

TML PASCAL II

Translated into French by B Capslock
Re-Translated into English by Michael A. Stephens

Revision Date: 4 July 2007

TML Pascal II – Reference Manual i

INTRODUCTION 1
ABOUT THE MANUAL 2

CHAPTER 1: FIRST CONTACT 3
SYSTEM CONFIGURATION 3

A Single 800k Floppy Drive 3
Dual 800k Floppy Drives 3
A Hard Disk 4

INTERPRETED vs. COMPILED LANGUAGES 4
AND NOW? 4

CHAPTER 2: USING TML PASCAL II 6
LAUNCHING TML PASCAL II 6
THE PROGRAMMING ENVIRONMENT 6
EDITING SOURCE FILES 6

Using the Menu to Edit Source Files 6
Naming Conventions 6
Basic Rules for the Editor 7

CHAPTER 3: PROGRAM CREATION 8
COMPILATION 8
TESTING SOURCE CODE 8
PROGRAM EXECUTION 8
CREATE AN APPLICATION 9
COMPILING UNITS 9
ERROR DETECTION 10

CHAPTER 4: RESOURCES 11
INTRODUCTION 11
RESOURCES 11
THE RESOURCE EDITOR 13

Introduction 13
PASCAL STRING RESOURCE 14
C STRING RESOURCE 14
ALERT STRING RESOURCE 14
TOOL STARTUP RESOURCE 15
MENU BAR RESOURCE 15
MENU RESOURCE 16
WINDOW RESOURCE 16

Window Frame Definition 17
Window Controls Definition 18

CHAPTER 5: TML PASCAL II MENUS 19
THE APPLE MENU 19
THE FILE MENU 19
THE EDIT MENU 19
THE SEARCH MENU 20
THE WINDOW MENU 20
THE COMPILE MENU 20
THE GS/OS MENU 21

CHAPTER 6: TEXTBOOK APPLICATIONS 22

CHAPTER 7: GRAPHIC TEXTBOOK APPLICATIONS 23

CHAPTER 8: DESKTOP APPLICATIONS 24
THE TOOLS OF AN APPLE IIgs 24
WHAT DO THESE TOOLS DO? 25

The 7 base tools 25
The tools for interfacing with the Desktop 26
The peripheral management tools 27

TML Pascal II – Reference Manual ii

The sound tools 27
The mathematical tools 28

HOW TO PERFORM A CALL TO A TOOLBOX ROUTINE 28
EVENT MANAGEMENT 30

The possible GetNextEvent events: 31
The possible TaskMaster events: 31

PROGRAM STRUCTURE 31
Adding resources 32
Definition Procedures (DefProcs) 32
Large programs and segmentation 33
Segmentation of code 33
Segmentation of data 34

CHAPTER 9: NEW DESK ACCESSORIES 35
START 35
THE SOURCE FILE 35

The DAInit procedure 37
The DAOpen function 37
The DAClose procedure 38
The DAAction procedure 38

COMPILING AN NDA 40

CHAPTER 10: CLASSIC DESK ACCESSORIES 41
PROGRAM STRUCTURE 41

The StartUpCDA procedure 41
The ShutDownCDA function 41

COMPILING A CDA 42

CHAPTER 11: RESERVED WORDS 43
BASIC ELEMENTS 43
SPECIAL SYMBOLES 43
IDENTIFIERS 43
DIRECTIVES 44
NUMBERS 44
LABELS 44
CHARACTER STRINGS 44
DECLARATIONS OF CONSTANTS 44
COMMENTS AND COMPILATION DIRECTIVES 45

CHAPTER 12: BLOCKS, VISIBILITY, AND ACTIVATION 46
DEFINITION OF A BLOCK 46
RULES OF VISIBILITY 46

Visibility of a declaration 46
Redeclaration in an inner block 46
Position of the declarations in a block 47
Redeclaration inside a block 47
Identifiers of standard objects 47
Visibility of the interface modules and module identifiers 47

ACTIVATION 47

CHAPTER 13: VARIABLE TYPES 48
SIMPLE TYPES 48

Ordinal types 48
The standard ordinal types 48
Enumerated types 49
Interval types (also known as ‘Subrange types’) 50
Real types 50

STRUCTURE TYPES 51
Array types 51
Record types 52
Set types 53
File types 53

TML Pascal II – Reference Manual iii

STRING TYPES 54
POINTER TYPES 54
IDENTICAL AND COMPATIBLE TYPES 55

Identical types 55
Compatible types 55

CHAPTER 14: VARIABLES 56
DECLARATION OF VARIABLES 56
REFERENCE VARIABLES 56

Qualifiers 56
Tables, strings and indexes 56
Records and fields designators 57
Dynamic pointers and variables 57
Variable type modification (Variable type casts) 58

CHAPTER 15: EXPRESSIONS 59
OPERATORS 61

Arithmetic operators 61
Boolean operators 62
Set operators 62
Relational operators 62
Comparison between ordinal types 63
Comparison between strings 63
Comparison between packed strings 63
Comparison of sets 63
Comparison of pointers 63
Testing for set membership 64
The @ operator 64

FUNCTION CALLS 65
SET CREATION 66
VALUE TYPE MODIFIERS (Value Type Casts) 66

CHAPTER 16: STATEMENTS 67
SIMPLE STATEMENTS 67

Assignment statements 67
Procedure statements 68

STRUCTURED STATEMENTS 68
Sequential statements 68
Conditional statements 69
Repetition statements 70
Control statements 73

CHAPTER 17: PROCEDURES AND FUNCTIONS 76
PROCEDURE DECLARATION 76
FUNCTION DECLARATION 77
FUNCTION AND PROCEDURE DIRECTIVES 78

FORWARD directive 78
EXTERNAL directive 79
INLINE directive 79
TOOL directive 79

PARAMETERS 80
VALUE parameters 80
VARIABLE parameters 80
STATIC parameters 81
UNIV parameters 81
Parameter list compatibility 82

CHAPTER 18: PROGRAMS AND UNITS 83
INTRODUCTION 83
PROGRAMS 83
THE USES CLAUSE 83
UNITS 84

TML Pascal II – Reference Manual iv

CHAPTER 19: INPUT/OUTPUT 87
FILE ACCESS 87
FILES IN PASCAL 87
STANDARD PROCEDURES AND FUNCTIONS FOR ALL FILES 88

The RESET procedure 88
The REWRITE procedure 88
The OPEN procedure 88
The CLOSE procedure 89
The EOF procedure 89
The SEEK procedure 89
The ERASE procedure 89
The IORESULT procedure 89
The FILEPOS function 90
The RENAME procedure 90

STANDARD PROCEDURES FOR STRUCTURED FILES 90
The READ procedure for structured files 90
The WRITE procedure for structured files 91

THE STANDARD PROCEDURES AND FUNCTIONS FOR TEXT FILES 91
The READ procedure for text files 91
The READLN procedure 92
The WRITE procedure with text files 92
The WRITELN procedure 93
The EOLN function 93
The PAGE procedure 93

DISK FILES AND TML PASCAL II 93
PERIPHERALS AND TML PASCAL II 94

CHAPTER 20: STANDARD PROCEDURES AND FUNCTIONS 95
THE GRAPHICS PROCEDURE 95
THE EXECUTION CONTROL PROCEDURES 95

The EXIT procedure 95
The HALT procedure 95
The CYCLE procedure 95
The LEAVE procedure 96

PROCEDURES FOR DYNAMIC MEMORY ALLOCATION 96
The NEW procedure 96
The DISPOSE procedure 96

THE TRANSLATION FUNCTIONS 96
The TRUNC function 97
The ROUND function 97
The ORD4 function 97
The POINTER function 97

THE ARITHMETIC FUNCTIONS AND PROCEDURES 97
The INC procedure 97
The DEC procedure 98
The ABS function 98
The SQRT function 98
The ODD function 98
The SIN function 98
The COS function 98
The EXP function 99
The LN function 99
The ARCTAN function 99

THE ORDINAL FUNCTIONS 99
The ORD function 99
The CHR function 100
The SUCC function 100
The PRED function 100

THE FUNCTIONS AND PROCEDURES FOR STRINGS 100
The LENGTH function 100
The POS function 100
The CONCAT function 101

TML Pascal II – Reference Manual v

The Copy function 101
The DELETE procedure 101
The INSERT procedure 101

LOGICAL FUNCTIONS AND PROCEDURES 101
The BAND function 101
The BOR function 102
The BXOR function 102
The BNOT function 102
The BSL function 102
The BSR function 102
The BROTL function 102
The BROTR function 103
The HIWRD function 103
The LOWRD function 103

MISCELLANEOUS FUNCTIONS AND PROCEDURES 103
The SIZEOF function 103
The CARD function 104
The MOVELEFT procedure 104
The FILLCHAR procedure 104
The SCANEQ function 104
The SCNANE function 105

THE MANAGEMENT OF TOOLBOX ERRORS CALLS 105
The ISTOOLERROR function 105
The _TOOLERR variable 105

APPENDIX A: ERROR MESSAGES 107
ERRORS WITHIN THE EDITOR 107
ERRORS OF COMPILATION 108

Lexical errors 108
Syntax errors 108
Semantic errors 109
Unit errors 113
Linker errors 114
GS/OS error codes 115

APPENDIX B: COMPILER DIRECTIVES 117
THE CDA DIRECTIVE 117
CODE SEGMENT 117
DEFINITION PROCEDURE 118
DATA SEGMENT 118
EXTERNAL VARIABLE REFERENCES 118
LONG GLOBALS 119
THE NDA DIRECTIVE 119
STACK SIZE 119
UNIT SEARCH PREFIX 120
TOOLBOX FUNCTION ERRORS 120

APPENDIX C: TOOLBOX UNITS 121

APPENDIX D: THE HEART OF TML PASCAL II 122
TML PASCAL II MEMORY MANAGEMENT 122

Application code 122
Global variables 122
Execution stack 123
Available memory 123

DATA REPRESENTATION 123
CALLING CONVENTIONS 126

Calling a subroutine 126
Variable parameters 127
Value parameters 127
Static parameters 127
Functions results 127

TML Pascal II – Reference Manual vi

I/O code 127

APPENDIX E: COMPARISON OF TML PASCAL II AND TML PASCAL I 129
CHAPTER 1: DISCOVER TML 129
CHAPTER 2: USING THE DESKTOP ENVIRONMENT 129
CHAPITRE 3: CREATE A PROGRAM 129
CHAPITRE 4: RESOURCES 129
CHAPTER 7: GRAPHIC APPLICATIONS 129
CHAPTER 8: DESKTOP APPLICATIONS 130
CHAPTER 9: NDA 130
CHAPTER 10: CDA 130
CHAPTER 11: RESERVED WORDS 130
CHAPTER 19: I/O 130
CHAPTER 20: STANDARD PROCEDURES AND FUNCTIONS 131
ANNEXE B: COMPILER DIRECTIVES 131
ANNEXE C: INTERFACES 131
ANNEXE D: THE HEART OF TML PASCAL II 131

TML Pascal II – Reference Manual 1

INTRODUCTION

INTRODUCTION

Welcome to TML Pascal II, the second generation of the famous Pascal language
development system for the Apple IIgs. TML Pascal II implements certain news functions
making the programming easier and ensuring a total compatibility with operating system
5.0. In particular, TML Pascal II now allows you to edit and create resources. This version
is intended to be used on only one computer; for use on a AppleShare network, you must
get a special version of TML Pascal II for network functionality. The TML Pascal II
programming language is intended to satisfy the greatest number of programmers on the
Apple IIgs. It is based on the Pascal language which has been used for years, with many
extensions for programmers familiarized with other versions of Pascal.

TML Pascal II recognises the usage of modules, direct I/O access to disk, and standard
subroutines like Moveleft, Fillchar, etc which one finds in the extensions of UCSD Pascal
from Apple. And of course, many of the features of TML Pascal for the Macintosh like type
casting operations on a bit, the CYCLE and LEAVE declarations, the usage of modules
and more still, are all available in TML Pascal II for the Apple IIgs.

TML Pascal II for the Apple IIgs was designed to take full advantage of the new features of
the machine. It runs in true 16 bits native mode GS/OS. It is possible to access each
routine of the Apple IIgs ToolBox in the same way that you can access Prodos 16, GS/OS,
and the resources.

With TML Pascal II, you will be able to develop autonomous applications for GS/OS, NDA
and CDA desk accessories, text mode or graphical applications. What’s more, with the
development of applications taking advantage of the IIgs ToolBox, TML Pascal II allows
you to develop what we call "plain vanilla" or "textbox" applications. This possibility
enables you to directly enter programs, starting from the text examples, and to compile
them. As for the development environment, TML Pascal II provides a console window of
20 lines and 80 columns in 640 super-high resolution mode.

The user guide and reference manual of TML Pascal II was written to guide you in the
usage of TML Pascal II; however, they are not training manuals.

In order to use TML Pascal II, you will need an Apple IIgs with monitor, a 3.5” 800 K floppy
drive, and a memory expansion card with at least 512 KB for a total of 768 K read-write
memory. For the development of important applications, two 3.5” 800 K floppy drives or a
hard disk are recommended. A printer to print out your source listings will also be a
welcome addition.

If you have any questions relating to TML Pascal II or Pascal programming, you can
contact customer service Monday to Friday between 8:30am and 5:30pm (local time) on
904 636 8592. In regards to more technical problems, we ask you to call our technical
service line between 2pm and 5pm on 904 636 0118. Additionally, if you prefer to send us
a letter, you can write to us at:

TML SYSTEMS,
Inc 8837-B Goodbys Executive Drive Jacksonville,
Florida 32217

TML Pascal II – Reference Manual 2

INTRODUCTION

ABOUT THE MANUAL

This manual was designed to help you get going quickly with TML Pascal II and also to be
used as reference manual when your level of programming increases. This manual is
divided into four parts:

1. The User Guide
2. Programming
3. A Language Reference
4. The Appendices

The user guide introduces you to TML Pascal II and will teach you how to configure your
system for use, and how to obtain the maximum out of using TML Pascal II. The purpose
of the user guide is to provide you with an overview of the TML Pascal II development
environment.

The Programming section introduces you to the basics of TML Pascal II by teaching you
how to write each of the five various types of programs using TML Pascal II.

The Language Reference is a complete reference of the possibilities provided by TML
Pascal II. Note that this section is a reference and is not a guide for using the Pascal
language. If you are not familiar with Pascal language programming, you will need an
additional manual to teach you how to use the Pascal language.

The Appendices summarise the error messages and the results of TML Pascal II
inputs/outputs, the compilation directives and the functions of the Apple IIgs ToolBox. In
addition, a look at the more advanced features of TML Pascal II is given, with a
comparison between TML Pascal II and the original TML Pascal.

TML Pascal II – Reference Manual 3

CHAPTER 1: FIRST CONTACT

CHAPTER 1: FIRST CONTACT

Before using TML Pascal II you will have to take precautions to protect your software. As it
is not possible to use the TML Pascal II diskette provided by itself (it does not contain
GS/OS), it can be sufficient to write protect the disk when you use it to install TML Pascal
II on your hard disk. However, it is preferable to make a backup diskette and to arrange
the original one in a safe place.

Please remember that the philosophy of TML Systems is to sell quality products at a
reasonable price without copy protection. This system only works if you play the game. By
Purchasing TML Pascal II, you are licensed to make backups of the software for your
personal needs, but any backups made should not be given to or used by anyone else.

To format a new diskette and to make a backup, you can use your usual copy program
(allowing for the duplication of the resource files) or better yet, by using the copy
functionality within the GS/OS Finder. If you are not accustomed to these tools then
consult their respective manuals.

SYSTEM CONFIGURATION

The TML Pascal II distribution diskette contains all the files necessary for the installation of
TML Pascal II. A development system on the Apple IIgs using TML Pascal II can be
configured in many ways, however, in the following sections we indicate the most common
configurations available to you:

• A Single 800k Floppy Drive
• Dual 800k Floppy Drives
• A Hard Disk

To build a TML Pascal II development environment of you will need two different sets of
software:

• The TML Pascal II Software
• The Apple IIgs System Software (GS/OS)

A Single 800k Floppy Drive
The minimum configuration is to have only one 800k floppy drive. Although this
configuration reduces the space available to you on the diskette, it still provides a
complete and powerful development system using TML Pascal II. A development system
running on only one 800K floppy contains the minimum of the software referred to above.
With this configuration you have approximately 100 KB to develop your applications.
However, it will be necessary to do a little ' house cleaning' on your copy of the TML
Pascal II diskette by removing, in particular, the SAMPLES files. This will give you more
space to save your sources.

Dual 800k Floppy Drives
With two 800k floppy drives it becomes possible to use the second drive for storage of the
source code for any applications that you develop. Nevertheless, the system files must
reside on the TML Pascal II diskette.

TML Pascal II – Reference Manual 4

CHAPTER 1: FIRST CONTACT

A Hard Disk
A hard disk offers speed as well as the greatest flexibility for your development system. It
is recommended that you install both the Apple IIgs System Software diskettes and that of
TML Pascal II on the hard disk. However, please ensure that you are using the latest
version of the Apple IIgs System Software and not an older version. Version 5.0 of GS/OS
is the minimum. Neither the TML Pascal II software, nor any applications developed by it,
will function correctly under GS/OS prior to version 5.0.

INTERPRETED vs. COMPILED LANGUAGES

TML Pascal II is a compiled language. In this respect, it differs notably from the interpreted
languages such as Applesoft Basic. A programming language consists of a collection of
statements, expressions and operators, commonly referred to as syntax or language
structure. Whereby the languages written in machine language are generally
incomprehensible for humans, they are completely understood by the microprocessor of
the computer. In our case, the 65816 microprocessor.

Before a statement written in a high level language can be executed, it must initially be
translated into language understood by the computer: machine language. Machine
language is made up of a continuation of binary numbers (0’s and 1’s) which is understood
by the computer as being a series of YES-NO states. These YES-NO states characterise
the operations that the machine is able to execute. This succession of 0’s and 1’s is not
easily comprehensible by man.

The greatest part of each programming language is made up during the translation of
programs into machine language. In an interpreted language, this translation is made
when the program is being executed. This method is sometimes called ‘just in time’
compilation. If a statement of a program is executed 100 times for example, the translation
into machine language is executed 100 times also by the interpreter. Generally, interpreted
languages are executed more slowly than the compiled languages because the translation
occurs during program execution.

On the other hand, a compiled language program is translated into machine language
before its execution. Thus, each line of the program is translated only once (at the time of
compilation). What’s more, compilation allows for any syntax errors to be detected before
the program is executed. Of course, the compiler cannot detect any logical errors (for
example infinite loops).

Generally, the compiled languages are executed much more quickly than the interpreted
languages. Moreover, the compiled languages can be executed independently of any
language processor. Thus, compiled TML Pascal II programs can be executed under
GS/OS without TML Pascal II being used. On the other hand, Applesoft Basic programs
can only be executed if the Basic language is loaded in memory beforehand.

AND NOW?
If you are new to programming, read this manual in its entirety (TML Pascal II) and get a
good book that introduces you to the Pascal programming language (for example the

TML Pascal II – Reference Manual 5

CHAPTER 1: FIRST CONTACT

online Pascal introduction found at http://www.taoyue.com/tutorials/pascal/contents.html).
If you know Apple IIgs programming with a language other than Pascal, it is enough for
you to read chapters 4 to 10 in order to learn the specifics of TML Pascal II and the
programs that you can develop in such an environment. If you already know Pascal well,
then appendix E will be your main point of reference to learn the various functions working
with system tools.

TML Pascal II – Reference Manual 6

CHAPTER 2: USING TML PASCAL II

CHAPTER 2: USING TML PASCAL II

LAUNCHING TML PASCAL II
Put a copy of your TML Pascal II diskette in a 3.5” floppy drive and turn on your computer.
When the booting has completed, the finder desktop is displayed along with an icon of the
TML Pascal II diskette drawn in the right part of the screen. Click on this icon, and then
select the OPEN option from the FILE menu (or double-click on the TML Pascal II icon). A
window opens: double-click on icon TMLPascal.II in order to load TML Pascal II into
memory.

THE PROGRAMMING ENVIRONMENT
TML Pascal II is designed to take full advantage of the possibilities of the GS: mouse
interface, pull-down menus, multi-window, etc. With such a machine, the programming is
simplified: the editor and the compiler function in the same working environment.

The main menu of TML Pascal II only allows the user to edit a source file or resource. In
this chapter and the following, we will see how to edit a source file; chapter 4 we will
specifically deal with resources files.

EDITING SOURCE FILES
The edit windows of TML Pascal II are tools allowing for the easy creation/modification
your source code. TML Pascal II allows you to have as many source files opened
simultaneously that the memory available of your system allows. Obviously, the more RAM
you have available in your GS, the more space you will have to create programs and to
open edit windows.

As you open new source files, TML Pascal II will place them in new edit windows
independent of any of the others. But only one edit window can be active at a time. The
active window is always the one located in the foreground, all other edit windows will be
inactive.

TML Pascal II also uses dialogs to communicate with the user. These dialogs are
generally used to inform the programmer when he must provide certain information in
order to continue his work (or to correct certain erroneous conditions). The dialogs also
use buttons OK/CANCEL or YES/NO to confirm or cancel your decisions.

Using the Menu to Edit Source Files
Choose the OPEN option from the FILE menu. A standard dialog for loading files appears
on the screen. Click on the SOURCE TEXT FILE radio button then double-click on file
HELLOWORLD in file list. Almost instantaneously, the listing is displayed in a new edit
window. You will notice that then the bar of menus includes/understands new options:
these are editing tools. These tools will be examined in detail within chapter 5.

Naming Conventions
When you opened the HelloWorld file, you probably noticed the presence of various files
with very similar names. These similarities are the result of following the conventions

TML Pascal II – Reference Manual 7

CHAPTER 2: USING TML PASCAL II

allocated to each of the various file types. The reason for this is to differentiate the source
files, Resource and Application. TML Pascal II uses the following naming convention:

Source files: are to use suffix P at the end of the file names

Resource files: are to use suffix R at the end of the names

Application: TML Pascal II will automatically append suffixes when creating the name of an
application

NOTE: TML Pascal II does not automatically create file names complying with these rules:
it is up to you to follow these rules when creating new files.

Basic Rules for the Editor
The TML Pascal II Editor is very similar to traditional word processing. Thus the
experienced GS user will not be out of place editing his source files with TML Pascal II.
You have the following capabilities:

- to cut, copy, paste and delete blocks of text
- search and replacement of text
- indentations (tabulations)
- choice of the font and its size
- printing to an Imagewriter or Laserwriter

In addition to the above, TML Pascal II has specific options:

- to check the syntax of a source file
- to execute a program
- to create an application
- to use certain functions of GS/OS (to rename, copy)
- to indicate any programming errors

Using the HelloWorld source file, familiarise yourself with the various formatting controls.
For example, copy-paste a selection of text, change the font and its size in the current edit
window, cancel your modifications, etc. Within chapters 3 and 5 we will study in detail the
different options available within TML Pascal II.

TML Pascal II – Reference Manual 8

CHAPTER 3: PROGRAM CREATION

CHAPTER 3: PROGRAM CREATION

COMPILATION
TML Pascal II has three options for compilation: TO MEMORY, TO DISK and CHECK
SYNTAX. These options for compilation can be found in the COMPILE menu.

Compilation TO MEMORY is almost certainly the option you will use the most. This option
carries out compilation of the source found in the active edit window. In case of success,
compilation continues with the execution of the program compiled in memory.

The compile TO DISK option is similar to the preceding one, but the compiled program is
not executed, it is saved to disk. This option is used when your program is finished and
tested: this option then produces the final application which is startable from the launcher.

Lastly, CHECK SYNTAX makes it possible to quickly check the syntax of the source found
in the active window. There is neither execution of the compiled program nor saving to disk
in this case.

When one of the compilation options is selected, a window is displayed indicating the
progress of the process. When the 'thermometer' is completely coloured in, compilation is
finished.

TESTING SOURCE CODE
The option Check Syntax is the fastest option of compilation: there is no code generated,
but instead checks for the correct spelling of key words, statements, functions, etc.
However, it does not test the logic of the program. For example, an infinite loop could not
be detected by Check Syntax. Open the file TextBook.p example and launch the option
Check Syntax.

When the 'thermometer' is completely coloured in, the syntax checking is finished. This
took only a few seconds, thanks to the performances of the TML Pascal II compiler and
with the compactness of the source code tested.

If the test indicates that no error was detected, it does not mean that the program is
perfect. The guarantee is that there are no errors in syntax. It is important to carry out a
syntax check to detect any errors which would cause a program to 'crash' when it is
executed after a Compile To Memory.

If an error is detected, compilation is stopped and TML Pascal II displays a window
indicating the type of error. In the active edit window, the code responsible for generating
the error is displayed in inverse text.

PROGRAM EXECUTION
When you are certain that your program does not contain any syntax errors, it is time to
execute it. To achieve this, select the option Compile To Memory. During compilation, TML
Pascal II generates code which will be executed within the memory of the GS. The
programming environment will be closed (windows, menus) and your application launched.

TML Pascal II – Reference Manual 9

CHAPTER 3: PROGRAM CREATION

When you leave your program, you will return to TML Pascal II automatically, with the
desktop in the state you had left it in (opened windows, sources displayed, etc.).

As it is possible that your source contains logical errors which would cause a crash during
execution, TML Pascal II makes it possible to save the desktop right before launching your
compiled code. This behaviour is called AUTOSAVE. If this option is selected, TML Pascal
II carries out a backup of all the open files modified since last compilation. With this option
enabled, you will be unlikely to lose any of your work if the IIgs is locked up by an error
during program execution. Option AUTOSAVE is commented on in chapter 5.

CREATE AN APPLICATION
As mentioned previously, compilation to memory is very fast and very practical. However,
using this method to execute the program, you are required to run TML Pascal II and
compile the source prior to running the program. Fortunately, there is an easier means to
launch an application. For that, it is necessary to perform a Compile To Disk. This will
create a program object that is able to be executed directly from the GS/OS Finder. This
means that you will no longer be required to run TML Pascal II in order to launch your
application: simply double click on your applications icon from within the GS/OS Finder to
launch it.

Compiling to disk is takes slightly longer than the other methods of compilation due to the
writing of the compiled code to disk. The name of the compiled program will be the same
as that of the source without the '.p' suffix.

COMPILING UNITS
In the same manner that TML Pascal II compiles a program, it can compile a Unit. This
compilation cannot generate a program object, but it is used to produce code containing
the information related to your application. Units are used to split a very bulky program into
logical units. A Unit can include constants, types, variables, procedures and functions.

As a Unit cannot be executed, the TML Pascal II compiler acts differently with such a
source. If one compiles a Unit to memory, TML Pascal II carries out the compilation then
returns control to the editor instead of executing the code. Once the compilation is
completed, the Unit’s code is saved in memory and can be used later on by a program.

If one compiles a Unit to disk, TML Pascal II does not create an executable program, but
instead creates an object file containing the table of symbols used and also any compiled
libraries. The code produced will be saved with the suffix '.p.o'. If another program wishes
to link to this compiled Units code, TML Pascal II expects to find the files with the
extension '.p.o'. The file name of the compiled Unit is always the source name plus an
additional suffix '.o'. Thus, the file name for object code that one links to usually ends in
'.p.o'.

The option to Check Syntax behaves in the same manner as for a normal program. That
is, Check Syntax will only check that the current Unit does not contain any syntax errors in
its statements.

TML Pascal II – Reference Manual 10

CHAPTER 3: PROGRAM CREATION

ERROR DETECTION
Until now, we have spoken about performing compilation that occurs without any errors.
Let us now take a quick look at how TML Pascal II detects and manages any errors. TML
Pascal II consists of three parts: the editor, the compiler and the linker. These three parts
function and work together to give the illusion of a single entity. But by
including/understanding how these three parts function, you will better understand how
TML Pascal II detects any errors within your programs source code.

The editor, of course, is what you use most of the time. It makes it possible to open the
windows containing your programs and the majority of the available menu options are
selectable via the editor. The compiler is used when you choose one of the three
compilation options. It makes it possible to detect syntax errors and to produce the object
code. Lastly, the linker is employed only when compiling to disk or memory. It will combine
the various programs objects (units) and will allocate the internal storage necessary for
your application.

The editor only will indicate errors occurring when working in the editing environment. For
example, it will indicate an error if you try to save a file on a protected diskette, or if you try
to open a file without having sufficient memory. The compiler indicates the errors by using
an error code. Finally, the linker detects any errors occurring at the time the file is created
using GS/OS: for example if the diskette is locked, or if the directory is full, etc.

When an error is detected, TML Pascal II will implement a series of actions in order not to
lose your data and in order to display a dialog window indicating the suspected cause of
the error. In addition to the message, an icon is displayed that indicates the type of the
error. Lastly, if the error relates to a part of your source code, the part concerned is
displayed in inverse text within the edit window.

Editing errors are indicated by a triangle surrounding an exclamation mark; Compilation
errors are indicated by a green ladybird and Linkage errors are indicated by a chain. If the
message describing the error includes an error number, this is a standard GS/OS error
code as described in GS/OS manuals. Appendix A includes/describes the list of error
messages displayed by TML Pascal II.

TML Pascal II – Reference Manual 11

CHAPTER 4: RESOURCES

CHAPTER 4: RESOURCES

INTRODUCTION
One of the more interesting additions to System 5.0 is the Resource Manager (Resource
Administrator). The Resource Manager is a special tool which handles the resources
stored in the Resource Component of GS/OS files. System 5.0 highlights that a file stored
under GS/OS can have two components: the given component and the resources of the
component. A file has a single name, but each part can be opened and treated as a
separate file by GS/OS.

The data component is typically handled by using the system calls of GS/OS: to open,
read, write and close the file. The file is simply treated like a collection of bytes on a disk or
any other storage peripheral. The organisation of data in the data component of a file is
not well defined and is typically very different for each type of file. Consult the GS/OS
Reference manual for documentation concerning the routines provided by GS/OS to
handle data components. A resource component, on the other hand, is handled by the
Resource Manager. The Resource Manager defines the precise structure for the resource
component and provides several routines to read and utilise the information stored in a
resource component. TML Pascal II adds a Resource editor to create and edit resources
graphically, and it is the subject of this chapter. For comprehensive documentation on the
resource components managed by the Resource Manager, see the Apple //gs ToolBox
Reference Update manual.

RESOURCES
A resource is a collection of formatted, organised data of a certain type, which represents
a menu or a menu bar, a window, an alarm chime, or any other type of data as defined by
the system or the user. The exact structure of each resource type is not defined by the
Resource Manager. The Resource Manager only defines how the resources are stored on
the disk, not their contents. A program identifies a resource by its Resource Type and its
Resource ID. The Resource Type defines a class or a group of resources which share a
common format. The Resource ID identifies only a single case (example) of a resource of
any given standard resource. When combined, the Resource Type and the Resource ID
completely identify the resource and its format. Note that the Resource ID is only a single
case for the given Resource Type. Two resources of different Resources Types can have
the same Resource ID.

The Resource Type is a whole number of two bytes. The following table shows the fields
of the types of resources:

Types of resources defined by the Apple Resource Type
$0000 invalid number for a standard resource (do not use)
$0001 - $7FFF valid for use
$8000 - $FFFF reserved for use by system applications

Among the types of resources reserved for the use of the system, Apple has preset
several types of resources. These preset types of resources are used to store the
representations of the elements of limps with tools of the IIgs. For example, a resource

TML Pascal II – Reference Manual 12

CHAPTER 4: RESOURCES

p]ut to be used to define the structure and the contents of a menu or a window. These
preset resources are shown in the following table:

TML Pascal II Name of Resource Type Number of Resource Type (hex)

 rIcon $8001
 rPicture $8002

YES rControlList $8003
YES rControlTemplate $8004
YES rPString $8006

 rStringList $8007
YES rMenuBar $8008
YES rMenu $8009
YES rMenuItem $800A

 rTextForLETextBox2 $800B
 rCtlDefProc $800C

YES rWindParam1 $800E
 rWindParam2 $800F
 rWindColor $8010

YES rTextBlock $8011
 rStyleBlock $8012

YES rToolStartup $8013
 rResName $8014

YES rAlertString $8015
YES rText $8016

 rCodeResource $8017
 rCDEVCode $8018
 rCDEVFlags $8019
 rTwoRects $801A
 rListRef $801C

YES rCString $801D
YES rErrorString $8020

The name of Resource Type in the table above is given for descriptive purposes.
Moreover, the unit of Resources.p that interfaces with the Apple IIgs toolbox uses the
same names as the constants indicated in the above table. The TML Pascal II column
indicates if the TML Pascal II resource editor allows you to edit the given resource.
As mentioned above, each resource has Resource Type and Resource ID. A Resource ID
is comprised of four bytes. The table below shows the Resource ID ranges:

Range Resource ID
$00000000 number of invalid Resource ID (do not use)
$00000001 - $07FEFFFF for the use of applications
$07FF0000 - $07FFFFFF reserved for system use
$08000000 - $FFFFFFFF values not to be used

When new resources are created, a unique Resource ID must be obtained for the
Resource Type to which the resource belongs. The Resource Manager provides the
UniqueResourceID routine for this purpose. The Resource IDs are important to retain,
because they are used as parameters for several toolbox routines which load and create
menus, windows, etc.

TML Pascal II – Reference Manual 13

CHAPTER 4: RESOURCES

THE RESOURCE EDITOR

Introduction
As mentioned previously, TML Pascal II contains a resource editor. The TML Pascal II
resource editor is used to create graphics and edit several of the predefined resource
types created by Apple. By using the resource editor, you will be able to create menus,
windows, alert boxes, strings etc. with only a few mouse clicks. The resources which you
create can be incorporated into a program with the aim of creating complex desktop
applications quickly and easily.

The Resource Window: When TML Pascal II opens a resource for editing, it opens a new
window. This window contains two drop-down lists. The list on the left displays each
Resource Type for which a resource exists in the resource file. The display shows the
number of the Resource Type and optionally the name of Resource Type. Only the
resources which the resource editor knows about are shown with the name of the
Resource Type. That makes it possible to distinguish which resources can be edited or
not.

The list on the right-hand side displays the resources available for the type selected in the
left list. The list is displayed showing each Resource ID number. For example, the
Resource Type window is selected and the file contains two resources which are displayed
in the window (1001 and 1002). To edit a particular resource, simply double click on its
Resource ID.

In addition to these two lists, the Resource Window contains pop-up menu and a button.
The New Resource button is used to create new resources for the Resource Type
currently selected. The pop-up menu is used to create new Resource Types that do not
already appear in the file.

Each resource has its set of attributes which defines how the resource can be used. The
attributes are stored by the Resource Manager for each resource in the attribute Word
flag. In addition to this, the Resource Manager provides two routines: GetResourceAttr and
SetResourceAttr for reading and writing a resource’s attributes.

The TML Pascal II resource editor provides a button "Attr..." in each edit window of
resource. Clicking this button will display an Attributes dialog window which displays the
current attributes associated with this resource. Clicking the OK button in the dialog will
save the new attribute configuration for the resource.

Here is the meaning of each resource attribute:

Resource Attribute Description
Locked

If this attribute is set, the Resource Manager will call NewHandle to
create a locked handle when it allocates memory for the resource.

Fixed If this attribute is set, the Resource Manager will call NewHandle to
create a fixed handle when it allocates memory for the resource.

Resource Converter This attribute indicates if a stored resource representation in a
resource component is required to be converted into a different
representation when it is read into memory. If the attribute is set,

TML Pascal II – Reference Manual 14

CHAPTER 4: RESOURCES

then the resource must be converted.
Write-protection If this attribute is set, the resource is write protected. This means

that an application cannot modify the contents of a resource within
the resource component file.

Preload If this attribute is set, the Resource Manager will automatically load
the resource into memory when the resource file is opened. If a
resource is not configured to be preloaded, then it must be loaded
explicitly into memory by using the LoadResource routine within the
Resource Manager.

Do not cross bank If this attribute is set, the Resource Manager will require that when
NewHandle creates a handle that it does not cross into a different
memory bank when allocating memory for a resource.

Do not use special If this attribute is set, the Resource Manager will require that when
NewHandle creates a handle that it will not occupy special memory
when allocating memory for a resource.

Page aligned Iif this attribute is set, the Resource Manager will require that when
NewHandle creates a handle that it will be page aligned when
allocating memory for a resource.

Purge level If this attribute is set, the Resource Manager will pass the purge
level value into NewHandle when it allocates memory for a
resource.

NOTE: the default value for all resource attributes is NOT (not set) and each level of
purging is set to zero (0).

PASCAL STRING RESOURCE
The Pascal String (rPString) can store up to 255 ASCII characters. The string starts with a
whole byte that is a numeric value indicating the number of characters following in the
resource. The Pascal String resource is used heavily by the other types of resources. For
example, the resource types of rMenuItem, rMenu, rWindParam1 and several of the
different rControlTemplate use a rPString resource to store their titles.

C STRING RESOURCE
The C string (rCString) stores any number of characters ending in a byte set to 0 (NULL).
There is no restriction on the number of characters contained in a C string. The rCString
resources are not often used in TML Pascal programs, because Pascal does not provide
the native functions to use these string types. However the TML Pascal II Resource Editor
does support this Resource Type.

ALERT STRING RESOURCE
The Alert String (rAlertString) stores character strings which is terminated by a byte set to
zero (NULL). This string is used with the AlertWindow function of the Window Manager to
display simple alert windows. The alert string resource stores the message to be displayed
in a alert window along with special codes that define the size of the window, if an icon is
to be displayed, and any buttons required.

TML Pascal II – Reference Manual 15

CHAPTER 4: RESOURCES

For a complete description of the format and structure of the alert string, see the Window
Manager chapter of Apple IIgs ToolBox Reference Update.

The TML Pascal II resource editor allows you to edit and create alert stringa to use with
the AlertWindow procedure of the Window Manager. However, the alert strings have a
very special formatting:

- Alert strings (AlertString) must start with the character of separation (the ‘/’ character is
recommended)

- the character of separation is used to separate the text alert strings (AlertTextString) from
the alert string buttons (AlertStringButtons). To create a button within an alert, simply enter
the character of separation followed by a caret (circumflex accent), a pound symbol (#)
and finally a number between 0 and 6 corresponding with the following button titles:

#0 OK
#1 Cancel
#2 Yes
#3 No
#4 Try again
#5 Quit
#6 Continue

- the formatting codes for LETextBox2 are allowed inside alert string text. These codes
may be entered by clicking the button "Insert LETextBox2 Code" inside the AlertString
Resource dialog of TML Pascal II. The formatting options must be entered after all
AlertStringText text, because the codes are invisible characters that make editing quite
difficult. The codes of LETextBox2 are well documented in the LineEdit chapter of the
ToolBox Reference Manual for the Apple IIgs.

TOOL STARTUP RESOURCE
The rToolStartup resource is used by an application to specify to the IIgs ToolBox which
tools are required by the application and if the application uses the 320 or 640 display
mode. The rToolStartup resource is used with a new StartupTools function and the
ShutDownTools function provided by the tools within the ToolLocator. These two routines
combined with rToolStartup provide the means to start using the tools within the IIgs
ToolBox. The operations included/understood:

• to start the Resource Manager
• to open a resource fork of application
• to allocate a suitable amount of direct page memory for the tools the application

uses
• to start each tool used by the application

MENU BAR RESOURCE
The menu bar resource (rMenuBar) is an ordered list of Menu resources which defines a
menu bar. The resource is used by the NewMenuBar2 procedure of the Resource
Manager to create a menu bar for the application.

TML Pascal II – Reference Manual 16

CHAPTER 4: RESOURCES

The long rectangle at the top of the dialog represents the menu bar currently defined by
the resource. The pull-down list in the bottom left corner is a complete list of each menu
resource in the open resource file. The buttons Insert Menu and Delete Menu are used to
add menus or to delete a menu bar from it. To add a new menu bar to the menu, first
select the menu in the menu bar that you wish the new menu bar to appear after. Then
select the menu to be added from the list of valid menus, and finally click the button Insert
Menu. To erase a menu from the menu bar, select the menu to be erased in the menu bar
and then click on the Delete Item button.

MENU RESOURCE
The resource Menu (rMenu) is an ordered list of MenuItem resources which defines a
menu. The Menu resources are typically accessed via the resources Menu Bar, but they
can be used directly by the NewMenu2 routine of the Menu Manager tool. The Menu
resource is one of two super resources that the TML Pascal II Resources editor allows (the
other is the Window resource). A Menu resource, as defined by Apple, simply stores
references pointing to other resources. In particular, a Pascal string resource for the title of
the menu, and then an ordered list of references for each MenuItem (rMenuItem)
resources. Each MenuItem resource has its own references to other Pascal strings for its
title. For example, a menu with only 6 menus items (menu elements) actually consists of
14 different resources. 1 for the menu resource, 1 for the Pascal string resource containing
the title of the menu, and 6 resource items referring to 6 Pascal string resources containing
each menu items title. It becomes clear, that to create the many menus which an
application requires would be quite tedious if each resource were to be created and
referred to individually. By using simple dialogs, the TML Pascal II resource editor allows
these resources to be created and edited easily via the Resources Menu. The TML Pascal
II Resource Editor does not provide direct modification of each Menu resource. The edit
element in the top left of the dialog is the title of the menu. The pull-down list in the left part
of the dialog is the current list of menu elements (Menu Items) contained in the menu.

To edit an element of a particular menu, simply click on its name in the list. When a menu
element is selected, its name and properties are displayed in several elements to the right
of the dialog window. The Resource Editor allows you to specify one of five style types to
be applied to menu elements, and if the menu element is to have a boundary line and/or is
validated. Furthermore, you can specify an equivalent keyboard command (short-cut) for
the menu element and a marking character. The Item ID is the value returned by
TaskMaster or MenuSelect in an application when the user selects an element of the
menu. The Resource Editor also uses this number as the resource ID of the Menu Item
and the Pascal string resource for the title.

WINDOW RESOURCE
The window resource (rWindParam1) stores information necessary to create a window on
the Apple IIgs desktop by using the NewWindow2 function of the Window Manager. The
window resource defines the location of the window, the size, the title, the frame definition
and other attributes. In addition, the resource can refer to a list of integrated controls. The
integrated controls can be buttons, check boxes, radio buttons, text-edit boxes, pop-up
menus, etc. which appear in the contents of the window. The window resource is the
second of the two super resources which the TML Pascal II Resource Editor supports (the
other is the Menu resource). In the same way as the menu resource, the window resource

TML Pascal II – Reference Manual 17

CHAPTER 4: RESOURCES

can refer to many other resources. A window can refer to a Pascal string resource for its
title, and if the window has integrated controls, it will reference a resource Control List
(rControlList). A resource ControlList then references several Control Template resources
(rControlTemplate) for each button, check box, radio button, text-edit box, pop-up menu,
etc., which appears in the window. And further, each Control Template can refer to a
Pascal string resource for its title. It is clear that creating a window resource would be very
tedious if each one of these elements were to be created individually and then referred to
manually. The TML Pascal II Resource Editor does not provide any direct means of editing
Control List or Template Control resources.

The large blue area in the center of the dialog is used to represent a 50% scaled view of
the GS desktop with a window. The window represents the location and the size of the
window as it is defined by the window resource. To change the location of the window,
simply click within the contents area of the window and move it. To change the window
size, click in the resize box in the lower right corner of the window and move it. The Center
button can be used to quickly center the window on the desktop. The radio buttons for 640
and 320 modes are used to tell the Resource Editor which graphic screen to use when the
window is created. The Resource Editor uses this information to correctly calculate the
scaled size of the window in the dialog. The Frame button is used to display a dialog
containing the structure definition of the window and its attributes. The Controls button is
used to display the Content Controls dialog (integrated controls) which allows you to add
any required integrated controls to the window.

Window Frame Definition
The window definition dialog is used to define the attributes of the window structure, zoom
box, the size of the contained data and the height of the information bar. The meaning of
each resource attribute is explained in the following table:

Attribute Meaning
Title bar If the window is to have a title bar.
Close box If the window is to have a standard closing box.
Alert frame type Will cause the window to be drawn in an alert style

instead of the standard window style. An alert frame type
is typically used for modal dialogs.

Vertical scroll bar If the window is to have a vertical scroll bar.
Horizontal scroll bar If the window is to have a horizontal scroll bar.
Grow box If the window is to have a resizing box.
Zoom box If the window is to have a zoom box.
Moveable If the window is allowed to be moved on the desktop.
Quick in content Set if clicking in the window area should select the

window as if the contents had been clicked.

Visible Set if the window is to be visible when it is created.
Information bar Set if the window is to have an information bar.
Zoomed Set if the window is to be zoomed when it is created.
Zoom rect Defines the co-ordinates for top, left, bottom and right

extents of the window when it is zoomed.
Data height/width Defines the pixel height and width of the window.
Info height Defines the height of the information bar if the window

has one.

TML Pascal II – Reference Manual 18

CHAPTER 4: RESOURCES

Window Controls Definition
The window control dialog is used to define which controls are to be used in the window.
The Integrated controls are a simple button, a check box, a radio button, an edit line, an
edit text, a grow icon, a static text box, an image, an icon button, a scroll bar, a pop-up
menu, a list. To create a new control, to click simply on the pallet of control in the left part
of the box of dialog for the type of desired control then to click inside the window at the
place o| control will have to be placed.

TML Pascal II – Reference Manual 19

CHAPTER 5: TML PASCAL II MENUS

CHAPTER 5: TML PASCAL II MENUS

THE APPLE MENU
The menu item About TML Pascal… contains the references and copyright information for
TML Pascal II. Below this are the NDA’s available on your currently booted system disk.
Below these, OPEN NDA is found if one has just compiled a desk accessory into memory.
This makes it possible to test the NDA program which you have just compiled. If a desk
accessory has just been compiled, the option REMOVENDA is also present. It makes it
possible to release the memory used by the compiled desk accessory code. Note
however, that after the use of the OPEN option, REMOVE NDA disappear from this menu.

THE FILE MENU
This menu usually contains the options:

NEW: to create a new source or resource edit window. One can open as many windows
as the available memory allows.
OPEN: to open a source file or existing resource.
CLOSE: to close the window of active edition. If the file were not saved, an alarm requires
of you to confirm.
SAVE: to save the active window with its current name
SAVE AS : to save the active window by re-naming it
REVERT: to replace all of the modifications made to the active edit window, by the last
saved version.
PRINT OPTIONS: allows you to configure the printed page header: optional presence of
the name, the date, and the page number.
PAGE SETUP: allows you to define the printer commands. Whether to use continuous
paper or sheet feeder (cut sheet). With the Continuous option, header text is only printed
on the first page and no extra line feeds are inserted at the foot of each page. With Cut
Sheet, header text is printed on top of each page, with an appropriate number of line feeds
inserted at the foot of each page and it is necessary to specify the number of lines to print
on each page (default: 8.5” X 11”). The Printer Commands box makes it possible to send a
command BEFORE printing (changing the font, style, etc.). The control characters are
represented by * (Note: this * is a circumflex accent) followed by a letter representing the
control character to be sent. For example, * [will send ASCII 27 (Escape character). (Note:
this * is a circumflex accent)
PRINT: print the file in the active window. By pressing the OPTION key when selecting this
option, only the selected text will be printed (highlighted text).
QUIT: will exit TML Pascal II and return to the Launcher. An alert dialog may be displayed
to ensure that any files being edited are saved prior to exiting.

THE EDIT MENU
The standard options:

UNDO: cancel the last edit operation carried out.
CUT: transfers the selected area of text into the clipboard.
COPY: duplicates the selected area of text into the clipboard.

TML Pascal II – Reference Manual 20

CHAPTER 5: TML PASCAL II MENUS

PASTE: sticks the contents of the clipboard into the edit window, starting at the current
cursor position.
CLEAR : to erase the selected area.
SELECT ALL : selects the entire contents of the current edit window.
SET FONT-SIZE: allows you to define the style and size of the font used in the edit
window, as well as the tabulation width.

THE SEARCH MENU
FIND: displays a dialog window in which you specify the string to be found, with the search
starting at the current cursor position (not from the beginning of the file).
FIND NEXT: continue searching for the string specified in the ‘Find’ dialog, starting at the
current cursor position.
FIND SELECTION: search for the string selected in the edit window, starting at the current
cursor position.
REPLACE : displays the Replacement menu which allows you to specify the string to be
found (starting at the current cursor position) and the string which will replace it.
REPLACE SAME : the replacement of strings continues as indicated in the 'Replacement'
dialog.
GOTO SELECTION: scrolls the current edit window so that the cursor becomes visible.

THE WINDOW MENU
NEXT WINDOW: moves the active window behind all the other windows. In doing so, the
next highest window is placed on top and becomes active.
GET INFORMATION: displays the active files prefix, its size in bytes, and the number of
lines it contains.
LAST ERROR : displays an alert window containing the last error message displayed by
TML Pascal II.

THE COMPILE MENU
TO MEMORY: compile the source code of the active window into memory. If the source
file is a program, it is executed after compilation. If the source file is an NDA, then the
OPEN and REMOVE NDA options are activated in Apple menu. If the source is a single
unit, then it is simply compiled into memory.
TO DISK: compile the source code of the active window onto disk. If the source file is a
program, TML Pascal II generates a compiled file of type $B3. If the file is single unit, the
compiled object code will be created with a filename suffix of 'p.o'.
CHECK SYNTAX : check if the active windows source contains any syntax errors.
ADD RESOURCES: binds the main file with a resource file present on disk. This
connection makes it possible to link the resources with the program at the time of
compilation.
PREFERENCES: allows you to set a number of standard settings.

K-byte symbol table: memory allocated for the symbol table. This table is a storage area
used by the compiler to store label declarations, variables, tables, procedures and
functions. In the majority of the cases, the standard size of 12k is sufficient. However, if an

TML Pascal II – Reference Manual 21

CHAPTER 5: TML PASCAL II MENUS

error of the type ERROR SYMBOL TABLE SPACE EXHAUSTED occurs, it will be
necessary to increase this parameter (maximum 32K, minimum 2K).

K-byte Stack: TML Pascal II programs need a stack for execution. Default value: 8K;
minimum value: 1K and maximum value: 32K. This option can also be changed by
directive $StackSize.

Keyboard break: allows CTRL-C detection. If this option is selected, TML Pascal II
generates code between each instruction in order to detect if CTRL-C were typed. One
can also use the directive $KeyboardBreak to activate the option.

Unit search path: allows you indicate which prefix TML Pascal II is to use to access UNITS
as indicated in a USES clause. The default value is 1:TOOLINTERFACES: which indicates
the ToolInterfaces file located in the folder containing the Pascal compiler.

Auto save text: indicates if you want to save open source files automatically when
compiling to memory. This makes it possible to save any open source files to disk in case
of any 'incidents' produced when executing the compiled code.

Total system memory: indicates the maximum RAM size
Free memory: indicates the size of available RAM
Largest memory block: size of the largest block available in memory

OK: one accepts the menu preference settings (or you can type RETURN).

CANCEL: any modifications done are erased and the old settings are recovered.

RELEASE MEMORY: purge memory occupied by compiled code.

THE GS/OS MENU
RENAME: allows you to rename a file residing on disk.
DELETE: allows you to completely erase a file present on disk.
TRANSFER: allows you to launch an application without returning to the Launcher.

TML Pascal II – Reference Manual 22

CHAPTER 6: TEXTBOOK APPLICATIONS

CHAPTER 6: TEXTBOOK APPLICATIONS

The programming of an Apple IIgs can sometimes appear daunting and intimidating. For
this reason, the TML Pascal II compiler was produced to not only develop applications on
an Apple IIgs with desk accessories which use the "desktop" interface, but to also provide
a programming environment similar to the more traditional Pascal. i.e. the possibility of
writing useful applications without having to use windows, menus, controls, etc.

This type of application is called a "textbook" application. These "plain vanilla" applications
are still autonomous GS/OS applications, but they represent a standard Pascal program
most representative of ones found in a work or traditional data-processing environment.
These programs make little or no use of specialised IIgs Tools and thus ensure the
portability of these Apple IIgs programs.

A "textbook" program is executed on an Apple IIgs in super-high resolution 640 mode. The
compiler generates code which initialises the Apple IIgs, and creates a single window on
the screen allowing for a standard display of 20 lines and 80 columns. The content area of
this window allows usage of the standard Pascal procedures READLN and WRITELN, and
because it acts as an Apple IIgs window, you will also be able to use QUICKDRAW
graphics.

"Textbook" programming is particularly useful for programmers new to the Pascal
language who subsequently discover the attractive features of the Apple IIgs. Experienced
programmers will also appreciate this TML Pascal II feature, as it allows for rapid
construction of tools or to test a new portion of code without having to worry about the
details using the Apple IIgs Tools.

The structure of a "textbook" program is very simple and straightforward.

The first example program FIRSTPROG is a "textbook" program:

PROGRAM FirstProg;
BEGIN

Writeln('Hello World');
Readln;

End.

TML Pascal II – Reference Manual 23

CHAPTER 7: GRAPHIC TEXTBOOK APPLICATIONS

CHAPTER 7: GRAPHIC TEXTBOOK APPLICATIONS

Because 'textbook' programs are already running in Apple IIgs super-high-resolution
mode, by using QUICKDRAW it is possible use graphics functions within your 'textbook'
programs. Such a program is defined by the graphics procedure which initialises the IIgs
desktop using Quickdraw, and specifies 320 or 640 resolution mode. The newly created
desktop has neither menu bars nor windows. For example:

PROCEDURE Graphics(screenMode: Integer);

So, transforming our previous ‘Hello World’ example into a graphic application:

PROGRAM HelloWorld;
BEGIN

Graphics(640);
WriteLn('Hello world');
ReadLn;

END.

To be able to use QuickDraw it is necessary to include the name of this module in the
USES clause of your program. When your program is executed, QuickDraw will already be
initialised and ready for use. In addition, the Event Manager is also available to monitor
actions performed by the activate mouse.

For example:

PROGRAM GraphicHelloWorld;

USES Types,

QuickDraw;

VAR aRect: Rect;

BEGIN

Graphics(320);
SetRect(aRect, 10, 10, 30, 40);
FrameRect(aRect);

OffsetRect(aRect, 25, 30);
FrameOval(aRect);

OffsetRect(aRect, 25, 30);
FrameRRect(aRect, 20, 20);

MoveTo(50,30);
DrawString('Hello world');

ReadLn;

END.

You will find an example graphic textbook application named Graphics.p on the TML
Pascal II disk.

TML Pascal II – Reference Manual 24

CHAPTER 8: DESKTOP APPLICATIONS

CHAPTER 8: DESKTOP APPLICATIONS

This chapter gives a broad outline of using TML Pascal II and usage of the Apple IIgs
'ToolBox'. The toolbox naturally becomes the basis for event management, any
applications based on the clipboard, and desk accessory applications. The toolbox is an
important collection of software organised into several subsets according to their function
called 'Tool Sets' or 'Managers'. Within each tool set lies the complete set of routines
necessary for the particular function of the tool. Each of the tools is assigned a unique tool
number and each of its routines is allotted a particular function number.

TML Pascal II gives access to the Apple IIgs toolbox thanks to a collection of Pascal
modules. Within each module one finds Constants, Types, Procedures and Functions
which correspond to one or more of the Apple IIgs ToolBox routines. Therefore, each time
an application requires access to a ToolBox routine, it must specify the name of the Pascal
module in the USES clause to define a link to the particular ToolBox routine. These Pascal
modules are in the TOOLINTF/ folder of the Pascal distribution diskette. For example, the
USES clause that makes 'QuickDraw II' routines available:

USES QuickDraw;

THE TOOLS OF AN APPLE IIgs
Starting with a minimum of IIgs System Software version 5.0, 30 different tools are defined
as subsets of the IIgs toolbox. Each of them is listed in the table below along with the
Pascal module which defines its interface. It also specifies if each tool resides in the IIgs
ROM, or if the tool resides on disk as a file tool that must be loaded into RAM before being
used. If a tool must reside in RAM, then its corresponding file tool must be available in the
SYSTEM/TOOLS/ folder of the current boot disk. The name of a file tool is TOOLxxx,
where xxx represents a three digit number corresponding to the number allocated to the
tool. For example, the file tool of the screen manager has the name: TOOL014.

Tool Number Tool Name Pascal Module RAM ROM

1 Tool locator Locator.p X
2 Memory Manager Memory.p X
3 Miscellaneous Tools MiscTool.p X
4 QuickDraw II QuickDraw.p X
5 Desk Manager Desk.p X
6 Event Manager Event.p X
7 Scheduler Scheduler.p X
8 Sound Manager Sound.p X
9 Apple Desktop Bus ADB.p X

10 SANE SANE.p X
11 Integer Math IntMath.p X
12 Text Tools TextTool.p X
13 Reserved for the System X
14 Window Manager Windows.p X
15 Menu Manager Menus.p X
16 Control Manager Controls.p X
17 System Loader Loader.p X

TML Pascal II – Reference Manual 25

CHAPTER 8: DESKTOP APPLICATIONS

18 QuickDraw Aux Routines QDAux.p X
19 Print Manager Print.p X
20 Line Edit LineEdit.p X
21 Dialog Manager Dialogs.p X
22 Scrap Manager Scrap.p X
23 Standard File StdFile.p X
24 Disk Utilities n/a X
25 Note Synthesizer NoteSyn.p X
26 Note Sequencer NoteSeq.p X
27 Font Manager Fonts.p X
28 List Manager Lists.p X
29 Audio Comp-Expan. ACE.p X
30 Resource Manager Resources.p X
32 MIDI MIDI.p X
34 TextEdit Manager TextEdit.p X

WHAT DO THESE TOOLS DO?

The following paragraph briefly explains the functionality of each Apple IIgs tool. This is
intended to be a short introduction to each tool and you will have to consult volumes 1,2
and 3 of the Apple IIgs ToolBox Reference to learn more.

The 7 base tools

TOOL LOCATOR
The tool locator is the most important. Without this tool it would be impossible to access
the other tools. The tool locator enables you to load the tools that reside on disk into RAM
and to make use of them, as we saw in our previous example, without knowing where in
memory they are stored.

MEMORY MANAGER
It is the second most important after the Tool Locator. This tool is entirely responsible for
the allocation, de-allocation and movement of memory blocks on the Apple IIgs. It keeps a
record of the memory capacity available and which part is allocated and to what.

MISCELLANEOUS TOOLS
It primarily consists of system routines which must be available for most of the other tools
to function.

QUICKDRAW
It is the tool which controls the graphical environment of the Apple IIgs and allows the
drawing of simple objects and text. All other tools which create graphic objects, like the
window manager, make use of this tool.

AUXILIARY QUICKDRAW
This tool contains additional routines which supplement the QuickDraw tool found in ROM.

TML Pascal II – Reference Manual 26

CHAPTER 8: DESKTOP APPLICATIONS

EVENT MANAGER
The event manager allows applications to control and react to a user action like the actions
of a mouse or keyboard.

RESOURCE MANAGER
The resource manager is responsible for the handling of data resources of GS/OS files.

The tools for interfacing with the Desktop

CONTROL MANAGER
The control manager contains all the routines necessary for the handling of controls.
Controls being things such as a button, scroll-bars, check boxes, etc.

DESK MANAGER
This tool makes an application be able to support desk accessories – both Classic Desk
Accessories (CDA’s) and New Desk Accessories (NDA’s).

DIALOG MANAGER
This tool provides routines which make it possible for an application to create and use
dialog windows and alarms that facilitate communication between a user and your
program.

FONT MANAGER
This tool makes it possible for your application to use various different character types and
styles.

LINE EDIT
This tool makes it possible for a program to present text on the screen that can be edited
by the user.

LIST MANAGER
This tool is used to create lists which are used when displaying the results of a selection
by a data amount or type.

MENU MANAGER
This tool controls and allows the use of the pull-down menus, and presents the available
choices within an application.

SCRAP MANAGER
This tool provides the desktop 'clipboard' supplements allowing an application to cut, copy,
and paste within an application.

TEXTEDIT MANAGER
This tool implements a text editor, accepting changes of font and style.

WINDOW MANAGER
This tool creates the Office environment and is responsible for the creation and
manipulation of windows.

TML Pascal II – Reference Manual 27

CHAPTER 8: DESKTOP APPLICATIONS

The peripheral management tools

APPLE DESKTOP BUS
This tool is a method and a protocol for the connection of input devices, such as
keyboards and mice, with the Apple IIgs. The routines of this tool are used to send
commands and data between the Apple Desktop Bus microcontroller and the remainder of
the system.

PRINT MANAGER
This tool makes it possible for an application to use the QuickDraw routines to print text
and graphics on an ImageWriter or LaserWriter printer.

STANDARD FILE
The standard user interface allowing a file to be opened or saved.

TEXT TOOLS
This tool ensures that there is a link between drivers for character based hardware which
must be executed in emulation mode, and the applications running in native mode.

Tools for managing the system:

SCHEDULER
The scheduler delays the activation of a desk accessory or any other task until the
necessary resources become available.

SYSTEM LOADER
It is responsible for the loading and the repositioning of code, such as applications or desk
accessories, into memory.

The sound tools

SOUND MANAGER
This tool makes it possible to access the sound generation electronics of the Apple IIgs to
create basic sounds.

NOTE SYNTHESIZER
This tool is used to create complex musical sounds by using the musical electronics of the
Apple IIgs.

NOTE SEQUENCER
This tool is used to bind notes of the Note Synthesizer into sequences, motifs and phrases
constituting a sound.

ACE
This tool compresses/decompresses digitised sounds allowing their file sizes to be
reduced when saved to disk.

MIDI

TML Pascal II – Reference Manual 28

CHAPTER 8: DESKTOP APPLICATIONS

This tool allows you to connect a standard MIDI instrument to the IIgs via one of the serial
ports.

The mathematical tools

INTEGER MATH
This tool consists of all the mathematical operations for integers. This includes
multiplication, division, conversions, etc.

SANE
This tool completes the standard numerical environment of Apple. It provides a high
precision IEEE 754 and 854 floating point arithmetic component.

HOW TO PERFORM A CALL TO A TOOLBOX ROUTINE
This section is intended for the experienced programmers who want to include/understand
how a toolbox routine is called from within TML Pascal II. If you are satisfied with the
toolbox functions built-in to TML Pascal II, and do not need to use the additional toolbox
routines, you can skip over this section.

As specified above, TML Pascal II allows access to the Apple IIgs toolbox thanks to the
built-in Pascal modules which define the interface necessary for each routine of a
particular tool. Each tool routine is defined as a procedure or function according to whether
it returns a value or not, and can have zero or more parameters. Finally, the declaration of
a procedure or function is added using the Tool statement (the Tool Directive can be found
in chapter 7 of the reference manual). The Tool statement is an extension particular to
TML Pascal II for the Apple IIgs, with the aim of defining an interface to the ToolBox. The
declaration of the following procedure is extracted from module QUICKDRAW.P and it
defines the link with the MoveTo procedure of the QuickDraw tool.

PROCEDURE MoveTo(h,v:integer); Tool 4,58;

As you can see, the declaration of the procedure is supplemented with the statement Tool
4,58. The first entry of the Tool statement specifies the tool (toolset) that the routine
belongs to. In this case, it is tool number 4 which happens to be the Quickdraw tool. The
second entry is the number of the routine within the tool. Each routine within a tool has a
unique function number. The MoveTo routine has been allocated function number 58.
Together, these two entries make it possible to uniquely identify a procedure within the
ToolBox. The Apple IIgs has a defined process for the activation of a ToolBox routine. To
call a routine, space for the results of the function must be reserved on the stack, followed
by the list of the parameter values. The X register of the 65816 must then be loaded with
the function number (of the tool routine) and the number of the tool so that the X register
contains: 256 * function number + tool number. Finally, a jump to the subroutine at the
address $E10000 is made, which in turn contains a jump to the 'tool locator’ which finds
the code associated with the desired tool routine and passes control to it. When the routine
returns, all of the parameters have been removed from the stack, leaving the result on top
of the stack. Additionally, if an error occurs during the execution of the tool routine, the
carry flag of the 65816 will be set to true and the accumulator of the 65816 will contain an
error code.

TML Pascal II – Reference Manual 29

CHAPTER 8: DESKTOP APPLICATIONS

By using the Tool statement with a procedure or function declaration, and if the preceding
conventions are followed, TML Pascal II will generate an instruction to store the
accumulator value in the global variable ToolErrorNum (see chapter 10 of the reference
manual) so that any error codes returned by a tool routine can be examined. To illustrate
this, the statement MoveTo(16,20) will generate the following 65816 instructions:

pea $0010
pea $0014
ldx $3A04 ; 58 * 256+4
jsl $E10000
sta _ToolErr

In order to allow programs written in TML Pascal II to perform error handling for calls made
on tool routines, TML Pascal II defines a special function ISTOOLERROR which examines
the state of the carry flag of the microprocessor. The IsToolError function should only be
used IMMEDIATELY after a call to a tool routine to ensure that the state of the carry flag
has not been altered by another operation. Thus, a program written in a TML Pascal II
could use the following code to detect an error occurring in the MoveTo routine:

MoveTo(16,20);
if IsToolError then

Temp:= _ToolErr;
Writeln('The following error occurred in MoveTo, #' ,Temp);

end;

Notice that the value of _ToolErr was copied into the temporary variable Temp before the
call to Writeln. This is because Writeln itself calls upon the ToolBox and this could alter the
value of the _ToolErr associated with the error condition as returned by MoveTo.

There are at least three cases where the compiler does not need to perform STA _ToolErr.
They are as follows:

1. A lot of tool routines do not return an error (this is the case within the example
above).

2. An application has guaranteed that all the possible error conditions can not exist.
3. An application which would not be affected if an error occurred.

If an application has toolbox calls that predominantly fit any of the 3 points above, then the
generation of STA _ToolErr can increase the size of an application unnecessarily. To
avoid this, TML Pascal II has an statement $ToolErrorChk that will to deactivate/reactivate
the generation of the STA (see appendix B of the reference manual).

For example, the following call to the MoveTo routine will not generate the instruction STA
ToolErrorNum:

(*$ToolErrorChk-*)
MoveTo(16,20);

Even though the use of the $ToolErrorChk statement can save a great quantity of code,
the programmer must be very careful in its usage to avoid testing the value of _ToolErr
when no error code has been stored.

TML Pascal II – Reference Manual 30

CHAPTER 8: DESKTOP APPLICATIONS

EVENT MANAGEMENT

The concept of event management is probably a little different from what you have
practiced whilst programming up to date. The usual and conventional strategy of
application programming consists of working out a sequence of actions that are executed
one after the other. Action1 is executed first, followed by action2, then action3 etc.

Event management uses the opposite approach. All actions are possible at a given time
and the action to execute depends on an event, generally in response to user interaction
with the program.

By using this strategy, the basic structure of all applications on the Apple IIgs is almost
always identical. The main program generally consists of the following declarations:

BEGIN
StartUpGSTools;
 (* routines for initialising menus, windows, etc. *)
MainEventLoop;
ShutDownGSTools;

END.

The procedures StartUpGSTools and ShutDownGSTools are responsible for the loading
and initialisation of the ToolBox tools to be used in the application, and then for the
unloading and ‘cleanup’ before the program ends (see Basic Utilisation of the Apple IIgs
ToolBox). The MainEventLoop procedure is responsible for the detection of events and
then the response to the events. The typical structure of this procedure is as follows:

procedure MainEventLoop;
var Event: EventRecord;
code: integer;
begin

gMainEvent.wmTaskMask := $001FFFFF; (*permit a task to handle
everything*)
gDone := false;

repeat
code:=TaskMaster($FFFF, gMainEvent);
case code of

wInGoAway: DoClose;

wInSpecial,
wInMenuBar: HandleMenu;

wInControl: DoControlHit;

end;
until gDone;

end;

TML Pascal II – Reference Manual 31

CHAPTER 8: DESKTOP APPLICATIONS

The possible GetNextEvent events:

Event Description
nullEvent When no event took place
mouseDownEvt Generated when the mouse button is pressed
mouseUpEvt Generated when the mouse button is released
keydownEvt Generated when a key is pressed
autoKeyEvt Generated when a key is pressed and held down
updateEvt Specifies that the window contents must be redrawn (refreshed)
activateEvt Indicates when a window becomes active or inactive
switchEvt Generated when a control switch is pressed
deskAccEvt Generated at the time of a call to a CDA
driverEvt When PostEvent is sent by a peripheral (usually beginning or end

of transmission)
app1Evt-app4Evt Up to 4 events can be defined by the user and passed into the

event queue thanks to PostEvent.

The possible TaskMaster events:

Event Description
wInDesk mouse event on the desktop, outside of any window
wInMenuBar
wInSpecial

mouse event in the menu bar with the mouse button released on
a menu item other than an NDA

wInContent mouse event in the Content area of a window
wInDrag mouse event in the Drag area of a window
wInGrow mouse event in the Grow box of a window
wInGoAway mouse event in the box of closing of a window
wInZoom mouse event in the Zoom box of a window
wInInfo mouse event in the information bar of a window
wInFrame mouse event in the body of a window
wInactMenu selection of an inactive menu item
wClosedNDA closing of an NDA
wCalledSysEdit call to System Edit
wTrackZoom mouse event in the Zoom box of a window, but the mouse was

not released in the box
wHitFrame mouse event in the body of the active window
wInControl mouse event inside a control within a window

PROGRAM STRUCTURE

The source code of a program can, for the most part, be organised according to the
desires of the programmer. However, Desktop applications must respect certain
constraints. Indeed, any Desktop application must start by initialising its tools, then the

TML Pascal II – Reference Manual 32

CHAPTER 8: DESKTOP APPLICATIONS

global variables, create the menus and windows, manage the events, and finally to close
the tools before quiting the application.

Here is an extract of the SKELETON.p program, where it is setting up its resources. In this
case, the StartupTools function refers to the resource StartStop which defines the tools
used by the application. See chapter 4 for more information on the resources.

gMyMemoryID := MMStartUp;
gStartStopRef := StartupTools(gMyMemoryID, refIsRes ource,
ref(kStartStopRefID));
if _ToolErr = NoError then
begin

InitialiseGlobals;
SetUpMenus;
SetUpWindows;
InitCursor;
MainEventLoop;

end;
ShutDownTools(refIsHandle,gStartStopRef);

Adding resources
As one can see in the example above, TML Pascal II programs can use resources defined
by a suitable editor (see chapter 4). When a program is compiled, the resources are
required to be copied along with the GS/OS application. The linker takes care of this by
copying the resource file specified in Add Resources menu, into the compiled application.

Definition Procedures (DefProcs)
Often, the ToolBox routines of the Apple IIgs must call a procedure which is part of your
program. These types of procedures, and sometimes functions, are given the name of
Definition Procedures which is abbreviated to DefProcs. The reason for this name is
because these routines are generally used to allow an application to define the procedures
used for certain operations. For example, there are the procedures for menu definition
which make it possible for an application to provide layout procedures to represent menus,
perhaps a menu which would contain a palette of colours in place of the usual heading. As
you might expect, the ToolBox also allows definition of procedures for windows, controls,
lists, etc.

Another component of the ToolBox in which an application must use a definition procedure
is the tool routine 'NewWindow' of the Window Manager. The routine 'NewWindow' has
only one parameter record which is: 'NewWindowParamBlk'. This record contains all the
information the window manager needs to trace and maintain the new window. Three
fields of the record require definition procedures. The following Pascal record shows the
fields of the record 'NewWindowParamBlk' which require definition procedures.

NewWindowParamBlk =
record

...
wFrameDefProc : ProcPtr;
wInfoDefProc : ProcPtr;
wContDefProc : ProcPtr;
...

end;

TML Pascal II – Reference Manual 33

CHAPTER 8: DESKTOP APPLICATIONS

The routine wContDefProc, for example, is called by the window manager if it detects that
the displayed window contents must be updated due to the fact that a part of the window,
which was previously hidden, becomes visible.

When one uses the ‘NewWindow2’ tool routine, it is also necessary to call upon definition
procedures since one of the parameters of the function is called the WINDOW'S
CONTENT DEFINITION PROCEDURE. The Content defProc routine is called by the
Window Manager when it determines that the contents of a window must be updated
(redrawn) because a previously hidden area of a window becomes visible.

As you might guess, the conventions of a call to a ToolBox procedure for a definition
procedure are not the same as for the normal Pascal procedures. Consequently, it is
necessary for an application to declare to the TML Pascal II compiler that a particular
procedure is in fact a definition procedure and that it must use the call conventions of the
ToolBox routines. To achieve this, the following compiler directive is used: $DefProc. This
directive must appear immediately before each procedure that is a definition procedure.

There is an observation that must be made concerning definition procedures: the
addressing of global variables. Typically, global variables are addressed using the
absolute addressing mode of the 65816 rather than the less effective long absolute
addressing mode. This is due to the fact that TML Pascal II makes sure that the data bank
register points to the bank of memory containing the programs global variables. However,
in the case of definition procedures, the normal convention used by TML Pascal II can not
be applied as you cannot guarantee that ToolBox routines will behave in the same manner
- for example, the ToolBox routine may change the value of the data bank register.
Because of this, it is necessary to force TML Pascal II to use the long absolute addressing
mode for global variables in a definition procedure to ensure that they are referenced
correctly.

Example:

(*$DefProc*)
PROCEDURE WindowContentDraw;
BEGIN

....
END.

Large programs and segmentation
The Apple IIgs limits the size of program code and data segments to 64 KB. The code
segments contain the implementation code, while the data segments contain the space
required for the global variables of the application. The reason for this 64 KB restriction is
that a segment should not cross the limit of a memory bank. On the Apple IIgs, a memory
bank is 64 KB. Therefore, to develop applications having more than 64 KB of code or data,
the program must be segmented. Normally, TML Pascal II automatically creates a code
segment and a data segment for a given application. To obtain more than one segment,
the compiler directive $CSeg and $DSeg must be used.

Segmentation of code
The code segments are given names so that the linker can organise the various parts of
the assembled code based upon the name of each segment. The name of a code segment

TML Pascal II – Reference Manual 34

CHAPTER 8: DESKTOP APPLICATIONS

by default is MAIN. To change the name of the code segment in use, the TML Pascal II
compiler directive (* $CSeg segname *) is used. When this directive appears in a program
or in a module, the code of all the procedures and functions which follow is placed in the
new code segment. To return to using the default code segment, use the directive (*
$CSeg Main *).
For more details concerning the use of the compiler directive (* $CSeg segname *), see
appendices B and C of the reference manual.

Segmentation of data
The data segments are given names in the same way as the code segments so that the
linker can organise the data areas based upon their name. The name of a data segment
by default is - global. To change the name one uses the compiler directive (* $DSeg
segname *). Unless a program absolutely needs additional memory for its global variables,
the above compiler directive should not be used because access is less efficient.
For more details concerning the use of the compiler directive (* $DSeg segname *), see
appendices B and C of the reference manual.

TML Pascal II – Reference Manual 35

CHAPTER 9: NEW DESK ACCESSORIES

CHAPTER 9: NEW DESK ACCESSORIES

The New Desk Accessories (NDA) are 'mini-applications' which can run inside Apple IIgs
applications. There are currently two kinds of desk accessories: Classic Desk Accessories
(CDA) and New Desk Accessories (NDA). NDA’s are intended to be executed in the
desktop environment with event management. An NDA runs in a window and takes control
when its window is the uppermost on the desktop. The new desk accessories are
accessible, within desktop applications, via the Apple menu. TML Pascal II provides tools
to aid in the development of new desk accessories in Pascal, and this is the subject of this
chapter.

START
Since NDA’s operate in the desktop environment you must make sure that the following
tools are loaded and initialised:

• QuickDraw
• Event Manager
• Window Manager
• Menu Manager
• Control Manager
• Scrap Manager
• LineEdit
• Dialog Manager

Additional tools may also be available, but you cannot determine if they are loaded and
initialised. If a new desk accessory needs additional tools, it must ensure that they are
available by loading and initialising them itself.

THE SOURCE FILE
The source code of a new desk accessory is completely different from that of a normal
program. In particular, an NDA does not have a main section but instead contains four
special procedures:

DAOpen, DAClose, DAAction and DAInit.

In addition to these four necessary procedures, three elements containing additional
information are required: the periodicity, the event mask and its menu name. This
information is specified in a TML Pascal II compiler directive $DeskAcc.

(* $NDA period eventmask menuName *)

The periodicity specifies the frequency that DARun will call the NDA to make it functional.
A period of 1 accounts for 1/60 of a second, a period of 2 accounts for 1/30 of a second,
etc. A period of $FFFF means never. For example, if an NDA displays the time then it is
necessary for it to have a period of 60 so that it updates every second.

The event mask specifies which events are handled by the desk accessory. The values
available to an NDA are a subset of the values available to Apple IIgs applications using

TML Pascal II – Reference Manual 36

CHAPTER 9: NEW DESK ACCESSORIES

GetNextEvent or TaskMaster. They have been listed below by referring to the Events.p
module. From the six events listed below, the update and activation events are always
transmitted to the desk accessory regardless of the event mask, however, the four types of
events remaining must be specified explicitly. If all events are to be handled by the desk
accessory then an event mask of -1 (or $FFFF>) must be specified.

CONST mDownMask = 2;
mUpMask = 4;
keyDownMask = 8;
autoKeyMask = 32;
updateMask = 64;
activeMask =256;

EveryEvent = -1; (* $FFFF*)

Finally, the menu name is the name of the accessory that will appear in the Apple menu of
an application working with desk accessories.

As we mentioned above, this information is specified with the compiler directive $NDA.
This directive must be the very first line of the program, appearing even before the word
PROGRAM. For example, the following directive specifies a period of 1 second, that all
events will be handled by the desk accessory, and that the menu name of this accessory is
"Clock".

(* $NDA 60 -1 Clock *)

The desk accessories function differently from normal applications with regard to the
addressing of global variables. TML Pascal II allocates the memory location necessary for
the global variables in a data segment. A data segment is loaded into memory just like the
code of a desk accessory is loaded into memory. However, the data bank register of the
65816 is not able to point to the memory bank containing the desk accessories global
variables data segment. As the compiler cannot be sure which area the global variables
will be stored in, it must always use the long absolute addressing mode of the 65816 when
referring to global variables. As this is not the norm for TML Pascal II programs, it should
be specified to the compiler with the directive $LongGlobals+

Now let us present the basic structure of a new desk accessory written in TML Pascal II.

(*$NDA 60 -1 Clock *)

UNIT MyClockNDA;

FUNCTION DAOpen:WindowPtr;
PROCEDURE DAClose;
PROCEDURE DAAction(Code: Integer; Param: LongInt);
PROCEDURE DAInit(Code: Integer);

IMPLEMENTATION

FUNCTION DAOpen: windowPtr;
BEGIN

(* code for DAOpen *)
END;

PROCEDURE DAClose;
BEGIN

(* code for DAClose *)

TML Pascal II – Reference Manual 37

CHAPTER 9: NEW DESK ACCESSORIES

END;

PROCEDURE DAAction(Code:integer; Param: Longint);
BEGIN

(* code for DAAction *)
END;

PROCEDURE DAInit(Code:integer);
BEGIN

(* code for DAInit *)
END;

END.

The DAInit procedure
The DAInit procedure is called when the DeskStartUp and DeskShutDown routines of the
Desk Manager tool are called by an application to initialise or close a new desk accessory.
The value of the Code parameter indicates under which circumstance the routine was
called. If code=0, DAInit was called for closing, otherwise for opening. In any case, the
routine is required to contain the necessary code for initialisation and closing of the desk
accessory.

PROCEDURE DAInit(code:integer);
(* the variable myWindOpen is global *)
BEGIN

if code=0 then begin
(* ask to close, verify that the DA window is close d *)

end
else begin

(* initialisation *)
myWindOpen:=false

end
END;

The majority of NDA’s can be open at the same time that an application window is being
displayed. An NDA must check to see if the window is open or not. The best way of doing
this is by using a global variable windOpen which will be TRUE when the window is open
and FALSE otherwise. Therefore, when DAInit is called during DeskStartUp, it will have to
set the global variable windOpen to FALSE. It is possible that DAInit will be called to close
the window because of a DeskShutDown, when its window is still open. This occurs when
a user leaves an application with an NDA still open on the desktop. It is important that the
DAInit procedure checks that the window is closed before allowing the NDA to end.

The DAOpen function
This function is called as a result of an application calling the OpenNDA routine of the
Desk Manager tool. This routine must check if the desk accessory has already been
opened, and if so, leave without doing anything. If the desk accessory is not open, then the
function will have to create the desk accessory window, to make it a system window, and
to return a pointer to the window back to the creating window as the result of the function.
Here is a code snippet which shows the basic structure of DAOpen.

FUNCTION DAOpen: windowPtr;
(* the variables myWindOpen, myWindPtr, and myWind are global *)
BEGIN

if myWindOpen then SelectWindow(mywindPtr)

TML Pascal II – Reference Manual 38

CHAPTER 9: NEW DESK ACCESSORIES

else begin
myWindOpen:=true;
myWindPtr := NewWindow2(...);
SetSysWindow(myWindPtr);

end;
DAOpen:=myWindPtr;

END;

The DAClose procedure
The DAClose procedure will have to close the desk accessory if it is found to be open. It
must also gracefully handle the situation without raising an error if it is called when the
desk accessory is not open.

PROCEDURE DAClose
(* the variables myWindPtr and myWindOpen are globa l *)
BEGIN

if myWindOpen then begin
CloseWindow(myWindPtr);
myWindOpen:=false;

end;
END;

The DAAction procedure
The DAAction procedure is the routine that does all the work associated with the desk
accessory after it has been opened and until it is closed. The DAAction procedure has two
parameters: a code that indicates which kind of action to take and a parameter param
whose meaning depends on the code parameter. There are nine possible values for the
code, and each of them must be handled by the DAAction procedure. These actions are
enumerated in the following table with the meaning of the param parameter in each case.

Action Description
DAEvent An event concerning the desk accessory occurred, Param points to

the record describing the event.
DARun The specified duration of the NDA’s period has elapsed. Param not

used.
DACursor This code is sent to an NDA when it is the uppermost window on

the desktop, each time SystemTask is called. The goal is to make it
possible for the desk accessory to change the cursor when it is
over the NDA window. Param not used.

DAMenu This is sent to a desk accessory if a menu item is selected.
LoWrd(param) is the identifier of the menu and HiWrd(param) is the
identifier of the menu item.

DAUndo
DACut
DACopy
DAPaste
DAClear

These 5 codes are transmitted to a desk accessory if the
application determines that the user has selected one of these edit
operations in the Edit menu. The procedure DAAction will set the
Param code to a value of 1 if an action took place, or a value of 0
otherwise.

TML Pascal II – Reference Manual 39

CHAPTER 9: NEW DESK ACCESSORIES

The following code snippet shows the basic structure of DAAction:

PROCEDURE DAAction(Code : integer; Param: Longint);
(* myWindPtr is a global variable *)
VAR currPort: GrafPtr;
BEGIN

case code of

DAEvent:begin
case EventRecordPtr(param)^.what of

mousedownEvt:;
mousUpEvt: ;
keyDownEvt: ;
autoKeyEvt: ;
updateEvt: ;
activateEvt: ;

end;
end;

DARun: begin

currPort := GetPort;
SetPort(myWindPtr);
SetPort(currPort);

end;

DACursor: begin
(* code for modifying the cursor *)

end;

DAMenu : begin
(* code to respond to a menu selection *)

end;

DAUndo : begin
(* code to 'undo' the last action within the DA *)
code := 1;

end;

DACut : begin
(* code to perform a 'cut' operation in the DA *)
code := 1;

end;

DACopy : begin
(* code to perform a 'copy' operation in the DA *)
code := 1;

end;

DAPaste : begin
 (* code to perform a 'paste' operation in the DA *)

code := 1;
end;

DAClear: begin

(* code to perform a 'delete' operation in the DA *)
code := 1;

end;
end;

END;

TML Pascal II – Reference Manual 40

CHAPTER 9: NEW DESK ACCESSORIES

COMPILING AN NDA
During development of an NDA, compiling to memory allows you to artificially install the
NDA into the Apple menu for testing purposes. When the NDA is has been successfully
tested, you should compile to disk. When you have successfully compiled an NDA to disk,
it must be installed in the SYSTEM/DESK.ACCS/ folder on the boot disk so that other
applications can access it. The installation of a new desk accessory is done according to
the following three steps outlined below:

1. New desk accessories are programs (files to be loaded into GS/OS) having the file
type $B8.

2. The Desk Manager tool of the Apple IIgs requires that all desk accessories be
placed in SYSTEM/DESK.ACCS/ folder. Consequently if you wish the desk
accessory to be loaded, it is necessary to copy it into this folder.

3. Finally the Apple IIgs must be restarted. During the restart, the
SYSTEM/DESK.ACCS/ folder is examined to see which desk accessories are
installed. As this examination only occurs at the time of startup, it is necessary to
reboot to have any new accessories recognised.

TML Pascal II – Reference Manual 41

CHAPTER 10: CLASSIC DESK ACCESSORIES

CHAPTER 10: CLASSIC DESK ACCESSORIES

The Classic Desk Accessories (CDA) are 'mini-applications' which can run inside Apple
IIgs applications. CDA’s are intended to be executed outside of the desktop interface and
without event management. A CDA is activated from within the Control Panel (Apple-Ctrl-
Esc).

PROGRAM STRUCTURE
The structure of a CDA is rather similar to a normal text application, except that there is no
MAIN program and that there are two special routines: starUpCDA and ShutDownCDA
which are called directly by the DeskManager at the appropriate time. Additionally, the
source code must start with the $CDA directive which indicates to the compiler that the
source implements a CDA. Following this directive, one places the name of the CDA as it
will appear in the Control Panel menu.

(*$CDA menuName*)

This directive must appear BEFORE the reserved word UNIT.

Here is the complete strucutre of a CDA:

(*$CDA SHRDump*)
UNIT MySHRDump;

INTERFACE

PROCEDURE StartUpCDA;
PROCEDURE ShutDownCDA;

IMPLEMENTATION

PROCEDURE StratUpCDA;
BEGIN

(* code for the routine *)
END;

PROCEDURE ShutDownCDA;
BEGIN

(* code for the routine *)
END;

END.

The StartUpCDA procedure
This procedure does not have any parameters nor does it have any specified task to
accomplish. The DeskManager calls this procedure when the CDA’s name is selected in
the Control Panel menu. Contrary to NDA’s, CDA’s do not generate events and it is
entirely up to you to manage your CDA.

The ShutDownCDA function
This procedure does not have any parameters nor does it have any specified task to
accomplish. The DeskManager calls this procedure when DeskShutDown is called by an
application, or if one passes from ProDOS8 into GS/OS. This function makes it possible to

TML Pascal II – Reference Manual 42

CHAPTER 10: CLASSIC DESK ACCESSORIES

finalise any actions started by the StartUpCDA procedure; but if CDA’s are to be left open
so that you can return to it from within the running application, you will not have to call this
function.

COMPILING A CDA
During development of a CDA, compiling to disk is the only possible way to compile a
CDA. This is contrary to NDA’s, as one cannot compile to memory for testing. After you
have successfully compiled a common desk accessory, it must be installed in the
SYSTEM/DESK.ACCS/ folder of the boot disk so that other applications can access it. The
installation of a traditional desk accessory is done according to the following three steps:

1. Traditional desk accessories are programs (files to be loaded into GS/OS) having
the file type $B9.

2. The Desk Manager tool of the Apple IIgs requires that all desk accessories be
placed in the SYSTEM/DESK.ACCS/ folder. Consequently if you wish the desk
accessory to be loaded, it is necessary to copy it into this folder.

3. Finally the Apple IIgs must be restarted. During the restart, the
SYSTEM/DESK.ACCS/ folder is examined to see which desk accessories are
installed. As this examination only occurs at the time of startup, it is necessary to
reboot to have any new accessories recognised.

TML Pascal II – Reference Manual 43

CHAPTER 11: RESERVED WORDS

CHAPTER 11: RESERVED WORDS

BASIC ELEMENTS
We will see that basic elements can be classified as "special symbols", "identifiers",
"statements", "non signed numbers", "labels" and "character strings". Apart from character
strings, characters are generally not case sensitive within a program.

The text of a Pascal program consists of basic elements and separators, where separators
are made up of whitespace (space character or tabs) or a comment. Two adjacent basic
elements must be separated by one or more separators, and if each element is an
identifier then the separator must be a number or a word-symbol.

SPECIAL SYMBOLES
Special symbols are elements which have a particular significance and which are used to
delimit the syntactic modules of the language.

The following single characters are special symbols:

 + - * / = < > . , () : ; ^ [] { }

The following pairs of characters are special symbols:

<> <= >= := .. (* *)

The following word-symbols (reserved words) are special symbols:

and array begin body
case const div do
downto else end file
for function goto if
implementation in interface label
mod nil not of
or otherwise packed procedure
program record repeat set
string then to type
unit until uses var
while with

IDENTIFIERS
Identifiers are used to denote constants, types, variables, procedures, functions,
programs, modules, and fields in records. An identifier can be any length so long as it can
fit on one line, however, only the first 255 characters are significant. Identifiers are case
insensitive – ie. upper and lower case letters are equivalent. An identifier can not have the
same name as a reserved word.

Examples of standard TML Pascal II identifiers:

Exit Maxint Writeln _DataInit A_very_long_identifie r

TML Pascal II – Reference Manual 44

CHAPTER 11: RESERVED WORDS

DIRECTIVES
Directives are identifiers which have a particular significance in the context of a declaration
of a procedure or function. They are able to be used as identifiers in all the other contexts.
These are:

EXTERNAL FORWARD INLINE TOOL

(See chapter 17)

NUMBERS
Unsigned integers can be decimal or hexadecimal (hexadecimal numbers are prefixed with
the $ character) – these represent constants of the integer or long integer data types.
Unsigned real numbers using decimal notation represent constants of the extended data
type. The letter "E" or "e" preceding a factor represents the powers of ten.

Examples of numbers:

1 +100 -0.1 $A05D 5.329E4 NaN(1) Inf

LABELS
A label is a set of characters whose value entirety between 0 and 9999. The removal of
the leading zeros of a label does not modify its significance. For example, 1 and 0001 are
equivalent. These labels are used with the GOTO statement which will be described in
chapter 16.

CHARACTER STRINGS
Character strings are a succession of zero or more printable characters, all on the same
line of a program and enclosed within apostrophes (single quotes). The maximum number
of characters in a string is 255. A character string without any characters between the
apostrophes is called a null string.

Character strings represent a value of the string type. As a string type, character strings
are not only compatible with other string types, but also with character types and packed
strings. All values of a string type have a length attribute. In the case of character strings,
the length is fixed - it is equal to the current number of characters inside the apostrophes.
A pair of adjacent apostrophes inside a character string is interpreted as a single
apostrophe, and is therefore counted as a single character when determining the length of
the string.

Examples of chains characters:

'A' ';' 'Pascal' 'This is a string' 'don''t' '''' ' '

DECLARATIONS OF CONSTANTS
A declaration of a constant defines an identifier to represent a constant value inside the
block containing the declaration.

TML Pascal II – Reference Manual 45

CHAPTER 11: RESERVED WORDS

A signed number can be an integer or a real.

COMMENTS AND COMPILATION DIRECTIVES
Constructs such as:

{ any text }
(* any text *)

are called comments.

The replacement of whitespace by a comment or a comment by whitespace does not
effect the operation of a program. Because of this, a comment is like a separator, and it
can appear in a program anywhere where whitespace can appear.

Comments of the form {...} can be embodied within comments of the form (*...*) and vice
versa, however no other form of comment is available. The appearance of a } in a {…}
comment or a *) in a (*...*) comment, always finishes the comment.

A compilation directive is a comment containing the $ sign immediately after the { or (*
which begins the comment. The $ character is then followed by one or more letters which
represents a precise compiler directive. The compiler directives are used to modify the
behaviour of the compiler. Each of the compiler directives and their effects are described
in appendix B.

Examples of compiler directives:

{$DefProc}
{$LongGlobalst}
(*StackSize 10240*)

TML Pascal II – Reference Manual 46

CHAPTER 12: BLOCKS, VISIBILITY, AND ACTIVATION

CHAPTER 12: BLOCKS, VISIBILITY, AND ACTIVATION

DEFINITION OF A BLOCK
A BLOCK is the basic unit of Pascal source code. It consists of a declaration part and a
statement part. The declaration part contains zero or more declarations which can appear
in any order. The statement part is a sequence of statements and it always follows the
declaration part.

Each block is a part of a procedure, function, program or module (unit). All identifiers and
labels declared in the declaration part of a block are known as locals. The program block
contains all the other blocks; consequently, the declarations in the program block are
known as globals.

The label declaration part defines the labels that are used to mark statements in the
corresponding statement part. Each label must mark exactly one statement in the
statement part.

The constants declaration part contains the local constant declarations for this block. (See
“Declarations of Constants” in chapter 11).

The type declaration part contains the local type declarations for this block. (See chapter
13).

The variable declaration part contains the local variable declarations for this block. (See
chapter 10).

The procedures and functions declaration part contains the local procedure and function
declarations for this block. (See chapter 17).

RULES OF VISIBILITY

Visibility of a declaration
The appearance of an identifier or a label within a define declaration means that the
identifier or label is associated some significance at the point of the declaration. All other
occurrences of this identifier or label will only appear within the "visibility" of this
declaration. A declaration is visible only to the block that contains it and all the blocks
which are contained within it, with the exceptions being described in the following
paragraphs.

Redeclaration in an inner block
Let us suppose that EXTERIOR is a block and that INTERIOR is another block declared
inside EXTERIOR. If an identifier declared in block EXTERIOR has the same name as an
identifier declared in the INTERIOR block, then the INTERIOR block and all its inner
blocks are excluded from the visibility of declarations made within block EXTERIOR.

TML Pascal II – Reference Manual 47

CHAPTER 12: BLOCKS, VISIBILITY, AND ACTIVATION

Position of the declarations in a block
The declaration of an identifier or a label must precede the occurrences of this identifier or
labels within the text of a program. i.e. identifiers and labels cannot be used without being
declared. There is one exception to this rule: in a type declaration, the field type of a
pointer can be an identifier that has not been declared yet. In this case, the identifier must
be declared somewhere in the same declaration as the pointer type.

Redeclaration inside a block
An identifier or label cannot be declared more than one once in a block, unless it is
declared inside an inner block or if it appears in the list of fields declared for a record.

A records field type is declared within a record type. It has significance only in reference to
a variable of this record type. Consequently, a field identifier can be declared inside the
same block containing another identifier of the same name as long as it was not previously
declared in the same list of fields. In a similar manner, an identifier that has been declared
as a record field identifier can also be re-used within the same block.

Identifiers of standard objects
TML Pascal II provides a library of predeclared types, procedures and functions which act
as if they had been declared in a block containing the whole program. They are visible
throughout the whole program or module (see chapters 9 and 10, where you will find each
of the standard identifiers within TML Pascal II).

Visibility of the interface modules and module iden tifiers
Programs, modules, module specifications, and module bodies containing a USES clause,
see the additional identifiers contained within each module listed in the USES clause.
These identifiers act as if they had been declared in the same block that the USES clause
appeared in.

ACTIVATION
The execution of a block means that it is in activation. At a given time, a block can have
zero or more activations. If a block is not the target of execution it has zero activation. If a
block is the target of execution, it has at least one activation. When a block has more than
one activation, it is said to be recursive.

TML Pascal II – Reference Manual 48

CHAPTER 13: VARIABLE TYPES

CHAPTER 13: VARIABLE TYPES

When you declare a variable you must indicate its type. The type of a variable determines
the range of values that the variable can be assigned and also which operations can be
performed on it. A type declaration introduces an identifier to specify a new type.

When an identifier appears to the left of a declared type, it is declared as an identifier of
the (declared) type for the block in which the type declaration takes place. The visibility of
a type identifier is not included the same, except for the pointer types (?? TODO: figure out
what this means).

SIMPLE TYPES
All the simple types define a collection of ordered values.

An integer type identifier is one of the standard identifiers - Integer or LongInt. A real type
identifier is another of the standard identifiers - Real, Single, Double, Comp or Extended.
See “Numbers” in chapter 11 on how to define integer constants and real type values.

Ordinal types
The ordinal types are a subset of the simple types which have the following particular
characteristics:

• ordinal types are ordered groups with each value having an ordinal value which is a
whole number. Except for integer types, the first ordinal value of an ordinal type is
zero, the next a 1, etc…. For integer types, a value’s ordinal number is the value
itself. Each value of an ordinal type, except for the first, has a unique predecessor
based on the ordinal number of the type. Moreover, each value of an ordinal type,
except for the last, has a successor based on the ordinal number of the type.

• the standard functions ORD and ORD4 can be applied to any value of an ordinal
type and the ordinal number of the value will be returned.

• the standard function PRED can be applied to any value of an ordinal type and it
will return the predecessor value.

• the standard function SUCC can be applied to any value of the ordinal type and it
will return the successor value.

TML Pascal II has four preset ordinal types: Integer, LongInt, Boolean, and Char.
Additionally, there are two classes available for the user to define ordinal types:
Enumerated types and Interval types.

The standard ordinal types

Integer
The values of the integer type are a subset of all numbers. A variable of the integer type
can have a value within the range (-maxint-1 .. maxint) , i.e. -32768 to 32767. The
standard integer constant maxint is defined as 32767.

TML Pascal II – Reference Manual 49

CHAPTER 13: VARIABLE TYPES

LongInt
The values of the long integer type are also a subset of all numbers. A variable of the long
integer type can have a value within the range (-maxlongint-1 .. maxlongint) , i.e. -
21474836478 to 2147483647. The standard constant maxlongint is defined as
2147483647. Arithmetic operations with integer type operands use integer precision (16
bits) or long integer precision (32 bits) according to following rules:

• integer constants that fall within the range of the Integer type are considered an
Integer type. Any other integer constants are considered to be of Longint type.

• if operator and operand are of Integer type the result is of Integer type (possibly
truncated to 16 bits). In the same manner, if two operands are of Longint type a
precision of 32 bits will be used and the result will be of type Longint.

• when one operand is of type Longint and the other is of type Integer, the Integer
operand is initially converted into a Longint and the result is of type Longint.

• the expression located to the right of an assignment statement is evaluated
independently of the left part.

An Integer value can be explicitly converted into a Longint by using the standard function
ORD4 which is described in chapter 20.

Boolean
The values of a Boolean type are specified by using the predeclared constant identifiers
FALSE and TRUE, where ord(false)=0 and ord(true)=1 . Boolean values are used by the
Pascal statements IF, REPEAT and WHILE.

Char
The character type is a collection of values made up of ASCII characters. By calling the
function ord (CH), where CH is a character value, returns the ordinal number of CH.
Constant strings of length 1 can be used to assign the value of a character type constant,
and any value of the character type can be generated via CHR function.

Enumerated types
An enumerated type defines an ordered collection of values which are referred to by
identifiers. The order of these values is determined by the order in which the identifiers
are listed. Consequently for two enumerated identifiers X and Y, if X precedes Y then the
ordinal number of X is lower than that of Y.

When an identifier appears inside a list of identifiers for an enumerated type, it is declared
as a constant for the block in which the enumerated type is declared. The type of this
constant is the enumerated type in which it is declared. The ordinal number of an
enumerated constant is its position in the identifier list, taking into account that the ordinal
number for the first enumerated constant is always 0.

Examples of enumerated types:

work_days = (Monday, Tuesday, Wednesday, Thursday, Friday)

colour = (red, yellow, green, blue)

Here, yellow is an enumerated constant of the colour type with a sequence number of 1.
Friday is an enumerated constant of the work_days type with a sequence number of 4,
and so on… and therefore we can state the following:

TML Pascal II – Reference Manual 50

CHAPTER 13: VARIABLE TYPES

ORD (Monday) < ORD (Tuesday)
ORD (Thursday) > ORD (Tuesday)
PRED (green) = yellow
SUCC (red) = yellow

Interval types (also known as ‘Subrange types’)
A defined interval type is a subset of ordinal type values called the host type. The definition
of an interval type specifies the minimum and maximum values of the interval.

The two constants of an interval type must be of the same ordinal type. Intervals types of
the form has A. .B require that A be less than or equal to B. An interval type variable has
all the properties of the host type variables, with the added restriction that its value must
always be within the range defined by the interval type.

Examples of the intervals types:

1..100
-128..127
Monday..Thursday

Real types
The real types are collections of values that are subsets of real numbers, which can be
represented in floating point notation using a given number of digits. In general, the
floating point notation of a value n can be broken down into three components m, b, and e
such that n = m * (be), where b is always 2 and m and e are whole values falling within the
range of the real type. The values m and e will therefore determine the range and
precision of real types.

There are four standard real types in TML Pascal II: single, double, comp and extended.
Additionally, the standard identifier for reals is defined as being of the extended type. Real
types are different in range and precision from the actual values that they represent.

The real types:

Type identifier Memory occupied Range
Single 4 bytes 1.4-45 to 3.438
Double 8 bytes 5.0-324 to 1.7308
Real / Extended 10 bytes 1.9-4951 to 1.14932
Comp 8 bytes -9.218 to 9.218

The possible real values are:

• Finite values (a subset of all real numbers). The value 0 has an associated sign (it
can be negative or positive)

• Infinite values, +INF and - INF resulting from capacity overflow or a divide by zero.
• NaN (Not a Number) represents the result of an operation that can not be

represented numerically (multiplying by ±0 for example). NaN is represented by
NaN(x) where X is an Integer defining the source of NaN.

TML Pascal II – Reference Manual 51

CHAPTER 13: VARIABLE TYPES

Reals are implemented in TML Pascal II by the SANE tool. Operations on reals are also
made possible by using the interface SANE.P.

Real type values are converted into extended type before an operation is performed on
them, and the result of these operations is always in extended type. An extended value
can always be used where a single, double or comp is required, provided that the value
falls within the corresponding range.

The real type values are converted into extended type by the compiler before calculations
are performed so that the maximum precision can be obtained. Consequently, calculations
performed on variables already in extended type will be performed more quickly and
provide more compact code than calculations on data stored in other representations due
to the fact that no conversion is required. The smaller representations should be used
when data storage space is more critical than the speed of execution.

STRUCTURE TYPES
A structure type is characterised by its structure and the type of its components. The type
of a component is allowed to be of the same type as structure itself. There is no inherent
limit to the number of levels within a structure.

The use of the word PACKED in a structure type declaration indicates that the component
variables for this type will be compression to save memory, even if doing so makes access
to component variables less effective. Note that you cannot use packed variable
components as parameters to procedures or functions. The compaction is only performed
at the byte level, not at the bit level. For more regarding this, see Appendix D.

Array types
An array type defines a structure that has a set number of components, and all of the
components are of the same type.

ARRAY[<INDEX TYPE>] OF <COMPONENT TYPE>

The type which follows the word OF defines the type of the arrays components. The
number of elements is specified by one or more index types. Each index type adds a
dimension to the array. The index type must be an ordinal type.

There is no limit to the number of dimensions of a array; however, TML Pascal II limits
arrays to being no greater than 32,767 bytes.

An array of the form:

packed array[1 .. n] of char

is regarded as a packed string type. A packed string type has certain properties that are
not applicable to other array types [see the identical and compatible arrays later in this
chapter].

Examples of array types:

array[1. . 100] of real

TML Pascal II – Reference Manual 52

CHAPTER 13: VARIABLE TYPES

packed array [colour] of Boolean
array [Boolean] of integer
array[low..high] of Boolean

If the component type of an array is also an array, the resulting type is either an array of
arrays or a multi-dimension array. For example:

array[boolean] of array[0..maxsize] of real

is equivalent to:

array[boolean, 0..maxsize] of real

A component of an array can be accessed by using indexes to the component inside
brackets immediately following the array identifier. One can use several sets of brackets.
For example:

var anArray: array[1..maxlength,1..maxwidth] of rea l

permits the following:

anAray[1,1] or anArray[1][1] will access the first element of the first sub-array.

Notice that anArray[2] will return the complete second sub-array.

Record types
A record type consists of a specified collection of components called fields, each one
capable of being a different type. Each field of a record type must specify its type, and the
name of its identifier.

The fixed part of a record type specifies the list of fields by giving an identifier and a type
for each field. Each field and its associated data is accessible by using a variable of the
record type in question.

Example of the recording type:

record
year: integer;
month: 1..12;
day: 1..31;

end

The variable part of a record is made up of lists of "alternate" fields which are allocated in
the same memory space as a variable record, thus the data stored at this located can be
accessed in various ways. Each of the lists is called a variant. The variants are replaced in
memory and the variant fields are accessible at all times.

Each variants value is determined by one or more constants. The constants must be
distinct and be of an ordinal type compatible with the label field of the variant. The variant
part allows an optional identifier which announces a field label. If a field label is present, it
is regarded as a field within the preceding fixed part.

TML Pascal II – Reference Manual 53

CHAPTER 13: VARIABLE TYPES

Examples of record types with variants:

record
surname, first_name: string(80);
age : 0 . . 99;
case married: boolean of

true : (maiden_name:string(80));
false:()

end

record

x,y:real;
case kind: figure of

rectangle:(height,width:real);
triangle: (side1,side2,angle:real);
circle : (radius:real);

end

Set types
A set type has a range of values of an ordinal type known as the base type. The possible
values of a set type are a subset of the possible values of the base type.

TML Pascal II limits the base type to 256 possible values. If the base type is a subset of
Integer, it will be limited to a range of 0..255. For more information regarding memory
allocation and the representation of data, see Appendix C.

Each set type can have the value () which is called the empty set.

Examples of sets:

set of Char
set of 0..31
set of (red, green, blue)

File types
A file type is a structure type comprising a linear succession of components of the same
type. The type of a component can be any type which is not a file type or a structured type
containing a file type component. The number of components is not specified in a file type
declaration.

The standard “text” file type is a particular packed file of characters, organised in lines.
These character files are handled by specific I/O procedures explained in chapter 19.

Because of the representation of types in TML Pascal II, accessing the elements of a
character file (text) uses 16 bit words, while in a packed character file one accesses
elements using 8 bits words. For more detail, see Appendix D.

Examples of file types:

IntFile = file of integers

TML Pascal II – Reference Manual 54

CHAPTER 13: VARIABLE TYPES

TML Pascal II allows the passing of file type variables into procedures or functions only if
they are parameters.

STRING TYPES
A string type is a succession of characters having a dynamic length attribute and a
constant dimension attribute of 1 to 255. The constant dimension is a maximum limit
applied to the length of values of this type. If the dimension attribute is not specified, then it
will be given a default value of 255. The current value of the length attribute for a string
type is returned by the standard function length. A null string is a string type value that has
a dynamic length of zero.

The sort order between two string values is determined by the comparison of characters in
the corresponding positions. When the two strings are of different lengths, each character
of the longest string will not correspond to a character of the shorter string, and in these
cases where the common parts are equal, the longer string will be considered of higher
value. For example, 'attribute' is larger than 'at'. Two strings must therefore have the same
length to be considered equal.

Strings are stored in the format of a byte indicating the length of the string, followed by all
the characters of the string. One can directly modify the length of strings by modifying their
first byte:

aString(0) := chr(5);

The operators applicable to strings are examined in chapter 15; and the standard
procedures and functions for string handling are described in chapter 20.

String examples:

string(50)
string(255)
string

POINTER TYPES
A pointer type defines a set of values which point to dynamic variables of a special type
called the base type. A pointer type variable contains the memory address of a dynamic
variable.

If the identifier of the base type is not yet declared, it must be declared in the same type
declaration section as the pointer type. You can assign a value to a pointer variable with
the 'NEW' procedure, the operator ' '̂, or the 'POINTER' function. The 'NEW' procedure
allocates a new storage area on the stack for the dynamic variable, and sets the pointer
value to be the memory address allocated. The operator ' '̂ directs the pointer variable to
the memory area containing a referenced variable. The 'POINTER' function points the
pointer variable to a particular memory address.

The predeclared identifier constant 'NIL' represents a constant pointer value which is a
possible value for all pointer types. By design, the Nil pointer does not point to anything.

Examples of the pointer types:

TML Pascal II – Reference Manual 55

CHAPTER 13: VARIABLE TYPES

^LongInt
^Char
^String(32)

IDENTICAL AND COMPATIBLE TYPES
Two types are, or are not "identical". In certain contexts it is necessary that two types be
identical. At other times, if the types are not identical it may be that they must be
compatible, and at other times again, assignment compatibility is required.

Identical types
Identical types are necessary in the following contexts:

• between formal parameters and the current variable
• between formal result types and the current function parameters
• between values of formal parameter variables and the current list of function or

procedure parameters
• when a one dimensional array PACKED ARRAY OF CHAR is compared with

another using an operator

Two types, T1 and T2 are identical if one of the following statements is true:

• T1 and T2 have the same type identifier
• T1 is declared as being equal to a type identical to T2

Compatible types
Assignment compatibility is required when a value is assigned to anything, either explicitly
(as in an assignment statement) or implicitly (like the passing of parameter values).

A value of type T2 is deemed compatible with type T1 if one of the following statements is
true:

• T1 and T2 are identical types and they are neither of file type nor of a structured
type containing an element of file type

• T1 is a real type and T2 is an integer type
• T1 and T2 are ordinal types and the value of T2 falls within the range of possible

values for T1
• T1 and T2 are set types with a compatible base type and the value of all the

elements of type T2 are within the range of possible values of type T1
• T1 is a string type or a character type, and T2 is a string type or character constant

within apostrophes
• T1 is a packed string type of N elements and type T2 is a string type of constant

characters within apostrophes also having a length of N.

There is an assignment error if compatibility is required, but none of the above statements
are true.

TML Pascal II – Reference Manual 56

CHAPTER 14: VARIABLES

CHAPTER 14: VARIABLES

DECLARATION OF VARIABLES
A variable declaration is used to allocate and associate a block of memory with a particular
type. A variable is an entity in which a value can be stored. Each identifier in the list of
identifiers within a variable declaration shows that each variable has its type specified in
the declaration.

The presence of an identifier inside the list of the identifiers of a variable declaration,
announces that there is a variable identifier for the block in which the declaration appears.
One can therefore refer to the variable throughout the block unless the identifier is not
redeclared in a sub-block. A redeclaration creates a new variable using the same identifier
without affecting the value of the original variable.

Examples of variable declaration:

x,y,z: real;
c: color;
p1,p2: nobody;
today: date;
operator: [plus,minus];
digit: 0..9;
coord: polar;
fact,error: boolean;

REFERENCE VARIABLES
A reference variable may be returned to a complete variable, a component of a structure
type or string, a dynamic variable pointed to by a variable of the pointer type, or to a
variable that one accesses by way of a function call.

Qualifiers
The reference to a variable is made up of a variable identifier followed by zero or more
elements which modify the meaning of the variable thus referenced.

For example with:

var aMultiDimArray: array[1..100] of array[1..100] of integer

One can write:

aMultDimArray - to access the whole array
aMultDimArray[1] - to access the first sub-array
aMultDimArray[1,1] to access the first element of the first sub-array

Tables, strings and indexes
A single element of an array variable can be accessed by using a reference to an array
type variable followed by an index value that specifies the element concerned. In a similar

TML Pascal II – Reference Manual 57

CHAPTER 14: VARIABLES

way, a particular character in a string variable is specified by using the reference variable
followed by an index defining the position of the character.

Examples of indexed arrays:

m(i,j)
a(i+j)

Each index value selects an element within the array at the corresponding dimension. The
number of index values should not exceed the number of indexed types in the table
declaration. The index value must be assignment compatible with the corresponding index
type.

When one indexes a multidimensional array, you can either multi-index or use multiple
expressions to access an element. These methods of access are interchangeable.

For example:

MaMatrice(i)(j) (* has the same meaning as *)
MaMatrice(i, j)

A string variable can be indexed with a simple expression, whose value must be in the
range 0. .n, where n is declared as the length of the string. Indexing a string gives access
to a particular character of the string. The first character of a string variable (index 0)
contains the dynamic length of the string. In general, one cannot assign a value to a
position within the string unless the particular character position is already occupied. i.e. if
the dynamic length of the string is less than the position of the indexed character being
assigned, the operation will leave the string unchanged. For additional information, see
chapter 20.

Records and fields designators
A given field of a record variable is specified by using a reference to the record variable
followed by the appropriate field designator.

Examples of field designators:

today.year
p2^.pregnant

It is an error to access a variant component from an uninitialised record. See chapter 13.

Inside a WITH statement, a field designator does not have has to be preceded by a
reference to the record variable.

Dynamic pointers and variables
The value of a pointer variable is either NULL or a value pointing to a dynamic variable.

The dynamic variable pointed to by the variable pointer is referred to by writing the variable
pointer immediately followed by a caret character (also known as a circumflex).

TML Pascal II – Reference Manual 58

CHAPTER 14: VARIABLES

Dynamic variables and pointer values that are not null, are created using the standard
procedure NEW. Additionally, the operator '@’ (at) and the standard procedure POINTER
can be used to create pointer values which in fact do not point to dynamic variables but
are treated as if they do.

The NULL constant does not point to any variable. An error will be raised if you try to
access a dynamic variable when the value of the pointer is NULL or undefined.

Examples of references to dynamic variables:

p1^
p1^.sibling^

Variable type modification (Variable type casts)
The reference to a variable of a given type can be changed into a reference to a variable
of another type thanks to a mechanism called 'variable type casts'.

When a type modification is applied to a reference variable, the variable is temporarily
treated as being of the type specified in the given type identifier. The variable’s dimensions
(i.e. the number of bytes that it occupies in memory) must be the same as the dimensions
of the type specified by the type identifier. A variable type cast can be followed by one or
more qualifiers in the same manner as a reference to a traditional variable.

Examples of variable type casts:

type point=record
v,h:integer;

end;

var p:point;

l:longint;

begin

p:=point(l);
l:=longint(p);
longint(p):=longint(p)+$00020002;

end;

TML Pascal II – Reference Manual 59

CHAPTER 15: EXPRESSIONS

CHAPTER 15: EXPRESSIONS

Expressions indicate values. The simplest expression for example, is the reference to a
variable. However, most expressions are made up operators and operands. The majority
of Pascal operators are binary, meaning that they have two operands. The other operators
are unary and have only one operand. When more than one operator appears in an
expression, priority rules are applied to determine which operands are associated which
operators. For example, the expression:

a + b * c

can either be interpreted as (a+b)*c or as a+(b*c) . Priority rules remove any ambiguity in
the interpretation:

• when an operand appears between two operators of different priority, it is
associated with the operator having the greatest priority

• when an operand is written between two operators of the same priority, it is
associated with the left operator

• an expression between brackets is always evaluated before applying any operator
to it

Operator Priority:

Priority Operator Type Operators
First (highest) Unary operators @, NOT

Second Multiplying operators *, /, DIV, MOD, AND
Third Addition operators +, -, OR

Fourth (lowest) Relational operators =, <>, <, >, <=, >=, IN

Therefore, the expression a+b*c is interpreted as a+(b*c) because * has a higher priority
than +. Note that a+b-c is interpreted as (a+b)-c because + and - have the same priority.
The priority rules follow the syntax of expressions, which are constructed from factors,
terms and simple expressions.

The result of an expression is obtained by applying relational operators to simple
expressions:

Expression --> SimpleExpression [RelationalOperator SimpleExpression]
RelationalOperator --> '=' | '<>' | '<' | '>' | '<= ' | '>=' | 'IN'

Example of expressions:

x=1.5
C in tint1
result <> error
p<=q

The simple expression syntax is the result of applying adding operators and signs to
terms:

SimpleExpression --> [SignOperator] Term | SimpleEx pression AddingOperator Term

Examples of simple expressions:

TML Pascal II – Reference Manual 60

CHAPTER 15: EXPRESSIONS

x+y
-x
tint1 + tint2
b or c

The syntax of a term is the result of applying multiplication operators to factors:

Term --> Factor | Term ('*' | '/' | '**' | 'div' | 'mod' | 'and’) Factor

Examples of terms:

x*y
e/(1-e)
result and error

The syntax of a factor is the result of the following constructions:

Factor -->
 @ |

Numeral |
VariableAccess |
'(' Expression ')' |
Not Factor

VariableAccess -->
VariableNameUse |
VariableAccess '[' Expression ']' |
VariableAccess '.' FieldNameUse

Examples of factors:

x (variable reference)
@x (pointer to a variable)
15 (unsigned constant)
'Hello' (unsigned constant)
(x+y+z) (sub-expression)
sin (x/2) (function call)
not q (negation of a Boolean)
('A'..'F', 'a'..'f') (set construction)

TML Pascal II – Reference Manual 61

CHAPTER 15: EXPRESSIONS

 OPERATORS
Operators are classified as either arithmetic operators, Boolean operators, set operators,
relational operators, or '@' operators.

Arithmetic operators
The following two tables show the types of operands and the results returned using binary
and unary operators respectively.

Table: Binary arithmetic operations (on two elements)
Operator Operation Operand type Result type

+ Addition Integer or Real Integer or Real (1)
- Subtraction Integer or Real Integer or Real (1)
* Multiplication Integer or Real Integer or Real (1)
/ Division Integer or Real Real (2)

DIV Whole Division Integer Integer
MOD Modulus Integer Integer

(1) if a mixture of integer and real operands are used then the integer operand is converted into a real and the result is of type real.
(2) the integer operands are always converted into real values even if the two operands are of integer type.

Table: Unary arithmetic operations (on a single element)

Operator Operation Operand type Result type
+ Sign Identity Integer or Real Integer or Real
- Sign Negation Integer or Real Integer or Real

If the operators +, -, *, div, or MOD are applied to two operands of the same integer type,
(Integer or Longint) the result will always be in the same integer type as the operands. If
one of the operands is of Longint type and the other of Integer type, then the Integer
operand is initially converted into a Longint and the result is of Longint type. In all other
cases, the value of the result is determined by the normal rules of integer mathematics. An
error will be raised if the value of the result is outside the range:

(-maxint-1)..maxint for Integers
(-maxlongint-1)..maxlongint for Longints

If one of the operands of the operators ‘+’, ‘-‘, or ‘*’ is of a real type, the result is always of
Extended type and its value is an approximation of the true mathematical result. The result
of any operation using the ‘/’ operator is always of Extended type.

If the operand of a sign identity or a sign negation is of an integer type, the result will
always be of the same type of integer, and the absolute value of the result will always be
equal to the absolute value of the operand.

If the operand of a sign identity or a sign negation is of a real type, the result is always of
real type, and the absolute value of the result is always equal to the absolute value of the
operand.

TML Pascal II – Reference Manual 62

CHAPTER 15: EXPRESSIONS

Boolean operators
The operand types and the corresponding results for Boolean operations are shown in the
following table:

Table: Boolean operations
Operator Operation Operand type Result type

OR Logical OR Boolean Boolean
AND Logical AND Boolean Boolean
NOT Logical Negation (Unary) Boolean Boolean

The result of a Boolean operation is determined by the rules of Boolean algebra, for
example (A and B) is evaluated as being true if and only if A is true and B is true.

Set operators
The operand types and the corresponding results for Set operations are shown in the
following table:

Table: Set operations
Operator Operation Operand type Result type

+ Union Set Type
- Difference Set Type
* Intersection Set Type

If the set types of the operands are the
same then the result will be the same set
type, otherwise it will be a compatible set
type.

The results of set operations are determined by the normal rules for sets:

• an ordinal value C is in the set A+B if and only if C is in A or B
• an ordinal value C is in the set A-B if and only if C is in A and not in B
• an ordinal value C is in the set A*B if and only if C is in A and B

Relational operators
The operand types and the corresponding results for Relational operations are shown in
the following table:

Table: Boolean operations
Operator Operand type Result type

= <> Compatible simple, pointer, set,
string, or packed string type

Boolean

< > Compatible simple, string, or
packed string type

Boolean

<= => Compatible simple, set, string,
or packed string type

Boolean

IN Left operand is an ordinal of
type T, and the right operand is
a set of type T

Boolean

TML Pascal II – Reference Manual 63

CHAPTER 15: EXPRESSIONS

Comparison between ordinal types
When the operands of the operators ‘=’, ‘<>’, ‘<’, ‘>’, ’>=’ or ‘<=’ are ordinal types they
must be compatible types. The only exception to this rule is where one of the operands is
a real type and the other is an integer type. The result is the mathematical relation of
ordinal types. When real types are compared, the results can be different from that of
ordinal types due to the fact that the representation of a real value is only an
approximation.

Comparison between strings
When the relational operators ‘=’, ‘<>’, ‘<’, ‘>’, ‘<=’, and ‘>=’ are used to compare strings,
they are compared according to their lexicographic order. The length of a string does not
matter when it is the subject of a comparison because all string values are compatible.
What’s more, a Char type value is also compatible with a String type value, and when a
comparison is made, the Char value is treated like a String of length 1. When a Packed
String value which has N elements is compared with a String type value, it is treated as a
String type value with a length of N.

Comparison between packed strings
The relational operators ‘=’, ‘<>’, ’<’, ’>’, ‘<=’ and ‘>=’ can also be used to compare two
packed string values if both have the same number of elements. If the number of elements
is N, then the result is the same as if the two strings were of String type and of length N.
See also chapter 13 on Packed Array of Char.

Comparison of sets
If A and B are the set operands then:

• A=B is true if and only if every member of A is a member of B and every member of
B is member of A, otherwise A<>B.

• A<=B is true if and only if every member of A is also a member of B.

• A>=B is true if and only if every member of B is also a member of A.

Thus A=B and A<>B respectively indicate equivalence and non-equivalence of the sets A
and B, and A<=B and A>=B respectively indicate the inclusion of A in B and the inclusion
of B in A.

Comparison of pointers
The relational operators = and <> can be applied to operands of compatible pointer types.
Two pointers are equal if and only if they point to the same object (ie. they point to the
same memory address).

TML Pascal II – Reference Manual 64

CHAPTER 15: EXPRESSIONS

Testing for set membership
The operator in returns a value of true if the ordinal type value operand (LHS) is a member
of the set type operand (RHS); if not, it returns a value of false. The type to the left of the
operator must be compatible with the base type of the right-hand side of the operator.

The @ operator
A pointer value which points to a variable, procedure or function can by created using the
@ operator. The types of the operands and results are shown in the following table.
@ is a unary operator that takes the reference to an identifier of a variable, procedure, or
function to use as its operand and calculates the value of its pointer. If the operand of the
@ operator is a reference to a variable, then the value of the pointer is the memory
address of the variable. If the operand of the @ operator is a procedure or function
identifier, then the value of the pointer is the entry point of the procedure or the function.
The type given to the calculated pointer is equivalent to the type of the NIL pointer.
Because of this, it can be assigned to any pointer variable.

Table: @ operation
Operator Operation Operand type Result type

@ Pointer Creation Reference to a variable,
procedure, or function.

Pointer Type

The @ operator can only be used with procedures and functions declared in the
declaration part of the program or module (global declarations) when the resulting pointer
value is passed to an Apple IIgs ROM routine. The procedures and functions declared in
the declaration part of another procedure or function (embedded declarations) have a
different calling convention which is not compatible with the Apple IIgs ROM routines.
Additionally, the TML Pascal II compilation option 'DefProc' will have to be used when the
resulting pointer value is passed to an Apple IIgs ROM routine. See appendix "Inside TML
Pascal II" for details on Pascal call conventions and the use of the "DefProc" compilation
option.

@ with variables
The use of the @ operator with ordinary variables (not parameters) is straight forward. For
example, if you have:

type twochar = packed array (0..1) of Char;
var int: Integer;
twocharptr: ^twochar;

then you can write:

twocharptr: = @int;

this forces twocharptr to point to the variable int. Since the Integer and twochar types have
the same storage type, the value of int accessed via twocharptr is interpreted as being of
twochar type.

TML Pascal II – Reference Manual 65

CHAPTER 15: EXPRESSIONS

@ and parameter values
If @ is applied to a formal parameter value, the result is a pointer to the stack address
containing the actual parameters value. If aParam is a formal variable for a procedure, and
actParam is the variable passed into the procedure as the actual variable aParam, and
aPtr is a pointer; and if one performs the following:

aPtr := @aParam;

then aPtr is a pointer to actParam on the stack, and aPtr^ will give the value of actParam.

@ with a parameter variable
If @ is applied to a formal parameter variable, the result is a pointer to the actual
parameter. In this case, the pointer is taken from the stack. If aParam is a formal variable
parameter for a procedure and actParam is the variable passed into the procedure as the
actual parameter aParam, and aPtr is a pointer; and if one performs the following:

aPtr := @aParam;

then aPtr is a pointer to actParam and aPtr^ will give the contents of actParam.

@ with a procedure or function
When @ is used with a procedure or a function, the result will be a pointer to its entry
point. It is not possible to use such a pointer within Pascal itself. The only possible use of a
pointer to a procedure or function is for passing it into a ToolBox procedure so that the IIgs
ToolBox can call the function indicated within a JSL type ASM instruction. Pointers to
procedures are generally used to implement the definition procedures and filter
procedures.

The @ operator must be only used with procedures or functions declared in the
declaration part of a program or unit (global declarations) when the resulting pointer value
is to be passed to a ToolBox routine. Procedures and functions declared within a
procedure or function (overlapping declarations) have different calling conventions making
them incompatible with the IIgs ToolBox routines.

FUNCTION CALLS
A call to a function specifies that the block associated with the function identifier is to be
activated. The result returned by an activated function is used like an expression value. If
the function has formal parameters, then the function declaration must contain the
corresponding list of parameters to be used. Each actual parameter is substituted for the
corresponding formal parameter. Examples of function calls:

sum(a,63)
sin(x+y)
eof(f)
ord(f^)

See chapter 17 for a description of procedure calls.

TML Pascal II – Reference Manual 66

CHAPTER 15: EXPRESSIONS

SET CREATION
The creation of a set specifies the values of a set type and it is realised by writing
expressions surrounded by square brackets. Each expression specifies a value of the set.

If there is nothing within the pair of square brackets, then the set is empty. It is possible to
assign the empty set to all set types. An elements such as x..y means that all the values
between x and y are included within the set. If the value of x is greater than the value of y,
then x..y means no element and (x..y) is an empty set.

The values used in an element range expression (e.g. x..y) for creating a set, must be
ordinal type compatible. If a is the smallest ordinal value of the resulting set, and if b is the
largest ordinal value of the set, then the base type of the resulting set is a..b .

Examples of sets:

(red, C, green)
(1, 5, 10..k MOD 12, 23)
('A'..'Z', 'a'..'z', CHR(13))

VALUE TYPE MODIFIERS (Value Type Casts)
The type of an expression can be changed into another type by using a value type
modifier.

The argument of the expression must be of an ordinal or pointer type. The result of a value
type modifier is of the specified type with its ordinal value calculated by converting the
expression. The syntax of a value type modifier is almost identical to that of a variable type
modifier. However, the value type modifier operates on values and not on variables and
therefore cannot handle references to variables. Because of this, a value type modifier can
not have a qualifier on left hand side of an assignment declaration, nor can it have an
actual parameter where the formal parameter is declared as VAR parameter .

Examples of value type modifiers:

integer('c')
ptr($89F2)
boolean(0)

TML Pascal II – Reference Manual 67

CHAPTER 16: STATEMENTS

CHAPTER 16: STATEMENTS

Statements describe the algorithmic actions able to be executed. There are two classes of
statements: simple statements and structured statements. Statements can be prefixed by
a label which can be referred to by a GOTO statement. A label is a positive integer
constant, which must first be declared in the label declaration section (see chapter 11).

SIMPLE STATEMENTS
A simple statement is a single statement that does not contain any other statement. The
empty statement is a simple statement not containing any symbols and not specifying any
action.

Assignment statements
The assignment statement makes it possible to carry out one of two actions:

1. to replace the current value of a variable by a new value specified in an expression
2. to specify an expression whose value will be returned by a function

The symbol := can be read as 'give the value'. The expression must be compatible, in
terms of assignment, with the type of the variable or the result type of the function. The
function identifier must be that of the current function being executed.

The reference to a variable on the left can identify a variable of any type except FILE. With
most variables, the reference to the variable is just an identifier name, but in certain cases
the variable may be followed by a qualification:

• strings : the name of the variable is followed by an index value between brackets
• arrays : the variable is identified by the name of the array followed by an index

between brackets for each dimension of the array
• record fields : the name of the field variable must be preceded by the structure

name and a point. The only exception to this is when a field variable is referenced
within a WITH statement loop for the corresponding record

• dynamic variables : the reference to a variable is denoted by the pointer name
followed by a ‘^’

Moreover, a reference to a variable located on the left hand side of an assignment can be
a type definition. See chapter 13 for more information on the compatibility of types and the
syntax of these variables.

Examples of assignment:

x := y+z;
p := (1<=i) and (i<100);
i := sqr(k) - (i*j);
colour := {blue, succ(c)};

It is not specified if the evaluation of the reference to the variable is carried out before or
after the evaluation of the expression. Nevertheless, when the reference to the variable is
established, it is not impacted by any flow on effects due to the execution of the rest of the
assignment statement. Therefore:

TML Pascal II – Reference Manual 68

CHAPTER 16: STATEMENTS

A[i] := A_Function(i);

is related to whether i is modified by the function, and if this is the case, according to
whether the function is evaluated before or after A[i].

Procedure statements
A procedure statement makes a call to a code block specified by the procedure identifier
(ie. performs a call to a subroutine). If the procedure has formal parameters, then the
procedure statement must contain the corresponding list of actual parameters. Each actual
parameter is replaced by the corresponding formal parameter in the list, at the time of the
procedure call.

The identifier used to define a procedure must be identical to that used in the declaration.
Parameters in the declaration of a function or procedure are called “formal parameters”;
those in the call statement are called “actual parameters”. The values in the list of actual
parameters will be passed into the formal parameters at the time of the procedure or
function call. The number of formal parameters listed must be equal and they must be
compatible with the actual parameters. There are 3 exceptions to this compatibility:

• the sub-types are equivalent to their base types
• a formal parameter of LongInt type accepts a actual parameter of Integer type
• the formal parameters preceded by UNIV accept any actual parameter occupying

the same memory space. See chapter 19 for more about UNIV.

The actual parameters specified in a call to a function or procedure must comply with the
following rules:

• the actual parameter variables, unlike parameter values, must be variables. Actual
parameter variables cannot be constants, expressions, packed elements or
variables.

• the value of a string parameter variable can be passed into any string parameter
variable, without concern length of the string.

• if the value of an actual parameter exceeds the defined range of a formal
parameter, an execution error will be produced.

STRUCTURED STATEMENTS
Structured statements consist of a number of different statements that are carried out
conditionally, repeatedly, or sequentially.

Sequential statements
This type of statement defines a sequence of statements that will be executed in the order
that they are written.

In Pascal the body of a procedure, function, or MAIN program is simply a succession of
statements. Each sequence starts with a BEGIN and is concluded by an END. Each
individual statement located between these keywords ends in a ‘;’. A sequence of
statements can overlap with other sequences (nested blocks). In these cases, each END
is paired with the nearest preceding BEGIN.

TML Pascal II – Reference Manual 69

CHAPTER 16: STATEMENTS

Example:

begin
z := x;
x := y;
y := z;

end

Conditional statements
A conditional statement determines which of its components (if any) will be executed.

The IF statement
The IF statement carries out one or more statements (can be a sequence of statements) if
a Boolean expression is TRUE. An optional ELSE clause can be added so that a different
statement will be executed when the Boolean expression is FALSE. The statement
associated with ELSE clause, can also be a sequence of statements.

IF statement

 if boolean_expression then
 statement1
 else
 statement2

The expression between the IF and THEN is usually made up of logical and relational
operators and it must always be of boolean type. It is possible to have overlapping IF
statements. In these cases, each ELSE is always associated with the nearest IF that it is
not already associated with another ELSE.

Examples:

if x < 1.5 then
z := x+y

else
z := 1.5

if p1 <> nil then

p1 := p1^.pere;

TML Pascal II – Reference Manual 70

CHAPTER 16: STATEMENTS

The CASE statement
The CASE statement consists of an expression (the selector) and of a list of statements.
Each statement is prefixed by one or more constants (the CASE constants), or by the
reserved word OTHERWISE. All case constants must be distinct and must be of an ordinal
type compatible with the type of the selecting expression.

CASE statement

case ordinal_expression of
case_constant: statement;
...
case_constant: statement;

otherwise
statement;
...
statement;

end

The CASE statement executes the statement(s) prefixed by the CASE constant that is
equal to the selector value. If no CASE constant meets this criterion, and the OTHERWISE
clause is present, then the statement(s) following the OTHERWISE clause are executed; if
no OTHERWISE clause is not present, then execution continues with the statement
following the CASE statement. Each statement in the CASE or OTHERWISE clause can
be a sequence of statements.

Examples:

case operator of
plus : x := x+y;
minus : x := x-y;
multiply : x := x*y

end;

case i of

1 : x := sin(x);
2 : x := cos(x);
3,4,5 : x := exp(x);

otherwise x := ln(x);
end;

Repetition statements
These indicate that a sequence of statements must be repeated a certain number of times.

If the number of repetitions is known beforehand, the FOR statement is most suitable; if
not, then REPEAT and WHILE statements are used.

TML Pascal II – Reference Manual 71

CHAPTER 16: STATEMENTS

The REPEAT statement
The REPEAT statement contains an expression that controls the number of repetitions
that occur for the sequence of statements that fall between the REPEAT and UNTIL
keywords.

Repeat statement

repeat
statement;
...
statement;

until boolean_expression

The expression must generate a result of boolean type. The statements between the
keywords REPEAT and UNTIL are executed repetitively until the expression is evaluated
as being TRUE. The statement sequence is executed at least once, because the
expression is evaluated after the execution of the sequence. REPEAT and UNTIL do not
require the use of BEGIN and END keywords to delimit the sequence.

Examples:

repeat
k := i mod j;
i := j;
j := k

until j=0

repeat

process(f^);
read(f)

until eof(f)

The WHILE statement
The WHILE statement contains an expression that controls the number of repetitions that
occur for a statement.

WHILE statement

while boolean_expression do
 statement

The expression must generate a result of boolean type and is evaluated before each loop
is executed. The statement is executed repetitively as long as the expression returns a
value of TRUE. If the expression returns FALSE then the loop will be ended and the
statement no longer executed. The statement controlled by a WHILE statement can be
either a simple statement, or a sequence of statements.

TML Pascal II – Reference Manual 72

CHAPTER 16: STATEMENTS

Examples:

while a(i) <> x do
i := i+1

while i>0 do
begin

if odd(i) then
z := z*x;

i := i div 2;
x := x*x

end

NOTE: Ensure that the boolean expression changes to an appropriate value within the
REPEAT and WHILE statements, otherwise an endless loop will result. You can also leave
a loop by using GOTO, EXIT or LEAVE (see later).

The FOR statement
The FOR statement causes repetitive execution of a statement whilst the index value
remains within a defined range. This index value progresses sequentially for each
execution of the loop.

FOR statement

for variable := initial_value (to | downto) final_value do
 statement

The first expression following the := is called the INITIAL VALUE. The second expression
following the := is called the FINAL VALUE. The control variable, initial value, and final
value must be compatible. See chapter 13 regarding the compatibility of types.

A control variable is of scalar type (Integer, Char, boolean, subrange, or a type defined by
the user). However, it cannot be an array, a string, a record field, or a dynamic variable.
The control variable must be declared in the block containing the FOR statement. A new
value is assigned to it by the FOR statement before each loop execution. The value of the
control variable is accessible within the statement managed by the FOR loop.

If the reserved word after the first expression is TO, the control variable will be
incremented before each loop execution. The execution of a FOR statement continues
until the control variable has a larger value than the final value allows.

If the reserved word after the first expression is DOWNTO, the control variable will be
decremented before the start of each loop, and process execution continues until the
control variable has a lower value than the final value allows.

Here are some rules to respect when defining a FOR statement:

• The control variable must be a simple variable declared in the local scope.
• If the control variable is of subrange type, or a user defined scalar, it must accept all

values ranging between the initial value and the final value.
• The control variable should not be modified within the loop managed by the FOR

statement.

TML Pascal II – Reference Manual 73

CHAPTER 16: STATEMENTS

• The control variable can not be included in the expressions defining the initial or
final values.

• The control variable can not be specified at the end of a FOR statement.
• The initial and final values are evaluated only one time, before the execution of the

first loop. Following this, any modification made to either of these values will have
no effect on the execution of the loop.

• If initial and final values are the same, the loop is executed only once.

Examples:

for i:= 2 to 63 do
if a[i] > max then

max := a[i]

for c := red to blue do check(c);

Control statements
The repetition, conditional, and assignment statements, as well as procedures or functions
calls, are used in the majority of cases within Pascal. But in certain cases, you can have
situations asking for the immediate stop to a program. For these cases, TML Pascal II has
the following tools:

• The GOTO statement will pass control to another part of the program located in the
same block.

• The CYCLE statement forces a repetition statement to immediately execute the
next iteration of a loop.

• The LEAVE statement forces the immediate exit from a repetition statement loop.
• The HALT statement will stop the execution of the program immediately.

The GOTO statement
The GOTO statement passes program control to the statement corresponding to the given
label.

GOTO statement

goto label

Here are the rules to respect when using this statement:
- the label referred to by a GOTO statement must be in the same block as the GOTO
statement, or in a block containing the GOTO statement.
- a jump to a structured statement originating from an external location will produce
unpredictable effects. However, TML Pascal II does not detect this kind of situation.

See also chapter 13.

TML Pascal II – Reference Manual 74

CHAPTER 16: STATEMENTS

The CYCLE statement
The CYCLE statement passes control of the program to the end of the statements
managed by the WHILE, REPEAT or FOR ready for the next iteration. The use of CYCLE
outside of a WHILE, REPEAT or FOR loop generates an error.

Example:

for i:=1 to 100 do
begin

if a[i] <=0 then cycle;
f(a[i]);

end;

CYCLE is not a reserved word, and it can therefore be redefined. Under these
circumstances, it cannot be used in the block where it has been redefined.

The LEAVE statement
The LEAVE statement immediately exits a WHILE, REPEAT or FOR loop and passes
control to the statement following the loop. The use of LEAVE outside of a loop generates
an error.

Example:

while i<63 do
begin

if a[i] = x then leave;
i := i+1;

end;

LEAVE is not a reserved word, and it can therefore be redefined. Under these
circumstances, it cannot be used in the block where it has been redefined.

The WITH statement
The WITH statement is a simple method of indicating fields within a record. Using a WITH
statement, the fields of one or more record variables can be accessed by using only the
field identifiers.

Here the syntax of the WITH statement:

with-statement = 'with' record-variable-list 'do' s tatement

record-variable-list = record-variable { ';' record -variable }

The use of a variable in a WITH statement characterises the use of a record. In a WITH
statement, each reference to a variable is first interpreted as a record field. Similarly, if a
variable of the same name is accessible, it is always the reference to the record field which
is accessed within a WITH statement.

Here are the rules to be respected when using WITH:

TML Pascal II – Reference Manual 75

CHAPTER 16: STATEMENTS

• When one accesses a field of another record, the record should either be listed in
the record variable list (directly after the WITH) or alternatively in its explicit form
(e.g. record.field).

• WITH statements can overlap. In such a case, the WITH containing the overlapping
WITH remains equally valid in the overlapping block.

• When several records have fields with the same name, the WITH will refer to the
last record variable listed directly following the WITH.

• When the field identifier of a record is the same as a variable or other identifier
declared outside of the record, the WITH will access the field.

For example:

with date do
if month = 12 then
begin

month:= 1;
year := year +1;

end
else month := month +1

is equivalent to:

if date.month then
begin

date.month := 1;
date.year := date.year +1

end
else date.month := date.month +1

When more than one record variable is listed in a WITH statement such as:

with var1, var2, ... varN do statement

then it is treated like an overlapping construct:

with var1 do
with var2 do
...
with varN do

statement

If varN is a field of var1 and var2, it is interpreted in the form var2.varN and not as
var1.varN.

NULL statements
NULL statements are statements that do not contain anything. Nonessential semicolons
are treated as null statements by TML Pascal II. The result of having a null statement is
that you end up with two statements instead of one. Generally, this is not a problem, but
under certain circumstances it can produce errors.

TML Pascal II – Reference Manual 76

CHAPTER 17: PROCEDURES AND FUNCTIONS

CHAPTER 17: PROCEDURES AND FUNCTIONS

Procedures and functions enable you to overlap blocks in the main block or to define
UNITS. Procedures and functions are also referred to as “subroutines”. Each procedure
and function has a header followed by a block or a special directive. A procedure is
activated by a specific procedure statement, and a function is activated whilst evaluating
an expression containing a call to a function.

PROCEDURE DECLARATION
A procedure declaration associates an identifier with a block. Such a block is then able to
be activated by a procedure statement.

Syntax

procedure-declaration = procedure-heading ';' proce dure-block

procedure-block =

block |
 forward |
 external |
 inline <unsigned_integer> |
 tool <unsigned_integer>, <unsigned_integer> …

block = declarative-part statement-part

The procedure heading specifies the procedure identifier and the formal parameters
allowed.

procedure-heading = 'procedure' identifier ['(' fo rmal-parameter-list ')']

The syntax of formal parameters is described further later in this chapter.

A procedure is activated by a procedure statement that indicates the procedure identifier
and the current parameters required by it. The statements to be executed by the
procedure are specified by the statement part of the procedure block. If the same
procedure identifier is used in a procedure statement within the block of the procedure, the
procedure is carried out recursively. It is basically saying that the procedure is calls itself
during the course of its execution.

Example of a procedure declaration:

procedure Num2String (N: integer; var S: string);
var V: integer;
begin

V := Abs(N);
S:='';
repeat

S:= concat(Chr(V mod 10 + ord('0')),S);
V:= V div 10;

until V = 0;
if V<0 then S := Concat(('-',S);

end;

TML Pascal II – Reference Manual 77

CHAPTER 17: PROCEDURES AND FUNCTIONS

Sometimes, instead of a block following a procedure or function declaration, you might find
a directive FORWARD, EXTERNAL, INLINE or TOOL. See the paragraphs dealing with
these directives, later in this chapter.

FUNCTION DECLARATION
A function declaration associates an identifier with a block, in the form of a function able to
be activated by a function call in order to calculate and return a value of the specified type.

Syntax

function-declaration = function-heading ';' functio n-block

function-block =

block |
 forward |
 external |
 inline <unsigned_integer> |
 tool <unsigned_integer> [',' <unsigned_integer>]

block = declarative-part statement-part

The function heading specifies the function identifier, the formal parameters allowed, and
the type of the result.

function-heading =

'function' identifier ['(' formal-parameter-list ')'] ':' result-type

A function is activated by evaluating a function call, which provides the function identifier
along with the required formal parameters. The call to a function is in the form of an
operand of an expression. The expression is evaluated by executing the function, which
will replace the function call with the value returned by the function.

The statements to be executed by the function are specified within the statement part of
the function block. The block should normally contain at least an assignment statement
which will assign a value to the function identifier. The result of a function is the last value
assigned. If no assignment statement exists, or if it exists but is not executed, the value
returned by the function is undefined.

If the function identifier is used as a function call inside the function block, the function is
carried out recursively.

TML Pascal II – Reference Manual 78

CHAPTER 17: PROCEDURES AND FUNCTIONS

Example of a function declaration:

function Num2String(N: integer;): string;
var V: integer;
S: string;
begin

V := Abs(N):
S := '';
repeat

S:= concat(Chr(V mod 10 + ord('0')),S);
V := V div 10;

until V = 0;
if V<0 then S:= concat('-',S);
Num2String:=S;

end;

A function can be declared FORWARD, EXTERNAL, INLINE or TOOL in the same
manner as for procedures. If the return value of a function is a record type or a pointer to a
record type, it cannot be used in the record list of a WITH statement in order to assign
values to fields of this record. The compiler will interpret the use of the function identifier in
a WITH statement as being a call to the function (i.e. not as a record).

FUNCTION AND PROCEDURE DIRECTIVES
Following a procedure or function, the block of statements can be replaced by one of these
four directives:

• FORWARD: allows the procedure or the function to be immediately declared while
not declaring its statements block until later on.

• EXTERNAL: allows procedures and functions written in another language than TML
Pascal II to be linked with your program.

• INLINE: allows you to replace Pascal statements by 65816 machine language code.
• TOOL: indicates that a procedure or function implements an Apple IIgs ToolBox

routine.

FORWARD directive
A procedure declaration having a FORWARD directive instead of a statement block, is
called a forward declaration. At some point after the FORWARD declaration, the
procedure will be defined by a definition declaration (a procedure using the same
procedure identifier and this time containing a statement block). A definition declaration
can contain the formal parameters list again, and in this case, the list must be identical to
that in the FORWARD declaration. The FORWARD declaration and the declaration of
definition must be in the same declaration block, but they do not need to be contiguous.
Therefore, other procedures, functions, types or variables can be declared between them
and can make calls to the procedure in question. A FORWARD declaration also allows for
recursive usage.

The FORWARD declaration in combination with the definition declaration, constitute the
complete procedure declaration. The procedure is considered as being declared as
opposed to being a FORWARD declaration. Procedures and functions cannot be
FORWARD declared in the INTERFACE part of a UNIT.

TML Pascal II – Reference Manual 79

CHAPTER 17: PROCEDURES AND FUNCTIONS

Examples:

procedure Proc2 (m,n: integer); forward;

procedure Proc1 (x,y: real);
begin

...
Proc2(4,5);

end;

procedure Proc2 (m,n: integer);
begin

...
Proc1(8.3 , 2.4);

end;

EXTERNAL directive
A procedure declaration whose body consists of only the EXTERNAL directive, defines the
Pascal interface for a routine assembled or compiled in a language other than TML Pascal
II. The external code for the routine must be available for the linker.

Example:

procedure GotoXY (x,y: integer); External;

In this example, GotoXY is an external procedure that has to be linked with the main
program before execution. It is up to the programmer to make sure that the external
functions and procedures are compatible with their declarations in the Pascal program.
The linker does not carry out any test for compatibility.

INLINE directive
INLINE directives make it possible to write code in machine language in place of a
statement block. The machine code can only be made up of a sequence of integer
constants that each represent one byte of machine language. When the procedure is
called, the compiler generates the computer code specified by the INLINE directive. If a
procedure has parameters, they are pushed on top of the stack where the code is
generated. The purpose of the INLINE directive is to write small routines. For example, the
following procedure will erase the interrupt inhibit flag by generating a CLI instruction:

procedure GenCli; inline $58;

TOOL directive
The TOOL directive is used to define the body of a procedure as being one of the Apple
IIgs ToolBox routines. The IIgs ToolBox is divided into several tool sets, each one
containing a number of routines. Each tool is identified by a unique number, and each
routine is indicated by a unique function number. This method of designation of the
ToolBox routines makes it possible for TML Pascal II to generate the appropriate code to
call upon a ToolBox function. For example, the MoveTo procedure of the QuickDraw tool
(tool number 4) is identified by function number 58. Therefore, the TOOL directive used to
achieve this is:

TML Pascal II – Reference Manual 80

CHAPTER 17: PROCEDURES AND FUNCTIONS

procedure MoveTo (H, v: integer); Tool 4,58;

PARAMETERS
The declaration of a procedure or a function specifies a formal parameter list. Parameters
declared in a formal parameters list are local to the declared procedure or function, and
can be addressed by their identifiers within the block associated with the procedure or
function.

formal-parameter-list =

'(' parameter-declaration { ';' parameter-declarati on } ')'

parameter-declaration =

identifier-list ':' type-identifier |
'var' identifier-list ':' type-identifier |
'static' identifier-list ':' type-identifier |

Procedure and function declarations of can have up to three kinds of formal parameters:

1. value: parameters not preceded by the any keyword
2. variable: parameters preceded by the VAR keyword
3. static: parameters preceded by the STATIC keyword

VALUE parameters
A formal value parameter behaves like a local variable within the procedure or function,
except that its initial value is assigned by the corresponding current parameter during the
activation of the procedure or function. Any modifications made to a value parameter do
not affect the value of the current parameter. A value parameter corresponding to a current
parameter in a procedure or function call must be an expression, and its value cannot be a
File type or any other structured type containing a File type.

The current parameter must be assignment compatible with the type of the formal value
parameter. If the parameter is a String type, then the formal parameter must have a static
size of 255. If the size (in bytes) of a formal parameter is greater than 4 bytes, then the
current parameter is passed by address and its current value is copied into the local
variables area. However, any assignments made to the formal parameter do not affect the
value of the current parameter.

The formal and current parameters must assignment compatible. This restriction can be
circumvented by declaring the parameters in UNIV form (see the second last paragraph of
this chapter).

VARIABLE parameters
A variable parameter is used when the value of the parameter is to be returned from the
procedure or function. The corresponding current parameter in a procedure or function call
statement must be a reference variable. The formal variable parameter represents the
current variable during the execution of the procedure or function, and any modification
made to the formal parameter value is immediately transferred to the current parameter.
Within a procedure or function, any reference to a formal variable parameter relates to the
current parameter. The current and formal parameters must be assignment compatible.
This restriction can be circumvented by declaring the parameters in UNIV form (see the
second last paragraph of this chapter).

TML Pascal II – Reference Manual 81

CHAPTER 17: PROCEDURES AND FUNCTIONS

If the parameter is a String type, then the formal parameter must have a static size of 255,
and the current variable parameter must be of String type with a length of 255.

File types cannot be passed in variable parameters. Components of packed structure type
variables cannot be used as current variable parameters. If you access a current variable
via an index into a table, or the variable is reached via a pointer identifier, or reached via a
field of a record, the action of accessing the variable is carried out prior to the execution of
the procedure or function. It is necessary to pay attention when accessing variables that
have been relocated in the main segment. The compaction of this segment can cause the
source to be moved which would produce surprising results.

STATIC parameters
Static parameters are extensions specific to TML Pascal II for the Apple IIgs. They were
added with the aim of allowing the production of a powerful object code. The static
parameters are treated in the same manner as value parameters with the following added
restriction: a new value cannot be assigned to a formal static parameter within the
procedure or function.

A parameter value whose formal type requires more than 4 bytes of storage is passed by
address and then copied into the local variable storage area. Thus the assignment of new
values to the formal value parameter does not modify the current parameter (see appendix
D). However, in certain cases if the formal parameter is only read (and not written to), it
does not need to copy the current parameter into the local variable storage area for use by
the formal parameter since it can be addressed directly. Static parameters reduce the size
of the stack required by an application and also reduce the execution time because it does
not need to copy the current parameter value into the local area.

NOTE: TML Pascal II does not check to see if a static parameter will be written to or not. It
is up to the programmer to ensure the correct use of static parameters.

UNIV parameters
When the keyword UNIV appears before a type identifier in the formal parameter list, the
restriction stating that current and formal parameters must be assignment compatible for
value parameters, or identical if they are variable parameters, no longer applies. When
UNIV is used, the current parameter can be of any type provided that the number of bytes
necessary for storing the current parameter value is the same as that of the formal
parameter.

Here is an example of a UNIV parameter:

TYPE Ptr = ^Char;
VAR aLong: LongInt;
aPtr : Ptr;

procedure aProc(p: univ Ptr);
begin
end;

begin

aProc(aLong);

TML Pascal II – Reference Manual 82

CHAPTER 17: PROCEDURES AND FUNCTIONS

aProc(aPtr);
end.

Parameter list compatibility
Parameter list compatibility is essential for agreement between formal and current
parameter lists. Two formal parameter lists are compatible if they contain the same
number of parameters and if the parameters are in agreement within the list. Two
parameters agree if one of these conditions is true:

• They are value parameters of identical type.
• They are variable parameters of identical type.
• The formal parameter has UNIV before its type, and its current parameter is a value

or a variable of the same size. The parameters must both be values or variables.

TML Pascal II – Reference Manual 83

CHAPTER 18: PROGRAMS AND UNITS

CHAPTER 18: PROGRAMS AND UNITS

INTRODUCTION
TML Pascal II offers two kinds of source definition for your applications: Programs and
Units. The difference between the two is that a program corresponds to a complete
application and can therefore be compiled and executed. A Unit cannot be executed;
rather, it is a separate module in which parts of a program can be defined and compiled
independently of the main program. Programs and Units are compiled separately. Their
object files are required by the TML Pascal II Linker so that it can combine them into one
executable file.

PROGRAMS
A Pascal Program declaration resembles a procedure declaration that only has a header
and the optional presence of the USES clause.

program = 'program' program-header ';' [USES claus e]

The identifier immediately following the word PROGRAM in the program header is the
program identifier. The program parameters described by Jensen and Wirth and the ANSI
standard have nothing to do with TML Pascal II.

NOTE: versions 1.x of TML Pascal used the reserved words Input and Output in the
header. These words were used to indicate to the compiler that it was to create a Plain
Vanilla environment. With TML Pascal II, it no longer needs to employ these reserved
words. In order to create a Plain Vanilla environment (from now on called textbook
Graphic), all that is required is to call on the Graphics procedure.

program-header = identifier ['(' program-parameter -list ')']

THE USES CLAUSE
The USES clause is used to identify Units required by a program or a Unit in order for it to
be compilable.

When TML Pascal II encounters an identifier in a USES clause (the name of a UNIT), it
must be able to find the corresponding compiled code containing the symbols table and
object code of that unit. To assist the linker, the string “.p.o” is added to the end of Unit
names. For example:

uses Globals, fileStuff;

will make use of the files Globals.p.o and fileStuff.p.o.

The USES clause in the main program indexes the necessary Units for the program.
These units are comprised of those used directly by the main program and those used by
the Units themselves. It is possible that the name of the object code file of a Unit does not
correspond to the name of the Unit. In such a case, the compiler directive $U makes it

TML Pascal II – Reference Manual 84

CHAPTER 18: PROGRAMS AND UNITS

possible to specify a particular Units filename. The directive $U must appear immediately
before the Unit name in the USES clause. For example, one could have written:

uses globals,
{$U :MyDisk:MyFolder:fileStuff.p.o} fileStuff;

As illustrated in this example, the directive $U is used to indicate the complete prefix to
access the unit not located in the same directory as the source being compiled. The
directive $U is documented further in appendix B.

When a Unit named in a USES clause uses other Units, the names of these units must
also appear in the USES clause and their names must precede the Unit in question. For
example:

UNIT UnitA;
INTERFACE

type colors=(red,white,blue);
IMPLEMENTATION
END.

UNIT UnitB;
USES UnitA;
INTERFACE

type Rec = record
 i : Integer;
 c : colors;

 end;
IMPLEMENTATION
END.

PROGRAM MyProgram;
USES UnitA, UnitB;
VAR aRec: Rec;
BEGIN
END.

In this example, the MyProgram program declares a variable aRec of the Rec type, which
is declared in UnitB. However, a USES clause is used to name UnitB and this Unit also
uses a USES clause in order to name UnitA. Therefore, the USES clause of the
MyProgram program must name UnitA before UnitB.

If a Unit is recompiled, all Units which use it must also be recompiled. This so that
interdependent units do not try to refer to declarations that have removed or modified. For
example, if UnitB is recompiled in our preceding example, then MyProgram must be
recompiled but not UnitA. However, if one modifies UnitA, a recompile of UnitB and
MyProgram will be needed.

UNITS
Units are the corner stone of modular programming. Units are compiled separately from
each other and are used to organise important programs in logical sections. By dividing a
program into several parts, one also reduces the compile time of each part. Here are some
good reasons to use Units:

• They allow you to make important programs modular
• They allow you to define declarations and statement blocks that are usable by

various programs
• They can be used to make parts non-listable to everyone

TML Pascal II – Reference Manual 85

CHAPTER 18: PROGRAMS AND UNITS

The identifier following the reserved word UNIT is the unit identifier. It is the name which
others units and the main program will have to use in their USES clauses.

The syntax of Units:

Unit
 +
 !
 +->| interface | --> | implementation | -> | EN D | -> | . |->
 | part | | part |

The identifier following the reserved word UNIT is the unit identifier. It is the name that
others units and the main program will have to use in their USES clauses.

Interface part
 !-+
 +->| USES |-+ +-| declaration |<- +
 | clause |

The Interface part of a Unit declares the public constants, types, variables, procedures and
functions. That is, statements made in the Interface part are available for other Units and
Programs that list the units name in their USES clause. In other words, the valid scope of
these public statements is the entire program or unit making use of the Unit. Programs and
units using a Unit can access public statements as if they had been declared in a block of
its own.

Label declarations are not allowed in the interface part of a Unit. Procedures and functions
within the interface part are only declared by indicating procedure and function names, the
possible formal parameters, and the result type (for functions). You cannot put a statement
block for procedures and functions in the interface part. Instead of this, the procedure or
function header is repeated within the implementation part, and it is there that the
statement blocks are declared. Declarations of procedures and functions in the Interface
part behave as if a FORWARD directive had been specified. However, procedure and
function declarations can also include the EXTERNAL, INLINE and TOOL directives within
the interface part, and in these cases they will not have a block declared within the
implementation part. Variables, procedures and functions appearing in the interface part
are known as global. An entire Unit is under the management of the block in which a
USES clause references it. The interface part can contain a USES clause, and thus a Unit
can use another Unit.

Implementation part
 +-| declaration |>-+

The implementation part which follows the last declaration of the interface part, declares all
private constants, types, variables, procedures and functions. That is, these are not
available for other units or programs that list the Unit in their USES clause. Private
procedures and functions are declared in the same way as procedures and functions in
programs (with a header and a body).

Public procedures and functions declared in the interface part are redeclared within the
implementation part. The only exception relates to procedures and functions declared
using the EXTERNAL, INLINE and TOOL directives. Formal parameters and result types

TML Pascal II – Reference Manual 86

CHAPTER 18: PROGRAMS AND UNITS

can be omitted, but if they are indicated, then they must be listed identically to the
preceding declaration.

TML Pascal II – Reference Manual 87

CHAPTER 19: INPUT/OUTPUT

CHAPTER 19: INPUT/OUTPUT

FILE ACCESS
TML Pascal II manages the file access in two manners:

1. I/O routines of the Apple IIgs ToolBox.
2. Specific TML procedures and functions.

QuickDraw and the Event Manager remain the most direct methods of managing the
screen, keyboard and mouse. Calls to the GS/OS 5.0 operating system also make it
possible to easily handle files. Appendix C contains the list of file interfaces of the ToolBox.

The TML Pascal II internal routines also make it possible to easily handle file access. This
chapter exclusively deals with this method.

FILES IN PASCAL
Within TML Pascal II, files are managed using “file variables”. A file variable is quite simply
a variable that has been declared as a file type (see Chapter 13). TML Pascal II accepts
two types of files:
- text files.
- structured files.

Text files are declared with a preset TEXT type. Text files store data in the form of
character sequences organized in lines. TML Pascal II has a number of special functions
and procedures for managing lines of text. TML Pascal II predefines two text files for each
program: Input and Output. The Input file is predefined to start reading from the keyboard
only, and the Output file is predefined to write to the screen (text or graphics screen).

Structured files consist of a sequence of components. In a text file, a component is a
character; in a structured file, a component can be any type other than a file type or a
structure type containing a file type. A single component is referred to as a “logical record”.

Examples of files:

var aFile: text; { example of a text file }
var aFile: file of integer; { example of a structur ed file }

File variables refer to files that are made up of a sequence of components. For text files,
the components are always of type Char. For the structured files with, a component can be
any Pascal type, except a File type or a structure containing a File type. In each case, the
component is regarded as being a logical record. Files can to have any number of logical
records, but you can only access one at a time with a file variable. The position where a
logical record is accessed, in relation to the beginning of the file, is called the “current file
position”. Before using a file variable, it should be associated with a file: this process is
called “to open” the file. There are three procedures for opening a file: Reset, Rewrite and
Open.

Note: the file variables Input and Output are predefined, and automatically open when a
program is launched.

TML Pascal II – Reference Manual 88

CHAPTER 19: INPUT/OUTPUT

To open a file, one must specify its external name. This name can be a GS/OS access
path or the name of a peripheral.

STANDARD PROCEDURES AND FUNCTIONS FOR ALL FILES

The RESET procedure

syntax: Reset(F [, title])

Reset opens an existing file for reading or repositions an open file by setting the current
file position to component 0. The file is opened only for sequential reading. When an
already open file is repositioned, its contents are not erased. 'F' is a file variable of any File
type; 'title' is an optional string.

If ‘title' is specified in the parameter list, then RESET will open an existing file named ‘title'
and this will associate the external file with the 'F' file variable. If ‘title' is not a GS/OS
compatible filename, nor a name of peripheral, or if the file cannot be opened, an error will
be returned in IOResult.

If ‘title' is not specified in the parameter list, then 'F' must have already been associated
with an open file. In this case, RESET sets the current file position to component 0 of the
file. If 'F' is not already associated with a file, an error will be returned in IOResult.

The REWRITE procedure

syntax: Rewrite(F [, title])

Rewrite opens an existing file for writing, or creates a new file, or repositions an open file
by setting the current file position to component 0. The file is opened only for sequential
writing. When an already open file is repositioned with REWRITE, its contents are not
erased. 'F' is a file variable of any file type; ‘title' is an optional string.

If ‘title' is specified in the parameter list, then REWRITE will create and open a new
external file named ‘title' and the File variable 'F' will be associated with this external file. If
the file already exists, it is opened and its contents are not erased.

If ‘title' is not specified in the parameter list, then 'F' will must have already been
associated with an open file. In this case, REWRITE sets the current file position to
component 0 of the file. If 'F' is not already associated with a file, then an error will be
returned in IOResult.

The OPEN procedure

syntax: Open(F, title)

TML Pascal II – Reference Manual 89

CHAPTER 19: INPUT/OUTPUT

OPEN will open an existing file or create a new file. The file is opened for read/write with
random access. When an existing file is opened, its contents are not erased. 'F' is a file
variable of any File type; 'title' is an optional string.

If 'title' is not a GS/OS compatible filename, nor a name of a peripheral, or if the file cannot
be opened, an error will be returned in IOResult.

The CLOSE procedure

syntax: Close(F)

CLOSE will close an open file. 'F' is a File variable of any File type. The association
between 'F' and the external file are removed, and the system marks the file closed.

The EOF procedure

syntax: EOF(F)

result: Boolean

The EOF procedure returns the end of file state. 'F' is a file variable. EOF(f) returns TRUE
if the current file position is after the last position within the file; otherwise it returns FALSE.

The SEEK procedure

syntax: Seek(F, n)

Change the current file position to the component 'n’ but do not read the new logical
record. 'F' is a File variable, 'n' is an expression of LongInt type. For text files, the size of a
logical record is 1. The number of the first logical record is 0. If the value of 'n’ is greater
than the component count of the file, then the current position is positioned at the end of
the file and EOF(F) returns TRUE.

The ERASE procedure

syntax: Erase(title)

The ERASE procedure erases an external file. 'title' is an expression of the string type.
The external file with name 'title' is erased from the external peripheral on which it was
written.

The IORESULT procedure

syntax: IOResult

result: Integer

TML Pascal II – Reference Manual 90

CHAPTER 19: INPUT/OUTPUT

The IORESULT procedure returns an integer value corresponding to the error state of the
last I/O operation carried out. A value of 0 indicates that the operation was successfully
executed; a non-zero value indicates that an error occurred.

You will notice that IOResult returns the state of the last I/O operation. Also, the following
two statements do not give the results that you might expect:

Reset(F, 'myFile');
Writeln('IOResult for Reset = ', IOResult);

The call to the IOResult function in the Writeln parameter list returns the error state of the
Writeln operation of the string 'IOResult for Reset = ' since that is the last I/O operation
carried out. If you had wanted to return the error state of Reset, you would have to write:

Reset(F, 'myFile');
svIOResult: = IOresult;
Writeln('IOResult for Reset = ', svIOResult);

The FILEPOS function

syntax: FilePos(F)

result: LongInt

The FILEPOS function returns the current file position of the open file 'F'. The first logical
record within a file has position 0. With structured files, a logical record is an occurrence of
the component type. For text files, the component type is a byte. 'F' is a file variable
associated with an open file.

The RENAME procedure

syntax: Rename(oldName, newName)

The RENAME procedure allows you to rename a file. 'oldName' and 'newName' are string
expressions. The external file named 'oldName' will be renamed to 'newName'. If no file
exists with the name 'oldName', an error will be returned in IOResult.

STANDARD PROCEDURES FOR STRUCTURED FILES
The procedures identified in this paragraph are used for random access to logical records
within structured files. The component type of these files can be any type other than a File
type or a structure type containing a File type.

The READ procedure for structured files

syntax: Read(F, v 1 [, v 2..., v n])

The READ procedure allows you to read a component of a file variable. 'F' is a file
variable, and each 'v' parameter is a variable of the same type as the component type of

TML Pascal II – Reference Manual 91

CHAPTER 19: INPUT/OUTPUT

the file 'F'. For each 'v' parameter, the file component at the current file position is read into
'v' and the current file position is advanced to the next component. If one tries to read after
the end of the file, an error is returned in IOResult.

Procedure READ is also used with text files (see later). With text files, the file variable 'F' is
an optional parameter, because if it is omitted, the READ statement will carry out reading
from the standard input defined for text type (i.e. the keyboard). For structured files, the file
variable is mandatory.

The WRITE procedure for structured files

syntax: Write(F, v 1 [, v 2..., v n])

The WRITE procedure makes it possible to write each 'v' component variable to a file. 'F' is
a file variable, and each 'v' parameter is a variable of the same type as the component
type of the file 'F'. For each 'v' parameter, the value of 'v' is written to the component file at
the current file position, and the current file position is advanced to the next component. If
one tries to write after the end of the file, a new component is added to the end of the file.

The WRITE procedure is also used for text files (see later). With text files, the file variable
'F' is an optional parameter, because if it is omitted, the WRITE statement will carry out
writing to the standard output defined for text type (i.e. the screen). For structured files, the
file variable is mandatory.

THE STANDARD PROCEDURES AND FUNCTIONS FOR TEXT FILE S
Text files are distinguished from the other file types due to the fact that they are organised
into collections of lines all ending in a carriage return. Text files are different from files
defined as 'file of char' because the former is always organized in lines, while the latter is
not forced to do this. None of the procedures and functions defined in this paragraph
requires the explicit use of a file variable as a parameter. If you do not specify a file
variable parameter, the predefined file Input or Output is used by default (if reading, INPUT
which will be used by default; otherwise OUTPUT will be used).

The READ procedure for text files

syntax: Read([F,] v 1 [, v 2..., v n])

The READ procedure reads one or more values from a text file into the corresponding
parameters v1...vn. If the variable 'F' is included, it must be a File of text type. If ‘F’ is not
specified, the standard file Input is used by default, which happens to be the keyboard.
Each 'v' variable is an Integer, Longint, Real, Char or String type.

To read a Char variable
For variables of Char type, the Read procedure reads a character from the file and assigns
it to the variable. If Eof(F) is TRUE before reading, the value Chr(0) will be returned. If
Eoln(F) is TRUE before reading, the value Chr(13) will be returned. The next read will take
place starting from the next character in the file.

TML Pascal II – Reference Manual 92

CHAPTER 19: INPUT/OUTPUT

To read a LongInt or Integer variable
For Integer or LongInt variables, one reads a sequence of characters that together form a
signed number. All spaces, tabulations and end of lines are skipped until the beginning of
a numerical string is found. Consequently, all characters other than 'space', ' tabulation' or
'end of line' are regarded as forming part of the numerical string. The string is then
interpreted as being in the form of a numerical value. If no character of the string
represents a signed number, then an error is returned by IOResult. The next read will be
done starting from the next character after the numerical string.

To read a Real variable
With Real variables, one reads a sequence of characters that together form a signed
floating point number. All spaces, tabulations and end of lines are skipped until the
beginning of a numerical string is found. Consequently, all characters other than 'space', '
tabulation' or 'end of line' are regarded as forming part of the numerical string. The string is
then interpreted as being in the form of a numerical value. If no character of the string
represents a real number, then an error is returned by IOResult. The next read will be
done starting from the next character after the numerical string.

To read a String variable
With a String variable, one reads all the characters into the string variable until the next
'end of line' character (this one not being read). The next read will start from this 'end of
line' character. Notice that successive reads of String type, will not carry out successive
reads of lines since a read of String type never continues beyond the ‘end of line’
character.

The READLN procedure

syntax: Readln([F,] v 1 [,v 2...,v n])

This procedure is an extension of the READ procedure. After having carried out the same
job as READ, READLN will continue jumping to the start of the next line of the file while
reading all the characters into the corresponding variables until an 'end of file’ is reached.
If there is no next line, EOF(F) will become TRUE. Naturally, if one does not specify 'F', the
standard file Input is used by default.

The WRITE procedure with text files

syntax: Write([F,] v 1 [,v 2...,v n])

This procedure will write one or more values into a file of text type. If ‘F’ is not specified,
the standard file Output is used, which is generally the monitor screen of the Apple IIgs.
Each ‘v’ value can be an expression of Integer, long integer, real, character, boolean, or
string type. The ‘v’ parameters are called write parameters. Each write parameter is of the
form:

TML Pascal II – Reference Manual 93

CHAPTER 19: INPUT/OUTPUT

OutExpr [: MinWidth [: DecPlaces]]

OutExpr is an expression of an authorized type.
MinWidth and DecPlaces are expressions with values of the Integer type. MinWidth
indicates the minimum width of the field; it must be greater than or equal to 0. There will be
exactly MinWidth characters written (with leading spaces if necessary), unless OutExpr
has a value that is only able to be represented by using more characters than MinWidth; in
this case, the number of characters necessary to represent OutExpr is written. In the same
manner, if MinWidth is not specified, each OutExpr will be written using the number of
characters necessary to represent it. DecPlaces indicates the number of decimal places
used in the representation of real numbers. One can only use it if OutExpr is of real type,
and if MinWidth is also indicated. If DecPlaces is used, it must be greater than 0. However,
if DecPlaces is not specified, OutExpr is written using exponential representation.

The WRITELN procedure

syntax: Writeln([F,] v 1 [,v 2...,v n])

This procedure is an extension of the Write procedure. After having carried out the same
operations as Write, the Writeln procedure sends an end-of-line character (carriage return)
to the file.

The EOLN function

syntax: Eoln [(F)] result: boolean

This function returns the end-of-line indicator for a file. ‘F’ must be declared as a file of
Text type. Eoln(F) will return TRUE if the character currently read is a end-of-line
character, or if Eof(f) is TRUE; otherwise the result is FALSE.

The PAGE procedure

syntax: Page [(F)]

This procedure writes a form feed character to a text file. ‘F’ must be declared as a file of
Text type. If ‘F’ is not specified, the standard file Output is used.

DISK FILES AND TML PASCAL II
When one specifies an external file within a TML Pascal II procedure, the complete access
name must be used as the file name. A complete access name consists of the file name,
possibly preceded by the volume name and one or more folder names. The names of
volumes, folders, and file names are separated by a ‘:’.

For example:

MyVolume:MyDir1: ...:MyDirN:MyFile

TML Pascal II – Reference Manual 94

CHAPTER 19: INPUT/OUTPUT

However, one can also use the old ProDos16 syntax and put a ‘/’ in place of a ‘:’.

For example:

MyVolume/MyDir1/... /MyDirN/MyFile

(See the GS/OS reference handbook for further information).

PERIPHERALS AND TML PASCAL II
In addition to external disk files, TML Pascal II accepts peripherals as sources/destinations
for input/output. These peripherals must be recognized by GS/OS – for example the
keyboard, screen, printer, etc. At the time of launching a program, the Keyboard and
Screen are the standard files Input and Output respectively. The printer is also available as
a text peripheral; however, it must be explicitly opened using the REWRITE procedure
using ".PRINTER" as the name of device.

For example:

PROGRAM TestPrinter;
var f: Text;
begin

Rewrite(f,'.PRINTER');
for i:=1 to 10 do

Writeln(f,'Hello to the printer!');
Close(f);

end;

TML Pascal II – Reference Manual 95

CHAPTER 20: STANDARD PROCEDURES AND FUNCTIONS

CHAPTER 20: STANDARD PROCEDURES AND FUNCTIONS

This chapter describes the predefined standard procedures and functions of TML Pascal
II, with the exception of the input/output procedures and functions already described in
chapter 19. The standard procedures and functions are predefined. This means that they
function as if they were declared in an appended Unit. There is no declaration conflict
caused by redefining the same identifiers within a program, but in these cases the
predefined procedure or function is hidden. It should be noted that predefined procedures
and functions cannot be used as parameters to procedures or functions.

THE GRAPHICS PROCEDURE

syntax: Graphics(screenMode: integer);

The Graphics procedure is used to initialize the graphical environment of the Apple IIgs.
This procedure must be called at the beginning of the body of the main program. The
procedure initializes the QuickDraw and EventManager tools and sets the SHGR screen
mode to 640 or 320 according to the ScreenMode value. The screen can be used for
standard I/O operations for the Readln, Writeln procedures and any other I/O routines.
QuickDraw graphics can also be drawn to this screen. The Graphics procedure is provided
in TML Pascal II in order to simplify access to drawing. Programming in graphics mode is
detailed in chapter 7.

THE EXECUTION CONTROL PROCEDURES
The procedures described in this chapter allow an immediate branching to another part of
the program.

The EXIT procedure

syntax: Exit(id)

The exit procedure immediately stops execution of a program block: a block being a
function, procedure, or the whole program. In a general way, it is equivalent to a GOTO
jump to a label located at the end of the block identified by ID.

The HALT procedure

syntax: Halt

The Halt procedure immediately stops execution of the program.

The CYCLE procedure

syntax: Cycle

TML Pascal II – Reference Manual 96

CHAPTER 20: STANDARD PROCEDURES AND FUNCTIONS

The Cycle procedure immediately passes control to the end of the loop in progress and will
continue executing with the next loop value. This procedure only has meaning within
WHILE, FOR, or REPEAT loops; used outside of these loops, it has no effect. See chapter
16 for more information.

The LEAVE procedure

syntax: Leave

The Leave procedure makes it possible to immediately pass control to the statement
directly after the loop in progress. This procedure only has meaning within WHILE, FOR,
or REPEAT loops; used outside of these loops, it has no effect. See chapter 16 for more
information.

PROCEDURES FOR DYNAMIC MEMORY ALLOCATION
These procedures are used to manage memory areas not allocated at the time of program
execution. These procedures use the functionality of the MemoryManager in order to
recover free memory.

The NEW procedure

syntax: New(P)

New(p) creates a variable of type ‘P’ and makes ‘P’ refer to it. ‘P’ can be a pointer of any
type. The value of ‘P’ is referred to by using p^. New uses the NewHandle function to find
an area of free memory and it returns a pointer to the allocated storage block. An error
code is returned if the reserved area is insufficient to contain the new variable. In this case,
‘P’ will be set to the Nil pointer and the HeapResult function will return an error code.

The DISPOSE procedure

syntax: Dispose(P)

Dispose(p) destroys the dynamic variable referenced by ‘P’ and releases the memory area
which it occupied. ‘P’ must be a variable previously created by New(P) or previously
assigned a value by an assignment statement. After the call to Dispose(P), the value of ‘P’
becomes undefined and an error will be generated if one references the value previously
associated with ‘P’.

THE TRANSLATION FUNCTIONS
These functions are used to translate a value from one type into another. Note that the
standard procedures Pack and Unpack of Pascal are not implemented in the TML Pascal
II.

TML Pascal II – Reference Manual 97

CHAPTER 20: STANDARD PROCEDURES AND FUNCTIONS

The TRUNC function

syntax: Trunc(X)

result: LongInt

Trunc(X) returns a LongInt value representing the real variable ‘X’ truncated to the nearest
integer in the range 0 to X inclusive. There is an error if the result of truncating is outside
the range ((-maxlongint-1) .. maxlongint).

The ROUND function

syntax: Round(X)

result: LongInt

Round(X) returns a LongInt value representing the real variable ‘X’ rounded to the nearest
integer. If ‘X’ is exactly halfway between two integers, the result is the integer having the
greatest absolute value. There is an error if the result of rounding is outside the range
((-maxlongint-1) .. maxlongint).

The ORD4 function

syntax: Ord4(X)

result: LongInt

Ord4(X) returns the ordinal number value of the pointer type or ordinal. Ord4 corresponds
to Ord, except that the result type is always LongInt.

The POINTER function

syntax: Pointer(X)

result: pointer of generic type

Pointer converts an Integer or LongInt value into a pointer type. The value returned by
Pointer(X) is a pointer to the physical address containing X’s value. This pointer is of the
same type as the Nil Pointer in the sense that it is compatible with any pointer type. The
value of Pointer(0) is the Nil pointer.

THE ARITHMETIC FUNCTIONS AND PROCEDURES
The arithmetic functions and procedures carry out operations on values of integer or real
type. The implementation of these routines can be performed using the TML Pascal II
compiler or by using the functions with the SANE tool.

The INC procedure

syntax: Inc(X)

TML Pascal II – Reference Manual 98

CHAPTER 20: STANDARD PROCEDURES AND FUNCTIONS

Increment the variable X (which is of type Integer or LongInt) by one.

The DEC procedure

syntax: Dec(X)

Decrement the variable X (which is of type Integer or LongInt) by one.

The ABS function

syntax: Abs(X)

result: same type as the parameter

Return the absolute value of ‘X’. That is, if ‘X' is negative, the function will return ‘X’. ‘X’ is
an argument of type Integer or Real.

The SQRT function

syntax: Sqrt(X)

result: extended

If ‘X’ is not negative, the value returned is of type Extended and corresponds to the square
root of ‘X’. If ‘X’ is negative, a NaN (Not a Number) diagnosis is made and an illegal
operation indicator is set (see Apple Numeric Manual).

The ODD function

syntax: Odd(X)

result: boolean

The function returns TRUE if ‘X’ is odd (non-divisible by 2 without remainder). If X is even,
the function returns FALSE. ‘X’ is an expression of ordinal type.

The SIN function

syntax: Sin(X)

result: extended

This function will return the trigonometric sine of ‘X’. ‘X’ is an expression of real type and
must represent an angle in radians. If ‘X’ is infinite, a NaN (Not a Number) diagnosis is
made and the invalid operation indicator is set.

The COS function

TML Pascal II – Reference Manual 99

CHAPTER 20: STANDARD PROCEDURES AND FUNCTIONS

syntax: Cos(X)

result: extended

This function will return the trigonometric cosine of ‘X’. ‘X’ is an expression of real type and
must represent an angle in radians. If ‘X’ is infinite, a NaN (Not a Number) diagnosis is
made and the invalid operation indicator is set.

The EXP function

syntax: Exp(X)

result: extended

This function will return the value of e to the power of ‘X’ (e being the base of natural
logarithms). If a floating point overflow occurs, the result is +inf. ‘X’ is an expression of real
type.

The LN function

syntax: Ln(X)

result: extended

This function will return the natural logarithm of ‘X’. ‘X’ is an expression of real type. If ‘X’ is
negative, a NaN diagnosis is made and the invalid operation indicator is set.

The ARCTAN function

syntax: Arctan(X)

result: extended

This function will return the Arctangent value of ‘X’. ‘X’ is an expression of real type. All
numeric values between +inf and -inf are valid.

THE ORDINAL FUNCTIONS
The ordinal functions described in this chapter refer to ordinal values of scalar or pointer
types. See chapter 13 for more information on scalar and pointer types.

The ORD function

syntax: Ord(X)

result: Integer or LongInt

Ord returns the ordinal value of a scalar or pointer. If ‘X’ is of type Integer or LongInt, the
result type will be identical to that of ‘X’. If ‘X’ is of pointer type, the result will be the
corresponding address of the dynamic variable pointed to by ‘X’, in type LongInt. If ‘X’ is of
ordinal type, the result is of type Integer and the value is the ordinal of X. The standard

TML Pascal II – Reference Manual 100

CHAPTER 20: STANDARD PROCEDURES AND FUNCTIONS

procedure Ord4 must be used instead if you want the result to be of type LongInt,
regardless of the type of X.

The CHR function

syntax: Chr(X)

result: Char

This function will return the Char value whose ordinal value is ‘X’. For any Char value CH,
the following is always true: chr(ord(CH)) = CH .

The SUCC function

syntax: Succ(X)

result: same type as the parameter

This function will return the successor of ‘X’. An error occurs if ‘X’ is the last value
authorized for the type (i.e. it does not have a successor).

The PRED function

syntax: Pred(X)

result: same type as the parameter

This function will return the predecessor of ‘X’. An error occurs if ‘X’ is the first value
authorized for the type (i.e. it does not have a predecessor).

THE FUNCTIONS AND PROCEDURES FOR STRINGS
The functions and procedures for strings do not accept parameters of type Packed Array
of Char. Instead only those of type String are accepted.

The LENGTH function

syntax: Length(str)

result: Integer

This function will return the dynamic length of a string.

The POS function

syntax: Pos(substr, str)

result: Integer

TML Pascal II – Reference Manual 101

CHAPTER 20: STANDARD PROCEDURES AND FUNCTIONS

Pos(substr, str) will search for the substr substring within the Str string, and if found it will
return the integer value corresponding to the index of the first character of Substr in Str. If
Substr is not found in Str, the function returns 0.

The CONCAT function

syntax: Concat(str 1 [, str 2... str n])

result: generic String type

The Concat function concatenates the supplied parameters in the order given and returns
the result in a single String. The resultant String cannot exceed 255 characters in length.

The Copy function

syntax: Copy(source, index, count)

result: String type

The Copy function returns a String of count characters from the source string starting from
source[index] .

The DELETE procedure
syntax: Delete(dest, index, count)

The procedure Delete removes count characters from the dest string starting from
Dest[index] .

The INSERT procedure

syntax: Insert(source, dest, index)

The Insert procedure inserts the source string into the Dest string, with the first character
of source being inserted into dest[index] .

LOGICAL FUNCTIONS AND PROCEDURES
This chapter describes the bit handling routines. These routines correspond to equivalent
instructions of the 65816.

The BAND function

syntax: BAnd(arg 1, arg 2)

result: Integer or LongInt

This function returns the logic AND of its two arguments. Where arg1 and arg2 are two
expressions of scalar type.

TML Pascal II – Reference Manual 102

CHAPTER 20: STANDARD PROCEDURES AND FUNCTIONS

The BOR function

syntax: BOr(arg 1, arg 2)

result: Integer or LongInt

This function returns the logic OR of its two arguments. Where arg1 and arg2 are two
expressions of scalar type.

The BXOR function

syntax: BXor(arg 1, arg 2)

result: Integer or LongInt

This function returns the logic EXCLUSIVE OR of its two arguments. Where arg1 and arg2
are two expressions of scalar type.

The BNOT function

syntax: BNot(arg)

result: Integer or LongInt

This function returns the logical negation of its argument (its 1’s complement). Where arg
is an expression of scalar type.

The BSL function

syntax: BSL(arg)

result: Integer or LongInt

BSL left shifts the bits of arg. Where arg is an expresion of scalar type. A zero is
introduced into the least significant bit.

The BSR function

syntax: BSR(arg)

result: Integer or LongInt

BSR right shifts the bits of arg. Where arg is expresion of scalar type. A zero is introduced
into the most significant bit.

The BROTL function

syntax: BRotL(arg)

result: Integer or LongInt

TML Pascal II – Reference Manual 103

CHAPTER 20: STANDARD PROCEDURES AND FUNCTIONS

BRotL carries out a left rotation on the bits of arg. Where arg is expresion of scalar type.
The most significant bit is reintroduced into the least significant bit.

The BROTR function

syntax: BRotR(arg)

result: Integer or LongInt

BRotR carries out a right rotation on the bits of arg. Where arg is expresion of scalar type.
The least significant bit is reintroduced into the most significant bit.

The HIWRD function

syntax: HiWrd(arg)

result: Integer

HiWrd returns the most significant word of arg (a scalar or pointer). That is, bits 31-16 of a
LongInt. If arg is not a 32 bit value, HiWrd returns 0. When the argument is a simple
variable or array, no code is generated by the function because the argument is only
addressed and used like an Integer.

The LOWRD function

syntax: LoWrd(arg)

result: Integer

LoWrd returns the least significant word of arg (a scalar or pointer). That is, bits 15-0 of a
LongInt. When the argument is a simple variable or array, no code is generated by the
function because the argument is only addressed and used like an Integer.

MISCELLANEOUS FUNCTIONS AND PROCEDURES
This chapter describes the byte handling functions and procedures as well as the routines
for use on Packed Array of Char. The byte handling routines make it possible for a
program to regard a variable as a sequence of bytes, without worrying about the data type.
The byte handling routines are: MoveLeft, MoveRight and SizeOf.

The routines for working with Packed Array of Char are: ScanEq, ScanNE and FillChar.
The parameters used for these routines cannot be indexed variables as the routines
always start with the first character of an array.

The SIZEOF function

syntax: SizeOf(id)

result: LongInt

TML Pascal II – Reference Manual 104

CHAPTER 20: STANDARD PROCEDURES AND FUNCTIONS

This function returns the number of bytes occupied by the variable or type ID. The value of
SizeOf is determined by the Pascal compiler which treats it as a constant during
compilation.

The CARD function

syntax: Card(s)

result: Integer

This function will determine the number of elements in s and return the resulting Integer
value representing the cardinality of s. That is, the numbers of elements in s.

The MOVELEFT procedure

syntax: MoveLeft(source, dest, count)

MoveLeft copies a block of count consecutive bytes from source to dest, starting with the
lowest address (i.e. the first byte of source and dest). Where source and dest are variables
of any type other than a File type or a structure containing a File type and count is an
Integer expression whose value is not checked. If source and dest overlap, you can only
use this procedure if source has the highest address.

The MOVERIGHT procedure

syntax: MoveRight(source, dest, count)

MoveRight copies a block of count consecutive bytes from source to dest, starting with the
highest address (i.e. the last byte of source and dest). Where source and dest are
variables of any type other than a File type or a structure containing a File type and count
is an Integer expression whose value is not checked. If source and dest overlap, you can
only use this procedure if source has the lowest address.

The FILLCHAR procedure

syntax: FillChar(dest, count, CH)

FillChar fills a block of count consecutive characters with the CH character, starting with
the start address of dest. Where dest is a variable of type Packed Array of Char and count
is an Integer expression whose value is not checked. CH is a value of the Char type.

The SCANEQ function

syntax: ScanEq(limit, CH, source)

result: Integer

ScanEq scans a memory block starting at the address of source and search for the first
occurrence of CH. The function is active until CH is found, or if it has analysed Limit bytes.

TML Pascal II – Reference Manual 105

CHAPTER 20: STANDARD PROCEDURES AND FUNCTIONS

If CH is not found within the limit indicated, the value returned is equal to Limit. Otherwise,
the value returned corresponds to the number of bytes analysed before CH was found.
Limit is an Integer expression locked to 16 bits and is not checked. CH is of type Char;
source is a variable with a value of type Packed Array of Char.

The SCNANE function

syntax: ScanNe(limit, CH, source)

result: Integer

ScanNe functions in the same manner as ScanEq, with the difference that it seeks for the
first character different to CH.

THE MANAGEMENT OF TOOLBOX ERRORS CALLS
The Apple IIgs ToolBox obeys an error handling convention dealing with errors occurring
during execution of a ToolBox function. If an error is detected during execution of a
ToolBox routine, the 65816 will have the carry bit set to 1 and the accumulator will contain
the corresponding error code. TML Pascal II allows you to recover this information within
your programs.

The ISTOOLERROR function

syntax: IsToolError

result: Boolean

This function returns TRUE if the last ToolBox function called raised an error; if not, it
returns FALSE. This function tests the 65816 carry bit to determine if an error occurred.
The function must be called immediately after a function call and before another operation
can affect the carry bit of the microprocessor. If the ToolBox function call is within an
expression, the result of IsToolError may be incorrect since the evaluation of the
expression may modify the carry bit. In such a case, a program must test the variable
_ToolErr.

The _TOOLERR variable

syntax: _ToolErr

type: Integer

The _ToolErr variable contains the error code returned by the last ToolBox function call. A
value other than 0 indicates that an error occurred. The compiler generates code that
stores the contents of the accumulator into the _ToolErr variable immediately after a call to
the ToolBox, and before another operation can modify the value.

Examples of using IsToolError and _ToolErr:

h := NewHandle(100,myMemoryID,0,Ptr(0));
if IsToolError then begin

theErr:=_ToolErr;

TML Pascal II – Reference Manual 106

CHAPTER 20: STANDARD PROCEDURES AND FUNCTIONS

Writeln('Memory allocation error:',theErr);
end;

Notice that _ToolErr was saved to a temporary variable before the call to the Writeln
procedure. This is necessary because the Writeln procedure calls upon several ToolBox
functions that would modify the contents of _ToolErr and would thus give an incorrect
result.

Several ToolBox functions are designed to not generate an error, but TML Pascal II does
not know this and therefore generates the corresponding instructions to safeguard the
error code. If an application does not want the error management code generated, the
compiler directive {$ToolErrorCheck-} should be used. See appendix B for more
information.

Note: the 1.x versions of TML Pascal used the ToolErrorNum variable to return errors
produced during ToolBox function calls. This variable is also available in TML Pascal II,
but it is preferable to use _ToolErr for the purposes of standardisation.

TML Pascal II – Reference Manual 107

APPENDIX A: ERROR MESSAGES

APPENDIX A: ERROR MESSAGES

This appendix lists the possible errors produced within TML Pascal II. These errors may
be produced within the editor, the compiler or the linker; take for example GS/OS and I/O
errors. Some explanations are provided in order to better explain why and how the error
message is generated; and sometimes it is indicated how to correct the error. Certain
messages contain the "*" character which basically means that the message you will see
on screen will include an identifier, label, or value as determined by TML Pascal II.

ERRORS WITHIN THE EDITOR

Memory is getting low. Close a document window.
TML Pascal II detects that memory is full and advises you to release some memory by
closing a document before any of your data is lost. You can also select the RELEASE
MEMORY option in the Preferences menu.

Can't open that file. The file is already open in a nother window.
You cannot have the same document open twice.

Error reading file.
An error occurred when reading a document from disk. This can occur if the file is
damaged or if the diskette were removed from the drive.

Error saving file.
This error occurs if TML Pascal II cannot save a document to disk. This can occur if a
diskette is locked, if the diskette were removed from the drive, or if the diskette is full.

Error deleting file.
This error occurs if you choose DELETE in the GS/OS menu and the diskette was
removed from the drive, or if the diskette is locked.

Error renaming file
This error occurs if you chose to rename a file with RENAME command in the GS/OS
menu and you either gave an illegal name, the diskette was removed from the drive, or the
diskette is locked.

Insufficient memory to complete that operation
This error occurs when an operation could not be performed due to a lack of free memory.

TML Pascal II – Reference Manual 108

APPENDIX A: ERROR MESSAGES

ERRORS OF COMPILATION

Lexical errors

String constant must not exceed source line
This error is generated when a String constant does not end within closing quotation
marks.

Error in numeric literal
Indicates that the incorrect syntax was used for a numeric literal value.

Illegal character in input
An illegal character was identified in the source file.

Incomplete program
The end of the file is reached before the Program or Unit is finished by a point (full stop).

End of file encountered while reading a comment
The TML Pascal II compiler reached the end of the file without finding the end of a
comment. All comments must start with { or (* and ended by } or *). See chapter 11 for
more information.

Syntax errors
These error messages indicate that your program is using an invalid syntax. Although an
error message may suggest that a symbol is missing from an illegal expression, it is
possible that the error is caused by some other error occurring beforehand in the source
code. These errors can sometimes be illusive. To assist in tracking down such errors, see
chapters 11 to 20 to familiarise yourself with the Pascal syntax.

• Identifier expected : an identifier is required.
• Unexpected symbol : a symbol not placed correctly.
• Integer constant expected : should be using an Integer constant.
• Error in statement : incorrect instruction.
• Error in expression : incorrect expression.
• BEGIN expected : a missing BEGIN statement is detected.
• DO expected : a missing DO statement is detected.
• END expected : a missing END statement is detected.
• IMPLEMENTATION expected : a missing IMPLEMENTATION directive in a Unit is

detected.
• INTERFACE expected : a missing INTERFACE directive in a Unit is detected.
• OF expected : a missing OF statement is detected.

TML Pascal II – Reference Manual 109

APPENDIX A: ERROR MESSAGES

• PROGRAM or UNIT expected : a missing PROGRAM or UNIT directive at the
beginning of document is detected.

• THEN expected : a missing THEN statement within an IF condition is detected.
• TO or DOWNTO expected : a missing TO or DOWNTO statement within a FOR

loop is detected.
• UNTIL expected : a missing UNTIL statement within a REPEAT loop is detected.
•) : [] ; = , .. . : = expected

Semantic errors

Duplicate identifier
This error occurs when the same identifier is declared more than once in the same block.

Low bound exceeds high bound
In a table declaration, the lower index value is declared as being higher than the upper
index value.

• Identifier is not of appropriate class:
• Identifier not declared:
• Sign not allowed:
• Incompatible subrange types:
• File not allowed here:
• Tagfield must be scalar or subrange:
• Index type must be scalar or subrange:
• Base type must be scalar or subrange:

The specified type must be a scalar or a type such as Integer, Char, Boolean, etc. The
type cannot be Real.

Error in type of standard subprogram parameter:
This error occurs when the type of an expression passed into a parameter of a procedure
or TML Pascal II predefined function, doesn’t match the corresponding formal parameter
type. See chapters 19 and 20.

Repetition of parameter list is not identical to pr evious declaration
This error occurs when the parameters list for a FORWARD declared function or
procedure, or within a Unit interface, is repeated, it does not correspond with the
declaration.

File value parameter not allowed
File type parameters must always be specified using VAR.

LongInt case/control variable/index expressions are not implemented

TML Pascal II – Reference Manual 110

APPENDIX A: ERROR MESSAGES

TML Pascal II does not allow the use of LongInt type expressions, loop control variables,
or array indexes within Case expressions.

Missing result type in function declaration
This error occurs if the result type of a function is not declared.

Fixed point formatting allowed only for real types
This error occurs if a decimal point is used on a numeric type other than a Real.

Number of parameters does not agree with declaratio n
This error occurs if the number of parameters given in a procedure or function call does
not match the declaration.

Actual parameter may not be PACKED for VAR formal p arameter
This error occurs if a packed parameter value is declared with VAR.

Operands are not assignment compatible
This error occurs if the operands of an expression are not compatible.

Tests on equality allowed only
Means that you can only test two operands for equality.

Strict inclusion not allowed
Strict inclusion is not allowed.

File comparison not allowed
You cannot compare File types.

Illegal type of operand(s)
An operand has a prohibited type.

Type of operand must be boolean
The operand must be have type Boolean.

Set element type must be scalar or subrange
The type of an enumeration must be a scalar or subrange.

Set element types not compatible
The enumeration types are not compatible.

TML Pascal II – Reference Manual 111

APPENDIX A: ERROR MESSAGES

Type of variable is not array
The variable given is not an array (where it should be an array).

Index type is not compatible with declaration
The type of the index does not correspond to its declaration.

Type of variable is not record
The variable given is not a record.

Type of variable must be pointer
The variable must be a pointer type.

Illegal parameter substitution
Type of parameter does not exactly match the corresponding formal parameter.

Illegal type of loop control variable
The type used for the loop control variable is prohibited.

Boolean expression expected
The expression is required to be type Boolean.

Assignment of files not allowed
It is not permitted to assign values to variables of File type.

Label type incompatible with selecting expression
The label type is incompatible with a given expression.

Subrange bounds must be scalar
The upper and lower bound values for a subrange must be scalar.

No such field in this record
An attempt to access a field not existing in the specified record has been made.

Actual parameter must be variable
The parameter given to a procedure or function call must be a variable.

Control variable must not be declared on intermedia te level

TML Pascal II – Reference Manual 112

APPENDIX A: ERROR MESSAGES

You cannot declare a control variable on an intermediate level.

Multidefined case label
The CASE statement was declared more than once.

Again forward declared
A FORWARD declaration has been used more than once.

Multidefined label
A label has been defined more than once.

Multideclared label
A label has been declared more than once.

Undeclared label
A label has been used but not declared.

Error in base set
There is an error in the enumeration.

Illegal function result assignment
Incorrect assignment of the function result.

Must EXIT to an enclosing subprogram
You must EXIT to an outer subroutine.

Control variable must not be format
You should not format the control variable.

Assignment to control variable is not allowed
You cannot assign a value to a control variable.

Forward referenced type "*" not completed in previo us
The type of a FORWARD reference for "*" was not specified.

Forward declared subprogram "*" not completed in pr evious
The subroutine “*” that was FORWARD declared was never defined.

TML Pascal II – Reference Manual 113

APPENDIX A: ERROR MESSAGES

Label "*" was declared but not defined in previous block
The label "*" was declared but not initially defined.

Size of string must be between 1 and 255
The size of a string must be between 1 and 255 characters.

@ is not allowed for expressions in INLINE and TOOL subprograms
You cannot use the @ assignment in INLINE or TOOL subroutines.

Type cast to a different size is not allowed
You cannot modify the size of a type by using a type cast.

Too many nested scopes of identifiers
Too many overlapping identifiers.

Too many nested procedures and/or functions
Too many overlapping procedures or functions.

Index expression out of bounds
An index value was used outside of the range declared.

Implementation restriction
Limit of the implementation.

Unit errors

The Unit "*" is required to USE this unit
This error occurs when a Unit is named within a USES declaration of another Unit but not
specified within this declaration.

Repetition of unit not allowed
One cannot repeat a Unit within a USES declaration.

This unit must be recompiled
This error occurs when a Unit named in the USES declaration needs to be recompiled. To
correct the error, recompile the Unit indicated within the Uses declaration.

TML Pascal II – Reference Manual 114

APPENDIX A: ERROR MESSAGES

Unable to find/open unit's symbol file
This error occurs when a Unit file with extension "p.o" is not in the current prefix, nor in the
Unit access path specified in the Preferences menu.

Unable to write unit symbol file for this unit
This error occurs when the compiler cannot create the "p.o" file. The diskette may be
locked, absent, or full.

Unit must be recompiled with current version of com piler
When you use a new version TML Pascal, you need to recompile your Units.

Symbol table space exhausted
This error occurs when the number of declarations in a Unit fills the available allocated
memory for the symbol table of the Unit. You should modify the size allocated for the
symbol table in the Preferences menu.

Linker errors

Out of Memory

Segment "*" specified as both CODE and DATA
These errors occur when you specify the same segment name within a compiler directive
{$DSeg segName} and {$CSeg segName}.

Segment "*" too large
A CODE or DATA segment is larger than 64K. You must re-segment your program so that
no segment exceeds this limit. See chapter 16.

Unresolved linker reference to symbol "*"
An external label definition cannot be found by the linker. You must check the spelling of
the symbol to ensure that it is correct.

Unable to create/open application file
After compiling to disk, the linker tries to write the executable file. This error occurs when
the file cannot be created and/or opened. Possible causes could be that the disk is locked
or absent.

Error in writing to application file
This error occurs when TML Pascal II is able to create and/or open the application file but
an error occurred when trying to write to it. This occurs with a locked or full disk.

TML Pascal II – Reference Manual 115

APPENDIX A: ERROR MESSAGES

GS/OS error codes
This chapter lists the GS/OS errors produced during I/O operations, except for the error
codes -1, -2, and -3 generated for specific errors within TML Pascal II routines. For further
information on this list of errors, consult the GS/OS Reference handbook.

General Errors

$00 no error.
$01 invalid GS/OS call numbers.
$04 numbers of parameters out limit.
$07 active GS/OS.

Errors for peripheral I/O

$10 device not found.
$11 invalid device request.
$20 invalid request.
$21 invalid state or control code.
$22 bad call parameter.
$23 character peripheral not open.
$24 character peripheral already open.
$25 interrupt vector table full.
$26 non available resources.
$27 I/O error.
$28 no device connected.
$29 active drive.
$2B Disk is write protected.
$2C calculation of bytes invalid.
$2D bad block address.
$2E the disk was corrupted.
$2F peripheral removed or absent support.

Errors for file I/O

$40 invalid pathname.
$43 incorrect reference.
$44 path not found.
$45 volume not found
$46 file not found.
$47 duplicate pathname.
$48 volume full.
$49 volume directory full.
$4A version error.
$4B unsupported storage type.
$4C end-of-file met.
$4D position out of range.
$4E non authorised access.
$4F insufficient buffer.
$50 file already open.
$51 directory errors.
$52 volume type unknown.
$53 invalid parameter.
$54 out of memory.

TML Pascal II – Reference Manual 116

APPENDIX A: ERROR MESSAGES

$57 duplicate volume.
$58 not a block device.
$59 invalid file level.
$5A block number out of range.
$5B invalid access path.
$5C file not executable.
$5D system not accepted.
$5F too many applications in memory.
$60 data not available.
$61 end of directory reached.
$62 invalid FST call.
$63 the file does not contain the specified resourc e.

Errors specific to TML Pascal II

-1 Txt file not open for reading.
-2 Txt file not open for writing.
-3 string conversion errors within a Txt file.

TML Pascal II – Reference Manual 117

APPENDIX B: COMPILER DIRECTIVES

APPENDIX B: COMPILER DIRECTIVES

TML Pascal II provides a number of directives (or options) that affect compilation and/or
how code is generated by the compiler. These compiler directives are to be written
between the comment delimiters – that is, between {..} or (*..*). A directive will always start
with the $ symbol, it must appear directly after the opening comment delimiter, and it must
be followed by one or more characters to indicate which directive is being used.

There are two types of directives: switch-type directives and parameter directives. A
switch-type directive includes or removes a possibility by specifying + or - immediately
following the directive. A parameter directive specifies one or more string arguments (e.g.
file names, names of segments, etc). String arguments end in a space, followed by an
asterisk and a closing parenthesis, or a single closing brace. If a string argument contains
one of these characters, the string must be put within quotation marks.

Examples:

(*$LongGlobals+ *)
{$CSeg NewSeg}

THE CDA DIRECTIVE

(*$CDA menuName*)

The CDA directive is used to inform the compiler that this program implements a CDA
application as opposed to a classic GS/OS application. The reason for informing the
compiler of this is because the structure of a CDA is quite different from a classic
application. In particular, TML Pascal II must generate a special header that contains the
name of the CDA as it is to appear in the Apple menu. See chapter 10 for more
information on writing your own CDA.

As the compiler is required to generate special code for the CDA before anything else, the
compiler directive must appear before the UNIT keyword within your source.

Example:

(*$CDA SHRDump*)
UNIT MySHRDump;
...
end.

CODE SEGMENT

(*$CSeg segname*)

Default value: (*CSeg main*)

The CSeg directive informs the compiler which segment the following program will be
allocated in. The default segment has the reserved name MAIN. For other segments

TML Pascal II – Reference Manual 118

APPENDIX B: COMPILER DIRECTIVES

names, any character strings not containing a space are allowed. See chapter 8 for more
information on the use of segments.

DEFINITION PROCEDURE

(*$DefProc*)

The (*$DefProc*) directive informs the compiler that the next procedure or function in the
source code implements a ToolBox definition procedure. A definition procedure is
implemented in the same manner as any other procedure or function, except that in this
case, the compiler generates some additional code. More precisely, the compiler
generates code that sets the DBR (data bank register) equal to the memory bank that
contains the global variables of the Pascal program. When leaving the procedure, specific
code is generated to restore the original DBR value.

DATA SEGMENT

(*$DSeg segname*)

Default value: (*$DSeg "global*)

The option (*$DSeg*) informs the compiler that the global variables following will be
allocated in the specified segment. The default segment has the reserved name “GLOBAL.
For other segment names, you can use any character string not containing a space, and
preceded by the “ (double quote) character. The “global data segment is the particular
segment in which the compiler can use absolute addressing; which is more powerful than
long absolute addressing. See chapter 8 for more information regarding the use of data
segments.

EXTERNAL VARIABLE REFERENCES

(*$J+*) or (*$J-*)

Default value: (*$J-*)

The external variable reference directive of TML Pascal II indicates which of the following
global variables will have an area of memory allocated. After the (*$J+*) directive, any
global variable declarations are treated as external references to global variables declared
elsewhere. This directive is used within TML Pascal II so that you can use global variables
defined in external ASM or C modules.

Example:

VAR GlobVar1: integer;

(*+J*)
GlobVar2: integer;
(*-J*)

GlobVar3: integer;

TML Pascal II – Reference Manual 119

APPENDIX B: COMPILER DIRECTIVES

LONG GLOBALS

(*$LongGlobals+*) or (*$LongGlobals-*)

Default value: (*$LongGlobals-*)

This option informs the compiler to switch on (+) or switch off (-) the generation of long
absolute addressing for global variables within the “global data segment. Normally, the
compiler generates code which forces the DBR (data bank register) to be the same as the
memory bank which contains the global variables allocated within the “global data
segment. However, on some occasions, the program will require that these banks be
different. In these cases, it is necessary to indicate to the compiler that you want to access
global variables of the “global segment by using the long absolute addressing method.

THE NDA DIRECTIVE

(*$NDA period event Mask menuName*)

The NDA directive informs the compiler that the program is an NDA and not a standard
GS/OS application. The reason for doing this is because the structure of an NDA is quite
different from that of a normal application. In particular, TML Pascal II must generate
special header code indicating the period (in 1/60ths of a second), which is the periodic
access interval of the NDA; the EventMask which describes the event types managed by
the NDA; and the Name which will appear in the list of NDA’s (in the Apple menu). See
chapter 9 for further information on the structure of an NDA.

As the compiler must generate special header code for the NDA, this option must appear
in your source before the reserved word UNIT.

Example:

(*$NDA 60 -1 TMLClock*)
UNIT TMLClock;
...
END.

STACK SIZE

(*$StackSize numBytes*)

Default value: (*$StackSize 8096*)

The StackSize directive informs TML Pascal II the size (in bytes) to allocate for the stack
during execution of the application. This stack is used during execution to preserve the
return address of subroutines as well as local variable values. Intensive use of local
variables will therefore require a larger stack size. The default stack size value is 8K (8096
bytes) (Note: the 1.1 version of TML Pascal II that I have has a default stack size of 4K). If
a program requires more or less memory, the required size should then be specified.
However, the stack size must be at least 1K (1024 bytes) and no more than 40K (40960) is
allowed (although TML Pascal II does not check the size specified in the directive). See
appendix D for more information regarding the use of the stack during program execution.

TML Pascal II – Reference Manual 120

APPENDIX B: COMPILER DIRECTIVES

Note : this option MUST appear within your code before the reserved word PROGRAM.

Example:

(*StackSize 10240*)
PROGRAM MyProgram;
begin
...
end.

UNIT SEARCH PREFIX

(*$U GSOS_prefix*)

Default value: (*$U :0*)

This option makes it possible to search the specified prefix for Units with the ‘P.O’ suffix.
TML Pascal II does not recompile the interface Units indicated in a USES statement, but
instead loads a table of precompiled declarations stored in a ' P.O' file. In order to be able
to find these files, TML Pascal II uses an access prefix to the units; this prefix is :0 by
default (the current prefix). One can therefore specify a particular prefix to search with the
following example directive:

USES TYPES,
(*$U :TML:MYSTUFF:*) HandyRoutines;

Note that if the 'P.O' files cannot be found within the prefix specified in the compiler
directive ($U*), TML Pascal II will try to find them using the search prefix specified in the
Preferences menu (see chapter 5). If a 'P.O' file cannot be found after searching all of the
specified prefixes, an error will be returned.

TOOLBOX FUNCTION ERRORS

(*$ToolErrorChk+*) or (*$ToolErrorChk-*)

Default value: (*$ToolErrorChk+*)

This directive makes it possible for an application to handle errors generated within calls to
ToolBox functions. As we saw in chapter 20, TML Pascal II generates a STA _ToolErr
after each ToolBox function call. Therefore, the global variable _ToolErr will always contain
the error code returned by the last function called. A value of _ToolErr other than 0
indicates that an error occurred during execution of the last ToolBox function, and the
value of _ToolErr is used to determine which type of error occurred. In the majority of
cases, an application does not need to retrieve the error after each ToolBox function call.
Additionally, you can disable this option in order to produce less bulky code.

TML Pascal II – Reference Manual 121

APPENDIX C: TOOLBOX UNITS

APPENDIX C: TOOLBOX UNITS

The ToolBox consists of an important collection of routines that facilitate programming the
Apple IIgs. The ToolBox implements the graphics management via QuickDraw as well as
desktop management (including windows, menus, dialogs, controls, etc.). As one saw in
chapter 8, TML Pascal II allows access to the ToolBox by using a number of different
Units. This appendix has a comprehensive list of Units at your disposal.

Due to the extent of these files, they will not be listed in the present documentation.
Instead we ask that the reader return to your favourite word processor to edit and to print
the '. P' files located in the LIBRARIES folder of the SOURCE CODE LIBRARY diskette.

TML Pascal II – Reference Manual 122

APPENDIX D: THE HEART OF TML PASCAL II

APPENDIX D: THE HEART OF TML PASCAL II

TML PASCAL II MEMORY MANAGEMENT
The environment in which an application functions can be divided into 4 parts:

1. application code
2. global variables
3. execution stack
4. available memory

These 4 components of an application must coexist in the RAM of the Apple IIgs. The
memory of the Apple IIgs is partitioned into 64K banks, and is managed by the
MemoryManager. The standard Apple IIgs (ROM0 or ROM01) includes 4 RAM banks of
64K numbered $00, $01, $E0 and $E1. RAM expansion cards can be added to provide
additional memory between banks $02 and $7F. Tthe other banks are reserved and are
not available for use.

Application code
An application can consist of one or more segments. Smaller programs often consist of
only one segment, but very large applications are divided into several segments because
each segment cannot exceed 64K. In fact, a segment cannot overlap two memory banks.
TML Pascal II generates independent modules for each procedure and declared function
within the program. Each one of these loaded modules is associated with a segment name
used to organise the modules into the correct segments during linking. The default
segment name is MAIN. When an application becomes sufficiently large to more than one
segment, one must use the directive (*$CSeg segname*) in order to associate the given
segment name with the procedures following. One can restore any following procedures to
the default segment by using the compiler directive (*$CSeg main*).

Global variables
TML Pascal II stores global variables in a data segment. By default, the data segment has
the name “global.

The linker uses the loaded segment names associated with every data segment in order to
group them into the correct segment. Most programs are in theory made up of only one
data segment, but applications requiring a large number of global variables have to be split
into several data segments. In fact, each data segment cannot exceed the size of a
memory bank - that is, no greater than 64K.

When an application requires several data banks, one must use the directive (*$DSeg
segname*) in order to indicate to the compiler that you wish to allocate another segment
for the variables following. You can restore future global variable declarations to the main
segment by issuing the compiler directive ($DSeg “global*).

During execution of the initialisation code generated by TML Pascal II, the data bank
register (the DBR) of the 65816 is set to point to the memory bank containing the global
variables declared in the “global segment. Because of this, references to global variables

TML Pascal II – Reference Manual 123

APPENDIX D: THE HEART OF TML PASCAL II

within the “global segment can use absolute addressing. The global variables in other data
segments are addressed in long absolute mode (slower and consumes more memory).

Execution stack
The execution stack is a special storage block that the application uses to store procedure
and function return addresses and to preserve parameter and local variable values. During
execution of the applications initialisation code, stack memory is allocated in bank $0
(because it is the only memory bank in which the stack register of the 65816 can function).
By default, TML Pascal II defines a stack of 8K (8096 bytes) (Note: the version of TML
Pascal II that the translator has, defaults to a 4K stack). If an application requires more or
less space for its stack, you must specify it by using the compiler directive (*$StackSize
numbytes*).

The directive (*$StackSize numbytes*) must appear before the reserved word PROGRAM.
For example, the following code will generate a 10K stack for the application:

(*StackSize 10240*)
PROGRAM MyApp;
...

Desktop accessories do not have initialisation code for allocating and initialising the
execution stack since they function within the environment of an application. Therefore,
when writing your applications, you must ensure that you leave sufficient free memory in
the stack for using NDA’s or CDA’s. On the other hand, when writing a desktop accessory,
it is best to use the least possible stack space. Always remember that the default stack
space size is 8K.

Neither the Apple IIgs nor TML Pascal II can determine the stack size used by an
application. If you reserve an insufficient amount of space within the execution stack, the
surrounding memories areas will be destroyed during execution of your application.

Available memory
The available memory is memory not used by an applications implementation code, its
data segment, and its execution stack. This free memory is put at the disposal of the
MemoryManager of an application, using the routines within the Unit GSIntf.Pas. One can
also reserve and release memory from the available memory by using the procedures New
and Dispose. Each application will need to reserve at least one storage block in bank 0 for
tool initialisation. The majority of applications will need more than one page reserved in
bank 0. These pages are known as ZERO PAGES.

DATA REPRESENTATION
This chapter will show you how each data type is stored within memory of the Apple IIgs.
You will note that the 65816 stores each byte of a word using the little-endian
representation; this means that the most significant bits are in the highest memory area.
For example:

type experiment = packed record
case integer of

0: (int: integer);
1: (highbyte: 0..255;

TML Pascal II – Reference Manual 124

APPENDIX D: THE HEART OF TML PASCAL II

lowbyte : 0..255);
end;

This record does not produce the result which you may think. With the 65816, by referring
to highbyte, one returns the least significant byte of the int Integer, and not the most
significant byte. (Note: anyone familiar with Intel microprocessors may already be familiar
with these concepts, as Intel microprocessors are also little-endian). The following
paragraphs will explain to you how Pascal stores its data types.

Integer : the two’s complement of a signed integer in the range -32768/32767 and
requiring 2 bytes of storage. Bit 15 is the sign bit.

7 0 15 8

I ISI I (where S is the sign bit)

LongInt : the twos complement of an integer in the range -2147483648/2147483647 and
requiring 4 bytes of storage. Bit 31 is the sign bit.

!7 0!15 8!23 16! 24!

Boolean : an enumerated type of (False, True) requiring a single byte of storage, with the
actual boolean value found in bit 0. A byte of storage is used within a packed array or a
record.

!7 0!15 8!

Char : enumerated type of ASCII characters having 256 possible values. Each character
value requires two bytes of storage, with the actual value found in the most significant byte
(bits 7-0). A byte of storage is used within a packed array or a record.

!7 0!15 8!

Enumeration : an unsigned byte or a twp byte integer. If the enumeration type contains
less than 128 constants, the first value of the type occupies only one byte of storage if it is
used in a packed array or a record; otherwise it occupies two bytes.

!7 0! <= 128 enumerations

!7 0!15 8! > 128 enumerations

Subrange : a signed byte, a word, or a long word. If the range is within -128/127, a word is
used for unpacked structures or simple variables; but in a packed array or a record, only
one byte is used to represent the subrange. If the range is within -32768/32767, a word is
used; otherwise a long word is used for the representation.

!7 0! -128..127

!7 0!15 8! -32768..32767

!7 0!15 8!23 16!31 24! Others

Single : a real number using 32 bits represented in IEEE single precision format,
implemented in SANE as type Single.

TML Pascal II – Reference Manual 125

APPENDIX D: THE HEART OF TML PASCAL II

31 30 23!22 0

!S! exponent ! significand !

Double : a real number using 64 bits represented in IEEE double precision format,
implemented in type SANE Double.

63 62 52 51 0 !S! exponent ! significand !

Real/Extended : a real number using 80 bits represented in IEEE standard wide format.
Both are implemented in SANE as type Extended.

79 78 64 63 0 !S! exponent ! significand !

String[n] : Pascal strings are of n+1 bytes length. Each string consists of a length byte (the
length of the String, not part of the string itself) followed by the bytes containing the ASCII
characters making up the string.

byte 1 2 3 ... n+1

!long ! ! ! ... ! !

Pointers : a 24 bit memory address occupying 4 bytes of storage. Only 3 bytes are used to
store a 24 bit address, and bits 31-24 are always set to 0. The NIL pointer is represented
by a 32 bit zero value.

!7 0!15 8!23 16!31 24!

Sets : A sequence of bytes up to a maximum of 32 bytes, or 256 bits that represent the
size of the base type. The number of bytes used is the minimum number required to
represent this size. The ordinal value of the base type is represented by only one bit. If the
ordinal value forms part of a set, then its bit is to 1, otherwise it is set to 0. If the ordinal
values of the basic type are in the range 0..15, then two bytes are used to represent the
set. If the ordinal values of the base type are in the range 0..31, then 4 bytes will be used
to represent it, etc.

Files : a 22 byte data structure used internally by TML Pascal II for handling files. In
addition to the file variable, the associated open file on an external disk has an access
buffer allocated in free memory for management by GS/OS; a text file has a buffer of 256
bytes.

Arrays / Records : the components of an unpacked array or record are allocated
consecutively as more are defined. Arrays are stored line by line. That is, the last index is
higher than the first. The components of records are allocated in the order that they appear
within a declaration. The TML Pascal II implementation can only pack data at the byte
level, with bit level packing not possible. A data type is represented by a byte for packed
records, if and only if, the number of bits necessary to store all the values of the type is
less than or equal to 8 bits. For example, the standard Char and Boolean types require
less than 8 bits to represent all their possible values; therefore, in a packed record, a Char
or Boolean type can be represented by a byte; otherwise a word would have been
required.

TML Pascal II – Reference Manual 126

APPENDIX D: THE HEART OF TML PASCAL II

CALLING CONVENTIONS

Calling a subroutine
TML Pascal II passes parameters by using the stack during a call to a subroutine. Before
calling a procedure or function, the parameters are pushed onto the stack in the same
order as they were declared. If a function is called, storage for the result is allocated on the
stack prior to pushing the parameters. When a call is completed, control again passes to
the main program with the resulting parameters popped from the stack, but the result of
the function (if it is a function) is left on the stack. The program must pop the result from
the stack when it uses it.

Here is an example of a procedure call:

lda pppp ; push the 1st parameter onto the stack
pha
...
lda pppp ; push the last parameter onto the stack
pha
jsl >Aproc ; call the procedure

; with the parameters on the stack

Here is an example of a function call:

pha ; reserve space for the result
lda pppp ; push the 1st parameter onto the stack
pha
...
lda pppp ; push the last parameter onto the stack
pha
jsl >Afunc ; call the procedure

; with the parameters on the stack
;

pla ; pull the result from the stack
; and place it into the accumulator

Subroutines are always called in 65816 native mode (accumulator and index registers
using 16 bits). However, if the processor is not in native mode before a call, it is forced into
native mode prior to the call being executed. For example, if the accumulator is using 8
bits and the index registers are using 16 bits, the following code is generated:

; accumulator using 8 bits
rep #$20 ; accumulator using 16 bits
LONGA ON
jsl >ASubprog

If the called subroutine is declared at a level other than the global level (i.e. somewhere
other than the main block or a Unit), then a static link is pushed onto the stack directly after
the parameters. This static link is used to address local variables stored within the
overlapping stack. Because of this static link, the address of an overlapping subroutine
should never be passed to a ToolBox definition procedure routine since this is not the
convention used by the ToolBox tools.

TML Pascal II – Reference Manual 127

APPENDIX D: THE HEART OF TML PASCAL II

Variable parameters
Variables parameters (VAR) are always passed by reference to the formal parameter. That
is, like a pointer to the storage area occupied by the current parameter. The pointer is
passed in the form of a 32 bit (4 bytes) value. The most significant word is pushed onto the
stack before the least significant word. In the following example, the global variable
GlobVar is passed as a VAR parameter by using the absolute addressing:

pea GlobVar|-16 ; push the MSB onto the stack
pea GlobVar ; push the LSB onto the stack

Value parameters
Value parameters are either passed with their values on the stack, or by reference,
depending upon the size of the value. If the size of the value parameter occupies 4 bytes
or less, the value is passed in via the stack. If the size of the value is greater than 4 bytes,
a 32 bit pointer to the value is pushed onto the stack. A called procedure or function then
copies the value into local storage in such a way that any modification of the formal
parameter value does not affect the actual parameter value.

Static parameters
Static parameters are pushed onto the stack in the same way as value parameters. The
difference between value parameters and static parameters is that if the size of the actual
parameter is larger than 4 bytes, the called procedure or function does not copy the value
into local storage for the formal parameter. Therefore, it is illegal to give a new value to the
static formal parameter since it will change the value of the current parameter. Static
parameters were introduced into TML Pascal II in order to preserve the size of the
execution stack for the storage of formal parameters for the purpose of accelerating data
processing.

Note : TML Pascal II does not check if a new value is assigned to a static parameter. It is
up to the programmer to ensure the correct usage of static parameters.

Functions results
The storage for function results is reserved on the stack by the calling subroutine before
the pushing the parameters onto the stack. If the result of the function is of type Integer,
LongInt, Char, Boolean, Subrange, Enumeration, pointer, or Single real, then 2 or 4 bytes
of storage are allocated. If the result type only requires one byte, 2 bytes are allocated and
the value is stored in the lowest address.

If the type of the result is Double, Comp, Extended, Array, String, or record, then the
calling subroutine will allocate temporary space within its stack for the result, and it will
push a pointer of 4 bytes onto the stack pointing to this temporary space. The calling
subroutine pulls the pointer from the stack when the function returns the result and the
temporary storage area is released if there is no reference to the value.

I/O code
Each Pascal procedure and function starts and finishes using standard entry and exit
code.

TML Pascal II – Reference Manual 128

APPENDIX D: THE HEART OF TML PASCAL II

Here is the standard entry code:

phd ; save the previous stack pointer
tsc
sec
sbc #xx
tcd ; create a new stack pointer
clc
adc #yy
tcs ; allocate local storage

Firstly, the current direct page register is saved. The direct page register is used as a
pointer. The saved pointer is called the dynamic link and is used to return things just as
they are.

After having saved the stack pointer, xx bytes are subtracted from the current stack pointer
in order to create the new pointer. xx is calculated so that the first word of stack storage
(i.e. the function result or the first parameter) is a multiple of 254 within the direct page.
Thanks to this choice, the parameters and the majority of local variables can be addressed
using direct page addressing.

When the stack pointer is defined, yy bytes are added to this value in order to allocate the
storage space necessary for local variables, value parameters copied locally, and for the
needs of the compiler. No register is saved and it is assumed that the processor is in
native mode. Here is the standard exit code:

tdc
clc
adc #xx
tcs ; deallocate local storage
pld ; recover the stack pointer

lda 2,S
sta mm,S
lda 1,S ; the return address is before
sta mm-1,S ; the parameters
tsc
clc
adc #mm-2 ; deallocate the parameters
tcs
rtl

Local storage is initially deallocated by adding the value xx to the stack pointer. One then
recovers the previous stack pointer thanks to the PLD instruction. Next, the parameters
are “removed" by moving the return address above the first parameter and by repositioning
the stack pointer to this new address. Finally, RTL is executed to return to the calling
subroutine. Note that if a procedure or function does not have parameters, the exit code is
then:

tdc
clc
adc #xx
tcs ; deallocate local storage
pld ; recover the stack pointer
rtl

TML Pascal II – Reference Manual 129

APPENDIX E: COMPARISON OF TML PASCAL II AND TML PASCAL I

APPENDIX E: COMPARISON OF TML PASCAL II AND TML PAS CAL I

TML Pascal II implements new functions as compared to the old version TML Pascal I. In
this chapter we will highlight the differences between the two versions so that former users
of TML Pascal I can easily adapt to this new product. In what follows, the differences
between the two versions are presented chapter by chapter.

CHAPTER 1: DISCOVER TML
The most important difference between TML I and TML II is that TML II is now specified for
use with GS/OS 5.0. The applications developed with TML II do not work with system
software prior to version 5.0, nor will they work with versions of ProDOS 16. This limitation
is imposed mainly due to the implementation of the Resource Manager in TML II, and tools
not being available in system versions prior to 5.0.

CHAPTER 2: USING THE DESKTOP ENVIRONMENT
The TML II editor allows an unlimited number of windows to be open on the screen.
Additionally, within each window, you can use a font with a particular style as well as
personalised tabulation. The editor now also implements an UNDO command. Lastly, the
editing environment makes it possible to create an edit window for the resource files.

CHAPITRE 3: CREATE A PROGRAM
The file naming convention denoting files has changed with TML II. Source files must now
end with a suffix '.p' instead of '.pas'.

The name of compiled Unit files is also changed: instead of '.usym', the suffix added by the
compiler is from now on '.o', which gives a total suffix of '.p.o'. These conventions make it
possible for the compiler to easily find the modules which it needs. The menu item
RESOURCES was added to the COMPILE menu in order to be able to specify which
resources are to be compiled with the final application.

CHAPITRE 4: RESOURCES
The resources are a new function of TML II. Programs written with TML I should be
converted without too much trouble into TML II by allowing them to draw upon the
functionality of the Resource Manager.

CHAPTER 7: GRAPHIC APPLICATIONS
TML I implemented 'plain vanilla' applications. This has been replaced by 'textbook
graphics' applications. With the original, a program could specify the parameters (Input,
Output) within itself to indicate that it wanted to work in the Plain Vanilla environment.
Example:

Program Test(Input, Output);

Plain Vanilla connects to the graphic screen in 640 mode and creates a window entitled
'TML PASCAL'. This makes it possible to develop graphic applications easily.

TML Pascal II – Reference Manual 130

APPENDIX E: COMPARISON OF TML PASCAL II AND TML PASCAL I

TML Pascal II has a new procedure called 'Graphics'. This procedure accepts a parameter
that specifies the graphic mode: 320 or 640; and instead of just opening a window on the
screen, it makes it possible to work with the whole screen.

CHAPTER 8: DESKTOP APPLICATIONS
Applications can, from now on, use defined resources to create menus, windows,
dialogues, etc. The resources are initially created from within the TML Resource Editor.
One specifies the resources to be compiled with the main program by using the Resources
menu item found within the Compile menu.

CHAPTER 9: NDA
The source code of an NDA can from now on be written in the form of a Unit. An NDA
does not have a MAIN program, and it is not necessary to use the same structure as used
for standard programs.

CHAPTER 10: CDA
The source code of a CDA can from now on be written in the form of a Unit. An CDA does
not have a MAIN program, and it is not necessary to use the same structure as used for
standard programs.

CHAPTER 11: RESERVED WORDS
TML II defines 3 new real constants in order to aid in the writing of numerical applications.
These numbers are Inf (infinite), NaN (Not A Number) and pi.

CHAPTER 19: I/O
TML II from now on implements the OPEN procedure to open a file for random read/write
access.

TML II is GS/OS compatible. Because of this, file names must respect Prodos 16 or
GS/OS syntax. Moreover, the names of devices can be used. For example, the name of
the printing device is now '.PRINTER' instead of 'PRINTER'. It should be noted that the
name '.PRINTER' must be written using capital letters.

TML Pascal II – Reference Manual 131

APPENDIX E: COMPARISON OF TML PASCAL II AND TML PASCAL I

CHAPTER 20: STANDARD PROCEDURES AND FUNCTIONS
The GRAPHICS procedure is new in TML II. The following standard functions and
procedures were renamed in TML II in order to conform to Apple’s specifications:

Name in TML I Name in TML II
BitAnd BAND
BitOr BOR
BitXor BXOR
BitNot BNOT
BitSL BSL
BitSR BSR
BitRotl BROTL
BitRotr BROTR
HiWord HiWrd
LoWord LoWrd

In TML II, HiWord and LoWord are reserved for the functions in IntMath.p. The preset
global variable returning an error code is from now called ' _ToolErr', but the old name
'_ToolErrorNum' is also accepted.

ANNEXE B: COMPILER DIRECTIVES
The following compiler directives were renamed:

$DeskAcces renommé en $NDA
$P $U
$XrefVar $J

The following directives have been added since version 1 (and were thus already available
in version 1.5):

$CDA
$DefProc

ANNEXE C: INTERFACES
The ToolBox interfaces were largely modified in order to be compatible with system 5.0.
Certain interfaces were added.

ANNEXE D: THE HEART OF TML PASCAL II
The types Boolean, Enumeration and the small sets of Integers are represented using 2
bytes instead of one. However, when these types are a Packed Record or Array, they do
not use any more than one byte of memory.

	INTRODUCTION
	ABOUT THE MANUAL

	CHAPTER 1: FIRST CONTACT
	SYSTEM CONFIGURATION
	A Single 800k Floppy Drive
	Dual 800k Floppy Drives
	A Hard Disk

	INTERPRETED vs. COMPILED LANGUAGES
	AND NOW?

	CHAPTER 2: USING TML PASCAL II
	LAUNCHING TML PASCAL II
	THE PROGRAMMING ENVIRONMENT
	EDITING SOURCE FILES
	Using the Menu to Edit Source Files

	CHAPTER 3: PROGRAM CREATION
	CREATE AN APPLICATION
	COMPILING UNITS
	ERROR DETECTION

	CHAPTER 4: RESOURCES
	INTRODUCTION
	RESOURCES
	THE RESOURCE EDITOR
	Introduction

	PASCAL STRING RESOURCE
	C STRING RESOURCE
	ALERT STRING RESOURCE
	TOOL STARTUP RESOURCE
	MENU BAR RESOURCE
	MENU RESOURCE
	WINDOW RESOURCE
	Window Frame Definition
	Window Controls Definition

	CHAPTER 5: TML PASCAL II MENUS
	THE APPLE MENU
	THE FILE MENU
	THE EDIT MENU
	THE SEARCH MENU
	THE WINDOW MENU
	THE COMPILE MENU
	THE GS/OS MENU

	CHAPTER 6: TEXTBOOK APPLICATIONS
	CHAPTER 7: GRAPHIC TEXTBOOK APPLICATIONS
	CHAPTER 8: DESKTOP APPLICATIONS
	THE TOOLS OF AN APPLE IIgs
	WHAT DO THESE TOOLS DO?
	The 7 base tools
	The tools for interfacing with the Desktop
	The peripheral management tools
	The sound tools
	The mathematical tools

	HOW TO PERFORM A CALL TO A TOOLBOX ROUTINE
	EVENT MANAGEMENT
	The possible GetNextEvent events:
	The possible TaskMaster events:

	PROGRAM STRUCTURE
	Adding resources
	Definition Procedures (DefProcs)
	Large programs and segmentation
	Segmentation of code
	Segmentation of data

	CHAPTER 9: NEW DESK ACCESSORIES
	START
	THE SOURCE FILE

	CHAPTER 10: CLASSIC DESK ACCESSORIES
	PROGRAM STRUCTURE
	COMPILING A CDA

	CHAPTER 11: RESERVED WORDS
	BASIC ELEMENTS
	SPECIAL SYMBOLES
	IDENTIFIERS
	DIRECTIVES
	NUMBERS
	LABELS
	CHARACTER STRINGS
	DECLARATIONS OF CONSTANTS
	COMMENTS AND COMPILATION DIRECTIVES

	CHAPTER 12: BLOCKS, VISIBILITY, AND ACTIVATION
	DEFINITION OF A BLOCK
	RULES OF VISIBILITY
	Visibility of a declaration
	Redeclaration in an inner block
	Position of the declarations in a block
	Redeclaration inside a block
	Identifiers of standard objects
	Visibility of the interface modules and module identifiers

	ACTIVATION

	CHAPTER 13: VARIABLE TYPES
	SIMPLE TYPES
	Ordinal types
	The standard ordinal types
	Enumerated types
	Interval types (also known as ‘Subrange types’)
	Real types

	STRUCTURE TYPES
	Array types
	Record types
	Set types
	File types

	STRING TYPES
	POINTER TYPES
	IDENTICAL AND COMPATIBLE TYPES
	Identical types
	Compatible types

	CHAPTER 14: VARIABLES
	DECLARATION OF VARIABLES
	REFERENCE VARIABLES
	Qualifiers
	Tables, strings and indexes
	Records and fields designators
	Dynamic pointers and variables
	Variable type modification (Variable type casts)

	CHAPTER 15: EXPRESSIONS
	OPERATORS
	Arithmetic operators
	Boolean operators
	Set operators
	Relational operators
	Comparison between ordinal types
	Comparison between strings
	Comparison between packed strings
	Comparison of sets
	Comparison of pointers
	Testing for set membership
	The @ operator
	@ with variables
	@ and parameter values
	@ with a parameter variable
	@ with a procedure or function

	FUNCTION CALLS
	SET CREATION
	VALUE TYPE MODIFIERS (Value Type Casts)

	CHAPTER 16: STATEMENTS
	SIMPLE STATEMENTS
	Assignment statements
	Procedure statements

	STRUCTURED STATEMENTS
	Sequential statements
	Conditional statements
	The IF statement
	The CASE statement

	Repetition statements
	The REPEAT statement
	The WHILE statement
	The FOR statement

	Control statements
	The GOTO statement
	The CYCLE statement
	The LEAVE statement
	The WITH statement
	NULL statements

	CHAPTER 17: PROCEDURES AND FUNCTIONS
	PROCEDURE DECLARATION
	FUNCTION DECLARATION
	FUNCTION AND PROCEDURE DIRECTIVES
	FORWARD directive
	EXTERNAL directive
	INLINE directive
	TOOL directive

	PARAMETERS
	VALUE parameters
	VARIABLE parameters
	STATIC parameters
	UNIV parameters
	Parameter list compatibility

	CHAPTER 18: PROGRAMS AND UNITS
	INTRODUCTION
	PROGRAMS
	THE USES CLAUSE
	UNITS

	CHAPTER 19: INPUT/OUTPUT
	FILE ACCESS
	FILES IN PASCAL
	STANDARD PROCEDURES AND FUNCTIONS FOR ALL FILES
	The RESET procedure
	The REWRITE procedure
	The OPEN procedure
	The CLOSE procedure
	The EOF procedure
	The SEEK procedure
	The ERASE procedure
	The IORESULT procedure
	The FILEPOS function
	The RENAME procedure

	STANDARD PROCEDURES FOR STRUCTURED FILES
	The READ procedure for structured files
	The WRITE procedure for structured files

	THE STANDARD PROCEDURES AND FUNCTIONS FOR TEXT FILES
	The READ procedure for text files
	To read a Char variable
	To read a LongInt or Integer variable
	To read a Real variable
	To read a String variable

	The READLN procedure
	The WRITE procedure with text files
	The WRITELN procedure
	The EOLN function
	The PAGE procedure

	DISK FILES AND TML PASCAL II
	PERIPHERALS AND TML PASCAL II

	CHAPTER 20: STANDARD PROCEDURES AND FUNCTIONS
	THE GRAPHICS PROCEDURE
	THE EXECUTION CONTROL PROCEDURES
	The EXIT procedure
	The HALT procedure
	The CYCLE procedure
	The LEAVE procedure

	PROCEDURES FOR DYNAMIC MEMORY ALLOCATION
	The NEW procedure
	The DISPOSE procedure

	THE TRANSLATION FUNCTIONS
	The TRUNC function
	The ROUND function
	The ORD4 function
	The POINTER function

	THE ARITHMETIC FUNCTIONS AND PROCEDURES
	The INC procedure
	The DEC procedure
	The ABS function
	The SQRT function
	The ODD function
	The SIN function
	The COS function
	The EXP function
	The LN function
	The ARCTAN function

	THE ORDINAL FUNCTIONS
	The ORD function
	The CHR function
	The SUCC function
	The PRED function

	THE FUNCTIONS AND PROCEDURES FOR STRINGS
	The LENGTH function
	The POS function
	The CONCAT function
	The Copy function
	The DELETE procedure
	The INSERT procedure

	LOGICAL FUNCTIONS AND PROCEDURES
	The BAND function
	The BOR function
	The BXOR function
	The BNOT function
	The BSL function
	The BSR function
	The BROTL function
	The BROTR function
	The HIWRD function
	The LOWRD function

	MISCELLANEOUS FUNCTIONS AND PROCEDURES
	The SIZEOF function
	The CARD function
	The MOVELEFT procedure
	The FILLCHAR procedure
	The SCANEQ function
	The SCNANE function

	THE MANAGEMENT OF TOOLBOX ERRORS CALLS
	The ISTOOLERROR function
	The _TOOLERR variable

	APPENDIX A: ERROR MESSAGES
	ERRORS WITHIN THE EDITOR
	
	Memory is getting low. Close a document window.
	Can't open that file. The file is already open in another window.
	Error reading file.
	Error saving file.
	Error deleting file.
	Error renaming file
	Insufficient memory to complete that operation

	ERRORS OF COMPILATION
	Lexical errors
	String constant must not exceed source line
	Error in numeric literal
	Illegal character in input
	Incomplete program
	End of file encountered while reading a comment

	Syntax errors
	Semantic errors
	Duplicate identifier
	Low bound exceeds high bound
	Error in type of standard subprogram parameter:
	Repetition of parameter list is not identical to previous declaration
	File value parameter not allowed
	LongInt case/control variable/index expressions are not implemented
	Missing result type in function declaration
	Fixed point formatting allowed only for real types
	Number of parameters does not agree with declaration
	Actual parameter may not be PACKED for VAR formal parameter
	Operands are not assignment compatible
	Tests on equality allowed only
	Strict inclusion not allowed
	File comparison not allowed
	Illegal type of operand(s)
	Type of operand must be boolean
	Set element type must be scalar or subrange
	Set element types not compatible
	Type of variable is not array
	Index type is not compatible with declaration
	Type of variable is not record
	Type of variable must be pointer
	Illegal parameter substitution
	Illegal type of loop control variable
	Boolean expression expected
	Assignment of files not allowed
	Label type incompatible with selecting expression
	Subrange bounds must be scalar
	No such field in this record
	Actual parameter must be variable
	Control variable must not be declared on intermediate level
	Multidefined case label
	Again forward declared
	Multidefined label
	Multideclared label
	Undeclared label
	Error in base set
	Illegal function result assignment
	Must EXIT to an enclosing subprogram
	Control variable must not be format
	Assignment to control variable is not allowed
	Forward referenced type "*" not completed in previous
	Forward declared subprogram "*" not completed in previous
	Label "*" was declared but not defined in previous block
	Size of string must be between 1 and 255
	@ is not allowed for expressions in INLINE and TOOL subprograms
	Type cast to a different size is not allowed
	Too many nested scopes of identifiers
	Too many nested procedures and/or functions
	Index expression out of bounds
	Implementation restriction

	Unit errors
	The Unit "*" is required to USE this unit
	Repetition of unit not allowed
	This unit must be recompiled
	Unable to find/open unit's symbol file
	Unable to write unit symbol file for this unit
	Unit must be recompiled with current version of compiler
	Symbol table space exhausted

	Linker errors
	Out of Memory
	Segment "*" specified as both CODE and DATA
	Segment "*" too large
	Unresolved linker reference to symbol "*"
	Unable to create/open application file
	Error in writing to application file

	GS/OS error codes
	General Errors
	Errors for peripheral I/O
	Errors for file I/O
	Errors specific to TML Pascal II

	APPENDIX B: COMPILER DIRECTIVES
	THE CDA DIRECTIVE
	CODE SEGMENT
	DEFINITION PROCEDURE
	DATA SEGMENT
	EXTERNAL VARIABLE REFERENCES
	LONG GLOBALS
	THE NDA DIRECTIVE
	STACK SIZE
	UNIT SEARCH PREFIX
	TOOLBOX FUNCTION ERRORS

	APPENDIX C: TOOLBOX UNITS
	APPENDIX D: THE HEART OF TML PASCAL II
	TML PASCAL II MEMORY MANAGEMENT
	Application code
	Global variables
	Execution stack
	Available memory

	DATA REPRESENTATION
	CALLING CONVENTIONS
	Calling a subroutine
	Variable parameters
	Value parameters
	Static parameters
	Functions results
	I/O code

	APPENDIX E: COMPARISON OF TML PASCAL II AND TML PASCAL I
	CHAPTER 1: DISCOVER TML
	CHAPTER 2: USING THE DESKTOP ENVIRONMENT
	CHAPITRE 3: CREATE A PROGRAM
	CHAPITRE 4: RESOURCES
	CHAPTER 7: GRAPHIC APPLICATIONS
	CHAPTER 8: DESKTOP APPLICATIONS
	CHAPTER 9: NDA
	CHAPTER 10: CDA
	CHAPTER 11: RESERVED WORDS
	CHAPTER 19: I/O
	CHAPTER 20: STANDARD PROCEDURES AND FUNCTIONS
	ANNEXE B: COMPILER DIRECTIVES
	ANNEXE C: INTERFACES
	ANNEXE D: THE HEART OF TML PASCAL II

