& apple computar

20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010
TLX 171-576

=

mm:s_ﬁ
"

ammmmmmmmmmmmmmmmmmm

o
=]
(v)
™
h
. i

|]
A A | { X gy X) | a9 1y 11 1 1y r

Apple I -

Apple Pascal
E 12 Update Manual

N
[
I

Customer Satisfaction

If you discover physical defects in the manuals distributed with an Apple product or in the media on
which a software product is distributed, Apple will replace the documentaton or media at no
charge to you during the 90-day period after you purchased the product

In addition, if Apple releases a corrective update to a software product during the 20-day perniod
after you purchased the sottware, Apple will replace the applicable diskettes and documentation
with the revised version at no charge fo you during the six months atter the date of purchase

In some countries the replacement penod may be different; check with your authorized Apple
dealer, Return any item to be replaced with proof of purchase to Apple or an authorized Apple
dealer.

Limitation on Warranties and Liability

Even though Apple has tested the software described in this manual and reviewed its contents
naither Apple nor its software suppliers make any warranty or representation, either express or
implied, with respect to this manual or to the software described in this manual, thelr quality,
performance, merchantability, or fitness for any particular purpose. As aresull, this software and
manual are sold "as is,” and you the purchaser are assuming the entire risk as to their quality and
performance. Inno event will Apple or its software suppliers be liable for direct, indirect, incidental,
or consegquential damages resulting from any defect in the sottware or manual, even if they have
been advised of the possibility of such damages. In particular, they shall have no kability for any
programs or data stored in or used with Apple products, including the costs of recavering or
reproducing these programs or data. Some states do not allow the exclusion or imitation of implied
warranties or iability for incidental or consequential damages, so the above limitation or exclusion
may not apply to you

Copyright

This manual and the software (computer programs) descnbed in it are copyrighted by Apple or by
Apple's software suppliers, with all rights reserved. Under the copyright laws, this manual or the
programs may not be copied, in whole or part, without the written consent of Apple, exceptin the
narmal use of the saftware or to make a backup copy. This exception does not allow copies to be
made for others, whether or not sold, but all of the material purchased (with all backup copies) may
be sold, given or loaned to another person. Under the law, copying includes translating into
another language

You may use the software on any computer owned by you but extra copies cannot be made for this
purpose. For some products, a mult-use license may be purchased to allow the software to be
used on more than one computer owned by the purchaser, including a shared-disk system
{Contact your authorized Apple dealer for information on multi-use licenses.)

PLodyc! .He\rision 5

Apple cannot guarantee that you will receive notice of a revision to the software described in this
manual, even if you have returned a registration card received with the product. You should
penocdically check with your authorized Apple Dealer

1981, 1982, 1983 by Apple Computer, Inc
20525 Mariani Avenue

Cupertino, California 95014

(408) 996-1010

Apple and the Apple logo are registered trademarks of Apple Computer, Inc
Simultaneousty publshed in the U.S A, and Canada. All nghts reserved

W Wb oW W oW W

WOWOW W W W

LERBRRE R RRREERRRERRANAN

WO W W W

N\

Apple II

Apple Pascal
1.2 Update Manual

ACKNOWLEDGMENTS

The App]equascal system incorporates UCSD PﬂﬂcﬂlTH and Apple
extensions for graphics and other functions. UCSD Pascal was
developed largely by the Institute for Information Science at the
University of California at San Diego, under the direction of Kenneth
L. Bowles.

"UCSD Pascal™ is a trademark of The Regents of the University of
California., Use thereof in conjunction with any goods and services is
authorized by specific license only and is an indication that the
associated product or service has met quality assurance standards
prescribed by the University. Any unauthorized use thereof is
contrary to the laws of the State of California.

i

!l-!!--!--l!-—-Hl-!!——!!——!!L—n!-—1![—-!!-—!!-—-!

.

WoWw oW oW oW

(VAR AR

P

TABLE OF CONTENTS

LIST OF FIGURES AND TABLES

Wil
CHAPTER 1
INTRODUCTION TO PASCAL 1.2)
3 Symbols Used in This Manual
4 What Is Pascal 1,27
4 Who Needs Pascal 1.27
5 How to Use This Manual
& About Your Pascal 1.2 Software
B The Pascal 1.2 Disks
[Making Copies for Backup
7 Mixing Pascal 1.1 and Pascal 1.2
8 Running Version-l.l-Compiled Programs Under 1.2
8 Using Your New Software Right Away
9 Starting Up a One-Drive System
9 Starting Up a Two-Drive System
CHAPTER 2
NEW PASCAL FEATURES n
13 Features for All Apple II Computers
13 Improved Disk-Formatting Program
14 A Changed Two-Stage Startup or "Boot"
14 A New Line on the Pascal Startup Screen
14 If You Do Not Put Back the Startup Disk
15 The Percent Prefix
16 Accessing Files During Program Execution
17 Chaining to Other Programs During Execution
17 A New Swapping Option
19 Additional Block Velume Units
19 Error Message: Too Many Program Segments
19 Control Characters Not Echoed to the Screen
19 Hand-Control Buttons and the SHIFT Key
20 The CTRL=-] Function
20 Features for the Apple Ile Computer
20 Lowercase and Uppercase Both Available
20 Four Cursor Keys Now Available
20 Keystroke Functions Not Used
21 OPEN-APPLE, SOLID-APPLE, and SHIFT Keys
TABLE OF CONTENTS

Apple Ile's With Foreign Keyhoards

User Break During Program Execution
Special MISCINFO Files and How to Use Them

Steps for 40-Column Apple II Users

Steps for B0-Column Apple IL Users

Steps for 40-Column Apple Ile Users

CHAPTER 3
THE PASCAL 128K SYSTEM 27

29 The Extended B0-Column Text Card

30 Making a 12BK System Startup Disk

32 128K System User Error Messages

33 128K System Memory Organization

38 Memory Organization Features

38 Managing Auxiliary Memory

40 Additional Segments

40 How to Use the New Libraries

40 Important Definitions

42 Comparing Libraries Under the 64K and 128K Systems
45 Making a Library Name File

46 Using the Library Name File

46 Using One Library File With Two Programs

&7 Using Several Library Files With One Program
49 Using the Percent Prefix in a Library Name File
50 How the System Searches Libraries

CHAPTER 4

TIPS FOR PROGRAMMERS 53

55
57
59
59
60
61
64
b6
67
68
68
69
10
71
72
73

1%

A New Swapping Procedure for Programs
A New Function Checks a Remote Device
Four New Screen-Control Characters
The "Ignore External Terminal" Flag: Apple II and Apple Tle
The OPEN-APPLE, SOLID-APPLE, and SHIFT Key Controls
The High-Bit Test for the OPEN-APPLE Key
The UNITSTATUS Test for All Three Keys
Three Special Identification Flags
Flag to Check the Computer Type
Flag to Check the Pascal System Version
Flag to Check the Interpreter Version
Two Important Pointer Locations
New Values for the Up~Arrow and Down-Arrow Keys
Reading the Up=Cursor and Down—-Cursor Values
Changes to the SEEK and PUT Procedures
Two Features No Longer Operative

TABLE OF

CONTENTS

W oW oW oW oW ow oW

(YR R PR

oW W W

oo W W

AAELEBELEEEE RN EN NN
|

APPENDIX A
BUG FIXES IN PASCAL 1.2

75

77 Compiler Bugs

78 Assembler Bugs

79 Linker Bugs

79 LIBRARY,.CODE Bug

79 LIBMAP.CODE Bug

79 SEEK/PUT Bugs

80 80 Input/Output Bugs

80 Turtlegraphics Bugs

81 Miscellaneous Execution-Time Bugs

APPENDIX B
THE FILES ON THE PASCAL 1.2 DISKS

APPENDIX C
ERROR MESSAGES

85

87 Compiler Error Messages
90 New Assembler Error Message

APPENDIX D
ACTIVATING THE SHIFT-KEY MOD

@

INDEX

@3

UCSD PASCAL SYSTEM
USER'S SOCIETY (USUS)

97

USUS MEMBERSHIP APPLICATION

TARLE OF CON

LIST OF FIGURES
AND TABLES

CHAPTER 1: INTRODUCTION TO PASCAL 1.2
7 Table 1-1. Summary of Files on the Pascal 1.2 Disks

CHAPTER 2: NEW PASCAL FEATURES

Wow owowowow ool

18 Table 2-1. Swapping Options Available at the System Level
23 Table 2-2. Options for Customizing Screen Width

W

CHAPTER 3: THE PASCAL 128K SYSTEM

"
I

ﬂ 34 Figure 3-1. The Pascal 64K System: Apple 11 and Ile l
t 36 Figure 3-2. The Pascal 128K System: Apple Ile
i 39 Table 3-1. Pointers for the Pascal 128K System

i

i :a (Hexadecimal Values)
” 41 Figure 3-3. The File Pathname
4 3 45 Table 3-2. Pascal Library Options: 64K and 128K Systems
H CHAPTER 4: TIPS FOR PROGRAMMERS
==
E 57 Table 4-1. Swapping Options You Can Set From Programs
-_'r. J‘! 59 Table 4-2. New Screen-Control Characters
. 61 Table 4-3. Testing for Use of OPEN-APPLE, SOLID-APPLE,
I and SHIFT Keys
B A 67 Table 4-4. Hardware Identification Bit Settings
I 69 Table 4-5. Version Flags Set at Location -16606 ($BF22 Hex)
- :a 70 Table 4-6. Two Pascal Pointers
l APPENDIX D: ACTIVATING THE SHIFT-KEY MOD

92 Table D~1. SHIFT-Key Mod Character Translations
92 Table D-2. Effects of an Activated and Inactivated
l SHIFT-Key Mod

wow

®
WO oW W

=

LIST OF FIGUIES AND TABLES i

Al

N
&
<
O
(g
x
O
o
Z
Q
[—
O
=
(]
O
=
<

-

CHAPTER 1

« < INTRODUCTION TO PASCAL 1.2

wd

In this chapter, you will learn about the main Features of Pascal 1,2
and how to use this manual.

i b el ol da &4

SYMBOLS USED IN THIS MANUAL

This manual uses three symbols to call your attentionm to important
points:

This means the adjacent paragraph contains information
) especially useful to you-—a “helping hand."

b

i, This tells you to be alert. The adjacent indented paragraph
e describes an unusual aspect of Pascal 1.2.

Y This stop sign is a warning. Pay attention! The adjacent
J?jj indented paragraph describes an action that could be hazardous
= o the program or files you are using, or to your computer
hardware,

W o W W W W W W oW W
(

I —m e — T —] S— . — — —— . e, e

EEEEEEEEEREEEERERNEN
[TV

Fi

SYMBOLS USED IN THIS MANUAL

“I

3

WHAT IS PASCAL 1.27

Apple 11 Pascal combines a language and an operating svstem. You can
use it on an Apple ITe computer or on an Apple I1 or II Plus computer
that has at least 48K memory capacity and an Apple Language Card.

to both the Apple II and the Apple Il Plus, as distinguished

g§§§9 From this point on in this manual, the term "Apple II" refers
From the Apple 1le.

Pascal 1.2 is an improved version of Pascal l.l. The basic program
design and the way the user interacts with it have not changed. The
improvements consist of new features, corrections of bugs, a 128K
system, and various modifications supporting the use of the Apple IIe
computer,

Pascal 1.2 consists of four system disks labeled
APPLER:
APPLEL:
APPLE2:
APPLE3:

and a set of two manuals in addition to this 1.2 Update manual:

® Apple Pascal Language Reference Manual (with Addendum)

® Apple Pascal Operating System Reference Manual (with Addendum)

WHO NEEDS PASCAL 1.2?

You need Pascal 1.2 (software and manuals)

® If you will be using Apple Il Pascal for the first time and
want to start out with an up-to-date system;

® If you have been using Pascal l.l or 1.9 and want to take
advantage of thg several improvements found in version 1.2;

® If you plan to use Pascal on the Apple Ile computer and want
the Pascal features that particularly support the Apple Ile;

® If you have an Apple Ile with the Extended BP-Column Text Card
and want to take advantage of the additional memory capacity
and features available with the Pascal 1.2 12BK system.

4 INTRODUCTION TO PASCAL 12

id Ji. ¢L dad

als

- T VI TV PV T

AR AR AR AR RR Bd R

. &

i

s s iR

al

HOW TO USE THIS MANUAL

You should first page through this manual to become familiar with its
topics and the kinds of reference aids avallable In the Appendixes.

If you are a new user of Apple 11 Pascal, you should learn the Paszcal
system by studying the set of original Pascal manuals and addenda, and
by practicing the use of various components, such as the Pascal Editor
Filer, Compiler, and so on. Then you should go to Chapter 2 of this '
manual, "New Pascal Features," which discusses in detail the
improvements to Pascal and certain oprions available within the system.

If you are a practiced user of Apple II Pascal, you should scan the
contents of"this manual for what might be helpful to you, particularly
Chapter 2, "New Pascal Features," and Chapter 4, "Tips for Programmers."

If you are an Apple TIe user, vou should read the description of Pascal

modifications supporting the Apple Ile in Chapter 2, "Mew Pascal
Features."

If you use the 4@-column screen width on an Apple 11 or Ile, or
the 8f-column screen width on an Apple IT, you should read the
section in Chapter 2 called "Special MISCINFO Files and How to
Use Them" before using your Pascal 1.2 system.

If you are now using or plan to use the Apple Tle with the

Extended B@-Column Text Card, read Chapter 3, "The Pascal 128K System."

Appendix A is a list of bugs in Pascal 1.1 that have been fixed in
Pascal 1.2,

Appendix B gives a complete list of the files on the Pascal 1.2 disks,

Appendix C presents an updated list of all Compiler error messages, as
well as the one new Assembler error message.

Appendix D explains how te activate the SHIFT-key modification in the

event that this hardware change has been made to your computer and
you want your Pascal system to use it,

HOW TO USE THIS MANLIAL 5

ABOUT YOUR PASCAL 1.2 SOFTWARE

Your time will be well spent if you take a few minutes now to get
acquainted with your Pascal software before starting up the system.

THE PASCAL 12 DISKS

Table 1-1 is a summary of the contents of each Pascal 1.2 disk.
may arrange these files to sult your special text-editing or
program-development needs. (See Appendix B for an itemized list of the
files on the four Pascal 1.2 disks. You will find a table thar
describes the individual system files in Appendix D of the

Apple Pascal Operating System Reference Manual,)

You

#

\J)

“fhy, As a precaution, however, you should not rearrange the files on
the original disks or on the backup copies you will make.
Rather, you should prepare a special, customized disk,

transferring those files to it that you want together.

MAKING COPIES FOR BACKUP

Before going on, make a copy of each Pascal 1.2 system disk for your
everyday use, storing the originals as backups in case of disk damage
or unusual wear, See Appendix D in the Apple Pascal Language Reference

Manual for directions on making backup disks.

6 INTRODUCTION TO PASCAL 1.2

ﬂ

:
j

3
3
3
3
= |
3
— |
3
3
= |
= |
& |
— |
= |
=
—
=
=
=
4
4
|
F |

The Digk lts General Contents and Purpose

Contains all the files needed to edit and rum
Pascal programs, especially on a one-drive
system; it includes SYSTEM.COMPILER, but not
SYSTEM.APPLE, which is needed to start up the
system. This 1s the second of two disks

used for a two-stage startup on a one=drive
system.

APPLEP:

APPLEL: Contains all the files you need to edit text and
to start up the system. 1In conjunction with the
APPLE2Z: disk, it is used to Compile or Run your
text.

APPLEZ: Contains the Compiler, Linker and Assembler, as
well as certain other program-development tools.
APPLE3: Contains SYSTEM.APPLE, the Formatter program, a

few demonstration programs for the general user,
and the files named 12BK.PASCAL and 128K.APPLE,
which are special versions of system files needed
for uslng the additional memory available with

the Apple Ile Extended B@-Column Text Card. It
also contains three specialized MISCINFO files:
IT4Q.MISCINFD, IIE4P.MISCINFO, and IIB@.MISCINFO.
This is the first of two disks used for a two-stage
startup.

Table l=1. Summary of Files on the

Pascal 1.2 Disks

MIXING PASCAL 11 AND PASCAL 12

You should not mix any system files from the two versions of Apple II
Pascal. The two versions are incompatible because essentially all of
the files were changed in the updating from Pascal 1.1 to 1.2.

The Pascal 1.2 coperating system (in the SYSTEM.PASCAL file) and the
other components of the Pascal system (the Filer, Editor, Compiler,
Assembler, Linker, and others) must work together as a unit. The 1.2
operating system—any 1.2 component, in fact--should not be run with
a 1.1 version of any other Pascal component. The operating system
will check for this condition at execution time and notify you of an
incorrect version of a Pascal system component.

ABOUT YOUR PASCAL 12 SOFTWARE

7

RUNNING VERSION-11-COMPILED PROGRAMS
UNDER 1.2

In general, version 1.2 is compatible with application programs that
were compiled under version 1.1, allowing you to run programs under
Pascal 1.2 that were designed to run under Pascal l.l. 1In special
circumstances, however, you might have to make one or both of the
followlng changes:

® You may have to upgrade the original SYSTEM.LIBRARY file that
supported the application program and resides on the program
disk, The reason is that in the Pascal 1.2 SYSTEM.LIBRARY,
these units have been changed or are affected by changes in the
operating system:

PASCALIO
CHAINSTUFF
LONGINTIO
TURTLEGRAPHICS

Consequently, Lf you have on a program disk a Pascal 1.1
SYSTEM.LIBRARY file with any of these units, you will need to
replace such units with their counterparts from the Pascal 1.2
SYSTEM.LIBRARY. You change units in a SYSTEM.LIBRARY file by
means of the Pascal Librarian program explained in Chapter 8 of
the Apple Pascal Operating System Reference Manual.

® You may have to change the program to get the correct values
for the up-cursor and down-cursor keys, if the program uses
these because programs hard-coded to check for the Pascal 1.1
up~cursor and down—-cursor keyboard values will not work
properly if run under Pascal 1.2. You will need to change such
programs to obtain the new values from the Pascal 1.2
SYSTEM.MISCINFO file atr load rime.

USING YOUR NEW SOFTWARE RIGHT AWAY

If you are using an Apple Ile with an 8P-column card and know how to
start up and use the Pascal language and operating system, you can use
Pascal 1.2 right away.
without an B@-column card, you should change SYSTEM.MISCINFO files
according to the directions given in the third section of Chapter 2,
"Special MISCINFO Files and How to Use Them."

8 INTRODUCTION TO PASCAL 12

However, if you use an Apple II or an Apple ILle

:

W W W e W W W

HESNVNYREESNANE S SESEYN.

WoW W W

W W

W W W

Al

STARTING UP A ONE-DRIVE SYSTEM

To start up Pascal 1.2 on a one-drive system, follow these steps:

1, Insert APPLE3: in the drive.

2. If the computer's power is off, turn it on. If it is already

on, press CONTROL-RESET (on an Apple II) or
CONTROL-OPEN-APPLE-RESET (on an Apple Ile).

In some cases, such as after running a copy-protected program,
you may have to turn the power off, then on.

3. After the message

"Insert boot disk with SYSTEM.PASCAL on it, then
press RETURN"

appears on the screen, insert APPLEP: in the drive and press
RETURN.

Once you have started the system, vou can restart it by selecting Halt
or Initialize from the command line (with APPLEfl: in the drive).

STARTING UP A TWO-DRIVE SYSTEM

To start up Pascal 1.2 on a two-drive system, follow these steps:

1, Insert APPLEl: in drive 1.

2, If the computer's power is off, turn it on.
on, press CONTROL-RESET (on an Apple II) or
CONTROL-0PEN=-APPLE-RESET (on an Apple IIe).

If it is already

In some cases, such as after running a copy-protected program,
you may have to turn the power off, then on.

Once you have started system, you can restart it by selecting Halt or
Initialize from the command line (with APPLEl: in drive 1),

ABOUT YOUR PASCAL 12 SOFTWARE

9

v
LL
[0 4
—
<
L
T
—
<
Q
w
=
=
T
Z

10

12

=3

. NEW PASCAL FEATURES

The Formatter error messages have been revised and increased in number
to help you better understand why the program is having trouble
formatting your disk. These are the error messages that you might see
displayed:

e Disk i{s write protected

@ Unable to format diskette

® Drive speed is too slow

® [Drive speed is too fast

For instructions on using the Formatter, see the Apple Pascal Operating

System Reference Manual, Chapter 8.

A CHANGED TWO-STAGE STARTUP OR "BOOT”

If you use a two-stage startup procedure to begin running your

Pascal 1.2 system, vou will find an important change in the prompt that
comes on your screen after you start up your first system disk. You
will be directed to insert your second startup disk (one containing
SYSTEM.PASCAL) and press RETURN. (Under Pascal 1.1, the prompt asked
vou to press RESET, Now, if you press RESET by itself, nothing will
happen.) For information on how to start up ("boot") your system, see
the end of Chapter 1 of this manual and see Chapter 2 of the

Apple Pascal Operating System Reference Manual.

A NEW LINE ON THE PASCAL STARTUP SCREEN

The Pascal startup screen now displays a new line that specifies
whether the Pascal interpreter and operating system you are using
are B4K or 128K. FEvery time you start up Pascal 1.2, the first
screen display to appear will include either the words

Pascal System Size is 64K
or the words

Pascal System Size is 128K

{The Pascal 128K system is dlscussed in Chapter 3 of this manual.)

IF YOU DO NOT PUT BACK THE STARTUP DISK

I1f the system returns to the command line and you have not put the
startup disk back in drive 1, you now see an expanded reminder on the
screent

Put in <boot diskette>:
then press RETURN

14 NEW PASCAL FEATURES

WA WO W WO W W W W W MWW W W ow

e

VU

=

Under Pascal 1.1, only the first line of the message appears, and
drive | spins continuously until you insert the correct startup disk.

THE PERCENT PREFIX

Pascal 1.2 gives you a tool that makes your program independent of
volume names. You can now use the percent character (%) as a prefix to
a filename to mean "the same volume name as the executing program.”

For example, if the program

MYFILE:MIX.CODE

iz currently being executed, the percent prefix can be used to
reprasent the volume name

MYFILE:

during the execution of this program and until another program is
executed.

Instead of giving the volume name and filenames of files used by the
program, such as

MYFILE:DATAI
MYFILE:DATAZ2

your program can now simply specify them by attaching the percent
prefix to their filenames:

ZDATAL
ADATAZ

The percent prefix allows you to write an application program that can
call files without hard-coding volume names into it. The application
can be on any volume in the system as long as the files used by the
program reside on the same volume. Moreover, the user can move the
program and its related files to another wvolume in the system—flexible
(sometimes called "floppy") disk or rigid disk-—without changing the
program.

To use the percent prefix, vou Elrst place the files, such as the data
files just mentioned, in the same volume as the executing program, and
then you use the percent prefix, whenever you need it, as a substitute
for the volume name. This capability frees you from having to know and
use the volume name of the program file (and of the program's library
and data files).

When you execute a program, the percent prefix is set as soon as the
system has determined that the volume name and filename are valid and
refer to an actual file, (The volume that contains this file must be
on line.) The prefix is not set to another volume name while the
current program is executing, but when you execute another application

FEATURES FOR ALL APPLE | COMPUTERS 16

program, or a sSystem program such as the Pascal Filer, Editor, or
Compiler, then the percent prefix is set by the system to another
volume name, which is that of the new program.

Although you can use the percent prefix at the system level--for
example, with the List or Transfer command of the Filer--note that
it has three basic uses within a program:

® accessing files during program execution (discussed later in
this chapter)

® chaining to other programs during execution (discussed later in
this chapter)

® naming files in a Library Name File (128K system only,
discussed in Chapter 3)

Accessing Files During Program Execution

Most application programs require the use of numerous files (like data
files, output files, temporary files, and so forth) during execution.
These files usually reside in the same volume as the main program.
Using the percent prefix, you can specify these files in the main
program without having to know their volume name. For example, if the
program MIX.CODE uses the files DATAl and DATAZ, you would want to
group the set of programs in the same volume:

MYFILE: {a volumel}
MIX.CODE {an executable program}
DATAL {a data file}
DATAZ {a data file}

Then in the source code for program MIX.CODE, you can specify the two
data files using the percent prefix in these strings:

ZDATAL
ADATAZ

Here are two examples of source code showing possible uses of the
percent prefix:

RESET(A FILE, 'EDATAL');
REWRITE(B FILE, 'ZDATAZ'};

Thus you do not have to specify the actual volume name (in this case,
MYFILE:). You are free to place this set of files in any volume, with
any name, as long as they all reside in the same volume and as long as
that volume is on line at the time of program execution.

16 NEW PASCAL FEATURES

BN R

Wl W W W W W W W Wl W MWW WMWY W oW

(I

E

Chaining to Other Programs During Execution

When your program uses chaining, you can use the percent prefix to
specify the volume name of the program to be chained to. For example,
if you want the set of programs

MASTERPLAN: {a volume}
PARAMS, CODE {an executable program}
BUDGET.CODE {an executable program}
GOALS ., CODE {an executable program}
FORECST.CODE {an executable program}

to be executed in the order GOALS.CODE --»> PARAMS,.CODE —--> BUDGET.CODE
--» FORECST.CODE, you use these calls to the SETCHAIN procedure:

® In GOALS,CODE use the procedure call
SETCHAIN(' XPARAMS") ;
® In PARAMS.CODE use the procedure call

SETCHAIN(' XBUDGET');

® In BUDGET.CODE use the procedure call
SETCHAIN{ "ZFORECST"');

file to be chained
To start running
Again, all that
in the same volume.

By using the percent prefix when specifying the next
to, you avoid having to know the file's volume name.
the programs in the chain, you execute MYFILE:GOALS.
is necessary is that you place the files on line and

Chaining to a program during execution is explained In the
Apple Pascal Language Reference Manual Addendum.

A NEW SWAPPING OPTION

Version 1.2 of the Pascal operating system makes available 822
additional bytes of memory that can be used for any activity that needs
mOTe SySCtem Memory.

@

To obtain this additional memory, vou will need to use the revised Swap
command accessed from the command line. The new prompt screen for the
Swap command glves three swapping options. The first two correspond to

Application program writers should not depend on this extra
memory being available in the future because

Apple Computer, Inc. has reserved it for future use. No more
memory is guaranteed than that available under Pascal 1.1.

FEATURES FOR ALL APPLE | COMPUTERS 17

g

the old "toggle" option that permitted you to turn swapping on or off
and that made available 2,234 extra bytes of memory. The third option
provides the additional memory. (Table 2-1 lists the three swapping
options.)

ADDITIONAL BLOCK VOLUME UNITS

Eight new units, numbers 13 through 29, have been added to the original
available block units, numbers 4, 5, 9..12., The operating system
treats the new units the same as it did the original ones when, for
example, 1t scans units as it looks for a particular system program,
such as the Pascal Compiler. ({The new units are useful only for
attached block devices, such as large-volume, rigid-disk drives.) To
use these units for a rigid-disk drive, vou would need its device
driver and the SYSTEM.ATTACH program.

N8
i

"
o

The new swapping option provides more space by moving the procedures
GET and PUT from disk to main memory only as they are needed by your
program. To do this, set swapping to "2" from the prompt screen that
appears up when you type "S" for Swap from the command line.

A
id

oo

you select Swapping option 2, since these routines will have to

Ggigs Note the warning that using GET or PUT to disk will be slow if
be loaded repeatedly.

use these new units because the Apple II and IIe have no slots
corresponding to the new unit numbers where you could install
additional flexible-disk drives.

Ggéga If you use only flexible-disk drives, you will not be able to

W

panane
e

Swapping Selection Total ERROR MESSAGE: TOO MANY PROGRAM SEGMENTS
Option Code System Action Memory Gain

A new error message appears on the screen if you attempt to run a
Swap is off @ Swapping set to OFF. Set automat- -= program that has segment numbers larger than 31 or uses intrinsic units

ically at startup, or boot, time.
Or set by typing "@" after typing
"8" from the command line.

with segment numbers larger than 31. The new error message:

Specified code file must be run under the 128K Pascal aystem.

-

First level 1 First-level swapping set to ON in 2,262 - In this case, the code file must be run on the Pascal 128K system.
Swap is on order to gain space in main memory. bytes l Only users of an Apple ITe with an Extended 8@#-Column Text Card are
Set by typing "1" after typing "S" a a able to convert to the Pascal 128K system with its larger available

from the command line. memory, enhanced library capabilities, and additional 32 segments.

{See Chapter 3.)

m

Second level 2 Second-level swapping set to ON in 3,084
Swap is on order to gain even more space in bytes
main memory. Incudes everything
swapped at first level and adds 822
more bytes. Set by typing "2" after
typing "8" from the command line.

mmwm
W

CONTROL CHARACTERS NOT ECHOED TO THE SCREEN

Pascal 1.2 will not echo or write to the screen any control characters
typed on the keyboard except CONTROL-M or CONTROL-G.

wWoW

-

HAND-CONTROL BUTTONS AND THE SHIFT KEY

You can design and run programs that test the positions of the
hand-control buttons @ and 1 (or the OPEN-APPLE and SOLID-APPLE keys on
an Apple IIe), pressed by the user in response to a program prompt.

The SHIFT key may be similarly used, provided the SHIFT-key
modification (discussed in Appendix D) is made first. The section
"OPEN-APPLE, SOLID-APPLE, and SHIFT Key Controls" in Chapter 4 tells
how to test the buttons.

Table 2-1. Swapping Options
Available at the System Level

i

For a description of how to use these swapping options from a program
when chaining to another program, see the section "A New Swapping
Procedure For Programs" in Chapter 4.

-

CHE
A W W

Y 55y ¥y ¥y —§F N3

18 NEW PASCAL FEATURES FEATURES FOR ALL APPLE I| COMPUTERS 19

w
Al

THE CTRL-) FUNCTION

This is a reminder, not a new function. Note that on an Apple 1II, a
CONTROL-] function is achieved from the keyboard by pressing
CONTROL-SHIFT-M , an action necessary because the right bracket itself,
"j", is produced by pressing SHIFT-M .

FEATURES FOR THE APPLE IIE COMPUTER

Several keyboard and control code changes are important to users of
Pascal 1.2 on an Apple Ile. You will want to take special note of them
if you are accustomed to using Pascal 1.1.

LOWERCASE AND UPPERCASE BOTH AVAILABLE

Lowercase characters, as well as uppercase, are directly available on
the Apple IIe keyboard: uppercase characters are produced using the

SHIFT or CAPS LOCK key. (The "SHIFT-key modification" for using the

SHIFT key to shift between uppercase and lowercase characters is not

necessary on the Apple [le.)

FOUR CURSOR KEYS NOW AVAILABLE

The Apple Ile has two additional cursor keys--up and down-—as well as
the left-cursor and right-cursor keys available on the Apple II.
Pascal 1.2 uses these keys to move the cursor if you use the correct
MISCINFO file.

You may have to press CAPS LOCK to run certain applications
programmed only for uppercase characters.

KEYSTROKE FUNCTIONS NOT USED

If you have been using Pascal on an Apple II, please note that Pascal
on the Ile ignores several keystroke functions that remain in use on
the Apple II. When Pascal 1.2 is used on an Apple Ile, it does not use

® CONTROL-E to shift between uppercase and lowercase characters
and turn inverse video on;

® CONTROL-W to force the keyboard into uppercase for the next
character typed and turn inverse video on;

® CONTROL-R to turn inverse video on but not change the keyboard
from uppercase;

20 NEW PASCAL FEATURES

i

ennnen

. o

< .
OV Y U VI VY O Y Y TR TR TR P VI R R

o
!

® CONTROL-T to turn inverse video off and force the keyboard iInte
uppercase;

® (CONTROL-E to produce the left bracket character;

@ Other character translations produced by the SHIFT-key
modification, where

- becomes
@ W
] nmn
CNTRL-@ "
CNTRL=-" "
CNTRL-] "

L Ay - -

® CONTROL-0 and CONTROL-L for up~cursor and down-cursor action.

Note the warning earlier in this chapter that you might have to
change the up-cursor and down-cursor code values for Pascal L.l
programs that check for these values, in order to run these programs
under Pascal 1.2, 3See Chapter 4 for an explanation of the changes to
the control codes for up-cursor and dowm-cursor actions.

In addition, Pascal 1.2 does not use the DELETE key to delete anything,
but simply sends the ASCII DEL character (code 7F) to the calling
program 1f requested. The use of this key is left to the software
developer; for suggestions, see the Apple Ile Design Guidelines.

OPEN-APPLE, SOLID-APPLE, AND SHIFT KEYS

You can use the Apple Ile OPEN-APPLE, SOLID-APPLE, and SHIFT keys for
gpecial function characters, for game controls, or for performing
special reset and self-test cycles, See Chapter &4, the section
"OPEN-APPLE, SOLID-APPLE, and SHIFT Key Controls," on how to determine
from your program when one of these keys is pressed.

APPLE IIE'S WITH FOREIGN KEYBOARDS

If you are using Pascal on an Apple Ile with a foreign keyboard,
Pascal 1.2 automatically selects the language character set built into
your system.

USER BREAK DURING PROGRAM EXECUTION

On an Apple Ile, you interrupt-a program during execution by pressing
CONTROL-SHIFT-2 (CONTROL-R). On an Apple Il using Pascal, you
interrupt a program by pressing CTRL-SHIFT-P (CTRL-@). The ASCIL code
for this contrel function remains the same as before.

FEATURES FOR THE APPLE IIE COMPUTER

21

e s

SPECIAL MISCINFO FILES AND HOW TO USE THEM

Your AFPLE3: disk contains three special MISCINFO files, one of which
you should use if you use a 4@-column or an Bf-column screen with an
#pple II, or a 4@-column screen with an Apple Ile. 1If you fit any of
these three cases, you can learn here how to replace the standard
SYSTEM.MLSCINFO file on your APPLEf: and APPLEl: disks with either
the IT4@.MISCINFO, the IIBQ.MISCINFO, or the TIE4@.MISCINFO file,
you use an BP-column screen on an Apple Ile, you should use the
standard SYSTEM.MISCINFO file supplied on the APPLE@: and APPLEL:
disks.)

(1f

The cursor-move keys work on any Apple 11 without MISCINFO file
modification unless you use an BP-column screen. In this case, you
need to transfer a copy of the File TIBP.MISCINFO from the APPLE3:

disk to the APPLE@: disk, to the APPLELl: disk, and to any other startup
disk you use——in each case changing its name to SYSTEM.MISCINFO. If
you plan to use Pascal 1.2 on an Apple II or an Apple Ile in 4@=-column
mode, you will get the best results by copying either the special

1149 .MISCINFO file or the special IIE4P.MISCINFO file from the

APPLE3: disk to the APPLE#}: disk, to the APPLEl: disk, and to any other
startup disk you use. Table 2-2 shows the columm~-width setup for each
machine and which MISCINFO file to use.

The TI4W.MISCINFO file and the IIE4@.MISCINFD file are identical to the
8f-column MISCINFO file for the Apple Ile except that the screen width
in the former two is set to 79 columns to ensure abbreviated Pascal
prompt lines on the 4@-column screen. (A MISCINFO file that sets the
screen width to 8% columns ensures that all Pascal prompt lines appear
in unabbreviated form.)

In addition, in the IT4P.MISCINFO file, the "has lower case" control
variable is set to False. The I[I8Q.MISCINFD file is the same as the
8f-column Apple Ile MISCINFO file except the values for up—cursor and
down=-cursor movement in the former are the same as under Pascal 1.1
(for up, CONTROL-0, and for down, CONTROL-L).

22 NEW PASCAL FEATURES

B momom o omom o om oo oW WM MMM N NN N NN
“»

I

oW oW o

W oW W oW oW oW oW oW oW

WO W W oW oW

AW

Apple Model 4Pp-column Feature 8f—column Feature
Apple II Built in when shipped. You must add an B@-column
card or an external video
terminal with an B@-column
option.
Use the TT4Q.MISCINFO Use the TIBP.MISCINFO
file resident on the file resident on the
APPLE]}: disk of Pascal APPLE}: disk of Pascal
1.2. 1.2,
Apple Tle Built in when shipped. You must add an

8@-column card or an
external video terminal
with an 8@-column option.

Use the IIE4@.MISCINFO
file resident on the
APPLE 3: disk of Pascal
1.2,

Use the SYSTEM.MISCINFO
file resident on the
APPLEQ: and APPLEL:
of Pascal 1.2.

disks

Table 2-2. Options for Customizing

Screen Width

Read on for the steps you take in moving the appropriate file inte
place.

)

Be sure to modify only copies of your Pascal 1.2 system disks,
not the originals, which should be stored intact as backups.

SPECIAL MISCINFO FILES AND HOW TO USE THEM 23

STEPS FOR 40-COLUMN APPLE Il USERS BT 51eps FOR 80-COLUMN APPLE Il USERS

Users of a 4f-column screen width on an Apple 11 should follow the Fﬂ Users of an 8@-column screen with an Apple 1I should follow the same
following steps: steps given for 4@-column Apple I1 users in the preceding section,
Fhiﬂ except you should substitute the filename IIB@.MISCINFO for the name

1. From the Pascal Filer prompt line, select the "I or Transfer I14P.MISCINFO wherever it is used.

option, which you will use to copy the proper MISCINFO file to

your APPLEP: and APPLEL: disks. |

. e s | STEPS FOR 40-COLUMN APPLE IIE USERS

i e sure the write-enable notch on your £3: dis s covered »
with a write-protect tab to protect you from accidentally .?Hﬂ Users of the 4@-column screen with an Apple IIe should follow the same
writing over and deleting any Pascal files on that disk. With oy steps given for 4@-column Apple II users, except you should substitute
your APPLE@: disk in the first (the startup) drive, place your .Tfh-:a the filename TIE4@.MISCINFO for the name IT4@.MISCINFO wherever it is
copy (not the original) of the Pascal 1.2 APPLE3: disk in your used,
second drive, if you have one, and answer the "Transfer?" ‘4_.,—,4’3
prompt by typing APPLE3:I1I4Q.MISCINFO and pressing the RETURN ;

key. (If you have only one disk drive, replace the startup

disk in your startup drive with APPLE3:, and answer the ‘;:'_:3
"Transfer?" prompt by typing APPLE3:I14@,MISCINFO and pressing]
the RETURN key.) g 3
Before taking the following step, be sure that the APPLEPR: and 1
APPLEl: disks to which you are copying do not have a tah t‘?-“_
covering their write-protect notches. l

3. Then two-drive users should answer the "To where?" prompt by '.,‘!"s
typing APPLE@:SYSTEM.MISCINFD and pressing the RETURN key, l)
assuming that the APPLEf: disk is in place in the startup .'_El——cg
drive. (One-drive users should first replace APPLE3: with]
APPLE@: in the startup drive and then answer the "To where?" '5,._;5

prompt by typing APPLE@:SYSTEM.MISCINFO and pressing the RETURN
key. When the system prompts for the "destination" disk, press

the SPACE bar as indicated.) Now the system asks if it should ‘ ""a
delete the original SYSTEM.MISCINFO before copying. Type "¥Y" J
for "Yes" in response, because you want to replace that file _.__—_a
with the I[I4@.MISCINFO file. l

4, Both two-drive and one-drive users should repeat the above 'l:-a

procedure to copy the II4Q.MISCINFO file again, this time from
APPLE3: to APPLEl: .

3. 1If you have other startup disks you use regularly with the
4P-column screen width, you can replace their SYSTEM,MISCINFO
file with the IT4@.MISCINFO file by using the same steps just
presented.

24 NEW PASCAL FEATURES —3 SPECIAL MISCINFO FILES AND HOW TO USE THEM 25

26

— THE PASCAL 128K SYSTEM

¥
W o o

w
o LE)

W o

il

O T I T T I T

W

BB WM OW

TR
b

;!-_-yg--j-—-@g—-?ﬁ-n-y-i[gnnnq?-j]--ﬁ-—-—i----q--lu--li-—-]--li--h--l--ilu-ti

-

CHAPTER 3

THE PASCAL 128K SYSTEM

If you are using an Apple IIe Extended 8@-Column Text Card, you may
customize a startup or "boot" disk that will give you more usable
memory in addition to the built-in 64K of RAM in the Apple ITe. This
is possible because the Extended B@-Column Text Card provides 64K of
auxiliary RAM—for a total of 128K with the card on an Apple Ile. The
Pascal 1.2 software contains special 128K versions of the files
SYSTEM.APPLE and SYSTEM.PASCAL that you can use instead of the standard
64K versions of both.

THE EXTENDED 80-COLUMN TEXT CARD

The Pascal 128K system enables you to use the extra memory provided by
the Extended B@-Column Text Card. It therefore gives you more space
for your program code and data. The 128K Pascal System

® Allows up to 46K of compiled P-code storage space on the
Extended 8@-Column Text Card;

® Allows up to 41K for data and assembly-code storage in the
Apple 1le's main memory, because P-code is stored on the Card; .

® Allows 64 segments instead of the standard 32 segments;

® Provides enhanced library capabilities, including libraries
that can be shared by two or more programs;

® Can be used to edit files up to 58 blocks in length, compared
with the standard 34-block files;

® Provides Compiler symbol-table space of 18,719 words, compared
to the 1,774 words available using the Pascal 64K system;

Provides Assembler symbol-table space of 18,487 words, compared
to the 8,317 words available using the Pascal 64K system;

® FExecutes Pascal programs developed on the Pascal 1.2 64K
system;

THE EXTENDED 8C-COLUMN TEXT CARD 29

® Executes Pascal 1.l programs, providing the program is
otherwise compatible with Pascal 1.2 characteristics;

® Has a processing speed virtually as fast as that of the H4K

system and reduces dependence on the slow swapping methods
often used to make more system memory available to programs.

MAKING A 128K SYSTEM STARTUP DISK

o —— i — -

To put the 128K Pascal System on your Apple Ile, you create a new
startup disk by copying two Pascal 1.2 system files to a newly
formatted disk, according to the following instructions.

Do not create a 128K startup disk unless you will be using the
Apple Ile Extended B@-Column Text Card. The new startup disk
will not work on a B4K Apple Ile.

l. Start up your Pascal 1.2 system and then format a new disk, if
you do not already have a supply of Pascal-formatted disks,
using the Formatter program as explained in Chapter 8 of the
Apple Pascal Operating System Reference Manual. If your system
has two disk drives, the newly formatted disk should be in the
second drive (unit #5:) during the next few steps. One—drive
users should not yet Insert the newly formatted disk in their
drive.

2. Next, from the Pascal Filer prompt line, select the "T," or
Transfer option, which you will use to copy the special 12BK
files to your new startup disk. HNow remove your system disk
from the startup drive (unit #4:).

31, Before proceeding, check to be sure the write-enable notch on
your APPLE3: disk is covered with a tab to prevent accidentally
overwriting a system file. WNow place your APPLE3: disk in your
startup drive (unit #4:) and answer the "Transfer?" prompt by
typing APPLE3:12BK.APPLE and pressing the RETURN key.

from 128K.APPLE to SYSTEM.APPLE as you copy it to the new
startup disk. For the location of the file, you may give the
unit device number (#4 or #5, as shown) or the volume name of
your newly formatted disk.

@ Note that in the next step, you change the name of the file

4, Two-drive users should now answer the '"To where?" prompt by
typing #5:SYSTEM,APPLE, and pressing the RETURN key, assuming
that your newly formatted startup disk is already in the second
drive. (One-drive users should first replace APPLE3: with the
newly formatted disk in the drive and then answer the "To
where?" prompt by typing #4:5YSTEM,APPLE and pressing the
RETURN key. When the system prompts for the "destination"
disk, you press the SPACE bar as indicated.)

5. Both two-drive and one-drive users now repeat the preceding
procedure to copy the 12B8K.PASCAL file from APPLE3: to the new
startup disk, changing the name of the file as you do so from
12BK.PASCAL to SYSTEM.PASCAL.

6. Again using the Transfer procedure, copy the file
SYSTEM.MISCINFO from your APPLE@: or APPLEl: disk to the new
startup disk, and copy any other files that your Pascal startup
disk requires, such as SYSTEM.LIBRARY,

7. Finally, make a backup copy of this new disk following the
directions for copying an entire disk given in Chapter 3 of the
Apple Pascal Operating System Reference Manual.

If you try to use the 64K SYSTEM.APPLE file and the 128K SYSTEM.PASCAL
file (or vice versa) on the same startup disk, your computer system
will either "hang" (not start up) or continually restart ('"reboot").

In either case, you will not be able to use Pascal until the file mixup
is corrected. (This is one reason you should modify a copy of your
startup disk, rather than the original.)

Your new 128K Pascal startup disk is now ready to use. You can use
your 128K system all the time: vyou need not shift back and forth
between the 128K and the 64K systems, although you may do so by using a
startup disk with the original 64K versions of SYSTEM.APPLE and
SYSTEM.PASCAL. (The 64K system will work on a 128K Apple ITe, but will
ignore the extra memory.)

AL LELLL L LL LR RN

- — U — " — s B S — . S— i S— — i — — — — £

»

mmmmwmwmw@mummm&&&ﬂﬁﬂd_ﬂ

-
s

30 THE PASCAL 128K SYSTEM MAKING A 128K SYSTEM STARTUP DISK 31

U

"
al

128K SYSTEM USER ERROR MESSAGES

N

p

e -

You might encounter one or more of these error messages when using the
12BK system:

e If you try to start up your customized L12BK disk on an
Apple Ile without the Extended 8@-Column Text Card, the message

Extended A@-Column Card required
comes up on your screen, and the system stops. At this peint,
you will have to restart the system using a 64K startup disk
(such as APPLEl:, or, in the case of a two-stage startup, first
APPLE3: and then APPLEQ:).

® If code overflows the available space in the RAM of the
Extended B@P-Column Text Card, the execution error message

Codespace overflow {if the system disk is on line}
or Exec Error #16

comes up on your screen, You must restart the Pascal system by
pressing CONTROL-RESET.

@ If a running program asks for a new segment but there is less
than one block of available stack space, the execution error
message

Stack overflow [if the system disk is on line}

or Exec Error #4

comes up on your screen. You must restart the Pascal system by

128K SYSTEM MEMORY ORGANIZATION

So far you have learnad how to make a special startup disk in order to
use the Pascal 128K system on an Apple IIe with an Extended B@-Column
Text Card. Here you will learn the differences between the ways the
64K and 12BK Pascal systems organize memory.

The memory organization of a 64K Pascal system on an Apple II with an
Apple Language Card is the same as that on the Apple ITe, which has the
16K RAM of the language card built into its hardware. Both of these
64K systems use corresponding sections of memory for the same
functions, as you see in Figure 3-1,

Numbers in figures and text in this manual that are preceded by
a dollar sign ($) refer to the hexadecimal number system used
in assembly language to refer to addresses in memory. This

base-16 system uses the ten digits @ through 9 and the six
letters A through F to represent values from @ through 15.

The 12BK Pascal system and the 64K Pascal systems organize memory in
different ways, as you can see by comparing Figures 3-1 and 3-2.

You will find a more detailed memory map of the Pascal 64K system in
Appendix B of the Apple Pascal Operating System Reference Manual.

For maps and explanations of the auxiliary memory of the Extended
BP-Column Text Card, see the Apple Ile Reference Manual, Chapter &4,
and the Apple Ile Extended 8@-Column Text Card Supplement, Chapter 2.

pressing CONTROL-RESET.

!ln!!l!!!!!llnnlllllqul
Y VY VT Y Y T T I I I I I I

32 THE PASCAL 128K SYSTEM 128K SYSTEM MEMORY ORGANIZATION 33

e [

!

External |
language/
card \

Main /
memory

.

Figure 3-1. The
Apple IT and ITe

Pascal interpreter
and part of the
operating system

Input/Output

system use

part of the
operating system

Pascal program
stack

P—code,
assembly code,
and data

s

Pascal data
heap

sEystem use

Apple II

Pascal 64K System:

34 THE PASCAL 128K SYSTEM

SFFFF B4K
_ Spded _ 52k _
= T SCFFF
__ Scoee _ 4Bk _
__ Spcpe 3k
$pg@e oK

P

R R R N W W W R RN W N W N W W W W R
B T A A I I I

O N e e S Sy) S] e) P i ee— See— e Se— e S S S S—— e S— — T — . f—— e e e e
A

ad

Pascal interpreter
and part of the
operating system

Input/Output

system use

part of the
operating system

Pascal program
stack

P-code,
assembly code,
and data

Pascal data
heap

system use

Apple Ile

| Main

\ memory

/ (language

| ecard is
built=in)

128K SYSTEM MEMORY ORG

g

A |
| 64K ~ SFFFF !| T T T SFFFF B4K |
| Pascal interpreter " i |
and part of the I Reserved for
| operating system _ " 's system use by |
l Apple Computer, Inc. |
| 1~
S2K _sooe9 ¥ 3 _oomp_ sk
| |
=3
T T T BCFFF Input/Output E Input/Output T 7 ScFFF T
| p P
48K sCpe@ . SCPPp 48K
I R "l: 3 part of the | [
operating system
| Pascal program E: 32 |
stack ? I
] i 3 P-code I
| |
| = :
| | 1 |
| data and K] |
assembly code
1 E 1
| 3 |
| Pascal data |
heap
| 3k__ socep 1
___Se8p@ 2k .
| system use a system use
PK_ _ $0000 e e ___Seepp Pk
Main Memory 3 Auxiliary Memory
(Built into system) _! (Extended B@-column Text Card)
Figure 3-2. The Pascal 128K System: j
Apple Ile

36 THE PASCAL 128K SYSTEM 3 128K SYSTEM MEMORY ORGANIZATION 37

MEMORY ORGANIZATION FEATURES

These are the most important features of the 128K Pascal System's
memory organization:

® The built-in 64K of RAM (the “"main memory") stores only
assembly code and data.

® All P-code is stored in the "auxiliary memory" space on the
Extended B@-Column Text Card,

® Because it ls written in P-code, the Pascal operating system
has been moved to the auxiliary memory of the card.

® Because they are written in P-code, the Pascal svstem
components (Filer, Compiler, Editor, and so forth) are stored
in the auxiliary memory of the card when they are heing
executed.

® The section of RAM on the Extended B@-Column Text Card that
corresponds to the "language card" section in the 64K system is
not presently dedicated to a particular function, but is
reserved by Apple Computer, Inc. for future system development.

® The 128K Pascal system has enough space to hold the entire
Compiler in memory during a compilation. For this reason, it
is not necessary to use the {$S+] option when compiling a unit
declaration under the 128K system.

These features provide more room to store P-code hecause it doesn't
have to share memory with assembly code and data. In addition, there
is more room for assembly code and darta in main memory because no
P-code is stored there.

Because data and P-code are stored in different sections of memory,
using the swapping feature of either the system or the Compiler will
not add to the space available for data, but will add to the space
available for P-code.

MANAGING AUXILIARY MEMORY

The Pascal 128K system uses two zero-page variables to manage use of
the auxiliary memory on the Extended 8f-Column Text Card. CODEP points
to the lowest used word in the auxiliary memory space. CODELOW
contains the lowest permissible value for CODEP; CODELOW defaults

to $8@@. Table 3-1 describes these variables.

38 THE PASCAL 128K SYSTEM

MYV S VEYEENENY

W o W W W W w

.-

o w .

p

WO W oW oW oW W W oW oW ow

Zero-Page Permissible
Location Pointer Description Ranges
S60 CODEP Points to lowest used word in SBP@-scope
the contiguous 48K of extended
RAM space.
$62 CODELOW Contains the lowest permissable Must not he
value for CODEP. Memory below hbelow SE@P
this point is reserved. (default value)
or above 5SCAPP.
Table 3-1. Pointers for the Pascal

128K System (Hexadecimal Values)

Because CODEP points to the lowest word in the auxiliary memory space,
it begins with the value of $CP@P and works down until it hits the
value CODELOW.

Your program can examine CODEP and CODELOW if it needs to, If your
program runs under the 128K system, it cannot change CODEP, but it can
change CODELOW if it will use part of the auxiliary memory. For
example, to execute a program that uses the 56@-dot high-resolution
screen, you would change CODELOW to $4P@@ and then change it back to
its original wvalue after the program has run.

If you are using the 64K system on a machine with the Extended
8@-Column Text Card, you can use CODEP as a zero-page polnter to the
auxiliary memory space on the card. This feature is useful 1if you are

managing this space yourself, rather than using the Pascal 128K system
to manage it.

Here are several important reminders about your use of these variables:

l. You must use even numbers when giving values to these variahles
because they point to words, not bytes.

2. The system does not restore CODELOW or CODEP to their original
values after executing your program. Whenever you have changed
one of these variables, be sure to put the walue back to what
it was before your program ends.

3. If your program runs under the 128K system, it can change only
CODELOW; CODEP is changed only by the Pascal system.

128K SYSTEM MEMORY ORGANIZATION 39

g

ADDITIONAL SEGMENTS

N e

Volume Name or Unit Number File Name '

The 128K system allows 64 segments, whereas the 64K system allows
only 32. This makes it easier to break up a large program into
manageable parts. Nevertheless, you can have only 16 segments in a
codefile, so that these extra segments will be useful mainly as
intrinsic units.

|¢===—————— File Pathname --———=—===-= > |

Figure 3-3. The File Pathname

The Compiler, the Linker, LIBRARY.CODE, and LIBMAP,.CODE now allow 64
segments, numbered @ through 63, regardless of which Pascal system (64K
or 128K) they are running under. However, if you try to run a program
with a segment number greater than 31 under the 64K system, you will
get an error. In other words, you can use the 64K system to develop
programs that will only run under the |28K system.

The volume name is whatever name you have given to a particular
flexible disk, like MYFILE:, and the unit number 1s #4:, #5:, or
#9:..#20:. The filename is the name of a file in that disk volume,
normally including the file-type suffix, like ADDUP,TEXT, ADDUP.CODE,
or LIBl.LIB.

In this set of files,

Segments 38 through 63 are reserved for use by the Pascal
system. They should not be used by an application.

MYFILE: {a volume name}
LIBl.LIB {a library file}
LIBZ.LIE {a library file}

the same volume name or unit number heads the file pathname for the twa
library files

HOW TO USE THE NEW LIBRARIES

MYFILE:LIBl.LIB { or written as } #5:LIBl.LIB

MYFILE:LIR2.LIB { or written as } #5:LIB2.LIB
This section discusses the extended library file options available only

with the Pascal 12BK system, shows how to use these options, and also
shows how programs may share the same library files. To help you
choase your approach to library files as you develop programs, there is
a section listing the sequence of steps followed by the system as it

Notice that in this set of files,

NEWSORT: {a volume name}
searches library files for the intrinsic units required by a program at NEW.LIB {a library file)}
execution time. SYSTEM. LIB {a library file])

the file pathname for these two other library files is different from
the file pathname for LIBI.LIB and LIBZ.LIB:

IMPORTANT DEFINITIONS

The library file features available with the 64K system remain
unchanged. The Pascal 128K system, however, has increased the number
and manageability of library files that you may have for a program. In
this discussion of the new library features, you will encounter the
phrase "in the same volume as." This phrase means that a file must
have the same volume name or unit number as another file.

Likewise, the phrase "in a different volume from" means that the volume
name or unit number of one file is different from that of another

file. You will also encounter the phrase "file pathname." A file
pathname is the volume name of the disk, or the unit number of the
disk drive, followed by the name of a particular file that resides in
the volume. The pathname is the path the system must take to find a
glven file. See Figure 3-3.

NEWSORT:NEW.LIB is a different pathname from MYFILE:LIBl.LLB.

And so we say that NEW.LIB is "in a different volume from" LIBL.LIB or
LIB2.LIB. Later in this discussion, you will learn how library files
in different volumes can be used by a program that is executing.

An understanding of Pascal libraries depends on a clear conception of a
few other basic terms used frequently in this discussion, such as
"executable code file," "intrinsic unit," and "library file."

An "executable code file" is a file in which all the necessary

components are in place: regular units or assembly language code (or
both) have been linked, and any required intrinsic units are available
in the appropriate library files. An executable code file or a Pascal

-_!'_I’_-!_-_-_._-_I_-—-—-—-—.—.—-—.—-—I_-_-—

N T T B B T B B Y IV I /P I/ ™V

»

40 THE PASCAL 128K SYSTEM HOW TO USE THE NEW LIBRAREES 41

R

;

library file may be composed of different combinations of compiled and
assembled source programs.

In this discussion, we refer mostly to "intrinsic units," occasionally
to "regular units." Regular units, by definition, have to be linked
with, and thereby inserted in, the executable code file prior to
program execution. Intrinsic units, on the other hand, are connected
by the system to the executable code file at program execution time.
Intrinsic units have two characteristics that are relevant to this
discussion: first, they are not restricted to use by only one
executable code file; and, second, they must be placed in a library
accessible to the system at program execution time in order to be used
by the executable code file.

A "library file" is a code file that is not directly executed.
Instead, a library file contains one or more compiled intrinsic units
used by one or more programs., A USES declaration in the program names
the required unit, which is connected by the system at program
execution time. Another section of this chapter will explain how the
system searches various library files for the Intrinsie units required
by a particular program.

Two or more library files can be combined into one, using a new name or
one of the old names, and units can be moved from one library te
another. You may also move units in and out of a copy of the
SYSTEM.LIBRARY file that came with your Pascal system. (Chapter 8 of
the Apple Pascal Operating System Reference Manual explains how to
combine or move library files with the LIBRARY utility program.) The
name you give a library file depends on the kind of library file you
are using and on its purpose. 1In general, the suffix ,LIB is used to
complete the f£ilename.

COMPARING LIBRARIES UNDER THE 64K
AND 128K SYSTEMS

Note the differences between the library file system supported by the
Pascal 64K system and that supported by the Pascal 128K system. For
storing units, the A4K system allows only one library file for each
axecutable program: SYSTEM.LIBRARY. The Pascal 128K system supports
SYSTEM. LIBRARY, but also additional libraries called "program
libraries."

"SYSTEM.LIBRARY" is a library file that must reside on the system or
startup disk in order to be used. It may contain units supplied by
Apple Computer, Inc.--the unit called APPLESTUFF, for example--and, if
you so choose, additional units that vou yourself place in
SYSTEM.LIRRARY using the LIBRARY utility program.

42 THE PASCAL 128K SYSTEM

._._-—-—-_-_-—-—-—._-_-—-_-—._I_-_-_.—-_.—-—._1
oW W OW W W W W W W WM W WOl W oW M oW b u

ALLLENNEE RN SN AN NN EN

-

A "Program Library File" is a library file that has the same volume name
or volume unit number (is "in the same volume as") the executable code
file and is given the same name as the executable code file except that
its suffix is .LIB rather than .CODE. For example, if an executable
code file has this file pathname:

MATIL:SORT.CODE
then the corresponding Program Library File will have this designation:
MATL:SORT.LIB

A Program Library File, like SYSTEM.LIBRARY, may hold one to sixteen
unit segments. Only one Program Library File may be used by a program,
although the SYSTEM.LIBRARY file may also be used by the program.

In contrast to the 64K system, the 128K system allows up to six library
files (including SYSTEM.LIBRARY) with each executable code file, and
also allows multiple programs to share library files. This extension
of Pascal libraries is made possible by means of a new kind of file,
called a "Library Name File."

A "Library Name File" is a text file you create that contains a list of
pathnames of up to five library files that contain intrinsic units you
want an executable code file to use. As long as its pathname is
correctly given, a library file listed in a Library Name File can be in
any volume on line at the start of program execution. The Library Name
File uses the same naming convention as a Program Library File: vyou
give it the name of the executable code file, using .LIB as the suffix.
(The specific format for a Library Name File is described in the next
section of this chapter.)

Note that if you decide to use a Library Name File, you cannot
then use a Program Library File because they both would have
the same name.

@

By listing library file pathnames in a Library Name File, you direct
the system at the start of execution time to search the files with
these pathnames to find any intrinsic units needed by the executable
code file. Later in this chapter, you will see how library files in
the same volume as the executable code file or in another volume can be
listed in a Library Name File and how they can be shared by more than
one program.

For an executable code file requiring only a few units, you will find
that a Program Library File will take care of your library file needs,
For a larger and more complex application--one using a large number of
intrinsic units-—you should use instead a Library Name File. Using a
Program Library File limits you to units residing in the same volume as
the executing program. SYSTEM.LIBRARY also has a limited utility for

HOW TO USE THE NEW LIBRARIES

43

ol
1
large applications: it must reside on the system disk, where it takes | 64K System 12BK Svstem
up valuable space. Furthermore, because you may use a different R 2YSteR el
SYSTEM.LIBRARY in different applications—-one you have tailored to fit - |
particular needs—-you face the potential conflict of library units I Allows one library on line Allows up to six libraries
having the same name or the same segment number. - per program: on line per program:

PROGRAM LIBRARY FILE
Same volume as program
Takes name of executahle
code file and adds .LIR
Files cannot he shared
Limit: one per program

These are the advantages of using Library Name Files for your
application programs:

® Up to six library files (including SYSTEM.LIBRARY) can be made
available to an executable program. As before, each library
file can hold up to 16 unit segments, although the maximum
number of segments allowed is b4,

or replace PLF with a

® A library file can be shared by two or more executable programs
by listing it in separate Library Name Files for each of the
executable programs.

LIBRARY NAME FILE |
Same volume as program
Takes name of executable

code file and adds .LIB
Facilitates library file
sharing
Limit: one per program
Lists pathnames of up to
5 library files

® Disk space can be conserved by having only one copy of the same
intrinsic unit shared between programs.

Table 3-2 compares the kinds of library options available under the 64K
system with those available under the 128K system.

LIBRARY FILES
Up to 5 usable by a program
Any name
Can be shared by programs

HHHH!!HHH!#‘_‘H-&
WOl WO W WO WO WO W WMo

— e O S S S S S S S B — i — —

SYSTEM. LIBRARY SYSTEM. LIBRARY
Must be on system disk Must be on system disk
Keeps its own name Keeps its own name *
Files can be shared Files can be shared
Limit: only one on line Limit: only one on line

Table 3-2. Pascal Library Options:

u 64K and 128K Systems

For information on arranging intrinsiec units in libraries,
see Chapter 5 in the Apple Pascal Language Reference Manual.

WO WO W

! MAKING A LIBRARY NAME FILE

A Library Name File is a text file that must conform to a specific
text format.

To make a Library Name File, begin a new file in the Pascal Editor.
Without leaving the Editor, type "I" to select the Insert option, and
make a file using the following format on the left, which is illustrated

N N W W

44 THE PASCAL 128K SYSTEM HOW TO USE THE NEW LIBRARIES 45

3

89

by the example on the right: MATIL: {a volume}
UPDATE . CODE {an executable program]
LIBRARY FILES:[RETURN] LIBRARY FILES: B PREP. LIB {a library file}
¢pathname> [RETURN] MAIL:PREP,LIB the I
<pathname>[RETURN] MAIL:FIN.LIB pathnames 'u If you wanted either one of the applications to be able to use the
{pathname’ [RETURN] MAIL:LIBl.LIB of five I intrinsic units contained in PREP,.LIB, you would first have to list the
¢pathname>| RETURN] MATIL:LIBZ,.LIR library pathname of PREP.LIB in a Library Name File in the associated volume,
{pathname> [RETURN] MAIL:LIB3.CODE files as shown here:
55 [RETURN] 83
[CONTROL-C] MAIL: {a volume}
UPDATE.CODE {an executable program}
Notes: PREP.LIB {a library file}
UPDATE. LIB {a Library Name File LIBRARY FILES:

1. The "L" in "LIBRARY" must be the first character on the first
line in the file. You cannot have any blank lines, spaces, or
other characters at the top of the file or between lines. The
string "LIBRARY FILES:" may be in uppercase or lowercase.
Press the RETURN key after each line, as shown.

MATL:PREP.LIB

§$ }

Note that the Library Name File takes the same name (except for the
gsuffix) as the executable code file for the program (UPDATE) that uses
it. Also note that for both programs to share the same library
file—in this case PREP.LIR-——vou do not need to place PREP.LIB itself
in both volumes. Instead, vou leave the file in the volume MAIL: and
list its pathname in a Library Name File in the other wvolume, UTILS:

2. Below the name "LIBRARY FILES:" and also beginning at the left
margin, type on separate lines the pathnames (followed each
time by RETURN) for each file you want to designate as a
library file. You can have five pathnames or fewer in your
file. The system will ignore any pathnames listed after the

fifth one.
UTILS: {a volume}
SORT.CODE [an executable program}
matter how many pathnames you use. SORT.LIB {a Library Name File LIBRARY FILES:

MATL:PREP.LIB

4, Press CONTROL-C to leave Insert mode.

5§ } .

Now PREP.LIB is a shared library file, its intrinsics usable by both
programs even though it resides in only onme of the two volumes. Of
course, the volume MAIL: must be on line when the program SORT is
executed so that SORT may have access to the library file PREP.LIBR.

After you've made your Library Name File and checked the format
carefully, you can type "Q", them "W", to Write it from the Editor to
your program disk, giving it the name of the executable code file, but
with the .LIB suffix, such as UPDATE.LIB. The following paragraphs
tell you 1n more detall how to select and arrange library files,
including those to be shared by using the Library Name Files.

USING THE LIBRARY NAME FILE

This section gives several examples of how to use library files with
the Library Name File.

Using Several Library Files With One Program

If you have a number of library files in the same volume as the
executing program where, for example, the program SEARCH.CODE has the
pathname REPORT:SEARCH.CODE, wour Library Name File (with the pathname
REPORT:SEARCH.LIB) would contain

Using One Library With Two Programs

LIBRARY FILES:

E
E
E
E
F
E
| 3
3. Two dollar signs (55) make up the last line of the file no t
| 3
| B
E
E
¥
®
L3
L3

Suppose you have written two short applications, called S0RT and REPORT:LIBL.LIB — the pathnames
UPDATE, each one stored in a separate volume or on a separate flexible REPORT:LIB2.LIB _} of three
disk. Each has to have a set of intrinsic units on line when being REPORT:LIB3.CODE library files
executed. Right now the intrinsic units are stored in the library file 5%

LIBL.LIB, LIB2.LIB, and LIB3.CODE are sample names for library files.
(You may use any name for a file containing library units, as we did

named PREP.LIB in the same volume (MAIL:) as UPDATE: t!

46 THE PASCAL 128K SYSTEM HOW TO USE THE NEW LIBRARIES 47

b
3
3
3
= |
X
3
& |
- |
X
E
=

2
3
& |
3
E |
2
=4
=3
=
= 4
4
A
E

for LIBA.CODE, although using the suffix .LIB makes it easier to
remember that it is a library of units.)

You could simplify the writing of a Library Name File by setting the
Pascal prefix to the name of the volume you are currently using. For
example, if, using the Filer, you set the Pascal prefix to the volume
name, REPORT:, or, say, #9:, before executing SEARCH.CODE, you could
write the Library Name File more simply, like this:

LIBRARY FILES:

LIBl.LIB = the filenames
LIBZ.LIB —} of threa
LIR3.CODE library files
55

The system will attach the prefix to a library filename before
opening that file. (To set the Pascal prefix from the Pascal
Filer, see Chapter 3 of the Apple Pascal Operating System Reference
Manual.)

If you use the Pascal prefix in conjunction with the set of filenames
listed in the Library Name File, you must make sure that the prefix is
set to produce the correct pathnames so that the program can find its
library files when it is executing. If you successively execute
programs in different volumes, or programs with library files in
different volumes, you will need to change the Pascal prefix before
executing each program te ensure that the pathnames for the shared
library are correct at execution time. You may find it convenient to
rely on setting the prefix during program development, but you would
probably not ask a user to set the prefix before running an application
program. A more foolproof way would be to use the percent prefix
before each filename, as explained in the next section.

A program on one volume can use library files on a different volume.
For example, say that you want to use two of the library files in the
volume REPORT: for a program called POST.CODE in a second volume,
ACCOUNTS:, without physically moving those two files from the original
volume (REPORT:). You can do this easily by listing the library files
needed by POST.CODE in a separate Library Name File called POST.LIB, to
be inserted in the second volume (ACCOUNTS:), using the full pathname
to the original volume (REPORT:), as in this example, or using the
filename and setting the Pascal prefix to REPORT: before running the
program, as in the previous section.

ACCOUNTS : {a volume}
POST.CODE {an executable program}
POST.LIR {a Library Name File LIBRARY FILES:

REPORT:LIBl.LIB
REPORT:LIB2.LIB
58

Note that the library files LIBl.LIB and LIB2.LIB, physically located

in the first volume (REPORTS:), are shared by both programs (SEARCH and
POST) but that LIB3.CODE is not shared because its pathname is not

48 THE PASCAL 128K SYSTEM

SEEEE
W u

W M W

A e e e — i —

o

g

w

W ol

TR L EEEEEE R
R I Vi

Emmw
A

i

L' S—
o

4

M

listed in the Library Name File in the second volume (ACCOUNTS:). Had
it been listed in the Library Name File POST.LIB, then it too would
have become a shared library, usable as well by the program POST.CODE,
even though the actual library file was physically located in the
volume of the program SEARCH.CODE along with the other two library
files.

Many possible arrangements of library files are supported by the Pascal
128K system, using different combinations of volumes, programs, files,
and disk drives. The examples just mentioned are simply hints to help
you get started in developing your own shared libraries. As you can
see, you will want to give considerable thought to the overall
structure of your application and to the number of disk drives you
presently have on line. 1In particular, you will want to plan the kind
of library files appropriate to each program, the files you will
designate as shared libraries, and the best arrangement on disk of all
the files for a particular application program. The section "How the
System Searches Libraries," later in this chapter, gives a brief
description of how libraries are searched for the intrinsic code units
required by the executing program.

USING THE PERCENT PREFIX IN A LIBRARY NAME FILE

The percent prefix, discussed in Chapter 2, can be used to make a
Library Name File independent of its volume name. Because the percent
prefix is set to the volume name of the executing code file as soon as
that file has been found, you can use the percent prefix in the Library
Name File to replace the volume names of the listed library files. 1If
you had this set of files:

MYFILE: {a volume}
MIX.CODE {an executable program}
MIX.LIB {a Library Name File}
OLD.LIB {a library file}
NEW.LIB {a library file}

and wanted to use the percent prefix, the contents of the Library
Name File for MIX.CODE, which is MIX.LIB, would be

LIBRARY FILES:
LOLD.LIB
ANEW.LIR

§3

Then when you execute MYFILE:MIX.CODE, the system sets the prefix to
MYFILE:, opens up the Library Name File MIX.LIB, and reads the
pathnames for the two library files OLD.LIB and NEW.LIB. 1In this case
the system expands the pathnames like this:

%0LD.LIB
ZNEW.LIB

—>
>

MYFILE:OLD.LIB
MYFILE:NEW.LIB

HOW TO USE THE NEW LIBRARIES 49

-
The "%" stands for the volume name, MYFILE:, of the program MIX.CODE, ![ﬂ The system searches for the intrinsic units until it finds all of them
or until it runs out of library files and gives an error message. If

£l: '3 it finds the units before it has looked in all the relevant library
l files, it stops searching and begins executing the program.

Keep in mind when developing an application that the grouping "t-—a
qg%%a of related programs and their libraries together in the same ;

volume facilitates the use of the percent prefix to specify .

library files.) = ﬂ

HOW THE SYSTEM SEARCHES LIBRARIES

The following step-by-step description will help you choose the library
file approach best suited to the particular application you are
developing.

w o

When a program is executed, the system first examines it to determine
whether or not it uses any intrinsic units. If it does not, the
program is loaded and run. 1If it does, the system looks at the
different types of library files, in the following order, to find the
required units:

-
|

l. Program Library File
2. Librarvy Mame File

3. Library files whose pathnames are listed in a Library Wame File

oW oW W

4. SYSTEM.LIBRARY

The system first looks for a file of the same name as the executing
program but with the suffix changed from .CODE to .LIB. Then it tries
to open the file corresponding to its new name (progname.LIB). If the
file exists, the system determines whether it is a code file or a text
file. 1If it finds a code file (the file we call a Program Library
File), the system looks in the file for the required intrimsic units.
If it finds instead a text file (the file we call a Library Name File),
the system collects the pathnames of the library files listed there,
and then looks in those files for the required intrinsic units.

WO

If you have set a prefix and the names of the files listed in the
Library Name File require a prefix, the system attaches the prefix
before searching for the Files.

If there are intrinsic units needed that have not been found in a
Program Library File or by means of a Library Name File, or if your
program has not used either of these libraries at all, the system looks
in SYSTEM.LIBRARY. If the missing units are not found in
SYSTEM.LIBRARY, or if SYSTEM.LIBRARY is not on the system disk, an
error message appears on the screen, and the system returns control te
the Pascal command line.

it
A W W

N

50 THE PASCAL 128K SYSTEM HOW TO USE THE NEW LIBRRARES 5t

e
o
=
=
=
O
O
oc
o
oc
2
N
-

52

NN NS
OGN OGN M G M N i W W W MWK

__:':'._1.ﬂ_-.*-—l_'-——'

,__.4!4_;___,..._;.,.:—lua-—'l—'-—-_—t'p—l..:;é-;#:zl'—__.,—':

V — e f—

P S

CHAPTER 4

TIPS FOR PROGRAMMERS

These notes on more technical aspects of Pascal 1.2 will be of interest
to programmers in general and to application developers in particular.

A NEW SWAPPING PROCEDURE FOR PROGRAMS

Apple Pascal provides Swapping options at the system command level and
at the program level that allow you to maximize the amount of memory
available for program use. (For how these options are used at the
system level, see the section "More Memory With a New Swapping Option"
in Chapter 2 of this manual.) Under Pascal 1.1, only one level of
swapping could be turned on from a program to ensure more memory space
for a program about to be chained to and executed. You used it by
calling the built-in procedures SWAPON and SWAPOFF found in the
CHAINSTUFF unit of SYSTEM.LIBRARY.

Pascal 1.2 includes SWAPON and SWAPOFF plus a new built-in swapping
procedure, SWAPGPON, likewise residing in the CHAINSTUFF unit. You can
use this additional level of swapping when chaining to programs that
require more memory than provided by SWAPON. SWAPGPON provides o
approximately B@@ more bytes of available memory than SWAPON. Like
SWAPON, SWAPGPON is called from a program just before it terminates, in
order to turn swapping on at this new level for the next program to be
chained to. SWAPOFF will turn off all swapping as in Pascal 1.l.

The new swapping option provides more space by moving the procedures
GET and PUT from disk to main memory only as they are needed by your
program, For this reason, using GET or PUT for files on
block-structured devices will be slow when using this swapping option.
READ and WRITE, which use GET and PUT, will also be slow. UNITREAD,
UNITWRITE, BLOCKREAD, and BLOCKWRITE will be unaffected.

A NEW SWAPPING PROCEDURE FOR PROGRAMS 55

Application program writers should not depend on the extra
memory of SWAPGPON being available in the futura, No more
memory {s guaranteed than that avallable under Pascal 1.1.

Certain planned enhancements to the Pascal system will reduce
the memory available to applications by approximately B@@
bytes. The new swapping option will allow programs currently
running at the limit of available memory to run under the
enhanced system.

None of the three swapping procedures takes any parameters when called
from your program. However, to use these procedures, you must place a
USES CHAINSTUFF declaration immediately after the program heading, give
the SETCHAIN procedure call in a program before it terminates,

place the appropriate swapping procedure call before the program
termination if the swapping level is to be different for the next
program, and make sure the the SYSTEM.LIBRARY file is on line when your
program is compiled and executed.

Table 4-1 summarizes the swapping procedure options available under
Pascal 1.2.

The first two options, SWAPOFF and SWAPON, are documented in the
"Swapping Option" section of the Addendum to the Apple Pascal
Operating System Reference Manual and in the "Chaining Programs"
section of the Addendum to the Apple Pascal Language Reference
Manual.

56 TIPS FOR PROGRAMMERS

i

ALLLLEEY
W W W W@

-
w

|

-—._'d_n_"l_'_!_ﬂ

i

nan
ﬁﬂ

W

A B ALER B RN
wWoW oW W

:--!!L—-?l-—ﬂ-
& W W

o
al

CHAINSTUFF Total

Procedure System Action Memory Gain
SWAPOFF Swapping set to OFF. Set auto- -
matically at startup time. Or
set by calling SWAPOFF from your
program before chaining to the next
program.
SWAPON First level svapping set to ON im 2,262
order to gain space Iin main memory. bytes
Set by calling SWAPON from your
program before chaining to the next
program.
SWAPGPON Second level swapping set to ON in 3,084
order to gain additional space bytes

in main memory. Incudes everything
swapped at level | and adds 822

more bytes. Set by calling SWAPGPON
from your program before chaining

to the next program,.

Table 4-1. Swapping Options You Can

Set From Programs

A NEW FUNCTION CHECKS A REMOTE DEVICE

Your programs can use a new built-in function, REMSTATUS, in the
APPLESTUFF unit of SYSTEM.LIBRARY to read characters from or write
characters to a remote device connected to slot 2 of your Apple II
or Ile and to keep the program from waiting L{f the device 1is busy.
REMSTATUS returns a value of the type RSTATTYPE, which is declared as
TYPE RSTATTYPE = (RSTATBUSY, RSTATREADY, RSTATOFFLINE)
The form for calling REMSTATUS is
REMSTATUS (RSCHANNEL):
where the parameter RSCHANNEL is declared as

TYPE RSCHANNEL = (RSOUTPUT, RSINPUT)

A NEW FUNCTION CHECKS A REMOTE DEVICE

57

*

FOUR NEW SCREEN-CONTROL CHARACTERS

With any Apple II or lle 4f-column screen or any Apple Tle 8f-column
screen, you can use the following screen controls.

put their type declarations in your program, you will get an

@ RSSTATYPE and RSCHANNEL are predeclared in the system. If you
BTTOC.

RSCHANNEL is given the value RSOUTPUT if the program needs to write,
RSINPUT if the program needs to read.

This is the way the function works:

1. If there is neither an Apple Communications Card nor a firmware

Change Desired Program Statement
protocol card in slot 2, the functlon returns the value

RETATORELTHE Make the cursor visible WRITE (CHR(5));

2. 1If there is an Apple Communications Card or a firmware card in Make the cursor invisible WRITE (CHR(6)):

glot 2 and RSCHANNEL is RSINPUT, the function returns the value '
RSTATREADY if a character is waiting to be read; othewise it Turn inverse wideo on WRITE (CHR(15)):
returns RSTATBUSY. ’
Turn inverse video off WRITE (CHR(14)):

3. 1If there is an Apple Communications Card or firmware card in
slot 2 and RSCHANNEL is RSOUTPUT, the function returns the
value RSTATREADY if the output device is ready to accept a
character from the program; otherwise it returns RSTATBUSY.

Table 4-2. New Screen-Control

Characters
4, 1f REMSTATUS({RSOUTPUT) = RSTATBUSY and the program writes to

the remote device, the program will wait, Similarly, if
REMSTATUS(RSINPUT) = RSTATBUSY and the program reads from the
remote device, the program will wair.

These characters will give unpredictable results with some non-Apple
8@-column cards.

The following program statements illustrate how REMSTATUS might be
used in a terminal emulator program to read characters from or write
them to a remote device:

THE “IGNORE EXTERNAL TERMINAL" FLAG:
APPLE Il AND APPLE IIE '

REPEAT
IF (REMSTATUS (RSINPUT) = RSTATREADY) THEN
BEGIN
UNITREAD (7, BUF[®], 1, 12);
UNITWRITE (1, BUF[®], 1, 12)
END;

Pascal 1.2 includes a system flag--identified as the "ignore external
terminal™ flag—to help the application developer control which sereen-
width mode is being used. The flag is supplied on both the development
(or standard) version and the various run time versions of Pascal 1.2
used by application developers. But the program to set the Flag
(called RTSETMODE) is provided only on the run-time versions.
Application developers will use the flag primarily to test run-time

versions of system applications they wish always to run in 4@-column
mode.

IF KEYPRESS AND (REMSTATUS (RSOUTPUT) = RSTATREADY) THEN
BEGIN
UNITREAD (2, BUF[®], 1, 12);
UNITWRITE (B, BUF[®], 1, 12)
END
UNTIL BUF[@] = QUITCHAR;
The flag is located in the directory area of the startup disk. Using
RTSETMODE, the developer sets the flag by putting a "I" in block 2,
byte 25, bit 3. The flag is read by the interpreter at startup time.
{Note that these address numbers are relative to zero. In other words,
the designation "block 2" refers to the third block, byte 25 to the
twenty-sixth byte, and bit 3 to the fourth bit.)

e o e S e SR B e s e = e 6 s e RS B I e o S i W S— e m———— e— S e e ———

Of course, you will need to place a USES APPLESTUFF declaration
after your program heading. Because the function is a built-in one,
it need not be declared.

When the flag is set prior to startup, the 1.2 Pascal system will
ignore any B@-column firmware card in the Apple. Setting the flag

AV R B R R T R R R R

-

58 TIPS FOR PROCRAMMERS THE "IGNORE EXTERNAL TERMINAL® FLAG: APPLE || AND APPLE IE 59

|

“

causes the display to operate only in 4fi-column mode, even L{f the Apple
computer has an BP-column card installed. In effect, the flag talls

modification, popularly known as the "game-paddle mod." More
the system to "ignore any external terminal card."

accurately, one should talk about it as the "SHIFT-key mod," as
this manual does, because the SHIFT key rather than the game
paddle connector is the target of the change, though both are
{nvolved. To have this modification made to your Apple I1

or 1le, see your dealer.

Ggiga You will see several references here to this hardware

— o — =

You will learn in the next two sections which one of the two types of
test to use in your program to check for the use of the OPEN-APPLE (or
butten @), SOLID-APPLE (or button 1), or SHIFT key. Table 4-3 gives
you an overview of which test is appropriate to which user activity.
(The term "Mod" in the table refers to the "SHIFT key modification™
just mentioned.)

screen mode. Although yvou could enter this special &4@-column
mode from a program by writing "CONTROL-Q" te the screen, we
urge that you not do so. Pascal does not support the use of
this special 4@-column mode. Using this mode causes the system
to behave unpredictably and could harm your program.

<::> The Apple ITe 8@-Column Text Card includes a special 4¥-column

———

Apple II AEBIE I1a

THE OPEN-APPLE, SOLID-APPLE,
AND SHIFT KEY CONTROLS e s e it . - —

key Apple Apple Shift Apple Apple Shift
The OPEN-APPLE, SOLID-APPLE, and SHIFT keys on the Apple ITe keyboard
have several functions, one of the most useful of which allows the user
to send responses to an application. (You will find references to Hardware Conmect Connect Needs Built- Built- Needs
these functions in the Apple Ile Reference Manual and the Apple Ile required | Hand-Ctrls Hand-Ctrls 'Mod" in in "Mod"

Owner's Manual.)

User key Button @ Button 1 SHFT Key 0-A Key S-A Key SHFT Key

Your application can test the same kind of user responses on an
G@Fﬁ Apple II. 1Instead of pressing the OPEN-APPLE or SOLID-APPLE

Type of High-bit High-bit
key, the user would press button § or button 1, respectively, test or or
on the hand controls. to use UNITSTAT UNITSTAT UNITSTAT UNITSTAT UNITSTAT UNITSTAT

By using one or other of the following methods, your program can test
whether the OPEN-APPLE, SOLID-APPLE, or SHIFT key has been
pressed--singly or in some combination--along with a character key.
The first method allows you to test only for the OPEN-APPLE key. The
second method allows you to test whether any of these three keys has
been pressed.

Table 4-3. Testing for Use of
OPEN-AFPPLE, SOLID-APPLE, and SHIFT
Keys

THE HIGH-BIT TEST FOR THE OPEN-APPLE KEY

There are two ways to check the OPEN-APPLE key on an Apple Ile or
button @ on an Apple II: (1) the high-bit test and (2) the UNITSTATUS
test. The high-hit test checks to see whether the high-order bit of
the character read has been set as the result of the user pressing the
OPEN-APPLE key along with the character key. An ordinal (ORD) value
of 128 or more returned by the READ statement indicates that the value

The SHIFT key can be tested only if a prior hardware modification has
been made to the Apple I or Ile being used to run a particular
program. The following discussion points out certain conditions
necessary to achieve meaningful results when the SHIFT key is being
tested.

momomomomomomommmW W W W MWW NN NN N WS
A M M AR AN N M e N W W W W W M W e o ow o

i o e o e = e e — s o e S i E— i — i —— S —
\

&0 TIPS FOR PROGRAMMERS THE OPEN-APPLE. SOLID-APPLE, AND SHIFT KEY CONTROLS &1

o | O

.
M

of the high-order bit (128) has been added to the ASCIT code value of PROGRAM DISABLE;

the character, signalling that the OPEN-APPLE key has heen pressed -

along with a character key. From a Pascal program, you can use the E = TYPE PA = PACKED ARRAY [@..@] OF 9..255;
Pascal built-in KEYBOARD or INPUT file to read whatever character was ADDR = RECORD

typed. HIBITEST is a program illustrating this method of checking the l‘;‘_"_'x CASE BOOLEAN OF

OPEN=APPLE key or button @.) FALSE: (INT:INTEGER):

TRUE: (PTR:"PA)

E END;

PROGRAM HIRITEST: l
!#,-;--; VAR A:ADDR;
VAR KEY :CHAR: I
- BEGIN
BEGIN ' A.INT := -16623; {location $BF11}
REPEAT I A.PTR"[@] := @;

READ (KEYBOARD, KEY); E: END.

WRITE (KEY, ' = ', ORD (KEY), ' b X

IF ORD(KEY) >= 128 THEN WRITE ('OPEN-APPLE PRESSED');: I!;

WRITELN p

UNTIL KEY = 'Q'

If you have a program that prompts the user to press OPEN-APPLE
END. !.j or button @ along with a character key, but you have disabled
setting the high-order bit, then the program will have to use
the UNITSTATUS test to determine whether the OPEN-APPLE key or

Normally, your own HIBITEST procedure would not include the WRITE button @ has been pressed.

statement, which here acts as an illustration, but would substitute

other statements using the input values from the READ statement.
The program ENABLE shows how to re-enable the high-order bit setting so

that HIRITEST can be used.
button @; you cannot use this same test for the SOLID-APPLE and SHIFT
keys or for buttons 1 or 2, Rather, the UNITSTATUS method, described
in the next section, can be used to test these, as well as to test the
OPEN-APPLE key or button @. Why use the high=hit test at all if the
UNITSTATUS test works for all three keys? The answer is that testing l‘h
the OPEN-APPLE key or button @ using the high-bit test is a little ;
simpler and faster,

"MERERERERRER

Note that the high-hit test works only for the OPEN-APPLE key or !n-

PROGRAM ENABLE;

TYPE PA = PACKED ARRAY [@..@] OF @..255;
ADDR. = RECORD
CASE BOOLEAN OF
FALSE: (INT:INTEGER):

If you are an application developer who does not want the high bit of TRUE: (PTR:"PA)

the character byte to be set by pressing the OPEN-APPLE key or E END;

button @, you may disable this function if you wish. To do s0, use a VAR b K

variant record, sometimes called a "rrix" record, allows a program to !L

interpret the same physical data in the variant part of the record as BEGIN

being of different types. This device circumvents the Pascal system's F A-INTG:" -16623; [location $BF11)
normal restriction against mixing variable types. TIn the program 3 EN:;'PTR (@] == 128;

DISABLE that follows, a reference to the field INT interprets the data
as an integer, while a reference to the field PTR interprets the same
data as a packed array.

m

N
L
L}
varlant record to put a zero in location $BF11 (decimal -16623). A l
1
1
1

ENABLE is just like DISABLE, except for the change in this statement

L4

A.PTR™[P] := 128;

NOW W OW W OW W W

g

J which again enables setting the high-order bit.

o
“

-

62 TIPS FOR PROGCRAMMERS THE OPEN-APPLE. SCUID-APPLE. AND SHIFT KEY CONTROLS 63

-
f
-

THE UNITSTATUS TEST FOR ALL THREE KEYS

With this test, your program can determine that
1. a character has been typed;

2. the OPEN-APPLE or SOLID-APPLE key (or both) on an Apple 1le was
pressed when a character was typed;

3. button @ or button 1 (or both) on an Apple 1I was pressed when
a character was typed;

4. rthe SHIFT key was pressed when a character was typed on an
Apple II or an Apple Ile with the "SHIFT key mod" installed.

Several things may cause you to get unexpected results from the
UNITSTATUS test:

1. Only the SHIFT key on an Apple Il or Ile will set the SHIFT-key
flag when pressed. Pressing CAPS-LOCK, CONTROL-E, or CONTROL-W
does not set the SHIFT-key flag, even though doing so may
change certain other keypress results hy activating the
previously installed SHIFT-key mod. (See Appendix D in this
manual for a discussion of these other changes,.)

2. If the Apple II or Ile does not have the SHIFT-key mod, the
flag set when the user presses the SHIFT key may produce a
random value that has no meaning when the UNITSTATUS test is
made.

3. If the hand control is not connected to the Apple 11, the flag
set when the user presses button @ or button | may produce
random values that have no meaning when the UNITSTATUS test is
made.

4. If you have an Apple IT with the hand control connected and you
press button @ at startup time, the system will automatically
disable setting the high-order bit of the character, and so the
high-bit test will not work. Your instructions to the user
should include a caution on this matter,

UNITSTATUS is a Pascal built-in procedure facilitating input/output
operations at the memory address level, just as do the more familiar
UNITREAD and UNITWRITE procedures. Here, in this context, your program
will use UNITSTATUS to retrieve from the console driver a value
representing which of the three keys has been pressed. Your program
can also read the keyboard buffer data~byte, as it did in the high-bit
test, to get the character the user typed.

The form of the UNITSTATUS call is

UNITSTATUS (UNITNUM, PAB, CONTROL});

64

TIPS FOR PROGRAMMERS

)
“

W W W d W&

mEEmEam R RSN

“

W W oW W

Wb W oW oW W W

A

® Where UNITNUM is an expression with an integer value that is
the unit number of a particular input/output device, in this

case of the console;

® Where PAB is a packed array of a type you name, called BYTE,
which is meant to hold the keyboard data vou want from the
console driver;

® Where CONTROL is an expression with an integer value
referencing individual bits to control the operation of the
UNITSTATUS procedure.

The CONTROL parameter tells the procedure that you want a transfer of
status information in the keyboard buffer from the consale unit device
(parameter UNITNUM) to the packed array (PAB), where it can be read.

When you place a UNITSTATUS call in your program to check the status of
the DPEN-APPLE, SOLID-APPLE, or SHIFT key, or any combination of them,
insert these parameter values in the statement:

1. For UNITNUM, use the integer "2", the unit number of the
keyboard device.

2. For PAB, use a packed array of byte-—in the example that
follows, "NCHARSBUFD[®]", which is the first field of the
record variable KEYSTAT.

3. For CONTROL, use the integer "1", which specifies that you want
to get status information on the console input rather than to
perform a control operation on the console input or output.

Note that the procedure UNITSTATUS does not have to be defined because
it is built into the Pascal language.

ECHO is a program demonstrating how a variable of type KEYSTAT is

used with the UNITSTATUS procedure to check for the use of one or
more of these special keys along with a character key.

THE OPEN-APPLE, SCLID-APPLE, AND SHIFT KEY CONTROLS

65

PROGRAM ECHO;

TYPE BYTE = 0..255;
VAR KEY :CHAR;
KEYSTAT :RECORD
NCHARSBUFD :PACKED ARRAY [@..1] OF BYTE;
SHIFT, SOLIDAPPLE, OPENAPPLE : BODLEAN
END;
BEGIN
WITH KEYSTAT DO
REPEAT
UNITSTATUS (2, NCHARSBUFD[@], 1):
IF NCHARSBUFD[P] > @ THEN
BEGIN
READ (KEYBOARD, KEY);
WRITE (KEY, ' = ', ORD{KEY), ' "
IF OPENAPPLE THEN WRITE ('OPEN APPLE '):
IF SOLIDAPPLE THEN WRITE ('SOLID APPLE ');
IF SHIFT THEN WRITE ('SHIFT '),
WRITELN
END;
UNTIL KEY = 'Q°'
END.

This demonstration program displays the character typed, as well as the
ordinal value of the character in the ASCII sequence of characters. 1In
addition, if any of the three special keys has been pressed along with
the character key, it displays the names of the keys pressed,
(Normally, your own ECHO procedure would not include the WRITE
statements, which here act as an illustration, but would substitute a
statement using the READ and UNITSTATUS ocutputs in a way appropriate to
your application,)

THREE SPECIAL IDENTIFICATION FLAGS

Pascal 1.2 includes three special flags you may use to identify

l. Whether the computer in use is an Apple II, or an Apple Ile

with or without an B@-Column Text Card or Extended 8@-Column
Text Card;

2. Whether the computer in use is executing the Pascal 1.1 system
or the Pascal 1.2 system;

3. Which version of the Pascal interpreter is executing on the
computer in use--the 4BK, the 64K, or the 128K--and whether
certain other variations are operative.

66 TIPS FOR PROGRAMMERS

- —

o o ommm M W™ W EW NN NN NN NN N N
O W OW WO WO OW WO W WO oW

'_.-—II-—-—-———-n-——n-——-—rn—-_-—-—-—-—-—-—.—l—ca——-.—--—--—-—

™

-

FLAG TO CHECK THE COMPUTER TYPE

By identifying which machine it is running on, an application program
for the Apple Ile can take advantage of the unique features of the
Apple Ile but retain the capacity to run on the Apple II. Memory
location -16591 ($BF31 hexadecimal) contains a flag you may use to
determine from within a program whether the computer is an Apple II or
an Apple Ile. If the flag is set with the high-order bit (bit 7)
turned on, the machine is an Apple ITe. 1If bit 7 is turned off-—the
machine is an Apple II. (There is a possible third case--where bit 6
and bit 7 are both turned on-—fer a machine that is neither an Apple II
or Ile but is Apple Ile compatible. This possibility is currently
inactive but reserved should Apple Computer, Inc. later manufacture a
computer that is not an Apple IT or Ile but is Apple Ile compatible.)

If the machine is an Apple Ile, this same memory location will also
specify whether the computer has an 8¢-column card and whether it also
has the auxiliary 64K of RAM memory available on the Apple

Extended 8@-Column Text Card.

The flag bit settings listed in Table 4-4 are made whenever the Pascal
system starts up.

S ———— - T

If the computer then the byte at memory location -16591

(SBF31 Hex) has these bit settings:
Be 7 Bit 6 Bit] Bt §
Is an Apple Ile ON OFF OFF OFF
And has an Bf-column card ON OFF OFF OoN
With 64K auxiliary card RAM ON OFF ON ON
Is an Apple II OFF OFF OFF QFF
Table 4-4, Hardware Identificatfion
Bit Settings
There is no bullt-in Pascal routine to access this flag byte. You hawve

to use a Pascal varlant record or a assembly language routine.
CHECKID is a program, which vyou could implement as a procedure, using a

varlant record to determine whether the computer is an Apple IIe and
whether it has an B@-column card with or without the auxiliary 64K RAM.

THREE SPECIAL IDENTIFICATION FLAGS 67

e
PROGRAM CHECKID; a e L B e T e s e e
TYPE BITARRAY = PACKED ARRAY [@..7] OF BOOLEAN; X Bit Set to
ADDR = RECORD Number Value Indicates
CASE BOOLEAN OF
FALSE: (INT:INTEGER); ‘ @ @ The Pascal development system Is executing.
TRUE: PTR:"BITARRAY):
END; ¢ ! !] 1 The Pascal run-time system Is executing.
VAR ATADDR; _:! i 1 Floating-point operations are not supported.
IIE, ELGHTYCOLS, AUX64KMEM:BOOLEAN: :
' v | Operations using sets are not supported.
BEGIN
’ 5 1 } The 4BK Pascal interpreter is executing.
= b
A.INT := =16591; {location SBF3l hex] -
LIE := (ADDR.PTR™[7]) AND (NOT ADDR.PTR"[6]); 5 2 } The DK Phecal Interpreber 12 Sxecuting.
EIGHTYCOLS := ADDR.PTR™[@]: E | 6 LI
AUXBAKMEM := i & '
s " ADDR.PTR"[1]; 5 @ _L The 12BK Pascal interpreter is executing.
K | 6 v
END.
! 5 1 ? This bit setting is reserved for future system
6 1 — use,
If the computer is an Apple Ile, variable IIE will have a value of
True. 1If the computer is an Apple Ile and has an Bf-column card 7 @ All console output ;stdirictid to theagfzzlsageen
without the 64K RAM, variables IIE and EIGHTYCOLS will have a value of ”*‘335* an external terminal, or an v
True. If the computer is an Apple Ile and has an B@-column card with B
the 64K RAM, the variables IIE, EIGHTYCOLS, and AUXG4KMEM will have a ; ALl 1 {s directed to the
value of True. Tf the computer is an Apple II, the three variables ' . eonacle ontput:is directe

will all have a value of False. high-resolution pages.

FLAG TO CHECK THE PASCAL SYSTEM VERSION

When Pascal 1.2 is started up on an Apple II or Ile, a flag is set at
memory address =16687 ($BF2Z1 hex) to identify which Pascal version is
the one being used.

Table 4-5. Version Flags Set at
Location -166@6 (S$BF22 Hex)

® If Pascal 1.2 is operating, the value of the byte at that
location is "3".

TWO IMPORTANT POINTER LOCATIONS

® If Pascal 1.l 1is operating, the value of the byte at that

location is 2", Table 4-6 tells you where these two Important Pascal pointers are

located and describes them. Although you cannot change their values,
because they are a fixed part of the Pascal system, you can use
variant records to see the current value in efther location.

FLAG TO CHECK THE INTERPRETER VERSION

To identify which Pascal interpreter is executing, another flag is set
at startup time-—at memory address -166@6 (SBF22 hex)., This flag uses
different bit settings to ident{fy the variations heing supported, as
Table 4-5 shows.

= = mmmm WM EREWDME®E®WNE®ENNN N NN

1._..._._
O I

68 TIPS FOR PROGRAMMERS TWO IMPORTANT POINTER LOCATIONS 69

w

al

e T READING THE UP-CURSOR
Location on ._": s AND DOWN—CURSOR VALUES

Zero—-Page Pointer Its Purpose

c To read the up-cursor and down-cursor values from the SYSTEM.MISCINFO
' -s file, vou need only know that the

¥

_I.?--

§3A NP Points to top of Pascal data heap.
® up-cursor value (KEY TO MOVE CURSOR UP) is at byte 78, and the

lh--?
-

WO WO W OO WO W oe oW

$5C KP Points to top of Pascal program stack. ® down-cursor value (KEY TO MOVE CURSOR DOWN) is at byte 79

of the SYSTEM.MISCINFO file.

v
- —
I
|

Table 4-6. Two Pascal Pointers The following program fragment illustrates the use of this

: information:
VAR UpKey t CHAR;
7 DownKey : CHAR;
CH : CHAR;

NEW VALUES FOR THE UP-ARROW
AND DOWN-ARROW KEYS

PROCEDURE SetKeys;
VAR buf : PACKED ARRAY [P..511] OF CHAR;
f : FILE;
BEGIN

RESET (f, "*SYSTEM.MISCINFO');

IF BLOCKREAD(f, buf, 1) <> 1 THEN BEGIN
writeln ('Unable to read 1| block of *SYSTEM,MISCINFO'):
exit (PROGRAM)

END {if};

UpKey i= buf[78];

DownKey := buf[79]

END {SetKeys};

The Apple ITe UP-ARROW and DOWN-ARROW keys are hardwired to the ASCII
values for CONTROL-K and CONTROL-J, respectively, The definitions of
"up cursor" and "down cursor" have been changed in the Pascal 1.2
SYSTEM.MISCINFO file to the same values.

To make the 4@-column Apple I1 behave as under Pascal l.l-—that is, to
make CONTROL-0 and CONTROL-L mowve the cursor up and down,
respectively--Pascal 1.2 causes the keystrokes CONTROL-0 and CONTROL-L
to produce the same ASCII walues as the keystrokes CONTROL-K and
CONTROL-J, respectively.

ﬁ———ih—qFh——;iﬁ—qynq-hi--um—-q-ni--lq-il

As a result of this alteration of key values, the ASCII values for

CONTROL=0 and CONTROL-L can no longer be produced by typing on the
keyboard of the Apple II.

i

BEGIN (main program}
SetKeys;

However, Pascal 1.2 users of an BO-column card on an Apple I may need
to use the old ASCIT values produced by CONTROL-0 and CONTROL-L. If
50, they should move to their startup disk the special TI8@.MISCINFO
file found on the APPLE}: disk of their Pascal 1.2 system. (For
instructions on how to do this, see the section "Special MISCINFO Files
and How to Use Them" in Chapter 2.)

READ (KEYBOARD, CH):

IF CH=UpKey THEN <{whatever the program does for up-arrows>
ELSE IF CH=DownKey THEN <{ditto for down-arrows>

ELSE etc

e w

END {main program}.

-
WO W

{F—--—-!—.'-q—._-.—p*‘—'...._

Note that this routine is suitable for the Apple I1 and Apple Ile, with
or without an 8@-column card, but does not work for any external
terminal that generates multiple-character sequences such as ESCAPE-U
and ESCAPE-D for arrow keys.

-
&

Apple 1T in &@=column mode) that makes hard-coded checks for
the old up-cursor and down-cursor keyboard values, the program
will not work properly under Pascal 1.2. Such a program will
have to be changed to obtain the new key values (those for
CONTROL-K and CONTROL-J) from the Pascal 1.2 SYSTEM.MISCINFD
file at load time. The next section shows how to do this.

GﬁEj) If you try to use an application program (designed to run on an

R
ﬁu

-
oW

NEW VALLES FOR THE UP-ARROW AND DOWN-ARROW KEYS 71

70 TIPS FOR PROGRAMMERS

-

does. Consequently, sometimes SEEK will succeed in positioning
the pointer after the last record in the file, but other times

it will not.

CHANGES TO THE SEEK AND PUT PROCEDURES

The Pascal system's SEEK and PUT procedures now work differently from

the way they worked under Pascal 1.1. Here are the changes: In Pascal 1.2, the ability to seek beyond EOF is consistent

because hoth SEEK and PUT attempt to expand the file if

l. 1In Pascal 1.1, if a program directs SEEK to find a record that necessary, (See 1, above.)

is past the last byte used in the last block of a disk file,
SEEK positions the file pointer at the last byte used in the

last block. You will find a complete list of bug fixes in Appendix A in this

manual.
In Pascal 1.2, if a program directs SEEK to find a record that

is past the last byte used in the last block of a disk file,
SEEK first tries to expand the file. If the file cannot be
expanded-——that {s, if there is another file starting right
after {t—the system returns an IORESULT of 8 ("no room"), If
the file can be expanded, SEEK does so. Then SEEK checks to
see whether the record it originally was directed to find is
within the new bounds of the file, 1f it is not, the system
returns an [ORESULT of 8. If it is within the new bounds, SEEK
positions the file pointer at the record.

SECEOT

R

TWO FEATURES NO LONGER OPERATIVE

|
a

—

To streamline the memory requirement of the Pascal 1.2 operating
system, we removed two previously available features.

I

First, the operating system ignores the "has slow terminal" flag in
SYSTEM.MISCINFO as a feature that is no longer useful.

2. In Pascal 1.1, if a program directs SEEK to a positien anywhere
between the current EOF and the EOF at the time the file was
last RESET, SEEK does not refill its file buffer with the
correct block. Consequently, if the position being sought is
not in the same block as the pre-SEEK position, SEEK will not
position the file pointer correctly.

-

'y

Second, the system assumes that every console device presently in use
has a "backspace" value (usually ASCIT B).

In Pascal 1.2, SEEK refills its file buffer with the correct
block and positions the file pointer correctly,

i

3. In Pascal 1.1, if a program attempts to extend a disk file
dynamically by seeking to a record number that is after the
last record in a flle immediately followed by another file, and
then dolng a PUT, the First hlock aof the following file will be
damaged. The cause of the damage {s this: SEEK moves the file
pointer to the last byte used in the last block of the file.
(See 1, above). Then PUT discovers that it is positioned at
the end of the file, so it tries to expand the file in order to
put the new record in. 1f the file can be expanded, PUT does
80, Unfortunately, PUT then adds the record without first
checking to see whether the expanded file was expanded enough
to hold the record., 1f it wasn't, the first block of the
following file is overwritten.

W

In Pascal 1.2, if PUT has been able to expand the File, it
checks to make sure that the record will actually fit in the
remaining space in the file without overlapping the file that
follows. If there is not enough space for the record, the
system returns an IORESULT of 8 ("no room").

. EEEEEEBENEERERLER,

nr
5w

4. 1In Pascal 1.1, the abllity to seek beyond EOF is inconsistent,
because SEEK never attempts to expand a file, although PUT

K

72 TIPS FOR PROGRAMMERS TWO FEATURES NO LONGER OPERATIVE 73

B B

L |

N
=
<
),
D
=
Z
7
(B8]
o
Ll
O
—
=

‘B'EHEENEEEEEEREEEEEREEREREERREREE B B B B

74

76

APPENDIX A

BUG FIXES IN PASCAL 1.2

e —

'ﬂwmwsﬁwwﬂ

The following bugs in Pascal 1.1 have been corrected in Pascal 1.2:

COMPILER BUGS

- -

1. A regular unit using (*5R segname*) or (*§R unitname*) was not
linked properly. Now it is.

2. 1f the Compiler Resident option ($R) was done on an intrinsic unit
which has a data segment, the code segment was loaded before the
data segment. Consequently, assembly language routines containing
addresses of items in the data segment did not have those
addresses correctly relocated., MNow the data segment is loaded
first, and addresses are correctly relocated.

3. EXIT(procedurename) did not work if the procedure was in a regular
unit and had a procedure number greater than 127. Now it works
correctly.

4, Initialization sections of nested units were (incorrectly)
executed in the reverse order. Now they are executed in the .
correct order.

5. The Compiler did not issue an error message if (*SR segname®) or
(*$R unitname*) referred to a non-existent segment or unit. Now
it does.

6. The Compiler did not issue an error message {f an intrinsic unit
had the same segment number for code and data segments. Now it
gives an error message.

7. The Compiler did not check for an empty data segment in an intrinsic
unit. WNow it does.

- — i — —] — | —] — i — — N — — — — — —

PR ®m D NERRENE NN NN N
e R e e e e s eed e aw

COMPILER BUGS 77

4«——

v
.E_

5

A I I R R R R R R

8. The Compiler issued an error #35@ message ("No data segment
allocated") at the end of the initialization section, instead of
at the beginning of the implementation, if an intrinsic unit
needed a data segment but none was declared in the UNIT statement.
Now it gilves this error message at the beginning of the
implementation.

6. If an assembly contained more than 1@ procedures, the Assembler
could overwrite SYSTEM.PASCAL data, Now it does not.

7. The Assembler did not correctly relocate + INTERP references. Now
it does.

8. 1If there was garbage after the filename in an .INCLUDE statement,
the Assembler reported the error but continued to the next line
without including the file. WNow the Assembler includes the file
after reporting the error.

9, 1If a procedure was declared FORWARD but never defined, the
Compiler error message did not stop the compile and was easily
overlooked as the display scrolled. The compile looked successful
but did not create a code file. MNow the compile is stopped, and
the error message is clear.

1#. The Compiler sometimes released symbol table space from the heap LINKER BUGS

too soon. Now it does it at the proper time.

1. The Linker sometimes failed to resolve DEFs and REFs properly to
gee that the labels of two assembly routines match. Now it
regolves them correctly to see that the labels match.

11, Negative long integer constants and variables were not processed
correctly. Now they are.

12, The Compiler did not test for a constant string longer than 8@

characters. Now it does. 2. The system did not allow regular units to use segments numbered in

the range 16..31 . Now it does.
13. When a listing was turned off, the Compiler continued to emit a
form feed for every (*3P*) encountered. Now it does not.

14, The Compiler could get random errors on identifiers that hegan
with the letters H, J, K, Q, X, ¥, or Z, Now it does not.

LIBRARY.CODE BUG

l. Once the library file being built exceeded 2({ blocks, the
interface text sections of units were no longer copied into the
file. Now it coples them into the file.

15. The Compiler would ingore all Compiler options that Followed $5++
1f they were in a single statement. MNow it does not.

ASSEMBLER BUGS

LIBMAP.CODE BUG

l. The Assembler did not process ,ALIGN properly. Now it does.

l. LIBMAP.CODE did mot list in the output file the interface text of
units that started after block 299 of the library. HNow they are
listed.

2., 1If there were no symbols in the program, the Assembler would print
garbage for the symbol table., MNow it does not,

3. A fixup to a word that crossed buffer boundaries would
destroy the byte following the end of the buffer. WNow it does
not.

SEEK/PUT BUGS

4. The Assembler did not test for nested macros, which are illegal.
Now it does test and gives an appropriate error message if
HEEESEET)F.

= =mmm MW E N RN N NN NN NN NN

- — i — — S — i — —

l, An attempt to extend a disk file dynamically by doing a SEEK to a
record number falling after the finmal block in the file, when the
space immediately after the file 1s occupied by another file, and
then doing a PUT, resulted in writing over the first block of the
following file. Now the PUT following the SEEK will get an
IORESULT of B ("no room") if there is not enough space for the
record. (See Chapter 4 of this manual for detafls.)

-

5. An .ENDM without a corresponding .MACRO was not printed, and
caused the Assembler to give inappropriate "Undefined label"
eCroTs.

] 5

-—

78 BUG FIXES IN PASCAL 12 SEEK/PUT BUGS 79

S [

:

If there was room in the last block of a file to contain another
record, a SEEK to a record number that should have resulted in
expansion of the file resulted, instead, in the record heing
written following the former last record. Now the system first
tries to expand the file: 1if there is not enough space for the
record, it gives an IORESULT of 8 ("no room"). (See Chapter 4
of this manual for details.)

SEEK went to the wrong position whenever the program tried to
geek to a position anywhere between the current EOF and the EOF
at the time of the last RESET. Now SEEK refills its file buffer
with the correct block and positions the polnter correctly. (See
Chapter 4 of this manual for details.)

A SEEK to a large record number in a file with a large record size
would take an inordinate amount of time. For example,
SEEK(f,120@9), where "f" contains 25@-byte records, took about 15
seconds. MNow such a SEEK takes a much shorter time.

INPUT/OUTPUT BUGS

1.

2‘

If a driver was attached to a unit number in the range 4..12,
UNITREADS and UNITWRITES would work correctly, but file input or
output using the wvolume name might not work correctly. Now file
input or output using the volume name works correctly.

The flexible disk routines disabled interrupts and left them
disabled. Now program interrupts are re-enabled after the disk
routines finish.

A WRITE of a null string did not set IORESULT properly if IORESULT
was non-zero before the WRITE. Now it does.

RESET or REWRITE of a file on a DOS-formatted volume did mot return
an IORESULT error, as it should have. Now they return an IORESULT
of 1@ ("File not found").

TURTLEGRAPHICS BUGS

1.

80

The Parameter YSKIP in the procedure DRAWBLOCK did not work. Now

it does.

The DRAWBLOCK procedure did not draw the block correctly if part
of the block extended past the edge of the viewport. Now it does.

BUG FIXES 1N PASCAL 12

Pl "r'

rsir—amir—stir—at

3 T !- |r!_

|

EERNEN

WO W e

|}

MISCELLANEOUS EXECUTION-TIME BUGS

1.

2.

3‘

1f the (*S$NR*) option referred to a unit that had an assembly
language procedure in its INTERFACE, and that procedure was
called from outside the unit, a fresh copy of the code segment
was loaded onto the stack as it should be. But when the
procedure terminated, the storage occupied by that segment was
not released. Repeated calls would then cause memory to fill
with copies of the unit's code. Now the storage is released

properly.

Repeated CONTROL-A's during compiles (to look at the second forty
columns of the screen) could crash the system, and repeated
CONTROL=A's during disk input/output could cause bad disk writes.
Now such use of CONTROL-A does not crash the system ar cause bad
disk writes.

If the "ignore external terminal" flag was set with RTSETMODE, the
card in slot 3 was initialized even though it was not used
afterward., Now the card in slot 3 is not initialized.

Sometimes when a program wrote a real number, using a wide field,
a random character was written in the rightmost position of the
field. Now the number is written correctly.

If an error occurred on a long-integer computation, the
interpreter entered a loop instead of giving an execution error.
Now it gives an execution error.

There was no check for stack overflow when intrinsic-unit data
segments were loaded on the stack. Now there is.

MISCELLANEOUS EXECUTION-TIME BUGS

81

82

L THE FILES ON THE
i PASCAL 1.2 DISKS

E
==
E
E =
[
E
E
E -
E =
LI
LIt
E -

N A

65@§ . OPCODES
65@#. ERRORS

I.- I1 i

APPLE3: disk

ERROR MESSAGES

SYSTEM. APPLE
BINDER.CODE

LINEFEED.TEXT J!;
LINEFEED. CODE

FORMATTER.CODE E
FORMATTER.DATA

BALANCED, TEXT

CROSSREF.TEXT !_
DISKID, TEXT

GRAFCHARS. TEXT

GRAFDEMO, TEXT !ﬁ
HAZELGOTO.TEXT

HAZEL.MISCINFO i
HILBERT.TEXT

II4@ . MISCINFO* E
II8P.MISCINFO*

[TE4P.MISCINFO*

SETUP.CODE ﬁ: .
SPIRODEMO. TEXT

TREE.TEXT .
128K, APPLE® E
128K . PASCAL*

o

- =

84 THE FILES ON THE PASCAL 12 DISKS

& 4

APPENDIX C

The Compller error messages have been revised for Pascal 1.2.
Following is an updated list of all the Compiler error messages, as
well as the one new Assembler error message, in Pascal 1.2:

- W oW

COMPILER ERROR MESSAGES

Brror in simple type

Identifier expected

'PROGRAM' expected

') expected

':!' expected

Illegal symbol (maybe missing or extra ';' on line above)
Error in parameter list

'"OF' expected

'{' expected

Error in type

'"[' expected

']' expected

13: 'END' expected

l4: ';' expected (possibly on line above) .
15: Integer expected

16: '=' expected

17: "BEGIN' expected

Error in declaration part

19: Error in field-list

28: ',' expected

21: ',' expected

22: '"Interface' expected

23: 'Implementation' expected

24: "CODE' expected

5@: Error in constant

51: ':=' expected

52: '"THEN' expected

33: 'UNTIL' expected

54: 'DO' expected

55: 'TO' or 'DOWNTD' expected in FOR statement
58: Error in factor (bad expression)

B R wE

% ws sE =R ss

-

—
o AD DD N Bl R e

=
Br we 3

O W W N W W R W e W Wl E e a

COMPILER ERROR MESSAGES

86

mE B =R ERERRPRENNONRE DN NNNNN

59: Error in variable
1#1: Identifier declared twice
1#2: Low bound exceeds high bound
133: Identifier is not of the appropriate class
14 : Undeclared identifier
1i5: Sign not allowed
1@6: Number expected
1@7: Incompatible subrange types
1@8: File not allowed here
1#9: Type must not be real
11#: Tagfield type must be scalar or subrange
111! Incompatible with tagfield part
113: Index type must be a scalar or a subrange
114: Base type must not be real
115: Base type must be a scalar or a subrange
117: Unsatisfied forward reference
119: Re-specified params not DK for a forward declared procedure
12@#: Function result type must be scalar, subrange or pointer
121: File walue parameter not allowed
122: Result type of forward declared function cannot be re-specified
123: Missing result type in function declaration
125: Error in type of standard procedure parameter
126: Number of parameters does not agree with declaration
128: Result type does not agree with declaration
129: Type conflict of operands
13}: Expression is not of set type
131: Only tests on equality are allowed
132: Strict inclusion not allowed
133: File comparison not allowed
134: Tllegal type of operand(s)
135: Type of operand must be boolean
136: Set element type must be scalar or subrange
137: Set element types must be compatible
13B: Type of variable is not array
139: Index type is not compatible with the declaration
14@: Type of variable is not record
141: Type of variable must be file or pointer
142: Tllegal actual parameter
143: Illegal type of loop control variable
144: Tllegal type of expression
145: Type conflict
146: Assignment of files not allowed
147: Label type incompatible with selecting expression
148: Subrange bounds must be scalar
149: Index type must not be integer
15@: Assignment to standard function is not allowed
152: No such field in this record
154: Actual parameter must be a variable
155: Control varlable cannot be formal or non-local
156: Multidefined case label
158: Mo such variant in this record
159: Real or string tagfields not allowed
l6@: Previous declaration was not forward
l61l: Forward declared twice

162: Parameter size must be constant

165: Multidefined label

166: Multideclared label

167 : Undeclared label

168: Undefined label

169: Base type of set too large

175: Actual parameter max string length < formal max length
182: Nested units not allowed

183: External declaration not allowed at this nesting level
184: External declaration not allowed in interface section
185: Segment declaration not allowed in unit

1B6: Labels not allowed in interface section

187: Attempt to open library unsuccessful

188: Unit not declared in previous uses declaration

189: 'Uses' not allowed at this nesting level

199: Unit not in library

191: No private files in unit

192: 'Uses' must be in interface section

194: Comment must appear at top of program

195: Unit not importable (interface text not available)
2@81: Error in real number-—digit expected

2p2: String constant must not exceed source line

2$3: Integer constant exceeds range

259: Too many scopes of nested identifiers

251: Too many nested procedures or functions

253: Procedure too long

254: Procedure too complex

273: No such unit or segment

277: String too long

3@1: No case provided for this value

35f: No data segment allocated

352: No code segment allocated

353: Non-intrinsic unit called from intrinsic unit

354: Too many segments for segment dictionary

355: Data segment empty

399: Implementation restrictlion

49P: Illegal character in text

4@1: Unexpected end of input

4P2: Error in write to code file, maybe not enough room on disk
493: Error while opening or reading include file

494: Bad open, read, or write to Linker file SYSTEM.INFO
4@5: Error while reading library

4@6: Include file not legal in interface nor while including
498: (*55+*) needed to compile units

499: General Compiler error

A M@ E A @

e

B bk G ALeLeD S

EEEEEEEAMEERERNENRNNNENNN
A

B8 ERROR MESSACES COMPILER FRRCH MESSAGES 89

»
"

a

NEW ASSEMBLER ERROR MESSAGE

65: Too many .PROCS and/or .FUNCS

APPENDIX D

ACTIVATING THE SHIFT-KEY MOD

e A A &

If you want the SHIFT-key mod installed on your Apple 11 or Ile, see
your dealer. The only reason for having it installed on an Apple Ile
is so that a program can test to see if the user has pressed the SHIFT
key alone or in conjunction with another key in response to a program
prompt. Having it installed on an Apple ITI allows a program to test
for the SHIFT key, allows you to shift between uppercase and lowercase
characters using the SHIFT key in the normal fashion, and causes
certain keyboard character translations, where, for example, typing
SHIFT-P produces an uppercase P instead of @ .

C I

Having the SHIFT-key mod installed on an Apple Il does not mean that
the modification automatically works. Nor 1s it activated
automatically at startup time. You must activate the modification in
order to take advantage of some of its functions. %You may also
deactivate the modification when desirable. The modification does not
have to be activated on an Apple Ile.

- -

® You activate the modification by pressing either CONTROL-E or
CONTROL-W after starting up an application or the Pascal
system.

® You deactivate the modification by pressing CONTROL-T. >

Activating the modification on an Apple II allows the SHIFT key to be
used to obtain uppercase and lowercase characters in the conventional
shift-key manner. But two functions do not require modification
activation: wusing and testing the SHIFT key as a control, and
obtaining certain new character translations. Table D=1 lists the
keyboard character translations on an Apple 11 that are a direct effect
of the modification and that remain in effect before and after it is
activated,

A

@O ERRCOR MESSAGES

=
03
E
E
E
E
E
E
B
E
E
E a4
E
B
B
E
E
| S
-
B
B
e
v
LS

A
]'___'-
5
-
T
T
Al
e
)

92 ACTIVATING THE SHIFT-KEY MOD INDEX - 93

T — - ———————— E'lﬁ"- I B E BLOCKREAD procedure 55
5K NI , x BLOCRWRI d
Typing or Pressing These Keys Obtains This Character o f boot, i'wm_a::'ggﬂ s::e &2
. IR boot disk, request for 14
N i ok break in execution 21
f]? : e bug fixes 77-81
— T = Assembler 78
CTRL-" - el | Z (percent sign) prefix 15
CTRL-@ @ L B in Library Name File &9 Compiler 77-78
(:TRI.—]] |7 128K system 29-51 execution-time £l
- E=-® error messages 32 Input/Output 80
T e o) - Saatotes 29 LIBMAP.CODE 79
E**’Q . memory organization 33 t}“&mr'%’“ 79
Table D-1, SHIFT-Key Mod Character E: :ﬁiﬁiﬁﬁ 35 k3030 SE;K:;UT 79-80
| -
Translations E =8 40-colum screen Turtlegraphics 80
B on apple 11 22-23, 24 button 0 60
Table D-2 summarizes what results from the modification when it is not [:,_ < i App » Botton 1. 60
activated and what results when it is activated. FI‘"" : 'ﬁ'ﬁﬁomec:g :ri;lzf.;u 2i T 90
e e i pple
. .. BD-column screen
___ E-—-® onapple 11 22-23, 25 &
on Apple ITe 22- 23 6498 Lotk & %
i e
Mod Installed but Not Active Mod Installed and Active E o {$8=} optfon 38 bt AT
(Apple II Only) = CHAINSTUFF unit 8, 55
E A characters
The character translations The character translations ! reading and writing 57
resulting from the mod remain operative, 1 59
s accessi A screen-contro
become operative--Apple II only. B =< By hE progies code file, execurable 41
D21} ila code overflow 32
On an Apple IT and an Apple Ile, The SHIFT key can be tested E = ar :::i'. ::'Pgeii“’:d 4 LCODE suffix 43
the SHIFT key can be tested using the UNITSTATUS procedure. 1 ﬁppl: Tle : CODELOW variable 38 139
SR S TR pRecedurt 1 a E Apple Pascal Language CODEP variable 38, 39
J;ﬂwerchaﬁe an UEPET';HS': " . Reference Manual & "Codespace overflow" message 32
R e e GhEAe , % Pascal Operating System Compiler 38, 40
using the ey . E rence Manual & bug fixes 77-78
e . -Mm disk 4, 83 error messages B87-89
E- ml disk «ﬁ 83 computer type flag 67
i TP APPLE2: disk 4 83 conserving disk space 44
Iable D=2, Effects of an Activated APPLE3: disk J. a4 control characters not echoed to
and Inactivated SHIFT-Key Mod E APPLESTUFF unit 42, 57 R
arrow keys 70 CONTROL-@ 21
ﬁ Assembler CONTROL~-] 20
bug fixes 78 CONTROL-E 20, 91
5 error message 90 CONTROL-J 70
- assembly code 34, 35, 36 CONTROL-K 21, 70
auxiliary memory 29, 37, 38-39 CONTROL-L 21, 70
[Mmanaging 38-39 CONTROL-0 21, 70
B CONTROL-R 20
i . CONTROL-T 21, 91
= B CONTROL-W 20, 91
e CONTROL-OPEN-APPLE-RESET 9
- _ backing up disks 6 CONTROL-RESET 9
I ~ backspace value 73 CONTROL-SHIFT=2 21
__ba block volume units 19 copying disks 6
&_. g curgor motion keys 8, 20, 22

D

data files, specifying using %
data space in memory 34, 35,
DEL character 21

DELETE key 21

devices, remote 57

disk space, conserving &4
disk-formatting program 13
DOWN-ARROW key 70

down-cursor key 8

down—cursor value 71

E

Editor, Pascal 138

error messages 87-90

executable code file &1

execution-time bug fixes 81

Extended B0-Column Text Card
32, 33, 37, 38

F

file pathname
filename 13
Filer, Pascal 38

40, 41

files
on Pascal 1.2 disks 83
library 40

flags

computer type 67
has slow terminal 73
identification 66-69
ignore external terminal 59
Pascal interpreter 68
Pascal version 68
flexible disk 15
floppy disk 15
foreign keyboards 21
Formatter 13
error messages L4

G

game paddle mod 61
GET procedure 18, 55

94 |NDEX

36

29

15

H

Halt command 9
hand-control buttons 19
"has lower case" control
variable 22
"has slow terminal”™ Flag 73
heap pointer 70
heap, Pascal data 34, 35, 36
hexadecimal number system 33
high-bit test for
OPEN-APPLE key 61=63

1/0 34, 35, 36, 37
identification flags 66=-69
ignore external terminal flag 59
IT40.MISCINFO file 22
LIB0.MISCINFO file 22
IIE40.MISCINFO file 22
Initialize command 9
Inpuc/Qutput 34, 35, 36, 37
Imput/Output bug fixes 80
interpreter, Pascal 34, 35, 36
intrinsic units 42
inverse video

turning off 59

turning on 59

K

keyboard, foreign 21

L

Language Card
LLIB suffix 43
LIBMAP, CODE 40
LIBMAP.CODE bug fixes 79
library file(s) 40, 42

33, 34

more than one with a program 47

options 40, 45
gsearching in 50
sharing 44, 46

Library File, Program 43

)

x
B
=
E
E
E
E
E
E
E
E
E
E
E
E
E
3
B
&
3
E
=
&
s

S

S A AR RARAALMAANARAMLAAEAAGAEAARAAawdAddd

w

Library Name File 43

% prefix in 49

making 45

using 46-49
LIBRARY utility code 42
LIBRARY.CODE &0

bug fixes 79
Linker, Pascal 40

bug fixes 79
LONGINTIO unit 8
lowercase characters 20

"has lower case' variable 22

M

main memory 38, 34, 35

memory, getting more 17

memory maps 33-37

memory organization, features 38
MISCINFO files, special 22
mixing Pasecal 1.1 and 1.2 7
modification, hardware 6(0-61, 91

N

Name File, Library &3
% prefix in 49
making 45
using 46-49

O

OPEN-APPLE key 1%, 60
high-bit test for 61-63
operating system 38, 34, 35,

36, 37
overflow, code 32

P

P-code 38, 34, 35, 37
Pascal 1.1 4
running programs under 1.2 8
upgrading SYSTEM.LIBRARY 8
Pascal 1.2
disks 6, 7
operating system 7
reasons to use 4
Pascal 128K system 29-51
erTor messages 32

features 29
memory organization 33
setting up 30
startup disk 30
Pascal 64K system memory map
33, 34-3s5
Pascal data heap 34, 35, 36
Pascal interpreter 34, 35, 36
Pascal interpreter flag 68
Pascal operating system 38, 34,
35, 36, 37
Pascal prefix 48
Pascal program stack 34, 35, 36
Pascal startup screen 14
Pascal version flag 68
PASCALIO unit 8
pathname &40, 41
percent prefix (X) 15-17
accessing files 16
chaining 17
in Library Name File 49

pointer
heap 70
stack 70

pointer locations 69

Program Library File 43

Program segments, too many 19

program units
intrinsic 42
regular 42

PUT procedure
changes 72

18, 55

Q

2

READ procedure 55

reading up- and down-cursor
values 71

regular units 42

remote devices 57

REMSTATUS funection 57

reserved segments 40

rigid disk 15

RSTATTYPE walue 57

RTSETMODE program 59

INDEX

95

S

{$5=} option 138
saving disk space &4
screen-control characters
gearching in library files
SEEK procedure changes 72
SEEK/PUT bug fixes 79-80
segments
additional with 128K 40
reserved 40
SETCHAIN procedure call 56
sharing library files 46
SHIFT key 19, 60
SHIFT-key mod 61, 91-92
SOLID-APPLE key 19, 60
special MISCINFO files 22

U
unit(s)
block volume 19
59 intrinsic 42
50 regular 42

unit number 40, 41

UNITREAD procedure 55
UNITSTATUS test 64=-65
UNITWRITE procedure 53
UP-ARROW key 70

up-cursor key &

up~cursor value 71

uppercase characters 20

USES APPLESTUFF declaration 58
USES CHAINSTUFF declaration 56

"Stack overflow" message 32

stack pointer 70
stack, Pascal progranm
startup

one-drive system 9

two—drive system 9

two-stage 14
startup disk

128K system 30

request for 14
startup screen 14
SWAPGPON procedure 55
SWAPOFF procedure 55
SWAPON procedure 53
swapping during compilation
swapping option(s)

program level 55-57

system level 17-18
system size, finding L4
SYSTEM.APPLE file 29
SYSTEM.LIBRARY file

upgrading 8
SYSTEM.MISCINFO file 22
SYSTEM.PASCAL file 7, 29

42, 57

i

tests
high-bit for OPEN-APPLE
UNITSTATUS 64-65
TURTLEGRAPHICS unit &8

\'

volume name

34, 35, 36

15, 40, 41

W

WRITE procedure 55

Xy

38 7

zero-page pointer 39

6l-63

Turtlegraphics bug fixes 80

Q6 INDEX

3

L]

AT N T Y N T T Y Y Y Y Y Y YY YR

UCSD PASCAL SYSTEM USER’S
SOCIETY (USUS)

GET MORE FROM YOUR PASCAL SYSTEM
JOIN USUS TODAY

USUS is the USER'S GROUP for the most widely used, machine-independent
software system.

If you use UCSD Pascal*, Apple Pascal**, or the UCSD p-System*, USUS
will link you with a community of users who share your interests.

USUS was formed to give users an opportunity to promote and influence
the development of UCSD Pascal and the UCSD p-System, and to help them
learn more about their systems. USUS is non-profit, and is not
affiliated with any vendor.

Members get access to the latest UCSD Pascal information, and toe
extensive Pascal expertise. In USUS, you have formal and informal
opportunities to communicate with and learn from other users via the
following membership benefits::

NATIONAL MEETINGS twice a year let you learn from experts and try out
the newest products. Meetings feature hardware and software
demonstrations, tutorials, technical presentations and informatien,
reduced-cost software library access, SIGC meetings, and a chance to ask
questions of major vendors.

USUS NEWS AND REPORT brings you news and information about your
operating system four times a year. It contains technical articles and
updates, library catalog listings, SIG reports, a software vendor
directory, and organizational news.

ELECTRONIC MAIL puts USUS subscribers in touch with a nationwide network
of users. CompuServe MUSUS S51IG provides a database and bulletin board
communications. GTE Telemail accomodates one-to-one messages.

SOFTWARE EXCHANGE LIBRARY offers an extensive collection of tools,
games, applications and aids, in UCSD Pascal source code at nominal
prices.

SPECIAL INTEREST GROUPS zero in on specific problems, and represent
member interests with manufacturers

*UCSD Pascal and UCSD p-System are trademarks of the Regents of the
University of California.

*% Apple Pascal is a trademark of Apple Computer Inc.

Disclaimer: The statement above is made by USUS. 1Its appearance here
ls for your information, and does not constitute an

endorsement or warranty by Apple Computer.

UCSD PASCAL SYSTEM USER'S SOCIETY 7

- — i —

R EEEEEEEE R R RN EEY

USUS MEMBERSHIP
APPLICATION

I am applying for $25 individual membership
$500 organization membership
§ air mail service surcharge

Rates are for 12 months and cover surface mailing of the newsletter. Tf
you reside outside of North America, air mail service is available for a
surcharge. It is as follows: $5 annually for those in the Caribbean,
Central America, Colombia, and Venezuela: 510 annually to those in South
America, Turkey, and North Africa: and $15 for all others. Check or
money order should be drawn on a U,S. bank or U.S. Post Office.

Name/Title

Affiliation

Address

EELELEELEEE

Phone () - TWX/Telex

Option: Do not print my phone number in USUS rosters.
Option: Print only my name and country in USUS rosters.
Option: Do not release my name on mailing lists. »

Computer System: 6502/Apple Other

I am interested in the following Committees/Special Interest Groups
(s1Gs):

R
Y

Advanced System Editor SIG Meetings Committee

Apple SIG Modula=-2 SIG

Application Develaper's §IG Publications Committee
Communications SIG Software Exchange Library
File Access SIG Technical Issues Committee
Graphies SIG UCSD Pascal Compatibiliry SIG

Mail completed application with check or money order payable to USUS and
drawn on a U,S. bank or U.S5. Post Office to

Secretary, USUS
P.0. Box 1148

La Jolla, CA, 92038
USA

W WmEme
&R e R &

- =

98 USUS MEMBERSHIP APPLICATION 99

e ———

Ul

