
DRAFT

Sweet16 Debugger Protocol
Version 1

The Sweet16 Debugger Protocol is a JSON-based protocol which uses WebSockets to transmit
information between Sweet16 and a debugger. This lets any modern Web browser serve as a debugger for
Sweet16.

Enabling the debugger in Sweet16 starts up a WebSocket server. The debugger (implemented using
HTML and JavaScript) then controls Sweet16 by sending commands in JSON format to Sweet16, which
sends system status information, details about the code being executed, and so forth back to the debugger
also using JSON packets.

Commands
These are the commands sent by the debugger to Sweet16. Even commands that say they don’t return a
result may in theory result in sending back an error message, if something goes wrong.

getEmulatorInfo getInstructions readMemory

getRegisters setRegisters (one field per
register, only include those you
want to change)

getEmulatorStatus (paused?
speed? etc)

setEmulatorStatus sendEvent

setMemory restart addBreakpoint

clearBreakpoint getBreakpoints step

Note: Nowhere close to all of this is implemented yet! Sorry!

getStack setStatusBits (individual control
over status register bits)

clearMemory

trace halt clearAllBreakpoints

Standard fields
Every debugger command has the following fields.

Field name Type Description

command string The name of the command to execute.

order number A numeric value used to track the order in which
commands are sent; each command should have a value 1
greater than the last command sent. The first command sent
during a session should be 1. Replies to specific commands
will include that command’s order number.

getEmulatorInfo
This command returns information about the emulator. An emulatorInfo message is sent in reply.

clearAllBreakpoints
Removes all breakpoints. No reply.

getInstructions
Returns one or more instructions. An instructions message is sent in reply.

Field name Type Description

address number The address at which to start fetching instructions. If 0, the
current program bank and program counter are used.

count number The number of instructions to disassemble.

readMemory
Returns one or more bytes read from the emulator’s memory. A memory message is sent in reply. NOT
IMPLEMENTED.

Field name Type Description

address number The address to start reading from.

Field name Type Description

count number The number of bytes to retrieve.

getRegisters
Returns the values of all of the 65816 registers. A registers message is sent with the results.

setRegisters
Sets the values of one or more registers. No reply is sent to this message. You may specify one or all of
these fields; you don’t have to provide any you don’t wish to specify a new value for.

Field name Type Description

A number The accumlator’s value.

X number The X register’s value.

Y number The Y register’s value.

PC number Program Counter value.

DBR number Value for the Data Bank Register.

PSR number Value for the status register.

PBR number Value for the Program Bank Register (K).

SP number Value for the Stack Pointer.

DP number Value for the Direct Register.

getEmulatorStatus
Returns information about the status of the emulator. An emulatorStatus message is sent with the
results.

setEmulatorStatus
Sets the emulator’s current state. No reply is sent. You may specify any combination of these fields.

Field name Type Description

paused boolean Whether or not the emulator should be paused.

breakpointsEnabled boolean Whether or not breakpoints are enabled.

sendEvent
Sends an event to the emulated computer. No reply is sent.

Field name Type Description

type string The type of event to send.

• keydown
• keyup
• mousedown
• mouseup
• mousemove

keyADB number For key events, the ADB keycode. You may send either this
or keyASCII, but not both.

keyAscii number For key events, the ASCII character of the pressed key. You
may send either this or keyADB, but not both.

x number The mouse X coordinate at event time (optional for key
events).

y number The mouse Y coordinate at event time (optional for key
events).

commandKey Boolean true if the Command key is down

optionKey Boolean true if the Option key is down

shiftKey Boolean true if the shift key is down

controlKey Boolean true if the control key is down

capsLock Boolean true if the caps lock is down

keypad Boolean true if the key pressed is on the keypad (only for key
events)

rightClick Boolean true if the click is a right-click

setMemory
Sets the value of one or more bytes of the emulated computer’s memory. NOT IMPLEMENTED.

Field name Type Description

address number The address to start writing to.

bytes array of number An array of bytes to write into the GS memory.

restart
Restarts the emulated computer. No reply is sent. NOT IMPLEMENTED.

addBreakpoint
Adds a new breakpoint. No reply is sent.

Field name Type Description

address number The address at which to create the breakpoint. When
establishing watches for ranges of memory, this is the
address of the first byte to watch.

type string The type of breakpoint to create. One of:

• break
• read
• write
• readwrite
• conditional

break is a standard unconditional breakpoint that pauses
the emulator before executing code at the specified address.
read, write, and readwrite are watchpoints; the
emulator pauses whenever the specified address is accessed
in the specified manner. conditional is a conditional
breakpoint.

name string An optional name for the breakpoint.

size number The size, in bytes, of the memory range to watch. This is
only used for read, write, readwrite, and
conditional, and is optional for all of those.

condition ? TBD; I doubt anything but break will be implemented
anytime soon.

clearBreakpoint
Removes a breakpoint. No reply is sent.

Breakpoints may be identified by either address or name.

Currently, only address is supported.

Field name Type Description

address number The address of the breakpoint to remove. Either this or
name (but not both) must be specified.

name string The name of the breakpoint to remove. Either this or
address (but not both) must be specified.

getBreakpoints
Returns a list of all current breakpoints. The result is sent as a breakpoints message. NOT
IMPLEMENTED.

step
Tells the emulator to execute one step of instruction. No reply is sent.

Currently only “in”, “skip”, and “stop” are supported. All others are accepted but will have
unpredictable results (they set the status appropriately, but that status is ignored, so the results will
likely not be good).

Field name Type Description

type string The type of step to perform. One of:

• in
• over
• out
• stop
• start
• skip

in executes one instruction, going into a subroutine if the
instruction is a JSR or JSL.

over executes one instruction, or, if the instruction is a
JSR or JSL, executes the entire subroutine, returning
control to the debugger when PC and PBR indicate the next
instruction following the current one.

out executes all instructions until the current routine exits
by calling either RTS or RTL.

stop ends stepping mode and resumes running the CPU
normally.

start breaks 65816 execution immediately into the
debugger.

skip skips over the current instruction to the next one.

getStack
Returns the contents of the stack. The result is sent as a stack message.

Field name Type Description

numBytes number The number of bytes to return. Since the stack doesn’t have
a bottom, this is used to indicate how far down you want to
go.

setStatusBits
Sets the value of one or more of the processor status bits; any one or more of the fields may be specified.
No reply is sent. NOT IMPLEMENTED.

Field name Type Description

c Boolean The new value for the carry flag.

n Boolean

z Boolean

d Boolean

m

x

i

b

e

clearMemory NOT IMPLEMENTED.
Clears the specified memory. No reply is sent.

Field name Type Description

address number The address to start erasing at.

count number The number of bytes to erase.

value number The value (0-255) to write into each byte in the specified
range.

trace
Starts or stops trace mode. A traceStatus message is sent in reply. NOT IMPLEMENTED.

While in trace mode, the emulator runs normally but automatically sends out processor status and
disassembly information to the debugger as it executes each instruction; one disassembly message is sent
for each instruction, as is one register instruction.

Field name Type Description

enable Boolean true to start tracing, false to stop.

halt
Stops the CPU and enters single-step mode. No reply is sent. NOT IMPLEMENTED.

Messages
These are messages sent by Sweet16 to the debugger. Some are sent solely in response to specific
commands, some are sent as-needed to provide updated information, and some can be sent in either case.

emulatorInfo console registers

memory (one byte or a range of
bytes)

emulatorStatus break

instructions breakpoints statusBits

error step stack

Standard fields
Every message has the following fields.

Field name Type Description

message string The name of the message.

inReplyTo number The order number of the command to which this message
is a reply, or 0 if this is not a reply to a command request.

cycle number The CPU cycle number at which the message was sent.

timestamp number The time at which the output occurred, in milliseconds
since January 1, 1970 at midnight UTC.

The cycle number is sent even if the command is not related to the CPU in any way (including in the
sweet16Version message). The value will be 0 if the emulator hasn’t been started.

emulatorInfo
Provides information about the emulator.

Field name Type Description

name string The emulator’s name.

version string The version number of the emulator, such as “3.0b1”.

Field name Type Description

copyright string The copyright string for this version of Sweet16.

protocolVersion number The debugger protocol version number supported by the
emulator.

date string The date on which the emulator was compiled.

time string The time at which the emulator was compiled.

build string The emulator’s build number, if any.

console
Outputs data to the debugger console. Only one of the fields may be specified.

Field name Type Description

text string A text string to output to the console, in UTF-8 encoding.

html string HTML to output to the console. NOT IMPLEMENTED.

registers
The values of all Apple IIgs registers.

Field name Type Description

A number The accumlator’s value.

X number The X register’s value.

Y number The Y register’s value.

PC number Program Counter value.

DBR number Value for the Data Bank Register.

PSR number Value for the status register.

PBR number Value for the Program Bank Register (K).

SP number Value for the Stack Pointer.

DP number Value for the Direct Register.

memory
The values of a range of Apple IIgs memory. NOT IMPLEMENTED.

Field name Type Description

address number The address of the first byte in the block.

count number The number of bytes (this is the size of the bytes array).

bytes array of number The values of each of the bytes in the block.

stack
This response from the getStack request contains information describing the contents of the stack.
Since there’s no way to know how deep the stack can actually be, this describes the number of bytes
worth of stack requested by the getStack request.

Field name Type Description

count number The number of stack entries returned.

items array of object An array of objects describing each entry in the stack. In
the future, these may be able to represent the size of the
values pushed onto the stack, but for now they will always
be bytes, so size will always be 1 for now.

• address - The address (as a 16-bit value; the bank is
always $00) of the value

• value - The numeric value stored on the stack
• size - The size of the value in bytes (1-4)

Eventually information will also be added to support
recording what instruction was used to create the entry, etc.

break
Tells the debugger that a hard break (either a BRK or an ORCA breakpoint) has occurred.

Field name Type Description

address number The address of the first byte of the BRK or COP instruction
that caused the hard break.

name string The ORCA function name, if any. NOT
IMPLEMENTED.

emulatorStatus
The emulator’s current status. Generally sent in response to a getEmulatorStatus request, but also
sent when certain states change, such as when the emulator is paused or unpaused.

Field name Type Description

paused boolean Whether or not the emulator is paused.

breakpointsEnabled boolean Whether or not breakpoints are enabled.

instructions
Contains one or more instructions as requested by a prior getInstructions request, or as indicated
by the current tracing mode.

Also sent each time a step occurs to update the debugger about what’s going on.

Field name Type Description

count number The number of instructions in the list.

list object A list of instructions. This is an array, each element of
which contains the following fields:

• address: The address of the instruction (number)
• instruction: The value of the instruction register (number)
• disassembly: A string that disassembles the instruction
• numBytes: The number of bytes the instruction uses

type string Indicates the type of instruction list this is:

• list - An instruction listing, typically in response to a
getInstructions request.

• step - A single instruction sent by the CPU, indicating
the instruction that will be executed next

breakpoints
A list of breakpoints; sent in response to a getBreakpoints request. NOT IMPLEMENTED.

Field name Type Description

statusBits
The values of the status bits, broken out from the processor status register. NOT IMPLEMENTED.

Field name Type Description

c

v

n

z

d

m

x

e

i

b

error
Describes an error that has occurred. These may be sent in response to any command. NOT
IMPLEMENTED.

Field name Type Description

type string The type of error: “command” if it’s due to a syntax or
other error in a command sent to the debug server, or
“emulation” if it’s an emulation related error.

message string The error message.

