will have a zoom box when this bit is set to 1.

I
Bit 9 fFlex (value =512)

If this bit is set to I, the data height and width are flexible. I

I Chapter Three: Windows 194

I

I Bit 10 fGrow (value =1024)

The Wmdow will have a grow box (size box) if this bit is set to 1.

Bit 11 mScroll (value = 2048)
I

The Wmdow will have a horizontal scroll bar if this bit is set to 1.

I

I Bit 12 mscroll (value = 4096)

The Wmdow will have a vertical scroll bar if this bit is set to 1.

Bit 13 Wert (value =8192)

I
The Window will have an alert frame if this bit is set to 1.

following bits to 0: 8, 9, 10, 11, 12, 14 and 15.

I
Bit 14 fClose (value =16384)

I

I The Wmdow will have a close box iftbis bit is set to 1.

Bit 15 ffitle (value =32768)

The Wmdow will have a title bar if this bit is set to l.

In this case, set the

I If the Wmdow has either scroll bars, it should also have a grow box and a zoom box
(bits 8, 10 with either 11 or 12).

I Closing a Window

I Call the WINDOW command with the following values in the integer array to close a
Wmdow:

Element Value

I o 0

1 Wmdow Number 1 - 10

I This command will remove the appropriate Window from the Desktop and will free
all memory used for the Window's data structures. To reopen the Wmdow, your
application must again execute the code to create the Wmdow.I Example: <Program fragment>

{Close a Window}

I EventRecord% (0) = 0

EventRecord% (1) - WindowNurnber%

I WINDOW (EventRecord%(, DeskTopArray$(

I Part Four: Creating the Apple fiGS Desktop

195	 Chapter Three: Windows I
Using A Specific Window	 I
Before anything may be done in a Wmdow. either draw in a Wmdow or call an update

routine. one of two methods may be used to have access to a Wmdow: I
L	 Use the Window Control Number (1·10) assigned by you to the Wmdow during this

creation
 I
2.	 Use the pointer of the Wmdow assigned by Mical Advanced BASIC to the Wmdow

during its creation. Most Wmdow Manager Thol functions need the Wmdow's
pointer to do its task. I

Obtaining the Pointer of a Window I
The pointer is returned in elements 0 and 1 oftha integer array when the Wmdowis

created by the WINDOW command. The pointer may be saved in variables as the IWmdows are created or the WINDOW command may be used to look them up whenever
they are needed.

The WINDOW command will return the pointer to any of the ten Wmdows that may Ibe created using the WINDOW command. If the pointer to a Wmdow number that is not
currenUy open is requested, zeros will be returned.

Element Value I
o 11

1 Wmdownumber 0- 10) I

2 pointer returned (low word)

3 pointer returned (high word)
 I
Example: <Program fragment

{Get the Window's pointer}
 I
EventRecord% (0) = 11

EventRecord% (1) - WindowNurnber%

WINDOW (EventRecord% (, DeskTopArr~ $()	 I
{Low part of the pointer}

WinPtrL% - EventRecord% (2) I
{High part of the pointer}

WinPtrH% = EventRecord% (3) I
Obtaining the Number of a Window I
The WINDOW command may also be used to determine which Window number a

pointer belongs to. For example. nit is detected that the user clicked in a Wmdow's close
box.. a pointer to the Wmdow to be closed will be returned in the integer array used by I
the MOUSE command. The application may then use the WINDOW command to
determine which Window number the pointer belongs to, then use the WINDOW I

Part Four: Creating the Apple llGS Desktop	 I

I Chapter Three: Windows 196

I
command again to close the Window with that Window number.

I Element Value

I
o 12

1 Wmdow number (1 - 10 returned)

2 Pointer (low word)

I
 3 Pointer (high word)

I
Example: <Program fragment>

{Get the Windows pointer}

EventRecord% (0) = 12

EventRecord% (2) - WinPtrL% {Low part of the pointer}

I EventRecord% (3) - WinPtrH% {High part of the pointer}

WINDOW (EventRecord% (, DeskTopArray$(

I
 WindowNumber% = EventRecord% (1)

I
Programmers

The WINDOW command is designed to be a general use

I
command in creating the Apple IIGS Desktop. It is
suitable for the vast majority of uses. However, Advanced
programmers should know that internally, WINDOW
uses the Wmdow Manager Tool to create and manage
Wmdows. Ifyou wish to create more elaborate Windows,

I you may use the TOOLBOX command to the Wmdow
Manager to do this.

I
Monitoring Windows

I MOUSE (Integer_Array ()

I After a Wmdow has been created, it is necessary for the application program to
monitor and respond to certain events that affect the Wmdow, and to maintain the image
in the Wmdow's content area

I Monitoring events in Wmdows is handled by the MOUSE command.

I
The following actions are done automatically by the MOUSE command when a

Wmdow is being monitored:

• Activating an inactive Window to bring it to the top (assuming more that one
Window is open) and making it active. A click of the Mouse on any region of a

I Window activates. it.
Dragging the active Window by holding the Mouse button down while the cursor

I
 is on the Title Bar.

Changing the size of the active Window when the user clicks in the Zoom Box.

I Part Four: Creating the Apple IIGS Desktop

197	 Chapter Three: Windows I
Chahging the size of the active Window to resize it by holding and dragging the I
Size Box.

The' following actions are partially automated by the MOUSE ,command: I
Closing the active Wmdow when the user clicks in its Close Box. The application
program will be notified when a close box has been clicked, and will return a
pointer to identify which Window's close box was clicked. The application I
program must actually close the Window.

•	 Redrawing the Window's contents when a hidden portion of the content region is
exposed. Hidden portions are exposed when Windows are first opened, when the I
size or zoom. boxes are used, or when Windows are dragged around the desktop
exposing previously covered or off-screen areas ofWmdows. I

Window Watching Information

I
Only one event at a time may be reported. As events occur, they are stored in

chronological order in an Event Queue, and are reported and cleared from the queue, one
at a time, each time MOUSE is called. The application, program uses the MOUSE I
command mside a loop called an Event Loop. This loop :removes events from the event
queue one at a time, and calls the Micol Advanced BASIC routines to respond to each
event. This is the heart ofDesktop programming on the IIGS. I

When an event is, detected in a Window, element zero of the integer array referenced
in the MOUSE command will return. the Event number, which will tell you what action
was taken by the user. Elements 1 through 10 will contain the Task Record which will I
provide additional information about the event.

The following values returned in element 0 indicate events that affect a Wmdow, and
its pointer. The values affecting the Wmdow appear in elements 9 and 10 of the integer I
array passed to MOUSE:
Value Description I
o No event to report

6 Update event. One of the Wmdows needs its contents redrawn.
 I
1(' Mouse down in Content Region.

22 Mouse down in GoAway box (close box).

24 Mouse down in Info Bar. (not used by Micol Advanced BASIC). I

27 Mouse down in Wmdow frame (but not in scroll bar)

The following events are handled internally by the system.. The application program I
need take no action in response to these events:
Value Description I
o No event

8 ActivateJDeactivate Wmdow
 I
19	 Mouse down in Content Region. MOUSE will select (highlight)

theWmdow.
 I
Part Four: Creating the Apple fiGS Desktop	 I

I Chapter Three: Windows	 198

I -20	 Mouse down in Title Bar. MOUSE will select the Wmdow and
handle dragging.

I 21 Mouse down in Size Box. MOUSE will select the Wmdow and track

the grow Wmdow control ifused.

I 23 Mouse down in Zoom Box. MOUSE will select the Window and track

the zoom control

I	 Handling Window Updates

I NOTE

I
I

This section is intended mainly for advanced
programmers; ignore the areas you cannot understand.
Please note that Task Master is an internal routine
within the Toolbox that automatically performs updates
upon a Wmdow whenever the user references this
Wmdow. Few of you will need to worry about this aspect
of doing Wmdows.

I
"Whenever a previously hidden portion of a Window's content area becomes exposed,

the Window needs to be updated (needs to have its image redrawn). This occurs when a

I Wmdow is first opened, when a Wmdow is zoomed, when a Window's size box is used,
when a portion of a Window is dragged from an off-screen to on-screen position. or when
one Window is moved. exposing a portion of another Window that was underneath.

I Whenever a Window needs to be updated, an Update Event (6) is generated.

I
Two methods are provided for handling update events. If the application program

has an assembly language routine that draws the Wmdow's contents, the address of this
routine may be passed in the field wContDefProc in the NewWmdow tool call. In this

II
case, TaskMaster will call the application's assembly language routine whenever it needs
to update the Wmdow. This method completely automates Window updates.

I
NOTE

Micol Advanced BASIC's ron time routines cannot be
called from inside a program, s.o this method is not
possible without a linked-in assembly language routine.

I	 Such a routine i.s available com.mercially through the
MaBug Users Group.

I
As an alternative method for handling updates, an update event is reported

whenever a Wmdow needs to be redrawn. This method is used! -whenever the application

I has not passed the address of a machine language update handler. Most Micol Advanced

I
BASIC programs will use this method.

An update event is reported by returning a six (6) in element 0 of the integer array
used by the MOUSE command. The pointer to the Wmdow needing updating is

I	 Part Four: Creating the Apple IIGS Desktop

199	 Chapter Three: Windows I
Ireturned in Elements 9 and 10 ofilie integer array. Element 9 contains the low value of

the pointer and element 10 contains the high value.

The application program must determine which Wmdow needs to be updated, then I
call the appropriate DrawContent routine that is specific for that Window. (A
DrawContent routine draws the contents of a specific Wmdow.) The number of the
Wmdow that needs to be updated (with a 12 in element 0) to convert the Wmdow pointer I
returned by the MOUSE command to the corresponding Wmdow number.

The application should include a DrawContent Procedure for each Wmdow. A
DrawContent Procedure draws the entire cUITent image of the Wmdow's contents using I
Super High Resolution commands. The applications event loop should call the
appropriate DrawContent Procedure in response to an update event for an application
Window. I

The DrawContent routine has a different structure for Wmdows with and without
scroll bars. Both forms are illustrated in the WINDOW program on the MAE.SUPPORT
disk.. I

For Wmdows without scroll bars, the DrawContent procedure should perform. the
following actions: I

•	 Call GetPort (tool call $lC04) to save the current GrafPort into temporary

variables.

•	 Call SetPorl ($lB04) to make the Window's GrafPort the current GrafPort. I
•	 Call BeginUpdate ($lEOE). This informs TaskMaster that you are handling the

update event. TaskMaster will continue to report an update event until you
 Iinform it, through calls to BeginUpdate and EndUpdate, that the update event is
being handled. Only then will TaskMaster report the next event in the Event
Queue.

•	 Draw the image using Super High Resolution commands. I
•	 Call EndUpdate ($lFOE) to inform TaskMaster that the update has been

completed.
 I
•	 Call SetPort ($lB04), passing the GrafPort pointer saved from the GetPort call

above, to restore the current GrafPort.
 IFor Wmdows with scroll bars, the procedure is slightly more complex. It should
perfornl the following actions:

•	 Call GetPort ($lC04) to save the cUlTent GrafPort. I
•	 Call StartDrawing ($4DOE). This makes the Window's GratPort the current

GrafPort and adjusts the Wmdows origin, and therefore the position in which
the image will be drawn in the Window, to correspond to the current setting of I
the scroll bars.

•	 Call BeginUpdate ($lEOE). I•	 Draw the image using Super High Resolution commands.
•	 Call EndUpdate ($lFOE)
•	 Call SetOrigin ($2304) to restore the Window's origin. I
•	 Call SetPort ($lB04) to restore the current GrafPort.

When a Wmdow is created, an update event is generated immediately after the I
I

I Chapter Three: Windows 200

I
Wmdow frame is displayed. For this reason, an application does not need to provide
code specifically to draw the initial image in the Window. An update event will occur

I when the Wmdow is created. The applications event loop will then call the appropriate

I

DrawContent routine to update the Window thus creating the initial image.

If you ever wish to change the image in a Wmdow. the application may simplyI redraw the image. The application should call GetPort to save the current GratPort, call
Setport to make the window's GrafPort the current GrafPort, draw in the Wmdow, then
call SetPort to restore the old GrafPort.

I
If a Wmdow's image changes during the course of the program, that Wmdow's

DrawContent Routine must contain conditional logic to insure that the current image
will always be drawn in response to update events. If a DrawContent Routine is not
coded properly, the Wmdow could be refreshed with an out-of-date image in response to
an update event.

I The s~ple program WINDOW includes a simple example ofa Window whose image

I
can change. Wmdow number 3 contains either a happy face or a sad face depending
upon which Menu Item has been selected by the user. The Menu handler sets the global
boolean variable gHappy! to TRUE if the current image is the happy face or FALSE if

I
the current image is the sad face. The DrawContent Routine checks this variable to
determine which face to draw, happy or sad, in response to update events. In this way,
the application always responds to update events in this Wmdow by drawing the correct
(current) image. Your applications must also guarantee that all DrawContent Routines
always draw current images.

I
Drawing in a Window

I Any valid Super High Resolution command may be used to draw inside a Wmdow;
this includes the DRAWSTR, HPLOT. and HPLOT TO commands, and Toolbox calls.

I It is often necessary to know the exact size ofa string, in pixels. Use the LEN (string
length) function. LEN will store the size, in pixels, in True_Value (locations 202 and

203) when the Super High Resolution screen is active (HGR or HGR2).

I To draw in a Window, the current GrafPort must be changd to the Window's GrafPort

you want to draw into. A GrafPort is a data structure that. completely describes a Super

High Resolution drawing environment. Each time a .Vindow is created using the

I WINDOW comman~ a GrafPort also is. The pointer returned by the WINDOW

I

command is the pointer to the Wmdow's GrafPort.

The correct procedure for changing GrafForts is as follows:

• Call GetPort ($lC04) to get a pointer to the current GrafPort. The current

GrafPort is the GrafPort that is currently open - the one in which the Super

I High Resolution is currently active.

I

• Save the pointer to the current GrafPort in temporary variables.

Call SetPort ($lB04) to make the Window's GrafPort the current GrafPort.

• Execute the Super High Resolution commands to draw in the Window.
• Call SetPort to restore the previous GrafPort.

I
I Part Four: Creating the Apple IIGS Desktop

201 Chapter Three: Windows I
The reason the current GrafPort must be saved and restored is to assure that things I

are left as they were. If you fail to follow this practice, problems such as having Desk
Accessories draw in your Wmdows because the Desk Accessories become confused about
what is the current GrafPort will arise. Remember, leave things as you find them and I
you will have no problems.

INote to Advanced Programmers

The rectangle in elements 11 - 14 of the integer array referenced in the WINDOW I
command, when the Wmdow is created, is passed to both wPosition and wZoom for the
library's call to NewWmdow. This design simplifies Windows for beginners, since these
parameters need not be different for most Windows. Several other fields in the Window I
parameter list are also set to default values, for example, wRefCon and wContDetProc
are set to zero. The default values may of course be changed using Wmdow Manager
Tool calls. I

Advanced programmers may wish to call NewWmdow directly. In this case, all of the
parameters in the NewWmdow parameter list may conveniently be passed in an integer
array. When calling NewWmdow directly, you may not use the WINDOW command to I
close the Wmdow or to convert between pointers and Wmdow numbers.

wInfoDefProc is also set to the default value zero by the WINDOW command when
creating a Wmdow. This is necessary because Micol Advanced BASIC cannot provide a I
machine language information bar drawing routine for TaskMaster to call. Accordingly,
Micol Aduanced BASIC does not support Window info bars unless the application Iprovides a linked-in assembly language routine to draw the info bar.

I
I
I
I
I
I
I
I

Part Four: Creating the Apple IIGS Desktop I

I Chapter Four: Dialog Boxes 202

I
Chapter Four

I
Dialog Boxes

I Overview

I This chapter shows how to create and monitor Dialog Boxes within your Micol
Advanced BASIC programs.

I Dialog Box Definition

I A Dialog Box is like the front of a television or stereo set: it is a panel with control
dials and buttons, etc. Just like a television, these dials and buttons are used for control.

A modeless Dialog Box is a panel that allows the user to do other things while theI Dialog Box is still on the screen; for example, the tool of a paint/draw program or the

I

FindlReplace box of a word processor or a data base program.

A modal Dialog Box is a rectangle that forces the user to act on it before doing I anything else like an "About..... box. Micol Advan.ced BASIC may be used to create
modal Dialog Boxes. Ifyou wish to create modeless Dialog Boxes, you will have to make
use of the TOOLBOX command.

Dialog Boxes, by convention, are centered on the display and do not cover the entire
screen. They may contain graphics, descriptive or informative text, fillain areas, and

I control-like buttons.

The point of origin for the Dialog Box is the upper left corner of the Desktop, position
0,0. Make sure not to exceed the maximum X coordinate on the horizontal axis

I depending on the graphics mode (320 or 640), otherwise the right part of the Dialog Box

I

will be hidden from view.

To be meaningful, a Dialog Box must contain Parts to which the user may respond.I Parts may be added, disabled, enabled, etc. as the need arises.

Do 1 .It forget to define the Super High Resolution graphics screen with either an
HGR (320 mode) or HGR2 (640 mode) before creating your Dialog Boxes.

Controls and LabelsI
I

The purpose of a Dialog Box is to give the user an easy, and straightforward way to
communicate with the program. This is usually done with a symbol used in everyday
life. such as a radio button, with a simple descriptor, that the user can easily relate to.
This symbol, together with its descriptor, is what we will call a Dialog Box Part.

I Each Part in a Dialog Box has 6 components:

I
1. The Part ID Number. Each Part must have a distinct ill number. The ill

number may range from 1 to 255. An ill number of 0 is invalid and will cause a

I Part Four: Creating the Apple nGS Desktop

203 Chapter Four: Dialog Boxes

run time error.
2..	 The Part Location. All Parls use coordinates relative to the upper left comer of

the Dialog Box. These coordinates, expressed in pixels, are called local
coordinates. The upper left corner of the Dialog Box is local eo-ordinate 0,0. iff
the coordinates specified for the Part are greater than the maximum boundaries
of the Dialog Box, the Part will be invisible. No error is generated.

3.	 The Part Type. Five different types of controls and one type of label may be
displayed using Micol Advanced BASIC.

4.	 The Characteristics of the Part. The characteristic value (also called PartFlag)
ofa Part depends on the type of the Part used. Not all Part types use this
component: see the specific Part for details.

5.	 The Value of the Part. This variable holds the value the Part has when it is, first
displayed. The Part Value depends on the type of the Part used. Not all Part
types use this component: see the specific Part for details.

6.	 The Part Descriptor. Most Parts must be labeled with words describing, as
closely as possible, the action to be performed. Not all Part types use this
component. See the' specific Part for details.

Table 4.4.1 Standard Dialog Part Types

Type Value	 Part Type

10

11

12

13
15
17

The Push Button

PushButton

CheckBox

Radio Button

Scroll Bar

Static Line

Edit Line

The push button produces an immediate or continuous action when it is pressed. It
has round or square comers with a single or a bold outline. Its Part type is ten.

A push button with an ill of one will have a bold outline. All other push buttons with
ill numbers from two to 255 will have a simple outline.

The button item with an ill of one is the default button. A default button should not
be used to control a destructive command. If a default button is not needed on a Dialog
Box, do not use ID number one for a push button.

The Return key is the keyboard equivalent of a button with ill one (usually "OK")
and the Esc key is the keyboard equivalent ofa button with ill two (usually "Cancel"). If
a button does not have an ill of one or two, the keyboard equivalents will be
non-functional.

The display rectangle of the button will be calculated automatically by supplying the
upper-left coordinates (l\fin Y, l\fin X, relative to the Dialog Box) of the Part. and setting

Part Four: Creating the Apple fiGS Desktop

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I Chapter Four: Dialog Boxes 204

I the lower-right coordinates to 0,0.

The PartValue is unused (set to zero) with push buttons.

I The itemFlag defines the shape of the button:

o Round corners, single outline

I 256 Round corners, bold outline

I
512 Square corners. single outline

768 Square corners, single outline with shadow

The Check Box
I

I

A check box is a box that may be filled with an X (ON) or be left empty (OFF). It is
often used to select options that will cause changes later on. The action of a check box is

I independent of other check boxes on the same Dialog Box. Its Part Type is 11.
The display rectangle of the check box will be calculated automatically by supplying

the upper-left coordinates (Min Y, Min X, relative to the Dialog Box) of the Part, and

I
setting the lower-right coordinates to 0,0.

The label is placed on the right side of the check box. Its description should be as
long as necessary, but it may not exceed one line.

The PartValue has the initial setting of the button (0 =OFF, 1 =ON).

The PartFlag is not used (set to 0) with check boxes.

I
The Radio Button

I A radio button simulates a button like the one in a car radio. The button is filled
with a circle to indicate the ON setting or empty to indicate it is OFF.

I A Radio Button is used to select only one option that will cause a change later on.

I
The selected button will turn off the button previously selected on the Dialog Box. A
Dialog Box should have at least two radio buttons, if they are used at all. The Part Type
number is 12.

The display rectangle of the radio button will be calculated automatically by
supplying the upper-left coordinates (Min Y, Min X, relative to the Dialog Box) of the

I Part, and setting the lower-right coordinates to 0,0.

The label is placed on the right side of the radio button. Its descriptor may be as long
as necessary but may not exceed one line.I The PartValue has the initial setting of the button (0 =OFF, 1 =ON).

The PartFlag has a value from 0 to 32512. This value links the radio buttons

I together. Use a different value (in increments of 256) for each series of ramo buttons.

I The Scroll Bar

I
A scroll bar is a rectangle with an arrow at both ends. It causes an immediate result

on the object it is controlling. The arrows are used to move the lever one notch at a time.
A click of the Mouse on the grey area, above or below the thumb, will move the display

I Part Four: Creating the Apple fiGS Desktop

205 Chapter Four: Dialog Boxes I

Iby the number of pixels represented by the thumb. The lever, also called a thumb, may
be dragged with the Mouse to a precise position. Its Part type number is 13.

The display rectangle of the scroll bar sets its thickness, height or length depending I
on its orientation.

The scroll bar is not labeled..
The PartValue indicates the actual position ofilie thumb and ranges from 0 to 290. I
The PartFlag indicates whether a horizontal or vertical scroll bar or indicator will be

displayed.. The proper values are: I
o Vertical indicator

3 Vertical bar
 I4096 Horizontal indicator

7168 Horizontal bar

I
The Static Line

A Dialog Box may be labeled using a static line of text. This static line of text may I
not be modified at a later time. The Dialog Box label uses the current font for the
characters. The maximum length of a static line is set to 64 characters by Micol
Advanced BASIC. Its Part type number is 15. I

All static lines should be disabled by adding 32768 ($8000) to its ill number so they
will not return Part numbers to the Event Loop. I

The display rectangle of a Static Line must be large enough to show the entire text
without overlapping other Dialog Box Parts.

To display a static text on one line, a role of thumb is to allow at least 20 pixels wide I
by 10 pixels in height for a character. For example, a line of text with 8 characters will
need at least 160 pixels in length.

To display a line ofstatic text on multiple lines, concatenate a carriage return (ASCII I
13) between each line. The next line of text will be placed 10 pixels below the preceding
one.

The PartValue and the PartFlag are unused (set to zero) with a Static Line. I
A Static Line should be the first Part displayed when a Dialog Box appears on the

screen. To do this, assign the highest Part ill number to the static line. This line of text I
will help the user immediately understand the purpose of the Dialog Box.

IThe Edit Line

An Edit Line is a rectangular box containing information. It is often used to give a
Pathname for operating system operations or to provide information in response to a I
query by the program. Its Part number is 17.

The display rectangle of an Edit Line must be at least 20 pixels wide by 12 pixels in
height for each character. For example, a line of text with g characters will need at least I
160 pixels in length. The next line of text will be placed 12 pixels below the preceding
one. . I

Part Four: Creating the Apple nGS Desktop I

I Chapter Four: Dfalog Boxes 206

I The PartValue contains the maximum number of characters that may be entered.

'I
 The PartFlag is unused (set to 0).

A line of static text should appear above an Edit Line to indicate what is expected as
input.

II
Defining the Dialog Box

II DIALOG (IntegerArray (, StringArray ()

,I A Dialog Box is defined by the DIALOG command. DIALOG requires two arrays:

I
an integer array and a string array to hold the necessary values. The integer array
holds the coordinates of the Dialog Box and those of the Parts. within it. The string
array holds the labels of the Dialog Box Parts.

Element zero of the passed integer array contains the Dialog Control Number. This
. Dialog Control Number instructs DIALOG as to what action to take. and controls which

I values are required in the passed arrays (see table 4.4.2).

I Dialog Control Numbers

I
Element zero of the integer array passed to DIALOG must contain the Dialog

Control Number. This Dialog Control Number determines the function of DIALOG and
performs the following tasks:

I Table 4.4.2 Dialog Control Numbers

Value Task

I o Close the Dialog Box

1 Create the Dialog Box

I 2 Add a Part to the Dialog Box

3 Rnmove a Part from the Dialog Box

4 Enable a Part in the Dialog Box I 5 Disable a Part in the Dialog Box

The Dialog Control Number assigned to element zero of the integer array passed toI DIALOG will determine which further values are required in the integer array:

I
 Close the Dialog Box (0)

I
If the Dialog Control Number specified is zero, the current Dialog Box will be closed

and disappear from the screen. The memory used by the Dialog Box will be released.

Example:

Array% (0) = 0 {Close Dialog Box}

DIALOG (Array% (, Array${
I)

I Part Four: Creating the Apple nGS Desktop

207	 Chapter F'our: Dialog Boxes I
ICreate the Dialog Box (1)

This is the most important Dialog Control Number. If the Dialog Control Number
specified is one, the system will create (but not yet display) a Dialog Box with the I
controls and labels defined in the parameter arrays passed to DIALOG. Once the
MOUSE command is executed subsequent to the Dialog Box creation. the Dialog Box IIwill be displayed.

In order to create the Dialog Box, additional information is required and is stored in
the parameter arrays. The integer array must contain the following information: II

•	 Element one contains the minjmum Y coordinate of the Dialog Box
•	 Element two contains the minimum X coordinate of the Dialog Box
•	 Element three contains. the maximum Y coordinate of the Dialog Box I
•	 Element four contains the maximum X coordinate of the Dialog Box
•	 Element 5 holds the total number ofParls in the Dialog Box. Any Parts added to I

the Dialog Box during the execution of the progran'l are NOT counted here. The
other array elements contain the descriptions of the Paris in the Dialog Box. A
Dialog Box may have as many Parts as necessary. I
Element 6 is the identification(ID) number of the Part. This is the value passed
back to the MOUSE command to inform you what the user response was. ID
numbers must be unique for each Part and range from 1 to 255. 'I

•	 Elements 7 through 10 contain the local (relative to the Dialog Box) coordinates
of the Part. The coordinates are expressed in pixels. The coordinates are listed
in this order: Y mjnimum coordinate, X minimum coordinate, Y maximum I
coordinate, X maximum coordinate.

•	 Element 11 stores the Part Type Number (see Table 4.4.1), I•	 Element 12 holds the Part Value (see the specific control).
•	 Element 13 contains the Part Flag (see the specific control).
e Element 14 holds the element number of the string array storing the label. Use I

zero ifno label is required.

'lb define other Parts in the Dialog Box, repeat elements 6 through 14 in subsequent
array elements for (' 1ch Part until the number of Parts specified in element 5 are
satisfied. All Dialog Box Parts will appear in the reverse order in which they were
defined.. Thus, the Part defined with the highest ill number will appear first and the Ione with the lowest ID number will appear last.

Next. the elements of the string' array storing the labels must be defined. These
array elements contain the strings referenced in the integer array as specified in I
element 14 (and subsequent integer array elements).

Example:
PRoe DialogBoxl {Define Dialog Box}	 I

{O	 - Close, 1 = Create Dialog Box}

Array% (0) 1 {Create the Dialog Box) I
Array% (1) - 99 {Y height of Dialog Box}

Axray% (2) - 319 {X width of Dialog Box) I
Part Four: Creating the Apple nGS Desktop	 I

I Chapter Four: Dialog Boxes 208

I
I

Array%' (3) =- 50 {Y height of Dialog Box}

Array% (4) 150 {X width of Dialog Box}

Array%' (5) .. 2 {Number of Parts on panel}

{Part! definition}

I Array% (6) =- 1 {Part to number}

I

Array% (7) -27 {Y min start position}

Array%' (8) 2 {X min start position}

Array% (9) - 198 {Y max start position}

Array% (10) - 317 {X max start position}

I Array% ·(11) - 15 {Part type: StatText}

Array%' (12) {Part value: unused}

I

I

- 0

Array%' (13) 0 {Part flag: unused}

Array%' (14) .. 1 {String array # for "Dialog Box"}

{Part2 definition}

Array%' (15) - 2 {Part ID number}

Array% (16) ~ 27 {Y min start position}

I Array%" (17) 2 {X min start position}

I

Array%' (16) - 0 {Y max start position}

Array%' (19) - 0 {X max start position}

I

Array%' (20) - 10 {Part type: Push Button}

Array%' (21) 0 {Part value: unused}

Array%' (22) - a {Part flag: single/round}

Array%' (23) 2 {String array #2 "OK"}

I {Part names}

I

Array$ (1) = "Dialog Box"

Array$ (2) = "OK"

{End of definition of the Dialog box}

DIALOG (Array%' (, Array$ ()

I
I After the Dialog Box is cre&ted, you may wish to fetch the Dialog Port handle

returned in integer array elements zero and one of the integer array passed to DIALOG.
The low part of the handle is in array element zero; the high part of the handle is in

I

array element one. Be certain to save this handle if you wish to make 'IbolBox calls

later.

I Example: <Program fragment>

Array%' (0) ~ 1

{Create Dialog box}

DIALOG (Array%'(, Array$(

{Get the Dialog Box GrafPort handle}

I DlgHdle_Low = Array% (a) {Low Handle}

I Part Four: Creating the Apple IIGS Desktop

I
I

If you are creating a Dialog Box, the Dialog Box will not
be displayed until the MOUSE command, monitoring the
Dialog Box, is executed.

IMPORTANT

209 Chapter Four: Dialog Boxes I

I
DlgHdle_High = Array% (1) {High Handle}

Add. a Part to a Dialog Box (2) I

A Dialog Control Number of two is designed to add another Part to a Dialog Box

besides those that were included when the Dialog Box was created. The integer aITay I

passed to DIALOG must have the following entries:

Element Part Type I

1 Part ill Number

2 Minimum relative Y coordinate ofPart I
3 Minimum relative X coordinate ofPart

4 Maximum relative Y coordinate ofPart

5 Maximum relative X coordinate ofPart I

6 Part type (see Tables 4.4.1)

7 Part flag (see specific Part) I

8 Part value (see specific Part)

9 Element number in string array containing text display. I

Remove a Part from a Dialog Box (3)

I
If element zero of the integer array contains a three, the Part number assigned to
element one of the integer array will be removed from the current Dialog Box.

Example: I

Array% (0) - 3 {Remove Dialog Part}

Array% (1) - 3 {Part 1D number to be removed} I

DIALOG (Array% (, Array$(

Enable a Part in a Dialog Box (4) I

Ifelement zero of the integer array passed to DIALOG contains a four, the Part with

the number assigned to element one of the array will be enabled. Thereafter, the user I

will be able to respond to this Part.

Example: I
Array% (0) 4 {Enable Part in box}

Array% (1) = 3 {Part ID number to be enabled}

I

•

I Chapter Four: Dialog Boxes 210

I
DIALOG (Array% (, Array$(

I Disable a Part in a Dialog Box (5)

I If element zero of the integer array contains a five, the Part with the number
assigned to element one of the integer array will be disabled. Thereafter, the user will

I
not be able to access this Part.

Example:

I

Array% (0) - 5 {Disable Part in box}

Array% (1) = 3 {Part ID number to be disabled}

DIALOG (Array% (, Array$ (.)

I Programmers

I
I
I

Micol Advanced BASIC uses the standard Parts defined
by the Control Manager, LineEdit, and QuickDraw II Thol
sets. The Control Manager directs standard controls.
The LineEdit Tool manages edit lines. QuickDraw II
displays the StatText Parls.

Monitoring the Dialog Box

MOUSE (Integer_Array ()

I Once you have defined a Dialog Box, you must monitor it for a user response. Like
monitoring the response to a Menu and Window, the MOUSE command is used to

I monitor Dialog Boxes. Unlike monitoring a Wmdow or a Menu however, MOUSE is not
placed within a loop to monitor a single response from the user; MOUSE will not return
control to your program until the user has responded to the Dialog Box. Once the user

I has responded to the Dialog Box, the Part ill number (defined by you in the DIALOG
command) will be returned in element zero of the integer array passed to MOUSE.

When monitoring the Dialog Box with MOUSE, the Part ID Numbe.l received in

I element zero of the integer array passed to MOUSE is used to direct the program flow to
the program code handling the action for that control. The Dialog Box is displayed until
the user selects the close button and the program closes the Dialog Box.

I Example:

{The Dialog Box is previously defined}

I DialogExit! = FALSE

REPEAT {Display until True}

I
 MOUSE (EventRecord% (}

I

ItemID% - EventRecord% (0)

CASE OF ItemID%

DO 1 {OKAY Button}

•

211 Chapter Four: Dialog Boxes I
IDialogExitl ~ TRUE

ENDDO

DO 3, 4, 5 {Check Boxes}
 I
{GetDitemValue}

TOOLBOX (21,46:0,tl,tO,ItemID;ItemValue)
 I
{ItemValue = 0 if CheckBox is not checked,

ItemValue = 1 if CheckBox is checked.

If ItemValue - 0 then ItemValue = 1 I
If ItemValue = 1 then ItemValue - 0 }

ItemValue = ABS (ItemValue - 1) I
{SetDitemValue}

TOOLBOX (21, 47:ItemValue,tl,tO, ItemID)
 IENDDO

ENDCASE

UNTIL DialogExit! {Radio_Buttons}
 I
See the demonstration program DIALOG to see how to use the Dialog Control

Numbers and CONTROLS to see how to define the different types of controls. These I
example programs are on the MAR.SUPPORT disk in folder Desktop.Samples!.

I
I
I
I
I
I
I
I
I

Part Four: Creating the Apple nGS Desktop I

I Chapter One: Direct Tooffiox. Access 212

I
Part Five: The Apple IIGS Tooffiox

I
Chapter One

I
Direct Toolbox Access

I
Overview

I This chapter demonstrates how to use Micol Advaneed BASIC's TOOLBOX
command to get direct access to the Apple IIOS ToolBox.

I
Defining the Tooffiox

I What is the ToolBox? The ToolBox is a series of routines designed to perfonn specific
tasks. Each particular task, like memory management or graphics, is divided into a
specific TooL Each Tool is given a unique ill number. Within each Tool are speci.£ic

I
I Functions which perform individual tasks. Each Function within a particular Tool set is

also designated by a unique ill number.
For example, Tool number two is the Memory Manager and QuickDraw II, which

does Super High Resolution graphics, is Tool 4. Function number two within each Tool
starts up the Tool, while Function 15 in QuickDraw II returns the contents of a color
table.I Books describing ToolBox functions will be necessary to write Micol Advanced BASIC
programs that use the Apple IIGS Thalbox. The list of ThaIs appears in Table 5.2.1 and

I 5.2.2. (As this manual goes to press, thirty-three tool sets have been defined; of these,
thirty-two sets were released in ROM and the IIGS System Disk v5.04.)

I The Universal TOOLBOX Command

TOOLBOX (ToolNum, FuncNum [:Push List] [;Pull List])I
I The TOOLBOX command is designed to call virtually any Tool and consists

essentially of four parts. The first part consists of the Tool Number. The second part is

I

the Function number within the 'Thol. The third part, the Push List, consists of the
parameters required by the Tool Function, and the forth part. the Pull List, is a set ofI integer variables which will contain the values returned by the Tool Function itself.

The first argument, the Tool Set Number, is an integer literal (expressed in decimal
or hexadecimal) or integer variable.

The second argument, the ThaI Function Number, is an integer literal (expressed in
decimal or hexadecimal) or integer variable. Any value greater than 255 ($FF) generates

I an error.

I Part Five: The Apple IIGS Tooffiox.

213 Chapter One: Direct Tooffiox Access I

An optional list of integer literals (in decimal or hexadecimal) or integer variables, I
separated by commas, follows the Function Number. This list is separated from the
Function number by a colon (:) and is a set ofvalues that will be pushed onto the 'IbolBox Istack.

Last comes an optional list of integer variables, separated by commas, which will
contain the values returned by the Tool Function. A semi-colon (;) precedes this list. I

Most 'Thol Functions require values to be placed onto the 'IbolBox stack. before the
Function can be used. These values are often a four~byte memory location which may be
represented within two tw<>-byte integer literals or variables. Toolbox reference manuals I
list the values to be pushed or pulled from the stack in terms ofwords and long words. A
word is equivalent to an integer, and a long word is equivalent to two integers. For the
most part with the TOOLBOX command. long integers are treated like short integers. I

Determining the Tool and Function Numbers I
In any 'IbolBox reference manual, a Function is referenced in terms of a name and a

call number. This call number is used by assembly language programmers to make the Icall to the Thol Function.

This call number is a hexadecimal number with the Function number and Thol
number appended. You can easily unappend this number to determine the 'Thol number II
and Function number for use with the TOOLBOX command.

Let's say that the call number of a particular 'Thol Function is $2C03 (SysBeep). The
dollar sign simply means that the number is hexadecimal. The next two chm-acters in I
the number are the hexadecimal value of the Function Number, or $2C (44 decimal).
The following two letters are the hexadecimal value of the Tool Number or $03 (3
decimal). Therefore, in this example, the 'Thol number is three, and the Function I
number is 44. Please note that TOOLBOX can accept either decimal or hexadecimal
numbers, so there is no need to make any conversions.

IExample:
TOOLBOX (03, 44) {SysBeep $2C03}

I
r e Push List

The Push List of the TOOLBOX command is used to pass values to the particular I
Tool Function. Every description of a 'Thol Function will describe what values have to be
pushed unto the stack. These are the values that go into the TOOLBOX Push List.

Values contained within the Push List will consist ofeither integer literals or integer I
variables. An integer is the same as a word that needs to be pushed onto the ToolBox
stack. Two short integers must be used to equal a long word.

Be very careful when specifying values for the Push Stack.. There is a one-~one I
correspondence between values that are contained in the TOOLBOX command, and
values that are pushed onto the Tooffiox stack as defined in any 'lboffiox reference
manual. TOOLBOX pushes values onto the stack in the order they are specified. I

I
Part Five: The Apple fiGS ToolBox I

I Chapter One: Direct ToolBox Access 214

I
I

Example:

Colour - 15 {Clear to White}

TOOLBOX (04, 22: Colour) {ClearScreen $1504}

I The Pull List

Many Tool Functions return values after their work is done. The values from the

I Tool Function will be returned in the integer variables in the Pull List in the order they
were defined within the TOOLBOX command.

Example:I Rnd Num% = 0

TOOLBOX (04,134: 0; Rnd_Num%) {Random $8604}

I Example:

XCoord% "" 240

I YCoord% =- 120

I
Pixel% - 0

{GetPixel $8804}

TOOLBOX (04,136: 0, XCoord%, YCoord%; Pixel%)

I Error Checking

If the call to the Tool Function is successful, zero wil be returned in True_Value

I
I (locations 202 and 203). If the 'Thol Function should return an error, the error value will

be returned in True_Value in LSB, MSB order. MSB (location 203) will be the Tool
Number which returned the error, not always the 1001 that was called.

PEEK location 202 to determine if the call was successful. If the value is zero, the
call was successful, otherwise you should be able to determine the problem.

I TOOLBOX and Long Integers

I The TOOLBOX command will use long integers when the LONGINT compiler
option is specified. Only two bytes (one word) from the long integer's value will be used,
usually the two least significant. The Greater Than symbol (» may be used to reference

I the most significant word in the long integer; if the long integer is storing an address,
this is the bank number of the address.

I
 Example: <Program fragment>

PROGRAM Show_Longlnt

@ LONGINT

I {Get the address of the pointer}

Address% = ADDR (Address% (

I TOOLBOX (14, 19: >Address%, Address%) {ShowWihdow $130E}

I Part Five: The Apple nGS ToolBox

215 Chapter One: Direct Tooffiox Access I
ILong integers may be used in this manner only with the TOOLBOX command.

Future Tooffiox Additions I
The TOOLBOX command is a very versatile command. It was designed to let you Itake advantage ofpresent and future Tool sets ,to come from Apple Computer Inc. or from

third-party companies.

I
Allocating Tooffiox Buffers

IMany TholBox calls need the use of a supplied buffer to accomplish their tasks.
Essentially, there are two methods you may use to fetch memory for a ToolBox call.

The more difficult method to fetch this memory is to either use a TOOLBOX call to Ithe Memory Manager. or the GET_MEM command. This method needs to be used ifyou
are fetching Direct Page memory for the Tool, otherwise, use the easier method.

We will outline the easier method here. Allocate some memory within a dummy I
array with the DIM: statement. Be certain this array is large enough for its work and do
not use it for any other purpose. as internal values may become corrupted by the ToolBox
call. The ADDR command may then be used to get the address of this dumm.y array. I
and this address may then be passed to the Tool call.

The following example program below should answer any questions you may still
have about the TOOLBOX and AnDR commands. The example below uses I
Miscellaneous Tool (Set 03) to read the time and date as an ASCII representation, and
then displays this time and date to the screen.

Example (line numbers are for reference only):
1. PROGRAM Display_Time

2. @ LIST

3. DIM ToolBox_Buf% (10)

4. Adr% - ADDR (Too1Box_Buf% ()

5. Bank_Number% - PEEK (202)

6. TOOLBOX (3, 2) {Turn on Misc.

7. {ReadASCIITime $OE03}

8. TOOLBOX (3, $OE: Bank_Number%,

9. Adr& ~ ADDR (Toolbox_Buf% ()

10. HOME

11. PRINT "The Current time is ";

12. FOR Loop_Ctr = Adr& TO Adr& +

13. Char - PEEK (Loop_Ctr)

14. Char$ = CHR$ (Char)

15. PRINT Char$:

16. NEXT Loop_Ctr

Part Five: The Apple nGS Toomox

I

I

I

Tools} I
Adr%)

I

I

19

I

I

I

I Chapter One: Direct ToolBox Access	 216

I 17. PRINT

I
 18. {Turn off Mise Tools}

19. TOOLBOX (3, 3)

20. END

I How this program works•••

I 1. At line 3, a 23 byte buffer is defined for the ToolBox output. This buffer should
never be used as an array.

I
 2. At line 4, the address of the ToolBox buffer is determined as an integer value.

3.	 At line 5. the bank number of the ToolBox buffer is obtained.

4. At line 6, the Miscellaneous Tool set is started.

I 5. At line 8, the ReadASCTITime function call from the Misc. Tools is done by pushing

I
the bank number and the address of the buffer onto the ToolBox stack as
required by this Tool Function.

6.	 At line 9, the full address of the ToolBox buffer is determined as a real value. We
need the real address to be able to PEEK the Tool Function results from
memory.I 7.	 At lines 12 - 16, the time and date returned by the Thol are displayed. Note the use
ofPEEK within the loop. Because of the way MicolAdvanced Basic parses a
statement, we cannot use an integer variable at Ene 13, because, ifwe did,I	 PEEK would try to take the integer value of Loop_Ctr, a value too great for an
integer, and we would therefore receive an error.

I 8. At line 19, the Misc. Tools is shut down. It is wise to always wait until the end of
your programs before performing any shutdowns as these Tools may also be
used by the run time routines.

I
I
I
I
I
I
I
I	 Part Five: The Apple nGS Tooffiox

I Chapter Two: Tool Set Tables	 217

I
Chapter Two

I
Tool Set Tables

I
Some of the Tools listed below are used automatically by the run time routines: do

not start them up or shut them down. using the TOOLBOX command. Use the

I TOOLBOX command to start or shut down the tools that have no Micol Advanced
BASIC equivalent or are not started by a run. time routine (if the respective command is
not active in your program).

II	 Startup notes: You must observe the following:

• The following Tools are always necessary and should never be shut down by your

I program: Tool Locator. Misc. Tools. Memory' Manager, Text Tools, and SANE.

I
The Desktop Tools (Event Manager, Line Editor. Window Manager. Menu
Manager. Dialog Manager, Scrap .Manager, and Control Manager) are activated
when one of these MicolAdvanced BASIC commands is executed: DIALOG,
MENU, or WINDOW.

• The Sound Tool Set is activivated by the NOISE command.II	 • The Sound Tool Set and the Note Synthesizer Tool are activated by the MUSIC
command.

I
 • QuickDraw II is started by the HGR or HGR2 command.

Shutdown Notes: As a general rule, shutdown of the Tools is done in the reverse

I order as they were started up. You must observe the following:

•	 The Tools started by the Library routines are all deactivated and memory is
deallocated by the END, STOP or BYE command.I The Desktop and Graphics Tools are deactivated by TEXT.

The Sound Tool Set and the Note Synthesizer Tool are both deactivated by the

I SILENCE command.

. The memory necessary for the Tool is deallocated automatically when the Tool is
shutdown.

I
The tables in the following pages enumerate the Tools, their startup, shut down

order, and the memory needed by each set.I Legend:

I	 • "AN" means "After W. N is a Tool Number that indicates that the tool with that
number must be started before this one.

• (d) indicates a Desktop command (MENU, WINDOW or DIALOG)

I

I

I
 Part Five: The Apple I1GS ToolBox:

218 I Chapter Two: Tool Set Tables

ITable 5.2.1 Startup List

Tool. Tool Set Name Started by Order I
1 Tool Locator Library 1

2 Memory Manager Library 2
 I
3 Miscellaneous 'Ibol Library 3

4 QuickDrawII HGRor HGR2 4

5 Desk Manager (d) 18 (Last)
 I
6 Event Manager Cd) 5

7 Scheduler Library Routine A3
 I
8 Sound 'Thol Set NOISE A21

9 Apple Desktop Bus Library Routine Al

10 SANE Library Routine A2 I
11 Integer Math Library Routine Al

12 Text Tools Library Routine Al I
13 Internal Use Cannot Be Called NA

14 Window Manager (d) 6
 I
15 Menu Manager (d) 8

16 Control Manager (d) 7

17 System Loader DoNat Call NA I
18 QuickDraw II Aux. TOOLBOX (18,02) A4

19 Print Manager TOOLBOX (19,02) 15 I
20 Line Edit (d) 9

21 Dialog Manager (d) 10 I
22 Scrap Manager (d) 12
23 Stnd File Operation TOOLBOX (23,02) 11

24 (Not Defined) I
25 l.,ote Synthesizer MUSIC A21
26 Note Sequencer TOOLBOX (26,02) A21 I
27 Font Manager TOOLBOX (27,02) 14

28 List Manager TOOLBOX (28,02) 13
 I
29 ACE'ThoI TOOLBOX (29,02) A2

30 Resource Manager System Loader Al

31 (Not Defined) I
32 MIDI'Ibo1 TOOLBOX (32 j 02) A21

33 Video Overlay Card TOOLBOX (33,02) A5 I
34 Text Edit Tool TOOLBOX (34,02) A6

I

Part Five: The Apple nGS Tooffiox I

I Chapter Two: Tool Set Tables 219

I
Table 5.2.2. Shutdown List

I Tool # Tool Set Name Shutdown by Order

1 Tool Locator Library Routine 29 (last)

I 2 Memory Manager Library Routine 25

3 Miscellaneous Tool Library Routine 21

4 QuickDraw II TEXT 19I 5 Desk Manager TEXT (if started as (d) First

6 Event Manager TEXT ifstarted as (d) 17

I
I 7 Scheduler Library Routine 20

8 Sound Tool Set SILENCE 11

9 Apple Desktop Bus Library Routine 28

10 SANE Library Routine 24

11 Integer Math Library Routine 27I 12 Text Tool set Library Routine 20

13 Internal Use Cannot Be Called NA

I 14 Wmdow Manager TEXT ifstarted by (d) 16

I
15 Menu Manager TEXT ifstarted by Cd) 14

16 Control Manager TEXT ifstarted by (d) 15

17 System Loader Do Not Call NA

18 QuickDraw II Aux. TOOLBOXCI8,03) 18

I
I 19 Print Manager TOOLBOX(19,03) 3

20 LineEdit Tool TOOLBOX(20,03) (d) 13

21 Dialog Manager TOOLBOX(21,03) (d) 12

22 Scrap Manager TOOLBOX(22,03) (d) 6

23 Stnd File Operation TOOLBOX(23,03) 7I 24 (Not Defined)

25 Note Synthesizer SILENCE 10

I
I 26 Note Sequencer TOOLBOX(26,03) 9

27 Font Manager TOOLBOX(27,03) 4

28 List Manager TOOLBOX(28,03) 5

29 ACE Tool TOOLBOX(29,03) 23

30 Resource Manager System Loader 22I 31 (Not Defined)
32 MIDI Tool TOOLBOX(32,03) 8

I 33 Video Overlay Card TOOLBOX(33,03) A5

34 Text Edit Tool TOOLBOX(34,03) 2

I
I Part Five: The Apple IIGS ToolBox

220 Chapter Two: Tool Set Tables I

Table 5.2.3 Tool Sets Direct Page Memory Requirements I

Tool I

04

06

08

10

14

15

16

18

19

20

21

23

25

26

27

29

31

32

33

34

Tool Name

QuickDrawII

Event Manager

Sound Tool Set
SANE Tool Set
Wmdow Manager

Menu Manager

Control Manager

QuickDraw II Auxili~

Print Manager

LineEdit Tool

Dialog Manager

Standard File

Note Synthesizer

Note Sequencer

Font Manager

ACE Tool
(Not Defined)

MIDI'Tho1
Video Overlay Card

Text Edit Tool

Direct Page Allocation I

Yes, 768 bytes

Yes, 256 bytes I
Yes, 256 bytes

Yes, 512 bytes

No) Shares Tool 06 Direct Page I

Yes, 256 bytes

Yes, 256 bytes I

No, Shares Tool 04 Direct Page

Yes) 512 bytes

Yes, 256 bytes I

No. Shares Tool 16 Direct Page

Yes) 256 bytes
 I

No. Shares Tool 26 Direct Page

Yes. 768 bytes I

Yes, 256 bytes

Yes, 256 bytes + memory for buffers I

Yes, 768 bytes + memory for buffers

Unknown I

Yes, 256 bytes

I

I

I

I

I

I

I

Part Five: The Apple JIGS Tooffiox I

I Chapter One: Program Debuggmg 221

I
Part Six: Program Management

I
Chapter One

I
Program Debugging

I
Overview

I This chaper is designed to help you debug your programs.

What Is Debugging? Debugging is the act of finding errors within a program.

I In general, two classes of errors can occur in a program; syntax errors and logic

I

errors.

Syntax elTors occur when the syntax rules of the language are violated and areI caused mainly by typing errors or by a misunderstanding of the rules of the language.
These errors are almost always very easy to solve and will not concern us here.

Logic errors are much more difficult to determine than syntax errors and occur when I a program is not properly designed to solve the problem in question. Logic errors cause
the program to give different results and/or behave differently than what was expected.

No language system can find such logic errors because no language system can do

I
what a human can do, think. The most a language system can do is to give the
programmer some tools to help him/her find these logic errors. This is what Micol
Advanced BASIC does and this is the subject oftlris chapter.

Debugging StatementsI
I

Often, a variable has a different value than is intended, or an area of code has
executed when it should not have executed, or vise-versa.

Programs do exactly what you tell them to do; they do not do what you think you tell
them to do. This is very often the cause of logic errors; the progr......n.mer has told the

I computer to do something other than had been intended. Do not assume that any code is

I
automatically correct, this is a big mistake.

Another cause of logic errors is that the programmer has devised an incorrect
solution to the problem. The program operates as intended, but incorrect results are
coming out. This is a more serious problem, and more difficult to solve. Once the
problem is located, the code must be rewritten.

I
I The following statements are designed to help inform you where you are going

wrong; they cannot find the problems themselves. Use these commands wisely, and your
job will be a lot easier.

I

I Part Six: Program Management

222 Chapter One: Program Debugging I

BELL I

BELL can be a good tool to help you find your logic errors. Just place BELL in the I

section(s) of code where the program seems to be malfunctioning. If the speaker beeps

when it should not or fai.ls to beep when it should, a bug may have been found in the

program. The beep gives you an aural message telling that something may be wrong. I

Example:

IF PEEK (202) - 2 THEN BELL
 I
PRINT I

Insert a PRINT statement at strategic points in the program to determine what the

contents ofa particular variable are.
 I

Example:

Alpha% - PEEK (True_Value)
 IPRINT "Alpha% ~ ": Alpha

STOP I

STOP halts the program's execution, prints the line number where the program
 Ihalted, and returns control to the Command Shell while using the programming

environment.

Line number information can be valuable information in debugging as it is I

sometimes the case that a particular line should or should not be executing at a certain

point in the program's execution. Then it's necessary to trace the logic in your program

to determine why the program flow got to where it did. I

This is what is known as setting a break point, and is the most frequently used

debugging technique in assembly language programming. Break points may also be

useful in high level debugging. I

STOP may be placed anywhere in a progrm- as it closes all text files currently open
and sets the screen to text mode. I

Example:

Variable - 3
 IIF Variable - 3 THEN STOP

TRACE I

TRACE will print the sequential line numbers of the program as the line

structured loop statement is executing. Tracing a program's flow can be a great aid
or
 Iin

determining the program's actual logic.

TRACE may be placed anywhere in a program and follows the flow of execution used
 I
Part Six: Program Management I

I Chapter One: Program Debugging 223

I
I

in the program.

To use TRACE, place it before the location from which you wish to begin the trace of

I
your program. Any code executing before TRACE will not be displayed.

The tracing may be paused by pressing any non-Control character. Restart the
tracing by pressing any non-Control character again.

WARNING

I Do not use the OPrIMIZ compiler option as it hinders
the generation orline information required by TRACE.

I
I

Example:

PROGRAM Try_Trace

I
PRINT ~This program will be traced"

HOME

TRACE

FOR Number% = 1 TO 4

I PRINT ~Number% - ";Number%

NEXT Number%

I
 NOTRACE {Turn off the TRACE}

END

I STRACE

I STRACE stands for SuperTRACE. STRACE will print the sequential line numbers
of the program and the text of the line that is executing to the current output device as
the line is executed.

I To use the STRACE command, place it before the location at which you wish to
begin the trace of your program. Any code executing before the STRACE will not be
displayed. STRA.C!'; may be placed anywhere in a program

I STRACE follows the flow of execution used in the program; so the lines will not be

I
shown consecutively.

The tracing may be paused by pressing any non-Control character. Restart the
tracing by pressing any non-Control character again.

I WARNING

I
STRACE takes the text it displays from the program
currently in the Text Editor. This means that the
program you wish traced must be in the Text Editor,
which is normally the case. Do not use the OPTIMIZ
compiler option.

I

I
 Part Six: Program Management

224 Chapter One: Program Debugging I
Example: I

PROGRAM Try_STRACE

STRACE {Turn on the STRACE}
 I
HOME

FOR Number% - 1 TO 2

PRINT Number%
 I
NEXT Number%

NOTRACE
 I
PRINT

PRINT ~This program has been traced"

END I
The above program produces something like this on the screen: I

/<3>HOME\

/<4>FOR Number% • 1 TO

/<5> PRINT Number%\

1

/<6>NEXT Number%\

/<4>FOR Number% - 1 TO

/<5>PRINT Number%\

2

/<6>NEXT Number%\

/<7>NOTRACE\

NOTRACE

I2\

I
2\ I

I
I
INOTRACE turns off the effects of a TRACE or STRACE. The number of the line

and its text of code will no longer appear after NOTRACE is executed.

Example: (see example under TRACE and STRACE.) I
I
I
I
I

Part Six: Program Management I

I Chapter Two: Program Optimization	 225

I
Chapter Two

I
Program Optimization

I
Overview

I This chapter discusses some simple tricks to help you maximize the speed of your
programs while at the same time minimizing the program size.

I
Saving Memory

I Because of the large amount of memory available to the Apple IIGS, you may never
have to worry about memory used for either programs or data.- Under Micol Advanced
BASIC, a program may have a maximum of over one million bytes and data space is

I
I limited only by the available memory in the machine.

However, if you have a system with only 768K, this section may be of use to you.
Consider buying more memory as soon as your finances permit.

Generally, the tricks to help save memory are the same as in Applesoft BASIC.

I	 Working within the Editor's Workspace

I The ten editor has enough work space for about 4000 lines of code. Use INCLUDE
or CHAIN in the program if the program exceeds 3000 lines.

I	 Saving Space in a Program

I • Use the OPTIMIZ compiler option once your program is free of bugs; this can
shrink your programs as much as one-third. If limited spaee is a problem during
program development, you may use this compiler option to save memory, but .

I determining where run time errors occur will become Dluch more difficult.
•	 Avoid the use of the ERROR compiler option. The only function this compiler

option has is in regards to the RESUME command, but ERROR causes a I	 significant amount ofcode generation. You will have to handle your error
recovery in a different fashion.

• Analyze your programs for repeated code. It may be possible to create oneI subroutine that will. do the work of several portions of your program.
•	 Use arrays as rarely as possible. Ifyou must use arrays, use integer arrays

whenever possible. Do not make arrays any larger than you have to.I • Avoid DATA statements. DATA statements require significant memory. Data
may just as well be stored on disk and recalled at run time.

I	 • Do not use the EXTEND or the LONGINT compiler options ifvery large arrays

I
 Part Six: Program Management

226	 Chapter Two: Program Optimization I
I

are used within your program.
•	 Avoid mixed arithmetic. Mixing reals and integers within a statement forces the

Compiler to generate extra code. code that may possibly be avoided. I
•	 As with any programming language, code efficiently.

I
Speeding Up Your Programs

Certain methods may be used to make a program execute more quickly. Some of the I
tips mentioned above apply here too.

•	 Make use of the OPTIMIZ compiler option as soon as your program is I
completely free ofbugs. The code required for debugging purposes usually takes
significant time to execute. Once your program is debugged, this code no longer
has a useful purpose and may be eliminated. I

•	 Do not mix your arithmetic. Ifcalculating in real, be consistent with real;

likewise for integers.
 I

•	 Use integer v·ariables whenever practical. Micol Advanced BASIC has its own

built.in integer routines. The average increase in speed over real arithmetic may

be as great as 300%.
 I

•	 Use arrays wisely. Some time is needed at run time to calculate the address of
the array element. However, uyou have an algorithm which is faster than
another and uses arrays, feel free to use them I

•	 Avoid disk access as much as possible. Ifyou have frequent disk access with the
same file(s) being read again and again and you also have a lot of available
memory, make use of a RAM disk together with the COPY command to transfer I
the files from a static disk to the RAM disk before yOill" program reads these files.

I
I
I
I
I
I
I

Part Six: Program Management	 I

I Chapter Three: Program Segmentation 227

I
Chapter Three

I
Program Segmentation

I
Overview

I
I This section shows how to segment both source code and executable load modules

under Micol Advanced BASIC and how to conceive large programs which would
otherwise be very difficult to do.

Chaining Source Code FilesI

I

For very large programs, it may be necessary to segment your source code into two or
more portions in order to manage the source code within the Text Editor. MicolI Advanced BASIC has two methods to allow you to segment your program code: chaining
text files, and creating a library of modules. Because the creation oflibrary modules has
been discussed in Part Three, Chapter 9 in this manual, it will be only briefly discussed
here.

I Segmenting the Source Code Files

I

In order to segment the source code file, you must first decide where you can logicallyI break the program. You must make every attempt to keep subroutines intact.

Using the Text Editor, break this large program into several smaller source code files.
To be safe. keep the original :file safe just in case something goes wrong.

Then. simply terminate each source code ,segment, except the last, with a CHAIN
statement, using the next source code filename as the CHAlN string parameter.

I The second, and subsequent source code file(s) begin without a PROGRAM
statement.. The next file finishes with an END or with another CHAIN if another file is
to be chained.

I
CHAIN StrinLLiteral

I
I The CHAIN statement must be the only statement on the line. It should be the last

statement in the file: any subsequent line(s) of code following the CHAIN statement will
be ignored by the Compiler.

Strin~Litera1 must be the Pathname of the source code file you wish to compile after
the previous source code has finished compiling. The only accepted parameter to

I CHAIN is a string literal; a string variable will be rejected by the Compiler.

The file referenced must be online at the time of compilation. otherwise the
appropriate operating system error will occur.

I The Compiler displays the message "Chaining <Pathname>" before it starts reading

I Part Six: Program Management

228 Chapter Three: Program Segmentation I
Ithe file to be chained.

Example:

(Contents of fi.1e: Chai.nl)
 I
PROGRAM Chain_Example

@ LIST I
FOR Ctr% - 1 TO 10

PRINT Ctr%
 INEXT Ctr%

CHAIN ~/RAM5/Chain2"

I
(Contents of fi1e: /RAMS/Chai.n2)

FOR Ctr% = 11 TO 20 I
PRINT Ctr%

NEXT Ctr% {End of chained program} IEND

How to Debug a Chained Program I
The Compiler does not number the lines of a segmented chained program the same

way the Editor does; the Text Editor always begins numbering from the first line in the Ieditor buffer.

During compilation, the chained file is treated as ifit were a part of the previous file.
This means that the sequential line numbers continue uninterrupted. Ifan error with a I
specific line number within a chained file occurs during execution, you will have to
recalculate its editor line number to be able to correct the problem in the Editor. The
same situation is true of syntax errors. I

Consider using the INCLUDE statement as an alternative method of compiling
large source code files. See Chapter Nine in Part Three for additional information. I

Segmenting Executable Code Files I
Micol Advanced BASIC programs tnay be a maximum of about one megabyte of

memory. However, because of a limitation of the Apple JIGS microprocessor, a single
program code segment may only occupy a maximum size of 64 kilobytes (one bank) of I
memory. The variable space is separate and is not affected by this limitation.

The vast majority of programs will not require a program space larger than 64
kilobytes, however, some will. Micol Advanced BASIC overcomes this 64K limitation I
with the creation ofexecutable program. segments.

A segment is a large, self-contained program section. The segment is used to break a I
program when it can no longer fit in one memory bank (64K).

A program using segments need not be broken up into different program files as
could be expected, but, space permitting, may be stored in a large continuous file. I

Part Six: Program Management I

I Chapter Three: Program segmentation 229

I
I

The Compiler resets its internal program counter to zero when it compiles a new
segment and generates code that will cause the Loader to load this program segment as
a separate entity and store its loading location in a suitable location.

How to Segment a ProgramI
A Micol Advanced BASIC program may have up to sixteen segments sequentially

I numbered from 0 to 15. Each segment is given a sequential value by the Compiler; take
note of this number as it will be needed to start the e~ecution of the segment. The
Compiler will display a message when it recognizes a new segment, and will display the

I number given to the segment.

I
Each segment shares the entire variable, space with all other segments, so any

change in global values in one segment will also be recognized in the others.

I
The exiecutable code ofsegment zero (the starting segment) should not be larger than

50K to leave room for maintenance. All segments should leave room for enhancements
ofcurrent features, and additions of new features. If the segment is too large for a single

I
memory bank, the Linker will report that program space is exceeded.

The .first segment containing the line PROGRAM Identifier is segment zero;
execution always begins with s'egment zero. Compiler directives, declaration of literal
data,- type identifiers, and DIMension statements may appear only in segment zero.

Because one segment cannot have direct access to the Functions, Procedures and

I Routines of another segment, all segments must be self-contained. Functions,

Procedures and Routines necessary to one or more segments have to be duplicated in

each of the segments needing them.

I You may use the CLEAR statement only in segment zero; otherwise the program

may crash.

I SEGMENT [Identifier]

I The SEGMENT statement forces the Compiler to segment a program. It must be
the first and only statement on a line of code.

:. EGMENT may have an optional segment identifier. The segment identifier should

I be a digit or word which describes the segment and is designed to help in documentation;

I
it is ignored by the Compiler.

The keyword SEGMENT signals the end of the preceding segment and the start of
the new one. When the Compiler encounters the reserved word SEGMENT, it

I
generates code which will inform the Micol system loader to load that segment ofcode as
a separate entity, and to set the program counter of the microprocessor accordingly.

Using a Segmented Program

I Like a Function or Procedure, a segment will not execute by letting the program flow
reach the SEGMENT statement; the segment must be called using CALL.

I

I

230 Chapter Three: Program Segmentation

CALL Segment_Number

The CALL statement branches the program flow to the segment number indicated.
Segment_Number must be a digit between 0 and 15. If the segment number is not of
this range, an error will be signaled during compilation.

WARNING
Do not use the CALL statement from a Function,
Procedure, or Routine, as the maintenance done at the
end of the modules has not been completed.

Example:
PROGRAM Segment_Ex1

{This is segment zero}

IF Counter% - 0 THEN HOME {Want only

IF Counter% < 5 THEN BEGIN

PRINT ~Counter c ": Counter%

PRINT "Start of segment zero"

FOR Ctr% = 1 TO 100

PRINT Ctr%

NEXT Ctr%

CALL 1 {Going to Segment One}

ENDIF

END

SEGMENT One

PRINT "Start of segment one"

FOR Ctr% ~ 101 TO 200

PRINT Ctr%

NEXT Ctr%

CALL 2 {Going to Segment Two}

SEGMENT Two

PRINT "Start of segment two"

FOR Ctr% = 201 TO 300

PRINT Ctr%

NEXT Ctr%

Counter% = Counter% + 1

CALL 0 {Going to top of program}

END

one HOME executed}

This program simply prints the segment number followed by the' sequential values

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I Chapter Three: Program Segmentation 231

I
five times. Note that the counter is incremented in the final segment, and the test is
done in the program segment.

I If another segment has been called using the CALL statement, and the program
must return to the statement following the original CALL, use LRETURN.

I LRETURN

LRETURN (for Long RETURN), similar to RETURN, instructs the program toI return to the statement following the CALL statement that called this segment. Only
one LRETURN statement should appear in a segment.

I

I WARNING

LRETURN must never be used to end a Function,

Procedure or Routine as unexpected results will. occut'.

I Unlike RETURN, no automatic error handling is done with LRETURN, so be
certain there is a segment to return to.

I
 Example:

I
PROGRAM Seg_Example2

{This is segment zero}

IF Counter% = 0 THEN HOME

IF Counter% < 5 THEN BEGIN

I PRINT Counter% = ;Counter%

I
PRINT nStart of segment zero"

FOR Ctr% = 1 TO 100

PRINT Ctr%

NEXT Ctr%

I CALL 1

ENDIF

I END {Terminate each segment with END or LRETURN}

I
SEGMENT One

PRINT ~Start of segment one"

FOR Ctr% = 101 TO 200

PRINT Ctr%

I NEXT Ctr%

I
Counter% - Counter% + 1

LRETURN {Go back to Segment Zero AND finish}

END {End of program}

I
I Part Six: Program Management

I Chapter Four: Linking Assembly Language Programs 232

I
Chapter Four

I
Linking Assembly Language Programs

I
Overview

I Sometimes, a specific task cannot be performed by a higher level language or even
greater speed is needed than is possible in a higher level language.

In these cases, a good solution is to integrate (or link) an assembly language moduleI into your program. Under Micol Advanced BASIC, it is very easy to link in machine
language programs you have developed.

I
Linking in the Assembly Language Program

I LINK PathName

I The LINK statement links in the assembly language program specified by
PathName. PathName must be a string literal and is the complete Patbnaroe of the
assembly language file to be linked. The file must be online at compilation time. Ifit

I cannot be found, the Compiler will signal an error. The assembly language program

I
must be already assembled and error free.

The Compiler will indicate, "IJnking file" Pathname when it is linking a Micol Macro
file into a Micol Advanced BASIC program.

Example:

I LINK ~/Assrn.Prog.rrtil/ClrScreen.B"

I IMPORTANT

I
Micol Advanced BASIC for the OS uses assembly
language files of type MeL ($Fl) writtAU with the Micol
Macro OS assembler only. If you \.La not have this
assembler, then you may purchase one directly from us.

I
How to write an assembly language program to be linked into a Micol Advanced

BASIC program:

I 1. Write the assembly language program. as required:

a. Save all the registers at the start of the assembly language source code. Note

I that in MicolAdvanced BASIC, the CPU is in 8 bit accumulator mode and 16
bit X and Y registers mode

b. At the end ofyour assembly language code, restore all the registers to the

I values they had before the start of the assembly language routine

I

Part Six: Program Management

I
233	 Chapter Four: I,inking Assembly Language Programs

I
 c.	 Do N2t use an RTL ($6B) or RTS ($60) instruction to end the program; just let

the assembly language code ~all" through. The Mil:ol Advanced BASIC

program will resume on its own
 I

d..	 Thoroughly test this program. for any errors.
2.	 Link the assembly language file into the Micol Advanced BASIC program:

a Using the LINK statement, link this assembly language module into your Micol I

Advanced BASIC program where it is required. We recommend allocating a
special Procedure for the assembly language module I
b.	 Remember, it is the MeL file (type $Fl) which gets linked in, not the assembly

language source code text file.

I

Getting a Direct Page

I
An area of256 ($100) bytes in memory bank zero is reserved for use as a Direct Page
for your assembly language programs and is placed directly above the one used by Micol
Advanced BASIC. I

How to Use this Direct Page I

Simply add $100 (256) to the current Direct Page Register upon entry of your

machine language program and subtract $100 from the Direct Page Register upon I
exiting your assembly language program.

WARNING I

If you alter the value in the Direct Page register, be
certain you reinstate it exactly as it was before or your
Mil:ol Advanced BASIC program is certain to I

malfunction.

I

On the system disk marked IMAB.Sl.A)PORT9 in folder Demo.FileslPrg.Examples is a

file called LINKDEMO which demonstrates the use of assembly language routines with I
MicolAdvanced BASIC. You may want to take a look at this file.

I

I

I

I

I

I
Chapter Five: Creating Independent Programs 234

I
Chapter Five

I
Creating Independent Programs

I
Overview

I This chapter tells how to take a compiled Micol Advanced BASIC program. out of the
programming environment - making it "stand alone", and execute it with a program
launcher such as the Finder or as a turnkey system.I There are many ways to make Micol Advanced BASIC programs stand alone. This
chapter will explore all the possibilities. Pay special attention if you intend to use your

I programs outside of the normal Mical Advanced BASIC programming environment.

Creating a Startup Disk for Launchable ProgramsI
To create a system disk which you may use with the programs created with Micol

I Advanced BASIC, take the following steps (you may use any suitable GSI0S or ProDDS
8 copy utility (the Finder or Copy II PIus will do just fine):

I 1. Make an exact copy of the Mical Advanced BASIC System Disk (the disk labeled
Master Disk). You may change the name of this copied disk, ifyou wish.

I
2. From this new copied disk, in folder Micol.Adv.BASIC/, remove the files

COMPILER.SHELL, EDITOR, AutoExec and the UTILITY folder. This
should only leave the files MicoLAdv.BASIC and LIBRARY remaining.

3. Move the Finder to this new disk:

I a) Delete the file named START under folder SYSTEM! of the new disk

I
b) Copy the file Finder from the MAE.SUPPORT disk (under the SYSTEM!

folder) to the SYSTEM! folder of the new disk

c) On the new disk, rename file Finder to Start.

4. Loci ..he files and label your disk with an appropriate name. You should also

I include the version number ofMical Advanced BASIC you are using, as well as
the version number of the operating system.

I Now, ifyou boot this new system disk, you may directly launch your Mical Advanced

I
BASIC programs by double clicking them with the Finder. Note, that such a disk cannot
be booted for program development, as the Loader will be searching for the non-existant
files COMPILER.SHELL and EDITOR in the MicoLAdv.BASIC folder.

Hard Disks and Launchable Programs

I
I

A normal Micol Advanced BASIC program may be easily launched directly from a
hard disk using the Finder and need not be converted to a GS/OS application.

What is required to launch Mical Advanced BASIC programs from the Finder are:

I
Part Six: Program Management

I

I

235	 Chapter Five: Creating Independent Programs

1.	 A folder called MicoLAdv.BASIC directly under the boot volume. The boot volume

is the volume that the operating system, GS/OS, was taken from when your

computer was started up (this is probably your hard drive).
 I

2.	 The files MicoLAdv.BASIC and LIBRARY taken from the MicoLAdv.BASIC

folder of the disk labeled Master Disk.. These files must reside in the folder

MicoLAdv.BASIC described in 1.
 I

3.	 The :file MicoUeon from the Icons folder from the disk labeled Master Disk. This

file must reside in the Icons folder of the boot volume.
 I

Now if. after booting, you were to double click a Micol Advanced BASIC program
icon from the Finder, the Micol Loader will load and begin execution of the separate run
time Library and BASIC program as ifthey were a merged application file. I
IMPORTANT IUtilizing the method described here as opposed to

creating 816 files described below, has the major
advantage of keeping your compiled programs small and
can save a great amount of valuable disk space and speed I
loading time. The method described here is the
recommended method for creating launchable programs. I

Stand Alone Micol Advanced BASIC Programs	 I
A Micol Advanced BASIC program which is completely self-sufficient (converted to a

TurnKey system, an S16 application or a CDA) is written just like any other program. I
The one rule you must follow is that the Micol Advanced BASIC program must be
thoroughly debugged before you make the conversion. This is because the Micol
Advanced BASIC Programming Environment is designed for program debugging, and I
stand alone applications are not. If a bug should appear in a stand alone application.
you will have to return to the programming environment to locate the problem. I

How Mical AdvancedBASIC Boots
I

In order for you to better understand what is required to create a stand alone
application, we will describe what happens when you boot Micol Advanced BASIC from
disk. I

Contained under the SYSTEM: folder on the booting volume is the Micol Advanced
BASIC loader named START. After the operating system (08/OS) has booted, START
is the first file executed. During its execution, START searches first for the run time I
Library (file LIBRARY) located in a folder called MicoLAdv.BASIC under the boot
volume. If this search is unsuccessful, it begins the same search, but this time on the
same volume and directory as START is located. If this search fails, it searches outer I
directories until it locates LIBRARY in any folder, or the search fails.

Once LIBRARY is found, the folder in which LIBRARY resides is set as the system I

I

I Chapter Five: Creating Independent Programs 236

I
I

folder from which all subsequent systeII1 access is done.
If a file called MICOL.SYSTEM is detected of type MAB ($F2), it is assumed the

disk is a turnkey disk, and attempts to load the run time Library and load and execute

I
the file MICOL.sYSTEM.

If the file MICOL.SYSTEM is not detected, it is assumed the system is intended for
program development, and the files COMPILER.SHELL, EDITOR and LIBRARY are
loaded, and you are placed into the programming environment.

I Ifall ofthese tests fail, the file START issues an error message and gives up.
The file MicoLAdv.BASIC contained under the folder MicoLAdv.BA8ICI on the

Master Disk is identical to the file START just described. This file is intended for

I launching Mical Advanced BASIC programs directly from a program launcher. This
process was described earlier in this chapter.

I	 Creating a TurnKey System

I A TurnKey system is simply a program that automatically executes when the disk on
which it resides is booted. The normal GS/OS system disk is actually a TurnKey system
for the Finder, as the Finder is automatically executed after GS/OS has booted. You will

I be creating a similar system, but for a Micol Advanced BASIC program.

I
To create a TurnKey system, take the following steps (you may use any suitable

GS/08 or ProDOS 8 copy utility such as the Finder or Copy IT Plus):

1.	 Make an exact copy of the MicolAdvanced BASIC System Disk (the disk labeled
Master Disk). You may change the name of this copied disk ifyou wish.

I 2. From this new copied disk, in folder MicoLAdv.HASIC/, remove the files
COMPILER.SHELL, EDITOR, MicoLAdv.BASIC, AutoExec and the
UTILITY folder. This should only leave the file LIBRARY remaining in this

I folder.

3.	 Copy the Micol Advanced BASIC program you wish to be automatically executed to
the folder Micol.Adv.BASICI on this new disk.I 4. Rename this Micol Advanced BASIC program to MICOL.SYSTEM.

5.	 Copy all files required by your MicolAdvanced BASIC program to this new disk.

I Now. whenever this disk is booted. your Mical Advanced BASIC program will
automatically load and execute.

I Creating GS/OS Applications

I
I There is a utility on the MAE.SUPPORT disk in folder MAB.TO.Sl61 which you may

use to make the conversion from a normal Micol Advanced BASIC program to an 816
O8/OS application file. This utility is called MAKE.sA. Also in the same folder is a
special version of the run time Library, file UBRARY:S.A which will be merged with
your program to make the 816 application.

I

I

237 Chapter Five: Creating Independent Programs

NOTE
The 816 files created with the method described here are
much larger than the normal Micol Advanced BASIC
compiled pro~ams. This.means th.ey ocet:tPY much m~re I
memory on disk, and reqmre more time to load. hl earlIer
versions of Micol Advanced BASIC, it was not possible to
launch programs directly' from a program launcher. This
is the main reason the method described here was
devised. Unless you have some pressing reason for
having a single, self-contained application. on disk, we
recommend you keep your Mical Advanced BASIC
programs in, the normal format and follow the rules on
malring your programs launchable described above.

Take the following steps to create your independent 816 application:

1.	 Start Micol Advanced BASIC.
2.	 Once the command shell prompt appears, insert the disk labeled MAE.SUPPORT

into a suitable drive.
3.	 Using the PREFIX command, set the default prefix to

IMAB.SUPPORTIMAB.TO.SI6.

4.	 Enter RUN MAKE.sA followed by a carriage return (remember the system will

append the .LNK extension automatically).

5.	 Follow the instruction which appear on the screen. You will receive detailed
instructions what to do next. Briefly, two inputs are. required: the Pathname of
the file to be converted (complete with extension, if any) and the Pathname the
converted file will have.

NOTE

NOTE

By specifying the full Pathname each time, you may
convert any MAB file on the system, and have this file
written to any volume anywhere within the system.

If you include files MAKE.SA and LIBRARY.S.A. just
described, inside the UTILITY folder under the Mical
Advanced BASIC system folder, you may create 816
applications by simply entering l\1AKE.SA<CR> from the
Command Shell. This method is only suitable if you have
a hard drive.

Part Six: Program Management

II
I
I
I
I
I
I
I
I
I
II
I
I
I
I
I
I
I
I

I Chapter Five: Creating Independent Programs 238

I
Creating Classic Desk Accessories

I
I Micol Advanced BASIC supports two types of CDAs, Primary CDAs and Secondary

CDAs.

Contained on the MAB.SUPPORT disk, under folder MAB.TO.CDA, is a utility for

I
converting your MAB programs to CDAs. Also under this folder are two versions of the
run time Library designed for creating CDAs: LIBRARY:CDA is intended for merging
with your MAB programs to create Primary CDAs, and a dummy run time Library,
LIBRARY.SML. intended for creating Secondary CDAs.

All systems that contain CDAs written under Micol Advanced BASIC must have mw.

I Primary CDA. This is because the Primary CDA contains the full run time Library

I
which all CDAs, including Secondary CDAs, will use. For this reason, your first CDA
must be a Primary CDA, and all other CDAs must be Secondary. Secondary CDAs are
little more than a MAll file converted to CDA type files.

WARNING
I The Primary CDA must always be executed first. This is

because there are pointers that must be set for the
Secondary CDAs to use. If you attempt to access a

I Secondary CDA without first having executed a Primary
CDA, the computer will probably crash.

I
In order to convert a MAB file to a CDA, take the following steps:

I 1. Boot Micol Advanced BASIC.

2. Insert the disk labeled MAB.SUPPORT into any suitable drive.

.1 3. At the Shell monitor, enter PREFIX IMAB.SUPP0RTIMAB.TO.CDN<CR>.

4. Enter RUN MAKE.CDA<CR>.

I 5. Follow the detailed instructions that appear on the screen. This utility functions
essentially the same as the MAKE.SA utility described above.

Once the conversion is completed, copy the CDAs to the folder

I SYSTEMJDESK.ACCSI on the boot volume. The next time this disk is booted, these
CDAs will appear in the control panel ofyour Apple IIGS.

I
I
I
I
I Part Six; Program Management

I Chapter Six: Converting Applesoft Programs	 239

I
Chapter Six

I
Converting Applesoft Programs

I
Overview

I Micol Advanced BASIC is a language system that is based on Applesoft BASIC. This
means, that when Micol Advanced BASIC was first being developed, Applesoft was
taken as the root language. Structured capabilities and the ability to access the power of

I
I the Apple IIGS were added to make what is now Micol Advanced BASIC for the Apple

lIGS.
What this means to you is that, With a little work, you should be able to use your

I
Applesoft programs under Mical Advanced BASIC.

It is the purpose of this chapter to explain most of the modifications you will have to
perform in order to compile your Applesoft programs as Mical Advanced BASIC
programs.

I	 Source File Conversion

I	 Applesoft files are essentially tokenized text files. Whenever you entered an

I
Applesoft line of code and pressed Return, you probably noticed a slight delay before the
cursor returned. -This delay was caused by the Applesoft interpreter tokenizing this line
of code. This means the Applesoft reserved words were converted into numeric
equivalents, pointers to the next line were established and line numbers were converted
into binary. This was done to speed the execution of the Applesoft program. If you think.

I Applesoft is slow, think. how slow it would be if these lines had not been tokenized.

The first task you will have to perform is to convert these Applesoft source files into
text files which Micol Advanced BASIC can use. Don't worry, this task has been largely

I automated, so all you have to do is follow a few steps.

I
There is a file on the MAE.SUPPORT disk, under the volume directory, called

CONVERT designed LO convert your Applesoft programs to text files. Simply take the
following steps:

I
1. Boot any ProDGS 8 System Disk. This will probably be the disk you used when you

were originally developing your Applesoft programs.

2.	 Load the Applesoft program you want to convert into memory. This program must
not have a line number less than twenty.

I	 3. Insert the MAE.SUPPORT disk into any suitable drive.

4.	 Enter EXEC IMAB.SUPPORT/CONVERT<CR>.

I	 5. Enter RUN<CR>. Your Applesoft program will be converted into a text file.

6.	 Enter SAVE <Pathname><CR> where Pathname will be the source filename of this
text file.

I	 7. Boot Mical Advanced BASIC and get into the Text Editor.

I	 Part Six: Program Management

240	 Chapter Six: Converting Applesoft Programs I
I8.	 Load this converted text file into the Micol Advanced BASIC source code Editor.

You are now in a position to make the changes required to compile this file.
Unfortunately, your first task will be to remove the leading spaces in each line generated I
by the file conversion.

IGeneral Conversion Rules

Following is a list of things to look out for when modifying a converted Applesoft I
program into a Micol Advanced BASIC program. Although this list is as complete as
possible, we unfortunately cannot forsee every circumstance. Some problems probably
will require a good knowledge ofMicol, Advanced BASIC. I

DIM Statements I
Applesoft allows DIM statements anywhere in a program and the dimensioning may

be done with variables. Micol Advanced BASIC requires the DIM statements to be at I
the top of the program, and only integer literals are accepted as paratIleters.

IDATA Statements

DATA statements must be at the top of the program, they cannot reside anywhere as I
in Applesoft. The following rules also apply with DATA statements:

1.	 Quotation marks must be around string literals, for example "This is a string".

2'.	 Values read into real variables must be expressly specified as reals. For example, I
22 must be written as 22.0.

3.	 No empty entries such as" are allowed I
Strings I

If you are forcing a string garbage collection with a PRINT CHR$(4); "FRE (0)",
simply remove it. Our garbage collector is far faster anyway. I

String functions such as LEFT$ and MID$ check for overflow errors which Applesoft
does not do. You may have to check the string lengths before making these calls. I

Slot Input/Output
I

Replace IN# and PR# with INSLOT and OUTSLOT respectively. Refer to the
appropriate sections in this manual to understand the use of these commands. I

I

Part Six: Program Management	 I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

II

i

I

I

I

241Chapter Six: Converting Applesoft Programs

Turning the Printer On and Off

Turn the printer on with a PRTON instead of PR#l. Your printer must be in slot
one, however.

Turn the printer off and the screen on with a TEXT.

PRINTing

Unlike the PRINT statement in Applesoft, semi-colons are required and cannot be
implied.. The statement PRINT "Your name is " N$ may be rewritten as PRINT
"Your name is "; Name$

FLASH Command

FLASH is not supported. Replace FLASH with INVERSE.

Cursor Positioning

BTAB and VTAH require parentheses around the parameter. SPC, TAB, and POS
must have a semi-colon following the parameter to hinder a carriage return.

Control of Flow

1.	 IF <.Real Variable> THEN is not allowed.. Only boolean variables may be so used..
You may replace this statement with IF <Real Variable> > 0 THEN.

2.	 IF Relop GOTO is not allowed.. An IF statement requires a THEN.
3.	 NEXT without its corresponding variable is not allowed. You will have to explicitly

specify this variable.

4.	 Statements like NEXT X, Y are not allowed.. These should be rewritten NEXT X:
NEXTY.

5.	 FOR loops behave a little differently than they do under Applesoft. Ifyou are
having trouble with your FOR loops, check the FOR loop rules described in this
manual.

High Resolution Graphics

Under Applesoft, High Resolution graphics only has a resolution of 280 by 192.
Under MicolAdvanced BASIC, although the Super High Resolution graphics commands
are the same as Applesoft's High Resolution graphics commands, the resolution is much
higher.

Under Micol Advanced BASIC's Super High Resolution graphics, the resolution is

Part Six: Program Management

242 Chapter Six: ConvertingApplesoft Programs I

either 320 by 200 (for HGR) or 640 by 200 (for HGR2). You will have to modify the High I
Resolution graphics coordinates in your Applesoft programs accordingly.

Also, the colors you set using the COLOR command are different; Micol Advanced IBASIC has far superior colors to Applesoft. You will have to determine the best colors for
your graphics and redefine them.

Shape Tables are not supported. You will have to create these shapes using the I
Functions described in Chapter Ten, Part Three of this manual.

IPEEKs and POKEs

Some of the addresses you may have referenced in your Applesoft program with I
PEEKs and POKEs may be different under Micol Advanced BASIC. In particular, pay
attention to addresses in zero page, that is, addresses betweeen 0 and 255.

Check Appendix A in this manual. Appendix A is the memory map for Micol I
Advanced BASIC. This should tell you which locations need to be modified. Note that
some locations have no equivalent. I

Functions
I

Any DEF FN lines may be converted to multi-line functions using the
FUNC..ENDFUNC construct. I

Disk Filing
I

Filing commands are the most complicated to modify. Unfortunately, these lines will
have to be rewritten. Here are some thing to note: IPRINT CHR$ (4); has no affect on the operating system under Micol Advanced

BASIC

• Setting a new default prefix is PREFIX "String" or PREFIX Svar I
• Getting the default prefix is Volume_Name$ =PREFIX$
• You will have to use CAT$ to get a catalog I
The following tables should help you make additional filing conversions:

I
Sequential Access Commands

Reading a File I
Applesoft Micol Advanced BASIC I
"OPEN NOLNAMEJFILE.NAME" ROPEN (1) "/VOL.NAMEIFILE.NAME"

"READ YOL.NAME/FlLE.NAME"
 I
Part Six: Program Management I

I Chapter Six: Converting Applesoft Programs 243

I
I

"INPUT L$" INPUT (1) Line$
"CLOSE VOL.NAMElFlLE.NAl\1E" CLOSE (1)

ONERR GOTO <Line Number> IF EOF (1) THEN <Stms>

I Writing a File

I Applesoft Miool Advanced BASIC

"OPENNOL.NAMElFILE.NAl\1E"

I "DELETE VOL.NAMEIFILE.NAME"

I
"OPENVOL.NAMEIFILE.NAME" WOPEN (1) "VOL.NAME/FlLE.NAME"

"WRITE NOL.NAMElFILE.NAME"
"PRINTL$ PRINT (1) Line$

"CLOSE NOL.NAMEIFILE.NAME" CLOSE (1)

I
I

If you are using random access files in your program, then you will have to learn the
use of the SEEK command in Micol Advanced BASIC. Its usage is too complicated to
explain here.

Note that the PRINT CHR$ (4); statement in the above tables has been removed

I from the Applesoft lines for reasons of space.

I Go for It

Now that you have made the conversion, the fun can begin. Start using Micol

I Advanced BASIC as more than just an Applesoft compiler.

The first thing you will probably want to do is speed up your programs. Ifpractical,
convert the real variables into integers. You may want to use the Compiler Directive

I INr (A-Z) to force all reals to integers; then, -in your program, you may selectivly convert
some of these integers into reals with the "&" character.

Add structure to your programs. Make your arrays larger. Use extended arithmetic.I Etc. Etc. Now, get your money's worth out ofMicol Advanced BASIC.

I
I
I
I
I Part Six: Program Management

I Appendix A: Memory Usage 244

I
Appendices

I
Appendix A

I
Memory Usage

I
Because all of Micol Advanced BASIC's system files are relocatable, we cannot tell

you where the Compiler, Editor and ron time Library reside in memory. These locations

I will vary according to the conditions under which they were loaded. Besides, there is
probably no time that you will need to know these locations as the files generated by the
Linker are also relocatable load files and will load in the locations the system says are

I free.

I
Note the distinction between Direct Page locations for the run time Library given

here, and Zero Page locations used by Applesoft. There is no relationship between the
two. Because of system requirements, we could not make any locations the same, so all
PEEKs and POKEs to Zero Page under Applesoft will have to be modified. Some
locations in Applesoft will have no comparable locations in Micol Advanced BASIC. I
Location

I	 o

I	
1-2

3
4-5

I
I 6-15

16-17

18-19

20-23

24-25

I 26-27

28-31

I 32-35

36-39

40-41

I	 42-43

44-45

I	 46-47

48-55

I 56-59

60-73

I

Usage

$5C, Absolute long jump constant

COUT vector, absolute address

COUT bank vector, part ofbytes 1-2

Max. characters allowed for INPUT

Temporary storage

Temporary string usage

Long Integer flag

Temporary storage

Library routine n' nber

Free loeations

Variable one relative location

Variable two relative location

Variable three relative location

Integer random number

WAVE and INSTRUM buffer counter

Left border of text screen

Right border of text screen

Mise. usage

Pointer to DATA storage

Mise. usage

Comment

Don't Modify

LSB, MSB order, restore ifmodified

3 bytes together for long address jump

Default of 255

Don't modify

Frequent usage

Don't Modify

ML usage okay
J - -

Set by Linker, don't modify

ML usage okay

Don't Modify

Don't Modify

Don't Modify

Don't Modify

See WAVE & INSTRUM

Modify to shrink text screen

Modify to shrink text screen

Don't modify

Don't Modify

Don't modify

Appendices

245

Location

74

76-95

96-99

100-101

102-103

104-115

116-117

118-119

120-127

128-129

130-131

132-135

136-143

144-145

146-147

1484 151

152-153

154

155

156-157

158-161

162-165

166-169

170-173

174-177

178-181

182-185

186-187

188-189

190-193

194-197

198

199

200

202

204-205

226-239

Usage

Back space flag

Mise. usage

Fast file buffer pointer

Bottom of text screen

Top of text screen

Mise. usage

Horizontal position ofcursor

Vertical! position ofcursor

Screen output usage

PRINT USING usage

PRINT USING misc. usage

Misc. usage

Internal string usage

Cursor character, default inverse space

Output character mask (default 255)

Video memory

Internal stack counter

Library error code storage

GS/OS error code storage

Extended real storage flag

Actual address of first variable

Actual address of second variable

Actual address of third variable

Start of DATA storage

Last byte of DATA storage

Start of string storage

End of string storage

SPEED setting

TRACE flag

ONERR GOTO address

RESUME address

PRINT USING "," character

PRINT USING "$" character

PRINT USING "." character
Tn1.eValue

Line number where error occurred

Misc. uses

Appendix A: Memory Usage I

I
Comment

Delete mode flag for INPUT I
ML usage okay

Don't Modify

Modify to shrink screen
 I

Modify to shrink screeD

~usageokay I

Best not to modify

Best not to modify

Don't Modify I

Don't Modify

Don't Modify
 I

ML usage okay

Don't Modify
 I

Modify for another screen cursor

Modify will change output char.

Don't Modify
 I

Don't Modify

Needed in error trapping
 I

Needed in error trapping

Don't Modify
 I
Don't Modify

Don't Modify

Don't Modify
 I

Don't Modify

Don't Modify
 I

Don't Modify

Don't Modify
 I
Set by SPEED, don't Modify

Set by TRACE, don't Modify

Don't Modify I

Zero ifno ERROR compo option

Modify as required
 I

Modify as required

Modify as required

Many uses
 I

Useful in error trapping

Don't Modify
 I

I

I Appendix A: Memory Usage 246

I
 Location Usage

I 240-255 System usage

I

I

$EIOOEC-$EIOOEF

$EIOOFD-$EIOOF3

$EIOOF4-$EIOOF7

$EIOOF8-$EIOOFB

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Comment

Protected, POKEs cannot modify

Other Memory Usage

Secondary CDAjump location

Jump location to Run Time Library

Jump location to integrated Compiler/Shell

Jump location to 'Thxt Editor

Appendices

I
Appendix B: Screen Output 247

I
AppendixB

I
Screen Output

I
I

Micol Advanced BASIC has its own super fast screen output routines, as you
probably already have discovered. The screen output, however, functions very much as
the screen output on older Apple lIs in that certain control codes perform certain actions,

I
and certain memory locations control certain features. We will describe these briefly
here.

Use PRINT CHR$ (Value); to perform the stated action:
Value

I

I 8

I
10

11
13
14

15

I
21

22

23

I 29
64-95

I
Location

I 44

I 46

100 \-. ~M" '.

102

I 116

118

I 144

146

Action

Move cursor left one position
Move cursor down one line, scroll if necessary

Move cursor up one line, scroll if necessary
Carriage return

Set normal text mode

Set inverse text mode

Move cursor right one position

Scroll screen down one line

Scroll screen up one line

Clear to end of line

MouseText characters; issue MS_TEXT first

Important Direct Page Locations

Function

Left border of text screen, default is 1.

Right boi-der of text screen, default is 80

/" Top border of text screen, default is 1
Bottom border of text screen, default is 24

Current horizontal cursor position

Current verticalt cursor position

Cursor character, default is 32, inverse space

AND mask for character output, default is 255

The above direct page locations may be modified (POKEd) to alter the text screen

I
I display. But be careful! Incorrect values may cause a systero. crash. For example, uyou

wish to create text windows, you may shrink the text screen by changing locations 44,
46, 100 and 102. Be certain the v.alues are valid, and the cursor is within the new text
screen before PRINTing. .

I

Appendices

I Appendix C: Run Time Error Codes 248

I
AppendixC

I
Run Time Error Codes

I Whenever a run time error occurs, the error code is placed into one of two locations in
the run time Library's Direct Page which may be accessed by a user's program..

I If the error is generated within the run time Library itself, the error code is placed
into location 154 and location 155 is zero. If the error was generated by the operating
system, location 155 will contain the error code, and location 154 will be zero.

I Each code is generated by a unique error situation which causes a unique message to
be printed, ifONERR GOTO is not active. The run time Library's error codes are listed

I below, in this appendix,. while GS/OS's error codes are listed in Appendix D.

You may disable an active ONERR GOTO by POKEing zeroes into locations 191
and 192. Note that both locations must contain zeroes for ONERR to be disabled.

I Code Message output to screen

I
1

2
Error in exponentiation

RETURN without GOSUB

3 RESUME without ERROR option

I 4
5

End of data

Bad subscript error

I
6
7

illegal value in function

illegal POKE value

8 Overflow in addition operation

I 9

10
Return stack error

Comma tab error

I 11

12

EXPeITor

Out of string data

'I 13
14

Overflow in TAB

Division by zero error

15 Overflow in subtraction

I 16

17
String function overflow

Overflow in concatenation

I 18
19

Illegal string assignment attempted

String overflow error

I
20

21
Applesoft graphics error

lliegal.realliteral error
22 FOR variable overflow

I 23 Overflow in multiplication

I

Comment

Integer 'N range exceeded

Perhaps GOTO instead of GOSUB

Need ERROR compiler option

No more DATA to READ

Array limit exceeded

Probable bad math function parameter

Value> 255 or bad address
Integer addition range exceeded

Too many RETURNs for GOSUBs

Implied tabs overflowed before <CR>

EXP function exceeded limits

DATA is not of string type
TAB paramet~ . is negative or > 80

Integer division by zero

Integer subtraction result < -32767

Attempt to create string> 1023 chars.

Same as 16

General string error

General graphics' error message

String cannot be converted to real

Integer FOR counter out of range

Integer multiplication out of range

Appendices

249

Code

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Message output to screen

String overflow
FOR loop underflow

Negative square root attempted

illegal PDL value

illegal SPEED value

Insufficient string space reclaimed

String access to unassigned variable
File output error

Attempt to read past EOF

Invalid pathname in filename
Dimension and an-ay use mismatch
Mismatch in parameter type
Assign in ADDRESS mismatch
Specified value> 255 for SPC

Maximum of255 matches in INDEX

Time or date error

READ data mismatch

Invalid floating point operation

Floating point underflow

Floating point overflow

Floating point division by zero
Floating point inexact conversion

Floating point error

Undefined segment call

Stack underflow

No direct page memory for graphic~

Quick Draw IT startup error

illegal tool number

illegal function number

Unable to start up sound

Music or Noise startup error

Limit seven items off stack
No direct page memory for sound
Cannot start Noise Synthesizer tool
Music or Noise error

Appendix C: Run Time Error Codes I

I
Comment

Maximum of 1023 characters in string

FOR loop stack problem I

Only I, 2. 3 or 4 allowed I

Attempt to set SPEED> 255

Use BANK.-NO compiler option
 I

String var. in shaping function not set

Probable SEEK error. No data at point.

Read past last write, or SEEK error I

Probable unassigned string variable

Number ofdimensions mismatch
 I

Procedure and call parameters wrong

Probable parameter corruption. rare

Only 0 through 255 allowed in SPC I

INDEX position parameter> 255

System error
 I

READ attempt to other type

General floating point error
 I

Try using EXTEND compiler option

Try using EXTEND compiler option
 I

Cannot convert real to string

General floating point error
 I

No SEGMENT number for CALL

Perhaps bad recursion attempted
 I

Bank zero memory used up

Cannot start High Resolution Tool

TOOLBOX accepts only Tool # < 256 I

TOOLBOX accepts only Func. # < 256

Cannot startup Tool(s) for NoiseIMusic
 I

Similiar to 53

Too many pull variables in TOOLBOX
 I
Bank zero memory used,up

System error in NOISE command

Sound system error I

I

I

I
250Appendix C: Run Time Error Codes

I
Code Message output to screen

I 59 Parameter stack overflow

I

60 Function stack overflow

61 String buffer allocation

62 File buffer allocation error

63 INPUT length out of range

I 64 FUNCtion return incompatable type

65 System memory error

I 66 Undefined library routine

I,
67 Cannot RUN program or application

68 No HGWHGR2 issued for DESKTOP

69 Cannot start Dialog Tool

70 Cannot start Event Manager

I 71 No direct Page for Event Manager

I
72 Cannot start Wmdow Manager
73 Cannot draw Dialog Box

I
74 No direct page for Control Manager

75 Maximum of 16 items for Dialog Box

76 Cannot start Control Manager

77 Cannot start up Line Editor

I 78 Item error

I

79 Unable to create Wmdow

80 Unable to close Wmdow

81 Mouse Control error

82 Unable to startup Menu

I 83 Mouse control without Desktop

84 Cannr' start Scrap Manager

I 85 Only class one calls supported

I
I
I
I
I

Comment

Cannot store more function parameters

Too many unresolved FN calls

Probably BANK_NO set too large

Not enough memory to read files

POKE to location 5 > 3
FN call to wrong function type

Fatal error condition

Bad compiler code generation (call us)

Bad RUN command issued

Must set graphics mode for Desktop

Fatal Desktop system error

Fatal Desktop system error

Bank zero memory used up

Fatal Desktop system error

Desktop system error

Bank zero memory used up

Too many parts in DIALOG

Fatal Desktop system error

Fatal Desktop system error

Part bad in DIALOG

Desktop system error

Desktop system error

Desktop system error

Error in MENU
MOUSE needs Desktop command

'Desktop system error

Probable GS/OS call number < $2000

Appendices

I Appendix D: GS/OS Error Codes 251

I
AppendixD

I
GS/OS Error Codes

I As mentioned in the previous Appendix, whenever GS/OS signals an eITOr, that error
is placed into location 155 and location 154 is zero. On some rare instances, the library

I routine may have trapped the error first.

I Decimal Error Code Message sent to screen

I
1 Invalid GSI0S call number

7 GS/OSisbusy

16 Device not found

17 Invalid device request

I 32 Invalid request

33 Invalid control or status code

I 34 Bad call parameter

35 Character device hot open
36 Character device already openI 37 Interrupt vector table full
38 Resource not available

I
I 39 Input/output error

40 No device connected
41 Driver is busy
42 Error not defined

43 Write protected
I 44 Invalid byte count

45 Invalid block address

I 46 Disk switched

I
47 Device not online
64 Invalid pathname or device name syntax

67 Invalid file reference number

68 Subdirectory not found

I 69 Volume not found

70 File not found

I 71 Duplicate pathname

I
72 Volume full

73 Volume directory full

I Appendices

252

Decimal Error Code

74

75

76

77

78

79

80

81

82

83

84

87

88

89

90

91

92

93

95

96

97

98

99

100

127

Appendix D: GS/OS Error Codes

Message sent to screen

Version error

Unsupported storage type

End of file encountered (out of data)

Position out of range

Access not allowed

Buffer too small

File is open

Directory structure damaged

Unsupported volume type

Parameter out of range

Out of memory

Duplicate volume name

Not a block: device

Invalid level

Block number out of range

illegal pathname change

Not an executable file

Operating systemJ:file system not available

Return stack overflow

Data unavailable

End of directory

Invalid FST call
Missing Resource

Invalid FST ill

illegal numeric value in file

All the error codes and messages but the last are standard GS/OS errors.
a special Micol error code.

Appendices

I

I

I

I

I

I

I

I

I

I

I

I

I

The last is I

I

I

I

I

I

I Appendix E: Compiler Reserved Words 253

I
AppendixE

I
Compiler Reserved Words

I The following words have a special meaning and may not be used for any other
purpose then they were intended. In particular. they may not be used as Program,

I variable, Function, Procedure or Routine names.

I
 ABS,ADDR, ADDRESS, ALIAS, AND, APPEND, ASC,AT, ATN

BEGIN, BELIEVE, BEI..4 BKCOLOR, BLOAD, BSAVE, BYE

I
I

CALL, CASE_OF, CAT$, CHAIN, CHR.$, C~ CLOSE,

COP~ COLOR, COS, CREATE

I
 DATA, DATE$, DELAY, DRAWSTR, DECLARE, DELETE,

DIALOG, DIM, DISPLAY, DO, DOUBT, DUNNO

I ELSE, ELSE_DO, END, ENDCASE, ENDDO, ENDFUNC, ENDIF,

ENDPROC, EOF, EXP

I FALSE, FILE, FLUSH, FOR, FORMAT, FN, FRE, FREEMEM, FUNC

I GET, GET_MEM, GOSUB, GOTO, GR, GS_OS

I HCOLOR, HGR, HGR2, HLIN, BPLOT, HOME, HTAB

I
 IF, INCLUDE, INDE~ INKEY$, INPUT, INSERT$, INSLOT,

INSTRUM, !NT, INVERSE

I LEFr$, LEN, LET, LINK, LOCK, LOG, LOWER$, LRETURN

I MENU, MID$, MOD, MOUSE, MOV_MEM, MS_TEXT, MUSIC

I NEXT, NOISE, NORMAL, NOT, NOTRACE, NOTICE

OPEN, ON, ONERR, ONLINE$, OR, OUTSLOT

I
I

Appendices

254 Appendix E: Compiler Reserved Words	 I

I
PDL, PEEK, PERFORM, PLOT, POKE, POP, POS, PREFIX,

PREFIX$, PRINT, PRTON, PROC I

QUIET

I

READ, REM, RENAME, REPEAT, RESUME, RESTORE, RETURN,

RIGHT$, RND, ROPEN, ROUND, ROUTINE, RUN I

SCRN, SEEK, SEGMENT, SGN, SILENCE, SIN, SQR, SPC,

SPEED, STEP, STOP, STRACE, STR$ I

TAB, TAN, TEXT, THEN, TIME$, TO, TOOLBOX, TRACE, TRUE I

1JNTJL, UNLOCK, UPPER$, USING I

VAL, VALUE, VLIN, VTAB

I

WARNING, WAVE, WEND, WAII,E, WINDOW, WOPEN

I
Note: compiler options are not reserved words within a program.

I

I

I

I

I

I

I

I

I

I Appendix F: ASCn Character Codes 255

I
AppendixF

I
ASCII Character Codes

I The following is the table of the ASCII (American Standard Code for Information
Interchange) codes supported by Micol Advanced BASIC. You may use the ASe and

I CHR.$ functions to go between the code and the character representation.

Value Character	 Value Character

I 0 NUL 29 GS

1 SOH 30 RS

I 2 STX 31 US

3 ETX	 32 (Space)

4 EOT	 33 II	 "5 ENQ	 34

6 ACK	 35 #

I
I 7 BEL(Bell) 36 $

8 BS (~ft Arrow) 37 %

9 HT(Tab) 38 &

10 LF (Line Feed) 39
11 VT (Up Arrow) 40 (

I	 12 FF (Form Feed) 41)

13 CR (Carriage Return) 42 *

I
I 14 SO 43 +

15 81 44

16 DLE 45

17 CDI	 46

18 DC2 47 I

I 19 DC3 48 0

20 DC4 49 1

I 21 NAK (left Arrow) 50 2
22 SYN	 51 3

23 ETB	 52 4
I I

I

24 CAN 53 5
25 EM 54 6

I 26 SUB 55 7
27 ESC (Escape) 56 8
28 FS 57 9

I	 Appendices

256 Appendix F: ASCn Character Codes I

Value Character

58
59
60 <
61 =

62 >
63 ?

64 @

65 A

66 B

67 C

68 D

69 E

70 F

71 G

72 H
73 I
74 J

75 K
76 L
77 M

78 N
79 0

80 p

81 Q
82 R
83 S
84 T
85 U
86 V

87 W

88 X

89 Y
90 Z
91 [

92 \

Value

93
94
95
96
97
98
99
100
101
102
103

104
105
106
107
108
109
110

111
112
113

114
115
116
117
118
119
120
121
122
123
124
125
126
127

Character

]
1\

a

b

c

d
e

f

g

h

i

J

k
1
m

n

0

P
q

r

s
t

u

v

w

x

Y
z
{

I

}

DEL (Delete)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

257 I Glossary

I
I

6502 addressing format

I 6502 microprocessor

I 65C02 microprocessor

I 65816 microprocessor

I

Alphanumeric

I
ASCII code

I
I
 Assembler

I Assembly code

Assembly language

I

I

Batch processing

I
Binary code

Binary files
I
BIT

I Byte

I
Chaining

I

I

Glossary

Two byte addresses specified in least significant byte, most
significant byte order.

CPU used in the Apple IT+ and early models of the Apple

lIe.

CPU used in the enhanced Apple lIe and Apple ITc.

Software written for the 6502 will run on it. This chip has

27 additional machine language instructions.

CPU used by the Apple IIGS and Apple He upgraded GS.

Most software written for the 6502 and 65C02 will run on

it. It is more than just a 16 bit version of the 6502 since it

has many more instructions and can acess as many as 16

million bytes ofmemory.

Usually used to describe characters which consist of letters

of the alphabet and digits.

The acronym ofAmerican Standard Code for Information

Interchange. A standardized code used to represt".nt letters,

digits and punctuation symbols. The capital letter A is 65

(decimal) in ASCII code.

A program which can take as input an assembly language

text file and translate it into the binary code the computer

can execute.

A formatted text file an assembler can translate into binary

code.

The lowest level of the programmin g languages, specific to

a given microprocessor. AL uses short mnemonics

corresponding directly to machine instructions and allows a

programmer to use symbolic codes. At this level, the

programmer is programming the CPU.

Allows the system to take its commands from a file on disk

rather then the keyboard. Under Micol Advanced BASIC,

the BATCH command creates a batch process.

The same as machine code.

Machine language files saved to tape or disk.

Acronym ofBInary digiT. The smallest unit of information

in a computer. Has a value of zero or one.

A collection ofbits wired together. In almost all cases, a

byte consists of8 bits. A byte can represent a character, a

number between 0 and 255 or a machine instruction,

among other things.

The process of joining separate text files by the compiler.

The compiler can successfully compile separate text files, as

though they were a whole program.

Appendices

258

Compiler

CPU

Cursor

Decimal

Direct Page

Editor

Error condition

Executable module

Flag

File

Hexadecimal

Integer

Interpreter

Library

Appendices

Glossary I
A program that converts a program, usually a text file I
written in a higher levellaJJ.guage, into an intermediate
code called an object module. A linker is then required to Iconvert this object module into a machine usable file that
can later be executed.
Stands for Central Processing Unit, the "brain" of a Icomputer. When writing in machine language, you are
programming the CPU.

A special character, often bljnking, used to show the user I

where 011 the screen he/she is entering characters.

A numbering system based on the number 10; the
numbering system we use in every day life. I
A special 256 byte area in mem.ory bank zero which can be
treated as a zero page by a program. Unlike zero page,
which begins at location zero in bank zero, direct page is I
referenced by a special register for this purpose and can
begin at any location in bank zero. This distinction
between direct page and zero page is important because I
PEEKs and POKEs referencing addresses [ess than 256
under Micol Advanced BASIC reference the run time
library's direct page, and not zero page. I
Same as text editor. A program which allows the user to
create, modify' and save text files. I
The state ofa program after it has detected an error during

its execution.

The binary code created by the linker, which is the actual I

code which will be executed.

A boolean variable which can be set or unset, so that later a

determination can be made based 'on its value.
 I
A collection of data stored in some memory device; this can
be the computer's memory, disk or tape. On magnetic
media, a file name is usually associated with the file. I
A number system based on the number 16 (base 16)0
Letters A through F are used to stand from 10 to 15. I
A variable type which has a limited range and no tractional
part. Mical Advanced BASIC for the GS has two ranges of
integers, short and long. Short integers have a range of I
±32767, while long integers have a range of±2,147,483,647.
A program which reads program code written in a
high.levellanguage one statement at a time, executes it, I
then goes to read the next instruction until the program
terminates. Traditional BASIC language systems are
interpreted Interpreters are remarkable for their I
convenience and lack of speed.

Contains the run time routines required by the executable I

I

259 I Glossary

I
I
 Linker

Load

I
Machine code

I
Memory location

I
Micol Systems

I
Mnemonic

I
Modularization

I
Octal

I
Program

I Real number

II

I

Reserved word

I
Run time library

I Save

I
 String

I
 Structured design

I

I

module at execution time.
A program that converts the object module(s) created by the
compiler into an executable load module.

The act of bringing in information to the computer's
memory from a long term storage device such as a disk
drive.

Almost synonymous with assembly code. Usually refers to

the binary code which the computer directly executes.

The same as a byte of memory. Can be thought of as an
addressable little box in the computer containing a piece of
information.
A dynamic software house located in a suburb of Toronto,
Canada. Dedicated to quality systems' software, MICOL is
an acronym. ofMIcro COmputer Languages.
A collection ofcharacters which can help you remember
something, "JMP", for example, can represent $4C in
machine code and is a mnemonic for it.
The act ofbreaking a program into small, easily
maintainable parts. While little overhead is involved, it
greatly minimjzes program maintenance.

A number system based on the number 8 (base 8). Octal
was once used more than today. A 10 in octal is decimalS.

A collection ofinstructions designed to perform (a) specific
acti.on(s).

The same as floating point number. A number which can
contain a fractional part and has a large range. Under
MicolAdvaru:ed BASIC there are two ranges of real
numbers, normal and extended. Normal reals require two
bytes ofstorage and have about seven digits ofaceuracy.
Extended reals require 10 bytes of storage and have about
19 digits of accuracy.

A, usually English, word whie' has a special meaning to
the compiler and cannot be used as a variable name.
GOSUB is an example of a reserved word in BASIC.

See Library

The act of storing all or part of a computer's memory to
some long term. storage device such as a disk.

A collection ofcharacters. The double quotation mark is
used by the compiler to declare strings, e.g. "This is a
string".

A systematic approach to the creation of software by using

a step-by-step procedure for solving the problem. It

consists of a smooth program flow, modularization of code,

meaningful identifiers, etc.

260

Two' complement value

Zero Page

Appendices

Glossary I

I
A number in which the negative value is achieved by

adding one to the inverse bit pattern of the positive value.
·1 is $FFFF in two's complement for short integers. I

The area in memory between locations 0 and 255 in bank
zero. Do not confuse zero page with direct page which can
be anywhere in bank zero. I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

Index:	 Two Hundred Sixty-One

Index
I
I	

!

!62
% · 62
& · 63I '" ·	 67
+	 · 67,77

· 67

I
I I · 67

\ · 47
{ · 48
}	48

I	 A

ABS	 . 72
ADDR	 163

I Aexpr	 11

I
Aliases 55

Order .49
Alop 11

I

APPEND 109
Apple IIelc .10I Arithmetic operators67
Arrays 65

Multi Dimensional 65
Nesting 67
Subscripts 67

I ASC 77
ASCII :'!6-77
Assembl... language232

I ATN 74
AutoExec. . 5,18

I	 B

I
BANK_NO 50
BASIC 12
BASIC.SYSTEM 16
Batch files 17

I BELIEVE159
BELL	 222
BKCOLOR	 .143

I BLOAD	 164

I

Booting MAE . 235
Branching

Selective . 119
Unconditional . 118-119

BSAVE . 165
BYE . . 117

C

CALL .. 229-230
Case statement

Defining 87
Case statements

Nesting 88
CASE_OF 87,172
CAT 18
CAT$ 103
Catalog 14, 18
CHAIN 227
CHR$ 78
Classic Desk Accessories 2
Classic Desk Accessories . 238
CLEAR 71
CLOSE 109
CODE 50
Code optimization 54
CodeSmith 15
COLOR 139
Conunand Shell. 1
Command Shell 2
Commercial license 44
COl\.1PILE 19, 38
Compiler

Aborting compilation 39
Advantages . 3
ALIASES	 . 55
AND	 . 68
Arrays	 . 69
Chaining . 227
Code generation . 41
Comments . 47
Compiled listings . 40,58
Control-C	 . 39

Appendices

Two Hundred Sixty-Two

Control-S : .. 040
Directive definition ...50
Error messages40
Filing Commands 103
L 40
Line continuation47
Listings .52, 54. 58
Logical operators .68
NOT 68
Options 50
OR 68
p 40
Precedence rules 68
RAM disk usage39
Scratch files .39
Statistical information .59
Symbol Table58
Syntax errors40
Variahles

Compiler Commands
ABS
ADDR

ADDRESS

APPEND
ASC
ATN
BELL
BKCOLOR
BLOAD
BSAVE
BYE
CALL
CASE_OF
CAT$
CHAIN
CHR$
CLEAR

CLOSE

COWR
COPY

COS

CREATE

DATA

DATE$

DECLARE

Appendices

.61

72
163

.130
109
77
74
222
143
164
165
117
.229-230
87.172
103
227
78
71
109
139
104,226
75
105
89,225
82
133

DELAY
DELETE
DIALOG
DIM
DO
DRAWSTR 145
 I
ELSE•... 84-85
ELSEJ)O 87
END 109,116,157 I
ENDCASE 87
ENDDO •....... 87

Index I

I
95

105
172,206 I65
87

ENDFUNC
ENDPROC
EOF
EXP
EXTEND
FALSE
FILE
FLUSH
FN
FOR
FORMAT
FRE (0)
FREEMEM
FUNC
GET
GET_MEM
GOSUB
GOTO
GR
GS_OS
HCOLOR
HGR
HGR2
HLIN
HOME
HPWT
HPLOT TO

HTAE
IF'
INCLUDE
INDEX
INKEY
INPUT

.INSLOT -. .

131
132
113
72
66
129
110
105
126,133
120
105
83
167
126,131
91,110
165
125-126, 132·133
53, 119
139
107
144
143, 171
143, 171
140
95
145
145
100
84·85
136
79
92
92, 111
94

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I Index

I,

INSTRUM 152

INT 56, 72-73

I INVERSE 95

LEFT$

I
LEN
LET
LINK

I LOCK
LOG

80

...........78, 145, 200

70

.232

106

73

I

LONGINT 66

LOWER$ 80

I

LRETURN 231

l\1ENU172, 182

MID$ 81

I

MOD 67

MOUSE .172, 185,

..............196,210

167

96

150,152,156

~l

150-151,156

95-96

224

119

.135

.53, 169

112

.101

148

162

.125, 134

141

162

134

99

106

82

96,112,222

97,112

.126, 132

.49

100-101

151, 157

90

Two Hundred Sixty~Three

REM 48

RENAME 107

REPEAT 124

RESTORE 91

RESUME 51, 170, 225

RETURN ~. 125, 132

RIGHT$ '. 81

RND 158-159

ROPEN 113

ROUND 73

ROUTINE 118,126-127
RUN 116

SCRN 141

SEEK 114

SEGMENT 229

SGN 74

SILENCE 151,157
SIN 75'
SPC 99

SPEED 96

SQR 74

STOP 109, 117, 157,222

STR 56

STR$ 78

STRACE 223

TAB 99

TAN 75

TEXT 102, 141, 171

TIME$ 82

TOOLBOX 212

TRACE 222

TRUE 129

UNLOCK 107

UNTIL 122,124,134
UPPER$ 81

VAL 78

VALUE 130

VLIN 141

VTAB 100

WAVE 150

WEND 124

WHILE 124

WINDOW 11,172,188-191
WOPEN 113

Compiler Directives

Appendices

I

I

I

I

I

I

I

I

I

I

I

MOV_MEM
MS_TEXT
MUSIC
NEXT
NOISE
NORMAL
NOTRACE
ON GOTO
ON..GOSUB
ONERR GOTO
OPEN
OUTSLOT
PDL
PEEK
PERFORM
PLOT
POKE
POP
POS
PREFIX
PREFIX$
PRINT
PRINT USING
PROC
PROGRAM
PRTON
QUIET
READ

Two Hundred Sixty-Four

ALIAS
DECLARE

INT

STR

Compiler Options
BANK...NO
CODE
ERROR
EXTEND
LIST
LONGINT

·
NOGOTO
NOT_C
OPTIMIZ

·
PRINTER

VAR2

COMPILER.SHELL

.49
70
56,62-63
.56, 63-64

.50, 83
41,50
.51, 170, 225
.52, 64, 72, 225
52
.52, 63, 72,
.163, 214, 225
53

.53, 93

.54, 223,
22fi.226
54

54

.5,236

Concatenation77
Conditional statements ..84-85
Control Panel
Control Panel
Control-C
Control-S
Controlled uncertainty

Table
CONVERT
COPY
Copyright

8
8-9,39,54
.39, 53, 93
.93
159, 161
160
239
19,104,226

,i
COS . , , . , . , 75
CR , , . , . , 12
CREATE .. , 19

D

DATA .. . , . . , . . , . .89, 225
Data entry ...,.... .89-92
Data output96
DATA Statement

Order .49
DATE$ 82
Debugging ..".... .221, 223-224,

· , .228
Default prefix106
DELAY ,......... ,95-96

DELETE
Delete key
Demo.Files
DIALOG
Dialog Box

Cheek box
Closure . , , . .
Control Number
Creation
Defining
Dialog Control Number
Displaying
Edit line
illNumber
Item type
Monitoring
Part addition
Part disable
Part Enable
Part Removal
Parts
Push button
Radio button
Serol bar
Static line

Dialog Boxes .,.,... 202
DIM
Direct page
Directory
Disk filing
DO
DOUBT
DRAWSTR
DUNNO

Index

........, 19, 105

.

,

.. , . , .

....,.	 210

....., 209
209
207

.. ",.	 203

. . . , , .	 204
204
205

65
....,.., 233

......,.. 103

. . . . , 109
, , .. 87 "

" .. 159
, ... 145

.. , .. ,	 . , ..

E

EDIT .
J£ditor

Apple key .
Apple-M .

"Arrows .
Beginning of line
Compilation from ...
Control keys,.

Control-B ", .

93
6
172,206

204
206
206
207
206
206
209
205
202
203
206
209

159

13,20,26
2,5
28
33
30
30
35,42
27
28

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

• • •

I Index

I
 Control-X .28

Control-Y 28

I Converting numbers . .37

Copy text32

Delete character28

I Delete key .29

I

Delete text32

Deletion mode28

Down screen -.30

I

End ofline 30

Enter mode .29
I Entering the26

Esc key 28

Find (backward)33
I Find (forward)33

Gate line31

Help screen .29

Insert file34

Load file .35

I LowerCase29

Move block.33

Movement in30

I New file 34

I

Option key28

Overstrike mode29

Previous word 31

I

Printing .36-37

Quitting 26

I

Relative motion .31

Return key28

Saving a file36

I

Setting tabs .31

SRC file 36

Tabbing 32

II

TXT files36

Up screen .•..•...30

UpperCase 29

Version number 37

Editor Commands

I Apple-# 37

I

Apple-? . . . i • • .29

Apple-B 33

I

Apple-C .30, 32

Apple-D .30, 32

Apple-Delete 28

I

Two Hundred Sixty-Five

Apple-Digit 31

Apple-Down Arrow .. 30

Apple-E . 29

Apple-F . 33

Apple-G . 31

Apple-H . 29

Apple-! . 34

Apple-K . 35,38,42

Apple-L . 35

Apple-Left Arrow . 30

Apple-M . 30

Apple-N . 34

Apple-P . 36

Apple-Q . 26

Apple-Right An:ow 30

Apple-S . 36

Apple-T . 36

Apple-Tab . 31

Apple-V . 37

Apple-W . 37

Apple-X . 29

Option~Left Arrow . . . 31

Option-Right Arrow . . 31

ELSE . 84-85

ELSE_DO . 87

END . 109,116,157

ENDCASE . 87

EOF . 113

ERROR . 51,170,225

Trapping . 169

Error handling . 168

Example Programs

CONTROLS . 211

Desktop.SampIes 173

DIALOG . 211

Fractal generator 6

LlNKDEMO .. 233

MABug.DEMO 6

MENU . 187

WINDOW . 188,200

E"XP . 72

Expr . 11

EXTEND . 52,66,72

Appendices

Two Hundred Sixty-Six

F

Factorial .137

FALSE 159

FILE 110

File Access Number 109

Filename .11

Files

Deleting 105

Locking 106

Random access 114

Renaming 107

Sequential113

Unloclring .107

Filing Commands 104,106-107,

..............109-110,

..............112-113

Find 33

FLUSH 105

FN"•.•.133

Folder

Micol.Adv.BASIC5

UTILITY

FOR
FOR...UNTIL
FORMAT
Formatted text output . .

.5, 25

120

.122

.20, 105

.97

FRE (0)•.83

FREEMEM
Functions

G

Game
Garbage collection
GET
GET..MEM
Global Variables
GOSUB
GOTO
Graphics

Colors
Low resolution
Shapes
Super High Resolution

GSlOS
Accessing

167

127-131

6

.82

91,110

165

.128

.132-133

.53, 119

.139, 144

139-141

146

.142-145

1

.107

H

Hard Disk
Hardware

Minimum requirements
HCOLOR
HELP
Hexadecimal numbers ..
HGR
HGR2
High resolution graphics
HLIN
HOME
HPWT
HPWTTO
HTAB

I

IF
INCLUDE

.

.
Indenter
INDEX
INFO.DOC
Information file
INKEY

Index

107

7. 234

6

144

12, 21, 29

68

148, 171

143, 171

142

140

21,95

145

145

100

84-85

136

25

79

i, 6

1

92

I

I

I

I

I

I

I

I

I

I

INPUT • 92,111

rnSLOT 94
 II
INSTRUM 152

!NT
Integers

Long
Short

INVERSE

J

Joystick

K

Kompile

L

Laser Printer
LEFT$

62. 72-73

I
52,63
63	

I
95

I
148

38	 I

I

9

-.. 80
 I

I

I Index

I LEN
LET

I LIBRARY . .
Library ofroutines
Library routines

I Library.S.A
Limit of Liability
Line Numbers

I LINK

. 78,145,200

. 70
. .5, 44

.....135
......41

236
.i
.4647
232

The Linker42

I LIST
Load File
Local variables

I LOCK
LOG
Long integers .
LONGINT I Loops

I
FOR
FOR...UNTIL
Repeat
WEND

I While
LOWER$
LRETURN

I M

.

21,52
.2, 235
128

.21, 106
73

.52

.52, 66, 72

120-121
.122
124
124
124
80
231

I
 MAE.SUPPORTi, 5, 25,173,

I

·187-188, 211,

· 233-234,

·236-239

MAE.TO.CDA folder238

MAB.TO.SI6 folder 236

I MABug
MAKE.CDA
MAKE.SALNK

I Master Disk

I
Memory

Allocation
Memory Manager

ill

198
238
236
5,234-236
225
165, 167

.....44
165

I
 Memory Requirements 1

I
MENU . .172, 182

Attributes . .176
Bar174

I

Two Hundred Sixty-Seven

Control Numbers .
Creation .
Disable .
Fonts .
In
Item
Keyboard equivalents

.

.

.
List
Monitoring
Pull down
Removal
Title
Unhighlight

.
.

.
.
.

.
Micol Advanced BASIC

Earlier versions ..
Micol Advanced BASIC etc
MicolBASIC
Micol Macro . .
Micol Systems

Address .
Telephone

Micol.Adv.BASIC
MICOL.SYSTEM
MID$.
MOD .
Modularity

Advantages
Defining .

MOUSE .
MouseText characters
MOV_MEM .
MS_TEXT .
Multi-Decision

CASE_OF ..
Music .

Instruments .

N

Nesting
CASE_OF
FOR..NEXT
Function
IF statement . . .
Procedure
REPEAT..UNTIL

.

.

.

183
183
178, 184
180
175
174,176,178
177
174
185
174
184
174-175
185

11
2
12
232

9
10
236
236
81
67-68,73

125
125
172,185,196,210
96
167
96

87
149-150,152, 156
152-153

88
123
128
86
128
124

Appendices

Two Hundred Sixty-Eight

WlllLE..UNTIL124

New Desk Accessories .. .185

NEXT 121

NOGOTO 53

NOISE ,.150-151,156

NORMAL95·96

NOT_C .53, 93

NOTRACE 224

o
ON...GOTO119

ON..GOSUB 135

ONERR GOTO53, 169

ONLINE 13,21

OPEN 112

Operator precedence68

OPrIMIZ .54.223,

..............225-226

Output

Formatted97

Unformatted ' 96

Output through slots 101

OUTSLOT .101

p

Parameters129

Passing by ADDRESS .130

PassingbyVALUE 130

Pathname 11

PDL 148

PEEK 162

PERFORM 134

Pixelsize .200

PLOT 141

POKE 162

POP 53,134

POS 99

PREFIX13. 22, 106

and CAT$ 104

PREFIX$ 82

and CAT$.104

PRINT96, 112, 222

PRINTUSING 97,112

Printer .8-9. 23, 40,

..............54.101

Appendices

Printer output
Procedures
Program

Compiled listings

Compiling

Examples

Execution start

Indentation

Line numbers

Loading

Loops

Name

Order

SegInentation

Termination

Program order
Program Separator
PRTON

Q
QUIET
QUIT

R

RAM Disk
Random numbers
READ
Real

Extended
Single precision

Recursion
Relational operators
Relop
RENAME
REPEAT
Replace
RESTORE
RESUME
RETURN
RIGHT$

Index

54

127-130, 132

58

38

5

24, 116

84.116

46-47

235

120

49

49

228

116-117

126

46

100-101

151, 157

23

8, 39

158

90

64

63

136

6"

11

24,107

124

33

91

51,170,225

132

81

RND . • 158-159

ROPEN

ROUND

ROUTINE

Routine declarations . -. .

113

73

118

118

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I Index

I
 RUN 24,116

Run time library 44

I
 S
seRN 141

I

I SEEK '" 114

SEGMENT 229

Sexpr 11

I

SGN 74

Shell

Arrow keys16

Built-in commands
Command

I Control-C
Control-R
ControI-S

I Control-X

I

Delete key
Deletion modes

I Return key
Utilities

Shell Commands
AutoExec
BATCH

I CATALOG

I
COMPILE
COPY
CREATE
DELETE
EDIT

.. .17-24

25

.17

17

.17

17

16

.16

16

25

18

17

18

19

19

19

19

20

20

' 21

21

21

21

21

22

.23, 40

23

24

24

24

151, 157

75

.45

Two Hundred Sixty·Nine

Slot input 94

Sound 149

Description 149

Waveform. 150

Sounds 157

SPC 99

SPEED 96

SQR 74

Stand Alone Files 2

Stand Alone Programs .. 234-236, 238

START 235

Startup disk 234

STOP 109, 117, 157, 222

S1'&$: 78

STRACE 223

String comparisons 77

String memory 50

Strings 64

Dynamic 65

Static 64

System disk 5

T

TAB 99,112

TAN 75

Task Master 198

Technical assistance 9

TEXT 102, 141, 171

Text display

Quality of 95-96

Speed of 96

THEN 84

'hme delay 95

TIME$ 82

ToolBox 173, 212

Description 212

Error checking 214

Function Number 212-213

Long integers 215

Memory allocation 215

Pull list 213-214

Push list 213

Tool Number 212-213

TRACE 222

TRUE : 159

Appendices

I

I

I

I

I

I

I

FORMAT
HELP
HOME
LIST
LOCK
ONLINE
PREFIX
PRINTER
QUIT
RENAME
RUN
UNLOCK

SILENCE
SIN'
Site licenses

Two Hundred Seventy

True_Value77, 83,

· 103-104,108,

· 110,145,163,

· 166,200, 214

Turnkey disk236

Turnkey system 117,236

Tutorial . . . 12

U

UNWCK24, 107

Unop 11

UNTIL 122,124,134

UPPER$ 81

Utilities .24

Utility folder .5, 24

V

VAL 78

V~ . .M

Variables

!62

%62

& 63

Addresses 58,163,215

Arrays .65-66, 226

Assignment70

Declaration 70

DECLARE133

Explicit declaration . . .69

Extended precision ...64

Extended reala .52

Flag .62

Floating point 63

Forced real63

Global 128

Implicit declaration 69

Integers 62,226

Local 128

Long integer 63,108

Long integers .52

Long integers & ToolBox 214

Name 54,61

Parameter passing .. .130

Passing129

Real 63

Appendices

Index I

I
Reinitializing . 71

Rounding . 73

Scientific notation . 64
 I
Short integer . 63

Single precision . 63

Stri.n.g . 64
 I

String length . 78

Switch . 62

Truncation . 72
 I

~8 • • • • • • • • • • 56,61

VLIN 141

Volume name 11
 I

Volumes

Online 106

VTAB . 100 I

W I
WARNING . 5

WAVE . 150

WEND . 124
 I

WIllIE . 124

WINDOW . 11,172,188-191

Windows
 I

Closing . 194

Command parameters . 189

Control Number 188 I

Control Numbers 189

Creation . 189, 191

Definition . 188 I

Drawingin . 200

Frame . 191

Grafport . 200 I

Management . 196

Number . 195
 I
Pointers . 189, 195

Task Record . 197

Update events 198
 I

Updates . 198

Using . 195
 I

I

I

I

1

I

j

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Printed in Canada ISBN 0-921270-.04-6 I

I

	Cover
	Introduction
	Table of Contents
	Part One: Overview of the Language
	Chapter One: General Review
	Chapter Two: Getting Started

	Part Two: The Programming Environment
	Chapter One: The Command Shell
	Chapter Two: The Source Code Editor
	Chapter Three: The Compiler
	Chapter Four: The Linker
	Chapter Five: The Run Time Library

	Part Three: The Advanced BASIC Language
	Chapter One: Compiler Rules and Directives
	Chapter Two: Basic Elements of the Language
	Chapter Three: Mathematical Functions
	Chapter Four: Strings
	Chapter Five: Making Decisions
	Chapter Six: Basic Input/Output of Information
	Chapter Sever: Disk Filing
	Chapter Eight: Control of Flow
	Chapter Nine: Modularization
	Chapter Ten: Graphics
	Chapter Eleven: The Sound of Music
	Chapter Twelve: The Human Element
	Chapter Thirteen: Direct Memory Access
	Chapter Fourteen: Run Time Error Handling

	Part Four: Creating the Apple IIGS Desktop
	Chapter One: Desktop Programming
	Chapter Two: Menus
	Chapter Three: Windows
	Chapter Four: Dialog Boxes

	Part Five: The Apple IIGS ToolBox
	Chapter One: Direct Toolbox Access
	Chapter Two: Tool Set Tables

	Part Six: Program Management
	Chapter One: Program Debugging
	Chapter Two: Program Optimization
	Chapter Three: Program Segmentation
	Chapter Four: Linking Assembly Language Programs
	Chapter Five: Creating Independent Programs
	Chapter Six: Converting Applesoft Programs

	Appendices
	Appendix A: Memory Usage
	Appendix B: Screen Output
	Appendix C: Run Time Error Codes
	Appendix D: GS/OS Error Codes
	Appendix E: Compiler Reserved Words
	Appendix F: ASCII Character Codes
	Glossary

	Index

