Hardware Reqt.: Apple IIGS/1 MEG, 2 or More 3.5 DRIVES AND/OR
| HARD DRIVE.

Call-Box

INCLUDES ... LAUNCHING SHELL,
EDITORS and BASIC INTERFACE

The Toolbox ProgTammmg
Sys tem

Call Box" TPS

The Toolbox Programming System

Version 2.0 15-Jan-90

SO WHAT

10221 Slater Ave. Suite 103 Fountain Valley,Ca.92708 . "

NOTICE

So What Software reserves the right to make improvements in the product described in this manual
at any time without notice.

This manual is copyrighted. All Rights are Reserved. No part of this manual may be copied,
reproduced, translated or reduced to any electronic medium or machine readable form without the
prior written consent of

So What Software
10221 Slater Ave.
Suite 103,
Fountain Valley CA.
92708

So What Software provides a 90 day warranty against mechanical failure and physical defects in this
product from the date of purchase. The warranty card must be filled out and sent back to So What
Software before this warranty can be honored. So What Software makes no warranties with respect
to this product, its quality, performance, merchantability or fitness for any particular purpose.

© Software 1989-90 So What Software

© Manual 1989-90 So What Software
Software Design: SHELL- William Stephens, Eric Joham BASIC- William Stephens, Eric
Joham EDITORS- William Stephens, Joe Jaworski DEMOS- Ed Rambeau, Eric Joham, William

Stephens
Manual Design: Don Druce, William Stephens, Eric Joham

Call Box™ is a registered trademark of So What Software
APPLE, APPLE IIgs, APW, GS/OS, are registered trademarks of Apple Computer Inc.

ORCA is a registered trademark of Byte Works Inc.

This software package was created using the following software and hardware products:
Apple Ilgs /W 1.5M & GS/OS V5.0, Applied Ingenuity 40M Inner Drive, Apple Laserwriter
IINT, Apple 3.5 drives, Apple LocalTalk network, Applied Engineering TranswarpGS, Byte
Works Orca/M assembler/linker, Claris AppleworksGS.

So What Software Product #M400-001A

Welcome

Welcome to the Call Box TPS (Toolbox Programming System). The Call Box system introduces
a toolbox driver which allows you to create launchable desktop applications in enhanced
Applesoft BASIC.

This driver can act as the ideal prototyping language for the professional and can open up the
mysteries of the IIgs for the amatuer and beginner. This driver is supported by WYSIWYG
(What You See Is What You Get) editors which create commonly used toolbox data structures
which up till now required hours of tedious planning, guesswork and re-work to make. You can
create Windows, Dialogs, Menus, Icons, Cursors and pixel images in a fraction of the time that it
usually takes and incorporate them into any language in a variety of forms.

The Call Box TPS is designed to grow with new advancements in the IIgs and upgrades will be
made available to registered owners of this software as they become available. Be sure to send
in your warranty card when you receive this product so we can notify you when
upgrades are available... there is really no way we can find you without this,

This manual is divided into 3 sections (Launcher, BASIC Driver and Editors). In order to take full
advantage of all the features in this software we recommend that you actually READ this manual to
serve as a resource for any questions you may have.

IMPORTANT NOTE:

The version 2.0 release of this software is full featured as advertised. We would like to thank the
customers who purchased the Version 1.0 Call Box TPS for their patience and understanding with
the prior limitations to this system. All registered owners of Version 1.0 are entitled to a free
upgrade to Version 2.0.

| Launching Shell |

Version 2.0 15-Jan-90

SO WHAT SOFTWARE

Fountain Valley

Call Box Launching Shell Manual Chapter 1 - Overview

CHAPTER 1 - OVERVIEW

OVERVIEW

The Call Box launching shell gives the user access to the various functions of the Call Box Toolbox
programming system. This shell has 3 major functions or divisions.

SYSTEM: This group of functions are found in the File menu of the launchers menu bar. These
functions include a programmable launcher, file utilities such as delete, rename, set filetype, set
auxtype and file access bits, launcher desktop preferences, system installer, and eject drive(s).

EDITORS: This is where the WYSIWYG editors are launched from. These editors create source,
object code or resources segments for use by any programming language. The editors create
Window, Dialog, Menu, Icon, Cursor and pixel image data structures. Other editors will be released
in the future and this menu will grow automatically as the need presents itself. (See. The EDITORS
MANUAL for details)

BASIC: This is where the Call Box BASIC Interface resides. You can start Call Box BASIC, or
Applesoft BASIC from their menu items and can run the Call Box BASIC Deom/tutorial as well.
Another utility is provided to edit the CB.VARS file used with the BASIC interface.(See. The
BASIC INTERFACE MANUAL)

This manual will explain how to use the utilities found in the launching shell as well as how to use
this shell with several different system configurations. The exact use of the EDITORS and BASIC
Interface is described in their own manuals.

8/15/89 Page 1.1

Call Box Launching Shell Manual Chapter 1 - Overview

THE DESKTCP.. .~ . ..o

When the CALL BOX LAUNCHING SHELL disk is booted up a menu bar with the selections
(APPLE), File, Edit, Editors and BASIC will appear and a 320 mode graphic image will appear as
your desktop. This image is in fact 2-65 block type $C1 super hi-res pictures named XXX and
XXXX. These pictures can be edited by any paint program or can be replaced by any ones that you

have created. Just a portion of the second picture (XXXX) is actually displayed by selecting the
menu selection Apple-About CALL BOX...

The desktop can be displayed in any one of 4 different ways... 320 mode picture desktop, 320 mode
standard desktop (periwinkle blue) 640 mode picture desktop or 640 mode standard desktop. Select
File-Preferences to set the way you want the desktop to appear. (See. Figure 1.1)

The next time the launcher is booted or launched your preferences will take effect.

If you exclude either or both of the pictures from your disk then the standard desktop appears by
default. Eliminating the pictures will free up 130 blocks of disk space and will eliminate 2 or 3

seconds of loading time.... I prefer to have a picture type of desktop, it looks fancier and the time
difference is negligeable.

Bhell Proferonces

@& 320 mode (O Pic Desktop
O 640 mode @ Std Desktop

'_——-—_J'

Figure 1.1 Shell preferences

8/15/89 Page 1.2

Call Box Launching Shell Manual Chapter 1 - Overview

s
e e i

FILE UTILITIES

The selection File-File Utilities will bring up a Standard file selector box. Use the disk button to
display the drive that contains the file you want to edit. use OPEN and the scroll bar to put this file
in the scroll window. Point and click the arrow cursor on the file in question and it will hilite, then
click the OPEN button. (You can just double~click the files title to accomplish the same thing).

The standard file box will disappear and the file utilities box will appear. (See Figure 1,2) This
"Mini-utility” allows you to do five things to a ProDOS file.

1. To rename a file press the DELETE key and then type in your new filename, it will appear in the
line edit box named Filename: Press RETURN or click the OK button to accept the new name,

2. To change the filetype of your file triple-click the line edit box named Filetype, press delete and
type in the new filetype. You can enter the filetypes hex number (ie: $04.. $C1) or enter any of
the standard 3 letter designators (ie: BAS, BIN, S16...) Press RETURN or click the OK button
to accept the new name.

3. To change the Aux Type of your file follow the same procedure as outlined in the previous
description. You can only enter the hex number (minus the $...dollar sign) and it must be 4
digits. Press RETURN or click the OK button to accept the new name.

4. To set the access bits set the check boxes named Destroy, Rename, Backup, Write or Read to
reflect the desired settings. A checked box "enables" the access and an unchecked one"disables”
it. Press RETURN or click the OK button to accept the new name.

5. To delete a file click the DELETE button. A second box will appear as a safety which allows you
to change your mind before doing something permanent and possibly destructive.

NOTE: If you accidentally delete a file you did not want deleted, all is not lost. STOP ALL
WRITING TO DISK NOW!!! Utilities such as Disc Commander or Copy II Plus have undelete
functions which wil fix things up, but they are ineffective if you have written to disk after the file is
deleted.

The File utilities box has one more button and that is CANCEL.... its function should be obvious.

/CALL.BOX/CALL.BOX

Filename: |[ITEETIIES 1
& Destroy §16] Filetupe

Rename .
Backup 0100] Ruxtype

Write
Read

(Delete] [Concel }

Figure 1.2 File utilities

8/15/89 Page 1.3

Call Box Launching Shell Manual Chapter 1 - Overview

MY:APPLICATION

The menu selection FILE-MY APPLICATION will allow you to launch your own program from
this launching shell. Your program may be your programming language environment, the finder, or
any launchable application. This selection provides you quick access to another program which will
return to the CALL BOX launching shell when the other application is quit.

To set which program you want to launch with this feature select FILE-SET MY APPLICATION
and a standard file box will appear. (See Figure 1.3) Use the disk button to display the drive that
contains the file you want to launch. Use OPEN and the scroll bar to put this file in the scroll
window. Point and click the arrow cursor on the file in question and it will hilite, then click the
OPEN button. (You can just double-click the files title to accomplish the same thing).

:CALL.BOX:CALL.BOX
@:CALL.BOX: .
SBASIC Louncher EYI{ Disk D)

& BASIC.System
GCALL.BOX

D icons II Open il
S iInstaller -
&ProD0S b f Cilaue 3

CSTARTUP
LD Scripts

Figure 1.3 My application

8/15/89 Page 1.4

Call Box Launching Shell Manual Chapter 1 - Overview

CONFIGURE CB.VARS

This utility allows the user to alter the variable names assigned for the functions of the CALL BOX
BASIC interface. These variable names are contained in a variables file named CB.VARS. This file
is RESTOREG at the beginning of each CB BASIC program to link the program to the CALL BOX
BASIC Interface.

The selection BASIC-CONFIGURE CB.VARS will bring up a Standard file selector box. Use the
disk button do display the drive that contains the CB.VARS file you want to edit. Usc OPEN and
the scroll bar to put this file in the scroll window. Point and click the arrow cursor on the file in
question and it will hilite, then click the OPEN button. (You can just double-click the files title to
accomplish the same thing).

The standard file selector box will disappear and the CB.VARS configuration box will appear. To
alter a variable triple-click the desired variable, press DELETE and then type in the new variable.
CALL BOX BASIC interface variables must be "Real” and have 2 letters. A real variable is one in
floating point format. (See Figures 1.4)

Repeat this process for each variable you want to alter. When done either click the OK button or
press RETURN,

CB.VARS Variable Equivalents...

[@D]Bis Poke [RE |Rect [WH] window
[PE]Big Peek Dval [ME] Menu
[aF]shutdown [RR]RRect Dialog
[sC]screen [ABR]Arc Tool
[PL]Palette [EV]Event L-Call
SCB @Cursor Array
[PN]Pen Text Buffddr
Line Port BufLen

Figure 1.4 Configure CB.VARS

8/15/89 Page 1.5

Call Box Launching Shell Manual Chapter 1 - Overview

1:DRIVE OPERATION

Single drive operation of the CALL BOX Toolbox Programming System is the least recommended
type of operation. You can successfully operate this system on one drive but you will have to eject
and insert disks quite often.

NOTE: Always use backup copys of the CALL BOX disks when operating from disk. Many
things can happen to a computer system while operating it such as power transients or bad
keypresses and even bad programming procedures. Any of these occurrences can cause disk
damaged. Play it safe and use only backup disks when programming.... this applies to all software,
not just ours.

Boot-up the Launching Shell disk and the desktop will appear, The EDITORS menu selection will
be disabled at this time and the CALL BOX BASIC specific selections in the BASIC menu selection
will be disabled as well.

To launch an editor eject the launching shell disk and insert the editors disk... the EDITORS menu
selection will become selectable. Pull-down and select the desired editor and it will be launched. In
the launching process the editor will need to load or access some things in the launching shell disk
and you will be prompted to insert the needed disk(s) as applicable.

While in the editor you will need to load or save editor data to or from your own disk. Eject the
EDITORS disk and insert your disk to load or save things. The EDITORS disk can remain out of
the drive during the editing session because the editors are loaded entirely in memory and need no
further disk access to operate once up and running.

When you QUIT the Editor you will need the Launching Shell disk back in the dnve, if you forget,
the system will prompt you to do so.

This procedure holds true for the BASIC Interface disk as well. The system is designed so you can
not select a system function that is not on-line currently.

The FILE-EJECT.. functions are provided to eject the disks from the drives. You can just press the
button on the face of your disk drive to accomplish the same function.

There are 3 CALL BOX disks, the names of the disks differ from their volume names. When
prompted for a different disk the actual volume name is requested and not the name on the disk
label.

Launching Shell = /CALL.BOX

Editors = /[CALL.BOX.2

BASIC Interface = /CALL.BOX.3

8/15/89 Page 1.6

Call Box Launching Shell Manual Chapter 1 - Overview

2 DRIVE OPERATION

Double drive operation of the CALL BOX Toolbox Programming System is quite similar to single
drive operation except that you will have to swap disks less frequently.

NOTE: Always use backup copies of the CALL BOX disks when operating from disk. Many
things can happen to a computer system while operating it such as power transients or bad
keypresses and even bad programming procedures. Any of these occurrences can cause disk
damaged. Play it safe and use only backup disks when programming.... this applies to all
software, not just ours.

Boot-up the Launching Shell disk and insert either the EDITORS or the BASIC Interface disk in
drive 2. The system will automatically sense which disk(s) is on-line and will enable the
appropriate menu selections.

Removing either the EDITORS disk or the BASIC Interface disk will disable the menu selections
automatically... reinserting them will enable the selections.

You can boot-up the Launching shell disk and when the desktop comes up you can then eject this
disk and put the EDITORS and BASIC interface disks in the 2 drives. No matter how you use your
drives the system will prompt you when a disk that is not currently on-line is needed.
There are 3 CALL BOX disks, the names of the disks differ from their volume names. When
prompted for a different disk the actual volume name is requested and not the name on the disk
label.

Launching Shell = /CALL.BOX

Editors = [CALL.BOX.2

BASIC Interface = /CALL.BOX.3

8/15/89 Page 1.7

Call Box Launching Shell Manual Chapter 1 - Overview

HARD DRIVE OPERATION/INSTALLATION

The CALL BOX TPS was designed with the hard drive user in mind. A large storage device such
as a hard drive is basically necessary for any serious program development task, The limitations of

disk drives becomes apparent when developing software on a par with commercial and professional
applications.

An installer script is provided to install the system on a hard drive. The only prerequisite is that the
hard drive volume must be GS/OS V5.0 minimum. Using this software with versions prior to 5.0
will create all kinds of problems and will probably not work. The Shell and Editors take advantage

of NEW GS/OS and toolbox calls plus utilize the Resource Manager which is not present on earlier
versions.

The Launching Shell disk has a minimal GS/OS V5.0 system on it which does not include many of
the segments that a real GS/OS V5.0 system disk does. There is only enough of the system present
to make it boot and support the functions of this software. If you do not already have GS/OS V5.0
min, Installed in your hard drive, go to your local Apple dealer and purchase a copy and install it.

To install the CALL BOX TPS on your hard drive select FILE-INSTALLER from the launching
shell menu, Click the INSTALL button from the installer program and follow the prompts as they
come up.... That's all there is to it!

There are 3 CALL BOX disks, the names of the disks differ from their volume names. When the

installer asks for a different disk the actual volume name is requested and not the name on the disk
label.

Launching Shell = /CALL.BOX

Editors = /CALL.BOX.2

BASIC Interface = /CALL.BOX.3
A subdirectory named CALL.BOX will be created in your root directory and will contain the
Launching Shell, Editors and the BASIC Interface all together. Segments from all 3 disks will be
required for this installation procedure. An additional tool will be installed and the basic.launcher
program will be overwritten with a different version.... the finder will not be affected by this.

To use the CALL BOX TPS Launch the file named CALL.BOX in the CALL.BOX subdirectory
with whatever launcher you have in the START position of your hard drive volume.

8/15/89 Page 1.8

Call Box Launching Shell Manual Chapter 1 - Overview

ICONS

This disk contains special icons for use by the "Finder" or other icon based programs. These icons
are CALL BOX specific and are in 640 mode using dithered colors. The installer script for putting
CALL BOX on a hard drive automatically installs them in the icons folder of you hard drive root
directory. If you will be using disk drives instead of a hard drive then copy the file CB.ICONS
from the CALL BOX icons folder to the same folder on your system disk so the "Finder" on that
disk can bring them up.

These icons are simply cosmetic and do not affect the operation of CALL BOX in any way.

TOOLOS53

There is a "NEW" tool on the CALL.BOX disk called Tool053. This tool provides the user interface
for loading and saving resources.

All CALL BOX editors depend on the presence of this tool and will not operate without it. You
must include this tool in any system disk that will be used in conjunction with the CALL BOX
editors. This tool goes in the SYSTEM/TOOLS folder of your boot volume.

There are 2 functions in addition to the normal housekeeping functions for tools, these functions are
RFPutFile and RFGetFile.

RFPutFile will provide the user with point-and-click access to any resource fork, showing the
resource L.D.'s for any specified resource type. (See the save sections for each editor in the
EDITORS manual for detailed operating procedures)

RFGetFile will provide the user with point-and-click access to any resource fork, showing the
resource LD.'s for any specified resource type. (Sec the load sections for each editor in the
EDITORS manual for detailed operating procedures)

A complete Tool053 reference document is available separately from us for those of you who wish
to incorporate this tool in your own programs. (product #M400-004)

8/15/89 Page 1.9

Call Box™ BASIC

Version 2.0 15-Jan-90

SO WHAT SOFTWARE

-10221 Slater Ave. Suite 103 Fountain Valley,Ca.

Call Box BASIC

Contents

Call Box BASIC in the Launching Shell
Bootable 3.5" Call Box Program Disks
Launchable Call Box Programs

Call Box BASIC and Desk Accessories
Call Box BASIC Program Structure
BASIC Concepts

Entities

Bank Zero Memory Use

User Buffer

Making a Call Box BASIC Desktop Applic.
Using Call Box BASIC

Error Messages

Command Structure

CALL AR (Arcs)

CALL AY (Super Array)

CALL CU (Cursor/Icon)

CALL DI (Dialog)

CALL EV (Event/TaskMaster)

CALL LC (Long Call)

CALL LN (Line)

CALL ME (Menu)

CALL OV (Oval)

CALL PE (Big Peck)

1.1

1.1

1.1

1.2

1.2

1.3

1.3

1.4

1.5

1.5

1.6

1.7

1.8

2.1

2.3

2.5

2.7

2.13

2.17

2.21

2.23

2.27

2.29

So What Software

Page i

Call Box BASIC - Contents

CALL PO (Big Poke) 2.30
CALL PL (Palette) 2.31
CALL PN (Pen) 2.33
CALL PT (Por) 2.37
CALL QF (Shutdown) 2.39
CALL RE (Rectangle) 2.41
CALL RR (Rounded Rectangle) 2.43
CALL SB (Scan Line Control Bytes) 2.45
CALL SC (Screen) 2.46
CALL TL (Tool) 2.47
CALL TX (Text) 2.49
CALL WN (Window) 2.51

So What Software Page i

Call Box" BASIC

OVERVIEW

The Call Box BASIC driver gives Applesoft BASIC new commands and capabilities that
utilize the Apple IIgs Toolbox. These tools give you the ability to draw in either 320 or 640
mode plus make use of Icons, Cursors, Fonts, Dialogs, Menus, Windows... In fact, almost any
tool call is made possible with the Call Box BASIC Interface.

Call Box BASIC in the Launching Shell
The Call Box TPS (Toolbox Programming System) launching shell has a menu bar selection named
BASIC. This menu contains selections which deal with Call Box BASIC and Applesoft.

Applesoft BASIC This selection puts you in Applesoft BASIC and ProDOS 8. All of the
usual Applesoft and ProDOS 8 functions are available here.

Call Box BASIC This selection puts you in Call Box BASIC, ProDOS 8 and
SoDOS. Call Box BASIC is an enhanced Applesoft BASIC and
SoDos is a GS/OS emulator.

Configure CB.VARS This selection allows you to change the variable names given to the
Call Box functions.

Call Box Demo This selection runs a Demo/Tutorial on the Call Box BASIC driver.
This program demonstrates by example each interface command and
shows programming line examples with each demonstration.

The launching shell provides you with a convienent environment from which you can create Call
Box BASIC programs. Call Box BASIC programs can be used on bootable 3.5 inch disks and can
be launched from any program launcher using RAM or Hard Disk Drives.

Bootable 3.5" Call Box Program Disks

A bootable program disk can be made by inserting a blank disk in Slot 5 Drive 1 and then selecting
FILE-FORMAT DISK from the Call Box Launching Shell. This will format the disk as volume
CB.BASIC. Next select FILE-INSTALLER and run the script named INITIALIZE
CB.BASIC, this will install GS/OS and all the necessary Call Box files to make-up a bootable
disk. When this disk is booted it will result in running a mock STARTUP program using Call
Box BASIC. Replace this program with your own program(s)... your ready to go!

Launchable Call Box Programs

Call Box BASIC programs can be launched by any program launcher capable of launching BASIC
programs, Launchers that use the desktop like HyperLaunch and the Finder need no special
handling but launchers that use the text screen display like ProSel will need to run the
CB.PreLaunch program before running Call Box BASIC programs in order to install and
initialize the desktop tools. The boot volume must contain the init file called CB.Init in any case.
Your Call Box BASIC programs should be in their own subdirectory which must also contain the
files CB and CB.VARS. More than one Call Box style subdirectory can exist and any kind of file
can be in these subdirectorysas long as the minimum required files are present, which are CB and
CB.VARS. The file CB.PreLaunch can be put anywhere.

So What Software Page 1.1

Call Box BASIC Manual

OVERVIEW cont.

Call Box BASIC and Desk Accessories
Classic Desk Accessories (CDA's) are always available by pressing OPEN APPLE-
CONTROL-ESCAPE and 3 are supplied with the Call Box Toolbox Programming System.

Reveal: This one will show the text screen while the Super Hi-res screen is active.
Applesoft Memory: This one shows the current boundaries and locations in Applesoft BASIC.

Call Box Memory: This one shows special locations and data behind the scenes in Call Box
BASIC.

New Desk Accessories (NDA's)

Call Box BASIC gives you the ability to display and run desktops from Applesoft BASIC. The
system menu bar in a desktop application has a (colored) Apple menu selection which contains all of
the active New Desk Accessories in the :SYSTEM:DESK.ACCS subdirectory of your boot
volume. Some caution must be observed with NDA's... NDA's that access disks or ones that show
GS/OS or P16 system status will probably hang or crash while Call Box BASIC is active. As an
example, one of our machines has the following NDA's in it: Memory, Analog Clock, Clock,
System Control and Control Panel. Everything operates except the Control Panel NDA and
the STATUS function of the System Control NDA. Trial and error will sort out what will work and
what will not.

Call Box BASIC Program Structure

The file CB must be run to startup the Call Box BASIC driver. This file loads into bank 0 at $2000
and then executes itself, When it is done this area is freed up and can be used by Applesoft code.
Many programs will be small enough to fit under this area and can run CB from within them.
Larger programs should have a smaller program initialize CB and load in the entities, then run a
second program (which can be up to 31K in length) which can subsequently RUN or CHAIN
other programs... all without shutting down Call Box BASIC. VARS files can be used to pass
variables from program segment to program segment and you need only shutdown Call Box BASIC
when you QUIT or BYE from the program(s). This allows you to create Applesoft programs of
incredible length and complexity. The loading of Entities, Fonts, Icons, Cursors, and Pictures from
within any of the program segments will not interfer with even the largest of segments. The demo in
the Call Box Launching Shell is a good example of this. The actual structure of the program code is
really up to you... (spaghetti code* works just fine!)

Each Applesoft program segment must RESTORE CB.VARS if they are RUN, if these
Applesoft segments are CH AINed then the variables are preserved from segment to segment and
only an initial RESTORE CB.VARS is needed in the first segment.

Spaghetti code... Program code that is written without a plan, resulting in redundant routines, patches and
entangled program flow.

So What Software Page 1.2

CallBox BASIC @ Manual

OVERVIEW cont,

BASIC Concepts

The Apple IIgs has a vast memory area of which only a small portion is used for Applesoft BASIC.
Applesoft does not run under ProDOS 16 or GS/OS and tools do not run under ProDOS 8... well
this is not exactly true, most tools need to be installed under ProDOS 16, after that any system can
use them as long as certain rules and restrictions are observed.

The Call Box BASIC driver can be thought of as a tool manager for Applesoft BASIC giving the
novice and advanced programmer alike the ability to use most of the advanced features of the Apple
IIgs with ease. The BASIC Interface also handles memory allocation/de-allocation and organization
in those areas not under the control of ProDOS 8 or Applesoft. Namely bank 1 and up.

The memory area above bank 0 can contain tools, desk accessories, handles, pointers, flags and
various and sundry pieces of data or code that makes your Ilgs what it is. There are special memory
areas and ROM up there as well. You do not need to know about these things to create Call Box
driven programs, but if you want more information try the Apple Ilgs reference manuals published
by Addison-Wesely as a starting point.

Entities

The Call Box BASIC driver has to have a way of knowing what type of data it is dealing with be it a
font, icon, window, dialog or menu etc... To accomplish this task, the data is broken down into a
particular type called an entity. Each entity has a kind and an L.D. associated with it. You need only
use the entity 1.D. when writing your programs but each kind of entity is restricted in the number of
I.D's it can have so it is important to know these as well.

Type Kind I.D. Description of reserved 1.D.'s
GrafPort Port 0-31 Port 0 = SHGR screen in $E1
Window Port .

Dialog Port

Menu Port

Font Image 0-15 Font 0 is Shaston 8

Cursor Image 0-15

lcon Image 0-63

Figure 1.1 Entity types
The Entities come in 2 kinds:

Port A port is a special record that Quickdraw II keeps to define the drawing environment.
Graphic ports are always 200 x 320 or 200 x 640 pixels in size, depending on the
screen mode. Ports need graphic images drawn to them, otherwise their contents appear
as a blank rectangle. Drawing takes the form of either loading in a pixel image or
filetype $C1 picture from disk, or drawing directly to the port using Quickdraw 11
commands. Ports are also Managed screen items such as Windows, Dialogs and
Menus, all of these items are handled in similar ways by the toolbox managers.

Image An image is a data segment that can reside anywhere in memory "as is" and has no
absolute references. The file format for images is binary.

So What Software Page 1.3

Call Box BASIC - Manual

OVERVIEW cont.

Port entity LD. 0 is reserved for the super hi-res screen. This allows up to 31 port entities that can

be defined elsewhere in memory. Each image entity has its own set of LD.'s (0 - 15 with some pre-
defined, refer to Figure 1.1) so there can be 16 of each type of image entity with the exception of
Icon image entities of which there can be 64 in addition to the 32 port entities already mentioned.

You do not need to worry about where the entities you will use in your program reside in memory.
The Call Box BASIC driver manages this for you, however, you must specify the particular 1.D.
number of the entity you wish to use so the BASIC driver will know where to look as well as
determine the kind of entity being dealt with.

Bank Zero Memory Use

The Call Box BASIC driver and various tools need some pages in bank zero. Normally, these pages
would be dynamically allocated by the memory manager (Toolset #2). Applesoft BASIC and
ProDOS 8§ use most of the available memory in bank zero. The only safe and trackable area of bank
zero common to both P8 and the memory manager is the area between ProDOS 8§ and its buffers, see
Figure 1.2. The exact address at which this allocation takes place can vary depending on how the
memory is being used when the Call Box BASIC driver is initialized. If another application is using
the same area, the BASIC driver will fit around it automatically. Additional memory for other tools
is allocated between the already allocated pages and the ProDOS buffers. This causes the ProDOS
buffers and HIMEM to move down in memory.

ProDOS 8
$9A00
— Call Box BASIC interface —
$9800
- Quickdraw I T
$9500 y—y .
$9400 Yor Manage Additional
| - —] ‘memory
allocated
e ProDOS buffers e here...
HIMEM $9000
‘ Applesoft

Figure 1.2 Direct page allocation

So What Software Page 1. 4

Call Box BASIC ' Manual

OVERVIEW cont.

User Buffer

Every program needs some space to use for storing bits of data and to use as a "scratchpad’
workspace. This space is located at the bank zero (this means that you can directly peek and poke it)
address specified by variable UA and is as big as variable UL specifies.

When using the Long Call command (see CALL LC) you will often need to pass a pointer to a
string or for a place to put a string. You would use the User Buffer for this purpose. Sometimes
you need to pass a pointer to a pattern or table. You would write the pattern or table in the User
Buffer and then pass the address of the buffer to the Long Call routine.

By using the User Buffer and Long Call you can operate the toolbox with a precision only found in
assembly language.

Making a Call Box BASIC Desktop Application

A standard sequence of steps is used to create a desktop application, the first of which is to make a
plan! This plan looks like drawings, each one being a different screen display which are linked by a
logic diagram describing how the program will operate (the exact form that the plan takes is up to
you, this is just my own personal conceptualization).

From this plan you use the Editors in the Call Box Launching Shell to create the entities you
will be needing based on your drawings. Make sure that when you create an entity, you record
any LD, numbers associated with controls or items it may contain, You will need these for your
Applesoft code.

You now would enter Call Box BASIC and start writing your program. This program will start
off by starting up Call Box BASIC, RESTORING CB.VARS, HOMEing the screen and setting up
the super hi-res screen and the desktop. Next you would load all of the entities you will be using in
your program and start-up the system menu bar and anything else that needs to be up at startup.

After this "housekeeping" is finished you call TaskMaster (see CALL EV...) and check the
results to see where or what was selected by the mouse or the keyboard. The main thing in a
desktop application is to check and see if the mouse was pressed in the system menu bar, you
would also check and see if the click was in the close region of the currently active window as well
as other things determined by your particular program structure. If none of these things have
occured then you would loop back to the TaskMaster call. If you had a click in the system menu bar
then you would run a subroutine indexed by the menu item LD. returned to you by TaskMaster.
When the subroutine was finished you would UnHilite the menu bar selection and loop back to the
TaskMaster call. This type of action keeps occuring until you select the menu item that you have
setup as Quit. At this point you would close any open entities, shutoff Call Box BASIC and either
END or BYE the program.

The previous description is very generalized and simple... however .. this is the fundamental
structure for all or at least most desktop applications. Reference the commands Event, Window,
Menu and Dialog in this manual for more exact programming examples and examine the programs
on the Call Box disks (the Applesoft ones.. filetype BAS) to get an understanding of how to get one
of these things up and running.

So What Software Page 1.5

Call Box BASIC Manual

OVERVIEW cont.

oy

‘Using Call Box BASIC
The principle behind the BASIC driver is twofold: to make toolbox calls accessible to Applesoft and
to make them as simple as possible to use. In order to keep things orderly, while not compromising
on power and flexibility, the following method is used. To access the toolbox, you issue a CALL
statement from BASIC. Some CALLSs are predefined to access a particular tool function, while
some allow you complete access to the entire toolsets, as long as you understand how the toolset
works.

CALL:s take the form of a variable name and parameters if necessary.
For example: »

100 CALL QF

This command would shutdown the BASIC interface (QF stands for Quit Function)
whereas:

100 CALL SC1

This command would turn on the super hi-res screen (SC for Screen) but more on commands later.

The BASIC driver is the file named CB. It is a "System" file of type $FF. You talk to the BASIC
interface thru the variables in the file CB.VARS which is an Applesoft/ProDOS 8 variable file.
The BASIC driver (CB) is initialized by running the file CB directly from the keyboard or from
within a program:

PRINT CHR$(4) ;"-CB"

This installs the Call Box BASIC driver, allocates some memory, starts-up the Tool Locator,
Memory Manager, Misc. Tools, Integer Math, Quickdraw II, Event Manager, and Quickdraw 11
aux. Other tools are started-up as needed using the CALL TL (tools) commands,

CB bootstraps in from address $00/2000 so if you are executing it from a program, the size of the
program should be smaller than $1800 (to allow room for simple variables) or the -CB will
overwrite the BASIC program. Once CB has finished executing, the entire range from $800 to
HIMEM is free for Applesoft BASIC.

A usual tactic for installing CB is from within a short STARTUP program. This technique is just
fine, but it should be noted that editing while CB is active causes several bus problems which,
while not terminal, can be quite annoying - like, no more repeat key function. CB will shutdown
itself automatically when a non-Applesoft error occurs but you will have to handle the CALL QF
in all other circumstances.

The other half of this equation is the fileCB.VARS. Every. program that uses CB needs to include
the following line before any CB calls are made:

PRINT CHR$(4) ;"RESTORE CB.VARS"

So What Software Page 1.6

Call Box BASIC - Manual

OVERVIEW cont.

This installs the variables that you need for the Call Box BASIC driver.

Many times when you are making an Applesoft program it is necessary to hit the old CONTROL-
RESET and break out of some endless loop. This type of event is quite destructive to the tools and
will most probably result in a bouncing apple system error message $0206... not the Applesoft
cursor like you expected.

The last little hint is to be sure to issue a CALL QF before exiting to anywhere... This is
analogous to putting your toys away, If you don't you will get away with it for a little while but
later on when your father (GS/0S) gets home he'll CRASH the whole system!

Error Messages
Errors are returned in text mode regardless of the display mode when the error occured. A typical
error message would look like this:

Tool not supported
Error in line ->75

]

You will be in Applesoft immediate mode and all variables will be null and the Call Box BASIC
driver will be shut down.. You will have to re-initialize the Call Box BASIC driver to run your
program again,

The following is a list of Call Box generated error messages... Applesoft returns its own messages
and can be distinguished from Call Box error messages by their appearance. Presently, you cannot
trap Call Box errors.

I/O Error

Pathname has invalid syntax
Path to files subdirectory is bad
Volume directory not found
Damaged disk

Access refused

Disk full

Disk is write protected

Font not found

Template not found
Resource not found

Out of memory (mem.mgr)
Tool not found

Bad parameter

Tool not supported

Not Dialog

Not Window

Not Menu

Entity is already assigned

So What Software Page 1.7

Call Box" BASIC Manual

OVERVIEW cont.

Command Structure
This section describes the Call Box BASIC interface commands. These commands are arranged in
alphabetical order. Before you look at the commands let's review the command syntax first.

Call Box commands are Calls to a global page address followed by parameters, separated by
commas. The parameters can be of several different types as described in Figure 1.3 and the
global page addresss are automatically installed by RESTORE-ing CB.VARS described in
Figure 1.4.

A typical command line may look like this...

CALL SC,0,640 : CALL SB,0,!10000000,0,200 : CALL SC,3,$FFFF

This line sets the screen mode to 640, sets the SCBs to use 640 mode and palette 0, and finally
clears the screen to white.

CONSTANT:
Decimal (0123456789)
Hex ($0123456789ABCDEF)
Binary (101)
VARIABLE:
Floating point (A.. ZZ)
Integer (A%.. ZZ%)
STRING:
String ("string text")
String variable (A$.. ZZ$)
MATH EXPRESSION:
Must start with a numeric value
and may not contain hex or
binary representations.

Figure 1.3 Legal Parameter Types

The types can be mixed in a single call without incident. The numeric limits are the same as
Applesofts.

AR = Arc LN =Line PO = Big Poke SC = Screen

AY =Super Array ME =Menu PT = Port TL = Tool

CU = Cursor OV =0val QF = Shutdown TX = Text

DI = Dialog PE = Big Peck RE = Rectangle UA = Buffer Addr.
EV =Event PL = Palette RR =RRectangle UL = Buffer length
LC =Long Call PN = Pen SB = SCB's WN = Window

Figure 1.4 CB.VARS variable equivalents

So What Software Page 1.8

Call Box" BASIC

OVERVIEW cont.

A command has 3 basic parts:
CALL TX,4,F,"SHASTON.8"
Call statement |
Function code
Parameter(s)

Figure 1.5 Command Structure

Call statement: This is a standard Applesoft CALL statement using the variables
supplied by the CB.VARS file.
Function code: Most calls have function codes, The function code identifies the

particular operation you want.

Parameters: This is any data needed to complete the call such as color number,
height, width, mode, etc. etc... All parameters are separated by
commas.

Be sure to RESTORE CB.VARS the very first thing in your program to assure that the Call

variables are available... changing a program line, issuing a CLEAR or a NEW will wipe out these
variables.

From within an Applesoft program:

PRINT CHR$(4) ;"RESTORE CB.VARS"
or from the keyboard directly:

RESTORE CB.VARS
Observe the usual rules of good programming in Applesoft BASIC like, put frequently used
subroutines at the beginning of your program, don't go overboard with REM statements and use
the X = FRE(0) to clean up string storage when you are concatenating strings a lot and so on.

The following pages describe in detail each Call Box BASIC driver command.

So What Software Page 1.9

Call Box BASIC Commands

CALL AR the ARC commands

There are § commands that draw arcs. The arcs are drawn with the pen in the current port.

Note: Any command that draws something, draws to a graphics port. You must make sure that the
port you want to draw in is the current port before drawing to it. Because you are drawing to a port
and not necessarily the screen, the coordinates used to draw are in a coordinate system unique to the
port you have selected. This coordinate system is called LOCAL. GLOBAL coordinates on the
other hand refer to the screen coordinates... or the current cursor position. If you choose to draw to
the screen then the LOCAL coordinates will equal the GLOBAL coordinates.

CALL AR,0,X,Y,W,H,SAAA FRAME ARC: draws an arc outline in the current
pen color.

CALL AR,1,X,Y,W,H,SAAA PAINT ARC: draws an arc and fills it with the
current pen color.

CALL AR,2,X,Y,W,H,SA,AA ERASE ARC: draws an arc and fills it with color
0.

CALL AR,3,X,Y,W,H,SAAA INVERT ARC: draws an arc and inverts the pixels
colors.

CALL AR,4,X,Y,W,H,SA,AAP FILL ARC: draws an arc and fills it with the
current pen pattern,

X
Left edge of the enclosing rectangle for the arc in LOCAL coordinates.

Y
Top edge of the enclosing rectangle for the arc in LOCAL coordinates.

w
Width of the enclosing rectangle for the arc in pixels.

H
Height of the enclosing rectangle for the arc in pixels.

SA
Starting angle in degrees

AA
Ending angle in degrees

P
Pattern used to fill arc (0-15)

So What Software Page 2.1

Call Box"BASIC @ Commands

CALL AR the ARC commands (continued)

(X) Left edge

(0° or 360°) (SA) Startin.g angle
(Y) Top edge ! | / (45°)
!
| /-——-—Arc
|
(H) Height (EA) Ending angle
(90%)
Enclosing
L/ rectangle

——— (W) Width ———

Figure 2.1 Arc construction

Arcs are constructed inside of an imaginary rectangle (Enclosing rectangle) specified by X,Y,W
and H. The starting angle (SA) and the ending angle (EA) are specified in degrees (0 °t0 360°). 0
degrees is at the 12 o-clock position and the angle increases clockwise around the center of the
enclosing rectangle, refer to Figure 2.1. Arcs made in 320 mode will follow a circular path if the
width and height are the same, however arcs created in 640 mode will have to have the width twice
the height for the same effect.

Paint, Erase, Invert, and Fill will create filled arcs as shown by the (pie-wedged) example in
Figure 2.1. Frame will produce just the curved portion of the arc.

Specifying 0° for the starting angle and 360° for the ending angle will produce an Oval or Circle
depending on the shape of the enclosing rectangle.

So What Software Page 2.2

Call Box BASIC Commands

CALL AY the SUPER ARRAY commands

Due to the limited Applesoft program code area (about 31K) it is advantageous to put as much of
the programs support data as possible out of this area (bank 0). Super Arrays allow you to put all of
your Arrayed data up in the upper banks of your computers memory, this frees up a lot of room
down in bank 0 and allows for bigger program code. These arrays also provide the capability of
much larger arrays than was possible before... their size is directly dependent on how much
memory your IIgs has available.

There are § commands that control arrays.

CALL AY,0,N UNDIMENSION ARRAY: Remove an array
from the array table.

CALL AY,1,N,{0,1,...,87} DIMENSION ARRAY: Reserve memory for an
array (N{0,1,...,87}).

CALL AY,2,N,{0,1,...,87},V GET VALUE: gets a value (V) from array
(N{0,1,...,87)).

CALL AY,3,N,{0,1,...,87},V SET VALUE: sets a value (V) in array
(N{0,1,...,87}).

CALL AY, 4NV SET ALL VALUES: sets all entries in array (N)
to value (V).

N

The name of an array. Should be a valid Applesoft type variable (real, integer, or string). Once a
type is set,
all subsequent calls to that array should use the same type and same name for the array.

{0,1,...,87}

Array subscripts. Use to define the size of the array or to get/set a value. Each number represents
a particular element within the array. You must specify at least one element. Subscripts can be any
valid numeric type (including decimal, binary, and hexadecimal) and are limited in size to 64K
(although your particular memory configuration may impose a greater limit). Also, you are limited
to only 88 dimensions.

A

Array value. Should be a variable of the same type as the array. In other words, if your array is a
string array then V should be a string variable.

Super Array Operation

Super Arrays follow similar conventions to Applesoft arrays. However, you have the added
abillity to "undimension" a super array (i.e. de-allocate the memory associated with it) and to set
all values in a super array to the same value. To use a super array use should first use the
dimension command. You would define a real array called "A" in the following manner:

100 CALL AY,1,A,{4,4,4,4}

The above line will dimesion a 5 by 5 by 5 by 5 element array for a total of 625 elements. If you

So What Software ' Page 2.3

Call Box BASIC - Commands

CALL AY the SUPER ARRAY commands (continued)

want to set all the values in this array to 0 you would use the Set All Values call with a value of
zero.

110 CALL AY,4,A,0

Suppose you wanted to set the value of the {1,0,3,2} element to 15. Use the Set Value call to do
this:

120 CALL AY,3,A,{1,0,3,2},15

If you wanted to examine the same element you would use the Get Value call as follows:

130 CALL AY,2,A,{1,0,3,2},V

The value of the element will be in the variable "V." Make sure that any variable or value used to
get or set a value should be of the same type as the array. Otherwise you will get a "Wrong Super

Array Type" error. If you wanted to dispose of a super array to free up some memory, you would
use the undimension array call.

140 CALL AY,0,A

That's all there is to it! You can have as many super arrays as you have variables for within
memory constraints (in addition to any Applesoft arrays your program has dimensioned).

So What Software Page 2. 4

Call Box BASIC Commands

CALL CU the CURSOR and ICON commands

There are 6 commands that control cursors, and 2 commands the control icons. There are 2 system
cursors, the primary cursor is the arrow cursor and the second is the wait cursor (wrist
watch). You can load up to 16 more cursors making a total of 18 possible cursors in any given

application. You can have 64 icons as well.

Cursor #0 is the arrow cursor and Cursor #1 is the wait cursor. Cursors 0 thru 15 are available for
loading. There are no standard icons so icons 0-63 are available for loading.

Cursors and icons can be created and edited using the CALL BOX Image Editor.

CALL CU,0

CALL CuU,1

CALL CuU,2

CALL CU,3

CALL CU/4 N

CALL CU,5,N,"pathname"
CALL CU,6,N,M,X,Y
CALL CU,7,N,"pathname"

N

CURSOR OFF: this makes the current cursor
invisible.

CURSOR ON: this makes the current cursor
visible.

ARROW: this makes the current cursor the system
arrow Cursor.

WAIT: this makes the current cursor the system
wait cursor,

SET CURSOR: this sets the current cursor to the
user defined cursor (0-15).

LOAD CURSOR: this will load a cursor from disk
as cursor 1.D. 0-15.

PLOT ICON: this plots an icon (0-63) at
coordinates X and Y in mode M.

LOAD ICON: this loads an icon from disk as icon
L.D. 0-63.

User cursor or icon 1.D. number. There are 16 possible I.D. numbers for cursors (0-15) and 64 for

icons (0-63).

"pathname"

ProDOS pathname for the cursor or icon file to load.

X

Horizontal icon plotting position.

Y
Vertical icon plotting position.

M

Icon plotting mode.(see Figure 2.2)

So What Software

Page 2.5

Call Box BASIC - Commands

CALL CU the CURSOR and ICON commands

(continued)

Icon mode flags

7 6

5

4

3 2 1 0

Bits 3 thru 7 must be set to zero.

1= AND light gray pattern to image.
1 = Copy light gray pattern instead of image.
1 = Invert image.

Figure 2.2 Icon mode flags

Cursors and Icons have similar structures (see Figure 2.3) but are handled by the Ilgs toolbox
differently. Cursors have several "special’ considerations that need to be taken care of for them to
work properly. The Image Editor chapter in the Call Box Editors manual outlines these

peculiarities.

ICON

[color/ B&W flag
[Length of image (bytes)
1 Height of image (pixels)
1 width of image (pixels)

Image

Mask

[Height of image (slices)
1 width of image (words)

CURSOR

Image

Mask

C_—vYH
1 X Hot spot (pixels)

ot spot (pixels)

Figure 2.3 Icon and Cursor structures

So What Software

Page 2. 6

Call Box BASIC Commands

CALL DI the DIALOG commands

Dialogs are high level tool functions which are dependent on other toolbox functions as well as
GS/0S (ProD0S16) commands. The Dialog functions need to be initialized by using the "high
level" startup command CALL TL,2,"Desk" (see CALL TL in this manual for a complete
description). This call will startup all tools needed for desktop applications... the Dialog Manager is’
one of them.

Dialogs are designated as "entities" in the Call Box BASIC driver and these entities are created using
the Call Box TPS Dialog Editor. The output type "object" must be used for dialogs that are to be
used by the BASIC driver.

E E This is a Dialog box created by using the
Call Box TPS Dialog Editor.

Line-kdit #1 B Check Box #1) Radio Button #1
Line-Ldit ¥7 2 Check Box #2 (O Radio Button #2
Line-tdit &3 [C]Check Box #3 @ Radio Button #3

Text in Bold, Itelic, DUGLERE and §DAday.

Sinple button | (Sinple Button) ({ Simple Button)

Figure 2.4 A Dialog entity

Operating a Dialog is semi-automatic. You must load it, open it and operate it. At this point the
Dialog Manager has control of program execution and keeps it until you select something by
clicking it or pressing the return key. Once a selection is made control is passed back to your
application as well as the LD. number for the item selected. Your application can take action based
on this I.D. number and either close the Dialog or go back to it for further actions. This is a
"Modal" type of access and is the most common type used with Dialogs. There is also a
"Modeless" type of dialog (not supported directly) which allows you to choose items such as
menu bar selections or other open modeless dialogs at the same time your Dialog is open. Open
modal Dialogs must be closed before other desktop actions can take place.

The dialog can contain several types of controls (see Figure 2.4), each of which serve different
purposes and are outlined as follows:

So What Software Page 2.7

Call Box" BASIC Commands

‘CALL DI the DIALOG commands (continued)

Simple button: This type of control is used to select an action. Simple buttons contain the text
of the action to take such as "Continue", "OK", "Load", Save" etc. A simple button with a
double outline is the default button and aside from responding to a mouse click it will also respond
to pressing the return key. The 1.D. number of this type of button is always 1.

Check box: This type of control is used to select an "ON-OFF" type of status such as which
items out of a group of items should be enabled. Each check box has some text associated with it
which describes the significance of the check box.

Radio button: This type of control is used like a check box except that only one item out of a
group of items can be selected at any one time (like the buttons on a car radio). A group of buttons
is called a "family" and a dialog can contain several families of radio buttons where only one
button in each family can be set at any given time.

Line Edit: This type of control is used to enter text. This control obeys the standard Apple rules
for text entry like click to position the typing cursor, double clicking to select a word or triple
clicking to select a complete sentence. The delete key will remove all selected text and text is entered
directly from the keyboard in insert mode.

lcon: This type of control is not really a control but a picture instead. Its purpose is purely
decorative or used as a symbolic title such as a "stop sign" or "caution sign" to alert the user of
possibly destructive actions.

Static Text: This s not a control either, but is a word or phrase used to identify the dialogs
purpose. This would probably be the title of the dialog box.

Note: Functions such as Hi-liting or dimming controls is accomplished by using direct
Control Manager commands via the CALL LC command. The use of "hook" procedures is
possible as well by using the CALL LC command. The vast majority of applications will need to
use the CALL DI commands for all of their functions, the more exotic control procedures however
are possible but this manual will not describe them. Use the Apple IIgs Toolbox reference
manuals (vol. 1,2 and 3) which outline all of the toolbox commands for more sophisticated
programming procedures. These manuals are essential for a complete understanding of the vast
number of toolbox calls available.

Dialog Controls (Items) and Item I.D.'s

The Call Box TPS Dialog Editor allows you to create dialogs by arranging dialog controls (items) in
a dialog window. These items each have a unique 1.D. number automatically assigned by the editor.
It's important that you know what these item 1.D.'s are because after you select something in a
dialog the I.D. number of what you selected is returned to you and you will need to take some
action based on which item LD, is returned.

So What Software Page 2. 8

Call Box BASIC | Commands

CALL DI the DIALOG commands (continued)

-

.The L.D. numbers assigned by the Dialog Editor are shown T 1.D
inFigure 2.5, ype i
Simple Button 1-16
Check boxes and Radio buttons do not hilite and un- Radio Button 17 - 32
hilite automatically. Each time one of them is selected Check Box 33-48
control passes back to you and you must check or un-check lcon 49 50
etc...by setting (1) or un-setting (0) the items value by Line Edit 51 - 66
using theSetValue andGetValue commands. Once you Static Text 67 - 82

have handled one of these items you loop back to the - -
OperateDialog command and wait for another event. Figure 2.5 Dialog 1.D.s
Line Edit items will operate automatically but you must fetch their contents (strings) before you
close the dialog box (this applies to any item value you are interested in as well) with the GetText
command. Simple buttons also operate automatically which leaves us with Icons and Static
Text which are not controls.

Load Dialog This needs to be done only once... usually at the beginning
of your program.
This is where you would re-startup the dialog box if it was
Open Dialog dlready loaded
Operate This is the"event” getting call for this dialog and is positioned
Dialog in an "event loop" structure.
| Get values Close Dialog
and text Exit!
Set/Un-set
Check Box? value
Set
Radio Button? value

Figure 2.6 Typical Dialog operation logic diagram

So What Software Page 2.9

Call Box" BASIC - Commands

CALL DI the DIALOG commands (continued)

Dialog Operation
The logic dlagram in Figure 2.6 shows the normal operation of a dialog box. Sometime before
you need it you load a dialog entity created by the Call Box TPS Dialog editor.

100 CALL DI,0,N,"MyDialog"

Note: At this point you could preset some values and text in the dialog box. Use the SetValue ! @
and SetText commands to preset item data before using your dialog box.

Some action in your program such as a menu selection occurs which calls for your dialog box to
come up and you open the dialog (which makes it visible on the screen). N is the dialog boxes
"Entity" or port number, for our purposes make N = 1,

110 CALL DI,1,N

The next step is to set up an "event loop” type of programming structure to operate the dialog from.
This loop centers around the command OperateDialog (CALL DI,2...).

120 CALL DI,2,N,I

This call works like CALL EV (Event) command except that it maintains control of program
execution until you select an item in the dialog box. Once you have selected something the 1.D.
number of that item is returned to you in the variable I. You must “test" this number to see which
item you have selected by comparing it to known values. If your I value is greater than 0 and it's
less than 17 then the item selected was a button, if this value is greater than 16 but less than 33 then
a radio button was selected, if it's greater than 32 but less than 49 then it was a check box. (See
Figure 2.5). If none of the above is true then loop back to the OperateDialog command.

130 IF [> 0 AND | < 17 THEN 200
140 IF | >16 AND | < 33 THEN 300
150 IF 1 >32 AND | < 49 THEN 400
160 GOTO 120

If line 150 is "true" (A check box was selected) then you need to toggle the state of the check box
that was clicked. First get the items value with GetValue (CALL DI,4...) and then check if it is
0 or not. If it's O then set it to 1 by using the SetValue (CALL DI,5...) command. If it's 1 then
set it to 0 using the SetValue command as well.

400 CALL DI,4,N,1,V : CALL DI,5,N,1,1-V . GOTO 120

So What Software Page 2.10

Call Box BASIC Commands

CALL DI the DIALOG commands (continued)

If line 140 is true (A radio button was selected) then you need only set the items value to 1 (the
Control Manager will unset the currently set button in the radio family automatically).

300 CALL DI5,N,I,1 : GOTO 120

If line 130 is true (A simple button was selected) you will probably be exiting the dialog box such as
if the OK or Continue button was clicked. Before you do this remember to save all the current
values of the items in the dialog box, including the text strings in any line edit items by using the
GetValue and GetText commands for each item of interest. After you have retrieved your data
you must close the dialog box.

200 REM Get all the returned values here...
210 CALL DI,3,N : END

The dialog will stay in memory until you shut down your program and is restartable by simply
opening it again. The settings made to radio buttons and check boxes as well as the text in line edit
items is preserved from usage to usage. Your dialogs will remember their previous settings.

Dialog Commands

There are 9 commands that control dialogs. Dialogs must be used only when thedesktop is active.
(See CALL WN in this manual for a complete description)

CALL DI,0,N,"pathname" LOAD DIALOG: this will load a dialog from disk
as entity (N = 1-31).

CALL DI,1,N OPEN DIALOG: this makes the current dialog
visible.

CALL DIL2,N,l OPERATE DIALOG: this routine returns the item
L.D. () of the item clicked in the dialog,

CALL DL,3,N CLOSE DIALOG: this removes the (N) dialog
from the screen.

CALL DL4,N,LV GET VALUE: this gets the value of item (/)
returned in variable (V).

CALL DI,5,N,L,V SET VALUE: this sets the value of item (/)
specified by variable (V).

CALL DI,6,N,I,A$ GET TEXT: this gets the text contained in line edit
item () and puts it in variable (43).

CALL DI, 7,N,|,AS SET TEXT: this sets the text in line edit item (/) to
the variable or string (A$).

CALL DL8,N,P GET POINTER: this returns the pointer to the

current dialog.

So What Software Page 2. 11

Call Box BASIC @ Commands

CALL DI the DIALOG commands (continued)

N
Entity number for this dialog (I-31)

I
Item number of an item in the current dialog box. (See Figure 2.5)

v
The value of an item... 1 = checked (check box), hilited (radio button) and 0 = unchecked (check
box),unhilited (radio button).

"pathneme"
This is the ProDOS pathname of a dialog (filetype $B1... OBJ) created with the Call Box TPS
Dialog Editor.

P
This is the pointer to the current Dialog Box. This pointer is needed by various toolbox calls
accessable thru the Long Call (CALL LC) command.

So What Software Page 2.12

Call Box BASIC Commands

CALL EV the EVENT MANAGER commands

There are 2 commands that control the Event Manager. These calls are used to get information on
the system such as if a key was pressed and what it was, or what were the mouse coordinates when
the button was pressed. This first call is used when the desktop in not active.

GetNextEvent

CALL EV,X,Y,B,M,K,T GET NEXT EVENT: returns the mouse
coordinates, button status, modifier key code,
standard key code and tick count.

X

Horizontal mouse position in GLOBAL coordinates.

Y
Vertical mouse position in GLOBAL coordinates.

B
Button status. 2=down 0=up

M
Modifier key code.(see Figure 2.7)

K

Keypress code equals an ASCII character value less than 128, Values greater than 128 represents a
repeat key event.

T
Tick count,

To determine if a double click of the mouse has occured use CALL EYV three times as follows.

10 CALL EV,X,Y,B,M,K,T : IF B <> 2 THEN GOTO 10 :REM Wait for click
20 CALL EV,X,Y,BMK,T1: IF B <> 0 THEN GOTO 20: REM Wait for up
30 CALL EV,X,Y,B,M,K,T1: IF B <> 2 THEN GOTO 20: REM Wait for down

Now that the time value between mouse up and mouse down is in the variables T and T1
respectively, use the longcall command CALL LC to execute the Event Manager Function
GetDbITime. GetDblTime returns the maximum difference in ticks between mouse down and
mouse up events allowed for a double click.

40 CALL LC,_0\$1106_MT: REM MT = maximum tick value.
50 IF MT > T1 - T THEN PRINT "Valid Double Click": REM double click

The value T1 - T holds the time between mouse up and mouse down events obtained in lines 10,20
and 30 above. The longcall command returns the maximum allowable tick time in the variable MT.
(For more information on CALL LC refer to that section in this manual.) 1f MT is greater then T1-
T, a valid double click has occured.

So What Software Page 2.13

Call Box" BASIC Commands

CALL EV the EVENT MANAGER commands (continued)

TaskMaster

The second Event call is a call to TaskMaster which mpust be used whenever the desktop is
active... such as when you are using windows, menus and dialogs. The TaskMaster call returns al
the information that the Get Event call does but it also supplies 2 more values which return desktop
region information. The double click technique works with this call as well.

CALL EV,@,X,Y,B,M,K,T,C,D TASKMASTER: returns the mouse coordinates,
button status, modifier key code, standard key code,
tick count, TaskMaster code and data.

Modifier flags 7 6 5 4 3 2 1 0

Keypad
controlKey

optionKey
capsLock
shiftKey
appleKey

KeyPad: 1 = keypress on keypad 0 = keypress on keyboard
controlKey: 1 = control key is down 0 = control key is not down
optionKey: 1 = option key is down 0 = option key is not down
capsLock: 1 = caps lock key is down 0 = caps lock key is not down
shiftKey: 1= shift key is down 0 = shift key is not down

appleKey: 1 = apple key is down 0 = apple key is not down

Figure 2.7 Modifier key flags

16 In desktop 24 In info bar

17 In system menu bar 25 Item ID selected was 250-255
18 System click called 26 Item ID selected was 1-249
19 In content region 27 In window frame

20 In drag region 28 Inactive menu item selected
21 In grow region 29 Desk accessory closed

22 In go-away region 30 Inactive menu item selected
23 In zoom region

Figure 2.8 TaskMaster codes

So What Software Page 2.14

Call Box BASIC Commands

CALL EV the EVENT MANAGER commands (continued)

X
Horizontal mouse position in GLOBAL coordinates.

Y
Vertical mouse position in GLOBAL coordinates.

B
Button status. 2=down 0=up

M
Modifier key code.(see Figure 2.7)

K
Keypress code equals an ASCII character value less than 128, Values greater than 128 represents a
repeat key event.

T
Tick count,

C
TaskMaster code.(see Figure 2.8)

D

Data, if the TaskMaster code is in the system menu bar then this value would be two words the first
of which is the menu bar item number and the second is the menu item number selected, Parsing
these numbers goes like this:

(menu item number) =D - INT(D/65536)*65536

(menu bar item number) = INT(D/65536)

If the TaskMaster code shows that a window item was selected then D is a pointer to the window.
You can derive the entity number of the window by using this value in the Get Window Pointer/
Entity Number command in the window commands.

So What Software ' Page 2.15

| Call Box BASIC ~ Commands

CALL EV the EVENT MANAGER commands (continued)

So What Software Page 2.16

Call Box BASIC Commands

CALL LC the LONG CALL command

There is only 1 command associated with the LONG CALL. It allows you to directly access any
tool you want. You must know the specific requirements of the tool being called in order to avoid
problems, such as a system CRASH!

The basic format of the call is to pass any necessary parameters, pass the function number and tool
set number, and to provide variables for any returned values.

CALL LC,(parl),par2),... ,(parN\STFTN\(varl),(var2),... ,(varN)
(par)

A parameter that is to be passed to the tool. The call will pass values until it encounters the "\"
delimiting character.

$TFTN
The function (TF) and the toolset number (TN) that is to be called. It is best to specify this value in
hex.

(var)
The variables that will contain any returned values from the call to the toolset.

This is perhaps the most powerful call provided. However, you must know exactly what -
parameters the tool needs passed to it and what values it will pass back in order to use this call
correctly. Otherwise unpredictable results may occur, one of which may be a system crash. (This
information can be obtained from the Toolbox Reference Manuals published by Addison-Wesely).

Each parameter passed, through CALL LC is one word in length (or 2 bytes) unless otherwise
specified. To specify a longword value (4 bytes) or variable, use the underline character " " before
the value or variable. In other words, a long value of zero would be denoted as " _0" and a long
variable could be denoted as *_A".

Example:
Suppose you wanted to display in hex the total memory in your system on the super hl-res screen.
You need to access three different tools to accomplish this. These tools are:

Memory Manager (always active)
TotalMem ($TFTN = $1D02)

IntegerMath (always active)
Long2Hex ($TFTN =$230B)

Quickdraw II (always active)
DrawText ($TFIN = $A704)

You will also need to use a few Call Box calls to set the background and foreground colors, as well
as the vertical and horizontal position for the text plot.

So What Software Page 2.17

Call Box"BASIC @ Commands

CALL LC the LONG CALL command (continued)

TotalMem
Find the total memory in your system using the Memory Manager function TotalMem ($1D02).

The toolbox reference manual specifies making this call in this manner:

Stack before call
previous contents
— longspace — Longword value (_0) for result
Stack pointer
Stack after call

previous contents

— totalsize =~ — Long - Total size in bytes of memory, including the
special 256K. (Banks 0,1,E0 and E1)

Stack pointer

If you don't know what the stack is or what it does, don't worry about it. All you need to know is
the order of the parameters which is specified by the stack diagram. Therefore, to pass the
parameter through the LONG CALL and return the memory size to your BASIC program you
would do the following:

90 CALL LC,_0\$1D02_S

The "_0" is a long "result space," which makes room for the result being returned. The "_S"is a
long variable. The underline is just a convention that is used to denote that you expect a long value
returned from the call. The variable name is actually "S" and you would use it just as you would
any other variable,

At this point, you could actually convert the variable into an Applesoft string if you wanted to print
out the value in decimal rather than hex. To do this, you would use the following statements:

100 S$= STR$(S) : REM Convert the variable to a string
110 CALL TX,1,0,15 : REM Set black text, white bkgnd.

120 CALL PN,2,40,20 : REM Set position to H=40, V=20.
130 CALL TX,0,0,S$: REM Plot the string using def. font

To print out the string in hex you would ignore the previous Applesoft program lines and continue
as shown below.

So What Software Page 2.18

Call Box" BASIC Conimands

CALL LC the LONG CALL command (continued)

Long2Hex
This tool converts a Long Integer value into an Integer Math hex string. The toolbox reference
manual specifies the call in this fashion:

Stack before call
previous contents

— longvalue —

Unsigned long integer value

— strptr — Pointer to space for integer math string
strlength Length of string
Stack pointer
Stack after call
| previous contents |
i Stack pointer

No value is returned from this call. The value is instead put in a buffer, assigned by you. For our
purposes, since no DOS operation will take place durring the plotting, we will use the User DOS
Buffer as a temporary string storage area. To do this, we need to know where the buffer is located.
The variable "UA" points to the memory location that holds the starting address of the buffer. We
can use a long peek command to get the address into the variable "BF".

The calls look like this:

150 CALL PE,2,UA,BF : REM Get address of user buffer
160 CALL LC,_S, BF,8\$230B\ : REM Make a Hex String

The long peek call "CALL PE" gets the two byte value (denoted by the number two following the
call statement) which is stored at the memory location held by the variable UA. The two byte
value that is returned from the call is placed in the variable BF.

The "CALL LC" takes the long word value of the variable "S", makes an Integer Math Hex string
out of it, and places the smng at the location held by the value of the variable "BF". The "_S"
holds the Total Memory in your system. It is the long size variable returned from the TotalMem call
above. The"_BF" holds the user buffer address which serves as our temporary string buffer.

The "8" is the length of the string in characters (hex digits are two characters each).

So What Software Page 2.19

Call Box BASIC - Commands

CALL LC the LONG CALL command (continued)

At this point, you need to set the current pen location as well as the foreground and background
colors. To do this, you would use the following statements:

210 CALL TX,1,0,15 : REM Set black text, white bkgnd.
220 CALL PN,2,40,20 : REM Set position to H=40, V=20.

pen. They will retain the same values that they had the last time that you used them. This goes for

Note: You don't need to set the foreground and background colors each time you draw with the !@
the pen position as well.

DrawText
This tool function will draw specified text at the current pen location and updates the pen location.

Stack before call
previous contents
— textptr — Pointer to text to be drawn
textlength Length of the text
Stack pointer

Stack after call

| previous contents |

| | Stack pointer

This call will finish up by placing the string in the user buffer onto the Super Hi-Res Screen. The
call looks like this:

300 CALL LC,_BF,8\$A704\

You now should have the size of your systems memory on the super hi- res screen in hex (and/or
decimal if you used the first example)!

You can follow this format to make similar calls to any toolbox function provided you know the
parameters expected by the tool. The best way to get this information is to use the Apple Ilgs
Toolbox Reference Manuals published by Addison-Wesely and available from A.P.D.A. (Apple
Programers and Developers Association).

So What Software Page 2.20

Call Box BASIC Commands

CALL LN the LINE command

There is 1 command that draws lines... this command will also draw points if you make the two
“sets of coordinates the same. The Line is drawn with the pen in the current port.

gl Note: Any command that draws something, draws to a graphics port. You must make sure that the

81 port you want to draw in is the current port before drawing to it. Because you are drawing to a port
and not necessarily the screen, the coordinates used to draw are in a coordinate system unique to the
gl port you have selected. This coordinate system is called LOCAL. GLOBAL coordinates on the
S8 other hand refer to the screen coordinates... or the current cursor position, If you choose to draw to
il the screen then the LOCAL coordinates will equal the GLOBAL coordinates.

CALL LN,H1,V1,H2,V2 DRAW LINE: draws a line from H1,V1to
H2,V2 in the current pen mode and pattern.

V1
Vertical starting position

H1
Horizontal starting position

V2
Vertical ending position

H2
Horizontal ending position

So What Software Page 2.21

Call Box BASIC = Commands

CALL LN the LINE command (continued)

So What Software Page 2.22

Call Box BASIC Commands

CALL ME the MENU commands

Menus are high level tool functions which are dependent on other toolbox functions as well as
GS/OS (ProD0OS16) commands. The menu functions need to be initialized by using the "high level"
startup command CALL TL,2,"Desk" (see CALL TL in this manual for a complete description).
This call will startup all tools needed for desktop applications... the Menu Manager is one of them,

Menus are designated as "entities" in the Call Box BASIC driver and these entities are created using
the Call Box TPS Menu Editor. The output type "object" must be used for menus that are to be
used by the BASIC driver.

& File JIINW Goodies

Undo &7
Cut &X
Copy &C

Figure 2.9 A Menu entity

There are different kinds of menus, some of which appear in windows, behind buttons (pop-ups) or
in most any other location. The BASIC driver directly supports the "System Menu" which is the
menu that appears across the top of the screen when you have a desktop application active. The first
item in a system menu bar is the "Apple" selection. This menu bar selection is where NDA's can
be selected from... simply have this selection avaliable and the BASIC driver (and GS/OS) will put
all of the NDAs in your system/desk.accs folder in this menu.

Operating a Menu is automatic, you must load it and open it. The window manager actually
operates the menu and the menu item numbers are returned with TaskMaster (see CALLEYV) calls
in the main loop of your program.

So What Software Page 2.23

Call Box" BASIC ‘Commands

CALL ME the MENU commands (continued)

Menu Items and Item ID.'s
I.D. numbers are automatically assigned by the Call Box Menu Editor when you create a menu.
There are 3 ranges of 1.D. numbers, each one handles a different group of menu items.

I.D.'s 1 thru 249 are reserved for menu bar items.

I.D.'s 250 thru 255 are for the Standard EDIT menu which supports NDA's with the
functions UNDO, CUT, COPY, PASTE, CLEAR and CLOSE.

L.D.'s 256 and up are for menu items

If you create a menu bar which has (from left 1o right) colored Apple, File, Alter, Special, and
Goodies then the File would be I.D. #1, Alter would be 1.D. #2, Special would be 1.D. #3 and
Goodies would be LD. #4. The menus that these menu bar titles select follow the same rules but the
numbering starts at 256 instead of 1. Suppose that this menu had an About... item under the colored
Apple, a Load... a Save... and a Quit under the File, Create and Destroy under the Alter and
Midnight under Special. The L.D. for About... would be 256, Load... would be 257, Save... would
be 258, Quit would be 259, Create would be 260, etc. etc.

Standard Edit Menu

This menu is avaliable to accomodate special functions reserved by Apple for the Human Interface
of the toolbox. The functions UNDO, CUT, COPY, PASTE, CLEAR and CLOSE have
been given special LD, numbers (250 thru 255) which never change. Whenever a system window
is up (like NDA's) these menu items should become selectable... when there is no system window
active then they should be un-selectable (dimmed). Check Menu (CALL ME,2,..) will activate or
de-activate these menu items depending on whether there is a system window active at the time.
Place this call in your programs event loop if you are using a Standard Edit Menu.

The Un-Hilite Consideration

When a menu is "pulled-down" the menu bar item is hi-lited (white on black or inverted) and if you
select a menu item the item blinks and then the menu closes. At this point you would do the task
specified by the menu item. All this time however the menu bar item remains hi-lited and never un-
hilites. This works that way so that you can see by looking at the menu bar that a process is still
going on, When your task is complete you must un-hilite this menu bar item yourself...

(using the D value from the TaskMaster call)

V = INT(D/65536) : CALL ME,7,N,V,0

Failure to do this will result in items randomly being hilited or un-hilited... a real mess, just
remember to handle this little detail and everything will look good.

So What Software Page 2.24

Call Box BASIC Commands

CALL ME the MENU commands (continued)

Menu Operation
After starting-up and initializing Call Box BASIC load a Menu entity created by the Call Box Menu
Editor.

10 CALL ME,O0,N,"MyMenu"

Next you need to build and display the menu, adding in any NDA's in the colored Apple menu bar
selection.

12 CALL ME,1,N

Menus are actually operated by the Window Manager, all you do is check TaskMaster and see if a
mouse click or event happened in the system menu bar (Task Code = 17) and take some action
based on the menu item LD, retuned in the data variable of the TaskMaster call, If the Task Code
indicates a 17 then derive the menu item L.D. and the menu bar item 1.D. from the TaskMaster data
value.:

(Menu Bar item1.D.) = INT(D/65536)
(Menuitem1.D.) = D - INT(D/65536)*65536

Menu Commands
There are 10 commands that control menus. Menus must be used only when the desktop is
active. (see CALL WN in this manual for a complete description)

CALL ME,0,N,"pathname" LOAD MENU: this will load a menu from disk as
entity (N = 1-31).

CALL ME,1,N OPEN MENU: this builds and displays the system
menu,

CALL ME,2,N CHECK MENU: this hilites or un-hilites the
standard Edit menu functions.

CALL ME,3,N CLOSE MENU: this removes the menu from the
screen. .

CALL ME,4,N,V VISIBLE MENU: this will show (V = I) or hide
(V = 0) the menu.

CALL ME,5,N,L,V ENABLE/DISABLE ITEM:this will enable (V =
1) or disable (V = 0) the menu item specified by (/).

CALL ME,6,N,l,V SYMBOL ITEM: this puts no symbol (V =0) ora

check mark (V = I) or an ASCII symbol (V = 2-255)
to the left of menu item specified by (/).

CALL ME,7,N,I,V HILITE/UNHILITE ITEM: this hilites (V = 1)
or unhilites (V = 0) the menu item specified by (/) .
CALL ME,8,N,I,V STYLE ITEM: this sets the text style (V) (see
. CALL TX) of the menu item specified by (/).
CALL ME,9,N,P GET POINTER: this returns the pointer to the

menu manager port.

So What Software Page 2.25

Call Box"BASIC Commands

CALL ME the MENU commands (continued)

N
Entity number for this menu (/-31)

I
Item number of an item in the current menu,

A
The value to fetch or put for an item, or action to take.

P
The pointer of the menu manager port.

"pathname"
This is the ProDOS pathname of a menu (filetrype $B1... OBJ) created with the Call Box TPS Menu
Editor.

So What Software Page 2.26

Call Box BASIC Commands

CALL OV the OVAL commands

There are 5 commands that draw ovals, The ovals are drawn with the pen in the current port.

Note: Any command that draws something, draws to a graphics port. You must make sure that the
= port you want to draw in is the current port before drawing to it. Because you are drawing to a port
and not necessarily the screen, the coordinates used to draw are in a coordinate system unique to the
port you have selected. This coordinate system is called LOCAL. GLOBAL coordinates on the
other hand refer to the screen coordinates... or the current cursor position. If you choose to draw to
the screen then the LOCAL coordinates will equal the GLOBAL coordinates.

CALL OV,0,X,Y,W,H FRAME OVAL: draws an oval outline in the
current pen color.

CALL OV,1,X,Y,W,H PAINT OVAL: draws an oval and fills it with the
current pen color.

CALL OV,2,X,Y,W,H ERASE OVAL: draws an oval and fills it with
color 0.

CALL OV,3,X,Y,W,H INVERT OVAL: draws an oval and inverts the
pixels colors.

CALL OV,4,X,Y,W,H,P FILL OVAL: draws an oval and fills it with the
current pen pattern.

X

Left edge of the enclosing rectangle for the oval in LOCAL coordinates.

Y
Top edge of the enclosing rectangle for the oval in LOCAL coordinates.

w
Width of the enclosing rectangle for the oval in pixels.

H
Height of the enclosing rectangle for the oval in pixels.

P
Pattern used to fill the oval (0-15)

So What Software ‘ Page 2.27

Call Box" BASIC - Commands

CALL OV the OVAL commands (continued)

(X) Left edge
|

(Y) Top edge

Oval

(H) Helght —I——
Enclosing
e rectangle

(W) Width

Figure 2.10 Oval construction

Ovals are constructed inside of an imaginary rectangle (Enclosing rectangle) specified by X,Y,W
and H. (refer toFigure 2.10) Ovals made in 320 mode will follow a circular path if the width and
height are the same, however ovals created in 640 mode will have to have the width twice the height
for the same effect.

So What Software Page 2.28

Call Box" BASIC ~ Commands

CALL PE the BIG PEEK command

This command allows you to peek values greater than 256. You can peek 1,2,3 or 4 byte values
(values up to 4.29E +09). This value can be pecked from any address in the Iigs... (16,777,214).
The number of bytes and address can be specified as decimal, hex, binary, integer or floating point
constants and/or variables. The returned value must be an FP variable.

This commands primary use is for getting Handles, pointers and words. Handles and pointers have
4 bytes and words have 2.

CALL PE,D,A\V

D
Number of bytes used (I-4) to represent the value.

A
A Ilgs memory location (0-16,777,214).

\%
The returned value.

So What Software Page 2.29

Call Box BASIC Commands

CALL PO the BIG POKE command

This command allows you to poke values greater than 256. You can poke 1,2,3 or 4 byte values
(values up to 4.29E +09). This value can be poked into any address in the 1lgs... (16,777,214).
The value and address can be specified as decimal, hex, binary, integer or floating point constants
and/or variables.

This commands primary use is for setting Handles, pointers and words. Handles and pointers have
4 bytes and words have 2.

CALL PO,D,A,V

D
Number of bytes used (/-4) to represent the value.

A
A 1Igs memory location (0-16,777,214).

A
The value you want to poke into the memory location.

So What Software Page 2.30

Call Box BASIC Commands

CALL PL the PALETTE commands

There are 4 commands that control color palettes. A color palette is 16 color values in a table. Each
value in this table represents a color composed of different intensities of RED, GREEN and BLUE.
You can have up to 16 of these tables accessable at one time depending on how the SCB's are set.
To set table number 3, entry number 6 to pure RED:

CALL PL,0,3,6,15,0,0
To set table number 3, entry number 6 to pure GREEN:

CALL PL,0,3,6,0,15,0
To set table number 3, entry number 6 to pure BLUE:

CALL PL,0,3,6,0,0,15

CALL PL,0,(b)),(en),R,G,B SET COLOR: Set the color specified by R,G,B in
the table entry.

CALL PL,1,(tbl),(ent),R,G,B GET COLOR: Gets the color specified by the table
entry in R,G,B.

CALL PL,2,(th) SET STANDARD PALETTE: Sets the table
specified to the standard palette for this screen. mode.

CALL PL,3, (sb),"pathname" LOAD PALETTE: loads a palette specified by
pathname.

(tbl)

A value 0 - 15 that represents the table number.

(ent)

A value 0 - 15 that represents the entry number.

R

A value 0 - 15 that represents the intensity of RED.

G
A value 0 - 15 that represents the intensity of GREEN.

B
A value 0 - 15 that represents the intensity of BLUE.

"pathname”
A ProDOS pathname for the palette to load.

So What Software Page 2.31

Call Box BASIC @ Commands

CALL PL the PALETTE commands (continued)

So What Software Page 2.32

Call Box" BASIC Commands

CALL PN the PEN commands

-

_There are 9 commands that control pens. Each graphics port has its own pen. This pen has several
attributes that determine how it will behave. Any drawing, be it a line, rectangle, oval, text or
whatever is done with a pen. For example let's say that you want to draw a framed rectangle using
pattern number 7 and have the vertical lines of the rectangle 2 pixels wide and the horizontal 1 pixel
high:

First set the pen size to 1 x 2:
CALL PN,2,1,2
Now make the pen visible... (able to draw)
CALL PN,4,7
And draw the framed rectangle:
CALL RE,0,X,Y,W,H
This pen will keep these attributes until you change them to something else. If you draw to another

graphics port then the attributes of that ports pen will be active which may or may not have the same
attributes as the previous ports pen.

All pens start up with defaults of pen size = 1 x 1 and pen mode = copy.

Note: Do not confuse a pen with a cursor, even if it looks like a little pen! Pens do not have a
graphically visible counterpart like a cursor but are conceptual in nature. You only see the trail left
by a pen and not the pen itself.

Pens have so many commands because they are at the heart of all graphic goings on in the toolbox
and many variations are needed to create the effects seen in a Ilgs application. The pen can draw in
any one of 8 different modes as shown in Figure 2,11, It is best to experiment with the different
modes to get a feel for how they work.

CALL PN,0 HIDE PEN: makes the pen invisible.

CALL PN,1 SHOW PEN: makes the pen visible.

CALL PN,2,H,V MOVE PEN: moves the pen to the coordinates
specified by V and H.

CALL PN,3,(color #) SET PEN TO COLOR: sets a color from 0-15 of
the current palette.

CALL PN,4,(pattern #) SET PEN TO PATTERN: sets a pattern from 0-
15 of the current pattern.

CALL PN,5,WLHT SET PEN SIZE: sets the pens width and height.

So What Software Page 2.33

Call Box BASIC Commands

CALL PN the PEN commands (continued)

CALL PN,6,(mode) ‘ SET PEN MODE: sets the pen to any of the
modes described in Figure 2.11.
CALL PN,7 RESET PEN: sets the pen to default attributes.

CALL PN,8,"pathname" LOAD PATTERN: loads a set of 16 patterns.

H
Horizontal pen position in global coordinates.

A%
Vertical pen position in global coordinates.

(color #)
A number 0-15 that selects the solid color to use.

(pattern#)
A number 0-15 that selects the pattern to use.

WI
Width of pen in pixels.

HI
Height of pen in pixels.

(mode)
anumber 0-7 that selects the pen mode (see Figure 2.11).

(pathname)
a ProDOS pathname of the pattern to load.

So What Software Page 2.34

Call Box BASIC » Commnds

CALL PN the PEN commands (continued)

0=COPY 1=notCOPY This is the typical drawing mode.

COPY I Pen notCOPY | Pen
0 1
1

0 1
Destination 0 0 Destination 1 0
1 0 1 1 1 0

2=0R 3=notOR This mode is used for non-destructive overlays.

OR Pen notOR Pen
0 1 0 1
Destination Q 0 1 Destination Q 1 0
1 1 1 1 1 1

4 =XOR 5=notXOR This mode is used for cursor drawing and rubberbanding.

XOR Pen notXOR Pen
0) 0 1
Destination 0 0 1 Destination Q 1 0
1 1 0 i 0 1
6=BIC 7=notBIC This mode is used to erase (turn off) pixels.
BIC | Pen notBIC I Pen
0 0 1 0 0 1
Destination Q 0 1 Destination 0 0
1 1 0 1 0 1

Figure 2.11 Pen modes

So What Software Page 2.35

Call Box BASIC Commands

CALL PN the PEN commands (continued)

So What Software Page 2.36

Call Box BASIC Commands

CALL PT the PORT commands

There are § commands that control ports. A port is analogous to a super hi-res screen, it differs
from a Quickdraw II port in that it has 16 palettes and 200 SCB's in it. Remember that everything
goes on in ports, you need to create them before you use them and you need to point to them before
drawing in them. Port 0 is always the super hi-res display screen at $E1/2000 and is initialized
when the Call Box BASIC interface is started-up. Simple applications may only need this port for
all of their graphics.

CALL PT,0,N SET PORT: set all the Quickdraw II action to the

port specified by N. (0-31)
CALL PT,1,N CREATE PORT: creates a port in the current
screen mode. You assign the I.D. number N, (1-31)
CALL PT,2,N,"pathname" - LOAD PORT: load or create/load a port filling it

with a super hi-res picture from disk specified by
pathname. (0-37)

CALL PT,3 *** Unused... Reserved

CALL PT,4,N1,X1,Y1,N2,X2,Y2, PORT TO PORT: copy a specified rectangle of

W,H pixels from one port to a specified location in another
port.

CALL PT,5,N DISPLAY PORT: copy the picture in the specified

port to the viewable super hi-res screen port at
$E1/2000. (1-31)

CALL PT,6,N,X,Y GOLBAL TO LOCAL: converts global
coordinates (X,Y) to local coordinates in port (N).
CALL PT,7,N,X,Y LOCAL TO GLOBAL: converts local coordinates

of port (V) to global coordinates.

N
Port LD. number 0-31. Port 0 is always the super hi-res screen display at $E1/2000.

"pathname"
A ProDOS 8 pathname of the picture you wish to load. This picture must be filetype $C1 (unpacked
super hi-res picture format).

N1
The source port 1.D. number.

N2
The destination port I.D. number.

X1
The left edge of the source rectangle.

So What Software Page 2.37

Call Box BASIC Commands

CALL PT the PORT commands (continued)

Y1
The top edge of the source rectangle.

X2
The left edge of the destination rectangle.

Y2
The top edge of the destination rectangle.

W
Width in pixels of the rectangle.

H
Height in pixels of the rectangle.

So What Software Page 2.38

Call Box BASIC | Commands

CALL QF Shutdown the Call Box BASIC interface

A -CB starts up the Call Box BASIC driver and CALL TL,xx starts up special tools but
when your done playing with your toys you need to put them away! CALL QF does this in one
stroke. This call shuts down the Call Box BASIC driver, all the tools, and any memory blocks
that have been allocated for your program.

CALL QF

Your program would usually end after CALLing QF by exiting to BASIC, running another
program, or issueing a "BYE" to a P16 application (like HyperLaunch or the Finder) if that's who
launched you.

So What Software : Page 2.39

Call Box" BASIC | Commands

CALL QF Shutdown the Call Box BASIC interface (continued)

So What Software Page 2.40

Call Box" BASC Commands

CALL RE the RECTANGLE commands

There are 5 commands that draw rectangles. The rectangles are drawn with the pen in the current
port.

Note:Any command that draws something, draws to a graphics port. You must make sure that the
port you want to draw in is the current port before drawing to it. Because you are drawing to a port
and not necessarily the screen, the coordinates used to draw are in a coordinate system unique to the
port you have selected. This coordinate system is called LOCAL, GLOBAL coordinates on the
other hand refer to the screen coordinates... or the current cursor position. If you choose to draw to
the screen then the LOCAL coordinates will equal the GLOBAL coordinates.

CALL RE,0,X,Y,W,H FRAME RECTANGLE: draws a rectangle
outline in the current pen color.

CALL RE,1,X,Y,W,H PAINT RECTANGLE: draws arectangle and
fills it with the current pen color.

CALL RE,2,X,Y,W,H ERASE RECTANGLE: draws a rectangle and
fills it with color 0.

CALL RE,3,X,Y,W,H INVERT RECTANGLE: draws a rectangle and
inverts the pixels colors.

CALL RE,4,X,Y,W,H,P FILL RECTANGLE: draws a rectangle and fills

it with the current pen pattern.

X
Left edge of the rectangle in LOCAL coordinates.

Y
Top edge of the rectangle in LOCAL coordinates.

w
Width of the rectangle in pixels.

H
Height of the rectangle in pixels.

P
Pattern used to fill rectangle (0-15)

So What Software Page 2.41

Call Box" BASC ~ Commands

CALL RE the RECTANGLE commands (continued)

(X) Left edge
i

(Y) Top edge

(H) Height

/——Rectangle

(W) Width

Figure 2.12 Rectangle construction

So What Software Page 2.42

Call Box BASIC Commands

CALL RR the ROUNDED RECTANGLE commands

There are 5 commands that draw Rounded Rectangles. The Rounded Rectangles are drawn with
the pen in the current port.

Note:Any command that draws something, draws to a graphics port. You must make sure that the
port you want to draw in is the current port before drawing to it. Because you are drawing to a port
and not necessarily the screen, the coordinates used to draw are in a coordinate system unique to the
port you have selected. This coordinate system is called LOCAL. GLOBAL coordinates on the
other hand refer to the screen coordinates.., or the current cursor position. If you choose to draw to
the screen then the LOCAL coordinates will equal the GLOBAL coordinates.

CALL RR,0,X,Y,W,H,OW,OH FRAME RRECTANGLE: draws a rrectangle
outline in the current pen color.

CALL RR,1,X,Y,W,H,0W,OH PAINT RRECTANGLE: draws a rrectangle and
fills it with the current pen color.

CALL RR,2,X,Y,W,H,OW,0OH ERASE RRECTANGLE: draws a rrectangle and
fills it with color 0.

CALL RR,3,X,Y,W,H,OW,0OH INVERT RRECTANGLE: draws a rrectangle

and inverts the pixels colors.
CALL RR,4,X,Y,W,H,OW,0OH,P FILL RRECTANGLE: draws a mrectangle and
fills it with the current pen pattern.

X
Left edge of the rrectangle in LOCAL coordinates.

Y
Top edge of the rrectangle in LOCAL coordinates.

w
Width of the rrectangle in pixels.

H
Height of the mrectangle in pixels.

ow
Corner oval width in pixels

OH
Comer oval height in pixels

P
Pattern used to fill rrectangle (0-15)

So What Software ~ Page 2.43

Call Box BASIC - Commands

CALL RR the ROUNDED RECTANGLE commands (continued)

ow
(X) Left edge

o Corner oval
(Y) Top edge ', O oH

(H) Helght

Rounded
/ Rectangle

(W) Width

Figure 2,13 Rounded Rectangle construction

So What Software Page 2.44

Call Box" BASIC ‘ Commands

CALL SB the SCAN LINE CONTROL BYTE commands

-

There are 2 commands that control the Scan line Control Bytes (SCB’s). A Scan line Control Byte
‘describes the behavior of the pixels for each row of the screen. The screen has 200 rows of pixels
that can be either 320 or 640 pixels wide depending on the mode setting.

Scan Line Control Byte 7 6 5 4 3 2 1 0
Palette number

1=640 0=320
1 = Generate Interrupt
1 = Color fill mode

Figure 2,14 Scan Line Control Byte

Binary is a convienient method to specify scan Hne control bytes. To set all 200 SCB's to 640 mode
graphics use the following program line:

CALL SB,0,!10000000,0,200

You will usually use palette O for all of your needs even though there are 16 palette spots avaliable.
It should be noted that specifying a palette that has not been filled by a CALL PL will produce
unpredictable results.

CALL SB,0,(sch),(start),(end) SET RANGE OF SCB's: Sets any or all of the 200
scan line control bytes associated with the screen.

CALL SB,1,(line),R GET ONE SCB VALUE: Returns the value of a
specified SCB.

(scb)

A value as described in Figure 2.14.

(star?)

Top row of the range of SCB's to be set.

(end)

Bottom row of the range of SCB's to be set.

(line)
Line number of SCB to read.

R
Returned value... must be an Applesoft FP (real) variable. -

So What Software Page 2.45

Call Box" BASIC . Commands

CALL SC the SCREEN commands

There are 4 commands that control the super hi-res screen. This screen is graphics port #0 at
$E1/2000. You can either enable or disable the screen, change it to a specified color or set its mode.

CALL SC works closely with CALL SB.. for example: If you want to set the screen to 640
mode graphics you must set the mode and set the scan line control bytes...

CALL SC,2,640 : CALL SB,0,!10000000,0,200

or to set the screen for 320 mode...

CALL SC,2,320 : CALL SB,0,100000000,0,200

! @ Note: SCB's are represented in binary, this is not necessary... only convienient. SCB's are
actually bit flags and binary representation makes the bits easier to see.

CALL SC,0 SCREEN OFF: Changes the screen from super hi-
res to text.

CALL SC,1 SCREEN ON: Changes the screen from text to
super hi-res.

CALL SC,2,(mode) SCREEN MODE: Sets the screen mode to either
320 or 640.

CALL SC,3,(colorword) SCREEN COLOR: Clears the screen to the color

specified in the colorword.

(mode)
Must be 320 or 640 only. All other values are invalid and will return an error.

(colorword)

A colorword is a value anywhere from 0 to 65535. There are only 16 solid colors in that range... all
the rest are dithers. Specifying a colorword in hex is the easiest because the 16 values are in straight
numeric order:

$0000 solid #0 $4444 solid #4 $8888 solid #8 $CCCC solid #12
$1111 solid #1 $5555 solid #5 $9999 solid #9 $DDDD solid #13
$2222 solid #3 $6666 solid #6 $AAAA solid #10 $EEEE solid #14
$3333 solid #4 $7777 solid #7 $BBBB solid #11 $FFFF solid #15

Figure 2.15 Solid colorwords

So What Software Page 2.46

Call Box~ BASC | Commnds

CALL TL the TOOL commands

There are 2 commands that control the starting up of supported tool sets. A tool set must be
started up before it can be used. The TOOL command "CALL TL" provides an easy method for the
BASIC programmer to startup required tool sets.

There are two options available with both the startup and shutdown calls: a) Startup a specific tool
set, or b) Startup dependent tool sets in order (the HighOrder call).

Example: The HighOrder Startup call will startup all tool sets required by the one you specify. So
if you wanted to use Dialog in your program, all tools needed by the Dialog Manager would be
started up for you automatically; you don't need to make a call for each individual tool.

!@ Note: It is necessary to make the CALL QF before exiting BASIC to any other system. (CALL QF
takes care of freeing up and disposing of all memory reserved for the BASIC Interface as well).

CALL TL,0,"twolname" STARTUP ONE TOOL: starts up the tool
specified by toolname.

CALL TL,1, % Unused...(reserved)

CALL TL,2,"t00lname" HIGH ORDER STARTUP: starts up all tools

required by, up to and including, the toolset

"toolname"

One of the following strings describing which tool(s) to use in the call. The strings are case
insensitive: they can be any combination of cases and still function right. However, if not spelled as
shown below, you will receive a "Tool Not Supported" error. More tools will become available
in a later release.

WINDOW DIALOG
CONTROL SCRAP
MENU LIST
LINEEDIT DESK

The toolname "DESK" will startup all currently supported tools and is the recommended command
for desktop applications. Starting up fewer tools does not free up any memory. All tools remain
memory resident throughout all CB BASIC operations.

So What Software Page 2.47

CALL SC the SCREEN commands

ES

There are 4 commands that control the super hi-res screen. This screen is graphics port #0 at
$E1/2000. You can either enable or disable the screen, change it to a specified color or set its mode.

CALL SC works closely with CALL SB.. for example: If you want to set the screen to 640
mode graphics you must set the mode and set the scan line control bytes...

CALL SC,2,640 : CALL SB,0,!10000000,0,200
or to set the screen for 320 mode...

CALL 'SC,2,320 : CALL SB,0,!00000000,0,200

Eo

Note: SCB's are represented in binary, this is not necessary... only convienient. SCB's are
actually bit flags and binary representation makes the bits easier to see.

CALL SC,0 SCREEN OFF: Changes the screen from super hi-

. res to text,

CALL SC,1 SCREEN ON: Changes the screen from text to
super hi-res.

CALL SC,2,(mode) SCREEN MODE: Sets the screen mode to either
320 or 640,

CALL SC,3,(colorword) SCREEN COLOR: Clears the screen to the color

specified in the colorword.

(mode)
Must be 320 or 640 only. All other values are invalid and will return an error.

(colorword) ,

A colorword is a value anywhere from 0 to 65535. There are only 16 solid colors in‘that range... all
the rest are dithers, Specifying a colorword in hex is the easiest because the 16 values are in straight
numeric order:

$0000 solid #0 $4444 solid #4 $8888 solid #8 $CCCC solid #12
$1111 solid #1 $5555 solid #5 $9999 solid #9 $DDDD solid #13
$2222 solid #3 $6666 solid #6 $AAAA solid #10 $EEEE solid #14
$3333 solid #4 $7777 solid #7 $BBBB solid #11 $FFFF solid #15

Figure 2.15 Solid colorwords

So What Software | Page 2.46

Call Box"BASIC Commands

CALL SF the STANDARD FILE commands

Standard Files are high level tool functions which are dependent on other toolbox functions as well
as GS/OS (ProD0OS16) commands. These functions need to be initialized by using the "high level”
startup command CALL TL,2,"Desk" (see CALL TL in this manual for a complete description).
This call will startup all tools needed for desktop applications... the Standard File tools use most of
them.

The Standard File tools are located in the file SF which must be in the SYSTEM/SETUP directory
along with CB.INITb1. The file CB must be version 2.1b3 or greater.,

<=:HARD1:CALL BOX:
5930 free of 32767 k.

1 BASIC
g LRLL.DBK
<t D PRELAURCH

New Folder

2 DIALOG.EX
Load plesof.. S
<3:HARDL:CALL.BOX: -

Lo,
'.%I

TVBASIE ., oov c Save Text as...
3 DIRLOG.EX | Untitled

3 EDITORS
[IMAGE.EX
£ MENU.EX
2 SCRIPTS
(3 Templates
£ WINDOW.EX

<

Figure 2,14,.1 Standard File dialogs

Standard File dialogs are used to concatenate ProDOS pathnames using the point and click desktop
method. The dialog has buttons with which you can OPEN or CLOSE files, Switch Volumes and
Create folders. The buttons will change the contents of the list window within which you can select
or double click individual filenames. When your selection process is finished Standard File returns
you the Filename and Full Pathname selected. You then use this information to actually load and
save the data using ProDOS or GS/OS commands.

The Standard File commands require you to supply the upper left hand coordinates for the box and a
prompt string (plus a default filename for save boxes). When you are done with the box then the
Standard File commands return a good flag, filename and full pathname using slashes as delimiters.
The good flag will be 0 if you make a selection and will contain 1 if you have selected cancel.

So What Software Page 2.46.1

CALL SF the STANDARD FILE commands

There are 2 commands that control Standard File boxes. You can either bring up a load or save

Standard File Box .

This toolset is proprietary to Call Box BASIC and emulates the functions of the Apple IIgs Standard
File Tools. This tool is installed at system initialization time and is not physically part of the file CB.
If the files SF and CB.INITb1 are not in the SYSTEM/SYSTEM.SETUP subdirectory and/or the
file CB (version 2.1b3 min.) is not being used then issueing these calls will cause the system to

crash or hang. The New Folder function of the save standard file box is not functional in this beta

release.

CALL SF,0,Y,X,"prompt",F,F$,P$
GetStdFile: This is the standard "LOAD" dialog box.

CALL SF,1,Y,X,"prompt","DefName" ,F ,F$,P$
PutStdFile: This is the standard "SAVE" dialog box.

X
Horizontal position or left side.
Y
Vertical position or the top side.
"pronipt"
A load or save message like... Load File.. or Save File as...
l'Demme||
. Default filename for the edit box in SAVE boxes.
F .
Good Flag, 0=FS$ and P$ are valid, 1=FS$ and P$ are invalid
F$
Filename selected
P$

Full pathname selected (delimited with slashes instead of colons)

So What Software

Page 2.46.2

Call Box" BASIC Commands

CALL TL the TOOL commands

There are 2 commands that control the starting up of supported tool sets. A tool set must be
started up before it can be used. The TOOL command "CALL TL" provides an easy method for the
BASIC programmer to startup required tool sets.

There are two options available with both the startup and shutdown calls: a) Startup a specific tool
set, or b) Startup dependent tool sets in order (the HighOrder call).

Example: The HighOrder Startup call will startup all tool sets required by the one you specify. So
if you wanted to use Dialog in your program, all tools needed by the Dialog Manager would be
started up for you automatically; you don't need to make a call for each individual tool.

™ Note: Itis necessary to make the CALL QF before exiting BASIC to any other system. (CALL QF
takes care of freeing up and disposing of all memory reserved for the BASIC Interface as well).

CALL TL,0,"twolname" STARTUP ONE TOOL: starts up the tool

, specified by toolname.
CALL TL,1,%** Unused...(reserved)
CALL TL,2,"toolname" HIGH ORDER STARTUP: starts up all tools

required by, up to and including, the toolset

"toolname"

One of the following strings describing which tool(s) to use in the call, The strings are case
insensitive: they can be any combination of cases and still function right. However, if not spelled as
shown below, you will receive a "Tool Not Supported" error. More tools will become available
in a later release.

WINDOW DIALOG ° f
CONTROL SCRAP

MENU LIST

LINEEDIT DESK

The toolname "DESK" will startup all currently supported tools and is the recommended command
for desktop applications. Starting up fewer tools does not free up any memory. All tools remain
memory resident throughout all CB BASIC operations.

So What Software . Page 2.47
NO CHANGE V2.1.b0

Call Box"BASIC = Commands

CALL TL the TOOL commands (continued)

So What Software Page 2.48

Call Box BASIC - Commands

CALL TX the TEXT commands

There are 6 commands that control text. Font I.D. #0 is reserved for the system font (Shaston §).
Fonts #1-15 can be loaded in from disk and are the IIgs modified Mac font file type $C8. You can
set the color for foreground and background plus set the font face fornormal, bold, underline,
outline, shadow and italics. The mode can be set the same as in the CALL PN commands.

The font is plotted at the current ports pen position... after a string is ploltted the horizontal pen
position is advanced to the end of the plotted string.

CALL TX,0,F,"string" DRAW TEXT: this will plot the string using font
F.

CALL TX,1,FO,BK SET COLORS: stes the foreground and
background colors 0-15.

CALL TX,2,TF SET TEXT FACE: sets the style that the font will
appear in (see Figure 2.14),

CALL TX,3,MO SET FONT MODE: sets the mode that the font
will be plotted in (see Figure 2.11).

CALL TX,4,F,"pathname" LOAD FONT: loads a type $C8 font from disk as
LD. F.

CALL TX,5,F,"string" A GET TEXT LENGTH: returns the width of the

string in pixels using font F. A has the width.

F
Font number 0-15 (font #0 is Shaston 8).

FO
Foreground color of text (actual text color).

BK
Background color of a rectangle that encloses the text.

TF
Text face... this is a bit flag byte that enables the various text styles (see Figure 2.14).

MO
A number 0-7 that selects the drawing mode for the text (see Figure 2.11).

"string"
A text string of ASCII characters not to exceed 255 characters in length.

"pathname"
A ProDOS 8 pathname of the font you want to load. This font must be a filetype $C8. Fonts
specified by filename only must be in the boot volumes SYSTEM/FONTS subdirectory.

So What Software Page 2.49

Call Box"BASIC Commands

CALL TX the TEXT commands (continued)

Text face flags 7 6 5 4 3 2 1 0
Bits 5-7 must be set to zero.

1 = Shadow
1= Outline

1 = Underline
1 =Ttalic
1=Bold

Bold /talic Underline QOutline Shadow

Figure 2.14 Text face flags

So What Software Page 2.50

Call Box BASIC Commands

CALL WN the WINDOW commands

Windows are high level tool functions which are dependent on other toolbox functions as well as
GS/0OS (ProD0S16) commands. The menu functions need to be initialized by using the "high level”
startup command CALL TL,2," Desk" (see CALL TL in this manual for a complete description).
This call will startup all tools needed for desktop applications... the Window Manager is one of
them,

Windows are designated as "entities" in the Call Box BASIC driver and these entities are created
using the Call Box TPSWindow Editor. The output type "object" must be used for windows that
are to be used by the BASIC driver.

=00: = Nindow Entity ===k

A

Figure 2.15 A Window entity

Operating a Window is automatic, you must load it and open it. Once a window is open you would
probably draw something in it to display. To draw to a window you simply point to the windows
port by using the port command CALL PT,0,(entity number) and then use drawing and text
commands to create the windows contents. The TaskMaster call in your programs event loop is at
the heart of window operations. TaskMaster will return task codes (see Figure 2.8) which will
inform you if a particular part of a window was clicked in as well as other status information. If you
want the "system" to handle the operation of the windows then you would take no action on the
window type task codes and loop back to your TaskMaster call. Moving, growing-shrinking,
Scrolling and Zooming the window will happen without any program lines on your part, and you
usually only need to handle the go-away region task code (#22) in order to close the window.

So What Software : Page 2.51

Call Box"BASIC Commands

CALL WN the WINDOW commands (continued)

Drawing to a Window

Each window has a contents region which displays the information contained in the window. This
information is "drawn" to the window using any of the drawing commands included in the Call
Box BASIC driver. Information can also be put in a window by using the "port to port"
command (such as super hi-res pictures). When something is drawn to a window it will be drawn in
"local” coordinates... the mouse position is in "global” coordinates, if you wish to draw into the
window using the mouse/cursor like a pen then you must convert the mouse X and Y positions to
local coordinates using the "Global to Local" command in the port commands.

Before drawing to a window you must direct all drawing action to the window using the command
"Set Port" in the port commands. When you first create a window the port is set to the window
just created so the Set Port command will not be necessary. Windows can be drawn to even when
they are not visible, a subsequent use of the command "Show window" will display the window
with the contents already drawn. These few simple rules cover the handleing of the windows
contents... most other window functions are handled automatically by the system and need little or
no attention.

Window Operation
After starting up and initializing Call Box BASIC load a Window entity created by the Call Box
Window Editor.

10 CALL WN,0,N,"MyWindow"

Next you need to build the window which sets up the memory required by the window, this
operation will not make the window visible.

12 CALL WN,1,N

Note: At this point you need to draw the initial window contents as described above. Pre-drawing E'g
the contents makes the windows contents appear quicker when the window is displayed. mach

Once your window is all set-up you display it by using the Show Window command:
14 CALL WN,4,N,1

The window will now be visible on the screen and will operate automatically. Several windows can
be up on the screen at one time and may overlap each other. When TaskMaster in your programs
Event loop shows that a window region (refer to Figure 2.8) has had the mouse clicked in it you
can run routines based on which item is clicked in or simply ignore the indication and have the
system handle the operation itself by looping back to the TaskMaster command. One value returned
by TaskMaster must be handled by your program and this is the close box (go away region) #22.
To close your window issue a Hide Window or if you want to dispose of the window the Close
window command.

16 CALL WN,4,N,0 or CALL WN,2,N

So What Software Page 2.52

Call Box" BASIC Commnds

CALL WN the WINDOW commands (continued)

These are the minimum required window commands to operate a window. Other functions such as
Get/Set origin and Set Title, add some custom functions to the repitorie of commands. There
are 3 other commands that should be of value to you the programmer these are: Refresh
Desktop, Duplicate a Window and Get Window Pointer/Entity number, Refresh
Desktop should be issued prior to the use of windows, dialogs or menus... this command sets up
the desktop environment and redraws the whole desktop. Sometimes during an applications
execution some non desktop commands such as drawing directly to the desktop will "trash" the
looks of the screen. Issueing a Refresh Desktop command will straighten things out. The Duplicate
a Window command will allow you to use the same window template for several window entities,
this will eliminate the need to load a separate window template for each window entity. The Get
Window Pointer/Entity Number command will return any of three pointers and indicators necessary
for window manipulation. An example of the use of this command is when the mouse is clicked in
the top-most window out of several windows visible at one time. If you wish to close this window
then you need to know the entity number of this window for the Close Window command.
TaskMaster will return the Windows pointer in the "D" variable, This pointer is converted to the
entity number as follows:

100 CALL WN,8,N,D,2
The windows entity number is returned in the variable "N".

There are 9 commands that control windows. Windows must be used only when the desktop is
active.

CALL WN,0,N,"pathname" LOAD WINDOW: this loads a window template
from disk as entity number (N).

CALL WN,1,N BUILD WINDOW: this creates the memory
structure for the window (N).

CALL WN,2,N CLOSE WINDOW: this closes the window
specitied by (N) and releases its memory.

CALL WN,3 REFRESH DESKTOP: this redraws the entire
desktop. :

CALL WN,4,N,V HIDE/SHOW WINDOW: this will hide (V=0) or
show (V=1) the window specified by (V).

CALL WN,5,N,X,Y,V GET/SET ORIGIN: this will get (V=0) or set
(V=1) the origin (X, Y) of the windows contents.

CALL WN,6,N,A$ SET TITLE: this will change the title (A$) of the
window specified by (N).

CALL WN,7,N1,N2 DUPLICATE A WINDOW: this will copy the
window entity (N/1) to a new window entity (N2).

CALL WN,8,N,WP,V GET WINDOW POINTER/ENTITY

NUMBER: This will return the background port
pointer (V=0) or the windows port pointer (V=/) or
the entity number (V=2) of the window specified by
(WP) in the variable (V).

So What Software Page 2.53

Call Box" BASC -+ . Commands

CALL WN the WINDOW commands (continued)

"pathname"
A ProDOS 8 pathname of the window template to load.

N
Entity number for this window (/-31).

\Y
Code number for the type of operation requested.

X
The input and output horizontal positions

Y
The input and output vertical positions

A$
The string used to set the windows title.

N1
The source window entity number.

N2
The destination window entity number,

WP
The window ports pointer.

So What Software Page 2.54

Call Box" BASIC Appenix A

Apple IIgs System and Toolbox calls

This listing is a reference for all the system and toolbox calls that can be made by using the Call Box
BASIC driver call CALL LC (LongCall). Only the call code numbers and the name are given in
this appendix. Complete call descriptions can be found in the Apple IIgs Toolbox Reference Vols.
1,2 and 3 avaliable from A.P.D.A. (Apple Programmers and Developers Association) or Addison-
Wesley publishing Co.

ProDOS 16 / GS/08 1202 PurgeHandle 2403 FWEntry

0010 P16:0OPEN 1302 PurgeAll 2503 GetTick

0012 P16:READ 1802 GetHandleSize 2603 PackBytes

0014 P16:CLOSE 1902 SetHandleSize 2703 UnPackBytes

0016 P16:SET_MARK 1A02 FindHandle 2803 Munge

0017 P16:GET_MARK 1B02 FreeMem 2903 GetlRQEnable

0019 P16:GET_EOF 1C02 MaxBlock 2A03 SetAbsClamp

200E GS/OS:ExpandPath 1D02 TotalMem 2B03 GetAbsClamp

200F GS/0S:GetSysPrefs 1E02 CheckHandle 2C03 SysBeep

2010 GS/OS:Open 1F02 CompaciMem 3003 SetinterruptState

2012 GS/0S:Read 2002 HLock 3103 GetlnterruptState

2014 GS/0S:Close 2102 HLockAll 3203 GetIntStateRecSize

2016 GS/0S:SetMark 2202 HUnlock 3303 ReadMouse2

2017 GS/0S:GetMark 2302 HUnlockAll 3403 GetCodeResConverter

2019 GS/0S:GetEOF 2402 SetPurge

201A GS/OS:SetLevel 2502 SetPurgeAll QuickDraw II

201B GS/OS:GetLevel 2802 PurToHand 0104 QDBootlnit
2902 HandToPir 0204 QDStartUp
2A02 HandToHand 0304 QDShutDown
2B02 BlockMove 0404 QDVersion
2F02 RealFreeMem 0504 QDReset

Tool Locator 0604 QDStatus

0101 TLBootlnit Misc. Tools 0904 GerAddress

0201 TLStartUp 0103 MTBootlnit 0A04 GrafOn

0301 TLShutDown 0203 MTStartUp 0B04 GrafOff

040! TLVersion 0303 MTShutDown 0C04 GetStandardSCB

0501 TLReset 0403 MTVersion 0D04 InitColorTable

0601 TLStatus 0503 MTResel 0E04 SetColorTable

0901 GetTSPtr 0603 MTStatus 0F04 GetColorTable

0A01 SetTSPtr 0903 WriteBRam 1004 SetColorEntry

0B01 GetFuncPir 0A03 ReadBRam 1104 GetColorEntry

0C01 GelWAP 0B03 WriteBParam 1204 SetSCB

0D01 SetWAP 0C03 ReadBParam 1304 Ge!tSCB

1101 TLMountVolume 0D03 ReadTimeHex 1404 SetAlISCBs

1201 TLTextMountVolume 0E03 WriteTimeHex 1504 ClearScreen

1301 SaveTextState 0F03 ReadAsciiTime 1604 SetMasterSCB

1401 RestoreTextState 1003 SetVector 1704 GetMasterSCB

1501 MessageCenter 1103 GetVector 1804 OpenPort

1701 MessageByName 1503 SysFailMg 1904 InitPort
1603 GetAddr 1A04 ClosePort
1703 ReadMouse 1B04 SetPort

Memory Manager 1803 InitMouse 1C04 GetPort

0102 MMBootlnit 1903 SetMouse 1D04 SetPortloc

0202 MMStartUp 1A03 HomeMouse 1E04 GetPortLoc

0302 MMShutDown 1B03 ClearMouse 1F04 SetPortRect

0402 MMVersion 1C03 ClampMouse 2004 GetPortRect

0502 MMReset 1D03 GetMouseClamp 2104 SetPortSize

0602 MMStatus 1E03 PosMouse 2204 MovePortTo

0902 NewHandle 1F03 ServeMouse 2304 SetOrigin

0A02 ReAllocHandle 2003 GetNewlID 2404 SetClip

0B02 RestoreHandle 2103 DeletelD 2504 GetClip

1002 DisposeHandle 2203 StatusiD 2604 ClipRect

1102 DisposeAll 2303 IntSource 2704 HidePen

So What Software Page a

2804
2904
2A04
2B04
2C04
2D04
2E04
2F04
3004
3104
3204
3304
3404
3504
3604
3704
3804
3904
3A04
3B04
3C04
3D04
3E04
3F04
4004
4104
4204
4304
4404
4504
4604
4704
4804
4904
4A04
4B04
4C04
4D04
4E04
4F04
5004
5104
5204
5304
5404
5504
5604
5704
5804
5904
5A04
5B04
5C04
5D04
SE04
5F04
6004
6104
6204
6304
6404
6504
6604

ShowPen
GetPen
SetPenState
GetPenState
SetPenSize
GetPenSize
SetPenMode
GetPenMode
SetPenPat
GetPenPat
SetPenMask
GetPenMask
SetBackPat
GetBackPat
PenNormal
SetSolidPenPat
SetSolidBackPat
SolidPattern
MoveTo
Move
LineTo
Line
SetPicSave
GetPicSave
SetRgnSave
GetRgnSave
SetPolySave
GetPolySave
SetGrafProcs
GetGrafProcs
SetUserField
GetUserField
SetSysField
GetSysField
SetRect
OffsetRect
InsetRect
SectRect
UnionRect
PtInRect
Pi2Rect
EqualRect
NotEmptyRect
FrameRect
PaintRect
EraseRect
InvertRect
FillRect
FrameOval
PaintOval
EraseOval
InvertOval
FillOval
FrameRRect
PaintRRect
EraseRRect
InvertRRect
FillRRect
FrameArc
PaintArc
EraseArc
InvertArc
FillArc

Call Box BASIC

6704
6804
6904
6A04
6B04
6C04
6D04
6E04
6F04
7004
7104
7204
7304
7404
7504
7604
7704
7804
7904
TA04
7B04
7C04
7D04
7E04
TE04
8004
8104
8204
8304
8404
8504
8604
8704
8804
8904
8A04
8§B04
8C04
8D04
8E04
8F04
9004
9104
9204
9304
9404
9504
9604
9704
9804
9904
9A04
9B04
9C04
9D04
9E04
9F04
A004
A104
A204
A304
A404
AS504

NewRgn
DisposeRgn
CopyRgn
SetEmptyRgn
SetRectRgn
RectRgn
OpenRgn
CloseRgn
OffsetRgn
InsetRgn
SectRgn
UnionRgn
DiffRgn
XorRgn
PilnRgn
RectInRgn
EqualRgn
EmptyRgn
FrameRgn
PaintRgn
EraseRgn
InvertRgn
FillRgn
ScrollRect
PaintPixels
AddPt
SubPt
SetPt
EqualPt
LocalToGlobal
GlobalToLocal
Random
SetRandSeed
GetPixel
ScalePt
MapPt
MapRect
MapRgn
SetStdProcs
SetCursor
GetCursorAdr
HideCursor
ShowCursor
ObscureCursor
SetMouseLoc
SetFont
GetFont
GetFontlnfo
GetFontGlobals
SetFontFlags
GetFontFlags
SetTextFace
GetTex1Face
Se1TextMode
GetTextMode
SetSpaceExtra
GetSpaceExtra
SetForeColor
GetForeColor
SetBackColor
GetBackColor
DrawChar
DrawString

A604
A704
A804
A904
AAOD4
ABO4
ACO4
ADO04
AE04
AF04
B004
B104
B204
B304
B404
B504
B604
B704
B804
B604
BAO4
BB04
BCO04
BD04
BEO04
BF04
C004
C104
C204
C304
C404
C504
C604
C704
C804
C904
CA04
CBO04
CCo04
CD04
CE04
CF04
D004
D104
D204
D304
D404
D504
D604
D704
D804
D904

- Appendix A"

DrawCString
DrawText
CharWidth
StringWidth
CStringWidth
TextWidth
CharBounds
StringBounds
CStringBounds
TextBounds
SetArcRot
GetArcRot
SetSysFont
GetSysFont
SetVisRgn
GetVisRegn
SetlniUse
OpenPiclure
PicComment
ClosePicture
DrawPicture
KillPicture
FramePoly
PaintPoly
ErasePoly
InvertPoly
FillPoly
OpenPoly
ClosePoly
KiliPoly
OffsetPoly
MapPoly
SetClipHandle
GetClipHandle
SetVisHandle
GetVisHandle
InitCursor
SetBufDims
ForceBufDims
SaveBufDims
RestoreBufDims
GetFGSize
SetFontlID
GetFontlD
SetTextSize
GetTextSize
SetCharExtra
GetCharExitra
PPToPort
InflateTextBuflfer
GetRomFont
GetFontLore

So What Software

Page

Call Box" BASIC Appendix A

Desk Manager Sound Manager 090B Multiply
0105 DeskBootlnit 0108 SoundBootlnit 0AOB SDivide
0205 DeskStartUp 0208 SoundStartUp 0BOB UDivide
0305 DeskShutDown 0308 SoundShutDown 0COB LongMul
0405 DeskVersion 0408 SoundVersion 0DOB LongDivide
0505 DeskReset 0508 SoundReset 0EOB FixRatio
0605 DeskStatus 0608 SoundStatus 0F0B FixMul
0905 SaveScrn 0908 WriteRamBlock 100B FracMul
0AO05 RestScrn 0A08 ReadRamBlock 110B FixDiv
0BO5 SaveAll 0B08 GetTableAddress 120B FracDiv
0CO5 RestAll 0C08 GetSoundVolume 130B FixRound
1105 ChooseCDA 0D08 SetSoundVolume 140B FracSqr
1305 SeitDAStrPtr 0E08 FFStartSound 150B FracCos
1405 GetDAStrPtr 0F08 FFStopSound 160B FracSin
1505 OpenNDA 1008 FFSoundStatus 170B FixATan2
1605 CloseNDA 1108 FFGeneratorStatus 180B HiWord
1705 SystemClick 1208 SetSoundMIRQV 190B LoWord
1805 SystemEdit 1308 SetUserSoundIRQV 1A0B Long2Fix
1905 SystemTask 1408 FFSoundDoneStatus 1B0OB Fix2Long
1A05 SystemEvent 1508 FFSctUpSound 1COB Fix2Frac
1B0S GetNumNDAs 1608 FFStartPlaying IDOB Frac2Fix
1C05 CloseNDAByWinPtr 1708 SetDocReg 1E0B Fix2X
1D05 CloseAlINDAs 1808 ReadDocReg 1F0B Frac2X
1E05 FixAppleMenu 200B X2Fix
2105 RemoveCDA Desktop Bus 210B X2Frac
2205 RemoveNDA 0109 ADBBootlnit 220B Int2Hex
0209 ADBStartUp 230B Long2Hex
Event Manager 0309 ADBShuitDown 240B Hex2Int
0106 EMBootlnit 0409 ADBVersion 250B Hex2Long
0206 EMStartUp 0509 ADBReset 260B Int2Dec
0306 EMShutDown 0609 ADBStatus 270B Long2Dec
0406 EMVersion 0909 Sendlnfo 280B Dec2lnt
0506 EMReset 0A09 ReadKeyMicroDala 290B Dec2Long
0606 EMStatus 0B09 ReadKeyMicroMemory 2A0B Hexh
0906 DoWindows 0D09 AsyncADBReceive
0A06 GetNextEvent 0E09 SyncADBReceive Text Tools
0B06 EventAvail 0F09 AbsOn 010C TextBootlnit
0C06 GetMouse 1009 AbsOf 020C TextStartUp
0D06 Button 1109 RdAbs 030C TextShutDown
0E06 StillDown 1209 SetAbsScale 040C TextVersion
0F06 WaitMouseUp 1309 GetAbsScale 050C TextReset
1006 TickCount 1409 SRQPoll 060C TextStatus
1106 GetDbiTime 1509 SRQRemove 090C SetInGlobals
1206 GetCaretTime 1609 ClearSRQTable 0AO0C SetOutGlobals
1306 SetSwitch 0BOC SetErrGlobals
1406 PostEvent SANE 0CO0C GetInGlobals
1506 FlushEvents 010A SANEBootlnit 0DOC GetOutGlobals
1806 SetEventMask 020A SANEStartUp OEOC GetErrGlobals
1906 FakeMouse 030A SANEShutDown OF0C SetlnputDevice
1A06 SetAutoKeyLimit 040A SANEVersion 100C SetOutputDevice
1B06 GetKeyTranslation 050A SANEReset 110C SetErrorDevice
1C06 SetKeyTranslation 060A SANEStatus 120C GetlnputDevice
090A FPNum 130C GetOutputDevice
Scheduler 0AO0A DecStrNum 140C GetErrorDevice
0107 SchBootlnit 0BOA ElemNum 150C InitTextDev
0207 SchStartUp 160C CtlTextDev
0307 SchShutDown Integer Math 170C StatusTexiDev
0407 SchVersion 010B IMBootlnit . 180C WriteChar
0507 SchReset 020B IMStantUp 190C ErrWriteChar
0607 SchStatus 030B IMShutDown : 1A0C WriteLine
0907 SchAddTask 040B IMVersion IBOC ErrWriteLine
0A07 SchFlush 050B IMReset 1COC WriteString
060B IMStatus IDOC ErrWriteString

So What Software Page ¢

Call Box" BASIC

1E0C TextWriteBlock
1FOC ErrWriteBlock
200C WriteCString
210C ErrWriteCString
220C ReadChar

230C TextReadBlock
240C ReadLine

Window Manager
010E WindBootlInit
020E WindStartUp
030E WindShutDown
040E WindVersion
050E WindReset
060E WindStatus
090E NewWindow
OAOE CheckUpdate
O0BOE CloseWindow
0COE Desktop
ODOE SetWTitle
OEOE GetWTitle
OFOE SetFrameColor
100E GetFrameColor
110E SelectWindow
120E HideWindow
130E ShowWindow
140E SendBehind
150E FrontWindow
160E SetlnfoDraw
170E FindWindow
180E TrackGoAway
190E MoveWindow
1A0E DragWindow
1BOE GrowWindow
1CO0E SizeWindow
1DOE TaskMaster
1EOE BeginUpdate
1FO0E EndUpdate
200E GetWMgrPor
210E PinRect
220E HiliteWindow
230E ShowHide
240E BringToFront
250E WindNewRes
260E TrackZoom
270E ZoomWindow
280E SetWRefCon
290E GetWRefCon

2A0E
2BOE
2COE
2DOE
2EOE
2FO0E
300E
310E
320E
330E
340E
350E
360E
370E
380E
390E
3A0E
3BOE
3COE
3DOE
3EQOE
3FO0E
400E
410E
420E
430E
440E
450E
460E
470E
480E
490E
4A0E
4BOE
4COE
4DOE
4E0E
4F0E
500E
S10E
520E
530E
540E
550E
560E
580E
S90E
5A0E
SBOE
SCOE
SDOE
SEOE
SFOE
600E
620E

GetNextWindow
GetWKind
GetWFrame
SetWFrame
GetStructRgn
GetContentRgn
GetUpdateRgn
GetDelProc
SetDefProc
GetWControls
SetOrgnMask
GetlnfoRefCon
SetlnfoRefCon
GetZoomRect
SetZoomRect
RefreshDesktop
InvalRect
InvalRgn
ValidRec
ValidRgn
GetContentOrigin
SetContentOrigin
GetDataSize
SetDataSize
GetMaxGrow
SetMaxGrow
GetScroll
SetScroll
GetPage
SetPage
GetContentDraw
SetContentDraw
GetInfoDraw
SetSysWindow
GetSysWFlag
StartDrawing
SetWindowlcons
GetRectlnfo
StartlnfoDrawing
EndInfoDrawing
GetFirstWindow
WindDragRect
GetDragRectPtr
DrawlnfoBar
WindowGlobal

GetWindowMgrGlobals

AlertWindow
StartFrameDrawing
EndFrameDrawing
ResizeWindow
TaskMasterContent
TaskMasterKey
TaskMasterDA
CompileText
ErrorWindow

Menu Manager

010F
020F
030F
040F
050F
060F

MenuBootlnit
MenuStartUp
MenuShutDown
MenuVersion
MenuReset
MenuStatus

090F
0AQF
0BOF
0COF
O0DOF
0EOF
O0FOF
100F
110F
120F
130F
140F
150F
160F
170F
180F
190F
1AOF
1BOF
1COF
1DOF
1E0F
1FOF
200F
210F
220F
230F
240F
250F
260F
270F
280F
290F
2A0F
2BOF
2CO0F
2DOF
2EO0F
2FQF
300F
310F
320F
330F
340F
350F
360F
370F
380F
390F
3AQF
3BOF
3COF
3DOF
450F
460F

Appendix A

MenuKey
GetMenuBar
MenuRefresh
FlashMenuBar
InsertMenu
DeleteMenu
InsertMItem
DeleteMlItem
GetSysBar
SetSysBar
FixMenuBar
CountMItems
NewMenuBar
GetMHandle
SetBarColors
GetBarColors
SetMTitleStar
GetMTitleStart
GetMenuMgrPort
CalcMenuSize
SetMTitleWidth
GetTitleWidth
SetMenuFlag
GetMenuFlag
SetMenuTitle
GetMenuTitle
MenuGlobal
SetMItem
GetMItem
SetMItemFlag
GetMItemFlag
SetMItemBlink
MenuNewRes
DrawMenuBar
MenuSelect
HiliteMenu
NewMenu
DisposeMenu
InitPalette
EnableMItem
DisableMllem
CheckMltem
SetMltemMark
GetMIiemMark
SetMItemSiyle
GetMItemStyle
SetMenulD
SetMItemlD
SetMenuBar
SetMliemName
GetPopUpDefProc
PopUpMenuSclect
DrawPopUp
HideMenuBar
ShowMenuBar

So What Software

Page d

Call Box BASIC - Appendix A

Control Mansger Line Edit 1F15 GetlTex
0110 CtlBootlInit 0114 LEBootlInit . 2015 SetlText
0210 CtlStartUp 0214 LEStartUp 2115 SellText
0310 CtiShutDown 0314 LEShutDown 2215 HideDItem
0410 CtlVersion 0414 LEVersion 2315 ShowDltem
0510 CtlReset 0514 LEReset 2415 FindDliem
0610 CtlStatus 0614 LEStatus 2515 UpdateDialog
0910 NewControl 0914 LENew 2615 GetDltemType
0A10 DisposeControl 0A14 LEDispose 2715 SetDltemType
0B10 KillControls 0B14 LESetText 2815 GetDItemBox
0C10 SetCtlTitle 0C14 LEIdle 2915 SetDItemBox
0D10 GetCtlTitle 0D14 LEClick 2A15 GetFirstDIltem
0E10 HideControl 0E14 LESetSelect 2B15 GetNextDItem
O0F10 ShowControl 0F14 LEActivate 2E15 GetDItemValue
1010 DrawControls 1014 LEDeactivate 2F15 SetDItemValue
1110 HiliteControl 1114 LEKey 3215 GetNewModalDialog
1210 CtiINewRes 1214 LECut 3315 GetNewDItem
1310 FindControl 1314 LECopy 3415 GetAlertStage
1410 TestControl 1414 LEPaste 3515 ResetAlertStage
1510 TrackControl 1514 LEDelete 3615 DefaultFilter
1610 MoveControl 1614 LElInsert 3715 GetDefButtion
1710 DragControl 1714 LEUpdate 3815 SetDefBution
1810 SelCtllcons 1814 LETextBox 3915 DisableDItem
1910 SetCtlValue 1914 LEFromScrap 3A15 EnableDItem
1A10 GetCtlValue 1A14 LEToScrap
1B10 SetCtiParams 1B14 LEScrapHandle
1C10 GetCtlParams 1C14 LEGetScraplen
I1D10 DragRect 1D14 LESetScrapLen
1E10 GrowSize 1E14 LESetHilite
1F10 GetCtiDpage 1F14 LESctCaret
2010 SetCtlAction 2114 LESetlust
2110 GetCtlAction 2214 LEGetTextHand
2210 SetCtlRefCon 2314 LEGetTextLen
2310 GetCtlRefCon 2414 GetLEDefProc
2410 EraseControl
2510 DrawOneCtl Dialog Manager
2610 FindTargetCtl 0115 DialogBootlnit
2710 MakeNextCtlTarget 0215 DialogStartUp
2810 MakeThisCtiTarget 0315 DialogShutDown
2910 SendEventToCtl 0415 DialogVersion
2A10 GetCtlID 0515 DialogReset
2B10 SetCtlID 0615 DialogStatus
2C10 CallCtiDefProc 0915 ErrorSound
2D10 NotifyCtls 0A15 NewModalDialog
2E10 GetCtiMoreFlags 0B15 NewModelessDialog
2F10 SetCtiMoreFlags 0C15 CloseDialog
3010 GetCtiHandleFromID 0D15 NewDltem
3410 SetCtlParamPir 0E15 RemoveDlIltem
3510 GetCtiParamPir 0F15 ModalDialog
3710 InvalCtls 1015 IsDialogEvent

1115 DialogSelect

1215 DlgCut
QuickDraw Aux 1315 DlgCopy
0112 QDAuxBootlnit 1415 DlgPaste
0212 QDAuxStartUp 1515 DigDelete
0312 QDAuxShutDown 1615 DrawDialog
0412 QDAuxVersion 1715 Alert
0512 QDAuxReset 1815 StopAlert
0612 QDAuxStatus 1915 NoteAlert
0912 CopyPixels 1A15 CautionAlert
0A12 WaitCursor I1B15 ParamTex
0B12 Drawlcon 1C15 SetDAFonit
0C12 SpecialRect 1E15 GetControlDltem

So What Software Page e

Call Box BASIC

cra
0116
0216
0316
0416
0516
0616
0916
0A16
0B16
0C16
0D16
0E16
0F16
1016
1116
1216
1316

Note

anager
ScrapBootlnit
ScrapStartUp
ScrapShutDown
ScrapVersion
ScrapReset
ScrapStatus
UnloadScrap
LoadScrap
ZeroScrap
PutScrap
GetScrap
GetScrapHandle
GetScrapSize
GetScrapPath
SetScrapPath
GetScrapCount
GetScrapState

Synthesizer

0119
0219
0319
0419
0519
0619
0919
0A19
0B19
0C19
0D19
0E19
0F19

Note

NSBootlnit
NSStartUp
NSShutDown
NSVersion
NSReset
NSStatus
AllocGen
DeallocGen
NoteOn

NoteOff
AllNotesOff
NSSetUpdateRate
NSSetUserUpdateRtn

Sequencer

011A
021A
031A
041A
051A
061A
091A
0A1A
0B1A
0C1A
O0D1A
0E1A
0F1A
101A
111A
121A
131A
141A
151A

SeqBootlnit
SeqStartUp
SeqShutDown
SeqVersion
SeqReset
SeqStatus
SeqSetlncer
SeqClearlncr
SeqGetTimer
SeqGetLoc
SeqAlINotesOff
SeqSetTrkInfo
StartSeq
SeqStepSeq
StopSeq
SeqSetInstTable
SeqStartints
SeqStoplnts
StartSeqRel

List Manager

011C
021C
031C
041C
051C
061C
091C

ListBootlInit
ListStartUp
ListShutDown
ListVersion
ListReset
ListStatus
Createlist

0A1C SortList

0BIC NextMember
0C1C DrawMember
0D1C SelectMember
0E1C GetListDefProc
0F1C ResetMember
101C NewlList

111C DrawMember2
121C NextMember2
131C ResetMember2
141C SelectMember2
151C SortList2
161C NewList2

A.C.E.

011D ACEBootlnit
021D ACEStartUp
031D ACEShutDown
041D ACEVersion
051D ACEReset
061D ACEStatus
071D ACElInfo
091D ACECompress
0A1D ACEExpand
0B1D ACECompBegin
0C1D ACEExpBegin

MIDI

0120 MidiBootlnit
0220 MidiStartUp
0320 MidiShutDown
0420 MidiVersion
0520 MidiResel

0620 MidiStatus
0920 MidiControl
0A20 MidiDevice
0B20 MidiClock
0C20 Midilnfo

0D20 MidiReadPacket
0E20 MidiWritePacket
0F20 MidiRecordSeq
1020 MidiStopRecord
1120 MidiPlaySeq
1220 MidiStopPlay
1320 MidiConvert

Video Overlay
0121 VDBootlnit

0221 VDSwantUp

0321 VDShutDown
0421 VDVersion

0521 VDReset

0621 VDStatus

0921 VDInStatus
0A21 VDInSetStd
0B21 VDInGetStd
0C21 VDInConvAdj
0D21 VDKeyControl
0E21 VDKeyStatus
0F21 VDKeySetKCol
1021 VDKeyGetKRCol
1121 VDKeyGetKGCol
1221 VDKeyGeltKBCol

Appendix A

1321
1421
1521
1621
1721
1821
1921
1A21
1B21
1C21
1D21
1E21

VDKeySetKDiss
VDKeyGetKDiss
VDKeySetNKDiss
VDKeyGetNKDiss
VDOutSetStd
VDOutGetStd
VDOutControl
VDOutStatus
VDGetFeatures
VDInControl
VDGGControl
VDGGStatus

Edit

Text

0122
0222
0322
0422
0522
0622
0922
0A22
0B22
0C22
0D22
0E22
0F22
1022
1122
1222
1322
1422
1622
1722
1822
1922
1A22
1B22
1C22
1D22
1E22
1F22
2022
2122
2222
2322
2422
2522
2622
2722

TEBootlnit
TEStartUp
TEShutDown
TEVersion
TEResel
TEStatus
TENew
TEKill
TESetText
TEGetTextID
TEGetTextInfo
TEldle
TEActivate
TEDeactivate
TEClick
TEUpdate
TEPaintTexi
TEKey
TECut
TECopy
TEPaste
TEClear
TElInsert
TEReplace
TEGetSelection
TESetSelection
TEGetSelectionSiyle
TEStyleChange
TEOffsetToPoint
TEPointToOffset
TEGetDefProc
TEGetRuler
TESetRuler
TEScroll
TEGetlnternalProc
TEGetLastError

So What Software

Page f

The Editors

Version 1.0

Aug 15, 1989

NOTICE =

So What Software reserves the nght to make unprovements in the product described in thls manual
at any time without notice.

s e

This manual is copyrighted. All Rights are Reserved. No part of this manual may be copied,

reproduced, translated or reduced to any electronic medium or machine readable form without the
prior written consent of

So What Software
10221 Slater Ave.
Suite 103,
Fountain Valley CA.
92708

So What Software makes no warranties, either express or implied, with respect to this product, its.

quality, performancc merchantability or fitness for any particular purpose. The programs are
provided "as is."

© Software 1989 William Stephens and Joe Jaworski

© Manual 1989 So What Software and Don Druce

Call Box™ is a registered trademark of So What Software

APPLE, APPLE IIgs, APW, GS/0S, Applesoft and ProDOS are registered trademarks of Apple
Computer Inc.

ORCA is a registered trademark of Byte Works Inc.

This software package was created using the following software and hardware products:

Apple Ilgs /W 1.5M & GS/OS V5.0, Applied Ingenuity 40M Inner Drive, Apple Laserwriter
IINT, Apple 3.5 drives, Apple LocalTalk network, Applied Engineering TranswarpGS, Byte
Works Orca/M assembler/linker, Claris AppleworksGS, Milliken Medeley, Baudville 816 Paint.

So What Software Product #M400-000

TABLE OF CONTENTS

TOECIOR IE T ety e e MEE XD S AT

PREFACE

CHAPTER 1 - THE WINDOW EDITOR

OVERVIEW

WINDOWS

EDITOR OPERATION

SAVE WINDOWS

LOAD WINDOWS

SOURCE CODE FILETYPE $B0
OBJECT CODE FILETYPE $B1
RESOURCE FILETYPE (any)
USING SOURCE CODE

USING OBJECT CODE

USING RESOURCES

BASIC CONSIDERATIONS

CHAPTER 2 - THE DIALOG EDITOR

DIALOGS

EDITOR OPERATION

SAVE DIALOGS

LOAD DIALOGS

SOURCE CODE FILETYPE $B0
OBJECT CODE FILETYPE $B1
RESOURCE FILETYPE (any)
USING SOURCE CODE

USING OBJECT CODE

USING RESOURCES

BASIC CONSIDERATIONS

Pumd famd i el ek el e pomel ek fomed femed ped [y

g

00O\ = =

.10
12
12
13
15
17

CHAPTER 3 - MENU EDITOR

OVERVIEW

ABOUT MENUS

EDITOR OPERATION

SAVE MENUS |
SOURCE CODE FILETYPE $B0
OBJECT CODE FILETYPE $B1
RESOURCE FILETYPE (any)
USING SOURCE CODE

USING OBJECT CODE

USING RESOURCES

BASIC CONSIDERATIONS

CHAPTER 4 - THE IMAGE EDITOR

ABOUT IMAGES

EDITOR OPERATION

SAVE IMAGES

LOAD IMAGES

SOURCE CODE FILETYPE $B0
BINARY FILETYPE $06
RESOURCE FILETYPE (any)
USING SOURCE CODE

USING BINARY CODE
USING RESOURCES

BASIC CONSIDERATIONS

CHAPTER 5... ADVANCED TOPICS
APPENDIX A... FILE STRUCTURES
GLOSSARY

INDEX

L L W W LWL W W W WLWW

(%]
[y

o

W W

— e DO O N DN e

N = O

PREFACE] L ey N
G e draiity cvnoow P vt B SRR I

The CALL-BOX editors produce "Templates" used with the Apple Ilgs
toolbox tools to control how a screen item looks and behaves. The Apple Ilgs
toolbox displays three types of information panels [Windows, Dialog boxes
and Menus]. There are more types but only these are supported on this
version of CALL-BOX. A separate editor is provided for each panel
(window) type and are selectable from the Editors menu bar selection in the
CALL-BOX main menu.

The Image Editor handles the creation of Icons, Pixel Images and Cursors.
Images have no absolute address references contained in them. The
filetypes, however, are output as if they did have these references so they
can be linked into a program the same as any other object module.

Data created by these editors needs special "care and feeding" to operate
efficiently from your application program. Sample code for each template is
provided in the section of the manual for that editor to show you how to use
them properly.

The editors can handle three filetypes for input and output so as to support
several languages. Each editor handles ORCA/APW source code and Apple
standard OMF2 relocatable code modules. These two styles encompass most
popular programming languages currently used. The third filetype opens
up these editors to any language present or future by the use of Resources.
Resources were introduced with GS/OS V5.0 and are fully supported by the
CALL-BOX editors.

- More editors are under development and will be made available to

registered owners when they are released. No firm schedule presently
exists but you will be notified when they become available.. Be sure to send
in your warranty card as this is the only method we have to insure that you
are advised of updates.

The following pages describe the operation of the CALL-BOX editors. Each
section will describe the particular editors functions with descriptions of
the various filetypes and programming methods unique to each editors
output. .

Call Box Editors Manual Chapter 1 - Window Editor

CHAPTER 1 - THE WINDOW EDITOR

fun—y
oy

OVERVIEW

WINDOWS

EDITOR OPERATION

SAVE WINDOWS

LOAD WINDOWS

SOURCE CODE FILETYPE $B0
OBJECT CODE FILETYPE $B1

ek ek Bt pmd el ek e ek puad ek fud
. - - - . .

[y

o

RESOURCE FILETYPE (any) 12
USING SOURCE CODE 12
USING OBJECT CODE 13
USING RESOURCES 15
BASIC CONSIDERATIONS 17
Figure 1.1 Typical Window 1.1
Figure 1.2 Settings Dialog Box 1.3
Figure 1.3 Colors Dialog Box 1.4
Figure 1.4 Save Dialog Box 1.6
Figure 1.5 Save Resource 1.D. Window 1.7
Figure 1.6 Edit Resource 1.D. Dialog Box 1.7
Figure 1.7 Load Dialog Box ‘ 1.8
Figure 1.8 Load Resource I.D. Windo 1.9
Figure 1.9 Sample Source Code Listing 1.10
Figure 1.10 Sample Object Code Dump 1.11

Aug 15, 1989 © So What Software Contents

Call Box Editors Manual Chapter 1 - Window Editor

CHAPTER 1 - THE WINDOW EDITOR
O ERE wemrey S pagtasie B

b RN
OVERVIEW

The CALL-BOX Window Editor creates templates for use by the Apple Ilgs
Window Manager. This editor can load either OMF2 object code or
resources and can output APW/ORCA sourcecode, OMF2 object code and
resources. The resource filetype is $1002 and uses a converter to get into
memory. The standard programming procedure for resources is presented
at the end of this chapter.

WINDOWS

A window is a presentation feature in which text or graphic information,
can be displayed. Windows can be of any size and can be displayed on the
screen singly or in groups depending on the application.

Windows allow an application to control more information than the screen
can display at one time. The term Window is used because the user sees
through the window into a larger area.

The Window Editor, can produce Document and Alert windows. The alert
window frame is a double rectangle, the same as is used by the Dialog
Manager to create a dialog box. The Document frame is a single outline.
While the Alert frame is just a frame the document windows frame can
have controls as described below.

(See Fig 1.1)

Close box

Title bor
/_ /—Zoom box

S0O== Title —EE/— Info Bar

: /—R.Scrol 1 bar

Grow Box
I N .
\ Contents
B.Scroll bar

Figure 1.1 Typical Window

Aug 15, 1989 ' Page 1.1

Call Box Editors Manual . Chapter 1 - Window Editor

® Title bar Holds the window's title. It may also hold close and
zoom boxes, and can act as a drag region for moving the

window.
¢ Close box Used for closing the window.
e Zoom box Selects the current or alternate sizes for the window.
e R.Scroll bar Used to scroll the data in the window vertically.
e B.Scroll bar Used to scroll the data in the window horizontally.

e Grow box Used to change the size of the window.

e Info bar Provides for an additional display line in the window.

The Window Manager's main function is to keep track of overlapping
windows. You can draw in any window without running over onto the
windows in front of it. You can move windows to different locations on the
screen, change their planes (front to back order), or change their sizes
without concern for how they overlap. The Window Manager keeps track of
newly exposed areas and insures that they are properly re-drawn

EDITOR OPERATION

The Window Editor is a "Desk-top" type P16 application and follows the
standard conventions for desk-top applications. Support for New Desk
Accessories (NDA's) is provided via the apple selection in the menu bar and
an Edit menu which become activated when a "system" window is up.

To best illustrate how to create a window template we will run through an
editing session and create one from scratch.

[<y

Let's use 640 mode... if you are just starting the editor this
will be the screen mode. If you want to create a window in
320 mode select MODE-320 .

@ Select EDIT-NEW WINDOW. The SETTINGS dialog box will
appear. (See Fig 1.2)

Aug 15, 1989 Page 1.2

Call Box Editors Manual Chapter 1 - Window Editor

e ‘wTitle[Default Title]
[Title Bar 200} wDatoH
[J Info Bor 640 | wDataly
d [CcClose Box | 200] wMaxH
18 T Zoom Box | 320) wMaxW
1 T 6row8ox [u] wScrollver
CIR. Scroll [16 | wScrollHor
[B. Seroll L uo | wPageVer
TJMoveable 160 | wPageHor
4] ClData Flex 0 Info Height
Ll:l Rlert Frame { Done J
Figure 1.2 Settings Dialog Box
< o

We will create a title bar with the title of "Title" and will
incorporate right and bottom scroll bars, grow box, close box,
and a zoom box. We will also provide the ability to move the
window around the screen by dragging the title bar.

@ Click the following check boxes: Title Bar, Close Box, Zoom Box,
Grow box, R.Scroll, B.Scroll, Moveable.

® Triple-click the wTitle text "Default Title". and press the DELETE
key. Type two spaces followed by Title followed by two spaces.

@ Either press the RETURN key or click on the DONE button.
Your newly created window will appear on the desktop.

® Select EDIT-COLORS and the COLORS dialog box will appear.
(See Fig 1.3)

Aug 15, 1989 Page 1.3

-

Call Box Editors Manual

Chapter 1 - Window Editor

Set Document Frame...
Color... B Dutline
Title Bar...

8 Dctive Forgnd

[Inact. Bkand.

[Inact. Forond.
Grow Box...

[Selected

] Mot Selected
Title Bar Pattern...

Foreground

[l Backaround

O Solid

p———— O Dithered
L 9K J & Lined

OOmOmnSCOEDRRRSESE

Figure 1.3 Colors Dialog Box

55

Let's put some color into the window... color it to suit your
taste.

)

To set colors click the color you want from the palette at the right
side of the dialog box and then click the check box next to the item
that you want to color. You can select the style for the title bar
with the three radio buttons at the bottom of the dialog box.

Either press the RETURN key or select and click the OK button.

Your newly colored window will appear on the desktop at this time.

Select EDIT-RECTANGLES and your arrow cursor will change to

a cross-hair, the window will be replaced by a rectangle on the
desktop.

Aug 15, 1989 Page 1.4

Call Box Editors Manual Chapter 1 - Window Editor

71+ . We will set both the normal and zoomed sizes of our window.
In the right side of the menu bar you will see the word
NORMAL, this indicates that the window you are seeing is the
NORMAL window size. When the cursor is an arrow it can be
used to operate the window just the way it will in your
application, including the ability to select the ZOOMED or
NORMAL sizes.

Move the cross-hair cursor to position the windows upper left
corner. Drag the mouse to the lower right corner and then
release the mouse button.

Your window will reappear, re-sized and positioned to fit the rectangle.
® Click the Zoom box then repeat the process for the zoomed size.

This completes the creation of a window from scratch. As you can see by the
dialog boxes that appeared during this editing session other items could
have been selected. These items need special explanation.

Special Explanation

e Alert Frame If the alert frame is selected then no other selections
should be made. An Alert Frame has no controls.

¢ Info Bar This selection must be accompanied with a height
specified in Info Height, The height is usually 13. Info
bars are drawn with a special procedure outlined in the
Toolbox reference manual.

e wDataH wDataW Are the height and width (in pixels) for the data
area used with this window. A standard Super
Hi-Res picture in 320 mode is 200 by 320 pixels. A
window that holds this picture would set wDataH
to 200 and wDataW to 320.

e wMaxH wMaxW Set these the same as wDataH and wDataW.

e wScrollVer wScrollHor | Set the way the scroll bars behave when you
wPageVer wPageHor select the arrows or the thumb.

e Data Flex Provides the ability to grow and shrink the windows data
area dynamically.

Aug 15, 1989 Page 1.5

Call Box Editors Manual Chapter 1 - Window Editor

SAVE WINDOWS

When you have created a window template you will want to save it to disk so
it can be inserted in your program code.

Select FILE-SAVE AS... and a save dialog box will appear as below.

& :Call.Box
2 K free of 800 (Next Drive)
RPPLIRGGT & :
«‘z:;u..s...»ax = (_New Folder)
LS

g ?szr;s i Open)
T pEMD —

G DEMBBDDY (_Close)
Window Save File... ‘-K—ﬁ\
N .Tmplt :

ondme. me { Cancel]

@ Object O Source

O Resource

Figure 14 Save Dialog Box

This box has buttons to select the drive, create a new folder, open or close a
folder, cancel this operation and save the file. There is also a box for typing
in a filename and three radio buttons across the bottom of the dialog box.
These three buttons select the type of output you will be saving.

e Object ($B1) Select this button to save the template as an OMF2 object
file. This filetype can be loaded back in by the editor.

e Source ($B0)

Select this button to save the template as an APW/ORCA
source code file. You cannot reload this file back into the

editor
e Resource Select this button to save the template to a
(any filetype) resource fork of an extended ProDOS file.This filetype

can be loaded back in by the editor.

Aug 15, 1989

Page 1.6

Call Box Editors Manual Chapter 1 - Window Editor

Selecting either Object or Source will create or overwrite a file on disk. The
operation is: straight forward. Selecting Resource; however; will present
some extra windows that control how resources are saved to disk.
Resources are assigned types and 1.D.'s, the type for a CALL-BOX window
template is $1002 and is set by the editor. You only need set the 1.D. for your
resource. You can either rewrite an existing resource by double-clicking on
its I.D. number or double-click the ---->New entry to save your resource
with the next avaliable I.D. number.

You can cancel the resource save

fE o0 | operation by clicking on the close box
00000001)

in the title bar of the resource 1.D.

00000002 window. You can also edit the
gggggggﬁ resource I.D. (renumber or delete) by
00000005 first pressing and holding the
00000006 OPTION key while double clicking
00000007 the desired I.D. (See Fig 1.6). When
—===New renumbering resource 1.D.'s be sure
T to use eight hex digits in the I1.D.
I number (use leading zeros to pad
small numbers). Failure to do so will
igure cause unpredictable results an
glmmées uS)a :‘Ve‘mdow could ruin the resource fork of the

ProDOS file.

If a resource fork does not exist for a given ProDOS file a dialog box will
appear that gives you the option of creating one.

1002

00000001
00000002 [

Edit Resource 1.D. 00000006
0K

—=—=JWew
T

Figure 1.6 Edit Resource LD. Dialog Box

Aug 15, 1989 Page 1.7

Call Box Editors Manual Chapter 1 - Window Editor

LOAD WINDOWS

L, AH» ! E th, ” Wi o - ‘m.‘."‘:,‘ g ‘5 y;,. .
Once you have created wmdows and saved them to disk you may want to
load them back into the editor for further editing.

Select FILE-OPEN... and a load dialog box will appearas shown.

Window load fil.e...
:Call.Box:

O APPLEBOOT { Next Drive)

&CALL.BOX

D CB . —

0 C.vars T _open)
M § —

O DEMOBOOT (_Close)

«DIALOG.EDIT P
G FALSESTART {_ Cancel)

@® Object code O Resource

Figure 1.7 Load Dialog Box

This box has buttons to select the drive, open or close a folder, cancel the
operation or open a file. There are two radio buttons at the bottom of the
dialog box. These buttons select the type of input file you will be loading.

® Object ($B1) Select this button to load an OMF2
window template file.
° Resource Select this button to load the template from a
(any filetype) resource fork of an extended ProDOS file.

Selecting Object will load a file from disk. The operation is straight
forward.

Selecting Resource, however, will present some extra windows that control
how resources are loaded into memory.

Resources are assigned by types and 1.D.'s. The type for a CALL-BOX
window template is $1002 and is set by the editor. The only thing you need to
set is the 1.D. for your resource. You can load a resource by double-clicking
on the desired resource I.D. number. (See Fig 1.8)

Aug 15, 1989 Page 1.8

Call Box Editors Manual

Chapter 1 - Window Editor

0 1000)

e
00000003
00000004
00000005

00000006
00000007

<

- ‘Figure-1.8: Load Resource LD.

Window

You can cancel the resource load
operation by clicking the close box in
the title bar of the resource I1.D.
window. You can also edit the
resource I.D. (re-number or delete) by
first pressing and holding the
OPTION key while double-clicking the
desired I1.D. (See Fig 1.6) When re-
numbering resource 1.D.'s be sure to
have 8 hex digits in the I.D. number
window (use leading zeroes to pad
small numbers).

Failure to do so will cause unpredictable results and could ruin the
resource fork of the ProDOS file.If a resource fork does not exist for a given
ProDOS file then no template will be loaded.

SOURCE CODE FILETYPE $BO

This code is for appending to APW/ORCA source code listings. A simple
word processor can be used to edit the file, however the APW/ORCA
assembler is needed to assemble the code into your application. Source code
listings are easiest to hook-up to special processes, that templates might
include, by allowing you to add symbolic references as required.

(See Fig. 1.9)

Aug 15, 1989

Page 1.9

Call Box Editors Manual Chapter 1 - Window Editor

-} e WindowData "+ "¢ ~ DATA

dc i'WinEnd-WindowData'
dc¢i'%1101110010000100'
dc 14'WinTitle'
wRefCon dc i4'0’
dc i'0,0,200,640'
dc i4'WinColor'
dc 1'0’
dc 1'0’
de i'200’
dc i'640'
dc i'200'
dc 1'640'
dc i'4’
dc i'5'
dec i'40’
dc i'160'
winfoRefCon dc i4'0'
dc i'0’
wFrameDefProc dc i14'0'
winfoDefProc dc i4'0'
wContDefProc dc i4'0’
dci'39,10,160,210'
dc i4'-1'
: dc i4'0'
WinEnd anop
WinColor dc h'00F0'
dc h'F002'
dc h'0F00'
de h'FFOF
WinTitle dc h'C',c'DefaultTitle '

END

Figure 1.9 Sample Source Code Listing

OBJECT CODE FILETYPE $B1

This type of code is for linking with the APW/ORCA linker. The code type
can be used by any language that uses this linker. Object code can also be
used by the loader call InitialLoad after you have changed the filetype to

Aug 15, 1989 Page 1.10

Call Box Editors Manual Chapter 1 - Window Editor

$B5 (LoadFile). Use the disk utilities in the CALL-BOX shell to change the
filetype of this file. (See Fig. 1:10)-

DumpOBJ 1.1

Block count : $00000001 1
Reserved space :$00000000 0
Length : $0000009E 158
Label length : $0A 10
Number length : $04 4
Version :$01 1
Bank size : $00000000 0
Kind 1 $01 static data segment
Org : $00000000 0
Alignment : $00000000 0
Number sex : $00 0
Language card :$00 0
Segment number : $0001 1
Segment entry : $00000000 0
Disp to names : $002C 4
Disp to body : $0040 64
Load name :

Segment name windowdata

000040 000000 | LCONST ($F2) | 0000009E :
4E0080DF58000000000000000000220028
000000B4008024E0000000000000000000
C8008002C800800204001002800A00000
00000000000000000000000000000000000
000000000003200C8009600B801FFFFF
FFFFF0000000000000F0F02F000F0F0
0F2044656661756C74205469746C65200
00000000000000000000000000000000000
00000000000000000000000000000000000
00000000000000000000000000000000000
0000000000000

0000E3 00009E | cRELOC ($F5) | 04 : 00 : 0004 : 0058
0000EA 00009E | cRELOC ($F5) | 04 :00 : 0014 : 004E
0000F1 00009E | END ($00)

Figure 1.10 Sample Object Code Dump

Aug 15, 1989 Page 1.11

Call Box Editors Manual ___Chapter 1 - Window Editor

e

RESOURCE FILETYPE (any)

Resources are stored in a resource fork of an extended ProDOS file. The

exact filetype is not important and resources can be stored in any ProDOS
file of any type.

Resources are defined with a 2 byte "type" number and a 4 byte "1.D."
number. A type would be analogous to a window record, a pascal string, an
icon etc... An I.D. number would identify which pascal string or which
icon you are pointing to in a group of pascal strings or icons.

The type for a window template resource is $1002. The I.D.'s can be
anywhere between 0 and 7FFFFFFF.

Window template resources are in OMF2 format and are loaded using the
system converter, ‘

USING SOURCE CODE

The source code created by this editor is a simple text file. It has a filetype of
$B0 and is created in a form readily adaptable to source code listings
created for APW or ORCA assemblers. You can use the filetype command
in the APW/ORCA shell or the Disk Utilities function of the CALL-BOX
shell to change the filetype.

Do not use periods (.) in the filename. This is commonplace in ProDOS, but

periods are an illegal character in the assembler and will generate an error
when assembled.

Window templates have pointers which are vital to making the window
operate under your application. Two of these pointers are already installed
(WinTitle and WinColor) but others must be put in before the window is
opened. Each pointer contains a null (0) which tells the Window Manager
to use internal default pointers which ignore the process calls. You must
type in your own symbolic references where the directive and modifier

: dci4'0' exist in the template.

The pointers are:

wRefCon application use

wInfoRefCon value passed to winfoDefProc
wFrameDefProc window frame drawing routine
wlnfoDefProc Info bar drawing routine
wContDefProc contents area drawing routine

Aug 15, 1989 Page 1.12

Call Box Editors Manual Chapter 1 - Window Editor

The simplest way of hooking-up a CALL-BOX generated source code file to
your -applications source.code is to use the COPY directive.

Qrc;ur code)

COPY Call-BoxWindowl ;Your window template source file

(y(;ur code)

Another way is to use the COPY function of the APW/ORCA editor
(OpenApple-C) to put a copy of you window template source code in its
SYSTEMP file. It can then be inserted into your source listing with an
INSERT function (OpenApple-V).

Adapting this source code for other assemblers is up to you. We will support
Apple prefered format APW or ORCA only.

USING OBJECT CODE

The object code created by the editor is a $B1 file. The file is in OMF2 format

~ and is relocatable. The output is provided for Link-time integration or

Library file use. To add an object module to a link add the filename to the
link command in the APW or ORCA linker.

LINK myprogram mywindowl mywindow?2 (etc...etc).

Where mywindowl and mywindow?2 are the filenames of the object code
files created with the CALL-BOX Window Editor.

This type of file can be used directly by your application similar to the way a
library file is used. You must change the filetype of your object file to $B5
(Load File). The window template can then be loaded by the system loader
using the InitialLoad call.

Aug 15, 1989 Page 1.13

Call Box Editors Manual Chapter 1 - Window Editor

PushWord MyID ;Applications I.D. number

PushLong #Pathname ;Pointer to pathname buffer

PushWord #0 ;Spec. mem. flag (set to 0)

_InitialLoad

pla ;Size of Dir.pg/Stack buf.(N/A)

pla ;Addr of Dir.pg/Stack buf.(N/A)

PullLong WindPtrl ;Pointer to the window template
;in memory

pla ;Applications I.D. number

However you choose to use the object code template some hook-up is
required for your window to properly operate in your application. Several
pointers are contained in a window template that pomt to routines your
application provides.

The pointers are:

wRefCon application use

winfoRefCon value passed to winfoDefProc
wFrameDefProc window frame drawing routine
wlnfoDefProc Info bar drawing routine
wContDefProc contents area drawing routine

Add the following equates to your applications source code:

_wRefCon equ8
_winfoRefCon equ 44
_wFrameDefProc equ 50
_winfoDefProc equ 54
_wContDefProc equb8 .
_WinColor equ 78
_WinTitle equ 86

These equates are the offsets to pointers from the beginning of the window
template. Use them to index into the window template or to hook the
window up to your window procedures.

Aug 15, 1989 Page 1.14

Call Box Editors Manual Chapter 1 - Window Editor

w
Let's hook-up a contents drawing routine to a window
template... '
PushLong WindPtrl ;Put the windows pointer in
PullLong $0 : ;a direct page location
1dy #_wContDefProc ;Load Y with the offset
lda #DrawContRoutine :Get the draw rout. (lo)
sta [$0],y :Put it in the template
@ny ;Advance to (hi)
iny
lda #DrawContRoutine+2 :Get the draw rout. (hi)
sta [$0),y ;Put it in the template

Repeat this process for each reference you wish to link in. Once the
template is hooked-up you can proceed with a _NewWindow call and get on
with the business of being an application.

NOTE: This process also applies to window records that are stored as
resources.

USING RESOURCES

All resources created by the CALL-BOX WYSIWYG editors are in OMF2
format and need to be "relocated" in memory. The Resource Manager call
ResourceConverter is used to install these resources. For each resource
your application is going to use you must "Log In" an appropriate OMF2
converter. To find an OMF2 converter use the Miscellaneous Tools call
GetCodeResConverter. You need only make this call once.

PushLong #0 ;Space for results
_GetCodeResConverter
PullLong ConverterPointer ;Pointer to OMF2 converter

This call fetches a pointer to an internal OMF2 converter routine. You now
need to "Log In" this converter for each resource type your application will
be using (with the Resource Manager call ResourceConverter). This step is
repeated for each type of relocatable resource your application will require.

PushLong ConverterPointer ;OMF2 converter pointer
PushWord #$1002 ;Window Template type
PushWord #1 ;Log In, Applic. conv. list
_ResourceConverter

bes MemoryError

Aug 15, 1989 ' Page 1.15

Call Box Editors Manual Chapter 1 - Window Editor

This sets up the resource manager to install and relocate these resources
when they are called with OpenResource. You manipulate the resources
from this point on. A typical sequence of events may be:

OPEN your resource file:

PushWord #0 ;Space for results
PushWord #0 - ;Req. file access
PushLong #0 ;Res. header address
PushLong #PathName ;Pointer to a class 1 pathname
_OpenResourceFile
PullWord FileID ;Open resource file 1.D.

And LOAD it into memory:
PushLong #0 ;Space for results
PushWord #$1002 ;Requested Type
PushLong #1 ;Requested I.D.
_LoadResource
PullLong ResourceHandle ;Handle of resource in memory

At this point the resource is available to your application. When you are

finished using the resource you can put it away with the call
CloseResourceFile:

PushWord FilelD
_CloseResourceFile

Be sure to "Log Out" your resource converter when your done by issueing a
"Log Out" ResourceConverter call.

PushLong ConverterPointer ;OMF2 converter pointer

PushWord #$1002 ;Window Template type
PushWord #0 ;Log Out, Applic. conv. list
_ResourceConverter

becs MemoryError

This covers the fundamental operation of resources in your application.
There are several other functions you can perform with the Resource

Manager but the previously outlined procedure should suffice for most of
your CALL-BOX resource usage.

CALL-BOX Window Template resources are handled similar to object files

are from within your application with the exception that the Resource
Manager handles the loading and saving.

Reference: Universe ToolBox Update (Ch 21:Resource Manager 3/22/89)
Universe ToolBox Update (Ch 15:Miscellaneous Tools 3/22/89)

Aug 15, 1989 Page 1.16

Call Box Editors Manual Chapter 1 - Window Editor

BASIC CONSIDERATIONS

The CALL-BOX BASIC Interface uses object code window templates. These
templates are loaded into your Applesoft application as defined in the
CALL-BOX BASIC Interface Manual. Windows under Applesoft are
structured differently than in other languages and do not have the
flexibility that other languages provide. While simpler to use from
Applesoft, some functionality is lost.

Windows in Applesoft BASIC have two data areas. The additional area is a
background pixel buffer where you do all your window drawing. This
simplifies and standardizes the wContDefProc (contents drawing routine)
and eliminates the need for the process to be programmed in BASIC. The
wContDefProc is hard-wired as a _PPToPort call which uses this buffer as
the source pixel image. Whatever you do with Quickdraw II in this
background pixel buffer will automatically be reflected in the windows
contents region.

Info Bars are not supported for windows used from Applesoft BASIC. The
procedure would be too much of a hassle to be practical.

NOTE: Info bars if supported in future releases of the CALL-BOX BASIC
interface, will cause the buffer overhead to double and increase the memory
needed to support the window.

Custom Frame procedures are not supported for the same reason. No plans
are contemplated to support this procedure in future releases.

Aug 15, 1989 Page 1.17

Call Box Editors Manual

Chapter 1 - Window Editor

Index of Chapter 1
$1002 1, 7, 8, 12
$BO 12
(NDA's) 2
_wContDefProc 14
_wFrameDefProc 14
_WinColor 14
_wiInfoDefProc 14
_winfoRefCon 14
_WinTitle 14
_wRefCon 14
Alert windows 1
APW 12
APW/ORCA 1, 12
BASIC CONSIDERATIONS 17
Dialog Manager 1
EDITOR OPERATION 2
equates 14
GetCodeResConverter 15
LOAD WINDOWS 8
OBJECT CODE FILETYPE $B1 10
OMF2 1
ORCA 12

" OVERVIEW 1
pointers 14
RESOURCE FILETYPE (any) 12
SAVE WINDOWS 6
SOURCE CODE FILETYPE $B0O 9
USING OBJECT CODE 13
USING RESOURCES 15
USING SOURCE CODE 12
wContDefProc 10, 12, 14, 17
wFrameDefProc 10, 12, 14
Window Editor 1
WINDOWS 1
winfoDefProc 10, 12, 14
wlnfoRefCon 10, 12, 14
wRefCon 10, 12, 14
Aug 15, 1989 Page 1.18

Call Box Editors Manual , Chapter 2 - DialogLEdit

CHAPTER 2 - THE DIALOG EDITOR

0
u—y

DIALOGS

EDITOR OPERATION

SAVE DIALOGS

LOAD DIALOGS

SOURCE CODE FILETYPE $B0
OBJECT CODE FILETYPE $B1
RESOURCE FILETYPE (any)
USING SOURCE CODE

USING OBJECT CODE

USING RESOURCES

BASIC CONSIDERATIONS

ik ek ek e ek ek ek \D) OO DD et

COONCN L L W s

Figure 2.11 Typical Dialog Box

Figure 2.12 Standard Button Edit Dialog
Figure 2.13 Check Box Edit Dialog
Figure 2.14 Radio Button Edit Dialog
Figure 2.15 Icon Edit Dialog

Figure 2.16 Text Edit Dialog

Figure 2.17 Line Edit Dialog Box

Figure 2.18 Info Window

Figure 2.19 Save Dialog Box

Figure 2.20 Save Resource I.D. Window
Figure 2.21 Edit Resource 1.D. Dialog Box
Figure 2.22 Load Dialog Box

Figure 2.23 Load Resource 1.D. Window
Figure 2.24 Sample Source Code Listing
Figure 2.25 Sample Object Code Dump

PRDNNNRDNRENPDRN NN
— = = O OO NN NN LD BN

WO o

Aug 15, 1989 © So What Software Contents

PR R

Call Box Editors Manual Chapter 2 - Dialog Editor

CHAPTER 2 - TH

N?

DIALOG EDITOR .

: . Sew

OVERVIEW

The CALL-BOX Dialog Editor creates templates for use by the Apple Ilgs
Dialog Manager. This editor can load either OMF2 object code or resources
and can output APW/ORCA sourcecode, OMF2 object code and resources.
The resource filetype is $1000 and uses a converter to get into memory. The

standard programming procedure for resources is presented at the end of
this chapter.

DIALOGS

A dialog is a presentation feature that appears when an application needs
more information to carry out a command. A dialog box resembles a form
on which the user checks boxes and fills in blanks.

The user supplies any necessary information in the dialog box; for
example, by entering text or clicking a check box. The dialog box usually
contains a button labeled OK to tell the application to accept the information
provided and preform the command, and a button labeled CANCEL to
cancel the command as though it had never been given.

Dialog boxes provide an alert window that displays items (Controls) for the
user to select from. Several standard types are supported by this editor.
(See Fig 2.11)

¢ Simple button Causes an immediate or continuous action when
the user clicks it with the mouse.

¢ Check box Retain and display a setting, either checked(on) or
not checked (off); clicking with the mouse reverses
the setting.

¢ Radio button Retain and display a setting. Grouped into a

family in which only one button can be on at any
time.

e Line edit item Displays alphanumeric data and allows the user
to edit the data from the keyboard.

e Static text Displays text used for titles or messages
that are not capable of being manipulated by
the user.

Aug 15, 1989 Page 2.1

Call Box Editors Manual

Chapter 2 - Dialog Editor

® Icons, pixel images

For use as alert icons such as the STOP or
CAUTION Icons.

/—Icon

Geuoie Tems

Check Box
@® Radio Button

llm;:mmmm]

Simple Button—/

Figure 2.11 Typical Dialog Box

The Dialog Manager's main function
is to present controls until a valid
selection is made at which point the
manager returns information to the
user on what was selected or
changed.

EDITOR OPERATION

The Dialog Editor is a "DeskTop" type P16 application and follows the
standard conventions for desktop applications. Support for new desk
accessories (NDA's) is provided via the apple selection in the menu bar and
an Edit menu which become activated when a "system" window is up.

To best illustrate how to create a dialog template we will run through an
editing session and create one from scratch.

Let's make this dialog in 320 mode... if you are just starting
the editor the screen mode will be 640. If you want to create a
dialog in 320 mode select 320MODE from the GOODIES menu.

@® Select FILE-NEW. A dialog box will appear.

@ Select CONTROLS-DRAGGING, MODIFYING and when you
move the cursor in the dialog box it will change to a hand for
dragging things around.

Aug 15, 1989

Page 2.2

3

Call Box Editors Manual

Chapter 2 - Dialog Editor

Very Important!

EhY

This will be the normal cursor mode, the arrow is just for test operating

your dialog box.

You are now ready to put some dialog items in your dialog box. Let's
use one of each type to get some practice.

® Select CONTROLS-STANDARD BUTTON followed by ti'le other

five types...CHECK BOX, RADIO BUTTON, ICON, LINE EDIT
BOX and TEXT.

This wil put a mish-mosh of items in your dialog box one on top of the other.

@

Use the mouse and the hand cursor to drag the items off of

each other and place them so that each one can be double-
clicked.

You can grab and drag the right and bottom edge of the dialog box to either
grow or shrink it and even grab it somewhere in the middle where it's free
of an item and move the whole dialog box around.

To set-up a particular dialog item you must double-click the item in
question. A dialog box editor will appear tailored for the particular item.

®

Double-click the Standard Button item in your dialog box.
(See Fig 2.12)

A dialog box will appear. Change something and then select DONE to see
the results. Repeat this several times to learn how to operate this part of the
editor. A detailed explaination of these functions may introduce more doubt
and uncertainty than if you work it out for yourself.

This learning technique applies to the following five steps and to life in
general. Enough philosophy, fiddle around with the other items in the

dialog box.

®

©® ® ® 8

Double-click the Check Box . (See Fig 2.13)
Double-click the Radio button. (See Fig 2.14)
Double-click Icon (See Fig 2.15)
Double-click Text (See Fig 2.16)
Double-click Line Edit (See Fig 2.17)

Aug 15, 1989 | Page 2.3

Call Box Editors Manual Chapter 2 - Dialog Editor

Button Title: But,t,onl] .‘-
Button ID: %
O Round Corner, Single Qutline [
@ Round Corner, Double Dutline B
(O Square Corner —
O Square Corner. Drop Shadow
!]
Size: ['-Ii] [93 ”55 J[179 J [+
futomatic Sizing 0

B Outline Color |
] Interior Color |
B Interior Color (Mouse-Down)
B Text Color
[Text Color (Mouse-Down)
=

Figure 2.12 Standard Button Edit Dialog

Check Box Text: b

]
Check Box ID: 331

Location: [ul | [G |

il Check Box Color
[Check Box Color (Mouse-Down)
B Text Color

[Done]|

OOBDERO0SBRRRRER)

Figure 2,13 Check Box Edit Dialog

Aug 15, 1989

Page 2.4

Call Box Editors Manual

Chapter 2 - Dialog Editor

Rodio Button Text: g
This 15 a Radio Button

Radio Button ID:
Radio Family ID: [1__]
Location: [ui | [5 }

B Button Color
Fl Button Color (Mouse-Down)
B Text Color :

DOBEDBRRODNENRERRE]

Figure 2.14 Radio Button Edit Dialog

A © ®
Locaotion: [5___]

[Done]

Figure 2.15 Icon Edit Dialog

Aug 15, 1989

Page 2.5

Call Box Editors Manual

Chapter 2 - Dialog Editor

A few lines of “"Text| to describe

[the Dialogs purpose.

@® Left Justify
O Centered

O Right Justify

Word-Wrap:

Q Fill Justify Yertical Size: E:l

Special Modifiers:
A= Bold Text (__porne

)

~ = Jtalic Text
$ = Shadow Text

{Change Colors])

@ =0utline Text
I = Normal Text

Figure 2.16 Text Edit Dialog

l Line—Edit Control

Max # of chaorocters:

Location: [60 | [5 |

Figure 2.17 Line Edit Dialog Box

Several selections in the GOODIES menu will aid you when aligning and

centering :

e Horizontal Grid Enables or disables an invisible snap grid for item

placement.

e Align Controls Snaps items to the position of the invisible grid.

* Center Dié.log Moves the entire dialog box to the center of the

screen.

e 2/3 Center

Moves the entire dialog box to center horizontally

and two thirds of the way up from the bottom of the

screen.

Aug 15, 1989

Page 2.6

Call Box Editors Manual Chapter 2 - Dialog Editor

Fine adjustments can be made to an items placement by setting the
coordinates numerically while each item is being edited.

To delete an item hold the OPTION key while double-clicking it and an
option to delete it will come up.

This about finishes up creating your dialog box, you could save it at this
point but let's cover some other things about this editor first.

Special Explanation

e The menu selection GOODIES-DISPLAY INFO will bring up a control

info scroll window. This window represents a list of items in your dialog
box that is kept internally in the editor.

. Control Info
ID Title (Type)
1 = Buttonl (5td Button) . :

17 = This is a Rad... (Radio Button) |
33 = This is a Che... (Check Box)
43 = N/A (Icon)

91 = Line-Edit Con... (Line-Edit)
67 = A few lines o... {Text)

)

Figure 2.18 Info Window

Double-clicking an item in this window will bring up the edit dialog for that
item the same as double-clicking the item itself.

e The menu selection GOODIES-PRINT INFO will dump this list to
your printer. The list is very handy for subsequent identification of
items and their I.D. numbers. The menu selection FILE-CHOOSE
PRINTER will select the proper driver for your printer. Your

printer driver must be in the SYSTEM/DRIVERS subdirectory of
your boot volume.

* Do not be switch modes after a dialog box is started. Colors become
strange and the rectangular limits often go askew.

e The menu selection CONTROLS-NORMAL RESPONSE will

change the cursor to the system arrow and allow you to test your
dialog box.

Aug 15, 1989 Page 2.7

Call Box Editors Manual Chapter 2 - Dialog Editor

SAVE DIALOGS

TR CHU v erhi o Tt A ne sz Lweeng taean 0% LD L §veann

Once you have created a dialog template you w111 Want to save it to d15k so0 it
can be incorporated in your program code.

Select FILE-SAVE AS... A save dialog box will appear as shown.

:Call.Box

2 K free of 800 (HNext DriveJ
TRPPLIRGAT

(wi RLL.BBK] (_New Folder)
S8

S D VARS BiC Open)]

¢ D8 MO L

COEMDBNBY o|{___Close)

Dialog Save File... l-—m-—-——]

Nonome.Tmplt)

{ Cancel]
@ Object O Source O Resource

Figure 2.19 Save Dialog Box

This box has buttons to select the drive, create a new folder, open or close a
folder, cancel the operation and save the file. There is also a box for typing
in a filename and three radio buttons across the bottom of the dialog box.
.These three buttons select the type of output you will be saving.

® Object ($B1) Select this button to save the template as an
OMF2 object file. This filetype can reloaded
by the editor.

® Source ($B0) Select this button to save the template as an

APW/ORCA source code file. This filetype
can not be reloaded by the editor.

* Resource Select this button to save the template to a
(any filetype) resource fork of an extended ProDOS file.
This filetype can be reloaded by the editor.

Selecting either Object or Source will create or overwrite a file on disk. The
operation is straight forward. Selecting Resource, however, will present
extra windows that control how resources are saved to disk.

Resources are assigned types and 1.D.'s. The type for a CALL-BOX dialog
template is $1000 and is set by the editor. You only need set the I.D. for your
resource. You can either rewrite an existing resource by double-clicking on

Aug 15, 1989 Page 2.8

Call Box Editors Manual Chapter 2 - Dialog Editor

its L.D. number or double-clicking the ---->New entry to save w1th the next
avaliable I.D. riumber: ' (Fig 2.20) - R

Figure 220 Save Resource LD. Window
| O 1000 |
00000001 By
gggggggg You can cancel the resource save operation by
00000004 clicking the close box in the title bar of the
00000005 resource I.D. window. You can also edit the °
gggggggg resource I.D. (re-number or delete) by pressing
————>New and holding the OPTION key while double-
| clicking the desired I.D. (See Fig 2.21) When re-
| — U numbering resource I.D.'s be sure to use 8 hex
digits in the I.D. number window (use leading

zeroes to pad small numbers). Failure to do so

will cause unpredictable results and could ruin the resource fork of the
ProDOS file.

1000
r 00000001 H
00000002
Edit Resource 1.D.

——=—JNew I l

et ee]

Figure 2.21 Edit Resource LD. Dialog Box

If a resource fork does not exist for a given ProDOS file a dialog box will
appear that gives you the opportunity to create one.

LOAD DIALOGS

Once you have created dialogs and saved them to disk you may want to load
them to the editor for further editing.

Select FILE-OPEN... A load dialog box will appear. (See Fig 2.22)

This box has buttons to select the drive, open or close a folder, cancel this
operation and open the file. There are 2 radio buttons at the bottom of the
dialog box. These select the type of input you will be loading.

Aug 15, 1989 Page 2.9

Call Box Editors Manual Chapter 2 - Dialog Editor

Diclog load file...

:Call.Box:
NAPPLEBOOT (3| [Next Drive)
& CALL.BOX
gca.vnns Open
DEMO
G DEMOBOOT |(_Close)
S DIALOG.EDIT o
@ FALSESTART f Cancel)
@ Object code O Resource
Figure 2.22 Load Dialog Box

e Object, ($B1) Select this button to load an OMF2 type of dialog
template file.

® Resource Select this button to load the template from a
(any filetype) resource fork of an extended ProDOS file.

Selecting Object will load a file from disk and the operation is straight
forward. Selecting Resource, however, will present some extra windows
that control how resources are loaded to memory.

Resources are assigned types and 1.D.'s. The type for a CALL-BOX dialog
template is set to $1000 by the editor. You set is the I.D. for your resource.
You can load a resource by double-clicking on the desired I.D. number.

You can cancel the resource load operation by

ST T clicking the close box in the title bar of the

1 SRR resource I.D. window. You can also edit the
ud resource I.D. (re-number or delete) by first
00000003 pressing and holding the OPTION key while
00000004 double-clicking the desired 1.D. (See Fig 2.21)
gggggggg When re-numbering resource 1.D.'s be sure to use
00000007 8 hex digits in the I.D. number window (use

leading zeroes to pad small numbers). Failure to
£ do so will cause unpredictable results and could
LS = ruin the resource fork of the ProDOS file.

Figure 2.23 Load Resource L.D. Window

If a resource fork does not exist for a given ProDOS file then no template
will be loaded.

Aug 15, 1989 Page 2.10

Call Box Editors Manual

SOURCE CODE FILETYPE $BO

P o DR - LT

Chapter 2 - Dialog Editor

By At
33

This type of code is for appendmg to APW/ORCA source code llstxngs A
simple word processor is adequate for editing this file.

MyDialog DATA

dc i'$FFFF

de i14'0'

dc i4'Item1’

dec i4'Item18’

dc i4'Item33'

de 14'0'
Iteml de i'l’

dc i'66,109,80,156'

dc i'$000A’

dc i4'BTitlel’

de i'0'

de i'0'

de i4'BColorl’
BTitlel str 'OK'
BColorl de i'$0000’

dc i'$00F0'

de i'$0000'

de i'$00F0'

dc i'$000F
Item18 de i'18'

dc i'29,54,38,160'

de i'$000C'

dc i4'RTitle18’

de i'l’

de i'$0001'

dc i4'RColor18’

RColor18 de i'$0000'

dc i'$00F0'

dc i'$00F0'

dc i'$00F0'
Item33 de i'33'

dc i'17,53,26,138'

dc i'$000B'

dc i4'CTitle33’

de i'l’

de i'0’

dc i4'CColor33'
CTitle33 str 'Check Box'
CColor33 de i'$0000'

dc i'$00F0'

dc i'$00F0'

dc i'$00F0'

END

dc i'52,27,140,192'

RTitlel8 str 'Radio Button'

Figure 2.24 Sample source code listing

Aug 15, 1989

Page 2.11

Call Box Editors Manual Chapter 2 - Dialog Editor

'OBJECT CODE FILETYPE $B1

This type of code is for linking with the APW/ORCA linker. The code type
can be used by any language that uses this linker. Object code can also be
used by the loader call InitialLoad after you have changed the filetype to $B5
(LoadFile). Use the disk utilities in the CALL-BOX shell to change the
filetype. (See Fig 2.25)

RESOURCE FILETYPE (any)

Resources are stored in a resource fork of an extended ProDOS file. The
exact filetype is not important and in fact resources can be stored in any
ProDOS file of any type.

Resources are refered to by a 2 byte "type" number and a 4 byte "LD."
number. A type would be analogous to a window record, a pascal string, an
icon etc... An I.D. number would identify which pascal string or which
icon you are pointing to in a group of pascal strings or icons.

The type for a dialog template resource is $1000. The I.D.'s can be
from 0 to 7FFFFFFF.

Dialog template resources are in OMF2 format and are loaded using the
system converter.

Aug 15, 1989 Page 2.12

Call Box Editors Manual

Chapter 2 - Dialog Editor

DumpOBJ 1.1

Block count
Reserved space
Length

Label length
Number length
Version

Bank size
Kind

Org

Alignment
Number sex
Language card
Segment number
Segment entry
Disp to names
Disp to body
Load name
Segment name

000040 000000

0000F8 0000B3
0000FF 0000B3
000106 0000B3
00010D 0000B3
000114 0000B3
00011B 0000B3
000122 0000B3
000129 0000B3 -
000130 0000B3
000137 0000B3

: $00000001
: $00000000
: $000000B3
+$0A

1 $04

:$01

: $00000000
1301

: $00000000
: $00000000
1 $00

: $00

: $0001

: $00000000
: $002C

: $0040

| LCONST

| eRELOC
| cRELOC
| cRELOC
| cRELOC
| cRELOC
| cRELOC
| eRELOC
| cRELOC
| c(RELOC
| END

OHASEOH

tatic data segment

2]

gkOHOOOG

($F2) | 000000B3 :
2D00BB00AAGOC401FFFF000000001E0000
00480000007F0000000000000001002800
5A003600B0000A00000000000000010001
00010007427574746F6E310000F0000000
F0000F0011004F000500580088000C0000
0000000100010000000000165468697320
6973206120526164696F20427574746F6E
0000F000F000F0002100300005003900A4
000B000000000001000000000000001354
686973206973206120436865636B20426F

780000F000F000F000

($F5) | 04 :00:000E : 001E
($F5) | 04 :00:0012 : 0048
($F5) | 04:00:0016: 0O7TF
($F5) I 04 : 00 : 002A : 0036
($F5) | 04 :00:0032: 003E
($F5) | 04 :00:0054 : 0060
($F5) | 04 : 00:005C : 6077
($F5) | 04 :00:008B : 0097
($F5) | 04 : 060:0093 : 00AB
($00)

Figure 2.25 Sample Object Code Dump

Aug 15, 1989

Page 2.13

Call Box Editors Manual Chapter 2 - Dialog Editor

'USING SOURCE CODE

The source code created by this editor is a simple text file. It has a filetype
of $B0 and is created in a form readily adaptable to source code listings
created for APW or ORCA assemblers. You can use the filetype command
in the APW/ORCA shell or the Disk Utilities function of the CALL-BOX
shell to change the filetype.

Do not use periods (.) in the filename. This is commonplace in ProDOS, but
periods are an illegal character in the assembler and will generate an error
when assembled.

Dialog templates have a pointer table to access the various items they
contain. Under normal operation you would not access these records
directly but rather with tool calls designed specifically for that purpose.
Sometimes, however, you need to set default conditions that may not be set
in the loaded dialog template. This is where you break the rules and access
the items directly.

The process is simple: Index to the table item you want to work on and use
the address found there as the address to the dialogs item. At this point
you need to index to the specific piece of data and make your change.

No other special considerations need to be made to use these dialog
templates.

The simplest way of hooking-up a CALL-BOX generated source code file to
your applications source code is to use the COPY directive.

(yt;ur code)

COPY CallBoxDialogl ;Your dialog template source file

(y<;ur code)

Another way is to use the COPY function of the APW/ORCA editor
(OpenApple-C) to put a copy of your window template source code in its
SYSTEMP file, which can then be inserted into your source listing with an
INSERT function (OpenApple-V).

Adapting this source code for other assemblers is up to you. We will
support Apple prefered format APW or ORCA only.

Aug 15, 1989 Page 2.14

Call Box Editors Manual Chapter 2 - Dialog Editor

USING OBJECT CODE

The object code created by the dialog editor is a $B1 file. This type of file is in
OMF2 format and is relocatable. This form of output is provided for Link-
time integration or Library file use. To add an object module to a link add
the filename to the link command in the APW or ORCA linker.

LINK myprogram mydialogl mydialog2 (etc...etc)

Where mydialogl and mydialog2 are the filenames of the object code files
created with the CALL-BOX Dialog Editor.

This type of file can be used directly by your application similar to the way a
library file is used. You must change the filetype of your object file to $B5
(Load File). The dialog template can then be loaded by the system loader
using the InitialLoad call.

PushWord MyID ;Applications I.D. number

PushLong #Pathname ;Pointer to pathname buffer

PushWord #0 ;Spec. mem. flag (set to 0)

_InitialLoad

pla ;Size of Dir.pg/Stack buf.(N/A)

pla ;Addr of Dir.pg/Stack buf.(N/A)

PullLong DlogPtr1 ;Pointer to the dialog template
;in memory

pla ;Applications I.D. number

This is all that is required to install this template into your program. Use
standard dialog box operating procedures as outlined in the Toolbox
reference manuals.

NOTE: This process applies to dialog records that are stored as
resources as well.

USING RESOURCES

Resources created by the CALL-BOX WYSIWYG editors are in OMF2
format and must be "relocated" in memory. The Resource Manager call
ResourceConverter is used to install the resources. For each type of
resource your application is going to use you must "Log In" an OMF2
converter. To find an OMF2 converter use the Miscellaneous Tools call
GetCodeResConverter. You need only make this call once.

PushLong #0 ;Space for results
_GetCodeResConverter
PullLong ConverterPointer ;:Pointer to OMF2 converter

Aug 15, 1989 Page 2.15

Call Box Editors Manual Chapter 2 - Dialog Editor

This call fetches a pointer to an internal OMF2 converter routine. You now
need to "Log In" this converter for each resource type using the Resource
Manager call ResourceConverter. This step is repeated for each different
type of relocatable resource your application will need.

PushLong ConverterPointer ;OMF2 converter pointer

PushWord #$1000 ;Dialog Template type
PushWord #1 ;Log In, Applic. conv. list
_ResourceConverter

bcs MemoryError

This sets up the resource manager to install and relocate these resources
when they are called with OpenResource. You can now manipulate the
resources from this point on. A typical sequence of events from this point
may be:

OPEN your resource file:
PushWord #0 ;Space for results
PushWord #0 ;Req. file access
PushLong #0 ;Res. header address
PushLong #PathName ;Pointer to a class 1 pathname
_OpenResourceFile
PullWord FileID . ;Open resource file 1.D.

And LOAD it :
PushLong #0 ;Space for results
PushWord #$1000 ;Requested Type
PushLong #1 ;Requested I.D.
_LoadResource
PullLong ResourceHandle ;Handle of resource in memory

At this point the resource is avaliable to your application. When you are
done using this resource you can put it away with the Resource Manager
call CloseResourceF'ile:

PushWord FileID
_CloseResourceFile

Be sure to "Log Out" your resource converter when your finished by
issuing a Log Out ResourceConverter call.

PushLong ConverterPointer ;OMF2 converter pointer

PushWord #$1000 ;Dialog Template type
PushWord #0 ;Log Out, Applic. conv. list
_ResourceConverter

bcs MemoryError

Aug 15, 1989 Page 2.16

Call Box Editors Manual Chapter 2 - Dialog Editor

This covers the fundamental operation of resources in ybur application.
There are several other functions you can perform with the Resource

Manager but the previously outlined procedure will suffice for most of your
CALL-BOX resource usage.

CALL-BOX Dialog Template resources are handled the same as object files
are in your application except that the Resource Manager handles the
loading and saving.

Reference: Universe ToolBox Update (Ch 21:Resource Manager 3/22/89)
Universe ToolBox Update (Ch 15:Miscellaneous Tools 3/22/89)

BASIC CONSIDERATIONS

The CALL-BOX BASIC Interface uses object code dialog templates. These
templates are loaded into your Applesoft application as defined in the
CALL-BOX BASIC Interface Manual. Dialogs under Applesoft are

structured the same as if under a P16 application and need no special care
or feeding.

Direct template access as presented in USING OBJECT CODE is possible
but difficult from the CALL-BOX BASIC interface. The procedure is the
same but all indexing and addressing must be done with LONG PEEK and
LONG POKE, calls. Fortunately these commands are capable of specifying
the values in either decimal, hex, or binary and can handle WORD and
LONG values.

Aug 15, 1989 Page 2.17

Call Box Editors Manual Chagter 2 - Dialog Editor

Index of Chapter 2- e

$1000

$B5 13

BASIC CONSIDERATIONS
DIALOGS

EDITOR OPERATION

LOAD DIALOGS 9

OBJECT CODE FILETYPE $B1
Object,($B1)

Radio button

Resource . 8

RESOURCE FILETYPE (any)
SAVE DIALOGS

SOURCE CODE FILETYPE $B0O
Source,($B0)

Static text

USING OBJECT CODE

USING RESOURCES

USING SOURCE CODE

1, 9, 10, 14

17

[a—

Aug 15, 1989

© So What Software

Index

Call Box Editors Manual ___ Chapter 3 - Menu Editor

CHAPTER 3 - MENU EDITOR

OVERVIEW

3.1
| ABOUT MENUS 3.1
| EDITOR OPERATION 3.2
SAVE MENUS 3.4
SOURCE CODE FILETYPE $B0 3.9
OBJECT CODE FILETYPE $B1 3.9
RESOURCE FILETYPE (any) 3.10
USING SOURCE CODE 3.11
USING OBJECT CODE 3.12
USING RESOURCES 3.13
BASIC CONSIDERATIONS 3.15
Figure 3.26 Typical Menu Bar and 3.1
Figure 3.27 Build Menu Window 3.3
Figure 3.28 Attributes Window 3.4
Figure 3.29 Save Dialog Box 3.5
Figure 3.30 Save Resource 1.D. Window 3.6
Figure 3.31 Edit Resource I.D. Dialog Box 3.6
Figure 3.32 Load Dialog Box 3.7
Figure 3.33 Load Resource 1.D. Window 3.8
Figure. 3.34 Sample Source Code Listing 3.9
Figure. 3.35 Sample Object Code Dump 3.10

Aug 15, 1989 © So Wﬁat Software Contents

Call Box Editors Manual Chapter 3 - Menu Editor

CHAPTER 3 - MENU EDITOR

OVERVIEW

The CALL BOX Menu Editor creates templates for use by the Apple Ilgs
Menu Manager. This editor can load either OMF2 object code or resources
and can output APW/ORCA sourcecode, OMF2 object code and resources.
The resource filetype is $1001 and requires a converter to load into memory.

The standard programming procedure for resources is presented at the end
of this chapter.

ABOUT MENUS

A menu provides a means of displaying choices or options avaliable to the
user without having to remember selections,words or special keys.

Menus appear as a panel usually located at the top of the screen,. Each
menu has a title and a pull-down menu associated with it. The menu
contains a series of selections or "Items" available to the user.

(See Fig. 3.26) :

An I.D. number is associated
with each title and item. The
I.D. number is used by the

- _ _ menu manager to inform you
(@ rFile (LY Option Goodies | | when a title or item is
undo [4] MTitle

selected.
genu /iZu ¢ 4K N
ar Lopy G Key
/ Paste OV Equivalent Fi 396
Item £hoar gux. €
— _ Menu Typical Menu Bar and Menu

To use the menu bar the user selects a menu bar title. The title bar is then
hi-lited and a pull-down menu appears directly below the title.. Keeping the
mouse button pressed and moving the cursor up and down the menu,
hilites items as you move. When you hilite the menu item you want to
select simply release the mouse button and the menu manager will return
the I.D. number for the selected item.

Aug 15, 1989 Page 3.1

Call Box Editors Manual Chapter 3 - Menu Editor

Menus can be customlzed to a certam extent Wlth this ed1tor, some of the
features are:*#:+#iv .

¢ Key Equivalents, An alternate way of selecting menu items
from the keyboard.

e Text styles You can select bold, underline or italisized
for the items text.

® Check Character You can add check marks, diamonds,

open and closed-apples.

¢ Underlines and dividing lines, add visual divisions for groups of
like items in menus.

e Disabling Lets you select only applicable items.

EDITOR OPERATION

The Menu Editor is a "Desk-top" type P16 application and follows the
standard conventions for desk-top applications. Support for New Desk
Accessories (NDA's) is provided via the apple selection in the menu bar and
an Edit menu which activates when a "system" window is up.

To best illustrate how to create a Menu template let's run through an
editing session and create one from scratch.

b
Let's make this menu in 640 mode. The menu editor
functions in 640 mode. You can test in elther mode, but
the actual editing process is in 640 .

®. Select FILE-NEW and the BUILD MENU window will
appear. (See Fig 3.27)

The menu bar has the Apple menu already installed, so let's put an
ABOUT item in the menu...

® Click the NEW ITEM button and a new item will appear
in the scroll window.

®. Type the word ABOUT.... (add three periods just for style).
Press RETURN when you are done.

Aug 15, 1989 Page 3.2

Call Box Editors Manual Chapter 3 - Menu Edit

This is hovs} you buila a menu,ys;su can add dividing lines, delete or replace
items and titles by hiliting them in the scroll window and clicking the
desired button.

Once you have your menu selections in place you can try your menu by
selecting the menu bar selection GOODIES-TRYIT 320 or GOODIES-
TRYIT 640. Press the OPTION key to return to the build window.

There is an additional button present in the build window called
ATTRIBUTES. This permits each menu items appearance and mode of
operation to be set to reflect a particular status.

4. Select the ATTRIBUTES button in the build window (See Fig. 28)

This window allows you to
set the style of the items text,
select enabled or disabled (dimmed)
add a narrow dividing line
add one of 4 item markers and keypress equivalents.

Set the attributes for your menu items so that the menu bar is structured
the way you want it at initialization.

This completes the creation of a menu template there is one more feature
which is covered in the next section.

SPECIAL EXPLANATION

¢ The selection FILE-PRINT INFO will print you a list of the menu
items cross-referenced by their I.D. numbers. this list is very
helpful when integrating your menu into your application.

® The editor edits in 640 mode only! A menu for 320 mode or 640
mode can be created with the editor. To see the menu in different
modes use GOODIES-TRYIT 320 and GOODIES-TRYIT 640.

e The menu selection GOODIES-DISPLAY INFO will bring up a
Control Info scroll window. This window represents a list of the
items in your menu box that is kept internally in this editor.(See
Fig. 2.18)

Double-clicking an item in this window will bring up the item
edit menu for that item the same as double-clicking the item itself.

Aug 15, 1989 Page 3.3

Call Box Editors Manual Chapter 3 - Menu Editor

Fl

ThlS wmdow allows you to - W
| set the style of the 1tems text e C e
select enabled or disabled (d;lmmed)
add a narrow dividing line
add one of 4 item markers and keypress equivalents.

Set the attributes for your menu items so that the menu bar is structured
the way you want it at initialization.

This completes the creation of a menu template there is one more feature
which is covered in the next section.

. New ltem =
Text Style: Check Character:
@ Normal @ MNone
OBold O Check Mark
OUnderline O Diamond
O Italie O Open-Apple

] pisabled O Solid-Apple

[Bottom Line Key Equivalent:{|

Figure 8.28 Attributes Window

Special Explanation

e The selection FILE-PRINT INFO will print you a list of the menu
items cross-referenced by their I1.D. numbers. this list is very
helpful when integrating your menu into your application.

® The editor edits in 640 mode only! A menu for 320 mode or 640

mode can be created with the editor. To see the menu in different
modes use GOODIES-TRYIT 320 and GOODIES-TRYIT 640.

SAVE MENUS

Once you have created a menu template you will want to save it to disk so it
can be incorporated into your program code.

Aug 15, 1989 Page 3.4

Call Box Editors Manual Chapter 3 - Menu Editor

Seleqt FILE-SAVE AS... Aand‘ a save dialog box will appear.

TN Y

‘:Call.Box
2 K free of 800 { Next Drive)

GRPPLIRGGY
G RLL.BDK (_New Folder)
e
CES.UHRS (Open)
R
[Cleose D)
[Save)

HOEMB
HDEMDBDDY

{ Cancel)

@ Object O Source O Resource

Menu Save File...
Noname.Tmplt

Figure 3.29 Save Dialog Box

This box has buttons to select the drive, create a new folder, open or close a
folder, cancel this operation and save the file. There is also a box for typing
in a filename and 3 radio buttons across the bottom of the menu box. These
three buttons select the type of output you will be saving.

® Object ($B1) Select this button to save the template as an
OMEF'2 object file. This filetype can be loaded back
in by the editor.

* Source ($B0) Select this button to save the template as an
APW/ORCA source code file. This filetype
can not be loaded back into the editor.

® Resource Select this button to save the template to a
(any filetype) resource fork of an extended ProDOS file.
' This filetype can be loaded back in by the editor.

Selecting either Object or Source will create or overwrite a file on a disk and
the operation is pretty straight foreward. Selecting Resource however will
present some extra windows that control how resources are saved to disk.
Resources come in types and 1.D.'s, the type for a CALL BOX menu
template is $1000 and is hard-set by the editor... the only thing you need to
set is the 1.D. for your resource. You can either rewrite an existing
resource by double-clicking on its I.D. number if one exists or double-
clicking the ---->New entry to save your resource as the next avaliable 1.D.
number. (See Fig 3.30).

Aug 15, 1989 Page 3.5

Call Box Editors Manual Chapter 3 - Menu Editor

A - : L Figure 3.30 Save Resource LD.
(ll|_c0o000001 £y
gggggggg You can cancel_ th.e resource save
00000004 operation by clicking the close box
00000005 in the title bar of the resource 1.D.
gggggggg window. You can also edit the
————3New resource 1.D. (re-number or
|| delete) by first pressing and
U holding the OPTION key while
double-clicking the desired I.D.
(See Fig 3.31).

When re-numbering resource 1.D.'s be sure to have 8 hex digits in the I.D.
number window (use leading zeroes to pad small numbers). Failure to do so
will cause unpredictable results and could ruin the resource fork of the
ProDOS file.

1001
| 00000001 |::l
00000002 | »
Edit Resource I.D.

Figure 3.31 Edit Resource LD. Dialog Box

If a resource fork does not exist for a given ProDOS file a dialog box will
appear that gives you the option of creating one,

Once you have created menus and saved them to disk you may want to load
them back into this editor for further editing.

Select FILE-OPEN... and a load dialog box will appear.

Aug 15, 1989 Page 3.6

Call Box Editors Manual Chapter 3 - Menu Editor

- . - . P

b e o as

Menu load file...

S:Call.Box;
B APPLEBOOT
G CALL.BOX
BCcB
LB CB.VARS
D DEMO
D DEMOBOOT
S DIALOG.EDIT
G FALSESTART

{ Hext Drive)

m
L Close]

3| TConcel)]

@ Object code O Resource
Figure 3.32 Load Disalog Box

This box has buttons to select the drive, open or close a folder, cancel this
operation and open the file. There are radio buttons to select the type of
input you will be loading.

e Object ($B1) Select this button to load an OMF2 type of menu
template file.

e Resource Select this button to load the template from a
(any filetype) resource fork of an extended ProDOS file.

Selecting Object will load a file from disk and the operation is pretty straight
foreward. Selecting Resource however will present some extra windows
that control how resources are loaded into memory.

Resources come in types and I.D.'s, the type for a CALL BOX menu
template is $1001 and is hard-set by the editor... the only thing you need to
set is the I.D. for your resource. You can load a resource by double-clicking
on the desired resource I.D. number. (See Fig 3.33)

Aug 15, 1989 | Page 3.7

" Call Box Editors Manual Chapter 3 - Menu Editor.

You can cancel the resource load

m_ operation by clicking the close box in the

m title bar of the resource I.D. window. You
00000002 | |

Iso edi D.
00000003 can also edit the resource I

00000004 (re-number or delete) by first pressing
00000005 and holding the OPTION key while
00000006 double-clicking the desired I.D.
| 00000007

(See Fig 3.31) When re-numbering

| resource I.D.'s be sure to use 8 hex digits
in the I.D. number window (use leading
zeroes to pad small numbers). Failure to

| do so will cause unpredictable results and
‘ could ruin the resource fork of the
ProDOS file.

Figure 3.33 Load Resource LD. Window

<

If a resource fork does not exist for a given ProDOS file then no template
will be loaded.

Aug 15, 1989 Page 3.8

Call Box Editors Manual Chapter 3 - Menu Editor

SOURCE CODE FILETYPE $BO

This type of code is for appendmg to APW/ORCA source code listings. A
simple word processor is adequate for editing the file.

The source code for a menu bar and menus indicates the different menus it
contains with symbolic references, object code and resources on the other

hand have a dialog template style pointer table added to the beginning of the
menu template.

MyMenu DATA

Menul anop

DC C’$$@\N1X' H'0D'
DC C'>> About... \N256' H'0D'

DC C

Menu?2 anop
DC C'$$ File \N2',H'OD'
DC C'>> Open... \N257',H'0D’
DC C'>> Close... \N258',H'0D'
DC C'>> Quit \N259*Qq',H'0D'
DC C

Menu3 anop

DC C'$$ Edit \N3',H'0D'

DC C'>> Undo \N260V*Zz ,H'0D'
DC C'>> Cut \N261*Xx' H'OD' -
DC C'>> Copy \N262*Cc',H'0D'
DC C'>> Paste \N263*Vv' H'0D'
DC C'>> Clear \N264',H'0D'

DC C'

END

Figure. 3.34 Sample Source Code Listing

OBJECT CODE FILETYPE $B1

This type of code is for linking with the APW/ORCA linker. This code type
can be used by any language that uses this linker. Object code can also be
used by the loader call InitialLoad after you have changed the filetype to $B5
(LoadF'ile). Use the disk utilities in the CALL BOX shell to change the
filetype of this file. (See Fig. 3.35)

Aug 15, 1989 Page 3.9

Call Box Editors Manual Chapter 3 - Menu Editor
DumpOB{ 1.1
Block count : $00000001 1
Reserved space : $00000000 0
Length : $000000D6 214
Label length : $0A 10
Number length :$04 4
Version 1 $01 1
Bank size : $00000000 0
Kind :$01 static data segment
Org : $00000000 0
Alignment : $00000000 0
Number sex :$00 0
Language card : $00 0
Segment number :$0001 1
Segment entry : $00000000 0
Disp to names : $002C 4
Disp to body :$0040 64
Load name

Segment name

000040 000000

| LCONST ($F2) | 000000D6 :
740000002D000000100000000000000024

244C5C4E31580D3E3E2041626F75742E2E
2E205C4800012A00200D2E24242C204669
6C6520205C4802000D3E3E204F70656E2E
2E2E205C4801012A00200D3E3E20436C6F
73652E2E2E205C4802012A00200D3E3E20
51756974205C4803012A51710D2E242420
204564697420205C4803000D3E3E20556E
646F205C480401562A5ATAOD3E3E204375
74205C4805012A58780D3E3E20436F7079
205C4806012A43630D3E3E205061737465
205C4807012A56760D3E3E20436C656172
205C4808012A00200D2E

00011B 0000D6 | cRELOC ($F5) | 04 : 00 : 0000 : 0074
000122 0000D6 | cRELOC ($F5) | 04 : 00 : 0004 : 002D
000129 0000D6 | cRELOC ($F5) | 04 : 00 : 0008 : 0010
000130 0000D6 | END

($00)

Figure. 3.35 Sample Object Code Dump

Aug 15, 1989

Page 3.10

Call Box Editors Manual Chapter 3 - Menu Editor

RESOURCE FILETYPE (any)

Resources are stored in a resource fork of an extended ProDOS file. The

exact filetype is not important and in fact resources can be stored in any
ProDOS file of any type.

Resources are referred to by a two byte "type" number and a 4 byte "1.D."
number. A type would be analogous to a window record, a pascal string, an
icon etc... An I.D. number would identify which pascal string or which
icon you are pointing to in a group of pascal strings or icons.

The type for a menu template resource is $1001. The I.D.'s can be
anywhere from 0 to 7FFFFFFF.

Menu template resources are in OME2 format and are loaded using the
system converter.

USING SOURCE CODE

The source code created by this editor is a simple "TEXT" file. It has a
filetype of $B0 and is created in a form readily adaptable to source code
listings created for APW or ORCA assemblers. You can use the filetype
command in the APW/ORCA shell or the Disk Utilities function of the
CALL BOX shell to change this files filetype.

Each source code file created by this editor needs to have a filename that
has no (.) peroids in it. This is commonplace in ProDOS, but peroids are an
illegal character in the assembler and will generate an error when
assembled.

The simplest way of hooking-up a CALL BOX generated source code file to
your applications source code is to use the COPY directive.

(y(;ur code)

COPY CallBoxmenul ;Your menu template source file

(y(;ur code)

Aug 15, 1989 Page 3.11

Call Box Editors Manual Chapter 3 - Menu Editor

Another way is to use the COPY function of the APW/ORCA editor
(OpenApple-C) to put a copy of you window template source code in its
SYSTEMP file which can then be inserted into your source listing with an
INSERT function (OpenApple-V).

Adapting this source code for other assemblers is up to you. We will support
Apple prefered format like APW or ORCA only on this editor.

USING OBJECT CODE

The object code created by this editor is a filetype $B1 file. This type of file is
in OMF2 format and is relocatable. This form of output is provided for Link-
time integration or Library file like use. To add an object module to a link
add the filename to the link command in the APW or ORCA linker.

LINK myprogram mymenul mymenu2 (etc...etc).

Where mymenul and mymenu2 are the filenames of the object code files
created with the CALL BOX menu Editor.

This type of file can be used directly by your application like a library file is
used. You must change the filetype of your object file to $B5 (Load File) and
then the menu template can be loaded by the system loader using the
InitialLoad call.

PushWord MyID ;Applications I.D. number
PushLong #Pathname ;Pointer to pathname buffer
PushWord #0 ;Spec. mem. flag (set to 0)
_Initiall.oad

pla ;Size of Dir.pg/Stack buf.(N/A)
pla ;Addr of Dir.pg/Stack buf.(N/A)
PullLong MenuPtrl ;Pointer to the menu template

; ;in memory

pla ;Applications I.D. number

This is all that is required to install this template into your program.
Inserting the menu in the system is slightly different than usual.

Menu templates have a pointer table at the beginning of them used to access
the various menus they contain. _InsertMenu needs the address of the
particular menu record to build the menu in the systems memory. You
would usually point to a menu record and then call _InsertMenu for each
menu your menu bar will contain. When this menu template is in OMF2
form you will not know where a particular menu record is at, the only thing
you will know for certain is where the menu template begins. Fortunately

Aug 15, 1989 Page 3.12

Call Box Editors Manual Chapter 3 - Menu Editor

we have added an address table at the beginning of the menu template
which: peints to'each menu in the template. * -

To insert this type of menu bar use the following algorithmn:

1dy #0
PushLong #TmpltAddress ;Get the tmplt addr. in z-page
PullLong $0
Again 1da[$0],y :Fetch the table address
sta ThisMenu
iny
iny
1da [$0],y
sta ThisMenu+2
ora ThisMenu ;JIs it null?
beq AllDone ;If so then done inserting
phy ;Preserve the index
PushLong #ThisMenu ;Push the handle
PushWord #0 ;and the flag
_InsertMenu ;Insert this menu
ply ;Restore index
iny ;Advance to the next pointer
iny
bra Again ;Loop back
AllDone rts ;EXIT!H!

NOTE: This process applies to menu templates that are stored as
resources as well

USING RESOURCES

All resources created by the CALL BOX WYSIWYG EDITORS are in OMF2
format and need to be "relocated" into memory. The Resource Manager call
ResourceConverter is used to install these resources in memory. For each
type of resource your application is going to use you must "Log In" an
OMTF2 converter for that type. To find an OMF2 converter use the
Miscellaneous Tools call GetCodeResConverter. You need only make this
call once.

Aug 15, 1989 Page 3.13

Call Box Editors Manual Chapter 3 - Menu Editor

PushLong #0 ;Space for results
_GetCodeResConverter
PullLong ConverterPointer ;Pointer to OME2 converter

This call fetches a pointer to an internal OMF2 converter routine. You now
need to "Log In" this converter for each resource type your application will
be using with the Resource Manager call ResourceConverter. This step
would be repeated for each different type of relocatable resource your
application will need.

PushLong ConverterPointer ;OMF2 converter pointer

PushWord #$1001 :menu Template type
PushWord #1 ;Log In, Applic. conv. list
_ResourceConverter

bes MemoryError

This sets up the resource manager to install and relocate these resources
when they are called with OpenResource. You can now OPEN, LOAD,
UPDATE or whatever to the resources from this point on. A typical
sequence of events from this point may be:

OPEN your resource file:
PushWord #0 ;Space for results
PushWord #0 ;Req. file access
PushLong #0 ;Res. header address
PushLong #PathName ;Pointer to a class 1 pathname
_OpenResourceFile
PullWord FilelD ;Open resource file 1.D.

And LOAD it into memory:

PushLong #0 ;Space for results

PushWord #$1001 :Requested Type

PushLong #1 ;Requested 1.D.
_LoadResource .

PullLong ResourceHandle ;Handle of resource in memory

At this point the resource is avaliable to your application. When you are
done using this resource you can put it away with the Resource Manager
call CloseResourceFile:

PushWord FilelID
_CloseResourceFile

Be sure to "Log Out" your resource converter when your done by issuing a
Log Out type ResourceConverter call.

Aug 15, 1989 | Page 3.14

Call Box Editors Manual Chapter 3 - Menu Editor

PushLong ConverterPointer ;OMF2 converter pointer -

o PushWord #$1001> - ;menu Template type - S
PushWord #0 ;Log Out, Applic. conv. list
_ResourceConverter

bcs MemoryError

This covers the fundamental operation of resources in your application.
There are several other functions you can perform with the Resource
Manager but the previously outlined procedure will suffice for most of your
CALL BOX resource useage.

CALL BOX menu Template resources are handled the same as object files
are from within your application except that the Resource Manager
handles the loading and saveing.

Reference: Universe ToolBox Update (Ch 21:Resource Manager 3/22/89)
Universe ToolBox Update (Ch 15:Miscellaneous Tools 3/22/89)

BASIC CONSIDERATIONS

The CALL BOX BASIC Interface uses object code menu templates. These
templates are loaded into your Applesoft application with syntax as defined
in the CALL BOX BASIC Interface Manual. Menus under Applesoft need
no special care and feeding.

Aug 15, 1989 Page 3.15

Call Box Editors Manual

Chapter 3 - Menu Edit

Index of Chapter 3

ABOUT MENUS

BASIC CONSIDERATIONS
EDITOR OPERATION
OBJECT CODE FILETYPE $B1
OVERVIEW

RESOURCE FILETYPE (any)
SAVE MENUS

SOURCE CODE FILETYPE $B0
USING OBJECT CODE

USING RESOURCES

USING SOURCE CODE

Aug 15, 1089

Page

Call Box Editors Manual _Chapter 4 - Image Editor

CHAPTER 4 - THE IMAGE EDITOR-., - =

ABOUT IMAGES

EDITOR OPERATION

SAVE IMAGES

LOAD IMAGES

SOURCE CODE FILETYPE $BO0
BINARY FILETYPE $06
RESOURCE FILETYPE (any)

S S G S SO N N S
— e = \O O OO\ DN =

USING SOURCE CODE
USING BINARY CODE 0
USING RESOURCES 1
BASIC CONSIDERATIONS 2
Figure 4.36 Save Dialog Box 4.5
Figure 4.37 Save Resource 1.D. Window 4.5
Figure 4.38 Edit Resource 1.D. Dialog Box 4.6
Figure 4.39 LoadDialog Box 4.7
Figure 4.40 Load Resource 1.D. Window 4.8
Figure. 4.41 Sample Pixel Image Source
Code Listing 4.9
Figure. 4.42 Sample icon source code
listing 4.10
Figure 4.43 Sample cursor source code
listing 4.11

AUG 15, 1989 © So What Software Contents

Call Box Editors Manual Chapter 4 - Image Editor

CHAPTER 4 - THE IMAGE EDITOR

ABOUT IMAGES

Images are pictures... this is very obvious but what is not obvious is the
various types that the Apple Ilgs uses.

Most people are familiar with PIC images.made by commercial "paint
programs”. PIC images can be in either 320 or 640 mode. [320 x 200] or
[640 x 200] pixels. 320 mode PIC images can use 16 different solid colors
while 640 mode PIC images can use only 4. You will see 640 mode images
that appear to have more than 4 colors but don't be fooled. There are only
four possible solid colors. When you see a 640 mode picture that appears to
have more than four colors it is using dithered colors which are two dis-
similar 640 mode pixels next to each other. The combination will appear as
a third color to the eye. These images can be said to be 320 mode in a 640
mode framework.

This can be confusing. It is not too important that understand the details ...
(but it is nice if you do!) The image editor handles these things
automatically and provides you with 16 colors in both modes.

The Apple Ilgs uses other images based on the above. This editor can
create, Pixel Images, Icons and cursors.

A Pixel Image is a PIC Image that is less than 320 x 200 or 640 x 200 pixels
in size... kind of a mini-PIC.. Pixel images are always rectangular.

Icons are similar to pixel images except that they contain a mask. A mask
is an image the same size as the main pixel image that signifies which
pixels will show up and which ones will not. This allows you to create
images that are not rectangular. They can be of any shape, and even have
holes in them like a doughnut.

The last type of image is a Cursor. Cursors are similar to an Icon but are
handled differently by the system. The ARROW is an example of a cursor
image. Cursors have an attribute that other images do not have, this is a
"Hot Spot". A Hot Spot is that pixel out of the image that represents the
cursors actual X and Y position. The tip of the ARROW cursor is its hot
spot.

The image editor makes it very easy to load one type of image and save it as
another type. The main power of this editor, however, is in enabling the
user to take a standard "Paint Program" type picture and capture a portion
of it as either a pixel image, Icon or cursor.

Aug 15, 1989 Page 4.1

Call Box Editors Manual Chapter 4 - Image Editor

EDITOR OI?ERATION ;
To use this editor you must put an image in the "capture window", by
loading in any of the seven input types previously described using the menu
bar selection File/Open. or by selecting File/New320 or File/New640. If you
are using a Filetype $C1 picture as an image source the editor will switch to
the mode (640 or 320) that the picture was created in. You will have to use
File/New320 or File/New640 to set the mode prior to loading the pixel image,
icon or cursor types.

Once you have an image (even if its a blank screen for creating an image
from scratch) you must select Edit/Capture and using the full window
crosshair cursor click-drag-click a rectangle around the image you want to
process. The image will slowly invert and an indicator bar will appear
reporting the progress of the magnify operation taking place.

This magnify operation creates three windows containing the image just
captured in a magnified form called "Image". The mask image (always
completely black after capture) in a magnified form called a "Mask" and
the captured image as an icon called an "Icon". The Image and Mask
windows are editable with the "Pencil" cursor which is visible when the
cursor position is in either window when it is the top-most or active
window. The menu bar selection "Color" is now active and contains a color
palette used to set the pencil color. You can now use the pencil to draw to
the magnified image or mask.

Three functions help in drawing to the magnified images. Edit/Fill Image
will change every pixel in the image window to the current color of the
pencil. Edit/Fill Mask will set all the pixels in the mask window to black or
white.(on or off) using color #15 as white and any other color as black.
Edit/Image to Mask will set all pixels that correspond to colored pixels in
the image window to black (on) in the mask window and set all
corresponding white (color #15) pixels to white (off).

If you need to reframe your image you can select Edit/Re-Capture which
clears out the capture window and plots your current magnified image in
the upper left region of the capture window. You then need to select
Edit/Capture and capture your image again only this time at new
rectangular coordinates which will in turn create the Image, Mask and
Icon windows again. You can continue editing if needed.

If you are creating a cursor you will need to set the "Hot Spot" with the
menu selection Edit/Set Hot Spot. The hot spot is represented by a black
rectangle initially around the upper left pixel of the magnified image.
Simply select Edit/Set Hot Spot and click on the magnified pixel you want for
the hot spot. The rectangle will move to surround the selected pixel.

Aug 15, 1989 , ~ Page 4.2

Call Box Editors Manual Chapter 4 - Image Editor

When everything is just the way you want it select File/Save as.to preserve
your handy-work. Be sure to set the radio buttons at the bottom of the save
window for the type and style.

This outlines the major features and procedures implemented in using this
editor, we will now discuss some of the finer points of image editing.

Special Explanations

e All images, either 320 or 640 mode can be treated like 320 mode
images. Most good looking 640 mode images are actually in dithered
colors which is simply two pixels of different colors side by side that
appear like one larger pixel in a color that is the mix of the two

colors. This way you can get sixteen apparently different solid colors
in 640 mode that only has a palette of four colors (read about mini-
palettes in the Ilgs toolbox reference under Quickdraw II). If you are
using dithering, and you probably will be, then you are actually
handling a 320 mode image because one apparent pixel is composed
of two smaller (640 mode) pixels.

® You can capture a 320 mode image, save it as a pixel image, switch
modes using File/New640 and re-load it for editing in the new mode,
the reverse is also true. Naturally the colors will be off but this is not
important. A Pixel image, Icon or cursor responds to the current
system palette your program is using, not necessarily the one that
you are currently editing in. You are just producing a byte pattern
that represents what color numbers to use and where they are to be
used.

® 640 mode images sometimes exhibit a color shift which depends on
where the viewable image has its left edge (on an even or odd
numbered position). This is due to the mysteries of Dithered colors
and poses no problems to your finished image. The image in the Icon
window is a true representation of the colors in your finished image,
the colors in the Image window may or may not be accurate in 640
mode depending on how the horizontal scroll bar is set.

¢ Cursors have a unique mode sensitivity problem which deals with
the hot spot. If a cursor is created in 320 mode and then used in 640
mode the cursor will appear the same in both modes. The difference
will be in the actual position of the hot spot. To best illustrate this
anomaly an example is needed:

e Create a cursor in 320 mode that is a framed rectangle 5 x § pixels.
Set the hot spot at 3,3 (Right in the middle of the framed rectangle).
Use this cursor in 640 mode and the hot spot will seem to shift to the
left of the rectangle. The hot spot numbers will still be 3,3 but the
rectangle will no longer be 5§ x 5! A 320 mode 5 x 5 rectangle becomes

Aug 15, 1989 Page 4.3

Call Box Editors Manual Chapter 4 - Image Editor

a 640 mode 5 x 10 rectangle to maintain the same appearance. To
rectify this situation you should use separate cursors for 320 and 640
modes. You could also directly rewrite the hot spot numbers based on
the current mode your program is in. If your cursors hot spot is at a
horizontal position of 0 or 1 don't worry. The mode shift is half the
distance from the original hot spot to the left edge of the cursor.GGif
your position is 0 or 1 the shift is so slight as to not be noticeable).

e As if cursors did not cause enough problems there is yet another
thing you have to look out for. Add one extra word (4 magnified
pixels) to the right side of your cursor image and fill them with
zeroes (black in the image and white in the mask). The way the
Apple handles cursors necessitates this. I won't get into it here.
Failure to add this word will cause you equipment to behave
strangely. Check it out for yourself its actually quite interesting to
see.

¢ The last thing we want to tell you about cursors is that you need a
black (color #0) as the background of the image window and white
(color #15) to draw your image. The colors are reversed in the image
window when creating cursors.

e This editor is memory hungry and should be used with all the free
memory you can summon up (at least 3 or 4 banks). The maximum
size an image can be is directly linked to how much free memory is
available. Images in excess of 75 pixels square should be avoided,
(images that large plot slowly). Secondly you will run out of memory
in the editor. You can go as large as memory will allow. We
recommend not exceeding 75 by 75 which should be sufficiently large
for most applications.

* You can close all of the windows except the Icon window by
clicking in the close box of the windows frame. This will make the
windows disappear. You can make the image and mask windows
re-appear by selecting Edit/Image Edit or Edit/Mask Edit. The
capture window does not have a selection to make it re-appear. You
will have to re-load an image or use File/New320 or File/New640 to
make the capture window appear.

SAVE IMAGES

Once you have created an image you will want to save it to disk so it can be
incorporated into your program code.

Select FILE-SAVE AS... and a save dialog box will appear. (See Fig 4.36)

Aug 15, 1989 , “Page 4.4

Call Box Editors Manual Chapter 4 - Image Editor

<:HARD1:CALL.BOX:
17061 K free of 3

2767 { Mext Drive)
{ Hew Folder)

{ Open)
{ Close)]

L[Save)|}

{ Cancel]
O Pixel Image @ Resource Fork File

e RLL .BBK
DEDITORS
{1 KKK

L KKKK

Imoge Sove File...
b $.4.4

@ Icon) APW Source Code $BO
O Cursor O Binary File $06
Figure 4.36 Save Dialog Box

This box has buttons to select the drive, create a new folder, open or close a
folder, cancel the operation and save the file. There is also a box for typing
in a filename and 6 radio buttons across the bottom of the dialog box. These
six buttons select the type of output you will be saving.

Three buttons on the left side of the dialog box select the style of of image you
can save (Pixel image, icon or cursor). The three buttons on the right side
select the filetype as Resource, Source or Binary.

Images do not need to be relocated in memory because they do not have

_ absolute address references. This is why a binary form is provided instead

of object code. Both source and binary saves are fairly straight forward and .
need no real explanation. Selecting Resource however will present some
extra windows that control how resources are saved to disk.

Resources are identified by types and I.D.'s. The type for CALL BOX
images are $1003 for pixel images, $8001 for icons and $1004 for cursors.
These types are set by the editor, you need to set the I.D. for your resource.
You can either rewrite an existing resource by double-clicking on its I.D.
number or double-clicking

the ---->New entry to save your resource as the next available I.D. number.
(See Fig 4.37)

Aug 15, 1989 Page 4.5

Call Box Editors Manual Chapter 4 - Image Editor

- - You can cancel the resource save operation
| by clicking the close box in the title bar of the
3 resource 1.D. window. You can also edit
gggggggg] the resource I.D. (re-number or delete) by
00000004 pressing and holding he OPTION key while
00000005 double-clicking the desired L.D. (See Fig
00000006 4.38). When re-numbering resource I.D.'s
‘_’E ‘_J ‘_’333; be sure to use 8 hex digits (use leading
|| zeroes to pad small numbers). Failure to do
o so will cause unpredictable results and
cciuld ruin the resource fork of the ProDOS
file.

Figure 4.37 Save Resource LD. window

If a resource fork does not exist for a given ProDOS file a dialog box will
appear giving you the option of creating one.

8001 |

i 00000001 ij
00000002 J ||
Edit Resource I.D.

————JNew

et

2

Figure 4.38 Edit Resource LD. Dialog Box

LOAD IMAGES

Once you have created images and saved them to disk you may want to load
them back into this editor for further editing.

Select FILE-OPEN... and a load dialog box will appear.

Aug 15, 1989 Page 4.6

Call Box Editors Manual Chapter 4 - Image Editor

Image Load File...

S2:HARD1:CALL.BOX:
DOBRSIC
& CALL.BOX
ODEDITORS
D XKX
D XXX

1{ Next Drive)
[Open
{ Close]

{¢]1 (" Cancel)
O Filetype $C1 Picture @ Icon

O Binary File O Cursor
@ Resource O Pixel Image
Figure 4.39 Load Dialog Box

This box has buttons to select the drive, open or close a folder, cancel this
operation and open the file. There are six radio buttons across the bottom of
the dialog box. These six buttons select the type of input you will be loading.

When loading images you must be very careful to have these buttons set
properly for the type of input you will be loading. All filetypes will appear
selectable in the scroll window and no special filtering is provided due to the
fact that resources can be contained in any filetype. Loading the wrong type
of file can result in a crash! You will just have to be careful.

. Selecting Resource will present some extra windows that control how

resources are loaded into memory.

Resources are assigned by types and 1.D.'s. The type for CALL BOX
images are $1003 for pixel images, $8001 for icons and $1004 for cursors.
These types are set by the editor.you set just the 1.D. for your resource.
You can either rewrite an existing resource by double-clicking on its I.D.
number or double-clicking the ---->New entry to save your resource as the
next available 1.D. number. (See Fig 40)

Aug 15, 1989 Page 4.7

Call Box Editors Manual Chapter 4 - Image Editor

O 8001 Figure 40 Load Resource LD. Window

uhd You can cancel the resource save operation

00000003 by clicking the close box in the title bar of

00000004 the resource 1.D. window. You can also

gggggggg edit the resource 1.D. (re-number or delete)

00000007 by using the OPTION key while double-

clicking the desired 1.D. (See Fig 38) When

63 re-numbering resource I.D.'s be sure to

use 8 hex digits in the I.D. number (use
leading zeroes to pad small numbers).
Failure to do so will cause unpredictable
results and could ruin the resource fork of
the ProDOS file.

If a resource fork does not exist for a given ProDOS file a dialog box will
appear giving you the option of creating one.

Aug 15, 1989 ~ Page 4.8

Call Box Editors Manual Chapter 4 - Image Editor

SOURCE CODE FILETYPE $BO

This type of code is for appending to APW/ORCA source code listings. A
simple word processor is adequate for editing this file.

The three styles of image oufput are presented here using the same
captured image.

Pixelimage DATA

dc h'1100°
dc h'1400"

dc h'FFFFFFF44444FFFFFFFE'
dc h'FFFF444EEE66444FFFFF'
dc h'FF444EE444EE6664FFFF'
dc h'F4666446664EEE664FFF'
dc h'46446664466EEEEE64FF’
dc h'44FF4E4FF466EEEE64FF'
dc h'4FF114FF1146EEEEE64F'
dc h'4FFFF4FFFF46EEEEE6G4F’
dc h'44FF444FF466EEEEE64F'
dc h'4644EEE44 6EEEEEEEG4F’
dc h'4EE46E646EEEEEEEE64F'
dc h'F4E644466EE666EEGAFE’
dc h'F4EE6666EEEE466E64FF'
dc h'FF4EEEEEE444E6E64FFF'
dc h'FFF4666EEEE66664FFFF’
dc h'FFFF44466666444FFFFF'
dc h'FFFFFFF44444FFFFFFFE'

END

Figure. 441 Sample Pixel Image Source Code Listing

Aug 15, 1989 , “Page 4.9

Call Box Editors Manual

Chapter 4 - Image Editor

icon DATA

dc
dc
dc
dc

dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc

dc
dc
dc
dc
de
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dec

END

h'0100'
h'AAQQ’
h'1100'
h'1400'

h'FFFFFFF44444FFFFFFFF
h'FFFF444EEE66444FFFFF '
h'FF444EE444EE6664FFFF'
h'F4666446664EEE664FFF '
h'46446664466EEEEE64FF
h'44FF4E4FF466EEEEG4FF
h'4FF114FF1146EEEEE64F '
h'4FFFFAFFFF46EEEEE64F '
h'44FF444FF466EEEEE64F '
h'4644EEE44 6EEEEEEE64F '
h'4EE46E646EEEEEEEE64F '
h'F4E644466EE666EE64FF
h'F4EE6666EEEE4 66E64FF '
h'FF4EEEEEE444E6E 64FFF'
h'FFF4666EEEE66664FFFE!
h'FFFF44466666444FFFFF'
h'FFFFFFF44444FFFFFFFF'

h'0000000FFFFF00000000"'
h'0000FFFFFFFFFFF00000’
h'00FFFFFFFFFFFFFF0000'
h'OFFFFFFFFFFFFFFFF000"
h'FFFFFFFFFFFFFFFFFF00"
h'FFOOFFFOOFFFFFFFFFO0Q"'
h'FOOFFFOOFFFFFFFFFFFO'
h'FO0000FO0000FFFFFFFFFO'
h'FFOOFFFOOFFFFFFFFFFO’
h'FFFFFFFFFFFFFFFFFEFFO !
h'FFFFFFFFFFFFFFFFFFFQ’
h'QFFFFFFFFFFFFFEFFFF00’
h'QFFFFFFFFFFFFFFFFF00"'
h'Q0FFFFFFFFFFFFFFF000'
h'00OFFFFFFFFFFFFF0000'
h'0000FFFFFFFFFFF00000'
h'0000000FFFFF00000000"'

Figure. 442 Sample icon source code listing

Aug 15, 1989

Page 4.10

Call Box Editors Manual

Chapter 4 - Image Editor

cursor DATA

dc h'1100°'
dc h'0500'

dc h'FFFFFFF44444FFFFFFFF'
dc h'FFFF444EEE66444FFFFF'
dc h'FF444EE444EE6664FFFF'
dc h'F4666446664EEE664FFF'
dc h'46446664466EEEEE64FF'
dc h'44FF4E4FF466EEEE64FF'
dc h'4FF114FF1146EEEEE64F'
dc h'4FFFF4FFFF46EEEEE64F'
dc h'44FF444FF466EEEEE64F'
dc h'4644EEE446EEEEEEE64F'
dc h'4EE46E646EEEEEEEE64F’
dc h'F4E644466EE666EEG4FE'
dc h'F4EE6666EEEE466E64FF '
dc h'FF4EEEEEE444E6E64FFF'
dc h'FFF4666EEEE66664FFFF'
dc h'FFFF44466666444FFFFF'
dc h'FFFFFFF44444FFFFFFFFE’

dc h'0000000FFFFF00000000'
dc h'0000FFFFFFFFFFF00000"'
dc h'O00OFFFFFFFFFFFFFF0000'
dc h'OFFFFFFFFFFFFFFFF000'
dc h'FFFFFFFFFFFFFFFFFF00’
dc h'FFOOFFFOQFFFFFFFFF00'
dc h'FOOFFFOOFFFFFFFFFFFO’
dc h'FO0000F0000FFFFFFFFFO'’
dc h'FFOOFFFOOFFFFFFFFFFO’
dc h'FFFFFFFFFFFFFFFFFFFQ’
dc h'FFFFFFFFFFEFFFFFFFFQ’
dc h'OFFFFFFFFFFFFFFFFEF00’
dc h'OFFFFFFFFFFFFFFFFF00’
dc h'0OFFFFFFFFFFFFFFF000'
dc h'O00OFFFFFFFFFFFFF0000'
dc h'0000FFFFFFFFFFF00000'
dc h'0000000FFFFF00000000"

dc h'0000'
dc h'0000'

END

Figure. 4.43 Sample cursor source code listing

Aug 15, 1989

Page 4.11

Call Box Editors Manual Chapter 4 - Image Editor

BINARY FILETYPE $06

A binary filetype is the actual bytes that make up the image. These bytes
can best be illustrated by Figs. 4.41,4.42 and 4.43. This filetype can be used
by any language and is the most fundamental filetype in computing. Binary
files need no relocation or special handling and can be loaded in the
computer by standard P8, P16 or Applesoft commands.

RESOURCE FILETYPE (any)

Resources are stored in a resource fork of an extended ProDOS file. The
exact filetype is not important and in fact resources can be stored in any
ProDOS file of any type.

Resources are refered to by a two byte "type" number and a four byte "1.D."
number. A type would be analogous to a window record, a pascal string, an
icon etc... An I.D. number would identify which pascal string or which
icon you are pointing to in a group of pascal strings or icons.

The type for image resources are $1003, $8001, $1004. The 1.D.'s can be
anywhere from 0 to 7FFFFFFF.

Image resources are in binary form and require no system converter to load
to your Ilgs.

USING SOURCE CODE

" The source code created by this editor is a simple text file. It has a filetype of
$B0 and is created in a form readily adaptable to source code listings

created for APW or ORCA assemblers. You can use the filetype command
in the APW/ORCA shell or the Disk Utilities function of the CALL BOX

shell to change this files filetype.

Each source code file created by this editor needs to have a filename that
has no (.) periods in it. This is commonplace in ProDOS, but periods are an
illegal character in the assembler and will generate an error when
assembled.

Aug 15, 1989 ~ Page 4.12

Call Box Editors Manual Chapter 4 - Image Editor

The simplest way of hooking-up a CALL BOX generated source code file to
your applications source code is to use the COPY directive.

(yc;ur code)

COPY CallBoxImage ;Your Image source file

(your code)

Another way is to use the COPY function of the APW/ORCA editor

(OpenApple-C) to put a copy of your image source code in its SYSTEMP file
which can then be inserted into your source listing with an INSERT
function (OpenApple-V).

Adapting this source code for other assemblers is up to you. We will support
Apple prefered format like APW or ORCA only on this editor.

USING BINARY CODE

The binary code created by this editor is non-relocatable code and is very to

install in your program. The binary image will be a separate disk file and
can be loaded via

P16, P8 or even Applesoft BASIC. There are no special handling

considerations for binary images and a sample load might go something
like this:

: We will use GS/OS class 1 calls for this
: Get the files length so you can allocate a spot for it
s We will assume that you have set-up the parameter tables already

GETFILEINFOGS GETFILEBlock

ldx #$24 :Offset to the EOF

lda GETFILEBlock,x

sta temp ;Save a copy of the EOF
lda GETFILEBlock+2,x

sta temp+2

Aug 15, 1989 Page 4.13

Call Box EditorsLManuaI Chapter 4 - Image Editor

; Allocate a block to put the image in

PushLong #0 ;Space
PushLong temp ;Length
PushWord MyID ;user I.D.
PushWord #0 ;Attributes (none)
PushLong #0 ;Location (anywhere)

| _NewHandle

| CopyLong ImageHandle ;Fetch the handle
PullLong $0 ;Deference it for a pointer
1dy #2
1da [$0]
sta READBlock+4 ;Put it in the READ parameter
1da [$0],y ;block
sta READBlock+6

; OPEN-READ-CLOSE the image file

OPENGS OPENBIlock ;Open up the image file
lda OPENRefNum ;Pass the reference numbers
sta READRefNum
sta CLOSERefNum
READGS READBIlock :Read the file into the block
CLOSEGS CLOSEBIlock ;Close the file

This will put any binary image in a legal memory block for use by your
_program.

The images address can now be passed to the appropriate routine for
plotting into a window or the super hi-res screen.
USING RESOURCES

Using the resource form of an image is quite similar to the binary form
except that the P16 or P8 calls are replaced by calls to the resource

manager.

OPEN your resource file:
PushWord #0 ;Space for results
PushWord #0 ;Req. file access
PushLong #0 ;Res. header address
PushLong #PathName ;Pointer to a class 1 pathname
_OpenResourceFile
PullWord FileID ;Open resource file I.D.

Aug 15, 1989 Page 4.14

Call Box Editors Manual Chapter 4 - Image Editor

And LOAD it into memory:

PushLong #0 ;Space for results

PushWord #$8001 :Requested Type (icon)
PushLong #1 ;Requested 1.D.
_LoadResource

CopyLong ResourceHandle ;Handle of resource in memory
PullLong $0 ;Deference it for a pointer

1dy #2 '

1da [$0]

sta ResourcePointer

1da [$0],y

sta ResourcePointer+2

At this point the resource is available to your application. When you are

done using this resource you can put it away with the Resource Manager
call CloseResourceFile:

PushWord FileID
_CloseResourceFile

The images address can now be passed to the appropriate routine for
plotting into a window or the super hi-res screen.

BASIC CONSIDERATIONS

The CALL BOX BASIC Interface uses binary code images. These images
are loaded into your Applesoft application with syntax as defined in the
CALL BOX BASIC Interface Manual. Images under Applesoft need no
special care and feeding.

Aug 15, 1989 Page 4.15

Call Box Editors Manual

Chapter 4 - Image Editor

Index of Chapter 4

ABOUT IMAGES

BASIC CONSIDERATIONS
BINARY FILETYPE $06
EDITOR OPERATION

LOAD IMAGES

RESOURCE FILETYPE (any)
SAVE IMAGES

SOURCE CODE FILETYPE $B0
USING BINARY CODE
USING RESOURCES

USING SOURCE CODE

e el = W N

13

12

15
12

14

Aug 15, 1989

Page 4.16

So What Software Notice #0

Call Box
SOFTWARE NOTICE Contents April 1,1990
This notice is the index for all of the Call Box software notices. Current disk = sampler.1
sampler.1 1 Program Revision: CB V2.0.1 4/90
sampler.1 2 New Program: AMP V1.0 4/90
sampler.1 3 New Program: MERGE.EDIT VX0.1 4/90
sampler.1 4 New Library: Advanced Function Templates V1.0 4/90

Desktop.Tmplt

Memory. Tmplt

GSOS.Tmplt

Sound. Tmplt

Long.Strt. Tmplt

REM.Tmplt
sampler.l 5 New Program: AMPER .EDIT V1.0 4/90
sampler.1 6 New Program: CB.STARTUP V1.0 4/90

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 1 of 1

So What Software Notice - #1

Program Revision: CB
Version: 2.0.1 April 1,1990
Prior Version: 2.0) January 15,1990

This revision fixes 3 bugs found in the software: (see sampler #1)

1. The port commands for local to global and global to local were not referencing the windows
port rec. This caused the wrong coordinates to be returned.

2. The long poke command would not poke values to any address other than bank 0. Attempts to
poke addresses above bank zero would result in trashing some bytes somewhere in bank zero.

3. The SoDOS (GS/OS Emulator) Class1 OpenGS call would only return the first byte of the
auxtype. This would cause unpredictable results for software using the codes stored in the auxtype
fields of a ProDOS file.

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708

So What Software Notice #2

New Program: AMP
Version: 1.0 April 1,1990

This program is an Ampersand interpreter for the program CB. and is supported by the Call Box
BASIC program AMPER .EDIT found on C.B.P.A. sampler #1.

This program is installed after installing the file CB. You can now issue Ampersand (&) commands
(Edit these commands with the Call Box BASIC program AMPER EDIT). This program will use a
page of bank zero memory just as most tools will. This page will be managed automatically by the
program, It will be disposed of by the issue of the CBShutdown command (CALL QF).

Using ampersand commands is advantageous in the fact that you do not have to RESTORE
CB.VARS because variables are not used to identify functional families in ampersand
programming. The disadvantage in using ampersand commands is that they usually take up more
code space than calls and if you'heed the aforementioned advantage you will not be able to locate the
BASIC Driver global page. If you use ampersand style commands (preferable for foreign language
users) it is strongly advised that you still RESTORE CB.VARS because many "advanced" functions
of the BASIC driver depend on some of the addresses it contains.

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708

So What Software Notice #3

New Program: MERGE.EDIT
Version: X.0.1 April 1,1990

This program is only 2 functions of a future un-announced program. It is provided however to aid
in the use of templates for those of you who do not have Applesoft merge programs.

Merge Edit will merge two Applesoft programs into one or will remove previously merged code
sections. This program is filetype S16 and should be placed in the EDITORS subdirectory so it can
be selected from the Editors menu in the launching shell.

When you enter Merge.Edit you will be presented with an info window displaying stats on two
Applesoft programs, one called Applesoft and the other called Applesoft (aux). You can select
Display from the Functions menu and two scroll windows will fill the screen. This is an alternate
display mode for this editor and should only be used when speed is not a factor to you... it is very
slow! (This will be fixed eventually, for right now this is experimental code).

Use the File menu selection Load Applesoft to load your target program (the program that is to be
written to). Next load the program that is to be appended to this file by using the File menu selection
Load Applesoft (aux). Now select the Functions menu selection Merge to write the aux program into
the main program. You can now select Save Applesoft or even Save Text which saves a text file of
the Applesoft program code. You can repetitively load and merge several Applesoft aux program
code segments without indicent. NOTE: Once a program has been merged the aux program copy
in memory can not be used again, it must be reloaded if you want to remove the merged code for
example.

Call Box - So What Software 10221 Slater Ave, Suite 103 Fountain Valley, CA. 92708

So What Software Notice #4

New Library: ADVANCED FUNCTION TEMPLATES
Version: 1.0 April 1,1990

This library contains merge-able program segments which give your Call Box BASIC programs
instant access to routines that are not in the supported command set.

The following are breif descriptions of each templates functions and use. These templates follow the
Call Box BASIC Standard for Line Numbering and are fully REMed. Refer to the Tech Notes for
the exact use of the routines contained in these templates.

DESKTOP.TMPLT ,

This template is the minimum required code necessry for a desktop application. It includes Desktop
Initialization, entity loading thermometer, Event loop, Menu distributor, Close topmost window,
No operation and Quit.routines and is used as the starting template in creating a new Call Box
BASIC desktop application.

MEMORY.TMPLT
This template provides you with 4 important memory allocation / de-allocation routines. This
template is needed by most of the other templates and should rarely be omitted. You can Allocate a

block of memory and deallocate it or Allocate a direct page and deallocate it. IMPORTANT
PRIMAL FUNCTIONS!

GSOS.TMPLT

This template gives you the ability to use SoDOS (GS/OS emulator) to issue Class 0 and Class 1
GS/0S commands. These commands are vital for things like sound or OBJ/EXEC file loading. You
get A fully automated GSOS Class 1 file load, GSExpandPath, GSOpen, GSRead, GSClose,
GSOS Error Handler plus error messages.

SOUND.TMPLT

This template gives you the ability to load and play sound files in either of the ACE compressed
modes or normal uncompressed form. You get A fully automated sound file loader/uncompressor,
Play sound and Play sound exclusive. Startup and shutdown code is included as well.

LONG.STRT.TMPLT

This template changes the first line in the DESKTOP.TMPLT to use the CB.STARTUP program
which is used for long Call Box BASIC program code segments that can not to do a -CB from
within themselves.

REM.TMPLT

This template is used to either zap the REM statements out of your program to conserve memory
space or to put them back in to deliniate a printout. This template effects the REM statements in the
Call Box Advanced Function Templates only.

Call Box - So What Software 10221 Slater Ave, Suite 103 Fountain Valley, CA. 92708

So What Software Notice - #5

New Program: AMPER.EDIT
Version: 1.0 . April 1,1990

This program is used to edit the ampersand text for the program AMP.

This program is written in Call Box BASIC and is used to edit the text of the Ampersand commands
found in the program AMP, This program must be run in the same directory as the file AMP is
located. Each ampersand command is 8 characters maximum and all are edited by either pointing
and clicking on them in the dialog box or step through them using the tab and left and right arrow
keys. Caution should be observed when editing ampersand commands so that no command is
created that contains character combinations that duplicate any Applesoft "tokens".

Call Box - So What Software 10221 Slater Ave, Suite 103 Fountain Valley, CA. 92708

So What Software Notice #6

New Program: CB.STARTUP
Version: 1.0 April 1,1990

This program is used by the code supplied in LONG.STRT.TMPLT.

This program simply sets the screen to 80 column text, starts-up CB and RESTORE:s the file
CB.VARS. The trick to this program is that it CHAINs back into its calling program which then
continues operation without ever having to start-up CB from within itself, This allows the calling
program to be as large as there is memory for...(approx 28 to 30K). The calling program must use
the program line presented in LONG.STRT.TMPLT and then this program will be evolked
automatically. it should be in the same directory as CB, CB.VARS and your calling program, other
configurations will necessitate that you alter the paths to suit,

This program should not be run directly! It should only be called from another Applesoft program
using the LONG.STRT.TMPLT code line.

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708

So What Software Notice #0

Call Box .
SOFTWARE NOTICE Contents , July 1,1990
This notice is the index for all of the Call Box software notices. Current disk = sampler.2
sampler.2 1 Program Revision: CB V2.1b3 7/90
sampler.l 2 New Program: AMP V1.0 4/90
sampler.1 3 New Program: MERGE.EDIT VX0.1 4/90
sampler.l 4 New Library: Advanced Function Templates V1.0 490

Desktop. Tmplt

Memory. Tmplt

GSOS.Tmplt

Sound. Tmplt

Long.Strt. Tmplt

REM.Tmplt
sampler.l 5 New Program: AMPER.EDIT V1.0 4/90
sampler.1 6 New Program: CB.STARTUP V1.0 4/90
sampler.2 7 Program Revision: WINDOW .EDIT V1.1b3 7/90
sampler.2 8§ New Program: ACE.EDIT V1.0 790
sampler.2 9 New Program: PATTERN.EDIT V1.0 750

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 1 of 1

So What Software Notice #1

Program Revision: CB
Version: 2.1b3 A July 1,1990
Prior Version: 2.0.1 April 1,1990

This revision fixes 1 bug found in the software and adds 1 new function: (see sampler #2)

V2.0.1 April 1990

1. The port commands for local to global and global to local were not referencing the windows
port rec. This caused the wrong coordinates to be returned.

2. The long poke command would not poke values to any address other than bank 0. Attempts to
poke addresses above bank zero would result in trashing some bytes somewhere in bank zero.
3. The SoDOS (GS/OS Emulator) Class1 OpenGS call would only return the first byte of the

auxtype. This would cause unpredictable results for software using the codes stored in the auxtype
fields of a ProDOS file.

V2.1b3 July 1990

1.The Dialog command to return text would malfunction when 2 or more text items were fetched.
The program was not updating an internal pointer.

2. CALL SF has been added to this driver. This call creates and operates LOAD and SAVE dialogs
which are identical to STANDARD FILE TOOL boxes in GS/OS V5.0.2. CB V2.1b3 requires the
file SF and CB.INITb1 to be present in the boot volumes SYSTEM/SYSTEM.SETUP
subdirectory. The old CB.INIT can be discarded. To make the SF functions available in BASIC add
the following statements directly after you issue a RESTORE CB.VARS...

GS=AY+3:SF=GS +3

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708

So What Software Notice #7

Program Revision: WINDOW.EDIT
Version: 1.1b3 July 1,1990

This revision fixes several bugs and adds 1 new feature.

This revision adds a dialog that lets you set the rectangles that describe the windows normal and
zoomed rectangles. This selection is called NUMERIC RECTS. The color table has been fixed so
that Alert windows come up looking right. This change affects the colors dialog and some re-
familiarization will be needed to use this dialog properly. Several internal and obscure errors have
been corrected. These errors altho not noticable by the user caused imbalances in the operating
system that could cause hangs or crashes in special circumstances.

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708

So What Software Notice - #8

New Program: ACE EDIT
Version: 1.0) July 1,1990

This program is an ACE (Audio Compression and Expansion) editor named ACErs.

This program is titled ACErs by Joe Jaworski and is used to create compressed sound files from
uncompressed ones or to create uncompressed sound files from compressed ones. There are
facilities to set the playback speed and volume as well as to preview your sound files.

Sound files created (sampled) with any of the popular digitizing hardware/software products can be
edited with ACE EDIT and the size limit of the sound file is proportional to the amount of memory
your computer has. This program has operating instructions included under the colored apple menu
as well as a description of a proposed compression standard for these files.

Sound Files found on the GEnie BBS as well as other Apple specific boards are usually in forms
compatible with this editor and you can directly download them for immediate use.

I would like to take this opportunity to thank Joe Jaworski for donating this program for your use.
He has created some of the Call Box WYSIWYG Editors, HyperLaunch and numerous other
programs and is one of the major movers and shakers of the Apple IIgs community aside from
being one of the most intelligent programmers I know.

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708

So What Software Notice #9

New Program: PATTERN.EDIT
Version: 1.0 July 1,1990

This program is a Pattern Editor which is writter in Call Box BASIC.

This program edits patterns for use by the Call Box BASIC driver. You can load or save patterns
and edit or create patterns using point and click type of editing. The program is self evident as to
how it works and uses some advanced techniques in Call Box BASIC programming. This program
should be listed out and used as a tutorial and example code for you programming work. The
controls used in this editor are "home brewed" and not under the direction of the Control Manager.

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708

So What Technical Notes - #0

Call Box
TECHNICAL NOTES Contents April 1,1990

This technical note is the index for all of thc Call Box technical notes.¥*R* =Revised *** = New

1 Tool Loading using CB.Tool.List 1590
R 2 Allocating Your Own Memory 2/90
*xk 3 The Call Box BASIC Global Page 2/90
ok 4 Allocating Direct Pages 2/90
*Ek 5 Finding a Ports Pixel Image 2/90
*Ex 6 Using GS/OS Calls 2/90
*Ex 7 Setting up a Special Edit Menu 290
Ek 8 Directory Structures . 290
*Ex 9 Custom Desktops ~ 290
*kx 10 Using Sound in your BASIC Applications 2/90
*Ex 11 The Call Box Standard for Line Numbering 3/90
*kx 12 Recommended Reference Documentation 3/90
*Ex 13 Standard Program Templates 390

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 1 of 1

So What Technical Notes #1

Call Box

Tool Loading using CB.Tool.List
Written by: William Stephens January 15,1990

This technical note describes the loading of system tools using the special files named
CB.TOOL.LIST, START and CB.PreLaunch in the Call Box TPS V2.0.

Tools are loaded under GS/OS V5.0.2 in the Call Box TPS environment. These tools are
subsequently re-started by the Call Box BASIC Driver under ProDOS 8 control. A method for
loading just the files you need is provided by the use of the file CB.TOOL.LIST, This file is placed
in the SYSTEM/TOOLS subdirectory of your boot volume and is a standard text type file which you
can edit with any word processor or text editing software. Instructions for editing the file is provided
in the file itself which also covers the startup order for system tools.

The file CB.TOOL.LIST is read by the programs CB.PreLaunch and the special START program
for use on bootable Call Box BASIC disks. These files startup and then shutdown the specified
tools making them memory resident... Call Box BASIC can then re-hook these tools into the system
and make them available to your Call Box BASIC programs.

The files CB.PreLaunch and the special START are located in the CB.Init subdirectory of the
Launching Shell disk. This subdirectory contains other special files which you should not have to
directly manipulate. These files are copied and used by installation scripts which are executed from
within the Installer program provided on the Launching Shell disk..

Some of the tools specified in the file CB.TOOL.LIST are not currently supported in V2.0, these
tools are noted as such and should not be installed or operated under Call Box BASIC. Failure to
heed these warnings will cause crashes and hangs galore! The entries in the CB.TOOL.LIST file
have the following format: ‘

I04,$0301 Quickdraw II '

i 32 characters exactly !

The tool table is terminated with two ASCII zeroes...00 at the beginning of the last line of the table.
The format of the rest of this file is up to you and can contain comments, notes or whatever without
restriction as long as the very beginning lines are the tool table.

Further Reference

Call Box BASIC Manual V2.0

Call Box - So Whﬁt Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page1of 1

So What Technical Notes #92

Call Box

Allocating Your Own Memory

Written by: William Stephens January 15,1990
Revised by: William Stephens February 15,1990

This technical note describes how to use CALL LC (Long Call) to allocate memory blocks for
your own use in the higher banks of the Apple IIgs memory range.

Some programs need data buffers for special data needed by a particular programming applications.
These buffers (blocks) can be allocated by using a Long Call to the Memory Managers New Handle
function. This function needs a user LD. to allocate blocks with and this LD. is present in the Call
Box Global Page. Use the following statement to get the user I.D. number:

ID = 6144 + PEEK(PO + 180)

This statement creates a special user LD. in the form of $18xx, where xx is the assigned user I.D.
for the Call Box Basic Driver. Once you have a user LD. you can then allocate a block of memory.
For example let's allocate a block of memory that is $1000 bytes long, can reside anywhere in
memory and is locked:

CALL LC,_0,_$1000,ID,$0000,_01$0902_H
IF H = 0 THEN (memory allocation error handler)

This statement will allocate the block of memory and return a HANDLE for the block allocated. This
handle is important to remember for de-allocating the block later on so keep this variable, H
however needs to be DEFERENCED (De-Referenced) to derive a pointer to the memory block
which is what you need to address the block of memory from your application. Use the following
statement to deference the handle:

CALL PE,4,H,P
Now H will contain the handle of the memory block and P will contain its pointer.
The techniques outlined here apply to many toolbox functions which can be accessed by CALL LC,

Some routines will require a user L.D. and some will require handles or pointers... by using these
statements you will be able to derive the right kind of data for your tool calls.

Further Reference
Call Box BASIC Manual V2.0
Apple IIgs Toolbox Reference: Volume(s) 1,2 and 3

Apple is a registered trademark of Apple Computer Inc.

Call Box - So What Software 10221 Slater Ave, Suite 103 Fountain Valley, CA. 92708 Page 1 of 1

So What Technical Notes #2

Call Box

Allocating Your Own Memory

Written by: William Stephens January 15,1990
Revised by: William Stephens February 15,1990

This technical note describes how to use CALL LC (Long Call) to allocate memory blocks for
your own use in the higher banks of the Apple IIgs memory range.

Some programs need data buffers for special data needed by a particular programming applications.
These buffers (blocks) can be allocated by using a Long Call to the Memory Managers New Handle
function. This function needs a user LD. to allocate blocks with and this L.D. is present in the Call
Box Global Page. Use the following statement to get the user LD, number:

ID = 6144 + PEEK(PO + 180)

This statement creates a special user LD. in the form of $18xx, where xx is the assigned user LD.
for the Call Box Basic Driver. Once you have a user L.D. you can then allocate a block of memory.
For example let's allocate a block of memory that is $1000 bytes long, can reside anywhere in
memory and is locked:

CALL LC, 0, $1000,ID,$0000, 0\$0902_H
IF H = 0 THEN (memory allocation error handler)

This statement will allocate the block of memory and return a HANDLE for the block allocated. This
handle is important to remember for de-allocating the block later on so keep this variable. H
however needs to be DEFERENCED (De-Referenced) to derive a pointer to the memory block
which is what you need to address the block of memory from your application. Use the following
statement to deference the handle:

CALL PE,4,H,P
Now H will contain the handle of the memory block and P will contain its pointer.
The techniques outlined here apply to many toolbox functions which can be accessed by CALL LC.

Some routines will require a user .D. and some will require handles or pointers... by using these
statements you will be able to derive the right kind of data for your tool calls.

Further Reference
Call Box BASIC Manual V2.0
Apple IIgs Toolbox Reference: Volume(s) 1,2 and 3

Apple is a registered trademark of Apple Computer Inc.

Call Box - So What Software 10221 Slater Ave. Suite 103 Founlain Valley, CA. 92708 Page 1 of 1

So What Technical Notes #3

Call Box

The Call Box BASIC Global Page
Written by: Eric Joham February 5,1990

This technical note describes the Call Box BASIC driver GLOBAL PAGE. This page of memory
contains important addresses for advanced programming of the Call Box BASIC driver,

Here is a more detailed description of the Call Box BASIC Driver Global Page. Reserved areas are
not described in detail and should not be used as they may contain important information needed by
the Driver.

$xx00 (+0)] BASIC Driver entry point vectors. Must not be

I modified! All vectors are set to the following:
| jsr $xx6C
| where $xx is the most significant byte of the Global Page
$xx6B address.
$x§6C (+108)] Routine vector interpreter. Determines which set of calls
! are to be executed and jumps to high bank subroutine
$xx81 distributor., RESERVED!
$xx82 (+130)] Firmware entry point for native mode routines.
$xx8D RESERVED!

$xx8E (+142)] Active Flag: Call Box is active if bit 15 is set.

$xx90 (+144)] Reserved direct page locations. MUST not be used or
$x£B3 modified!

$xxB4 (+180)] User ID: Can be used to obtain memory but must not be changed.

$xxB6 (+182)] Reserved direct page locations. MUST not be used or
$x£D1 modified!

$xxD2 (+210)] Stack Size: holds number of pages reserved for native mode stack.

$xxD4 (+212)] Reserved direct page locations. Must not be used or modified!
$xxEF '

$xxFO (+240)] User Buffer Address: Holds location of user buffer,

$xxF2 (+242)] User Buffer Length: Holds length of user buffer.

$xxF4 (+244)| Direct Page Size: holds number of pages used by tools.

$xxF6-$xxFF (+246)] Remaining locations are reserved.

There may be times when you want to directly access the individual Call Box commands such as
when installing an Ampersand interpreter. The entry points are in the BASIC Driver entry point
vectors at the beginning of this direct page. The following list identifies these entry points. It should
be noted that non-Applesoft language access to these vectors is difficult at best because the calls get
their input information from the Applesoft program listing pointed to by the Applesoft line parser
located at $B1 in the 0/0 page and the output is usually returned in Applesoft variables.

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 1 of 2

So What Technical Notes

#3

+00
+03
+)6
+09
+12
+15
+18
+21
+24
+27
+30
+33
+36
+39
+42
+45
+48
+51
+54
+57
+60
+63

CALL PO
CALL PE
CALL QF
CALL SC
CALL PL
CALL SB
CALL PN
CALLLN
CALLRE
CALL OV
CALLRR
CALL AR
CALLEV
CALL CU
CALL TX
CALL PT
CALL WN
CALL ME
CALL DI
CALLTL -
CALLLC
CALL AY

Further Reference

Big Poke command

Big Peek command

Shutdown Call Box BASIC command
Screen commands

Palette commands

Scanline Control Byte commands

Pen commands

Line command

Rectangle command

Oval command

- Rounded Rectangle commands

Arc command$
Event commands
Cursor commands
Text commands
Port commands
Window commands
Menu commands
Dialog commands
Tool commands
Long Call command
Super Array commands

Call Box BASIC Manual V2.0

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708

Page 2 of 2

So What Technical Notes #4

Call Box

Allocating Direct Pages
Written by: William Stephens February 9,1990

This technical note describes how to allocate direct pages needed by some tools and for your own
applications use.

Direct pages are 256 bytes long and reside in bank zero of your Ilgs. These pages are page aligned
(starting on page boundaries ie: 0, 256, 512, 768...). Some tools require a direct page for their own
use and some require more than one yet others require none... refer to the Tool Box Reference
Manuals for the exact information on the tool you wish to use. Usually in Call Box BASIC you will
not need to worry about this but when you wish to use tools not directly supported by the BASIC
driver then you must take matters into your own hands and allocate your own memory.

Allocating direct pages under Call Box is quite simple but requires a machine code patch to call
ProDOS 8 for some space. This patch can be installed by using the BigPOKE command.

As an example let's put the patch in a rarely used area of the input buffer at $2C0 (704).
20 CALL PO,4,704,$F52001A9 : CALL PO,2,708,$60BE

The first call installs 4 bytes and the second call installs another 2 bytes for a total of 6 bytes. The 01
part of the hexidecimal number in the first call is the number of pages you wish to allocate... if this
is changed to 03 for example then 3 direct pages will be allocated. To actually do the allocation you
need to call this patch,

CALL 704

The next thing you need to do is inform Call Box about this allocation by incrementing the direct
page size by the amount of direct pages you have allocated.

A = PEEK(PO+244) : A = A + 1 : POKE PO+244,A

The last thing you need to do is pass the address of your global page back to your program so you
have a record of where it is. This is accomplished by multiplying the current page count by 256 and
subtracting it from the Call Box BASIC global page address:

A = PO - (A*256)

Direct page de-allocation should be performed by Call QF and should not be attempted on your
own. You really have to know what you are doing to make this type of thing happen.

Further Reference

Call Box BASIC Manual V2.0

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 1 0f 1

So What Technical Notes #5

Call Box

Finding a Ports Pixel Image
Written by: William Stephens February 15,1990

This technical note describes how to find the address to a grafports pixel image. This address is
needed for direct accessing of the pixel image.

Grafports, unlike other entities do not have a call to return the handle or pointer to their images. The
need will arise from time to time when you need to know this address for some reason like fetching
color palettes or SCB's from the grafports pixel image. A grafport in Call Box BASIC differs from
the traditional grafport in that the pixel image also includes all the SCB's and all 16 color palettes.
When the port is displayed only the SCB's and the majority color palette is used, leaving the other
15 color palettes in the ports pixel image and not in the display pixel image at $E1/2000. To access
these other palettes you need to know their address. To derive the address of a ports pixel image use
the following procedure: (N = Ports Entity Number A = Ports Pixel Image Address)

A = ((PEEK(PO + 120)* 65536)+ 256) + (N * 4)
CALL PE4,AA : CALL PE/4,AA : A = A + 2 : CALL PE,4,A A

This will find the address of the grafports pixel image and put the results in A. If you want to access
the SCB's then add 32,000 to the value A, if you want to access the color tables then add 32,256
to the value A.

Example:

Let's copy all of the color palettes associated with a Call Box Grafport to the display grafport. First
you must run the above procedure and then use the Quickdraw II call SetColorTable ($0E04)
in a FOR - NEXT loop which sequentially reads palettes 0 through 15:

A= A + 32256 : FOR N = 0 TO 15 : CALL LC,N,_A\$0E04\
A= A + 32 : NEXT

This is just a single example to give you the "feel" of how this technique works. It is handy to
know about grafport record structure plus handles and deferencing to fully appreciate the power and
flexibility of this type of procedure. Unfortunately... these things may be hard to understand for the
uninitiated. At the very least this tech note will allow you to use this technique without having to
fully understand it... for now that is.

Further Reference

Apple Ilgs Toolbox Reference Vol 1,2 and 3
Call Box BASIC Manual V2.0

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 1 of 1

So What Technical Notes #6

Call Box

Using GS/0S Calls
Written by: William Stephens : February 15,1990

This technical note describes how to use GS/OS Class 1 calls to load a disk file into an allocated
block of memory.

Loading and managing your own blocks of data is vital for any sophisticated program and is
necessary for things such as sound files for the Sound Manager and A.C.E. The process requires
several steps and necessitates the set-up of a direct page for all the parameter blocks and pathname
buffer. The scenario goes something like this... Allocate a direct page, Create the GS/OS Caller,
Create the Pathname, OPEN the file, ALLOCATE a block for it, READ the file into the block
followed by CLOSE the file. When you are done with the files data you DE-ALLOCATE the block
of memory, and then DE-ALLOCATE the direct page and then quit. This is how it's done in
Assembly language or for that matter from any language.

The following diagram shows the layout of the needed GS/OS parameter blocks:

GSOpen ($2010) GSRead ($2012) Expand_Path ($200E) GSClose ($2014)

PCount (15} +0 PCount (5) +0 PCount (3) +0 PCount (1) +0
Refaence # +2 Reference # +2 42 Reference # +2
f— Input Path v—
+4 + Panameter block size = 4 byies
— Pathname Prr. - — Dana_Buffer_Pir. b '
p— Output Path —
Acceas Allowed (0) +8 +8
- Roquested Cnt. —
Resource # (0) +10 Flag +10
Access +12 +12 Parsmetzr block size = 12 bytes
P Transfer Cnt. -
Filetype +14
+16 Cache Priority +16

— Auxtype =
Parameter block size = 18 bytes

Qtoragetype +20

- - GS/OS Caller Routine

P Create_Date_Time o

= - D1 CLC Set Native mode
+30 XCE

: Mod Dite_Time : . REP #$30

. o] JSL $E100A8 GS/OS inline call
s Di+8 XX Call code

= Option List (0) = Di+10 XXXX Parameter Ptr.

B] STA $FE Handle errors

- BNE OUT ‘

- Blocks Used — STZ $FE
" OUT SEP #$30

[~ ReowcsEOF = SEC Set emulation mode

= Resource Blocks maund +54 XCE

RTS
Parameter block size = 58 bytes

GS/OS Calla Routine size = 25 bytes

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 1 0f 6

So What Technical Notes #6

The first step of this process is to allocate and then setup the direct page work area. Allocate 1 direct
page as outlined in tech note 4:

CALL PO,4,704,$F52001A9 : CALL PO,708,$60BE : CALL 704 :
A = PEEK(PO + 244) : A = A + 1 : POKE PO + 244, A :
D1 = PO - (A * 256):
FOR I = 0 TO 255: POKE D1 + I,0: NEXT

D1 equals the starting address of this direct page. Let's layout the direct page as follows... starting
at address D1 put the GS/OS Caller Routine which takes up 25 bytes. Next is the GSOpen
parameter block which is 58 bytes long followed by the GSRead block (18 bytes) the Expand_Path
block (12 bytes) and the GSClose block (4 bytes) finally let's use the last 128 bytes of the direct
page for the pathname buffers. Give a variable to each of these locations to simplify the code.

D2 =D1+25:D3=D2+58:D4=D3 +18:D5=D4 + 12 :
D6 = D1 + 128 : D7 = D1+190 : D8 = D1 + 188

Now D1 = GS/OS Caller Routine, D2 = GSOpen parameter block, D3 = GSRead parameter block,
D4 = Expand_Path block, D5 = GSClose parameter block, D6 = Input buffer, D7 = Output Path
and D8 = Output Path Buff.

Its time to setup this page by first writing in the GS/OS Caller routine:

CALL PO,4,D1,$30C2FB18: CALL PO,4,4 + D1,$E100A822:
CALL PO,4,14 + D1,502BOFE85: CALL PO,4,18 + D1,$30E2FEG4:
CALL PO,3,22 + D1,$60FB38

Next put the PCounts and buffer size in.
CALL PO,2,D2,15: CALL PO,2,D3,5: CALL PO,2,D4,3 : CALL PO,2,D5,1 :
CALL PO,2,D8,66

It's now time to put the pathname in the pathname buffer. For this example let's assume that the
pathname is contained in the string variable A$. :

L1 = LEN(A$): FOR | = 1 TO L1:
A = ASC(MID$(A$,1,1)): POKE D6 + 1 + I,A: NEXT:
CALL PO,2,D6,L1

Use Expand_Path to create a full pathname from the partial in A$.

CALL PO4,2 + D4,D6 : CALL PO,4,6 + D4,D8 : CALL PO,4,10 + D1,D4 :
CALL PO,2,8 + D1,$200E : CALL D1
IF PEEK(254) < > 0 THEN (GS/OS ERROR MESSAGE ROUTINE)

It's now time to make a GSOpen call:

CALL PO,4,4 + D2,D7 : CALL PO,4,10 + D1,D2: CALL PO,2,8 + D1,$2010:
CALL D1
IF PEEK(254) < > 0 THEN (GS/OS ERROR MESSAGE ROUTINE)

If this call is successful then all of the data specified in the GSOpen parameter block will be filled
in. If this call fails for some reason then you need to handle the errors yourself, if the volume
specified in the pathname is not online then a dialog box will appear prompting you to insert the
proper volume before proceeding. '

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 2 of 6

So What Technical Notes - #6

Pass the reference numbers to the other parameter blocks from the GSOpen block.:
CALL PE2,2 + D2,A: CALL PO,2,2 + D3,A: CALL PO,2,2 + D5,A

The GSOpen call will return several pieces of data, one of them in particular is of intrest to you and
that is the EOF. EOF (End Of File) is the length of the file you just opened, it's found at the 42nd
byte of the GSOpen parameter block. You must now use the EOF to allocate a block of memory for
the file to reside in. Use the procedure outlined in tech note 2 to allocate this block of memory, use
the EOF for the 2nd (length) parameter in the call.:

CALL PE4,42 + D2,L: ID = 6144 + PEEK(PO + 180)
CALL LC, 0, L,ID,$0000, 0\$0902_H
IF H = 0 THEN (MEMORY ERROR MESSAGE ROUTINE)
CALL PE,4,H,A

A will hold the address of the beginning of the allocated block and H will hold its handle... keep
both of these for later use.

Now we can read the file into the block, but first we must setup the GSRead parameter block. Put
the address (A) and the length (L) into the parameter block.:

CALL PO,4,4 + D3,A: CALL PO,4,8 + D3,L
Read the file into the block."”

CALL PO,4,10 + D1,D3: CALL PO,2,8 + D1,$2012: CALL D1
IF PEEK(254) < > 0 THEN (GS/OS ERROR MESSAGE ROUTINE)

All that is needed now is to close the file.;
CALL PO,4,10 + D1,D5: CALL PO,2,8 + D1,$2014: CALL D1

This puts the file in the block and everything is ready for use. REMEMBER... A holds the address
and H holds the handle. Do not loose these values because they are vital for locating and de-
allocating this memory block when your program is ready to shutdown.

Example Code:

The following pages present actual Applesoft program lines which you can copy into your
programs. There are 3 memory allocation routines, 5 GS/OS read routine and 3 GS/OS setup/error
routines. The variables ID,I,A,L,L1,H,P,D1,D2,D3,D4,D5,D6,D7 and D8 are used by these
routines. H = Memory block handle L = Block size P = Memory block address ID = special user
LD. number D1 = Direct page address.

Allocate a block of memory: (in =L, out = H,P,ID)

De-Allocate all special blocks: (in=1ID, out=)

Allocate and clear a Direct Page: (in =, out=D1)

Load a file into memory GS/OS Class 1: (in =A$,D1,02,D3,D4,D5,D6,D7,D8, out = H,P,L,ID)
GSExpand_Path: (in = A$,D1,D4,D6,D8 out =)

GSOpen: (in = D1,D2,D5,D7,{full pathname} out =)

GSRead: (in=D1,D3,P,L out =)

GSClose: (in=D1,D5 out =)

Set-Up the GS/OS Dir. Page and Error Messages: (in =, out = D1,02,D3,D4,D5,D6,D7,D8)

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 3 of 6

So What Technical Notes #6

Use routine 56000 once at the beginning of your program and simply put a full or partial
pathname in A$ and GOSUB 50000 to load it into memory and get the Handle, Pointer and
Length returned to you. An error handler is included as well using text file GSOSERROR.T.

44999 REM
Allocate a block of memory

45000 ID = 6144 + PEEK (PO + 180): CALL LC,_0,_L,ID,$0000,_0\$0902\ H: IF H = 0 THEN

55030
45010 CALL PE4,H,P: RETURN
45019 REM

De-Allocate all special Blocks

45020 CALL LC,ID\$1102\: RETURN

45029 REM
Allocate and Clear a Direct Page
45030 CALL PO,4,704,$F52001A9: CALL PO,2,708,$60BE: CALL 704.A = PEEK (PO + 244):A
= A % 1;POKE PO + 244 A:D1 = PO - (A * 256) : FOR | = 0 TO 255: POKE D1 + 1,0: NEXT
: RETURN
49999 REM

Load a file into memory GS/OS Class 1

50000 GOSUB 50100: GOSUB 50200: CALL PE,4,42 + D2,L: GOSUB 45000: GOSUB 50300:
GOTO 50400
50099 REM
GSExpand_Path

50100 L1 = LEN (A$): FOR | = 1 TO L1:A = ASC (MID$ (A$,1.1)): POKE D6 + 1 + LA: NEXT :
CALL PO,2,D6,L1: CALL PO4,2 + D4,D6: CALL PO4,6 + D4,D8
50110 CALL PO,4,10 + Dt,D4: CALL PO,2,8 + D1,$200E: CALL D1: IF PEEK (254)< > 0 THEN

55000
50120 RETURN
50199 REM
GSOpen

50200 CALL PO,4,4 + D2,07: CALL PO,4,10 + Di1,D2: CALL PO,2,8 + D1,$2010: CALL D1: IF
PEEK (254) < > 0 THEN 55000
50210 CALL PE2,2 + D2,A: CALL PO,2,2 + D3,A; CALL PO,2,2 + D5A: RETURN
50299 REM
GSRead

50300 CALL PO,4,4 + D3,P: CALL PO4,8 + D3,L: CALL PO,4,10 + Di,D3;: CALL PO,2,8 +
D1,$2012: CALL D1: IF PEEK (254) < > 0 THEN 55000
50310 RETURN
50399 REM
GSClose

50400 CALL PO4,10 + D1,D5: CALL PO,2,8 + D1,$2014: CALL D1: RETURN

Call Box - So What Software 10221 Slater Ave, Suite 103 Fountain Valley, CA; 92708 ~ Pagedof6

So What Technical Notes #6

54999 REM
GSOS Error Handler

55000 CALL SC,0: HOME : FOR | = 0 TO 21: CALL AY,2,ER|,A: IF A = PEEK (254) THEN

55020
55010 NEXT
55020 CALL $C,0: HOME : PRINT "GS/OS Error...";: CALL AY,2,ER$,[X],A$: GOSUB 45020:

CALL - 1052: CALL QF: END
55030 POP : CALL SC,0: PRINT "Memory Allocation Error..": GOSUB 45020: CALL QF: END
55999 REM
Setup the GSOS Dir. Page and Error Messages

56000 GOSUB 45030:D2 = D1 + 25:D3 = D2 + 58:D4 = D3 + 18:D5 = D4 + 12:D6 = D1 + 128:D7 =
D1 + 190:D8 = D1 + 188 .
56010 CALL PO,4,D1,$30C2FB18: CALL PO,4,4 + D1,$E100A822: CALL PO,4,14 +
D1,$02BOFE85: CALL PO,4,18 + D1,$30E2FE64: CALL PO,3,22 + D1,$60FB38: CALL
P0O,2,02,15: CALL PO,2,D3,5: CALL PO,2,D4,3: CALL PO,2,D5,1: CALL PO,2,D8,66
56020 CALL AY,1,ER[21]: CALL AY,1,ER$,[21]: PRINT CHR$ (4);"OPEN GSOSERROR.T" :
PRINT CHR$ (4);"READ GSOSERROR.T"
56030 FOR | = 0 TO 21: INPUT A: CALL AY,3,ER,[IJ,A: NEXT : FOR | = 0 TO 21: INPUT A$:
CALL AY,3,ER$.,[,A$: NEXT : PRINT CHR$ (4);"CLOSE" A = FRE (0) ;: RETURN

EL s

The Call Box Standard for Line Numbering

To keep a desktop Applesoft program "tidy" we recommend that certain line number
ranges be used for certain functions. This will allow you to cut and paste your Applesoft
(or at least cursor trace) programs using standard templates... let's face it, toolbox
programming requires a lot of information to be passed to and from the routines and if you
already typed it out, why do it again! A growing library of templates is being generated for
tricky Call Box procedures which are available to you through C.B.P.A. and will follow
these guidelines, This tech note is one of them. The standard goes something like this...

0 - 198 Call Box initialization, Entity loading and program initialization,
200 - 298 Main Event loop stuff

300 - 398 Menu distributor stuff

400 - 498 Quit stuff

500 - 39998 (Undefined)

40000 - 44998 Sound stuff

45000 - 49998 Memory management stuff (as shown in this tech note)
50000 - 54998 GS/OS stuff (as shown in this tech note)

55000 - END Error message handling and environment initialization

Deviations on this scheme is purely up to you, we just hope that you have a good re-
numbering program available because we will adhere to this standard and put out our tech
notes and sample code disks using it.

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 5 of 6

So What Technical Notes

#6

This is the file GSOSERROR.T. Type this in on any word processor or text entry software and

save it to disk as a type TXT file.

16

39

40

43

46

64

67

68

69

70

72

74

75

76

78

79

80

82

83

88

90

99

Device Not Found

/O Error

No Device Connected
Disk is Write Protected
Disk Switched

Invalid Pathname Syntax
Invalid Reference Number
Path Not Found

Volume Not Found

File Not Found

Volume Full

Version Error
Unsupported Storage Type
EOF Encountered

Access Not Allowed
Buffer Too Smali

File Is Open

Unsupported Volume Type
Invalid Parameter Value
Not A Block Device

Block number out of range
File Does Not Contain Resource Fork

~

Further Reference

GS/OS Reference

Apple IIgs Toolbox Reference: Volume(s) 1,2 and 3
Call Box BASIC Manual V2.0

Tech Notes 2 and 4

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA, 92708

Page 6 of 6

So What Technical Notes #7

Call Box

Setting up a Special Edit Menu :
Written by: William Stephens February 16,1990

This technical note describes how to modify a menu entity to respond with Special Edit Menu
features activated by System Windows.

A Special Edit Menu is a menu which contains the menu items UNDO, CUT, COPY, PASTE,
CLEAR and CLOSE. These items have LD. numbers of 250 through 255 and are activated
whenever a system window is the topmost window on the desktop. Most New Desk Accessories
(NDA's) use these items because NDA's are in system windows.

The Call Box Menu Editor is capable of including these items by name but not by 1.D. number. I1.D.
numbers are automatically assigned in this editor starting at 256 and are in sequential order, so the
special edit menu items in your menu would have 1.D. numbers larger than 256. You can use Long
Call (CALL LC) to make SetMItemID ($380F) calls to change these items LD.'s to the range
250 - 255 which would setup the Special Edit Menu.

Example:

Make a simple menu entity using the Call Box Menu Editor with the following items:
Apple enabled)

enabled - underlined)

enabled)

Close (disabled - underlined)

Quit enabled - Key = Q)

(
About (
(
E

Edit (enabled)
(
(
(
(

File

Undo (disabled - underlined - key = Z)
Cut disabled - Key = X)

Copy (disabled - Key = C)

Paste (disabled - Key = V)

Clear (disabled)

About = 256, Close = 257, Quit = 258, Undo = 259, Cut = 260, Copy = 261, Paste = 262 and
Clear = 263, After you load and display this menu from within your program use the following
statements to convert the menu item I.D.'s to the Special Edit Menu item 1.D.'s.

CALL LC,255,257\$380F\
FOR I = 0 TO 4: CALL LC,250 + 1,259 + N\$380F\: NEXT

Putting the Call Box BASIC Drivers Menu command Check Menu (CALL ME,2,N) in your
programs event loop will detect the presence or absence of a system window and enable or disable
these items automatically.

Further Reference

Apple Ilgs Toolbox Reference: Volume(s) 1,2 and 3
Call Box BASIC Manual V 2.0

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valiey, CA. 92708 Page 1 of 1

-,

So What Technical Notes #8

Call Box

Directory Structures
Written by: William Stephens February 18,1990

This technical note describes the layout of subdirectories for disk and hard disk setups using the
Call Box TPS or BASIC Driver.

The following descriptions should be used as a guide for the layout of Call Box environments. You
will notice that the environment for 3.5 inch disks is a subset of the environment for hard disks.

Hard Disk Subdirectory levels

Volume (Root) Level 1 Level 2 Level 3 Level 4 Level 5
ROOT CALL.BOX——BASIC ENTITY WINDOW
DIALOG
MENU
IMAGE
SOUND
CONTROL
SCRIPTS
WINDOW.EX
MENU.EX
DIALOG.EX
IMAGE.EX
EDITORS
TEMPLATES

3.5 inch disk Subdirectory levels

Volume (Root) Level 1 Level 2 Level 3 Leve! 4 " Level §

CB.BASIC —ENTITY WINDOW
DIALOG
MENU
IMAGE
SOUND
CONTROL

Further Reference

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 1 of 1

So What Technical Notes #9

Call Box

Custom Desktops
Written by: William Stephens February 22,1990

This technical note describes how to make desktops containing patterns or pictures instead of the
standard desktop colors.

You can set the desktop color by using the screen color call CALL SC,2,$777? after calling CALL
TL,2,"DESK" and this is quite straight forward and simple.. but if you want some pattern or even a

picture as your desktop you need to use a different process. This process requires you to use the
Tool Locator call MessageCenter before calling CALL TL,2,"DESK".

The Window Manager which handles desktop drawing looks for a desktop message before it creates
one. If a desktop message is present then the Window Manager uses the information in this message
to draw the desktop, if no message is found then it uses the standard default colors (usually
Periwinkle blue in 640 mode or light blue in 320 mode). The Toolbox Reference Manual describes
this message as follows:

+0

— Reserved — Long Any Value... make it 0
+4 MessType Word 2 is the Desk Message
+6 Draw Type Word 0 =Pattern 1 =Picture
+8

/\-—/ Data 32 bytes of pattern data or 32000 bytes
/—\/ of picture data.

DrawData

Making a Message...
To make a pattern message put yourself in plain old Applesoft BASIC and type CALL -151, this
puts you in the monitor. Type in the following line:

1000: 00 00 00 00 02 00 00 00

Next you either type in 32 bytes of data which is a pattern or if you have some saved to disk
BLOAD them at $1008. Now issue the following command:

BSAVE PATTERN.MESS,A$1000,L$28

This saves the message to disk as the file PATTERN.MESS.

Making a picture message is very similar, but you first need to take a filetype $C1 picture and
change its filetype to BIN (Use the File Utilities in the Call Box Launching Shell) and then
BLOAD it at $1008. Now from the monitor type in the following line:

1000: 00 00 00 00 02 00 01 00

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA., 92708 Page 1 of 2

So What Technical Notes #9

Next type in this line:
BSAVE PICTURE.MESS,A$1000,L$7D08

This is all there is to it!
Using the Message...
After you startup the Call Box BASIC Driver (-CB) and load in its variables (RESTORE

CB.VARS) you need to load and then pass the message. Use the GS/OS load code presented in tech
note 6 to load in your message:

GOSUB 56000 : A$ = "(pattern or picture)MESS" : GOSUB 50000
Next you pass the message handle to the mcssage.center:
CALL LC,1,2, H\$1501\

Now when you issue the CALL TL,2,"DESK" your picture or pattern will fill the desktop. This
condition will persist until you shutdown your IIgs or you issue a delete message command...

CALL LC,3,2,_H\$1501\
As I said, this condition persists even if you "BYE" out of Applesoft into a GS/OS Launching

program... If this launcher is a desktop application like Hyperlaunch or the Finder the desktop will
still be in the style you put it in with these commands.

Further Reference

Apple IIgs Toolbox Reference: Volume(s) 1,2 and 3

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 2 of 2

So What Technical Notes #10

Call Box

Using Sound in your BASIC Applications
Written by: William Stephens February 24,1990

This technical note describes how to add Sound Manager and ACE (Audio Compression and
Expansion) tool calls to your Call Box BASIC Applications.

Care and feeding

Edit the CB.TOOL.LIST (see tech note #1) file in the SYSTEM/TOOLS subdirectory of your boot
volume. Load or (import) the file into your word processor or text edit software and copy the lines
for Sound Manager and ACE and insert them just below the Dialog Manager in the tool list... save
the CB.TOOL.LIST file back to the subdirectory. (make sure it's still has filetype TXT)

If you are running Call Box BASIC on disk then the file SYSTEM/START will install the ACE
tools, if your on a hard drive and are not using HyperLaunch V3.0.2 as the launching program then
you will have to launch the file CB.PreLaunch prior to launching into Call Box BASIC (usually
once ACE gets put in it stays in... however, this is not guaranteed, when the system reverts to
GS/OS again this tool is marked as purgeable and a subsequent applications memory allocation
process may wipe the tools code out! Going back to Call Box BASIC and using ACE again will
probably do something screwy... or destructive!!! be careful, if your not sure launch the file
CB.PreLaunch again. This is not a concern on a bootable 3.5 inch disk but you must copy the tool
TOOL.029 to your disks SYSTEM/TOOLS subdirectory, it is not put in by the default initialization.
You can also alter your disk initialization installer script to include this tool as well.

Programming with sound

The sound calls are very simple, but the 2.0 version of SoDOS is limited to 256 block files. (No
trees as of yet) This is where ACE comes in handy as well as saving disk space for those of you
who do not have the benefit of a hard drive.

Both Sound Manager and ACE require a direct page, (that's 2 pages) and waveforms should never
be loaded in bank zero for obvious space reasons so you will need GSOS calls to load in your
waveforms (use tech note #6). When your program does its environment initialization you
should do 2 "Allocate and Clear a Direct Page" gosub's to get these pages, save the returned
variable D1 asSO for the first page andAC for the second. Next you shouldGOSUB 56000 in
the GS/OS code to setup the GS/OS call block. Now it's time to start these guys up:

CALL LC,50\$0208\: REM SoundStartup
CALL LC,AC\$021D\: REM Startup ACE

The next thing you need to do is allocate a block of memory for your sound parameter block ... for
this explanation we will use only 1. Each parameter block is 18 bytes long, to allocate a memory
block for it gosub "Allocate a block of memory" and zero it out :

L =18 : GOSUB 45000 : H = H: P1 =P :
FOR A =0TO 17 : CALL PO,1,0 + A + P1,0 : NEXT

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 1 of 4

So What Technical Notes #10

Now you need to load in your sound file. Put the files pathname in the variable A$ then GOSUB
"Load a file into memory GS/OS Class 1"

A$ = "{sound file pathname}" : GOSUB 50000 : H2 = H: P2 =P : L2 =L

Even with the file closed you still have the open file information in the GS/OS caller block, so
check the Aux type for the freqOffset. This is not a recommended practice by Apple Computer Inc.
but is the way many waveforms are annotated. The shareware program ACERS by Joe Jaworski

uses this type of annotation.

CALL PE,2,16 + D2,PB : IF PB > 32767 THEN PB = PB - 32768

You can now check the filetype and see if it's an ACEd file or not: (filetype $CD = ACEd sound
file). .

CALL PE,2,14 + D2,A : IF A = 205 THEN (goto ACE routine)

The last piece of overhead you must take care of before playing your sound is the setting up the
sound parameter block. The toolbox reference specifies this parameter block as follows:

+0 Starting address of wave
— waveStart —
+4 waveSize Waveform size in pages
+6 freqOffset Output sample rate
+8 DOCBuffer DOC buffer start address
+10 BufferSize DOC buffer size
+12 Start of next wave parameter block
— nextWavePtr —
+16 volSetting DOC volume setting

You need only supply the waveStart (P), the wavesize, the freqOffset (PS), and the volSetting (0 -
255). All other parameters should be zero.

CALL PO4,P2,P : CALL PO,2,4 + P1,0 + L2/256 : CALL PO,2,6 + P1,PS :
CALL PO,2,16 + P1,255

Any time after this you can play your sound by issuing the following line:
CALL LC,$0401,_P1\$0E08\: REM FFStartSound

Refer to the Apple IIgs Tool Box reference manual for the flags and other subtle nuances of the
Sound Manager routines. Your sound file will play while your Applesoft program continue to
execute. If you want program execution to stop while the sound is playing add the following lines
after the FFStartSound line:

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 2 of 4

So What Technical Notes - #10

CALL LC,0,4\$1408\F: REM FFSoundDoneStatus
IF F = 0 THEN {GOTO the FFSoundDoneStatus line}
CALL LC,16\$0F08\: REM FFStopSound

The ACE Routine

ACE has 2 compression styles expressed as ratios... 8:4 or 8:3. 8:4 means that the compressed
waveform stored as a file is 1/2 the size of the same waveform uncompressed, and the 8:3 means
that the stored file is 3/8 the size of its uncompressed size.

When you load in a compressed sound file you need to get its size and allocate another block either
2 (the reciprocal of .5 or 1/2) times the size of the compressed file for 8:4 or 2.6667 (the reciprocal
of 375 or 3/8) times the compressed size for 8:3. You can usually tell if a file is in 8:4 or 8:3 style
by checking the files AuxType and see if it's greater than 32767, If it is then the file is usually
compressed in 8:3 style, if it's not then it's 8:4. Allocate the expanded sound file memory block as
follows:

L=2*L:F=1:CALL PE,2,16 + D2,A : IF A > 32767 THENL = (L / 2) *
2.6667 : F = 2
GOSUB 45000 : H3 =H:P3=P:L3=L:L=L3/512

It's now time to expand the sound file in the first memory block to the new memory block (this can
take a while depending on the size of the original sound file):

CALL LC,_H2, 0,_H3, 0,L,F\$0A1D\ : REM ACEExpand
Now dispose of the first memory block:

CALL LC,_H2\$1002\ : REM DisposeHandle

And setup the sound parameter block:

CALL PO,4,P1,P3 : CALL PO,24 + P1,.0‘+ L3/256 : CALL PO,2,6 + P1,A :
CALLPO,2,16 + P1,255

Finally goto the FFStartSound line to play the sound file.

Remember your Memory...

YOU MUST BE VIGILANT! When you use these procedures you must dispose of the H2 or H3
blocks accordingly before you reuse these routines from within the same application. Failure to do
this will cause the IIgs to accumulate uncompressed sound files in memory which takes up "Lots"
of room!!! Sometimes this is exactly what you want to do. Remember to keep a record of all the
allocated blocks handles and pointers for disposal or access later on because H2 and H3 are
overwritten each time a sound file is loaded.

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 3 of 4

So What Technical Notes #10

Example Code:

This page presents actual Applesoft program lines which you can copy into your programs. There
are 3 Sound Manager and ACE routines, The load sound routine needs the GS/OS code presented in
tech note #6. The variables ID,D1,D2,DT,SO,AC,A,PB,F,H H1,H2,H2P,P1,P2,P3,..L1,L2
and L3 are used by these routines. H-H3 = Memory block handle L-L3 = Block size P-P3 =
Memory block address ID = special user I.D. number D1 = Direct page address.

Load/Uncompress sound file: (in = A$, out = H,H2,H3,P,P2,P3,L,L.2,L.3,ID)
Play Sound: (in=, out=)
Play Sound exclusive: (in=, out=)

39999 REM
Load/uncompress sound file

40000 GOSUB 50000:H2 = H:P2 = PiL2 = L

40010 CALL PE,2,16 + D2,PB: IF PB > 32767 THEN PB = PB - 32768

40020 CALL PE,2,14 + D2,A: IF A = 205 THEN 40040

40030 CALL PO,4,Pi,P: CALL PO24 + P10 + L2 / 256: CALL PO,2,6 + P1,PB: CALL
PO,2,16 + P1,255: RETURN

40040 L = 2 * L:F = 1; CALL PE2,16 + D2,PB: IF PB > 32767 THEN L = (L / 2) *
2.6667:F = 2:PB = PB - 32768

40050 GOSUB 45000:H3 = H:P3 = PiL3 = LiL = L3 / 612

40060 CALL LC,_H2, 0,_H3,_0,L,F\$0A1D\: CALL LC,_H2\$1002\: CALL PO,4,P1,P3:
CALL PO24 + P10 + L3 / 256: CALL PO2,6 + P1,PB: CALL PO,2,16 + P1,255

: RETURN
40099 REM
Play sound

40100 CALL LC,0,4\$1408\F: IF F = 0 THEN 40100
40110 CALL LC,16\$0F08\: CALL LC,$0401,_P1\$0E08\: RETURN
40198 REM

Play sound (exclusive)

40200 CALL LC,$0401,_P1\$0E08\
40210 CALL LC,0,4\$1408\F; IF F = 0 THEN 40210
40220 CALL LC,16\$0F08\: RETURN
56099 REM
Sound / ACE setup

56100 DT = D1: GOSUB 45030:80 = D1: GOSUB 45030:AC = D1:D1 = DT: CALL LC,SO\
$0208\: CALL LC,AC\$021D\ .
56110 L = 18: GOSUB 45000:H1 = H:P1 = P: FOR A = 0 TO 17: CALL PO,1,0 + A + Pfi,
0: NEXT : RETURN

Further Reference

Apple IIgs Toolbox Reference: Volume(s) 1,2 and 3
Call Box BASIC Manual V2.0
Tech Notes 2,4 and 6

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 4 of 4

So What Technical Notes #11

Call Box

The Call Box Standard for Line Numbering
Written by: William Stephens March 15,1990

This technical note outlines the Applesoft Line numbering standard for use in conjunction with Call
Box BASIC.

With the introduction of standard code templates it has become necessary to assign ranges of line
numbers for special uses. There is still a vast range of undefined numbers for your unique program
code. More templates will become available in the future so adherence to this standard should be
observed to be compatible "across the board". Using program templates you can construct a very
sophistocated and complex program without ever typing in a line of code... well, maybe one or
two.

0 - 198 "Call Box Initialization, Entity Loading, and general Program Initialization
200 - 298 Main Event Loop

300 - 398 Menu distributor

400 - 498 Quit handler

500 - 34998 (undefined) User assignable line numbers

35000 - 39998 (reserved for future expansion)

40000 - 44998 Sound Manager / ACE handler

45000 - 49998 Memory Management routines

50000 - 54998 GS/OS/OMF2 routines

55000 - END Error Message and Environment Initialization

The 77799 line number should always be reserved for a REM statement, so ranges should go from
77700 to 77798. REM statements should take the form of:

1999 REM
This is a REM statement

2000 (the first line of your routine)

Getting a REM statement to appear this way requires you to type the line number then the letters
REM followed by a space and then a control J (Down Arrow) and then your statement followed by
another control J and the press return. This gives you a well space REM statement with a minimum
of characters used.

The first 10 lines (line O thru 9) should be reserved for a title statement. This is illustrated in any of
the Call Box BASIC templates. You will notice that line 9 of these titles is actually an END
statement followed by the REM. This is just a reminder to you that templates are incomplete code
segments and should never be run directly. When you make programs using templates these lines
will always be present after merging, before you use the program created by this process be sure to
delete lines O thru 9 or the program will not run.

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 1 of 1

So What Technical Notes #12

Call Box

Recommended Reference Documentation
Written by: William Stephens March 15,1990

This technical note lists recommended reference documentation needed to get a full understanding of
the Apple Ilgs and its operating systems.

The following are monthly publications that are Apple II specific. There are more and possibly better
known publications than these but you will find that you do not get the depth and level of the
information provided by these ones.

A2 Central 8/16 Computist

P.0. Box 11250 (Ariel Publishing, Inc.) 33821 E. Orville Rd.
Overland Park, KS 66207 P.O. Box 398 Eatonville, WA 98328
(913)469-6502 Pateros, WA 98846 (206)474-5750

(509)923-2249

The following are Apple Ilgs reference manuals that describe the thousands of functions and
features of the Apple Ilgs and its operating system... a must for serious programming.

Manual Name A2 Central A.P.D.A.
Applesoft Programmers Reference - AW021 A272022
Beneath Apple ProDOS Qs-001 e
Apple Ilgs Firmware Reference AW-022 A2G0054
Apple Ilgs Hardware Reference AW-002 A2G0055
Apple Ilgs Toolbox Reference #1 AW-019 A2G0057
Apple IIgs Toolbox Reference #2 AW-006 A2G0058
Apple llgs Toolbox Reference#3 et A0229LL/A
GS/OS Reference#1 s A2F2037
GS/OS Reference#2 el AQOOSLL/A

A2 Central A.P.D.A.

P.O. Box 11250 20525 Mariani Avenue, M/S 33G
Overland Park, KS 66207 Cupertino, CA 95014-6299
(913)469-6502 1(800)282-2732

This support documentation is vital to understanding the Apple Ilgs... at first glance it seems like a
lot but once you have been through it it will seem slightly inadequate. This is the nature of the
beast... when you are dealing with systems as complex as the ones associated with the Apple Ilgs it
is virtually impossible to document all the possible ways of turning it, however.. these references
will take you most if not all of the way there.

Further Reference

Call Box - So What Software 10221 Slater Ave, Suite 103 Fountain Valley, CA. 92708 Page 1 of 1

So What Technical Notes #13

Call Box

Standard Program Templates
Written by: William Stephens March 20,1990

This technical note describes the Standard Call Box BASIC Templates which are used to construct
Call Box BASIC applications.

The templates outlined here should be inserted into your program code using the MERGE.EDIT
program provided on sampler #1. This merge program will overwrite existing lines which gives it
an update capability... Other merge programs may not work this way and this type of action is
needed for proper template integration.

Desktop.Tmplt

REM == S EERERERNSEREEEERS
REM BASIC CODE TEMPLATE

REM
REM Desktop environment

REM e e

REM Reference:

REM meee e
REM So What Software V1.0 25-Jan-90

REM T T P === ======
END : REM

O O N A WN 2O

10 PRINT CHR$ (4)"PR#3": HOME : PRINT CHR$ (4);"-CB": PRINT CHR$ (4);"RESTORE
CB.VARS"
20 CALL TL,2,"DESK": CALL SC,2,640: CALL SC,1: CALL WN,3: CALL CU,1: CALL CU,3:
GOSUB 56000
39 REM
Load in the Entities...

40 CALL WN,0,3,"Entity;Window:Load.Window": CALL WN,1,3; CALL PT,0,3: CALL TX,1,0,15:
CALL PN,25,17: CALL TX,0,0,"Loading Entities ™. CALL WN,4,3,1
41 GOSUB 42: GOTO 50
42 CALL PT,0,3; CALL TX, 0,0 ™ CALL WN,4,3,1: RETURN
50 CALL ME,0,1,"Entity:Menu:M . Master": CALL ME,1,1: GOSUB 42
51 CALL DI,0,2,"Entity:Dialog:DemoQuit.D": GOSUB 42
99 REM
Set-up Entities

100 CALL WN,2,3: REM Close the Loading window
140 CALL CU,2: REM change to arrow cursor
199 REM

Event Loop

200 CALL EV,@ X,Y,BMK,T,C,D: CALL ME?2,1: REM check for an event
210 IF C = 17 THEN 300: REM Menu item hit!

220 IF C = 22 THEN 290: REM Close box hit!

288 GOTO 200

290 CALL WN,8N,D,2: CALL WN,2N: GOTO 200; REM Close the top window

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 1 of 5

So What Technical Notes #13

Desktop.Tmplt (continued)

299 REM*
Menu Distributor

300 M1 = INT (D / 65536):M2 = (D - M1 * 65536) - 255
310 ON M2 GOSUB 330,400
320 CALL ME,7,1,M1,0. GOTO 200: REM Un-hilite the bar item
330 RETURN : REM Do Nothing !l
399 REM
Quit

400 CALL DI,1,2: CALL DlL2,2,
410 IF | = 1 THEN 440

420 IF | = 2 THEN 480

430 CALL DI3,2: RETURN

440 REM :
479 POP : CALL DI,3,2: CALL QF: PRINT CHR$ (4)"BYE"
480 REM
498 POP : CALL DI,3,2: CALL QF: END
55998 REM
*** Environment Initialization ***
56000 REM

59998 RETURN

Memory.Tmplt

REM =m==s=======s=====s=zzmsszssssssoo=szas
REM BASIC CODE TEMPLATE

REM oo

REM Memory allocation/de-allocation

REM s

REM Reference: Tech Note(s) #2,#4 and #6

REM oo
REM So What Software V1.0 15-Feb-90

REM S=========s=====ss======s=s===szzzzoos
END : REM

O ® N O bW -0

405 GOSUB 45020
485 GOSUB 45020
44999 REM
Allocate a block of memory

45000 ID = 6144 + PEEK (PO + 180): CALL LC,_ 0, L,ID,$8000,_0\$0902\ H: IF H = 0 THEN

55030
45010 CALL PE4,H,P: RETURN
45019 REM

De-Allocate all special blocks

45020 CALL LC,ID\$1102\: RETURN

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 2 of 5

So What Technical Notes #13

Memory.Tmplt (continued)

45029 REM
Allocate and Clear a Direct Page
45030 CALL PO,4,704,$F52001A9: CALL PO,2,708,$60BE: CALL 704:A = PEEK (PO + 244):A
= A + 1; POKE PO + 244,A:D1 = PO - (A * 256): FOR | = 0 TO 255: POKE D1 + 1,0: NEXT
: RETURN
55029 REM

Memory Error

55030 POP : CALL SC,0: PRINT "Memory Allocation Error...": GOSUB 45020: CALL QF: END

GSOS.Tmplt

REM mmmmmmmmmas = mmz=sss=====
REM BASIC CODE TEMPLATE

271 S

REM GS/OS Calls

REM - e

REM Reference: Tech Note #6

REM - e
REM So What Software V1.0 24-Feb-90

REM S SR R RN R E TSR S ESS T =T =====
END : REM

© WO ~NO O WOCN =2 O

49999 REM Load a file into memory GS/OS Class 1

50000 GOSUB 50100: GOSUB 50200: CALL PE, 442 + D2,L: GOSUB 45000: GOSUB 50300:
GOTO 50400
50099 REM
GSExpand_Path

50100 L1 = LEN (A$): FOR | = 1 TO LT1:A = ASC (MID$ (A$,1)): POKE D6 + 1 + [A: NEXT :
CALL PO,2,D6,L1: CALL PO,4,2 + D4,D6: CALL PO4,6 + D4,D8
50110 CALL PO,4,10 + D1,D4: CALL PO2,8 + D1,$200E: CALL D1: IF PEEK (254) < > 0 THEN

55000
50120 RETURN
50199 REM
GSOpen

50200 CALL PO,44 + D2,D7: CALL PO4,10 + D1,D2. CALL PO,2,8 + D1,$2010: CALL D1: IF
PEEK (254) < > 0 THEN 55000
50210 CALL PE,2,2 + D2,A: CALL PO,22 + D3A: CALL PO,2,2 + D5,A: RETURN
50299 REM
GSRead

50300 CALL PO,44 + D3,P: CALL PO48 + D3L: CALL PO4,10 + D1,D3: CALL PO28 +
D1,$2012: CALL Di: IF PEEK (254) < > 0 THEN 55000 '
50310 RETURN

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 3 of 5

So What Technical Notes

#13

GSOS.Tmplt (continued)

50399 REM
GSClose

50400 CALL PO,4,10 + D1,D5: CALL PO,2,8 + Dt1,$2014: CALL Di: RETURN
54999 REM
GSOS Error Handler

55000 CALL SC,0: HOME : FOR | = 0 TO 21: CALL AY2,ER|[JA: IF A = PEEK (254) THEN

55020
55010 NEXT

55020 CALL $SC,0: HOME : PRINT "GS/OS Error...";: CALL AY,_2,ER$,[I],A$: GOSUB 45020:

CALL - 1052: CALL QF: END
55999 REM
Setup the GSOS Dir. Page and Error Messages

56000 GOSUB 45030:D2 = D1 + 26:D3 = D2 + 58:D4 = D3 + 18:D5 = D4 + 12:.06 =
D1 + 190:D8 = D1 + 188
56010 CALL PO,4,D1,$30C2FB18: CALL PO4,4 + D1,$E100A822: CALL PO,4,14

D1 +

+

128:D7 =

D1,$02BOFESS: CALL PO,4,18 + D1,$30E2FE64: CALL PO,3,22 + D1,$60FB38: CALL
PO,2,02,15: CALL P0O,2,D3,5: CALL PO,2,D4,3: CALL PO,2,D5,1: CALL PO,2,D8,66
56020 CALL AY,1,ER,[21]: CALL AY,1,ER$,[21]: PRINT CHR$ (4);"OPEN GSOSERROR.T":

PRINT CHR$ (4);"READ GSOSERROR.T"
56030 FOR I = 0 TO 21: INPUT A: CALL AY3,ER,[I,A: NEXT : FOR | = 0 TO 21:
CALL AY.33,ERS$,[I],A$: NEXT : PRINT CHR$ (4);"CLOSE™A = FRE (0)

Sound.Tmplt

0 REM EEEEEEERCNEEECCSTTSSSEEERD z=z=========
1 REM BASIC CODE TEMPLATE

2 REM o

3 REM Sound / ACE Calls

4 REM o e
5 REM Reference: Tech Note #10
6

7

8

9

211V
REM So What Software V1.0 14-Mar-90

REM ====sz=zszz=s===z==== zmmzzzszzzooc
END : REM

410 CALL LC\$031D : CALL LC\$0308\
490 CALL LC\$031D : CALL LC\30308
39999 REM

Load/uncompress sound file

40000 GOSUB 50000:H2 = H:P2 = PiL2 = L

40010 CALL PE2,16 + D2,PB: IF PB > 32767 THEN PB = PB - 32788

40020 CALL PE2,14 + D2,A: IF A = 205 THEN 40040

40030 CALL PO,4,P1,P: CALL PO24 + P10 + L2 / 256: CALL PO,2,6 + P1,PB:
PO,2,16 + P1,255: RETURN

40040 L = 2 * LIF = 1. CALL PE2,16 + D2,PB: IF PB > 32767 THEN L = (L / 2) *
2.6667.F = 2:PB = PB - 32768

40050 GOSUB 45000:H3 = H:P3 = PiL3 = L:L = L3 / 512

INPUT A$:

CALL

Call Box - So What Software 10221 Slater Ave. Suiiz 103 ?0untain Velley, CA, 92708

Page 4 of 5

So What Technical Notes #13

Sound.Tmplt (continued)

40060 CALL LC,_H2,_0,_H3,_0,L,F\$0A1D\: CALL LC,_H2\$1002\: CALL PO,4,P1,P3:
CALL PO,24 + P1,0 + L3 / 256: CALL PO,2,6 + P1,PB: CALL PO,2,16 + P1,255
: RETURN
40099 REM
Play sound

40100 CALL LC,0,4\$1408\F: |F F = 0 THEN 40100
40110 CALL LC,16\$0F08\: CALL LC,$0401,_P1\$0E08\: RETURN
40199 REM

Play sound (exclusive)

40200 CALL LC,$0401,_P1\$0E08\
40210 CALL LC,0,4\$1408\F: IF F = 0 THEN 40210
40220 CALL 'LC,16\$0F08\: RETURN
56099 REM
Sound / ACE setup

56100 DT = D1: GOSUB 45030:80 = D1: GOSUB 45030:AC = D1:D1 = DT. CALL LC,SO\
$0208\: CALL LC,AC\$021D\
56110 L = 18: GOSUB 45000:H1 = H:P1
0: NEXT

i)

P. FOR A = 0 TO 17: CALL PO10 + A + P1,

Long.Strt.Tmplt

REM ==
REM BASIC CODE TEMPLATE

REM -

REM Long Program Initialization

REM

REM Reference:

REM
REM So What Software V1.0 12-Feb-90

REM ======cz=szsoces ==== =
END : REM

W OO WN = O

10 FN $ = "__Program Name__" PRINT CHR$ (4);"CHAIN CB.STARTUP"

Further Reference

Call Box BASIC Manual V2.0
Tech Note 2, 3,4,6 and 10

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 5 of 5

So What Technical Notes #0

Call Box
TECHNICAL NOTES Contents Julyl 1,1990

This technical note is the index for all of the Call Box technical notes.*R* = Revised *** = New

1 Tool Loading using CB.Tool.List 190
R -2 Allocating Your Own Memory 2/90
*Ex 3 The Call Box BASIC Global Page 2/90
*Ek 4 Allocating Direct Pages 2/90
*Ex 5 Finding a Ports Pixel Image 290
ko 6 Using GS/OS Calls 2/90
*ak 7 Setting up a Special Edit Menu 290
ko 8 Directory Structures 290
*kk 9 Custom Desktops 2/90
*Ekx 10 Using Sound in your BASIC Applications 2/90
*kk 11 The Call Box Standard for Line Numbering T 380
*kk 12 Recommended Reference Documentation 3/90
ko 13 Standard Program Templates 3/90
kak 14 Controls in Windows 5/90

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 1 of 1

T e

i

So What Technical Notes #14

Call Box

Controls in Windows
Written by: William Stephens May 15,1990

This technical note describes how to create windows that have controls in them. This procedure
gives you more flexibility than using just the Dialog Manager.

The Dialog Manager is a very convienient tool to use for user interaction but is limited in the types of
controls it can present. You can take miatters into your own hands and be your own Dialog Manager
by using a Window that contains controls that you manage yourself. There is a little more work
involved in managing your own controls than there is in operating the Dialog Manager, but the
increased functionality of dialogs created this way far outweighs the added difficulty.

Virtually every call you will make with this type of window will be of the Long Call variety. Before
we get into the exact procedure we should first cover the command syntax:

NewControl

This call adds a control parameter list to the specified window record and returns the handle for the
control created. This handle is used to find the control later on and should be stored by your
program for each control created. If zero is returned then there was an error in creating the control.
CALL LC, 0, W, R, _T,F,,P1,P2,_C,_0, 0\$0910_CH

FindControl

This call returns the handle of which control was hit (if any) based on the global mouse coordinates
and the window pointer. You must supply a 4 byte buffer for the results.

CALL LC,0, CH,X,Y, W\$1310\P

TrackControl]

This call acts like the Event Manager and tracks the mouse action you take after button down on the
control. If you depress the mouse on a control and then without releasing, move the pointer off the
control this routine will signify that no control has been selected.

CALL LC,0,X,Y,_0,_CH\$1510\P

DrawControls

This call draws all the controls in the specified window. This routine is usually used in update event
loops and in wContDefProc's.

CALL LC,_W\$1010\

GetCtlvalue
This call gets the value of the selected control.
CALL LC,0,_CH\$1A10\V

InvalRect
This call tells the Window Manager that a rectangle has changed and must be updated.
CALL LC,_RE\$3A0E\

Call Box - So What Software 10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 Page 1 of 8

So What Technical Notes - #14

HiliteControl

This call hilites or un-hilites the specified control. This call is used to blink or dim buttons and
" things like that.

CALL LC,H,_CH\$1110\

SetCtlValue
This call sets the value of the selected control.
CALL LC,v, CH\$1910\V

SetContentDraw

This call sets the specified window with a new wContDefProc (window contents drawing
procedure).

CALL LC,_P,_W\$490E\

BeginUpdate
This call sets up the Window Manager to handle update events.
CALL LC,_W\$1EOE\

EndUpdate
This call ends the update session.
CALL LC,_W\$1FOE\

W £
Wind inter, Get from CALL WN.$... Standard Control TypeValues:
indows pornter, Let from $00000000 (0) = Button
R $02000000 (33554432) = Check Box
Pointer to controls enclosing rectangle $04000000 (67108864) = Radio Button
$06000000 (100663296) = Scroll Bar
T $08000000 (134217728) = Size Box
Pointer to text string, Pascal 0
_CH
F Controls handle.
Control Flags (see fig. 14.1) L wnvs awvol
LOOWONS nweh 39)) .
\Y Horizontal mouse coordinate
Controls Value. “ s ol
Fon a0 ol

P1

N | mouse coordinate
Data size for scroll bar, if not <croll then: ;

:i4r:i Contents Draw pointer usually 0

P2 v
H H . K '"4,‘§§(.“-,"
View size for scroll bar, if not scroll then 0. " RE
R e A .
H 1t e Window rectangle pointer

Hilite Flag 0 = none, 1-253 = part code, 255 = inactive

1 i ARG WS BRI SRS 1

Call Box - So What Software 10221 $later AvéiStitd“103 Fotntiin Valley,/€A.'92708 Page 2 oi 8

So What Technical Notes #14

Simple button S) A 4 0 00 6 O
ctiinvis =4
Invisible = 1
Visible = 0
Single-outlined,square-cornered,drop-shadowed button = 11
Single-outlined,square-cornered button = 10
Bold-outlined,round-cornered button = 01
Single-outlined,round-cornered button = 00
Check Box I 2 0 00 0 S0 0 A
ctlinvis -1
Invisible = 1
Visible = 0

Radio Button it R - Do fs 0 T 021 0]

ctlinvis—11 l
Invisible = 1
Visible = 0

Family number

Scroll Bar

A S B A 1 L0 21 M EA KA X
ctiinvis—4

lnvisibllg = 1

Visible = 0

horScroll
Horizontal scroll bar 1
Vertical scroll bar = 0

rightFlag
Right arrow on scroll bar = 1
No right arrow on scroll bar = 0

leftFlag ~———
Left ‘arrow on scroll bar = 1
No left arrow on scroll bar = 0

downFlag
.» Down. arrow on scroll bar = 1

, . No down arrow on. scroll bar = 0
oo exunmt sinosihnH
upFlag

o Up. arrow on scroll bar = 1
¢ No up arrow on scroll bar = 0

Grow Box

ol LT OG0

at T pmirald o Invisible =
Visible = ¢

L
Figure 14.1. Control Manager Flag Bits

S AHOS Gy

Call Box - So What Sottwars 10221 SJafer Aye, Suiie 403 Fopniin Vallzy, CA. 92708

Y,

Page 3,01 8

So What Technical Notes #14

This procedure is shown in the program "control.demo" on the C.B.P.A.2 Sampler disk. This
program was created by starting off using the "Desktop. Tmplt" program found on C.B.P.A.1 and
then control operating code was added.

The first thing you need is a Window for your controls to be drawn in. Use the Call Box Window
Editor to create a window with the following specifications...

Window type: Alert

Normal Rectangle: 25,150,175,550
Zoom Rectangle: 0,0,0,0
wDataH and wMaxH: 150
wDataW and wMaxW: 400

Save this window away to disk as an object file named "ctrl.window". Now load up the program
template called "Desktop. Tmplt" and save it to disk as the program "my.ctrl.demo”. All of the
following steps will involve adding program lines to the "my.ctrl.demo"program.., Let's roll up our
sleeves and make a control window now!

Next we need is a work area for some of the control parameters. In this example I will use a "Direct
Page" (see tech note 4) because I will not need over 256 bytes of space and both poke/peek and
LongPoke/LongPeek commands work there. For larger control records you can use a larger block
of memory as allocated by the Memory Manager in tech note 2. You may, however wish to use
several direct pages instead because even though using direct pages decreases the available
Applesoft code memory, both kinds of peeks and pokes will work. Memory Manager memory
blocks can only be LongPeeked or LongPoked unless they are located in bank zero... which is
impossible because Call Box BASIC and the SYSTEM own all of bank zero and nothing is left
down there to allocate except for direct page requests made to ProDOS8 and Call Box BASIC,

Type in line 56010 which allocates a direct page for your use and assigns the variable UP to point to
it.

56010 CALL PO,4,704,$F52001A9: CALL PO,2,708,$60BE: CALL704:A =
PEEK(PO + 244): A = A + 1:POKE PO + 244,A:UP = PO - (A*256)

You now need to install the control wContDefProc. This is a natlve mode machme code routmc

which is specified as foilows: WG ey 16T relesdsial nins oo .
by A a0t bastant bag g28 oy o sapn u ,\ ”‘(4“;‘_,,11
wContDefProc pea et $9f000§wumgmdﬁ;ﬁﬂﬁ&;@ﬂ ﬁme)iwlﬂdow obest g e
pea; B $°°°§Q’ﬁy EHI] r{\x{,ﬁom’tg e))f ' ’7-"1'7 IR ARSI

10Xy BSAOA0, ¢ g srveonag T o ¢

I SE1000) i prawcgringls
r

Typcmlme 56020 to put this code in'frémory | * Llih ARG

56020 DATA 244,0,0,244,0,0,162;16/16,34.0,0;228,167: FOR X = 0 TO 13:
READ A: POKE UP + X,A: NEXT : DX = 16

© e e PO L A R AR STl (1 A A A T A AAYL

Comnlites \!}en u;m TS '

Call Box So What Software 10221 Slater Ave. Suite 103 Fountam Valley, CA 92708 Page'.4 bf8

So What Technical Notes #14

The next thing to do is to put in the control rectangles and the control text if any. These two items
need to be poked into your workspace because the control manager handles these items by their
pointers and not the actual data themselves. This is a common type of referencing in tools and this
is why you usually need some kind of workspace to use tools effectively. In this example we will
use all 5 types of standard controls, namely: Simple Button, Check Box, Radio Button, Scroll Bar
and Grow Box. I have divided the 256 byte work area into 16- 16 byte long sections where each
section handles either a rectangle or a Pascal type 0 string. The first 16 bytes of this area contains
the wContDefProc you just entered with line 56020, The first rectangle will be located 16 bytes into
the area and its corresponding string will reside 128 bytes from the beginning of the rectangle. The
second will be 32 bytes in and 160 bytes respectively and so on. This scheme is easy to index and
is written by the control poker code at 55000.

Let's enter the control poker code first:

55000 REM
Control Poker

55010 READ A: CALL P0O,2,0 + DX + UP,A: READ A: CALL PO,2,2 + DX
+ UP,A: READ A: CALL PO,2,4 + DX + UP,A: READ A: CALL
P0O,2,6 + DX + UP,A: READ A$:DX = DX + 128: GOSUB 55900:
DX = DX - 112: RETURN

55900 L1 = LEN (A$): FOR | = 1 TO L1:A = ASC (MID$ (A$,1,1)): POKE
DX + UP + LLA: NEXT : POKE DX + UP,L1: RETURN

Use the following lines to poke the controls rectangles and text:

56029 REM
Poke in the controls rectangles and text

56030 DATA 46,240,60,300,Button: GOSUB 55000
56032 DATA 68,240,82,400,Check Box: GOSUB 55000
56034 DATA 86,240,100,380,Radio Button: GOSUB 55000
56036 DATA 106,240,120,380,.: GOSUB 55000
56038 DATA 129,240,143,268,.: GOSUB 55000

. s oG aviten s ol g T oorellino
This completes the Environmental Initialization for your program. Basically, you have created and
initialized your direct page work area and installed the support data for the 5 controls. There is a bit
more initiatizationléft 0 dorbuit §6méasthier things must Bappsa first. You will notice that line 20 of
your program ends with a GOSUB 58660 which rins alPhe¢bde you just typed in. Add one more
statement to the end of this line. This statement puts a goiiftéf 1o the Cali Box BASIC TaskRecord
in the variable VR, This poiriiefis néé:&éd for Update $VEnt detection laier on,

VR = (PEEK (PO + 120) * 65536) + 593

Next you need to load your wmdg);\g incag entity x;;;q@;?rf 400

A B B 6o 17 S

D ooisteod £OT ofind v A

Call -Box - Sc What Soft'.vgzie;%%z_LSlawg«Aﬁve-;aSaiwlO;i‘szmin%‘allsy,,CA.~.92708 .« . PageSof8
e LTyl ol R

So What Technical Notes #14

52 CALL WN,0,4,"entity:window:ctrl.window": CALL WN,1,4:
GOSUB 42

Now that the window is in we can complete the control initialization, The following line derives the
windows pointer and then patches this pointer into the control wContDefProc located in your direct
page workspace:

110 CALL WN,8,4,WP,1: CALL PO,2,1 + UP,0 - INT (WP / 65536):
CALL PO,2,4 + UP,0 + WP - INT (WP / 65536) * 65536

It's now time to issue the NewControl calls which add the controls to the window:

112 CALL LC, 0, WP, 16 + UP,_16 + 128 + UP,10000000000000011
,0,0,0,$00000000, 0, 0\$0910\C1

114 CALL LC, 0, WP, 32 + UP, 32 + 128 + UP,10000000000000000
,0,0,0,$02000000, 0, 01$0910\C2

116 CALL LC, 0, WP, 48 + UP, 48 + 128 + UP,10000000000000000
,0,0,0,$04000000, 0, _01$0910\C3

118 CALL LC, 0, WP, 64 + UP, 64 + 128 + UP,10000000000011100
,0,1,10,$06000000, 0, 0\$0910\C4

120 CALL LC, 0, WP, 80 + UP, 80 + 128 + UP,10000000000000000
,0,0,0,$08000000,_0,_0\$0910\C5

the final step in getting this window up is to hookup the wContDefProc, show the window and
draw the controls:

180 CALL LC,_UP,_ WP\$490E\: CALL WN,4,4,1: CALL LC,_WP\$1010\

If you run your program at this point you will see your window with the 5 controls drawn in it.
These controls will not work as of yet but they will at least be there! The following discussion is
about how to operate the controls that you have created. Operating the controls is similar to
operating a dialog box except that you use TaskMaster to get your events rather than a proprietary
dialog manager command like ModalDialog. You want to respond to Window Content Hit events
(code 19) in order to find, track and respond to control hits.

Add the followmg line to detect ahitin the contents region of your window:
& Wt 2

240 IF C = 19 THEN 500 &&M Contents Hit! sAom v
This line will route any mouse click in ypur"wmdow to the routine at 500." ‘Hle fir§t thing you need !
to do at 500 is to check and see if a corltrol, z[s hit and if it was, which C‘ontrolﬁt Is. The ,f %
 FindControl command doés this task and i Xeturns the controls handle. The} _{rgext $tep is to fetch thls :
_handle and then TrackControl whlch checks 1f “the mouse button was released in the same control If
it is then this can be considered a valid coptrol bt lwhfemybu canrdow:process. Type in the
following lines to Find and then Track your control:

500{ - CALL LC,0,_250+UP/X,Y;» WP&?&%@\P: REM ~FindControl

510 - 1 |F P = 0 THEN 200:+.! «lq 201 catbnad dosuitib £ o 2hee

515 . CALL PE,4,250 + UP,H¢ REM Fetchtheacontrol handle

520" - CALL LC,0,X,Y,_0, 'H\$1‘5Fﬂ‘0\55*i3 REM! TtackControl

525 IF P 0 THEN 200

Call Box- So What Softwars 10321 Siater Ave Suxte 103 Fountam Valiey, CA 92708 o Page g o8

v ot [R—— Wi e o1 s seane

So What Technical Notes - #14

Now we are in the home stretch... all that is left to handle is comparing the returned control handle
to the handles returned from the NewControl calls and then taking some action based on which
control was hit. Type in the following lines to compare the handles:

530 IF H = C1 THEN 598: REM Button Hit!

535 IF H = C2 THEN 600: REM Check Box Hit!
540 IF H = C3 THEN 600: REM Radio Button Hit!
545 IF H = C4 THEN 620: REM Scroll Bar Hit!
550 IF H = C5 THEN 598: REM Grow Box Hit!

As you can see some of the control handlers are the same... as a matter of fact I am only using 3
handlers for 5 controls. These handlers are analogous to some routine that you want to run in
response to a control hit. Buttons and the Grow Box have no radical function except to remain at
value 0 until you click in it when the value changes to 1... trapping the value of a button is kind of
meaningless because just the fact that you detected a hit in the control is enough justification to act
upon the hit. For our purposes we will use a "Do Nothing" routine for these controls:

598 GOTO 200

Check boxes and Radio Buttons have a more complicated life. These controls display and retain a
status (either checked and unchecked or selected and unselected). You handle these controls just the
same way you do in Dialogs, the only thing that changes is the Set and Get commands... the
methodology is identical. In this example we will use a "value toggle” routine for both:

600 CALL LC,0,_H\$1A10\V: CALL LC,1 - V, H\$1910\: GOTO 200

This leaves us with scroll bars which are more complicated still. Scroll Bars actually have 5 parts to
them... 2 arrows, 1 thumb and 2 page regions (the greyed areas). Each of these parts has a part
code. (see fig. 14.2)

0 No Pant 11 Editable Line
1 Reserved 12 User item
2 Simple Button .13 Long Static Text
3 Check Box 14 icon
4 Radio Button L 31 .. Reserved (internal) . .o snt pbop
5 Up Arrow Reserved (application)
6 ¥ Dgwn Arow - il “‘iﬁﬁ‘f’m') M’;&’% mf WC ¢ reserved (internal)
JWV : smuh ﬁﬁgf?rf“lp Uf 18 snHuoy o) o3 wm"z?\g m(g ppTumb
T gfg“ wmw 2iw 1% o 1iel 290 [%&mw 4Reserved (infernal)
I o o ar e '3(sibnert 2lomnos 91 2 Reserved (appllcatton)_w -
¢ {0 Helog; 98& y el :)g BB Regerved (intethal) _“‘,'U' ‘
ﬁsaw notud azuorm ardt 1 e 'mm{ LI TR
ﬁguw»%@a vciohinel 1Manageri Par t usdes RHECI T
dounoo w7 ost T pai g ;

In this example we will lumdl&fiﬁ@ aﬂ‘év@ @ﬁf’ﬁag@%égzé’nﬁthé sanicto sxmphfy this example Each::
part code usually responds to a different handler, The plan here’iis fo chieck which part of the Sctoll”
Bar was hit and then alier thevalwe of thelS¢roll baEs suit., 74 click on the left arrow or page will
cause the control value to-detrease by 1iands clikipsthe, rrght ATTOW Of pag° will increment it..

GO% ko < ‘m;'f-

Hey, CA-92708 oo o oo, -of
[t N m»muo U%%ﬁ?gmﬁi?ﬁﬁﬂw ?9 azeg Lo ‘agﬁ";%’

““G“ﬁ”ﬂ”’*ﬂﬂx So What ooftwqrgﬁoz%-}«

So What Technical Notes #14

Type in the following lines to install this simple scroll bar handler:

620 IF P =6 ORP =8 THEN 650: REM Part Code = Rt.Ar. or Rt.Pg.
630 IFP=5ORP=7THEN 660: REM Part Code = Lt.Ar. or Lt.Pg.
640 GOTO 200

650 CALL LC,0,_ H\$1A10\V: IF V = 9 THEN 200

651 V =V + 1: CALL LC,V,_H\$1910\: GOTO 200

660 CALL LC,0,_ H\$1A10\W: IF V = 0 THEN 200

661 V =V - 1: CALL LGC,V,_H\$1910\: GOTO 200

Now that you think you are done it is time to inform you that there is one more detail to take care
of... that is Update Events! If something changes in your window the Window Manager will fix up
the window to appear just right automatically, this is one of the benifits of using the desktop
environment. As you may have noticed you have not entered any commands to draw the controls
except initially in the setup code. You will not have to handle this task directly... the Window
Manager handles this for you through the wContDefProc and the Update code. The Update code is
very similar to the wContDefProc except that 3 new commands are needed. These commands are
InvalRect, BeginUpdate and EndUpdate. You will have to install 3 more lines of code to handle
Update events. One line installs a rectangle for the whole window, one line detects the Update Event
and the last is the update event handler: Type in the following lines to complete your Control
Window:

56040 DATA 0,0,150,400,.: GOSUB 55000
230 CALL PE,2,VR,\V: IF V = 6 THEN 295: REM Update Event

295 CALL LC, 96 + UP\$3AOE\: CALL LC, WP\$1EOE\: CALL
LC,_ WP\$1010\: CALL LC, WP\$1FOE\: GOTO 200

This is about it for this tech note. I have given you the basics and you can take it from here altho
proceeding without the Apple IIgs Toolbox Reference Manuals is kind of like buying a new car and
telling the salesman to leave the drive shaft out! Everything appears to be there but the car will not
move on its own. The Toolbox Reference's present much more information than is economically

- ‘possible in a forum like this,

Some of the benifits in puttmg cqm:(%l%gh; w;g{}gw%s th@ggm o “@j§0&ll£ g;hgr things: mihs 28"
well... like Line Edit Items, List Q&{xtrqis'I o1l Q Chdraw 7 étyamailgsm@\@{am
device possible wi 'tlgq'AnplsJJgsT olbop I e handling %ﬁ@fth ésmmywﬂm |
- -outlined'in, ﬁ;tumg;ch‘notes but don't.count.on it M{g,q&;pch:@%@m b ¢

‘ produce angi;hexe is more nnponam ﬁshgtqifx}}' ok 1o fry!

‘ ‘.Furthéx, ,Reference - L e L T s IR

Call Box BASIC Manual V2.1 & (o e

 Apple 1gs Toolbox Reference Vol 1,2 and 3 o 3 3

chh Noté 2 and 4

- Call Box - SOy, SOrow AR O2AT STiet Ave: SRR 01 JOe VOTRY, G Al

= Call Box E

About CALL BOX

Welcome to the wonderful world of WYSIWYG.
(What You See Is What You Get.)

Create programs in assembly, C, pascal or
even Applesoft BASIC using the powers of

CALL BOX in a fraction of the time needed
before.

CALL BOX is a programming system with
several facets designed to maximize your pro-
gramming ease and pleasure. Most popular
languages are supported by the Editors in-

Control Manager, Dialog Manager, Menu
Manager, and Line Edit Tools are available
for Applesoft BASIC with a parametered
CALL. Any toolbox tool can be operated
through a generic long-CALL plus Applesoft
enhancements like Long peek, Long poke,
and Super Array are included to increase
Applesoft’s ability to deal with Apple Ilgs.

CALL BOX starts up to a launching shell
which has menu selections for the WYSIWYG
Editors, Demo/tutorial, file utilities, and

cluded in this
system which
have been de-
signed to pro- §
duce “difficult ;
to make” items §
needed in ap-
plications that
use the Apple |§
IIgs toolbox.
You can create §
ICONS, PIX- kg
EL IMAGES,
CURSORS,
WINDOW PA-
RAMETER
LISTS, DI- !
ALOG TEM-
PLATES, and |
MENU TEM-
PLATES us-
ing the 4 WYSIWYG editors supphed on the
CALL BOX disk. These editors support
APW/ORCA Source code, OMF2 object files
and Resources to allow you great flexibility
when creating a program.

The CALL BOX BASIC Interface gives the
ProDOS 8/Applesoft programmer access to
the Apple Ilgs toolbox functions once reserved
for the C or assembly language programmer.
Over 24 new CALLS and dozens of sub-
CALLS make Applesoft BASIC a potent
competitor in the program development arena.
The functions of Quickdraw II, Event/Task-
master, Quickdraw II aux., Window Manager,

SO WHAT

o System i-l{%ﬂ Editors Options

10221 Slater Ave. Suite 103 Fountain Valley,Ca.92708 A

system rout-
? ers. Your own
. application
(such as your
development
shell) can be
programmed
into a user
system router
for easy flip-
ping back and
forth from
your program
editor to the
CALL BOX
system. The
file utilities
allow you to
RENAME,
DELETE, Set
ACCESS blts

The Toolbox
Programrning

Set ﬁletype and Set Auxtype for any file

online currently. Another utility is provided
for the Applesoft user which allows you to
change the default variables in the CB.VARS
file.

The Demo/tutorial shows the Applesoft
BASIC programmer how to use the many
functions of the CALL BOX BASIC Inter-
face by demonstration and example. Apple-
soft BASIC never looked so good and now
operating under GS/0OS V5.0 even faster!

Fully GS/0OS compatible (System Disk 5.0),
not copy protected.

SOFTWARE

e
(

-
o

	Front cover
	Part 1
	Part 2
	Part 3
	Part 4
	Part 5
	Part 6
	Part 7
	Part 8
	Part 9
	Part 10
	Part 11
	Part 12
	Part 13
	Part 14
	Rear cover

